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Abstract

The hippocampus, in humans and rats, plays crucial roles in spatial tasks and non-

spatial tasks involving episodic-type memory. This thesis presents a novel computa-

tional model of the hippocampus (CA1, CA3 and dentate gyrus) which creates a frame-

work where spatial memory and episodic memory are explained together. This general

model follows the approach where the memory function of the rodent hippocampus is

seen as a “memory space” instead of a “spatial memory”.

The innovations of this novel model are centred around the fact that it follows de-

tailed hippocampal architecture constraints and uses spiking networks to represent all

hippocampal subfields. This hippocampal model does not require stable attractor states

to produce a robust memory system capable of pattern separation and pattern comple-

tion. In this hippocampal theory, information is represented and processed in the form

of activity patterns. That is, instead of assuming firing-rate coding, this model assumes

that information is coded in the activation of specific constellations of neurons. This

coding mechanism, associated with the use of spiking neurons, raises many problems

on how information is transferred, processed and stored in the different hippocampal

subfields. This thesis explores which mechanisms are available in the hippocampus

to achieve such control, and produces a detailed model which is biologically realistic

and capable of explaining how several computational components can work together to

produce the emergent functional properties of the hippocampus. In this hippocampal

theory, precise explanations are given to why mossy fibres are important for storage

but not recall, what is the functional role of the mossy cells (excitatory interneurons)

in the dentate gyrus, why firing fields can be asymmetric with the firing peak closer to

the end of the field, which features are used to produce “place fields”, among others.

An important property of this hippocampal model is that the memory system provided

by the CA3 is a palimpsest memory: after saturation, the number of patterns that can

be recalled is independent of the number of patterns engraved in the recurrent network.

In parallel with the development of the hippocampal computational model, a sim-

ulation environment was created. This simulation environment was tailored for the

needs and assumptions of the hippocampal model and represents an important compo-

nent of this thesis.
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Chapter 1

Introduction

Adaptation, in the form of a mechanism to increase survival expectancy, appears at

two distinct levels. It appears at the species level, with the interplay of mutations and

natural selection that progressively produces species more adapted to the host environ-

ment. At a much smaller time scale, it appears at the organism level, where specialised

systems use previous experiences to increase the organism’s life expectancy by affect-

ing its future interactions with the environment. For the organism’s time scale, the best

solution, according to evolution, was to merge these specialised systems with the sys-

tems that control the behaviour of the organism, forming a single, complex, dynamic

and hence adaptable system - the nervous system.

The ability to extract from experience relevant information that enables a particular

organism to increase its or its progenies’ chances of survival, by either adapting to the

environment or adapting the environment to its needs, is certainly one of the most

fascinating capabilities of living organisms. Slowly, our attempts to understand how

biological systems are able to efficiently adapt, and to create artificial systems with

similar capabilities, are being rewarded (Holland, 1992).

Two main processes need to be considered in this adaptation process: memory and

learning.

Throughout this thesis, the wordmemoryis used to refer to the ability to store

information directly acquired from input channels (for example from sensory input).

This information is stored in the form of internal representations without being subject

to complex manipulations.

The wordlearningis used to describe the ability to extract information from present

1



2 Chapter 1. Introduction

and past input data, using some form of computation, and allowing the creation of

internal models of the interaction of the organism with its environment.

Independently, these processes are very limited. Memory alone is inefficient: in

complex environments, the sensory configuration space, i.e. all the possible combi-

nations of contents in the input sensory channels, is infinite, demanding an equally

infinite memory storage place. The extreme importance ofgeneralisationcan there-

fore be seen: instead of storing a representation of a particular configuration of the

environment (with a zero probability of re-happening), each representation stored has

to refer to a class of environmental configurations. Also, learning processes alone are

inadequate since they have to work on cause-effect relations, or other interacting infor-

mation acquired or spread in time. This information has to be stored somewhere and

available for processing and later construction of correlations.

Throughout evolution, living organisms have developed subsystems capable of in-

tegrating these two processes. The mammalhippocampus, one of the phylogenetically

oldest parts of the mammalian brain (Johnston and Amaral, 1998), is one such subsys-

tem.

Both human and rat hippocampi have been extensively studied experimentally and

robust links have been established between the functional role of the hippocampal

formation and some forms of memory and learning processes (Squire, 1992; Treves

and Rolls, 1994; Burgesset al, 2002).

Three points are addressed during this introductory chapter: 1) motivation for the

importance of the hippocampus as a crucial structure for certain forms of learning and

memory, 2) review our present knowledge about the functional role of the hippocampus

in terms of theories and models, and 3) state the objectives of this thesis. Each of these

points is presented in a separate section underneath.

1.1 The hippocampus

It is appropriate to begin a study on the hippocampus by mentioning the seminal paper

by William Scoville and Brenda Milner (1957). This paper introduced to the neu-

roscience community the, now famous, patient H. M., who underwent bilateral hip-

pocampal removal (2/3 of the hippocampus and some amygdala) for the treatment of

epilepsy. As a consequence of this surgery, H.M. suffered a permanent loss of the abil-



1.1. The hippocampus 3

ity to encode new declarative information into long-term memory. This was the first

demonstration that the hippocampus, and other temporal lobe structures, is crucial for

the storage of declarative memories.

Hundreds of papers followed, narrowing down hypotheses and progressively re-

vealing more and more details about the morphological, physiological and functional

properties of the hippocampal formation.

Nevertheless, instead of obtaining robust answers, more doors were opened to the

vast complexity of this area of the mammalian brain. The discovery ofplace cellsby

John O’Keefe and John Dostrovsky (1971), and the discovery oflong-lasting potenti-

ation by Tim Bliss and Terje Lømo (1973), are undoubtedly among the best examples

of that.

Most of these advances in the understanding of the mammal hippocampus resulted

from experiments with rat hippocampi. Only after the introduction of non-invasive

techniques such as functional magnetic resonance imaging, was there an increase in

the number of studies targeted on human hippocampus. Previously, these studies had

been totally dependent on pathological cases (Stern and Hasselmo, 1999; Maguire,

2001).

It is still the rat hippocampus that gathers a larger volume of data and therefore

an equally larger number of theories and models. It is possible though that many

results may be extrapolated from one organism to the other. So far the results are

consistent with the idea that, although there are differences in the way that rat and

human hippocampus handle specific tasks, some principles that direct the functional

properties of these two systems seem to be the same (Squire, 1992).

1.1.1 Roles of the hippocampus

The key functional roles of the primate and rodent hippocampus are summarised here

(see also Eichenbaumet al, 1999; Eichenbaum, 2000).

Human hippocampus

Instead of one memory system, humans possess several types of interconnected

but independent memory systems (Squire and Zola, 1996; Giovanello and Verfaellie,

2001). Damage in one of those systems does not imply total impairment in information

storage and retrieval in the others.
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Accordingly to Squire and Zola (1996), the long-term memory systems can be

divided into two major groups (see figure 1.1): declarative (explicit) memory and non-

declarative (implicit) memory. Examples of non-declarative memory types arehabit-

uation, sensitisation, classical conditioningandprocedural memory(see Squire and

Kandel, 2002). Declarative memory is responsible for dealing with autobiographical

information and is commonly believed to be further broken down into two components

(Tulving and Schater, 1990):episodic memory(memory for past and personally expe-

rienced events) andsemantic memory(knowledge for the meaning of words and how

to apply them).

Figure 1.1: Memory systems in the human brain. Adapted from Squire (2004).

This thesis focuses on episodic memory. Personally experienced incidents, events

or any information on the form ofwhat, where, when, are all defined as episodic mem-

ories.

Strong experimental evidence shows that the hippocampus is fundamental for the

encoding of episodic information. Damage to the hippocampus above a certain level

leads to anterograde amnesia, associated with the loss of ability to encode new infor-

mation into long-term memory (Zola-Morganet al, 1986; Tulving and Markowitsch,

1998). The hippocampus is not necessary for other forms of memory such as work-

ing memory or procedural memory. Damage to the hippocampus will only affect the

formation of new episodic memories. The hippocampus is also not required for the

acquisition of semantic memory (Vargha-Khademet al, 1997).

It has also been found that there is a strong link between the hippocampus and nav-



1.1. The hippocampus 5

igational tasks, in which spatial information, locations, paths and events are merged

together. With the aid of functional magnetic resonance imaging it has also been pos-

sible to detect functional asymmetries within the hippocampus: while the right hip-

pocampus appears particularly involved in memory for environmental locations, the

left hippocampus is more involved in context-dependent episodic or autobiographical

memory (Burgesset al, 2002).

Even a structural dependence has been found in hippocampi of humans that system-

atically perform navigational tasks, specifically taxi drivers in a complex city (Maguire

et al, 1998).

Rat hippocampus

While in humans the data is more at the cognitive level, in rats detailed information

is available at the cellular level.

Generally the rat hippocampus seems to be functionally equivalent to the human

hippocampus, serving the same purposes, with crucial roles in spatial and non-spatial

tasks that involve episodic type memory (Squire, 1992).

Nevertheless, many support the idea that, in contrast with the humans where the

hippocampus seems to play a critical role in memory formation for a broad range of

information (Eichenbaumet al, 1999), the rat hippocampus seems to have evolved to

be more dedicated to space-related tasks. The discovery of place cells by O’Keefe and

Dostrovsky (1971), which form the base of thecognitive maptheory (O’Keefe and

Nadel, 1978), started a new wave of enthusiastic research into the functional role of

the hippocampus in spatial learning and navigation.

The firing rate of certain types of cells in the rat hippocampus is highly correlated

with the location of the rat in its environment. Each of these so calledplace cellsfire

maximally in defined regions of the environment calledplace fields. Specific lesions

on the hippocampus lead to substantial impairment is solving simple navigational tasks

(Morris et al, 1982). Experiments where rats have to retain some sort of associations of

non-spatial nature, also revealed an involvement of specific areas of the hippocampus

(Woodet al, 1999; but see also Dudchenkoet al, 2000).

Due to the higher amount of data and theoretical work on the rat than humans, this

present study concentrates on the rat hippocampus.
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1.2 Current theories and models

The hippocampus is an important structure in the mammal brain because of its pivotal

role in encoding, consolidation and retrieval of associations responsible for episodic

memory, as well as its well established role is spatial memory and navigation. Under-

standing how the hippocampus works offers not only a great achievement to the field

of neuroscience but also to machine learning, where insights can be given on how to

build efficient artificial learning and memory systems, both in terms of generalisation

and capacity.

The architecture of the hippocampus has to be considered in order to produce de-

tailed models of its dynamics. For the interest of making the discussion on the current

hippocampal theories clearer, a brief description of the anatomy of the hippocampus is

given. A more detailed description is the focus of chapter 2.

The hippocampus consists of structurally dissimilar regions (subfields) serially

connected and communicating directly with the entorhinal cortex which acts, simul-

taneously, as the major input and output of the hippocampus. Sensory information

from the cerebral association cortex (neocortex) arrives at the superficial layers of the

entorhinal cortex (EC) by way of the parahippocampal gyrus (PHG) and/or perirhi-

nal cortex (PR). All hippocampal subfields, namely the dentate gyrus (DG), CA3 and

CA1, receive direct input from the superficial layers (II-III) of the entorhinal cortex.

The CA1 subfield is the last region of tri-synaptic circuitry carrying out the signals

from the hippocampus to the subiculum (Sub) and to the deep layers of the entorhinal

cortex (V-VI).

Figure 1.2 shows the major connections in the corticohippocampal network as well

as the most relevant hippocampal pathways.

The modular architecture of the hippocampus suggests that each subfield may sub-

serve specific computational functions. This has led to theories for the functional task

of each subfield (Treves and Rolls, 1994): CA3, with its extensive recurrent connec-

tions, possibly acts as an auto-associative memory and DG’s possible task is to produce

internal representations that are sparse and orthogonal.

Following the debate on the central functional purpose of the (rat) hippocampus,

detailed models have nevertheless been divided into two separate groups: 1) models

focused on the storage and recall of episodic memories and 2) models focused on
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Figure 1.2: Diagram of the hippocampus. The hippocampal subfields are coloured in

light blue. Adapted from Nakazawa et al (2004).

spatial memory/learning and navigation. Models for episodic, or more specifically

associative memory, are typically based on auto-associative networks (Willshawet al,

1969) and discrete attractor networks. Examples include Marr (1971), Treves and

Rolls (1994), O’Reilly and McClelland (1994), McClellandet al (1995), Hasselmo

et al (1995), Shastri (2002). On the other side, models for spatial learning often rely

on continuous attractor networks to recreate experimental results such as place field

formation (Samsonovich and McNaughton 1997; Brunel and Trullier, 1998; Redish

and Touretzky, 1998; Arleo and Gerstner, 2000; Káli and Dayan, 2000).

In attractor networks (discrete or continuous), learning and memory are related to

the topological properties of the network’s energy landscape: a stored memory corre-

sponds to a local minimum on the energy landscape (the reciprocal is not true since

a stable point may correspond to spurious memories); storing a new memory corre-

sponds to digging in the energy landscape a local minimum at the state representative

of the memory to be stored (Hopfield, 1982). The correct recall of a stored memory

requires that the initial state of the network is in the basin of attraction of the correct

minimum.

Only few attempts have been made in creating a holistic hippocampal model that
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is in accordance with experimental results from both spatial and episodic memory

paradigms. Examples of hippocampal unified models of spatialandassociative (episodic)

type memory are: Misják, Lengyel andÉrdi (2001) used rate units to developed a

model for CA3 that, using the Bienenstock-Cooper-Munro (Bienenstocket al, 1982)

learning rule, can exhibit place cell properties and can be used for storing episodic

memories; Rolls, Stringer and Trappenberg (2002) developed a model based on a

combined attractor network, also using rate units, that can store both discrete and con-

tinuous representations; Hasselmo’s group, Eichenbaum’s group and Robert Cannon

(CATACOMB), are also working on the project “A Spiking Model of Hippocampus

for Guiding Behaviour” (Cannonet al, 2002).

In terms of a complete, global model for the hippocampus, most models cited above

(unified or not) have, in my opinion, the following limitations:

• they do not recreate, using both morphological and physiological constraints, all

hippocampal fields (in fact, most models concentrate on a single field);

• they are developed for a specific task, either related to spatial memory or asso-

ciative/episodic type memory;

• they use rate-based or binary units to describe individual neurons;

• they require stable states to specify a memory; learning is based on the estab-

lishment of new point attractors in the state space landscape;

• they do not allow specific manipulations in order to recreate experimental results

(e.g. removal of a specific subfield, blockage of plasticity on a specific path) or

predict novel behaviour;

• they make strong restrictions on the inputs the model receives (for example, the

input units have to be already tuned to specific features).

In addition, in some of the models cited above, many proposed roles for specific

components of the hippocampal circuitry are discussed only in qualitative terms. They

are never tested in a full model under neuro-physiological constraints. Examples are

the proposed role for the mossy fibres as a mean to create sparse representations in

CA3, or the role of theta rhythms.
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Overcoming these limitations means achieving a hippocampal model that is more

biologically plausible and able to give a deeper understanding on the control mech-

anisms and computations of the hippocampus. In particular, developing a model for

learning and memory in the hippocampus that does not depend upon stable states of

attractor networks is of considerable importance. It seems implausible to me that com-

putations in the hippocampus, or anywhere else in the nervous system, require stable

configurations. Most signals in the brain are transient and immersed in noise and

stochasticity. A proper model for learning and memory in the hippocampus should ac-

count for these properties. Following this line of thought, a criticism has been made as

to the use of firing-rate models to describe the information transfer in the hippocampus

(Riekeet al, 1996). Again, in my opinion, firing-rates hide a deeper reality which is

firing probability modulation. As it will be shown in this thesis, assuming the approach

of firing probabilities (in the context of spiking neurons) instead of the deterministic

firing-rate, allows a clear view of the computations occurring in the hippocampus.

1.3 Thesis objectives and goals

This thesis’ main goal was to develop a spiking neuron model of the hippocampus

(CA1, CA3 and dentate gyrus) that exhibits all the relevant functional properties of

this system in a behaving rat. In other words, to produce a holistic computational

model for the hippocampus that can recreate hippocampal episodic memory and spatial

memory by reproducing key experimental results. Another goal of this thesis was to

show that the hippocampal memory system can be recreated and explained without the

use of firing-rate coding and memories based in stable attractor states. In addition, and

associated with the use of spiking units, this thesis had the objective of investigating the

processes of information storage and activity control in spiking networks (following

the architecture of the hippocampus).

In parallel with the development of the hippocampal model, a simulation environ-

ment was created. This simulation environment was tailored to the needs and assump-

tions of the hippocampal model.

A model that uses spiking units introduces difficulties that are less problematic in

rate-based units. The two most important ones are:

• stability control of the levels of neuronal activity in each subfield and;
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• storage and recall of spiking patterns.

When creating a holistic model for the hippocampus, these two initially indepen-

dent issues become inter-related in the networks introduced here. Specific sections of

this thesis have been dedicated to address the stability problem and the storage and

recall dichotomy (see chapters 6 and 8).

It should be emphasised that expanding the time dimension using a spiking model

allows precise analysis to be done on time related questions. For example, the time

delay between the activation of a specific pattern at the entorhinal cortex layer II and

the activation of the population of CA1 neurons that signal the recognition and recall

can be measured and compared with experimental data.

The hippocampal formation is a complex system with many complex mechanisms.

Naturally, only the mechanisms with direct impact on the functional behaviour studied

here were modelled. This simplification process is, by itself, a first statement of the

assumptions of the model. Thus, in order to create a clearer view of this hippocam-

pal model, a short description of the major assumptions in which it is grounded are

presented below:

1. Neuron Representation. Each neuron is represented as anIntegrate-and-Fire

unit (Lapicque, 1907). The vast diversity of ionic channels and respective effects

are disregarded. Action potentials are stereotyped waves with the single purpose

of signalling to synapses.

2. Synapse Representation. The synapse is the basic computation element. Each

synapse unit is in fact the representation of a small population of correlated

synapses sharing the same presynaptic and postsynaptic neuron.

3. Dendritic non-linearities. The neuron unit is point-wise and although an ap-

proximation for dendritic filtering (spatial and temporal) is considered, the rich-

ness of dendritic signal interactions is not accounted for. In other words, all the

possible complex non-linear computations thatmay take place in the dendritic

tree are disregarded.

4. Interneurons. The function of interneurons is activity level control. They do

not directly take part in computations and their synapses are not plastic.
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5. Storage. Information is stored in the network in synaptic efficacies (Hebb, 1949;

Morris, 1989).

6. Activity patterns . Throughout this thesis the concept ofactivity patternswill be

extensively used. It is defined in the network’s spatial domain but, instead of a

time snapshot of the neural assembly activation configuration, an activity pattern

has an associated temporal length on the order of the neuron’s membrane time

constantτm, i.e., the neuron’s integration window. The activity pattern at timet

is then represented by all the neurons in the population that reached threshold in

the interval[t− τm/2, t + τm/2]. This concept is related, but not identical, to the

notion of simple representations described in Marr (1971).

7. Memory states. All information is transferred and manipulated in the form of

activity patterns. Stored states, or memories, are also represented by specific

activation patterns on neural assemblies, thatdo not need to be stable. This

means that temporal codingat a population levelis used (as opposed to firing-

rate coding).

8. Activity gating . The gating mechanisms introduced in this thesis are one of the

pillars of the computational model presented here. In neural pathways subject to

activity gating, only meaningful patterns of activity at the pre-synaptic popula-

tion are able to excite beyond threshold the post-synaptic population. The gating

mechanism is produced through learning.

9. Plasticity. Learning in the network is based in associative plasticity (Hebb,

1949), spike-time dependent plasticity (Bi and Poo, 1998) and short-term dy-

namics (Fuhrmannet al, 2002).

10. Inputs and Outputs. The properties of the input to the hippocampal formation

and which information is available at the output is certainly a critical point. In

terms of output, it is considered that CA1 provides the last stage of the computa-

tions required for episodic and spatial learning. Most spatial tests on the model

are performed with CA1 units. In terms of inputs, strong assumptions are made

and described in detail next.

The entorhinal cortex provides the major input of the hippocampal model. It is

assumed that the activity patterns formed at entorhinal cortex, layers II (ECII) and
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III (ECIII), are functions of the activity of a high number of sensorial channels (e.g.

visual, proprioceptive, auditive, olfactive), as well as a function of previously stored

information.

A mapping function,M , projects the high dimensional sensory space to a lower

(but still high) dimensional space: the entorhinal cortex activity configuration space.

Although unknown, this mapping function has to satisfy the following key require-

ments: be stable over time, be well behaved and be segmented (segregated).

Being stable over time means that across the time-scale of the simulations the map-

ping function does not change; being well-behaved means that small changes on the

input leads to small changes in the output. Finally, a segmented (segregated) projection

means that each component in the output space depends on a small number of compo-

nents in the input space. This is required for extracting features more efficiently from

the sensorial signals.

The spatial model by Ḱali and Dayan (2000) is a particular case of this approach in

which they assume that the level of activity of each principal neuron of ECII is broadly

tuned to a specific location of space. In fact, experimentally, some results show that

some ECII principal cell also act as place cells but with a lower level of selectivity

(Franket al, 2000).

One consequence of this mapping hypothesis in the framework of spatial learning

is that, once all the model functional parameters have been defined, one can concen-

trate on manipulations of the environment by affecting the activity patterns at EC. For

example, the consequences of geometric manipulations (Burgess, 2002) can be tested

and compared with experimental results and with other models.

A less obvious consequence from this mapping assumption, but a core point in

this thesis, is that it stops making sense to distinguishspatial inputs fromnon-spatial

inputs, and equivalently spatial memory from non-spatial memory: the hippocampus

computes over streams of sensorial inputs blended together, modulated or not by prior

knowledge, and presented at entorhinal cortex.

1.3.1 Thesis outline

This thesis is divided into eleven chapters where the first, current, chapter provides an

introduction to the thesis. Chapter 2 briefly discusses morphological and physiologi-
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cal properties of the mammalian hippocampus providing relevant information for the

construction of the computational model.

The models used for the dynamics of single neurons are presented in chapter 3.

Topics regarding the computational properties of single neurons (e.g. dendritic filter-

ing, signal integration, coding) are discussed in detail in this chapter.

The next four chapters discuss important information that is fundamental for the

computational model analysed in chapters 7, 8, 9 and 10.

Chapter 4 describes the simulation environment created to build and analyse the

holistic computational model for the hippocampus. The simulation environment is it-

self a component of the computational model: many of the simplifications produced in

order to increase the efficiency of the simulations carry with them strong beliefs about

the computational role of many components of the system (e.g. synapses, dendrites,

action potentials). The simulation environment represents one of the major contribu-

tions of this thesis and satisfies all the requirements to work as a useful tool for future

research.

Chapter 5 is dedicated to dynamical synapses as a mechanism of decoding infor-

mation conveyed in the temporal domain. Dynamical synapses play a central role in

the computational model for the hippocampus.

The topic of activity level control is discussed in chapter 6. The control of levels

of activity on several hippocampal fields and how activity is propagated from field to

field, is a also of great importance in the hippocampal model.

Chapter 7 combines the presented information to build a computational model for

the functional roles of the hippocampus in the creation of an episodic memory system.

The core concepts of the computational model are introduced and explained here.

While chapter 7 presents the theory and assumptions, chapter 8 presents the imple-

mentation and the results of the hippocampal computational model in the context of

episodic memory. This chapter is the backbone of this thesis where results of several

simulations are used to support the theory presented in chapter 7.

Chapter 9 moves in the direction of extending the computational model to incorpo-

rate the properties associated with spatial memory. The model discussed in this chap-

ter is a holistic model for the hippocampus that is in close agreement with data arising

from both spatial and non-spatial experiments. Results from simulation experiments

regarding fundamental concepts from spatial memory are presented in this chapter.
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These favourable results pave the way to a more detailed analysis of spatial memory in

this novel hippocampal theory and present an important step forward against the view

of the rat hippocampus as a specialised structure for spatial memory.

Chapter 10 is used to critically assess the computational model.

A discussion of the points that could be improved in the model, as well as inter-

esting future directions to take, is presented in the last chapter of this thesis, chapter

11.

1.3.2 Testing the new hippocampal spiking model

The computational model for the hippocampus has been subjected to several tests or

simulation experiments, presented in the appropriate chapters. This tests were:

• basic simulations- fundamental results are tested. The correct storage and recall

of spiking patterns is analysed, and as well as place field formation and transfor-

mations;

• validation experiments- in such simulation experiments, electrophysiological

results that were not directly used to constrain the model serve to test the com-

pliance of the artificial system with the biological hippocampus.

• predictions- some predictions are made as a result of simulations using condi-

tions not yet experimentally tested.



Chapter 2

The Mammalian Hippocampal

Formation

The purpose of this chapter is to provide the reader with the most relevant properties

of the hippocampus, in the context of this thesis.

Far from being exhaustive, the information presented here is intended to create a

clearer view of the simplifications used to build the computational model discussed in

this thesis. This information is therefore highly summarised and targeted to validate the

choices made in the construction of the model. For a more complete discussion on the

mammalian hippocampus see, for example, Amaral and Witter (1989) and Johnston

and Amaral (1998).

Organisation of the Chapter

This chapter is divided into two sections. Section 2.1 addresses the neuro-anatomical

information and is organised in subsections dealing with the different anatomical struc-

tures that have been modelled. Experimental data regarding population sizes and con-

nectivity are provided.

The major sources for this data are Johnston and Amaral, 1998; Patton and Mc-

Naughton, 1995; Freund and Buzsaki, 1996.

Section 2.2 discusses the electrophysiological properties of hippocampal neurons.

This section is also organised in subsections where topics such as population activity

levels, firing properties and synaptic plasticity are addressed.

15
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2.1 Hippocampal morphology

The hippocampus is part of the limbic system and is located inside the medial temporal

lobe. Figure 2.1 shows the location of the hippocampus in both rat and human brain.

Figure 2.1: Location of the hippocampus in the mammalian brain: a) human hippocam-

pus; b) rat hippocampus. Adapted from Burgess et al (1999) c©Oxford University Press.

The hippocampus belongs to a group of structures called the hippocampal forma-

tion which includes the dentate gyrus, the hippocampus proper, the subiculum, pre-

subiculum and parasubiculum, and the entorhinal cortex(Johnston and Amaral, 1998).

The hippocampus proper comprises regions CA1, CA2 and CA3 (CornusAmmonis).

The wordhippocampusis used to refer to the dentate gyrus (DG), CA1, CA2 and

CA3.

Region CA2 is very reduced in size and is considered to be a transition zone be-

tween CA1 and CA3 (Johnston and Amaral, 1998). No functional roles are typically

assigned to CA2 and therefore this area is often ignored in theoretical studies. The

hippocampal model described in this thesis incorporates the dentate gyrus, CA3 and

CA1.

Through the entorhinal cortex and parahippocampal gyrus, the hippocampus re-

ceives inputs from virtually all association areas in the neocortex. This means that the

hippocampus has direct access to processed information acquired from a panoply of
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Figure 2.2: Coronal section of the hippocampal formation: dentate gyrus (DG), sub-

fields CA1 and CA3, subiculum (S), presubiculum (PrS), parasubiculum (PaS), and

entorhinal cortex (EC). Adapted from Johnston and Amaral (1998).

sensory channels (Rolls and Treves, 1998).

Although this multi-modal information is, to some extent, blended together, there

is still some topographical segregation of the sources (Rolls and Treves, 1998). This

segregation that persists in the entorhinal cortex is of particular relevance for the com-

putational model for spatial memory.

The number of principal cells in the entorhinal cortex is estimated to be 200,000

in the rat, and its activity level at 7% (O’Reilly and McClelland, 1994).

The hippocampus also receives regulatory cholinergic inputs from the septal nuclei,

via the precommissural branch of the fornix. The projection to CA3 is bilateral and at

least some of the neurons that project from CA3 to the septal region are GABAergic

(Johnston and Amaral, 1998).

The major output of the hippocampus is CA1, sending connections back to the en-

torhinal cortex (layers III-V, but predominately layer V) and to the subiculum. The

connections to the subiculum are again topographically organised (Johnston and Ama-

ral, 1998).

Since the computational model developed in this thesis is addressed to explain the

functional behaviour of the hippocampus, this discussion will continue focusing on the

properties of dentate gyrus, CA3 and CA1.
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Figure 2.3: Diagram of hippocampal formation connections. New abbreviations: PR,

perirhinal; POR, postrhinal; Par/Oc Ctx, pariental occipital cortices; RSP Ctx, retros-

plenial cortex. The fornix, not represented in this diagram, connects the hippocampus

with the hypothalamus. Pathways: p.p. perforant path; m.f. mossy fibres; r.c. recurrent

collaterals; s.c. Schaffer collaterals. Adapted from Johnston and Amaral (1998).

2.1.1 Dentate gyrus

The principal cells in the dentate gyrus (DG) are the granule cells with a population

size of 1000×103 in the rat (Bosset al, 1987), and 9000×103 in the human (Squire

et al, 1989). Granule cells receive inputs from layer II of the entorhinal cortex (ECII)

through the perforant path.

The dentate gyrus has a rich variety of interneurons which include mossy cells,

GABAergic polymorphic cells, basket cells, axoaxonic chandelier cells and molecular

layer perforant path cells (Freund and Buzsaki, 1996).

Mossy cells stand out among these types of interneurons: besides being one of the

most abundant types of interneurons (3×104) in DG, these glutamergic cells provide

positive feedback to granule cells. Each granule cell receives around 1000 inputs from

mossy cells (Patton and McNaughton, 1995).

It has been reported that around 400 synapses (7% of excitatory input) need to be

activated in order to trigger an action potential in the granule cell’s soma (Patton and

McNaughton, 1995).

The axons of granule cells, called mossy fibres (m.f.), establish very sparse con-

nections with CA3. Each mossy fibre connects to around 16 CA3 pyramidal cells
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(Johnston and Amaral, 1998). The mossy fibre synapses, also called boutons, are very

specialised structures that can have more than 30 release sites (Chicurrel and Harris,

1992). Its efficacy is furthermore increased due to the fact that they establish connec-

tions with the soma or proximal dendrites of CA3 pyramidal neurons (Johnston and

Amaral, 1998).

2.1.2 CA3 region

The principal cells in the CA3 region are pyramidal neurons, with a population size

of 160×103 in the rat (Bosset al, 1987), and 2300×103 in the human (Squireet al,

1989).

Pyramidal neurons receive excitatory inputs from (Urbanet al, 2001):

• perforant path (p.p.) - from entorhinal cortex layer II - 4000 synapses;

• mossy fibres (m.f.) - from dentate gyrus - 50 synapses;

• recurrent collaterals (r.c.) - recurrent connections from CA3 - 12,000 synapses.

Action potentials produced in CA3 are propagated through the Schaffer collaterals

to CA1. In terms of projections to other subcortical regions, the only sizable connec-

tion is to the lateral septal nucleus (Swanson and Cowan, 1977). This connection is

bilateral.

The existence of this projection, together with the fact that acetylcholine is a promi-

nent excitatory neurotransmitter in the hippocampus, stimulated the view of the lateral

septal nucleus as modulatory system in the complementary tasks of learning and recall

in the associative memory model for CA3 (Hasselmoet al, 1995).

2.1.3 CA1 region

The principal cells in CA1 are again pyramidal cells with a population size of 250×
103 in the rat (Bosset al, 1987), and 4600× 103 in the human (Squireet al, 1989).

CA1 pyramidal cells receive inputs from layer III of the entorhinal cortex (ECIII) and

from CA3 pyramidal neurons, through the Schaffer collaterals. The pyramidal neurons

in CA1 also receive a septal projection. Although similar to CA3, this projection is

substantially lighter (and unidirectional).
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In terms of outputs, CA1 is the first field in the hippocampus originating return

projections to the deep layers of entorhinal cortex, especially layer V (Rolls and Treves,

1998). In addition, CA1 also projects to the subiculum.

The following table summarises the population sizes (PS) of the principal neurons

in the hippocampus:

region cell type PS×103 (rat*) PS×103 (human)

DG granular 1000 9000

CA3 pyramidal 160 2300

CA1 pyramidal 250 4600

Table 2.1: Population sizes of the principal neurons in the hippocampus. *These esti-

mates are for the Sprague-Dawley and Wistar strains (Boss et al, 1987).

Brief note on connectivity figures

Two connectivity types are used in this thesis. The definitions are:

• divergent connectivityCd: counts the number of output connections that a neu-

ron type establish with a specific post-synaptic population;

• convergent connectivityCc: counts the number of input connections that a neu-

ron type receives from a specific pre-synaptic population;

The correct conversion from convergent to divergent connectivity (and vice-versa)

requires the knowledge on the connectivity profile spatial distribution. If one ignores

the topographic properties present in almost all hippocampus pathways and assume

uniform spatial distributions, it is possible to relateCc with Cd:

Cc =
Cd NA

NB
(2.1)

The constantsNA andNB are the sizes of pre and post-synaptic populations, respec-

tively.

2.2 Hippocampal electrophysiology

This section presents relevant properties regarding the functional behaviour of the hip-

pocampus.
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2.2.1 Activity levels

The topic of activity levels in the hippocampus is subject to strong debate. The impor-

tance of specific levels of activity for the functional behaviour of the hippocampus is

unclear and precise experimental measurements of the activity levels, across different

conditions, are unavailable. Each field in the hippocampus, as well as the entorhinal

cortex, exhibits constrained activity levels. However, instead of constant across time,

the activity levels oscillate within controlled bounds (Barneset al, 1990; Jung and

McNaughton, 1993). The average activity level is specific to each field.

Experimentally, the available estimates for the levels of activity of a hippocampal

field can be computed as the mean firing rate of the neurons belonging to this field,

divided by maximum firing rate of the measured sample (Barneset al, 1990). This

gives the percentage of neurons firing at maximum rate.

The average activity level values obtained using this method are presented in the

table 2.2.

Area n. neurons activity level [%]

EC 200,000 7.0

DG 1,000,000 0.5

CA3 160,000 2.5

CA1 250,000 2.5

Table 2.2: Activity levels at EC, DG, CA3 and CA1 fields. Data from Barnes et al (1990);

Jung and McNaughton (1993).

It is my belief that specific values of activity levels are necessary for the correct

functional behaviour of the hippocampus. The hippocampal model constructed in this

thesis incorporates this belief. Constrained activity levels are required for the type

of population coding assumed in this thesis: since information is represented as the

activation of specific constellations of neurons, it is important that the total number of

active neurons in the hippocampal populations be constrained.

Throughout this thesis, values forinstantaneous activity levelswill be used instead

of the rate based activity levels. The instantaneous activity level is defined as the ratio

of neurons that are above threshold over the total number of neurons in the population.

These two quantities, instantaneous and rate-based activity level, are numerically
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similar and therefore the figures presented above will be used to provide estimates

for the instantaneous activity levels. A justification that both quantities numerically

similar is given below:

Let us assume that each neuron’s firing follows a Poisson distribution with param-

eterλi , i = 1, ...,N whereN is the total number of neurons on the population.

By the properties of the Poisson distribution, the firing of the whole population

is also given by a Poisson distribution with parameter∑i λi = N < λi >. From this

we take that the number of spikes in the population in a time window∆t is given by

N < λi > ∆t.

The maximum firing rateMaxi(λi) sets the appropriate time window to convert

spike counts to average firing.

This way, we calculate that the amount of spikes in a time snapshot of the popu-

lation is given byN < λi > /Maxi(λi). Furthermore, the fraction of neurons in the

population that are firing is< λi > /Maxi(λi), which is the definition used to obtain

the data in 2.2.

These mathematical steps do not have the intention of showing that the two defini-

tions, instantaneous activity level and rate-base activity level, are equivalent. In fact,

strong approximations are used in these steps such as the assumption that each neu-

ron’s firing follows a Poisson distribution and that eachλi is constant during the time

window of 1/Maxi(λi). The important thing is that it shows that both quantities are

related and within the same order of magnitude. The hippocampal model is not invali-

dated if the exact values for the activity levels in the hippocampus regions are not used.

As long as the true biological activity levels are low, all the properties and implications

of the hippocampal model hold.

2.2.2 Firing properties of CA3 and CA1 neurons

Instead of isolated action potentials, both CA3 and CA1 pyramidal neurons tend to

fire in short bursts. The properties of the burst are different between the two types of

neurons (see figure 2.4):

• CA3 neurons tend to fire in bursts of action potentials with declining amplitudes

(Johnston and Amaral, 1998);
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• CA1 neurons fire repetitively but show accommodation and fast and slow after-

hyperpolarisations (Johnston and Amaral, 1998).

Figure 2.4: Firing properties of CA3 and CA1 pyramidal neurons. Adapted from John-

ston and Amaral (1998).

2.2.3 Synaptic plasticity

Several pathways in the hippocampus show plasticity in terms of the excitation level

that they provide to the post-synaptic populations. The properties of this plasticity

differ nevertheless from pathway to pathway.

Mossy fibres

Mossy fibres have been shown to display a variety of long-term synaptic plasticity

including associational and non-associational (NMDA independent) forms of long-

term depression and potentiation (LTD and LTP) (see Bliss and Lømo, 1973). Never-

theless experiments with rats in which mossy fibre LTP/LTD was eliminated, had no

significant effects on learning task performance (Urbanet al, 2001).

Mossy fibres also display short-term dynamics, mostly driven by facilitation prop-

erties (Urbanet al, 2001). These short-term dynamics allow mossy fibres to work in a

large spectrum of synaptic strengths. Within the input stimuli range from 0 to 100Hz,

mossy fibre boutons can increase their post-synaptic response by 4000% (Urbanet al,

2001).

Perforant path
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The perforant path synapses exhibit long-term potentiation. Of particular interest is

the associative nature of the perforant path connections with CA1 and CA3 which are

thought to have significant functional importance (Resmondes and Schuman, 2004).

Recurrent collaterals and Schaffer collaterals

Both recurrent collaterals and Schaffer collaterals exhibits associative LTP (John-

ston and Amaral, 1998). That is, in order for the synapse to get potentiated, the post-

synaptic membrane has to be depolarised at the time of arrival of the pre-synaptic

signal. In general this depolarisation is the consequence of post-synaptic neuron fir-

ing.

2.2.4 Rhythms

The hippocampus is known to show several types of potential oscillations. The two

most important in the rodent hippocampus are theta and gamma:

Theta

This is probably the rhythm in the hippocampus which is more studied for its func-

tional role. The theta oscillations are characterised by a frequency on the band of 4-12

Hz (Buzśaki, 1989; Stewart and Fox 1990). These oscillations are often temporally

nested with faster gamma-frequency oscillations (Buzsáki, 1983; Bragin et al. 1995).

The theta oscillation is delivered by the septo-hippocampal pathway. More pre-

cisely, it originates from the medial septum-diagonal band of Broca (MS-DBB). This

oscillation is thought to have a functional role in the hippocampal representation of

spatial information (O’Keefe and Recce 1993; Skaggset al, 1996), in time-locking

cell activities (Buzśaki, 2002) and regulating leaning by facilitating the induction of

synaptic plasticity (Buzśaki, 1989; Huerta and Lisman 1993)

The medial septum modulation driving the theta rhythm has two components,

cholinergic and GABAergic:

• The cholinergic input targets principal neurons and inhibitory interneurons in

the hippocampus causing an increase in intrinsic cell excitability. This increase

in excitability is achieved through suppression of various potassium currents. It

also leads to a decrease in Schaffer collaterals synaptic transmission achieved by

presynaptic inhibition.
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• The inhibitory GABAergic input targets interneurons only. It has the effect of

synchronising (phasing) the interneurons leading to population activity at theta

frequency.

Theta waves are most present during REM sleep (Jouvet, 1969) and during various

types of locomotor activities described by the subjective terms “voluntary”, “prepara-

tory”, “orienting” or “exploratory” (Vanderwolf, 1969). In the immobile animal theta

waves are generally absent but epochs of theta trains can be elicited by noxious condi-

tioned stimuli (Bland, 1986).

Gamma

Gamma oscillations are faster than theta, ranging from 40 to 100 Hz (Buzsáki et al,

1983; Braginet al, 1995). Several mechanisms can give rise to these oscillations such

as mutual excitation, excitatory-inhibitory loops or mutual inhibition (see Traubet al,

1998). While the theta rhythm is driven by an external action, the gamma oscillations

are a result of internal mechanisms.





Chapter 3

Spiking Neuron Models

The assumptions required to build a model often imply that the system under study is

constrained to a sub-domain of its dynamics. This means that different research goals

about a specific system involve the use of different models. In general terms, a good

model represents a balance between the complexity of its dynamics, which reproduce

reliably many of the system’s properties, and the complexity of its mathematical anal-

ysis. Another point to take into account is that the degree of complexity of a model,

expressed in terms of amount of parameters involved, should always be minimal. It

is this process of “variables reduction” that leads to the explanation at the heart of the

system’s dynamics. Naturally, the computational model for the hippocampus discussed

in this thesis also disregards many well known and well described properties of hip-

pocampal morphology and physiology. This chapter’s objective is to compare, at the

level of single neurons, the most important models and present the arguments for the

choice of theintegrate-and-firemodel to represent the neuron units in the hippocampal

model.

Organisation of the Chapter

Section 3.1 briefly introduces and compares the two main families of single com-

partmental models for single neurons: the firing-rate and spiking models. Section 3.2

starts by laying down the arguments for the use of spiking units in the hippocampal

model. The characteristics of the type of spiking model used, the integrate-and-fire

model, are then described in detail.

The discussion then focuses on the properties of synapses in spiking networks. The

topics addressed are post-synaptic currents, synaptic interactions and plasticity.

27
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The chapter concludes with a discussion of the major limitations of the single neu-

ron model used, in the context of the hippocampal model.

3.1 Models for single neurons

At the level of single neurons, several models have been proposed to cope with dif-

ferent questions or domains of analysis. Most of them fall into one of two categories,

defined in terms of the neuron’s output form: infiring-ratemodels (Dayan and Abbott,

2001) the output is continuous and represents the instantaneous firing frequency of the

neuron unit whilespikingneuron models (orpulsemodels) produce discrete (binary)

impulses representing the presence of action potentials (Gerstner and Kistler, 2002).

Detailed conductance-based neuron models, as well as multi-compartmental mod-

els, are not discussed. Although they reproduce electrophysiological measurements

with a high degree of accuracy (Hines and Carnevale, 1997; Koch and Burke, 1998),

their intrinsic complexity and extensive amount of free parameters makes them un-

suitable for the creation and analysis of large networks (which are required for the

construction of the present hippocampal model).

3.1.1 Firing-rate models

The reason behind using firing rates instead of action potentials to define the output of

a neuron goes beyond mathematical simplification. It is grounded on the deep belief

that precise timing of spike production/arrival may not contain relevant information

(Koch, 1999). This is motivated by the fact that, in most neural systems, responses to

the presentation of the same stimuli are not based on identical spike trains (see figure

3.1). This means that all relevant information is coded in terms of neurons’ firing rates.

One example with particular interest for this thesis refers to hippocampal place

cells in which the information for a place is considered to be coded as firing rates.

Definingv as the firing rate of the output unit and~u the vector of input firing rates,

the general equation for firing rate units is (Dayan and Abbott, 2001):

τr
dv
dt

=−v+ f (~w ·~u) (3.1)

The time constantτr measures how closelyv can follow rapid fluctuations on time-

dependent inputs (it does not represent the neuron’s membrane time constant). Vector
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Figure 3.1: The neural spiking responses (upper panel) to the same stimulus vary,

indicating that information may not be coded in the precise timing of action potentials.

The lower panels correspond to filtered averages of spikes per unit of time. The second

panel uses a Gaussian filter with 2 ms standard deviation (producing what we can call

an instantaneous firing rate f (t)) while the lower panel uses a standard deviation of 20

ms. Adapted from Koch, 1999.

~w represents the coupling (or efficacy weight) between each input unitui and the output

unit v. The functionf is called an activation function and represents the firing rate of

unit v in steady-state. The activation function is typically taken to be a threshold linear

function or saturating function, such as a sigmoid. Saturating functions are particularly

useful for stabilising network dynamics and are therefore extensively used in recurrent

network models (Dayan and Abbott, 2001).

In terms of analysis, firing-rate models present several advantages over spiking

models. By neglecting very short time scales, firing-rate models can be simulated more

efficiently on computers. Also, their tendency to have a smaller number of free param-

eters in comparison with spiking models makes their parametrisation easier (Dayan

and Abbott, 2001). But definitely, the most important advantage of firing-rate models

is their simpler mathematical formulation which allows analytical analysis of several
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aspects of network dynamics (Hertzet al, 1991) that cannot be perform in spiking

models due to their non-linearities. One particular domain in which the simple mathe-

matical formulation of firing-rate models becomes important is stability analysis.

Networks described by dissipative non-linear differential equations (or any non-

linear dynamical system) generally contain equilibrium points in the state space, also

called fixed points. The stability of these equilibrium points can be assessed using

Lyapunov’s stability theory (Hopfield, 1982). Of particular interest for neural network

dynamics are theuniformly stableequilibrium points. An equilibrium statēx is said to

be uniformly stable if for small displacements in the state space, the system converges1

back tox̄ (see Haykin, 1999).

The network models that exploit uniformly stable equilibrium points are called

attractor networks, of which the most well known type is the Hopfield network (Hop-

field, 1982). In these networks, uniformly stable equilibrium states are called attractor

states. Just as in Hopfield networks, it is possible to calculate and, more importantly,

manipulate the attractor states of recurrent networks that employ firing-rate units (Káli

and Dayan, 2000).

Attractor networks offer a very attractive way of modelling memory systems for

several reasons such as their robustness to noise, correct retrieval with partial cues and

graceful degradation. As a result, networks of firing-rate units have beenthe elected

model to explain biological memory systems such as the CA3 subfield and to create

functional models of the hippocampus (e.g. Treves and Rolls, 1994; Káli and Dayan,

2000).

3.1.2 Spiking models

In spiking models, the discrete nature of a biological neuron’s output in terms of stereo-

typed impulses is preserved and no assumption is made,a priori, on how information

is coded.

The original model of a neuron in McCulloch and Pitts (1943), the spike response

model, SRM, (Gerstner and Kistler, 2002) and the widely used integrate-and-fire model

(first investigated by Lapicque, 1907), are all examples of spiking models.

1Formally, if x(t) is the state vector, an equilibrium statex̄ is said to be uniformly stable if for any
given positiveε there is a positiveδ such that the condition‖x(0)− x̄‖ < δ implies‖x(t)− x̄‖ < ε for
all t > 0.
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By including short time-scale dynamics, spiking models provide information about

spike timings. Action potentials are still stereotyped impulses but are well defined

individual entities in the time domain.

Due to this increase in complexity, most types of spiking models offer a consider-

able challenge in terms of their analysis, in particular with their stability analysis. In

fact, in most cases, an analytical study is not possible without constraining the spiking

model to a smaller domain of its dynamics.

These mathematical difficulties arise mainly from the discontinuous transition from

sub-threshold to supra-threshold dynamics. It is nevertheless this property, the non-

linearity of the dynamics, that gives networks of spiking units their high computational

power.

3.2 Hippocampal model’s neuron units

Behind the hippocampal computational model there are fundamental assumptions that

are incompatible with single unit firing rate models. One such assumption regards how

information is coded and transferred in the hippocampus. Therefore, spiking neuron

models were used to represent single neurons.

In this thesis it is proposed that information in the hippocampus is coded neither

in terms of firing rates nor precise spike timings. Instead, information is transferred,

manipulated and produced in the form of spatial activity patterns (section 1.3), i.e. sub-

sets of the neural population that produced an action potential within a time window

of about 20ms (the order of the neurons’ integration time). This form of population

coding requires each action potential to be treated as an individual entity.

The integrate-and-fireneuron was the spiking model of choice to simulate and

analyse the functional properties of the hippocampus. It is a model that has been

extensively used and successfully applied in many studies.

In the words of Koch (1999), the “venerableintegrate-and-fire model comes in

many flavours”. The characteristics of the particular version used in this thesis are now

described in detail.
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3.2.1 Integrate-and-fire neuron model

The sub-threshold dynamics of hippocampal model’s neuron units are defined by the

general integrate-and-fire equation which relates the voltage state variableV ([mV]),

with the input currentIin(t) ([nA]):

τm
dV
dt

= Vrest−V +Rm Iin(t) (3.2)

Once the voltage exceeds a predefined threshold valueVthresh, the time evolution

of V is substituted by a stereotyped wave. The duration of the wave form is 5 ms,

after which the time evolution of the variableV follows once again the dynamics of

equation 3.2 with initial conditionV = Vreset. The shape of the wave is in accordance

with experimental data in Sprustonet al (1995).

The absolute refractory periodTre f is coincident with the duration of the stereo-

typed wave during which all current inputs to the soma are disregarded.

All the constants used in the model take biologically plausible values (Nichollset

al, 1992; Koch and Segev, 1998; Koch, 1999; Dayan and Abbott, 2001) and, unless

stated, are defined as:

• Rm = 20MΩ: membrane resistance (or input resistance);

• τm = 20ms: membrane time constant

• Cm = 1nF: membrane capacitance;

• Tre f = 5ms: absolute refractory period (maximum firing frequency is∼ 200Hz);

• Vrest =−70mV: membrane resting potential;

• Vthresh=−50mV: membrane firing threshold voltage;

• Vreset∼−60mV: membrane reset voltage;

The only atypical value, in the framework of integrate-an-fire models, is the mem-

brane reset voltage. While typicallyVreset = Vrest (Dayan and Abbott, 2001), it has

been decided to setVreset at a voltage closer to threshold. The reason for that is that,

once a first action potential is fired, it is easier to fire a second. This promotes a bursty

behaviour that, as will be shown in chapters 7, 8 and 9, is important for the functional
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model of the hippocampus. It should be noted that both CA3 and CA1 pyramidal

neurons fire in short bursts (see figure 2.4).

It remains now to discuss the input current term. The simplest case is to consider a

constant input current. In this situation, the integrate-and-fire model dynamics acquire

an oscillatory behaviour with constant period. The example in which the input current

Iin(t) = 1.01nA is depicted in figure 3.2. The threshold current is 1.0nA.

Figure 3.2: Integrate-and-fire neuron. A constant input current Iin = 1.01nA is injected

between 100 and 500 ms.

With constant input currentIin above the threshold current, the neuron unit fires

periodically with an inter-spike intervalTf that can be calculated directly from equation

3.2:

Tf = Tre f − τm ln

(
Rm Iin +Vrest−Vthresh

Rm Iin +Vrest−Vreset

)
(3.3)

The more interesting case in whichIin(t) reflects the signal communication with

other neuron units is discussed below.

3.2.2 Synaptic currents

When a spike reaches the neuron unit, it generates a synaptic currentIsyn that con-

tributes to the integrate-and-fire input currentIin. This synaptic current is modelled

using a post-synaptic conductance profile described by a dual exponential function.

Settingtsp as the spike arrival time, the post-synaptic conductanceS(t) is defined

for t ≥ tsp as:
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S(t) = Speak×norm×
(

e
− t

τdecay−e−
t

τrise

)
(3.4)

For t < tsp the post-synaptic conductance is zero. The normalisation constantnorm

puts the conductance peak atSpeakand has the value:

norm=

( τrise

τdecay

) τrise
τdecay−τrise

−
(

τrise

τdecay

) τdecay
τdecay−τrise

−1

The dual exponential time constants are specific for the type of synapse. For exci-

tatory synapses, and unless otherwise stated, they take the following values:

• τrise = 2ms: conductance rise time constant;

• τdecay= 5ms: conductance decay time constant;

The values typically used for inhibitory synapses areτrise = 1msandτdecay= 25ms.

Instead of reproducing the post-synaptic response at the synaptic loci in the den-

drite, the conductance time constants are set to mimic the synaptic input current profile

at the soma. In this way, the effect of static dendritic filtering is approximated. The

dendrite-fibre distance considered for the dendritic filtering corresponds to the average

synaptic distance for hippocampal pyramidal cells (∼ 150µm). More details on this are

given in chapter 4. The conductance time constants, for both excitatory and inhibitory

synapses, are biologically plausible and in accordance with experimental data (Cowan

et al, 2001).

The valueSpeak should also be regarded as an efficacy measure instead of an effi-

ciency. While “efficency” refers to the size of the post-synaptic response, “efficacy”

accounts for the true contribution of the synapse to the firing of the neuron.

The synaptic current that affects the soma is given by:

Isyn(t) = (V−Esyn)×S(t) (3.5)

The constantEsynrepresents the synapse’s reversal potential and, again, depends on

the nature of the synapse. Throughout this thesis, the synapse’s reversal potential takes

the value 0mV for excitatory synapses and−90mV for inhibitory synapses (Cowanet

al, 2001).

In order to produce the threshold current of 1.0nA, a single standardised excitatory

synapse (τrise = 2ms, τdecay= 5ms) has to produce a peak conductanceSpeak= 62.6nS
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The dual exponential parameters described above are able to recreate the essential

properties of the synaptic responses in the hippocampus (Johnston and Amaral, 1998).

In the hippocampal model they are used to recreate excitatory post-synaptic responses

and both fast (GABAA) and slow (GABAB) inhibitory post-synaptic responses

So far we have discussed the case of an isolated synapse. The interactions between

synapses and how each synaptic current contributes for the total input current of the

integrate-and-fire neuron will now be discussed.

3.2.3 Synaptic interactions

In single compartmental models, such as the integrate-and-fire model, all neuronal

topological information is disregarded: the whole neuron, including dendritic tree,

soma and axon, is collapsed into a point. In other words, all the richness of dendritic

synaptic interactions is lost (Koch, 1999).

Another strong simplification taken here is that synaptic currents are assumed to in-

teract linearly. The input currentIin that drives the integrate-and-fire neuron is obtained

by the linear sum of all arriving synaptic currents:

Iin(t) = ∑
syn

Isyn(t) (3.6)

This reduces greatly the complexity of the model’s analysis and simulation, but

reduces also its computational power. Non-linearity is a fundamental property for

information processing systems (MacKay, 2003) and, in this neuron model, exists only

in the firing mechanism. This nevertheless proves to be enough to model and explain

the functional behaviour of the hippocampus.

Although many local computations can be performed at dendrites by using specific

synaptic spatial configurations and non-linear interactions (Mel, 1994), we assume in

this hippocampal model that they do not play an essential role in hippocampal func-

tional behaviour.

Moreover, there is no direct experimental evidence for the existence in the hip-

pocampus of learning mechanisms able to produce such dendritic computational units,

or selection mechanisms to enhance advantageous local configurations. It is impor-

tant to bear in mind that the dimensions of the space in which all possible synaptic

configurations are represented (for a specific dendritic tree) is immense. Very effi-
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cient mechanisms have to exist in order to create and select these (speculative) local

computational units.

3.2.4 Synaptic plasticity

This subsection presents the plasticity dynamics, or learning rules, that have been used

with the spiking neuron model presented. A very important point to keep in mind

is that these rules are not optimal in the sense of information storage. Rather they

reflect mechanisms that 1) are available to hippocampal pyramidal neurons and 2) are

supported by biological experimental data.

A synapse can change its efficacy, represented in terms of its peak conductance

Speak, as a result of two independent processes:

1. Short-term plasticity changes the synapse’s peak conductance temporarily (in

the time scale from hundreds ofmsto a few seconds).

2. Long-term plasticity produces permanent changes onSpeak.

Since chapter 5 is entirely dedicated to short-term plasticity in the hippocampus

(particularly on its computational repercussions), the following discussion is centred

around long-term plasticity in spiking neurons.

Long-term plasticity can be of the form of long-term potentiation (LTP) or long-

term depression (LTD).

Two types of long-term potentiation (LTP) exist in hippocampal fibres: associa-

tional and non-associational. The simplest type is the non-associational, that is, the

potentiation of the synapse occurs independently of post-synaptic neuron’s state. On

the other hand, associational LTP requires that the pre-synaptic signal arrives at a time

at which the post-synaptic membrane loci is depolarised. In modelling studies this

is typically regarded as the consequence of post-synaptic firing. There are neverthe-

less other mechanisms, such as local synaptic interactions, that may locally depolarise

dendrite fibres. These other mechanisms, nevertheless, have to be disregarded in point-

wise spiking neuron models.

Two forms of associational long-term potentiation are considered in the hippocam-

pal computational model: simple associative (Hebbian) plasticity and spike-timing de-

pendent plasticity (STDP). In simple associative plasticity, a synapse is modified only
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when both pre and post-synaptic neurons fire within a short time window (indepen-

dently of the relative firing times). In these circumstances, the synapse is potentiated

using the rule for potentiation shown in equation 3.8 (explained in detail below). The

dynamics for the spike-timing dependent plasticity (STDP) follow the results reported

by Bi and Poo (1998) in cultured hippocampal cells. Some modifications are neverthe-

less introduced.

In spike-timing dependent plasticity the quantitytSTDP is defined as the difference

between the pre-synaptic spike time arrivalt pre
sp and the post-synaptic spike timet post

sp .

That is,tSTDP= t pre
sp − t post

sp . In the canonical STDP model (e.g. Songet al, 2000), LTD

is induced iftSTDP< 0, otherwise LTP is induced. The amount of potentiation, and

depression, decays exponentially with the absolute value oftSTDP. The time constants

for the decay measured by Bi and Poo (1998) were 34±13 ms for depression and 17±
9 ms for potentiation. Nevertheless, in the model used here instead of an exponentially

decreasing modification magnitude, constant values were used within time windows

of 40 ms. A comparison between the canonical STDP model and the model used is

depicted in 3.3. This rectangular STDP rule enables a simpler interpretation of the

results from the hippocampal computational model.

Figure 3.3: Spike-timing dependent plasticity. Left panel: canonical STDP (taken from

Bi and Poo, 1998). Right panel: STDP rule used in this thesis (the quantities ∆LTPand

∆LTD are explained in the text). EPSC: excitatory post-synaptic current.

Following experimental data (Bi and Poo, 1998), the modification size induced on

a synapse undergoing LTP is dependent on the synapse’s initial strength. On a synapse

undergoing LTD, the modification size is independent of its initial strength.
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The constant∆LTP represents the maximum potentiation that a synapse can ex-

perience. This corresponds to the conductance increase in a synapse with zero initial

conductance. The constant∆LTD corresponds to the fixed conductance decrease in

synapses subject to LTD.

The amplitude of the modification size is given by:

Potentiation : ∆Speak= ∆LTP
(

1− Speak
Smax

)
(3.7)

Depression: ∆Speak= ∆LTD (3.8)

Soft-bound dynamics (van Rossumet al, 2000) are used to describe the potentiation

increase. The quantitySmaxrepresents the biological upper bound for the synaptic peak

conductances.

Spike-timing dependent plasticity rules say nothing about the situation in which

a pre-synaptic neuron continuously fails to fire a post-synaptic neuron. Since there

is experimental evidence that support the efficacy reduction of synapses establishing

such connections, the plasticity model used here was modified to accommodate this

property. Thus, if a synapse is activated it always undergo some form of modification.

The depression caused in synapses that systematically fail in leading the post-

synaptic neuron to threshold is nevertheless different from STDP depression. These

synapses undergo homosynaptic depression and are depressed by a constant, small,

percentageH.

Homosynaptic Depression: ∆Speak= H Speak (3.9)

The homosynaptic depression constantH is typically chosen from 0% to 5%.

The reason to include this homosynaptic depression becomes clear when the hip-

pocampal computational model is discussed in chapter 6. Mainly this form of de-

pression secures a soft-degradation of information stored that allows the creation of a

palimpsest type memory.

The complete set of learning rules applied to the spiking neurons network is sum-

marised below:
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pre-synaptic post-synaptic synaptic modification

neuron neuron

silent silent none

silent spike none

spike silent homosynaptic depression (3.9)

spike spike LTP or LTD (3.8)

Table 3.1: Learning rules applied to spiking neuron units.

3.3 Final remarks

This chapter has presented the properties of the neuron model used to describe each

unit in the hippocampal computational model.

The major limitation on the spiking neuron model used is undoubtedly its reduced

computational power due to removal of local synaptic interactions. However, it is my

belief that such eventual local computations are not necessary for the main functional

properties of the hippocampus.

All the relevant details on how the integrate-and-fire dynamics were simulated will

be given in chapter 4 where the simulation environment created to analyse the hip-

pocampal model will be discussed.





Chapter 4

Hippocampal Simulation Environment

This chapter is dedicated to the description of the simulation environment, SE, which

was used for all the numerical experiments and simulations of the hippocampal com-

putational model (HCM).

Specific details about the implementation of the spiking neuron units are explained.

The approximations, suppositions and limitations of the simulation environment are

themselves a component of the hippocampal computational model that will be later

introduced. Any model can only be considered fully described when all its simplifica-

tions and assumptions are stated.

The simulation environment presented in this chapter is, by itself, a considerable

achievement of this thesis. It not only permits a detailed analysis of the hippocampal

computational model but also creates a general framework where many other hypoth-

esis can be tested. This simulation environment can be an extremely useful tool for

future research in the area of spiking networks.

Organisation of the Chapter

Section 4.1 is concerned with the decisions taken about which language to code

the hippocampal model (HCM). Section 4.2 exposes the general structure of the sim-

ulation environment and explains the elemental computational units. The functional

behavioural of each component is presented and discussed.

The situations where specific approximations on the SE may have a relevant impact

on HCM’s results, are discussed in the last section.

41
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4.1 Coding language

A model with a few thousands integrate-and-fire units, each with a couple of hundred

synapses, demands a considerable amount of space to store all the state variables and

requires millions of operations to compute a single time step propagation.

The limiting factor in a spiking model network simulation is the number of synapses.

A model with 5,000 units, each with 200 synapses (totalising 1,000,000 synapses) re-

quires about 80MBytes to store all the variables needed (where each synapse is char-

acterised by∼ 20 floating point variables occupying 4 bytes each).

The number of operations required to update the state variables at each time step

rules out the use of any high level programming language such asMatlab or Mathe-

matica. Nevertheless, these languages were of great use for the treatment of results

and confirmation of specific simulation calculations.Mathematicawas of great use in

all analytical calculations.

An attempt was made to useNEURON(Hines and Carnevale, 1997), taking advan-

tage of the newly introduced event driven mechanisms. Some tests were made with the

help of Michael Hines. Unfortunately, the difficulty in tuning specific algorithms and

simulation properties, became a considerable drawback.

The decision was made to useC programming language. A program tuned to the

task in hand was then written, with execution speed greatly improved compared with

most languages, and full control over all the algorithms. This required full program-

ming of almost all the algorithms used in the simulation environment.

4.2 Simulation environment core ideas

A biological neuron can be divided into 4 structural entities: soma, axons, dendrites

and synapses. At the simulation environment, a neuron is represented by a soma unit

and a list of synapse units.

The simulation environment’s central structure is the synapse unit, which contains

information about:

1. transmission delay - axonic and synaptic delay constants;

2. dendritic filtering - dendritic length constant and variable for electrotonic length;
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3. connectivity - identification of input and output soma units;

4. arriving spikes - times of arrival of the spikes produced at the input soma unit;

5. produced post-synaptic currents (PSC) - times of initiation of PSC’s at the output

soma unit;

6. post-synaptic current shape - dual exponential time constants and normalisation

factor;

7. synaptic strength - connection strength variable, expressed in terms of peak con-

ductance;

8. short-term dynamics - facilitation and depression constants and variables;

9. long-term dynamics - LTP and LTD constants and variables required for spike

time dependent plasticity.

Each synapse unit has its own “private” axon fibre and dendritic fibre. This means

that dendritic signals interact only through the soma. This simplification is motivated

by two reasons: 1) it is my belief that dendritic computations are not necessary to es-

tablish the core functional properties of hippocampal neurons and 2) this simplification

greatly enhances the computational performance of the simulation environment. My

belief that dendritic computations are not necessary to obtain the most relevant hip-

pocampal functional behaviours is based in the fact that highly complex mechanisms

are required to establish and maintain specific computations in the dendritic tree. Such

mechanisms have not been described in the literature and, in addition, the most relevant

functional properties of the hippocampus can be recreated without the use of dendritic

computations.

The SE’s neuron equivalent can be seen as a central soma compartment surrounded

by a shell of synapse compartments connected through filters. There are no branching

points at the neuron unit’s dendritic tree. It is important to emphasise that spatially

the neuron unit is a point: the size of the dendritic fibre associated with each synapse

unit is only used for the purpose of post-synaptic current (PSC) amplitude filtering.

Spatially all synapses are directly connected to the soma’s surface.



44 Chapter 4. Hippocampal Simulation Environment

Figure 4.1: a) Illustrative shape of SE neuron’s equivalent. b) Each synapse unit has its

own “private” axon and dendrite fibres. The size of the axon represent the transmission

delay while the size of the dendrite represents the attenuation. Spatially both these

fibres have zero length.

Building a neuronal network in the simulation environment is a two step procedure:

first, soma units are defined and placed; then synapse units, which are axon-synapse-

dendrite wires, are placed connecting specific pairs of soma units.

Some of the simulation environment core concepts are developed below.

4.2.1 Transmission delay

Axons in this model are seen simply as introducing transmission delays. In the SE’s

framework, a biological axon fibre that bifurcates and ends in two synapses corre-

sponds to two independent axons. Each of these, now independent, axons is charac-

terised by the total time that a spike would take in travelling between the common

soma and the corresponding synapse (figure 4.2).

This view does not introduce any relevant approximation, in terms of signal pro-

cessing, between model and biological system. The same does not happen with the

dendrite conversion.
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Figure 4.2: The SE neuron fibres always join the soma with a single synapse. The SE

counterpart for a fibre that bifurcates and ends in one synapse each, is two independent

cables. Each of these new fibres contain information about signal delay or filtering

depending on the nature of the fibre.

4.2.2 Dendritic filtering

For dendrites, the conversion is identical but involves more complex approximations.

Each synapse unit contains information about the dendritic distance to the soma (fig-

ure 4.2). Introducing this distance is not for delay calculation purposes; the significant

signal delay is accounted for by the “transmission delay” constant mentioned before.

Instead, the dendritic fibre length is required for calculating dendritic amplitude atten-

uation due to the presence of resistive and capacitive elements.

The low-pass filtering effect on the post-synaptic current profile is not continuously

calculated. Instead, the post-synaptic current wave form (defined as a dual exponential

function) already corresponds to the associated steady-state profile created at the soma

level (see section 4.2.5 for further details).

The effect of frequency on the wave profile in not taken into account. For the pur-

pose of the hippocampal model, the error associated with this approximation is negli-

gible. On the other hand, the current attenuation produced with typical hippocampal

firing frequencies is considered to be relevant (see figure 4.3). This mechanism can be

a considerable ally to the inhibitory interneuron populations in the control of the ac-

tivity levels at principal neuronal cells (chapter 6 is dedicated to the control of activity

levels).

According to data from Brownet al. (1981), Spruston and Johnston (1992), Thur-

bon et al. (1994), the dendritic space constants in hippocampal neurons, including
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Figure 4.3: Frequency dependent space constant (τm = 50ms).

dentate granule cells, CA1 and CA3 pyramidal neurons and also interneurons, are

quite long, in the order of 2000µm. In addition, the dendritic membrane time constants

are quite slow, in the order of 50ms.

This implies that steady-state potentials suffer almost no attenuation as opposed to

signals propagating at higher frequencies.

The frequency-dependent space constantλ( f ) can be calculated using Fourier trans-

forms, and is given in terms of the steady-state space constantλ(0) by:

λ( f ) =
λ(0)

Re
{√

1+ i 2π f τm
} (4.1)

Using cable theory, the attenuation on the post-synaptic current originating at a

distancex from the soma, in a dendritic fibre of total lengthL (see figure 4.4), is given

by:

Isoma

Isyn
=

cosh
(

L−x
λ
)

cosh
(

L
λ
) (4.2)

Since the neuron unit model assumes each dendrite containing a single synapse

unit placed at the end of the fibre, thereforex = L. The dendritic filtering attenuation

factorFatten, as a function of the fibre lengthL and stimulus frequencyf , is then given

by:
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Figure 4.4: Current amplitude attenuation of a stimulus created at the dendrite, as seen

at the soma.

Fatten( f ,L) =
1

cosh
(

L
λ(0) Re

{√
1+ i 2π f τm

}) (4.3)

Figure 4.5: Dendritic filtering attenuation factor Fatten as a function of the fibre length L

and stimulus frequency f .

The dendritic filtering attenuation factor is extensively used throughout the simu-

lations. It is unwise to use this analytically calculated expression due to computational

efficiency. An approximation of the form̃Fattenuation( f ,L) = exp
(
k1(k2 + f )L2

)
is

used instead, using the experimental valuesλ(0) = 2000µmandτm = 50ms. It should

be noticed that the constraintFatten( f ,0) = 1 is met. The constantsk1,2 are calculated
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using a least-squares fit.

This new expression,̃Fattenuation( f ,L), can be calculated using fewer computational

steps. This expression is invoked around 2x per synapse unit, for several thousands

synapse units, at each time step.

The approximated surface is presented in figure 4.6 together with a graphical visu-

alisation of the approximation errors. The error is only bigger when both frequency and

fibre length values are high. In this region the approximation underestimates the am-

plitude attenuation. This error leads nevertheless to small change in the post-synaptic

currents and therefore does not pose a problem.

The attenuation in a dendritic tree with arbitrary branching can be analytically cal-

culated using, for example, therecursive algorithm(Rall and Agmon-Snir, 1998). Un-

fortunately this method is computationally intensive. Besides that, and most impor-

tantly, it is part of the assumptions of the hippocampal model that the main functional

role of extended branched dendritic trees is to collect and deliver signals to the soma;

specific pre-computations at the dendritic level are not required to achieve the func-

tional behaviour of the hippocampus.

4.2.3 Soma units and connectivity

The soma units gather all incoming synaptic currents, which are summed. Only one

type of response is considered for the neuron units: spikes. Other possible forms of

signalling, such as modulators like neuro-active peptides known to be present at the

hippocampus (Johnston and Amaral, 1998) are absent in the HCM.

As described in the previous chapter, a linear integrate-and-fire equation (Gerstner

and Kistler, 2002) is used to describe the dynamics of the only variable that defines the

soma’s state: the voltageV. For under-threshold conditions, the spiking model used

was:

τm
dV
dt

= Vrest−V +RmIin (4.4)

The currentIin is the sum of all current inputs, namely all synaptic currents with

respective complex time dependent profiles.

The numerical method used to propagate in time the dynamic system was the fourth

order Runge-Kutta approximation method (Presset al., 1994; Wilson, 1999).
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Figure 4.6: Upper graph: dendritic filtering attenuation approximation factor F̃atten as

a function of the fibre length L and stimulus frequency f . Lower graph: F̃atten( f ,L) in

green and Fatten( f ,L) in blue.
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The ‘luxury’ of using a fourth order method to deal with the soma’s differential

equations is reasonable as the SE’s bottleneck is at the computations associated with

synapse units (Rotter and Diesmann, 1999). This way, more accurate calculations are

possible for the soma units without decreasing significantly the SE’s performance.

As in every integrate-and-fire model, whenever the state variableV reaches a pre-

defined threshold valueVthresh, a non-linearity is introduced into the dynamics. In this

soma unit model, when voltageV reachesVthresh, a stereotyped voltage wave is gener-

ated, for a duration equal to the neuron’sabsolute refractory period(5 ms).

The stereotyped voltage wave’s role is not of mimicking an action potential. As

mentioned before, spikes are fully characterised in the model by their arrival time at the

corresponding synapse. That is, the propagation of action potentials is not simulated.

Instead, the stereotyped spike voltage wave follows the profile of a back-propagated

action potential (BPAP) as seen at distance of∼ 150µmin the dendritic tree. The BPAP

profile used in the SE was extracted from simulations withNEURONsoftware us-

ing hippocampal neurons with physiologically realistic properties (Poiraziet al, 2003)

which, in turn, is in accordance with the experimental data from Sprustonet al (1995).

The voltage wave amplitude attenuation is calculated again using cable theory, as-

suming only membrane passive properties, and following the same approximations

used in dendritic filtering:

Figure 4.7: Current amplitude attenuation of a stimulus created at the soma, seen at

the end of a dendritic fibre.

The attenuation on the back-propagated action potential at a distanceL from the

soma, in a dendritic fibre of total lengthL (see figure 4.2.3), is given by:

Vsyn

Vsoma
=

1

cosh
(

L
λ
) (4.5)
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This equation leads to the same attenuation factor defined in equation 4.3. The

voltage calculated at each synapse loci has impact over two mechanisms: post-synaptic

current amplitude (product of driving voltage and conductance) and learning (affecting

posterior conductance amplitudes through LTP and LTD).

A third and last computation is associated to the soma units: measuring firing rates.

A correct, and continuous, estimation of each soma’s unit firing frequency is impor-

tant for correct calculation of frequency-dependent dendritic attenuation and to esti-

mate neuron’s firing-rate allowing overall comparison with firing-rate models. Several

methods have been proposed in the literature to produce firing-rate estimates. The

method used in the SE uses linear filters and linear kernels (Dayan and Abbott, 2001).

The kernel, or window term, has to be causal which has the consequence of typically

delaying estimations. A kernel is calledcausalwhen the firing rate estimate at timet

depends only on spikes fires beforet.

Two components are used to produce the continuous firing rate estimates:

• a record of the previous 50 spike times for each soma unit;

• a causal kernel;

The value 50 is chosen as the minimal number of spike times that lead to a very-

good frequency estimation (within the range of hippocampal frequencies).

The window function adopted in the SE is the commonly usedα function (Badde-

ley et al., 1997):

ω(τ) =
[
α2τexp(−ατ)

]
+

The half-wave rectification operation[·]+ is defined as:

[x]+ =

{
x : x≥ 0

0 : x < 0

The constantα−1 determines the temporal resolution of the resulting firing-rate

estimate. Two factors influence the choice ofα−1: the range of frequencies in which

the system is likely to work and the maximum changing rate of frequencies. A value

of α−1 = 100mswas used to account for an empirical maximum changing rate of 100

Hz/s.
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Explicitly, the approximated, instantaneous, firing-rate at any timet is given by:

r̃(t) =
50

∑
i=1

[
α2(t− ti)exp(−α(t− ti))

]
+

The valuesti , i = 1, ...,50 are the previous 50 spike times. In the beginning of a

simulation, when 50 previous spike times are unavailable, the estimated firing-rate is

calculated assuming spike times at−∞.

The quality of the firing-rate estimation algorithm can be accessed applying the

kernel convolution to a spike train produced by a non-homogeneous Poisson process

(Ross, 1996) with known time dependent arrival time. Figure 4.8 below shows the

results using bothN = ∞ (A) andN = 50 (B).

Figure 4.8: Upper graph: spikes produced by a non-homogeneous Poisson process.

Lower graph: original firing rate used to produce the spike train; estimated firing-rate

using all previous spike times (A), or up to 50 spike times (B), for the convolution oper-

ation.

The delay in the frequency estimator (due to the use of an asymmetrical kernel) is

of the order ofα−1 = 100ms. This is a point that offers little concern. The frequency
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dependent processes at the neuron that receives this spike train may be ruled by first

order kinetic equations, to which theα-function profile is an approximate solution. In

fact, more than the value that minimises the firing-rate estimation errors,α−1 should

be representative of the time constants of the frequency-dependent internal processes.

4.2.4 Spikes

Each synapse unit keeps a list of all spikes present at its afferent axon. The information

is in the form of remaining time for post-synaptic conductance activation. This counter

includes both remaining time for synaptic terminal arrival and synaptic transmission

delay (∼ 1ms).

Only in the case of considerable axonic delays and very high frequencies does the

spike list contain more that 1-2 records (counters). The synaptic unit’s spike list is

updated at each time step, according to the numerical integration timedt.

A spike record is created each time the afferent neuron unit fires, and is removed,

and converted to a post-synaptic current (PSC) record, once its (negative) counter

reaches zero, i.e. the signal reached the post-synaptic neuron.

4.2.5 Post-synaptic currents

Just as with incoming spikes, each synapse unit keeps a list of all post-synaptic currents

present at its associated dendrite fibre. The synaptic unit list is formed by the elapsed

times since the PSC’s initiation. These (positive) counters are updated at each SE time

step, according to the numerical integration timedt.

As mentioned before, each PSC counter record is created and set to zero each time

a spike record is eliminated (denoting spike arrival). Removal occurs when the current

injected at the soma unit falls below a predefined, negligible, value.

The currents are calculated assuming a dual exponential model for the post-synaptic

conductance responseS(t). See equation 3.4.

The voltage amplitude required to obtain the PSC from the conductance is cal-

culated as the difference between the synapse’s reversal potential and the attenuated

soma’s voltage (accordingly to the fibre length).

The total current injected by a specific synaptic unit into the soma is calculated as

the convolution of the post-synaptic response function∑δ(t− tPSC), with the synapse’s
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PSC profile1.

4.3 Final remarks and critical summary

The approach taken to implement the dendritic trees, where they are temporally and

spatially collapsed into a point, obviously removes all eventual local non-linear interac-

tions between post-synaptic currents (Mel, 1994). There is still an indirect interaction,

through the soma unit since the PSC generated by each synapse is dependent on the

membrane driving force. The integration of synaptic signals is linear.

This is indeed a big compromise between a greater complexity in the model and

computation time in the SE. The consideration of dendritic geometries and post-synaptic

currents interactions requires an enormous amount of computations. The theory for the

hippocampus that will be discussed later, does not require computations happening at

the dendritic level in order to recreate the functional behaviour seen in episodic and

spatial memory. Controlled computations happening at dendritic branches require a

much larger number of synapses2 that would even further load the SE. In some simu-

lations, the dendritic fibre length is neglected: dendritic democracy, active properties

and back-propagated action potentials, make the steady-state attenuation very small.

Frequency dependent attenuation is nevertheless considered due to its implications on

stability control.

A final remark goes to the efficiency of the simulation environment. Using a PC

with a AMD64 3.5GHz and 1024MB of memory, an experiment of 60s (withdt =

0.1ms) in a network with 100000 synapses can be simulated in around 3.5 hours.

4.3.1 Snapshots of the simulation environment

Throughout this thesis snapshots of the simulation environment’s graphical output are

presented. A sample is presented in figure 4.9.

This simulation environment’s graphical output is a schematic representation of

the network being simulated. Each neuron unit is shown as a filled circle and all units

1In the case where the synaptic strength changes as a consequence of short and long-term plasticity,
the post-synaptic response function is weighted accordingly

2For specific configurations of synapses, capable of useful/meaningful computations, to be formed
through a continuous adaptation and selection process, a huge population of synapses have to be used.
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belonging to the same population (or field) are aggregated in rectangular matrices. The

voltage on each neuron unit is colour-coded:

• bright blue:−90mV; darker blues towardVrest.

• black:Vrest.

• bright red: just belowVthresh; darker reds towardVrest.

• yellow: all voltages aboveVthresh.

All fields are identified by their initials (see Definitions page). The subscriptp is

used for identifying the principal population, whilei stands for inhibitory interneurons.

The activity level is also shown beneath the representation of each population with the

initials “a.l.”.

Figure 4.9: Snapshot of the simulation environment’s graphical output. In this case

there are 250 entorhinal cortex II principal neurons (EC2p), 1000 dentate gyrus principal

neurons (DeGp), 200 CA3 principal neurons (CA3p) and 20 CA3 inhibitory interneurons

(CA3i)





Chapter 5

Temporal Decoding and Dynamical

Synapses

The notion of activity patterns was briefly introduced in chapter 1 (section 1.3). Ac-

cording with this form of coding, the information regarding a certain feature is com-

plete at each instantt, and is independent of previous times. In other words, the activity

patterns are purely spatial: in terms of transmission of information, coding in the tem-

poral domain is non-existent.

Nevertheless the hypothesis of information being conveyed in the temporal domain

should not be disregarded. Part of the hippocampus, namely the dentate gyrus, receives

sensorial information conveyed in the temporal domain (O’Keefe, 1976; McNaughton

et al., 1983; Eichenbaumet al., 1989) and it is important to analyse which processes

are available at the hippocampal fields to access and use this type of information. There

is controversy on the effective use of these temporal correlations for relevant compu-

tations at the hippocampal fields.

It will be argued that, at least at some stages of the hippocampal processing, anal-

ysis on the temporal domain is performed. At these stages, the decoding of temporal

correlations between input patterns of activity is required for the correct functional be-

haviour of the hippocampus. This chapter provides the information required for the

introduction of dynamical synapses into the hippocampal model.

For a cellular mechanism to be able to extract information from the temporal do-

main it needs to have a form of memory, i.e. it needs to be a system in which the

current state depends not only on the inputs but also on the previous state(s). Several

57
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Figure 5.1: In spatial coding, the set of states of multiple channels at each time t codes

the information (a). In temporal coding, a single channel transfer the information as a

sequence of states (b). The two methods combined are called spatio-temporal coding.

mechanisms satisfy this condition and form reasonable candidates for decoding tem-

poral information. Examples include the panoply of neuronal ionic currents found in

hippocampal cells, such asIAHP, IA andIM.

This chapter focuses on one such history dependent mechanism:dynamical synapses.

Dynamical synapses exhibit short-term plasticity expressed asfacilitation anddepres-

sion, changes which are dependent on the neurotransmitter release process. Instead of

being static at short-time scales, the post-synaptic peak currents in dynamical synapses

can vary dynamically according to the synapses’ activity history (see figure 5.2).

These synapses are widely distributed throughout several types of neurons in the

hippocampal formation (Liaw and Berger, 1996; Buonomano, 1997) and offer experi-

mentally confirmed mechanisms to condition the post-synaptic currents to the temporal

properties of the input spike trains.

Organisation of the Chapter

In the first part of this chapter, the unreliability of synaptic signal transmission is

discussed. Dynamical synapses are introduced and the properties offacilitation and

depressionbehind the short-term dynamics will be described briefly in section 5.2,

together with their biophysical basis.

In section 5.3 some dynamical synapse models are reviewed. A derived probabilis-

tic model for synapses with a single release site is introduced and compared in section

5.4.

Section 5.5 deals with the following topics:

• Synaptic Switch - the synaptic reliability is tuned to a specific value of a spike
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Figure 5.2: The upper graph shows the normalised excitatory post-synaptic currents

(EPSCs) recorded from CA1 pyramidal neurons in a hippocampal slice in response to

stimulation of the Schaffer collateral input. The stimulus is a spike train recorded in

vivo from the hippocampus of an awake behaving rat. The EPSCs mean and standard

deviation after 4 repetitions of the same stimulus are shown. The normalised strength

of the EPSC varies in a deterministic manner depending on the prior usage of the

synapse. For a constant synaptic efficiency, the normalised amplitudes should all fall in

the dashed line. The bottom graph shows a blown-up version of part of the top graph.

Reproduced from Koch (1999). c©The MIT Press.

train’s temporal property, for example its frequency;

• Temporal to Spatial Conversion - a population of neurons with dynamical synapses

all sharing the same input convert, in a small time window, the temporal code

into spatial code;

The chapter concludes in section 5.6 with some final remarks on the role of dy-

namical synapses in the hippocampus.
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Figure 5.3: Diagram of the processes behind transmission at a chemical synapse,

showing the level of complexity. Adapted Squire and Kandel (2002). c©W. H. Free-

man and Company

5.1 Synaptic transmission

The synapse is a complex system, rich in subprocesses that mediate communication

between pre and post-synaptic neurons (Shepherd, 1994). When an action potential,

travelling though the axon, reaches the synapse and depolarises it, voltage dependent

calcium channels open, leading to an increase of the intracellular concentration of

Ca2+ ions. In turn, this calcium increase initiates a sequence of events thatmayculmi-

nate in the release of one neurotransmitter vesicle per release site. These neurotrans-

mitters will then excite, or inhibit, the post-synaptic neuron, depending on the nature

of the synapse (see figure 5.3).

The release of vesicles, where each vesicle is considered aquantum, is a stochas-

tic process. A very simple but successful model for the time-averaged post-synaptic

response sizePSRis given by (Nichollset al, 1992):

PSR= n p q (5.1)

In this expressionn is the number of release sites,p the probability of vesicle re-

lease for each independent site, andq a measure of post-synaptic response to a single

vesicle. Whilen andp are quantities dependent on pre-synaptic mechanisms, the post-

synaptic responseq is mostly dependent in post-synaptic factors such as the number of

post-synaptic receptors. The post-synaptic response takes the units of theq variable,
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which can be a voltage, a current or, as used throughout this thesis, a peak conduc-

tanceSpeak. The peak conductance is the maximum conductance that the post-synaptic

membrane reaches as a consequence of synaptic activation.

Although q is associated with a fixed unitary quantity, aquantum, it is neverthe-

less subject to small variations mainly due to Gaussian fluctuations on the amount of

neurotransmitter molecules present in the vesicle (Nichollset al, 1992).

The probability ofk quanta being released in a synapse withn release sites, each

with release probabilityp, follows a binomial distribution:

p(n,k) = (n
k)pk(1− p)(n−k)

It can be seen that the successful transmission probability is:

p(k > 0) = 1− (1− p)n

A typical feature of the hippocampal synapses is that each bouton contains only

one or a few active release zones (Dobrunz and Stevens, 1997; Jonhston and Amaral,

1998). Hippocampal mossy fibre boutons are the exception (Chicurel and Harris, 1992)

that will be discussed later.

As a consequence, the arrival of an action potential to a synapse often leads to

the release of a single vesicle or simply to release failure (Korn and Faber, 1993).

That is, theone or noneassumption in the number of released quanta applies to most

hippocampal synapses. Since the fluctuations in the post-synaptic response size are

inversely proportional to
√

n, the level of variability is maximal in these single release

site synapses.

In dynamical synapses, the probability of vesicle releasep depends directly on

the history of prior use of the synapse. This makes dynamical synapses an excellent

mechanism to decode temporal information. Details of the key factors behind this

dependency will now be given.

5.2 Dynamical synapses - facilitation and depression

The transmission probabilityp depends on several factors. One such factor is the cal-

cium concentration -[Ca2+]: the arrival of an action potential makes the synaptic in-

ternal calcium concentration increase by hundreds of micromolars (Lando and Zucker,

1994). This rapid increase triggers release of neurotransmitters into the synaptic cleft.
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It has been observed in many synapses, including Schaffer collateral synapses, that

the close arrival of input spikes leads to a progressive increase in the release prob-

ability (Dittman et al, 2000). The rise in the post-synaptic response can be of one

order of magnitude. Depending on the number of stimulus and its frequency, this form

of potentiation takes the designationpaired-pulse facilitation(PPF),augmentationor

tetanic potentiation.

Consecutive arrival of action potentials leads to an increase in the residual calcium

concentration on the order of a 1 micromolar (Delaney and Tank, 1994). This goes

against the empirical view of facilitation simply being the result of the additive effect

of residual calcium together with the transient increase generated by the arrival of an

action potential. The latter is two orders of magnitude bigger than the former.

Although the degree of complexity of this form of potentiation is obviously higher,

models for the dynamics of facilitation based simply on additive effects have been

applied with success.

The fact that the vesicles pool is finite, together with the fact that the full vesicle

regeneration process is not instantaneous, leads to another property of synapses called

depression(Tsodyks and Markram, 1997). Depression is characterised by a strong

decrease in the release probability due to the depletion of available vesicles.

Figure 5.4: Experimental evidence of average decrease due to depression (A) and av-

erage increased in post-synaptic responses due to facilitation (B). (Taken from Markram

and Tsodyks, 1996 and from Markram et al, 1998.

Depression is typically present in synapses between pyramidal neurons. Facilita-

tion is more widely present and possibly more relevant in synapses between pyramidal

neurons and interneurons (Thomson and Deuchars, 1994; Markramet al, 1998). In the

hippocampus, Schaffer collaterals typically respond to a train of inputs with facilitation

followed by depression (Dobrunz and Stevens, 1997). Mossy fibres are an exception to

pyramidal-pyramidal usual synapse types showing no depression at natural input spike
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rates, and being extremely facilitating with increases in PSR of up to 40 times (Urban

et al, 2001).

Table 5.1 summarises the short-term dynamics that, in my opinion are relevant

for the functional behaviour of the hippocampus. Discussion about their functional

implications will be presented in the chapters 7, 8 and 9.

Synapse Depression Facilitation Proposed functional role

pyramidal-interneuron weak strong activity level control

Schaffer collaterals moderate moderate temporal correlations

between spatial patterns

mossy fibres absent very strong temporal correlations

between spatial patterns

Table 5.1: Short-term dynamics with impact in the functional behaviour of the hippocam-

pus.

5.3 Models for dynamical synapses

Slightly different approaches have been taken in the literature to create models for dy-

namical synapses. These models can be directed to explain the collective post-synaptic

response caused by multiple synapses (Varelaet al, 1997) or the post-synaptic response

caused by a single synapse.

Most models are directly or indirectly related to the original phenomenological

models used in Tsodyks and Markram (1997) and Abbottet al (1997).

In Tsodykset al (1998), a kinetic model was created in which three synaptic states

are considered: recovered, active and inactive. The synapse is supposed to have a finite

amount of resources and each pre-synaptic spike activates a fraction of those resources.

After activation, this fraction will then quickly inactivate with a time constant of a few

milliseconds, and recover with a time constant of about one second (for review of

synaptic vesicle pool dynamics see Rizzoli and William, 2005). A facilitation effect is

incorporated by increasing the fraction of resources used by a certain amount, which is

elevated by each spike arrival, and decays between spikes. The full model is expressed
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by a system of four differential equations. Simplified, non-kinetical versions of this

model, based on the same principles, have been successfully applied in different studies

(Dittmanet al, 2000).

The version used here is the one analysed in Fuhrmannet al (2002). The dynamics

are expressed by two coupled differential equations with variablesR, the amount of

available resources ([0,1]), andUSE, the amount of resourcesusedupon action poten-

tial arrival ([0,1]). Three constants define the dynamics of the synapse:U1, amount

of resources used when resources are at maximum ([0,1]);τ f ac, facilitation decay time

(ms); andτrec, the resources recovery time constant.

dR
dt

=
1−R
τrec

−USE·R·δ(t− tsp) (5.2)

dUSE

dt
=−USE

τ f ac
+U1· (1−USE) ·δ(t− tsp) (5.3)

The variabletsp represents a spike arrival time. The dynamical synapse is fully

modelled by setting its post-synaptic responsePSR= W R(tsp), whereW is a con-

stant representing the maximal PSR obtained if all the synaptic resources are released

simultaneously.

In the case of stimulation with constant periodT and 100% reliable synapses, the

steady-state values of the variables (denoted with asssubscript) are:

Rss(T) =
1−exp

(
− T

τrec

)
1− (1−Uss(T))exp

(
− T

τ f ac

) (5.4)

Uss(T) =
U1

1− (1−U1)exp
(
− T

τ f ac

) (5.5)

Typical experimental values for dynamical synapses’ constants are presented in ta-

ble 5.2. All values for the dynamical synapses used in the hippocampal computational

model were taken from these experimental ranges.

This model was chosen to describe dynamical synapses in the hippocampal model,

and in the study of mossy fibre boutons (see appendix ) due to its good results shown in

several studies where it was applied. The use of a well established model for dynamical

synapses is preferable for the discussion and analysis of the hippocampal model.
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Synapse Type U1 τ f ac [ms] τrec [ms]

depressing† 500-1,500

(pyramidal- pyramidal)

facilitating‡ 0.012-0.086 550-3,044 104-694

(pyramidal - interneuron)

Table 5.2: Experimental values for dynamical synapses. † Markram (1997) and ‡

Markram et al (1998).

A model that, is my opinion, describes better theone or nonetype of synapses in

the hippocampus will be introduced and discussed in the next section. This modified

model is totally probabilistic. It has some similarities with the probabilistic model in

Fuhrmannet al (2002).

5.4 Dynamical synapses probabilistic model

The models discussed above are best applied to synapses with multiple vesicle release

sites or populations of synapses, where they reproduce the average response to an

input stimuli. The fact that many synapses in the hippocampus contain at most a single

active zone (Schikorski and Stevens, 1997) motivated the modifications toward a novel

probabilistic model. Another motivation was the creation of a model that fits in the

equation for the post-synaptic responsePSR= n prel q. The subscriptrel has been

added to the probability variablep in equation 5.1 to emphasise that it represents a

vesicle release probability.

This modified model is targeted to the Schaffer collateral synapses. The model

by Tsodyks and Markram (1997) is still more appropriate in the case of mossy fibre

boutons where the number of release sites can be up to 37 (Chicurel and Harris, 1992).

It will be shown that different dynamics are achieved with these modifications.

The following model is entirely probabilistic. The probability for the release of a

vesicle is a function of facilitation, identified by the subscriptF , and of the amount of

resources available at the synapse,R.

Defining it as a jointly distributed random variable, the probability of releaseprel

can be written as:
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prel = p(F,R) = pF(F) pR(R) (5.6)

The two independent marginalised termspF(F) andpR(R) are developed below.

Facilitation

The probability of release, subject only to facilitation, is assumed to be proportional

to a facilitation precursorwhich increases at each spike arrival and decays between

spikes. A difference exists in the dynamics ofpF and its homologousUSE: the upper

bound is removed from the differential equation and applied externally. This way the

dynamics assume that the transient increase in the facilitation precursor (which may

not be directly the calcium concentration) is constant. After a limiting level though,

the effect is considered to be saturated, at whichpF = 1.

The dynamics forpF are therefore expressed in terms of the facilitation precursor

decrease time constantτF and the step incrementIcF (dimensionless) that is either a

predefined constant, or zero to keeppF ≤ 1:

dpF

dt
=− pF

τF
+ IcFδ(t− tspike) (5.7)

When saturation is reachedpF (tsp) = 1, otherwise the solution is:

pF(t) = pF(0)e−
t

τF + IcFe−
t

τF ∑
n

e
tn
τF UnitStep(t− tn) (5.8)

Each valuetn is the time of arrival of thenth spike and the functionUnitStepis

defined as:

UnitStep(x) =

{
0 : x < 0

1 : x≥ 1

In the presence of a spike train with constant inter-spike intervalT, the valuepF ,

immediately after each spike arrival, converges to:

pF(nT) =
IcF

1−e−
T

τF

(5.9)

with n∈N andn� 1.

Depression
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The notion of resources is also used in the probabilistic model. The probability

for release conditioned to depression suffers a constant decrementIcR (dimensionless)

each time a vesicle iseffectivelyreleased, and relaxes continuously to a maximal value

with time constantτR, as a consequence of replenishment of resources.

In the previous models (Tsodyks and Markram, 1997; Fuhrmannet al, 2002), the

decrement was proportional to the resources used, which assumed the existence of

multiple release zones in the synapse as opposed to the single release zone assumption

behind this probabilistic model.

The step incrementIcR, applied at each release timetrel, is either constant or zero

to keeppR≥ 0.

dpR

dt
=−1− pR

τR
+ IcRδ(t− trel) (5.10)

As long as the resource pool is not depleted,pR > 0 and the system is described

by:

pR(t) = (pR(0)−1)e−
t

τR +e−
t

τR

(
e

t
τR + IcF ∑

k

e
tk
τRUnitStep(t− tk)

)
(5.11)

wheretk are thevesicle releasetimes.

This is the major difference when compared with the previous model which used,

instead, the action potential arrival time. For these stochastic synapses, the probability

of signal transmission failure is quite high. In terms of the dynamics, a failure leads to

a faster recovery of the synapse while facilitation is unaffected. This point is not taken

into account by the previous model.

If a vesicle is released with a periodT, the valuepR immediately after each release

converges to:

pR(kT) =
IcR

1−e
T
τR

+1 (5.12)

wherek∈N andk� 1. Please note thatIcR < 0.

Model comparison

This model is purely probabilistic and targeted to synapses with a single release

site. In addition, it differs from Tsodyks and Markram’s (1997) seminal model in the
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increment/decrement values which are now considered either constant (independent of

the state variables) or zero (once saturation was reached).

However the most important difference lies in the use of effective release timestrel

instead of spike arrival timestsp for the dynamics associated with depression. A low

pR leads to a decrease inprel that, in turn, leads to an increase inpF due to release

failures. This negative feedback forces thePSRto oscillate around a non-zero value,

oncepF has stabilised.

An experiment consisting of sending high frequency, vesicle pool depleting, stimuli

through Schaffer collaterals, would be useful for comparing the two models: Tsodyks

and Markram’s (1997) model leads toPSR≈ 0 as opposed to a higher value predicted

by the probabilistic model (figure 5.5).

The numerical steps for simulating the probabilistic model are described below:

Whent = tspike:

• pF(tsp) = Min[pF(tsp−∆t)− pF (tsp−∆t)
τF

+ IcF ,1]

• sample X, whereX ∼Uni f orm(0,1)

• prel(tsp) = pF((tsp) pR((tsp−∆t)

• If prel(tsp) > X then: pR(tsp) = Max[pR(t)+ 1−pR
τR

+ IcR,0]

• If prel(tsp) < X then: pR(tsp) = pR(t)+ 1−pR
τR

Whent 6= tspike, the dynamics are driven by the exponential decay and relaxation

with time constantsτF andτR, respectively.

The values used in the simulations for all the constants where:IcF = 0.2, τF =

1500ms, IcR=−0.125,τR= 400ms(see Fuhrmannet al, 2002). Although the marginal

probabilities are defined for every instant, the vesicle probability release is only mean-

ingful at each spike arrival time.

While previous models have the depression dynamics deterministic and fully con-

ditioned by spike arrivals, this model draws probable paths forpR values (figure 5.6).

Most of the graphs showing synaptic short-term plasticity are produced by aver-

aging the post-synaptic currents produced by a specific spike train over several trials.

Figure 5.7 is produced by averaging 100 responses to a Poisson spike train and con-

volving the prel values with a dual exponential function describing the post-synaptic



5.4. Dynamical synapses probabilistic model 69

Figure 5.5: Release probability profile for a constant 20Hz spike train using Tsodyks

and Markram’s (1997) reference model (a) and using the presented novel probabilistic

model (b).
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Figure 5.6: The value for pR is updated accordingly to the effective release or not

of a vesicle. The possible paths of pR after arrival of four spikes with constant inter-

spike interval are shown in (a). Each upper trace in a bifurcation represents a release

failure. Figure (b) shows the release probability associated at each spike arrival in a

high frequency spike train with a possible course for pR depending on effective release

of vesicles. The facilitation factor saturates very quickly in this example.
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current. Parameters for the dual exponential are: rise time constant = 3ms; decay time

constant 5ms.

5.5 Synaptic switches and temporal code to spatial code

conversions

Our knowledge on how neural assembliescoulddecode or process temporal informa-

tion is quite small compared to the possible of strategies and mechanisms to process

spatial code.

For small time windows (∼ 100ms), the times of consecutive spikes in many neu-

ral sub-systems are not entirely independent (see for example Richmondet al, 1990;

Mechleret al, 1998). Therefore some effort has been made towards finding possible

neuronal strategies to convert temporal code into spatial code that can then be extracted

and processed using the available mechanisms. It as been shown theoretically that, as

long the conversion from a temporal code to a spatial code satisfies some specific con-

straints,any real-time computation can be performed on time-varying inputs (Jaeger,

2001a, 2001b; Maasset al, 2002).

However it is still a subject of debate if, except for very specialised systems, neural

assembliesdo use complex temporal coding or temporal correlations: the fact that

spike sequences contain temporal correlations as a result of sensorial transduction, or

any other process, does not necessarily mean that this information is used subsequently.

Among the properties used to explain how this temporal to spatial conversion can

be achieved arepaired pulse facilitation and depressionand slow inhibitory post-

synaptic potentials(Buonomanoet al, 1995 1997, 2000), resonance properties at the

synaptic and cellular level (Izhikevichet al, 2003), post-inhibitory rebound (Hooper,

1998), and facilitation and depression (Markramet al, 1998; Aguiar and Willshaw,

2004).

It is again on dynamical synapses, though, that this section focuses its attention

since none of the other processes were included in the theory for the functional be-

haviour of the hippocampus.

Two properties make dynamical synapses suitable for this temporal to spatial code

conversion. First, the time scale of short-term plasticity is appropriate for decoding
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Figure 5.7: a) Typical averaged response of a dynamic synapse to a Poisson spike train.

b) Example of a pair input spike train/output release times. The paths followed by the

dynamic probabilities are shown in the lower graph.
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eventual information conveyed in the temporal domain. Secondly, it has been shown

thatPSRsshow a considerable heterogeneity that arrives from differences in facilita-

tion/depression properties (Dobrunz and Stevens, 1997; 1999). Even synapses from the

same axon can exhibit different short-term dynamics. These two properties have stim-

ulated theoretical work on the simpler form of temporal to spatial conversion: synaptic

“gates” or “switches”.

Synaptic switches are tuned to a particular class of spike trains. Such synapses act

as a switch, only releasing neurotransmitters if the spike train satisfies certain temporal

constraints. In Natschläger and Maass, 2001, a technique is presented to compute

the temporal pattern which maximises signal transfer for a synapse, given its dynamic

parameters. The hippocampal synapses that gather the best characteristics to work as

dynamical switches are the mossy fibre boutons.

In terms of generic temporal to spatial conversion, Maass and Markram (2002) have

shown that temporal information can be efficiently decoded, in biologically plausible

ways, using dynamic synapses and spiking units.

Although emphasis is being given to dynamical synapses, other mechanisms, as

stated before, can be used for decoding temporal information. Figure 5.8 refers to

a study by Buonomano (1995) in which paired pulse facilitation (PPF) and slow in-

hibitory post-synaptic potentials where used to convert temporal coding to spatial cod-

ing.

5.6 Discussion and final remarks

Two major questions motivated and directed this chapter. The first was concerned with

the existence in the hippocampal fields, of mechanisms sensitive to temporal features.

Through several reported experimental and theoretical studies we have seen that such

mechanisms do exist. Among them, dynamical synapses combine several properties

adequate to temporal decoding. The second, regarding theeffectiveuse of temporal

information contained in reasonably sized time windows, was nevertheless left without

a conclusive answer. Mechanisms for temporal decoding do exist, certain pathways

on the hippocampus do have their synaptic efficacy dependent on previous use, but to

which extent are these characteristics relevant, in functional terms, for the hippocampal

computations remains unknown. I will nevertheless claim that dynamical synapses
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Figure 5.8: A network of integrate-and-fire elements with PPF and slow IPSPs was

trained to discriminate among four different spike trains corresponding to specific short

stimuli. Four output units were tuned to each of the four stimuli (A). Another network with

the same properties was trained to discriminate between different inter-spike intervals

(B). Adapted from Buonomano, 1995.

play an important role in the following three pathways: pyramidal-interneuron fibres,

Schaffer collaterals and mossy fibres.

Pyramidal-Interneuron Fibres

The experimentally observed dynamical synapses between pyramidal and inhibitory

interneurons lead to a better control in the activity levels. Facilitation on these connec-

tions creates an important non-linearity on the feedback control mechanism produced

by inhibitory populations. This subject is analysed in detail in chapter 6, section 6.5.

A robust control of activity levels in each field is fundamental in the proposed

computational model for the hippocampus.

Schaffer Collaterals

As stated before, several studies have reported the existence of well defined short-

term dynamics on Schaffer collaterals. These fibres transfer information from the CA3

region to the CA1 region. Their role would be primarily in coding transitions between

two consecutive spatial activity patterns at CA3.

With short-term plasticity, Schaffer collaterals can produce CA1 activation patterns

that depend not only on the present but also on the preceding CA3 activation profiles.

The dependence on previous CA3 activation patterns must, however, remain small,
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that is, the activation profile produced in CA1 should be mostly driven by the present

CA3 pattern of activity. Such ability creates the conditions for time-series learning,

e.g. sequence learning and navigation.

Mossy Fibres

The importance of mossy fibres in creating the required CA3 sparse representations

has already been brought out by many previous hippocampal models. This property

results from the sparse connections between mossy fibre synapses and CA3 pyrami-

dal neurons. I will nevertheless claim, in the theory presented in chapter 7, that the

functional purpose of mossy fibres is significantly wider than that. As a result of the

short-term dynamics (facilitation), mossy fibres are able to selectively propagate only

patterns of activity that are statistically relevant across time. Mossy fibres actively

chose which features should undergo storage.

One important topic mentioned before but worth further discussion, regards synap-

tic failures. In the hippocampal computational model, individual synapses are substi-

tuted by aggregates of coherent synapses. This means that each synaptic unit in the

hippocampal computational model (see chapter 4) is the representation of a small pop-

ulation of synapses in a hippocampal neuron sharing the same dendritic branch and

same pre-synaptic neuron. Synaptic failure probabilities are therefore accommodated

into the parameters of the model’s synaptic units, specifically into the conductance

efficacies, which account for the average number of failures. The mechanisms of fa-

cilitation and depression, so important for the hippocampal computational model, are

intimately related with the effects of synaptic failure. Therefore, synaptic failure is not

just accounted for in the hippocampal model but rather is a fundamental component of

its functional mechanisms.





Chapter 6

Activity Level Control in Spiking

Networks

Control mechanisms that keep the levels of activity bounded are a key component in

excitatory neural networks where signal amplification can occur. Signal amplification

can result from the properties of specific network architectures or from changes in

synaptic efficacy that lead to an increase in excitation levels. The hippocampus, as

a learning system and containing recurrent networks, is highly susceptible to uncon-

trolled increases in excitation levels that could lead to catastrophic activity (e.g. tem-

poral lobe epilepsy). It is important to emphasise that the correct functional behaviour

of excitatory networks depends on a tight control of its levels of activity.

It is therefore important to understand how the control of activity levels is achieved

in the hippocampus, and how to recreate the mechanisms behind this control in the

hippocampal model.

In the hippocampus, several mechanisms are thought to be responsible for this con-

trol. In particular, the variety of interneurons that are systematically merged with the

populations of principal neurons are thought to be dedicated to this control (Jonhston

and Amaral, 1998).

In models based on firing-rate units, the control of (rate-based) activity levels can

be established using one or more inhibitory units. On the other hand, creating efficient

control mechanisms in spiking networks is quite challenging, especially if one wants to

mirror biological constraints instead of applying rules like k-winners-take-all (O’Reilly

and Munakata, 2000).

77
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The goal of this chapter is to describe the control mechanisms that were imple-

mented in the hippocampal computational model and discuss how they could work in

the biological hippocampus. Novel techniques are introduced for the parameterisation

of hippocampal connectivity properties that lead to constrained activity levels.

Organisation of the Chapter

Section 6.1 introduces the concept of activity level control and describes the sta-

bility problem which is the subject of this chapter. Section 6.2 briefly states which

activity level control mechanisms are available in the hippocampus. It then moves to

the description of the stability problem in the context of spiking neuron networks with

dual exponential synaptic conductances. The notion of threshold peak conductance in

discussed in section 6.3 which is then used in section 6.4 to describe how to obtain

reliable inhibitory feedback control in spiking networks.

Attention is transferred from the single neuron level to the population level in sec-

tion 6.5 where the mechanisms to produce precise levels of activity in post-synaptic

populations are described. Simulation results from activity level control in stereotypi-

cal network architectures are discussed in section 6.6. The objective is to validate the

claims presented in the previous sections. Some final remarks are presented in section

6.7.

6.1 Stability problem

Non-linear dynamics have to be used in order to model the important computational

features of a neuron (Koch, 1999). Unfortunately, the non-linear properties that give

neural networks their strong computational power also lead, typically, to analytically

intractable dynamics. The number of biologically realistic models in which it is possi-

ble to study, analytically and in detail, particular aspects of their dynamics is limited.

One particular aspect of crucial importance in any model is the assessment of its

stability. Given the properties of a neuron network model, it is important to be able to

test the stability of the network and devise mechanisms for its control.

For spiking neuron models, the analysis of stability is quite difficult. An approach

typically taken is to calculate the firing probability density functions as a function

of time, according to the network connectivity properties. These differential equa-
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tions, which describe the temporal evolution of a probability distribution (often called

Fokker-Planck equations), offer a back door to the dynamics of the system that avoids

the problems of the threshold non-linearity (Fourcaud and Brunel, 2002).

The analysis with firing-rate models is substantially simpler, and has motivated

their use in many theoretical studies. Nevertheless, it is my strong belief that most of

the information in the hippocampus is conveyed, and processed, in the form of (spatial)

activity patterns (see section 1.3). Therefore, a study on stability of spiking networks,

in the context of this novel hippocampal model, was required.

The methods presented in the following sections are devised for the neuron unit

model used, the integrate-and-fire model (see chapter 3). The main problem addressed

in this chapter can be stated in the following way:

Consider a populationB that receives inputs from a populationA with
a defined activity levelAA. The objective is to relate the activity level of
populationB, denoted asAB, with network properties such as connectivity,
number of units on each population and post-synaptic response strengths.

Note that populationA can be an ensemble of several populations. Also, population

A can be replaced by a sub-set of populationB, thereby modelling the case of recurrent

connections.

Since in the hippocampal model the connectivity and population sizes are con-

strained by biological data, the discussion is centred around the dependence between

activity levels and synaptic strengths.

There are two ways of achieving stability in the excitation levels:

1. having precise synaptic strengths which set amplification close to zero (leads to

unstable equilibrium);

2. having compensatory (inhibitory) feedback control;

Combining the two strategies leads to a robust control of activity levels. The fol-

lowing sections show how to implement both methods in network of integrate-and-fire

neurons satisfying hippocampal constraints.

6.2 Activity level control mechanisms

It is worth repeating that, in this thesis, the quantityactivity level is defined for a

neural assembly, for each timet, as the fraction of units in which the voltage is above
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threshold level. It is therefore an instantaneous measure as opposed to the rate-related

measure used in O’Reilly and McClelland, 1994.

Several biological mechanisms exist to ensure the control of activity levels in all

hippocampal fields. Examples are frequency adapting ion channels, dendritic filter-

ing, refractory periods, synaptic vesicle depletion and, most importantly, inhibitory

interneurons.

In the hippocampus, the average levels of activity in freely moving rats seem to be

constrained to well defined values:∼ 0.5Hz in DG,∼ 6Hz in EC and∼ 2.5Hz in CA3

(Barneset al, 1990; Jung and McNaughton, 1993). However, the average firing rates

can change considerably with changes in the behavioural state of the animal, or with

changes in the environmental conditions (Wilson and McNaughton, 1993). A correct

control of the levels of activity on the hippocampus is nevertheless crucial: failure to

control them is often the reason behind several hippocampal pathological behaviours

such as epilepsy. The hippocampus is the brain region with the lowest seizure threshold

(Johnston and Amaral, 1998).

Synaptic strength, expressed here as peak conductanceSpeak, is an important fac-

tor for post-synaptic activity levels. Even small deviations on the average synaptic

strength can lead to catastrophic activity or complete shutdown of the network. How-

ever, assigning tight bounds to the average synaptic strength is not enough to achieve

proper activity level control.

In the hippocampal model, the activity level control in each field is mainly achieved

through inhibitory interneurons. Interneurons are not directly involved in any form of

learning. My hypothesis is that their unique role is to keep excitatory units’ activ-

ity levels bounded and promote competition between excitatory units. The only other

mechanism included in the hippocampal model that contributes to activity control is

dendritic filtering. This form of signal attenuation has a strong effect on high frequency

signals (see figure 4.5). Depression on dynamical synapses have also a strong contri-

bution in damping high frequency signals. However the dynamical synapses included

in the hippocampal model were not targeted to this purpose.

The discussion focuses on how to produce good estimates for synaptic strengths

that lead to specific post-synaptic activity levels, and how to use inhibitory populations

as a negative feedback control mechanism. The equations required for this analysis

are the integrate-and-fire model (3.2) and the dual exponential post-synaptic response
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(3.4) that are rewritten below:

τm
dV
dt

= Vrest−V +Rm Iin(t)

The dual exponential post-synaptic conductance is zero fort < 0, and fort ≥ 0 it

is defined as:

S(t) = Speak×norm×
(

e
− t

τdecay−e−
t

τrise

)
DefiningEsynas the synapse’s reversal potential, the soma input current associated

with the post-synaptic conductance is then:

Isyn(t) = (V−Esyn)×S(t)

The variables that affect synaptic strength estimates for the interaction between two

populationsA andB are:

• populations sizes,NA andNB;

• populations activity levels,AA andAB;

• connectivities,Cd
AB, Cd

BA, Cd
BB andCd

AA.

• dual exponential post-synaptic responses,τrise andτdecay;

The subscripts inCd
AB indicate thatA is the pre-synaptic population andB is the

post-synaptic population. Unless stated, the connectivity values always refer to diver-

gent connectivity (see 2.1.3).

In the following sections, the number of active inputsNPSRthat a neuron from pop-

ulationB receives from populationA will be systematically required for calculations.

The subscriptPSRstands for Post-Synaptic Responses.

The properties of the number of active inputsNPSR (also the number of Post-

Synaptic Responses initiated) are discussed below.

The number of active inputsNPSR that a neuron from populationB receives from

populationA follows a binomial distribution with parametersCc
AB (number of “trials”)

andAA (probability of “success”). That is (see figure 6.1):

NPSR∼ Binomial(Cc
AB,AA) (6.1)
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In addition, the convergent connectivityCc
AB is given by:

Cc
AB∼ Binomial

(
NA,

Cd
AB

NB

)
(6.2)

Figure 6.1: Conversion from divergent to convergent connectivity.

In order to calculate the probability of a unit fromB receivingx active inputs,

P(NPSR= x), the following expression is used:

P(NPSR= x) = ∑
Cc

AB

P(NPSR= x|Cc
AB) P

(
Cc

AB|NA,NB,Cd
AB

)
(6.3)

The two conditional probabilities inside the sum are given by expressions 6.1 and

6.2.

6.3 Threshold peak conductance

Consider a single unitu, at the resting potential, which receivesNPSR active inputs

from homogeneous synapses defined by equalτrise, τdecayandSpeak. The active inputs

may be received simultaneously or spread through the unit’s integration time (∼ τm).

The thresholdSpeak, the minimal peak conductance that leads to post-synaptic fir-

ing, can be calculated by solving numerically the integrate-and-fire equation. Since

linearity is assumed for current summing, the total currentIin(t) is obtained by adding
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all NPSRpost-synaptic current profiles. Assuming that the post-synaptic responses are

initiated at each synapse at timest j , the total input currentIin(t) is then:

Iin(t) = Speak×norm× (V−Esyn)×
NPSR

∑
j=1

(
e
−

t j
τdecay−e−

t j
τrise

)
(6.4)

The linearity on current summation means that a newSpeak can be estimated for

a different activity level (differentNPSR) without having to recalculate the numerical

solution of the differential equation.

For default neuron parameters (Rm= 20MΩ, τm = 20ms) and post-synaptic dual

exponential response withτdecay= 5msandτrise = 2ms, the result for the threshold

peak conductance (using equations 3.2 and 6.4) in the situation of simultaneous ini-

tiation of five PSRis Speak= 12.52nS (figure 6.2). In other words, a default neuron

receiving 5 simultaneous, identical, synaptic inputs will only reach threshold if the

peak conductance of each response is, at least, 12.52 nS.

Figure 6.2: Numerical solution for I&F model unit receiving 5 simultaneous post-

synaptic responses with τrise = 2ms, τdecay= 5msand average Speak= 12.52nS.

For under-threshold conditions, the solution for the voltage profile is a low-pass

filter of the current profile.

Using the simulation environment with the default time step (0.1ms) and recreating

the conditions used in the previous calculation, the estimation isSpeak= 12.46nS. This

represents an error of about 0.5%. This confirmation of the precision of the SE is

required to export confidently the theoretical results to the model.

Non-simultaneous initiation of the PSRs, within the membrane’s integration time,

affects only slightly the thresholdSpeak. For the same parameters, the estimate for the

minimum peak conductance under jittering condition (all five post-synaptic responses
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uniformly spread overτm/2ms) is Speak= 13.05. This represents a variation of less

than 5% (figure 6.3).

Figure 6.3: Numerical solution for I&F model unit receiving 5 non-simultaneous post-

synaptic responses with τrise = 2ms, τdecay= 5msand Speak= 13.05nS. The initiation

of the post-synaptic responses were spread over τm/2 ms.

Table 6.1 contains some threshold peak conductances for different configurations

of the post-synaptic conductance profile. The number of post-synaptic responses is set

to 1 (PSR= 1) in order to give the overall threshold peak conductances, orSthresh.

τrise[ms] τdecay[ms] Sthresh[nS]

2 5 62.6

3 5 55.4

0.5 30 38.7

Table 6.1: Threshold peak conductances.

The information contained in table 6.1 is very important. It tells what is the minimal

sum of all post-synaptic responses that leads the default neuron to fire. For example,

a neuron receiving synapses with parametersτrise = 2msandτdecay= 5ms, will fire if

the sum of the peak conductances of the activated synapses is at least 62.6nS.

By simply using the thresholdSpeak values calculated using this method, it is al-

ready possible to parameterise a reliable inhibitory feedback control to keep activity

levels bounded. This will be the topic of discussion in the next section.
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6.4 Reliable inhibitory feedback control

In this section, the general technique used in the hippocampal model to parameterise

the non-plastic inhibitory synapses is presented. As stated before, the unique role of

the inhibitory populations associated with each field is assumed to be of bounding the

activity levels of excitatory populations.

A good example of the importance of reliable inhibitory feedback control is given

by the CA3 subfield. The principal population of the CA3 subfield receives excitatory

input from the perforant path, mossy fibres and recurrent collaterals. In order to pro-

duce proper computations and provide the post-synaptic populations with the correct

profile of activations, the net excitation level in CA3 must be constrained. This means

that the CA3 system must be resilient to fluctuations in the input excitation levels and

to the result of possible feedback amplification produced by the recurrent collaterals.

Even transient excesses of excitation must be avoided in order to prevented propaga-

tion of erroneous signals to post-synaptic populations. The inhibitory feedback control

mechanisms acting in the CA3 principal population are therefore extremely important.

These mechanisms, provided by the inhibitory populations, secure the constrained lev-

els of excitation required for the proper functional behaviour of this system. Failure or

absence of the inhibitory feedback control in CA3 leads to abnormal storage and recall

of information.

After this introductory example, let us consider now the general case of one ex-

citatory population (E) and its associated inhibitory population (I ). The following

properties are defined:

• population sizes,NE andNI ;

• population activity levels,AE andAI ;

• connectivities,Cd
EI, Cd

IE ;

• dual exponential post-synaptic responses,τrise andτdecay.

The populationE receives excitatory inputs from other populations and/or from

recurrent connections. Although these inputs may vary significantly, the activity levels

at populationE must remain constrained.
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Figure 6.4: Excitatory (blue) and inhibitory (red) populations.

In the hippocampal model, the strategy used to keep the activity level at excita-

tory populations bounded (and centred around a pre-assigned value) makes use of the

non-linearity of integrate-and-fire units: the average peak conductances of excitatory

synapses into interneurons are set so that interneurons only fire when the number of

active excitatory units is statistically above the pre-assigned activity level for the exci-

tatory population. The higher the deviation from the pre-assigned activity level is, the

larger will be the number of interneurons recruited to fire.

According to the connectivity properties, it is possible to infer the average number

of excitatory connections each inhibitory neuron unit receives. In order to do that the

(probabilistic) convergent connection measure is required.

Each unit from populationE makesCd
EI connections with random target units. A

uniform distribution for the choice of targets is assumed (biologically, physical con-

straints and topographic connections typically generate complex distributions). Using

the variables defined above, the average number of active inputs< NPSR> can be

calculated using expression 6.3.

The strength of the excitatory connections to the inhibitory neuron units are then

calculated as the thresholdSpeak for < NPSR> +1 active inputs. This means that

inhibitory units will only fire when the activity level of the excitatory population is

statistically above the predefined level. The higher the pre-synaptic activity level is,

the higher will be the probability for a inhibitory unit to fire, which, in population

terms, means that more inhibitory units are recruited.

Figure 6.5 shows the recruitment of inhibitory units according to the activity level

of the controlled excitatory population. Different levels of activity are imposed, in

sequence, to the excitatory population and the response of the inhibitory population
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is measured. Feedback connections have been removed here to create a clear figure.

The activity level of the excitatory population is normalised to the preassigned activity

level (AE = 5%). Although not relevant, the inhibitory population’s activity level is

also normalised toAI = 100%.

Figure 6.5: Recruitment of inhibitory units in activity control.

It can be seen that only whenAE > 1.0% interneurons start firing. The amount of

interneurons recruited increases with the deviation size. The connectionsCIE from the

inhibitory populationI to populationE provide the feedback control mechanism. The

amount of inhibition provided should be enough to bringAE just below the predefined

value. It is important that the inhibition is graded according to the amplitude of the

deviation inAE. If the inhibition is too strong for small deviations, the activity level at

the controlled population can be completely shut down.

In practice, using only the non-linearity in the firing of the inhibitory units is not

enough to control the activity levels in some architectures, or under abnormal excita-

tion levels. It should to be noticed that, once above threshold, the control mechanism

is based on a linear balance of excitatory and inhibitory inputs. It is well known that

linear mechanisms do not provide a robust control. While for short deviations the in-

hibitory feedback perfectly compensates for the increase in excitation the same does

not happen withabnormalinitial levels of excitation.

A solution to increase the strength of the inhibitory feedback is to increase the pop-

ulation of (inhibitory) interneurons. Nevertheless, increasing the inhibitory population

provides only a slight increase in the amplitude of the deviations that the network can
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cope with.

This problem is particularly strong in recurrent excitatory networks with high con-

nectivityandvery narrow distribution of peak conductances, in which the amplification

mechanism leads to catastrophic activity very rapidly. If the connectivity is very high

but the synaptic peak conductances are widely distributed around the threshold peak

conductance (very high variance), then the amplification process can more easily be

balanced.

The solution to cope with abnormal levels of excitation is to take advantage of

another non-linearity available in the biological hippocampal system. Two candidate

mechanisms are: 1) long lasting inhibitory post-synaptic conductances and 2) facilita-

tion dynamics that exist in pyramidal-inhibitory connections.

Facilitating synapses are able to build up their inhibitory effect if the excitatory

population increases its activity. This way, if the activity level on the excitatory pop-

ulation systematically increases, not only the number of interneurons recruited for the

control increases but also their negative feedback strength.

The non-linearity provided by long-lasting inhibitory post-synaptic conductances

works in a similar way. In the situation of activity above the pre-defined level, suc-

cessive waves of inhibition lead to an increase in inhibitory currents, overcoming am-

plification: when a second wave of inhibition is initiated, it builds up with the effects

of the previous inhibition. The presence of slowly inactivatingGABAB channels in

hippocampal interneurons offers a strong support for this hypothesis. Since long last-

ing inhibitory post-synaptic conductances are enough to make the control mechanism

robust to abnormal increases in activity levels, the facilitating dynamics were not intro-

duced in the simulations of the hippocampal model. Introduction of facilitating dynam-

ics in interneurons would greatly reduce the performance of the simulations without

contributing for the functional behaviour of the system. Long lasting inhibitory post-

synaptic conductances are implemented just by changing the properties of the dual

exponential conductance profile.

6.5 Activity levels dependence on peak conductances

So far the analysis was conducted to check, at the individual level, if a neuron unit will

fire according to the input network activity and connectivity properties. Now a step
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further is taken and the analysis is conducted at the population level, i.e. a probability

is estimated for the firing of each unit in the population. At the population level, the

firing probability of a unit and the network activity level value are equivalent1. This

means that relating the unit’s firing probability with the pre-synaptic activity level and

connectivity properties, is solving the stability problem stated in section 6.1. That is, I

will show how to produce a specific activity level at a post-synaptic population given

the activity level of the pre-synaptic population and the connectivity properties.

Let us assume that excitation arrives in volleys, with each wave limited to a time

window of the order of the membrane time constant. This corresponds to assuming

that the inputs to this system are in the form of patterns of activity. This follows the

assumption of this thesis that, at the hippocampus, information is carried as activity

patterns.

Although this analysis can be applied in any architecture, for simplicity let us again

consider a populationB receiving excitatory inputs from a populationA, and that allB

units initially are at resting potential (this condition can be relaxed).

The total current that reaches the soma unit is a function of the following variables:

• population sizes,NA andNB;

• populationA activity level,AA;

• connectivities,Cd
AB (for simplicity Cd

BA = Cd
BB = Cd

AA = 0).

• dual exponential post-synaptic responses,τrise, τdecayandSpeak;

In order to calculate the activity level at populationB as a function of the synaptic

peak conductance,AB
(
Speak

)
, one has to define the total input current. A unit will

reach voltage firing threshold when its inputs generate a threshold current. It is there-

fore important to analyse the statistical properties of the total input current that each

post-synaptic neuron receives. Equation 6.3, which gives the probability of a unit from

B receivingx active inputs, provides the means to calculate the probability distribution

for total input current exciting each neuron.

For a givenSpeak, and predefinedτrise and τdecay, it is possible to calculate nu-

merically (using the integrate-and-fire equation and the dual exponential model for the

1In a frequentist approach, the probability of a unit firing is simply the ratio of above-threshold units
over the size of the population. This is precisely the definition for the activity level used here.
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post-synaptic conductance) what is the minimal number of post-synaptic signalspsr0

that leads to threshold voltage. For example, assumingτrise = 3msandτdecay= 5ms

and consulting table 6.1, ifSpeak= 12nS then a neuron requires at least five active

inputs to go beyond threshold voltage. In other words,psr0 = 5.

It is the value ofpsr0 that, in the distribution of the number of active inputs that each

neuron receives, provides the estimate to the fraction of the post-synaptic population

that receives enough excitation to reach threshold. TheAB, or equivalently the firing

probability of populationB, is then given by:

AB
(
Speak

)
= 1−P

(
NPSR< psr0

(
Speak

))
= 1−

psr0

∑
x=0

P(NPSR= x) (6.5)

Figure 6.6 provides a visual idea of the method.

Figure 6.6: Probability density function (PDF) for NPSR. The minimal number of post-

synaptic signals that leads to firing is marked as psr0. The area of the orange region,

on the left, is numerically the same as the fraction of the population that received sub-

threshold excitation. Notice that psr0 value is not included in the orange region. The

green area, on the right, is numerically the same as AB.

Using this method, one can calculate the activity level in a spiking network as a

function ofSpeak. Due to the discrete nature of the binomial distribution, the possible

post-synaptic activity levels are quantised ifSpeak is the same for all synapses (or takes

only discrete values).
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Graph 6.7 refers to a spiking network with default neuron unit properties,NA = 200,

NB = 100,AA = 0.05,CAB = 50,τrise = 3msandτdecay= 5ms. The red line represents

the expected values using the equations described above. Each point in the graph is the

average of five simulations using the simulation environment. The standard deviation

for each data point is presented as error bars.

Figure 6.7: Activity level as a function of Speak. Parameters: NA = 200, NB = 100,

AA = 0.05, CAB = 50, τrise = 3msand τdecay= 5ms.

It is important to emphasise that in case populationA would be heterogeneous (or

even a sub-set of populationB) this method would still be applicable. The main dif-

ference is that equation 6.4 had to accommodate the different post-synaptic responses

respecting their relative contributions. In addition, probability distributions can be

incorporated for the other dependent variables. This however leads to a much more

complicated discussion that would not benefit this thesis. It is important to mention

that in the case where the variables are normally distributed with small variances, this

method still provides good results.

6.6 Activity level control in the hippocampal model

This section shows examples of how the activity level control mechanisms were effec-

tively implemented in the computational model of the hippocampus.

The method presented in section 6.4 is used to parameterise the connections be-

tween excitatory and inhibitory populations. The results presented in section 6.5 pro-

vide the estimates for the connection strengths that create the correct activity levels at
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post-synaptic field, given the pre-synaptic field’s activity level.

In the computational model for the hippocampus, besides sampling the activity at

the associated field, the inhibitory populations also sample the activity of fields that

provide inputs to the controlled population. For example, interneurons in CA3 region

not only receive excitation from CA3 pyramidal neurons but also from DG granule

cells (see hippocampal diagram in figure 2.3).

This feature in the connectivity profile, in complete agreement with experimental

data on hippocampal connectivity, provides an even more efficient control since strong

deviations in the inputs can be accounted for before they affect the post-synaptic ac-

tivity levels. In abnormal input excitation levels, inhibitory interneurons are highly

recruited preventing even transient increases in the activity level of the controlled pop-

ulation.

It may also be important to clarify that the hippocampal model does not assume

perfectly stable activity levels. On the contrary, the levels oscillate and many compu-

tations depend on these fluctuations. What is being emphasised is that abnormal in-

creases in activity are neither propagated to subsequent fields, nor lead to catastrophic

amplification (in case of existence of recurrent connections).

The simulations presented here refer to a simplified version of CA3 in which only

specific pathways were considered. The simplifications are described in detail below.

A snapshot of the network is presented in figure 6.6 (refer to the 4.3.1 for colour

codes).

Figure 6.8: Snapshot of CA3 type network.
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6.6.1 Generating the correct activity levels

In here, the connections from a hypothetical entorhinal cortex to this CA3 type field

are parameterised. The following quantities are defined:

• NEC = 250 andNCA3 = 200;

• AEC = 0.1;

• Cd
EC:CA3 = 43;

• dual exponential post-synaptic responses,τrise = 2msandτdecay= 5ms;

The objective is to set the synaptic peak conductance so that an activity level prox-

imal to 5% (a predefined value) is induced in the CA3 field by the EC connections.

By examining the probability distribution for the number of active inputs that each

CA3 unit receives (equation 6.3), we calculate that only 4.6% of the CA3 population

receives more than nine active inputs.

Numerically solving the integrate-and-fire equation for the parameters of the post-

conductance profile, we get a threshold conductance of 62.6nS (see table 6.1). Due

to linearity of input summation, we setSpeak= 6.26nS in order to produce an activ-

ity level of 4.6% in the CA3 population. The synaptic strengths may be normally

distributed around this value. Figure 6.9 presents the activity level produced in CA3

using< Speak> = 6.26nSwith variance of 2nS. The activity level at the hypothetical

EC field is set to 10% at time 0. In order to show consistency, the CA3 activity level

wave shown in blue is the average of the waves generated by 10 random connectivity

profiles.

6.6.2 Controlling the levels of activity

In order to test the robustness of the activity level control, several simulations were

performed. In these simulations, recurrent connections were added to the CA3 field

and the activity level in entorhinal cortex was allowed to deviate from the predefined

value of 10%.

A population of interneurons was associated with the CA3 excitatory population.

The inhibitory connections were defined to keep the excitatory population’s activity



94 Chapter 6. Activity Level Control in Spiking Networks

Figure 6.9: Producing predefined activity levels. The wave shown in green represents a

single activity wave as opposed to the average in blue. It emphasises that the variability

in the activity waves generated by different connectivity profiles is not big.

level at 5%, using the method described in section 6.4. The inhibitory post-synaptic

conductance usedτrise = 0.5msandτdecay= 30ms(this is just a possibility).

Two configurations were used:

In a first configuration, a sequence of patterns were induced in EC region (with a

periodicity of 100ms) leading all to an activity level of 10%. The results of the control

established by the interneurons (CA3i) are shown in figure 6.10. All activity levels

are normalised to the preassigned values (with inhibitoryACA3i normalised to 100%).

Notice that the inhibitory control properties create a slow decay of the CA3’s activity

level. In the hippocampal model, where CA3 acts as an auto-association network, the

2-3 cycles of sustained activity are enough to induce the complete recall of a stored

pattern (details in chapters 7 and 8). This means that a stored activity pattern can be

recalled in less than 100 ms.

In the second configuration, a sequence of increasing activity levels were induced

in EC region (with a periodicity of 100ms). The EC activity levels ranged from 10%

to 20%. Values forAEC < 10% were not included since they are not able to raise

ACA3 significantly. When the deviations inAEC are too big, a significant number of

interneurons start firing preventing the high excitation levels of being transfered to the

CA3p field. This ensures that noise is not propagated.

A last comment goes to the situation in which the source, this case EC, continu-

ously provides excitation. That is, instead of periodically raising its activity level,AEC
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Figure 6.10: Inhibitory control with several exposures. Parameters: NEC = 250,

NCA3p = 200and NCA3i = 20.

is kept at 10%. Inhibition increases rapidly leading to a complete shut down of the

target population.

In the context of the hippocampal model in which information is considered to be

transfered as patterns of activity, if the exposure rate would be too high, this easily

leads to an overlap of the patterns. This overlap reduces the information content of

each excitation volley and the consequence is inhibition completely shutting down the

activity at the controlled network so that errors do not propagate. In the computational

model for the hippocampus the rate of the excitation volleys corresponds to the theta

cycle. That is, excitation and consequently levels of activity, raise with a periodicity of

80-100 ms (theta rhythm: 10-12Hz).

6.7 Final remarks

The method presented in this chapter is essential for the parametrisation of the con-

nections in the hippocampal model which is discussed in the next chapter. This is a

general method that can be applied in many other networks of spiking neurons.

As a final remark, the same way inhibitory interneurons were shown here to be able

to bound from above activity levels, using the same methods one can show that exci-

tatory interneurons can bound from below activity levels. In fact, I propose that this

mechanism effectively happens in the dentate gyrus: on one hand, inhibitory interneu-



96 Chapter 6. Activity Level Control in Spiking Networks

Figure 6.11: Inhibitory control with several increasing exposures. Parameters: NEC =

250, NCA3p = 200and NCA3i = 20.

rons (such as basket cells and GABAergic polymorphic cells) control the activity level

from above; on the other hand, excitatory interneurons (mossy cells), merged with the

principal (granule) cells in a recurrent feedback loop, control the activity level from

below. The activity level in the dentate gyrus is very important for the process of stor-

ing information in CA3 recurrent collaterals and perforant path (from EC to CA3). In

the storage process, the size of the constellation of CA3 units chosen to form the inter-

nal representation of an environmental configuration is crucial. As it will be argued in

chapter 7, it is important that different memories be represented by constellations with

roughly the same size. The size of the CA3 constellations are intimately related with

the activity level at the dentate gyrus.

Computer simulations were carried in order to show that the described activity level

control can be achieved in the DG. Three populations were used to represent the dentate

gyrus (see figure 6.12-B): a population of principal units representing the granule cells,

a population of excitatory interneurons representing the mossy cells and a population

of assorted inhibitory interneurons. The size of the principal (P) population was of

1000 units while both excitatory (E) and inhibitory (I) population were composed of

50 units each.

The parameters of the network were set, using the methods described in this chap-

ter, so that an activity level of 1.0% was produced in the principal population. The

behaviour of the network was assessed by analysing its response to an initial level of
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activity. Three regions were clearly produced and their interpretation should be done

taking into account the effect of the mossy fibres in CA3:

1. For an initial activity level below 0.5% no amplification occurred. In this case

the activity would be considered to be noise and no transmission would occur

to the CA3 region since there was not enough excitation to bring CA3 neurons

above threshold.

2. When the initial activity level is above 0.5%, the excitatory interneurons amplify

the level of activity and activate further units. The amplification is supervised

by the inhibitory interneurons which assure that the optimal level of 1.0% is not

exceeded.

3. When the initial activity level is close to 1.0%, the excitatory interneurons are

completely silenced by the inhibitory interneurons. Levels much higher than

1.0% are equally not transfered to the CA3 region since the contacts that filopo-

dial extensions of mossy fibres establish with CA3 interneurons (Acsádyet al,

1998) completely block the excessive excitation to the pyramidal neurons in

CA3.

Figure 6.12-A shows these three regions of control. The blue bars represent the

activity added to the initial activity level shown in the horizontal axis. This added

activity results from units that are brought above threshold due to the amplification

process. The total level of activity, as seen by CA3, is represented in figure 6.12-A by

the red line, which is simply the sum of the initial activity level with the added activity.

For example: when an activity level of 0.7% is induced in the dentate gyrus, the control

mechanisms (recurrent excitation and recurrent inhibition) bring more 0.37% of the

principal population to the threshold level in less then 5 ms. This way, in integration

time window (∼ τm) of the CA3 region, the dentate gyrus supplies an activity level of

1.07. The data presented in 6.12-A is an average of 3 simulations.
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Figure 6.12: Activity level control in the dentate gyrus. See text for detailed description

of the figures A and B. Parameters: NP = 1000, NE = 50 and NI = 50; Cd
PE = 25,

Cd
EP = 100, Cd

PI = 40, Cd
IP = 200and Cd

IE = 100.



Chapter 7

Episodic Memory: Assumptions and

Theory

The hippocampus is believed to be essential for the encoding of episodic memories

(Squire, 1992). In this chapter, a theory for the hippocampus’ functional behaviour in

the formation of episodic memories will be presented.

This theory is based on Marr (1971), Treves and Rolls (1992; 1994), O’Reilly and

McClelland (1994) and Hasselmoet al (1995; 1996). It places CA3, and its exten-

sive recurrent connections, in the centre of the computational machinery required to

perform information storage and recall. It differs, nevertheless, in some important

functional roles for particular fields and pathways.

All the central assumptions of this theory can be effectively implemented and tested

in a biologically plausible spiking network with properties that follow closely the hip-

pocampally most relevant morpho-physiological constraints. In fact, this is the purpose

of chapter 8 where a computational model of the hippocampus’ contribution to the for-

mation of episodic memories is created. This computational model allows detailed

analysis of the quantitative aspects of the theory. This represents a significant step

forward in the understanding of the hippocampus’ functional behaviour. It is worth

mentioning that many hypotheses raised in previous theories - directly or indirectly re-

lated to the original theories alluded above - have not been tested in quantitative terms.

In fact, as shown later, many specific computational issues only become evident after

effective implementation of a detailed model.

Organisation of the Chapter

99
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This chapter is divided into two sections. The first section describes the theory be-

hind the hippocampal computational model for episodic-type memory, giving special

attention to the functional roles of each field. The second section addresses assump-

tions regarding inputs and outputs of information and plasticity in the hippocampal

computational model.

7.1 Theory of episodic memory in the hippocampus

Before going into the details of the computational model, it is important to describe

my beliefs for the functional roles of the hippocampus.

The central idea is that the hippocampus provides a limited storage space where

relevant multi-modal information is temporarily stored. The storage process is trig-

gered whenever the environment configuration is significant. The information stored

is an internal representation of the environmental configuration (an episode), thanks to

the multi-modal nature of the inputs to the hippocampus. The level of significance of a

particular environmental configuration depends on novelty and on emotional response

to the configuration. It is important to keep in mind that the hippocampus is part of

the limbic system and one of the oldest phylogenetic regions of the brain. It is directly

connected with equally old phylogenetic structures: the septum and the amygdala.

In general terms, the septum enhances or suppresses all motivations for acquisition

while the amygdala enhances or suppresses all motivations for active avoidance (re-

treat). These two regions, the septum (Hasselmoet al, 1995; 1996) and the amygdala

(Richter-Levin, 2004), act as memory modulators for the hippocampus.

Although it was said that the hippocampus provides a temporary storage space, it

may keep information for very long periods of time as long as the information, in the

form of a memory, is periodically revived.

7.1.1 Neocortex, hippocampus and declarative memory

In mammals, the neocortex provides another storage space, with a much higher ca-

pacity, where memories can be solidly engraved. There is experimental evidence that

the hippocampus and the neocortex work together (Norman and O’Reilly, 2003) in es-

tablishing long-term memories. Particularly in humans, where a declarative memory
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system exists, the hippocampus plays an essential role in the encoding of new declar-

ative memories. The hippocampus is nevertheless not required for the retrieval of old,

solid memories, which are stored in the neocortex.

Albeit having a much higher capacity, the repository for time-resilient memories

provided by the neocortex is still finite. It is therefore important to select which new

information is effectively relevant to be stored. In addition, engraving new informa-

tion in the neocortex, which already contains a lot of stored information, is a delicate

procedure: if the learning process is not properly done, previously stored episodes can

be corrupted. A critical variable in this process is the learning rate which has to be

slow. The storage has to be mediated through small changes on the network, accom-

modating the new information without disrupting previously stored episodes. These

two processes, selection and slow transfer, require a space where information is tem-

porarily stored.

The information transfer from the hippocampus to other cortical areas (neocortex),

where the information is consolidated, is often argued to happen during sleep (see for

example Ḱali and Dayan, 2004). The hypothesis of slow information transfer from the

hippocampus to neocortex is supported by experimental results in which hippocam-

pal damage impairs information retrieval not only regarding experiences posterior to

seizure but also experiences that occurred during a short period prior to seizure.

Since the hippocampus is not required to retrieve consolidated memories, it is rea-

sonable to assume that, somewhere, a short-cut is formed in the information flow be-

tween the (invocation) input cortical areas and the long-term storage areas. That is,

information does not go through the hippocampal formation in order to produce mem-

ory retrieval.

7.1.2 Functional roles of the hippocampus

This thesis looks at the hippocampus independently of the neocortex’s declarative sys-

tem. The purpose is to analyse the functional properties of the hippocampus alone

in storing episodic information through a fast learning process. It is worth repeating

that, in this thesis, “episodic” information has the meaning of multi-modal informa-

tion representing an environmental configuration. An environmental configuration is

defined by the state in the sensory space (which includes somesthetic, proprioceptive
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and other high level sensory information). In a more general and abstract view, an

environmental configuration may also include cognitive or behaviour states in addition

to the perceptual states.

In this hippocampal theory, information is assumed to be processed in the form of

patterns of activity. These activity patterns are defined, in a population, as the constel-

lation of neurons that have reached threshold within a time window of a few tenths of

milliseconds (see definition in section 1.3). The size of the constellations are roughly

constant and related with the average activity level of the population. Due to the con-

straints in the synaptic strengths, the activity produced in a post-synaptic population

depends directly on the number of active neurons in the pre-synaptic population. While

small assemblies of active pre-synaptic neurons fail to effectively raise post-synaptic

groups of cells, large assemblies of active pre-synaptic neurons may bring too many

post-synaptic neurons to threshold level. It is therefore important that the size of the

coding constellations (activity patterns) is roughly similar and dependent of the con-

nectivity properties and maximum synaptic strengths.

I hypothesise that the functional roles of the hippocampus in order to establish a

system capable of storing episodic-type memories are:

1. Choose, from its input space, the patterns of activity which are statistically rele-

vant. This task requires history-dependent dynamics.

2. Store the relevant information in the form of internal representations. A proper

balance between pattern completion and pattern separation is required.

In addition, for the selected stored patterns, the hippocampus is required to produce

an output activity pattern. This new activity pattern is the one that will in fact be

available for use by the other cortical areas.

The selection process (point1) of which information to store carries considerable

responsibility: the storage capacity is limited and only statistically relevant informa-

tion should be stored. That is, only features of the environmental configuration that

are consistent across time, or that evoke strong emotional responses (modulated by the

septum and, maybe, the amygdala), should undergo the storage process. Moreover,

the way information is stored is also an important factor, with orthogonal represen-

tations taking the maximal profit of the storage capacity. It is then also a task of the
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hippocampus to create internal episodic memory representations that improve storage

and recall.

In order to provide more detail to point2 above, the following definitions are in-

troduced.

Consider the setΠ defined as the set of all pure input patterns for which the hip-

pocampus has to store an internal representation. A pure pattern corresponds to the

exact constellation of active neurons that motivated the storage process.

For each pure patternπk ∈Π, we can define a class̃Πε which incorporates all per-

turbed versions̃πk of the pure patterns with an error≤ ε. Depending on the discussion,

the error can be the percentage of active units that are missing (partial cue) or that are

misplaced (noisy pattern), when compared with the pure activity patterns.

Using this notation, point2 above expresses that for any input patternπ̃k, the hip-

pocampus should provide the same output, which corresponds to its internal repre-

sentation ofπk. On the other hand, different pure patternsπk (or patterns referring

to different information) should have different internal representations. Ideally these

representations should be as distant as possible from each other.

The distance between two activity patterns is defined here as the sum of the square

differences of the states (either active or inactive) of all neurons in the population that

holds the patterns. If the population containsN neurons andsk
n represents the state (0

for inactive, 1 for active: spike produced) of neuronn in patternk, then the distanced

between patternsi and j can be written as:

d(πi ,π j) =
1

N A

N

∑
n=1

(
si
n−sj

n

)2
(7.1)

The term 1
N A is a normalisation factor that accounts for the number of active neu-

rons in the patterns.

The more active neurons are shared between the patterns, the lower will be the

distance measure (see also section 8.7).

7.1.3 Inputs and outputs of information

The two fundamental computational tasks of pattern selection and pattern storage, de-

scribed above, take place in two fields of the hippocampus: dentate gyrus and CA3.
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The inputs to these fields are provided by layer II of the entorhinal cortex which in

turn receives connections from association neocortex via the para-hippocampal gyrus

and perirhinal cortex. The ECII activity patterns therefore reflect the combination of

information from different sources and of different natures (see figure 2.3)

Particularly relevant to this view is that entorhinal cortex is a major gateway for

sensory information into the hippocampal formation. It has been shown that neurons

in rat’s lateral entorhinal cortex react to auditory, visual, somesthetic, gustative and

olfactory stimulations (Vayssettes-Courchay and Sessler, 1983).

Equally important is that the entorhinal cortex, and dentate gyrus, maintain some

segregation of inputs originating from different parts of the cerebral cortex (Suzuki and

Amaral, 1994b; Rolls and Treves, 1998). That is, different regions of EC reflect the

influence of different sources.

Taking into account this convergence of multi-channel information, one can say

that the activity patterns formed at entorhinal cortex layer II represent by themselves

episodic-type information: sensorial inputs such as visual, olfactory, proprioceptive

(and maybe previously stored information) are all blended together providing awhat-

where-whenstructure (episodic structure).

By storing an internal representation of a ECII pattern of activity, the hippocampus

is storing the combined information representing a particular environmental configu-

ration, or, in other words, an episode in the sensorial space.

From now on, we consider the patterns of activity at the entorhinal cortex to be the

representation of an episode1. The underlying assumption is quite strong: it is being

argued that the hippocampus, instead of actively combining information from different

sources to produce “episodic information”, will be continuously monitoring the already

combined patterns at ECII for statistically relevant activation patterns, expressed in

terms of consistency across time.

At most, the hippocampus will combine different input patterns that are system-

atically correlated (e.g. one pattern always precedes the other) by creating a single

internal representation for both input patterns. This way, future exposures to any of

the two patterns is interpreted by the hippocampus as a partial cue for the combined

representation that should be recalled.

1The nature of the information expressed in the activation patterns of ECII will be discussed in more
detail in the next chapter in which spatial learning is addressed.
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This concludes the discussion of the inputs to the hippocampal system. In terms of

outputs, both CA1 and subiculum, the two layers that succeed CA3, send connections

to entorhinal cortex layers III and IV but predominantly to layer V. While the superfi-

cial layer II in the entorhinal cortex provides the input to the hippocampus, the deep

layers correspond to the output.

For each pure patternπk ∈ Π, the hippocampus produces, in the output layers, an

associated activity pattern which results from its stored internal representation ofπk.

Since the crucial computational tasks are performed at DG and CA3, we will assume

for now that CA3 represents the output. The CA1 stage involves mainly a translation

process which is functionally important but not computationally demanding.

We now move on into the discussion on how the two main tasks assumed above are

implemented in the hippocampus architecture. That is, we will discuss the mechanisms

that implement the computational tasks described in points1 and 2. The next two

subsections discuss in detail the functional roles of dentate gyrus and CA3 respectively.

7.1.4 Functional roles of dentate gyrus

Taking into consideration the experimentally measured average activity levels for ECII,

DG and CA3, as well as their population numbers, we can see that both ECII and CA3

configurations space are much smaller than the size of the intermediate space formed

by the DG.

Assuming that each activity pattern contains roughly the same number of active

neurons - defined as the product of the population sizeN by the activity levelA - we

can verify the previous statement by calculating the total number of different patterns

available on each field. Calculating the combinations we get that (see table 8.1 for

numerical values):(
NECII

NECII AECII

)
�

(
NDG

NDG ADG

)
�

(
NCA3

NCA3 ACA3

)

The fact that the dentate gyrus works as an intermediate higher dimensional space

has supported the idea that this field’s functional role is to create sparse and sepa-

rate (more distant) representations on CA3, thus increasing the hippocampal storage

capacity (Treves and Rolls, 1992).



106 Chapter 7. Episodic Memory: Assumptions and Theory

The DG can be seen working as a support vector machine by taking advantage of

its higher dimensional space to linearly separate the input patterns (Baker, 2001).

A more plausible way by which DG can increase the separation between input pat-

terns is discussed in O’Reilly and McClelland, 1994. The core idea is that separation

(distance) is increased simply through sparse random connections.

Although I agree that a major functional role of the dentate gyrus is to increase the

separation of CA3’s representation, I do not think that this represents its only purpose.

The dentate gyrus has the very important roles of (1) actively selecting which input

patterns are relevant (meaning that their representation should be engraved in CA3)

and (2) controlling the activity level of the representations in CA3 so that the number

of active neurons in any stored patterns is roughly constant (i.e. independent of the

ECII input activity pattern).

The hippocampus is continuously receiving inputs in the form of patterns of activ-

ity at the entorhinal cortex. But only a small fraction of these patterns should trigger

storage and creation of associated internal representations. Two reasons support this

statement: first the hippocampus possesses a limited capacity as a storage system; sec-

ondly the hippocampus is required to perform generalisation in the mapping from input

patterns to internal representations (therefore should not produce a different output for

every single input pattern). Two mechanisms execute this selection process.

At a first basic level, only relevant information will be able to raise the EC’s ac-

tivity levels (Hasselmoet al, 2000) to the point that allows propagation of activity for

subsequent levels, i.e. dentate gyrus and CA3. Low activity levels at the entorhinal

cortex do not bring a statistically relevant number of post-synaptic neurons (in DG and

CA3) to the threshold level.

The second selection stage occurs at mossy fibre synapses. In a naive (without

stored information) hippocampus, all perforant path connections to CA3 are extremely

weak and are therefore incapable of directly transferring activity from ECII to CA3 by

themselves. Nevertheless, these synapses exhibit associative, Hebbian-like, plasticity

which means that, if a constellation of neurons in the CA3 field is activated - through

the mossy fibres pathway - then all the synapses between active ECII and CA3 neurons

will be enhanced. The same will happen to the recurrent synapses between active CA3

neurons which also exhibit associative plasticity. It is this later potentiation that leads

to the storage of the CA3 patterns of activity (the hippocampus internal representation).
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Mossy fibres play a critical role in selecting which CA3 neurons should become

active not because of its static strength but as a consequence of its high variability. In

other words, it is the variance of the efficacy of mossy fibres synapses, instead of the

mean value, that truly represent their effect in CA3 (O’Reilly and McClelland, 1994).

Mossy fibres are unique in the central nervous system for their dynamical proper-

ties (discussed in detail in chapter 5). The unitary mossy fibre EPSC can vary a lot, due

to short-term plasticity dynamics such as facilitation (depression seems to be small at

natural stimuli frequencies). Mossy fibre facilitation can lead to a 2-fold potentiation

for frequencies as low as 0.2Hz and to more than 40-fold potentiation of EPSCs for

100Hz stimulation (Urbanet al, 2001). The strong short-term facilitation that can act

upon mossy fibre synapses means that this structures can be reliable input frequency

estimators (see equations 5.4 and 5.5): mossy fibre synapses that are systematically

activated consistently increase their post-synaptic effect.

The direct implication of this facilitation process is that the activity level at CA3

will only significantly rise when the same constellation of ECII neurons, and associated

DG constellation, has been repeatedly activated. In other words, fluctuations and noisy

patterns are filtered out.

Mossy fibres also show LTP and LTD, both Hebbian and non-Hebbian. Interest-

ingly, knockout mice with impaired LTP and LTD at mossy fibre synapses do not show

any deficit in learning tasks (Huanget al, 1995). It seems that short-term plasticity is of

much more importance for the role of dentate gyrus than long-term plasticity. The dy-

namical properties grant these synapses the ability to act as a frequency discriminator.

This point has been studied in Aguiar and Willshaw (2004) (see Appendix).

An effective experiment able to shutdown only the short-term plasticity at mossy fi-

bres has not been achieved yet. Such experiment would possibly uncover a correlation

between learning and mossy fibres short-term plasticity. Nevertheless, in Lassalleet

al (2000), it has been shown, through an excellent experiment where the mossy fibres

are inactivated in a reversible manner, that mossy fibre synapses play a crucial role in

acquiring new memories: inactivating mossy fibre synapses impairs spatial learning in

mice doing the Morris navigation task. Consolidation and retrieval are not affected.

Reactivating the m.f. synapses allows the mice to perform spatial learning. This re-

sult follows the now canonical role for the dentate gyrus introduced by some models

(Treves and Rolls 1992; 1994; McNaughton and Smolensky 1991) which stated that
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mossy fibres are needed for the process of learning but not for memory retrieval.

Another important hypothesis that I make is that all stored patterns in CA3 are

composed of roughly the same amount of active neurons. The reasons to assume,

and require this property, will be described when discussing the functional roles of

CA3 (section 7.1.5). This assumption has a direct impact on the properties of the

mossy fibres. It means that in order to create a proper internal representation, the

dentate gyrus has to bring above threshold roughly the same amount of CA3 neurons,

independently of the ECII input pattern. Therefore specific mechanisms to control

the amount of excitation delivered to the CA3 pyramidal population must exist. It

should be noticed that the activity level control mechanism that results from the CA3

interneuron population receiving merely inputs from the CA3 pyramidal cells, does

not avoid transients in the activity level.

This hypothesis is in accordance with the complex connections that mossy fibres

establish with CA3 interneurons. Each mossy fibre establishes contacts with perhaps

no more than 14 CA3 pyramidal cells. But on the other hand, each mossy fibre forms

filopodial extensions and small terminals contacting a number of interneurons 10 times

larger (Acśadyet al, 1998).

To avoid abnormal excess excitation to CA3 pyramidal cells (as a result, for exam-

ple, of a higher dentate gyrus’ activity level), the mossy fibres connect directly to CA3

interneurons through this small terminal, correcting for any excess of excitatory input

before the CA3 activity rises.

It is an experimental fact that increased activity of granule cells suppresses the

overall excitability of the CA3 recurrent system (Acsády et al, 1998). As it will be

shown later, this is a key point in this theory for the role of hippocampus in episodic

memory formation. If abnormal increases in the dentate gyrus’ activity level propa-

gates to CA3, storage and retrieval of internal representations will most probably be

corrupted.

Besides the complex feed-forward inhibition system that controls from above the

activity level induced in CA3, I believe that another system exists to cope with lower

excitation levels. It is essential that the spatial coding created by the dentate gyrus

and mossy fibres produces a representations of roughly constant size in CA3. Proper

information recall depends on this.

Therefore, besides constraining from above the amount of excitation that mossy fi-
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bres provide to CA3, it is also important to constrain this excitation from below. Since

the activity on mossy fibres reflect the activity levels on granule cells, this means that

a mechanism should exist to increase excessively low levels of activity in the DG. I

purpose that this is the role of mossy cells, the dominant type of interneurons in DG

(see section 2.1.1). This glutamergic, excitatory cells, merged with the population of

granule cell can act as a single network with the recurrent connections allowing feed-

back amplification. The other type of (inhibitory) interneurons guarantee nevertheless

the upper bound control of the activity level.

The result is a network that can produce the behaviour depicted in figure 6.5, that

is, increase its activity level (when above minimum value) until the interneurons come

into play controlling the level of activity. The amount of excitation transfered to CA3

is, in this way, compensated avoiding the creation of small representations that would

lead to poor recall.

7.1.5 Functional roles of CA3

The task of associating the relevant activity patterns with internal representations falls

into the domain of CA3.

The key property of CA3 field that allows the execution of this task is its extensive

plastic recurrent connectivity. The recurrent connections allow CA3 to behave as an

auto-associative memory. This means that CA3 is able to recall stored patterns through

the presentation of noisy or incomplete versions of these patterns. Although the idea

that this is the core property that drives the recall process in the hippocampus is shared

in this thesis, I present an alternative to the form in which information is assumed to

be stored in CA3.

Most models for CA3 are based in attractor networks. In such dynamical systems,

it is possible to create stable states, with large basis of attraction, by manipulating the

system’s energy landscape2. Initial conditions that fall inside a basis of attraction, will

converge, in the state space, to the local minimum (for more details on the subject of

neurodynamics see Haykin, 1999). The core idea behind attractor networks is therefore

viewing each stored pattern (network state) as an attractor point.

2In fact, such dynamical systems (dissipative systems) may contain several types of attracting sets
or manifolds. Onlypoint attractorsare used in the context of auto-associators. Others like limit cycles
are behind many models for spike generation mechanisms.
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The literature that discusses CA3 as an attractor network focuses then in the biolog-

ically plausible ways to manipulate the energy landscape. Many interesting problems

arises like how to create large and deep basins of attraction (allowing increased robust-

ness to noisy patterns), how to avoid spurious states (natural local minima), among

many others.

There is another key assumption in the CA3 attractor network literature which is

that of rate coding. This means that the state of each independent unit on these, either

discrete or continuous, attractor networks represents a firing frequency. This goes

against my view on how information is propagated and computed in the hippocampus,

i.e. through patterns of activity.

The assumption of temporal coding at a population level has motivated a differ-

ent hypothesis on how episodic memories are temporarily stored in the hippocampus.

Please note that theprecisetime of each spike is not important. An activity pattern

is defined within a time window of the order of the membrane’s time constant (see

definition in 1.3). According to this hypothesis, the transfer of activity between hip-

pocampal fields is gated; that is, only in proper conditions will a pre-synaptic field be

able to bring above threshold a considerable number of neurons on the post-synaptic

field.

Two examples of this gating have already been described in this thesis: first, dentate

gyrus will lead to an increase in the activity level of CA3 only when the same constel-

lation is continuously activated; and, secondly, ECII will only gain access to rise the

CA3 levels when a proper translation between input pattern and internal representation

has been learnt (mediated by mossy fibres).

According to this gating hypothesis, CA3 will only be able to bring a CA1 popula-

tion to fire if its activity is close to the desired level (above 2.5% in rat’s CA3). While

CA3 activity level that is above the desirable level triggers strong inhibitory inputs to

CA1, small CA3 fluctuations are incapable of providing enough excitation to bring

enough CA1 neurons above threshold. Nevertheless, small activity at CA3 that fits a

partial cue of a stored pattern can, through the auto-associative properties of this field,

rebuild the whole pattern, raise the activity level and then transfer information control

to CA1.

If the activity level at CA1 goes beyond the level of fluctuations, thismeansthat a

pattern has been recalled. The pattern recalled is represented by the CA1 constellation
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of active units.

This translation from CA3 internal representations to CA1 patterns is mediated by

entorhinal cortex layer III connections. Naive Schaffer collaterals provide only weak

excitation to CA1 neurons which require the combined excitation from the ECIII per-

forant path to exceed threshold. The word “naive” is again used to denote connections

that have not been modified through learning.

Nevertheless, once a specific constellation of CA1 neurons has been activated due

to combined excitation from naive Schaffer collaterals and ECIII, plasticity in the form

of associative LTP can act upon Schaffer collateral synapses stabilising the translation

code. Without plasticity (long-term plasticity) on Schaffer collaterals, the translation

code that converts the CA3 stored representations to CA1 patterns is not consistent

across time (fluctuations on ECIII select different CA1 constellations of active neu-

rons). The notion of translation connections is one of the pillars of this hippocampal

computational model. This translation occurs in several fields always using the same

scheme: an activity profile in one field is translated to an activity profile in another

field through the mediation of a third population of neurons that chooses the spatial

code.

Figure 7.1: Translation code between CA3 and CA1 provided by the Schaffer collaterals.

In i), a pattern A in the entorhinal cortex generates a pattern α in CA3 and a pattern

a in CA1. Schaffer collaterals store the translation from α to a. In ii) , in the absence

of Schaffer collaterals, a noisy version of pattern A would generate in CA1 a different

pattern a’. The Schaffer collaterals, in situation iii) , stabilises the pattern in CA1 using

the pattern completion properties of CA3. Using the connections from CA1 back to

the EC, the activity pattern in EC can be corrected using the stored information in the

hippocampus.

Interneurons in CA1 have again the fundamental task of bounding the activity lev-
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els at the field by securing that Schaffer collaterals, combined with ECIII connections,

do not activate too much CA1 pyramidal neurons. If the excitation is too strong, the

interneurons enforce ak-winners-take-all situation (O’Reilly and McClelland, 1994)

wherek represents the number of active units in the peak activity level of CA1 field.

Taking into account the hypothesis described above, it can be seen that the episodic

memory spiking model introduced here does not require stable states. Storage and

recall is performed without point attractors and stable patterns of activity. In fact I

argue that convergence to stable firing configurations, in a biological network subject

to oscillations, fluctuations and current noise, is not required for storage and recall.

Transient states are sufficient to induce recollection.

In order to complete this discussion about the individual tasks of the hippocampus,

supporting the establishment of episodic-type memories, a word must be said on the

functional roles of CA1 and subiculum, the two fields that close the loop with the

entorhinal cortex.

It has been suggested in McClelland and Goddard, 1996, that Schaffer collaterals

together with the bi-directional pathways between EC and CA1, support a memory

decoding system through which a retrieved CA3 representation (coding) of an EC pat-

tern can reinstate that pattern on EC. This way, corrections can be performed in the

EC present pattern using the information about the pure pattern stored in CA3. This

nevertheless removes the possibility of the hippocampus having a role in producing

(different) representations of the EC input that benefits storage and recall in the areas

for long-term storage.

Not going against this suggestion, we consider that another possible role to CA1,

and subiculum, is to direct the establishment of connections between entorhinal cor-

tex superficial layers with the deep layers. According to my gating hypothesis, the

activity level at CA1 only rises significantly when a pattern has been retrieved, i.e.

when an ECII activity pattern has been recognised. Although without any experimen-

tal evidence to support this claim, the EC intra-layer connections could be strengthened

through learning, using the gating support (see hippocampus connections diagram 2.3)

from CA1 field (and subiculum). The feed-forward connections between layers of EC

could then provide a bypass to the hippocampus relay station. It should be emphasised

that these EC intra-layer connections are only subject to learning when CA1 activity

denotes recognition of a pattern. It is also important to keep in mind that (although in a
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much less efficient way) feed-forward connections are also capable of pattern comple-

tion. This is, as long as post-synaptic neurons have access to the pure pattern, which is

the case here, if we accept the memory decoding proposal of McClelland and Goddard

(1996).

The hypothesis that the hippocampus also has the functional role of creating proper3

representations for long-term storage (as opposed to correcting the EC pattern) fits into

this framework since the input patterns in layer II can be associated with the sparse

representations produced by the hippocampus in EC layers III, IV and V. These feed-

forward intra-layers connections could then produce a hetero-associative system robust

to some fluctuations in the input space.

It is worth mentioning again that a direct storage of the multi-channel information

forming the episodic-like memories is not computationally appropriate. The space

for long-term storage is limited, therefore requiring a proper selection of which infor-

mation is relevant to store and also requiring the construction of representations that

maximise pattern separation and completion (recall).

The hippocampus memory system provides a way to select and temporarily store

new memories. The internally efficient representations of this memories, enhancing

capacity values, can then be retrieved and “played back” (McClelland and Goddard,

1998) to the neocortex where they are accommodated with other memories for long-

term storage.

7.2 Important Assumptions

This section discusses important assumptions in the hippocampal computational model

with strong impact on its functional behaviour (see chapter 8).

7.2.1 Inputs and outputs to the computational model

The entorhinal cortex II spiking neurons provide the input to the episodic memory

model. The activity profiles at ECII are set under the assumption of the existence of a

mapping functionM with the properties stated in section 1.3. This function projects to

the high dimensional space, in which sensorial, vestibular and previously stored infor-

3Maximising capacity and balancing pattern completion with separation.
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mation is represented, into the lower-dimensional space of ECII’s patterns of activity.

For simplicity let us disregard vestibular and previously stored information (consoli-

dated memories) from the EC’s patterns construction. In other words, let us assume

for now, and without loss of generality, that ECII’s activity pattern reflects solely the

configuration in the sensorial space.

What is in fact represented in the EC’s patterns, is not important for the computa-

tional model for episodic memory. All that is important is that it expresses a current

state in the whole system. The same does not happen in the computational model for

spatial memory presented in chapter 9 in which the features represented in the EC’s

patterns are important.

What is expected for this episodic memory computational model is to be able to:

• decide which patterns (which information) are relevant;

• store and recall the relevant patterns in a network with high capacity;

• cope with the situation in which a noisy version or partial cue is presented.

Let us defineC k as the set of patterns that represent noisy versions or substantial

fragments of patternk. Patternp is considered to be stored when the same output state

is produced for any input pattern belonging to classC k.

There is a significant difference in the way information is stored in this model:

while other models for associative memory based in recurrent networks are grounded

on the creation and management of stable states (Hopfield, 1982; Treves and Rolls,

1992), the existence of long lasting patterns of activity is not required for the computa-

tional model presented here. In this model, each memory is represented by the activa-

tion of a specific neural ensemble with the capacity to propagate activity to subsequent

layers. Stored patterns of activation in CA3 have the ability to raise significantly the

CA1’s activity level while unstored patterns do not provide enough excitation to bring

CA1 neurons above threshold level. This gating of the activity is achieved through

Hebbian learning that selectively enhances the connections formed with the ensembles

of neurons that represent stored configurations in the input space. The details about all

this information storage and propagation will now be discussed.
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7.2.2 Plasticity

Following the main dogma in computational neuroscience, information is assumed

here to be stored in the form of modifications in synaptic efficacy. Both short-term and

long-term plasticity are present in the hippocampal model.

Of all the connections discussed previously, only the recurrent collaterals and per-

forant path connections to CA3 exhibit long-term plasticity. Mossy fibres exhibit short-

term plasticity and all the other connections are not plastic.

Mossy fibres - short-term plasticity

The large boutons that mossy fibres create in the very proximal dendrites of CA3

neurons have led to the view that mossy fibres can act as “detonators”. Although it is

incorrect that a mossy fibre alone can bring a CA3 pyramidal neuron to threshold, it

is commonly agreed that the mossy fibre bouton’s unique morpho-physiological prop-

erties are behind equally unique computational properties (Urbanet al, 2001, Aguiar

and Willshaw, 2004).

It has been suggested by Treves and Rolls (1992), that mossy fibre input creates

efficient information storage through their sparse and strong influence on the CA3 cell

firing rates. This hypothesis has been verified experimentally (in a spatial memory

framework) by Lassalleet al, 2000, in which reversible inactivation of the mossy fi-

bre’ synapses were shown to impair learning, but neither consolidation nor retrieval.

A detailed quantitative model on how mossy fibres affect the storage process is never-

theless inexistent (but see analysis present in O’Reilly and McClelland, 1994).

From the variety of forms of plasticity that mossy fibres have been shown to dis-

play (Urbanet al, 2001), including both Hebbian and non-Hebbian forms of LTP and

LTD, only short-term plasticity was included in the present computational model. This

choice is based on the fact that in all studies done so far, impairment in any form of

long-term plasticity has failed to produce effects on the performance of a learning task

(see chapter 2 for more on this). It is then assumed here that the functional role of

mossy fibres is deeply bounded with their short-term properties. Mossy fibre short-

term dynamics are modelled using the dynamics from Fuhrmannet al, 2002, discussed

in chapter 5. The properties of strong potentiation even at low excitation levels, as

well as hardly measured depression, have led to the choice of the valuesU1 = 0.4,

τ f ac = 2000msandτrec = 10ms(see equations 5.2 and 5.3).

The maximal post-synaptic response, expressed in terms of the synapse’s maximal
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conductance, is set in order to avoid high activity levels in CA3 (i.e. above 5%).

Perforant path (to CA3) - long-term plasticity

The plasticity in the perforant path synapses with CA3 was modelled using spike

timing-dependent plasticity. The dynamics follow equations 3.8 with potentiation and

depression time windows of equal size, 40ms. The dynamics with potentiation/depression

strength decaying exponentially with the spike time interval (see figure 3.3) were not

used since this increase in the complexity did not have a particular role in the compu-

tational model.

An upper limit for the peak conductances, defined asSmax, is imposed. This max-

imum peak conductance prevents synaptic conductances from going beyond biologi-

cally plausible values, as a result of continuous potentiation. The soft-bound dynam-

ics attempts to avoid the peak of the synaptic conductance distribution atSmax (van

Rossumet al, 2000). The distribution is bimodal due to the considerable amount of

synapses with negligible peak conductances. In the biological systems these synapses

could degenerate and disappear through a selection process that keeps only significant

synapses (and therefore saving resources in the maintenance of this structures). In a

computational model that does not include synaptogenesis, all synapses with zero or

negligible conductance should be interpreted as absent.

The upper-boundSmaxvalue is set in order to promote cooperation of neuron units.

That is,Smax is kept small enough so that a significant number of active perforant path

inputs will always be required to raise a CA3 unit’s voltage above threshold. This way

a neuron unit will not reach threshold with just few synapses potentiated to the limit.

Recurrent collaterals’ long-term plasticity

The long-term plasticity in CA3 recurrent collaterals follows simple associative

learning dynamics with a time window of 40ms. The rule for simple associative po-

tentiation is the same as the STDP potentiation rule shown in equations 3.8. An upper-

boundSmax is imposed on the synapses’ peak conductances. This value, while pro-

moting again the cooperation of units, is nevertheless bigger, in relative terms, when

compared with the perforant path synapses. This way, less active inputs are required to

drive CA3 neuron units above threshold level. The idea is that a small sub-set of active

units are then able to rebuild the complete stored pattern.

From equation 6.1 the average number of active recurrent collateral inputs can
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be calculated. This value provides then an estimate forSmax. For the connectivity

values presented, the average number of active recurrent collaterals is 6. The maximum

conductance is then set so that, at least 6 active recurrent collateral inputs are required

to fire a CA3 neuron unit. Due to the soft-bounds in the potentiation dynamics, in

practice, a minimum of 7 active recurrent collaterals are required to fire a CA3 neuron

unit. Considering the average size of CA3 activity patterns, in order to rebuild a stored

pattern, a partial cue must contain at least half of neuron units in the pure activity

pattern above threshold.





Chapter 8

Episodic Memory: Implementation and

Results

This chapter is fundamental in making this work different from many other proposed

theories for the role of the hippocampus in episodic memory formation: in order to

complement the qualitative description of the tasks taking place in the hippocampal

fields (see chapter 7), I create a computational model to analyse, in quantitative terms,

all the hypotheses behind the theory. Through the creation and simulation of the com-

putational model, many specific functional details emerge which provide a deeper un-

derstanding of the strengths and limitations of the theory. In addition, results from the

simulations provide information to create refinements in the model. The computational

model focuses on the two tasks that have been described as the main functional roles of

the hippocampus: selection of relevant information in the multi-modal input space and

storage of this information in the form of an internal representation of the combined

presence of particular multi-modal features.

This chapter focuses on the results of several simulations of the hippocampal com-

putational model for episodic memory. The simulations performed had the objective

of comparing the dynamics of the hippocampal model with results well established in

the hippocampus literature.

Organisation of the Chapter

This chapter is divided into eight sections. The first section discusses the assump-

tions behind the scaled down version of the hippocampus used in the simulations. The

119
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results from the simulations refer to the following assessments, which are all addressed

in separate sections:

• Pattern separation: the role of the perforant path and mossy fibres in increasing

the distance between internal representations referring to distinct environmental

contexts, or configurations;

• Feature selection: the contribution of the short-term plasticity of mossy fibres to

the storage process;

• Storage and recall of an internal representation: complete time course of the

functional events that mediate the creation and recall of an internal representa-

tion;

• Firing properties: firing profile of neuron units involved in the storage and recall

of an internal representation ;

• Theta rhythm: the importance of periodic levels of activity in order to separate

activity patterns containing different information.

• Capacity: empirical analysis of the capacity of the memory system.

Section 8.8 presents some final remarks and concludes the chapter.

8.1 Scaling down the hippocampus

Three spiking networks, representing entorhinal cortex II, dentate gyrus and CA3,

compose the episodic memory computational model. A population of interneurons

is integrated into the CA3 spiking network.

Although the created simulation environment (chapter 4) allows the use of an ex-

tremely high number of spiking neuron units, the biological network numbers have to

be scaled down in order to efficiently simulate and analyse the computational model.

While the rat’s hippocampus number of units in each field is of the order of 105 (see

table 2.1), the number of neuron units in each of the computational model’s field is of

the order of 102.

The network properties can be scaled-down in several different ways, depending

on which constraints are chosen to direct the scaling process. Since the hippocampal
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theory proposed here is based in patterns of activity, the average activity levels are

chosen as the central constraint for the creation of network counterparts for ECII, DG

and CA3.

Table 8.1 presents both biological and computational model numbers for the neu-

rons in each area as well as the activity levelsA . All these values are averages but for

legibility the< . > notation is dropped.

rat hippocampus computational model

Area n. neurons A(%) n. neurons A(%)

EC 200,000 7.0 250 10.0

DG 1000,000 0.5 1000 1.0

CA3 160,000 2.5 200 5.0

Table 8.1: Population numbers in the rat hippocampus and in the computational model.

Roughly a factor of 1000/1 is used in scaling of the number of units. The activity

levels are increased in order to enhance robustness to noise: fluctuations on the number

of active units produce smaller changes on the activity levels. Take the example of CA3

in which, for the biological activity level of 2.5%, 5 units, on average, would be active

in a network of 200. A variation of a single active unit means a change of 20% on the

activity level. Duplicating the activity levels halves this effect.

The discussion now moves to the connectivity numbers. Instead of being set simply

to maintain the relative excitatory contribution from each area, the connection proper-

ties are chosen to address other aspects which will now be discussed.

While many models make CA3 the backbone of the associative memory network,

in the computational model presented here, many crucial roles are taken by the dentate

gyrus. Some of these roles are dependent on the dentate gyrus’ levels of activity. The

connectivity parameters that secure the correct bounded values for DG’s activity are

therefore fundamental. These parameters were estimated using the methods described

in chapter 6 with the requirement that a granule cell would not reach threshold with

less than two active inputs. This measure is required to increase the robustness to

fluctuations in the entorhinal cortex’s inputs.

A divergent connection valueCd = 52 is chosen for the connectivity between ECII

and DG. This means that each ECII neuron unit establishes a connection with 52 gran-

ule cell units. Setting the average strength of these synapses in such a way that every
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granule cell requires at least 4 active inputs to fire means that, on average, only 1.0%

of the whole DG population will be above threshold (see chapter 6 for the mathematics

behind this estimate) - which is the required activity level for this field. This value is

robust to fluctuations in the synapse’s efficacy (peak conductance) and transmission

delays, if these properties are assumed to follow normal distributions.

This previous statement can be clarified using the central limit theorem. Let us

consider the case of the synapse’s peak conductance. LetNPSRbe the minimum number

of active inputs required to fire a granule cell (in the case described aboveNPSR= 4).

The variability in the averageSpeakhas to guarantee that the probability of the granule

cell firing with justNPSR−1 active inputs is very small. In other words, the probability

that the averageSpeak in NPSRsignals is greater thanSthresh/(NPSR−1) has to be very

small. In addition, the probability that the averageSpeak in NPSRsignals is less than

Sthresh/(NPSR+1) has to be very small. The standard normal distribution is used with

the following two expressions in order to compute the maximum standard deviation

allowed forSpeak:

Zup =
Sthresh

NPSR−1−
Sthresh
NPSR

σ√
NPSR

(8.1)

Zdown=
Sthresh

NPSR+1−
Sthresh
NPSR

σ√
NPSR

(8.2)

As an example, forSthresh= 62.6nSandNPSR= 4, the probability that a neuron

will fire with less than 4 active inputs, or stay quiet with more than 3 active inputs, is

less than 0.1% if the synaptic conductance follows a normal distribution withµ= Speak

andσ < 2.42nS.

It is important to notice that, as the required number of active inputsNPSRincrease,

the mechanism becomes more robust to theSpeakvariability in each synapse. The only

requirement is that, for largeNPSR, the firing probability transition has to be very sharp:

the firing probability has to be close to 0 if the averageSpeak in NPSR signals is just

belowSthresh/(NPSR), and close to 1 if the averageSpeak in NPSRsignals is just above

Sthresh/(NPSR). Using again the central limit theorem, one can see that the fluctuations

in the averageSpeak are proportional to 1/
√

NPSR, allowing a considerable variability

(σ) in each synapse’sSpeak.

The same reasoning applies to the transmission delays and to all the other synaptic
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properties following normal distributions that affect, through a combined manner, the

neuron’s state.

Back to the main topic of this section, now one has to discuss the CA3 connectivity

in the hippocampal model. The data presented in table 8.2 is used in order to set the

CA3’s afferent connection properties.

Input quantal active number mean unitary activity

size [pA] zones/syn. CA3 cells amplitude [pA] [% of EC]

m.f. 9 20 50 70 3

r.c. 5 1 12,000 7 40

p.p. - - 4,000 1 100

Table 8.2: Strength of excitatory inputs to CA3. Adapted from Urban et al, 2001.

For each input pathway, the average number of active inputs is estimated accord-

ingly to the activity level of the originating area. This estimation assumes that the

connectivity profile follows a uniform distribution. There are no topographic pref-

erences (this point is revised in section 8.2). Table 8.3 summarises these biological

estimated (average) values.

pathway < n. inputs> < n.active units>

perforant path 4,000 7.0%→ 280

recurrent collaterals 12,000 2.5%→ 300

mossy fibres 50 0.5%→ 0.25

Table 8.3: Afferent connections to CA3 neurons in the rat hippocampus. Average num-

ber of inputs and average number of active inputs.

The average number of input connections to each CA3 neuron unit in the model

roughly preserves the original relative contributions.

There are nevertheless other reasons for these chosen connectivity values, mainly

related to activity level control (chapter 6), which will now be described.

For the mossy fibres, two requirements are imposed: first, the probability of a

CA3 neuron unit not receiving any active mossy fibre has to be high1 and secondly,

1In the rat hippocampus this probability is around 77% (assuming a binomial distribution with pa-
rameters 50 and 0.005 for the number of inputs and probability of input being active, respectively).
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pathway < n. inputs> < n.active units>

perforant path 37 10.0%→ 3.7

recurrent collaterals 80 5.0%→ 4.0

mossy fibres 16 1.0%→ 0.16

Table 8.4: Afferent connections to CA3 neuron units in the computational model. Aver-

age number of inputs and average number of active inputs.

a single active mossy fibre should not cause spiking (otherwise fluctuations would be

easily propagated). With the parameters stated in table 8.1 above, the probability of

CA3 neuron unit not receiving any active mossy fibre input is around 70% and the

probability of receiving at least two is around 5%.

In the case of the recurrent collaterals, the opposite condition is required, that is,

the probability that each CA3 units does not receive any active recurrent collateral has

to be almost zero. In the rat hippocampus this probability is less that 10−100 while

in the model it is around 10−2. The average number of active recurrent collaterals in

both systems is 300 and 6 respectively. The information content of each synapse in the

computational model is therefore much higher, making it also significantly less robust

to fluctuations and noise.

The same argument is also behind the chosen properties for the perforant path.

Besides the fact that the probability of each CA3 unit not receiving any active perforant

fibre is very small, the average number of active inputs is similar to the average number

of active inputs from the recurrent collaterals. Instead of just trying to mimic the

biology, this property is required to allow storage and recall in the CA3 network by

levelling the importance - in terms of efficacy - of the perforant and recurrent collaterals

pathways.

In order to cope with the sensible CA3 activity level control, a population of 20

inhibitory neuron units was connected to the CA3 pyramidal population units. This

number of units represents a balance between the typical biological quantity - around

20% of the pyramidal population size - and the single inhibitory unit used in many

models. Although a singleomniscient and omnipotentunit allows an easier control

over the whole network activity level, as has been shown in a model like Káli and

Dayan (2000), it may disguise the true biological mechanisms behind activity control

and competition enhancement. This solution was therefore rejected in favour of an
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interneuron population.

The connectivity between CA3 pyramidal and interneuron units follows the prop-

erties presented in chapter 6 regarding the stability control in recurrent networks: the

inhibitory population is set to fire only when the number of pyramidal neuron units

are statistically above proper activity level. An extra component is nevertheless added:

instead of receiving inputs solely from the CA3 pyramidal population, the CA3 in-

terneuron units also receive inputs from the mossy fibres, just as in the biological hip-

pocampus. Again, the interneuron population passes threshold when the mossy fibre

active inputs are statistically above their proper activity level value, which is around

1.0%. This connection allows a much more efficient control of CA3 activity level since

it prevents CA3 activity from raising improperly in the first place.

The figure 8.1 summarises all the connectivity properties discussed above.

Figure 8.1: Connectivity diagram for the episodic computational model. The convergent

connectivity values are average values calculated from the divergent connectivities us-

ing equation 6.2

8.2 Pattern separation

In order to increase the efficiency of the hippocampal memory system, it is expected

that stored environmental configurations referring to different situations should be as-

sociated to completely different internal representations. That is, all stored representa-
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tions should have a minimum amount of overlap among them. Minimising the overlap

between the CA3 representations, or equivalently maximising their distances (equation

7.1, means that the storage capacity of the system will be significantly increased due

to less interference between the representations (Hopfield, 1982).

This problem, know as pattern separation, is solved in the hippocampus by the den-

tate gyrus (O’Reilly and McClelland, 1994). In the intermediate stage provided by the

dentate gyrus, the entorhinal cortex input pattern is projected into a higher dimensional

space, with a lower activity level, before producing an activity pattern in CA3 through

the sparse connections of the mossy fibres. These two steps greatly reduce the amount

of overlap between the CA3 activity patterns.

This mechanism of pattern separation was tested in the hippocampal model by

measuring the amount of overlap in the CA3 activity patterns against the amount of

overlap in the input patterns of activity placed in the EC. The results are shown in

figure 8.2. The overlap in the representations with, and without, the dentate gyrus

stage are compared.

Figure 8.2: Pattern separation. Overlap is measured as the fraction of shared neuron

units.

The effect of the dentate gyrus can be clearly seen: even EC input patterns with a

substantial amount of overlap produce CA3 activity patterns which share a very small

amount of neuron units. In the storage process, the distance between representations

associated with similar input patterns can, therefore, be greatly increased.

Although these results are in accordance with previous theoretical studies (e.g
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O’Reilly and McClelland, 1994), they are against one property which, I would think,

would be desirable in the hippocampal memory system:

The number of degrees of freedom in the input space of the hippocampal memory

system is enormous. Even if an environmental configuration is exactly recreated, it is

hardly probable that the input to the hippocampus will be exactly the same in the two

situations. Internal states, history-dependent mechanisms or simply noise, contribute

to this difference. In a memory system with finite storage capacity, it is important

to distinguish between noisy versions of a same (known) environmental configuration

and a completely new (unknown) configuration. Otherwise redundant information is

constantly stored. In addition to this, but related to the finite storage capacity, is the

fact that the hippocampal memory system is expected to be capable of generalising: a

stored (internal) representation should not be simply a snapshot of all the environmen-

tal configuration; it should be a concatenation of features that made that environmental

configuration relevant. This way, all environmental configurations which contain the

same set of features should be associated with the same internal representation. Due

to these two aspects I would expect that very similar EC input patterns should lead to

the activation of a similar CA3 constellation. This would allow a more efficient recall

of the stored CA3 representation. This way, while maintaining a strong pattern separa-

tion for a medium/small degree of overlap, input patterns with a big degree of overlap

should be allowed to activate very similar CA3 constellations. It is worth mentioning

that this is not the same as pattern completion. This property would nevertheless aid

substantially the pattern completion mechanism.

It was found that this different shape in the pattern separation curve can be achieved

if the topographical segregation of inputs present in EC and DG (see chapter 2) is con-

sidered. The results shown in figure 8.3 were obtained with simulations where there

was a topographical arrangement in the connections between EC and DG. Both EC

and DG where divided into five sections and each section of the EC established ran-

dom (uniform) connections only with a paired section in the DG. While testing pattern

separation, each EC section always contained the same amount of active units. With

this connectivity profile it is very interesting to notice that similar input patterns lead

to very similar CA3 constellations. This would allow a more efficient recall, case the

input would correspond to a stored memory. This result is even more interesting if

we take into account that the segregation on the EC is derived from the convergence
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of multi-modal sensory information. Different regions on the EC and DG are mostly

driven by information with different nature. This result shows that an episode, de-

scribed by several features, can still be easily recalled (very similar initial CA3 state)

with one or more features changed or absent.

Figure 8.3: Pattern separation in the presence of segregation in the EC and DG. Over-

lap is measured as the fraction of shared neuron units.

For the parameters used, the transition for strong separation is made at about 40%

of overlap. While inputs sharing more than 40% of the units tend to activate CA3

constellations with equal amount of overlap, inputs with less units shared activate CA3

constellations with little or no overlap. The transition is very sharp and its value is

dependent on the connectivity profile (topographical properties).

8.3 Feature selection

In the hippocampal model, it has been argued that the short-term plasticity of mossy

fibres plays a very important role in the storage process. The overall contribution of

mossy fibres for CA3 excitation level is lesser, in relative terms, than the contribution

provided by the recurrent collaterals and perforant path. Nevertheless, their great post-

synaptic response amplitude, consequence of their short-term dynamics, puts them in

a privileged position in leading constellations of CA3 neurons to the threshold level.
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As discussed in chapter 5, the post-synaptic response of mossy fibres is greatly

enhanced when they are consistently activated. One hypothesis proposed in the hip-

pocampal model is that a constellation of CA3 neurons will only be chosen to form

an internal representation, and initiate the storage process, when similar input patterns

have been presented at the input level during a short period of time. This way, the CA3

internal representation is associated with the neurons in the input space that have been

consistently activated, discarding all the subsets of neurons that fired stochastically or

were not relevant in coding the present environmental configuration. The figure 8.4

provides a visual idea of the selection process.

The consistency across time of the activity patterns in the dentate gyrus is a reflec-

tion, in a higher dimensional space, of the consistency of the input activity patterns in

the entorhinal cortex. I suggest that the time constant of the facilitation mechanism in

mossy fibres (2000 ms in these simulations) defines the amplitude for the integration

time window, which is in the order of a few seconds (see chapter 5).

Figure 8.4: Feature selection by the dentate gyrus. In a), a temporal sequence of

activity patterns in the dentate gyrus is shown. Circles in red represent active neurons

and the three regions with different background colours (light blue, gray and green)

illustrates the topographical segregation in the dentate gyrus. The pattern transferred

by the mossy fibres to the CA3 region is shown in b) and reflect the pattern that has

been consistently activated across time. Mossy fibres that have not been systematically

activated do not bring CA3 neurons to threshold level.

The reason to call this process feature selection instead of simply pattern selec-

tion is based in the topographical segregation in DG and EC. I argue that the activity

patterns at the entorhinal cortex, and the correspondent patterns in the dentate gyrus,
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should not be seen as a single identity. They are instead a concatenation of information

blocks due to the topographical segregation present in these two structures. The sub-

sets of neurons that are consistently activated in a specific environmental configuration

should not be seen as encoding simple features, such as a specific isolated sensory feel-

ing. These subsets result from a projection into a higher dimensional space (from EC

to DG) and therefore the features they encode will probably represent complex higher

order information.

The ability of mossy fibres to perform this selection of features was tested with

simulations of the hippocampal model. In a preliminary simulation, the short-term

dynamics of mossy fibres were removed and substituted with a static post-synaptic

response, with a magnitude similar to the one produced with high frequency stimuli.

It was then observed which CA3 constellation was activated in response to a prede-

fined pure pattern presented in EC. Simulations were then run with the mossy fibre

short-term dynamics activated and where a sequence of patterns were presented at the

input level (EC). The sequence consisted of random patterns alternated with the pure

pattern, presented at frequency of 10 Hz. The results are shown in figure 8.5. The CA3

constellations produced by each input in the sequence are compared with the original

constellation produced by the pure input pattern.

8.4 Storage and recall of an internal representation

The sequence of functional steps that, according to the hippocampal model, mediate

the process of storage and recall of internal representations was extensively tested and

analysed using the simulation environment. The simulations shown here demonstrate

that all the concepts discussed in the hippocampal model (e.g. management of activity

levels, role of mossy fibres, notion of activity patterns) work together harmoniously

to form a memory system that mimics, and explains, the functional behaviour of the

hippocampus.

Storage

The first results refer to the process of formation of an internal representation in

CA3, and its storage in the recurrent collaterals. The experiment performed in the

simulation environment consisted of applying repeatedly the same activity pattern in

the EC and measuring the propagation of the activity to the DG and CA3. The input
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Figure 8.5: Simulation showing the viability of the feature selection process. The hori-

zontal represent the time in ms. The instants when the pure pattern was placed in the

EC are marked with a p while the instants when a random pattern was placed instead

are marked with a r. The vertical bars measure the fraction of correct units that were

activated in response to the input patterns. The random patterns never activated any

CA3 neuron. The correct CA3 constellation was invoked after the 8th exposition, after

700 ms. No spurious units were activated.

pattern was applied at a frequency of 10Hz.

The properties of the network recreating EC, DG and CA3 followed the informa-

tion presented in section 8.2. Both the perforant path and the recurrent collaterals ex-

hibited long-term plasticity (see section 3.2.4). The connectivity properties are shown

in figure 8.6. All conductance values were assigned using the methods from chapter

6. For connections exhibiting long-term plasticity theSmax values are shown, while

for the other connections the valueSpeak is presented. All these values account for

the number of active inputs,NPSR, that each neuron unit requires to reach threshold.

The homosynaptic depression wasH = 5%. For the perforant path∆LTP= 7.5nSand

∆LTD = 0.5nS; for the recurrent collaterals∆LTP= 5.5nSand∆LTD = 0.5nS.

Both∆LTPwere set to very high values: roughly 50% ofSmax. The reason for that

was purely practical: it allowed a much faster learning process thus reducing signif-

icantly the simulations time. Nevertheless, the true value should be much smaller so

that isolated, stochastic potentiation of spurious units do not affect the performance of

the system. This point is discussed in detail with the simulations on the recall process.
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Figure 8.6: Connectivity conductances.

perforant path recurrent collaterals

∆LTP= 7.5nS ∆LTP= 5.5nS

∆LTD = 0.5nS ∆LTD = 0.5nS

H = 5.0 % H = 5.0 %

Table 8.5: Plasticity in recurrent collaterals and perforant path.

Figure 8.7 shows the time evolution of the system in storing an internal represen-

tation. The memory system had already 10 previously stored representations.

There are four important stages in the storage process:

• First Stage. Repeated activation of the same neuron units in the DG, as a result

of consistent activation in the EC, leads to an enhancement of the mossy fibres

strength. After the third exposure of the same activity pattern in EC, the facilita-

tion in the mossy fibres is already sufficient to provide the remaining excitation

that some CA3 principal neurons require to pass threshold level. Four CA3 neu-

ron units are activated at around 225 ms (snapshotA). These initial units are

very important because they will become the most informative units in the inter-

nal representation. The units that were activated in CA3 unleash the long-term

plasticity dynamics in the perforant path (between the EC’s input pattern and

the CA3 units) and in the recurrent collaterals (among the CA3 activated neuron
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Figure 8.7: Storing a CA3 representation in the hippocampal model: representative

sequence of functional steps that mediate the storage of an internal representation.

Frames A, B and C contain snapshots of the graphical output of the simulation envi-

ronment containing the principal population of neuron units from the CA3 field. See text

for detailed analysis and description. Parameters from figure 8.6 and table 8.5.

units).

• Second Stage. After several exposures of the input activity pattern, the mossy

fibres select the complete constellation of CA3 neuron units that will form the

internal representation (snapshotB). The connections to the entire constellation

(ten neuron units) start now to be enhanced (after 700 ms). The inhibitory in-

terneurons in CA3 (which receive connections from the principal neurons in

CA3 and DG) start to play a more important role in maintaining the size of the

CA3 representation.

• Third Stage. The activation time of the CA3 neuron units drifts to earlier times.

This is a consequence of the enhancement of the perforant path connections

which start to be sufficient to activate the CA3 representation by themselves.
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• Fourth Stage. Close to 2000 ms, the CA3 representation is activated at roughly

the same time as the DG activity pattern. The first CA3 units selected to form the

representation have stronger connections and are always the first units to respond

to the input pattern. They fire several times and act as promoters in the activation

of the CA3 representation. All CA3 neuron units fire more than once.

In light of these results, I suggest that a fifth stage establishes a translation between

the CA3 representation and the CA1 activity pattern produced by the perforant path

from ECIII (temporoamonic pathway). The hypothesis introduced here is that naive

Schaffer collaterals are not enough to activate CA1 neurons. Nevertheless, when the

CA1 activity pattern is combined with a CA3 constellation with a statistically relevant

size, long-term plasticity mechanisms take place and enhance the Schaffer collaterals

connections. The size of the CA3 constellation is only statistically relevant when the

CA3 representation is complete (second stage mentioned above). All the CA1 activity

patterns that are not paired with activated representations in CA3 do not produce any

changes in Schaffer collaterals. In subsequent recall situations, strengthen Schaffer

collaterals may dominate over the temporoamonic pathway for the activation of the

CA1 representation.

The Schaffer collaterals should be seen, in this hypothesis, as providing a trans-

lation code between the CA3 representation and the CA1 representation. The role of

the temporoamonic pathway is similar to the mossy fibres in selecting a CA3 con-

stellation. However, since CA1 does not work as an auto-associative but rather as an

hetero-associative memory between CA3 and CA1, the requirements for these connec-

tions are far different from the ones for the mossy fibres. Briefly, the perforant path

from ECIII chooses a CA1 representation and Schaffer collaterals stabilise it.

Simulation results regarding this mechanism are not included here because they do

not involve any new computation or mechanism that has not been shown already. They

consist mainly of an activity transfer like the one shown in section 6.6.1, figure 6.9.

Simulations involving the CA1 field are nevertheless included in chapter 9.

As a final remark to this section, it should be noticed that, in a novel environment,

internal representations are developed faster in CA1 than CA3. This property of the

HCM is in accordance with experimental results (Leutgebet al, 2004).

Information is only considered to be stored if it is available for future recall. Before
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presenting the results regarding the simulations in the context of recalling stored infor-

mation, it is appropriate to discuss the storage/recall dichotomy in the hippocampal

model.

Solving the storage/recall dilemma

In auto-associative networks where the information is stored in the recurrent con-

nections, the recall process should occur without any changes in the connections. A

successful recall is usually composed of a succession of noisy patterns that converge to

the pure, stored pattern and changes that may occur during this process may corrupt the

information related to the stored patterns. Therefore, different mechanisms have been

proposed to commute between the learning phases, where the connections are dynamic

and incorporate the new information, and the recall phases, where the connections are

unchangeable and the stored patterns are retrieved (e.g. Káli and Dayan, 2000).

In this hippocampal model, the work by Hasselmoet al (1995; 1996) is taken into

account to solve the storage/recall problem. My hypothesis is that the hippocampus

is, by default, always in recall mode. Nevertheless plastic synapses can suffer small

changes in their efficacies even in recall mode.

Two points are important to keep in mind. Firstly, in the recall process, the activity

levels of all fields fluctuate at low levels and only rise significantly when the activity

patterns involve previously stored constellations of active neurons. It is important to

emphasise that activity levels below the values in table 8.1 do not effectively propagate

activity to subsequent (post-synaptic) fields. Secondly, in order to initiate storage, a

constellation of CA3 neurons, of appropriate size, has to be activated. Only then, the

associative long-term plasticity mechanisms take place.

It has been discussed above that the mossy fibres are required to provide the exci-

tation deficit that the CA3 constellation requires to reach threshold. I now add to this

idea that the facilitated mossy fibres will only be able to provide the excitation deficit

when the excitation level in the CA3 region isuniformly raised. This uniform excita-

tion is provided by the medial septum which modulates the learning dynamics in the

hippocampus (Hasselmoet al, 1995; 1996). The septum rises the excitation level in the

hippocampus on specific emotional contexts, such as novelty and arousal (see section

8.1). The diagram in figure 8.8 provides a visual idea of the described mechanism.

The high specialisation, in functional terms, of mossy fibres can be further appre-
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Figure 8.8: Excitation provided to CA3 neurons. Images A and B provide an idea on

how each input connection contributes to the excitation level of 50 CA3 neurons. In

order to initiate the storage process with the selection of a CA3 representation, the

mossy fibres require the uniform excitation provided by the septum (B). Only then a

constellation of CA3 neurons reach threshold (marked with red “X”).

ciated if we analyse the distribution of voltages in CA3 neurons during the selection

of an internal representation. The idea depicted in 8.8-B is only possible because the

connectivity properties from the mossy fibres guarantee that there is a big voltage gap

between the neurons that were activated and the neurons that did not reach threshold.

Figure 8.9 shows the distribution of voltages in CA3 neurons when a full constellation

is chosen to form an internal representation. With 5% of the units above threshold (-50

mV), the average voltage of the sub-threshold units is around -65 mV.

If, instead, the perforant path would be responsible for choosing the constellation

of CA3 neurons (to form the internal representation), many neurons would be very

close to threshold level. This means that the process would be much less robust to

fluctuations: any perturbation could generate oversized constellations that would cor-

rupt the memory system. The simulation results shown in figure 8.10 corroborate this

statement.

Going back to the discussion on the storage/recall dichotomy, it can be shown

that the external modulation provided by the medial septum is enough to prevent the

corruption of previously stored information. Changes on the recurrent collaterals and

perforant pathonly take place when CA3 neurons fire, due to the associative nature of

the plasticity dynamics. In turn, CA3 neurons only fire in the following two conditions:

1. When the medial septum raises the excitation level of CA3 and mossy fibres
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Figure 8.9: Voltage distribution in CA3 neurons when the mossy fibres create the in-

ternal representation. Marked in red is the fraction of the population above threshold

(activity level). Average sub-threshold voltage is -65.2 mV. Parameters from figure 8.6

and table 8.5.

detect consistency across time in the input activity patterns (features). In this

case the recurrent collaterals and perforant path will be storing new information.

2. When the EC activity pattern resembles a stored episode and the strong perforant

path connections, enhanced through learning, are enough to activate fully, or par-

tially, the internal representation in CA3. In this case, the recurrent collaterals

and perforant path will neither be storing new information nor storing noise (cor-

rupting the memory system). They will simply be reinforcing the connections

associated with the internal representation.

Neuron units in the CA3 field that erroneously may fire (stochastically or due to

improbable combination of inputs) will indeed lead incorrectly to the potentiation of

some connections. Nevertheless, these same connections will be depressed shortly af-

ter, as a result of homosynaptic depression (see section 3.2.4 for the synaptic plasticity

dynamics). For this balance to be possible, it is important that the changes produced by

each potentiation are small. This way, only consistent activation of the same neurons

will produce a relevant rise in synaptic efficacy. This point is not against the idea of fast

learning in the hippocampus: if 100 combined, and consistent, activations are required

to produce an effective potentiation, and if storage occurs at theta frequency (10 Hz),
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Figure 8.10: Voltage distribution in CA3 neurons when the perforant path chooses the

internal representation. Marked in red is the fraction of the population above threshold

(activity level). Average subthreshold voltage is -61.9 mV. Parameters from figure 8.6

and table 8.5.

then 10 seconds are enough to complete and stabilise a CA3 internal representation.

Although the idea of learning regulation provided by the medial septum is inspired

in Hasselmoet al (1995; 1996), it should be emphasised that the mechanisms by which

the storage/recall problem is solved are specific to the hippocampal model of this the-

sis. One point of particular interest is that localised modulation on particular pathways

is not required: uniform, distributed excitation is sufficient to create the conditions that

solve the storage/recall problem. Such precise modulations would nevertheless add

robustness to the system.

Recall

The results from the simulations testing the recall mechanism in the hippocampal

computational model will now be presented. The simulations followed the approach

taken in the simulations for storage process, and the results describe the time evolution

of the activity in all relevant fields (figure 8.11).

In the recall simulations the constants which set the synaptic potentiation changes

were replaced by the more realistic values: for the perforant path∆LTP= 0.5nSand

∆LTD = 0.5nS; for the recurrent collaterals∆LTP= 0.5nSand∆LTD = 0.5nS. This

way any potentiation in a spurious unit would be balanced by depression, and the cor-

rect units would be slightly reinforced. Storage of a new representation with this values



8.4. Storage and recall of an internal representation 139

would just mean that many consistent and systematic enhancement changes would be

required. With this low value for∆LTP, storage and recall can be interchanged without

affecting the memory system performance.

Figure 8.11: Recalling a CA3 representation in the hippocampal model. A: time evolu-

tion of the activity levels in the principal populations of ECII, DG and CA3, and in the

inhibitory population of CA3. B: snapshots of the graphical output of the simulation en-

vironment at several times. The entire representation is activated within a time window

of less than 10 ms. No spurious neuron units are activated. Parameters from figure 8.6.

A very important point to mention is that, no impairment is produced in the recall

process in simulations where the mossy fibre connections are removed. This is in ac-

cordance with the experimental results in Lassalleet al (2000). In fact, even in the

simulations where the mossy fibres are present, they are almost silent in response to

single input activity patterns that are inconsistent with the previously presented pat-

terns.

The next step in the recall process would be the rise of the activity level in the CA1

field, with the activation of a previously learned constellation of CA1 neuron units. The

entire recall process, from exposure of input activity pattern in the EC to the activation

of the CA1 constellation, takes less than 50 ms.

Figure 8.12 shows the results of the hippocampal model recall process in the situ-

ation where, instead of a pure pattern, a noisy version of a pure pattern is presented at

the EC region. Two types of noisy patterns were used:

• partial cues, where some units of the original pure pattern are removed from the

input activity pattern;
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• corrupted cues, where some units of the original pure pattern are substituted by

other, random, units in the input activity pattern;

The fraction of units removed or substituted in the pure pattern define the error of

the noisy pattern. For example, a partial cue with 20% noise contains only 80% of the

units in the pure activity pattern.

Figure 8.12: Recalling a CA3 representation in the hippocampal model with noisy in-

puts. Both noisy inputs led to the activation (exclusively) of all the neuron units of the

CA3 representation. A: Recall with a partial cue with 20% noise. B: Recall with a

corrupted cue with 20% noise. Parameters from figure 8.6.

Although all the units from the representation are at some point activated, the recall

process is slower, i.e., few units are activated on each cycle of the recurrent connec-

tions. The representation is therefore completed with more effort and most units fire

only once. Nevertheless, for errors under 20% the memory system still performs a

perfect recall. On the other hand, for errors above the 20% level, the activated CA3

constellations start becoming corrupted compared with the original stored representa-

tion. This 20% level sets the radius of the basins of attraction, the regions in the state

space where the system dynamics are able to recall the correct internal representation.

Distinct situations occur when the errors are bigger than 20%, i.e. outside the basins

of attraction radius, depending on the nature of the input noise:

• For partial cues, the excitation provided to the neuron units of the CA3 rep-

resentation diminishes and units start to fail reaching threshold. Although the

recurrent connections have the role of rebuilding the complete representation,

it is important to remember that their maximum peak conductance is assigned
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so that a minimal number of active inputs are required to reach threshold level.

Input excitation below a critical value fails to initiate the proper feedback am-

plification and leads to a decay in the activity level, before the complete internal

representation is invoked. For partial cues with 40% noise, 70-90% of the in-

ternal representation is activated, and for partial cues with more than 60% noise

no units are activated in CA3. If one would consider k-winners-take-all mecha-

nisms, correct recalls would be possible at a very high degree of noise.

• For corrupted cues with a high degree of noise, spurious units are activated in

the CA3 field. The activated CA3 constellation is completely corrupted for input

noises above 30%. This should not be seen as a limitation though, since this

level of “corruption” at the EC input pattern would most probably represent a

different environmental configuration.

8.5 Firing properties

All the simulation results shown so far refer to the collective behaviour of each hip-

pocampal field. However, the firing characteristics of the neuron units are important

for a better understanding of the dynamics of the hippocampal memory system. The

voltage profile of all individual neurons involved in the recall process depicted in figure

8.11-A are shown in figure 8.13. Although detailed information about each individual

voltage profile is obscured due to the high density of traces, the contrast between silent

and active neuron units can be appreciated.

Isolated individual traces are presented in 8.14. These traces refer to the simulation

that led to figure 8.11. The EC input pattern was presented at a frequency of 10 Hz for

0.5 seconds. The absence of variability in the input pattern during these 0.5 seconds

assumes that no relevant changes in the environmental configuration occurred in this

period.

It is important to emphasise that although these traces are for one particular recall

process, they are representative of the firing characteristics of active CA3 neurons in

any recall sequence. Some important observations can be made from the analysis of

many traces:

• Most neurons involved in the internal representation fire more that once in re-
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Figure 8.13: Voltage profile of the CA3 population during recall. Parameters from figure

8.6.

sponse to the presentation of a known input activity pattern. The average number

of spikes per burst2 is 2.6 and very rarely a neuron unit contributes with a single

spike in the activation of the stored representation (figure 8.14-H).

• The response of some neurons is increased after repeated exposures of the same

input pattern (figure 8.14-A, E andG). Although long-term dynamics are active,

this result is not an effect of learning. What it reflects is change in the state

of the network. The membrane time constant and the post-synaptic conductance

profiles put the active neuron units at a higher excitation level at the time a second

input pattern is presented.

• Neurons that fire more times contribute more actively to the formation of the

CA1 activity pattern and are more robust in the situation of recall with partial

cues. Their increased amount of input excitation results from a slightly bigger

number of inputs connections (see section 6.2 for the connections distribution).

• Some spiking bursts show accommodation (figure 8.14-B andI ). This is not the

result of frequency adapting channels since they were simply not included in

the neuron model. This effect is created by threshold input currents that decay

slowly instead of abruptly.

2The number of spikes per burst depends on the connectivity parameters that change the excitation
levels. This number is, nevertheless, not controllable since it is determined mostly by the conductance
values that are constrained by the activity level control.
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Figure 8.14: Representative voltage profiles of CA3 active neurons during recall. The

average number of spikes during each activation of the internal representation is 2.6.

Parameters from figure 8.6.
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These firing properties will form the core of the arguments that merges episodic

memory model with spatial memory in a complete hippocampal model accounting for

both experimental paradigms (see chapter 9).

8.6 Hippocampal rhythms

Motivated by observations on many simulations performed with the hippocampal com-

putational model, I include here a brief discussion on my view of the functional roles

behind the theta and gamma rhythms in the hippocampal subfields. Two points are

addressed:

1. In this hippocampal theory, information is coded, transferred and manipulated in

the hippocampal regions in the form of activity patterns. In order to accomplish

their tasks, these constellations of active neurons forming the patterns have to

be synchronised within a time window of a few tenths of milliseconds, i.e., the

neuron’s integration time given byτm. If the firing time of individual neurons

drifts too much, it will corrupt the following, or preceding, activity pattern. In

addition, if the activation of the complete constellation is too spread in time it

will fail to activate its post-synaptic neurons. Mechanisms that constrain the time

frame at which all the neurons in the constellation have to fire are, therefore, of

extreme importance.

2. In addition to what has been discussed in section 8.4, the particular time course

of the excitation level modulation provided by the medial septum has strong

implications in the effectiveness of the storage and recall processes.

If the hypothesis that information is coded as activity patterns is correct, then the

firing of all neurons in an active constellation has to be concentrated in time window of

τm (point 1 above). Segregation between subsequent activity patterns therefore means

that there is a periodicity ofτm between activity peaks. The peaks of activity would

result from the higher density of spikes in the “centre” of the time window3. With the

biologically reasonable value ofτm = 20msused throughout this thesis, the frequency

3That is, is it reasonable to assume that the distribution of spikes, in the integration time window,
would be peaked.
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of the segregation mechanism would be of 50 Hz. This is in the range of the measured

gamma frequencies (Braginet al, 1995; Buzśaki et al, 1983).

With respect to point2 above, and following the ideas of Buzsáki (1989), it is rea-

sonable to assume that the up-state of the theta modulation is associated with a storage

phase. This mechanism would nevertheless not substitute, but rather complement, the

mechanism discussed with figure 8.8. The two combined effects means that, in novel

environments, storage occurs at theta frequency (see Larsonet al, 1986). This would

be important to avoid interference between activity pattern containing different infor-

mation. The theta period corresponds roughly to the estimated time that each activity

pattern takes to propagate through all fields of the hippocampal memory system.

8.7 Memory storage capacity

A detailed analytical study of the capacity of the episodic memory model was not per-

formed. This novel hippocampal computational model relies on spiking units with

complex dynamics and continuous synapses with dual-exponential post-synaptic re-

sponses. A theoretical study of its capacity would, by itself, be a theme for a thesis.

Some empirical analysis and observations were nevertheless produced and corrobo-

rated with results extracted from simulations. Previous capacity studies using neuron

units of different natures, such as binary (Willshawet al, 1969; Marr, 1971; Willshaw

and Buckingham, 1990) or threshold-linear (Treves and Rolls, 1991), were taken into

account in order to provide some insights to the limitations of this novel CA3 spiking

memory model.

The number of internal representations that can be stored in the CA3 recurrent

network depends on the network’s top activity level,A , which defines the size of the

internal representations. In the hippocampal modelACA3 was set to 5%, meaning

that in a network of 200 units, the size of the representations was 10. If in the rat

hippocampus the activity level is roughly 2.5% (table 8.1), then the representation

size is on the order of 4000 neurons (in a population of 160000 principal neurons).

This means that each episodic memory would be identified by a constellation of 4000

active neurons. The number of different constellations resulting from combinations

of 4000 active neurons is colossal: 108121. Obviously the network is incapable of

distinguishing all these different constellations!
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After a constellation ofN A neurons is selected to form an internal representation,

long-term plasticity takes place and connections between members of the constellation

are potentiated. Connections between constellation neurons and external neurons are

slightly depressed as a result of homosynaptic depression. As a consequence of the

dynamics of the storage process, the distribution of the peak conductances (the synaptic

efficacies) is strongly bimodal: synaptic peak conductances tend to concentrate either

around zero or very close to their maximum allowed value,Smax.

In this hippocampal theory, the capacity of the CA3 memory system depends di-

rectly on the choice ofSmax. The efficacy of a potentiated synapse is related to how

informative each presynaptic active neuron is. In turn, the amount of information pro-

vided by an active neuron is related to the average number of representations each

neuron participates. IfR is the number of stored representations, every neuron partici-

pates, on average, inRA representations. In the hippocampal model, the neuron con-

stellations that are selected to form the internal representations are chosen randomly

by the dentate gyrus. The participation of CA3 neurons in the internal representations

is, therefore, expected to be uniform.

In order to produce a correct recall, a fraction of the constellation which forms

the internal representation should be enough to lead to the activation of the remaining

neurons, while avoiding the activation spurious neurons. The competition provided by

the interneurons, through the activity level control, is of extreme importance for this

process.

Let us callFmin the minimum fraction capable of activating the whole represen-

tation. Given the activity levelA and the connectivityCc, the minimum number of

post-synaptic responses that should lead to threshold isCc A Fmin. The synaptic effica-

cies are parameterised according to this value. The relation is:

Speak≈ Smax≥
Sthresh

Cc A Fmin
(8.3)

As a reminder,Sthresh is the conductance that leads to the threshold level (see sec-

tion 6.3).

In a recurrent network with connectivityCc, the average number of active inputs

that a neuron receives isCc A p, wherep is the proportion of synapses withSpeak≈
Smax. If only a fractionFmin of the representation is activated, the average number of

active inputs that a neuron receives, drops toCc A p Fmin.
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Although the efficacy has to be sufficiently big to allow a proper recall with par-

tial constellations it should also be small enough to avoid the activation of spurious

neurons. The process of settingSmax is equivalent to setting the detection threshold in

Willshawet al (1969).

It is important to estimate the maximum number of stored representations that can

coexist without interfering with each other. From interference results spurious acti-

vations and, consequently, corrupted recall. Let us assume that, afterR representa-

tions have been engraved in the recurrent connections, the fraction of connections with

Speak≈ Smax is p. The fraction of synapses withSpeak≈ 0 is then 1− p. On average,

the number of synapses which peak conductanceSpeak≈ Smax is N Cd A2. Since there

areNCd synapses in the spiking network, the fraction of synapses enhanced during the

storage of each representation isA2. Therefore, the fraction of synapses which still

haveSpeak≈ 0 after the storage ofR representations is:

(
1−A2)R = 1− p (8.4)

This equation can be approximated toRA2 =− log(1− p).

In order to avoid the activation of spurious neurons during the recall process, it

is important that only the neurons belonging to the representation receive, at least,

CA Fmin active inputs. The number of active inputs, X, follows a binomial distribution

with parametersNA (repetitions) andpCd/N (probability of success). The probability

of a spurious neuron reaching threshold is represented byP(X ≥CA Fmin).

The central point in this reasoning is that the expected number of spurious neurons

activated should be as small as possible. On the limit, one can allow the activation of

one spurious neuron (zero activated spurious neurons impliesp = 0). This leads to the

following equation:

N (1−A)P(X ≥Cc A Fmin) = 1 (8.5)

The probabilityp, representing the fraction of synapses withSpeak≈ Smax afterR

representations are stored, can be calculated using equation 8.5. With this limiting

probability calculated, equation 8.4 provides an estimate to the number of represen-

tationsR that can be stored before spurious neurons start to become activated. The

number of representationsRdefine the capacity of the memory system.
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For the CA3 spiking memory used in the hippocampal model simulations, where

N = 200,Cc = Cd = 120, A = 0.05 andSmax≈ Sthresh/5 (that is, 5 combined input

were required to fire a CA3 neuron), the estimated capacity isR= 97. This theoretical

result is corroborated by the simulation results shown in figure 8.15. In order to test

the capacity in the model of CA3 subfield, several simulations were performed. Each

simulation consisted on the following steps:

1. A sequence ofR representations with a size ofN A neurons were stored in the

CA3 spiking model;

2. A sequence ofR noisy versions of the stored representations were placed in the

network and the recall of each representation was tested. The activity level was

constrained to 5%.

While in discrete time models the recall performance can be tested easily by calcu-

lating, for example, the dot product between the stored representation and the recalled

constellation, the different nature of this spiking model forced the use of more elabo-

rated methods. The solution adopted was to create a population of CA1 classification

neurons. During the storage process, each representation was associated with one,

and only one, CA1 classification neuron. During the recall process, the performance

was assessed by counting how many partial representations suffered enough recon-

struction to lead to the activation of their CA1 classification neuron. This solution

solves the problem associated with the continuum nature of the activity patterns and

is in agreement with the roles of the hippocampal theory for the CA1 subfield. The

only difference is that, in the hippocampal theory, a constellation of CA1 neurons are

associated with the CA3 representation, instead of just one neuron.

In simulations used to produced figure 8.15, partial cues with a noise of 30% were

used.

From the analysis of figure 8.15 one can see that when the network stores more than

100 representations, its performance decreases sharply. Performance is measured here

as the ratio between the number of correct recalls and the number of representations

stored. This simulation result is in very close agreement with the theoretical value of 97

representations, calculated with equation 8.5. This agreement increases the confidence

in the assumptions used to produce the theoretical estimate for the spiking network

storage capacity.
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Figure 8.15: Capacity of the CA3 spiking network. Performance is measured as the

ratio between the number of correct recalls and the number of representations stored.

Parameters NCA3 = 200, Cc(CA3) = Cd(CA3) = 120, ACA3 = 0.05and Smax= 17.0nS

for the recurrent collaterals.

The simulation results can nevertheless be shown in another format which em-

phasises a very important property of this model. While many other memory models

lose all recall capability when the capacity limit is exceeded, the CA3 network of this

hippocampal model maintains the ability to store and recall new representations by

erasing less invoked ones. In other words, independently of the number of represen-

tations that have been stored, this CA3 spiking model can always recall a number of

representations defined by its capacity. This is shown in figure 8.16 where the max-

imum number of patterns that the network can have simultaneously stored saturates

close to 100. This palimpsest property of the CA3 memory system results from the

homosynaptic depression dynamics.

In the simulations, the representations that tended to be correctly recalled were

typically the most recent. Nevertheless, “old” memories which, by chance, had more

or/and stronger connections were also correctly recalled. Since in this hippocampal

theory the recall process also produces changes (although small) in the synaptic plas-

ticity, a single recall of a fainting representation is sufficient to reinforce it, making it

more robust to the storage of new representations. It is important to notice that, due
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Figure 8.16: The CA3 memory system has palimpsest properties. Independently of the

number of representations that are stored, the CA3 spiking model can always recall a

number of representations defined by its capacity. Parameters NCA3 = 200, Cc(CA3) =

Cd(CA3) = 120, ACA3 = 0.05 and Smax= 17.0nSfor the recurrent collaterals.

to the plasticity dynamics, a representation is only faded when a new representation is

stored. In other words, fading is a not a function of time; it depends on the amount of

new representations stored.

This novel hippocampal model introduced then a new definition of capacity: in-

stead of being the number of representations that can be stored before the memory

system’s performance collapses, the capacity of a system is the maximum number of

representations that it can be simultaneously stored in the memory system.

Finally in this section, an estimate for the memory capacity of the CA3 subfield

in the rat is calculated. In order to do that, it is required to know the number of ac-

tive inputs necessary for threshold. Following experimental data in which the granule

cells are said to fire with few hundred combined excitatory inputs (Patton and Mc-

Naughton, 1995), I speculate that CA3 requires 300 post-synaptic responses from r.c.

to reach threshold. UsingN = 160000,Cc = Cd = 12000 andA = 0.025 it is possible

to calculate that:

• The fraction of synapses withSpeak≈ Smax is 0.78.

• The capacity is 2400.
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Unfortunately the estimated value for the fraction of synapses withSpeak≈ Smax

cannot be tested directly experimentally. In the rat CA3, synapses are created and

eliminated according to the information processing requirements. If a synapse is al-

ways silent,Speak≈ 0, it is expected to be removed. The fraction of synapses with

Speak≈ Smax in the rat CA3 is therefore, not the same as the fraction in the model were

the number of synapses is fixed

8.8 Final remarks

Albeit not specific to the episodic memory model, there are some points worth some

final remarks. The first is about the activity level control provided by the CA3 in-

hibitory population. In the simulations with the hippocampal model it has been found

that the precision of the inhibitory control mechanism is degraded if multiple sources

are converged to the same population. This is the case of the CA3 inhibitory population

which controls the activity level in CA3 in accordance to the activity level in the DG

and in the CA3. In these conditions, the inhibitory populations tend to produce lower

activity levels due to undifferentiated integration of sources. The solution is to use dif-

ferent inhibitory populations to control the different sources of excitation. This result

may be one of the reasons behind the high number of distinct inhibitory interneuron

populations that are present in each hippocampal subfield.

It is also worth mentioning that the episodic memory model could have been built

on top of k-winners-take-all mechanisms (O’Reilly and McClelland, 1994). Although

leading to a complete control on the activity levels, it would have made obscure many

interesting points (e.g. temporal computations performed by the mossy fibres, time

evolution of storage and recall processes). However, in capacity analysis it is impor-

tant to eliminate the big fluctuations in activity levels (and constellations sizes) that

originate from scaling down the memory system. It was therefore worth to define and

parameterise the inhibitory control mechanisms based on spiking neurons. More and

more attention should be devoted to the study of the inhibitory populations which seem

to be behind many interesting and complex computations.





Chapter 9

Spatial memory

The existence of hippocampal cells that fire in complex bursts when the animal moves

through a specific location in an environment were shown by O’Keefe and Dostrovsky

(1971) and O’Keefe (1976). These special cells are called place cells and their regions

of preference are called place fields. Inside its place field, a place cell may fire at a rate

of 20 Hz or more, whereas outside its field, it may fire at a rate of 0.1 Hz, or less.

The existence of place cells offers strong support for the hippocampus’ involve-

ment in spatial mapping (O’Keefe and Nadel, 1978) in which a sufficient number of

place cells and their respective fields are able to cover and map any given environ-

ment. The view presented in this thesis, however, is that place cells are a property, and

a consequence, of the more general episodic memory function of the hippocampus.

This idea follows Eichenbaumet al (1999) and Woodet al (1999) where the memory

function of the rodent hippocampus is seen as a “memory space” instead of a “spa-

tial memory”. This general memory space is capable of encoding different types of

information that can occur as “episodes”, i.e. multi-modal sensory experiences cir-

cumscribed in time.

This chapter shows that the hippocampal model presented in chapter 7, which was

developed to explain the functional properties of the hippocampus regarding episodic

memory, recreates, alone, key results from spatial learning experiments with rats. Al-

though the results in this chapter are preliminary, they pave the way to a more detailed

analysis of spatial memory in the hippocampal theory. The results from the prelimi-

nary simulations presented in this chapter provide a high degree of confidence in the

ability of the hippocampal model to incorporate the results from spatial memory ex-
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perimental paradigms. This is an extremely important step forward against the view of

the rat hippocampus as a specialised structure for spatial memory.

Organisation of the Chapter

The first section states which are the key properties that define a place cell and a

place field. Section 9.2 then shows that cells taking part in internal representations of

episodic-type memories exhibit the properties of place cells. Simulations of the hip-

pocampal computational model are used to corroborate this statement. The notion of

“activation fields” is then introduced to substitute the term “place field”. Section 9.3

addresses the hypothesis that the nature of the activation fields of entorhinal, perirhi-

nal and postrhinal cortices, reported in the literature, are in fact different from the

hippocampal activation fields. Some final remarks are presented in section 9.4.

9.1 Properties that define place cells

Hippocampal place cells fire in complex bursts when the animal moves through a spe-

cific location in an environment. The complex, or patterned, spike bursts are comprised

of anywhere from 2 to 10 spikes, with the amplitude of successive spikes typically, but

not always, decaying. The “intra-burst” frequency ranges from 200 to 250 Hz (4 to

5 ms period) while the “inter-burst” frequency is typically in the range between 0.1

and 1 Hz (seconds to thousands of milliseconds) (Ranck, 1973; Fox and Ranck, 1975;

1981).

Place cells are not limited to the hippocampus though. Already at the input level

to the hippocampus, in the medial entorhinal cortex, there are cells showing space

selectivity. The spatial firing properties are heterogeneous across the bands of the

medial entorhinal cortex (Fyhnet al, 2004):

• dorsolateral band - cells show multi-peaked fields (median number of 4) with

intervening silent areas, i.e. the fields are clearly delimited against the interven-

ing background; the multi-peaked firing fields are completely dispersed on the

spatial environment.

• intermediate band - most cells are spatially modulated but their place fields are

broader and less coherent; the place fields contain less peaks (median 1.75) and

lacked the characteristic silent areas observed in the dorsolateral band.
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• ventromedial band - only very weak spatial modulation is apparent.

This heterogeneity is projected topographically to the hippocampus with a dorsolateral-

to-ventromedial axis from the medial entorhinal cortex corresponding to the dorsal-to-

ventral axis in the hippocampus (Dolorfo and Amaral, 1998; Fyhnet al, 2004). In the

dorsal hippocampus, cells in CA3 and CA1 show spatial modulation which is sharper

than the spatial selectivity found in EC cells. The number of subfields (local activity

peaks) in the hippocampal cells is also smaller than the multi-peaked fields from the

dorsolateral band of the medial entorhinal cortex (Fyhnet al, 2004).

Figure 9.1 shows what has become the standardised way of presenting place fields.

In this style, developed by Mulleret al(1987), a firing rate map of a place cell is plotted

on top of the Cartesian map of the environment. The firing rate map is produced

by creating a grid in the environment and counting, for each sector of the grid, the

number of spikes fired by the place cell and the amount of time spent. A firing rate for

each sector is computed with these values. The firing rate is colour coded with each

successive darker colour being represented by 80% fewer pixels than the preceding

lighter colour. This way, the “Muller” rate map depicts changes in firing rate tied to

the area of the field and not directly to the firing rate itself. A place cell may have a

firing rate of 20 Hz, or above, within its place field, and have a firing rate of 0.1 Hz or

less, outside. For a more detailed view on the complexities of analysing place cells see

Muller et al (1987).

Beyond the defining criteria regarding the firing rate map, place cells and their

place fields have a set of interesting properties from which the most relevant are:

• Stability

• Responses to environmental manipulations

• Relations to theta rhythm

All these properties will now be discussed in detail.

9.1.1 Place field stability

Place fields are created during exploration of a new environment. The time for forma-

tion of place fields upon entry into a novel environment is of the order of 10 minutes
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Figure 9.1: Representation of place field data: the “Muller” firing map. Six place cells,

with clear place fields, are presented (Muller et al, 1987). The colour sequence, from

lower firing rate to higher firing rate is yellow, orange, red, green, blue, purple. Yellow

represents 0 Hz while purple is around 20 Hz.

(Wilson and McNaughton, 1993). If the environment configuration is static, these

place fields are stabilised and remain stable for very long periods of time, up to months

(Thompson and Best, 1990). Stability means that place fields remain roughly un-

changed in subsequent visits to a previously explored environment.

One important experimental result regarding place field stability is that rats with

impaired long-term plasticity in the Shaffer collaterals pathway are incapable of sta-

bilising place fields in the CA1 region (Tsienet al, 1996). Although the animal forms

naturally place fields each time it explores a specific environment, these place fields

are not maintained in subsequent visits to the same environments. That is, on each

visit, the animal forms different place fields as if it would be the first time that it was

exploring the environment. One can therefore say that, although long-term potentia-

tion in the Schaffer collaterals is not required for the correct formation of place cells,

it is necessary for the properties and, most importantly, for the stability of place fields.

9.1.2 Responses to environmental manipulations

Another important characteristic of place cells is their remapping properties, which

result from geometric manipulations in the environment. It has been show that ma-

nipulations to the environment affect place fields’ topographical properties in a similar
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way. Possible manipulations include rotation (O?Keefe and Conway, 1978), cue re-

moval (Shapiroet al, 1997) and size transformations (O’Keefe and Burgess, 1996).

Rotation and scaling have impressive results, producing equivalent effects in the ge-

ometry of the place fields. More complex manipulations, which may involve changing

the contents of the environment, produce different results.

A very important point is that the effect of environmental manipulations in CA1

and CA3 cell ensembles are distinct. While in CA3 distinct constellations of pyramidal

cells are activated in different environments with similar background features, in CA1

similar features in different environments lead to overlap in activated constellations

(Leutgebet al, 2004).

9.1.3 Relations to theta rhythm

When the temporal properties of single complex-spike bursts are compared with the

theta oscillation of the population one observation can be made: the discharges of

complex cells occur during the positive half of each theta cycle. This relationship

between the complex-spike bursting and the theta oscillation is called “phase-locking”

(O’Keefe and Recce, 1993). In addition, the spike activity of a place cell advances

to earlier phases of the theta cycle as the rat passes through the cell’s place field (see

Skaggset al, 1996). This phenomenon, known as the “theta phase precession” or

“theta phase advance”, has been suggested as providing additional information (phase-

coding) on the animal’s location (Jensen and Lisman, 2000).

9.2 Place cells as components of internal representa-

tions

It is important to notice that filtering and smoothing algorithms are often applied to the

spike counts in order to produce the continuous firing rate maps seen in the literature.

However, it is very important to keep in mind that the raw data regarding spike counts is

far from being smooth. The firing of a place cell is stochastic and the approach taken in

this hippocampal theory is that place fields are defined as a modulated firing probability

instead of a modulated firing rate. Although these two approaches are numerically

the same, phenomenologically they are grounded in completely different assumptions.
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While firing rate modulation implies rate coding, the firing probability modulation is in

accordance with the form of coding assumed in this model, which is based in activity

patterns (constellations of active neurons). Multiple spikes produced by one cell, have,

in the firing probability modulation approach, the effect of an increase in the fidelity

of the signal transmitted. For an activity pattern to be reliably recognised by a post-

synaptic cell, a spike from all the cells composing the activity pattern should arrive

within the integration time window ofτm. This superposition is more reliable if each

cell in the activity pattern produces a short burst instead of a single spike.

The simulations presented in this chapter show that the results from spatial mem-

ory experiments can be reproduced assuming coding and processing in the form of

activity patterns, and firing probability modulation. In addition, major spatial memory

experimental results and observations can be explained with the model developed in

chapter 7 for episodic memory.

Following the hippocampal model of chapter 7, place cells are cells that have been

recruited to take part in an internal representation of the environmental configuration.

In a new environment, emotional reactions such as fear or novelty, trigger the forma-

tion of hippocampal internal representations which represent particular environmental

configurations. Which features of the new environmental configuration are combined

to form and store an (episodic) internal representations, and how many internal rep-

resentations are stored, depend on the consistency of the environmental features. The

short-term dynamics of mossy fibres may play an active role in selecting, among the

multi-modal information, which properties are relevant. Most probably, other mecha-

nism may also intervene in this process.

Visual, auditive, proprioceptive, somesthetic, and other sensory domains, are a

function of space, as they are also a function of time. For example, if several dif-

ferent odour sources are distributed in an environment, the information that arrives at

the olfactory system is a function of the concentration of each odour molecule which,

in turn, is a function of the distance to each source. In the static arenas of the spatial

memory experiments, a particular combination of perceptual (and cognitive) states is

therefore linked to a particular position in space.

If the hypothesis that a place cell is simply a cell belonging to an internal represen-

tation of a specific environmental configuration, then cells in the model for episodic

memory (chapter 7) should verify all fundamental properties of place cells. The simu-
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lation results that will be now presented address this point. This analysis was grounded

in the following assumptions:

• in a new environment, one or more internal representations are formed (and

stored) combining the most relevant and consistent elements or features;

• the storage process requires exploration and the perceptual signal provided by

particular features is stronger in specific regions;

• in a static arena/environment, the activity patterns in the entorhinal cortex are

modulated mostly by space (position);

• the segregation in the EC means that changes in individual perceptual channels

produce small changes (high degree of overlap) in the activity patterns in EC.

9.2.1 Simulations

A population of 200 neuron units representing CA1 pyramidal neurons was added to

the hippocampal network shown in figure 8.6. The CA1 population received inputs

from the EC (Cd = 44,Speak= 6.3nS) and from CA3 (Cd = 100,Smax= 11nS). Instead

of producing a population representing ECIII, the EC inputs to the CA1 were taken

directly from ECII. The connections from EC to CA1 were parametrised so that an

activity level of 10% in EC would produce an activity level of 5% in CA1. The Schaffer

collaterals hadSpeak= 0nSinitially and were subject to associative learning (∆LTP=

5.5nSand∆LTD= 0.5nS). A population of 20 inhibitory interneurons, with properties

identical to CA3i (see figure 8.6), was created for the CA1 population.

Internal representations were stored in the complete memory system for 5 different

EC activity patterns, following the storage process described in section 8.4.

It is important to notice that, in this hippocampal network, any EC activity pattern

produces a CA1 activity pattern. Nevertheless, after learning, the CA1 activity pat-

terns that are produced by EC patterns that resemble one of the 5 pure patterns, are

mostly driven by the Schaffer collaterals. That is, for noisy versions of a pure pattern,

the Schaffer collaterals override the effect of the perforant path and rebuild the CA1

representation that was originally produced in the storage process. The competition

provided by inhibitory interneurons is fundamental for this mechanism.
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Figure 9.2: Firing profile of a CA3 neuron units as a function of the EC activity pattern.

In A, the features associated with a stored representation are concentrated in a small

area of the environment. In B, the same features are spread over a larger area of the

environment, as a consequence of a geometrical expansion. In this case, the recall

process produces a larger area of activation of the internal representation. Parameters

from figure 8.6. See text for more details.

Figure 9.2 shows the firing characteristics of a CA3 neuron unit as function of noisy

versions of one (stored) pure EC activity pattern. Following the concept of segregation

in the EC, the sequence of noisy versions presented consisted of corrupting a portion

(60%) of the pattern. The level of corruption in the portion progressed from 60% to

0% and returning to 60%. The total sequence had a length of 3 seconds, with each EC

spatial pattern being presented at a rate of 10 Hz (theta frequency). This modulation

in time of the perceptual input is equivalent to the space-modulated perceptual input

that a rat is subject to when moving in a static environment. The EC activity pattern

matches the pure pattern at 1500 ms.

The CA3 cell, as expected from the hippocampal theory presented in the previous

chapter, starts to fire when the EC pattern is similar to the pure pattern, which occurs

in the middle of the time sequence. At this stage, the pattern completion mechanisms

take place and the complete internal representation is activated, including the measured

unit. A few more spikes are fired when the environmental configuration (expressed in

the input pattern) matches very closely the pure pattern. In other words, although

spikes start to fire at similar activity patterns, the spiking activity is highest when all
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Figure 9.3: Place field in a linear path. Adapted from Nakazawa et al (2004).

the original features, which were present in the pure pattern, are combined again. This

results from the fact that more reliable information leads to more input current to the

representation neuron, which, in turn, originates more spikes in the neuron unit. Again,

this is not related to rate coding. This is seen, in this hippocampal model, as an increase

in the fidelity of the information encoded (see section 8.4).

The firing profile of this neuron can be compared with the firing of place cells as

the animal enters its place fields. Recordings from place cells of a rat moving on a

linear path are shown in figure 9.3. Conceptually, this experiment is identical to the

simulation.

If the spiking profiles shown are converted into a firing-rate profiles, one obtains

the structure of place fields (see figure 9.4).

If instead of a crude filter such as the running time window, a Gaussian kernel is

used to convert the spike counts to firing-rate, one obtains firing-rate profile with the

structure of the one shown in figure 9.5.

It can be seen that some firing fields are asymmetric with the firing peak closer to

the end of the field. This means that the activity grows steadily as the field is entered

but drops fast closer to the end of the field. This is a consequence of the dynamics

of the continuous spiking networks that model each subfield of the hippocampus. The

state of the system is continuously changing and affecting the following states. In the

case of the CA3 network, a noisy version of a pure activity pattern may not be sufficient

to invoke the activation of an internal representation, but it will put the constellation

of intervening neurons closer to threshold. A following noisy pattern will require less

effort to recall the representation. At the end of the field, the state of the CA3 network is

still influenced by the low noise input patterns. When this influence is lost and the noise

of the input pattern is high, the activity of the neurons belonging to the representations

drops very fast.
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Figure 9.4: A running-average filter was used to convert the spike counts from figure

9.2 to firing-rates. The amplitude of the moving time window was 500 ms. This simple

filtering was used to avoid the production of any artefacts in the data.

Figure 9.5: Smooth firing-rate profiles. A Gaussian kernel (σ = 200ms) was used to

convert the spike counts of figure 9.4-C to firing rates.
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The same simulation experiments with CA1 neurons produce similar profiles but

with an interesting difference: the activation of individual CA1 cells requires that only

specific subsets of the EC input pattern are correct. This point will be discussed in

more detail in section 9.3

Environmental manipulations

In this theory, environmental manipulations are simply geometric operations in

the perceptual signals. In rats, the perceptual signals are invariant to the rotations

of the whole environment. Animals with internal orientation mechanisms (internal

compasses) could nevertheless provides interesting experimental results.

In terms of scaling manipulations, the individual perceptual fields are dilated or

compressed, depending on the case. In the simulation shown in 9.2 this corresponds

to an increase or decrease in the gradient of the noise in the sequence. In sequences

where the transition from different to similar input pattern is faster, corresponding to

a decrease of the environment, the activation field is reduced. When the transition is

slower, meaning expansion of the environment, the region where pattern completion

can take place is equally expanded leading to a bigger activation field.

Environmental manipulations involving transformations of subsets of the environ-

ment only test the power of pattern completion in CA3 and to which features a CA1

neuron responds to.

Due to the results of this section, and for the rest of this thesis, the term “place

field” will be avoided and substituted by “activation field” which is more general.

A study of phase precession in this hippocampal model is left for a future work.

It may, nevertheless, be related to the drifting mechanisms in the firing initiation time

that have been shown in section 8.4 (third stage in the storage process).

9.3 Different types of activation fields

In this section I present my personal view of the true nature of “place-fields”. This

discussion, although speculative, is motivated by simulation results and by the hip-

pocampal model functional properties. It remains, however, a mere hypothesis.

As mentioned before, not only CA1 and CA3 neurons exhibit space selectivity.

Neurons with similar spatial correlates have also been described in the medial entorhi-
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nal (Fyhnet al, 2004), perirhinal and postrhinal cortices (Burwell and Hafeman, 2003).

There is nevertheless a strong difference in the activation fields of these cortical inputs

to the hippocampus: most cells exhibit activation fields with split or multiple subfields

(Burwell and Hafeman, 2003; Fyhnet al, 2004). In the case of postrhinal firing fields,

the majority of the cells (84%) adopted new spatial correlates when experimental cues

were rotated, but did so neither predictably nor concordantly. I therefore propose the

hypothesis that, all these different cells that have been homogeneously called “place

cells” in the literature, are in fact cells responding to signals of different nature.

The representations in CA3 are chosen through a process that projects into a high

dimensional space the EC activity patterns. The multi-model information from the EC

is completely mixed and combined to form an internal representation. On the other

hand, the representations in CA1 are formed directly from the EC, although only the

representations that are associated with a storage process in CA3 are stabilised by the

Schaffer collaterals. While the CA3 representations are totally distributed, the CA1

representations tend to overlap more due to the absence of a separation mechanism.

And this can be seen at the single neuron level: for two overlapping EC input patterns,

a neuron from a CA1 representation will have a much higher probability of firing in

both input patterns than a CA3 neuron. This is in accordance with experimental results

(Leutgebet al, 2004).

The very important point to make is that while CA3 neurons respond to the com-

plete combination of all the original features in the EC multi-modal input, CA1 neurons

can still respond to individual features. Therefore the interpretation given to the activa-

tion fields of this populations should be slightly different. The situation with the spatial

selectivity in medial entorhinal, postrhinal and perirhinal is, however, completely dif-

ferent.

I propose here that the different properties of the activation fields of the cortical in-

put areas reflect the coding of individual perceptual features. That is, assuming segre-

gation in these regions (which is in fact true, at least, for the medial entorhinal cortex),

each subregion is conveying information from different sensory associational areas in

the neocortex. Therefore the firing of each cell refers to a single dimension of the

whole perceptual (and cognitive) state. If the coding mechanism in these regions is

also based in constellations of active neurons (activity patterns), a multi-peaked active

field of a neuron represents its presence in more than one representation. In an abusive
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example, one may think of a neuron which is shared in the internal, high level repre-

sentation of two different odours. When recording from this neuron, its activation field

will be peaked in two regions of the space where the distinct odours appear. Again, it

is important to emphasise that it is not “space” but the modulation that it provides: its

not a location that is being detected, but the presence of a feature instead.

Therefore I expect that the “place fields” measured in pre-hippocampal regions

reflect the detection of individual features of specific sensory or cognitive channels,

while CA3 “place fields” are the only fields representing a combination of features

which describe an event, episode or environmental (perceptual) configuration. The

CA1 activation fields are an intermediate situation between the entorhinal cortex and

CA3.

It may be possible that, due to functional constraints, the output of the hippocampal

memory system has to be the concatenation of individual features instead of a repre-

sentation of the combination of the features. Nevertheless, the recognition and recall

of an event, episode or perceptual configuration has to be performed at the whole level.

This way it is plausible to think that when an event, episode or perceptual configura-

tion is recalled through the activation of a CA3 internal representation, the original

CA1 representation, sensible to individual features, is reconstructed. The CA1 con-

nections back to the entorhinal cortex deep layers may then reconstruct, or complete

with the missing parts, the EC activity patterns. This decoding mechanism makes use

of the information stored in the CA3 internal representation to recreate the original EC

activity pattern.

9.4 Final Remarks

With very few exceptions, spatial memory experiments have explored the influences of

sensory channels in the activity of CA1 and CA3 cells. In these few exceptional cases

(e.g. Woodet al, 1999), the activity in hippocampus has been found to be consistently

related to perceptual, behavioural or cognitive events, regardless of the location where

these events occurred.

If this hippocampal model is correct, all dimensions in the perceptual space affect

the activation fields of CA1 and CA3 cells. More experiments are required to test this

hypothesis.
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A final remark goes for the coding problem. If the assumption of this thesis - that

most information is expressed, transferred and processed in the form of constellations

of active neurons (activity patterns) - is correct, then analysing the activation fields of

pre-hippocampal structures is analysing the neural code in which perceptual features

are expressed. These features should not be seen as “distance to a corner” or “head

orientation”. They are high-level representations of perceptual components which may,

or may not, be merged together.
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Conclusions and Final Remarks

The objective of this chapter is to briefly summarise the major contributions of this

thesis and present a critical analysis of its weak points.

10.1 Contributions of this thesis

This thesis has introduced a detailed functional model of the hippocampus which clar-

ifies the roles of this memory system. The hypothesis of the hippocampus as a spatial

map (O’Keefe and Dostrovsky, 1971) is rejected in favour of the view of the hippocam-

pus as a general memory space (Eichenbaumet al, 1999). In this general, but not

permanent memory system, multi-modal information, coming from different associa-

tional areas of the neocortex, is combined and stored together. By storing an internal

representation of a particular combination, in time, of several perceptual and cogni-

tive features, the hippocampus is storing the description of a specific event, episode or

perceptual (environmental) configuration (see figure 10.1). While in humans one can

speak in terms of events and episodes, it is more plausible to speak about perceptual or

environmental configurations for rats.

With the aid of a simulation environment, intimately related to the hippocampal

computational model, all the novel ideas of the hippocampal theory were shown to

effectively work. The simulations not just reproduced experimental results but also

added important information on specific components of this memory system. The

detailed level in which the hippocampus was represented allowed many manipulations

(such as the removal of the mossy fibres - Lassalleet al, 2000) and production of new
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Figure 10.1: The hippocampus works as a general memory system. Triggered by the

medial septum, the hippocampus stores internal representations of important percep-

tual configurations. The relevant features of the perceptual/environmental configuration

may consist of geometric (a and d), auditive (b), visual (c) or olfactive (e) information.

hypothesis (such as the true nature of place fields).

Although based on models such as Marr (1971), Treves and Rolls (1992; 1994),

O’Reilly and McClelland (1994) and Hasselmoet al (1995; 1996), this model intro-

duced many novel issues not addressed in the previous models. Significant contribu-

tions are:

• A different coding mechanism, based on activity patterns (or constellations), is

used instead of the typical firing-rate coding. This constellation coding mech-

anism explains, in much more detail, the storage, recall and signal processing

dynamics in the short time scale of tenths of milliseconds. While the coding

mechanism itself is an assumption, the biologically plausible strategies intro-

duced in this model to deal with this equally plausible code mechanism (Vaadia

et al, 1995) are a significant contribution of this thesis.

• A detailed quantitative description on how interneurons control the activity lev-

els in the principal populations is provided. The importance of the activity level

in the dentate gyrus during the process of selection of the CA3 representation

suggests a precise role for the mossy cells. In addition, the mechanisms be-

hind the proposed activity control suggest a reason for the variety of inhibitory

interneurons in a single subfield: since each inhibitory population can only ef-
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fectively control the activity of one excitatory source, principal populations with

different sources require different populations of inhibitory cells.

• Synaptic short-term dynamics are introduced and shown to play important roles

in the hippocampal functional behaviour. In particular, synaptic short-term in

mossy fibres are shown to have strong implications on the dynamics of the sys-

tem. This hippocampal model refined the responsibilities of these fibres: besides

contributing to the creation of sparse CA3 representations, mossy fibres select

which features in the input space are consistent in time. This produces internal

representations which are more correlated with the relevant features of a par-

ticular environmental/perceptual configuration and less dependent on noise and

variable input channels.

• This hippocampal model includes representations of the dentate gyrus, CA3 and

CA1. Each component works in accordance with experimental data and, most

importantly, the system as a whole, mimics and explains the memory system

created by the hippocampus. The processes based in the coding mechanism and

activity control explain how information is transferred from subfield to subfield

maintaining the stability of the system.

• Taking advantage of the use of spiking neurons, this model opens a window to

the short-time scale which is averaged out in firing-rate models.

The last point is in fact very important and is now discussed in more detail since

it is behind relevant contributions of this model. The use of spiking neurons is crucial

for this hippocampal model. They open a window to the milliseconds time-scale of

the system’s dynamics, and thanks to this temporal precision, it is possible to obtain

information which is unreachable using firing-rate neurons. For example, with the

hippocampal model based in spiking neurons, it was possible in this thesis to:

• calculate the time it takes to recall an internal representation, that is, the time be-

tween the presentation of a known activity pattern in EC2 and the full activation

of the associated CA3 constellation;

• analyse the impact of short-term dynamics of the mossy fibres in the process of

selecting features in the EC2 input space;
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• verify the extreme importance of coherence and synchrony in neuronal activa-

tions in the propagation and processing of signals in the hippocampal subfields;

• calculate the time that it takes to build and complete an internal representation

in the CA3 subfield;

• propose efficient and biologically realistic inhibitory control mechanisms which

are able to respond even to transient excesses of excitation.

The above results could not be achieved using firing-rate models. The detailed

analysis of the implications of spike-timing dependent plasticity in the perforant path

and Schaffer collaterals, which was left to future-work, is also only possible with the

use of spiking models.

Spiking models and firing-rate models only provide equivalent results in the cases

where the firing of neurons in a network is uncorrelated, with little synchronous firing,

and where precise patterns of spike timing are unimportant (Dayan and Abbott, 2001).

This is exactly not the case here since the hippocampal model processes and transmits

information using synchronised firing in constellations of neurons.

One significant achievement of this thesis is the creation of an hippocampal model

which integrates spatial memory and episodic memory in a single framework. In the

hippocampus literature, few are the models that try to combine episodic with spatial

memory in a single computational framework. One such combined model was pro-

posed by Rollset al (2002) and is based in two connected attractor networks, one dis-

crete and the other continuous. While the discrete attractor network creates a system

capable of storing and recalling binary patterns (working as an associative network),

the continuous attractor network recreates some of the properties of place fields, the

fundamental building block of spatial memory. This model is nevertheless not biolog-

ically realistic and presents several limitations.

Another contribution of the thesis refers to the presented methods to integrate sev-

eral spiking networks in a system that works harmoniously. The use of spiking neu-

rons introduces several problems regarding stability. This thesis has presented ways of

producing biologically plausible activity control mechanisms which secure the proper

functional behaviour of spiking networks. Furthermore, it has shown how information

can be expressed, transferred and processed in the form of activity patterns. This the
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coding mechanism seems to me more sensible than the rate coding used in most hip-

pocampal models. The implications of constellation-coding are vast and interesting.

Some of them were addressed in this thesis for the case of the hippocampal system (for

example, the production of a constellation in CA3 by the dentate gyrus).

10.2 Critical Analysis of the thesis

A weak point in this hippocampal theory is the absence of all the diversity of hip-

pocampal interneurons. Although some specific roles have been given for particular

interneurons (such as the mossy cells in the dentate gyrus), all the richness of the pos-

sible computations executed by the interneurons was left untouched. Related to this

fact is the absence of a precise description for the mechanisms that segregate individ-

ual activity patterns. In the hippocampal model, the EC input activity patterns were

presented at theta frequency. Although the hippocampal computational model is capa-

ble of functioning which activity patterns being continuously presented (as long as an

external homogeneous input at theta frequency is applied) the performance of storage

and recall is degraded. The cause for the reduction in performance is derived from the

absence of coherence in the activation of the neurons belonging to the internal con-

stellation (figure 10.2). Another cause for the reduction in performance is the spurious

firings originated by the accumulation of continuous excitation.

Another point deserving some criticism is the absence of a more detailed analysis

of the implications of the use of spike-timing dependent plasticity. One of many in-

teresting consequences of using the STDP rule is that the activation order of internal

representations becomes important. For example, if the representations composed by

the constellations of neurons A, B and C were stored with an activation order of BCA,

then the recall process will always proceed in this order. The use of STDP can therefore

be relevant if sequences of representations are to be stored or if temporal associations

of internal representations are important. Information regarding the transition between

internal representations can be stored using STDP, and this is important to understand

the role of the hippocampus in sequence memory/learning and navigation.
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Figure 10.2: Importance of theta oscillation for the segregation of the activity patterns.

In A, the excitatory inputs to CA3p are under theta oscillations. Although the amplitude

of the oscillations is not very big, it is enough to secure that the neurons belonging

to an internal representation are activated coherently. In the situation depicted in B,

where the excitatory level is constant, the activation is not synchronised and there is no

guarantee that all neurons belonging to the internal representation will be active within

a time window of τm.
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Future Work

The hippocampal model of this thesis can be explored in many fronts. In particular,

many of its assumptions (such as coding in constellations) and hypothesis (such as the

different nature of place cells, and the notion of activation fields to substitute place

fields), can be further analysed in order to produce more predictions which can be

tested against experimental results.

There are many interesting points, initially part of the thesis objectives, which were

prevented from being addressed here due to lack of time. In this chapter, I describe the

most relevant and promising ones.

Topics for future work

1. Undoubtedly, the major future objective is to take the preliminary results shown

in chapter 9, and investigate in detail the properties of the hippocampal model

regarding memory for spatial configurations. Much can be done in showing that

paradigmatic results from spatial memory experiments, which see the hippocam-

pus as a specialised structure for spatial memory, can be recreatedand explained

using the hippocampal model of this thesis, which, in turn, sees the hippocampus

as a general memory space for environmental/perceptual configurations.

2. Following the previous point, the issue of phase-precession should be addressed

in the hippocampal model. This property should be verified in neurons taking

part in ordinary internal representations. In order to achieve a conclusive result,

a detailed model of the interactions between the septum and the hippocampus

will probably be required.

173



174 Chapter 11. Future Work

3. Another interesting future objective is to explore the effects that short-term dy-

namics in Schaffer collaterals may produce (Dobrunz and Stevens, 1997) in the

hippocampal memory system. In the present hippocampal model, the response

of a subfield to an incoming activity pattern depends on the present state of the

subfield. With synapses exhibiting short-term dynamics, temporal correlations

between patterns can be detected and temporal features can be decoded. This

is the door to sequence learning and navigation. The simulation environment

satisfies all the requirements to conduct experiments and analysis in this topic.

4. Slowly the computational importance of interneurons is being acknowledged.

This theory introduced specific roles for interneurons but much more can be done

and it would be extremely interesting to populate the hippocampal model with

more interneuron types. Fortunately there is a considerable amount of morpho-

logical and physiological experimental data regarding hippocampal interneurons

which can be used to produce hypothesis about their specific functional roles.

5. The simulation environment that resulted from this thesis is a very rich and gen-

eral tool. It uses a unique body of assumptions, approximations and algorithms

that can be of use in many simulation experiments, not only regarding hippocam-

pal functional behaviour. In the context of heterogeneous spiking networks it is

much more efficient than NEURON. It can, nevertheless, be substantially im-

proved in terms user interface, output functions, among other things.

6. The discussion about the storage capacity of the spiking network model of CA3

presented in this thesis was quite empirical. This subject is nevertheless of great

relevance and it would be very interesting to analyse it theoretically. Particularly,

I would like to see if the expression for the storage capacity holds in much larger

networks.



Appendix A

Mossy fibre butons as dynamical

synapses

Abstract: In this work the consequences on the activity of CA3 pyra-
midal neurons of the dynamic properties (facilitation and depression) as-
sociated with hippocampal mossy fibre boutons are explored; namely, a
study is carried on the dependence of the pyramidal cell activity with the
input stimulus frequency to the mossy fibre boutons as well as the influ-
ence of the single vesicle post-synaptic response magnitude on this depen-
dence. We calculate tuning curves for the mossy fibre boutons excitatory
post-synaptic potentials as a function of pre-synaptic frequency and we
show how this property, together with channels that contribute to spike fre-
quency adaptation, makes the activity of CA3 pyramidal neurons strongly
dependent on the temporal patterns of mossy fibres pre-synaptic signals.

A.1 Introduction

Hippocampal mossy fibres have their origin in dentate granule cells and terminate on

the proximal dendrites of CA3 pyramidal cells where their activity produces fast glu-

tamergic excitatory post-synapticpotentials (EPSPs). They have a strong influence on

CA3 pyramidal neurons activity not only due to the proximal location but also because

of the multiple release sites, up to 37 (Chicurelet al, 1992), which generate large EP-

SPs. Due to this strong efficiency and efficacy, it is natural to assume that the activity

dynamics of the boutons will be strongly transfered to the soma.

Viewing the boutons as dynamical synapses with short-term memory mechanisms

like facilitation and depression, with the associated filtering properties, and considering
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the fact that CA3 pyramidal neurons have spike frequency adaptation ionic currents

present in their proximal dendrites and soma, brings interesting consequences in terms

of the neuron’s activity dependence with the input temporal patterns of mossy fibre

boutons.

A.2 Methods

All simulations were performed withNEURON(Hines and Carnevale, 1997) using

a realistic model of a CA3 pyramidal neuron (Miglioreet al, 1995) which includes

Na, t, L high threshold,N, T low threshold,A, K, M, K,Ca andCa ionic currents.

Some of them (M) contribute to spike frequency adaptation or (A andK,Ca) affect

interspike time interval. All the parameters used were based in experimental results.

The temperature was set to 30 Celsius.

UsingNMODL (NEURONModel Description Language) a model was created for

the mossy fibre synapse based on the probabilistic model for dynamic synapses sug-

gested in Fuhrmannet al (2002), which accounts for depression processes. According

to that,Pr , the probability of release for every release site at time of a spike,tsp, is

given byPr(tsp) = Pvr ·Pva wherePvr is the probability of vesicle release for a release

site with an available vesicle (affected directly by facilitation) andPva is the probability

of a vesicle to be available for release at timet (directly affected by depression). The

dynamics are:

dPva

dt
=

1−Pva

τrec
−Pva ·Pvr ·δ(t− tsp) (A.1)

whereδ is the delta function,tsp is the time of arrival of a spike andτrec the relax-

ation time constant of depression.

For the facilitation process,Pvr was made proportional to the calcium concentration

inside the bouton withPvr = 1 when[Ca2+]≥ 0.2µM.

The post-synaptic response is then calculated according to the classical quantal

model of release:PSR= q · n ·Pr , whereq is the the post-synaptic response to the

release of each vesicle andn is the number of vesicle release sites.p and n are

related with pre-synaptic processes/mechanisms whereasq is post-synaptic related.

The conductanceq is assumed to be affected by learning (i.e. long term potentia-

tion/depression).



A.3. Results 177

The value used forτrec was 300 ms which is in close agreement with biological

measured values (Markramet al, 1998). The post-synaptic conductance was modelled

as a two state kinetic scheme synapse described by rise time of 0.5 ms and decay time

constant of 5 ms (Jonaset al, 1993).

On this model a small number of mossy fibre synapses (5) with 30 release sites

were connected to the CA3 pyramidal neuron with a associated unitary, i.e. per vesicle,

conductance ranging from 1 to 20 nS. The synapses were placed in the proximal region

(proximal apical dendrites) and all received the same spike train characterised by a

specific constant frequency (no variability was added to the interspike time intervals).

We here assume that among the approximately 50 contacts that each pyramidal cell

receives from granule cells (Johnston and Amaral, 1998), only a small percentage were

active in a limited time window and with the same, or very similar, temporal pattern.

The dependence of the activity of the pyramidal neuron with the frequency of

mossy fibre inputs and the post-synaptic conductance was measured as the number

of spikes generated in a specific time window.

The effect of the dynamic properties of the mossy fibre boutons on the activity of

the neuron was also studied when the soma is bombarded by small EPSPs generated

by several poissonian point processes randomly distributed in the dendritic tree. The

mean frequency of the Poisson spike train for each point process representing an non-

dynamic dual exponential synapse, was randomly chosen in the 0 to 60 Hz spectrum.

In this more realistic context, the activity of the pyramidal neuron was measured again

in terms of its average firing rate as a function of the mossy fibre spike train frequency.

A.3 Results

The tuning curves for all the analysed unitary conductances (q) were plotted and the

optimal input frequency was calculated fitting the data points with a dual exponential

expression (with typicalR2≥ 0.9). An example forq = 4nSdata points and the fitted

tuning curves for other three different conductances is shown in Fig.1.

Changing the post-synaptic response through the variableq, has the effect of mov-

ing the peak frequency. The calculated fitting surface, as a function ofq and the input

frequency is shown in the left side of Fig.2. The dark line represent the optimal input

frequency (associated with the highest soma activity) for each unitary conductance.
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Figure A.1: Tuning curves for neuron’s activity.

Figure A.2: Tuning surface and optimal average rate for the mossy fibre input spike

train.

This optimal frequency curve is presented in more detail in the right side of Fig.2.

For the more realistic situation where the soma is being bombarded by small EP-

SPs, the properties of the dependence of the pyramidal neuron average firing rate with

the mossy fibre input frequency, and unitary conductance, were not affected:

Forq = 4nS, the calculated corresponding optimal input frequency isfopt≈ 62Hz.

With the mossy fibres receiving spike trains with this frequency together with the fixed

distribution of poissonian point processes with fixed random average rate and small

fixed random conductances, the obtained average firing rate of the pyramidal neuron

was 24 Hz. This maximal value was significantly higher (50%) than the neuron’s

firing rate values obtained for input spike train frequencies equal to half the optimal
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frequency and twice the optimal frequency (14 and 16 Hz respectively). The rate

activity of the neuron with silent mossy fibres was 4 Hz.

A.4 Conclusions

The bandpass filter behaviour of the mossy fibre boutons and the existence of an opti-

mal frequency are mainly consequences of the short-term memory dynamics (facilita-

tion and depression). If instead of efficiency we also analyse the efficacy of the bou-

tons, i.e. their contribution for firing the neuron, we observe that the associated con-

ductances also have interesting effects in the non-static, temporal domain, behaviour

due to the existence of ionic currents that affect interspike time interval or contribute

to spike frequency adaptation.

The fact that in the time domain and in terms of efficacy, the filtering properties of

the dynamical synapses change with their strength introduces a new complexity in the

understanding of learning mechanisms and it is a very important result if we accept

that information may be present in the spike trains time domain.

Furthermore, we can also speculate that the existence of facilitation and depression

dynamics in the mossy fibre boutons may create atransfer switchin the sense that

for the same spatio/temporal input pattern presented to the CA3 neuron through all

its synapses, the activity of the neuron will be considerably different when the inputs

to the mossy fibre boutons are close to the their respective optimal input frequencies.

Through temporal patterns, dentate gyrus neurons would be able to select which pop-

ulations of CA3 neurons to activate.

Important Note The study described here was done before the theory for the roles

of each pathway in the hippocampus was concluded. Although this study presents

valid results, I have introduced some modifications on the views for the functional

contributions given by the mossy fibres’ short-term dynamics. For a detailed discussion

see chapter 7.
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Freund, T. and Buzsáki, G. (1996). Interneurons of the hippocampus.Hippocampus,

6(4):347–470.

Fuhrmann, G., Segev, I., Markram, H., and Tsodyks, M. (2002). Coding of temporal

information by activity-dependent synapses.J Neurophysiol, 87(1):140–148.

Fusi, S., Drew, P. J., and Abbott, L. F. (2005). Cascade models of synaptically stored

memories.Neuron, 45(4):599–611.

Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and Moser, M.-B. (2004). Spatial

representation in the entorhinal cortex.Science, 305(5688):1258–1264.

Gerstner, W. and Kistler, W. (2002).Spiking neural models. Cambridge University

Press. ISBN 0-521-89079-9.

Gibson, W. G., Robinson, J., and Bennett, M. R. (1991). Probabilistic secretion of

quanta in the central nervous system: granule cell synaptic control of pattern sepa-



Bibliography 187

ration and activity regulation.Philos Trans R Soc Lond B Biol Sci, 332(1264):199–

220.

Giovanello, K. S. and Verfaellie, M. (2001). Memory systems of the brain: a cognitive

neuropsychological analysis.Semin Speech Lang, 22(2):107–116.

Graham, B. P. (2001). Pattern recognition in a compartmental model of a CA1 pyra-

midal neuron.Network, 12(4):473–492.

Greicius, M. D., Krasnow, B., Boyett-Anderson, J. M., Eliez, S., Schatzberg, A. F.,

Reiss, A. L., and Menon, V. (2003). Regional analysis of hippocampal activation

during memory encoding and retrieval: fMRI study.Hippocampus, 13(1):164–174.

Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm?-Linking

behavioral data to phasic properties of field potential and unit recording data.Hip-

pocampus, 15(7):936–949.

Hasselmo, M. E., Fransen, E., Dickson, C., and Alonso, A. A. (2000). Computational

modeling of entorhinal cortex.Ann N Y Acad Sci, 911:418–446.

Hasselmo, M. E., Schnell, E., and Barkai, E. (1995). Dynamics of learning and recall at

excitatory recurrent synapses and cholinergic modulation in rat hippocampal region

CA3. J Neurosci, 15(7 Pt 2):5249–5262.

Hasselmo, M. E., Wyble, B. P., and Wallenstein, G. V. (1996). Encoding and retrieval

of episodic memories: role of cholinergic and GABAergic modulation in the hip-

pocampus.Hippocampus, 6(6):693–708.

Haykin, S. (1999).Neural Networks. Prentice Hall International, Inc., second edition.

ISBN 0-13-908385-5.

Hebb, D. (1949).The Organization of Behavior: A Neuropsychological Theory. New

York: Wiley.

Hertz, J., Krogh, A., and Palmer, R. (1991).Introduction to the theory of neural

computation. Westview Press. ISBN 0-201-51560-1.

Hines, M. L. and Carnevale, N. T. (1997). The NEURON simulation environment.

Neural Comput, 9(6):1179–1209.



188 Bibliography

Holland, J. (1992). Adaptation in Natural and Artificial Systems. The MIT Press.

ISBN: 0262581116.

Hooper, S. L. (1998). Transduction of temporal patterns by single neurons.Nat Neu-

rosci, 1(8):720–726.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective

computational abilities.Proc Natl Acad Sci U S A, 79(8):2554–2558.

Hopfield, J. J. (1995). Pattern recognition computation using action potential timing

for stimulus representation.Nature, 376(6535):33–36.

Howard, M. W., Fotedar, M. S., Datey, A. V., and Hasselmo, M. E. (2005). The

temporal context model in spatial navigation and relational learning: toward a com-

mon explanation of medial temporal lobe function across domains.Psychol Rev,

112(1):75–116.

Huang, Y. Y., Kandel, E. R., Varshavsky, L., Brandon, E. P., Qi, M., Idzerda, R. L.,

McKnight, G. S., and Bourtchouladze, R. (1995). A genetic test of the effects of

mutations in PKA on mossy fiber LTP and its relation to spatial and contextual

learning.Cell, 83(7):1211–1222.

Huerta, P. T. and Lisman, J. E. (1993). Heightened synaptic plasticity of hip-

pocampal CA1 neurons during a cholinergically induced rhythmic state.Nature,

364(6439):723–725.

Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C. (2003). Bursts

as a unit of neural information: selective communication via resonance.Trends

Neurosci, 26(3):161–167.

Jaeger, H. (2001a). The ”echo state” approach to analysing and training recurrent

neural networks. Technical report, GMD Report 148, German National Research

Center for Information Technology.

Jaeger, H. (2001b). Short term memory in echo state networks. Technical report, GMD

Report 152, German National Research Center for Information Technology.



Bibliography 189

Jensen, O. and Lisman, J. E. (2000). Position reconstruction from an ensemble

of hippocampal place cells: contribution of theta phase coding.J Neurophysiol,

83(5):2602–2609.

Johnston, D. and Amaral, D. (1998). Hippocampus. In Shepherd, G., editor,The

Synaptic Organization of the Brain. Oxford University Press, fourth edition edition.

Jonas, P., Major, G., and Sakmann, B. (1993). Quantal components of unitary EPSCs

at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus.J Physiol,

472:615–663.

Jung, M. W. and McNaughton, B. L. (1993). Spatial selectivity of unit activity in the

hippocampal granular layer.Hippocampus, 3(2):165–182.
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