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Abstract 

Abstract 

The recent dramatic increase in research activity in the study of artificial neural networks 

has resulted in non-linear systems that are capable of tasks such as classification, optimi-

sation and content addressable memory. These successes, together with the desire to 

understand and mimic biological neural systems, have led to interest in the implementa-

tion of neural networks in both analogue and digital VLSI. 

This thesis describes the pulse stream methodology for signalling, arithmetic and commu-

nication in VLSI neural networks. A review of conventional VLSI implementations of 

neural networks by case study highlights the significant contributions to date in the areas 

of digital, mixed signal and analogue neural networks. A review of pulsed VLSI imple-

mentations of neural networks highlights research activity that is most closely related to 

that contained within this thesis. 

Several pulse stream neuron and synapse circuits have been developed and implemented 

in VLSI to test their operation. Methods for communicating neural state information 

between chips have been developed and implemented. The use of automatic set up proce-

dures for analogue VLSI circuits are seen as essential to the development of large pulse 

stream neural networks and have been investigated. These circuits comprise The Edin-

burgh Pulse Stream Cell Library. The experience gained in developing this cell library 

has resulted in the development of a large pulse stream neural network chip, EPSILON 

(Edinburgh's Pulse Stream Implementation of a Learning Oriented Network), which has 

been demonstrated solving vowel recognition using real world data. 

A recommendation for the use of pulse stream circuits for various categories of neural 

network based on the cells presented in this thesis has been made and forms the main 

contribution to knowledge of this work. 
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Chapter 1 

Introduction 

Recent increased activity in neural network research has been stimulated by the observa-

tion that even simple biological organisms can perform complex computational tasks that 

conventional computing techniques have been unable to master adequately. This observa-

tion has helped inspire many network types that, while sharing the parallelism of biologi-

cal networks, do not attempt to exactly mimic biological behaviour. Learning in these 

networks tends to be further removed from the current limited understanding of biologi-

cal learning in large networks. This approach has been greatly facilitated by the advent of 

readily accessible high speed digital computers. 

A more bottom up approach has resulted in scientists trying to understand directly how 

biological systems work, by observing nerve and low level processing functions, in an 

attempt to mimic their behaviour. Both approaches have provided exciting results, but 

there remains much progress to be made. 

Artificial neural networks comprise a variety of architectures, some of which provide 

instantaneous responses, other networks need time to respond and are characterised by 

their time-domain or dynamic behaviour. Neural networks also differ from one another in 

their learning procedures that establish how and when the weights within the network 

change. Finally, networks operate at different speeds and learning efficiencies and there-

fore differ in their ability to respond accurately to input stimulus. 

Neural networks, in contrast to conventional computers, are capable of learning associa-

tions, patterns or functional dependencies. Learning replaces the functional programming 

required for conventional computing. Users of neural networks do not specify the func-

tional algorithm to be computed by each node of the network, rather they select what they 

believe to be the best architecture to solve their problem, the characteristics of the neu-

rons and weights, and the learning procedure to be used. The application of inputs to the 

network, and the resultant training procedure, cause the network to form internal repre-

sentations of the data that allow the network to solve the problem. The knowledge stored 

within the network is not necessarily evident in terms of a rule base or decision bound-

aries. Neural networks are therefore often used for their ability to form internal represen-

tations of data and generate decision boundaries within data that may not be otherwise 

apparent to the system designer. 
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While the use of conventional computing platforms has facilitated neural network 

research, the use of dedicated digital VLSI allows much greater computational bandwidth 

by designing systems that are matched to the requirements of neural network simulation. 

The use of analogue VLSI allows complex functionality in limited area by the careful use 

of transistor operating modes. Analogue systems are constrained by resolution, noise and 

system tolerances - which must be present in biological systems, and present distinct 

challenges, or perhaps opportunities to the VLSI neural network designer. 

The remainder of this introduction outlines the distinctions between neural network learn-

ing schemes that have implications for analogue or pulsed VLSI implementations. It also 

reviews pulse stream signalling techniques and the remainder of the contents of this the-

sis. 

1.1. A Classification of Neural Networks by Learning Procedure 

Neural networks are distinguished in this thesis by their learning mechanism which helps 

define their suitability for implementation in Pulsed Neural Network VLSI. The essen-

tially analogue nature of the pulsed circuits used to perform neural computation results in 

performance tolerances on circuit operation and implies that circuits will have limited 

precision and be affected by noise. These analogue effects have implications for network 

performance. 

The first class of neural network is defined by the use of off-line algorithmic techniques 

to calculate a weight set. In this class, the neural network is not in the learning loop and 

therefore the learning procedure is not driven by errors produced by the network. The 

Hopfield training algorithm [1] is an example of this class which assigns weights in a net-

work according to Equation 1.1 

M-1 
i*j 

T1= 
=°  

O,i =j;O !!~ i,j !!9 M— 1 

where Tiiis  the connection weight from neuron i to neuron j and V which may be ±1 is 

element i of the exemplar s. Since this algorithmic approach to neural learning takes no 

account of the characteristics of any analogue or pulsed VLSI it is likely that it will be 

least suited to this method of implementation. 

The second classification category encompasses those networks whose learning mecha-

nism is driven by errors between the network output and a target output. The best exam-

ple of this is the back propagation algorithm [2] used in multi-layer feedforward net-

works. Figure 1.1 illustrates the basic principle involved in this learning mechanism 

where the output error is used to adjust weights within the network in order to minimise 
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Error 

Adjust Weights 
to minimise error 

Inputs J 	IOutputs 
______ Neural Network I 

Target Outputs 

Figure 1.1 Neural Network Learning: Output Error Driven 

Example: Multi Layer Perceptron. 

the error. This category of neural network is likely to be most suited to analogue or 

pulsed VLSI implementations. Since the VLSI device may be physically placed in the 

learning loop shown in Figure 1.1 then the error driven learning algorithm can compen-

sate for individual component tolerances within the network. 

Inputs 
- Neural Network 

Neighbourhood 
weights 

Outputs 

Update 
Neighbourhood 
Weights 

Error 

Figure 1.2 Neural Network Learning: Error Driven 

Example: Kohonen Network. 

The final category is a special case of error driven learning, where the error is defined 

between the input vector and the weight set. The Kohonen Network[3] is an example of 

this class, and the error driven learning mechanism is illustrated in the simplified diagram 
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of Figure 1.2. This special case of error driven learning is unlikely to produce good 

results using analogue or pulsed VLSI since the output units are not in the error feedback 

path. Any source of error resulting from the processing performed within the network 

will therefore not be compensated for naturally. 

1.2. Choice of Neural Network for this study 

These considerations have therefore resulted in conventional error driven neural net-

works being used by the author for the evaluation of pulsed neural networks within this 

thesis. On first consideration, this class of networks appear to be best suited to pulsed 

implementation. Pulsed neural networks applied to the Kohonen network as an example 

of the special case error driven learning has been studied by Baxter[4], who concludes 

that pulse stream neural network implementations are not suited to this class of network. 

1.3. Pulse Stream Signalling 

Pulsed representation of signals for the VLSI implementation of neural networks was first 

proposed by Murray and Smith in 1987[5] and later demonstrated using digital tech-

niques[6] The pulsed nature of the neural state data has proved a robust method of data 

representation for VLSI implementation and by mixing analogue and digital VLSI tech-

niques compact circuits for neural network functions have since been developed. This 

thesis presents these developments resulting in a series of recommendations for the 

implementation of Pulsed VLSI Neural Networks based upon The Edinburgh Pulse 

Stream Cell Library and the experience gained in the successful development of a large 

pulsed VLSI neural network. 

As a necessary precursor to the main body of this thesis, therefore, this section highlights 

the fundamentals of pulse stream signalling and systems. 

Neurobiological systems are known to operate, at least for the greater part, on pulse 

stream principles, and communications systems have used PAM (Pulse Amplitude Modu-

lation), PWM (Pulse Width Modulation) and PCM (Pulse Code Modulation) for data 

transmission for some time. 

Pulse stream encoding was first used and reported in the context of neural integration in 

1987[5, 7],  and has since been used by a number of other groups (see, [8-15] for exam-

pie). The underlying rationale is simple:- 

analogue computation is attractive in neural VLSI, for reasons of compactness, 

potential speed, asynchronousness and lack of quantisation effects. 

analogue signals are far from robust against noise and interference, are susceptible 

to process variations between devices, and are not robust against the rigours of inter-

chip communication. 
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Digital siliconprocessing is more readily available than analogue. 

Digital signals are robust, easily transmitted and regenerated, and fast. 

Digital multiplication is area- and power- hungry. 

These considerations all encourage a hybrid approach, seeking to blend the merits of both 

digital and analogue technology. The pulse-stream technique uses digital signals to carry 

information and control analogue circuitry, while storing further analogue information in 

the time dimension, as will be described below. A number of possible techniques exist, 

for coding a neural state 0 < S i  < 1 on to a pulsed waveform V, with frequency v 1  , ampli-

tude A and pulse width 61 . [ 16] Of these, 3 are relevant to the systems described in this 

thesis and are illustrated in Figure 1.3. 

PAM 	 Variable amplitude, Al 
I 	I 	I 	I 	I 	LV 

Fixed Frequency 

PWM 

	

	 H: 	Fixed Amplitude, Ai 

Variable Width 

p1qvl 	
".,-1 ....i.L Fixed Amplitude, Al 

Fixed Width, Variable Frequency 

Figure 1.3 Pulse Stream Signalling Techniques : PAM (Pulse Amplitude Modulation), 

PWM (Pulse Width Modulation) and PFM (Pulse Frequency Modulation). 

1.3.1. Pulse Amplitude Modulation (PAM) 

Here, A (V1  = A x constant frequency pulsed signal ) is modulated in time, reflecting 

the variation in S i  . This technique, useful when signals are to be multiplexed on to a sin-

gle line, and can be interleaved, is not particularly satisfactory in neural nets. It incurs 

disadvantages in robustness and susceptibility to processing variations as information is 

transmitted as analogue voltage levels. 
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13.2. Pulse Width Modulation (PWM) 

This technique is similarly straightforward, representing the instantaneous value of the 

state S i  as the width of individual digital pulses in V 1  . The advantages of a hybrid 

scheme now become apparent, as no analogue voltage is present in the signal, with infor-

mation coded as described along the time axis. This signal is therefore robust, and fur-

thermore can be decoded to an analogue value by integration. The constant frequency of 

signalling means that either the leading or trailing edges of neural state signals all occur 

simultaneously. In massively parallel neural VLSI, this synchronism represents a draw -

back, as current will be drawn on the supply lines by all the neurons (and synapses) 

simultaneously, with no averaging effect. Power supply lines must therefore be oversized 

to cope with the high instantaneous currents involved. 

1.3.3. Pulse Frequency Modulation (PFM) 

Here, the instantaneous value of the state S i  is represented as the instantaneous frequency 

of digital pulses in V 1  whose widths are equal. Again, the hybrid scheme shows its value, 

for the same reasons as described above for PWM. The variable signalling frequency 

skews both the leading and trailing edges of neural state signals, and avoids the massive 

transient demand on supply lines. The power requirement is therefore averaged in time. 

In summary, pulsed techniques can code information across several pulses or within a sin-

gle pulse. The former enjoys an advantage in terms of accuracy, while the second sacri-

fices accuracy for increased bandwidth. The ensuing thesis describes analogue VLSI 

devices that use a combination of the above techniques, moving between the analogue 

and digital domains as appropriate, to optimise the robustness, compactness and speed of 

the associated network chips. 

1.4. Thesis Aims. 

This thesis describes how a series of disparate circuit ideas and techniques were invented, 

explored and refined, and developed into a significant pulse stream neural system imple-

mented in VLSI, and used in realistic demonstrations. The result of this research experi-

ence has allowed the author to propose a thesis of how pulse stream VLSI circuits and 

techniques may be applied to the implementation of neural networks. 

The thrust of this thesis is, however, an exploration of the options within the pulse stream 

methodology. While the system alluded to above is undoubtedly impressive, it is the 

underlying signalling, arithmetic and communication options that form the central pil-

lar of the thesis. The aim from the outset, therefore, was to explore the possibilities 

within pulsed methods, and thus to arrive at a taxonomy and series of recommendations. 
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1.5. Thesis Overview. 

A global view of conventional techniques used for the VLSI implementation of neural 

networks is presented in Chapter 2. The use of the term conventional covers a wide range 

of techniques and styles and has simply been used here as a means of describing all 

implementations other than pulsed neural networks. The use of a case study approach to 

this review concentrating on functional VLSI allows the significant contributions in the 

field of digital, analogue and mixed signal implementations to be considered in some 

detail. Significant implementational details are highlighted for later reference in relation 

to the authors' own work. 

Chapter 3 reviews the the range of pulsed techniques that have been applied to the VLSI 

implementation of neural networks. This more local view of VLSI for neural networks 

represents a body of work closely related to that presented in this thesis. Here also, digi-

tal, analogue and mixed signal techniques have been used and the most significant contri-

butions are presented in case study form. 

The Edinburgh Pulse Stream Cell Library, presented in Chapter 4, is a collection of 

synapse, neuron, inter-chip communication and associated circuits that have been 

designed by the author and others working in the Department of Electrical Engineering at 

the University of Edinburgh. The details of circuit rationale, design and results from 

HSPICE simulation, where appropriate, are presented here. 

All the cells presented in Chapter 4 have been fabricated and the results from working 

VLSI are presented in Chapter 5. The experience and confidence gained from two func-

tional VLSI test devices, at circuit and neural network system level, have resulted in the 

informed choice of cells from the library in implementing a large demonstrator chip. The 

resultant EPSILON (Edinburgh's Pulse Stream Implementation of a Learning Oriented 

Network) chip is .a fully functional pulse stream neural network device with a maximum 

of 120 neural inputs, 30 neural outputs and 3600 fully programmable synapses. 

EPSILON is capable of operating in a variety of network architectures with a variety of 

programmable input and output modes. 

The success of the EPSILON chip has resulted in the development of a system environ-

ment based on two EPSILON chips that allows the investigation of various neural net-

work architectures. This system, outhned in Chapter 6, has resulted in the solution of a 

vowel classification problem using real world analogue data. 

Chapter 7 draws together the experience gained from the Cell Library, VLSI test devices 

and EPSILON at both chip and system levels. A series of recommendations are pre-

sented in the light of this experience and that from the VLSI implementations reviewed in 

Chapters 2 and 3, as to when and where cells from the Edinburgh Pulse Stream Cell 

Library should be used. 
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Appendix 1 contains the mathematical derivation of the transfer characteristics of the 

pulse stream neuron circuits developed by the author and referenced in Chapters 4 and 5. 

Appendix 2 contains the circuit diagram of the phase frequency detector used in the phase 

lock loop described in Chapter 4. Appendix 3 contain the SPICE decks and net lists of all 

the circuits developed by the author and described in this thesis, while Appendix 4 con-

tains the VLSI layout of these cells. Finally, appendix 5 contains a list of the author's 

published papers during the period of this research work. 
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Chapter 2 

A Review of Conventional VLSI Implementations 

of Neural Networks 

The aim of this chapter is to evaluate the major achievements to date in the conventional 

VLSI implementation of neural networks. The term conventional is used here to describe 

all VLSI implementations other than those using pulsed techniques. 

On first consideration VLSI implementations of Neural Networks fall into two broad cat-

egories, namely digital and analogue. However, on closer inspection this boundary 

becomes less distinct. For example, some implementations use a mixed signal approach 

where analogue techniques are used for efficient implementation of functions such as 

multiplication and addition while digital techniques are used to facilitate easy interface to 

conventional digital processor environments or for robust signal communication across 

chip boundaries. 

A distinction can also be drawn between network implementations by their degree of pro-

grammability. While some designers have implemented devices to solve a variety of neu-

ral network problems, others have implemented devices with fixed functionality. Indeed 

some researchers attempt to mimic biological functionality directly, while others use 

more abstracted models of neural behaviour. 

For these reasons and for the purposes of review, conventional VLSI neural network 

implementations have been grouped into digital, mixed-signal, analogue programmable 

and analogue fixed function categories. While this review is not comprehensive, it high-

lights the significant activities in this field of research at present. Exemplars have been 

used in each of the above implementation categories to highlight the functional and prac-

tical advantages of the approach. 

In reviewing conventional VLSI implementations of neural networks, pulsed implementa-

tions of neural networks and hence the work reported in the rest of this thesis will be 

placed in context. 

2.1. Digital Implementations 

In this section of the review design considerations such as arithmetic precision, bit-serial 

or bit parallel structures and systolic architectures are discussed in relation to the imple-

mentation of neural networks in VLSI. 
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Digital VLSI is a relatively mature technology and is supported by a wide range of com-

puter aided design tools that allow rapid and reliable implementation. While transistor 

geometries in CMOS VLSI continue to shrink and chips increase in size and complexity 

the performance of digital VLSI will continue to improve. In addition, the design of digi-

tal neural networks that interface to existing computer architectures will provide a power -

ful simulation environment for the development of neural network algorithms and appli-

cations. It is for these reasons that the digital implementation of neural networks is 

attractive to the system designer. 

This section of the review will not consider digital implementations that do not make use 

of custom VLSI. For this reason the impressive work of Aleksander[17] in developing 

WISARD, for example will not be reviewed here. The continuing improvement in paral-

lel digital signal processor technology that facilitates the implementation of expandable 

computing engines capable of computation rates in excess of 800MFLOPS (Meridian's 

Powerstack[18], for example) likewise will not reviewed here. 

2.1.1. Arithmetic Precision 

One of the first problems in the digital implementation of neural networks is determining 

how many bits are required to represent physical states, parameters and variables in order 

to ensure learning and generalisation performance. As in any digital computer, there are 

memory and performance trade-offs between using, for example, floating or fixed point 

arithmetic. 

In neural networks research a number of papers have appeared that consider the arith-

metic requirements of various neural network algorithms. For example, the back-

propagation training algorithm applied to the real world task of phoneme classification 

for a continuous speech recognition system[19] required 16 bit weight values to achieve 

training and classification results comparable to 32 bit floating point precision. In this 

example weight and bias values are scaled separately and rounding is used rather than 

truncation to reduce the precision of intermediary values. 

Other research has led to forms of reduced precision arithmetic[20] where the smooth 

neuron activation function has been replaced by a "staircase" function so that the neuron 

is in any one of five states. This technique reduces multiplication to a simple shifting 

operation. 

2.1.2. Bit-Serial versus Bit-Parallel Architectures 

The Bit-Serial approach to VLSI design [21] is distinguished by the communication strat- 

egy employed. Digital signals are transmitted bit sequentially along single wires, as 

opposed to bit-parallel architectures which use the simultaneous transmission of words on 
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a parallel bus. This strategy leads to efficient communication within and between chips 

and provides outstanding advantages where communication issues dominate, as in many 

signal processing applications. Although bit-parallel designs have a lower computational 

latency, bit-serial designs lend themselves to pipelining and thus make optimal use of 

high clock rates. 

The combination of reduced precision arithmetic and a bit-serial architecture has resulted 

in an efficient digital implementation of a neural network accelerator board[22]. 

2.1.3. Systolic Architectures 

A systolic system [23] consists of a set of interconnected cells or processing elements 

(PEs) each capable of performing some simple operation. Information in a systolic sys-

tem flows between cells in a systolic fashion and communication with the outside world 

occurs only at the boundary cells. Systolic architectures may be linear, rectangular, trian-

gular or hexagonal to make use of higher degrees of parallelism. Data flow in a systolic 

system may be at multiple speeds in multiple directions. Unlike pipelined architectures 

where only results flow, both inputs and partial results flow in a systolic array. 

Conventional Architecture: 

lOOnS 
5 Million Operations 

per Second (Maximum) 

Systolic Architecture: 

30 MOPS 
lOOnS 	 possible 

PE PE PE PE PE PB 

Figure 2.1 Basic Principle of a Systolic System 

Systolic architectures have been developed to balance computation time with input out- 

put times of computer memory (or other host). In the example shown in Figure 2.1 the 
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conventional system is capable of computing results only as quickly as data can be sup-

plied. The computational bottleneck in this system is memory access. If it is assumed 

that at least two bytes of data are read from or written to the memory for each operation 

then the maximum computation rate is 5 million operations per second. Orders of magni-

tude improvement in computational throughput are achievable if multiple computations 

are performed per memory access. The second diagram in Figure 2.1 illustrates this point 

where the systolic architecture with 6 processing elements is capable of a six fold 

increase in computation rate. The use of systolic architectures allows the designer to 

match the computation architecture to the memory structure so that computation time is 

balanced with data input/output rates. 

The work of Blayo[24]  is one example of systolic architectures applied to neural network 

VLSI. 

2.1.4. A Digital bnplementation Case Study: The Adaptive Solutions CNAPS Neu-

rocomputer Chip 

The development of the CNAPS (Connected Network of Adaptive Processors) was moti-

vated by the desire to develop commercial hardware suitable for implementing any neural 

network algorithm and able to interface to existing computer architectures. The designers 

envisage that CNAPS would be considered the microprocessor of neural network com-

puting. The architecture is general enough to implement every neural network algorithm 

examined by the designers (learning and non-learning) and many feature extraction com-

putations including digital signal processing, pattern recognition and rule processing. 

The chip architecture [25] consists of a number of simple Processor Nodes, PNs, operat-

ing in a SIMD (single instruction multiple data) configuration. Each PN has three buses, 

two 8 bit buses INbus and OUTbus, used for data input to and output from each PN, and a 

31 bit bus, PNCMD, controlled by a sequencer to broadcast commands to individual PNs. 

In addition, there is a 2 bit inter-PN bus allowing connection to the nearest neighbouring 

PN. One possible multi-PN configuration depicting the bus interconnects is shown in 

Figure 2.2 

The sequencer contains the program store, sequencing logic and input and output buffers 

for directly accessing a host memory when operated as a coprocessor. The sequencer has 

several basic command groups and controls the INbus and OUTbus including directing 

data to and from a hosts' system memory or parallel input/output port from off board. 

Each PN contains a weight memory, adder, multiplier, logic unit and register file, a brief 

specification of each is given in table 2.1. 

Each neuron in a network is represented by a state in a PN and is called a CN or Connec- 

tion Node. In a basic configuration, one PN is used for each CN. In the case where there 
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Figure 2.2 CNAPS Multi-PN Configuration. 

Processing Node (PN) Functionality 

Weight Memory 4K Bytes. 8 or 16 Bit Modes 

Adder 16 or 32 Bit Modes 

Multiplier 
Various Modes. 9 x 16 bit 2's Complement 

produces_a 24 bit result 

Shifter and Logic Unit 16 Bit data 

Register File 
32 16 Bitregisters 

Some dedicated e.g. data width control 

Internal Buses 2 16 Bit Buses 

Table 2.1 Internal Contents of each Processing Node (PN). 

are more CNs than PNs, each PN is used to emulate more than one CN. A group of PNs 

which the designers call a layer, takes a vector, multiplies it by a matrix of weights and 

creates a new vector. Any neural network architecture can be emulated using this func-

tion. Totally interconnected networks, for example the Hopfield network, use the output 

vector as the next input. Feed-forward networks can be thought of as several layers feed-

ing each other successively. 

A simple two layer network may be mapped onto an array of PNs as shown in Figure 2.3. 

Once CNO - CN3's outputs have been computed, CNO's output is transmitted onto the 
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Figure 2.3 Processor Node (PN) Allocation for a Feedforward Network 

OUTbus. It is then read into the INbus of all the PNs and used to calculate one connec-

tion for each CN in the second layer. Each first layer CN is broadcast in turn. Therefore 

n2  connections are computed in n clock cycles. 

An eight chip configuration has been used to perform the back-propagation training algo-

rithm [26] on a network with 1900 inputs, 500 hidden nodes and 12 output nodes. Since 

the CNAPS chip is restricted to fixed point integer arithmetic the position of the binary 

point must be chosen. In this application, the weights range from -8 to +8 with four bits 

to the left of the binary point, including a sign bit, and twelve to the,ct. Input and output 

vectors are represented as 8 bit unsigned integers with binary point to the left. The learn-

ing rate is represented by an 8 bit integer with two bits to the left of the binary point, and 

the error by an 8 bit signed integer at the output layer and the same representation as the 

weights at the hidden layer. 

A speed of 2.3 Giga training weight updates per second or 9.6 Giga feed forward connec-

tions per second was observed. This result has been compared to the same task on other 

computers and the results shown in table 2.2. 



Chapter 2 
	

15 

Machine MCUPS MCPS Weights 

SUN 3 0.034 0.25 fp 

SATC SIGMA-i 8 fp 

WARP 17 fp 

CRAY2 7 fp 

CRAY X-MP 50 fp 

CM-2 (65,536) 40 182 fp 

GF-11 (566) 901 fp 

8 CNAPS CHIPS 2,379 9,671 16 bit mt 

Table 2.2 Back-Propagation Performance of various computers compared to 

CNAPS for a network with 1900 inputs, 500 hidden units and 12 output units. 

fp = floating point, mt = integer. 

The Adaptive Solutions CNAPS chip is therefore a very powerful general purpose digital 

neural computing chip. It is implemented in 0.8um CMOS technology on a die 

26.2mm x 27.5mm. The backpropagation benchmark problem highlights the speed of 

the device in comparison to other computer configurations. Back propagation implemen-

tations typically use 32-bit floating point arithmetic, however the designers quote 

Baker[27] who has shown that 16-bit integer weights are sufficient for backpropagation 

training and much less precision required for use after training. 

2.2. Mixed Signal Implementations 

Analogue and digital techniques are combined in mixed signal implementations in order 

to exploit the potential of both techniques. The introduction of analogue techniques 

introduces a tolerance into the system due to the mismatch of analogue parts. System 

design considerations must therefore ensure that these tolerances do not adversely affect 

the algorithm performance. 

2.2.1. A Mixed Signal Implementation Case Study : AT & T Bell Laboratories 

ANNA Chip 

The designers of ANNA (Analogue Neural Network Arithmetic unit) have adopted a 

mixed analogue and digital design to exploit the low computational accuracy they claim 

is typically required by neural network algorithms, while addressing system integration 

issues which call for a digital interface[28, 29].  The relatively low resolution of the chip, 

6 bit weight and 3 bit state representation, has proved capable of handwritten digit recog-

nition with reported classification error rates of 5.3%. This figure compares with a 
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classification error rate of 4.9% when the network was simulated using floating point pre-

cision and back propagation training and a human performance of 2.5% on the same 

data[30]. 

ANNA Chip Features 

Number of Neurons 8 

Inputs per Neuron 16 to 256 

Weights 4096 

Bias Units 256 

Weight Accuracy 6 bit 

State Accuracy 3 bit 

Input State Data Rate 120 Mbits per second 

Output State Data Rate 120Mbits per second 

Maximum Computation Rate 10GC per second 

Total Weight Refresh 1 lOps 

Clock Rate 20MHz 

Technology 0.9pm CMOS 

Die Size 4.5mm x 7mm 

Table 2.3 ANNA Chip Features 

The ANNA chip comprises of eight neurons with either 64, 128 or 256 inputs. The input 

neural state information which has a resolution of 3 bits (2 bits magnitude and one bit 

sign), is presented to a multiplier array via a barrel shifter at a rate of 120Mbits/s. The 

weight values are held in RAM and converted to analogue values on chip for multiplica-

tion at data rates approximately equal to the access times of static RAM. The magnitude 

of the weight value is stored dynamically at each synapse or multiplier while the sign bit 

is stored as a digital value. 

The multiplier is implemented as a multiplying digital to analogue converter (MDAC), a 

simplified schematic of which is illustrated in Figure 2.4. The weight magnitude controls 

the current, I, while the weight and state sign bits are exclusive OR'ed to control the sign 

of the multiplication. Current is either dumped onto the bus or removed from the bus 

depending on the sign. The magnitude of the current is determined by the analogue 

weight value and the digital state bits X0 and Xl as indicated in Table 2.4. 

The weight load circuitry is of interest in this design due to the fast weight refresh times 

achieved. The basic circuit diagram of the weight refresh circuit is shown in Figure 2.5. 

An on chip DAC generates a current IDAC proportional to the weight magnitude that is 

copied to the synapse circuit. The voltage required to generate IDAC appears across the 
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X1\ 

CURRENT SUMMING BUS 

Figure 2.4 Simplified Schematic of MDAC used in ANNA 

Xl XO SIGN CURRENT SUMMING BUS 

o 0 Don't Care No Change 

o i 1 +(IaT1 ) 

1 0 1 +2X(IaT1 ) 

1 1 1 +3X(IaT1 ) 

o i 0 'REMOVE = - (IaT1 ) 

1 0 0 'RJOVE = —2 x 	IcrTij  

1 1 0 'REMOVE = 	3 x (IaT j ) 

Table 2.4 Operation of the MDAC used in ANNA 

storage capacitor, C, and is held there until the next refresh cycle. The use of current-

mode techniques in this circuit gives a very fast update time measured in terms of 

nanoseconds as indicated by the weight refresh times quoted in Table 2.3. 

The neuron circuit scales the current output from the MDAC multiplier circuits and con- 

verts it into a 3 bit digital representation. Successive-approximation DAC techniques 

have been employed in the neuron circuitry, the nonlinear sigmoid function is a result of 
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Figure 2.5 ANNA Weight Refresh Circuitry 

the overload characteristics of the converter. A scaling factor permits control of the slope 

of the nonlinear function. 

As mentioned earlier, ANNA has been used to perform high speed character recognition. 

All training was performed off-chip using a computer simulation and the back-

propagation learning algorithm. A five layer network model was used with the final layer 

being implemented using a conventional digital signal processing device (DSP) in order 

to achieve the necessary resolution for good discrimination. The throughput of the chip 

on this problem was 1000 characters per second or 130M connections per second. 

Although this performance is less than the maximum possible performance of the chip, 

due to the inefficient use of the chip architecture it compares favourably with the 20 char-

acters per second achieved when the problem was evaluated on a DSP. 

2.3. Analogue Implementations 

Analogue VLSI design techniques are not as highly automated as those used in digital 

VLSI design. The simulation of large systems becomes more difficult and great care is 

required in the design, layout and testing of devices. The advantages of using analogue 

techniques, however, are considerable. By careful exploitation of transistor characteris-

tics operations such as multiplication and addition, which form the basis of many neural 

network models, can be performed very efficiently with few components. 
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2.3.1. A Programmable Analogue Implementation Case Study: The Intel ETANN 

Chip (80170NX) 

The Intel 80170NX Electrically Trainable Neural Network (ETANN) is a fully analogue 

neural network chip with non-volatile EEPROM memory technology for analogue stor -

age of synaptic weights. The chip contains 10,240 synapses organised into two arrays 

and has 64 input and 64 output neurons. The use of two synapse arrays allows the imple-

mentation of Hopfield networks [31] and networks capable of processing and producing 

sequences of patterns [3]. 

ETANN Chip Features 

Number of Output Neurons 64 Variable Gain 

Inputs per Neuron 128 Analogue (maximum) 

10,240 Synapses 

Synapse Analogue Non-Volatile Memory 

4 Quadrant Gilbert Multiplier 

Multiplication Accuracy 6Bit x 6Bit 

Synapse Arrays Two 80 x 64 arrays 

Chip Area 12.2mm x 7.5mm 

Technology 11im CMOS EEPROM 

Performance 2000MCPS Maximum 

Table 2.5 ETANN Chip Features 

A summary of the main features of the ETANN device is given in Table 2.5. The synapse 

circuit used in this device is an NMOS version of the Gilbert Multiplier[32] capable of 4 

quadrant multiplication. The analogue weight memory is stored as a differential voltage 

at each synapse as shown in Figure 2.6 and the input neural state is represented by a dif-

ferential voltage AV. The result of the multiplication Abut is added to a summing node 

connected to other synapses in the synaptic column. 

A weight change is achieved by an iterative process whereby the weight voltage for an 

individual synapse cell is read off chip via a multiplexor and compared to the desired 

value. A programming voltage to move the weight closer to the required value is then 

applied and the weight voltage is measured again. This process continues until the 

required weight voltage is achieved. The width of each programming pulse is in the 

range 10 to ims and between 12V and 20V in height. As a result of this iterative pro-

cess no definitive time can be given for weight update. 

The 6 Bit weight resolution quoted in Table 2.5 [33] is a simplification of the capability 

of the storage medium. Weight accuracies of 7 Bits are quoted[34] when weight values 
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Figure 2.6 ETANN Synapse : Gilbert Multiplier and Non-Volatile Weight Memory 

are measured directly after writing. For long term weight retention a figure closer to 4 

Bit accuracy has been estimated[34]. 

The core of the sigmoid shaping circuitry is shown in Figure 2.7. The relationship 

between the differential sum current from the column of synapses and the output voltage 

of this circuit is sigmoidal. In addition, the gain of the circuit can be controlled from a 

linear function to a high gain threshold by controlling the voltages SMIN and SMAX[35]. 

The output from this circuit is level shifted and buffered before being passed off chip. 

ETANN has been used as the basis for systems implementations. For example, the Mod 

2 Neurocomputer[36] is a neural network processing system incorporating individual 

neural networks as subsystems in a layered hierarchical architecture. Mod 2 is designed 

to support parallel processing of image data at real-time rates. 

2.3.2. A Fixed Function Analogue Implementation Case Study : Mead's Silicon 
Retina 

The work of Carver Mead[37] and his associates is derived from the viewpoint that the 

nervous system of even very simple animals contains computing paradigms that are 

orders of magnitude more effective than those so far developed by engineers and 
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Figure 2.7 ETANN Neuron: Sigmoid Generation Circuitry 

scientists. On this basis, Mead has set out to study and implement the early processing 

functions carried out in biological structures such as the retina[38]  and cochlea[39]. 

Mead's retina chip [38] for example, generates outputs in real time that correspond 

directly to signals observed in the corresponding levels of biological retinas. 

Most of the circuits used in these implementations use standard CMOS operating in the 

subthreshold region. The advantages of operating the transistors in this region are pri-

marily very low power consumption, good current source properties over almost the 

entire operating voltage range and an inherent exponential nonlinearity which is an ideal 

computational primitive for many applications. 

The biological retina is capable of operating over many orders of magnitude of illumina-

tion. The processing that is performed in nature to achieve this relies on lateral inhibition 

to adapt the system to a wide range of viewing conditions to produce an output that is 

independent of absolute illumination level. The lateral inhibition mechanism also per -

forms spatial edge enhancement. 

A simplified plan of the silicon retina is shown in Figure 2.8. Each node or pixel on the 

resistive grid contains a photoreceptor and a transconductance amplifier operating in a 

follower mode which drives the resistive grid. The output of the pixel is the difference 

between the output of the photoreceptor and the voltage stored on the capacitance of the 
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Figure 2.8 Silicon Retina: Resistive Network and Pixel Element. 

resistive network. This output is at a maximum when the image is changing rapidly in 

either space or time. 

The photoreceptor takes the logarithm of the incident-light intensity and transmits that 

value to the resistive network. The resistive network, which corresponds physically to a 

layer of cells within the retina, performs spatial and temporal averaging of the photore-

ceptor output. 

Experiments on the silicon retina have yielded results remarkably similar to those 

obtained from biological systems[38]. In engineering terms, the primary function of the 

computation performed by the silicon retina is to provide automatic gain control that 

extends the useful operating range of the system. This makes the sensor sensitive to input 

changes independent of the viewing conditions. In addition, the gain control structure 

also performs other functions such as computing contrast ratio and edge enhancement. 

This preprocessing therefore has important consequences for the subsequent representa-

tion and processing of image data. 

Given that this device implements a specific biological function and operates in a highly 

parallel real-time mode then discussion of system performance in terms of connections 

per second is not relevant here. Further extensions of this work are reported in the 
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literature, for example, contrast sensitive [40] and direction selective [41] retinas. This 

work is very distinctive and the medium of analogue VLSI proves extremely powerful for 

implementation of these structures. 

2.4. Discussion 

Systems using custom digital VLSI neural networks devices are capable of outperforming 

conventional computing platforms on benchmark neural network problems. These 

devices typically offer sufficient precision and flexibility to allow neural algorithm devel-

opment and simulation. Their increased performance has great advantages for neural sys-

tem development offering faster performance and having the capability to m.ulate large 

networks. 

The mixed-signal ANNA chip has been used to implement an existing structure for a spe-

cific character recognition problem. The architecture and problem used has allowed the 

use of reduced precision arithmetic which lends itself to analogue implementation. The 

use of a digital interface has allowed interface to standard digital SRAM for weight load, 

for example. The use of current-mode techniques for weight load ensures the load time 

of individual weights is matched to SRAM access times. For these reasons, ANNA is an 

excellent example of a mixed-signal implementation integrated to system level. Compu-

tational bottlenecks have been avoided at system design time and impressive performance 

figures result. 

The use of EEPROM technology in the Intel ETANN chip makes individual weight load 

time very slow. Each weight programming pulse is between 10ps and ims long, and sev -

eral pulses may be required to get the desired weight. For this reason, chip in the loop 

learning would take an excessive amount of time. Therefore it is an advantage if learning 

is performed on a host computer and weights downloaded to the chip. However, once 

weights have been loaded, the performance of the network measured in connections per 

second is good. 

The work of Mead is distinctive and impressive. By studying biological systems new 

methods for processing information are being developed. This work has generated much 

interest and further developments are eagerly awaited. 
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Chapter 3 

A Review of Pulsed VLSI Implementations 

of Neural Networks 

The term pulsed neural networks is used here to define a class of implementation strate-

gies that use some form of pulse coding to represent neural state and/or weight data. A 

number of techniques have been used, for example stochastic bit streams[42],  pulse-

density modulation[43] detailed models of the precise behaviour of biological neu-

rons[lO] and dendritic structures[44], or techniques similar to those outlined in the 

remainder of this thesis using pulse frequency [45, 46] or pulse width modulation[47]. 

As in conventional implementations of neural networks, pulsed neural network fall into 

several implementation categories using a variety of analogue and digital VLSI tech-

niques. For example, stochastic logic neural networks[42] employ digital techniques, 

while pulse-density modulation circuits[43] have been implemented using either digital 

or mixed signal techniques. Models of biological neurons[lO, 441 have been imple-

mented using predominantly analogue techniques. 

The review of pulsed neural networks has been selective in order to highlight the princi-

ple strategies and achievements at present in this area. 

3.1. Stochastic Logic Neural Networks 

The term stochastic logic is used to describe a digital circuit that performs pseudo ana-

logue operation using stochastically coded pulse sequences. The coding circuit that 

codes a digital or analogue value into a stochastic pulse sequence is shown in Figure 3.1. 

A digital value, X, is compared with a random number, X, generated from a uniform 

probability distribution between the values of 0 and X max . The comparator produces an 

output pulse whenever X > X. The resulting output sequence therefore represents the 

value X. 

The multiplication and addition of stochastic pulse sequences can be performed using the 

circuits of Figure 3.2. The output firing probability of the AND gate is equal to the prod-

uct of the input firing probabilities, PA and PB,  while the output of the OR gate is approxi-

mately equal to the sum of PA and P5, except in the high firing rate region where pulse 

collisions are too frequent. 
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Figure 3.2Stochastic Multiplier and Adder Circuits 

These principles have been used to design stochastic neural networks[42].  A single 

stochastic neuron circuit is shown in Figure 3.3. Each weight is accessed from the weight 

memory in turn and loaded into Counter 1. Counter 1 allows the implementation of a 

local learning rule, the weight value can be modified depending on the current value of 

the neuron input and output and the gain term multiplied together by the gate AND 1. 

The resultant stochastic pulse stream representing the weight is multiplied by the neuron 

input signal by gate AND 2. This output either increments or decrements Counter 2 rep-

resenting the aggregated activity value, depending upon the sign of the weight. The latch 

allows update of the neuron output values at a specified time. Comparator 2 is fed by a 

second random number generator whose characteristic defines the saturation 
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Figure 3.3 Stochastic Neuron Circuit 

characteristic of the neuron. An OR gate could replace Counter 2 and Comparator 2 

since an OR gate adder has a naturally saturating sigmoidal characteristic, however the 

circuit illustrated provides improved learning characteristics [42]. 

Neural networks implemented with stochastic logic suffer coding noise due to the proba-

bilistic coding of signals. The effects of this noise have been discussed in relation to 

associative memory models and optimisation problems[42]  and methods of limiting these 

effects have been found. 

As seen from the diagram of Figure 3.3, stochastic pulse coding is well suited to a digital 

implementation reducing adders and multipliers to relatively simple functions. In addi-

tion synaptic plasticity has been implemented in an efficient manner. 

3.2. Pulse Density Modulation Neural Networks 

Pulse density modulation represents numbers as streams of digital bits in a statistical 

manner that is distinct from stochastic and conventional bit-serial representations. The 

value of the pulse density number is defined by the relation between the number of 0's (+) 

and l's in a given time window[43]. Furthermore, all the values in the pulse density 

modulation representation are fractional values between -1 and +1. Therefore the value 

of a bit stream including N zeros and M ones is ( N — M ) / ( N + M ) and, a number 
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with P bits can represent P + 1 values. The value of the pulse-density stream is conlinu-

ous so that a sample of P bits taken at any time will represent the value. All values are 

statistical in nature rather than exact values, however this data representation has proven 

suitable for neural networks[43]. Figure 3.4 shows the number 0.5 represented in pulse-

density format. 

J 

P Bit Window 

Figure 3.4 Pulse-density Number Format. N = 6, M = 2, Number =0.5. 

Pulse density networks have been implemented in both analogue and digital realisa-

tions[43]. 
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Figure 3.5 Pulse-density Digital Synapse Circuit 
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3.2.1. Digital Implementation 

The digital realisation implements multiplication of neural state by synaptic weight using 

an Exclusive-OR gate as shown in Figure 3.5. 

Synaptic weights are fed onto the chip in a serial manner and stored in a recycling shift 

register. Weights are stored in pulse-density format. The result of the multiplication per-

formed by the Exclusive-OR gate is added to the result from the previous synapse in a 

column and fed onto the next synapse or the neuron. 

Neuron Input from Synapses 

Select Input 1 	I  p 	i Mux I 	I 	16 Bit Shift Register 

Initialisation 	 I + 	I - 
Input 	 A 	B 

4 Bit Counter 

Select Output 
Mux 

Neuron Output 

Figure 3.6 Pulse-density Digital Neuron Circuit 

The neuron circuit implements a step function non-linearity by simply counting the num-

ber of -1's (-) and + l's (+) in a given time window and setting the output to zero if the 

result is positive and to 1 if it is negative. In practice this is achieved using the neuron 

circuit of Figure 3.6 which feeds the result into a 4 bit counter and tests via input A for 

+1's and then via input B for -l's. In addition, the computation performed by the synap-

tic array may be fed off-chip directly and cascaded with other such devices to form a 

larger network. 

3.2.2. Mixed Signal Implementation 

The mixed signal implementation again uses similar digital structures for weight storage 

and an Exclusive-OR gate to perform multiplication of two pulse density modulated 

waveforms. In place of the digital pulse adder used in Figure 3.5 a switched capacitor 
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structure has been employed to dump packets of charge on to a summing bus as the result 

of the multiplication is fed out of the Exclusive-OR gate. 
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Figure 3.7 Mixed-Signal Pulse-density Synapse Circuit 

A two-phase clocking scheme has been employed which connects both ends of the capac-

itor C in Figure 3.7 to ground during one phase of the clock. During the other phase, the 

output of the NOR gate connects VDD or ground onto the left hand end of the capacitor 

for Exclusive-OR outputs of 0 and 1 respectively while connecting the right hand end to 

the summing bus. 

A simplified schematic of this arrangement showing the capacitors from a number of 

synapses connected to the summing bus is shown in Figure 3.8. The neuron body, has a 

capacitive input stage so that charge on the synapse capacitors is shared with this capaci-

torsuchthatV 1 = ( 3xVDDxC+2xOVxC)/(6xC) =VDD/2 assuming C=C1 

in this example. The result of this computation for each bit is integrated within the neu-

ron body over the complete bit window and a non-linear output stage performs the sig-

moid transfer characteristic and pulse output. 
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Figure 3.8 Simplified Mixed-Signal Pulse-density System 

It is estimated[43] that 100 fully connected mixed signal neurons or 90 digital neurons 

can be integrated onto a 1cm 2  die using 1pm technology. 

3.3. Programmable Impulse Neural Circuits 

The emphasis of the research work performed by Meador and his group[10} is placed 

upon how the known characteristics of natural neuron function can be applied to over-

come the requirement for large circuit area and high power dissipation which limit the 

integration capability of analogue neural VLSI. It is hoped that this approach will 

increase functionality by way of programmability and ultimately allow the implementa-

tion of on-chip adaption[48]. 

The neuron circuit, shown in Figure 3.9, models the short term memory (STM) neuron 

dynamics of biological neurons. The mathematical formalism used to describe the neu-

ron dynamics can be shown to be equivalent to the STM equations of Hopfield, shunting, 

and adaptive resonance networks [101. 

The synapse circuits in this example are fixed connections which can be either excitatory 

or inhibitory but not both simultaneously. The synapses are implemented using two tran-

sistors, one acting simply as a switch, the other as a current limiter controlled by the volt-

age references V and V m . By controlling the operation region of the transistors via 

these voltage references and the switching points of the comparator circuit, the network 

can be operated in different summing and shunting modes. 
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Figure 3.9 Impulse Neuron Circuit with two fixed synapses 

The neuron circuit performs a temporal integration of the excitatory and inhibitory activ-

ity arriving at the neuron input from the synapse array. Once the integrated activity 

reaches the upper switching threshold of the comparator circuit, the neuron outputs a 

pulse. The duration of the pulse is determined by the time the neuron takes to self 

deplete. Self-depletion describes the mechanism by which the neuron output pulse dis-

charges the integration capacitor to the lower threshold of the comparator circuit. This is 

a function of the comparator, integration capacitor and discharge transistor. 

The issue of long term memory (LTM) capable of implementing an adaption algorithm 

has led to the development of a programmable synapse using EEPROM floating-gate 

technology for non-volatile analogue weight storage. The circuit developed, shown in 

Figure 3.10, uses 5 transistors, two of which share a common floating gate. The floating 

gate structure is programmed by applying positive or negative pulses to V 1, resulting in 

an excitatory or inhibitory value of L. With m  adjusted so that the floating gate struc-

tures operate in the sub-threshold region, the value of 'd  can be varied over several orders 

of magnitude. 

Adaptive circuits using competitive pulse Hebbian learning based on the circuits outlined 

above have been suggested[48] and simulation of small networks using capacitive weight 

storage shows encouraging results. 
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Figure 3.10 Programmable Synapse Circuit using Floating-Gate Weight Storage 

3.3.1. Neuromorphic Circuits for Dynamic Signal Processing 

In many problems such as the control of physical systems dynamic signal processing is 

required. However, most conventional models of neural networks do not possess 

dynamic signal processing capabilities. By investigating the control structures used in the 

vertebrate brain for coordinating motor activity, Elias[44]  has produced circuit architec-

tures whose structure and connectionism produce the ability to process dynamic signals. 

Figure 3.11 illustrates the structure used to model the processing performed by a spatially 

extensive dendritic tree which collects and processes the majority of afferent signals, 

propagating the result to the neuron body. The computation performed by this structure 

can be understood with reference to the equivalent circuit of part of the dendritic tree 

illustrated. 

Distributed along the dendritic branches, at the cross points, are synapses which either 

inject or withdraw a fixed current from the distributed RC network. The synaptic connec-

tions therefore do not have programmable strength. A digital impulse signal arriving at 

the NMOS transistor removes charge at a node while an impulse signal arriving at the 

PMOS transistor adds charge to a node. The RC network introduces a time constant and 

signal attenuation across the network so that an excitatory input in one part of the net-

work would have a different dynamic effect from one introduced at another part of the 

network. The neuron may be a simple thresholding device. The operation of this 
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Figure 3.11 Dendritic Tree Model and Equivalent Circuit. 

network can be illustrated by the example of Figure 3.12 where an input sensor is con-

nected to the network in order to categorise symmetrical and asymmetrical patterns. 

Sample 

Ra 

Cm 

utput 

Figure 3.12 Input Sensor Patterns 0- 3 Connected to Dendritic Tree 

Since the synapses are not programmable, it is the manner in which input data is con-

nected to the network that determines overall performance. Genetic algorithms have been 

used to train networks of artificial dendritic trees[49]  by determining the best connection 

between sensor and network to achieve the desired processing. The sensor data illus-

trated in samples 0- 3 is connected to the dendritic tree so that an asymmetrical input will 
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produce different signals in each of the dendritic branches and therefore result in a posi-

tive or negative voltage trajectory at the output. A symmetrical input, in this example 

sample 3, will produce signals of equal and opposite magnitudes on the two dendritic 

branches and therefore cancel at the output and produce no voltage output signal. 

3.4. Pulsed Implementations: Closer To Home. 

This section of the review highlights work by others whose methodology is most closely 

matched to that of Edinburgh group. 

3.4.1. A Global Clocking System for Pulse Stream Networks. 

Neural networks have been developed using a global clocking scheme to perform multi-

plication of a pulse stream input by a signed digital weight[50]. The operation of the 

synapse multiplier can be understood with reference to Figure 3.13. 
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Figure 3.13 Pulse Stream Synapse: Global Clocks and Digital Weight Storage 

An asynchronous pulse stream signal arriving at a synapse input is gated onto an 

inhibitory or excitatory output line depending on the sign of the weight and for a duration 

that is a function of the weight magnitude. The concept of a time frame, T, is used in 

order to gate the input signal for a fraction of the period T, depending on the weight mag-

nitude, onto one of the outputs. OR gates are used to sum the pulse stream output from 

the synapse onto to an excitatory or inhibitory summing line. In order to avoid a large 

loss of information due to pulse coffisions at the OR gate the pulse stream signals should 

be relatively sparse. 
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Figure 3.14 Pulse Stream Neuron: Integrator and Voltage Controlled Oscillator (VCO). 

The inhibitory and excitatory summing buses enter the neuron, shown in Figure 3.14, and 

either dump or remove small amounts of charge from an integrating capacitor, C, at the 

arrival of an inhibitory or excitatory pulse respectively. The integrated voltage is used to 

drive a voltage controlled oscillator which produces constant width output voltage pulses 

at a frequency which is a function of the voltage on C. 

Devices implementing the synapse structure have been designed and tested [6] with the 

integrator and oscillator implemented off-chip. Small problems using 6 or fewer neurons 

to perform simple content addressable memories and lateral inhibition networks have 

been implemented[6]. 

3.4.2. Pulsed Multi-Layer Networks with Guaranteed Compute Time. 

In order to design pulsed analogue neural network hardware for multi-layer perceptron 

(MLP) neural networks with a guaranteed compute time the concept of pulse width mod-

ulation and a master clocking system has been investigated[5 1].  All neural input states to 

the network are synchronised to the leading edge of the master clock and are pulsc width 

modulated over the duration of half the master clock period. 

The equivalent circuit of Figure 3.15 shows how an output current lout  is generated from 

the difference between a constant current source and a linearly controllable current 

source. The switch on the output modulates the output current, the resultant charge 

packet added or removed from the output summing node representing the multiplication 

of T1  xV3 . In practice, the constant current source has been implemented by the transis-

tor Ml, while M2, operating in the linear region, implements a linearly controllable cur-

rent source. In order to balance this circuit when no pulses are present, the transistor M4 

has been added to remove the difference current. 
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Figure 3.15 Pulse Width Synapse: Equivalent and actual circuits 

The resultant currents from the synapse circuits are summed by an integrator structure 

and passed to a differential stage that has naturally saturating characteristics. Pulse width 

modulated outputs are generated from the output of the differential stage by performing a 

linear voltage to pulse width transformation. 

This pulsed methodology has been implemented on a VLSI test chip and the circuits have 

been shown to function correctly[47]. However, a small design error has prevented these 

chips from being used to implement MLP networks. This methodology is capable of 

operating at clock rates of 1MHz and for a chip with 10,000 synapses over 1010  opera-

tions per second are possible. 

3.4.3. Switched Capacitor Pulse Stream Neural Networks 

The techniques of pulse stream neural state signalling and switched capacitor techniques 

combine in the work of Brownlow[45] to produce an elegant system for neural computa-

tion. 

A simplified schematic of the system is shown in Figure 3.16. The weight voltage, stored 

dynamically on a capacitor, is buffered by a voltage follower and feeds into a switched 

capacitor arrangement. When a pulse arrives at the synapse the buffered weight voltage 

sets the voltage on capacitor, C. This charge is transferred to the integrator structure dur-

ing the low period following the input pulse. Charge is therefore transferred to the inte-

grator circuit in proportion to the multiplication of the weight voltage and the input pulse 

frequency. By varying the weight voltage around V f  both excitation and inhibition can 
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Figure 3.16 Asynchronous Switched Capacitor Synapse and Neuron 

be achieved. In practice a switched capacitor arrangement is used to implement the leaky 

integrator structure. 

A test chip integrating an array of synapses, but not the Voltage Controlled Oscillator 

(VCO) circuit of Figure 3.16, has been fabricated and tested. The synapse area is small, 

65pm x 65um when implemented in 2tmi Digital CMOS technology, and 144 synapses 

and 12 neurons have been implemented on a 3mm x 3mm die. 

This device has been tested on a robot localisation problem[52] where real time pattern 

association is required. The task of the navigational sub-system is to determine the posi-

tion of the robot within a room using time-of-flight infra red scanner measurements taken 

from a scanner mounted on the robot. The scanner performs a 360 0  rotation taking time-

of-flight measurements every 30 0 . These readings have been recorded for 24 locations 

within the room shown in Figure 3.17 and been used to train two chips so that neuron 0 

responds to location 0, neuron 1 to location 1 and so on. 

During the navigation of the robot, the most recent scanner data is fed as the neural state 

inputs to the array. The approximate position of the robot is then given by the maximally 

responding neuron. The response of the VLSI devices for the robot in the position shown 

in Figure 3.17 is shown in Figure 3.18. Also illustrated in Figure 3.18 is the response 

from a model of the matching procedure performed algorithmically on a SUN worksta-

tion with weight accuracy of 8 bits. These results show that the scalar product calculated 

by the VLSI devices are within 1.2% of those computed by the SUN workstation. 
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Figure 3.18 Mobile Robot Localisation : VLSI Results compared to Workstation Results 



Chapter 3 	 39 

These devices have therefore proved successful in implementing neural applications. The 

relatively good accuracy demonstrated in the application problem is due to the good 

matching of capacitors across chip. The main limitation with this system, however, is its 

inability to scale to networks with large fan in due to the requirement for ever larger inte-

gration capacitors. 

3.4.4. Pulsed Hopfield and BAM Networks using Oscillatory Neurons. 

The work of Linares-Barranco[46] uses a voltage controlled oscillator (VCO) to imple-

ment the neuron function and a conventional transconductance multiplier circuit[46, 531 

similar to that used in Intel's ETANN chip[34] and reviewed in the previous chapter, to 

implement the synapse. 
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Figure 3.19 Neuron Circuit: Non-Linear Resistor Circuit Details and Comparator 

The differential stage in the neuron circuit of Figure 3.19 acts like a non-linear resistor 

that sinks current through Ml only when the voltage on the capacitor exceeds OV. The 

circuit oscillates when the input voltage, IN, is adjusted so that I <I,, otherwise there is 

no oscillation. The neuron circuits oscillate at a fixed frequency determined by L and 

reference voltages within the comparator circuit that set the switching points. The oscil-

lator is either on or off. 

The transconductance multiplier circuits used in the synapse have analogue weight stor-

age and dump or remove charge from a summing bus when a pulse arrives at the synapse 

input. The resultant charge is integrated and used to drive the neuron circuit. 

These devices have been used to implement a 5 neuron Hopfield network[46] used to 

store the pattern 10101. The network was run for various input patterns and was found 

to converge to the stored pattern, or the inverse 01010, in every case. A 6 neuron Binary 
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Associative Memory (BAM) has also been implemented with 3 neurons per layer and 

convergence to the stored pattern was also observed. 

3.5. Discussion 

The pulsed neural networks presented in this review highlight the range and diversity of 

implementation possibilities in this category of neural network implementation. While 

stochastic and pulse density neural networks appear closely related it is likely that the 

temporal nature of the data representation will lead to slower synaptic multiply and add 

times when compared to more conventional digital techniques outlined in the previous 

chapter. However, their simple structure lends itself to high VLSI integration densities 

and their application in solving real world problems is eagerly awaited. 

Similarly, the research work being carried out in the implementation of structures that 

more closely model their biological exemplars is of great interest. The work of Blias is 

very distinctive, providing new techniques for performing dynamic signal processing. 

The techniques used to implement pulsed networks that most closely resemble those out-

lined in the rest of this chapter have been presented. The early work of Smith, for exam-

ple, proved the pulse stream technique is viable, but the use of a global clocking scheme 

is clumsy. 

The more recent work of Browniow has proved highly successful and the robot localisa-

tion application is one of the most significant applications attempted using pulse stream 

neural networks. However, the problem of scalability due to the limitation on the size of 

the integration capacitor and operational amplifier drive capability remains a problem. 

The synchronous network of Tombs gives impressive performance for feed forward net-

works, however, due to a small design error it has not been possible to use this chip for 

the intended network implementations. 

At present pulsed neural networks have been used to implement only very simple prob-

lems with typically (apart from the work of Browniow) less than 10 neurons. These have 

served to highlight the possibility of such networks in solving larger problems, but their 

credibility will naturally be enhanced when they are demonstrated solving real world 

problems. 

The objective of the remainder of this thesis, therefore, is to present a library of synapse, 

neuron and ancillary circuits or cells for pulsed neural networks, whose performance and 

characteristics have been fully tested in functional VLSI. From this library, recommenda-

tions will be made for large pulsed neural systems and a large pulsed neural network chip 

presented solving a real world problem using real world data. 
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Chapter 4 

The Edinburgh Pulse Stream Cell Library 

This Chapter presents the Edinburgh Pulse Stream Cell Library, a collection of circuits 

designed to implement Pulsed neural networks in VLSI. The pulse stream signalling 

techniques used in these circuits are the pulse width and pulse frequency techniques out-

lined in Chapter 1. The Library contains a number of synapse, neuron and associated cir-

cuits and a strategy for multiplexing neural state data on and off chip. While the require-

ment for synapse and neuron circuits is obvious, it has been shown that multiplexing 

interconnections is necessary for the implementation of very large neural networks that 

exhibit poor locality[54]. 

The concept of inter-chip communication of neural state information has been considered 

by other workers. Frequency division multiplexing for communication between layers in 

a multi-layer perceptron implemented in analogue VLSI has been suggested[55], and the 

use of asynchronous pulse coded data to communicate over a parallel bus has been 

assessed in relation to accuracy and dynamic range[56]. While synchronous multiplexing 

of pulsed data has been suggested by some researchers[16, 47],  the approach adopted 

here is the asynchronous serial transmission of pulsed information. 

Since The Edinburgh Pulse Stream Cell Library contains work carried out by the author 

and a number of research colleagues, the individual contributions from these colleagues 

are referenced within this Chapter. Before considering individual Library Cells, the 

implementation of analogue capacitors on a digital technology requires consideration. 

4.1. Implementation of Capacitors Using Digital CMOS. 

The circuits described in this chapter have all been designed and implemented using 

European Silicon Structures' (ES2) 2pm and 1.5pm Digital CMOS Technology. The use 

of digital memory as a means for storing data has been precluded due to the unacceptably 

large area that it requires to implement. Although other workers have implemented non-

volatile analogue memory using EEPROM technology[57-59], or used additional on chip 

refresh circuitry local to each synapse for medium term storage[60], the technique 

adopted here has been to store analogue weight voltages directly as a voltage on a capaci-

tor and refresh them from off-chip memory via a digital to analogue convertor. In many 

of the circuits described in this chapter, therefore, voltages representing synaptic weights 

or the result of some computation are stored on capacitors. Since capacitors are not 
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supplied as standard components in a single polysilicon, double metal digital process, the 

capacitive properties of transistors have been used to implement these parts. 

Synapse 
Address 	 Circuit 

Global Tij 
Signal 

GND 

Figure 4.1 Synaptic Weight Storage Circuit 

A typical weight storage node is illustrated in Figure 4.1 This weight storage node com-

prises the gate of an N-type transistor whose drain and source are connected to OV. This 

configuration forms a capacitor which, provided that the gate is biased above the transis-

tor threshold voltage (typically 09V for the 2tan process), has a capacitance very nearly 

equal to the oxide capacitance. The storage node can be addressed by switching transis-

tor Ml on and the voltage on the Global T 1  Signal will charge or discharge the node to 

the appropriate weight voltage. In practice, the NMOS transistor will only pass relatively 

low voltages with a 5V Address signal. Should a larger range of weight voltages be 

required, a full transmission gate could be used to replace Ml. 

The size of the transistor M2 is chosen bearing in mind the leakage currents from the 

storage node, the oxide capacitance of the technology used, and the rate at which each 

node can be refreshed. The main sources of leakage are the current through transistor Ml 

to the Global T 13  Signal when Ml is switched off, and the leakage current through the 

reverse biased pn junction at the source of Ml where it connects to the gate of M2. The 

tendency for capacitive coupling of transient signals from the Address signal switching or 

from switching within the synapse circuit to corrupt the stored voltage has also to be con-

sidered. 

From HSPICE simulation of the addressing transistor, the leakage current through the 

reverse biased pn junction is at worst lOfA. Since the ES2 transistor models do not 
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model subthreshold operation, then an intelligent guess at the current through transistor 

Ml is the best that can be achieved. A very conservative figure of ipA has been 

assumed. If a refresh time of 2uS is assumed and 1800 synapses are to be refreshed (this 

number relates to the number of synapses refreshed in the final EPSILON chip), then the 

period between refresh is 

2pSx 1800 =3.6mS 	 (4.1) 

If an excitatory (or inhibitory) weight range of 1V is assumed and it is required to hold 

this to within 1% of its value, then since 

I=C. 	 (4.2) 

C=1x1012x 
3.6x 10

=0.36pF 	 (4.3) 
1 x 10-2 

In practice, a capacitance of 0.75pF might be implemented at the storage node. 

The capacitor symbols used in the circuit diagrams of this chapter have in practice been 

implemented with structures and analysis of this type. 

4.2. Edinburgh's Pulsed Synapse Circuit Designs 

This section of the thesis details the design of three pulsed synapse circuits developed 

within the VLSI Neural Network group at Edinburgh University. 

4.2.1. A Pulse Magnitude Modulating Synapse Design 

The Pulse Magnitude Modulating Synapse developed by Churcher [61, 62] operates 

effectively as a switched current source or sink, the magnitude of the output current being 

modulated by the synaptic weight. The basic circuit, illustrated in the first diagram of 

Figure 4.2, is capable of operating in pulse width or pulse frequency input modes. 

A synaptic weight, stored dynamically on a capacitor, controls a current source. When a 

pulse arrives at the input, V 3 , current is either added to or removed from the capacitor, C, 

depending on the magnitude of the current source in relation to the fixed balance current. 

Excitation is achieved when a net flow of current onto the capacitor occurs, resulting in a 

rise in activity voltage; inhibition is produced by a net removal of charge from the capaci-

tor and a resultant reduction in activity voltage. 

This circuit has been developed to operate in a self-depleting manner illustrated in the 

second diagram of Figure 4.2. Once the charge integrated on the dendritic summing node 

reaches the firing threshold of the receiving neuron, the neuron fires outputting a pulse on 

V1  and discharging C via the current I. 
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Figure 4.3 Pulse Magnitude Modulating Synapse: Circuit Details 

The complete circuit diagram of the synapse is shown in Figure 4.3. The voltages VBAL 

and VPD set the balance current and I,., respectively. A cascode current stage has been 

used and is controlled by the bias voltage, YGO, to prevent coupling of switching tran-

sients between adjacent synapse circuits. Simulation results from this circuit have not 

been included here due to the difficulty reported by Churcher[62] in obtaining good 
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HSPICE results. 

4.2.2. A Pulse Stream Synapse using Pulse Width Modulation. 

The pulse stream synapse presented here and designed by the author uses pulse width 

modulation techniques to perform multiplication on individual pulses. A functional spec-

ification of the pulse stream synapse has been developed and a summary of the desirable 

characteristics is presented in Table 4.1. 

Synapse Circuit Specification 

Synapse Function Presynaptic Neural State x Synaptic Weight 

Input Neural State Pulse Stream, Duty Cycle 0% - 50% 

Synaptic Weight Analogue Value, Stored at Synapse 

Synapse Output Analogue Integrated Activity Value, VX, OV - Vdd 

Cascadability Without Redesign 

Silicon Layout Area Small 

Power Consumption Low 

Table 4.1 Pulse Stream Synapse Circuit Specification 

Multiplication of the incoming pulse stream by the synaptic weight can be performed 

directly in a number of ways. Since neural state information is encoded as a stream of 

pulses of constant width whose repetition rate represents neural state information, the 

result of the multiplication is obtained by integrating over time. Multiplication can be 

performed on each pulse directly by using the synaptic weight to modulate either the 

height or the width of each individual pulse. Alternatively, the incoming pulse stream can 

be used to gate currents defined by the synaptic weight into (or out of) a summing node. 

The method chosen for study here is to modulate the width of each pulse directly. The 

circuit is based on a circuit idea suggested in[63] which has been modified to greatly 

improve multiplier linearity. 

The operation of the pulse width modulation circuit can be explained with reference to 

the simplified circuit diagram of Figure 4.4. The weight voltage controls the supply volt-

age, to a two-transistor CMOS inverter M1JM2. is inversely proportional 

to the synaptic weight voltage. Presynaptic input pulses, V, occur asynchronously at the 

input to this inverter, with a constant width Dt and a frequency determined by the state of 

neuron j. The ability of the inverter to discharge its output node is weaker than its charg-

ing ability due to the addition of transistor M3. This discharge is linear over most of the 

discharge range due to transistor M3 operating in its saturated region and therefore as a 

constant current sink. Prior to the arrival of a pulse at its input, the inverter output is 
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Figure 4.4 Simplified Synapse Multiplier Circuit and Timing Diagram 

static at the voltage determined by the synaptic weight. When the pulse arrives at the 

inverter input, the output node, V c  discharges through transistors M2 and M3. At the end 

of the input pulse, a rapid recharge occurs via transistor Ml. 

The second inverter performs a threshold operation via its switching threshold, the volt-

age at which the inverter switches between high and low outputs. The length of the out-

put pulse is determined by how long the discharge node spends below the switching 

threshold of the second inverter. 

The output is therefore a pulse whose width is equal to the input pulse width, Dt , multi-

plied by a factor 0 :9 Tu  :!9 1. The linearity of the multiplier characteristic is determined 

by the linearity of the buffer stage that converts the weight voltage, T 1 , into the supply 

voltage, V )l)r . This stage has been implemented as an active resistor inverter (shown in 

the complete circuit diagram of Figure' 4.6) which has a limited output voltage range and 

very low gain. The linearity of the pulse width multiplier circuit is shown from HSPICE 

simulations in Figure 4.5 showing Tij  against pulse width multiplier for typical process 

parameters. 

The useful weight range for this circuit is approximately 1V ! ~ T1  :9 3. 5V. Potential noise 

problems with high Tij  voltages exist where the output of the buffer approaches the 

switching threshold of the second inverter. For this reason, the transistors in the second 

inverter been chosen to give a typical switching threshold of 2V, leaving some headroom 

in the dynamic range of T 1 . 

The complete synapse circuit is shown in Figure 4.6, showing details of the buffer cir- 

cuitry and additional transistors to allow the implementation of both excitation and inhi- 

bition within one circuit. The method of implementing inhibition requires more 
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If we arrange that the transistors M9IM1O are always either fully open circuit or satu-

rated, then they are a switched current source and sink respectively, whose associated cur-

rents are controlled by the transistor widths and lengths W 9, W 10 , L9 , and L10 . 

Therefore, a pulse on the gate of M9 dumps a packet of charge of value 

Qd(Tij) = 
	

dt =19  Dt x T1  coulombs, 	 (4.4) 

while a pulse on the gate of MlO removes 

Qremoved = f 1 dt = I10 Dt coulombs. 	 (4.5) 

The net charge added to the activity x, is therefore 

Q 0 (T1) = Qdd(TI) - 	 (4.6) 

If we choose values of W9, L9, W 10  and L 10  such that Qdd(2.  2V) = Qmoved, then 

Q 0 (2. 2V) = 0. This effectively splits the range of T ij  such that a value T1  > 2. 2V will 

result in an increase in x i  proportional to (T1  —2. 2V) and a value T1  <2. 2V will result in 

a decrease in x, proportional to (2. 2V - T 13 ). 

A column of these synapses, with the associated distributed capacitors on the drain con-

nections of M9 and M10 will aggregate the total activity from all neurons connecting to 

neuron i to represent x, by a slowly varying voltage. The rise in the voltage representing 

xi  caused by a single pulse passing through synapse T 1  is:- 

V(x) - Q
0 (T) 

- C 0 (x1) 
(4.7) 

As the number of synapses in the column is increased, the capacitance ç 0 (x) in the 

denominator of (4.7) increases proportionately, and therefore the individual contributions 

to iV(x) become less significant. Naturally, as more synapses are added, more terms of 

the form Q 0 (T1) are added, and the synapse is therefore 100% cascadable, both topo-

logically and electrically. 

To ensure that transistors M9 and M10 remain in saturation, two additional devices, M7 

and M8, are incorporated, as shown in Figure 4.6. This incurs little penalty in silicon 

area, as they have the additional effect of reducing the need for the lengths of M9 and 

M10 to be large to restrict their source-drain currents. These devices act as voltage atten-

uators, as for instance, the gate voltage on M10 cannot be driven above V(8) - V th . 

The effectiveness of the attenuation process is increased by the body effect, whereby a 

MOS device has its threshold raised as its source rises above the substrate potential. The 

attenuated pulses on the gates of M9 and M10 ensure that these transistors operate in the 

subthreshold region, and are therefore essentially always saturated, and always operating 

as current source and sink respectively. 
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Figure 4.7 HSPICE Simulation Results for Synapse Circuit 

Weight Values 1V, 1V6, 2V2, 2V8 and 3V4. Duty Cycle Steps of 10% 

The linearity of the complete synapse is illustrated by the HSPICE simulations of Figure 

4.7 which show change in activity voltage for the weight range 1V - 3. 4V and duty 

cycles from 0% to 50% in steps of 10%. The weight range 1V - 2. 2V gives a net 

decrease in activity representing inhibition while the range 2. 2V - 3. 4V gives a net 

increase in activity representing excitation. The typical peak power consumption for an 

individual synapse ranges from 1mW for a weight voltage of 1V to 1.6mW for a weight 

voltage of 3. 4V. References[63-68]  contain further information on this synapse circuit. 

4.2.3. A Distributed Feedback Synapse 

The heart of this synapse design, shown in Figure 4.8 and developed by Baxter[69,  70,  4], 

is the multiplier formed by transistors Ml, M2 and M3. Transistors Ml and M2 output a 

current proportional to the weight voltage, T 13 , which is then pulsed by the switch transis-

tor, M3, controlled by the incoming neural state, V. The resulting output current, inte-

grated over a period of time, represents the multiplication of T 1  by V3 . 

The operation of the multiplier can be explained with reference to the MOSFET transistor 

characteristic equations. The equation of interest here is that for the drain-source current, 
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'DS , for a MOSFET in the linear or triode region:- 

_ 	
l /10Cox

w 

I_ 
'DS =L  VT(VGS -  ) VDS - Vs2] = (VGS - T ) VDS - 2 

DS ] (4.8) 

Here, Cox  is the oxide capacitance/area, Po the surface carrier mobility, W the transistor 

gate width, L the transistor gate length, and VGS, VT, VDS the transistor gate-source, 

threshold and drain-source voltages respectively. 

This expression for 'DS  contains a useful product term:- A  X VGS x VDS, however, it also 

contains two other unwanted terms in Vs X VT and VDS2 . 

In order to remove these non-linear terms a second identical MOSFET can be employed, 

as shown in Figure 4.8, leaving the output current defined by 

13  = 5 (VGS1 - VGSZ) VDS1 
	 (4.9) 

)VDS1 
Vsz 	 M1\ 	

Vj 
 

1" 
VGS1 	j,12 - M3 

Tij 	 M2\ 

 13 

VDS2 

VGS2 

Figure 4.8 Transconductance Multiplier Circuit: Basic Principles 

This is a fairly well-known circuit, called a Transconductance Multiplier. It was 

reported initially for use in signal processing chips such as filters[7 1] and later in[72, 73]. 

In our implementation we have used this circuit as a voltage controlled current source by 

clamping VDS2  to a constant value and therefore 1 3  is linearly dependent on VGS2 which 

represents the synaptic weight. 

However, this analysis ignores the body effect, whereby the threshold voltages of transis-

tors Ml and M2 are not equal and therefore do not cancel. This results in equation 4.10. 

13 = fi (V51 - GS2 + v 	- V. ) Vs 	 (4.10) 
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In addition, the output current of an individual synapse is dependent on 5 which is itself 

dependent on process parameters. 

In order to minimise variations in performance of this circuit across chip due to these 

problems, additional buffer transistors M4 and M5 have been added as shown in Figure 

4.9. The operational amplifier at the foot of each postsynaptic colunm provides a feed-

back signal, V0 , that controls the current in all the buffer stages in that column of 

synapses so that it balances the current being sourced or sunk by the multipliers. In order 

to achieve good matching these additional transistors should be placed physically close to 

the multiplier transistors. Solving for V outi  then yields 

"TRANS 
 

V0 , = 	(VT1J  - (VbI  - V f  - (V 1  - V2))) 
PBUF 

+ Vb + V f  + (V 4  - V 5 ) 

V .  

2Vref 

(4.11) 

GND 

Figure 4.9 Distributed Feedback Synapse Circuit 

Since the transistors are well matched, the fi terms should cancel each other out. V 01  is 

therefore a linear function of the weight voltage VT! . The voltage output of the opera-

tional amplifier therefore represents a "snapshot" of all the weights switched in at a par-

ticular moment in time. This output voltage is then integrated over time to form the neu-

ral activity. 

An on-chip feedback loop has been used to determine automatically the value of V sz  and 

hence the synaptic zero weight. is—mchanism compensates for process variations 
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between chips. 

2Vref 

Vin 0  

Vout 

GND 

Figure 4.10 Feedback Circuit for Determination of Bias Voltages 

This circuit is also used for the derivation of bias voltages used in the voltage integrator 

circuit described in the next section. If the input V 1  represents a zero weight voltage, 

then the output, V ut , can be used to drive V z  in Figure 4.9. 

Ievel 2 - Slow -4-- 

Level2-Fast 	I 
1.00 	2.00 	3.00 	4.00 	5.00 

Vflj (V) 

Figure 4.11 Distributed Feedback Synapse: HSPICE Simulation Results 
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In Figure 4.11 the output voltage of the operational amplifier is plotted against weight 

voltage with transistor M3 switched on for HSPICE simulations. 

4.3. Voltage Integrator Circuit 

As the output voltage of the operational amplifier represents a "snapshot" of all the 

weights switched in at a particular moment in time, the feedback operational amplifier 

needs to be followed by a voltage integrator, to obtain the aggregated neural activity. 

This integrator is composed of a differential stage and cascode current mirrors (Figure 

4.12). The current, I, through these current mirrors is determined off-chip to minimise 

the effects of process variation on the integrators' output current range. The output cur-

rent from the integrator is directly proportional to the difference between the signals V 1  

and the reference voltage V 0 . As the integrator capacitor has been implemented as a 

NMOS transistor any variations in the gain of the differential stage are tracked by the 

variations in the integration capacitance. Thus the rate of change of voltage will remain 

the same over all process variations. 

VBXT 	 VDD 

Iext 

-9- 

Voz 

L. 
L. 

Figure 4.12 Integrator Circuit 



Chapter 4 	 54 

The reference voltage V0  is derived from a feedback circuit of the type illustrated in Fig- 

ure 4.10. In this case the input V 11, is the voltage Vbias  of Figure 4.9, and the output V0t  

drives V0. 

4.4. Edinburgh's Pulsed Neuron Circuit Designs 

This section of the thesis details the design of three pulsed neuron circuits developed 

within the VLSI Neural Network group at Edinburgh University. 

4.4.1. A Current Controlled Oscillator Neuron Design 

The current controlled oscillator neuron developed by Churcher[74] is an attempt to 

implement a pulse based neuron that occupies a small silicon area in order to achieve 

high integration densities. The model used is, in some respects, similar to that of a bio-

logical neuron and to the work of Meador[10]. 

The neuron operates by aggregating current pulses from an array of synapses onto the 

capacitor shown in Figure 4.13. Once sufficient charge has accumulated so that the volt-

age on the capacitor exceeds the upper threshold of the comparator circuit, an output 

pulse is generated. The duration of the output pulse is determined by the capacitor size, 

the discharge current I and the switching thresholds of the comparator circuit. 

Vdd 
Distributed at each synapse 

Vr 

v
_F-f 

M2 

Ml 

Vri 

Vbias -J--  

GND 
	

JD: 

Figure 4.13 Current Controlled Oscillator Neuron Principles 

and Comparator Circuit Details 

The operation of the circuit is illustrated by the timing diagram of Figure 4.14. For prac-

tical reasons, the capacitor, C, and the transistors controffing the charge/discharge process 

have been distributed at each synapse location. The details of the synapse circuit used in 

this system have been outlined in the previous section. 
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The comparator circuit details are are shown in Figure 4.13 where hysteresis has been 

introduced by the feedback arrangement of transistors Ml and M2, and the reference 

voltages Vfa  and ,fb. The comparator circuit is of a standard design, V bj  sets the dif-

ferential gain and slew rate of the circuit, however, modifications have been made to the 

feedback mechanism that controls the hysteresis of the circuit. The feedback circuit 

formed by transistors Ml and M2 would normally be derived from the output of the 

inverter V 1  but this configuration was found to give spurious oscillations at low input cur-

rents to the integrating capacitor. This problem has been solved by taking the feedback 

from the output of the differential stage. In addition, the differential stage has a low gain, 

to ensure stability at high input current levels and a wide operating range. 

TTME 

............................ 

Vi p 
.  p. 

Figure 4.14 Current Controlled Oscillator Neuron : Timing Diagram 

4.4.2. A Pulse Width Neuron Circuit Design 

In order to produce pulse width modulated input or output neural states a circuit has been 

developed by Churcher [62] whose transfer characteristic is programmable. The circuit 

simply consists of a conventional comparator whose non-inverting input (+) has a capaci-

tor used to store an analogue input voltage when the circuit is used as an input neuron, or 

integrated neural activity voltage when used as an output neuron. The inverting input (-) 

is fed a symmetrical ramp input signal whose characteristics can be varied. 

The operation of the circuit with a linear ramp input signal is illustrated in Figure 4.15. 

The ramp input, normally high, is linearly ramped to OV. When the ramp signal passes the 

voltage stored on the capacitor, the output of the comparator switches high. Once the 

ramp signal reaches OV it is ramped back up to 5V. When the ramp signal passes the 

voltage stored on the capacitor again, the output of the comparator switches low. An 



Chapter 4 
	 56 

Ramp in 
Out 

From Synaptic 
&ray 	 >> 

or analogue input 
C'  

GND 

	

----------- \ ------ ------------- 	voltage 

Time 

5V 
- Vi 

oV 	 _______________ 

Tune 

Figure 4.15 Pulse Width Neuron: Schematic and Waveform Diagram 

output pulse signal V 1  is therefore produced whose width is linearly proportional to the 

voltage stored on the capacitor. The ramp waveform is distributed to all input or output 

neurons. The symmetry of this waveform ensures that all pulse centres are coincident 

rather than pulse edges and this prevents the large power transients that occur with syn-

chronous digital edges. 

M. Ramp 
Voltage 

Activity Voltage. Vxi 
	

Tim. 

Figure 4.16 Pulse Width Neuron : Various neuron transfer characteristics 

and required ramp input waveforms. (a) Linear, (b) Sigmoid and (c) Threshold. 

By varying the characteristics of the ramp waveform, various neuron transfercharacteris-

tics can be obtained. Figure 4.16 shows several typical neuron transfer characteristics 

and the ramp signals required to obtain them using this neuron circuit. In practice, these 

ramp waveforms have been generated off chip by storing the ramp signals in RAM and 

sequencing these values through a digital to analogue converter (DAC). The comparator 

circuit is almost completely invariant to processing variations across chip, and as a result 

of the use of digital RAM for ramp signal storage, the pulse width neuron is also largely 

invariant to process variations. The programmability and performance of this technique 
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is at the expense of the additional external RAM and DAC circuitry required. 

4.4.3. Pulse Stream Neuron Circuit Design 

A pulse stream neuron circuit has been developed by the author that produces a fixed 

width pulse output with a sigmoid activity to duty cycle characteristic. In addition, feed-

back mechanisms have been introduced to allow the output pulse width of the neurons to 

be set from an off-chip oscillator reference. Further development of this circuit has 

enhanced the performance to facilitate a variable gain sigmoid characteristic under elec-

tronic control. A summary of the circuit design specification is given in Table 4.2. 

Neuron Circuit Specification 

Input Activity Range OV - Vdd 

Output Pulse Width 1ps  

Output Duty Cycle Range 0% - 50% 

Sigmoidal. 

Transfer Characteristic Electronically 

variable Gain 

Silicon Layout Area Small 

Power Consumption Low 

Table 4.2 Pulse Stream Neuron Circuit Specification. 

4.4.3.1. Pulse Stream Neuron Circuit Basic Principles 

The basic circuit details of a pulse stream neuron circuit are shown in Figure 4.17. The 

pulse width output is determined by the rate at which the capacitor is charged between 

the upper and lower threshold limits of the comparator, while the pulse spacing is deter-

mined by the discharge rate. 

The operation of the circuit is summarised in Table 4.3. The output duty cycle, defined as 

the pulse width output multiplied by the pulse frequency, is a function of the currents 'H 

and 'L•  In order to obtain a constant pulse width output to meet the specification in Table 

4.2, 'H  should be set to charge capacitor C in lps. The pulse frequency is controlled by 'L 

which is a function of the input activity voltage, VXi. The control of 'L  should be such 

that the input activity voltage to output duty cycle transfer characteristic is sigmoidal. 

A circuit to perform the required transformation from input duty cycle, VXi, to output 

current, 'L'  is shown in Figure 4.18. It is a differential stage with a tail current equal to 

the capacitor charging current 'H•  The current 'L  is "copied" and used to discharge the 

capacitor C in Figure 4.17. 'L  varies from a maximum of 'L = 'H when VXi = Vdd 
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Figure 4.17 Pulse Stream Neuron: Basic Principles 

Neuron Circuit Operation 

V1  Ml M2 C 

HIGH 

LOW 

ON 

OFF 

OFF 

ON 

Charging via 'H 

Discharging via 'L 

Table 4.3 Pulse Stream Neuron Circuit Operation. 

producing a 50% duty cycle output, to 'L = 0 when VXi = 0 producing a 0% duty cycle or 

permanent OV output. The voltage VMII) sets the midpoint of the transfer characteristic 
VDD 

andissetto 2 

The design process to create a circuit with the desired transfer characteristic relies on the 

following analysis. Assuming the transistors M3 and M4 in the differential stage of Fig-

ure 4.18 are in saturation their currents can be described by equations 4.12 and 4.13, 

PM3 
'M3 = 	( VSGM3 - VT 2 

	 (4.12) 

M4 P 
'M4 = 	( VSGM4 - VT 2 

	 (4.13) 

where VSG and VT are the source-gate and threshold voltages. The transconductance 
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Figure 4.18 Pulse Stream Neuron Input Stage 

U,] 

parameter # is given in terms of physical parameters as, 

(yC) 	amps/volts 
	

(4.14) 

where 4u0  is the surface carrier mobility of the channel for the transistor 

(cm2/volt. seconds), and C 0  is the capacitance per unit area of the gate oxide 

(F/cm2 ). The variables W and L are the width and length of the device set by the 

designer. If we define the geometries of transistors M3 and M4 so that 6m3 = 26M4 and 

substitute p for 6M4 ;  the differential input voltage is 

1/2 	112 

	

1 	F1 
VID=VSGM3-VSGM4 r2I 

	4IM4  

	

=[--j--] 	
L] 	

(4.15) 

and 

'H'M3'M4 	 (4.16) 

where it has been assumed that M3 and M4 are matched. Substituting Equation 4.16 into 

Equation 4.15 and forming a quadratic equation allows the solution of 'M4  and hence 'L  in 

Equation 4.17. 

	

IL = 'M4 = 
+ PVID2 ± 'H [12pV 	2fl2VD4 1112 

18 	9 [ 'H 	- 	'H 	
] 	

(4.17) 

	

r 	112 

The regions in which Equation 4.17 is valid is defined by V ID  < 21H 1 where P = PM4 
[] 
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for positive values of VD,  otherwise 6,,= 	The equation for the duty cycle in terms 

of 'L  and 'H  is defined in Equation 4.18. 

DutyCycle = PulseWidth x PulseFrequency = 	 (4.18) 
'H + 'L 

The relationship between differential input vóltage and duty cycle output has therefore 

been established by substituting Equation 4.17 into Equation 4.18. This function has 

been plotted in Figure 4.19. 
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Figure 4.19 Pulse Stream Neuron Transfer Characteristic. 

Y-axis duty cycle range 0 —p 0.5 

represents actual duty cycles in the range 0 —* 50%. 

The slope of the transfer characteristic is of interest here and it can be found by differenti-

ating Equation 4.18 with respect to V ID  and setting VD =0, giving the differential gain of 

the neuron as 

öDutyCycle (V
D  =0) = [

3,Y ]" 

	

(4.19) 

The gain of the transfer characteristic is therefore proportional to the square root of 0 and 

inversely proportional to the square root of 'H•  These parameters can be set by the 
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designer at the design stage. A circuit with electronically programmable gain is 

described in the next section. 

The complete circuit for a pulse stream neuron is shown in Figure 4.20. 

Vdd 

'1 H 
B- 

vxi 
B- 

Vj 

Figure 4.20 Pulse Stream Neuron Circuit 

The non-linear transfer function commonly used for multi-layer perceptron architectures, 

for example, is expressed in Equation 4.20 in terms of pulse stream variables. 

DutyCycle = 	
1 	

(4.20) 
1 + e V)  

Although the relationship of Equation 4.18 is not mathematically equivalent to Equation 

4.20 it has many fundamental similarities. It is monotonically increasing, has no discon-

tinuities and saturates at either end of the VD range. These characteristics are essential 

for the correct operation of the back-propagation learning procedure. 

4.4.3.2. A Pulse Stream Neuron with Electrically Adjustable Gain 

In order to have more control over network dynamics in back propagation networks, the 

activation function of Equation 4.21 is suitable provided the temperature can be con-

trolled electronically. 

1 
Vi 1+e(vn1r 

(4.21) 

The Temperature, T of the sigmoid varies the gain of the sigmoid function. A low value 

of T gives the sigmoid function a high gain, whereas a high value of T results in a more 

gently varying function. The gain of the Pulse Stream Neuron Circuit, described in Equa-

tion 4.19 for VID  =0, is a function of the square root of 6 and the inverse of the square 
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root of 'H  The gain of the neuron circuit can therefore be controlled electrically by vary-

ing 'H  However, only small variations in gain are possible due to the square root func-

tion. 

In practice, the pulse width of the resulting pulse stream has to be maintained, so that 'H 

must remain constant. To vary the gain the current through the differential transistors, 

M3 and M4 should be varied. In addition, the current 'L  should have a maximum value 

equal to 'H  and a minimum value equal to zero. 

Vdd 

VI p G 	M8 

cI[ 

VL 
	

Vi 

GND 

Figure 4.21 Neuron with Electrically Adjustable Gain 

The circuit shown in Figure 4.21 performs this function. It uses an additional differential 

stage to control the current through transistors M3 and M4. Additional current, 'G'  is 

injected into the differential stage at node A, and removed again at nodes B and C. This 

mechanism controls the gain of the transfer function while maintaining the mid and end 

points of the sigmoid characteristic. 

The current through transistor M4, assuming that 6M3 = 2PM4' is described by Equation 

4.22, 

'TAIL fl''ID + 'TAIL [l2flV 2  22VD4 
]1/2

'M4 = 	+ 18 	9 [ 'TAIL 	'TAIL 
	

(4.22) 

where ITAIL = 'H + L. The regions in which Equation 4.22 is valid is defined by 

V11)  <I 	] where fl = PM4 for positive values of VD, otherwise P = fl. The 
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current 'L  is equal to the current 'M4  minus the current removed from node C by the inner 

differential stage. Assuming the ratio of the 's of the inner differential stage is the same 

as that for the outer stage, and assigning this to be ,5, Equation 4.23 describes the current 

removed from node C. 

18 
+

1,,-  [ 12fl1V 2  

'6 

2P1 2VD4
]112  

(4.23) 

Similar restrictions apply to the valid regions of equation 4.23 as to those of equation 

4.22. The current 'L  is therefore defined in Equation 4.24. 

'H 	
- 	

± 
18 

T 	i''i 2 
1TAIL ILJIVID 

9 	'TAIL 

'6 [12fliVm2  

9[ 'G 

2fl2Vm4
]112  

T 
1TAIL 2  

2fl1 2V 4
]1/2 

 

16 

(4.24) 

The gain of the transfer characteristic can be found by substituting equation 4.24 into 

equation 4.18 and differentiating with respect to V. Setting VD = 0, the differential 

gain of the neuron is defined by equation 4.25. 

öDutyCycle 
(VID =0) 

OVID 

in 	 i/2 
1 3(IHiG)  
8 	12 	-  

H 	 H 
(4.25) 

The form of equations 4.24 and 4.25 are similar to those of 4.17 and 4.19, however the 

gain of the transfer function can now be controlled by adjusting'6. 

4.4.4. Comparator Circuit Design 

In order to minimise the area occupied by the neuron circuit and to reduce the amount of 

reference voltages required, a simple comparator circuit has been used. Two different 

VLSI technologies for the implementation of the fixed and variable gain pulse stream 

neuron circuits have been used requiring the design of two different comparator circuits. 

The original circuit, shown in Figure 4.22 was implemented in 2tmi digital CMOS. The 

input stage is a voltage follower circuit followed by two digital inverters. The feedback 

transistors M1A and M2A provide hysteresis. However, when simulated using 1.5um 

digital CMOS design rules, this circuit did not switch properly under' certain process 

combinations. For this reason the second circuit was used. In this circuit, the transistors 

M1B and M2B provide hysteresis by fighting the switching action of the transistors in the 

input stage. 
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Figure 4.22 Comparator Circuit Details : 2 1um and 1 .54um Versions 

4.4.5. Automatic Pulse Width and Gain Setting Mechanisms 

In developing pulse stream neuron circuits it is envisaged that systems may be devised 

that use more than one chip or operate in different ambient conditions. However, manu-

facturing process variations and environmental conditions such as temperature will lead 

to variation in circuit performance between devices. Therefore it is important in analogue 

circuit design to introduce mechanisms that minimise the effects of these variations. 

A mechanism that automatically sets the pulse width output and gain of of the neuron cir-

cuit has been developed. The technique employs two phase lock loops, one for control-

ling the pulse width and one for controlling the gain. The phase lock loops are identical, 

only the signals used to control them are different. 

The block diagram of Figure 4.23 shows the components of the locking mechanism. A 

charge pump phase lock loop[75]  which allows accurate phase tracking with a passive RC 

loop filter has been used. A well-known sequential logic Phase Frequency Detector 

(PFD[76, 77]) is used for phase/frequency detection. Since it has memory to compare 

frequency as well as phase, the PFD is free from locking to second or third harmonics. 

The outputs of the PFD are the signals UP and DOWN and dump or remove charge from 

the loop filter. The resulting voltage controls either the pulse width or gain control cur-

rents in a reference pulse stream neuron. Lock is achieved when the output of the refer-

ence pulse stream neuron matches the input waveform. Both UP and DOWN are deacti-

vated to a high level when the ioop is in a perfectly locked state. Under no circumstances 

are both signals activated together. The resultant control voltages from the phase lock 

loop, VIfi  or VJQ , are distributed across chip to control the pulse widths and gains of all 

other pulse stream neurons. 
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Figure 4.23 Phase Lock Loop Schematic 

Phase Lock Loop Configuration 

Pulse Width Control Gain Control 

IN VIX VXi IN VIX VXi 

50% Duty Cycle VIH VDD > 25% Duty Cycle VJQ  VIv11D + ö 

Table 4.4 Phase Lock Loop Configuration 

for Pulse Width and Gain Control 

The circuit configuration details for pulse width and gain control are given in Table 4.4. 

For pulse width control, the reference pulse stream neuron operates at 50% duty cycle, 

since VX = VDD, and VIH  adjusts the pulse width to obtain lock to the 50% duty cycle 

input reference. For gain control, a point on the sigmoid characteristic is chosen and VX 1  

is set to this voltage VIvIID + ö, as illustrated in Figure 4.24. The desired duty cycle 

required for this activity voltage is fed from off-chip to the input of the phase lock loop, 

and VL3  is adjusted to obtain lock. By varying the the input duty cycle, the gain of the 

neuron can be varied. 

SPICE level simulation of the complete feedback network presents problems because a 

small time step is required to simulate the sequential logic in the PFD, and yet a long sim-

ulation time is required to allow the phase lock loop to converge. The loop filter formed 

by Ri, Cl and R2 have therefore been implemented off-chip to allow variation of the 
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Figure 4.24 Neuron Gain Control: Principles 

filter characteristics and to allow the feedback mechanism to be overridden. 

4.5. Inter-chip Communication Strategies for Pulse Stream Neural Networks. 

Pulse Stream Neural Networks encode neural state information in the time domain as a 

series of pulses whose spacing represents the neural state. The inter pulse spacing at the 

neuron output is determined by the input activity voltage V, 1 . The relationship between 

the input activity voltage and the output duty cycle is determined to a large extent by the 

characteristict i s, nput stage of the neuron circuit. 

Since the input stage characteristics of neurons on different chips will vary slightly due to 

manufacturing variations, an activity voltage producing a pulse stream on one chip will 

not necessarily produce the same pulse steam output on another chip. For this reason, the 

pulse stream output of each neuron has been used to communicate neural states. 

4.6. Transmitting Data - Encoding Pulse Streams 

In order to determine a suitable inter-chip communication scheme, a number of possibili-

ties have been considered and their hardware and performance characteristics have been 

assessed. 

It is assumed in this analysis that duty cycles in the range 0.5% to 50% are to be encoded, 

and that the pulse width is r. It is also assumed that the neuron address can be communi-

cated directly to the receiver over an address bus, or can be implied by assuming a fixed 

sequence of data transfer. The addressing mechanism is therefore independent of the 

communication scheme employed. 
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Figure 4.25 Scheme 1: Pulse Stream Data Encoding 

Figure 4.25 illustrates one possibility. Each of the M input pulse streams are multiplexed 

in turn onto the clock line of a counter for a period equal to 200r, the period of the lowest 

possible duty cycle. The counter counts the number of pulses arriving at the clock signal 

during this time period. The output of the counter can be transferred from the chip as a 

direct measure of the state of the transmitting neuron. 

A variation on this scheme, shown in Figure 4.26, is to use a counter at each transmitting 

neuron, all enabled for a period of 200'r and then multiplex the duty cycles off the chip at 

a rate limited only by the bandwidth of the inter-chip link. 

Instead of allowing a fixed interval for the counter to count pulses arriving at the clock 

input, the configuration of Figure 4.27 allows the space between pulses to be measured. 

A Pulse Space Encoder outputs a pulse that represents the space between consecutive 

neuron output pulses. The data transmission time now depends on the data being trans-

mitted and is faster the greater the average duty cycle over the link. This transmission 

strategy transmits a snapshot of the current duty cycle and avoids the averaging opera-

tion inherent in the previous schemes. 

The Pulse Space Encoder can be implemented as a finite state machine as illustrated by 

the waveform and state diagrams of Figure 4.28. The input to the Pulse Space Encoder is 

a pulse stream selected by the multiplexor. The output is a pulse whose width represents 

the space between the pulses of the input pulse stream. Since the Pulse Space Encoder is 

very simple, requiring only 4 states, it can be implemented using 2 D-type flip-flops. 

This compares with the N D-type required for a N bit counter. 
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Figure 4.26 Scheme 2 : Parallel Pulse Stream Data Encoding 
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Figure 4.27 Scheme 3 : Serial Pulse Stream Data Encoding 

Ti, T2, T3 and T4 represent the time between output pulses of neuron 1, 2, 3 and 4, 



Chapter 4 

Vj =0 

Increment 
Address 

D=1 

Vj = 1 

Vj =0 

Vji 	I 	I 

D 	I 	I 

Figure 4.28 Pulse Space Encoder: State and Waveform Diagrams 

The three schemes outlined here are compared in Table 4.5. The counters require 7 bits 

to represent duty cycles between 0.5% and 50%, although additional circuitry is required 

to derive the clocks for these counters to ensure the required resolution over the entire 

duty cycle range[78]. The time ö is the time required to transmit one data word over the 

communication link. 

Inter-Chip communication Schemes : Performance Comparison 

Pulse Space Chip pin Communication 
Scheme Mux Counters 

Encoder count Time 

1 Serial 1, 7 Bit None 7+ Mx 200r + Mo 

2 Parallel M, 7 Bit None 7+ 200r + MO 

3 Serial None 1 1+ M x 2r —p M x 200r 

Table 4.5 Inter-chip Communication Schemes : Hardware 

requirements and performance comparison. 
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The choice of inter-chip communication scheme is a trade-off between hardware com-

plexity and speed of data communication. Therefore, although Scheme 2 offers the 

fastest communication time, it requires a 7 bit counter dedicated to each transmitting neu-

ron. Scheme 3 offers a data dependent communication rate that, at best is two orders of 

magnitude faster than scheme 1, and at worst has approximately the same communication 

rate. This inter-chip communication scheme (3) was therefore chosen due to the simple 

hardware requirements, the low chip pin count and the inherently asynchronous nature of 

scheme. It is interesting to note, although not strictly relevant, that inter-pulse timing is 

used in many biological systems, rather than pulse frequency - see for example[79]. 

4.6.1. Controlling the Communication Interface 

The communication system has been designed to allow a chip to communicate its neural 

states to another chip, or chips, and to allow communication to and from standard micro-

processor peripheral parts. In order to keep the chip pin count to a minimum, the address 

information relating to the neural state being transmitted is implied rather than being sent 

explicitly. This imposes the restriction on inter-chip communication that the number of 

neural states being transmitted is predefined at both the transmitter and the receiver. In 

order to ensure that the transmitting and receiving chips remain in step with each other a 

handshake mechanism has been employed in the communication interface. The hand-

shake mechanism also facilitates easy interface with standard microprocessor peripheral 

parts, and the transmission of neural states from a transmitting chip to a number of 

receiving chips. 

RIWI 

ED 

CTR 

Figure 4.29 3-Wire Handshake 

RTT - Request To Transmit. CTF - Clear To Transmit. D - Data. 

(a) Transmitter requests to send data. (b) Receiver ready to receive data. 

(c) Transmitter signals end of data. (d) Receiver signals receipt of data. 
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4.6.1.1. The 3-Wire Handshake 

In order to guarantee that two independent finite state machines remain in step with each 

other a 3-wire handshake mechanism is required. One of the three wires carries the pulse 

width modulated information relating to pulse spacing and has been named Data, or D. 

The other two perform the handshake operation. One of these is used by the transmitter 

to interrogate the receiver to check either on its readiness to receive data, or that it has 

received data sent and has been named Request To Transmit , or RTT. The other wire 

allows the receiver to confirm readiness to receive data, or to confirm receipt of the data 

sent and has been named Clear To Transmit, or CTh. The operation of the handshake 

mechanism is illustrated in Figure 4.29. 

0 

ri 

Vj=0 . T_O=O 

U_ 

2 

_H o  1 	1=1 

7 

ALWAYS 

I 	EN. INC I 
RTr I 	D 

T_O 
I   I 
A11 I 

Figure 4.30 Transmitter State Diagram 

RTT - Request To Transmit. CTF - Clear To Transmit. D - Data. 

Vj - Pulse Stream State being transmitted. T_O - Time-out. 

En. T_O - Enable Time-out. Inc Addr - Increment neuron address. 

4.7. Transmitter and Receiver Controllers 

The signals used to control the communication interface have been derived from two sep-

arate and independent state machines. A transmitting state machine controls the Pulse 

Space Encoder, associated multiplexor and RTT signal while a receiving state machine 

controls the CTT signal, the Pulse Stream Regeneration Circuit and associated 
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demultiplexor. The state machines are initialised to a known state with a common Reset 

signal and thereafter the handshake ensures correct transfer of data. 

Figure 4.30 shows the transmitter state diagram developed from the Pulse Space Encoder 

state diagram of Figure 4.28. Duty cycles less than 0.5% are rounded up to 0.5% by the 

use of a time-out mechanism started after the detection of the first pulse from the current 

transmitting neuron. If a second pulse does not arrive before the end of the time-out 

period, the data signal D is taken low by the transmitter state machine thereby performing 

the rounding operation. The transmitter state diagram requires 8 states and therefore only 

3 D-type flip-flops. 

RTF=1 

0. 

WMARMEME 

ALWAYS 

Figure 4.31 Receiver State Diagram 

R1'T - Request To Transmit. CTF - Clear To Transmit. D - Data. 

Rst Cap - Reset Receiving Capacitor. Inc Addr - Increment neuron address. 

Data Out - Regenerated Pulse Stream. 

The receiver state diagram shown in Figure 4.31 has been implemented using 6 states and 

similarly requires only 3 D-type flip-flops for full implementation. 
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4.7.1. Receiving Data - Regenerating Pulse Streams 

Communicating neural states using the pulse width modulation technique outlined earlier 

allows the use of analogue circuit techniques to implement the pulse stream regeneration 

function. The circuit is essentially an oscillator whose output pulse spacing is matched to 

the input pulse width modulated signal. 

IY1]!] 

VI  

Pulse Wid~h ~  
Modulated wm 	Vspace 
Signal,D 	 I~p  c t

I- 
GI-M 

 

Figure 4.32 Pulse Stream Regeneration - Pulse Space Control Circuit 

The pulse spacing information is stored on the receiving chip between updates over the 

communication link as charge on a capacitor. The storage capacitor is charged by a con-

stant current for the duration of the incoming pulse as shown in Figure 4.32. The result-

ing voltage, V m , provides a reference against which the output of an identical timing 

circuit, Vspam o  can be compared to determine pulse spacing. The pulse stream regenera-

tion circuit continues to output pulse streams with this pulse spacing until the communi-

cation link updates V m . Since the two circuits are physically close to each other, the 

capacitances, currents, and therefore the resulting space between pulses should be well 

matched. 

In order for the pulse stream regeneration circuit to have a constant pulse width output, r, 

an off-chip reference clock is used to control a switched capacitor feedback arrangement 

where a charging current, I, is set to charge a capacitor, C, to a reference voltage, VRJF, in 

time r. The details of this circuit are shown in Figure 4.33. 

During time Ta  the capacitor, C, is charged by the current, I. If the resulting voltage on 

the capacitor exceeds VREF  the output of the comparator goes low, if it is less than VRU  

the comparator output goes high. The switched capacitor arrangement controlled by the 

clock signals Tb and Tc  adjusts the current by a small amount, increasing it when the 
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Figure 4.33 Pulse Stream Regeneration - Pulse Width Control Circuit 

Iyj ,J,J 

1/10 

GND 

Figure 4.34 Time-out Mechanism: Circuit Details 

En. T_O - Enable Time-out. T_O - Time-out. 
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comparator output is high and decreasing it when the comparator output is low. The cur-

rent, I, therefore is adjusted over a number of clock periods so that it charges the capaci-

tor, C, to VRu  in time Ta . This current is mirrored to the pulse stream regeneration cir-

cuit and used in similar circuits to control the output pulse width. 

VDD 

1/10 

P Width 

1 	Modulated Signal 

3c11 0Reset 

Regenerated Pulse 
Stream Signal 

TT   
Figure 4.35 Pulse Stream Regeneration Circuit 

mit = Pulse Width Modulated Signal OR Reset 

The time-out mechanism uses the current, I, derived by the pulse width control circuit to 

control a capacitive discharge. By scaling I, and careful selection of discharge capacitor 

and comparator switching point, the circuit of Figure 4.34 may be designed to generate an 

output time-out signal, T_O, after the enable signal, EN. T_O, has been held for a period 
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greater than that of a 0.5% duty cycle. 

The complete circuit diagram of the pulse stream regeneration circuit is shown in Figure 

4.35. The circuit is initialised to a known state while the pulse width modulated signal is 

being stored as the voltage V m . Once V1, has been stored, the voltage begins to 

rise from the initial value of 1.2V. When Vspam  reaches V1,, the output of the compara-

tor sets the S-R latch. This re-initialises V sp., to 1.2V ready for the next pulse space 

measurement and starts the pulse width measurement. The current, I, set by the pulse 

width control circuit, charges the capacitor, C, until it reaches VREF. The comparator then 

resets the S-R latch and the pulse space measurement restarts. The Q output of the S-R 

latch therefore forms the regenerated pulse stream. 

In order to achieve the range of duty cycles, from 0.5% to 50%, the currents and capaci-

tances in the pulse space control circuitry have been scaled as indicated in Figure 4.35. 

4.8. Conclusion and Discussion 

A number of pulse based circuits have been presented in this chapter to implement neural 

functions. In addition, support circuits have been developed in order to allow automatic 

circuit bias and inter-chip communication. Although HSPICE simulation results may 

indicate good circuit performance, the acid test of any circuit is how well it performs 

when implemented in VLSI. The skill and experience of an analogue VLSI designer lies 

in the thorough pre-fabrication circuit simulation and design that should anticipate any 

potential design problems. In practice, as will be shown in the following chapter, unex-

pected design problems often occur, their resolution resulting in a more mature and expe-

rienced analogue VLSI designer. 
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Chapter 5 

Integrated Pulse Stream VLSI Results 

This chapter introduces three VLSI devices that have been fabricated and tested from the 

pulse stream cell library described in Chapter 4. The chips are presented in chronological 

order, the first two being test devices used to evaluate different circuit design strategies 

and as such implement relatively small neural network structures. These test devices 

have allowed the considered choice of circuits from the cell library to implement a large 

pulse stream demonstrator chip entitled EPSILON (Edinburgh's Pulse Stream Implemen-

tation of a Learning Oriented Network). EPSILON is capable of operating in a variety of 

modes and of solving different neural network problems. 

5.1. The VLSI Test Environment 

A simplified schematic of the automated test environment used to exercise all the chips is 

shown in Figure 5.1. 

k•41-4-k-1 	1iIIIII; 
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MEMORY [I 
1111111 1111111 	1111111 1111111 
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Neural states and synaptic weights are loaded from the IBM PS/2 to a test board via a 

standard parallel interface card and stored locally in Static Random Access Memory 

(SRAM). The control circuitry continually cycles through the synaptic weight memory 

refreshing the on-chip capacitive weight storage nodes via an 8-bit Digital to Analogue 

Converter (DAC). 

Neural state information described as a programmable duty cycle in the software environ-

ment on the IBM PS/2 is converted to bit patterns and loaded into the Neural State SRAM 

on the testboard. Each data output line from the Neural State SRAM represents a pulse 

stream input to the synapse array. By sequencing through all memory locations a pulse 

sequence can be fed into the synaptic array. 

A 20MHz Digital Storage Oscilloscope has been used for data capture. The data cap-

tured by the oscifioscope is fed back to the IBM PS/2 over an IEEE-488 Interface for dis-

play, storage and manipulation. 

The software environment developed for the IBM PS/2 allows algorithms tube developed 

to test the synaptic array on the test chip and to implement neural algorithms. 

5.2. Test Chip A: A Pulse Stream Synapse using Pulse Width Modulation 

The pulse stream synapse using pulse width modulation described in Chapter 4 has been 

fabricated on test chip A using ES2's 2um Digital CMOS technology. This chip was the 

first designed at Edinburgh using purely analogue circuits for pulse stream neural net-

works and therefore proved the design route and the capability of the digital process for 

analogue circuit design. 

The layout for the synapse circuit was performed by hand using the MAGIC design tool, 

each synapse occupying a silicon area of 174um by 73jtm. An array of 10 x 10 synapses 

and additional support circuitry for weight addressing and signal multiplexing was placed 

on chip. All digital circuitry was compiled using the SOLO 1400 silicon compiler. A 

photograph of a section of the synaptic array on the test chip is shown in Figure 5.2. 

The performance of an individual synapse circuit as a two-quadrant multiplier has been 

evaluated by measuring the change in activity voltage at the output of the synaptic col-

umn for various weight voltage and input state duty cycles. These results have been 

obtained by measuring the rate of change of activity voltage with time from the data cap-

tured by the oscilloscope and are shown graphically in Figure 5.3. The linearity of the 

pulse multiplier circuit is illustrated in these results as the even spacing between lines for 

any given duty cycle. 

This set of results shows that the circuit performs as predicted by the HSPICE simulation 

results of Figure 4.7 in Chapter 4. The performance of the circuit as a two-quadrant mul- 

tiplier is excellent. The difference in rate of change of activity voltage between the 
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Figure 5.3 Measured Multiplier Characteristic of a Single Pulse Width 

Modulation Synapse. Weight Values 1V, 1V6, 2V2, 2V8 and 3V4. Duty Cycle Steps of 5% 

Table 5.1 demonstrates that although an individual synapse circuit can perform as pre-

dicted by the HSPICE simulation given in Chapter 4, the variation in process parameters 

across the chip causes significant variation in circuit performance. Variation of this mag-

nitude may present problems for the system designer if they cannot be compensated for 

by learning algorithms. Since these variations will vary between devices it may be neces-

sary to have the chip in the learning loop to allow the learning procedure to compensate 

for individual chip variations. 

5.2.1. Capacitive Weight Storage Leakage 

An approximate measure of the leakage currents from the storage node has been made 

indirectly using the following technique. The weight voltage is set to the maximum exci-

tatory value and the weight on an individual synapse updated. The weight refresh mecha-

nism is then disabled and a pulse stream input is applied to the synapse and the activity 

voltage observed. As the weight voltage decays, and hence the weight value goes from 

being excitatory to being inhibitory, the response from the synapse becomes less. By 

measuring the time taken for the output to change from being excitatory to having zero 



Chapter 5 
	

E31 

Synapse Circuit Results  

Change in VXj V/mS 
Duty Cycle (%) Variation Std Dev 

Mm Mean Max  

0 -0.18 -0.05 0.57 -2.30/o/+9.2% ±0.92% 

5 0.23 0.51 0.81 -5 .0%/+5 .3% ±2.15% 

10 0.59 1.14 1.73 -9.801o/+10.5% ±4.51% 

15 1.12 1.79 2.50 -11.501o/+14.4% ±5.74% 

20 1.49 2.33 3.33 -14.90/o/+17.8% ±7.01% 

25 1.88 2.88 4.14 -17.80/o/+22.4% ±8.58% 

30 2.11 3.42 4.81 -23.30/o/+24.7% ±10.18% 

35 2.53 4.04 5.95 -26.80/o/+33.9% ±12.41% 

40 2.76 4.48 6.49 -30.60/o/+35.7% ±14.30% 

45 3.11 5.10 7.31 -35.3%/+39.2% ±16.46% 

50 3.38 5.63 8.16 -40.00/o/+44.9% ±18.06% 

Table 5.1 Pulse Width Modulation Synapse Circuit Performance Variation 

VT13  =3.4V 

response, an approximate measure of the leakage currents can be calculated. 

The measured time from disabling the refresh mechanism to a zero activity response was 

360 seconds. If we assume a constant current discharge, then 

I = 0. 75 X l0_12 X=2. 5fA. 	 (5.1) 
360 

This measured current indicates the over-specification of the weight storage circuit 

described in section 4.1. 

5.2.2. Pattern Associator Network 

In order to demonstrate the principle of a learning algorithm compensating for circuit 

variation a simple pattern associator network [80] has been implemented using test chip 

A. 

The pattern associator network is one of the most basic network architectures and has 

been used widely in distributed memory modelling. This architecture has been chosen to 

demonstrate the operation of an array of pulse stream synapses in a small network using a 

local learning rule. Both the Hebb Rule[81] and the Delta Rule [82] have been used to 

train such networks, however, since the Delta Rule is related to the Perceptron 
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convergence procedure of Rosenblatt[83], it has been chosen for this demonstration. 

The pattern associator consists of a set of input neurons driving an array of synapses con-

nected to output neurons and learns associations between input patterns and output pat-

terns. In this demonstration a set of 9 input neurons drives an array of 36 synapses con-

nected to 4 output neurons. The network is to be trained to associate the input pattern A 

with the output of neuron 0, input pattern B with the output of neuron 1 and so on. The 

training patterns are shown as the first four inputs to the network in Figure 5.4. If the nine 

inputs are arranged as a 3 x 3 array, as illustrated in Figure 5.4, then the ' inputs can be 

visualised as two diagonal lines, a horizontal line and a vertical line. 

vjo 

Vj1 

Vj2 

Input Pattern to 
Network Input Mapping 	

Vj3 

rjj3V

Vjl Vj2 

 Vj4 Vj5 	Vj4 

 VJ7 	Vj8 
Vj5 

Input Pattern E 	 Input Pattern F 

1 	0 	1 	0 	1 	0 	 Vj6 

0 	1 	0 	1 	1 	1 

Vj7 

1 	0 	1 	0 	1 	0 

VjS 

Figure 5.4 Input patterns illustrated on a 3 x 3 grid, mapping of grid points 

onto network inputs and block diagram of network showing inputs and activity 

voltage outputs. Each Square represents one pulse stream synapse circuit. 

The Delta Rule, in its simplest form can be written 

Awij 	 (5.2) 
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Delta Rule Results  

Input Patterns  Weight Voltages  Syn- 

A B C D £ F Neuron 0 Neuron 1 Neuron 2 Neuron 3 apse 

o i 0 0 1 0 -0.54 0.49 -0.46 -0.59 0 

0 0 0 1 0 1 -0.42 -0.28 -0.39 1.00 1 

1 0 0 0 1 0 1.01 -0.29 -0.27 -0.53 2 

0 0 1 0 0 1 -0.35 -0.36 0.79 -0.54 3 

1 1 1 1 1 1 -0.32 -0.45 -0.34 -0.68 4 

0 0 1 0 0 1 -0.35 -0.36 0.79 -0.54 5 

1 0 0 0 1 0 1.01 -0.29 -0.27 -0.53 6 

0 0 0 1 0 1 -0.42 -0.28 -0.39 1.00 7 

0 1 	1  1 	0  1 	0  1 	1 0 -0.54 0.49 -0.46 -0.59 8 

A 3.91 -3.13 -2.73 -4.3 

B -14.1 3.9 -6.25 -4.7 

C -4.3 -12.1 3.13 -6.25 
Change in VX in V/mS 

D -14.5 -2.7 -15.6 3.91 

B 2.73 2.34 -12.5 -2.73 

F -7.42 -17.97 1.56 2.73  

Table 5.2 Delta Rule Results : Training patterns are Inputs A -> D. 

Weights are expressed as a Voltage in the range -1. 2V -+ 1. 2V. 

Input States are of duty cycle 0% or 25% 

where e1 , the error for unit i , is given by 

e1 =t-a 	 (5.3) 

the difference between the training input to unit i and its obtained activation. 

The synapse array is initialised with a set of approximately zero weights. Each input pat-

tern is applied to the synapse array in turn and the output of the first column of synapses 

is observed. The. binary input has been represented by a 25% duty cycle for a " 1 " input 

and a 0% duty cycle for a "0" input. The resulting change in activity value is used as a 

measure to indicate the output neuron switching on or off. A threshold value has to be 

exceeded before the output neuron can be said to be truly " 1 " or "0". 

Since the first synapse column is to be trained to recognise the input pattern A, the target 

t1  is "1" for the pattern A and "0" for all others. The resultant error e 1  is calculated and 

the weights in that column modified according to equation 5.2. In practice, the value of -- 
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is a function of time, decaying linearly to zero. The process is repeated for all output 

neurons until zero error is observed for all input/output combinations. 

The resultant weights taken from the hardware demonstrator are displayed in Table 5.2. 

The weights are tabulated as voltages in the range —1. 2V - 1. 2V. A positive voltage 

represents an excitatory weight and a negative voltage represents an inhibitory weight. 

The output responses from each column of synapses after training, expressed as a rate of 

change of activity voltage in V/mS, are tabulated in Table 5.2 for each input pattern. 

When input patterns A -3 D are presented to the network after learning is completed, the 

responses to each of the inputs, expressed as a change in VX 1 , are shown in outputs 

A - D. This clearly demonstrates that learning has been successfully completed. Input 

pattern E is a combination of patterns A and B and results in outputs 0 and 1 responding 

with a positive change in VX. Similarly input pattern F is a combination of patterns C 

and D and results in both outputs responding. 

5.2.3. Test Chip A: Conclusions and Discussion 

This device has proved successful in demonstrating correct analogue circuit functionality 

from circuits designed using the manufacturer's SPICE data. It has proved the storage 

capability of capacitors implemented using transistors as described in Chapter 4 and 

given a rough measure of leakage currents. In addition, it has illustrated the problems of 

process variation and quantitive measurements have been made. 

A simple pattern associator network has been implemented with this chip and shown to 

be capable of compensating for variations in individual chips providing the chip is in the 

learning loop. It is important to note that while this result is interesting, it does not indi-

cate that any level of process variation may be tolerated by such a network trained using 

error driven learning. This simple example has been restricted to binary input data and 

therefore does not exploit the complete functionality of the analogue synapse circuit. 

While the problem of process variation in the synapse circuit design can be compensated 

for to some degree, it is desirable to minimise this variation. For this reason, the dis-

tributed feedback synapse circuit described in Chapter 4 and demonstrated working on 

Test Chip B is of great interest. 

5.3. Test Chip B 

The second test chip contains three distinct functional blocks. The first is the self-

depleting neuron and pulse magnitude modulating synapse design configured as a 10 x 10 

fully interconnected synapse array. The second is the distributed feedback synapse, inte-

grator and pulse stream neuron circuit with associated phase lock loop, also organised in 

a 10 x 10 array. The third is the inter-chip communication strategy implemented with an 
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independent transmitting and receiving state machine and the pulse stream regeneration 

circuitry. 

Figure 5.5 Chip Photograph of Test Chip B. 

All digital support circuitry for weight addressing, signal multiplexing and state machine 

generation was implemented using the SOLO 1400 silicon compiler. ES2's 2pm Digital 

CMOS technology was used. A photograph of the chip is shown in Figure 5.5. 

Figure 5.6 illustrates the floorplan of Test Chip B showing the placement of the individual 

circuit elements on the die. 

The physical size of each of the circuit components used is given in Table 5.3. The mi-
tials in the table refer to the circuit designer. 
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Figure 5.6 Chip Floorplan of Test Chip B. 

A - Pulse Magnitude Modulating Synapse array and Self-Depleting Neurons 

B - Distributed Feedback Synapse array. C - Operational amplifiers. 

D - Integrators. B - Phase Frequency Detector and PLL Reference Neuron. 

F - Pulse. Stream Neurons (Fixed Gain). G - Signal Multiplexing Circuits. 

H - Pulse Stream Regeneration Circuitry. 

5.3.1. Pulse Magnitude Modulating Synapse and Self-Depleting Neuron 

The transfer characteristics of the Pulse Magnitude Modulating Synapse and Self-

Depleting Neuron circuits have been measured by Churcher[62] over 7 functional 

devices. In order to characterise the network, 5 synapses within any column were given a 

fixed weight value in order to provide a constant current drive to the self-depleting neu-

ron. The remaining 5 synapses in the column were loaded with a variable weight voltage. 

A single duty cycle was fed into all input states. This configuration allowed the weight 

and input state values to be varied over their entire range. The mean characteristics are 

plotted in Figures 5.7 and 5.8. 

Figures 5.7 illustrates the approximately linear response of the circuits for low input duty 

cycles up to values of approximately 15%, while Figure 5.8 illustrates a linear response 
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Cell Layout Sizes in ES2's 21in CMOS  

Cell Size (Height x Width) Designer 

Pulse Magnitude Modulating Synapse 130pm x 140pm S.C. 

Self-Depleting Neuron 100,4m x 140pm S.C. 

Distributed Feedback Synapse 130pm x 165,4m D.J.B. 

Operational Amplifier 250pm x 165pm D.J.B. 

Integrator 200pm x 165pm D.J.B. 

Phase Lock Mechanism 

(Phase Frequency Detector, 173pm x 446pm A.H. 

Current Set and Reference Neuron) 

Pulse Stream Neuron (Fixed Gain) 165pm x 165pm A.H. 

Pulse Stream Regeneration Circuitry 139pm x 628pm A.H. 

Table 5.3 Cell Layout Sizes and Designer. 

S.C. - Stephen Churcher. D.J.B. - Donald J. Baxter. A.H. - Alister Hamilton. 

250000 

200000 

150000 

100000 
z 

111W1 

0 
	

5 	10 	15 	20 	25 	30 	35 	40 45 	50 
Activity 

Figure 5.7 Pulse Magnitude Modulating Synapse and Self-Depleting Neuron. 

Output States vs Input States (Activity 0- 50%) 

for different weight values (0= OV, 80 = 1.6V) averaged over 7 chips. 
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for high weight voltages. Erratic behaviour was observed at higher input state duty cycles 

and lower weight voltages. 
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Figure 5.8 Pulse Magnitude Modulating Synapse and Self-Depleting Neuron. 

Output States vs Weight Values (0= OV, 80= 1.6V) 

for different Input States (Activity 0- 50%) averaged over 7 chips. 

Large amounts of jitter from the output neurons was observed while taking these results. 

Churcher[62] attributes the cause of this jitter to power supply noise affecting the switch-

ing points of the comparator circuit within the self-depleting neuron circuit. This conclu-

sion is borne out by the observation from Figure 5.7 that low pulse duty cycle inputs that 

have inherently fewer digital noise inducing edges give linear results while high duty 

cycles do not. This effect is accentuated by the experimental procedure where all input 

states and therefore switching edges are synchronised. Further evidence is provided by 

the results of Figure 5.8 where lower weight voltages that produce higher currents to be 

switched into the summing node give correspondingly worse results. 

In addition to these problems, Churcher[62] required a lengthy and delicate set-up proce-

dure in order to achieve correct circuit functionality. 

Due to the above observations, the non-linear synapse transfer characteristic, the indeter-

minate activation function of the neuron and the resultant problems with mapping exist-

ing learning procedures onto this architecture, no further investigation has been made of 

this network type within the Edinburgh group. 
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5.3.2. Distributed Feedback Synapse, Operational Amplifier and Integrator Circuit 

The array of transconductance multiplier synapses has been tested in both static and 

dynamic modes. Figure 5.9 shows static measurements of the output of the operational 

amplifier measured for a range of input weight voltages with the switch transistor, M3 in 

Figure 4.9 in Chapter 4, permanently switched on. The results have been taken from 8 

chips, with 10 columns of 10 synapses measured on each chip. Figure 5.9 is directly 

comparable to the HSPICE simulation results given in Chapter 4, Figure 4.10. This corn-

parison shows excellent matching between HSPICE and VLSI results. 
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Figure 5.9 Distributed Feedback Synapse: Static VLSI Results 

The two-quadrant multiplier performance measured over 8 chips, with 7 columns of 6 

synapses is shown in the dynamic measurements of Figure 5.10. The integrator circuit is 

included in this test since rate of change of activity voltage is measured. The rate of 

change of activity output has been plotted against input state settings at intervals of 5% 

duty cycle. The mean value of each measurement over the test sample has been plotted 

together with the error bars showing ± one standard deviation. 

The performance of the two-quadrant multiplier deviates from the expected results at the 

0% duty cycle input, and at duty cycles of approximately 40% and greater. The high duty 

cycle deviations can be explained by the limitation of the test environment where duty 

cycle inputs of 40% and 45% could not be generated. The 0% duty cycle deviations are 
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Figure 5.10 Distributed Feedback Synapse Dynamic VLSI Results 

Double Sweep 

caused by an error introduced by the integrator circuit. Measurements of the integrator 

performance indicate an offset problem that has been found to be due to imprecise mir-

roring of currents between legs of the integrator circuit. This source of error is due to the 

layout of the integrator current mirror circuits causing transistor mismatches. This prob-

lem is therefore not a circuit problem as such, more an indication of the attention to detail 

required in layout for accurate analogue circuit performance. It was anticipated, and later 

results verify, that more careful layout of the integrator circuit could minimise this source 

of error. The maximum standard deviation for this set of results is ±6.1%. 

5.3.3. Puise Stream Neuron with Fixed Gain 

The input activity voltage to output duty cycle characteristic was measured for 3 neurons 

on each of 8 devices. The results of these measurements are shown graphically in Figure 

5.11. The voltage VMID was set to 2.5V. The maximum, minimum and mean measured 

duty cycles are plotted. The vertical error bar represents ± one standard deviation from 

the mean value and gives a graphical indication of the spread of results. This graph 

shows the predicted sigmoid activity voltage to duty cycle characteristic approximately 

centred on VM]D. The relatively small variation in circuit performance across a sample 
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of 8 devices is also demonstrated. The spread of results is at a maximum at high values 

of VXi. This is due to imprecise current mirroring across chip due to variations in thresh-

old voltage. 

50 

45 

40 

35 

30 

U 
	 25 

VP 
	

20 	
mean ------ 

15 
	 errorbars 

max 
10 
	 nñn 

5 

0 
-2 	-1 	0 	 1 	 2 

VID = VXi - VM[D (V) 

Figure 5.11 Fixed Gain Pulse Stream Neuron: VLSI Results 

These results are summarised in Table 5.4. The minimum, mean and maximum values of 

duty cycle for selected values of VU) are tabulated. The variation of these minimum and 

maximum values from the mean are expressed for each value of VU) as a percentage of 

the mean duty cycle for VU) = 2.5. The standard deviation of each set of points for each 

tabulated VID point is also expressed as a percentage of the mean duty cycle for 

VID = 2.5. 

The gain of the transfer characteristic for each of the 24 neurons has been measured and 

compared against the theoretical value derived in Chapter 4 and presented here in Equa-

tion 5.4. The parameters used to derive the gain of the transfer characteristic have been 

taken from the HSPICE typical model from ES2 or set at design time and are given in 

Table 5.5. 

	

ôDutyCycle 	 1 
(VD =O)=[----j

1/2  

 (5.4) 
ÔVD 
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Fixed Gain Pulse Stream Neuron : VLSI Results 

Variation measured on 3 neurons from each of 8 Chips. 

VU) 
Duty Cycle (%) 

Variation Std Dev . 

Mm Mean Max  

-0.5 1.79 2.57 3.72 -1.78%/+2.60% ±1.09% 

0.0 18.44 21.80 26.43 -7.63%/+10.53% ±4.65% 

0.5 35.63 39.38 41.53 -8 .54%/+9 .51% ±4.88% 

1.0 40.39 44.20 49.07 -8.669o/+11.07% ±5.42% 

1.5 39.75 44.15 46.63 -10.001o/-i-10.14% ±5.65% 

2.5 39.83 43.98 48.96 -9.42%/+11.33% ±5.78% 

Table 5.4 Fixed Gain Pulse Stream Neuron: VLSI Results 

Variation measured on 3 neurons from each of 8 Chips. 

Transistor Parameters Defining fi 
and 'H  Value 

p0  175cm2/volt. seconds 

CO3, 863.9 x 10 10F/cm2  

W 4pm 

L 10pm 

'H 2pA 

Table 5.5 Transistor Parameters defining ,5 and 'H  Value 

A comparison of the gain results from theoretical, HSPICE simulation and measured 

VLSI data are presented in Table 5.6. This table shows good correspondence between the 

HSPICE simulation predictions of gain and the mean value measured from VLSI. The 

difference between the theoretical gain and the HSPICE and measured results can be 

explained by the simplified analysis performed in Chapter 4 where channel length modu-

lation effects have been ignored. 

The duty cycle for each neuron at VU) = 0 compared to the theoretical value of 25% has 

been measured giving a mean offset of -3.2%. The standard deviation for this figure is 

±2.04%. This offset is due to imprecise mirroring of currents across chip. 



Chapter 5 
	

93 

Pulse Stream Neuron : Gain Results 

Theoretical HSPICE 
Measured 

Mean StdDev 

37.65 45.2 44.79 ±2.72 

Table 5.6 Fixed Gain Pulse Stream Neuron: Comparison of Gain Measurements 
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Figure 5.12 Comparison of HSPICE Simulation and Test Chip B Results 

A comparison of the Pulse Stream Neuron transfer characteristic on Test Chip B and 

HSPICE simulation data is shown in Figure 5.12. The mean of the measured data from 

the 24 neurons is compared with HSPICE simulation results using typical process param-

eters. Figure 5.12 demonstrates the good correspondence between simulated and actual 

data, the main source of error in VLSI is due to the imprecise mirroring of currents across 

chip. 

The operation of the phase lock loop is demonstrated in Figure 5.13 which shows data 

captured from a digital oscilloscope sampling at 100MHz. The bottom trace shows the 
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reference clock while the upper trace shows the output of the reference neuron. The two 

signals are locked together with an output pulse width of lpS. 

o 	5e-07 le-06 1.5e-06 2e-06 2.5e-06 3e-06 3.5e-06 4e-06 4.5e-06 5e-06 
Time (S) 

Figure 5.13 Oscilloscope Trace of External Clock Reference (Bottom Trace) 

and Pulse Stream Neuron Circuit (Top Trace) Phase Locked. 

It was anticipated that physically adjacent neurons might lock to each other due to mech-

anisms such as coupling through power supply rails. Three adjacent neurons were used 

to test for lock up. While the centre neuron was allowed to oscillate at a predefined duty 

cycle, the inputs of the remaining two neurons were controlled by a linear ramp voltage. 

The centre neuron was observed during this process and no sign of lock up was observed. 

5.3.4. Pulse Stream Network Operation 

The oscilloscope photograph of Figure 5.14 illustrates the operation of the distributed 

feedback synapse, operational amplifier, integrator and pulse stream neuron circuit on test 

chip B. The top trace shows a pulse stream input, the second trace the integrator output 

and the third trace the resulting output pulse frequency from the pulse stream neuron. 

The synapse array has been loaded with a uniform excitatory weight value and the input 

pulse stream causes the integrator output to ramp upwards. The resultant integrator out-

put voltage causes the output neuron to switch on, eventually saturating at a duty cycle 

output of 50%. 
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Figure 5.14 Pulse Stream Network Operation 

Input pulse stream (Top Trace). Integrator activity (Second Trace). 

Output pulse stream (Third Trace). 

It is interesting to note at this stage that the "update algorithm" associated with this form 

is distinct from that of other analogue neural forms. Conventional networks express the 

neural activity x1  as the result of the synaptic summation of Equation 5.5. 

[j=n-1 

x1(t)=I E Tij 	 (5.5) 
[i 

In the pulse stream network presented here, the result of each pulse arriving is to either 

add or subtract a small package of charge to the integration capacitor, and thus increment 

or decrement x 1 . The update algorithm for the voltage x 1  with respect to a single pulse is 

therefore: - 

j=n-1 

x1 (t + it) z x 1 (t) + ô x Y, Tij  V(t) 	 (5.6) 
j=o 

where ö is controlled by the characteristics of the voltage integrator. 

5.3.5. Inter-Chip Communication Scheme. 

The operation of the inter-chip communication scheme has been tested as a mechanism 

for transferring data between chips and between a chip and a host computer port, in this 

case the IBM PS/2. 
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In order to test the handshake and data transfer mechanism a single chip had its transmis-

sion port connected to its receiver port using the three wire connection scheme. The 

transmitting and receiving state machines were clocked from separate clock sources to 

ensure independent operation. The results from this test are shown in Figure 5.15 where 

the output of a single neuron is shown in the top trace, RTT in the second, RTR in the 

third and the encoded signal, D, in the final trace. A clock frequency of 2MHz has been 

used for the state machines and the data transfer is completed in approximately 12 1us for 

the input duty cycle of approximately 15%. 

Figure 5.15 Inter-Chip Communications : VLSI Results 

Top Oscilloscope Trace : Transmitting Neuron Output. Second Trace: 

request to transmit (RTT). Third Trace : ready to receive (RTR) from 

receiving chip. Fourth Trace : encoded data, D. 

Figure 5.16 shows the transmitting state machine communicating to the IBM PS/2 which 

is a relatively slow device. The receiving state machine has been implemented as a soft-

ware algorithm within the PS/2 and signals are fed to and from the computer over a stan-

dard parallel port. Communication proceeds at the speed of the slowest device, as in any 

self-timed system, in this case the data transfer operation now takes approximately 45us. 

This demonstrates that the transmitting device is capable of sending data to a host com-

puter via conventional parallel interface ports, using the same communication circuitry 

and protocols as developed for inter-chip communication. 
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Figure 5.16 Chip to IBM PS/2 Communications : VLSI Results 

Top Oscilloscope Trace: Transmitting Neuron Output. Second Trace: 

request to transmit (RTT). Third Trace : ready to receive (RTR) from 

IBM PS/2. Fourth Trace : encoded data, D. 

5.3.5.1. Pulse Stream Regeneration 

The pulse stream regeneration circuitry was found not to function correctly on test. The 

Pulse Stream Regeneration circuit was originally implemented without the initialisation 

circuitry controlled by the mit signal shown in the circuit diagram of Figure 4.35, Chapter 

4. It is believed that a circuit initialisation problem was the cause of improper functional-

ity causing the SR latch to be in an indeterminate state when the Reset and pulse width 

modulated signal arrived at the circuit input. 

The addition of the initialisation circuitry avoids this indeterminate condition. This later 

circuit addition was simulated and the circuit layout was generated. At present this 

revised circuit has not been implemented in silicon. 

While full circuit functionality was not observed, the pulse width outputs of the pulse 

stream regeneration circuit were of the correct width but of incorrect spacing. This obser-

vation indicates that the pulse width control circuitry was functioning correctly. 

In addition the transmitting state machine was observed to time-out correctly at low duty 

cycle inputs indicating that the analogue time-out circuitry illustrated in Figure 4.34 and 

the time-out states within the transmitting state machine of Figure 4.30 were functioning 
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correctly. 

5.3.6. Test Chip B : Conclusions and Discussion 

This device has provided valuable test results despite the functional problems outhned in 

the previous sections. In particular, the characterisation of the Distributed Feedback 

Synapse as a circuit to minimise process variation provides data for a direct comparison 

with the Pulse Stream Synapse using Pulse Width Modulation implemented on Test Chip 

A. The comparison of worst case standard deviation in circuit performance of ±18.1% 

for pulse stream synapse and ±6.1% for the Transconductance Multiplier favours the lat-

ter circuit. In general, the correspondence between HSPICE simulated results and those 

obtained from functional VLSI is excellent, and where deviation exists, methods for over-

coming the problems have been suggested. 

The results from the pulse stream neuron with fixed gain deviate from HSPICE simula-

tions due to errors in current mirroring. Careful attention to the choice of transistor 

geometries and operating regions should enable improved performance. The use of phase 

lock loop techniques has proved successful for controlling the neuron pulse width output 

despite the lack of HSPICE simulation results for the reasons outlined in Chapter 4. This 

result gives confidence for their use as a gain control mechanism for the variable gain 

neuron circuit. 

While the results from the inter-chip communication system have proved only partially 

successful, the handshake mechanism has been successfully demonstrated for both inter-

chip and chip to host computer modes. While no further work has been carried out by the 

author in this area at the time of writing, it remains an area of interest requiring further 

investigation. For example, transmission speed improvement, the effects of the inter -

communication strategy on network dynamics, the optimal number of neurons occupying 

a communication channel and the number of communication channels required for a 

given network remain areas of great interest. 

The pulse magnitude modulating synapse and self-depleting neuron circuit have proved 

of limited interest, however, they serve as a reminder of the attention to detail required in 

order to achieve robust analogue circuit performance. 

5.4. EPSILON :Choice of Cells 

The results from the test chips described earlier provide the detailed data used to deter-

mine the optimal choice of circuit cells to be used on EPSILON. The confidence gained 

from the good correlation between HSPICE simulation results and the functional VLSI 

test devices enabled the design team to include some circuit ideas that had not previously 

been proved on the test devices. 
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It is clear, from the results presented in this chapter from the three synapse circuits which 

were implemented, that the transconductance multiplier circuit should be used to imple-

ment the synapse function on EPSILON. While this circuit has good linearity and 

improved process tolerance over the other circuits tested, it is also capable of operating in 

either pulse frequency modulated or pulse width input modes. In addition to these digital 

input modes, a third analogue input mode has been added using the pulse width neuron 

design described in Chapter 4. The resulting neural input state conditioning circuitry is 

shown in Figure 5.17. The Select Input Mode signal determines digital or analogue input 

mode. 

Figure 5.17 EPSILON: Neural State Input Conditioning Circuitry 

The analogue input mode has been designed to simplify the interface between a host 

computer and EPSILON. Since the loading of analogue weights is not time critical, the 

interface to a computer parallel port could simply be a DAC and analogue switches. 

Alternatively, the output of an analogue transducer could be directly interfaced to 

EPSILON. This compares with relatively complex digital hardware circuitry required for 

pulse width or pulse stream inputs. 

In order to allow cascading of EPSILON chips, and a choice of output operating modes, 

both the pulse stream neuron and the pulse width neuron have been implemented as out-

put neurons. The use of the pulse width neuron offers a wider range of neuron output 

characteristics than that available from the pulse stream neuron. The flexibility of the 

pulse stream neuron has been increased by the implementation of the variable gain circuit 

described in Chapter 4. Direct analogue output of neural activity has not been imple-

mented due to the requirement of adding relatively large and power hungry operational 

amplifiers to buffer each neural activity voltage. 
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Both the analogue input mode and pulse width input and output modes operate in a time 

stepped manner. Inputs are applied, the system is allowed to settle and the outputs are 

read. The use of pulse stream input and output modes allows continuous asynchronous 

operation of the network suitable, for example, for dynamic feedback networks. 
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	 Output 
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Figure 5.18 EPSILON: Neural State Output Conditioning Circuitry 

The signal conditioning circuitry required at the neuron output is illustrated in Figure 

5.18. In normal operation, the integrating capacitor is reset to an initial value and the 

integrator either charges or discharges the capacitor as a result of calculations performed 

within the synaptic array. In pulse stream mode, the activity capacitor feeds the pulse 

stream neuron directly, and the result of the computation appears as a pulse stream out-

put. In pulse width mode, an external ramp signal is applied to the comparator circuit and 

a pulse width signal is output. 

The gain of the sigmoid transfer characteristic of the pulse stream neuron is set by a 

phase lock loop as described in Chapter 4. Synaptic weight addressing is performed by a 

custom x and y shift register driven by a two-phase clock. 

EPSILON has been implemented using 1•.5um CMOS. This change in technology is 

obviously not desirable since all testing has been undertaken using 2.0wn technology, 

however the change was imposed due to ES2 phasing out the 2.0pm process. The 1.5um 

technology forced a further evaluation of the circuits used and modifications to such vari-

ables as transistor geometries in order to accomodate the poorer quality analogue design 

environment provided by the new process. 
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5.5. EPSILON : The Choice of Chip Architecture 

A single layer architecture with 120 input units and 30 output units allows the configura-

tion of a variety of network types. This configuration allowed optimal use of the silicon 

area funding permitted. In order to restrict the size of the chip pad count, neural input 

states are multiplexed onto chips in 4 banks of 30 inputs. 

To create a netwOrk requiring more input units would require operating several EPSILON 

devices with linear input and output units and adding and scaling the outputs. Networks 

with arbitrary widths can be created by placing several EPSILON chips in parallel. Mul-

tilayer networks can be implemented by cascading EPSILON chips. Alternatively 

EPSILON can be used in a paged manner. 

EPSILON Chip Specification 

Number of V Input Pins 30 

Number of V Inputs to Synapse Array 120, Multiplexed in groups of 30 

Input Modes Analogue, Pulse Width and Pulse Stream 

Number of V Outputs 30 

Output Modes Pulse Width and Pulse Stream 

Number of Synapses 3600 

Number of Weight Load Channels 2 

Weight Load Time 3.6mS 

Weight Storage Voltage on a Capacitor, off-chip refresh 

Connections per Second (cps) Minimum 18Mcps, Maximum 360Mcps 

Technology 1.5 AUm Digital CMOS 

Die Size 9.5mm x 10. 1mm 

Maximum Power Consumption 350mW 

Table 5.7 EPSILON Chip Specification 

The specification for the EPSILON chip is given in Table 5.7. The main restriction on 

computation speed is the limitation in the performance of the operational amplifier con-

trolling the feedback in the synapse array. This places a limit of 1 1us on the minimum 

pulse width input to the system and therefore defines the maximum pulse frequency of a 

pulse stream input to be 500kHz. If we assume a range of input duty cycles between 

0.5% and 50%, then a time of 200g is required to represent the lowest duty cycle. If it is 

assumed that the support circuitry generating the pulse width is capable of changing the 

pulse width in steps of 0. 1, then a 1% resolution can be achieved with a 10 pulse. 

These considerations define the computation time of the system expressed in connections 

per second in Table 5.7. The use of analogue or pulse width input mode and pulse width 
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output mode therefore provide the fastest computation time. 

5.6. EPSiLON : VLSI Results 

Table 5.8 gives the physical size of each of the circuit components used and the initials of 

the designer responsible for each circuit. 

EPSILON Cell Layout Sizes in E52's 1.5um CMOS  

Cell Size (Height x Width) Designer 

Variable Gain Pulse Stream Neuron 100pm x 200,4m A.H. 

Phase Lock Loop 100,4m x 6501im A.H. 

Pulse Width Input Neuron (Double) 1001im x 336pm S.C. 

Pulse Width Output Neuron 116gm x 86,4m S.C. 

X-Shift Register 104pm x 200pm S.C. 

Y-Shift Register (Double) 100pm x 268,4m S.C. 

Distributed Feedback Synapse 100pm x 100pm D.J.B. 

Operational Amplifier 262pm x 200pm D.J.B. 

Integrator Circuits 200pm x 200pm D.J.B. 

Table 5.8 EPSILON Cell Layout Sizes and Designer 

S.C. - Stephen Churcher. D.J.B. - Donald J. Baxter. A.H. - Alister Hamilton. 

The physical layout of the various components of EPSILON are shown in the floorplan of 

Figure 5.19. Figure 5.20 shows a photograph of the EPSILON device. 

5.6.1. Distributed Feedback Synapse, Operational Amplifier and Integrator Circuit 

The testing of the distributed feedback synapse and operational amplifier has been per-

formed using a static test where the switching transistor, M3 in the circuit diagram in Fig-

ure 4.9 is permanently switched on. The measurements have been taken from a single 

column of 120 synapses on each of 6 chips. Again, these results are linear and largely 

process invariant. Also plotted on this graph is the output of the operational amplifier 

for the corresponding weight voltages with all M3 transistors switched off. Ideally 

should be zero for all weight values, but these results show a decrease over the 

active voltage range as the weight increases. This is due to power supply voltage drop 

along the power bus feeding the synapse array due to the resistance of the metal track. 

This observation has implications for the multiplier performance which are further 

explored in the following paragraphs on dynamic measurements. 
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Figure 5.19 Floorplan of EPSILON Chip Core. PLL: Phase Lock Loop. 

Figure 5.20 Photograph of EPSILON Chip 



Chapter 5 
	

104 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

Minimum -°-- 
Mean -±--- 

Maximum --- 
VoutiZ -x----- 

0 	 1 	 2 	 3 	 4 	 5 

VTij (V) 

Figure 5.21 EPSILON: Distributed Feedback Synapse 

and Operational Amplifier: Static VLSI Results 
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Figure 5.22 EPSILON: Distributed Feedback Synapse, Operational Amplifier 

and Integrator Circuit Two-Quadrant Multiplication: Dynamic VLSI Results 
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Operation of the distributed feedback synapse as a two-quadrant multiplier including the 

integrator circuit in dynamic mode provides the results depicted in Figure 5.22. The mea-

surements have been made over an extended pulse width output using 12 synapses. Mea-

surements were taken on 6 chips, 29 synaptic columns from each chip, and 10 sets of 

measurements from each column. The mean of these results and error bars representing 

± one standard deviation have been plotted. The maximum standard deviation for this set 

of results is ±12.4%. 

In this test, pulse width input and output signals have been used. The use of pulse width 

modulated input signals overcomes the limitation on the resolution of pulse stream gener-

ation inherent in the test environment. Since the output comparator circuits are highly 

process invariant, the use of a linear ramp signal on the output will produce a pulse width 

directly related to the output of the voltage integrator. 

Prior to the application of the pulse width input to the network the activity capacitor was 

reset to 2.5V. The multiplier zero point is therefore at the point where there is no net 

activity change and results in a lQus output pulse. The effect of the power supply varia-

tion with weight voltage can be seen from these results in the mismatch of the multiplier 

characteristic most notable at the zero point. This result demonstrates the sensitivity of 

the distributed feedback synapse to power supply variations. 

There is a relative deterioration in performance of the synapse circuit between Test Chip 

B and EPSILON as measured by the maximum standard deviation of the dynamic mea-

surements. This is not only as a result of moving from 2.0tmi to 1.5um CMOS, a retro-

grade step in terms of analogue circuit performance, it is also a function of the power sup-

ply drop across the synaptic array. The latter power supply variation may be reduced by 

using wider power track supplying the synaptic array. However, it should be noted here 

that the offset problems due to the integrator performance of Test Chip B have been alle-

viated on EPSILON. 

5.6.2. Variable Gain Pulse Stream Neuron 

The input activity voltage to output duty cycle characteristic was measured for all 30 neu-

rons on each of 16 devices. The results of these measurements are shown graphically in 

Figures 5.23 and 5.24 for high and low gains respectively. In each case the phase lock 

loop was used to control the gain setting and the voltage VIMIID was set to 2.5V. The 

maximum, minimum and mean measured duty cycles are plotted. The vertical error bar 

represents ± one standard deviation from the mean value and gives a graphical indication 

of the spread of results. 

Improved performance of the current mirrors on EPSILON in comparison to Test Chip B 

has resulted in the mean duty cycle more closely approaching 50%. Consequently, the 
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Figure 5.23 EPSILON Chip Neuron Characteñstics : High Gain 

Figure 5.24 EPSILON Chip Neuron Characteristics : Low Gain 
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duty cycle for VID = 0 is closer to the required value of 25%. 

The graph of Figure 5.25 allows comparison of the mean measured duty cycles for the 

two gain settings. The rotation of the characteristic about the midpoint at VID =0 and 

DutyCycle = 25% is evident from these results. 
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0 
-1.5 

low gain mean ------
/,/ 	highgainmean ------- 

-1 	-0.5 	0 	0.5 	1 	1.5 
VID = VXi - VMID (V) 

Figure 5.25 Measured EPSILON Chip Neuron Characteristics 

These results are summarised in Table 5.9 for the high gain measurements. The mini-

mum, mean and maximum values of duty cycle for selected values of YB) are tabulated. 

The variation of these minimum and maximum values from the mean are expressed for 

each value of VID as a percentage of the mean duty cycle for VU) = 2.5. The standard 

deviation of each set of points for each tabulated YB) point is also expressed as a percent-

age of the mean duty cycle for VID =2.5. 

Comparison of the maximum standard deviation from Test Chip B, ±5.78%, with that 

from EPSILON, ±4.07% again indicates a slight improvement in performance. 

The theoretical gain derived in Chapter 4 and repeated here in Equation 5.7 has been cal-

culated with L = 0 and the parameters given in Table 5.10. The mean gain of the transfer 

characteristic for each of the 16 chips has been measured and the gain from HSPICE sim-

ulations using typical model parameters defined in Table 5.10 is also given. 
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Variable Gain Pulse Stream Neuron : VLSI Results 

Variation measured on 30 neurons from each of 30 Chips : High Gain 

VID 
Duty Cycle (%) 

Variation Std Dev 
Mm Mean Max  

-0.5 0.00 0.09 0.94 -0.180/o/+1.70% ±0.44% 

0.0 20.78 25.05 30.16 -8.770/o/+10.5% ±3.51% 

0.5 42.50 47.28 52.50 -9.680/o/+10.7% ±3.59% 

1.0 42.50 48.67 55.00 -12.670/o/+13.0% ±4.02% 

1.3 43.59 1 	48.66 55.26 -10.42%/+13.56% ±4.07% 

Table 5.9 Variable Gain Pulse Stream Neuron: VLSI Results 

Variation measured on 30 neurons from each of 30 Chips : High Gain 

1/2 	 1/21 

oDutyCycle 	 1 3 fi ('H + L3) 1 	r3p1L3  1 I 
(5.7) 2 	I 	I 

1H2 	
] 

-['H 
 ] j 

oVID  

Transistor Parameters Defining fi, fij  
and 'H  Value 

238. 91cm2/volt. seconds 

Cox 138 x 10 9F/cm2  

W 10um 

L 10um 

W, 7urn 

L1  lO4um 

'H 3uA 

Table 5.10 Transistor Parameters defining 46, 6i  and 'H  Value 

The difference between the theoretical and HSPICE measurements can be explained by 

the simplified analysis performed in Chapter 4 where channel length modulation effects 

have been ignored. The difference between the measured results and those obtained from 

HSPICE is likely to be as a result of L3 in the experimental set-up not being exactly 0. 
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Neuron Gain Results 

Theoretical HSPICE 
Measured 

Mean StdDev 

71.77 83.9 67.63 ±10.8 

Table 5.11 Variable Gain Neuron Circuit Results 

A comparison of EPSILON results with HSPICE simulation data is shown in Figure 5.26. 

The mean of the measured data is compared with HSPICE simulation results using typi-

cal process parameters. The correspondence between the low gain measurement and 

HSPICE data for L- = 3uA is good over almost the entire VI]) range. Divergence occurs 

at values of VID around -0.5 due to ES2's HSPICE models not modelling the subthresh-

old region of operation. Correspondence between the high gain measurement and the 

HSPICE simulation data is not so good, adding weight to the hypothesis that I was not 

in fact equal to zero during these measurements. 

.... . . . 
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Figure 5.26 Comparison of HSPICE Simulation and EPSILON Chip Results 
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The operation of the phase lock loop is demonstrated by the data obtained from a 

100MHz digital oscilloscope and shown graphically in Figure 5.27, which shows the 

input reference clock and the output of the neuron used in the ioop successfully locked 

together. 

4 

o 5e-07 le-06 1.5e-06 2e-06 2.5e-06 3e-06 3.5e-06 4e-06 4.5e-06 5e-06 
Time (S) 

Figure 5.27 Reference Clock and Reference Neuron Phase Locked 

5.6.3. EPSILON: Conclusion and Discussion 

EPSILON has proved highly successful. All circuits have been demonstrated operational 

either implicitly or explicitly in the results in the preceding sections. There is an excel-

lent correlation between simulated results and those obtained from functional VLSI. 

Improvements from the test chips have been made to the functionality of the pulse stream 

neuron circuit and new untested circuits for pulse width input and output have been suc-

cessfully added. In addition, the amount of SOLO 1400 generated logic has been reduced 

to an absolute minimum and all addressing of the synaptic weight array is now imple-

mented using shift register cells pitch matched to the synaptic array. Where deviation 

exists from simulated results, either experimental procedure or layout problems explain 

the error. No single error or combination of errors precludes the use of EPSILON for 

solving neural network problems. 

A comparison of multiplier performance for analogue, pulse width and pulse frequency 

input modes has been performed by Baxter[4]. These produce excellent results for both 

analogue and pulse width input modes but show a relative decrease in multiplier linearity 

for the pulse frequency input mode. The results from Test Chip B indicate that this 
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device is capable of giving good results, ignoring the integrator offset problem, for pulse 

frequency modulated inputs. Further investigation has shown that there is a problem with 

the layout of EPSiLON which has all 30 neural state inputs to the chip crossing the cur-

rent set line to the operational amplifiers. This unfortunate layout problem results in tran-

sients from the neural state input lines coupling onto the operational amplifier output via 

the current set line, adversely its performance. 

Studies by Baxter[4] indicate that the accuracy obtained by EPSILON is not sufficient to 

solve neural network problems where the chip is not in the learning loop and accurate 

mathematical precision is required, for example in the Kohonen network. However, it 

will be shown in the next Chapter that EPSILON can be used in chip in ioop learning pro-

cedures and has sufficient accuracy and dynamic range to solve real world problems. 

In order to support EPSILON in solving real world problems a more complex and flexi-

ble test environment is required. The details of the new test environment are presented in 

the next Chapter along with system level results. 
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Chapter 6 

EPSILON : System Level Integration and Application 

In order to evaluate the capability of EPSILON in implementing neural algorithms a sys-

tem level environment has been developed that provides support for two EPSILON 

devices. The system allows the chips to operate in parallel to provide 120 inputs and up 

to 60 neuron outputs, or in series to implement MLP type structures with a maximum of 

120 inputs to the first layer, 30 hidden units and 30 output units. The EPSILON devices 

may be used in a paged architecture to implement networks of arbitrary size. In addition, 

feedback networks can be implemented by directly connecting neuron outputs back to 

neuron inputs. 

A vowel recognition problem has been solved using this system, chosen due to the avail-

ability of data, local experience of the problem and the real world nature of the analogue 

data. A variant of the back propagation training procedure, the Virtual Targets Algo-

rithm[84] has been .used to train a multi-layer network to solve the vowel recognition 

problem. The results from processing this data on EPSILON have been compared to 

those from software simulation. 

6.1. EPSILON :System Level Integration 

The system designed to support EPSILON devices provides a flexible environment for 

the operation of EPSILON in all of its various input and output modes. Two interfaces 

between a host computer and the system have been provided. The first is a relatively 

slow bidirectional serial RS-232 link. Commands from the host computer to the system 

are sent over the serial link and an acknowledgement from the system completes a hand-

shake. The second is a high speed 32 bit bidirectional parallel port with 30 bits used for 

data transfer and the remaining 2 for a fully interlocked handshake between the host com-

puter and the EPSILON system. The high speed parallel port is used for large data block 

transfers between the host computer and system and vice versa. 

The serial link and all system operation is controlled by a Siemens 800517 microcon-

troller with associated EPROM program store and RAM. While the microcontroller pro-

vides a flexible programming environment it does not have sufficient data processing 

speed to allow neural learning algorithms to be implemented on it directly. For this rea-

son, all algorithmic learning processing is performed on the host computer and data 

transferred to and from the EPSILON system. 
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Figure 6.1 EPSILON: System level integration 

Figure 6.1 shows all the functional blocks implemented within the system. Digital neural 

state inputs are either generated from Vi/Vj State RAM as pulse width or pulse frequency 

modulated signals programmed from the host computer, or from the outputs of 

EPSILON. Digital output states can be sampled by the Vi/Vj State RAM for subsequent 

transmission to the host computer for the analysis of pulse widths or pulse frequencies, or 

the states may form the inputs to EPSILON. Analogue inputs may be generated from a 

DAC and fed directly to the EPSILON inputs via an analogue multiplexor. The weight 

refresh circuitry provides continual refresh on two analogue weight channels for each 

EPSILON chip and may be suspended if required to examine problems of digital noise 

corrupting the analogue computation on EPSILON. Ramp signal generation is com-

pletely programmable from the host computer as the ramp data is stored in static RAM. 

The gain control for the pulse stream neuron circuits is performed by a programmable 

digital duty cycle generator implemented on board. 

Figure 6.2 shows a simplified representation of the internal data structure of the system 

for weight and digital neural state generation and capture. The use of tristate outputs on 

EPSILON allows the implementation of a 30 bit internal bus structure onto which digital 

(and analogue) inputs and digital outputs can be time multiplexed. The neural state 

input/output RAM has also been used as a buffer area for transmission of neural synaptic 

weight data from the host computer to the system over the parallel interface. Data is sub-

sequently transferred from this buffer area to the appropriate weight RAM by the micro-

controller over the internal 8 bit data bus. 

This diagram ifiustrates the relative complexity of circuitry, and the resultant chip count 

required to implement pulse width and pulse stream input/output. In addition, the data 

bandwidth over the parallel port is relatively high due to the processing of this data by the 
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Figure 6.2 EPSILON: System level support circuitry (simplified) 

Board level data structure. Digital state input/output and weight 

load mechanisms. Bi-Dir = 8 bit bidirectional tristate buffer. 

host computer. This solution therefore is not optimal, however it does use standard read-

ily available components and offers a high degree of flexibility. 
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6.2. The Oxford/Alvey Vowel Database. 

As an example of a real world classification task with both training and test sets, the 

Oxford/Alvey vowel database has been used within the research group [84] to learn to 

classify vowel sounds from 18 female and 15 male speakers, using a multi-layer feedfor-

ward network. The data is a set of analogue outputs from a bank of 54 band-pass filters 

for 11 different vowel sounds, and 33 speakers. A multi-layer feedforward network 

architecture with 54 inputs, 27 bidden layer neurons and 11 output neurons has been used 

with a virtual targets learning strategy[84] to perform training. 

The vowel database was a considered choice to test the EPSILON system, primarily 

because it represented real world data. The analogue rather than binary nature of the data 

is a good test of EPSILON's analogue operating functionality. Furthermore there is con-

siderable experience of the problem of vowel classification within the research group at 

Edinburgh University. 

6.3. The Virtual Targets Training Algorithm. 

The virtual targets training algorithm[84] has been designed explicitly to allow the VLSI 

implementation of learning in multi-layer feedforward networks using analogue tech-

niques. It offers learning speeds and generalisation performance slightly better than stan-

dard back-propagation, but is conceptually simpler. 

The immunity to analogue inaccuracy is high, in fact high levels of artificially introduced 

noise have been shown to assist learning[84]. The noise inherent in the analogue cir -

cuitry in EPSILON should therefore not degrade performance. 

The training procedure is described by the algorithm given in Table 6.1 [85]. 

6.4. Vowel Classification using the Virtual Target Training Algorithm. 

The vowel recognition data was used to train a multi-layer network of size 54:27:11 for 2 

female speakers on a SUN Workstation using the virtual targets training algorithm. 

6.4.1. EPSILON: Off-line Training Considerations. 

In order to make the best use of the dynamic range available on EPSILON, the synaptic 

weight set used for training on the SUN Workstation was initialised to within the range 

±1 and trained with a weight range clipped to within ±1.5. In order to improve the fault 

tolerance of the weight set, each weight was corrupted during the forward pass with uni-

formly distributed random noise of up to 10% of the weight value. 

Once learning was satisfactorily completed, in this case when the maximum bit error 

(mbe) <0.1, the resultant weight set was downloaded to the host computer connected to 
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The Virtual Targets Training Algorithm 

1. Calculate initial values for the hidden-layer targets 

 Apply input pattern { Oip  }, and read out the states { Ojp  } 
and { 0kp } of the hidden and output nodes. 

 Assign targets Tjp  for the hidden nodes such that 	 OjP  

2. Repeat 1. for all input patterns. 

3. Present patterns in random order and allow: 

 weights to evolve according to the following equations: 
ôWk 

= hlweightsOjpOkpEkp 	 (1) 
at 

= 71weig1itsOipOpEjp 	 (2) 

where 

7lweights is a gain term representing weight learning speed, 

{Ojp  } and { Oip  } are the inputs from the previous layer, 

O, and O 	represent the derivatives of the activation function, 

Ekp and 	are the error terms where Ekp = Tkp - °kp and e 	= Tjp - 
 hidden layer targets to evolve according to the following equation: 

5T. 	K 

—=7YWkEk1, 	 (3) 
ôt 	k 

where 

77targets is a gain term representing target learning speed, 

Wk is a weight on the connections between the hidden and output layers, 

Ekp is the error term where e, = Tk - 0kp 

Table 6.1 Virtual Targets Training Algorithm. 

the EPSILON system. 

6.4.2. Mapping the Vowel Classification Problem onto EPSILON. 

A single EPSILON device was used in a paged manner to solve the vowel classification 

problem. The device was used as a 30 input, 30 output array. In practice, 3 of the inputs 

were used as system biases in order to normalise the array for process variations, leaving 

27 available to solve the neural network problem. The 54 input layer to hidden layer cal-

culations were therefore paged through the network in 2 separate passes with an addi-

tional pass for the hidden layer biases. The hidden layer to output layer calculations were 

performed in a single pass, with an additional pass for the output layer biases. 
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Intermediate results were accumulated on the computer where the sigmoid non-linearity 

was performed. 

System biases were used to normalise the performance of the synaptic array so that the 

result of multiplying a 27 input non-zero state vector by a zero weight array would be a 

zero output. Due to the performance variations within the synaptic array, the result of this 

computation on EPSILON will not necessarily produce a zero result. All 30 neural inputs 

states were fixed and the weight array set to zero weight value. For each neuron output, 

the system bias weight values for that synaptic colunm were adjusted to give a zero (in 

the pulse width methodology, lOps) output. In practice, for successful operation of the 

autobias, each output was required to be in the range 10 4us ± 0. ips. Any neuron that 

failed to respond to the autobias was ommitted from further neural network evaluation. 

While this autobias procedure may not be strictly necessary for the successful implemen-

tation of the virtual target learning algorithm on the EPSILON system, it allowed inter-

mediate synaptic weight sets from previous EPSILON training cycles to be reloaded from 

system reset with approximately consistent results. 

The weight set calculated off-line on the SUN Workstation was held within the EPSILON 

host computer environment as a floating point array. Due to the imperfections in the mul-

tiplier performance, further training cycles were required with the chip in the learning 

loop to allow the learning procedure to compensate for the imperfections in EPSILON's 

multiplier performance. During this further training procedure, the weight array was 

maintained as a floating point array within the host computer and rounded to 8 bit accu-

racy for downloading to the EPSILON system for evaluation of the forward pass of the 

network. All algorithmic training was performed on the host computer with the floating 

point weight representation. 

Further training proceeded until the maximum bit error (mbe) for the 22 training patterns 

was mbe <0.3. This less stringent training termination criterion was used to prevent the 

network from training too rigidly on the training data, and to allow the network to learn 

within a reasonable time period. 

A plot of the mean square error (mse) of the output plotted against training epoch for this 

problem is shown in Figure 6.3. The arrow (a) denotes a point in the training procedure 

where training was stopped and restarted from a system reset. The weight array was 

backed up to hard disc every 25 training epochsand training resumed with the last weight 

set dumped. At system reset, the autobias procedure performed before training was 

resumed. The resulting disturbance was compensated for over a relatively small number 

of learning epochs demonstrating the success of the autobias procedure and learning algo-

rithm in maintaining the general trend of the graph. 
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Figure 6.3 EPSILON: Virtual target training on Vowel Data. 

Mean square error vs training epoch 

(a) denotes a system restart with an intermediate weight set 

6.5. Vowel Classification Problem: Results 

Once training was successfully achieved, the resultant weight set was used to measure the 

generalisation performance of the network on the remaining 16 female speakers within 

the database. Table 6.2 gives the generalisation results from the EPSILON system trained 

on a single weight set. The maximally responding output neuron was compared against 

the target response for each of the 11 vowel sounds from the 16 unseen female speakers. 

EPSILON System : Generalisation Performance 
Vowel Data: 16 Female Speakers 

65.34% 

Table 6.2 EPSILON System: Vowel data generalisation performance 

As a comparison, 20 random weight sets were trained using the virtual targets training 

algorithm on the same test data on the SUN Workstation. No noise was added during 

training. The generalisation ability of the network on the 16 unseen Female speakers was 

calculated for each weight set using the maximally responding output neuron criteria used 

earlier. The statistics from these results are presented in Table 6.3. 
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SUN Workstation Simulation Results: Generalisation Performance 

Vowel Data: 16 Female Speakers 

20 Random Weight Sets 

Mm. 	 Mean 	Max. 	Std Dev. 

47.72% 	58.21% 	67.61% 	4.25% 

Table 6.3 SUN Workstation Simulation Results. 

Vowel data generalisation performance statistics from 20 random weight sets 

While not an exhaustive test of the EPSILON system performance, the generalisation 

results from the EPSILON system indicate that excellent results can be achieved. Indeed, 

compared to the mean of the simulation results, the generalisation performance of the net-

work has been improved by training with EPSILON induced noise in the forward pass of 

the network. 

6.6. Conclusions and Discussion. 

EPSILON has been successfully integrated into a system capable of implementing a 

range of neural network architectures and demonstrated solving a real world problem. 

The performance of the system on the vowel recognition problem is very encouraging 

and demonstrates the power of the analogue implementation technology. 

The system performance variations measured for pulse width input and output modes and 

presented in Chapter 5 have not proved an obstacle to successful Virtual Target Training. 

However, attention to the range of the weight set during training is important due to the 

limited dynamic range of the synapse. By using an autobias technique to compensate for 

performance variation across chip, a fully trained weight set loaded from system reset 

typically converges with the termination criterion after approximately a further 100 learn-

ing Epochs. 

While successful implementation of the vowel classification problem on the EPSILON 

system is an excellent demonstration of the system capability, further experimentation 

and more comprehensive evaluation remains to be done. At EPSILON chip level the 

noise levels and repeatability of results should be measured. At the system level, further 

training and generalisation results will provide a more scientific comparison between 

EPSILON system performance and those obtained from simulation. 

Pulse width modulated input and output signals have been used in the chosen application. 

In practice, the analogue input mode of EPSILON would allow connection of the system 

to the 54 filter banks originally used to capture the analogue data for the vowel classifica-

tion experiments. At the time of writing, the pulse frequency mode of operation has not 



Chapter 6 	 120 

been used for neural network experimentation due primarily to the transient problems 

caused by the operational amplifier layout outlined in Chapter 5, but also to lack of time. 

The use of pulse frequency coding in implementing network architectures which embody 

temporal characteristics i.e. feedback and recurrent networks, has yet to be demonstrated 

on EPSILON. 

The system developed around EPSILON to support these experiments has been designed 

with various constraints and does not represent the optimal environment. The use of 

RAM to generate and store neural input and output states allows the implementation of a 

flexible means of generating pulse frequency or pulse width data using standard compo-

nents. This results, however, in an additional communication bottleneck between the 

EPSILON system and the host computer and an additional computational burden in gen-

erating or evaluating pulse duty cycles or pulse widths. In order to overcome these prob-

lems, the generation and decoding of pulse frequency and pulse width signals may be per-

formed using dedicated hardware implemented, for example, using a Field Programmable 

Gate Array (FPGA)[78]. The data reduction for 8 pulse width and pulse frequency sig-

nals transmitted between host and EPSILON system is demonstrated in Table 6.4 

Host Computer - EPSILON System 

Communication Bottleneck : Data Reduction 

8 Bit Words for 8 Neural States 

Mode RAM FPGA 

Pulse Frequency 2000 8 

Pulse Width 100 8 

TabJe 6.4 Host Computer - EPSILON System 

Communication Bottleneck: Data Reduction 

8 Bit Words for 8 Neural States. 1% Resolution. 

In general, further enhancement would result from the EPSILON system being more 

closely coupled to the processor performing the training and supervision function[86]. 

For example, mapping the weight memory and the neural state input output registers into 

the memory map of this processor would reduce the number of data block moves and 

communication overheads inherent in the present system. This would require a processor 

with high speed floating point processing capability, adequate RAIvI and long term stor-

age, and communication capability to perform the training function. Supervision of this 

environment may be provided by a remote computer. 

Such a system is shown in simplified form in Figure 6.4. Interface to a remote host con- 

troller may be provided over a standard interface, the Small Computer Systems Interface 
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(SCSI), for example[86]. 
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Chapter 7 

Summary and Conclusions 

7.1. Summary 

This thesis has reviewed the wide range of VLSI implementations of neural networks that 

currently exist. The review concentrates on working VLSI implemented in either digital, 

analogue or mixed signal modes. The variety of implementational styles and techniques 

reviewed illustrates the vast range of possibilities open to VLSI neural network designers. 

A library of cells for the implementation of pulsed neural networks has been developed 

by the author and other research workers within the Department of Electrical Engineering 

at the University of Edinburgh. The library includes synapse, neuron, inter-chip commu-

nication and associated support circuits. All cells have been implemented and tested in 

VLSI with results that closely match the HSPICE simulation predictions. Design errors 

have been made, although not catastrophic, and where deviation from predicted results 

occur, investigation has found the source of any error. Experience gained early in the 

development of this cell library has led to circuits that attempt to reduce their perfor-

mance variation due to the inevitable mismatch of transistors, and that have some form of 

automatic setup mechanism. These characteristics are seen as essential to the successful 

development of large analogue neural network chips and multi-chip systems, pulsed or 

otherwise. 

As an example of a large neural network chip developed from the cell library, EPSILON 

is a flexible neural network building block capable of operating in a variety of input and 

output modes in a variety of network architectures. As a result of these requirements, 

both analogue and digital input modes have been implemented allowing EPSILON to be 

connected to real world analogue sensors, pulse frequency or pulse width modulated digi-

tal signals. Digital output signals allow cascading of chips or the operation of feedback 

or recurrent structures. 

The demonstration of VLSI pulsed neural networks solving real world problems is cru-

cial to their continuing credibility and development. EPSILON has therefore been inte-

grated into a systems environment where it has been demonstrated solving a real world 

vowel classification problem. System level considerations, such as data generation and 

interpretation has been addressed and the efficient coupling of EPSILON to traditional 

computing structures has been considered. 
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7.2. Conclusions. 

The main thrust of this thesis is to recommend where, when and how pulsed neural net-

works, and in particular the cells within the library, would be appropriately applied. 

Custom VLSI hardware is generally used for reasons of speed and/or accuracy in simula-

tions of neural networks. This is achieved by designing a custom hardware accelerator to 

match the computational task. The performance figures given in Chapter 2 where 8 

CNAPS chips are capable of 9.67GCPS in solving an MLP network with 1900 inputs, 

500 hidden layer units and 12 output units is impressive. The performance of. digital 

VLSI is constantly improving and given the highly automated design process digital neu-

ral accelerators should continue to improve. 

The accuracy achievable in digital VLSI implementations is also a prerequisite for some 

neural network algorithms. For example, the Kohonen network[3} requires a high degree 

of accuracy for successful operation[4]. 

In digital circuits, the transistor is used as a switch with the result that even very simple 

functions require a large number of transistors. By striving to exploit the analogue fea-

tures of transistors, the number of devices required to implement a function can be drasti-

cally reduced and much larger computational tasks can be undertaken on chip. 

Analogue VLSI is less accurate than digital due to the inherent mismatches between ana-

logue transistors, and may only be used where high precision is not required. Precision 

of the order of 0.1% is only possible by resorting to special design techniques[87], for 

example switched capacitor techniques, and is expensive in area. Accuracies of a few 

percent or tens of percent must be tolerated in order to achieve large high density ana-

logue circuits. While the effect of transistor mismatch can be minimised by good design 

and by the use of a good analogue process, they do not preclude the use of analogue 

VLSI for many neural network architectures. As illustrated in Chapter 2, clever use of 

limited analogue accuracy employed in the AI'ThTA chip combined with a digital interface 

can yield astounding results. The subthreshold work of Mead also discussed in Chapter 2 

illustrates how the problems of large dynamic range in the input signal may be overcome 

by careful selection of the operating regime of the transistors. 

The digital nature of the pulsed signal techniques effectively switches analogue circuits in 

and out of a system, avoiding the problems inherent in purely analogue systems where it 

is more difficult to maintain all MOSFETs within their correct operating regions. This 

methodology becomes particularly useful when implementing circuits using a technology 

optimised for the implementation of digital circuitry. For example, the transistor thresh-

old voltage, crucially important in analogue circuit design, is not critically important in 

digital implementations. This is evident in the increased variation in threshold voltage 

between the 2jim and 1 .54um Digital CMOS technologies used in the designs in this 
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thesis. 

ES2 Threshold Voltage Variation 

Transistor 21um 1.5 1um 

PMOS 

NMOS 

0.2V 

03V 

O.4V 

0.34V 

Table 7.1 ES2 Threshold Voltage variation for 2um and 1.5,um Digital CMOS 

The variations in threshold voltage over the process range given in Table 7.1 indicate that 

although the 1 .51urn process results in smaller and correspondingly faster digital circuits, 

the consequences are that analogue design has to cope with increased performance varia-

tion. 

The use of digital pulsed signals where analogue information is encoded in the time 

domain, provides a robust representation of data that is highly insensitive to noise corrup-

tion. This not only reduces sources of error within the chip itself, but offers a robust 

mechanism for communicating neural state information across chip boundaries. The time 

domain coding of the pulsed signal representation and the use of a relatively slow opera-

tional amplifier in the EPSILON system indicate that pulse coded techniques will not 

necessarily provide the fastest solution to a neural network problem. This pulse coded 

data format is not typically found in conventional computer systems and, as indicated in 

Chapter 6, dedicated hardware has to be used to generate and decode these signals from 

computer stored data. 

The area where pulsed neural networks will find a competitive edge is in network prob-

lems where there is a requirement for a large fan in of analogue input data. Analogue sig-

nals can be directly interfaced to pulsed networks (EPSILON, for example) without the 

requirement for analogue to digital converters (ADCs) required by digital systems. The 

robust nature of the subsequent processing using pulsed techniques provides higher noise 

immunity than might be expected from purely analogue techniques. 

The performance of the distributed feedback synapse is such that it may be recommended 

for any network type where error driven learning compensates for the performance varia-

tion specified. The analogue input mode, using a simple comparator circuit with the 

external generation of a ramp signal provides interface capability to analogue sensors. 

The recommendation for feedforward networks is that analogue or pulse width modulated 

input signals are used, and pulse width representation used for hidden and output layers. 

The linear nature of the pulse width output neurons facilitates their use in problems where 

data is paged through a chip, as in the vowel classification problem. 
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For networks which embody temporal characteristics, for example feedback and recurrent 

networks, the pulse frequency mode of operation is recommended. While networks of 

this type have not been evaluated within this thesis, the study of network dynamics using 

continuous pulse frequency signal representation remains a fertile area for further 

research. 

The inter-chip communication strategy developed within this thesis has not been used on 

the EPSILON chip. This is due to the architecture of EPSILON where pin out of all neu-

ron circuits has been achieved. Where signal multiplexing of pulse frequency data is 

required it represents a viable strategy. It is one of the few strategies proposed for inter-

chip communication, and the efficiency of the hardware implementation is a direct result 

of pulse stream coding. If temporal network operation is required, the effects of using 

this strategy on network dynamics require to be assessed. 

While the techniques and circuits presented in this thesis demonstrate the power of pulsed 

neural network VLSI, further improvements may be achieved. Where the pulsed VLSI 

device requires significant chip in loop training, the weight load time becomes a signifi-

cant computational bottleneck. EPSILON, for example, uses a voltage based weight 

refresh mechanism that requires 3.6ms for weight load. The use of current mode tech-

niques as used in ANNA [28] provide a weight refresh mechanism capable of matching 

RAM access speeds. This technique may be adapted for use with the distributed feed-

back synapse to improve dramatically weight load times. Alternatively, more weight 

channels may be used. Other improvements may include extension of the range of gain 

characteristics obtainable from the pulse stream neuron, for example. 

Further research into the system level operation of EPSILON is desirable to examine 

issues such as the ability of the network to withstand power supply and temperature varia-

tions. Effects such as these have implications for the repeatability of results, the generali-

sation ability of the network, and the ability of the network to reload previously trained 

weights sets from power on. 

Further refinement of the hardware support circuitry will result in a much smaller and 

faster system environment for EPSILON. The hardware solution illustrated in Figure 6.4 

would allow a conventional commercially available digital signal processor (DSP) 

board[88] to be attached to the EPSILON system during learning. Once training is com-

plete, the trained weight set could be encoded as EPROM memory and the DSP board 

removed, resulting in a small portable card containing EPSILON, a microcontroller and 

FPGA support circuitry with a low bandwidth communication link to a controller. 

In conclusion, Table 7.2 provides a summary of where the circuits presented in the cell 

library may be best used. 
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The Edinburgh Pulse Stream Cell Library 

Preferred cell use by network type.  

Neurons  
Neural Network Synapse Other 

Input Other 

Multi-Layer Distributed 
Analogue Pulse Width None  

Feedforward Feedback 

Feedback or Distributed 
Analogue Pulse Frequency None  

Recurrent (small) Feedback 

Feedback or Distributed Inter-chip 

Analogue Pulse Frequency Communication 
Recurrent (large) Feedback 

Scheme 

Kohonen or 
None None None None 

similar  

Table 7.2 The Edinburgh Pulse Stream Cell Library: Preferred cell use by network type. 

This table, and the work described in the thesis that generated it, satisfies the goal set in 

Section 1.4 - to define and explore the options afforded by pulse stream neural network 

VLSI, defining their utility and limitations. 

7.3. Further Work in the VLSI Area 

Amorphous Silicon Memories : The implementation of fast non-volatile synaptic 

weight storage using amorphous silicon programmable resistors on a conventional 

CMOS substrate. 

On-chip Learning: Implement the virtual target algorithm described in Chapter 6 

using pulse stream VLSI techniques. 

EPSILON system improvement : Improve the known limitations of EPSILON 

through a further iteration of silicon and integrate into an optimal hardware environ-

ment. 

EPSILON applications : Demonstrate neural applications using the refined 

EPSILON chip and environment. 

Noise in Learning : Investigate the effects of noise on neural network learning. 

Process Tolerant Design: Investigate circuit techniques for implementing analogue 

circuits on small geometry digital VLSI. 
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Process Tolerant Design: Investigate circuit techniques for implementing analogue 

circuits on small geometry digital VLSI. 

Opto-Electronic Neural Networks : Using spatial light modulators for synaptic 

weight generation and analogue VLSI for subsequent processing. 

At the time of writing, the future neural network research interests of the author lie pri-

marily in areas 3 and 4. 
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Appendix 1 

Mathematical Derivation of Pulse Stream 

Neuron Characteristics 

This appendix contains the mathematical derivation of the equations used to describe the 

fixed and electrically adjustable pulse stream neuron circuits described in Chapter 4. 

1.1. Fixed Gain Pulse Stream Neuron Transfer Characteristic 

The following analysis derives the equations used in Chapter 4 to describe the operation 

of the pulse stream neuron with fixed gain. Assuming the transistors M3 and M4 in the 

differential stage of Figure 4.18 are in saturation, their currents can be described by equa-

tions Al. 1 and A1.2 

'M3 = PM3 ( VSGM3 - VT 2 
	 (A1.1) 

1M4 = PM4  (VSGM4 	T 2 
	

(A1.2) 

where VSG and VT are the source-gate and threshold voltages. The transconductance 

parameter ö is given in terms of physical parameters as, 

/5 (p 	
w

C0 ) -- amps/volts 2 
	

(A1.3) 

where #0  is the surface mobility of the channel for the transistor (cm 2/volt. seconds), 

and Cox  is the capacitance per unit area of the gate oxide (F/cm 2 ). The variables W 

and L are the width and length of the device set by the designer. If we define the geome-

teries of transistors M3 and M4 so that PM3 = 2PM4 and substitue p for  PM4;  the differen-

tial input voltage is 

1/2 	 1t2 
[2I1 	[4IM4 1  

V = 	- VSGM4 = 

	

(A1.4) 

and 

H'M3'M4 	 (A1.5) 

where it has been assumed that M3 and M4 are matched. Substituting Equation A1.5 into 

Equation A1.4 
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VID

2(IH 1M4)]
112 	

4IM4  - 	

- 	

]1/2 

and therefore 

112 

v2 
= [41M4  [2 (

IH - 1M4)l - j 'M40'H - 1M4)] i 
Rearranging 

- 1M4 - 	= 481M4 (I - 'M4 ) ]112 

and squaring both sides. 

361M4 2  + 1M4[81H - 4PV1D2 - 321H] + P2VID4  + 41H2 - 4IHP'VID =0 

(A1.6) 

(Al .7) 

(Al .8) 

(Al.9) 

Solving this quadratic equation for 'M4  allows 'L  to be derived. The roots of the 

quadratic equation may be obtained in the normal manner using Equation Al.l0. 

112 

_b±1b2_4acl 	
(Al.10) 

2a 

Where in this case 

a=36 	 (Al.11) 

b=-24IH -4VD2 	 (Al.12) 

and 

c = fl2V 4  + 41H2 - 1HID2 	 (A1.13) 

Substituting Equations Al .11, A1.12 and Al. 13 into Equation Al .10, results in an 

expression for 'L  as given in Equation Al.14. 

IL 	
'H flv 2  + [l26V2 - 2fl2VD4 ]'/2

= 'M4 = 	+ 18 - 9 
	'H 	'H 	

(Al.14) 

21 
112 

The regions in which Equation Al.14 is valid is defined by VD 	where 

= 6M4 for positive values of V, otherwise fix =fiM3. The equation for the duty 

cycle in terms °'L  and 'H  is defined in Equation Al.15. 

DutyCycle = PulseWidth x PulseFrequency = 	 (Al.15) 
'H + 'L 
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The relationship between differential input voltage and duty cycle output has therefore 

been established by substituting Equation A1.14 into Equation Al.15. 

The slope of the transfer characteristic may be derived by calculating 

	

ôDutyCycle (V
D  =0) 	 (Al.16) 

5VJD 

Let 

DutyCycle = DC = = (Al .17) 
V 'H'L 

Using the quotient rule 

V oU_ U oV 
ÔDC - ÔVD  öVD  (Al.18) 

	

oV 	V2  

where 

	

U = 'L = 'M4 	 (Al.19) 

and 

	

V = 'L + 'H = 'M4 + 'H 	 (Al.20) 

Therefore 

ÔU  

oVID  - 6VID  

	

= 2pV + 'H [12VID 2  2fl2VID4 
1112 1 r24PVD 	

(Al.2l) 

18 	9 	'H 	'H

8 ,62VIDI 

 'H - 'H 	] 

Now 

OV 	51L 	51H = 	+ 	 (Al.22) 
OVID  6V11)  OVID  

and 

51H 

	

=0 	 (Al.23) 

since 'H  is a constant, therefore 

OUOV 
- 	 (Al.24) 

OVID - OVID 

Substituting Equations A1.19, A1.20 and A1.24 into A1.18 

OU 	OU 	OU 
ODC - (IL + 'H) 	- 'L 	'H ov OVID 	OVID   (Al .25) 
OVID 	 V2 	 - V2 
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For VID  =0 

- 161H2 	
(A1.26) 

9 

and 

oU 	

3 [ 
_[ 

12  1 
	 (A1.27) 

- 	 ] 

Substituting Equations A1.26 and A1.27 into A1.25 

ôDutyCycle 	 1 [3 ,0]1'

=  
öV11 

The gain of the transfer characteristic is therefore proportional to the square root of fi and 

inversely proportional to the square root of 'H•  These parameters can be set by the 

designer at the design stage. 

1.2. Pulse Stream Neuron with Electrically Adjustable Gain 

The following analysis derives the equations used in Chapter 4 to describe the operation 

of the pulse stream neuron with electrically adjustable gain. Assuming the transistors M3 

and M4 in the differential stage of Figure 4.21 are in saturation, and assuming the 

derivation of Equation A1.14 in the previous section, the current through M4 is defined 

by Equation Al .29. 

'H'Q + PVJD2 
'M4 

	18 
IH1* 125VD2  

- 9 
- 2fl2VD4 

1/2 

 

('H + j ) 2  (Al .29) 

The current through the equivalent transistor in the inner differential stage of Figure 4.20, 

M4', is defined by Equation A1.30. Here it has been assumed that 6 3  = j54 and ' has 

been substituted for fin. 

	

1/2

IG  
'M4' = 	

+ P'Vm2  + Ic  [12fl'V 2  2fl 2V1D4  1 
18 - 9 	- 	j2 ] 

	

(A1.30) 

The resultant current TL  is therefore defined as the difference between 'M4  and 'M4'  as 

defined by Equation A1.31. 

ILIM4M4'"F 
18 	- 

I Ill + L3  12fiV 2 	2fi2VD4 
1112 L12fi'VD2 

 22V4]1/2 (A1.3l) 

	

 [IH+ 	(Iu+)2 	
[ 	

- 1G2 
	] 
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Assuming the duty cycle definition of Equation Al. 17, and the quotient rule for differen-

tiation as described in Equation Al.18, then 

6U - 61L 2P — 'VD +  

	

6VID 6VID 	18 	- 

	

[ 	'H + L3 [ _120V 2 	22V4 	
112 

L 
(iH+) - (IH+)2] x 

	
1  (Al.32) 

1 [24V 	8fl2V 3  1 	I l2P'Vm2  2fl'2V 	
1/2 

	

IH+2 	JQ 	- J2 j 
x  

124fl'VD  8fl'2V 1 	I 
L 2 i 

Equations A1.22, A1.23, A1.24 and A1.25 and A1.26 apply here also, resulting in the 

equation for the gain of the characteristic with Vm = 0 given by Equation Al .33. 

1/2 	1/21 
oDutyCycle 	 1 1 3fl ('H + L3) 1 	13fl1L3 1 I 

2 	I 	I 
'H öV11 	 1H2  
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Appendix 2 

Phase Frequency Detector Circuit 

Figure A2.1 Phase Frequency Detector Circuit 
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Appendix 3 

HSPICE Simulation Decks and Net Lists for Pulse Stream Circuits 

3.1. A Pulse Stream Synapse using Pulse Width Modulation. 

* Extracted Synapse Circuit 
*-------------------------------------------------------------------- 

.INCLUDE .1..!. .1. ./hspice/es2models/ecdm2O/12/typical/nmos 

.INCLUDE .1..!. .1. ./hspice/es2models/ecdm2O/12/typical/pmos 
*-------------------------------------------------------------------- 

.OPTIONS POST NODE NOPAGE GMIN=1.OE-20 GMINDC=1.OE-20 
*-------------------------------------------------------------------- 

* 	Buffer 
*-------------------------------------------------------------------- 

M5 7 600 NMOS L=1.9U W=3.1U AS=19P AD=19P PS=15U PD=15U 

M6 77 100 100 PMOS L=2.1U W=8.9U AS=45P AD=45P PS=19U PD=19U 
*-------------------------------------------------------------------- 

* 	Weight Storage Capacitor 
*-------------------------------------------------------------------- 

Ml 1 060 100 PMOS L=20.OU W=15.OU AS=75P AD=75P PS=25U PD=25U 

M12 0600 NMOS L=20.OU W=15.OU AS=75P AD=75P PS=25U PD=25U 
*-------------------------------------------------------------------- 

* 	Address Transistor 
*-------------------------------------------------------------------- 

M4 6540 NMOS L=2.OU W=3.OU AS=19P AD=19P PS=15U PD=15U 
*-------------------------------------------------------------------- 

* 	Inverter and VREF Transistors 
* -------------------------------------------------------------------- 

Ml 987 100 PMOS L=2.1UW=2.9UAS=19PAD=19PPS=15UPD=15U 

M2 98 140 NMOS L=1.9U W=3.1U AS=19P AD=19P PS=15U PD=15U 

M3 14 1300 NMOS L=9.9U W=3.1U AS=19P AD=19P PS=15U PD=15U 
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*-------------------------------------------------------------------- 

* 	Discharge Capacitor 
*-------------------------------------------------------------------- 

*-------------------------------------------------------------------- 

* 	First Inverter 
*-------------------------------------------------------------------- 

M13 109 100 100 PMOS L=1.9U W=3.1U AS=19P AD=19P PS=15U PD=15U 

M14 10900 NIMOS L=2.1U W=8.9U AS=25P AD=25P PS=19U PD=19U 
*-------------------------------------------------------------------- 

* 	Second Inverter 
*-------------------------------------------------------------------- 

M15 1110 100 100 PMOS L=2.1U W=2.9U AS=19P AD=19P PS=15U PD=15U 

M16 111000 NMOS L=1.9U W=3.1U AS=19P AD=19P PS=15U PD=15U 
*-------------------------------------------------------------------- 

* 	Pass Transistors 
*-------------------------------------------------------------------- 

M7 112021 100 PMOS L=1.9UW=3.1UAS=19PAD=19PPS=15UPD=15U 

M8 823 240 NMOS L=2.1U W=2.9U AS=19P AD=19P PS=15U PD=15U 
*-------------------------------------------------------------------- 

* 	Output Stage 
*-------------------------------------------------------------------- 

M9 100 21 22 100 PMOS L=6.9U W=3.1U AS=19P AD=19P PS=15U PD=15U 

M10 222400 NMOS L=21.1U W=2.9U AS=19P AD=19P PS=15U PD=15U 

M17 02200 NMOS L=89.OU W=12.OU 
*-------------------------------------------------------------------- 

* 	Layout Capacitance 
*-------------------------------------------------------------------- 

C15 130 11.OF 

C17 110 15.OF 

C18 100 14.OF 

C199029.OF 

C2080 16.OF 

C21 1000 39.OF 

C227023.OF 

C230097.OF 

C2460 17.OF 

C25503.OF 

C26405.OF 
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C27 220 100.OF 
* --------------------------------------------------------------- 

* 	Control 
*--------------------------------------------------------------- 

VDD 1000DC5 

VREF 130DC 1.5 

VCONTROL2 200 DC 2.7 

VCONTROL1 230 DC 2.7 

.OPTIONS ITL1=500 1TL2=200 ITL4=100 LVLTIIVI=1 ITL5=120001 LIMPTS=12001 

.OVrI0NS PIVTOL=1 .OE-25 

VADDRESS 5 0 PULSE(0.0 5.0 iON iON iON SON 100000U) 

VJ 8 0 PULSE(0.0 5.0 200N iON iON lOON 200N) 

VTIJ4OPWL(0 1 109N 1 liON 0) 

.IC V(22)=2.5 

.PRINT TRAN V(8) V(11) V(22) 

.TRAN5N5U 

.END 

3.2. Pulse Stream Neuron Circuit : Fixed Gain 

* Pulse Stream Neuron 

*** SPICE DECK created from vco.sim, tech=cmos-pw 

Ml 1 543PM0S L=2.OUW=15.OU 

M2 76 13 PMOS L=5.OU W=7.OU 

M3 851 3PMOS L=2.OUW=15.OU 

M4 10983 PMOS L=2.OU W=15.OU 

MS 12 11 10 3 PMOS L=5.OUW=4.OU 

M6 13 12 103 PMOS L=10.OU W=4.OU 

M7 147 13 PMOS L=10.OU W=9.OU 

M8 66 143 PMOS L=3.OU W=5.OU 

M9 0 15 63 PMOS L=3.OU W=20.OU 

M10 16 14 13 PMOS L=5.OU W=9.OU 

MillS 1443 PMOS L=2.OU W=4.OU 

M12 0672 NMOS L=5.OU W=3.OU 

M13 66 142 NIMOS L=5.OU W=3.OU 

M14 115 62 NMOS L=3.OU W=8.OU 
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M15 17 14 15 2 NMOS L=2.0U W=4.OU 

M16 147 02 NMOS L=8.0U W=5.OU 

M17 0 13 17 2 NMOS L=2.0U W=10.OU 

M18 0 14 162 NMOS L=5.0U W=3.OU 

M19 0 15 02 NMOS L=33.OU W=25.OU 

M20 13 13 02 NMOS L=2.OU W=10.OU 

* C21 180 26.OF ROUTING TRACK 

C22 160 33.OF 

C2300 139.OF 

C24 130 26.OF 

C25 15032.OF 

C26 140 59.OF 

C27 120 19.OF 

C28 11046.OF 

C29 100 24.OF 

C309011.OF 

C318015.OF 

C32 7 0 26.OF 

C33 6050.OF 

C3450 12.OF 

C35 40 36.OF 

C36 10 104.OF 

M30 155 1 PMOS L=2U W=15U 

M31 5920 1 PMOS L=2U W=15U 

M32 20 21 211 PMOS L=3U W=3U 

M33 21 21 220 NMOS L=3U W=3U 

M34 2223 00 NMOS L=100U W=3U 

VDD 1ODC5V 

VNMOS2ODCO 

VPMOS 30DC5 

VGG9ODC2 

VREF 1202.5 

YIN 110 PULSE (02.75 0.05U 0.05U 0.05U 5 10) 

VTS23ODC3.05V 

CLD16O1P 
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.IC V(15)=0 V(16)=0 V(6)=O V(7)=5 V(14)=O 

.PRIITF TRAN V(16) 

.OPTIONS POST NODE NOPAGE GMIN=1.OE-20 GMINDC=1.OE-20 

+DCON= 1 

OVTIONS ITL1=500 1TL2=200 ITL4=100 LVLTIM=1 ITL5=120001 

+LIMPTS= 12001 PIVTOL=1 .OE-25 

.INCLUDE . .1. ./hspice/es2models/ecdm2OIl2/typical/nmos 

.JNCLUDE . .1. ./hspice/es2models/ecdm20/12/typical/pmos 

.END 

3.3. Pulse Stream Neuron Circuit: Electrically Adjustable Gain 

.INCLUDE .1..!. ./hspice/es2models/ecpdl5/16/typical/nmos 

.INCLUDE . .1..!. ./hspice/es2models/ecpdl5I16/typicallpmos 

M50 1 11 11 1 PMOS W=10U L=5U 

M51 199 1 PMOS W=1OU L=5U 

*** SPICE DECK created from vtvco.sim, tech=cmos-pw 

Ml 6543 PMOS L=5.OU W=7.2U 

M2 87 63 PMOS L=10.OU W=7.2U 

M3 1963 PMOS L=5.0UW=10.OU 

M4 109 13 PMOS L=5.OU W=10.OU 

MS 111 103PMOSL=5.0UW=10.OU 

M6 12 11 13 PMOS L=5.0UW=10.OU 

M7 14 13 123 PMOS L=5.OU W=10.OU 

M8 15 14 13 PMOS L=15.OU W=12.OU 

M9 16 14 15 3 PMOS L=15.OU W=12.OU 

M10 105 173 PMOS L=5.0U W=10.OU 

Ml 1 18 7 103 PMOS L=10.0U W=10.OU 

M12 116 133 PMOS L=5.0U W=12.OU 

M13 19 13 13 PMOS L=5.0U W=12.OU 

M14 0 16 15 3 PMOS L=4.OU W=14.8U 

M15 0442 NMOS L=5.OU W=10.OU 

M16 17402 NMOS L=5.OU W=10.OU 

M17 0 17 17 2 NMOS L=5.OU W=10.OU 

M18 08 82 NIMOS L=5.OU W=10.OU 

M19 18 8 02 NMOS L=5.OU W=10.OU 

M20 0 18 18 2 NMOS L=5.0U W=10.OU 
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M21 20 18 02 NIMOS L=5.OU W=10.OU 

M22 14 13 202 NMOS L=5.OU W=10.OU 

M23 0 1402 NMOS L=13.OU W=16.8U 

M24 0 14 21 2 NMOS L=14.6U W=4.OU 

M25 2114 162 NMOS L=14.6U W=4.OU 

M26 21 16 12 NMOS L=4.OU W=4.8U 

M27 0 16 13 2 NMOS L=5.OU W=4.OU 

M28 0 13 19 2 NMOS L=5.OU W=4.OU 

C29 1 65.8F 

C30 140 11.4F 

C31 210 9.8F 

C322005.5F 

C3300 105.1F 

C34 190 27.9F 

C35 18033.4F 

C36 17027.6F 

C37 16038.5F 

C38 15 0 43.5F 

C39 120 18.5F 

C40 100 42.5F 

C41 8028.9F 

C42 6035.5F 

C434027.7F 

C447016.OF 

C455017.9F 

C46 13047.5F 

C47 110 15.6F 

C4890 13.9F 

C49 140 84.5F 

C50 10 126.OF 

GIPWC 11 0500 3U 

GIGC 9051 0 3U 

VGI2510DC 1 

VGI500DC 1 

VDD 1 05V 

VPMOS30DC5V 

VNMOS20DCOV 

VRBF7ODC2.5 
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* 	 * 

* sweepvxifrom3.5tol.5 * 
* 	with LOW gain 	* 

* 	 * 

********************************* 

VXI5 ODC 2.10 

CLOAD 190 0.5P 

.IC V(14)=1 

.TRAN5N16OU 

.PRINT TRAN V(19) V(14) 

.OPTIONS POST NODE NOPAGE GMLNDC=1E-20 

.OPTIONS INGOLD=2 

+DCON= 1 

.END 

3.4. Phase Frequency Detector 

* Phase Frequency Detector for PLL 

*** SPICE DECK created from pfd.sim, tech=cmos-pw 

Ml 5413 PMOS L=2.OU W=4.OU 

M2 5613 PMOS L=2.OUW=4.OU 

M3 8713 PMOS L=2.OUW=4.OU 

M48 913 PMOS L=2.OUW=4.OU 

M5 11 10 13 PMOS L=2.OUW=4.OU 

M6 11813 PMOS L=2.OUW=4.OU 

M7 10 11 13 PMOS L=2.OUW=4.OU 

M8 10 12 13 PMOS L=2.OU W=4.OU 

M9 14 13 13 PMOS L=2.OU W=4.OU 

M10 145 13 PMOS L=2.OU W=4.OU 

Mu 1 13 14 13 PMOS L=2.OU W=4.OU 

M12 13 12 13 PMOS L=2.OU W=4.OU 

M13 155 13 PMOS L=2.OU W=4.OU 

M14 16 15 13 PMOS L=2.OU W=4.OU 
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M15 128 13 PMOS L=2.OU W=4.OU 

M16 12 14 13 PMOS L=2.OU W=4.OU 

M17 125 13 PMOS L=2.OU W=4.OU 

M18 12 1113 PMOS L=2.OUW=4.OU 

M19 178 13 PMOS L=2.OU W=4.OU 

M20 18 17 13 PMOS L=2.OU W-4.OU 

M21 9 18 13 PMOS L=2.OU W=4.OU 

M22 9 12 13 PMOS L=2.OU W=4.OU 

M23 9 11 13 PMOS L=2.OU W=4.OU 

M24 6 16 13 PMOS L=2.OU W=4.OU 

M25 6 12 13 PMOS L=2.OU W=4.OU 

M26 6 14 13 PMOS L=2.OU W=4.OU 

M27 19402 NMOS L=3.OU W=4.OU 

M28 56192 NMOS L=3.OU W=4.OU 

M29 20702 NMOS L=3.OU W-4.OU 

M30 89202 NMOS L=3.OU W=4.OU 

M31 211002 NMOS L=3.OU W=4.OU 

M32 118 212 NMOS L=3.OU W=4.OU 

M33 22 110 2 NMOS L=3.OU W=4.OU 

M34 10 12 222 NIMOS L=3.OU W=4.OU 

M35 23 13 02 NMOS L=3.OU W=4.OU 

M36 145 23 2 NMOS L=3.OU W=4.OU 

M37 24 1402 NMOS L=3.OU W=4.OU 

M38 13 12 242 NMOS L=3.OU W=4.OU 

M39 05 152 NMOS L=3.OU W=4.OU 

M40 0 15 162 NMOS L=3.OU W=4.OU 

M41 25 8 122 NMOS L=3.OU W=4.OU 

M42 26 14 25 2 NMOS L=3.OU W=4.OU 

M43 275 262 NIMOS L=3.OU W=4.OU 

M44 0 1127 2 NMOS L=3.OU W=4.OU 

M45 08172 NMOS L=3.OU W=4.OU 

M46 0 17 182 NMOS L=3.OU W=4.OU 

M47 28 18 92 NMOS L=3.OU W=4.OU 

M48 29 12 28 2 NMOS L=3.OU W=4.OU 

M49 0 11 292 NMOS L=3.OU W=4.OU 

M50 301662 NMOS L=3.OU W=4.OU 

M51 31 12 30 2 NMOS L=3.OU W=4.OU 

M52 0 14 312 NMOS L=3.OU W=4.OU 
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C53 0 12 149F 

C540 149.OF 

C55 09 5.6F 

C56011 10.OF 

C5705 113F 

C5841435.6F 

C59605.5F 

C6008 113F 

C61 1 125.OF 

C620076.OF 

C63 160 18.6F 

C64 180 169F 

C65 17 0 149F 

C66 15 0 15.6F 

C67 140 70.OF 

C685051.5F 

C69 13 0 24.2F 

C70 120 82.2F 

C71 11054.1F 

C728061.4F 

C73 100 24.2F 

C749042.8F 

C75 70 6.OF 

C766042.2F 

C77 40 193F 

C78 10 2183F 

VDD 1 ODC5 

VNMOS2ODCO 

VPMOS3ODC5 

VRF 70 PULSE(0 5 1.2U ON ON 1U 2U) 

VCO 40 PULSE(0 5 0.2U ON ON 1.2U 2.4U) 

.IC V(9)=5 V(6)=5 V(5)=5 V(8)=5 V(11)=0 V(14)=O V(12)=5 

.TRAN2N5U 

.PRINT TRAN V(9) V(10) 

.OPTIONS POST NODE NOPAGE GMIIN=1.OE-20 GMINDC=1.OE-20 INGOLD=2 

+DCON= 1 

.OPTIONS ITL1=500 1TL2=200 ITL4=100 LVLTIM=1 ITL5=120001 
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+LIMPTS=12001 PIVTOL=1 .OE-25 

.INCLUDE . .1..!. ./hspice/es2models/ecpdl5I16/typical/nmos 

.INCLUDE .1..!. ./hspice/es2models/ecpdl5/16/typical/pmos 

.END 

3.5. EPSILON VIH and VL3  Current Set Circuit 

FEEDBACK CIRCUITS FOR PULSE WIDTh AND GAIN CONTROL 

.INCLUDE .1..!. ./hspice/es2models/ecpdl5Il6/typical/nmos 

.INCLUDE .1..!. ./hspice/es2models/ecpdl5I16/typical/pmos 

*** SPICE DECK created from iref.sim, tech=cmos-pw 

Ml 5413 PMOS L=2.OUW=4.OU 

M25 613 PMOS L=2.OUW=4.OU 

M3 8713 PMOS L=2.OUW=4.OU 

M489 13 PMOS L=2.OUW=4.OU 

MS 11 10 13 PMOS L=2.OU W=4.OU 

M6 11813 PMOS L=2.OUW=4.OU 

M7 10 1113 PMOS L=2.OUW=4.OU 

M8 10 12 13 PMOS L=2.OU W=4.OU 

M9 14 13 13 PMOS L=2.0U W=4.OU 

M10 145 13 PMOS L=2.OU W=4.OU 

Mu 1 13 14 13 PMOS L=2.OUW=4.OU 

M12 13 12 13 PMOS L=2.OU W=4.OU 

M13 155 13 PMOS L=2.OU W=4.OU 

M14 16 15 13 PMOS L=2.OU W=4.OU 

M15 128 13 PMOS L=2.0U W=4.OU 

M16 12 14 13 PMOS L=2.OU W=4.OU 

M17 125 13 PMOS L=2.OU W=4.OU 

M18 12 111 3 PMOS L=2.OU W=4.OU 

M19 178 13 PMOS L=2.OU W=4.OU 

M20 18 17 13 PMOS L=2.0U W=4.OU 

M21 9 18 13 PMOS L=2.OU W=4.OU 

M22 9 12 13 PMOS L=2.OU W=4.OU 

M23 9 11 13 PMOS L=2.OU W=4.OU 

M24 6 16 13 PMOS L=2.OU W=4.OU 
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flOi'M flOE='l SOWN t 0 I'T 17t LEN 

flOi'=M flO L'l SOWN t Et c 171 9LW 

noi= flOE='T SOWN t 0 £1 Et 9EW 

noI'=PA flOE='l SOWN t tt tT 01 1'LW 

flOi'i floE'l SOWN t 0 11 tt LEN 

f101'M nO L=TL SOWN t It 8 TI tEN 

fl01 flOE'l SOWN t 001 Tt I EN 

flOi'=M fl0EI SOWN tOt 68 OEN 

fi0t7M fi(YL='I SOWN t 0 LOt 6tN 

flU li=M flOE='l SOWN t 619 c 8tN 

flOi'M 110 E='l SOWN tO 1761 LtN 

flU l'=M flot='l SOWd £ I l'T 9 9tN 

flU t=M flot='l SOWd £ I tT 9 gzw 

Id 	Exipuoddy 
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M63 45 34 37 3 PMOS L=10.OU W=10.OU 

MM 143 40 3 PMOS L=5.OU W=12.OU 

M65 440 13 PMOS L=5.OU W=12.OU 

M66 043 423 PMOS L=4.OU W=14.8U 

M67 0 32 32 2 NMOS L=5.OU W=10.OU. 

M68 443202 NMOS L=5.OU W=10.OU 

M69 0 44 44 2 NMOS L=5.OU W=10.OU 

M70 035 35 2 NMOS L=5.OU W=10.OU 

M71 45 35 02 NMOS L=5.OU W=10.OU 

M72 045 45 2 NMOS L=5.OU W=10.OU 

M73 4645 02 NMOS L=5.OU W=10.OU 

M74 41 40462 NMOS L=5.OU W=10.OU 

M75 0 41 02 NMOS L=13.OU W=16.8U 

M76 0 41 472 NMOS L=14.6U W=4.OU 

M77 47 41 432 NMOS L=14.6U W=4.OU 

M78 4743 12 NMOS L=4.OU W=4.8U 

M79 043 402 NMOS L=5.OU W=4.OU 

M80 04042 NMOS L=5.OU W=4.OU 

M81 4948 13 PMOS L=2.OU W=4.OU 

M82 4950 13 PMOS L=2.OU W=4.OU 

M83 52 51 13 PMOS L=2.OU W=4.OU 

M84 5253 13 PMOS L=2.OU W=4.OU 

M85 5554 13 PMOS L=2.OU W=4.OU 

M86 5552 13 PMOS L=2.OU W=4.OU 

M87 5455 13 PMOS L=2.OU W=4.OU 

M88 5456 13 PMOS L=2.OU W=4.OU 

M89 5857 13 PMOS L=2.OU W=4.OU 

M90 5849 13 PMOS L=2.OU W=4.OU 

M91 5758 13 PMOS L=2.OU W=4.OU 

M92 5756 13 PMOS L=2.OU W=4.OU 

M93 5949 13 PMOS L=2.OU W=4.OU 

M94 6059 13 PMOS L=2.OU W=4.OU 

M95 5652 13 PMOS L=2.OU W=4.OU 

M96 5658 13 PMOS L=2.OU W=4.OU 

M97 5649 13 PMOS L=2.OU W=4.0U 

M98 5655 13 PMOS L=2.OU W=4.OU 

M99 6152 13 PMOS L=2.OU W=4.OU 

M100 62 61 1 3 PMOS L=2.OU W=4.OU 
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MiOl 53 62 13 PMOS L=2.OU W=4.OU 

M102 5356 13 PMOS L=2.OU W=4.OU 

M103 5355 13 PMOS L=2.OU W=4.OU 

M104 5060 13 PMOS L=2.OU W=4.OU 

M105 5056 13 PMOS L=2.OU W=4.OU 

M106 5058 13 PMOS L=2.OU W=4.OU 

M107 6348 02 NMOS L=3.OU W=4.OU 

M108 49 50 63 2 NMOS L=3.OU W=4.OU 

M109 64 510 2 NMOS L=3.OU W=4.OU 

Ml 10 52 53 64 2 NMOS L=3.OU W=4.OU 

Mlii 65 5402 NMOS L=3.OU W=4.OU 

Ml 12 55 52 65 2 NMOS L=3.OU W=4.OU 

Ml 13 6655 02 NIMOS L=3.OU W=4.OU 

Ml 14 54 56 66 2 NMOS L=3.OU W=4.OU 

Ml 15 675702 NMOS L=3.OU W=4.OU 

Ml 16 58 49 672 NIMOS L=3.OU W=4.OU 

Ml 17 685802 NMOS L=3.OU W=4.OU 

Ml 18 57 56 68 2 NMOS L=3.OU W=4.OU 

M1i9 0 49 59 2 NMOS L=3.OU W=4.OU 

M120 059 602 NIMOS L=3.OU W=4.OU 

M121 69 52 56 2 NMOS L=3.OU W=4.OU 

M122 7058 692 NMOS L=3.OU W=4.OU 

M123 71 49702 NIMOS L=3.OU W=4.OU 

M124 055 712 NIMOS L=3.OU W=4.OU 

M125 052 612 NMOS L=3.OU W=4.OU 

M126 0 61 622 NMOS L=3.OU W=4.OU 

M127 72 62 53 2 NMOS L=3.OU W=4.OU 

M128 73 56 72 2 NIVIOS L=3.OU W=4.OU 

M129 055 732 NMOS L=3.OU W=4.OU 

M130 74 60 50 2 NMOS L=3.OU W=4.OU 

M131 75 56 74 2 NIMOS L=3.OU W=4.OU 

M132 058 752 NMOS L=3.OU W=4.OU 

M133 78 77 763 PMOS L=5.OU W=7.2U 

M134 79 34 78 3 PMOS L=10.OU W=7.2U 

M135 1 36783 PMOS L=5.OU W=10.OU 

M136 8036 13 PMOS L=5.OU W=10.OU 

M137 138 803 PMOS L=5.OU W=10.OU 

M138 8138 13 PMOS L=5.OUW=10.OU 
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M139 83 82 813 PMOS L=5.OU W=10.OU 

M140 8483 13 PMOS L=15.OU W=12.OU 

M141 85 83 843 PMOS L=15.OU W=12.OU 

M142 8077 863 PMOS L=5.OU W=10.OU 

M143 87 34 803 PMOS L=10.OU W=10.OU 

M144 185 823 PMOS L=5.OU W=12.OU 

M145 48 82 13 PMOS L=5.OU W=12.OU 

M146 085 843 PMOS L=4.OU W=14.8U 

M147 0 76 76 2 NMOS L=5.OU W=10.OU 

M148 867602 NMOS L=5.OU W=10.OU 

M149 0 86 86 2 NIMOS L=5.OU W=10.OU 

M150 0 79 79 2 NMOS L=5.OU W=10.OU 

M151 877902 NIMOS L=5.OU W=10.OU 

M152 087 87 2 NIMOS L=5.OU W=10.OU 

M153 88 87 02 NIMOS L=5.OU W=10.OU 

M154 83 82 882 NMOS L=5.OU W=10.OU 

M155 083 02 NMOS L=13.OU W=16.8U 

M156 083 892 NMOS L=14.6U W=4.OU 

M157 89 83 85 2 NMOS L=14.6U W=4.OU 

M158 8985 12 NMOS L=4.OU W=4.8U 

M159 085 822 NMOS L=5.OU W=4.OU 

M160 0 82 48 2 NMOS L=5.OU W=4.OU 

M161 3636 13 PMOS L=5.OU W=10.OU 

M162 9090 13 PMOS L=5.OU W=10.OU 

M163 9153 13 PMOS L=5.OUW=5.2U 

M164 9250 13 PMOS L=5.OU W=8.OU 

M165 9493 362 NMOS L=25.OU W=4.8U 

M166 9495 902 NMOS L=25.OU W=4.8U 

M167 0 96 94 2 NMOS L=5.OU W=10.OU 

M168 0 92 91 2 NMOS L=5.OU W=5.2U 

M169 0 50 92 2 NMOS L=5.OU W=4.OU 

M170 3838 13 PMOS L=5.OU W=10.OU 

M171 9797 13 PMOS L-5.OUW=10.OU 

M172 989 13 PMOS L=5.OU W=5.2U 

M173 996 13 PMOS L=5.OU W=8.OU 

M174 101 100382 NIMOS L=25.OU W-4.8U 

M175 10195 97 2 NMOS L=25.OU W=4.8U 

M176 096 1012 NMOS L=5.OU W=10.OU 
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M177 0 96 96 2 NMOS L=5.OU W=10.OU 

M178 099 98 2 NMOS L=5.OU W=5.2U 

M179 06992 NMOS L=5.OU W=4.OU 

C180 1409.OF 

C181 077 6.2F 

C182 33 I 5.8F 

C183 410 11.4F 

C184052 11.7F 

C185 12 1 5.OF 

C186 1367.2F 

C187 406.8F 

C188 177 6.4F 

C189908.6F 

C190 178 5.8F 

C191 110 10.OF 

C192 50 11.3F 

C193 083 11.4F 

C194 4 14 35.6F 

C195 58 48 35.6F 

C1960508.6F 

C197 056 149F 

C198 058 9.OF 

C19991956.4F 

C200 095 11.4F 

C201 098 8.2F 

C202 80 11.7F 

C203 56 1 5.OF 

C204 048 6.8F 

C205 053 8.6F 

C206 055 10.OF 

C207 091 11.3F 

C208 049 11.3F 

C209 093 6.2F 

C21009610.8F 

C211 138 8.4F 

C212608.6F 

C213 134 6.2F 

C214 120 14.9F 



Appendix 3 
	

156 

C215 1010 12.6F 

C216 1000 12.6F 

C217 990 24.6F 

C218 98 0 22.5F 

C219 97 0 24.3F 

C22096036.7F 

C22194012.7F 

C222 95 0 57.9F 

C223 93 0 25.6F 

C224 920 24.6F 

C225 910 38.2F 

C226 900 24.3F 

C227 890 9.8F 

C228 880 5.5F 

C229 87 0 33.4F 

C230 860 27.6F 

C231 85 0 38.5F 

C232 840 43.5F 

C233 810 18.5F 

C234 800 42.5F 

C235 790 28.9F 

C236 780 35.5F 

C237 760 27.7F 

C238 340 59.OF 

C239 77 0 33.8F 

C240 820 47.5F 

C241 380 84.OF 

C24236081.2F 

C243 83 0 84.5F 

C244 00 506.9F 

C245 600 18.6F 

C246 620 16.9F 

C247 610 14.9F 

C248 590 15.6F 

C249 580 70.OF 

C250 490 51.5F 

C251 57 0 24.2F 

C252 560 82.2F 
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C253 55 0 54.1F 

C254 520 61.4F 

C25554024.2F 

C256 53 0 52.4F 

C257 51 0 7.4F 

C258 500 55.6F 

C259 48 0 56.OF 

C260 10 921.1F 

C261 47 0 9.8F 

C262 460 5.5F 

C263 45 0 33.4F 

C26444027.6F 

C265 43 0 38.5F 

C266 42 0 43.5F 

C26739018.5F 

C268 37 0 42.5F 

C269 35 0 28.9F 

C270 33 0 35.5F 

C271 320 27.7F 

C272 400 47.5F 

C273 410 84.5F 

C274 160 18.6F 

C275 18 0 16.9F 

C276 17 0 14.9F 

C277 15 0 15.6F 

C278 140 70.OF 

C279 5 0 51.5F 

C280 13 0 24.2F 

C281 120 82.2F 

C282 110 54.1F 

C283 8 0 61.4F 

C284 100 24.2F 

C285 90 50.3F 

C286707.4F 

C287 60 53.8F 

C288 40 56.7F 

VDD 1 ODC5 

VPMOS3ODC5 
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VNMOS2ODCO 

V2_5 95 0 DC 2.5 

VREF 34 0 DC 2.5 

VROP 1000 DC 2.5 

VROG 93 0 DC 2.5 

VVIG77ODC2.6 

IPG 1 96DC6U 

VRFP7OPULSE(05 1.2UONON 1U2U) 

VRFG 51 0 PULSE(O 5 0.2U ON ON 1.2U 2.4U) 

.IC V(5)=5 V(8)=5 V(I1)=O V(12)=5 V(14)=O 

.IC V(49)=5 V(52)=5 V(55)=O V(56)=5 V(58)=0 

.IC V(41)=1 V(83)=1 

.TRAN5N5U 

.PRINT TRAN V(4) V(48) 

.OPTIONS POST NODE NOPAGE GMINDC=1E-20 

.OPTIONS INGOLD=2 

+DCON= 1 

.END 

3.6. Pulse Stream Regeneration - Pulse Width Control Circuit 

** SPICE file created for circuit iset 

** Technology: ecpdl.5/1 
** 

**NODE: O=GND 

** NODE: 1 = Vdd 

** NODE: 100 = Vdd 

MO 100 101 101 1 PMOS L=4.OUW=6.OU 

Ml 102 101 100 1 PMOS L=4.OU W=6.OU 

M2 100 103 103 1 PMOS L=2.OU W=3.OU 

M3 103 104 104 1 PMOS L=2.OU W=3.OU 

M4 100 101 102 1 PMOS L=4.OU W=6.OU 

M5 101 101 100 1 PMOS L=4.OU W=6.OU 

M6 100 102 105 1 PMOS L=4.OU W=32.OU 

M7 102 106 1070 NMOS L=4.OU W=20.OU 
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M8 107 108 1010 NMOS L=4.OU W=20.OU 

M9 109 104 1050 NMOS L=4.OU W=12.OU 

M10 107 108 1010 NMOS L=4.OU W=20.OU 

Ml 1102 106 1070 NMOS L=4.OU W=20.OU 

M12 104 104 1090 NIMOS L=4.OU W=16.OU 

M13 109 104 1070 NMOS L=4.OU W=16.OU 

M14 108 110 1090 NMOS L=2.OU W=4.OU 

M15 100111 112 1 PMOS L-5.OUW=3.OU 

M16 111 111 100 1 PMOS L=5.OUW=3.OU 

M17 100111 112 1 PMOS L=5.OUW=3.OU 

M18 111 111 100 1PMOS L=5.OUW=3.OU 

M19 100111 112 1 PMOS L=5.OUW=3.OU 

M20 111111 100 1 PMOS L=5.OU W=3.OU 

M21 100111 112 1PMOSL=5.OUW=3.OU 

M22 111 111 1001 PMOS L=5.OUW=3.OU 

M23 100111 112 1 PMOS L=5.OUW=3.OU 

M24 111 111 1001 PMOS L=5.OUW=3.OU 

M25 113 114 1140NMOSL=2.OUW=4.OU 

M26 100111 1121 PMOS L=5.OUW=3.OU 

M27 111 111 100 1 PMOS L=5.OU W=3.OU 

M28 100111 112 1 PMOS L=5.OUW=3.OU 

M29 115 116 108 1 PMOS L=2.OU W=3.OU 

M30 112 117 115 1 PMOS L=5.OUW=3.OU 

M31 111 111 100 1PMOSL=5.OUW=3.OU 

M32 100111 112 1 PMOS L=5.OUW=3.OU 

M33 111 111 1001 PMOS L=5.OUW=3.OU 

M34 118 117 1111 PMOS L=5.OU W=3.OU 

M35 114 114 118 1 PMOS L=2.OU W=3.OU 

M36 100111 112 1 PMOS L=5.OUW=3.OU 

M37 111 111 100 1PMOS L=5.OUW=3.OU 

M38 100 111 112 1 PMOS L=5.OUW=3.OU 

M39 111 111 1001 PMOS L=5.OUW=3.OU 

M40 113 119 1090NMOSL=120.OUW=3.OU 

M41 120 121 105 1 PMOS L=2.OU W=3.OU 

M42 119 122 120 1 PMOS L=2.OU W=3.OU 

M43 100 123 121 1 PMOS L=2.OU W=3.OU 

M44 100 110 122 1 PMOS L=2.OU W=3.OU 

M45 120 123 105 0 NMOS L=2.OU W=3.OU 
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M46 119 110 1200 NIVIOS L=2.OU W=3.OU 

M47 121 123 1090NMOS1=2.OUW=3.OU 

M48 122 110 1090 NMOS L=2.OU W=3.OU 

M49 109 108 1090 NMOS L=14.OU W=28.OU 

M50 109 120 1090 NMOS L=5.OU W=5.OU 

* Capacitor 

M51 109 119 1090NMOSL=100.OUW=50.OU 

CO 124 109 75F 

Cl 1250387F 

C2 1230315F 

C3 1200 523F 

C4 1210379F 

C5 1220464F 

C6 1190 7925F 

C7 118074F 

C8 115 074F 

C9 117 0708F 

ClO 1160 319F 

Cli 1140 436F 

C12 1120 2376F 

C13 11103345F 

C14 1100 581F 

C15 113 0244F 

C16 1260 90F 

C17124097F 

C18 127 0 109F 

C19 107 0 1726F 

C20 1060 631F 

C21 109 0 6709F 

C22 1080 1153F 

C23 105 0 2132F 

C24 1040825F 

C25 103 0244F 

C26 1020 1557F 

C27 1010 1682F 

C28 1000 5896F 
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3.7. Pulse Stream Regeneration - Time-out Mechanism 

** SPICE file created for circuit timeout 

** Technology: ecpdl.5/1 
** 

** NODE: 0= GND 

** NODE: 1 = Vdd 

** NODE: 100 = Vdd 

MO 100 101 101 1 PMOS L=4.OU W=6.OU 

Ml 102 101 100 1 PMOS L=4.OU W=6.OU 

M2 100 103 103 1 PMOS L=2.OU W=3.OU 

M3 103 104 104 1 PMOS L=2.OU W=3.OU 

M4 100 101 102 1 PMOS L=4.OU W=6.OU 

MS 101 101 100 1 PMOS L=4.OUW=6.OU 

M6 100 102 105 1 PMOS L=4.OU W=32.OU 

M7 102 106 1070 NMOS L=4.OU W=20.OU 

M8 107 108 1010 NMOS L=4.OU W=20.OU 

M9 109 104 1050NMOSL=4.OUW=12.OU 

M10 107 108 1010 NMOS L=4.OU W=20.OU 

Ml 1102 106 1070 NMOS L=4.OU W=20.OU 

M12 104 104 1090 NMOS L=4.OU W=16.OU 

M13 109 104 1070 NMOS L=4.OU W=16.OU 

M14 100 110 110 1 PMOS L=4.OUW=6.OU 

M15 111 110 1001 PMOS L=4.OUW=6.OU 

M16 100 112 112 1 PMOS L=2.OUW=3.OU 

M17 112 113 113 1 PMOS L=2.OUW=3.OU 

M18 100 110 111 1 PMOS L=4.OUW=6.OU 

M19 110 110 100 1 PMOS L=4.0UW=6.OU 

M20 100 111114 1 PMOS L=4.OU W=32.OU 

M21 111 115 1160NMOSL=4.OUW=20.OU 

M22 116 108 1100 NMOS L=4.OU W=20.OU 

M23 109 113 1140 NMOS L=4.OUW=12.OU 

M24 116 108 1100 NMOS L=4.OU W=20.OU 

M25 111 115 1160NMOSL=4.OUW=20.OU 

M26 113 113 1090NMOSL=4.OUW=16.OU 

M27 109 113 1160NMOSL=4.OUW=16.OU 
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M28 109 115 1090 NMOS L=99.OU W=37.OU 

M29 109 106 1090 NMOS L=99.OU W=37.OU 

M30 117 118 1001 PMOS L=5.OUW=3.OU 

M31 119 120 117 1 PMOS L=5.OUW=3.OU 

M32 100 121 1061 PMOS L=2.OUW=5.OU 

M33 100 122 115 1 PMOS L=2.OU W=5.OU 

M34 106 121 1230 NMOS L=3.OU W=3.OU 

M35 115 122 1240 NMOS L=3.OU W=3.OU 

M36 119 119 125 0 NMOS L=3.OU W=3.OU 

M37 123 119 1260NMOSL=3.OUW=3.OU 

M38 124 119 127 0 NMOS L=3.OU W=3.OU 

M39 125 125 1090. NIMOS L=3.OU W=3.OU 

M40 126 125 1090 NMOS L=3.OU W=3.OU 

M41 127 125 1090 NMOS L=3.OU W=3.OU 

Cl 127 0 63F 

C2 1260 63F 

C3 125 0222F 

C4 1240 24F 

C5 123 024F 

C6 1190 570F 

C7 117 0 149F 

C8 1200 857F 

C9 1180857F 

dO 1160 1726F 

Cli 115 06029F 

C12 1140 1900F 

C13 1130825F 

C14 1120 244F 

C15 1110 1557F 

C16 1100 1682F 

C17 1210 580F 

C18 1220540F 

C19 107 0 1726F 

C20 1060 5981F 

C21 1090 6273F 

C22 108 0 1225F 

C23 1050 1711F 

C24 1040 825F 
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C25 1030244F 

C26 1020 1557F 

C27 1010 1682F 

C28 1000 7249F 

3.8. Pulse Stream Regeneration Circuit 

** SPICE file created for circuit vco 

** Technology: ecpdl.5/1 
** 

**NODE 0=GND 

**NODE: 1=Vdd 

MO 100 101 101 1 PMOS L=4.OU W=6.OU 

Ml 102 101 100 1 PMOS L=4.OU W=6.OU 

M2 100 103 103 1 PMOS L=2.OU W=3.OU 

M3 103 104 104 1 PMOS L=2.OU W=3.OU 

M4 100 101 102 1 PMOS L=4.OU W=6.OU 

MS 101 101 100 1 PMOS L=4.OU W=6.OU 

M6 100 102 105 1 PMOS L=4.OU W=32.OU 

M7 102 106 1070 NMOS L=4.OU W=20.OU 

M8 107 108 1010 NMOS L=4.OU W=20.OU 

M9 109 104 1050 NMOS L=4.OU W=12.OU 

M10 107 108 1010 NMOS L=4.OU W=20.OU 

Ml 1102 106 1070 NMOS L=4.OU W=20.OU 

M12 104 104 1090 NMOS L=4.OU W=16.OU 

M13 109 104 107 0.NMOS L=4.OU W=16.OU 

M14 100 110 1101 PMOS L=4.OUW=6.OU 

M15 111 110 1001 PMOS L=4.OUW=6.OU 

M16 100 112 112 1 PMOS L=2.OUW=3.OU 

M17 112 113 113 1 PMOS L=2.OUW=3.OU 

M18 100110 111 1 PMOS L=4.OUW=6.OU 

M19 110 110 100 1 PMOS L=4.OU W=6.OU 

M20 100111 1141 PMOS L=4.OUW=32.OU 

M21 111 115 1160NMOSL=4.OUW=20.OU 

M22 116 117 1100 NMOS L=4.OU W=20.OU 



f1OEM noc='i SOWd I 001 OT 6T 09IAI 
flOE 110 z='l SONd r ii UT 9T I 69w 
noE=Mnoc='l SOWd T 6T UT TT 8N 
flOM noc='i SONd 1 001 OT 6tT LçW 
noE=Mnoc='i SOvId TOOT OCT6T 91AT 

110 E=M noc='i SONd 1001 OCT 6t1 cc 

fl0M noc='i SONd T 001 OCT 6T t'cw 

noE=noc='1 SONd 1 001 OT 6t1 £N 

flO noc='i 501AM 1 OUT OCT 6tT Z9V1 

flO= noc=i SOIAId I OOT OET 6tT I çIAI 

110 E=M noc='i SOIAId 1001 OCT 6tT ocii 
fl0f10i'1SOIADI08tT 611 TT 6Wk 
flOi'=M 110 i'1 SOWN 0 ttT 6T T UT 8W 
no c= noc-'i SOWN 0601 ZZT TT LWJI 

noc= noc='i SOWN 0601 9ZT TT 9iiIAI 

flOiiM f10t7T1 SOWN 0601 1tT cT duAl 

noc= noc='i SOWN 0601 OtT iutT ITWI 

no c= ncrc='i SOWN 0601 LJ i jtT £jIAI 

fl01'M f1017'l SOWN 0601 611 OtT tWT 
fl08=Mfl0i'1 501AM I ItT ttT 9tT TiulAl 

fl08=h 110 i'1 501AM T i"tT ON UT 0WI 

f108=M 110 i'1 SOIAId I 8tT OtT IN 6EIAI 

flO•8=iflOiu'l SONd TOOT 611 8tT 8EIAI 

f108=M 110 i'1 SONd I UT 611 001 LEN 

fl08Mfl0iu'1 SONd I ttT OtT UT 9E1AI 

fl08=M flU iu'l 501AM T 9tT dtT 001 9EW 

flOL=M 110 i='1 501AM I çtT iutT  001 iuE1AT 

flOS=M. 110 i'='l SOIAId I EtT i1 1 001 LEN 

noc=M noc='i SOWN 0601 ItT ttl tEN 
noc= noc='i SOWN 0601 dOT UT TEN 

flO8=M 110 i'1 SONd I UT ItT STT OLN 

fl08=M flOi''l SOIAIcI T OtT 6T T 001 6tN 

nO* 8=M 110 P='l SOIAId 1 811 dOT 001 8tN 

flO9T=M 11ff t='1 SOWN 0911 ET 1 601 UN 

f1O9T=MflOi'1SOWN0601 UTI LTT 9t1AI 

flOOt=MflOI='1SOWNO9TT dIT ITT dtIAI 

flOOtM fl0•i'1 SOWN 0011 LIT 911 tutlAl 

flOtT=M noP='i SOWN 0 tT I UT 1 601 UtN 

i9I 	U xrpuddy 
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M61 129 130 100 1 PMOS L=5.OU W=3.OU 

M62 109 115 1090 NMOS L=14.OU W=28.OU 

M63 109 127 1150 NMOS L=2.OU W=4.OU 

M64 106 128 1330 NMOS L=2.OU W=4.OU 

M65 134 130 100 1 PMOS L=5.OU W=3.OU 

M66 135 132 134 1 PMOS L=5.OU W=3.OU 

M67 106 128 135 1 PMOS L=2.OU W=3.OU 

M68 133 136 1080 NMOS L=2.OU W=4.OU 

M69 137 130 100 1 PMOS L=5.OU W=3.OU 

M70 138 132 137 1 PMOS L=5.OU W=3.OU 

M71 108 139 138 1 PMOS L=2.OU W=3.OU 

M72 109 106 1090 NMOS L=99.OU W=37.OU 

M73 109 108 1090 NMOS L=99.OU W=37.OU 

M74 100 139 140 1 PMOS L=4.OU W=7.OU 

M75 100 140 141 1 PMOS L=4.OU W=8.OU 

M76 141 136 119 1 PMOS L=4.OUW=8.OU 

M77 140 139 1090 NIMOS L=4.OU W=40U 

M78 119 140 1090 NMOS L=5.OU W=5.OU 

M79 109 136 1190 NMOS L=5.OU W=5.OU 

Co 113 105 32F 

Cl 100 128 43F 

C2 117 108 23F 

C3 114 109 75F 

C4 115 109 180F 

C5 108 128 31F 

C6 105 127 46F 

C7 106 127 23F 

C8 117 110 27F 

C9 114 111 27F 

ClO 127 133 35F 

Cli 136 128 12F 

C12 109 119 88F 

C13 110 116 46F 

C14 115 111 25F 

C15 117 113 23F 

C16 109 121 105F 

C17 1410 198F 

C18 1400 686F 
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C19 138 074F 

C20 137 0 149F 

C21 135 074F 

C22 1340 149F 

C23 133 0 469F 

C24 1310 74F 

C25 1320 878F 

C26 1290 2376F 

C27 1300 695F 

C28 1260 198F 

C29 1230 198F 

C30 125 0 733F 

C31 1240 840F 

C32 1220 1577F 

C33 1210 1632F 

C34 1200 1299F 

C35 1180 198F 

C36 1190 2827F 

C37 1270 1196F 

C38 1280 1035F 

C39 1160 1726F 

C40 115 0786F 

C41 1170847F 

C42 1140 2106F 

C43 1130825F 

C44 112 0244F 

C45 1110 1557F 

C46 1100 1682F 

C47 139 0566F 

C48 1360 657F 

C49 1430 109F 

C50 107 0 1726F 

CS! 1060 1132F 

C52 1090 1547 iF 

C53 1080 1570F 

C54 105 0 2448F 

C55 1040 825F 

C561030244F 
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C57 1020 1557F 

C58 1010 1682F 

C59 1000 12241F 

** NODE: 100 = Vdd 

** NODE: 109 = GND 
**NODE: O=GND! 

**NODE: 1=Vdd! 



Appendix 4 

Appendix 4 

VLSI Layout 

.2.5 . .55. .i. .2. 	 . 

Figure A3.1 Pulse Stream Synapse using Pulse Width Modulation 

Layout (2um CMOS) 
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Integrated PUlse Stream Neural Networks: 
Results, Issues, and Pointers 

Alister Hamilton, Alan F. Murray, Donald J. Baxter, Stephen Churcher, 

H. Martin Reekie, Member, IEEE, and Lionel Thrassenko 

Abstrad—ThIs paper reports new results from working ana-
log VLSI Implementations of two different pulse stream neural 
network forms. The circuits are rendered relatively Invariant 
to processing variations, and the problem of cascadablilty of 
synapses to form large systems Is addressed. A strategy for 
Interchip communication of large numbers of neural states has 
been implemented in silicon and results are presented. The 
circuits demonstrated confront many of the Issues that blight 
massively parallel analog systems, and offer soiutlons. 

I. INTRODUCTION 

WHILE there is still some divergence of opinion re-
garding the merits and demerits of analog VLSI as 

a vehicle for neural integration, the analog option has many 
adherents; see, for example, [l]–[9]. Analog circuit techniques 
allow the efficient realization of the arithmetic functions that 
are a prerequisite for the implementation of neural networks. 
Functions such as addition and multiplication [10], [11] map 
elegantly into small analog circuits, and the compactness intro-
duced allows for massively parallel arrays of such operators. 
The limitations of analog circuit technology are, however, well 
known. Analog circuits are noise-prone and susceptible to the 
vagaries of process variation, and analog signals are difficult to 
distribute and cascade. An adaptive learning procedure allows 
some of the imperfections inherent in analog VLSI to be 
dealt with automatically, as their effects make themselves felt 
when the chip is in the learning loop. When the hardware is 

not in the learning loop, uniformity must be introduced more 
actively, by including self-adjusting mechanisms that remove 
(or at least reduce) the effects of, for instance, threshoid 
variation across a silicon die. We have designed systems that 
have a high degree of uniformity by employing novel circuits 
and feedback signals to compensate for processing variations 
across the chip. In addition, we have studied methods for 
communicating large numbers of effectively analog signals 
across a multiplexed data link, using time as an analog 
information axis. The communication scheme has already 
been outlined in an earlier "tutorial" paper [12], which set 
out to explain the options within a pulse stream framework 
without presenting detailed results. This paper presents results 

Manuscript received July 23, 1991; revised October 9, 1991. This work was 
suppoñcd by the U.K. Science and Engineering Research Council (SERC) and 
by the EEC (ESPR1T NERVES). Support was also provided by Thcfn-EMI and 
British Aerospace through CASE studcntships to D. Baxter and S. Churcher. 

A. Hamilton, A.F. Murray, D.J. Baxter, S. Churdser, and }LM. Reekie 
are with the Department of Electrical Engineering. University of Edinburgh, 
Edinburgh, EH9 311., Scotland, U.K. 

L Tarassenko is with the Department of Engineering Science University of 
Oxford, Oxford, OXI 3PJ, U.K. 

IEEE Log Number 9105641.  

from a working VLSI prototype, combining the merits of 
digital signaling (robustness, ease of regeneration) with the 
compactness and dynamic range of analog circuitry, providing 
concrete evidence of successful working circuits. 

The remaining sections of this paper review the pulse stream 
method and present a series of circuits and results from VLSI 
devices that illustrate the success of the technique, and its 
effectiveness in combating the problems that beset massively 
parallel analog systems. 

Finally, we draw some general conclusions regarding the 
silicon and other results presented, to point the way for-
ward for pulse stream and other fundamentally analog VLSI 
implementations. 

U.PULSE STREAM SIGNALING 

This section draws out the fundamentals of pulse stream 
signaling and systems. This material has been covered else-
where, but is included here in the interests of completeness. 
Neurobiological systems are known to operate, at least for the 
greater part, on such a principle, and communications systems 
have used PAM (pulse amplitude modulation), PWM (pulse 
width modulation), and PCM (pulse code modulation) for data 
transmission for some time. 

Pulse stream encoding was first used and reported in the 
context of neural integration in 1987 [13], [14], and has since 
been used by a number of other groups (see, for example, 
[15]–[22]). The underlying rationale is simple: 

• Analog computation is attractive in neural VLSI, for rea-
sons of compactness, potential speed, asynchronousness, 
and lack of quantization effects. 

• Analog signals are far from robust against noise and 
interference, are susceptible to process variations between 
devices, and are not robust against the rigors of interchip 
communicati9n. 

• Digital silicon processing is more readily available than 
analog. 

• Digital signals are robust, easily transmitted and regen-
erated, and fast. 

• Digital multiplication is area- and power-hungry. 
These considerations all encourage a hybrid approach, seek-

ing to blend the merits of both digital and analog technology. 
The pulse stream technique uses digital signals to carry 

information and control analog circuitry, while storing further 

analog information on the time axis, as will be described 
below. A number of possible techniques exist for coding a 
neural state 0 < Si < 1 onto a pulsed waveform Vs with 

1045_9227/9210300—x5XXS03.00 0 1992 IEEE 
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frequency v1 , amplitude A, and pulse width 5. [121. Of these, 
three are relevant to the systems described in this paper. 

PuLse Amplitude Modulation (PAM) 

Here, A1 (V1 = A1 x constant frequency pulsed signal) 
is modulated in time, reflecting the variation in Si. This 
technique, useful when signals are to be multiplexed onto a 
single line and can be interleaved, is not particularly satis-
factory in neural nets. It incurs disadvantages in robustness 
and susceptibility to processing variations as information is 
transmitted as analog voltage levels. 

Pulse Width Modulation (PWM) 
This technique is similarly straightforward, representing the 

instantaneous value of the state S i  as the width of individual 
digital pulses in V1. The advantages of a hybrid scheme now 
become apparent, as no analog voltage is present in the signal, 
with information coded as described along the time axis. This 
signal is therefore robust, and furthermore can be decoded 
to an analog value by integration. The constant frequency 
of signaling means that either the leading or trailing edges 
of neural state signals all occur simultaneously. In massively 
parallel neural VLSL this synchronism represents a drawback, 
as current will be drawn on the supply lines by all the 
neurons (and synapses) simultaneously, with no averaging 
effect. Power supply lines must therefore be oversized to cope 
with the high instantaneous currents involved. 

Pulse Frequency Modulation (PFM) 

Here, the instantaneous value of the state Si is represented 
as the instantaneous frequency of digital pulses in V1 whose 
widths are equal. Again, the hybrid scheme shows its value, for 
the same reasons as described above for PWM. The variable 
signaling frequency skews both the leading and trailing edges 
of neural state signals and avoids the massive transient demand 
on supply lines. The power requirement is therefore averaged 
in time. 

In summary, pulsed techniques can code information across 
several pulses or within a single pulse. The former enjoys an 
advantage in terms of accuracy, while the second sacrifices 
accuracy for increased bandwidth. To date, we have made 
no attempt to either preserve or utilize pulse phase informa-
tion. It is well known that phase information enriches the 
complexity of neurobiological computation [23]. While we 
anticipate using such techniques in due course, we have thus 
far concentrated on developing chips that do not use phase 
information, while developing circuits that will ultimately be 
amenable to its use. The ensuing sections describe analog 
VLSI devices that use a combination of the above techniques, 
moving between the analog and digital domains as appropriate, 
to optimize the robustness, compactness, and speed of the 
associated network chips. 

Ill. INTEGRATED PULSE STREAM NEURAL NETWORKS 

This section reports results from two distinct pulse stream 
neural networks implemented on a single test chip using 
European Silicon Structures' (ES2) 2 pm CMOS technology. 

V 
sz 

VGS1 

T.. 
II 

FIg, 1. TransconductaiiCe multiplier circuit 

In addition a scheme for communicating large numbers of 
neural states across a multiplexed data link is demonstrated. 

Both networks comprise an array of synapses that imple-
ment the multiplication of an incoming pulse stream by a 
synaptic weight. Synaptic weights are stored dynamically as 
charge on a capacitor at each synaptic site and are refreshed 
from off-chip RAM. A neuron at the foot of each synaptic 
column converts the accumulated activity into an output pulse 
stream. Neither dynamic storage nor RAM backup memory 
is seen as a viable long-term solution to the synapse memory 
problem, and we are working towards alternative approaches, 
as indicated in Section IV. 

A. Pulse Strewn Synapse 1: Transconductance Multiplier Circuit 

The heart of this synapse design, shown in Fig. 1, is the 
ñuiltiplier formed by transistors Ml, M2, and M3. Transistors 
Ml and M2 output a current proportional to the weight 
voltage, T. which is then pulsed by the switch transistor, 
M3, controlled by the incoming neural state, Si. The resulting 
output current, integrated over a period of time, represents the 
multiplication of Tij by S. 

The operation of the multiplier can be explained with 
reference to the MOSFET transistor characteristic equations. 
The equation of interest here is that for the drain—source 
current, IDS' for a MOSFET in the linear or triode region: 

pCoxW[ 	 V5l 
IDS = L 

1(Vs - VT)VDS - 	
(1) 

Here, Cox  is the oxide capacitance/area, p the carrier mobility, 
W the transistor gate width, and L the transistor gate length. 

VGS, VT, and VDS are the transistor gate—source, threshold, 
and drain—source voltages respectively. 

This expression for IDS contains a useful product term 
(,.sC0 W)1(L) x VGS x VDS; however, it also contains two 
other unwanted terms in VDS x VT and V. To remove these 
nonlinear terms a second identical MOSFET, Ml, is employed, 
as shown in Fig. 1.Assuxning VDS1 = VDS2 the output current 

is defined by 

13 = IIC0x Wi- (VGS1 - VGS2)VDSI 	(2) 
L i  

where VGS2 represents the weight voltage and VGS1 represents 
the zero weight voltage. 
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Fig. 2. Pulse sueani synapse 1: amwoonductance muItipli. 

This is a fairly well known transcond,uctance multiplier 
circuit. It was reported initially for use in signal processing 
chips such as filters [11]. In our implementation we have used 
this circuit as a voltage-controlled current source by clamping 
VDS2 to a constant value; therefore 13 is linearly dependent 
on VGS2, which represents the synaptic weight. The output of 
the circuit M1IM2/M3 is therefore a stream of current pulses 
whose magnitude is proportional to T1 , and whose frequency 
is proportional to S3 . 

To minimize variations in performance of this circuit across 
chip, additional buffer transistors, M4 and M5, operating in 
their linear region have been added as shown in Fig. 2. The 
operational amplifier at the foot of each postsynaptic column 
provides a feedback signal, V01 , that controls the current 
in all the buffer stages in that column of synapses so that it 
balances the current being sourced or sunk by the multipliers. 
Thus the buffer stage plus the feedback operational amplifier 
is functionally equivalent to a standard operational amplifier 
current-to-voltage converter, where the resistor in the feedback 
loop has been replaced by transistor M4. Transistor M5 is 
controlled by reference voltage VBLEED and allows the buffer 
stage to both source and sink current. The value of VBLEED 

determines the voltage about which V0, varies. In order to 
achieve good matching, transistors M4 and M5 should be 
placed physically close to the multiplier transistors. 

An on-chip feedback loop incorporating a cransconductance 
multiplier with a reference zero weight voltage at the weight 
input is used to determine the value of Vsz automatically. This 
mechanism compensates for process variations between chips. 

The output voltage of the operational amplifier represents 
a "snapshot" of all the weights switched in at a particular 
moment in time. This output voltage is then integrated over 
time to form the neural activity. 

As shown in Fig. 3, which compares predesign simula-
tion results with postfabrical.ion measurements, the predicted 
results from SPICE simulations correspond closely to the 
measured results from fabricated circuits. These results also 
confirm the linear relationship between the synaptic weight 
voltage and the output voltage of the operational amplifier. 

Fig. 3. Pulse stream synapse: comparison of edesign SPICE simularion 
results with postfabrication measurennls. 

The output voltage of the operational amplifier is plotted 
against the weight voltage Tij with transistor M3 switched 
on. The maximum variation in operational amplifier output 
voltage over the linear weight range as a fraction of the 
total operational amplifier output range was found to be 6%. 
This result is very encouraging, and compares favorably with 
the 20% to 50% variation in performance quoted for simple 
current mirrors fabricated using the MOSIS digital process [1], 
[24], [25]. The synapse circuit occupies an area of 130 pm x 
165 pm including the weight storage capacitor and addressing 
Circuitry. The measurements were taken from a 10 x 10 array 
of synapses. 

Voltage Integrator Circuit 

As the output voltage of the operational amplifier represents 
a "snapshot" of all the weights switched in at a particular 
moment in time, the operational amplifier needs to be followed 
by a voltage integrator, to obtain the aggregated neural activity. 
This integrator is composed of a differential stage and cascode 
current mirrors (Fig. 4). The current 'EXT, through these 
current mirrors is determined off-chip to minimize the effects 
of process variation on the integrator's output current range. 
The output current from the integrator is directly proportional 
to the difference between the signals V,, ti and the reference 
voltage Voz. As the integrator capacitor has been implemented 
as an NMOS transistor, any variations in the gain of the 
differential stage are tracked by the variations th the integration 
capacitance. Thus the rate of change of voltage will remain 
the same over all process variations. The resultant integrator 
occupies an area of 165 pm x 200 pm. 

Pulse Stream Neuron 1: Voltage-Controlled Oscillator 

The neuron is a voltage-controlled oscillator (VCO) that 
fires out pulses of constant width at a period determined 
by its neural activity input. The output state of the neuron 
can therefore be described as a duty cycle, defined as the 
percentage of the period the neuron output is in a high state. 
The transfer characteristic of the neuron is such that the duty 
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A comparison of the simulated characteristic and the mea-
sured CharaCt.CI1SUC of three neuronS is shown in Fig. 6. The 
midpoint of the sigmoid characteristic has been set by the 

voltage Vmid. 
The mismatch between neuron characteristics is 

most pronounced at the extremes of the activity range. This 
is due to imprecise current mirroring. Variations of between 
10% and 15% in the performance of current mirrors across 

chip have been measured. 
The neuron circuit is small in area, occupying an area of 

only 165 pm x 165 pm. A significant cause for concern, that 
physicallY adjacent neurons might lock to each other because 
of mechanisms such as coupling through power supply rails, 
proved to be unfounded. This did not happen in practice, even 
when ideal conditions for lockup were created. 

voltage. 
A charge-Pump phase-locked loop [26] has been used to 

obtain an accurate phase relationship between an off-chip 

reference clock and an internal reference VCO. In practice the 
reference VCO is set for a duty cycle of 50% and the feedback 

technique sets Ih 
in Fig. 5, and hence the neuron output pulse 

width, to be identical to that of the reference clock. Current 

mirrors are then used to "copy" Ia for use in all other VCO's. 
It should be noted that while the off-chip reference clock and 
internal reference VCO are locked together, all other VCO's 
on chip are asynchronous to it and to each other. 

A simplified circuit diagram of the VCO is shown in Fig. 5. 
The space between pulses can be controlled by varying 

I,. 

In order to achieve the 0% to 50% duty cycle variation, It 

should vary between 0 and 'a• This has been achieved using 
a transconductance amplifier with a tail current 1h, whose 
transfer characteristic is naturally sigmoidal in character. This 
technique preserves the ratio between it and Ii despite varia-

tions in actual values arising from process variations. As a 
result, measured variations in duty cycle are less than the raw 
process variations across chip. By careful choice of transistor 
sizes in this stage, the resulting input voltage to duty cycle 

characteristic can be made sigmoidal. 

D. integrated Pulse Stream Network I 
The operation of a complete section of the network is 

illustrated in the oscilloscope photograph of Fig. 7. The top 
trace shows a pulse stream arriving at the synapse inputs. 
The synaptic weights have been set to be fully excitatorY. 
The integrator output, shown in the second trace, increases 

linearly with time. 
It is interesting to note at this stage that the "activity update 

process" associated with this form is distinct from that of other 
analog neural forms. Conventional networks express the neural 
activitY x, as the result of the following synaptic summation: 

x(i) = E T1S1(t)1. (3) 

In the pulse stream network presented here, the result of each 
pulse arriving is to either add or subtract a small package 
of charge to the integration capacitor, and thus increment or 

decrement z1
. The update process algorithm for the voltage z 

with respect to a single pulse is  therefore 

[jn-1 	 1 

x(t+ i) x 8 (t)+6 x 	
(4) 

1'=° 	i 

where 6 is controlled by the characteristics of the voltage 
integrator. As the integrator output, and therefore the neuron 
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Ftg. 7. Integrated pulse stream network 1; block diagram and ostnlloscope traces. Top trace: pulse stream arriving at synae inputs. Second trace: integratcE 
output rejxescnting neural activity increasing linearly with time. Third trace: neuron output switching on with increased activity. 

activity, increase, the neuron switches on, outputting a pulse 
stream shown in the third oscilloscope trace. 

The speed of operation of this network is limited by the 
performance of the operational amplifier used in the synapse 
feedback circuit. Owing to the limited bandwidth of the 
operational amplifier design employed here, the input pulse 
width has been limited to 1 p5. 

E. Self-Depleting Neural System 
The neuron underlying this system is the most biologically 

inspired of those we have developed. It effectively depletes 
its own reserves of activity after each pulse, in a manner 
analogous to its biological exemplar. This is intrinsically 
interesting, and results in an efficient and elegant neuron 
design. It also prepares the way for more direct use of phase 
information as discussed in subsection H-C, preserving as it 
does the time of occurrence of individual pulses, rather than 
integrating to extract only frequency information. Other groups 
[17] have investigated this technique more fully, driven by a 
stronger biological impetus. 

The neuron in this design integrates current and outputs a 
train of pulses of fixed pulse width, whose frequency depends 
on the magnitude of the input current. To first order at least, 
this is analogous to the process found in biological neurons. 
For each received impulse, the synapse either adds or subtracts 
packets of charge to an integration capacitor. Impulses arriving 
at synapses with an excitatory weight add charge, while those 
arriving at a synapse with an inhibitory weight remove charge. 
When enough charge has accumulated on the integration 
capacitor, the neuron fires, generating a single pulse of fixed 
width. The process of neuronal firing removes all charge stored 
on the integration capacitor (we refer to this process as self-
depletion). Therefore, in order for subsequent pulses to be 
generated by the neuron, further stimulus is required at the 
synapses feeding that neuron. 

The self-depleting property of the neuron has interesting 
consequences for network dynamics. The neuron has no long-
term memory of previous stimulation as this is effectively lost 
after each neural pulse. The update process for the activity 
voltage in (4) differs in that the term z 1 (t) is reset to zero 
after each neural pulse. 



IEEE TRANSACIIONS ON NEURAL NETWORKS. VOL 3, NO. 2, MAR04 1992 

-i--i vccS 

	

I SYNAPSE 	
S 

x i  
NTJ 	i 

J 	IPJ 

GND 

/ V ref 
Distributed neural 
activity discharge V ref 1 
circuitry NEURON 

Fig. 9. Integrated pulse sueam neswk 2: ccillosccpe usces. Tiç eace: 
pulse sweam arriving at synapse inputs. Seound uace: activity increasing as 
each pulse arrives. Third uace: neuron output pulses. 

across synapse sites. The remainder of the neuron circuit 
occupies an area of lOOpmx 140pm. 
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Fig. 8. Self-depleting network: synapse and neuron circuit details. 

Pulse Stream Synapse 2: Gated Current Source Circuit 

A schematic diagram of the synapse and neuron is shown 
in Fig. 8. The synaptic weight, T13 , stored dynamically as a 
voltage at each synapse, controls a voltage-controlled current 
source (VCCS). The current source comprises a transistor in 
its linear region, which has its drain—source current set by 
1,; this current is subsequently mirrored onto the output of 
the VCCS. A pulse, S, arriving at the synapse input gates 
this current onto the activity capacitor while simultaneously 
removing a fixed charge via a balance current. The result of 
this operation can yield either a net increase in charge on the 
activity capacitor (representing excitation) or a net decreased 
(representing inhibition). 

The synapse circuit occupies an area of 130 pm x 140 pm 
including the weight storage capacitor and addressing circuitry. 
The activity capacitor is distributed through a column of 
synapses, making the synapse design 100% cascadable. 

Pulse Stream Neuron 2: Set-Depleting Form 

Charge from the synapses flows onto the distributed activity 
capacitor, causing the activity voltage to rise. When the voltage 
reaches a reference level, lTref, the neuron fires a pulse and 
simultaneously discharges the activity capacitor to a second 
lower reference voltage, Vraf 1 (the neuron has depleted itself). 
The output pulse width from the neuron is determined by the 
rate of discharge of the activity capacitor. Further excitation 
causes the voltage on the activity capacitor to rise and produce 
a further pulse. 

In common with the synapse layout design and in order 
to ease cascadabiity, the self-depletion circuit is distributed 

Fig. 9 illustrates the operation of the self-depleting network 
in silicon. The top trace shows a pulse stream arriving at 
the input to an excitatory synapse. The secànd trace shows 
the activity increasing in steps as each pulse arrives. Activity 
increases until it reaches the triggering threshold of the neuron 
circuit and then an output pulse, shown in the lower trace, is 
produced. The process repeats for subsequent output pulses. 
While the input pulse width to this system has been set to 
1 ps, the system can be operated with pulse widths down to 
0.1 p5. 

The measured characteristics of the self-depleting network 
are compared against those obtained from SPICE simulations 
in Fig. 10. The relationship between the synaptic weight 
voltage and output neuron frequency for a fixed input is 
approximately linear over the required voltage range. 

I. A Novel, Self-Tuned Communications Scheme 

While analog techniques have facilitated compact and ac-
curate circuits for synapse and neuron, we use digital signals 
to communicate neural states around the chip. The robust 
nature of digital signals make them ideal for communicat-. 
ing neural information over chip boundaries. Clearly, if we 
wish to implement large neural systems on chip, then it 
is impractical to allocate a single pin to each neural input 
or output. Here we demonstrate a self-timed communication 
scheme that multiplexes neural state information onto or off 
chip asynchronously. - 

In pulse-stream neural systems the state of a neuron is en-
coded in its pulse firing rate. A "snapshot" of this information, 
however, is also contained in the space between individual 
pulses and it is this information that we use to communicate 
across chip boundaries. The use of an asynchronous handshake 
between the device transmitting neural states and the receiving 
device allows the communication to proceed as soon as 
possible, without resorting to the use of fixed time slots. 
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Fig. 11. Self-timed communications scheme: block diagram. 

The details of the communication scheme are shown in 
Fig. 11. Each neuron in turn has its state information encoded 
onto a single digital signal line as a pulse whose length 
represents the period between individual output pulses from 
the current neuron. A pair of handshake lines, referred to 
here as RU (request to transmit) and RTR (ready to receive), 
control the flow of data between the transmitting and receiving 
devices. In practice, algorithmic state machines have been used 
to implement these control functions. 

The operation of the data transfer mechanism is shown in 
parts (a) and (b) of Fig. 12, where the output of neuron 1 
is shown in the top trace, RU in the second, RTR in the 
third and the DATA signal in the final trace. In Fig. 12(a) 
both the transmitting and the receiving state machine are 
clocked at 2 M}(z and the data transfer for the neuron in 
question is completed in approximately 12 ps (for an example  

input duty cycle of approximately 15%). Fig. 12(b) shows 
the transmitting state machine communicating to an IBM PC, 
which is relatively slow, and the data transfer operation now 
takes approximately 45 js. Communication therefore proceeds 
at the speed of the slowest device, as in any self-timed system. 

The transmitter can send information to other chips, where 
the pulse width information is decoded and used to regenerate 
the original pulse stream signal. Since no addressing infor-
mation is sent with the data, the only provision for correct 
operation is that the transmitting device should have the same 
number of neurons transmitting information as the receiving 
device. The links between different devices are defined by 
direct hardware connections at board level. Thus different 
networks can be realized by using different interconnection 
strategies. As demonstrated in Fig. 12(b), the transmitter is 
also capable of transmitting information to a host computer 
via conventional parallel interface ports, using the same com-
munication circuitry and protocols as developed for interchip 
communication. 

IV. DISCUSSION 

This paper presents results from totally integrated pulse 
stream neural network chips. Novel analog circuit forms 
have been implemented on a digital process and their correct 
operation demonstrated. Our design methodology has actively 
reduced the effects of process variation that result in poor 
transistor matching, yielding more uniformly matched circuit 
elements. The small size of the circuit elements will allow 
large pulse stream chips to be fabricated. 

These achievements allow the implementation of large neu-
ral systems that require a multichip architecture, for example, 
multilayer networks with each layer mapped onto a separate 
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Fig. 12. Self-timed communications scheme: oscilloscope traces. Top trace: 
neuron output. Second trace: request to transmit (RTT). Third trace: ready to 
receive (RTR). Fourth trace: encoded DATA signal. (a) Transfer between two 
chips. (b) Transfer between chip and IBM PC. 

chip. To this end we have designed a large pulse stream 
demonstrator chip using the first of the two systems outlined 
in this paper. This consists of an array of 120 x 30 synapses 
with 30 on-chip neurons. This chip has been implemented 
using ES2's 1.5 pm CMOS digital process and occupies an 

area of 10 mm by 9.5 mm. The estimated worst-case power 
consumption for this device is 350 mW, which is well within 
the safe limits for a chip of this size. 

The intended applications for these chips are in the areas of 
pattern recognition and optimization. Over the last few years 
a number of other designs have been fabricated [27]-[29]. 
Indeed, pulse stream neural networks have been applied suc-
cessfully to the problem of robot localization (12], [30] as 
part of a real-time autonomous robot navigation system based 
on neural network modules where a small array of synapses 
were integrated onto a single chip. They also formed part of 
a simple isolated word-recognition module [30]. 

While pulse frequency modulation clearly has many ad-
vantages, other pulse signaling techniques can yield faster 
computation times. To this end, we are experimenting with 
pulse width modulation techniques. The problems associated 
with high transient power demand arising from the synchro-
nism of signal edges alluded to earlier have been addressed  

and solutions found. In these circuits the computation 
jn-1 

Tij 
j =0 

is calculated with every pulse. Also under investigation is 
a continuous time system based upon the transconductanCe 
multiplier principle outlined earlier. 

We have therefore demonstrated small, efficient synapse and 
neuron circuits and addressed the issues of process variations, 
cascadabiity, and intercommunication, all of vital importance 
to neural VLSI. In each of these areas we have made sig-
nificant advances toward generic solutions. In the area of 
weight storage and appropriate learning strategies for VLSI, 
however, there is still much to be done. We are developing a 
novel amorphous-silicon device for nonvolatile analog weight 
storage [31] and learning schemes amenable to VLSI on-chip 
implementation [32], [33]. In both areas, the advantages of 
pulse stream techniques are again becoming evident, and it is 
our intention to continue in this direction. 
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