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Lay Abstract

In recent years the liberalisation of energy markets and expansion of renewable en-

ergy supplies has increased the uncertainty in operational planning of power systems.

Volatile and unpredictable wind power supplies have significant effects on the way con-

ventional power plants are used, because power infeed and demand must be balanced at

all times to operate the system safely. Most conventional power plants must be notified

three to twelve hours before they become available to generate electricity. To be able

to buffer a sudden unpredicted loss of wind power, the system balancing authorities

require conventional plants to run part-loaded so that they can respond quickly. Oth-

erwise customers have to be switched off to restore the balance in the system. Running

the system with large amounts of part-loaded power plants is costly, but so is switching

off customers. To find the cheapest power plant schedule that will permit to operate

the power system safely for a given wind forecast while satisfying all demand, system

operators use unit commitment models, a type of mathematical optimization model.

Traditionally, these models did not include an explicit model of wind uncertainty, but

in recent years such models have become more popular. We quantify the added value

of using an uncertainty model by performing a two-year evaluation with both, the tra-

ditional and new scheduling approaches. For this evaluation we use a model of the

British power system in 2020, with a 30% share of wind energy in terms of installed

capacity. As planning problems with an explicit representation of uncertainty are much

harder to solve than the traditional ones, we derive a dedicated solution methodology

for them. It is based on decomposing the problem into multiple smaller problems of

the traditional type.
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Abstract

In recent years the deregulation of energy markets and expansion of volatile renewable

energy supplies has triggered an increased interest in stochastic optimization models for

thermal and hydro-thermal scheduling. Several studies have modelled this as stochastic

linear or mixed-integer optimization problems. Although a variety of efficient solution

techniques have been developed for these models, little is published about the added

value of stochastic models over deterministic ones. In the context of day-ahead and

intraday unit commitment under wind uncertainty, we compare two-stage and multi-

stage stochastic models to deterministic ones and quantify their added value. We show

that stochastic optimization models achieve minimal operational cost without having to

tune reserve margins in advance, and that their superiority over deterministic models

grows with the amount of uncertainty in the relevant wind forecasts. We present a

modification of the WILMAR scenario generation technique designed to match the

properties of the errors in our wind forcasts, and show that this is needed to make the

stochastic approach worthwhile. Our evaluation is done in a rolling horizon fashion over

the course of two years, using a 2020 central scheduling model of the British National

Grid with transmission constraints and a detailed model of pump storage operation

and system-wide reserve and response provision.

Solving stochastic problems directly is computationally intractable for large in-

stances, and alternative approaches are required. In this study we use a Dantzig-Wolfe

reformulation to decompose the problem by scenarios. We derive and implement a col-

umn generation method with dual stabilisation and novel primal and dual initialisation

techniques. A fast, novel schedule combination heuristic is used to construct an optimal

primal solution, and numerical results show that knowing this solution from the start

also improves the convergence of the lower bound in the column generation method

significantly. We test this method on instances of our British model and illustrate that

convergence to within 0.1% of optimality can be achieved quickly.



iv

Acknowledgements

First and foremost I would like to thank my PhD supervisor Prof. Ken McKinnon.

Ken, you have been an incredible mentor for me throughout the past four years. You

have the inquisitive mind of a true researcher and you have taught me the perseverance

and perfectionism required to successfully complete a research project. You always

made time for long problem discussions and creative brainstorming sessions, and you

were involved in my research project with the utmost dedication. You have created

a relaxed, yet highly productive work environment and your motivation has kept me

afloat at times where mine was faltering. I could not have hoped for a better supervisor

and I am very grateful for four interesting, challenging and successful years.

I would also like to thank Dr. Andreas Grothey who contributed ideas, techniqes

and solutions in the development phase of the algorithmic methodology. Additionally,

I would like to thank Dan Eager and Ian Pope from AF Mercados EMI in Edinburgh

for helping to assemble data of the British power system, Peter Kelen from PowerOP

for providing feedback on the British model, Samuel Hawkins and Gareth Harrison

from the School of Engineering at Edinburgh University for providing the wind data,

and Paul Plumptre for explaining National Grid’s balancing mechanism and modelling

approach. I acknowledge funding obtained through the Principal’s Career Development

Scholarship scheme of the University of Edinburgh. Prof. Jacek Gondzio served as

mentor on this programme and advised me on any academic matters unrelated to my

research project. Dr. Chris Dent and Prof. Jacek Gondzio agreed to be my examiners in

the final stages of my PhD, and I am very grateful for that. My interest in optimization

was fostered by three interesting years spent at the Karlsruhe Institute of Technology,

where Prof. Oliver Stein and Dr. Paul Steuermann taught me the basics of optimization

and set me on my current career path, and I would like to thank them for that.

Finally but most importantly I would like to thank Annina for her unconditional

love and support, particularly in the last months of the write-up phase. Annina, your

warm Spanish heart has given me strength at times where I needed it most, while your

Finnish honesty and modesty have kept me true to myself and others.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methods & Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Two-Stage Recourse Problems . . . . . . . . . . . . . . . . . . . 13
2.1.2 Non-Anticipativity Constraints . . . . . . . . . . . . . . . . . . . 15
2.1.3 Multi-Stage Recourse problems . . . . . . . . . . . . . . . . . . . 18

2.2 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Dantzig-Wolfe Decomposition . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Progressive Hedging . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Generation Unit Commitment . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Algebraic Model Statement . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Stochastic Formulations . . . . . . . . . . . . . . . . . . . . . . . 41

3 Scenario Decomposition of UC Problems . . . . . . . . . . . . . . . . . 46
3.1 Dantzig-Wolfe Scenario Decomposition . . . . . . . . . . . . . . . . . . . 46
3.2 Practical Aspects of Scenario Decomposition . . . . . . . . . . . . . . . 51

3.2.1 Dual Stabilisation of the RMP . . . . . . . . . . . . . . . . . . . 52
3.2.2 Lower Bounds for the MP . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Dual Initialisation of the RMP . . . . . . . . . . . . . . . . . . . 55
3.2.4 MIP Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.5 The Stabilised Scenario Decomposition Algorithm . . . . . . . . 62

3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Details of the Implementation . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Multi-Stage Results . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Two-Stage Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.4 Convergence of Bounds . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.5 Initial Multiplier Estimates . . . . . . . . . . . . . . . . . . . . . 71

4 Stochastic vs Deterministic Scheduling . . . . . . . . . . . . . . . . . . 74
4.1 A Model of the British Power System . . . . . . . . . . . . . . . . . . . 74

4.1.1 Production Cost Considerations . . . . . . . . . . . . . . . . . . 75
4.1.2 Overview of the Model . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents vi

4.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 Algebraic Statement . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Input Data and Scenario Generation . . . . . . . . . . . . . . . . . . . . 90
4.2.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 Synthesising Wind Power Forecasts . . . . . . . . . . . . . . . . . 95
4.2.3 Generating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.4 Constructing Scenario Trees . . . . . . . . . . . . . . . . . . . . . 102

4.3 Rolling Horizon Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 Pump Storage Operation and Network Congestion . . . . . . . . 112
4.4.2 Deterministic and Stochastic Performance . . . . . . . . . . . . . 117

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1 Summary of the Contents . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Main Findings & Further Research . . . . . . . . . . . . . . . . . . . . . 129

5.2.1 Efficient Scenario Decomposition . . . . . . . . . . . . . . . . . . 129
5.2.2 Stochastic vs Deterministic Evaluation . . . . . . . . . . . . . . . 131

A UC Model with Approximate Recourse . . . . . . . . . . . . . . . . . . 135

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



1

Introduction

1.1 Motivation

For many years, problems in the electric power industry have posed challenges to state

of the art solvers and stimulated development of new optimization techniques. Op-

timization models for efficient planning, scheduling and operation of power systems

often involve integer or nonlinear decision variables which make them very challenging.

Power systems planning and optimization models are typically classified according to

the length of their planning horizon.

• Long Term Models are used to devise investment strategies for generation plant

or transmission gear, or to analyse the impact of incentive schemes on capacity

expansion. Their time horizon covers up to 25 years.

• Medium Term Models are concerned with resource management and have a

time scale of 1 to 3 years. A typical application is hydro reservoir scheduling, i.e.

scheduling of pump storages with yearly storage and inflow cycles.

• Short Term Models are used for a variety of tasks at time scales varying from

a few minutes up to a week. Unit commitment models are used for week-ahead,

day-ahead or intraday power plant scheduling, while economic dispatch models

calculate power outputs a few minutes ahead and optimal power flow or load flow

models determine physical aspects of power transmission and distribution on a

minute-by-minute basis.
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The model granularity increases with decreasing time horizon, as models become more

and more detailed and include physical aspects of the underlying power system. In this

study, we focus on the aspects of hydro-thermal generation unit commitment (UC) at

the day-ahead and intraday time scale. The objective of the UC problem is to find a

cost-minimal schedule for all available power plants, which will permit to satisfy the

demand for electricity while maintaining sufficient reserve and response to operate the

system safely in the event of a failure or demand fluctuation. To this end, it aims to

find optimal timings for startup and shutdown actions of individual generation units.

The nature of the problem is combinatorial, and a plethora of techniques have been

proposed to solve it. Most solution methods are based on heuristic search or mathe-

matical programming, or combine both in a hybrid approach. Popular choices of math-

ematical programming techniques for the UC problem are Lagrangian and augmented

Lagrangian relaxation, Dynamic Programming and more recently also Branch & Cut

and Progressive Hedging. Heuristic search methods which are often applied in this

context are Genetic Algorithms, Simulated Annealing, Particle Swarm Optimization

and Artificial Neural Networks.

Traditionally, UC problem formulations did not include a model of the transmission

or distribution network, leaving the economic dispatch and optimal power flow stages

to deal with this issue. To ensure that the commitments permit network-feasible op-

eration of the power system, the problem was altered i.e. by defining must-run units.

However, more recently Branch & Cut solvers have become more powerful, allowing

practitioners to include approximate linear models of the power grid in their mixed-

integer programming (MIP) formulations of the UC problem. The exact formulation

of a UC problem depends on the regulatory regime of the electricity market for which

it is used. In regulated market environments it is typically formulated for the whole

system, with the aim of minimising the cost of electricity generation to the economy.

In a deregulated market, on the other hand, generation companies use UC models to

schedule their generation assets so as to achieve maximum profitability. Depending on

the market structure, UC models can also be used for market clearing purposes, by de-

ciding on the acceptance or rejection of generation bids. This is common practice in the

United States, where independent system operators (ISO) run autonomous electricity

markets.
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In recent years, there has been an increasing interest in UC formulations which

incorporate uncertainty in the model. The traditional source of uncertainty in a regu-

lated market is the electricity demand. However, in many regions customer behaviour is

well-predictable, so demand forecasts are quite accurate. Models without explicit rep-

resentations of demand uncertainty were deemed appropriate if there was a sufficent

reserve margin which could be used to buffer small fluctuations. Modern electricity mar-

kets, however, are largely deregulated, and modern power systems are being extended

continuously to integrate increasing amounts of renewable energy. This introduces new

sources of uncertainty to power systems planning and operation in general, and the UC

problem in particular:

• Market price uncertainty affects generation companies which aim to maximise

their profitability in a deregulated market.

• Renewable supply uncertainty affects generation, transmission and distribu-

tion and companies. Supplies from renewables are weather dependent and diffcult

to forecast, and can cause network disruptions if they fluctuate strongly.

These developments have triggered an interest in applying stochastic optimization

techniques. In particular, there has been a growing interest in the formulation of

stochastic unit commitment (SUC) problems and dedicated solution techniques. Var-

ious case studies have modelled this problem as two-stage model with (mixed) integer

recourse [3, 4] or as multi-stage model [5, 6, 7]. These models are computationally chal-

lenging, especially if the required number of scenarios is large, and dedicated solution

techniques are necessary to solve them. This has motivated research into algorithmic

strategies for the efficient solution of SUC problems. Besides the necessity for an ef-

ficient solver, another important question is to characterise and quantify the added

value of stochastic models over previous, deterministic ones. These are the two central

questions which we address in this study.

1.2 Previous Research

In the following we briefly review relevant research on solution techniques for SUC

models. In the remainder of this study, the focus is on mathematical programming
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techniques, in particular decomposition methods. However, a lot of these also incor-

porate heuristic search methods to find good feasible solutions quickly. In the last

paragraph we review articles which address the issue of quantifying the added value of

stochastic models over deterministic ones.

Model Formulation. In the past years there have been improvements in the for-

mulation of MIP models for unit commitment. Multiple ways have been proposed to

formulate the problem, some of them using one set of binary variables i.e. on-off vari-

ables [8], two sets of binary variables where the additional set are startup variables [4],

or three sets of binaries where the third set are shutdown variables [9]. Ostrowski et

al demonstrated that formulations with less binary variables are not necessarily more

efficient in a computational sense, because modern MIP solvers can exploit integrality

restrictions to derive cuts which tighten LP relaxations, and profit from branching on

the additional variables [9]. Fuel costs are often modelled as linear or piecewise linear

(PWL) functions. When PWL models are used they have less detrimental effects on

solver performance if they are convex and require no additional binary variables [8, 10].

Additional performance improvements were achieved through the use of tighter valid

inequalities. Rajan and Takriti [11] found inequalities for minimum up/down times of

individual generation units which tighten the linear programming (LP) relaxation. In

the space of on-off and startup variables, their formulation defines facets of the poly-

tope described by the minimum up/down constraints. More recently, Jiang et al [12]

showed that the facet-defining quality of these cuts also extends to the stochastic case,

and report on their experience with other types of cutting planes devised specifically

for multi-stage stochastic formulations.

Decomposition. Despite efficient reformulations and improvements in general MIP

software, even deterministic unit commitment is a challenging problem, and this has

motivated the application of decomposition techniques. The traditional decomposition

approach for UC problems is by generation units. Individual units are bundled by the

demand and reserve constraints, and if those are relaxed, e.g. via Lagrangians [5] or

augmented Lagrangians [13], the problem becomes separable by generators. Single unit

subproblems can be solved efficiently by dynamic programming, or stochastic dynamic



1.2. Previous Research 5

programming if the original model is a stochastic model. Both, Lagrangian relaxation

(LR) and Dantzig-Wolfe (DW) decomposition have been proposed to decompose SUC

problems by generation units [6, 14]. The number of linking demand and reserve

constraints which have to be dualised grows linearly in the number of included scenarios.

The Lagrangian dual problem is often solved by a cutting plane or proximal bundle

method [3, 5, 6], in which case Lagrangian decomposition becomes the dual equivalent

of column generation (ColGen) or bundle column generation [15], respectively.

An alternative to decomposition by generation units is decomposition by scenarios.

If the non-anticipativity constraints are relaxed, the problem becomes separable by sce-

narios. This requires a model where non-anticipativity is formulated explicitly through

constraints rather than implicitly by sharing variables among scenarios, which can lead

to a substantial amount of redundancy if applied to two-stage day-ahead UC models as

in [3]. Scenario decomposition yields deterministic UC problems as subproblems, and

any solution technique suitable to them can be used as subproblem solver, e.g. em-

bedded Lagrangian decomposition by generation units as proposed in [7] or standard

mixed integer programming techniques. Various approaches have been proposed to

achieve separability by scenarios. Carøe and Schultz [3] perform Lagrangian relaxation

of non-anticipativity constraints in a two-stage model and solve the dual problem by a

proximal bundle method.

Takriti and Birge [7] apply Progressive Hedging [16], which was originally developed

for convex stochastic programs and remains a heuristic when applied in the mixed-

integer case. Ryan et al [17], Gade et al [18] and Watson and Woodruff [19] describe

various modifications of the Progressive Hedging algorithm and report on associated

improvements in mixed-integer applications, in particular the UC problem. They devise

techniques to identify feasible solutions and improve primal convergence, and ways of

bounding the problem from below. These techniques enable fast progress even in large

scale UC applications with realistic test systems. However, there is no guarantee that

the optimal primal solution will be found or the lower bound will be tight. Progressive

Hedging remains a heuristic when applied in the mixed-integer case, albeit a very

successful one.

Since LR and DW methods solve the dual problem or, equivalently, a convex re-

laxation of the primal problem, they do not necessarily find a primal feasible solution
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either, and additional work is required to achieve that. Gröwe-Kuska et al [5, 6] use

various Lagrangian based heuristics and an additional Economic Dispatch stage to find

solutions with small duality gaps. Shiina and Birge [14] use a schedule reduction tech-

nique to generate integer solutions from a restricted master problem. Additionally,

since UC problems have integer variables, there may be a duality gap, in which case a

branching scheme such as Branch & Price is needed to verify that a global solution has

been found. Carøe and Schultz [3] embed their dual algorithm in a branching scheme

and use a primal rounding heuristic to produce intermediate solutions and accelerate

convergence. Beside the quality of the primal solution, the lower bound obtained from

the decomposition method plays a central role in achieving fast convergence. Dentcheva

and Römisch [20] show that the lower bound obtained through Lagrangian scenario de-

composition is at least as good as the lower bound obtained through decomposition by

generation units, which provides a strong motivation for the former approach.

An alternative way of decomposing the problem via LR or DW decomposition is

by stages or nodes, however this is not popular in SUC problems. An overview of the

three ways of decomposing the problem, i.e. by units, scenarios or stages, is given in

Römisch and Schultz [21]. Another stage-wise decomposition approach was developed

specifically for two-stage problems: Benders decomposition, or the L-Shaped Method

was originally devised for problems with continuous recourse but was subsequently gen-

eralised for integer recourse models [22]. Zheng et al [23] apply Benders decomposition

to decompose two-stage SUC problems. Unlike other two-stage formulations [3, 4],

theirs has binary variables on both, the first and second stages.

Finally, Goez et al [4] review two-stage and multi-stage stochastic formulations of

the unit commitment problem and test various solution techniques: LR as in [3], Pro-

gressive Hedging as in [7] and a heuristic based on successively decreasing the number

of relaxed variables in an LP relaxation. A comprehensive review of decomposition

techniques for energy optimization problems in general is also given in [24].

Stochastic vs Deterministic Models. Substantial research efforts have gone into

developing fast solution methods for MIP based SUC models. Despite that, compara-

tively little has been published about the added value of stochastic scheduling models

over deterministic ones. In the literature, there are two different approaches to evaluate
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the expected cost of UC schedules so that they can be compared with one another:

1. Evaluation via Monte-Carlo simulation: for the given schedule, a dispatch solu-

tion is calculated on a large number of day-long sample paths generated from a

simulator that is thought to represent reality. This is typically done for a set of

representative days, e.g. one day per season of the year. The performance of

different schedules is measured by their expected dispatch cost.

2. Rolling horizon evaluation: a rolling scheduling and dispatch procedure is defined

in which the system is scheduled for a few hours and evaluated against a historic

trajectory by a dispatch model. Following the evaluation, the next few hours are

scheduled and the process is repeated. Performance is measured by the dispatch

cost on the historic trajectory. This is sometimes referred to as time domain

scheduling simulation.

A major disadvantage of the Monte-Carlo simulation approach is that it is not possible

to be certain whether the simulator is a correct representation of reality. Also, inter-

temporal constraints such as minimum up- and downtimes cannot be considered beyond

the end of the simulated day. These shortcomings are avoided in the rolling horizon

approach.

The following studies use Monte-Carlo simulation to evaluate UC schedules. Ruiz

et al [25] report on an evaluation of deterministic and two-stage stochastic UC under

load and generator failure uncertainty, using the IEEE reliability test system [26].

Papavasiliou and Oren [27] apply Lagrangian relaxation and Benders decomposition

to solve two-stage stochastic problems with uncertain wind production and security

constrained problems with contingency scenarios. They compare different formulations

with respect to fuel cost and security of supply by evaluating a typical spring day in the

California ISO test system. Constantinescu et al [28] include wind scenarios obtained

from a numerical weather prediction model in a two-stage stochastic model. They

evaluate this against a deterministic model, using three days of wind data from Illinois

and a ten generator test system.

The following studies perform a rolling horizon evaluation of UC schedules. Tuohy

et al [29] apply the WILMAR model [30] to data of the Irish electricity system and

perform a one year rolling evaluation of deterministic and multi-stage SUC. They re-
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port savings between 0.25% and 0.9% when using a stochastic approach instead of a

deterministic one, depending on the length of the first stage. However, the authors use

perfect information on the first stage, which biases the solutions to become better if

the length of the first stage is extended. Additionally, the problems are only solved to

an optimality tolerance of 1%. Sturt and Strbac [31] report on the difference between

deterministic and stochastic rolling planning in a thermal power system with high wind

penetration and a given level of storage capacity, which represents the British (GB)

power sytem in 2030. However, mainly continuous relaxations of integer models are

used, and transmission network issues arising from the geographical disparity of wind,

storage and conventional generation are not addressed.

1.3 Objective

In this study, we address two central issues that arise in relation with the application

of stochastic optimization models to the UC problem:

• Efficient solution techniques are required to solve these problems. Such meth-

ods have to scale well in the number of included scenarios. We derive an efficient

scenario decomposition algorithm with dual initialisation and stabilisation proce-

dures and primal heuristics for accelerated convergence. The algorithm is tested

on a realistic model based on the GB power system. We vary the number of

scenarios and show that the method scales well in the problem size.

• The added value of stochastic optimization models over deterministic ones

is characterised by performing a long-term rolling horizon evaluation of the two

approaches on our model of the GB power system with a significant amount of

uncertain wind power.

The solution technique and our evaluation approach are briefly outlined below. To

ensure that our findings with respect to the performance of the decomposition algo-

rithm and the comparison of stochastic and deterministic UC are viable for models of

realistic size and detail, we assembled data for a model of the GB power system with

an aggregated representation of the grid and a detailed representation of pump storage

plants. Our model is a central scheduling model with transmission restrictions between
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network areas. Demand and generation are balanced locally by areas, but reserve and

response are treated as system-wide quantities. The data for conventional generation

and wind farms correspond to National Grid’s figures for 2020 under the Gone Green

Scenario, with an overall wind penetration of 30% in terms of installed capacity.

Our solution approach is based on DW scenario decomposition and can be applied in

the two-stage and multi-stage case. A generic framework for this type of decomposition

is described by Lulli and Sen [32], and a stochastic version of this algorithm for convex

continuous multi-stage stochastic programs has recently been proposed in Higle and

Sen [33]. Non-anticipativity constraints are separated from the remaining constraints

by dealing with them in the master problem. They are formulated in terms of additional

variables which represent the bundled scenarios’ common decisions. Applying this

formulation allows dual information to be spread flexibly among a scenario bundle.

We use a proximal bundle method [34] to stabilise the master problem and accelerate

convergence. Additionally, we derive a dual initialisation procedure and construct

primal feasible solutions using a fast, novel schedule combination heuristic which uses

the schedules generated by the ColGen procedure. Although theoretically, in order to

guarantee optimality, the ColGen approach needs to be embedded in a Branch & Price

framework, we demonstrate that for the problems considered, sufficiently small duality

gaps can be achieved without branching. We apply our algorithm to both, two-stage

and multi-stage SUC problems and report on its computational performance on our

model of the GB power system.

The performance of stochastic and deterministic UC approaches is compared in

the context of both, day-ahead and intraday scheduling. We use a two-stage stochas-

tic model for day-ahead scheduling and a multi-stage stochastic model for intraday

scheduling. In the intraday context we consider two cases: one where commitments of

large conventional plant can be revised every three hours, and another one where they

can be revised every six hours. The study is performed in a rolling horizon fashion over

an evaluation period of two years. We characterise stochastic and deterministic sched-

ules, show how they differ from one another, and quantify the savings achieved with

stochastic scheduling. While these models are computationally challenging, the savings

achieved with them are typically a small percentage of the overall cost, implying the

necessity of small optimality tolerances. These are achieved by applying our scenario
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decomposition method.

1.4 Structure

The remainder of this study is structured as follows. Chapter 2 provides a brief expla-

nation of stochastic optimization methodology in general and stochastic UC models in

particular. Additionally, it provides a brief review of the techniques that can be used

to decompose SUC models by scenarios. We start with an introduction to stochas-

tic programming, recourse models, the non-anticipativity property, and how it can be

written as a constraint to permit the application of decomposition methods. This is

followed by a brief review of LR methodology: we outline how LR is used for lower

bounding and decomposition, and what solution techniques exist for the dual problem.

Then we proceed with an overview of DW decomposition: we recapitulate Dantzig and

Wolfe’s decomposition principle for linear problems, and how it can be generalised for

the mixed-integer case. DW decomposition has close ties with LR, and we show how

they are used to cross-apply techniques developed for either one of the methods. Fi-

nally, we discuss Progressive Hedging (PH) as an alternative scenario decomposition

method. We close the chapter with a simple example and brief discussion of MIP UC

models.

Chapter 3 provides a more extensive discussion of scenario decomposition. First,

we state a simple ColGen algorithm for SUC problems. Then we explain how dual

regularisation and initialisation can be used to stabilise and hot-start this method, and

derive a primal heuristic to find good solutions quickly and accelerate convergence.

The heuristic is based on generator schedule exchange between scenarios. Finally,

we describe our implementation of this method and discuss results of a performance

comparison of decomposition and out-of-the-box Branch & Bound when applied to

two-stage and multi-stage versions of our model of the GB power system. Numerical

results demonstrate how time savings through decomposition increase rapidly with the

number of scenarios included in the SUC model.

Chapter 4 is concerned with the long-term evaluation of deterministic and stochas-

tic scheduling approaches. We provide an algebraic statement of our GB power system

model and a description of the various data sources. After discussing error statistics
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of the wind forecasts used for this evaluation, we give a brief outline of the scenario

generation, reduction and scenario tree construction techniques that were used to gen-

erate the wind input data. The rolling horizon evaluation process is then described in

more detail, before we proceed with an overview of its results. The chapter closes with

a discussion of characteristic traits of stochastic and deterministic schedules and the

added value of stochastic scheduling.

Finally, in Chapter 5 we summarise the objective, methodology and results of this

study and draw our conclusions.



2

Methods & Models

This chapter reviews some of the theory that we rely upon in the remainder of our

study. It gives a brief introduction to stochastic optimization models, UC models, and

the techniques that can be used to decompose them by scenarios. We introduce recourse

models, the non-anticipativity property, and how it can be written as a constraint to

permit scenario decomposition. Then we continue with a brief review of LR methodol-

ogy, how it is used for lower bounding and decomposition, and what solution techniques

exist for the dual problem. This is followed by an overview of DW decomposition: we

explain Dantzig and Wolfe’s decomposition principle and outline generalisations for the

mixed-integer case. LR and DW decomposition are closely related and we show how

they can both be used in the same context. Finally, we explain the PH algorithm for

scenario decomposition of convex continuous problems, and then close the chapter with

a brief discussion of MIP UC models.

2.1 Stochastic Programming

Stochastic programming is a technique that is widely used in applications where one or

more of the parameters of an optimization model underlie uncertainty. It has its origin

in a publication of George Dantzig [35], which first introduced the recourse model. A

stochastic problem arises when at least one of its parameters is described as a random

variable, resulting in a blend of an optimization model and a stochastic model. In the

following sections we provide a brief introduction to two-stage and multi-stage recourse

models and how they are used in modern applications. The contents of these sections

are loosely based on [36, 37].
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2.1.1 Two-Stage Recourse Problems

The type of stochastic optimization model we use for our UC problems is known as

recourse model. The term recourse refers to the possibility to perform a corrective

action after an initial decision has been taken and the outcome of the uncertain pa-

rameter has been observed. In a two-stage recourse model the sequence of events is

act-observe-react, so there are two stages on which a decision is made:

1. The first stage decision is a central decision made under uncertainty.

2. The second stage or recourse decision is an individual response to every outcome

of the uncertain parameter that is accounted for in the model.

Let S be the uncertain parameter of the underlying decision process. Then S is a

random variable defined on a probability space (S,A, P ). To obtain a recourse problem

that can be solved with linear or mixed-integer programming techniques, we require

S to be a discrete random variable with a finite number of realizations |S|. In many

applications this means that the true continuous stochastic process underlying the

uncertain parameter has to be approximated by a discrete one. The quality of the

decision depends on the quality of this approximation, so a lot of research is concerned

with finding appropriate approximations [38, 39]. Assuming that S is discrete, we can

write ps := P (S = s) for all outcomes s ∈ S. The outcomes are called scenarios. The

general form of a two-stage recourse problem is

min
x

cTx+Q(x) (2.1)

s.t. Ax = b, x ≥ 0

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n are the first stage data and

Q(x) := E [q (x, S)] =
∑
s∈S

psq (x, s) (2.2)

is the expected recourse function with

q (x, s) := min
ys

dTs ys (2.3)

s.t. Wsys = rs − Tsx, ys ≥ 0,
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where ds ∈ Rp, rs ∈ Rl, Ws ∈ Rl×p and Ts ∈ Rl×n are the second stage data for

every scenario s ∈ S. The first stage decision is represented by the variable x and

is identical for all scenarios s, while the recourse action is denoted as ys and can be

different under different scenarios. Despite the implicit assumption that decisions are

made sequentially in time, the two-stage recourse problem is a specially structured

linear program in which optimal values for x and ys are found simultaneously. In

a practical context, the important decision taken by this problem is the here-and-

now decision x, which is informed by the what-if decisions ys under all considered

scenarios. An optimal decision x will have the property that it balances profit from

good scenarios and vulnerability to bad scenarios. Modelling many bad scenarios in S
acts like an insurance in that it helps to hedge against future risk, but it also increases

the computational burden. Finding the right scenario set S is to strike the balance

between modelling risk and keeping computational effort manageable.

In many applications not all second stage data will vary with the scenario. When

the second stage constraint matrix is constant in s, Ws = W , the problem is said to

have fixed recourse. If, beyond that, W is an identity matrix, the problem is said to

have simple recourse. Other special types of recourse appear when stochastic program-

ming is applied to integer or mixed-integer problems. In that case x and ys may both

contain integer decisions. Depending on whether ys is continuous or (mixed-) integer,

the problem is said to have continuous or (mixed-) integer recourse. For some dedicated

stochastic solution techniques it matters what type of recourse problem (2.1) has. For

instance, L-Shaped or Benders decomposition was initially developed to solve continu-

ous recourse models and only later generalised to integer recourse models [36, 22].

When applying solution techniques which decompose the problem into a first stage

and a second stage problem, an important question is whether there are values of x for

which at least one of the second stage problems (2.3) is not feasible. Generally, if the

recourse problem is feasible for any right-hand side, then the problem is said to have

complete recourse:

Y(s, r) := {ys : Wsys = r, ys ≥ 0} 6= ∅ ∀r ∈ R, s ∈ S. (2.4)
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Achieving this may not be practical in every model, and a weaker but similarly useful

criterion can be used instead. The problem is said to have relatively complete recourse

if the second stage problem is feasible for all right-hand sides which can be attained

subject to feasibility of the first stage:

Y(s, r) 6= ∅ ∀r ∈ {rs − Tsx : Ax = b, x ≥ 0} , s ∈ S. (2.5)

Both, complete and relatively complete recourse are sufficient to guarantee that the

expected recourse function is finite, Q(x) <∞ [37]. The SUC models which we analyse

in this study are examples of mixed-integer recourse models. We choose a formulation

for them which ensures that they have relatively complete recourse.

2.1.2 Non-Anticipativity Constraints

The decision structure in a two-stage recourse problem is such that the first stage

decision x has to be made before the true outcome of the uncertain parameter S can be

observed. Our decision is then said to be non-anticipative because we cannot anticipate

the future when making it. The non-anticipativity property is inherent in the model

structure, as x cannot change based on the scenario s. An equivalent way of formulating

the same problem is by imposing the non-anticipativity property explicitly through

constraints. We first introduce additional variables xs which depend on the scenario s,

and then add non-anticipativity constraints which force them to be identical under all

scenarios. To avoid confusion with the scenario specific variable xs, we rename x̄ := x

in the new formulation. The resulting problem has the following structure:

min
x,y

∑
s∈S

ps
(
cTxs + dTs ys

)
(2.6)

s.t. Axs = b

Tsxs +Wsys = rs

xs − x̄ = 0

xs, ys ≥ 0


∀s ∈ S

The second stage copies xs of first stage variables x̄ and the non-anticipativity con-

straints xs = x̄ are obviously redundant, and if the problem is to be solved directly by
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linear programming techniques it is likely to be less efficient than the original formula-

tion. However, this formulation has other advantages. Firstly, in some applications, it

can be an easier, more intuitive way to formulate the problem. This is often the case

in multi-stage recourse problems which we introduce in the next section. Secondly,

it permits the application of a different type of decomposition technique, because the

structure of the constraint matrix has changed. First, consider the structure of the

original problem: for a fixed first stage decision x, the recourse problem (2.3) can

be solved individually for each scenario s. This is exploited e.g. by the L-Shaped

method [22]. The structure of the corresponding constraint matrix is block-angular

with binding columns (variables). Let the scenario set be S = {1, . . . , ŝ}. Then the

constraint matrix of the original formulation 2.1 is given by:


A

T1 W1

...
. . .

Tŝ Wŝ

 ·

x

y1

...

yŝ

 =


b

r1

...

rŝ

 . (2.7)

By reformulating the problem with non-anticipativity constraints, we have moved to a

block-angular constraint matrix with binding rows (constraints). If we let

Bs :=

 A 0

Ts Ws

 , zs :=

 xs

ys

 , gs :=

 b

rs

 ∀s ∈ S (2.8)

then, apart from the non-anticipativity constraints, the constraints of problem (2.6)

can be written as Bszs = gs, ∀s ∈ S. The constraint matrix of the new formulation is

given by: 
B1

. . .

Bŝ

N1 . . . Nŝ N0

 ·

z1

...

zŝ

x̄

 =


g1

...

gŝ

0

 . (2.9)

Here we assume that the matrices N1, . . . , Nŝ and N0 have appropriate structure so

that the corresponding rows express the non-anticipativity constraints. Again, we can

obtain separability by scenarios. However, this time it is achieved by relaxing the non-
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anticipativity constraints, i.e. removing the binding rows from (2.9) rather than fixing

the first stage variables x. Instead of solving the original problem we can then solve

the following subproblems for each s ∈ S:

min
xs,ys

ps
(
cTxs + dTs ys

)
(2.10)

s.t. Axs = b

Tsxs +Wsys = rs

xs, ys ≥ 0.

In contrast to the recourse problem (2.3) which can be solved individually for each sce-

nario if x is fixed, these subproblems have their own copies of first stage variables xs. La-

grangian relaxation [40], Dantzig-Wolfe decomposition [41] or Progressive Hedging [16]

can be applied to remove the non-anticipativity constraints and achieve separability in

this way. The different approaches are briefly explained in Section 2.2. We have not

specified N1, . . . , Nŝ and N0 explicitly, because there are multiple ways of expressing

non-anticipativity constraints. The formulation we used so far is applied e.g. in [32].

We refer to it as common target formulation because it uses redundant variables x̄ that

can be interpreted as target values which are common to all scenarios. Alternative

formulations are available, which do not require redundant target variables: in PH the

target variables x̄ are replaced with the weighted average
∑

s∈S psxs. Alternatively, it

is also possible to eliminate x̄ by using the following chain formulation:

xs = xs+1 ∀s = 1, . . . , ŝ− 1, (2.11)

or a common target formulation without redundant variables:

xs = xŝ ∀s = 1, . . . , ŝ− 1. (2.12)

In the latter, we have chosen the last scenario to be the target for all other scenarios,

but the choice is arbitrary: any scenario can be chosen as common target. LR or

DW decomposition can be applied to the chain formulation or to either one of the

common target formulations. The choice of non-anticipativity constraints determines
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the number and meaning of their multipliers, but does not affect the dimension of the

dual solution space. This is discussed in more detail in Chapter 3.

2.1.3 Multi-Stage Recourse problems

The two-stage recourse problems discussed so far followed the decision structure act-

observe-react, where we can observe the outcome of the uncertain parameter once and

then adapt our reaction. For cases where the uncertain parameter is monitored in

regular intervals and decisions can be adapted regularly, the model can be extended

to accommodate repeated observations and reactions. This is the structure underlying

multi-stage recourse problems. The decision process is typically captured in a decision

tree as shown in Figure 2.1, where a new stage is introduced every time new information

becomes available. This assumes that the model follows discrete time steps t = 1, . . . , T ,

where stages can span more than one time step, i.e. the model’s time grid can be

finer than the intervals at which new information becomes available and decisions are

adapted. The example tree in Figure 2.1 shows a single realisation of the uncertain

parameter on the first stage, three on the second stage and five thereafter. Scenario s3

only splits off once, indicating that the information becoming available at time t3 does

not affect it.

A multi-stage stochastic problem can be expressed easily using a scenario formula-

tion. We assume that there is a decision vector xst for every time step t and scenario s.

Let cst be the corresponding cost vector. Then the multi-stage stochastic program can

be written as follows.

min
x

∑
s∈S

ps

T∑
t=1

cTstxst (2.13)

s.t. xs ∈ Xs ∀s ∈ S

xst − x̄bt = 0 ∀b ∈ B, t ∈ Tb, s ∈ Sb

Constraints on xs := (xst) ∀t = 1 . . . , T are expressed individually for each scenario

through membership in the feasible sets Xs. The non-anticipativity constraints xst = x̄bt

take a similar form as before, but rely on the notion of bundles. Bundles can be de-

fined in various ways, depending on the preferred data structure. Examples can be
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b3

b1

b2
s1
s2
s3
s4
s5

t1 t2 t3 T

Figure 2.1: Scenario tree example with five leaves. The first stage covers periods
Tb1 = {t1, . . . , t2}, with bundle b1 that contains scenarios Sb1 = {s1, s2, s3, s4, s5}. On
stage two with time steps Tb2 = Tb3 = {t2, . . . , t3} we have bundles b2 and b3 with
Sb2 = {s1, s2} and Sb3 = {s4, s5}. After that, all scenarios are independent.

found in [4, 37]. In our notation a bundle b ∈ B is specified by a tuple of sets (Tb,Sb)
which indicate the time periods and scenarios contained in the bundle, respectively.

A vector of target variables, x̄bt, is introduced for every time step t ∈ Tb of bundle b,

and non-anticipativity constraints require all variables of scenarios contained in the

bundled scenario subset Sb to be equal to the target variables in this period. Fig-

ure 2.1 demonstrates how these data structures can be used to model a scenario tree

for problem (2.13).

For both, two-stage and multi-stage recourse problems, a formulation which com-

bines all scenarios in one large optimization problem is referred to as extensive formula-

tion or deterministic equivalent (of the stochastic formulation). This can be a scenario

formulation or a formulation with intrinsic non-anticipativity property. The term ex-

tensive formulation is used in the decomposition literature to distinguish between the

original stochastic problem and other problems used in the decomposition procedure,

i.e. single scenario subproblems and master problems which we introduce later.

Advanced Non-Anticipativity Models. The example tree in Figure 2.1 implies

that a single scenario is used during the first time steps {t1, . . . , t2}, and a unique

solution is obtained for all variables by imposing corresponding non-anticipativity con-

straints at these time steps. This is a simplification which makes it easier to apply

the underlying concept of iterated observe-and-react sequences to UC problems, and is

common in the SUC literature [4]. However, in practical UC applications the schedul-

ing decision for the first time steps {t1, . . . , t2} is made a few hours before t1, and the

sample space of the uncertain parameter cannot be approximated well by using a single
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scenario between t1 and t2. At the same time not all decisions between t1 and t2 have

to be decided in advance, and some of them can be modelled as recourse decisions.

In the UC models discussed in Chapter 4, the first stage decision is a power plant

schedule, but the model also includes recourse decisions such as operating levels and

pump storage actions during the first time steps. The important decision to be made

by this model is only the schedule. All recourse actions are re-decided by subsequent

scheduling and dispatch models.

Therefore we will later model multiple realisations of the uncertain parameter dur-

ing time steps {t1, . . . , t2}. This results in as many solutions as there are distinct

scenario bundles during the first time steps, and we have to introduce additional non-

anticipativity constraints to make the first stage decision unique across all scenarios.

This is explained in more detail in Chapter 4 where we introduce the formulation of

our GB SUC model.

2.2 Decomposition

The idea of decomposition is nearly as old as linear programming [42]. Most optimiza-

tion algorithms scale well up to a certain problem size, but beyond that it becomes

very hard to solve the problem. Decomposition algorithms aim to alleviate the adverse

effects of problem size by dividing it into smaller subproblems which are solved repeat-

edly until a sufficient approximation to an optimal solution of the original problem has

been found. This is particularly interesting for (mixed-) integer optimization problems,

which are NP-hard [43]. In this section we briefly outline Lagrangian relaxation and

Dantzig-Wolfe decomposition and explain how they are related. We also briefly discuss

Progressive Hedging, a scenario decomposition method for stochastic problems. The

contents of this section are loosely based on [40, 41, 44, 16]. Another decomposition

method which is frequently applied to two-stage recourse problems is Benders decom-

position [45]. However, it results in a decomposition by stages rather than by scenarios,

and the underlying idea is different from the methods presented here. Hence we omit

it from our discussion.
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2.2.1 Lagrangian Relaxation

Lagrangian relaxation is a versatile technique to find lower bounds for minimisation

problems by solving a dual problem. It is often applied in mixed-integer optimiza-

tion where good lower bounds are much sought-after. Consider the following general

minimisation problem, called the primal problem.

min
x
f(x) s.t. x ∈ X , hj(x) = 0 ∀j = 1, . . . ,m (2.14)

If X is a convex set, f is convex and hj are affine functions, then the problem is said

to be convex. Note that this can easily be extended to cover the case with additional

inequalities gk(x) ≤ 0 which, in order for the problem to be convex, do not need to

be affine but only convex [40, 46]. Lagrangian relaxation is typically applied when the

feasible set X contains constraints subject to which this primal problem is easy to solve,

while hj(x) = 0 are complicating constraints which make it harder to solve.

Example 2.1 (Scenario Decomposition) We have seen in (2.8) and (2.9) that the

stochastic problem (2.6) has a block-diagonal constraint matrix with additional non-

anticipativity constraints. So if we take

X := {z = (x1, y1, . . . , xŝ, yŝ)
T : Bszs = gs ∀s ∈ S} and (2.15)

hs(x) := xs − x̄ ∀s ∈ S

then hs are the non-anticipativity constraints and without them the problem is separable

by scenarios and easier to solve than it was originally.

Lagrangian relaxation removes the complicating constraints from the problem and in-

troduces a linear price on violating them. The function

L(x, λ) := f(x)−
m∑
j=1

λjhj(x) = f(x)− λTh(x) (2.16)

with a price vector λ ∈ Rm is called the Lagrangian. The prices are also called multi-

pliers or dual variables. The dual function is given by

θ(λ) := min
x∈X

L(x, λ). (2.17)
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To evaluate the dual function at a given point λ, we have to solve an optimization

problem which is similar to the primal problem, but its complicating constraints have

been removed and their violation is penalized for in the objective, using the given

prices λ. The dual problem is then defined as

max
λ∈Rm

θ(λ), (2.18)

and it follows immediately that for any primal feasible point x̄ ∈ X with h(x̄) = 0 and

any dual feasible point λ̄ ∈ Rm we have

θ(λ̄) = min
x

[
f(x)− λ̄Th(x)

]
≤ f(x̄)− λ̄Th(x̄)︸ ︷︷ ︸

=0

= f(x̄). (2.19)

This means that solving the dual problem provides a lower bound on the optimal

solution of the primal problem, that is,

max
λ∈Rm

θ(λ) ≤ min
x∈X :h(x)=0

f(x). (2.20)

This property is known as weak duality. The difference

∆ := min
x∈X :h(x)=0

f(x)− max
λ∈Rm

θ(λ) ≥ 0 (2.21)

is called duality gap. The gap is guaranteed to vanish, ∆ = 0, if the primal problem

is convex, f is continuously differentiable and an appropriate constraint qualification

holds [46]. This property is referred to as strong duality. However, in the case with

integer variables, non-zero duality gaps can occur and there is no guarantee that solving

the dual problem provides a feasible solution for the primal problem. It is then common

practice to apply a heuristic to recover a primal solution after solving the dual problem.

The heuristic may find an optimal primal solution, but even then a non-zero duality

gap may remain. If a positive gap remains and no better primal solutions can be found

it is necessary to perform branching. An example for an application with branching

can be found in Carøe and Schultz [3]. The derivation of branching schemes is also

discussed in Section 2.2.2.



2.2. Decomposition 23

Solution Methods. A variety of different techniques can be applied to solve the

dual problem (2.18). The simplest among them is the subgradient method, while more

sophisticated approaches include cutting plane and bundle methods. In the following

we provide a brief description of these methods. More information, including proofs

of the described properties can be found in [47, 40]. As our dual problem is a max-

imisation problem, the methods we describe are based on supergradients rather than

subgradients, and the corresponding tangential hyperplanes support the Lagrangian

from above, rather than below.

Gradient Methods. The dual function θ is concave regardless of the properties of

f , h and X . However, θ is typically not differentiable everywhere, so the solution

methods for the dual problem must be able to deal with its non-smooth nature. At

every λk where θ(λk) exists, that is, (2.17) has an optimal solution x(λk), the vector

s(λk) := −h(x(λk)) is a supergradient of θ:

θ(λ) ≤ θ(λk) + s(λk)
T (λ− λk) ∀λ ∈ Rm, (2.22)

which we write as s(λk) ∈ ∂θ(λk). By solving (2.17) to evaluate the dual function at a

query point λk, a supergradient is obtained for free, and this can be used to construct

a method to solve the dual problem. For λ∗ strictly better than λk we have

θ(λk) < θ(λ∗) ≤ θ(λk) + s(λk)
T (λ∗ − λk), (2.23)

which implies that s(λk)
T (λ∗ − λk) > 0, so if we choose a sufficiently small steplength

α > 0, then

‖λk − αs(λk)− λ∗‖22 = ‖λk − λ∗‖22 − 2αs(λk)
T (λ∗ − λk) + α2‖s(λk)‖22

< ‖λk − λ∗‖22, (2.24)

which means that λk − αs(λk) is strictly closer to any improving λ∗ than λk. This

motivates the following iterative scheme for solving the dual problem (2.18).

Algorithm 2.1 (Supergradient Method) Input: k = 0, λ0, and tolerance ε > 0

1. Find x(λk) and θ(λk) by solving (2.17)
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2. If ‖h(x(λk))‖ < ε then terminate

3. Otherwise set λk+1 = λk − αks(λk), k = k + 1 and go to 1.

Here αk ∈ R+ is a sequence of positive steplengths. It can be shown that if the

steplengths satisfy the following conditions

αk =
tk

‖s(λk)‖
, tk ↓ 0,

∞∑
k=1

tk =∞ (2.25)

the supergradient method will converge to a maximum of θ. However, convergence is

often too slow for practical applications. This drawback can be partially alleviated

through the right choice of steplength αk and a change of metric, e.g. λ = Bu with an

invertible matrix B [40].

After solving the dual problem, an important question is how to recover a solution

of the primal problem. If the primal problem is convex and additional assumptions

hold with respect to the steplengths αk and the Lagrangian, the sequence of weighted

averages

x̂k :=

∑k
j=1 αjx(λj)∑k

j=1 αj
(2.26)

converges to an optimal primal solution [48]. In the mixed-integer case, however, it

converges to an optimal solution of a convex relaxation of the primal problem, which

is sometimes referred to as a pseudo-schedule in UC applications [40]. The pseudo-

schedule can then be used as a starting point for primal heuristics to recover an integer

solution.

Cutting Plane Methods. A more sophisticated way of solving the dual problem is

via a cutting plane method. Every time we evaluate the dual function θ at a query

point λk, we obtain a cutting plane (2.22) that is tangential to its graph and lies entirely

above it. After k iterations this provides us with a concave piecewise linear model:

θ(λ) ≤ θ̂(λ) := min
i=1,...,k

{
θ(λi) + s(λi)

T (λ− λi)
}

(2.27)

which is called cutting plane model. It is characterised by the k-tuple of elements

(θ(λi), s(λi))i=1,...,k, the so-called bundle of information. In iteration k we find a new
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query point λk+1 by maximising the model θ̂:

max
λ,r

r (2.28)

s.t. r ≤ θ(λi) + s(λi)
T (λ− λi) ∀i = 1, . . . , k

(λ, r) ∈ Rm+1.

The piecewise linear model θ̂ is improved in every iteration by adding a new cutting

plane that is tangential at the current query point. Problem (2.28) operates on the

area under the graph of the piecewise linear model, the hypograph of θ̂:

hypo(θ̂) :=
{

(λ, r) ∈ Rm+1 : r ≤ θ̂(λ)
}
. (2.29)

By construction we have that rk+1 = θ̂(λk+1) ≥ θ̂(λ) ≥ θ(λ) and the positive quantity

δ := rk+1 − θ(λk) = θ̂(λk+1)− θ(λk) ≥ 0 (2.30)

is the nominal increase in iteration k if θ̂ was an accurate model of θ. We have that

δ + θ(λk) = rk+1 ≥ θ(λ) for all λ, which means that

δ + θ(λk) ≥ max
λ

θ(λ) ≥ θ(λk) (2.31)

so if δ is small then θ(λk) is a good approximation of the dual optimum and we can stop.

The sequence (rk) is non-increasing and it can be shown that if (λk) is bounded then

it converges to the dual optimum, rk ↓ maxλ θ(λ) [40]. The Cutting Plane Algorithm

is stated below, and an exemplary application with dimension m = 1 is visualized in

Figure 2.2.

Algorithm 2.2 (Cutting Plane Method) Input: k = 0, λ0, and tolerance ε > 0

1. Find x(λk), s(λk) = −h(x(λk)) and θ(λk) by solving (2.17)

2. Add a cut to (2.28). Set k = k + 1 and solve (2.28) for rk+1 and λk+1

3. If δ = rk+1 − θ(λk) < ε then terminate, else go to 1

An inherent weakness of the cutting plane method is its instability. Problem (2.28) is

obviously feasible, but not necessarily bounded. For instance, after the first iteration
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λ

r, θ(λ)

λ2 λ3

r2

r3

θ

Figure 2.2: Exemplary application of the cutting plane method to maximise the non-
smooth function θ(λ). In iterations k = 0, 1 two supporting hyperplanes were found
and addded to the piecewise linear model θ̂. The hypograph of θ̂ is colored in gray.
Solving (2.28) gave (r2, λ2) and another hyperplane was generated from query point
λ2. It cuts off the dark gray area of the hypograph. Solving (2.28) again gives (r3, λ3).

the model θ̂ consists of a single plane, and without imposing bounds on r or λ we

get r2 = ∞. Stability is an issue of practical importance. An example in Chapter

XV in [47] shows that to obtain an accuracy of δ < ε2 for θ(λ) := min{0, 1 − ‖λ‖}
one requires O((1

ε )
m) iterations. The model θ̂ is too optimistic and encourages too

large steps in λ. To overcome this issue and stabilise the cutting plane method is the

objective of proximal bundle methods.

Proximal Bundle Methods. Bundle methods are an adaptation of the cutting

plane method: a stability center λ̂ is chosen, and the next iterate is required to be close

to that center. There are different ways of implementing the proximity restriction:

level, trust-region and penalty stabilization [47]. Here we focus on the popular penalty

method, in which the cutting plane problem (2.28) is replaced by the following stabilised

problem.

max
λ,r

r − 1
2(λ− λ̂)TM(λ− λ̂) (2.32)
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s.t. r ≤ θ(λi) + s(λi)
T (λ− λi) ∀i = 1, . . . , k

(λ, r) ∈ Rm+1.

Here M is an appropriate scaling factor. A popular choice is M = tI, where I is the

m-dimensional identity matrix and t > 0 is a steplength parameter which controls how

close the next iterate stays to the stability center. If t varies from one iteration to

another, we refer to this as a variable steplength bundle method. For more general

choices of M the approach is called variable metric bundle method. The expected

increase in iteration k is now defined in terms of the stability center λ̂ as δ := rk+1−θ(λ̂),

and if the actual increase of the dual function is larger than a given proportion κ ∈ [0, 1)

of that,

θ(λk+1)− θ(λ̂) ≥ κδ, (2.33)

then the step is deemed successful and the stability center is updated as λ̂ = λk+1.

Such steps are called serious steps. Otherwise the stability center remains the same,

but the cutting plane model is still updated. Such steps are known as null steps. The

bundle algorithm is stated below.

Algorithm 2.3 (Bundle Method) Input: k = 0, M , κ ∈ [0, 1) λ0 = λ̂, and ε > 0

1. Find x(λk), s(λk) = −h(x(λk)) and θ(λk) by solving (2.17)

2. Add a cut to (2.32). Set k = k + 1 and solve (2.32) for rk+1 and λk+1

3. If θ(λk+1)− θ(λ̂) ≥ κδ then set λ̂ = λk+1

4. If δ + ‖M(λk+1 − λ̂)‖ < ε terminate, else go to 1

Besides testing whether the expected increase is small, the termination criterion of this

method also tests if the change in the dual iterate is small. The need for a stricter

termination criterion is motivated by the fact that (2.31) does not hold any more if we

obtain δ from solving the stabilised cutting plane model (2.32). Bundle methods can be

shown to converge to a maximum of the dual problem in a finite number of iterations.

In practical applications their efficiency depends a lot on the choice of the scale matrix

M or the step size parameter t. More information on bundle methods and proofs of

these results can be found in [47, 40, 49].
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2.2.2 Dantzig-Wolfe Decomposition

DW decomposition was introduced in 1960 as a technique for linear programming [42].

Its application results in an algorithm which is known as column generation. Like

LR it offers a tool to separate complicating or binding constraints from the constraint

matrix and solve a simpler subproblem iteratively to arrive at the solution of the orig-

inal problem. However, it is restricted to the case of linear and mixed integer linear

programming. DW decomposition relies on the observation that a polyhedron can be

expressed as a convex combination of its extreme points. The presentation below is

based on [41, 50]. Consider the following primal problem

min
x
cTx s.t. Ax = b, Dx = d, x ≥ 0, (2.34)

which is a special linear case of (2.14) with f(x) = cTx, X := {x : Dx = d, x ≥ 0}
and complicating constraints hj(x) := Ajx − bj = 0 for j = 1, . . . ,m. For simplicity

we assume that the feasible set X is non-empty and bounded, which holds for the UC

applications considered in Chapters 3 and 4. For the unbounded case we refer to [41].

In the bounded case, X can equivalently be represented as a convex combination of

its finitely many extreme points {x̂i}i∈I , i.e. for every x ∈ X there is an alternative

representation with

x =
∑
i∈I

x̂iwi,
∑
i∈I

wi = 1, w ≥ 0, (2.35)

where w are convex weight variables and I is a finite index set of extreme points of

X . If we define âi := Ax̂i and ĉi := cT x̂i for i ∈ I and substitute for x in the original

problem (2.34), we obtain an equivalent master problem (MP):

z∗ := min
w

∑
i∈I

ĉiwi (2.36)

s.t.
∑
i∈I

âiwi = b∑
i∈I

wi = 1, w ≥ 0.

The original problem and the MP are equivalent in that their optimal objective values

z∗ are identical. However, their feasible polytopes differ combinatorially. A given set
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of weights w implies a unique solution x, but not vice versa. In most applications,

X has a large, often exponential number of extreme points, so that it is not efficient

to enumerate them. Instead, we work with a small subset of columns in I, and the

corresponding version of (2.36) is called restricted master problem (RMP). Additional

extreme points are identified in the optimization process and added into the RMP as

columns, hence the name column generation. The optimality criterion is the same as

in the Simplex algorithm: in every iteration, the pricing step is to find a non-basic

variable to enter the basis. Assuming that we have a subset of columns such that the

RMP is feasible, let λ̄, σ̄ be its dual optimal solution. If there is a feasible point x̂i ∈ X
with negative reduced cost, that is,

c̄i = cT x̂i − λ̄TAx̂i − σ̄ < 0 (2.37)

then the RMP objective value can be improved if it enters the basis. Testing if such a

point exists amounts to solving another linear problem:

c̄∗ := min
x

{(
cT − λ̄TA

)
x− σ̄ : Dx = d, x ≥ 0

}
. (2.38)

This is called pricing problem, subproblem, oracle or column generator. If c̄∗ ≥ 0 then

the previous optimal solution of the RMP is also optimal for the MP. Otherwise, if

−∞ < c̄∗ < 0 the optimal solution of (2.38) is an extreme point x̂i of X and we add the

column
[
cT x̂i, (Ax̂i)

T , 1
]T

to the RMP. After adding the column, the RMP is solved

again and the new column can be assigned a positive weight. The RMP is solved over a

smaller feasible region than the original problem, so its intermediate solutions z̄ provide

upper bounds on the optimal objective value z∗. Additionally, it can be shown that

the MP’s objective value can decrease at most by the reduced cost, which results in the

following bounds [51]:

z̄ + c̄∗ ≤ z∗ ≤ z̄. (2.39)

The Dantzig-Wolfe decomposition or ColGen method is summarised in the statement

below.

Algorithm 2.4 (Column Generation) Input: k = 0, columns
[
ĉTi , â

T
i , 1
]T
, i ∈ I

1. Find zk, λk, σk by solving the RMP (2.36)
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2. Find c̄k and xk by solving the pricing problem (2.38)

3. If c̄k ≥ 0 terminate, else set k = k + 1, add
[
cTxk, (Axk)

T , 1
]T

and go to 1.

Mixed-Integer Column Generation. The termination criterion in this statement

is based on non-negativity of reduced costs, which implies optimality. However, in

practical applications it can take many iterations to achieve this. If an ε-optimal

solution is sufficient, one can terminate when the relative optimality gap is sufficiently

small: −c̄
k

zk
< ε. This is of particular interest if ColGen is applied in the mixed-integer

case. In the following we assume that some of the variables x must take binary values,

as will be the case for the UC applications discussed in Chapters 3 and 4. For a more

generic view of ColGen in the case with general integer variables, see Vanderbeck [50].

Let

X̃ := {x : Dx = d, x ≥ 0, xj ∈ {0, 1}, j ∈ J} . (2.40)

To apply the Dantzig-Wolfe algorithm we can use a convexification approach. Instead

of working with X̃ , we use its convex hull conv(X̃ ). This is a natural extension of the

ColGen algorithm, as the MP already operates on the convex hull of its columns. To

ensure that the columns are extreme points of X̃ , we only need to adapt the pricing

problem:

c̄∗ := min
x

{(
cT − λ̄TA

)
x− σ̄ : Dx = d, x ≥ 0, xj ∈ {0, 1}, j ∈ J

}
. (2.41)

Algorithm 2.4 can be used with this mixed-integer pricing problem. However, on ter-

mination of the ColGen method, z∗ is now an optimal solution of a convex relaxation

of the original problem. It provides a lower bound on the optimal objective value of the

original mixed-integer problem because X̃ ⊂ conv(X̃ ). Heuristics are typically used to

find integer feasible solutions x̃, and any such solution provides an upper bound cT x̃ on

the optimal objective function. The gap between upper and lower bounds can be closed

by branching on the RMP, that is, the ColGen procedure can be embedded in a Branch

& Price framework by repeating it at every node of a partial enumeration tree [52].

A variety of branching rules have been proposed for Branch & Price algorithms [53].

When branching is performed, it is often preferable to do this on x rather than the

weight variables w [41]. To branch on x, the following operations need to be performed
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on the master- and subproblems.

• When a branching decision is made, columns with contradictory decisions are

removed from the RMPs at the child nodes. The set of columns at the parent

node is divided in two sets to be used at the first and second child, respectively.

We will see below that in some cases the pricing problem is split into multiple

subproblems, in which case the column sets at child nodes are non-disjoint subsets

of the parent set because not all original variables appear in every column.

• To avoid that the pricing problem generates eliminated columns again at the child

node, appropriate constraints must be added to it. If branch decisions are made

with respect to original variables x they can be added directly to the pricing

problem.

The Branch & Price procedure stops when the gap between upper and lower bounds

satisfies a given tolerance.

Ties with Lagrangian Relaxation. In the linear and mixed-integer linear case,

LR and DW decomposition are different approaches to achieve the same effect. In the

following we briefly review a result which shows that they are dual to one another.

Consider the RMP (2.36) and let λ and σ be the multipliers of the complicating con-

straints and the convexity constraints, respectively. The LP dual of the RMP is then

given by

max
λ,σ

bTλ+ σ (2.42)

s.t. âTi λ+ σ ≤ ĉi i ∈ I

(λ, σ) ∈ R|I|+1

We know that strong duality holds for linear problems [51, 46], so for a primal optimal

solution x̄ =
∑

i∈I x̂iw̄i of (2.36) and a dual optimal solution (λ̄, σ̄) of (2.42), we have

z̄ = cT x̄ = λ̄T b+ σ̄. (2.43)
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Now consider the Lagrangian dual function of problem (2.34):

θ(λ) = min
x∈X

[
cTx− λT (Ax− b)

]
(2.44)

For a given vector of multipliers λ̄, σ̄, we obtain from (2.38) and (2.43) that the

Lagrangian lower bound is given by

θ(λ̄) =
(
λ̄T b+ σ̄

)
+ min

x∈X

(
cT − λ̄TA

)
x− σ̄ = z̄ + c̄∗. (2.45)

By comparing this bound to (2.39) we find that the lower bounds obtained from ColGen

and LR are the same. Additionally, we can observe that evaluating the Lagrangian dual

function (2.44) is the same as solving the pricing problem (2.38). The same terminology

applies in both cases, that is, evaluating (2.44) is also referred to as subproblem, oracle

or column generator.

The LP dual of the master problem can be reformulated further. We perform a

change of variable r := σ + bTλ, r ∈ R and use this to eliminate σ = r − bTλ from

(2.42) and obtain the following equivalent problem:

max
λ,r

r (2.46)

s.t. r ≤ ĉi − λT (âi − b) i ∈ I

(λ, r) ∈ R|I|+1

It is now easy to see that this problem and the cutting plane problem for the Lagrangian

(2.28) are identical. Every cutting plane is derived from a dual solution λi, i ∈ I. If

we let x̂i ∈ argminx L(x, λi) and then substitute θ(λi) = cT x̂i − λTi (Ax̂i − b) and

s(λi) = −h(x̂i) = b−Ax̂i into (2.28), then we obtain (2.46). This means that applying

ColGen to solve the original problem is the primal equivalent of applying the cutting

plane method to the Lagrangian dual problem. The duality of the cutting plane and

ColGen methods permits us to cross-apply different methods. Techniques developed for

one application can be applied in the other and vice versa. For example bundle methods

can be applied to stabilise ColGen, and our application described in Chapter 3 will

make use of that. The resulting algorithm is sometimes referred to as bundle column
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generation [15]. Similarly, branching rules applied to RMPs of mixed-integer problems

in the context of Branch & Price can also be applied to the corresponding cutting plane

problem to close the duality gap of Lagrangian relaxation [3].

The Decomposition Principle. In the previous paragraph we have seen that eval-

uating the Lagrangian dual function is the same as solving the subproblem of DW

decomposition. In Example 2.1 we demonstrated a case where the constraint matrix of

this subproblem is block-diagonal, but we have not shown formally how to exploit this.

Exploiting separability of the subproblem is what makes LR and ColGen decomposition

techniques attractive, and we now show how to do this. Assume that the feasible set

X = {x : Dx = d, x ≥ 0} is separable, that is,

D =


D1

. . .

DK

 , d =


d1

...

dK

 . (2.47)

Then we can subdivide x = (x1, . . . , xK)T and write X k :=
{
xk : Dkxk = dk, xk ≥ 0

}
for k = 1, . . . ,K. Each of the subsets X k can be represented independently by the con-

vex hull of its extreme points, indexed by Ik. The objective function is also separable,

with cTx =
∑K

k=1 c
kTxk. If we write âki = Akx̂

k
i and ĉki = ckT x̂ki for the columns, and

wki for the weight variables of the k-th subsystem, then the RMP becomes:

min
w

K∑
k=1

∑
i∈Ik

ĉkiw
k
i (2.48)

s.t.

K∑
k=1

∑
i∈Ik

âkiw
k
i = b

∑
i∈Ik

wki = 1, wk ≥ 0 ∀k = 1, . . . ,K.

If we take σk to represent the multiplier of the k-th convexity constraint, then the

pricing step amounts to solving the following K independent subproblems for a given

set of multipliers λ̄, σ̄:

c̄k∗ := min
xk

{(
ckT − λ̄TAk

)
xk − σ̄k : Dkxk = dk, xk ≥ 0

}
∀k = 1, . . . ,K. (2.49)
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The ColGen algorithm now terminates when c̄k∗ ≥ 0 for all k = 1, . . . ,K. Otherwise we

add a new column to the RMP for an optimal solution xk∗ of every pricing subproblem

(2.49) with c̄k∗ < 0. The optimal solution of the RMP is now z̄ = λ̄T b+
∑K

k=1 σ̄
k, and

the bounds on the optimal objective value of the original problem are

z̄ +
K∑
k=1

c̄k∗ ≤ z∗ ≤ z̄. (2.50)

The dual of the RMP is the same cutting plane problem as before, where we introduce

a new cut for every column that is added to the RMP:

max
λ,r

K∑
k=1

rk (2.51)

s.t. rk ≤ ĉki − λT
(
âki − b

)
∀k = 1, . . . ,K, i ∈ Ik

(λ, r) ∈ R|I|+K .

With these alterations the pricing problem consists of K independent, smaller sub-

problems which can be solved in parallel if the computational environment permits

it.

2.2.3 Progressive Hedging

PH is a decomposition technique that was developed by Rockafellar and Wets [16] to

decompose stochastic optimization problems by scenarios. It is proven to converge to

an optimal solution if it is applied to continuous, convex stochastic problems. Due to its

easy implementation, PH is also a popular choice for large-scale mixed-integer problems,

including UC problems [19]. However, it remains a heuristic when applied in those cases:

although valid lower bounds can be obtained in any iteration [18], there is no guarantee

that an integer optimal primal solution is found. PH requires the non-anticipativity

condition to be written as a constraint, as demonstrated in Section 2.1.2. It uses an

augmented Lagrangian function to relax the non-anticipativity constraints and make

the problem separable by scenarios. Consider the following stochastic problem:

min
x,y

∑
s∈S

psfs(xs, ys) (2.52)
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s.t. (xs, ys) ∈ Xs ∀s ∈ S

xs − x̄ = 0 ∀s ∈ S

which we obtain by re-writing (2.6) with fs := cTxs + dTs ys and Xs := {(xs, ys) ≥ 0 :

Axs = b, Tsxs + Wsys = rs}. We choose a two-stage formulation to keep the notation

simple, however, PH can also be applied to multi-stage problems. The augmented

Lagrangian for problem (2.52) is given by

LA(x, y, λ, µ) :=
∑
s∈S

[
psfs(xs, ys)− λTs (xs − x̄) + 1

2µ‖xs − x̄‖22
]
. (2.53)

In addition to the linear Lagrangian term with multipliers λ, the augmented Lagrangian

uses a quadratic penalty term with a scalar penalty parameter µ > 0. A simple al-

gorithmic scheme can be devised for augmented Lagrangians, which is similar to the

subgradient method for Lagrangians described in Section 2.2.1. The following multiplier

update is derived from first order optimality conditions for the augmented Lagrangian

dual problem [46]:

λk+1
s = λks − µ(xks − x̄k) ∀s ∈ S. (2.54)

The convergence properties of augmented Lagrangians are superior to those of La-

grangians: finite values of µ are sufficient to achieve convergence to a dual optimal

solution λ∗ and a primal optimal solution (x∗, y∗) [46]. In practical applications it is

common to use a positive, finite but increasing sequence of penalties (µk). At every it-

eration k, after updating the multipliers λk, the next primal candidate solution (xk, yk)

is found by solving the subproblem

min
(x,y)∈X

LA(x, y, λk, µk) (2.55)

to evaluate the augmented Lagrangian dual function at λk. With the augmented La-

grangian from (2.53) this subproblem is not separable by scenarios due to the quadratic

term binding scenario specific variables xs to the common target variables x̄. To achieve

separability in PH, the target variables x̄ are replaced with a fixed value x̂ which is
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estimated from the previous iteration’s solution:

x̂ :=
∑
s∈S

psxs. (2.56)

After replacing the common targets in the augmented Lagrangian with a fixed estimate,

it becomes separable: instead of (2.55) we can solve the following subproblems for all

scenarios s ∈ S:

min
(xs,ys)∈Xs

[
psfs(xs, ys)− (λks)

T (xs − x̂) + 1
2µk‖xs − x̂‖22

]
. (2.57)

Although the common targets are set to the expected value of the previous iteration,

PH is proven to converge to an optimal solution in linear time if the stochastic problem

is convex [16]. The PH algorithm can be summarised as follows:

Algorithm 2.5 (Progressive Hedging) Input: k = 0, λ0 = 0, µ0 = 0, ε > 0

1. Find (xks , y
k
s ) for s ∈ S by solving (2.57)

2. Calculate x̂k =
∑

s∈S psx
k
s

3. If
∑

s∈S ps‖xks − x̂k‖ < ε then terminate

4. Else set λk+1
s = λks − µk(xks − x̂k) ∀s ∈ S, µk+1 ≥ µk, k = k + 1 and go to 1.

The termination criterion is based on primal feasibility. In the mixed-integer case,

additional measures are required to accelerate convergence and detect non-convergence.

These are discussed in [19], along with alternative termination criteria and strategies

for choosing a sequence (µk).

2.3 Generation Unit Commitment

The UC problem is to find a cost-minimal schedule of startup and shutdown decisions

for a given set of generation units. Typically the units considered in this problem

are smaller than a whole power plant, i.e. a large coal power plant may consist of

multiple steam turbines that can be started individually. For each unit, the decision

to have it on or off in any discrete time step is of binary nature, which makes the

problem combinatorial. The units have fixed and variable running costs: the fixed cost
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is typically referred to as no-load cost while the variable cost is called marginal cost or

generation cost and is often modelled as linear, PWL or convex quadratic function of

the unit’s power output. Usually the units incur additional costs when they are started

up, and many models have additional binary variables for these startups, and some

also use binaries for shutdowns [9]. The following constraints are present in most UC

models:

• Load balance constraints ensure that the total power infeed into the system is

equal to the demand at all times.

• Reserve constraints require the system to keep sufficient backup capacity in part-

loaded or quick-start generators or pump storage units. Reserve may be split with

respect to the time frame in which it is available, i.e. spinning and non-spinning.

Some models also make a distinction between primary and secondary frequency

response and other, slower reserve products. These are explained in more detail

in Chapter 4.

• Power output bounds impose lower and upper output limits on the units when

they are on.

• Polyhedral constraints establish the connection between on-off, startup and

shutdown variables if more than one set of these are included in the model.

• Minimum up/downtime requirements force units to stay on (off) for a min-

imum amount of time after a startup (shutdown), to avoid increased wear and

tear of the turbines due to differential expansions.

• Ramp rate constraints limit the rate of change in each unit’s power output.

Additionally, UC models sometimes contain approximate or aggregated versions of the

transmission or distribution grid, interconnectors with other networks, pump storage

reservoirs and renewable supplies, the output of which cannot be planned but is weather

dependent. The following section contains a basic MIP formulation of a UC problem

with the constraints named above. In Chapter 4 we extend this formulation with a

network model and a pump storage model to suit the British power system. The

formulation shown here uses all three types of binary variables discussed above. An
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overview of our notation is also given below. Sets are in calligraphic font, parameters

are Latin and Greek capitals, and variables are lower case Latin or Greek letters.

Superscripts are used to extend variable names, while subscripts are indices. The

planning horizon is t = 1, . . . , T , and where the statement shows or implies variables

for t ≤ 0, they are fixed input data rather than actual variables.

2.3.1 Algebraic Model Statement

Sets

G: set of generation units

Parameters

Dt: length of a single time step [here: 1h]

Cnlg : no-load cost of generator g [$/h]

Cmg : marginal (linear) cost coefficient of generator g [$/MWh]

Cstg : startup cost of generator g [$]

fg: cost function of generator g [$/h]

P demt : real power demand in period t [MW]

Pmin,maxg : minimum (maximum) generation limit of generator g [MW]

P rest : real power reserve requirement in period t [MW]

P ru,rdg : operating ramp up (down) limits of generator g [MW/Dt]

P su,sdg : startup (shutdown) ramp limits of generator g [MW/Dt]

T : last time period of the planning horizon

T u,dg : minimum uptime (downtime) of generator g [Dt]

Variables

αgt ∈ {0, 1}: 1 if unit g is on in period t, and 0 if it is off

γgt ∈ {0, 1}: 1 if unit g is started up in period t, and 0 otherwise

ηgt ∈ [0, 1]: 1 if unit g is shut down in period t, and 0 otherwise

pgt ≥ 0: real power output of generator g in period t [MW]

Using the notation described above, the basic deterministic UC model reads as follows.

min

T∑
t=1

∑
g∈G

(
Cstg γgt +DtCnlg αgt +DtCmg pgt

)
(2.58)
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subject to the following constraints.

• Load balance and spinning reserve equations for all t = 1, . . . , T

∑
g∈G

pgt = P demt (2.59)

∑
g∈G

(
αgtP

max
g − pgt

)
≥ P rest (2.60)

• Generator bounds for all g ∈ G, t = 1, . . . , T

Pming αgt ≤ pgt ≤ Pmaxg αgt (2.61)

• Polyhedral/Switching constraints for all g ∈ G, t = 1, . . . , T

αgt − αg(t−1) = γgt − ηgt (2.62)

1 ≥ γgt + ηgt (2.63)

• Minimum up- and downtime constraints for all g ∈ G, t = 1, . . . , T

t∑
i=t−Tu

g +1

γgi ≤ αgt (2.64)

t∑
i=t−T d

g +1

ηgi ≤ 1− αgt (2.65)

• Ramp rate constraints for all g ∈ G, t = 2, . . . , T

pgt − pg(t−1) ≤ P rug αgt−1 + P sug γgt (2.66)

pg(t−1) − pgt ≤ P rdg αgt + P sdg ηgt (2.67)

The objective (2.58) is to minimise the total cost of electricity generation, consist-

ing of startup, no-load and linear cost factors. Load balance constraints (2.59) require

supply and demand to be balanced at all times, and spinning reserve constraints (2.60)

impose a lower limit on the total headroom provided by part-loaded generation units.

This is the simplest way of formulating a requirement for spinning or online reserve.
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State αgt αg(t−1) γgt ηgt

Startup 1 0 1 0
Shutdown 0 1 0 1
Cont. Off 0 0 0 0
Cont. On 1 1 0 0

Table 2.1: Integer solutions of constraints (2.62) and (2.63), and the operational state
associated with them. Without (2.63), the cases where a generator is continuously off
or on are ambiguous with respect to the values of γgt and ηgt, as those can either both
be one or both be zero. When generators are off for two consecutive periods, the startup
costs make solutions with γgt = ηgt = 1 suboptimal. However, when they are on for
successive periods, the right hand side of ramp rate constraints (2.66) and (2.67) are
relaxed by setting γgt = ηgt = 1, so there is an incentive for that which may outweigh
the startup cost. To eliminate solutions where startup and shutdown variables are both
one, constraints (2.63) need to be included.

In our GB model described in Chapter 4 we formulate separate requirements for on-

line reserve and frequency response, which was omitted here as it requires additional

variables. Minimum and maximum stable generation limits (2.61) establish the logical

connection between power output variables and on-off variables: if a generator is off its

power output must be zero, while if it is on it has to operate between its stable limits

0 < Pming < Pmaxg . Polyhedral or switching constraints (2.62) and (2.63) express the

logical connection between on-off variables, startup and shutdown variables. Table 2.1

shows the four operational states which satisfy these constraints.

The model with all three variables (α, γ, η) is what Ostrowski et al [9] call the 3-

Binary Variable Formulation. It is a popular way of formulating MIP UC models since

it has a very tight LP relaxation. The integrality restriction of either startup variables

γ or shutdown variables η can be relaxed and it follows from (2.62) that the relaxed

variables must take integer values. We relax shutdown variables η, since this gives the

best performance with our dataset and solver.

Minimum up- and downtimes for each generator are expressed as (2.64) and (2.65),

using Rajan’s and Takriti’s facet defining cuts [11]. They can be interpreted as follows:

For any period t ∈ {1, . . . , T} and generator g ∈ G, constraints (2.64) say that the

generator can only have been switched on once in the T ug preceding periods, and if that

is the case then it must be on in period t. On the other hand, if it is off in period t

then it cannot have been switched on in any of the T ug preceding periods. Constraints
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(2.65) work identically for downtimes: the generator can only have been switched off

once in the T dg periods preceding t, and if that is the case then it must be off in period

t. On the other hand, if it is on in period t then it cannot have been switched off in

any of the T dg preceding periods

Ramp rate constraints (2.66) and (2.67) impose upper limits on the change in power

output between adjacent periods. Constraints (2.66) say that if a generator was already

on in period t− 1 (αg(t−1) = 1, γgt = 0) then it may ramp up by at most P rug in period

t, while if it is being started up in period t (αg(t−1) = 0, γgt = 1) it may ramp up

from zero to at most P sug . On the other hand, constraints (2.67) say that if a generator

continues to be on in period t (αgt = 1, ηgt = 0) then it may ramp down by at most

P rdg , while if it is being shut down in period t (αgt = 0, ηgt = 1) it may ramp down

from at most P sdg to zero. The distinction between ramp rates for continuous operation

and startup/shutdown procedures is necessary to avoid infeasibilities if the data is

such that the generators’ minimum stable limits are larger than the ramp rates. For

the model above, it is necessary that P sug , P sdg ≥ Pming but it is not necessary that

P rug , P rdg ≥ Pming . This workaround is required because in terms of the above model

a generator is available and operating above its minimum stable limit as soon as its

startup variable takes a value of one. In more accurate models, generators follow a

startup trajectory after being switched on, and may operate at output levels below

their stable limit while doing so [54]. However, data on startup trajectories is not

available to us, so we use the approximate model shown here.

2.3.2 Stochastic Formulations

The deterministic UC formulation given in the previous section can easily be extended

to a stochastic one. To do so, we choose a scenario formulation because

• With the non-anticipativity property written as constraints, the necessary struc-

ture for scenario decomposition is already there. We merely need to apply LR or

DW decomposition.

• To switch between a two-stage and a multi-stage recourse model, it is sufficent to

adapt the scenario data and the non-anticipativity constraints. The rest of the

model need not be altered.
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Let S be the set of scenarios and let αgts, γgts, ηgts and pgts be the decision variables

associated with scenario s ∈ S. In the case studies in Chapters 3 and 4 the source of

uncertainty are renewable infeeds. For now we assume that they enter the model on

the right-hand side through uncertain residual demand to be satisfied by conventional

generators. Let the demand in scenario s ∈ S be given by P demts . Then the constraint

set for each scenario is given by

Xs :=

(αs, γs, ηs, ps)

∣∣∣∣∣∣
∑
g∈G

pgts = P demts , (2.60) to (2.67), ∀g, t

 (2.68)

Here (αs, γs, ηs, ps) denotes the vector of decision variables for all g ∈ G and t = 1, . . . , T

but for a specific scenario s. We assume that Xs ⊂ {0, 1}3|G|·T ×R|G|·T+ , i.e. the variable

restrictions are implicit in Xs. Note that Xs still includes the reserve constraints (2.60)

because reserve is also kept for reasons other than dealing with wind uncertainty, e.g.

to deal with outages. Additionally, let

fg (αgts, γgts, ηgts, pgts) := Cstg γgts +DtCnlg αgts +DtCmg pgts, (2.69)

and let πs be the probability of scenario s ∈ S. Then the extensive formulation of the

SUC model is given by

min
α,γ,η,p

∑
s∈S

πs

T∑
t=1

∑
g∈G

fg (αgts, γgts, ηgts, pgts) (2.70)

s.t. (αs, γs, ηs, ps) ∈ Xs, ∀s ∈ S (2.71)

αgts = ᾱgbt, ∀g ∈ G, b ∈ B, s ∈ Sb, t = tstb , . . . , t
end
b (2.72)

pgts = p̄gbt, ∀g ∈ G, b ∈ B, s ∈ Sb, t = tstb , . . . , t
end
b (2.73)

The scenario bundles are b ∈ B, with start times tstb and end times tendb and subsets of

bundled scenarios Sb. Non-anticipativity constraints for commitment variables αgts and

power output variables pgts are formulated in terms of common target variables ᾱgbt

and p̄gbt. Note that non-anticipativity constraints for γgts and ηgts are not required: in

the presence of constraints (2.62) and (2.63), non-anticipativity of on-off variables αgts

implies non-anticipativity of γgts and ηgts as well.
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In analogy to the example shown in Figure 2.1 (Section 2.1), these data structures

can be used to shape a suitable decision tree to obtain a multi-stage SUC problem.

In the multi-stage problem, generator commitments and their power outputs can be

updated after every scenario split, i.e. they are updated on an intraday basis. On the

other hand, their commitments and power outputs have to be identical for all bundled

scenarios s ∈ Sb at all times tstb , . . . , t
end
b . For this formulation to work, the realisations

of the uncertain parameter must be identical for bundled scenarios:

P demts1 = P demts2 ∀t, s1, s2 : ∃b ∈ B : t ∈ {tstb , . . . , tendb } ∧ s1, s2 ∈ Sb (2.74)

Scenario sets S which satisfy this property are said to form a scenario tree. The

process that is used to generate the data P demts for the scenario tree typically consists of

three steps: scenario sampling, reduction and scenario tree construction. The central

responsibility of the scenario tree construction step is to ensure property (2.74) for

a pre-defined tree structure. Scenario sampling, reduction and tree construction are

explained in more detail in Chapter 4.

Two-stage SUC formulations have a different structure: in a two-stage model, the

first stage decisions are the commitments αgts of conventional generators, while the

recourse decision is the output level pgts at which to operate them. This is true for

the whole planning horizon of the problem which, in our case, covers 24 hours. The

commitment schedule is typically made well in advance of the beginning of the problem

horizon, i.e. a schedule made between noon and 4pm on one day will usually become

active at midnight. This scheduling approach is referred to as day-ahead unit commit-

ment. To obtain the corresponding model, we drop constraints (2.73) and include (2.72)

for a single bundle, that is, B = {b0} with tstb0 = 1 and tendb0
= T and Sb0 = S. Unlike in

the multi-stage formulation, scenarios for the uncertain parameter do not have to form

a scenario tree, i.e. they do not have to satisfy property ( refeq:ScenTreeProperty).

Using a scenario formulation for two-stage SUC models is only sensible if the prob-

lem is solved by a scenario decomposition approach. If it is solved e.g. by applying

Branch & Bound to the extensive formulation, it is typically more efficient to formulate

it with first stage variables αgt, γgt, ηgt which are common to all scenarios, while the only

second-stage variables are pgts for scenario-specific recourse actions. In the two-stage
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version of our British UC model described in Chapter 4, there are also integer deci-

sions on the second stage, because pump storage and open-cycle gas turbine (OCGT)

commitments are recourse actions. Other examples of two-stage and multi-stage SUC

models are described in Goez et al [4].

Non-Anticipativity and Degeneracy. Non-anticipativity constraints in UC prob-

lems typically have a high degree of redundancy which causes dual degeneracy. In

the numerical examples in Chapter 3 we explore the extent of dual degeneracy and

its effect on scenario decomposition methods which rely on the dual solution of the

non-anticipativity constraints. In the following we briefly demonstrate typical causes

of degeneracy.

Consider equations (2.61) with lower and upper stable generation limits 0 < Pming <

Pmaxg . With α being binary, these imply the following relation between power output

and on-off variables:

pgts = 0⇔ αgts = 0 and pgts ∈
[
Pming , Pmaxg

]
⇔ αgts = 1 (2.75)

This means that non-anticipativity of p variables implies non-anticipativity of α vari-

ables. Consequently, constraints (2.72) are redundant in the presence of constraints

(2.73). However, we find that if an appropriate dual stabilisation technique is ap-

plied, scenario decomposition techniques can be more successful when both types of

non-anticipativity constraints are present.

An additional cause of redundancy are the minimum up- and downtime constraints:

non-anticipativity of αgts for all s ∈ S often implies non-anticipativity of αg(t+k)s, for

some integer k smaller than the minimum up- and downtime. Unlike the former cause,

this also affects two-stage models which only contain non-anticipativity constraints

on αgts. There is no easy way of finding a non-redundant subset of constraints that

guarantees non-anticipativity, so the solution techniques must be able to deal with

redundant constraints.

In the GB model described in Chapter 4 there are additional variables which require

non-anticipativity constraints, e.g. variables for pump storage operation or reservoir

levels. Often these are related to other variables in a way that will make it sufficient
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to include non-anticipativity constraints only for a subset of them. We select a subset

for which we include the constraints, such that the solution is guaranteed to be non-

anticipative. The selection is based on performance of the decomposition method.

The subset still contains redundant constraints, and how redundancy and the resulting

degeneracy affect our decomposition method is explored in the following chapter.



3

Scenario Decomposition of UC Problems

In this chapter we develop and test a practical DW scenario decomposition algorithm

for stochastic UC problems with two or more stages. First, we state a simple ColGen

algorithm for this class of problems. Then we explain how dual regularisation and

initialisation can be used to stabilise and hot-start our method, and derive a primal

heuristic to construct solutions quickly and accelerate convergence. Finally, we describe

our implementation and discuss results of a performance comparison of decomposition

and out-of-the-box Branch & Bound when applied to two-stage and multi-stage ver-

sions of our GB scheduling model. The results demonstrate how time savings through

decomposition increase rapidly with the number of scenarios included in the stochastic

model.

3.1 Dantzig-Wolfe Scenario Decomposition

DW decomposition was originally proposed for continuous linear programs with block-

angular structure of the constraint matrix. As demonstrated in Section 2.2.2, the

underlying idea is to exploit separability of the subproblem after removing a set of

binding constraints. This approach has been generalised to the mixed-integer linear

case, however there may be a non-zero duality gap after achieving convergence of the

master problem, in which case branching is required if the gap is to be closed. In

the following, we outline how mixed-integer DW decomposition can be applied to the

stochastic UC problem (2.70) to (2.73) to separate non-anticipativity constraints from

the remaining constraints of the problem and achieve separability by scenarios. Relax-

ing non-anticipativity to derive scenario decomposition schemes is a common concept in
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two-stage and multi-stage stochastic programming: Lagrangian decomposition [33, 55],

Progressive Hedging [16] and DW decomposition [32] have all been proposed to achieve

separability by scenarios. Progressive Hedging remains a heuristic when applied in the

mixed-integer case, but is still a popular algorithm in many such applications [19]. DW

decomposition and Lagrangian decomposition extend naturally to the mixed-integer

case since the master or cutting plane problems can be branched on. However, in the

following sections we will show that for the stochastic UC problems in our examples,

sufficiently small optimality gaps can be achieved without branching.

The DW Master Problem for Scenario Decomposition. Here we follow the ap-

proach explained in Section 2.2.2 to construct a basic scenario decomposition algorithm

for the stochastic UC problem. To apply DW decomposition to the SUC problem, we

first replace the original problem by an MP. The MP solves a relaxation of the original

SUC problem by constructing convex combinations of individual scenario subproblem

solutions. These convex combinations satisfy the non-anticipativity constraints. For all

scenarios s ∈ S, let conv(Xs) be the convex hull of feasible points of scenario s. Also,

let Is be the index set of extreme points of conv(Xs). In typical UC formulations Xs
is bounded and Is is finite, and throughout the remainder of this chapter we assume

that this holds true. The extreme points are used as columns in the MP: at the i-th

extreme point of conv(Xs), let the on-off, startup, shutdown and power output decisions

of generator g at time t be denoted by Agtsi, Γgtsi, Hgtsi and Pgtsi, respectively. For all

s ∈ S, i ∈ Is we record the operational cost of the corresponding column,

csi :=
∑
g∈G

T∑
t=1

fg (Agtsi,Γgtsi, Hgtsi, Pgtsi) , (3.1)

and introduce a convex weight variable wsi. Then the MP for scenario decomposition

can be stated as

min
w,ᾱ,p̄

∑
s∈S

πs
∑
i∈Is

csiwsi (3.2)

s.t.
∑
i∈Is

Agtsiwsi = ᾱgbt, ∀g ∈ G, b ∈ B, t = tstb , . . . , t
end
b , s ∈ Sb (3.3)

∑
i∈Is

Pgtsiwsi = p̄gbt, ∀g ∈ G, b ∈ B, t = tstb , . . . , t
end
b , s ∈ Sb (3.4)
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∑
i∈Is

wsi = 1, ∀s ∈ S (3.5)

w ≥ 0, ᾱ, p̄ free. (3.6)

As in the original problem, the objective (3.2) is to minimise the expected total cost.

The non-anticipativity constraints for convex combinations of individual columns are

(3.3) and (3.4). We denote their dual variables by λαgbts and λpgbts, and they can be

interpreted as a price for deviation from the bundle’s common commitment decision or

common power output decision, respectively. The duals of constraints (3.5) are denoted

by σs.

Choosing a Formulation of Non-Anticipativity Constraints. Artificial target

variables ᾱgbt and p̄gbt are retained as variables in the MP. Instead of using a non-

anticipativity formulation with artificial common target variables, we could use either

the chain formulation (2.11) or formulation (2.12). In a chain formulation, the multipli-

ers would be a price for pairwise non-anticipativity violation between scenario couples,

while in the third formulation they would be a price for deviation from the decision

of a pre-selected central scenario. A number of other formulations are possible, and

scenario decomposition algorithms can be derived from all of them. Here we focus on

the approach with common target variables, as we find that it requires less iterations

to converge to an optimal solution than e.g. a chain formulation. A possible interpre-

tation of this observation is that dual information is spread faster and more flexibly

among the bundle if a common target formulation is used, however, an in-depth inves-

tigation of this hypothesis is outside the scope of this study. The use of common target

variables does not increase the amount of degeneracy: in comparison to the alternative

formulations without target variables there is exactly one additional equality constraint

and one additional variable, so the dimensions of both, the primal and dual feasible

spaces remain unchanged.

Restricting the Column Set. The number of extreme points |Is| can be expected

to be large: for a given scenario s, Figure 3.1 illustrates a projection of the convex hull

conv(Xs) onto the space of α and p variables. This is done for a very simple case where

there is only a single generator and time period and the feasible set is described only
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0

Pmin

Pmax

0 1 α

p

Figure 3.1: Projection of the convex hull conv(X̌s) of feasible points of a single scenario
s onto the space of α and p variables. This is shown for a case where there is only a single
generator and time period, and the feasible set is described by minimum and maximum
stable generation limits Pmin and Pmax only. There are three extreme points.

by minimum and maximum stable generation limits:

X̌s =
{

(αs, γs, ηs, ps) ∈ {0, 1}3|G|·T × R|G|·T+

∣∣∣ Pming αgts ≤ pgts ≤ Pmaxg αgts

}
. (3.7)

In this simple case the convex hull of feasible points has three extreme points per

scenario, so with |G| generators and T time periods there will be O
(
3|G|·T

)
extreme

points per scenario (assuming that there are no additional constraints that link the

generators). The exact number of extreme points depends on the other constraints

modelled in Xs, but in general an exponential number of extreme points has to be

expected. Instead of enumerating all columns in Is for each scenario s ∈ S, we work

with a reduced subset of columns in the RMP. To determine whether the restricted

solution is optimal for the original MP, we check for every scenario s ∈ S if there are

any solutions in Xs which can improve the RMP’s objective value. Let (λαs , λ
p
s, σs)

be the dual RMP solution for scenario s. Then the reduced cost of column i ∈ Is of

scenario s ∈ S is given by

c̄si := πscsi −
∑
g∈G

∑
b∈B:s∈Sb

tend
b∑
t=tstb

(
λpgbtsPgtsi + λαgbtsAgtsi

)
− σs. (3.8)

The RMP objective value can be improved if this is negative for any scenario s ∈ S.

For each scenario, finding the smallest reduced cost amounts to solving the s-th pricing
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subproblem, given by:

min
(αs,γs,ηs,ps)∈Xs

πs

T∑
t=1

∑
g∈G

fg (αgts, γgts, ηgts, pgts) (3.9)

−
∑
g∈G

∑
b∈B:s∈Sb

tend
b∑
t=tstb

(
λpgbtspgts + λαgbtsαgts

)
− σs.

Assuming that the subproblems can be solved to optimality, their solutions yield the

minimum reduced cost for all scenarios. If any of these are negative, the corresponding

solutions are added as columns to the RMP. Otherwise we terminate with an optimal

solution of the MP.

Overview of the Method. The ColGen procedure avoids solving the MP with all

extreme points of conv(Xs), s ∈ S, whose number is prohibitively large. We start with

a small number of columns in the RMP. Every time a new set of columns is added,

we solve the RMP again, pass its new dual solution to the subproblems and repeat. A

flowchart for the basic ColGen method is shown in Figure 3.2. The solution method

described in this section is essentially an application of the algorithm described in [32] to

the SUC problem. However, to arrive at a practical version of this algorithm, additional

analysis is required, including a dual reformulation of the RMP.

Since the MP is a convex relaxation of the SUC problem, solving it provides a lower

bound on the optimal objective value [41]. Any feasible solution of the SUC gives an

upper bound, and the optimal solution gives the best possible upper bound. The gap

between the best upper bound and the lower bound from the optimal MP solution is

the duality gap. In practice the gap getween the best known bounds is bigger than

the duality gap: the optimal solution of the SUC may not have been found and only

a lower bound on the optimal MP solution may be known. If the obtained gap is

not sufficiently small it may be necessary to perform branching on the RMP [53]. If

the overall gap is too large because there is a positive duality gap then branching will

always be necessary. However, if the gap is too large because a suboptimal primal

solution has been found, heuristics can be a cheaper alternative than branching to find

better solutions and upper bounds. In all examples on which we tested our algorithm,

it achieved sufficiently small gaps at the root node of the Branch & Price tree, so no
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Initialise RMP

Solve RMP

Solve Pricing

Any red. costs < 0?

Terminate

Add columns with
neg. red. cost to RMP

λ

columns

no

yes

Figure 3.2: Flowchart for the basic ColGen method. On termination, we obtain the
solution of a convex relaxation of the original SUC problem. The gap between the best
known integer solution and the solution of the relaxation can be closed by branching
on the variables of the original problem and repeating this ColGen procedure at each
node of the Branch & Price tree.

branching was ever needed.

3.2 Practical Aspects of Scenario Decomposition

A plain ColGen procedure as described above has practical drawbacks which affect its

convergence speed. The following problems are common in ColGen applications and

need to be accounted for by appropriate algorithmic modifications. The names are due

to Vanderbeck [53].

1. Heading-in effect. In the first iterations the RMP lacks a sufficient variation of

columns to produce good primal and dual solutions.

2. Plateau effect. While multiple dual optimal solutions exist, the primal RMP

solution is often observed to remain constant over multiple iterations.

3. Bang-bang effect. Dual RMP solutions jump from one extreme value to another

and cause fluctuations in the convergence of the lower bound.

4. Tailing-off effect. After some initial progress, many additional columns need to

be generated before optimality can be proven.

We address the former two effects by deriving a powerful heuristic to find primal solu-

tions and hot-starting our procedure with dual estimates from an LP relaxation. The
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latter two issues are alleviated by using a proximal bundle method to stabilise the dual

iterates. Since deterministic UC problems are challenging problems themselves, the

subproblems cannot always be solved to optimality, and we explain how this is handled

in our approach. For a description of simpler alternative stabilisations, see [41].

3.2.1 Dual Stabilisation of the RMP

In the previous chapter we have seen that LR and DW decomposition are closely related:

both can be used to obtain separability in the same way, and both give the same lower

bound for a given set of multipliers. If the Lagrangian dual problem is solved by a

cutting plane algorithm, the LR and ColGen procedures are identical since the RMP

and the cutting plane problem form a primal-dual pair of LPs. We work with the

cutting plane problem because it provides a natural motivation for dual stabilisation

via proximal bundle methods. Let λα be the dual variables of (3.3), λp the duals of

(3.4) and σ those of constraints (3.5). The stabilised cutting plane problem is given by

dRMP(ρ) : max
σ,λ

∑
s∈S

σs −
ρ

2

(
‖λp − λ̂p‖22 + ‖λα − λ̂α‖22

)
(3.10)

s.t. σs ≤ πscsi −
∑
g∈G

∑
b∈B:s∈Sb

tend
b∑
t=tstb

(
λpgbtsPgtsi + λαgbtsAgtsi

)
, ∀s ∈ S, i ∈ Is

(3.11)∑
s∈Sb

λpgbts = 0, ∀g ∈ G, b ∈ B, t = tstb , . . . , t
end
b (3.12)

∑
s∈Sb

λαgbts = 0, ∀g ∈ G, b ∈ B, t = tstb , . . . , t
end
b (3.13)

λp, λα, σ free. (3.14)

When ρ = 0 this is the LP dual of the RMP. The artificial variables ᾱgbt and p̄gbt

of (3.3) and (3.4) translate to dual constraints (3.12) and (3.13), respectively. These

constraints force non-anticipativity multipliers to sum up to zero among bundled sce-

narios. They remove the additional dimension introduced to the dual problem by having

one additional non-anticipativity constraint in every bundle (in the non-anticipativity

formulation with common target variables). The maximum possible value of
∑

s σs

subject to constraints (3.11), (3.12) and (3.13) gives an upper PWL approximation
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to the original SUC problem’s Lagrangian dual function, and when the Is contain all

extreme points of conv(Xs) it gives the exact Lagrangian dual function [40, 41]. Every

column of the RMP corresponds to one supporting hyperplane. Without a sufficient

variety of cutting planes (3.11), the PWL model of the Lagrangian is too optimistic

and encourages too large dual steps. The duals λα and λp are unrestricted and have

zero coefficients in the objective, so arbitrarily large values are possible if they are com-

pensated for by small values which ensure that (3.12) and (3.13) hold. The columns or

cuts generated from such large multipliers are usually not meaningful in that they do

not form part of a good primal solution.

With ρ > 0 the procedure is stabilised through the quadratic bundle term centered

on the current dual iterate (λ̂α, λ̂p). Controlled by the steplength parameter ρ, the

stabilised problem dRMP(ρ) strikes a balance between maximising the current PWL

model of the Lagrangian and not moving too far from the last successful iterate. It

produces a candidate solution (λ̃α, λ̃p) which we either accept by setting (λ̂α, λ̂p) :=

(λ̃α, λ̃p) (serious step) or reject by keeping the old iterate (null step). The step is

accepted if the new iterate improves the current lower bound on the MP solution, which

corresponds to a choice of κ = 0 in Algorithm 2.3. Irrespective of whether the step is

accepted or rejected, cutting planes are added to dRMP(ρ) for all subproblem solutions

which have negative reduced cost. After adding the cuts, dRMP(ρ) is solved again. For

additional convergence improvements, we use a variable steplength logic: we increase

ρ if the lower bound has deteriorated, keep it constant if the bound has improved, and

decrease it if the bound has not improved over multiple iterations. Additional stability

is gained by allowing the subproblems to add multiple cutting planes with negative

reduced cost in every iteration.

3.2.2 Lower Bounds for the MP

The Lagrangian dual function for our SUC problem is

θ(λα, λp) = min
(α,γ,η,p)∈X

∑
s∈S

πs

T∑
t=1

∑
g∈G

fg (αgts, γgts, ηgts, pgts)

−
∑
g∈G

∑
b∈B

∑
s∈Sb

tend
b∑
t=tstb

(
λαgbts(αgts − ᾱgbt) + λpgbts(pgts − p̄gbt)

)
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(3.12,3.13)
=

∑
s∈S

min
(αs,γs,ηs,ps)∈Xs

πs T∑
t=1

∑
g∈G

fg (αgts, γgts, ηgts, pgts)

−
∑
g∈G

∑
b∈B:s∈Sb

tend
b∑
t=tstb

(
λαgbtsαgts + λpgbtspgts

)
=

∑
s∈S

θs(λ
α
s , λ

p
s), (3.15)

and for feasible multipliers λα and λp this provides a lower bound on the optimal

MP value. The terms in ᾱ and p̄ vanish due to dual constraints (3.12) and (3.13),

respectively. For given multipliers λα, λp and σ, we have that θs(λ
α
s , λ

p
s) = c̄∗s + σs, so

the lower and upper bounds z and z̄ on the optimal MP objective value z∗ are given by

z := θ(λα, λp) =
∑
s∈S

(σs + c̄∗s) ≤ z∗ ≤
∑
s∈S

σs =: z̄. (3.16)

The lower bound is obtained by solving the pricing subproblems (3.9) and adding their

reduced costs to the current RMP objective value z̄. For the special choice λα = λp = 0,

the scenario subproblems are solved independently under perfect information, and the

resulting bound z is called the expected value under perfect information. The gap

between the optimal SUC objective value and this bound is known as the expected

value of perfect information (EVPI).

We solve the subproblems (3.9) with a Branch & Cut solver and since they are large

MIPs, optimality cannot always be guaranteed. The solver terminates with a set of

(sub)optimal solutions and a lower bound on the objective, i.e. the reduced cost. Let

this bound be c̄lbs ≤ c̄∗s. Then, instead of (3.16) we use

z = z̄ +
∑
s∈S

c̄lbs (3.17)

as a valid lower bound for the MP. To decide if the (sub)optimal solutions should be

added as columns to the RMP, we evaluate their reduced costs individually and test

them for negativity. The termination criterion for the ColGen procedure is adapted to

allow for subproblem non-optimality: we stop when the following overestimate of the

relative MP gap

δMP :=
−∑s∈S c̄

lb
s

z̄
(3.18)
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satisfies a pre-defined optimality tolerance. The smallest achievable gap δMP depends

on the MIP gaps of the pricing subproblems.

3.2.3 Dual Initialisation of the RMP

In presence of the quadratic stabilisation term, dRMP(ρ) can theoretically be solved

without any cutting planes at all, if additional box constraints on σs are used to prevent

unboundedness of the objective. In that case the resulting dual solution is the provided

initial point (λ̂α, λ̂p), and the first pass of ColGen is performed with these multipliers.

A simple dual initial guess which requires no additional effort is λ̂α = λ̂p = 0, and this

can be used to cold-start the ColGen procedure. The first lower bound is then given

by the objective value under perfect information and the upper bound is determined

by the box constraints on σs, so can be expected to be poor. The method would

proceed by producing a series of poor upper bounds until there is a primal feasible

(non-anticipative) solution among the generated columns. However, this can take many

iterations. Additionally, the initial lower bound will also be poor unless the EVPI is

small. The convergence process can be sped up significantly if better initial upper and

lower bounds are obtained by

1. Providing a good initial estimate of the multipliers (λ̂α, λ̂p).

2. Providing initial columns among which there is a non-anticipative solution.

In this section we describe how we obtain the initial dual iterate, while the next section

is dedicated to finding a primal feasible solution.

We obtain an initial dual point by solving the LP relaxation of the original SUC

problem and extracting its dual solution. This can be done in different ways: we can

solve the extensive formulation of the SUC problem’s LP relaxation or apply the same

scenario decomposition as in the integer case. In Section 3.3 we report on test results

with different strategies. Due to the redundancy of non-anticipativity constraints, the

dual solutions of the LP relaxation of the extensive form are similarly degenerate as

those of the RMP. We explore the effect of using different dual optimal solutions of the

relaxation as starting points for the ColGen algorithm. This requires control over the

obtained dual solution. In the following we outline briefly how a quadratic penalty term

can be included in the primal relaxed problem in order to obtain dual optimal solutions
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Figure 3.3: Dual stabilisation of the initial LP relaxation. We dualise the initial LP
to include a quadratic penalty term on some of the dual variables. The obtained QP
is then dualised again to obtain its primal equivalent and thus reveal how to dually
stabilise a primal problem without explicitly formulating its dual.

of various sizes. This is more convenient to implement than a dual reformulation of the

SUC problem’s LP relaxation. The approach is visualized in Figure 3.3.

The penalty term is centered on zero and favours dual solutions of least magnitude.

This idea is similar to centering the proximal term in dRMP(ρ) on zero by simply

initialising λ̂α = λ̂p = 0. However, in the absence of a sufficient number of cutting

planes this can shrink the dual solution, and if zero is a bad multiplier estimate this will

hinder progress by suppressing the generation of useful solutions. The SUC relaxation,

on the other hand, can be thought of as a ColGen problem in which all possible columns

have been generated. This is equivalent to saying that all cutting planes have been

included in the corresponding dual, in which case the criterion of choosing the smallest

optimal multipliers is more sensible.

Consider the following primal-dual pair of linear programs where the primal has

two sets of equality constraints.

min cTx (3.19)

s.t. Ax = b

Bx = d

x ≥ 0

max bTγ + dTλ (3.20)

s.t. ATγ +BTλ ≤ c

γ, λ free
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Here γ are the dual variables associated with Ax = b, and λ are the dual variables

associated with Bx = d. We assume that these are degenerate in that there is a

continuum of dual optimal solutions λ. To favour dual solutions of smaller magnitude,

we include a quadratic penalty term with a small µ > 0 in the dual problem, giving

(3.22). Then we obtain the equivalent primal formulation of the stabilised dual by

dualising it again. The primal quadratic problem corresponding to (3.22) is given by

(3.21).

min cTx+ 1
2µλ

Tλ (3.21)

s.t. Ax = b

Bx+ µλ = d

x ≥ 0, λ free

max bTγ + dTλ− 1
2µλ

Tλ (3.22)

s.t. ATγ +BTλ ≤ c

γ, λ free

In problem (3.21) the variables λ are equal to the dual variables of constraints Bx +

µλ = d. To make it easier to interpret this stabilised primal problem, we can write it

equivalently as (3.23), with λ̃ = µλ.

min cTx+ 1
2µ λ̃

T λ̃ (3.23)

s.t. Ax = b

Bx+ λ̃ = d

x ≥ 0, λ̃ free

min cTx (3.24)

s.t. Ax = b

x ≥ 0

In problem (3.23), λ̃ = d − Bx is the violation of constraints Bx = d. This violation

must be paid for in the objective, but its price decreases if µ is increased. In the SUC

problem, λ̃ is bounded, so we have 1
2µ λ̃

T λ̃ → 0 for µ → ∞. This means that – for

large µ – the constraints Bx = d are relaxed, because violating them is free. Thus

the solution of (3.23) converges to the solution of (3.24), and the dual variables of the

relaxed constraints approach zero: λ = 1
µ λ̃→ 0. It is the value of these dual variables

that we are after, so µ must be chosen with care. We use the magnitude of the violation,

‖λ̃‖2, to measure if the level of µ is appropriate. If it is non-negligible, then µ is too

large.
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We use this approach to regularise the duals of the non-anticipativity constraints in

the LP relaxation of the SUC problem: We choose a perturbation level µ and include

copies of the dual variables λα and λp in the objective and the non-anticipativity

constraints of the primal problem. The resulting stabilised SUC LP relaxation is shown

below.

LPR(µ) : min
α,γ,η,p

∑
s∈S

πs

T∑
t=1

∑
g∈G

fg (αgts, γgts, ηgts, pgts) (3.25)

+
µ

2

(
‖λp‖22 + ‖λα‖22

)
s.t. (αs, γs, ηs, ps) ∈ Xs, ∀s ∈ S (3.26)

αgts + µλαgbts = ᾱgbt, ∀g ∈ G, b ∈ B, s ∈ Sb, t = tstb , . . . , t
end
b (3.27)

pgts + µλpgbts = p̄gbt, ∀g ∈ G, b ∈ B, s ∈ Sb, t = tstb , . . . , t
end
b (3.28)

3.2.4 MIP Heuristics

A central issue of LR and DW decomposition for mixed-integer problems is that integer

primal solutions may not be found unless the master problem is branched on [41].

Primal solutions are required to find upper bounds for the problem and eventually

solve it, and we use MIP-based heuristics to construct them. This is done in the

beginning of the ColGen process: the results discussed in Section 3.3 confirm that the

decomposition is sped up significantly if a good solution is known early on.

A Schedule Combination Heuristic. Our core heuristic is a MIP-based schedule

combination (SC) heuristic which constructs a non-anticipative solution for the SUC

problem. It is inspired by Takriti and Birge’s refinement heuristic for deterministic

problems [56]. The idea is to solve the SUC problem as a MIP, but with the solution

space reduced to a set of pre-defined schedules. Here a schedule is a plan of binary

on-off decisions for a single generator g for the whole planning horizon t = 1, . . . , T .

Let ng be the number of known schedules for generator g and Ãgjt the on-off decision at

time t under its j-th schedule. Note that Ãgjt has no scenario index s, since the same

universe of schedules is used for all scenarios. We formulate a stochastic mixed-integer

schedule selection problem, which – under every scenario – picks one of the schedules for

each of the generators, subject to satisfying non-anticipativity. It uses weight variables
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wgjs which take a value of one if generator g chooses schedule j under scenario s, and

zero otherwise. The schedule selection problem is obtained by adding variables wgjs

and the following constraints to the original SUC problem:

ng∑
j=1

wgjsÃgjt = αgts, ∀g ∈ G, t = 1, . . . , T, s ∈ S (3.29)

ng∑
j=1

wgjs = 1, ∀g ∈ G, s ∈ S (3.30)

wgjs ∈ {0, 1}, ∀g ∈ G, s ∈ S, j = 1, . . . , ng. (3.31)

Constraints (3.29) ensure that if schedule j is chosen for generator g under scenario s, its

binary decisions αgts are equal to Ãgjt at all times t = 1, . . . , T . For a given generator

g and scenario s, constraints (3.30) say that exactly one of the binary weights wgjs

can be one, while all others are zero. The weights are then said to form a specially

ordered set of order 1 (SOS1). As the generators must follow their chosen schedules

for the whole planning period, some of the constraints which are typically formulated

in Xs can be dropped. For instance minimum up/down times will be satisfied by every

schedule, so the constraints are no longer required.

The schedules Ãgjt are generated through ColGen iterations: after solving the sub-

problems, we add all distinct schedules that appear in their solutions to Ãgjt. This

is done individually for each generator g ∈ G. Schedules from different scenario sub-

problems are pooled in Ãgjt and made available to all other scenarios. Thus scenarios

can exchange their own schedule for one proposed by another scenario on a generator-

by-generator basis. The tests confirm that this produces good solutions even if Ãgjt

is populated from a pass of ColGen with multipliers λα = λp = 0, i.e. a perfect fore-

sight solution. However, better solutions are obtained if the multipliers are such that

they encourage the subproblems to generate schedules which are a compromise between

bundled scenarios. The SC heuristic can be used to:

1. Initialise dRMP(ρ) with a non-anticipative solution: we populate Ãgjt from sub-

problem solutions of the first pass of ColGen, performed with multipliers equal

to zero or estimated from LPR(µ).

2. Find solutions during the ColGen process: in every iteration, Ãgjt is extended by
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new schedules from the subproblems. The heuristic is repeated and improving

solutions are added to dRMP(ρ).

The SC problem is solved with a general purpose MIP solver. We apply integrality

restrictions to the SOS1 weights wgjs and relax the on-off variables, since this improved

solver performance. Additionally, the problem is pre-processed: we iterate over all on-

off variables, and whenever the schedule set allows this generator only to be on or only

to be off at a certain time, the corresponding variable is fixed and removed from the

problem. For generators with only one schedule, the weights and on-off variables are

all fixed and eliminated. In the test runs described in Section 3.3, roughly 70% of the

weights and on-off variables are eliminated in this way.1

An Over-Commitment Heuristic. MIP solvers typically use local search heuris-

tics to improve upon existing solutions, and it is often beneficial for the convergence

speed if a reasonable initial solution is constructed and provided as input. To do this

for the SC problem, we use a cheap heuristic which attempts to repair a conflicting

schedule obtained from the scenario subproblems. It generates a non-anticipative solu-

tion by committing more than the required generation capacity. This over-commitment

heuristic works as follows:

1. Estimate values for λα and λp, e.g. by solving LPR(µ) or setting them to zero

2. Solve the column generator subproblems with these dual estimates

3. Consider the obtained schedule: for each generator g, proceed in chronological

order t = 1, . . . , T :

• Find bundles b covering period t, whose members s ∈ Sb disagree on the

commitment αgts

• For all members s ∈ Sb of these bundles, set αg(t+k)s := 1 with k =

0, . . . , T ug − 1, where T ug is the min up-time

4. The schedule is now non-anticipative. Solve a dispatch with fixed binaries to

check feasibility.

1It is possible to rely on the solver’s presolve phase to do this, but we choose not to.
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The results of this heuristic can violate minimum down-times, in which case the solution

is repaired by eliminating too short down-times and keeping the generators on instead.

The solution quality depends on the multiplier estimate. For λα = λp = 0, many

schedule adjustments are necessary and we obtain expensive solutions, while estimating

the multipliers from LPR(µ) leads to few adjustments and nearly optimal solutions.

Steps 1. and 2. are required before solving the SC heuristic anyway, so applying

the over-commitment heuristic adds only a negligible computational cost. For multi-

stage UC problems we obtain reasonable starting solutions with both, λα = λp = 0

and multipliers estimated from LPR(µ). The quality of the obtained solution depends

on the EVPI: for problems with non-negligible EVPI zero is not a good multiplier

estimate, and estimating them from LPR(µ) gives better solutions, while for problems

with negligible EVPI zero works well, too. For two-stage problems many adjustments

are necessary when using the over-commitment heuristic, and the following approach

usually performs better.

Constructing Solutions for Two-Stage Problems. In the two-stage setting it

is straigtforward to construct a solution which can be used as starting point for the

SC heuristic. It is possible to solve a deterministic problem, e.g. with an average or

low wind scenario, and find the recourse action for the obtained schedule by solving

scenario-specific dispatch problems. Feasibility of the approach is guaranteed if the

model has relatively complete recourse. In the GB model which we use for our tests,

this is warranted by the fact that load shedding and not satisfying reserve are viable

options on the second stage. For our test runs, we initialise the SC problem with

a solution obtained from a deterministic problem which was augmented with a few

additional power output variables. The additional variables are used to approximate

the recourse cost: they inform the problem that sufficient capacity must be scheduled

to cope even with the lowest wind scenario, or additional costs will be incurred to

satisfy the remaining demand via standby reserve. Despite the additional variables,

the computational effort is similar to a simple deterministic problem.

These cheaper heuristics are used to provide an initial solution to the SC heuristic.

In the following we refer to the SC heuristic including initialisation from one of these

approaches simply as the heuristic.
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3.2.5 The Stabilised Scenario Decomposition Algorithm

Our scenario decomposition scheme for SUC problems is summarised in Figure 3.4.

It solves the DW master problem at the root node of a Branch & Price tree. Dual

stabilisation and initialisation techniques are included, as well as the heuristic used

to find integer feasible solutions. In all numerical tests the gap between the best

integer SUC solution and the RMP objective value was within our required optimality

tolerance after solving the root node, so no branching was performed. If branching is

necessary, the ColGen procedure can be repeated at every node of the Branch & Price

tree, with appropriate modifications so that the master- and subproblems comply with

the branching decisions.

3.3 Numerical Experiments

We implemented the ColGen procedure shown in Figure 3.4 and tested it on two-stage

and multi-stage versions of our central scheduling model based on the GB power system,

with 24 hour-long time steps and up to 50 wind power scenarios. The model has a 30%

wind penetration in terms of installed capacity, 130 thermal units and four pump storage

plants with a total of 16 pump-turbines. It uses a loss-free real power transmission

network model with 17 zones and 27 transmission links between them. Additional

restrictions limit the sum of transmissions across a pre-defined set of 17 boundaries. A

more detailed discussion of the model and corresponding data sources can be found in

Chapter 4. In this model all the uncertainty arises from the unpredictability of wind

generation. However, the decomposition technique applies equally well to cases with

unpredictable demands or contingency scenarios. The following sections give details of

our implementation and summarise our experience with the method.

3.3.1 Details of the Implementation

The decomposition method shown in Figure 3.4 is implemented as a script in AMPL

version 20120629 [57]. All LPs and MIPs are solved with CPLEX version 12.4 [58].

We perform the tests on a Dual 8 Core Dell Power Edge C6220 machine with 128

Gb RAM, running 64 bit Linux. The pricing problems are solved in serial, as parallel
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Input: iteration counter k ← 0, optimality tolerance ∆, stabilisation levels ρ, µ,
upper bound z̄0 ←∞, lower bound z0 ← −∞, gap δMP

0 ←∞, iterations until
repeating heuristic r, maximum number N of cuts added to dRMP(ρ) per
iteration per subproblem;

solve LPR(µ) to find λ̂α, λ̂p or set (λ̂α, λ̂p)← 0;
for s ∈ S do

solve subproblem (3.9) with λ̂α, λ̂p and σ = 0;
for g ∈ G do add new schedules from opt. subproblem solution to heuristic;
for the best subproblem solutions i = 1, . . . , N do

calculate c̄si from (3.8);
if c̄si < 0 then generate a cut and add it to dRMP(ρ);

end

end
calculate lower bound zk from (3.17);
repeat

if k mod r ≡ 0 then
run the heuristic to find ˜̄zk and (α̃k, γ̃k, η̃k, p̃k);
if ˜̄zk < z̄k then

set current best solution (z̄k, α
∗, γ∗, η∗, p∗)←

(
˜̄zk, α̃

k, γ̃k, η̃k, p̃k
)
;

calculate δMP
k from (3.18);

if δMP
k < ∆ then terminate;

for s ∈ S do generate a cut from α̃ks , p̃
k
s and add it to dRMP(ρ);

end

end
set k ← k + 1;

solve dRMP(ρ) to find (λ̃α, λ̃p, σ̃), z̄k and (αk, γk, ηk, pk);

if αk is integer then set current solution (α∗, γ∗, η∗, p∗)←
(
αk, γk, ηk, pk

)
;

for s ∈ S do

solve subproblem (3.9) with λ̃α, λ̃p, σ̃;
for g ∈ G do add new schedules from opt. subprob. solution to heuristic;
for the best subproblem solutions i = 1, . . . , N do

calculate c̄si from (3.8);
if c̄si < 0 then generate a cut and add it to dRMP(ρ);

end

end
calculate zk from (3.17) and δMP

k from (3.18);

if zk > zk−1 then set λ̂α ← λ̃α and λ̂p ← λ̃p;

until δMP
k < ∆;

Output: dual solution λ̂α, λ̂p, primal solution (α∗, γ∗, η∗, p∗), MP objective z̄;

Figure 3.4: Scenario decomposition method. The algorithm consists of an initialisation
loop and a main loop. The main loop contains the schedule combination heuristic which
is repeated every r iterations, and the stabilised ColGen logic.
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implementations are not supported by AMPL. However, we use the parallel option for

CPLEX, with a maximum of 16 threads. Up to 50 cuts are added to dRMP(ρ) per

iteration per subproblem if multiple solutions were found. We set the overall optimality

tolerance to ∆ = 0.1% and the subproblem tolerance to 0.05%, so that at most half of

the overall gap is due to the subproblem MIP gaps. In the following, we refer to solutions

as optimal if they satisfy the tolerance ∆. The overall gap strikes a balance between

computational effort and a sensible accuracy for scheduling under wind uncertainty:

on average, 0.1% of the daily cost corresponds to increasing the output by 36MW for

the duration of a day. In comparison, the uncertainty in a 3h wind forecast is 840MW,

while 24h ahead it is already 2.8GW.

When solving the SC heuristic problem, we relax the integrality of all variables

apart from the SOS1 weights, as this works best for CPLEX. The optimality tolerance

is left at its default of 0.01%.

3.3.2 Multi-Stage Results

Figure 3.5 shows timings for solving multi-stage stochastic problems with the ColGen

method, and solving the extensive form of the same model with CPLEX. We vary the

number of scenarios between 3 and 50 and the number of stages between 2 and 4, where

each stage covers 3 hours and the final stage covers the remainder of the 24 hours. On

small problems, CPLEX and our decomposition work similarly well, while on larger

instances the decomposition is superior. The behaviour of the decomposition method

suggests that the set of multi-stage test problems can be separated in two groups on

which different strategies lead to faster convergence:

1. Problems with negligibly small EVPI. For these ’easy’ problems, λ̂α = λ̂p = 0 is

a good estimate, so LPR(µ) is not solved. The SC heuristic finds optimal primal

solutions after being populated with schedules from a ColGen pass with zero

multipliers, and since the first lower bound is the expected value under perfect

information, the method terminates after a single iteration.

2. Problems with larger EVPI. If attempted to solve with zero initial multipliers,

these ’hard’ problems initially yield gaps between 0.5% and 1%. However, if we

solve them with multiplier estimates from LPR(µ), we still achieve the required
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tolerance of 0.1% in one iteration.

In the second case, the gap with zero multipliers is firstly due to a worse lower bound,

i.e. the EVPI being non-negligible, and secondly due to a non-optimal primal solution

obtained from the SC problem. The feasible region of the SC problem does not contain

an optimal primal solution unless a good multiplier estimate is provided. However,

estimating this with LPR(µ) is time consuming for large instances, and where possible

we avoid it by applying the following rule to separate easy problems from hard ones: we

first solve the subproblems with zero multipliers and use the overcommitment heuristic

to produce a primal solution. This provides an upper bound and a Lagrangian lower

bound, and if the gap between them exceeds 1% then the problem is hard, otherwise it

is easy. For easy problems we continue with the ColGen algorithm by solving the SC

heuristic, while for hard problems we first solve LPR(µ) and re-solve the subproblems

before continuing. The separation works well on all test cases: on hard problems the

gap between overcommitment solution and first lower bound was always at least 3%,

while easy problems seldomly reached 0.6%.

To estimate the proportion of hard and easy problems in our GB model, we evaluate

a pool of 3,000 multi-stage problems obtained from the long term rolling horizon study

described in Chapter 4. This showed that roughly 25% of the problems are hard, while

75% are easy. The timings in Figure 3.5 are weighted accordingly: every data point

corresponds to the average solution time of one hard problem and three easy ones, i.e.

they represent an expected solution time for an ’average’ problem. The same examples

were used to obtain CPLEX’s timings, but here the solution times are unaffected by

whether a problem is easy or hard for the decomposition.

Solving hard problems via decomposition requires solving LPR(µ) with CPLEX’s

barrier solver, whose CPU timings scale unfavourably in the number of scenarios (cf.

next section), and the overall solution times are affected by this. The other major factor

that contributes to the time spent in the decomposition is the SC problem, and solution

times for that are shown separately in Figure 3.5. The amount of parallelism in the

decomposition increases slightly in the number of scenarios: the CPU to elapsed time

ratio is between 3:1 on small problems and 4:1 on larger ones, and this increase is due

to the barrier solver which is used to solve LPR(µ) in the hard cases. Further parallel
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Figure 3.5: Elapsed times (left) and CPU times (right) to solve the multi-stage stochas-
tic problem to within 0.1% of optimality, plotted over the included number of scenarios.
We solved four different instances of each size of problem and show their average results.
The different curves show timings for solving the extensive formulation via CPLEX and
applying ColGen. Additionally, we show timings for solving the SC problem (SCHeur).

speedups are possible if the subproblems are solved in parallel. Without decomposition,

CPLEX achieves a larger increase in parallelism with the number of scenarios: the CPU

to elapsed time ratio increases from 3:1 to 6:1, so the superiority of the decomposition

is more evident on the CPU time graph.

The fact that an optimal solution is provided by the first SC problem suggests

another way of proving optimality: we pass the SC solution to CPLEX and ask it to

solve the extensive form with the given starting point, by solving an LP relaxation

at the root node and adding MIP cuts to tighten the bound. The resulting timings,

however, were not better than when solving the whole problem via CPLEX without an

initial solution, so we omit them here.

3.3.3 Two-Stage Results

Two-stage SUC problems are harder to solve than multi-stage problems. Figure 3.6

shows elapsed times and CPU times required to solve test cases with 3 to 50 scenarios.

As above, we compare the scenario decomposition method to solving the extensive form

via CPLEX. For the extensive form we use a single set of first stage variables instead of

scenario-specific copies and non-anticipativity constraints. Solution times are generally
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higher than in the multi-stage setting.

In our test set there were no two-stage cases with negligible EVPIs, so all cases are

’hard’ for the decomposition. Our ColGen method still converged in the first iteration,

however, to achieve this it was not sufficient to initialise the duals to zero. With

zero duals, the optimality gap achieved after solving the RMP for the first time is

typically 1.5% or worse. To find good initial dual estimates, we solve LPR(µ), and

Figure 3.6 includes separate timings for that and for solving the SC heuristic as well.

Both contribute significantly to the overall time required by the decomposition, and so

the time saving resulting from using decomposition instead of CPLEX is smaller than

in the multi-stage case. On the other hand, the ratio of decomposition CPU time to

elapsed time is now higher: it varies between 4:1 in the smallest case and 6:1 in the

largest case. This is due to CPLEX’s barrier solver which achieves high parallel speed-

ups when used to solve LPR(µ). Most of the time in the decomposition algorithm is

spent solving LPR(µ), and we experiment with the following alternative method to

estimate initial duals by solving the relaxation in a decomposed way:

1. Apply ColGen with λ̂α = λ̂p = 0 initially, but relax integrality restrictions of the

subproblems. Solve this relaxation to a gap of ∆ = 0.05%.

2. Use the final multipliers as initial stability center λ̂ for the integer decomposition.

The resulting duals are a better initial point for the integer decomposition than zero:

the gap obtained after solving the first master problem is typically 0.3%. Smaller gaps

can be achieved by solving the relaxation to a better accuracy than 0.05%, however the

convergence of both, relaxed and integer decomposition is slow, and eventually it takes

longer to solve the relaxation by ColGen than with CPLEX’s barrier solver. Overall,

we achieve better performance with LPR(µ), and the results in Figure 3.6 use the duals

from that.

As before, the SC heuristic scales well in the number of scenarios. However, it

requires good dual estimates: with schedules generated from a ColGen pass with λ = 0,

the SC heuristic solution is up to 0.2% worse than with dual estimates from LPR(µ).

After finding an optimal solution with the SC heuristic, we also try passing it to CPLEX

to prove optimality at the root node. Again, this approach is not competitive with out-

of-the-box CPLEX, so we omit the results here.
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Figure 3.6: Elapsed times (left) and CPU times (right) to solve the two-stage stochastic
problem to within 0.1% of optimality, plotted over the included number of scenarios. We
solved three different instances of each size of problem and show average performance
results. The different cases show timings for CPLEX and applying ColGen. We also
show time requirements for solving LPR(µ) and the SC heuristic (SCHeur), which
cause the majority of the time spent in the decomposition (besides ColGen passes).
For LPR(µ) we used µ = 10−6.

3.3.4 Convergence of Bounds

In the tests described in the previous sections, all problems were solved after a single

ColGen pass. The major computational work was in estimating a dual solution from

LPR(µ) and constructing a primal optimal solution with the heuristic. While this is

sufficient to obtain 0.1% gaps, more work is required to achieve smaller gaps. In the

following we briefly discuss convergence properties of CPLEX and the decomposition

method to a gap of 0.01%. In the decomposition this requires that subproblems are

also solved to a gap of 0.01%. Figure 3.7 shows the convergence of upper and lower

bounds as a function of elapsed time on a typical 50 scenario example.

The decomposition obtains the first lower bound after 15 minutes by solving LPR(µ)

with CPLEX’s barrier method. The lower bound is improved swiftly through a pass of

ColGen, i.e. an evaluation of the Lagrangian dual. The first upper bound is obtained

immediately thereafter, when an initial solution is constructed for the SC heuristic.

This bound is not shown on the graph since it exceeds $36.9M. The upper bound is

first improved when the SC heuristic finds a solution of roughly $36.86M which is also
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Figure 3.7: Convergence of upper and lower bounds in decomposition (3.7a) and in
CPLEX (3.7b), as a function of elapsed time. The shown example is one of the two-stage
50 scenario cases that were evaluated for the performance comparison in Figure 3.6,
however in this case we solve it to a much smaller gap.

the final solution the decomposition terminates with. At that stage the gap is below

0.1%, but it takes multiple iterations of column generation before the lower bound is

raised further. Finally, a gap of 0.007% is achieved after 4 hours, and the method

terminates.

CPLEX achieves the first lower bound after 2.5 hours, by solving the root relaxation

with a simplex method and adding the first set of MIP cuts. After another hour of root

node processing, the cut generation procedure improves the lower bound, and the MIP

heuristics produce the first good solution, which is then gradually improved. After 4

hours, CPLEX achieves a solution that is within 0.013% of optimality, however the

lower bound cannot be raised any further by adding MIP cuts. Branching is required

to close the gap, and this takes a very long time. After 12 hours, we have interrupted

CPLEX, and at this stage the bounds have not changed in comparison to those shown

on the graph: the procedure has stalled.

The example demonstrates the strengths of the decomposition in comparison to

CPLEX’s standard Branch & Cut procedure. The first bound and a near-optimal solu-

tion are obtained early in the process, resulting in an initial gap below 0.1%. CPLEX,

on the other hand, takes a lot longer to produce the first solution and lower bound. To
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achieve the 0.1% tolerance, it requires roughly 3.5 hours. Following the initial effort, the

decomposition takes a while to converge to the stricter 0.01% tolerance, and CPLEX

achieves almost the same accuracy in the same overall time (4 hours), by further im-

proving the primal solution. However, no more progress in the lower bound is achieved,

so that it stalls with a gap of 0.013%. At any time the gap of the decomposition method

is smaller than that of CPLEX.

We further explore the behaviour of CPLEX and the decomposition method when

requiring them to converge to very small gaps, by applying them to one of the test

problem sets used to obtain the results in Figure 3.6, with a target tolerance of 0.005%.

Both, CPLEX and the decomposition achieve the target for all but the two largest cases.

On the large cases, CPLEX stalls at an average gap of 0.01% and the decomposition at

0.006% due to subproblem non-optimality. In cases where the methods did not stall,

the elapsed time in the decomposition algorithm was on average half the time spent in

CPLEX. On average, 10 ColGen iterations were required.

Lower Bounds and optimal Cutting Planes. One of the major steps in the

convergence process of the decomposition is to construct an optimal primal solution,

and doing this is useful in its own right, since ultimately it is that solution which we

are after. Besides that, however, we also explore the effect of this optimal cutting plane

on the lower bound obtained with the duals produced by dRMP(ρ). To do this, we run

the ColGen method without providing dRMP(ρ) with a cutting plane derived from a

heuristically constructed primal solution. We compare the resulting lower bound to the

bound that would have been obtained from the first solve of dRMP(ρ) if the optimal

cutting plane had been included. The same stability center is used both times. For two-

stage problems, the bounds without the optimal cutting plane are between 0.5% and 3%

worse than the ones obtained with it. In multi-stage problems, excluding the optimal

plane leads to even worse lower bounds, some of which are negative. This demonstrates

that knowing an optimal primal solution is also beneficial to the convergence of dual

bounds.
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3.3.5 Initial Multiplier Estimates

Due to the redundancy of non-anticipativity constraints, their dual optimal solutions

are degenerate in the SUC problem and its relaxation. In Section 3.2.3 we introduced

LPR(µ) with µ ≥ 0 as a means of controlling the size of the initial multipliers. For

any small enough µ the obtained dual solution is optimal for the relaxation of the SUC

problem, i.e. if we solve the relaxed subproblems with these duals, we are guaranteed to

obtain a tight Lagrangian lower bound for the SUC relaxation. The results described

in the previous sections suggest that, at least with the employed value of µ = 10−6,

the optimal duals from LPR(µ) are also optimal for the integer SUC problem, and the

duality gap vanishes or is negligibly small. In this section we explore whether this is

the case for other values of µ.

Figure 3.8 shows the norm of the optimal duals of LPR(µ) as a function of µ for

a multi-stage and a two-stage example. On the secondary axis, we also map the non-

anticipativity constraint violation resulting from the same value of µ. The duals are

stable for various µ, but approach zero as the perturbation level is increased and the

non-anticipativity violation increases. The duals obtained with µ = 0 are not included

on the graphs for scaling issues: in the two-stage case their norm is twice as large as the

largest shown value, and in the multi-stage case it is 50 times larger. The duals in the

two cases shown on the graph are quite different: there are more duals in the two-stage

problem, covering all scenarios and time steps, and individual entries typically take

larger values, resulting in a much larger norm than in the multi-stage case.

In the two-stage example, we observed that any of the duals obtained with µ ∈
[0, 10−5] provide a good enough lower bound to terminate after the first ColGen pass.

For any values larger than that, the non-anticipativity violation increases swiftly, and

the obtained bounds are inferior, so that the decomposition does not terminate imme-

diately. Additionally, values of µ larger than 10−5 lead to increasingly worse primal

solutions found by the SC heuristic, because the non-anticipativity constraints are

partially relaxed and essential information is removed from the multipliers which are

needed to encourage the subproblems to produce useful schedules.

In contrast to the two-stage example, the shown multi-stage example is one of the

’easy’ cases for which zero duals produce a sufficiently tight lower bound, due to a
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(a) Effect of µ on λ in LPR(µ) (two-stage).
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Figure 3.8: Further results concerning the choice of µ in LPR(µ) in the two-stage
case (3.8a) and the multi-stage case (3.8b). The graphs show the effect of µ on the
magnitude of the dual solution ‖λ‖2 (left axes) and on the violation of non-anticipativity
constraints µ‖λ‖2 (right axes) in LPR(µ). The values shown here are taken from a nine
scenario example.

negligible EVPI. In this case any of the values for µ shown on the graph provided a

dual solution which proved optimality of the primal solution in the next ColGen pass.

The same is also true for duals obtained with µ = 0. The degenerate dual solutions of

vastly different size extracted from LPR(µ) all produce optimal bounds for the integer

SUC problem.

Since the duals estimated from LPR(0) were sufficient to obtain a gap of 0.1%

after the first ColGen iteration for both, two-stage and multi-stage problems, it may

appear unnecessary to control their size by choosing µ > 0. However, we observed that

on the larger 30 to 50 scenario cases, CPLEX’s barrier solver was roughly by a third

faster when using µ = 10−6 rather than µ = 0. Furthermore, the duals obtained with

µ > 0 appear to be a better initial stability center if additional ColGen iterations are

necessary: we observed that the first iterations with dRMP(ρ) can be unstable even

with ρ > 0, if duals obtained with µ = 0 are used as initial stability center and the

dRMP contains an unfavourable selection of cutting planes. When attempted to solve

to a smaller gap than 0.1%, some of the cases shown in Figure 3.6 obtained very low

Lagrangian bounds after solving dRMP(ρ) for the first time, and it took about ten
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iterations to find the next bound which was within 0.1%. We were able to remedy this

effect by forcing CPLEX not to estimate a MIP start from partial integer solutions

when solving the subproblems, i.e. forcing it to generate a different, more favourable

set of cutting planes. However, with initial duals estimated with µ > 0 the problem

never occurred – independent of the set of cutting planes. For these reasons we prefer

solving LPR(µ) with µ > 0.



4

Stochastic vs Deterministic Scheduling

In this chapter we discuss the added value of stochastic programming over determin-

istic programming in UC applications. To characterise properties of stochastic and

deterministic schedules and quantify the potential savings, we conduct a computa-

tional study with a UC model based on the British power system. After defining and

discussing the model formulation, we explain briefly how the data was obtained for it

and what assumptions were made in the modelling process. Wind power forecasts used

in this study were synthesised, and we explain the approach used to do that. We use a

time series model to sample wind power scenarios and a technique based on distances

between probability measures to reduce the number of scenarios and construct a tree.

Finally, we explain the rolling horizon approach that was used to evaluate the different

scheduling strategies, and then discuss their performance.

4.1 A Model of the British Power System

The UC model used in our rolling horizon evaluation is a central scheduling model based

on the British National Grid, including all transmission-connected hydro-thermal and

wind power supplies. The objective of this central planning model is to minimise the

cost of electricity generation to the economy. Although the UK currently follows a

practice of decentral or self-scheduling (cf. section below), we believe that for a study

of the value of stochastic scheduling, a central scheduling model is a good starting

point: it captures the effects of wind uncertainty on a local and national level and

puts them in relation to pump storage capacities and transmission capacities across the

whole system. The model can be used to assess the effects of wind power variability
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and forecast uncertainty on the power system as a whole, and how stochastic scheduling

can help to mitigate them. The centrally scheduled situation can provide a reference

model when comparing different market stuctures.

4.1.1 Production Cost Considerations

Electricity markets are operated in various different ways, depending on the regulatory

regime: there is a wide variety of market layouts, ranging from regulated monopolies to

free markets such as the European Energy Exchange (EEX). The current market layout

in Britain is decentral: generation companies schedule their assets individually, so as to

satisfy their demand contracts with maximum profitability. The schedule is reported

to National Grid, the nationwide transmission system owner and balancing authority,

who adjusts schedules for network feasibility and acquires reserve, response and other

ancillary services to balance the system. Power plants are charged for grid connection,

according to their location relative to transmission bottlenecks and demand centres.

On the other hand, they are recompensated if their schedules are altered because of

network issues. This results in a complicated multi-layer market structure with national

ancillary service markets and individual demand and generation contracts. Market

imperfections can be expected to exist in many of these layers, and the result of a

national, central schedule can be quite different from the outcome of the self-scheduling

process.

When approximating GB power systems operations with a central scheduling model,

we need to assign the production cost estimates with care. The simplest way of mod-

elling a central schedule is to assume perfect competition, in which case the offer price

made by generation companies is well represented by the marginal cost of generation.

This would result in relatively low prices and a situation in which generation companies

struggle to recover the capital cost of their assets. Since electricity is a capital intensive

product such a market setup is problemtic in the long term, as it discourages invest-

ments in new generation capacity. A possible workaround for this problem which has

been subject of political discussions in Britain is to establish a capacity market which

allows investors in new generation capacity to recover their capital cost. In a setup

with separate markets for generation capacity and electric energy one can argue that,

if there is sufficient competition the short-term energy price may largely correspond to
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the marginal cost of generation. However, electric energy is also a non-homogeneous

product: most large generation units require notification and startup periods before

they become available to generate, and only few can offer flexible generation that can

become available at short notice. At peak demand times these generators can be ex-

pected to have significantly higher market power than slow units, so if marginal cost

figures are used they are likely to underestimate the price of flexible generation. In our

evaluation of stochastic and deterministic scheduling techniques the relation between

the price of flexible and inflexible generation is of major importance since it determines

the cost of dealing with unforeseen situations and therefore has a direct effect on the

total cost achieved with the different scheduling techniques. Underestimating the price

of flexibility means to underestimate the added value of stochastic scheduling.

In our evaluation we use levelised cost estimates, which, besides marginal cost, con-

tain a markup for capacity cost, operation and maintenance cost and decommissioning

cost. This assumes that generation companies need to recover these costs on the short-

term electricity market and have the market power to do so. Like the marginal cost

model discussed above this will not lead to quite the same outcome as the current GB

self scheduling practice. However, due to the different long term average load factors of

slow base-load and flexible peak-load generators this produces a more realistic spread

between prices for different generation technologies and is less likely to underestimate

the price of flexibility. Since that is a major point in our evaluation we choose this

approach over the marginal cost approach.

4.1.2 Overview of the Model

Besides hydro, thermal and wind power generation, our UC model includes pump

storage capabilities and an aggregated representation of the transmission system with

generation zones and transmission links between them. There are limits on the power

flow under normal operation. These are expressed in terms of individual transmission

links and additional boundaries, each of which splits the network in two and imposes

a real power flow limit on the sum of transmissions crossing it in each direction. The

limits are derived by the network operator, using physical network feasibility criteria,

n-1 security and fault analyses [59]. The model contains pump storages which can

be used for providing ancillary services and storing wind energy. Each pump storage
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scheme is modelled as a closed reservoir system, connected to a single plant which

contains multiple pump-turbines. Wind power availability is treated as uncertain and

a scenario model is used to approximate its possible realisations. Excess wind power

can be curtailed at no cost. Load shedding is also permitted, but at a high cost. Our

formulation contains more technical detail than the models used in other studies such

as Tuohy et al [29] and Sturt and Strbac [31]. We model storage, flexible generation

capabilities and wind uncertainty at their relative location to network bottlenecks. This

allows us to capture both, local and system-wide effects of wind uncertainty and relate

them to the flexibility of the system in potentially congested situations.

In terms of thermal generation units we distinguish fast-start units from slow units.

Fast-start units are open-cycle gas turbines (OCGT) which can be started within the

hour. All other thermal units are categorised as slow and must be notified at least an

hour before they can become available to generate.

Following British practice, we distinguish between frequency response and reserve.

Response is fast-acting and is used to stabilise the frequency within seconds, e.g. in the

immediate aftermath of a fault, for up to 15 minutes. Reserve is used for two separate

reasons: to deal with errors in wind forecasts and to restore response capability by

freeing up used response after a failure. Reserve is required to be available for at

least an hour. While dedicated variables are needed for frequency response provided

by part-loaded generators, reserve can be modelled without additional variables. To

do this we formulate one quantity for response, and another quantity for the sum of

response and reserve. For pump storage units we use both, dedicated response variables

and combined reserve and response variables. Reserve and response are treated as soft

constraints, and we include piecewise linear (PWL) functions to penalise for providing

insufficient amounts of them. Since the boundary limits were set under contingency

considerations, reserve and response are modelled as system-wide services which are

not affected by them, i.e. we assume that the boundaries can be overloaded in a post-

contingency state where reserve and response are required.

Our day-ahead planning model is a two-stage stochastic model, while the intraday

model is a multi-stage stochastic model. We present a single model here, which can

be adapted to represent both situations, depending on the choice of non-anticipativity

constraints. A single-scenario version of the same model is used to perform deterministic
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scheduling and to evaluate existing schedules by solving a dispatch problem. A detailed

description of how we handle scheduling and dispatch with this model is given along

with the algebraic model description below and in Section 4.3.

An overview of our notation is given below, followed by an algebraic model state-

ment. We use the same conventions as before: sets are in calligraphic font, parameters

are latin and greek capitals, and variables are lower case latin or greek letters. Su-

perscripts are used to extend variable names, while subscripts are indices. Reserve

and response quantities are distinguished by a hat: for any quantity associated with

response, say r, the corresponding quantity for response plus reserve is denoted by

r̂. The planning horizon is t = 1, . . . , T , and where the statement shows or implies

variables for t ≤ 0, they are fixed input data rather than actual variables.

4.1.3 Notation

Sets

B,B01: set of scenario bundles. Bundles in B01 are for binary decisions of slow units.

D: set of transmission boundaries in the network

F : set of fast start units, F ⊂ G. Slow units are in G \ F .

G: set of generation units, Gn is the set of generators at node n ∈ N
L: set of transmission lines

N : set of network nodes (transmission areas)

P: set of pump storage plants, Pn is the subset at node n ∈ N
S: set of wind power scenarios, Sb is the scenario subset of bundle b ∈ B
W: set of wind farms, Wn is the subset at node n ∈ N

Parameters

Ψ: minimum proportion of response to be met by part-loaded generators

Bld: line-boundary adjacency matrix. 1 if line l crosses boundary d in one direction,

-1 if it crosses in the other direction, 0 otherwise

C(rtot): PWL penalty function for keeping too little response rtot

Ĉ(r̂tot): PWL penalty function for keeping too little reserve plus response r̂tot

Cnlg : no load cost of generator g [$/h]

CH2O
q : end-of-day water value in the reservoir of pump storage plant q [$/MWh]
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Cmg : marginal cost of generator g [$/MWh]

Cstg : startup cost of generator g [$]

Cvoll: value of lost load [$/MWh]

Dt: time granularity of the model [h]

Dres: time for which response must be served [h], with Dres ≤ Dt

Eq: pump-generator cycle efficiency at storage q ∈ P [proportion]

Hmax
q : storage capacity at plant q ∈ P in MWh of dischargeable energy

Npum
q : number of (identical) pumps in pump storage plant q ∈ P

N st,end
l : start (end) nodes of line l

P capq : capacity of a single pump in pump storage plant q ∈ P [MWh]

P demnt : real power demand at node n in period t [MW]

Pmin,maxg,q : min (max) generation limit of generator g ∈ G (storage q ∈ P) [MW]

P̄l,d: maximum power transmission on line l / across boundary d [MW]

πs: probability of scenario s

P ru,rdg : operating ramp up (down) limits of generator g [MW/Dt]

P su,sdg : startup (shutdown) ramp limits of generator g [MW/Dt]

Pwinwts : wind power available from wind farm w in period t, scenario s [MW]

Rmaxg : maximum response available from generator g [MW]

T : last time period of the planning horizon

Tntg : startup notification time of generator g [h]

tst,endb : start (end) periods of scenario bundle b

T u,dg : minimum uptime (downtime) of generator g [h]

Variables

αgts ∈ {0, 1}: 1 if thermal unit g is on in period t, scenario s, and 0 if it is off

γgts ∈ {0, 1}: 1 if thermal unit g is started up in period t, scenario s, and 0 otherwise

ηgts ∈ [0, 1]: 1 if thermal unit g is shut down in period t, scenario s, and 0 otherwise

δqits ∈ {0, 1}: 1 if pump i of storage q is pumping in period t, scenario s, 0 otherwise

ζqts ∈ {0, 1}: 1 if storage q is generating in period t, scenario s, and 0 otherwise

hqts ∈ [0, Hmax
q ]: level of storage q after period t, scenario s (dischargeable MWh)

pdisqts ∈ [0, Pmaxq ]: real power discharged from storage q in period t, scenario s [MW]

pflolts ∈ [−P̄l, P̄l]: real power flow on line l in period t, scenario s [MW]

pgengts ∈ [0, Pmaxg ]: real power output of generator g in period t, scenario s [MW]
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ppumqts ≥ 0: real power pumped into storage q in period t, scenario s [MW]

pshednts ≥ 0: load shed at node n in period t, scenario s [MW]

rgengts ∈ [0, Rmaxg ]: response provided by generator g in period t, scenario s [MW]

rpumqts ≥ 0: response provided by pump storage q in period t, scenario s [MW]

r̂pumqts ≥ 0: reserve plus response provided by storage q in period t, scenario s [MW]

rtotts ≥ 0: total available response in period t, scenario s [MW]

r̂totts ≥ 0: total available reserve plus response in period t, scenario s [MW]

uwinwts ∈ [0, Pwinwts ]: used wind power from farm w in period t, scenario s [MW]

4.1.4 Algebraic Statement

Objective function

min
∑
s∈S

πs

 T∑
t=1

∑
g∈G

(
Cstg γgts +DtCnlg αgts +DtCmg pgts

)
(4.1)

+
∑
q∈P

CH2O
q (hq0s − hqTs) +

T∑
t=1

(∑
n∈N

DtCvollpshednts + C(rtotts ) + Ĉ(r̂totts )

)]
.

The objective is to minimise the expected cost of supplying electricity to the economy,

including expected losses due to underserved reserve and response and a penalty for

lost load. The generation cost consists of startup, no-load and marginal cost terms.

These contain fuel and carbon emission costs and a levelised contribution from capital

cost, operation and maintenance cost and decommissioning cost [60]. The water level

after the last period is treated as variable, and we apply a linear water value to the

reservoir level difference created over the course of the planning horizon.

We use penalty functions to model the cost of underserved reserve to the economy.

The penalties represent the expected cost of lost load due to generator failure(s) at times

where the system lacks sufficient response and reserve to deal with them. The penalty

function C(rtotts ) models the expected cost of single generator failures at a response level

of rtotts , while Ĉ(r̂totts ) models the additional expected cost of double generator failures

at a level r̂totts of response plus reserve. To obtain the correct penalty for single and

double generator failures, both are applied.

The penalty function for underserved response is calculated as follows. In any time

period, consider a given generator g which is operating at its full capacity, while the
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amount of available response in the system is x. In case of a failure of generator g,

we assume that Dt max{0, Pmaxg − x} MWh of demand are lost and the system can

recover after a time period Dt. The cost of lost load due to the failure of generator g

is a random variable

F cg (x) :=


CvollDt max{0, Pmaxg − x} if generator g fails

0 otherwise.

If the probability that generator g fails within a given period is pg, then its expected

failure cost is Cg(x) = pgC
vollDt max{0, Pmaxg − x}. We define the total failure cost

F c(x) :=
∑

g∈G F
c
g (x). Then the expected total failure cost when operating the system

with x MW response in any time period is

C(x) := CvollDt
∑
g∈G

pg max{0, Pmaxg − x}. (4.2)

This is used as penalty function for underserved response and is shown in Figure (4.5a)

in Section 4.2. In our implementation we approximate the function with seven PWL

pieces.

After the failure of a single generator, reserve is used to restore the response level. A

subsequent failure in the same period Dt will lead to a loss of load unless the combined

amount of response and reserve cover the loss of both generators. Using the same

approach as above, we derive an additional penalty function Ĉ(y) for insufficient levels

y of response plus reserve. The cost of lost load due to the failure of a generator tuple

(g1, g2) in the same time period is given by

F̂ c(g1,g2)(y) :=


CvollDt max{0, Pmaxg1 + Pmaxg2 − y} if generators g1 and g2 fail

0 otherwise.

Let Ĝ denote the set of all combinations of generators and define the total failure cost

F̂ c(y) :=
∑

(g1,g2)∈Ĝ F̂
c
(g1,g2)(y). Assuming that generators fail independently, we obtain

the following expression for the expected total cost of double failures while operating
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at a combined response and reserve level y:

Ĉ(y) := CvollDt
∑

(g1,g2)∈Ĝ
pg1pg2 max{0, Pmaxg1 + Pmaxg2 − y}. (4.3)

This is used as additional penalty function for underserved response plus reserve and

is shown in Figure (4.5b) in Section 4.2. In our implementation, we approximate this

function with five PWL pieces.

We assume that all generators fail with equal probability, pg = p ∀g ∈ G. Further,

the formulae build on the assumption that all generators are operating at their maxi-

mum output level, so the penalties tend to overestimate the expected cost of lost load

due to failures. Additional losses due to quick successive failures (before response can

be restored) and failures of more than two generators within one hour are not taken

into account. However, the cost of single failures is a small percentage of overall cost

(cf. Figure 4.12), and the cost of double failures is an order of magnitude smaller than

that (cf. Figure 4.5). Thus the approximation error can be expected to be small. For

alternative reserve pricing approaches we refer to Ortega-Vazquez and Kirschen [61]

and the PJM method, which is described in Billinton and Allan [62]. The minimisation

of objective (4.1) is subject to the following constraints:

Load balance equations for all n ∈ N , s ∈ S, t = 1, . . . , T :

0 =
∑
g∈Gn

pgts +
∑
w∈Wn

uwinwts +
∑

l∈L:Nend
l =n

pflolts +
∑
q∈Pn

pdisqts + pshednts

− P demnt −
∑

l∈L:Nst
l =n

pflolts −
∑
q∈Pn

ppumqts . (4.4)

These ensure that power input and output are equal at all times at all network nodes.

Transmission boundary limits for all t = 1, . . . , T, d ∈ D, s ∈ S:

−P̄d ≤
∑
l∈L

Bldp
flo
lts ≤ P̄d. (4.5)

These inequalities impose restrictions on the transmission across pre-defined bound-

aries, by limiting the sum of power flows on lines crossing the boundary in each direc-
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tion. They are used in addition to the limits on individual lines’ power flow variables

to model network congestion.

Generator bounds for all s ∈ S, t = 1, . . . , T, g ∈ G:

pgengts ≥ Pming αgts (4.6)

pgengts + rgengts ≤ Pmaxg αgts. (4.7)

Constraints (4.6) and (4.7) establish the connection between power output, response

and on-off variables. When a generator is on (αgts = 1), it must generate between

the minimum and maximum stable limits, and the response it can provide is limited

by its spare headroom (beside the upper limit Rmaxg ). When it is off (αgts = 0), the

generator’s generation and response levels are at zero.

Ramp rate constraints for all g ∈ G, s ∈ S, t = 1, . . . , T :

pgengts − pgeng(t−1)s ≤ P rug αg(t−1)s + P sug γgts (4.8)

pgeng(t−1)s − p
gen
gts ≤ P rdg αgts + P sdg ηgts. (4.9)

These work in the same way as the ramp rate constraints in the basic UC formulation

explained in Section 2.3: constraints (4.8) limit the increase in generation level between

two successive periods t − 1 and t in the case where a generator is on in both periods

(αg(t−1)s = 1, γgts = 0), and in the case where it is started up in the second period

(αg(t−1)s = 0, γgts = 1). Similarly, constraints (4.9) limit the decrease in two successive

periods during continuous operation (αgts = 1, ηgts = 0) and shutdown (αgts = 0,

ηgts = 1).

Switching constraints for all s ∈ S, t = 1, . . . , T, g ∈ G:

αgts − αg(t−1)s = γgts − ηgts (4.10)

1 ≥ γgts + ηgts. (4.11)
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Logical constraints (4.10) and (4.11) establish the relationship between on-off, startup

and shutdown variables. Like the ramp rate formulation, these are identical to the con-

straints used in the basic UC model, and we refer to Section 2.3 for further explanation.

Minimum up- and downtime constraints for all s ∈ S, g ∈ G, t = 1, . . . , T :

t∑
i=t−Tu

g +1

γgis ≤ αgts (4.12)

t∑
i=t−T d

g +1

ηgis ≤ 1− αgts. (4.13)

To model minimum up- and downtimes, we use the facet-defining minimum up-down

cuts (4.12) and (4.13) by Rajan and Takriti [11] (cf. Section 2.3).

Pump storage operation constraints for all q ∈ P, t = 1, . . . , T, s ∈ S:

δq1ts ≤ 1− ζqts (4.14)

δq(i+1)ts ≤ δqits ∀i = 1, . . . , Npum
q − 1 (4.15)

ppumqts =

Npum
q∑
i=1

δqitsP
cap
q (4.16)

ζqtsP
min
q ≤ pdisqts ≤ ζqtsPmaxq . (4.17)

Pump storage plants are useful for providing reserve and response, meeting peak de-

mand and storing excess wind power. Different pump storage plants are pre-qualified

to provide different ancillary services, namely primary or secondary response and fast

reserve. However, we do not distinguish between responses or reserves at different time

scales but only between response and reserve in general. Binary variables ζqts determine

whether a plant is discharging or not, and constraints (4.17) link them to continuous

discharge variables with lower and upper limits. Within one plant, the pumps all have

identical capacities, and they can only be pumping when the plant is not discharging

(4.14). After switching on the first pump, the others are switched on in order from

lowest to highest (4.15) to avoid symmetric solutions. The pumping level is decided by

the number of active pumps, since they can only run at full capacity (4.16). The bina-
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ries for each pump, δqits, could be replaced by a single integer variable δ̄qts indicating

the number of active pumps. However, we use binaries because then δq1ts can be used

in constraints (4.14), (4.24) and (4.25) to indicate whether a plant is pumping or not.

Reservoir constraints for all q ∈ P, s ∈ S, t = 1, . . . , T :

hqts = hq(t−1)s +DtEqp
pum
qts −Dtpdisqts. (4.18)

Reservoir levels are tracked by constraints (4.18). They are expressed in terms of MWh

of electrical energy that would be generated using the contained water. A constant cycle

efficiency is applied to incoming energy, thus keeping the model linear by neglecting the

head effect which is small. The plants are located at separate sites with no hydrological

connection. Also, exogenous inflows are small and lower reservoirs are large, so the

water cycle of each pump storage plant is modelled as a single reservoir system with a

given storage capacity. This is a good approximation for GB pump storage schemes.

Reserve and response definitions for all t = 1, . . . , T, s ∈ S:

∑
g∈G

(
αgtsP

max
g − pgts

)
+
∑
q∈P

r̂pumqts = r̂totts (4.19)

∑
g∈G

rgengts +
∑
q∈P

rpumqts = rtotts (4.20)

∑
g∈G

rgengts ≥ Ψrtotts . (4.21)

Equations (4.20) and (4.19) define system-wide levels of response and reserve plus

response, respectively. Part-loaded generators contribute all spare headroom Pmaxg −
pgts to the slow-acting reserve quantity (4.19), while, due to ramp limits, they can only

contribute a limited amount of their headroom rgengts ≤ min{Rmaxg , Pmaxg − pgts} to the

fast-acting response quantity (4.20). The contributions from pump storages are defined

in the next paragraph. Constraints (4.21) require a minimum amount of response to

be met by part-loaded generators to avoid relying too much on pump storage units.
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Pump storage reserve constraints for all q ∈ P, t = 1, . . . , T, s ∈ S:

r̂pumqts + pdisqts ≤ Pmaxq + ppumqts (4.22)

Dtr̂pumqts +Dtpdisqts ≤ hq(t−1)s +Dtppumqts (4.23)

rpumqts + pdisqts ≤ Pmaxq (1− δq1ts) + ppumqts (4.24)

Dresrpumqts +Dtpdisqts ≤ hq(t−1)s +DtPmaxq δq1ts. (4.25)

Pump storage plants can provide different levels of reserve and response, depending on

whether they are currently discharging, pumping or spinning in air. Constraints (4.22)

and (4.23) impose limits on the sum of response and reserve r̂pumqts , and constraints

(4.24) and (4.25) limit the available response rpumqts .

When the plant is in discharge mode (ζqts = 1, δq1ts = 0), pump variables ppumqts

are all zero. Then constraints (4.22) and (4.23) state that the current discharge plus

reserve and response can exceed neither the maximum discharge nor the remaining

energy level in the storage. Constraint (4.24) states that the response provided during

discharge is limited by the headroom available in the turbine, and constraint (4.25)

makes sure that there is sufficient energy stored in the reservoir to meet the discharge

during the hour and provide response over a fraction of Dres of an hour.

In pump mode (ζqts = 0, δq1ts = 1) a plant can provide reserve by turning off the

pumps and starting to discharge. The demand reduction through turning off the pumps

is fast enough to meet response standards, while subsequent discharge only qualifies

as reserve. The discharge level pdisqts is zero, and constraint (4.22) limits the provided

reserve plus response to be at most the current pumping level plus maximum discharge.

Now constraint (4.23) states that the reserve plus response is bounded above by the

amount of energy left in the reservoir plus the current pumping level. Equation (4.24)

says that the available response is upper bounded by the pumping level, while (4.25) is

removed by increasing the right-hand side term by Pmaxq .

Finally, if the plant has its turbines spinning in air (ζqts = 0, δq1ts = 0), pump

and discharge variables ppumqts and pdisqts are both zero, and reserve plus response is simply

bounded above by the maximum discharge (4.22) and the available energy level (4.23).

The same is true for response and is achieved by equations (4.24) and (4.25), only here

the energy level contained in the reservoir need only be sufficient to maintain response
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for a fraction Dres of an hour. The energy consumption required to keep the turbines

spinning in air is small and not taken into account here. The model does not need a

separate idle mode: the spinning in air mode also covers situations in which no reserve

or response is provided.

Non-anticipativity constraints determine the structure of the decision tree under-

lying our optimization model. To keep the notation minimal we show a chain formu-

lation of the constraints here. However, when applying the decomposition method to

this model we resort to the formulation with redundant common target variables. For

binary decisions of slow units we use a specific set of bundles, denoted by B01. The

following constraints are included for all b ∈ B01, j, k ∈ Sb : k = j + 1:

αgtj = αgtk ∀g ∈ G \ F , t = tstb , . . . , t
end
b (4.26)

γgtj = γgtk ∀g ∈ G \ F , t = tendb + 1, . . . , tendb + Tntg . (4.27)

Constraints (4.26) make commitment decisions of slow units unique across all bundled

scenarios. They are required for both, two-stage and multi-stage stochastic problems.

Constraints (4.27) are non-standard and are included in multi-stage problems to

model startup notification times. When scheduling generators with a deterministic

model or a day-ahead stochastic model, a sufficient notification period for generator

startups is implicit. However, if commitments are updated in the course of the day,

as is done in the multi-stage model, then after a scenario split and decision update we

must allow for a minimum notification period to pass before additional startups can

become effective. To achieve this, non-anticipativity of startup variables is extended

for a notification time after the split of a bundle. During time periods tstb , . . . , t
end
b ,

constraints (4.27) are implied by (4.26) together with (4.10). Thus, to avoid redundancy

we only include them for the time periods tendb + 1, . . . , tendb + Tntg . Further, we use the

following additional non-anticipativity constraints for recourse variables of the multi-

stage problem. They are included for all b ∈ B, j, k ∈ Sb : k = j+1 and t = tstb , . . . , t
end
b :

αgtj = αgtk ∀g ∈ F (4.28)

δqitj = δqitk ∀q ∈ P, i = 1, . . . , Npum
q (4.29)
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ζqtj = ζqtk ∀q ∈ P (4.30)

pgengtj = pgengtk ∀g ∈ G (4.31)

pdisqtj = pdisqtk ∀q ∈ P. (4.32)

In the rolling horizon evaluation we use deterministic, two-stage stochastic and multi-

stage stochastic problems, and with slight data modifications this model represents all

of them. Figure 4.1 shows how we use the data structures to shape two-stage and

multi-stage decision trees.

The simplest model is a deterministic one with a single wind power scenario and

no non-anticipativity constraints. It is used for deterministic scheduling and dispatch:

1. In the scheduling model the wind scenario is equal to a central forecast and we

use a fixed margin for reserve plus response, i.e. we ask for r̂totts to be greater than

or equal to some fixed margin.

2. In the dispatch model we fix a given schedule for the slow units and evaluate it

against the actual wind outturn. The dispatch model uses all available recourse

actions to compensate for the error in the wind forecast that was used to create

the schedule. It decides optimal output levels of committed generators, operation

of fast-start units and pump storage plants, available response and reserve, and

the amount of shed load.

The interaction between scheduling and dispatch models in the rolling horizon context

is further described in Section 4.3.

For day-ahead scheduling we use a two-stage stochastic model with multiple wind

power scenarios as shown in Figure 4.1 (right). In this setting, the first stage decisions

are day-ahead commitments of slow units for the whole 24h planning period. All

remaining variables are recourse variables. The two-stage model has non-anticipativity

constraints (4.26), while (4.27) to (4.32) are dropped.

For intraday scheduling we use a multi-stage stochastic model as shown in Fig-

ure 4.1 (left). In this model, one stage covers either 3 or 6 hours of the 24-hour planning

horizon, depending on how often commitments of slow units can be updated. The first

stage decisions are commitments of these units between t1 and t2 and startup decisions

for a notification time thereafter, which are non-anticipative due to (4.26) and (4.27).
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Figure 4.1: Right: two-stage decision tree with 6 scenarios. First stage commitment de-
cisions are made at time t′0 and are unique for the whole planning horizon {t1, . . . , T}.
From t1 onwards, recourse decisions in every scenario are made under perfect infor-
mation. The bundles are B = ∅, B01 = {b0} with Sb0 = S and tstb0 = 1, tendb0

= T .
Constraints (4.27) are dropped. Left: multi-stage decision tree with two scenarios on
the second stage and 6 leaves. The bundles are B = {b1, . . . , b4}, B01 = {b0, b3, b4}.
On the first stage we have bundle b0 with Sb0 = S and tstb0 = t1, tendb0

= t2. Like the
first stage, the second stage also covers periods {t1, . . . , t2}, with bundles b1 and b2
containing Sb1 = {s1, s2, s3} and Sb2 = {s4, s5, s6}. There is a third stage with bundles
b3, covering Sb3 = {s1, s2} and b4, covering Sb4 = {s5, s6}, and a fourth stage with no
bundles.

We use multiple wind power scenarios between times t1 and t2 to make the commit-

ment decisions robust. This is not standard in the UC literature, where multi-stage

trees are typically restricted to a single scenario for the first few hours. Within each

of the bundles B = {b1, . . . , b4}, we seek a non-anticipative solution by including all

constraints (4.28) to (4.32). For bundles b3 and b4 we also require constraints (4.26) and

(4.27), while for bundles b1 and b2 those constraints are not required because between

t1 and t2 they are already included for all scenarios, due to bundle b0. Hence the choice

B01 = {b0, b3, b4}.
We call a schedule non-anticipative when all variables appearing in constraints (4.8)

to (4.13) and (4.18) have identical solutions across all subsets of scenarios that are iden-

tical at any given time t. Constraints (4.8) to (4.13) and (4.18) are the only constraints

which introduce variable interdependence between subsequent time steps, and all vari-

ables not appearing therein can be re-evaluated independently at each time step. How-

ever, not all variables appearing in these constraints require explicit non-anticipativity

constraints if that property can be deduced from other variables linked with them. For

pump level variables ppumqts , non-anticipativity follows directly from constraints (4.16)

and (4.29). Then for reservoir levels it follows from constraints (4.18), (4.32) and the

fact that initial reservoir levels are fixed. Finally, for startup and shutdown variables
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it follows from constraints (4.10) and (4.11), together with (4.26) or (4.28). To avoid

unnecessary redundancy, we omit non-anticipativity constraints for those variables for

which this property can be deduced from sets of other constraints.

4.2 Input Data and Scenario Generation

In this section we briefly describe the data sources for our GB model and for the

rolling horizon evaluation. For the evaluation process, we require historic wind data

and historic wind forecast data. While actual wind speed data was available for this

study, historic forecasts were not. To synthesise wind speed forecasts with the desired

statistical properties, we use a pattern matching technique, which is also explained in

the following sections. Having synthesised the forecasts, we obtain a time series of

wind forecast errors, to which we fit an auto-regressive moving average model with

one auto-regression term and one moving average term [ARMA(1,1)]. This model is

used to sample forecast error scenarios which are subsequently translated to wind speed

scenarios by adding them to a central forecast. The wind speed scenarios are converted

to representative regional load factors using an aggregated wind speed to power curve,

and then reduced to a smaller number of representative scenarios. In the two- stage

stochastic case, the load factors are then applied directly to the wind farms in the

model, while in the multi-stage case the scenarios are condensed into a tree first.

4.2.1 Data Sources

Data on thermal generation units, pump storage, wind farms, and transmission sys-

tem topology and capacity are taken from National Grid’s 2013 Electricity Ten Year

statement (ETYS) [59]. The list of generation units and their maximum capacities can

be found there, as well as their location. Approximate minimum stable limits for the

different generation technologies were obtained from the Federal Energy Regulatory

Commission (FERC) report [10]. The figures for installed wind capacity and transmis-

sion capabilities correspond to those under the Gone Green Scenario described in the

ETYS. Historic demand time series are taken from National Grid’s website [63], but

scaled to meet National Grid’s 2020 average demand expectation. Demand is treated

net of interconnector imports and exports to and from connected countries, i.e. inter-
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connector exchanges are set according to historic time series rather than co-optimizing

them. A graph of the system topology is shown in Figure 4.2. Additionally, Figures 4.3

and 4.4 show the installed generation capacity by fuel type and study zone, and the

demand distribution by study zone, respectively. Figure 4.4 also indicates the bound-

ary transmission capabilities. Conventional power generation sources are located close

to the large demand centres in England, and large transmission capacities are avail-

able between those areas. However, a lot of wind power generation capacity has been

installed in the north of Scotland (Z1, Z2), where demand is very low. Consequently,

these areas export significant amounts of power when winds are high. Transmission ca-

pacities, however, are low, and with the increased wind supplies this leads to network

congestion in Scotland.

Technical information like ramp rates and minimum up/down times for thermal

units were obtained through the Balancing Mechanism Report System [64]. Startup

notification times for different types of generators were taken from [65, 66]. For our

generation cost figures we use levelised cost estimates from the Department of Energy

and Climate Change (DECC) [60]. They contain carbon cost and fossil fuel cost predic-

tions and a levelised contribution from capital cost and decommissioning cost. Historic

response figures, and the proportion Ψ of minimum response provided by part-loaded

generators are calculated from the monthly Balancing Services Summaries, using data

for Mandatory Frequency Response and Firm Frequency Response [67].

Approximate historic wind speed data is available from a reanalysis with a mesoscale

weather model [68], and historic forecasts were synthesised by applying the pattern

matching forecast technique described in the following section. The wind speed data is

aggregated by regions, and we use equivalent regional wind speed to power conversion

curves from [69] to translate wind speeds to representative regional load factors that

can be applied to the corresponding wind farms.

Lost Load and Underserved Reserve. The GB value of lost load (VOLL) was

estimated to be $27,104 (£16,940) per MWh in a publication by London Economics,

the Department of Energy and Climate Change (DECC) and the Office of Gas and

Electricity Markets (Ofgem) [70]. We use this to model the cost of lost load to the

economy and to estimate the penalty functions C(rtotts ) and Ĉ(r̂totts ) for the expected
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Figure 4.2: Aggregated GB transmission system with 17 areas and 27 links between
them. There are two pump storage plants in Scotland (zones one and four) and two in
Wales (zone nine), and interconnectors to Ireland, France and the Netherlands. The
17 boundaries are shown in blue and impose limits on the sum of transmissions on all
lines that they cross.
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Figure 4.3: GB power supply capacity by study zone and fuel type. We distinguish
Gas (open cycle, combined cycle and combined heat and power), Coal, Nuclear, Re-
newable (Biomass and hydro) and Wind power supplies. The area of each pie chart is
representative of the production capacity in the corresponding zone.
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Figure 4.4: Breakdown of GB power demand by study zones, and boundary trans-
mission capabilities. The graph shows the average power demand in each study zone
over the two-year evaluation period. The area of the demand circles is representative
of the demand proportion in the corresponding study zone. Boundary transmission
capabilities are color coded.
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(a) Penalty for single generator failures.
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Ĉ(y)

$0k

$1k

$2k

$3k

Daily cost

(b) Penalty for double generator failures.

Figure 4.5: Response (a) and reserve plus response (b) penalty functions, based on
expected loss due to single and double generator failures. The superimposed bar charts
in (a) and (b) show an exemplary outcome of the total cost of operating at different
levels of response and reserve plus response, respectively. Discretised in ten bins, the
charts show the daily average penalty cost of operating at the given levels of response
and reserve. The values are taken from the most successful two-year evaluation of
6-hour deterministic scheduling reported in Section 4.4.

cost of lost load in the case of generator failures. To calculate the cost functions we

assume a generator failure probability p which is equivalent to an average of one failure

per generator in 150 days. The cost curves are shown in Figure 4.5.

4.2.2 Synthesising Wind Power Forecasts

Historic wind speed or wind power forecasts are not available to us, so for the purpose

of this evaluation we synthesise them. Our synthetic forecasts are a weighted average

of historic wind and a forecast made by pattern matching. The weights in this are

adapted so as to achieve a root mean square error (RMSE) of 10% of installed capacity

at the 24 hour ahead mark while matching the shape of typical forecast error curves as

shown in [71, 72]. The RMSE of a sample of m forecasts is a function of the forecast

horizon t. It can be calculated for single sites, regions, or a whole country. Assume

that there are k = 1, . . . , N regions. Then the RMSE in a t hour ahead forecast for
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Figure 4.6: Left (4.6a): Regional equivalent power curves for wind speed to power
conversion. We use these to translate wind speeds to regional load factors, which
are then multiplied with wind farm capacities to give individual outputs. The curves
are taken from [69]. Right (4.6b): Normalised root mean square error (NRMSE) of
wind power persistence forecasts, forecasts made by pattern matching, and our final
synthesised forecasts which are a weighted average of pattern forecasts and real wind.
Forecast error curves are shown in % of installed capacity and up to 32 hours ahead.

region k is defined as

RMSEkt :=

√√√√ 1

m

m∑
i=1

e2
ikt. (4.33)

where eikt is the t hour ahead error in forecast i ∈ {1, . . . ,m} for region k. When calcu-

lating the RMSE for a whole country, the errors are first aggregated, eit :=
∑N

k=1 eikt,

before applying (4.33). The RMSE of a whole country is therefore significantly smaller

than the RMSE of a region. In this study, we work with wind power rather than wind

speed forecast errors: regional forecasts are synthesised in terms of wind speed and then

translated to regional load factors using the power curves shown in Figure 4.6a before

calculating the wind power forecast RMSE. The RMSE is typically expressed as a per-

centage of the overall installed capacity, and this is referred to as normalised root mean

square error (NRMSE). The graph in Figure (4.6b) shows the NRMSE of synthesised

forecasts as a function of the forecast horizon, along with the NRMSE of persistence

forecasts and forecasts made by pure pattern matching. Persistence forecasts assume

that the current wind conditions will remain unchanged, i.e. persist, and their NRMSE

is included for reference only.
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To generate forecasts for a given year via pattern matching, we use historic wind

speed patterns from the preceding year. In this context, a pattern is an hourly pro-

gression of wind speeds for a given region, obtained by averaging observed wind speed

progressions which satisfy initial criteria for the first two periods. To generate a T hour

ahead forecast via pattern matching, we collect patterns of length T + 2. Details of the

procedure are outlined below.

1. Discretise the domain of observed wind speeds into k = 1, . . . ,K equidistant

intervals and create 3K bins bki, i ∈ {u, l, d} to hold historic wind progressions

of length T + 2. A wind progression wj , j = 1, . . . , T + 2 is assigned to bin bku if

the wind in the first hour, w1 is inside wind interval k and the wind is picking up,

that is, w2 ≥ w1 + ε with a fixed threshold ε. Analogously, bins bkl and bkd hold

wind progressions that stay level, that is, w2 ∈ (w1 − ε, w1 + ε) or point down, so

that w2 ≤ w1 − ε, respectively.

2. Iterate over historic wind data of the previous year in one-hour steps. Extract

wind progressions of length T + 2 starting at the current hour and assign them

to the bins. Then find a representative wind pattern ŵjki for every bin bki, with

j = 1, . . . , T + 2, by averaging all wind patterns assigned to that bin.

3. Use the ŵjki to make forecasts starting in any hour of the current year: to make

a forecast starting in hour t with wind history wt−1 ≥ wt−2 + ε, select the bin bku

such that wind speed wt−2 lies in interval k. The forecast for hours t, . . . , t+T −1

is given by ŵjku with j = 3, . . . , T+2. Analogously, use forecasts ŵjkl from bins bkl

if wt−1 ∈ (wt−2− ε, wt−2 + ε), and forecasts ŵjkd from bins bkd if wt−1 ≤ wt−2− ε.
Shift the entire forecast ŵjk∗, j = 3, . . . , T + 2 by wt−1 − ŵ2k∗, so that real wind

and forecast are equal in hour t− 1.

The forecasts are wind patterns which had similar wind speeds in hour t − 2 and

developed similarly in hour t−1. They are shifted to match the real wind in hour t−1.

These pattern forecasts are made individually for every region. They are better than

persistence forecasts, but for 6 or more hours ahead they are significantly worse than

numerical weather predicition models. Thus, from 6 hours ahead we use a weighted

combination of pattern forecasts and actual wind to adapt the RMSE to the level
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shown in Figure (4.6b). The weight parameters used in this are the same throughout

the regions, but dependent on the time horizon of the forecast. They are adapted so

that for the first six hours the forecasts consist only of pattern-matching forecasts,

and after that an increasing amount of real wind data is used to improve the forecast

quality. At the 32 hour ahead mark, roughly 70% of the forecast originate from the

pattern matching process, while 30% are real wind data.

4.2.3 Generating Scenarios

The scenario generation, reduction and tree construction methodology that we use in

this study is based on techniques used in the WILMAR study [30, 73]. To simulate wind

speed forecast errors we use a method described by Söder in [74], which is based on a

multivariate ARMA time series model with one autoregressive term and one moving

average term. This is commonly abbreviated as ARMA(1,1). This approach captures

the correlation between wind speed forecast errors at different sites. Unpredicted wind

conditions occuring at one site are likely to also affect nearby sites, resulting in a

geographical correlation of the wind speed forecast errors that is essential to capture

when modelling wind power uncertainty. The model is fitted to wind forecast errors in

the year previous to the evaluation. For instance, to evaluate the scheduling model on

2010 wind data, we collect patterns from 2008 and synthesise forecasts for 2009. Then

we use 2009 wind data to calculate forecast errors to which we fit the time series model.

The evaluation is then performed on out-of-sample 2010 wind data, with new forecasts

generated from 2009 patterns. We evaluate the model on wind speeds from 2009 and

2010, so the wind data used for this is from 2007 to 2010. The scenario generation,

reduction and tree construction procedures described below are implemented in AMPL

[57] to integrate seamlessly with our GB model.

Assume that there are k = 1, . . . , N areas and that a wind speed forecast trajectory

consists of t = 1, . . . , T (here T = 32) consecutive hourly average wind speeds. Both,

regional wind speed forecast errors and the correlation between them can be expected

to increase as the forecast horizon increases [74]. It is therefore necessary to make them

dependent on the forecast length t.
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ARMA Model for a Single Region. The time series model for forecast errors in

region k = 1, . . . , N is

Xk0 = 0 (4.34)

Zk0 = 0 (4.35)

Xkt = αkXk(t−1) + Zkt + βkZk(t−1) (4.36)

with

Xkt := wind speed forecast error in a t hour ahead forecast for region k

Zkt := independent zero-mean normal random variables with standard dev. σZk

Let Vkt be the variance of Xkt, i.e. the variance in a t hour ahead wind speed forecast for

region k. The variance is a nonlinear function of the model parameters, Vkt (αk, βk, σZk
),

given by

Vk0 = 0 (4.37)

Vk1 = σ2
Zk

(4.38)

Vkt = α2
kVk(t−1) + (1 + β2

k + 2αkβk)σ
2
Zk
∀t ≥ 2 (4.39)

The recursion (4.39) follows directly from the observation that

Vkt = Var
(
αkXk(t−1) + Zkt + βkZk(t−1)

)
= α2

kVk(t−1) + σ2
Zk

+ β2
kσ

2
Zk

+ 2Cov
(
αkXk(t−1), βkZk(t−1)

)
, (4.40)

where the covariance term can be rewritten as follows

Cov(αkXk(t−1), βkZk(t−1)) = E(αk[Xk(t−1) − E(Xk(t−1))︸ ︷︷ ︸
=0

] · βk[Zk(t−1) − E(Zk(t−1))︸ ︷︷ ︸
=0

])

= E(αkβkZk(t−1)[αkXk(t−2) + Zk(t−1) + βkZk(t−2)])

= E(αkβkZ
2
k(t−1)) = αkβk[Var(Zk(t−1)) + E(Zk(t−1))

2︸ ︷︷ ︸
=0

]

= αkβkσ
2
Zk

(4.41)
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We can use an induction argument to rewrite (4.39) in closed form, without recursion:

Vkt = σ2
Zk

(
α

2(t−1)
k + (1 + βk + 2αkβk)

t−1∑
i=1

α
2(i−1)
k

)
∀t ≥ 2. (4.42)

To find the model paramters for each region, we solve N unconstrained nonlinear least

squares (NLS) problems

min
αk,βk,σZk

T∑
t=1

(Vkt(αk, βk, σZk
)−RMSEkt)

2 ∀k = 1, . . . , N (4.43)

where Vkt is the ARMA model’s variance according to (4.42) and RMSEkt is the

observed RMSE in a t hour ahead forecast in region k, calculated from a set of training

data by applying (4.33) for each region. These are small scale NLS problems which

can be solved by any general purpose nonlinear solver. We use the MINOS [75] solver

through its AMPL [57] interface, with the starting point α = β = 1, σZ = 0.05.

Multiple Regions with Correlated Wind. In a second step we correlate the re-

gional forecast error time series with one another. The regional one-step errors in model

(4.34) to (4.36) are now assumed to be weighted sums of region specific independent

standard normal random variables Ẑjt:

Zkt =
N∑
j=1

ckjẐjt ∀t = 0, . . . , T. (4.44)

Here c = ckj , k, j = 1, . . . , N is a matrix of connection parameters between regions k

and j. For a non-diagonal matrix c the errors in different regions are now dependent

on one another. The variance of the one-step errors can be calculated as

Var(Zkt) = σ2
Zk

=

N∑
j=1

c2
kj , (4.45)

while the covariance is given by

Cov(Zkt, Zit) = E

 N∑
j=1

ckjẐjt

 N∑
j=1

cijẐjt
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=
N∑
j=1

ckjcij . (4.46)

This allows us to calculate the covariance of the ARMA models in all time steps. If we

define Ckit := Cov(Xkt, Xit), then the covariance can be expressed recursively as

Cki0 = 0 (4.47)

Cki1 = Cov (Zk1, Zi1) =
N∑
j=1

ckjcij (4.48)

Ckit = Cov (Xkt, Xit) = E (XktXit)

= E
([
αkXk(t−1) + Zkt + βkZk(t−1)

] [
αiXi(t−1) + Zit + βiZi(t−1)

])
= αkαiCki(t−1) + (1 + βkβi + αkβi + βkαi) Cov(Zkt, Zit)︸ ︷︷ ︸

=
∑N

j=1 ckjcij

∀t ≥ 2. (4.49)

In analogy to the variance calculations above, an induction argument can be used to

obtain a closed form expression of the covariance recursion (4.49):

Ckit =

 N∑
j=1

ckjcij

[(αkαi)
t−1 + (1 + βkβi + αkβi + βkαi)

t−1∑
l=1

(αkαi)
l−1

]
∀t ≥ 2.

(4.50)

Finally this is used to calculate the correlation coefficients between the region-specific

ARMA models:

ρkit :=
Ckit√
VktVit

. (4.51)

With the standard deviations in the denominator, the correlation is a nonlinear function

of all model parameters, i.e. ρkit (α, β, σZ , c), where α, β and σZ have already been

fitted for every region. The connection parameters cki are found by solving the NLS

problem

min
c

T∑
t=1

N∑
k=1

N∑
i=1

(
ρmodkit (α, β, σZ , c)− ρobskit

)2
(4.52)

with fixed α, β and σZ . Here ρmodkit is the model correlation according to (4.51) and ρobskit

is the observed correlation of forecast errors between regions k and i in a t hour ahead
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forecast as observed in the training dataset, that is,

ρobskit :=

∑n
j=1(ejkt − ēkt)

∑n
j=1(ejit − ēit)√∑n

j=1(ejkt − ēkt)2
∑n

j=1(ejit − ēit)2
. (4.53)

In this, ejkt is the error in the j-th t hour ahead forecast for region k, and ēkt :=

1
n

∑n
j=1 ejkt ≈ 0 is the average forecast error in a t hour ahead forecast for region k.

This NLS problem is larger and takes longer to solve with general purpose nonlinear

optimization software than the small problems described above. Again, we use the

MINOS [75] solver, with the starting point cki =
σZk√
N

which satisfies (4.45). After

solving problems (4.43) to obtain α, β and σZ , and problem (4.52) to obtain c, we

can simulate a single scenario of multivariate wind speed forecast errors by drawing

standard normal variates for Ẑkt and substituting into (4.44) and the ARMA model

(4.34) to (4.36) to find the forecast error vectors Xkt. Finally, a wind speed scenario is

obtained by adding the simulated forecast error scenario X to a central forecast. By

repeating this procedure multiple times, we obtain a fan of wind speed scenarios, all of

which agree on the wind speed in hour t = 0 and then split.

4.2.4 Constructing Scenario Trees

Our rolling horizon evaluation scheme requires multi-stage scenario trees for the in-

traday problems and sets of distinct scenarios for the two-stage day-ahead problems.

Given the parameters obtained from fitting the model described above, we construct

the scenarios as follows. We generate 600 wind speed scenarios by drawing realisations

of forecast errors from the ARMA model and adding them to a synthesised forecast.

Wind speeds are then translated to regional load factors by applying the nonlinear

power curve shown in [69]. Finally, to obtain the power output of a wind farm under

a given scenario, we multiply its generation capacity with the load factor of the region

it is located in. To keep the stochastic optimization problems tractable, we reduce the

number of scenarios with a technique based on Römisch et al [38, 39], which we describe

below.

Kantorovich Distances. Let So be the set of original scenarios, Sr the remaining

scenarios, and P o and P r the corresponding probability measures with probabilities po
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and pr, respectively. By Sd := So \ Sr we denote the deleted scenarios. We seek Sr

such that the Kantorovich distance between P o and P r, calculated as

D(P o, P r) =
∑
i∈Sd

poi min
j∈Sr

dT (i, j) (4.54)

is minimal. In this context, we measure the difference between scenarios i and j up to

time t as

dt (i, j) :=
∑
w∈W

t∑
k=1

|Pwinwki − Pwinwkj |. (4.55)

Here Pwinwts is the wind power from wind farm w at time t in scenario s. To keep the

notation simple, we write dt(i, j) with the scenario indices rather than the realisation

of the uncertain parameter. The probability is redistributed among the remaining

scenarios j ∈ Sr according to the rule

prj := poj +
∑
i∈Sdj

poi (4.56)

Sdj :=

{
i ∈ Sd : j ∈ argmin

k∈Sr
dT (i, k)

}
. (4.57)

The new probability of a preserved scenario is equal to the sum of its former probability

and the probability of all deleted scenarios that are closer to it than to any other

preserved scenario. An optimal reduction in the sense of minimum Kantorovich distance

can be achieved by solving the problem

min
∑
i∈Sd

poi min
j∈Sr

dT (i, j) (4.58)

s.t. Sd ⊂ So (4.59)

|Sd| = Nd (4.60)

with a fixed number Nd of scenarios to be deleted. This can be formulated as a set

covering problem.

Scenario Reduction Heuristics. To approximate solutions of this problem effi-

ciently, Gröwe-Kuska et al [39] propose two greedy heuristics named simultaneous

backward reduction and fast forward selection. They are based on the observation
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that the optimal selection problem can be solved easily by enumeration if only one

scenario is deleted, Nd = 1 or only a single scenario is preserved, Nd = |So| − 1. In the

former case the problem reduces to

min
l∈So

pol min
j∈So\{l}

dT (l, j), (4.61)

and if the minimum is attained at l∗ ∈ So then l∗ is deleted. In the latter case the

problem reduces to

min
u∈So

∑
j∈So

pojdT (j, u), (4.62)

and if the minimum is attained at u∗ ∈ So then u∗ is selected to be kept. In the former

case we delete a scenario which is closest to another one, whilst in the latter case we

preserve a scenario which is closest to all other ones. Note that the solution of these

problems is not necessarily unique. The idea behind simultaneous backward reduction is

to successively delete single scenarios until the desired number of scenarios is reached,

while the idea behind fast forward selection is to repeatedly select single scenarios

until the desired number of scenarios is reached. Following the scenario selection,

probabilities are adjusted according to rule (4.56). The algorithms are outlined below.

Algorithm 4.1 (Simultaneous Backward Reduction) Input: scenarios So, prob-

abilities po, number of scenarios to delete Nd, and time t up to which distance dt(·) is

measured

1. Calculate dkj := dt(k, j), ∀k, j ∈ So.

2. Calculate

c
[1]
ll := min

j 6=l
dlj , ∀l ∈ So

z
[1]
l := pol c

[1]
ll , ∀l ∈ So

l1 ∈ argmin
l∈So

z
[1]
l

Sd[1] := {l1}.
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3. For i = 2, . . . , Nd calculate

c
[i]
kl := min

j /∈Sd[i−1]∪{l}
dkj , ∀l /∈ Sd[i−1], k ∈ Sd[i−1] ∪ {l}

z
[i]
l :=

∑
k∈Sd[i−1]∪{l}

pokc
[i]
kl , ∀l /∈ Sd[i−1]

li ∈ argmin
l /∈Sd[i−1]

z
[i]
l

Sd[i] := Sd[i−1] ∪ {li}.

4. Sd := Sd[Nd] is the set of deleted scenarios. Set Sr = So \ Sd and redistribute the

probabilities of deleted scenarios according to (4.56).

The backward reduction algorithm uses auxiliary variables c and z to calculate Kan-

torovich distances. In Step 2 we choose the first deletable scenario l1 such that its

distance to the closest scenario among all others is minimal. In Step 3 we find li for

i = 2, . . . , Nd such that deleting li leads to the smallest possible Kantorovich distance

between the probability measures associated with the original and remaining scenario

sets. To find this li, we iterate over all remaining candidates for deletion, l /∈ Sd[i−1],

and calculate the Kantorovich distance z
[i]
l that would result if l was deleted, that is,

if Sd[i−1] ∪ {l} was the set of deleted scenarios.

Algorithm 4.2 (Fast Forward Selection) Input: scenario set So, probabilities po,

number of scenarios to delete Nd, and time t up to which distance dt(·) is measured

1. Calculate

c
[1]
ku := dt(k, u), ∀k, u ∈ So

z[1]
u :=

∑
k∈So\{u}

pokc
[1]
ku, ∀u ∈ So

u1 ∈ argmin
u∈So

z[1]
u

Sd[1] := So \ {u1}.

2. For i = 2, . . . , |So| −Nd calculate

c
[i]
ku := min{c[i−1]

ku , c
[i−1]

kui−1}, ∀k, u ∈ Sd[i−1]
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z[i]
u :=

∑
k∈Sd[i−1]\{u}

pokc
[i]
ku, ∀u ∈ Sd[i−1]

ui ∈ argmin
u∈Sd[i−1]

z[i]
u

Sd[i] := Sd[i−1] \ {ui}.

3. Sd := Sd[|So|−Nd] is the index set of deleted scenarios. Redistribute the probabili-

ties of deleted scenarios according to (4.56).

The forward selection algorithm also uses auxiliary variables c and z to calculate

Kantorovich distances. In Step 1 we choose the first scenario to be retained, u1,

such that the resulting Kantorovich distance is minimal. In Step 2 we find ui for

i = 2, . . . , |So| − Nd such that retaining ui leads to the smallest possible Kantorovich

distance between the probability measures associated with the original and remaining

scenario sets. For all candidates u ∈ Sd[i−1] we calculate the distance z
[i]
u that would

result if u was retained rather than deleted. Before z
[i]
u can be calculated, this requires

us to update the distance of all deleted scenarios k ∈ Sd[i−1] from the potential new

set of selected scenarios containing u according to min{c[i−1]
ku , c

[i−1]

kui−1}, because scenario

k could be closer to some other previously selected scenario than it is to u. Finally, ui

is selected so as to give the minimum Kantorovich distance z
[i]
u .

Tree Construction. With these reduction algorithms it is possible to derive vari-

ous scenario tree construction procedures. The technique described in [39] allows the

scenarios to split at any time period in the planning horizon and uses a threshold for

the maximum Kantorovich distance between the origial distribution and the final tree

to decide on the number of retained scenarios. However, we aim for a technique that

allows us to specify the tree structure and the number of retained scenarios in advance.

Our approach is inspired by the algorithm described in [73]. Our tree construction

method begins on the last stage of the tree, by reducing the scenarios to the number of

desired leaves. Then it proceeds recursively from stage to stage until it reaches the first

stage. On every stage, the number of scenarios is reduced further, until the desired

number for the current stage is reached. When scenarios are merged into a bundle,

they are replaced with their average wind scenario rather than choosing one represen-

tative scenario. This reduces the variance at the beginning of the planning horizon,
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but maintains the expectation of the initially selected scenarios.

During the recursive tree construction process, the algorithm produces the data

structure for bundles b ∈ B, with member scenarios Sb and start and end times tstb

and tendb , respectively. The probabilities for individual scenarios are determined by the

initial reduction. The algorithm requires the user to specify a vector of split points

τ , which contains all time periods where the scenarios are allowed to split, sorted in

decreasing order. Additionally, it requires an input vector ν whose i-th entry specifies

the number of permitted scenarios from split point τi onwards. For instance, a possible

input would be τ = [10, 7, 4, 1]T and ν = [8, 4, 2, 1]T , meaning that the desired tree has

three stages of three hours each, and a final stage that covers the remainder of the day.

There is one scenario on the first stage, two on the second, and four and eight scenarios

on stages three and four, respectively. The scenario tree construction method works as

follows.

Algorithm 4.3 (Scenario Tree Construction) Input: scenarios So, probabilities

po, input vectors τ and ν and their number of entries m

1. Perform forward selection with inputs So, po, t = T for distance measure dt,

and Nd = |So| − ν1. This results in ν1 remaining scenarios, stored in Sr[1], with

probabilities pr re-distributed according to (4.56). Make a copy p̂r[1] := pr.

2. For i = 2, . . . ,m

• Perform steps (1)–(3) of the backward reduction algorithm with input Sr[i−1],

p̂r[i−1], t = τi−1 − 1 for distance measure dt, and Nd = νi−1 − νi. This

results in deletable scenario set Sd[i] and remaining scenario set Sr[i]. For

all scenarios l ∈ Sd[i], find a remaining scenario ul ∈ Sr[i] which is closest

to it, i.e. ul ∈ argminu∈Sr[i] dt(l, u).

• For u ∈ Sr[i], introduce a new bundle b with start time tstb := τi and end

time tendb := τi−1 − 1 and member scenarios Sb := {u} ∪ {l ∈ Sd[i] : ul =

u}. Remember the bundle owner o(b) = u and extend the members Sb =

Sb ∪
(⋃

b̄:o(b̄)∈Sb Sb̄
)

until no more scenarios can be added this way. For

t = 1, . . . , τi−1−1 and all wind farms w ∈ W, calculate the bundle’s average
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wind P̄winwtb :=
∑

s∈Sb p
r
sP

win
wts /

∑
s∈Sb p

r
s and set Pwinwts := P̄winwtb for all s ∈ Sb.

Update p̂
r[i]
u :=

∑
s∈Sb p

r
s.

The tree construction algorithm may produce bundles b which are singletons, |Sb| = 1,

and these can simply be removed afterwards. Upon completion of the tree construction

procedure, the reduced set of scenarios forms a tree, i.e. it satisfies property (2.74).

Level-Dependent Forecast Errors. The scenario generation methodology described

above is based on techniques used in the WILMAR study [73]. The scenarios drawn

from the ARMA model represent the correlation of wind forecast errors in different

regions, but are independent of the forecast wind level. Mauch et al [76] point out

that wind power forecast errors are strongly dependent on the forecast levels, so effi-

cient scheduling strategies require wind dependent reserve margins. In order to make

stochastic strategies dependent on the forecast level, the variance of the scenario gener-

ator must vary with it. Since this is not reflected in the WILMAR scenario generation

method, we use a simple scaling approach to adapt the trees used in this study. In each

scenario s we replace the original wind at all times t, Pwinwts , by (βtP
win
wts + (1−βt)P̄winwt )

with βt ∈ [0, 1]. Here P̄winwt is the average wind under all scenarios and βt depends

linearly on P̄winwt . The resulting variance is shown in Figure 4.7, alongside the root

mean square of errors where the forecast overestimated the actual wind. We choose

βt so that the variance of the scenarios matches the RMSE of situations where the

actual wind was overestimated because those cases can result in significantly increased

cost, due to lost load or the use of expensive fast-start units. On the other hand, cases

where the wind was underestimated can be dealt with by curtailing it at no extra cost.

The results described in Section 4.4 show that the scaling leads to a significant cost

reduction ($100k per day) in comparison to scheduling with scenario trees which are

independent of the forecast level. The scenario tree construction procedure completes

the input data generation process for our stochastic UC models. The overall process

can be summarised in the following steps

1. Synthesise wind forecasts with the desired RMSE

2. Fit a multi-variate ARMA model to the regional forecast error time series
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Figure 4.7: Left: NRMSE of synthesised forecasts, as function of forecast horizon
(hours ahead) and forecast wind level (FC level). Only wind power overestimates were
included in the error calculation. Right: NRMSE of the generated scenario trees. The
error is scaled in the forecast wind level: for a fixed forecast level above 15GW, any
one-dimensional slice through the surface is equal to the NRMSE function shown in
Figure 4.6b, while for lower levels the same function is scaled by a linear factor.

3. Simulate wind scenarios for every stochastic UC problem (day-ahead or intraday)

and reduce them to a small subset of representative scenarios

4. Merge the remaining scenarios into a suitable tree structure for a multi-stage

decision problem (intraday only) and adapt the scenario spread depending on the

wind forecast expectation

We use this approach to generate scenario data for a two year rolling horizon evaluation

of day-ahead and intraday stochastic unit commitment. The following sections describe

the use of this data in the evaluation process and the results we obtained with it.

4.3 Rolling Horizon Evaluation

We compare multi-stage stochastic and deterministic scheduling in the intraday setting,

and two-stage stochastic and deterministic scheduling in the day-ahead setting. The

evaluation is done in a rolling horizon manner, where 24-hour schedules are made for a

central wind forecast or a set of wind scenarios, and then evaluated against the actual

wind by solving a set of dispatch problems. After the evaluation step, the planning

horizon is moved forward to decide the next schedule. We repeat the procedure until a
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Figure 4.8: Rolling horizon evaluation procedure. The scheduling steps (left) obtain
the current system state (state) and a wind forecast (wf). They calculate (C) a new
schedule which becomes active a few hours later (dotted lines) and is valid for 3, 6 or
24 hours (solid part of box). The dispatch steps (right) obtain the current state and
the schedule, and evaluate it against the actual wind 3 hours at a time. The model
is formulated for 24 hours to avoid emptying the reservoirs towards the end of the 3
hours. A wind forecast (wf) is used for the additional 21 hours. The rolling procedure
alternates between a scheduling step and (potentially multiple) dispatch steps.

period of two years is covered and compare the average cost of the different planning

techniques. Intra-day UC is performed with 3-hour and 6-hour steps, i.e. the binary

decisions for large generators can either be updated every 3 hours or every 6 hours.

Day-ahead commitments can only be updated once per day. Other than the update

frequency, there are no fundamental differences between the rolling horizon procedures

for 3-hour, 6-hour and 24-hour scheduling. In the following, we describe a generic

procedure which is applicable to all of them. The process is visualised in Figure 4.8. The

scheduling and dispatch steps are shown separately on the graphic, but are interlaced

in the implementation where the rolling procedure alternates between them.

Scheduling Steps. Calculating a schedule in practice is not instantaneous and must

be done a few hours in advance of its implementation. In Figure 4.8 (left) we show how

a schedule is calculated, using the current system state and a wind forecast. The current

state is required to estimate the system state immediately before the implementation

of the schedule. After calculating the schedule, it is reported to the dispatch procedure

and becomes active a few hours later. We assume that the time between calculating and

implementing a schedule is 3, 6 and 8 hours in 3-hour, 6-hour and 24-hour planning,

respectively. When implemented, the schedule is active for 3, 6 or 24 hours, and the
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next one is made in time to become active as soon as its predecessor expires.

Dispatch Steps. The dispatch steps are used to estimate operational costs of im-

plementing a schedule. The dispatch model uses the same hourly granularity as the

scheduling model. It is formulated as a 24h problem, but only the first 3 hours are

used to estimate the costs. The dispatch model has a single wind scenario with 3 hours

corresponding to the actual wind and a forecast for the remainder. Inside the model,

the active schedule is fixed, and all recourse decisions are made cost-minimally, that is,

use of OCGT, levels of reserve and response, pump storage operation and shed load.

We record the resulting operational cost for a 3-hour period, including penalties for

underserved reserve and response and lost load. Additional time periods after the first

3 hours are included to avoid reservoirs being emptied towards the end of 3 hours.

The calculated system state is used as initial state for the next dispatch problem. The

rolling horizon procedure alternates between scheduling steps and dispatch steps. While

schedules are made for 3, 6 or 24 hours at a time, the dispatch model always evaluates

3 hours to keep the results consistent and comparable. Thus, multiple dispatch steps

are required after a single scheduling step if the schedule is valid for more than 3 hours.

For the dispatch we choose 3-hour steps instead of one-hour steps to save computing

time.

Overview of Test Runs. We evaluate seven different types of scheduling: for each

of the three approaches with updates every 3, 6 or 24 hours, we run a stochastic and

a deterministic version. For reference, we also perform one additional run with perfect

foresight, by solving a single-scenario combined scheduling and dispatch model in which

future wind power is known in advance. The amount of reserve plus response (4.19) in

this is treated as a soft constraint, unlike in the other deterministic scheduling models

which use a fixed margin for reserve plus response.

The stochastic models have the following structure: for 3-hour scheduling we use

a multi-stage scenario tree with 3 stages of 3 hours each and a final stage that covers

the remainder of the day. There are 3 scenarios on the first stage, then 6, 9 and 12 on

subsequent stages. For 6-hour scheduling we use trees which have 4 stages of 6 hours

each, with 4 scenarios on the first stage, and then 8, 10, and 12 scenarios on subsequent
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stages. The two-stage day-ahead model has 12 senarios on the second stage.

4.4 Evaluation Results

The following two sections explain the results of our two-year rolling horizon evalua-

tion. Section 4.4.1 discusses the effects of wind variability and wind uncertainty on

network congestion and locational marginal prices in the system, and on the way pump

storage plants are operated. The purpose of this section is to demonstrate how the

model uses its flexible storage assets to overcome adverse effects of wind variability and

uncertainty in a setting with restrictive transmission constraints. Hence it provides an

a posteriori motivation for modelling the power system in as much detail as was done

for this study. Finally, Section 4.4.2 presents our main results concerning the economic

comparison of deterministic and stochastic scheduling approaches. In our evaluations,

reserve and response margins for deterministic scheduling strategies were set by the

formula ‘capacity of the largest generator plus r% of the forecast wind’. A range of

cases were evaluated with r taking values between 0% and 50%. Due to the scenario

scaling approach discussed in Section 4.2, the stochastic strategies also depend on wind

forecast levels.

4.4.1 Pump Storage Operation and Network Congestion

In this section we demonstrate the interaction of the different model elements, i.e. ther-

mal generation, pump storages and the transmission model, and show what influence

variable and uncertain wind power supply has on them. We show how the model op-

erates pump storage plants under normal circumstances and how they are used to deal

with specific wind situations. To do this we look at both, the pump storage operation

under perfect foresight and under wind forecast uncertainty. This allows us to explore

how the forecast uncertainty affects the way in which pump storages are operated and

how they contribute towards using more of the uncertain wind power to satisfy demand.

Furthermore, we look at examples of network congestion due to specific wind situations

and show how LMPs fluctuate when it appears.
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Effects of Wind Variability. Figure 4.9 shows how demand and actual wind power

supply affect congestion, pump storage operation and the available spare capacity

(headroom) in thermal generation units. The numbers shown here were taken from

the perfect foresight evaluation. This allows us to eliminate effects of wind power un-

certainty completely and focus entirely on aspects of wind power variability: at times of

low wind supply we can observe regular operation of the system, while at times of high

wind supply we can observe the system’s best response to the wind, given its network

restrictions and storage capability.

The third graph from the top in Figure 4.9 shows net demand and actual wind

power supply, which are the main drivers for how the system is operated. The top

graph in Figure 4.9 shows the reservoir levels at the four pump storages sites. Except

for the Foyers storage in the north of Scotland, all of them follow the daily demand

cycles for most of the month: when demand is low and marginal generation cost is low

the storages are filled, and during peak demand they are emptied again. The Welsh

storages (Z9) have large pump-turbines and achieve steeper pump and discharge ramps

than the Scottish storages (Z1, Z4). When wind variability has an influence on the

pump storage operation, e.g. because there is a lot of wind power available that must

be stored because it cannot be consumed immediately, the Welsh storages reach their

limits quickly, while the Scottish storages respond slowly. The Scottish reservoirs never

reach their upper limits as part of the regular day- night cycle.

At night when demand is low all storages are emptied almost completely and can-

not provide large amounts of reserve or response. The second graph from the top in

Figure 4.9 shows the total headroom of part-loaded thermal units and explains why it

is not necessary to provide large amounts of reserve or response via pump storages: at

night the thermal units are ramped down, resulting in an increase in the headroom, so

most of the reserve and response can be provided by thermal units.

The wind variability has a noticeable effect on pump storage operation, in particular

if both the available wind and the storage capacity are on the same side of a transmission

constraint. The bottom graph shows LMPs for zones Z1 and Z2 in the north of Scotland,

and for the rest of the system. During the particular month shown on the graphs,

network congestion only led to different LMPs in these zones, while the rest of the

network was not congested. Zones Z1 and Z2 contain a significant amount of wind
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Figure 4.9: Pump storage operation and network congestion and the effect of wind
power fluctuations on them. The graphs show the first month (January) of the evalua-
tion. The numbers are taken from a scheduling and dispatch evaluation under perfect
foresight. The top graph shows reservoir levels of the four pump storage schemes. The
graph below shows the total spare capacity (headroom) in part-loaded generators. The
third graph shows demand (net of interconnection) and available wind power. Finally
the bottom graph shows LMPs (dual solutions of (4.4)) for zones Z1, Z2 and all others.
During the first month, only zones Z1 and Z2 had LMPs different from the other ones.
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power generation capacity, and at times of high wind power availability the LMPs drop

(bottom graph), and the Foyers storage gives up its regular day-night cycle in favour

of storing excess wind power that cannot be transported to the rest of the system. On

Days 12 and 13 the reservoir is completely full, and on day 14 it is being emptied again

since the wind power supply decreased. Thus the model uses pump storage to alleviate

consequences of network congestion at times of high wind availability and achieves

higher wind penetration levels and lower costs than would be possible without storage.

Effects of Wind Uncertainty. In the previous paragraph we discussed regular daily

pump storage cycles at times of low wind and showed how these change at times of

high wind power outputs. The model uses pump storage as a means of storing wind

power which is otherwise unavailable because it cannot be transported and consumed

at the time it is available. This effect was purely due to wind power variability, since

the evaluation was done under perfect foresight. In this section we explore the effect of

wind forecast uncertainty on pump storage operation, by examining the reservoir levels

in the evaluation of deterministic and stochastic scheduling strategies. Pump storage

operation is a recourse decision made by the dispatch model under knowledge of the

actual wind power, but optimal pump and discharge decisions are a consequence of the

thermal schedule which is decided under uncertainty. Figure 4.10 shows the operation

of pump storage reservoirs and the total capacity of scheduled thermal generators under

deterministic and stochastic scheduling strategies and under perfect foresight.

The bottom graph in Figure 4.10 shows the total thermal generation capacity com-

mitted under the various scheduling schemes. The amount of available wind power

has a significant influence on this: at times of high wind the thermal capacity reduces

significantly. At these times the deterministic and stochastic strategies schedule more

thermal capacity than the perfect foresight procedure, since both are aware of the higher

forecast uncertainty in comparison to times of low wind. During these peak wind times

the deterministic strategy is more extreme than the stochastic one: in peak demand

hours it tends to schedule more capacity, and at low demand hours it schedules less

capacity than the stochastic strategy. At times of low wind power availability, both,

deterministic and stochastic strategies commit nearly the same capacity as the perfect

foresight procedure.
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Figure 4.10: Additional graphs on pump storage operation under various scheduling
strategies. We show the first month (January) of the stochastic, perfect foresight, and
the most successful deterministic 3-hour evaluation. The top two graphs show the
reservoir levels at the Scottish pump storage plants (Z1 and Z4). The third graph
shows the sum of the reservoir levels at the Welsh storages (Z9). Finally the bottom
graph shows the scheduled conventional generation capacity and the available wind
power supply. All numbers are taken from the dispatch stage of the evaluation process,
where reservoir levels are optimal recourse decisions under actual wind availability but
conventional capacity is scheduled under uncertainty (except in perfect foresight case).
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The top graph in Figure 4.10 shows the reservoir level at the Cruachan storage

scheme in zone Z4. Its operation is affected significantly by the wind forecast uncer-

tainty: due to the higher levels of committed thermal capacity at times of high wind,

the typical day-night cycle disappears while the reservoir is used to store wind energy

that cannot be consumed immediately. The Cruachan scheme has a large reservoir in

comparison to its pump capability and its day-night cycles are relatively small. It is

well suited to absorb and store unused wind power, but may be more effective with

additional pumping capacities. The economic value of installing additional machines is

explored in the next section, in case Z4 in Figure 4.13.

The second graph from the top in Figure 4.10 shows the reservoir level at the Foyers

storage scheme in the north of Scotland (Z1). This zone has very low demand but

large amounts of installed wind power generation capacity and lies behind a restricitve

transmission constraint. The day-night cycles at the Foyers storage are very small.

However, at times of high wind it is required to absorb unused wind that cannot be

exported to the rest of the system, and this is the case even under perfect foresight

scheduling. When the reservoir reaches its upper limit it is necessary to curtail wind.

Thus there is a value to adding additional storage capacity in this part of the system,

and this is explored in the next section, in case Z1 in Figure 4.13. Similar to Cruachan,

the Foyers storage is required to store more energy for a longer period of time when

wind forecasts are uncertain, i.e. in the stochastic and deterministic cases.

The third graph from the top in Figure 4.10 shows the combined reservoir levels

of the Dinorwig and Ffestiniog storages in Wales (Z9). Dinorwig is the most powerful

storage in the system, with both, a large reservoir and powerful pump-turbines. Both

storages are located in a zone that is well connected with areas of large demand and

conventional generation capacity. The day-night cycles are very expressed, and with-

out wind uncertainty these reservoirs are not used for long term wind energy storage.

However, in the deterministic and stochastic evaluations with uncertain wind, they are

also used as wind energy storages.

4.4.2 Deterministic and Stochastic Performance

The results of our two-year evaluation are shown in the graphs in Figure 4.11. A range

of deterministic cases were evaluated with the forecast-dependent reserve and response
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margin r taking values between 0% and 50%. The resulting average margin is what

is shown on the x-axes in Figures 4.11 and 4.12. Stochastic models allocate reserve

for forecast errors based on their scenarios, while being aware of the recourse cost of

keeping too little additional reserve and response for potential failures. Hence they

determine optimal reserve and response levels internally and only need to be evaluated

once, unlike the deterministic cases which we evaluated for multiple values of r. On

the graphs in Figure 4.11, the horizontal dotted lines show the values achieved by the

stochastic cases with 3-hour, 6-hour and 24-hour schedule updates.

Average Cost. The total cost consists of no-load, startup and marginal generation

costs and various recourse costs. It comes to roughly $134 per MWh. Recourse costs

include the cost of lost load, underserved reserve and response, and OCGT usage. For

the 6-hour deterministic cases, the graph in Figure 4.12 shows a detailed breakdown of

these costs. The total generation cost of slow units is determined by the demand and

the average marginal cost of the committed generators: in Figure 4.12 they increase

from left to right as the amount of OCGT usage decreases and more demand is satisfied

from cheaper, slow units. No-load and startup costs of slow units also increase from

left to right, while recourse costs decrease from left to right, resulting in cost minima

between average reserve and response (R&R) margins of 2.7GW and 3.1GW.

The top left graph in Figure 4.11 shows an overview of the daily average cost

achieved with all scheduling strategies. The deterministic procedures all have cost

minima between average R&R margins of 2.5GW and 4GW, where very little or no

load is shed and the gradients of increasing no-load, startup and generation costs cancel

out with decreasing OCGT and R&R costs. In an area around these minima the cost

curve is flat: evaluations with different reserve margins give similar cost. The total

cost decreases if commitments of slow units can be revised more regularly: 24-hour

scheduling is more expensive than 6-hour scheduling, which in turn is more expensive

than 3-hour scheduling. The maximum room for improvement through better forecasts

or better (e.g. stochastic) scheduling methods is indicated by the cost under perfect

foresight. The average costs with stochastic scheduling models are lower than the

minimum costs achieved with the corresponding deterministic models: the gaps are

$100k ( approx0.1%) per day in the 3-hour and 6-hour cases, and $300k (≈ 0.3%) per
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Figure 4.11: Results of a two year evaluation of deterministic and stochastic 3-hour
and 6-hour intraday and 24-hour day-ahead scheduling. For reference, the performance
of perfect foresight scheduling is also included. The value on the x-axes is the average
set margin for reserve and response in deterministic scheduling problems. Graphs of
stochastic results are dotted to indicate that they were not solved with different set
margins. The top left graph shows the average daily cost of the different scheduling
strategies, including penalties for load shedding and not keeping enough response. The
bottom left graph shows the total proportion of load shed over the two years. The
top right graph shows the average conventional generation capacity scheduled by the
various approaches. The bottom right graph shows the average amount of response
available at the dispatch stage. Here, the ’adequate’ level indicates the level below
which a penalty is incurred for not keeping enough response.
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Figure 4.12: Breakdown of daily average cost into startup, no-load and generation
costs of slow units (Gen), and recourse costs. The recourse costs are for OCGT usage
(OCGT), underserved reserve and response (R&R) and shed load (Load). The gener-
ation cost portion of (Gen) increases from $91.5M in the leftmost case to $91.9M in
the rightmost case (+$0.4M). The remainining increase in (Gen) is due to startup and
no-load costs which increase from $3.1M to $3.34M (+$0.24M). The graph shows the
deterministic 6-hour rolling cases with various fixed reserve and response margins. For
the case with average set margin of 2.7GW, Figure 4.5 in Section 4.2 shows how the
R&R penalty cost is accrued at different levels of underserved reserve and response.
For comparison, the average daily costs in the corresponding stochastic case are shown
on the bar to the right of the graph.

day in the 24-hour case. While the stochastic cases have higher generation costs than

the best deterministic cases, the recourse costs are lower (cf. example in Figure 4.12).

The cost in the 3-hour stochastic case is $350k (≈ 0.35%) per day higher than in

the perfect foresight case. The gap between these is the value of perfect information.

To see if it can be reduced by including more than 12 scenarios in the stochastic model,

we performed the same evaluation again with 20 Scenarios. However, the resulting cost

did not change significantly (< 0.01%). The stochastic evaluations were also performed

without the scenario scaling approach that makes the scenario spread dependent on

the forecast level: due to higher generation cost this led to a worse overall performance

of stochastic scheduling, which eliminated the gap between the stochastic procedure

and the best deterministic procedure. Achieving minimal operational cost requires a

careful balance of committed spare capacity and the use of costly recourse actions,

and stochastic models tend to over-commit conventional capacity in situations with
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low wind if the correlation between wind speed and forecast errors is not taken into

account.

Load Shedding. The bottom left graph in Figure 4.11 shows the average annual

load shed over the two years. While all stochastic models avoid shedding any load,

deterministic models shed load if the set R&R margin is not high enough. At $27k

per MWh, the cost of load shedding is large enough to dominate the shape of the de-

terministic cost curves to the left of their minima in the top left graph of Figure 4.11.

The impact of the cost of load shedding on these cost graphs is also visualised in Fig-

ure 4.12. Increasing the deterministic R&R margin does not always lead to a reduction

in shed load: in the deterministic model spare capacity is allocated based on cost only,

ignoring potential network congestion, which sometimes leads to situations where it is

lumped behind a transmission constraint and unavailable elsewhere. Stochastic models,

on the other hand, allocate generation capacity based on correlated wind scenarios and

are aware of the network restrictions in the potential operational states. Hence spare

capacity is allocated where it is needed to deal with critical wind situations.

Scheduled Capacity. The top right graph in Figure 4.11 shows the average com-

mitted conventional generation capacity. For deterministic cases, the capacity is a

consequence of the average wind power level in the forecasts and the set R&R margin.

The capacity curves for 3-hour, 6-hour and 24-hour scheduling are all relatively close

together. The committed capacity increases with the R&R margin, and this drives the

cost increase to the right-hand side of the cost minima in the top left graph.

In stochastic problems, the scheduled capacity is a consequence of the average wind

power forecast level and the scenario variation at times for which scheduling decisions

are made. The relevant forecast horizon is 4 to 6 hours, 7 to 12 hours, and 8 to

32 hours ahead in 3, 6 and 24-hour scheduling, respectively. Figure 4.7b shows the

variation of generated scenarios for these varying forecast horizons: while there is only

a small difference between the average errors relevant for 6 and 24-hour scheduling,

those relevant for 3-hour scheduling are notably lower. Consequently the 6 and 24-hour

rolling procedures committed similar capacity levels, while 3-hour rolling committed a

lower level.
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System-Wide Response Levels. The bottom right graph in Figure 4.11 shows the

average amount of response in the dispatch. The ‘adequate’ level indicates where the

response penalty curve is first different from zero, and levels below that incur the corre-

sponding penalty. On average, perfect foresight scheduling chooses a level where a small

penalty applies, and the stochastic scheduling strategies lead to similar levels. Deter-

ministic procedures lead to lower response levels than their stochastic counterparts, but

their level increases with the R&R margin. If we take low response levels as an indi-

cator that the power system is exposed to high stress due to forecast uncertainty, then

this shows the stress reduction through stochastic scheduling. The gaps between the

deterministic curves and their stochastic counterparts differ systematically: in 3-hour

scheduling the curves are at a similar level, while in 6-hour and 24-hour scheduling they

are further apart. The higher the forecast uncertainty, the larger the stress reduction

through stochastic scheduling. The forecast uncertainty also explains the difference be-

tween the top and bottom right graphs: the 6-hour and 24-hour scheduling procedures

commit a higher capacity level than the 3-hour procedure, but result in less response at

the dispatch stage, as the remaining headroom is used towards dealing with the higher

forecast uncertainty.

Network Congestion. Table 4.1 shows differences in locational marginal prices

(LMPs) between selected zones, averaged over the two-year planning horizon. The

LMP values shown here are the dual solutions of constraints (4.4) for each network zone,

taken from the dispatch model. In the presence of transmission restrictions, stochas-

tic models have a better awareness of the location where spare capacity is required to

deal with forecast uncertainty. The deterministic models are not aware of the spatial

correlation of wind forecast errors, which leads to congested situations where neigh-

bouring zones have different LMPs more frequently than with stochastic scheduling.

Consequently, the average LMP differences in Table 4.1 are higher in the deterministic

cases. Most cases of congestion appear in Scotland (Z1-Z5), while some also appear

in the greater London area and in central England. However, these are less frequent

so the average LMP differences are lower and we exclude them from the table. The

cases shown in Table 4.1 include the stochastic case and one selected deterministic case

for 3-hour and 24-hour scheduling. As deterministic cases we chose the cost-optimal
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Case Z1–Z2 Z1–Z4 Z2–Z4 Z2–Z5

3hStoch 130.00 156.44 26.46 26.46
3hDet-15 132.57 395.51 262.93 262.93
24hStoch 117.20 132.67 15.47 15.47
24hDet-30 127.31 146.94 19.63 19.63

Table 4.1: LMP differences between selected zones, averaged over the two-year planning
horizon. The LMP values show the average saving per day in $ that can be expected
from increasing the transmission capacity between the zones by 1 MW. The shown
cases are: stochastic 3-hour scheduling, deterministic 3-hour scheduling with variable
R&R margin r=15% of forecast wind (= 2.2GW margin on av.), stochastic 24-hour
scheduling, and deterministic 24-hour scheduling with variable R&R margin of r=30%
of forecast wind (= 3GW margin on av.).

24-hour case which incurs no load shedding, and a slightly suboptimal 3-hour case with

some load shedding. When load shedding occurs, it drives the LMPs up significantly,

resulting in very large LMP differences between zones.

Pump Storage and Congestion Cost. We explore the cost of various model alter-

ations concerning the transmission network and pump storage schemes, by performing

evaluations with 3-hour deterministic, stochastic and perfect foresight scheduling. The

results are summarised in Figure 4.13. We show the cost-optimal deterministic strategy,

i.e. the case for which the evaluation showed a posteriori that it had the best variable

R&R margin. The following cases have been evaluated for this study:

Z1: This case is motivated by the observation that the system may benefit from

additional storage capacity in the north of Scotland, in zone Z1 (cf. previous

section). We explore the economic impact of installing two additional pump

storage schemes (reservoirs and plants) identical to the existing Foyers scheme

which has 300MW pump-turbine capability and 6.3GWh storage capacity.

Z4: This is motivated by the observation that the Cruachan storage scheme in

zone Z4 has small pump and turbine capabilities in comparison to its storage

capacity. We explore the impact of doubling the number of installed machines,

resulting in an increase in pump-turbine capability from 440MW to 880MW.

NoN: This case is included to demonstrate the average cost of network congestion

over the two-year evaluation period. We remove all transmission restrictions
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from the system and solve a so-called coppper-plate model in which the whole

system is represented as a single node.

NoS: In this case we explore the economic value of the pump storage capabilities

that are already available. We remove them from the system and re-run the

evaluation.

All cases are compared to a ‘norm’ case, which corresponds to the case shown on

the result graph in Figure 4.11. Taking the stochastic results as the base, the gap

between stochastic and perfect foresight solutions is between 0.35% and 0.37% ($350k to

$370k daily) in all considered cases. The gap between the deterministic and stochastic

solutions is 0.11%, 0.08%, 0.06%, 0.08% and 0.14% in the Norm, Z4, Z1, NoN and NoS

cases, respectively (left to right in Figure 4.13). The additional storage capabilities

in the Z4 and Z1 cases reduce the gap between stochastic and deterministic planning

from the Norm case, while removing storage capacity in the NoS case increases the gap.

Storage provides a way of compensating for wind forecast uncertainty, so it reduces the

advantage of stochastic scheduling over deterministic scheduling.

With the best implementable (stochastic) policy, the cost savings achieved by stor-

age expansion Z4 in comparison to the Norm case is 0.05% ($50k), while storage ex-

pansion Z1 gives a 0.08% ($80k) improvement. Removing network congestion (NoN)

has a value of 0.05% ($50k), while removing storage capabilities entirely (NoS) leads

to a major cost increase of 0.6% ($600k). The different cost in the studied cases can be

explained with the system’s ability to use more wind and commit less thermal genera-

tion: in the Norm case 0.36% of available wind power are curtailed, while in the Z1 and

NoN cases only 0.05% are curtailed, and in the NoS case 0.7% need to be curtailed. In

the Z1 and NoN cases the total capacity of committed thermal generators is on average

0.1% lower than in the Norm case, while in the NoS case it is 2.5% higher. Pump

storages provide a major share of sytem-wide reserve and response, and without them

more thermal generators must be switched on and kept off their upper limits to provide

reserve and response. The Z4 case does not differ much from the Norm case in terms

of wind curtailment, but has 0.06% lower thermal commitment.

In addition to the above cases, we calculate the operational cost in a hypothetical

perfect foresight case where infinite lossless storage is available at any node of the
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Figure 4.13: A comparison of operational costs in various cases. The graph shows
the average daily cost of 3-hour scheduling with the best (a posteriori) deterministic
strategy, stochastic strategy, and perfect foresight. In order from left to right the
cases are: the ‘normal’ reference case (Norm, same as Figure 4.11), a case with doubled
pump-turbine capability but unchanged storage capacity in zone 4 (Z4), a case with two
additional pump storage schemes identical to Foyers in zone 1 (Z1) (increased pump,
discharge and storage capacity), a case without transmission network restrictions (NoN)
and a case without any pump storages (NoS).

network. In that case all wind and demand variability will be met from storage, and

generation levels will be constant. No startup cost will occur, since the generators

would be committed according to their merit order and kept on continuously. The cost

of satisfying demand in this way is a lower bound to the operational cost that can be

achieved by an implementable strategy in a real system, so in particular it provides a

(loose) bound on what can be achieved by the optimization. In our GB test system it

amounts to a daily average cost of $92.06M.
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Conclusions

This section summarises the main results of our stochastic unit commitment study and

explains our conclusions. Section 5.1 provides an overview of the contents of this study,

and Section 5.2 has our conclusions.

5.1 Summary of the Contents

In Chapter 2 we study modelling and solution techniques which are required to solve

realistic implementations of stochastic UC problems efficiently. We review two-stage

and multi-stage recourse problems, show how the non-anticipativity property can be

imposed through constraints, and how these constraints can be relaxed to derive sce-

nario decomposition algorithms. Besides Progressive Hedging, which remains a heuris-

tic when applied to mixed-integer problems, Lagrangian relaxation and Dantzig-Wolfe

decomposition can be used for scenario decomposition. We show how LR is used for

lower bounding and decomposition, and what solution techniques exist for the dual

problem. As a counterpart to this dual viewpoint, we present the primal DW de-

composition approach: we introduce Dantzig and Wolfe’s decomposition principle and

explain generalisations for the mixed-integer case. For a given dual solution, LR and

DW decomposition provide the same lower bound on the optimal objective value, and

if the Lagrangian dual problem is solved by a cutting plane algorithm, then DW de-

composition and LR are equivalent to one another in that the cutting plane problem

is the LP dual of the DW master problem. Proximal bundle methods are presented as

a way of stabilising the dual in this algorithm, and Branch & Price is briefly explained

as a method to close occurring duality gaps. We close this chapter with a brief review
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of deterministic and stochastic unit commitment formulations and explain likely causes

of redundancy of non-anticipativity constraints.

Chapter 3 develops an efficient solver for multi-stage and two-stage stochastic UC

problems of realistic size and detail. Based on the theory explained in Chapter 2, we

derive a basic column generation framework for scenario decomposition of stochastic

problems that have an explicit non-anticipativity formulation via constraints. We show

how valid lower bounds for the optimal stochastic solution can be derived from lower

bounds of scenario specific subproblems if these cannot be solved to optimality. To

address the well-known dual instability issues that ColGen methods suffer from, the

master problem in our approach uses a proximal bundle term. The proximity center

is hot-started from a multiplier estimate that we obtain from an LP relaxation. Since

the non-anticipativity constraints of the LP relaxation are equally as redundant as

those of the original integer SUC problem, we augment the relaxation with a quadratic

regularisation term that is similar to the proximal bundle term. This permits us to

control the size of the obtained dual solution in the presence of dual degeneracy. We

argue that quadratic regularisation improves the solver performance if interior point

methods are used to solve the relaxation, and show that controlling the size of the

initial dual solution is beneficial for stability of the ColGen method with certain sets

of columns. Besides dual hot starts, we employ a novel MIP heuristic to derive near-

optimal integer SUC solutions. These are used to provide a primal hot-start to the

master problem. The hot-starts accelerate our method significantly and allow for a

major reduction of runtime in comparison to CPLEX’s out-of-the-box Branch & Bound

solver. All numerical tests are performed with our UC model that is based on the British

power system.

In Chapter 4 we describe a long term evaluation of hydro-thermal scheduling under

wind uncertainty, using deterministic and stochastic UC approaches. We first describe

and explain our GB UC model, which includes transmission-connected conventional and

renewable power plant, a sophisticated model of pump storage, an aggregated model of

the transmission system, and a model for flexible system-wide provision of frequency

response and reserve. This model is an expected 2020 version of the GB system with an

overall wind penetration of 30% in terms of installed capacity. We perform a two-year

evaluation of deterministic scheduling with fixed reserve margins and a central fore-
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cast, stochastic scheduling with scenario trees based on the same central forecast, and

perfect foresight scheduling for reference. We compare these in different operational

contexts, i.e. day-ahead and intraday scheduling with variable time lengths between re-

scheduling slow conventional generation units. Wind forecasts in this evaluation were

synthesised so as to achieve specific error statistics. We describe the employed forecast

error scenario generation approach which is based on multi-variate ARMA series, and

a scenario reduction and tree construction method based on Kantorovich distances be-

tween probability measures. These are a variation of the scenario generation techniques

used in the WILMAR study, where we adapt the scenario spread so that it depends

on the forecast wind level. Finally, we explain the rolling horizon methodology and

the dispatch approach used to evaluate the schedules against the actual wind, and

demonstrate the potential cost savings through stochastic scheduling. The detailed

modelling approach with network restrictions and a sophisticated pump storage model

is motivated a posteriori by demonstrating the effects of wind variability and uncer-

tainty on the optimal storage operation under network congestion. We demonstrate

the economic value of the existing storage schemes under deterministic and stochastic

scheduling, explore two alternatives of expanding the storage capabilities and quantify

the impact of the expansion on operational costs under both scheduling approaches.

Additionally, we explore the average cost of congestion in the transmission network.

To sum it up, the two major research topics addressed in this study are

• To develop an efficient scenario decomposition methodology for stochastic unit

commitment problems which scales well in the number of scenarios.

• To quantify the added value of stochastic scheduling over deterministic scheduling

under wind uncertainty, and to characterise the different schedules and explain

their impact on the power system.

Our main findings on these two topics are summarised in the two following sections.

Section 5.2.1 draws conclusions on the former topic, while Section 5.2.2 is concerned

with the latter.
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5.2 Main Findings & Further Research

5.2.1 Efficient Scenario Decomposition

Our mixed integer ColGen algorithm for two-stage and multi-stage stochastic UC prob-

lems is based on a DW decomposition of the underlying scenario set. In theory, DW

decomposition readily applies to scenario decomposition, but a series of additional is-

sues arise in practical applications. We stabilise the scenario decomposition algorithm

with a dual proximal bundle term and estimate dual hot-starts from a perturbed LP re-

laxation. We also derive a fast, novel, MIP-based schedule combination heuristic which

is used to construct primal optimal solutions. Our tests suggest that knowing this solu-

tion at the start of the ColGen process also enables quick convergence of lower bounds.

The scenario decomposition method can solve SUC problems to optimality if optimal

solutions of the deterministic subproblems can be obtained. Where this is not the case,

a valid lower bound can be derived from the lower bounds of the subproblems. In all

test runs the duality gaps vanish or are well below the 0.1% optimality tolerance. Since

optimal primal solutions can be constructed by a heuristic, no branching is necessary.

Our implementation is tested on two-stage and multi-stage instances of our GB

power system model. The ColGen method terminates in just one iteration. For

small problems the solution times of the decomposition method are similar to those

of CPLEX’s Branch & Bound solver when applied to the extensive formulation. How-

ever, on larger instances the decomposition takes significantly less time. Most of the

work is done in the initialisation procedure, to find an optimal primal solution, and to

estimate non-anticipativity multipliers for cases with non-zero EVPI. On ‘easy’ cases

with negligible EVPI, the decomposition performs very well even without a dual hot

start. Setting the initial duals to zero is sufficient to encourage the subproblems to

generate all relevant schedules required by the SC heuristic to construct an optimal

solution, and is also sufficient to prove optimality in the next ColGen pass. In order

to solve harder cases with non-zero EVPI, a good dual estimate is required for the

following two reasons:

1. To populate the SC heuristic with a good subset of schedules, so that its solution

space is as small as possible but contains an optimal solution.
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2. To guide the cutting plane problem dRMP(ε) by stabilising it around an accurate

stability center, so that it provides good dual solutions.

The stabilised LP relaxation LPR(µ) can be solved to obtain such multipliers. Our tests

showed that interior point methods benefit from the convex quadratic stabilisation term

that we include in this problem. Studying the dual solutions at different stabilisation

levels revealed that there is a continuum of dual optimal solutions with vastly different

magnitudes, and that the ColGen method gains in stability if we control the size of

the initial multipliers. In terms of elapsed times this strategy scales acceptably in

the number of scenarios, because the linear algebra underlying interior point solvers

parallelises well. However, in terms of CPU time CPLEX’s barrier solver does not

scale well on LPR(µ) if the number of scenarios is increased. An alternative way to

obtain approximate dual solutions is by applying scenario decomposition to the LP

relaxation. However, achieving high accuracy with the relaxed ColGen method takes

very many iterations, and using dual solutions of lower accuracy has an adverse effect

on the quality of the lower bounds obtained in the integer decomposition. Overall, the

fastest way of achieving the required tolerance in the integer decomposition is by solving

LPR(µ) with an interior point method. Alternative ways to solve LPR(µ) quickly and

accurately are a potential direction for future research.

A central element for the success of our method is the SC heuristic. It can be

started from a feasible over-committment solution or a solution obtained with other

cheap heuristics, and it scales very well on the problems we solved for this study.

However, since it is a MIP itself, it will fail to do so eventually if the problem size

is increased sufficiently. In that case cheaper heuristics will be required, and this is

another possible direction of future research.

The strategy adopted in this study aims to reduce the work required to solve SUC

problems: we seek accurate primal and dual hot starts to minimise the number of

ColGen iterations. This results in a favourable reduction of CPU time, which is suitable

for environments with moderate computational power. Alternative strategies may seek

to reduce elapsed times by increasing parallelism: subproblems can be solved in parallel,

and each subproblem can again be solved by parallel Branch & Bound. The resulting

ColGen iterations are cheaper, and it may be worthwhile to reduce the accuracy of
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the initial duals at the expense of doing more iterations. Less accurate duals can then

be obtained via scenario decomposition of the initial LP relaxation, which can again

be parallelised. This may be a more suitable strategy if large computer clusters are

available, or even if less accurate lower bounds are required.

5.2.2 Stochastic vs Deterministic Evaluation

We have performed a two-year rolling horizon evaluation of stochastic and deterministic

unit commitment approaches under wind uncertainty, with periods of varying length

between times when the schedules of slow conventional generators can be revised. For

the evaluation we use a central scheduling and dispatch model based on the British

power system under National Grid’s Gone Green scenario for 2020, including a pump

storage model, transmission restrictions between network areas and a model of system-

wide reserve and response provision. The focus of our study is on the performance

comparison of deterministic and stochastic generator scheduling at different time scales.

We quantifiy the monetary value of stochastic scheduling models over deterministic ones

under a central scheduling hypothesis, and pinpoint other advantages of stochastic

schedules.

Some of the effects of wind variability and uncertainty discussed in this study were

only possible to observe due to the amount of technical detail included in the model.

We observed that wind uncertainty can have major effects on the way in which pump

storages are operated if both lie on the same side of a transmission bottleneck which

separates them from a demand centre. Additionally, we have seen that the spatial

distribution of reserve and response has an impact on whether uncertain wind events

can be dealt with cost effectively, since wind forecast errors are spatially correlated.

In Section 4.4.2 we showed that modelling the interaction of transmission capabilities,

spatially correlated wind uncertainty and flexible generation and storage technologies

makes a difference to the overall operational cost. Hence the evaluation results shown

here apply to a rather specific model and context, and may turn out to be quite different

in other settings, e.g. if a less detailed model is used, a different amount of storage is

available, or the transmission network is less congested.

There are significant differences in costs between operating systems that allow the

major generators to be rescheduled every three hours, six hours or only once per day.
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The best (stochastic) cases of 3-hour, 6-hour and 24-hour scheduling have $350k, $650k

and $1.3M higher average daily operational cost than the perfect foresight solution.

Similarly, the superiority of stochastic over deterministic scheduling grows with the

amount of uncertainty in the relevant wind forecasts: the gaps are $100k per day in

the 3-hour and 6-hour cases and $300k per day in the 24h case.

Stochastic models result in minimum operational costs without having to tune re-

serve margins in advance. In all cases there is a gap between the lowest deterministic

cost and the cost of stochastic scheduling. This is despite the fact that we compare

their performance with the best (a posteriori) setting for deterministic reserve and re-

sponse which is not known a priori and can be different from one year to another.

The superiority of stochastic scheduling grows with the amount of uncertainty in the

relevant wind forecasts, but is reduced if additional pump storage capacity is installed.

Realising the full potential of cost improvement through stochastic scheduling re-

quires some care in constructing the tree of input scenarios. Minimal operational cost

is achieved through the right balance of committed spare capacity and the use of costly

recourse actions. In deterministic problems this balance is determined by the strat-

egy for setting reserve margins, while in stochastic models the scenario trees are the

determining factor. Deterministic reserve margins were set in a flexible way, so that

there are larger amounts of reserve at times of high wind forecasts and smaller amounts

at times of low forecasts. This is consistent with the assumption that the wind fore-

cast error is proportional to the amount of forecast wind. If the stochastic model is

driven with scenario trees that are generated from the same time series model at all

times of the year, irrespective of the amount of forecast wind, then the deterministic

model is given an unfair advantage by allowing it to schedule variable reserve mar-

gins depending on the forecast wind. To rectify this, a scenario generator is required

which allows the variability of the scenarios to depend on the wind level. In this study

we follow a scenario generation and tree construction approach which was developed

for the WILMAR study, in which the scenarios are generated from the same ARMA

model in all wind forecast situations. On average the stochastic model then schedules

significantly more generation capacity than the deterministic model, which increases

the overall cost unnecessarily. Therefore the width of the scenario trees in our tests is

scaled down at times of low and medium wind forecasts and kept the same at times of
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high wind forecasts. Our results show that this approach with scenario trees of adap-

tive width outperforms deterministic scheduling. There may be potential for further

savings through an improved forecast level dependent scenario tree generation method-

ology. However, developing a new scenario generation method is outside the scope of

this study. Simple ways of obtaining forecast level dependent errors are by

• Fitting different time series models for errors in forecasts of different levels. This

will require much larger amounts of historic data.

• Logit-transforming wind power and forecasts before calculating the error [76].

The fitting and scenario generation processes can be done with the transformed

data before the resulting scenarios are translated back to wind power. However,

a disadvantage of this is that the logit transform counteracts the effect that least

squares fitting penalises large errors more than small errors.

These can be starting points for further research into wind power scenario generation

methodology.

Penalties for keeping too little response and reserve are modelled, and they account

for $50k to $350k (≈0.05% to 0.35%) of the total daily cost, depending on how well a

scheduling method performs. The main cost drivers, however, are generation costs and

the recourse cost for shed load and OCGT usage. An analysis of these cost drivers in the

different deterministic scheduling strategies showed that the minimum operational cost

is obtained in a situation where the cost increase for committing additional capacity is

balanced by the resulting cost decrease in recourse costs, i.e. OCGT cost and reserve

and response penalties. Due to the high penalty for lost load, the minimum is typically

obtained by strategies which manage to avoid load shedding entirely, or only encounter

very low levels of load shedding on average. The stochastic models are more success-

ful at finding the right balance of cost drivers than their deterministic counterparts:

the resulting total costs are lower than in the best deterministic cases. Additionally,

stochastic models tune committed capacity levels internally, and the resulting response

levels under wind uncertainty are similar to those achieved with a perfect foresight

model.

In the presence of transmission restrictions, stochastic models have a better aware-

ness of spatial wind issues and allocate reserve where it is necessary to deal with the
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wind uncertainty. In the deterministic scheduling model, increasing the reserve margin

did not always lead to a reduction of lost load. Additional reserve capacity is scheduled

based on where it is cheapest rather than based on where it may be required to buffer

wind forecast uncertainty. The stochastic model, on the other hand, uses scenarios

drawn from a time series model that is aware of the spatial correlation of wind forecast

errors to decide on where to commit spare capacity. In cases where there is no load

shedding, lower LMPs indicate that the stochastic scheduling models typically lead

to less network congestion. Congestion is measured by differences in LMPs, and it is

shown that these are less with stochastic scheduling models. An additional evaluation

in which network restrictions were removed confirmed that the average cost of network

congestion is $40k per day lower with stochastic scheduling than with deterministic

scheduling.

Another interesting question is whether further cost savings can be achieved by

including more scenarios in the stochastic scheduling problem. The results shown in

the previous chapter are all obtained with twelve wind scenarios to keep the runtime

for the evaluation within manageable limits. We performed the evaluations with 20

scenarios as well, but the cost is not sufficiently different from the twelve scenario

evaluation to justify showing the results here. However, we discussed above that it

may be possible to achieve further cost savings by using better forecast level dependent

scenario generation techniques, and it is unclear if a larger number of scenarios, or even

a forecast level dependent number of scenarios would have a beneficial effect on the

cost in that context. In future research projects these alternatives could be explored in

conjunction with one another.

We have seen that stochastic UC methodology allows for operational cost savings

in a setting where thermal schedules are made under significant wind uncertainty. The

savings are a small percentage of the overall cost, but due to the vast cost they are

still a noteworthy amount when expressed in total numbers. We have seen that a

key issue in making stochastic models profitable and worthwhile is to generate good

input scenarios. A moderate number of good scenarios can already lead to notable cost

savings, and with the scenario decomposition methodology these stochastic models can

be solved in a reasonable timeframe.



A

UC Model with Approximate Recourse

The solution method for two-stage stochastic UC problems described in Chapter 3 relies

on a cheap heuristic to find approximate solutions for the problem. These approximate

solutions are passed to the SC heuristic as an initial solution which it can improve

upon. A simple way of finding such a solution is by solving a deterministic problem

for a central or low wind scenario and then solving scenario-specific dispatch problems

with fixed schedules to find the recourse action. We find that this approach can be

improved notably if the deterministic problem that is used to find the central schedule

is augmented with some additional variables and constraints which inform it about

the expected cost of potential repercussions under the different wind scenarios. In the

following, we describe a model which is deterministic at the core, but knows about

the potential wind outcomes Pwin2
wts for every wind farm w ∈ W under each scenario

s ∈ S. We call this an approximate recourse model. It has additional power output

variables pgen2
gts for every scenario. These make the model much larger than a simple

deterministic one, especially for large numbers of scenarios. However, we find that if

these variables are used carefully in the model, then the computational cost of solving

it is comparable to a deterministic model. The model distinguishes between fast start

OCGT generators (set F) which are part of the recourse action, and slow conventional

generators. In the two-stage stochastic model described in Chapter 4, pump storages

are also part of the recourse action. However, in the approximate recourse model this is

ignored, and pump storages are part of the initial decision. An algebraic description of

the approximate recourse model is given below. This is largely a deterministic version

of the British model described in Chapter 4, but with the following modifications to
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make it aware of the expected cost of dealing with the different wind scenarios:

• In the objective (A.1) we include an additional term

∑
s∈S

P robs

 T∑
t=1

∑
g∈F

(
DtCmg p

gen2
gts

)
to account for the expected generation cost of fast start OCGT units. This

could be extended to include the expected cost for all generation units rather

than having a deterministic cost for large conventional units under a central wind

scenario and an expected cost for OCGT units under the different wind scenarios.

However, that increases the computational effort significantly, so we settle for this

model instead.

• We include additional cuts (A.2) to approximate the load balance equations under

every scenario. This is done in a global fashion rather than by transmission areas.

The equations require that enough power pgen2
gts is available in every scenario to

satisfy the global residual demand which remains after subtracting the available

wind power under that scenario.

• Generator bounds (A.3) and (A.4) link the additional power output variables

pgen2
gts to the central commitment decisions: large conventional generators can

only contribute to the approximate load balance equations under every scenario

if they have been committed to run. These bounds do not apply to fast start

generators g ∈ F which can be committed as part of the recourse action.

The resulting model is a modified deterministic UC model with an extended contin-

uous part. Its size grows in the number of scenarios, however, in the experiments we

conducted, the time required to solve this model via CPLEX was very similar to the

time requirement for simple deterministic models.

Sets

D: set of transmission boundaries in the network

F : set of fast start units, F ⊂ G. Slow units are in G \ F .

G: set of generation units, Gn is the set of generators at node n ∈ N
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L: set of transmission lines

N : set of network nodes (transmission areas)

P: set of pump storage plants, Pn is the subset at node n ∈ N
S: set of wind power scenarios

W: set of wind farms, Wn is the subset at node n ∈ N

Parameters

Ψ: minimum proportion of response to be met by part-loaded generators

Bld: line-boundary adjacency matrix. 1 if line l crosses boundary d in one direction,

-1 if it crosses in the other direction, 0 otherwise

C(rtot): PWL penalty function for keeping too little response rtot

Ĉ(r̂tot): PWL penalty function for keeping too little reserve plus response r̂tot

Cnlg : no load cost of generator g [$/h]

CH2O
q : end-of-day water value in the reservoir of pump storage plant q [$/MWh]

Cmg : marginal cost of generator g [$/MWh]

Cstg : startup cost of generator g [$]

Cvoll: value of lost load [$/MWh]

Dt: time granularity of the model [h]

Dres: time for which response must be served [h], with Dres < Dt

Eq: pump-generator cycle efficiency at storage q ∈ P [proportion]

Hmax
q : storage capacity at plant q ∈ P in MWh of dischargeable energy

Npum
q : number of (identical) pumps in pump storage plant q ∈ P

N st,end
l : start (end) nodes of line l

P capq : capacity of a single pump in pump storage plant q ∈ P [MWh]

P demnt : real power demand at node n in period t [MW]

Pmin,maxg,q : min (max) generation limit of generator g ∈ G (storage q ∈ P) [MW]

P̄ flol,d : maximum power transmission on line l / across boundary d [MW]

P rops : probability of scenario s

P ru,rdg : operating ramp up (down) limits of generator g [MW/Dt]

P su,sdg : startup (shutdown) ramp limits of generator g [MW/Dt]

Pwinwt : expected wind power available from wind farm w in period t [MW]

Pwin2
wts : wind power available from wind farm w in period t, scenario s [MW]

Rmaxg : maximum response available from generator g [MW]
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T : last time period of the planning horizon

Tntg : startup notification time of generator g [h]

tst,endb : start (end) periods of scenario bundle b

T u,dg : minimum uptime (downtime) of generator g [h]

Variables

αgt ∈ {0, 1}: 1 if thermal unit g is on in period t, and 0 if it is off

γgt ∈ {0, 1}: 1 if thermal unit g is started up in period t, and 0 otherwise

ηgt ∈ [0, 1]: 1 if thermal unit g is shut down in period t, and 0 otherwise

δqit ∈ {0, 1}: 1 if pump i of storage q is pumping in period t, 0 otherwise

ζqt ∈ {0, 1}: 1 if storage q is generating in period t, and 0 otherwise

hqt ∈ [0, Hmax
q ]: level of storage q after period t (dischargeable MWh)

pdisqt ∈ [0, Pmaxq ]: real power discharged from storage q in period t [MW]

pflolt ∈ [−P̄l, P̄l]: real power flow on line l in period t [MW]

pgengt ∈ [0, Pmaxg ]: real power output of generator g in period t [MW]

pgen2
gts ∈ [0, Pmaxg ]: real power output of generator g in period t, scenario s [MW]

ppumqt ≥ 0: real power pumped into storage q in period t [MW]

pshednt ≥ 0: load shed at node n in period t [MW]

rgengt ∈ [0, Rmaxg ]: response provided by generator g in period t [MW]

rpumqt ≥ 0: response provided by pump storage q in period t [MW]

r̂pumqt ≥ 0: reserve plus response provided by storage q in period t [MW]

rtott ≥ 0: total available response in period t [MW]

r̂tott ≥ 0: total available reserve plus response in period t [MW]

uwinwt ∈ [0, Pwinwts ]: used wind power from farm w in period t [MW]

Using the notation described above, the deterministic base model with approximate

recourse reads as follows:

min
T∑
t=1

∑
g∈G

(
Cstg γgt +DtCnlg αgt +DtCmg pgt

)
+
∑
q∈P

CH2O
q (hq0 − hqT )

+

T∑
t=1

(∑
n∈N

DtCvollpshednt + C(rtott ) + Ĉ(r̂tott )

)

+
∑
s∈S

P robs

 T∑
t=1

∑
g∈F

(
DtCmg p

gen2
gts

) (A.1)
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subject to these additional constraints for the recourse approximation:

• Second stage global load balance approximation cut for all t = 1, . . . , T, s ∈ S

∑
g∈G

pgen2
gts ≥

∑
n∈N

(
P demnt − pshednt

)
−
∑
w∈W

Pwin2
wts (A.2)

• Second stage generator bounds for all g ∈ G \ F , s ∈ S, t = 1, . . . , T

pgen2
gts ≥ Pming αgt (A.3)

pgen2
gts + rgengt ≤ Pmaxg αgt (A.4)

All following constraints describe a simple deterministic model with a central wind

scenario Pwinwt for every wind farm w ∈ W and time step t = 1, . . . , T .

• Load balance equation for all n ∈ N , t = 1, . . . , T

0 =
∑
g∈Gn

pgt +
∑
w∈Wn

uwinwt +
∑

l∈L:Nend
l =n

pflolt +
∑
q∈Pn

pdisqt + pshednt

− P demnt −
∑

l∈L:Nst
l =n

pflolt −
∑
q∈Pn

ppumqt . (A.5)

• Reserve and response definitions for all t = 1, . . . , T

∑
g∈G

(
αgtP

max
g − pgt

)
+
∑
q∈P

r̂pumqt = r̂tott (A.6)

∑
g∈G

rgengt +
∑
q∈P

rpumqt = rtott (A.7)

∑
g∈G

rgengt ≥ Ψrtott . (A.8)

• Transmission boundary limits for all t = 1, . . . , T, d ∈ D

−P̄d ≤
∑
l∈L

Bldp
flo
lt ≤ P̄d. (A.9)

• Generator bounds for all t = 1, . . . , T, g ∈ G

pgengt ≥ Pming αgt (A.10)
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pgengt + rgengt ≤ Pmaxg αgt. (A.11)

• Ramp rate constraints for all g ∈ G, t = 1, . . . , T

pgengt − pgeng(t−1) ≤ P rug αg(t−1) + P sug γgt (A.12)

pgeng(t−1) − p
gen
gt ≤ P rdg αgt + P sdg ηgt. (A.13)

• Switching constraints for all t = 1, . . . , T, g ∈ G

αgt − αg(t−1) = γgt − ηgt (A.14)

1 ≥ γgt + ηgt. (A.15)

• Minimum up- and downtime constraints for all g ∈ G, t = 1, . . . , T

t∑
i=t−Tu

g +1

γgi ≤ αgt (A.16)

t∑
i=t−T d

g +1

ηgi ≤ 1− αgt. (A.17)

• Pump storage operation constraints for all q ∈ P, t = 1, . . . , T

δq1t ≤ 1− ζqt (A.18)

δq(i+1)t ≤ δqit ∀i = 1, . . . , Npum
q − 1 (A.19)

ppumqt =

Npum
q∑
i=1

δqitP
cap
q (A.20)

ζqtP
min
q ≤ pdisqt ≤ ζqtPmaxq . (A.21)

• Pump storage reserve constraints for all q ∈ P, t = 1, . . . , T

r̂pumqt + pdisqt ≤ Pmaxq + ppumqt (A.22)

Dtr̂pumqt +Dtpdisqt ≤ hq(t−1) +Dtppumqt (A.23)

rpumqt + pdisqt ≤ ppumqt + Pmaxq (1− δq1t) (A.24)
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Dresrpumqt +Dtpdisqt ≤ hq(t−1) +DtPmaxq δq1t. (A.25)

• Pump storage reservoir constraints for all q ∈ P, t = 1, . . . , T

hqt = hq(t−1) +DtEqp
pum
qt −Dtpdisqt . (A.26)
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