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ABSTRACT 

Lamina formation in the developing cortex requires precise generation, migration 

and differentiation of cortical neurons. Cortical projection neurons originate from 

progenitors of the embryonic dorsal telencephalon. The transcription factor Pax6 is 

expressed in apical progenitors (APs) throughout corticogenesis in a rostro-lateralhigh 

to caudo-mediallow gradient. The current studies focus on elucidating the spatial and 

temporal role of Pax6 in cortical development. I first analysed the cortex of PAX77 

transgenic mice that overexpress Pax6 in its normal domains of expression. I show 

that Pax6 overexpression acts cell-autonomously to reduce the proliferation of late 

cortical progenitors specifically, resulting in the formation of thinner superficial 

layers in the PAX77 cortex. Increased levels of Pax6 lengthen the cell cycle of APs 

and drive the system towards neurogenesis. These effects are specific to late stages 

of corticogenesis, when superficial layer neurons are normally generated, in cortical 

regions that express Pax6 at the highest levels. The number of superficial layer 

neurons is reduced in postnatal PAX77 mice, while radial migration and lamina 

specification of cortical neurons are not affected by Pax6 overexpression. Then, Pax6 

was conditionally inactivated in cortical progenitors at mid- or late-stages of 

corticogenesis by using a tamoxifen-inducible Emx1-CreER line. I report a novel 

requirement of Pax6 for continuous suppression of ventral fates and concurrent 

maintenance of an appropriate dorsal identity in cortical progenitors. Pax6 ablation at 

either mid- or late-stages of corticogenesis increases the proliferation of late cortical 

progenitors at all levels across the rostral-caudal axis. In the absence of Pax6 from 

mid-corticogenesis, late-born neurons are severely under-represented and 

misspecified in superficial layers of the mutant cortex. Notably, Pax6 inactivation 

during late corticogenesis also affects superficial laminar fate; although the numbers 

of late-born cortical neurons are not severely affected in superficial layers of the 

mutant cortex, substantial numbers of late-born cells fail to migrate to appropriate 

laminar positions and accumulate in the ventricular zone (VZ) of the postnatal 

mutant cortex. Collectively, these gain- and loss-of-function studies suggest that 

disruption of Pax6 levels during different developmental time points leads ultimately 

to impaired formation of superficial cortical layers but through different cellular and 

molecular mechanisms. 
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1.1 Overview 

Development of distinct brain regions is a multistep process that starts with the 

specification of progenitor cells in the regionalized neuroectoderm, followed by 

intense progenitor cell proliferation that will ultimately give rise to neural progeny 

constructing the entire brain. Secretion of extracellular signalling factors and 

expression of transcription factor genes in graded patterns across the field of 

progenitor cells specify spatial identity. The primary focus of this thesis is on the 

genetic control of cerebral cortex development, a mammal-specific structure that 

arises from the dorsal part of the embryonic telencephalon. The neocortex (hereafter 

referred to as cortex) is the phylogenetically most recent development of the cerebral 

cortex and is responsible for the higher functions in humans. It contains an 

extraordinary number of neurons arrayed in a six-layered sheet, with neurons in each 

layer organized into a complex network of local circuits and subcortical connections. 

The discovery of regulatory genes that are expressed in characteristic gradients and 

master cortical development from the earliest stages has provided evidence that 

intrinsic information regulates important aspects of cortical development in a both 

temporal and spatial manner, and contributes to the transformation of a simple 

neuroepithelial sheet to a complex structure subdivided into distinct functional 

domains. The spatial and temporal roles of the transcription factor Pax6 during 

cortical development were addressed in this study through analyses of gain- and loss-

of-function mutant mice. 

 

1.2 Pax6: a transcription factor expressed in the CNS from early developmental 

stages 

Pax6 is one of a variety of transcription factors required for the normal development 

of the mammalian brain. It is a member of the paired-box family of transcription 

factors and therefore has two DNA binding domains, the paired-box and the 

homeobox. These domains are separated by a glycine-rich linker sequence and can 

bind DNA both independently and cooperatively (Callaerts et al. 1997; Jun and 

Desplan 1996). Pax6 expression is first seen as early as embryonic day (E) 8.5 in 
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mouse. It is widely expressed in the developing CNS including the forebrain, 

hindbrain and ventral neural tube (Walther and Gruss 1991; Grindley et al. 1995; 

Warren and Price 1997). It is also expressed in the developing olfactory system and 

in the lens, cornea and retina of the developing eye. Pax6 null mice die immediately 

after birth exhibiting a range of abnormalities, including absence of eyes and nasal 

structures, a severely malformed cortex, and failure of the diencephalon (the major 

region of the brain relaying sensory information to the cortex) to innervate the 

mutant cortex (Schmahl et al. 1993; Warren and Price 1997; Pratt et al. 2000; Tyas et 

al. 2003). 

The paired-box domain, which characterises the Pax gene family, was first 

discovered in the Drosophila gene paired and was found to be conserved in a number 

of functionally related genes (Bopp et al. 1986, 1989). The paired-box domain was 

subsequently found to be conserved across a wide variety of species from turtle and 

zebrafish to mammals. The first murine Pax gene, Pax1, was identified by Deutsch et 

al. (1988), and to date nine members of the Pax gene family have been identified in 

both mouse and human (for review see Lang et al. 2007). Mutations in Pax genes 

have indicated a link between a number of mouse and human conditions (Chalepakis 

et al. 1993).  The human condition aniridia and its homologous mouse phenotype, 

small eye (Sey), were long believed to be caused by mutations in the same gene.  

Analysis of a candidate gene for aniridia predicted that its protein product would 

have the characteristics of the paired box family of transcription factors (Ton et al. 

1991) and murine cDNA was subsequently found to be 92% homologous to the 

aniridia gene at the nucleotide level and produced an almost identical amino acid 

sequence (Ton et al. 1992). Analysis of the Pax6 gene in mice with a variety of Sey 

alleles confirmed that Pax6 is the gene responsible for this phenotype (Hill et al. 

1991).  Identification of the Drosophila homolog of Pax6, eyeless, which is critical 

for eye formation in the fly, shows a high degree of functional conservation of this 

gene across species (Quiring et al. 1994). 

The conservation of Pax6 function and the importance of its regulatory role during 

development are evident from the phenotypes caused by mutations in this gene. In 

mice, heterozygosity results in reduced eye size and ocular abnormalities including 



16 
 

iris hypoplasia, corneal opacification and cataracts (Hogan et al. 1988). Humans with 

heterozygous mutations in PAX6 suffer from aniridia, displaying a variable eye 

phenotype similar to that seen in heterozygous mice, and so Sey (Pax6+/-) mice 

provide a good model to study aniridia (Glaser et al. 1990; van der Meer-de Jong et 

al. 1990). Interestingly, eye development is extremely sensitive to Pax6 dosage with 

both elevated and decreased levels inducing abnormal phenotypes (Schedl et al. 

1996). There is also a variety of structural brain abnormalities associated with PAX6 

haploinsufficiency in humans. Interhemispheric connections through the anterior 

commissure or the corpus callosum seem to be reduced in aniridia patients (Sisodiya 

et al. 2001). Consistent with the known function of the anterior commissure to also 

contain olfactory and auditory fibres, aniridia patients frequently have reduced 

olfaction or deficient auditory interhemispheric transfer, although the latter is often 

associated with an absent/hypoplastic anterior commissure and/or a reduced corpus 

callosum (Sisodiya et al. 2001; Bamiou et al. 2004). 

 

1.3 Early patterning of the embryonic telencephalon 

The brain constitutes the major part of the central nervous system (CNS) and 

develops from the rostral (anterior) region of the neural plate. The neural plate is a 

flat neuroepithelial sheet that folds to form the neural tube. After neural tube closure, 

the most rostral portion of the tube undergoes drastic changes inducing distinct 

swellings of the neural tube that lead to the formation of three primary vesicles: the 

forebrain (prosencephalon), the midbrain (mesencephalon) and the hindbrain 

(rhombencephalon) (for review, see Martinez and Puelles 2000). The forebrain is the 

most rostral region of the developing CNS that will eventually give rise to the two 

adult cerebral hemispheres; it is subdivided into the telencephalon and the more 

caudally positioned diencephalon. The midbrain remains a single unit caudal to the 

diencephalon. The hindbrain develops into the rostral metencephalon and the 

myelencephalon, the caudal-most division of the brain.  

Patterning is a process by which equipotent cells proliferate and organise themselves 

in distinct territories in response to positional information. The early phases of brain 
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development involve conferring rostral-caudal identity in the neuraxis through 

opposing signals. Once the telencephalic neuroepithelium is established rostrally, 

patterning centres assign dorsal-ventral positional identity to progenitor cells. Such 

flow of positional information occurs through the secretion of morphogens 

(diffusible molecules that act in a concentration-dependent manner to specify cell 

fate) from signalling centres. Morphogens specify cell fate through the establishment 

and maintenance of transcription factor expression in a region-specific manner 

throughout the telencephalic neuroepithelium (Fig. 1) (reviewed in Hebert and 

Fishell 2008; Hoch et al. 2009; Sansom and Livesey 2009; Borello and Pierani 

2010). Signalling centres around the borders of the cortical neuroepithelium include 

the anterior neural ridge, the cortical hem and the anti-hem (localized at the pallial-

subpallial boundary) (reviewed in Subramanian et al. 2009; Borello and Pierani 

2010). Opposing gradients of morphogen-regulated transcription factor expression 

orchestrate cortical development from the earliest stages and ultimately lead to the 

formation of distinct functional domains along the rostral-caudal axis of the cortex. 

The impact of signalling molecules in the arealization of the cortex is demonstrated, 

for instance, by findings that increased endogenous Fgf8 levels rostrally result in 

expansion of rostral cortical identities and shrinkage of the caudal ones, whereas 

decreased levels have the opposite effect (Fukuchi-Shimogori and Grove 2001; Garel 

et al. 2003).  

The telencephalic primordium, which will subsequently give rise to the cortex 

dorsally and the ganglionic eminences ventrally, becomes specified at approximately 

E8.5 in mouse. On a molecular level, this early event can be identified by the 

expression of Foxg1, the earliest telencephalic marker that is induced by Fgf 

signalling; Foxg1 expression remains in telencephalic cells throughout development 

(Shimamura and Rubenstein 1997; Storm et al. 2003). Loss of Foxg1 leads to severe 

growth defects in the entire telencephalon, although the ventral telencephalon is far 

more affected compared to the cortex (Xuan et al. 1995; Martynoga et al. 2005; 

Hanashima et al. 2007). Critical for conferring early regional identity in the 

developing telencephalon are the transcription factors Pax6 and Emx2 (expressed 

dorsally), and Gsh2 and Nkx2.1 (expressed ventrally). Pax6 is expressed in a rostro- 
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Figure 1. Localized patterning centres regionalize the early telencephalon through secretion of 

key signalling molecules. (A) Early patterning events during neural tube closure. The anterior neural 

ridge (ANR), which forms after neural induction and localizes at the rostral midline, promotes 

telencephalic identity mainly through secretion of fibroblast growth factor (Fgf) 8 and subsequent 

induction of transcription factor expression. The roof plate (RP), at the dorsal midline, is a source of 

bone morphogenetic proteins (Bmps) and Wnts. The prechordal plate (PP), at the ventral midline, is a 

source of sonic hedgehog (Shh) signalling, a key ventralizing factor throughout the neural tube. (B) At 

E10.5-E12.5, after telencephalic vesicle evangination, Fgf signalling is produced from the 

commissural plate (CoP) and the septum, at the rostral pole of the telencephalon. At this stage, dorsal 

and ventral telencephalic territories are separated by the pallial-subpallial boundary (PSB), a region 

where the patterning centre known as anti-hem is localized. The anti-hem is a source of signalling 

molecules such as Fgf7, Tgfa and Sfrp2 (Wnt antagonist). At the caudal midline of the dorsal 

telencephalon, the hem produces Wnts and Bmps; this signalling centre is adjacent to the hippocampal 

anlage and is important for its development. Shh is expressed along the ventral midline of the CNS 

throughout development. (From Borello and Pierani 2010). D, dorsal; v, ventral; r, rostral; c, caudal. 
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lateral (high) to caudo-medial (low) gradient, whereas Emx2 is expressed in a caudo- 

medial (high) to rostro-lateral (low) gradient (Bishop et al. 2000). At the onset of its 

expression, Pax6 is detected throughout the anterior neural plate, whereas by E9.5 it 

is excluded from the ventral-most region of the telencephalic neuroepithelium 

(Corbin et al. 2003). By E10.5, the graded expression of Pax6 and Emx2 is confined 

to mutually exclusive dorsal telencephalic domains (Cecchi 2002; Corbin et al. 

2003). Nkx2.1 is expressed in more medial domains whereas Gsh2 defines more 

lateral domains of the ventral telencephalon (Fig. 2). Although cross-repressing 

mechanisms between transcription factors lead ultimately to the establishment of 

molecularly distinct progenitor domains within the telencephalon, at early stages 

(E10.5) the expression of Pax6 and Gsh2 and that of Gsh2 and Nkx2.1 overlaps in a 

substantial number of cells located in the boundary of these expression domains (see 

Corbin et al. 2003). Pax6-/- embryos exhibit patterning defects from the earliest 

stages of telencephalic development. Expression of Wnts is upregulated in the 

caudal-medial field, while signals such as the Wnt antagonist SFRP-2 are absent 

from the cortical anti-hem of Pax6-/- mice (Muzio et al. 2002a). Emx2 promotes 

caudomedial identities through interaction with molecules released from the anterior 

neural ridge and the cortical hem. FGF8 regulates rostral area identity at least partly 

through repression of Emx2 (Fukuchi-Shimogori and Grove, 2003), while BMP and 

Wnt signalling in the caudal midline positively regulate Emx2 expression in the 

developing telencephalon (Ohkubo et al. 2002; Theil et al. 2002). Complimentary 

patterning defects in Pax6 and Emx2-deficient mice are consistent with their 

opposing expression gradients in the cortical neuroepithelium. Early patterning 

defects in Pax6-/- and Emx2-/- mice above lead to severe abnormalities in the 

maturation of distinct functional areas in the mutant cortices, described in 1.7.2. 

 

1.4 Regionally enriched transcription factors specify dorsal and ventral 

telencephalic identities 

Along its dorsal-ventral axis, the telencephalon is divided into a dorsal (pallial) and a 

ventral (subpallial) region, giving rise to the cerebral cortex and basal ganglia,  
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Figure 2. Schematic representation of transcription factor expression on a coronal section 

through the mouse telencephalon at midgestation (E12.5). Foxg1 and Gli3 are expressed 

throughout the telencephalon. Dorsally expressed genes include Pax6, Emx2 and Emx1. Pax6 is 

expressed in a lateral (high) to medial (low) gradient, whereas Emx2 is expressed in the opposite 

gradient. Graded expression of Emx1 in the cortical neuroepithelium is highly similar to that of Emx2. 

The expression domain of Pax6 extends to more lateral cortical regions such that its levels are highest 

at the lateral and ventral pallium (LP and VP, respectively). The LP is a region around the lateral 

ventricular angle (the anatomical position of the angle region is illustrated through an extended line). 

The VP is a small domain located immediately dorsal to the LGE. Emx2 and Emx1 are highly 

expressed at the medial pallium (MP), the hippocampal anlage. Ventrally expressed genes include 

Gsh2, Mash1 and Nkx2.1. At this early stage, the domain of Gsh2 expression overlaps with that of 

Pax6 at the border region between the pallium and the subpallium. Gsh2 and Mash1 are expressed in 

progenitors throughout the ventral telencephalon, whereas Nkx2.1 expression is localized in MGE 

progenitors. Ctx, cortex; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence. 
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respectively (Fig. 2) (for review, see Campbell 2003). At rostral levels, the lateral 

and medial ganglionic eminences (LGE and MGE) are formed in the ventral 

telencephalon, whereas caudally there is a single eminence called the caudal 

ganglionic eminence (CGE). Cortical projection neurons are generated locally from 

dorsal telencephalic progenitors, whereas inhibitory GABAergic interneurons are 

born in the ventral telencephalon and migrate long distances to reach the cortex 

(Marin and Rubenstein 2001; Gorski et al. 2002). The LGE is the source of 

interneurons that migrate through the rostral migratory stream to the olfactory bulb 

(Wichterle et al. 2001). 

The earliest division to occur within the embryonic telencephalon is the formation of 

the pallial-subpallial boundary (PSPB), marked by gene expression patterns from as 

early as E9.5 in mouse (Toresson et al. 2000; Yun et al. 2001). The PSPB does not 

lie at the angle region between the pallium and the LGE, but it is rather located at the 

dorsal-most part of the LGE as revealed by molecular expression. A large number of 

transcription factors exhibit restricted expression in either dorsal or ventral domains 

of the embryonic telencephalon and their expression patterns have a sharp border 

(Fig. 2). Pax6 exhibits a lateral-high to medial-low gradient of expression in the 

cortical field with its highest levels evident in the ventral pallium, located on the 

dorsal side of the PSPB; Gsh2 is expressed in the ventral telencephalon with its 

highest levels present in the dorsal LGE (Toresson et al. 2000; Yun et al. 2001). The 

PSPB has been suggested to be formed through cross-repression of Pax6 function at 

its pallial side and Gsh2 function at the subpallial side.  

In Pax6-/- mutant mice, the PSPB fails to form and marker genes no longer have a 

sharp expression boundary in this region (Stoykova et al. 1996; Stoykova et al. 

2000).  Subpallial marker expression is expanded dorsally, while pallial marker gene 

expression is downregulated. By E12.5 the subpallial markers Gsh2, Dlx and Mash1 

are all ectopically expressed in progenitor cells of the ventrolateral cortex (Stoykova 

et al. 2000; Toresson et al. 2000; Yun et al. 2001).  This ectopic expression continues 

to expand dorsally so that by E14.5 it includes the ventricular zone (VZ) of the 

dorsolateral cortex (Toresson et al. 2000). Pallial Ngn2 expression is lost in the areas 

of ectopic Gsh2 expression and is downregulated in the remainder of the cortical VZ 
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(Stoykova et al. 2000; Toresson et al. 2000; Kroll and O’Leary 2005). Previous 

studies suggested that the ectopic ventral marker expression in the cortex of Pax6-/- 

mice is due to aberrant migration of ventral telencephalic cells into the mutant cortex 

and suggested that Pax6 is required to restrict cell migration from ventral to dorsal 

telencephalic domains (Chapouton et al. 1999).  However, more recent fate-mapping 

studies by Kroll and O’Leary (2005), using an Emx1-Cre to trace progenitors of 

pallial origin in Pax6-/- mice, have suggested that cortical progenitors are re-specified 

to acquire a ventral cell identity in the absence of Pax6. Such a role for Pax6 in 

specifying dorsal character in progenitor cells and preventing them from acquiring 

ventral identity has also been indicated by Muzio et al. (2002b), whereas studies by 

Quinn et al. (2007) have suggested that Pax6 is cell-autonomously required to 

regulate this process. 

Gsh2-/- mice show a phenotype that is opposite to that of Pax6-/- embryos; pallial 

markers such as Pax6, Tbr2, Ngn1/2 are ectopically expressed in ventral 

telencephalic progenitor cells at E10.5, coinciding with loss of Dlx and Mash1 

expression from the LGE (Toresson et al. 2000; Yun et al. 2001).  The 

misspecification of these cells is less pronounced at E12.5 and by E14.5 pallial genes 

are no longer ectopically expressed, possibly due to the effect of ectopic Gsh1 

expression (Yun et al. 2001).  Gsh1 is normally only expressed in ventral parts of the 

LGE, but it is expressed more strongly in the Gsh2 mutant and at later stages it 

expands into the dorsal LGE where it is thought to compensate for Gsh2, thereby 

reducing the molecular abnormalities in the mutant LGE. In Pax6-/-/Gsh2-/- double 

mutant mice, striatal development is improved compared with the Gsh2-/- single 

mutants; cortical progenitors remain misspecified although the double mutants 

exhibit a less severe phenotype compared to Pax6-/- mice.   

Although Emx2 exhibits an expression gradient throughout the cortical 

neuroepithelium, complimentary to that of Pax6, its inactivation does not overly 

affect dorsal-ventral specification as in Pax6-/- mice (Muzio et al. 2002b). However, 

concurrent inactivation of Pax6 and Emx2 results in dramatic morphological and 

molecular defects with complete loss of dorsal identity in the double mutant cortex, 

which instead acquires features unique to those of the striatum (Muzio et al. 2002b). 
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These studies have suggested that at least one copy of Pax6 or Emx2 is required for 

activation of cortical morphogenetic programmes and repression of adjacent ventral 

telencephalic structures. It also appears that Pax6 functions at a high hierarchical 

level for repressing ventral telencephalic identity and it seems that it does so in 

cooperation with Emx2, although the two genes seem to function along parallel 

pathways.  

Pax6 seems to also cooperate with another gene, Tlx, in the formation of the PSPB.  

Although Tlx is expressed in VZ cells on both sides of the PSPB, loss-of-function 

mutants show a misspecification of the ventral pallium that is similar to, but less 

severe than, that seen in Pax6-/- mutants. Gsh2 expression is expanded dorsally so 

that it overlaps with Pax6 expression in a wider region compared to wild-types 

(Stenman et al. 2003). A stream of Pax6-positive cells, which appear to originate 

from the region of overlapping Pax6 and Gsh2 expression, extends out along the 

PSPB from the subventricular zone (SVZ) towards the pial surface as part of the 

lateral cortical stream (LCS) (Carney et al. 2006). In Tlx-/- mice, where this 

overlapping region is increased, a much wider stream of cells can be seen (Stenman 

et al. 2003), while there is a marked decrease in these cells in Gsh2-/- mice (Toresson 

et al. 2000). Heterozygous mutations in either Pax6 or Tlx do not appear to have any 

effect on the development of the PSPB; however, compound heterozygotes display a 

mild phenotype with some ectopic Gsh2 and Mash1 positive cells present in the 

ventral pallium. Loss of one copy of Pax6 on the Tlx-/- background results in a 

phenotype that, while worse than Tlx-/- on its own, is less severe than that of Pax6-/- 

mice (Stenman et al. 2003). However, the loss of one or both copies of Tlx on the 

Pax6-/- background does not affect the patterning defects seen in Pax6 mutants.  This 

is probably due to a much broader requirement for Pax6 than for Tlx in patterning the 

dorsal telencephalon.  

 

1.5 Progenitor cell proliferation in the developing cortex 

The production of appropriate numbers of neurons during development is a 

prerequisite to ensure proper functioning in the mature brain. Projection neurons 
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account for approximately 80% of cortical neurons and are generated during 

embryogenesis from progenitor cells surrounding the lateral ventricles of the 

embryonic cerebral wall (Sidman et al. 1959). Cortical progenitor cells proliferate in 

two adjacent cell layers: an inner-most layer, the ventricular zone (VZ), and the 

overlying subventricular zone (SVZ). On the basis of the location cortical 

progenitors undergo division they can be classified into two major groups, the apical 

and basal progenitors. Other than the site of cell division, apical and basal 

progenitors differ in their molecular expression, with apical progenitors expressing 

Pax6 and basal progenitors expressing the transcription factor Tbr2 (Fig. 3) (Gotz 

and Barde 2005; Englund et al. 2005). 

 

1.5.1 Apical progenitors 

Apical progenitors (APs) are considered as neural stem cells since they meet the two 

main criteria applied to define stem cells: (i) they self-renew through an extended 

number of proliferative divisions, and (ii) are multipotent in their ability to produce 

different neuronal subtypes (Gotz and Huttner 2005). APs include neuroepithelial 

cells, radial glial cells and short neural precursors (reviewed in Fishell and Kriegstein 

2003; Kriegstein and Gotz 2003; Pinto and Gotz 2007). Neuroepithelial cells 

represent the earliest subtype of APs in the cortical neuroepithelium and they are 

successively replaced by radial glia, a transition that occurs at around E10 in mouse, 

prior to neurogenesis (Pinto and Gotz 2007). APs exhibit a characteristic bipolar 

morphology in the apical-basal axis. In all three subtypes, the apical process is a 

short endfoot attached to the ventricular surface. In contrast, neuroepithelial cells and 

radial glial cells, but not short neural precursors, extend long pia-connected basal 

processes. An important feature of APs is their apical-basal polarity which is crucial 

for their succession through different phases of the cell cycle, a process called 

interkinetic nuclear movement (Fig. 3) (Takahashi et al. 1993; reviewed in Gotz and 

Huttner 2005; Guillemot 2005). The characteristic radial movement of cell nuclei 

accounts for the pseudostratified appearance of the VZ, the proliferative layer where 

APs reside. Pax6 is a critical regulator of interkinetic nuclear migration, and its loss  
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Figure 3. The two modes of cortical neurogenesis correlate with cell cycle phases and the 

expression of the transcription factors Pax6 and Tbr2. (a) Generation of postmitotic neurons 

directly from radial glia. Radial glial cells exhibit interkinetic nuclear migration where the cell nucleus 

moves along the apical-basal axis in concert with the cell cycle. Cell nuclei in G1 phase of the cell 

cycle move toward the basal VZ to undergo S-phase, and as they proceed to G2 phase, they migrate to 

the ventricular surface (VS) to enter mitosis (M-phase). Asymmetric division results in the production 

of a postmitotic neuron, which migrates through the subventricular zone (SVZ) and intermediate zone 

(IZ) to reach its final laminar position in the cortical plate (CP). (b) Generation of postmitotic neurons 

though indirect neurogenesis from radial glia. The scheme illustrates a radial glial cell dividing 

asymmetrically to produce a basal progenitor cell (BP) and a daughter radial glial progenitor. In 

contrast to BPs, radial glia extend a basal process that spans the thickness of the cortical wall and is 

maintained during mitosis. The BP nucleus migrates to the SVZ to divide symmetrically and produce 

two neurons which subsequently migrate to the CP. Sequences of transcription factor (TF) expression 

are indicated by shading of bars and nuclei. Pax6 is expressed in radial glia and its expression overlaps 

with that of Tbr2 at stages immediately after the production of (a) postmitotic neurons and (b) BPs. 

During the transition of newly generated BPs from the VS to the SVZ, Pax6 is downregulated and 

expression of Tbr2 is initiated. VS, ventricular surface; VZ, ventricular zone; SVZ, subventricular 

zone; IZ, intermediate zone; CP, cortical plate. (Adapted from Hevner 2006). 
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of function results in reduced numbers of apical-surface divisions and concurrent 

increase of ectopic non-surface divisions (Estivill-Torrus et al. 2002; Tamai et al. 

2007; Tuoc et al. 2009).  

At the earliest stages of development, the neural plate contains a single layer of 

neuroepithelial cells that forms the neuroepithelium. Neuroepithelial cells undergo 

extensive proliferation through symmetric divisions to establish a pool of progenitor 

cells. Symmetric divisions occur with a cleavage plane vertical or close-to-vertical to 

the epithelium that results in equal distribution of cell fate determinants to daughter 

cells (Chenn and McConnell 1995; Zhong et al. 1997). With the onset and progress 

of cortical neurogenesis (corticogenesis), asymmetric divisions of APs, with the 

cleavage plane oriented parallel to the epithelium, predominate to generate neural 

progeny (Chenn and McConnell 1995; Fuerstenberg et al. 1998). Through either 

symmetric or asymmetric divisions, APs self-renew to either expand or maintain the 

progenitor population. Pax6 promotes asymmetric, neurogenic cell divisions and 

constitutes an important neurogenetic determinant in radial glial cells (Heins et al. 

2002; Hack et al. 2004).  

Corticogenesis in mouse occurs between E11.5 and E17.5 (Caviness 1982; 

Takahashi et al. 1996), followed by gliogenesis that occurs mostly at postnatal ages 

from radial glial cells (for review, see Costa et al. 2010). Lineage analyses have 

shown that radial glia are a heterogenous group of progenitor cells in terms of the 

progeny they give rise to. While they generate distinct cell types in the cortex 

including pyramidal neurons, oligodendrocytes and astrocytes, individual radial glial 

cells are restricted in their lineage potential (Price and Thurlow 1988; Parnavelas et 

al. 1991; Grove et al. 1993; McCarthy et al. 2001; for review, see Kriegstein and 

Gotz 2003). Radial glial cells are also present in brain regions other than the cortex, 

including the striatum where they exhibit a multipolar morphology and cell cycle 

parameters different from those of their counterparts in the cortex (Gotz et al. 1998; 

Hartfuss et al. 2001). Pax6 is specifically expressed in radial glial progenitors in the 

cortex, whereas radial glial cells in ventral telencephalic regions express Gsh2 (in the 

LGE) or Olig2 (in the MGE) (Gotz et al. 1998; Malatesta et al. 2003). It should be 

noted that radial glia comprise the majority of APs in the cortical VZ and most 



27 
 

pyramidal neurons in the cortex are born from this progenitor cell type (Hartfuss et 

al. 2001; Tamamaki et al. 2001; Noctor et al. 2002; Malatesta et al. 2003). In 

contrast, radial glia in the ventral telencephalon mainly generate glial cells and only a 

few neurons (Malatesta et al. 2003). Pax6-deficient cortical radial glia acquire 

morphological and molecular features characteristic of their counterparts in the 

ventral telencephalon (Gotz et al. 1998; Malatesta et al. 2003; Quinn et al. 2007); 

loss of Pax6 function results in a prominent reduction in number of cortical neurons 

(Gotz et al. 1998; Fukuda et al. 2000; Heins et al. 2002; Malatesta et al. 2003; Hack 

et al. 2005; Quinn et al. 2007). 

 

1.5.2 Basal progenitors 

Basal progenitors (BPs), also known as intermediate progenitor cells, are generated 

from asymmetric divisions of APs and their potential is restricted in that they only 

generate neural progeny through symmetric divisions (Fig. 3) (Haubensak et al. 

2004; Miyata et al. 2004; Noctor et al. 2004; Kriegstein et al. 2006). Pax6 function is 

critical for the production of Tbr2-expessing BPs (Quinn et al. 2007). APs that give 

rise to BPs transiently express the transcription factor Neurogenin 2 (Ngn2), a 

proneural gene that is expressed in the mammalian telencephalon and promotes 

cortical neurogenesis (Nieto et al. 2001; reviewed in Guillemot 2007). Thus, a 

sequential Pax6→Ngn2→Tbr2 expression correlates with the transition of APs to 

BPs (Englund et al. 2005). 

BPs arise at around E12, the onset of corticogenesis, and their generation peaks as 

corticogenesis progresses. A defining feature of BPs is that they undergo cell 

division in the SVZ and basal positions of the VZ, away from the ventricular surface, 

and thus they constitute the non-surface progenitors in the developing cortex (Fig. 3). 

Notably, this progenitor cell subtype is almost exclusive to the telencephalon, since 

only few BPs exist in limited regions of the CNS such as the hindbrain and spinal 

cord (Smart 1972, 1973; Haubensak et al. 2004). BPs also differ in cell morphology 

from their parental APs; after final mitosis of APs, newly generated BPs migrate to 

basal positions and retract their apical process prior to mitosis, and thus they appear 

as round progenitor cells randomly distributed in the basal VZ and the SVZ. The vast 
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majority of these progenitors produce two neurons, with only around 10% 

undergoing a second round of symmetric division to generate two BPs (Haubensak et 

al. 2004; Miyata et al. 2004; Noctor et al. 2004). Their restricted potential to divide 

only symmetrically is thought to arise due to their lack of apical-basal polarity, 

which also leads to a substantial number of symmetric divisions with a cleavage 

plane not strictly vertical to the ventricular surface (Attardo et al. 2008). 

 

1.5.3 Determinants of neuronal output 

In mice, APs generate cortical neurons between E11.5 and E17.5, a 6-day period that 

comprises the neurogenetic interval (Caviness 1982; Takahashi et al. 1996). The 

number of proliferating cells present at the onset of corticogenesis constitutes the 

founder population. The entire neurogenetic interval involves a total of 11 cell cycles 

(CC1 – CC11) and the cell cycle of APs lengthens from about 8 h at the onset of 

neurogenesis to about 20 h at its termination (Caviness and Takahashi 1995; 

Caviness et al. 2009). The maturation of the developing cortex occurs in a gradient 

such that, at its given stage during the neurogenetic interval, progenitors in 

rostrolateral regions have longer cell cycles compared to caudomedial ones 

(Caviness et al. 2009). Once the neurogenetic interval initiates, the daughter cells 

generated at each given time are separated into two complementary fractions, one 

that leaves the cell cycle (Q cells) and another one that continues to proliferate (P 

cells, equal to 1-Q). By definition, the neurogenetic interval initiates when Q exceeds 

zero and the P value becomes lower than 1.0; at the completion of CC11, APs are 

abolished and all postmitotic cells exit the VZ as Q cells. The progression in Q exit 

occurs in a non-linear fashion throughout the course of corticogenesis such that Q 

and P values become 0.5 at the course of CC8, a critical point that corresponds to 

E14.5 and signals the depletion of the proliferative population (Caviness and 

Takahashi 1995). In theory, the total number of neurons produced from APs during 

the entire course of the neurogenetic interval depends upon four parameters: (1) the 

size of the founder progenitor population, (2) the proportion of VZ cells that are 

actually cycling (that is the growth fraction), (3) the cell cycle length that determines 

the cell cycle progression, and (4) the Q fraction. Since the growth fraction in the VZ 
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is normally 1.0 throughout the course of corticogenesis, it is now established that the 

total cell cycle number and the Q exit are the principal determinants of the final 

neuronal output (Caviness and Takahashi 1995; Takahashi et al. 1995; Takahashi et 

al. 1996). The balance between cell-cycle exit and re-entry as well as the rate of cell 

cycle progression are controlled by positive and negative cell-cycle regulators 

including various cyclins/cyclin-dependent kinases (Cdks) complexes and Cdk 

inhibitors, respectively, as well as  by a number of extracellular cell fate determinants 

(for review, see Nguyen et al. 2006; Salomoni and Calegari 2010). 

The increase in cell cycle length during the progress of corticogenesis reflects a 

progressive lengthening of the G1 phase that reaches a fourfold increase towards the 

end of neurogenesis; the length of S phase varies at around 4 h as corticogenesis 

advances, while the combined length of G2 and M phase is constant at about 2 h 

throughout corticogenesis (Takahashi et al. 1995; Miyama et al. 1997). In essence, 

cell cycle length influences the rate of cell division during corticogenesis. 

Accumulating evidence suggests that G1-phase length of cortical progenitors also 

correlates with the mode of division and influences the important decision of whether 

to proliferate or differentiate (reviewed in Salomoni and Calegari 2010). For 

instance, forced shortening of G1-phase length in VZ progenitors, through 

overexpression of cyclins, is sufficient to increase cell-cycle re-entry of Pax6-

expressing APs at the expense of neurogenic divisions, whereas lengthening of G1 

has the opposite effect (Pilaz et al. 2009). Similar results have also been reported by 

other studies, suggesting that G1 lengthening functions as a cause of neurogenesis 

and concurrent inhibition of proliferative activity (Calegari and Huttner, 2003; 

Calegari et al. 2005; Glickstein et al. 2009; Lange et al. 2009). Interestingly, 

shortening G1 duration acts as a trigger for proliferative divisions of Tbr2-expressing 

BPs (Pilaz et al. 2009), although self-renewing of BPs rarely occurs under normal 

conditions. In accord with the “cell cycle length hypothesis”, the enhanced 

neurogenic potential during a longer G1 could reflect the ability of cell fate 

determinants to act for a sufficient period of time in cortical progenitors, resulting in 

the stimulation of an appropriate cellular response (Calegari and Huttner 2003). 
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1.6 Cortical neuron migration 

What distinguishes the cerebral cortex form other brain regions is its remarkable 

diversity of cellular subtypes arrayed in a stereotypical laminar and radial 

organization. After terminal mitosis, cortical precursors leave their site of origin to 

migrate towards their final laminar position. Neuronal migration is a dynamic and 

directional process occurring during embryonic development and early postnatal ages 

and involves multiple cellular and molecular mechanisms. Cell populations involved 

in guidance of migrating cortical precursors include Cajal-Retzius cells, subplate 

neurons and radial glia. On the other hand, the integrity of multiple molecular 

mechanisms, such as cell cycle exit, cell-cell adhesion, interaction with extracellular 

matrix protein, neurotransmitter release, is critical for normal neuronal migration. 

Tight interplay between such complex mechanisms probably explains the 

heterogeneity of clinical human conditions underlying defective cortical neuron 

migration (reviewed in Walsh and Goffinet 2000; Olson and Wash 2002; Gressens 

2006). Whereas cortical projection neurons, which secrete the excitatory 

neurotransmitter glutamate, are born locally from cortical progenitors and migrate 

radially to the cortical plate, GABAergic interneurons originate in the subpallium 

and migrate long distances to reach their final residency in the cortex (Fig. 4a). 

Although projection neurons account for approximately 80% of all cortical neurons, 

the existence of appropriate numbers of GABAergic interneurons is a requirement 

for a proper balance between excitation and inhibition in the mature cortex. 

Disruption of this fine balance leads to altered neural circuitry that has been 

associated with many neurodevelopmental disorders, such as epilepsy, schizophrenia 

and autism (for review, see Di Cristo 2007; Lewis et al. 2008). 

 

1.6.1 Mechanisms of radial neuron migration in the developing cortex 

During cortical development, the first postmitotic neurons form the preplate, whereas 

successive waves of subsequently-born neurons form the cortical plate which splits 

the preplate into a superficial marginal zone and a deep subplate (Fig. 4b, c). 

Postmitotic neurons migrate from their site of origin in an order according to their 
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birthdate, such that they bypass earlier born-neurons located in the cortical plate to 

form the cortical layers in a deep-first superficial-last sequence (Angevine and 

Sidman 1961). Cortical neurons transport their cell bodies to their final laminar 

position by following a relatively direct radial path. Two major modes of radial 

migration have been described: somal translocation and glia-guided locomotion 

(Nadarajah et al. 2001; Borell et al. 2006; Rakic et al. 2007). A major difference 

between these two modes is that translocation requires stable attachment of the 

migrating cell’s radial process to the pial surface or the marginal zone, whereas 

locomoting cells are freely migrating cells closely attached to radial glia fibres (Fig. 

4b, c). 

Somal translocation is the predominant mode during early corticogenesis. Bipolar 

cells connect the ventricular and pial surfaces by extending a radial process that 

spans the thickness of the cortical wall (Fig. 4b). During somal translocation, 

migrating cells lose their attachment to the ventricular surface and are directed 

outwards through their leading process. Time-lapse imaging studies have revealed 

that, during early corticogenesis, dividing radial glia maintain their fibres towards the 

pial surface during mitosis and that postmitotic neurons may inherit the radial 

process from their radial glial progenitor (Miyata et al. 2001; Noctor et al. 2001; 

Miyata and Ogawa 2007). Symmetric proliferative divisions at the ventricular 

surface give rise to a daughter cell that inherits the radial process, while the other 

extends a new process to the pial surface (Miyata et al. 2001). Postmitotic cells are 

bipolar shortly after birth but they become unipolar upon loosing ventricular 

attachment and start migrating (Miyata and Ogawa 2007). Interestingly, external 

mechanical forces appear to cause twisting and stretching of the pial process in cells 

transitioning from bipolar to unipolar morphology (Miyata and Ogawa 2007). As 

postmitotic neurons are en route to the cortex, cytoskeletal dynamics provide a 

pulling force and are critical to regulate two main events of migration: movement of 

the centrosome into the leading process to maintain a position in front of the 

transported nucleus, followed by nuclear movement towards the centrosome 

(reviewed in Tsai and Gleeson 2005).  
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Figure 4. Neuronal migration in the developing cortex. (a) Schematic of a coronal section through 

the mouse telencephalon showing tangential migration of cortical interneurons from ventral 

telencephalic progenitor domains. (b, c) In the ventricular zone (VZ) of the dorsal telencephalon, 

postmitotic cortical precursors arise through asymmetric division of apical progenitors, which occurs 

with a cleavage parallel to the ventricular surface. (b) The earliest-born cortical neurons migrate 

radially towards the pial surface through somal translocation to form a layered structure called the 

preplate (PP). (c) As corticogenesis progresses and cortical width increases, newly generated neurons 

migrate to the developing CP along radial glial fibres (glial-guided migration). Successive waves of 

subsequently-born neurons form the cortical plate (CP) that splits the preplate into a superficial 

marginal zone (MZ) and a deep subplate (SP). The SP is a transient structure that disappears in the 

adult cortex; during CP development, the SP is the recipient area of afferent axons from subcortical 

structures. The CP, which will give rise to cortical layers VI-II, is separated from the proliferative 

layer by the intermediate zone (IZ), an axon-rich zone that will eventually form the white matter 

underneath the bottom of layer VI. (From Nadarajah and Parnavelas 2002). 
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As corticogenesis progresses, glia-guided locomotion predominates, a more complex 

migratory mode that relies on a tight physical interaction between migratory neurons 

and radial glia (Fig. 4c). However, glia-guided migrating neurons switch to somal 

translocation once their leading process reaches the pial surface. Rakic described the 

guidance role of radial glial cells during neuronal migration (Rakic 1971, 1972; for 

review, see Hatten 1999) and the term “radial glia” was assigned to acknowledge 

both the radial morphology and the glial nature of the previously described epithelial 

cells (for review, see Fishell and Kriegstein 2003). Although radial glia were initially 

thought to just serve as a migratory scaffold, it now appears that the majority of 

cortical projection neurons are generated by radial glia (Noctor et al. 2002). Cell 

polarity is a major feature of radial glia progenitor cells in the VZ, as evidenced by 

interkinetic nuclear movements during which cells progress through different phases 

of the cell cycle (Sidman et al. 1959; Fujita 1964). Coordination between polarity 

proteins and cytoskeletal dynamics in the migratory cell is crucial for establishing 

and maintaining the direction of glia-guided locomotion (for review, see Solecki et 

al. 2006). Time-lapse studies have revealed that cortical neurons generated at 

relatively late stages of corticogenesis pass through distinct phases during radial 

migration (Noctor et al. 2004). Initially, postmitotic neurons generated at the 

ventricular surface move radially away from the ventricle toward the SVZ, where the 

pause for 24 h or longer and acquire a highly dynamic multipolar morphology. Then, 

they move back towards the ventricle and undergo a multipolar-to-bipolar 

morphological transition while they extend a pia-directed leading process and initiate 

migration as radial glia-guided locomoting cells.  In this mode of migration, 

cytoskeletal dynamics seem to be important for multipolar-bipolar transition of 

postmitotic neurons (Noctor et al. 2004; Ohshima et al. 2007). Furthermore, cell-cell 

adhesion molecules are important for appropriate interaction of migrating neurons 

with glial processes during radial migration (Anton et al. 1999; Dulabon et al. 2000), 

and interestingly some molecules exert their function in restricted temporal windows 

during laminar formation (Takeuchi and O’Leary 2006). Cell adhesion molecules are 

also present in the extracellular matrix, suggesting that appropriate environmental 

cues are also necessary for the fine regulation of a cell’s migratory behaviour (Hynes 

2002).  
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1.6.2 Cajal-Retzius cells: a transient neuronal population with important roles 

in the laminar organization of the cerebral cortex  

The earliest-born cortical neurons are mostly Cajal-Retzius (CR) cells localized in 

the marginal zone (MZ) of the developing cortex (for review, see Super et al. 1998). 

Early cortical progenitors first generate CR cells between E10.5 and E11.5, and then 

they give rise to projection neurons. However, the main sites of origin for CR cells 

are the hem, the pallial-subpallial boundary and the septum, regions that flank the 

borders of the developing cortex and coincide with patterning centres; the MGE has 

also been described as an extracortical embryonic source for CR cell production 

(Bielle et al. 2005; for review, see Huang 2009). CR cells migrate long distances 

through tangential migration such that by E11.5 they reach the cortical primordium 

(Hevner et al. 2003). Their multiple sites of origin are mirrored by the fact that they 

express a combination of pallial (Tbr1, Emx2) and subpallial (Lhx6) transcription 

factors and that they exhibit different neurochemical properties due to their 

expression of glutamate or GABA (del Rio et al. 1995; Lavdas et al. 1996; 

Mallamaci et al. 1998; Meyer et al. 1998; Hevner 2001). However, recent data 

showing that CR cells mostly express pallial markers and consistently contain high 

levels of glutamate clearly point to a link between CR cells and pallial origin 

(Hevner et al. 2003; Hanashima et al. 2004).  

CR cells are a transient neuronal population with a strategic location in the MZ that 

serve to guide migration of later-born neurons during cortical development, yet they 

disappear postnatally after neuronal migration is complete (Wood et al. 1992; Price 

et al. 1997). Their role in guiding neuronal migration is largely due to their synthesis 

and secretion of the extracellular matrix protein Reelin, which acts as a necessary 

signal for cortical lamination (for review, see Soriano and del Rio 2005). Reelin 

functions in combination with a number of molecules in a common signalling 

pathway to regulate neuronal migration (reviewed in Soriano and del Rio 2005; 

Huang et al. 2009). Downstream components of this pathway affect radial migration 

at least partially due to regulating cytoskeletal proteins (for review, see Tsai and 

Gleeson, 2005). The most characteristic phenotype is that of the reeler mouse mutant 

cortex, where the preplate fails to split and cortical lamination occurs in an outside-

inside sequence that leads to the formation of an inverted cortex (Caviness 1982; 
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reviewed in Rice and Curran 2001; Tissir and Goffinet 2003). Reelin appears to have 

multiple functions during neuronal migration (Dulabon et al. 2000; for review, see 

Huang 2009). At early phases, it acts as an attractive cue so that the movement of 

neurons from their birthplace can be stimulated and the migration process itself can 

be initiated. As soon as migrating neurons reach their final residency in the cortical 

plate, reelin appears to induce detachment of neurons from their guides, the radial 

glia processes, while at the final phase of migration it functions as a stop signal to 

prevent neurons from entering layer I and to also trigger the initiation of neuronal 

differentiation. However, elegant experiments by the Rakic group, where reelin 

microbeads were injected into the rodent cortex, directly demonstrated that increased 

concentration of reelin induces arrest of neuronal migration (Dulabon et al. 2000). 

Such findings imply that the concentration gradient of reelin, which is high around 

layer I and most likely decreases gradually from the top of the cortical plate down to 

the VZ, is crucial for controlling different phases of migration. 

 

1.6.3 Integration of interneurons into the cortex via complex migratory paths  

The two broad classes of neurons that exist in the cortex are glutamatergic projection 

neurons, which exhibit a characteristic pyramidal morphology and extend axons to 

distant intracortical, subcortical and subcerebral targets, and GABAergic non-

pyramidal interneurons, which appear as short-axon cells and project locally. 

Although the radial mode of neuronal migration in the cortex was first described a 

long time ago, more recent studies observed that the two major classes of cortical 

neurons follow distinct migratory paths en route to their final residency in the cortex. 

Initially, lineage tracing studies indicated that clonally related neurons can disperse 

widely across cortical layers (Walsh and Cepko 1988; 1992; 1993). Time-lapse 

imaging of VZ labelled cells during late corticogenesis provided the first direct 

evidence of non-radial, tangential migration of cortical neurons in vitro (O’Rourke et 

al. 1992). Subsequently, lineage tracing of clonally related populations indicated that 

glutamatergic neurons are arranged in radial columns across the cortex whereas the 

widely dispersed cells identified by previous studies represent cortical interneurons 

(Tan et al. 1998). It now appears that, at least in non-primate mammals, interneurons 
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originate exclusively from distant germinal domains in the ganglionic eminences and 

follow tangential migratory routes to reach the developing cortex (Anderson et al. 

1997; Wichterle et al. 1999; for review, see Nadarajah and Parnavelas 2002). The 

large majority of cortical interneurons arise from the embryonic MGE, although the 

CGE has also been described as a site of origin (Sussel et al. 1999; Anderson et al. 

2001; Nery et al. 2002; Fogarty et al. 2007; Miyoshi et al. 2007, 2010). Temporal 

and spatial gene expression in subpallial proliferative regions from which 

interneurons derive appears to correlate with the specification of cortical interneuron 

subtypes with regard to morphological, electrophysiological and molecular features 

(Xu et al. 2004; Butt et al. 2005; Fogarty et al. 2007; Miyoshi et al. 2007; for review 

see Flames and Marin 2005; Wonders and Anderson 2006; Batista-Brito and Fishell 

2009).  

Genetic fate-mapping studies have reported that cortical interneurons are born as 

early as E9.5 in discrete progenitor pools within the MGE (Miyoshi et al. 2007), 

whereas production of CGE-derived interneurons initiates from E12.5 in mouse 

(Miyoshi et al. 2010). Interestingly, interneurons sort themselves in cortical layers in 

an inside-out manner (Valcanis and Tan 2003; Xu et al. 2004; Yozu et al. 2004; 

Miyoshi et al. 2007), similarly to their pyramidal neuron counterparts. Recent work 

indicates that the inside-out migration to laminar positions applies mostly to MGE-

derived interneurons, whereas CGE-derived interneurons distribute to superficial 

layers in not such an ordered sequence (Miyoshi et al. 2010). In support of a coupled 

integration of projection neurons and interneurons in laminar positions, interneurons 

settle in the reeler cortex in an inverted outward-inward laminar pattern as projection 

neurons, although intracortical migration of interneurons is independent of reelin 

signalling (Hevner et al. 2004; Pla et al. 2006).  Both early- and late-born projection 

neurons adopt laminar positions well before MGE-derived interneurons born 

synchronically, favouring a model in which projection neurons provide positional 

information to regulate the laminar distribution of interneurons (Pla et al. 2006). 

Consistent with this concept, both early- and late-born MGE-derived interneurons 

heterochronically transplanted into the cortical VZ have the capacity to change their 

developmental potential according to the host environment, revealing that 

interneurons are not fully committed with regard to their laminar fate as they start 
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migrating from their birthplace and that their phenotypic choices can be influenced 

by instructive cues in the cortical VZ (Valcanis and Tan 2003; Pla et al. 2006). 

The migratory path of cortical interneurons from their site of origin to final laminar 

destinations appears rather complex compared to the radial migration of projection 

neurons in a straight line. Interneurons migrate tangentially along the SVZ-

intermediate zone (IZ), then turn and undergo pial surface-directed migration through 

the CP (Wichterle et al. 2001). Many interneurons position themselves in the MZ and 

disperse in many directions before descending to the CP and settling in their final 

laminar positions (Tanaka et al. 2003). Recent time-lapse imaging studies have 

shown that interneurons that have reached the MZ migrate to laminar positions in a 

rather undirected manner, meeting criteria for a random wandering behaviour 

(Tanaka et al. 2009). Alternatively, interneurons may travel long distances 

tangentially in the direction of the cortical VZ, where they pause and then resume 

migration to integrate radially into the CP (Nadarajah et al. 2002). Such ventricle-

directed migration has suggested that populations of interneurons might actively seek 

the cortical VZ to acquire spatial information before resuming migration and 

integrating to cortical layers. This process would explain the inside-out laminar 

patterning of cortical interneurons and further support the notion that environmental 

cues are in place in the cortex to guide migrating interneurons to correct laminar 

positions.  

The cellular and molecular mechanisms that are involved in directing the migration 

of interneurons to cortical laminar positions are not entirely clear. Close association 

of migratory neurons with axonal tracts involves a symbiotic relationship that could 

be influenced by adhesion molecules contained in axons. Both in vitro and in vivo 

evidence suggest that expression of the chemoattractant molecule Neuregulin 1 in the 

developing cortex as well as along the migratory path that interneurons follow to 

reach the cortex is necessary for interneuron migration (Flames et al. 2004). In 

contrast, the adhesion molecule TAG-1 was found to be required for axon-dependent 

guidance of migrating interneurons in vitro (Denaxa et al. 2001), but interneuron 

migration is not affected in mice knock-out for the same molecule (Fakamauchi et al. 

2001; Denaxa et al. 2005). Therefore, cell adhesion molecules appear to act as 
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guidance cues for migrating interneurons but the lack of certain molecules might be 

compensated for by others present in axons. Furthermore, although many 

interneurons migrate through the IZ, an axon-rich compartment, substantial numbers 

migrate in multiple directions through the VZ/SVZ and MZ and are presumably 

guided by other cellular and molecular substrates (Tanaka et al. 2003; Tanaka et al. 

2006). Loss of Pax6 leads to severe axon pathfinding defects in both corticofugal and 

thalamocortical tracts (Hevner et al. 2002; Jones et al. 2002; Pratt et al. 2002) and 

also to reduced expression of  Neuregulin 1 in the mutant  cortex (Flames et al. 

2004). Interestingly, recent work has indicated that interneurons follow a 

disorganized migratory route within the Pax6-/- cortex, although the number of 

cortical interneurons is unaltered in these mutants (Gopal and Golden 2008). 

Previous viral LGE injections in Pax6-/- mice indicated increased migration of cells 

directed from ventral to dorsal telencephalic domains (Chapouton et al. 1999) but 

subsequent lineage-tracing studies showed that the LGE is not a source of cortical 

interneurons but rather a site of origin for olfactory bulb interneurons (Anderson et 

al. 2001; Wichterle et al. 2001; Nery et al. 2002). Thus, it appears that Pax6 loss does 

not affect the rate of interneuron migration to the mutant cortex but it does affect the 

intracortical route that interneurons follow. Such defective direction of migrating 

interneurons may arise due to both axon defects in Pax6-/- mice, also reported by 

Gopal and Golden (2008), and lack of molecular guidance as reported by Flames and 

colleagues (2004). The abnormal morphology of radial glial cells (Gotz et al. 1998) 

as well as paraventricular and subpial ectopias containing cells of ventral identity 

(Kroll and O’Leary 2005) further contribute to severe cellular disorganization in the 

Pax6-/-cortex that could account for pathfinding defects of migrating interneurons. 

 

1.7 Radial and tangential organization of the cerebral cortex 

Radially, otherwise vertically to the pial surface, the cortex is composed of neurons 

arrayed in a six-layered sheet, with individual layers differing in their molecular gene 

expression, cytoarchitecture and connectivity. Along the tangential (horizontal) 

plane, the cortex can be subdivided into small vertical columns that span the depth of 

cortical layers and consist of clonally related projection neurons generated in the 
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cortical proliferative layers. Neurons within the same columnar unit are highly 

interconnected and share common functions, and groups of radial cortical columns 

are organized tangentially into functionally distinct areas. According to the “radial 

unit hypothesis” (Rakic 1988), the total number of columns determines the surface 

area of the cortex, whereas the number of neurons within each column determines 

the thickness of the cortex. The massive cortical expansion during mammalian 

evolution is achieved through an increase in the numbers of cortical columns, with 

little change in cortical thickness (Rakic 1988; Mountcastle et al. 1997). Although 

the relative cortical area sizes differ between human and rodents, in both species the 

cortex is divided into three major areas across the rostral-caudal axis: the rostral 

(motor) cortex, the central (somatosensory) cortex and the caudal (visual) cortex.  

 

1.7.1 Radial organization in layers 

The radial distribution of cortical projection neurons in laminar positions is 

temporally related to their birthdate. Projection neurons are born between E11.5 and 

E17.5 in mouse (Caviness et al. 1982; Takahashi et al. 1996) and migrate to the CP 

in a tightly controlled sequential order such that each successive generation bypasses 

earlier-born neurons and settles at the top of the CP (Fig. 5). Thus, the cortical layers 

VI-II are formed in a deep-first superficial-last sequence (Anvegine and Sidman 

1961; Rakic 1974; McConnell 1995). When projection neurons arrive in their final 

laminar positions, they undergo terminal differentiation that involves elaboration of 

their dendrites and axons to establish connections and eventually form the cortical 

circuitry. Projection neurons in each layer tend to exhibit similar gene expression 

patterns, morphologies, and organization of afferent and efferent connections (Fig. 

5). Based on morphology, cortical projection neurons are subdivided into two broad 

classes: pyramidal cells and spiny stellate cells. A defining difference between these 

two groups is that spiny stellate cells lack long apical dendrites, a typical 

characteristic of pyramidal cells that enables them to reach distant targets. Spiny 

stellate are small cells abundant in layer IV of the primary somatosensory cortex and 

constitute the main recipient of thalamic input. Pyramidal cells are the predominant 
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Figure 5. Schematic depicting sequential generation of cortical projection neurons, molecular 

expression in cortical layers, and cytoarchitecture in the adult cortex. Layer VI/II projection 

neurons are sequentially generated in the ventricular zone (VZ)/subventricular zone (SVZ) such that 

their birthdate highly correlates with their final laminar position. However, there is some overlap in 

the temporal windows of distinct layer neuron production; times indicated here are approximations 

given the neurogenetic gradient across the cortical neuroepithelium. During early corticogenesis 

(E12.5), deep layer neurons destined for layer VI are generated first, followed by production of layer 

V neurons. Neurons destined for layer VI highly express Tbr1 (red); however, low levels of Ctip2 

(graded yellow) and Satb2 (graded green) are also present in layer VI neurons. Neurons destined for 

layer V express Ctip2 at high levels (yellow); Tbr1 and Satb2 are expressed at much lower levels 

(graded red or green, respectively). Genes in parentheses at P7 also indicate low levels of gene 

expression. Left to right in the E12.5 VZ indicates successively generated neurons; migrating neurons 

are illustrated by radial arrows. By E12.5 the production of marginal zone (MZ) neurons (Cajal-

Retzius cells) is complete; this time also marks the end of subplate (SP) neuron generation. MZ and 

SP cells express Tbr1. E14.5 signals the start of generation of most superficial layer (IV/II) neurons, 

which highly express Cux1 (blue) and Satb2 (green). At this time, layer VI neurons have settled at the 

bottom of the CP, while layer V neurons are migrating through the intermediate zone (IZ), the SP and 

the CP to settle superficially. In each migratory zone, left to right indicates migratory neurons born 

successively; in reality, migrating cells are intermixed with neurons that have adopted their final 

laminar positions. At E16.5, layer III/II neurons are being born; the migration of layer V neurons is 

also complete at this time. Such sequential generation and migration of cortical neurons leads to the 

inside/out sequence of laminar formation. Classical drawings by Cajal (from Bentivoglio et al. 2003) 

illustrate the cytoarchitecture in a vertical column from the adult cortex. The white matter (WM) 

constitutes bundles of axons underneath layer VI (the SP has disappeared by this time). 
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type of neuron in the cortex and their size varies depending on laminar position, with 

layer V corticospinal neurons comprising the largest pyramidal cells (Fig. 5). 

Although pyramidal cells share many anatomical characteristics, they exhibit 

remarkable diversity in terms of morphology and connectivity both across and within 

layers (reviewed in Thomson and Bannister 2003; Bannister 2005). In simplified 

terms, depending on axonal targets, projection neuron connections fall into two main 

categories: (1) intracortical, which includes ipsilateral connections between neurons 

localized in different layers, and cortico-cortical projections to the contralateral 

cortex mainly through the corpus callosum, and (2) corticofugal, which includes 

subcortical projections to the thalamus and the striatum, and subcerebral, through 

extension of axons to distant targets such as the midbrain (including the tectum) and 

the spinal cord (for review, see O’Leary and Koester 1993; Thomson and Bannister 

2003; Bannister 2005). Callosal neurons are widespread across layers VI-II but are 

particularly abundant in superficial layers II/III, with many forming both ipsilateral 

and contralateral cortical connections (Mitchell and Macklis 2005). While late-born 

superficial layer neurons form only intracortical connections, early-born pyramidal 

neurons in layers VI and V project to subcortical and subcerebral targets. Layer VI 

contains corticothalamic projection neurons, whereas layer V pyramidal neurons 

constitute the major cortical output. Layer V contains two broad classes of 

subcerebral projection neurons that are area-specific in the mature cortex: (1) 

corticospinal neurons are only located in layer V at the rostral and central levels of 

the cortex, corresponding to motor and somatosensory areas, and (2) corticotectal 

neurons that are found in layer V of the visual cortex, caudally (O’Leary and Koester 

1993; Molnar and Cheung 2006). Cytoarchitectonic differences between different 

areas reflect changes in cortical circuits; for instance, the motor cortex has a 

prominent layer V, whereas layer IV is more prominent in the somatosensory cortex. 

The developmental potential of cortical progenitors to generate neurons of different 

laminar fates becomes progressively restricted as corticogenesis advances. Early 

cortical progenitors heterochronically transplanted into older brains adopt a laminar 

fate appropriate to the host environment, whereas at later stages cortical progenitors 

are unable to generate deep-layer neurons when transplanted into a young host and 

continue to give rise to superficial laminar fates characteristic of the donor age 
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(McConnell and Kaznowski 1991; Frantz and McConnell 1996; Desai and 

McConnell 2000). This work revealed that early cortical progenitors, which normally 

generate deep-layer neurons, are multipotent prior to their final mitotic division and 

can generate neurons across layers VI-II when subjected to appropriate 

environmental influences; in contrast, during superficial layer neuron generation, 

laminar fate specification appears to be dictated by instructive cues that are intrinsic 

to cortical progenitors. Although laminar distribution of projection neurons correlates 

with the time of their origin, it does not predict neuronal subtype identity since even 

a single layer can comprise a mixture of projection neuron phenotypes, i.e., layer V 

contains callosal and subcortically projecting neurons (Koester and O’Leary 1993; 

Alcamo et al. 2008; Britanova et al. 2008). This illustrates that cortical neurons can 

follow completely distinct differentiation programmes despite being produced by 

progenitors at the same time and being exposed to the same environmental cues. 

The discovery of genes that control the specification of distinct projection neuron 

subtypes has started unravelling the intrinsic mechanisms that control the fate 

specification process (Arlotta et al. 2005; Britanova et al. 2005; for review, see 

Molyneaux et al. 2007; Fishell and  Hanashima 2008; Leone et al. 2008). For 

instance, the transcription factor Tbr1 is expressed in migratory cortical precursors 

born at early stages and its presence is required for the differentiation of PP and layer 

VI neurons; at postnatal ages, Tbr1 is highly expressed in layer VI neurons (mostly 

corticothalamic) and its loss-of-function results in defective axon targeting of layer 

VI neurons (Hevner et al. 2001). More recent studies have identified a number of key 

transcriptional regulators expressed exclusively in subtypes of corticofugal 

pyramidal neurons or callosal neurons. Ctip2 and Fezf2 are expressed at high levels 

in layer V subcerebral neurons, including corticospinal neurons, as well as at low 

levels in layer VI corticothalamic neurons (Arlotta et al. 2005). Although Fezf2 is 

expressed in early cortical progenitors and their neuronal progeny, loss-of-function 

analyses have suggested that Fezf2 is required to direct the differentiation 

programme of subcerebral projection neurons rather than affecting initial phases in 

the production of early-born neurons and their subsequent migration to deep layer 

laminar positions (Chen et al. 2005a; Molyneaux et al. 2005). Mice knock-out for 

either Ctip2 or Fezf2 fail to form appropriate corticofugal connections (Chen et al. 
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2005a; Chen et al. 2005b; Molyneaux et al. 2005). The transcription factor Satb2 is 

expressed in callosal neurons and Satb2-deficient mice ectopically activate 

expression of deep layer markers (including that of Ctip2) in superficial layers of the 

mutant cortex, accompanied by concurrent loss of a number of superficial layer 

markers (Alcamo et al. 2008; Britanova et al. 2008).  Satb2-deficient neurons fail to 

form callosal axons and instead extend axons to subcortical targets (Alcamo et al. 

2008). Similarly, ectopic activation of either Ctip2 of Fezf2 is sufficient to alter the 

axon targeting of superficial layer neurons from intracortical to corticofugal 

connections, highlighting the impact of postmitotic gene control in specifying neuron 

subtype features at the post-migratory stage (Chen et al. 2005b; Chen et al. 2008). 

Except for Fezf2, all of the markers above are expressed exclusively in postmitotic 

cells, indicating that the differentiation programmes projection neurons follow are 

influenced by postmitotic gene control. However, little is known as to what extent 

molecular control at the progenitor level affects aspects of projection neuron fate. 

Elegant studies from Gaspard et al. (2008) have provided strong evidence that 

laminar identity and projection neuron subtypes are intrinsically specified within 

cortical progenitors with no influence from the cortical environment. 

The two germinal zone compartments in the embryonic cortex contain progenitor cell 

subtypes that exhibit distinct proliferative properties and molecular gene expression 

patterns. The corresponding patterns of gene expression between early VZ cells and 

deep-layer neurons, and SVZ cells and superficial-layer neurons, have further 

suggested that pyramidal neuron fates are determined at the time of their origin. In 

agreement with the proposed contribution of SVZ progenitors to superficial layer 

neuron production, the SVZ forms at around E13.5 (Smart and McSherry 1982), after 

the onset of basal progenitor production. Svet1 marks a subset of SVZ progenitors as 

well as their neural progeny adopting superficial laminar fates (Tarabykin et al. 

2001).  In the reeler cortex, Svet1 is expressed normally in the SVZ but within the 

CP it is detected in deep laminar positions, consistent with the previously reported 

inverted neuronal migration in these mutants. The transcription factor Cux1 is 

specifically expressed in the majority of superficial layer neurons II/IV and is also 

localized in SVZ progenitors (Tarabykin et al. 2001; Nieto et al. 2004). In Pax6-/- 

mice, Svet1 and Cux1 expression is lost in both the SVZ and superficial layers, 
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whereas Otx1-labelled VZ progenitors and their lineage in deep layers are present in 

the mutant cortex (Tarabykin et al. 2001). Such evidence, along with migration 

defects of late-born neurons in the Pax6-/-cortex (Caric et al. 1997), supported a role 

for Pax6 in conferring superficial laminar identity. In agreement with such a model, 

recent studies have shown that the production of correctly specified SVZ progenitors 

occurs in a Pax6-dependent manner (Englund et al. 2005; Quinn et al. 2007).  

 

1.7.2 Tangential subdivision into functional areas 

The discovery of area-specific molecular markers expressed in a gradient throughout 

the rostral-caudal axis of the early neuroepithelium provided evidence that 

regionalization is intrinsic in the cortex, a notion that led to the “protomap” 

hypothesis (Rakic 1988; for review, see O’Leary and Sahara 2008). In contrast, 

heterotopic transplantation experiments indicated that the capacity of the embryonic 

cortex to acquire area-specific features largely depends on thalamocortical 

innervation and supported the “protocortex” model (Schlaggar and O’Leary 1991). 

Thalamocortical afferents arrive in the mouse cortex at around E14.5, and by E15.5 

they reach their final target in the cortical plate. It is now well-established that area-

specific positional information intrinsic to the cortical proliferative zone is required 

for the establishment of cortical areas, but thalamocortical innervation is needed at 

later stages for refinement of the final pattern of synaptic organization (for review, 

see Rakic et al. 2009). 

Two genes that function as key determinants for conferring area-specific cortical 

identities are the transcription factors Pax6 and Emx2, expressed in the cortical VZ 

throughout corticogenesis in opposing and complementary gradients (Fig. 6) (Bishop 

et al. 2000; Mallamaci et al. 2000). Consistent with their graded expression in the 

rostral-caudal and medial-lateral axis, loss of Pax6 or Emx2 function in mutant mice 

results in rostral and caudal shifts of cortical areas, respectively (illustrated in Fig. 6) 

(Bishop et al. 2000, 2002; Malllamaci et al. 2000; Muzio et al. 2002b). Gain-of-

function studies in nestin-Emx2 (ne-Emx2) transgenic mice have shown a striking 

areal shift without affecting the overall cortical surface area, further supporting the 

role of Emx2 in cortical arealization and also suggesting that Emx2 operates in a 
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concentration-dependent manner in cortical progenitors in order to specify sizes and 

positioning of caudomedial cortical domains (Fig. 6) (Hamasaki et al. 2004). 

Surprisingly, transgenic mice carrying several copies of the PAX6 locus do not 

exhibit any significant defects in the positioning and sizes of the caudal cortical 

domains (Fig. 6) (Manuel et al. 2007). Collectively, it appears that cortical 

arealization is Emx2 dosage-dependent; with regard to Pax6, relative and not 

absolute levels of Pax6 expression seem to be required for the spatial identity of 

cortical progenitors. Other regulators conferring cortical area identities include the 

transcription factors COUP-TF1 and Sp8, which are also expressed in a gradient 

throughout the caudal-rostral and medial-lateral axes (Armentano et al. 2007; 

Zembrzycki et al. 2007). Such mutant phenotypes highlight the importance of 

transcription factors levels for normal cortical arealization and possibly other 

important aspects of cortical development. 
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Figure 6. Schematic of a dorsal view of the mouse neocortex showing the graded expression 

patterns of Pax6 and Emx2 and the expected/observed areal shift in loss-of function and gain-of-

function mutants. (a) In the wild-type cortex, Pax6 is expressed in a high rostro-lateral to low caudo-

medial gradient, whereas Emx2 expression exhibits the opposite gradient. (b) If these genes confer 

areal identities to cortical cells, in the absence of Pax6, rostro-lateral areas, such as motor cortex, 

should expand, and caudo-medial areas, such as visual cortex, should contract. Loss of Emx2 function 

would be expected to have the opposite effect. Overexpression of Pax6 would be expected to result in 

a caudal shift of rostral areas at the expense of caudal areas, while the reverse phenotype would be 

predicted in the Emx2-overexpressing mice. (c) Cortical area organization in wild-type mice and areal 

phenotypes of mice lacking or overexpressing Pax6 or Emx2. Analysis of area-specific gene 

expression patterns and thalamocortical projections support the above hypotheses except for the Pax6-

overexpressing mutant mice. The latter mutants do not exhibit any caudal shift in the border between 

the somatosensory and visual cortical areas; a small but significant reduction of the somatosensory 

area relative to the total cortical area has been reported in these mutants (Manuel et al. 2007). R: 

rostral; C: caudal; M: motor area; S: somatosensory area; V: visual area. 
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1.8 Transcription factor gradients: interpreting the spatial and temporal roles 

of Pax6 levels in the developing cortex 

 Findings from analyses of cortical arealization in Pax6 loss- and gain-of-function 

mutant mice imply that the relationship between transcription factor levels and 

regulation of complex developmental processes is most likely not linear. Graded 

expression of transcription factors throughout the cortex is established by 

morphogens released from patterning centres around the borders of the cortical field. 

Such a complex system of gradients involving several transcription factors and 

signalling molecules is likely to function as a network for controlling specific aspects 

of cortical development and not as an on-off switch system. However, different 

expression levels of a given transcription factor in cortical progenitors, combined 

with distinct expression levels of other transcription factors within the same 

progenitors could lead to different developmental outcomes. This is exemplified by 

the neural diversity between (i) different cortical areas, and (ii) deep and superficial 

cortical layers, suggesting that levels of transcription factor expression in cortical 

progenitors might become important to coordinate important aspects of cortical 

development by exerting different effects at distinct developmental time windows. 

For instance, Pax6 expression is graded in cortical progenitors not only spatially but 

also temporally throughout development, with highest levels present at the onset of 

corticogenesis. The expression gradient of Pax6 correlates with the neurogenetic 

gradient since neurogenesis in rostrolateral cortical regions precedes that in 

caudomedial ones. Whether altering Pax6 expression levels either up or down has 

different effects at different stages of corticogenesis is an interesting hypothesis. 

Furthermore, do Pax6 levels affect different developmental aspects at different 

thresholds? For instance, eye development is sensitive to both elevated and decreased 

levels of Pax6. Does Pax6 affect cortical development in an analogous dosage-

dependent manner, or does it modulate development in a context-dependent manner? 

Such unanswered questions represent the driving force for research work in the 

present thesis. 

The expression pattern of Pax6 in the cortical neuroepithelium might reflect its role 

as a multifunctional player during cortical development, i.e. by coordinating a 
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number of developmental processes such as cortical progenitor proliferation, 

production of distinct layer-specific neuronal populations and neuronal migration to 

laminar positions. Chapter 3 describes experiments showing that increased Pax6 

dosage reduces the proliferation of late cortical progenitors and results in the 

formation of thinner superficial layers in the postnatal cortex. The underlying 

mechanism of these defects is examined in Chapter 4, where Pax6 overexpression is 

found to lengthen the cell cycle and increase the Q exit of late cortical progenitors 

specifically, with no effect in the migration and cell fate specification of late-born 

neurons. These results indicate that cell cycle regulation and control of the balance 

between progenitor self-renewal and differentiation are highly sensitive to Pax6 

dosage during late corticogenesis. 

In light of the specific effects of Pax6 overexpression during superficial laminar 

development, a loss-of-function genetic approach is then employed in chapters 5 and 

6. To directly investigate the function of Pax6 in late cortical development, a 

conditional knockout model that allows for spatial and temporal control of Pax6 

deletion in cortical progenitors has been generated in the present study. The rationale 

behind this approach is that Pax6-/- mice exhibit many growth defects and cortical 

abnormalities from early developmental stages, hampering our understanding of the 

late primary roles of Pax6 during superficial layer formation. Furthermore, the early 

perinatal lethality of Pax6 mutants restricts analyses at stages before neuronal 

migration to cortical layers is complete. Experiments in chapter 5 demonstrate that 

Pax6 is continuously required within cortical progenitors for suppression of ventral 

telencephalic fates within its domains of expression. These data extend previous 

findings indicating an important role for Pax6 in promoting dorsal identity in the 

developing telencephalon (Muzio et al. 2002b; Kroll and O’Leary 2005). In addition 

to ectopic ventral marker expression in the absence of Pax6, Tbr2-expressing 

progenitors (BPs) are severely reduced in the mutant cortex (Quinn et al. 2007). 

Consistent with the notion that BPs have limited self-renewing capacity and that they 

are continuously generated from Pax6-expressing progenitors, Pax6 is found to be 

required within cortical progenitors over the course of corticogenesis in order to 

specify BP identity.  
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Analyses of mutant mice lacking Pax6 from the earliest stages of corticogenesis have 

indicated that Pax6 function is important to regulate the rate of cortical progenitor 

proliferation and prevent progenitors from dividing in ectopic, non-surface positions 

(Gotz et al. 1998; Estivill-Torrus et al. 2002; Tuoc et al. 2009). Moreover, the failure 

of late-born neurons to exit their site of origin contributes to the formation of a 

hypocellular cortical plate and an enlarged germinal zone in Pax6-/- mice (Schmahl et 

al. 1993; Caric et al. 1997; Tarabykin et al. 2001; Schuurmans et al. 2004). However, 

the direct relationship between Pax6 loss and late cortical progenitor proliferation 

and neuronal migration remains to be explored. Experiments in chapter 6 provide 

evidence that Pax6 is a primary regulator of cortical progenitor proliferation, by 

demonstrating that late Pax6 ablation causes proliferation defects recapitulating those 

previously reported in Pax6-/- embryos. Moreover, neuronal migration studies led to a 

surprising finding: late-born neurons arising from Pax6-deficient progenitors are able 

to migrate to superficial layers once they exit the VZ; however, an enormous number 

of late-born neurons fail to leave their birthplace and accumulate in the germinal 

zone of the postnatal cortex through a both cell-autonomous and cell-non-

autonomous mechanism. Defects arising after Pax6 loss in late cortical progenitors 

do not affect laminar fate; however, neurons of superficial layer identity are reduced 

in the mutant cortex. Collectively, findings here support a key role for Pax6 during 

superficial layer formation. 

The impact of results from these gain- and loss-of-function strategies on the current 

knowledge of the role of Pax6 levels in cortical development are discussed in chapter 

7.  
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CHAPTER 2 

Materials and Methods 
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2.1 Animals and Genotyping 

PAX77 mice carry five to seven copies of a 420-kb human genomic fragment 

incorporating the PAX6 gene (Schedl et al. 1996). The mice were maintained on a 

CD1 background. PAX77 males were mated to CD1 females to generate littermates 

for experiments.  The date of conception was assessed by the presence of a vaginal 

plug and recorded as embryonic day (E) 0.5. The first 24 hours after birth was 

defined as postnatal day (P) 0. To specifically inactivate Pax6 in the developing 

cerebral cortex, Pax6 floxed mice (Pax6loxP/loxP) (Simpson et al. 2009) were crossed 

with a transgenic line that expressed the tamoxifen-inducible form of Cre 

recombinase (CreERT2) under the control of the Emx1 locus (Kessaris et al. 2006). 

The lines above were crossed with Rosa26R-YFP reporter mice (Srinivas et al. 2001) 

to generate triple transgenics in which the expression of the Cre transgene could be 

monitored. All transgenic lines were maintained by backcrossing with CD1 animals. 

To activate Cre activity, tamoxifen (T5648, Sigma) was dissolved by sonication, at a 

concentration of 50mg/ml in corn oil (Sigma, C8267), and administered by gavage 

into the stomach of pregnant mothers bearing embryos. Induction in embryos was 

performed using a single 10mg dose of tamoxifen at embryonic day (E) 10.5 or a 

single 12.5mg tamoxifen dose at E13.5. Embryonic or postnatal brains were 

harvested at the times specified after tamoxifen treatment. For postnatal analysis, a 

caesarean section was performed on pregnant mothers in the afternoon on E18.5 and 

pups were fostered. Control animals were Pax6loxP/+; Emx1-CreERT2 and mutant 

animals were Pax6loxP/loxP; Emx1-CreERT2. In all cases, littermates were analysed. All 

of the experimental procedures were performed in accordance with institutional 

guidelines and UK Home Office regulations. 

Mice were genotyped by performing Polymerase Chain Reaction (PCR) on genomic 

DNA from digested mouse tissue, reactions used standard conditions. For genotyping 

of mice carrying the PAX77 transgene, two separate sets of primers were used in 

order to amplify a 283-bp region of transgenic human PAX6 and a 399-bp region of 

mouse Pax6 (primers for amplification of human PAX6: forward 5′-

CCGTGTGCCTCAACCGTA-3′, reverse 5′-CACGGTTTACTGGGTCTGG-3′; 

primers for amplification of mouse Pax6: forward 5′-
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GAGGGTTTCCTGGATCTGG-3′, reverse 5′-CGCAAATACACCTTTGCTCA-3′). 

Mice carrying the conditional mutant Pax6loxP allele, in which loxP sites flank exons 

5, 5a and 6 that encode the paired domain and are crucial for Pax6 function, were 

genotyped using primers (forward 5’-AAATGGGGG TGAAGTGTGAG-3’, reverse 

5’-TGCATGTTGCCTGAAAGAAG-3’) targeted to the single distal loxP site (for 

targeting strategy and position of primers see Simpson et al. 2009, Fig1.A, D). Cre 

recombinase-expressing transgenic mice were genotyped using primers to the Cre 

cassette (forward 5’-CATTTGGGCCAGCTAAACAT-3’, reverse 5’-

ATTCTCCCACCG TCAGTACG-3’). DNA from Cre+/- mice produced a 300-bp 

band. Rosa26R-YFP reporter transgenic mice were genotyped using primers to the 

Rosa26R locus (forward 5’-AAAGTCGCTCTG AGTTGTTAT-3’). DNA from mice 

carrying the Rosa26R allele produced a 300-bp band. DNA bands were separated by 

gel electrophoresis (at 85-90V for 1 h) and visualized under 320nm UV light.  

 

2.2 Tissue preparation 

To obtain embryos, pregnant females were deeply anesthetised by isoflurane 

inhalation and embryos were removed from the amniotic sac. Pups were deeply 

anesthetised with sodium pentobarbitone (50mg, intraperitoneally) and perfused 

transcardially with phosphate-buffered saline (PBS) followed by fixation with 4% 

paraformaldehyde (PFA) in PBS. Tails from pups or trunks from embryos were 

collected for genotyping. Brains from embryos and pups were fixed overnight in 4% 

PFA in PBS at 4°C. For paraffin sections, brains were dehydrated through increasing 

concentrations of ethanol before embedding in paraffin wax. Brains were sectioned 

on a microtome at 10 μm in the coronal plane and sections were mounted onto poly-

L-lysine coated slides. For frozen sections, postnatal brains were cryoprotected in a 

series of sucrose gradients up to 30% sucrose in PBS at 4°C before being embedded 

in OCT (optimal cutting temperature) compound. Embryonic brains were 

cryoprotected in 15% sucrose in PBS at 4°C overnight before being embedded in a 

mixture of 15% sucrose in PBS/7.5% gelatine (Sigma). All samples were frozen on 

dry ice and stored at -20°C (80-°C for long-term storage). Frozen samples were 

serially sectioned on a Leica cryostat at 14µm (embryonic brains) or at 20 µm 
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(postnatal brains) in the coronal plane and sections were mounted onto Superfrost 

Plus slides (Fisher Scientific), air-dried at room temperature (RT) for 30-60 min and 

stored at -20°C until use. 

 

2.3 Chimeric embryos 

Chimeras were generated in John West’s lab (University of Edinburgh) by embryo 

aggregation (West and Flockhart, 1994). Embryos differed at the Gpi1 locus 

(encoding glucose phosphate isomerase) and one of each pair carried the -globin 

TgN (Hbb-b1) transgene (abbreviated to Tg), identifiable by DNA in situ 

hybridization (Keighren and West, 1993; Lo, 1986; Lo et al., 1987). Outbred CD1A 

females (homozygous Gpi1a/a CD1 strain mice) were induced to ovulate and mated to 

PAX77 males on a CD1A background to produce PAX77 and wild-type embryos, all 

of which were Gpi1a/a;Tg-/-. (C57BL/6  CBA/Ca)F1 females (Gpi1b/b; Tg-/-) were 

induced to ovulate and mated to ‘BTC’ strain males (Gpi1b/b;Tg+/+ on a mixed 

[C57BL/6  CBA/Ca] background) to produce embryos, all of which were wild-type, 

Gpi1b/b; Tg+/-. Chimeras were transferred to pseudopregnant Gpi1c/c (‘CF1’ hybrid 

strain) females. E16.5 fetuses were dissected into cold PBS, the limbs and tails of the 

fetuses were removed and analyzed by GPI1 electrophoresis (West and Flockhart, 

1994). Heads were fixed and processed for analysis by in situ hybridization and other 

body tissues were digested to obtain DNA for PCR genotyping to distinguish 

PAX77wild-type and wild-typewild-type chimeras. 3-5 non-consecutive 

coronal sections from each chimeric brain were examined for each hemisphere and 

each region along the anterior-posterior axis. Percentages of Tg- cells were 

determined by counting numbers of hybridization signals and nuclei in 100 m-wide 

boxes. The contribution of Gpi1a/a cells to chimeras used here was 42% to 86%. 

To determine proportions of Tg- and Tg+ cells in M-phase in PAX77wild-type 

chimeras, β-globin DNA in situ hybridization was followed by immunostaining with 

anti-phosphorylated histone H3. Nickel was added to the diaminobenzidine 

visualization solution to obtain a grey precipitate. Cells were counted in 100 μm-

wide sampling boxes in the VZ of the rostral cortex of each E16.5 chimeric or wild-
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type embryo. Each count was repeated on 4-5 non-adjacent sections. The 

contribution of Gpi1a/a cells to the chimeras used here was 42-57%. 

 

2.4 Bromodeoxyuridine/Iododeoxyuridine incorporation studies 

Timed-pregnant females bearing wild-type and PAX77 embryos were given 

thymidine analogues (0.2ml of 10mg/ml, dissolved in 0.9% NaCl) by intraperitoneal 

injection. The thymidine analogues, 5-bromo-2’-deoxyuridine (BrdU) and 5-iodo-2’-

deoxyuridine (IdU) (Sigma-Aldrich), are incorporated into cells during S-phase of 

the cell cycle. For short-pulse BrdU experiments, pregnant females were sacrificed 1 

h after injection with BrdU. For cell cycle analysis, pregnant mothers received a 

single injection of IdU and, after 1.5 h, BrdU was injected; mice were sacrificed 30 

min after the BrdU injection (Martynoga et al. 2005). To estimate the leaving (Q) 

fraction (Takahashi et al. 1994; Tarui et al. 2005), IdU was administered to E15.5 

pregnant females at 9.00 a.m., followed by a BrdU injection at 10.30 a.m. (1.5 h 

later). The BrdU injection was followed by a series of 7 additional BrdU injections 

given at 3-hour intervals. Pregnant females were sacrificed 30 min after the last 

BrdU injection. For analysis of migration, pregnant females were given a single 

injection of BrdU at E15.5 or E17.5 and offspring were perfused at postnatal day (P) 

7. In all cases, brains were removed, sectioned and processed for 

immunohistochemistry. 

 

2.5 Immunohistochemistry 

Following deparafinization in xylene, wax brain sections were rehydrated through 

descending ethanol series, followed by PBS wash. Cryosections were air dried for 30 

min at RT and washed with PBS for 30 min. To block endogenous peroxidase on 

sections processed for diaminobenzidine (DAB) immunohistochemistry, sections 

were treated with 0.3% H2O2 in methanol for 15 min at RT before proceeding to the 

next step. For antigen retrieval, sections were microwave-heated in a solution of 

0.01M sodium citrate, pH6.0; wax sections were heated for 20 min (4x 5 min at high 
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power) whereas cryosections were heated for 15 min (1x 5 min low power, 2x 5 min 

at simmer). Cryosections were heat-treated only when necessary for optimal 

detection of nuclear staining. To denature DNA for BrdU detection on non-heated 

cryosections, sections were immersed in 2N HCl for 30min at 37°C, neutralized with 

0.1M Na borate buffer, pH8.5 for 15 min and washed with PBS. Sections were 

washed with PBS, 0.1% Triton X-100 before applying blocking solution (20% goat 

or donkey serum [Sigma] in PBS, 0.1% Triton X-100) for 30 min at RT. Sections 

were then incubated overnight at 4°C with primary antibodies diluted in blocking 

solution. Primary antibodies used were mouse anti-BrdU/IdU (BD Biosciences, 1:50 

for immunofluorescence, 1:100 for DAB), rat anti-BrdU (Abcam ab6326, 1:50), 

mouse anti-proliferating cell nuclear antigen (PCNA) (Dako, 1:100), mouse anti-

phosphorylated histone H3 (pH3) (for DAB: Sigma, 1:500; for immunofluorescence: 

Abcam ab1791, 1:200), mouse anti-Pax6 (DSHB, 1:50 for immunofluorescence, 

1:200 for DAB), mouse anti-Mash1 (BD Biosciences, 1:100), mouse anti-Satb2 

(Abcam ab51502, 1:25), mouse anti-β-III-tubulin (Sigma, 1:100), rabbit anti-Gsh2 

(gift from Kenneth Campbell, 1:1500), rabbit anti-Olig2 (Millipore, 1:500), rabbit 

anti-Tbr1 (gift from Robert Henver, 1:100), rabbit anti-Tbr2 (Abcam ab23345, 

1:100), rat anti-Ctip2 (Abcam ab18465, 1:250), goat anti-Cux1 (Santa Cruz, 1:50), 

goat anti-GFP (Abcam ab6673, 1:100 for microwaved sections, 1:500 for straight 

immunofluorescence), rabbit anti-GFP (Abcam ab290, for straight 

immunofluorescence only, 1:500). After optimization, antibodies that could be used 

without antigen retrieval on cryosections include: anti-Ctip2, anti-Satb2, anti-pH3, 

anti-Tbr1, rabbit anti-GFP. Following incubation with primary antibodies, the tissue 

was washed in PBS, 0.1% Triton X-100 and appropriate secondary antibodies were 

applied for 1 h at RT. For bright-field staining, biotinylated goat anti-mouse, goat 

anti-rabbit or donkey anti-mouse antibodies (all from Dako, 1:200) were used, 

followed by a standard avidin-biotin-DAB visualisation procedure (Vector Labs) 

before sections were coverslipped in DPX. For fluorescent staining, secondary 

antibodies used were goat anti-mouse Alexa Fluor 488, goat anti-rat Alexa Fluor 

568, goat anti-rabbit Alexa Fluor 488, goat anti-rabbit Alexa Fluor 568, donkey anti-

goat Alexa Fluor 488, donkey anti-goat Alexa Fluor 568, donkey anti-mouse Alexa 

Fluor 568, donkey anti-rabbit Alexa Fluor 568, donkey anti-rat Alexa Fluor 488 (all 
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from Molecular Probes, diluted at 1:200). For Pax6 immunofluorescence, 

biotinylated goat anti-mouse antibody (Dako, 1:100) was used before Alexa Fluor 

488-conjugated streptavidin (Molecular Probes, 1:100).  Nuclear counterstaining was 

performed with TOPRO-3 (1:1000 in dH2O, Molecular Probes) for 

immunofluorescence, or 0.25% cresyl violet (in dH2O) for light microscopy. Sections 

were coverslipped in Vectashield (Vector Labs) and stored in dark at 4°C. 

Fluorescent images were captured using a Leica NTS confocal microscope, whereas 

a Leica digital camera was used for light microscopy images. Pax6/YFP double 

immunohistochemistry was performed sequentially following protocols above; Pax6 

staining was detected with DAB, sections were blocked and then incubated with goat 

anti-GFP, YFP immunoreactivity was revealed with donkey anti-goat 488, sections 

were coverslipped in Vectashield and photographed in a Leica digital camera. 

Bright-field and immunofluorescence images were overlaid in Adobe Photoshop and 

adjusted for lightness and contrast. 

 

2.6 Flow cytometry 

Cortical tissue was collected from E16.5 PAX77 and wild-type embryos separately at 

rostral and central neocortical levels. Eight individuals of each genotype collected 

from 3 separate litters were used for the analysis. Cells were dissociated using papain 

following manufacturer’s instructions (Papain Dissociation System, Worthington 

Biochemichals, UK) and fixed in ice-cold 70% ethanol at a concentration of 1x106 

cells per ml. Dissociated cells were stained for β-tubulin isotype III (1:800) and 

primary antibody binding was detected using directly conjugated AlexaFluor® 488 

(goat anti-mouse IgG, 1:800). To stain cellular DNA, cells were then incubated with 

propidium iodide (PI) at 50 μg/ml with RNAse A at 125 μg/ml. Cells were analysed 

on a Beckman-Coulter XL flow cytometer. 10,000-20,000 cells were analysed per 

sample. 
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2.7 Analysis 

2.7.1 Cortical surface measurements 

P9 brains were fixed overnight in 4% PFA at 4°C. Cerebral hemispheres were 

separated, flattened between glass slides with spacers and postfixed with the same 

fixative for 5 days. Flattened hemispheres were rinsed with PBS and slides were 

stored in 70% ethanol at 4°C before hemispheres were removed from slides and 

photographed with a Nikon microscope. Images were imported into Image Tool and 

the border around the cortex of wild-type and PAX77 hemispheres was drawn to 

measure the cortical surface.  

 

2.7.2 Cortical layer thickness 

Sections from 3 wild-type and 3 PAX77 P7 pups were stained with cresyl violet. For 

each brain, the thickness of cortical layers was measured using the Image Tool 

software (University of Texas Health Science Centre at San Antonio, San Antonio, 

TX, USA) on 16-28 non-adjacent sections at equivalent rostral, central and caudal 

levels.  

 

2.7.3 Cortical progenitor numbers in S- or M-phase of the cell cycle 

Cortical progenitors in S- or M-phase were assessed by BrdU or pH3 

immunoreactivity, respectively. For BrdU analyses in PAX77 or Pax6loxP/loxP; Emx1-

CreERT2 embryos and appropriate controls, positive nuclei were counted in 100 μm-

wide sampling boxes and counts were repeated on three to five non-consecutive 

sections for each cortical region per brain. In E15.5 PAX77 embryos and respective 

controls, counterstain of BrdU-reacted sections with cresyl violet enabled 

visualization of cytoarchitecture, i.e. radial alignment of VZ nuclei compared to 

scattered BrdU-positive nuclei in the SVZ, and therefore radial stripes were 

subdivided into a domain corresponding to the VZ and a more superficial domain 

and numbers of BrdU-positive cells were scored. PH3-positive cells localized in the 

ventricular surface were designated as apically dividing progenitors, whereas 



58 
 

positive nuclei at abventricular positions were designated as progenitors in basal 

mitoses. PH3-labelled cells were counted in 100 μm-wide sampling boxes in PAX77 

embryos and respective controls; counts were repeated on ten to nineteen non-

consecutive sections for each cortical region per brain. In Pax6loxP/loxP; Emx1-

CreERT2 embryos and respective controls, PH3-labelled cells were counted in 200 

μm-wide sampling boxes and counts were repeated on four to five non-adjacent 

sections for each cortical region per brain. In all cases, BrdU and pH3 analyses were 

performed the middle of the rostral, central and caudal levels of the neocortex. 

 

2.7.3 Cell cycle times 

Age-matched wild-type and PAX77 sections were reacted to reveal IdU/BrdU 

labelling. To detect IdU, a mouse-anti-BrdU antibody, which cross-reacts with IdU, 

was used. The BrdU signal was distinguished from the IdU signal by using a rat-anti-

BrdU-specific antibody. Sections were photographed at x40 magnification on a Leica 

NTS confocal microscope and then imported into Adobe Photoshop for counting. 

The analysis at E15.5 was performed in the middle of the rostral, central and caudal 

neocortex, whereas at E12.5 four locations were analysed, namely the middle of the 

rostral neocortex, a medial and a lateral region of the central cortex, and the middle 

of the caudal cortex (see Fig. 3.1C). This method identifies IdU-only and IdU/BrdU 

double-labelled cells. IdU-only labelled cells are those in S-phase at the start of the 

experiment that exit S-phase by the time of the BrdU injection, and are therefore 

designated as the leaving fraction (Lcells). BrdU/IdU double-labelled cells are those 

still in S-phase (Scells) at the time of the BrdU injection. Proportions of Lcells and Scells 

were calculated in the VZ and the lengths of the S-phase and the cell cycle were 

calculated by using the equations shown in Fig. 1A (Martynoga et al., 2005). To 

estimate the proportion of proliferating cells (Pcells), proportions of PCNA-positive 

cells were counted in the VZ of the same regions of cortex used for BrdU/IdU cell 

counts. Cell cycle times were also determined in a non-Pax6-expressing region of the 

lateral ganglionic eminence (LGE) at E15.5 following methods described above. 
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2.7.4 Q fraction 

Following the protocol described above and summarized in Fig. 2A in chapter 4, 

sections at the rostral, central and caudal level of the cortex were processed for 

IdU/BrdU immunohistochemistry, photographed at x20 magnification on a Leica 

NTS confocal microscope and then imported into Adobe Photoshop for analysis. The 

principle of the analysis follows that described in Tarui et al. (2005). This paradigm 

is based on labelling a cohort of cells in S-phase over an experimentally defined 

period and following this cohort as it undergoes G2, M and G1 phases and reaches the 

point where a decision of whether to exit or re-enter cell cycle is made. As in the 

analysis of cell cycle times, a cohort of cells undergoing S-phase at the start of the 

experiment was labelled by IdU injection. Cells exiting S-phase in the 1.5-hr interval 

between the IdU injection and the first BrdU injection would have been labelled with 

IdU only (Lcells) and their fate would be followed. It should be noted that if a single 

S-phase tracer was to be injected, i.e. IdU only, the interval would determine the cell-

cycle phase of traced cells at the end of the experiment: a short interval, i.e. 30 min 

to 1.5 h, would label progenitors in S-phase, a longer interval would be chosen if 

labelled cells were to be identified in G2-M phase at the end of the experiment, and 

an even longer interval should be used if labelled cells were to be in G1 phase at the 

time of sacrifice. Therefore, the interval of the S-phase tracer depends upon the aim 

of a given experiment and requires estimation of the length of each cell-cycle stage at 

the same developmental stage from previous experiments. For the experimental 

design here, findings from calculation of cell cycle times (Fig. 1, chapter 4) were 

used to calculate the total interval of IdU and BrdU injections. A short, 1.5 h, interval 

for IdU injection was used: this is both sufficient to label a cohort of S-phase cells at 

the start of the experiment and a prerequisite given that this interval should be the 

same as that used for calculation of cell cycle times in Fig. 1 (Chapter 4). To identify 

Lcells that re-enter S-phase instead of exiting cell cycle, the total duration of 

subsequent exposure to BrdU should be longer than Tc – Ts, or otherwise longer than 

the combined length of G2, M and G1 phases of the cell cycle. Again, based on cell 

cycle time calculations (Fig. 1, chapter 4) it was determined that subsequent 

exposure to BrdU for a total of 21 h was sufficient to follow Lcells that re-enter S-

phase, which would have become double-labelled with BrdU. Pregnant females were 
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sacrificed 30 min after the last BrdU injection, since this period has been shown to be 

required for circulation of S-phase tracers in the bloodstream and labelling the DNA 

of S-phase cells at detectable levels (Nowakowski et al. 1989). Cells entering S-

phase become detectably labelled for about 5-6 h post-BrdU injection (Hayes and 

Nowakowski 2000) and therefore sequential injections of BrdU every 3 h used here 

is considered approporiate for ensuring continuous availability of the S-phase tracer 

in the bloodstream. The leaving fraction was estimated by dividing the number of 

Lcells that had not re-entered S-phase at the end of the long exposure to BrdU 

(identified because they still contained only IdU; now designated Qcells) by the 

number of Lcells multiplied by two. The number of Lcells from the cell cycle analysis 

was doubled because these cells would have undergone mitosis, thereby doubling the 

size of the Lcell cohort, before either exiting or re-entering the cell cycle. 

 

2.7.5 BrdU birthdating 

Anatomically-matched sections from P7 wild-type and PAX77 cortex were reacted 

to reveal BrdU label and camera lucida drawings were made of the laminar positions 

of heavily- and lightly-labelled BrdU-positive cells in rostral, central and caudal 

cortex, following methods described previously (Gillies and Price 1993; Caric et al. 

1997). Heavy labelling was defined where a cell had more than half of its nucleus 

stained with BrdU. Drawings were repeated on three to five non-consecutive sections 

for each cortical region per brain. BrdU-positive cells were counted within 500-μm-

wide strips through the depth of the cortex (sectioned coronally). These radial strips 

covered a cortical depth of 500 μm from the pial surface inward and were divided 

into 10 bins of equal depth (50 μm). Histograms were obtained of the average 

numbers of heavily and lightly BrdU-labelled at each depth from the pia.  

For double-labelling of BrdU-positive cells with appropriate laminar markers, e.g. 

Tbr1 or Cux1, coronal sections from P7 wild-type and PAX77 cortex or Pax6loxP/+; 

Emx1-CreERT2 and Pax6loxP/loxP; Emx1-CreERT2 cortex at the rostral level were 

reacted. The proportions of double-labelled cells over the total number of BrdU-

positive cells were calculated in 200-μm-wide strips spanning the depth of the deep 

layers (for BrdU/Tbr1 immunostaining) or the superficial layers (for BrdU/Cux1 
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immunostaining) of the cortex. For BrdU/Tbr1 analysis, only heavily-labelled BrdU-

positive cells were counted. Counts were repeated on three to five non-consecutive 

sections per brain. 

 

2.7.6 Statistical analysis 

Analysis was performed on data collected from brains of at least 3 embryos/mice of 

each genotype. Statistical comparisons were made by Student’s t-test (for single 

variables) and one-way ANOVA (for more than two-group comparisons) 

(Sigmastat). Asterisks above histograms indicate P < 0.05. 
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CHAPTER 3 

Controlled Overexpression of Pax6 in vivo Causes Cell-

autonomous Defects of Late Cortical Progenitors and 

Reduces the Thickness of Superficial Cortical Layers 

 

 

 

 

 

 

 

 

 

 

*Published in Martine Manuel, Petrina A. Georgala et al. (2007). “Controlled 

overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus and causes 

cell autonomous defects of late cortical progenitor proliferation but has little effect 

on cortical arealization”. Development. 134 (3):545-555. 
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3.1 Introduction 

The complexity of brain structure and function is established through the generation 

of numerous and frequently subtle differences among progenitor cells and the 

neurons they produce. Molecular differences between cells in the embryonic nervous 

system are detectable from its inception and arise as cells are exposed to different 

levels of morphogens released by surrounding signalling centres. These morphogens 

determine the levels of expression of key transcription factors that pattern the 

nervous system, creating domains that express characteristic combinations of 

transcription factors specifying their morphologies and functions (Kerszberg 1999; 

Neumann and Cohen 1997; Tabata and Takei 2004; Yucel and Small 2006). The 

potential of a limited set of transcription factors to direct the generation of an 

enormous diversity of neuronal phenotypes might be enhanced greatly if different 

levels of transcription factors cause different developmental outcomes. If levels of 

expression are important, then enhanced expression above optimal levels should 

affect the development of cortical neurons. Here, this prediction was tested for the 

transcription factor Pax6.  

In normal mice, corticogenesis occurs between E11.5 and E17.5 by a process of 

progenitor proliferation in the ventricular zone (VZ) followed by migration of neural 

precursors to the overlying cortical plate. Throughout corticogenesis, Pax6 is 

expressed mainly in progenitors residing in the VZ, known as apical progenitors 

(APs) (Gotz et al. 1998; Englund et al. 2005). Pax6 expression follows a rostrolateral 

(high) to caudomedial (low) gradient, similar to that of corticogenesis (Bayer and 

Altman  1991). Mice homozygous for a loss-of-function mutation of Pax6 die at 

birth with serious brain abnormalities, including an abnormally thin cortical plate and 

an expanded proliferative zone due to failure of late-born neurons to migrate to 

laminar positions (Schmahl et al. 1993; Stoykova et al. 1996; Caric et al. 1997; 

Stoykova et al. 2000; Tarabykin et al. 2001). Previous studies identified a reduced 

progenitor population and defective differentiation as primary defects resulting from 

loss of Pax6 (Heins et al. 2002; Quinn et al. 2006).  

To date, the role of Pax6 in cortical development has been examined mainly through 

loss-of-function studies in mutant mice. Whether the level at which it is expressed in 
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the brain is important is not clear, although its expression in a gradient in the cortex 

suggests it might be. Levels of Pax6 expression in the eye are critical, with both 

reduced and increased gene dosage causing defects in development (Schedl et al. 

1996). Here, the speculation that increased levels of Pax6 might affect cortical 

progenitor proliferation and lamination was tested by using the PAX77 mouse line 

produced by Schedl et al. (1996). In addition to their two endogenous Pax6 alleles, 

mice hemizygous for the PAX77 transgene carry approximately six additional copies 

of the human PAX6 locus, including its upstream and downstream regulatory regions 

(the mouse and human Pax6 proteins are identical). In PAX77 mice, Pax6 protein 

levels are increased about 1.5- to 3-fold, an increase that is not as great as the number 

of gene copies and has been explained through demonstration of negative feedback 

in the regulation of Pax6 (Manuel et al. 2007). The normal graded expression of 

Pax6 is conserved in the cortex of PAX77 mice (Manuel et al. 2007). The PAX77 

transgene is functional, as demonstrated by its ability to rescue the eye and brain 

defects in mice carrying loss-of-function mutations of Pax6 (Schedl et al. 1996). In 

this chapter, results show that increased PAX6 dosage reduces the thickness of 

superficial cortical layers specifically and impairs the proliferation of late cortical 

progenitors in a cell-autonomous fashion. These findings suggest that Pax6 levels 

have potent effects during late stages of corticogenesis, the time of superficial layer 

neuron generation. 
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3.2 Results 

3.2.1 Pax6 overexpression decreases the thickness of superficial cortical layers 

Gross examination of postnatal PAX77 brains failed to show any obvious differences 

in brain size compared to wild-type littermates. To further address this issue, the 

cortical surface area was measured on flattened cortices of PAX77 and wild-type 

postnatal brains (Fig. 1). The cortical surface area was significantly reduced in the 

PAX77 mice compared to controls (54.355 ± 0.629 mm2 in wild-type, 48.67 ± 0.55 

mm2 in PAX77; Student’s t-test P < 0.001, n = 8). To test whether Pax6 

overexpression affects cortical lamination, the thickness of deep (V and VI) and 

superficial (II-IV combined) layers and of the marginal zone (future layer I) was 

measured at the rostral, central and caudal cortex of PAX77 and wild-type brains at 

P7 (Fig. 2). The thickness of superficial layers II-IV was significantly decreased in 

the rostral and central PAX77 cortex compared to wild-types (Student’s t-test P < 

0.01, n = 3 brains of each genotype) (Fig. 2C, D). The thickness of deep cortical 

layers and that of layer I were not significantly altered in the PAX77 cortex. Since 

the formation of superficial cortical layers occurs during late stages of 

corticogenesis, these results suggest that Pax6 overexpression might affect 

specifically late cortical development.   

 

3.2.2 Pax6 overexpression alters cortical progenitor proliferation at late stages 

of corticogenesis 

Previous studies showed that Pax6 is important in regulating cortical progenitor 

proliferation and promoting neurogenesis (Estivill-Torrus et al. 2002; Heins et al. 

2002). Neurons destined for cortical layers IV-II are generated between E14.5 and 

E17.5, leading to the hypothesis that the thinner superficial layers in the PAX77 

cortex might arise due to late cortical progenitor proliferation defects. The 

proliferative zone of the neocortex contains two populations of progenitors: apical 

progenitors (APs) undergo mitosis at the ventricular surface and express high levels  
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Figure 1. Pax6 overexpression leads to reduced cortical surface. (A, B) Dorsal views of wild-type 

and PAX77 flattened cortices at P9. The border between the cortex and the olfactory bulb is outlined 

on the images. (C) Cortical surface area was significantly (*) reduced in PAX77 mice compared to 

wild-type. Ctx, cortex; OB, olfactory bulb. Scale bar: 3mm. 
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Figure 2. Pax6 overexpression affects the formation of superficial cortical layers. (A-B) Coronal 

sections through the cortex of (A) a wild-type and (B) a PAX77 mouse at P7, stained with cresyl 

violet. Borders between adjacent cortical layers were identified based on differences in 

cytoarchitecture and packing density. (C-E) Thickness of cortical layers I, II-IV (combined), V and VI 

in (C) rostral, (D) central and (E) caudal cortex of wild-type and PAX77 mice at P7. The thickness of 

layers II-IV was significantly (*) decreased in the rostral and central cortex of PAX77 mice compared 

to wild-types. Scale bar: 300 μm. 
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of Pax6; basal progenitors (BPs) are derived from APs and divide in the SVZ and 

basal VZ. Pax6 is downregulated during the transition from AP to BP (Englund et al., 

2005). To examine progenitor proliferation in the PAX77 embryos, BrdU was used 

to label cortical progenitors in S-phase of the cell cycle (Fig. 3D-E, G-H) while 

phosphorylated histone H3 was used as a marker of mitotic progenitors (Fig. 3J, K). I 

determined the proportion of cells in S-phase (pScells) in the VZ along the cortex of 

PAX77 and wild-type embryos at E12.5, early in corticogenesis, and was unable to 

detect any significant difference between the genotypes (Fig. 3A-F). Then the pScells 

and the density of cells undergoing mitosis (dMcells) were determined along the cortex 

of wild-type and PAX77+ embryos at E15.5, a late stage of corticogenesis. A 

significant reduction of pScells (Fig. 3G-I) and dMcells (Fig. 3J-L) among APs was 

detected in the rostral and central cortex of PAX77 embryos compared to wild-types 

(Student’s t-test P < 0.05, n = 3 of each genotype). No significant difference was 

detected in the caudal cortex. Thus, Pax6 overexpression alters the proliferation of 

rostral and central APs at late stages of corticogenesis, while early progenitors seem 

unaffected in the PAX77 cortex. There was no significant alteration of pScells and 

dMcells among BPs in the rostral, central and caudal cortex of PAX77 embryos 

compared to wild-types. These results suggest that Pax6 overexpression affects 

specifically the proliferation of late cortical progenitors that normally express high 

levels of Pax6. 

 

3.2.3 Effects of Pax6 overexpression on late cortical progenitors are cell 

autonomous 

In PAX77 mice, Pax6 levels are increased at all its sites of expression and so a late-

onset cortical defect might arise as a secondary consequence of defects elsewhere 

(e.g. PAX77 mice are microphthalmic and may have other as yet undetected extra-

cortical abnormalities). I tested whether the defects detected in mutants reflect a 

requirement for a correct level of Pax6 within cortical progenitors themselves rather 

than in their environment. To discriminate between these two possibilities chimeric 

embryos (generated by John West’s lab, University of Edinburgh) were analysed, in 

which mutant cells have the potential to interact with wild-type cells and any defects  
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Figure 3. Pax6 overexpression affects late cortical progenitor proliferation. (A-C) Coronal 

sections at (A) rostral, (B) central and (C) caudal levels of the cortex (1 hemisphere shown) of an 

E12.5 wild-type embryo labeled with anti-BrdU (brown). Cell counts were made in 100 μm wide 

sampling boxes. (D, E) Examples of anti-BrdU labeling (brown) of coronal sections of the cortex of 

(D) a wild-type and (E) a PAX77 embryo at E12.5. (F) The proportion of AP cells in S-phase along 

the cortex of PAX77 embryos at E12.5 is not different from the wild-types. (G, H) Example of anti-

BrdU labeling (brown) of coronal sections of the cortex of (G) a wild-type and (H) a PAX77 embryo 

at E15.5. Note that BrdU labelling intensity varied in both wild-type and PAX77 cortices; both 

heavily- and less heavily-stained BrdU-positive nuclei were counted in cortical sections through 

brains of both genotypes. (I) The proportion of AP cells in S-phase in the rostral and central cortex of 

PAX77 embryos at E15.5 is significantly decreased compared to the wild-types. (J, K) Example of 

anti-phosphorylated histone H3 labeling (brown) of coronal sections of the cortex of (J) a wild-type 

and (K) a PAX77 embryo at E15.5. (L) The density of AP cells in M-phase in the rostral and central 

cortex of PAX77 embryos at E15.5 is significantly decreased compared to the wild-types. All sections 

shown are counterstained with cresyl violet. MZ, marginal zone; VZ, ventricular zone; SVZ, 

subventricular zone. Scale bars: (A-E) 50 μm, (G, H, J, K) 70 μm. 
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that they retain are more likely to be cell autonomous. Embryos derived from a wild-

type × PAX77 cross were aggregated to wild-type embryos, carrying the Tg  

transgene as a marker, to produce control chimeras [wild-type;Tg-wild-type;Tg+] 

or mutant chimeras [PAX77;Tg-wild-type;Tg+]. Cells derived from the wild-type 

embryo could be identified, after DNA in situ hybridization against Tg (described in 

Talamillo et al. 2003), by the presence of a brown spot in the nucleus (Fig. 4A, B). 

The global percentage of cells derived from each of the two embryos used to 

generate each chimera was estimated by quantitative analysis of GPI1 isozyme 

composition of the limbs (West and Flockhart, 1994), with the percentage of the 

GPI1A isozyme representing the contribution of cells derived from the wild-type × 

PAX77 cross.  

3 control and 4 mutant chimeras were analyzed at E16.5 and the percentage of Tg- 

cells in the proliferative zones (VZ and SVZ), the intermediate zone (IZ) and the 

cortical plate (CP) was determined at rostral, central and caudal positions of each 

chimeric cortex. For each chimera, the observed contribution of Tg- cells  to each 

cortical region (obsTg-) was compared to the expected contribution of Tg- cells 

(expTg-) given by the percentage of GPI1A for that chimera. The mean ratio obsTg- / 

expTg- in the different cortical regions of the control chimeras was always slightly 

greater than 1 (between 1.08 and 1.23, Fig. 4C-E), reflecting the fact that the brown 

spot identifying Tg+ cells was not always present in the plane of section analyzed and 

therefore the number of Tg- cells was slightly overestimated. This applied equally to 

control and mutant chimeras. Analyses showed that the Tg- cells in the mutant 

chimeras were significantly under-represented in the proliferative zones of the rostral 

(Student’s t-test P < 0.01), central (P < 0.05) and caudal (P < 0.05) cortex compared 

to the control chimeras (Fig. 4C). The Tg- cells in the mutant chimeras were also 

significantly under-represented in the intermediate zone of the rostral cortex 

(Student’s t-test P < 0.05) compared to control chimeras (Fig. 4D). There was no 

difference in the contribution of Tg- cells to the cortical plate between mutant and 

control chimeras (Fig. 4E), indicating that Pax6 overexpression does not affect the 

production of postmitotic cells at earlier developmental stages. Overall, these results 

suggest that, late in corticogenesis, cortical progenitors must express normal levels of 

Pax6 to contribute normally to the proliferative zones of the cortex. 
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Figure 4. PAX77 cells are under-represented in the cortical proliferative layers of PAX77;Tg-

wild-type;Tg+ chimeric embryos at E16.5. (A,B,F,G) Coronal sections through the cortex of a 

PAX77;Tg-wild-type;Tg+ chimera at E16.5. (A,B) Tg+ cells (marked with brown dots) and Tg- cells 

were counted in the proliferative layers (VZ and SVZ) the intermediate zone (IZ) and the cortical plate 

(CP). (C-E) Ratios of observed/expected contributions of Tg- (i.e. PAX77) cells in (C) VZ and SVZ, 

(D) IZ and (E) CP. (C) PAX77;Tg- cells are significantly (*) under-represented in the proliferative 

layers along the chimeric cortex and (D) in the intermediate zone of the rostral chimeric cortex. (F,G) 

Example of Tg+(arrow) and Tg- (arrowhead) apical progenitors in M-Phase labelled with anti-

phosphorylated histone H3 (grey). Note that DNA in situ hybridization against Tg was performed 

prior to pH3 immunostaining which could mask the brown dot (arrow) in wild-type cells double-

labelled with pH3. This would lead to an underestimation of numbers of wild-type cells in M-phase in 

chimeric embryos and therefore an overestimation of PAX77 cells in M-phase, meaning that the 

observed reduction of M-phase mutant cells compared to wild-types might be effectively further. 

Scale bars: (A) 50 μm; (B, F, G) 10 μm.  
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To test whether the under-representation of Pax6 overexpressing cells in the cortical 

proliferative zones of chimeras was due to a cell autonomous proliferation defect, 

phosphorylated histone H3 was used as a marker of mitotic cells (Fig. 4F, G). I 

compared the average proportion of Tg+ and Tg- cells in M-phase (pMTg+ and pMTg- 

respectively) in the VZ of the rostral cortex of mutant chimeras to the average 

proportion of cells in M-Phase (pMcells) in the corresponding region of wild-type 

embryos. The average proportion of mutant cells in M-phase (pMTg-) in chimeras 

(0.0123 ± 0.0044 s.e.m., n = 3) was significantly lower than pMcells in wild-type 

embryos (Student’s t-test P < 0.03), indicating that correct levels of Pax6 are 

required cell-autonomously to enable late cortical progenitors to proliferate normally. 

The pMTg+ in mutant chimeras (0.0243 ± 0.003 s.e.m., n = 3) was not significantly 

different from pMcells in wild-type embryos (0.0242 ± 0.003 s.e.m., n = 3), indicating 

that the presence of Pax6 overexpressing cells does not affect the proliferation of 

wild-type cortical progenitors in mutant chimeras.  
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3.3 Discussion 

3.3.1 Upregulation of Pax6 protein levels in PAX77 mice affects cortical 

development in a region-specific and time-dependent manner 

PAX77 mice contain five to seven copies of the human PAX6 locus, in addition to 

their two endogenous copies of Pax6 (Schedl et al. 1996). Therefore, the presence of 

seven to nine copies of the gene in PAX77 mice, as opposed to two in wild-types, 

would be predicted to cause a 3.5- to 4.5-fold increase in Pax6 protein levels under 

normal conditions. However, quantitative analyses by Western blots have indicated 

that Pax6 protein levels are increased in the brain of PAX77 embryos by 1.5- to 3-

fold compared to wild-types (Manuel et al. 2007), whereas in the developing eye a 

similar, 2.24-fold, increase has been reported in PAX77 mice (Dora et al. 2008). 

Elevation of Pax6 levels in PAX77 mice has also been demonstrated at the single-

cell level by measurements of the fluorescent intensity on sections through PAX77 

eye tissues (corneas and lens epithelia) immunoreacted for Pax6 (Dora et al. 2008; 

Chanas et al. 2009). The less than expected increase in Pax6 levels compared to gene 

copy numbers in PAX77 mice most likely reflects the negative autoregulation of 

Pax6, as demonstrated by both reduced GFP expression from the YAC transgene 

reporting on levels of Pax6 activation and reduced levels of Pax6 mRNA in PAX77 

brains (Manuel et al. 2007). Although in PAX77 mice both Pax6 and Pax6(5a) 

isoforms are overexpressed and the canonical Pax6 predominates over Pax6(5a) as in 

wild-types, the isoform ratio differs from that in wild-types due to a higher increase 

in the Pax6(5a) isoform caused by the PAX77 transgene compared to the canonical 

Pax6 (Manuel et al. 2007; Dora et al. 2008). 

Pax6 overexpression in PAX77 brains is restricted to regions that normally express 

Pax6 in wild-type brains without any ectopic sites of expression in transgenic mice. 

Importantly, the rostro-lateralhigh to caudo-mediallow gradient of Pax6 expression is 

conserved in the PAX77 cortex. The graded expression of Pax6 throughout the 

rostral-caudal axis has been measured in E12.5 PAX77 and wild-type cortices by 

measuring the fluorescent intensity in rostral and caudal regions of sagittal brain 

sections immunolabelled for Pax6 (Manuel et al. 2007). This analysis indicated that 

the ratio of relative Pax6 levels between rostral and caudal regions is approximately 
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3 in the wild-type cortex, whereas in the PAX77 cortex this ratio equals to about 4, 

indicating an increased steepness of the cortical Pax6 gradient in PAX77 embryos 

compared to wild-type (Manuel et al. 2007). Interestingly, Pax6 levels were elevated 

at caudal levels of the PAX77 cortex with respect to wild-types and resembled those 

normally seen at the rostral pole of the wild-type cortex (Manuel et al. 2007), 

indicating a non-autonomous defect in caudal areas due to the maintained gradient 

throughout the rostral-caudal axis or a cell-autonomous effect due to the requirement 

other factors in low-Pax6-expressing regions. This could explain findings here that 

cortical development is more susceptible to Pax6 overexpression rostrally rather than 

caudally. Maintaining Pax6 within physiological levels could limit the effect of Pax6 

overexpression in the caudal PAX77 cortex, whereas driving Pax6 expression at 

rostral and central cortical regions to exceed levels that are normally found during 

development could alter the developmental potential of cortical cells found in these 

regions. Indeed, data presented here suggest that Pax6 overexpression induces 

different responses to cortical cells along the rostral-caudal axis, with a gradual effect 

that is most severe in regions where Pax6 is normally highly expressed (i.e. rostrally) 

and least evident at caudal levels, where Pax6 levels are normally lowest. This could 

also explain findings that Pax6 overexpression affects cortical development in 

PAX77 mice specifically at late stages of corticogenesis. Sustaining Pax6 at elevated 

levels during late corticogenesis when Pax6 is normally reduced at both the mRNA 

and protein level compared to early corticogenesis (Tuoc and Stoykova 2008) 

appears to have profound effects in the PAX77 developing cortex. Failure to detect 

significant defects in the PAX77 cortex at early stages could simply reflect the fact 

that the about 2-fold increase in Pax6 levels is not sufficient to significantly affect 

the development of early cortical progenitors. Since Pax6 expression is strongly 

reduced throughout corticogenesis, it would be predicted that the differential Pax6 

expression between PAX77 and wild-type cortices would be more enhanced 

compared to early stages and therefore explain observations here that Pax6 

overexpression affects specifically late cortical progenitors. With regard to effects of 

Pax6 overexpression specifically in rostral and central cortical regions, where Pax6 is 

normally highly expressed, it is possible that in caudal areas the presence of factors 

other than Pax6 is both necessary and sufficient for the development of cortical 
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progenitors. Regionalization is unaffected in the PAX77 cortex and, importantly, the 

caudal-high to rostral-low cortical gradient of Emx2 is maintained in the mutant 

(Manuel et al. 2007). Emx2 promotes cortical progenitor proliferation by favouring 

symmetric divisions leading to progenitor pool expansion, and also instructs the 

production of multiple cell lineage (Heins et al. 2001). 

 

3.3.2 Cell-autonomous effect of Pax6 overexpression on late cortical progenitor 

proliferation  

The present study shows that Pax6 overexpression in vivo affects specifically the 

proliferation of late cortical progenitors. This effect is strongest in rostral and central 

parts of the cortex, where levels of Pax6 are normally highest. At E15.5, there are 

significant reductions in the proportions of progenitor cells in S-phase and their 

densities in M-phase rostrally and centrally; reductions are slightly greater rostrally. 

In E16.5 chimeras, there are significant reductions in the numbers of mutant cells in 

rostral and central proliferative layers; again, the reduction is slightly larger rostrally. 

In addition, the proportion of mutant cortical progenitors in M-phase in the chimeric 

rostral cortex is lower than normal. Consistent with these findings, superficial 

cortical layers II-IV, which arise mainly from E15.5 onwards (Gillies and Price 

1993), are significantly thinner in rostral and central cortex of postnatal mice 

overexpressing Pax6. These in vivo findings complement a previous study reporting 

that overexpression of Pax6 in vitro by viral transduction of dissociated cortical cells 

at E14.5 results in early cell cycle exit (Heins et al. 2002), since enhanced cell cycle 

exit of cortical progenitors during mid corticogenesis would lead to reduced 

progenitor numbers available for superficial layer neuron production at late stages of 

corticogenesis. 

In the E15.5 caudal cortex, where Pax6 levels are lowest, there are no differences in 

the proportions of progenitor cells in S-phase and their densities in M-phase between 

PAX77 and wild-type mice. In the caudal cortex of E16.5 chimeras, however, 

numbers of mutant cells in the proliferative layers are significantly reduced, although 

the extent of the reduction is smaller than in central and rostral regions. A possible 

explanation for these regional differences is that the rostral cortex is more advanced 
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than caudal cortex at each embryonic age (Bayer and Altman 1991) and so the 

emergence of defects in the caudal proliferative layers is delayed.  

Defects emerging earliest in the rostral proliferative zone can explain why the under-

representation of mutant cell numbers is restricted to specifically the rostral 

intermediate zone of E16.5 chimeras (Fig. 4D). These defects have not translated into 

reductions in mutant cell numbers in the cortical plate by E16.5 (although there is a 

hint that a defect might be emerging in rostral cortical plate: Fig. 4E). They are, 

however, translated into defects of superficial layer thickness by P7, although 

significant reductions were only observed rostrally and centrally. Since P7 is after the 

time that migration of postmitotic neurons into the cortex is complete both rostrally 

and caudally, the most likely explanation for the lack of significant thinning in the 

caudal PAX77 cortex is that proliferation is affected less severely in this region, 

where Pax6 is normally expressed at its lowest levels. Overall, these findings 

indicate that levels of Pax6 within cortical progenitors become important in the 

regulation of their proliferation and hence the production of cortical layers. 

Cell-autonomous proliferation defects were indicated by the under-representation of 

mitotic Pax6-overexpressing progenitors in chimeric embryos. Notably, PAX77 cells 

intermixed normally with wild-type cells in mutant chimeric cortices, unlike 

abnormalities reported in eye and nasal tissues of PAX77 chimeric mice with regard 

to reduced mixing of the two genetically distinct cell populations (Chanas et al. 

2009). These tissue-specific differences could imply that increased levels of Pax6 

influence cell adhesion molecules in a context-dependent manner. The effect of Pax6 

overexpression on cell segregation reported by Chanas et al. (2009) differs from that 

seen in Pax6-/- ↔ wild-type chimeras where Pax6-/-  cells are unable to contribute to 

the formation of the lens epithelium of the developing eye and move to the periphery 

instead (Collinson et al. 2001). Although under-represented, Pax6-/-  cells have the 

capacity to contribute to the Pax6-/- ↔ wild-type chimeric cortex; however, mutant 

cells are excluded from wild-type cells as revealed by the formation of Pax6-/-  cell 

clusters in mutant chimeras (Talamillo et al. 2003; Quinn et al. 2007). Together, 

these studies have suggested that Pax6 function is critically required to regulate cell 

surface properties and thus enable cell-cell communication, and have been 
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complemented nicely by demonstration that Pax6-/- cortical cells segregate from 

surrounding wild-type cells in vitro (Stoykova et al. 1997). A link between Pax6 and 

cell-adhesion molecules has been further supported by in vitro work showing that 

Pax6 activates L1 in neural tissues (Meech et al. 1999). 
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CHAPTER 4 

The Generation of Superficial Cortical Layers Is 

Regulated by Levels of the Transcription Factor Pax6 

 

 

 

 

 

 

 

 

 

*Published as Petrina A. Georgala, Martine Manuel and David J. Price. (2010). 

Cereb Cortex. doi: 10.1093/cercor/bhq061 [Epub ahead of print]. 
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4.1 Introduction 

The mammalian cerebral cortex is organised radially into six layers, each composed 

of neurons with characteristic morphologies, patterns of connectivity and gene 

expression. Lamina formation in the developing cortex requires precise generation 

and migration of cortical neurons. Progenitors in the ventricular zone (VZ) and 

subventricular zone (SVZ) of the mouse dorsal telencephalon undergo 11 cell cycles 

over a 6-day period to generate neurons destined for the cortical plate (CP) 

(Takahashi et al. 1995a). The cell cycle length of VZ progenitors increases with time 

as cortical neurogenesis proceeds, whereas it remains unchanged in SVZ progenitor 

cells (Takahashi et al. 1995b). After cell cycle withdrawal, newborn neurons migrate 

to the CP successively such that layers II-VI are formed in a deep-first/superficial-

last sequence (Angevine and Sidman 1961; Rakic 1974). The final laminar position 

and subtype of cortical projection neurons is highly dependent on the time 

progenitors undergo final mitosis and exit the cell cycle (McConnell and Kaznowski 

1991; Takahashi et al. 1999).  

Throughout corticogenesis, progenitor cell divisions generate cells that must decide 

whether to re-enter the cell cycle or exit the cell cycle and differentiate into neurons 

with defined laminar fates. A number of transcription factors and cell cycle 

regulators have been implicated as intrinsic regulators of the decision to proliferate 

or differentiate. Increasing or decreasing the levels of these proteins disrupts the 

balance between the numbers of progenitor cells and differentiated cells and can lead 

to changes in the surface area and thickness of specific layers of the mature cortex 

(Caviness and Takahashi 1995; Rakic 1995; Kornack and Rakic 1998; Chenn and 

Walsh 2002, 2003; Caviness et al. 2003).  

Previous studies have indicated that Pax6 is cell-autonomously required to control 

the balance between cell-cycle exit (Q exit) and re-entry of APs, and its loss of 

function results in an abnormal increase of Q cells from the onset of corticogenesis 

(Quinn et al. 2007). These early defects in Pax6-/- embryos result in premature 

depletion of the progenitor pool and contribute to the formation of an abnormally 

thin mutant cortex that specifically lacks expression of superficial layer markers 

(Schmahl et al. 1993; Caric et al. 1997; Tarabykin et al. 2001; Schuurmans et al. 
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2004). Although Pax6 influences the expression of various cyclins and Cdks 

(Sansom et al. 2009) recent studies failed to show differences in cell-cycle times of 

Pax6-/- cortical progenitors during early corticogenesis (Quinn et al. 2007). With 

regard to late corticogenesis, results from the Price group have suggested that Pax6 

deletion lengthens the cell cycle of late cortical progenitors (Estivill-Torrus et al. 

2002). Interestingly, Pax6 positively regulates genes that promote either proliferative 

or differentiating divisions and therefore influences the balance between self-renewal 

and neurogenesis in a rather complicated, dosage-dependent manner (Sansom et al. 

2009). 

In chapter 3 it was reported that Pax6 overexpression acts cell-autonomously to 

impair the production of late-born cortical cells in rostral regions, where Pax6 is 

normally highly expressed. Here, the underlying mechanisms of these defects are 

being investigated by examining cell cycle kinetics, cell cycle exit, neuronal 

differentiation and radial migration in PAX77 mice. Cell-cycle length and cell cycle 

exit were increased at late stages of corticogenesis in APs residing in rostral cortical 

areas of PAX77 mice. Radial migration of late-born neurons as well as laminar fate 

specification was unaffected in the PAX77 cortex. Taken together, these data suggest 

that correct levels of Pax6 are critical primarily for cell cycle regulation and control 

of the proportion of cells that re-enter the cell cycle instead of leaving it to 

differentiate. 
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4.2 Results 

4.2.1 Pax6 overexpression affects cortical cell production by regulating cell cycle 

length in late corticogenesis  

To investigate the cause of the proliferation defects detected in the PAX77 cortex, 

cell cycle parameters in the VZ of PAX77 and wild-type cortex were analyzed by 

using the method illustrated in Fig. 1A-C (Martynoga et al. 2005; Quinn et al. 2007; 

see Methods). Since Pax6 is expressed in a gradient throughout the cortex, the 

analysis was performed at different levels across the rostral-caudal and medial-lateral 

axes (Fig. 1C). To calculate cell cycle lengths, proportions of proliferating cells 

(Pcells) in the VZ needed to be estimated. Since it has been shown previously that all 

VZ cells proliferate at E12.5 (Caviness et al. 1995; Estivill-Torrus et al. 2002; 

Martynoga et al. 2005), Pcells was estimated by counting all VZ cells at E12.5. To 

determine the proportion of Pcells at E15.5, PCNA immunohistochemistry was 

performed in PAX77 and wild-type cortex and the proportions of PCNA-positive 

cells were calculated at rostral, central and caudal levels of the cortex (Fig. 2): values 

were around 90% in all cases. 

 In E12.5 wild-type embryos, there was a tendency for cell cycle and S-phase to 

lengthen slightly (by about 2 h and 1.5 h respectively) from rostral to caudal cortex 

(Fig. 1D, E). These rostral-to-caudal trends were less obvious in E12.5 PAX77 

embryos; in mutant rostral cortex, the cell cycle and S phase were about 1 h longer 

than in wild-types whereas in mutant caudal cortex they were similar to wild-type 

values (Fig. 1D, E). None of the differences at E12.5 were statistically significant. At 

E15.5, however, there were similar trends and differences were significant. In wild-

type embryos, average cell cycle times lengthened progressively by about 7 h from 

rostral to caudal cortex (Fig. 1F) and these regional differences were significant 

(ANOVA P < 0.01, n = 3). In PAX77 embryos, neither cell cycle nor S-phase length 

varied regionally (Fig. 1F, G); ANOVA failed to show significant differences. 

Average cell cycle time was significantly longer in PAX77 cortex than in wild-type 

cortex in rostral regions (Student’s t-test P < 0.05, n = 3), but not in central and 

caudal regions (Fig. 1F).  
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Figure 1. Pax6 overexpression increases cell cycle length of apical progenitors at late stages of 

corticogenesis. (A) Schematic diagram of the timing of administration of thymidine analogues in 

order to label S-phase cells. The ratios shown were used to calculate cell cycle and S-phase length in 

wild-type and PAX77 embryos (Ts = length of S-phase; Tc = length of cell cycle; Pcells = all 

proliferating cells). (B) Coronal section through the cortex of an E12.5 wild-type embryo 

immunostained with antibodies specific for both BrdU and IdU (green) and BrdU alone (red) to 

identify Scells (red and green double-labelled cells) and Lcells (green-only cells). (C) Coronal sections at 

rostral, central and caudal levels of the cortex of an E12.5 wild-type embryo immunostained with 

IdU/BrdU. Cell counts were made in 100 μm-wide sampling boxes in the ventricular zone of the 

cerebral wall. At E12.5, cells were counted in the rostral (R) cortex, lateral (L) and medial (M) regions 

at the central level, and in the caudal (C) cortex. At E15.5, cell counts were made at the rostral (R), 

central (Ce) and caudal (C) levels of the cortex. (D, E) Quantitative analysis showing (D) length of 

cell cycle (Tc) and (E) length of S-phase (Ts) in E12.5 wild-type and PAX77 embryos. At all the 

cortical levels examined, Tc and Ts were not significantly altered in the PAX77 cortex compared to 

wild-type. (F, G) Histograms showing (F) Tc and (G) Ts in the E15.5 wild-type and PAX77 cortex. 

Cell cycle was significantly longer in the rostral PAX77 cortex compared to wild-type. (H) Example 

of Pax6 immunofluorescence at the central level of an E15.5 PAX77 brain. Sampling boxes (100 μm-

wide) indicate the regions where cell cycle kinetics were analysed at E15.5. Tc and Ts were estimated 

in the Pax6-positive cortex (ctx) and a Pax6-negative region of the lateral ganglionic eminence (LGE). 

(I) In Pax6-negative LGE, cell cycle times were not different between wild-type and PAX77 cortex at 

E15.5. All sections shown were counterstained with TO-PRO-3. Scale bars: 50 μm in B, 200 μm in C, 

100 μm in H. Data represent the mean ± s.e.m. values.  
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Figure 2. Proportions of proliferating cells in the cortical VZ of wild-type mice and PAX77 at 

E15.5. (A) Example of PCNA immunohistochemistry on a coronal section through the PAX77 cortex. 

(B) The proportions of PCNA-positive cells in the VZ of rostral, central and caudal cortical regions 

were not different between PAX77 and wild-types at E15.5. Scale bar: 100 μm. 
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Cell-cycle parameters were also compared between E15.5 wild-type and PAX77 

embryos in a region of the developing telencephalon that does not express Pax6 at 

this age, the lateral ganglionic eminence (LGE) (Fig. 1H), to verify that the abnormal 

cell cycle parameters are not general effects on forebrain development. Analyses 

failed to show differences in cell cycle parameters in this region between PAX77 and 

wild-type embryos (Fig. 1I). These findings suggest that at late stages of 

corticogenesis the cell cycle parameters of apical progenitors in rostral cortical 

regions, where expression levels of Pax6 are normally highest, are modulated by the 

level of Pax6. 

 

4.2.2 Pax6 overexpression causes increased cell cycle exit at late stages of 

corticogenesis 

To determine whether Pax6 overexpression causes a shift in the proportion of 

dividing cells that leave the cell cycle instead of remaining as progenitors, cell cycle 

exit was examined at E15.5 by determining the leaving (Q) fraction. This was 

accomplished by using an IdU/BrdU labelling protocol (Fig. 3A; see Methods). The 

approach depends on counts of numbers of IdU-positive cells: examples of these 

cells are shown with green arrows in Fig. 3B. The Q fraction was significantly 

increased in the PAX77 cortex at rostral (Student’s t-test P < 0.01; n = 5) and central 

levels (Student’s t-test P < 0.05; n = 5), but was not altered at caudal levels compared 

to wild-types (Fig. 3C). These results indicate that at late stages of corticogenesis 

increased levels of Pax6 lead to increased proportions of proliferating cells exiting 

the cell cycle.  

Increased rate of cell cycle exit before E16.5 would be expected to produce a 

corresponding increase in the proportion of neurons in the mutant cortex by E16.5. 

To investigate this, the early neuronal marker β-III-tubulin was employed and the 

proportion of positive postmitotic neurons was assessed by flow cytometry. Samples 

of mutant and control cortices covering rostral and central levels were dissociated at 

E16.5 and cells were stained with β-III-tubulin before analysis (Fig. 4A-C). A 

significant increase in the proportion of β-III-tubulin -positive neurons was detected  
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Figure 3. Pax6 overexpression increases the fraction of late cortical progenitors leaving the cell 

cycle. (A) Diagrammatic representation of the timing of administration of thymidine analogues in 

order to label S-phase cells and calculate the leaving (Q) fraction. (B) 100 μm-wide sections at a 

rostral cortical level immunostained with IdU and BrdU. The IdU-only cells (green arrows show 

examples), representing the Q cells, were counted in the cerebral wall of wild-type and PAX77 

embryos.  (C) The Q fraction was significantly (*) increased in the rostral and central PAX77 cortex 

compared to wild-type (data represent the mean ± s.e.m. values). Nuclei were counterstained with TO-

PRO-3. 
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Figure 4. Increased proportion of neurons in the PAX77 cortex at E16.5. (A, B) Expression of β-

III-tubulin quantified with flow cytometry in dissociated (A) wild-type and (B) PAX77 E16.5 cortical 

cells. Gating (M1) was established by a control reaction in cells stained with PI and secondary 

antibody only (no primary antibody). Grey line in histograms represents the plot obtained from control 

reaction; cells whose fluorescence (FL1LOG) fell within M1 considered to be positive for β-III-

tubulin. Plots shown are from a single representative experiment for each genotype. (C) Histogram 

showing the mean proportions of cells (± s.e.m.s) classified as β-III-tubulin-positive in wild-type and 

PAX77 cortex. The percentage of β-III-tubulin-expressing cells was significantly higher in PAX77 

cortex than in wild-type cortex. 

 

 

 

 

 

 



88 
 

in the PAX77 cortex compared to the wild-type cortex (Fig. 4D; Student’s t-test P < 

0.05; n = 8). 

These findings on cell cycle exit, together with those on cell cycle times, provide an 

explanation for the reduced production of cortical cells in PAX77 embryos reported 

in the previous chapter: at E15.5, Pax6 overexpression slows the cell cycle and 

increases the proportions of cells exiting the cell cycle, thereby reducing the size of 

the proliferative pool. 

 

4.2.3 Pax6 overexpression reduces the radial extent of the superficial layers 

To explore laminar formation in PAX77 mice, I analysed the expression of cell type-

specific markers known to be required for the specification of distinct subsets of 

neurons. Double immunohistochemistry for Satb2, which is expressed largely by 

superficial layer neurons but also by some deep layer neurons and is required for the 

specification of callosal neurons (Alcamo et al. 2008; Britanova et al. 2008), and 

Tbr1, known to be involved in the specification of deep layer neurons (Hevner et al. 

2001), was performed in rostral PAX77 and wild-type cortices at E16.5 (Fig. 5A, B). 

As expected, Satb2-positive neurons were detected in both superficial and deep 

positions of the CP, while Tbr1 was expressed at high levels in the subplate and layer 

6 neurons (Fig. 5A, B). For our quantitative analysis, the CP was divided into 2 

domains: a superficial Satb2-positive/Tbr1-negative domain, and an inferior Satb2-

positive/Tbr1-positive domain. The proportion of Satb2-positive cells was 

determined in the superficial CP; the proportions of Tbr1-positive and of Satb2-

positive neurons were calculated in the lower CP (proportions are the numbers of 

positive cells divided by the total number of all cells in the counting area). 

Interestingly, in the PAX77 cortex there was a significant increase in the proportion 

of Tbr1-positive cells in the lower CP (Student’s t-test P < 0.05; n = 3) accompanied 

by a significant decrease in the proportion of Satb2-positive cells (Student’s t-test P 

< 0.05; n = 3) (Fig. 5D). The proportion of Satb2-positive neurons in the superficial 

CP was not significantly changed in the PAX77 cortex (Fig. 5C).  
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Figure 5. Neurons in the PAX77 cortex are correctly specified according to their laminar 

position. (A, B) Immunohistochemistry for Satb2 (green) and Tbr1 (red) on coronal sections of E16.5 

wild-type and PAX77 cortex at a rostral level. Cells were counted in the 100-μm-wide sampling box 

placed in the cortical plate (CP) of wild-type and PAX77 cortex. For quantitative analysis, the CP was 

divided into a superficial Satb2-positive/Tbr1-negative domain and a lower Satb2/Tbr1-positive 

domain by drawing a line at the border delineated by the band of Tbr1-positive cells in the upper part 

of the deep CP. (C, D) Quantification of the proportions of Satb2-positive neurons in the superficial 

CP and Satb2-positive and Tbr1-positive neurons in the deep CP of the E16.5 wild-type and PAX77 

cortex. The proportion of Satb2-positive neurons in the superficial CP was not significantly altered in 

PAX77 embryos compared to wild-type. The proportion of Tbr1-positive neurons was significantly 

increased and the proportion of Satb2-positive neurons was significantly decreased in the deep CP of 

PAX77 mice compared to wild-types. (E, F) Examples of Satb2/Tbr1 labelling in coronal sections 

through the rostral cortex of P7 wild-type and PAX77 mice: cells were counted in the 100-μm-wide 

sampling boxes. Sampling boxes are the same size in E and F; the gap in the superficial domain of the 

sampling box in F highlights the reduced thickness of the PAX77 cortex compared to wild-type.  In 

both wild-type and PAX77 cortex, Satb2-positive neurons were primarily detected in layers II-IV and 

also layer V, while Tbr1-positive neurons were mainly located in layer VI but were also detected in 

layer V where they appear as Tbr1/Satb2 double-labelled. (G) The proportion of Satb2-positive 

neurons was not significantly altered in the superficial layers (II-IV) of PAX77 cortex compared to 

wild-type. (H) Histograms show the proportions of Satb2-positive and Satb2-positive/Tbr1-positive 

neurons in layer V, as well as the proportions of Tbr1-positive and Tbr1-positive/Satb2-positive 

neurons in layer VI, of P7 wild-type and PAX77 cortex. No difference in the radial distribution of 

these neuronal populations in the lower cortical layers V and VI was detected between PAX77 and 

wild-type mice. DCP, deep cortical plate; SCP, superficial cortical plate; SP, subplate. 
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The altered proportions of Tbr1-positive cells and Satb2-positive cells in the deep CP 

of E16.5 PAX77 mice suggested that an alteration in the specification of deep layer 

neurons might be developing and, to test this, Tbr1/Satb2 double 

immunohistochemistry was performed at P7 (Fig. 5E, F). Coronal sections from 

PAX77 and wild-type cortex at a rostral level were reacted and Tbr1-positive, Satb2-

positive and Tbr1/Satb2 double-labelled neurons were counted according to their 

laminar position. The proportion of Satb2-positive neurons in the superficial layers 

II-IV was not significantly altered in the PAX77 cortex (Fig. 5G). Neither the 

proportions of Satb2-positive and Satb2-positive/Tbr1-positive neurons in layer V, 

nor the proportions of Tbr1-positive and Tbr1-positive/Satb2-positive neurons in 

layer VI, were significantly different in the PAX77 cortex compared to wild-type 

(Fig. 5H). These results indicate that cortical neurons are correctly specified in 

correct proportions in PAX77 mice and express appropriate markers depending on 

their laminar position.  

It was previously reported that the thickness of superficial layers (II-IV combined) is 

significantly reduced in the PAX77 compared to wild-type cortex at P7 (Chapter 3). 

In line with this, I found here that, at P7, the total number of Satb2-positive neurons 

in the 100µm-wide strips was significantly decreased in the superficial cortical layers 

of the PAX77 mice (183 ± 6 in wild-type, 153 ± 8 in PAX77; Student’s t-test P < 

0.05; n = 3), whereas cell numbers in layers V and VI were not significantly different 

between mutants and wild-types. This result indicates that the defects of cell cycle 

parameters in PAX77 embryos, which reduce the size of the proliferative pool by 

E15.5, feed through into reductions in superficial layer cell numbers postnatally. 

The most likely explanation for the reduced proportion of Satb2-positive cells in the 

deep CP of E16.5 PAX77 embryos (Fig. 5D) is a reduction in the size of the 

population of late-generated Satb2-positive cells. Since superficial layers are only 

just starting to form at E16.5, many Satb2-positive neurons that will eventually 

contribute to the superficial layers might still be intermingled with deep layer Tbr1-

expressing cells at E16.5. The presence of reduced numbers of Satb2-positive cells in 

the deep CP at E16.5 would result in a corresponding increase in the proportions of 

Tbr1-positive deep layer cells, as was seen at E16.5 (Fig. 5D). These would be 
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transient changes and would disappear postnatally once all Satb2-expressing cells 

reach their final destinations, leaving both superficial and deep layers with normal 

proportions of Satb2- and Tbr1-expressing cells, although superficial layers would 

have reduced absolute numbers of Satb2-expressing cells (summarized in Fig. 8). 

 

4.2.4 Radial migration and layer-specification of cortical neurons appear 

normal in postnatal mice overexpressing Pax6 

To address whether radial migration defects might contribute to the formation of 

thinner superficial layers in the PAX77 cortex, BrdU-birthdating experiments were 

performed. Pregnant females were injected with a single dose of BrdU at E15.5 or 

E17.5, and the laminar distribution of BrdU-positive cells was examined at P7, when 

neuronal migration is largely completed. Although densely- and lightly-labelled cells 

(Del Rio and Soriano 1989; Gillies and Price 1993) were counted separately, the 

radial distributions and numbers of both cell populations were similar in PAX77 and 

wild-type littermates, and so data from the two sets were combined for presentation 

here.  

Most cells born from E15.5 onward were observed in superficial positions 

corresponding to cortical layers IV and III (Fig. 6A), while cells born from E17.5 

onward occupied an area corresponding to layers III and II (Fig. 6E). The radial 

distributions of E15.5- or E17.5-labelled cells were very similar in the PAX77 and 

wild-type P7 cortex (Fig. 6B-D, F-H). These findings indicate that migration defects 

do not make a significant contribution to cortical abnormalities in PAX77 mice. 

To investigate directly whether cortical neurons acquire their correct laminar fate 

according to their birth-date, BrdU was injected at E12.5 or E15.5 and birth-dated 

cells were double-labelled with layer-specific markers at P7. BrdU-positive neurons 

born at E12.5 were double-labelled with Tbr1 (Fig.7A, B); BrdU-positive neurons 

born at E15.5 were double-labelled with Cux1 (Fig. 7D, E) which normally identifies 

pyramidal neurons of superficial layers IV-II of the cortex (Nieto et al. 2004). 

Coronal sections from PAX77 and wild-type cortex at a rostral level were reacted 

and BrdU/Tbr1 double-labelled neurons were counted in layers VI and V separately 
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Figure 6. BrdU birthdating reveals that laminar positioning of late-born neurons is unaffected 

in the PAX77 cortex. (A, E) Coronal sections through the P7 rostral PAX77 cortex labelled with 

BrdU at the indicated age. BrdU-positive nuclei were quantified in each 50 μm-deep bin. (B-D, F-H) 

Graphical representations of data from birthdating studies show the mean percentages (± s.e.m.s) of 

BrdU-positive neurons in each bin at three rostro-caudal levels. Layer thickness is marked on the 

graphs for all cortical regions analysed (black for wild-type, grey for PAX77). Labelling at E15.5 

revealed accumulation of BrdU-positive nuclei in layers II-IV in both wild-type and PAX77 cortices. 

A BrdU pulse at E17.5 primarily marked the genesis of layer II neurons in both wild-type and PAX77. 

No differences in the radial distribution of late-born neurons were detected between PAX77 and wild-

type cortex. 
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(Fig. 7A, B). The proportions of BrdU/Tbr1 double-labelled neurons over total 

BrdU-positive neurons were not significantly altered in either layer VI or layer V of 

the PAX77 cortex (Fig. 7C), indicating that early-born neurons are correctly 

specified in the mutant cortex. The proportions of BrdU/Cux1 double-labelled 

neurons in layers IV-II were also not significantly different in the PAX77 cortex 

compared to wild-type (Fig. 7F). These results further confirm that Pax6 

overexpression does not affect the specification of deep or superficial layer neurons 

born at early or late stages of corticogenesis, respectively. 

 

 



95 
 

 



96 
 

Figure 7. Cortical neurons in the PAX77 cortex are correctly specified according to their 

birthdate. (A, B) Double immunostaining for BrdU (red) and Tbr1 (green) on coronal sections 

through the cortex of P7 wild-type and PAX77 mice given BrdU at E12.5. The numbers of heavily-

labelled BrdU cells and BrdU(heavily-labelled)/Tbr1 double-labelled cells were counted in 200-μm-

wide radial stripes in layers VI and V of wild-type and PAX77 cortices. (C) The proportions of BrdU 

labelled cells that were Tbr1 double-labelled were not significantly altered in either layer VI or V of 

the PAX77 cortex compared to wild-type. (D, E) High-power views of the superficial layers of the 

rostral cortex double-immunostained for Cux1 (green), a marker of superficial layer (IV-II) neurons, 

and BrdU (red) in P7 wild-type and PAX77 mice injected with BrdU at E15.5. The numbers of BrdU-

positive and BrdU/Cux1 double-labelled cells were counted in 200-μm-wide radial stripes spanning 

through the superficial layers of wild-type and PAX77 cortices. (F) The proportions of BrdU/Cux1 

double-labelled neurons were not significantly different in the superficial layers of the PAX77 cortex 

compared to wild-type. 
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Figure 8. Model of cortical lamination in mice overexpressing Pax6. At late stages of 

corticogenesis, progenitors in the proliferative zone generate superficial layer fate carried by Satb2-

positive cells. These cells migrate through the deep CP, where earlier-born Tbr1-positive cells reside, 

to reach their final superficial laminar positions. In the PAX77 cortex, the number of deep layer Tbr1-

positive cells is normal but, at late stages of corticogenesis, the progenitor pool is depleted due to 

lengthened cell cycle times and increased fractions of cells exiting the cell cycle. There is, therefore, a 

reduced production of late-born Satb2-positive cells and less Satb2-positive cells transit though the 

deep layers to the superficial layers of the CP in PAX77 mice. Postnatally, superficial layers are 

thinned in the PAX77 cortex compared to wild-type due to a reduction in the number of Satb2-

positive cells. DCP, deep cortical plate; SCP, superficial cortical plate. 
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4.3 Discussion 

In chapter 3 it was shown that, at late stages of corticogenesis, overexpression of 

Pax6 acts cell autonomously to reduce the production of cortical cells, resulting in 

the formation of thinner superficial layers in the postnatal cortex. In this study, the 

possible mechanisms by which Pax6 controls the production of late-born neurons and 

superficial layers of the cortex were examined. Pax6 overexpression was found to 

lengthen the cell cycle of cortical VZ progenitors and promote cell cycle exit at late 

stages of corticogenesis. Both of these abnormalities would reduce the size of the 

progenitor pool as corticogenesis proceeds, and therefore reduce cortical cell 

production. Consistent with this, it is reported here that Pax6 overexpression resulted 

in reduced numbers of superficial layer neurons, without affecting the laminar 

specification of this depleted population (summarized in Fig. 8). These findings 

indicate that correct levels of Pax6 are required by cortical progenitors at late stages 

of corticogenesis to maintain their cell cycle times and moderate their exit from the 

cell cycle, thereby regulating the size of the progenitor pool.  

 

4.3.1 Disregulation of Pax6 levels influences cortical progenitor proliferation  

During cortical neurogenesis, cell divisions in the cortical VZ generate additional 

progenitors as well as postmitotic neurons. The total number of mitotic cycles 

progenitors undergo is limited throughout corticogenesis and is determined in part by 

cell cycle length and in part by the fraction of cells leaving the cell cycle to 

differentiate. The balance between these two processes is a critical determinant of the 

final neuronal number and therefore of the size of the cortex (Takahashi et al. 1994).  

In apical progenitors, which normally express high levels of Pax6 (Gotz et al. 1998; 

Englund et al. 2005), both cell cycle length and proportions of cells exiting the cell 

cycle increase as corticogenesis advances (Takahashi et al. 1994; Estivill-Torrus et 

al. 2002; present study). Here, I also observed regional differences in the lengths of 

the cell cycles, which lengthened progressively from rostral to caudal cortex at 

E15.5, indicating that cell cycle parameters are regulated both temporally and 

spatially during corticogenesis in wild-type embryos. Pax6 is also differentially 
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regulated spatially and temporally: its levels are higher in rostral than in caudal 

apical progenitors and its levels decline as corticogenesis progresses (Stoykova and 

Gruss 1994; Manuel et al. 2007). A rostral (high) to caudal (low) gradient of Pax6 

expression is maintained in PAX77 embryos, with levels of expression increased 

proportionately along the gradient (i.e. with the largest absolute increases in Pax6 

levels occurring rostrally: Manuel et al. 2007). Results here show that the 

consequence of this increase is to abolish the rostral-caudal difference in cell cycle 

lengths by increasing lengths rostrally. It appears, therefore, that the relationship 

between Pax6 expression level and cell cycle length across the cortex is not linear. It 

is possible that for normal cell cycling, Pax6 levels must be within a band and if its 

upper limit is exceeded cell cycles lengthen. 

Loss of Pax6 also leads to a reduced number of apically dividing cortical progenitors 

(Estivill-Torrus et al. 2002; Tamai et al. 2007). Detailed analyses of cell-cycle 

kinetics have suggested that, although absence of Pax6 does not lengthen cell cycle 

times at early stages of corticogenesis, it does lengthen them at E15.5 (Estivill-

Torrus et al. 2002; Quinn et al. 2007). Furthermore, recent analyses showed that 

Pax6-/- mutant cells exit the cell cycle in abnormally large numbers, suggesting a 

primary cell-autonomous role for Pax6 in control of cell cycle exit (Quinn et al. 

2007). Both gain and loss of Pax6 have similar effects on cortical progenitors, 

indicating that not just the presence of Pax6 but also maintenance of correct Pax6 

levels is critical for spatially and temporally appropriate cell cycle parameters. This 

finding is reminiscent of the effects of both lowering and raising Pax6 levels on eye 

development, both of which generate small eyes (Schedl et al. 1996). 

Results here provide an explanation for previous observations that the number of late 

apical progenitors in S-phase and M-phase is reduced in the PAX77 cortex (Chapter 

3) and are in line with in vitro work where forced Pax6 expression, which is likely to 

cause very large increases in Pax6 levels, inhibits progenitor proliferation (Heins et 

al. 2002; Hack et al. 2004; Cartier et al. 2006). Recent analyses have suggested that 

Pax6 has the ability to both promote and inhibit cortical progenitor proliferation by 

regulating the expression of cell cycle regulators (Sansom et al. 2009). Its cell cycle 

commitment functions are, however, counterbalanced by its positive regulation of 
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genes that promote cell cycle exit (Sansom et al. 2009). Taking these findings 

together with results reported here suggests that when Pax6 is overexpressed its 

ability to drive progenitors to exit the cell cycle is dominant over its function in cell-

cycle commitment.  

Lengthening of the cell cycle and increased cell cycle exit during superficial layer 

formation would be expected to reduce the number of subsequent mitotic divisions 

and therefore the production of neurons destined for more superficial positions, and, 

indeed, results presented here confirm this prediction. Reduction in the size of the 

progenitor pool as a result of disruption of normal levels of Pax6, either up or down, 

provides an explanation for the underproduction of superficial cortical layer neurons 

in both Pax6-/- mutant and Pax6 overexpressing mice (Tarabykin et al. 2001; Quinn 

et al. 2007; Manuel et al. 2007; Sansom et al. 2009; Tuoc et al. 2009; present study). 

Although the final laminar phenotype is far more severe in Pax6-/- mice, it is 

intriguing that both loss- and gain-of-function of Pax6 lead to thinning of superficial 

layers. An attractive hypothesis is that Pax6 regulates a dynamic transcriptional 

network that influences both stem cell maintainance and neurogenesis in a level 

dependent manner. Recent identification of Pax6-bound genes and altered gene 

expression in the cortex of Pax6-/- mice and transgenic mice overexpressing Pax6 

support such a model (Sansom et al. 2009). These studies have shown that increasing 

Pax6 levels in the developing cortex drives progenitors toward cell cycle exit and 

precocious neurogenesis through the induction of proneural gene expression and 

basal progenitor genesis, given that transcription factors such as Ngn2, Neurod1 and 

Tbr2 show positive dependency on Pax6 expression. Ineterestingly, Pax6 also 

appears to positively regulate cell cycle regulators, such as Cdks, as well as Notch 

effectors, be it direct or indirect (Sansom et al. 2009). The current model suggests 

that cortical development is sensitive to disruption of Pax6 levels either up or down. 

In a wild-type cortex, Pax6 has a potent neurogenic activity that is normally 

counterbalanced by its role in maintaining stem cell self-renewal. Loss of Pax6 leads 

premature cell cycle exit and precocious neurogenesis due to reduced cell cycle 

commitment of mutant progenitors. This highlights the fact that the final laminar 

phenotype in Pax6-/- mutant and Pax6 overexpressing mice is achieved through 

distinct biological mechanisms. 
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4.3.2 Roles of Pax6 in neurogenesis and laminar specification of cortical neurons 

Cell cycle exit and neuronal differentiation are tightly regulated during cortical 

development. Loss of Pax6 function increases the proportions of neurons in the 

developing cortex at early stages of corticogenesis (Estivill-Torrus et al. 2002; Quinn 

et al. 2007), as well as in other parts of the CNS such as the eye and the spinal cord 

(Philips et al. 2005; Bel-Vialar et al. 2007). The increased proportions of neurons in 

the Pax6-/- mutant cortex or retina during early development seem best explained by 

an increased cell cycle exit (Philips et al. 2005; Quinn et al. 2007; Tuoc et al. 2009).  

Findings here, that increased levels of Pax6 in vivo enhance cell cycle exit and lead 

to increased proportions of neurons at late stages of corticogenesis, are in accord 

with previous in vitro studies showing that Pax6 overexpression promotes neuronal 

differentiation under culture conditions (Heins et al. 2002; Hack et al. 2004; Haubst 

et al. 2004). Recent analyses have also suggested that increasing Pax6 levels in vivo 

results in advanced neurogenesis in the developing cortex (Sansom et al. 2009) 

Cell cycle exit is also closely associated with laminar positioning and laminar fate of 

cortical neurons. Laminar fates of cortical neurons are determined when they are 

early postmitotic cortical precursors and become progressively restricted as 

development advances (McConnell and Kaznowski 1991; Frantz and McConnell 

1996; Desai and McConnell 2000; Britanova et al. 2008). Some previous studies 

have suggested that Pax6 might be involved in regulating the laminar properties of 

cortical neurons (Schuurmans et al. 2004; Osumi et al. 2008). Findings here that cell 

cycle parameters are disrupted in the PAX77 cortex motivated me to investigate 

whether laminar fate is altered in these mice. They provide a good model to explore 

the role of altered Pax6 levels on laminar specification since, unlike Pax6-/- mutants, 

they do not die perinatally, before laminar formation is complete, their cortical cells 

are not fundamentally respecified to ventral telencephalic fates (Kroll and O’Leary 

2005; Quinn et al. 2007; Manuel et al. 2007) and late-generated neurons do not fail to 

migrate appropriately (Caric et al. 1997; Fukuda et al. 2000). BrdU-birthdating 

experiments demonstrated that late-born neurons are properly positioned in the 

superficial layers of the PAX77 cortex. However, analyses showed that cortical 

neurons acquire their correct laminar identities at correct proportions in both deep 
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and superficial cortical layers in the postnatal PAX77 cortex, indicating that 

increased levels of Pax6 do not affect laminar phenotypes.  

How do Pax6 levels regulate the development of superficial layer neurons? Increased 

Pax6 levels control specific aspects of laminar development related more to cell-

cycle commitment and cell-cycle length regulation of late cortical progenitors than to 

cell fate determination. In contrast, loss of Pax6 function depletes the progenitor pool 

from the earliest stages of corticogenesis and contributes to the formation of an 

abnormal cortical environment where late-born neurons cannot migrate to 

appropriate superficial laminar positions (Caric et al. 1997; Fukuda et al. 2000; 

Quinn et al. 2007). Collectively, these data indicate that both gain- and loss-of-

function of Pax6 affect the formation of superficial layers of the cortex, but the final 

laminar phenotype seems to be achieved through different mechanisms. Precise 

levels of Pax6 are required primarily to regulate cell cycle properties, thereby 

ensuring the production of appropriate numbers of superficial layer neurons.  
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CHAPTER 5 

Spatially and Temporally Specific Elimination of Pax6 

Function in Conditional Knockout Mice Reveals Important 

Roles for Pax6 in Suppressing Ventral Fates and 

Promoting Dorsal Cell Identities in the Developing 

Telencephalon 
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5.1 Introduction 

The embryonic dorsal telencephalon is the progenitor site for production of cortical 

projection neurons, while GABAergic interneurons are generated ventrally (Marin 

and Rubenstein 2001; Gorski et al. 2002). Spatial and temporal regulation of gene 

expression in the embryonic telencephalon is central for cellular diversity. 

Progenitor-restricted expression of transcription factors in the embryonic cortex has 

suggested a close relationship between progenitors and their descendant neuronal 

phenotypes. Pax6 is expressed in apical progenitors from the earliest stages of 

corticogenesis, while Tbr2 is expressed in basal progenitors arising at around E12 

(Englund et al. 2005; for review, see Hevner 2006). During corticogenesis, 

asymmetric division of apical progenitors results in the production of one cortical 

precursor, whereas basal progenitors serve mostly as direct neurogenic progenitors 

by undergoing symmetric division to produce two postmitotic neurons (Chenn and 

McConnell 1995; Gotz et al. 1998; Haubensak et al. 2004; Miyata et al. 2004; Noctor 

et al. 2004). Sequential migration of postmitotic neurons out of the proliferative zone 

leads ultimately to the formation of a six-layered cerebral cortex, with neurons 

localized within defined layers sharing similar morphologies, molecular features and 

connectivity (O’Leary and Koester 1993; McConnell 1995; O’Leary and Nakagawa 

2002).  

Unravelling the molecular mechanisms that underlie layer-specific neuron 

production through dissection of the specific temporal and spatial roles of progenitor 

cell subtypes is of particular interest. Sequential expression of Pax6, Ngn2 and Tbr2 

in cortical progenitors has been suggested as a crucial transcription factor cascade for 

production of projection neurons (reviewed in Hevner 2006). Recently, genetic fate 

mapping and conditional mutagenesis of crucial molecular determinants specifying 

basal progenitor fate have revealed important roles for basal progenitors in 

contributing neurons particularly to superficial layers of the cortex (Arnold et al. 

2008; Sessa et al. 2008; Kowalczyk et al. 2009; Pinto et al. 2009). Analyses of null 

mutant mice deficient for Pax6 or Ngn2 have suggested that superficial-layer neuron 

generation is Pax6-dependent, whereas deep-layer neuron generation is controlled by 

Ngn2 (Schuurmans et al. 2004). However, the early perinatal lethality of these null 



105 
 

mutants, as well as the fact that the gene of interest is inactivated from the earliest 

stages of its normal expression, hampers our understanding of the primary roles of 

such important transcriptional regulators in controlling formation of specific laminae. 

This highlights the need for the generation of new genetic tools that allow for spatial 

and temporal control of gene inactivation in order to delineate the molecular 

mechanisms that potentially underlie the development of specific layer neuron 

subtypes. 

Pax6-/- embryos exhibit severe abnormalities of cortical development, including 

progressive ventralization of the mutant cortex leading to a striatum-like molecular 

profile and excess of GABAergic interneurons in the mutant cortex (Kroll and 

O’Leary 2005). Whether Pax6 is necessary for the initial establishment of 

telencephalic patterning or it is still required at later developmental stages to 

maintain dorsal identity, by promoting pallial gene expression and antagonizing 

transcriptional cascades typical of the subpallium, remains a question. Furthermore, 

Pax6 loss from the onset of corticogenesis leads to increased cell cycle exit of early 

cortical progenitors, thus depleting the mutant progenitor pool available for 

superficial layer neuron generation later on (Quinn et al. 2007). Moreover, late-born 

neurons fail to adopt laminar positions and accumulate in the proliferative zone of 

the Pax6 deficient cortex, leading to the formation of an abnormally thin cortex 

mostly attributable to an almost complete loss of superficial layer neurons (Caric et 

al. 1997; Tarabykin et al. 2001; Tuoc et al. 2009). Whether the final laminar 

phenotype in Pax6 loss-of-function mutants is the consequence of early defects in the 

mutant cortex or Pax6 is also required during late corticogenesis to regulate 

superficial laminar formation is not clear. Basal progenitors are severely misspecified 

in the Pax6-/- cortex (Tarabykin et al. 2001; Nieto et al. 2004; Quinn et al. 2007), 

raising the question of whether this is a secondary defect in the mutant cortex or 

Pax6 is directly required in late cortical progenitors to regulate basal progenitor 

specification and ultimately superficial laminar fate.  

In order to determine the primary later functions of a transcriptional regulator such as 

Pax6 that masters cortical development from the earliest stages, as well as to 

demarcate the temporal windows in which Pax6 controls specific processes crucial 
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for cortical development, spatially and temporally controlled gene inactivation is 

required. Here, the primary requirements of Pax6 during mid and late corticogenesis 

were addressed by using a genetic approach that allows for inducible deletion of 

Pax6 exclusively in cortical progenitors. Temporal and spatial control of Pax6 

mutagenesis was achieved using a floxed Pax6 allele (Simpson et al. 2009) and a 

driver line carrying the inducible form of the site-specific Cre recombinase (Cre-

ERT2) under control of the Emx1 locus (Kessaris et al. 2006). Use of the Rosa26R-

YFP reporter line (Srinivas et al. 2001) confirmed successful recombination and 

faithful expression of the Cre transgene subsequent to tamoxifen administration. By 

using this triple allelic combination and by transiently activating Cre-ER, Pax6 was 

selectively abolished in cortical progenitors during mid or late corticogenesis. Pax6 

conditional knock-out (cKO) mice were viable with no obvious behavioural 

abnormalities at early postnatal ages. Pax6 ablation during mid-corticogenesis 

consistently resulted in a notable reduction of the cortical surface, a phenotype 

reproducing that previously described in Pax6 deficient mice (Schmahl et al. 1993; 

Caric et al. 1997; Tarabykin et al. 2001; Tuoc et al. 2009) and confirming an efficient 

cKO by using this strategy. Analyses of cKO mutants lacking Pax6 from mid or late 

stages of corticogenesis recapitulated previous findings in Pax6-/- mice (Muzio et al. 

2002; Kroll and O’Leary 2005; Quinn et al. 2007) and revealed a novel requirement 

of Pax6 function during mid and late corticogenesis for continuous suppression of 

ventral cell fates and maintenance of an appropriate dorsal cell fate in cortical 

progenitors. Collectively, the new transgenic mouse line generated in this study 

represents a valuable tool for delineating the specific primary roles of Pax6 in 

defined temporal windows throughout cortical development. 
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5.2 Results 

5.2.1 Tamoxifen administration in Pax6loxP/loxP; Emx1-CreER mice at E10.5 leads 

to Pax6 ablation at E13.5 and reduced cortical tissue postnatally 

Tamoxifen-induced recombination peaks at 24-48 h post-injection in Emx1-CreERT2 

embryos (Kessaris et al. 2006). To determine the recombination efficiency induced 

by tamoxifen and the consequent loss of Pax6, tamoxifen was administered into 

pregnant females at E10.5 and embryos were analysed at E12.5 (48 h post-tamoxifen 

administration). Surprisingly, Pax6 protein was still detected with an apparently 

normal pattern in the E12.5 Pax6loxP/loxP; Emx1-CreERE10.5tamox cortex (Fig. 1B) 

compared to control (Fig. 1A). To monitor for successful Cre-mediated 

recombination, sections of the same brains were immuno-reacted for YFP; YFP was 

intensely expressed in the vast majority of cells in the cortex (Fig. 1C), showing that 

failure to inactivate Pax6 in the E12.5 Pax6loxP/loxP; Emx1-CreERE10.5tamox cortex is 

not due to incomplete recombination and further verifying that the Cre/loxP-

mediated deletion is restricted to dorsal telencephalic regions in this model system. 

These observations indicate that Pax6 protein persists in the cortex of E12.5 

Pax6loxP/loxP; Emx1-CreERE10.5tamox mice, after Cre-mediated recombination has 

occurred. 

Then, Pax6 expression was tested in the cortex of Pax6loxP/loxP; Emx1-CreERE10.5tamox 

mice at E13.5 (72-hours post-tamoxifen administration). There was a clear loss of 

Pax6 protein from dorsal telencephalic progenitors that express Emx1 (cells around 

the pallial-subpallial boundary are spared) in the E13.5 Pax6loxP/loxP; Emx1-

CreERE10.5tamox mutant cortex (Fig. 1D, E). As expected, in other brain regions where 

Pax6 is normally expressed but Emx1 is not (e.g. thalamus), Pax6 expression in 

mutants was comparable to controls (Fig. 1D, E). Therefore, Pax6 is lost from 

Pax6loxP/loxP; Emx1-CreERE10.5tamox mutant embryos between E12.5 and E13.5, before 

the onset of superficial layer generation from E14.5 onwards. 

The effect of Pax6 loss in Pax6loxP/loxP; Emx1-CreERE10.5tamox mutant cortex was 

examined postnatally. Mutant brains showed a markedly reduced size of the cerebral  
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Figure 1. E10.5 tamoxifen administration leads to Pax6 loss at E13.5 but not at E12.5 in the 

cortex of Pax6loxP/loxP; Emx1-CreER E10.5tamox embryos. (A, B) Coronal sections of E12.5 (A) control 

(Pax6loxP/+; Emx1-CreER E10.5tamox) and (B) mutant (Pax6loxP/loxP; Emx1-CreER E10.5tamox) cortices 

immunolabelled for Pax6. Pax6 protein is present in the cortex of Pax6loxP/loxP; Emx1-CreER E10.5tamox 

embryos 48-hrs post-tamoxifen administration. (C) Coronal section through the telencephalon of 

E12.5 control brain immunostained for YFP. YFP expression indicates that the presence of Pax6 

protein in (B) the mutant cortex 48-hours post-tamoxifen injection is not due to unsuccessful 

recombination. Note the restricted expression of YFP into the dorsal telencephalon. (D, E) Coronal 

sections of E13.5 (D) control and (E) mutant cortices immunolabelled for Pax6 72-hrs post-tamoxifen 

administration. Note the loss of Pax6 in the mutant cortex compared to control. As expected, Pax6 

was detected in regions of the mutant brain where the Cre transgene driven by Emx1 should not 

expressed, i.e. the ventral telencephalon and thalamus. Ctx, cortex; Thal, thalamus; Vtel, ventral 

telencephalon.  Scale bars represent 200 μm (D, E). 
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Figure 2. Cortex-specific Pax6 ablation at mid-stages of corticogenesis leads to reduced cortical 

tissue. (A, B) Dorsal views of P7 brains show a marked reduction of cortical size in Pax6loxP/loxP; 

Emx1-CreER E10.5tamox mutant brain compared to controlE10.5tamox. (C, D) Coronal sections of P7 (C) 

control and (D) mutant cortices at central level labelled for Ctip2, which is expressed at high levels in 

corticospinal neurons of layer V. The lines in (C, D) indicate the borders between layers VI-V and V-

IV. The thickness of Ctip2-negative superficial layers (IV-II) of the cortex was strikingly reduced in 

the mutant (D) compared to control (C). Scale bars represent 2mm (A, B) and 100μm (C, D).  
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cortex at P7 compared to control (Fig. 2A, B). Histological examination revealed a 

severe reduction in cortical thickness. Layer-specific immunostaining of P7 cortices 

with Ctip2, which is known to be required for specification of corticospinal motor 

neurons located in layer V (Arlotta et al. 2005), showed strongly reduced thickness 

of Ctip2-negative superficial layers in the mutant cortex (Fig. 2C, D). These 

morphological brain abnormalities resemble those reported recently from Tuoc et al. 

(2009), where Pax6 was conditionally knocked-out from the earliest stages of 

corticogenesis using a conventional Emx1-Cre.  

 

5.2.2 Tamoxifen administration in Pax6loxP/loxP; Emx1-CreER mice at E13.5 leads 

to disruption of Pax6 function in late cortical progenitors 

In order to inactivate Pax6 specifically during late corticogenesis, tamoxifen was 

administered to Pax6loxP/loxP; Emx1-CreER  mice at E13.5 and the loss of Pax6 

expression was examined by Pax6 immunohistochemistry. At E15.5, 48 h post-

tamoxifen administration, a marked reduction in Pax6 protein was observed in the 

mutant cortex compared with control (Fig. 3A, B). Consistent with observations in 

the E13.5 Pax6loxP/loxP; Emx1-CreERE10.5tamox mutant cortex, normal levels of Pax6 

expression were observed in cortical regions where the Cre transgene is not 

expressed, i.e. the dorsal lateral ganglionic eminence. However, substantial numbers 

of Pax6-positive cells were detected in the E15.5 mutant cortex, suggesting two 

alternative possibilities: (1) recombination efficiency might not be the highest 

possible in these control and mutant littermates, or (2) the Pax6 protein is stable 

enough such that it is detectable for some time after Cre-mediated recombination has 

occurred in the cortex of mice treated with tamoxifen. YFP immunostaining on these 

brains indicated that high proportions of cortical cells were expressed YFP (Fig. 4B, 

B’), therefore not supporting the first possibility of low recombination efficiency in 

these E15.5 littermates. Intriguingly, high magnification views of cortical sections 

double-immunostained with Pax6 and YFP showed that a number of Pax6-

expressing cells were also positive for YFP, indicating that individual cells had 

recombined loxP sites but still contained Pax6 protein (Fig 4A-C, A’-C’). These 

observations further support the second explanation of an enhanced stability of the  
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Figure 3. Tamoxifen administration into Pax6loxP/loxP; Emx1-CreER mice at E13.5 results in Pax6 

loss at E15.5 but the effect is more obvious at E16.5. (A-D) Coronal sections through the rostral 

cortex of (A, C) control and (B, D) mutant mice immunolabeled for Pax6. Mice were injected with 

tamoxifen at E13.5 and analyses were performed at (A, B) E15.5 or (C, D) E16.5, 48 h or 72 h post-

tamoxifen administration, respectively. Note the Pax6 loss in the mutant cortex (B, D) compared to 

respective controls (A, C). More Pax6-positive cells were detected in the mutant cortex at E15.5 (B) 

compared to the E16.5 mutant cortex (D). As expected, Pax6 expression was normal in compartments 

of the mutant brain where the Cre transgene driven by Emx1 should not be expressed, i.e. the dLGE. 

Ctx, cortex; dLGE, dorsal lateral ganglionic eminence. Scale bars, 200µm. 
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Figure 4. High-level Pax6 expression is excluded from YFP-positive cells in the cortex of 

Pax6loxP/loxP; Emx1-CreER; R26-YFP mice injected with tamoxifen at E13.5. The extent of 

colocalization of Pax6 (brown) and YFP (green) in Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox  mice 

was assessed by antibody staining at (A-C, A’-C’) E15.5 and (D-F, D’-F’) E16.5. Boxed areas in A-C 

and D-F are shown in high magnification in A’-C’ and D’-F’, respectively. Circled cells in A’-C’ and 

D’-F’ indicate examples of Pax6-positive cells, as in A’ and D’. (A’-C’) Note that at E15.5, 48 h post-

tamoxifen administration, relative levels of Pax6 expression are lower in YFP-expressing cells 

compared to non-YFP-expressing cells in the mutant cortex. (D’-F’) At E16.5, 72 h post-tamoxifen 

administration, most YFP-positive cells had lost Pax6 expression in the mutant cortex. YFP 

colocalized with Pax6 in few cells that expressed low levels of Pax6. GE, ganglionic eminence; v, 

ventricle. Medial to the left. Scale bars, 50µm. 
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Pax6 protein after gene excision, in agreement with previous findings demonstrating 

the long (12 h) half-life of Pax6 (Turque et al. 1994). To further investigate the 

persistence of Pax6 expression in the cortex of Pax6loxP/loxP; Emx1-CreERE13.5tamox 

mice, immunohistochemical analysis was performed at E16.5. Notably, Pax6 

expression was further reduced 72 h post-tamoxifen administration (Fig. 3 C, D). 

High magnification analysis of cortical sections immunoreacted for Pax6 and YFP 

indicated that a minority of Pax6-expressing cells were double-labelled with YFP; 

these double-labelled cells exhibited mostly low levels of Pax6 expression, 

suggesting that Cre-recombination results in progressive elimination of Pax6 (Fig. 

4D-F, D’-F’).  

These analyses indicate that although YFP reports faithfully on Cre recombination 

driven by Emx1, it does not reliably detect cells that have lost Pax6 protein post-

tamoxifen administration. Recombination peaks at 24-48 h post-tamoxifen injection 

in Emx1-CreER embryos (Kessaris et al. 2006). Results here show that although 

E10.5 tamoxifen administration in Pax6loxP/loxP; Emx1-CreER embryos induces Cre-

mediated recombination 48 h later, as revealed by YFP expression, it does not affect 

Pax6 protein expression in YFP-expressing cells. However, it does lead to Pax6 

ablation at E13.5, 72 h post-tamoxifen injection. Interestingly, E13.5 tamoxifen 

administration down-regulates Pax6 expression in YFP-expressing cells 48 h later, an 

effect that is more obvious 72 h post-tamoxifen injection. This time difference 

between the early and late tamoxifen-induced Pax6 protein loss could be explained 

by 1) previous observations that Pax6 levels vary in cortical progenitors throughout 

development, with highest mRNA and protein levels present at early stages (Tuoc 

and Stoykova 2008), and 2) a possible longer half-life of the protein at early stages 

compared to late. It is therefore likely that degredation of protein levels in early 

cortical progenitors might require a more extended time period after Cre-mediated 

recombination occurs in Pax6loxP/loxP; Emx1-CreER embryos compared to late stages. 

Although tamoxifen-induced Pax6 loss in conditional mutants has not been tested at 

the mRNA level, it would not be surprising if the same time-dependent effect occurs 

with regard to mRNA downregulation post-tamoxifen induction. 
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5.2.3 Pax6 elimination in cortical progenitors during mid- or late-corticogenesis 

leads to ectopic expression of ventral markers into the cKO cortex 

The expression domains of transcription factors are central in fate decisions of 

telencephalic progenitors. Several transcription factors are expressed in the 

proliferative zones of either the dorsal or ventral telencephalon (dTel or vTel) in a 

complimentary manner and their expression is required for proper establishment of 

the developing telencephalon. Previous studies of Pax6-/- mice have indicated that 

Pax6 acts as a “master gene” in leading telencephalic progenitors to adopt a dorsal 

versus ventral fate and promote key aspects of the cortical morphogenetic 

programme, including the proper generation of glutamatergic neurons and concurrent 

suppression of a GABAergic interneuron fate (Stoykova et al. 2000; Toresson et al. 

2000; Yun et al. 2001; Muzio et al. 2002b; Kroll and O’Leary 2005). An unanswered 

question is whether Pax6 is required for the initial specification of dTel identity or it 

is also crucial at later stages for the maintenance of dorsal character and continuous 

suppression of ventral identity in the mouse telencephalon. Previous analyses 

focused on Pax6 loss-of-function mutants where Pax6 is absent from the earliest 

stages of telencephalic development. The more pronounced abnormal molecular 

phenotype of the Pax6-/- dTel described previously during mid- and late-stages of 

telencephalic development might merely arise due to early patterning defects in the 

Pax6-/- mutants.  

To test whether Pax6 ablation at mid- or late-stages of corticogenesis affects 

telencephalic patterning, expression patterns of two sets of genes normally restricted 

to the dTel or vTel were analysed in E15.5 Pax6loxP/loxP; Emx1-CreERE10.5tamox and 

E16.5 Pax6loxP/loxP; Emx1-CreERE13.5tamox mice. The ventral marker Mash1 is highly 

expressed in progenitors of the ganglionic eminence (GE), whereas expression levels 

are low to non-detectable in the ventricular zone (VZ) of the dTel (Parras et al. 2007) 

(Fig. 5A, E). At E15.5, Mash1 expression demarcates the boundary between the vTel 

and the dorsal ganglionic eminence (dLGE) (Fig. 5A). In E15.5 Pax6loxP/loxP; Emx1-

CreERT2 E10.5tamox brains, Mash1 was dramatically upregulated in the VZ of the 

cortex, such that expression levels were similar to those exhibited ventrally (Fig. 

5A’).  At E16.5, the boundary of high Mash1 expression in the dLGE was evident in 

both control and Pax6loxP/loxP; Emx1-CreERT2 E13.5tamox mutant brains (Fig. 5E, E’). 
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However, Mash1 expression was severely upregulated in the VZ of the Pax6loxP/loxP; 

Emx1-CreERT2 E13.5tamox mutant pallium (Fig. 5E’). Gsh2 expression is normally 

confined to progenitors of the GE forming a sharp boundary in the dLGE (Fig. 5B, 

F). Pax6 removal at either mid or late-stages of corticogenesis resulted in robust 

expression of Gsh2 in the VZ of the mutant cortex (Fig. 5B’, F’).   

Then, I examined the localization of the transcription factor Olig2, which identifies 

oligodendrocyte progenitor cells and their descendants in the cortex, namely 

oligodendrocytes and astrocytes (Tekki-Kessaris et al. 2001; Parras et al. 2007; 

Petryniak et al. 2007). Olig2-positive cells are initially confined in the VZ of the 

MGE and they gradually scatter throughout the telencephalon such that high numbers 

of Olig2-positive cells reach the pallium by E17.5 (Takebayashi et al. 2000; Nery et 

al. 2002; Miyoshi et al. 2007; Ono et al. 2008). Consistent with this ventral-to-dorsal 

progression of Olig2 expression, in E15.5 control brains very few Olig2-positive 

cells had reached the pallium (Fig. 5C), whereas at E16.5 a substantial number of 

Olig2-positive cells were distributed throughout the control cortex except for the 

medial pallium (Fig. 5H). In E15.5 Pax6loxP/loxP; Emx1-CreERT2 E10.5tamox mutant 

brains, an ectopic domain of high Olig2 expression was evident in the dTel VZ, 

reminiscent of that present in progenitors of the GE (Fig. 5C’, C). Moreover, great 

numbers of Olig2-positive cells dispersed in abventricular positions of the mutant 

cortex compared to control (Fig. 5C’, C). A similar pattern of ectopic Olig2  
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Figure 5. Pax6 inactivation during mid- or late-corticogenesis leads to ectopic expression of 

ventral markers into the mutant cortex. (A, A’, E, E’) Mash1, (B, B’, F, F’) Gsh2, (C, C’, G, G’) 

Olig2 and (D, D’, H, H’) Islet1  protein expression in coronal sections through the telencephalon of 

E15.5 (A-D) control E10.5tamox and  (A’-D’) Pax6loxP/loxP;Emx1-CreER E10.5tamox mutant mice, and E16.5 

(E-H) control E13.5tamox and (E’-H’) Pax6loxP/loxP; Emx1-CreER E13.5tamox mutant mice. Arrowheads point 

to the dorsal boundary of the expression domains. Islet1 expression in both (D’) E15.5 and (H’) E16.5 

mutants was indistinguishable from respective controls. Ctx, cortex; Hp, hippocampus; GE, 

ganglionic eminence. Coronal sections, medial to the left. Scale bars, 200μm. 
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expression was observed in E16.5 Pax6loxP/loxP; Emx1-CreERT2 E13.5tamox mutant 

cortex compared to respective controls (Fig. 5G’, G), although the density of Olig2-

positive cells in the mutant dTel VZ was not as high as that detected in the E15.5 

Pax6loxP/loxP; Emx1-CreERT2 E10.5tamox mutant cortex (Fig. 5C’). The distribution of 

Olig2-positive cells in both E15.5 Pax6loxP/loxP; Emx1-CreERT2 E10.5tamox and E16.5 

Pax6loxP/loxP; Emx1-CreERT2 E13.5tamox mutant dTel VZ was comparable to that of 

ectopic Gsh2-positive cells. The subpallial marker Islet1 marks differentiating 

projection neurons in the striatum (Toresson et al. 2000; Toresson and Campbell 

2001), normally detectable in the ventral LGE (Stenman et al., 2003) (Fig. 5E, I), 

was not affected in E15.5 Pax6loxP/loxP; Emx1-CreERT2 E10.5tamox or E16.5 Pax6loxP/loxP; 

Emx1-CreERT2 E13.5tamox mutant brains compared to controls (Fig. 5E’, I’). 

These marker analyses indicate that inactivation of Pax6 specifically at mid or late 

stages of corticogenesis results in expression of ventral markers in essentially the 

entire dTel VZ, except for the medial pallium. Therefore, in cortical regions where 

Pax6 is normally expressed at high levels, progenitors are extremely sensitive to 

Pax6 loss even after they have acquired a dorsal character, suggesting that Pax6 is 

constantly required within cortical progenitors to maintain their correct fate and 

restrict them from adopting ventral identity.  

 

5.2.4 Pax6 inactivation during mid- or late-stage corticogenesis affects basal 

progenitor fate 

The ectopic expression of ventral markers into the cortex of both Pax6loxP/loxP; Emx1-

CreERT2 E10.5tamox and Pax6loxP/loxP; Emx1-CreERT2 E13.5tamox mice may affect the dorsal 

fate specification of these mutant progenitors. To directly test this possibility, Tbr2 

was employed as a dTel marker, which is also specifically expressed in the basal 

progenitors of the developing cortex (Englund et al. 2005; Hevner et al. 2006). A 

large loss of Tbr2 expression was detected in the cortex of Pax6loxP/loxP; Emx1-

CreERT2 E10.5tamox mutant mice at E15.5 compared to control, especially in the lateral 

cortex where Pax6 levels are normally high (Fig. 6A-B, A’-B’). Expression levels 

were unaffected in the mutant medial pallium, where Pax6 is normally expressed at 

low levels, and they also marked the pallial-subpallial boundary in the mutant (Fig. 
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6A-B, A’-B’). Interestingly, Pax6 ablation in late cortical progenitors also affected 

Tbr2 expression in the mutant cortex, particularly in the subventricular zone (SVZ) 

(Fig. 6C-E, C’-E’). Quantitative analysis revealed a significant decrease in the 

number of Tbr2-positive cells in the E16.5 Pax6loxP/loxP; Emx1-CreERT2 E13.5tamox 

mutant cortex compared to control (321.8 ± 10.47 in control, 234.77 ± 12.13 in 

mutant; Student’s t-test P = 0.006; n = 3 per genotype).  Collectively, although Pax6 

inactivation during mid- or late-stages of corticogenesis leads to dramatic elevation 

of ventral markers into the proliferative zone of the mutant pallium, mutant 

progenitors still express dorsal markers, though in reduced numbers compared to 

controls. These findings suggest that Pax6 is continuously required within cortical 

progenitors to regulate basal progenitor fate. 
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Figure 6. Basal progenitor identity is affected in the cortex of mice lacking Pax6 from mid- or 

late-stage corticogenesis. (A-B, A’-B’) Tbr2 staining on coronal sections through the telencephalon 

of E15.5 controlE10.5tamox and Pax6loxP/loxP;Emx1-CreERE10.5tamox mice at a rostral level, showing that the 

amount of Tbr2-expressing cells is extremely decreased in the mutant cortex compared to control. 

Note that Tbr2 expression is unaffected in the mutant medial pallium and that it also demarcates the 

pallial-subpallial boundary of the mutant brain. (C-E, C’-E’) Coronal sections through the E16.5 

control E13.5tamox and Pax6loxP/loxP Emx1-CreER E13.5tamox rostral cortex immunolabeled for Tbr2. Tbr2-

positive cells were quantified in 100-μm-wide radial stripes, as shown in E, E’. (F) The number of 

Tbr2-positive cells was significantly reduced in the E16.5 mutant cortex compared to control. Medial 

to the left. Sections were counterstained with TOPRO-3. Ctx, cortex; GE, ganglionic eminence; VZ, 

ventricular zone; SVZ, subventricular zone. Scale bars represent (A, C) 200μm, (D) 100 μm. 
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5.3 Discussion 

5.3.1 Pax6 continuously restricts subpallial fates into the ventral telencephalon 

The orchestrated production of projection neuron and interneuron subtypes in the 

dorsal and ventral embryonic telencephalon, respectively, is central for the formation 

of a mature, functional cerebral cortex. This multistep process requires differential 

activation of transcription factor genes in dorsal and ventral domains of the 

embryonic telencephalon. Previous work on Pax6-/- mice has suggested that Pax6 is 

required within cortical progenitors to promote dorsal gene expression and 

concurrently suppress ventral cell fates, either directly or indirectly (Stoykova et al. 

2000; Toresson et al. 2000; Yun et al. 2001; Muzio et al. 2002; Kroll and O’Leary 

2005). Here, conditional Pax6 inactivation in mid- or late-cortical progenitors 

resulted in severe upregulation of ventral telencephalic markers in the mutant cortex, 

a molecular profile resembling that previously described in Pax6-/- mice. 

Interestingly, ventral markers were ectopically expressed in the Pax6 cKO cortical 

field except for the medial pallium, where levels of Pax6 expression are normally 

low. This could indicate compensation from Emx2 function that is more prominent in 

the medial pallium compared to lateral cortical regions (Muzio et al. 2000b). The 

striatum-like molecular profile of the Pax6 cKO cortex was evident at different 

levels of the mutant cortex across the rostral-caudal axis, indicating that Pax6 

deficiency affects dorsal-ventral specification in the same fashion even in regions 

where its expression levels are normally not the highest. The initial establishment of 

a proper dorsal identity in the Pax6 cKO cortex was not sufficient for its late 

maintenance, demonstrating that Pax6 has a prominent, dynamic role for 

antagonizing ventral cell identities in its expression domains. Together, these new 

findings reflect the central role of Pax6 throughout corticogenesis for continuously 

repressing a transcriptional code responsible for specifying subpallial cell fate. 

Cells of ventral identity were presumably locally born by progenitors in the dTel VZ 

of the Pax6 cKO cortex. In this study, regional identity was analyzed in Pax6 cKO 

embryos that permanently labelled Emx1-lineage cortical cells covered essentially 

the entire pallium, suggesting that locally generated pallial progenitors undergo re-

specification and up-regulate ventral markers after loss of Pax6. These observations 
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are in agreement with Emx1-Cre fate mapping studies in Pax6-/- mutants showing 

that ectopic neurons of ventral identity are generated in the mutant pallium rather 

than migrating from the GE (Kroll and O’Leary 2005). It would be interesting to test 

whether cells ectopically expressing ventral markers in the Pax6 cKO cortex are also 

mitotically active. Although pallial markers are downregulated in the Pax6-/- cortex, 

they are still expressed in the mutant cortex (Toresson et al. 2000; Yun et al. 2001; 

Muzio et al. 2002; Kroll and O’Leary 2005). In line with these data, Pax6 

inactivation at either mid- or late stages of corticogenesis significantly reduced, but 

did not abolish, Tbr2 expression in the mutant cortical field. Interestingly, the signal 

density of Tbr2 and ventral markers in the VZ of the Pax6 cKO cortex suggests that 

the majority of these ectopic ventral cells might co-express dorsal markers, a 

molecular profile similar to that previously described in Pax6-/-; Emx2-/- double-

knockout mutants (Muzio et al., 2002b). Direct demonstration of dorsal and ventral 

marker co-expression in individual pallial progenitors of the Pax6 cKO cortex would 

directly demonstrate that progenitors in the mutant pallium undergo extensive pallial-

to-subpallial re-specification. 

The great majority of Olig2-lineage cells normally differentiate into GABAergic 

interneurons in the cortex (Miyoshi et al., 2008; Ono et al., 2008). Moreover, ectopic 

Mash1 expression is sufficient to re-direct the fate of cortical progenitors and drive 

production of GABAergic interneurons (Parras et al. 2002; Roybon et al. 2010). 

Kroll and O’Leary (2005) showed a severe increase in the number of GABAergic 

interneurons in the Pax6-/- cortex. Whether the functional outcome of the pallial 

activation of genes normally restricted to the subpallium is an abnormal increase in 

the number of GABAergic interneurons in the Pax6 cKO cortex, needs further 

investigation. 

The pallial-subpallial boundary (PSPB) is formed at the molecular interface of high 

Pax6 expression in the ventral pallium and Gsh2 expression in the dorsal LGE 

(Toresson et al. 2000; Corbin et al. 2003; Carney et al. 2006). Previous studies have 

suggested a mutual repression between Pax6 and Gsh2 that is central to PSPB 

formation (Mastick et al. 1997; Corbin et al. 2000; Yun et al. 2001; Carney et al. 

2009). At E11.5, Pax6 and Gsh2 expression overlaps in a subset of cells in the PSPB, 
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whereas later on co-expression declines such that, by E15.5, Pax6 and Gsh2 

expression is largely refined into different domains (Corbin et al. 2003). Pax6 

inactivation even in a small subset of cells normally co-expressing Pax6 and Gsh2 

(by using a conventional Gsh2-Cre) results in a striking expansion of Gsh2 

expression in the mutant cortex (Cocas L., Georgala PA. et al. manuscript submitted 

to J Neuroscience). This further highlights the key requirement for Pax6 function in 

order to antagonize expression of ventral markers in the dorsal telencephalon.  

 

5.3.2 Pax6 function is required for basal progenitor fate specification 

Cortical projection neurons arise from asymmetric divisions of Pax6-expressing 

apical progenitors and symmetric divisions of basal progenitors of the embryonic 

cortex (Chenn and McConnell 1995; Gotz et al. 1998; Haubensak et al. 2004; Miyata 

et al. 2004; Noctor et al. 2004). While expression of a number of transcription factors 

has been identified in the SVZ where basal progenitors reside, Tbr2 acts as the key 

molecular determinant of this progenitor cell type (Tarabykin et al. 2001; Nieto et al. 

2004; Englund et al. 2005; Arnold et al. 2008; Sessa et al. 2008). Basal progenitors 

originate from Pax6-expressing apical progenitors, with a peak between E12 and 

E16, and Tbr2 expression exhibits a rostro-lateralhigh to caudo-mediallow gradient, 

similar to that of Pax6 (Bulfone et al. 1999). Pax6 directly promotes basal progenitor 

production (Sansom et al. 2009), while analyses of Pax6-/-↔Pax6+/+ chimeric 

embryos have suggested a cell-autonomous role for Pax6 for normal expression of 

Tbr2 (Quinn et al. 2007). Pax6 loss from the onset of corticogenesis results in 

abolishment of SVZ gene expression in the mutant cortex, suggesting a severe 

misspecification of basal progenitor cells in the mutant cortex (Tarabykin et al. 2001; 

Nieto et al. 2004; Zimmer et al. 2004; Englund et al. 2005). Here, removal of Pax6 in 

cortical progenitors at either mid- or late stages of corticogenesis resulted in a 

remarkable decrease of Tbr2-expressing cells, especially in regions where Pax6 is 

normally expressed at high levels. Interestingly, the remaining Tbr2-expressing cells 

in the Pax6 cKO cortex were located in a mutant cortical domain exhibiting severe 

ventralization, further suggesting that basal progenitors are misspecified in the cKO 
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cortex. Together, these findings demonstrate that basal progenitor fate is 

continuously Pax6-dependent throughout the entire course of corticogenesis. 

Pax6 regulates basal progenitor fate specification by acting upstream of a number of 

transcription factors that function as important molecular determinants of basal 

progenitor fate, including Ngn2 (Scardigli et al. 2003; Miyata et al. 2004; Britz et al. 

2006), AP2γ (Holm et al. 2007; Pinto et al. 2009) and Tbr2 (Englund et al. 2005; 

Sansom et al. 2009). While Pax6 and Tbr2 are specifically expressed in apical and 

basal progenitors, respectively, Ngn2 and AP2γ identify a subset of apical 

progenitors with prospective basal progenitor fates (Englund et al. 2005; Britz et al. 

2006; Hevner et al. 2006; Pinto et al. 2008; Kowalczyk et al. 2009). Studies in Pax6-

/- mice have suggested that other factors cooperate with Pax6 to induce Ngn2 

expression (Stoykova et al. 2000). In contrast to AP2γ, which appears to have a 

temporal role in basal progenitor specification restricted in mid-corticogenesis (Pinto 

et al. 2009), results here indicate that basal progenitor specification is extremely 

sensitive to Pax6 loss throughout the entire time course of corticogenesis. 

Collectively, these findings demonstrate that Pax6 functions at a higher hierarchical 

level as an activator of basal progenitor fate compared to other transcriptional 

regulators. Furthermore, they exemplify the precise requirements for correct levels of 

transcription factors in cortical progenitors in order to generate appropriate numbers 

and types of cortical projection neurons throughout development and different 

regions of the cortex. Since Pax6 and AP2γ have a stronger effect in opposing 

regions of the cortex with respect to its rostral-caudal axis (Pinto et al. 2008; present 

study), Pax6 loss in caudal regions from mid-corticogenesis would be anticipated to 

cause a less severe phenotype in basal progenitor specification in these regions due to 

compensation from AP2γ function. In this context, given that basal progenitors 

generate two postmitotic neurons (Haubensak et al. 2004) Pax6 inactivation is 

expected to lead to a more severe laminar phenotype rostrally compared to caudal 

cortical regions.  
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CHAPTER 6 

Requirements for Pax6 Function during the Formation of 

Superficial Cortical Layers  
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6.1 Introduction 

The formation of the cerebral cortex is a multistep process that requires tight 

regulation of progenitor cell proliferation, cell fate determination and ordered 

neuronal migration. Pax6 is expressed in apical progenitors throughout the entire 

time of corticogenesis, and therefore its function is likely involved in several 

processes during cortical development. Apical progenitors represent the self-

renewing cortical progenitors that exhibit a unique cell cycle-dependent nuclear 

movement along the apical-basal axis, a process called interkinetic nuclear 

migration; basal progenitors represent the non-surface-dividing neurogenic 

progenitors (for review, see Fishell and Kriegstein 2003).  

Loss of Pax6 from the earliest stages of corticogenesis disrupts interkinetic nuclear 

migration and results in exuberant mitoses of cortical progenitors in ectopic, basal 

positions (Haubst et al. 2004; Quinn et al. 2007; Tamai et al. 2007; Tuoc et al. 2009). 

Furthermore, increased cell cycle exit of Pax6-/- progenitors at early stages leads to 

premature neurogenesis and depletion of the progenitor pool in the mutant cortex 

(Estivill-Torrus et al. 2002; Quinn et al. 2007). The reduced cortical surface area in 

Pax6 loss-of-function mutants is primarily caused due to depletion of superficial 

layers, evidence that has implicated Pax6 in regulating superficial laminar fate 

(Tarabykin et al. 2001; Schuurmans et al. 2004; Osumi et al. 2008; Tuoc et al. 2009). 

However, defects in superficial laminar formation in the Pax6-deficient cortex might 

arise due to an early depletion of the progenitor pool or migration abnormalities of 

late-born neurons, which instead of adopting superficial laminar positions 

accumulate in the proliferative zone (Fukuda et al. 2000; Tarabykin et al. 2001; 

Schuurmans et al. 2004). Tuoc et al. (2009) recently reported a cortex-specific Pax6 

cKO mouse model which, for the first time, provided the opportunity to analyse 

cortical development in Pax6 mutants postnatally. These studies demonstrated 

proliferation defects of late cortical progenitors and an almost complete loss of 

superficial layer neurons in the Pax6 deficient cortex. However, similar to Pax6-/- 

mice, this type of analysis precludes definite conclusions of a direct effect of Pax6 on 

late corticogenesis, since use of a conventional Emx1-Cre leads to gene inactivation 

in cortical progenitors from the earliest stages of cortical development.  
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To gain information on the roles of Pax6 in late cortical development, Pax6 was 

selectively ablated in cortical progenitors during stages of superficial layer neuron 

production. Other than the temporal control of Pax6 deletion in the Pax6 conditional 

knockout (cKO) mouse model analysed here, an attractive aspect of the strategy 

utilized in this study is that it also provides a unique opportunity to create a cortical 

environment composed of wild-type and Pax6-/- mutant cells, resembling that of a 

chimera. In chimeras, a mixture of mutant and wild-type cells inhabit the same space 

in a developing organism and therefore intrinsic and extrinsic effects of gene 

function can be distinguished. In principle, the inability to rescue a particular 

defective developmental aspect of mutant cells in the presence of wild-type cells 

suggests cell-autonomous defects, whereas induction of abnormalities in wild-type 

cells surrounded by mutant cells indicates a cell-non-autonomous requirement of the 

studied gene in the particular defective process. Previous studies using Pax6-/-

↔Pax6+/+ chimeric embryos have revealed important cell-autonomous and cell-non-

autonomous roles for Pax6 in both cortical and eye development (Quinn et al. 1996; 

Collinson et al. 2000, 2001; Talamillo et al. 2003; Quinn et al 2007). In this study, 

transient activation of Emx1-CreER results in Cre-mediated recombination in a 

number of Emx1-lineage cortical cells that is tamoxifen dose-dependent. Genetic fate 

mapping of individual cells that have undergone Cre-mediated recombination with 

the R26-YFP reporter enables distinction between Pax6-/- and wild-type cortical cells 

in the same animal. Here, taking advantage of this model, mosaic removal of Pax6 

function in late cortical progenitors suggests that late Pax6 function is required for 

the generation of a normal cortical environment where late-born neurons can migrate 

to laminar positions. Moreover, analyses in the context of cKO mice lacking Pax6 

from either mid- or late-stage corticogenesis suggest that Pax6 is a key regulator of 

cortical progenitor proliferation throughout corticogenesis. Proliferation or neuronal 

migration defects, even in regions of the cKO cortex where Pax6 is not normally 

expressed at its highest levels, provide strong evidence that for a direct, key 

requirement for Pax6 function for controlling crucial developmental aspects during 

superficial laminar formation. 
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6.2 Results 

6.2.1 Late removal of Pax6 affects distinct phases of cortical neuron migration 

To assess whether late Pax6 function is required for superficial layer formation, late-

born cortical neurons in Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox mutant and 

Pax6loxP/+ ; Emx1-CreER; R26-YFP E13.5tamox control mice were birthdated with BrdU 

at E15.5 and their laminar positioning was examined at P7, by which time cortical 

neuron migration is complete. Analyses were performed at the rostral (Fig. 1), central 

(Fig. 2) and caudal level (Fig. 3) of the cortex, since Pax6 is expressed in a gradient 

throughout the cortex. To determine whether likely effects of late Pax6 ablation on 

neuronal migration arise through a cell-autonomous or/and a cell-non-autonomous 

mechanism, cortices were double-labelled with BrdU and YFP. Numbers of 

BrdU/YFP double-labelled and BrdU-positive/YFP-negative cells were quantified in 

250-µm-wide radial stripes divided into equally-spaced bins (Fig. 1-3). The 

proportions of BrdU/YFP double-labelled and BrdU-positive/YFP-negative cells 

scored in each bin over the total number of BrdU/YFP double-labelled and BrdU-

positive/YFP-negative cells counted across cortical laminae were determined in 

control and mutant mice.  

Quantitative analyses of BrdU/YFP double-labelled cells over total numbers of 

BrdU-positive cells in control and mutant cortices revealed high Cre-mediated 

recombination efficiency in these littermates (rostral: 0.724 ± 0.064 in control, 0.614 

± 0.062 in mutant; central: 0.831 ± 0.017 in control, 0.768 ± 0.046 in mutant; caudal: 

0.822 ± 0.021 in control, 0.828 ± 0.013 in mutant). The higher recombination 

efficiency observed in the caudal cortex compared to rostral levels could be 

explained due to the graded expression of endogenous Emx1 in a caudo-medialhigh to 

rostro-laterallow fashion throughout the cortex (Briata et al. 1996; Mallamaci et al. 

1998). Furthermore, although Emx1 is expressed in virtually all cortical progenitors, 

its expression in the postnatal cortex is not ubiquitous in every single cortical cell; 

substantial numbers of GABAergic neurons and glial cells populate the postnatal 

cortex such that around 85% of cortical neurons are Emx1-positive (Chan et al. 1999; 

Guo et al. 2000; Chan et al. 2001). These observations indicate a high effectiveness 

of Cre-mediated recombination in the P7 control and mutant cortices analyzed here.  
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In the rostral mutant cortex, the total number of BrdU-positive cells was slightly 

reduced across all laminae (113.33 ± 3.024 in control, 91.889 ± 9.633 in mutant) 

while the total number of BrdU/YFP double-labelled cells was further reduced 

compared to control (81.78 ± 6.516 in control, 57.11 ± 10.272 in mutant). These 

differences were not statistically significant between the two genotypes (Student’s t-

test). Proportions of both BrdU/YFP double-labelled and BrdU-positive/YFP-

negative neurons exhibited a peak distribution in superficial positions of the mutant 

cortex, similar to control (Fig. 1E, F).  Proportions of BrdU/YFP double-labelled 

cells were slightly decreased in the superficial mutant cortex while they were 

considerably increased in deep laminar positions compared to control (Fig. 1E). 

Interestingly, these birthdating studies revealed a striking accumulation of late-born 

cells in a deep aspect of the mutant cortex; severely increased numbers of BrdU-

positive cells, most of which were also labelled with YFP, accumulated below the 

white matter (formerly the intermediate zone) leading to the formation of an 

abnormally enlarged germinal zone in the mutant (Fig. 1B’, D’). These findings 

suggest that, in rostral cortical regions, loss of Pax6 function during the time of 

superficial layer neuron production influences the ability of late-born neurons to 

leave their birthplace and migrate to appropriate superficial laminar positions. 

Intriguingly, such migration defects observed in the mutant cortex were not 

accompanied by a significant under-representation of late-born neurons in cortical 

layers. 

Qualitative analyses at the central level showed that the proportions of BrdU-

positive/YFP-negative cells in superficial laminar positions were very comparable 

between the two genotypes (Fig. 2D), whereas the peak distribution of BrdU/YFP 

double-labelled cells was slightly more superficial in the mutant cortex compared to 

control (Fig. 2C). With regard to the presence of BrdU- positive cells in deep laminar 

positions, distributions of both BrdU/YFP double-labelled and BrdU-positive/YFP-

negative cells were minimal in both control and mutant cortex (Fig. 2C, D). 

Interestingly, an abnormal band of BrdU-positive cells was detected in a deep 

position (below the white matter) of the lateral mutant cortex (Fig. 2A’, B’), 

presumably indicating that a number of late-born neurons also fail to migrate away 

from their birthplace in the central mutant cortex. 
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Figure 1. Loss of Pax6 function during late corticogenesis leads to enlargement of the germinal 

neuroepithelium in the postnatal cortex but does not affect significantly the radial distribution 

of late-born neurons in the rostral mutant cortex. (A-D) Coronal sections through the rostral cortex 

of P7 control and mutant mice injected with tamoxifen at E13.5 and BrdU at E15.5. Sections were 

immunolabeled for BrdU and YFP; medial to the left. The number of BrdU-positive cells was visibly 

reduced in superficial positions of the mutant cortex compared to control. Notably, large numbers of 

BrdU-positive cells were observed in the GZ of the mutant cortex. (B, D) The cortical depth was 

divided into equally spaced 50µm-deep bins, and the number of BrdU/YFP double-labelled and BrdU-

positive/YFP-negative cells was scored in each bin. (B’, D’) High magnification views of the control 

and mutant GZ shown in B and D, respectively; sections in B’ and D’ were also counterstained with 

TOPRO-3 to better visualize cell densities. Note the increase in the size of the mutant GZ with respect 

to control; the enlarged GZ in the mutant contained high numbers of BrdU/YFP double-labelled cells, 

but BrdU-positive/YFP-negative cells were also observed. (E, F) Bin distributions of (E) BrdU/YFP 

double-labelled cells and (F) BrdU-positive/YFP-negative cells (± s.e.m.) in the P7 control and mutant 

rostral cortex. GZ, germinal zone; WM, white matter. Scale bar, 250 µm. 
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Figure 2. Pax6 deletion during late corticogenesis leads to migration abnormalities of late-born 

neurons in the central cortex but the final laminar distribution of late-born neurons is 

unaffected in the mutant cortex.  (A-B, A’-B’) Coronal sections through the central cortex of P7 

control and mutant mice injected with tamoxifen at E13.5 and BrdU at E15.5. Sections were 

immunoreacted for BrdU and YFP. Medial to the left. (A, A’) Late-born BrdU-positive cells formed a 

denser band in the superficial layers of the control cortex compared to control. Arrowheads indicate 

the abnormal positioning of BrdU-positive cells in deep locations of the mutant cortex. (B, B’) 

Cortices were divided into equally spaced 50µm-deep bins, and the numbers of BrdU/YFP double-

labelled and BrdU-positive/YFP-negative cells were quantified in each bin. (C, D) Graphical 

representations from birthdating studies in the central cortex showing the proportions of BrdU/YFP 

double-labelled and BrdU-positive/YFP-negative neurons (± s.e.m.) in each bin. Hp, hippocampus; 

WM, white matter. Scale bar represents 250 µm. 
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Caudally, the peak distribution of BrdU-positive/YFP-negative cells was observed in 

a more superficial domain of the mutant cortex compared to control (Fig. 3D). Such 

differences between the two genotypes were also evident in the distribution of 

BrdU/YFP double-labelled cells (Fig. 3C). Again, BrdU-positive cells abnormally 

accummulated in the deep part of the mutant cortex (Fig. 3A’, A). Thus, despite the 

fact that Pax6 is normally expressed at lower levels in the caudal cortex compared to 

rostral, loss of Pax6 function during late corticogenesis seems to have a significant 

effect in the capacity of late-born neurons to migrate out of their site of origin in the 

caudal cortex. 

It could be hypothesized that placement of mutant Pax6 cells in a cortical 

environment which resembles more that of a wild-type cortex might be able to rescue 

the migration defects observed in late-born neurons of the cKO cortex. To test this, 

similar BrdU birthdating studies were performed in Pax6loxP/loxP mice exhibiting a 

low Emx1-Cre recombination efficiency after tamoxifen administration at E13.5 

(Fig. 4). Quantifications of total BrdU-positive and BrdU-YFP double-labelled cells 

in the rostral cortex of these P7 mice showed that the induction in these control and 

mutant littermates was around 15%. Strikingly, the presence of even low numbers of 

Pax6 mutant cells in the cKO cortex resulted in an abnormal displacement of E15.5-

born neurons in deep positions below the white matter, leading to a noticeable 

enlargement of the germinal neuroepithelium (Fig. 4A’-C’). These findings support 

further a cell-autonomous requirement for Pax6 during late corticogenesis for proper 

migration of late-born neurons to cortical layers, while the presence of a substantial 

number of BrdU-positive/YFP-negative cells in the germinal neuroepithelium of the 

cKO cortex exhibiting low Emx1-Cre recombination (Fig. 4C’) also indicate non- 

cell-autonomous migration defects in the mutant cortex. 

In summary, these results demonstrate that Pax6 deficiency in late cortical 

progenitors leads to increased accumulation of late-born neurons in the mutant 

germinal zone, likely through both cell-autonomous and cell-non-autonomous 

mechanisms. The inability to rescue the migration defects even in the context of a 

Pax6 cKO cortex exhibiting low recombination efficiency suggests a fundamental 

requirement for Pax6 in late cortical progenitors to regulate migration of descendant  
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Figure 3. Pax6 inactivation during late corticogenesis affects the migration of late-born neurons 

in the caudal cortex but the final laminar distribution of late-born neurons is not significantly 

altered in the mutant cortex. (A-B, A’-B’) Coronal sections through the caudal cortex of P7 control 

and mutant mice injected with tamoxifen at E13.5 and BrdU at E15.5. Cortices were immunostained 

with anti-BrdU and anti-YFP. Medial to the right. (A, A’) BrdU-labelled cells formed a thinner band 

in the superficial layers of the mutant caudal cortex compared to control. Migration abnormalities of 

late-born cortical neurons were also detected in the caudal mutant cortex; great numbers of BrdU-

positive cells accumulated in deep positions of the mutant cortex (arrowheads in A’). (B, B’) Note the 

high YFP expression in both control and mutant cortex, indicating high Cre-mediated recombination 

efficiency. The cortical mantle was divided into equally spaced 50µm-deep-bins covering the whole 

depth of cortical layers. BrdU/YFP double-labelled and BrdU-positive/YFP-negative cells were 

quantified in each bin. (C, D) Graphical representations from birthdating studies in the caudal cortex 

showing the proportions of BrdU/YFP double-labelled and BrdU-positive/YFP-negative neurons (± 

s.e.m.) in each bin. Scale bar represents 250 µm. 
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Figure 4. Low Emx1-CreER recombination in Pax6loxP/loxP mice during late corticogenesis is 

sufficient to lead to the formation of an expanded germinal neuroepithelium in the P7 mutant 

cortex. Immunohistochemistry for BrdU (red) and YFP (green) in coronal sections through the rostral 

cortex of P7 (A-C) control and (A’-C’) mutant mice injected with tamoxifen at E13.5 and BrdU at 

E15.5. (A, A’) Increased numbers of BrdU-positive cells were detected in the germinal zone of the 

mutant cortex (arrowheads in A’) compared to control. (B-C, B’-C’) Note the few YFP-positive cells 

in the cortex of both control and mice, indicating low recombination efficiency in these littermates. 

The expanded germinal zone in the mutant contained increased numbers of YFP-positive cells. Medial 

to the left. GZ, germinal zone. Scale bars, 250µm. 
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late-born cortical neurons to appropriate laminar positions. In addition, a marked 

increase in the numbers of late-born neurons was consistently noticed at all levels of 

the cKO cortex throughout the rostral-caudal axis, most likely reflecting an enhanced 

progenitor proliferation after late loss of Pax6. 

 

6.2.2 Pax6 inactivation during late stages of corticogenesis affects superficial 

laminar formation 

Although the birthdating studies showed a normal peak distribution of late-born 

neurons in superficial positions of the P7 mutant cortex, the possibility of late 

conditional Pax6 deletion in directly affecting superficial cortical layer formation 

cannot be excluded. To directly test this hypothesis, late-born cortical neurons in 

Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox mice were birth-dated by injecting 

BrdU at E15.5 and BrdU-positive neurons were double-labelled with Cux1 at P7 

(Fig. 5A, B). The proportions of BrdU/Cux1 double-labelled cells over the total 

number of BrdU-labelled cells were slightly decreased in the mutant cortex 

compared with control (0.771 ± 0.014 in control, 0.703 ± 0.011 in mutant), but these 

minor differences were found to be statistically significant (Student’s t-test P = 

0.017, n = 3 per genotype) (Fig. 5C). It should be noted that this analysis was 

performed in the P7 cortex of Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox mice 

where nearly 60% of BrdU-positive cells were double-labelled with YFP in the 

rostral mutant cortex; therefore, given that the analysis was not conducted in the 

context of a complete Pax6 knockout cortex, the relatively minor but significant 

decrease in the proportions of BrdU/Cux1 double-labelled cells in the mutant cortex 

might indicate a more pronounced role for Pax6 in directly regulating the 

specification of superficial layer neurons. 

A reduced width of the Cux1-positive domain was observed in the P7 mutant cortex 

compared to control (Fig. 5A, B). Indeed, the total number of Cux1-positive cells 

was significantly reduced in the mutant cortex (299.05 ± 18.52 in control, 231.11 ± 

7.18 in mutant; Student’s t-test P = 0.027, n = 3 per genotype). To examine the radial 

distribution of Cux1-labelled cells, the Cux1-positive domain was subdivided into 
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Figure 5.  Late Pax6 function is required for specifying superficial laminar identity into late-

born neurons at correct proportions. (A, B) High-magnification images of superficial cortical 

layers at the rostral level of P7 control (Pax6loxP/+; Emx1-CreER E13.5tamox) and mutant (Pax6loxP/loxP; 

Emx1-CreER E13.5tamox) mice injected with tamoxifen at E13.5 followed by BrdU administration at 

E15.5. Coronal sections double-immunostained with BrdU (green) and Cux1 (red). Arrowheads point 

to BrdU-positive neurons co-expressing Cux1. The numbers of BrdU-positive and BrdU/Cux1 

double-labelled cells were counted in 200-µm-wide radial stripes through the cortex of control and 

mutant mice. (C) Quantitative analysis shows that the proportions of BrdU-positive cells that were 

double-labelled with Cux1were slightly reduced in the mutant cortex with respect to control, but this 

difference was found to be statistically significant (Student’s t-test P = 0.017, n = 3 per genotype). 
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bins of equal 50-µm depth and the proportions of immunolabeled cells scored into 

each bin over total numbers of Cux1-expressing cells were determined in P7 control 

and mutant cortices (Fig. 6A-C). Qualitative analysis showed that the proportions of 

Cux1-labelled cells were increased in superficial positions of the mutant cortex, 

whereas they were decreased in lower laminar positions corresponding to layer IV.  

The radial distribution of E15.5-born neurons in superficial layers of P7 control and 

mutant cortex was also examined in the same sections as those used for the 

BrdU/Cux1 analysis in Fig. 5 (Fig. 6D, E). Increased proportions of BrdU-labelled 

cells were detected in the most superficial domain of the mutant cortex, accompanied 

by a decreased contribution to deeper positions of the superficial mutant cortex 

compared to control (Fig. 6F). The total number of BrdU-labelled cells in superficial 

layers of the mutant cortex was decreased (82.08 ± 7.21 in control, 67.31 ± 1.65 in 

mutant) but not significantly altered compared to control (Student’s t-test).   

Collectively, these findings indicate that, at late stages of corticogenesis, Pax6-

deficient progenitors do produce superficial layer neurons that exhibit an apparently 

normal molecular phenotype. However, late Pax6 function is required for specifying 

late-born superficial neuron identity at correct proportions, at least at rostral levels of 

the cortex. 

 

6.2.3 Pax6 loss during mid-corticogenesis leads to reduced numbers and 

disturbed specification of late-born neurons in superficial cortical layers 

Injection of tamoxifen at E10.5 was used to examine further the production of 

superficial layers in the conditional Pax6 mutant cortex. Late-born neurons in 

Pax6loxP/loxP; Emx1-CreER; R26-YFP E10.5tamox mice were birthdated by injecting 

BrdU at E15.5, and BrdU-positive cells were double-labelled with Cux1 at P7 (Fig. 

7A, B). Quantifications of BrdU/YFP double-labelled and BrdU-positive/YFP- 

negative cells in the rostral cortex indicated high recombination efficiency in control 

and mutant littermates; the proportion of BrdU/YFP double-labelled cells over total 

numbers of BrdU-positive cells was around 80%. The number of E15.5-born neurons 

was significantly reduced in the superficial layers of the P7 mutant cortex (69.15 ±  
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Figure 6. Radial distributions of Cux1-positive and E15.5-born cells in superficial layers of mice 

lacking Pax6 during late corticogenesis. Coronal sections through the rostral cortex of P7 control 

and mutant mice immunolabeled with (A, B) anti-Cux1 and (D, E) anti-BrdU. The radial thickness of 

the superficial aspect of the cortex was divided into equally spaced 50-µm-deep bins and the number 

of Cux1-expressing or BrdU-labelled neurons was assigned into each bin. (A, B) The width of the 

Cux1-positive domain was visibly thinner in the mutant cortex compared to control. (C) In the mutant 

cortex, proportions of Cux1-labelled neurons were increased in superficial positions (bin4: 0.146 ± 

0.011 in control, 0.192 ± 0.004 in mutant; bin 5: 0.153 ± 0.014 in control, 0.221 ± 0.015 in mutant) 

compared to more inferior ones (bin 7: 0.183 ± 0.011 in control, 0.124 ± 0.004 in mutant). Note that 

the decreased proportions of Cux1-positive cells in bin 7 of the mutant cortex corresponds to layer IV 

in the control, better visualized in D showing views of the same cortical section as in A. (D, E) 

Patterns of BrdU labelling in P7 control and mutant mice after injection of BrdU at E15.5. (F) 

Proportions of BrdU-labelled neurons were increased in superficial positions of the mutant cortex (bin 

3: 0.239 ± 0.023 in control, 0.314 ± 0.005 in mutant), accompanied by a decrease in more inferior 

ones (bin 5: 0.197 ± 0.01 in control, 0.158 ± 0.004 in mutant). The altered distribution of BrdU-

labelled cells in bin 5 of the mutant cortex corresponds to the bottom of layer III in the control in D.  
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6.67 s.e.m. in control, 14.45 ± 2.43 in mutant; Student’s t-test P < 0.002; n = 3 of 

each genotype). In controls, nearly 80% of BrdU labelled cells were double-labelled 

for Cux1; in mutants there was a large significant reduction to about 30% in the 

proportion of BrdU labelled cells that were Cux1 double-labelled (Fig. 7C). These 

findings indicate that both generation and specification of superficial layer neurons 

are severely affected by loss of Pax6 from mid-stages of corticogenesis. 

 

6.2.4 Pax6 ablation during late corticogenesis does not affect cell fate 

specification of neurons localized in deep cortical layers 

According to the “inside-out” pattern of cortical layering, the generation of deep 

layer neurons should precede the time of Pax6 loss in the Pax6loxP/loxP; Emx1-CreER; 

R26-YFP E13.5tamox cortex. Although Pax6 ablation in these mutants would not be 

expected to affect deep layer formation, the morphological features of deep layer 

neurons should be examined. The cellular identity of layer VI and V neurons was 

assessed in the P7 mutant cortex by immunostaining sections at the central level with 

Tbr1 or Ctip2 (Fig. 8). To also test whether the few late-born neurons located in deep 

layers of the mutant cortex (as reported in 6.2.1) switch fate and acquire a deep-layer 

identity, cortical sections of mice injected with BrdU at E15.5 were double- labelled 

for BrdU. High-level Ctip2-expressing neurons in layer V (Fig. 8B, D) and Tbr1-

expressing neurons in layer VI were present in the mutant cortex (Fig. 8F, H), 

supporting the interpretation that deep layer neurons are born normally and are 

correctly specified according to their laminar position when Pax6 is inactivated 

during late corticogenesis. The characteristic morphology of large pyramidal neurons 

in layer V was preserved in the mutant cortex (Fig. 8B, D). However, an expansion 

of layers V and VI was observed in the mutant cortex compared to control, 

accompanied by a reduction in the thickness of mutant superficial layers IV/II and 

especially that of layer IV (Fig. 8 A-B, E-F). Notably, BrdU-labelled cells located in 

deep layers of the mutant cortex did not co-express Ctip2 or Tbr1 (Fig. 8 D, H), 

indicating that neurons born from E15.5 onwards are not misspecified to deep layer 

neurons even if they occupy laminar positions where neurons of a deep laminar fate 

are normally found.   
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Figure 7.  Late-born neurons are severely reduced in number and are not correctly specified in 

superficial cortical layers of conditional knock-out mice lacking Pax6 from mid-corticogenesis. 

(A, B) High-power views of superficial cortical layers (IV-II) of P7 control (Pax6loxP/+; Emx1-

CreERT2) and mutant (Pax6loxP/loxP; Emx1-CreERT2) mice injected with tamoxifen at E10.5 followed 

by BrdU administration at E15.5; images show double-immunostaining for BrdU (red) and Cux1 

(green). Note the severe reduction in the number of both BrdU-labelled cells and Cux1-labelled cells 

in the superficial layers of the mutant cortex.  The numbers of BrdU-positive and BrdU/Cux1 double-

labelled cells were counted in 200-μm-wide radial stripes through the cortex of control and mutant 

mice. (C) The proportions of BrdU-positive cells that were Cux1/BrdU double-labelled were 

significantly reduced in the mutant cortex compared to control (Student’s t-test p<0.01; n=3 of each 

genotype). 
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Figure 8. Deep layer neurons are correctly specified in the postnatal cortex of mice lacking Pax6 

during late corticogenesis. Deep cortical layers in P7 control and mutant brains were visualized by 

using (A, B) Ctip2, which is expressed at high levels in corticospinal neurons of layer V, and (C, D) 

Tbr1, which is highly expressed in neurons of layer VI. A decrease in the thickness of layer IV was 

detected in the mutant cortex (B, D) with respect to control (A, C). Arrowheads point to late-born 

neurons BrdU-positive neurons distributed in deep layers VI and V of the control and mutant cortex. 

Examples of boxed regions are shown at a higher magnification to the right. Consistent with previous 

observations, slightly increased numbers of BrdU-positive cells were detected in deep laminar 

positions of the P7 mutant cortex (B, D) with respect to control (A, C). Late-born BrdU-positive cells 

distributed in deep layers of the mutant cortex did not co-express Ctip2 (B) or Tbr1 (D), indicating 

that they are not misspecified to deep layer neurons.  Scale bars, 200μm (A-B, E-F), 50 μm (C-D, G-

H). 
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6.2.5 Late Pax6 inactivation leads to increased accumulation of late-born 

neurons in the P0 cortex through both a cell-autonomous and cell-non-

autonomous mechanism  

To further investigate neuronal migration in the cortex of Pax6loxP/loxP; Emx1-CreER 
E13.5tamox mice, neurons were birthdated via injection of BrdU at E16.5 and their 

positioning in control and mutant cortices was assessed at P0. Coronal sections 

through the rostral, central and caudal cortex of Pax6loxP/+; Emx1-CreER; R26-YFP 
E13.5tamox control and Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox mutant mice were 

double-immunolabeled with BrdU and YFP (Fig. 9, 10 and 11 A-C, A’-C’). A severe 

expansion of the mutant VZ compared to control was observed at all levels. To 

quantify this defect, and to also assess whether abnormalities are caused through a 

cell-autonomous and/or a cell-non-autonomous mechanism, numbers of BrdU/YFP 

double-labelled and BrdU-positive/YFP-negative cells were counted in 200-µm-wide 

radial stripes covering the depth of the ventricular zone (VZ), intermediate zone (IZ) 

and cortical plate (CP) of the mutant and control cortex (Fig. 9, 10, 11C-C’). 

Analyses of the proportions of BrdU/YFP double-labelled cells or BrdU-

positive/YFP-negative cells in each cortical region (VZ, IZ or CP) over the total 

number of BrdU/YFP double-labelled cells or BrdU-positive/YFP-negative cells in 

all three regions revealed significant differences between control and mutant cortex 

(Fig. 9, 10, 11D-E). At all levels throughout the rostral-caudal axis, ANOVA showed 

significantly different distributions of BrdU/YFP double-labelled cells and BrdU-

positive/YFP-negative cells in the P0 mutant cortex compared to controls (P < 0.001, 

n = 3 per genotype). A 2-fold increase in the proportion of BrdU/YFP double-

labelled cells located in the VZ was found in the mutant cortex compared to control 

(rostral: 0.487 ± 0.015 in control, 0.852 ± 0.018 in mutant, Student’s t-test P < 0.001, 

n = 3 per genotype; central: 0.408 ± 0.038 in control, 0.723 ± 0.054 in mutant, 

Student’s t-test P = 0.009, n = 3 per genotype; caudal: 0.438 ± 0.045 in control, 

0.754 ± 0.005 in mutant, Student’s t-test P = 0.002, n = 3 per genotype). These 

differences in the VZ were accompanied by significant reductions in the proportions 

of BrdU/YFP double-labelled cells located in the mutant CP with respect to control 

(rostral: 0.249 ± 0.024 in control, 0.083 ± 0.015 in mutant, Student’s t-test P = 0.004, 

n = 3 per genotype; central: 0.364 ± 0.016 in control, 0.167 ± 0.026 in mutant, 
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Figure 9. Pax6 inactivation in late cortical progenitors results in cell-automomous and cell-non-

autonomous migration abnormalities of late-born neurons in the rostral P0 mutant cortex. (A-C, 

A’-C’) Coronal sections through the rostral cortex of P0 (A-C) control and (A’-C’) mutant mice 

injected with tamoxifen at E13.5 and BrdU at E16.5. Medial to the left. Cortices were immunostained 

for BrdU and YFP and counterstained with TOPRO-3. Increased numbers of BrdU-labelled neurons 

were detected in the mutant cortex. The VZ of the rostral mutant cortex was densely packed with 

BrdU-positive cells leading to a severe expansion of the mutant VZ compared to control. Numbers of 

BrdU/YFP double-labelled and BrdU-positive/YFP-negative cells were counted in radial stripes 

spanning the whole depth of cortices, as shown in C, C’. (C, D) Graphical representations of data from 

BrdU birthdating showing that the proportions of late-born BrdU/YFP double-labelled and BrdU-

positive/YFP-negative cells were differentially distributed in the mutant cortex versus control. IZ, 

intermediate zone; CP, cortical plate; VZ, ventricular zone; v, ventricle. Scale bars: 200 µm. 
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Figure 10. Cell-autonomous and cell-non-autonomous migration defects in the central P0 cortex 

of mice lacking Pax6 during late corticogenesis. (A-C, A’-C’) Coronal sections through the central 

cortex of P0 (A-C) control and (A’-C’) mutant mice injected with tamoxifen at E13.5 and BrdU at 

E16.5. Medial to the left. Sections were immunostained for BrdU and YFP and counterstained with 

TOPRO-3. A notable increase in the number of BrdU-labelled cells was detected in deep positions of 

the mutant cortex, while BrdU-labelled cells were under-represented in the mutant cortical plate (CP) 

with respect to control. Cortices were divided into 3 bins corresponding to the ventricular zone (VZ), 

intermediate zone (IZ) and CP. BrdU/YFP double-labelled and BrdU-positive/YFP-negative cells in 

each bin were counted in control and mutant. (D, E) Graphical representations of data from BrdU 

birthdating showing that the radial distribution of proportions of both BrdU/YFP double-labelled and 

BrdU-positive/YFP-negative cells in the VZ and CP were significantly different (*) between the two 

genotypes. Scale bars: 200 µm. 
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Student’s t-test P = 0.003, n = 3 per genotype; caudal: 0.343 ± 0.065 in control, 0.15 

± 0.002 in mutant, Student’s t-test P = 0.041, n = 3 per genotype). Proportions of 

BrdU/YFP double-labelled cells were also significantly reduced in the IZ of the 

rostral and caudal mutant cortex compared to control (rostral: 0.264 ± 0.013 in 

control, 0.065 ± 0.011 in mutant, Student’s t-test P < 0.001, n = 3 per genotype; 

caudal: 0.219 ± 0.033 in control, 0.096 ± 0.006 in mutant, Student’s t-test P = 0.021, 

n = 3 of each genotype). Throughout the rostral-caudal mutant cortex, absolute 

numbers of BrdU/YFP double-labelled cells in the CP were not significantly 

different compared to control (Student’s t-test), indicating that the significantly 

altered distribution of BrdU/YFP double-labelled cells in the mutant cortex is due to 

a severe increase in the number BrdU/YFP double-labelled cells located in the 

mutant VZ. 

Interestingly, the radial distribution of BrdU-positive/YFP-negative cells in the P0 

cortex was also affected by late Pax6 loss. The proportions of BrdU-positive/YFP-

negative cells were significantly increased in the mutant VZ (rostral: 0.461 ± 0.029 

in control, 0.688 ± 0.041 in mutant, Student’s t-test P = 0.011, n = 3 per genotype; 

central: 0.448 ± 0.038 in control, 0.642 ± 0.055, Student’s t-test P = 0.045, n = 3 per 

genotype; caudal: 0.458 ± 0.021 in control, 0.695 ± 0.05 in mutant, Student’s t-test P 

= 0.012, n = 3 per genotype). These changes were accompanied by significantly 

reduced proportions of BrdU-positive/YFP-negative cells in the CP of the rostral and 

central mutant cortex (rostral: 0.313 ± 0.026 in control, 0.195 ± 0.03 in mutant, 

Student’s t-test P = 0.041, n = 3 per genotype; central: 0.354 ± 0.033 in control, 

0.213 ± 0.03 in mutant, Student’s t-test P = 0.034, n= 3 per genotype), while in the 

CP of the caudal cortex differences between the two genotypes were not statistically 

significant (0.319 ± 0.052 in control, 0.185 ± 0.017 in mutant, Student’s t-test P = 

0.073, n = 3 per genotype). These results indicate that Pax6 inactivation during 

superficial layer neuron generation causes cell-autonomous and cell-non-autonomous 

defects in the radial distribution of late-born neurons in the P0 cortex. 

The radial thickness of the VZ, IZ, CP and layer I was also measured in the P0 

control and mutant cortices. As expected, the thickness of the mutant VZ was 

significantly increased compared to control at all levels throughout the cortex 
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Figure 11. Late Pax6 inactivation impairs the migration capacity of late-born cortical neurons 

in the caudal P0 cortex both cell-autonomously and cell-non-autonomously. (A-C, A’-C’) Coronal 

sections through the caudal cortex of P0 (A-C) control and (A’-C’) mutant mice injected with 

tamoxifen at E13.5 and BrdU at E16.5. Medial to the left. Sections were immunostained for BrdU and 

YFP and counterstained with TOPRO-3. Increased numbers of late-born BrdU-labelled cortical 

neurons were specifically detected in deep positions of the mutant cortex, corresponding to the mutant 

VZ. Numbers of BrdU/YFP double-labelled and BrdU-positive/YFP-negative cells were counted in 

radial stripes spanning the whole depth of control and mutant cortices, as shown in C, C’. (C, D) 

Graphical representations of data from BrdU birthdating showing that the proportions of late-born 

BrdU/YFP double-labelled and BrdU-positive/YFP-negative cells were significantly different (*) in 

regions across the mutant cortex compared with control. IZ, intermediate zone; CP, cortical plate; VZ, 

ventricular zone; v, ventricle. Scale bars: 200 µm. 
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(rostral: 3.76 ± 0.336 cm in control, 8.53 ± 1.043 cm in mutant, Student’s t-test P = 

0.012; central: 2.28 ± 0.182 cm in control, 4.92 ± 0.848 cm in mutant, Student’s t-

test P = 0.038; caudal: 1.5 ± 0.104 cm in control, 3.05 ± 0.182 cm in mutant, 

Student’s t-test P = 0.002; n = 3 per genotype) (Fig. 12A-C). A slight decrease in the 

thickness of the mutant CP was detected in the caudal cortex compared to control, 

although this difference was statistically significant (12.99 ± 0.147 cm in control, 

11.81 ± 0.062 in mutant, Student’s t-test P = 0.002; n = 3 per genotype). 

Findings here suggest that late loss of Pax6 function affects neuronal migration both 

cell-autonomously and cell-non-autonomously; abnormally increased numbers of 

late-born neurons were inappropriately localized in their birthplace instead of 

migrating outwards to cortical layers in the P0 mutant cortex. During late stages of 

corticogenesis, radial glial cells (RGCs) provide the structural framework for 

neuronal migration to appropriate laminar positions in the cortex. To assess whether 

migration abnormalities of late-born neurons in the mutant cortex arise due to defects 

in the architecture of the radial glial scaffold, the morphology of YFP-labelled cells 

was examined in high magnification images of the P0 control and mutant cortex (Fig. 

13C-D, C’-D’). YFP-labelled neurons were morphologically arranged in the same 

radial orientation across the thickness of both mutant and control cortex, while in the 

underlying subplate (SP) and IZ the density of YFP-labelled processes was very high 

in both genotypes. Visualization of callosal commissural (CC) neurons indicated that 

the morphology of YFP-labelled CC neurons in the mutant cortex was similar to 

control (Fig. 13A-B, A’-B’). These findings indicate that the gross morphology of 

pyramidal neurons throughout the cortex is not affected by Pax6 loss in late cortical 

progenitors, and further suggest that the organization of the radial glial scaffold does 

not make a significant contribution to migration defects observed in the postnatal 

Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox mutant cortex. 
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Figure 12. Late Pax6 inactivation leads to increased VZ thickness in the P0 mutant cortex at all 

cortical levels throughout the rostral-caudal axis. The depth of Pax6loxP/+; Emx1-CreER E13.5tamox 

control and Pax6loxP/loxP; Emx1-CreER E13.5tamox mutant P0 cortices was divided radially into 4 bins 

corresponding, from inside-out, to ventricular zone (VZ), intermediate zone (IZ), cortical plate (CP) 

and layer 1 (L1). (A-C) Graphical representations of depth measurements (± s.e.m.) in the (A) rostral, 

(B) central and (C) caudal cortex of control and mutant mice. The depth of the mutant VZ was 

significantly increased with respect to controls at all rostral-caudal levels analyzed. The thickness of 

the mutant CP was found to be significantly decreased in the mutant caudal cortex compared to 

control. 
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6.2.6 Conditional inactivation of Pax6 during late corticogenesis impairs cortical 

progenitor proliferation 

To conclusively determine whether late inactivation of Pax6 induces cortical 

progenitor proliferation, the number of S-phase progenitors in Pax6loxP/loxP; Emx1-

CreER; R26-YFP E13.5tamox mice was first assessed at E15.5, a developmental stage at 

which Pax6 protein expression was found to be reduced in the mutant cortex. 

Tamoxifen was injected into E13.5 pregnant females and BrdU was injected 48 h 

post-tamoxifen administration; cortices were analysed 1 h after the BrdU pulse. 

E15.5 control and mutant cortices were double-labelled with BrdU and YFP (Fig. 

14A-C, A’-C’) in order to discriminate between S-phase cells that had undergone Cre 

recombination and those that had escaped recombination; the cell population co-

expressing BrdU and YFP in the mutant cortex would include S-phase progenitors 

that would normally express Pax6 but have lost Pax6 expression due to Cre 

recombination, whereas the BrdU-positive/YFP-negative cell population would 

include Pax6-expressing progenitors in the mutant cortex. The vast majority of cells 

in the cortex of control and mutant mice were expressing YFP (Fig. 14B, B’). 

Quantification of BrdU/YFP double- labelled and BrdU-positive/YFP-negative cells 

in the control and mutant cortex at rostral, central and caudal levels revealed that 

nearly 85% of BrdU-labelled cells were doubled-labelled for YFP in controls, while 

in mutants nearly 80% of BrdU-positive cells co-expressed YFP. Neither the 

numbers of BrdU/YFP double-labelled cells (Fig. 14D) nor the numbers of BrdU- 

positive/YFP-negative cells (rostral: 21.39 ± 7.08 in control, 45.55 ± 14.98 mutant; 

central: 13.22 ± 2.82 in control, 20.33 ± 3.79 in mutant; caudal: 11.33 ± 1.64 in 

control, 20.11 ± 4.95 in mutant) were significantly different between E15.5 control 

and mutant cortex. However, the total number of BrdU-labelled cells was 

significantly increased in the rostral mutant cortex compared with control (136.64 ± 

4.76 in control, 166.61 ± 4.04 in mutant, Student’s t-test P = 0.009; n = 3 of each 

genotype). Such differences in the total number of BrdU-labelled cells between the 

two genotypes were less obvious in central (116 ± 7.76 in control, 133.66 ± 5.23 in 

mutant) and caudal (95.78 ± 1.5 in control,  108.78 ± 3.85 in mutant) levels, although 

differences between control and mutant cortex were found to be significant caudally 

(Student’s t-test P = 0.035; n = 3 of each genotype). These findings indicate an 
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Figure 13. Morphology of YFP-labelled neurons in the P0 cortex of control and Pax6loxP/loxP; 

Emx1-CreER; R26-YFP E13.5tamox mutant mice. (A-D, A’-D’) Coronal sections through the rostral 

cortex of (A-D) control and (A’-D’) mutant mice immunostained for YFP. The radial alignment of 

YFP-labelled neurons across the cortical thickness appeared normal in mutant mice. The corpus 

callosum (CC) formed normally in these mutants. (C-D, C’-D’) High magnification images of (D) 

control and (D’) mutant cortex showed that the morphology of YFP-labelled processes is 

indistinguishable between the two genotypes. CC, corpus callosum; IZ, intermediate zone; L6, layer 6; 

SP, subplate. Scale bars: 200µm (A-B, A’-B’), 100 µm (C-D, C’-D’). 
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immediate tendency of increased progenitor proliferation in regions of the E15.5 

Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox cortex, and imply that a more severe 

proliferation defect might be developing due to Pax6 loss in late cortical progenitors.  

To investigate whether progenitor proliferation in the Pax6loxP/loxP; Emx1-CreER; 

R26-YFP E13.5tamox mutant cortex is affected at later developmental stages, BrdU/YFP 

immunohistochemistry was performed in E16.5 embryos, 72 h post-tamoxifen 

injection (Fig. 14E-G, E’-G’). Notably, the number of BrdU/YFP double-labelled 

cells was significantly increased in the mutant cortex compared to control at all 

rostral-caudal levels (Fig. 14H), while the number of BrdU-positive/YFP-negative 

cells was significantly different between mutant and control only in the rostral and 

central cortex (rostral: 16.11 ± 0.4 in control, 37.67 ± 6.11 in mutant, Student’s t-test 

P = 0.024, n = 3 of each genotype; central: 11 ± 1.35 in control, 24.78 ± 3.17 in 

mutant, Student’s t-test P = 0.016, n = 3 of each genotype; caudal: 11.67 ± 2.52 in 

control, 17.78 ± 2.39 in mutant). These results indicate that loss of Pax6 during late 

corticogenesis increases the proliferation of cortical progenitors cell-autonomously at 

all levels throughout the rostral-caudal axis. Interestingly, late Pax6 inactivation also 

stimulates cortical progenitor proliferation through a cell-non-autonomous 

mechanism in regions where it is normally highly expressed. These proliferation 

defects are more profound in the mutant cortex with some delay with regard to the 

time of Pax6 inactivation.  

To provide further evidence for a direct role of Pax6 in late cortical progenitor 

proliferation, immunohistochemistry for phosphohistone H3 (pH3) was employed to 

evaluate the number of progenitors in cell mitosis. Immunolabeling with PH3 allows 

discrimination between cells undergoing mitosis in apical or basal locations, 

corresponding to apical or basal progenitors, respectively. Analysis was performed 

on the same control and mutant brains used for the BrdU/YFP experiments above. 

Control and mutant cortices at the rostral, central and caudal levels were 

immunoreacted with PH3 at E15.5 (48 h post-tamoxifen injection) (Fig. 15A, B) and 

E16.5 (72 h post-tamoxifen injection) (Fig. 15D, E). Since the vast majority of 

progenitors were YFP-positive in both control and mutant cortices, as shown in Fig. 
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Figure 14. BrdU incorporation reveals increased proliferation of mutant progenitors in the 

cortex of Pax6loxP/loxP; Emx1-CreER; R26-YFP E13.5tamox mice at E16.5 but not at E15.5.  (A-C, A’-

C’, E-G, E’-G’) Coronal sections of (A-C, A’-C’) E15.5 and (E-G, E’-G’) E16.5 (A-C, E-G) control 

and (A’-C’, E’-G’) mutant rostral cortices double-immunostained for BrdU/YFP following a 1 h BrdU 

pulse labelling.  Sections were counterstained with TOPRO-3. A strong induction in BrdU 

incorporation was visible in the E16.5 mutant cortex compared with control, especially in the region 

of the mutant SVZ (E, E’). The numbers of BrdU/YFP double-labelled cells and BrdU-positive/YFP-

negative cells were counted in 100-μm-wide radial stripes as shown in C-C’, G-G’. (D) Quantitative 

analysis of BrdU/YFP double-positive nuclei at E15.5 indicated that proliferation was not 

significantly affected in the Pax6loxP/loxP; Emx1-CreER E13.5tamox mutant cortex 48 h post-tamoxifen 

injection. (H) The number of BrdU/YFP double-positive nuclei was significantly increased in the 

mutant cortex at E16.5, 72 h post-tamoxifen injection. This increase was evident in all levels 

throughout the mutant cortex with respect to control. Note that the numbers of BrdU/YFP double-

positive nuclei in the control did not vary throughout the rostral-caudal axis, whereas in the mutant 

cortex a higher increase was detected in rostral compared to caudal levels. VZ, ventricular zone; v, 

ventricle; SVZ, subventricular zone. Scale bars, 100μm.  
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14B-B’, F-F’ and discussed above, sections were labelled with PH3 only, assuming 

that most of PH3-positive progenitors in the mutant cortex would have either lost 

Pax6 expression (apical progenitors) or have originated from apical progenitors that 

had lost Pax6 after Cre recombination (basal progenitors).  

The number of mitotic cells on the apical surface was not significantly changed 

between the mutant and control cortex at E15.5 (Fig. 15C). The number of basally 

dividing cells was not significantly altered in the mutant cortex compared to control 

at the rostral (4.12 ± 1.87 in control, 8.75 ± 0.38 in mutant; Student’s t-test P = 

0.072; n = 3 of each genotype) and central cortex (4.69 ± 0.86 in control, 9.33 ± 1.84 

in mutant; Student’s t-test P = 0.084; n = 3 of each genotype) (Fig. 15D). Differences 

were statistically significant at the caudal level (2.22 ± 0.37 in control, 5.02 ± 0.45 in 

mutant; Student’s t-test P = 0.008; n = 3 of each genotype), although the total 

number of mitotic cells (apically and basally, combined) was not significantly 

different between control (13.39 ± 1.56) and mutant (13.81 ± 1.25) cortex at the 

caudal level (Student’s t-test). These results suggest that there is a trend towards an 

increase in basal mitosis in the E15.5 mutant cortex; failure to detect significant 

differences in the total number of mitotic cells between mutant and control at the 

caudal level implies that overall mitosis is not significantly affected in the cortex of 

Pax6loxP/+; Emx1-CreER; R26-YFP E13.5tamox mutants at E15.5. 

At E16.5, however, a significant increase in the number of basal mitoses was 

detected in the rostral and central mutant cortex compared to control (rostral: 9.36 ± 

0.31 in control, 18.44 ± 1.37 in mutant, Student’s t-test P = 0.003, n = 3 of each 

genotype; central: 13.73 ± 0.82 in control, 20.25 ± 1.72 in mutant, Student’s t-test P 

= 0.027, n = 3 of each genotype), while basal mitosis at the caudal level was not 

significantly different between the two genotypes (Fig. 15H). The total number of 

mitotic cells was significantly increased in the mutant cortex at the rostral (22.72 ± 

1.69 in control; 30.09 ± 1.91 in mutant; Student’s t-test P = 0.04, n = 3 of each 

genotype) and central level (24.58 ± 1.14 in control; 30.53 ± 1.63 in mutant; 

Student’s t-test P = 0.04, n = 3 of each genotype). The numbers of apically dividing 

cells in the mutant cortex remained similar to those of controls (Fig. 15G).  
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Figure 15. Pax6 inactivation in late cortical progenitors affects cell division. (A-B, E-F) Coronal 

sections through the rostral cortex of (A, B) E15.5 and (E, F) E16.5 (A, E) Pax6loxP/+; Emx1-

CreERE13.5tamox control and (B, F) Pax6loxP/loxP; Emx1-CreERE13.5tamox mutant mice immunoreacted for 

pH3. Mitotic (pH3-positive) cells were counted in apical (indicated by arrows) and basal locations 

(arrowheads) in 200-μm-wide radial stripes. A strong induction in basal mitoses was visible in the 

E16.5 mutant cortex with respect to control. (C, D) The number of apical mitoses was not 

significantly altered in the E15.5 mutant cortex compared with control, while a significant (*) increase 

in basal mitosis was detected in the caudal mutant cortex. (G, H) Basally located mitotic cells were 

significantly increased at rostral and central levels of the mutant cortex compared with control, while 

they were not significantly affected in the caudal mutant cortex. V, ventricle. Sections were 

counterstained with TOPRO-3. Medial to the left. 
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These data demonstrate that loss of Pax6 in late cortical progenitors leads to 

increased progenitor proliferation, especially in cortical regions where levels of Pax6 

expression are normally high. Furthermore, late Pax6 inactivation increases the 

number of basal mitosis without affecting the numbers of progenitors dividing at 

apical positions. These findings fit well with previous data showing that embryos 

lacking Pax6 from the earliest stages of corticogenesis exhibit increased numbers of 

cortical progenitors that divide in ectopic, basal positions (Haubst et al., 2004; Quinn 

et al., 2007; Tuoc et al., 2009).  

 

6.2.7 Pax6 ablation during mid-stages of corticogenesis affects cortical 

progenitor proliferation 

To further investigate the effect of Pax6 loss on cortical progenitor proliferation, 

injection of tamoxifen at E10.5 was used. Proliferation was examined at E13.5, the 

earliest time of Pax6 loss in Pax6loxP/loxP; Emx1-CreER; R26-YFP E10.5tamox mutant 

mice. Pregnant females were injected with BrdU at E13.5, 72 h post-tamoxifen 

administration, and BrdU incorporation was tested 1 h later. Sections through the 

rostral, central and caudal cortex of control and mutant mice were double-

immunostained for BrdU and YFP (Fig. 16A-C, A’-C’). Quantification of BrdU/YFP 

double-labelled and BrdU-positive/YFP-negative cells revealed that nearly 95% of 

BrdU-positive cells were co-expressing YFP in both control and mutant cortex. Pax6 

inactivation at E13.5 resulted in significantly increased numbers of BrdU/YFP 

double-positive cells in the rostral mutant cortex compared with control (134.89 ± 

3.27 in control, 188.33 ± 7.81 in mutant; Student’s t-test P = 0.003, n = 3 of each 

genotype) (Fig. 16D). The proliferation of non-YFP-expressing progenitors was 

unaffected in the mutant cortex; equal numbers of BrdU-positive/YFP-negative cells 

were observed in the control and mutant cortex at all levels.  

To examine whether Pax6 ablation at E13.5 has a more profound effect on cortical 

progenitor proliferation at later developmental stages, BrdU/YFP experiments were 

performed in Pax6loxP/loxP; Emx1-CreER; R26-YFP E10.5tamox mutant and control 

cortices at E15.5 (Fig. 16E-G, E’-G’). A high induction was also observed in these 

littermates; nearly 95% of BrdU-labelled cells were co-expressing YFP in both 



155 
 

control and mutant cortex. Progenitor proliferation was severely affected in the YFP-

positive cell population of the mutant cortex, while there was no change in the 

number of BrdU-positive/YFP-negative cells between the two genotypes at all 

cortical levels. Significantly increased numbers of BrdU/YFP double-labelled cells 

were detected in the mutant cortex compared to control (rostral: 94.67 ± 4.99 in 

control, 183.89 ± 12.19 in mutant, Student’s t-test P = 0.002, n = 3 per genotype; 

central: 89 ± 3.84 in control, 152.78 ± 2.28 in mutant, Student’s t-test P < 0.001, n = 

3 per genotype ; caudal: 77 ±  2 in control, 97.33 ±  5 in mutant, Student’s t-test P = 

0.02, n = 3 per genotype) (Fig. 16H). Although such differences were significant at 

all levels, a rostral-to-caudal trend in the effect of Pax6 loss was again observed, with 

differences between the two genotypes being greater at the rostral level and 

becoming more subtle caudally. 

The number of cells undergoing division at apical or basal locations was also 

examined by employing PH3 immunohistochemistry on sections of the same E13.5 

and E15.5 mutant and control brains as used for the BrdU/YFP analyses (Fig 17A-B, 

E-F). The number of apical mitoses was not affected in the E13.5 mutant cortex at 

the rostral and caudal level, while in the central mutant cortex a slight but significant 

decrease in the number of apically located PH3-positive cells was detected (19.73 ± 

0.37 in control; 18.02 ± 0.24 in mutant; Student’s t-test P = 0.018, n = 3 of each 

genotype) (Fig. 17C). The number of PH3-positive cells at basal locations was 

significantly increased in the E13.5 mutant cortex at the rostral field (15.12 ± 2.32 in 

control, 28 ± 3.71 in mutant; Student’s t-test P = 0.04, n = 3 per genotype), although 

it was unaffected at central and caudal levels (Fig. 17D). The increase in basal 

mitoses in the rostral mutant cortex, as well as the increase in apical mitoses in the 

central mutant cortex, was not sufficient to cause an overall significant increase in 

the total number of mitoses in the mutant cortex at the rostral or central level 

compared with control (rostral: 37.37 ± 2.46 in control, 47.83 ± 6.11 in mutant; 

central: 31.18 ± 1.93 in control, 30.93 ± 1.29 in mutant). In the E15.5 Pax6loxP/loxP; 

Emx1-CreER; R26-YFP E10.5tamox mutant cortex, the number of basal mitoses was 

severely increased compared to control (rostral: 4.45 ± 1.42 in control, 26.67 ± 0.58 

in mutant, Student’s t-test P < 0.001, n = 3 per genotype; central: 3.5 ± 0.63 in 
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Figure 16. Pax6 inactivation during mid-corticogenesis induces cortical progenitor proliferation 

as revealed by increased BrdU incorporation in mutant progenitors. (A-C, A’-C’, E-G, E’-G’) 

Coronal sections of (A-C, A’-C’) E13.5 and (E-G, E’-G’) E15.5 (A-C, E-G) control and (A’-C’, E’-

G’) mutant rostral cortices immunoreacted for BrdU and YFP following a 1 h BrdU pulse labelling. 

Sections were counterstained with TOPRO-3. A strong increase in BrdU incorporation was visible in 

the E15.5 mutant cortex compared with control, particularly in the region of the mutant SVZ (E, E’). 

The numbers of BrdU/YFP double-labelled cells and BrdU-positive/YFP-negative cells were counted 

in 100-μm-wide radial stripes shown in C-C’, G-G’. (D) At E13.5, the number of BrdU/YFP double-

labelled cells was significantly (*) increased in the rostral mutant cortex compared with control. At the 

central and caudal level, regions where Pax6 is normally expressed at lower levels, numbers were 

unaltered in the mutant cortex with respect to control. (H) The numbers of BrdU/YFP double-labelled 

cells were significantly increased at all levels of the mutant cortex compared to control. Note the 

gradual decrease in numbers of mutant S-phase progenitors from rostral to caudal cortex, indicating a 

stronger effect of Pax6 loss in cortical regions where it is normally highly expressed. SVZ, 

subventricular zone; VZ, ventricular zone. V, ventricle. Scale bars: 100μm. 
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control, 20.08 ± 2.33 in mutant, Student’s t-test P = 0.002, n = 3 per genotype; 

caudal: 2.37 ± 0.41 in control, 9.43 ± 0.32 in mutant, Student’s t-test P < 0.001, n = 3 

per genotype) (Fig. 17H). The number of apically dividing cells was unaffected in 

the E15.5 mutant cortex compared with control (Fig. 17G). The strong increase in the 

number of basal mitoses led to a significant increase in the total number of mitotic 

figures in the mutant cortex with respect to control (rostral: Student’s t-test P < 

0.001, n = 3 of each genotype; central: Student’s t-test P = 0.018, n = 3 of each 

genotype; caudal: Student’s t-test P = 0.049, n = 3 of each genotype). 

These findings suggest that loss of Pax6 at E13.5 has an immediate effect on the 

proliferation of cortical progenitors only in rostral cortical regions, where Pax6 is 

normally highly expressed. Later on, this effect is more profound and also extends to 

cortical regions where Pax6 expression levels are lower, i.e. caudally. Taken 

together, Pax6 ablation at either mid- or late-corticogenesis increases the number of 

basal mitoses as well as the number of S-phase cortical progenitors, indicating that 

Pax6 is a key regulator of cortical progenitor proliferation throughout the time course 

of cortical development. 
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Figure 17. Loss of Pax6 function at mid-stages of corticogenesis affects progenitor cell division. 

(A-B, E-F) Coronal sections of (A, B) E13.5 and (E, F) E15.5 (A, E) control and (B, F) mutant 

telencephalons at the rostral level immunolabelled for phosphorylated histone H3. Mitotic (pH3-

positive) cells were counted in apical (indicated by arrows) and basal locations (arrowheads) in 200-

μm-wide radial stripes. (C, D) Quantitative analysis of pH3-positive cells showed that the number of 

apical mitosis was not significantly altered in the E13.5 mutant cortex compared to control at rostral 

and caudal levels, while a significant (*) decrease was detected in the central mutant cortex with 

respect to control. A significant increase in the number of basally located pH3-positive cells was 

detected in the E13.5 mutant cortex at rostral levels compared to control, while basal mitoses at 

central and caudal levels was unaffected in the mutant. (G, H) The numbers of apically dividing cells 

were not significantly different between E15.5 mutant and control cortices. However, the numbers of 

mitotic cells in basal positions were significantly increased in the E15.5 mutant cortex with respect to 

control at all levels. GE, ganglionic eminence; v, ventricle. Sections were counterstained with 

TOPRO-3. Medial to the left. 
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6.3 Discussion 

6.3.1 Conditional Pax6 inactivation induces cortical progenitor proliferation 

mostly through a cell-autonomous mechanism 

The formation of a functional cerebral cortex requires that the appropriate types of 

neurons are present at the right place, in correct numbers. Cortical projection neurons 

are born locally from dorsal telencephalic progenitor cells in a sequential manner, 

and newly postmitotic cells simultaneously leaving the cell cycle differentiate into 

neurons of a defined laminar fate (McConnell 1995). Thus, the cerebral cortex forms 

sequentially in an “inside-out” fashion (Rakic 1974). It is now well-established that 

cortical progenitors can be subdivided into two main groups which differ, among 

other aspects, in molecular expression profiles and the exact location they undergo 

cell division. Apical progenitors, located in the VZ, express Pax6 and divide at apical 

positions adjacent to the lateral ventricle (Gotz et al. 1998; Englund et al. 2005). 

Basal progenitors, located in the overlying SVZ, express Tbr2 and the recently 

identified transcription factor AP2γ (Englund et al. 2005; Arnold et al. 2008; Sessa et 

al. 2008; Pinto et al. 2009) and divide at basal, abventricular positions. 

Loss- and gain-of-function analyses have implicated Pax6 as an intrinsic regulator of 

progenitor proliferation. Cortical progenitor proliferation is induced in Pax6 loss-of-

function mutants, while it is reduced after Pax6 overexpression (Gotz et al. 1998; 

Warren et al. 1999; Heins et al. 2002; Hack et al. 2004; Haubst et al. 2004; Berger et 

al. 2007; Manuel et al. 2007; Quinn et al. 2007; Georgala et al. 2010). The specific 

role of Pax6 function during mid and late stages of corticogenesis was directly 

investigated here by conditional mutagenesis. These new findings indicate that 

cortical progenitors are extremely sensitive to Pax6 loss throughout the time course 

of corticogenesis. Either mid or late inactivation of Pax6 resulted in significantly 

increased numbers of S-phase cortical progenitors at all rostral-caudal levels. Of 

note, Pax6 ablation from E15.5 resulted in a severe increase in the number of S-

phase progenitors in the mutant VZ and particularly in the mutant SVZ at E16.5, 

comparable to that previously described in E16.5 Pax6 null mice (Gotz et al. 1998). 

The increased numbers of S-phase progenitors in Pax6 cKO mutants suggest two 

alternative possibilities, or a combination of both. Pax6 loss in late cortical 
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progenitors might result in: (1) shortening of cell cycle times that would lead to 

increased numbers of mutant progenitors incorporating BrdU after a short 1 h pulse 

employed in this study, or/and (2) reduced cell-cycle exit, and concurrently increased 

cell cycle commitment, that would lead to increased numbers of mutant progenitors. 

Intriguingly, previous studies have suggested that Pax6 loss increases cell-cycle 

length of cortical progenitors at E15.5 (Estivill-Torrus et al. 2002; Quinn et al. 2007). 

However, these observations might indicate secondary abnormalities due to severe 

early developmental defects in Pax6 loss-of-function mutants. In this context, Pax6 

loss from the onset of corticogenesis leads to progressive ventralization and induced 

production of normally ventrally-derived GABAergic neurons in the mutant cortex 

(Kroll and O’Leary 2005). Lengthening of the cell cycle, previously reported in the 

Pax6-/- cortex, could be an outcome of an increased number of GABAergic neurons 

populating the mutant cortex. Analyses in chapter 3 support this hypothesis by 

demonstrating that cell-cycle times in the ventral telencephalon are normally doubled 

compared to those in cortical progenitors. Whether Pax6 loss in late cortical 

progenitors affects cell-cycle properties deserves further research. This could be 

addressed via the BrdU/IdU labelling method described in chapter 3. With regard to 

the second possibility, of increased cell-cycle commitment of mutant progenitors that 

could explain the observed increase in BrdU-incorporation in the Pax6 cKO cortex, 

this seems more unlikely. Loss of Pax6 protein in the mouse model studied here is 

just occurring at E15.5, 48 h post-tamoxifen administration, and BrdU incorporation 

studies at E15.5 failed to reveal significant differences between control and mutant 

cortex. Therefore, analyses of BrdU incorporation carried out in E16.5 Pax6 cKOs 

would not allow enough time for detection of severely increased progenitor cell 

numbers, given that progenitors would normally progress through only one cell cycle 

from E15.5 to E16.5. These assumptions are based on results presented in chapter 3, 

where cell- cycle length was found to last between 20-25 h in the E15.5 wild-type 

cortex. However, the possibility of increased cell-cycle commitment could be tested 

directly in the E16.5 Pax6 cKO cortex by immunostaining cortices with the 

proliferating cell nuclear antigen (PCNA) and assessing the proportions of 

proliferating cells after late loss of Pax6. 
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BrdU incorporation studies here demonstrated that Pax6 loss from mid or late stages 

of corticogenesis affects preferentially the proliferation of mutant cells throughout 

the rostral-caudal levels of the cKO cortex, supporting a cell-autonomous 

requirement for Pax6 function. However, the proliferation of cells that had not 

recombined Cre was also affected in regions of the E16.5 Pax6loxP/loxP; Emx1-CreER 
E13.5tamox cortex where Pax6 in normally expressed at high levels, suggesting a cell-

non-autonomous role for Pax6 in these regions. Basal mitoses were severely 

increased after loss of Pax6 in either mid or late cortical progenitors, although 

correctly specified basal progenitors were found to be decreased in the Pax6 cKO 

cortex. It appears therefore that Pax6 inactivation from mid or late cortical 

progenitors induces ectopic cell division, similar to that previously described in Pax6 

null or cKO mutants lacking Pax6 from the earliest stages of corticogenesis (Haubst 

et al. 2004; Quinn et al. 2007; Tuoc et al. 2009). These defects likely reveal that Pax6 

function is constantly required throughout corticogenesis to maintain normal 

interkinetic nuclear migration of apical progenitors, an assumption that fits well with 

results from Tamai et al. (2007) reporting on disrupted interkinetic nuclear migration 

in Pax6-/- mutants. Given that Pax6 is specifically expressed in progenitors within the 

cortex, it is not surprising that its loss of function has an effect on progenitor 

proliferation throughout corticogenesis. It is remarkable though that its inactivation 

at either early, mid or late cortical progenitors results in the same phenotype at all 

rostral-caudal levels, with an induction of proliferation and increased numbers of 

progenitors dividing at ectopic locations during the time of superficial layer neuron 

generation. Moreover, a cell-autonomous requirement for Pax6 is indicated here even 

in caudal cortical regions, while in regions of normally high expression Pax6 loss can 

also cause non-autonomous proliferation defects. 

It is important to note that profound proliferation defects at all levels of the Pax6 

cKO cortex were detected with some delay with respect to the time of Pax6 down-

regulation. At times immediately after Pax6 downregulation, proliferation defects in 

the mutant cortex were just arising and were mostly associated with regions where 

Pax6 is normally expressed at high levels. These findings demonstrate the gradual 

effect of Pax6 deficiency in cortical progenitor proliferation. Progenitor proliferation 

drives neuronal production that can lead ultimately to an enlarged cortical surface 



162 
 

area (Caviness et al. 1995; Rakic, 1995; Chen and Walsh 2002, 2003). Interestingly, 

increased progenitor proliferation due to Pax6 loss in late cortical progenitors, during 

the time of superficial layer neuron generation, did not result in increased numbers of 

late-born neurons occupying mutant superficial layers due to migration defects. 

Birthdating studies of E16.5-born neurons in the P0 cKO cortex clearly demonstrated 

a severe increase in the production of late-born neurons, further supporting cell-

autonomous and non-autonomous proliferation defects arising after Pax6 loss in late 

cortical progenitors. 

Together, these findings further support the role of Pax6 as an intrinsic regulator of 

cortical progenitor proliferation. Sansom et al. (2009) have demonstrated that Pax6 

has the ability to both promote and inhibit cortical progenitor proliferation by 

regulating the expression of cell cycle regulators. Increasing or decreasing levels of 

Pax6 upsets this balance, with Pax6 ablation leading to increased progenitor 

proliferation in the Pax6-/- cortex and overexpression resulting in reduced cell 

production. However, dysregulation of Pax6 levels either way leads to reduced 

cortical growth, with abnormalities being more severe in the Pax6-/- cortex. The 

phenotype in the Pax6-/- cortex is likely attributable to premature cell-cycle exit 

leading to a severe depletion of the mutant progenitor pool during superficial layer 

neuron production (Estivill-Torrus et al. 2002; Quinn et al. 2007). In this context, 

specific late-inactivation of Pax6 employed in this study allowed for maintenance of 

the progenitor pool and direct assessment of the role of Pax6 function during late 

corticogenesis. Results presented here demonstrate that Pax6 ablation leads to a 

severe induction in cell proliferation even in cortical regions and at times that its 

levels are not the highest. The outcome of increased late cortical progenitor 

proliferation in the Pax6 cKO cortex was an increased production of late-born 

neurons, in contrast to mice lacking Pax6 from the onset of corticogenesis. 

Collectively, these data provide direct evidence for a key role for Pax6 in controlling 

progenitor proliferation throughout corticogenesis, and demonstrate that loss of Pax6 

function has the ability to impair cortical progenitor proliferation both in a cell-

autonomous and non-autonomous fashion. 
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6.3.2 Pax6 controls migration of late-born cortical neurons by both a cell-

autonomous and non-autonomous mechanism 

Cortical precursors born in the proliferative layers of the embryonic dorsal 

telencephalon migrate radially to the developing cortical plate in a characteristic 

order, such that they migrate past earlier-born neurons to adopt more superficial 

positions. Thus, the cerebral cortex forms sequentially in an “inside-out” manner 

(Rakic 1974). Results here indicate that Pax6 inactivation exclusively in late cortical 

progenitors specifically affects the exit of late-born neurons from their birthplace, 

resembling migration abnormalities previously described in Pax6-/- embryos 

(Schmahl et al. 1993; Caric et al. 1997; Tarabykin et al. 2001; Talamillo et al. 2003). 

Interestingly, the autonomously affected mutant cells of the cKO cortex were capable 

of inducing migration deficiency in surrounding wild-type, late-born neurons. 

Migration defects of Pax6-/--derived neurons were not rescued even after mixing 

mutant cortical cells with an excess of wild-type cells in the cKO cortex, strongly 

supporting a key requirement for Pax6 function in regulating neuronal migration. 

Thus, it appears that late Pax6 function is required both within progenitors 

themselves as well as their environment for migration of late-born neurons away 

from their site of production. These findings fit well with previous studies of 

chimeric embryos suggesting that Pax6 is intrinsically required for normal migration 

of late-born neurons away from the SVZ/IZ boundary of the embryonic cortex 

(Talamillo et al. 2003). Interestingly, these analyses have shown that Pax6-/- mutant 

cells accumulating in the proliferative region express neuronal markers. The present 

study extends previous findings above and directly demonstrates that late-born 

neurons generated from Pax6-/- progenitors, once they exit the proliferative region, 

they have the intrinsic ability to migrate radially and adopt superficial laminar 

positions in the postnatal cortex. Furthermore, results here showed that neuronal 

migration defects in the Pax6 cKO were compensated for by an induction in late 

cortical progenitor proliferation, thus leading ultimately to similar numbers of late-

born neurons adopting superficial positions in the mutant cortex. Together, findings 

from the present and previous studies suggest that Pax6 may facilitate neuronal 

migration by providing genetic input during the waiting period of migratory cells in 

the SVZ/IZ region and contributing to the progress of neuronal migration to next 
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phase that involves initiation of migration towards the cortical plate (Kriegstein and 

Noctor 2004). 

A non-autonomous requirement for Pax6 function in neuronal migration has been 

previously suggested from Caric et al. (1997) by demonstrating that migration 

abnormalities of late-born Pax6-/- neurons are rescued after transplantation into wild-

type cortex. The non-autonomous migration defects documented in the Pax6 cKO 

cortex could arise from defective cell-cell interaction. For instance, radial migration 

of late-born cortical neurons is largely dependent on guidance from radial glial cells. 

Although   Pax6 is cell-autonomously required for normal  radial glia morphology 

(Gotz et al. 1998), the morphological phenotype of radial glial cells appeared normal 

in the Pax6 cKO cortex, most likely due to normal Pax6 expression during early and 

mid corticogenesis in these mutants. However, defective signalling between 

abnormally differentiated radial glia and wild-type cortical cells during the latest 

stages of corticogenesis remains a possibility. Furthermore, non-autonomous 

migration defects in the germinal zone of the Pax6 cKO cortex might well arise due 

to defective cell-cell signalling from misplaced mutant neurons that retain a ventral 

telencephalic character. Whether the enlarged germinal zone in the postnatal Pax6 

cKO cortex contains high numbers of GABAergic cells is a critical question that 

deserves further investigation. The presence of abnormally increased numbers of 

cortical cells in the embryonic Pax6 cKO cortex exhibiting a molecular profile 

characteristic of that in the ventral telencephalon suggests that late Pax6 loss might 

ultimately lead to enhanced numbers of differentiated GABAergic cells in the 

postnatal mutant cortex. This would further suggest defective cell-cell interactions 

between cells of dorsal and ventral character inhabiting the same region in the Pax6 

cKO cortex. 

 

6.3.3 Conditional Pax6 deletion from mid or late stages of corticogenesis affects 

superficial laminar fate of late-born neurons 

Laminar fates of cortical neurons are determined when they are early postmitotic 

cortical precursors and become progressively restricted as development advances 

(McConnell and Kaznowski 1991; Frantz and McConnell 1996; Desai and 
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McConnell 2000; Britanova et al. 2008). The specific expression of Pax6 in 

progenitors throughout corticogenesis makes this molecule an excellent candidate for 

specifying neuronal identities. Thus, given the crucial role of Pax6 in regulating 

progenitor proliferation and specifying cortical identity, it is important to determine 

whether Pax6 function is required to specify laminar-specific properties of cortical 

projection neurons. Previous studies have implicated Pax6 in controlling superficial 

laminar fate, while Ngn function seems to be required for deep laminar identities 

(Tarabykin et al. 2001; Schuurmans et al. 2004; Osumi et al. 2008). However, 

unambiguous conclusions about laminar phenotypes cannot be drawn from 

embryonic analyses. The role of Pax6 in regulating laminar identity was addressed 

here by analyses of Pax6 cKO mice which are viable postnatally. 

Pax6 deletion during mid-stages of corticogenesis severely compromised superficial 

layer development. Both the numbers and specification of late-born neurons were 

markedly affected in the superficial layers of the mutant cortex, a laminar phenotype 

resembling that of cKOs lacking Pax6 from early corticogenesis (Tuoc et al. 2009). 

To directly examine whether Pax6 function is necessary during late corticogenesis 

for specifying superficial laminar fate, Pax6 was inactivated specifically in late 

cortical progenitors. Deep and superficial layer-specific markers were expressed in 

appropriate laminar positions throughout the Pax6 cKO cortex. As expected, deep 

layer neurons, which are generated at times preceding Pax6 loss in the cKO cortex, 

exhibited correct molecular and cellular properties in the mutant, i.e. characteristic 

pyramidal morphology of corticospinal layer V neurons. Although superficial layer 

neurons had a correct superficial laminar identity in the Pax6 cKO cortex, analysis 

showed that the absolute number of neurons with superficial fate was significantly 

reduced in the mutant. Despite this, BrdU birthdating at E15.5 indicated that total 

numbers of late-born neurons were not significantly affected in the mutant cortex. 

Importantly, proportions of late-born neurons with appropriate superficial laminar 

identity were reduced after late Pax6 inactivation. These findings indicate that Pax6 

ablation exclusively in late cortical progenitors does not result in complete loss of 

superficial-layer marker expression. However, Pax6 is required in late corticogenesis 

to correctly specify the superficial laminar identity of late-born neurons in correct 

proportions. 
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Recently, another group reported that Pax6 ablation in late cortical progenitors, 

through crossing Pax6 conditional mice with a hGFAP-Cre expressed from E13.5, 

did not affect the number or the specification of superficial layer neurons (Tuoc et al. 

2009). However, in this case superficial layer formation was not extensively studied 

and conclusions were based on observations that deep layer markers (Ctip2 and 

Tbr1) and the superficial layer marker Cux1 were expressed in the mutant cortex. 

Data presented in this study is in agreement with these observations of no gross 

abnormalities in mutant superficial layers after late Pax6 inactivation. However, 

careful analysis here indicated both the number of Cux1-expressing cells and the 

proportions of E15.5-born neurons double-labelled with Cux1 were significantly 

affected in the Pax6 cKO cortex. 

Within the superficial domain of the cortex, E15.5-birthdated neurons were mostly 

detected in laminar positions corresponding to layers II/III in both controls and Pax6 

cKOs lacking Pax6 specifically in late cortical progenitors. However, this analysis 

indicated that E15.5-birthdated neurons were distributed in more superficial positions 

of the Pax6 cKO cortex. Many layer II/III neurons project to the contralateral 

hemisphere through the corpus callosum. Consistent with the failure to detect 

significant differences in the number of superficially located E15.5-born neurons 

between the two genotypes, together with observations that Cux1-expressing neurons 

were distributed in slightly more superficial positions of the mutant cortex, the size 

of the corpus callosum appeared normal in the mutants. Of note, layer IV was visibly 

reduced in the cKO cortex. Layer IV neurons are generated from E14.5 onwards, and 

therefore tamoxifen administration at E13.5 in Pax6loxP/loxP; Emx1-CreER mice might 

affect the generation of layer IV neurons. This hypothesis could be tested directly by 

marking the genesis of layer IV neurons via BrdU birthdating in Pax6 cKO mice. 

However, results presented here showed that downregulation of Pax6 48 h post-

tamoxifen administration at E13.5 did not have a significant effect on progenitor 

proliferation, in contrast to severe defects detected in Pax6 cKO mice 72 h post-

tamoxifen administration. 

Conditional Pax6 inactivation from mid-corticogenesis resulted in a more profound 

superficial laminar phenotype. In controls, 80% of E15.5-born/BrdU-positive cells 
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were expressing Cux1, while in the mutants percentages were reduced to 30%. 

Importantly, BrdU/YFP analysis in these P7 cortices revealed that 80% of BrdU-

positive cells had recombined loxP sites. It is conceivable therefore that the 

remaining Cux1-expressing neurons in the Pax6 cKO cortex might represent wild-

type cells, further supporting the involvement of Pax6 in regulating superficial 

laminar fate. This could be directly examined by double-labelling mutant cortices 

with Cux1 and YFP and determining whether Cux1-positive neurons are negative for 

YFP. Pax6 ablation from either mid or late corticogenesis led to ventralization of the 

mutant cortex at E15.5, but did not result in the same laminar phenotype postnatally. 

Thus, the more severe superficial laminar defects detected in mutants lacking Pax6 

from mid-corticogenesis are not secondary to the ventral-like phenotype in the 

mutant cortex. Furthermore, although the embryonic cKO cortex exhibited abundant 

upregulation of ventral markers, the vast majority of cortical cells were of an Emx1-

lineage in both embryonic and postnatal mutant brains exhibiting high efficiency of 

Cre-mediated recombination. These findings suggest that the cortex of cKO mice is 

not over-populated by GABAergic interneurons of a ventral origin. Although it could 

be argued that dorsal cells of Emx1-lineage are fundamentally respecified into 

GABAergic neurons in the P7 Pax6 cKO cortex, similar to the phenotype of Pax6-/- 

mice previously reported from Kroll and O’Leary (2005), the fact that layers of the 

P7 mutant cortex expressed layer markers typical of pyramidal layer neurons, makes 

this assumption unlikely. To directly prove that layers of P7 cKO cortices do not 

contain abundant numbers of GABAergic neurons, a pan- GABAergic interneuron 

marker as GAD67 needs to be employed in future analyses. 

Together, findings presented here indicate that Pax6 is required for specifying 

superficial laminar fate, but its function seems to vary throughout corticogenesis. 

Pax6 deficiency from E13.5 has a severe effect on superficial laminar specification 

that is comparable with the previously reported phenotype of cKO mice lacking Pax6 

from the onset of corticogenesis (Tuoc et al. 2009). Pax6 inactivation in late cortical 

progenitors also results in a superficial laminar phenotype. These abnormalities in 

Pax6 cKO mice could be linked to the severe loss of Tbr2-expressing basal 

progenitors which normally arise at around E12 and contribute to the formation of 

superficial layer neurons (Tarabykin et al. 2001; Englund et al. 2005; Arnold et al. 
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2008; Sessa et al. 2008). Consistent with this hypothesis, basal progenitors were 

severely diminished in the E15.5 mutant cortex after Pax6 inactivation from mid-

corticogenesis. Late inactivation of Pax6 also resulted in a remarkable decrease of 

correctly specified basal progenitor cells, but basal progenitor fate as well as the final 

superficial laminar phenotype in these conditional mutants was less affected 

compared to Pax6 loss at earlier stages. Thus, it seems likely that the coordinated 

action of Pax6 and Tbr2 is required for specification of superficial layer neurons in 

appropriate numbers. Concomitant reduction of both transcription factors might 

contribute to the development of a more severe superficial laminar phenotype. 
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Experiments in the present thesis aimed to explore the spatial and temporal roles of 

Pax6 function in cortical development by employing gain- and loss-of-function 

strategies. Pax6 overexpression was found to impair the production of late-born 

cortical precursors cell-autonomously, leading to the formation of thinner superficial 

layers in the PAX77 mutant cortex. Increased levels of Pax6 were reported to 

lengthen the cell cycle of late cortical progenitors and promote cell cycle exit during 

late stages of corticogenesis. Consistent with an expected reduction of the progenitor 

pool due to reduced cell-cycle commitment of late progenitors in the PAX77 cortex, 

Pax6 overexpression led to reduced numbers of superficial layer neurons, without 

affecting their laminar specification.  Such effects of Pax6 overexpression in cortical 

development were particularly evident in rostral cortical regions, where Pax6 is 

normally expressed at its highest levels. Results from overexpression studies here 

suggest that correct levels of Pax6 are required by progenitors at late stages of 

corticogenesis, specifically, to maintain their cell cycle times and moderate their exit 

from the cell cycle, thereby regulating the size of the progenitor pool. 

Conditional ablation of Pax6 during late corticogenesis increased cortical progenitor 

proliferation, as well as ectopic, non-apical cell divisions, and resulted in 

overproduction of late-born neurons at all rostral-caudal levels throughout the mutant 

cortex. Importantly, Pax6 mutant progenitors lacking Pax6 from either mid or late 

stages of corticogenesis ectopically activated expression of markers normally 

confined to progenitors of the ventral telencephalon, which give rise to the adjacent 

striatum. Moreover, late Pax6 inactivation affected the capacity of late-born neurons 

to exit the proliferative compartment of the cortex both in a cell-autonomous and 

cell-non-autonomous manner, resulting in the formation of an expanded germinal 

zone in the postnatal mutant cortex. This phenotype closely mimics that of mutants 

lacking Pax6 from the onset of corticogenesis, described by previous studies 

(Schmahl et al. 1993; Caric et al. 1997; Fukuda et al. 2000; Tarabykin et al. 2001; 

Haubst et al. 2004; Schuurmans et al. 2004). The cause of the increased 

accumulation of late-born neurons in the Pax6 cKO germinal zone will be addressed 

in future studies. It is likely that the observed ectopic activation of ventral 

telencephalic markers in the mutant cortex could lead to a switch in the 

differentiation programme of cortical precursors towards a GABAergic neuron 
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phenotype, similar to previously reported defects in Pax6-/- mutants (Kroll and 

O’Leary 2005). In contrast to Pax6-/- mice, late-born neurons were able to adopt 

appropriate superficial laminar positions in the cKO cortex analysed here and 

differentiate accordingly, although they expressed appropriate superficial laminar 

markers at reduced proportions. On the other hand, Pax6 ablation from mid-stages of 

corticogenesis dramatically reduced the number of superficially localized late-born 

cortical neurons, which were also not correctly specified in the mutant cortex. 

Collectively, these findings directly demonstrate that late Pax6 function is required to 

regulate crucial developmental aspects during superficial laminar formation. 

Analyses here, together with previous findings, indicate that Pax6 plays a central role 

during corticogenesis by acting on the decision of cortical precursor cells of whether 

to exit or re-enter the cell cycle. Loss of Pax6 function from the earliest stages of 

corticogenesis causes premature cell cycle exit that leads to a depletion of the 

progenitor pool, and hence leads to reduced neuronal production in the mutant cortex 

(Quinn et al. 2007). The well-documented hypocellular cortical plate in the Pax6-/- 

cortex, mostly attributable to an under-representation of late-born, superficial-layer 

neurons, is in accordance with such an early reduction in the size of the mutant 

progenitor pool (Schmahl et al. 1993; Caric et al. 1997; Fukuda et al. 2000; 

Tarabykin et al. 2001; Haubst et al. 2004; Schuurmans et al. 2004). Reduced 

neuronal production in Pax6-/- mutants is accompanied by increased numbers of 

cortical progenitors, whereas Pax6 overexpression inhibits cortical progenitor 

proliferation (Gotz et al. 1998; Warren et al. 1999; Estivill-Torrus et al. 2002; Haubst 

et al. 2004; Berger et al. 2007; present study).  

A better understanding of the effect of Pax6 levels in cortical progenitor proliferation 

and neuronal output throughout corticogenesis requires identification of downstream 

targets in Pax6-expressing apical progenitors. Recent work has started unravelling 

important pathways via which Pax6 exerts its function to control these processes. For 

instance, the Notch signalling pathway is known to influence cell fate specification 

during neural development. In particular, Notch function is central to the inhibition 

of neurogenesis and maintenance of a progenitor cell character and, interestingly, its 

activation promotes radial glial cell fate (Yoon et al. 2004; Yoon and Gaiano 2005). 
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In addition to the specific activation of Notch in VZ progenitors, the Par-complex 

proteins also localize in the apical domain of VZ progenitors and promote the 

proliferation of self-renewing progenitors through activation of Notch pathway 

components (Costa et al. 2008). The anti-neurogenic effects of Notch signalling arise 

by antagonizing the function of proneural genes, including Neurogenin1 (Ngn1), 

Ngn2 and Mash1 (Hatakeyama et al. 2004). Thus, Pax6 and Notch signalling seem to 

have antagonizing functions on cortical neurogenesis and cell-cycle commitment by 

differentially regulating the same sets of transcriptional regulators: Pax6 induces 

Ngn2 and Tbr2 function, whereas both of these key transcription factors are 

negatively regulated by downstream targets and effectors of Notch (Sansom et al. 

2009). It is conceivable therefore that when levels of Notch effectors are low, Pax6 

function has the capacity to drive apical progenitors towards neurogenesis and basal 

progenitor generation. Interestingly, the level of expression of Par proteins declines 

considerably over the course of corticogenesis, suggesting that Notch signalling has 

much stronger effects at early stages of corticogenesis (Costa et al. 2008). This 

model fits well with results here showing that increased Pax6 levels promote cell 

cycle exit and neuronal differentiation during late corticogenesis, presumably due to 

redundancy of Notch activity. Findings that such defects were most prominent in 

regions of the Pax6-overexpressing cortex where Pax6 is normally highly expressed, 

i.e. rostrally, further support this interpretation. With regard to basal progenitor 

generation, Pax6 loss from the onset of corticogenesis abolishes Tbr2 expression in 

the mutant cortex (Quinn et al. 2007). Here, Pax6 inactivation at mid stages of 

corticogenesis affected more severely the number of Tbr2-expressing cells in the 

mutant cortex compared to late loss of Pax6 function. Together, these data are also in 

agreement with the prevailing view that Notch activation exerts its maximum 

function at early stages of corticogenesis. 

Disruption of Pax6 function exclusively in late cortical progenitors had an 

immediate, cell-autonomous effect on progenitor proliferation that led ultimately to 

the production of enormous numbers of late-born cortical neurons. These findings 

likely reflect that loss of Pax6 results in a dominant function of Notch activity and 

other cell cycle regulators that are negatively regulated by Pax6 under normal 

conditions. Indeed, Pax6 directly promotes expression of a number of cyclin-
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dependent kinase (Cdk) inhibitors and other cell cycle regulators that inhibit G1 cell 

cycle progression and thus reduce self-renewal of neural stem cells (Duparc et al. 

2007; Sansom et al. 2009). Intriguingly, Pax6 also positively regulates expression of 

Cdks and transcription factors which function in progenitor cells to promote self-

renewal (Sansom et al. 2009). Such observations have indicated that Pax6 is a major 

component of a dynamic network that determines the balance between self-renewal 

and differentiation in neural stem cells. Based on gain- and loss-of-function 

approaches, previous studies have suggested that the ability of Pax6 to both promote 

and inhibit self-renewal in progenitor cells depends on its expression levels (Sansom 

et al. 2009). According to the recently proposed model, increasing Pax6 levels 

enhances the neurogenic function of Pax6 in a manner that dominates its role in 

progenitor self-renewal, whereas decreased levels seem to cause premature cell cycle 

exit and precocious neurogenesis due to reduced expression of key cell cycle 

regulators in cortical progenitors. While supported, among others, by findings that 

loss of Pax6 function reduces the neurogenic capacity of mutant progenitors and 

depletes the mutant progenitor pool available for late-born neuron production 

through increased cell cycle exit during early-stage corticogenesis (Heins et al. 2002; 

Quinn et al. 2007), such a model is likely oversimplified. Gain of Pax6 function here 

indicated that early-born, deep-layer neurons were not overproduced in mutant mice, 

thus implying that increased levels of Pax6 do not drive early cortical progenitors 

towards cell cycle exit. As discussed above, Pax6 overexpression significantly 

induced cell cycle exit of cortical progenitors during late corticogenesis, highlighting 

the fact that individual aspects of cortical development are temporarily regulated by 

Pax6 and thus are sensitive to Pax6 levels at different thresholds. This interpretation 

is further supported by findings that, at early stages of corticogenesis, cell cycle 

parameters were not affected in the PAX77 cortex, whereas Pax6 overexpression 

significantly increased cell cycle length of late cortical progenitors in rostral regions 

of the mutant cortex. Collectively, these data extend previous findings on the effects 

of Pax6 levels on cortical progenitor proliferation and neurogenesis and further 

suggest that the consequences of disruption of Pax6 levels differ on a developmental 

stage-dependent manner. Investigating the temporal control of core genetic networks 
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influencing corticogenesis through manipulation of temporal Pax6 deletion, i.e. using 

the model employed in the present study, remains a primary goal for future work. 

Elucidating the molecular and cellular networks in which Pax6 operates has 

important implications for the field of neurobiology as well as for future treatment of 

brain disorders. For example, the potent neurogenic role of Pax6 has tremendous 

clinical importance for the development of effective stem-cell based strategies that 

would enable cell replacement therapy. Pax6 overexpression is sufficient to 

reprogramme even postnatal cortical astrocytes towards functional neurons, whereas 

non-Pax6-expressing mouse striatal cells are resistant to Pax6-driven neurogenesis 

(Heins et al. 2002; Berninger et al. 2007). On the other hand, Pax6 overexpression in 

neural stem cells derived from the human cortex or striatum increases neurogenesis 

and concurrently inhibits the generation of astrocytes, whereas Pax6 ablation has the 

opposite effect (Kallur et al. 2008; Mo and Zecevic 2008). These data are in good 

agreement with the recent demonstration that, in contrast to the rodent brain, Pax6 is 

expressed both in the human fetal cortex and striatum (Mo and Zecevic 2008). 

Furthermore, findings that disruption of Pax6 levels has prominent effects on cortical 

progenitor proliferation are also of clinical significance. For instance, low levels of 

PAX6 expression are indicative of poor prognosis for patients with glioblastoma 

multiforme (GBM), the most common of primary malignant brain tumors (Zhou et 

al. 2003). Most importantly, PAX6 activation is sufficient to suppress GBM cell 

growth both in vitro and in vivo (Zhou et al. 2005). In agreement with this, a tumor 

suppressor role for PAX6 has also been demonstrated in tissues other than the brain 

(Shyr et al. 2010). 

A trend towards increasing the proliferation capacity of neurogenic progenitor cells 

is considered to be central to the evolutionary expansion of the cerebral cortex. As 

exemplified by the cortical phenotype in Pax6 loss-of-function mutants, neuronal 

production would be reduced if the progenitor pool is reduced in size due to 

premature cell cycle exit or low proliferation rate of self-renewing cortical 

progenitors. Furthermore, basal mitoses of cortical progenitors have increased in 

number during evolution. The recent characterization of basal progenitors, which 

have limited self-renew capacity and double the neuron number after a single round 
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of cell division, has proposed that this progenitor cell population contributes to 

increased neuronal production and thus might explain the increase in cortical size in 

primates (Kriegstein et al. 2006). However, such a scenario seems not to be fully 

supported by recent work. Other than the VZ, the germinal compartment of the 

primate cortex comprises an inner subventricular zone (ISVZ) and an outer SVZ 

(OSVZ) (Smart et al. 2002; Fish et al. 2008). On the basis of their cell biology and 

marker expression, the primate ISVZ progenitors resemble the rodent basal 

progenitors (Fish et al. 2008). The basally-dividing OSVZ progenitor population, a 

unique feature of the primate cortex, expands considerably prior to the peak of 

neuronal production and it appears that this novel proliferative layer is the major 

source of superficial layer neurons in primates (Smart et al. 2002; Lukaszewicz et al. 

2005). OSVZ progenitors express Pax6 and exhibit radial glial characteristics, thus 

supporting the idea that evolution has favoured the generation of radial glial cells that 

function as neural stem cells (Lukaszewicz et al. 2005; Fish et al. 2008; Hansen et al. 

2010). Furthermore, elegant live-cell imaging of developing human tissue has 

recently shown that the OSVZ progenitor population expands massively in a Notch 

signalling-dependent manner (Hansen et al. 2010). Following on from these 

observations, Pax6-expressing progenitors are central to a mechanism employed for 

the evolutionary expansion of the cerebral cortex. 
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