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ABSTRACT 

The inclusion of fermionic degrees of freedom into lattice gauge 

theories is examined. The doubling of fermion flavours on the 

lattice is reviewed and some of the methods for eliminating the 

unwanted species are presented. The connection between Susskind and 

Dirac-Kahler fermions is established and this leads to an explicit 

identification of the Susskind flavours in the lattice theory. It is 

shown how different masses may be given to the different flavours and 

the most local mass terms on the lattice are identified. The 

possibility of removing unwanted flavours by giving them a mass of 

order the lattice cutoff, and thus effectively decoupling them, is 

proposed. Methods for introducing dynamical fermions into lattice 

gauge theories are reviewed. The pseudo-fermion method is introduced 

and the Metropolis and two Langevin methods for implementing it are 

examined. The Schwinger model is reviewed and the pseudo-fermion 

methods are tested and compared both with one-another and with exact 

results for the massless continuum Schwinger model. The Langevin 

method is found to be the faster of the two methods, although more 

general considerations lead us to conclude that the Metropolis method 

will be more efficient in a simulation of QCD. In the case of two 

degenerate fermions the results are consistent with the known 

properties of the Su(2) Schwinger model. When one of the flavours is 

decoupled the measurements are in agreement with the one-species 

model. The prescription for removing the fermion degeneracy in which 

the square root of the fermionic determinant is used jr the effective 

action for the gauge field fails. 
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CHAPTER 1 

INTRODUCTION 

The language of gauge theory provides us with new and deep 

insights into the whole realm of high energy physics. The recent 

detection of the W and Z particles at CERN dramatically confirms our 

belief in the unified electro-weak interaction theory and the 

importance of gauge theories. We also have a gauge theory (QCD) for 

the strong interactions in which the hadrons behave as bound states 

of fundamental quark fields which interact via an octet of coloured 

gluons through the minimal Yang-Mills interaction. Moreover QCD 

exhibits the property of asymptotic freedom which allows us to obtain 

reliable calculations from perturbation theory of the short distance 

properties of the theory. These are in agreement with the scaling 

properties observed in deep inelastic scattering experiments. 

However, the large distance behaviour remains an unsolved problem 

due to infrared singularities. As we look at lower momentum scales 

the strength of the QCD coupling constant moves out of the 

perturbative regime and it becomes more difficult to disentangle 

non-perturbative effects from those that are genuinely perturbative 

in experiments. Moreover the fact that up until now we have only 

observed uncoloured bound states leads one to suspect the possibility 

that long range forces might permanently confine quarks and gluons 

within physical hadrons. In order to reconcile the apparen:iy 

contradictory aspects of infrared slavery and asymptotic  freedom and 

to understand quark confinement it appears necessary to study thE 
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field theory beyond the framework of perturbation theory. 

Lattice gauge theory is such a non- perturbative technique in which 

space, or space-tine, is discretized by introducing an underlying 

lattice. In this way it is possible to use the similarity with 

statistical mechanics inherent in the functional integral formalism 

to investigate the theory. It is clear that the lattice will destroy 

the Lorentz invariance of the theory which will only be restored in 

the continuum limit. However the gauge invariance, which is the 

central feature of the theory, rains explicit on the lattice. The 

lattice description enables us to study the theory either through 

strong coupling expansions of the sort used in statistical mechanics 

or to carry out direct numerical simulations, such as the widely used 

Monte Carlo algorithm. 

In this introduction we will firstly examine the formulation of 

the theory, as originally proposed by Wilson (1974), and its 

connection with the continuum Yang-Mills theory (Yang and Mills 

1954). Mention will be made of the strong coupling expansion and 

some of the similarities with statistical mechanics. The Wilson loop 

will be introduced and the property of confinement, and how it arises 

naturally in the strong coupling regime, will be examined. The 

renormalization group structure will then be discussed and the 

appearance of a mass scale through dimensional transmutation 

illustrated. The use of Monte Carlo methods to study the theory will 

be explained and the part that phase transitions play will be 

discussed. Measurements of the string tension will be discussed, as 

will the recent attempts at measuring the hadron and glueball 

spectrums. 

There are a number of ways of introducing a lattice, the most 
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widely used of which is the Euclidean lattice. The connection is 

made with Minkowski space through a Wick rotation which enables us to 

reinterpret our results in the usual physical space at the end of any 

calculation. For example, the evolution in Minkowski space according 

to the operator exp(-iHt) is replaced under a Wick rotation by 

exp(-Ht) and no information is lost in the process. Indeed, it is 

just such an identification between the two spaces that is used in 

the hadron and gluehall mass calculations, as we shall see. It is 

usual to introduce a hypercubical lattice of spacing a in this 

Euclidean space of d dimensions. This choice is not dictated by the 

theory in any way, except in so far as it appears to be the simplest 

choice and its remarkably simple geometric properties make it very 

convenient in actual calculations. However any lattice is in 

principle possible and there has been some interest of late in 

formulations on very different types of lattices. The only 

restriction is that the correct continuum limit be obtained in the 

limit that the lattice spacing vanishes. Christ, Friedberg and Lee 

(1982) have examined a formulation of lattice gauge theory in which 

the lattice sites themselves are chosen randomly. The question of 

different lattice formulations is intimately connected with the 

renormalization group and the role of fixed points, which we shall 

touch upon later. 

The field theory is quantized using the path integral formulation 

in which we define an action S[Øj  depending upon classical fields 

that we denote collectively by 0(x).  Physical quantities are then 

defined in a manner familiar in statistical physics by 
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where the denominator is the partition function of the theory. In 

the lattice theory we do not encounter the usual problems associated 

with this formula in field theory, where we must choose precisely the 

functional space of classical fields and the integration procedure 

(unless we limit ourselves to perturbation theory given in terms of 

Gaussian integrals). On a finite lattice (i.e. with a space-time 

volume cutoff) the functional integral is well defined as the simple 

product (now finite or, on an infinite lattice, denumerable) of the 

integrals over the field values at every site of the lattice. There 

is an alternative approach in which space-time remains Minkowskian 

and only the spatial dimensions are discretized. In this Hamiltonian 

formulation the fields may be quantized following the usual canonical 

prescription, however this method will not be pursued here. 

The equivalence between the Euclidean lattice formulation and its 

statistical counterpart is central to our understanding of the 

theory. Indeed the continuum field theory may be recovered from the 

statistical mechanics model when the correlation length of the 

lattice theory diverges and the underlying lattice is no longer 

important. Then the path integral corresponds to a sum over all 

configurations and the action is related to the energy of a 

confiquration. An external source in the Euclidean field theory 

corresponds to a maQnetic field (in the context of, for example, the 

Ising or Heisenberg models of ferromagnetism) and a classical field 

to the magnetization. The propagator of the field theory is the 

correlation function of the spin system and the mass gan corresponds 



to the inverse correlation length. Moreover we can study the theory 

in both perturbation theory and strong coupling in just the same way 

as it is possible to make low and high temperature expansions in 

statistical mechanics. 

In constructing a lattice gauge theory we wish to keep the gauge 

synmetry explicitly in the lattice formulation and recover the 

Yang-Mills theory in the continuum limit. An alternative approach in 

which vR simply discretize the continuum theory does not exhibit the 

gauge symmetry on the lattice, although it will be restored in the 

continuum limit. The first theory to have a local gauge symmetry on 

a lattice was the Ising lattice gauge theory of Wegner (1971). His 

interest in introducing a local invariance group arose from the fact 

that magnetization is forbidden in such a theory. However, despite 

the absence of a local order parameter he showed that this model had 

a phase transition, and he suggested how the various phases could be 

labelled and distinguished. Wilson (1974) generalized the Ising 

lattice gauge theory to continuous gauge groups, and it is this 

formulation that we will discuss here. 

The basic building blocks for a lattice gauge theory are the 

variables that live on the links of the lattice. In the case of an 

SU(N) lattice gauge theory the link variables are SU(N) group 

matrices L3(n)=exp[iB.(n)], where 14  labels the direction of the link 

(i.e. ,,a=1,2,3,4), n labels the sites of the lattice, 

and the T 4  are the generators of SU(N). 

The Greek indices that are used to label the lattice directions are 

not to be recarded as Lorentz indices since they are used only as a 

matter of notational convention and no attempt s made to -match 

indices in equations. Since the group volumes are finite the 
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integrals that vie encountered in the path integral formulation 

eq.(1.1) are well defined. Local gauge invariance can be stated very 

elegantly on the lattice by imagining a colour frame of reference at 

each site. By putting an SU(N) matrix G(n) at every site of the 

lattice it is possible to make the orientation of the colour space 

locally arbitrary. Under a gauge transformation the link variables 

transform as 

_+ 
	

(1.2) 

which we recognize as the simplest local generalization of a global 

SU(N) invariance. To construct an action that incorporates this 

local symmetry it is clear that we require objects that are built out 

of the products of U matrices around closed paths. These quantities 

are locally gauge invariant because the SU(N) colour indices are then 

all contracted locally. The most local contours are the elementary 

squares of the lattice, called plaquettes, and the resulting action 

is (Wilson 1974) 

Li (tfl) 
	

(1.3) 

where links in the backward directions are given by U (n+,) = u -1  (n) 

and 16 is related to the coupling g by  

It is now necessary to check that this action reduces to the 

ordinary Yang-!ills action in the Continuum limit. To dc this we 

make the 1 ong-wavel ength aPproximation and Taylor e;pand the Si OWly 

varyino field 



7 

8, 	&, 	&, 	Q(2) 	
(1.4) 

The action (1.3) may then be rewritten using the Baker-Campbell-

Hausdorff identity 

4 	 o.. f(Cz)t(j) 	P(Ci frC7L r 

+ a  fz ill) i- O(a.) 	
(1.5) 

Consequently 

V(itf-  ,. 0(o))] (1.6) 

where ve have dropped the indices on the U matrices. The leading 

term here is clearly the conventional Yang-Mills field strength 

with corrections in the exponent of higher order in a 2  which will not 

contribute in the classical continuum limit.. For smooth classical 

fields that vary only over distance scales large compared with the 

lattice spacing a we have a 2gF 1, <<1 and the exponential in the action 

can be expanded as 

(1.7) 

CL, * 

where tr 	=0 since the trace of the generators vanishes and the tn 

term has no dynamics and can thus be dropped. Finally the 

replacement 



establishes the equivalence with the usual Euclidean Yang-Mills 

action: 

S 	- / 

2,./%1.Ii 	
cJcz(/-,4 (1.9) 

where F .=3 , _At + ig[Afi,Av] and A=A,T'. It is the local 

invariance that we have built into the lattice action that ensures 

that ve recover the standard field strength tensor F,L. of the 

Yang-Mills theory. Moreover the resulting theory is clearly 

Euclidean 0(4) invariant and the discrete cubic invariance of the 

original action has disappeared into the irrelevant terms of higher 

order in the lattice spacing a. Actions that differ from the Wilson 

action by such irrelevant terms will clearly have the same continuum 

limit and are being studied (Symanzik 1982; Martinelli, Parisi and 

Petronzio 1982; Weisz 1982; Berg, Meyer, Montvay, and Symanzik 1983) 

as a means of calculating 'closer to the continuum limit. 

In order to see how confinement arises naturally in the strong 

coupling regime of the theory we consider a Wilson loop W(C) which 

consists of a product of the U matrices around a closed contour C of 

links. However it is instructive to firstly consider the 

corresponding object in the continuum theory, which is the loop 

correlation function: 

Or  PIE;~~ O. 
	

(1.10) 
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where P denotes the path ordered product. This is simply related to 

the heavy quark potential V(R) by observing that we have introduced 

an external current J, describing a closed current loop (i.e. J =1 on 

the Contour C and vanishes elsewhere). Consequently the expectation 

value (1.10) of the loop integral may be interpreted as the ratio of 

the partition function for the system which includes the external 

charges Z(J) to that in which they are omitted Z(0), and this can be 

related to the free energy F(J) of the system with the charges: 

If we consider a contour of length T in the time direction and R in 

the spatial directions then what we are measuring is the matrix 

element of the evolution operator exp(-HT) between initial and final 

states that consist of an infinitely heavy qq pair a distance R apart 

(H is the Hamiltonian of the gauge theory). This is then just the 

difference between the ground state of the Hamiltonian with the 

charges included and with them omitted. Since the charges are static 

the energy difference is completely potential. Thus 

Pe,10 ( ç; 4>c4e 	(1.12) 

so that if V(R) increases as IRI at large distances then an infinite 

amount of energy would be regured to separate the quarks, and they 

are consequently confined. On the other hand if V(R) is independent 

of R then the charges could easily be pulled free. it i possible to 

show that in the U(1 ) gauge theory we recover Coui ombs law for weak 
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coupling g 2<<1. 

In the context of lattice gauge theory this loop correlation 

function (1.10) was precisely that introduced by Wegner (1971) to 

serve as an order parameter. This is possible since the high and low 

temperature phases of the gauge-spin models may be identified with 

exponential area and perimeter law behaviour respectively of the loop 

correlation function W(C). In order to establish the relationship 

between W(C) and confinement in the lattice model we require the 

following properties of the Haar measure: 

fcx,'° fuucct 

where c is a normalization constant. The leading behaviour of 

<W(C)>=<TTU(n)> is obtained by expanding the exponential and 

considering only the first non-trivial term. The lowest order term 

is obtained by diagrammatically covering the interior of the contour 

C with plaquettes. Since each plaquette is associated with a factor 

of 1/g2  this procedure of minimally tiling the contour C gives the 

leading order term: 

') 
	

ep(- 	 iTa 	 (1.14) 

where N   is the minimal number of plaquettes contained in C and is a 

measure of the area. As we saw in eq.(1.12) this leads directly to a 

linear confining potential for heavy quarks, and the leading term in 

the dimensionless string tension K at strong coupling is the 

coefficient ln(g 2 ). Thus confinement arises naturally in the strong 

coupling regime of the lattice gauge theory. 
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We now look at some of the renonnal ization group properties of the 

theory and particularly at the appearance of the A  parameter, which 

is the natural mass scale of the theory. In the action (1.3) the 

only parameter is the dimensionless coupling g, and the lattice 

spacing a appears implicitly. On purely dimensional grounds it is 

possible to establish the relationship between any mass m in the 

theory and the lattice regularization 

In the continuum limit the cutoff must he much larger than the 

physical masses, i.e. the correlation length must be much larger than 

the lattice spacing and in the limit a--).O will extend over an 

infinite number of lattice sites. In the language of statistical 

physics this means that the system should approach a continuous phase 

transition point (Wilson and Kogut 1974). Because we are interested 

in the continuum system it is important to approach the a-O limit 

carefully by readjusting the coupling constant (i.e. 

renormalizati on) . The physical quantities of the theory, such as 

correlation lengths, must be kept finite as the lattice spacing 

vanishes and this will determine how the coupling constant 

consequently changes. This is why the understanding of the phase 

structure and critical points is so central to lattice gauge 

theories. 	It is clear from eq.(1.15) that it is only possible to 

define a non-trivial continuum limit if there exists a critical 

Coupling 9critsuch  that f(g)—O as The continuum I imit of 

the lattice SU(2) and SU(3) models are found as o—O, and 0 =0 is 

the infrared unstable fixed coin' of the theory in the neighbourhood 
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of which ve can use perturbation theory (Gross and Wilczek 

1973,1973). In the continuum limit all physical quantities should 

become independent of the lattice cutoff (i.e. they should be 

renormalization group invariant): 

61, 
cz = 0 	(CL - c) 

CLI 

(1.16) 

The beta function, which gives the relationship between the coupling 

g and the lattice spacing a, is defined by 

/&4) 	 (1.17) 

where the coefficients 	and if, may be calculated in perturbation 

theory and are found for SU(N) gauge theory to be (Gross and Wilczek 

1973; Politzer 1973; Caswell 1974; Jones 1974): 

ii (T6 
 'VP 
	

(1.18) 

From the beta function we observe that the theory is asymptotically 

free, i.e. at very short distance scales the coupling vanishes and 

the theory behaves as if it were free. Expressing m in terms of 

eq.(1.15) the condition (1.16) becomes 

() fl(s) a&  
cc 

This equation may be solved for fi(g), and using ea.(i.17' we obtain 

the vpeil known Att parameter which is the renormal ization group 

invariant mass scale of the theory: 
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ëf( 	
(1.20) 

= ± 
	

fflj2) 	+ 

All the masses in the theory can then be expressed in terms of /\tt 

and ratios of dynamically generated masses must be pure numbers that 

depend only on the gauge group. Thus, once the mass scale is set all 

the masses of the theory are determined with no free parameters. 

Also it is clear from the form of eq.(1.20) that /\tt  does not have 

a perturbative expansion and the mass generation is consequently a 

non-perturbative effect. The regime in which (1.20) holds is known 

as the scaling region of the theory. In order to compare the lattice 

calculations with those done in the continuum theory it is necessary 

to relate Aatt  to the various n-parameters of the continuum 

regularization schemes. This may be done by calculating both the 

divergent and finite parts of the one-loop coupling constant 

renormalization in the way that is usually used to relate different 

continuum renoniialization schemes. Thts calculation has been done by 

Hasenfratz and Hasenfratz (1980) giving 

= S 	 çu(?) 

	

0 	 (1.21) 

= g3 s 	Sv(2) 

for the pure gauge theory (i.e. without fermiicns). 

Having established that OC[) is an asymptotically free theory and 

that the lattice theory confines quarks at strona COUi1flC the 

question becomes one of whether or not there is a phase transition in 

the intermediate region. It  is known that such a transition occurs 
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in the U(1) gauge theory and there is a critical point separating the 

charge confining phase from the free charge phase. Indeed, the 

introduction of the loop correlation function by Wegner (1971) was in 

order to distinguish between the two phases of the theory. There are 

a number of different methods for mapping out phase diagrams which 

have been used in statistical mechanics with varying degrees of 

reliability. High- and low-temperature expansions, duality 

transformations, spin-wave analyses and mean field theory have all 

proved quite useful. In actual simulations of gauge theories the 

most frequently used technique is that of looking for a hysteresis 

loop in a thermal cycle. We choose some cross-section of the phase 

space and adiabatically move the system forward and backwards along 

this path, typically by varying some parameter ",'3 '. At each 

"temperature" step a number of iterations are performed and the 

system approaches some sort of equilibrium. However, if there is a 

phase transition, with a critical point ,5c,  then in the 

neighbourhood of 	the system does not really reach equilibrium 

because of the increase in the relaxation time and there will be a 

mis-match on the return cycle when we measure physical quantities. 

An alternative method is to do a mixed phase run in which the initial 

state of the system is divided into two halves, one of which is 

ordered and the other disordered. It is possible to tell if there is 

a phase transition by observing how the system evolves from this 

mixed-phase" configuration. The phase diagrams of a number of 

different lattice models have been extensively investigated and the 

numerical results seem to indicate that a phase transition which 

would separate the free and the confining regions, such as that 

observed in the U(1) theory, does not occur in four dimensional SU(2) 
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or SU(3) gauge theories and that the strong coupling phase persists 

to the limit of vanishing bare coupling. 

Before proceeding to discuss some of the calôulations and results 

obtained in lattice gauge theory we shall firstly give an outline of 

how the Monte Carlo procedure operates (see, for example, Binder 

1976). A measurement of some physical quantity f(Ø) is formally 

done by evaluating the functional integral eq.(1.1). However, it is 

clear that even for discrete gauge groups on small lattices it is not 

possible to generate all configurations in any reasonable computer 

time. The Monte Carlo algorithm provides an approximate scheme for 

evaluating the functional integral by generating a sequence of 

configurations that mock the equilibrium behaviour of the system. 

Starting from some gauge configuration 1u (which is usually taken to 

be either random or completely ordered) the Monte Carlo algorithm 

will generate a new trial configuration J91 according to a definite 

transition probability P(U-'U). There is considerable freedom of 

choice in this probability distribution since detailed balance only 

requires that 

	

eP(v) 	(1.22) 

which ensures that the master equation has a solution which is the 

desired equilibrium probability distribution. More general 

constraints on stochastic processes obviously require that P(U-+U)O 

and 

	

We generate a sequence of con -Figurations flU 	(a Markov chain) 

according to the Boitnann ci stribution. Starting from 	=fu 	a 

new trial confiQuration {t) is determined, which usually differs from 
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in only one dynamical variable. In the Metropolis method 

(Metropolis et al. 1953) we calculate the change in the action 

between the two configurations 

S'O) - S((!) 
	

(1.23) 

If &S is negative (i.e. the new configuration lowers the action of 

the system) then the change UJ41U  is always accepted and JU3 is 

updated. On the other hand if AS is positive we accept (U) with 

probability given by the Boltzmann factor exp(-S): if exp(-S)>R 

then the new configuration is accepted and otherwise it remains 

unchanged, where R is a (pseudo-) random number with uniform 

probability distribution over the unit interval. If in this case 

(jS>O) we were to reject IUj outright the action would decrease 

monotonically and we would eventually attain a classical solution 

corresponding to a minimum of the action (and if there were more than 

one minimum it would be possible for the system to get trapped into a 

metastable state of artificially high action). However, by comparing 

in this way with the Boltzmann factor we correctly take care of the 

quantum fluctuations. This algorithm guarantees that the sequence of 

configurations that we generate eventually reaches a regime of 

statistical equilibrium where the probability of any particular 

configuration occurring is given by the Boltzmann distribution 

exp(-S(U)). It then follows that 

E (1.24) 

This equality holds independently of the particular choice of 
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P(U—)., although inappropriate choices may lead to very slow 

convergence. 

An alternative to the Metropolis method that is very efficient in 

some situations is the heat bath method (Creutz 1980; Rebbi 1930). 

If we vre to consider repeating the Metropolis procedure many times 

on a given link it would eventually generate a new link variable with 

the Boltzmann probability (this is sometimes referred to as the 

modified Metropolis method). This procedure is equivalent to 

choosing the new 1-ink variable U 	from amongst all its possible 

values with a probability distribution proportional to ex(-S(U)) 
ij 

with all the other U's being kept fixed. Although the method is 

generally harder to implement in practice, it will usually converge 

significantly faster and there will be fewer problems with temporal 

correlations since the new link variable is not related to the old 

one, as it is in the Metropolis algorithm. The SU(2) heat bath takes 

advantage of the simplicity of the Pauli algebra and is quite fast. 

An SU(3) algorithm which uses SU(2) subgroups of SU(3) (Cabibbo and 

Marinari 1982) seems to be superior to the standard Metropolis 

algorithm for SU(3) (Bowler and Pendleton 1983). 

Although the general principles involved in a Monte Carlo 

simulation can be precisely formulated there is in practice a good 

deal of freedom in their application. This freedom can, in any 

particular calculation, be usefully exploited depending upon the 

particular measurements and objectives, in much the same way as in an 

experiment. We will only mention some of the more important of these 

considerations here. The locality of the action (i.e. that it only 

explicitly couples neighbouring dynamical variables) is clearly very 

important in implementing a simulation. Non-localities can arise as 
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a result of partial summations over some of the variables in the 

construction of an effective action, as we shall see later when 

fermions are introduced into the dynamics. 

The actual size of the lattice used should, of course, be 

sufficiently large to accommodate the relevant mass scales of the 

theory without introducing unmanageable finite size effects. 

Ideally, if 	is some physical length scale of the theory (eg. the 

correlation length) then we would choose a<<5 <<L, where a is the 

lattice spacing and L is the total physical size of the lattice in 

any direction. In practice we are limited in the size of lattices by 

the computing power available, and a careful understanding of the 

various necessary approximations is essential. Such considerations 

form a separate study in themselves and we shall only touch upon the 

most important points here. Finite size scaling theory can often 

enable us to relax the condition 	<<L (Hamer and Barber 1980) and 

modifications of the lattice action (Symanzik 1982) can also enable 

the condition a<< 	to be relaxed by more closely fitting the 

continuum action. Bulk quantities, such as the internal energy, can 

often be measured on fairly small lattices whereas values of more 

widely separated observables, such as Wilson loops and correlation 

functions, are more difficult. Such non-local observables suffer 

from both the finite size of the lattice and the fact that the 

quantity being measured is often small and results from large 

cancellations, with the resultant large statistical fluctuations. It 

is often necessary to weigh the advantages of a larger lattice 

against the iarQer number of Monte Carlo updates that can be 

performed on a small 1 er 1 attice with the same computer resources. 

The boundary conditions of a finite system are also important, 
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particularly in higher dimensions where the boundary contains a 

significant proportion of the lattice sites (eg. on an 34 lattice 

there are more than twice as many sites on the surface as in the 

interior). Periodic boundary conditions on the gauge variables are 

almost universally used, but other more complicated boundary 

conditions have been considered in various contexts. In particular, 

twisted boundary conditions (t'Hooft 1979), or other variations in 

which periodicity is enforced modulo some transformation of the edge 

links, can be used and have the effect of introducing topological 

excitations into the system. It can sometimes also be important to 

consider the initial configuration from which a simulation is run. 

Since it is only configurations obtained after equilibrium has been 

reached that are usually of interest it is desirable to reduce the 

transient time that it takes for the system to reach equilibrium. 

Starting from different initial configurations can serve as a check 

that equilibrium has been reached, since the results should be 

independent of the particular initial configuration. 

The recent interest in simulating lattice gauge theories lies in 

its application to QCD, because ordinary perturbative analysis does 

not extend into the strong coupling region which seems to determine 

much of the physics of the theory. We will briefly discuss here some 

of the quantities that have been measured in lattice QCD, although 

the reader is referred to some of the recent reviews of the subject 

for further details (see, for example, Kogut 1979 and 1983; Creutz, 

Jacobs and Rebbi 1983). The string tension, which measures the large 

distance attractive force felt by two static quarks, is obtained from 

measurements of the Wilson loop using the identity ea.(1.12). In 

order to factor out the perimeter dependence, which arises from the 
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self energy of the heavy quarks, it is usual to consider rectangular 

Wilson loops W(I,J), of width I and J in two directions. The 

quantity (Creutz 1980) 

	

X (- 	/(i.  

	

j, JI 	
W{r,r- I) W (Vi -  I 1)! 	

(1.25) 

is then a measure of the string tension for appropriately large 

values of I and J (in practice these values are quite limited). The 

results, initially obtained by Creutz (1980) and subsequently 

reproduced by a number of people, give agreement in the strong 

coupling regime with the strong coupling prediction and then behave 

in a manner consistent with scaling before tailing off into the 

perturbative regime. From the envelope of the curves, obtained from 

different sizes of Wilson loops, the string tension K(g) with the 

expected scaling behaviour may be extracted 

K() 	
(1.26) 

 
;: 	 flcd 

and the latest measurements (Creutz and Moriarty 1982) indicate 

7=(2.8+0.9)x104 fl 2  for SU(3). This measurement does not really 
determine the string tension, but rather by assuming the string 

tension to be a basic observable, it sets the value of /\latt 
 and 

thus determines the scale for all the physical quantities of the 

theory without any further adjustable parameters. 

Since QCD is a confining theory we do not expect there to be long 

range interactions in the theory and hence there will be no massless 

mediating particles. Consequently the mass spectrum should begin 
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with some non-zero mass state which is identified with the mass mg  of 

the lowest lying glueball state, also called the mass gap. In the 

absence of quarks this lowest glueball must be stable, although the 

coupling to quarks could mean that the state becomes broadened. 

There has been considerable effort to calculate m g  using Monte Carlo 

techniques (Ishikawa, Teper and Schierholz 1982; Berg and Billoire 

1982a,b; Michael and Teesdale 1982) and there is now broad agreement 

on the lightest glueball mass of mg=750±50 MeV (using Amom=200  MeV), 

which appears to scale properly. The measurements are carried out by 

choosing some appropriate plaquette operator O(x,t) and considering 

the connected correlation function 

< 0(i,i) 0 	 (1.27) 

By inserting a complete set of energy-momentum eigenstates and 

summing over x, which picks out the zero momentum state, we see that 

G, o) 	e 	 (1.28) 

and the mass may be measured from the exponential fall-off of the 

propagator. The measurements are complicated by the fact that higher 

states will in general also couple to the operator O(x,t) and they 

consequently contribute to G(t).  Moreover, it turns out that the 

correlation length (1/me)  is rather small over the region of coupling 

where Monte Carlo is possible and conseauently the propagator falls 

Off rapidly and becomes of the same order as the statistical 

fluctuations after only 3 or  lattice spacings. A variety of 

techniques have been developed to handle these difficulties. mainly 
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involving suitable choices of the operator O(x,t) which minimize the 

mixing with higher excitations. Similarly it is possible to measure 

higher mass states by projecting out the relevant operators, although 

this is more difficult and the measurements are subject to larger 

statistical errors. 

A number of other interesting and important calculations have been 

made in lattice QCD, such as the restoration of rotational invariance 

in the scaling regime, and various other physical quantities have 

been studied, including the deconfining temperature and the quark 

potential. However we shall confine ourselves here to a discussion 

of the prospect of calculating the hadron spectrum of QCD which has 

emerged recently (Hamber and Parisi 1981; Weingarten 1982; Marinari, 

Parisi and Rebbi 1981; Hamber et al. 1982; Bernard, Draper and Olynyk 

1982; Bowler et al. 1982) In order to calculate particle masses a set 

of gauge field configurations is generated using the usual Wilson 

action. For each gauge field configuration the quark propagator 

G(n,O) is calculated, from which the various particle propagators are 

constructed. By summing over the spatial directions the particle 

masses may be extracted from the large time behaviour. For example, 

the pion state is given by 1' ( n) 	(n) and the time-si ice 

propagator is 

<76,L) (D 

4 	 0 

(1.29) 

= 	 '-s- 

Without goinQ into any detail on these calculations a few essential 

features nevertheless emerac. Although the cal cu ations are subject 

to an array of problems that stern from finite size and statistical 
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effects, many of the crucial features of QCD are seen. The pion 

appears as the lightest meson, and can thus be interpreted as a 

Goldstone boson by a suitable extrapolation to vanishing mass. The 

fermionic condensate <t'Y> has been measured, and the rho is 

measured to be heavier than the pion, with a mass that remains finite 

in the limit of vanishing pion mass, provided that mom q  is used to 

define 
111crit• 

 It has become clear that there are many features of 

the finite lattice approximation that have an important effect upon 

the measurements which need to be more thoroughly understood before 

reliable mass calculations can be done. The necessarily small 

lattices on which the simulations are run present immediate problems 

when we consider the physical size of the lattice, which in most 

cases is approximately that of a proton. Moreover there are finite 

temperature effects associated with the finite size of the lattice. 

Recently a discrepancy has emerged between the mass scales given by 

the string tension and the rho mass which needs to be understood. 

The correlations between successive gauge configurations presents 

problems in obtaining truly independent statistical data and the 

number of configurations over which measurements are averaged is 

rather small. The algorithms for finding the quark propagators are 

slow in the region of small quark masses and as a result all 

measurements are made for quark masses greater than approximately 

200MeV and it is necessary to extrapolate to light masses, thus 

introducing more uncertainties into the analysis. 

Thus, having established the principle features of lattice gauge 

theory and illustrated some of its successes we now move on to the 

question of incorporating fermiors intc these theories. This is by 

no means straightforward and, while it is true to say that very 
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significant steps have been made in understanding and overcoming some 

of the problems, much remains to be done. While the major part of 

the work to date has been in the context of one- and two-dimensional 

models, our foremost goal remains that of understanding QCD, and the 

usefulness of the various models and approximations encountered is 

always essentially measured in relation to their application to QCD. 

In chapter 2 we examine the problem of transcribing the Dirac 

equation onto the lattice. It is well known that the most 

straightforward description leads to the "doubling" problem in which 

the continuum limit of the theory contains many more fermion flavours 

than we would like. A number of proposals for overcoming or reducing 

this flavour degeneracy are discussed. Wilsons method explicitly 

breaks chiral symmetry and the SLAC method is a highly non-local 

description of the fermions, although both completely eliminate the 

doubling. Susskinds method partially reduces the degeneracy and has 

the additional feature that the Euclidean formulation possesses a 

continuous axial symmetry which protects the theory from generating a 

fermion mass and which is known to be spontaneously broken in strong 

coupling with an accompanying Goldstone pion (Kl uberg-Stern et al 

1983). The connection between doubling, the topology of the lattice 

and the Adler-Bell-Jackiw anomaly is expressed in the no-go theorem 

of Nielsen and Ninomiya (1981). The deep geometrical connection 

between Susskind fermions and Dirac-Kahler fermions is examined in 

some detail . The lattice and continuum versions of the Dirac-Kahl er 

theory have the same fermion degeneracy and the continuum 

Dirac-Kahler equation may be diagonal ized into four independent Dirac 

equations. The same diagoralization of the lattice Dirac-Kahier 

equation can only be done in momentum space, but not in coordinate 
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space where the flavours remain intertwined. Nevertheless this 

formulation enables us to explicitly identify the Susskind flavours 

in the continuum limit of the lattice theory in a meaningful way. We 

show how it is possible to give the flavours different masses and how 

these correspond to non-local mass terms (one-, two-, or three-link 

operators) for the lattice Susskind fermions. We then find the mass 

term that is most local on the lattice, since this will be the most 

practical to use in any simulation. We show how this mass term could 

be used in a simulation of QCD by an explicit identification of the 

lattice flavours with those of the real world. Alternatively, if we 

are only interested in light quarks it is possible to completely 

decouple the unwanted flavours by giving them masses of the order of 

the lattice cutoff. 

The question of incorporating dynamical fermions into lattice 

gauge theories is then examined in chapter 3. A number of the 

proposals that have been put forward are discussed and their 

applicability to four dimensional simulations is examined. The 

ariticominutirig fermion degrees of freedom may be integrated out giving 

an effective action for the gauge field that can, at least in 

principle, be simulated by Monte Carlo techniques. However some 

approximation is necessary to make such simulations feasible, since 

the effective action couples all the gauge variables of the lattice. 

The pseudo-fermion method is introduced, in which small changes in 

the gauge field between successive configurations enables the change 

in the effective action between updates to be linearized. In this 

way the problem is reduced to one of evaluating the Green functions 

of the fermionic operator ('+m) for neighbouring sites. The 

Metropolis pseudo-fermion method does this by a Monte Carlo over a 
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set of bosonic variables while the Langevin method evaluates the 

propagators by introducing a spurious "time" dependence and letting 

the pseudo-fermions evolve in the background gauge field according to 

the Langevin equation. The Langevin method is examined in both a 

first and second order formalism. 

These techniques are tested in chapter 4 using the Schwinger 

model . We firstly review the essential features of the Schwinger 

model, and particularly those which are believed to be important in 

QCD. The Schwinger model was chosen because it both exhibits the 

property of confinement and because there are exact results for the 

massless model which serve as a check on the reliability of the 

techniques we wish to test. Various details of how the 

pseudo-fermion methods may be implemented and optimized are discussed 

and the results of the simulations using the Schwinger model are 

presented. It is found that the Langevin method is the faster of the 

two, although this is mainly as a result of the simplicity of the 

U(1) gauge group of the theory and would not be the case for theories 

like QCD where the link variables have many more parameters. 

Finally, we test the proposal of chapter 2 that unwanted flavours may 

be decoupled by giving them a mass of the order of the cutoff. We 

find that the measurements are in agreement with the one-species 

Schwinger model , whereas two degenerate flavours give results in 

agreement with the two-species model. The proposal that the unwanted 

flavours may be eliminated by only including half the fermionic 

contribution to the effective action is shown to fail in this 

instance. We also address the prediction of Coleman that there is an 

isospin symmetry in the SU(2) Schwinger model when both quarks are 

light and our results support this conclusion. 
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(U/OTCD •) 

FREE LATTICE FERMIONS 

One of the major difficulties encountered in the description of 

fermions in lattice gauge theory is the proliferation of fermionic 

degrees of freedcm in the continuum limit. Since we require the 

lattice theory to reproduce continuum physics in the limit that the 

lattice spacing tends to zero this doubling is rather problematic. A 

number of proposals (Wilson 1974; Drell et al. 1976; usskind 1977) 

for overcoming this difficulty are examined and their various merits 

are discussed. The relationship between species doubling and chiral 

symmetry (Karsten and Smit 1981) is discussed, as is the no-go 

theorem of Neilsen and Ninomiya (1981). The intimate relation 

between species doubling and the geometric structure of the lattice, 

which is is elegantly displayed in the Kahler-.Dirac formulation 

(Kahier 1962; Becher 1981), is reviewed in section 2. In particular, 

the equivalence between the Kahler-Dirac and Susskind formulations is 

discussed. These insights enable us, in section 3, to carry to 

fruition the idea (Susskind 1977; Banks et al. 1977) that the 

remaining degeneracy in the Kahler-Dirac-Susskind formulation may be 

interpreted as a flavour degeneracy (Burkitt, Kenway and Kenway 1983; 

Mitra 1983; Becher and Joos 1983; Kluberg-Stern et al. 1983). Indeed 

we show the identification explicitly and also how the different 

flavours may be given different masses. This idea will be pursued 

further (in chapter 4) as a means of removing unwanted ferrnions. 



2.1 The Lattice Fermion Doubling Problem 

The "naive fermion action is obtained by a simple discretization 

of the usual Dirac action; 

S I = -L  ~] 	

- 	 4K{) 	 ) 	(2.1) r 2 	
[Y(A 

where we neglect gauge fields for the moment (as we do throughout 

this chapter) and put the lattice spacing to unity. The Y( n) and 

are the usual Dirac spinors at every site of the lattice and 

the symmetric form of the difference operator is necessary in order 

to ensure its antihermiticity properties. 

The momentum space propagator is found in the usual way by doing a 

(discrete) Fourier transformation and solving the Green function 

equation. The allowed momenta (now also discrete) lie in the 

Brillouin zone _2iRp<Zr. Th e lattice propagator is then 

	

*. 	c 

(2.2) 

	

OL 	 01 
This fermion propagator does not vanish in the limit a---O in 2' 

(d being the dimensionality) regions of the Brillouin zone 

corresponding to the points p=O or Zr . Thus, even in a system which 

initially contains only particles corresponding to one pole, as soon 

as a gauge field is introduced the other allowed particles will be 

pair produced and consequently contribute to intermediate processes. 

For example, in a perturbation expansion all internal fermionic loops 

will contribute with a factor of 2 times their counterparts in the 

continuum theory (Guerin and Kenway 1980; Sharatchandra, Thun and 

Weisz 1981). This is clearly unsatisfactory for Monte-Carlo 
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simulations since asymptotic freedom is lost for the SU(2) colour 

group and almost lost for SU(3). 

A number of methods for avoiding this multiplicity of fermions 

have been proposed. One of these methods (SLAC ferrnions) (Drell 

Weinstein and Vankielowicz 1976) entirely eliminates the doubling and 

maintains chiral invariance, but at the cost of locality. Since the 

doubling is intimately connected with the particular form of the 

lattice derivative, the method involves introducing a different 

gradient operator on the lattice from that used in eq.(2.1). 

Explicitly; 2] 
(2.3) 

where the sums on p and n are over the allowed momenta and sites 

respectively, V is the volume and we have set a=1, as we will do 

throughout. This expression shows clearly that the definition is 

non-local on the lattice, and moreover Lorentz invariance and 

locality are not restored in the continuum limit. Indeed, the one 

loop vacuum polarization diagram has been evaluated in perturbation 

theory and gives manifestly non-covariant results even in the 

continuum limit (Karsten and Smit 1979). 

A method due to Wilson (1974) eliminates the doubling entirely by 

projecting away the unwanted fermions. Since it is only the 

continuum limit of the lattice theory that is physically interesting, 

we are free to add to the Laaranaian any terms which are of order the 

cutoff, since such terms will vanish in the continuum limit. In 

particular it is possible to add to the Lagrangiar a term that is the 
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lattice version of the second derivative of the fermion field. The 

action then takes the form 

: 1)L(1)Th ;) ( *rJ)'1t)7 . 	
( 2.4) 

+ 

where I is the unit matrix in spinor space. The Wilson parameter r 

gives the 15 unwanted fermions a mass m-i-2kr/a (k=1,2,3,4) and only 

one fernion remains in the continuum limit (corresponding to the 

point p=O in the Brillouin zone). An alternative intuitive 

explanation of the effect of the Wilson parameter involves the 

projecting-out of components. Consider the case r=1 in which, 

choosing 	to be diagonal 

- I = diag(0,0,-2,-2) 	 (2.5) 

= diag(2,2,0,0) 

Thus two components in both the forward and the backward directions 

have been projected out. The Lagrangian (2.4) simply incorporates 

this feature in a way that maintains the Euclidean invariance. The 

resulting propagator is 

[+ 
	

(2.6) 

One disadvantage of Wilson fermions is that, unlike SLAC fermions, 

chiral () snrnetry is broken explicitly even for m=0. This 

represents a problem because chiral invariance is supposed to he an 

important approximate symmetry of QCO; one of the consequences of 
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which is the smallness of the pion mass. 

chiral invariance in the continuum limit 

directly on the value of the pion mass. 

a QCD lattice simulation is that the bar 

is 'tuned' to give the correct pion mass 

In the formulation of Susskind (1977) 

As a result the lack of 

of lattice QCD will reflect 

In practice, what is done in 

mass in the Wilson action 

in the continuum. 

there is a hidden cubic 

symmetry which ensures that no such tuning of a quark mass parameter 

is necessary (Sharatchandra et al. 1981). Moreover the fermion 

d 	d'" degeneracy is reduced from 2 to 2 ' in d dimensions. In this 

method the fermion degrees of freedom are distributed around a unit 

cell. Indeed the original prescription consists of placing the 

different spinor components at different sites of the lattice. In 

two dimensions we can vizualise a 'staggered' lattice in which the 

upper spinor components sit on even sites, lower components on the 

odd sites of the lattice and the natural size of the unit cell is 

2x2. The chiral symmetry now manifests itself as a discrete 

translational symmetry, which in this (two-dimensional) picture 

clearly interchanges the spi nor components. The rationale behind 

this proposal comes from the observation that the original action can 

be rewritten as the sum of two identical terms on non-interacting 

sub-lattices. Susskinds prescription then tells us to simply throw 

away one of the redundant copies of the fermionic action. This 

decoupling of the action into identical copies can be carried out 

explicitly by the unitary transformation (Kawamoto and Smit 1981) 

/1 3 
(2.7) 

where n 1  (i=1,2,3,4) are the components of the lattice site. (Note 
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that since this transformation is site dependent it has no continuum 

analogue and thus there is, of course, no such decoupling in the 

continuum). The Lagrangian, when rewritten in terms of the new 

fields '((n) , completely decouples into four identical spinor copies. 

By discarding three of the copies the degeneracy is reduced from 

sixteen to four in four-dimensions (and from four to two in 

two-dimensions). Using the expression (2.7) the action becomes 

S 	 T(&) 

 

+  2 

where 71(n)=1, 0()(_1)n, 	73(n)=(_1)n+n2-, and 
n+n+n3  

This decoupling can, equivalently, be carried 

out in momentum space (Sharatchandra, Thun and Weisz 1981). 

The propagator for Susskind fermions on an N 4  periodic lattice is 

given by 

Cr (;, 	<X&t) 

= ( g(g!,) (2.9) 
;~ ) 	

Z 

where  the 	fr (n) are as above. It is clear from this expression that 

translational invariance by one lattice unit is lost (as we would 

expect) but that the translational invariance of the unit cells (2)d 

is retained. Moreover, the poles in momentum space occur at exactly 

the same places (q,=O orAl) as for the naive propagator, the 

difference being that the fermionic degrees of freedom have been 

thinned and a fermion is now spread over a number of neighbouring 

sites. 
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That none of the above methods fulfills our hopes of obtaining a 

lattice gauge theory with just one fermion and with continuous chiral 

invariance and a covariant continuum limit may appear rather 

unfortunate. However, the reason (Karsten and Smit 1981) is 

intimately connected with the Adler-Bell-Jackiw anomaly (Adler 1969; 

Bell and Jackiw 1969). The doubling occurs in such a way that even 

if we put a single left handed spinor on the lattice it would 

reappear doubled with a right handed counterpart in the continuum 

limit i.e. by regularizing a chiral lattice theory with a lattice 

cutoff and then removing the cutoff by taking the continuum limit 

a—*O we find that the theory contains an equal number of right and 

left handed fields and it is thus no longer chiral. This is perhaps 

not too surprising since it is well known in perturbation theory in 

the continuum that it is not possible to regularize a chiral theory 

in a chirally invariant manner. This connection between doubling and 

chirality is formalized in the Niel sen-Ninomiya theorem (1981), which 

is a no-go theorem for putting theories of the weak interaction on 

the lattice. 

2.2 Dirac-Kahler Fermions 

The geometric interpretation of the gluon field, describing 

infinitesimal parallel transports of the local colour coordinates, 

plays an important part in the formulation of the Wilson action for 

pure lattice gauge theories (Wilson 1974). However, in the 

formulations of the Dirac field on the lattice discussed in the 

previous section the geometric properties of spinors were completely 

disregarded. Indeed, the spinors were rather arbitrarily associated 
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with quantities defined on lattice points. In order to find a more 

consistent procedure, one should start with a geometric formulation 

of the Dirac equation. Such a geometric description of Dirac 

particles in the language of differential forms has been carried out 

by Kahier (1962) and recently rediscovered by a number of authors 

(Becher 1982; Rabin 1982; Banks et al . 1982) and applied to QCD by 

Becher and Joos (1982a,b). Both the continuum Dirac-Kahler equation 

and its lattice approximation exhibit the same flavour degeneracy. 

The multiplicity of states of given momentum of the Dirac-Kahler 

equation in 0 dimensions is, like the Susskind formulation, 2 D/2  

times that of the free Dirac equation. This similarity with Susskind 

fermions is more than accidental: the Susskind description of Dirac 

fields is equivalent to the lattice approximation of the Dirac-Kahler 

equation, as we will show shortly. In the continuum the reduction of 

the Dirac-Kahler equation into 20/2  uncoupled Dirac equations occurs 

as a result.of a decomposition of the underlying Clifford algebra. 

This decomposition can, equivalently, be expressed in terms of 

symmetry properties. However, on the lattice the decomposition is 

only possible in momentum space. 

Our purpose here is to review the features of the Dirac-Kahler 

formulation that are important to our understanding of lattice 

fermions. The natural language of Dirac-Kahler fermions is that of 

differential forms and, although it is not our intention to provide a 

comprehensive guide to this formalism, a certain minimum will be 

useful for our purposes. First, we examine the continuum 

Dirac-}ahler equation, followed by its lattice version. The 

equivalence with Susskind fermions and the relationship to other 

lattice actions is described. Mention is also made of an equivalent 
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formulation due to Gliozzi (1982). 

Differential forms provide a convenient notation for the 

differential calculus of antisymmetric tensor fields A,L, 	 M(x). 

Tensors of rank p are associated with p-forms A 

where the dx/anticommute dxdxv=_dx,1dx,  and the notation ....... /uJ 

means that only the terms with 	 are included in the sum 

(tt=l,..,D). The first step is to translate the Euclidean Dirac 

equation 

(u 	 0 	 (2.10) 

into the language of differential forms. At first sight this appears 

impossible because differential forms describe tensors, not spinors. 

However, it is possible to rewrite the above equation equivalently 

with 	as a 4x4 matrix whose first column is t' and whose other 

entries are zero. The equation then makes sense for any 4x4 matrix 

', and reduces to four independent Dirac equations, one for each 

column of ? , describing four uncoupled degenerate flavours. Since 

the 	matrices and their products form a basis for 4x4 matrices, 

can always be written uniquely as 

c (x) 	() 
(2.11) 

+i
/2() 3! pvf 

The Clifford algebra has a representation by differential forms, so 

!may be associated with 



I < ()a''Ac4C (x) i 
 

(2. 12) 
J . ' 
3 ,  

1I X()dH 

The 2 =1 6 independent coefficients 	are labelled by the ordered 

set of indices H=(, ..... , 
) , /ç</k<...</..L (including the empty 

set 0), and dxH=dxfrn ... dxA¼. In order to rewrite the Dirac 

equation we need the fundamental differential operator on forms. 

This generalized curl operator, denoted by d, converts p-forms to 

(p+1)-forms. In our notation 

c1x4 	 (2.13) it 	 ;111  

where . 	 is the partial derivative of the coefficients 	"H(x) 	of 

T . The sign factor f,..,/.j is zero if 
, 	

does not belong to H., and 	is 

(_i)P if p is the number of transpositions required to commute ,, in 

H=(/ 	 to the left. H-/it is the ordered set H 

withoutfrt . d has an adjoint operator 	which is the generalized 

divergence and which converts p-forms to (p-1)-forms. It is defined 

by a similar expression 

X 	H 	
(2. 14) 

where the sign factor is zero if /4A if /4A  belongs to H and is equal 	to 

otherwise. Hv 	is the union of H with in natural 

order. The product of forms 	and 	is denoted by &, C 	ere 

HUK the weedge product A is such that dx 	dXr= 
cH.} 	if Hti K= 0 and 
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is zero otherwise. 

The operators d and 9 have the properties d 2=0, 62=0,  from which 

it follows that the Laplacian 0 may be written as 

0 	g - 

 

(2.15) 

o=d-g is thus a natural square root of the Laplacian, a property 

which it shares with the Dirac operator 	The differential form 

then satisfies the Dirac-Kahier equation: 

(d- 	0 	 (2.16) 

which may be derived from the action 

S 	 (2.17) 

This action can be rewritten, using eq.(2.13) and eq.(2.14), as a sum 

of the Dirac actions of four independent flavours. The components in 

each of the columns of 	are completely decoupled and remain 

decoupled when the minimal gauge field interaction is included in 

eq. (2.1O). In order to establish the usual Dirac equation it is 

necessary to find an appropriate representation of the Clifford 

algebra. The existence of an associative Clifford product for 

differential forms (denoted by V 
) 
enables us to find such a 

representation. The Clifford product V is defined for the basic 

elements dx" by 
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dx"4 v dx" =dxmn  dx" + gt' 	 (2.18) 

which clearly satisfies the defining relation of the 25' matrices: 

r7/1 2" 
	

(2.19) 

However, the '-matrix representation of the Clifford algebra in the 

16 dimensional space of differential forms is reducible. As a 

result, the Dirac-Kahier equation decomposes into four identical 

copies of the usual Dirac equation. The linear transformation which 

accomplishes this decomposition is (Kahier 1962; Becher and Joos 

1982a) 

OL 	 2-

•() () 
	

() 	
(2.20) 

(x) 

<.- 	1! 

where P '=..(H as previously), r= 	and fI),1)( 
 =1,2,3,4) are

A. 

the four uncoupled 'flavours' each obeying the Dirac equation (2.10). 

These four Dirac fields respect an SU(4) flavour symmetry, in analogy 

with the lattice case, and about which we will have more to say in 

the next section. 

A notation for manipulating functions on a lattice can be set up 

in complete analogy to the notation of differential forms. The 

lattice analogue of p-forms are functions (called p-cochains) defined 

on p-dimensional hypercubes (called p-cells) in which vectors 

correspond to link variables, second rank tensors correspond to 

plaquette variables, etc.. This notation allows a straightforward 
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transcription of the Dirac-Kahier equation to the lattice: 

((1 - 	* 	 0 	 (2.21) 

where, in this equation, T denotes a linear functional (p-cochain) 

defined on the elements (p-cells) of a (cubic) lattice: points (x), 

links (x, ,,), plaquettes (x,,.a , v), cubes (x,c,v ,') , etc.. 	One is 

free, of course, to reinterpret a p-cochain A(x;,Q, ,...) as a 

tensor-valued O-cochairi 	 The 16 components of 	may 

then be viewed as a 16 component fermion field defined on sites, 

although such a reinterpretation would obscure the geometrical 

information contained in 	. An analogy would be a gauge field 

A,(x) which can be regarded geometrically as a function on links or 

non-geometrically as four independent functions on sites. However, 

this analogy should not be pushed too far - particularly when we 

consider gauge transformations. The fact that some of the components 

of 	are defined on links (for example) does not mean that they 

must be given the gauge transformation properties of a gauge field, 

because the geometry being discussed here is not related to the 

geometry one would introduce in adding gauge fields. Indeed, in 

gauging eq.(2.21) all the cochains XH(x) would be assigned the same 

transformation property under the local gauge transformation at x. 

The differential operators d (dual boundary operator) and (dual 

co-boundary operator) convert p-cochains to (p+1)- and (p-1)-cochains 

respectively: 
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ty 

 21_xz, (2.22) 

- 	2' 
where 	 is the forward (backward) derivative of the 

coefficients: 

- 	
(2.23) 

As in the continuum the relations j2=o 
 and  g 2_  ensure that 

(2.24) 

represents the correct lattice approximation to the Laplacian. The 

action for the lattice Dirac-Kahler fields is 

(2.25) 

It is straightforward to check that the energy-momentum spectrum 

of theDirac-Kahler equation is qualitatively the same on the lattice 

as it is in the continuum and both versions have an overall four-fold 

degeneracy. However, when we try to carry out the reduction to the 

usual Dirac equation, in analogy with the continuum reduction, the 

relations cannot be expressed locally on the lattice. Indeed the 

flavour transformations have become intertwined with the translations 

and the lattice reduction in coordinate space is not possible. Ry 
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transforming to momentum space it is possible to carry out the 

diagonalization into four equivalent Dirac flavours, but the 

transformation back to coordinate space is non-local. How the 

flavours may be meaningfully identified in the lattice model 

(Burkitt, Kenway and Kenway 1983; Mitra 1983; Kluberg-Stern et al 

1983) is explained in the next section. 

The equivalence between Dirac-Kahler and Susskind fermions (Dhar 

and Shanker 1982; Becher and Joos 1982) can be established 

straightforwardly by a simple relabelling of the fields. We define a 

new suhiattice with a lattice spacing of half the original lattice 

and a new field X(n)  on this lattice. Then, in the notation used 

above, 

(2.26) 

Thus the new ( field is simply the field 
)(H  (n) distributed over the 

corners of the unit cell on the new sublattice. This sublattice may 

be thought of as the lattice on which the p-cochains live since the 

above identification associates each p-cochain on the original 

lattice with its geometric centre, which is a site of the sublattice. 

The action (2.25), when re-expressed in terms of the 'X fields, 

becomes exactly the Susskind action (2.8) on the sublattice. 

Although the free-fermion Susski nd and Di rac-Kahl er theories are 

equivalent, the same is not true when gauge fields are introduced. 

The Susskind field is defined on a lattice with half the lattice 

spacing and 16 times the number of links, meaning that the density of 

aauae field degrees of freedom is 16 times greater than for the 

Dirac-Kahler formulation. In the Susskind formulation the different 
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spinor components of a fermion will transform differently under gauge 

transformations. The symmetries that result from such allowed 

transformations have important consequences when we consider mass 

counterterms. 

An equivalent formalism for transforming the one-component 

Susskind theory into a version with four conventional Dirac spinors 

(Gliozzi 1982) is illuminating. In this version matrices, rather 

than cochains, are associated with the new blocked lattice sites 

(i.e. unit cells on the original lattice) and the action has a term 

which partially lifts the 16-fold naive fermion degeneracy in a way 

not unlike that of Wilson. It was observed that the action (2.1) is 

invariant under a discrete group of transformations generated by 

	

i &'7 	
(2.27) 

	

__ - (•'i 	) 
Susskinds method is equivalent to a maximal diagonal ization of this 

symmetry, of which the transformation (2.7) is one possible choice. 

A representation of Ymatrices is then built up in the space of one 

component spinors. The matrix notation is essentially that which 

emerges naturally in the next section. 

2.3 Identification of Flavours 

In order to examine the low energy behaviour of QCD it is 

necessary to have, in any lattice theory, at least the two light 

quarks (u and d) and perhaps also, with substantially heavier masses, 

the quarks s,c,... Since the Susskind-Dirac-Kahler fermion 
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formulation automatically gives a fourfold degeneracy it is natural 

in the context of realistic lattice calculations to regard these four 

species as the four fermion flavours u,d,c,s in the real world. Such 

a scheme would not contain any unphysical quark degrees of freedom 

(in contrast to the Wilson formulation where the unphysical fermion 

degrees of freedom only disappear in the continuum). However, this 

identification can only be realistic if we modify the lattice action 

by including a fermion mass term which will break their degeneracy. 

In the previous section it was pointed out that the lattice 

Susskind-Dirac-Kahler action for free fermions cannot be decomposed 

into a sum of lattice Dirac actions for four uncoupled flavours. 

However it is possible, as we shall show, to make the identification 

in the continuum limit of the lattice theory, and mass terms for the 

different flavours can then be constructed (Burkitt, Kenway and 

Kenway 1983; Mitra 1983; Kluberg-Stern et al. 1983; Becher and Joos 

1982b). This lattice identification is ambiguous up to terms which 

are irrelevant in the continuum limit i.e. there are different 

lattice mass terms with the same continuum limit (Burkitt, Kenway and 

Kenway 1983). 

This ambiguity only becomes important when we impose local gauge 

invariance. Then the Dirac-Kahler and Susskind lattice actions 

differ (in the ratio of the densities of the gauge to fermion degrees 

of freedom). In the former the continuum mass term translates into 

an effectively local lattice operator and so all lattice mass terms 

are equally good for doing calculations (from both speed and accuracy 

considerations). The Susskind formulation maintains the spatial 

distribution of Dirac-Kahier fields so the continuum mass term 

translates into a non-local lattice fermion operator (unless all four 
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fl avours are degenerate) , which must be made gauge invariant by 

including the appropriate string of gauge fields on links. So, from 

amongst the different lattice mass terms, we may seek the most local 

one as the best for calculations. This means that there is an 

optimum identification between lattice and continuum fields within 

the Susski nd formulation such that the lattice QCD action with four 

non-degenerate flavours is as local as possible. A scheme is 

presented here in which the SU(4) flavour symmetry is broken to SU(2) 

using only a one-link operator. The resulting lattice action is no 

more non-local than when all four flavours are degenerate and so is 

well within the capability of existing Monte-Carlo simulation 

schemes. Further flavour symmetry breaking, even within this optimum 

scheme requires two- and three-link lattice operators and so is much 

harder to implement in practice. The relationships between the 

various possible mass terms and masses induced by quantum corrections 

are also investigated. The two-dimensional case is investigated in 

some detail and the propagators for the Susskind field X  and the 

physical particles are given explicitly. The scheme presented here 

has been applied to the one- and two-species Schwinger models 

(Burkitt and Kenway 1983) and the results are presented in chapter 4. 

In order to identify the flavours of the Susskind action eq.(2.8) 

we use the identification with Dirac-Kahler fermions of eq.(2.26) and 

the associated notation. In the continuum the transformation which 

accomplishes the decomposition of the Dirac-Kahler action into four 

uncoupled Dirac actions is given by eq.(2.20). It is important to 

notice that this transformation depends on the reoresentation chosen 

for the '-matrices. We extend this transformation to the lattice 

theory. 
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The continuum mass term, giving mass m b to flavour b, is, using 

eq. (2. 20 ) 

f 'xY6 
	(2.28) 

where the 16x16 matrix 

m [r 	(ne)] 	 (2.29) 

and 

0 /1 	
p•) 	

' 	

( 2.30) cl  

depends on the representation of the '-matrices. In the Weyl basis, 

70 	\ 	/ j 
- 	( 	o) 	 (2.31) 

where 
0, 

j=1,2,3 are the Pauli matrices. 

 ly  
we 

31 	
Y- (m1*in 	

(2.32) 

YYY (rn ; _i-rn)3 

We propose to use expressions analogous to e.(2.28)-(2.30) for the 

lattice theory. Then M's corresponding to different '-matrix 

representations (equivalent in the continuum) give inequival ent 

lattice mass terms. The Dirac-Kahler lattice theory has all sixteen 

fields XH(n) transforming the same way under local gauge 

transformations. So the lattice mass term 
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2: 5~, 	/V1 1YA( 	

(2.33) 

is automatically gauge invariant and, although different '-matrix 

representations give different lattice actions, they are all equally 

good for doing calculations. In contrast, because of eq.(2.26), the 

corresponding Susskind lattice mass term behaves as a non-local 

operator under gauge transformations, and is made gauge invariant by 

introducing a string of gauge fields on the links joining (H (n) and 

For example, in the Weyl basis eq.(2.32) leads to two- and 

four-link lattice operators if all the flavours have different 

masses. 

It fol 1 ows that there may be an alternative representation for the 

'i-matrices which leads to a more local lattice mass term. This 

amounts to finding an alternative to the 'reduction' group of Becher 

and Joos (1982a,b):
64 1 	 = Z 2xZ2  employed in 

eq.(2.32).. The best choice is 	 which corresponds 

to choosing Y diagonal . The resulting mass term has 

Mz  i-M S ~-/70 -~- Y2 S1 3_ / ) 	
(2.34) 

+ 	 Y 

and consequently leads to one-, two-  and three-link lattice 

operators. That this is the best we can do follows from the fact 

that any reduction group, isomorphic to Z2 X72,  can contain at most 

one of 	 and 	5=4o14 . 

Thus this 	representation and the corresponding flavour 

identification (2.20) provides the optimuii formulation of lattice OCO 
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using Susskind fermions, in the sense of being the most local if the 

flavours are given different masses. In particular, it follows from 

(2.33) and (2.34) that SU(4) flavour can be broken to SU(2) isospin 

by setting m 1 =m2<<m3=m4  and the resulting lattice gauge theory 

contains at most one-link fermion operators (these are the terms that 

are needed in the calculation of the lattice derivative in any case). 

In chapter 4 we apply this proposal for giving different masses to 

the Susskind flavours to a simulation of the Schwinger model 

(two-dimensional QED). The possibility of decoupling unwanted 

flavours by giving them a mass of the order of the cutoff will also 

be investigated. It is thus useful to illustrate explicitly how the 

formalism discussed above may be used in a two-dimensional 

cal cul ati on. On a 2Nx2N Euclidean space-time lattice (the 

simulations were carried out on a 64x64 lattice, i.e. N=32) with 

periodic boundary conditions the Susskind action for free massless 

fermions is 

- 

s& 	

(2.35) 

+ 	 !2) - 

where X(n) and "/(n) are one component fermion fields and e, j,,Lz=1,2) 

are the lattice unit vectors. In the continuum limit 
Sr  describes 

two massless flavours u and d. Introducing masses for the two 

flavours by eq.(2.29) and (2.33) gives the action 

' N) 

SF 	
w ) (r 	,if) X 	 (2.36) 

where iø_j ,-i14 	 and r'2= 2  with 
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Y. ~ "= Y,  - , is a complete set of four Euclidean gamma matrices (note 

that the summation is now on the block lattice). M in eq.(2.36) 

depends on the representation of the gamma matrices and the most 

local mass term results from choosing 	(equivalently 	) diagonal. 

Then 

fyi 0 	= 	

f1(1 	/i)+(MM-)] (2.37) 

(10  "i) 

where m,md  are the masses of flavours u, d in lattice units. On the 

original lattice (of spacing 1), eq.(2.36) is 

.) - 	 + 

'2T 	
(' I) 

+ 	
LI 
	(2.38)  

(f; , ) 

For the case m=mU=mdO  the propagator is given by eq.(2.9) (with 

the sum over/.t=1,2 only). Since we shall be measuring the 

expectation values <uu> and <dd> (in chapter 4), which are the 

diagonal elements of the propagators, we give their explicit form for 

m=m =md#O 

(2.39) 

2 

which is plotted as a function of the fermion mass in Figure 1 for 

2N64. The divergence as rn-O is 2 finite size effect and indicates 
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that ve can trust our calculations for m>0.03. 

The analytic expression for the lattice propagator when O<m U <md is  

too complicated to present here and its explicit form is not very 

enlightening, but we have used it to calculate 
(2ft12dV) 

(2.40) 

as a function of m u for md=l  and the result is shown graphically in 

Figure 1. 

The relationship between the 'X(n) and X(n)  that sit on the sites 

of the lattice of spacing 1, and the physical u and d degrees of 

freedom which live on the blocked lattice (by which is meant the 

lattice of spacing 2) requires some elucidation. To go from the 

original lattice to the blocked lattice requires that we reformulate 

the theory in terms of variables that live on the sites of the block 

lattice, as has been done explicitly in 	eq.(2.39) where the final 

sum is over the allowed momenta of the blocked lattice. It is clear 

from eq.(2..20) and (2.26) that the spinor and flavour degrees of 

freedom of the physical fields have both become distributed over the 

unit cells of the small lattice. This has important consequences 

when gauge fields are introduced since we have the freedom to 

introduce the gauge field on either the original or the blocked 

lattice. With the one-component 	fields on the original lattice 

the action is 
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(2.41) 

and the the associated free propagator is given by eq.(2.9). On the 

blocked lattice when we transform the fields to the "1' fields 

through eq.(2.20) the action becomes 

c 17 +5)7 	
(2.42) 

Where the mass term is given by eq.(2.34) and we define 

(2.43) 

and 	are the following matrices: 

fil 	
(2.44) 

where the first (resp. second) matrix in the tensorial products acts 

on spinor (resp. flavour) indices. The second term in eq.(2.42) 

distinguishes it from the naive action and couples the different 

flavours on the lattice, although it vanishes in the continuum limit. 

The (free) momentum space propagator of the action (2.42) with 

deaenerate masses is (Kluberg-Stern et al. 1983) 
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) 40  1) 4  --5",  (~ -- 4 - 1)(YroY, Ys-)  - 21?n  1&1  (2.45) 

The different symmetries possessed by the two actions are crucial 

when w consider mass counterterms in the interacting theory. The 

Susskind action (2.41) with degenerate masses has a continuous 

symmetry that is spontaneously broken at strong coupling, and 

there is a Goldstone pion (Kluberg-Stern et al. 1983). This appears 

to persist into the weak coupl ing regime where Sharatchandra et al 

(1981) have shown that there is a cubic symmetry which prevents the 

generation of mass counterternis. However, the Dirac-Kahier action 

has a continuous 	 symmetry that is not broken at strong 

coupling (Napoly 1983) and likewise at weak coupl ing it has been 

shown (Mitra and Weisz 1983) that there is no symmetry that prevents 

quark mass generation. Consequently to obtain zero quark masses in 

the Dirac-Kahier formalism it is necessary to tune the bare quark 

masses, in the same way as with Wilson fermions. Since the mass term 

we introduce breaks the symmetry of the Susskind action, quark masses 

will also be generated and a tuning of the bare quark masses is 

necessary. 



CHAPTER 3 

DYNAMICAL FERMIOr1s 

3.1 :'!ethods For Dynamical Fermions 

Having discussed the problem of how to describe ferinions on a 

lattice the question then becomes one of how to include them 

dynamically in lattice gauge theory calculations. The introduction 

of anticommuting variables is weilnigh impossible in a computer 

simulation since, on a lattice with N sites, the N anticommuting 

variables span an algebra with 21 generators. For more than two 

dimensions it is thus entirely impracticable to introduce fermions 

directly and it is necessary to devise some appropriate approximation 

in order to be able to obtain useful results within acceptable 

computer time. 

The standard Euclidean action bilinear in the fermionic variables 

is 

(3.1) 

where SG(lJ)  is the usual pure gauge action, subscripts I,J label 

sites of the lattice, and M 1 (U) is the lattice version of the Dirac 

operator ,6+m (which will depend upon how we choose to describe the 

fermions on the lattice). Most calculations in lattice gauge theory 

to date have been done in the quenched approximation in which the 

fermionic contribution to the action (3.1) is neglected and the 

quarks treated as external sources. This approximation is equivalent 

to ignoring all internal quark loops in Feynman diagrams and gives an 
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exact Zweig rule. It is argued that internal quark loops should not 

be very important otherwise exotic components such as qq 	would be 

important in meson spectroscopy. 

In order to go beyond the quenched approximation and incorporate 

the fermionic degrees of freedom, which are believed to be important 

in the physical world, the first step is to eliminate the Grassmann 

variables. This may be done by analytically integrating out the 

fermionic variables using the standard Matthews-Sal am formulae 

(Matthews and Salam 1954,1955) 

(3.2) 

where the second expression describes the propagation of a quark in 

the background field U. These identities are clearly sufficient to 

enable us to eliminate the fermionic variables from any functional 

integral. Moreover the resulting bosonic gauge field integral is 

amenable, at least in principle, to standard Monte Carlo techniques. 

However, although the Matthews-Sal am determinant is of the huge 

matrix M(U) and numerical calculation is still enormously difficult, 

the fact that the matrix has very few off diagonal elements is of 

crucial importance in any scheme. The gauge field in eq.(3.2) is 

thus generated with a probability distribution that is now governed 

not just by the pure gauge action SG(U) but by a new effective action 

to which the effect of fermionic loops contributes: 
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S(u) ç ((-/) - 	 4 	 (3.3) 

:= SC- (.(;) - :i -Fr t~L 
where K(U)='F1(U)M(U) is clearly hermitian and positive definite (it is 

the lattice version of the Klein-Gordon operator - 2+m 2 ) 

A variety of techniques based on the effective action have been 

discussed in the literature and applied to various models. In this 

chapter some of these techniques will be examined, particularly with 

a view towards their viability in an unquenched simulation of four 

dimensional QCD. Practical aspects concerning the implementation of 

the methods on a computer are also discussed, particularly with a 

view towards the possibility of some sort of vector or parallel 

processing since such considerations are becoming increasingly 

important in large scale simulations of the sort used in lattice 

gauge theory. In the next section the pseudo-fermion method of 

Fucito, Marinari, Parisi and Rebbi (1981) will be examined in detail. 

By considering small variations (SU) in the gauge field between 

successive Monte Carlo iterations the change in the effective action 

of the gauge field (3.3) may be linearized (with respect to 	U). 

The resulting Green functions for the fermionic action may then be 

approximated by a further Monte Carlo integration over bosonic 

variables, which are called pseudo- fermions. Alternatively, the 

Green functions may be approximated by iterating a Langevin equation 

(Parisi 1981; Fucito and Marinari 1981) and the resulting estimates 

fed back into the effective action to generate the subsequent gauge 

field configuration. Two versions of the Langevin algorithm are 
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examined and in the next chapter these techniques are applied to the 

Schwinger model and their relative usefulness evaluated. 

The hopping parameter expansion (Lang and. Nicolai 1982; Hasenfratz 

and Hasenfratz 1981) is in many respects analogous to the high 

temperature series expansion used in critical phenomena. The method 

has already been used in combination with an ordinary Monte Carlo 

simulation of the gauge fields in calculations of the SU(3) hadron 

spectrum (Hasenfratz, Hasenfratz, Kunszt and Lang, 1982a,b) The 

hopping parameter K is proportional to the amplitude for moving a 

quark by one lattice unit, and the order of the expansion is the 

length of the quark paths in lattice units. In the hadron mass 

calculations the masses are extracted by finding poles in the hopping 

parameter, as identified by Pad approximants, and relating them to 

singularities in the momentum space particle propagators. So long as 

the order of the expansion is compatible with the size of the hadron 

the results will be reasonably reliable. A simple example 

illustrates the main features of the method: the case of a free 

scalar field. On a lattice of spacing a the action is 

2 2  

CA  2Z() 	
(3.4) 

After a finite renormalization of the field £.? by d-',j'(8a2+m2a4) 4) 

A 	 I1,A. 

(3.5) 

2 	2 2  where K=a/(8a+ma4 ) is the hopping parameter. The propagator is 



simply the reciprocal of the operator L\ and can 	be found 

straightforwardly from the Green function equation 

' 

(3.6) 

where the sum is over the allowed momenta. This propagator now has a 

simple diagrammatic expansion in K in which the elements are 

nearest-neighbour links. For each link there is a factor K e±Ppa 

where/,t is the direction of the axis of the link, and + corresponds 

to the orientation of the link. The expansion of the propagator is 

the sum of all connected diagrams consisting of a single line of any 

length and any location starting from the origin. In the case where 

K is very small the expansion converges very quickly and only the 

lowest order diagrams are important. However it is easy to check 

that this does not give relativistic results. Indeed if we do the 

usual particle identification we find a particle of mass a1n(1/K), 

which is much larger than the cutoff a'. In the continuum limit 

a---O (i.e. K near 1/8): 

) [i- 

- 	 (3.7) 

* 
/<2Z 

and we find that the pole in the propagator occurs for E( p )= 1m2+. 2 

where the mass is given by m 2=(1-8K)/1a 2 , as we would expect. This 

simple example illustrates the principle features of the method 
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although in practice we will only know the expansion in K to some 

finite order, which will contain not only the pole term but also an 

approximation to the branch cuts by sequences of poles and zeros and 

very high orders are needed to separate the particle pole. In 

interacting theories the number of terms grows rapidly as the order 

of the expansion is increased and the method is not practical if the 

correlation length is large. In a gauge theory the situation is 

naturally more complicated since each link has associated with it a 

factor K(1-)U,(n) (or K(1+')Ujn) when traversing links in the 

opposite direction), and the trace is taken in Dirac, colour and 

flavour space with the usual factor of -1 associated with fermion 

loops. In the hadron mass calculations of Rasenfratz, Hasenfratz, 

Kunszt and Lang (1982a,b) the relevant propagators were expanded in 

powers of K, corresponding to Wilson loops of various lengths. The 

Wilson loop expectation values were determined by ordinary Monte 

Carlo on an 8 lattice. The series obtained for mesons and baryons 

were of 10th  and  12th 
 order respectively, but were judged too short 

to make a reliable analysis. 

Another related method has been proposed by Kuti (1982). Instead 

of systematically drawing all the paths order by order, they are 

generated stochastically. A local change in the gauge field 

U—' U+ Su implies (Scalapino and Sugar 1981) 

([/ 	ç]LIcM")] (3.8) 

y' (u)J 

where .M is the resulting change in the matrix M. With local 

boson-fermion coupling the non-trivial change SM in the fermion 
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matrix is restricted to the neighbourhood of the updated lattice 

site(s) and thus only a limited number of elements of M 1  are 

required at each Monte-Carlo step. The method is essentially an 

efficient technique for the approximate summation of the von Neumann 

series defined by the inverse of the operator M and it involves 

considering a random walk in the domain of integers. The walk begins 

at some selected point i, proceeds from point to point with certain 

transition probabilities and terminates at some point j with a given 

stop probability. The inverse matrix elements M 	are then related 

to the transition and stop probabilities. The main problem in any 

serious application is to correctly choose the transition 

probabilities. If they are not correctly chosen then most of the 

time is spent generating irrelevant paths and the convergence will be 

slow. For a given statistical accuracy the number of walks required 

does not depend upon the size of the matrix and consequently the 

update time is not dependent on the lattice volume. The method has 

been shown to be effective on a simplified four dimensional model and 

work is underway to apply it to non-Abelian gauge theories. 

A method due to Scalapino and Sugar (1981) involves an updating of 

both the gauge field configuration fU and all the inverse matrix 

elements M 	. It uses the fact that a change in a gauge variable 

on some link k will induce a change in M 	 only for values of i and 	j 

in the vicinity of k. As a result EM (U) is nonzero only for a 

small number (L) of values of i and j and in order to obtain the 

determinant factor of eq.(3.8) only the determinant of an LxL matrix 

need be calculated. The values for the entire matrix M(U) are 

stored between iterations and updated according to the scheme 
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(i - i) ' 	/Y) 1  - 

1* cti€ tij 
(3.9) 

which is an exact identity and the indices k and 1 are stinrned over 

the L non-vanishing values of 	Mkl. Rounding errors, which will 

cause 	to stray from its true value after many iterations, may be 

eliminated by carrying out a correction procedure after so many 

iterations. This is typically done by replacing M 1  by 2M 1 -MMM, 

which essentially renonnalizes the product M 1 M to unity and in 

practice reduces the fluctuations to the order of the machine noise. 

This algorithm has been shown to work for a simple one dimensional 

model (Scalapino and Sugar 1981) and the Schwinger model (Duncan and 

Furman 1981), where the Wilson loop behaviour was calculated and 

shown to be consistent with the perimeter law, as we would expect 

when dynamical fermions are included, although the lattice was too 

small (12x12) to give definitive results. Chiral correlation 

functions were also measured, although primarily as a means of 

investigating the (large) edge effects. The method is limited by the 

huge times required to calculate the entire matrix M 1  and the 

associated memory requirements, and consequently it does not appear 

to be viable for four dimensional lattices of reasonable size. 

The calculation of the fermionic determinant can also be reduced 

to the problem of calculating M-1  M in a different way. If we write 

M(U)=]-KB(u), where K is the usual hopping parameter, and consider a 

system of two identical fermion flavours then the fermionic 

contribution to the effective action may be written as 



Et(i- K)J2 = 
	 )& Ii? 

(3.  10) 

The usefulness of this identity depends upon an efficient algorithm 

for calculating (1-KB(U)) 1 	since this needs to be calculated 

many times, in principle at every updating step. There are a number 

of different suggestions for this inversion problem of which the 

Gauss-Seidel is the method mainly used in applications (suggested by 

Weingarten and Petcher 1981). If 	' is defined as (1_KB(U))ç 

then by rearranging we have 

X= KL(v)X 4 Q 

and this equation can be iterated until a satisfactory approximation 

to X  is found. This method has been implemented using the 

icosahedral subgroup of SU(2) on a 2 lattice (Weingarten and Petcher 

1981). Along similar lines, the method of Hamber (1981) proceeds by 

solving the same equation for X by Gaussian iteration. In both 

versions the natural value of the initial vector in any iteration is 

the vector X that resulted from the previous iteration. However, 

as with the previous method, the amount of computing time required to 

implement these algorithms on larger lattices is prohibitive. 

The methods discussed above, although by no means exhaustive, give 

a picture of the difficulties faced in including fermions in lattice 

gauge field calculations and some of the ideas for overcoming them. 

Of the other methods for including fermions one that has been used 

successfully is that due to Hirsch, Scalapino and Sugar (1981) which 

is very efficient in two dimensions, although the difficulties 
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associated with generalizing it to higher dimensions have not yet 

been overcome. The method has also been applied to the Schwinger 

model (Martin and Otto 1982; Ranft and Schiller 1983). The 

microcarionical ensemble formulation of lattice gauge theory (Callaway 

and RaFinan 1982,1983) also allows for the introduction of fermions in 

a natural way and is immediately amenable to parallel computing 

although the scheme has not yet been fully investigated, particularly 

in the ferniionic sector. In the next section the pseudo-fermion 

method (Fucito, Marinari, Parisi and Rebbi 1981) will be examined and 

the methods discussed above serve as a yard-stick by which to measure 

its usefulness. 

3.2 Pseudo-fermion methods 

One of the undesirable features of a number of the fermionic 

techniques discussed in the previous section was that the amount of 

computer time required to update a link increased in proportion to 

the volume of the lattice, and thus severely limited the size of 

lattice that could be simulated. The reason for this was the 

essentially non-local character of the ferrnionic determinant, which 

couples all points in the lattice. In order to overcome this 

difficulty it is necessary to make some suitable approximation. The 

hopping parameter expansion is one such method, in which the higher 

order terms become increasingly non-local on the lattice. The 

pseudo-fermion method (Fucito, Marinari, Parisi and Rebbi 19811 which 

we will examine here is another such approximation. In this section 

we discuss three ways of implementino the pseudo-fermion approach: 

the Metropolis method and the Langevin method in both a first and 
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second order formal ism. The essential feature of the pseudo-fermion 

method that makes it a viable computational scheme is that the amount 

of computer time required to implement it (beyond that required for a 

pure gauge simulation) is only increased by a factor N, independent 

of the size of the lattice. (N is the number of pseudo- fermionic 

iterations needed to achieve statistical equilibrium of the 

pseudo-fermions within some desired accuracy). Moreover the 

technique is ideally suited to implementation on a parallel or vector 

machine. 

In a Monte Carlo simulation a new configuration 	is 

generated from a previous one 	, and if the change ISuJ is 

small, the expression (3.3) may be linearized: 

z 	Lc )-JK; ))cI1(u; 	ocwf 	(3.12) 

Thus the problem becomes essentially one of finding the inverse 

matrix elements K -1  (U) for sites neighbouring the link being updated. 

There are a number of standard techniques for such problems, some of 

which vkre discussed in the last chapter. The relaxation method, 

which involves the large time behaviour of the differential equation 

dc 
C 	

-K1 (o)ç) 	 (3.13) 

is one very general technique, of which the Gauss-Seidel iteration 

scheme is a special case. Another method that in general converges 

far more rapidly is the conjugate gradient method of Hestenes and 

Stiefel (1952). These techniques are widely used in the evaiiation 

0 f propagators in a background field, of the  type used to extract the 
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mass spectrum from a lattice gauge theory. However, as we saw in a 

different context previously, they are not very useful for the type 

of problem being considered here since they involve a large number of 

inverse matrix elements, which are not required in (3.12), and lar g e 

storage. 

In the pseudo-fermion technique the required Green function 

elements K' of eq.(3.12) are evaluated approximately using a 

stochastic procedure with bosonic variables to estimate the 

functional identity 

Or> 
fføvøø;ø eo(-ç) 

iççu) (3.14)  
JTO *-V 0 e,p(- ~ ) 

where 5PF= 2 ØKMNØN  is the action for the pseudo- fermionic 

variables 0 

In the Metropolis version of the method (Fucito et al. 1981) the 

inverse matrix elements K 1  are taken as the average (denoted by a 

bar) over N Monte Carlo updates of the 0 variables, and they are 

evaluated for each new configuration of the gauge field U. Both 

fields are updated using the standard Metropolis method, but with 

different actions. The pseudo-fermion field is updated according to 

the action of (3.14) and the gauge field with the effective action: 

S 
() 	 (• u,,) - 	 0 	X  Cu',) 	 (3 15) 

Thus the effect of the fermions may be included in computer time that 

is only proportional to N, and independent of the size of the 

lattice. The exact result, apart from errors proportional to  

is obtained in the limit 	. The method depends entirely on the 
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value of N which is required to give reliable results and this is not 

known a priori. In the simulation of the Schwinger model by 

Marinari, Parisi and Rebbi (1981a) it was found that the values of N 

required to extrapolate to N- 	were manageable (typically between 5 

and 60 over a range of masses). 

The Langevin technique (Parisi 1981; Fucito and Marinari 1981) 

involves finding the required elements of the Green function by 

iterating the Langevin equation. This idea originates in the work of 

De Dominicus (1975) in the context of critical phenomena and has been 

developed by Parisi and Sourlas (1979) and Parisi and Wu Yongshi 

(1981). To illustrate the general method we look at the operator for 

a free scalar field (-V 2 +m 2 ) and find its propagator. We introduce 

a scalar field 	(x,t), with a "spurious" time dependence, which 

obeys the Langevin equation: 

,t) dø 	- (- Vm),) Z(1i) 	(3.16) 

where '(x,t) is a noise term with <Z(x,t) ,7*(XI t')> = 

2 Sd(x_xI 
) 

(t.-t' 
) and the brackets < > indicate an average over the 

noise. The solution of eq.(3.16) for general r7 is 

't) fcLIi&'C(;x't)(xit) 	(3.17) 

where 05 (x,t) is the solution of the homogeneous equation (the 

special solution) and G(x,t;x' ,t' ) is the Green function of the 

equation defined by 
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r d 	4 
q/ frt) 	

(0 
	 3.18 

L 	+ 

With the initial conditions ts(<, 0 )= Ø0 (x) and G(x,O;x' ,t' )0 the 

solutions of these equations are 

00(i) 

MA mZi)t 
(3.19) 

) 
(2 )d 2 	 kmi 

where p 0 (k) is the Fourier transform of Øs(x,O) and we note that 

as t -O (for mO). The averages over n are given by 

<c(•, t2> 

() (fL)  46,& t::(t;  xJ').j 320  

id1 	jA'(x-) 

and we have thus recovered the propagator of the free scalar field. 

In the more general case of an interacting field where the operator 

to be inverted (which we denote by L 
) is positive definite the same 

identities hold. Expanding in terms of eigenfunctions of the 

operator 	(x)= 	Y (x) we have 

e) 

C 	 1 
A 7) 



and it is straightforward to show that 

(3.22) 

/where here G(x,y) is the propagator associated with 

The operator of interest to us is the lattice version of the Dirac 

operator, ,ø'+m (which will depend upon how we choose to represent the 

lattice fermions). In order to find the Green function for the 

fermionic operator (Ø+m) we require not just a single Langevin field 

Ø'but rather two such fields. We call this the Langevin method I 

and it proceeds by simultaneously iterating the two Langevin 

equations (Marinari, Parisi and Rebbi 1981b): 

- 	 + P(-Xl 	
(3.23) 

where 	 is the covariant lattice derivative with gauge fields, and 

01 	2 and el are complex numbers that sit at every site of the 

lattice. For general 1? the solutions to these equations take the 

form of eq.(3.17). Expanding in terms of eigenstates 'Y' ( x) of', 

with eigenvalues i), , the explicit solutions are 

(\) 

(3. 24 

C, (;xl,f 9 	f 	(l) ?) 	-( )t 
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where the 01()¼ ) are the coefficients of the expansion. The 

solution for 0 
2  is obtained by replacing i> by -i..\ • The Green 

functions G 1 (x,y) and G 2 (x,y) of the operators C+m) and (-+m) are 

then simply given by 

C',( 	). 
(3.25) 

o~ 	0,;0,  OQ 	> 
and in the free field case the characteristic time of approach to 

equilibrium is of order 1/rn. An alternative method, which we call 

the Langevin method II, proceeds by calculating the Green function 

G3 (x,y) of the Hermitean operator (-ø2+m2 ) 

	

''(t) 	(3.26) 

and the associated Green function is 

C~ 	
*- 	

'0 
3 ( X,  ~~) = 	<' 0(-X, o 	)> 	(3.27) 

6ç 

which has a characteristic time of approach to equilibrium of order 

1/rn
2 

. 

It is instructive to compare these pseudo-fermion methods for 

	

evaluating the required matrix elements of 	with the more standard 

methods such as conjugate gradient and relaxation mentioned earlier. 

Using the Langevin or Metropolis methods we can compute the Green 
X  unction G(x,y) for all x and y  at the same time, while in comoarahl e 

computer time the relaxation procedure gives only G(x,O). However, 

the pseudo-fermion methods have associated with them statistical 
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errors whereas the relaxation method is essentially exact. 

Consequently, in order to measure G(x,y) in the region where G is 

large (i.e. when x is close to y) the pseudo-fermion methods are more 

suitable, and to compute G in the region where x_yf is large the 

relaxation method (or something similar) should be used. The first 

situation is the one we encounter in the effective action (3.12) 

whereas the second situation is found when computing the mass 

spectrum of the theory. 

One quantity that we are interested in measuring is the 

expectation value of the fermion fields <'7'>. This quantity is 

simply related to the pseudo-fermions of the Metropolis method by 

<'>=m<Ø> (with the lattice spacing a=1 throughout). For the 

Langevin method I the expectation value is given by 

< '0~ 	
2 	

L-1(,o) G (oo)] 	 (3.28) 

and for the Langevin II method the relation is simply 

<7'Y>_mG 3 (O,O). 

In the next chapter we explain how the method was actually 

implemented and the results obtained. There is, however, one very 

important feature of the Langevin method I that severely limits its 

usefulness and will be discussed here. It is clear that for the 

Metropolis method and Langevin method II each individual element 

contributing to the average <>=<'r> is Positive, whereas 

this is not the case for the Langevin method I. In order to examine 

the fluctuations the expectation value of the quantity X 2 
 was  

measured for all three methods. The results, plotted in Figures 2 

and 3, show clearly the very marked difference between the Langevin 
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method I and the other two methods. The observed divergence of 112m  

for the Langevin method I may be calculated analytically from the 

free-field versions of equations (3.23) to (3.25). In the expression 

for the Langevin method I there are terms < Ø1 (x,t) 1V 1 (x,t)> 

and < 02 (x,t) 0(x,t)> which, by carrying out the averages < > and 

completing the integration, may be shown to behave as '-" 1/rn 2  for 

small masses. There is no such divergence in the calculation for the 

Langevin II method, where the fluctuations decrease as rn-O (see 

Figure 2). These large, indeed diverging, fluctuations arise from 

the fact that the operators in eq.(3.18) are not Hermitean. When 

interactions are present these fluctuations feed back into the gauge 

configurations giving spurious results, as we shall see. So although 

method I has a shorter time of approach to equilibrium in the region 

of small masses, where there is 	critical slowing down, it proves 

not to be a useful method for implementing the pseudo-fermion 

technique. 

Having established how the pseudo-fermion method may be 

implemented in practice we proáeed to examine its usefulness in the 

context of the Schwinger model. In the next chapter we firstly 

outline the essential features of the Schwinger model, and 

particularly those aspects believed to be important in QCD. The 

Metropolis and Langevin methods are then compared in a simulation on 

a 64x64 lattice and some properties of the Schwinger model studied. 

We also examine the question of reducing the fermion doubling by 

decoupling heavy flavours. 

In the past year a number of authors have looked at various 

aspects of the pseudo- fermion method. Otto and Randeria (1983) 

looked at the Schwinger model on a 4x12 lattice using Wilson fermions 
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and examined the limit 'U-'O at 16=2.5 (corresponding to a 

correlation length of roughly one lattice unit). They concluded that 

the linear approximation (i.e. neglecting the order ( 9u) 2  terms) did 

not have a large effect on their measurements of the mass gap for a 

Metropolis hit size of 10% of 271. They also found that the correct 

results (by comparing with a Gauss-Seidel iteration scheme) were 

obtained in the extreme limit N=l, 	U-0 showing that in this limit 

N does not necessarily need to be large, although the motion through 

phase space is very slow and a large amount of computer time is 

required as we would expect. Preliminary results have also been 

obtained in SU(3) (Hamber, Parisi, Marinari and Rebbi 1983) in which 

the quark condensate <?1'> and the average plaquette energy were 

measured. They also pointed out the possibility of using a heat bath 

algorithm for the pseudo-fermions rather than Metropolis and it is 

hoped that this will increase the convergence of the results and 

reduce the computer time required. 
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CHAPTER 4 

TWO DIMENSIONAL QED 

4.1 The Schwinger Model 

The Schwiriger model (Schwinger 1962) has proved to be an excellent 

testing ground for numerous ideas in field theory. The model is 

sufficiently simple to be amenable to analytic solution in various 

limits, but it also contains many of the features of interest in 

physical models. In particular it displays both the properties of 

asymptotic freedom and confinement, the former of which is known to 

be true in QCD and the latter is assumed to be so. These and other 

similarities lead one to hope that methods devised to investigate the 

Schwinger model may profitably be applied to QCD. 

The theory describes a U(1) gauge field A ,-coupled to a fermion 

with mass m and charge g in two-dimensional space-time. The 

theory is both asymptotically free and confines the fundamental 

fermions (called quarks). The theory for massless fermions has an 

exact solution (Schwinger 1962; Lowenstein and Swieca 1971) while the 

massive theory is well understood (Casher, Kogut and Susskind 197; 

Coleman, Jackiw and Susskind 1975; Coleman 1976). 

The massive Schwinger model is defined by the Lagrangian density; 

L 	- 	- 	 ly 	
(4.1) 

where 	use the notational conventions throughout: 
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)(•:: 

(.o,y) 	

1 
	

(4.2) 

C/LI 

The equations of motion are; 

0 

-Y 	 (4.3) 

F 	v -:4 
The model is super-renormalizable by virtue of the fact that the 

coupling constant g has positive mass dimension; 

[g] = [m] = (length) ' 
	

(4.4) 

This obviates the need for any infinite renormalizations, apart from 

a trivial renormalization of the zero-point energy, and as a result 

both g and m are finite (although bare) parameters. The 

dimensionless parameter that measures the interaction strength is 

m/g. When m/g goes to zero the model becomes the exactly soluble 

Schwinger model and when m/g goes to infinity the model becomes the 

exactly soluble free theory. Since the model is exactly soluble in 

both limits it is possible to do approximate calculations in both 

perturbation theory and strong coupling. Indeed, such calculations 

have been done and they will be discussed shortly. Firstly, however, 

we shall look at the exactly soluble massless model 

The spectrum of the theory may be derived from the boson 

representation (Bander 1976) where we make the replacement 
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i 

Y (4.5) 

"Tv 	 )71 
'- 6-0 / 

with /1 a cutoff, 	' Euler's constant, and 0(x) a boson field with 

canonical momentum 71(x). For the massless theory the resulting 

action may be simplified to that of a massive boson field with 

(mass) 2/t 2=g 2/TT and action 

2 

z 
(l )) 	 Ø2() 

2 

(4.6) 

The solution of the massless theory exhibits what is believed to 

he a realistic mechanism of quark confinement via charge screening. 

This results from the strong polarizability of the vacuum and, 

consequently the long range Coulomb force disappears. The above 

correspondence between the fermion and boson theory demonstrates 

explicitly that Y  and all its excitations are absent from the 

physical space of states. All that remains is a free neutral 

pseudoscal ar meson 0 with mass g/,r 	which can be thought of as a 

quark-anti quark bound state. This is an example of a dynamical Higgs 

phenomenon. Local electric charge conservation is spontaneously 

broken, but no Goldstone boson appears because the Goldstone mode may 

be gauged away. The solution also demonstrates a spontaneous 

breakdown of global chiral symmetry. This is associated with the 

appearance of an infinite family of degenerate vacuum states, 

labelled by an angle 06 FL-7,T] and global chiral transformations 

rotate one vacuum into another. Here again no Goldstone boson 

anpears since the axial current is not conserved because of an 

anomaly (Jackiw 1973). Giving the fermions a mass changes the 
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Lagrangian of the boson field to 

ci22. ,çZ - 	_2 	171 	
(4.7) 

The beauty of this approach is that the delicacies of normal-ordering 

become somewhat automatic. 

This transformation from the fermion representation to the 

equivalent boson representation is a kind of duality transformation 

in that the roles of mass and coupling constant are interchanged. 

This makes (4.7) ideal for discussing the particle spectrum of the 

strongly-coupled Schwi nger model 

Although the massive model is not exactly solvable it is possible 

to do perturbation theory in the mass parameter (Kogut and Susskind 

1974; Coleman, Jackiw and Susskind 1975). One rather surprising 

observation is that the solution to the model involves the parameter 

9 which is totally independent of the coupling g and the mass m. 

The mass term, of course, explicitly breaks chiral invarience and 

removes the degeneracy of the vacuum. However, contrary to naive 

expectations, all the vacua remain stable as a result of the absence 

of Goldstone bosons. The field 0 may be physically interpreted as 

the background electric field. Such a background field is not 

considered in standard treatments of four-dimensional QED, although 

it could be introduced. The reason is that such a field would have 

no effect, as it would be cancelled by pair production from the 

vacuum. However, the energetics of pair production in one spatial 

dimension are rather different and, in this model, give rise to 

different vacuum states. We only consider the case 

In a perturbative expansion with the mass as the nerturbatior 
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parameter the long range force between external charges of arbitrary 

magnitude does not disappear. From this it may be inferred that the 

Higgs mechanism does not occur. It may also be shown, independently 

of perturbation theory, that if the external charges are integral 

multiples of the fundamental charge g then the long-range force does 

disappear. This indicates that quark confinement takes place. 

Form<<g the theory describes a heavy pseudoscalar meson with weak 

self-interactions. Thus the theory always contains at least one 

particle: the original pseudoscal ar meson of mass 

+ me , + 0(m2 ) 
	

(4.8) 

If it contains other particles they will be weakly-bound n-mesons, of 

	

mass ng/j 	(plus small corrections). In particular, the next 

particle is a scalar of mass 

22 M 
+
=2M-  - TT 2 

 e 	m /M + 0(m3 ) 	 (4.9) 

When the mass of the fermion becomes infinite it decouples and the 

model reduces to a pure U(1) gauge theory which may he solved by 

transfer matrix techniques. Indeed, the lattice formulation of a 

pure U(1) gauge theory may, by a suitable choice of gauge, be shown 

to be equivalent to a set of one-dimensional XY spin models. The 

free energy is 

	

f_ 	t4 	 (4.10) 

and the average p1 aquette energy, proportional to the energy density. 



is 

F 	
(4.11) 

where 	is the (directed) sun of links around a plaquette and 

/=1/4g2 . From these equations one may derive strong coupling 

expansions. In this always- confining theory a square Wilson loop 

(1') of area A is given by 

w(P) = [.T, ()/z(2(e)7 	(4.12) 

and the string tension T is therefore 

T:  

= 	 '< 1) 	(4.13) 

/ 

- 

Strong coupling expansions, which are very similar to the 

high-temperature expansions used so profitably in statistical 

mechanics, provide a systematic and straightforward (at 1eastin 

principle) calculational scheme. The expansion parameter is 1/ga (a 

being the lattice spacing) and, when this is small )  the kinetic terms 

may be treated as a perturbation on the static terms (Banks et al 

1977). The strong coupling limit is confining and in order to 

extract continuum results it is necessary to extrapolate to the weak 

coupling regime, typically by the use of Pad' approximants, and high 

orders in the expansion are needed to make confident continuum 
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predictions. In order for the extrapolation from strong coupling to 

weak coupling to be smooth it is necessary that there be no 

intermediate phase transition. This appears to be the case from both 

Monte-Carlo simulations of the pure gauge system and approximate 

renormalization group calculations (Migdal 1975; Kadanoff 1976), 

which seem to indicate that four is the lower critical dimension for 

gauge systems. 

These methods have been applied to QCD (Banks et al. 1977) and 

were found to give reasonable results to fourth order, with the 

exception that the pion, rather than having zero mass, was found to 

be nearly degenerate with the rho. Although the situation is 

expected to improve at higher orders such calculations are extremely 

complicated. These methods have also been applied extensively to the 

Schwinger model (Banks, Susskind and Kogut 1976; Carroll et al. 1976; 

Kenway and Hamer 1978) and provide generally good agreement where 

they can be compared with exact results, although there are problems 

for the two species model in extrapolating to the chirally symmetric 

massless limit from the non-symmetric strong coupling regime. 

The behaviour of Wilson loops when massless fermions are coupled 

to the gauge theory has been studied recently by Baaquie (1982). The 

Wilson loop for a circular contour of radius L is 

 . (L) 	
(4.14) 

where I and K are the associated Bessel functions of the first and 

second hind and m =o/y . This expression for W is exact and is a 

monotonically decreasing function of L that has the asymptotic 

behaviour 



W.  

'.1 

	 L2 	o2O 	

(4.15) 

This is consistent with the notion that the gauge field is 

responsible for the confinement of the quarks and that as we attempt 

to separate a quark-antiquark pair it eventually becomes 

energetically favourable for a new pair to materialize from the 

vacuum. This both shields the long-range force and produces not a 

separated quark and antiquark but rather two quark-antiquark bound 

states with the consequent change from area to perimeter law 

behaviour of the Wilson loop. 

Baaquie (1982) also calculates the propagator for the 

gauge-invariant quark-antiquark state in the continuum massless 

theory and finds that 

;;- @- e 	 (4.16) 

This indicates that chiral symmetry is broken for the vacuum state 

and the < 1KY> expectation value is given by 

(4.17) 

271 /2  

The SU(2) flavour Schwinger model, in which there are two massive 

Dirac particles, an 'up' (u) and a 'down' (d) quark, exhibits some 

new features. As in the case of the ordinary SchwinQer model some 

exact results are known about the low-energy particle spectrum for 

both strong and weak coupling (Coleman 1976). Taking the two fermion 
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species u and d to have masses m u and  md  and equal electric charges 

g, the Lagrangian of the theory is 

•- L 

(4.18) 

1• 	2/' ç v r 

For mu=m d=m the theory has an internal global SU(2) symmetry which we 

call isospin. As with the one-species model the theory is 

super-renornial izabi e and hence asymptotically free. 

It is known (Coleman 1973) that in two dimensions there is no 

spontaneous breakdown of continuous internal symmetries, unless the 

current-conservation equations are afflicted with anomalies or the 

Higgs mechanism occurs. Since neither happens here the particles of 

the theory reside in isospin multiplets when mu=md  and chiral 

symmetry is restored in the massless limit. As with the massive 

one-species Schwinger model the particle spectrum consists solely of 

mesons, which can be thought of as quark-antiquark pairs tied 

together with gauge strings of constant tension (the case 

requires special attention, but it does not concern us here). The 

lowest lying multiplet is an isotriplet of pseudoscalr mesons which 

can be identified with the 'pion'. For small m/g these low-lying 

particles respect isospin symmetry even when it is broken at the 

level of the quark masses (Coleman 1976). This is an interesting 

result that we have investigated using a Monte Carlo simulation of 

the two species lattice SchwinQer model and which will be discussed 

later in this chapter. The next lightest particle in the theory is 

an isosinglet and the isosingiet/isotriplet mass ratio is JrT 
(whatever the value of 0). If there are other stable particles in 



the model , they must be O([g/m] 2 "3 ) times heavier than these. 

4.2 Simul ation of Two Dimensional QED 

The Schwinger model contains many of the features that are of 

interest in physical models and the theory may be solved exactly in 

certain limits, as discussed in the previous section. However, our 

interest here is not only in the Schwinger model but also in 

fermionic techniques in lattice gauge theory. What we wish to 

examine is the relative accuracy and speed of convergence of the 

algorithms in a theory that has a number of the properties believed 

to be important in QCD. In this section two pseudo- fermionic 

methods, the Metropolis and Langevin methods, are extensively 

discussed and their relative advantages and disadvantages examined 

(Burkitt 1983). In the next section we look at some of the 

properties of the Schwinger model in more detail, and particularly at 

the dependence of the chiral properties of the theory on the number 

of fermion flavours. The simulations were done on the ICL 

Distributed Array Processor (DAP) at both Queen Mary College and 

Edinburgh. The lattice size used for all the simulations was 64x64. 

The computer architecture plays an important part in the 

formulation of any large scale computing problem. This is 

particularly so with a parallel processor such as the DAP. Indeed, 

the limitations of present day computers in terms of both speed and 

memory size is often the determining factor in the viability of any 

Monte Carlo scheme. It is precisely these limitations that 

immediately rule out even considering the direct use of Grassmann 

variables for fermions or the direct evaluation of the fermionic 
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determinant for any lattices of reasonable size in greater than two 

dimensions. 

The reliability of our results presented here were checked by 

observing their stability with respect to longer runs, different 

starting configurations and different random numbers and also 

agreement of extrapolation (in the limit of vanishing quark mass) to 

an analytically known result. In order to make meaningful remarks 

about the speed and efficiency of any simulation some knowledge of 

the particular computer used (both hardware and software) is 

necessary. To this end an appendix has been included giving some 

details of the working of the DAP. This appendix serves as both a 

companion to the remainder of this chapter and also as an 

introduction to some of the computing ideas that are becoming 

increasingly important, particularly in the realm of large scale 

computing. 

The effective action for the lattice Schwinger model is given by 

eq.(3.3), where K(U) is the lattice version of - 2+m2  and 

Kogut-Susskind fermions are used. In this simulation we attempted to 

reduce the fermion doubling by using the square root of the fermionic 

determinant in the effective action for the gauge field (Marinari et 

al. 1981, Hamber et al. 1983). In later work we demonstrated that 

this method for reducing the number of fermion flavours does not work 

in two dimensions and this will be discussed more fully in the next 

section. Although the actual numbers obtained for physical 

quantities are not reliable, particularly at low ,  fermion masses, this 

does not effect our conclusions on the relative values of the various 

algorithims. Checks made using the two-species model (i.e. without 

the spurious square root) produced the same picture. 



The overall scheme of the simulation was firstly to take a gauge 

field configuration in equilibrium at some particular value of the 

fermion-gauge field coupling g. This gauge field configuration was 

generated in the usual way using a Monte Carlo algorithm, as 

explained in the first chapter. This was particularly 

straightforward in the case of the Schwinger model since the two 

dimensional U(1) gauge field can be simply parameterized by an 

angular variable 9(n) at every site n of the lattice. The value 

2= g 1/3 in lattice units was used throughout in order to ensure that 

the lattice of 64x64 was big enough in laboratory units to adequately 

describe the continuum physics. Using the exact Schwinger model 

result this corresponds to a correlation length of approximately four 

lattice units. Finite size effects only become significant for 

m< 0.03 on a lattice of this size, permitting a fairly unambiguous 

extrapolation to zero quark mass. The fermions were then introduced 

and allowed to equilibrate w.r.t. the gauge field. Finally the gauge 

field was updated according to the Metropolis algorithm with the 

effective action. New trial values of the gauge field variables were 

chosen in the range ±0.1 radians of the existing value. This value 

of +0.1 was a compromise between the small errors of order ( U) 2 , 

introduced by the linearization of the term 	[Tr'nK(U)], and the 

longer correlations between successive gauge field configurations 

introduced by smaller angles of update. Smaller angles of update 

would give a slower motion through phase space and require a 

consequent increase in computer time to produce reliable results. 

After each update of the entire gauge field the required inverse 

propagators were calculated using one of the fermionic techniques, 

and the value obtained was fed back into the next evaluation of the 



effective action for the subsequent update of the entire gauge field. 

In this way the simulation continued to generate configurations with 

the Boltzann probability distribution as •deteiined not just by 

SG(U), the pure gauge 	part of the action, but by S C ff(U), to which 

the effect of fermionic loops contribute. Measurements are then made 

in the standard way by averaging over successive Monte Carlo 

configurations. 

In order to measure how close or far from equilibrium the system 

was ve measured the chiral symmetry breaking expectation value <Y'> 

(as -in Marinari et al. 1981), and the average plaquette energy 

W=<1_TrU> where U is the product of link variables U around a 

p1 aquette. Since it is ultimately quarks of low masses that are of 

interest in QCD, it is the massless limit of these quantities that we 

wish to examine. 

In our calculation using the Metropolis pseudo-fermions the 

expressions (3.12) and (3.14) were actually implemented in a more 

efficient way using the identity 

LSeff(U) =LSg(U) - Tr.E(+m)'-(-ø+m) -'] +0(SU) 2 	(4.19) 

where the inverse matrix elements (in square brackets) are calculated 

using 

= L f0 cø 	 ey() (4.20) 

where ZPF  is the Partition function for the pseudo-fermionic 

variables, and there is a similar expression for (,'+m) 4 . This 

method has the advantage that all covariant derivatives are first 



order and at no stage must Z 27  0 be calculated directly. This was of 

considerable practical importance since, in general, the calculation 

of 0 acting on a variable is the most time consuming part of any such 

simulation. Only the values of 0 and %Ø needed to be stored at 

every site of the lattice. In the updating of the pseudo- fermionic 

variables it was found that the optimal interval (i.e. roughly half 

the variables updated) for choosing new values was approximately 

±1.2, which was true for the whole range of quark masses and was 

broadly the same as for the simulation without the gauge field. It 

would appear that there are two important "time" scales for the 

pseudo-fermionic Monte Carlo; the number Ni of updates before taking 

any values for averaging (i.e. for equilibration), and the number N2 

of updates which are averaged over to obtain the required Green 

function elements. However, it was found that the results were 

almost entirely independent of Ni, and dependent upon N2. This is 

unsurprising since in any single update of the gauge field the gauge 

field variables change by very little, whereas the pseudo-fermionic 

variables may change quite substantially in a single update. The 

pseudo- fermionic variables are, of course, stored between successive 

gauge field updates. Thus it was found unnecessary to include Ni at 

all. As the fermion mass decreased a critical slowing down of the 

convergence of the algorithm was again observed (Marinari et al. 

1981), in keeping with the fact that the Gaussian integrals that we 

are approximating become broader, and thus require more Monte Carlo 

hits to obtain a reasonable accuracy. In principle the exact result 

is obtained in the limit N2- 	. Figure 4 shows the measurements of 

at various values of the mass. The values plotted are those 

considered to be "optimal" in the sense that they are the values of 
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N2 (given on the horizontal axis) at which the technique converges 

reasonably well (to within 3%). i.e. Increasing N2 above these values 

does not significantly increase the accuracy of the measurements. 

Figure 5 shows the actual approach of <Y't'> to some fixed value as 

N2 increases (the horizontal axis) at a quark mass of 0.1 (in lattice 

units). 

In implementing the Langevin method there are also two "time" 

scales: the time 	1  required for the pseudo- fermionic variables to 

equilibrate after an update of the gauge field and the time 	over 

which the average of random fluctuations <17"> is evaluated. It was 

found that 	was the time scale controlling the convergence of the 

method, and that the results for different values of 	were 

indistinguishable within the statistical error of the measurements. 

Thus, at each value of the mass in Figure 4 only the optimal value of 

NH is given, where NH=' 1 /(step size (0.1)). A step size of H = 0.1 

was used throughout in the Runge-Kutta discretization of the "time" 

evolution of the Langevin equation, thus ensuring that the errors due 

to the discretization remain small (they are of order H 2 ). The 

approach to some stabl e val ue of 	at a quark mass of 0.1 is 

shown in Figure 5, where the horizontal axis labels the number of 

time steps, NH. 

In order to compare the two methods we must not only give the 

times taken for an update/ iteration but also some relevant 

information of how the calculation was carried out on the DAP (see 

appendix) and particularly ho, this would affect an unquenched 

simulation of QCD. In the Metropolis technique one is restricted by 

the requirements of detailed balance whereby all sites on a lattice 

may not be updated simultaneously, unlike an iterative procedure 
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where all the sites may be treated simultaneously. In the 

simulations discussed here each site of the lattice corresponded to 

one processing element of the DAP and, as a result, the efficiency 

was reduced by a factor of four in the Metropolis pseudo-fermion 

technique. It is worth pointing out that in an unquenched QCD 

simulation this is unlikely to be a problem since we may distribute 

the calculation in such a way that, although a particular site is not 

being updated (on grounds of detailed balance) it is used for 

evaluating part of the update calculation for a nearby site that is 

being considered for updating. In a U(1) gauge theory like the 

Schwinger model this procedure would not produce any significant 

increase in efficiency since the gauge variables are simple angles, 

but for theories like QCD with a more complicated gauge group this 

procedure could result in considerable savings of computer time. For 

the calculations presented here the time taken for a single complete 

Metropolis pseudo-fermion update of the lattice was 0.16 sec, and for 

a single iteration of the Langevin equation was 0.13 sec. Thus, it 

is clear from Figures 4 and 5 that the Langevin technique is the 

faster of the two techniques in the way in which they were 

implemented in this simulation. 

The Langevin method I, although fast to implement (the time taken 

for a single iteration of the lattice was 0.10 sec), gave spurious 

measurements as a result of the fluctuations mentioned earlier (see 

chapter 3 section 2). These large fluctuations feed back into the 

gauge field in the unquenched simulation and tend to increase the 

entropy of the system. As a result the value of W = <1-TrLI r > 

increased above its free field value as the mass decreased - in 

contradiction to the results obtained from the strong coupling 



expansion and using the other two pseudo- fermionic methods. Also the 

value of <Y)'> was considerably larger than for the other two 

methods. 

Thus we conclude that the Langevin method II is an efficient way 

of implementing the pseudo- fermionic technique in the Schwinger 

model. This result, however, is a particular feature of both the 

Schwinger model (being a U(1) gauge theory) and the DAP and is 

unlikely to be the case for QCD where the Metropolis method would 

appear to be superior for the reasons outlined above. A further 

improvement to the pseudo-fermion method may be obtained by using a 

heat bath (Hamber et al. 1983) rather than a Metropolis algorithm. 

Experience with the heat bath method in quenched gauge field 

calculations (Bowler and Pendleton 1983) seems to suggest that it 

produces a more rapid convergence. Moreover, the Gaussian nature of 

the pseudo-fermionic action ensures that the method is quite 

straightforward to implement. 

4.3 Flavour Decoupling 

The correspondence between Susskind and Dirac-Kahier fermions 

(Becher 1981; Becher and Joos 1982a b; Rabin 1982; Banks et al . 1982) 

that we developed in chapter 2 enables us to interpret the 

degeneracy of Susskind fermions as a flavour degeneracy (Burkitt, 

Kenway and Kenway 1983; Mitra 1983; Kluberg-Stern et al. 1983; Becher 

and Joos 1982b). This identification was extended to enable us to 

give different masses to the different flavours and it will be 

recalled that in the Susskind formulation mass terms iich are 

equivalent in the continuum limit of the theory will look different 
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on the lattice. This is possible since the lattice identification of 

flavours is ambiguous up to terms which are irrelevant in the 

continuum limit. In particular, the most suitable mass term for 

numerical simulations is the one which is most local on the lattice. 

We have shown that in two dimensions this corresponds to a one-link 

operator, which is no more non-local than the derivative term. In 

four dimensions where there is a fourfold degeneracy it is necessary 

to introduce one-, two- and three-link operators to completely break 

the degeneracy. However, in order to do a numerical simulation of 

QCD a good first approximation is obtained by simply introducing a 

one-link operator to break the StJ(4) flavour degeneracy to SU(2) 

isospin. This is done by setting m 1=m2<<m3=m4  (in the notation of 

chapter 2 section 3) and identifying m1  as the mass of the up (u) and 

down (d) quarks and m 3  as the mass of the strange (s) and charm (c) 

quarks. To investigate the low energy behaviour of QCD the mass rn 3  

may be made as large as possible for the s and c quarks to 

effectively decouple from the theory, although in practice the 

largest possible mass value is the cutoff a 	and the smallest is 

(lattice dimension) 	so that the ratio rnud/msc  can be only of 

order L 1  (on a lattice of L 4 ) whereas in the real world m/m 5  1/40. 

In this section we examine this possibility of giving the quark 

flavours different masses in the context of the Schwinger model 

(Burkitt and Kenway 1983). Using Susskind fermions with the usual 

local mass term m')' we expect to reproduce the results for the 

SU(2) flavour symmetric Schwinger model. The expectation values (Du> 

and <dd> were calculated as functions of the fermion masses, and the 

results were extrapolated to zero mass. For degenerate flavours we 

found that our results for (<u>+<dd>)/2 were consistent with zero in 
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the massless limit in accordance with expectations for the Su(2) 

flavour Schwinger model (Coleman 1976). The results for the 

one-flavour model were reproduced by introducing a one link mass term 

and setting the mass of one of the quark flavours (the d quark) equal 

to the inverse lattice spacing. The d quark then decoupled from the 

gauge field and the one species Schwinger model remained. The 

expectation value <uu> was measured as a function of the u-mass (with 

the d-mass held fixed at 1 in lattice units) and it was observed to 

extrapolate to the exact 1-flavour Schwinger model result in the 

massless limit (Schwinger 1962), indicating that the heavy flavour 

decouples from the continuum physics. We also tested the suggestion 

that the effect of one flavour may be removed by using the square 

root of the ferm ionic determinant in the effective action for the 

gauge field i.e. by including only half the fermionic contribution to 

the effective action (Marinari, Parisi, and Rebbi 1981; Hamber, 

Marinari, Parisi and Rebbi 1983). In this case we found that 

(<u>+<dd>)/2 closely follows the result for 2 degenerate flavours 

and appears to extrapolate to zero in the limit of vanishing fermion 

mass, showing that the method fails in this instance. The prediction 

of Colnan (1976) that isospin symmetry is unbroken in the SU(2) 

Schwinger model for small quark masses was also addressed and the 

results support this proposition. 

As before, the simulations were carried out on a 64x64 lattice 

using the pseudo-fermion method as described in the previous section. 

Because of the rapid variation of eq.(2.39) and eq.(2.40) for small 

we subtracted the appropriate free fermion result from that for 

the gauge theory, as suggested by Marinari et al. (1981) before 

attemptino the extrapolation to zero mass. The value of the 



gauge-fermion field coupling was chosen to be 9 2=1/3 in lattice units 

(as in the previous section) so that the lattice was large enough to 

describe the continuum physics. 

To study the light quark properties of the one- and two-species 

Schwinger models, and also the theory with the square root of the 

ferrnionic determinant, we started with a pure gauge field 

configuration and a free pseudo-fermion field at m U =md=l.O. 

Successive simulations were done at light quark masses m u of 

0.8,0.6,0.4 and 0.2 for each of the three cases. As m u was 

successively decreased the end configurations of both the gauge field 

and the pseudo-fermion field were used as the starting configurations 

for the following simulation. At each mass value 100 gauge field 

sweeps, using the Metropolis algorithm, were done, with 60 

pseudo-fermionic sweeps at each gauge field update using the same 

values for the update angles of the gauge and pseudo-fermion fields 

as previously. 

The light quark mass was then decreased from 0.2, as plotted in 

Figure 6, and the number of pseudo- fermionic updates per gauge field 

update correspondingly increased; typically from 60 to 200. The 

non-degenerate case required somewhat more pseudo-fermionic updates 

in order to equilibrate, from 60 at mu=0.2  to 180 at m=0.05,  whereas 

the degenerate cases both appeared to equilibrate at m=0.05  with 120 

or 140 pseudo- fermionic updates. This was probably due to the extra 

non-locality of eq.(2.40). 

In order to check the stability of the results longer runs with 

more pseud o-fermionic updates per cauge field sweep were done and, in 

addition, the light quark mass was wound back up from 0.04 to 0.15 3  

again using consecutive configurations, in all 3 cases. The error 
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bars are an estimate of the statistical error obtained by averaging 

over a number of independent runs (i.e. from different starting 
- 

configurations). Figure 6 shows clearly that the results for the 

one-species model are consistent with the exact massless continuum 

value of <uu>. This indicates that the unwanted fermion may be 

decoupled by giving it a mass of order the cutoff, with only a minor 

increase in computer time. The two-species results also clearly 

indicate the expected restoration of chiral symmetry in the massless 

continuum theory. The intermediate points are the measurements for 

the system with half the fermionic contribution to the effective 

action. It is clear that the values in this case are not consistent 

with the one-species massless continuum theory. Thus we are drawn to 

the conclusion that halving the contribution of the fermionic 

determinant to the effective action fails to describe the 1-flavour 

model for fermion masses less than 0.1 (in lattice units) in this two 

dimensional model . This could not be observed by Marinari et al 

(1981) because the small size of their lattice prevented them from 

running at such small masses. One reason for this failure may be 

non-factorization of the fermionic determinant in the continuum limit 

due to the generation of a four-fermion interaction (which is 

renormalizable in two-dimensions). A series of runs were also done 

at g 2=1/8 and a light quark mass of m u=0 . 05 . This corresponds to a 

smaller lattice spacing in laboratory units and the same picture 

emerged as also shown in Figure 6. 

This decoupling was studied further by calculating <uu> and <dd> 

-For values of the mass ratio, md/m.,,  in the range i to 20 holding m 

I ixed at 0.05, as shown in Figure 7. Three distinct regions were 

observed. For 1 <mdlm U < 2  our results are Con ;
S4 

	with unbroken 
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isospin symmetry as suggested by Coleman (1976). For md/m U> 1 O the 

flavours appear to have completely decoupled into a light fermion (u) 

interacting with the gauge field and a free heavy fermion (d). At 

intermediate mass ratios there is a crossover region. The actual 

transition between 1 and 2-flavour physics appears to be quite sharp, 

occurring at about md/mu=2.5.  We noticed a tendency for the Monte 

Carlo algorithm to get trapped in a metastable state here. These 

results suggest that the I and 2 flavour models are well separated in 

the variable md/mU. 

The results indicate that the method we propose for splitting the 

flavour degeneracy of Susskind fermions produces numbers that are in 

good agreement with known analytic results in two dimensions. 

Unwanted flavours may be decoupled from the theory by setting their 

mass to be of the order of the lattice cutoff and the resulting 

system appears to provide a good description of the remaining 

flavours. The increase in computing time (beyond that used for the 

usual degenerate flavours) to implement this scheme is fairly small. 

Moreover this method appears to be sensitive to the differences 

between the one- and two-species models at small quark masses and we 

are able to check some of the properties of the system that have been 

predicted from perturbation theory. 

With regard to implementing this method in QCD some problems 

remain. In particular the fermions are defined on cells of size 

One consequence of this is that some of the operators corresponding 

to particle states will be non-local (i.e. spread over a unit celi) 

and the statistical accuracy will probably be lower as a result of 

the fluctuations of the gauge field links (which are required in 

order to maintain the gauge invariance). Also, with the lattice 
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sizes used at present (i.e. roughly 8 3x16 or 103 x20) it is only 

possible to determine particle masses over a region of 8 to 10 

lattice cells with this method and we thus have fewer points 

(compared with using Wilson fermions) from which to determine the 

masses using the exponential decay of the propagators. Nothing is 

known at present, however, about how the inclusion of dynamical 

fermions will affect the overall mass scale of a simulation or the 

resulting estimates of the absolute size of our QCD vacuum "box'. 

Furthermore, as pointed out in chapter 2 section 3, if a mass term 

is introduced to break SU(4) flavour symmetry to SU(2) there is no 

remnant of chiral symmetry on the lattice to prevent the u and d 

quarks from acquiring a mass. In fact the situation is completely 

analogous to Wilson fermions, and two renormalization conditions are 

required: one which fixes the pion mass to be zero (or its physical 

value) and one which fixes a strange meson mass to its physical 

value. Thus the two mass parameters m 1 , m 3  must be tuned to fit the 

observed splitting between strange and nonstrange hadrons. It is an 

unfortunate fact that the only lattice theory with any remnant of 

chiral symmetry is SU(4) symmetric. On the other hand, our method 

has the advantage of being more economical (by a factor of four) in 

terms of computing time and memory requirements when compared with 

Wilson fermions since there is only one (complex) fermionic degree of 

freedom at every site. 

Conci usions 

Lattice gauge theory has proved to he a fruitful way in which to 

study gauge theories. The lattice provides an explicit gauge 
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invariant regularization for the continuum field theory and enables 

us to carry out non-perturbative calculations. Confinement arises 

naturally in the strong coupling regime of lattice QCD and numerical 

results are consistent with the property of asymptotic freedom. The 

lack of any phase transition between the weak and strong coupling 

limits provides strong support to the proposition that asymptotic 

freedan and confinement are simultaneously properties of QCD. 

Moreover, there is the possibility of explicitly calculating the 

particle spectrum of the theory, and some significant progress in 

this direction has been made recently, although much remains to be 

done. 

One of the fundamental problems in' lattice gauge theory is the 

treatment of fermions. We have seen that the most straightforward 

transposition of the continuum description of fermions onto the 

lattice leads directly to the celebrated fermion doubling problem. A 

number of prescriptions for eliminating this doubling, even 

partially, have been proposed but all seem to have some undesirable 

features. The SLAC prescription eliminates the* doubling entirely 

without breaking chiral symmetry but is very non-local on the lattice 

and gives non-covariant terms in the continuum limit of the theory. 

Wilsons' method also eliminates the doubling entirely by giving the 

unwanted fermions masses which are of order of the lattice cutoff.. 

However this method explicitly breaks chiral symmetry, although it is 

believed that the symmetry is restored in the continuum limit of the 

theory. This connection between doubling and chiral symmetry is a 

very deep one and has been shown to be intimately related to the 

topology of the lattice and the Adler-Bell-Jackiw anomaly. It places 

a very severe restriction on the theories which we can construct on 



the lattice and, in particular, is a no-go theorem for putting the 

electro-weak theory on the lattice. Another scheme, due to Susskind, 

partially reduces the fermion degeneracy from 2 d  to 2 
d/2

(in d 

dimensions) and chiral symmetry is manifested as a discrete 

translational symmetry of the theory. 

Kahiers -  geometric description of Dirac fermions is both an 

elegant and natural one in which to describe lattice fermions. The 

continuum and lattice versions of the Dirac-Kahier equation both have 

a 2d/2 _fold degeneracy. In the continuum version this reduces to 

2d/2 identical copies of the Dirac equation. However on the lattice 

the reduction to the lattice Dirac equation can only be done in 

momentuii space. That the degeneracy of Dirac-Kahler and Susskind 

fermioris on the lattice is the same is more than coincidence. The 

two descriptions are, in fact, equivalent in the case of free fields, 

although they interact differently with gauge fields. This 

equivalence enables us to explicitly identify the flavour degeneracy 

of the Susskind fermions. Although the flavours do not decouple on 

the lattice, it is possible to use the continuum identification and 

to break the degeneracy by introducing different mass terms for the 

different flavours. Since the lattice identification is ambiguous up 

to terms which are irrelevant in the continuum limit there are a 

number of equivalent mass terms which will look very different on the 

lattice. Consequently there exists a description which is optimal in 

the sense that it is the most local description that is possible on 

the lattice. We have found that this optimal description is simply a 

one-link operator in two dimensions while in four dimensions one-, 

two- and three-link operators are necessary to completely split the 

deaeneracy. However, in QCD the low energy behaviour may be well 
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approximated by two degenerate light quarks (u and d) which can be 

described quite straightforwardly by introducing only a one link mass 

operator and giving the s and c quarks masses which are of the order 

of the lattice cutoff. The SU(2) symmetry that remains may be 

interpreted as isospin symmetry of the (degenerate) light quarks. 

This idea has been tested in the context of the Schwinger model where 

we find that the usual local mass term reproduces results consistarit 

with the SU(2) Schwinger model. When a one-link mass term was 

introduced and one of the quarks decoupled by increasing its mass to 

the cutoff the results gave agreement with the one-species Schwinger 

model. Thus this method seems to be a viable way of eliminating the 

unwanted doubling in numerical simulations. One disadvantage of this 

approach is that the symmetries of the original Susskind formulation, 

which prevent the generation of mass terms in the fully interacting 

theory, are broken when we introduce the non-local mass tetth. 

Consequently the continuum limit of the theory must be identified in 

the same way as required with Wilson fermions by finding a critical 

bare mass of the light quark at which the pion mass vanishes (or some 

equivalent criterion). Also, since the fermions are defined on cells 

of size 2d, the operators corresponding to some of the particle 

states will be non-local. As a result the statistics of any such 

quantity will probably be worse than for local objects because of the 

fluctuations in the gauge field links. One significant advantage, 

especially from the computational point of view, is that this method 

requires only one fermionic variable on each site of the lattice, 

compared with four for Wilson fermions. 

Establishing a consistent lattice definition of the number of 

continuum fermion species represents only one part of the whole 
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question of introducing fermions into lattice gauge theories. The 

other aspect concerns how fermions are to be introduced as dynamical 

variables that interact with the gauge field, rather than simply as 

static external sources. Solutions to this problem are only in the 

early stages of development and much remains to be understood. Until 

now almost all the results of lattice gauge theory have been obtained 

in the quenched approximation. However it is clearly of considerable 

importance that the degrees of freedom believed to be important in 

the real world are incorporated into the theory. After examining a 

number of proposals for introducing fermions we studied the 

pseud o-fermionic method in detail. Both the Metropolis and Langevin 

techniques for implementing the method were applied to the Schwinger 

model. By looking at the approach to equilibrium of the fermion 

expectation value over a range of masses it was found that the 

Langevin method was the faster of the two techniques. However, this 

result was very dependent upon the way the calculation was actually 

carried out on the Distributed Array Processor and is unlikely to be 

the case for simulations of QCD (even on the DAP). Furthermore, the 

Metropolis method may be considerably improved by using a heat bath 

algorithm and consequently it appears to be the most promising 

candidate for introducing dynamical fermions. 

Recent work on extracting hadron masses from SU(3) lattice gauge 

theory indicates that the lattice sizes being used at present are too 

small to extract reliable numbers. The computer time and facilities 

required for these calculations is enormous. The viability of such 

calculations is intimately linked to the capabilities of the most 

modern computers and future developments in the field of computer 

technology will be one of the crucial factors in determining the type 
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and size of calculations that can be fruitfully done. It is becoming 

increasingly clear that one of the most significant advances for 

large scale simulations, especially in lattice gauge theory and 

statistical mechanics, is the appearence of parallel processing and 

vectoring machines. These machines, although only in the early 

stages of development at present, represent new and exciting 

prospects which it is to be hoped will continue to be developed. As 

a result, we are extremely fortunate to have been able to use a 

parallel processor for the calculations reported here. The methods 

vie have investigated have all had the virtue that they could be 

implemented economically in parallel and it seems reasonable to 

assume that such considerations will become increasingly important 

for any practical calculational scheme in the future. 

Because lattice gauge theory is already in the very forefront of 

large scale computing and since it would be prohibitively expensive 

at present to go to significantly larger lattices it is desirable to 

attempt to improve the Wilson action. In this way it would be 

possible to increase the physical size of currently used QCD lattices 

by going to stronger couplings g (and remaining in the scaling 

region). Preliminary results using two dimensional asymptotically 

free theories (Berg et al. 1983) are encouraging. At the same time 

improvements to the fer,iiionic part of the action could also be 

considered, although this appears to he a more difficult problem. 

One practical argument in support of improved actions (in preference 

to calculating on yet larger lattices) is that dynamical fermion 

methods are more manaaeable (in terms of computinc time required) on 

smaller lattices with improved actions rather than on laroer lattices 

using the usual Wilson form of the action. 
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Calculations in lattice gauge theory lead naturally to a 

consideration of computer architecture. The viability of any 

simulation one may wish to perform depends foremost upon the 

computing resources available. Consequently the last decade has seen 

a flowering of interest by sections of the theoretical physics 

community in every aspect of computer technology (This has also been 

true of a number of other branches of both the physical and natural 

sciences). In this appendix we shall outline some of the features of 

the ICL Distributed Array Processor (DAP), which represents a new and 

important innovation in computer technology. The architecture of the 

DAP is discussed and two of the software features which are central 

in DAP calculations are explained. We look particularly at how the 

DAP is used in actual Monte Carlo simulations of lattice gauge 

theory. (see also Hocknéy and Jesshope 1981, Bowler 1983, and refs 

therein). 

The DAP combines computational power with a technology that is 

inexpensive in a machine with a wide performance range. These two 

features combine to give the DAP an advantage over either the large 

and very expensive "supercomputers" such as CRAY, and purpose-built 

processors, which are inherently inflexible. Furthermore, the 

present versions of the DAP use only relatively modest technology and 

fairly low levels of integration. Developments in very large scale 

integration (VLSI) offer the prospect of substantial improvements in 

computational times and in the sizes of lattices that might be 

contemplated in lattice gauge theory simulations. 
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Architecture and Technology 

The DAP is not a back-end processor but rather is designed to 

emulate a memory module for an ICL mainframe (called a host machine 

in this context). The DAP can provide memory to the host in the 

conventional way when it is not executing its own code, and data in 

the DAP store may be processed by either the DAP or the host 

computer. The basic hardware of the DAP, indicated highly 

schematically by Figure 8, consists of a 64x64 array (described as 

rows and columns) of processing elements (PE's), each having 4Kbits 

of memory (giving a total of 2Mbytes of memory attached to the host). 

The array is connected two-dimensionally, with each processing 

element having four neighbours to which it is connected. These are 

identified by the points of a compass N,S,E and W. The connections 

at the edge depend upon whether the machine is instructed to operate 

in planar or cyclic geometry. Planar geometry defines a zero input 

at the edges, whereas cyclic geometry identifies the ends of columns 

or rows. In addition to the 4Kbit store, each PE contains three 

1-bit registers (labelled A,Q and C), two multiplexers and a 1-bit 

full adder, the most interesting of which is the A-register. Certain 

instructions may be made conditional upon the setting of the 

A-register in each processor. How this local autonomy may be 

exploited will be illustrated in the discussion of software features. 

There is also a master control unit (MCU) which handles certain 

simple scalar functions such as control of DO loop variables in 

Fortran, and which also broadcasts instructions to the processor 

array. 
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Software Features 

To take advantage of the DAP's parallel processing power a 

language called DAP Fortran, which is based on Fortran, has been 

developed. A DAP program is run as a subroutine of a master Fortran 

program run on the host machine. Communication between the DAP 

Fortran and Fortran routines is achieved through the use of shared 

COMMON blocks, which are loaded into the DAP store. Processing is 

initiated in the usual way with control being passed to a Fortran 

master program which sets up the input routines and data, and might 

include some pre-processing to be performed by the host. Control is 

then passed to one of any number of DAP Fortran entry routines, which 

can in turn call other DAP Fortran routines. Periodically, or on 

termination of the run, control is passed back to the host for 

Fortran post-processing and output. 

The three basic types of variables in DAP Fortran are scalars, 

vectors and matrices. A scalar corresponds to an ordinary Fortran 

variable whereas vectors have a range over 64 in a single dimension 

and matrices range over 64 in two dimensions. Variables and 

constants may be either of type REAL, of length 3 to 8 bytes, 

INTEGER, of length 1 to 8 bytes, or LOGICAL, and are declared in a 

similar manner to usual Fortran. For example, the code 

DIMENSION A(,),B(,),C(,) 
	

(A.1) 

C =A +8 

means that at every PE the value of A and B are added and put into 

the appropriate slot for C, and this is done simultaneously at each 

of the 4096 PE's. 

The two DAP Fortran features which give it considerable 

flexibility involve the ability to shift information between PE's and 
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the use of logical matrices to provide local autonomy to the PE's. 

In order to bring information stored at one PE to another PE there 

are a number of shift operations. The operation of these shifts is 

best illustrated by an example: 

DIMENSION A( ,) ,B(  ,) ,C(  ,) 	 (A.2) 

C=B+S}-MC(A,3) 

The effect of this statement at any PE, which is illustrated in 

Figure 9, is to assign to C the sum of the element of B which is 

stored at that PE and the element of A which is stored three sites 

away in a easterly direction, with cyclic boundary conditions 

automatically imposed over all the 64 columns of PE's that run 

east-west. Similarly there are shifts north, south and east with 

either cyclic (SHNC, SHSC, SHEC) or planar (SHNP, SHSP, SHEP, SHWP) 

boundary conditions. It is also possible to use the DAP in 

long-vector mode, in which we may think of the numbers as being 

stored in a vector of length 4096. It is then possible to do shifts 

along this vector by means of the operations SHLC, SRRC, SHLP, SHRP 

which involve left or right shifts with either cyclic or planar 

boundary conditions at the ends of the vector. 

Operations and assignments may be made conditional upon the value 

of logical matrices (called masks in this context) at the processing 

elements. The logical mask sets the A-register mentioned earlier. 

Such masks can be either generated within a program or defined using 

built-in logical functions available in DAP Fortran. e.g. the 

function ALTR(N) sets the first N rows .FALSE. and the next N rows 

.TRUE., and so on until completion. (Similarly ALTC(N) does the same 

with columns). More elaborate masks may be constructed using these 

standard logical operators in conjunction with both the shifts 
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Figure 8 Highly schematic diagram of DAP hardware. 
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Figure 9 The effect of C=B-'Sh4C(A,3) . The solid square denotes a 

typical PE, whilst the cross-hatched square denotes the 

location of the element of A accessed by the shift. 
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discussed above and standard logical statements. For example: 

LOGICAL LMASK(,) 
	

(A.3) 

LMASK=ALTR (1) .LEQ. ALTC( 1) 

sets up a chequerboard pattern in which each PE is alternatively T. 

and .F., as illustrated in Figure 10. Assignments may then be made 

conditional upon such a mask in the following way: 

REAL*4 A(,),B(,) 
	

(A.4) 

A(LMASK)=B 

Only those elements of A at which LMASK is T. are assigned the 

corresponding value of B, at all other PE's the value of A remains 

unchanged. Another important use of logical masks is in combination 

with the MERGE function: 

DIMENSION A(,),B(,),C(,) 
	

(A.5) 

C=MERGE (A, B,LMASK) 

where LMASK is a LOGICAL matrix Here C takes the values of A at those 

PE's where LMASK is T. and the values of B elsewhere. 

Lattice Gauge Theory Calculations 

The parallelism of the DAP makes it ideally suited to the Monte 

Carlo simulation of lattice systems in which essentially the same 

sequence of steps is repeated a large number of times. The question 

of how to use this parallelism in the most efficient way is an 

important one. The situation is very different from that with a 

serial computer, and we will discuss here some of the considerations 

that are important in the implementation of a lattice gauge theory 

simulation on the DAP. The first question is how to map the lattice 

variables onto the 64x64 DAP array. In the two-dimensional models 

considered in this thesis the straightforward identification of sites 
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on the lattice with PE's was used and the natural choice of lattice 

size was 64x64. At each PE were stored the gauge fields which live 

on the links emanating in the positive direction from that site. In 

this way the locality of the action ensures that variables need only 

be moved between PE's that are near each other. However, in higher 

dimensions the situation becomes more complex. Here we will discuss 

the construction of an 8 lattice on the DAP, although other sizes 

and/or dimensional ities of lattice are possible, and are discussed by 

Pawley and Thomas (1982). With an 8 lattice there is again a 

one-to-one correspondence between sites of the lattice and PE's, 

although the actual distribution of sites over the 64x64 array 

requires care. There is a natural and elegant construction in which 

the 64x64 array is divided into 8x8 blocks of PE's, of which a 

portion is shown in Figure 11, and two of the four dimensions are 

mapped within the 8x8 blocks. The remaining two dimensions are 

mapped between blocks. Thus, the lattice neighbours of any PE are 

found one and eight away on the 64x64 array of PE's. The built-in 

cyclic boundary conditions of the DAP ensure the periodicity of the 

coordinates corresponding to the steps of eight PE's, but the 

periodic boundary conditions for the two coordinates which are mapped 

within each 8x8 block must be enforced explicitly. It is clear that 

the neighbours for the directions mapped into the 8x8 block will 

usually be only one away, except for those sites on the edge of the 

block. Consequently it is necessary to define neighbours explicitly, 

and this is most easily done by a combination of logical masks and 

MERGE operations. Consider, for example, sites on the eastern edge 

of the 8x8 blocks. Then the boundary mask, as indicated in Figure 

12, defined by 



 

LMASK =ALTR(1) 

 

 

LMASK = ALTC(1) 

(C) 

LMASK = 

ALTRC1).LEQ.ALTC(1) 

Figure 10 Logical masks on the DAP. The grid squares represent PE's. 

The effect of ALTR(1). Hatching denotes T. 

The effect of ALTC(1). 

The effect of ALTR(1).LEQ.ALTC(1). 

-0-4 

3 

Figure 11 Mapping an 8 lattice on to the DAP; nearest neighbours 

of a 'typical' site are located at the PE's shown. 
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LE=ALTC(8) .LEQ.SHWC(ALTC(8) ,1) 	 (A.6) 

is F. only at such sites. Neighbours in the easterly direction on 

the 8x8 blocks may then be defined by the statement 

B(,)=MERGE(SH4C(A(,),1),SHEC(A(,),1),LE) 	(A.7) 

This has the effect of assigning to the array B the value of the 

array A stored at the next PE in the easterly direction if LE is T. 

(i.e. for all PE's not on the easterly edge of an 8x8 block) and to 

assign the value of A at the PE seven away in the westerly direction 

for those PE's at which LE is F. (i.e. those PE's on the easterly 

edge of an 8x8 block). This procedure must be repeated for the other 

three edges of the 8x8 blocks. 

In carrying out a simulation in parallel we must be careful not to 

violate detailed balance. On a parallel machine we cannot test every 

link variable simultaneously, although such a procedure would appear 

to make maximum use of the parallelism. However, we can update 

simultaneously those variables which are not connected by the action, 

and it is clearly important to find the largest such subset of 

non-interacting variables to update at the same time. On a 

two-dimensional lattice gauge theory, of which a section is 

illustrated in Figure 13, it is quite straightforward to see that the 

optimum pattern is achieved by updating link variables in any one 

direction in a chequerboard pattern, as given by eq.(A.3) and 

indicated in Figure 13 by bold type. This pattern generalizes to 

four dimensions where we can likewise label sites as being either 

even or odd depending upon the sum n 1+n2+n 3±n4  of the position 

vectors of the site. We can then consider simultaneously updating 

all the links in a given direction originating from either even sites 

or odd sites. In this way we preserve detailed balance and it is 



Fig. 12 

Figure 12 Eastern boundary mask for 8x8 blocks, corresponding 

to LE=ALTC(8).LEQ.SHWC(ALTC(8),1). 

Fig . 13 

Figure 13 A two-dimensional lattice: the links shown in 

bold-face may be updated simultaneously. 
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possible to update one-in-eight links simultaneously. The mask 

needed to define even and odd sites is a 'chequerboard of 

chequerboards' , illustrated in Figure 14 and defined by the statement 

LMASK=(ALTR(1).LEQ.ALTC(1)).LEQ.(ALTR(3).LEQ.ALTC(8)) 	(A.8) 

Thus in a single complete sweep through the lattice in a simulation, 

all four directions of the gauge field and both masks in each 

direction need to be considered for update. In order not to lose out 

in efficiency when using the masks it is possible to distribute the 

matrix multiplies over all the PE's (i.e. some of the intermediate 

steps of the calculation are carried out on sites not being 

considered for updating). 

In the two-dimensional Metropolis pseudo-fermion procedure 

discussed in this thesis the pseudo-ferm ionic action involved not 

nearest neighbour interactions but rather next-nearest neighbour 

interactions. Thus the optimum update pattern was different since 

any sites two spaces apart could not be updated simultaneously. In 

the case where the mass term was local there were no nearest 

neighbour interactions and consequently the update pattern consisted 

of pairs of neighbouring sites scattered around the lattice 

corresponding to the pattern 

LMASK=(ALTR(2).LEQ.ALTC(2)).  AND. ALTC(1) 	(A.9) 

thus giving an update pattern of one-in-four. When a one-link mass 

term is introduced the nearest neighbours in that direction clearly 

become connected by the action. However, the nearest neighbours in 

the direction orthogonal to the mass term remains uncoupled and it is 

thus possible to retain the update pattern given above. The same 

general features are true of the four dimensional case. 



Fig.14 

Figur.e14 Illustration of the even/odd mask for an 8 lattice: 

LMASK=(ALTR(1).LEQ.ALTC(1)).LEQ.(ALTR(8)LEQALTC(8)) 
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