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Abstract

The viability o f the campesino maize-cattle production system o f Central Mexico 

is under stress by the North American Free Trade Agreement policies. To survive 

Campesino farmers are developing alternative production systems and more efficient 

uses o f their land. The objective o f this work was “to develop a “Décision-Support 

System” (DSS) in order to support Campesino farmers in this process. Two 

biological models, one socio-economic model and a survey database on the target 

fanning system fonn the DSS. The CERES-Maize model simulated the yield 

response o f three local land-races o f maize to different management systems. The 

second biological model, a dynamic ‘hybrid model', which predicts potential intake, 

digestion and animal performance o f individual dairy cows, was used to simulate 

alternative feeding systems. A multi-period mathematical programming model 

integrated the outputs o f the previous models with the survey database. This model 

was used to find the optimal combination o f resources and technologies that 

maximised farmers’ income. This model consists o f 15,698 structural columns and 

612 rows. The DSS was successful in reproducing the functioning o f the main 

components o f the farming system. More importantly it simulated the complex 

interactions observed between the farmers and their crops and cattle, including 

traditional maize management practices. The model simulated the resulting effects of 

these practices on the feeding systems for cattle and on the household's labour 

demand. The DSS selected on a monthly basis the forage type, concentrate type and 

supplementation level fed to all classes o f cattle on the farm. Moreover, it was able to 

incorporate the seasonal effects on forage quality and availability.
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Chapter 1. Decision support for campesino maize-cattle production  

systems of the Toluca Valley.

1.1. Introduction

Mexico and its nearly one hundred million people, have an increasing demand for 

agricultural food products, which its agricultural sector has not been able to meet (de 

Janvry et al., 1995a; de Ita, 1997; Tanyeri and Rosson, 1997). Most o f the country’s 

food production, particularly maize, depends on the small smallholder or campesino 

farming sector (Warman and Montanez, 1982; SARH, 1993a). However, campesino- 

farming systems have experienced dramatic changes over the last twenty years 

(Segarra et al., 1992; de Janvry et al., 1995a), moreover M exico’s membership to the 

North American Free Trade Agreement (NAFTA) has meant more changes, which 

have lead the sector to a crisis (Pesado, 1993; de Ita, 1997).

Substantial changes were introduced as part o f the agreements signed by Mexico 

when joined the NAFTA, which implicated among other things two important 

changes to the agricultural and trade policies o f the country. First, all support or 

subsidies to maize production will be eliminated over a period o f fifteen years 

(Mexican government had traditionally subsidised and protected maize producers), 

and secondly, large quantities o f cheap maize could be imported from the USA as 

part o f an annual quota fixed in the agreement. Mexican imports o f maize have 

dramatically increased after M exico’s incorporation to the NAFTA in 1994 (Pesado, 

1993; de Ita, 1997).

To adapt to changes, campesino maize fanners are looking at different options or 

alternative systems o f production and better uses o f their land, which help them to 

adjust to new scenarios. There is also an urgent the need for scientists (in 

collaboration with fanners) to identify, and to develop viable technical options, 

which will serve an alternative systems o f production and land uses. Such systems 

should be based on in-depth understanding o f the local fanning systems, be aware o f

1



the potential o f local agroecosystems, the farmers' needs, and contribute to the 

solution o f farmers problems. Probably more importantly they should help farmers 

in the process o f decision making when deciding whether to adopt or reject a new 

technology. Mexican government and policy makers should also be provided with a 

decision support tool, which help them to predict the short and long term effects o f 

new policies for agriculture, on the regions land and resource use, but probably more 

importantly on the fanners’ economy and welfare.

To carry out experiments in research stations in order to test different technologies 

was a normal choice for many years. However, experience in many parts o f the 

world has shown that some technologies successfully developed at research stations 

have been either rejected for reasons that seemed irrational to the scientists, or have 

produced poor results on farmers’ holdings (Gryseels et al., 1986; Kishindo, 1988). 

Further, these research methods traditionally have excluded clients from formulating 

the problems and contributing to their solution. They are highly technical, based on a 

reductionist approach involving a limited set o f variables whose interrelationship are 

relatively easy to grasp, at least compared with the complexities faced by smallholder 

fanners. Conventional research methods are thus best applied to the conditions o f 

more privileged farmers, who like scientists, have the capacity to control the natural 

environment (Sims and Leonard, 1990). Most researchers involved in this form of 

agricultural research neglected to recognise that the traditional fanning systems used 

by smallholder and subsistence fanners are based in centuries o f experience (Kanwar 

et al., 1992). They were sceptic also about fanners’ knowledge and practices, 

however they had rarely investigated the reasons and the possible scientific basis of 

peasant practices (Sims and Leonard, 1990).

More recently the farming system research and extension approach (FSR/E) has 

provided a more holistic and participatory approach, which allows to examine in an 

integral way the biological, economic and social aspects o f a problem in agriculture 

(Hildebrand and Poey, 1985; Gryseels, et al., 1989; Doyle, 1990; Baker and Norman,

1990). The holistic approach o f FSR/E is stressed by Leaver (1994), who mentions 

that the nature o f FSR/E is both holistic and participatory. The holism includes the
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interactions between these aspects at household, farm and community levels. The 

participation involves working closely with farmers in identifying constraints and 

research priorities and when necessary implementing on-farm research together with 

the farmer. Understanding o f the needs and motivations o f the fanner is essential in 

this approach.

However, it is argued that the use o f experiments in research stations and under 

some circumstance on-farm research experiments may be very expensive and 

resource demanding, and it will be almost impossible to study a wide range o f 

management possibilities, within the time scale, and budget normally allocated to 

these experiments. This is the case in most Mexican agricultural research centres 

where the research budget is normally very limited. In addition, no assessment can 

readily be made o f how the technological package should be modified in different 

districts, or regions in response to different soils, and changing local climates (Dent 

and Thornton, 1988).

Simulation modelling, as part o f the systems approach, has some potential for 

overcoming such problems, and also in speeding the transition from the design stage 

to the testing stage and beyond, however they need to be incorporated into a holistic 

framework for effective decision- support purposes (Dent, et a i ,  1995). Moreover, 

Herrero et al., (1996a) mentioned that increasing economic and environmental 

pressure on production systems have created the need to re-evaluate current 

management practices and to study new alternatives to ensure their sustainability. As 

a consequence, the demand for decision support systems (DSS) based on 

mathematical models has increased in the past years. This is the case o f Mexico's 

campesino fanning systems where new technologies and land use strategies need to 

be developed and tested.

1.1.1. Decision support for campesino maize-cattle production systems

In recent years important progress has been achieved in modelling biological 

processes. In the case o f crop and livestock the nature o f the processes represented 

has led to the construction, at different levels o f aggregation, o f very similar models
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throughout the world, resulting sometimes in overlapping and duplication o f work in 

others. This overlapping has made model-building an expensive and time consuming 

activity because researchers often take on the enonnous task o f building new models 

rather than selecting and adapting the existing ones for their own purpose (Jones et 

al., 1997; Herrero, et al., 1997).

Tsuji et al., (1994), Stoorvogel, (1995), and Herrero, et al. (1997) pioneered the 

development o f decision support systems which integrate different simulation models 

in order to provide the decision maker with solutions to managerial problems for 

crop and pastoral ruminant production systems. Their work is inserted within a new 

approach in FSRE which attempts to address the problems associated with the 

traditional development and use o f simulation models, described by Dent, et al., 

(1994). This approach argues that the development o f models that represents 

individual units or processes within a defined system, such as the animal, the plant, 

growth etc., are useful by themselves, but normally fail to provide solutions to real 

problems. It is suggested that this failure was partly due to the lack o f consideration 

o f socio-economic aspects by these kind o f models. Therefore if  biophysical models 

are to have any impact in rural development situations they must linked to socio­

economic models in order to become holistic decision support system, which can 

represent the bio-physical and socio-economic aspects o f any given fanning system.

On the other hand, according to Jones et al., (1997) most farm-scale models 

(mathematical programming models) have been developed with a bias towards 

economics and limited consideration of the biophysical components o f the system. 

Few efforts have attempted to integrate biophysical models o f crop and animal 

production with economic and environmental considerations at a whole-farm scale.

Moreover, some o f the available models had have little application on real 

decision support and problem solving in smallholder and subsistence agriculture, 

even though their decision support ability was their main justification for their 

construction. Successful use and application o f models for development situations 

has also been limited and no clear evidence has been found linking models with 

improving o f farming systems or farmers livelihoods (Matthews, 1998-perssonal
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communication). Therefore there is the need to develop more effective and accurate 

DSS that can help to solve problems in the developing world agriculture. According 

to Fawcett et al., (1998) socio-economic models must be built so that key decisions 

are explicit and readily translatable into actions.

Smallholder production systems are highly complex, with hundred o f different 

activities interacting together to produce its current form, so to pretend to simulate 

them or to solve their problems using a single model or application is not possible, 

nor is it advisable to develop one for practical reasons. Therefore characterisation of 

the farming system followed by the identification o f the system's main components 

and "bottle necks" should be the first steps. Thus simulation o f these main 

components can be an adequate approach to simulate smallholder systems. 

Integration o f models may be a solution, where limitations o f some model may be 

compensated by others models, because each model has its merits and drawbacks 

with which users must cope and be aware. Moreover, extremely complex problems, 

which can not be handled by a single model, can be tackled by the integration 

procedure (Stoorvogel, 1995). This approach also permits a more accurate 

representation o f the different components o f a system, where technologies can be 

tested on individual components before being presented to a system model.

Model integration has also allowed us to pass from the traditional approach for the 

analysis and planning o f agricultural land use based on techniques for land 

evaluation proposed by FAO, or on farming systems analysis (Beets, 1990, Stomph 

et al., 1994), to a more holistic approach based on the development o f methodologies 

for the analysis o f land-use scenarios. The last defined as a set o f hypothesized 

changes in the socio-economic and/or bio-physical environment, where the analysis 

is focused on the possible effect o f these changes on crop, technology choice, or the 

whole fanning system including the resulting consequences for the environment. The 

different scenarios are normally analysed by an optimisation model, which is in most 

cases a linear programming model. (Stoorvogel, 1995; Fawcett et al., 1998).

DSS can be used for the analysis o f “what i f ’ questions o f agricultural policies, 

and economic incentives (e.g. what will happen when credit become available in a
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region) frequently asked by policy makers. They can also serve to answer a farm 

management question asked by a fanner concerned with sustaining an economically 

sound and environmentally safe agriculture, without the cost, the time, the risk o f 

failure, and in some cases the long tenn consequences, associated with the 

implementation o f an unsuccessful policy (Tsuji et al., 1994; Stoorvogel, 1995; 

Herrero, 1996a).

1.1.2. Factors limiting the use of models in developing countries

From what was said before it may seem clear that simulation models framed into a 

DSS could be a good option for the design o f new systems or as reliable decision 

support tool for resource limited situations. However, there are still some problems 

accompanying the use o f simulation models, particularly when they are applied to 

technology development for less developed regions in small experimental stations or 

research centres where resources are limited. For example, model calibration requires 

highly trained programmers/modellers using resources dedicated to the calibration 

and validation procedure if  it is to achieve accurate predictions and scientific 

validity. However, this may not necessarily result in a robust model appropriate for 

use in development situations (Mbabaliye and Wojtkowski, 1994; Gajendra et al., 

1994).

Moreover, biological models’ calibration often requires specially designed trials 

to test on-field or on-station model applicability. For large research stations, this may 

not represent a problem because most o f the data to calibrate and validate the model 

would have been collected already so that the cost o f making the model site 

operational compares favourably with the benefits received. For smaller research 

stations, where proportionally greater commitment of resources is needed, modelling 

may become a less favourable option (Mbabaliye and Wojtkowski, 1994).

The use o f survey data collected from fanners’ crop fields and from farmers’ 

socio-economic environment through direct observation and measurement may 

reduce some o f the problems associated with data needs for model calibration in 

small research stations. The use o f robust models developed for multi-site
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applicability, associated with a deep knowledge o f the target farming system, could 

also contribute to a more beneficial and relevant use o f simulation models under 

resource limited conditions. However, this has not been tested before and there may 

be a large number o f issues which have to be addressed.

It is in that sense that the main objective o f this work is to develop a “Décision- 

Support System” based on the integration o f three simulation models, with a detailed 

set o f survey data on the campesino maize-cattle production systems o f the Toluca 

Valley. It is intended that the DSS can be used to serve three broad areas. Firstly, to 

demonstrate the methodology used to calibrate and develop simulation models using 

survey data. Secondly, to illustrate the methodological approach used to integrate 

biological models to socio-economic models in order to develop a more holistic DSS. 

Finally to illustrate the use o f the DSS in identifying and testing different 

technologies and management strategies and in finding the optimal combination o f 

farm resources that maximises fanners' income.

The DSS has potential to be used to predict and evaluate the effect o f the 

macroeconomic policies on the microenvironment o f the campesino maize fanners, 

particularly those related with the NAFTA. However, this was not evaluated in this 

work.

1.2. Materials and methods

The methodology developed in this research comprised the following steps:

• Characterisation o f the Campesino maize-cattle production systems o f the Toluca 

Valley.

• Calibration o f the DSSAT v3 CERES-Maize model (Tsuji et al., 1994) and

simulation o f the campesino maize production systems.

• Calibration o f a Cow Model (Herrero, 1997) and simulation o f campesino cattle

feeding systems.
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• Construction o f a generic Integrated Farming System Model (IFSM) and 

simulation o f the dynamics o f the Campesino farming system.

• Simulation o f optimal combination o f farm resources and technologies that 

maximise farmers' income.

The method proposed for this work uses a Farming Systems Research (FSR) 

approach, particularly the formal approach o f the method proposed by Dent and 

Blackie (1979), Spedding (1988), McCown et al., (1994), Dent (1995), and Fawcett 

et al., (1998). This research proposal has two main components; one is concerned 

with the methodology for the characterisation o f the farming systems o f the study 

area. The second component refers to the development o f the decision support 

system itself. Figure 1-1 shows the general framework used in this work, the 

different elements that constitute the decision support system are summarised in this 

figure too.

The FSR method described by the above authors and used in this work, consist o f 

five phases or steps as follows: 1). Problem description and analysis, 2). Technology 

design and development, 3). Testing and verification, 4).Extension and 5). 

Monitoring, evaluation and feedback. For this particular work, only the first three 

steps o f the method were used, because steps four and five require more time and 

could be part o f a different work by themselves. Moreover the main objective o f this 

work was the development and testing o f a decision support system. The role o f 

models in this method is not clearly defined in the steps mentioned above. The 

reason for this is that models are not a step of the method, but a tool o f it, which 

allows one to carry out the technology design and development phase o f the method 

(Dent and Thornton, 1988; Dent, 1995).

The DSS developed here consists o f five sub-components shown in Figure 1-1, 

and described below:
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1.2.1. Static survey

The static survey characterised the farming systems prevailing in the study 

area. This survey provided quantitative and qualitative information on the 

biophysical and the socio-economic components o f the systems. The survey method 

consisted o f a static survey combined with some techniques o f the Rapid Rural 

Appraisal and Participatory Rural Appraisal methods (PRA). The static survey was 

based on some o f the methods proposed by Kalton (1983), Nichols (1991), and 

Quijandria (1994). The elements o f the Rapid Rural Appraisal method were taken 

from the methods proposed by Kumar (1993), Theis and Grady (1991), and The 

World Resources Institute (1990).

The survey was carried out in two communities where the fanning systems are 

considered to be representative o f the different farming systems that may be found in 

the Toluca Valley (Woodgate, 1997; Arriaga et al., 1997a,b; González, 1997; 

Castelán et al., 1997). Samples o f soil, maize, forages and concentrates were 

collected and analysed at the laboratory to obtain the necessary quantitative data 

(parameters) to calibrate the biological models. The collected data was stored in a 

database.

The fieldwork was based at the Centro de Investigación en Ciencias 

Agropecuarias known as CICA  (Research Centre in Agricultural Science) a small 

research centre part o f the Universidad Autónoma del Estado de México (UAEM). 

CICA is a multidisciplinary research centre dedicated to the study o f the Campesino 

farming systems o f the state o f Mexico (Rivera et al., 1997). Over the last ten years 

CICA has produced valuable information on the characteristics and problems of 

these fanning systems, which was very important in the development o f this work 

(the author is a member o f CICA's staff since 1993).

1.2.2. Case studies

Case studies were carried out in order to collect detailed data over a whole 

production cycle on farm management practices for maize and cattle, land use, 

resources allocation and maize and cattle growth and production perfonnance. Case
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studies were also be used to validate the models used and developed as part o f this 

work. The method proposed by Maxwell (1986) along with some elements o f the 

same method proposed by Casley and Lury (1987) and Farrington and Martin (1988) 

were used to conduct the case studies.

1.2.3. Modelling campesino maize production

The Ceres-Maize model originally developed by Jones et al., (1986a) and 

later improved and modified by the IBSNAT project (Ritchie and Crum, 1989; 

IBSNAT, 1990; Tsuji, et al., 1994) was used in this work. The IBSNAT CERES- 

Maize model allows the quantitative determination o f growth, development and yield 

o f maize (Ritchie et al., 1989; Tsuji et al., 1994). The growth o f the crop is 

simulated with a daily time step from sowing to maturity on the basis of 

physiological processes as determined by the crop’s response to soil and aerial 

environmental conditions (Singh et al., 1993; Jagtap et al., 1993). The model can 

also simulate the effects o f cultivar, planting date, planting density, N fertiliser dose, 

and irrigation on crop growth, development, and yield (Ritchie, 1986). For this 

particular work the CERES-maize model was used to simulate and identify 

respectively:

» Maize cultivation and production by campesino maize farmers from the Toluca 

Valley

• Alternative cultivation technologies based on different levels o f inputs use

• Generation o f maize production coefficients for the IFSM

• Identification o f new research areas for maize production as in the Toluca Valley.

1.2.4. Modelling dairy cattle performance

The cow model developed and validated by Herrero (1997) was used to simulate 

local and alternative feeding systems for cattle. The model is designed to predict 

potential intake, digestion and animal perfonnance o f individual ruminants, in this 

case dairy cows, consuming forages, grains and other supplements. The rationale
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behind the model is that a ruminant o f a given body size, in a known physiological 

state, and with a target production level, will have a potential forage intake 

determined by physical or metabolic constraints imposed both by plant and animal 

characteristics.

This model is largely based on the work o f Illius and Gordon (1991), Sniffen et al. 

(1992) (Cornell Net Carbohydrate and Protein System, CNCPS) and AFRC (1993), 

and was validated for milk production systems o f the highlands o f Costa Rica. The 

ability o f the model to simulate performance o f cattle eating diets o f relatively poor 

quality formed by a wide variety o f ingredients constituted a hard test for the 

reliability o f a model developed for cows eating better quality diets and under 

substantially better husbandry practices.

1.2.5. Integrated farming system model

A multi-period mathematical programming model was constructed; it integrated 

the outputs o f the previous models with the survey database. This model consists of 

15,884 structural columns and 602 rows. This model was used to

• Find the optimal combination o f resources and technologies that maximised

fanners’ income.

• Simulate the complex interactions observed between the farmers and their crops

and cattle, including traditional maize management practices.

• Simulate the resulting effects of these practices on the feeding systems for cattle 

and on the household's labour demand.

• Simulate seasonal effects on forage quality and availability.

• Identify options for improvement o f the current production systems (for maize

and cattle) within the existing framework

• Forecast the effects o f the introduction o f alternative management systems on the

farmers’ gross revenue.
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Figure 1-1. A decisión support for campesino maize-cattle production systems.
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•  Socio-economic aspects

MODELS' OUTPUT

Emulation of maize production at the Toluca 
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production technologies for a more 
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between the farmers and their crops- 
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•  Identifying options for improvement of the 
current production systems within the 
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•  Forecast the effects of the introduction of 
alternative management systems on the 
farmers gross revenue.

-►  Models’ validation
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Chapter 2. M exican agriculture and the Campesino farming systems 

of central Mexico

2.1. Mexico’s geographic location and population

Mexico forms part o f the northern American continent, the country’s territory lies 

between meridians 118°27’ W along the coast o f Baja California on the Pacific 

Coast, and 86°42’ W on the easternmost part, along the Caribbean Sea. Between 

parallels 32°43’06” N on the northern border with the United States (US) and 

14°32’27” N to the south on the border with Guatemala (INEGI, 1992). The 

country's area is 1 964, 381.7 km2. Mexico’s latitude and topography account for its 

highly varied range o f climates, which range from warm, with an annual mean 

temperature o f 26°C, to cold, with annual mean temperatures o f 10°C or less. Twenty 

three percent o f the territory has a wann-subhumid climate, 28% is dry, 21% very 

dry and 21% temperate subhumid (INEGI, 1992).

2.1.1. Population and total growth

According to the 1995 population census, the Mexican population reached a total 

o f 91.2 million inhabitants (INEGI, 1997). The annual demographic growth rate for 

the same year was 1.8%. In 1995 the population density was 46 people per square 

kilometre. Nevertheless, the population density in the 32 states o f the union varies 

considerably, ranging from under 15 inhabitants per lcm2 in the State o f Baja 

California Sur to high densities in the Federal District (Mexico City) and the State o f 

Mexico where there are 5,660 and 545 inhabitants per square km, respectively 

(INEGI, 1997). The uneven distribution o f the population has important 

consequences in terms o f living standards and poverty levels, since poverty is 

concentrated more in rural areas than in the cities. According to Hernandez (1992)
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76% of rural population is in poverty while only 49% of urban population is in the 

same situation.

2.1.2. Access to services

Electricity and running water: According to the 1995 census, 85.6% of the 

population have running water and 93.2% have electricity (INEGI, 1997).

Education: In 1995, 10.6% of the population over 15 years o f age was illiterate. Pre­

primary and primary concentrate the largest amount of the population enrolled in the 

education system, and only a small proportion have access to higher levels o f  

education such as high school or university as shown in Figure 2-1.

Health care: In 1996, Mexico had 122.5 doctors per 100,000 inhabitants and 73.0 

hospital beds per 100,000 inhabitants (INEGI, 1997).

2.1.3. Economy

Mexico’s gross domestic product (GDP) amounted to 402,541 million dollars in 

1997, making it the 11th largest economy world-wide (INEGI-Web page). The share 

of GDP per economic sector is shown in Figure 2-2, manufacturing accounts 76.5% 

of the industrial sector, while 32.2% of the services sector is constituted by
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commerce and the tourism industry. Agriculture contributes with 6% o f the GDP 

only.

Figure 2-2. Economic sector’s share of the Mexican GDP

According to the 1995 census, Mexico’s economically active population 

amounted to 54.9% of total working age population o f 65, 302, 763.

2.2. The Mexican agricultural sector and its policies-An overview

Much o f the present state o f Mexican agriculture is largely the result of the 

turbulent changes that occurred in the country after the 1910 peasant-led revolution. 

Before the revolution most o f the country’s land was concentrated in large states 

called Haciendas owned by few wealthy families and commercial enterprises 

(Liendo, 1997; Krauze, 1997). The majority of the rural inhabitants were landless 

and lived in the haciendas working for the hacendados (landlords), in semi-slavery 

conditions.

The hacienda's production systems were market oriented, with large-scale 

operation levels and strong links with the capital operators and international markets. 

As reported by Sanderson (1986), agriculture was the backbone o f economic life in 

Mexico for much o f the last century and during the Porfiriato (the dictatorial period 

before the Revolution), when agricultural capitalism blossomed in certain export 

enclaves, and the value o f exports boomed. Agricultural exports represented almost
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half o f total export value; a striking proportion, given the contemporaneous 

resurgence o f mining.

The revolution and the agrarian reform that followed changed the status quo. The 

Haciendas were destroyed and the land distributed among the peasant communities. 

Two new forms o f land tenure and production systems emerged as a result o f this 

process, the ejido and the pequeña propiedad  (private property). The first form 

created village groups called ejidos with usufruct rights to land. Farmers who 

received land through this form are called ejidatarios and constitute the majority o f 

Mexican farmers; they also occupy most o f the agricultural land o f the country. In 

fact, it was through the ejido that the land, which had been appropriated by the large 

haciendas, returned to the peasant communities (World Bank, 1975; Liendo, 1997). 

However, until recently, the government had retained title to this land, so the wealthy 

could not regain control o f it and the fanners could not sell it.

Most o f the ejidos were fonned in the late 1930s and have been operated on an 

individual rather than collective basis. The second fonn o f land tenure is based on 

private rights; but the maximum size of the holding was reduced significantly to 

avoid the fonnation o f new haciendas. The production systems practised by the 

pequeños propietarios (private owners o f land) are in general more commercial and 

market oriented than the ejidatarios’ production systems.

2.2.1. Importance of agriculture and its contribution to the economy

The importance o f agriculture in the Mexican society has changed over the time 

from an important position to a less relevant one. Its importance can be evaluated in 

relation to its contribution to the nation’s GDP and the number o f persons employed 

in this sector over the last twenty years. The contribution o f agriculture to the GDP 

has followed a declining trend since the early seventies, for example in the period of 

1970 to 1976 it contributed with 11.5%, in 1990 with 8.9% and in 1991 with 7.5% of 

the GDP, see Table 2-1 (de Janvry et al., 1995a). More recent figures indicate that in 

1996 it contributed with only 6.0% to the GDP (INEGI, 1997).
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However, consideration must be given to the possible bias o f these figures, since 

30% o f the economically active population are employed by the agricultural sector, 

evidencing the importance o f agriculture as an important source o f occupation for the 

rural population (Levy, 1991). The small contribution o f agriculture to the GDP and 

the large proportion o f the population employed in this sector reveal a low 

productivity and probably increased poverty levels among Mexican farmers. In 1989, 

the average annual income in rural areas was only 26% o f that in the urban centres 

(INEGI, 1994a, de Janvry, et al., 1995a).

The proportion o f the population employed in agriculture has also declined, by 

nearly 40% over the last twenty years. This drop is explained by the increased 

migration from the countryside to the urban centres in order to support M exico’s 

industrial conversion in the early seventies. In the following decade, the economic 

crisis explains much o f the emigration to urban centres and to the United States and 

the consequent decline in the number o f people employed in agriculture (de Janvry et 

al., 1995a) (Table 2-1). Nevertheless, agriculture still employs an important segment 

o f M exico’s population, even though it is not the most dynamic sector o f the 

economy.

The growth o f the agricultural sector has not been constant, but quite variable too. 

Between 1945 and 1965 it grew at a rate o f 5.3% per year; in the period o f 1966 to 

1976 the growth decreased to 2% per year; 4% annual rate o f growth was observed in 

the period o f 1977-1981, followed by a drop to 1.7% in 1982-1985. Finally, a 

dramatic fall was observed after 1985, as shown in Table 2-1, when the effects o f the 

country’s economic crisis (motivated by a drop o f international oil prices in the early 

eighties) were felt in the agricultural sector too (de Janvry et a i ,  1995a, INEGI, 

1994b). The 4% expansion observed in the period of 1977-1981 was linked to the 

implementation o f a national programme whose main goal was to attain food 

production self-sufficiency. Under this programme, called Sistema Alimentario 

Mexicano (SAM), massive amounts o f subsidised inputs and credits were directed 

towards the farming sector. In contrast, the decline o f the positive growth observed in 

that period is associated with a reduction in the level o f subsidies observed during the
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second half o f the eighties (1982-85) in the first instance, and to changes in the 

policies for the sector more recently (de Janvry et al., 1995b; de Janvry et al., 

1995a).

Table 2-1. Performance of the agricultural sector (average values for three periods and 
values for 1986 and 1990).

1970-76 1977-81 1982-85 1986 1990
Agriculture participation in %
GDP 11.5 9.3 8.2 8.5 8.9
Employment 32.2 28.2 27.4 27.5 27.6
Economically active population 39.4 28.8 20.5
Rural population 38.7 34.3 31.4 28.9 28.0

Mean annual growth rate in %
Total GDP 6.3 8.4 0.2 1.5 1.5
Agriculture 2.6 4.4 1.7 -1.5 -1.5

Cereals production 1.8 5.0 1.9 -2.0 *

Livestock production 3.6 2.8 1.6 -1.6 *

Taken from de Janvry et al., (1995a) * Data not available

2.2.2. Government policies for the agricultural sector-An overview of the last 

twenty years.

Before 1981, agricultural policies were committed to the provision o f most o f the 

sector’s capital needs to carry out its production activities. The expansion observed 

in the sector between 1977 and 1981 was due to important flow o f subsidies, credits 

and extension services financed mostly by the country’s high revenues from oil 

exports. This pattern was observed throughout the seventies and early eighties. A key 

element o f the government support programme for agriculture was the guarantee 

price policy for cereals, operated by the CONASUPO (the national basic food 

company) (de Janvry et al., 1995a and b).

Through this program, domestic producer prices were kept stable and usually 

higher than the international prices, while the consumer prices were held down and 

closer to the border price in order to provide cheap food supply to the urban 

population. Thus, while the international cereal prices consistently dropped from 

1965 to 1985 (except during 1973-1975 due to the world food crisis) at an annual 

rate o f 1.7%, 3.1%, 1.5% and 1% for maize, sorghum, soya, and wheat respectively,
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local prices remained unchanged (de Janvry et al., 1995a). In other words, the 

Mexican price policy for cereals effectively isolated the local cereals market from a 

declining and volatile external market; this was particularly the case o f maize and 

beans. For example from 1977 to 1987 the price o f maize was maintained constant, 

while the international price fell dramatically. At the end o f this period maize had a 

nominal rate o f protection o f 64% (de Janvry et al., 1995b).

Another important element o f the government’s policy was the significant 

increment o f the irrigated area. From 1945 to 1985 the irrigated area rose from 1.1 to

5.3 million hectares (30% of the cultivable area) (SARH, 1993b). Access to credits 

also increased, particularly from 1977 to 1981, when a 15% annual increment was 

registered, although such increment was followed by a significant decline after 1982. 

Moreover, until 1988 the government banks provided 50% of all credits for 

agriculture at a reduced interest rate (23% less than the commercial banks). It is 

estimated that the total value o f the subsidised credits provided by the government in 

1986 was equivalent to the 0.54% of the GDP. Despite low interest rates the 

proportion o f fanners who failed to repay their debts was high, 45% in 1987 and 

65% in 1988 (de Janvry et al., 1995a).

Probably the most notable government intervention in terms o f subsidised inputs 

was with chemical fertiliser. It is estimated that at the end o f the eighties, chemical 

fertilisers were used in 89% of the irrigated and 49% o f the rainfed land. The 

distribution o f fertilisers was monopolised by the state owned enterprise 

FERTIMEX, who distributed heavily subsidised fertilizer. Thus, in 1986 the prices 

o f nitrogen and phosphorous were 50% cheaper than the international price for these 

products. The cost o f the subsidised fertiliser reached 0.2% of the GDP the same year 

(de Janvry et al., 1995a). The economic crisis suffered by Mexico in the early 

eighties caused a reduction in most o f the subsidies and support programmes for the 

agricultural sector. The reduction in subsidies was followed by bold reforms initiated 

by Mexico in the late eighties, on many different fronts that had important effects on 

the social sector and particularly among maize producers.
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According to de Janvry et al., (1995b) these reforms included gradual 

privatisation o f land in the social sector, restructuring and privatisation o f the state 

apparatus that was used to channel massive subsidies to agriculture; extensive 

reorganisation o f the financial sector with re-privatisation o f commercial banks, 

elimination o f credit subsidies, elimination o f CONASUPO’s monopoly over the 

marketing o f the basic foods. It is estimated that the sum o f all the government 

support to the sector was reduced by 76% in real terms between 1982 and 1987 (de 

Janvry et al., 1995a). These refonns were followed by more radical changes related 

to M exico’s trade liberalisation program and the North American free trade 

agreement (NAFTA).

Thus, during the second half o f the eighties agricultural production entered into a 

crisis, which had not an internal origin but was the reflection o f that suffered by the 

system that had supported its development during the last two decades but was not 

able to maintain the subsidies system indefinitely. However, the guarantee price 

program and some subsidies were maintained for maize production due to its 

strategic importance for the country. In 1991, the nominal rate o f protection was 77% 

and the producer subsidy equivalent (PSE), measured in percent o f the value o f 

production, was 44% (SARH, 1993b). This amounted to a PSE o f US$ 92 per ton for 

white maize and US$71 for yellow maize, compared to US$28 in the United States 

and US$21 in Canada (de Janvry et al., 1995b)

2.2.3. The crisis in Mexican agriculture

Mexican agriculture has suffered the effects o f a prolonged economic crisis, 

which started when Mexico, as well as other Latin American countries, struggled 

during the 1980s with gross national product declining after 1981 and falling a 

massive 10 % in 1986. A large public deficit, together with declining oil prices, 

lower export revenues and lack o f foreign financing lead to a triple digit inflation and 

drastically declining real incomes (Segarra, et al. 1992; Angel et al., 1992). Both, the 

commercial and highly intensive and the less intensive agricultural sectors of 

Mexico, felt the negative effects of a crisis which began seventeen years ago and 

persist to the present day. Some of the most important Mexican agricultural
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enterprises disappeared. This scenario is particularly evident in the case o f the 

intensive dairy industry that suffer a decrease o f approximately 25% in the number o f 

heads o f cattle in the period o f 1987 to 1989 only (Manrrubio and Pius, 1991; 

Simpson and Conrad, 1993, García, 1996).

The problems suffered by the cereal production sector and its trade deficit (1 US$ 

billion in 1990) attracted much o f the government’s attention, but hid the problems 

that affected the livestock and particularly the dairy sector. Milk and dairy products 

have registered an increasing demand over the last ten years, which the national 

industry has not been able to cover. This deficit was covered by large imports (see 

Figure 2-3), and by 1990 the trade deficit for these products was o f US $692 million, 

quite similar to that o f maize (de Janvry et al., 1995a). Since then, Mexico has 

become the one o f the world’s largest importers o f dairy products and the world’s 

largest importer o f non-fat dry milk. In 1993, milk and dairy products as a group 

were the principal food imports with a volume o f 445 000 t and a value o f US$626 

million (García, 1996; Tanyeri and Rosson, 1997) (Figure 2-3).

Figure 2-3. Mexican imports of non-fat dry milk.

□  dry milk imports
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The effects o f the crisis were felt in a differential way, being the intensive 

production systems the most affected because o f their high dependency on imported 

inputs, which are more expensive to buy due to the continuous devaluation o f the 

Mexican peso. Campesino farmers were less affected and have been able to survive 

the complex socio-economic and highly risky environment in which their production 

systems are inserted. The survival o f the campesino farming systems can be 

attributed to the high level of integration observed between the crop and cattle 

production activities and an efficient use o f the locally available resources, which 

made them less dependent on external inputs and a more sustainable form of 

production. Indeed the majority o f M exico’s campesino farming systems are in fact, 

mixed crop-livestock production systems, where livestock, particularly cattle, play 

a key role in the maintenance and reproduction o f the systems (Castelán et al., 1997; 

Arriaga et al., 1997a; Zorrilla et al., 1997).

This integration is clearly observed in the campesino maize-cattle production 

systems of central Mexico, where maize production provides most o f the forage and 

grain needs for cattle feeding, while cattle supplies large quantities o f manure which 

is highly appreciated as fertiliser for maize production. Cattle also play both the role 

o f saving capital (used for the financing o f agricultural activities) and a constant 

source o f cash flow through the sale o f milk (Castelán et al, 1997; Arriaga et al., 

1997a). Cattle production is also an important source o f employment for the 

campesinos and their families, thus reducing emigration to urban centres (Castelán 

and Matthewman, 1996; Arriaga et al., 1997a; Castelán, et.al. 1997).

2.2.4. The importance of maize production in the Mexican agriculture

Mexico has a total o f 20 million ha o f arable land, o f these approximately 6 

million are irrigated (INEGI, 1994b). Approximately 50% of M exico’s arable land is 

cultivated with maize (Zea mays), a crop o f extraordinary social importance and the 

basis o f the Mexican diet (Reyes, 1990; INEGI, 1994a). In rural areas maize is the 

main food consumed by fanners; in urban areas is the main input into tortillas, a key 

component o f urban worker’s diets. Moreover, it is estimated that maize cultivation 

employs one out o f three rural workers (Levy and Van Wijnbergen, 1992).
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Most o f the maize is produced in the states o f Jalisco, Mexico, Chiapas, Puebla 

and Veracruz, in order o f importance. Other crops, which also occupy an important 

proportion o f the arable land in Mexico, include wheat, beans, sorghum, and soya, 

the area dedicated to each crop is illustrated in Table 2-2.

Table 2-2. Planted area and yields of the most important crops in Mexico.

Crop 1988 1989 1990 1991 1992 1993
Maize
Cultivated area (m of ha) 6.5 6.4 7.3 6.9 7.2 7.4
Production (m of t) 10.6 10.9 14.6 14.2 16.9 18.0
Wheat
Cultivated area (m of ha) 0.91 1.1 0.93 0.93 0.91 0.87
Production (m of t) 3.6 4.3 3.9 4.0 3.6 3.5
Soya
Cultivated area (m of ha) 0.13 0.49 0.28 0.34 0.32 0.23
Production (m of t) 0.22 0.99 0.57 0.72 0.60 0.5
Sorghum
Cultivated area (m of ha) 1.8 1.5 1.8 1.3 1.3 0.87
Production (m of t) 5.8 4.8 5.97 4.3 5.3 2.6
Beans
Cultivated area (m of ha) 1.9 1.3 2.1 1.9 1.3 1.8
Production (m of t) 0.85 0.585 0.61 1.37 0.71 1.2

Source:INEGI (1994b) El sector alim entario en México. Com isión Nacional de Alimentación. México.

According to González (1997) about 75% of the Mexican population obtain most 

o f their energy requirements from maize, the per capita consumption o f maize is four 

times bigger than that o f the beans, ten times more than wheat, 22 times more than 

rice and fifty times more than beef. The national consumption o f maize is also higher 

than those o f any other crops, as shown in Figure 2-4. The second most important 

crop cereal in terms o f its national consumption is wheat, but still its consumption is 

two to three times below maize, beans is the third most important crop. The 

consumption o f maize has increased over the past six years in approximately 8 

million tonnes, 33% more than the 1991 level (see Figure 2-5). The increased 

consumption is probably a response to the population growth, the increasing use o f 

the grain as animal feed and the industrialisation o f the crop into different products.

Despite the importance of maize, and the efforts o f the Mexican government to 

increase production, Mexico is not self sufficient in maize production (de Janvry et 

al, 1995a; Enciso, 1999). The national consumption o f the crop has increased over 

the past years, while the production has not increased in similar proportion to cover
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the demand; this fact is illustrated in Figure 2-5. The gap between production and 

consumption has increased from nearly zero in 1993 to more than five million tonnes 

in 1996, accentuating the food dependency problem of Mexico on a key staple food 

product (INEGI, 1994).

Figure 2-4. National annual consumption of maize and other crops (in millions of t)
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Figure 2-5. Annual production vs. consumption of maize in Mexico (in million of t)
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In 1988, 6.5 million hectares were cultivated with maize, with a total production 

of over 10.6 million tonnes. Eight years later this area increased in 1.5 million ha and 

the production level rose to 17.9 million tonnes. Both the area cultivated with maize 

and the yield levels registered a modest increment over the last five years, maize 

yield per ha rose from 1.6 t/ha in 1988, to almost 2.5 t/ha in 1996 (INEGI, 1996) 

(Figure 2-6). The increments in the amount o f land dedicated to maize and the 

production levels o f the grain contrast with the national demand for the crop (Figure 

2-5). The deficit between the production and consumption has been covered by 

massive imports o f maize, mainly from the United States (de Ita, 1997). This has had 

serious implications on the local maize producing systems as will be discussed later 

in this chapter.

Figure 2-6. Amount of land planted with maize and its production levels

2.2.4.1. The role of campesino farmers in maize and milk production

Campesino farmers represent 80% of Mexican farmers (FIRA, 1990, SARH, 

1993a) and produce most o f the food consumed in the country, particularly maize 

(Warman and Montañez, 1982). According to de Janvry et al., (1995b) in 1991 there
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were 2.4 million maize producers, representing 78% of Mexican farmers and some

12.5 million family members. O f these producers, 2.2 million has less than 5 ha 

planted in maize and the average maize area per producer was only 2.3 ha (SARH,

1991).

The majority o f campesinos’ land is under the ejido regime, according to the 1981 

agricultural census, 52% of M exico’s arable land and 50% of its irrigated area are in 

the ejido sector (de Janvry et al, 1995b). The ejido sector is, however m ainly  

endowed with rainfed land, much o f which is o f poor quality, and the land is highly 

fragmented (de Janvry et al., 1995b). Moreover, 64% of the ejidatarios have farms 

less than 5 ha, which may be insufficient to maintain a family. This implies extensive 

participation by family members in the labour market and in seasonal migration 

(Levy and Van Wijnbergen, 1994). Only 9% have fanns larger than 20 ha 

constituting a small sector of commercial farms. Despite the difficult conditions o f 

the campesino fanners they produce 73% of the national maize output (de Janvry et 

al., 1995b).

Campesino farming systems also supply an important proportion o f the milk and 

beef produced in Mexico. In 1990, the campesino farming systems o f central Mexico 

produced 45% o f all the milk and owned 25% of the national dairy herd (SARH, 

1993a, FIRA, 1990, García, 1996). Despite the clear importance o f the campesino 

production systems, local researchers had until recently placed little attention on the 

problems and constraints that affect campesino systems and concentrated their efforts 

on richer farmers (Arriaga et al., 1997b; Castelan et al., 1997).

This situation had not been seriously considered because o f the government 

subsidies and protection to maize producers. However, a major policy initiative was 

implemented in 1994 with the launch o f a new programme called PROCAMPO, 

which meant substantially less benefits for fanners compared with the previous 

programmes. This change in the agricultural policy was introduced as part o f the 

agreements signed by Mexico when joined the North American Free Trade 

Agreement (NAFTA). This implied two important changes to the agricultural and 

trade policies o f the country. First, all support or subsidies to maize production will
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be eliminated over a period o f fifteen years (including PROCAMPO), and second, 

large quantities o f cheap maize could be imported from the USA as part o f an annual 

quota fixed in the agreement. On the other hand, with the new programme the 

subsidy for maize production was paid per ha o f land cultivated with maize whilst 

with the old programmes the subsidy was paid per ton o f maize produced. Farmers 

estimated that with PROCAMPO they receive approximately 50% less subsidy than 

with the old programmes.

Mexican imports o f maize have dramatically increased after Mexico’s 

incorporation to the NAFTA in 1994 (Figure 2-7). In 1996 Mexico should allow the 

entrance o f up to 2 652 250 ton o f maize in order to cover the deficit in this crop, but 

by the end o f the same year, 6 966 681 t were imported mainly from the USA  

(Pesado, 1993; de Ita, 1997). This was aggravated by the fact that the imported maize 

was cheaper than the local and so was creating a dumping effect on local maize 

markets and drop in the local price o f maize (de Ita, 1997).

Figure 2-7. Mexican imports of maize since 1993 (in million of tonnes)
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The application o f the new policies has already shown negative effects on the 

local maize market. Lehman and Ritchie (1997) mentioned that the Mexican
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government has destroyed domestic markets for Mexican maize fanners by choosing 

to import maize under export subsidies from the U.S., instead o f supporting Mexican 

production systems, de Ita (1997) stated that in 1996 the free trade agreement 

reached campesino fanners, who were launched into the world agricultural market 

without any comparative advantage, and with low government support, so they saw 

their price expectancies tackled by an unfair competition stimulated by maize 

imports, de Janvry et a i ,  (1995b) mentioned that Mexican maize producers would 

suffer the greatest losses due to more sizeable substitution rates to the US maize. 

Calva (1991) stated that in a country with over 2.4 million maize producers it should 

be expected social and economic disruption o f considerable proportions.

On the other hand, de Janvry et al., (1995b) mentioned that the effect o f the new 

policies will be mainly limited to campesinos who are net maize sellers 

(approximately 50% o f all maize fanners) and benefit those who are buyers, because 

in principle, nonsellers households would not be directly affected by a fall in the sale 

price o f maize and net buyers would benefit from a drop in the local price o f maize. 

Moreover, according to Levy and van Wijnbergen (1992) setting the price o f maize 

in rural Mexico above the world price is inefficient and likely to have negative 

distributional effects because many subsistence producers, and all landless workers, 

are net buyers; in fact it screen out the relative poor rather than the reltive rich. 

However, there may be negative indirect effects on their welfare if  employment 

opportunities in the maize sector and rural wages fall, where a large number of 

landless workers and smallholder fanners are employed.

2.2.5. Future perspectives for the campesino maize production systems

Most analysts predicted that Mexican maize production will be undercut by 

cheaper imports from the US and that dislocation o f small maize producers is likely 

to be severe (Levi and Van Wijnbergen, 1992). Important price reductions have been 

observed, in 1996 the price o f maize was between M x$l 750 and 2000 per t, but in 

1997 the price had fallen to M x$l,200-1,270 per t o f maize (de Ita, 1997). Calva

(1991) asserted that 15 million family members would be displaced from agriculture 

as a resulted o f the NAFTA. Koechlin and Larudee (1992) estimated a decline in
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Mexican agricultural employment o f up to 1.6 million. Levy and Van Wijnbergen

(1992) are more conservative in their calculations, but still predict the displacement 

o f 0.7 to 0.8 million workers as a consequence o f a fall in the price o f maize.

The Mexican government expected that increased employment in labour intensive 

fruit and vegetable production will offset much o f the job losses in the maize sector. 

However, according to Rodriguez (1999), the export-oriented commercial farming 

sector is not linked to the rest o f the agricultural sector, nor to the local and regional 

economies. Moreover, only 10% o f the production units have access to the export 

market, and 1% o f these concentrates more than 80% of the total exports. Therefore, 

although it is expected that the fruit and vegetable production may absorb some of 

the surplus labour, the theory that it will entirely solve the problem o f displacement 

must be discounted.

The integration o f maize and cattle observed in the campesino production systems 

o f central Mexico is an option that has received little consideration for the 

improvement o f these systems, and yet the possibilities o f improvement are 

important for both maize and cattle (Castelán et cil., 1997; Arriaga et al., 1997a; 

González, 1997). Improving the contribution o f cattle to the livelihoods o f campesino 

fanners and making maize production more efficient represent a more realistic 

solution to secure the future prosperity o f maize growing communities in rural 

Mexico. A more efficient maize production means more forage available for cattle 

production, and more grain for family consumption and for selling. As mentioned 

previously, yields under rainfed conditions are half o f those under irrigation, so 

increasing the irrigated area could be a viable option. The identification o f the areas 

most suitable for this crop, the use o f better cultivation systems and more efficient 

use o f agrochemical inputs should lead to increased maize production (González, 

1997).

Increasing milk production could also represent a viable option to reduce the 

negative effects o f the government policies linked to the NAFTA (provided that 

appropriate marketing mechanisms are developed). It also offer the possibility of 

increasing the living standards o f the campesino fanners and their families, through a
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higher income generated by the extra milk produced, which can be easily sold due to 

the high demand o f the product. Increasing milk production will also contribute to 

reduce the high poverty levels observed in this sector already (Castelan and 

Matthewman, 1996; Castelán et al., 1997; Arriaga et al., 1997a; Zorrilla et al., 1997; 

Tzintzun et al., 1997; Garcia, 1997).

Increasing milk production also offers the possibility to improve occupation levels 

among the rural communities, reducing the emigration to the urban centres. 

However, milk production in campesino farming systems is not efficient and the 

production levels are low. Low production is mainly associated with deficient 

nutrition o f cattle (Castelán, 1996; Arriaga et al., 1997a and b). Improving the 

nutritional status o f the campesino farmer’s dairy cattle should lead to higher milk 

yields.
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Chapter 3. Characterisation of the Campesino farming systems of 

the Toluca Valley

3.1. Introduction

The main objective o f this phase was to obtain detailed information on the 

characteristics and functioning o f the Campesino maize-cattle farming systems o f the 

Toluca Valley through a two stage survey in order to meet two important points. 

First, to generate the 'minimum data set' necessary to calibrate the biological models 

and to develop the integrated farming system model (IFSM) used in this work. 

Second, to improve the current knowledge on the systems and their problems in order 

to develop more adequate decision support tools. This included data on the region’s 

natural resources, climate, soil, cropping and livestock production technologies as 

well as the socio-economic characteristics o f farmers. Data from previous surveys 

carried out in the same area by the author (Castelán, 1996; Castelán et al., 1997) and 

by other CICA’s researchers (González and Arriaga, 1996; Arriaga, et al., 1997a; 

Arriaga et al., 1997b; González, 1997; Vizcarra, 1997; Woodgate, 1997; Sánchez, 

1997; Liendo, 1997) complemented the data obtained in the survey.

In fact these data constituted a valuable source o f information because CICA's 

researchers have been working in the Toluca Valley and its highlands for more than 

ten years. Research carried out by these authors included the use farming systems 

research and participatory rural research approaches. The research areas include: 

characterisation o f the campesino fanning systems, genetic improvement o f maize, 

design o f alternative technologies to increase milk production, land use and land 

refotm studies, gender distribution o f labour in the campesino families and the role of 

women in the local farming system, and marketing studies (Rivera et al., 1997).

Thus description and understanding o f the farming system, was the first step in 

the decision support system construction process, since it was entirely based on this
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characterisation. It is suggested that no farm model construction is feasible without a 

good knowledge o f the farming system in practice; otherwise many assumptions will 

have to be made, which may not resemble the actual processes that take place in the 

fanners’ fields. The approach used here integrates some o f the work carried out at 

CICA into a more complete research tool that could be used for both identifying new 

research areas and supporting fanners’ decision making. This approach could be 

applicable to other research groups working with similar fanning systems.

The method used to characterise the systems comprised the use o f both formal and 

informal survey techniques described in the section that follows.

3.2. A framework for the characterisation of the Toluca Valley farming 

systems

The survey work was canied out over a period o f 16 months, which was 

considered the minimum time necessary to capture the whole production cycle at the 

Toluca Valley. It was essential to monitor the whole cycle, because most o f the 

systems' activities follow a seasonal pattern determined by the dry (7 months) and 

wet (5 months) seasons, which in turn determine maize production, the main 

agricultural activity in the Valley. The integrated fanning system model described in 

Chapters 7 and 8, which is the final aim o f this work, attempts to emulate this cycle.

3.2.1. Survey methods

A two tiered technique was used to characterise the production systems o f the 

study area. It comprised a Static Survey (SS) followed by selection and monitoring o f 

Case Studies (CS).

Static survey: The SS was earned out by the approaches for static surveys proposed 

by Kalton (1983) and Nichols (1991) and Quijandria (1994), which consist in the 

application o f a formal questionnaire to a random sample o f fanners. The 

questionnaire comprised 154 questions that covered most aspects o f the farming
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system from socio-economic aspects to crop and cattle production technologies. 

These questions are synthesised in the following list.

a). Definition of the boundaries of the system

• total farm area
• topography
• soil type
• number o f plots and location
• other farm assets

b). Determination of system’s components

• area in each component (subsystem) and physical location
• type o f crops and animals
• technologies employed and yields
• inputs and economic requirements
• evaluation over time o f each o f the productive activities
• seasonal demand for labour for each activity
• seasonal demand for inputs and cash flow

c). Determination of the social component

• age o f farmers
• level o f education
• family composition and size
• age and level o f education o f family members
• participation o f each member in the production process
• use and distribution o f family labour
• distribution over time o f the demand for labour
• requirements for hired labour
• off-farm employment
• attitudes, motives and aspirations o f farmers
• land tenure system

d). Determination of interactions among system components

• determination o f the interactions between crops, between animals and between the 
two o f them

• dynamics o f interactions over time
• allocation o f resources
• income distribution

e). Determination of system inflows

• input flows to each component of the system and to the household
• detennination o f average annual rainfall, temperature and radiation
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• distribution, over time, o f climatic events
• interactions between inflows and components

f). Determination of system outflows

• detennination o f the outflows for each component and for the family
• average annual sale o f products, goods and services
• distribution over time o f system outflows
• outflows per component and from the household
• interactions between inflows, components and outflows

Case studies: The methodology for conducting case studies proposed by Maxwell

(1986), along with some elements o f the same method stated by Casley and Lury

(1987) and Farrington and Martin (1988) were applied in this work. This method 

was used to conduct fann management studies where the main cropping and 

livestock activities o f the farming system were closely monitored along the whole 

production cycle. According with Casley and Lury (1987) the method's main 

objective is to collect data with a high order o f accuracy to allow quantitative 

relationships to be formulated, in this case simulation o f the fanning system.

In both surveys the following techniques from the Rapid Rural Appraisal (RRA) 

and Participatory Rural Appraisal (PRA) methods (Chambers, 1981; Kumar, 1993; 

Theis and Grady, 1991; The World Resources Institute, 1990) were used: seasonal 

calendars, key informants, direct observation, group interviews, trend lines and farm 

sketches. It is suggested that a simple static survey by itself does not produce the 

quality o f infonnation and the level o f understanding and knowledge o f the system 

that may be produced by a PRA or RRA surveys. However, a PRA will not allow 

making valid inferences from the sampled units, because these are not randomly 

selected in this technique. On the other hand, Olsen (1992) has questioned the 

representativeness o f the samples particularly in rural areas o f developing countries. 

This author suggests that this method assumes that a clear boundary can be set for the 

study area. This may not always be possible because for example outlying hamlets 

can have an entirely different composition from central parts o f villages. Second, in
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most cases you may only have one chance to do the survey, and your chosen locality 

may not be representative o f the area.

PRA surveys produce mostly qualitative data, and very little quantitative data, so 

little statistical data can be obtained from here. On the other hand a static survey 

produces little data about the farming systems as a whole, because this is only 

concentrated in few questions or variables, which are interesting for the researcher, 

but the rest o f the system’s components are not considered. It is suggested that direct 

participation o f farmers and continuos interaction with them during the survey may 

help to reduce biases in identifying problems and constraints and allow better 

description o f resources and resource use. Moreover PRA is a way o f learning from, 

and with, community members to investigate, analyse, and evaluate constraints and 

opportunities, which affect local production systems (Chambers, 1981). In this work 

participatory techniques were very useful in getting a good knowledge o f the fanning 

systems and understanding the underlying principles behind some o f the fanners' 

production technologies.

The main justification behind the use o f the two-stage approach, SS and CS was 

that both types o f surveys have particular strengths and weakness (Franzel, 1987). 

The SS allows a general understanding o f the farming systems being studied, 

whereas the primary purposes o f the CS surveys are to verify the findings o f the SS, 

to get detailed infonnation o f their dynamics over time and to quantify some o f the 

system’s most important variables. Furthennore, in this study the CS survey 

generated a constant flow o f information from the field, which served to calibrate and 

develop the models used. Case studies according with Maxwell (1986), and 

Farrington and Martin (1988) provide an optimal combination o f time, cost, accuracy 

and coverage characteristics, which, are required in order to cany on to validation o f 

modelling work.
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3.2.2. Defining the sampling site, target population and sample size

Sampling site: The survey was carried out in two communities o f the Toluca Valley 

called Ejido Taborda and Tenango del Valle, located at the northern and southern 

parts o f the Valley respectively. The Toluca Valley is located in the State o f Mexico 

in the central highlands o f the country, 19° 27' North and 99° 38' west, 2360 m 

above sea level (INEGI, 1981). Figure 3-1 shows the location o f the Valley. 

According to Espinoza (1993) the Toluca Valley has an approximate area o f 1145 

km2, and it occupies the agro-ecological zones 27 and 37 (the State o f Mexico has 

95 agro-ecological zones).

Figure 3-1. Location of the Toluca Valley

The Toluca Valley agro-ecological zones are characterised by a climate, C (w2) 

(w), the most humid o f the temperate climates (García, 1988). Mean annual rainfall

is 760.7 mm, the mean annual temperature is between 14 and 15 °C, with a range for

the coldest month o f -7 to 18 °C, and for the warmest month between 6.5 and 25
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°C, frost is present from October to March or even April (SARH 1982; Garcia 

1988). Vertisol pelico, Feozern aplico, Andosol humico and Andosol ocrico are the 

main soil types, while silty clay loam and clay loam are the most common soil 

textures (INEGI, 1981; Espinoza, 1993).

Toluca City is the capital o f the state o f Mexico and it occupies the central part of 

the valley (Figure 3-1). The eastern parts o f the valley are dedicated to industrial 

activities. The northern and southern parts are dedicated to agriculture, which is 

where the project area is located. The main crop in the Valley is maize, according to 

INEGI (1994a) 16 739 ha o f this crop are cultivated every year. Most o f this land is 

irrigated in the north o f the Valley, while in the south is rainfed.

Ejiclo de Taborda is located in the northern part o f the valley, 19° 28’ North and 

99° 41' West (Figure 3-1) (INEGI, 1981). It has an area o f approximately 1602 ha 

and there are approximately 200 smallholder farms. Although Taborda is a small 

community it is suggested that its fanning systems are representative o f those 

observed in the northern part o f the Valley, where there are approximately 3 324 

smallholder maize-cattle fanns (INEGI, 1994a; Castelan et al., 1997; Arriaga et al.,

1997a).

Tenango del Valle is located in the southern part o f the Valley, 19° 06’ North and 

99°35' West (INEGI, 1981). This community is the head o f the municipality o f the 

same name (Figure 3-1). The whole municipality is approximately 181 km2 and 

there are some 579 smallholder maize-cattle farms (INEGI, 1994a). The sampled 

area comprised only the fann units, which were 10 km from the main town.

Target population: The target population comprised the campesino maize-cattle 

production units within these two communities. For this study only smallholder 

farmers with a farm size of less than 15 ha o f land and 30±5 heads o f cattle were 

considered. Bigger fanners were not considered because their production system and 

problems are different from those o f the smallholders and because they were not of
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interest either to the researcher or to the research program on campesino cattle 

production systems o f CICA (Castelan et al., 1997; Arriaga et al., 1997a).

Sample size: 30 farms from each community were sampled. A list o f fanners was 

obtained from the Comisario ejidal (community leader in charge o f land issues) from 

which a random sample was selected. The author is aware o f the small size o f the 

sample, however the reduced budget for the survey and the limited assistance to cany 

out it limited the size o f the sample. However, according to Nichols, (1991), the cost 

and the money available for the sampling process are the main factor which 

determ ine the sample size. In addition, for exploratory or in-depth work, where the 

aim is to get a general idea o f the farming system, there is no point in using a large 

sample, so sample sizes in the range o f 30 to 50 are normally enough. For this work, 

as mentioned, time and money were the factors that limited the number o f fanners 

sampled. However, data from previous surveys earned out by CICA's researchers 

were used throughout this work (Castelán, 1996; Castelán et al., 1997; González and 

A m aga, 1996; Arriaga, et al., 1997a; Arriaga et al., 1997b; González, 1997; 

Vizcaína, 1997; Woodgate, 1997; Sánchez, 1997; Liendo, 1997), whereas most o f the 

detailed data was obtained from the case studies.

Case studies: Five fanners were selected as case studies. The criteria for selecting 

them varied according with the needs o f data to calibrate the models and the 

willingness o f the farmers to participate. For example six fanners were selected to 

obtain the necessary data to calibrate the CERES-Maize model, the criteria for 

selecting them was their recognised experience in cultivating maize as explained in 

Chapter 4. In contrast three fanners were selected for the construction and validation 

o f the IFSM. These fanners represented groups of fanners with different farm sizes 

as explained in Chapter 7, but particularly those with less than 5 ha since they are the 

majority o f farmers in the region (SARH, 1991; INEGI, 1994a). The frequency o f the 

visits to the case studies depended on the type o f data that was collected from them, 

but in general every case study was visited every two weeks over a period o f 14
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months. Details o f the type o f data collected from the case studies is given in 

Chapters 4, 5, 6, 7 and 8, where models' data needs are described individually.

As Casley and Lury (1982) mentions " A case study is the detailed study o f a 

small number o f units, selected as representative o f the group or groups relevant to 

the issue under consideration, but not necessarily representative o f the population as 

a whole". The number o f farmers/farms to be selected in each type will depend on 

the variability within the type, on the likelihood o f drop-outs, on the range o f the data 

to be collected, on the number o f farm types to be covered and on the capacity o f the 

researcher. According to Maxwell, (1986), two fanns in each farm type is probably a 

minimum and five is probably a maximum. Moreover, he mentions that, whatever 

the number o f farms in a particular category, case study programmes should have an 

overall limit o f around ten.

The author is aware that there are other methods to select case studies such as 

cluster and discriminant analysis (Pielou, 1984). Cluster analysis allocates cases 

based on their characteristics, fonning clusters or groups (Sierra-Bravo, 1987). 

However, this analysis was beyond the scope o f this work since it can constitute a 

separate research on its own (Ferreira, 1997) and significantly more time would had 

been required to achieve this.

3.3. Characteristics and functioning of the farming system

Results presented here correspond to the static survey because the main objective 

o f this section is to provide a general description o f the farming systems o f the 

Toluca Valley. Information collected from the case studies is described in detail in 

the chapters that described the modelling work. From the analysis o f the survey data 

it is suggested that the campesino farming systems observed in the Toluca Valley 

during this survey could be classified into two types.

1. Maize-livestock production system (MLPS)
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2. Intercropped-maize-livestock production system (IMLPS)

The Maize-livestock production system (MLPS) was the most commonly 

observed and was seen mainly in Taborda (100% of the surveyed fanners) although it 

can be found in Tenango too (33% of farmers). The average size o f the farm is 4.2 ha 

with a minimum o f 0.8 ha and a maximum of 12 ha. Maize is the main crop and the 

whole fanning system revolves around it (see Table 3-1). Maize is harvested when 

the grain is dry and it is used within the fann for household consumption or fed to 

livestock and depending on yield levels, it can be sold. Dry stover constitutes the 

main source o f forage for livestock particularly cattle and sheep. Livestock plays a 

very important role in the system because it represent a fonn o f saving, provides a 

constant flow o f cash, and is also a source o f food for the household and an 

appreciated source o f manure for the cropping activities. Fanners in this system may 

plant small areas with other crops like vegetables and small plots o f improved 

pasture (Table 3-1). Fanners production o f other crops apart from maize, is limited 

by the long growing season o f maize and in Taborda the clayey soil texture o f soil 

also limits cultivation o f other crops (see Chapter 4).

Table 3-1. Main crops planted at the Toluca Valley

Main Crops
Taborda 

(% of farmers)
Tenango del Valle 

(% of farmers)
M aize (dry grain) 100 33.3

M aize (fresh  corncob) - 56.7

D ry grain+fresh  com - 10

Other crops

V egetables 13 70*

Im proved  pastures 50 50

N um ber o f  farm ers (?i) 30 30

* V egetables are norm ally  intercropped to m aize or p lanted after fresh com  is harvested

(multicropping).
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The Intercropped-maize livestock production system (IMLPS) was observed 

mainly in Tenango del Valle (approximately 70% o f surveyed farmers in Tenango). 

This system is less common in the Valley, but in essence it is similar to the first one, 

except that in it maize is harvested fresh before the physiological maturity o f the 

plant and sold as fresh corncob. The average size o f the farm was 4.4 ha with a 

minimum o f 0.5 ha and a maximum of 14 ha. A land race called Cacahuazintle is the 

most common maize variety planted in this community. Table 3-1 shows that nearly 

57% of farmers in this community plant maize for fresh corncob production and 10% 

for both grain and corncob. The early harvest o f maize in this system allows peas 

(Pisum sativum ) intercropping, in this way two crops are produced in the same land 

area. Peas are planted after maize plants have reached approximately 1 m high. Fresh 

maize stover is fed as green fodder or ensilaged to feed cattle during the dry season, 

pea's straw is fed to cattle too.

It was observed that apart from peas, farmers in Tenango planted other crops like 

carrots (Daucus carota), lettuce (Lactuca sativa), cabbage (Brassica oleracea), 

spinach (Spinacia oleracia) and large beans ( Vicia fabci). The by-products o f these 

vegetables are used to feed cattle too. Peas and large beans are normally intercropped 

to maize, while lettuce cabbage, carrots and spinach are planted after maize is 

harvested in July-August. Therefore it can be suggested that there is a more intensive 

use o f the land in this system because more than one crop is produced in the same 

land area. This fanning system is also more integrated to local markets than the first 

one. Unlike Taborda, the sandy texture o f soils, the high water holding capacity and 

the rich content in organic matter and mineral such as K, CA and Mg facilitates 

vegetables production in Tenango del Valle (Villa, 1997).

Flowever, both the MLPS and the IMLPS may be classified as smallholder 

fanning systems, according to Ballantyne's (1995) definition. Since they are more 

specialised systems, the crop yield levels are from medium to high, the use of 

external inputs like agrochemicals is high. Also most o f the household’s income 

comes from agriculture, and they have reasonable access to markets.
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Results for Taborda are consistent to previous surveys carried out in the area 

(Castelán et al., 1997; González et al., 1996; Arriaga, et al., 1997b; Arriaga et al., 

1997a; González, 1997). There are few works on Tenango del Valle that can be used 

to compare the results obtained in this work therefore they are not discussed further. 

Since the Maize-livestock production system that was observed in Taborda is the 

predominant farming system in the Valley; it was decided to base the description of 

the systems on it and only comment the main differences with respect to the IMLPS 

observed in Tenango del Valle. The "integrated farming system model" (IFSM) 

described in Chapters 7 and 8 was also based on this system because more powerful 

(and more integrated) biological models are required to simulate the multicropping 

and intercropping cultivation systems observed in Tenango del Valle While these 

models have started to become available, they required considerable more 

information to calibrate and most o f them have never been tested with data from the 

tropics, making their applicability for the tropical countries unclear (Caldwell et al., 

1996).

The author is aware o f the fact that a more detailed description is required for the 

fanning systems observed in Tenango del Valle. It is planned to expand the survey 

and the IFSM to cover this farming system in the near future.

3.3.1. Maize-livestock production system

Figure 3-2, shows a diagram o f the campesino maize-livestock production system. 

This diagram clearly illustrates the complexity o f the farming system. This 

complexity is derived from an unpredictable environment and adverse economic 

scenarios (see Chapter 2). Moreover, it is complex because it reflects the multiple 

objectives o f the fanners even when maize and livestock production are the only 

main fanning activities in the system. A typical campesino farmer o f the Toluca 

Valley produces at least three different varieties o f maize with a specific purpose (see 

Chapter 4) (González, 1997; Chávez et al., 1998). Maize intercropping in the edges 

o f the maize parcels is common, particularly in those close to the farmhouse. Small
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portions o f the farm ’s land are also used for forage production (50% o f farmers); 

such as improved pastures (Figure 3-2). This figure also illustrates the close 

association between livestock and crop production; for example, all sampled farmers 

have small cattle herds where milk and beef are produced, other livestock such as 

pigs, sheep and poultry, are also kept by farmers.

The MLPS moves around what is locally called Milpa. Milpa is a local word used 

to define a parcel o f land planted with maize where other plants may grow along with 

maize in the same land. It was observed that all the plants that grow in the milpa 

were utilised by farmers for different purposes. These plants can be planted or not, 

those that are planted (apart from maize) included at least one o f the following: 

pumpkins (Cucúrbita pepo), beans (Pliaseolus vulgaris) and large beans ( Vicia faba ) 

(these are normally planted in the edges o f the milpa). Non planted plants are weeds 

which constitute an important source o f forage for cattle and food for the household 

(see Figure 3-2). The main weed species and their use to feed cattle are described in 

Chapter 5.

The weeds used for human consumption, are called Quelites and are harvested at 

the beginning o f the rain season. Quelites are a mix o f different species o f 

Amaranthus sp (Reyes, 1990). Apart from com and weeds the milpa provides a type 

o f fungus which parasitises the maize cobs and is edible too. The local name o f this 

fungus is Huitlacoche (Ustilago mayáis) and it is considered a delicacy, its price may 

be higher than those o f the grain and the fresh corncob (if sold). These results suggest 

that fanners make a very intensive and integral use o f all the resources that are 

produced in the milpa and not only the grain and stover as is normally assumed. 

These characteristics are entirely consistent to the description o f the fanning system 

given by González (1997), Arriaga et al., (1997b); and Chávez et al., (1998). The 

milpa system has also been reported in other parts o f Mexico where maize is 

cultivated, particularly in smallholders and subsistence fanning systems (Dzib, 1998; 

Aguilar, 1998).
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Using the fanning system research approach described in by Byerlee et al., 

(1982); Lawrence et al., (1985) the system can be divided in three main components: 

l.The household decision making unit., 2.The farm and its crop and livestock 

activities and 3. The off-farm component (see Figure 3-2).

The household is the decision making unit, it establishes goals for the systems and 

controls it, provides cash and labour for crop and livestock activities, but also 

demands food and cash too to fulfil its needs. The farm environment includes the 

land, its crops and the livestock in the form o f cattle, sheep, pigs and poultry. The 

off-farm environment includes those factors which are external to the farming 

systems, but have a strong influence on it, like the markets and the government, 

which dictates policies that affect the farming systems. The off-farm environment 

also provides employment to fanners and their families. Due to its importance the 

household is described first. The farni environment, including crops and livestock are 

described in Chapters 4, 5, 6, and 7. Chapter 4 describes the maize production 

component, Chapters 5 and 6 describe the role o f cattle in the farming system and the 

feeding technologies used by farmers to feed their cattle. Chapter 7 and 8 describe 

the interaction among the different components o f the system. The off-farm 

component o f the system was discussed in Chapter 2. It was decided to describe the 

components o f the system in detail in the modelling chapters because this 

information is more relevant to the understanding o f the modelling work.

3.3.1.1. The household decision making unit and the farm unit

Figure 3-2 illustrates that the household, the land and the livestock are the three 

main components o f the fanning system. The household provides labour and cash to 

cultivate the land, and more importantly is responsible o f the following decisions: 

What to produce? How to produce it? How much to produce and where and when to 

produce it?. It was also observed that household’s labour supply depended upon the 

composition o f the family, larger families were able to provide more labour than 

smaller families and this in turn detennined the number o f fanning activities canied
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out by the household. Land is also an important component because it determines the 

scale o f the farming enterprise and again the number o f farming activities.

Average household size and composition In general (across the two systems) the 

average number o f family members per household was 6, with a maximum o f 10 and 

a minimum o f 2. Figure 3-3 shows the distribution o f the number o f family members 

for the Toluca Valley, it can be seen that the majority o f the household have between 

4 and 8 members, these figures are entirely consistent to the ones observed in earlier 

studies (Castelán et al., 1997). This is a common feature since rural families in 

Mexico tend to be large in number (de Janvry, 1995a; Vizcarra, 1997;).

Larger families in rural Mexican societies are partly explained by the labour 

demand imposed by the agricultural activities, since most o f the labour needs in the 

campesino production systems are supplied by the family itself (Vizcarra, 1997). The 

household is composed o f the decision-maker (normally the father), the spouse and 

the children. However, it was observed that 45% o f the households have some other 

member apart from the ones mentioned. The extra member (s) is normally the grand 

parent, brother, or sister o f the spouse or the husband. These may contribute to the 

labour supply too.

Figure 3-3. Average number of members per household

20

o

0

A

2.0 4.0 6.0 8.0 m o 12.0

Std Dev=2.50 
Mean =5.8 
N=60.00

Number of m a r te s  per household

46



The average number o f children per household was 3, with a maximum o f 8 and a 

minimum o f 0. The proportion o f female and male children per family is similar, 

50% o f each gender. The results presented so far correspond to the averages obtained 

for both farming systems, but similar values were observed when the same variables 

were analysed for each system individually (see Table 3-2).

Table 3-2 . Average composition of the household.

Farming system
M ean

MLPS
8.D. M ax M in M ean

IMLPS
S.D. M ax M in

N o. o f  household 6 2 10 2 6 3 12 2
m em bers 
N um ber children 3 2 7 0 3 2 8 0
N o. o f  m ale 2 1 4 0 2 1 4 0
children 
N o. o f  fem ale 2 1 7 0 1 1 4 0
children 
O ther m em bers 1 _ _ _ 1 _ _ _
SD = S tandard dev iation , M ax=  m axim um  num ber o f  household  m em bers, M in= m inim um

3.3.1.1.1. Characteristics of the Decision-Maker and the other members of the 

household.

It was observed that the decision-maker (DM) o f the household was normally the 

father, but in his absence or when he is old, the spouse or the older son takes his 

place. Figure 3-4, shows that in most cases (93%) the decisions within the production 

unit are taken by the father, and in a minority o f the cases other members are 

responsible for this. Men predominate over women as DM, in 98% of the households 

the DM was a man, and only 2% were women. Traditionally in rural Mexican 

societies, men have played the role o f head of the family, who are responsible o f the 

management o f the production unit, the setting o f goals and production objectives, 

the supply o f goods to the family and the establishment o f relations with the exterior 

world (de Janvry et al., 1995a; Woodgate, 1997; Vizcarra, 1997).

Due to the country's economic crisis (see Chapter 2), men in rural areas have 

increasingly been forced to leave their farms in search o f jobs in urban centres or in
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Due to the country's economic crisis (see Chapter 2), men in rural areas have 

increasingly been forced to leave their farms in search o f jobs in urban centres or in 

the United States (de Janvry et al., 1995a). Women have taken over some o f the 

responsibilities o f  the DM, but it was observed that men were still in charge o f the 

main decision concerning crop and livestock activities. They normally come back to 

the farm when labour demand is high, such as the planting or the harvesting seasons. 

This results are consistent to those reported by Vizcarra, (1997).

Figure 3-4. Proportion of household members who are DM

Education level o f DM and other household members. 100% of interviewed 

farmers declared to have access to basic services o f education (primary and 

secondary) studies. Figure 3-5 shows the average number o f education years o f the 

different family members, except for the spouse, which were not registered during 

the survey.

Figure 3-5 shows that the majority o f the members o f the households have some 

years o f basic education (1 to 6 years), the DM and the daughters being the ones with 

less education years than the male children. For example, the proportion o f DM and 

female children without any education at all is larger than the proportion o f male 

children (10% and 3% respectively). Figure 3-5 shows that 19% of male children 

have more that 13 years o f education, which may involve some kind o f university
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training. The proportion o f females with 10-12 years o f education is slightly larger 

than the males (11 and 7% respectively). This may be explained by the fact that 

farmers encourage their daughters to do some kind o f technical training, which 

requires less years o f  education than a university degree, reserving the last option for 

the male children. This figure also illustrates that the education level has increased 

among generations, since the number o f education years for the DM is lower than the 

children, which in general have more education years (Figure 3-5).

Nmber of education years of the Pfl Number of education years ofmale 
children

Edu. years

□  1 3 +

Nunber of education years of ferale 
children

Edu. years

11% 9%

Figure 3-5. Number of education years of family members

Access to education has had a positive impact on the farming system. It was 

observed that farmers are open to learn and test new technologies, which is also 

reflected by a selective use o f external inputs for agriculture such as chemical 

fertilizers, pesticides, and irrigation. On the other hand, farmers and their children

Edu.year

□ 0
□ 1-6

□  7-9

□ 10-12 

□  13+
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workers, currently they may be employed as electricians, plumbers, nurses or even 

school teachers, which is a direct consequence o f better access to education services 

(Arriaga et cil., 1997a).

3.3.1.1.2. Labour distribution among household members and labour demand 

for farm activities.

Because most o f the labour supplied to the farming system comes from the 

household, it was considered important to describe it here as part o f the household 

characteristics. Figure 3-6 shows how the labour associated to the different farm 

activities is distributed among the different household members. In other words 

Figure 3-6 shows the responsibilities for every class o f household member.

Labour distribution among family members: Figure 3-6 indicates that labour is 

allocated according to the gender and age characteristics o f individual household 

members. Thus the DM is responsible for crop and livestock related activities (92% 

of households), and in an increasing number they also have an off-farm job (30% and 

27% for MLPS and IMLPS respectively). The spouse is responsible for the entire 

house keeping activities, but she may participate in some cropping activities like 

fertilising, weeding and harvesting. The proportion o f spouses that participate in 

cropping activities is smaller than the proportion that participates in livestock 

activities, 7% and 47% respectively (see Figure 3-6). These activities include small 

livestock such as poultry and pigs but can also include cows milking, feeding and 

cleaning if  the DM is out o f the production unit.

The division o f labour observed for the DM and the spouse was repeated for the 

children, which depending on their gender and age will perform similar activities as 

their parents. Flowever, female children participate more extensive in crop and 

livestock activities, 22% and 51% respectively, than the spouse (Figure 3-6). These 

results may be explained by considering the fact that the spouse is the direct 

responsible o f the family care, while the daughter only assist her and will have more 

time to cattle and crop activities.
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responsible o f the family care, while the daughter only assist her and will have more 

time to cattle and crop activities.

Figure 3-6 . Distribution of farm labour among the different household members

Labour activities perfor ed by the 

Spouse

hwork+cattle
47%

Labour activities performed by the 
ferale children

hwork+crop
2 2 %

Figure 3-6 also indicates a strong gender division o f labour. These results are 

consistent with those o f Vizcarra (1997). This author mentions that labour 

distribution within campesino production units is gender distributed, so some 

activities are considered “men activities” and other “women activities”. However 

woman will take part in men's activities, while it was observed that the opposite is 

more difficult to occur. Women will participate very actively in the cultivation work
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Off-farm jobs are important complement to the family income, 45.8% (n=59) o f 

all sampled households declared to have at least one member o f it working in off- 

farm activities, mainly wage labour. The proportion o f households engaged in off- 

farm labour was larger in the case o f the MLPS, 62% of the cases. While in the case 

o f the IMLPS the proportion was lower only 30% of the cases. The reasons for these 

could be the higher labour requirements observed in the intercropping system and 

higher revenue associated to this system. Table 3-6 shows that female and male 

children have equal opportunities to work out o f the farm unit (12% in both cases).

Despite the fact that households have members working out o f the farm units, 

67% o f fanners in the MLPS and 93% of fanners in the IMLPS acknowledge 

agriculture as the main source o f income. These results are consistent to those 

observed in a previous survey (Castelan et al., 1997). The amount o f labour supplied 

by every class o f household member is described in Chapter 7 where this activity was 

also simulated by the IFSM.
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Chapter 4. Simulating Campesino farmer maize production1

4.1. Introduction

This chapter describes a procedure used to calibrate the DSSATv3 CERES-Maize 

model and evaluates its performance in simulating growth and development o f maize 

using input data collected from Campesino fanners and their cropping fields, instead 

o f using data obtained from experiments in stations or from the literature. The 

problems encountered in the calibration process are also illustrated. Maize production 

in the intercropped maize livestock production system (IMLPS) was not simulated 

because the product is harvested before maturity and no intercropping model was 

used.

The viability o f maize production in Central Mexico is under stress from the 

North American Free Trade Agreement with the USA and Canada (Lehman and 

Ritchie, 1997). To survive in the new scenarios, campesino maize fanners are 

developing alternative maize production systems and better and more efficient uses 

o f their land. There is also an urgent need for scientists (working together with 

farmers) to identify and to develop viable maize production technologies, which will 

serve for alternative systems o f production. Such systems should be based on an 

understanding o f the local fanning systems and awareness o f the potential o f local 

agroecosystems, and should contribute to the solution o f fanners' problems.

The testing o f different technologies could be very expensive and resource 

demanding, and it is almost impossible to study a wide range o f management

1 Based on: Evaluation o f  the CERES-Maize model in simulating Campesino farmer yields in the 
highlands o f  Central Mexico. Experimental Agriculture (in press).
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practices within the time scale and budget o f field experiments. In addition, no 

assessment can readily be made o f how the technologies should be modified in 

different regions in response to different conditions (Dent and Thornton, 1988).

Simulation modelling, as part of the systems approach, has some potential for 

overcoming such problem to speed the transition from the design stage to the testing 

stage and beyond, a holistic framework is needed for effective decision-support 

purposes (Dent et al., 1995). Simulation models (SM) can be used to examine and 

identify the most promising cropping systems. However, there are some problems 

accompanying the use o f SM when they are applied to technology development for 

less developed regions in small experimental stations where resources are limited. 

Model calibration requires both highly trained staff and specially designed trials to 

test on-station model applicability, if  it is to achieve scientific validity. This may not 

necessarily result in a robust model appropriate for use in development situations 

(Mbabaliye and Wojtkowski, 1994).

The use o f survey data collected from fanners and their fields through fonnal 

survey methods and participatory rural appraisal (PRA) techniques, plus a great deal 

o f interaction with fanners may reduce some of the problems associated with data 

needs for model calibration in small research stations. The use o f robust models 

(CERES-Maize model) developed for multi-site applicability, associated with an in- 

depth knowledge o f the target fanning system, could also contribute to a more 

beneficial use o f simulation models under resource limited conditions. However this 

has not been done before, and there may be a large number o f issues which have to 

be addressed: a small experimental area per farm in order to reduce disruption o f the 

fanner’s production system, and larger variability resulting from an even greater 

number o f sources.

In this sense, the main objective o f this work was to evaluate whether the 

DSSATv3-CERES-Maize (DCMM) model can be calibrated and used to simulate 

growth, development and yield o f maize, using input data collected from campesino
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fanners and their cropping fields, instead o f using data obtained from experiments at 

research stations, or from the literature.

4.2. Materials and methods

This work was carried out at the Research Centre in Agricultural Science (Centro 

de Investigación en Ciencias Agropecuarias, CICA) a small research centre part o f 

the Autonomous University o f the State o f Mexico (UAEM). Most o f the input data 

to calibrate the DCMM was collected from two maize fields, which belong to two 

different case study fanners from ejido Taborda. Recall that the case studies were 

selected from a larger sample o f 60 campesino farmers from two communities, 

surveyed during the 1996 maize-growing cycle. Four more fanners and their maize 

fields were selected as case studies and monitored for the 1997 growing cycle, the 

data from this survey being used to validate the model once it was calibrated.

4.2.1. The model

The CERES-Maize model (CMM), was originally developed by Jones et al. 

(1986a) and later adopted and modified by the IBSNAT project (Jagtap et al., 1993; 

Tsuji et al., 1994). It allows the quantitative determination o f growth, development 

and yield o f maize (Ritchie et al., 1989). The growth of the crop is simulated with a 

daily time step from sowing to maturity on the basis o f physiological processes as 

determined by the response o f the crop to soil and aerial environmental conditions 

(Singh et al., 1993; Jagtap et al., 1993). The model can also simulate the effects of 

cultivar, planting date, planting density, N fertiliser dose, and irrigation on crop 

growth, development, and yield (Ritchie, 1986). The CMM does not simulate the 

phosphorous and potassium cycles in the soil or plant, nor, the effects o f weeds, other 

pests and wind damage.

4.2.2. Selection of case studies

Because the DCMM is not sensitive to the effects of pests and limiting nutrients, it 

became necessary to select some o f the best fanners where the maize plants were less
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likely to suffer from these stress sources, so the collected data could reflect plant 

growth and development under the best possible environmental and management 

conditions. Based on these criteria, two farmers from a larger sample o f 60 were 

selected as case studies for the 1996 growing cycle.

The chosen fanners were recognised as good maize producers by other local 

farmers. One maize field from each farmer was selected. One field was 

approximately 11,500 n r  and was planted with a local white maize variety “Criollo 

Blanco’ ’ (CB), while the other was 10,000 n r  and was planted with a local yellow 

maize variety “Criollo Amarillo” (CA). Both fields were irrigated two weeks before 

sowing.

The objective o f the research was explained to the farmers who were asked to 

cultivate the maize in their traditional way; no advice or recommendations were 

given by the researcher. The maize production cycle for these two farmers was 

closely monitored from land preparation to harvest. A careful recording was made of 

every cultivation activity, the type and amount o f inputs used, and the occurrence of 

plant phenological events. The same procedure was repeated for the fields monitored 

in 1997 (two fields planted with CB and two with CA).

4.2.3. Model calibration

To calibrate the model a “Minimum set o f data”, defined by Ritchie et al., (1986) 

and Singh et al., (1993) as the necessary information to calibrate and run the CERES- 

Maize model, was collected both through direct measurement o f the variables of 

interest in the case study fields and through the following PRA techniques: 

interviews, group discussions, cropping calendars, and direct observation (Kumar, 

1993), that were applied to the case studies and all the surveyed farmers. The main 

elements o f the minimum data set are listed in Table 4-1.
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Table 4-1. Minimum data set collected to calibrate the CERES-Maize model.

Type of data Description

Weather

Soil characteristics 

Soil fertility

Specific coefficient 
for each maize 
cultivar studied

Crop cultivation 
practices

Fertiliser
management

Crop residue and 
manure application

Daily values of maximum and minimum air temperatures, rainfall and solar 
radiation.

Soil profile, and then for each layer: layer depth, pH, dry matter content, 
organic carbon content, bulk density, and volumetric moisture content.

Soil fertility and soil water variables for each layer in the soil profile: nitrogen 
content (extractable ammonium N and nitrate N) phosphorous content, and 
volumetric soil water before the beginning of the growing season

Phenology and yield characteristics of the local maize plants, includes: Thermal

time (base 8°C) for the duration of the juvenile phase, and the duration of the 
silking to physiological maturity phase, maximum number of kernels per plant, 
individual kernel weight, number of kernels per squared meter and number of 
leaves per plant.

Cultivation practices used by local farmers which affect the final output of the 
model and includes: emerged plant population, row spacing, seeding depth, and 
harvest date.

Types of fertiliser applied, dates of application, amounts per application, 
method of incorporation, and placement of all fertiliser applications, and depth 
of placement.

Amounts of crop residues and animal’s manures which are incorporated into the 
soil: Amount of residue, date of incorporation, and C:N ratio of the residue (or 
%N, and %P of residue)

4.2.3.1. Maize phenology and yield

All phenological events in Table 4-1 were determined according to the methods 

proposed by Reyes (1990), which basically consist in counting 10 plants to determine 

the number o f plants out o f the total where the event o f interest has occurred already, 

for example 75% silking was determined when 7 or 8 plants out o f ten were in 

silking stage. This procedure was repeated several times at random in different parts 

o f the field to be sure that the event had already started in most o f the plant 

population. Soil samples were collected in every field, and analysed at CICA's 

laboratory.
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Estimation o f grain and straw yield were determined using two different methods. 

In the first method, which is recognised as a valid approach to estimate crop yields, 

the farmers were asked to record yields for grain and straw immediately after harvest 

(Casley and Kumar, 1988). For the second method, a more traditional approach was 

used, 18 rows o f two meters each were selected at random in each o f the surveyed 

fields, the total biomass above ground in each row was harvested, cobs were 

separated from leaves and stem, and were weighed and recorded separately. Samples 

from straw were collected and taken to the laboratory to determine moisture and 

nitrogen content. All the cobs were also taken to the laboratory to determine moisture 

content at harvest, grain weight per unit area, number o f kernels per cob, weight per 

kernel and grain nitrogen content. Total grain and stalk yields obtained this way were 

compared with the yields reported by farmers after harvest, both methods reported 

similar results.

4.2.3.2. Weather data

Data on mean daily maximum (Tmax), and minimum (Tmin) air temperatures, 

and daily rainfall for 1996 and 1997 was obtained from the meteorological station o f 

the Faculty o f Agriculture o f the UAEM, while data on solar radiation were provided 

by the National Water Commission (Comisión Nacional del Agua, Crt/f-personal 

communication) o f the Ministry o f Agriculture. Historical data for the last 30 years 

were obtained (mean monthly values only) from the Ministry o f Agriculture (SARH, 

1982, CNA 1996 personal communication). Weather data for 1996 and 1997 were 

used to calibrate the model, and historical data were used to simulate more years o f 

weather data.

Daily weather data were imported to WEATHERMAN (Pickering et al., 1994) 

which is a DSSAT v3 programme, designed to automate some o f the tasks associated 

with handling, analysing, and preparing weather data for using it with the DSSATv3 

crop models (Tsuji et al., 1994). Weatherman was used to prepare the raw climate 

data into the right fonnat and file type, so it could be read by DCMM. Daily weather 

variables were also simulated using SIMMITEO (Weatherman’s weather generator
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that uses monthly means from a secondary data source to generate sequences o f daily 

weather data), the climate variables simulated this way were photosynthetically 

active solar radiation in MJ m r d '1, maximum and minimum daily air temperatures 

and daily rainfall in mm.

4.2.3.3. Calibration of genetic coefficients:

Once the data on climate, soil, and management were put into the model, and that 

the data on plant phenology and yield were available, the genetic coefficients for the 

local maize varieties were estimated (PI, P2, and P5 for phenology, and G2 and G5 

for grain yield). P I, P2 and P5 were estimated by using the observed silking and 

maturity dates, while for G2 and G3 the observed number o f kernels per ear was used 

for each o f the varieties (Table 4-1). The coefficients were adjusted using 

“GENCALC” (Hunt et al., 1993) until there was a match between the observed and 

simulated dates for silking and maturity, and between the observed and simulated 

yield variables.

Model predictions were compared with measured data, and the difference was 

expressed in percentage and in standard error o f the mean units (SEM). The 

calibrated model was validated against the data measured during the 1997 maize 

growing cycle. Simulated data were also regressed against observed data for grain 

and stalk yield only. Once the model was calibrated, it was run for different planting 

densities and different nitrogen application doses to find the optimal combination for 

these two inputs. It was also intended to run the model for different manure doses, 

however the model does not properly simulate manure utilisation and degradation, so 

the results were not included.

4.3. Simulating maize production

4.3.1. Weather characteristics

Temperature: Daily air temperatures registered in the Toluca Valley during 1996 

are presented in Figure 4-1. There were large variations in between daily maximum
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and minimum temperatures. During the first three to four months o f 1996, there were 

many days with temperatures below zero at night and reasonably warm (20 °C) 

during the day. Air temperatures for 1996 are within the range reported by García 

(1988) and SARH (1982). An analysis o f the historical weather data for the period 

between 1966 to 1992 in the Toluca Valley (SARH, 1982) for the mean monthly 

maximum and minimum temperatures also revealed that the temperatures observed 

in the Valley during 1996 and 1997 lie within the average for the region (Figure 4- 

2); therefore these temperatures were used for the modelling work.

Figure 4-1. Daily maximum, minimum, and mean air temperatures in the Toluca 
Valley for 1996

T m a x _______ T m i n .................... T m ean

Rainfall: Daily rainfall recorded at the Toluca Valley in 1996 is presented in Figure 

4-3. The rainy season started in late May and ended in October, with a rainfall o f 735 

mm, within the range for the Valley (SARH, 1982).

Solar radiation: Solar radiation data was obtained from the local office o f the CNA 

and the mean monthly values are presented in Figure 4-4.
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Figure 4-2. Mean monthly maximum, minimum and mean temperatures in the Toluca
Valley from 1966 to 1992.

Figure 4-3. Total daily rainfall in the Toluca Valley for 1996

Day of year

Figure 4-4. Mean monthly solar radiation in 1996
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Reyes (1990) reports that 707 types o f criollo maize have been identified in the 

highlands o f the State o f Mexico. According to the CIMMYT (1980) system for 

classifying maize gene pools, the “Criollo” maize varieties o f the Toluca Valley can 

be classified as “Tropical highland maize”, which are early, medium, or late 

maturing. The criollo maize o f the Toluca Valley are semi-dents originating from 

two ancient races o f maize called Conico and Chalqueno, which are morphologically 

and agronomically distinct from the races o f mid and low altitudes o f Mexico (Reyes, 

1990). The characteristics o f criollo maize are summarised in Table 4-2.

4 .3 .2 . T he Criollo m aize of th e  Toluca Valley

Table 4-2. Main characteristics of the highland maize of the Toluca Valley

C haracteristics Source
Require 160 to 180 days from sowing to maturity

Require 98 to 123 days from sowing to silking

Grain yield for maize with pre-sowing irrigation {punta de 
riego) is 4.0 to 7.5 t/ha
Have similar or better yields when compared with improved or 
hybrid maize under local conditions

Can grow in the coldest areas of Central Mexico where the 
mean temperature during the growing season is 13.4 °C

Have the capacity for photosynthetically base growth at low 
temperatures (13 °C)

Rapid seedling emergence at low temperatures 

Seedlings can emerge from sowing depths of up to 25 cm 

Can continue grain filling at low temperatures 

Can survive light frosts 

Have some tolerance to drought

Castañeda et al., (1996); Eagles 
and Lothrop (1994)
CIMMYT (1977); Castañeda et a l,
(1996)
Castañeda et al., (1996); González,
(1997)
Castañeda et al., (1996);
Fernández et al., 1992

Eagles and Lothrop (1994)

Hardacre and Eagles (1980)

Eagles et al., (1983)

Eagles and Lothrop (1994)

Newton and Eagles (1991)

Eagles and Lothrop (1994) 

Castleberry and Lerette (1979)

4.3.3. Maize cultivation practices and labour requirements

The calendar for maize cultivation at the Toluca Valley is presented in Figure 4-5. 

It shows that maize production is a very labour intensive activity and requires a 

relative high level o f input use, e.g. 2 applications o f chemical fertiliser (93% of
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farmers use chemical fertilizer), manure application (85% of farmers) and mechanical 

and chemical weeding (93% o f farmers use herbicides). Figure 4-5 also indicates the 

start and duration o f both the rain and frost seasons in relation to the different 

cultivation activities, from which it is easy to appreciate that farmers have identified 

a “time window” (mid May to October) when conditions are appropriate to grow 

rainfed maize. Farmers who have access to water (% o f fanners have access to 

irrigation), irrigate only once two weeks before sowing (“pun ta de rie go” = irrigation 

lead), which allows sowing one month before the rainfed maize, enabling the growth 

o f later maturing maize types over a longer period o f time. Irrigation is a clear 

advantage over rainfed land, since grain yields for irrigated land are 2 or 3 tons 

higher than non-irrigated land.

These results indicate the existence o f two main maize production technologies: 

irrigated and non-irrigated. However, since not all farmers have access to irrigation 

(82% have access to irrigation) and the farmers who have access to it, normally don't 

have sufficient water to irrigate all their land. It is very common to observe the use of 

both technologies in the same farm. The use of herbicide determines two more 

production technologies (which made four main production technologies in total): 

irrigated maize with herbicide application (IH), only irrigated (I), rainfed with 

herbicide application (RH) and rainfed only (R). The difference between these 

systems is clearly illustrated in Figure 4-5. In this chapter only irrigated maize was 

simulated.

Labour requirements: maize production requires significant quantities o f labour 

allocated at very specific periods in the year. The growth and phenology o f the crop 

(see Figure 4-5) determine these periods. The amount and timing o f labour required 

to cultivate maize was investigated because o f its implications in terms o f simulating 

the crop itself and the system as a whole. Labour requirements and labour supply are 

two o f the driving variables o f the IFSM (see Chapter 7). Figure 4-5 shows the 

different cultivation works required for 1 ha o f maize, the month when these take 

place, the amount o f labour required for each work in man days per ha (MD/ha) and
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the members o f the household who are responsible (or may participate) for carrying 

them out. The amount o f hired labour is shown too. This figure also shows that most 

o f the land cultivation is mechanised. Mechanised activities are under the heading 

"contractor". A “contractor system” was observed where farmers without tractors 

(64% o f farmers in the MLPS) hire the services o f farmers who own one. Table 4-3 

also indicates the price paid to the contractors in Mexican pesos (Mx$) per work per 

ha o f land. The use o f draught animals is not common in the Valley, only 7% of 

farmers in MLPS and 17% in the IMLPS use draught animals. These results are in 

substantial agreement with those o f Arriaga et al., (1997b) and González (1997).

The use o f contractors has allowed fanners to reduce the amount o f labour they 

have to supply to cropping activities. However, there are some activities such as 

sowing, mechanical weeding and ridging, which are performed by the contractor, but 

still need the assistance o f the farmer and his family or even hired labour (Figure 4- 

5). Notice that the total amount o f labour required for cultivating maize in each main 

technology is different. For example, IH-maize requires less labour than I-maize. 

This is explained because in I-maize more labour is needed for weeding. Similarly 

rainfed maize requires less labour than irrigated because no labour is used to irrigate, 

and less time is spend in weeding.

Figure 4-5 also indicates the cultivation activities used by farmers to remove both 

weeds and green maize fodder during the rain season. Hand weeding takes place 

from June to October for irrigated maize and from August to October for rainfed 

maize. During these months weeds are cut and carried to feed cattle, early frosts in 

November kill all weeds and no weeding is performed after October. In the case o f 

irrigated maize barren plants or plants with small cobs are thinned from August to 

September when it is evident to fanners which plants can be removed without 

compromising grain yield. Tops are scotched in October from all maize plants since 

the cobs reach maturity in this month. A similar pattern was observed for rainfed 

maize except that thinning takes place only in October and no scotching was 

observed.
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Figure 4-5. Cultivation calendar and labour requirements to produce 1 ha of maize

Cultivation technology H ousehold labour Hired

Activity Rainfall 
m m

Cont. cost 
(Mx$)

IH I
MD/ha MD/ha

RH R 
MD/ha MD/ha DM SP SON DG CH OTH

labour

JAN 18
Ploughing 300 0.5 0.5 +
FEB 10
Harrowing 160 0.5 0.5 +
M AR 16
Manuring 40 2 2 + +
Irrigation 150 2 2 +
Plough 300 0.5 0.5 +
Harrow 160 0.5 0.5 +

APR 29
2nd Harrowing 160 0.5 0.5 +

Sowing+fertilizing 170 1 1 + +

M AY 71

M echanical-weeding 150 2 2 + + +

2nd Harrowing 160 0.5 0.5 +
sowing +fertilizing 170 1 1 + +
JUN 153
Ridging 150 2 2 + + + +
Hand weeding 1.25 + + + +
Mechanical weeding 150 2 2 + + +
JUL 160
Fertilizing 2 2 + + + +
Spraying 1 + + +
Drain making 1 1 + +
Hand weeding 4 + +
Ridging 150 2 2 +
AUG  160
H. weeding + thinning 3 + +
Fertilizing 2 2 + + +
Spraying 1 + + +
Draining 1 1 + +
Hand weeding 4.25 + +
SEP 129
H. weeding+thinning 5 + +
h.weed 4 + +
OCT 74
H. weed+ scottching 4

h. weed+thinning 3

NO V 24
Harvesting 15 15 + + + + +
H. transport+storage 100 3 3 + + + +
DEC 16

Stover harvest&storage 120 14 14 + + +
Harvest 13 13 + + +
H. transport+storage 100 2 2 + + +
JAN
Stover harvest&storage 120 10 10 + + +

Total labour 46.5 60.75 35.5 45.75

IH=Imgated maize+herbicide, I=Irrigated maize-no herbicide, RH=rainfed maize+herbicide, R=rainfed maize-no herbicide, 
DM=decision-maker, SP=spouse, DG=daughter, Cl I=children, OTH=other relatives, + =Indicates which household member 
takes part in the activity. All figures for labour represent man-days (MD) per ha.
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In Tables 4-3 and 4-4 the output o f the model is compared with the observed 

values, the differences between the measured and the calibrated (simulated) values 

for each o f the cultivars are showed in percentages and in standard error o f the mean 

units for most yield parameters. Appendix 1 shows the output o f the DCMM for 

these two cultivars used to calibrate the model.

4 .3 .4 . Model predictions

Table 4-3. A comparison between field measured and the model predicted yield figures 
for the Criollo Blanco and the Criollo Amarillo maize cultivars.

M aize Type CB
M easured

CB Difference 
M odel 

Prediction

CA
M easured

CA
M odel

prediction

Difference

YIELD ASPEC TS DATA
B iom ass at harvest 14480 11804  18.4 12 546 11 097 1 1.5
m aturity (kg/ha) (±562) [4.7] (±379) [3.8]

S talk at harvest m aturity 7987 5 696 28.6 6801 5 494 19.2
(kg/ha) dry (±603) [3.8] (±531) [2.4]

H arvest index (dry weight) 0.45 .51 13.3 0.46 0.50 8.7

Final leaf num ber 18 17.6 2.2 18 17.6 2.2

Grain yield (kg/ha) dry 6 493 6108 6.0 5745 5 604 2.4
(±680) [0.56] (±334) [0.42]

W eight per grain (g/grain) 0.422 0.390 7.5 0.370 0.347 6.2
dry (±0.01) [3] (±0.01) [2]
Grain num ber (grain/m 2) 1632 1 566 4.0 1720 1613 6.2

Grain num ber / ear 340 326.3 4.0 374 350.5 6.3
(±21) [0.65] (±21) [1.1]

Grain nitrogen (kg/ha) 108.1 104 3.8 90.7 95 4.7

Biom ass nitrogen 184.3 139 25.0 141 130 7.8

Stalk nitrogen (kg/ha) 76.2 35 54.0 51 35 31.7

Seed nitrogen (%) 1.66 1.7 2.4 1.58 1.7 7.6

Stalk nitrogen (%) 0.95 0.61 35.8 0.75 0.63 16.0

M axim um  leaf area index 2.5 2.05 18.0 2.7 1.96 27.4
n r /m 2
Grain m oisture at harvest 11.4 15 31.6 12.4 15 21.0

(%)

Figures in ( )  represen ts the sta n d ard  e rro r  of the mean (SEM) for the variables m easured in the field. F igures in [ ] 
rep resen t the difference between the m easured and the model sim ulated variables in SEM  units. F igures w ithout 
b rackets rep resen t the  difference between m easured and the model sim ulated variables in % . Stover includes stem and 
leaves.
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Table 4-3 shows that the model gives good predictions for grain yield for both 

maize cultivars. In the case o f CB the difference between the measured and simulated 

yield is only -0.5 SEM units, while for the CA is -0.4. Other grain yield related 

variables also produced good simulated results when compared to the observed 

values, e.g. grain number per ear (-0.65 SEM units for CB and -1.1 SEM units for 

CA), and weight per grain (-3 and -2 SEM units for the CB and CA respectively).

Model predictions for stalk yield were not very good in the case o f the CB (-3.8 

SEM units) which produced a large quantity of stover that the model was not able to 

simulate. Stover prediction for the cultivar CA was better, although still an important 

difference between the simulated and the measured value was observed (-2.4 SEM 

units). The partial failure o f the model to produce better predictions for stover yield, 

affected other simulated variables which are calculated by the model using this 

figure, like biomass at harvest maturity, harvest index, and biomass nitrogen. The 

difference for these parameters is presented in SEM and percentage units in Table 4- 

3, where it can be observed that the difference for the cultivar CB (-4.7 SEM units, 

13.3% and 25% respectively) are bigger than the cultivar CA (-3.8 SEM units, - 

8.7%, and 7.8%) for which in general the model produced better predictions.

Table 4-4 presents model predictions for the different growth stages o f the two 

maize cultivars, which in general provided good predictions for the three 

phenological events that were measured in the field: emergence date, 75% silking 

date, and maturity date. In both cultivars the model predictions were below four days 

o f difference between the measured and simulated dates. One important aspect is that 

fanners who have access to irrigation plant the maize seeds at depths o f 14 to 16 cm 

to allow the seedling to have soil moisture for a longer period before the rainy season 

(Figures 4-3 and 4-5). As shown in Table 4-2 this does not represent a problem for 

local maize since it can emerge from deeper planting depths, but it is a problem for 

modelling, because the model took a long time to reach plant emergence. When the 

planting depth was reduced, the model produced better results, as is evidenced in 

Table 4-4. The model also overestimated the duration o f the 75% silking to the start
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o f the grain filling phase (XSTAGE=4, in the model), 27 days for both cultivars, 

when the normal value for this phase is no longer than 10 days.

Table 4-4. A comparison between the field measured and the model predicted figures 
for phenology of the Criollo Blanco and the Criollo Amarillo maize cultivars.

M aize Type CB
M easured

CB
Model

Prediction

Difference 
in %

CA
M easured

CA
Model

prediction

Difieren  
ce in %

PHENOLO G Y
Sow ing d a te a 12/04/96 12/04/96 15/04/96 15/04/96

Plant population at 
seeding (seed s /h a)a

52 380 - 48 648 -

Plant population at 
em ergence (plants/ha)

48 000 48 000 46 700 46 000

Planting depth in c m .a 14-16 9.0 14-16 9.0

G erm ination date (dap) 2
14/04/96

1 2
17/04/96

1

Em ergence date (dap) 12
24/04/96

14 16.6 13
28/04/96

14 7.7

75%  silking phase (dap) 103
20/07/96

99 3.88 100
24/07/96

99 1.0

B eginning grain filling 
phase (dap)

109
30/07/96

126 111
04/08/96

126

M aturity date (dap) 175
09/10/96

182 4.0 171
03/10/96

177 3.5

H arvest date (d a p )a 252
20/12/96

207 224
25/11/96

202

dap = Days after planting. “Not applicable because these factors were calibrated.

The model was validated with the data on maize growth and development 

collected during the 1997 growing cycle; the results are presented in Figures 4-6 and 

4-7. It is not surprising to observe that the model performed better for grain yield 

where 81% o f the variation in observed yields is explained by the model (see Figure 

4- 6), while only 20% is explained in the case o f stalk yield (Figure 4-7).
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Figure 4-6 . Observed vs predicted grain yield for the CB and CA maize cultivars.
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Figure 4-7. Observed vs. predicted stalk yield for the CB and CA maize cultivars
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Figure 4-8 shows the model prediction for grain yield for the cultivar CB to 

different nitrogen application rates, and six planting densities. The model predicts the 

optimal combination o f plant density and N fertiliser for higher yields with a density
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density above five plants m 2 (7 to 9 plants/m2 ), and 90 kg o f nitrogen ha'1, after 

which yield increments are marginal. Figure 4-9 presents the same comparison for 

the cultivar CA, where a good response is obtained at a dose o f 60 kg o f nitrogen per 

hectare, and plant densities above five plants/m2, which mean 30 kg less nitrogen 

than the cultivar CB. After this dose the increments in grain yield per extra nitrogen 

are marginal, as in the previous cultivar.

Figure 4-8. Simulated grain yield for the cultivar CB to six planting densities with 
different nitrogen levels

plants/m2

40 60 90

Kg of Nitrogen/ha

Figure 4-9. Simulated grain yield for the cultivar CA to six planting densities with 
different nitrogen levels

kg of nitrogen/ha

P la n ts /m 2
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Figures 4-10 and 4-11 show the model response to the same nitrogen doses and 

plant densities as for grain yield, but for straw yield. The best response for straw 

production is reached at higher nitrogen doses than for grain yield. This is explained 

because when the nitrogen requirement for grain production is covered (in the 

model) the surplus nitrogen is used to produce more leaves and stems, and may 

suggest that what farmers are doing at the Toluca Valley is producing large 

quantities o f straw in addition to grain at the expense o f larger nitrogen doses, since 

both elements are very important to the system.

Figure 4-10. Simulated stover yield for the cultivar CB to six planting densities with 
different nitrogen levels

P la n ts /m 2

40 60 90

kg of nitrogen/ha

Figure 4-11. Simulated stover yield for the cultivar CA to six planting densities with 
different nitrogen levels
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Figure 4-12, shows the model predictions for the harvest index (HI) o f the 

simulated cultivars, from where it can be observed that in both cases the model tends 

to divert most o f the dry matter produced towards grain production, leaving the rest 

for stalk formation (higher HI means that more assimilates are moved to grain). 

When a dose o f 180 kg o f N is used in both cultivars (CB and CA) the model 

predicts His similar to the measured ones only when high planting rates are used (9 

plants/m2), but when nitrogen is limiting most o f the assimilates are moved towards 

grain production even at high planting rates.

Figure 4-12. Simulated harvest index for the CB and CA cultivars to two nitrogen 
levels and seven planting densities
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4.4. Discussion

4.4.1. Model Calibration

The calibration process o f the CERES-Maize model for the Toluca Valley 

conditions proved to be a difficult task. The main difficulty was associated with the 

correct setting o f the “Genetic coefficients” for each one o f the local cultivars 

simulated. Genetic coefficients are represented in the model by PI, P2, P5, G2 and 

G3, which together with other variables are responsible for the prediction o f the rate
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o f ontogeny o f simulated maize cultivars. PI and P5 represents the accumulation of 

growing degree days base 8°C (GDDg) during a particular growth stage, e.g. from 

seedling emergence to the end o f the juvenile phase for P I, and from silking to 

physiological maturity for P5. P2 is a photoperiod sensitivity coefficient, which 

determines tassel initiation. G2 and G3 determine potential kernel number and 

potential kernel growth rate respectively (Ritchie et al., 1986).

After many attempts to set the genetic coefficients with the help o f GENCALC 

(Hunt et al., 1993) for each o f the two local maize cultivars, it was not possible to 

match the model simulated dates o f phenological events and yield variables with the 

measured figures for the same parameters. The simulated dates o f plant emergence, 

silking, and maturity matched the observed dates only when the coefficients 

responsible for these stages were set at very low levels, e.g. 510 for P5, when the 

normal value for this coefficient is 685 for most cultivars tested. Predictions for 

grain, stalk and other yield parameters were also well below the observed figures, or 

the model was not even able to simulate any grain yield at all. A common 

assumption o f the model was that the environmental conditions to which the local 

cultivars were subjected to were not adequate for growth, so no dry matter 

production was simulated at all.

Further attempts to match simulated with observed yield levels lead to very 

unrealistic values for the other genetic coefficients, e.g. a value o f 20 for G3 whose 

normal value ranges from 6-11 mg/d (Poneleit and Egli, 1979; Ritchie et al., 1986). 

Similar results were obtained when simulated climate was used. The big values thus 

achieved for the genetic coefficients that control grain growth compared with the 

relatively small values o f the coefficients that control plant phenology, suggested that 

the low temperatures, together with the large range between the daily air minimum 

and maximum temperatures to which maize plants are exposed at the Toluca Valley, 

may be responsible for the failure o f the model to properly simulate maize growth 

under local conditions. In order to test this hypothesis the daily minimum 

temperature was increased by 1 °C for each day of the growing period. The
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performance o f the model improved tremendously corroborating the previous 

assumption.

Temperature is one o f the major driving variables o f most crop models (Kiniry 

and Bonhome, 1991), as is the case o f the CERES-Maize model (Jones et al., 1986a), 

where temperature controls or influences important model subroutines which 

determine the occurrence o f plant events in the model. For example, temperature is 

the driving variable in the subroutines “PHENOL” and “GROSUB”: the first 

determines the occurrence o f the different phenological events o f a maize plant, 

while the second controls leaf area development, light interception, photosynthesis, 

and partitioning o f biomass into various plant parts. The effect o f air temperature on 

these processes is determined by the accumulation o f thermal units or GDDg 

expressed as DTT in the model (Jones et al., 1986b).

In the DCMM thermal units are calculated using the “remainder index procedure” 

which assumes a linear relationship between rate o f plant development and 

temperature above a specific lower base, i.e., that temperature at the lower end o f the 

temperature range, 8 °C for the CMM, which-represents the highest temperature at 

which the rate o f development is assumed to remain zero (Tollenaar et al., 1979). 

This approach works fine for most cultivars that were used to develop the DCMM, or 

that have been used to test the model in different regions o f the world. This has 

mainly involved hybrids o f high yield levels and short growing season, cultivated in 

temperate regions or in lowland tropics where the Tmax and minimum Tmin are 

likely to stay within the range normally considered as the optimal for maize growth 

(Tmin= 8 and Tmax= 34 °C, with a optimum daily mean o f 26 °C) (Tollenaar et al., 

1979; Warrington and Kanemasu, 1983; Kiniry and Jones, 1986).

However, the performance o f the model in this work suggests that this approach may 

not work for cultivars which are grown in highland regions where the mean daily 

temperature is low (14-15 °C) and there is a large variation among Tmax and Tmin. 

The Toluca Valley is a good example of this where the daily maximum and
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minimum temperatures may not exceed 25 and 8 °C respectively, during most o f 

the maize growing season (Figure 4-1). An important consequence o f this 

temperature pattern in tenns o f the modelling work, has to do with the low number of 

GDDg that will be accumulated in any particular growth stage o f the plant

(SUMDTT), and that long growing seasons are required to accumulate the necessary 

GDDg to successfully simulate maize growth. This is the case even if  the model uses

a correction factor for temperatures below the base temperature (8 °C), as the 

DCMM does (Jones et al., 1986b).

For example, XSTAGE=4 is completed when SUMDTT= 170 GDDg. In most 

conditions tested this period is completed within 10 days; however it took the model 

27 days to reach this figure when normal air temperatures o f the Toluca Valley were 

used. Moreover, the gennination to emergence stage (ISTAGE=9) occurs when the 

SUMDTT is equal to P9, which is calculated by the equation P9 = 15. + 6. * 

SDEPTH, where SDEPTH= sowing depth in cm. So the deeper the seed is planted 

the larger number o f GDDg will be needed to complete this growth stage. When the 

sowing depth used by farmers was input to the model, it took nearly 30 days for the 

seedlings to emerge, so a reduced depth was used as shown in Table 4-4.

It is apparent that highland cultivars (HC) o f maize respond slightly different to 

temperature and have a different optimal temperature range than the temperate or 

lowland tropical cultivars (Hardacre and Eagles, 1980; Hardacre and Eagles, 1986; 

Ellis et al., 1992; Eagles and Lothrop, 1994). It is generally agreed that the maximum 

growth response o f maize to temperature will be found in temperatures from 25 to 34 

°C  and that less growth is expected at temperatures from 10 to 25 °C (Brown, 1977; 

Tollenaar et al., 1979; Warrington and Kanemasu, 1983). On the other hand, the 

optimal temperature for maize growth also depends on its growth stage: Tollenaar et 

al. (1979) observed an almost linear relationship between rate o f leaf appearance and 

temperature in a range o f 12 to 26 °C with a maximum rate o f development at 31 to 

32 °C  in an experiment with six maize hybrids.
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Warrington and Kanemasu (1983) reported that both leaf-initiation rate and leaf- 

appearance rate showed near-linear increases as mean temperatures were increased 

from 15 to 28 °C, maximum rates occurred at 30 to 32 °C for two U.S. Com Belt 

hybrid dents. Further, Brown (1977) reported optimum temperatures for the period of

emergence to tassel initiation between 25 to 30 °C. The same authors also found a 

non-linear relationship between the temperature and the plant growth when plants 

grew under differential day/night temperatures, or when the mean temperature is 

below or above the base or the optimum for plant growth.

While temperatures above mentioned can be considered as optimal for temperate 

maize genotypes, there is some recent evidence that may suggest that some highland 

cultivars like H-32, ACROSS8201, Criollo de Toluca and others from CIMMYT 

pool 5, are less sensitive to temperature than other cultivars and that some o f the 

observations determined for temperate maize may not apply to HC (Hardacre and 

Eagles 1980; Ellis et al., 1992). Ellis et al. (1992) also found that the optimum 

temperatures for the rate o f progress towards tassel initiation for the two highland

cultivars evaluated by them are some 9 to 12 °C cooler than that for lowland tropical

maize, and definitely cooler than the 30 to the 34 °C  generally assumed for 

development in maize. Ellis et al. (1992) demonstrated that the relations between the 

rate o f progress to tassel initiation and suboptimal temperatures are curvilinear with 

base temperatures o f around 8 to 10 °C, in contrast with the common assumption for 

maize o f linear relations above a temperature base, e.g. in the CERES-Maize Model.

Moreover, Flardacre and Eagles (1980) demonstrated that maize genotypes 

containing germplasm from the high altitude Peruvian races and genotypes from the 

CIM M YT's Pool 5, predominantly “Criollo de Toluca” were capable o f autotrophic

growth at a mean daily temperature of 13 °C (constant), while the U.S. Com Belt 

dent hybrids did not growth autotrophically at the same temperature. On the other 

hand, Warrington and Kanemasu (1983) observed that two com hybrids (early and 

mid-season U.S. Com Belt hybrid dents) grew and developed successfully under
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temperature regimes with cooler means (i.e., 16/6 and 16/11) or more rapidly under 

increased diurnal temperature variation with the same daily means (i.e., 23/9

compared to 16/6 °C). They concluded that the minimum temperatures that allows 

com to grow normally, therefore, will be defined by the response limits to specific 

day and night temperatures and can not always be defined using mean daily 

temperature.

The findings o f Warrington and Kanemasu (1983) could have important 

implications for the performance o f the different crop models such as the DCMM 

(when used to simulate plant growth under extreme temperature conditions) that use 

the remainder index procedure and the mean daily temperature to calculate thermal 

units, because as was demonstrated by these authors, the limits o f the maize plant's 

response to temperature are set by the day and night temperatures, rather than by the 

mean daily temperature, as in CERES-Maize.

Hardacre and Eagles (1989) and Ellis et al., (1992) concluded that their results 

suggest that highland tropical maize germplasm may be characterised by an optimum 

temperature for development, as for dry matter production, that is significantly lower 

than that for temperate and lowland tropical germplasm, and that the relation between 

the rate o f progress towards tassel initiation and wide ranges o f suboptimal 

temperatures are curvilinear rather than linear.

The different response pattern to temperature o f the highland cultivars may be 

responsible for the partial failure o f the DCMM to simulate maize growth under the 

climate conditions o f the Toluca Valley. In this work an increment in the minimum 

temperature resulted in better performance o f the model, which suggests that at least 

in the case o f the highland maize a different range of temperatures may be required in 

order to simulate growth and development o f highland maize when using the 

DCMM. From the information reviewed in this work it is suggested that the 

temperature range should be set to 6 or 7 °C for the base temperature and 25 °C for 

Tmax. While a reduction in the base temperature is likely to produce better results for
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simulating phenology, the effects o f low temperatures on the subroutine GROSUB, 

particularly on the estimation o f Potential Dry Matter Production (PCARB), will 

require more review, since in this work the underprediction o f stalk yield may be due 

also to the low temperature effect on PCARB, especially during the juvenile stage o f 

the plant.

4.4.2. Model predictions for different management practices

There is no information in the literature reviewed on the performance o f the model 

to simulate maize growth and development under smallholder’s management, since 

most o f the works reviewed involved the use o f input data from field experiments 

(Kiniry and Jones, 1986; Jagtap et al., 1993; Singh et al., 1993); or from the literature 

(Mbabaliye and Wojtkowski, 1994) which were then used to calibrate the model.

Mostly the CERES-Maize model produced satisfactory predictions for the 

conditions that have been simulated. Here the model produced better predictions for 

grain yield, than for stover yield variables, which was not surprising, because o f the 

effects o f the low temperatures and because the DCMM is designed to translocate 

more assimilates towards grain than to straw production, as frequently occurs with 

hybrid maize cultivars. According to Pham et al. (1989), most o f the genetic 

advances in crop yield have arisen not from increased photosynthetic rate but from 

changing distribution o f assimilates to grain while crop biomass has remained the 

same at optimum plant densities and management conditions.

However, most local varieties o f maize produce more stalk than grain; and 

therefore have a lower harvest index than the hybrids (Singh et al., 1993). A similar 

performance was observed in the local maize of the Toluca Valley. The DCMM was 

able to simulate similar measured stalk yields only at high planting densities and high 

nitrogen rates, e.g. 9 plants/m2, and 180 kg o f N as shown in Figure 4-12, where it 

can also be observed that the extra nitrogen was used to produce more dry matter 

which was then allocated to stalk production, but only once grain requirements were 

covered. The same figure shows that, when a low nitrogen rate (60 kg/ha) was used
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for both cultivars most o f the assimilate is moved towards grain production, despite 

high planting densities. The partition o f assimilates in the model prioritises grain 

production above stalk production, since only when the daily dry matter increase 

calculated by the model is not used for grain production, is then partitioned equally 

between stems and roots (Jones et al., 1986b).

The failure o f the model to predict straw production for local maize could 

represent a problem in practical situations - if  any recommendation to fanners about 

plant density management is going to be made - since straw is a key component for 

most smallholder campesino systems where cattle are present. Furthennore, there is 

clear evidence that fanners at the Toluca Valley manage the plants in order to cover 

their multiple objectives which include not only grain yield, but fodder supply and 

risk aversion. Consequently it is possible to say that fanners have the necessity to 

compromise between grain and fodder yields, when deciding the planting rate. 

Similar farmers' rationale was reported by Subedi and Dhital (1997) in maize farmers 

o f the western hills o f Nepal.

Moreover, the use o f improved maize by local fanners is very limited: according 

to (Reyes, 1990) this type o f maize is only cultivated by approximately 20% of the 

Mexican farmers. Recent evidence from work at CICA comprising a survey o f 104 

fanners from the highland valleys of the State o f Mexico that had participated in a 

government programme to extend high yielding technology for maize production, 

showed that only 12.5% of farmers use improved high yielding varieties, while 87% 

rely on their criollo varieties (Arellano et al., 1997).

The low rate o f improved maize use by the campesino fanner may be explained 

because grain yield is not the main consideration in a small-scale farmer’s decision 

about variety. Other factors include taste, cooking quality, grain colour, ease of 

shelling, and shelling percentage, forage yield, and resistance to pests (Pham et al., 

1989). Furthennore, according to CIMMYT (1997), one o f the primary obstacles for 

the adoption o f improved varieties is that in many highland areas, every valley or
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hillside is a unique ecological niche, making it difficult for breeders to develop 

broadly adapted maize that satisfies requirements over large target areas.

Information on the performance o f the local maize under different doses of 

nitrogen fertiliser and planting densities under campesinos ’ management is limited. 

As Subedi and Dhital (1997) reported, “there are several published works on maize 

density studies in other parts o f the world under experimental conditions, but not 

under fanners' management” . The lack o f this piece o f basic information makes it 

difficult to evaluate the model for the mentioned variables, and also evidences the 

need to collect these data from fanners, which will serve for future reference.

On the other hand, it was observed that the model tends to overpredict grain yield 

when planting densities above nine plants per m2 are used, probably because the 

model does not consider the effects o f other variables such as weeds, pests and wind 

that limit higher yields in real situations (Reyes, 1990). From the analysis o f the 

survey data and from farmer's judgement, it is believed that the maximum planting 

rate used by local farmers is approximately 80 x 103 plants ha'1. Fanners are aware 

that if  higher planting rates are used grain yield is negatively affected, so it is quite 

probable that model predictions for major planting rates do not apply to local 

conditions. Nonnal plant populations at harvest recommended to farmers in Mexico 

range from 45 to 55 x 10 3 plants ha"1 (Reyes, 1990).

From the information discussed above, it is clear that more data on the growth and 

yield o f maize cultivated by smallholder campesino farmers is needed in order to 

evaluate the DCMM performance for different management situations. On the other 

hand, it is also evident that the DCMM could have an important role in evaluating 

and predicting growth and production o f improved maize varieties in the Toluca 

Valley and other regions o f central Mexico, before they are presented to the farmers 

for evaluation, and possible adoption, reducing this way the associated risk o f failure.
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4.5. Conclusions and future research

The results obtained in this work suggest that the calibration o f the DCMM using 

input data collected from farmers and their cropping fields instead o f using 

experimental data, is possible and may be crucial in developing systems models, 

which can be applied both for experimental as for extension purposes. Data 

collection does not represent a problem as long as the appropriate survey techniques 

are used and a good level o f continuous interaction with fanners can be achieved. 

Furthermore the model provided good predictions for grain yield and grain yield 

related parameters, which suggest it has some potential to be used for decision 

support purposes for grain yield forecast.

However, there are still some problems, which may limit the practical application 

o f the DCMM for the development o f alternative cropping systems for smallholders. 

O f particular relevance for this work is the partial failure o f the model to simulate 

maize growth and development within the temperature range o f the Toluca Valley 

and the incapacity to simulate stover yield o f local maize cultivars. In both cases the 

DCMM did not produce satisfactory results. In the first case the model needs to be 

adjusted to cope with growth temperatures which are below the nonnally considered 

optimum range for maize growth. In the second case, the model also needs to be 

adjusted to allow more dry matter to be partitioned towards stalk production, which 

plays a key role in smallholder production systems. Otherwise it may be assumed 

that improved maize production will have to come only from the use o f high yielding 

hybrids, which do not perform well under extreme climate situations where local 

maize cultivars perform better than improved maize cultivars.

The model also needs to be modified in order to simulate farmer-crop interaction 

such as thinning and scotching if  it is to be used to support small holder farmer 

decision-making. It is suggested that once the model is adjusted to consider all the 

aspects mentioned an intensive validation should be carried out in order to validate 

predictions for different cultivation technologies, particularly different planting 

densities and nitrogen fertiliser rates.
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Chapter 5. Cattle feeding systems and nutritional characterisations 

of the local forages

5.1. Introduction

Two sections form this chapter. The first section describes the cattle feeding 

systems used by local farmers during the wet and the dry seasons at the Toluca 

Valley. This section also includes a description o f the most commonly used forages 

and concentrates and the seasonal variation in their availability and utilisation. The 

second part describes the nutritional characteristics o f forages and concentrates based 

on their degradation kinetics as determined by the gas production technique. The 

nutritional characterisation was based on the feeding systems observed in Taborda 

(MLPS), but some characteristics o f the feeding systems observed in Tenango del 

Valle (IMLPS) are also mentioned.

The second part o f this chapter is fundamental because although some basic 

information has been collected by CICA researchers and other scientists from the 

Smallholder Dairy Systems Network1 (SDSN), on the nutritional characteristics of 

the ingredients used by local farmers to feed cattle (Arriaga et al., 1997a; Zorrilla et 

al., 1997; Val et al., 1997, Castelan et a\., 1997), the information available doesn't 

provide sufficient elements to evaluate these characteristics and the productive 

potential o f local feedstuffs, nor is enough to design improved feeding systems or to 

simulate the prevailing ones. Much o f the data available is based on the conventional 

system o f proximate analysis and tables from NRC, (1989), and AFRC, (1993), but 

few on their dynamics o f fermentation and degradation characteristics. However, it is

1 This network is formed by scientists from Mexican and British institutions interested in the 

Smallholder dairy systems of Central Mexico
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suggested that some o f these data may not be relevant to local conditions because 

there are forages that are native to central Mexico for which there is no information 

on such tables.

5.2. Seasonal cattle feeding systems used by campesino farmers

5.2.1. Dry season feeding systems

Cattle feeding systems o f the Toluca Valley are based on the use o f crop and 

industrial by-products, weeds, and native forages and in small proportion improved 

pastures. Maize production is the main source o f cattle feed in the system, it provides 

grain and stover, which are the main ingredients o f cattle diets throughout the year, 

but particularly during the dry season.

Table 5-1 shows the most common forages and concentrates fed to cattle during 

the dry season. In Taborda 93% of farmers fed dry maize stover during the seven 

months that last the dry season. In contrast, it was observed that in Tenango only 

46% o f farmers fed maize stover and 80% fed green maize stover silage, as the main 

forage in the dry season. This difference is explained by the fact that farmers in 

Tenango harvest most o f their maize fresh (see Chapter 3), and the green stover left 

in the field has not reached its physiological maturity, so it is harvested and fed green 

in the wet season or made into silage to feed during the dry season. Despite the 

differences in the method o f harvest and storage maize stover is the main source o f 

forage fed to cattle during the dry season in both systems.

Table 5-1 . Forages and concentrates fed during the dry season

Forage % of farmers 
M L P S

% of farmers 
IM L P S

Concentrates % of farmers 
M L P S

% of farmers 
IM L P S

M aize stover 93 46 Maize 100 80
M aize silage 7 80 Chicken manure 50 -

Native pasture 75 17 Wheat bran 40 67
Rye grass or oat 50 50 Chopped maize 30 0
forage or alfalfa stover*

Coconut cake 21 67
Commercial 26 70
concentrate

*maize stover is also fed as concentrate
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The amount of stover available to farmers will depend on the area planted with 

maize, the variety, the cultivation practices and the yield levels. Despite high stover 

yields (see Chapter 5) it was observed that farm production of it is normally not 

enough to feed cattle throughout the year. It was observed that most farmers (who 

own cattle) have to buy stover either at the beginning or end o f the dry season. The 

intensive use o f stover described here emphasises the assumption that the presence of 

cattle in the farming system is largely explained by stover production. Moreover, as 

quoted by Mr Luis González, the increased productivity o f  cattle and the increment 

in the average numbers o f  heads per farm is explained by higher yields o f  maize and 

stover (particularly in irrigated maize) over the last twenty years.

The key role o f stover was observed in both small and large farmers as shown in 

Figures 5-1 and 5-2. Figure 5-1 shows Mr González's son (small farmer, <5 ha) 

harvesting stover, which was latter transported to the farmhouse and properly stored 

to prevent damage by weather. It was also noticed that little stover was left standing 

in the field, since most o f it is collected or browsed by cattle.

Figure 5-1. Harvesting and storing stover by a small farmer
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Figure 5-2, shows a larger farmer storing a substantially larger amount o f stover. 

Notice the number of people and the machinery involved in this activity. Figure 5-2, 

also shows that stover is being chopped (a common practice) since there is the 

knowledge among farmers that this practice improves forage intake and reduces 

waste o f this resource. It is well known that resistance to chewing rather than 

digestion is the main factor controlling voluntary intake o f many forages and that any 

correlation between voluntary intake and digestibility is not causal but due to the 

association in most foods between resistance to chewing and digestibility (Laredo 

andM inson, 1973; Minson, 1998).

Figure 5-2. Stover storing by a larger farmer

The number o f other forages available apart from stover is reduced mainly 

because o f the prolonged duration of the dry season and the lack o f water to produce 

forages under irrigation. Available water in the system is used to cultivate maize (see 

Chapter 4). Despite the shortage o f water, it was observed that 50% of farmers in 

both surveyed communities allocate a small portion o f their irrigated land to cultivate 

some kind o f pasture, which in this work is called improved pasture. It is called
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improved pasture in order to differentiate it from the low quality pastures that 

constitute the largest proportion o f cattle diets.

The average size o f the area dedicated to improved pasture is 0.5 ha. The area 

allocated to pasture production is small because farmers normally plant the amount 

o f land that they can afford to irrigate or they can afford not to plant with maize or 

other crops. Improved pasture types may include some o f the following species: 

annual Rye grass, perennial Rye Grass (Lollium perenne), and occasionally alfalfa 

(Medicago sativa), or oat {Avena sativa). Figure 5-3 shows that this grass is planted 

in small plots between the maize fields and it offers the possibility o f feeding a better 

quality pasture when everything else is dry. It is believed that there exists the 

knowledge among farmers that the inclusion o f small amounts o f improved pastures 

improves the overall nutritive value o f the diet. Farmers who don’t plant improved 

pastures may buy alfalfa or oat hays.

Figure 5-3. Improved pasture production (dry season)

Dry matter yield o f improved grass species during this season is low. Based on the 

works o f Arriaga et al., (1997a); Espinoza and Martinez, (1989) and Castelan and 

Jaime (1990), it is possible to suggest that the annual dry matter yield o f Rye grass at
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the Toluca Valley ranges from 11 to 14 t per ha and that approximately 70% are 

concentrated in the wet season. Fanners compensate dry season low yields by 

feeding only lactating cows with this forage, while the dry cows and the rest o f the 

cattle are fed maize stover.

Table 5-1 also shows that 75% o f farmers in the MLPS and 17% o f farmers in the 

IMLPS feed native pasture during the dry season. Although most o f the cattle 

feeding is based on a cut and carry system, it was observed that some farmers take 

their animals to graze in communal areas. However, this practice is limited because 

o f the reduced number and size and o f these areas and the low yields registered 

during the dry season. The walking distance was also a factor considered by farmers 

when deciding whether or not take their animals to graze.

Finally, it is important to mention that farmers normally feed cattle with two or 

three forages together. They prepare mixed-forage rations where they normally mix 

maize stover with a "better quality" forage (here called improved pastures) or other 

locally available forage. This practice was observed both during the dry and rainy 

season, the number o f forages in the ration is obviously larger during the wet season. 

It was observed that every farmer (based on their own experience) uses his/her own 

formula to prepare their forage ration. Table 5-2 shows some o f the common mixed 

forage rations, which were observed in some o f the case studies.

T a b le  5-2. C o m m o n  m ixed -fo rage  ra tio n s  fed to  ca ttle

B asic  fo rag e

Dry season forage composition* 
Farm er

All farm ers V. G a rc ia  L . G onzalez J . V aldez
M aize stover (MS) 1 0.7 0.8 0.7
Improved pasture (IP) 0 0 0.2 0.3
Stover silage (MSIL) 0 0.3 0 0

W et season forage composition
Farm er

B asic  fo rag e L . E s tra d a V. G a rc ia  L. G onzalez J . V aldez
M aize stover (MS) 0.2 0.2 0.2 0.4
Improved pasture (IP) 0 0 0 0.4
W eeds (WDS) 0.6 0.5 0.4 0.2
Green maize fodder (GMF) 0 0.3 0.4 0
Native grass (NG) 0.2 0 0 0
*Figures represent proportion of ingredients in each forage ration
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Concentrates: All the interviewed farmers supplement their cattle with some type o f 

concentrate. The most common ingredients are shown in Table 5-1. It was also 

observed that all o f them fabricate their own concentrates, in fact it is possible to say 

that there are as many concentrate formulations as farmers in the communities. Every 

farmer uses the mix o f ingredients (same as with forages), which they have available 

and according to their own experience produces the best response in terms o f milk 

and beef production. Some farmers also use commercial concentrate, Table 5-1 

shows that its use is more common in the IMLPS (70% of farmers) than in MLPS 

(26% o f farmers). However, farmers who buy commercial concentrate may also 

make their own concentrates, since the first one is only fed to lactating cows. They 

may also use commercial concentrate as an ingredient o f their own concentrates!

Farmers' concentrates are made with the ingredients shown in Table 5-1. Notice 

that almost all farmers in both communities use maize in their concentrates, also 

notice that 50% o f farmers in the MLPS use chicken manure while none o f  the 

IMLPS farmers use this commodity. Table 5-3 shows some examples o f the 

composition o f concentrates used by some o f the case study farmers. It is important 

to mention that concentrates composition does not change much between the rain and 

the wet season

Table 5-3. Concentrates composition

Concentrates composition** 
Farm er

Basic ingredient
L. Gonzalez 

CONC-l(//)*
V. García
CONC-2(/2)

L. Estrada
CONC-3(/5)

J. Valdez
CONC-4(«)

H. Estrada
CONC-5(/J) CONC6(/<5)

Ground com (GCR) 0.48 0.67 0.25 0.55 0.1 0

Chicken manure 
(CMN)

0.24 0 0.75 0 0.75 0

chopped stover 
(CMSR)

0.28 0 0 0 0 0

Wheat bran (WHB) 0 0.33 0 0.45 0.15 0

Commercial 
concentrate (CON)

0 0 0 0 0 1

* subscrip ts used in the Integrated farm  model ** F ig u re s  re p re s e n t p ro p o r tio n  o f  in g re d ie n ts  in  e a c h  c o n c e n tr a te
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5.2.2. Rain season feeding practices

Wet season feeding practices are similar to those observed in the dry season, 

except that the number o f forages available is bigger. Depending on the maize 

cultivation technologies and whether farmers decide to apply herbicide or not, green 

maize fodder (GMF) and weeds (WDS) may become available from the maize crop 

(see Chapter 4). Improved pastures are also available but in larger quantities due to 

the rainfall. Native pasture and oats were also observed, and for Tenango del Valle 

only, wasted vegetables which were not marketed including sweet com, carrots 

(.Daucus carota), lettuce (Lactuca sativa) and large beans ( Vicia faba) were fed to 

cattle too.

WDS and GMF are used by 80% of fanners in the MLPS to feed their cattle 

during the wet season. Farmers have developed fine husbandry practices to harvest 

and utilise these resources. The development o f the maize crop (phenology) and the 

onset o f the rains determine the occurrence o f these practices, which in turn 

determine the appearance o f weeds too. The name and number o f weed species that 

grow in the Toluca Valley were not identified in this work. However, according to 

Vibrans (1998) 317 species can be found as weeds in maize fields in the high Valley 

o f Puebla and Tlaxcala, Mexico.

Since this Valley is located in the same geographic region as the Toluca Valley 

(100 km west) it can be assumed that the same weed species are found at this Valley 

too. The most abundant species reported by Vibrans (1998) included: Bidens 

odorata, Amaranthus hybridus, Galinsoya parviflora Cav., Sanvitolia procumbens, 

Chenopodium barlandieri and Chenopodium graveolens willd.

Due to the importance o f GMF and WDS in local feeding systems, their utilisation 

practices were monitored in one of the case studies. One o f the maize parcels from 

M r Luis González’s farm was followed for grain and stover yield to calibrate the 

maize model (Chapter 4), but at the same time data was gathered on weeds DM 

yield, and the amount o f GMF removed from this parcel through thinning and 

scotching. This data was also used in Chapters 7 and 8 to simulate production and
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utilisation o f these resources in the fann model. The associated husbandry practices 

for WDS and GMF are described in detail in Chapters 4 and 5. In this Chapter only 

the dry matter yields and the time when they become available are described.

The mean annual yield registered for weeds was 3085 ± 938 kg o f dry matter/ha. 

Although the actual amount o f GMF removed by this farmer from his field was not 

measured, he suggested that approximately 30% o f the total stover biomass could be 

removed from irrigated maize, and that some 20% from rainfed maize. In other 

words because irrigated maize produces more stover; it is possible to harvest a larger 

proportion than in the case o f rainfed maize.

Figure 5-4, shows the proportional distribution for the amount o f weeds and green 

maize stover harvested each month from Mr Luis Gonzalez’s plot. This Figure shows 

that weeds are available from the start o f the rainy season in June, and that most o f 

the total DM yield was used over the first two months o f it, On average 25% in June 

and 25% in July. The remaining 50% were harvested from August to October, at a 

rate o f 16% per month.

Figure 5-4 also shows that GMF was harvested from August to October when it 

became evident to the farmer which plants were barren and could be removed 

without affecting grain yield. The larger proportion o f this forage was harvested from 

August to September (80% of the total harvested), because it is in these months when 

stover thinning was earned out (more biomass was removed through this practice). 

The remaining 20% were harvested in October when only the tops o f the plants were 

removed (maize scotching).
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Figure 5-4. Proportional distribution of the use of weeds and GMF for irrigated maize
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Weeds and green maize fodder are also harvested from the rainfed maize, except 

that in this case the amount harvested is lower than in irrigated maize. For example 

weeds are harvested from August to October and GMF only in October. Finally it is 

important to mention that all these forages are also fed mixed and some of the mixed 

forage rations fed during the wet season are shown in Table 5-2.

5.3. Nutritional characterisation of local forages based on the In Vitro 

gas production technique and their degradation kinetics.

The main objective o f this section was to determine the degradation kinetics o f the 

most commonly used forages and supplements through the use of the gas production 

technique. Much o f the data available on the nutritional characteristics o f tropical 

forages and crop residues is based on the conventional system o f proximate analysis 

(Weende system), but few on their dynamics o f fermentation and digestibility 

(Krishnamoorthy et a l., 1995). Recent works on nutritional characterisation o f local 

foods and modelling o f the smallholder dairy systems carried out by members of the 

SDSN have been based on nutritive values o f foods taken from NRC (1989) or
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AFRC (1993) tables (Dominguez, 1997; Val, 1998). While values in these tables 

may provide some valuable information and some assumptions can be drawn from 

them, it is suggested that some o f the data may not be relevant to local conditions 

because there are some forage types and crop residues that are native to Central 

Mexico for which there is no information available in such tables. Therefore there is 

the need to generate information, which is more relevant to local systems and can be 

used in the development o f improved feeding systems and to predict animal 

performance.

However, evaluation o f feedstuffs for whole tract and ruminal digestion through 

feeding experiments is expensive and requires sophisticated laboratory and animal 

facilities which are not always available in developing countries (Krishnamoorthy et 

al., 1995; Minson, 1998). In vitro techniques developed by Tilley and Terry (1963) 

and Goering and van Soest (1970) promised to become an important tool for 

evaluation o f ruminant feeds. However according to Aastveit and Marum (1991) and 

M urray (1993) cited by Herrero et al., (1996b), some o f these techniques have 

proved to be time-consuming, often expensive, and in some cases inaccurate.

More recently, the in vitro gas production technique, originally developed by 

Menke et al., (1979) and Menke and Steingass, (1988), has been used to determine 

the nutritive value o f feedstuffs. The underlying principle behind this technique is 

that the amount o f gas, which is released when feedstuffs are incubated in vitro with 

rumen fluid is closely related to digestibility (substrate degradation) and therefore to 

the energetic feed value o f feedstuffs for ruminants (Menke and Steingass, 1988; 

Blummel and 0rskov, 1993; Theodorou et al., 1998). In other words, the rate and 

extent o f gas production must be related to the rate and extent o f substrate 

degradation 1NDFT The inclusion o f crude protein, crude fat and N-free extracts in 

the evaluation makes the estimate more accurate than other methods, i.e. two-stage 

test (Tilley and Terry, 1963), cellulase method (Kellner and Kirchgessner, 1976) and 

estimation from chemical analysis (Van der Meer, 1983).

Herrero et al., (1996b), suggested that this technique has provided better 

predictions o f the in vivo digestibility and the energetic value o f forages than other in
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vitro techniques and it can be used to represent the fermentation dynamics o f the 

incubated samples. Moreover, according to Kibon and 0rskov, (1993) and Khazaal 

et al., (1993) the importance o f this technique lies in its relationship with dry matter 

degradation characteristics, forage intake, and animal performance. Gas production 

results have been used to estimate directly the ME energy content o f foodstuffs and 

the digestibility o f their organic matter through regression equations (Menke et al., 

1979, Menke and Steingass, 1988), while at the same time other scientists have 

looked at the relationship between in vitro gas production and voluntary intake 

(Minson, 1990). This technique also compares favourably with the dacron bag 

technique. For example Blummel and 0rskov (1993) and Khazaal et al., (1993), 

reported that the gas production recorded at different time intervals fitted well 

(r=0.88 to 0.95) with the results o f the nylon bag technique using cereal straws. 

However, prediction o f animal perfonnance was slightly more accurate in the nylon 

bag technique.

Furthermore, gas production data has been used to calculate parameters used in 

the development and validation o f sophisticated ruminant simulation models (Illius 

and Gordon, 1991; Sniffen et al., 1992; Herrero, 1997). According to Tamminga and 

Williams (1998), an area where in vitro methods have proven their value and no 

doubt will continue to do so is in combination with mechanistic modelling. However, 

according to these authors, the role o f in vitro methods in the prediction o f nutrient 

supply lies probably more in helping to elucidate the mechanisms underlying 

digestive processes than in giving straightforward predictions o f nutrient supply.

The gas production technique has become more popular because it is a low cost, 

highly reproducible and easy method o f obtaining a dynamic description o f the 

nutritive value o f a feedstuff while at the same time allowing more samples to be 

analysed. These characteristics makes it a useful tool to characterise foodstuffs under 

resource limited conditions as in developing countries. However, while the gas 

production technique has great potential and has become popular its results have to 

be taken cautiously. According to Theodorou et al., (1998) the underlying processes 

that give rise to the gas in the first place are complex and not well understood. There
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is therefore concern about what is actually being measured in gas production studies 

and how this relates to the digestion process in the ruminant animal.

5.3.1. Description of feed fractions

The feed-stuffs fractionation approach used by Herrero et al., (1998) was used in 

this work in order to analyse the results o f the gas production test and to generate the 

parameters needed to calibrate the cow model developed by these authors and used in 

this work too. The separation o f dry matter into its basic chemical entities is 

important because different feeds fractions o f different forages have different 

degradation and passage rates and therefore have different digestibilities (Herrero et 

al., 1998). Consequently they supply different amount o f nutrients to the animal. 

These fractionations are also important into predicting effects o f supplementation on 

the rate o f cell wall digestion, modelling protein-energy interactions, and using 

recent standards o f protein requirements. The basic fractionation approach is shown 

in Figure 5-5. This figure shows that the forage dry matter is composed o f  ash, 

carbohydrates (CHO), Nitrogen (N), and Fat. CHO and N fractions are further 

fractionated into a soluble fraction (a  fraction), an insoluble but degradable fraction 

(B) and an undegradable fraction (1-D).

These fractions were determined by the gas production technique where the feed 

material is incubated in a sealed syringe with a mixture o f strained rumen liquor and 

buffer solution, rumen micro-organisms ferment the feed material producing gas over 

time is measured. This in vitro gas production system simulates the rumen 

environment, producing a dynamic model o f fermentation o f a feed. The allocation 

o f degradation parameters allows the total potential fermentation o f a feed material 

and rate o f  fermentation to be determined, as well as the lag time when little or no 

gas is produced (Figure 5-5).

• The lag phase is the time (hrs) before gas is produced from insoluble material (or

B fraction), microbes are attaching to and colonising the substrate material.

• The rate o f gas production per hour, c ( I t1)
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• The asymptotic phase represent the volume o f gas produced from the soluble

fraction a (ml) and insoluble fraction B (ml) o f a feed material. Total gas 

production a + B (ml).

• The a fraction is the soluble fraction, usually determined as the washing loss in

degradation studies.

Sniffen et al., (1992) consider that the nutritional description o f the potentially 

degradable fractions o f feed-stuffs requires yet further fractionations, e.g., the a 

fraction for CHO is fractionated into two more fractions, a (sugars) and B1 (starch) 

fractions. However, Herrero et al., (1998) suggest that it is doubtful that this will 

provide better predictions than simpler approaches.

Figure 5-5. Basic nutritional characterisation of forages.

lag Hours

Taken from Herrero eta/., (1998).
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Finally, since the solubility o f the roughage (a fraction), the insoluble but 

potentially fermentable fraction (B), its degradation rate (c), and their effect on the 

rumen outflow rate are key determinants o f intake o f crop residues and other low 

quality forages (Shem, et al, 1995). The estimation o f these parameters is central to 

the design o f improved feeding systems for ruminants. In this work only the 

degradation kinetics for the CHO fraction were determined, the N fractions were 

taken from the literature.

5.3.2. Materials and Methods

Forty samples o f forages and 5 samples o f concentrates originating from the case 

study farms at the Toluca Valley were collected during the survey work and used in 

this experiment. These samples represent the feedstuffs fed during the dry and wet 

seasons. They included maize stover from the three local varieties used throughout 

this work, Criollo Blanco (CB), Criollo Amarillo (CA) and Criollo Negro (CN) (in 

dry form, and in green form (GMF) only for the CB), weeds (WDS), green maize 

stover silage (MSIL), native grass (a mixture of Gramma grasses) (NG), and samples 

o f the following improved pastures, Lolium perenne  (RG), Pennisetum  

clandestinum+Trifolium repens (KG), and Orchard grass (OG). Concentrate samples 

included the five concentrates made by farmers, which are shown in Table 5-3. WDS 

samples are divided in two groups one is called Chayotillo (a local name) and the 

other Cebadilla (local name too) to differentiate them.

Samples were oven dried at 60°C for 48 h and grounded through a 1mm screen 

for analyses. Crude protein (CP), ash, fat, dry matter (DM), were determined at 

CICA’s laboratory by normal proximate analysis. Gas production and NDF were 

determined at the nutrition laboratory o f the IERM. The gas production dynamics 

were carried out as described by Herrero and Jessop (1996).

Gas production (ml) was recorded every hour during the first eight hours, then at 

4 hours intervals until 60 hrs, thereafter at 72, 84, 96, and 120 hrs o f incubation. All 

samples were incubated in duplicate, but when the difference between the sample 

and its replicate (for NDF and gas production) were larger than 5%, the analysis was
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repeated for that sample. Three blank syringes containing only rumen liquor and 

buffer solution were included at spaced intervals in each run. These measured the gas 

production from fermentation o f any material contained in the rumen fluid. Gas 

production from all the samples was corrected for gas produced in blank syringes.

Cumulative gas volumes were corrected for fermentation o f soluble material 

(NDS) according to the method proposed by Jessop and Herrero, (1996). Prediction 

o f NDF disappearance from gas production in forages can be improved if  a 

correction is made to account for the gas produced from the early fermentation of 

NDS, which can be done by subtracting the volume o f gas, produced up to 4 hrs from 

the cumulative gas volumes. Thus, a distinction can be made between gas production 

from soluble and insoluble fractions. Corrected gas volumes were fitted to the model 

developed by Krishnamoorthy et al., (1995) and shown in Equation 5-1. The 

CURVEFIT command o f Grafit v3 was used for this purpose. The same approach 

was used to determine degradation kinetics o f concentrate samples.

Y  -  B (1-exp- c(t-lag))

Equation 5-1. K rishnam oorthy model.

Where
Y  = Cumulative gas production at a given time (ml)
B = Asymptote gas production from the fermentation of NDF after incubation for 120 

hrs (ml),
c = Fractional rate of gas production (h'1),
t  = Time of fermentation and
lag= Lag phase before fermentation of NDF begins (h).

Neutral Detergent Fibre (NDF) was measured before and after the gas production 

by the method described by Pell and Schofield, (1993) in order to determine the 

indigestible fibre content o f the forages, and the NDF lost during fermentation. 

Extraction o f forage with a neutral (pH 7) solution o f sodium lauryl sulphate and 

EDTA allows the preparation o f a fiber residue that recovers the major cell wall 

components: lignin, cellulose and hemicellulose (Van Soest, 1994). All samples 

were grouped into 11 groups representing the different forage types. Means and
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standard error o f the mean were calculated for all the degradation parameters and the 

proximal analyses results for all the groups o f forages.

5.3.3. Results

Mean values o f the gas production parameters, b, c, and lag, for all the analysed 

forages are in Table 5-4. This table also shows the mean NDF content and the 

degradability (in %) o f the NDF. Table 5-5 shows the mean protein, fat, ash and dry 

matter content for the same forages. Figure 5-8 presents the degradation profiles for 

some o f the concentrates and Table 6-3 in Chapter 6 provides the rest o f the 

information on these concentrates.

Table 5-4. In vitro gas production dynamics of forages

FORAGE n
NDF

(g/kg DM)
NDFD

%
Gas production param eters 

B c lag a*
Green maize fodder (GMF) 4 533.6 0.63 44.2 0.052 4.3 277.5

± 22 ±0.01 ±1.0 ±0.003 ±0.4 ±34

CB Maize stover (CBS,) 4 669.5 0.60 44.1 0.045 4.4 201.7
± 32 ±0.03 ±2.3 ±0.007 ±0.2 ±29

CN  Maize stover (CNS) 4 709.0 0.60 45.1 0.045 4.7 149.6
± 16 ±0.02 ±2.2 ±0.005 ±0.08 ±17

CA Maize stover (CAS,) 4 706.5 0.64 48.0 0.045 4.6 150.7
± 18 ±0.01 ±1.8 ±0.006 ±0.3 ±20

Chayotillo Weed (CHY) 3 425.8 0.52 29.7 0.077 3.4 294.7
± 10 ±0.03 ±2.5 ±0.005 ±0.4 ±35

Cebadilla Weed (CEB) 3 562.2 0.63 38.4 0.056 3.6 269.2
± 67 ±0.03 ±1.8 ±0.004 ±0.3 ±38

Native grass (NG) 2 688.4 0.61 45.4 0.040 4.6 134.2
±45 ±0.04 ±1.7 ±0.001 ±0.8 ±20

M. stover silage (MSIL) 4 569.5 0.57 40.7 0.046 4.9 250.7
±42 ±0.006 ±2.0 ±0.005 ±0.2 ±27

Orchard grass (OG) 3 530.0 0.70 40.5 0.064 4.8 203.5
± 40 ±0.03 ±1.6 ±0.005 ±0.3 ±18

Rye grass (RG) 7 445.8 0.67 37.5 0.065 4.0 249.2
±29 ±0.01 ±0.6 ±0.005 ±0.1 ±26

Kikuyu+white clover (KG) 2 360.3 0.70 37.5 0.081 3.6 321.0
± 19 ±0.008 ±0.5 ±0.003 ±0.04 ±10

± = Standard error of the mean, * The values of a were not determined by the gas production technique
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Cumulative gas production (B): Table 5-4 shows that the mean asymptotic gas 

volumes at 120 hrs o f incubation, ranged between 29.7 ml (for CHY) to 48 ml (for 

CAS) for the different sampled forages. Stover samples CBS, CNS, CAS and the NG 

presented the highest asymptotic gas productions volumes while the lowest were 

measured in the weeds CHY and CEB and the improved pastures RG, OG and KG 

(also see Figure 5-6, which shows the shape o f the gas production curves o f samples 

o f  these three groups o f forges). These results are consistent with the fact that the 

former forages have higher content o f NFD than the weeds and the improved 

pastures, which may be contributing to higher production o f gas. Recall that gas 

production is associated with the degradation o f the substrate, which in this case is 

insoluble but potentially degradable NDF.

The NDF fraction is a good estimate o f the cell wall components, and includes all 

the hemicellulose, cellulose, lignin, and other minor cell wall components including 

some protein, minerals and cuticle (Van Soest, 1994). NDF is lower in leaves than 

stems, temperate than tropical, and young than old grasses (Minson, 1990). So the 

high NDF content in these forages may indicate that they have a high content of 

complex structural carbohydrates, and a low content o f digestible cell solubles 

(NDS), mainly because all are mature (old) forages. Table 5-4 shows that these 

forages have in general a lower content o f soluble carbohydrates (a fraction) than the 

improved pastures and the weeds.

On the other hand, CHY, RG, OG and KG presented lower asymptote gas 

production, associated with an also low content o f NDF, especially in the case o f KG 

and CHY (Figure 5-6). In addition, notice that these forages have a higher content of 

soluble material (a) than the stover and native grass samples (Table 5-4). The low 

content o f NDF and the high content o f soluble material could explain low gas 

production in these forages as gas production is corrected for soluble material. 

However, despite low volumes o f gas produced from the insoluble fraction, it is 

likely that the NDF o f these forages is highly degradable as indicated by their high 

NDFD values (70%), suggesting higher intakes and nutrient supply to the animal.

5 .3 .3 .1 . G as  production p a ram eters
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These results are consistent with the fact that high cell wall contents are correlated 

with low digestibility and slow cell wall disappearance, while the opposite may be 

observe with low cell wall contents (Minson, 1990). This is particularly true in the 

case o f the stover samples, because it is likely that the lignin content o f the NDF is 

higher than the cellulose and hemicellulose content. Therefore the proportion of 

potentially degradable NDF (NDFD) is lower than the rest o f the forages (Table 5-4).

Figure 5- 6. Gas production profiles of individual samples of CAS, KG, and CHY
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According to Van Soest (1994), digestibility is dependent on both cell wall 

content and its availability to digestion as determined by lignification and other 

factors. Increasing the maturity o f the pastures leads to a higher NDF content and 

lower digestibility due to an increased cell wall thickening and lower content o f cell 

solubles (Wilson, 1994). Furthermore, the lignin content can affect the digestibility 

o f the cellulose and hemicellulose (the other two main components o f the NDF).
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According to M inson (1972) the main factor limiting the digestibility o f 

hemicellulose is the quantity o f lignin protecting it from hydrolysis by bacterial 

hemicellulase.

Particular attention should be paid to the role o f GMF in feeding because it is a 

forage that lies between the stover and the improved pasture samples in tenns o f its 

nutritional quality, as expressed by its degradation kinetics. This is illustrated in 

Figure 5-7. For example, GMF has less NDF and it is slightly more degradable 

(NDFD) than the stover samples (Table 5-4), GMF also contains larger amounts o f 

soluble material, similar to those observed in improved pastures, and probably more 

importantly, the degradation rate (c) of the NDF in GMF is higher than the stover 

and native pasture samples (Table 5-4 and Figure 5-7).

These data clearly indicate that GMF is a good forage, which can supply both 

significant amounts o f soluble and insoluble CHs that disappear from the rumen 

faster than stover NDF. Furthermore, GMF is available in the system in larger 

quantities than improved pastures, therefore is not surprising that farmers decide to 

use it.

It is suggested that this data provides a method o f feed planning which is 

substantially better than can be achieved by other descriptions o f feed because o f  the 

greater accuracy in the prediction.

Rate of gas production (c parameter): Table 5-4, shows that substantially higher 

rates o f gas production were observed for the improved pastures, mainly KG, RG, 

OG and one o f the weeds (CHY). This may be explained because the cell walls o f 

these forages may be lower in lignin and higher in cellulose and hemicellulose and 

therefore more easily accessible to the rumen microbes, which degraded them faster 

than the cell wall o f the stover samples. Figure 5-6 illustrates this more clearly, it 

shows the gas production profiles o f three different types o f forages, CAS, KG, and 

CHY. CAS presents the highest volume of gas production after 120 hrs of 

incubation, but its substrate is degraded more slowly as indicated by its reduced rate 

o f gas production, which as shown in Figure 5-6 is the slowest o f the three forages.
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For example after 24 hrs o f incubation more than 75% of the potential gas production 

had occurred for KG and CHY and only 49% for CAS.

Figure 5-7. Gas production profiles for individual samples of RG, GMF and CAS
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These results may have an important impact in terms o f the amount of nutrients 

supplied to the animal by the different forages. For example, assuming a normal 

mean rumen retention time o f 33 hrs for roughages, which is equivalent to a passage 

rate o f 3% (Krishnamoorthy, 1991), it is possible to see that stover will supply less 

nutrients to the animal due to slow degradation rates and reduced intake (due to long 

retention time), while the opposite will be observed for the improved pastures. It is 

suggested that the CAS slow degradation rate illustrated by the long time required to 

achieve its asymptotic gas production level (see Figure 5-6 and 5-7), may be 

associated with the difficulty of the rumen microbes to degrade the cell wall o f this
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forage, which may be rich in lignin. However, improved pastures and weeds are 

degraded faster, supplying more nutrients to the animal. Higher degradation rates are 

also associated to high forage intakes, since the rate o f passage is also high due to the 

rapid disappearance o f the forage from the rumen (Van Soest, 1994). For more 

information on the degradability o f roughages and feed intake see Blummel and 

0 rskov  (1993) and Khazaal et al., (1993).

In general it is possible to suggest that the gas production parameters determined 

for improved pastures are consistent with those reported in similar works (Menke 

and Steingass, 1988; Krishnamoorthy et al., 1995; Herrero et al., 1996b; Homan, 

1996). On the other hand, despite low performance o f stover samples when 

compared to improved pasture samples, maize stover o f the Toluca Valley presents 

better degradation parameters when compared to those reported in the literature, i.e., 

higher degradation and digestibility rates (Shem et al., 1995, Krishnamoorthy et al., 

1995). It is suggested that higher digestibility observed in stover are associated 

to the combination of two main effects, the low temperatures at the Toluca 

Valley (see Chapter 4) and the presence of the brown midrib gene present in 

some varieties of Mexican maize.

Temperature's greatest effect on plant development is through promoting the 

accumulation o f structural matter. For example, plant species that remain vegetative, 

whether because o f low environmental temperature during growth or genetic 

character, are always less lignified than plants that develop to the flowering stage 

under similar enviromnental conditions (Van Soest, 1994). Lower digestibility at 

higher temperatures is the result o f the combination o f two main effects, increased 

lignification o f plant cell wall and a more rapid metabolic activity. Increased plant 

metabolism decreases the pool o f metabolites in the cellular contents. Photosynthetic 

products are thus more rapidly converted to structural components. Results for stover 

indicate that low temperatures at the Toluca Valley may results in lower lignification 

o f the plants and therefore higher digestibility.

According to Van Soest (1994), brown midrib was originally discovered in a 

collection o f Mexican maize at Purdue University. The significance o f soluble
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coloured matter in the midrib o f leaves (the main reservoir o f lignin in maize) was 

not appreciated until the character became associated with low lignin contents and 

high soluble polyphenolic matter. Because maize has been used primarily for its 

grain, "leaf and stalk quality" has been overlook particularly by commercial North 

American com seed producers as discussed in Chapter 4. Moreover, plants bearing 

the gene appear to contain both less polymerised lignin and a considerable amount o f 

soluble polyphenolic substances in the midribs that do not affect digestibility as 

normal lignin does. Cell walls are more digestible and ferment at a faster rate. See 

Bames et al., (1971), Cymbaluk et al., (1973) and Gordon and Neudoerffer (1973), 

for a wider description o f the effects o f the brown midrib gene on stover digestibility.

5.3.3.2. Protein and other nutrients

The data presented so far clearly indicates that the different forages differ in the 

extent and rate o f gas production, representing different amounts o f fennentable 

material contained in the feedstuffs. Therefore one may be tempted to select forages 

on the basis o f high degradability, which may increase feed intake and animal 

performance. However, this assumption must be taken cautiously because the in vitro 

gas production method only measured potential carbohydrate fermentation and when 

drawing conclusions as to the value o f a pasture for animal production other factors 

must be taken into account. The protein content, its degradation kinetics, the dry 

matter yield, and the availability and suitability o f the forage for the farming system 

are all important considerations.

The high nitrogen content o f the buffer solution used in the gas production 

technique ensures that nitrogen supplied to the rumen microbes in not limiting. 

However, under Farm conditions protein levels differ between forages and a low 

nitrogen content in the rumen may limit microbes' protein synthesis and therefore 

limit carbohydrate fermentation due to low microbial activity (AFRC, 1993). Table 

5-5 shows the protein, fat, ash and dry matter content o f the different forages used 

here. Data in this table show, as expected, that improved pastures have higher 

nitrogen content than the stover samples, but notice that CHY weed has also an 

important content o f nitrogen. Also notice that the nitrogen content o f GMF is
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considerably higher than dry stover. The data shown in Table 5-5 is consistent to 

nutrient content for the same forages reported by other authors, except for weeds for 

which no data was found.

Table 5-5 . Protein, fat and ash content of forages

FORAGE
C. Protein 
g/kg DM

Fat 
g/kg Dm

Ash 
g/kg DM

DM
%

Green maize fodder (GMF) 87.50 32.75 57.78 30.50
±5.91 ±0.63 ±8.93 ±1.23

CB Maize stover (CBS) 56.93 13.00 58.83 88.58
±4.00 ±0.00 ±6.52 ±1.44

CN  Maize stover (CNS) 48.60 11.40 55.12 65.40
±13.06 ±3.37 ±13.79 ±18.77

CA Maize stover (CAS) 46.81 12.64 51.36 65.24
±10.73 ±6.06 ±11.16 ±16.65

Chayotillo Weed (CHY) 123.03 16.00 140.43 16.67
±7.87 ±0.00 ±29.29 ±0.89

Cebadilla Weed (CEB) 69.03 18.00 81.50 35.54
±0.58 ±0.00 ±0.76 ±0.03

Native grass (NG) 113.00 18.00 88.15 93.20
±2.45 ±0.00 ±0.12 ±1.47

Orchard grass (OG) 129.33 28.00 109.17 21.67
±12.98 ±0.00 ±28.58 ±5.86

Rye grass (RG) 160.86 22.00 122.07 31.05
±12.63 ±0.00 ±8.21 ±2.41

Kikuyu+white clover (KG) 186.00 26.00 106.65 47.25
±14.00 ±0.00 ±22.35 ±27.25

Stover silage (MSIL) 80.90 29.25 69.53 30.40
±6.96 ±4.27 ±7.78 ±30.40

± =  Standard error o f  the mean.

Based on all the results above described the forages sampled could ranked (for 

nutritional quality) as KG>OG>RG>GMF>Weeds>Stovers>NG. However, it is 

suggested that under some circumstances GMF could provide a larger quantity of 

nutrients than the improved pastures, especially during the rain when this forage 

supplies larger quantities o f NDFD than the improved pastures.
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Figure 5-8 presents the gas production profiles and protein o f some o f the 

concentrates. This figure shows that the concentrate CONC-4 presented the higher 

volume o f gas produced (at a high rate too) than the other two concentrates. This 

volume may be associated with a higher content of maize and wheat bran (see Table 

5-3), which provides both NDF and soluble material. CONC-3 had the lower rate 

maybe due to its low content o f grain, only 25% of maize. However, these results 

have to be taken cautiously because the gas production technique was developed for 

forages and it is possible that some o f the gas produce comes from the soluble 

material o f the concentrates rather than from their NDFD content. The results for the 

rest o f  the concentrates is shown in Table 6-3 in the next chapter, where these are 

more relevant to the discussion o f the output o f the Cow Model.

Figure 5-8. Gas production profiles for concentrates
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5.3 .4 . C onclusions and  future research

Finally, it can be concluded that the gas production technique generated relevant 

nutritional information about the forages and concentrates fed to cattle by farmers at 

the Toluca Valley. It can also be suggested that the forage degradation kinetics 

obtained from this technique provided a more accurate view o f the nutritional quality 

o f the feedstuffs in terms o f the rate and extent o f the degradation o f their 

carbohydrate substrates. However, the author is aware o f the fact that this technique 

only provided part o f the information needed to properly characterise feedstuffs and 

that protein degradation kinetics may also be necessary in order to complete the 

picture. A larger number o f samples are also required to obtain more accurate 

estimates o f the mean value o f the different parameters estimated here, in order to 

reduce the large standard error o f the mean observed in some groups o f forages. The 

method also needs a more extensive validation for local conditions.

It is suggested that the approach used in this work may offer researchers at CICA 

and other members o f the SDSN a simple but robust method for the characterisation 

o f the regional feedstuffs and the design o f improved feeding system, since all of 

them have identified nutrition as one of the principal limiting factors to the 

improvement o f the system.
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Chapter 6. Simulating dairy cattle performance and Campesino 

cattle feeding systems

6.1. Introduction

This chapter is divided in two parts; the first part provides a description o f the 

characteristics and functioning o f the Cow Model (CM) used to simulate cattle 

performance under campesino feeding systems and the parameters needed to 

calibrate it. The second part, describes the approach and methods used to generate 

these parameters and the actual simulation process. This second phase integrates the 

knowledge o f feeding systems with data on the nutritional characteristics o f forages 

and concentrates described in Chapter 5. Parameters o f the CM included average 

values for the productive and reproductive characteristics o f local cattle, and 

potential milk yield estimated through a lactation curve. Potential milk yield is one of 

the driving variables o f the CM, which together with liveweight and liveweight 

change are used to estimate energy and protein requirements and indirectly the 

animal’s feeding level and passage rates, which in turn affect forage intake.

Animal performance in terms o f milk production, forage and concentrate intake 

and concentrate-forage substitution rates were simulated for all the cows in the herd. 

For other animals in the herd, i.e., heifers, steers and young stock, only forage and 

concentrate intake were simulated, since the model did not predict live weight 

change associated with growth1.

1 Silveira (1999) has since modified the model to predict live weight change in growing beef cattle.
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Because the main objective o f this simulation exercise was to emulate the local 

feeding systems for dairy cows and to test some alternatives for both the dry and the 

wet season, more effort was devoted to the practical application o f the model. 

Readers are referred to Herrero (1997), Sniffen et al., (1992) and Illius and Gordon 

(1991) for more information on the physiological and mathematical foundations of 

the model since only a brief description is given in the following section to facilitate 

the understanding o f this work.

6.1.1. The role of modelling in designing improved feeding systems

Cattle play an important role in the farming system and provide a key element o f 

the fanners' income generating strategies. It was observed that in addition to manure 

and soil fertility, cattle provide some o f the cash needed to buy fertilisers, herbicide 

or to pay the contractor fees for maize production. Thus the income generated from 

cattle production can contribute significantly to improved maize production. Cattle 

also provide some o f the "investment capital" needed to buy machinery (tractor) or 

even for the farmhouse improvement. The importance o f cattle in mixed crop- 

livestock systems has been recognised in Mexico (Castelân, 1996; Zorrilla et al., 

1997; Barbabosa and Garcia, 1997, Gomez and Pinto, 1997, Arriaga et al., 1997b) 

and by other Latin American authors in countries where the role o f cattle is 

acknowledged as the main form o f income (subsistence) for resource-poor fanners 

(Bodisco and Abreu, 1981; Vaccaro, 1995; Quiroz et al., 1997).

M ost o f these authors cite the main constraint to livestock production at 

smallholder level as deficient nutrition of cattle, which is based on the use o f crop 

residues, native pastures and agricultural and industrial by-products (Vaccaro, 1995; 

Quiroz et al., 1997; Arriaga et al., 1997a and b). Improving the nutritional status o f 

cattle will improve profitability o f the local farming systems and hence the standard 

o f living o f fanners. For example, some members o f the SDSN using participatory 

methods (Cono et al., 1997; Arriaga et al., 1997a) and in-station methods (Gutierrez 

and Martinez, 1997, Ortiz et al, 1997; Castelân and Jaime, 1990) have proposed a 

more extensive use o f improved pastures and agricultural and industrial by products 

as a mean o f improving the nutritional status o f cattle in Central Mexico.
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These methods have provided valuable information on different options to 

improve cattle nutrition and a better understanding o f the campesino cattle feeding 

systems. However, only a limited number o f options can be evaluated because o f 

restrictions imposed by working with fanners on farm and the high costs associated 

with field experiments and laboratory analysis. There is the risk o f affecting farmers 

livelihoods if  the experiments fail to provide an appropriate solution, but more 

importantly only a limited number o f feeding technologies can be tested because the 

researcher relies on both the willingness o f farmers to participate and the amount of 

resources he/she can devote to the experiment. This limits the size o f the experiment 

to a few replications (animals). Furthermore, it is difficult to study the underlying 

physiological processes, which govern animal response in the feeding systems under 

test, because o f the lack o f relevant nutritional data.

In recent works carried out by researchers o f the SDSN (Castelán and Jaime, 

1990; Dominguez, 1997; Val, 1998), animal response to traditional and alternative 

feeding systems had to be explained in relation to "standard methods for evaluating 

feeds” and "standard requirement systems" developed in industrialised countries 

(NRC, 1988). This is explained because o f the lack o f infonnation on the nutritive 

characteristics o f local feed resources. Although this approach has been used in 

education and training it may not provide adequate results to support decision­

making at farm level.

According to Preston and Leng (1987) it has been apparent for many years that 

feeding standards based on assigned nutritive values (e.g. net energy) are misleading 

when unconventional feed resources are used, since the levels o f production achieved 

may be considerably less than that predicted. More importantly, this often led to the 

rejection o f locally available feed resources, which apparently were too low in 

digestible energy to supply the energy needed for production. Moreover, it 

encouraged researchers to copy feeding systems used in temperate countries, which 

are predictable, but require feed resources that are inappropriate in most tropical 

countries.
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According to Herrero et a i,  (1998) "requirements systems" were not designed to 

predict intake but to assess the nutritional and productive consequences o f different 

feedstuffs to the animal, once their intake was known. Therefore, a logical criticism 

is that the calculation o f nutrient supply to the animal, and the prediction o f animal 

performance, is dependent on the accuracy o f the intake estimate used. The 

productivity o f ruminants is influenced primarily by feed intake, which in turn is 

determined by the digestibility (degradability) o f the feed and the capacity o f the diet 

to supply the correct balance o f nutrients required by animals in different productive 

states (Preston and Leng, 1987). The effect o f alternative nutritional strategies on 

animal production and on the whole system can only be tested if  forage intake and 

the subsequent responses to available nutrients by ruminants can be predicted 

(Herrero, eta l., 1998).

Ruminant simulation models, like Herrero (1997) may help to overcome some o f 

these limitations. Simulation models can be used to improve the understanding o f the 

underlying principles o f the nutritional management by campesino fanners and to 

test current technologies or to develop improved feeding systems. Whilst many 

efforts have been devoted to the construction o f complex ruminant models which 

respond to very specific conditions (Baldwin, 1995; Danfaer 1990; Dijkstra, 1992) 

little has been done in developing adaptable models with easily obtainable 

parameters. The Herrero (1997) model offer this possibility because the main 

digestion and degradation processes o f foodstuffs are accurately considered and it 

can be parameterised with easily obtainable parameters.

6.2. Characteristics of the Cow Model and parameters required for 

calibration

The model was largely derived from the work o f Illius and Gordon (1991, 1992), 

Sniffen et al. (1992) (Cornell Net Carbohydrate and Protein System, CNCPS) and 

AFRC (1993). The outcome was a dynamic ‘hybrid model’ based on a mechanistic 

platform but with site-specific parameters, and resulted from adapting approaches 

used in previously published models across a range o f levels o f aggregation. The
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model was designed to predict potential intake, digestion and animal performance o f 

individual ruminants, in this case dairy cows, consuming forages, and supplements.

The rationale behind the model is that a ruminant o f a given body size, in a known 

physiological state, and with a target production level, will have a potential forage 

intake determined by physical or metabolic constraints imposed both by plant and 

animal characteristics. Potential forage intake is defined as the intake achievable 

without the constraints imposed by herbage mass, sward characteristics, or 

behavioural limitations (Herrero, 1997).

The model assumes that the reticulo-rumen is the most important site controlling 

intake, and that intake can be estimated from the knowledge o f degradation and 

passage o f feeds through this organ (Illius and Gordon, 1991). It was originally 

implemented in SB-ModelMaker V2.0 (Zeton Tech, Nottingham, UK), (a newer 

version o f the software was used here), and can be divided into two functional 

sections:

1). A  dynam ic section, which describes the flow and digestion o f feeds through the 

gastrointestinal tract and its consequent nutrient supply to the animal. This section 

consists o f a series o f first-order differential equations estimating intake, the pool 

sizes o f feed fractions in the rumen, small and large intestines o f the animal, the 

pools o f digested material and excretion o f indigestible residues. This section runs on 

an hourly basis, but results are aggregated to a day (24 h) for an appropriate coupling 

to the static section o f the model.

2). A static section, which estimates potential nutrient requirements o f the animal, 

mainly on the basis o f AFRC (1993). The difference with AFRC (1993), and the 

similarity with the CNCPS, is that the model predicts animal performance on a daily 

basis from the estimates of intake and nutrient supply obtained from the dynamic 

section o f the model. According to Herrero, (1997), this is a major step from 

requirements systems (i.e. INRA, 1989; NRC, 1989, 1996; AFRC, 1993), where 

animal performance is predicted from digestible o f metabolisable energy estimates o f 

feeds and intake ‘predictions’ are obtained from linear or multiple regressions (i.e.
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NRC, 1989, 1996; SCA, 1990; AFRC, 1993). The model o f Sniffen et al. (1992), 

estimates nutrient supply from a dynamic model o f digestion, but they still use 

regression equations for intake prediction.

Two pathways control intake in the model. The first one is the physical constraint 

on intake caused primarily by low digestibilities; while the second one is a metabolic 

constraint. I f  the supply o f nutrients equalled the requirements o f the animal, the 

animal stopped eating. The model uses the feed fractionation determined in Chapter 

5, which includes the 4 main constituents o f feedstuffs: ash, fat, carbohydrate and 

protein. The dynamic section o f the model focuses on the carbohydrate and protein 

fractions, which are further sub divided into soluble (a fraction), insoluble but 

potentially digestible (B fraction) and indigestible (1-D fraction) (0rskov and 

McDonald, 1979; AFRC, 1993).

The protein fractions used by the CM are the same as those estimated in the 

metabolisable protein (MP) system proposed by AFRC (1993), with the difference 

that their representation in this model is dynamic. For example, the pools o f soluble 

protein, degradable protein and undegraded protein represent the terms quickly 

(QDP) and slowly (SDP) degraded crude protein, and undegraded (UDP) crude 

protein o f the AFRC (1993) MP system. For more infonnation on the characteristics 

and functioning o f the model readers are referred to Herrero (1997), Illius and 

Gordon (1991, 1992), and Sniffen et al. (1992).

A description o f parameters used in this work to calibrate the CM is shown in 

Table 6-1 below. Parameters were divided into three main groups, the first group 

describes the protein fractions o f the different feedstuffs, the second group the 

carbohydrate fractions, and the third group contains the animal related variables.
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Table 6-1. Param eters required to calibrate the Cow Model

Parameter name Description
Protein fractions
Cpconcentrate Crude Protein concentrate (g/kg)
aCP concentrate Soluble CP-Concentrate
aCPforage Soluble CP-Forage (g/kg)
bCPconcentrate Potentially degradable CP(g/kg)-Concentrate
b CP fo r  age Potentially degradable CP(g/kg)-Forage
undegCPconcent Undegradable N as a proportion of N-Concentrate
undegCPforage Undegradable N as a proportion of N-Forage
k9concentrate Degradation rate of soluble N in the rumen-Concentrate
k9forage Degradation rate of soluble N in the rumen-Forage
klO concentrate Degradation rate of degradable N in rumen-Concentrate
k l Of orage Degradation rate of degradable N in rumen-Forage
k l 4concentrate Degradation of soluble N in Ll-Concentrate
k l 4for age Degradation of soluble N in LI-Forage
Carbohydrate fractions
CCforage Cell contents or a ffaction-Forage (g/kg)
cforage Forage cell wall degradation rate/h (c rate)
K2concentrate cell wall degradation rate/h for concentrate (c rate)
DCWconcentrate Digestible cell wall (g/kg) for concentrate-NDFD
DCWforage Digestible cell wall (g/kg) for forage-NDFD
FA Tconcentrate FAT Concentrate
NDFconcentrate Neutral detergent fibre (NDF)-Concentrate g/kg
NDFforage Neutral detergent fibre(NDF)-Forage g/kg
starch Proportion of Non-structural carbohydrates as Starch-Conc
Animal Variables
BW Body weight (kg)
bwgain Body weight gain (kg/d)
bwloss Body weight loss (kg/d)
MilkJ'at Milk fat (g/kg)
M ilkjactose Milk lactose (g/kg)
Milk_prot Milk protein (g/kg)
conc_i.nta.ke Kg concentrate/12 hrs
potentialjnilk Potential milk yield in kg/d
protper Protein % in milk (%)

6.3. Materials and methods used to estimate model parameters

6.3.1. Protein fractions

The crude protein content o f the different feedstuffs used was determined through 

standard laboratory techniques (Khjedal) The different fractions o f the protein and 

their degradation rates were taken from the literature. Appendix 2 shows the values 

for the protein fractions, their corresponding degradation rates and published source.
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6.3.2. Carbohydrate fractions

The approach used to generate this information was described in detail in Chapter 

5. Starch content o f the soluble fraction for the concentrates was also taken from the 

literature, see Appendix 2 for values and source.

6.3.3. Defining mixed-forage rations

Farmers in the Toluca Valley normally feed cattle with diets, which contain more 

than one forage at a time. The proportion o f each forage in the basal forage diet will 

depend upon availability as influenced by cropping practices o f individual farmers. 

Because it will be very difficult to simulate all o f them, it was decided to simulate 

some o f the mixed-forage rations observed in the case study famis. Forage rations 

shown in Table 5-2 together with the farmers' concentrates shown in Table 5-3 

(Chapter 5), were used to simulate campesino feeding systems.

A modified version o f Table 5-2 is presented here on Table 6-2, this table shows 

that the proportional contribution o f IP to forage-mixed ration 4W of the wet season 

was increased from 0.4 to 0.6. This change permitted the evaluation o f the effect of 

increasing the consumption o f this forage and compares it in relation to the other wet 

season forage rations. Since an important part o f the research on campesino farming 

systems at CICA is based on the introduction o f improved pastures (Arriaga et al., 

1997a), it was considered important to evaluate this technology through the cow 

model. Note that all the basic forages described in Chapter 5 were included in the 

forage-mixed rations in order to reflect the different forage produced and used during 

the dry and wet seasons.

The author is aware that only a small number o f forage rations and concentrates 

were simulated and that more need to be tested. However, the main idea behind this 

exercise was to demonstrate the methodology, it is suggested that a more extensive 

forage characterisation needs be earned out and more simulation studies must be part 

o f future work.
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Table 6-2. Dry and wet season mixed-forage ration composition

Dry season composition (dryfod*)
Basic forage Dl(/=/**) D2 0=2) D3 0=3) D4 0=4)
Maize stover (MS) 1 0.7 0.8 0.7

Improved pasture (IP) 0 0 0.2 0.3

Stover silage (MSIL) 0 0.3 0 0

Wet season composition (wetfod*)
Basic forage w ip w ) W2Q=2) W3 0=3) W4 0=4)
Maize stover (MS) 0.2 0.2 0.2 0.2

Improved pasture (IP) 0 0 0 0.6

Weeds (WDS) 0.6 0.5 0.4 0.2

Green maize fodder (GMF) 0 0.3 0.4 0

Native grass (NG) 0.2 0 0 0

D ( j= l :4 ) = d r y  s e a s o n  fo ra g e s ,  W ( j= I :4 ) = w e t  sea so n  fo ra g e s , * = T a b le  n a m e s  u s e d  in th e  fa rm  
m o d e l  (C h a p te r  7 ), * * fo ra g e s  s u b s c r ip ts  u s e d  in  th e  fa rm  m o d e l.

Forage parameters for mixed-forage rations: The fact that farmers feed 

simultaneously more than one forage represented a problem since the CM only 

simulates the intake and digestion o f only one forage and concentrate at the time. In 

order to solve this problem a standard approach o f ration formulation (AFRC, 1993) 

was used, where weighted means were calculated in order to reflect the proportional 

contribution o f the individual basic forages to the each o f the mixed-forage rations.

The different forage types shown in Table 5-4 were grouped into five “basic 

forage groups”. Stovers were grouped because farmers make no distinction in term o f 

the maize variety where the stover comes from. They normally feed the stover which 

is available, so from a practical point of view there was no reason (apart from the 

scientific interest o f knowing nutritional characteristics o f individual varieties) to 

keep them as separate forages. The same occurs with weeds because they are fed 

mixed, and no differentiation is made for a particular variety.

Means were calculated for all the nutritional parameters in every basic group o f 

forages. These means were used to calculate the weighted means, which were finally

116



used as parameters o f the cow model. Mean values for the basic forages and 

weighted means for all the forage-mixed ration are shown in Table 6-3. Values in 

Table 6-3 suggest that despite the mean calculation the differences in the nutritional 

quality between the forage basic groups were preserved, as is shown in the result 

section. No weighted means were calculated for concentrates and their original 

values shown in Table 6-3 were used directly in the CM.

6.3.4. Defining animal parameters

6.3.4.1. Cattle herd

It was considered important to simulate all the animal classes in the herd in any 

given farm, because all o f them contribute to the farm income, but also require 

labour and feedstuffs resources. Therefore every cattle class had to be simulated 

individually in the CM in order to provide relevant data on animal performance. In 

this way a better representation o f the role o f cattle in the farm could be obtained. 

This data was used as technical coefficients to the Integrated Farm Model (Chapters 

7 and 8).

The average herd composition was defined first in order to simulate all classes o f 

animals in a typical campesino herd. A typical herd is composed o f cows (which can 

be lactating or dry), heifers (pregnant and non-pregnant), calves, steers and bull. It 

was assumed that three main variables, lactation number and lactation stage, plus the 

dry period describe the cows in the herd. The number o f lactation, considered were 

from 1,2 and 3 or more lactations, and three stages o f lactation, early, mid and late, 

so the cows in any given herd can be in 12 possible states:

COWS iq

Where,
¿max = 3., 1= first calving, 2=second calving, 3=three or more calving 

gmax = 4., 1= early, 2= mid, 3= late lactation, 4= dry period
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The cows were divided into lactation number since it is generally agree that that 

the calving number is one o f the most important factors, which determine milk yield 

levels (Wiktorsson, 1979). The length o f the lactation, dry period length, days to 

conception and other parameters needed to determine the cows' production cycle 

were also taken from the survey work.

Table 6-4 shows a summary o f these parameters, which were also used to mark 

the progression o f cows' classes over time in the IFSM. Liveweight was not 

measured in this work, but was taken from Arriaga et al., (1997a) who have 

measured it in cows from the Ejido San Cristobal also in the Toluca Valley. It was 

assumed that cows lose 5% o f their body weight during the first part o f their 

lactation, no weight was lost during the second part, and the weight loss was 

regained over late lactation and dry period.

This conservative approach to liveweight change during lactation was used 

because we were dealing with a very heterogeneous population, where there are 

animals o f different production potential, different levels o f improved blood, and 

different feeding and management systems. The amount o f information on the 

subject is also very limited. Liveweight change o f similar magnitude has been 

reported by Salas et al., (1997) in cows o f smallholder fanning system in the State o f 

Michoacan, Mexico.

No distinction was made for genetic potential, since there was not sufficient 

information on the subject and monitoring information on the local herds is limited, 

and it is not a practice amongst these farmers to keep records o f their animals. The 

lack o f this basic information strengthens the need to investigate more about cattle 

productive and reproductive characteristics and to establish a herd monitoring system 

in order to get the relevant data on cattle performance in the Toluca Valley.
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Table 6-4. Productive parameters for cows and heifers

Parameter Value
COWS
Age at first calving
Lactation length
Dry period length
Days to conception after calving
Average number of calves/cow (productive life)
Calving interval
Potential milk yield at first calving (kg/lactation)* 
Potential milk yield at second calving (kg/lactation) 
Potential milk yield at third calving (kg /lactation) 
Body weight at second calving (kg)
Body weight at third calving (kg)
Body weight change throughout lactation (in %)

854 days (28 months) 
305 days (adjusted)
61 days 
91 days 
5-6
366 days
1966
2809
4160
521
547
5

HEIFERS
Age at first service 
Approximate weight at first service 
Age at first calving 
Approximate weight at first calving

579 days (20 months) 
350 kg
854 days (28 months) 
450 kg

*Potential m ilk yield was determ ined according to the m ethod described in section 6.3.4.2.

Heifers (HEIF) are described by their physiological stage, as pregnant and non­

pregnant. A non-pregnant is a heifer which age is between 13 and 19 months; it was 

assumed that all heifers are serviced at approximately 20 months o f age, and that the 

pregnancy lasts 275±5 days, therefore calving occurs at 28 months o f age.

h e i f 9

Where,
t/max = 2., 1= non-pregnant heifers, 2= pregnant heifer

Other stock (OTHE) was classified into three classes calves, steers, and bulls. 

Calves were divided in two categories according to their age in months, 0-6 months 

and 7 to 12 months. It was decided to divide calves because forage intake is different 

between these two groups, and because calves constitute an important number within 

the herd. Therefore forage intake by this group could be significant.

CALF#

Where:
q = 2., 1= 0-6 months and 2= 7-12 months of age.
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Steers were considered as all those male stock, which are older than 12 months 

and that are fatted for a period o f over 6 months and sold afterwards.

STEE#

Where:
q=3., 3 =13-18+months male stock

Bulls (BULL) were considered as male stock that is kept for reproductive 

purposes and is older than 18 months.

BULL#

Where:
q=4., 4 = male stock older than 18 months

6.3.4.2. Calculating potential milk yield

Lactations o f 24 cows were monitored in order to obtain an estimate o f the 

potential milk yield o f cows at the Toluca Valley. Milk yield was measured every 

two weeks from one week after calving until the end o f the lactation in every cow. 

The data was fitted to the model o f Morant and Gnanasakthy (1989), and from the 

adjusted curves the potential milk yield for every lactation number and stage was 

taken. The lactation model o f Morant and Gnanasakthy (1989) was used because it 

has proved to produce a better fit than other lactation models (AFRC, 1993). In this 

work the r2 value for model predicted vs observed values was in the range o f 0.8 and 

the average mean prediction error was 7%. Figure 6-1 shows the shape o f the 

lactation curves for the three groups o f cows, the arrows indicate the point in the 

lactation curve used as a parameter in the CM.

Notice that the curves for first and second calvers are almost linear and that in 

none o f the curves a proper lactation peak was observed. This may be explained by 

the fact that the nutrition in these cows did not allow them to reach a lactation peak 

or if  it was achieved persistency was very short, as in the third calver cows. Similar
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shapes have been reported for cows in similar production systems (Madalena et al., 

1979).

Figure 6-1. Fitted lactation curves

W eight and weight change in other cattle: Because no data was available on the 

growth curve for animals from birth to calving which could be used as parameters for 

heifers and other cattle, it was decided to use the Gompertz model for growth (Gill 

and Oldham, 1993) in order to simulate body weight change over time, and then use 

this information as an estimated body weight to input to the cow model. The 

Gompertz growth model was used to predict live weight and live weight gain for 

heifers and other cattle. Two points in the growth curve for HEIF were simulated in 

the CM, pregnant and non-pregnant heifers. The same approach was used for calves 

and bulls, where two points o f the growth curve were simulated for calves and only 

one for steers and bulls. Initial growth parameters were taken from Vera (1991) and 

modified in order to achieve the live weights shown in Table 6-4.
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Two factorial experiments were designed to simulate dry and wet season feeding 

strategies for all the cattle classes in the herd. The mixed-forage rations and farmer’s 

concentrates in Table 6-3 were used in the factorial experiments. One more 

concentrate was included in both experiments, a commercial concentrate (Conc-6), in 

order to compare farmers’ concentrates against a typical commercial one. Nutritional 

parameters for this concentrate were taken from Herrero (1997). Table 6-5 shows 

the experiment for the dry season where 976 strategies were simulated. Table 6-6 

shows the wet season experiment where 992 strategies were simulated.

More feeding strategies were simulated in the wet season because two forages 

were tested for calves, steers and bulls as opposite to the dry season where only one 

forage was tested. It was observed that despite that there are more forage types 

available during the wet season, the forage diet for these cattle classes is still based 

on stover. Therefore it was considered important to simulate the inclusion o f better 

quality forage for this cattle too, in this case forage 3 (3W) o f the wet season.

6.3. 5. Sim ulating feeding s tra teg ies

Table 6-5. Factorial experiment with dry season feeding strategies

Animal Class 
i=l:3

Subcategory
q=l:4

Forage Dry 
season j= l:4

Concentrate 
Type 1=1:6

Supplement 
ra te  r=l:4

Total

COW S
/=1(T‘ calving) 
/=2(2nd calving) 
t=3(3rd +calving)

<7 = 1  (early lactation) 
q =2(mid lactation) 
<7 =3 (late lactation) 
<7 =4(dry cow)*

/=1 (forage D l) 
y=2(forage D2) 
7 =3(forageD3) 
7=4(forage D4)

Cone-1 
Conc-2 
Conc-3 
Conc-4 
Conc-5 
Conc-6

r=l( 0 kg/d) 
r=2(2 kg/d) 
r=5(4 kg/d) 
i-4 (6  kg/d)

936
H EIF <7 = 1  (non pregnant) 

q =2(pregnant)
7=1 (forage D l) Cone-1 

Conc-6
r=l( 0 kg/d 
r=2(2 kg/d 
r=3(4 kg/d 24

O
T

H
E

CALF <7 =1( 6 months ) 
q =2(6-12 month)

7=1 (forage D l) Conc-1
Conc-6

1—1(0 kg/d 
r=2( 1 kg/d

8

STEE <7 =3( >12 months) 7=1 (forage D l) Conc-1
Conc-6

r=l (4 kg/d 
r=2( 6 kg/d

4

BULL q =4(> 2 years) 7=1 (forage D l) Cone-1 
Conc-6

r=l(2 kg/d 
r=2( 4 kg/d

4

*Dry cows across all forages and concentrates were tested at a fixed supplementation rate (r=3).

For feeding strategies for dry cows (z=l:3, <7=4) in both seasons only concentrate 

supplementation rate 3 was tested, since it was observed that cows in this state 

normally don’t receive more than 4kg per day. Since the model does not predict live
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weight gain associated to pregnancy, it was decided to simulate forage intake across 

all the forages and concentrates types at a fixed supplementation rate in order to 

reduce the computer time required to run the model for the whole experiment.

Table 6-6. Factorial experiment with wet season feeding strategies

Animal Category 
¡=1:3

Subcategory
q=l:4

Forage Rain 
season j= l:4

C oncentrate 
Type 1=1:6

Supplement 
ra te  r=l:4

Total

COW S
<=l(lst calving) 
/=2(2"d calving) 
¿=3 (3 rd + calving)

<7 = 1  (early lactation) 
q =2(mid lactation) 
q =3 (late lactation) 
q =4(dry cow)*

7=1(forage W l) 
y=2(forage W2) 
j  =3 (forage W3) 
j=  4(forage W4)

Conc-1
Conc-2
Conc-3
Conc-4
Conc-5
Conc-6

i - l ( 0  kg/d) 
r=2( 2 kg/d) 
r=5(4 kg/d) 
r=4(6 kg/d)

936
H EIF 9 = 1  (non pregnant) 

q =2(pregnant)
7=1 (forage W3) Conc-1

Conc-6
#•=7(0 kg/d) 
r=2(2 kg/d) 
r=5(4 kg/d) 24

O
T

H
E

CALF q =1(6 months) 
q =2(6-12 month)

y=l(forage Dl**) 
y=l (forage W3)

Conc-1
Conc-6

1-1(0 kg/d) 
r=2( 1 kg/d) 16

STEE <7 =3( >12 months) 7=1 (forage Dl**) 
7=1 (forage W3)

Cone-1 
Conc-6

r=l( 4 kg/d) 
r=2(6 kg/d) 8

BULL q =4(> 2 years) 7=1 (forage Dl**) 
7=l(forage W3)

Conc-1
Conc-6

r= l(2 kg/d) 
r=2( 4 kg/d) 8

*Dry cows across all forages and concentrates were tested at a fixed supplementation rate (r=3). ** Forage D1 o f  the dry season 
was tested because it is the main forage fed to these classes o f cattle even during the wet season.

6.4. Model predictions

Because forage intake was not measured during the fieldwork it was difficult to 

validate the CM in the way the other two models used in this work were validated. 

Since forage intake is the driving variable o f the model and is responsible for the 

amount o f nutrients supplied to the animal for maintenance and production activities 

it would had been incorrect to validate the model using only milk yield observations 

measured during the fieldwork. Herrero (1997) validated the model for forage intake 

against 23 tropical and temperate forages, and reported that the model explained 65% 

o f the variation in observed intakes with a mean prediction error o f 5%. From the 

analysis o f the results it is suggested that model predictions for milk yield for the 

different feeding strategies simulated are within the range o f the milk yields observed 

in the field and those reported by Arriaga et al., (1997a) and Castelan et cil., (1997).
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Due to the large number o f feeding strategies simulated and the size o f the output, 

the results presented in this section correspond only to the cows in their third 

lactation (z=3) and early lactation stage (¿7=1). Model predictions for milk yield and 

forage intake that were observed in the first and second calving cows are similar to 

those observed in this group o f cows. Appendix 3 shows the CM predictions for all 

the cow classes simulated. Model predictions for HEIF and OTHE cattle are 

presented in Appendix 3 too. Due to the size o f the output file, only a summary o f the 

output for both the dry and the wet season is presented.

The dry season feeding strategy which produced the highest response in terms o f 

milk production (17kg o f milk) was forage D4 supplemented with the concentrate 

Conc-6, at a rate o f 6 kg o f concentrate per animal per day (r=3). Figure 6-2, shows 

predicted milk yields for forage D4 supplemented with all concentrates. It is 

observed that Conc-6 produced the highest response across all the supplementation 

rates (2, 4 and 6 kg/d/cow) when compared with the other five concentrates tested. 

Concentrate number one produced the second highest response (13.6 kg), followed 

by concentrates number 2 and 4 (12.6 and 12.2 kg respectively), which have similar 

composition (see Table 5-3). Concentrate 3 and 5, presented the lowest predicted 

milk yields when were fed with forage D4 (11.1 and 10.4 kg respectively).

It is suggested that these results are consistent with the nutritional characteristics 

o f the mixed-forage rations and concentrates shown in Table 6-3 and with their 

composition in terms o f their basic ingredients (Tables 5-3 and 5-2). For example, 

Conc-6 is high in soluble material and low in NDF and its degradation rate is among 

the highest in all concentrates (see Table 6-3). Forage D4 has 30% o f improved 

pasture; its NDF is more degradable and its degradation rate is slightly higher than 

the rest o f the dry season forages. These factors probably resulted in more nutrients 

being supplied to the animal due to increased degradation and outflows rates, 

particularly in the concentrate, and possible increased forage intakes. Therefore, it 

was not surprising that higher milk yields were observed in this feeding strategy 

when compared to the other dry season feeding strategies. Despite important

6 .4 .1 . Model predictions for Dry S e a so n  feeding s tra teg ies
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differences in the predictions for concentrates, the differences between forages are 

not so important, as is described later in this section.

Particular attention should be paid to the fact that concentrates 1 to 5 when 

supplemented at a rate of 2 kg per day depressed milk yield (Figure 6-2). Concentrate 

5 produces the same effect when supplemented at 4 kg per day and only returned to 

the initial intake level (only forage) when the supplementation rate is increased to 6 

kg/d. Concentrate 6 is the only concentrate that did not depress milk production 

when supplemented at the lower rate. These results can be explained by higher 

substitution effect produced by concentrates 1 to 5 associated with the lower 

nutritional quality, particularly high levels o f NDF. The substitution effect o f the 

different concentrates is explained in section 6.4.1.2. of this chapter.

Figure 6-2. Predicted milk yield for 3 rd  calving cows in their early lactation (¿=3, q= 1) fed forage 
D4 and concentrates 1 to 6

1 8

O)JC
2
a>

D 4 - C O N C 1  D 4 - C O N C 2  D 4 - C O N C 3  D 4 - C O N C 4  D 4 - C O N C 5  D 4 - C O N C 6

Feeding strategy

kg conc/cow/d

The commercial concentrate, Conc-6, also produced the highest response in terms 

o f milk yield when it was supplemented to the rest of the forage rations tested for the 

dry season. For example, Figures 6-3 and 6-4 show that when CONC-6 is 

supplemented to forage D1 and D3 the same response pattern described for forage
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D4 above is repeated with these forages too. Figure 6-3 and 6-4 also show that 

concentrate number Conc-1 produced again the second highest milk yield, followed 

by concentrates 2 and 4, while the concentrates 3 and 5 produced the lowest milk 

yields. In addition, notice that forages D3 and D4 presented slightly higher milk 

yields (0.44 and 0.8 kg/d respectively) than forage D l, particularly when 

supplemented by Conc-6. This could be explained by the content o f improved 

pasture in these mixed forage rations.

Figure 6-2 shows that the difference between milk yields predicted by 

supplementing Conc-1 and Conc-6 at a rate of 6 kg/cow/d to forage D4 was o f 3.4 kg 

o f milk/d; this difference is increased to 5.8 kg when Conc-6 is compared to Conc-3, 

which is a lower quality concentrate. Figures 6-3 and 6-4 show that a response of 

similar magnitude was observed when Conc-6 was compared with the rest o f the dry 

season forage rations.

Figure 6-3. Predicted milk yield for 3 rd  calving cows in their early lactation (/=3, q= 1) fed forage 
D l and concentrates 1-6

D1-OONG3 DI-OONOt 

Feeding strategy

.
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Figure 6-4. Predicted milk yield for 3rd calving cows in their early lactation (7=3, ^=1) fed forage 
D3 and concentrates 1-6

18 
16 -  

14 -
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Feeding strategy
□ 0  □ 2 □ 4 q 6

Low milk yield predicted for Conc-3 and Conc-5 are consistent with the fact that 

these concentrates have the lowest nutritional quality among all the concentrates 

since they are formed by more than 70% of chicken manure, high content of NDF 

with a low proportion o f NDFD (0.52 to 0.54%), and low quantity o f soluble C.H. 

due to small proportion o f grains or other sources o f energy (Tables 5-3 and 6-3). 

Therefore, if  supplemented to cattle they will supply reduced amounts of nutrients to 

the animal, particularly soluble CHs, which are converted into Fermentable 

Metabolisable Energy (FME) in the rumen. FME plays a fundamental role in 

microbial growth and rumen functioning because energy supply is normally the first 

limiting factor on microbial protein synthesis (AFRC, 1993).

FME is the Metabolisable Energy (ME) content o f a feed or diet as MJ/kg DM, 

less the ME content present as total oils and fats and the ME contribution of 

fermentation acids. Because concentrates Conc-3 and 5 are rich in chicken manure it 

is quite likely that energy will be the main limiting nutrient for correct microbial 

growth and rumen functioning. Chicken manure is a cheap source of non-protein
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nitrogen in the form o f urea (Preston and Leng, 1987), so it is likely that rumen 

microbes do not suffer from lack o f protein. Under ideal conditions the effective 

rumen degradable protein (ERDP) supply should exactly match the supply o f FME 

supply (AFRC, 1993). The ERDP/FME energy ratio threshold for adequate rumen 

environment is 9:1 for maintenance and low yielding cows (Oldham, 1984).

ERDP (g/d) is a measure o f the total nitrogen x 6.25 supply captured by the 

microbes, whether as non-protein N and/or intact soluble protein in the QDP, or 

degraded protein moieties, SDP (Webster, 1992; AFRC, 1993). Model predictions 

indicated that supplementation with Conc-3 and Conc-5 across all the simulated 

forages does not meet the required ERDP/FME relation mainly due to the low energy 

content o f the diet as a whole. Figure 6-5, demonstrates this more clearly where the 

ERDP/FME ratios were calculated from the output o f the model for three 

concentrates supplemented to forage D4. Conc-1 represents a case where energy and 

protein are close to the adequate ratio, Conc-6 is a case where there is sufficient 

energy but there is not enough ERDP to support adequate microbial growth. Conc-5 

represents a case where there is not sufficient energy to support microbial growth, 

but there is plenty o f ERDP since the ratio is quite far from the required threshold 

which is 9.

This type o f information is very valuable because it allows evaluation o f current 

feeds and the formulation o f better ones, thus the decision support is more effective. 

For example, although the feeding strategy D4+Conc-6 produced the highest 

response it still requires some ERDP protein to achieve optimum protein-energy 

ratio, so supplementation with urea or chicken manure could improve the nutritive 

value o f this ration. D4+Conc-5 requires the opposite: more energy which allows the 

use o f the surplus N in the rumen. Moreover, results in Figure 6-5 indicate that too 

much non-protein nitrogen is being fed which could be toxic to the animal.
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Figure 6-5. ERDP/FM E ratio for CONC-1, 5 & 6, supplemented to forage D4

Since the effects o f energy and protein, at ruminai level, are adequately 

represented by the CM, it is not surprising then that Conc-6 and 1 presented the 

highest response, and CONC-2 and 5 the lowest. Results in Figure 6-5 suggest that 

Conc-1 presented a better balance o f energy and protein given by a substantially 

larger amount o f grain (48%) and lower chicken manure content (28%) which 

together with maize stover were responsible for a reasonable high milk yield. In fact 

it can be suggested that Conc-1 presented the best response among all farmers' 

concentrates.

However, these results have to be taken cautiously since the model is more 

sensitive to the energy content of the diet than to the protein content. Because while 

the protein-energy interactions are properly accounted for at ruminai level (dynamic 

section), it does not occur at the static section where the animal requirements for 

protein and energy are calculated.

For example, the CM does not consider metabolisable protein requirements- 

supply for lactation when calculating milk yield, and only ME requirements are used.
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Therefore, the model is more sensitive to the energy content o f the diet than to the 

protein when calculating milk yield.

Results presented so far suggest that that it may be more convenient for farmers to 

supplement primarily concentrate number six and secondly concentrate one. 

However, while Conc-6 has produced the highest response to supplementation it 

quite likely that its higher price prices will limit its used under some circumstances. 

It was observed that commercial concentrates were fed (when used) mainly to high- 

performance cows, whereas the rest o f the cattle normally received normal farm 

made concentrates. The farm model described in Chapter 7 accurately simulates this 

observation.

Figures 6-6 and 6-7 show predicted milk yield for cows fed all the forages tested 

in the dry season, with concentrates 1 and 6. It can be seen that all the forages 

presented very similar milk yields when fed alone without any concentrate. However, 

when the concentrates were added to the diet, only a small difference is observed 

among the different feeding strategies. This difference is mainly between forage D1 

and forages D3 and D4. These figures also show that forage D2 presented the lowest 

response when fed alone, probably because of the low quality o f the silage used by 

farmers. The small difference observed between the forages may suggest that the use 

o f improved pasture is having a limited effect particularly when is fed without any 

concentrate.

These results suggest that the inclusion o f relative low quantities o f improve 

forage, as in forage D3 and D4, has a small effect milk yield when compared with 

those cows which are fed with maize straw alone, as in forage D l. However, only a 

limited number o f strategies were tested and different rates o f IP inclusion may need 

to be tested.
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Figure 6-6. Predicted milk yield for 3rd calving cows (/=3,<p=l) fed all dry season forages and 
concentrate 1.
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Figure 6-7.Predicted milk yield for 3rd calving cows (i=3,q=l) fed all dry season forages and 
concentrate 6.
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It was observed that predicted forage intake was similar for all the dry season 

forages when these were fed alone without any concentrate. This is not surprising 

because maize stover is the main ingredient o f all dry season mixed-forage rations, 

so forage D1 intake was not very different from the intakes o f forages D2, 3 and 4. 

Figure 6-8 shows that the major effect on forage intake was produced by concentrate 

supplementation. This practice produced different forage intakes, particularly at high 

rates. This is more evident in the case o f concentrates 1, 5 and 6, where Conc-5 

reduced forage intake and Conc-1 and 6 increased it, see Figure 6-8.

Furthermore, it was observed that forage intake predicted by the model provided 

better estimates o f intake than the "standard formulation systems" used by 

researchers at CICA. For example Arriaga (1996) estimated an intake o f 8 kg of 

maize stover DM for a cow o f similar characteristics to the one used in Figure 6-8, 

while the model estimated an intake o f more than 9kg o f DM.

Figure 6-8.. Predicted forage intake for D4-CONC1-6 feeding strategy (in kg of DM/cow/d).

6 .4 .1 .1 . F o rag e  intake

D4-CONC1 D4-CONC2 D4-CONC3 D4-CONC4 D4-CONC5 D4-CONC6

Forage intake (kg/cow/d)
kg conc/cow/d

□  0 « 2 q 4 | ] 6

This author used the MAFF (1984) simple regression model to calculate potential 

dry matter intake (DMI), where DMI= 0.025W + 0.1Y (in Am aga, 1996). MAFF
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(1984) model only uses animal factors to calculate intake such as liveweight (W) and 

milk yield (Y), but it does not include food factors. Food factors such as the 

solubility o f the roughage, the insoluble but potentially fermentable fraction, its 

degradation rate, and their effects on the rumen outflow rate are key determinants of 

intake o f crop residues and other low quality forages (Shem et al., 1995). However, 

most simple and multiple regression models for predicting intake do not include 

these factors (Lonne, 1994). Considering that food and animal factors are represented 

in the CM  we can be sure that predictions for forage intake are more accurate than 

those calculated by Arriaga (1996) using standard formulation systems.

6.4.1.2. Forage-concentrate substitution rate

It was observed that all the concentrates made by farmers (CONC-1 to CONC-5) 

produced a reduction in milk yield when supplemented at low doses instead of 

producing an increment in yield as it normally occurs when supplementing 

concentrates, for example Figures 6-2, 6-3 and 6-4 show that 2 kg o f concentrates 1 

to 5 resulted in lower milk yielded than when not concentrate was supplemented. 

These results can be explained by two main factors, firstly the substitution effect 

produced by the concentrates over the forage intake and secondly the low quality o f 

the concentrates made by farmers. This is consistent with the finding o f Jackson et 

al., (1991) who mention that the composition o f the compound can affect the 

efficiency o f milk production in two ways, firstly by affecting the yield o f milk solids 

and secondly by affecting the substitution rate.

Depression in milk yield was more obvious in the case o f concentrates 3 and 5 

(the lowest quality concentrates) and less evident for concentrates 2, 1 and 4. 

Concentrates 5, 1 and 6 were selected as an example o f concentrates o f bad (B), low 

(L) and good (G) quality in order to facilitate the explanation o f these effects. 

Already mentioned no reduction in milk yield was observed when concentrate 6 was 

supplemented, a small reduction was observed when concentrate 1 was supplemented 

and the higher reduction was observed when concentrate 5 was supplemented (see 

Figures 6-2, 6-3 and 6-4).
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Substitution effect: Figure 6-9 shows the forage-concentrate substitution rates for 

the forage D4 and concentrate 1, 5 and 6. Concentrates 5 produced the highest 

substitution rates over this forage but also across all the forages tested for the dry 

season, concentrate 1 produced a lower substitution rate and concentrate 6 produced 

the lowest substitution rate. These results are consistent with the model prediction for 

milk yield, where concentrate 5 produced the highest reduction in milk yield and 

concentrate 6 produced an increment in milk yield. According to Broster and Thomas 

(1981) when forage is given ad libitum the addition o f a concentrate supplement 

depresses forage intake but increases total intake. The depression in the intake o f the 

forage (unit o f forage AF) produced by a unit o f change in the intake o f a concentrate 

(AC) is termed the "substitution rate". The type o f concentrate, the level o f 

concentrate and the digestibility o f the forage (Broster and Thomas, 1981; Leaver, 

1988) can influence substitution rate.

In the case o f concentrate 5 the higher substitution rate is produced by its high 

content o f NDF (240 g/kg o f DM), the low degradability o f its NDFD (0.54%) and 

the very low degradation rate o f the NDF (0.042) o f this concentrate (see Table 6-3 

for values). In fact, the degradation rate for concentrate 5 is quite similar to the 

degradation rates o f the forages. Therefore, forage and concentrate are competing for 

space in the rumen since both are degraded at similar rates, a normal concentrate is 

quickly degraded and eliminated from the rumen but this does not occurs in the case 

o f this concentrate which takes longer to be eliminated from the rumen.

Results in Figure 6-9 are in close agreement with the degradation characteristics 

o f the concentrates. The better quality concentrates such as 6 and 1 are degraded 

faster and spend less time in the rumen than the bad quality one, mainly due to higher 

outflow rates. Thus these concentrates produce smaller substitution rates. Increased 

degradation and outflow rates mean that these concentrates leave the rumen faster 

than the other concentrates therefore forage intake is less affected (Preston and Leng, 

1987; AFRC, 1993). It is also important to mention that substitution is a competition 

between passage and degradation in the rumen and this is a non-linear process as 

shown in Figure 6-9.
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Figure 6- 9.Forage-concentrate substitution rate

A similar situation occurs in the case o f concentrate 1 that is also high in NDF 

(231 g/kg o f DM) although its degradation rate is higher than the previous 

concentrate and similar to the concentrate 6 which explains the lower substitution 

rate observed in this concentrate and the lower reduction in milk yield than in 

concentrate 5. Both concentrates are low in soluble CH due to their low content of 

grains i.e. concentrate 5 has 10% of ground maize and concentrate 1 has 48% of 

ground maize (see Tables 5-3 and 6-3).

Moreover concentrate 1 has 28% of chopped stover, whilst concentrate 5 has 75% 

o f chicken manure which is also an important source o f fibre because o f its content 

o f stover. Stover is used as bedding for broilers, therefore, the chicken manure used 

by farmers at the Toluca Valley is in fact a mixture o f chicken droppings and stover. 

Concentrates made by farmers are quite different from the traditional dairy 

compounds which are based on cereals which provide an energy source in the form 

of starch. Starch is readily available to the rumen microbes however, when large 

amounts are ingested a fall in pH together with a decrease in the ratio o f acetic to 

propionic acids is observed in the rumen liquor (Jackson et al., 1991).
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It is suggested that the high content o f NDF in the concentrates made by farmers 

is largely responsible o f the reduction in milk yield observed when these are 

supplemented at low doses. Figure 6-10 shows the effect of different levels o f NDF 

in concentrate 1 on milk yield. It is clear that high levels o f NDF in concentrate 1 

results in a drop in milk yield when it is supplemented at a rate o f 2 kg per day or 

less, recall that the NDF content o f concentrate 1 is 230 g o f NDF per kg o f DM (see 

Table 6-3). For example there is not drop in milk yield when the NDF content o f the 

concentrate is between 100 and 140 g/kg o f DM but levels above 160 g/kg o f NDF 

per kg o f DM produced a drop in milk yield when the concentrate is supplemented at 

a rate o f 2 kg/day/animal (Figure 6-10).

Figure 6-10. Effect of different levels of NDF (g/kg of DM) in concentrate 1 on daily milk yield

Kg of concentrate/day/cow
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Figure 6-10 also shows that rates o f concentrate supplementation higher than 3 

kg/d resulted in an increment in the milk yield even at the highest content of NDF in 

concentrate 1. This increment in yield is produced by the higher energetic value o f 

the ration as a whole (forage+concentrate) achieved at higher supplementation rates. 

Figure 6-11 indicates how the qm value of the diet increases as the supplementation 

rate also increases, also notice that higher qm values were predicted at lower NDF
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contents o f the concentrate. Higher supplementation rates increase the energetic 

value o f the diet or qm value, this in turn makes the efficiency o f utilisation o f the 

energy for the different physiological process more efficient. In other words, the 

higher the qm value o f the diet, the more efficient is the utilisation of the 

metabolisable energy by the animal. For example, at higher qm values the efficiency 

o f utilisation o f the energy for lactation is higher (AFRC, 1993) therefore an 

increment in milk yield is observed.

This can explain the increment in milk yield observed at supplementation rates 

above 3 kg o f concentrate per day, however it is suggested that the increment in the 

metabolisability o f the diet at two kg o f concentrate per day is not sufficient to 

increase milk yield and that the substitution effect of the concentrate over the forage 

intake is more important.

Figure 6-11. Model predicted qm value for the dry  season diet F4D+Conc-l with different levels 
of NDF in the concentrate

The response to increasing amount o f concentrates is well documented and it 

varies with the amount o f concentrate but consist primarily of a reduction in forage 

intake but increases in total DM and digestible energy intakes, milk yield and milk 

protein concentration with variable effects on milk fat concentration (Sutton et al.,
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1994). Due to the characteristics o f the concentrates made by farmers is likely that 

the response predicted by the model differs from the one observed by these authors 

particularly in milk yield.

Changing qm values in the total diet also affect the ME requirements o f the 

animal because the ME requirement are not constant for a given animal but are a 

product o f animal/feed interactions as shown in Figure 6-11 (AERC, 1993). For 

example at high supplementation rates the qm value o f the diet as a whole also 

increases therefore less ME energy is required by the animal because the efficiency 

o f utilisation is higher. Changes in the qm value o f the diet also affect the passage 

rates since the passage rates are scaled according to feeding level on multiples o f ME 

above maintenance. Therefore if  ME requirements are changed the passage rates also 

change because these are not constant (Flerrero, 1997). This dynamic functioning o f 

the system also explains the variable substitution rates, which depends on the 

amounts o f feed given to the animal, observed in Figure 6-9.

It is suggested that the observations above described must be validated with 

experiments involving cows o f similar characteristics o f the ones simulated here. 

However, exist some evidence that suggest that supplementing cow with low quality 

concentrates produces a high substitution effect and a reduction in milk yield and 

forage intake. For example Espinoza and Martinez (1989) and Jaime and Castelan 

(1990) found that supplementing cows under continuos grazing o f Rye grass (Lolium  

perenne) with 4 kg o f wheat bran produced a not significant effect on milk yield 

(P>0.05) and in some months of the experiments reduced milk yield in the 

supplemented groups o f cows when compared with the control cows (non- 

supplemented cows).

Finally, the fact that protein-energy interactions o f feedstuffs at ruminal level, the 

response to concentrate supplementation and forage-concentrate substitution rates 

and their effects on milk yield can be evaluated through the CM represents a real 

improvement compared to the traditional system o f feed formulation. Moreover, two 

o f the fundamental variables in designing improved feeding systems, 1) The amount 

and balance o f nutrients required for production and, maintenance and 2) The

139



quantitative availability (solubility) o f nutrients from the diet, can be evaluated 

through the CM. It is possible to suggest that the development o f model like the one 

used here offers a great potential to both designing improved feeding systems and as 

a decision support tool. For example, results in Figure 6-9 suggest that 

supplementing cows with 2 kg o f farm-made concentrate could actually reduce milk 

yield, so it may be worthwhile for fanners to feed higher rates o f concentrate in 

order to obtain a better response.

6.4.2. Model predictions for wet season feeding strategies

Because o f the larger number o f forages available during the wet season and the 

greater difference in their nutritional characteristics it is not surprising that bigger 

differences in terms o f milk yield and forage intake, either when fed alone or 

supplemented with concentrates, were predicted by the CM. Figure 6-12 displays the 

model's prediction for all the mixed-forage rations supplemented with concentrate 

CONC-1. This figure clearly indicates that the CM was able to capture the 

differences in the degradation characteristics among the forage rations shown in 

Table 6-3. For example, the highest milk yields were achieved when forages W3 and 

W2 were fed (15.6 and 15.4 kg o f milk/cow/d respectively), followed by forages W4 

and W1 (13.9 and 12.9 kg o f milk/cow/d respectively). Milk yield predictions for this 

season are in close agreement to the yield levels registered during the fieldwork and 

those reported by Arriaga et cil., (1997a) and Castelan et al., (1997).

Recall that mixed forage rations W2 and W3 contain 30% and 40% o f green 

maize fodder (GMF), which as mentioned in Chapter 6 provides important quantities 

o f soluble and insoluble but degradable CHs. It is suggested that the high content of 

these nutrients was responsible for higher milk yields because the CM is particularly 

sensitive to the energetic content o f the foodstuff as a whole. Results illustrated in 

Figure 6-12 justifies the fact that fanners prefer to used this forage and are willing to 

allocate important amounts of labour for its harvest and transport.
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Figure 6-12. Predicted milk yield for 3rd calving cows in their early lactation (i=3, q= l) fed all 
the forages and CONC-1
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Moreover, notice that the mixed forage ration 4W, which contains an important 

proportion o f improved pastures, produced less milk than the forage rations that 

contain GMF. Although improved pastures are in general better quality forages, it 

was observed that as a whole they supply less CH to the animal than GMF and this 

may explain model predictions for these particular forages.

Figures 6-13 shows that model prediction for the same forages but supplemented 

with concentrate Conc-6 resulted in a similar response pattern to that described for 

Conc-1. However, notice that even higher milk yields were predicted for these 

feeding strategies. These results are consistent to the predictions observed for the dry 

season, where the highest milk yields were observed when this concentrate was 

supplemented. In the same way, Figure 6-14 shows model's predictions for all the 

forages supplemented with Conc-5. Again it can be observed that supplementation 

with a low quality concentrate such as Cconc-5 resulted in low milk yields even for 

wet season forage rations.
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Figure 6-13.Predicted milk yield for 3 rd calving cows in their early lactation (i=3, q = l) fed all the 
forages and Conc-6
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Figure 6-14. Predicted milk yield for 3rd calving cows in their early lactation (i=3, q= l) fed all 
the forages and CONC-5
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Finally it is possible to suggest that model predictions for the rainy season 

presented a wider range o f response not only for concentrates as it occurred in the 

dry season, but also for forages too. The forage-concentrate interactions are more 

clearly illustrated in the wet season too, but also a clear differentiation can be 

observed between the response obtained by feeding the forages alone and 

supplementing them with the different concentrates.

6.5. Conclusions and future research

The approach described in this chapter allowed to evaluate the effects o f protein- 

energy interactions o f feedstuffs at ruminal level, the response to concentrate 

supplementation and forage-concentrate substitution rates and their effects on milk 

yield. These are only some of the elements, which could not be properly evaluated 

through traditional methods. This represents a real improvement compared to the 

traditional system o f feed formulation. Moreover, the fact that thousands o f different 

feeding strategies can be simultaneously evaluated represent a facility not easily 

available at any research station. However, it is suggested that the model needs to be 

extensively validated against field data particularly for feed intake from feeding 

systems with diverse low quality forage and concentrate source.

The model also needs to be improved to incorporate protein requirements in the 

calculation o f milk yield in order to provide better estimates o f animal performance 

when the protein content o f the diet varies widely or when is limiting. Finally it is 

suggested that the model offers great potential for the design o f improved feeding 

systems in developing countries particularly when the economic conditions limit the 

size o f experiments in research stations and no better estimates can be obtained by 

other methods.

143



Chapter 7. Integrated farming system model

7.1. Introduction

This chapter describes the characteristics and functioning o f the Decision Support 

System, which in effect is an Integrated Farming System Model (IFSM) because it 

integrates all the other elements o f this work into one model. The IFSM was 

designed to emulate the typical campesino maize-cattle production system o f the 

northern region o f the Toluca Valley (MLPS), and to support the decision making 

process o f farmers in this system. The structure o f the model is flexible to 

accommodate the multicropping system observed in Tenango del Valle (IMLPS).

In essence, the household, maize production and cattle production are the key 

components in both systems. It was considered important to develop a generic model 

that includes these three activities while it can be extended to incorporate more 

cropping activities. It is acknowledged that while the structure o f the IFSM can be 

modified to simulate the fanning systems observed in the southern part o f the Valley 

(Tenango del Valle), more integrated biological models are required to simulate the 

multicropping and intercropping cultivation systems observed in this region. Such 

models have been created but they required considerable more information to 

calibrate and most o f them have never been tested with data from the tropics, making 

their applicability for the tropical countries unclear (Caldwell et al., 1996).

The construction o f the IFSM was based on detailed data on the characteristics 

and functioning o f the target farming system, its natural and economic resources, as 

well as the social characteristics of the fanners, obtained during the survey work 

described in Chapter 3. Data from other surveys carried out in the same area by 

CICA’s researchers was also included in the farm system modelling exercise 

(Arriaga et al., 1997b; González, 1997; Vizcarra, 1997; Woodgate, 1997; Castelán et 

al., 1997).
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This knowledge was the key factor in developing an IFSM that could be used to 

emulate the campesino maize-cattle production systems in a practical and realistic 

manner. Understanding o f the farming system was the first step in the construction 

process. Several authors have recognised the importance o f accurate knowledge o f 

the farming system in the development o f decision support tools. Sharifi and Van 

Keulen (1994) proposed that the development o f such tools requires an 

understanding o f the system, its constituent processes and their impact on system 

behaviour. Moreover they mention that understanding the agricultural system 

requires synthesis o f important biological, managerial and economic processes o f the 

system, and, for actual operational planning, an integrated model that combines all 

these interrelated processes is needed.

The IFSM has the potential to be used as a decision support tool for both campesinos 

and policy planners. In the first case campesino farmers are frequently faced with 

operational decision problems with respect to land use, such as what commodities to 

produce, on which tract o f land, by what method, in which seasonal time period, and 

in what quantities. In the second case the effects o f some policies for this particular 

farming system could be evaluated before their application. In both cases, decision­

makers need tools to analyse a variety o f information in such a way that the 

consequences o f various strategies or options can examined before their 

implementation.

The IFSM reproduces the functioning o f the main components o f the farming 

system: the household, maize and cattle production activities. More importantly it 

simulates the interactions among them and how these are influenced by the non- 

biological parts o f system, such as the climate. This representation was possible due 

the interaction o f the two biological simulation models used in this work with the 

IFSM. The maize model simulated 744 different technologies to cultivate three 

varieties o f local maize under rainfed or irrigated conditions. The cow model 

simulated 1872 feeding strategies for lactating cows alone.

The model was refined to the point o f making it simulate complex interactions 

observed between the fanners and their maize crops. Traditional management

145



practices for this crop include different planting population, thinning and scotching 

o f  the green maize stover and the cut and carry o f the weeds that grow in the maize 

fields (see Chapters 4 and 5 for description). The model simulated the effects o f these 

practices on the feeding systems for cattle and on the household's labour demand. 

The IFSM also determines on a monthly basis the most efficient use o f the different 

products generated within the system, such as grain, stover, and other forages.

The IFSM selects from the cattle feeding systems generated by the cow model 

(see Figure 7-1) the best option for the different classes o f animals within the farm 

herd. A normal output o f the model includes a monthly statement with the forage 

type, concentrate type and supplementation level fed to all animal classes in the herd. 

Moreover, it differentiates between the dry and wet seasons, and allocates the best 

strategy month by month o f each season and decides whether or not it is worth 

feeding concentrate supplements.

The information considered by the model in the selection o f the feeding strategies 

included: the availability o f the different forages, as influenced by their growing 

season, the type and yield o f the maize variety(s) cultivated, and the milk yield 

attained by feeding the different diets. The model is therefore able to incorporate 

seasonal variation and cropping patterns effects on the type, amount and quality o f 

the different forages produced in the farm to fed cattle. This is an option not seen in 

similar models (Brockington et al., 1983; Nicholson et al., 1994; Mainland, 1994). 

On the other hand, the IFSM can not select any other feeding strategy than those 

tested in the cow model nor can interpolate or extrapolate elements between diets 

because it does not simulate the animal’s response and the diet formulation is done in 

the cow model (see Chapter 6). The IFSM only selects the best feeding strategy from 

those presented by the cow model as an input file to the IFSM.

The model's objective function defines the optimal combination o f activities, 

which maximizes the farm's gross revenue (optimisation model). The author is 

aware that this approach may have some limitations, since the objective function may 

not be a satisfactory representation o f all the farmers' priorities. Other issues may be 

required to be addressed in the objective function, such as reduction o f risk
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associated with the adoption o f a new technologies, minimisation o f labour or even 

the social status within in the community (Romero and Rehman, 1989; Maino et al., 

1993; Delforce, 1994).

However, on the one hand, it is believed that a satisfactory level o f accuracy was 

achieved with this model, probably because fanners are optimisers as well. And on 

the other hand, a multi-objective programming model approaches goes beyond the 

scope o f this work, since more data and time are required to completed this task. 

Finally, a better assessment on the success or failure o f this model to simulate the 

target farming system must be earned out in conjunction with the fanners who are 

the final beneficiaries o f the technologies developed and tested by the model.

7.2. Materials and methods

There are many possible combinations o f cropping and livestock production 

patterns, and different levels o f inputs and natural resources use, there are as many as 

farmers in the region. Therefore, it was decided to develop a generic model that 

could be applied to different farmers within the region (using similar farming 

systems), with only minor changes in relevant coefficients and subscripts o f the state 

variables. Mr. Luis González’s farm served as case study farm on which the model 

construction was based. Once completed, the model was tested on two more case 

study farms.

The farms o f Mr Luis González, Mrs. Lidia Estrada and Mr. Juan Valdez were 

monitored throughout 1996. The data gathered was used in the different Chapters o f 

this thesis to calibrate the maize (Mr González’s and Mr Valdez’s farms were also 

monitored in 1997 to gather data to validate the maize model) and the cow models 

and to develop and test the IFSM described here. All the farms are located in the 

community o f Taborda. The case studies represent the range o f farmers that can be 

found in the northern part o f the Toluca Valley.

According to SARH (1991); de Janvry et al. (1995a); and INEGI (1994a) the size 

o f the holding determines the main differences among campesino farmers in Mexico 

where more than 90% of campesinos have less than 5 ha o f land (see Chapter 2).
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Farm size influences the number o f activities and the size o f the enterprises that 

individual farmers can carry out. Based on these criteria the case studies for the 

construction and validation o f the IFSM were selected. Mrs. Lidia Estrada and Mr 

Luis González represent the group o f fanners with less than 5 ha, while Mr Juan 

Valdez the group o f farmers with more than 5 ha o f land. It is suggested that by using 

this approach the main groups o f farmers are represented in the simulation process 

and at the same time the generic nature o f the model was validated too.

7.2.1. Model definition

The integrated farming system model is a multi-period mathematical 

programming model, in which the main aim is to find the optimal combination of 

resources that satisfy the model constraints and maximises the objective function. 

The essential characteristics o f this model are the same as any other LP model: There 

is a single linear expression to be maximised or minimised. There are a series o f 

constraints in the fonn o f linear expressions which must not exceed (<) some 

specified value. Linear programming constraints can also be o f the form > and =, 

indicating that the values o f certain linear expressions must not fall below a specified 

value or must exactly equal a specified value. Finally there is set o f variables which 

describe the system's activities and technical coefficients representing the variables' 

productive response (Dent et al., 1986; Williams, 1991; Winston, 1995).

In this model, the objective function is to maximise the household's annual gross 

cash income (gross revenue). The model consisted of 15,698 structural columns, 

representing the model's activities and 612 rows that represent the constraints to the 

activities. It was developed using XPRESS-MP a mathematical programming 

software, which provided a powerful language for describing the problem (model) in 

the form o f linear equations, so it was not necessary to construct a model matrix 

since the software generated it from the equations (XPRESS-MP, 1997). XPRESS- 

MP also allowed gathering the model's input data from spread sheet flies, this facility 

pennitted the incorporation o f the output o f the two biological simulation models 

used in this work, and the database from the survey work, into the model's routines 

(Figure 7-1).
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Figure 7-1. File structure and functioning of the Integrated Farming System model
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The model runs in monthly periods (m ) o f 30.5 days, 12 o f these periods (m=12) 

represent a complete production cycle (one-year) at the Toluca Valley. The Valley 

presents a marked seasonal variation given by the dry and the wet seasons, both 

determine the occurrence o f the different cropping activities, and the quantity and 

quality o f forages available for cattle feeding. The use o f monthly periods permitted 

the capture o f this variation, especially in the case o f maize production, where the 

different cultivation tasks are determined by the monthly climate conditions 

(Chapter 4). Seasonal variation effects on household’s labour demand are also 

represented.

7.2.2. Files structure and model functioning

The structure o f the IFSM is shown in Figure 7-1. The model is formed by five 

main components, the first component, is the “M odel’s Equations File” (the 

mathematical programming model itself), that comprises a set o f linear equations, 

representing the variables, the constraints and the objective function. A complete 

version o f the equations' file is presented in Appendix 4.

The second component includes the Input Data Files which contain those 

variables whose value is not calculated by the equations o f the model, and the 

variables' technical coefficients used in the calculation o f the their optimum values. 

The value o f these variables and coefficients were calculated out o f the IFSM, by the 

maize and the cow models and from the analysis o f the survey’s database (Figure 7- 

1). Input data files are spread sheet tables saved as Lotus files (w kl). This enabled 

the MP-model module o f XPRESS-MP to read them and generate the m odel’s 

matrix, see Figure 7-1. The other three components are the cow model, the maize 

model and the survey’s database.

XPRESS-MP software is formed by three modules shown in Figure 7-1, the MP- 

M odel module enables the software to read in the file containing the model's 

equations and the Lotus files, that contain the input data (.wkl extension). This 

module also generates the model’s matrix that is read in and solved by the Mp-opt 

module o f XPRESS-MP. The third module is responsible for generating the output
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file (solution), which in this model was approximately 300 pages long, too big for its 

practical analysis.

To facilitate the sensitivity analysis the model's output was exported to a 

spreadsheet file (see Figure 7-1) where the variables for which an optimal solution 

was found were filtered out from those without an optimum value. Through this 

process an efficient method was developed to visualise the m odel’s optimal solution, 

from which recommendations to the fanners can be drawn more easily. Other outputs 

generated by the model were also analysed through this method. These included the 

activities' reduced cost and the shadow prices.

The reduced cost o f a variable shows the amount by which the per-unit 

profitability must increase, before it would become worthwhile including the activity 

not selected by the model. A zero activity and zero reduced cost implies that there 

are alternative solutions with identical objective function values.

The shadow price  represents the marginal value product o f a binding or limiting 

resource. It indicates change to the total gross margin if  one unit o f the resource 

(positive) were added or if  one unit o f the resource (negative) were withdrawn.

The approach shown in Figure 7-1 enabled the development o f a powerful 

Decision Support System where the output o f two deterministic biological models 

interacted together with a mathematical programming model and a survey database. 

The decision support system (IFSM) can be used to simultaneously evaluate 

hundreds o f different maize and cattle production technologies, in different case 

studies with only minor changes in the model’s state variables and in the input data 

files, without the need to change the equations o f the model.

For example, if  the IFSM is run for a new case study, it is only necessary to 

change the household composition, the fann area, and the cattle herd structure as 

shown in Figure 7-1. If  the decision maker wants to test a new technology or a 

different scenario, then the user has to run the biological models to test the new 

technology and the output presented to the IFSM in the form o f input data files.
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Some minor changes to the input file for the variable costs will be required too, 

particularly in the case o f new economic scenarios.

In this section o f the method only the mathematical programming m odel’s 

equations and the Input data files will be described since the other components o f the 

IFSM were described in previous chapters.

7.2.3. Structure and functioning of the model equations

As in similar models, activities were considered processes that produce or 

consume resources o f the farm. Constraints represented the amount o f resources 

(resource restriction) that are available for the farm activities, like available land, 

labour and personal requirements or targets. Restrictions also determined the level o f 

those activities representing a productive process (operational and limits o f the 

activities), they normally express the logical statement what is used (demanded) must 

be less than or equal to what is supplied (Fawcett et al., 1998; Rehman and Romero, 

1993). The Objective Function is the expression o f the purpose o f the model, which 

is maximising farmers’ gross revenue.

Figure 7-2, shows the general structure o f the model's equations, the main groups 

o f variables and the relationships between them and between the input data tables. 

The arrows represent the restrictions to the variables, since the restrictions 

determined the use o f farm resources and the value o f the variables. Figure 7-2 also 

provides a clear representation o f the Activities producing resources and those using 

them. The variables' technical coefficients (input data tables) are shown too, since 

they establish the variables levels. Figure 7-2 shows how the farm resources flow 

from one activity to the other and how the decisions on the model's driving variables 

such as land use are made.

It is important to mention that the main purpose o f Figure 7-2 is to describe the 

model functioning, and not the sequence in which the model is solved. Because all 

the equations in the model are solved simultaneously, they do not follow the 

sequence shown in Figure 1-2.

152



Activities and their associated constraints are described first in order to explain 

the farming activities simulated by the model. Due to the large number o f constraints 

in the model only the generic constraints are described. Generic constraints are 

groups o f equations that share a similar structure and restrict the values o f variables 

within a group o f similar activities, but have different subscripts levels. For example, 

the constraints that define the optimum value for the variables in the Grain harvested 

module in Figure 7-2, are restricted by a group o f equations which share the same 

basic structure. Except that the name o f the variables and the level o f their subscripts 

are adjusted accordingly with the activity simulated and the technology used. 

Equations 7-3 and 7-4 are a clear example o f the Generic Constraints equations used 

here. The input data tables, which are part o f the equations too, also change 

following the same criteria. The objective function and the approach used to simulate 

labour supply and utilisation within the farming system are described at the end of 

the method.

7.2.4. Activities

Figure 7-2 allows visualising more easily the role o f each farming activity, and the 

complex interactions between the activities and the farm resources utilisation 

dynamics simulated by the model. Figure 7-2, shows that the household members 

HMn provide the skills (expert knowledge), the labour (hlab), the different resources 

such as the land, the crop genetic resources (Maize germ-plasm, CA, CB & CN), and 

the money (M zcl:10, Ipcosts) to cultivate the farm's land. The household also owns 

the cattle (hc_l to hc_3) and uses it to produce milk (.MLK) and beef (NSTEE & 

N C U LL ), both important elements o f the fanning system.

Figure 7-2, illustrates how the generated resources are utilised by the different 

activities in order to come up with the optimal solution. For example, the land 

allocated to maize production {CB, CA, & CN) will produce, depending on the maize 

variety and the cultivation technology selected, grain (CBHV, CAHV  & CNHV), 

stover (green mz2,4,6,8,10 and dry m zl to 10) and weeds, which in turn could be fed 

to the family (cncon), or to the cattle (COWS, HEIF, & OTHE) or could be sold 

(CBS, CAS, STOSELL).
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Figure 7-2. Model functioning
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The level o f most o f the activities in the model is determined by their associated 

constraints. However, there are some activities whose value was fixed and not 

determined by the constraints. These activities included the household composition 

and the cattle herd inventory, the reason behind this decision is explained later in this 

section. All the simulated activities were classified into 6 groups, to facilitate their 

description, representing the main fanning activities o f the system as follows:

• Activities whose optimum value is not selected by the model

• Maize production activities

• Cattle production activities

• Household related activities

• Improved Pasture and other crops activities

• Buying and selling activities

The Activities whose optimum value is not selected by the model are described 

first, because o f their implicit importance and because they exert an important 

influence over the rest o f the model's variables.

7.2.4.1. Activities whose optimum value is not selected by the model

Household composition activities: Every household’s members was allocated into 

seven different categories and every category was treated as a different activity. The 

household composition activities in terms o f the number, age and gender o f the 

different individuals were not calculated by the model because it is a particular trait 

o f every individual household. It will be wrong to allow the model to calculate the 

optimal family composition; therefore the family composition activities were 

supplied in the form o f an input fde (see Figures 7-1 and 7-2). These activities played 

a fundamental role in the model because from the family composition depends the 

amount o f labour supplied to the different farming activities. The household 

members were classified into seven categories as shown in Table 7-1. The variable 

H M (m axn), represents the number o f household members in the nth category, 

where: m axn= l \l, is the maximum number o f household members categories.
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Table 7-1. Household composition activities

Member category Variable name
Decision maker HM,
Spouse h m 2
In-farm sons h m 3
Daughters h m 4
Children h m 5
Old h m 6
Off-farm sons h m 7

The household size and composition for every case study simulated was mapped 

in the model by Equation 7-1 below (see Appendix 4).

Equation 7-1. M apping household members 

hom b (n= l:m axn): H M (n) = hmem(n)

Where:

hom b  is the constraint's name which restricts the household members activities 

H M (n) to the values in the input data table hmem(n).

The approach above described illustrates the generic nature o f the IFSM, because 

two tables with the composition o f the household and cattle herd is all what is needed 

to run the model for a new case study (Figure 7-1). As described in chapter 5, most 

household members fall in the categories shown in Table 7-1. Moreover, by using 

this approach the amount o f labour supplied by every individual was properly 

differentiated and accounted for their gender, age and activity. Details o f the amount 

o f labour supplied by every individual are described at the end o f the method section.

Although this is a multi-period model, it was assumed that the household 

composition remained constant throughout the 12 monthly periods o f the simulation 

since it is unlikely that major changes in the household composition (deaths or births) 

occur over such a short period o f time. The composition o f each case study simulated 

here is shown in Table 8-1 (Chapter 8).
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Cattle herd inventory activities: The same animal categories defined in Chapter 6 

for the average cattle herd in the study area were used here to simulate the Cattle 

Herd Inventory Activities and other cattle related activities, such as milk 

production, and forage and concentrated intakes. The same approach used for 

household members was used for the cattle herd composition. Every animal was 

treated as an individual therefore; the number o f animals in each category in the mth 

period is defined as the Cattle Herd Inventory Activities, for that period.

The cattle herd o f Mr Luis González was used in the development o f the IFSM, 

the size, age and sex composition o f the herd was registered during the fieldwork. Its 

initial structure is presented in Table 8-1 together with the herd structure o f the other 

two case studies (Chapter 8). Because o f the reduced number o f animals in the herds 

(X=12 heads o f cattle for the MLPS), each animal within the herd was accounted for 

on an individual basis, rather than as a percentage o f a population. The contribution 

o f every animal to the farmers' livelihoods is so important that the disappearance of 

only one could have important implications to the whole system. For purposes of 

simulating the dynamics o f every individual within the various cattle categories, it 

was assumed that the set o f productive and reproductive parameters, shown in Table 

6-4 and Figure 6-1, determined the current physiological state and productive 

performance o f each individual animal over the time.

Because the IFSM is a multi-period model, the natural progression o f the different 

animals (within each category) between categories over the different m  periods had 

to be taken into account, since it has important implications for other simulated farm 

activities such as forage consumption, milk production and labour requirements. 

Thus the progression o f every individual from one productive stage or from one 

reproductive state to the following was mapped in, and presented to the model as an 

input data file (Table 7-2). For example in Table 7-2, there is in January one first 

calving cow, which is in its dry period, (i=l, q=4), the following month the same 

cow calved and started to produce milk, therefore it became a second calving cow in 

its early lactation (/=2, </=!). As a result in o f this change, now there are two cows in
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February (there was one i=2, q=l cow before) that are second calving cows in their 

early lactation.

The implications o f this simple change are accounted for in the model, because 

the cow which passed from i=l,q=4 to i=2,q=\ will require a better quality diet, but 

it will also be producing milk, and require more labour too. The herd structure and 

dynamics were calculated out o f the model, because it was not intended that the 

model select the optimal combination o f animal inventory as is normally done in 

similar works (Chudleigh, 1977; Nicholson et al., 1994). It is believed that in 

smallholder systems, the herd composition is a trait that is determined by farmers and 

their own circumstances, so even if  the model finds an optimal composition, such 

change will take several years.

It is believed that approach used here is flexible enough to allow replicating some 

replacement policies used by the farmers. For example if  the fanner decides to buy a 

new cow or heifers, it only has to be included in the corresponding cattle class in the 

month when it was purchased. The model will then produce a new optimal solution 

for the new herd structure.

The cattle herd is contained in three tables as shown in Table 7-2. Table h c_ l, 

contains the technical coefficients for the number o f cows, in the /th category, in the 

/«th period and the q\h subcategory. Table lic_2 represents the number o f heifers in 

the »zth period and the </th subcategory. Table hc_3 represents the other cattle 

categories in the herd (calves, steers and bulls) in the ///th period and the qth 

subcategory. Again, using this approach pennitted running the model for the 

different case studies by only changing the corresponding cattle input data table 

(Figure 7-1). Equation 7-2 was used to map into the model the cattle table for the 

cows and at the same time define the feeding options open to them; similar equations 

were used to map in the rest o f the animal categories in the herd.

Equation 7-2. M apping the cattle herd in the model

hdc\(i = 1 :m ax i,m  = 1 :12, q = 1 :m axq ) ' . ^  ^  ^ COWSjUmqr = h e _ \ imq
J l r

158



Where:

COWS =Number of cows 
hdcl =is the constraint name that controls the feeding options for cows 

i = Cow category 
q = Cow subcategory 

m = Monthly period 
j  = Forage type 
I = Concentrate type 
r = Concentrate supplementation rate

The cattle feeding options and the role o f the variable COWS are described in 

detail in Table 7-6 in section 7.2.4.3., below.

Table 7-2. Cattle herd inventory and dynamics for Mr. Luis Gonzalez's herd

Dimension
M onth Cattle category(r) Subcategory (q)
Period
m =12

First calvers 
i= l and q = l:4

Second calvers 
i=2 and q = l:4

Third calvers 
i=3 and q = l:4

Heifers
q = l:2

Calves
q = l:2

Other
q=3:4

M onth 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,1 3,2 3,3 3,4 4,1 4,2 5,1 5,2 5,3 5,4

Jan 1 1 1 3 3 2 4 0 0

Feb 2 1 2 4 3 4 0 0

M ar 2 1 2 4 3 4 0 0

A pr 1 2 1 2 3 3 3 2 0

M ay 2 1 1 1 2 2 4 1 4 0

Jun 2 2 1 2 2 4 1 4 0

Jul 2 2 1 1 3 3 2 4 0

Aug 1 1 1 1 1 4 2 3 4 0

Sep 2 2 1 4 2 3 4 0

Oct 1 2 2 1 3 3 3 3 0

N ov 2 1 1 1 1 1 2 3 4 1 0

Dec 2 2 1 1 2 3 4 1 0

Table
name

h c _ l h c_2 hc_3

7.2.4.2. Maize production activities

Table 7-3 summarises the variables and their dimensions that represent the 

simulated activities associated with maize production in a typical campesino farmer 

production unit. These variables represent the varieties and the range o f 

technological options that are used by local farmers to cultivate maize; they also 

express some o f the complexity associated with maize cultivation in the Toluca 

Valley, like the crop-farmers interaction and their effects on the whole farming 

system. The two land races simulated by the CERES-Maize model were used here,
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Criollo Blanco (CN ) and Criollo Amarillo (CA) (Chapter 4). A third variety called 

Criollo Negro (CN ) was simulated with the maize model. Since this variety has 

similar yield and growth characteristics as CA the same coefficients were used. Most 

fanners plant at least three maize varieties in any given year, as part o f their nonnal 

production strategies. Each variety has a specific purpose within the fanning system, 

in this model C B  is cultivated for sale to generate cash income, but may be fed to 

cattle. CA  is cultivated to fed cattle but it may be sold too, while the last variety CN, 

is cultivated and used only for household consumption (its taste is preferred above 

the other two).

Table 7-3. Maize production variables

Variable
Name

Description Units

1

Dimension

2 3

CB Area planted with CB Ha Main treatments, 
0=1:4

Fertiliser level, 
£=1:7

Planting level, 
0 = 1 : 1 2

CA Area planted with CA Ha Main treatments, 
0=1:4

Fertiliser level, 
£=1:7

Planting level, 
0 = 1 : 1 2

CN Area planted with CN Ha Main treatments, 
o = l : 2

Fertiliser level, 
£=1:7

Planting level, 
0 = 1 : 1 2

CBHV CB harvested Kg Month, 777= 1 :12
CAHV CB harvested Kg Month, 777=1 :12
CNHV CN harvested Kg Month, 777=1 : 12
CBOV CB opening balance Kg Month, 777=1 : 13
CAOV CA opening balance Kg Month, »7=1:13
STOHV Stover harvested Kg Month, 777=1 : 12
STOV Stover opening balance Kg Month, 777=1 : 13

In order to simulate irrigated and rainfed maize production (the two main systems 

o f cultivation) and the interaction between the farmers and their maize crops, a 

factorial experiment was designed. The experiment was m n in the CERES-Maize 

model, and its output constitutes the technical coefficients from which the model 

selected the optimal value for each one o f the Maize Variables simulated (Figure 7- 

1). Table 7-4 shows the factorial experiment used, it includes three maize varieties 

and four main treatments (0= 1 :4), in addition for every o treatment, 7 fertilizer 

application rates (k = l:7 )  and 12 planting levels (a = l:1 2 ) were tested. The levels of 

the Ath and ath treatments are shown in Table 7-4 below.
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Table 7-4 . Factorial experiment simulated with the CERES-Maize model

M aize
variety

M ain treatm ent 
o= l:4

Fertilizer level 
Kg of Nitrogen/ha

Planting level 
Plants/ha

I r r ig a te d  m aize
CB o =1 irrigated with herbicide applied (IH) k=\ Okg k=5 70kg « = 1  1 0 , 0 0 0
CA O =2 Only irrigated k=2 40kg k=6  90kg
CN k=3 50kg 

k=4 60kg
k=l 180 kg

« = 1 2  1 2 0 , 0 0 0
R a in fe d  m aize k—l 0 kg k=5 70kg rt= l 1 0 , 0 0 0

CB o =3 Rainfed with herbicide applied k=2 40kg k=6 90kg .

CA O =4 Only rainfed maize k=3 50kg 
k=4 60kg « = 1 0  1 0 0 , 0 0 0

Main treatments included irrigated maize (punta de riego, see Chapter 4 for 

definition) with herbicide o=  1 , and irrigated maize without herbicide, o= 2, rainfed 

maize with herbicide, o = 3, and rainfed maize without herbicide, o= 4  (Table 7-4). 

Fanners normally do not apply herbicide to some maize plots and use different 

planting densities in order to have the opportunity to harvest weeds and green maize 

stover (before the crop has reached its physiological maturity). Green stover is used 

together with the weeds to feed cattle. Treatments o=2 and o=4 permitted to 

simulate these practices and therefore to simulate the different uses o f the maize crop 

biomass by local fanners. Crop husbandry practices such as stover thinning and 

scotching and cut and carry o f weeds were included in the IFSM too.

A total o f 504 technologies for maize production under irrigated conditions (punta 

de riego) and 240 technologies under rainfed conditions were simulated through the 

factorial experiment. The output of the maize model was inputted to the IFSM in ten 

tables (Figure 7-1 and 7-2), which contain the grain and stover yields for the maize 

production technologies simulated. The name and dimensions o f each table is 

presented in Table 7-5. Simulating these technologies was fundamental, because they 

are the backbone o f the crop-cattle fanning system since the use o f inigation 

determines the yield perfonnance o f both grain and stover. On the other hand, the 

application o f herbicide in some maize plots detennines the future availability of 

forages, like weeds, green and dry stover.
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Table 7-4, shows that for rainfed maize only six levels o f fertilizer and 10 levels 

o f planting population were simulated. Since farmers know that the performance o f 

local maize under rainfed conditions is lower than the rainfed maize they normally 

allocate fewer resources than for the irrigated maize. Therefore it was considered 

unnecessary to simulate a higher allocation o f resources, which in real life will be an 

unrealistic approach. Because the IFSM is a multi-period model, it was more easy to 

simulate the dynamics o f maize production in the Toluca Valley, for example 

irrigated maize is harvested in November (m = ll ), while rainfed maize is harvested 

in December (m=12) (see Chapter 4). The effects o f different harvest dates are 

important in terms o f the attained yields, the amount o f labour required and the 

availability o f forages and grain to fed cattle, as will be discussed later.

Table 7-5. Input data tables with the CERES-Maize model's predictions for different 
cultivation technologies

D ata
Table

Description Dimension
1 2  3 4

mzl P redicted  grain & stover y ie ld s  
for CB, o = l

Fert. lev e l, 
¿=1:7

Planting  
lev e l, ¡7=1:12

Grain y ie ld  
kg/ha (1)

S tover  y ie ld  
kg/ha (2)

mz2 P redicted  grain &  stover y ie ld s  
for CB, o=2

Fert. leve l, 
¿=1:7

Planting  
lev e l, a = l:1 2

It II

mz3 P redicted  grain & stover y ie ld s  
for CA, o=l

Fert. leve l, 
¿=1:7

Planting  
lev e l, ¡7=1:12

II II

ntz4 P redicted  grain &  stover y ields  
for CA, o=2

Fert. lev e l, 
¿=1:7

Planting  
lev e l, ¡7=1:12

II II

mz,5 P redicted  grain & stover y ie ld s  
for CN, o=l

Fert. level, 
¿=1:7

Planting  
lev e l, ¡7=1:12

II II

mz6 P redicted  grain &  stover y ie ld s  
for CN, o=2

Fert. leve l, 
¿=1:7

Planting  
lev e l, ¡7=1:12

II II

mz7 P redicted  grain &  stover y ie ld s  
for CB, o=3

Fert. leve l, 
¿=1:6

Planting  
lev e l, ¡7=1:10

II II

itiz.8 P redicted  grain &  stover y ie ld s  
for CB, o=4

Fert. lev e l, 
¿=1:6

Planting  
lev e l, ¡7=1:10

II II

mz9 P redicted  grain &  stover y ields  
for CA, o=3

Fert. lev e l, 
¿=1:6

Planting  
lev e l, ¡7=1:10

II II

mzl 0 P redicted  grain & stover y ields  
for CA, o=4

Fert. leve l, 
¿=1:6

Planting  
lev e l, ¡7=1:10

II II

Figure 7-2 shows the information flow on which the model decides which type o f 

land to use for cultivation, whether irrigated or rainfed (O W NIRR  or OWDRY), own 

or rented (R N T D R Y  or R N T IR R ), and the amount o f land allocated for maize 

production or for improved pasture production (IP) or both (see Table 7-8). Next the
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model can select the best technology for maize production, which maximises yield 

and income return. For example, if  the variable C B is selected, then the area o f 

land defined by the model will be planted with the variety CB, with main treatment o, 

and the sub-treatments k  and a (Table 7-4). Equations 7-3 and 7-4 describe the 

constraints that define how the maize technology is selected for CB under both 

irrigated and rainfed conditions respectively. Equation 7-3 and 7-4, also define the 

amount o f CB that is harvest (C BH V ) from using the selected technology. Similar 

equations were used to define the land area to be planted with the other two 

simulated cultivars.

N O V B L '. -Y .  E 0 . 9 * ^ u *C8!i , t C f f l ( ' l l <«
k a k a

Equation 7-3. C onstraint for selecting maize technology in irrigated land

Because Equation 7-3 refers to irrigated maize, input data tables m il  and m z2  are 

used (see Table 7-5), the CB  variable uses o = l  and 2 subscripts and the maximum 

fertilising and planting rates are used, k= l:m axk  and a=l:m axa  (see Tables 7-3 and 

9-4). The column number one, o f both tables, containing the grain yield for each 

production technology simulated for the variety CB under irrigated conditions 

multiplies the variable CB. Multiplying the grain yield values o f column one by 0.9 

allows the model to consider grain losses due to harvest and the moisture content o f 

the grain (Kumar, 1993). Constraint N O V B L  also defines the amount o f grain, which 

is harvested from the CB variety in the selected technology, since what is produced 

cannot be more than what is harvested. Therefore, the amount o f grain harvested in 

November is defined by the variable C B H V H  in Equation 7-3 above.

D E C B L - .-Y ,  £ 0 . 9 *m z7k^  *CBu ,a -  X  Y ° - 9 *m zS^  *CB4ka +CBHVn  < 0
*= 1:6 <2=1:1 0  *=1:6 a=l: 1 0

Equation 7-4. C onstraint for selecting maize technology in rainfed land
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Equation 7-4, follows the same principles as Equation 7-3, except that the variable 

CB uses the o= 3 and 4 subscripts which refers to rainfed maize (Table 7-4). 

Therefore k =1:6 and a=l:10, which reflect a lower use o f inputs. Column one o f 

Tables mz7 and mz8 contains grain yield figures for CB rainfed maize (Table 7-5). 

The amount o f stover that is harvested {STOHV) from the area planted with maize 

under the selected technologies is defined by the constraints in Equation 7-5. In the 

case o f stover no differentiation is made in terms o f the variety, because from a 

practical standpoint, all the stover is fed to cattle regardless the maize variety 

produced. Elowever the model does differentiate between the stover produced by 

rainfed or irrigated maize because stover production from rainfed maize is lower than 

for irrigated maize. The model also considered whether herbicide was applied or not, 

because if  no herbicide is applied, then green maize stover is harvested from August 

to October. Therefore the amount of dry stover harvested in December and January 

should be lower than if  no green maize stover is removed. Equation 7-5 determines 

the amount o f stover harvested in December for irrigated maize, with and without 

herbicide. Therefore:

D ECS TV  X  ° ' 85 * m z l ka2  * C B lka -  £  X  0.595 * m z 2 kal * CB 2ka &
k a k a

-X X°-85*/?iz3fe2*Crilte -X Z 0-595 *™z4*«2 * C A 2 k a &
k a k a

-X X 0 - 8 3  *  m Z ^  k a l  *  C N  xka ~  X X 0 -5 9 5  * m z 6 ka2 * C N  2ka &
k a k a

+ STOH V l2 < 0

Equation 7-5. Amount of stover harvested from the land planted with maize

The values o f the variables CB, CA and CN  are multiplied by the second column 

o f the tables in Equation 7-5, containing the stover yields, to determine the amount of 

stover harvested from all the selected varieties under irrigated conditions and for all 

the selected cultivation technologies. When 0= 1 , the values o f the second column in
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tables m zl, 2 and 3 (see Table 7-5) are multiplied by 0.85, since it was observed that 

approximately 15% o f the biological yield o f stover is left in the field and therefore 

not used to feed cattle or sold. When o=2, (no herbicide applied) values o f second 

column o f tables mz2, 4 and 6, are multiplied by 0.595, since it was observed that 

approximately 30% o f the stover biomass is removed as green stover and again 

approximately 15% o f what is left standing after grain harvest (dry stover) is lost 

during the stover harvest process. A similar approach was applied for the JANSTV  

restriction that controls the stover harvested from rainfed maize STOH Vj in January 

(see Appendix 4).

It is important to mention here that fanners harvest the green stover and weeds 

only from those fields where herbicide is not applied (o=2 and 4). These fields are 

normally close to the fannhouse, which facilitates the transport o f the forage, while 

the fields where herbicide is applied are normally far from it. As mentioned in 

Chapter 5, not all the farmers' land is close to their houses, therefore it will be 

impractical for them to travel long distances to cut and then carry the forage back to 

the farmhouse. The application o f herbicide offers them a solution to this problem. It 

is believed that the approach above described, represents an appropriate description 

o f the irrigation and herbicide application practices used by local fanners. Moreover, 

it allowed the incorporation o f the effects o f these practices on the whole farming 

systems (Figure 7-2), as will be shown in the results section o f this chapter.

Finally, since the IFSM is a dynamic model, where decisions over the use o f the 

produced grain and stover are made in more than one point in time (/nth period), 

grain and stover balance equations (which control the monthly allocation o f grain 

and stover to the different activities that use them), were developed too. Equation 9- 

6, is the grain balance equations for CB, it restricts the amount o f the CB used every 

month by the different activities shown in Table 7-3 to the amount o f CB harvested 

above (CBHVm). In other words no more CB grain can be fed to cattle or sold than 

what is harvested. Equation 7-7 is a closed inventory loop equation that makes sure 

that the opening balance o f CB in period m=l, CBOVj (amount o f CB available in 

January) is equal or less than what is available in period m=13 (m+1) (January next
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year). In other words, since the model simulates a whole year, and the CBHV  is used 

every month, Equation 7-6 makes sure that the amount o f CB in January is equal or 

less than what is available in January next year, since grain is harvested at the end o f 

the year.

C B O B m=U2 : C BO Vm + C B S m + C B F m -  C BH Vm + C B O V m+l < 0

Equation 7-6. Balance equation for CB grain

CBOB : CBOVx -C B O V n  < 0

Equation 7-7. Closed inventory loop equation for CB.

A similar approach was used for the balance equations o f CA and stover, there is 

no balance equation for CN  since it is only used for household consumption.

7.2.4.3. Cattle production activities

The IFS model was further improved to simulate the effects o f maize cultivation 

technologies and the interaction between farmers and their crops on the seasonal 

availability and quality o f forage. Based on the traditional cultivation practices and 

its association with the seasonal production and utilisation o f forages, the factorial 

experiments shown in Table 6-5 and 6-6 (Chapter 6) were designed and ran in the 

Cow model. The output o f the factorial experiments constituted the technical 

coefficients o f the cattle production variables shown in Table 7-6 (see Figure 7-2). 

936 feeding strategies were simulated for daily cows in the dry season and a similar 

number o f strategies for cows in the wet season. On the other hand, 24, 8, 4 and 4 

different feeding strategies were simulated for heifers, calves, steers and bulls 

respectively. The output o f the cow model was captured in four tables shown in 

Table 7-7. The simulated year was divided into a 7-month dry season (November to 

May) and 5-month rain season (June to October). This approach permitted the 

model to simultaneously allocate farm-produced forages and purchased feeds among 

the different cattle categories (see Figure 7-2 and Table 7-6), for every month o f each 

season. It is suggested that an important contribution o f this model is that it selects
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the optimum feeding strategies for both dry and the wet seasons as a response to the 

different forage availability and quality as determined by the cropping system. The 

model is therefore able to incorporate seasonal variations in the type, amount and 

quality o f the different forages fed to cattle. This is a facility not seen in other 

smallholder farm system models (Brockington et al., 1983; Nicholson et al., 1994).

Table 7-6. Cattle production variables

V ariable
name

Description
Units

Dimension

1 2 3 4 5 6

COWS Define feeding 
options for cows

Heads Forage type 
7=1:4

Concentrate 
type, 1= 1 : 6

Cow category 
1=1:3

Month,
»2= 1 : 1 2

Subcategory
9=1:4

Concent 
level, 2= 1 : 4

HEIF Define feeding 
options for cows

Heads Forage type 
7=1:2

Concentrate 
type, 1= 1 : 2

Month, 
»2=1 : 1 2

Subcatego 
ry, 9 = 1 :2

Concentrate 
level, i— 1 :2

OTHE Define feeding 
options for other 
cattle types

Heads Forage type 
7 = 1 : 2

Concentrate 
type, 1= 1 : 2

Month,
ra=l: 1 2

Subcatego 
ry, g=l:4

Concentrate 
level, r= l : 2

FFED Forage type fed to 
cows

Kg
DM

Month Forage type 
7 = 1 : 2

STOFED Stover fed to the 
cattle herd

Kg
DM

Month

MSIFED Maize silage 
bought and fed

Kg
DM

Month

CFED Concentrate type 
fed to cows

Kg
DM

Month

CBF CB fed to the 
cattle herd

Kg
DM

Month

CAF CA fed to the 
cattle herd

Kg
DM

Month

CMNF Chicken manure 
fed to the herd

Kg
DM

Month

WHBF Wheat bran fed to 
the herd

Kg
DM

Month

CONF Commercial 
concentrate fed to 
the herd

Kg
DM

Month

MLK Monthly milk 
production/herd

Kg
DM

Month

HCFED Concentrate type 
fed to Heifers

Kg
DM

Month Concentrate 
type, / = 6

HFFED Forage type fed to 
heifers

Kg
DM

Month Forage type
7=4

OCFED Concentrate type 
fed to other cattle

Kg
DM

Month Concentrate 
type, 1 = 6

OFFED Forage type fed to 
other cattle

Kg
DM

Month Forage type 
7=4

NCULL Culled cow Heads Year
NSTEE Fat steers sold Heads Year
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The factorial experiments in Chapter 6 (Tables 6-5 and 6-6) restricted the number 

and composition o f the forages and concentrates used for each simulated season. 

However, it is believed the forages and concentrates types used in this work are a 

reasonable representation o f the cattle feeding systems in the Toluca Valley 

(Castelan et al., 1996; Arriaga et al., 1997a; Castelan et al., 1997). The number o f 

forages and concentrates can be easily increased to test more feeding strategies, 

however it goes beyond the scope o f this work, since more data is required on the 

degradation dynamics o f local ingredients which on its own constitutes a separate 

research.

Special emphasis was put on modelling nutritional characteristics o f the system 

because there is important evidence that suggest that nutrition represents one o f the 

main limitations to increased productivity and profit in the system (Castelan et al., 

1996; Arriaga et al., 1997a; Castelan et al., 1997 ). Rather than use feed and animal 

nutrients requirements developed for temperate regions, a complete feeding system 

was developed based on the degradability dynamics o f the most common forages and 

concentrates used at the Toluca Valley. Thus the simulated feeding strategies are 

more relevant to the region’s conditions.

The cattle herd inventory variables are fixed, and supplied as an input data file. 

The cattle herd o f a any given case study is mapped into the model by Equation 9-2, 

this equation also controls the feeding options for all the cows in the herd, by making 

table h c_ l equal to the variables COWS shown in Table 7-2. Therefore, for feeding 

purposes COWSjumqr represent the number o f cows fed with the jth  forage, the Ith 

concentrate, in its ith calving number, in the mth  period, in the qth lactation stage 

and fed concentrate at the rth rate. The type and amount o f concentrate fed to cows 

in the dry season are then restrained by Equation 7-8, below.

cc\d(m  = 1:5, / = 1: max /) : ^  V  £  /V 1 *30.5* COW Sj1imqr -C F E D ml < 0
j  i q r

Equation 7-8 . C oncentrate type fed to cows during the dry season
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Where the restriction ccld(m = l:5,1=1 :maxl) is controlling the season, in this 

case, the first five months o f the dry season (January to May), and the concentrate 

type /. The values o f column one from table tab l (see Table 7-7) (which contains 

concentrate intakes/d/cow) are multiplied by a 30.5 factor, which is the number o f 

days in any given m  period. The equation is then balanced against the variable 

CFED  (see Table 7-6 and Figure 7-2). Equation 7-9 uses the same approach to 

define the amount o f forage fed to cows during the dry season, except that the values 

o f column two (forage intake/d/cow) from table tab l are used instead (see Table 7- 

7). The equation is then balanced against the variable FFED  since no more forage 

can be fed than what is available in any given month (Table 7-6).

fc \d{m  = 1:5, y = 1: max j )  : ^  £  X  ' Z tabljiqr2*M -5*C °wS  jhmqr ~FFED ml <0
l i q r

Equation 7-9. Forage type fed to cows during the dry season

Table 7-7. Input data tables with the Cow model's output for the different feeding 
systems

Data
Table

Description Dimension
1 2 3 4 5 6

ta b l D ry  se a so n  sy s tem s 
fo r  fe ed in g  co w s

Forage
type

7=1:4

Concentrate 
type, 2= 1 :6

Cow
category,
i= l:3

Subcatego 
ry, <7= 1 :4

Concentra 
te level, 
7=1:4

D ata items 
77=3, l=conc,2=  
forag, 3= m lk

tab2 W e t se a so n  sy s tem s 
fo r  fe e d in g  co w s

Forage
type

7=1:4

Concentrate 
type, 2=1:6

Cow
category,
2=1:3

Subcatego 
ry, 9=1:4

Concentra 
te level, 
7=1:4

D ata items 
77=3

ta b l D ry  a n d  w e t  se a so n  
sy s te m s  fo r  fe ed in g  
h e ife rs

Forage
type
7=1:2

Subcategory
<7=1:2

Concentra 
te type, 
2=1:2

Concentra 
te level, 
7=1:3

Data
items,
u = l:2

tab4 D ry  a n d  w e t 
se a so n s  sy s te m s fo r 
fe e d in g  o th e r  
a n im a ls

Forage
type

7=1:2

Subcategory
9=1:4

Concentra 
te type,
2= 1:2

Concentra 
te level, 
7=1:2

Data
items,
77=1:2

f e e d C o n c e n tra te s
c o m p o s itio n

Commo
dity

Concentrate 
type, 2=1:6

dryfod F o ra g e  c o m p o s itio n  
D ry  se a so n

Commo
dity

Forage type, 
7=1:4

w etfod F o ra g e  c o m p o s itio n  
W e t se a so n

Commo
dity

Forage type, 
7=1:4
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Similar equations were used to define the type and amount o f forage fed to cows 

during the rainy season. The m  subscript is used throughout the model to control the 

season, when its values go from m =l:5  and m = ll:12 , it is referring to the months o f 

the dry season, and when its values go from m=6:10, it is referring to the wet season. 

The whole approach used above is used to simulate the concentrate and forage 

allocation for the other categories o f cattle H E IF  and O TH E  (see Appendix 4).

The amount o f milk supplied monthly by the lactating cows during the dry season 

is calculated by Equation 7-10 bellow. The variable COWS multiplies the values o f 

column three in tab l (milk yield in kg/d/cow), in order to obtain the monthly milk 

yield from all the lactating cows from the herd. Notice that the subscript i only goes 

from i =1:3, which represents lactating cows only, since i =4 are dry cows. The 

equation is balanced against variable M LK  shown in Table 7-6. A similar approach is 

used for milk production during the rain season, except that m=6:10.

meld  (m = 1:5): I I S  I E  tabljlqr3 *30.5 *COWSJhmqr -  MLKm <0
j  l  i <7=1:3 r  

Equation 7-10. M onthly milk supplied by lactating cows (dry season).

Because most forages and concentrates are in fact mixes o f separate ingredients 

(see Chapters 5 and 6), which are supplied by maize and improved pasture activities, 

supply equations were developed to simulate the allocation process. Supply 

equations are a clear example o f the approach used to simulate the flow o f resources 

from the activities that produce them to the activities that make use o f the resources 

(Figure 7-2). Equation 7-11 determines the amount o f CA and CB that is supplied and 

fed (C A F  and CBF) in the form o f concentrate to all the animal categories every 

month. Therefore the amount o f CB and CA in the Itli concentrate fed to all the cattle 

categories in every m  period is determined by the values in table fe e d ji  (see Table 7- 

7), times CFED, HCFED  and CFED, in Equation 7-11. Where 1 (one) is the row 

number in the table, fe e d u  which, contains the maize commodity and I is the
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concentrate type. The equation is then balanced against CAF  and CBF  since no 

more maize can be fed in concentrates than what is available for cattle feeding.

Subscript m  in fe r s  goes from 1 to 12 since the same concentrates are fed through 

the year, and no differentiation is made for season as in the case o f forages. In this 

way a very efficient method was developed by which different concentrates (of 

different composition) can be tested by just changing the values in table f e e d n

gcrs(m  = 1:12): -C A F m -  CBFm + ^  fe e d u * CFEDml + fe ed u * HCFEDml &
/ I

X! feed u  * OCFEDml < 0
l

Equation 7-11. Supply equation for maize grain

Similar supply equations were used for the other concentrate ingredients used here 

(Appendix 4). It was assumed that the commodities that are not produced in the farm 

were purchased, this is the case for variables CMNF, WHBF, CONF  (Table 7-6 and 

Figure 7-2). In this way fanners can obtain a prediction for the amount o f each 

ingredient that needs to be bought.

Supply equations for the farm forage use a similar approach as for concentrates, 

except that the seasonal effect on forage availability is considered. Equation 7-12 

shows the supply equation for maize stover supplied over the first part o f the dry 

season. Again in Equation 7-12 is the subscript m  that controls the season where 

maize stover is supplied. Because maize stover is used throughout the year, there are 

two more equations controlling stover supply, where m=6:10 for the wet season and 

m = ll:1 2  for the second part o f the dry season (Appendix 4). Table dryfod  (Table 7- 

7) in Equation 7-12 defined the composition of every simulated forage, therefore the 

amount o f stover in FFED, HFFED  and OFFED determined row one in table dryfod.
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sfd(m  = 1 : 5 ) :  -STOFED,,, + £  dryfod]j * FFEDmj + dryfodXj * HFFEDmj &
7 j

Y Jdryfod] l*OFFEDmj < 0
j

E quation 7-12. Dry stover (forage 1) suppiy equation for dry season

7.2.4.4. Other household activities

This group o f activities represents the land use for the different farm activities and 

the type o f land that the farmers in the Toluca Valley have access to (see Figure 7-1 

and Table 7-8). These variables were included in this section because the fanner 

(decision maker) is who decides whether he uses all his own irrigated land O W N IRR  

or his own dry land OWNDRY. He or she decides what to plant and how to plant it. 

However, because renting land is a common practice and some farmers have the 

option to rent a limited amount o f extra land, which can be irrigated or not irrigated 

R N T IR R , R N T IR R  , it was included in land use equations too (Figure 7-2). In this 

work both cases were simulated, farmers who have the opportunity to rent extra land 

and farmers who do not have that chance. The amount o f rented land was restricted 

to the maximum registered for each case study; however, the amount o f land can be 

increased or reduced depending on the case study or the scenario that is tested. 

Equation 7-13 shows the land use equation for own and rented irrigated land. Where 

the different possible uses o f the fann's irrigated land (with their associated 

technologies) are represented by the variables CB, CA, CN  and IP  . Note that the 

subscript o goes from 1 to 2 for all the maize varieties under irrigation.

irr: X X  X C B oka + X X X C A oka + X X Y J C A oka &
0= 1:2 ¿=l:max/ca=l:maxa o=l:2 /c=l:maxA:a=l:maxa o=l:2 i=l:m ax/ca=l:m axa

+ I P -  RNTIRR < ownirr

Equation 7-13 . Land use equation for irrigated land
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Equation 7-13 is balanced against ownirr which is a constraint defining the 

irrigated land owned by the farmer in ha, since no more land can be cultivated than 

what is available in the farm. R N T IR R  is also a constraint, which defines the area in 

ha that the farmer can rent. It is believed that Equation 7-13 is a reasonable 

representation o f the farmers' decision over their land use. The same approach was 

utilised for the non-irrigated land as described in Appendix 4. The buy and sale 

activities are described in the objective function while the role o f the rest o f the 

activities shown in Table 7-8 can be easily understood from the equations file in 

Appendix 4.

Table 7-8. Other farm activities variables

Variable
Name

Description Units Dimension
1

OWNIRR
Other household activities
Irrigated own land Ha

OWN DRY Rainfed own land Ha
RIGHTS Communal land in native pasture Ha
RNTDRY Number of ha of rainfed land rented Ha
RNTIRR Number of ha of irrigated land rented Ha
FMC Labour required for the care of the family MD
GR Labour for grazing cattle and other livestock MD

IP
Improved pasture and other crops activities
Amount of land planted with improved pastures Ha

NG Amount of land occupied by native grass Ha
OC Amount of land cultivated with other crops Ha
LS Labour required for other types of livestock MD

Buy and sale activities Kg Month, 777=1 2
CAB
STOBUY

CA grain bought in period m 
Stover bought in period m Kg Month, m= 12

HL Hired labour MD Month, 777=12
STOSELL Stover sold in kg Kg Month, 777=12
CBS CB (grain) sold Kg Month, 777=12
CAS CA (grain) sold Kg Month 777=12
MLK Milk produced and sold kg Month 7?7=72
NCULL Number of culled cows Head Year
NSTEE Number of steers sold Head Year
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The LP model maximises gross revenue defined as sales from milk, animals, 

maize and stover , less the variable costs for hired labour, purchased maize inputs, 

cattle feeds and the cost o f renting land. Farm assets other than cattle (land, 

buildings, equipment, etc) were treated as predetermined over the one-year model 

horizon; costs associated with farm assets are treated as fixed costs. These costs are 

thus omitted from the objective function. As in other optimisation models, the price 

o f farm inputs and outputs have the strongest influence on the behaviour o f the 

model and in the strategy selection. All the prices used here were obtained from the 

farmers, and correspond to 1996, when the survey work was carried out. Prices are 

expressed in Mexican pesos (Mx$), where £1.00 pound sterling is equivalent to 

approximately Mx$ 12.00 pesos.

The variable costs for the different technologies used to cultivate maize were 

calculated and input to the model in ten tables shown in Table 7-9. These costs 

included the contractor costs (tractor hire) paid to cultivate the land, fertiliser, 

herbicide, seeds and water costs. The prices o f livestock were expressed on a per 

animal basis, the prices for crops, concentrates and milk are in Mx$ per kg and the 

price for the hired labour is in pesos per Man/day. The equation for the objective 

function is shown in Appendix 4.

7 .2 .5 . O bjective function

Table 7-9. Variable costs for maize production under the simulated technologies

Data
Table

Description Dimension
1 2 3

mzlc Variable costs for CB, o= 1 Fertiliser level, b=\:7 Planting level, 
0 = 1 : 1 2

Costs in 
Mx $/ha

mz2c Variable cost for CB, 0 =2 Fertiliser level, k=\:7 “ It

mz3c Variable costs for CA, o= 1 it a II

mz4c Variable costs for CA, o=2 “ u II

mz5c Variable cost for CN, o= 1 “ “ li

mz6c Variable costs for CN, o=2 “ “ ll

mz7c Variable costs for CB, 0 = 3 Fertiliser level, k=\:6 Planting level, n=10 II

mz8c Variable costs for CB, 0 = 4 “ n II

mz9c Variable costs for CA, o=3 “ “ II

ntzlOc Variable costs for CA, 0 = 4 11 it II
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Table 7-10 is an example o f the tables shown in Table 7-9 above. This table is a 

summary o f the variable costs o f the inputs used to cultivated 1 ha o f irrigated CB 

maize with herbicide application under the different fertilising and planting rates 

(o= l), the name o f the table is m zlc. Note that the costs considered are those o f the 

herbicide, irrigation, contractor, fertiliser and seed for every maize production 

technology tested in the model (the cost shown in Table 7-10 are only for two 

planting rates since the main idea is to illustrate the procedure used). The contractor 

costs in Table 7-10 are aggregated but individual costs o f the different contractor 

activities were considered to calculate this figure.

Table 7-10. Example of the variable costs of one ha. cultivated with irrigated CB maize

Technology Inputs costs in Mx$/ha Total cost/ha
0 = 1 k=l:7 a = l : 1 2 Herbicide Irrigation Contractor Fertiliser Seeds m zlc
1 . 0 1 . 0 1 . 0 1 0 0 . 0 50.0 1500 0 8.3 1658.3
1 . 0 1 . 0 1 2 . 0 1 0 0 . 0 50.0 1500 0 1 0 0 1750
1 . 0 2 . 0 1 . 0 1 0 0 . 0 50.0 1500 400 8.3 2058.3
1 . 0 2 . 0 1 2 . 0 1 0 0 . 0 50.0 1500 400 1 0 0 2150
1 . 0 3.0 1 . 0 1 0 0 . 0 50.0 1500 411.6 8.3 2069.9
1 . 0 3.0 1 2 . 0 1 0 0 . 0 50.0 1500 411.6 1 0 0 2161.6
1 . 0 4.0 1 . 0 1 0 0 . 0 50.0 1500 476.4 8.3 2134.7
1 . 0 4.0 1 2 . 0 1 0 0 . 0 50.0 1500 476.4 1 0 0 2226.4
1 . 0 5.0 1 . 0 1 0 0 . 0 50.0 1500 550 8.3 2208.3
1 . 0 5.0 1 2 . 0 1 0 0 . 0 50.0 1500 550 1 0 0 2300
1 . 0 6 . 0 1 . 0 1 0 0 . 0 50.0 1500 680 8.3 2338.3
1 . 0 6 . 0 1 2 . 0 1 0 0 . 0 50.0 1500 680 1 0 0 2430
1 . 0 7.0 1 . 0 1 0 0 . 0 50.0 1500 1168 8.3 2826.3
1 . 0 7.0 1 2 . 0 1 0 0 . 0 50.0 1500 1168 1 0 0 2918

Table 7-11. Monthly prices of some farm products

Selling price for 1996 in Mx$/kg Buying price in MxS/kg
M onth CA grain CB grain Stover Milk CA grain Stover
JAN 1.2834 1.426 0.05 2.5 1.7 0 . 2 1 0
FEB 1.323 1.47 0.05 2.5 1.7 0 . 2 1 0
MAR 1.3644 1.516 0.05 2.5 1.7 0.317
APR 1.5156 1.684 0.08 2.5 1.7 0.317
MAY 1.5165 1.685 0.08 2.5 1.7 0.317
JUN 1.5174 1 . 6 8 6 0.08 2 1.7 0.317
JUL 1.5174 1 . 6 8 6 0.08 2 1.9 0.317
AUG 1.5174 1 . 6 8 6 0.08 2 1.9 0.317
SEP 1.5174 1 . 6 8 6 0.08 2 1.9 0.317
OCT 1.5174 1 . 6 8 6 0.08 2 1.9 0.317
NOV 1.5174 1 . 6 8 6 0.08 2.5 1.9 0.317
DEC 1.5174 1 . 6 8 6 0.08 2.5 1.9 0.317
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Table 7-11 shows the selling and buying prices o f some o f the farm products but 

especially the prices o f maize and stover. Note that monthly price o f maize and 

stover changes depending upon the season, maize and stover are cheaper after the 

harvest season and more expensive during the rainy season. On the other hand, the 

milk price is lower during the rainy season due to excess in the offer o f this product 

during this season. This data indicate that seasonal fluctuation in the prices o f the 

farm products and inputs were considered in the model. The selling and buying 

prices were included because fanners sell their fann products but they also have to 

buy in when the farm produced is not sufficient to cover internal needs, like in the 

case o f stover.

7.2.6. Simulating labour supply and demand in the system

This section describes the approach used to simulate the amount o f labour 

supplied by the different members of the household. It also describes the approach 

used to calculate the labour requirements for the cattle production activities. The 

labour requirements for maize production were described in Chapter 4.

7.2.6.1 Calculating labour supplied by individual household members

The average amount o f labour supplied by every individual member o f the 

household per year was calculated using the infonnation provided by the family 

members o f the case studies and through direct observation o f their daily activities.

The amount o f labour provided by each member o f the household is expressed as 

“Adult man days” (MD). It is considered that one man-day is the equivalent to 

approximately 8 hours o f work performed by an adult man. This figure is also based 

on the amount o f time that a hired worker works per day; a normal working day 

starts approximately at 7 a.m. and ends at 3 p.m., making a total o f 8 hrs per day. It 

was observed that the amount o f labour in MD provided by each individual o f the 

household depended on its age, gender and position in the household. Based on these 

observations the following simple rules were developed to calculate the household 

labour supply.
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Adult men and the DMs (included females who are DM) who work “full time” in 

the farm supply on average 1.5 MD per day. It was observed that this group normally 

works more than 8 hours per day. A normal working day starts at 5 or 6 am and ends 

twelve hours later (normally the last activity in the day is feeding and milking o f 

cows). So this group supplies approximately 12 hours o f labour per day, it was 

observed that their working week goes from Monday to Saturday. Sunday is 

considered as rest day, and little work is done, therefore it was not included in the 

calculations o f labour supply.

For adult women (spouse and daughters) the working day is 4 hours less than the 

DM, and it was considered to be equivalent to 1 AMD (indeed women works as hard 

as men). They supply on average 1 AMD per day and Sunday is also their rest day. 

Older members o f the household supply a small part o f the labour needs o f the farm; 

it was observed that the amount o f labour that they provide is approximately a 

quarter o f an AMD per day. It was observed too that they also work from Monday to 

Saturday.

Adult men or women (son or daughter) that have an off-farm job may contribute 

to the labour supply, if  their working place is close to the community, such as Toluca 

City. They can normally supply some labour very early in the morning or late in the 

evening. It was observed that they contribute with approximately a quarter o f an MD 

per six days per week. It was also observed that during the harvest time, they could 

supply approximately 5 to 10 full man-days.

Using the simple rules above described; the total labour supplied per year per 

household member in MD was calculated as follows.

Since all the members o f the household work from Monday to Saturday, the total 

number o f possible working days (WDY) per year is shown in Equation 7-14.

W D Y = D Y - Sun

Equation 7-14 . W orking day in a year
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Where D Y  is the number o f days in a year, in 1996 there were 366. Sun=52, which 

is the number o f Sundays in a year, so the total number o f working days was 314. 

The number o f holy days (HD) where most people in the households do not work 

was also considered in the calculation o f labour supply, and subtracted from WDY. 

In Taborda and Tenango, the number o f holidays is approximately 6 per year.

The number o f days that every household member takes as vacation (VD) per year 

is included in the calculation o f the labour supply too, it was observed that in average 

every member takes 5 to 10 VD per year. Vacation days are used mostly to visit 

religious places such as shrines or churches. Based on this information, the total 

number o f adult man-days supplied by the different household members per year for 

the different cropping and cattle activities was calculated using the following simple 

equations:

M D d m <1.5 * W DY-( HD+VD)

Equation 7-15. Labour supplied by the DM

Where M D d m  is the number o f an adult man-days supplied by the DM, whether it 

be the father, adult son or a female DM (in the case o f the households where there is 

no male DM or adult son). The amount o f labour supplied by the spouse was 

calculated as shown in Equation bellow.

A M D SP <1 * WDY-(HD+VD)

Equation 7-16. Labour supply by the Spouse

Where M D SP is the number o f MD supplied by the spouse, the same equation 

applies for the adult daughters working full time in the fann. The number o f MD 

supplied by the adult sons or daughter who have an off-farm employment was 

calculated as shown in Equation 7-17.
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A M D o f f .f s  < (0.25 * WDY1 - (HD+VD)) + FTFD

Equation 7-17. Labour supplied by off-farm employed children

Where M D qFF_f s  is the number o f MD supplied per year by the adult sons or 

daughters, WDY1 is the number o f working days in a year in which the off-farm 

members supply part time farm labour, and is WDY-10. FTFD  is the number o f days 

in which they work full time in the farm, which can be 5 to 10 per year.

The number o f MD supplied by the elder members o f the household was 

calculated using Equation 7-18 below

A M D o ld  ^ ° - 25 * W D Y-(H D +VD *2)

Equation 7- 18. Labour supplied by old members of the household

Where A M D qLD is the number o f MD supplied by the older members o f the 

household, which in general is the grandfather, since it was observed that the 

grandmother contributes little to the labour supply. Vacation days in this group is 

twice as many as in other groups since they normally require more off-work days 

than the rest o f the household members. The monthly labour supply by the household 

members was input to the model in an input data table named hlab nj 2-

The labour requirements for the different activities shown in Table 7-12, were 

subtracted from what is supplied, the deficit was supplied by hired labour (see 

Appendix 4 for the labour balance equation L A B )
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Table 7-12. Input data tables and their dimensions for labour supply and demand

Data
Table

Description Dimension 
1 2

blab Monthly labour supplied by the household Category Month, w =l:12
leb Labour required to cultivate CB maize Month Main treatment, o=1:4
lea Labour required to cultivate CA maize Month Main treatment, o= 1:4
len Labour required to cultivate CN maize Month Main treatment, o=l:2
lip Labour required to cultivate IP Month
loc Labour required for other crops Month
Igr Labour required for grazing Month
loi Labour required for other livestock Month

7.2.6.2. Labour requirements for cattle activities

The amount o f labour required to feed and clean the farm ’s cattle is dependent 

upon the composition o f the herd in terms o f the number o f animals o f the different 

classes, since more time will be spent in feeding a cow than a calf or a heifer. The 

activities that consume more time are the feeding, cleaning and milking o f the 

animals. The time required to cut and carry forage also consumes an important 

amount o f the household’s labour, but it was included in the labour budget for maize 

cultivation, as manual weeding. Cut and carry forage occurs only during the rainy 

season because it is in this season when green forage is available for cutting.

Using the information provided by the farmers on the amount o f time that they 

spent in feeding, cleaning and milking their cattle, two linear regression models were 

developed to calculate the amount o f labour required to perform these activities. The 

output o f the models is expressed in MD per month for the different simulated 

categories o f cattle.

The first model calculates the labour needed to milk the cows, in MD/month 

(tmilk)’ which are in milk in any given monthly period o f the year. The second model 

calculates the labour needed to feed and clean the cattle in MD/month (tfed-clean) in 

all categories. In the second model the number o f cattle heads per herd were scaled to 

livestock units (LSU) in order to differentiate the time farmers spent in feeding the 

different categories o f cattle. A cow represented 1 LSU, heifer, steers and bulls were 

considered as 0.65* 1LSU and calves 0.34* 1LSU.
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Approximately 90% (r2=0.9) o f the total variation in the time required for milking 

the cows is explained by the regression model shown in Equation 7-19 below, which 

suggests that it can be used to calculate the time needed to milk all the cows in a herd 

(pO .O l).

tmilk = 0 .304+  0.584 * N

Equation 7-19. Model for labour required to milk cows

Where tmiik is the labour needed to milk all the cows in a herd, expressed as MD 

per monthly period o f 30.5 days and N  is the number o f cows that are being milked 

in any monthly period. The model used to calculate the time required for feeding and 

cleaning the cattle, shown in Equation 7-20, also explains a large proportion o f the 

variation (76.3%). It provides strong evidence (p<0.01) that suggests it can be used 

to predict the time required to feed and clean all the animals classes in the herd.

tfed&clean ~ 2.516 + 1 .3  LSU

Equation 7-20. Model for labour required to feed and milk cows

Where tfe(i&clean *s the time needed to feed and clean up the cattle, expressed as 

MD per monthly period o f 30.5 days and, LUS is the number o f the different cattle 

categories in the herd scaled to livestock units.

Equations 7-19 and 7-20 permitted development o f the set o f coefficients used in 

Equation 7-21, to simulate the dynamics o f labour requirements for cattle production 

over the simulated periods. Equation 7-21 calculates the amount o f labour required 

for cleaning feeding and milking the entire herd. It can be seen that the model is able 

to predict how the monthly labour requirements change with the time, since the herd 

structure also changes. This enabled the model to consider the different herd sizes 

and structures for the different case studies simulated, stressing the generic 

characteristic o f the model.
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catlabm=x.x lY  ̂ Yae *hc- l imq + Y Jg * h c _ 2 mg+ Y Jf * h c _ 3 mq&
q i q = 1:2 <7= 1:2

+ ^ S * h c - 3 n,q + h  
7=3:4

Equation 7-21. Equation for labour requirem ents of the herd

Where e is equal to 1.88, which is the sum of the regression coefficients from 

Equations 7-19 and 7-20, for cows in all classes for milking-feeding and cleaning 

times LSU (0.584 and 1.3 respectively). Since heifers, steers and bulls are not 

milked, they are only feed and cleaned, the coefficient associated with labour 

required for milking cows is not used. Therefore, g=1.3*0.65 (where 1 heifer 

=0.65LSU) and /=1.3*0.34 for calves (where 1 calf=0.34LSU). Finally 

h=0.304+2.516.
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Chapter 8. Simulating the campesino maize-cattle production 

system of the Toluca Valley

8.1. Introduction

This chapter describes the performance o f the IFSM in emulating the campesino 

maize-cattle production system. Results illustrate the production dynamics o f a 

complete production cycle at the Toluca Valley (13 months). The model solutions for 

land use, dynamics in farm resources use and gross revenue are compared to the 

survey data for each o f the simulated case studies. Special attention was paid in 

describing the ability o f the model to represent the complex interactions observed 

between fanners, crops and cattle. Model solutions for maize and milk production 

are described in relation to the technologies selected and land use. Seasonal variation 

in cattle feeding systems is also described especially the capacity o f the model to 

select the best feeding strategies using available resources. The generic nature o f  the 

model is stressed by describing model solutions for every case study.

A description o f the main characteristics o f the case studies is presented first in 

order to facilitate the comparison between the case studies and the model predictions. 

This description is followed by discussion on the m odel’s accuracy in reproducing 

the farming system dynamics. Due to the size o f the output a summary o f the main 

results is presented.

8.2. Characteristics of the case studies simulated

The main characteristics o f the three case studies are presented in Table 8-1, and 

described below.

Mr Luis Gonzalez’s farm: This farm is located in a small community called 

Allende, which is part o f the ejido Taborda. His father was one o f the original 

recipients o f land when the local haciendas were divided; and the ejiclo founded in
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1936. His farm is 4.0 ha from which 0.5 ha are occupied by the farmhouse and the 

cattle bam. The rest is used to cultivate maize, and some improved pasture (amiual 

Rye grass), the land use pattern for his farm is shown in Table 8-1. Improved pasture 

is normally located amongst the maize fields that are close to the farmhouse. Two 

and a half hectares o f Mr González's are irrigated and one ha is rainfed only (Table 

8-1). He also rents two extra hectares o f irrigated land from a neighbour farm, which 

he plants with maize too. Mr González cultivates his own varieties o f Criollo Blanco, 

Criollo Amarillo and Criollo Negro maize. Normally he does not apply herbicide to 

his maize fields, since he uses all the forage available to feed his cattle. Depending 

on yield levels he may sell some or use all to feed his animals.

M r González reckons that the main objective o f keeping cattle is milk production, 

however it was observed that beef production was also a very important activity for 

him. All the male calves are kept in the farm and sold once fat, no female calves are 

sold since all are kept as replacements. Most o f the milk produced is sold to the local 

middleman; in fact milk sales constitute his main daily cash income source. Beef 

animals also supply an important amount o f cash, although the income is less 

frequent and is seen more as a saving activity. He has other livestock including 

sheep, pigs, donkeys and poultry. The cattle herd structure and the type and number 

o f other livestock is summarised in Table 8-1.

Mr Luis González is the decision-maker in his farm; he is 58 years old, and his 

wife 52. The number and gender of his children are shown in Table 8-1. Two o f his 

sons have an off-farm job in the industrial zone near the Toluca City, but they 

contribute with some labour to the farm. His son Tirzo (25) works full time in the 

farm; he has a technical career (12 years of education). Tirzo worked in a factory but 

he decided to quit, he believes he can make more money working in his father's farm. 

M r González’s spouse and daughter are in charge o f the housekeeping, but they are 

also responsible for the small livestock. I f  needed, they may also contribute to some 

o f the cultivation and major livestock related activities. Mr González has no tractor; 

he has to pay the contractor to do all the cultivation activities that require it. He has 

no permanent workers, but he does hire extra labour during the harvest season.
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Table 8-1. Main characteristics of the case study farms.

Case study farm ers
Household composition Mrs Lidia Estrada Mr Luis González Mr Juan Valdez
Decision maker 1 1 1
Spouse 0 1 0
In-farm son 0 1 0
Daughter 1 1 0
Children 0 2 2
Old 0 0 2
Off-farm son 0 2 1
Community Taborda-Las Taborda-Allende Taborda

Lomas
F arm  size in ha. 1.5 4.0 7.0
Own arable land
Irrigated 1.25 2.5 6 . 0
Rainfed 0 1 . 0 0
Rented land in ha
Irrigated 0 2 . 0 3.0
Rainfed 0 0 2 . 0
Land in farmhouse & 0.25 0.5 1 . 0
livestock housing in ha.
Crops Maize Maize Maize
Other crops Pumpkins* Pumpkins, large* Pumpkins, large

beans beans
Land in crops in ha. 1 . 0 5.39 1 0 . 0
Pastures Annual Rye grass Annual Rye grass Rye grass
Land in pastures in ha. 0.25 0 . 1 1 0 1 . 0
Livestock
Lactating cows 5 5 9
Dry cows 1 0 0
Pregnant heifers 1 2 5
Non-pregnant heifers 1 2 2
Calves 2 5 9
Steers 0 4 6
Bulls 1 0 1

Total 1 1 18 32
Sheep 0 8 0
Pigs 0 2 0
Poultry 1 0 30 35
Donkeys 1 2 0
M achinery
Tractor No No Yes

*Pum pkins and large beans are intercropped with maize

Mrs Lidia Estrada’s Farm: Mrs Estrada’s farm is located in Las Lomas, a 

community that is also part o f the ejido Taborda. Mrs Estrada is a widow and she 

inherited her land from her husband who died ten years ago, since then she has lived 

from milk and maize production. Her farm is 1.5 ha from which 1.25 ha are of
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farming land and 0.25 ha is occupied by her house and the cattle bam. All her land is 

irrigated; she plants 1 ha with Criollo Amarillo maize and the rest with annual Rye 

grass (Table 8-1). Mrs Estrada does not rent extra land since she acknowledges that 

she can not afford to cultivate more land, and it will be difficult for a widow to have 

access to land for renting. She does not apply herbicide to her maize because all the 

forage is used to feed her cows, and she does not sell any maize or stover.

M ilk production is the main objective o f keeping cattle in the case o f Mrs Estrada, 

and all the milk is sold to the local middleman too. All the calves are sold when they 

are 6 months old or less, because she does not have enough forage and maize to keep 

them. Again no heifers are sold, and milk is her main source o f income. Mrs Estrada 

does not have any other large livestock, only chickens and turkey. Most part o f the 

dry season she feeds her cattle with maize stover, small amounts o f improved pasture 

and a concentrate that she makes. The concentrate is made o f chicken manure and 

ground com (Conc-3). She has access to a communal grassland area from which she 

takes advantage to take her animals to graze. During the rainy season, she feeds her 

cattle weeds, green stover and dry stover; she uses the same concentrate as in the dry 

season, although she may include some wheat bran in it (concentrate 5). Mrs Estrada 

has to buy large amounts o f stover since what she produces is not enough to feed her 

animals, 18 heads o f cattle in average per year. She reckons that feeding expenses are 

among the largest in her production costs.

Mrs Estrada who is 50 years old has a daughter (18) who works full time with her; 

both manage to provide all the labour required to look after her cattle. However she 

needs to hire people at some points of the maize growing season to help her with the 

cultivation activities. She has no tractor too.

Mr Juan Valdez’s farm: Mr Valdez's fann is located in the Taborda community. He 

represents the segment of wealthier fanners in the region (approximately 10%). He is 

75 years old, and is also one o f the initial dwellers o f the ejido Taborda. Mr Valdez’s 

fann is 7 ha; the farmhouse and the cattle bam occupy one hectare, and the rest is 

arable land. All his land is irrigated from which he plants 5 ha with maize and 1 ha 

with Rye grass (Lollium perenne). Mr Valdez normally rents an extra 5 ha o f land;
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three o f which are irrigated and the other two are not, all this extra land is planted 

with maize too (Table 8-1). Mr Juan Valdez plants his own varieties o f Criollo 

Blanco, Amarillo and Negro; he normally applies herbicide to all his maize plots, 

except in 2 plots close to the farmhouse. He cuts and carries forage to feed his cattle 

during the rain season from these plots. Due to the relatively large area planted with 

maize he normally has a surplus o f grain and sometimes stover that, depending on 

the market conditions, he may sell or feed them to his cattle.

Mr Valdez has the largest herd from all the case studies; 32 animals in total (see 

Table 8-1). He reckons that his main interest in keeping cattle is milk production, his 

cows have higher yields than the average in the community, however it was observed 

that beef production plays an important role in his production strategies. All the male 

calves are kept and sold once fatted. All the milk is sold to his older son who is a 

local milk middleman. Again no heifers are sold, but used as replacements, notice 

the large proportion o f heifers in the herd shown in Table 8-1. During the dry season 

he feeds his cattle with maize stover, some improved pasture, and a better quality 

concentrates, made from wheat bran, maize, and chicken manure (Conc-1 and 2). If 

the price is low he may also use some commercial concentrate. For most part o f the 

rainy season he feeds his cattle with maize stover, improved pasture, weeds and 

green maize stover, and he uses the same concentrates.

Due to M r Juan Valdez’s old age, his son Juan (28) is in charge o f the farm and in 

many aspects he is the decision-maker or shares the key decisions with his father. Mr 

Valdez's wife is in charge o f the housekeeping and does not participate in the 

cultivation or cattle activities. Due to the large size o f the farm, Mr Juan Valdez has a 

permanent worker (sometimes two workers) in his farm, in charge o f feeding and 

cleaning cattle. He also hires some extra labour to carry out most o f the cultivation 

activities, particularly during the harvest season. Mr Valdez is the only one o f the 

case study farmers who owns a tractor.
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8.3. Model predictions for maximum gross revenue and household 

dynamics.

8.3.1. Maximum gross revenue

Model predictions for annual gross revenue and land uses are presented in Table 

8-2. The size and structure o f the simulated households is also shown to facilitate the 

description o f the output. This table shows that as expected Mr Juan Valdez's farm 

obtains the highest gross revenue, followed by Mr González’s and Mrs Estrada’s 

farms. These results are consistent with the fact that Mr Valdez owns more land than 

the other two case study fanners do. Therefore he plants more maize and can afford 

to have more cattle, which at the end generates him more profit. Gross revenue 

predicted for M r Luis González is also in line with what was observed in the field 

since this farmer is visibly better-off than Lidia Estrada, who represents the group o f 

less wealthy fanners, mostly due to the small size o f her holding. Note that the 

maximum gross revenue predicted for her is not substantially different from that o f 

M r González. This is probably explained because o f the dairy cattle contribution to 

her gross annual income since she has a similar number o f cows as Mr González 

(Table 8-1).

Although the actual gross revenue for every case study was not calculated during 

the survey, the farmers were asked to give an estimate o f their annual gross revenues. 

It was observed that the maximum gross revenues predicted by the model are some 

20% higher than the average annual profit reported by the case study farmers. 

However, farmers mentioned that in good agricultural years, when weather 

conditions are good (no early frosts and good rainfall) and the maize plants do not 

suffer from water or nutrients stress, similar profit levels to those reported by the 

model may be achieved.

Moreover, when the gross revenue from one hectare cultivated with irrigated 

maize was calculated using the survey data, it was observed that for an average yield 

o f 4.5 t o f grain and 4 t o f stover, the gross revenue was o f Mx$ 4900/ha. This figure 

is quite similar to the Mx$ 5461 dual value (is a measure o f what an additional unit

188



o f a resource is worth) predicted by the model for an extra hectare o f irrigated land 

used to cultivate maize or improved pasture (irr). These observations suggest that the 

model predictions for gross revenue generated from 1 ha o f land cultivated with 

maize are consistent with those observed in the field.

Table 8-2. Model predictions for gross revenue and land use

Case study
Luis González Lidia Estrada Juan  Valdez

V ariable name Techno­ Value Input Techno- Value Input Techno­ Value Input
and dimension logy Cost Logy Cost logy cost
Gross revenue 64 152.5 42 389 116310
(Mx$/year)
Household
H M  01 1 0 1 0 1 0
HM  02 1 1 0 0 0 0 0
HM  03 1 0 0 0 0 0
HM  04 1 0 1 0 0 0
HM  06 0 0 0 0 2 0
H M  07 2 0 0 0 1 0
Land use

o, k, a o, k, a o, k, a
CB (ha) 2,5,04 2.19 -2133 - - - 1,6,04 6.42 -2363
CB 1,6,04 1.84 -2363 2,6,04 0.82 -2263 2,6,04 1.80 -2263
CB 3,6,04 1 -1950 - - - 3,6,04 1.56 -1950
CB - - - - - - 4,6,04 0.43 -1850
CN 1,7,08 0.159 -2404 2,7,08 0.053 -2792 2,7,08 0.09 -2792
CA* 1,6,04 0 -2354 2,6,04 0 -2254 2,6,04 0 -2254
CA * " 3,6,04 0 -1924 0 0 3,6,04 0 -1924
IP 0.311 - 2 0 0 0 0.381 - 2 0 0 0 0.70 - 2 0 0 0
RNTDRY (ha) - - - - - - 2 -1839
RNTIRR 2 -2777 - - - 3 -2777
ownirr** " 2.5 1.25 6 . 0
owndry** " 1 . 0 0 0
Gross margin/ha 11 664 42 389 10 573
Gross 12 380 14 129 11 631
margin/cow
Household lab 43.0 60.5 216.0
return/day

‘ V ariables not selected by the model which reduced cost is equal to 0, **Arable land in ha/farm  a re  restrictions.

Key:/TA/=househo1d members, RNTDRY=rented rainfed land, RNTIRR=\ented irrigated land, ownirr=own irrigated land, 

0ii>«rfr)>=own non-irrigated land, //M m proved pastures

Dickson (1997), in a more simple model o f the campesino maize-cattle production 

systems o f the Toluca Valley, predicted an annual gross revenue o f Mx$ 73,270 for a 

farm with nine cows and 4 ha o f land planted with maize, which is similar to Mr 

González's farm. It is possible to use the model to simulate maize production under
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different climate conditions such as those observed in crop failure or low yields 

situations. The model predictions shown in Table 8-2 reflect maize and improved 

pasture growth and production under reasonable good climate conditions (see 

Chapter 4), which also explains the profit levels predicted by the model.

Gross revenue predicted by the model are higher than those reported by Arriaga et 

a l., (1997a), for campesino fanners o f the Toluca Valley. The difference may be 

explained by the fact that these authors considered the family labour as part o f the 

variable cost, as well as the cost o f rearing heifers for replacements. On the other 

hand, they made general assumptions regarding the yield level for maize, stover, 

weeds, and other farm products, and do not deal with the dynamics o f the farming 

system over the time. For example, crops and forage yields are not the same every 

year, the structure o f the cattle herds changes throughout the year too. Therefore, it 

will be wrong to use fixed values for these parameters since they are constantly 

changing in response to the enviromnent and fanners’ interventions.

In this work family labour was not considered as variable cost, since it was 

considered more important to differentiate its cost from the cost o f hired labour. For 

example, the shadow price o f family labour predicted by the model is higher than the 

nonnal cost o f hired labour. This may be explained by the fact that family members 

normally supply more labour than a hired worker does, thus it may be more 

convenient to allow the model to calculate the cost o f family labour instead o f  giving 

it a fixed value. For example, the shadow price o f the labour supplied by the 

decision-maker and the adult son is Mx$ 40/day, Mx$ 27/day for the spouse and 

daughter, while the cost o f hired labour is Mx$ 25 (Table 8-3).

The cost o f rearing replacements were not considered as variable costs, because 

replacements are produced within the farm and reared using stover and grain which 

are produced in the farm, and their costs were accounted for in the maize production 

costs. The predicted gross revenue is also the result o f selecting the optimum 

(predicted) technologies available to produce milk and maize, for example in the case 

o f the daily cows only the best diets and concentrates allocation strategies were 

selected by the model. For the rainy season, all the lactating cows were fed with
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concentrate CONC-6 that is the concentrate which produced the highest milk yield 

response among all the concentrates tested (see Chapter 6, section 6.4.1). Although 

farmers sometimes administrate commercial concentrate, it is not a normal practice 

to supplement all the cows with it during the wet season. The model found that it is 

worthwhile to supplement this concentrate to all lactating cows during the whole 

duration o f the rainy season when better response is obtained.

On the other hand, cattle diet selection during the dry season did not included 

commercial concentrate because the model found more convenient to utilise only 

those concentrates which maximise milk yield but are less expensive than the 

commercial one (fann-made concentrates). Also recall that during the dry season 

response to concentrate is lower than during the rainy season due to the low quality 

o f the forages, that is probably why the model did not selected commercial 

concentrates for this season. This diet selection pattern selected by the model for the 

dry season is more similar to the feeding systems used by farmers.

Higher gross revenue predicted by the model can also be explained by the 

reasonable high grain yield predicted by the maize model. As explained before the 

CERES-Maize model predictions for grain yield are in close agreement to those 

observed in the field, however these observations are for good years when climate 

conditions are appropriate for maize growth and there is no damage by frost, pests or 

diseases as will be explained later in the following section.

Table 8-2 also shows the gross margin per ha and per cow and the return to 

household’s labour per day of work. These data suggest that Mrs Lidia Estrada is the 

most efficient fanner among the three case studies. Despite she only has one ha of 

land she makes the most efficient use o f it getting the higher gross revenue per 

hectare o f land. It is suggested that milk production contributed to a larger extent to 

this results since by producing maize alone she will not be able to get this level o f 

revenue. M r Juan Valdez obtains the highest return for one day o f household’s labour 

but this is probably due to the size o f his holding, however in general it is possible to 

say that all fanners get higher wages from working in their farms than the average 

wage rate they could get working for someone else.
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Finally, it is acknowledged that fanners normally operate over the optimum for 

most production technologies, it is believed that the model was able to find some 

space for potential improvement, which resulted in higher gross revenue, as will be 

discussed later.

8.3.2. Household dynamics

Although the model did not explicitly determine the household size and 

composition, the model was successful in incorporating the household composition 

o f the simulated case studies into the model's dynamics. Table 8-2 shows that the 

household size and composition used by the model to calculate labour supply and 

maize consumption for all the case studies is the same as the one presented in Table 

8-1. Every member was properly accounted for in the model, this approach permitted 

to run the model for different case studies regardless the size and composition o f the 

household. This is clearly shown in the cases o f Mrs Lidia Estrada and M r Luis 

González whose households represent the extremes in term o f household 

composition and size, two and six members respectively (Table 8-1).

Moreover, results in Table 8-2 suggest that the model was able to reflect the 

effects o f individual household composition in tenns o f family labour supply, and 

preferences on maize consumption and production which at the end determines the 

farm production strategies. Already mentioned the IFMS is free to select which 

maize variety to produce for sell and cattle feeding, however in the case o f the 

household’s maize consumption it was constrained to produce Criollo Negro in order 

to cover the households’ needs. This was done because it was observed that 

campesino families normally plant small areas with CN  maize, which is preferred for 

human consumption above the other varieties.

It is believed that the approach used here also contributes to a certain extent to 

incorporating socio-economic aspects o f the fanning system in the modelling 

process. It is well known that traditionally, models aimed at simulating one 

component o f the farm system, be that either the food production or ecological 

systems, have tended to ignore the social component o f the farm system (Dent et al.,
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1995; Jones et al., 1997). This is quite unfortunate because the responses o f  the 

people to their economic and social environment is what ultimately determines the 

other outputs o f agricultural systems.

The generic nature o f the model is based on the assumption that there exists some 

degree o f commonality between the behaviour and production practices o f individual 

farmers o f the Toluca Valley. So rather than attempt to simulate the unique 

behaviour o f individuals, it was decided to develop a model which assumes some 

degree o f commonality in the behaviour o f individuals, but also recognises that the 

characteristics o f the individual households will influence the specific uses o f the 

land and production responses. This goal was achieved by identifying the production 

practices that are common to most fanners in the study area and reproduce them in 

the model. The model therefore acts as an expert system, because it attempts to 

emulate some o f the decision-making process o f human experts (Luger and 

Stubblefield, 1989). In this case, the experts are the campesino farmers o f the Toluca 

Valley, and the model attempts to emulate their behaviour, from the standpoint o f 

their farming practices.

8.4. Simulating land use

Model prediction for land use was consistent to the land use pattern observed in 

the field for every simulated case study. For example in the case o f Mr Luis 

González the model utilised all the land to which the farmer has access to, as 

normally occurs with Mr González (Tables 8-1 and 8-2). The model selected to 

cultivate two varieties o f maize, 5.03 ha o f CB and 0.016 ha o f CN. Criollo Blanco 

was selected because it generates the highest income (has a higher sale price than 

CA). However, the variety CA could also be used without significantly affecting the 

final value o f the objective function. Table 8-2 shows that the variety CA (using a 

similar cultivation technology to that use for CB) could effectively be included in the 

land use strategy and produce the same final result, because its reduced cost is zero. 

Therefore, there is no objective function loss by producing some o f this variety. 

These results showed that the model didn't ignore the diversity on the use o f local
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maize varieties, since it could use simultaneously all the maize varieties without 

affecting the final gross revenue.

The model was remarkably accurate in reproducing the maize production 

technologies used by the farmer at the Toluca Valley. For example Table 8-2 shows 

that in the case o f Mr González, the model selected both to cultivate irrigated and 

non-irrigated maize (o= l:2  and 0=3:4, respectively). Moreover, it was able to 

reproduce the differential application o f herbicide; it selected to apply herbicide in 

nearly 3 ha, and not to apply it in 2.19 ha o f maize. The extra forage produced by not 

applying herbicide (weeds and green maize fodder) was used by the model to feed 

cattle, as is shown later in this section.

On the other hand, it was observed that the area predicted by the model for 

herbicide application is different from the area determined by farmers. For example, 

M r González only applies herbicide in 1 ha; in contrast the model decided to apply 

herbicide in nearly three hectares of maize. This may be explained by the fact that 

the model decided to feed cows with the highest rate o f commercial concentrate 

(better quality) during most part o f the wet season. Reducing the amount o f forage 

needed during this season, which is the same weeds and green maize stover produced 

by not applying herbicide. Moreover, model predictions for Mr González suggest 

that it may be more convenient for this fanner to save more stover for the dry season 

(not cutting it as green stover) when more stover is required, thus reducing purchase 

o f  it during this season. It is believed that in the end, the model was successful in 

capturing the interactions between the crops and the cattle and the compromise 

between the need to produce grain, but also to produce forage from the same maize 

plots.

The model also allocated some o f the fann's land to produce improved pasture. 

This is remarkable because there is not a constraint that forces the model to allocate 

land to this activity. Table 8-2 shows that the model used 0.311 hectares to produce 

improved pastures, in contrast Table 8-1, indicates that Mr González uses only 0.11 

ha to produce improved pasture. The model suggests that it may be more profitable 

for this farmer to allocate slightly more land to this activity. The model prediction for
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this variable also suggests that such change should not produce significant effects on 

the land use pattern and maize production (since the extra area dedicated to this 

activity is very small).

Model predictions for Mrs Lidia Estrada are also consistent to what was observed 

in the field for this fanner. The model allocated 0.87 ha for maize production 

(irrigated) while the farmer normally allocates 1.0 ha. The model assigned 0.38 ha 

for improved pasture while the farmer uses 0.25 ha for this activity (Tables 8-1 and 

8-2). The results for Mrs Estrada also show that the model selected to produce CB 

maize without herbicide, because weeds and green maize fodder are used to feed 

cattle during the wet season. It was observed that this is a common practice used by 

the fanner, who due to the small size o f her farm makes use o f all the forage 

resources that she has access to.

The land use pattern predicted for the third case study is also similar to that 

observed in the field, and to the other two case studies. The model decided to 

cultivate both irrigated and non-irrigated maize, and allocate most o f the fann's land 

for this activity (10.3 ha). The model also decided not to apply herbicide in 1.8 ha 

cultivated with irrigated CB and 0.43 ha o f non-irrigated CB (Table 8-2). The 

herbicide application regime predicted by the model is also consistent to what was 

observed in the field for this farmer. It was observed that Mr Valdez does not apply 

herbicide in 3 ha o f his maize crop. The model allocated 0.7 ha for improved pasture 

production, while the fanner uses 1 ha for this purpose. These results suggest that the 

model prediction for this variable and other land use variables are in close agreement 

with the fanner land use practices observed in the field.

Notice that for this fanner the model decided to cultivate only CB maize too. 

However, CA can also be cultivated without significant effect on the final value o f 

the objective function as indicated by the 0 value assigned to the reduced cost for 

these variables. In other words, it will cost nothing (or lose nothing) to the fann 

income to include in the land use plan the CA variety (using similar cultivation 

technologies as for CB).
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In all the case studies the model selected the fertilizer levels 5 and 6 (k=5 and 6), 

70 and 90 kg o f N /ha, respectively (see Tables 7-4 and 8-2). These results indicate 

that it may be more economically viable for farmers to use 90 kg o f N  per hectare o f 

maize instead o f the 180 kg o f nitrogen normally applied by them. However, these 

predictions have to be taken cautiously, for two main reasons. First as it was widely 

discussed in Chapter 4, the maize model may be underpredicting the nitrogen 

fertilizer needs o f local maize due to the low stover yields predicted by it. Therefore, 

a lower use o f nitrogen may affect stover yield; however, these assumptions need to 

be validated in the field.

Secondly, although all the simulated varieties reached their asymptotic grain yield 

values at a dose o f 90 kg o f nitrogen (and no significant difference was observed 

between 90 and 180 kg o f nitrogen, see Chapter 4), it is probable that weeds are 

using some o f the extra nitrogen applied by farmers (Okumura et al., 1986). Now, 

because the CERES Maize model does not predict the effects o f weeds on nitrogen 

utilisation by maize it is difficult to evaluate this assumption. Weeds utilisation o f 

nitrogen may be occurring even for the cases where herbicide is applied because it is 

well known that herbicide application or the mechanical removal o f weeds does not 

exert a complete control o f weeds (Singh et al., 1985).

On the other hand, it is hypothesised that the amount o f nitrogen used by weeds 

may not be very important since the most negative effects o f weeds on maize yield 

occur during the first 60-70 days after maize emergence (Singh et al., 1985; Marais, 

1985). Farmers in the Toluca Valley put particular effort on weed control (mainly by 

mechanical methods) during this critical period o f maize growth (Figure 4-5). 

Fischer et al., (1981) have also reported this practice in other maize producing 

communities o f Central Mexico.

Finally, notice that the IFSM allocated a minimal amount o f land for the 

cultivation o f CN  maize, which is determined by the monthly consumption o f maize 

by the household (Table 8-2). The average daily consumption reported by Reyes 

(1990) was used to calculate the monthly consumption for the entire household, and 

again this varies depending upon the composition o f it.

196



Campesino farmers normally make decisions on their farming activities at more 

than one point in time, therefore it is quite likely that the decisions made during the 

current period influence decision made during future periods. Although the IFSM 

does not attempt to actually simulate the decision making process earned out by 

farmers, it can actually simulate the decisions taken over the land use and predict the 

effects on production and utilisation of farm products resulting from such decisions. 

In other words, since the IFSM is based on the expert knowledge o f the local 

fanners, it will be fair to assume that the model predictions on the driving variables 

o f the system (like land use) are similar to those taken by the farmers. Therefore, in 

theory the m odel’s predictions on the actual production and utilisation o f the farm 

generated resources should also be consistent with the practices observed in the field. 

It is believed that this goal was achieved by making the model dynamic in order to 

simulate the monthly periods o f the production cycle at the Toluca Valley. This is a 

feature not seen in similar models where a single time period (usually a year or a 

production season) is normally simulated.

Tables 8-3 and 8-4 summarise the production and utilisation o f the simulated farm 

products including, maize (grain), stover, milk and beef. Table 8-3 shows the main 

products generated from the maize production activities, and the time when they 

were carried out. For example, maize and stover can be harvested (CBHV, STOHV), 

sold (CBS, STOSEL), purchased (STOBUY) or fed to cattle (CBF, STOFED ), 

depending on the fann needs and the optimal solution for that farm. A similar 

approach was used for the cattle products (see Table 8-4), milk is produced and sold 

(MLK), culled cows are sold (NCULL) and the same occurs with steers whether they 

are fatted or not (NSTEE). Hired labour requirements are presented in Table 8-3 too. 

Although hired labour is not a product generated within the production unit, its 

requirements depend upon the level of the crop and cattle activities; this is described 

in this section too.

8.5. Simulating farm resources production and utilisation
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T a b le  8-3 . M o d el p red ic tio n s for m aize , stover and h ired  la b o u r d yn am ics

Luis González
Case study 

Lidia Estrada Juan  Valdez
V ariable name Value Input Value Input Value Input
and dimension Cost Cost cost
C rop products
CBHV 11 (kg/farm) 18 830.5 0 3 837.5 0 38 652.2 0
CBHV 12 " 3 765.6 0 - - 7 286.2 0
CBS 06 (kg/month) 261.8 1 . 6 8 138.5 1 . 6 8 - -

CBS 11 18 232.7 1 . 6 8 0 1 . 6 8 37 493.6 1 . 6 8
STOHVOl (kg/month) 3321.8 0 6  182.6
STOHV12 " 11 148.4 0 1 664.8 24 689.2
STOSEL04 ” - .08 - - - 0.08
STOBUYOl " -0 . 2 1 2 121.5 -0 . 2 1
STOBUY02 " 13 488 -0 . 2 1 17 115 -0 . 2 1 18 674.5 -0 . 2 1

H ired Labour
HL 01 (MD/month) 0 -25 0 -25 48.43 -25
HL 02 0 -25 0 -25 28.0 -25
HL 03 0 -25 0.7 -25 56.7 -25
HL 04 0 -25 0 -25 36.5 -25
HL 05 0 -25 0 -25 42.4 -25
HL 06 0 -25 0 -25 49.2 -25
HL 07 0 -25 0 -25 67.0 -25
HL 08 0 -25 0 -25 40.5 -25
HL 09 0 -25 0.25 -25 37.8 -25
HL 10 0 -25 0 -25 36.2 -25
HL 11 33.4 -25 29.3 -25 180.0 -25
HL 12 36.5 -25 33.6 -25 183.3 -25

K ey:CBHV=CB  harvested, CBS=CB grain sold, S T O t/t^stover harvested, STOSEL=stover sold, STOBUY=stover bought, 

//¿= h ired  labour.

8.5.1. Model predictions for maize production and utilisation

Table 8-3, shows the amount o f CB maize which is harvested from each case 

study (CBHV), it also shows the month in which it was harvested. Notice that Mrs 

Estrada harvested maize in November (CBHV¡¡) because she only plants irrigated 

maize (only harvested in this month), while the other two farmers harvested both in 

November and December (CBHV¡ ¡ & l2 ) because they planted both irrigated and

non-irrigated maize.

Table 8-3 also shows that the amount o f maize harvested from irrigated maize is 

larger than for rainfed maize. For example, if  the average yield per ha o f irrigated 

maize is calculated for Mr González fields from the values in Table 8-3, it can be
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observed that grain yield was 5.2 t/ha while for rainfed was 3.8 t/ha. Similar figures 

were observed for the other two case studies. In general, it possible to say that 

average yield levels selected by the model are similar to those observed in the field 

(see Chapter 4). As expected Mr Juan Valdez harvested the largest amount o f CB 

maize, followed by Mr González and Mrs Estrada.

Model predictions for sales o f CB maize (CBS) are presented in Table 8-3. Mr 

Valdez is the farmer who sells the largest amount o f maize, 37.4 t in November, 

while Mrs Estrada can only afford to sell a minimal quantity in June (CBSoó). Mr 

González also sells a significant amount o f maize, 18 t in the month November too. 

Predicted maize sales for all the fanners are higher than observed in the field, since 

they normally sell less maize. The amount o f sold by every fanner is quite variable 

and will depend on the yield and the farm needs, however, it was observed that Mr 

Valdez sells approximately 50-60% of his annual production, while Mr González 

sells only 30-40%. Due to the small size of his holding, Mrs Lidia Estrada does not 

sell any maize at all.

Predicted maize sales shown in Table 8-3, for Mr González and Mr Valdez are 

higher (80% and 84% of total harvest, respectively) than the values reported by 

farmers. These findings can be easily explained by the fact that the model decided 

that it is more profitable for these farmers to feed commercial concentrate to cattle 

during the rainy season instead o f using maize as concentrate for cattle (see section 

8.6.3). The model also reduced the amount o f maize allocated to feed young stock, as 

it will be described later. Moreover, in the case o f Mr González, the model did not 

simulate the amount o f maize fed to his sheep and pigs, which will further reduce the 

predicted sales o f maize. Simulation of feeding systems for other livestock within the 

fanning system may be required in order to account for the contribution and 

resources demand o f these animals too. However, this subject goes beyond the scope 

o f this work, since other simulation models are required such as monogastric models 

that simulate for example pigs and chicken consumption o f maize and forages.
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Because maize stover plays an important role in the farming system, it was 

considered essential to emulate its utilisation over the time. Table 8-3 shows the 

months predicted by the model when stover is harvested, sold and purchased. The 

stover fed to cattle is not included in this section since it will be described in the 

following section with the rest o f the description o f the model predictions for cattle 

feeding systems. Data in Table 8-3 clearly illustrates that the model was able to 

reproduce accurately the months when these activities actually take place in the field. 

Farmers who planted irrigated maize harvested stover in December (STOHV12), and 

farmers who planted non-irrigated maize harvested it in January (STOHV01).

Model predictions for stover sales and purchases in Table 8-3 (STOSELL and 

STOBUY) are also consistent to what the farmer do, since none o f them sells stover 

but all o f them buy extra stover every year. For example, it was observed that Mr 

González has to buy in average between 8 to 10 tons per year (depending on herd 

size and composition), model prediction for stover purchased is 13.4 t per year, 

which is slightly more than what the farmer buys. The difference may be explained 

by the low stover yields predicted by the CERES-Maize model. Mrs Lidia Estrada 

also buys large amounts o f stover (approximately 16 t /year), model predictions for 

this fanner are also in close agreement with the fanner's practice for this variable.

The IFSM can also simulate the amount o f stover (initial inventory) that is 

available to the fanner at the start o f each month after it was harvested, fed, sold or 

purchased in the previous month. The results shown in Table 8-4 represent the 

amount o f stover in kg o f dry matter, which is available (STOV1.12) to every farmer at 

the start o f each month. Because the model runs for one year, the amount o f stover, 

that is available at the start of the year is equal to what is available in January next 

year (13th month). In this way it is possible to simulate the use o f stover and grain, 

which is harvested from November, (January last year) throughout the simulated year 

(closed loop).

8 .5 .2 . Model predictions for stover production and  utilisation
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Table 8-4 shows that in the case o f Mrs Estrada, the stover harvested in 

December, is not enough to feed her cattle, from January onwards (notice the zeros 

in STOV= 1 and 2). Therefore she has to buy stover in January and February (Table 

8-3). The pattern simulated by the model is consistent to the pattern observed for Mrs 

Estrada, since she has to buy stover as early as December or January.

The monthly stover inventories for each farm are clearly appreciated in Figure 8- 

1. From March to December stover inventories at the start o f each month are smaller 

than the inventories in the previous month; this is due to the utilisation o f the stover 

in the farm. However, it does not occur from January next year to March (loop), 

where higher stover inventories observed in these months indicate that some stover 

was purchased. Figure 8-1 indicate the periods when stover purchase takes place, for 

example the stover inventory at the start o f month 3 for all the case studies is higher 

than the previous month indicating that some stover was purchased in month 2. This 

is particularly clear for Mrs Estrada, where no stover stock is registered during 

month 1 and 2 because all what is harvested and purchased was utilised.

Stover purchases indicate that for all case studies farm’s production o f stover is 

not enough to cover the internal demands. Therefore fanners have to buy stover in 

months 1 and 2, when it is cheaper to do so. Figure 8-1 also illustrates how the stover 

inventory is reduced every month (except in months 1 to 3) as it is used to feed 

cattle. Stover inventories are high again in month 13, because stover is harvested in 

December and January. This pattern is observed for all the case studies.

It is believed that the approach use here to account for the use o f stover and maize 

is consistent with that observed in the field. Moreover, these findings could be used 

to advise fanners on alternative use of resources and the repercussions on the 

availability o f the scarce farm resources. A similar approach was used to simulate 

maize utilisation over time (see Appendix 5 for model predictions for maize).
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Figure 8-1. Stover inventory at the start of each simulated month (in kg of DM).
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8.5.3. Hired labour

The data shown in Table 8-3 for hired labour are also entirely consistent to the 

hired labour requirements for all the case studies. It was observed that Mrs Estrada 

and Mrs González normally manage to supply most o f the labour required to 

cultivate their land and look after they cattle for most o f the year. However, they do 

require to hire extra labour during the harvest season, which occurs as mentioned in 

November and December. In both cases the model predicted accurately the hire 

labour requirements for these farmer. The model also provided consistent predictions 

for Mr Valdez whom due to the size o f his farm and the large number o f cows, has to 

hire one or two permanent workers and also needs to hire temporary labour to 

cultivate his land. Notice the large number o f hired labour requirements predicted by 

the model for this farmer during the harvest season.

8.5.4. Model predictions for cattle products

Table 8-4 shows model predictions for milk yield in kg per month per herd. 

Results indicate that Mr Juan Valdez has again higher yield levels than the other two
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case studies. It was observed in the field that indeed Mr Valdez's herd is among the 

top milk producers in his community. Although the annual milk yield per herd was 

not measured for any o f the farmers, it is possible to suggest from the analysis o f the 

lactation curves in Chapter 6 that model predictions are some 20% above the actual 

yields obtained by fanners.

Higher milk yields predicted by the model may be explained due to the better 

feeding systems selection done by the model, because it only selected those diets 

which maximised milk yield but at the same time maximise income return too. It is 

believed that the model found some space for improvement o f the system, through 

the design o f more efficient feeding strategies. Although most o f the strategies are 

based on the feeding systems used by the farmers themselves, the model selected 

those feeding systems, which when combined maximised milk yield.

Figure 8-2 shows that there is a higher monthly milk yield during the wet season 

than during the dry season. Two factors explain higher milk yields during the rainy 

season, the first factor is the seasonal characteristics o f the system since as explained 

in Chapter 5 and Chapter 6 section 6.4.2. rainy season forages are better quality 

which when fed to cows resulted in more milk produced. The second factor is the 

result o f the normal progression o f the cows in the herd because for the three 

simulated herds there are more cows calving and lactating during some months o f the 

rainy season than during the dry season. This is a function o f the individual herd 

management practised by fanners but in general, it was observed that more cows 

calved and came into milk during the rainy season than during the dry season.

Clearly, the model prediction for milk yield shown in Table 8-4 and Figure 8-2 

indicates that the model was able to capture the seasonal variation in milk production 

observed in most herds at the Toluca Valley. Such variation was reported in the 

survey work and has been reported in other works (Arriaga et al., 1997a, Castelan et 

al., 1997; Zorrila et al., 1997). Figure 8-2 shows the amount o f milk produced per 

month per herd predicted by the model in the three case studies. Notice that in all 

cases milk production is higher during the wet season than in the dry season,
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moreover 52% o f all the milk produced in the year is produced during the wet season 

despite it only lasting 5 months.

Table 8-4. Predicted cattle outputs and stover utilisation dynamics

Luis
Gonzalez

Case Study 
Lidia Estrada Juan  Valdez

V ariable name Value Value Value Input cost
and dimension in Mx $
C attle outputs
MLK01 (kg/month) 777.75 1583.6 2361.6 2.5
MLK02 " 1037.8 1583.6 2621.5 2.5
MLK03 " 1037.8 1821.5 2859.3 2.5
MLK04 " 1336.6 1509 2847 2.5
MLK05 " 1511 1416.2 2929.4 2.5
MLK06 " 2056.6 1660.1 3716.7 2.5
MLK07 " 2056.6 1175.1 3231.8 2.5
MLK08 " 1789.7 2552 4352 2.5
MLK09 " 1670.8 3109.3 4849.8 2.5
MLKIO " 2758.4 2891.7 5759.9 2.5
MLK11 " 1679.8 1669.3 3350.4 2.5
MLK12 " 1433 1772.7 3207 2.5
Annual milk yield/herd 19 146 22 744 42 086 -

NCULL (heads) 1 1 2 2118
NSTEE " 4 3 * 7 4500
Stover use
STOVOl (kg/month) 8870.5 0 20082.0 -

STOV 02 9860 0 21619.6 -

STOV 03 " 20873 15216.2 35763.0 -

STOV 04 " 18398.4 13220.4 31135.0 -

STOV 05 " 15807.3 11402.8 26869.7 -

STOV 06 " 13160.3 9597.6 22257.8 -

STOV 07 11041.9 8350.3 18734.5 -

STOV 08 " 8874.9 7214.7 15576.0 -

STOV 09 6660 5923.7 12070.4 -

STOV 10 4447.3 4337.7 8272.2 -

STOV 11 2431.8 2755.3 0 -

STOV 12 " 0 511.5 4673.8 -

STOV 13 " 8870.5 0 20082.0 -

*The in p u t cost o f the steers for Lidia E strada is MX$ 1500 since they a re  not fatten in the  farm  M LK =m onthly milk 

p roduction /herd , AfC i/L i=num ber o f culled cows/year, /V.STii'£'=niimber o f  fat steers sold, STOV=stover opening balance
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Higher milk yields in the wet season are partially explained by the allocation o f 

better quality diets than the dry season diets to lactating cows. For example lactating 

cows in the wet season are fed mainly with forages W3, W2 and W4 which are the 

best quality fodder as described in Chapter 6 page 134. Moreover, all lactating cows 

were supplemented with concentrate CONC-6 which is the concentrate that produced 

the highest response in milk yield (see Chapter 6, section 6.4.). Maximum simulated 

milk yield for cows in the dry season was 17 kg/cow/d when fed forage D4 and 

concentrate 6, while 20.2 kg/cow/d were obtained when cows were fed forage W3 of 

the wet season and concentrate CONC-6. Because the IFSM selected the last feeding 

strategy to fed all lactating cows during the wet season higher milk yields were

obtained during this season than in the dry season.

The second aspect which explained higher milk yields is the number o f lactating 

cows in the herds during the wet and the dry season. For example, the number of 

lactating cow for M r Gonzalez’s herd during the dry season ranged from 2 to 4 whilst 

the number o f lactating cows for the wet season ranged 4-6 (see Table 7-2 and Table 

8-5). Larger number o f lactating cows during the rainy season meant more milk 

produced especially in October where there are six cows, which is the highest 

number o f cows observed in the year for Mr González’s herd (see Table 7-2), the 

peak in milk yield observed in Figure 8-2 illustrates this.

However, the number o f lactating cows depends on the management practices of

individual fanners and the composition o f their herds. For example, in the case o f 

Mrs Lidia Estrada there is a drop in the monthly milk yield in July, a wet season 

month (Figure 8-2), this drop is explained by the reduced number o f milking cows in 

this month, only three cows are lactating and three more are dry. Appendix 5.2 shows 

that the number o f lactating cows passed from four in June to three in July. On the 

other hand, Figure 8-2 and Table 8-4, indicate that Mrs Lidia Estrada's herd achieved 

higher yields than the herd o f Mr González. These results can be explained because 

the proportion o f third calver cows (higher producers) is higher in the former case 

than in Mr González herd (see Appendix 5). These findings clearly indicate that the 

model is not only able to predict milk yield response for the different case studies,
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but also to consider the individual animals’ characteristics, like age and milk yield 

potential o f the different animals on the milk yield predictions.

Figure 8-2. Predicted milk yield per herd (in kg/month)
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The same principles applies for Mr Valdez’ herd, higher milk yield predicted by 

the model are due better quality diets and a higher number of lactating cows (see 

Appendix 5.3.).

Table 8-4 shows the number of steers sold and the number o f cows culled and 

sold for every case study. Notice that the selling price o f steers for Mrs Estrada is 

lower than for the other two case studies because she sells them before they are one 

year old. It is important to mention that the model does not predict the number of 

cows and steer sold, because these are fixed depending on the case study. However, 

the model does consider the feeding and labour requirements o f these animals until 

the moment they are sold, as will be demonstrated later.

As mentioned in Chapter 7 section 7.2.4.1. the model does not optimise calving in 

the herd, rather it works with the initial inventory of every case study herd and a set

206



o f productive and reproductive parameters obtained during the survey work were 

applied to them in order to reproduce the herd dynamics over the simulated year. 

Recall that the contribution o f every animal to the farmers' livelihoods is so 

important that the disappearance o f only one could have important implications to 

the whole system. For purposes o f simulating the dynamics o f every individual 

within the various cattle categories, it was assumed that the set o f productive and 

reproductive parameters, shown in Table 6-4 and Figure 6-1, determined the current 

physiological state and productive performance o f each individual animal over the 

time. This calculations were performed out o f the IFSM.

Moreover, because the IFSM is a multi-period model, the natural progression of 

the different animals (within each category) between categories over the different m 

periods had to be taken into account, since it has important implications for other 

simulated farm activities such as forage consumption, milk production and labour 

requirements. Thus the progression o f every individual from one productive stage or 

from one reproductive state to the following was mapped in, and presented to the 

model as an input data file. It is believed that the herd data obtained in this way is in 

close agreement to structure and normal functioning o f the herds in the study area.

8.6. Simulating cattle feeding systems

The results obtained in this work for cattle feeding systems suggests that the 

IFSM was successful in emulating the systems used by farmers at the Toluca Valley. 

The model realistically described the seasonal variation in the composition and 

availability o f the forages used to feed cattle. The influence o f the agricultural 

practices and the maize growing cycle on the forage types availability was 

successfully emulated too, as will be described in this section. Because stover is the 

main forage fed throughout the year, its utilisation dynamics are described first 

followed by forage utilisation strategies predicted for the dry and wet seasons.

Stover is used all year round but a seasonal variation in its utilisation was 

observed too. The model was able to describe this variation. For example, maize 

stover is the main forage fed in the dry season when few other forages are available,
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therefore large quantities o f it are required for over a period o f 7 months. The 

opposite is observed during the wet season, when a greater variety o f forages are 

available and the need for stover is substantially reduced (Chapter 5).

Results shown in Figure 8-3 indicate that the model was able to emulate this 

pattern. The amount o f stover which is fed to the herd during the wet season months 

(STOFEDm=6:10) is lower than what is fed during the dry season months 

(ST O FE D w =7. J and m=ll:12), in all the simulated cases.

Figure 8-3. Model predictions for stover fed monthly to cattle (in kg of DM)
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Figure 8-3 clearly indicates that the same pattern o f stover utilisation was 

predicted for the three case studies. What is more important is that the reduction in 

the consumption o f stover during the wet season is compensated by the utilisation of 

better quality forages produced during this season as show later in this section. 

Stover consumption data presented in Figure 8-3 represent the amount o f stover 

consumed by all the animals in the herd and no distinction is made for category or 

class o f cattle. Notice the difference in consumption among the different case study 

herds. Mr Valdez’s herd has the higher consumption followed by Mr González’s and 

Mrs Estrada’s herds.
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The IFSM can select the optimal feeding strategies for all classes o f cattle 

represented in the herd, however due to size o f the output, model predictions for 

cows are only presented here. Appendix 5 contains the predictions for heifers and 

other cattle. Figure 8-4 shows model predictions for the type and amount o f forage 

fed to Mr Luis González’s herd during the dry season.

Figure 8-4. Forages fed in the dry season to cows in Mr Luis González's herd
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Note th a t the forages shown in this figure correspond to the d ry  season forages D1,D2,D3, and D4.

Figure 8-4 shows that the model was able to capture some o f the farmers' forage 

utilisation practices. For example, the model opted to feed more than one forage in 

any given period instead o f using only one all the time. It also gave preference to the 

forages produced in the farm (forages D l, D3 and D4 o f the dry season), above those 

that are purchased. It is probable that the model did not select forage D2 because it 

contains maize silage that has to be purchased, corroborating the previous 

assumption (see Table 6-2 for forage composition) . The quality o f the forages and 

their effects on milk yield are important criteria considered by the model when 

selecting forages. Apart from maize stover (forage D l) the model also selected 

forages D3 and D4, which contain 20 and 30 percent o f improved pasture
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respectively. Inclusion o f improved pasture is a common practice in the study area 

and is why most farmers have at least a small plot o f this pasture (Castelan et al., 

1997). Indeed there exists the knowledge among farmers that the inclusion o f small 

amounts o f improved pasture improves the overall nutritional quality o f the basal 

forage. However the area planted with this forage is constrained by the small size of 

the holding and the lack o f water for irrigation (Arriaga et al., 1997a).

Results shown in Figure 8-4 and Table 8-5 suggests that the IFSM could be 

applied in the design o f nutritional management strategies for every individual 

animal in the herd. For example, results for January in Table 8-5 show that the model 

fed forages which contained improved pasture only to those cows that were in their 

early lactation stages (COWS4,J,2,0l,l,4 and COWS4,1,3,01,1,4) thus reserving better 

quality forages to animals that need them most. While the cows at the end o f their 

lactation or in their dry periods (COW S 1,5,1,01,4,1) were fed forage formed by maize 

stover alone. Also notice that cows in early lactation were assigned the highest rate 

o f concentrate supplementation, r=4.

As described in the method, the size and the structure o f the herd determines 

model predictions for monthly forage consumption. This is a point clearly explained 

in Figure 8-4, where there is a rise in the amount o f forages consumed from month 4 

onwards. This increment is explained by the increase in the number o f cows that 

come into milk production in that month, see Table 7-2. This table shows that the 

number o f cows passes from 3 in March to 4 in April and to 5 in May. Notice that 

this change is also expressed by an increment in milk production in the same months 

(see Figure 8-2).

Moreover, the highest forage consumption is observed in month 11, which 

coincides with the higher number o f cows in the herd during the simulated year, 

seven in total (Table 7-2). In contrast milk production declined in the same month 

(Figure 8-2), this is explained by the fact that two cows are at the end o f their 

lactation and one is in its dry period (see Tables 7-2 and 8-5). Figure 8-4, also shows 

that the consumption o f forage D1 increased in this month. The model followed the 

same principle as farmers, it allocated lower quality forage to the cows that are
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producing less milk and used the higher quality one for cows that are at the start of 

their lactation (Table 8-5).

This explains the increment in consumption of forage one, observed in month 11. 

Similar predictions were obtained for the other two case studies, since the same 

principles apply to them. Figure 8-5 shows that the amount and the types o f forages 

consumed by M r Valdez’s herd during the dry season are consistent to the pattern 

observed for Mr Gonzalez’s herd. Because the area planted with improved pasture is 

larger in this case study, the model feeds bigger amounts o f forages D3 and D4 over 

longer periods o f time.

Figure 8-5. Forages fed in the dry season to cows in Mr Juan Valdez's herd
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Table 8-5. Predicted feeding strategies for cows in the dry and wet seasons for M r Luis 
González herd

DRY SEASO N  

V ariable Strategy Value
W ET SEASON  

Variable Strategy Value

JAN JUN j,l,i,m ,q,r*
COWS 1510141 0.99 COWS 4 610614 2.00
cows 4510141 0.01 cows 4620624 2 .00

cows 4 12 0 1 1 4 1.00 cows 4630634 1.00
cows 4 13 0 1 1 4 1.00 Cows/month 5 .00

Cows/month 3.00 JUL

FEB cows 4 610714 2 .00

cows 3 12 0 2 1 4 2.00 cows 4 620724 2.00

cows 1130224 0.24 cows 4 630734 1.00
cows 4 1 3 0 2 2 4 0.76 Cows/month 5.00

Cows/m onth 3.00 AUG

M AR cows 4530841 1.00

COWS 3 120314 2 .00 cows 3 610814 1.00

cows 1130324 0.24 cows 3610824 1.00

cows 4 1 3 0 3 2 4 0.76 cows 3620824 1.00

Cows/month 3.00 cows 3620834 1.00

A PR Cows/month 5 .00

COWS 4 1 1 0 4 1 4 1.00 SEP

cows 1120414 0 .17 cows 4530941 1.00

cows 31 2 0 4 1 4 1.83 cows 3 610924 2.00

cows 1130424 1.00 cows 3 620934 2 .00

Cows/month 4 .00 Cows/month 5.00

M AY OCT

COWS 411 0 5 1 4 2.00 cows 2631014 1.00

cows 1120514 1.00 cows 3611014 1.00

cows 1120524 0 .64 cows 2611024 2.00

cows 412 0 5 2 4 0.36 cows 3621034 2.00

cows 1130534 1.00 Cows/month 6.00

Cows/month 5.00

NOV Key

cows 1111114 0.87 * j Forage type

cows 4 11 1 1 1 4 1.13 I C oncentrate type

cows 1111124 1.00 i Cow category

cows 1111134 1.00 nt Month

cows 1121134 1.00 ? Subcategory

cows 1521141 1.00 r Concentrate level

cows 4 1 3 1 1 1 4 1.00

Cows/month 7.00

DEC

cows 1521241 1.00

cows 1111214 0.87

cows 411 1 2 1 4 1.13

cows 413 1 2 1 4 1.00

cows 1111234 2.00 Note th a t the num ber o f cows in each month is

Cows/month 6.00 The same as in Table 7-2.

212



Figure 8-6 and Table 8-5 display the type and amount o f forages fed to Mr 

Gonzalez’s cows during the wet season. Predictions in Figure 8-6 clearly indicate 

that the model was also able to capture the farmers feeding practices observed during 

the wet season. Moreover it was able to simulate the seasonal variation observed in 

both forage quality and availability associated with the land use and the maize 

growing cycle.

Recall that for all fanners, the model cultivated some maize with no herbicide 

application, the resulting effect o f this maize management practice in terms o f forage 

supply are evidenced here. In other words, because no herbicide was applied to some 

o f the maize crop fields, weeds, and green maize fodder are available and were used 

to feed cattle during this season.

This is clearly illustrated in Figure 8-6, where the model fed the cows forage W4 

o f the wet season (20% maize stover, 60% improved pasture and 20% weeds), in 

months 6 and 7 when all the forage’s components become available. Notice that the 

model could had fed forage 1 (which is also available in these months) instead o f 

forage W4. However, it suggested that it selected forage W4 because it is better 

quality forage and promotes higher milk yields, as demonstrated in Chapter 6. Figure 

8-6, shows that the model switched to forage W3 (and kept forage W4) in months 8 

and 9 and to forages 2 and 3 in month 10.

Recall that forages W2 and W3 contain 30% and 40% o f green maize fodder 

respectively (Table 6-2), and as discussed in Chapters 5 and 6, this is the best quality 

forage. In fact, forage W3 produced the highest milk yields simulated by the cow 

model. Notice that the model only fed forage W2 and W3 from month 8 onwards, 

this is explained because green maize fodder is only available from this month (see 

Figure 4-5 and Figure 5-4).

The results above described clearly suggest that the model is able to select forages 

which maximise milk yield. Because the quality o f the forages is determined by the

8.6 .2 . W et se a so n  feeding sy stem s

213



season and by the agricultural practices these are not available all the time. However, 

the model was able to select the best forage available in any given month and then 

switched to better quality forage when it became available. Moreover, it is able to 

allocate the best forages to the cows, which are producing more milk; this pattern can 

be better appreciated in model prediction shown in Table 8-5 for July and August. 

The model switched from forage 4 to forage 3 in all the cows that were producing 

milk in these months.

These results are entirely consistent with the farmer's practices observed in the 

field, both from the standpoint o f the cattle nutritional management and from the 

maize management practices. Remember that maize thinning starts in August when 

farmers can identify barren plants or plants with small cobs, which are then removed 

from the crop fields. Farmers also fed the best quality forage to the cows which are 

producing milk, while cows that are at the end o f their lactation or in their dry period 

are fed lower quality forages.

Figure 8-6. Forages fed in the wet season to cows in Mr Luis Gonzalez's herd.
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Similar results were obtained for the other two case studies. For Mrs Estrada the 

model predicted that is also worthwhile for her to feed cows with forages W2 and 

W3, even though she only plants less than one ha o f maize. The availability o f green 

maize fodder for this farmer is lower than in the other two cases. The model 

compensated by feeding more forage W4, which has no any green maize fodder in it, 

and forage W2 that has a lower content of green maize fodder, in period 10 (Figure 

8-7). Model predictions for Mrs Lidia Estrada are also consistent with the way this 

farmers feeds her cattle during the rainy season.

Figure 8- 7. Forages fed in the wet season to cows in Mrs Lidia Estrada's herd

8.6.3. Concentrate feeding strategies

Model predictions for concentrates feeding followed the same principles as for 

forages. The best quality concentrates together with the higher supplementation rates 

were fed to the cows producing the higher milk yields (Table 8-5). This pattern was 

predicted for both the rainy and the wet seasons. Model predictions for the amount 

and type o f concentrates fed by Mr Luis González are shown in Figure 8-8. This 

figure shows that during the dry season it may be more profitable to feed cows a 

concentrate made from ingredients produced in the farm (maize and chopped maize
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stover) and from low cost ingredients like chicken manure. During the wet season, it 

is more profitable to feed cows with a commercial concentrate since the extra milk 

yielded easily pays-off the cost o f the commercial concentrate.

Recall that the same concentrates were used during the dry and wet seasons, and 

that concentrate Conc-6 (commercial concentrate) provided the higher predictions for 

milk yield, followed by Conc-1 (Chapter 6). From the model prediction for 

concentrate utilisation, it can be suggested that the IFSM provided a nutritional 

strategy that could be used in the improvement o f the system in terms o f increased 

milk yields. This solution is valid if  the price o f the commercial concentrate does not 

increase beyond Mx$ 2.7 pesos, while the profit will increase as the price o f the 

concentrate gets closer to Mx$ 2.2 pesos.

Figure 8-8. Type and amount of concentrates fed to Mr Gonzalez’s cows (wet and dry 
seasons)
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Model predictions for the dry season consumption o f concentrates are in 

substantial agreement with those observed in the field for most farmers, not only the 

case studies. Moreover, these results suggest that it may be worth while for farmers 

to use a concentrate that has a higher content o f maize, and some 30% of chicken
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manure, which may offer a better balance o f nitrogen-energy (ERDP/FME ratio), 

such as concentrate Conc-1 (see Figure 6-5). These results are consistent with the 

nutritional quality o f concentrates determined in Chapter 5 and simulated in Chapter 

6. Farmers like Mrs Estrada, may need to reduce the amount o f chicken manure in 

her concentrate, and increase the amount o f energy in order to obtain a better 

response in terms o f milk yield.

8.7. Conclusions and future research

From the results obtained in this work it can be concluded that the Integrated 

Farming systems model was able to emulate the main components o f the Campesino 

Farming system o f the northern part o f the Toluca Valley. Model predictions for land 

use were consistent to the land use pattern observed in each one o f the case studies 

used in this work, this may suggest that the IFSM model was able to both identify 

and capture the functioning o f driving variables o f the target farming system. 

Moreover, it is believed that the model was able to emulate the main relationships 

between these variables, particularly the complex interactions between the farmers, 

the crops and the livestock.

The strong seasonal variation observed in the farming system was also captured in 

the model. The seasonal effects on labour demand and forage availability and quality 

were properly reproduced in the model too. A robust system was developed to deal 

with the nutritional management o f the cattle during the wet and the dry seasons. 

This system is able to reproduce the effects o f minor changes in the quality o f the 

forages fed to cattle in term o f milk production and design feeding strategies for all 

the classes o f cattle represented in the model.

On the other hand, it is believed that the model must be improved in order to 

reproduce other components of the system, such as other livestock like pigs, sheep 

and poultry that also play an important role it. It is acknowledged that the role of 

livestock in nutrient recycling observed has to be simulated too, if  a proper picture o f 

the systems is desired. As mentioned in Chapters 4 and 5, livestock plays a 

fundamental role in nutrient recycling in the system; therefore it is believed that this
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role must be emulated too. Although the model can be tested for different scenarios, 

such as different inputs and outputs prices and changes in the household and cattle 

herd size and compositions, more time is required to carry out this activity.

Finally, it is important to mention that the maize and cattle production 

technologies simulated by all the models used here were based on the expert 

knowledge o f the fanners o f the Toluca Valley. Few new technologies were tested, 

since it was recognised from the beginning that it is farmers who have developed and 

tested through years o f experience the best possible ways o f production within their 

environment and socio-economic conditions. It is also acknowledged the fact that 

despite the enonnous size and complexity o f the model, it only was able to emulate 

the functioning o f the main components o f the farming system.
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Chapter 9. General conclusions and future areas of research

The main objective o f this work was to develop a “Décision-Support System” 

based on the integration o f three simulation models, with a detailed set o f survey data 

on campesino maize-cattle production systems. Three main aspects were covered in 

this work. First a methodology to calibrate and develop simulation models using 

survey data was demonstrated. Second, a methodological approach used to integrate 

biological models to socio-economic models in order to develop a more holistic DSS 

was illustrated. Finally the DSS developed was used in identifying and testing 

different technologies and management strategies to maximise farmers' income. The 

results obtained suggest that calibration o f biological models and construction of 

socio-economic models using input data collected from fanners and their cropping 

fields instead o f using experimental data, is possible and may be crucial in 

developing systems models. Furthermore, it is suggested that the successful 

application o f simulation models in development situations or in decision support to 

farmers must necessarily consider farmers' knowledge and experience. Data 

collection does not represent a problem so long as adequate survey techniques are 

used and a good level o f continuous interaction with farmers can be achieved.

Fanners' participation in developing and validating o f decision support systems 

should be standard practice because more useful system would be developed and 

predictions will be more relevant to the problems that the model is intended to tackle. 

Fanners are experts in their farming systems, so it is quite likely that they are already 

using the optimal solutions or technologies for some o f their problems or systems' 

limitations. Emulating current systems first and then finding spaces for improvement 

could be a better approach instead of trying to develop new farming systems or to 

introduce big changes from the beginning. If  the DSS is able to reproduce the main 

components and functioning of the target system, it should also be able to reproduce
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some o f its failures and problems too. Thus it will be easier to find solutions to these 

problems through the simulation process.

Modellers should be able to identify the main components o f the target farming 

system in order to simulate them. Thus decision support systems should capture and 

simulate these components and the interactions among them. Simulation o f 

interactions between components is essential in mixed crop-livestock systems 

because cattle rely on crops for feeding and crops rely on cattle for organic fertilizer 

and capital needs (Chapter 3). Simulation models particularly biological models, 

need to be able to simulate interactions between farmers and their crops and 

livestock. Traditionally simulation models only reproduce very few production 

technologies, such as irrigation or fertilisation. However, as demonstrated in Chapter 

4, there is continuous interaction between the fanners and crops, which resulted in a 

more efficient use o f fann resources. Biological models o f crops need to be flexible 

enough to simulate farmer's cultivation technologies such as weeding and thinning or 

some other traditional cultivation practices used by farmers in tropical countries. 

These models should consider that farmers normally obtain more than one product 

from cropping fields (milpa in Mexico) and that stover or other by-products are as 

important as grain production. Crop models such as the CERES-Maize model should 

give equal importance to both products when simulating organic matter partition.

As demonstrated in this work model integration provides a flexible approach to 

simulate the system as a whole and the system's main components. It would have 

been impossible to simulate the campesino system by using only one model, 

particularly a biological one. Biological models only reproduce at most one 

biological component (plant or animal) o f the farming system (Chapters 4 and 6) but 

do not consider the socio-economic aspects o f the system. Socio-economic models 

(mathematical programming) are more concerned with the economic aspects o f the 

model and with the decision making process but often neglect the biological 

components, especially the response o f these to different technological packages. 

Chapters 4 and 6 illustrate how maize and cattle responded to different technologies
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and levels o f input use. Socio-economic models do not allow this flexibility, thus 

integration offered the opportunity to integrate both social-economic aspects to 

biological aspects o f the farming system.

Model integration is clearly demonstrated in this work. It is suggested that a more 

holistic representation o f the farming system was achieved through this method. The 

survey provided the data to parameterise the maize model and the cow model. These 

models were used to generated information on the crop and cattle productive 

responses to different management systems and different levels o f inputs use. All the 

technologies were based on the expert knowledge o f campesino farmers who know 

the "productive boundaries" o f the system. Thus if  the maize model predictions 

suggest that high yields can be achieved by increasing the planting density to more 

than 80 000 plants /ha, we can be sure that this is not feasible since farmers’ 

experience suggests that the optimal production is reached at lower densities.

Most o f the technologies tested in the biological model attempted to reproduce the 

cultivation and cattle husbandry practices o f campesino fanners, thus when 

integrated into the Farm Model its was not surprising to observe that the model was 

able to simulate the system. The flexibility o f the IFSM was demonstrated by 

simulating three case studies, which were different in the amount o f resources such 

as land and cattle. The model was able to reproduce the land use and productive 

practices o f the case studies. It is suggested that the model integration approach used 

here contributed to improve the current knowledge on the use o f models and how 

these can be more efficient in supporting development and farmers’ decision making.

The IFSM is flexible enough to permit simulating the main components o f the 

fanning system in an individual fashion and then evaluating their effects on the 

farming system as a whole. Thus a crop or livestock production technology which 

may appear as a good option when simulated individually (one model) may not 

perfonn similarly when reproduced for a farming system as a whole. For example 

supplementation to cows with commercial concentrate (Conc-6) during the dry 

season appeared to be an adequate option (Chapter 6), but when this technology was
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evaluated in relation to the rest o f the system activities, it proved not to be adequate. 

Model integration also permitted to explain the scientific basis o f some o f the 

fanners' practices. This is the case o f stover chopping and the use o f green maize 

fodder to feed cattle. These are only a few examples o f farmers' practices, which are 

not evident to researchers that are foreigners to the system and find difficult to 

understand why farmers do things the way they do.

There are still some problems which may limit the practical application o f the 

DSS for development situations or for improvement o f the farming systems. O f 

particular relevance for this work is the partial failure o f the CERES-Maize model to 

simulate maize growth and development within the temperature range o f the Toluca 

Valley and the incapacity to simulate stover yield o f local maize cultivars. In both 

cases the DCMM did not produce satisfactory results. The Cow Model offered the 

possibility to test thousands o f feeding strategies, and it is believed that a better 

understanding o f the effects o f protein-energy interactions, the response to 

concentrate supplementation and forage-concentrate substitution rates and their 

effects on milk yield, was achieved. However, it is suggested that the model needs to 

be extensively validated against field data particularly for feed intake from feeding 

systems with diverse forage and mainly low quality concentrate sources. The model 

also needs to be improved to incorporate protein requirements in the calculation o f 

milk yield in order to provide better estimates o f animal performance when the 

protein content o f the diet varies widely or when it is limiting.

The IFSM needs to be improved in order to reproduce other components o f the 

system, such as other livestock like pigs, sheep and poultry that also play an 

important role. The role o f livestock in nutrient recycling has to be simulated too, 

which is very important not only for campesino farmers but for most smallholder or 

subsistence fanners in tropical countries. More optimisation objectives also have to 

be included in order to simulate different farmer's priorities, such as labour 

minimisation. Finally, it is suggested that the approach used in this work may offer to 

CICA researchers and other members o f the SDSN a simple but robust method for
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the simulating the campesino farming systems o f Central Mexico, since the IFSM is 

flexible enough to incorporate other farming activities.
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Appendices

Appendix 1. Calibrated output of the DSSATV3 CERES-Maize model for 
maize cultivars Criollo Blanco and Criollo Amarillo

1.1. Cultivar Criollo Blanco

*SIMULATION OVERVIEW FILE

*RUN 1 
MODEL
EXPERIMENT 
TREATMENT 1

WHITE MAIZE + 183 KG N 
GECER940 - MAIZE
UMTA9602 MZ NITROGEN VERSION CALIBRATED 
WHITE MAIZE + 183 KG N

CROP
STARTING DATE 
PLANTING DATE 
WEATHER 
SOIL
SOIL INITIAL C 
WATER BALANCE 
IRRIGATION 
NITROGEN BAL. 
N-FERTILIZER 
RESIDUE/MANURE 
ENVIRONM. OPT.

SIMULATION OPT 
MANAGEMENT OPT

CULTIVAR : VICENTWTA (CB)

PLANTS/m2 : 4.

TEXTURE : CLLO 
H20:221.9mm

3 ROW SPACING

- Clay
N03: 18.3kg/ha

MAIZE
JAN 1 1996 
APR 12 1996 
UMTL 1996 
CCQU000033 
DEPTH :196cm EXTR.
RAINFED
NOT IRRIGATED
SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION 

183 kg/ha IN 2
0 kg/ha IN 1

DAYL= A .0
RAIN= A .0
WATER :Y 
PLANTING :R

80 . cm

NH4: 19.lkg/ha

IN 
IN
SRAD= A 
C02 = 

NITROGEN:Y 
IRRIG :N

APPLICATIONS 
APPLICATIONS 

.0 TMAX= A 

.0 DEW = 
N-FIX:N PESTS

. 0 

. 0
: N

FERT :R RESIDUE:R

TMIN= A 
WIND= 
PHOTO :C 
HARVEST:A

1 . 0 
. 0 

ET : R 
WTH : M

*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

SOIL
DEPTH
cm

LOWER UPPER SAT 
LIMIT LIMIT SW 
cm3/cm3 cm3/cm3

EXTR INIT 
SW SW 
cm3/cm3

ROOT
DIST

BULK
DENS

g/cm3

PH N03

ugN/g

NH4

ugN/g

ORG
C
%

0- 5 .351 .470 .485 .119 .410 1 . 00 .90 6.40 3 . 80 1. 00 1. 50
5- 15 .354 .473 .488 .119 .414 .88 . 90 6.40 3 . 70 1. 00 1.50

15- 30 .377 .494 . 509 .117 .436 . 71 .90 6.40 3 . 04 . 93 . 70
30- 45 .396 . 511 .526 .115 .453 .41 . 91 6.46 1. 94 .53 . 67
45- 60 .415 .527 .542 .112 .471 .22 1.10 7 .30 1.10 1.00 .20
60- 90 .425 .535 .550 .109 .479 . 14 1.10 7.63 .60 1. 00 .12
90-120 .435 .546 .561 .111 .491 .07 1. 02 7 . 70 .42 1. 00 .20

120-150 .441 .553 . 568 . 112 .497 . 00 1. 00 7 . 70 .21 1. 00 .16
150-180 .424 .537 .552 .113 .480 .00 1.01 7 . 70 .19 1. 00 .14
180-196 .371 .488 . 503 . 117 .430 . 00 1.10 7 . 70 . 10 1. 00 .08

TOT-196 80 . 8 103 . 0 105 . 9 22 .2 91. 9 <- - cm kg/ha--> 18 .3 19 .1 62401
SOIL ALBEDO 
RUNOFF CURVE #

: . 09
: 76.00

EVAPORATION LIMIT 
DRAINAGE RATE

6.75 
. 60

MIN. FACTOR 
FERT. FACTOR

1.00 
1 . 00

MAIZE
PI
G2

CULTIVAR :UM0002-VICENTWTA
151.00 
460 . 00

P2
G3

.6000 
13 . 000

P5
PHINT

ECOTYPE
510.00
75.000
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»SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 1 WHITE MAIZE + 183 KG N

DATE CROP
AGE

GROWTH BIOMASS 
STAGE kg/ha

LAI LEAF
NUM.

ET
mm

RAIN
mm

IRRIG
mm

SWATER
mm

CROP N 
kg/ha %

STRESS 
H20 N

1 JAN 0 Start Sim 0 .00 . 0 1 0 0 110 0 . 0 .00 . 00
12 APR 0 Sowing 0 . 00 . 0 25 12 0 98 0 . 0 . 00 .. 00
13 APR 1 Germinate 0 . 00 .0 25 12 0 98 0 . 0 .00 .. 00
26 APR 14 Emergence 19 . 00 1. 7 31 22 0 102 1 4 .4 .00 ., 00
17 MAY 35 End Juveni 42 . 09 6.2 40 37 0 107 2 3.9 . 06 ., 02
22 MAY 40 Floral Ini 80 .17 7.3 47 77 0 141 3 4 .1 . 00 .. 00
20 JUL 99 75% Silkin 4114 1.95 17.6 246 424 0 208 92 2 . 2 . 00 .. 02
16 AUG 126 Beg Gr Fil 5903 1. 80 17.6 354 497 0 172 65 1.1 .00 ., 02
11 OCT 182 Maturity 11804 . 80 17.6 537 700 0 192 139 1.2 . 00 ., 00
5 NOV 207 Harvest 11804 . 80 17 . 6 552 724 0 202 139 1. 2 . 00 .,00

»MAIN GROWTH AND DEVELOPMENT VARIABLES

@ VARIABLE PREDICTED MEASURED

FLOWERING DATE (dap) 99 103
PHYSIOL. MATURITY (dap) 182 175
GRAIN YIELD (kg/ha) S108 6493
WT. PER GRAIN (g) .3900 0.42
GRAIN NUMBER (GRAIN/m2) 1566 1632
GRAINS/EAR 326.26 340
MAXIMUM LAI (m2/m2) 2.05 -99
BIOMASS (kg/ha) AT ANTHESIS 4114 -99
BIOMASS N (kg N/ha) AT ANTHESIS 92 -99
BIOMASS (kg/ha) AT HARVEST MAT. 11804 14480
STALK (kg/ha) AT HARVEST MAT. 5696 7987
HARVEST INDEX (kg/kg) .517 .45
FINAL LEAF NUMBER 17.62 18
GRAIN N (kg N/ha) 104 10 8.1
BIOMASS N (kg N/ha) 139 184.3
STALK N (kg N/ha) 35 76.2
SEED N (%) 1.70 1.66

»ENVIRONMENTAL AND STRESS FACTORS

-------------------------------------ENVIRONMENT----------------- STRESS----------
j - -DEVELOPMENT PHASE--| -TIME- |------ WEATHER-------- | | WATER-- | |-NITROGEN-|

DURA TEMP TEMP SOLAR PHOTOP PHOTO LEAF PHOTO LEAF 
TION MAX MIN RAD [day] SYNTH EXPAN. SYNTH EXPAN.
days oC oC MJ/m2 hr

Emergence-End Juvenile 21 22 .95 6 .57 23 . 01 12 . 79 . 030 . 065 . 022 . 055
End Juvenil-Floral Init 5 24 .40 7.20 19.90 12 . 96 . 000 . 000 . 000 . 001
Floral Init-End Lf Grow 59 21. 80 7 . 47 21. 78 13 .10 . 000 . 000 . 022 . 054
End Lf Grth-Beg Grn Fil 27 20 . 96 7 . 07 20 . 93 12 . 83 .000 . 000 . 022 . 054
Grain Filling Phase 51 20 .33 7 .14 19.50 12 .18 . 000 . 000 . 000 . 000

(0.0 = Minimum Stress
1.0 = Maximum Stress)

MAIZE YIELD 6108 kg/ha [ 97.3 bu/acre ]



1.2. Cultivar Criollo Am arillo

*RUN 1 
MODEL 
EXPERIMENT 
TREATMENT 6

YELLW MAIZE + 160 KG N 
GECER940 - MAIZE
UMTA9602 MZ NITROGEN VERSION CALIBRATED 
YELLW MAIZE + 160 KG N

CROP
STARTING DATE 
PLANTING DATE 
WEATHER 
SOIL
SOIL INITIAL C 
WATER BALANCE 
IRRIGATION 
NITROGEN BAL. 
N-FERTILIZER 
RESIDUE/MANURE 
ENVIRONM. OPT.

SIMULATION OPT 
MANAGEMENT OPT

CULTIVAR : JUANYLWIR (CA)

PLANTS/m2 4 . 6 ROW SPACING

TEXTURE : CLLO 
H20: 221.9mm

MAIZE
JAN 1 1996 
APR 12 1996 
UMTL 1996 
CCQU000033 
DEPTH :196cm EXTR.
RAINFED 
NOT IRRIGATED
SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION 

183 kg/ha IN 2 APPLICATIONS
0 kg/ha IN 1

DAYL= A .0 SRAD= A
RAIN= A .0 C02 =
WATER :Y NITROGEN :Y 
PLANTING:R IRRIG :N

80 . cm

- Clay
N03: 18.3kg/ha NH4: 19.lkg/ha

APPLICATIONS 
.0 TMAX= A 
.0 DEW = 

N-FIX:N PESTS

.0

. 0
: N

TMIN=
WIND=
PHOTO : C

FERT :R RESIDUE:R HARVEST:A

1.0 
. 0 

ET : R 
WTH : M

*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

SOIL
DEPTH
cm

LOWER UPPER SAT 
LIMIT LIMIT SW 
cm3/cm3 cm3/cm3

EXTR INIT 
SW SW 
cm3/cm3

ROOT
DIST

BULK
DENS

g/cm3

pH N03

ugN/g

NH4

ugN/g

ORG
C
%

0- 5 .351 .470 .485 .119 .410 1 . 00 .90 6.40 3 .80 1. 00 1.50
5- 15 .354 .473 .488 .119 .414 . 88 .90 6.40 3 . 70 1. 00 1. 50

15- 30 . 377 .494 .509 .117 .436 . 71 . 90 6.40 3 . 04 . 93 . 75
30- 45 .396 .511 .526 . 115 .453 .41 . 91 6 .46 1. 94 . 53 . 71
45- 60 .415 . 527 .542 . 112 .471 .22 1.10 7.30 1.10 1. 00 .20
60- 90 .425 .535 . 550 . 109 .479 . 14 1.10 7.63 . 60 1. 00 .12
90-120 .435 . 546 . 561 .111 .491 . 07 1. 02 7 . 70 .42 1. 00 .18

120-150 .441 .553 . 568 . 112 .497 . 00 1. 00 7 . 70 .21 1. 00 .11
150-180 . 424 . 537 .552 .113 .480 . 00 1.01 7 . 70 . 19 1.00 .13
180-196 .371 .488 .503 . 117 .430 . 00 1.10 7 . 70 .10 1. 00 . 08

TOT-196 80.8 103 . 0 105 . 9 22 .2 91. 9 <- - cm kg/ha--> 18 .3 19.1 61360
SOIL ALBEDO .09
RUNOFF CURVE # :76.00

EVAPORATION LIMIT 
DRAINAGE RATE

6.75
.60

MIN. FACTOR 
FERT. FACTOR

1 . 00 
1 . 00

MAIZE
PI
G2

CULTIVAR :UM0003-JUANYLWIR
151.00
490.00

P2
G3

.5000 
12 .500

P5
PH I NT

ECOTYPE 
488 . 00 
75 . 000
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*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 

DATE

1

CROP
AGE

YELLW MAIZE + :

GROWTH BIOMASS 
STAGE kg/ha

160 KG 

LAI

N

LEAF
NUM.

ET
mm

RAIN
mm

IRRIG
mm

SWATER
mm

CROP N 
kg/ha %

STRESS 
H20 N

1 JAN 0 Start Sim 0 . 00 . 0 1 0 0 110 0 . 0 . 00 .. 00
12 APR 0 Sowing 0 . 00 . 0 25 12 0 98 0 . 0 . 00 .. 00
13 APR 1 Germinate 0 . 00 . 0 25 12 0 98 0 . 0 . 00 ..00
26 APR 14 Emergence 18 . 00 1 . 7 31 22 0 102 1 4.4 .00 .. 00
17 MAY 35 End Juveni 40 .09 6.2 40 37 0 107 2 3.9 . 06 .. 02
22 MAY 40 Floral Ini 77 .16 7.3 46 77 0 141 3 4.1 . 00 ., 00
20 JUL 99 75% Silkin 3944 1.87 17.6 243 424 0 208 89 2.2 .00 .. 02
16 AUG 126 Beg Gr Fil 5663 1. 72 17.6 352 497 0 173 62 1.1 . 00 .. 02
6 OCT 177 Maturity 11097 . 77 17.6 522 683 0 188 130 1.2 . 00 ., 00

31 OCT 202 Harvest 11097 . 77 17 . 6 536 723 0 213 130 1.2 . 00 ., 00

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@ VARIABLE PREDICTED MEASURED

FLOWERING DATE (dap) 99 100
PHYSIOL. MATURITY (dap) 177 171
GRAIN YIELD (kg/ha) 5604 5745
WT. PER GRAIN (g) .3475 0.37
GRAIN NUMBER (GRAIN/m2) 1613 1720
GRAINS/EAR 350.56 374
MAXIMUM LAI (m2/m2) 1.96 -99
BIOMASS (kg/ha) AT ANTHESIS 3944 -99
BIOMASS N (kg N/ha) AT ANTHESIS 89 -99
BIOMASS (kg/ha) AT HARVEST MAT. 11097 12546
STALK (kg/ha) AT HARVEST MAT. 5494 6801
HARVEST INDEX (kg/kg) .505 .46
FINAL LEAF NUMBER 17.62 18
GRAIN N (kg N/ha) 95 90.7
BIOMASS N (kg N/ha) 130 141.0
STALK N (kg N/ha) 35 51.0
SEED N (%) 1.70 1.58

*ENVIRONMENTAL AND STRESS FACTORS

------------------------------------- ENVI RONMENT----------------- STRESS----------
I --DEVELOPMENT PHASE-- |-TIME-|------ WEATHER-------- | |---WATER--| |-NITROGEN-|

DURA TEMP TEMP SOLAR PHOTOP PHOTO LEAF PHOTO LEAF
TION
days

MAX
oC

MIN
oC

RAD
MJ/m2

[day] , 
hr

SYNTH :EXPAN. SYNTH EXPAN

Emergence-End Juvenile 21 22.95 6 .57 23 .01 12 . 79 . 030 . 064 . 022 . 055
End Juvenil-Floral Init 5 24 .40 7.20 19 . 90 12 . 96 . 000 . 000 .000 . 001
Floral Init-End Lf Grow 59 21. 80 7.47 21. 78 13 .10 . 000 . 000 . 022 . 054
End Lf Grth-Beg Grn Fil 27 20 .96 7 . 07 20 . 93 12 . 83 . 000 . 000 . 022 . 054
Grain Filling Phase 47 20 .45 7 .15 19 . 99 12 .21 . 000 . 000 . 000 . 000

(0.0 = Minimum Stress
1.0 = Maximum Stress)

MAIZE YIELD : 5604 kg/ha [ 89.2 bu/acre ]
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nd degradation rates for forages and concentrates

ENTRATES FEEDS

'’concentrate undegCPconcent k9concentiate klOconcentrate kMconcentrate
0.563 0.086 0.139 0.070 0.030
0.669 0.042 0.207 0.103 0.030
0.398 0.088 0.115 0.057 0.030
0.680 0.038 0.209 0.105 0.030
0.393 0.084 0.118 0.059 0.030
0.57 0 . 1 0.15 - -

forages

iPforage undegCPforage k9forage klOforage kl4forage
0.570 0.136 0.080 0.040 0.030
0.507 0 . 1 2 2 0.116 0.058 0.030
0.585 0.125 0 . 1 1 2 0.056 0.030
0.582 0.119 0.128 0.064 0.030

0.571 0.145 0.096 0.048 0.030
0.618 0.131 0.107 0.054 0.030

: 0.629 0.131 0.111 0.056 0.030
0.622 0 . 1 0 1 0.180 0.090 0.030
jresentsthe percentage of starch of the soluble carbohydrate fraction "a"

tyetal., (1988); NRC, (1996); AFRC, (1993); Negi eta!., (1988); M atthewman (1993); Unal et

S ta rc h (% )*

0.432
0.867
0.225
0.855
0.210

0.7



A ppendix 3. Sum m ary of the output of the Cow M odel

Dry Season sim ulated feeding strategies for forages D1 

and concentrates Conc-1 to 6.

F ig u r e s  in  th is  ta b le  c o r re s p o n d  to  th e  In p u t  d a ta  ta b le  tab l (s e e  T a b le  7 -7 )

M ilk yield is in kg/cow/day

Forage and concentrate intakes are in kg o f DM /cow/day  

T able dim ension

j  I I  q r u l u2 u3
Forg-type Conc-type L a ctN o  Lact-stage Conc-level Conc-Intake forg-Intake M ilk yield

1 1 1 0 7 .3 7 3 .1 2

1 1 2 2 6 .5 9 3 .4 2

1 1 3 4 5 .7 8 5 .4 8

1 1 4 6 4 .9 7 9 .7 4

1 2 1 0 7 .0 3 0 .7 2

1 2 2 2 6 .3 2 1.1

1 2 3 4 5.51 3 .11

1 2 4 6 4 .71 7 .2 7

1 3 1 0 6 .8 6 0 .3 2

1 3 2 2 6 .1 4 0 .6 6

1 3 3 4 5 .3 5 2 .6 9

1 3 4 6 4 .51 6 .8 5

1 4 3 4 5 .3 5 0

1 4 3 4 5 .3 5 0

1 4 3 4 5 .3 5 0

1 4 3 4 5 .3 5 0

2 1 1 0 8 .1 5 6 .0 2

2 1 2 2 7 .4 6 6 .2 9

2 1 3 4 6 .5 8 8 .0 4

2 1 4 6 5 .6 6 11 .7 6

2 2 1 0 7 .6 6 2 .6 4

2 2 2 2 6 .8 7 2.91

2 2 3 4 6 .0 6 4 .7 5

2 2 4 6 5 .21 8 .6 8

2 3 1 0 7 .1 7 1.31

2 3 2 2 6 .4 4 1 .57

2 3 3 4 5 .6 8 3 .5 9

2 3 4 6 4 .8 5 7 .6 7

2 4 3 4 5 .6 8 0

2 4 3 4 5 .6 8 0

2 4 3 4 5 .6 8 0

2 4 3 4 5 .6 8 0

3 1 1 0 8 .9 8 8 .9

3 1 2 2 8 .0 2 8 .4 2

3 1 3 4 7 .2 9 1 0 .2 7

3 1 4 6 6 .2 4 13.31

3 2 1 0 8 .3 5 4 .9 4
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1 3 2 2 2 7.56 5.02
1 3 2 3 4 6.76 6.78
1 3 2 4 6 5.83 1 0 . 2
1 3 3 1 0 7.84 3.27
1 3 3 2 2 7.08 3.48
1 3 3 3 4 6.28 5.34
1 3 3 4 6 5.47 9.2
1 3 4 3 4 6.28 0
1 3 4 3 4 6.28 0
1 3 4 3 4 6.28 0
1 3 4 3 4 6.28 0
2 1 1 1 0 7.35 3.01
2 1 1 2 2 6.44 3.66
2 1 1 3 4 5.47 4.97
2 1 1 4 6 4.64 7.47
2 1 2 1 0 6.96 0.64
2 1 2 2 2 6.08 1.32
2 1 2 3 4 5.14 2.61
2 1 2 4 6 4.34 5.06
2 1 3 1 0 6.89 0.248
2 1 3 2 2 5.97 0.9
2 1 3 3 4 5.04 2 . 2 2
2 1 3 4 6 4.18 4.57
2 1 4 3 4 5.04 0
2 1 4 3 4 5.04 0
2 1 4 3 4 5.04 0
2 1 4 3 4 5.04 0
2 2 1 1 0 8.24 6
2 2 1 2 2 7.27 6.48
2 2 1 3 4 6.26 7.6
2 2 1 4 6 5.29 9.8
2 2 2 1 0 7.69 2.54
2 2 2 2 2 6.72 3.1
2 2 2 3 4 5.72 4.27
2 2 2 4 6 4.88 6.55
2 2 3 1 0 7.23 1 . 2
2 2 3 2 2 6.28 1.78
2 2 3 3 4 5.34 3.05
2 2 3 4 6 4.57 5.57
2 2 4 3 4 5.34 0
2 2 4 3 4 5.34 0
2 2 4 3 4 5.34 0
2 2 4 3 4 5.34 0
2 3 1 1 0 8.98 8 .8
2 3 1 2 2 7.82 8.71
2 3 1 3 4 6.84 9.88
2 3 1 4 6 5.82 11.81
2 3 2 1 0 8.4 4.83
2 3 2 2 2 7.4 5.3
2 3 2 3 4 6.39 6.26
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2 3 2 4 6 5.44 8.34
2 3 3 1 0 7.88 3.25
2 3 3 2 2 6.92 3.71
2 3 3 3 4 5.9 4.8
2 3 3 4 6 5.06 7.08
2 3 4 3 4 5.9 0
2 3 4 3 4 5.9 0
2 3 4 3 4 5.9 0
2 3 4 3 4 5.9 0
3 1 1 1 0 7.32 3.35
3 1 1 2 2 6.51 2.91
3 1 1 3 4 5.59 3.9
3 1 1 4 6 4.78 7.02
3 1 2 1 0 6.95 0.93
3 1 2 2 2 6.14 0.561
3 1 2 3 4 5.26 1.59
3 1 2 4 6 4.47 4.71
3 1 3 1 0 6.77 0.45
3 1 3 2 2 5.97 0.141
3 1 3 3 4 5.11 1.23
3 1 3 4 6 4.33 4.3
3 1 4 3 4 5.11 0
3 1 4 3 4 5.11 0
3 1 4 3 4 5.11 0
3 1 4 3 4 5.11 0
3 2 1 1 0 8.13 6.28
3 2 1 2 2 7.35 5.77
3 2 1 3 4 6.43 6.51
3 2 1 4 6 5.53 9.1 1
3 2 2 1 0 7.58 2 . 8 6
3 2 2 2 2 6.77 2.37
3 2 2 3 4 5.86 3.22
3 2 2 4 6 4.95 5.9
3 2 3 1 0 7.09 1.45
3 2 3 2 2 6.3 0.99
3 2 3 3 4 5.43 2 . 0 1
3 2 3 4 6 4.68 5.13
3 2 4 3 4 5.43 0
3 2 4 3 4 5.43 0
3 2 4 3 4 5.43 0
3 2 4 3 4 5.43 0
3 3 1 1 0 8.99 9.1
3 3 1 2 2 8 . 0 2 8.04
3 3 1 3 4 7.22 8.84
3 3 1 4 6 6.13 10.79
3 3 2 1 0 8.3 5.19
3 3 2 2 2 7.48 4.63
3 3 2 3 4 6.55 5.22
3 3 2 4 6 5.59 7.54
3 3 3 1 0 7.77 3.52
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3 3 3 2 2 6.97 2.98
3 3 3 3 4 6.05 3.76
3 3 3 4 6 5.19 6.43
3 3 4 3 4 6.05 0
3 3 4 3 4 6.05 0
3 3 4 3 4 6.05 0
3 3 4 3 4 6.05 0
4 1 1 1 0 7.32 3.2
4 1 1 2 2 6.45 3.7
4 1 1 3 4 5.55 4.95
4 1 1 4 6 4.73 7.43
4 1 2 1 0 6.99 0 . 6 6
4 1 2 2 2 6.18 1 . 2 1
4 1 2 3 4 5.31 2.51
4 1 2 4 6 4.39 4.76
4 1 3 1 0 6.91 0.28
4 1 3 2 2 6 . 0 2 0.76
4 1 3 3 4 5.14 2.06
4 1 3 4 6 4.37 4.58
4 1 4 3 4 5.14 0
4 1 4 3 4 5.14 0
4 1 4 3 4 5.14 0
4 1 4 3 4 5.14 0
4 2 1 1 0 8.24 6
4 2 1 2 2 7.34 6.35
4 2 1 3 4 6.41 7.46
4 2 1 4 6 5.42 9.54
4 2 2 1 0 7.63 2.58
4 2 2 2 2 6.78 2.99
4 2 2 3 4 5.85 4.15
4 2 2 4 6 4.96 6.35
4 2 3 1 0 7.24 1.25
4 2 3 2 2 6.32 1.64
4 2 3 3 4 5.46 2.91
4 2 3 4 6 4.69 5.35
4 2 4 3 4 5.46 0
4 2 4 3 4 5.46 0
4 2 4 3 4 5.46 0
4 2 4 3 4 5.46 0
4 3 1 1 0 8.95 8.84
4 3 1 2 2 7.87 8.47
4 3 1 3 4 7.01 9.72
4 3 1 4 6 5.93 11.49
4 3 9 1 0 8.42 4.88
4 3 2 2 2 7.5 5.2
4 3 2 3 4 6.52 6.09
4 3 2 4 6 5.61 8.18
4 3 3 1 0 7.86 3.23
4 3 3 2 2 7 3.59
4 3 3 3 4 6.03 4.65
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4 3 3 4 6 5.16 6 . 8 6
4 3 4 3 4 6.03 0
4 3 4 3 4 6.03 0
4 3 4 3 4 6.03 0
4 3 4 3 4 6.03 0
5 1 1 1 0 7.33 3.3
5 1 1 2 2 6.34 2.51
5 1 1 3 4 5.32 3.29
5 1 1 4 6 4.31 6 . 1 1
5 1 2 1 0 6.96 0.89
5 1 2 2 2 6 . 0 2 0.23
5 1 2 3 4 5.01 1
5 1 2 4 6 4.07 3.85
5 1 3 1 0 6.77 0.43
5 1 3 2 2 5.82 0
5 1 3 3 4 4.81 0.57
5 1 3 4 6 3.89 3.49
5 1 4 3 4 4.81 0
5 1 4 3 4 4.81 0
5 1 4 3 4 4.81 0
5 1 4 3 4 4.81 0
5 2 1 1 0 8.14 6.23
5 2 1 2 2 7.18 5.28
5 2 1 3 4 6.08 5.65
5 2 1 4 6 5.06 8.08
5 2 2 1 0 7.59 2.82
5 2 2 2 2 6.62 1.97
5 2 2 3 4 55.52 2.51
5 2 2 4 6 4.66 5.25
5 2 3 1 0 7.08 1.42
5 2 3 2 2 6.16 0.64
5 2 3 3 4 5.18 1.4
5 2 3 4 6 4.25 4.2
5 2 4 3 4 5.18 0
5 2 4 3 4 5.18 0
5 2 4 3 4 5.18 0
5 2 4 3 4 5.18 0
5 3 1 1 0 9 9.07
5 3 1 2 2 8 7.87
5 3 1 3 4 6.92 8.06
5 3 1 4 6 5.73 9.9
5 3 2 1 0 8.32 5.14
5 3 2 2 2 7.32 4.17
5 3 2 3 4 6.28 4.47
5 3 2 4 6 5.18 6.59
5 3 3 1 0 7.79 3.47
5 3 3 2 2 6.85 2.58
5 3 3 3 4 5.82 3.11
5 3 3 4 6 4.82 5.64
5 3 4 3 4 5.82 0
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5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

3 4 3 4 5.82 0
3 4 3 4 5.82 0
3 4 3 4 5.82 0
1 1 1 0 7.36 3.03
1 1 2 2 6.72 4.67
1 1 3 4 6 . 0 1 7.7
1 1 4 6 5.23 12.56
1 2 1 0 6.99 0.65
1 2 2 2 6.41 2.27
1 2 3 4 5.71 5.18
1 2 4 6 4.98 9.96
1 3 1 0 6.92 0.26
1 3 2 2 6.24 1.78
1 3 3 4 5.61 4.78
1 3 4 6 4.9 9.65
1 4 3 4 5.61 0
1 4 3 4 5.61 0
1 4 3 4 5.61 0
1 4 3 4 5.61 0
2 1 1 0 8.18 6
2 1 2 2 7.46 7.51
2 1 3 4 6.73 10.29
2 1 4 6 5.85 14.57
2 2 1 0 7.67 2.56
2 2 2 2 6.99 4.15
2 2 3 4 6.3 7.01
2 2 4 6 5.48 11.5
2 3 1 0 7.23 1.24
2 3 2 2 6.54 2.72
2 3 3 4 5.89 5.71
2 3 4 6 5.11 10.42
2 4 3 4 5.89 0
2 4 3 4 5.89 0
2 4 3 4 5.89 0
2 4 3 4 5.89 0
3 1 1 0 9.01 8.83
3 1 2 2 7.93 9.31
3 1 3 4 7.34 12.31
3 1 4 6 6.39 16.21
3 2 1 0 8.35 4.86
3 2 2 2 7.56 6.04
3 2 3 4 6 . 8 8 8.94
3 2 4 6 6 . 0 2 12.98
3 3 1 0 7.8 3.24
3 3 2 2 7.15 4.76
3 3 3 4 6.44 7.53
3 3 4 6 5.63 1 1 . 8 6
3 4 3 4 6.44 0
3 4 3 4 6.44 0
3 4 3 4 6.44 0
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