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Abstract 

In the crowded cellular environment, folding of newly transcribed polypeptides and 

maintenance of the correct folded state of proteins presents a significant problem. The cell 

has thus developed a sophisticated chaperone system to regulate protein quality control. Two 

of the major players are the 70 kDa and 90 kDa heat shock protein families. Hsp70 is 

predominantly involved in the folding of newly transcribed polypeptides and partially 

unfolded proteins whilst Hsp90 is involved at a later stage, regulating the functional 

maturation of a sub-set of client proteins. The actions of Hsp70 and Hsp90 are regulated by a 

multitude of co-chaperones; a major family common to both pathways is the 

tetratricopeptide repeat (TPR) domain containing co-chaperones. The TPR domain is a 34 

amino acid helix-loop-helix that occurs in tandem arrays and commonly participates in 

protein-protein interactions. TPR co-chaperones provide a diverse array of functionality to 

the Hsp70 and Hsp90 machinery including facilitating communication between the two 

pathways, protein transport, mitochondrial/chloroplast protein import and providing a link to 

the protein degradation system. This thesis describes the structural and biochemical studies 

of members of the Hsp70/Hp90 chaperone machinery in the nematode worm Caenorhabditis 

elegans. 

The crystal structure of the C-terminal helical lid domain from C. elegans Hsp 70 

l-Isp70 proteins are composed of two functionally distinct domains; the 40 kDa N-terminal 

nucleotide binding domain (NBD) and the 30 kDa C-terminal substrate binding domain 

(SBD). The SBD can be further divided into an 18 kDa 3-sandwich sub-domain which forms 

the hydrophobic binding pocket and a 10 kDa helical-bundle sub-domain which forms a lid 

over the binding pocket. Structures of the helical sub-domain are limited to E. co/i 

homologues DnaK and HscA, and rat Hsc70. Despite evolutionary structural conservation in 

the NBD and 3-sandwich, the lid was shown to adopt alternate conformations in prokaryotes 

and eukaryotes. This work presents the crystal structure of the C-terminal 10 kDa sub-

domain from C. elegans l-Isp70. Despite a high degree of sequence identity, the C. elegans 

domain is shown to adopt a conformation distinct from the rat crystal structure, consistent 

with the more distantly related bacterial homologues. Comparison with the rat structure 

reveals an intriguing putative domain-swap dimerisation mechanism though the isolated C. 

elegans domain was found to exist exclusively as a monomer in solution. 
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Biochemical characterisation of two putative Hsp 70/Hsp9O interacting TPR co-

chaperones 

A previous study identified two TPR domain containing C. elegans putative proteins 

predicted to interact with Hsp90. These proteins were identified as the C. elegans 

homologues for small glutamine-rich TPR containing protein (SGT) and l-lsp70/Hsp9O 

organising protein (HOP). These proteins have been successfully cloned, expressed and 

purified. Characterisation of purified SGT by mass spectrometry, cross-linking and gel 

filtration experiments provides unambiguous evidence that SGT forms homo-dimers in 

solution. Its hydrodynamic dimensions in relation to its molecular weight suggest a protein 

with a low level of compactness and an extended conformation. Further, it has been 

demonstrated that SGT interacts with the C-terminal peptides from both Hsp70 and Hsp90 

with equal affinities. Crystals were obtained for full-length SGT and its isolated TPR domain 

but were of insufficient quality for X-ray data analysis. Studies on C. elegans HOP 

suggested it might exist as a dimer in solution. In addition, a tight binding interaction was 

demonstrated with human and C. elegans Hsp90 homologues. 

Identification of the complete repertoire of C. elegans TPR co-chaperones 

A thorough search of the complete C. elegans proteome and genome was performed to 

identify the complete repertoire of TPR domain containing proteins likely to interact with 

Hsp70 or Hsp90. Hsp70/90 interacting TPR motifs have a well-defined domain architecture 

and a highly conserved consensus carboxy late-c lamp motif. Profile hidden Markov models 

(HMMs) provide a means of representing the amino acid probability distribution of sequence 

alignments and are powerful stochastic models of protein families. A profile HMM based 

search of the published C. elegans protein and DNA databases identified II proteins eight 

of which are homologues of proteins known to interact with Hsp70 or Hsp90. The remaining 

three are uncharacterised putative proteins and represent targets for further study. 
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1. Introduction - the Hsp70/Hsp9O chaperone machinery 

The central dogma of biology describes the conversion of genetic information to functional 

proteins; a process that begins in the nucleus with the transcription of coding genes to 

mRNA, which are then exported from the nucleus and translated into polypeptides by the 

ribosome. There is, however, a further step - the folding of newly formed polypeptides into 

specific three-dimensional structures. A class of proteins known as molecular chaperones are 

vital for this final step, aiding the process of folding newly transcribed polypeptides and 

supervising the structural fidelity of existing proteins. 

The native three-dimensional structure of proteins is encoded in their linear sequence and 

governed by the noncovalent interactions of their amino acid side chains. This process is 

spontaneous; however, in the busy milieu of the cell proteins sometimes require assistance to 

achieve or maintain their correct structure. The cell is a crowded environment with high 

concentrations of proteins, nucleic acids and other macromolecules. This results in a so 

called excluded volume effect that can favour intermolecular over intramolecular 

interactions, and protein aggregation competes with folding of newly formed polypeptides. 

This problem is exacerbated by the fact that a protein domain cannot adopt its native 

structure until it has exited the ribosome. In the meantime, the exposure of hydrophobic 

regions normally located in the core of proteins can lead to unwanted aggregation. To 

address this issue the cell has developed a complex system of molecular chaperones involved 

in supervising the correct folding of newly synthesised polypeptides, maintenance of the 

folded state of existing proteins and, in some cases, required for correct protein function. For 

an excellent review of the chaperone pathways see Young et al., 2004. 

Two of the major chaperone pathways involve the heat shock proteins Hsp70 and Hsp90 

(Figure 1-1). These were first observed as proteins upregulated in response to elevated 

temperatures and subsequently identified as protein chaperones (Welch and Feramisco, 

1982). The I-Isp70 chaperone pathway is the most common folding pathway with Hsp70 

homologues ubiquitously expressed and present in virtually all living organisms (Wegele et 

al., 2004). It is involved in numerous protein folding processes including folding of nascent 

polypeptides, refolding of misfolded and aggregated proteins, and transmembrane protein 

transport. The Hsp90 chaperone machinery is somewhat different. It is mainly involved in 

the maintenance of the functional viability of a sub-set of client proteins which require 

Hsp90 to adopt their functionally active conformations. There is communication between the 

two pathways with some proteins processed first by the Hsp70 machinery prior to passing to 
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the Hsp90 machinery. Importantly, both chaperones are involved in protein turnover 

providing a direct link to the protein degradation machinery. 

' 

Degraded protn 	 Folded/active proti] 

Figure 1-1 Overview of the Hsp70 and Hsp90 chaperone pathways. Hsp70 is involved in the 
folding of nascent and unfolded polypeptides whilst Hsp90 works together with Hsp70 in the 
functional maturation of a subset of client proteins. In addition, both chaperones are involved in 
protein quality control and are capable of targeting proteins for degradation. Figure adapted from 
Wegele et al.. 2004. 

1.1. The Hsp70 chaperone machinery 

The 70 kDa heat-shock proteins (Hsp70s) comprise a family of conserved chaperones that 

regulate a wide variety of cellular processes during normal and stress conditions (Boorstein 

et al., 1994). Hsp70 is one of the most abundant of these proteins, accounting for as much as 

1-2% of total cellular protein (Herendeen et al., 1979). Humans possess at least II distinct 

genes that code for Hsp70 isoforms with homologues found in the cytoplasm (Hsp70 and 

Hsc70), endoplasmic reticulum (BiP/Grp78) and mitochondria (mtHsp70/Grp75) (Tavaria et 

al., 1996). Hsc70 is the major constitutively expressed isoform whilst Hsp70 is an inducible 

form upregulated in response to stress in addition to a variety of physiological processes 

such as cell cycle control, proliferation and differentiation. In E. co/i, there are at least three 

cytosolic isoforms with the most common being DnaK whilst yeast has 14 isoforms, 9 of 
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which are found in the cytosol (Table 1-1) (Wegele et al., 2004). The evolution of multiple 

isoforms with varying sub-cellular localisation along with a large diverse collection of co-

chaperones has facilitated the broad spectrum of activities with which Hsp70 is implicated. 

For clarity, Hsp70 will be used to refer to the Hsp70 family as a whole unless otherwise 

specified. 

Archaea Eubacteria Yeast Plants Mammals 

Cytosol 	DnaK' DnaK Ssal Hsp70 Hsp70 

- Hsc66 Ssa2 Hsc70 Hsc70 

- Hsc62 Ssa3 - - 

- - Ssa4 - - 

- - Ssbl - - 

- - Ssb2 - - 

- - Sszl - - 

ER 	 - - Grp78/Bip Grp78/Bip Grp78/Bip 

Mitochondria 	- - Sscl mtHsp70 mtHsp70 
- - Ssc2 - - 

Chioroplasts 	- - - Coni7O - 

- - - IAP70 - 

- - - sHsp70/CSS1 - 

- - - sHsp70/S78 - 

not all archaea have Hsp70 homologues 
Table 1-1 Species and organelle Hsp70 isoforms. 

Hsp70 is involved in many processes including traditional chaperone roles of folding nascent 

polypeptides, the prevention of aggregation of unfolded proteins and the solubilisation and 

refolding of aggregated proteins. In addition, Hsp70 plays important roles in protein 

translocation across membranes and the disassembly of protein complexes including the 

clathrin cage, viral capsids and the nucleoprotein complex (Sousa and Lafer, 2006). These 

diverse functions are achieved via the repetitive transient association of Hsp70 with exposed 

hydrophobic patches in client proteins in an ATP-dependent manner. 

It is estimated that 5-18% of bacterial proteins require Hsp70 for correct folding (Bukau et 

al., 2000) with this figure likely higher in eukaryotes due to the larger average protein size. 

Hsp70 is thought to assist protein folding in a passive manner, binding exposed hydrophobic 

patches on unfolded proteins thereby preventing them from aggregation and providing an 

amenable environment for correct folding. An additional theory is that Hsp70 uses energy 
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derived from its intrinsic ATPase activity to provide a "power stroke" which can overcome 

kinetic barriers for folding (Slepenkov and Witt, 2002). 

ATP binding sitef. 

K 

Figure 1-2 N-terminal }-lsp7O nucleotide binding domain. The NBD is composed of two lobes (1 
and II) which are further divided into sub-domains A and B. ATP binds in a cleft between these lobes 
and makes contacts with residues from all four subdomains. This figure and all subsequent molecular 
graphics figures produced with PyMol (http://www.pymol.org ). 

1.1.1. The Hsp70 structure 

Hsp70 is composed of two intimately related but functionally distinct domains; the 40 kDa 

N-terminal nucleotide binding domain (NBD), which both binds and hydrolyses ATP and the 

30 kDa C-terminal substrate binding domain (SBD) (Chappell et al., 1987). The SBD can be 
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further divided into an 18 kDa f3-sandwich subdomain which forms the hydrophobic binding 

pocket and a 10 kDa helical-bundle subdomain which forms a lid over the binding pocket 

(Zhu et al., 1996). Substrate binding and release is an allosteric process with ATP binding 

and hydrolysis in the NBD regulating client binding and release in the SBD (Flynn et al., 

1989; Takeda and McKay, 1996). 

The structure of the Hsp70 ATPase domain was first solved in 1990 revealing an actin-like 

fold (Flaherty et al., 1990). It comprises two subdomains (I and II) (Figure 1-2) which are in 

turn divided into two small subdomains (A and B). The nucleotide binding site is located in a 

cleft between the two lobes and nucleotide binding occurs in conjunction with one 

magnesium and two potassium ions. 

The C-terminal SBD can be divided into an 18 kDa 13-sandwich subdomain and a 10 kDa 

helical subdomain. Hendrickson and colleagues solved the first structure of the SBD from 

the E. co/i Hsp70 homologue DnaK in complex with the heptapeptide NRLLLTG (Zhu et al., 

1996). This revealed an 8-stranded anti-parallel f3-sandwich, which contained the 

hydrophobic binding groove, and a helical-bundle which appeared to form a lid over the 

bound peptide (Figure 1-3). 

The peptide binding groove is formed by pairs of inner and outer loops connecting the 13-
sheets. Conserved aliphatic and aromatic residues form a hydrophobic cavity that 

accommodates the central leucine of the bound peptide (Figure 1-3). The preferred substrate 

binding motif is characterised by a core of four or five consecutive amino acids enriched in 

hydrophobic residues, especially leucine, and flanking regions enriched in basic residues and 

such sequence bind with affinities in the range 5 nM to 5 jAM (Bukau and Horwich, 1998). 

The helical subdomain, composed of five a-helices (ctA-aE), sits over the binding groove. 

Only helices ciA and uB are in direct contact with the 13-sandwich, with the long helix uB 

extending over the binding groove and forming contacts with the loop regions connecting the 

13-sheets (Figure 1-3). Of particular importance are conserved salt bridges between the C-

terminal region of helix aB and the outer loops of the 13-sandwich, termed the latch, with 

disruption shown to affect peptide binding (Figure 1-3) (Fernandez-Saiz et al., 2006). 

Helices aC-ciE, together with the C-terminal half of helix aB, form an anti-parallel three-

helix bundle. It has been proposed that the helical subdomain acts as a lid, regulating access 

to the substrate binding pocket (Thu et al., 1996). The SBD terminates in a 20-30 residue 

flexible loop. The precise function of this is still unclear but it does interact with several co-

chaperones and eukaryotic cytosolic isoforms terminate in a conserved GPTIEEVD motif 
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important in binding to Hsp40 (section 1 .1 .3.1) and TPR domain containing co-chaperones 

(section 1.4) 

Helical lid f 
13-sandwich 

Figure 1-3 Hsp70 substrate binding domain. The SBD is composed of a 3-sandwich subdomain and 
a helical lid subdomain. The loops connecting the 13-sheets form a hydrophobic peptide binding 
groove which is covered by helix uB of the helical subdomain. The central leucine of the bound 
peptide is accommodated in a pocket lined with conserved hydrophobic residues and encapsulated by 
a pair of little and large conserved hydrophobic amino acids termed the arch. The peptide bound 
conformation is stabilised by "latch" interactions between the outer-loops and the C-terminal end of 
helix aB. 
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Figure 1-4 Two domain structure of bovine Hsc70. Bovine Hsc70 (residues 1-554) (Jiang et al., 
2005) was solved in the absence of most of the C-terminal helical subdomain. The two domains are 
connected by an exposed flexible linker previously implicated in the allosteric control of substrate 
binding. The interdomain interface is formed by helix ctA of the SBD and the cleft between lobes IA 
and LIA of the NBD. The C-terminal region of helix aB was found to have unwound and bound in the 
peptide binding groove. 
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The structure of the complete SBD from E. coli HscA, a specialised Hsp70 chaperone, has 

also been solved (Cupp-Vickery et al., 2004). Despite low sequence conservation with E. 

co/i DnaK (<20 % sequence identity), HscA was shown to adopt an identical structure with 

the same mechanisms of peptide binding. Further f3-sandwich subdomain structures have 

since been published from E. co/i (Stevens et al., 2003) and rat (Morshauser et al., 1999); 

however, none together with the helical subdomain. These structures demonstrate 

evolutionary conservation from prokaryotes to eukaryotes with a near identical overall 

topology of the 13-sandwich and good conservation of the residues important in substrate 

binding. In contrast, the only published eukaryotic structure of the helical subdomain is from 

rat Hsc70 (Chou et al., 2003). Despite structural conservation of the NBD and 13-sandwich 

subdomain between E. co/i and eukaryotic homologues, the helical subdomain of rat Hsc70 

formed a helix-loop-helix that dimerised via a coiled-coil like interaction. 

The structure of a full-length Ilsp70 protein remains elusive with the most complete structure 

published to date being bovine Hsc70 (residues 1 - 554) (Jiang et al., 2005). As with many of 

the SBD structures, successful crystallisation was achieved by the removal of most of the 

helical subdomain, although the remaining protein has been shown to be functionally active. 

The structure provided the first direct insight into the relative spatial orientation of the NBD 

and SBD, showing a bi-lobal conformation with helix aA of the helical subdomain resting in 

a groove between lobes IA and hA of the NBD (Figure 1-4). The structure also supported 

the hypothesis of an exposed linker connecting the two domains with important roles in the 

allosteric regulation of substrate binding (see below). 

1.1.2. The allosteric regulation of substrate binding and release 

Hsp70 achieves its multitude of functions via the repetitive transient association with 

exposed hydrophobic patches on client proteins. This process is allosteric, with ATP binding 

and hydrolysis in the NBD controlling substrate binding and release in the SBD. Structural 

and biochemical evidence has demonstrated that Hsp70 proteins exist in equilibrium between 

two conformations; a low-affinity "open" conformation characterised by rapid substrate 

binding and release and a high-affinity "closed" conformation with slow substrate 

association and dissociation (Mayer et al., 2000). There is a high energy barrier separating 

these two states; spontaneous transition occurs on the time scale of tens of minutes (Vogel et 

al., 2006a) and the functional interconversion is controlled by cycles of ATP binding, 
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substrate-binding, ATP hydrolysis and substrate release. This cycle, described in detail 

below, is graphically illustrated in figures 1-5 and 1-6. 

Open state 
- rapid on/off 
- low affinity 

1iie - 	
k0, 	

- 

	 IF' 

- 	

- 	 k0ff 

T 

GrpE/Bag-1 

Closed state 
Jr 

	

• high affinity 
slow on/off 

Nucleotide 
exchange ,/' 	---_.--.-- 

ADP 

. r I  

Hsp4O/DnaJ 	
) 

JHydrolysis 

J 	 Pi  

:ADP 

Figure 1-5 Hsp70 chaperone cycle. Hsp70 exists in equilibrium between two conformations; an open 
low-affinity state with rapid substrate binding and release and a high-affinity closed conformation 
with slow association and dissociation. ATP binding stabilises the open conformation. Substrate 
binding, in synergy with J domain co-chaperones, triggers ATP hydrolysis and a conformational 
change to the high-affinity closed state trapping the peptide. Exchange of ADP for ATP, facilitated by 
nucleotide exchange factors leads to opening of the binding pocket and substrate release. Open and 
closed structures are models and purely for illustrative purpose. 

The cycle begins with ATP binding to the NBD inducing the adoption of the low-affinity 

open conformation. To do this, a signal must be transduced from the NBD to the substrate 

binding groove, some 50 A in distance; the exact mechanisms of which are only gradually 

becoming clearer. This is thought to begin with the sensing of ATP binding by two residues 

(Lys" and Glu' 76; numbering refers to bovine Hsc70) at the bottom of the ATP binding 

pocket which interact with the -y-phosphate (Figure 1-6) (Vogel et al., 2006a). These 

residues, on lobes 113and IA respectively, effect a change in spatially adjacent Pro 148 , located 

on a conserved strand of lobe IA (Vogel et al., 2006a). This residue has been proposed to be 
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the switch for the conformational change, possibly via a cis-trans isornerisation, with a high 

activation energy for transition between conformations. This switch is relayed, via Arg' 56 , to 

two positively charged residues on the surface of lobe IA (Lys 
160  and Arg 171 ) in the region of 

the inter-domain interface seen in the crystal structure (Vogel et al., 2006b). Although the 

exact mechanism is unclear, this in turn triggers a conformational change in the exposed 

inter-domain hydrophobic linker which is proposed to invade the inter-domain interface at 

the bottom of helix ciA of the SBD (Figure 1-6) (Jiang et al., 2005; Vogel et al., 2006b). 

RI 
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Figure 1-6 Allosteric changes involved in substrate binding and release. ATP binding is sensed 
by two residues at the base of the ATP binding cleft; K71 and E176. This is transduced to a surface 
cluster of positively charged residues (R156, K160 and R171 (not shown)) via P148. This triggers a 
change in the position of the flexible loop around D396 with the conserved hydrophobic motif (LLLL) 
inserting in a hydrophobic pocket at the base of helix uA. This causes changes in the SBD resulting in 
opening of the arch residues and opening of the lid subdornain. Substrate binding, along with J 
domain co-chaperones stimulates the reverse pathway. 
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The secondary phase is the allosteric changes in the SBD that contribute to the opening of 

the substrate binding pocket, proposed to involve two main parts: opening of the helical lid 

and opening of the n-sandwich (Figure 1-6). The crystal structure of the SBD of E. coli 

DnaK showed that a conformational change in the lid would be necessary for substrate 

binding or release to occur (Thu et al., 1996). A second crystal form from the same study 

revealed a conformation whereby the helical lid was bent upwards by 110  half-way along 

helix aB, breaking the bonds of the latch residues, and this was proposed to be the means of 

the allosteric regulation. Evidence from additional structures has further suggested that the 

hinge could be located at the bend between helices aA and aB or could be affected by a 

complete rotation of the helical subdomain (Morshauser et al., 1999; Wang et al., 1998). The 

second, and perhaps more important, effector region is around the substrate binding groove 

itself. Experiments with lidless mutants show they are functionally active under 

physiological conditions (Ungewickell et al., 1997; Wilbanks et al., 1995) implying regions 

outwith the lid in the allosteric control. Changes in the residues lining the binding pocket 

have been implicated with the most important being the conserved complementary little and 

large hydrophobic residues that form the arch over the bound peptide (Ala 40'5  and Tyr43 ' in 

bovine Hsc70) (Figure 1-6) (Mayer et al., 2000). 

The net result of ATP binding is the opening of the SBD. This conformation has low 

substrate affinity and rapid association and dissociation kinetics. Substrate binding triggers 

the cascade of events that result in ATP hydrolysis and the transition to the high-affinity 

closed conformation. This is thought to involve the reverse pathway outlined above with the 

conformational change of the hydrophobic linker vital in positioning the ATPase active site 

into a catalytically favourable conformation (Vogel et al., 2006b). Substrate binding alone, 

however, is not sufficient to stimulate the ATPase rate enough for Hsp70 function and the 

action of a family of J domain containing co-chaperones is required (see section 1.1.3.1.). 

These bind the NBD and work in synergy with substrate binding to stimulate ATP hydrolysis 

by several orders of magnitude (Laufen et al., 1999). ATP hydrolysis stabilises the closed 

high-affinity conformation enclosing the client in the substrate binding groove. The cycle is 

completed by the exchange of ADP for ATP. ADP has relatively slow dissociation constant 

from the NBD and can represent the rate limiting step in substrate release. The regulation of 

nucleotide exchange comes in the form of nucleotide exchange factors (NEFs) GrpE, Bag-1 

and HspBPl. These bind the mouth of the nucleotide binding cleft, inducing ADP 

dissociation by opening the NBD (Mayer and Bukau, 2005). The high physiological 

concentration of ATP leads to rapid association and the cycle continues. 
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1.1.3. Hsp70 co-chaperones 

Hsp70 alone is poorly active and non-specific. As mentioned above, its basal rate of ATP 

hydrolysis is low and sequences suitable for Hsp70 binding occur approximately every 40 

residues in proteins. In addition to the numerous isoforms with different expression patterns 

and sub-cellular locations, specificity is achieved by the interactions with numerous different 

co-chaperones which recruit llsp70 proteins to carry out a variety of specific tasks. Many of 

these have a modular architecture in which a chaperone-interacting domain is fused to other 

domains of different function. These serve to regulate the activity of Hsp70, target Hsp70 to 

specific locations or bring Hsp70 together with specific binding partners. Co-chaperones 

include the J domain chaperones and NEFs mentioned above and also a diverse family of 

tetratricopeptide repeat (TPR) containing proteins. 

Auxilin 

P 	

Hsc70ATP 

el'~~ 111'h'.  -0- a 
Coated Vesicle 	 'Fast 

I 	 p1  
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Figure 1-7 The role of Hsc70 in uncoating of clathrin-coated vesicles. Auxilin recruits Hsc70 to 
endocytosed clathrin-coated vesicles. ATP hydrolysis leads to formation of a metastable complex and 
ultimately dissociation. Free clathrin is recycled. Figure taken from Jiang et al., 2000. 
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1.1.3.1. The J domain family of Hsp70 co-chaperones 

The J domain, or Hsp40/DnaJ, family of co-chaperones are modular adaptor proteins tailored 

to a specific function through the presence of target-specific domains in addition to a J 

domain capable of interacting with Hsp70. The J domain regulates the chaperone cycle by 

binding to Hsp70 in the closed conformation and potentiating the rate of ATP turnover 

(Hennessy et al., 2005). Hsp40-like co-chaperones are a diverse family of proteins with the 

number of isoforms from species to species exceeding the number of Hsp70 isoforms; 6 in E. 

coli, 20 in S. cerevisiae, 33 in C. elegans and 44 in human (Mayer and Bukau, 2005). Hsp40-

like proteins are defined by the presence of the J domain, a 70-amino-acid domain with 

similarity to the initial 73 amino acids of the archetypal Hsp40, E. coli DnaJ (Pellecchia et 

al., 1996). The domain forms a four helix structure with a loop region containing a highly 

conserved histidine, proline, and aspartic acid (1-IPD) motif. This motif is present in virtually 

every J domain and is integral in the interaction with Hsp70 (Tsai and Douglas, 1996). 

I-Isp40/DnaJ is the archetypal family member. It has broad specificity and is thought to 

participate in the general protein folding pathway together with Hsp70. Hsp4O/DnaJ is 

capable of binding unfolded proteins directly and is thought to bind to unfolded or nascent 

polypeptides and present them to Hsp70 (Hennessy et al., 2005). 

Further Hsp40-like proteins have more specialised roles. One well studied example is 

auxilin, a J domain protein linking Hsp70 to the endocytic pathway (Lemmon, 2001). 

Receptor mediated endocytosis is an important cellular function for the rapid import of 

membrane bound receptors into cells. This is facilitated by the protein clathrin, which forms 

large cage-like vesicles encapsulating the imported proteins. On import, Hsp70 is recruited 

to the clathrin-coated vesicles by the J domain containing clatherin assembly protein auxilin 

(Pishvaee et al., 2000) and stimulates disassembly in an ATP dependent reaction (Figure 1-

7). Of interest, the yeast auxilin homologue Swa2p contains both a J domain and a TPR 

domain (see section 1.4.), both of which are necessary for the interaction with Hsp70 (Xiao 

et al., 2006). 

Although no structural evidence is available for a J domain-Hsp70 complex, an 

experimentally based model has been proposed with the auxilin J domain docked into the 

cleft between lobes IA and hA (Figure 1-8) (Gruschus et al., 2004). This region is vital in 

the interdomain allosteric communication (section 1.1.2) and is also the site for the 

interdomain interface in the bovine Hsc70 two domain structure (section 1.1.1; Figure 1.4). 
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Figure 1-8 Experimentally based model of auxilin J domain-Hsp70 NDB complex. Auxilin 
(green) is predicted to bind in the cleft between lobes IA and hA of the NBD (orange) in a position 
marginally overlapping with helix aA of the lid subdomain. The conserved J domain HPD motif is 
shown in spheres as is the bound ATP. 

1.1.3.2. Nucleotide exchange factors 

Substrate release requires the dissociation of ADP and the association of ATP. Spontaneous 

ADP dissociation is slow and can represent the rate limiting step in substrate release. Several 

unrelated proteins have evolved to facilitate the process of nucleotide exchange, namely 

GrpE, Bag-] and HspBP I. These three structurally unrelated proteins function in a similar 

manner, binding to the mouth of the nucleotide binding cleft inducing a conformation 

incompatible with nucleotide binding (Figure 1-9). 

1.1.3.3. The TPR family 

A family of co-chaperones interact with Hsp70 via a TPR domain, a helical motif commonly 

implicated in protein-protein interactions. These provide a wide range of additional 

functionality encompassing communication with the Hsp90 machinery, protein degradation, 

protein transport, regulation of signal transduction pathways and neurotransmission amongst 
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many other roles. The TPR domain and the family of TPR domain containing co-chaperone 

is discussed in detail below (section 1.3). 
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Figure 1-9 Crystal structures of the Hsp70 NBD complexed with nucleotide exchange factors. (a) 
Bag-I (Sondermann et al., 2001), (b) GrpE (Harrison et al., 1997) and (c) HspBPI (Shomura et 

at., 2005). All NEFs bind in a similar manner at the mouth of the ATP binding cleft, opening the 
nucleotide binding pocket and triggering ADP release. 
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1.2. The Hsp90 chaperone machinery 

Like Hsp70, the 90 kDa heat shock protein 1-lsp90 is one of the most abundant proteins 

constituting 1-2 % of total soluble protein (Lai et al., 1984). Homologues are found in all 

branches of life except archaea with an essential function in eukaryotes (Wegele et al.. 

2004). As with the Hsp70 family, different members are localised in different cellular 

compartments with inducible Hsp90a and constitutive Hsp903 (85% sequence identity) 

found in the cytosol (Hickey et al.. 1989), the 94 kDa glucose regulated protein (Grp94) 

located in the endoplasmic reticulum (Little et al.. 1994) and TNF receptor-associated 

protein I (Trap I/Hsp75) found in the mitochondrion (Song et al., 1995). The family is well 

conserved throughout evolution with yeast and E. co/i homologues sharing 60% and 40% 

sequence identity respectively with human Hsp90 (Table 1-2; Figure 1-10). 
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Figure 1-10 Domain architecture of Hsp90 homologues from human, yeast, E. coli, the 
mitochondrion and the endoplasmic reticulum. CR - charged region, Mito - mitochondrial signal 
peptide, ER - endoplasmic reticulum signal peptide. 

Unlike the l-lsp70 chaperone machinery, l-lsp90s do not participate in the folding of newly 

translated polypeptides (Nathan et al., 1997) and are instead involved ill the functional 

maturation of a sub-set of client proteins at a late stage of their folding process (Jakob et al., 

1995). These proteins are commonly involved in signal transduction and include kinases e.g. 

Cdk2, Chkl and ErbB2; transcription factors e.g. all steroid receptors and p53; enzymes e.g. 

DNA polymerase a, telomerase and nitric oxide synthase; and cytoskeletal proteins e.g. 

actin, tubulin and myosin (Figure 1-1I). An updated list of ---120 proteins with direct 

biochemical evidence of interacting with Hsp90 is maintained by Cyril Picard (Appendix 

A.1). In addition, a recent survey of yeast proteomic and genomic data predicted 198 

physical interactions (Zhao et al., 2005). 
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Archea 	Eubacteria 	Yeast 	Plants 	Mammals 

Cytosol 	 - 	 HtpG 	Hsc3p 	Hsp90 	Hsp90a 

Hsp83 	 - 	 Hsp90b 

ER 	 - 	 - 	 - 	 Grp94 	Grp94/GP96 

Mitochondria 	- 	 - 	 - 	 - 	 Trapl/Hsp75 

Chioroplasts 	- 	 - 	 - 	 cpHsp82 	- 

Table 1-2 Species and organelle Hsp90 isoforms. 

l-4sp90o 	 TRAP 
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TPR proteins \ 1 
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FKBPI/52iJNc-45) _______ 	 WWWOW factors 
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Hsp40 Telonerase

Heh cases 
Cancer 

Hsp7O Stress 
Cdc37 Reverse Endocrine function 
p23 

0*00 / \, transcriptoses Plant irrifulity 
Ahal 

&rp94 (ER) 	HtpG (E. co/i) 
bevelopnent 
Evolution 

Cochaperones Clients Processes 
Figure 1-11 Overview of Hsp90 chaperone system. Hsp90 honiologues, in conjunction with 
numerous co-chaperones, act on a wide range of client proteins and affect multiple cellular processes. 
Figure taken from Jackson et al., 2004. 

1.2.1. The Hsp90 structure 

Hsp90 exists predominantly as an elongated dimer. Each monomer is composed of three 

domains an N-terminal ATPase domain, a middle domain and a C-terminal domain that is 

responsible for dimerisation (Figure 1-10). A highly charged, proteolytically-sensitive, linker 

region connects the N-terminal and middle domains the length and composition of which 

varies both between species and isoforms (Wegele et al., 2004). 

The 25 kDa N-terminal domain is well conserved across species and both binds and 

hydrolyses ATP. Crystal structures of this domain from human (Stebbins et al., 1997) and 

yeast (Prodromou et al., 1997) homologues revealed a two-layer a/P sandwich structure that 

forms an unusual ATP binding pocket known as the Bergerat fold (Figure 1-12) (Bergerat et 

al., 1997), an atypical ATP binding domain unlike others from kinases or Hsp70. The ATP 

binding site is also the target for N-terminal binding small-molecule Hsp90 inhibitors such as 

geldanamycin and radicicol. Despite poor sequence conservation, the structure was found to 

be similar to several DNA manipulating proteins, namely type 11 and type IV DNA 

topoisomerases, the MutL mismatch repair protein and bacterial DNA gyrase B, leading to 

the superfamily classification of the GHKL ATPases (Dutta and Inouye, 2000). 
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Figure 1-12 Structures of the N-terminal, middle-domain and C-terminal domain from Hsp90. 
The N-terminal domain forms an atypical ATP binding site called the Bergerat fold common in the 
GHKL family. The middle-domain is composed of three smaller subdomains, two terminal u3a 

subdomains and a linking small three helix domain. The N-terminal al3cz  subdomain contains a 

conserved catalytic arginine and a cluster of hydrophobic residues involved in substrate binding. The 
C-terminal domain is responsible for the dimerisation via a four-helix bundle. It also contains an 

amphiphilic helix which is predicted to be involved in client binding. 

18 



S it 	 i tit I aiil h:niui 	I  udi ~ 	11 , iI. ( 	 I I') I I)) 	apCmflc 	\1c111 

The crystal structure of the middle domain revealed three distinct parts - two terminal aa 

domains connected by a three helix linker (Figure 1-12) (Meyer et al., 2003). The first 

subdomain consists of a five-stranded 3-sheet sandwiched by an N-terminal small helix and a 

C-terminal three-turn helix. This leads into a short three helix linker followed by the final 

structural unit that consists of an unusual aa fold different to previously described domains 

of similar architecture (Wegele et al., 2004). Extending the evolutionary relationship of the 

GHKL superfamily, the larger N-terminal aa unit is structurally homologous to domains 

from DNA gyrase and MutL. Comparison with these homologues, which contribute a 

catalytic lysine that interacts with the y-phosphate of the N-terminally bound nucleotide, 

highlighted a conserved arginine essential for ATPase activity (Meyer et al., 2003). 

Furthermore, a conserved hydrophobic patch and an amphiphilic protrusion have been 

implicated as a major site in the binding of client proteins. 

The C-terminal domain is a small -12 kDa domain responsible for the dimerisation of Hsp90 

(Minami et al., 1994) and also the interaction with the family of TPR domain containing co-

chaperones (Owens-Grillo et al., 1996). Despite lower sequence conservation compared to 

the N-terminal and middle-domains, structures from E. coli HtpG (Harris et al., 2004) and 

yeast Hsp90 (Ali et al., 2006) reveal a homologous mixed U/P domain with a core four-helix 

bundle, two pairs from each monomer, constituting the dimerisation interface (Figure 1-12). 

In both structures, a small amphiphilic helix caps the dimerisation interface and is proposed 

to participate in client binding (Harris et al., 2004). The extreme C-terminal >35 residues 

constitute a flexible loop, absent in HtpG, terminating in the highly conserved MEEVD-

COOH motif implicated in the binding of the TPR co-chaperones (see below). 

The intrinsic conformational flexibility of Hsp90 has hampered efforts to obtain a full-length 

atomic resolution structure with structures available only for the individual domains. In 

2006, however, two groups presented full-length medium resolution Hsp90 structures; Pearl 

and colleagues first describing the structure of yeast Hsp90 in complex with co-chaperone 

p23/Sbal (Ali et al., 2006) followed by the publication of the full-length E. coli homologue 

HtpG by Agard and co-workers (Shiau et al., 2006) (Figure 1-13). These structures not only 

provide direct evidence regarding the domain organisation, confirming predictions of parallel 

elongated dimers with proximal N-terminal domains, but also give valuable insight into the 

massive conformational changes involved in the chaperone cycle. 
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Figure 1-13 Structures of full-length Hsp90 from yeast and E. coil in ATP bound closed 
conformations and nucleotide free open conformations. In both structures, dramatic 
conformational changes are witnessed between the two states with the exposure of a series of 
hydrophobic surfaces implicated in client binding in the open state. 

1.2.2. Structural aspects of the ATPase and chaperone cycle 

The ATPase activity of the N-terminal domain is vital for Hsp90 function (Obermann et al., 

1998: Panaretou et al.. 1998). l-lsp90 has a weak affinity for ATP with dissociation constants 

in the high micromolar range. It also possesses a very weak intrinsic ATPase activity with 

yeast l-lsp90 hydrolysing one ATP approximately every three minutes and the human 

homologue about 10 times slower (Wegele et al., 2004). The kinetics are, in part, due to slow 

conformational changes that occur upon nucleotide binding. In the nucleotide free state. 

Hsp90 exists in an open, flexible conformation (Figure 1-14). ATP binding, along with client 

binding, triggers a major rearrangement leading to a more compact structure and also 

dimerisation of the N-terminal domains in a so called "molecular clamp" mechanism (Figure 
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1-14) (Prodromou et al., 2000; Prodromou et al., 1997). A domain-swap involving a single 

strand between the dimerised N-terminal domains is necessary to form a catalytically active 

conformation (Prodromou et al., 1997). The closed conformation of Hsp90 is reliant on the 

presence of a 'y-phosphate and hydrolysis destabilises the N-terminal dimerisation interface 

leading to the relaxation to the open state and client release. 
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® 0 ATP/ADP 

P i   

Figure 1-14 Hsp90 chaperone cycle. In the nucleotide free state Hsp90 exists in a highly flexible 
open conformation primed for client binding. ATP binding induces a conformational change resulting 
in dimerisation of the N-terminal domains. This step is slow and accounts for the low rate of ATP 
hydrolysis. N-terminal dimerisation is also inhibited by co-chaperones Hop and Cdc37 and facilitated 
by Ahal. ATP hydrolysis results in client activation and, due to destabilisation of the N-terminal 
dimerisation interface, client release. Client protein is shown purely for illustrative purposes. 

The client binding site on Hsp90 remains poorly defined. Chaperones, as discussed with 

Hsp70. bind proteins via hydrophobic binding interfaces. Both complete open-state Hsp90 

structures show exposed hydrophobic patches projecting into the cavity between the two 

monomers. These hydrophobic segments, from the middle and C-terminal domains, have 

been proposed to be client binding sites (Figure 1-13) (Harris et al., 2004; Meyer et al., 2003; 

Shiau et al., 2006). In both yeast and E. coli, ATP binding induces larges rearrangements in 
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these subdomains, changes that may be passed onto a bound client protein (All et al., 2006 

Shiau et al., 2006). 

The first insight into the structure of a client loaded Hsp90 complex comes from the electron 

microscopy single-particle reconstruction of Hsp90 complexed with kinase Cdk4 and co-

chaperone Cdc37 (Vaughan et al., 2006). Although low resolution, this shows an 

asymmetric complex with Cdk4 bound to the N-terminal and middle-domain of one 

monomer, in the region of the middle-domain hydrophobic loop, and Cdc37 bound to the N-

terminal domain of the other monomer, blocking the ATP induced dimerisation (Figure 1-

15). The complex is proposed to represent an early complex in the chaperone cycle, prior to 

dissociation of Cdc37 and dimerisation of the N-terminal domains. 

C - 
..1 

Hsp9O 

 

Cdk4/6 

Figure 1-15 EM model of a Hsp90-Cdc37-Cdk4 complex. Cdc37 (green) and Cdk4 (red) bind 
asymmetrically with Cdc37 binding the N-terminal domain of one Hsp90 monomer (orange) and 
Cdk4 binding around the middle-domain of the other (blue). This is thought to represent an 
intermediate client complex, prior to Cdc37 dissociation and ATP hydrolysis. Figure taken from 

Vaughan et al., 2006. NB. t-Isp90 inverted 180 0, with C-terminal at top, compared to other figures. 

1.2.3. Hsp90 co-chaperones 

In eukaryotes, the function of Hsp90 is tightly regulated and fine-tuned by a multitude of co-

chaperones. These can be loosely divided into those that contain TPR domains and those that 

do not. Similar to l-lsp70, the largest family of these is the TPR domain containing co-

chaperones, which are discussed below (section 1.4). Co-chaperones not containing TPR 

- 	 Ir_k 	 )ic'}j!Ic'. 	 22 



domains include p23, Cdc37 and Aha, which all regulate the Hsp90 chaperone cycle by 

controlling its rate of ATP turnover (Figure 1-14). 

 

- Binds dimerised 
N-terminal 

- Slows ATPase 

Hsp9O-NT 

\ 	-11 

- Binds open 
N-terminal 

- Inhibits ATPase 

 

- Binds middle-domain 
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Figure 1-16 The interaction of Hsp90 and co-chaperones p23, Cdc37 and Ahal. (a) p23 binds to 
the N-terminal domain in the ATP bound dimerised state slowing the rate of ATP turnover (All et al., 
2006). (b) Cdc37 binds to the monomeric ATP bound N-terminal inhibiting dimerisation and 
consequently ATP hydrolysis (Roe et al., 2004). (c) Ahal binds to the middle-domain and stimulates 
ATP hydrolysis (Meyer et al., 2004). It is thought to achieve this by positioning the conserved 

catalytic loop in a catalytically favourable conformation. 

- 1111 1 - t lutin - ihe I kp 7 () I kp)() chaperone Iuachrncr\ 	 23 



IuUtIi3I iiiJ 	chuinial iitdi 	I ihe C 	 I !)() Jpuoiic 

p23 is a small protein with chaperone activity (Freeman et al., 1996). It is found in a wide 

range of Hsp90-client complexes and is proposed to be involved at a late stage in the 

chaperone cycle, enhancing the release of active client proteins (Young and Hard, 2000). 

The crystal structure of the Hsp90-p23 complex shows it binds to the N-terminal of Hsp90, 

in the ATP induced dimerised conformation (Figure 1-16a), slowing the rate of ATP 

turnover (Ali et al., 2006). 

Cdc37 is required by many kinases for Hsp90 mediated functional maturation (Pearl, 2005). 

It acts as an adaptor protein, binding kinases via its N-terminal domain and I-Isp90 via its C-

terminal domain. Cdc37 binds to the N-terminal domain of Hsp90 and the crystal structure of 

the core Cdc37-Hsp9O interacting complex shows the interaction to be located around the lid 

to the ATP binding site (Figure 1-16b) (Roe et al., 2004). This arrests the Hsp90 ATPase 

cycle by blocking the ATP triggered N-terminal dimerisation (Roe et al., 2004; Siligardi et 

al., 2002). 

Ahal is involved in client activation and was shown to stimulate the Hsp90 ATPase rate to 

about 12 times the basal level (Wegelc Ct al., 2004). Biochemical expei iiiiciiis showed N-

terminal domain of Ahal interacted with the middle-domain of Hsp90 (Meyer et al., 2003). 

This was confirmed in a crystal structure of the complex (Figure 1-1 6c), demonstrating that 

the N-terminal domain of Ahal increases the ATPase rate by facilitating a change of the 

middle-domain catalytic loop into a more active conformation (Meyer et al., 2004). 

1.3. The Hsp70/Hsp9O multichaperone machinery 

Far from occurring in isolation, there is also a great deal of communication between the 

Hsp70 and Hsp90 pathways. A sub-set of FIsp90 clients are first processed by the Hsp70 

chaperone pathway prior to passing to the Hsp90 pathway for final maturation. The most 

extensively studied example of this is in the activation of steroid hormone receptors (SFIRs). 

SHRs are cytosolic ligand activated transcription factors that translocate to the nucleus upon 

ligand binding, augmenting or suppressing the expression of certain genes. They require both 

Hsp70 and Hsp90 in addition to several further co-chaperones in order adopt a functionally 

active conformation. The identification of participating proteins and knowledge of the 

precise order of events have progressed significantly over the last 20 years and are now well 

understood. The first step involves the recognition of newly synthesised SF[R by Hsp40 

(section 1.1.3.1), which delivers it to Hsp70 (Figure 1-17). This then interacts with an 

Hsp90-Hop complex, forming a multi-protein intermediate complex consisting of Hsp70, 
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SHR. Hsp40, Hsp90 and Hop. Hop is an adaptor protein with two TPR-clamp domains (see 

section 1.4.2.1.) capable of simultaneously binding Hsp70 and Hsp90. Hsp70 and Hop then 

dissociate and are replaced by p23 (section 1.2.3) and a TPR-clamp domain containing 

immunophilin such as FKBP52 or Cyp40 (see section 1.4.2.2) to form the final complex. 

ATP hydrolysis by Hsp90 then triggers the release of the active SHR from the final complex. 

For a review see Pratt and Toft, 2003. 

Although less well understood, Hsp70 and Hsp90 also cooperate in the activation of protein 

kinases. As discussed in section 1.2.3. Cdc37 is an adaptor protein linking kinase clients to 

Hsp90. Hsp70, Hop and p23 have been detected in Cdc37 complexes, although little is 

known about the sequence of chaperone interactions (Pearl and Prodromou, 2006). 
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Figure 1-17 The I-Isp70 and Hsp90 chaperone pathways. Nascent or unfolded polypeptides are 
presented to Hsp70 by Hsp40 forming the early complex. Non Hsp90 clients (labelled Y) are 
processed by the Hsp70 cycle alone. For a sub-set of Hsp90 substrates (labelled X), Hsp90 is recruited 
to the early complex by Hop, which is capable of interacting with both Hsp70 and Hsp90, forming the 
intermediate complex. Hsp70 and Hop are replaced by a prolylisomerase, i.e. the immunophilins, and 
p23 in the final complex. ATP hydrolysis triggers the release of active client. I - ATP bound form, D 
- ADP bound form. Figure taken from Wegele et al.. 2004. 
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1.4. TPR domain containing co-chaperones 

Central to the functional interplay between the Hsp70 and Hsp90 pathways are the diverse 

family of TPR domain containing co-chaperones. Fascinatingly, many TPR co-chaperones 

are capable of interacting with both Hsp70 and Hsp90 via their common extreme C-terminal 

EEVD peptide motifs. Some TPR proteins, such as Hop and Tpr2, contain multiple TPR 

motifs which may differentially recognise Hsp70 and Hsp90 whilst others contain a single 

TPR motif capable of binding both chaperones. 

1.4.1. The TPR repeat 

The tetratricopeptide repeat (TPR) is a short helical repeat belonging to the family of non-

globular repeats, widely used to mediate protein-protein interactions, examples of which 

include ankyrins, armadillo repeats, HEAT repeats, hexapeptide repeats, leucine-rich repeats 

and WD-40 repeats. TPR proteins are ubiquitously distributed, found in eukaryotes, 

prokaryotes and archea; with 14,133 TPR containing proteins in the TnterPro 

Tetratricopeptide-1 ike helical family (IPRO 11990). 

The TPR domain was first described in the early 1990s as a modular domain in the cell 

division cycle proteins in yeast (Hirano et al., 1990; Sikorski et al., 1990). The domain was 

named due its 34 amino acid periodicity with repeats showing a great diversity in primary 

sequence. The small domain is all helical, forming a tight helix-loop-helix structure, and is 

found to occurr in multiple tandem repeats. TPR motifs ranging from 1-16 repeats have been 

found, with three tandem repeats being the most prevalent (D'Andrea and Regan, 2003). The 

motif is commonly found in signaling proteins as a mediator of protein-protein interactions. 

1.4.1.1. Sequence and structure 

The TPR is a 34 amino acid degenerate repeat. Analysis of the first described motifs 

revealed a largely conserved pattern of amino acid type, size and physiochemical nature 

(Sikorski et al., 1990). Eight positions, in particular, were found to adhere to a consensus: 

helix A - W4, L7, G8, Yl 1; helix B - A20, F24, A27, P32 (Figure 1-18a). Out with these 

positions there is no sequence conservation amongst the TPR family as a whole; within 

families, such as the Hsp70/Hsp9O interacting TPR domains, there is conservation of key 

residues implicated in the interaction (Owens-Grillo et al., 1996). 
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Figure 1-18 (a) Alignment of four 34 residue TPR repeats showing conserved positions. (b) The 
structure of one TPR domain; conserved small hydrophobic residues are located in positions of close 
contact and large residues form the helical interface. (c) The crystal structure of the TPR domain from 
PP5: three consecutive TPR motifs form a concave channel capped by a C-terminal helix. 

The TPR domain was predicted to have a high propensity for forming amphiphilic helices 

forming a coiled-coil like interaction with "knobs into holes" packing (Hirano et al., 1990). 

Circular dichroism spectroscopy confirmed the high helical content and secondary structure 

prediction suggested each repeat to form two short stretches of a-helix. These predictions 

were confirmed with the first crystal structure of a TPR domain from protein phosphatase 5 

(PP5) showing a completely novel helical array (Figure 1-18c) (Das et al., 1998). The TPR 

motif was shown to form a pair of anti-parallel a-helices, with three successive repeats 

packing in a parallel fashion with helix A, of one repeat interacting with helix A+ 1  of the 

following repeat. The packing generates a right-handed super-helical architecture with a 

concave channel defined by the side-chains of residues belonging to helix A, and a convex 

surface formed by residues from helices A and B. This packing has been predicted to form a 
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right handed super-helix with a helical repeat of approximately seven TPR motifs (Das et al., 

1998). The PP5 structure contained an additional C-terminal capping helix; an equivalent is 

present in nearly all TPR structures solved to date and it has been suggested that this could 

be important in the solubility and stability of the fold (D'Andrea and Regan, 2003). 

The structure of PP5 demonstrated the conserved consensus residues are important for the 

structural integrity of the fold. The small hydrophobic residues (8, 20 and 27) are located in 

the positions of the closest contacts between the two helices and the large hydrophobic 

residues (4, 24) form the intra-domain helical interface (Figure 1-18b). 

Name 	Domain organisation 	 Description 

Hop -I TPR  H TPR  M TPR  }- Hsp70/Hsp9O adaptor 

Tpr2 - 	TPR H TPR H DnaJ  F- Hsp70/Hsp9O adaptor 

FKBP51 -1 FKI H FK2 I TPR F- SHR maturation 

FKBP52 -1 FKI  H FK2 I TPR  i- SHR maturation 

Cyp40 -PP!aseI -j 	TPR  F- SHR maturation 

FKBP38 -] 	FK 	F- I TPR FKBP38 

AlP -1 	FK 	I I TPR  F-- AhR maturation 

pp5 -I 	TPR 	I I Phosphatase I Protein phosphatase 

Tom70 - 	TPR 	I I TPR  }-1 TPR  I Mitochondrial import 

Tom34 -1 TPR PR F- Mitochondrial import 

Chip 	-I TPR  I 	I U-box  I- 	 Protein degradation 

Unc-45 -I TPR  I 	I ARM  I 	Myosin assembly 

Wisp39 -fIjIII1---- 	 Cell-cycle control 

Cns-1 	 I TPR  I 	 Unknown, essential in yeast 

SGT 	I TPR  I 	 Cell-cycle/neurotransmission 

Table 1-3 Domain organisation of all TPR domain co-chaperones shown to interact with Hsp70 

or Hsp9O. 
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1.4.2. Hsp70/Hsp9O co-chaperones 

TPR domain containing proteins are involved in numerous, diverse biological processes 

including cell cycle regulation, transcriptional control, mitochondrial transport, 

neurotransmission and protein folding. Biochemical evidence and structures of TPR-peptide 

complexes demonstrate that the TPR domain is involved in mediating protein-protein 

interactions and functions as an adaptor or scaffold domain to bring together components of 

multi-protein molecular complexes. As discussed above, one major class of TPR domain 

containing proteins is those interacting with chaperones Hsp70 and/or Hsp90. These proteins 

provide additional functionality and fine-tune the chaperone activity of Hsp70 or flsp90 by 

targeting them to specific complexes and regulating their chaperone cycles. 

Approximately 15 TPR domain containing proteins, from multiple species, have been shown 

to interact with Hsp70 and/or I-Isp90. These include the Hsp70/Hsp9O adaptor protein Hop, 

several irnmunophilins with petidylprolyl isomerase activity, a DnaJ domain containing 

protein capable of regulating the ATPase activities of both Hsp70 and Hsp90, a protein 

phosphatase, and several members of the mitochondrial import machinery (Table 1-3). To 

illustrate the diverse functionality these co-chaperones impose, four examples are discussed 

in more detail, figure 1-20 provides an overview of these functions. 

1.4.2.1. Cross-talk between the Hsp70 and Hsp90 pathways - Hop and TPR2 

Hop and TPR2 both contain two TPR-clamp domains and have been shown to interact with 

and regulate the behaviour of both Hsp70 and Hsp90. 

Hop was first identified in yeast and named Sti 1 for stress inducible protein 1 (Nicolet and 

Craig, 1989). As discussed in section 1.3, Hop functions as an adaptor protein in the 

functional maturation of a sub-set of client protein that are first handled by the Hsp70 

pathway prior to final processing by Hsp90 (Figure 1-17). Hop contains nine TPR repeats 

evenly clustered into three TPR motifs. The first of these, TPR1, is responsible the 

interaction with Hsp70 and the second, TPR2A is the interaction site for Hsp90 (Figure 1-19) 

(Scheufler et al., 2000). flop inhibits the ATPase activity of Hsp90 (Prodromou et al., 1999), 

maintaining it in a state primed for client binding. Client loaded Hsp70 complexes are 

recruited to the Hop-Hsp90 complex, facilitating transfer of the substrate to Hsp90. 

Subsequent dissociation of Hsp70 and Hop ultimately leads to ATP hydrolysis and activation 

of the client. 
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Figure 1-19 Hop can interact with both Hsp70 and Hsp90 via distinct TPR domains. TPRI 
interacts with Hsp70 and TPR2A interacts with Hsp90. The ligand for TPR2B is unknown although it 
has been implicated in the interaction with Hsp70 and Hsp90. 

The human protein Tpr2 was identified from yeast two-hybrid screens using the C-terminal 

domain of l-lsp90 as bait (Bryclizy et al.. 2003). It contains two three-repeat TPR arrays in 

addition to a J domain homologous to the Hsp40 subdomain. Experiments showed it was 

capable of interacting with both Hsp70 and Hsp90. stimulating the ATPase activity of Hsp70 

via its J domain and inducing the nucleotide-independent release of substrate from Hsp90. 

Whereas Hop interacts with l-Isp70 and Hsp90 by distinct TPR motifs, the TPR domains of 

Tpr2 seem to bind both chaperones. Based on the results it was postulated that Tpr2 works in 

the opposite direction of Hop, allowing the recycling of polypeptides not fully folded after a 

single cycle through the Hsp70/Hsp9O system. 

1.4.2.2. Protein transport - the peptidyiprolyl isomerase TPR co-chaperones 

A sub-set of the large immunophilin family, target proteins of a number of 

immunosuppressive agents including FK-506 and cyclosporin, contain TPR domains and are 

capable of binding Hsp70 and/or l-lsp90 (Galat, 2003). These include the large 

immunophilins FKBP5 I, FKBP52 and cyclophilin 40; proteins characterised by 

peptidylprolyl isomerase (PPIase) activity. In addition, the protein phosphatase PP5 binds 

FK506 with low affinity and shares some sequence homology with the FKBP PPIase domain 

(Silverstein et al., 1997). These proteins play a critical role in SHR assembly (see section 

1.3) with different immunophilins having preference for different SHRs. 
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Figure 1-20 Multiple functions of TPR domain containing co-chaperones. TPR domain co-
chaperones provide specificity and selectivity to the Hsp70/Hsp9O chaperone machinery. Examples 
discussed in section 1.4.2 include the cycling of proteins between the Hsp70 and Hsp90 systems by 
adaptor proteins Hop, involved in the transfer of clients from Hsp70 to Hsp90 and Tpr2, involved in 
the recycling of incompletely folded proteins back to Hsp70. Client proteins are maturated in 
complexes containing imunophilins e.g. FKBPSI, FKBP52 (shown), Cyp40, AlP and PP5. These 
have been shown to prime SHRs for ligand binding and also to bind the motor protein dynein and 
facilitate nuclear import. Several TPR proteins are also involved in import of nuclear encoded 
mitochondrial proteins including T0M34, TOM70 and AlP. Finally, both Hsp70 and Hsp90 also 
provide a link to protein degradation via the E3-ligase Chip. Figure adapted from Young et al., 2004. 
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In addition to selectively modulating hormone-binding affinity of some steroid receptors 

(Denny et al., 2000; Reynolds et al., 1999; Scammell et al., 2001), the TPR-containing 

immunophilins, excluding FKBP5 1, have been shown to interact with cytoplasmic dynein, 

one of the major microtubule-associated motor proteins (Pratt et al., 2004). The interaction 

with dynein is mediated by PPIase domain but is independent of its enzymatic activity. 

These co-chaperones are thought to link Hsp90-bound steroid hormone receptors to the 

microtubule cytoskeleton, facilitating import to the nucleus. In addition to SHRs, Hsp90 has 

also been proposed to regulate the trafficking of p53 in a similar manner (Pratt et al., 2004). 

1.4.2.3. Mitochondrial protein import 

Mitochondria contain roughly 1000 different proteins, only eight of which are encoded by 

the mitochondrial genome. The remaining 99% are nuclear encoded and synthesised by 

cytosolic ribosomes as preproteins with positively charged N-terminal or internal targeting 

sequences for import into the mitochondria. The translocation machinery of the 

mitochendrial outer membrane (TOM) includes the Tom70, Tom?,? and Tom20 preprotein 

receptors (for review see van der Laan et al., 2006). Before import, many mitochondrial 

preproteins are bound by Hsp70 and/or Hsp90, which are proposed to maintain them in an 

unfolded state. The preprotein is delivered to the TOM, docking with Tom70 or Tom20 prior 

to passage though the Tom20/Tom22ITom40 pore. 

Several of the constituents of the TOM contain TPR domains, namely Tom70, Tom2O and 

Tom34. Tom70 contains nine TPR domains arranged as three three-repeat arrays (Table 1-

3). Additionally, an N-terminal transmembrane domain serves to anchor it to the 

mitochondrial outer membrane. The first TPR domain is capable of binding Hsp70 and 

Hsp90 (only Hsp70 in yeast) and the second TPR domain recognises internal preprotein 

sequences (Young et al., 2003). Upon interaction of chaperone-preprotein complexes with 

Tom70, the ATPase activities of Hsp70 and flsp90 have been proposed to facilitate protein 

translocation through the mitochondrial pore (Young et al., 2003). 

The TPR domain of Tom2O is incapable of binding Hsp70 or Hsp90; instead it is the target 

for N-terminal preprotein sequences. Intriguingly, the C-terminal region of Tom20, ending 

EDDVE, was found to interact with arylhydrocarbon receptor interacting protein (Alp) 

(Yano et al., 2003), a small TPR containing immunophilin constituent of arylhydrocarbon 

receptor-Hsp90 complexes (Bell and Poland, 2000). Furthermore, AlP was found to form 

complexes with preproteins and Hsp70, and it was hypothesised that Hsp70 and Alp existed 

as a chaperone complex with preprotein in the cytosol. Tom2O would then displace Hsp70 
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from AlP by competition of their C-terminal peptides and the preprotein would be 

transferred from ALP to Tom2O. 

The recently identified mammalian Tom34 has also been proposed to function in the import 

of mitochondrial preproteins (Chewawiwat et al., 1999). It contains two TPR-clamp domains 

and has been shown to interact with Hsp90 (Young et al., 1998). However, it is suggested 

that Tom34 is cytosolic and functions to maintain preproteins in an unfolded state suitable 

for mitochondrial import. 

1.4.2.4. A link between protein folding and degradation 

In order to maintain accurate protein quality control the cell has to maintain a tight balance 

between protein folding and degradation (see section 1.5 for what happens when this goes 

wrong). One protein central in determining the cellular fate of proteins processed by the 

Hsp70/Hsp9O chaperone machinery is Chip (C-terminus of Hsp70 interacting protein). Chip 

is a 35 kDa protein consisting of a TPR-clamp motif capable of interacting with both Hsp70 

and Hsp9 01 and a U-box doiaiii Uiai functions to target proteins tor ubiquitination and 

subsequent proteasome-dependent degradation (Murata et al., 2001). Chip has inhibitory 

effects on the chaperone cycles of both Hsp70 and Hsp90 leading to destabilisation of 

chaperone-substrate complexes and subsequent targeting for proteasomal degradation 

(McDonough and Patterson, 2003). This is thought to be executed by a Chip-Hsp70-client 

complex and Hsp90 clients must be transferred to Hsp70 first. The U-box domain of Chip 

has intrinsic E3 ubiquitin ligase activity and catalyses the conjugation of ubiquitin chains to 

target proteins (Xu et al., 2002). In addition, Chip has been proposed to escort proteins 

actively to the proteasome with evidence of a direct interaction between Chip and 

proteasomal subunits (Connell et al., 2001). 

1.4.3. Mechanism of binding 

TPR domains have evolved to interact with Hsp70 and/or Hsp90 via an interaction with the 

extreme C-terminal which, fascinatingly, is common between Hsp70 and Hsp90; both 

eukaryotic cytosolic proteins terminate in a flexible loop with an extreme EEVD-COOH 

motif. As a result of this converged mechanism of binding, many TPR co-chaperones are 

capable of interacting with both Hsp70 and Hsp90. Comparative sequence analysis of 

Hsp70!Hsp9O binding TPR motifs revealed conservation of a number of hydrophobic and 

charged amino acids on the concave surface of the domain. Mutation of some of these 

residues diminished or abrogated binding in the isolated TPR domain from PP5 (Russell et 
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al., 1999). Further, mutation of the EEVD motif also disrupted binding in several co-

chaperone interactions (Liu et al., 1999; Russell et al., 1999). 

(a) 

KS 

N9 

N40 
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17 ,  

Figure 1-21 The carboxylate clamp binding mechanism. (a) Conserved positively charged residues 
on the concave surface of the TPR domain form a network of charge-charge interactions with the 
negatively charged substrate residues. (b) Although the carboxylate clamp provides a general anchor, 
peptide-TPR complexes from several different TPR domains show a range of binding orientations. 
hopTPR2A-MEEVD - cyan, hopTPRl-GPTIEEVD - purple, PP5-MEEVD - yellow and Chip-
MEEVD - red. 
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Definitive evidence for this interaction came with the crystal structures of two TPR domains 

from Hop in complex with the C-terminal peptides from Hsp70 and Hsp90 (Scheufler et al., 

2000); TPRI in complex with the Hsp70 peptide GPT[EEVD and TPR2A in complex with 

the Hsp90 peptide MEEVD. These show a common network of electrostatic interactions 

between the conserved positively charged residues on the TPR surface and the EEVD 

peptide motifs in a manner termed the "two-carboxylate clamp" (Figure 1-21a). Peptide 

residues Asp°  and Val' were shown to act as a general anchor with the highly conserved 

glutamates critical for Hsp90 binding but less so for the interaction with Hsp70 (Brinker et 

al., 2002). Hydrophobic sequences upstream of the EEVD and specific residues within the 

TPR groove were found to influence the discrimination between the TPR domains. 

Several further structures of TPR-Hsp70/90 peptide complexes have since been solved 

confirming the general two-carboxylate binding mechanism (Cliff et al., 2006; Wu et al., 

2004a; Thang et al., 2005). These structures, however, also illustrate the diversity of evolved 

binding modes with a great deal of variation in the orientation of the peptides downstream 
£'._.._.. .1_ 	tTT 	..__i_._.. i1.._...._ I 	II\ 
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Disease 	 Proteins 	 Cause 
Alzheimer's disease J3-amyloid protein/tau Aggregation 
Parkinson's disease a-Synuclein Aggregation 
Huntington's disease Huntingtin Aggregation 
Creutzfeld Jakob disease Prion protein (PrP) Aggregation 
Cystic fibrosis CFTR protein Trafficking 
Cancer p53 Trafficking 
Sickle cell anemia Hemoglobin Aggregation 
Gaucher's disease 3-glucosidase Trafficking 
Nephrogenic diabetes insipidus V2 vasopressin receptor Trafficking 
Transthyretin amyloidoses Transthyrctin Aggregation 
Retinitis pigmentosa Rhodopsin Trafficking 
UB LB -Antitrypsin aB 1 a -Antitrypsin Trafficking/aggregation 
Fabry a-Galactosidase 	- Trafficking 

Table 1-4 Diseases and specific proteins associated with protein misfolding and aggregation. 

1.5. 	Protein folding and disease 

The importance of the fidelity of the protein folding system is illustrated by the ever growing 

list of disorders resulting from aberrant folding reactions (Table 1-4) and protein folding has 

been implicated in up to half of human diseases (Bradbury, 2003). Not only can misfolded 

proteins lose their function, such as CFTR in cystic fibrosis which is prematurely targeted for 

proteasomal degradation, but may also form toxic species, including oligomers or larger 
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aggregates characteristic of amyloidosis conditions such as many neurodegenerative 

disorders. The involvement of protein chaperones in these disorders is becoming 

increasingly evident and activation or inhibition of chaperone pathways are proving effective 

targets for therapeutic intervention. In addition, protein misfolding is responsible for many 

cancers and Hsp90, required by many mutated and misfolded clients for aberrant function, is 

proving an effective target for treatment for multiple malignancies. 

1.5.1. Neurodegenerative disorders 

Many neurodegenerative disorders are due to protein misfolding and a common feature is the 

intra- or extracellular accumulation of misfolded, aggregated or ubiquitinated proteins 

(Berke and Paulson, 2003). Common conditions include Alzheimer's, Parkinson's and 

Huntington's diseases (for an overview see Chaudhuri and Paul, 2006). 

Alzheimer's disease is an age-onset progressive degenerative disease of the brain causing 

memory loss and impaired behaviour. It is characterised by the extracellular deposition of f-
amyloid protein (An) and neurofibrillary tangles (NFT) in the brain and the intraneuronal 

accumulation of A3-42 and the microtubule associated protein tau. FIsp70 and Hsp90 have 

been implicated in maintaining AP-42 and tau solubility and suppressing aggregation (Ansar 

et al., 2007; Sahara et al., 2005). 

Parkinson's disease is characterised by muscular rigidity, tremor and slowing of physical 

movement. The symptoms result from the loss of dopaminergic neurons in the substantia 

nigra due to the accumulation of intracellular inclusion bodies called Lewy bodies (Lansbury 

and Brice, 2002). These are commonly composed of aggregated a-synuclein leading to 

mitochondrial dysfunction, oxidative stress and caspase degradation (Chaudhuri and Paul, 

2006). Genetic polymorphisms in Hsp70 have been associated with risk (Wu et al., 2004b) 

and up-regulation of both Hsp70 and Hsp90 has been associated with protection against 

Lewy body toxicity (Auluck et al., 2002; McLean et al., 2001). 

Polyglutamine diseases are caused by CAG trinucleotide repeats that result in polyglutamine 

tracts and proteins likely to misfold. Huntington's disease is the most common polyglutamine 

disease, caused by a mutant version of the protein huntingtin rendering the protein 

aggregation-prone (Hague et al., 2005). Overexpression of Hsp70 in flies and mouse models 

has been shown to increase resistance to polyglutamine-induced toxicity (Dedeoglu et al., 

2002; Shulman et al., 2003). 
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1.5.2. Cystic fibrosis 

Cystic fibrosis is a hereditary disorder that affects about 0.05% of Caucasians. It is caused by 

mutations in the CFTR protein and characterised by thick mucous secretions in the lung and 

intestines (Welch, 2004). CFTR is a membrane protein possessing 12 transmembrane 

domains, two nucleotide-binding domains and a highly charged regulatory hydrophilic 

domain. CFTR is related to other adenine nucleotide-binding cassette (ABC) transporters 

and CFTR has been shown to function as a cAMP-regulated chloride channel in epithelial 

cells (Welsh et al., 1992). Although a large number of mutations have been found, a deletion 

of one phenylalanine (AF508) is attributed to 70% of cystic fibrosis cases (Riordan et al., 

1989). The AF508 allele of CFTR has been confirmed as a trafficking mutation that blocks 

maturation of the protein in the ER and targets it for premature proteolysis (Kunzelmann and 

Nitschke, 2000). 

Molecular chaperones Hsp70 and Hsp90 have both been found to interact with wild-type and 

mutant nascent CFTR. This interaction is found to be transient with the wild-type protein but 

more long-lived with the mutant and it has been proposed that this targets the protein for 

premature degradation (Skach, 2006). The correct processing of CFTR is temperature 

sensitive with protein targeted for degradation at 37 °C but a portion reaching the native state 

at <30 °C suggesting the extended interaction is due to misfolding (Denning et al., 1992). 

Further, sodium 4-phenylbutyrate (4PBA) has been shown to inhibit the interaction of 

F508-CFTR with Hsp70, allowing mutant CFTR to escape targeting for degradation 

(Rubenstein and Zeitlin, 2000). 

1.5.3. Hsp90 and cancer 

Hsp90 is involved in maintaining the conformation, stability, activity and cellular 

localisation of multiple signal transduction proteins, many of which are oncoproteins or 

tumour suppressors e.g. v-Src, c-Erb2, Raf-1, Akt, Bcr-Abl, and p53 (Wegele et al., 2004). 

Mutations in some of these proteins result in constitutively active but conformationally 

unstable mutants that require Hsp90 to maintain their aberrant function. Small-molecule 

inhibitors of Hsp90, such as the unrelated geldanamycin and radicicol, disrupt Hsp90 

chaperone complexes and have been shown to be highly effective in reducing cellular levels 

of oncogenic client proteins via degradation by the proteasomal pathway (Sharp and 

Workman, 2006). One geldanamycin derivative, 12-AAG, proved effective in phase I 

clinical trials demonstrating Hsp90 as a valid pharmacological target and showed clinical 

efficacy in patients with melanoma, breast and prostate cancers (Sharp and Workman, 2006). 
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1.6. C. elegans as a model system 

C. elegans is a free-living nematode, about 1 mm in length, which lives in temperate soil 

environments. Its use as a model organism in molecular and developmental biology research 

began in the 1960s, pioneered by Sydney Brenner (Brenner, 1974). C. elegans represents a 

genetically tractable multicellular eukaryotic organism simple enough to be studied in great 

detail. It is easy to culture and manipulate and it shares many organ systems with higher 

animals including a nervous system. Wild-type individuals contain a constant 959 cells and 

the complete cell lineage, depicting which cells are derived from which, was completed in 

the 1980s by John Suiston. The C. elegans genome, first published in 1998 (Consortium, 

1998), represented the first sequenced genome of a multicellular organism. C. elegans 

homologues have been identified for 60-80% of human genes making it an attractive 

organism in the study of human disease. Significant biomedical discoveries in Alzheimer's 

disease, Type II diabetes and depression have been enabled by C. elegans research (for 

review of C. elegans as a model system see Kaletta and Hengartner, 2006). Facilitating this, 

C. elegans are especially amenable to disruption of the function of specific genes by RNA 

interference allowing the study of knock-down phenotypes (Tabara et al., 1998). 

C. elegans has been used a model system of stress responses and diseases of protein 

misfolding. In particular, model systems have been established for the study of Alzheimer's, 

Parkinson's and Huntington's disease (Kaletta and Hengartner, 2006). C. elegans contains 

homologues for Hsp70 and Hsp90 in addition to many regulatory co-chaperones. The C. 

elegans Hsp70 multigene family consists of 11 isoforms and includes orthologues for the 

Hsp70 family members Hsp70, Hsc70, Grp78/BiP and Grp75/mtHsp7O (Figure 1-22) 

(Heschl and Baillie, 1989; Heschl and Baillie, 1990). C. elegans has one cytosolic Hsp90, 

Daf-21, in addition to homologues for mitochondrial located TRAP1/mtllsp90 and Grp94 of 

the endoplasmic reticulum (Figure 1-23). Daf-2 1 is abundantly expressed, representing 3% 

of cDNA clones of a library isolated from mixed stage worms (Birnby et al., 2000) and, as 

with other eukaryotes, is essential for survival. 
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Figure 1-22 Alignment of C elegans Hsp70 family members. C. elegans contains three cytoplasmic 
Hsp70s (hsp-1, hsp-70 and F44E5.4) which terminate in the common C-terminal GPTIEEVD motif 
implicated in co-chaperone binding. In addition, there are two ER localised isoforms (hsp-3 and hsp-

4), one mitochondrial homologue (hsp-6) and an isoform lacking the C-terminal flexible loop 
(Fl lFI.1). NBD underlined yellow, SBD f3-sandwich subdomain underlined blue and SBD helical 
subdomain underlined green. 

1.7. 	Project outlines 

1.7.1. Structural studies of the C-terminal domain of C. elegans Hsp70 

Despite abundant structural information regarding the NBD and the 13-sandwich subdomain 

(section 1J.1), structures of the C-terminal lid subdomain are limited to E. coil homologue 

DnaK and rat homologue Hsc70. Despite structural conservation of the NBD and 13-sandwich 

between E. co/i and rat, the C-terminal subdomains were observed to adopt significantly 

different conformations; a three-helix bundle in E. coil and an anti-parallel coiled-coil dimer 

in rat. Limited by the available data, it is unclear whether these reflect a true divergence 

between prokaryotes and eukaryotes. Alternatively, the structures could represent different 

conformational states or the rat structure, because it was solved as an isolated C-terminal 

subdomain, could be a crystallographic artefact. To investigate this further, the crystal 

structure of the C-terminal subdomain from C. elegans was solved. Unexpectedly, this 

revealed structural conservation with the helical lid from E. coil. Further, comparison with 

the rat structure revealed a domain-swap dimerisation mechanism potentially providing 

insight into the folding pathway of the small three-helix bundle subdomain. Work for this 

project contributed to two publications - 

Worrall, L., and Walkinshaw, M. D. (2006). Crystallization and X-ray data analysis of the 10 
kDa C-terminal lid subdomain from C. elegans Hsp70. Acta Cryst. F 62, 938-943. 

Worrall, L., and Walkinshaw, M. D. (2007). Crystal structure of the C-terminal three-helix 
subdomain from C. elegans l-lsp70. Biochemical and Biophysical Research Communications 
357. 105-110. Coordinates and structure factors deposited under the PDB-lD 2P32. 
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Figure 1-23 Alignment of C. elegans Hsp90 proteins. C. elegans contains one cytoplasmic Hsp90 
(daf-21). ER isoform Grp94 (T05E1 1.3) and mitochondrial located mtHsp75 (R151.7). 
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1.7.2. Biochemical and structural studies of two putative TPR domain containing co-

chaperones 

Work contributing to a previous doctoral degree identified two C. elegans TPR domain 

containing co-chaperones likely to interact with Hsp90 (Opamawutthikul, 2005). These 

proteins were found to be the C. elegans homologues for small glutamine-rich TPR 

containing protein (SGT) and Hsp70/llsp9O organising protein (HOP). In this study, these C. 

elegans proteins have been cloned, expressed and purified to near homogeneity with the 

objective of pursuing biochemical investigations regarding the native states of the proteins 

and their interactions with Hsp70/Hsp9O. In addition, structural studies were also conducted. 

Biochemical studies of native SGT revealed it formed high-affinity dimers with an elongated 

shape. Further, it was demonstrated that SGT interacted with the C-terminal peptides from 

HSp70 and Hsp90 with equal affinities. Despite the crystallisation of full-length SGT and its 

isolated TPR domain, the crystals were not of sufficient quality for X-ray diffraction. 

Studies on C. elegans HOP suggested it might exist as a dimer in solution. In addition, a 

tight binding interaction was demonstrated with human and C. elegans Hsp90 homologues. 

1.7.3. Prediction of the complete repertoire of C. elegans TPR co-chaperones 

The aim of the final study was to define the complete repertoire of C. elegans TPR domain 

containing proteins capable of interacting with Hsp70 or Hsp90. TPR domains demonstrated 

to interact with Hsp70/Hsp9O have a well defined domain architecture with strict 

conservation to the consensus for the residues defining the carboxylate-clamp motif. A 

profile hidden Markov model (HMM) method was employed to search for Hsp70/Hsp9O 

interacting TPR domains in the C. elegans proteome and genome. This highlighted a family 

of 12 proteins; nine of which are homologues of proteins known to interact with Hsp70 or 

Hsp90. The remaining three are uncharacterised putative proteins and represent targets for 

further study. 
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2. Crystal structure of the C-terminal 10 kDa helical 

subdomain from C. elegans Hsp70 

2.1. 	Introduction 

As discussed in detail in chapter 1, Hsp70 is an essential molecular chaperone involved in 

numerous protein folding processes. It belongs to a family of ubiquitously expressed proteins 

that exist in virtually all living organisms (Wegele et al., 2004). Hsp70 consists of two 

domains; a 40 kDa N-terminal nucleotide binding domain (NBD), which both binds and 

hydrolyses ATP, and a 30 kDa C-terminal substrate-binding domain (SBD) (Chappell et al., 

1987). The SBD can be further divided into an 18 kDa beta-sandwich subdomain, which 

forms a hydrophobic peptide binding groove capable of binding exposed hydrophobic 

patches on proteins, and a 10 kDa helical-bundle subdomain that forms a lid over the peptide 

binding groove (Zhu et al., 1996). The only eukaryotic structure solved for the 10 kDa C-

terminal lid is from rat (Chou et al., 2003), which has an anti-parallel coiled-coil mediated 

dimer. This is in contrast to the monomeric three-helical bundle observed in the E. coli 

homologue DnaK (Zhu et al., 1996), which shares approximately 17% sequence identity. 

Since it is the lid domain that restricts access to the peptide binding groove, structural 

knowledge of this domain should increase understanding of the process of client binding and 

release. 

The C. elegans I-Isp70 multigene family consists of 11 paralogues and includes orthologues 

for the Hsp70 family members Hsp70, Hsc70, GRP78/BiP and GRP75/mtllsp70 (see Figure 

1-22). Gene hsp-I (Wormbase 1D F261310.3) encodes Hsp70A, the C. elegans Hsp70 

orthologue. Hsp70A is closely related to the Drosophila heat inducible Hsp70s and the S. 

cerevisiae SSA Hsp70 subfamily. The hsp-1 gene is normally expressed throughout 

development and upon heat-shock the hsp-I mRNA is enhanced 2-6 fold. Down-regulation 

of hsp-I via RNA interference results in a small reduction in the life-span of an age-1 mutant 

indicating that lisp-I may play some role in regulating longevity (www.wormbase.com ). 

This chapter details the cloning, expression, purification, crystallisation, X-ray data analysis, 

phasing and refinement of the 10 kDa lid subdomain from the heat-inducible C. elegans 

Hsp70 homologue Hsp70A. This work has contributed to one publication discussing the 

preliminary X-ray data analysis (Worrall and Walkinshaw, 2006) and one presenting the 

final crystal structure (Worrall and Walkinshaw, 2007). 
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(a) '_- - 
Figure 2-1 Cloning of ceHsp70-CT. (a) PCR of ceDNA corresponding to residues 542-640 of 
Hsp70A (lane 1). (b) Restriction digest of cloned PCR product. Double-digest showing band of 
appropriate size (faint; lane 2). 100 bp MW ladder used. in both gels. 

2.2. 	Materials and methods 

2.2.1. Cloning 

The eDNA fragment corresponding to residues 542-640 of the C. elegans Hsp70 homologue 

Hsp70A was generated by polymerase chain reaction (PCR) using C. elegans mixed stage 

N2 cDNA as a template (Figure 2-1a). The sequence was amplified with the TaqPlus® 

precision PCR system (Stratagene) using forward (GCGGCATATGGGA 

CTCGAGTCATACGCCTTC) and reverse primers (GCGGGCGGCCGCTTAGT 

CGACCTCCTCGATC). The resulting PCR product was digested with NdeI and Nod (New 

England Biolabs) and ligated into a similarly digested pET-28a vector (Novagen), 

downstream of the 6XHis coding region (Figure 2-1b). The correct sequence was verified by 

sequencing and is now referred to as ceHsp70-CT. 

2.2.2. Expression and purification 

Recombinant ceHsp70-CT was expressed in Rosetta2(DE3) E. coli (Novagen) in LB liquid 

media containing kanamycin (25 ig/m1) and chloramphenicol (30 tg/ml). Cultures were 

grown with shaking at 37 °C until the A600 was 0.6, and expression induced by addition of 

1 mM isopropyl--D-thioga1actopyranoside (IPTG). Expression was continued for 4 hours 

and cells were harvested by centrifugation (3000 x g for 15 minutes). 
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Figure 2-2 Purification of cellsp70-CT. (a) Ni-NTA purification. 1. Whole-cell extract applied to 
column, 2. Flow-through, 3. Wash, 4. MW markers, 5. Elution from peak 1 (25 mM imidazole), 6. 
Elution from peak 2 (50 mM imidazole), 7. Elution from peak 3 (125 mM imidazole) Fractions 5 and 
6 were pooled. (b) Gel-filtration purification with Superdex 75. 1. MW markers, 2. Sample loaded, 3. 
- Elution profile. Fractions 6-9 pooled. (c) Purified ceHsp70-CT. 1. MW markers, 2. 10 jig ceHsp70-
CT, 3. 5 jig ceHsp70-CT, 4. 2 jig ceHsp70-CT. 

Cell pellets were resuspended at 10% weight per volume in ice-cold lysis buffer (buffer A; 

50mM sodium phosphate pH 8.0, 100 mM NaCl, 0.1mM benzamidine, 0.1mM PMSF) plus 

excess protease inhibitor cocktail (Roche) and sonicated on ice for 6 x 30 second bursts with 

30 seconds cooling in between. The cell lysate was subjected to centrifugation at 30,000 g 

for 1 hour at 4 °C. The supernatant was filtered through a 0.2 jim filter and applied onto a 

lOmi Ni-NTA superfiow column (Qiagen) pre-equilibrated in wash buffer (buffer B; 50mM 

sodium phosphate pH 8.0, 100 mM NaCl, 10 mM imidazole) (Figure 2-2a). Proteins were 

eluted with a stepped imidazole gradient (buffer C; 50mM sodium phosphate pH 8.0, 100 

mM NaCl, 250 mM imidazole). Weakly binding protein was washed off with 10% buffer C 

and 6x1-Iis tagged ceHsp70-CT eluted in two peaks with 20% (50 mM) and 50% (125 mM) 

buffer C respectively (Figure 2-2a). Fractions containing recombinant protein were pooled, 
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concentrated to 1 ml and loaded onto a Superdex 75 HR (Pharmacia) gel filtration column 

(V --120 ml; 1.6 x 60 cm) equilibrated in buffer D (25 mM HEPES pH 7.5, 50 mM KCI, I 

mM DTT) (Figure 2-2b). Recombinant ceHsp70-CT eluted as a single peak and was more 

than 95% pure as judged by SDS-PAGE (Figure 2-2c). Protein was stored at 4 °C in buffer 

D. 

Figure 2-3 Example of ceHsp70-CT crystal grown in 62% saturated ammonium sulphate 
buffered by sodium citrate pH 6.0. Maximum dimension —0.6 mm. 

2.2.3. Crystallisation 

2.2.3.1. Crystallisation of orthorhombic form I crystals and preparation of a heavy-

metal derivative 

Crystals of the 10 kDa subdomain, including the recombinant His tag, were grown by the 

hanging drop vapour diffusion method from a 12 mg ml protein solution in buffer D at 18 

°C. Initial conditions were identified with an ammonium sulphate grid screen. Best crystals 

were obtained using a well solution of 62% saturated ammonium sulphate buffered by 100 

mM sodium citrate pH 6.0 with a 2 ttl drop consisting of a 1:1 ratio of protein and well 

solution. Crystals appeared within 24 hours and grew to dimensions of 0.6 x 0.4 x 0.4 over 3 

weeks (Figure 2-3). Conditions were comparable to those published for the rat homologue 

(Chou et al., 2003; Chou et al., 2001). A mercury derivative was obtained by soaking native 

crystals for 30 minutes in well solution containing 5 mM mercuric chloride followed by 

back-soaking for 30 seconds in well solution. All crystals were flash cooled in liquid 

nitrogen prior to data collection, either directly from mother liquor or with prior soaking in 

cryoprotectant containing 70% saturated ammonium sulphate and 10% glycerol. 
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2.2.3.2. Crystallisation Crystallisation of tetragonal form II crystals 

An additive screen using Hampton Crystal Screen rm  was employed to search for new 

crystallisation conditions (described in detail in section 2.3.2.1.). Four conditions produced 

good quality, single crystals with a similar octahedral habit seen for the orthorhombic crystal 

form (Figure 2-3). Condition 32, containing only 2 M ammonium sulphate, produced small 

single crystals. Conditions 16 (100 mM HEPES pH 7.5 and 1.5 M lithium sulphate) and 33 

(4 M sodium formate) also produced good quality crystals. Finally, condition 39 (100 MM 

HEPES pH 7.5, 2 M ammonium sulphate and 2% PEG 400) resulted in multiple single 

crystals. Crystals from conditions 16, 33 and 39 were flash-cooled directly from the 

crystallisation drop. 

2.2.4. Data collection and processing 

All data were collected at either station 10.1, SRS, Daresbury, UK or station BMI4, ESRF, 

Grenoble, France. All data were collected at 100 K. MAD data were collected from a single 

derivative crystal at 2 wavelengths, corresponding to the mercury L-III peak (1.005 A) and 

the L-III edge inflection point (1.009 A). All data were indexed and integrated using the 

MOSFLM (Leslie, 1992) package and scaled using SCALA (Collaborative Computational 

Project, 1994). 

2.2.5. Data analysis, phasing and refinement 

Specific methods are referred to in the Results section. 

(c) 

\\ 	
/1 	

1• 	- 	 j 

Figure 2-4 Diffraction patterns for cellsp70-CT crystals. (a) Native crystal flash cooled directly 
from mother liquor (crystal native I). Hexagonal ice diffraction rings are present at —3.9, —3.62 and 
—3.44 A. (b) Native crystal flash cooled using 70% saturated ammonium sulphate, 10% glycerol as 
cryoprotectant (crystal native II). (c) Pseudo-precession image showing a section of the Old zone for 
native form I data processed in space-group 12,2 1 2 1 . Reflections show (OkO) = 2n (x-axis) and (001) 
= 4n (y-axis). Produced with XPREP (Bruker AXS, Madison, USA) 
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2.3. 	Results and discussion 

2.3.1. Solving the structure of orthorhombic form I ceHsp70-CT crystals 

Crystals of the 10 kDa C-terminal subdomain of C. elegans Hsp70 were initially produced 

that diffracted X-rays to —3.5 A for native and —4.0 A for derivative crystals. 

2.3.1.1. X-ray data analysis 

2.3.1.1.1. 	Space-group determination 

ceHsp70-CT crystals flash cooled directly from mother liquor (62% saturated ammonium 

sulphate, 100 mM sodium citrate pH 6.0) diffracted X-rays to approximately 4 A. Prominent 

hexagonal-ice diffraction rings at —3.9, —3.62 and —3.45 A were present but did not interfere 

with data processing (Figure 2-4a). Initial indexing identified the most likely Bravais lattice 

to be body-centred tetragonal with unit-cell dimensions a = b = 196.9 A, c = 200.6 A. 

Analysis of unmerged data with the program POINTLESS (Evans, 2006) suggested the cubic 

Laue group I m -3 m or the tetragonal Laue group I 4/rn m m as possibilities. Inspection of 

the systematic absences revealed (hOO) = 2n, (OkO) = 2n and (001) = 4n (Figure 2-4c), 

consistent with tetragonal space-group I422. Data were successfully indexed and processed 

to an R,YM  of —10% for native and derivative crystals flash cooled without cryoprotectant. 

Unit-cell parameters and data reduction statistics are shown in table 2-1. 

In an effort to improve the diffraction quality of the crystals, a series of cryoprotectants were 

screened. Of these, crystals vitrified in 70% ammonium sulphate, 10% glycerol and 100 MM 

sodium citrate pH 6.0 diffracted X-rays to —3.4 A and showed no ice rings (Figure 2-4b). 

However, whilst these crystals could be indexed in a tetragonal lattice, the merging statistics 

were poor (R5 , = 29.1% for data processed in I422). Reprocessing in the orthorhombic 

space-group 1222 (or 12,2 1 2 1 ) resulted in an improved R sym  of 15.5%, albeit still high (Table 

1, native I-Il). 14 1 22 constitutes a minimal non-isomorphic supergroup of space-group 

I222 (Hahn, 2002), and data has been processed in both tetragonal and orthorhombic 

space-groups for comparison (Table 2-1). The possibility of twinning was investigated but 

no indication was present in the cumulative intensity distribution or in the plots of accentric 

and centric moments of E as output by the program TRUNCATE (French and Wilson, 

1978). 
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Data set Native I-I Native 1-I1 Hg - L-IlI Peak Hg -  L-lll inflection 

Cryoprotectant Mother liquor 70% ammonium Mother liquor Mother liquor 
sulphate, 10% 

glycerol 
Beamline SRS, 10.1 ESRF,BMI4 ESRF,BMI4 ESRF,BMI4 

ii-rotation 120° at 10  step 1800 at 1.50  step 1000 at 1° step 100° at 1° step 

Temperature 100K 100K 100K 100K 

Wavelength (A) 1.005 0.978 1.005 1.009 

Space-group 1422 	1222, 1422 	I222 1422 	12,22 1422 	12,22 

Unit-cell a= 196.9 	a= 196.8 a=194.7 	a=194.6 a=195.1 	a=] 95.1 a=195.5 	a=195.5 
parameters (A) b=196.9 	b=196.9 b=194.7 	b=195 b--  195.1 	b--  195.2 b= 195.5 	b=195.6 

c=200.6 	c=200.6 c=200.8 	c=200.8 c=202.8 	c202.8 c=203.5 	c=203.4 
Resolution 	range 45 	3.95 	45 - 3.95 35 	- 3.4 	35 - 3.4 42 - 3.95 	42 - 3.95 42 	- 4.1 	42 - 4.1 
(A) (4.16 	- 	 (4.16 	- (3.58 	- 	 (3.58 	- (4.16 	- 	 (4.16 	- (4.32 	- 	 (4.32 	- 

3.95) 	3.95) 3.4) 	3.4) 3.95) 	3.95) 4.1) 	4.1) 

No. observations 131543 	131659 399719 	388320 142589 	142701 128025 	128245 

(16631) 	(16730) (58219) 	(56298) (21135) 	(23069) (18741) 	(18752) 
No. 	unique 17565 	32857 26797 	52659 16504 	31088 14849 	27844 

reflections (2516) 	(4723) (3841) 	(7591) (2420) 	(4612) (2151) 	(4089) 

Completeness 99.8 	95.3 99.9 	99.9 95(96.1) 	91.5 94.8 	90.9 

(99.8) 	(95.5) (100) 	(99.9) (93.2) (95.8) 	(92.5) 

Anomalous 94.6 	86.1 94.2 	85(86.3) 

completeness (95.6) 	(87.5) (95.2) 

Multiplicity 7.8 	4.0 (3.5) 14.9 	7.4 (7.4) 8.6 (8.7) 	4.6 (4.5) 8.6 (8.7) 	4.6 (4.6) 

(15.2) 

Anomalous 4.6 (4.5) 2.5 (2.4) 4.6 (4.5) 2.5 (2.5) 
multiplicity 

(%) 	 12.8 	11.3 	29.1 	15.5 11(73.9) 10.1 10.4 12 

(88.8) 	(76.8) 	(116.3) 	(111.1) (70.8) (102.9) (105.4) 
R. b (%) 	 5.0 (35.5) 	6.0 (44.3) 	7.4 (25.4) 	6.1 (43.5) 4.7 (27.3) 6.2 (37.4) 4.1 (37.5) 6.6 (63-5) 

1/0(1) 	 14.2 (3.0) 	10.5 (2.4) 	10.1 (1.6) 	10.1 (1.6) 13.7 (2.5) 10(1.9) 13.9 (2.1) 9.9(l.4) 

= 	I(hk1) - (I(hk1) / Y 	 I11(hk1)I 	
Rp' m =I / N - fl' 	L I I,(hkl) 

- (I(hkl))1 / L L l l,(hkl) l  
hkl 	 b 

Table 2-1 Reflection data statistics for data processed in space-groups 14 1 22 and 1222. 
Values in parentheses are for the highest resolution bin. 

90 

1 	0.0 

K=90 	 K=120 	 K=180 
Figure 2-5 Stereographic projection plots of the K = 900, 1200  and 1800  sections of the self-
rotation function of the native form II data set. Calculated from data in the resolution range 35-
4.0 A, integration radius 20 A, showing peaks >30% origin, contour steps of 15%. The data were 
reduced in I222 but the plot shows 432 symmetry. o rotation angle along the radial axis (w = 0° 
in the middle, o = 90° on the perimeter) and sp rotation angle around the perimeter. Figure prepared 
with the programs POLARRFN (Collaborative Computational Project 1994). 
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2.3.1.1.2. 	Content of the asymmetric unit 

For a protein with molecular weight 13094 Da, the Matthew's equation (Matthews, 1968) 

indicates there to be between 9 (Vm = 4.09, solvent = 70%) and 21 monomers (Vm = 1.75, 

solvent = 30%) per asymmetric unit for packing in 1422 and between 18 and 42 for space-

group 12 1 2 1 2 1 . Hsp70 has been shown to form dimers, trimers and higher-order oligomers in 

solution (Benaroudj et al., 1995; Benaroudj et al., 1997; Benaroudj et al., 1996; Chou et al., 

2003; Fouchaq et al., 1999; Nemoto et al., 2006) and a related domain from rat crystallised 

with 4 monomers in the asymmetric unit, as two dimers in a cruciform like arrangement 

(Chou et al., 2003). 

A self-rotation Patterson map calculated using data processed in space-group 12 1 2 1 2 1  reveals 

a high degree of rotational non-crystallographic symmetry (Figure 2-5). Three orthogonal 

fourfold axes are present parallel to the crystallographic twofold axes at K = 90°. Four 

mutually orthogonal threefold axes are present aligned parallel to the cell body-diagonals at 

K = 120°. Additionally, there are twofold peaks at K = 180° every 45° in the ab plane and 

every 90° parallel to the ac and be plane face-diagonals. All peaks are approximately the 

height of the origin and show 432 point group symmetry suggesting a pseudo-cubic packing 

symmetry. Inspection of the native Patterson map also indicates the presence of translational 

non-crystallographic symmetry, with three large non-origin peaks approximately 20% the 

height of the origin observed for crystals of space-group I222 (Figure 2-6). This is 

consistent with the presence of a dimer of trimers or a trimer of dimers related by 

translational non-crystallographic symmetry at four positions, resulting in 24 monomers in 

the asymmetric unit and a solvent content of —60% (V m  = 3.03). 

2.3.1.2. Phasing 

	

2.3.1.2.1. 	Molecular replacement 

The C-terminal domain of C. elegans Hsp70 has 76% sequence identity to the previously 

published rat structure. Extensive molecular replacement trials were carried out using 

various programs [AM0Re (Navaza, 1994), Beast (Read, 2001), MoIRep (Vagin and 

Teplyakov, 1997), Phaser (Storoni et al., 2004)] with multiple models using both the rat 

structure and the E. coli structure as a template, however, all failed to yield a satisfactory 

solution. Low signal-to-noise ratio due to multiple monomers in the asymmetric unit and 

translational non-crystallographic symmetry can be problematic in molecular replacement 

but this could also suggest a significantly different conformation. 
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Figure 2-6 Native Patterson map (0 < u <0.5, v = 0, 0 < w <0.5) calculated from the native data 
processed in space-group I222 using reflections in the resolution range 404 A with Fobs ~ 

3a(Fobs). Three large non-origin peaks are observed at (0,4864, 0.0000, 0.4154), (0.5000, 0.0193, 
0.0847) and (0.0 142, 0.0200, 0.5000) approximately 20% the height of the origin. For data processed 
in 14 , 22, peaks (0.4864, 0.0000, 0.4154) and (0.5000, 0.0193, 0.0847) are symmetry related. Figure 
prepared with the programs NPO and XPLOT84DRIVER (Collaborative Computational Project 
1994). 

2.3.1.2.2. 	Multiwavelength anomalous dispersion 

For these reasons a heavy-metal derivative was sought to enable structure determination 

either by isomorphous replacement or anomalous dispersion methods. A mercury derivative 

was produced that diffracted X-rays to -'- 4 A, with slightly altered unit-cell dimensions along 

all three axes (Table 2-1) and MAD data were collected at two wavelengths from the same 

crystal corresponding to the mercury LIII peak (1.005 A) and inflection point (1.009 A). 

2.1.1.1.1.1. 	Analysis of MAD data 

Analysis for significant anomalous signal and heavy-atom location was performed with 

SHELXC (Sheldrick, 2004) and SHELXD (Schneider and Sheldrick, 2002). An anomalous 

signal-to-noise ratio, based on the mean value of the ratio between the anomalous differences 

IF - F-I and the estimated standard deviation of these differences, of greater than 1.2 was 

deemed significant (Sheldrick, 2004). The peak/inflection point datasets processed in space-

groups 14 , 22 and I222 were estimated to have anomalous signal to 5.4 A16.5 A and 

5.6A/7A respectively (Table 2-2). The maximum resolution to be included for heavy-atom 

location, based on a correlation coefficient between the signed anomalous differences AF of 
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greater than 30% (Sheldrick, 2004), was estimated to be 5.4 A (I422) and 5.6 A (I222) 

(Table 2-2). ceHsp70-CT contains one cysteine, thus 12 mercury atoms were predicted to be 

bound in the asymmetric unit for data processed in 14,22 and 24 for data processed in 

1222. 

Statistics of the anomalous signal-to-noise ratio against resolution, <IF - FII(F - F)> 

Resolution (A) 	00 - 	8.0- 	6.0- 	5.6- 	5.4- 	5.2- 	5- 	4.8- 	4.6- 	4.4- 	4.2- 

	

8.0 	6.0 	5.6 	5.4 	5.2 	5.0 	4.8 	4.6 	4.4 	4.2 	3.95 

14,22 

Peak 2.93 1.87 1.39 1.17 1.12 1.07 0.98 0.95 0.84 0.81 0.78 

Inflection 1.82 1.06 0.90 0.91 0.83 0.75 0.78 0.74 0.80 0.83 0.79 

12,2,2,  

Peak 2.26 1.52 1.17 1.01 1.02 0.94 0.89 0.85 0.80 0.74 0.74 

Inflection 1.46 0.95 0.84 0.78 0.72 0.75 0.77 0.79 0.83 0.75 0.73 

Correlation coefficient between the signed anomalous differences against resolution CC 
(F- F)i, (F-F)j 
1422 

Peak/inflection 	84.5 	55.8 	39.0 	30.7 	16.0 	23.9 	18.2 	3.5 	-0.3 	11.1 	16.5 

12,2,2,  

Peak/inflection 	58.9 	43.7 	29.0 	20.1 	8.3 	12.8 	16.0 	7.3 	-0.4 	5.8 	10.6 

Table 2-2 Anomalous signal statistics for the mercury derivative data processed in space-
groups 14,22 and 12,2 1 2 1 . A signal-to-noise ratio greater than 1.2 indicates a significant 
anomalous signal where 0.8 indicates noise. Data were truncated where the correlation coefficient 
between the signed anomalous differences was greater than -30%. 

2.1.1.1.1.2. 	MAD phasing 

For data processed in 14,22, SHELXD found 3 strong heavy-atom positions and an 

additional 10 weaker positions, with a sharp drop off in occupancy between the third and 

fourth sites (68% and 34%). The heavy-atom substructure was passed to SHARP (La 

Fortelle and Bncogne, 1997) for maximum-likelihood heavy-atom parameter refinement 

followed by density modification with SOLOMON (Abrahams and Leslie, 1996) using a 

solvent content of 60%, resulting in a final correlation coefficient on 1E 2 1 of 0.623. The 

resulting map, whilst noisy, had readily interpretable regions of ct-helical secondary structure 

encompassing the top three heavy-atom positions, with the remaining predicted heavy-atom 

sites located in areas of disordered density. Despite the interpretable features in the map, the 
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solution was not in agreement with the analysis of the data. Only three monomers in the 

asymmetric unit would mean a Matthews coefficient of 12.28 and a predicted solvent content 

of 90%. In addition, whilst the solution was consistent with the self-rotation function (Figure 

2-5), the large non-origin Patterson peaks were not (Figure 2-6). Regions of disordered 

density were observable in areas consistent with the native Patterson vectors (Figure 2-7a) 

but attempts to locate further heavy-atoms failed. 

Figure 2-7 Experimental electron-density maps. (a) Electron-density for data processed in 14,22. 
Interpretable electron density only accounts for 100/0  of the unit-cell, with disordered density 
evident, related by translations consistent with the native Patterson analysis. (b) Electron-density 
for data processed in 12,2 1 2 1 . Density accounts for all predicted 24 monomers in the asymmetric 
unit. Unit-cell translated one quarter along b axis compared to (a). 2-fold axes in yellow, 2 1 -screw 
axes in green, 4 1 -screw axes indicated by green panel, 4 3 -screw axes indicated by blue panel. 

Repeating the procedure with data processed in space-group 12,2 1 2 1 , SHELXD located 27 

heavy-atom positions with occupancies ranging from 100% to 13%, with 15 of the sites 

greater than 50% and no clear drop off in occupancy. Heavy-atom substructure refinement 

with SHARP resulted in 3 sites being discarded and density modification with SOLOMON 

lead to a map with a final correlation coefficient on JE21  of 0.684. The resulting map had a 

clear protein-solvent boundary with the disordered regions from the 1422 solution now 

interpretable and all 24 heavy-atoms located in regions of protein density (Figure 2-7b). The 

crystal-lattice is made up of four identical sub-lattices related by the non-crystallographic 

translations defined by the native Patterson analysis (Figure 2-6). 
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2.3.1.3. Model building and refinement 

The electron density maps resulting from MAD phasing were of sufficient quality to begin 

model building. It soon became apparent that the C. elegans C-terminal subdomain adopted 

an alternative conformation to the closely related rat homologue and resembled the more 

distantly related bacterial DnaK from E. co/i. Furthermore, close comparison of the C. 

elegans electron density with the rat and E. co/i structures revealed the rat structure had 

undergone a 3D domain-swap (discussed in chapter 3). The significance of this was that a 

composite monomer, consisting of helices aB and aC (Mse 541 -G1n585) from rat chain A and 

helices aD and aE (G1u 588-Ser613) from rat chain B, could be generated that fit the electron 

density very well. 

The "search for model in map" option in MOLREP was used to position all 24 rat composite 

monomers using the experimentally derived phases (Figure 2-8a). The resulting model had 

Cys574 , conserved with Cys 575  in Hsp70A, positioned 3 A from a mercury atom (Figure 2-

8b). Rigid-body refinement in REFMAC, using the Hendrickson-Lattman coefficients as 

input, with each monomer as a separate rigid body followed by restrained refinement with 

tight NCS restraints, overall B-factors and inclusion of the 24 heavy-atom positions yielded a 

starting of 49.5/50.1%. In addition, density was also evident for the unmodelled N-

terminal residues and the loop connecting helices aC and aD missing from the rat structure. 

To take advantage of the better diffracting form I-IT crystals (3.5 A compared to 4 A) the 

initial model was used as a molecular replacement search model using the form I-TI data. 

Rigid-body and restrained refinement, as before, yielded starting Rcyst/Rfree  values of 

46.2/47.2%. 

Due to the problems in refining a structure with 24 monomers in the asymmetric unit at poor 

resolution, optimisation of crystallisation conditions was carried out in parallel and a higher 

symmetry better diffracting form was obtained. Consequently, refinement of form I crystals 

was put on hold until a better model was obtained (section 2.5.5). 
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Figure 2-8 MAD phasing of ceHsp70-CT form I data. (a) Electron density map generated 
using experimentally derived phases (section 2.1.1 .1. I .2. with rat Hsc70 composite monomer 
fitted with MOLREP. Hg positions marked in green. (b) Rat structure fitted with Cys-574 
(conserved with Cys 575  in C. elegans) 3 A from Hg position. 

2.3.2. Solving the structure of tetragonal form II ceHsp70-CT crystals 

Refinement of the orthorhombic crystal form was hampered by low resolution and multiple 

monomers in the asymmetric unit. Based on the pseudo-tetragonal and pseudo-cubic nature 

of the crystal lattice it was hypothesised that only a slight modification in the crystal packing 

would be required to adopt a higher symmetry space-group. This would reduce the number 

of monomers in the asymmetric-unit making refinement easier and hopefully improve the 

resolution of diffraction. 

2.3.2.1. Optimisation of crystallisation conditions 

Optimisation of crystallisation conditions in order to find higher symmetry better diffracting 

crystals was carried out using an additive screen described by Birtley and Curry (Birtley and 

Curry, 2005). The simple screen samples multiple new slightly transformed conditions by 

mixing 75% existing conditions with 25% Hampton Crystal Screen 
TM  conditions. Crystals of 

ranging quality were observed in approximately 40% of the new conditions. A common 

additive that appeared to be beneficial for crystallisation was various molecular weight 

PEGs. In particular, four conditions produced nice, single crystals with a similar octahedral 

habit seen for the orthorhombic crystal form (Figure 2-3). Condition 32, containing only 2 M 

ammonium sulphate, produced small single crystals, unsurprising since the final contents are 

virtually identical to the original condition. Conditions 16 (100 mM HEPES pH 7.5 and 1.5 
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M lithium sulphate) and 33 (4 M sodium formate) also produced good quality crystals; 

however, crystals from condition 33 offered no improvement in resolution and symmetry 

(Figure 2-9a) and crystals from conditions 16 diffracted very poorly (Figure 2-9b). Finally, 

condition 39 (100 mM HEPES pH 7.5, 2 M ammonium sulphate and 2% PEG 400) resulted 

in multiple single crystals. These diffracted beyond 3.5 A with some spots observed at 

around 3 A (Figure 2-9c). Furthermore, preliminary indexing suggested a primitive 

tetragonal space-group. 

(b) 

14 A 

Figure 2-9 E)iffraction images for new crystals. (a) Diffraction Ioi ci ystal glown from Hampton 
Structure Screen condition 16. Same space-group as before. Ice-rings at 3.9 and 3.65 A. (b) 
Diffraction for crystal grown from Hampton Structure Screen condition 33. (c) Diffraction for 
crystal grown from Hampton Structure Screen condition 39. Ice-rings at 3.9 and 3.65 A. Data is 
tetragonal and extends to -3 A. 

2.3.2.2. Analysis of X-ray data 

Indexing in MOSFLM suggested a primitive tetragonal space-group with a clear gap in the 

solution penalty to the next best solution. Data were processed in space-group P4 with a unit-

cell dimensions of a = b = 139 A, c = 100.6 A. Analysis of the unmerged intensities 

processed in P4 with POINTLESS (Evans, 2006) confirmed the Laue group P 4/rn m in with 

a four-fold rotation axis parallel to the unit-cell c axis and two-fold axes down a, b and c. 

Inspection of systematic absences revealed I = 2n and h = 2n consistent with space-group 

P42 2 1 2. Data were processed in space-group P4 22 1 2 and scaled with an Rsym  of 13%. Data 

collection and processing statistics can be found in table 2-3. 
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Data collection statistics 
Wavelength (A) 0.978 
Space-group P422 1 2 
Unit-cell parameters (A) a = b = 138.9, c = 100.6 
Resolution range (A) 36 - 3.2 (3.37 - 3.2) 
No. observations 146865 (21737) 
No. unique reflections 16809 (2399) 
Completeness (%) 99.9 (100) 
Redundancy 8.7(9.1) 

13.6 (93.6) 
Rp.im b (%) 5.1 (33.2) 
I/(I) 12.9 (2.0) 
aR- = 	 / Y 	 jL(hkf 	b' 	- = 	/ N - 	II(hkI) - (J(hkl))!/ 	JI(hk!) 

Table 2-3 Reflection data statistics for data processed in space-groups 
P4 22 1 2. Values in parentheses are for the highest resolution bin. 
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Figure 2-10 Self-rotation and native Patterson analysis of form II data processed in space-
group P4 2 2 1 2. (a) Self-rotation map showing peaks at K = 90, 120 and 1800.  (b) Native 
Patterson map (0 <v <0.6, 0< w < 0.5) showing large non-origin peak at (0.5, 0.5, 0.16). 
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2.3.2.2.1. 	Content of the asymmetric unit 

For a protein with molecular weight 13094 Da, the Matthew's equation (Matthews, 1968) 

indicates there to be between 4 (V m  = 4.64, solvent = 73%) and 10 monomers (V m  = 1.86, 

solvent = 34%) per asymmetric unit. Calculation of a self-rotation Patterson reveals the same 

pseudo-cubic general packing as the orthorhombic form (Figure 2-5) but with a 90° rotation 

of the unit-cell around the c-axis (Figure 2-10a). Non-crystallographic translational 

symmetry is also evident (Figure 2-10b) with a strong peak roughly half that of the origin 

present at (0.5, 0.5, 0.16). 

The unit-cell volume (1.9 x 106  A3 ) is one-quarter that of the I2,22 form (7.7 x 106  A) and 

was predicted to consist of one of the four hexamers witnessed in the form I asymmetric-

unit. Consequently, some of the non-crystallographic translations between the hexamers are 

now predicted to have been transformed to crystallographic translations of the unit-cell. 

2.3.2.3. Phasing 

Based on the predictions of the content of the asymmetric-unit, molecular replacement was 

carried out using one hexamer from the I222 solution as a search model. Using PHASER, 

three clear solutions were found with log-likelihood gains in excess of 3000 and Z-scores 

over 60 indicating a very significant solution. As expected, the three solutions, generated by 

rotation of the hexamer about the three-fold NCS axes, revealed the same crystal packing as 

before. 

2.3.2.4. Model building and refinement 

Model building and refinement was carried out with REFMAC (Collaborative 

Computational Project, 1994) and COOT (Emsley and Cowtan, 2004). An initial round of 

rigid body refinement was carried out with the molecular replacement solution resulting in 

an Rcryst/Rfree of 51.6/52.4%. Restrained refinement using tight main-chain and side-chain 

non-crystallographic restraints and an overall B-factor was continued until convergence at an 

Rcryst/Rfree of 46.0/47.6%. At this stage the model still contained the rat sequence and was 

incomplete, with the ordered N-terminal tag residues and 2 residues linking helices aC and 

aD absent. Incorrect residues were mutated and positioned using the rotamer library from 

within COOT followed by refinement to an R t/R&ee  of 39.9/41.3%. Loop 2 residues 

linking helices aC and aD were built and refined to /R c  of 38.1/39.8. Finally, 8 

residues belonging to the N-terminal affinity tag were added, 5 of which belonged to helix 

aB, and the complete model was refined to an Rcryst/Rfree  of 32.0/33.3%. TLS (translation-

libration-screw) refinement was used in the final rounds of refinement with pronounced 
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results. Use of TLS parameters allows the modelling of anisotropic atomic displacement 

factors describing a rigid group and is especially suited to medium to low resolution 

refinement due to the low parameter to observation ratio (Painter and Merritt, 2006; Winn et 

al., 2001). The number of TLS groups to include in the refinement was assessed with the 

TLSMD server (Painter and Merritt, 2006) and one TLS group for each monomer was used, 

leading to an RCTvst/Rfree of 27.6/29.0%. The progress of the R-factors throughout the 

refinement is charted in figure 2-11. 
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Figure 2-11 Refinement of ceHsp7O-CT against form 11 data. R 	(black) and Rfree  (red) 

throughout refinement of model against form II data. 

The final model comprises 6 protomers of 82 residues each (total 3966 atoms). No water 

molecules were included due to the resolution of the data. The model shows good geometry 

and is supported by R ry,, and Rree values of 27.6% and 29.0% respectively for all data 

measured between 36-3.2 A. The final statistics for refinement and structural details can be 

found in table 2-4. 

The quality of the final model was assessed with PROCHECK (Laskowski et al., 1993). The 

Ramachandran plot (Figure 2-12) shows that 75.7% of non-glycine and non-proline residues 

are in the most favoured regions, 16.2% in the additionally allowed regions and 8.1% in the 

generously allowed regions. No residues are in the disallowed regions. This is better than a 

typical structure of 3.2 A resolution which is expected to have 61.7% ± 10% of residues in 

the most favourable region. Comparison with the secondary structure reveals that the most 

favoured regions correlate well with the helical areas whilst the allowed and generously 

allowed residues are largely confined to the connecting loops (Figure 2-12b and c). 
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Refinement against form I-Il data (section 2.4.5) was continued using the final model. The 

four hexamers were positioned using SSM in COOT and refined with one TLS group per 

monomer to a final of 28.7/32.0% (Table 2-4). 

180— B 
	 • 	I 	 -b 

h 

2135 

i 

•i• 	
Cf 	

I 	
-- -- 	 H 

bi) 

 

0 - 

	 I 
-  

• 	 -a 

	

- 	 • 
U • - 	 U 	 U 

-45  
I 	 _tII 

	

U 	 -• • 

H 

	

h 

	
-b 

-180 	-135 	-90 	-45 	0 	45 	90 	135 	180 
Phi (degrees) 

Secoiidaiv tiucture & estimated accessibility 

A 

Key: - 	I lcIi' 	Beta sir:iud 	Rwidoiii coil .\thitt , 	 U Buried 	U  Accessible 

Sequence & Rainachandran regions A Most favoured • Allowed r Generous I Disallowed 
AAAAAAAMUAA*"Aft- 

IJ)rALKI)K I SI'LI)KKK I ELIM'Dii ILK1DSNQrA5KIiIIEIIQQKI)LIGVANPI I SKIYQN 

Figure 2-12 Analysis of sterochemical properties of ceHsp70-CT model with PROCHECK. (a) 
Ramachandran plot. 75.7% of residues in the most favoured region. (b) and (c) Secondary structure 
prediction and sequence Ramachandran regions. Allowed and generously allowed residues located 
in and around loop regions. 
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Crystal 	 Form I-Il 	 Form II 

Space-group 12 1 2 1 2 1  P4222 

Unit-cell dimensions (A) a= 196,b= 196.1,c=200 a = b = 139,c= 100.6 

Resolution range (A) 40 - 3.5 36 - 3.2 

Rcryst '/ Rñee2 
 28.7/32 27.6/29 

Average B-factor (A 2) 111 88 

r.m.s.d. bonds (A) /angles (°) 0.017 / 1.744 0.015 / 1.489 

Ramachandran plot 
Most favoured (%) 75.3 72.1 

Additionally allowed (%) 13.7 22.6 

Generously allowed (%) 9.6 5.3 
Disallowed 1.4 0 

R•, =YIIF,,,,,l -  FrhI 	IFiI 
Ithi 	 hkt 

2  Rçree  as Rcr.,st but summed over a 5% test set of reflections 
Table 2-4 Refinement statistics for form I and form II cellsp70-CT crystals. 

2.3.3. Description of the ceHsp70-CT crystal structure 

ceHsp70-CT was crystallised as a recombinant protein, incorporating a 2.3 kDa (21 residue) 

vector encoded N-terminal 6xflis tag, in two forms; an orthorhombic form belonging to 

space-group I222 (form I; section 2.3.1.) and a tetragonal form belonging to space-group 

P42 2 1 2 (form II; section 2.3.2.). Both the monomeric structure and crystal-lattice packing are 

virtually identical between the two crystal forms. The asymmetric-unit of form I crystals 

consists of four hexamers related by translational non-crystallographic symmetry whilst the 

higher symmetry form II crystals only have one hexamer per asymmetric-unit. Discussion of 

the monomeric and asymmetric-unit structure will concentrate on the form II structure but 

applies equally to both forms. 

The final model consists of six protomers per asymmetric unit. Most residues are well 

modelled except the first 12 N-terminal residues, encompassing the 6xHis sequence, and the 

last 26 C-terminal residues. Tight NCS restraints were applied throughout refinement and all 

six cellsp70-CT protomers are identical with RMSDs <0.05 A. The six protomers form two 

back-to-back trimers related by 32 point group symmetry with an NCS three-fold axis 

through the centre of the trimer and three orthogonal evenly spaced two-fold axes relating 

the two trimers (Figure 2-13a). 
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Figure 2-13 Asymmetric-unit and monomeric ceHsp70-CT structure. (a) Structure of the 
ceHsp70-CT asymmetric unit viewed down the three-fold NCS axis and the orthogonal two-fold NCS 
axis. Asymmetric unit consists of six protomers arranged as back-to-back trimers, coloured red and 
blue. One monomer coloured in a gradient from N-terminal (blue) to C-terminal (red). (b) Monomeric 
structure of ceHsp70-CT. Coloured in a gradient from N-terminal (Blue) to C-terminal (red). 
ceHsp70-Ct contains four helices, aB—aE (beginning/end position numbered), which form a three-
helix bundle. The loop connecting helices aB and uC contains a short 3 10-helix (rl). The recombinant 
6xHis tag contributes five residues to helix aB (coloured grey). (c) Helical-wheel diagram showing 
hydrophobic packing in the core of the structure and intra-chain electrostatic interactions (indicated 
with dotted lines). Green - hydrophobic, blue - charged, red - polar. 
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Within each monomer the secondary structure is all helical, comprising four a-helices, aB-

aE (Table 2-5) and a helical content of 72% according to PROMOTIF (Hutchinson and 

Thornton, 1996). Successive interhelical angles of 153°, 164° and 32° produce an anti-

parallel three-helix bundle, with helices aB-aD arranged in an anti-clockwise up-down-up 

topology. Helix ctE is contiguous with helix aD but kinked 32° at Ala 604  and extends under 

the loop connecting helices aB and ctC (Figure 2-13b). The helices have a classical 

amphipathic nature with a well defined hydrophobic core and are stabilised by intra- and 

inter-chain electrostatic interactions (Figure 2-13c). The primary structure of the three 

helices is similar to the heptad repeat motif found in coiled-coils, with predominantly 

hydrophobic residues located at the first and fourth positions. 

Helix Range (# res) Length (A) Sequence 
aB (-5)542-554 (18) 27.62 (P)RGSHMGLESYAFNLKQTI(E) 

ac 565-585 (21) 30.80 (S)PEDKKKIEDKCDEILKWLDSN(Q) 
aD 590-602 (13) 19.92 (E)KEEFEHQQKDLEG(V) 
aE 605-611(7) 10.41 (A)NPIISKL(Y) 
Table 2-5 Secondary structure content of ceHsp70-CT. 

Residues Sequence Type ito i+3 dist. (A) 
556-559 DEKL [V 5.2 
557-560 EKLK IV 5 
559-562 LKDK I 5.7 
560-563 KDKI I 6.4 
585-588 NQTA IV 5.9 
Table 2-6 cellsp70-CT n-turns. First four turns form a 
short stretch of 3 10-helix in other C-terminal structures. 
Final turn is in loop connecting helices aC and aD. 

Analysis with PROMOTIF also reports the presence of five 13-turns (Table 2-6). The first 

four are consecutive turns positioned in the loop connecting helices aB and aC (Residues 

Asp556-11e563). Comparison with the same regions from homologous structures from rat 

(Chou et al., 2003) and E. coli (Zhu et al., 1996) reveal that this region forms two turns of 

3 10-helix (labelled 1 in figure 3-1a). The final 13-turn is located immediately at the C-

terminal of helix aC (residues Asn 585-Ala588) and forms the hairpin turn allowing the 

structure to fold back on itself. 

In accordance with solution studies of E. coli DnaK (Bertelsen et al., 1999) and the crystal 

structure of rat Hsc70 (Chou et al., 2003), the final 26 C-terminal residues were found to be 
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disordered. This highly mobile region is enriched in glycine and proline residues in many 

Hsp70 family members and contains the conserved co-chaperone binding GPTIEEVD motif 

at the extreme C-terminus. 

Nine residues of the recombinant 6xHis tag are visible in the electron density. Interestingly, 

the five immediately preceding the start of the C. elegans sequence (residue 542) adopt a 

helical secondary structure and form the beginning of helix aB (Figure 2-12b, coloured grey) 

and contribute side-chains to the hydrophobic core of the three-helix bundle. 

2.3.4. Comparison of the orthorhombic and tetragonal crystal lattice 

Both orthorhombic form I crystals and tetragonal form II crystals have the same general 

packing. Form I crystals belong to space-group I222 with unit-cell dimensions a = 194.6, 

b = 195.0, c = 200.8 A whilst form II crystals belong to space-group P4 22 1 2 with unit-cell 

dimensions a=b= 138.9,c = 100.6 A. 

2.3.4.1. Description of the orthorhombic form I crystal-lattice 

Form I crystals have 24 monomers in the asymmetric-unit. These can be defined as four 

hexamers, as described in section 2.6.1, in the same orientation related by translation non-

crystallographic symmetry (Figure 2-14a). Translational NCS was first suggested by the 

large non-origin peaks in the native Patterson map (section 2.4.3.2; Figure 2-14b) 

approximately one-quarter the height of the origin peak at (0.4864, 0.0000, 0.4 154), (0.5000, 

0.0193, 0.0847) and (0.0142, 0.0200, 0.5000). 
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Figure 2-14 Translational and rotational NCS of the asymmetric-unit in space-group 1222. 
(a) The asymmetric-unit can be defined as four hexamers related by the native Patterson vectors in 
(b). (c) Each hexamer is aligned with its local three-fold NCS rotation axis parallel to the unit-cell 
body diagonal. Each hexamer is related to three neighbouring hexamers by two-fold NCS axes 
parallel to the unit-cell edges or face diagonals. (d) The two- and three-fold NCS is illustrated in the 
self-rotation map with peaks at K = 120° and 90°. 

Each hexamer, a pair of back-to-back trimers, has 32 point-group symmetry and is orientated 

such that its local three-fold rotation axis is aligned parallel to a unit-cell body diagonal 

(Figure 2-14c). Each hexamer belongs to a distinct sub-lattice and is related to three 

neighbouring hexamers by a two-fold rotation axes parallel to either the unit-cell edges or 

the face diagonals (Figure 2-14c). Both these two-fold axes, and the three-fold axes 

concomitantly generated aligned parallel to each unit-cell body diagonal, are non-

crystallographic in space-group 12,2 1 2 1 , with the two-fold NCS axes parallel to the cell edges 

also parallel to crystallographic two-folds. This is nicely illustrated in the self-rotation 

Patterson map which shows 432 point-group symmetry with large peaks at K = 90°, 120° and 

180° (Figure 2-14d). 
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Figure 2-15 Crystal packing of one lattice in space-group 1222. (a) and (b) The asymmetric-unit 
can be defined as four hexamers (coloured green, blue, yellow and purple) related by a 90° rotation 
and one-quarter unit-cell translation along the c-axis forming a single-stranded helical turn here 
viewed down the c-axis (a) and the b-axis (b). (c) Sub-lattice packing viewed down in the c-axis. (d) 
Sub-lattice packing viewed down in the b-axis. (e) Viewed parallel to ab face diagonal. (I) This sub-
lattice also has 1422 symmetry with the 4 3 -screw axis (blue box) aligned down the helices and the 4-
screw axis aligned between in minor helices. 
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The asymmetric-unit can also be defined as four hexamers belonging to the same sub-lattice 

(Figure 2-15a and b). Successive hexamers - coloured green, blue, yellow and purple - are 

related by a unit-rise of -50 A along the c-axis. Coupled with a 90° rotation, this generates a 

single-stranded left-handed helix extending parallel to the c-axis with equivalent positions 

defining the unit-cell dimension (-200 A) (Figure 2-15c). This can be thought of like a left-

handed four-sided staircase. This packing is repeated along both the a- and b- axes (Figure 2-

I 5d), however, the unit-rise in both cases is —49 A giving rise to both the a- and b- axes 

being approximately 4 A shorter than the c-axis. This creates a honeycomb like sub-lattice 

packing (Figure 2-1 5e) and accounts for approximately 15% of the unit-cell. 

Interestingly, this sub-lattice has 14,22 symmetry with the unit-cell shifted (0.25, 0, -0.125) 

(Figure 2-150. The longitudinal helices along the c-axis are related by the 4 3-screw axis 

whilst the 4 1 -screw axis describes the relationship between these helices. 14,22 is a maximal 

non-isomorphic super-group of I222 and there was an ambiguity during space-group 

determination with the data collected from form I crystals flash-cooled directly from mother 

liquor scaling equally well in I222 or 14 1 22 (section 2.4.3). Furthermore, MAD phasing 

using data processed in 14,22 gave a clear solution corresponding to this sub-lattice (section 

2.4.4.2.2). 

The sub-lattice is repeated four times in total, with hexamers in the same orientation in each 

sub-lattice related by the native Patterson vectors as described in figure 2-14b. Two of the 

sub-lattices are related by the NCS translation vector (0.0 142, 0.02, 0.5). When viewed down 

the c-axis these two sub-lattices overlay (Figure 2-16b and c; red and blue sub-lattices) and, 

due to the one-half unit-cell translation along c, form a left-handed double-stranded helix 

running down the c-axis (Figure 2-16d). Due to the accompanying small translations along 

the a- and b- axes, these sub-lattices overlay imperfectly and are only related by a two-fold 

rotation axis. This imperfect packing breaks the four-fold screw axis and explains why the 

14,22 symmetry does not hold for the complete crystal-lattice. The remaining two sub-

lattices, related by the same packing, are generated by the NCS translation vector (0.5000, 

0.0 193, 0.0847) (Figure 2-16e and f, green and olive sub-lattices). 
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Figure 2-16 Packing of sub-lattices in space-group 1222. (a) One sub-lattice viewed down unit-
cell c-axis, hexamers of one helical turn coloured blue, yellow, red and green. (b) Two sub-lattices 
(red and blue) related by NCS translation vector (0.0 142, 0.02, 0.5) viewed down c-axis. (c) Two sub-
lattices viewed down b-axis. (d) Two sub-lattices viewed along ab face-diagonal showing the helical 
relationship along the c-axis. (e) Packing of all four sub-lattices (red, blue, green, olive) viewed down 
c-axis (f) Packing of all four sub-lattices viewed down b-axis 
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2.3.4.2. Description of the tetragonal form II crystal-lattice 

Tetragonal crystals belonging to space-group P4 2 2 1 2 were grown from the same conditions 

by the addition of a small amount of PEG 400. These crystals have the same general packing 

as form I crystals, as initially evidenced by the related self-rotation Patterson map (Figure 2-

5 and 2-1 Oa), however the unit-cell dimensions are now a = b = 138.9, c = 100.1 A. The unit-

cell volume is one-quarter that of the orthorhombic form and the asymmetric-unit consists of 

only one hexamer. 

Analysis of the crystal-lattice reveals the same packing, however, the non-crystallographic 

translation relating two sub-lattices along the unit-cell c-axis, described by the native 

Patterson vector (0.0 142, 0.02, 0.5), is now a pure translation along the c-axis. Consequently, 

the unit-cell c-axis is now defined by trimers in equivalent positions but on the opposite 

strand of the helix and is half the length as in 1222. As the sub-lattices overlay perfectly, 

they are now related by a 42 -screw axis (Figure 2-17). This also allows the unit-cell to be 

described by a primitive lattice. 

Figure 2-17 Crystal packing in space-group P4 2 2 1 2. (a) Unit-cell viewed down c-axis. Separate 
sub-lattices coloured red, blue, green and olive. 4 2-screw axis represented by blue box, 2 1 -screw axis 
in green, 2-fold rotation axis in yellow. 
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2.3.4.3. Space-group relationships in the ceHsp70-CT crystal lattice 

The packing between orthorhombic form I crystals and tetragonal form II crystals is very 

similar. A slight re-ordering of the intra-sub-lattice packing establishes a four-fold screw axis 

relating the double-stranded helices extending parallel to the c-axis which are only described 

by a two-fold rotational symmetry in form I crystals. Consequently, the unit-cell c axis is 

halved to —100 A and coupled with the transformation to a primitive cell means the unit-cell 

is one-quarter the volume of 12,2 1 2 1 . 

The P42 2 1 2 unit-cell is related to the I222 unit-cell by a 45° rotation about the c axis, first 

suggested by the self-rotation Patterson analysis, and a translation of (0.25, 0, -0.25). This is 

clearly illustrated by inspection of the space-group symmetry (Figure 2-18). Rotation of a 

P42 2 1 2 cell about the c axis orientates the 4 2-screw axes with two-fold rotation axes of space-

group I222 (2-17b and d), made possible by the re-ordering of the intra-sub-lattice 

packing. Further, the two-fold rotation axes at the unit-cell corners in P4 22 1 2 are now aligned 

with 2 1 -axes in the I222 cell and a translation of -0.25 along the c-axis (not shown) is also 

required to align the symmetry axes parallel the a and b axes. 

Data collected from crystals vitrified directly from mother-liquor were initially thought to 

belong to space-group 14,22 and mercury derivative data processed as such even gave a clear 

solution corresponding to one of the sub-lattices (section 2.4.3.) The space-group assignment 

proved to be incorrect but comparison of the space-group symmetry shows the close 

relationship between the two space-groups (Figure 2-17a and c). An 14,22 unit-cell is related 

to an I222 cell of the same size by a translation of the origin by (-0.25,0 ,-0.125). This 

aligns the tetragonal 4- and 43- axes with the two-fold rotational axes of the orthorhombic 

cell. Each sub-lattice can be defined by a body-centred tetragonal cell; however, as 

discussed, the relative orientation of the two sub-lattices that intertwine down the c axis 

transforms the four-fold screw axes to two-fold rotation axes. 

2.4. 	Conclusions 

In summary, the structure of the C-terminal subdomain of C. elegans Hsp70 has been solved. 

Orthorhombic I222 and tetragonal P4 22 1 2 crystal forms were produced which exhibited 

very similar crystal packing. The final model, refined to and Rç ree  values of 27.6% and 

29.0% respectively, shows a compact three-helix bundle dramatically different in 

conformation to the only eukaryotic structure from rat Hsc70. Further analysis of the 

structure is presented in Chapter 3. 
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Orthorhombic I222 	Tetragonal P422 1 2 	Tetragonal 14,22 
a= 194.6,b= 195.c=200.8A a = b = 139,b= 100.1 A 	a = b = 195,c=200.8A 

(b)I\ 	 (c) 	 I  

P42 2 1 2 origin 	 14,22 origin 
(0.25,0,-0.25) 	 (-0.25,0,-0.125) 

Figure 2-18 Comparison of space-groups 12,2 1 2 1 , P422 1 2 and 1222. (a) Symmetry operators for 
space-groups 12 1 2 1 2 1 , P4 22 1 2,14 1 22. (b) Overlay of 12 1 2 1 2 1  (red) and P4 22 1 2 (blue) with P4 22 1 2 origin 
at (0.25, 0, -0.25). 42-screw axes overlay with two-fold rotation axes. (c) Overlay of 12 1 2 1 2 1  (red) and 
14,22 (green) with 1422 origin at (-0.25, 0, -0.125). 4 -  and 43- screw axes overlay with two-fold axes. 
(d) Unit-cells for ceHsp70-CT packing in 1222 and P4 22 1 2 as in (b) Sub-lattices coloured red, blue, 
green and olive. 

2.5. 	References 

Abraharns, J. P., and Leslie, A. G. (1996). Methods used in the structure determination of 
bovine mitochondrial Fl ATPase. Acta Crystallogr D Biol Crystallogr 52, 30-42. 

Benaroudj, N., Batelier, G., Triniolles, F., and Ladjimi, M. M. (1995). Self-association of the 
molecular chaperone HSC70. Biochemistry 34, 15282-15290. 

79 



-;irusiucjI 	hicIiciniuI ttidic 	l t 	C 	 kpTH I Ip)( chpeinc 	icIII 

Benaroudj, N., Fouchaq, B., and Ladjimi, M. M. (1997). The COOH-terminal peptide 
binding domain is essential for self-association of the molecular chaperone HSC70. J Biol 
Chem 272, 8744-875 1. 

Benaroudj, N., Triniolles, F., and Ladjimi, M. M. (1996). Effect of nucleotides, peptides, and 
unfolded proteins on the self-association of the molecular chaperone HSC70. J Biol Chem 
271, 18471-18476. 

Bertelsen, E. B., Zhou, H., Lowry, D. F., Flynn, G. C., and Dahiquist, F. W. (1999). 
Topology and dynamics of the 10 kDa C-terminal domain of DnaK in solution. Protein Sci 8, 
343-354. 

Birtley, J. R., and Curry, S. (2005). Crystallization of foot-and-mouth disease virus 3C 
protease: surface mutagenesis and a novel crystal-optimization strategy. Acta Crystallogr D 
Biol Crystallogr 61, 646-650. 

Chappell, T. G., Konforti, B. B., Schmid, S. L., and Rothman, J. E. (1987). The ATPase core 
of a clathrin uncoating protein. J Biol Chem 262, 746-751. 

Chou, C. C., Forouhar, F., Yeh, Y. H., Shr, H. L., Wang, C., and Hsiao, C. D. (2003). Crystal 
structure of the C-terminal lO-kDa subdomain of Hsc70. J Biol Chem 278, 30311-30316. 

Chou, C. C., Wang, C., Sun, Y. J., Shr, H. L., and Hsiao, C. D. (2001). Crystallization and 
preliminary X-ray diffraction analysis of the 10 kDa C-terminal subdomain of 70 kDa heat-
shock cognate protein. Acta Crystallogr D Biol Crystallogr 57, 1928-1930. 

Collaborative Computational Project, N. (1994). The CCP4 suite: programs for protein 
crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-763. 

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta 
Crystallogr D Biol Crystallogr 60, 2126-2132. 

Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr D Biol 
Crystallogr 62, 72-82. 

Fouchaq, B., Benaroudj, N., Ebel, C., and Ladjimi, M. M. (1999). Oligomerization of the 17-
kDa peptide-binding domain of the molecular chaperone HSC70. Eur J Biochem 259, 379-
384. 

French, S., and Wilson, K. (1978). On the treatment of negative intensity observations. Acta 
Crystallogr A 34, 517-525. 

Hahn, T. (2002). International Tables for Crystallography, Vol. A, 5th ed., Dordrecht: 
Kluwer Academic Publishers.). 

Hutchinson, E. G., and Thornton, J. M. (1996). PROMOTIF--a program to identify and 
analyze structural motifs in proteins. Protein Sci 5, 212-220. 

La Fortelle, E. d., and Bncogne, G. (1997). Maximum-Likelihood Heavy-Atom Parameter 
Refinement for Multiple Isomorphous Replacement and Multiwavelength Anomalous 
Diffraction Methods. Methods Enzymol 276, 472-494. 

Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993). 
PROCHECK: a program to check the stereochemical quality of protein structures. J AppI 
Crystallog 26, 283-291. 

Leslie, A. G. W. (1992). Mosfim. Jnt CCP4/ESF-EACBM Newsl Protein Cxystallogr 26. 

Matthews, B. W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497. 

Navaza, J. (1994). AMoRe: an automated package for molecular replacement 

Chapter 2 - Crystal structure of the C-terminal helical subdornain from C. cicga/ic I lsp70 	 80 



SIiuiuL! and hochcirncaI tucli. nitlie C. '/tui,\ I Ip 	I IS p9() chuperonu vtcn 

doi:10.1 107/S0108767393007597. Acta Crystallographica Section A 50, 157-163. 

Nemoto, T. K., Fukuma, Y., Itoh, H., Takagi, T., and Ono, T. (2006). A Disulfide Bridge 
Mediated by Cysteine 574 Is Formed in the Dimer of the 70-kDa Heat Shock Protein. J 
Biochem (Tokyo) 139, 677-687. 

Painter, J., and Merritt, E. A. (2006). Optimal description of a protein structure in terms of 
multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr 62, 439-450. 

Read, R. J. (2001). Pushing the boundaries of molecular replacement with maximum 
likelihood. Acta Crystallogr D Biol Crystallogr 57, 1373-1382. 

Schneider, T. R., and Sheldrick, G. M. (2002). Substructure solution with SHELXD. Acta 
Crystallogr D Biol Crystallogr 58, 1772-1779. 

Sheldrick, G. M. (2004). High-Throughput Phasing with SHELXC/D/E. http://shelxuni-
acgwdgde/SHELX/.  

Storoni, L. C., McCoy, A. J., and Read, R. J. (2004). Likelihood-enhanced fast rotation 
functions. Acta Crystallogr D Biol Crystallogr 60, 432-438. 

Vagin, A., and Teplyakov, A. (1997). MOLREP: an Automated Program for Molecular 
Replacement 

doi:10.1 107/S0021889897006766. J Appl Crystallogr 30, 1022-1025. 

Wegele, H., Muller, L., and Buchner, J. (2004). Hsp70 and Hsp90--a relay team for protein 
folding. Rev Physiol Biochem Pharmacol 151, 1-44. 

Winn, M. D., Isupov, M. N., and Murshudov, G. N. (2001). Use of TLS parameters to model 
anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol 
Crystallogr 57, 122-133. 

Worrall, L., and Walkinshaw, M. D. (2006). Crystallization and X-ray data analysis of the 10 
kDa C-terminal lid subdomain from Caenorhabditis elegans Hsp70. Acta Crystallograph Sect 
F Struct Biol Cryst Commun 62, 938-943. 

Worrall, L., and Walkinshaw, M. D. (2007). Crystal structure of the C-terminal three-helix 
bundle domain from C. elegans Hsp70. Biochem. Biophys. Res. Commun. Accepted. 

Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and 
Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular 
chaperone DnaK. Science 272, 1606-1614. 

Chapter 2 - Cr\stal sirtictule of the C-terminal helical subdomain from C. 'la;!. ilsp70 	 81 



I 1 	t 	ii 	 id 	- 	( 	 i 	di rdI  Iii 

3. Analysis of the C. elegans Hsp70 C-terminal 10 kDa 

subdomain structure 

	

3.1. 	Introduction 

The Hsp70 C-terminal helical-bundle subdomain is implicated in regulation of client 

binding, self-association and co-chaperone binding. The only eukaryotic structure solved for 

the 10 kDa C-terminal lid domain is from rat (Chou et al., 2003), which has an anti-parallel 

coiled-coil mediated dimer. This is in contrast to the monomeric three-helical bundle 

observed in the E. coli homologue DnaK (Zhu et al., 1996), which shares approximately 

17% sequence identity with rat 1-Isc70. 

Chapter 3 presents an analysis of the C-terminal subdomain from C. elegans Hsp70. 

Comparison of the structure with K co/i and rat homologues shows structural conservation 

with the distantly related bacterial proteins and also reveals a domain-swapped dimerisation 

mechanism for self-association of the C-terminal subdomain. 

	

3.2. 	Materials and methods 

3.2.1. Structural analysis 

Evolutionary conservation analysis was carried out with ConSurf (Glaser et al., 2003) using 

the empirical Bayesian method. Sequence alignments generated with MUSCLE (Edgar, 

2004) using a non-redundant dataset with sequences corresponding to the 10 kDa C-terminal 

lid subdomain of all eukaryotic cytoplasmic Hsp70 proteins found in the UniProt database 

(for alignment see appendix A.2). Residues coloured according to conservation ranging from 

I (variable) to 9 (conserved). 

Electrostatic-potential maps were calculated with APBS (Baker et al., 2001) using a PyMol 

plug-in (http://www-personal.umich.eduI--mlerner/PyMOL/) . Charges were assigned using 

PDB2PQR (Dolinsky et al., 2004) and an AMBER forcefield (Case et al., 2005). 

Analysis of the biological relevance of the oligomeric complexes within the crystal structure 

was carried out with the server PISA (http://www.ebi.ac.uk/msd-srv/prot_intipistart.html).  

A homology model of residues 1-533 of C. elegans Hsp70A was produced with SWISS- 

MODEL using bovine Hsc70 as a template (unwound helix aB residues trimmed from 

template). The helical subdomain solved in this study was subsequently positioned based on 
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the SBD structures of E. coli DnaK and HscA, with the final eight unmodelled helical 

residues (Lys 534-Asn541 ) connecting the model and structure filled in manually. 

All graphical figures were produced with PyMol (http://www.pymol.org ). 

3.2.2. Determination of solution oligomeric state of ceHsp70-CT 

The oligomeric state of ceHsp70-CT was investigated using gel filtration and glutaraldehyde 

cross-linking. Gel-filtration was carried out on an AKTA explorer FPLC using a Superdex 

75 HR 30/10 column (Amersham Bioscience) at 4 T. 200 tL ceHsp70-CT (2 M, 5i.M and 

80 p.M) in storage buffer (25 mM HEPES pH 7.5, 50 mM KC1, 1 mM DIT) was applied to 

the column equilibrated in the same buffer and run at 0.5 ml min - . The column was 

calibrated with protein standards with sizes ranging from 16.4 A (13.7 kDa) to 85 A (669 

kDa). 

Cross-linking was carried out using the homobi functional amine reactive cross-linker 

glutaraldehyde. 5 ag total protein in 15 lil 25 mM FIEPES pH 7.5 was cross-linked with 

addition of a 1110th  volume of 10 >< glutaraldehyde stock, 0.1% and 0.2% final 

glutaraldehyde concentrations were used. The reaction was quenched at various time points 

by addition of a 1110th  volume of IM tris pH 7.5 and subjected to gel-filtration and/or SDS-

PAGE analysis. 

3.2.3. Thermal-denaturation studies 

3.2.3.1. Far-UV CD spectroscopy 

Far-UV CD spectra were recorded using 10 jiM protein in 25 mM citrate buffer pH 6.5 or pH 

4.5. Spectra were obtained with a Jasco J-810 spectrometer equipped with a peltier 

temperature controller. Individual CD spectra were collected at 20, 30, 40, 50, 60, 70 and 80 

°C in the range of 200-250 nm with a 0.1 cm pathlength cuvette. A resolution of 0.5 nm and 

a scanning speed of 20 nm mm' were used. In a separate experiment, CD signals at 222 nm 

were monitored as a function of temperature. The protein samples were heated from 20 to 80 

°C with a heating rate of 30 °C h' with the measurements recorded every 0.5 °C. 

3.2.3.2. Trp fluorescence spectroscopy 

Fluorescence spectroscopy experiments were carried out on a FluoroMax-3 (HORIBA Jobin 

Yvon) luminescence spectrometer equipped with a circulating water bath to control the 

temperature. Protein spectra were recorded using 10 jiM protein (in 25 mM citrate buffer pH 

6.5 or pH 4.5) and a 1 cm path length cuvette. The protein sample was excited at 295 nm and 
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the resultant Trp emission spectra were collected over the range of 305-425 nm. An 

integration time of I s and a resolution of 1 rim were used. Thermal analysis was performed 

over the range of 20-85 °C with emission spectra recorded every 3 °C, allowing 5 mm 

equilibration at each temperature. 

3.3. 	Results and discussion 

3.3.1. Analysis of evolutionary conservation and electrostatic properties 

ConSurf, a web-server for analysis of evolutionary conservation, was used to predict 

functionally and structurally important residues. The analysis was carried out using all 

eukaryotic cytoplasmic Hsp70 family members in the UniProt database (for alignment see 

appendix A.2). Amino acids with above average conservation scores could be grouped into 

two categories; those involved in the defining the overall structure and those predicted to 

participate in the "latch" interactions with the p-sandwich subdomain (Figure 3-Ia and b). 

Helices ctB-aE have a classical amphipathic nature with most of the hydrophobic residues in 

the core of the fold subject to above average conservation, in particular residues Leu 543 , 

Leu6°°  and Ile 601  cluster with the most conserved residues (Figure 3-Ib). Residues important 

for correct folding include Asn 585 , Ala588  and Glu592 , which are important in defining the tight 

hairpin loop connecting helices aC and aD; Pr0 606 , which occurs at the N-cap +1 position of 

helix aE immediately proceeding the kink separating helices aD and aE; and Lys 562  of loop 1 

which interacts with the backbone carbonyl of the penultimate ordered amino acid Gin 613 . 

Excluding variable G1y542 , all residues belonging to helix aB are subject to above average 

conservation. In particular, Glu 544  and Ser545  are very well conserved. G1u 544  is conserved 

with Asp540  in E. coli DnaK which, along with other C-terminal helix aB residues, was 

shown to interact with residues of the outer-loops of the n-sandwich (see section 3.3.2.) (Thu 

et al., 1996). These interactions, termed the "latch", have has since been shown to be 

important for correct Hsp70 function (Fernandez-Saiz et al., 2006). 

Interestingly, Tyr 612  at the C-terminus of helix aE is conserved not only across eukaryotic 

Hsp70s but also across many prokaryotic family members suggesting an important function, 

the nature of which is unclear. The solvent exposed part of helix aC stands out as the least 

conserved region with all residues clustering as highly variable. 

ceflsp70-CT contains many charged residues and carries a net negative charge of -6 eV. The 

electrostatic surface shows two electronegative patches. The first is located around the latch 

residues of helix aB, which covers the substrate-binding groove, perhaps involved in the 
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preference of l-Isp70 for substrate peptides flanked by positively charged residues. The 

second is located at the surface generated by the C-terminal surface of helix aC, loop 2 and 

the N-terminal surface of helix aD (Figure 3-1c). In the predicted full-length model (section 

3.3.2.) this region is close to the NBD-SBD domain interface and also the predicted binding 

site of the J domain of l-lsp4O proteins. 

Vii riable 	 Conserved 

Figure 3-1 Evolutionary conservation and electrostatic properties of ceHsp70-CT. (a) Cartoon 
representation coloured according to ConSurf analysis at 0 and 180°. (b) Sphere representation in 
same orientation as (a). (c) Electrostatic surface calculated with the APBS plug-in for Pymol in same 
orientation as (a). Electronegative patches boxed. Left - region of helix uB covering substrate-binding 
groove, right - N-terminal region of helix aD near inter-domain interface and J domain binding site. 

I 	( 	ml 	kI )d 	nm 	cm ii: 	 85 



3.3.2. Model of the complete C. elegans HspTO structure 

The structure of a hill-length Hsp70 protein, either in the open or closed conformation, 

remains elusive with the most complete structure published to date being bovine I-Isc70 

(residues 1 - 554; PDB 1YUW) (Jiang et al., 2005) but lacking most of the C-terminal helical 

subdomain presented here. Although nucleotide-free, the structure is also thought to 

resemble the ADP-bound "closed" high-affinity state. As with some other SBD structures, 

the C-terminal region of helix aB is locally unwound and bound in the peptide-binding 

groove. The only structures of complete SBDs encompassing the n-sandwich subdomain and 

the helical subdomain are from E. coli DnaK and HscA, both peptide bound and in the high-

affinity closed conformation. These show the relative position of the helical lid and 3-

sandwich subdomains. 

A model of residues 1-533 of C. elegans Hsp70A was produced with SWISS-MODEL using 

bovine Hsc70 as a template (unwound helix aB residues trimmed from template). The helical 

subdomain solved in this study was subsequently positioned based on the structures of E. 

coil DnaK and UscA, with the final 8 unmodelled residues (Lys 534-Asn541 ) connecting the 

model and structure filled in (Figure 3-2a). The model, representing the ADP-bound high-

affinity conformation, illustrates the positioning of the helical lid covering the peptide-

binding groove and the latch-like contact of helix aB and outer-loops of the n-sandwich. 

Analysis of evolutionary conservation with ConSurf highlights the important residues 

involved in this interaction (Figure 3-2b). 

Based on the relative orientation of the lid and 3-sandwich subdomains, small side-chain 

conformational changes upon lid closure would allow the direct interaction of highly 

conserved residues G1u 544  on helix aB and Arg470  on loop L5 , 6  seen in the DnaK structure 

(residues Arg467  and Asp540  in DnaK), with highly conserved Ser 545  potentially hydrogen 

bonding with the guanidinium group of Arg 470 . Additional conserved solvent exposed helix 

aB residues Phe 548  and GIn 552  are also likely to contribute to the stabilisation of the closed 

state. 
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Figure 3-2 Model of the complete ceHsp7O structure in the closed high-affinity conformation. (a) 
Full-length model. Helical sub-domain presented in this study coloured in gradient. Manually built 
helix coloured grey. (b) Interactions between the lid subdomain and the outer loops of the n-sandwich 
sub-domain. Lid and all residues coloured according to ConSurf results with conserved residues 
coloured dark red and variable residues coloured cyan. Conserved residues on underside of helix aB 
form latch-like interactions with residues on loop L 34  and L56 . 
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3.3.2.1. Analysis of the oligomerisation state of ceHsp70-CT 

Hsp70 family members - including FIsp70, Hsc70 and GRP75IBiP - predominantly exist as 

monomers, but have also been reported to both dimerise and further oligomense in a 

concentration dependent manner (Benaroudj et al., 1995; Benaroudj et al., 1997; Benaroudj 

et al., 1996; Chou et al., 2003; Fouchaq et al., 1999). Hsp70 proteins have a tendency to 

aggregate and successful crystallisation of the full-length protein has only been achieved 

using a construct lacking most of the C-terminal subdomain (Jiang et al., 2006; Jiang et al., 

2005). It has been suggested that the SBD is both necessary and sufficient for self-

association; however, there are conflicting views on the exact mechanisms and both the 18 

kDa f-sandwich subdomain (Benaroudj et al., 1997; Fouchaq et al., 1999) and the 10 kDa 

helical lid subdomain (Chou et al., 2003) have been proposed to mediate oligomerisation. A 

dimer of the C-terminal domain from rat Hsc70 was observed in the crystal state with this 

domain both necessary and sufficient for oligomerisation in solution (Chou et al., 2003). 

Conversely, the 18 kDa peptide-binding subdomain of bovine flsc70 was shown to 

oligomerise in a peptide-sensitive manner comparable to the whole protein and also that 

oligomerisation of a 60 kDa fragment, lacking the 10 kDa C-terminal subdomain, was both 

peptide and ATP sensitive (Benaroudj et al., 1996). Finally, a recent study has implicated 

regions of both domains, with the n-sandwich subdomain and N-terminal regions of the 

helical subdomain found to be necessary for dimerisation of human Hsp70 (Nemoto et al., 

2006). 

cellsp70-CT crystallised as a hexameric complex as two back-to-back trimers (Figure 2-13) 

with putative dimeric, trimeric and hexameric assemblies. Protein crystals are inherently 

composed of multiple protein-protein interfaces and it is not always easy to distinguish 

between a biologically relevant contacts and crystal lattice contacts. The web-server PISA 

(Protein Interfaces, Structures and Assemblies; http://www.ebi.ac.uk/msd-

srv/prot—int/pistart.html) attempts to asses the biological significance of quaternary 

structures within crystal packing based on the structural and chemical properties of the 

interface. 

There are three main interfaces that define the crystal packing (Figure 3-3); two are involved 

in the packing of the hexamer whilst the other is involved in the interaction between 

neighbouring hexamers. According to PISA, none of the crystal interfaces are biologically 

relevant. The two interfaces which define the hexamer have buried surface areas (BSA) of 

—465 A2  (Figure 3-3a) and —336 A2  (Figure 3-3b) whilst the dimeric interface relating to 
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hexamers has a BSA of —3 10 A 2  (Figure 3-3c). All interfaces have PISA complexation 

significance scores of 0.0 implying the interfaces only play a role in crystal packing. 
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Figure 3-3 Structural interfaces in the ceHsp70-CT crystal packing. Residues 

involved in each interface are represented as spheres. Respective chains are coloured 
orange and blue with light-orange/blue indicating residues belonging to the 
recombinant N-terminal tag which participate in interfaces (a) and (b). 
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Gel-filtration was used to investigate the oligomerisation properties of ceHsp70-CT in 

solution. Whereas the C-terminal domain from rat Hsc70 was shown to exist in various 

oligomeric states in solution, ceHsp70-CT eluted as a single peak regardless of concentration 

(500 nNl-10 j.tM) with a predicted Stokes radius consistent with the dimensions of the 

monomeric crystal structure (max. dimension —45 A) (Figure 34). To confirm the single 

peak represented the monomeric species, glutaraldehyde cross-linking was carried out prior 

to gel-filtration. SDS-PAGE analysis of the eluate from the three resolved peaks confirmed 

the smallest species corresponded to the monomeric protein (Figure 3-4). 

Taken together, the analysis of the crystal interfaces and solution studies support the 

conclusion that the C-terminal subdomain exists exclusively as a monomer in solution and 

that regions outside the subdomain are required for oligomerisation. These results are 

consistent with a study on human Hsp70 which demonstrated that, although sequences 

within the N-terminal portion of the helical domain were necessary for dimerisation, the lid 

domain alone could not form dimers (Nemoto et al.. 2006). 
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Figure 3-4 Gel-filtration analysis of ceHsp70-CT. (a) 80 iM (solid), 5,.tM (dashed) or 2pM 
(dotted) protein was resolved on a Superdex-75 HR column. Retention volumes of standards with 
known Stokes radius indicated. ceHsp70-CT elutes as a single peak at all concentrations with an 
estimated Stokes radius consistent with the dimensions of the monomeric crystal structure. Elution 
profile of glutaraldehyde cross-linked ceHsp70-CT indicated in red. (b) Glutaraldehyde cross-
linking. Lanes I and 2 show native and cross-linked ceHsp70-CT respectively. Lanes 3-6 after gel-
filtration. Lane 3 is from native peak, lanes 4-6 correspond to cross-linked peaks marked with 
coloured arrows in (a) and (b). Results show that ceHsp70-CT has a estimated Stokes radius 
consistent with the dimensions of the monomeric crystal structure. This is supported by cross-
linking prior to gel-filtration. 
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3.3.3. Comparison with C-terminal structures from E. coli and rat 

Structures of the NBD (cow, human and E. co/i) and the SBD n-sandwich subdomain (cow, 

rat and E. co/i) from several species reveal structural conservation from bacteria to humans. 

Structures of the C-terminal 10 kDa helical subdomain are, however, limited to one 

prokaryotic homologue; E. co/i DnaK solved as part of the complete SBD (Thu et al., 1996), 

and one eukaryotic homologue; rat Hsc70 solved as an isolated helical subdomain (Chou et 

al., 2003). In contrast to the NBD and SBD f3-sandwich subdomain, the helical subdomains 

of DnaK and rat Hsc70 are significantly diverged with DnaK adopting a monomeric three-

helix bundle and rat Hsc70 forming a helix-loop-helix that dimerises via an anti-parallel 

coiled-coil like interaction. In addition, the SBD from the distantly related E. co/i paralogue 

1-IscA, a specialised bacterial Hsp70-class molecular chaperone, was shown to adopt a near 

identical conformation to DnaK (Cupp-Vickery et al., 2004). 

Across the C-terminal 10 kDa subdomain C. e/egans Hsp70 shares 69% sequence identity 

with rat Hsc70, 16% sequence identity with DnaK and only 5% sequence identity with HscA 

(Figure 3-5 a). It was surprising therefore that the C. elegans structure presented here adopts 

the same three-helix bundle conformation as the bacterial homologues DnaK and HscA 

(Figure 3-5b). cellsp70-CT and DnaK superimpose with an RMSD of 2.3 A with the overall 

topology well conserved. There are two small insertions of two and three residues 

respectively in loops 1 and 2. The kink between helices al) and aE is positioned in the same 

place, at residue Ala 614  in the C. e/egans sequence; however it is bent at an angle of -70° in 

the E. co/i structure compared to 32° in C, e/egans. Accordingly, cellsp70-CT and the more 

distantly related HscA superimpose with an RMSD of 2.5 A (Figure 3-5). 

In contrast, ceHsp70-CT adopts a structurally diverged conformation to the closely related 

rat homologue. Anti-parallel helices aC and al) in the C. e/egans structure form one 

extended helix in rat Hsc70 that serves as a dimerisation interface. Hsiao and colleagues 

observed that helix aB from rat Hsc70 and DnaK superimposed relatively well but helices 

ctC-aE did not superimpose at all (Chou et al., 2003). Careful superimposition of all the 

helical subdomains, however, reveals both helix aB and aC from all structures superimpose 

well (Figure 3-5). In addition, it is evident that dimerisation of rat Hsc70 is mediated via a 

domain-swap mechanism. 
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Figure 3-5 (a) Multiple sequence alignment of the C-terminal helical lid domain. Secondary structure 
of homologues with known structure is indicated. Sequences are labelled with SWISS-PROT IDs, 
I-ISP7ACAEEL is C. elegans homologue used in this study. aB - aE: ct-helices, fl]: 3 10-helix, TT: 
type I J3-turn. (b) Structural alignment of the C-terminal domains from ceHsp70-CT, rat Hsc70, E. coil 
DnaK and E. coil HscA. Coloured according to sequence alignment. (c) Table of RMSDs/percent 
sequence identity of Hsp70 proteins over range in alignment. 

3.3.4. A 3D domain-swap relates the C. elegans monomer and rat dimer 

Superimposition of the C. elegans and rat structures reveals that the rat C-terminal structure 

seen in the crystal is a 3D domain-swapped dimeric form of the C. elegans monomer. 

Domain-swapping is a process in which one protein molecule exchanges an identical 

structural element ("domain') with an identical partner leading to oligomerisation. 

Corresponding residues of the C-terminal subdomains from C. elegans and rat crystal 

structures superimpose with a backbone RMSD of 1.16 A. HelicesctB and tiC (Leu 543 - 

Asn 585 ) from C. elegans superimpose with the corresponding region from rat Hsc70 chain A 

whilst helices aD and tiE (Lys 590-Ser614) superimpose with the same residues from rat chain 

B (Figure 3-6a). Aside from the conformation of the ordered N-terminal affinity tag residues, 

the only significant area of difference is loop 2 (Gin 586-G1u 589 ), the hairpin loop connecting 

helices tiC and aD in ceHsp70-CT. This region, the hinge region for the domain swap, forms 
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one helical turn in the rat structure resulting in the elongated aC/D/E helix. This loop - helix 

transition leads to dimerisation via the exchange of helices aD and aE such that helices ctB 

and aC of monomer A interact with helices aD' and aE' of monomer B and vice versa. 

(a) 

.99 

\1p 	 ____ 

(c 
XTCOC E2Q( 

Figure 3-6 (a) Superimposition of ceHsp70-CT monomer (blue) and rat domain-swapped dimer (red). 
Structures superimpose with a backbone RMSD of 1.16 A. (b) Topological representation showing 
packing of helices in the monomeric three-helix bundle and the domain-swapped dimer. (c) 
Superimposition of the ceHsp70-CT and rat structures illustrating the conserved hydrophobic and 
electrostatic packing of the closed interface and the newly formed interactions of the open interface. 

The closed interface - the interface found in both the monomer and oligomer - is well 

conserved between the C. elegans and rat structures with analogous hydrophobic packing in 

the core of the structure and conserved intra-chain electrostatic interactions (Figure 3-6c). In 

addition, domain-swapping results in the formation of a new open interface - interactions 

absent in the monomer - with two symmetrical inter-chain hydrogen bonded interactions 

between hinge residues Asn 585  and G1u589  from opposite chains (Figure 3-6c). Domain 

swapping results in an extended interface between the dimer subunits calculated at 1447 A2 . 

m III J M 	 93 



(d) 

Whether this represents a biologically relevant means of dimerisation in Hsp70 proteins 

remains unclear. The monomeric and domain-swapped dimeric structures are isolated 

examples from different homologues and must, as such, be considered an example of a 

quasi-domain swap. The C-terminal subdomain of rat Hsc70 was shown to exist in 

monomeric and dimeric forms in solution by gel-filtration. In contrast, ceHsp70-CT eluted as 

a single species regardless of concentration with a retention volume consistent with the 

dimensions of the monomer seen in the crystal (Figure 3-4). 

Figure 3-7 Examples of domain-swapping in helical-bundles. Hinge region for domain-
swap coloured green in each case. (a) Monomeric (PDB-ID 2C51) and domain-swapped (2C5J) 
forms of yeast TLG-l; involved in endosome-golgi trafficking. (b) Monomeric (1 IHG) and 
domain-swapped (hIP) forms of co-chaperone cyclophilin-40. (c) Monomeric (ICUN) and 
domain-swapped (2SPC) forms of cytoskeletal protein ci-spectrin. (d) Monomeric (IR2D) and 
domain-swapped (21348) forms of apoptotic factor BCL-XL. (e) Monomeric engineered three-
helix bundle coil-ser (2A3D) and related domain-swapped dimer (IG6U). Domain-swap was 
triggered by deletion of loop in coil-ser (coloured green). 
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3.3.4.1. Domain-swapping and insight into ceHsp70-CT folding 

Biological or not, domain-swapped structures can provide valuable information about 

folding pathways and protein flexibility. There are several examples of helical-bundle 

mediated (quasi)domain-swap dimerisation (Figure 3-7). 

A common feature amongst the helical-bundle domain-swapped structures is that the hinge 

loop forms an a-helix generating an extended helical dimerisation interface (Figure 3-7: 

coloured green). Significantly, folding pathways of small three-helix bundles have been 

proposed to be populated by "open" two-helix intermediates suitable for domain-swapped 

dimer formation (Mayor et al., 2003; Zhou and Karplus, 1999). There is a high activation 

energy required for transition from a folded "closed" monomer to an unfolded "open" 

intermediate (Bennett et al.. 1995). However, this can be reduced under certain conditions 

such as low pH and high ionic-concentration leading to accumulation of long-lived unfolded 

intermediates (Oliveberg and Fersht, 1996). Further, high protein concentrations can favour 

inter-chain over intra-chain interactions leading to self-assembly in the form of domain-

swapped dimers. Thus, domain-swapped structures artificially triggered by non-

physiological conditions may provide observable snapshots of protein folding intermediates. 
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Figure 3-8 Far- UV CD thermal denaturation of ceHsp70-CT and pH 6.5 and 4.5. (a) Far-
UV CD spectra recorded every 10 °C from 20 to 80 °C at pH 6.5. (b) Same as (a) at pH 4.5. (c) 
Molar ellipticity at 222 nM with increasing temperature from (a) and (b). (d) Molar ellipticity at 
222 nM measured every 0.5 °C. (c) and (d) show a pH dependent transition of 55.9 °C at pH 6.5 
and 64 °C at pH 4.5. 
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3.3.4.1.1. 	Thermal denaturation of ceHsp70-CT 

To explore the hypothesis that the extended helix-loop-helix conformation adopted by rat 

Hsc70-CT could represent a common folding intermediate of the Hsp70 C-terminal helical 

bundle, the thermal stability of ceHsp70-CT was investigated. Circular dichroism (CD) 

spectroscopy in the far-UV range was used to probe secondary structure content whilst the 

tertiary structure was analysed using the intrinsic tryptophan fluorescence of the single 

tryptophan (Trp 556), located at the C-terminus of helix aC immediately preceding the hinge 

loop for the domain swap. 

Figures 3-8a and 3-8b show the far-UV CD spectra of ceflsp70-CT at pH 6.5 and pH 4.5 

respectively, recorded in 10 °C steps from 20 to 80 °C. At 20 °C, the spectra measured at pH 

6.5 and pH 4.5 are virtually identical (Figure 3-8c). Deconvolution of the CD spectra with 

CONTIN (Provencher and Glockner, 1981) predicts a secondary structure content of 51% 

helix, 11% turn and 38% unordered in very good agreement with the crystal structure. At 

both pHs there is a temperature dependent change in the far-UV CD spectra indicative of a 

loss of secondary structure, although even at 80 °C the CD spectra reveal a protein with 

approximately 16% helix, 13% sheet, 8% turn and 63% unordered. Comparison of the molar 

ellipticity at 222 nm reveals a significant difference in thermal sensitivity of ceHsp70-CT at 

pH 6.5 and 4.5 (Figure 3-8c and d). Using a two-state model, the melting curves show 

transition temperatures (T 1) of 55.9 °C at pH 6.5 and 64 °C at pH 4.5 

At pH 6.5 the fluorescence emission spectra presents at 348 nm (Figure 3-9a), higher than 

would be expected for a residue buried in a hydrophobic environment. As the temperature 

increases the fluorescence emission is shifted to 357 nm reflecting the exposure of the 

tryptophan to solvent with an associated Tm of 51 °C (Figure 3-9c). The peak emission 

intensity is quenched to approximately 50% of the native value although there is an 

enhancement between —42 °C and —58 °C (Figure 3-9d). At pH 4.5, the emission peak 

presents a 2 rim, red shift compared to pH 6.5 indicating a marginally less hydrophobic 

environment (Figure 3-9b). Heating causes a shift in peak emission to 356.5 nm (Figure 3-

9c) with a Tn,  of 65°C although there is only a linear quench in intensity (Figure 3-9d). 

For comparison of CD and fluorescence monitored thermodynamic stability, measurements 

were converted to an apparent unfolded fraction (F app) using the following equation: 

Fapp = (Y - YN)/(YD - YN) 
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Where Y is the observed signal, and YN and YD are the corresponding signals for the native 

and unfolded proteins respectively. Figure 3-1 Oa shows the unfolded fraction as recorded by 

both CD and tryptophan fluorescence at pH 6.5 and 4.5. 
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Figure 3-9 Intrinsic tryptophan fluorescence thermal denaturation of ceHsp70-CT. (a) 
Fluorescence spectra measured every —4 °C at pH 6.5. (b) As (a) at pH 4.5. (c) Peak emission 
wavelength with increasing temperature. There is a pH dependent transition of —51 °C at pH 6.5 
and —64 °C at pH 4.5. (d) Peak emission intensity with increasing temperature. 

Two things are immediately apparent when comparing the CD and fluorescence monitored 

thermodynamic stability. Firstly there is a large pH dependence on protein stability with 

transitions measured by both methods significantly higher at pH 4.5. This inverse 

relationship between pH and protein stability was further confirmed with fluorescence 

monitored thermal denaturation studies over a range of pH values (Figure 3-1Ob). Secondly, 

whilst thermal denaturation appears to follow a simple two-state model at pH 4.5, at pH 6.5 

unfolding appears to proceed via at least one intermediate (Figure 3-I0a). The thermal 

transitions monitored by CD and fluorescence differ by approximately 5 °C at pH 6.5 

indicating the accumulation of a species with local unfolding of the three-helix bundle prior 

to the loss of secondary structure. Comparison of the temperature dependent fluorescence 

emission intensity at pH 6.5 (Figure 3-10; indicated by crosses) with the CD and 
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fluorescence melting curves suggests the enhancement witnessed between —42 °C and —58 

°C occurs as the loss of secondary structure catches up with the loss of tertiary structure. 

This pattern was only observed at pH 6.5, with mostly linear quenches in intensity observed 

at lower p1-Is. At pH 4.5, the unfolding appears to be only two-state with good agreement of 

the T10  values calculated from both methods. 
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Figure 3-10 Apparent unfolded fraction (F 9 ). (a) F8  calculated from CD and trp-
fluorescence data at pH 6.5 and 4.5. Peak emission intensity at pH 6.5 overlaid (x). (b) F app  at 
decreasing pHs. There is an inverse relationship between thermal sensitivity and pH. 

These results agree in part with studies on human Hsp70 (Fuertes et al., 2004) and Hsc70 

(Fan et al., 2006). Both the isolated SBD from human Hsp70 and full-length human Hsc70 

were shown to unfold via several intermediates with local unfolding of the C-terminal 

subdomain preceding loss of secondary structure. However, whereas ceHsp70-CT is more 

stable at pH 4.5, pHs deviating from physiological had destabilising effects with the more 

complete proteins. 

Domain-swapping is enthalpically favourable with additional backbone hydrogen bonds as a 

result of the higher helical content coupled with the new interactions of the open interface. 

The increased stability of ceHsp70-CT at p1-I 4.5 and more solvent exposed environment of 

the single tryptophan raise the possibility that the low pH triggers the domain-swap. Gel-

filtration at pH 4.5, however, failed to support this with no change in retention volume 

compared to pH 6.5 (data not shown). An additional explanation of the increased stability 

could be due to charge distribution of the three-helix bundle. ceHsp70-CT contains many 

charged residues and carries a net negative charge of-6 eV at pH 7.0. The pKa of glutamate 

and aspartate residues is around pH 4.5 so reducing the pH would have quite a significant 
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overall effect and, if repulsive charge-charge interactions affected stability, result in a more 

stable structure. 

At present, further experiments are required to characterise the thermal denaturation 

characteristics of ceflsp70-CT in more detail. 
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Figure 3-11 H-predictor analysis of ceHsp70-CT. Hinge residues Gln 586-A1a588  (53-55 in 
the above analysis) are predicted to be most probable hinge region. 

3.3.5. Proposed folding pathway of ceHsp70-CT and other three-helix bundles 

The observation that the three-helix bundle unfolds prior to loss in secondary structure at pH 

6.5 supports the hypothesis that the rat domain-swap dimer represents a snapshot of a folding 

intermediate. Local unfolding of the C-terminal domain around loop 2, exposing 	 516  but 

not losing secondary structure, would disrupt the packing of the three-helix bundle, exposing 

the hydrophobic core. Formation of a more stable domain-swapped dimer would re-establish 

the closed interface with added enthalpic contributions of the open interface. 

Further support comes from analysis of the cel-fsp70-CT structure with 1-1-predictor, a 

domain-swap hinge region predictor (Ding et al., 2006). H-predictor computes for each 

residue the effective temperature to populate an intermediate state, where the protein unfolds 

around this residue into two subdomains each of which maintains their native-like structure. 

In the case where a protein features folding intermediates, it can also provide hints regarding 

the weakest regions that unfold prior to compete unfolding. Analysis with H-predictor 
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identifies residues Gin 586-A1a588  to have a structural propensity to constitute a hinge region, 

in agreement with the crystallographic evidence (Figure 3-11). 

The domain-swapped rat dimer thus possibly represents a stabilised intermediate formed in 

response to the non-physiological environment of the crystallisation conditions. This 

destabilisation-compensation mechanism of domain-swap formation, similar to that 

demonstrated for the domain-swap mediated trimerisation of barnase at p1-I 4.5 (Oliveberg 

and Fersht. 1996; Zegers et al., 1999), is likely to be a common mechanism for the formation 

of helical-bundle domain-swapped oligomers in protein crystallisation where non-

physiological p1-Is, ionic strengths and protein concentrations are common (Figure 3-12). 

Transition' 	 Closed 
native 
monomer 

	

'\ 	
Domain-swapped 
dimer 

Unfolded 	 Open intermediate 

Figure 3-12 Proposed folding pathway for native and domain-swapped helical bundles. 
Colours refer to secondary structure elements in native structure; helix A (red), loop AB 
(magenta). helix B (blue), loop BC (green) and helix C (yellow). Under denaturing conditions 
protein exists as an unfolded random-coil. Folding proceeds via an open two-helix intermediate 
with loop BC (green) forming one helical turn. There is a large energy barrier between closed and 
open monomers although non-physiological conditions may lower this promoting the population 
of long-lived open intermediates and favouring domain-swapped dimerisation (pathway indicated 
by red arrows). 

A key unresolved question is why, considering the similar sequence and crystallisation 

conditions, did the C-terminal 10 kDa subdomain of rat Hsc70 form a domain-swapped 

dirner in the crystal structure when the C. elegans subdomain did not. A possible explanation 

is in the start positions of the rat and C. elegans clones. The C. elegans C-terminal construct 

begins at residue Gly 542  whereas the rat construct begins at Leu 543  (C. elegans numbering). 
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The C. elegans sequence was based on the rat construct but with the slight modification due 

to the observation by Hendrickson and colleagues that residues 538-607 (E. co/i Gin538  aligns 

with C. elegans G1y542) from the complete DnaK structure formed a relatively stable 

functional unit with a well-defined hydrophobic core (Zhu et al., 1996). However, in both the 

C. elegans and rat structures, residues belonging to the recombinant affinity tag form the 

beginning of helix aB and contributed side-chains to the hydrophobic core of the three-helix 

bundle. Indeed, reanalysis of the DnaK structure reveals that an additional seven residues 

(from Glu531 ) should have been defined with the three-helix bundle, in agreement with NMR 

solution studies on the isolated DnaK subdomain which predicted residues 531-608 to form a 

compact well-ordered structure (Bertelsen et al., 1999). The alternate recombinant residues 

presented to the hydrophobic core in the C. elegans and rat polypeptides could thus define 

the stability of compact bundle and the open domain-swapped dimer. Significantly, 

comparison of the C. elegans and E. coli structures reveals that C. elegans tag residue Val -' 

occupies the same position and makes similar contacts as DnaK Leu 532 , which forms the first 

layer of hydrophobic interactions in the three-helix bundle (Figure 3-13). Due to the one 

residue shift in start positions, this contact is absent in the rat structure and perhaps 

contributes to the destabilisation of the three-helix bundle, favouring the formation of the 

domain-swapped dimer. 

This highlights the importance, when working with subdomains in isolation, of the careful 

selection of an appropriate and biologically relevant region and also the caution which must 

be exercised in the interpretation of any crystal structure, especially when confronted with 

novel and interesting conformations such as domain-swaps. 

3.4. 	Conclusions 

In summary, the C-terminal helical subdomain from C. elegans Hsp70 has been shown to 

adopt a three-helix bundle conserved with distantly related bacterial homologues and 

significantly distinct from the closely related rat Hsc70 structure. Comparison with the rat 

structure, however, reveals the rat dimer is a domain-swapped form of the C. elegans 

monomer. In contrast to the rat C-terminal subdomain, which was shown form dimers in 

solution, the isolated C. elegans subdomain was shown to only exist in the monomeric state 

supporting the theory that regions outwith this subdomain are required for Hsp70 self-

association. Although the structure presented here casts doubt on the physiological relevance 

of the rat dimer, comparison of the monomeric and domain-swapped form may provide 

useful information regarding the folding pathway of the three-helix bundle. Thermal-

denaturation studies on ceHsp70-CT at pH 6.5 suggested unfolding proceeds via the 
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accumulation of an unfolded intermediate. The open monomer observed in the rat domain-

swapped structure may provide a snapshot of such a folding intermediate. 

Figure 3-13 Contacts between helix aB and aD. Tag residue Val -7  (ceV-7) and helix aD residue 
Phe 593  (ceF593) in the C. elegan5 structure (orange; tag residues in light orange) make a similar 
hydrophobic contact as E. co/i (green) residues Leu5 2  (ecL532) and lIe 584  (ec1584) and may contribute 
to the stabilisation of the three-helix bundle. 
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4. 	Biochemical characterisation of C. elegans SGT 

4.1. 	Introduction 

The tetratricopeptide repeat (TPR) domain is a versatile all-helical structural motif, found in 

proteins from almost all organisms, which mediates protein-protein interactions in numerous 

different cellular processes (D'Andrea and Regan, 2003). TPR domain associated molecular 

recognition is central to the interaction between the chaperone proteins Hsp70 and Hsp90 

and the numerous co-chaperone binding partners including the TPR containing 

immunophilins cylophilin 40, FKBP-5 1, FKBP-52 (Owens-Grillo et al., 1996; Owens-Grillo 

et al., 1995; Ratajczak and Carrello, 1996; Young et al., 1998). 

C. elegans contains a single large immunophilin (FKB-6) which, like the human 

homologues, contains 3 TPR motifs. Interestingly however, Jkb-6 expression is 

predominantly restricted to neuronal cells (Anthony Page, University of Glasgow, 

unpublished). This prompted a search of the published C. elegans genome for other, 

sequence related TPR-domain containing proteins that may have a wider cellular 

distribution. This highlighted two hypothetical proteins, the first was found to be the C. 

elegans orthologue for small glutamine-rich tetratricopeptide repeat-containing protein 

(SGT) and will be discussed in this chapter; and the second was found to be related to the 

Hsp70/Hsp9O organising protein (Hop) which will be discussed in chapter 5. 

SGT was initially identified as a human protein that interacted with two components of the 

human immunodeficiency type-1 virus (HIV-1) genome; viral protein U (Vpu) and the 

structural precursor polyprotein Group specific Antigen (GAG) (Callahan et al., 1998). Rat 

SGT was independently identified to interact with the non-structural protein NS-1 from 

autonomous parovirus H-I (Cziepluch et al., 1998). Subsequently, SGT has been implicated 

in a myriad of functions ranging from maintenance of a normal synapse (Bai et al., 2007; 

Natochin et al., 2005; Swayne et al., 2006; Tobaben et al., 2001) to roles in cell cycle 

progression (Wang et al., 2005; Winnefeld et al., 2004) and apoptosis (Wang et al., 2005; 

Winnefeld et al., 2006; Yin et al., 2006). The common underlying theme is the action of SGT 

as a co-chaperone, directly interacting with and modifying the behaviour of the 

Hsp70/Hsp9O chaperone machinery. The alpha isoform of human SGT has been shown to 

negatively regulate the chaperone activity of Hsp70 via interaction with the C-terminal 

region (Angeletti et al., 2002) and also directly bind to the C-terminus of Hsp90 (Angeletti et 

al., 2002; Liou and Wang, 2005). 
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Figure 4-1 SGT Domain architecture. Full-length ceSGT is a 337 residue modular protein with 
three functionally distinct domains - the N-terminal domain implicated in self-association, the TPR 
domain and the Q-rich C-terminal domain 

Human SGT consists of three functionally distinct domains (Figure 4-1) (Liou and Wang, 

2005). The central domain is comprised of three TPR repeats shown to bind human l-lsp70 

and Hsp90 (Angeletti et al., 2002; Liou and Wang, 2005; Tobaben et al., 2003). The N- and 

C-terminal regions of the molecule lack significant homology to any known domain, 

however the N-terminus has been shown to be both necessary and sufficient for self-

association (Liou and Wang, 2005: Tobaben et al., 2003). The C-terminal region shows 

slight enrichment in the amino acid glutamine in addition to containing several 

asparagine/proline repeats. C. elegans SGT (ceSGT) is a 36.5 kDa protein consisting of 337 

amino acids: it has 34% sequence identity with the human homologue, with the highest 

degree of conservation across the TPR domain (Figure 4-2). 

The aims of this project were to clone, express and purify C. elegans SGT: to characterise 

the solution state of ceSGT and its interaction with Hsp90/l-lsp7O; and to use X-ray 

crystallography to solve the molecular structure of the full-length protein or smaller domain 

constructs. 
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Figure 4-2 Protein sequence alignment of SGT homologues. PHD secondary structure prediction of 

ceSGT indicated. Predicted N-terminal coiled-coil domain highlighted with blue stars and TPR 

domain with green stars. 
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4.2. 	Materials and methods 

4.2.1. Cloning 

cDNA corresponding to full-length ceSGT (residues 1-337) and the SGT TPR domain 

(residues 101-226) were generated by PCR using C. elegans mixed stage N2 cDNA as a 

template. Sequences were amplified with the TaqPlus® precision PCR system (Stratagene) 

using the forward and reverse primers found in Table 4-1. The resulting PCR products were 

cloned into a pCR02. 1 TOPO vector (Invitrogen), verified by sequencing and digested with 

NdeI and XhoI (New England Biolabs). The digested inserts were ligated into a similarly 

digested pET-30a vector (Novagen) and verified by DNA sequencing (Figure 4-3). 

Clone Primer sequence, restriction site in italics Restriction 
(Sequence #) enzyme 

ceSGT Forward GCGGC'ATATcTFCCGAGGAGATCAAGCCTFCTG NdeI 
(1-337) Reverse GGCGCTCGAGCTATCGCGAGCTTTCCAGCTCCTI' XhoI 

ceSGT-TPR Forward GCGGCA TA TGAGTGATATYFCTCAAGCTAACAAG NdeI 
(101-226) Reverse GGCGCTCGA GCTATCGCGAGCTYfCCAGCTCCTT XhoI 

Table 4-1 ceSGT and ceSGT-TPR cloning information. 

&L 	TIE 500bi 

Figure 4-3 Cloning of ceSGT and ceSGT-TPR. (a) PCR of full-length ceSGT eDNA (10 11 bp), (b) 
Restriction digest of cloned full-length ceSGT plasmid. 1 - Uncut plasmid, 2 - Restriction digest 
showing insert of correct size. (c) PCR of ceSGT-TPR eDNA (375 bp). (d) Restriction digest of 
cloned plasrnid. 1 - Uncut plasmid, 2 - Restriction digest showing insert of correct size. 

4.2.2. Expression and purification 

Recombinant proteins were expressed in BL2 1 (DE3)-Rosetta 2 E. coil (Novagen) in LB 

liquid media containing kanamycin (25jig/ml) and chloramphenicol (30 ig/ml). Cultures 

were grown with shaking at 37 °C until the A. 6w  was --0.6, over-expression induced by 

addition of IPTG to 1 mM and growth continued for a further 4 hours at 37 ° C. Cells were 
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harvested by centrifugation (3000 xg for 15 mm), resuspended at 10% weight per volume in 

ice-cold lysis buffer (50mM tris p1-I 7.5. 5mM EDTA, 1mM DTT. 0.1mM benzamidine, 

0.1mM PMSF) plus excess protease inhibitor cocktail (Roche), and sonicated on ice for 6 x 

30 second bursts, with 30 seconds cooling in between. The cell lysate was subjected to 

centrifugation at 30,000 xg for 1 hr at 4 C. 
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Figure 4-4 Purification of full-length ceSGT. (a) ceSGT enriched from cell-extract using anion 
exchange with source-30Q resin at pH 5.5. ceSGT elutes around 100 mM KCI. (b) Purification steps. 
Lane I - cell-extract, lane 2 - anion exchange round 1, lane 3 - repeat anion exchange with finer gradient, 
4 - gel-filtration, purified to about 95% purity. 26 kDa degradation product (marked with black arrow) 
difficult to completely separate. 

4.2.2.1. Purification of ceSGT 

Untagged ceSGT was purified by a two-step strategy consisting of anion exchange and gel 

filtration. The calculated isoelectric point (http://www.embl-heidelberg.de/cgi/pi-wrapper.pl)  

for ceSGT was 4.5 and a bis-tris pH 5.5 buffer was selected for anion exchange. Clarified 

cell lysate was dialysed overnight against buffer A (50mM bis-tris pH 5.8, 1mM EDTA, 

1mM DTT, 0.1mM PMSF, 1mM azide), filtered through a 0.2 gm filter and applied to a 

Source-Q 30 ltm (Pharmacia) column (V 10 ml; 2 x 5 cm) pre-equilibrated in buffer A. 

ceSGT was eluted with a 0-500 mM KCI gradient in buffer A over 100 mIs and analysed by 

SDS-PAGE (Figure 4-4). Fractions containing ceSGT, eluting between 100 and 200 mM 

KCI, were pooled and concentrated. Protein was then applied to Superdex 200 HR 30/10 

column (Amersham Bioscience) pre-equilibrated in buffer B (25mM HEPES pH 7.5. 

100mM NaCl and 1 mM DTT) and analysed by SDS-PAGE. Fractions containing ceSGT 
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were pooled and stored on ice at 4 °C in buffer B. ceSGT was >95% pure as judged by SDS-

PAGE (Figure 4-4). 

4.2.2.2. Purification of ceSGT-TPR 

Untagged ceSGT-TPR was purified by the same strategy as above. The calculated P is 6.9 

and a tris pH 9.0 buffer was selected for anion exchange. Clarified cell lysate was dialysed 

overnight against buffer D (50mM tris pH 9.0, 1mM EDTA, 1mM DTT, 0.1mM PMSF, 

1mM azide), filtered through a 0.2 tm filter and applied to the source 30Q column pre-

equilibrated in buffer D. ceSGT-TPR failed to bind the resin but was sufficiently enriched in 

the flow-through (Figure 4-5a). ceSGT-TPR was further purified using a Superdex 75 HR 

30/10 column (Amersham Bioscience) equilibrated in buffer C (Figure 4-5b). ceSGT-TPR 

was >95% pure as judged by SDS-PAGE, and stored on ice at 4 °C in buffer C (Figure 4-5c). 

(a) Oe 
	

(c) 
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I Flow-through 	 Jad Ld 	 Peak elution 	 MW SGTTPR 

Load 

Figure 4-5 Purification of ceSGT-TPR. (a) Anion exchange (Source-30Q) at pH 9 used as first step. 
ceSGT-TPR highly enriched in flow-through. (b) Further cleaned with get-filtration using a Superdex 
75 column. (c) Purified protein, estimated >95% purity. Difficult to separate from smaller protein 
carried over from expression. 

4.2.3. Mass Spectrometry 

The mass spectrometry analyses were carried out on a Voyager DE-STR MALDI-TOF 

(Applied Biosystems) instrument using a-cyano-4-hydroxycinnamic acid (CHCA) matrix for 

peptides and sinapinic acid matrix for proteins. Proteins within gel pieces were first reduced, 

carboxyamidomethylated, and then digested with trypsin (Promega) prior to peptide mass 

fingerprinting. 
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4.2.4. Protein Cross-linking 

5 jig total protein in 15 L1 buffer B was cross-linked with addition of a 1110th  volume of 10 x 

glutaraldehyde stock made up in buffer B, 0.1% and 0.2% final glutaraldehyde 

concentrations were used. The reaction was quenched at various time points by addition of a 

1110th volume of 1M tris p1-1 7.5 and subjected to SDS-PAGE analysis. 

4.2.5. Analytical Gel Filtration 

Gel filtration studies were carried out on an AKTA explorer FPLC using either a Superdex 

200 HR 30/10 column or a Superdex 75 HR 30/10 column at 4 °C. The column was 

equilibrated with buffer B and calibrated using the following molecular weight standards - 

ribonuclease A (15.6 kDa), chymotrypsinogen A (20.4 kDa), ovalbumin (49.1 kDa), albumin 

(67.4 kDa), aldolase (176 kDa), catalase (219 kDa), ferritin (416 kDa) and thyroglobulin 

(699 kDa). 200 Al protein at concentrations ranging from 10-500 PM was applied to the 

column and run at 0.5 ml min'. Calibration curves for both molecular weight and Stokes 

radius were generated using SigmaPlot 9.0. For molecular weight a plot of Kay against log 

molecular weight was used where Kay = (V e  - V0)/(V 1  - V0); Ve  = retention volume, V. = 

void volume, V t  = column bed volume. The Laurent and Killander solution (Laurent and 

Killander, 1964) for the calculation of the Stokes radius was used where '.-log K ay) is 

plotted against the Stokes radius. 

4.2.6. Circular Dichroism Spectroscopy 

All CD spectra were recorded with a nitrogen-flushed Jasco J-810 spectropolari meter. For 

far-UV CD measurements, proteins were dialysed against buffer containing 25 mM NaPO 4  

and 50 mM KF prior to analysis. 10-50 AM protein was used with a path length of 0.02 cm. 

Data were recorded from 250 to 185 nm and accumulated over 2 runs using a 2 s time 

constant, 10 nm min- ' scan speed and a spectral bandwidth of 1 rim. Spectra were corrected 

for buffer and the secondary structure content of the protein was estimated by deconvolution 

with CDSSTR using the web server DICHRO WEB (Whitmore and Wallace, 2004). 

For near-UV CD measurements, 100 p.M protein in buffer B was used with a path length of I 

cm. Data were recorded from 340 to 250 nm and accumulated over 3 runs using a 4 s time 

constant, 5 nm min' scan speed and a spectral bandwidth of 1 rim. For ligand binding 

experiments, titrations were conducted in a stepwise manner from a stock peptide solution of 

4 mM with the volume of added peptide (in buffer B) not exceeding 15% of the starting 

volume. Peptides were titrated directly into the cuvette containing an initial volume of 1500 
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p1, mixed by pipetting and allowed to equilibrate for 10 mins. Titrated spectra were corrected 

for both dilution and intrinsic CD of the buffer/peptide alone. 

To determine binding affinities, the plot of titration CD data signal at a single wavelength 

against the molar concentration of the ligand was analysed by non-linear regression analysis 

using the software package SigmaPlot 9.0. Data were fit to the equation 

F = Ffree + (Fsatuted - F&ee)((Kj + [A] + [B]) - 'I((Kd + [A] + [B]' -  4[A][B]))/2[A] 

where F = CD signal at a specified wavelength, Kd = dissociation constant, [A] = protein 

concentration and [B] = peptide concentration. 

4.2.7. Isothermal titration calorimetry 

Binding of Hsp90/Hsp7O C-terminal peptides MEEVD and GPTIEEVD to the ceSGT TPR 

domain was measured by isothermal titration calorimetry (ITC) using a MicroCal VP-ITC 

titration calorimeter (MicroCal Inc., Northhampton, USA). 50 to 100 aliquots of 2-5 jil 

peptide solution (4-8 mM; dissolved in buffer B and pH adjusted to match the protein 

solution) were titrated at 25 °C by injection into -1.3 ml SGT-TPR solution (30-100 p.M) in 

the chamber. Peptide only controls were conducted to allow for determination of heats of 

ligand dilution. After subtraction of dilution heats, calorimetric data were analyzed using the 

evaluation software provided by the manufacturer. 

4.2.8. Protein crystallisation and crystal screening 

Crystallisation trials were conducted using the hanging drop vapour diffusion method from a 

10 mg ml' protein solution in buffer B at 4 and 18 °C. Hampton Crystal Screen TM  and 

Crystal Screen TM  II were used for screening with a 2 itl drop consisting of a 1:1 ratio of 

protein and well solution. Trials were carried out in the absence and presence of the 

Hsp90/Hsp7O peptides MEEVD and GPTIEEVD. Peptides were reconstituted in distilled 

H20 and mixed with protein at a ratio of 1:1.3. Optimisation of initial hits was conducted 

using a grid screen around promising conditions. Putative protein crystals were screened at 

station 10.1, SRS, Daresbury, UK or station BM14, ESRF, Grenoble. 

4.2.9. Structure analysis 

A homology model of the C. elegans SGT TPR domain (residues 100-225) was generated 

with SWISS-MODEL using several structures of the TPR domain from PP5 as a template 

(PDB-IDs 2BUG, 1WAO and lA17). Evolutionary conservation analysis carried out with 

ConSurf (Glaser et al., 2003) using the empirical Bayesian method. Homologous sequences 
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for TPR domains from ceSGT, Hop (TPRI and TPR2A), PP5 and Chip were extracted from 

the UniProt database using BLAST (Altschul et al., 1997) with a cut-off E-value of 1e 20 . 

Alignments were generated with 3D-COFFEE (Armougom et al., 2006) (Appendix A.3.1.-

A.3.3.) prior to analysis with ConSurf. Electrostatic-potential maps were calculated with 

APBS (Baker et al., 2001) using a PyMol plug-in (http://www -

personal.umich.edu/—mlerner/PyMOLI). Charges were assigned using PDB2PQR (Dolinsky 

et al., 2004) and an AMBER forcefield (Case et al., 2005). 

4.3. 	Results and discussion 

4.3.1. Purification 

ceSGT and ceSGT-TPR were successfully expressed and purified to over 90% purity based 

on estimation of relative band densities from coomassie stained SDS-PAGE gels (Figures 4-

4c and 4-5c). During the purification of ceSGT, a 26 kDa protein with similar elution 

characteristics was difficult to completely separate. MALDI-TOF analysis of a trypsin digest 

of this 26 kDa protein revealed it to be a degradation product lacking the C-terminal region, 

with cleavage after residue 212, now designated ceSGTAC. The presence of this contaminant 

with similar physiochemical properties to the full-length protein hampered the purification 

and resulted in a low final yield of approximately 0.5 mgs per litre culture. 

4.3.2. Biophysical and biochemical characterisation of ceSGT and ceSGT-TPR 

4.3.2.1. Far-UV CD spectroscopy analysis of ceSGT and ceSGT-TPR 

Far-UV CD experiments sensitive to protein secondary structure were used to study the 

folded state of ceSGT and ceSGT-TPR. Both spectra are characterised by positive maxima at 

193 nm and negative minima at 208 and 222 nm typical of helical proteins (Figure 4-6). 

Deconvolution of the CD spectra with CDSSTR predicts secondary structure content of 58% 

helix, 10% strand, 15% turn and 19% unordered for ceSGT; and 81% helix, 10% turn and 

9% unordered for ceSGT-TPR. These are in good agreement with secondary structure 

prediction algorithm PHD (Rost, 1996), which predicts a full-length protein with 60-70% 

helix and 30 - 40% loop (Figure 4-2). The highest concentration of helix is across the TPR 

domain which was shown to be virtually all helical indicating that the protein was correctly 

folded in comparison to related TPR domains of known structure (Das et al., 1998; Granzin 

et al., 2006; Scheufler et al., 2000; Taylor et al., 2001; Wu and Sha, 2006; Zhang et al., 

2005). 
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Figure 4-6 Circular dichroism spectroscopy analysis of ceSGT and ceSGT-TPR. (a) Spectra for 
ceSGT. Deconvolution with CDSSTR predicts a protein with 58% helix, 10% strand, 15% turn and 
19% unordered. (b) Spectra for ceSGT-TPR. Deconvolution with CDSSTR predicts a protein with 
85% helix, 10% turn and 5% unordered. 

4.3.2.2. Glutaraldehyde cross-linking of ceSGT 

Human SGT has previously been shown to oligomerise (Liou and Wang, 2005; Tobaben et 

al., 2003). Based on cross-linking studies, Liou and Wang (Liou and Wang, 2005) suggested 

the formation of dimers although the result, as analysed by SDS-PAGE, was more consistent 

with the molecular weight of a trimer. To investigate the self-association properties of C. 

elegans SGT, and also to clarify the oligomeric state, glutaraldehyde cross-linking was 

carried out. Glutaraldehyde is a small homobifunctional amine reactive cross-linker. 

Visualisation of cross-linked complexes on coomassie stained SDS-PAGE gels clearly 

shows the accumulation, with respect to both time and glutaraldehyde concentration, of a 

high molecular weight species mirrored by a concomitant decrease in concentration of 

monomeric protein (Figure 4-7). In addition, there is also evidence for the accumulation of a 

smaller molecular weight complex likely corresponding to the oligomerisation of the full-

length protein and ceSGTiC. From the gel, the larger more abundant complex is estimated 

to have a mass in the region of 110-120 kDa and the smaller complex 90-100 kDa, consistent 

with the molecular weight of a trimeric complex. 
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Figure 4-7 Glutaraldehyde cross-linking of ceSGT. Purified ceSGT was cross-linked with 
glutaraldehyde (GA) for indicated time periods. The reaction was quenched with 1M tris pH 7.5 and 
analysed by SDS-PAGE. Accumulation of a complex in the region of 110-120 kDa in size, and a less 
abundant complex 90-100 kDa in size, is evident with respect to both time and GA concentration, 
labelled (i) and (ii) respectively. Molecular weight markers are indicated to the left of the gel. 

4.3.2.3. MALDI-TOF mass-spectroscopy of ceSGT oligomers 

MALDI-TOF mass spectrometry was used to accurately determine the oligomeric state. 

Native ceSGT yielded a major monomeric peak of 36440 Da (Figure 4-8a). A peak 

approximately one third the magnitude of the ceSGT peak was observed at 26499 Da, 

corresponding to degradation product ceSGTAC. The ceSGT oligomeric complex was also 

captured in the analysis of the native protein with peaks corresponding to full-length homo-

dimer (MW = 73552 Da) and ceSGT/ceSGThC hetero-dimer (MW = 63264 Da) detected. 

Analysis was repeated with glutaraldehyde cross-linked proteins, resulting in increased 

intensity spectra for the oligomeric species coupled with an increase in mass according to the 

incorporation of glutaraldehyde (MW homo-dimer = 75069 Da, MW hetero-dimer = 64463; 

MW glutaraldehyde = 100.1). In addition, homo-dimerisation of the ceSGTAC was also 

evident (MW = 54825) (Figure 4-8b). This provides direct evidence that ceSGT is capable of 

forming dimers and also that the ability to self-associate is maintained in the absence of the 

C-terminal domain. 
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Figure 4-8 MALDI-TOF mass spectrometry analysis of native and cross-linked ceSGT. The mass 
of the ceSGT oligomer was investigated using MALDI-TOF mass spectrometry. a) Spectra for native 
ceSGT reveals a major peak corresponding to singly charged monomeric ceSGT with a mass of 36440 
Da (A2). Degradation product ceSGThC has a mass of 26499 Da (Al). Peaks corresponding to full 
length homo-dimer (A4. 73552 Da) and ceSGT/ceSGTiC hetero-dimer (A3. 63264 Da) are also 
recorded. b) Spectra for glutaraldehyde cross-linked ceSGT. Respective dimer peaks increase in 
intensity after cross-linking (134 and 135) and the presence of ceSGTAC homo-dimer is also recorded 
(133). There is an increase in mass for all species indicating incorporation of glutaraldehyde (MW 
100.1 Da) molecules into protein. 

The observation of the dimeric complex in both the native and cross-linked samples was 

surprising. MALDI-TOF mass-spectrometry using traditional low pH conditions is generally 

believed to only be able to detect covalently bound species. This suggests that ceSGT forms 

high affinity dimers. No evidence was found for the existence of any higher molecular 

weight oligomers suggesting the exclusive formation of dimers. The significantly larger 

molecular weight estimated from SDS-PAGE analysis of cross-linked SGT is likely to be an 

artefact imposed by the cross-linking process, with either lower amounts of SDS being 
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incorporated into the denatured protein and/or conformational constraints imposed by cross-

linking affecting gel migration. 

4.3.2.4. Gel filtration analysis of ceSGT and ceSGT-TPR 

Semi-analytical gel filtration was used to investigate the hydrodynamic properties of ceSGT 

and ceSGT-TPR. ceSGT was resolved on a Superdex 200 HR 30/10 column (Figure 4-9a). 

At all concentrations tested, ceSGT eluted predominantly as single peak suggesting a mono-

disperse population and an obligate dimer with a very tight association. The elution profile 

was, however, consistent with a protein of significantly higher molecular weight with a mean 

retention volume of 11.65 ± 0.1 ml (mean ± SEM; n=3). Using the calculated calibration 

curves, ceSGT is estimated to have an apparent molecular weight of 216.8 kDa (actual MW 

of dimer = 73 Wa). More accurately, gel filtration separates particles based on their 

hydrodynamic properties and ceSGT elutes with a predicted Stokes radius of 51.2 A. A 

globular protein of 73 kDa would have a Stokes radius of approximately 33 A. The 

discrepancy between the actual molecular weight and hydrodynamic properties is indicative 

of a non-globular conformation. 
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Figure 4-9 Analytical gel-filtration analysis of ceSGT and ceSGT-TPR. (a) Hydrodynamic 
properties of ceSGT were analysed using a Superdex 200 HR 10/30 gel-filtration column. ceSGT 
elutes with a retention volume of 11.65 ± 0.1 ml (mean ± SEM; n=3) and has an apparent molecular 
weight of 217.1 kDa and a Stokes radius of 52 A. (b) Hydrodynamic properties of ceSGT-TPR 
analysed using a Superdex 75 HR 10/30 gel-filtration column. ceSGT-TPR elutes with a retention 
volume of 11.84 ± 0.12 ml (mean ± SEM; n=3) and has an apparent molecular weight of 26.5 kDa and 
Stokes radius of 19.3 A. (c) Table of actual MW, predicted MW and Stokes radii. 
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Due to its smaller size ceSGT-TPR was resolved on a Superdex 75 HR 30/10 column, 

eluting with a retention volume of 11.84 ± 0.12 ml (mean ± SEM; n=3) and a predicted 

molecular weight and Stokes radius of 26.5 kDa (actual molecular weight 14.5 kDa) and 

19.3 A respectively (Figure 4-9b). This suggests a more compact tertiary fold and is 

consistent with the monomeric dimensions of related TPR domains of known structure. 

Taken together, with a mass of 73 kDa and a Stokes radius of 5.2 nm, the hydrodynamic 

dimensions of the ceSGT dimer in relation to its molecular weight would suggest a protein 

with a low level of compactness and an extended conformation. The dimerisation of 

ceSGTAC and the apparent monomeric state of ceSGT-TPR provide indirect evidence that 

the self-association properties of ceSGT are mapped to the N-terminal domain, consistent 

with studies on human SGT. Primary structure analysis using the program COILS (Lupas et 

al.. 1991) highlights the significant probability of the formation of a small two-stranded 

coiled-coil in the N-terminus which is a likely candidate for mediating the self-association 

(Figure 4-2). A structural model is proposed whereby dimerisation of ceSGT mediated by a 

parallel coiled-coil interaction in the N-terminal domain results in an extended V-shaped 

dimer (Figure 4-10). 

TPR 	 Q-rich 1 
Coiled-coilJ 

Coiled-coil 

TPR i- 0-rich 

Figure 4-10 Predicted quaternary structure of ceSGT. SGT dimerises via the N-terminal coiled-
coil forming an elongated V-shaped structure. 
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4.3.3. Characterisation of the interaction between ceSGT and Hsp90/Hsp7O 

4.3.3.1. Interaction between ceSGT and human Hsp9Oa-631 

The interaction of ceSGT and a C-terminal construct of human Hsp90a was investigated 

using semi-analytical gel filtration. 30 tLM ceSGT and 100 gM Hsp90a-63 1 were resolved on 

a Superdex 200 HR 30/10 column with retention volumes of 11.65 and 12.92 ml respectively 

(Figure 4-ha). 30 pM ceSGT and 100 p.M hHsp90a-631 were then incubated for 1 hour at 

room temperature prior to application to the column. The incubated protein eluted with two 

peaks with retention volumes of 11.19 and 12.92 ml. The shift in elution position of the 

higher molecular weight peak from 11.65 ml for ceSGT alone to 11.19 ml for the two 

proteins incubated together suggested the co-migration of a ceSGT-h}Isp90a-63 1 complex. 

To verify this, the eluate from fractions collected every 0.5 ml was subjected to SDS-PAGE 

analysis (Figure 4-1 lb). When run together, the elution profile of ceSGT is altered with the 

peak position shifted by about 0.5 ml and ceSGT detected in greater abundance earlier in the 

elution. Furthermore, although the majority of hHsp90a-63 I elutes in the same position, a 

small fraction is detected with a significant shift in retention volume of >1 ml suggesting the 

interaction of ceSGT and hHsp90a-63 I. 

Additional attempts to demonstrate an interaction using a larger C. elegans Hsp90 construct 

or the full-length protein were inconclusive. This may reflect a weak and transient nature of 

the interaction. 

4.3.3.2. Interaction of the ceSGT TPR domain with the C-terminal Hsp90/70 peptides 

Studies of the interaction between the TPR domains TPR1 and TPR2A of Hop with Hsp70 

and Hsp90 respectively have shown that the isolated TPR domains interact with the isolated 

C-terminal peptides of Hsp90 or Hsp70 with comparable affinities to the full-length proteins 

(Scheufler et al., 2000). For this reason, the interaction of the isolated ceSGT TPR domain 

with the extreme C-terminal Hsp90 peptide MEEVD and the C-terminal Hsp70 peptide 

GPTIEEVD was also investigated using two methods - isothermal titration calorimetry 

(ITC) and circular dichroism (CD) spectroscopy. 
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Figure 4-11 Interaction of ceSGT with human Hsp90-631. (a) ceSGT (30iiM) and Hsp90a-631 
(100 ttM), alone and incubated together, were resolved on a superdex 200 gel-filtration column. A 
shift in retention volume of the high molecular weight peak when incubated together (blue) compared 
to alone (black and red) suggests complex formation. (b) SDS-PAGE analysis of eluate from gel-
filtration (arrows indicate elution position of eluate) When run alone ceSGT peaks between lanes 3 
and 4 and Hsp90-63 I can be detected in lane 4. However, when run together the peak of ceSGT is 
shifted slightly to lane 3 and Hsp90ct-631 can be detected in lane 2 corresponding to a shift of —1 ml 

in retention volume 
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Figure 4-12 ITC analysis of the interaction between ceSGT-TPR and C-terminal peptides from 
Hsp90 and Hsp70. Top, raw data on heat change obtained after injection of peptides into ceSGT- 
TPR. Bottom, the heat changes as a function of the molar ratio of peptide and protein. (a) ceSGT-TPR 
plus Hsp90 peptide MEEVD. Results from representative run shown. Kd calculated from 3 separate 
runs, quoted as mean ± SEM. (b) ceSGT-TPR plus Hsp70 peptide GPTIEEVD. Results from 
representative run shown. K d  calculated from 3 separate runs, quoted as mean ± SEM. 

ITC is a method of choice for measuring protein-ligand interactions. ITC experiments 

directly measure the heat absorbed or released upon interaction and, allow the calculation of 

binding enthalpy (AH), the equilibrium dissociation constant (K d) and the stoichiometry (n). 

The binding of llsp70 peptide GPTIEEVD and Hsp90 peptide MEEVD to the TPR domain 

of ceSGT was investigated using ITC. Figure 4-12 shows the results of a representative 

experiment in which the TPR domain was titrated with the peptide. The affinity values 

measured for both peptides were very similar with GPTIEEVD and MEEVD having Kd 

values of 37 ± 1.53 l.LM and 40.33 ± 6.56 .tM respectively. As expected, both peptides bound 

with a 1:1 stoichiometry. The changes in enthalpy on binding in both cases were negative 

indicating an exothermic reaction; however, this was greater for the binding of the longer 

Hsp70 heptapeptide (-3412.33 ± 183.45 cal/mol (mean ± SEM; n = 3)) compared with the 

Hsp90 pentapeptide (-2530.67 ± 86.46 callmol (mean ± SEM; n = 3)). 
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Figure 4-13 Near-UV CD analysis of the interaction between ceSGT-TPR and C-terminal 
peptides from Hsp90 and Hsp70. Near-UV CD spectra for ceSGT-TPR with increasing 
concentrations of Hsp90 peptide MEEVD (a) and Hsp70 peptide GPTIEEVD (b). The plot of CD at 
290 nm verses concentration was fit to a tight-binding equation using non-linear regression to 
calculate the binding affinity. Spectra from representative experiment shown, repeated twice for each 
peptide. Kd quoted as mean ± SEM. 

The peptide-TPR domain interaction was also assessed with CD spectroscopy. The CD 

spectrum of a protein in the near-UV spectral region (250-350 nm) can be sensitive to certain 

aspects of tertiary structure and therefore can be used to study macromolecular interactions. 

The chromophores are the aromatic residues phenylalanine, tyrosine and tryptophan, and 

also disulphide bonds. Each peptide alone lacked any near-UV CD; however, titration of 

either peptide into ceSGT-TPR caused saturatable dose-dependent perturbations in the 

spectra indicative of changes in the environment of aromatic residues as a result of molecular 

interaction (Figure 4-13). By assuming that the change in CD intensity at a given wavelength 

was proportional to the extent of peptide binding, the K d  for the interaction was calculated by 

fitting a tight-binding equation (see section 5.2.6) to a plot of CD signal at 290 nm to the 

molar concentration of peptide. Resulting Kd values of 37.5 ± 0.5 PM and 34 ± 1 p.M (mean 

± SEM; n = 2) for GPTIEEVD and MEEVD respectively were in good agreement with those 

measured by ITC. 
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Based on experiments with the TPR domain from protein phosphatase PP5 it has been 

proposed that a coupled folding and binding mechanism may be a common feature of TPR 

domain recognition (Cliff et al., 2005). To investigate whether any change in secondary 

structure accompanied binding of either peptide to ceSGT-TPR, far-UV CD spectra were 

recorded in the absence and presence of saturating concentrations of peptide. No difference 

in far-UV CD spectra was observed in the presence of either peptide (Figure 4-14); indeed, 

the isolated domain was judged to be almost completely folded with a predicted secondary 

structure content of8l% helical, 10% turn and 9% unordered. 
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Figure 4-14 Far-UV CD analysis of ceSGT-TPR in complex with Hsp70/90 C-terminal peptides. 
Peptide-free and peptide-bound spectra are superimposable indicating no change in secondary 
structure upon peptide binding. 

SGT has been shown to interact with both Hsp70 and Hsp90 both in vitro and in vivo so it 

was unsurprising that the TPR domain was found to interact with both peptides (Angeletti et 

al., 2002; Liou and Wang, 2005; Tobaben et al., 2003; Yin et al., 2006); however, studies 

have shown a preference for 1-lsp70 over Hsp90 (Angeletti et al., 2002) so it was anticipated 

that there would be a higher affinity for the l-Isp70 peptide. It is possible that for the 
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interaction with SGT, sequences upstream of the short C-terminal peptides may provide 

additional specificity. Indeed the arginirie residue at peptide position -5, preceding the 

methionine, in Hsp90 has been shown to reduce affinity (Brinker et al., 2002; Scheufler et 

al., 2000). The affinity of a 24-mer Hsp70 peptide for the TPR domain of human SGT, the 

only published SGT interaction kinetic data, is 225 jiM (Cortajarena and Regan, 2006). This 

is almost one order of magnitude weaker than results here, although other Kd values from 

the same study were also proportionally higher than reported elsewhere. 

The promiscuous interaction of TPR domains with both Hsp70 and Hsp90 is not uncommon 

and is exhibited in numerous co-chaperones including Chip, cyclophilin-40 and Tom70. In 

fact, with the exception of the TPRI domain from 1-lop, TPR domains interacting with Hsp70 

also have been shown to interact with Hsp90. The structures of 10 TPR domains known to 

interact with I-Isp70 or Hsp90 have been solved. All, excluding a domain-swapped form of 

bovine cyclophilin-40 (Taylor et al., 2001), are formed by three TPR repeats which form a 

concave peptide interaction surface and all, with the exception of Arabidopsis FKBP42 

(Granzin et al., 2006), are capped with a C-terminal helix with important functional 

significance. 

Five of the TPR domains of known structure have been solved in complex with an Hsp70/90 

C-terminal peptide (Cliff et al., 2006; Scheufler et al., 2000; Wu et al., 2004; Zhang et al., 

2005). In all cases the interaction involves a similar set of TPR residues although the peptide 

orientation and precise ensemble of interacting residues differ between the structures. The 

canonical anchoring mechanism shared in all structures was first termed the "two-

carboxylate clamp" (Scheufler et al., 2000) and consists of two lysine residues (Lys 4  and 

Lys70) that interact with the peptide Asp °  side-chain and C-terminal carboxylates. Additional 

conserved clamp residues (Asn 9, Asn4°  and Arg 74) form direct interactions with the peptide 

backbone and residues G1u 2  and G1u 3  (Figure 4-15). A hydrophobic pocket made of strictly 

conserved residues Ala 20  and Tyr 24  and a more variable hydrophobic residue as position 12 

of the first TPR domain accommodates the Val" residue. 
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Figure 4-15 Hsp70/90 interacting TPR domains. (a) Alignment of Hsp70/90 interacting TPR 
domains. Two-carboxylate clamp residues marked with red stars, additional important residues with 
yellow stars. (b) General structure of TPR domain-EEVD complex with highlighted residues. 
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Figure 4-16 shows the alternate conformations the C-terminal peptides adopt in complex 

with TPR domains from Hop, PPS and Chip. All show conserved anchoring of the VD motif 

by the two-carboxylate clamp; however, all exhibit remarkably different upstream peptide 

binding orientations. The crystal structure of the domains of TPRI and TPR2A from Hop, 

solved with Hsp70 and Hsp90 peptides respectively, show that both bind in an extended 

conformation with differences in the N-terminal hydrophobic peptide residues important for 

determining the specificity of the interaction. In contrast, the NMR structure of the PP5-

Hsp90 peptide complex shows the peptide kinked away from the concave face at residue Val - 

] with the upstream residues not forming any measurable interactions. Further, upstream of 

G1u 3  the Hsp90 peptide in complex with Chip departs significantly from the Hop bound 

conformation. A large hydrophobic pocket formed by the third TPR repeat and the C-

terminal capping helix accommodates Met -4 and orientates the peptide out away from the 

TPR channel. 

(a) 
	

(b) 

(C) 

) 

Figure 4-16 Evolutionary conservation of TPR domain-peptide complexes. All structures are 
coloured according to evolutionary conservation from red (highly conserved) to blue (variable) (a) 
h0pTPR2A-MEEVD complex (1ELR). (b) TPRI-GPTIEEVD complex (IELW). (c) PP5-TPR-
MEEVD complex (2BUG). (d) CHIP-DTSRMEEVD complex (2C2L). All structures exhibit a pattern 
of evolutionary conservation reflective of peptide binding mechanism. 
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Interestingly, the pattern of surface residue conservation for each protein correlates well with 

the observed peptide binding orientation in all four examples (Figure 4-16). Evolutionary 

analysis of a model of the ceSGT TPR domain in conjunction with overlaying the TPR 

bound peptide structures indicates that ceSGT-TPR could accommodate peptides in an 

analogous manner to TPRI of Hop, PP5 or Chip but not TPR2A of Flop. Moreover, NMR 

chemical shift analysis of the interaction between human SGT and an Hsp70 24-mer peptide 

has shown residues the length of the channel to be affected by peptide binding (Cortaj arena 

and Regan, 2006). The pattern of binding site conservation and chemical shift analysis 

intimate a similar extended binding orientation for the Hsp70 peptide as witnessed in the 

Hop TPR1 peptide structure (Figure 4-17c, coloured yellow). The Hsp90 peptide could 

interact in the same fashion although the pattern of conservation and surface characteristics 

could also suggest similar mechanisms as for PP5 or Chip. In support of alternate peptide 

binding orientations for TPR domains which bind both Hsp70 and Hsp90, a mutational 

analysis of key TPR residues in cyclophilin-40 found different residues had different affects 

on Hsp70 or Hsp90 binding (Carrello et al., 2004). 

The biological relevance of either the homo-dimerisation of SGT or the dual recognition of 

Hsp70 and FIsp90 is unclear. SGT has been shown to affect a myriad of cellular functions 

and important roles are emerging in neuronal synaptic transmission (Bai et al., 2007; 

Natochin et al., 2005; Swayne et al., 2006; Tobaben et al., 2001), the cell cycle (Winnefeld et 

al., 2004), apoptosis (Wang et al., 2005; Winnefeld et al., 2006; Yin et al., 2006), and viral 

replication (Callahan et al., 1998; Cziepluch et al., 2000; Handley et al., 2001). Many of 

these functions are linked to the ability of SGT to interact with Hsp70 or Hsp90. 

Interestingly, SGT has been shown to be a chaperone in its own right (Tobaben et al., 2001) 

and the ability to interact with Hsp70 and Hsp90 may allow the transfer of proteins along 

different folding pathways. Such chaperone communication has been documented for Hsp40, 

which binds newly synthesised polypeptides and passes them to Hsp70; and Hop, which 

binds in tandem to both Hsp70 and Hsp90, mediating the transfer of a family of Hsp90 client 

proteins. The existence of SGT as a dimer raises the possibility that it could interact 

simultaneously with both Hsp70 and Hsp90 in a manner similar to Hop although further 

work is required to investigate this. 
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Figure 4-17 Surface properties of modelled ceSGT-TPR. (a) ConSurf analysis, coloured from red 
(conserved) to blue (variable). (b) Electrostatic surface coloured from red (-5 eV) to blue (5 eV). (c) 
ConSurf coloured surface with hopTPRI, PP5 and CHIP peptides docked. (d) NMR chemical shift 
analysis with blue indicating residues involved in human SGT-TPR:Hsp70 peptide interaction (Figure 
taken from Cortajarena and Regan, 2006). 

Of interest, in a transgenic C elegans model for Alzheimer disease, both ceSGT and C. 

elegans Hsp70 homologue Hsp70A were found to interact, directly or indirectly, with human 

P amyloid (A13) (Fonte et al., 2002). Hsp70A contains the C-terminal motif GPTIEEVD 

shown here to interact with the TPR domain from ceSGT, suggesting the formation of an 

Hsp70A-ceSGT complex. Intriguingly, in the same study, RNAi targeted against the ceSGT 

transcript was shown to reduce All  expression induced toxicity. Human SGT has been shown 

to negatively regulate the activity of Hsp70 (Angeletti et al., 2002) implicating a protective 

function of Hsp70 in modulating All  toxicity. Thus, the interaction between the SGT TPR 

domain and Hsp70 may represent a potential target for small-molecule peptidomimetics for 

the treatment of Alzheimer's disease. 
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4.3.4. Crystallisation trials of ceSGT and ceSGT-TPR 

Hampton sparse matrix screens Crystal Screen and PEG/Ion Screen' TM  were used for initial 

crystallisation trials. For ceSGT, small plates with an hexagonal habit were grown from 

condition 14 of the PEG/Ion Screen TM  (200 mM potassium thiocyanate, 20% PEG 3350, pH 

7.0) at 4 °C. Optimisation around these conditions at 4 °C failed to reproduce the crystals; 

however, at 18 °C very fine needles were grown by lowering the PEG 3350 concentration to 

5% (Figure 4-18a). Both the small plates and fine needles failed to diffract. ceSGT-TPR 

crystallisation trials produced several promising hits. Small spherulite-like particles were 

observed in Crystal Screen TM  condition 17 (200 mM lithium sulphate. 100 mM tris pH 8.5 

and 30% PEG 4000) (Figure 4-18b). Furthermore, small rod shaped crystals grew from 

Crystal Screen TM  condition 35 (100 mM HEPES p1-I 7.5, 800 mM sodium phosphate. 800 

mM potassium phosphate) (Figure 4-18c). Using synchrotron radiation and under cryo-

conditions these diffracted to about 5 A (Figure 4-1 8d). Further optimisation is ongoing for 

both full-length ceSGT and ceSGT-TPR. 

(a 
	 (b) 

(c) (d) 

Figure 4-18 Crystallisation of ceSGT and ceSGT-TPR. (a) Fine needles of ceSGT: 200 mM 
KSCN, 5% PEG 3350 (b) SGT-TPR spherulite: 200 mM lithium sulphate. 100 mM tris pH 8.5, 30% 
PEG 4000 (c) Small SGT-TPR crystals; 100 mM HEPES pH 7.5, 800 mM sodium phosphate, 800 
mM potassium phosphate. (d) Diffraction image of ceSGT-TPR crystals from (c). Innermost ice-ring 
is at 3.9 A resolution, diffraction data extends to about 5 A 
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4.4. 	Conclusions 

The putative protein product of WormBase gene R05F9.10 was identified as a TPR domain 

containing co-chaperone likely to interact with C. elegans Hsp90. Comparative sequence 

analysis revealed the protein was the C. elegans homologue for small glutamine-rich 

tetratricopeptide repeat-containing protein. ceSGT has been successfully cloned, expressed 

and purified. Biochemical and biophysical characterisation has shown that SGT exists as a 

homo-dimer with a non-compact extended structure. The TPR domain of ceSGT was shown 

to bind the C-terminal peptides of Hsp90 and Hsp70 with a similar affinity of approximately 

35 pM. Further work is required to discover if this result translates to the full-length proteins. 

Similarly, further optimisation of crystallisation conditions for both full-length ceSGT and 

ceSGT-TPR is required in order to obtain diffraction quality crystals. 

As a final note, before this project C. elegans gene R05F9.10 referred only to a hypothetical 

protein. As a result of work carried out herein, the gene name sgt-J has been assigned to the 

WormBase entry. 
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5. Biochemical characterisation of C. elegans Hop 

5.1. 	Introduction 

As introduced in chapter 4, two putative TPR domain containing proteins predicted to 

interact with the l-lsp70/Hsp9O chaperone machinery were identified. The C. elegans 

orthologue for small gi utam me-rich tetratricopeptide repeat-containing protein (SGT) was 

discussed in chapter 4. The second protein was the product of gene R09E12.3 and will be 

discussed in this chapter. 

Gene R09E12.3 is a four exon gene located at the beginning of chromosome V (Figure 5-1). 

It encodes a 320 residue protein with a calculated molecular weight of 36.9 kDa. 

Comparative sequence analysis using BLAST highlights extensive sequence similarity to the 

C-terminal half of Hsp70/l-lsp9O organising protein (Hop). Alignment with human Hop 

shows 56% sequence identity to the C-terminal 318 residues and the complete absence of the 

N-terminal 220 residues (Figure 5-2). Human Hop is composed of 9 TPR repeats segregated 

into three distinct domains named TPRI, TPR2A and TPR2B. In addition there are two 

regions with aspartate-proline (DP) repeats located between TPRI and TPR2A, and at the C-

terminal. The putative C. elegans Hop homologue lacks domain TPRI and the first DP 

repeat region (Figure 5-1). The possibility of an incorrect gene prediction was investigated 

but no evidence of any upstream exons coding for the missing sequence was evident. 

V 
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Figure 5-1 cd-lop gene and protein architecture. WormBase gene R09E 12.3 is a four exon gene 
located on the forward strand of C. e/egans chromosome V. It encodes a 320 residue protein with a 
high degree of similarity to the C-terminal half of human Hop but lacking domains TPRI and the first 

DP repeats. 
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Figure 5-2 Alignment of Human and C. elegans Hop homologues. ceHop, which lacks the TPRI 
domain and the N-terminal DP repeat, shares 56% sequence identity with the C-terminal 318 residues 
of human Hop. 

Hop was first identified in yeast and named Sti I for stress inducible protein I (also see 

section 1.4.2.1.)(Nicolet and Craig, 1989). Homologues have since been identified in a wide 

range of species including higher mammals, plants, insects and parasites (Odunuga et al., 

2004). The predominant function of Hop appears to be as an adaptor protein linking the 
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Hsp70 and Hsp90 chaperone pathways (Odunuga et al., 2004). Hop is able to interact with 

both Hsp70 and l-lsp90 via an interaction between the extreme C-terminal Hsp peptides and 

distinct Hop TPR domains: domain TPRI is responsible for the Hsp70 interaction whilst 

domain TPR2A interacts with Hsp90 (Figure 5-3). Crystal structures of the isolated TPRI 

and TPR2A domains in complex with Hsp70 and Hsp90 peptides respectively defined the 

two-carboxylate clamp mechanism (Scheufler et al., 2000). This showed the common 

Hsp70/90 C-terminal EEVD motif coordinated by a cluster of polar residues on the concave 

surface of the TPR domain with residues directly upstream of EEVD providing binding 

specificity and selectivity (see Figures 4-15 and 4-16). The binding partner for domain 

TPR213 remains unclear. The carboxy late-c lamp motif required for Hsp70/90 binding is 

conserved in TPR213 but the domain in isolation was shown to bind Hsp70 or Hsp90 very 

poorly (Scheufler et al., 2000). Conversely, mutations in the TPR2B domain have been 

shown to impact interactions with both Hsp70 and Hsp90 suggesting an overlapping function 

with the other TPR domains (Carrigan et at., 2004 Chen et al., 1998). 

IiiI1I1ui .h1 
Figure 5-3 Hop can interact with both Hsp70 and Hsp90 via distinct TPR domains. TPRI 
interacts with FIsp70 and TPR2A interacts with Hsp90. The ligand for TPR213 is unknown although it 
has been implicated in the interaction with Hsp70 and Hsp90. 

Hsp90 serves as a chaperone for a sub-set of client proteins with the assembly of several 

Hsp90 based multi-protein complexes requiring communication with the Hsp70 chaperone 

machinery (see section 1.3.). In these cases, client proteins bind first to Hsp40 targeting them 

to l-Isp70. Transfer to I-lsp90 is then facilitated by the simultaneous interaction of the Hsp70-

client complex and Hsp90 with Hop. Much of the current understanding of the Hop mediated 

interplay between the Hsp70/90 chaperone machinery has come from the study of the 

maturation of steroid-hormone receptors (see section 1.3). 
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The aims of this project were to initially clone, express and purify C. elegans Hop (ceHop). 

Hop has been proposed to exist as a dimer (Prodromou et al., 1999; van der Spuy et al., 

2001) so the solution state of ceHop was to be investigated. Further, the expected interaction 

with Hsp90 via the TPR2A domain was to be investigated as was the ability of ceHop to 

interact with Hsp70 in view of the absent TPR1 domain. Finally, crystallisation experiments 

were carried out with the aim of obtaining diffraction quality crystals to allow the solving of 

the three-dimensional atomic structure. 

5.2. 	Materials and methods 

5.2.1. Cloning 

cDNA corresponding to full-length ceHop (residues 1-320) were generated by PCR using C. 

elegans mixed stage N2 cDNA as a template. Sequences were amplified with the TaqPlus® 

precision PCR system (Stratagene) using the forward (GCGG ('A TA TG ACG GAC GCC GCG 

ATT GCT G) and reverse primers (GGCG GCGGCCG(' TTA GCG CAT CTG AAT GAC TCC). 

The resulting PCR products were cloned into a pCR®2. I TOPO vector (Invitrogen), verified 

by sequencing and digested with NdeJ and Not! (New England Biolabs). The digested inserts 

were ligated into a similarly digested pET-30a vector (Novagen) and verified by DNA 

sequencing (Figure 5-4). 

(a 

1000 

(b) 

1000 b1' 

Figure 5-4 Cloning of cel-lop. (a) PCR of ceHop from mixed stage N2 C. elegans cDNA. (b) Double-
digest of recombinant pET-30a plasmid showing presence of ceHop sequence. I - pET-30a-ceHop 
plasmid. 2 - Double-digest with Ndel and Not!, ---1000 bp band shows ceHop sequence. 
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5.2.2. Expression and purification 

ceHop was expressed in BL2 I (DE3)- Rosetta 2 E. co/i (Novagen) in LB liquid media 

containing kanamycin (25 igIml) and chloramphenicol (30 ig/ml). Cultures were grown 

with shaking at 37C until the A 6N  was 0.6, over-expression induced by addition of IPTG 

to 1 mM and growth continued for a further 4 hours at 37'C. Cells were harvested by 

centrifugation (3000 xg for 15 mm), resuspended at 10% weight per volume in ice-cold lysis 

buffer (50mM tris pH 7.5, 5mM EDTA, 1mM DTT, 0.1mM benzamidine, 0.1mM PMSF) 

plus excess protease inhibitor cocktail (Roche), and sonicated on ice for 6 x 30 second 

bursts, with 30 seconds cooling in between. The cell lysate was subjected to centrifugation at 

30,000 xg for 1 hr at 4CC. 
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Figure 5-5 Two-step Purification of ceHop. (a) Anion-exchange chromatogram. ceHop was eluted 
with a KCI gradient (solid line). ceHop eluted around 50-100 mM KCI. (b) Gel-filtration 
chromatogram. ceHop was >90% pure based on SDS-PAGE analysis. 

Untagged ceHop was purified by a two-step strategy consisting of anion exchange and gel 

filtration. The calculated isoelectric point (http://www.embl-heidelberg.de/cgi/pi-wraPPer.PI)  

was 6.58 and a tris pH 8.7 buffer was selected for anion exchange. Clarified cell lysate was 

dialysed overnight against buffer A (50mM tris, pH 8.7, 1 m EDIA, 1mM DTT, 0.1mM 

PMSF. 1mM azide), filtered through a 0.2 im filter and applied to a Source-Q 30 gm 

(Pharmacia) column (V - 10 ml; 2 x 5 cm) pre-equilibrated in buffer C. cel-lop was eluted 

with a 0-500 mM KC1 gradient in buffer A over 100 mIs and analysed by SDS-PAGE 

(Figure 5-5). Fractions containing ceHop, eluting between 50 and 100 mM KCI, were pooled 

and concentrated. Protein was then applied to Superdex 200 HR 30/10 column (Amersham 

Bioscience) pre-equilibrated in buffer B (25mM HEPES p1-I 7.5, 100mM NaCl and 1mM 

DTT) and analysed by SDS-PAGE. Fractions containing cel-lop were pooled and stored on 

ice at 4°C in buffer B. ceHop was> 90% pure as judged by SDS-PAGE (Figure 5-5). 
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Human Hsp90a-631 and C elegans DAF21-492 used in the interaction studies were kindly 

provided by Dr. Atnir Rabu (Rabu, 2006). 

5.2.3. Protein Cross-linking 

5 jig total protein in 15 jil buffer B was cross-linked with addition of a 1110th  volume of 10  

glutaraldehyde stock made up in buffer B, 0.1% and 0.2% final glutaraldehyde 

concentrations were used. The reaction was quenched at various time points by addition of a 

11101h volume of IM tris p1-I 7.5 and subjected to SDS-PAGE analysis. 

5.2.4. Analytical Gel Filtration 

Gel filtration studies were carried out on an AKTA explorer FPLC using either a Superdex 

200 HR 30/10 column at 4 °C. The column was equilibrated with buffer B and calibrated as 

before (see section 4.2.5). 200 jil protein was applied to the column and run at 0.5 ml min'. 

For interaction studies, proteins were incubated for 1 hour at room temperature prior to 

application. To determine binding affinities, the plot of retention volume of the complex 

against the molar concentration was analysed by non-linear regression analysis using the 

software package SigmaPlot 9.0. Data were fit to the equation 

F = Ffrec + (Fsaturated - Ffree)((Kd + [A] + [B]) - i((Kd + [A] + [B] 2  - 4[A][B]))/2[A] 

where F = retention volume of DAF2 ] -492:ceHop complex, Kd = dissociation constant, [A] 

= ceHop concentration and [B] = DAF2I-492 concentration. 

5.2.5. Protein crystallisation 

Crystallisation trials were conducted using the hanging drop vapour diffusion method from a 

10 mg m1-' protein solution in buffer B at 4 and 18 °C. Hampton Structure Screen TM  and 

Structure Screen II were used for screening with a 2 jil drop consisting of a 1:1 ratio of 

protein and well solution. Trials were carried out in the absence and presence of the 

Hsp90/Hsp7O peptides MEEVD and GPTIEEVD. Peptides were reconstituted in distilled 

H2O and mixed with protein at a ratio of 1:1.3. Optimisation of initial hits was conducted 

using a grid screen around promising conditions. 

Crystallisation trials and optimisation failed to produce any crystals. 

5.3. 	Results and discussion 

cel-lop was successfully expressed and purified to greater than 90% purity based on 

estimation of relative band densities from SDS-PAGE analysis (Figure 5-5). 
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5.3.1. ceHop appears to exist as a dimer 

Both yeast (Prodrornou et al.. 1999) and mouse (van der Spuy et al., 2001) Hop homologues 

have been reported to dimerise. Using gel-filtration, ceHop elutes as a single species with a 

retention volume of 14.2 ml consistent with an apparent molecular weight of-70 kDa and a 

Stokes radius of 34.5 A (Figure 5-6). With a monomeric molecular weight of 36.9 kDa this 

suggests ceHop exists as a dimer or in a non-globular conformation. 
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Figure 5-6 Gel-filtration analysis of ceHop. ceHop was resolved on a Superdex 200 HR 30/10 

column. ceHop eluted as a single peak with a retention volume of 14.2 ml. This corresponds to a 
molecular weight of -70 kDa and a Stokes radius of about 34.5 A. This is consistent with a dimer 
(actual MW = 36.9 kDa) or a non-globular conformation. 

The oligornerisation state of ceHop was further investigated with glutaraldehyde cross-

linking. Cross-linking results in the formation of a more compact monomeric species and the 

accumulation of various higher-order oligomeric species including a dimeric form (Figure 5-

7). The formation of a lower molecular weight monomeric form in the presence of 

glutaraldehyde is consistent with intra-molecular cross-linking locking the protein in a more 

compact conformation which migrates faster in SDS-PAGE analysis. This result is in 

agreement with cross-linking studies on mouse Hop and suggests a globular tertiary structure 

(van der Spuy et al., 2001). The presence of higher-order oligonieric species alludes to dimer 

formation and further oligomerisation but the ladder like distribution of oligomers perhaps 

highlights the promiscuous nature of glutaraldehyde as a cross-linker. 
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Figure 5-7 Glutaraldehyde cross - linking of ceHop. ceHop was incubated in the presence of 0.1% or 
0.2% glutaraldehyde for 0, 2, 5 or 10 minutes and then analysed by SDS-PAGE. Cross-linking results 
in a more compact monomeric form and also the presence of higher molecular weight oligomers. 

The structural and functional significance of Hop dirnerisation remain unclear. Hsp90 has 

been shown to exist as a functional dinier and yeast Hop was shown to interact with Hsp90 

in a 1:1 stoichiometry suggesting the interaction of dimeric forms (Prodromou et al., 1999). 

A recent study has shown that the TPR2A domain was necessary and sufficient for 

diinerisation of the yeast homologue (Flom et al., 2007), which is consistent with the self-

association properties of the C. elegans protein. 

5.3.2. ceHop interacts with both human and C. elegans Hsp90 homologues 

The interaction of ceHop and human Hsp90a was investigated using semi-analytical gel 

filtration. C-terminal human Hsp90a construct hl-lsp90a-63l was used. This small 12 kDa C-

terminal Hsp90 construct consists of the minimal helix-loop-helix Hsp90 dimerisation 

interface and the flexible C-terminal tail containing the MEEVD TPR binding motif. 

50 tM ceHop and 100 1.tM Hsp90a-631 were resolved on a Superdex 200 HR 30/10 column 

with retention volumes of 14.2 and 13.94 ml respectively. 50 j,tM ceFlop and 100 1iM 

hl-lsp90a-631 were then incubated for 1 hour at room temperature prior to application to the 

column (Figure 5-8). The incubated protein eluted as a major peak with a retention volume 

of 13.05 ml, a shift of over I ml compared to ceHop alone. The peak contained a small 

shoulder on the trailing edge consistent with some free hHsp90a-63 I and ceHop. The 
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significant shift in peak elution position when both proteins were incubated suggested 

complex formation. 

70 

60 

50 

40 

30 
00 

20 

10 

-10 

7' 
\\ 

/ 
/ 	 —ceHOP 

hHspgO-631 
Both 

10 	 12 	 14 	 16 	 18 

Retention volume / ml 

Figure 5-8 Gel-filtration analysis of the ceHop - hllsp90a-631 interaction. 50 l.tM cel-lop and 

I OOj.tM hHsp90a-63 I were resolved separately and after a 1 hour incubation on a Superdex 200 HR 
30/10 column. A clear shift in retention volume is apparent after incubation (red line) indicating an 
interaction. 

The interaction of Hop and Hsp90 is primarily mediated by the extreme C-terminal 

pentapeptide MEEVD, a common feature to both C. elegans and human Hsp90 homologues. 

In addition to demonstrating an interaction between C. elegans Hop and human Hsp90, the 

interaction of ceHop with the C. elegans Hsp90 homologue Daf2 1 was also investigated. In 

this case a larger 24 kDa C-terminal construct corresponding to the complete C-terminal 

domain was selected (Daf2I-492). The interaction was again analysed with gel-filtration; 

however, binding affinity was also explored. 10 p.M ceHop was incubated with increasing 

concentrations of Daf2 1-492. Complex formation was suggested by the elution of a higher 

molecular weight peak (Figure 5-9a; retention volume 12.02 ml) and was verified by SDS-

PAGE analysis of the eluate clearly demonstrating a significant shift in elution position and 

co-migration of both proteins (Figure 5-9b). 
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Incubation of ceHop with increasing concentrations of Daf21-492 revealed two interesting 

features. Firstly, instead of two high molecular weight peaks corresponding to the complex 

and free DAF2I-492, only one peak was observed and secondly, the elution position of this 

peak changed with increasing concentrations of Dar. 1-492 reflecting an increased size of the 

migrating particle (Figure 5-9a). Elution of a single peak was interpreted to reflect rapid 

association/dissociation kinetics of complex formation, faster than the temporal resolution of 

the column, and the elution position of the peak was interpreted to reflect the equilibrium 

between bound and free ceHop and Daf2l-492. 

As peak position was predicted to reflect the binding equilibrium, a plot of retention volume 

verses Daf2l concentration was used to calculated the equilibrium dissociation constant (Kd). 

Fitting of a tight binding equation assuming 1:1 stoichiometry using non-linear regression 

resulted in a calculated Kd of 0.8 jiM (r 2  = 0.99). This is in agreement with other studies 

which calculate the affinity to be in the range 0.09-0.33 jiM for the protein-protein 

interaction (Hernandez et al., 2002; Prodromou et al., 1999; Siligardi et at., 2004) and 6-11 

jiM for the interaction of the isolated TPR2A domain and the C-terminal Hsp90 domain or 

the C-terminal MEEVD peptide (Scheufler et at., 2000). 

Finally, the elution position of free ceflop was concomitantly shown to increase with 

increasing concentrations of Daf2I. There are two possible explanations for this. The first is 

that an increased proportion of ceHop complexed with Daf2I would reduce the apparent free 

concentration of ceHop, as is reflected by the decreasing peak size for free ceHop. If cd-lop 

existed in a monomer-dimer equilibrium with a dissociation constant in the low micrornolar 

region then this decrease in cel-lop concentration could shift in the equilibrium toward the 

monomeric form with a subsequent shift in retention volume. Additionally, it is possible that 

the transient nature of the interaction with Daf2t may influence the elution position of the 

free ceHop. 
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Figure 5-9 Gel-filtration analysis of the interaction between ceHop and a C-terminal construct 
of the C. eleguns Hsp90 homologue Daf2I. (a) 10 l.iM ceHop was resolved alone and in the presence 
of increasing concentrations of Daf2 1-492. The elution position of free Daf2 1-492 is indicated with an 
arrow. (b) Eluate (fraction indicated by arrows) from ceHop alone (black line in (a)), Daf2l-492 alone 
and ceHop + Daf21-492 (grey line in (a)) analysed by SDS-PAGE. A clear shift in elution profiles of 
both proteins is evident. (c) A plot of retention volume verses molar concentration of Daf21492 was 
analysed by non-linear regression using a tight binding equation giving a calculated Kd for the 

interaction of 0.8 tM. 
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5.3.3. Analysis of the putative interaction with Hsp70 

The interaction of ceHop with Hsp70 was not experimentally investigated. The absence of 

the first TPR domain, TPRI which has been isolated as the major interaction site for Hsp70 

(Scheufler et al., 2000), and the first DP repeat might suggest a lack of Hsp70 interaction. 

However, several studies have demonstrated that domain TPR213 plays a significant role in 

the interaction of Hop and Hsp70 (Carrigan et al., 2004; Flom et al.. 2007). Indeed, 

comparison of the primary structure of human Hop reveals a striking similarity between the 

TPR I -DP 1 and TPR2B-DP2 regions (Figure 5-10) suggesting one of the regions has arisen 

by duplication. Analysis of the Ensembl (www.ensembl.org ) Hop/Stil protein family, which 

contains 144 sequences, reveals seven sequences lacking the TPRI and DPI domains 

including homologues from Caenorhahditis elegans, Caenorhabdiiis briggsae, Anopheles 

gainbiae, Aedes aegypli, Schistosorna japonicuin, Candida albicans, C,ypiosporidium 

horninis. The contribution of TPR213 to the Hsp70 interaction and lack of TPRI in some 

species suggests an overlapping redundant function. In support of this, a recent study has 

shown that a yeast recombinant Stil lacking the TPR1 and DPI domains can rescue a lethal 

double knockout lacking wild-type Stil and HdJI, an l-lsp40-l1ke I-Isp70 co-chaperone (Flom 

et al., 2007). Furthermore, in the same study it was demonstrated that both TPRI and TPR213 

contributed to the l-Isp70 interaction with mutations in both required to abrogate binding. C. 

elegans like mutants were, however, found to be dysfunctional in some specialised Hop 

functions such as activation of the glucocorticoid receptor. Overall, these results suggest that 

Hop homologues lacking the first TPR and DP domains are likely able to support some of 

the vital functions of the full-length protein and that the C. elegans protein is likely to 

interact with l-lsp70, although experimental validation is required. 

5.4. 	Conclusions and future work 

In conclusion, the C. elegans Hop homologue has been successfully cloned, expressed and 

purified. Biochemical analysis suggests ceHop is capable of dimerising. This is in agreement 

with studies on yeast and mouse Hop and indicates that the region responsible for self-

association maps to the C-terminal portion of the protein encompassing TPR2A, TPR213 and 

the C-terminal DP region. The observation of the increasing retention volume in response to 

decreasing free ceHop concentrations when looking at the interaction between ceHop and the 

C. elegans Hsp90 homologue DAF-21 provides the most convincing evidence of dimer 

formation and suggests a dissociation constant in the low micromolar range. ceHop was 

shown to interact with Hsp90 homologues from both human and C. elegans and in the case 

of DAF2 I with a tight sub-micromolar binding affinity. Further work must be carried out to 
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explore the interaction with Hsp70 although recent evidence suggests an overlapping 

function of the TPRI and TPR213 domains of yeast Hop indicating that C. elegans protein 

should be able to interact with Hsp70 in addition to Hsp90. 
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Figure 5-10 Alignment of the TPRI-DPI and TPR2B-DP2 regions of human Hop. The regions 

share extensive similarity (-30% identity, —50% similarity) suggesting TPRI-DPI has arisen from a 
duplication event. Secondary structure from Hop TPRI crystal structure indicated and carboxylate-

clamp residues highlighted with red stars. 
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6. Prediction of the complete repertoire of C. elegans TPR co-

chaperones 

6.1. 	Introduction 

ceSGT and cellop, TPR domain containing co-chaperones discussed in chapters 4 and 5 

respectively, were identified in a previous search of the C. elegans genome as putative 

Hsp90 interacting proteins (Opamawutthikul, 2005). The previous approach utilised the 

SMART (Simple Modular Architecture Research Tool; http://smart.embl-heidelberg.de ) 

database; a web-based tool for the identification and annotation of protein domains. A text 

query of the SMART database for C. elegans TPR domains highlighted 41 proteins amongst 

which ceSGT and ceHop were identified based on conservation of the carboxylate-clamp 

motif; the key residues involved in the interaction with the C-terminal of Hsp70/Hsp9O. 

However, interrogation of WormBase for proteins belonging to InterPro motif 

"Tetratricopeptide-like helical" (IPROI 1990) identifies 114 candidate TPR domain 

containing proteins. To investigate the existence of further unidentified C. elegans TPR 

domain-containing co-chaperones, a thorough analysis of the complete genome was 

repeated. Analysis of proteins using secondary databases, such as SMART, PROSITE and 

Pfam, relies on their presence in sequence databases and can vary from method to method. In 

an attempt to avoid these problems, a direct search of the published complete C. elegans 

proteome and genome was conducted using a profile hidden Markov model (11MM) specific 

to Hsp70/Hsp9O binding TPR domains. 

An 11MM is a probabilistic model suited for the analysis of time series or linear sequence 

models. HMMs have been most widely used in speech recognition and have since been 

found to be applicable for use in the computational analysis of biological sequences (Eddy, 

1998). Introduced by Anders Krogh and colleagues in 1994 (Krogh et al., 1994), profile 

HMMs are statistical models of sequence alignments. They capture position-specific 

information regarding how conserved each column of an alignment is and provide a way of 

representing the consensus sequence of proteins belonging to the same family. Profile 

HMMs can be thought of as graphical models of protein families that emit a sequence of 

letters corresponding to amino acids. Each position in the model represents a column in the 

multiple alignment and has a match state (m), insert state (i) and delete state (d) (Figure 6-1). 

m and i states emit letters whilst d states are silent and represent gaps in the alignment. State 

emissions and transitions have associated probabilities, calculated from an input alignment, 

thus generating a full probabilistic profile of a protein family. 
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Figure 6-1 Model architecture of a simple profile HMM. Graphical representation of a profile 
HMM built from a simple multiple sequence alignment (left). States are beginning (b), match (m), 
insert (i), deletion (d) and end (e). Each match state represents a column in the sequence alignment 
with an associated emission probability for each residue. Transitions from one match state to another 
and to insert/deletion states also have associated probabilities. This allows the posterior calculation of 
the probability of the sequence being generated by the HMM. Figure adapted from Eddy, 1998. 

One strength of profile HMMs is in the automatic annotation of the domain structure of 

proteins and profile HMMs form the basis of several automatic domain annotation databases 

including Pfam and SMART. An extension to this is the use of profile HMMs to search for 

members of a particular protein family. Instead of screening a profile HMM database such as 

Pfam against a new protein sequence, a sequence database is screened against a single profile 

HMM representing a single family or domain. 

The aim of this study was to use a profile 11MM approach to detect all C. elegans TPR 

domain containing Hsp70fI-Isp9O co-chaperones. Hsp70/90 interacting TPR domains share 

the same characteristic domain architecture with three TPR repeats with a C-terminal 

capping helix in the majority of cases (Figure 6-2). In addition to the conserved TPR 

consensus sequence, a common five residue carboxylate-clamp motif has been described 

which is conserved in all TPR domains shown to interact with Hsp70 or Hsp90 (Scheufler et 

al., 2000). A profile HMM generated from an alignment of these domains provides a 

powerful stochastic model describing the overall TPR domain structure with the added 

sensitivity to distinguish carboxylate-clamp containing proteins. 
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Figure 6-2 Consensus Hsp70/90 binding TPR domain sequence. Amino-acid frequency for all TPR 
domains shown to interact with Hsp70 or Hsp90. The five residue carboxylate-clamp motif key in the 
interaction are highlighted and shown in the TPR structure. 
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The complete sequence of the C. elegans genome was first published in 1998 (Consortium, 

1998). The latest assembly (WSI60, July 2006) has approximately 100 million base pairs 

and 20,060 genes. Two methods were used to search for C. elegans members of the 

Hsp70/90 interacting TPR domain containing protein family. Firstly, the complete C. 

elegans protein database, consisting of annotated and predicted proteins, was searched with 

the 11sp70i90 profile 11MM. The C. elegans genome is well annotated and the complete 

protein repertoire should be represented in this database. The second approach was employed 

in case of omissions from the protein database. This method searched the complete genomic 

sequence using the program GeneWise (Birney et al., 2004). GeneWise is a sophisticated 

algorithm for the analysis of a DNA sequence at the level of its protein translation. It 

calculates the translation of a DNA sequence in all three frames, allowing frameshifts, 

introns and sequencing errors; and scores these against the input protein model including 

profile HMMs. 

The analysis revealed 12 TPR domain containing co-chaperones predicated to interact with 

Hsp70 or Hsp90. This included six unannotated C, elegans proteins, three of which have no 

functionally annotated homologues in other species. The most interesting of these links the 

Hsp70/90 chaperone machinery to an undocumented role in fat metabolism. 

6.2. 	Materials and methods 

The complete set of C. elegans protein sequences and the complete C. elegans genome were 

obtained from the Ensembl database (release WS 160, July 2006; www.ensembl.org ). 

The HMMer2.2 software (http://hmmer.janelia.org!) was used for HMM analysis. The 

package consists of programs for building profile HMMs (hmmbuild), searching protein 

databases (hmmsearch) and generating multiple alignments (hmmalign). Multiple sequence 

alignments were generated for all TPR domain containing protein families shown to interact 

with Hsp70 or Hsp90 including SGT, Hop (domains TPR1 and TPR2A), Cyp40, Chip, PP5, 

AlP, the FKBP family, Tom70, CNS-1 and 1JNC45. Full-length sequences were obtained 

from the UniProt database using BLAST, aligned using MUSCLE and hand edited to select 

only the three 34 amino acid TPR repeats. Alignments from all families were then manually 

concatenated to ensure correct arrangement of the 34 residues TPR repeats. Loops between 

the TPR repeats were not included in the model, nor was the variable C-terminal capping 

helix. The final alignment, consisting of 635 sequences (see appendix A.3 for example 

alignments), was then used to build the profile HMM, figure 6-2 shows a logo representation 

of this model. This model was used to search both the C. elegans protein database (26,439 
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sequences) using HMMer and the complete C. elegans genome (100.281,235 base-pairs) 

using GeneWise. To avoid excessive demand of computational resources each C. elegans 

chromosome was divided into --1.2 million bases with a 12,000 base-pair overlap prior to 

GeneWise analysis. All searches were run on a Dell 5150e with an Intel Pentium 4 HT 

processor and 512 MB RAM. Positive hits were manually inspected for conservation of the 

carboxylate-clamp residues. 

Prediction 
(annotated izanie) 

Gene location 
chr:start:stop.strand 

Clamp motif Description 

R05 F9. 10 (sgt- 1) 11:4902284:4903783:-I K-N-N-K-R SGT 

R09E 12.3 1 V:773389:774670:1 K-N-N-K-R HOP TPR2A 

R09E 12.3 2 V:773389:774670:1 K-N-N-K-R HOP TPR213 

Y39136A.2 (pph-5) V: 19190339:19198715:1 K-N-N-K-R PP5 

F301­15.1 (unc-45) 111:491547:502061:1 R-N-N-K-R UNC-45 

T09134. 10 (chn-1) 1:6181318:6183882:-I N-K-N-K-F CHIP 

C33H5 .8 IV:7778004:7778946:- I K-N-N-K-R Unknown function 

F3 I D4.3 (fkb-6) V:20841374:20842783:1 K-T-N-K-R FKBP 

Cl 7G1 0.2 11:5594706:5596327:1 K-N-N-K-R CNS-1 

C34132.5 1:10675171:10676798:-i K-N-N-K-R Unknown function 

ZK370.8 111:8752004:8754654:-i K-N-N-K-R TOM-70 

C56C 10. 10 11:6592449:6594197:-I R-N-N-K-R AlP 

TI2138.8.1 111:13614578:13622111:-I R-Q-K-Q-F HIP 

Y22137AL.9 111:1606834:1614022:-i H-S-N-K-R Unknown function 

C55136.2 (dnj-7)' X:7194513:7198228:1 L-S-R-G-Q i-domain co-chaperone 

Y73E7A.9 1:1610391:1619944:1 R-S-N-K-R Unknown function 

'GeneWise prediction failed 
Table 6-1 Predicted TPR domain containing proteins likely to interact with Hsp70 or 1Hsp90. 
TI2138.8.1 (HIP). C55136.2 and Y22137AL.9 were excluded from further analysis due to lack of 
conservation of the carboxylate-clamp residues or the presence of insertion/deletions which would 
interrupt the clamp residue positions. 

6.3. 	Results and discussion 

A profile HMM search for G. elegans Hsp70/90 interacting TPR domains was conducted 

against the published C. elegans protein database and genomic sequence. Both produced 

very similar results identifying 12 TPR domain containing proteins predicted to interact with 

Hsp70 or Hsp90 (Table 6-1, Figure 6-3). These could be divided into three categories - 

annotated C. elegans co-chaperone homologues, unannotated C. elegans homologues of 

known co-chaperones, and TPR domain containing proteins of unknown function. The 
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UMMer output for the search against the C. elegans protein database is included in the 

appendices (Appendix A.4). 

T T T 
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Y73E7A.9 -- 	- - - 	H 	558 
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Figure 6-3 Domain architecture of predicted Hsp70/90 interacting TPR co-chaperones. PPPtase - 
protein phosphatase, ARM - armadillo repeat, U-box - E3 ubquitin ligase, PPIase - peptidyl-prolyl 
isomerase, WD - WD-40 repeat. 

6.3.1. Identification of annotated C. elegans TPR domain containing proteins 

In addition to ceSGT and cellop (TPR domains TPR2A and TPR2B), discussed in chapters 4 

and 5 respectively, annotated C. elegans co-chaperones identified included pph-5, the C. 

elegans homologue for protein phosphatase PP5; unc-45, a myosin co-chaperone important 

in muscle function (Banal et al., 2002); chn-1, the C. elegans homologue for the E3 

ubquitin-ligase Chip which links protein folding and degradation (Connell et al., 2001); and 

fkb-6, a member of the FK506-binding protein family and related to the large TPR domain 

containing immunophilins FKBP5 I and FKBP52 (Opamawutthikul, 2005). All of these co-

chaperones have been documented to be part of the Hsp70/90 chaperone machinery. 
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Figure 6-4 Sequence alignment of C. eleguns CNS-1 homologue (C17610.2) with sequences from 
yeast, human and drosophila. TPR domain marked with blue bar and carboxylate-clamp motif 
residues highlighted with red stars. CI7GI0.2 shares —30% sequence identity (-45% similarity) with 
human CNS-l. 
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6.3.2. Unannotated C. elegans TPR domain containing proteins with annotated 

homologues 

6.3.2.1. CI7GI0.2 encodes the C. elegans CNS-1 homologue 

Gene product C17G1O.2 was identified to be the C. elegans homologue of co-chaperone 

CNS-l. The C. elegans protein aligns well with homologues from yeast, drosophila, xenopus 

and human, sharing —30% sequence identity (--.45% similarity) with the human sequence 

(Figure 6-4) with good conservation of the consensus carboxylate-c lamp binding residues. 

CNS-1 was identified as an essential co-chaperone in yeast (Dolinski et al., 1998; Marsh et 

al., 1998); although little is known about its function it has been shown to bind and influence 

the chaperone activity of both Hsp70 (Hainzl et al., 2004) and Hsp90 (Lee et al., 2004; Tesic 

et al., 2003). 

6.3.2.2. ZK370.8 encodes the C. elegans Tom70 homologue 

The protein product of gene ZK3 70.8 is the C. elegans homologue for the mitochondrial 

import protein Tom70. The TOM (translocase of the mitochondrial outer membrane) 

complex contains receptors that mediate the targeting of proteins to the mitochondrial 

membrane and a general import pore complex through which proteins are translocated 

(Bains and Lithgow, 1999). The majority of mitochondrial proteins are nuclear encoded and 

synthesised in the cytoplasm. Prior to import, mitochondrial targeted proteins are bound to 

chaperones Hsc70IHsp7O or Hsp90; and the Tom70 TPR domain provides a specific docking 

site for the chaperone-client complex. Although the C. elegans protein is not well conserved, 

sharing —20% sequence identity (30% similarity) with the human homologue, it does align 

across the whole length of the protein and shares the same domain architecture with an N-

terminal transmembrane domain, the Hsp70/90 binding TPR domain and a C-terminal array 

of TPR repeats (Figure 6-5). The carboxylate-clamp residues are strictly conserved across all 

species. 
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Figure 6-5 Sequence alignment of C. elegans Tom70 homologue (ZK370.3) with sequences from 
yeast, human and drosophila. TPR domain marked with blue bar and carboxylate-clamp motif 

residues highlighted with red stars N-terminal transmembrane domain marked with green bar. 

Secondary structure from yeast crystal structure marked. ZK370.3 shares —20% sequence identity 

(-30% similarity) with human CNS-1. 
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6.3.2.3. C56C1 0.10 encodes the C. elegans AlP homologue 

Finally, gene product C56C10.10 belongs to the family of aromatic hydrocarbon receptor 

(AhR) interacting proteins (AlPs). AlP was first identified in mouse as a constituent of a 

cytosolic heterotrimeric complex consisting of AhR, AlP and Hsp90 (Ma and Whitlock, 

1997). The AhR is a basic helix-loop-helix ligand inducible transcription factor which 

induces expression of enzymes involved in xenobiotic metabolism including the 

environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Pocar et al., 2005). 

AlP shares similarity with the immunophilin FKBP52, containing an N-terminal 

peptidylprolyl cis-trans isomerase domain and a C-terminal TPR domain; however, unlike 

FKBP52, AlP is unable to bind the immunosuppressant macrolide FK506. FKBP52, in 

addition to other imunophilins, exists as part of multi-protein steroid-hormone receptor 

complexes with 14sp90, and AlP is thought to be the analogous immunophilin component of 

the AhR receptor signalling complex (Riggs et al., 2004). 

In addition, human AlP was also shown to participate in mitochondrial protein import (Yano 

et al., 2003). AlP was shown to interact with Tom20, a member of the TOM complex which 

binds an amino-terminal targeting sequence on mitochondrial preproteins via a TPR domain. 

AlP was shown to bind Hsp70 and Tom20 in the same manner, via a carboxylate-clamp 

mediated interaction with the extreme C-terminal peptides (EEVD in Hsp70 and DDVE in 

Tom20). In addition, AlP was shown to interact with the preprotein sequence via its PPIase 

and TPR domains. A model was thus proposed where Hsp70, AlP and a mitochondrial 

preprotein form a large complex in the cytosol. This complex is targeted to the TOM via an 

interaction of AlP with Tom20. The preprotein is then transferred to Tom20 for subsequent 

import into the mitochondria. 

C. elegans ALP shares 34% sequence identity (55% sequence similarity) with human AlP. 

Positions 2-5 of the carboxylate-clamp motif are strictly conserved across all species; 

however, higher animals are unique in that they have a histidine at position 1, perhaps 

reflecting the ability of this TPR domain to recognise multiple C-terminal sequences (Figure 

6-6). The TPR domain was shown to be the interacting site for Hsp90 with mutations in 

carboxylate-clamp motif positions 4 (lysine) and 5 (arginine) affecting the Hsp90 interaction 

(Bell and Poland, 2000). 
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Figure 6-6 Sequence alignment of C. elegans All? homologue (C56C10.I0) with sequences from 
human, drosophila and xenopus. TPR domain marked with blue bar and carboxylate-clamp motif 
residues highlighted with red stars; N-terminal PPlase domain marked with green bar. C56CI0i0 
shares —34% sequence identity (-53% similarity) with human CNS- I. 

6.3.3. Putative C. elegans Hsp70/Hsp9O TPR domain containing co-chaperones 

The database search also highlighted several proteins with no functionally annotated 

homologues including gene products C331-15.8, C34132.5, and Y73E7A.9. These putative 

proteins were subjected to further investigation. 

6.3.3.1. Gene C331 ­15.8 encodes a protein with no known function 

C331­15.8 is a two exon gene located on the reverse strand of chromosome IV (Figure 6-7), 

which encodes a 297 residue 34.4 kDa protein with an estimated isoelectric point of 5.26. 
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The protein contains similarities to InterPro and Pfam tetratricorepeat domains (IPRO 13026, 

IPROO 1440 and PF00515) and InterPro Protein phosphatase 5 domain (IPROI 1236). 

Except across the TPR domain the protein has low similarity to any sequence in the UniProt 

database. It does, however, cluster with Ensembl family ENSF00000003666 (Mitochondrial 

import receptor subunit Tom34 translocase of outer membrane 34 kDa subunit) perhaps 

alluding to a function in the mitochondrial protein import machinery. 
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Figure 6-7 Predicted gene structure for C33H5.8. C331-15.8 is a two exon gene located on the 
reverse strand of chromosome IV. Its predicted protein product matches TPR and PP5 domains from 
InterPro and Ham. 
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Figure 6-8 Predicted gene structure for C34132.5. C34132.5 is a four exon gene located on the 
reverse strand of chromosome I. Its predicted protein product matches TPR and PP5 domains from 
I nterPro. 
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6.3.3.2. Gene C341132.5 encodes an orthologue of tertratricorepeat protein I 

C34132.5 is a four exon gene located on the reverse strand of chromosome I (Figure 6-8), 

which encodes a 207 residue 23.3 kDa protein with an estimated isoelectric point of 4.52. It 

is expressed in the larvae and adult in the intestine, renal glands and nervous system, and 

exhibits a late larval arrest RNA] phenotype. The protein contains a predicted Hsp70/90 

binding TPR domain with a capping C-terminal helix (residues 18-141), which has 

similarities to InterPro Tetratricopeptide region (IPRO 13026), Protein phosphatase 5 

(IPROI 1236) and Tetratricopeptide-like helical (IPROJ 1990) domains. 
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Figure 6-9 Sequence alignment of C. elegans TTCI homologue (C34B2.5) with sequences from 
mosquito, drosophila, mouse and human. TPR domain marked with blue bar and carboxy late-c lamp 
motif residues highlighted with red stars. C341132.5 lacks the first -'--100 residues and shares —35% 

sequence identity (-'-57% similarity) with human over aligned residues. 

C34132.5 shares the same InParanoid cluster (Remm et al., 2001), an orthologue clustering 

database, with a group of proteins named tertratricorepeat protein I (TTCI). Sequence 

alignment shows that C34132.5 lacks the first —100 residues compared to TTCIHUMAN, 

sharing 35% sequence identity (57% similarity) over the aligned sequence comprising the 
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TPR domain and C-terminal (Figure 6-9). The carboxylate-c lamp motif adheres to the 

consensus and is conserved across all species. 

There is no literature regarding the function of the TTCI family of proteins. In a genome-

wide prediction of C. elegans genetic interactions (Zhong and Sternberg, 2006), the most 

significant predicted interaction partner of C34132.5 was NADH-ubiquinone oxidoreductase 

flavoprotein 2 (NDUFV2; gene F53F4.10). This is a subunit of mitochondrial complex I 

(NADH-ubiquinone oxidoreductase); a 43 protein complex that catalyses the first step in the 

mitochondrial electron transport chain. NDUFV2 is a nuclear encoded protein requiring 

import into the mitochondria perhaps implicating C34132.5 in the TOM or TIM (translocase 

of the mitochondrial inner membrane) complexes. Additionally, the Drosophila TTCI 

homologue was shown to interact with a basic helix-loop-helix protein (Giot et al., 2003). 

Although C. elegans lacks an orthologue for this bHLH protein, this might suggest a role in 

the regulation of a cytoplasmic ligand-inducible transcription factor similar to the AhR or 

steroid-hormone receptors. 
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Figure 6-10 Predicted gene structure for Y73E7A.9. Y73E7A.9 is an 8 exon gene located on the 
forward strand of chromosome I. Its predicted protein product matches TPR and WD-40 domains 
from InterPro and Pfam. 

6.3.3.3. Gene Y73E7A.9 encodes a conserved WD-40ITPR repeat protein implicated in 

fat metabolism 

Y73E7A.9 is an eight exon gene located on the forward strand of chromosome I (Figure 6-

10), which encodes a 558 residue 63.4 kDa protein with an estimated isoelectric point of 

5.64. The protein contains similarities to the Interpro protein phosphatase 5 domain 

(IPROI 1236) with the TPR domain predicted from residue 285-414. This is flanked on the 

N- and C-term mi by a series of WD-40 repeats matching both Interpro and PFAM domains. 

WD-40 repeats are short —40 residue motifs existing in arrays of 4-16 repeats which form a 

circularised beta-propeller structure (Smith et al., 1999). Their primary function is as a 
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scaffold domain, coordinating the assembly of multi-protein complexes and they have been 

implicated in signal transduction, transcription, cell cycle control and apoptosis (Smith et al., 

1999). 
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Figure 6-1I Sequence alignment of C. elegans adp homologue (Y73E7A.9) with human 
WDTCI_I-IUMAN. TPR domain marked with blue bar and carboxylate-clamp motif residues 
highlighted with red stars; WD40 repeats marked with green bars. Y73E7A.9 shares —35% sequence 
identity (-57% similarity) with human over aligned residues. 
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The carboxylate-clamp motif is different from the consensus with an arginine at position one 

and a serine at position two. Arginine is found at position one albeit at a lower frequency 

than lysine. Serine, however, is not found at position two in any of the known Hsp 

interacting TPR domains. C. elegans FKB-6 does, however, have a threonine substitution 

with similar physiochemical properties to serine. 

The Y73E7A.9 amino acid sequence shares similarity with a family of WD-40/TPR repeat 

containing proteins that is well conserved from worms to humans (Figure 6-11). The protein 

possesses six predicted WD-40 repeats with a TPR domain between the fourth and fifth 

repeats. The carboxylate-clamp motif is well conserved across species with the non-

canonical serine at position two of the C. elegans sequence a consensus lysine in most other 

species, in agreement with an interaction with Hsp70 or Hsp90. 

Interestingly, the D. melanogaster homologue was identified to be mutated in adp6°  flies. 

These flies develop an obese phenotype if food supply permits with an increased 

accumulation of triglycerides, the lipid stores in the fly (Hader et al., 2003). Conversely, 

over-expression of the adp gene in the fat body, analogous to the vertebrate liver, caused a 

decrease in fat content but had no affect on cellular viability in the nervous system indicating 

a role in fat body cells. Consequently, this pathway has been identified as a potential target 

for pharmaceutical intervention in the treatment of obesity (Dohrmann, 2004). A model of 

the D. inelanogaster homologue was produced showing a 7-stranded 3-propeller with an 

associated TPR domain (Figure 6-12). 

6.4. 	Conclusions 

12 TPR domain containing proteins have been identified that are predicted to interact with 

Hsp70 or Hsp90 based on the conservation of the carboxylate-clamp motif. These proteins 

likely represent the complete repertoire of Hsp70/90 TPR co-chaperones in C. elegans. In 

addition to SGT and HOP, identified in a previous search, homologues of PP5, UNC-45, 

Chip and an FK506 binding immunophilin were identified that have previously been 

annotated. Six additional proteins were identified that were unannotated in WormBase. 

Three of these were found to be the C. elegans homologues of CNS-1, TOM70 and AlP. The 

remaining three are of unknown function although one, the product of gene Y73E7A.9, was 

found to be the homologue of a Drosophila protein involved in fat metabolism. 
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Figure 6-12 Modelled structure of the human adipose protein. Model building suggests that the 
adipose (adp) protein can form a seven-bladed beta-propeller with an associated TPR domain. Figure 
taken from Hader etal., 2003. 
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7. Summary and future work 

This thesis has described the structural and biochemical studies of proteins belonging to the 

Hsp70/Hsp9O chaperone system in the nematode worm Caenorhabditis elegans. The work 

was broadly divided into three main projects: 

The structural studies of the C-terminal 10 kDa subdomain of C. elegans Hsp70 

(Chapters 2 and 3). 

Biochemical characterisation of two putative TPR domain containing co-chaperones 

(Chapters 4 and 5). 

Prediction of the complete repertoire of C. elegans TPR domain containing co-

chaperones (Chapter 6). 

This chapter will provide a brief overview of the major findings and conclusions of the 

projects and also outline areas requiring further work. 

7.1. 	Structural studies of the C-terminal domain of C. elegans Hsp70 

There is abundant structural information regarding the NBD and the 13-sandwich subdomain 

of Hsp70. Structures of the C-terminal lid subdomain are, however, limited to E. coli 

homologues DnaK and HscA, and rat homologue Hsc70. Despite structural conservation of 

the NBD and 13-sandwich between E. co/i and rat, the C-terminal subdomains were observed 

to adopt significantly different conformations; a three-helix bundle in E. co/i and an anti-

parallel coiled-coil dimer in rat. Limited by the available data, it is unclear whether these 

reflect a true divergence between prokaryotes and eukaryotes. Alternatively, the structures 

could represent different conformational states or, indeed, the rat structure could be a 

crystallographic artefact. 

7.1.1. Project aims 

To provide further insight into the structure and properties of the Hsp70 C-terminal 

subdomain the aims of the project were: 

• To solve the crystal structure of the C. e/egans subdomain. 
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• To characterise the oligomeric state in solution. 

7.1.2. Major findings and conclusions 

• A recombinant C-terminal construct of C. elegans Hsp70 (ceflsp70-CT) was 

successfully generated (residues Gly 542-Asp), expressed and purified. 

• cellsp70-CT, including the N-terminal 6xIlis tag was crystallised in two forms, an 

orthorhombic form belonging to space group I22 1 2 and a tetragonal form belonging 

to space group P4 2 2 1 2. 

o The orthorhombic crystal form was initially solved using MAD with data 

collected from a mercury derivative crystal; however, diffraction to only 4 A 
and 24 monomers in the asymmetric unit hampered refinement (section 

2.3.1.). 

o The tetragonal form, which diffracted X-rays to -3 A and contained six 

monomers in the asymmetric unit, was solved by molecular replacement 

using a hexameric search model constructed from the orthorhombic data 

(section 2.3.2.). 

• The final model, refined to final RcrystlRñee of 27.6%/29.0%, consists of six 

protomers arranged as a pair of back-to-back trimers with 32 point group symmetry. 

The monomeric structure consists of four a-helices folded into a compact three helix 

bundle (see section 2.3.3.). 

Comparison with structures from E. coli and rat surprisingly revealed structural 

conservation with the more distantly related bacterial homologues. 

o The structural conservation of the C-terminal domain has been proposed 

across all Hsp70 family members although, in light of the distinct rat C-

terminal structure, the C. elegans structure represents the first direct 

evidence of this in eukaryotic Hsp70s (section 3.3.3.). 

• Analysis of the C. elegans and rat structures revealed that the dimensation of the rat 

domain in the crystal structure was mediated by a domain-swap mechanism (section 

3.3.4.). 

o The alternate rat conformation was postulated to represent the substrate free 

SBD conformation. ATP binding, which allosterically triggers opening of 

the SBD and substrate release, has been shown to induce dissociation of 

Hsp70 oligomers to the monomeric form. This would be incompatible with 
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the rat elongated Hsc70 C-terminal structure which is shown to form 

domain-swapped dimers. 

The C. elegans subdomain only exists as a monomer in solution and, although it 

crystallised as a hexameric complex, none of the interfaces are predicted to be of 

biological relevance. 

o Based on the rat crystal structure and the behaviour of the same construct in 

solution the C-terminal 10 kDa subdomain was proposed to be necessary 

and sufficient for self-association. Results here, however, demonstrate the 

same domain from C. elegans behaves as a monomer in solution and that the 

monomer most likely represents the biologically relevant unit of the crystal. 

Results here corroborate a recent assertion that the dimensation mechanism 

based on the rat structure needs to be re-examined (section 3.3.2.1.). 

. There is an inverse relationship between ceHsp70-CT thermal stability and pH, and, 

at pH 6.5, cel-Isp70-CT unfolds via the accumulation of at least one "open" 

intermediate possibly suitable for domain-swap dimer formation. 

o Non biological domain-swaps are commonly observed in crystal structures 

and can provide insight into protein folding and flexibility (section 3.3.4.1.). 

Folding pathways of three-helix bundles have been proposed to be populated 

by open two-helix intermediates suitable for domain-swapped dimer 

formation. The thermal denaturation studies of ceHsp70-CT suggest that the 

rat domain-swapped structure may be a trapped folding intermediate on the 

three-helix bundle folding pathway. 

• Work for this project has contributed to two papers; one published in Acta 

Crystallographica section F and one accepted for publication in Biochemical and 

Biophysical Research Communications. 

• Worrall, L., and Walkinshaw, M. D. (2006). Crystallization and X-ray data 
analysis of the 10 kDa C-terminal lid subdomain from Caenorhabditis 
elegans Hsp70. Acta Crystallograph Sect F Struct Biol Cryst Commun 62, 
938-943. 

• Worrall, L., and Walkinshaw, M. D. (2007). Crystal structure of the C-
terminal three-helix subdomain from C. elegans Hsp70. Biochemical and 
Biophysical Research Communications 357, 105-110. 

7.1.3. Future work 

• Although the sequence studied was selected based on the rat construct, examination 

of the C. elegans structure demonstrated that several recombinant tag residues 
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contributed to the hydrophobic packing of the three-helix bundle (section 3.3.5.). To 

exclude the possibility that these were inducing an artificial conformation it would 

be necessary to use an extended C-terminal construct incorporating the complete 

stable folding unit, specifically starting at residues Asp 535 . 

• A more detailed examination of the thermal stability and folding pathway of the C. 

elegans Hsp70 C-terminal subdomain is required to investigate the hypothesis that 

that domain-swapped form represents a folding intermediate. In particular, it would 

be interesting to determine whether the C. elegans subdomain is capable of forming 

domain-swapped dimers. 

7.2. 	Biochemical and structural studies of two putative TPR domain 

containing co-chaperones 

Work contributing to a previous doctoral degree identified two C. elegans TPR domain 

containing co-chaperones likely to interact with Hsp90. These proteins were found to be the 

C. elegans homologue for small glutamine-rich TPR containing protein (SGT) and a protein 

with homology to the C-terminal region of Hsp70fHsp9O organising protein (Hop) but 

lacking the first 218 residues consisting of a TPR motif and DP-repeat region. 

7.2.1. Project aims 

• To clone, express and purify ceSGT and cellop. 

• To characterise the oligomeric state of both proteins. 

• To characterise the interactions of the co-chaperones with Hsp70 and Hsp90. 

• To crystallise and solve the structure of both proteins and/or subdomains thereof. 

7.2.2. Major findings and conclusions 

• Both ceSGT and cellop were successfully cloned, expressed and purified to 

homogeneity (sections 4.2. and 5.2.). 

• MALDI-TOF mass-spectrometry and glutaraldehyde cross-linking demonstrated that 

ceSGT is capable of forming dimers whilst gel-filtration shows these are elongated 

in shape and exist down to low nanomolar concentrations (section 4.3.2.). 

o SGT has been shown to oligomerise. Based on cross-linking results these 

were proposed to be dimers although, as evidenced here, these results alone 
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are not conclusive. Mass-spec results here confirm the ability of ceSGT to 

form dimers. 

Cross-linking and gel-filtration results are consistent with the dimerisation of cellop 

(section 5.3.1.). 

o Hop too has been shown to exist as dimers and also to interact with Hsp90 

as a dimer. Gel-filtration and cross-linking studies support this. Indirect 

evidence for the presence of a monomer-dimer equilibrium also comes from 

the shifting retention volume of free ceHop in gel-filtration studies of the 

interaction with Hsp90 (see section 5.3.2.) 

. Gel-filtration analysis demonstrated both ceSGT and ceHop interact with Hsp90. 

o ceSGT interacts with the C-terminal domain of human Hsp90a with low 

affinity (section 4.3.3.1.). 

o ceHop interacts with the C-terminal domains of human and C. elegans 

Hsp90 with a dissociation constant of --418 AM, in agreement with other 

studies of Hop-Hsp90 interactions (section 5.3.2.). 

. The isolated TPR domain from ceSGT interacts with the C-terminal peptides from 

Hsp70 and Hsp90 with comparable affinities. 

o Studies of the interaction between Hsp70/Hsp9O with TPR co-chaperones 

have shown that many interactions can be reduced to the C-terminal Hsp 

peptides and the isolated TPR domains. The interaction of the ceSGT TPR 

domain and Hsp70/Hsp9O C-terminal peptides was investigated using ITC 

and CD, showing the ceSGT TPR domain interacted with both peptides with 

similar affinities of--35 AM (section 4.3.3.2.). 

• The isolated TPR domain is fully folded and peptide binding induces no change in 

secondary structure. 

o It has been suggested that a coupled binding-folding mechanism could be a 

means of regulating substrate binding by TPR domains. Results presented 

here disagree with this hypothesis with far-UV CD analysis of the ceSGT 

TPR domain showing no difference in the peptide free and bound secondary 

structure (section 4.3.3.2.). 

• Crystals of full-length ceSGT and the isolated TPR domain were grown but were of 

insufficient quality for further studies. 

hpter 	uiiuiiai kind Iuur '.rk 	 170 



tucturaI tnd biochcrniu1 s1RlIc ci tlit ( 	/& f'Q.i I [p1)  I kj)() chapernc \ sti1 

o Full-length ceSGT was crystallised in 200 mM potassium thiocyanate, 5-

20% PEG 3350, pH 7.0 (section 4.3.4.). Two crystal forms were obtained; 

small octahedral plates were grown at 4 °C using 20% PEG 3350 and long 

thin needles were grown at 20 °C using 5% PEG 3350. Both the small plates 

and fine needles, however, failed to diffract. 

o Crystals of the isolated SGT TPR domain were grown from 100 mM 

HEPES pH 7.5, 800 mM sodium phosphate, 800 mM potassium phosphate. 

These crystals did diffract although only to 5 A. 

7.2.3. Future work 

• Further work is necessary to fully characterise the interaction of both co-chaperones 

with Hsp70 and Hsp90. In light of the similar affinity of the ceSGT TPR domain for 

Hsp70 and Hsp90 peptides, studies of the interaction of full-length ceSGT with 

Hsp70 and Hsp90 are necessary to investigate whether regions outside the TPR 

domain or C-terminal peptides contribute to the interaction. 

• The interaction of cellop with Hsp70 was not studied. ceHop lacks domain TPR1, 

the major site of interaction with Hsp70, so it will be of interest to determine 

whether ceHop can interact with Hsp70. Recent results from yeast and human Hop 

homologues suggest that TPRI and TPR2B have overlapping functions indicating 

the smaller C. elegans homologue will be able to support many of the functions of 

the full-length version. 

• Structural studies are ongoing. Optimisation of crystallisation conditions of full-

length ceSGT and the isolated TPR domains are necessary to obtain diffraction 

quality crystals. In the meantime small-angle X-ray scattering experiments are 

planned to determine a low resolution molecular envelope for the ceSGT dimer. 

7.3. 	Prediction of the complete repertoire of C. elegans TPR co-chaperones 

The group of TPR domain containing proteins that interact with Hsp70/Hsp9O represent a 

major class of co-chaperones. Although the number of members of this family is rapidly 

expanding, a thorough analysis of the published genomes is lacking. Hsp701Hsp9O 

interacting TPR domains have a characteristic domain structure of three TPR repeats and 

conservation of key residues involved in the interaction most notably the five polar residues 

defined as the carboxylate-clamp. This well defined architecture makes the domain well 
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suited for modelling with profile hidden Markov models, probabilistic models of protein 

families. 

7.3.1. Project aims 

• To predict the complete repertoire of C. elegans TPR domain containing proteins 

capable of interacting with Hsp70 or Hsp90. A profile hidden Markov model 

(HMM) method was employed to search for Hsp70IHsp9O interacting TPR domains 

in the C. elegans proteome and genome. 

7.3.2. The C. elegans Hsp70/90 TPR co-chaperone family 

• 12 proteins were identified with a characteristic TPR domain architecture and 

conservation of the carboxylate-clamp residues necessary for the interaction with 

Hsp70 or Hsp90. 

o These include C. elegans homologues for proteins already characterised as 

Hsp70/Hsp9O co-chaperones including SGT, Hop, Chip, PP5, FKB6, 

UNC45, CNSI, Tom70 and AlP (section 6.3.1. and 6.3.2.). 

o The remaining three proteins are uncharacterised and there is no published 

evidence of interactions with either Hsp70 or Hsp90 (section 6.3.3.). The 

most interesting of these is a WD-40/TPR repeat protein which, in 

Drosophila, has been shown to be involved in fat metabolism. 

7.3.3. Future work 

• The next step in this project is to clone all of the Hsp70/Hsp9O TPR co-chaperones 

and investigate their interaction with both Hsp70 and Hsp90. The most interesting 

starting point would be the three novel proteins. 

• The analysis will also be extended to other sequenced genomes including 

Drosophila nzelanogaster, Arabidopsis thaliana and Homo sapiens. 
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A. Appendices 

A.1. 	List of Hsp90 interacting proteins, curated by Cyril Picard 

(http://www.picard.ch/downloads/Hsp90i  nteractors.pdf) 

Picard, 02/2007- Page 1 

HSP90 INTERACTORS 

[Chaperones and relatives: 	 Kinases: 	 I 
- Ahal and its homolog Hchl 
- Cdc37 (p50) and its relative Harc 
- CS-containing p23 relatives SGT1, RAR1, 

Siah-1 -interacting protein (SIP), Chpl 
- Hsp7O 
- Human DnaJ homolog Hsjlb 
- p23 (=Sbal) 
- proteins with TPR motifs, including Hop 

(=Stil), FKBP52 (and high MW plant 
homologs), FKBP51, FKBPB (=FKBP38), 
cyclophilin-40 (Cpr6 and Cpr7), PP5 (and 
yeast Pptl), Tom70, XAP-2 (=AIP=ARA9), 
Cnsl and its Drosophila relative Dpit47, 
CHIP, GCUNC-45 (also UNC-45 and 
She4), Tpr2 (=mDjll=CCRP), CRN, 
WISp39, Tahi, NASP, Toc64. 

- S100A1 
- Ssel 
- valosin-containing protein (VCP) 

Transcription factors: 	 I 
- 12(S)-HETE receptor 
- all vertebrate steroid receptors (CR, MR, 

ER, PR, AR) 
- CAR 
- cytoplasmic v-erbA 
- EcR 
- PPARU (PPAR) 
- PXR 
- Hapi 
- HSF-1 
- IRF3 
- Ma163 
- p53 
- PAS family members: Dioxin receptor 

(=AhR), Sim, HIF—la, HIF-2a, HIF-3c& 
- Stat3 (also in caveolin-1 complexes in 

rafts) 
- Ton EBP/OREBP 
- water mold Achlya steroid (antheridiol) 

receptor 

- Akt/PKB 
- ASK1 
- Aurora B 
- Bcr-Abl 
- casein kinase ha catalytic subunit 
- Cdk2, Cdk4, Cdk6, Cdk9, Cdkll 
- Chkl 
- Death-associated kinases DAPK, 

DAPK2, DAPK3 
- death domain kinase RIP 
- eEF-2 kinase 
- elF2-a kinases HRI, Gcn2, Perk, PKR 
- ErbB2 (and mutant EGF receptor) 
- ERK5 
- F1t3 
- Fused 
- GRK2 
- IxB kinases a, 0, y, 8 

- insulin receptor 
- Integrin-linked kinase 
- IRAK-1 
- Irel 
- JAK1 
- c-Kit mutant 
• KSR 
- Lkbl 
- MEK 
- MEKK1 and MEKK3 
- Miki 
- MLK3 
- MOK,MAK,MRK 
- c-Mos 
- NIK 
• Nucleophosmin-Anaplastic Lymphoma Kinase 
- PDK1 
- Pim-1 
- Piki 
- PKC?. 
- PIki 
- pp60v-src, c-src 
- src related tyrosine kinases: yes, fps, 

fes, fgr, and Ick 
- Raf-1, B-Raf, Stell 
- RET/PTC1 
- Ron 
- S1t2 
- SSTK 
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Picard, 02i2007- Page 2 

TAK1 
TB Ki 
trkB 
VEGFR2 
Weel, Swel 

Others: 	 I 
- Annexin II 
- AN  receptor 
- Apaf-i 
- apoB 
- Bid 

calcineurin (Cna2; catalytic subunit) 
- calmodulin 
- calponin 
- CFTR (nascent polypeptide) 
- CIC-2 chloride channel 
- Ctfi3/Skpl component of CBF3 
- cytoskelettal proteins: actin, tubulin, 

myosin 
- Dengue virus protein E 
- DNA polymerase a 

- eNOS, nNOS (?) 
- ether-a-gogo-related cardiac potassium 

channel 

- free Py subunit of G protein 

- Ga 0, Ga 12  
- GERp95 (= Argonaute-2) 
- glutathione S-transferase subunit 3 (KS type) 

- HDAC6 
- Histories Hi, H2A, H2B, H3 and H4 
• knob complexes (in the membrane of 

Plasmodium-infected erythrocytes) 

- macromolecular amlnoacyl-tRNA 
synthetase complex 

- Macrophage scavenger receptor 
- Mdm2 
- MMP2 
- MRE11IRad50INBS1 (MRN) complex 
- MTG8 
- MUC1 
- Nat-K-Cl cotransporter 1 
- NB-LRR proteins RPM1 and RPS2 
- Neuropeptide V 
- Nodi 
- N-WASP 
- P450 CYP2E1 
- P2X 7  purinergic receptor 
- PB2 subunit of influenza RNA p01. 
- perilipin 
- Mg 2 -dependent phosphatidate 

phosphohydro lase 
- prolactin receptor 

- proteasome 
- Rab-aGDl 
- Pal-binding protein I 
- reovirus protein al 
- reverse transcriptase of hepatitis B virus 
- ribosomal proteins S3 and S6 
- P-protein 1-2 
- SIR2 (SIR2RP1 In Leishmanla) 
- SKP2 complexes 
- SMYD3 
- DNA helicase Ss12 
- survivin 
- SV40 large 1-antigen 
- a-synuclein 
- Tau protein 
- telomerase 
- thiopurine S-methyltransferase 
- thrombin receptor (PAR-1) 
- TLR4/MD-2 complex 
- Vaccinia core protein 4a 
- misfoldedVHL 
- Vimentin 
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Hsp70 C-terminal subdomain alignment (C. elegans residues 542-640) 
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IE1.-EAIEWLZ2QLAEVDZLK: 
IEEA. .ASIQWLDINQLAKADEFD. 
IE[T,AISRLDNQLPKVKKFE 

lEZEV.At.FPAIQWLENQM A E VDKFE.;  
(IErAJt. AISWLEHNQLAEVDKFET 

KI I EDAVr. AXSWLDi. NQLAEvEEFEC 
.IE [dAI L.AIKWLD'!NQLAEADErK; 
X,KUIFAAIEWLE.'PNQLAKCDK?E 
XF.UsrFiQAIQwLE , 4QLAEAoKrEpr 

lEVEDSIIFAIQWLD4QLGKADEPE 
IAIiN LI CrALEWLLNQEASKEKYEE 

ITLNYt UIvTLEwLS.:NQEAIKKKYEH 
'rLNVl IIAALEWLSC NQEATKEKYE 
1 IT 1AIV F.pEALEWLNANQEASKEKYE.0 
EVTTVEALRWLN QE?.SLEEYN1 
EVTKpAP.LTIAWLD SJQTATQEEPA.0 

TYAETIAWLDNTTATXEEFDL 
rVTKj1ETISWLDL$TTASKEEFD; 
SI.NY,IE

1TVAWIDF:NQTATKEEYV

IISWLDNNQSAITDKYE  
ETIVA:r TIAWLD- CNQTATAEEYDC 
KLKRALAINWLD..PSQAASTKKYKE 
RLETSL I IDwLON'.,SQAASTDKYK; 
KLTY.AAC IISWLDA.SQAASTEEYEC 
VIELAKVIIINWLDi QSAEKKEFEN'. 
TI.TCIC . 
JCLYC ZrEIKIVAWLD' QQAIRKEYEE 
C1.TAZt C -TVQWLDA QTATKDKYEA 
C1KTECL.(TVSWLDi: QTATKKETEA 
LKSILTVQWLDE QTATKEEYEA 

(LKCIL(VVAWLDA QTATKKEYE! 
IINKEIL TISWLD1NQKGAKDEYZ',  

1.EE7VNSTISWLDNJSQKASKEEYL 1 E 
F IIEWLDNIIAAKDEYEt 

r V'C'K'\ F TIEWLD'.-ITAAKDETEA 
XV1QCcd VLIWLE]HMQLAEKEEYEH 
KVQU3CCJ VLAWLEHNQLADKKEYE,H 

dEP VLAWLE,4QLAEKKEYEH 
VTYt IIKWLDIRIIRLADKKEYKk 
VT)' AN VLQWLDIC SLADKKKFI1  1,

L A! TIAWLDA QLAERQKFE1H 
XIS AS TISWLDVNQSAEKNEYE! 
ILS AS TXRWMDN QLAEKEEFEE 

I'QD CE TLRWIDd TMADKEEFEH 
TVQD CC ILRWI C TMAKKEKYEH 
TVQD CC TLRWI C TMAEKEEYEH 
SVLE CE TIRWLD! TTAEKEKFOH 
SYLD CE TIEWL C TTAKKEEFDPH 
SVLD CE TIRWLD. TTAEKEETDH 
SVLC' CE TIRWLDINITAEKEEFDCI 
SVLCCN IIRWLD.NTTAEKEEF0H 
sVLC3cm TIRWLD:NTTAEKEEFDH 
SVLCON IIRWLDp.NTTAEKEEFDH 
SVLCICN IIRWLD,4ITAEKEEFDGI 

ILr1VC- VLKWLNALAEKDEVEIH 
KVLECç VISWLNTLAEKEETVH 

L CCQ VISWLDHNTLADXKEFVH 
VLEC'.j VISWLDHNTLADKEEFV'H 

VISWLDMNILAEKDEPEH 
KVL ECcd VISWLDA'NILAZKDZFEH 
KVL E3)D.Q1VISWLDi7NTLAEKDEFK A 

YLECc VISWLDA-NTLAEKDE7K 
YLL Cc VISWLD4ILAEKDKTK° 
VLC Cc VISWLDIANTLAKKDEPEH 
'tUE CA VISWLDG44ILAEKDEPEH 
'LD CQ VISWLDN. ILAEKDEYEH 
ILD CE LLsWLE; QLAEKDKPD.H 
X:LD, CS VLSWLE1 ' QLAEKKEPDH 
IpLE CE VLSWLE'. QLAKKDEFO-H 

155K CT VISWLEftI QLAKKEEYF 
IME CE TVXWLD QQAKKEEYEIH 
SUE' Th VISWLD; QTAKRDKYVII 
II.L AN TIKWLOp. QLADKEKYEII 
ICr CE IIKWLD;E QLADKEEYKII 
lEt 1 ILKWLcYHNQTAEKKKFE 

FrIlv - t, IvEWVD--NQTAEKDQYE- 

1
IjECt' TVRWLD-NQTAEKDEFE1l 
IILDCE IINWLiQIAEKEEFEH 
ILDCN IISWLD-FNQIAKKEETtH 
ILDCN IISWLDPFNQTAEKEEFEF 

XLCCNI ISWLDF44QTAEKEEFE1 
?LC'NIINWLDFINQTAEKEEFE , H 
XLE]q - NIINWLDY)QTAEKEEFEC 
XLCCN IINWLDINQTAEKEETE 
11r,PKCNiV1SWLD,7INQIAEKDEYK! 

lEILEANVIGWLDi QIAEKEEYE 
I'LC'A NVIGWLD,QIAEREEFE 7 

XVvECtTISWLE'NQLGDKKEYE- 
'Vt:iQTIswME;CN2MAEKEZIE 
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HsP70rHEpA-0 
liSP 70_THZAN-0 
liSP 70_P YRSA-0 
HSP7CDICDI-0 
liSP 70 PLKCB-0 
liSP 70_P LAZA-0 
HSP 70 CHLBZ-0 
HSP7O_DktJCk-0 
HSP7E_SPIOL-0 
liSP 70_LtTPPO-0 
liSP 70_SOYBN-0 
HSP71_SOLLC-0 
HSP70_MAIZZ-0 
)3SP7C PETHY-0 
USP73 ARATH-0 
HSP7I_ARATH-0 
liSP 72 ARATR-0 
HSP70_LEIBR-0 
BSP 70 LZID0-0 
HSP70LEIAM-0 
HSP 70_TRYCR-0 
HSP74_TRYSS-0 
HSP72_C.MAL-0 
US? 72_YEAST-0 
HSP71 YLkST-0 
nsp71_prc-0 
HSP72_PICM4-0 
HSP74_YEAST-0 
)4SP73 YEAST-0 
liSP 71_CANAL-0 
US? 70 AC}IKL-0 
liSP 70_CLAHZ-0 
US? 70 NXUCR-0 
liSP 70 ?.LThL-0 
HSP70 PARER-0 
lisP 70_AJECA-0 
HSP70 TRIRU-O 
liSP 70 BLAEM-0 
HSP71 PUCGR-0 
HSP71 _SCHPO-0 
HSP72 SCHPO-0 
ESP7 6_PIG-0 
HSP7 6_SAGOZ-0 
11SP76_HUMAN-0 
HSP70 CERCA-0 
HSP74PAP.LI-0 
HS?7A DROME-0 
US? 70_SCkIMA-0 
US? 70 SCHJA-0 
HSP74kNOAL-0 
HSP71 ANOAL-0 
US? 72_ANOAL-0 
liSP 70 DROMZ-0 
BSP71DROME-0 
HSP71_DROSI-0 
liSP 73_DROME-0 
lisp 72 DROHE-0 
US? 74_OROME-0 
US? 75_DR0-0 
liS272_DROSI-0 
MAG2 9_OERIA-0 
HSP71RAT-0 
HS7 OAMOUSE-0 
US? 0B_MOUSE-0 
1157 0k_P 10-0 
US? OA_BOVIN-0 
liSl 0B_BOVIN-0 
liSP71_CERAZ-0 
HSP71_HUMA2-0 
HS70S_BOSMU-0 
HS70S_PIG-0 
HSP71_CANFA-0 
HS7 02._HUMAN-S 
HS70L_RAT-0 
HS70L_MOtJSE-0 
liSP 70 XENLA-0 
liSP 70 ECHGR-0 
lisP 7C_ORYLA-O 
liSP 70_MANSE-S 
KS? 70_DR0)-0 
US? 7A_CAEEL-0 
liSP 70_HYDMA-0 
HSP70_RRUMA-0 
HSP7C_BOVIN-0 
liSP 7C_MOUSE-0 
RSP7C_CRIGP.-0 
HSP 7C_P.AT-0 
US? 7C_PONPY-0 
KSP7C_SAGOE-0 
US? 7C_HUMAN-0 
HSP7C_ICTPU-0 
HSP70 ONCMY-0 
HSP7CBRARE-0 
US? 70_ONCTS-0 
US? 70_PLEWA-0 

*LKHVEGv1. - lPLvrrx 

MKALEAVIPIN4SX 
QXEAE.:\/AP IMSKIh 

?CQXEAE VPIMSXI 
IITRLO 

LEELE LNPIARLt 
MXELE.:I 71? I:AKMY 
MKELELNPI:,AKMY 
QICELE .2 NPI:AKIC 
MxELEI71PI:AKM: 
MKELEI 74P1 KM'; 

(MKELE.),I PI.AKM 
EMKELE::IlPIt:KMf 

MXELEiI1:1P I[flAKM 
XMKELE::Mlp iaxt 

QKELE:TPI1NrrK!. 
QEELE:v P IrK$Y 

CQKELE V 4Pi TK$ 
QKEL1rPI'rNIcC 
QKELE:v -jAPr: 3KM: 
QKELE.:PI.TKA: 
LEELEVA1PISKL 
LKELI.N?ISKL 

0  
R1tELEL1EL 0 ' ': 
QKELE VAJP I-SKY 

•QKELEtl PIN KF 
(RxELE; - Mp ItSGi 
QKELE]INPI K1(' 
QKQLE All? 
QKELEAFI ? 
QKELEJ 1 IVA 4 P IN4KF' 
QXELESV/-NP I14KF 
QKELEM1P Ir:I4KF 
QKELE iV1A4? I4KY 

QKELEIGMANPI'TK 
QKELE[ J-V1A. P IHQK 
QKELEGMA PINAKI' 
QKELE P. PIN KI 
)CRELE .i ICRPIFSR 
KRELEIC PIFSR 
KRELE

ç
I PIFSR ': 

	

MNTLT 	TPIN K P 
LEELQT 'SPIN K P 
QQELE:I'SPII K 
REELE1.KPII KV 
KSELF..V; P11 A* 

KMQELTHA, , 'SPIrfTKIl  
MQKLSPMSPIM K P 

	

MQELS 	SPIN K I 
LEELTF}lJGSPIP1 K P 
LEELTRIH:SpIN K 
LEELTF<NIGSPIN K P 

(MEELTP.HSPIM K 
(MZELTFKSPIM K$l 
KMEELT}P4}CSPIN K* 
KMEELTR1B SPIN K* 

MEELTRGSPIN K P 
QRXELE.1M P11 K 
KREELERM PITSGL 

REEL 
REEL 
REEL 
REEL 
REEL 
REEL 
REEL 
REEL 
REEL 
REEL 
REEL 
REEL 
QEDL 
QEEL 

	

QEZL 
	

K 

	

QKEL 
	

K 

	

QKEL 
	

K 

	

QKDL 
	

K 

	

QEEL 
	

K 

	

QEEL 
	

K 

	

QKEL 
	

K 

	

QEEL 
	

K 

	

QEEL 
	

K 

	

QKEL 
	

K 

	

QEEL 
	

K 

	

QEEL 
	

K 

	

QKEL 
	

K 

	

QXDL 
	

K 

	

QKEL 
	

K 

	

QEEL 
	

K 

	

LEEL 
	

K 
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000AP .... C GPDNG ............. AGFPGGA. 
P ........ 0 AP,.S ....... GPDMS.GCFPGGA. 

VP ........ G.M ..... GNFS000. 
GGMP ,QG ............. GGMPGGM. 

EVGGAA.....NP. .3 ..... GM? ......GMPGGM. 
DAACAA. .0 . NP .......... NP 	.GGMPGGM. 
GOACA .... P ................ 000AGAG. 
GRGCVP... : 

rl
GP.. GCMFGGG. 

IA........... GM ................ COMEDIC. 
IVLACjMVLVL IN ................ AGA?TGS. 

A OP. 	.3 ............. GDVPNGA. 
A GD ................ AGVPMDD. 

lEG 	IGAA.A N ................. 9 ..... S. 
0 .G..GATMCED.GPSV..GGSAGS(j. 
1' GP..AA ............ GGMDEDV. 

IAGGE...A GP..GA ............. GMDDDA. 
IGAGIIE, GP..GA ............ SGMDEDE. 
PM ....... 0 GA ................ GGMPGGMP 
SMGGAG ... 0 NP. 	.9 ..... G.MPD. .MSGMSGGA. 
PM000AGGM NP. 	.DM ............ SSMSGAR. 
GMAG ...... NP ................. GMPGGM. 
IMGGGDGP.0 NP ........ EGMCGGMPGGMPCGM. 
AGATPSGAAG P ................ GGFPGGA. 
P......... .AP..E ..... OAAP....GGFFGGA. 
AGGAPGGAA .P ................ GCFPGGA. 

C VP. 	.0 ..... GAPP. . . .GGFPGAG. 
E ........C VP. 	.0 ..... G.AP. . . .GGFPGAC. 

C AC. 	GA............. GPVPGAG. 
P.IAGACPGAG SO. 	.0 ....... FP. . . .GSMFNSG. 
AAGGAPPIGAC CC. .0. . . .AGGFC. . . .GGAPGA.G. 

AP ................ GGPIPGGM. 
AS .......0 P 	................ GGMP000. 
AGGAPGCMPG AC ................ GGIPCGA. 

0 MC ................ GGMCGGGM 
A......... C AC 	.GAGFPGAGGP. . . .GGFPGAG. 
GOSGAP .. . C Fe. 	.0 ..... KGGP .... GGFPGGF. 
AG.GEGGAFC FPCAG ..... AGGP .... GGEPGAG. 

0 AC ................ GGMPGGFD 
GAGGAP ... G AP ................ GGFPGGA. 
A........... AC. 	.3 ..... G.AP .... GCMPGGA. 
A.GGAPGGMPG A? ................ GAAPGAA. 
A.........P IC. 	.3 ............. GS3CGA. 
O ........P VP. 	.0 ............. GSSCGAQ. 
O ........P VP. 	.0 ............... 35COTtJ. 

GA.. G ........ ç .... GASCGOQ. 
OTGGCR ....• OP ................. GFPSGG. 
GA .......0 AP 	................ PFTAGGS. 
A.........0 NP ................ GGMIIEAZ. 
A'IGGVP ..... MC ................ OGUPOAG. 
OP. 	....... A OP. 	.0 ............. PIISCAOO. 
OP ........1 OP. 	.Q ............. PTSC 300. 
c1A ....... A C,?. 	.1.2 ............. PTSCGtjIj. 
(.IGAGAO ... A GP ................ GAtI0001.2. 
(IGAGAG ... A Ge ................ GANCG(JQ. 
OGAGAG ... A AG .............. GPGANC000. 
QOAGA. . . . A OP ................ GANCGQQ. 
QGA.GA.....A GE ................ GANCGQIi. 
QGAGA OP ................ GANC000. 
QGAG/...... A GP ................ GANCGQLJ. 
QGA.GAGA. .A GP ................ GANC000. 
QAGGAGA. .0 C ........ GGFP.. . . GGFPGTCG 
O ........ A AC. 	.3 ........ .....GOFOAQA. 
O ........ A .P. 	GA............. COFOAQA. 
G ........ A AC. 	GA............. OGFGA.UA . 
O ........ A CC. 	.0 ........ P .... GGFGAPD. 
O ........ A OP. 	.GA ............ OGFGAQG. 
O ........ A OP. 	GA............. GOFGAQG. 
O ........0 OP. 	.3 ........ P .... GGFGAQG. 
O ........ A CC. 	.3 ........ P .....OFOAQO. 
O ........ A GP. 	.GA. ............ .. GFGA QA. . 
C ........ A OP. 	.0?............. GGFC-AQA.. 
C- 	........ P. 	.3?. ............ .GFGAQ,A. 

I. 	.0 ........ . .... ACGTGYV. 
T. 	.3 ........ P .... TCAPGIT. 
T. 	.3 ........ P .... TCTPGYT. 

GGVP ..... P ................ GGMPGSS. 
EAGGVGGIPC ........ CGNP .....GIPOGGI 
IA. ....... C ................ GGC(JIIEC. 
GAGGMP... C ................. GMPGFPG 
OAGFPF ... C. 	.0 ....... . P .... GGMPGAA. 

P ........... P....GAAFGGA. 
AG ....... C..G .....G.MC. ...GGMPGGM. 
SI-........ C..3..... 

IGIP  

G.MP....GGMPGGA. 
GAGGMP...D ........ COME....GGFPOGG. 
?........0 ........ 0CM?....GGFPGGG. 

II- 	....... C..G ..... G.MP....OGFP000. 
SI-........IC. .0 ....... NP....GGFP000. 
SI-........ P ........ GGMP....GGFP000. 

....... P..3 ..... GM?... .GGFPGGG. 

.......P. .3 ..... G.MP....GGFP000. 
PLUGMP...D ................ DGNPOGFJ 
GA ....... C ........ COMPEGMAGGFPGAG. 
SAGGMP...0 ........ EON?....GOFPOAG. 
0 ........P ................ TOCCGDQ. 

C 	....... ......... ..OMPSGSS 
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RSP 70 THLPA-O 
HSP 70_TRAN-O 
USP70_PYRSA-0 
HSP7C DICDI-O 
)3SP 70_PLAcB-0 
ESP70 PLAZA-0 
HSP70CHLRZ-0 
liSP 70_DAUCA-O 
liSP 7E SPI OL-O 
liSP 70_LUPPO-O 
HSP 70_SOYBN-O 
lisp 71SOLLC-O 
HSP7014AIZZ-0 
liSP 7C_PETNY-O 
HSP73_?RATli-0 
HSP71 _ARATH-0 
liSP 72 ABATH-O 
HSP70_LEIB1-O 
liSP 70_LEIDO-O 
BSP70_LKI)J4-0 
liSP 70 TRYCR-O 
liSP 74 TRSB-O 
liSP 72_CANAL-S 
RSP72YZAST-0 
liSP 71 YEAST-S 
HSP71_PICAN-0 
liSP 72_P SCAN-S 
lisP 74 YEAST-S 
liSP 73_YEAST-S 
liSP 71_CANAL-S 
aSP 70 ACHKL-O 
liSP 70_CLAEZ-O 
liSp 70_NZUCR-0 
HSP70_ALTAL-0 
HSP 70_PARBP.-0 
aSP 70 AJECA-0 
HSP70_TRIRU-0 
aSP 70_BLAZh4-O 
HSP71PUCGR-0 
HSP 71 SCHPO-0 
lisp 72SCNPO-O 
HSP76_PIG-O 
liSP 76_SAGOE-0 
aSP 7 6_HUMAN-S 
liSP 70_CEP.CA-0 
11SP74_PARLI-0 
aSP 7ADROME-0 
liSP 70_SCHMA-0 
HSP70 SCHJA-0 
liSP 74 _ANOA.L-0 
HSP71_ANOAL-0 
aSP 72 ?.NOAL-0 
aSP 70_DRO).-0 
HSP 71 DROME-0 
HSP71_DROSI-0 
liSP73 DROME-0 
liSP 72 DROME-0 
HSP74 DROP-0 
HSP75DAOME-0 
HSP72_DROSI-0 
MAG29_DERFA-0 
aSP 71_P.Ar-0 
HS70AMOUSE-0 
14$7 OBMOUSE-0 
HS70A_PIG-O 
HS70ABOVIN-0 
NS70BBOVIN-0 
aSP 71_CERAE-0 
HSP 71_HUMAN-S 
HS708_BOSMU-0 
HS7OBPIG-0 
lisP 71_CANFA-0 
HS70L_HUMAN-0 
1157 OL_RAT-0 
HS70L MOUSE-0 
11SP70_XENLA-0 
HSP70ECHGR-0 
HSP 7C_OP.YLA-O 
liSP 7D_MANSE-0 
liSP 7D_DRO-0 
HSP 7ACAEEL-0 
liSP 70_HYDMA-0 
liSP 70_BRUMA-0 
liSP 7C_BOVIN-0 
liSP 7CMOUSE-0 
HSP7C_CRIGR-0 
liSP 7C_P.AT-0 
aSP 7C_PONPY-0 
liSP 7C_SAGOE-0 
aSP 7C_HUMAN-0 
aSP 7C_ICTPU-0 
liSP 70_ONCMY-0 
aSP 7C_BRARE-0 
aSP 70_ONCTS-0 
liSP 70_PLE WA-S 

100 

• . .ppp ...... 	.rV 
• . . .APF ...... PQ.SSPTV. .

.NE(DIDN...A..'GPEI.. 
S. .NtiSPCS3NKV 

P00 ......... HGG0K .1.... 
• . . .PSGMPG. . •G. MNP ......... 
- . . .AAP300. . .5. .Y-GPXI. .EEVD 

GGS}.G. . .SS.GPEI. .EEV 
PTS. .0.. .0. .GPXI. .EECR 

0. 	3PKI. .GEV 
DMPAA ........... APKI. JEEVt 

.DAPPSG ...... GS.PKI..EEVD .... DAPSGG .... S.PK!.ZZV 
T 	 .ZEV 

•PPS ...... AG.;APXI. 
..PPA ...... SG.3GPXI. .ZEVD .... APFASG ......... GPXI. .EEV 

DMSGMGGGQGPAAGA .3 3GPXV. EV 
GPADG ... ......GPKV. .EEVD 

.PAG ...... GA.GPXV. .ZZVt .... PGGMPG. . G. .'-iFGGMP ....... .... GGGMGGA..AA.Z.3GPEV. .EZVD 
pS.NGpTV..IEV0 

.PP ....... ?E.AEPTV. 

.PP ....... PE.AEPTV.. 
GAAPG. . .A. . .cGPSV. .EEVD 

• . GAPSTE.. .5. . TcGPT V. EE VD 
.AGPTG ...... Ar..r.GPTV. .EEV .... ATG. .0.. .GE.:.GPTV. .EEV 

... GPGGATG ... 05. :3IGPTV. .EEV 
• . FDMGGAGAPPPASH!-.]GPXI. .EEV 
AGAPPPG ...... AG. GPTV .. 'EVD 

•PGS ...... ND. NE]GPTV. .1EVD 
FGGAPGGAAG ...... .GPTV. .!EEVD. .... VGGAHS ... 00. :E}GPTV. .EV0 

GAGHASG ... 00.: t[GPTV. .KZVD 
AGGI¼A... AN. 3LGPTV. .EEVD 

PSGAPPPA ..... AD.TT PT!. .ZEVD .... PGGFPGGAPAG.ED PSV..IEZVD 
.... PGGAPG...GA.:N0PE. .pzzvo 
.... PGAAPG ... 0. . NGPEV. JEEVD 
• •ARQG ...... AP.5TGPVI .. EEVD 
.ARQG ...... DP..5TGPII. .IEEVD 

ARUG ... DR .3! 211H .ZEVD 
.... AGGFNG ... G. . hTGPTV 	KEyS 

GPT'1. . EEVD 
.NPG.kTG ...... GSGPTI:. ZEVD 

• GAG ...... 0000K PT!. KEyS 
• . . .GGG ......... . K PT!;. . KEVD 

.AGGF ..... GG.RT PTV. .EEVD 

.AGGF ..... .G.RT PrY. .EEVD 
• . . .AGGF ..... GG.RT PTV. .EEVD 

.AGGF ..... GG.YSPTV. KEyS 
....AGGF ..... GG.3GPTV. . EVD 

AGO ..... FG33 PTV. . KEyS 
kGGF ..... GG.YSGPTV..EZVD .... AGGF ..... GG.YS PTV,. .EEVD 

• . . •kGGF ..... GG.YS PTV. KEyS 
• .AGGF ..... GG.YS PTV. KEyS 

• . . •AGGF ..... GG.YS PTV. .ZZVD 
0000AAGGDG ... G .....PTI,.ZEVD 

•PKG ...... 05.00 PT!. KEyS 
.0KG ...... AS.GS PT!. KEyS 

...tPKG ...... AS.D$GPTI'.. KEyS 
• . .LKG ...... GS.35 PT!. .EEVD 
• .0KG ...... GS..350PTL.. ZFVD 1  
.0KG ...... GS.03 PTI. .IEEVD. 

.... 0KG. .0.. .S. .330PT1 1 . 

• . . .0KG. .0.. .S. .3SGPTX.. .EEVD 
PRO, ...... GS.3GPTI. KEyS 
.0KG ...... GS.40 PTI. .EEVD 

• . .0KG ....... S. :GPTI. [KEyS 
• . . . PGR ...... P. AT PT!'. .IEEVD 

OR ...... A. .AIGPTX. KEyS 
.PGP. ...... ....TGPTX. .[KEVD 

.... CGAQAR(d..GG.N5GPTI,. .EEVD 
PAGMAGGMSGDPSSG.3?GPTI,. KEyS 

cjE.VSLELV'. L1LAVA 
GAPGAGGAAP ... GG.5A PT!. KEyS 
• . .GAAGAAG. . .AG.41.GPTI .. EVD 

• AGO ............ PT!. [KEyS 
.... PGSGSK ... AS.3% PT!... EEVD 
• . .PGA. .G. . .ST.400PTI. .EEVD 

• .APPSG ...... GA.55 PT!. .EEVD 
..AFPSG ...... GA.5T, GPTI..IEEVS 

A?PSG. .0. . .A. .13 PTI.. .IEEVS 
.AOPSG. .G ... .... 3IGPTI. [KEyS 
.APPSG ... ... .A. 3.CPTI. JEEVD 
.APPSG. .G ..........GPTI. HEEVO 
.AFRSG. .0 ....... IIOPTI. .[EEVD 

ELGAAPG ...... GO .ZCPTI. [KEyS 
.GAA000 ...... GD. 3HGPT!.. [KEyS 

AP000 ....... O}GPTT, [KEyS 
....ARTSSG...DS.3cGPTI..[KEID 
C.AQARQG ...... 55. 

177 



iiL;lccI 	jEi:iiit I 	lIC 	(.1 ,  C  

A.3. Sequence alignment of Hsp70/Hsp9O interacting TPR domains 

A.M. Hop TPRI domain 

NFAIH 
k' S AJ' 
FS C 

LFAE K 
LAN 

QEN 
RLN E 
RLNA K 
.I AA K 
-F SA K 
RLS C 
RLS C 
tLS c; 
RLS C 
K SSG 
ES C 

FK G 
E  C 
7, S C 
AILS C 

1 

gnl ItrIAOEUS1 
gnljtrjAOE7Z9 
gril trIA1CG5S 
gnl trIAlD965 
gnl IspI°35814 
gnhIspIO5 4981 
gill tn 061650 
gnu sp1P31948 
gnl I tnjP90553 
gnu 1tr1P90647 
gn1 ItrIQ017 S 6  
gnu tn QOcWW9 
gnu ItrIQOJBE4 
gill Itri QOIJEH1 
gnl tn Q1DYZO 
gnl tn Q22RN3 
gnl tnIQ27U54 
gn1ItnlQ29NX2 
gnl tn Q2HEP5 
gnl tn Q2U285 
gnu tn Q3THQ5 
gnl ItrIQ3ZBZ8 
gnl ItnIQ3ZCU9 
gn1ItrIQ45KRO 
gnl Itri Q4DYD9 
gnlltrl Q4JHNO H 
gnl Itri Q4MZD6 
gnl tn Q4Q158 
gnl tn Q4R8N7 
gnl I tn Q4SG24 
gnu tn Q4UBI5 
gnl Itr I Q4XY67 
gnl tn Q4YNL4 
gn1ItrIQ51BN3 
gnl ItnIQ54DA8 
gnl ItnI Q561A5 
gnu ItrIQ57ZXO 
gnhItnIQ59YX6 
gnl Itr I Q5ARF6 
gnl I tr  I  Q5CCL7 
gnl I tr  I Q5RKM3 
gnl ItrI Q5)P2 
gnu I spl Q60864 
gnl Itni Q6H660 
gnu Itr I Q7RJW7 
gri1ItrIQ7SET2 
gnl ItrIQ7ZWU1 
gril ItnIQ84TJ2 
gn1ItnIQ8ILC1 
gnl I tr I Q8 JHF9 
gnl Itr I Q8L724 
gnl Itr I Q9LNB6 
gnl I tr  I Q9STH1 
gnl I spi Q9USI5 
gnl I tn I Q9VPN5 

10 

DLGNQ 
DLGNQ 
AEGNK 
AEGNX 
EKGNI< 
EKGNE 
EKGNQ 
E KGNI< 
NKGNE 
NKGN 
ARGN. 
AEGNI 
AKGN 
AEGNI 
AE GM 1< 
NE GN 1< 
EKGN 
E KGN 'I 
ALGNI 
AEGN1 
EKGNI 
EKGN 
EKGNI 
DQGNB 
NRGN 
NKGN 
NLGNE 
N KG N 
EKGN 
DQGNI 
N LGN 
ELGNI 
ELGNI 
ARGT 
NQGN 
AEANI 
NKGN 
AEGNI 
AEGNI 
KKGNE 
DQGN 
AI(GNJ 
EKGNI 
AKGN) 
ELGN} 
ALIGN?  
EKGN 
A KG NJ 
E LGN 
EKGN 
S KG NJ 
A KG N J 
SKGNJ 
AKGNJ 
K KGN C 

30 	 40 

KF'YSQIE1NPN HILl 
NYSQIE1JH7—N HILl 
[YIFTQIQIJEES YILY 
EFTQIE1EFc; HILl 
. YSEIK1Ec HVLY 

• ;Y SE IKLE.2 HVLY 
J:YTEIAIrQ HVLY 

ysEIK1:pH HVLY 
HIIFSKIQL0c SVLY 
EHYTN IQ}[c' 	HVLY 
LFTSIECL 	HVFW 
ElFTQIAIEFE HILl 

FFTDIAII) HVLY 
EYFSQIE1rS HVLY 
EFSAIELL2.S EVLY 
rC-JFTKIEIJN HVFY 
KYTE IL1IflK NVLF 
CI!YTE IA1L HVLF 
r'FTQIAL:;s HILl 
LccFTQIAIEPE HILl 
LjYSEIKI1DPU HVLY 
LYSEIKLFP.d HVLY 
L:lSEIK1EH HVLI 
PYTE'VA rps HVLF 
ENFSQIN DPS HVLY 
NYFSKIQ DEQ SVLY 
EFFTKIE NPD HVLY 
NYFSKIQ EEç SVLY 

TYSEIK EPH HVLY 
Rc:YTEVA DPI HVLF 
EFFTKIE NPN HVLY 
KiFSDIK DPS HVLY 
KYFSDIK DPS HVLY 
YEYTEIK PET GVLY 
DFDQ'IE DPS HILl 
KLYSDIA EPS HVLY 
EFFSQIN EtS HVL'( 
EFFTKIE HPE HVLY 
EN TQIE [SN HVLY 
K'YTEIAL[PT HVLY 
RCYTELT1LPS HVLF 
N't-iFTDINITPT HVLF 
ccTYSEIKLDPc2 HVLY 
RH TDIALAPG HVLY 
KY SDIKNDPS HVLY 
DK TQIAIEPS HILl 
KCYTEIKI4DPK HVLY 
NHFTDINIJTPT HVLF 
KYFSDITNrPL HVLY 
KCYTEIK DPN HVLY 
THFTEIN SPT HILl 
NHFTE'IA 1-PT HVLF 
TH TEIN SPT HILl 
DYFTQIG PER HILl 
AYTEIA DDE) HVLY 

50 

GA1LHKIE •L 
GSyLASL;NYc0L 
A.A QSHYcL 
A. 	A cdS:1 L 

I 
A KCEYN I 

A.- ­ A 
A. 	A K t_-: _ !Y ç I 
A iAMçYY L 
A 	ASILNY [ L 
A- 	S 

S A QCY. I- L 
A1SLHIYcF L 
Gi l-,Y SLY,__ y 	L 

• L 
GLk YLAS L N -L F 	L 
AY1A Ai'-cFL 
A­  . A K AGNFEL 

L 
QSEYEF L 

AYA K KGrYYY 
A: AKKG:YF I 
A AIKGDYçN I 
AF:AKLKGNYIEN L 
A: HAL HE)YPN L 
A:ME)KYKD L 
G1 cF1ASNYN1 NE 	L 

Tp A MQNYKD L 
ALYAKKGDYiQK Y 

AY KGSYENL 
GFY AS MY'1YNEL 
GYSSLGR YEL 
GYSSLCR Fj YE 	L 
ACY SLEE) EKL 
ALL LDK EEL 
ATCA END EGL 

:NASLHQY}AcL 
GL-' SLKDFNN L 
Af:A E)E)EYEKL 
AF IA /ENYIEL, L 
A.:,A K KCLYLNL 
A: 	ASLNHYEEL 
AcA K V.GLYcYY 
'AAL1ASVHRYHE L 
GFYSSLGPFYEL 
A;. c JASKKE EN 	L 
Al 	A KNE TEL 

I.FASLNH DEL 
:SLGR Y E 	L 

K K E TEL 
:ASLHRYIEE L 

A;.. iA SL HE) P 	L 
A:ASLHRYEEL 
A: 	ASEKDYLRtD L 
AlA AGK DEL 

SSIK 
AK 
SSG  
AAK 
AAk 

SSG 
SA 
SG 
QE  
AE K 
SC 
SSG 
QEC 
SA G 
SSG 
SSG 
SSG 
SN 
SE 

20 

KEN 

SAlK 
SA 
S A G  
SAG 
SAE 
SV 
SG 
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N F 
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60 

gnlItrIAOBUJl ADAEFCCISL 
gnhItrIAOE7Z9 TDA CISI 
gnhItrIAlCG55 EDN A VEl 
gnhItrA1D965 DDAN -IEI 
gn11spI035814 EDC T DL 
gn11sp1054981 ED GC T DL 
grilItrlO61650 ED AE TIQL 
gnhIzpIP31948 ED GC DL 
gnhItrIP 90553  DD ECISI 
gn1trIP90647 AD K C EL 
gnljtrIQO17S6 RD A K T I E L 
gnhltrIQOCWW9 DD AH X.FTE l 
gnlltrIQOJBE4 AD AE C AL 
gnhItrlQOUEHl AD AS C EL 
gahitriQiDYZO ED NTTEL 
gnhItrIQ22RN3 AD AV CISI 
gnhItrIQ27U54 EDAEK 

I 
 7IAL 

gnhItrlQ29NX2 ED K IIAL 
gnhItrIQ2HEP5 SD AE T EL 
gnhltrIQ2U285 ED A N ATEI 
gnhItrIQ3THQ5 ED CT DL 
gnhItrIQ3ZSZ8 EDGC I DL 
gnhItrIQ3ZCU9 ED GC T DL 
gnhItrIQ45KRO QD C TIXI 
gnhItrIQ4DYD9 QD K CVSI 
gnhItrIQ4JHNO DD D CISI 
gnhltrlQ4MZD6 AD N CIDL 
gnhltrIQ4QI58 DD t CISI 
gnlItrIQ4R8N7 ED C C EL 
gnhItrIQ4SG24 ED C TIKL 
gnhItrIQ4USI5 AD N CIEL 
gnhItrIQ4XY67 ET N 0151 
gnl I tr I Q4YNL4 ES N CINI 
gnhjtrIQ51BN3 ED N TIEY 
gnhItrlQ54DA8 TD K AIEL 
gnhItrIQ56lA5 ED K TIEL 
gnhItrIQ57ZXO SD K C SL 
gnhItrIQ59YX6 KDAQECVKI 
gnhItrIQ5RF6 AD K A El 
gnhItrIQ5CCL7 ED K C SL 
gnhItrIQ5RKM3 KD CQTIKI 
gnhItrIQ5XEP2 SD V I EL 
gnhlspIQ60864 ED C C DL 

gnhItrIQ6 H 66O AD K I EL 
gnhItrIQ7RJW7 ES N CINI 
gnhItrIQ7 SET2  ED E ITEI 
gnhItrIQ7ZWUl ED S T EL 
gnhItrIQ84TJ2 SD K I EL 
gnhItrIQ8ILCl ES AN 0151 
gnhItrIQ8JHF9 ED GS I EL 
gnhItrIQ8W24 SD K TIEL 
gnhItrIQ9LNB6 SD K IIKL 
gnhItrIQ9STHh SD K TIEL 
gnhIsplQ9USI5 ED T CTEL 
gn1trIQ9VPN5 EDE II L 

80 	 90 	 iOO 

LHYT.GEFEKAIDAYQQC K1DF1 
LHY GEFEK IEYQQG AJVtDPS 

A SRG GDLLV HDYEE IDPC 
;A CP.G GDLLG H:AYEEA KJDPS 
AA LEE NRFEE VRTYEEG KL-'EA 
AA LEF NRFEE YF:TYEEG KEJN 
GA AAG NDFNK FEAYNEC !YD FT 
AA LEE NRFEE MTYEEG K::E. 
GA LHG FRY GD IAYEKG K':DGS 
GA LCY G R Y A D K4AYAAG E:EGT 

LEG QKFLE RSIAYALG EiY;EPD 
GA 1KG GGLLA FiIAYEEA KiIiPIG 

A RLG GDAAG VAAYEKG LEPS 
GT LHG GDLVG IE IAFEEA  KLDHN 
GA MHG GDLVG HDIAYEEA LDA 
GH EYE GKLSE VATFKKG EIEP 
GA AAG HLYVV FLAYNEG ICDPK 
GA AAG HGFNK FEAFNEG KYDrHT 
CT LYG GDLLC H: YEQG 3 IDP 
CA 1KG GDLLA N: YZEA IEPG 
GA LEE NRFEE KKTYEEG KHEA 
GA LEE NRFEE KTYEEG HE f-. 

LEG NRFEE L'?TYEEG IHET-IN  
LEE L GRLED KATYHEG çEr 
LHG RRYEE AA YNKG SLDPS 

GA LHG RRYDD IA YEEG IVDPS 
OLCEYK CNPEK KETYNMG AYDPN 
GA LHG RRYDD IA YEXG IVDPS 
Al. LEE NRFEE VTYEEG KIHEI. 
AA LEE SRLGE KATYQEG GEF 
CGCEYK GSPEK KETYNLG TIDE 
CC EHG RQLDNSEKTYLEG KLDPN  
C: ERG RLDNSEKTYLEG KLDPN  
CC LLN ERYEE EE CNSG KIDPE 
:N LYK GRFEE EKSAEAG KIDPT 
A LHG RRFFD VM YESG QAEPN  

GA LHG RRYDE AC YKEG TVDPS 
AG EFG GNFDc2 KS YEKC ELDP 
GA IRGIGDLLA ND YEEA KLEPG 
GE LAY SRYEE IE YRTG RGEPT 
CA LEE GRLED KATYQEC RQEPS 
GA HLG NQFDE VE YSKG EIDPS 
AA LEE NRFEE KRTYEEG KHEAN  
GA HLG GDAAS VA YEKG LDPT 
AC ERG RQLDNSEKTYLEG KLDPN  
GT LEG GDLLG ND YEQG KIDPN  
CA LEE NRFEE KKTYEEG HEFT 
CC HLG NUFDE VE YSEG EIDPS 

ERG RQLSN EKTYLEG IDP 
l•A LEE NRFEE KKTYEEG HEFT 

FIG SKFDE VLSYKKG ELDFS 
HLG NQFEL VT YKEG DVDPT 

1. FIG SKFDE VDSYKKG EL PS 
1A LHG GDLDA KS YEEG HDA 
G. AAG NDFMK FE YNEG YDPT 
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A.3.2. Hop TPR2A domain 

gnl ItrIAOBUJl 
gnl It r I AOE7Z9 
gnhltrJAlCG55 
gnl ItrIAlD965 
gnhlspl 035814 
gnhlsp 1054981 
gril ItrI 061650 
gn115p1P31948 
gnl ltr1P90553 
gn11tr1P90647 
gn]. Itri Q017S6 
gnl ItrI QOCWW9 
gnlItrIQOJBE4 
gnl tn QOUEH1 
gnl Itni Q1DYZO 
gnl tn Q22RN3 
gnl tn Q27U54 
gnhltnl Q29NX2 
gnl ItnI Q2KEP5 
gnl 1tn1Q2U285 
gnl ItnI Q3THQ5 
gnl ItnIQ3ZSZ8 
gri1ItnIQ3ZCU9 
gnl ItnIQ45KRO 
gnl Itr I Q4DYD9 
gnhItrIQ4JHNO 
gnl ItnI Q4MZD6 
gnl ItnIQ4QI58 
gnl Itr I Q4R8N7 
gnl ItEIQ4SG24 
gnl ItnI Q4UBI5 
gnl tn Q4XY67 
gnl ItnIQ4YNL4 
gnhItrIQ5lBN3 
gnl ItnIQ54DA8 
gnhItrIQ56lA5 
gnl ItrIQ57ZXO 
gnlItnIQ59YX6 
gnl ItnI QSARF6 
gnl tn Q5CCL7 
gnl tn Q5RKM3 
gnl Itni Q5XEP2 
gnl Ispi  Q60864 
gnl ItnlQ6H66O 
gnl tn Q7RJW7 
gnl ItrIQ7SET2 
gnhItrIQ7ZWUl. 
gnl tnt Q84TJ2 
gnl ItnIQ8ILC1 
gnittntQ8JHF9 
gnhItntQ8L724 
gnl tnt Q9LNB6 
gnlItnIQ9STH1 
gnl I spi Q9USI5 
gnl tn Q9VPN5 

10 

cEMc4K. V

N 

IPJKI 	 L. F 
EKI . 	NA 

AL E:K7 . N. 
AL EK 	N 
Ar-  EK 	N 
A. X EK 	N 7  
AL LKLF N:, . 
AL ELK 7 	N. 
ALE /LK. . N 
GE ELK 	N. 
ACF E'K ' N7. 
GE P AK. ' T' A 
AL EKA. T 
HE \'l(L. N. 
GE EK : N 7 

AE EK.... N.7 .: 
AC EK: : 
GE EK- 	N  
AL E,K 	N.7  
AL R EK..... NI!. 
l.A EK 
AL EK' . 	 N..7 
AL Y.K 	N! 
AL LK.: 
?N 1K' 	N':- 
AL A AK -  N'. 

AL8EK ~ -
EK 	N. 

AL 	. N:! 
F Y1KAF. NHL 

GE) 	. HK.r 
CE EH  N:} 
Ac! c!KF 	NL 
$c!K ER:. 	N:-!. 
GE FKA NA 
AL AKIF. N ,  L 
A LI AIK!. F 41. A 
GE EKA : 
ALIçK' N" 
AL EKG 	N!.! 
Ac! EKET N!! 
ALX E 71 N:; 
AQK EKH 	N.7; 
GEEHKL - N.F 
GE K EK1.T TA 
Ac! EKTL NEA 
Aç/ K EK: 	AA 
G  E HKA A NE'F 
Ac! EKTA A?. 
AL EL N'7! 
GE' EK: N!.!I 
AL K F  ;:- NF 
AL EK7 c, 	NTN 
1, RIX EKIF. 	NGJ. 

20 30 	 40 

:Q,,:,Y.EELALL:. "KA 
HE. '.'EELL . KA 

-...yDITY:.:. 	I  
NAITY : IC 

E. .TNMTY QA 
E''NMTY'' QA 

IA 

	

TN4TY 	QA 
VL: FN NIT LY:. 	S 

	

'E TALE 'ry' 	LA 
E LEDISF. . RA 
EL TED TYLT1 IC 

.:. 
LED SY:"' RA 

	

KDIAY 	EG 
I.E 	.KDITY 	LS 
!E,PTEILY: N KA 

PTDITF 1 ': IA 
iEHLLTDITF:- IA 

H.KDrTy: -: LG 
vELN - KDITY..N IC 

::PTN TYT' QA 
i-:DLLPTN TY:i QA 

I APTN TY'' QA 
A EEIPAN TY:: QA 
L r'LSTNTVY: .. IT 

E'L.PKNTLYIL VS 
I LLPNNLLLFN KA 

I<LPNNTLY:. VS 
A :.VPTN TY . QA 
I HEPTN SY:! KA 
I LL.PNNLLLFH KA 
I VNPNDIMYIY KA 
I \'NPNDIMYI KA 
IEI.EPSDLTFYL KS 

LDSSDILA::: KA 
!DIYPKD TF. LS 
GSLE.PTNTVYLL IT 
AELHKDITY N RA 
uELN. ED TILL IG 
IEFLPTDITFY' MA 
I HEiPTN TYF: QA 
%I  :DDEDIsY:" RA 
AET [.PTN Tyr : QA 

RA 
IKII TIPNDIMYF I KA 

I ' I - YDIVY N LG 
.E1 LLPAN TY:: QA 
.1EIADEDISY" RA 
IINPNDIMYHY KA 
F IrPAN TI:T QA 
HIELLDEDISYT RA 
I LDEDISYN RA 
NI LI'DEDISY: . RA 
N TI. KDITY: N LA 
C I-IE)PTDITFYN IA 

59 

	

I 	VLEA 
YDçA 

	

• F 	LGA 

	

F 	Lc!GA 

	

'EL 	YNYC 
Y I N KC 

'IF AGE NEC 

	

'.F 	DYDKC 
-'N EEC 

AL FDAC 
IF I LI.QGA 
'IL '-T Y DEC 
."F EGC 

	

EL 	YjcjT 
I - . ANY DAA 

IF 7 1CQ DEC 
'1FFAEYEEC 
EL A D QAC 

	

F 	. D QGA 
'F GNKC 
'7F - I: Y G Q C 
:Fr :YNkC 

GELEKC 
F -  AFTYAAC 

r:F' YAKC 
'iL' "GLY)EKC 
IF ;DDKc 

A DIN 
'lF - YGE F DEC 
'FL 'IGDYEKC 
H L1KSYEKS 
'IL' 'IESYEKC 
'FL -  'TEKYDEC 
'LI c!LE. DEA 
YF''7EYQKC 

AEYELC 
1 LGDYDAA 
F 

'L.FAEYIEKC 
'i.FFTGD DEC 
'L'.'AKYDEC 
A ELAGDYNKC 

IA.,YYDEC 
'IL EEC 

- NIGDYSKC 
:L NIAKYDEC 
i-I •-IKN DKA 
'F 7 GD SEC 

EEC 
L '-L'KYNEC 

'ILY-IGK EEC 
IF A:c! DDC 
HF FF'AYEEC 
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gnhItrIAOBUJl 	i AIEE 

60 

L 

70 80 

QNKFNE 

90 

IQFEKSLV 

100 

: HVQ 
galItrtAOE7Z9 	ESIEE L V .LEV&KIJJA KAVZ S (JNKVL E XQ I YEKSLV :HV1c 
gnhItrIAlCG55 	ETCOF VE.EIRE KJ% IGAYE LGDFT IE 1 YHKSLT - . FRTE 
gnhItrIAlD965 	EICQK VFEGRELAKA.FA IGTAYE LGDFTQ IEYYHKSLT LRTF 
gnhJspI035814 	ELCE IEVRENK I IGYF EERYKL IHF NKSLA RT 
gn1 1 3p1 054981 	gcE:-AxEvE1NAK. -  ic: YF EERY?:: INFYNESLA 
gnljtrI061650 LENY VY EIKAMSNRTP 
gnlIsplP31948 	ELCEYAIEVG AKAYAIG:YF EEKYYL IHF HRTIF 
gn1trIP90553 1 

ECEHGIEHG R ENKL::T 
11 

- NLZL (JRKYEA iLL RALVF1R&P 
gnlItrIP9064 7  TCTEhIEVL RVSRALIH KNAYN MEKYA.E ILS NRALT P 
gnhltrIQOl7S6 DCD 1 i-AIEKG sIK:TKNA:v QGKLFE Q RSLTHRTJ-. 
gn].ItrIQOCWW9 	ETCQYAVEEG ELAKAAITAYE LGDLKc IEF NKSLT NRTP 
gnhItrIQOJEE4 :cDAvEPG E SRA:T - KG1IALF-. IKD:v IETY()KALT ;IRNP  
gnhItrIQOUEHl ;-CQEAVDY EVAKA.AIcT.YE LGLLAN ILFYKAQTRTP 
gnhItrJQlDYZO 	EACEU,AISET EMAKAG IG:YE LGDLFE IVNYyKSLT 1 1R 	F,  
gnhItrIQ22RN3 	ET ELLK\AQDNKIAKA,:::A QEKIALS YWYUKSML p 
gnhItrIQ27tJS4 MCEGIEIU ENGKA-)INSYR NEDYLQ ViYEKAMSNRTiP 
gnhItrIQ29NX2 QCEk]GIEVL ENKS IGTYF LENYKc IY E(AMSHRTF 
gnhItrIQ2HEP5 TCTIKAAEEG SLAKSAIGTAYE QGDLAc ILFYNCSLR - :iRTF 
gnhItrIQ2tJ285 I 	QfrIEEG EVtAKSTITAYE  LGDLT IFY NKSLTiRTP 
gnhItrIQ3ThQ5 LCEK 1  IEVC•; EN' KAINSYF EEKYKE IHF rKSLA - HRTP 
gnhItrIQ3ZBZ8 LCEK IEVG EN KAYIGNSYF EEKYKL IHF N(SLAJRTF 
gnlItrIQ3ZCU9 	ELCEF IEVG EN KAU 1 	NSYF EEKIKI IHF'YNKSLA HRTP 
gnhItrtQ45KRO 	ELCEK IDVL EN K. 	- IGNSYFKEEKYKEAVQYFNKSLT NRTP 
gnhItrIQ4DYD9 	EKCE,EALEHGRENAK I4NTE LCL LKRFLE IAL KKALV1IR . 
gnhItrIQ4JHNO ECE9GIEHA EN KI4NT - N LCLQ QRKYEA I:LyKRALv w 
gnhItrIQ4MZD6 TCNft; IDRRYDVSKIY L A YT MERYIr II :YcKSLI NTR 
gnlItrIQ4QI58 ECEHGIEHf EN KI4NT N 	LCLQ QRKYEA ILYYRALV NR NP 
gnlItrIQ4 R8 N7 	ELCEK IDVG EN K 1 1 	NSYF EEKYVD IHFYNKSLA HRTF 
gnhItrIQ4 SG24 	ELCEE IEVGREN K 	U 1 	NEYF QEKYKE IQ'iFNKSLA -IRTP 
gnhItrIQ4tThI5 	KTCNDAIDRP.YDVSKIYN •L ACYT MEKYLL ISCYQKSLI N 	TR 
gnhItrIQ4XY67 	ETCIY IENRYNF K Y L 	IGYI IKPYLK EAYRKSLV L,NNR 
gnhItrIQ4YNL4 	ETCIYAIENRYNFAKVYN L 	IGYI IKNYLK IEAYRKSLV P 
gnhItrIQ5lBN3 	KLCNELLDEYKEUAK FM 1 	NAYFQDKYTE LFYKKSCT KRTE 
gnlItrIQ54DA8 	ETC K 	LEKAQEISK YTLNiYLKNQLLL KAYSSAVL K N A 

gnhItrIQ5 6lA5 	ETCEK VEEG DL K 	iGIG3SYSLGDLAQ IKF QKSLTHRTP 
gn].ItrIQ57ZXO 	EKCEN LEHTREN K 	MTQALCLQLKRFEE IALFNKALV HR!F 
gnlltrIQ59YX 6 	ATCEF.AIDE ,- RDMAKSFA LGNIYLKKDELPEAVKNFEKSLT HRTP 
gnhItrIQ5APS6 	ETC1N IEEG EN K FTIGAYE LGDLLK IENYNKSLT HRTP 
gnlItrIQ5 CCL7 	KECEIKAIEIGRENAKAFT INAYK MEQEKL TY EKSMS HRTL 
gnlItrIQ5RKM3 	ELCEK IDV(REN K !YA IGN-,=KQEKYEE-AVQFFNKSLT HRTp 
gnhItrIQ5XEP2
grllIspIQ6O864 	ELCEK 

ECD'K 
IEV 
VEEGREL 

EN K1 
KATKG-TALG 

IGNYF 
NKDYEP 
EEKYKI 

IcTYcKALT 
IHFYNKSLARTF 

HRNJE 

gnhItrIQ6H660 	KDCDKAVE ELSR 1TKTALA LKDYLI IETFQKALT 1RN 
gnhItrIQ7RJW7 	ETCIY IENFYNF Ky' LIUY IKNYDK IEAY1RKSLV :NP 
gnhItrIQ7SET2 	DTC K AEEG S 	KS]U IG'AYE LGDLIN IEYYNQSLR 'RTF 

gnlitrIQ84TJ2 
gnhItrIQ7ZWUl 	ELCEKAIEVGRENAKAYA 

DCDK VERG EL KALT - KTALG 
INSYF EEKNKE 

MKDYEP 
IQFENIKSLA 
IcTYc?KAITHRNP 

HRTE 

gnhItrIQ8 ILCl 	ETC Y 	IENRY F KL LAJISYI MKKYDL IEAYRKSLV NNR 
gnhItrIQ8JHk'9 	ELCEK IEVG EN K1 	- INSYF EEKNKE IcFFNKSLA IRTP 
gnhItrIQ8L724 DCDK VERGREL RATKGlSALV MKDFEP IETFQKALT HR 	1- 
grilItrIQ9LNB 6  DC K VERG EL RLTKTALT MKDYEP IEAFQKALT -IRNP 
gnhIrIQ9STH1 DCDK 

IUCEKGIE%'(-,RE.IM,-.

VEPLREL RP.UT KSALV MKDFEP IETFQKALT HRNP 
gnhIspIQ9USI5 TCED IEQGREL LGLTTYc2 RGDLVK It:YYçRSLT!RTP 
gnhItrIQ9VPNS INTYR LENI YQ \YYES' IRTP 
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YGR123C/1-2443 
ENSXE'rP0000003 9599/1-2443 
CG8402-PA/1-2443 
CG8402-PB/1-2443 
ENSCINP00000001412/1-2443 
ZNSCINP00000001419/1-2443 
ENSMTJSP00000003183/1-2443 
ENSGACP00000016905/1-2443 
ENSCSAVP00000013266/1 -2443 
ENSCSAVP 00000013267 / 1-2443 
Y39B6A.2/1-2443 
ENSORLP00000001596/1-2443 
ENSORLP 0 0 0 000 0 15 98/1-2 44 3 
AAZLOO5O5O-PA/1 -2443 
ENSMMUP00000000309/1-2443 
ENSMMUP00000000308/1-2443 
ENSPTRP0000001 91 94/1-2443 
ENSP00000012443/1-2443 
ENSRNOP00000023078/1-2443 
ENSDNOP00000005118/1-2443 
P53043/1-2443 
P53041/1-2443 
Q60676/1-2443 
P53042/1-2443 
Q6BRLO/1-2 443 
Q2GW70/1-2443 
Q415W3/1-2443 
Q55WV5/1-2443 
QOV2I4O/1-2443 
04WUO1/1-2 443 
Q5AJP 7 / 1-2443 
043049/1-2443 
Q10UL9/1-2 443 
04P3M8/1-2 443 
Q5KJE3/1-2 443 
Q6CFH3/1-2 443 
Q6CVM5/1-2443 
Q6FVW4/1-2443 
Q75EJ6/1-2443 
Q5AJBS/1-2 443 
014428/1 -2443 
Q2U919/1-2 443 
Q53FRO/1-2443 
Q53XV2/1-2443 
Q9BPWO / 1-2443 
Q0V8L5/1-2 443 
QOV8M3/1-2 443 
Q5R8T2/1-2 443 
064538/1-2443 
Q68G16/1-2443 
Q585P0/1-2443 
042205/1-2443 
Q68EPO/1-2443 
Q6GPS6/1-2443 
Q28EK7/1-2443 
Q4E5DO/1-2443 
Q9NES8/1-2 443 
Q388N2/1-2443 
Q54RH6/1-2443 
Q5CJA8/1-2443 
Q8IDE7/1-2443 
Q4QE27/1-2 443 
Q8WQR3/1-2443 
04E1WO/1-2 443 
Q9CP Z 6 / 1-2443 
Q22829/1-2443 
060TC7/1-2 443 
0962N7/1-2443 
Q50XR4/1-2 443 
Q7RFX9/1-2443 
Q9VH81/1-2 443 

E EN ILK 
V K DY DR 
I ELF SE 

L I I Y EL 
P. ELY EN 
EKDYDN 
D KEY EE 
C' K KYLE 
P V Y DV 
£ EL YEN 
E I P Y EN 
NE: NDK 
P 1 P YEN 
F. EL YEN 
P IDYEN 
PP [YEN 
AIr YEN 
A K P YEN 
E I H FL K 
P1 [YEN 
A K ['YEN 
A K C' YEN 
E H P. H NY 
PHD W P T 
SGDYPS 

KNFSK 
N D NP A 
£ HE N PT 
U HEY DL 
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K H P NP E 
F. U  P FE) A 
DKNF SE 
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EEL Y AK 
%' t, ['YAK 
P KDYAR 

HEY DL 
A H D N P K 

HE N PT 
P K F' YEN 
A K F YEN 
A K P YEN 
A I F- YEN 
i F. r:- Y EN 
P}[['YEN 
PK['YEN 
PP ['YEN 
DI [YEN 
\IDYDH 
V K ['Y DR 
\ KPYDH 
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E HEN NH 
DQVYDV 
E ­  V N H L 
E U  1< Y DL 
S GE Y NE 
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EVE F U  H 
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K UN F EL 
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I: 
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Hi SACY 
H) 

HF KS'.PVY 
'[F AIY 
H PTPVY 
NPI!SSVY 
HFISSVY 
H F 

F iFJI Y 
H F s ,F, I Y 
[ L.N.EL 
'[F Y 
HF 
HE 	I Y 
H F PH,'I Y 
H F HAI Y 
H F HjN I I 
P H TS I I 
HE I I 
'lIP NAlY 
`[PH N PlY 
[FT F. F 
[HI E-TF. 
HI YEPTF 
HFV PTF 

F FE F  SF 
P P RE P SF 
[PH RIF. 
[.HT AlL. 
P F F 0 P SF.. 
[FlIP F 
NF KEPT F 
'[PUSH V I 
PIE IlL 
[[I H I'. 
['PT )IF 
[F[[j AIF 
H[')EF TF). 
P DEIEF SF 
HP 'NAIY 
HF.' N All. 
'[FT F-Il 
'[PH All 
'[PH All 
N P -IN All' 
'[FT N PII 
NFL N LII: 
'[FT N FlY. 
IF [TPIY 
1F D TAIl 
HP[l TAIl 
FP FT A I I 
RITE I 
RITA L 
E 	 TLTI  
HE TAIL 

ASHIl 
II VS H II 
HI . TH. TL 
1115111 - 
FIlTH 1f 
F K T PT LT  
HST F P 1 
HiT '-EJL 
I V VS HI I 
DPLS VN 
IVLFHIY'' 
H F ES A I I 'H I- 

5 .  

A. 	-E3KVDN 
S . YLRTETYG 
S . -1LRQESF 
S:.LRQEH 
S 	H'LRLE[IG 
S . '.,LRLENYG 
S .' 'PLP.TE YG 
S 	HLP.TE 'YG 
S 	'LRLEN'YG 
S- . RLRLE:;YG 

:- LKKEYG 
S. 	LRTEIG 
S 	.'LP.TE:Y 
S 	' LRQEAFG 
S 	LRTEHYG 
S VLRTE-LYG 
S: :  :LRTEPYG 
S LRTElC YG 
S LRTZC'IG 
S ,LRTEOIG 
A. 	KVDNFQ  
S . 'HLRT 	 Yq.  
S '- LRTECYG C 
S :. L RTE CY 
A. IJIEL NY 
A.. . 'LKTEAY 
A. . IKTEAY 
A, 'AKHEEMC 
A. LIKLESY 
A.. iIXLEAY 

I K L E N Y 
S IUKSEFYG 
A.. ' .IIKLZAY 
A. NMLEUYN 
A.' E'K14EEHG 
A., IIKNEAYG 
A.- HLELDN 
A.. 	iLKLDN Q 
A. : :LELDR Q 
A,.  I1(LENYG 
A.'. F. LKTE/[YG 
& ,,.L RIKLEAYG 
S ;.'HLRTE"YG 
ST . 'HLRTE':IG 
5' LRTECY 
S. -YLRTZCYG 
S. '- HLRTEICYG 
5 f 'HLRTECYG 
S..,' ' LRTECYG 
S .'LRTEcY 
S 7  'YLRTECYQ 
S LRTECYG 
S :YGI  
S : YLRTECYG 
S.. .ILP.TECYG 
A. 	HLKTEL G 
A. 	'ILKKELYG 
A. HLRAEL G 
S N KNELY'. 
A.' HIRLEN G 
S 	:-EIKLENYG 
A.F 	LKLEL G 
Sr HIKLENY 
A,I.L.',- LKTELAd  
A.:: FLRAEL 
A.. ULELENYG 
A.. '-LKKELYG 
S'IIKLENYG 
A. - C[LP.I £ E 
SI 'N4KLENYG 
S]LAHLRQESFd  

III 
L 
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- LET 

YE: 
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FE 

KI 
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L 
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LI-- 
LI 
LI 
LY I 

1FE 
IF I 
LEE 

Lf - 
L 1I 
K- - 
K- - 
S. 

F 

P. 
L'. ' L - 
S- 
L. 
S 

-tucR1! :! i hid I 	hcrniaI -Iudici, Of' 111k: ( 	I I-pi) I IpflI  

YGR.123C/1-2443 	 N' 

60 

:DAiL 

70 

P K 	I S 

80 

NAL2EF AIYHRRk: 
ENSXETP00000039599/1-2443 	E' RAIL EFYl YYRRk• S.MAI.  
CG8402-PA/1-2443 ED F: EL YYRRAA $SLrK. K. 
CG8402-PB/1-2443 I ,VSAVKE FEEL YYRRAE..A.-NSLKr K. 
ENsCINP00000001412/1-2443 	F' ETIT AIs: F FE I : YYRRA-AE4SL -K 	K 
£NSCINP00000001419/1-2443 	E.LrrAIS: FYI .YYRRARrMSLKK 
ENS14USP00000003183/1-244 3 •! Al L 	F 	Y I Y YRP.AJ)S iMAL 
£NSGACP00000016905/1-2443 	-. • ETKALEI F 	'.El YYRR)T S1AL K• K: 
ENSCSAVP00000013266/1-2443 	F .AsrAI: El :.YYRRAEA.'.MSL K- K 
ENSCSAVP00000013267/1-2443 	El 
Y39B6A.2/1-2443 	 El 

LS 

F:AII 
rrAI.A F 	El 

P 	Ev 
Y YRRA 
FYRRT 

rX 
N(AL 

4SL 	K 
R K- 

ENSORLP00000001596/1-2443 	P. . P.:ALKVp'Y :. El YYRRA1T SN4AL -K K 
ENSORLP00000001598/1-2443 	El E:XALEVP 1 F El •YYRRAT Si44AL •K 	K 
AAL005080-PA/1-2443 	 Nl:QAI X EL I EYRRA -iMALK K 
ENSMMIJP00000000309/1-2443 • E.:RAIE: F-El YYRRFSN4AL -K 	R 
£NSMMUP00000000308/1-2443 .EThRAIZL FEEl YYRRAF SIN 4ALK R 
ENSPTRP00000019194/1-2443 	- .FTRAIEL F 	El EYRRAFSN4AL -K 	R 
ENSP00000012443/1-2443 I ETAIEL El - YYRRAES4AL -K R 
ENSRNOP00000023078/1-2443 I FTAI L 	F F El Y YRRAP S N4AL K 	R '  
ENSDNOP00000005118/12443 	AlATAIEI Fr El YERRANNALKR 
P53043/1-2443 	 F:. :EAI L 	I 	Tl - - YHRRLS; ALFE 	K. 
P53041/1-2443 -  . PT AIEI. F - El . YYRPAFSN AL K K 
Q60676/1-2443 	 - lE. AIEL F 	El YERRAIES:N AL-K R 
P53042/1-2443 • PT AXED F 	El YYRRFSN AL TK.- K- 
Q6BRL0/1-2443 	 -. :N AL V 	P.M YYRRISL AX:N K- 
Q2W70/1-2443 	 F IT AIEL F. FV ..YYRRT  Y AILK K 
Q415W3/1-2443 	 1- • FT AXED F FLV EYYRRL K AI:R K. 
Q55WV511-2443 	 El FT AVEL F 	EA r  FYRRLS AlL 	FT 
QOV2HO/1-2443 	 F. FE KAIL F- F.NV ..YYRRAF NTSML HRh 
Q4WUO1/1-2443 • FT ALL F 2EV YWRRAIL NTAIL I 	F 
Q5AJP7/1-2443 	 cl E LVIL 11 !FL .-.YYRKVSL AXIL 	HK 
043049/1-2443 	 N I FE AlEC FFYA YFRRA1 T HIAIE P 	IF 
Q1DUL9/1-2443 	 El !-.TKAIEL F 2EV .YWRR\ NTAIL SRY 
Q4P3M8/1-2443 	 E P.NQAI L 	'YV FYFRRT I KSN 	LEE 
Q5XJZ3/1-2443 	 YIET AVEL F:YA : FYRRLSçLAIL FT 
Q6cFH3/1-2443 	 FITS AXED FIjYI..YFRRAVSNTAII  HK 
Q6CVM5/1-2443 	 [1FF AXED NNL E.YHRRAINSYIGLL  FR 
Q6FVW4/1-2443 • 	[- AL L 	IF KV E.YHRRL C GLL 	FF 
Q75EJ6/1-2443 	 F • SF AXEL IATV :.YHRRL HCG1L WGd 
Q5AJB8/1-2443 	 c.TELVI L 	INL EYYRKVSL AIIL 	HR. 
014428/1-2443 	 F I FT AIEL FFV .YYRRT I AIL 	FRI 
Q2U919/1-2443 	 FIFT ALEL FEET  S YWRRL NTAIIL  FR: 
Q53FRO/1-2443 	 FIATRAIEL V -F:YI YYRR.'.SN 

YYRRAIASN 
AL4CKF 
ALLK:R Q53XV2/1-2443 

Q9PW0/1-2443 	 SIFT 

lET AXEL 
AXEL 

FEEl 
FKYI YYRRAS.SN AL 1KF3U 

QOV8L5/1-2443 	 El AT AVEN K KY I -YYRRA S N AI -Kr RE 
QOV8M3/1-2443 	 1- I FT AVEN KKYI .;YYRRFSN4ALCKFRJ. 
Q5R8T2/1-2443 	 SIFT AXEL KKYI -EYAASN$ALSFP.F 
Q64538/1-2443 	 C • FT AXE1L FEEl -; YYRRA4F S N4AIi .9 
Q68G16/1-2443 I FT AIDIL K FYI YYRRASS 1 N AIS1F 	P 
Q58EPO/1-2443 	 FIAT ALEIL KNYL •.YYRRATS-N ALGKFK.7 . 

042205/1-2443 	 F,FSRAIcL AKYX :YYRRATrSN ALT 	LK. 
Q68EPO/1-2443 	 FIFE AIL AKYX SYYRRAFSN AL 	LXI- 
Q6GPS6/1-2443 	 El ES AIQ AKYI TYYRRAASN AL 	LXF 
Q28EK7/1-2443 	 EIES AIdL AKYX TYYRRMSN ALT 	L C- 
Q4E5DO/1-2443 	 TIED ALPL Pc.YV r  YYRK?S HLYIT -H 
Q9S8/1-2443 	 E•FD AII PYV YRRT N ALT 	FRI 
Q388N2/1-2443 	 Al ED ALGI A AYYHK?S YLSICK-:K, 
Q54R116/1-2443 	 c'AQ SHElF YX PYYRLG HLALF - E 
Q5CJA8/1-2443 	 F • ED SIIc S - 

EYA 

 

:.YYRRI YFNIL 5: 
Q8XDE7/1-2443 	 FIlL AXII  FYYRKGSYLL1S LK 
Q4QE27/1-2443 	 V • A AVEjDF V AYYRKAJ HLLLC FR. 
08WQR3/1-2443 	 FlED AII'dNFYYA  :1YYRKGSYLL1 LX 
Q4E1WO/1-2443 	 T • AL ALLDFEYV :.YYRKAE HLYI*FK 
Q9CPZ6/1-2443 	 A FL ALGLEFT A :]YYHKS YLSI- FIK. 
Q22829/1-2443 	 F • sYTSIILpFNFV -  IYYRZCT  YLAIG L: 
Q60TC7/1-2443 	 E 'At AISII1PS V FYRRA1 T N AIC 	R1 
Q962N7/1-2443 	 F • ID AIINPYYA FIYYRKG1SYLLT L.1K- 
Q5OXR4/1-2443 	 A' SF AL IDIPC 	P FWFRHV S NLFDNK: 
Q7RFK9/1-2443 	 cIIE. Al IFHYA FYYRXGSYLLL:D KP 
Q9VH81/1-2443 . GVSAV FPEYL -YYRRAJF Ii SL K :  K 
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S A1 - 

S AI: 
Q A 
K A PD 
AA K 

AI'Ei 

DSAIK II 
K 
I AI 
Q AL: 
K AVr. 
K SAIH K 
NE AL 
P A1CI 
NSAI 

AV:-: 
K 
' AIL!, : 
P AI. K 
K AINP 
C AlEC 
C A ALE 
K AILP.' 
K AAV;;F 
RCAVE 
K A EF 

S Al:: 
ç A 
D S A 1K V 
KQA AK 
P AXED 
3 AI 
K SAl Si 
K AAV HE 
K AAV SF 
C A DC 
I) AAV ç  
S E AXED 
K SILL 
ti AIEF 
K LA 11-.?! 
K AAV DC 
S SAV r 
:1 SAV T' 
S AAV1EF 
K SAI K 
K AIVI: 
j E A I NT 
K EAVF 
S A AV ED 
A A 
K A H: 
AAA :: 
A A DC 
N A Lc 

TIQALS IAP S 
CjQALS IA PA 
T(AIE IDPT 
TKA I ELK P A 
KAIELNPA 
IQALAIAPA 
T AALD XVPL 
ITAIKV. PT  
T(ALE IA PA 
-pCAISL: , AT 
NAAIKLN. K 
SKALEINPT 
NRA IT t) P K 
TIQALAVPG 
TIKALS IAP S 

I E LN PA 
-<AIEIJNPA 
1K SI EM ED 
CE S I E ME P 
TQALAINA S 
CKAIELNPN 
:IKAISIDGN 
1kKAIE1QPD 
C AIEINPA 
T AIEIDLR 

3 AITVNPH 
TQALS lAP A 
N AIL?DNT 
TFZAIKIJPP. 
'1 AIEtEPE 
TEA I G I I, P S 
C ALALAPA 
T ALEIJNPA 
C AIEINPA 
C AIEINPS 
T AIEIDPN 

DC 
DA 
SF 
LP 
tip 
Dç 

NP 
NP 
N P 
LP 
DA 
S  
NP 
tip 
NP 
tip 
tip 
tip 

51 

K SA GENE 
A SLD GQHE 
AE 	G Q F E 
A S GNYA 
A 51< GNYV 
A SASGçJHE 
• SC NKHQ 
• S5 KEYD 
A SA GNHA 
A S1 R GDYV 
A.CD. EQYF' 
AL SYL CNYA 
A ip L CliNK 
A 3i  A PDNE 
A SASGcdFIE 
A 51< GNYA 
A SD GNYV 
A TN KDYD 
A T 1 H EDYD 
A SC N EDHA 
A SICQHD 
A SN L N N H A 
• TN L EDYN 
• SP GNYA 
A SV L G N Y N1 
A SEL G N Y A 
A S:' S G Q H E 
C SE. QNFE 
A GLD A GQHE 
A TH KDYR 
A S:SSKHD 
A SPSCç?Q 
A SJ< L GNYA 
A S  L GNYA 
AS1 GNYA 
A SK NKYS 
ACR EQYD 

A SHSSQHE 
AS QLHD 

KQYE 
ASK L KQYD 
A. S ~ Q R G K H S 
A SE ENYT 
A. GNYA 
A SE L G N Y A 
A 5:1<  L G N Y A 
A S QQY  
A: SrI  GDYV 
A

S 
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A SE I GNYA 
SHYT 

A
S$ 1

1K GNYV 
AS]K I S H Y T 
A SE CHYT 
A IC-  GENE 

20 	 30 40 

Y  
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Y  
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Y  
YY-
YL 
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IF: 
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F? 
FL 
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IF 
FE' 
FF: 
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YE' 
y  
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IF 
IF 
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y  
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YE' 
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YY; 
FY 
FY 
IF 
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YE' 
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V 
V 
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K 
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A 
I 
V 
V 
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A 
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V 

V 

T 
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V 
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I 
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A.3.4. SGT TPR domain 

1 	 10 

gnlItrlAlCQC9 SDKL 
gnhItrIAlD393 :SDKL 
gn11tr1 01 37 97 FAEKL 
gnh1sp1043765 ERL 
gn11sp107 0593 AERL 
gnhItrIQOCQ57 SDKL 
gnl I tr I QOUMTO AERL 
gnhjspIQ12118 )LEDL 

gnfltrIQlDHD7 SDRL 

grilItrIQlBQM2 AENL 
gnhItrIQ21746 ANKL 
gnlItrIQ28Hl9 AERL 
gnhItrIQ29LEO AESI 
gnhItrIQ2GZN4 AEAL 
gnhItrIQ2U2H5 :SDKL 
gnlItrJQ32LM2 ERL 
gnlItrIQ3TN35 AERL 
grilItrIQ4CLR4 AEEI 
gnhItrIQ4D5Z5 AEEI 
gnlItrjQ4IFS7 AEAL 
gnhItrIQ4P3F4 AEQL 
gnhItrJQ4PLZ5 AEKY 
gnhItrIQ4Q720 AEQI 
gnhItrIQ4R6F4 AERL 
grilItrIQ4S298 AEQL 
gnlItrIQ4TAA5 AEAL 
gnhItrIQ4WTCO SDKL 
gnhItrIQ54VG4 EKL 
gnhItrIQ56OH9 AESL 
grilItrIQ585Z8 AEEI 
gnhItrIQSAOIa ADEL 
gnhItrIQ5EDU8 SDKL 
gnlItrIQ5HZM2 AERL 
gnhItrIQ5MAG3 AERL 
gnlItrIQ5ZHW6 AERL 
gnhItrIQSZJ95 ADRL 
gnhItrIQ622A6 ANKL 
gnlItrIQ6BJ86 ADAL 
gnlItrIQ6CCH5 ADKL 
gnhItrIQ6CSG7 AEEL 
gnlItrIQ6FVD6 AEAL 
gn1ItrIQ6415 AEQL 
gnhItIQ6GMI8 AEQL 
gnlItrIQ6N'1Z8 AESL 
gnhltrIQ6NXAl AERL 
gnhItrIQ6P2Wl AERL 
gnhItrIQ75CA7  AEAL 
gnlItrIQ7QDC4 AEGL 
gnhItrIQ7YW78 AEAL 
gnhItrIQ7ZUN6 AERL 
gnlItrIQ8OW98 ADQL 
gn1ISpIQ8RJUO AERL 
gnhIspIQ8VD33 ADQL 
gnlIspIQ96EQO ADQL 
gnhItrIQ9VJD4  AESI 

MAP 
IAJA ,MK

',MAP 
14 K 

:N A N 
NP.  
M K 
14 -. 

NL 
N K 

:MAD 
N V 

MG 
M IX 
MAQ : 
:NSA 

MIL 
MSQ 
NK 
NIE 

MEN 
4A 

NG 

NL 
NAL 

14KV 
N KV 
N K A 
N E 
14 A 

NN 

MA 
14 A V 
14 E 
IN E 
M %7 
N V 
MKL 
41 A 
14 E 
MKQ 
4 V 
N K 
4 L 

41 E 
1:14K 
N K 

Appind i ces 	 184 



'triicturaI Jild hi 	hcnnc:tI 'jtj(jjC ,,fihc' ( 	iz 	 l'j)I) el pnie 	h'rn 

gnhItrIAlCQC9 
gnljtrIAlD393 
grilltr 1013797 
gnhlsp 1043765 
gn11sp1070593 
gnl Itr I QOCQ57 
gnl ItrIQOUMTO 
gnl Isp 1Q12118 
gnl tn Q1DHD7 
gnl ItrI Q1HQM2 
gnl 1tr1Q21746 
gnl Itri Q28H19 
gnhItnIQ29LBO 
gnl tn Q2GZN4 
gnhItrIQ2U2H5 
gnl Itn 1 Q321142 
gnlItnIQ3TN35 
gnl Itni Q4CLR4 
gnl tn Q4D5Z5 
gnhItnIQ4IFB7 
gnl tn I Q4P3F4 
gn1ItrIQ4PLZ5 
gnl tn Q4Q720 
gnl tn I Q4R6F4 
gnl ItnIQ4S298 
gui tn I Q4TAA5 
gui I tn Q4WTCO 
gui ItrIQS4VG4 
gnhItrIQ56OH9 
gnl Itri Q585Z8 
gui Itri Q5A018 
gnl Itni Q5EDO8 
gnl ItnI Q5HZM2 
gui ItrI Q5MAG3 
gni ItrI Q5ZHW6 
gn1ItnIQ5ZJ95 
gui tn I Q622A6 
gui I tn Q68J86 
gui I tn Q6CCH5 
gui I tr Q6CSG7 
gnhItnIQ6FVD6 
gui I t r I Q6415 
gui Itni Q6I8 
gui I tn Q6NTZ8 
gui tn Q6NXA1 
gni I tn Q6P2W1 
gnhItnIQ75CA7 
gnhItnIQ7QDC4 
gniItnlQ7YW78 
gnhltnl Q7ZUM6 
gniItrlQ8 OW 98  
gniIspIQ8 BJUO 
gniIsplQ8VD33 
gui I spl Q96EQO 
gni tn Q9VJD4 

60 

F'ALA11V 
FALAT'V 

ERA
ERAIH

LATA

ESAIiS 
 V A ViA 

 RMSIR 
 RTAL'.

EEAIT
: KSSIL

AAVA
F !ELATA 

 ERAIF 
ERAIG 

2-ESAV 

F' 
•ERAIET 
' 2 RAIC 

	

-' 	RAIG 

	

.' 	RAIG 
r'. LATV 
F' :LEAI.K 

KALE 
I RSLS 

Li'-. KAIK 
CiA LATS 
F I AAIT 
ci :ERAIC 

RAIG 
ERAIA 

	

c ' 	TA A 
:: PLEKAIE 
P, ,; AAIR 

QAIE 
ViA KAlE 

2 E KAIS 
- I -  RAIL 

	

• 	EAIS 

	

c i 	RAIF 
F.' 'EEAIT 

'7- E K A T K 
MA P. 

F'LLKA E 
ç12 E RAIG 

i 'EKAIA 
c' RAIG 

' LEKAIA 
• KAI. 

1' 
 

K S A V 

'0 

K Y SKAK.' 
K Y SKJ 
H ARA' 
AYSKA 
GYSKA. 
K SEA. 
N SEA.. 
S FRGY 
K YVKA.. 
NY S K A: 
S SEA. 
N SKA. 
N SKA-
F YTKA.. 
KYS K A. 
S Y S K A. 
GYSKA. 
N SEA 
N SEA 
A. TEAL 
K FGKA ,  
K GKA' 
E SKS 
AYSKAL 
T Y S K A ':  
A Y SEAL 
KYSK1 
N GKAF - 
K TKA - 
T AK 
N SKAF. 
KYS K Al. 
N IS KAY 
AYSKA 
N SKAY 
KYSKA: 
S SKA-
K SKS: 
NYSK? V. 

TYSKG 
AYSKGY.' 
K IS KAY 
SYSKA' 
SYSKAY - 
N IS KAY 
NYSKA': - 
S SKG: 
NY S KA 
YYSKAY - 
N SKJ 
KYSKAL 
GYSKAY 
K SEA: 

YSK kY  
NY S K A 

80 

DAP FL A D Y H 
Lr ADYX 
RAF LSI GDAA 
LA: N K H V 
LA I  t ,  Zz'I NKHA 
LA:- C b ADIH 
LN". "VI GDAK 
FA'1A GKPE 
LA G D A K 
LA: : K NKHE 
LA:.' NRYE 

I NKHA. 
VA:  .F b G K F N 
LA: A GDAK 
LA: . DI ADFH 
LA: . 	NKHT 
LAL 	NKHA 
Is: Y EKYA 
TS F EKYA. 
LAF A GDAR 
HA'l .2 SGRYQ 
LA'. L N E H 
TAI FL' ENYS 
LAL NKHV 
LAITA SKYP 
LLA5 NKHS 
• -,,FDDOADYK 
SAi 15 GKFS 

GNYS 
III Y ENYcd 
LPL V": L  GDAX 
LFFD I GDYH 
L1 35 NKHA. 
LAJL:SS NKHV 
L'I. 35 NKHT 
LLIS NKYE 
LY2 2 NRYE 
LAS LA GDAS 

LAY L ASGDAQ 
FJi5'iA I N K P E 
FAIKYL NKPE 
RLVADo SPYK 
* 1,T.- bOSKYP 
LAL:: NKHA 
LALLS NKYS 
LAL25 NKHA 
YAKLL GRHE 
LAICK NEHK 
IAV GIGNHA 
LA'LJ.2 1 N K Y S 
LALIA NKFE 
LA 1, NKHA 
LALTA NKFE 
LALIA NKFE 
VA'S 2N GNFE  

90 	 100 

EA?1GIEAKIGNG 
EAYEK,IEAFGNG 
DAYKKLDFDPNN 
AYYKKJLILELDPDN 
A YYKCLLELDP DN 
EAYEK';IEAEIGNG 
EAYKK 2MDAEGGG 
EL YKKVLD lEG UN 
EAYEKSIEAKGNG 
DAYQA,LRIE,P UN 
EL YE I1-.lL K L EP NQ 
GF YKALI LD]P UN 

E.jAYRIA:IELPEN 
EAYQ1IEYEGNG 
F AYE G I K A KG N G 
.YYRIA.LELDPDN 

AYYKIALELDPDN 
DI-FA ASELDPTN 
DL A ASELDPTN 
EAYD GIQHEGNG 
EAYQ G EVDPSN 
ECYQ A ELDPEN 
DAFT ACELDPDN 
AYYKKLELDPDN 

ISYFKIALVLDPEN 
GYYQIALELDPHN 
ELYEKVIEAEGNG 
EA'YNX/IELEPNN 
P AYE&GLELDPDN 
U A F S KHC K LD PT N  
ELYKK5LEVEGET 
EAYEHGXEAEGNG 
3 F YKQAL V LD P DN 
AYYK ALELDPDN 
VYYK LLELDPDN 

ITSIYQ K )LLDLDPEN 
FLYK K ALELEPNQ 

HKAYEK GLEVEGDK 
KAlE KVEGDN 
DAYK K V L D I E G E K 
ELYK V DLEGDK 

rESYQ K ALDLDPEN 
ISY!FN K ALVLDPEN 

YK QA L V LDP F N 
SYYKKJT.LELDPDN 
GFYKQALI LDPDN 
EAYK VLDIEGDN 
TAYQ N AIRLEPDN 
ECYR GLELDPNN 
SYYK ALELDPDN 
TSYQ ALDLDPEN 

YYK ALELDPDN 
TSYQ ALDLDPEN 
TSYQ ALDLDPEN 

EUAYA AIELEPDN 
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A.4. HMMer search results 

Output for profile 1-1MM search with 11sp70/Hsp9O interacting TPR model against C. elegans 

protein database. Table of hits with an E-value cutoff of 0.1 listed first followed by 

alignment of hits to model. Carboxylate-clamp residues highlighted in bold in alignments. 

Scores for complete sequences (score includes all domains) 
Sequence Location Score E-value N 

R09E12.3 V:773389 252.4 2.8e-72 2 KNNKR KNNKR * hop 
R05F9.10 11:4902284 166.5 2e-46 1 KNNKR * sgt-1 
Y39B6A.2 V:19190339 156.4 2.2e-43 1 KNNKR * pph5 
F30H5.1 111:491547 126.2 2.7e-34 1 RNNKR * unc-45 
T09B4.10 1:6181318 109.7 2.6e-29 1 NXNKF * chn-1 
C33H5.8 IV:7778004 103.8 1.5e-27 1 KNNKR * 7 
F31D4.3 V:20841374 97.2 1.4e-25 1 KTNKR * fkb-6 
C17G10.2 11:5594706 95.2 5.7e-25 1 KNNKR * cns-1 
C34B2.5 1:10675171 84.7 8.6e-22 1 KNNKR * ttcl? 
C56C10.10 11:6592449 76.2 3e-19 1 RNNKR * aip 
T12D8.8 111:1361457 73.4 2.le-18 1 RQKQF hip 
K04G7.3 111:7145552 67.3 1.4e-16 3 SNNCD INNDN NNNDN ogt-1 
ZK370.8 111:8752004 48.1 8.5e-11 1 KNNKR * torn70 
Y22D7AL.9 111:1606834 45.6 4.8e-10 1 HSNKR * ttc28? 
C55B6.2 X:7194513 37.4 7.7e-08 1 LSRGQ dnj-7 
F52H3.5 11:10030120 24.2 8.8e-07 1 EVNKQ 
Y73E7A.9 1:1610391 20.5 1.7e-06 1 RSNKR * adp 
Y54E1OBL.4 1:2996407 17.9 2.8e-06 1 YNRGQ drij-28 
Y41G9A.1 X:2984269 11.0 9.9e-06 1 VNNQQ 
F38B6.6 X:6684417 3.9 3.7e-05 1 YKNVN 
C34C6.6a 11:8704748 -4.5 0.00017 1 NVRRN 
Y11OA7A.17a 1:5123919 -6.9 0.00027 1 CNLRG 
F1005.1.1 111:475452 -10.0 0.00047 1 CNLRG 
T25F10.5 V:6762287 -12.8 0.0008 1 ATNTN 
F32D1.3 V:4349598 -13.7 0.00094 1 KNNDG 
T20B12.1 111:7386548 -16.7 0.0016 1 RHNEN 
C18C4.10d.1 V:5575222 -21.0 0.0036 1 NVNKN 
M7.2 IV:11084077 -21.9 0.0042 1 NINKN 
* denotes conservation of carboxylate damp and liklihood to interact 
with Hsp70 or Hsp90 

Alignments of top-scoring domains: 
R05F9.10: domain 1 of 1, from 105 to 205: score 166.5, E = 2e-46 

* -mAeelKeeGNeyFKekkyeeAiekYtKAie1lptdavyySNRAAcylk 
A++1KeeGN ... K+ ++e+A++kY+ Ai+1+ d+vy++NRAA+y + 

R05F9 . 10 105 	ANXLKEEGNDLMKASQFEAAVQKYNAAIKLN-RDPVYFCNRAAAYCR 150 

LgnydkAi eDCtkALeldpnnvKAlyRrGqAylaLgkyeeAl edfqkale 
L++yd Ai+DC+ ALi-ldp+++KA+ R+G+Ay ++++ ye A e ... kale 

R05F9 .10 151 LEQYDLAIQDCRTALALDPSYSKAWGRNGLAYSCQNRYEHAAEAYKKALE 200 

ldPnn<- * 
1 + Pn + 

R05F9.10 	201 LEPNQ 	205 

Y39B6A.2: domain 1 of 1, from 29 to 129: score 156.4, E = 2.2e-43 
->AeelKeeGNeyFKekkyeeAiekYtKAiel lptdavyysNRAAcylk 
A -4-K+e N++FK++ y+ A ++Y+ Aie +p av+y NRA++ylk 

Y39B6A.2 	29 	AGMIXDEANQFFKDQVYDVAADLYSVAIEIHP-TAVLYGNRAQAYLK 74 

LgnydkAieDCtkALeldpnnvKAlyRrGqAyl aLgkyeeAledfqkale 
+ y++A+eD++ A+++dp++vK++yRr++A++aLg++++A1 d+q++++ 

Y39B6A. 2 	75 KELYGSALEDADNAIAIDPSYVKGFYRRATANMALGRFKKALTDYQAVVK 124 

1dPnn<* 
+ Pn+ 

Y39B6A.2 	125 VCPND 	129 

Appendices 	 186 



Structural and bichemica1 iudics of the ( e/wj.c I1p:OHp9() chaperone stern 

R09E12.3: domain 2 of 2, from 140 to 241: score 142.3, E = 3.9e-39 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptdavyysNRAAcylk 

A+e K++GNeyFK+++y A ++Y++A++ +p++a++ysNRAAc k 

	

R09E1 2.3 	140 	AQEEKNXGNEYFKKGDYPTAMR}IYNEAVKRDPENAILYSNRAACLTK 186 

LgnydkAi eDctkALeldprinvKAlyRrGqAylaLgkyeeAl edfqkale 
L +.++A±+DC+ + ld.+++K++ R++ ++ a+ ++ +A +++ al+ 

	

R09E12 .3 	187 LMEFQRALDDCDTCIRLDSKFIXGYIRKAACLVANREWSKAQRAYEDALQ 236 

1dPnn<* 
+dP n 

	

R09E12.3 	237 VDPSN 	241 

F30H5.1: domain 1 of 1, from 8 to 114: score 126.2, E = 2.7e-34 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptd .....avyysNRA 

Aee+++eGN-s-+ K+++y i-A e+Yt+A++1 i-+++ ++v+y NRA 

	

F30H5.1 	8 	AEEIRDEGNAAVXDQDYIKADELYTEALQLTTDEdka1rPVLYRNRA 54 

Acyl kLgnydkAieDCtkALeldpnnvKAlyRrGqAyl atgkyeeAledf 
++ 1k +++ A DCtkALe d +vKA1+Rr +A+++Lg+ A +d 

	

F30H5 .1 	55 MARLKRDDFEGAQSDCTKALEFDGADVALFRRSLAREQLGNVGPAFQDA 104 

qkaleldPnn'z- * 
+-fal 1 Pn+ 

	

F30H5.1 	105 KEALRLSPND 	114 

R09E12.3: domain 1 of 2, from 5 to 113: score 110.1, E = 1.9e-29 
* - >AeelKeeGNeyFKekkyeeAiekYtKAiel lptdavyysNRAAcylk 

A + K+ GN ... K+k+-*e+A +Y+KAiel+p+++++y+N+AA+y++ 

	

R09E12.3 	5 	AIAEKDLGNAAYQKDFEKAHV}{YDKAIELDPSNITFYNNKAAVYFE 51 

LgnydkAieDCtkALeldpn .......nvKAlyRrGqAylatgkyeeAle 
+++ ++++ C+kA-'-e++++++ + + i-KA R G+A+++++++ A++ 

	

R09E12 .3 	52 EKKFAECVQFCEKAVEVGREtradyk1IAKANSRAGNAFQKQNDLSLAVQ 101 

dfqkaleldPnn<- * 
i-f ++1 + +4-i- 

	

R09E12.3 	102 WFI-{RSLSEFRDP 	113 

T09B4.10.1: domain 1 of 1, from 5 to 103: score 109.7, E = 2.6e-29 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptdavyysNRAAcylk 

Ae++ 	G +++ +k+y++A+++Y1-KAi+++p + yy NRA-4-cy++ 

	

T09B4 .10.1 	5 	AEQHNTNGKKCYMNKRYDDAVDHYSKAIKVNP-LPKYYQNRANCYFQ 50 

LgnydkAieDCtkALeldpnnvKAlyRrGqAylaLgkyeeAledfqkale 
L+rl + 	eDC++ALe1 pn vK ly +G+ +1+ +ky eAi- ++ ka 

	

T09B4 .10.1 	51 LNNLKMTEEDCKRALELSPNEVKPLYFLGNVFLQSKKYSEAISCLSKA-- 98 

ldPnn<_* 
1+ n 

	

T09B4.10.1 	99 LYHNA 	103 

C33H5.8: domain 1 of 1, from 8 to 108: score 103.8, E = 1.5e-27 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptdavyysNRAAcylk 

A+ lKe+GNe+FK+kky +A Y+K +e p d++ +sNRA++ 1 

	

C33H5 .8 	8 	AQRLKEQGNEAFKKKKYHKAMTIYSKSLEHWP-DPIVFSNRAQAGLN 53 

LgnydkAi eDctkAteldpnnvKAlyRrGqAylaLgkyeeAledfqkale 
A DCt+AL ld++ +KA+yRr+qA+ eLi- ye A d +++ + 

	

C 33 1-I 5.8 	54 ADLPLLAQI DCPAALNLDSTAAEAYYRRAQAFKALELYELAERDMKTCFK 103 

ldPnn<- * 
+ ++ 

	

C33H5.8 	104 YSNDP 	108 
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Structural and hjoLhenhical studies of the ( ,Ievun\ Hp'() I Ipt() chaperone system 

F31D4.3.2: domain 1 of 1, from 254 to 370: score 97.2, E = 1.4e-25 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptd............. 

A++ K++G+ y ++++ + A kY++A e+1++++++++++ ++++ 

	

F31D4 .3.2 254 	AXQAXDRGTMyLQKGNLKLAYNI(YKRAEEvLEYEkstdpekmaeret 300 

avyysNRAAcylkLgriydkAieDCtkALeldPnflVKAlYRrGqAYlaL 
+y+N++++ +k+++ ++i++C+k+Le +p nvKAlyR-f++A+1 + 

F31D4 .3.2 301 i1NGAYLNLSLVCSKQNEQLECIKWCDKVLETKPGNVKALYRKATALLTM 350 

gkyeeAledfqkaleldPnn<- * 
++ +A++ f+k++e++P+n 

F31D4.3.2 351 NEVRDAMKLFEKIVEVEPEN 	370 

C17G10.2: domain 1 of 1, from 95 to 200: score 95.2, E = 5.7e-25 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiel lptd. . . - avyysNRAA 

Ae +KeeGN++FK kky A ++Y+ +i+ ++ d++ +av+y NRAA 

	

C17G1O.2 	95 	AEHHKEEGNKHFKFKKYRWATDCYSNGIKENSPDrk1flAVLYFNRAA 141 

cylkLgnydkAieDC tkALeldpnnvKAlyRrGqAylaLgkyeeAl edfq 
++ +Lgn ++Ai+DC+ 	+ dp++ K+ R ++++1+L+ ++A1++++ 

C17G1O .2 142 AQKHLGNLRSAIKDCSMGRKFDPTHLKGVIRGAECLLELEYAKDALNWIE 191 

kaleldPrm<- * 
+ ++ + 

	

C17G1O.2 	192 SSKKIFAFT 	200 

C34B2.5: domain 1 of 1, from 18 to 125: score 84.7, E = 8.6e-22 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptd.....avyysNRA 

+ 1K eGN++F ++ +e+A ekY++Ai+ i-p +++ +++++sN A 

	

C34B2 .5 	18 	vDSLKKEGFFANGEFEKANEKYQEAIASCPPTstevqSILLSNSA 64 

AcylkLgTlydkAieDCtkALeldpflflVKAlYRrGqAYlaL . gkyeeAled 
A+ +kL ++++A+e+-i-+k++e++++n+KA1 Rr+ Ay +.++kye i-ed 

	

C34B2 .5 	65 AALIKLRKWESAVEAASKSIEIGATNEKALERRAFAYSNNSEKYENSIED 114 

fqkaleldPnn<- * 
i-i-i- 	e 	P+ 

	

C34B2.5 	115 YKQLQESLPKR 	125 

C56C10.10: domain 1 of 1, from 191 to 310: score 76.2, E = 3e-19 
*_>Aee1KeeGNeyFKekkyeeAjekyt}(i ..................e 

e+1+++GNe+F +k+y+eAi+ Y A+++ ++ 	++.+++++ e 

	

C56C10 .10 	191 	\TEALRQKGNELFVQKDYKEAIDAYRDALtr1dt1i1rekpgepeWVE 237 

1 lptdavyysNRAAcylkLgnydkAieDCtkALeldPflflVKAlYRrGqAY 
1+ +++ +y N ++cyl g+ +A e +++L+ 	+n+KA1+Rr++A+ 

C56C10 .10 238 LDRKNIPLYANMSQCYLNIGDLHEAEETSSEVLKREETNEKALFRRAKAR 287 

laLgkyeeAledfqkaleldPflfl<- * 
a k++eA ed++ 1 +p 

C56C10.10 288 IAAWKLDEAEEDLKLLLRNHPAA 	310 

T12D8.8.1: domain 1 of 1, from 115 to 216: score 73.4, E = 2.le-18 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiel lptdavyysNRAAcylk 

A e + + e+F ++.++ A+ + t Aie +p a ++ RA + 1k 

	

T12D8 .8.1 115 	ASEERGKAQEAFSNGDFDTALTHFTAAIEANPGSANLHAKRANVLLK 161 

T12D8 .8.1 

T12D8 .8.1 

L,gnydkAieDCtkALeldpnnvKAlyRrGqAylaLgkYeeAledfqkale 
L+ 	-i-Ai+DC+kA+ ++p+ + ++ rG A+ Lgk+ eA+ d+ +a++ 

162 LKRPVAAIADCDKAI SINPDSAQGYKFRGRANRLLGKWVEAXTDLATACK 211 

ldPnn<_* 
id + 

212 LDYDE 	216 
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Sn-uctui-al ind biochemical sti lies of ilie C. 	11,11"7() Iisp9O chaperone S\ stem 

ZK370.8: domain 1 of 1, from 44 to 152: score 48.1, E = 8.5e-11 
*>AeelKeeGNeyFKekkyeeAiekYtKAiel ......lptdavyysNR 

ee+K GN FKek+y+ A+e tK++e .+++++ a +y NR 

	

ZK370 .8 	44 	LEEIKALGNLKFKEKQYDSALEAFTKGVEKagpns5DQIVANLYQNR 90 

AAcyl kLgn . ydkAieDCtkALeldpnnvKAlyRrGqAyl aLgkyeeAle 
AAc k g + 	++DC +AL++d +++KA+ P ++A+ gk +A1 

	

ZK370 .8 	91 AACREKVGHsPFDILNDCMAALKVDKKYTKAYLRAAKALNDVGKKQDALA 140 

dfqkaleldPnn<- * 
++ +a +ld 

	

ZK370.8 	141 YLLAAFTLDSSL 	152 

Y22D7AL.9: domain 1 of 1, from 5 to 106: score 45.6, E = 4.8e-10 
* ->AeelKeecNeyFKekkyeeAiekYtKAiellptdavyysNRAAcylk 

e++ e 	++ +++y+eA e+Y KA++ +p++ +++ N++A 1k 

	

Y22D7AL.9 	5 	LEKVVHEAGSAYSDGRYQEARELYEKALRDHPKNGILHANLSAILLK 51 

LgnydkAieDCtkALeldpnnvKAlyRrGqAyl aLgkyeeAledfqkale 
+ 	+A.+ +. +++l p +KA+yR G+A+ aLg +++ + + ++ 

	

Y22D7AL. 9 	52 IQLPPEALKHAEISVKLCPQWAKAYYRQGEAQRALGFLKKSIYSYCNGIR 101 

ldPnn<- * 
1 dP 

	

Y22D7AL.9 	102 LIJPAG 	106 

C5536.2: domain 1 of 1, from 26 to 127: score 37.4, E = 7.7e-08 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptdavyysNRAAcylk 

e G ++ 	++ -t-A+ +Y Aiel+p+ 	+ 	PA yl 

	

C5586 .2 	26 	VAKHLELGSQFLARAQFADALTQYHAAIELDPKSYQAIYRRATTYLA 72 

LgnydkAi eDCtkALeldpnnvKAlyRrGqAyl aLgkyeeAledfqkale 
+g ++Ai D +.+Lel+p++ A rG+ +1++g++e A df+ +1 

	

C55B6 .2 	73 MGRGKAAIVDLERVLELKPDFYGARIQRGNILLKQGELEAAEADFNIVLN 122 

ldPnn<_* 
d  

	

C55B6.2 	123 HDSSN 	127 

K04G7.3a: domain 3 of 3, from 431 to 532: score 29.9, E = 3.le-07 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptdavyySNRAAcylk 

A+ 	+ N 	++k e+A +-i-Y KA+e p+ a+++sN+A 	+ 

	

K04G7 . 3a 431 	ADSQNNLANIKREQGKIEDATRLYLKALEIYPEFAAAHSNLASILQQ 477 

LgnydkAi eDCtkAteldprinvKAlyRrGqAylaLgkyeeAl edf qkal e 
+g+ 	Ai 	++A+ + p.++ A+ +G+ + ++g+ 	A+ ++++a++ 

K04G7 . 3a 478 QGKLNDAILHYKEAIRIAPTFADAYSNMGNTLKEMGDSSAAIACYNP.AIQ 527 

ldPnn<- * 
++p 

	

K04G7.3a 	528 INPAF 	532 

K04G7.3a: domain 2 of 3, from 329 to 430: score 28.2, E = 4.2e-07 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptdavyysNRAAcylk 

+++ + GN + ++ ++ A+ Y +A+ 1 + av + N+A +y + 

	

K04G7 .3a 329 	LDAYINLGNVLKEARIFDRAVSAYLRALNLSGNIIAVVHGNLACVYYE 375 

LgnydkAi eDCtkALeldpnnvKAlyRrGqAylaLgkyeeAledfqkale 
+g d Ai+ -4-kA-s-+1 p + A+ +++A+ + g 	eA + + kale 

K04G7 . 3a 376 QGLIDLAIDTYKKAIDLQPHFPDAYCNLANALKEKGSVVEAEQMYMXALE 425 

ldPnn<_* 
1 P+ 

	

K04G7.3a 	426 LCPTH 	430 
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F52H3.5: domain 1 of 1, from 43 to 148: score 24.2, E = 8.8e-07 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellPtdaVyySNRAACylk 

+ +1 eG ++ 	+ +eAiek tKA+e++p+++++y+NRA++y 
F52H3 .5 	43 	SLQLEREGVALAEGVRLDEAIEKFTKALEVCPKNPSAYNNP.AQAYRL 89 

LgnydkAieDCtkALeldpnnvK.... AlyRrGqAylaLgkyeeAledfq 
+++ +kA++D ++AL 1 	+K+ +A+ r++ y g+ ++A df 

F52H3 .5 	90 QNKPEKALDDLNEALSLAGPKTKtacqAYVQRASIYRLRGDDDK.ARTDFA 139 

ka1e1dPnn<* 
a el 

F52H3.5 	140 SAAELGSSF 	148 

Y73E7A.9: domain 1 of 1, from 282 to 396: score 20.5, E = 1.7e-06 
*_>AeelKeeGNeyFKekkyeeAjekytKAjellpt ..........davy 

1+e+G + ek++ +Aj+s-Y+ i +++++++++++ 	+v+ 
Y73E7A.9 282 	YPDLREIGSTAIREKHFAKAIDFYSDLIYRNDDre5hqdhrafLSVC 328 

ysNRAAcyl ... kLgnydkAieDCtkALeldpnnvKAlyRrGqAylaLgk 
i-sNRA + 1 +++ g+ +++ DC kALe+ + n+KA1 R+ +++ ++ 

Y73E7A. 9 329 HSNRATALL1rrQRGDTYACVRDCIKALEIHRGNSXALLRLIKSFTTMEH 378 

yeeAledfqkaleldPnn< - * 
A ++ qk e +Pn+ 

Y73E7A.9 379 IGLARKCVQKFKEWYPND 	396 

Y54E1OBL.4: domain 1 of 1, from 24 to 125: score 17.9, E = 2.8e-06 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiel lptdavyysNRAAcylk 

A+ 	e GN++F +++y +A+ +Y KAiel+pt 	+ RA yl 
Y54E1 OBL.4 	24 	AQREYEAGNALFVNRQYSDALTHYHKAIELNPTMYQAIFRRATTYLA 70 

LgnydkAieDCtkALeldprmvxAlyRrGqAylaLgkyeeAledfqkale 
g + ++D + +L +p+++ A 	r++ -1++g +e A df+ + 

Y54E1OBL.4 	71 FGRSKPGLADLDTVLSQKPDFAGARQQRASVLLKMGQLERAAADFRYLID 120 

ldpnn<- 
+ 

Y54E1OBL.4 	121 HSASQ 	125 

Y41G9A.1: domain 1 of 1, from 473 to 574: score 11.0, E = 9.9e-06 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiel lptdavyysNRAAcylk 

A + ++GN ++ +++ ++A+ Y +A+ + +++ ++ N+ + 
Y41G9A. 1 473 	AHAQVNQGNIAYMNGDLDKALNNYREALNNDASCVQALFNIGLTAKA 519 

LgriydkAieDCtkALeldpnnvKAlyRrGqAylaLgkyeeAledfqkal e 
i-gn ++A+e 	k 	+ nnv 1 +++ y++L++ +A+e + +a 

Y41G9A. 1 	520 QGNLEQALEFFYKLI-{GILLNNVQVLVQLASIYESLEDSAQAIELYSQANS 569 

1dPnn<* 
1 Pn+ 

Y41G9A.1 	570 LVPND 	574 

K04G7.3a: domain 1 of 3, from 193 to 294: score 9.2, E = 1.4e-05 
*>AeelKeeGNeyFKekkyeeAiekytKAiel lptdavyysNRAAcylk 

Ae++ + GN y +++ ++A+e Y+ A++1+p+ + +y N+AA+ 
K04G7 .3a 193 	AEAYSNLGNYYKEKGQLQDALENYKLAVKLKPEFIDAYINLAAALVS 239 

LgnydkAieDCtkALeldpnnvKAlyRrGqAyl aLgkyeeAledfqkale 
g+ ++A+ + 	AL ++p+ 	+G+ + a+g++eeA+ ++ ka+e 

K04G7 . 3a 240 GGDLEQAVTAYFNALQINPDLYCVRSDLGNLLKAMGRLEEAKVCYLKAIE 289 

1dPnn<* 
P+ 

K04G7.3a 	290 TQPQF 	294 

Appendices 	 190 



Structural and 1m)cllernleal studies of the ( &/( , guii I Jsp7i) I Isp9() chaperone system 

F38B6.6: domain 1 of 1, from 432 to 533: score 3.9, E = 3.7e-05 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiel lptdavyysNRAAcylk 

A. + + G + ++ ++A + Y Ai+1+p+ 	+++N+ 	k 

	

F38B6.6 432 	AKIHYNLGKVLGDNGLTKDAEKNYWNAIKLDPSYEQALNNLGNLLEK 478 

LgnydkAieDCtkALeldpnnvKAlyRrGqAYlaLgkYeeAl edfqkale 
+ A 	+A+ 1 p+++ A-1- +G ++++L+ky eA + ++ +1 

	

F3 8B6 .6 	479 SGDSKTAESLLARAVTLRPSFAVAt'flINLGI SQMNLKKYYEAEKSLKNSLL 528 

ldPrin<- * 
+ pn 

	

F38B6.6 	529 IRPNS 	533 

C34C6.6a: domain 1 of 1, from 360 to 461: score -4.5, E = 0.00017 
* ->Aee1KeeGNeyFKekkyeeAiekYtKAie11PtdaVYYSNRAACYlk 

+ 	G y ++++ A++ + Ai+ +ptda +++ + A 

	

C34C6 . 6a 360 	PDLQNALGVLYNLNRNFARAVDSLKLAISKNPTDARLWNRLGATLAN 406 

LgnydkAieDCtkAteldpnflVKAlyRrGqAYlatgkYeeAledfqkale 
+Ai + ++AL+1 p++v A y +G .+..L y+eAl+ f ale 

C34C6 . 6a 407 GDHTAEAISAYREALKLYPTYVRARYNLGISCNQLSSYDEALKHFLSALE 456 

ldPnn<* 
1 

	

C34C6.6a 	457 LQKGG 	461 

Y11OA7A.17a: domain 1 of 1, from 561 to 662: score -6.9, E = 0.00027 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiel lptdavyysNRAAcylk 

+ 	GN + ++++ +Aie+ +Ai+1++ a +y+ + 	+ 

	

Y11OA7A. 17 	561 	PQSWCAAGNCFSLQRQHTQAIECMERAIQLDKRFAYAYTI.LGHELIV 607 

LgnydkAieflCtkALeldpnflvKAlyRrGqAYlaLgkYeeAledfqkale 
+ + dkA 	+ AL 1 p + A+y +G+ +1+ + 	Al +qka+ 

Y11OA7A. 17 608 QDELDKAAGSFRSALLLSPRDYRAWYGLGLVHLKKEQNLTALTNIQKAVN 657 

ldPnn<- * 
++P+n 

	

Y11OA7A.17 	658 INPTN 	662 

F1005.1.1: domain 1 of 1, from 400 to 501: score -10.0, E = 0.00047 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellptdaVyySNRAAcYlk 

e 	N + 	++ e Ai++ ++A++l+p a++. + 	+++ 

	

F1005 .1.1 	400 	WETCCIVANYHAIRRDSEHAIKFFQRALRLNPGLAALWVLIGHEFME 446 

LgriydkAi eDCtkALeldpnnvKAlyRrGqAylaLgkyeeAl edfqkale 
++n +A 	++A+e+dp + ++y +Gq y ++ 	Al ++q+a + 

F1005 .1.1 447 MKNNAAACVSYRRAIEIDPADHP.GWYGLGQNYDIMXNPAYALFYYQEAQK 496 

ldPnn<* 
p+ 

	

F1005.1.1 	497 CKPHD 	501 

T25F10.5: domain 1 of 1, from 318 to 421: score -12.8, E = 0.0008 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellPtdavYYSNRAAcylk 

e++ 	+ y-* +k e A ++Y ++++ 	+ + +.+N+ +c + 

	

T25F10 .5 	318 	IEAIACVATTYYYGGKPELANRYYRRILQMGVSSPELFLNIGLCCMA 364 

LgnydkAieflCtkALeldpnnvKA. . lyRrGqAylaLgkyeeAledfqka 
+++d A+ 	+A 	++v A+ +y +Gq + +g++ A f+ a 

	

T25F10 .5 	365 AQQFDFALSSILRAQSTM'TDDVAAdVWYNIGQILVDIGDLVSAARSFRIA 414 

leldpnn<- * 
1 dP+ 

	

T25F10.5 	415 LSHDPDH 	421 
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F32D1.3: domain 1 of 1, from 625 to 720: score -13.7, E = 0.00094 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiellPtdaVyYSNRAAcYlk 

+ 1K + N4 F + 	 KA 1 p+ ++ + N+A++ ++ 

	

F32D1 .3 	625 	MA}iLKIRQNRSFEVENLLR ------ KANTLAPESVTVLQNIALAEFH 665 

LgnydkAi eDC tkALeldpnnvKAlyRrcgAylaLgkyeeAledfqkale 
++ny + + 	+kAL ldp++ 	1 +++ +++ ++ e 	+++k++e 

	

F32D1 .3 	666 MQNYNRSL,LFYRXALHLDPTHLDSLQGIANLLQQTQNHVESETFYRKVME 715 

ldPnri<- * 
pm 

	

F32D1.3 	716 AQPNS 	720 

T20B12.1: domain 1 of 1, from 467 to 568: score -16.7, E = 0.0016 
* - >AeelKeeGNeyFKekkyeeAiekYtKAiellptdaVyySNRAACylk 

A +++ G + +kk+eeA ++ + +el p + + N c k 

	

T20B12 .1 467 	ARAHRSLGHLLLMDKKFEEAYKHLRRSLELQPIQLGTWFNAGYCAWK 513 

LgnydkAieDCtkALeldpflflVKAlyRrGqAYlaLgkYeeAledfqkale 
L+n+++ ++ + + 1 p++ A+ + Ay g 	+A + +q+al+ 

	

T20B12 .1 	514 LENFKESTQCYHRCVSLQPDHFEAWNNLSAAYIRHGQKPKAWKLLQEALK 563 

ldPnrl<_* 
++ + 

	

T20B12.1 	564 YNYEH 	568 

C18C4.10d.1: domain 1 of 1, from 290 to 407: score -21.0, E = 0.0036 
* ->AeelKeeGNeyFKekkyeeAiekYtKAiel ........lptdavyys 

A+ 1 + 	+ K +k+i-.A + ++A+e +++ ++++p+ a ++ 

	

C18C4 . lOd. 	290 	AATLNNLAVLFGKRGKFKDAEPLCKRALEIrekv1gddHPDVAKQLN 336 

NRAAcylkLgnydkAieDCtkALel ........dpnnvKAlyRrGqAyla 
N+A+ 	+g+y+++ + ++ALe. +++ +.+dpn -4-K 	+ +Ayl+ 

	

C18C4 . lOd. 	337 NLALLCQNQGKYEEVEKYYKRALEIyesk1gpdDPNVAXTKNNLSSAYLK 386 

LgkyeeAledfqkaleldPnn<- * 
+gky+eA e ++++1+ + + 

	

c18C4.10d. 	387 QGKYKEAEELYKQILTRA}{ER 	407 

N7.2: domain 1 of 1, from 243 to 360: score -21.9, E = 0.0042 
*>AeelKeeGNeyFKekkyeeAiekYtKAiel ........lptdavyys 

A+ 1 	y + ++++A ++ KA++ + + ++++ + a+ ++ 

	

M7.2 243 	ATMLNVLAIVYRNQENFKDAAIYLEKALSIrvqccgenHHSVAATLN 289 

NRAAcylkLgnydkAieDCtkALeld ........pnrivKAlyRrGqAyla 
N+A +y k g+y++ 	C++ALe+ ++ +.+.p+ +K 1 +G ++ 

M7.2 290 NLAIAYGKRGKYKESEPLCKRALEIRkn11gpnhPDVAKQLTNLGIVTQQ 339 

LgkyeeAledfqkaleldPnfl<- * 
L+kyee ++f++al ++ 

	

N7.2 	340 LEKYEETENYFKQALSIYNRA 	360 
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