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Abstract 

A new hierarchical model is proposed for the analysis of covariance with random, un-

equal variances. Bayesian inference for the new model depends upon uncertainty in the 

degrees of freedom for a chi-squared distribution. The convergence of MCMC is vali-

dated by extremely accurate Laplacian approximations. Practical applications include 

neuropsychological tests in offender profiling and nutrition data. As a special case, the 

parallel line model with equal variances is considered, and alternatives to the F-test 

for the equality of the group effects, including Bayes factors, are investigated. 

In the final chapter, a self-similarity spatio-temporal model for the pressures of oil 

wells in an Alaskan oil field is considered, and our Bayesian techniques are extended to 

this situation with a view towards future interdisciplinary research. 
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Chapter 1 

Analysis of covariance (parallel 

lines model) 

1.1 Introduction 

The analysis of covariance (ANCOVA) method is due to Sir Ronald A. Fisher, who 

in the 1920's recognized the importance of accounting for additional potential sources 

of variation when comparing different treatments in agricultural experiments, and first 

described the method in 1932. The first occurrence of the term is attributed by David, 

(1995) to Bailey for his 1931 paper. Nowadays the idea of combining regression and 

analysis of variance in linear and generalized linear models is very common and ap-

plied in several different ways, (Cox and McCullagh, 1982), to increase the precision in 

designed experiments, to reduce the bias in observational studies, for adjustments for 

missing values in balanced designs and for adjustment for historical controls in clinical 

trials. Its analysis, that enables the comparison of factor levels while adjusting for the 

association between response and covariate, in situations where such a comparison is 

meaningful, can be found in many standard statistical texts, for example see Searle, 

(1987), and for a more applied perspective, Yandell, (1997). 

The most simple form of the model is 

Yij = Oi + t3(x - x) + ejj 
	

(1.1) 

for i = 1 1  2,..., m, and j = 1, ..., n, expressing that the mean response for each group 

depends on the group, via O, as well as the covariate, through x 23  - x i ., with the two 

effects being additive. We use Yij  and xij to denote the values of the response and the 
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covariate respectively for the jth member of the ith group and the dot symbol to denote 

average with respect to the corresponding subscript. The slope /3 is the change in y's 

associated with a unit change of the covariate, and the error terms cij are assumed to be 

independently normally distributed with mean 0 and variance a, or Eij ' IN(0, of). 

This model is the most elementary form of a class of models appearing in the liter-

ature. Cochran (1957) and Cox and McCullagh (1982) discuss theory and applications 

of the fixed effects model with equal variances. Fairfield Smith (1957) gives emphasis 

on different interpretations of the adjusted slope and factor means assuming various 

relationships between the covariate and the factor. Urquhart (1982) also analyzes ad-

justed group means when a factor affects the covariate. Zelen (1957) discusses appli-

cations of ANCOVA models to incomplete block designs with the slopes dependent or 

independent on the blocks. Federer (1957) studies two-way classifications with several 

covariates and unequal number of observations per cell. Wilkinson (1957) presents a 

method of performing analysis of covariance when a set of responses is missing while 

the covariate information is complete. Finney (1957) examines difficulties associated 

with attempting to balance treatment allocation with respect to the covariates. Coons 

(1957) describes further techniques for missing data. 

The previous authors all provided ANCOVA results related to the linear model and 

its various fixed effects applications. More general versions of the ANCOVA model 

include these of Koch, Amara, Davis and Gillings (1982), who investigate a variety of 

procedures for categorical data, Quade (1982), who suggests a non-parametric matching 

based analysis for measurement data or their ranks, Lane and Nelder (1982), who extend 

the fixed effects analysis to generalized linear models, Henderson (1982), who discusses 

random regressions, and Hendrix, Carter and Scott (1982), who assume fixed effects for 

different slopes. Theobald et al (1999) discuss applications of ANCOVA models with 

mixed and nested effects to crop variety trials. Related work in a Bayesian context, 

placing emphasis on combining regressions than comparing factor effects, is that of 

Lindley and Smith (1972), Smith (1973a), Miller and Fortney (1984) and Blattberg 

and George (1991). 

The current research was motivated by a study of the scores of five different groups 

of people (three different kinds of offenders in Scottish prisons and two different kinds of 

controls from Stanford, U.S.A.) on twelve different neuropsychological tests. The main 

question of interest was whether different groups were associated with higher scores for 

certain tests. These tests were also thought to be related to the participants in the 
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study age. 

Our initial primary target, was to establish whether we could find improved alter-

natives to the standard (F test) procedures for assessing equality of the group effects. 

This will ultimately lead us into an alternative type of Bayesian inference based on a 

continuous prior distribution. 

1.2 Thesis plan 

A brief introduction to the analysis of the random effects parallel lines ANCOVA model 

is first given in the continuation of this chapter, followed by a discussion of the standard 

F tests and an extensive study of the frequency properties of a number of alternative 

tests statistics, including Bayes factors, for testing equality of the group means. The 

second part of the chapter deals with the Bayesian inference for this model, further 

procedures for assessing equality of the means, model adequacy and a few practical 

testing suggestions, which are introductory to ideas presented in Chapter 2. 

Chapter 2 is a purely theoretical chapter, introducing a new hierarchical analysis of 

covariance model with unequal variances, a presentation of MCMC procedures and their 

application in the full Bayesian analysis of this model, and concluding with extensions 

to models with many covariates. 

In the third Chapter, we analyze a variety of data sets, including the complete 

neuropsychological test data and an animal nutrition data set, and test our Bayesian 

interpretations against two groups of simulated data sets. 

Laplacian approximations are discussed in Chapter 4. Following two initial rela-

tively simple examples, we present a special case of such an approximation, demonstrate 

how to apply it in order to achieve very accurate inferences in our proposed model, and 

hence help validate the convergence of the MCMC methods. 

The thesis continues with Chapter 5, where a multiple response self-similarity spatio-

temporal model, used for the analysis of oil well pressures, is proposed, together with 

extensions of our preceding Bayesian techniques to this situation. The analysis for 

a simpler version, single well, model via MCMC and its application on a number of 

oil wells is also presented. Some suggestions for future work are included in the final 

section of this chapter. 

The final chapter of the thesis (Chapter 6) provides a brief description of our con-

clusions and their implications. 
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1.3 Classical inference for the random effects ANCOVA 

model 

The random effects parallel line ANCOVA model, for m groups and n, for i = 1, . . . , m, 

observations per group is described by the following formulation: 

Conditionally on the random effects, 01,02,... 0, the slope, 6, and the variance, 

or, , the observations Yij  are independent, for i = 1,.. . , m and j = 1,... , n2 , and 

normally distributed with respective means 

	

0+/3(x —xi.) 	(i = 1, ... ,m), 	 (1.2) 

and variance o, with x2 . denoting the ith group covariate mean. 

Conditionally on a,po and AO, the Oi are independent and normally distributed 

with common mean jig and variance a = )ga, for i = 1,.. . , m. 

Following Box and Tiao, (1968), we introduce the unknown parameter A9 which 

measures deviations of the random effects Oi  from their mean and will be used for 

testing the group mean equality hypothesis. 

Define 

S2 = { j - Yi. - $(x - 

	

= >1 >i:;= (y - yi.) 2  - {>: 	=i (x - x) (yjj - Yi.)}2 /s2 , 	( 1.3) 

with 
—1 m ni 	 7Ti fli 

= I 	(x - x.)2 	i E (x - xi.) (Yij - yi.) , 	(1.4) 
i=1j=1 	 ) 	i=ij=i 

and 
m n 

= 	(x23  - x)2 , 	 ( 1.5) 
i=1 j=1 

with S the residual sum of squares, 3 the least squares estimate of the slope coefficient, 

and s2  the within groups sum of squares for the covariate. Set also 

N* = N - 	n?/N, 	 (1.6) 

with N = 	n, the total sample size. 

The ANOVA table for this model, which forms the basis for frequentist inference, is 
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Table 1.1: ANOVA table for the random effects parallel line model. 

Source of variation 	SS 	 Expected SS 

Between groups 	 i ni(i. - 	 N* cr  2 + (m - 1)a 

Regression 	 2 s2 	 /3282 + orc  

Residual 	 S 	 (N - m -  1)o 

Total 	 :i 2i (Yii - Y..) 2  N* 0.2 + /322  + (N - 1)cr 

presented in Table 1.1. It is an extension of the ANOVA table of the random effects one-

way model to include the covariate and of the standard fixed effects ANCOVA model 

to accommodate the random effects, and hence, slightly non standard. To derive the 

expected between groups sum of squares we first need to observe, taking expectations 

only with respect to the distribution of the data Yij,  that 

and 

)=O' — E N 
(1.7) 

2( 1  
var(yj - y) = o 	- 	, 	 (1.8) 

and subsequently that 

E 

 (

m 	 m 

ni(Yi. - )
2) = njn? + (m - 1)a. (1.9) 

Since, by taking expectations with respect to the distribution of O, the following two 

equalities hold 

E0 (u) = 0, 	 (1.10) 

and 
m 2 ni  

var9(uj)=  

combining (1.6), (1.9), (1.10) and (1.11) provides the result appearing in Table 1.1. For 

the slope parameter /3, we have that 

- yj ) = 3 (x3 - x.), 	 (1.12) 

and 



(1—-)0 , , ifi=k,j=1 ni 

cov(yij 	Yi.,Ykl 	Yk.) = 	 if i = k, j 34 I . 	(1.13) 
ni  

0, 	ifik 

Hence by (1.4), (1.12) and (1.13), we obtain, after some algebraic manipulation, 

(1.14) 

and 

var(i) = cr/s2. 	 (1.15) 

Both previous results are identical to these of the slope of a simple linear regression 

model. The same holds for the expected sum of squares for the regression term. Finally, 

for the residual sum of squares, we have that 

m n 1  

S= >>(yij  —y2.)2 _s2, 
	 (1.16) 

i=1 j=1 

and by (1.12), (1.13), (1.14) and (1.15), we obtain the expectation of (1.16) to be equal 

to (N - in - 1)0. This is another well known result related to linear models. 

A standard way of testing the null hypothesis H0 : 01 = 02 = ... = Om , or equiva-

lently H0 : AO = 0, is via the F statistic, 

F = Lj=1 nj(yj. - y..) 2 /(m 1) 	
(1.17) 

S1(N—rn-i-1) 

Under H0, the statistic in (1.17) has an F distribution with m - 1 and N - m + 1 

degrees of freedom. For the hypothesis H : /3 = 0, the corresponding test statistic is 

F' - 
	

(1.18) 
- S 

 
RAN —m+1)' 

which has an F distribution with 1 and N - m + 1 degrees of freedom when H is true. 

A slightly different approach is that of adjusted tests (Type III F tests) of hypotheses, 

that condition on all other parameters included in the model, before constructing the 

appropriate F test for the parameter of interest. For relevant details on the fixed 

effects ANCOVA model see Yandell (1997, pp.  263-269). A subsequent step, when 

the overall equality test provides a significant result, would be to perform individual 

pairwise comparisons, using Fisher's least significant differences (LSD) or some other 
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method, or test other required contrasts. In this situation, it may be of interest to 

consider the adjusted least squares means, which are defined as 

= yi. - $(xi. —x..), 	 (1.19) 

and permit the comparison of different group means at the same level of the covariate. 

This comparison, however, may not always be reasonable, see Cox and McCullagh 

(1982, pp.  550-551) for further details. 

1.3.1 F test properties 

The standard F statistic optimality properties (see Arnold, 1981), for testing hypothe-

ses in the linear models depend largely on whether the data are balanced or not. Hence, 

for the slightly simpler one-way random effects model, the standard F statistic con-

stitutes an optimal test (Khuri et a!, 1998, p.  13), which means it is uniformly most 

powerful similar (UMPS), unbiased (UMPU) and invariant (UMPI). However, while 

the F statistic can still be employed as a fixed size test, it possesses neither of the three 

previous properties in the unbalanced case (unequal number of replications in different 

groups). 

The lack of an optimal test for testing the mean equality hypothesis will motivate an 

investigation of the frequency properties of a number of alternative test statistics, some 

of them Bayesian, based on the posterior density of A0, that will be presented in the 

following sections. For example, the F, the likelihood ratio, and Bayesian statistics can 

yield different significance probabilities for observed data sets. Which significance prob-

ability is appropriate? A final suggestion will be made in section 1.13, after extensive 

study. 

1.4 Test statistics for equality of group means 

We will study the Bayes factor for testing the hypothesis of interest. Bayes factors 

are known to be associated with problems in Bayesian interpretation, but nevertheless 

possess a power optimality property. Definitions and a relevant discussion will be 

presented in section 1.5. 

We will also consider a number of other Bayesian test statistics, based on the pos-

terior distribution of A0, namely the posterior mean, the posterior mode, the posterior 
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median, and the posterior mean of the quantity i, that will be defined later. 

Firstly, however, we will obtain the likelihood ratio test statistic, a modified version 

of it, based on a ratio unbiased estimator of Ao,  as well as consider the actual maximum 

likelihood estimator (MLE) of AO as possible test statistics. 

1.4.1 Likelihood ratio tests 

Given the model formulation described in section 1.3, the joint distribution of y and 0 

conditionally on 3, o, po and A9 is 

p(y ,0I)3,o, 1o ,Ao) = p(yI 0 ,I3,u)p(0 Ia,iLo,Ae) 
1 

	

= fl 	fl 	(2ira 	1/2 exp 	{Yij - O - 	- x . )} 2 ] 

- 1/2 h______ 

	

fl 	(2irAo 2 ) 	exp 	(0,- 
1 2 

 

(1.20) 

For the first exponent in (1.20) we have that 

Tn ni 	 m 

> > {yz, - 0 - ,8(x j  - x.)} 2  = S + 	ri1(y. - 0)2 + (3 - /3)22, 	(1.21) 
i=1 j=1 	 i=1 

with S, $ and s 2  defined in (1.3), (1.4) and (1.5) respectively. To obtain the MLE for 

A9 we need to integrate out the random effects Oi from (1.20) and subsequently maximize 

with respect to the four parameters 3, o, po and A9. To perform the integration, the 

following lemma is useful. 

Lemma 1.1. Let a, 0 and -y be (p x 1) vectors, and let A and B be (p xp) symmetric 

matrices such that A + B is nonsingular. Then the identity 

= (-y -y *)T(A+B)(- y -y *)+(a /3)TH( a 13) 

holds, where y* = (A + B)'(Aa + B)3) and H = A(A + B) - 'B. 

Proof. See Box and Tiao, 1992, pp.  418-419. 

Corollary 1.1. If a, 3, 6, A and B are scalars with A and B 34 0, then 

A(6 - a) 2  + B(0 - j3)2 = (A + B)(O - 9*)2 + (A + B-')-'(a - /3)2 

where 6* = (A + B)'(Aa + B/3). 
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Hence, by Corollary 1.1, for the quadratic term in Oi of (1.20), we have that 

nj (yi, - O) 2 +A' (Oj - 	= (n + A -') (oi - 0fl2+ (1' + 
AO) 

-1 (yi. - 
tLO )2 (1.22) 

with 

	

= (niyi. + )9 1 p9)/(nj + A -1 ) 	 ( 1.23) 

Integrating out the O, using that 

I 

	

f 1/ exp _—(x _ P ) 2 }d cxa, 	 (1.24) 

	

j 	2a 

we can obtain the likelihood of 3, a, pg and A0, which is 

£(/3,a,po, Aely) ° ()_ N/2 rim, (n i  + A9) "2  

exp [_k {S '2 ( Y,.  + 	(ny' + Ao)' 	- 110)2 + ( _,3)2 8 21]  

(1.25) 

The MLE's of 0, o, po and Ao,  under the alternative hypothesis, H, : A0 0, are 

obtained by maximizing (1.25) with respect to these parameters and are found to be 

equal to 

(1.26) /31 = 

= s + >= (- 1 ± 
Ae) 1  (yi. - o,i)2 	

(1.27) 

A9) 	yi. 	
(1.28) 

	

110,1 = 	(a_i + 

with A0, maximizing the profile likelihood of A9, i.e. 

m 
£(Aoiy) fl (ny' + A9)

-1/2  {s + m (n' + A9) '  ( - 
	) 2} 	(1.29) 

i=1 	 i=1 

The latter maximization does not have an algebraically explicit solution, so we will use 

a suitable iterative algorithm to perform it. Under the null hypothesis, H0 A0 = 0, 

the MLE's of 0, o,, , pg in (1.26), (1.27) and (1.28), reduce to 

(1.30) 
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= S+>j1nj(yi.— y..) 2  
N 	

(1.31) 
6'0

P9,0 = V... 	 (1.32) 

Consequently, the likelihood ratio test (LRT) statistic for testing H0 is 

1/2 
(ii N/2 " - 
	in 

1/2 
flT ' + 0) 

(7E,O) 	

r 
LRT= 	 fln 	( 	 Jl.. 	

(1.33) 
i=1 

	

Notice that the unbiased estimates of a 2  and or , denoted by 	and &2  respectively, 

can be determined using the expectations in Table 1.1. In this way, a ratio unbiased 

estimate of )g, denoted by A9, equals 

= 	= rn—i max(F — 1, 0) 	 (1.34) 
a N 

with N*  defined in (1.6), since 

= rn—i 	{FiniY_Y..2 _&o}. 	 (1.35) 

The modified LRT statistic, which replaces A9 in (1.33) with A9 will also be studied. 

1.4.1.1 Equally replicated case 

In the equally replicated case, ni = 2 = ... = nm  = n, the MLE's of PO under the 

two hypotheses coincide (they are equal to y..) and the value of A0 that maximizes the 

profile likelihood in (1.29) can be expressed in an algebraically explicit fashion. For, 

since the MLE of o ,2  under H1 is equal to 

or E 	
S + (n + Ao) 1 	i(Yi. - V.)2 	 (1.36) 

N 

maximizing minus twice the log of the LRT statistic with respect to A, we obtain that 

	

—rn + (6,) -1  (n-1  + )_1 	(y. - y..)2 = 0, 	 (1.37) 

and after some algebraic manipulation that 

o= max  1(m1)m)F_l  o}. 	 (1.38) 
ii 	L. rn(N—rn-1) 
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In this case, the LRT statistic is a strictly increasing function of A0 and hence of the F 

statistic. As a result, the significance probabilities and power associated with the two 

tests coincide. The same conclusion is valid for the relationship of the F statistic with 

the modified LRT statistic, by equation (1.34). 

1.4.2 Statistics based upon the posterior density of A9 

The likelihood of 0, o- , MO and AO is given by expression (1.25). Assume a uniform 

prior distribution for 0, a, ILO and A0. Then the posterior distribution of the four 

parameters is 

- 1/2 
7r(/3, cr, p, AoIy) cx £(/3, cr, P0, AoIy) cx (cr)_N/2 fI 	(a_i + Ao) 

	

exp [_1 {s + 	(n + Ao) '  (yi. - p0) 2  + ($ - 
 3)2.92 

(1.39) 

Integrating out 6, using the normal integral, we have that 

-  
7r(a,po, AoIy) cx (a2)_(N_l)/2 Fi1 (a_i + 

AO 1/2 
) 

x exp 	{s + 	(ny' + Ao) ( - ) 2}] 	
(1.40) 

To integrate (1.40) with respect to po  the following Lemma is necessary. 

Lemma 1.2. Let x, for i = 1, 2,..., m, and c be (p x 1) vectors, and let F for 

i = 1,2, ..., m be (p x p) matrices such that 	F is nonsingular. Then the identity 

	

in in 	 m J>,
- )TF(x - o) = 
	

- )TF(a - ) + 	- )Tj,.(• 
- 

holds, where i = 	F) 

Proof. 

M 	 in 

= 

M 	 m 	 in 
= 

M 	 m 	 m 
= 

M /m \m 
+ 2 (a - ) T 

F2 

(j 
F2) 	F2 xi 

i=1 	j1 	i=1 
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m 	 M 
= 

Corollary 1.2. If x 2 , f2, for i = 1,2,...,m, and a are scalars, with >ifi  1 54 0, then 

Tn 	 m 	 m 

fi  (xi - a) = 	f (a - )2 + 	
- 

where = 	fix/ Em , fi. 

Applying Corollary 1.2, we directly derive that 

M 	 In 	 m 

	

(n + A0) ' (y—e)2= 	(ny' +A9) '  (yj.-9)2+ 	(nit + Ao) (o 
_)2, 

i=1 	 i=1 	 i=1 
(1.41) 

with 	 - 	

(ni' + A9) 
-1 

r•. 	 (1.42) y0 =  

A second integration using the normal integral provides that 

(1 
7r (01

2
, A9, 

) 
X (a)_(N_2)/2 exp 	(s + A9) } T(Ao), 	(1.43) 

with 
M 	 1/2 

T(A) 
= L'1 (nIl + Ao) 	~ : j (n + Ao) ' } 	, 	 (1.44) 

and 

	

A9 
= 	

(ny' + Ao) 1  (yi. 
- )2 	 (1.45) 

The previous density has, as a function of a, the same parametric form as an inverted 

chi-squared density with N-4 degrees of freedom and scale parameter (S 2 +Ao)I(N -4). 

Using this observation, the integration with respect to the variance or
,, 
 can be performed. 

Hence the posterior density of A9 is 

	

4+ 	(np' + Ao) (y 
- )2} 	T(A9). 	(1.46) (Ay) 

{ i= 1 

Using (1.46), it is possible to perform a numerical integration in order to obtain 

the constant of proportionality and, subsequently, use another one to evaluate the 

posterior mean of A9. Additionally we can maximize (1.46) numerically to obtain its 
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posterior mode, or combine numerical integration and linear interpolation to compute 

its posterior median. 

Another quantity we will consider as a possible test statistic for equality of the 

group means is the posterior mean of 

ni 	
(1.47) 

i=lnz+ 0 

Since, as we show later, in (1.67), we have that 

E(OIAo,y) 	
ni 	 ni 	

(1.48) 
n+A0 	(1 	I 

=  

E(770 1y) 	0.5 suggests equality of the O, while E(7701y) > 0.5, inequality, though this 

specific comparison with 0.5 incorporates the concept of practical significance and is 

not a fixed size test for statistical significance. 

1.4.2.1 Equally replicated case 

In the equally replicated case, yo  in (1.42) reduces to y.., and hence the posterior density 

of A0 can be rewritten as 

{ 
	} 	

)/2 

S2 	(y
-

( Ay) 	 1 	1 
 

(n + A0)(ml)/2 	(1.49) 

Using the transformation z = (m - 1)F/{(m - 3)(n' + Ao)n}, with F the standard F 

statistic, defined in (1.17), we obtain that the posterior distribution of z satisfies 

(zIy) 0C(i 
+ m-3 	-(N-4)/2 

N - m - 
	 (1.50) 

and hence z has an F distribution with m - 3 and N - m - 1 degrees of freedom, but 

truncated at z = (m - 1)F/(m - 3). We assume here a uniform (0, oc) prior for A0. 

Notice that, under H0 : A9 = 0, z is equal to the standard F statistic multiplied by 

the adjustment (in - 1)/(m - 3) due to our choice of prior distribution. The final test 

statistic we consider is the Bayes factor, with a detailed discussion of its properties and 

characteristics following immediately. 
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1.5 Bayes factors 

Definition 1.1. Given two hypotheses, H0  and H1 , the Bayes factor in favour of H0  is 

given by the ratio of the posterior to the prior odds of the two hypotheses, or if models 

M0 and M1  correspond to H0  and H1  for data y, 

-  
Bayes factor 

p(yIMo) - p(M o Iy) /P(MO) 	 (1.51) 
- p(yIMi) - p(MiIy)p(Mi)'  

(Bernardo and Smith, 1994, p.390). 

Hence, the Bayes factor, which is first attributed to Jeffreys (1935), is equivalent 

to the ratio of the integrated likelihoods. It reduces to the likelihood ratio when the 

two hypotheses are simple and requires an integration over the parameter space when 

one of the hypotheses is composite. In this way, it differs from the likelihood ratio 

statistic that involves maximization with respect of the nuisance parameters. Unlike 

classical significance tests, the Bayes factor quantifies the evidence in favour of a null 

hypothesis and can be used for non-nested alternative hypotheses without theoretical 

complications. 

By its definition, comparing the Bayes factor with the neutral value of 1 can be 

used as a first indication of whether the data favour the null hypothesis. Kass and 

Raftery (1995), slightly modifying earlier suggestions by Jeffreys (1961), provide a 

table of ranges of values of the Bayes factor and the corresponding strength of evidence. 

However, their guidelines appear not to be universally accepted. 

There are a number of difficulties associated with the Bayes factor. The first obvious 

one is its dependence on the prior distribution. O'Hagan (1994) discusses additional 

difficulties associated with fiat prior distributions. In particular, for testing simple ver-

sus composite hypotheses, a proper prior of increasing range results in increasing values 

of the Bayes factor. Taking this situation to the limit, by assuming an improper uni-

form prior on the real line, would give a value of the Bayes factor equaling oo, with the 

obvious difficulty in interpreting it. Hence, the Bayes factors based on improper priors 

cannot be interpreted using a standard table, as described above, since the normalizing 

constants are missing. 

Berger and Mortera (1999) discuss the properties of a number of variations of the 

Bayes factor used in the absence of subjective prior information, like the fractional Bayes 

factor (O'Hagan, 1995) and the intrinsic Bayes factor (Berger and Perrichi, 1996), which 
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present their own challenges as well. For example, the fractional Bayes factor uses a 

part of the data to obtain the posterior distribution of the quantity of interest. This 

posterior distribution subsequently plays the role of a (proper) prior for the evaluation 

of the Bayes factor based on the remaining of the data, with the obvious question of 

how to choose the training part of the data for the first step of that application. 

Lindley (1957) discusses the statistical paradox of rejecting a null hypothesis at level 

of significance a, while the posterior probability that the same hypothesis is true is as 

high as 100(1 - a)% for sufficiently large sample size, under a uniform prior, in which 

case the posterior probability of interest is an increasing function of the Bayes factor. 

This situation, called Lindley's paradox, was studied by numerous authors since then; 

see Bernardo and Smith (1994, p.  394). Atkinson (1978) discusses further problems 

when interpreting Bayes factors, that can lead to counterintuitive properties. 

Despite the difficulties in its interpretation, the Bayes factor is associated with an 

optimality property discussed in the following sections. 

1.5.1 A Bayes factor optimality property 

Definition 1.2. For any set A, let 'A  be its indicator function defined by 

IA(x)-1 or 0, 	as xA or xA. 	 (1.52) 

Crook and Good (1982) present the definition of the strength of a test and a 

Neyman-Pearson type theorem for testing a simple null hypothesis. They adapt the 

standard proof (e.g. Lehmann, 1994, pp.  74-76) of the Neyman-Pearson lemma. A 

generalization of that definition and theorem, covering the composite null hypothesis 

case, is presented below. 

Definition 1.3. Let y=(yi,.. . , Y N )T an (N x 1) vector of observations possessing 

specified sampling density or probability mass function f(yJ4), given an unknown vector 

of parameters = (41,2)T, for y E 7ZN, 4" E i C flY' and 4'2  E 2 c 7ZP2 . 

Consider the composite null hypothesis H0 4'1 = 00 versus the alternative hypothesis 

H 1  4'1 4'. Let 1 = 	X 2,  G denote a probability distribution concentrated on 

, 4o the subset of 4 for which -01 = 4' and 	the complement of o.  Then the 

strength or average power (against G) of a significance test of size a, is 

= E 1(Ø)/3*(4') 	 (1.53) 
4ic 
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where /3" (4)) is the power function of the test, and the expectation is with respect to a 

random vector 4) possessing distribution G. 

Note that in the previous definition, as the null hypothesis is composite, we define the 

size a of the test to itself be an average, that is 

a = E I0 (4)/3(4)). 	 (1.54) 
çbIG 

This differs from the standard definition that uses a supremum. The current definition 

might be regarded as more appealing. The decision theoretic proof of the following 

theorem extends an idea by John Hsu, and a proof, related to two simple hypotheses, 

reported by Rice (1988, pp.  524-525). 

Theorem 1. Consider the test ?I* which accepts H0 , whenever 

	

A(y) > K, 	 (1.55) 

where 
E I o (4))f(yI4)1,4)2) 

AM
OIG 	 156 

- E I(4))f(yl4)1,4)2) 
OIC 

and K is determined by the size a of the test. Then 	maximizes the strength against 

G among all tests of size a. 

Proof. Let ir, (ir 0 0), and lr*  denote respectively the prior and posterior probabilities 

that H0  is correct. Applying Bayes' theorem, we find that 

irE 40(4))f(yl4)1,4)2) 
* - 	 4)ia 	 - 	7r.\ (Y)  
- irE I 0 (4))f(y4) 1 ,4)2)+(1—ir)E I(4))f(yI4)',4)2) - 

4)ic 	 4)ic 
(1.57) 

Also consider the usual zero-one loss function, defined by 

L(Ho, 4)) = 0 for 4)j. = 4), 	L(Ho , 4)) = 1 for 4)1 	
(1.58) 

L(Hi , 4)) = 1 for 4)1 = 4), and L(Hi , (P) = 0 for 4)1 $ 4). 

Then 

E. L(Ho , 4)) = 1 - ir*, 	and 	E L(Hi , 4)) = lr * . 	(1.59) 
4)Iy,G 

IL'] 



The test that accepts H0  when 7r* > 1/2 is Bayes, (Casella and Berger, 1990, theorem 

10.3.3, p.  477). Hence the Bayes rule accepts H0  when .A(y) > 1/7r - 1, which means 

that V)* is a Bayes test against G with K = 1/7r - 1. Notice that ir does not need to be 

defined in advance, but is defined once K is obtained based on the size of the test. 

The risk function of any test 0 with size a and power function 3() satisfies r (q5) = 

for 01  A 4, and averages a on 	The average risk of test b under the 

prior distribution G on 4 is 

R0 =ira+ (1 —ir)(1 — ,@G), 	 (1.60) 

where I3G is the strength of 0. Then, if R is the average risk of 

R = 7ra+(1-1r)(1—/3) 
(1.61) 

< 7ra+(1-7r)(1—BG), 

since b' is Bayes. Consequently 	> ,8G and the proof is complete. 

The immediate consequence of the previous lemma is that the Bayes factor, as a 

test statistic, must have better power properties than F for some values of A0 in the 

parameter space. Also, by changing the interval upper bound of the uniform prior of 

A, it is possible to improve the power in areas of particular interest in the parameter 

space. Hence, from a Fisherian point of view, the prior distribution need not be based 

upon prior beliefs, but rather upon the required power properties. 

Crook and Good (1982) compared the power function of the Bayes factor with the 

power functions of three other statistics, the likelihood ratio, the chi-squared and the 

type II likelihood (hyperlikelihood) ratio, the distributions of which are studied in detail 

in Good and Crook (1974), for testing equiprobability for multinomial distributions and 

association for contingency tables. The results found confirmed Theorem 1, however 

the differences in strength were small, all less than 1%, as the authors expected, due to 

the functional relationships between the four test statistics. 

For the hypothesis H0  A9 = 0, the Bayes factor (BF) is defined as 

BF = p(yIAe = 0) = ir(AoIy) L=0 (1.2) 
p(y) 	ir(Ao) 	 ' 
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with ir(A g ) and ir(AgIy) denoting the prior and posterior densities of Ag respectively. 

Assuming a uniform (0, 1) prior for Ag, corresponding to a prior sample size of at least 

one, the Bayes factor becomes 

BF = ir(Ae = Oly), 	 (1.63) 

and hence it is equal to the value of the full posterior density of AO evaluated at 0. 

Assume that the posterior density of Ag, including the normalizing constant, has already 

been computed under the uniform (0,1) prior and it is required to obtain the Bayes 

factor under a restricted range for the uniform prior, e.g. 0 < Ag < A, over which 

optimal strength is required. Then, if we denote by ir(Aoy) and ?(Agy ) the posterior 

density of A0 under the former and latter priors respectively, and BF and BF the 

corresponding values of the Bayes factor, since 

	

- 	ir(A 
A 	

oIy) 	
for 0 < Ag < A, 	 (1.64) 7r(oIy) 

- fir(AgIy)dAg' 

the following equalities hold 

	

T= ir (AgIy) = 	ir(Ao=OIy) 	= 	BF 	
(1.65) 

r(Ag) 1=o 	A'fr(AgIy)dAg 	A_1fir(Agy)dAg 

Hence the Bayes factor under the second prior can be computed with negligible further 

computational effort, given the fact that a one dimensional numerical integration had 

already been used for the calculation of the normalizing constant of ir(AgIy). 

1.6 A simulation study 

Throughout this chapter we will be using a small part of the neuropsychological study 

data, that motivated our research, to illustrate properties of the model we are study -

ing and the different test statistics. We also produced three additional data sets by 

altering the observed group means, so that our simulation study covers a broad range 

of significance probabilities. We selected small sample sizes to enhance possible power 

differences. A more complete analysis of the data, with more general forms of the 

ANCOVA model will follow in Chapters 3 and 4. 

The data sufficient statistics are presented in Table 1.2 and correspond to sample 

sizes ni = 8, n2 = fl3 = 5, n4  = 4 and fl5 = 14. 
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Table 1.2: Sufficient statistic values for the four data sets. 

Sufficient 
statistics 1 

Data set 
2 	3 4 

6.375 16.625 5.000 6.875 

 3.800 19.200 4.000 3.800 
 5.400 13.400 6.800 5.600 

3.000 4.750 0.250 2.750 
8.643 19.429 7.000 8.786 
-0.902 -0.608 0.404 -0.074 

SR2 	301.976 2025.408 517.307 681.704 

We proceed by presenting the proposed test statistic values and significance proba-

bilities for the four data sets in Tables 1.3 and 1.4. 

Table 1.3: Test statistic values for the four data sets. 

Statistic 	 Data set 1 Data set 2 Data set 3 Data set 4 
F 3.8612 2.7979 2.3596 1.8802 
MLE of AO 0.2965 0.1910 0.1254 0.0899 
-2log(LRT) 4.4528 1.2219 0.7808 0.7376 
-2 log ("Modified" LRT) 4.3133 1.1591 0.6822 0.6780 
Posterior Mean 0.5066 0.4643 0.4300 0.3863 
Posterior Mode 0.3499 0.2530 0.1741 0.1196 
Posterior Median 0.4920 0.4406 0.3935 0.3337 

E(oIy) 0.7089 0.6754 0.6517 0.6217 
-2log(Bayes Factor), AoU(0, 1) 4.0662 1.1126 0.4278 -0.0621 
-2log(Bayes Factor), Ao'U(0,0.5) 4.1043 1.3632 0.8482 0.5557 

For the likelihood ratio test, we did not employ the well known asymptotic result 

stating that the distribution of minus twice the logarithm of the ratio of the likelihood 

under the null and the alternative hypothesis has a chi-squared distribution with, in 

our case for H0  : AO = 0, one degree of freedom. Rather, and similarly with all the 

other test statistics studied, apart from the F statistic, we found the true test statistic 

0.95 and 0.99 percentiles, under the null hypothesis, based on Monte Carlo simulation. 

For computational economy, we performed all posterior density calculations assuming 

a uniform (0,1) prior on A. The maximizations required for the posterior mode and 

the MLE of A9 were performed by the regula falsi (false position) method. For the 

numerical integrations, Simpson's rule was used, in an adaptive manner, successively 
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Table 1.4: Significance probabilities for the four data sets. 

Statistic Data set 1 Data set 2 Data set 3 Data set 4 

F 0.01192 0.04375 0.07573 0.13961 
MLE of A0 0.01764 0.04484 0.08261 0.11678 

-2 log (LRT) 0.00719 0.06360 0.09238 0.09610 
-2 log ("Modified" LRT) 0.00742 0.06366 0.09561 0.09598 
Posterior Mean 0.01729 0.04072 0.07498 0.15086 
Posterior Mode 0.01961 0.04168 0.07949 0.12736 
Posterior Median 0.01839 0.04002 0.07472 0.15166 
E(770 y) 0.01500 0.04297 0.07686 0.14191 
-2log(Bayes Factor), A, 	U(0, 1) 0.00776 0.05371 0.08350 0.11477 
-2log(Bayes Factor), A0 	U(0,0.5) 0.00667 0.05758 0.08589 0.10784 

doubling the grid of points employed, until the normalization constant's five first dec-

imal digits stabilized. One million Monte Carlo simulations were used to obtain the 

significance probabilities and power values. Despite the reduced range we assumed for 

), we found that the integrations for the posterior values were very time consuming. 

This has to be combined with the fact that additional simulations are needed for every 

combination of sample sizes, in order to obtain critical values for different statistics, to 

realize at least the convenience provided by the standard F statistic. 

Table 1.3 demonstrates that different test statistics can provide different significance 

probabilities. The between statistic variability is increasing when being further away 

from the rejection of the null hypothesis. For data set 4, for example, the maximum 

difference was about 6% while for data set 1, which presents more evidence of group 

mean inequality, the same difference was only 1.3%. Despite the previous fact, it is 

clear that for the first two data sets, the significance probabilities can lie on both sides 

of the standard 5% or 1% cutoffs for both classical and Bayesian test statistics. 

Whether the cutoff is the 5% or the 1% level of significance, the decision whether to 

accept the null hypothesis of the equality of the group means could potentially depend 

on what test statistic one uses. This fact combined with the lack of optimality of the 

F statistic makes the subsequent power function analysis even more important. 

1.6.1 Power and conditional power 

We selected the Bayes factor, the F statistic, the likelihood ratio statistic, the posterior 

mode and the Bayes factor under uniform (0, 0.5) prior, in order to avoid pairs of test 
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Figure 1.1: Power function for (1) Bayes factor, (2) F statistic, (3) likelihood ratio 
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statistics that potentially had similar properties, according to Table 1.3. Subsequently, 

we obtained their power for a variety of values of A9 in the range 0 to 0.9. 

Figure 1.1 presents the power curves of the five selected test statistics for test size 

5% and 1%. Because the differences appeared to be quite small, we also obtained the 

corresponding pairwise power differences, showed in Figure 1.2. 

Although the differences do not appear to be great, the Bayes factor has larger power 

than F over the whole parameter space, and, by shortening the range of integration of 

A9 from 0 to 1, to 0 to twice the reciprocal of the minimum sample size, in this case 

(0, 0.5), it is possible to get slightly larger improvements in that interval, where the 

posterior densities are concentrated (see Figure 1.5). The maximum power difference 

between the Bayes factors and the F statistic is about 1%. The performance of the 

posterior mode is rather poor. The LRT does better than F in almost the whole range 

of Ag. It also has higher power than BF for small AO but slightly lower for larger ones. 

The same conclusions were reached when the power properties of these statistics 

were studied conditionally on F > F,1,N1;090. This situation is important because 

it represents the only situations when somebody would realistically consider to reject 

the null hypothesis. The corresponding graphs are presented in Figures 1.3 and 1.4. 

Moreover, the conditional power differences appeared to be roughly twice the size of 

the power ones. 

The differences in the significance probabilities of the various test statistics, together 

with the power differences detected, cast a fair amount of doubt on the appropriateness 

of the use of the F test. Admittedly, these differences were not that great and could be 

considered to be compensated by the easiness by which the F statistic and its p-value 

are obtained by standard statistical packages. Hence, one could claim that the obtained 

results are quite discouraging in practical terms. Following these considerations, we will 

concentrate for the next few sections of the chapter on Bayesian inference for the current 

model. 

1.7 Posterior density of ) 

The functional form of the posterior density of A9 was presented in (1.46). Since, from 

a Bayesian point of view, the inference about the parameter A9 is in its posterior distri-

bution, it should be possible to make an applied judgment about the null hypothesis, 

either looking at its graph or some summary of it. 
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Figure 1.5 represents the posterior density of AO for the four data sets of Table 1.2. 

As the null hypothesis, H0 : AO = 0, lies on the boundary of the parameter space, the 
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Figure 1.5: Posterior densities of Ag for four data sets. The vertical lines are the straight 
lines with equation A0=1/n, i1,.. . , 5. 

posterior density is difficult to interpret. However, as A O  1  is the prior sample size, and 

+ ni the posterior sample size, it is useful to contrast the posterior density with the 

reciprocals of the actual sample sizes, n 1  We would consider rejecting H0 whenever 

most of the posterior probability exceeds n. A more detailed discussion of this idea 

is presented in section 2.4. 

1.8 Posterior densities of group means 

By (1.20), (1.21) and (1.22), conditionally on /3, cr, ig and A0, which are all assumed 

to have uniform prior distribution, the posterior distribution of O, for i = 1,... , m, is 
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normal with mean O, defined in (1.23), and variance (ru 
+ 1)_1 

a, or 

. 	)4 

(o 	
iYi. 

A_i 	n + - 	A_i) 	, I, A0, y N (go, A (n + A_i) a), 	(1.66) 

which is evidently independent of 6. Additionally, by (1.40) and (1.41), the posterior 

distribution of 	conditionally on a and A9, is normal with mean go, defined in (1.42), 

and variance a/ 	(rç + Ao) ' . The posterior density of O conditionally only on 

a and A9 can be obtained by the following Lemma. 

Lemma 1.3. If the distribution of XIM is normal with mean p and variance a 2  and 

the distribution of pIa  is normal with mean a and variance b2 , then the distribution of 

Ma is normal with mean a and variance cr2  + b 2 . 

Proof. By the distribution of the sum of two independent normal variates. 

Combining (1.66) with the conditional distribution of po, using Lemma 1.3, and 

performing the standard location and scale transformation for a normal random van-

able, we obtain that, conditionally on a and A0, the posterior density of Oi is normal 

with mean O and variance wga, where 

= (fliYi. + A'9) / (n + A 1 ) , 	 ( 1.67) 

and 

(m 

woj  = 1/(ni+A') +A2t(n1+A9)1} /( n +A 1 ) 2 . 	(1.68) 

Notice that, by (1.67), where nT1 lies compared with A9 can be a useful way of judging 

whether the group means are equal. In particular, n/(rij + Ag') 0.5, or A0 

provides evidence in support of the null hypothesis H0 : A9 = 0, since then, 01 is closer 

to yo  than to y2 .. 

The posterior distribution of Oi can subsequently be obtained as 

 =  
	 ,     	, 9, Y ) -7r ( 0,2 ,7r(OiIy) f iOj,a A9Iy)dadAo = f ir(8jIa 	A o y)dadAo. 	(1.69) 

The integration with respect to a in (1.69), collecting terms in a from (1.43) and 

the previous normal distribution, then using the inverted chi-squared integral, provides 

that 
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Figure 1.6: Posterior densities of group means (0) for four data sets. 

2 

il) CX j 
	

+ S,2  + A0} 	T(Ao)w
1 /

2 dAe, 	(1.70) 

or using the definition of 7r(AoIy) in (1.46), that 

/
{ 	 (o - t)2 

}_N/2+3/2 

(4 + Ao)-112W -11 2 
7r (AOjy)dAO. (1.71) l+ (S2 + A 

A numerical integration is hence required for its evaluation at each point. 

Figure 1.6 represents the posterior densities of the group means for the four data 

sets. They can be used, parallel to the classical ANCOVA, for individual comparisons, 

e.g. by considering the area of overlapping tails, once an overall group mean difference 

(via A0) has been concluded. 
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1.9 Posterior density of slope 

Combining (1.39) and (1.41), it is possible to integrate out this time the parameter po 

first and obtain the posterior density of 0, a, and AO as 

11 
ir(fi 2 AoIy) (a)_(N_l)/2 exp [-- {4 + 	

_ 6) 2 32 + Ao}] T(Ao). 	(1.72) 

A subsequent integration of o, gives that 

(/3, Agy) OC {s + 	- 	+ Ao}3V T(Ao). 	(1.73) 

Hence the posterior density of 0 satisfies 

7r(/31y) = f 7r ( )31 A o , y ) 7r (A o  I y) d Ao 

f {, 
+ S + A0 }_(N_3)/2 

- 

(s 	
- 1/2 

+ Ao) 	ir(Ao Iy)dA g , (1.74) 

requiring an one dimensional numerical integration for its computation. 

Figure 1.7 (page 31) represents the posterior densities of the slopes for the four 

data sets. Hypotheses concerning /3 can be tested using the posterior probability that 

it is less than a certain value. Hence, to test whether the slope is 0, one could use the 

posterior probability that 3 < 0 and reject the null hypothesis when this probability 

is too small or large. For the four data sets, the corresponding values were 0.971, 

0.693, 0.252 and 0.543, suggesting that possibly only for the first data set the slope is 

significantly negative, as can be seen in the corresponding graph. 

1.10 Posterior densities of adjusted means 

Conditionally on cr and )g, the posterior density of Oi is normal with mean 01 and 

variance wocT,  with Ot and wo, defined in (1.67) and (1.68) respectively. Additionally, 

the joint posterior density of 3, a and AO is given by (1.72), hence the conditional 

posterior of 0 is normal with mean /3 and variance a/s2 . Also, 3 is conditionally 

independent of 9. 

Using standard properties of the normal distribution, we conclude that the condi-

tional posterior distribution of the adjusted mean, = - / 3(x. - x.), is normal with 

mean and variance wea, where 
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correspond to 3 = 0. 

=O—/(x. —x.), 	 (1.75) 

and 

= wo + (xe. - x..) 2 s 2 . 	 ( 1.76) 

Using comparable algebraic derivations, with the ones used for the posterior density 

of the group means O, firstly integrating with respect to a and secondly slightly 

rearranging the integrand, we obtain that 

-N 	Y) = ff ir(jIu, A0, y)ir(a, AoIy)dadAo 

—(N-3)/2 

{ 	

*2 + 
s + A0} 	T(Ao)w 112 dA0 f  
* 2 	—(N-3)12 

OC f {i + 	
( S2  + Ao) 	(4+ Ag)_ h /2 w 2 ir(AoIy)dAo, 

wC,
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(1.77) 

requiring the usual one dimensional numerical integration. Figure 1.8 represents the 

posterior densities of the adjusted group means for the four data sets. These can be used 

to compare group means of different groups at the same level of the covariate. They 

can also be contrasted with the unadjusted group means (Figure 1.6) for an indirect 

assessment of the influence of the covariate. Hence, contrasting the posterior densities 

of Figure 1.8 with the ones in Figure 1.6, we conclude that the adjustment was mainly 

noticeable for data set 1, the only one for which the slope appears to be non zero (see 

Figure 1.7). 
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1.11 Parametric residuals 

In order to judge the fit of the model in greater detail, we could use a method introduced 

by Leonard and Novick (1986), in the context of log-linear models for contingency 

tables. They considered the posterior density of the parametric residuals, which in our 

formulation are defined as p2  = - rig, for i = 1,2,... ,m. 

To compute their posterior density, we have to observe that conditionally on a, Po 

and A, the posterior distribution of the Oi  is normal with mean 

Tijj + \o  1 po 
nj+' 1  

(1.78) 

and variance a (n + A1)'. Combining this result with the posterior distribution of 

ILo given cr and .X, as described in section 1.8, we can obtain that, conditionally on cr 

and ), p2  is normally distributed with mean p'  and variance with 

P71 
	

fl 
(Y• —_?° z 

=  
ri + A 0  

and 
In  

Wpi 	(n71 + (n + A_i) 1 	(1.80) 
(nj +A 1 ) 2  

with go  defined in (1.42). Hence the unconditional posterior density of p2  satisfies 

7r (Pi  ly) 
= 

ff 7r pja, Ao, Y)  7r 	AoIy)dadAo 

—(N-3)/2 
Oc 	I 	- ' 2 + S + A0} 	T(Ao)w'/ 2 dAo f  wpi  

f {1 + ( 
— 	

(S + A) 
*)2 	—(N-3)/2 

w(S + A9) } 	
g'I2w/2(AoIy)dAo. 

(1.81) 

Figure 1.9 represents the posterior densities of the parametric residuals for the four 

data sets. Large areas of a posterior, density to the left or right of zero would indicate an 

individual group departure from the null model. Unusual posterior density shapes can 

be anticipated due to the multiplicative nature of the integrand in (1.81). For example, 

bimodal features and bumps (e.g. bumps for data sets 2 and 3), meaningfully parallel 

a phenomenon noticed by Aitken et al (1997) in another context. Furthermore, those 

curves with single modes at zero (e.g. data sets 3 and 4), strongly indicate agreement 
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Figure 1.9: Posterior densities of parametric residuals (pi) for four data sets. The 
dashed vertical lines correspond to pi = 0. 

with the null hypothesis for the appropriate group. 

1.12 Shrinkage estimators 

Our analysis of shrinkage estimators is intended to intuitively justify, the comparisons 

in Figure 1.5 of the posterior density of )tg with the reciprocals of the sample sizes, 

n 1 . The posterior mean of O, conditionally on Ao as presented in (1.67) can also be 

expressed as 

	

ot = E(9A0 , y) 
= 2*j• + 
	 ( 1.82) 

with 

7=EA9Iy 	
+A')' 	

(1.83) 
(ni 
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and 

= E 0Iy  (Ao1'go 
). 	

(1.84) 

Since 	is close to (1 - 'yfly., comparing 'y with 0.5 can be a criterion for judging 

group mean equality, with 'y < 0.5 suggesting equality of the group means. More 

precisely, consider the preliminary test estimators (e.g. Cohen, 1974), 

9 = I yi., Y E C 	
(1.85) 

ij, yC 

with C and i unknown. Consider also the quadratic loss function 

L(O, 0) = m 	0) 2 . 	 ( 1.86) 

The posterior expected loss of 0, under (1.86), becomes 

Tn 	 In 

q(0) = m >(° - 
_Y * Y,. - ) 2 + m 	var(0j Iy). 	(1.87) 

i=1 	 i=1 

Using definition (1.85), the posterior expected loss can be expressed as 

q() 	
{ n 1 1 (yj. _'yflj. _)2 +m 1 >ivar(OjIy), yE C 

M 	fl( 	* 	*' 2 + m 1 	var(OjIy), 	y C ii - '-y yj. - c;) 

	

Since the selected loss function is quadratic, (1.88) is minimized, for y 	C , when 

, with 

= m1 	(^(y. + fl. 	 (1.89) 

Some rearrangement, combined with the definition of go  in (1.42), gives that 

77* = EAoly (fle). 	 (1.90) 

Thus, the minimum posterior expected loss has the form 

I Qi, yEC 
qmin() 

= 	

( 1.91) 
 Q2, Y 0 C 

with 
Tfl 	 m 

Qi = M- 1 >(Yi - 	
- )2  + 	var(Ojly), 	 (1.92) 

i=1 	 i=1 
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and 
M 	 m 

Q2 = m1 	(* - 
-Y:Yi. 

- 	+ m 1 	var(OiIy). 	(1.93) 
j=1 	 i=1 

The Bayes rule, under the constrained class in (1.89), indicates y E C and hence rejects 

H0 : A0 = 0 whenever Qi <Q2. 

Table 1.5: Shrinkage estimators for the four data sets. 

Data Set 	Group ni yj . Ot var(92 /y) 
1 	1 8 6.375 0.754 1.415 6.220 1.135 

2 5 3.800 0.667 1.907 4.443 1.757 
3 5 5.400 0.667 1.907 5.510 1.646 
4 4 3.000 0.621 2.168 4.032 2.151 
5 14 8.643 0.835 0.950 8.168 0.788 

Q1/Q2= 0.505 

2 	1 8 16.625 0.720 4.298 16.269 7.401 
2 5 19.200 0.632 5.630 17.773 10.859 
3 5 13.400 0.632 5.630 14.105 10.787 
4 4 4.750 0.587 6.323 9.111 16.613 
5 14 19.429 0.805 2.996 18.644 4.920 

Q1/Q2= 0.672 

3 	1 8 5.000 0.697 1.498 4.981 1.819 
2 5 4.000 0.608 1.931 4.361 2.635 
3 5 6.800 0.608 1.931 6.062 2.658 
4 4 0.250 0.562 2.153 2.293 3.945 
5 14 7.000 0.785 1.065 6.562 1.239 

Q1/Q2= 0.738 

4 	1 8 6.875 0.667 2.002 6.587 2.269 
2 5 3.800 0.576 2.539 4.727 3.467 
3 5 5.600 0.576 2.539 5.764 3.204 
4 4 2.750 0.530 2.809 4.267 4.245 
5 14 8.786 0.760 1.449 8.127 1.632 

Q1/Q2= 0.762 

For the four data sets already described, the values of y, (., O, and the quantity 

Q i/Q, that is, the expected loss ratio of rejection over not rejection, are presented in 

Table 1.5. Apart from the interest the smoothed estimates of the Os 's present, it is quite 

clear, by the values of the 'yr's and the expected loss ratios, that different conclusions 

about H0  are reached, compared with the test statistics presented in previous sections, 
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and one would tend to refute H0 in all four data sets. In general, consideration of 

Q1/Q2 together with the posterior densities of the Oi permit to incorporate the concept 

of practical significance into the decision making process. 

1.12.1 Equally replicated case 

In section 1.8 we showed that conditionally on cr and .\, the group mean, 6, for 

i = 1,2,... ,n, is normal, with mean defined in (1.67) and independent of o, E . In the 

equally replicated case, with n2  = n, (1.67) takes a simpler form, which is 

E(OlAo, y) = yi. 
- n + AO 

 1 (. - y.). 	 (1.94) 

The unconditional posterior mean of Oi  can then be rewritten as 

(n-1 

	\
E(OIy) = y. - 	+ 

n_i 	
IY) (Yi. - Y..), 	 (1.95) 

with the expectation in the right hand side of (1.95) taken with respect to the posterior 

distribution of A0. In section 1.4.2.1, the quantity z = (m - 1)F/{(m - 3)(ri 1  + Ao)ri} 

was shown to have a truncated F distribution, a posteriori, with m - 3 and N - m - 1 

degrees of freedom. 

Let B(.,.), be the incomplete Beta function, defined as 

(c,/3) = B 	f ta-1(1 - t)'dt, a,/3 >0, 0< x < 1, 	(1.96) 

and 
- B(a,/3) (1.97) Ix(c,i3) 
- B(a,)3) 

the cumulative distribution function (c.d.f.) of the Beta distribution, where 

B(a,/3)' 
- F(a+

)
3) 	

(1.98) 
- 

using the standard definition of the gamma function, F(.). Then, if the random variable 

Z is distributed as F with a and 0 degrees of freedom, the following formula relates its 

survivor function with the c.d.f. of a Beta variate, 

P(Z> Zo) = i (0/2, a/2), 	 (1.99) 
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where 
'3 

X=/3+aZO• 	 (1.100) 

Setting m_3=v1,N—m-1=v2, and A={z:z9F},wefind 

EA9Iy (A) =E    
(v, 
	

- 	E (F'z 'A  (z)) 
1 2F 

1z) 

= 	Lii+2 

+ 	 E(IA(z)) 	
, 	(1.101) 

with I(.) the indicator function. The expectation in the denominator of (1.101) can 

be computed by an application of (1.99). For the numerator, a transformation to 

t = u21(v + viz) is first needed. These computations lead to the following result 

	

E(Oi ly) = yj. - Fg(F) (yi: - y..) 	 (1.102) 

with 

g(F) 
1b(F) ( - 2 - 	

22\ 
' 2 ) = 
('2 )

( 1.103)  
('-'i + 2) (v2 - 2 )1b(F) 2 '   

and 

b(F) - (
vi + 2)F 

- 	
(1.104) 

Using the identity 

1. 	
- F(a+'3) 	 X) 13-1 	(1.105) 
- F(a + 1)F(/3) 

(see Abramowitz and Stegun, 1965, p.  944), (1.103) reduces to 

LI 

g(F) 	
1/1112 	{ - F(v12)b(F)(1 - b(F))' 1 

- (v + 2) (112 - 2) 	F(a)F()Ib(F) 2 

	

v) 	 (1.106) 
2 	2 ' 2 

which can be contrasted with equation (2.3) appearing in Leonard and Ord (1976) that 

corresponds to the random effects ANOVA model. The latter is incorrectly stated. 

The 	and 'y,,  that were defined in (1.83) and (1.84), are now independent of the 

group i, and satisfy 	 —i  

= y..E01 	 ) = (, 	 (1.107) 
A Go + n- 

and  

= 1 - E1 (Aon') = 1— 
	= y. 	 (1.108) 

As A0/(A9 + n) < 1/2 is equivalent to A9 < n- , and the Bayesian decision, in this 



equally replicated case tells us to prefer H0 whenever E (A o /(A o  + n')) :5 1/2, our 

argument gives added justification for the comparison of the posterior density of ) 

(see Figure 1.5) with the reciprocal of the sample size, and also motivates the final 

choice of Bayes factor, considered in 'the last section of this chapter. 

Substituting (1.107) and (1.108) in (1.91) using that Jo = y., we obtain that 

((*/y)2 m1 Fm 1 
(y2. - y..) 2  + m1 	i var(OjIy), y E C 

qmin(°)= 	 . (1.109) 
(*)2 m 1 	(yj. - y..) + m 1 1i var(OjIy), 	y C 

Table 1.6 presents the minimum values of F for which the function F'g(F) <0.5, 

hence rejecting the null hypothesis. The conclusion is that F > 2 always rejects, 

however, for not particularly small sample sizes, this value can be quite smaller. These 

results can be contrasted with those of Leonard and Ord (1976) and Stone (1977), who 

also consider frequency mean squared error, and cross-validatory justifications. Stone 

recommends the critical value of 2, for all values of m and n. Our critical values can 

be much closer to unity. 

Table 1.6: F values for rejecting group mean equality hypothesis. 

Sample 
size (n) 5 10 

Number of groups (m) 
15 	20 	25 50 75 100 

5 <0.1000 1.3607 1.6677 1.7882 1.8479 1.9369 1.9590 1.9695 

10 <0.1000 1.3723 1.6649 1.7790 1.8363 1.9266 1.9518 1.9640 

15 <0.1000 1.3751 1.6635 1.7759 1.8326 1.9237 1.9497 1.9625 
20 <0.1000 1.3764 1.6627 1.7743 1.8308 1.9223 1.9487 1.9617 

25 <0.1000 1.3771 1.6623 1.7734 1.8297 1.9214 1.9482 1.9613 

30 <0.1000 1.3776 1.6620 1.7728 1.8290 1.9209 1.9478 1.9610 

35 <0.1000 1.3779 1.6617 1.7724 1.8285 1.9205 1.9475 1.9608 

40 <0.1000 1.3782 1.6616 1.7720 1.8281 1.9202 1.9473 1.9607 

45 <0.1000 1.3783 1.6614 1.7718 1.8278 1.9200 1.9472 1.9605 

50 <0.1000 1.3785 1.6613 1.7716 1.8276 1.9198 1.9471 1.9604 

1.13 Concluding remarks 

Our study was originally motivated by the power optimality property of the Bayes fac- 

tor. This provided positive, but quite disappointing results, given the computational 

effort required for the simplest ANCOVA model. Additionally, we discovered an am- 
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Figure 1.11: Pairwise power function differences for (1) Bayes factor of A0 = 0 vs 
A0 = minnT', (2) Bayes factor of A0 = 0 vs A0 = average n 1 , ( 3) Bayes factor of 
A0 0 vs AO = maxn 1 , (4) Bayes factor, (5) F statistic, (6) likelihood ratio statistic, 
(7) posterior mode. The solid lines correspond to 0.05 size tests. The dashed lines 
correspond to 0.01 size tests. The five group sample sizes were n1 = 40, n2 = 22, 
fl3 = 20, fl4 = 67, fl5 = 128. 

Rol 



biguity as to what is the best statistic for testing the hypothesis H0 : A9 = 0. On 

the other hand, as we discussed in previous sections, comparing the reciprocal of the 

sample sizes with the posterior density of the parameter A0 can provide a test statistic 

that is intuitively appealing. 

Following these ideas, we are going to make a final suggestion of test statistics 

for testing H0  : A9 = 0, that avoid the computational effort, while not losing the 

previously described intuitive appeal. These statistics are the Bayes factors for simple 

versus simple hypotheses, with null hypothesis corresponding to Ao = 0 and alternative 

corresponding to (a) A0 = minriT', (b) A0 = average n, 1 , and (c) Ao = maxnT'. The 

power difference results for these three Bayes factors and the F statistic, the likelihood 

ratio statistic, the posterior mode and the standard Bayes factor for the sample sizes 

of the data sets used throughout Chapter 1 are presented in Figure 1.10, and for the 

larger sample sizes of the full neuropsychological test data are presented in Figure 1.11. 

By Theorem 1, we knew that the three new test statistics would maximize the 

average power at A0 corresponding to the simple alternative hypothesis. However, as 

Figures 1.10 and 1.11 demonstrate, these statistics can provide slightly better power 

than the F statistic for small sample sizes and values of A0 close to zero. Additionally, 

especially the Bayes factor corresponding to the alternative H1  : A0 = minn, can be 

slightly better than the standard Bayes factor for small values of A0, i.e. those lying in 

a demonstrably key region of interest. 

These considerations lead us to attempt the full Bayesian analysis, but under con-

tinuous prior distributions, when using more complicated ANCOVA models, to seek 

methods that help us interpret the corresponding posterior densities using comparisons 

of A0 with the reciprocals of the sample sizes and to try to develop similar comparisons 

for other parameters. This is the route we will follow in the next three chapters. 
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Chapter 2 

Bayesian inference for the 

analysis of covariance with 

random variances 

Following the conclusions of Chapter 1, we will study the Bayesian inference of a new 

sampling model for the Analysis of Covariance, which permits the investigation of 

equality of the group means and slopes, when the variances are taken to be unequal. 

An unknown parameter 11 will be introduced, which measures the degree of equality of 

the variances. The inferences will be based on Markov chain Monte Carlo methods, 

of which a summary will be presented. This model will be used later in this thesis to 

analyze the data from the Scottish offender study, which motivated the undertaking of 

this research. In the latter sections of this chapter we will present the Bayesian inference 

for further generalizations of ANCOVA models that include several covariates. In all 

cases, our inferences for the sampling parameter ji will provide one key novelty of our 

procedures. 

2.1 Introduction to sampling model 

Consider in groups of observations {yj; j = 1,... ,n}, for i = 1,.. .m, (m > 4), 

where a scalar value x, of an explanatory, or confounding, variable is assigned to 

each observation y,.  It is frequently unreasonable to assume equality of the regression 

slopes in the relationship of the explanatory variable and the observations y, as well 

as equality of the fixed effects variances across the m groups. Therefore a standard 
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ANCOVA, as already presented, can be inappropriate. 

We consider, hence, a model with three sets of random effects, firstly a set of 

conditional group means {O i , 02, ... , Om}, secondly a set of conditional regression slopes 

{th 02, •.., 13m}, and finally, a set of conditional variances {& 02, . . . , 0}. Three 

unknown parameters in the model, tao, 1L,6, and ', will respectively represent the 

common means of the three sets of random effects, the O,  the 6, and the 07 1 . Three 

further unknown parameters A0, ), and v 1  will measure departures of the random 

effects from these means, i.e. from three equality hypotheses. 

Our sampling model is defined by the following hierarchical structure: 

Conditionally on the three sets of random effects, the Yij  are independent, for 

i = 1,... , m and j = 1,. . . , n, and normally distributed with respective means 

0+/3(x —x 2 .) 	(i = 1,...,m), 	 (2.1) 

and variances qj, with x 2 . denoting the ith group covariate mean. The variable 

j =0—/3(x. — x) 	 (2.2) 

is known as the (conditional) "adjusted group mean" for the ith group, where x ••  denotes 

the grand covariate mean. The expression in (2.2) for adjusts the group mean O i  in 

the same way as in the constant slope and variance model. 

Conditionally on the q5j and two model parameters 	and A, the Oi  and 8 are 

mutually independent, and the Oi  are normally distributed with common mean A 0  and 

respective variances A00 i , for i = 1,... , ni. 

Conditionally on the Oi and two further model parameters po and A, the 6 are 

normally distributed with common mean p#  and respective variances A,30i, for i = 

1,... ,m. 

The qj, given ( and ii, the two final model parameters, are independent with 

respective densities 

= K(v) 2 . 22) 

 
exp(—-) 	(0< 0i < oo;i = 1,... ,m), 	(2.3) 

with 

K(ii) = (v12)'12 1F(v12), 	 (2.4) 

43 



that is, zi(10, possesses a chi-squared distribution with v degrees of freedom. 

Box and Tiao (1992, p.  219) compare several unequal variances in a random ef-

fects ANOVA model, but using log-uniform distributions for the sampling variances çb. 

O'Hagan (1979) indicates that their apparently robustifying sampling distribution is 

in fact still "outlier prone", while random sampling from a univariate t—distribution 

is "outlier resistant". Precise definitions of these intuitively appealing concepts can be 

found in O'Hagan's paper. Lindley (1971) proposes a different random effects model 

in a Bayesian ANOVA context (13 0) which takes the Oi and Oi to be independent. 

His model yields a complicated joint distribution for the observations, which is not 

generalized multivariate t. Leonard (1975) and Leonard and Hsu (1992) assume mul-

tivariate normal distributions for sets of log-variances and for log-covariance matrices. 

Our independent inverted cu-squared distributions for the Oi  give simpler results in 

the current sampling situation. We are using an alternative formulation of rn—group 

regression models (Lindley and Smith, 1972, Miller and Fortney, 1984, and Blattberg 

and George, 1991), but for the purposes of ANCOVA (e.g. for noisy data), rather than 

regression, i.e. it is of less critical importance for the regression surface to provide a 

good fit to the data points. 

Under this choice of sampling model, the joint distribution of the observations and 

the three sets of random effects, given the six model parameters, using the standard 

notation for joint, p(S), and conditional, densities, is 

p(y, 9,/3, Ipo, i-, ).o, ), ", () = p(yIO,0, 4)p(Ok1,ILo, )o)p(I3I, ie, )v3)p(Iv, () 

= fl 	fl 	(2 	exp 	{yij —  O - 	- x . )} 2 ] 

• fl 	(2o)"2  exp {-2 	(0 - / O)2} 

• fl 	(2A)'12  exp {-2A 	(/ 
- ) 2} 

• fJ K(v) /2±,'2+1) 

exp {--}. 
(2.5) 

Setting 

Ui = 	i{yij_yi._$i(Xij_Xi.)}2 

= (Yij - yi.)2 - {i (xj - x) (yij - Yi.)} 2  /s, 	(2.6) 

with 
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-1 

= { 
1: (x — Xi. )2 	

(x — x) (yjj — yi.), 	 (2.7) 

and 
ni 

Si= 
	

(xj - (2.8) 

where U2  is the part of the residual part sum of squares, f3i  the least squares estimate 

of the slope, and, s the covariate within group sum of squares, corresponding to group 

i, after some rearrangement, (2.5) can be expressed as 

2 	 221 p(y, 0, 0, Iio, 	A, A,, v, ) = (2)__mK(v)m( 	u 
x exp 	 ' { u + 	- 	+ s 	— 

f3)2}] 

x ex [- EMi 	{ 1 	
- )2 + A' (/3 — )2 + v(}] 

(2.9) 

with N = Mi n2 . Using Corollary 1.1, the two quadratic terms in Oi and Oi in the 

exponent of (2.9) are equal to 

n (y- O) 2 +' (o — 	+ A') (Ui-  Ofl 2 +(n' + 	— o)2 (2.10)      

and 

— )2 + 	i ('8i  - I.LO )2 = ( + Ad') (flu 
- fl*)2 + (s12 + ), ,3)-1 

	

- )2 

(2.11) 

with 

= (fljyj. + )ç'po)/(ni + 
	

(2.12) 

and 

	

+ A')/(s + .X'), 	 (2.13) 

for i = 1, . .. rn. Integrating out the Oi and Oi  from (2.9) using (2.10)-(2.13) together 

with the normal integral, we find that the joint density of the observations and the m 

group variances is given by 

p(y,Io,mAe,,v,() =Afl 2  

Ii 
exp 

L 	

—i {,/( + Ui + ( T + 	(yi. — o)2 + (S i 2 + 
	)2}] 

(2.14) 
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where 

M 	 -1/2 	 -1/2 
A = (2w) K(v)m 	(AoAY II { 

(ni + 1)2 + A1) 	Y 	(2.15) 
j=: 1 

A final integration of the çb, provides the joint density of the yj3,  unconditional upon 

the random effects to be 

p(yIio, pfl , A0, A, ii, = A fl 1  {r (') 2'2} x 

FIT {v + uj  + (ny' + A0) 1  ( - P0)2  + 
(S-

i2  + Afl)1 	
- )2}_2(flh) 

(2.16) 

As the previous expression in brackets can be rearranged as a positive constant plus a 

positive definite quadratic form in the y., (2.16) is a product of generalized multivariate 

t-densities for the yz  = (yii, Yi2,. . . , The marginal distribution of each observa-

tion, and each observed group mean, is a generalized univariate t-distribution with v 

degrees of freedom, though the observations are not independent. While the sufficient 

statistics U, y., and /j appearing in this joint distribution are "outlier prone", this 

property simply encourages us to carefully consider whether or not to include outly -

ing observations, and should not be regarded as undesirable. Conversely, an outlier 

resistant sampling distribution might conceal outlying observations in an unreasonable 

manner. 

A modification to Schwarz's information criterion, BIG, (Schwarz, 1978) for this 

model (see Leonard and Hsu, 1999, Chapter 6, for a justification of the 27r adjustment), 

is 

	

BIC* = log p(yI o ,j,Ao,A,i',() - 3 max { log (N/2ir) ,2}, 	(2.17) 

where the first term denotes the supremum of (2.16), and f, uiø, A0, A, i), are the 

corresponding maximum likelihood estimates. The expression in (2.17) may be com-

pared with BIC*  for any competing model, e.g., reduced forms of the current model 

(equal group means, parallel lines, equal variances) and models with further explana-

tory variables. This criterion avoids the overdependence on prior assumptions for the 

model parameters, inherent in Bayes factors and can perform better than Akaike's in-

formation criterion, AIC, (Akaike, 1978) for finite sample sizes (see Katz, 1981, Koehler 

and Murphree, 1988, Leonard and Hsu, 1999, Chapter 1). Our modification reduces to 

AIC whenever log(N/2ir) < 2 , i.e. N < 47. While neither BIG nor BIG*  provide 

particularly good finite sample size approximations to the logarithms of prior predictive 
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densities, BIC*  can nevertheless be an excellent criterion for model comparison, in its 

own right. 

Bayes factors can imply quite different prior distributions for the observations, under 

different models. Suppose in general that we assign prior probability q to model M1, 

with sampling density P1 (ii 10 1 ), and prior probability 1— 4 to model M2, with sampling 

density P2(Y192).  Then the posterior probability of M1 is 

çbB 
Q 	B+(1—)' 	

(2.18) 

where 

B =P1(Y)/P2(Y), 	 (2.19) 

the Bayes factor, and P1(Y)  and P2(Y)  are the prior predictive densities of the obser-

vation vector y under models M1 and M2 respectively. If B is substantially different 

from its neutral value (B = 1) for almost every realization of y, then this unfortunately 

implies that the prior distribution for y under M1 is substantially different from the 

prior distribution for y under M2. One possible interpretation (Michael Evans, Irwin 

Guttman, Tom Leonard, personal communication) is that such formulations are, in a 

real world sense, incoherent, and we can therefore appreciate that there will be inher-

ent difficulties with interpreting the posterior probability 0 (e.g O'Hagan 1994, pp. 

187-199). We here interpret B as a "value of evidence" (Good, 1991). Certainly, if B 

is instead used as a test statistic, then Lindley's paradox is less relevant (see Chapter 

1). 

Given the difficulties associated with hypothesis tests, even in the single slope and 

variance ANCOVA model of Chapter 1, and the additional difficulties related to the 

computations of the corresponding test statistics for the current more complex model, 

we proceed under the philosophy "the inference is in the posterior distribution", and 

will seek to fully interpret the marginal posterior densities of the random variables O, 

f3, and qj, and of the six parameters uo, ,tm ç, Au, A, and ii. We will not place positive 

probabilities on the key hypotheses H9 : A0 = 0, Hfl : Ao = 0, and H : ii = 00, since 

these would lead to the evaluation of Bayes factors in the posterior analysis. We instead 

consider continuous prior and posterior distributions. Careful interpretations will be 

required (see section 2.4). The parameter v will also be considered with regard to 

prior and posterior probability mass functions which are concentrated on the positive 

integers. 
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2.2 Prior assumptions 

In the prior assessment, it is assumed that tao, i-,  A0, A, and the pair ((, v) are mutu-

ally independent. Furthermore, w in/A 9  and w2r2/Ai,j possess chi-squared distributions 

with respective degrees of freedom w, and w2,  so that nj and T2 '  are the respective 

prior means of AO  1  and A
O  1

. Consider the parameter Ag. A possible interpretation for 

its prior is that it provides information based on a sample of Wi observations with mean 

w1T1/(w1 - 2) for A0, if Wi > 2, while the degrees of freedom Wi measure the sureness 

of the prior belief about A0. As Wi tends to oo , Ag converges almost surely to its prior 

estimate r1 . An analogous interpretation holds for the prior of A. 

For analytic convenience, v'K is taken to possess a conditional distribution, given v, 

which is chi-squared with v'(0 degrees of freedom, so that has mean o  and variance 

2(o /'çbi'. Finally by has a chi-squared distribution with a degrees of freedom, so that v 

has mean a/b and variance 2a/b2 , and 

a1 exp(—vb). 	 (2.20) 

Alternatively ii can be taken to possess the discrete distribution which assigns proba-

bilities q, . .. , qi to the positive integers 1,2,... , M. 

Either prior distribution requires the specification of eight prior parameters w1, 

Sri, w2, T2, (o, b, a and b. We do not assume proper distributions for ILO and ,u1  

since these parameters are typically strongly controlled by the data. If a discrete prior 

distribution is assumed for 11 then the posterior probabilities will depend upon Bayes 

factors. However, in this very specific situation, our computations will justify the Bayes 

factors, since the solution will closely approximate the solution under a continuous prior 

for v. 

2.3 Posterior inference 

Under the assumptions of sections 2.1 and 2.2, using (2.9) and the standard notation, 

ir( . ) and ir(Iy), to denote prior and posterior densities, the joint posterior density of 

all 3m unobserved random variables and six unknown parameters is 
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7r(0, 3, 4), /L9,  IL/3, )'o, ), v, (
I) 

 oc p(y )  O,f3, 4'Ipo,p13, )'o, ), v, ()7r(/tg,/t /3 )  Ao, ), v, 

oc 	 0(m+i(o)_1 Z=1 
OZ  

(w2 +m+2) • 
• exp 	 -i  {u + 	- 	+ s ( - 

• exp [- 
	

' 
{ 	( - 

ILO )2 + A, pi - tLO)2 + 

(2.21) 

where 7r(v) denotes our cu-squared prior density for xi. Additionally, K(.), U, /3 and 

s are defined in (2.4), (2.6), (2.7), and (2.8). 

It is impossible to obtain algebraically explicit expressions for the marginal posterior 

densities of each of the and (. In fact, we can only obtain 

the joint posterior density of the six model parameters, applying Bayes theorem to 

(2.16), and an approximation to the posterior density of the 3m random effects, (see 

section 4.4), by performing the appropriate integrations analytically. The latter two 

results will be used to obtain accurate approximations to the posterior densities of 

the quantities of interest in Chapter 4. The remainder of this section, however, will 

concentrate on Markov chain Monte Carlo (MCMC) simulation methods and their 

application to ANCOVA models. 

2.3.1 MCMC -An overview 

2.3.1.1 Introduction and theoretical background 

In a nutshell, Markov chain Monte Carlo, (see Gilks et al, 1995, Gelfand and Smith, 

1990), is a combination of Monte Carlo integration with Markov chain theory used 

for performing high dimensional integrations, impossible to achieve analytically or nu-

merically in a different way. Bayesian inference, where such integrations are routinely 

required to obtain marginal posterior and predictive distributions is its principal, but 

not exclusive, area of application. Monte Carlo integration is applicable when it is pos-

sible to draw independent samples from the required distribution (target distribution, 

hereafter). It forms sample averages of the quantities of interest to approximate expec-

tations. In this situation, the Strong Law of Large Numbers (see Billingsley, 1986, p. 

290) ensures that by increasing the sample size the approximation can be as accurate 

as desired. An application of Monte Carlo integration is presented in section 4.3.2. 

MCMC provides a crucial generalization that replaces the independent draws by 

dependent ones drawn throughout the support of the target distribution in the correct 
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proportions by a long running Markov chain whose stationary distribution is the target 

distribution. This idea was first introduced in the literature in 1953 by Metropolis et 

al and in the statistical literature by Hastings (1970). However its full potential for 

Bayesian inference was established by Gelfand and Smith (1990), whose paper seemed 

to trigger the substantial future research activity that followed. 

Assume that it is the stationary distribution of a Markov process {X}, t = 0, 1,..., 

where Xt  is a vector for every t. Discrete time has only been assumed for the simplifica-

tion of the relevant notation. If X t  is aperiodic, irreducible and positive recurrent, then 

regardless of the starting state, Xo, it is the limiting distribution of successive iterates 

from that process and the ergodic theorem (see Roberts, 1995) ensures that averages 

of the form 

IN = 	
(Xt) 	

(2.22) 
t=m+1 

converge to their expectations under it, after typically discarding a sufficient burn-in of 

m iterations. Hence, once a Markov chain with the desired stationary distribution has 

been found and has been attained, it is possible to obtain the required expectations as 

sample averages, exactly as with simple Monte Carlo integration. 

The Metropolis-Hastings algorithm, which is based on a modification by Hastings 

of Metropolis's method, addresses the problem of constructing a Markov chain with 

the desired stationary distribution it. In particular at every t, Xi is chosen between 

Xt  and a candidate Y, where Y is drawn from a proposal distribution q(.IX t ) and 

accepted with probability a(Xt, Y), that is, accepted if a randomly generated uniform 

(0,1) deviate is less than a(X t ,Y), where 

a(Xt,Y) = min {1 
ir(Y)q(XtY) 

}(2.23) 
ir(Xt )q(YIX t ) 

Gilks et al (1995) provide a simple proof of the fact that the stationary distribution 

of {X} constructed according to (2.23) is it, whatever q(.) is. X may have different 

dimensions at different iterations, it can be for example the vector of parameter values 

of a variable number of components mixture of distributions (Richardson and Green, 

1997). 
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2.3.1.2 Implementation aspects 

The original Metropolis algorithm assumed q(X t IY) = q(YX t ), for all Xt  and Y, and h 

steps to complete the transition from X t  to with h the number of blocks the vector 

Xt  is divided into, the corresponding number of proposal distributions, candidates 

drawn and acceptance probabilities of the form (2.23). 

The latter blockwise implementation forms the basis of the most widely applied 

type of MCMC, the Gibbs sampler. This was first suggested by Geman and Geman 

(1984) in the context of image reconstruction related to Gibbs distributions. If the 

vector parameter of interest has dimension p, and has been initialized at Xo, then 

the Gibbs sampler constructs a Markov chain by drawing the j-th component at time 

I + 1, X 1  (j), from its full conditional distribution, that is, the distribution of that 

component given the remaining ones, or 

- 1),X(j + 1),... ,X(p)). 	(2.24) 

Hence, the proposal distribution of the j-th component is (2.24) and substituting into 

(2.23) provides an acceptance probability of 1. The Gibbs sampler uses the property 

that ir is uniquely determined by the set of its full conditional distributions (see Gelman 

and Speed, 1993 and 1999, for a relevant discussion), and substantially reduces the com-

putational complexities by replacing a high dimensional problem by p unidimensional 

ones. 

The Gibbs sampler is typically applied to hierarchical Bayes linear models because 

of their simple full conditionals, (e.g. Gelfand et al, 1990). However, Hobert and Casella 

(1996), indicate that if the prior distribution is improper, the posterior distribution can 

be improper too, even though the full conditionals are all proper. For example they 

present the one-way random effects model, with uniform prior for the grand mean and 

log uniform priors for the variance components. The full conditional distributions of 

this model are all proper, however, Hill (1965) showed that the posterior distribution is 

improper. If the Gibbs sampler is applied to this type of model, the positive recurrency 

assumption breaks down, resulting in infinite expected time of return to a Markov chain 

state. Therefore, either poor practical convergence or apparent inferences based upon 

a non-existing distribution is envisioned. 

In our application of MCMC to ANCOVA models, we will use Gibbs sampling with a 

modification for one of the full conditional distributions, rejection/acceptance sampling 
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(see Ripley, 1987, pp. 60-71, Zeger and Karim, 1991). Rejection sampling is applicable 

in situations where it is difficult to sample a point Y from a distribution q, but easy 

to do so from another distribution Q, such that q < AQ, with A a known constant. It 

involves drawing points Y from Q and U from uniform (0,1), until U < q(Y)/Q(Y), in 

which case Y is accepted. To implement rejection sampling, the normalizing constants 

don't need to be known, however, for computational efficiency, A has to be close to 

unity, because the overall acceptance probability is equal to A' f q(x)dx, or A 1  for 

normalized q(.). Further methods for sampling from complex distributions, such as the 

ratio of uniforms and adaptive rejection sampling, are discussed by Gilks (1995). 

In order to obtain marginal posterior densities, we will use a method first suggested 

by Tanner and Wong (1987) in a data augmentation context. Therefore, instead of 

using histograms to - group successively generated values of the Gibbs sampler, or a 

density smoothing method, we will average the conditional densities over the simulated 

values. This method provides superior estimates, as indicated by Lehmann and Casella 

(1998, pp.  47, 258, 292), who use the Rao-Blackwell theorem to demonstrate this 

result. According to this well-known theorem, it is possible to obtain an estimator of 

reduced risk as the conditional, on a sufficient statistic, expectation of the original finite 

expectation and risk estimator for strictly convex loss functions. In our application the 

conditioning is inherent in the full conditional distributions used by the Gibbs sampler. 

2.3.1.3 Convergence assessment 

The Gibbs sampler is just one of the abundance of variations of MCMC. In practice, 

MCMC is widely used in many areas of statistics, a fact reflected in the multitude of 

forms it is encountered in. Although the different applications can be quite problem 

specific, their common characteristic is the demand for fast convergence of the created 

chains to the target distribution. The convergence rate depends on the relationship be-

tween the proposal and target distributions and can be possibly accelerated by variable 

transformations, reparametrizations (see Gelfand et al, 1995) or sampling from modi-

fied proposal distributions, that can provide faster mixing, that is, movement around 

the support of the target distribution (see Gilks and Roberts, 1995). 

Detecting convergence, or more frequently lack of it, is of fundamental importance 

and has obvious repercussions to the inferences drawn. A variety of convergence assess-

ment criteria have been and continue being proposed in the literature. Two relevant 

reviews are these of Cowles and Carlin (1996) and a slightly more mathematical and 
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up to date one by Brooks and Roberts (1998). Perhaps, Laplacian approximations (see 

Chapter 4) will eventually replace the practical need for many of these procedures. 

Two of the most popular convergence criteria are the one of Gelman and Rubin 

(1992), which is based on output from many parallel chains and an ANOVA type cri-

terion of between and within chain variances for each parameter of interest and an 

estimate of a shrink factor that reduces to one as the number of iterations increases 

at which point convergence is concluded, and that of Raftery and Lewis (1992), who 

use results from two-state Markov chain theory to determine the total number of iter-

ations, number of burn-in iterations, distance of successive iterations to be included in 

the computations (thinning) for selected quantiles of interest, accuracy, probability of 

obtaining the desired accuracy and convergence tolerance. 

Further convergence assessment criteria are the ones of: a) Geweke (1992), who 

obtained the estimated standard error of the mean of a parameter of interest based on 

spectral analysis arguments, but didn't provide explicitly a method of using it to as-

sess convergence. b) Heidelberger and Welch (1983), who used earlier developments by 

Schruben (1982) and Schruben et a! (1983) and combined Brownian bridge theory and 

spectral analysis for obtaining estimated confidence intervals for parameters of interest 

from parts of the chain that passed a stationarity test. c) Ritter and Tanner (1992), 

who proposed an importance sampling based method. d) Zeilner and Mm (1995), who 

suggested a criterion applicable to posterior distributions that can be factored into 

two parts the conditional distributions of which are easy to be sampled. e) Liu, Liu 

and Rubin (1992) that inferred convergence by constructing a global control variable 

and applying Gelman and Rubin's criterion on a number of independent sequences. f) 

Roberts (1992), that assessed convergence of the full posterior distribution, rather than 

some univariate statistic, using several independent replications of the chain. g) Yu 

(1994), which like Roberts's, proposed convergence assessment of the full posterior, but 

from a single replication of the chain, however with questionable applicability to high 

dimension problems. h) Brooks et al (1997), who obtained a total variation statistic 

aimed at producing an upper bound to the L' distance between full conditional kernel 

estimates from different chains. i) Johnson (1994), who suggested a modification of 

Gelman and Rnbin's criterion, assessing convergence when the path of a number of 

independent chains have, up to a certain tolerance, converged. j) Mykland et al (1995), 

who relied on regeneratative simulation to assess convergence of the full posterior dis-

tribution. k) Garren and Smith (1993), who proposed a criterion based on the closeness 
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of the second largest eigenvalue of the kernel density transition matrix to unity, and 

finally, 1) Yu and Mykiand (1998), and its mathematical rigorization by Brooks (1998), 

who suggested a cusum plot based criterion applied to univariate statistics of the target 

distribution. 

The common feature of all convergence assessment criteria is their use of MCMC 

output for their implementation, because there exist no useful theoretical convergence 

bounds of wide applicability, even for moderately complicated statistical models. How -

ever, despite their convenience, arising from their model independence, Cowles and 

Carlin (1996) demonstrated that in general automated convergence monitoring is unre-

alistic and that some of the proposed convergence assessment criteria even fail to detect 

the type of lack of convergence they were designed to detect originally. The problem of 

typically not knowing the stationary distribution appears to be insurmountable, since 

even if somebody elects to use many parallel chains, which is a practice criticized by 

many because of its computational inefficiency, only ensures that the parallel chains 

eventually converge to the same distribution, which is not necessarily the true one, 

while the criteria that are founded on some univariate function of the MCMC output 

give no guarantees about the behavior of other, to a certain extent arbitrary, functions 

that may give contradictory convergence information. A recent attempt of tackling 

MCMC convergence is that of Guinenneuc-Jouyaux and Robert (1998), who advocate 

a discretization method for continuous Markov chains that simplifies the theoretical 

results and accelerates the convergence. 

2.3.2 Gibbs sampling application to ANCOVA 

The full conditional density of any particular parameter of interest, required for the 

Gibbs sampling iterations, is proportional, as a function of the parameter of interest, 

to the joint posterior density (2.21). Therefore, using (2.21) and (2.10), and adopting 

the notation 7r*(.) to denote a full conditional density, we can conclude that the full 

conditional density of Oi is 

cx exp {_(ni + A')'(9j - 9*)2} 	 (2.25) 

and consequently Oi  is conditionally normal with mean 0' and variance (n2  + 

Similarly, 

cx exp {_(s + 	 - /3*)2} 	 (2.26) 
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so that 6 is also conditionally normal. Conditionally on the Oi  and the six model 

parameters, the Oi  and)3i are independent in the posterior, by factorizing (2.21). Thus, 

the full conditional distribution of the adjusted group mean 6i, defined in (2.2), is also 

normal with mean and variance Vr 4 j , where 

= 07 - 	- x.), 	 (2.27) 

and 

Vi,. = (n + 	+ (S?+ 
	 - x) 2 . 	 ( 2.28) 

It is not necessary to simulate from this particular full conditional distribution. How-

ever, this result is needed when calculating the marginal posterior of by the density 

averaging method described at the end of section 2.3.1.2. The full conditional density 

of Oi is 
ii (A\

20i 
iexp - - 
-) , 
	 (2.29) 

with 

(2.30) 

and 

(2.31) 

where 

W1 = n (y. - O) 2  + s (Ii 
- 0i ) 2, 	

(2.32) 

and 

W2 = A (0,- 1LO' + A  (f3 
- ) 2 	 (2.33) 

Thus, the density of Oi has the same parametric form as the inverted chi-squared density 

(2.3), and hence, is, given v' and A, chi-squared with v' degrees of freedom. 

Consider now the full conditional density of yo. By Corollary 1.2, as a function of po, 

M 	 m 
*2 (2.34) 

j=1 	 i=1 

with 
M 	 m 

(2.35) 

and consequently, from (2.21), 
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M 
exp 	 - 	 (2.36) 

j=1 

so that [LO is normally distributed with mean 4 and precision A' >i '. Similarly, 

m 
*() 	exp{_11(,  _)2}, 	 (2.37) 

i= 1 

with M 	m 

I.L = 	 (238) 
i=1 	i=1 

which gives that uo is normally distributed with mean 	and precision )1 > Tfl 	* 

From (2.21) it follows that ir*(Ao ), 7r*(A), and  ir*(,  are of the same inverted chi-

squared form as (2.3), but with different parameters (see section 2.3.3). Finally, the 

full conditional posterior density of v, in the continuous case, is 

	

' 1 	m 
r 	-v/2 (v)K(v)mK(v 0) 	

O(v(m+(o)r 	exp 	v(1 

i=1 	 i=1 
(2.39) 

where K(.) is defined in (2.4). The application of Stirling's approximation, F(v) 

,/e_h1va_112, gives K(v) 	(v12) 1I2 e"12 1V'. Therefore (2.39) may be approximated 

by the gamma density 

(m+a+1)-1 exp(—vB) 	(0 < v < oo), 	 (2.40) 

where 

m 	 m 

B = —m(1 + log ) + 	+ 	Oi  ) + /' o {log(o/) - 11 + 	log çb + b. (2.41) 

A similar device was employed by Lindley (1971) when approximating joint modal 

estimates under his alternative formulation. 

Subject to the approximation (2.40), it is straightforward to employ Markov Chain 

Monte Carlo techniques to calculate the posterior densities of all unknown quantities of 

interest. It is possible to extend these techniques to incorporate the exact density for v 

in (2.39) by acceptance sampling from (2.40). In the latter case, the envelope function 

is the same as (2.39), with the gamma function terms replaced by the corresponding 

Stirling approximations, and envelope constant equal to one. However, in our numerical 

investigations, we have found that this makes negligible difference to our marginal 
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posterior densities unless v is estimated to be very large, so that the Oi  are close to 

equal. In such situations we recommend either referring to a parallel, less complex 

analysis, where the q5i  are assumed equal, or to the methodology described as follows. 

As an alternative to the preceding acceptance sampling, we assign discrete prior 

probabilities for the parameter u on the integers {1, 2,... , M}, and then calculate all 

marginals using straightforward MCMC, and the full conditional distribution for ,i 

as described in the following section. This method works well, even if the preceding 

acceptance sampling fails, and gives very similar results when the acceptance sampling 

does not fail, if the prior probabilities are taken to be proportional to the previously 

specified prior density. Additionally, the difference in computer time is small. Our 

treatment of the parameter v, either as a continuous or a discrete variable, and its full 

conditional distribution, can be contrasted with Besag's and Higdon's (1999) of the two 

parameters of an inverted gamma distribution of conditionally independent variances 

corresponding to different plots in a hierarchical t model exploring variety and spatial 

effects in agricultural experiments. In their applications, they adopt a discretization, on 

very few integer values of the parameters, that greatly simplifies their MCMC iterations. 

Treating ji as a discrete variable can also be considered a version of the griddy Gibbs 

sampler (Ritter and Tanner, 1992). When it is difficult to sample from a univariate full 

conditional distribution, the previous authors obtain an approximation to the inverse 

cumulative distribution function by evaluating the full conditional distribution on a 

grid. Then, they draw a random uniform (0,1) deviate and transform via the inverse 

c.d.f. to a draw from the full conditional distribution of interest. We use a quite natural 

discretization for the parameter z-', which provides us with a simple grid. 

In our case studies, we will be using long single chains, comprising of 10,000 burn-in 

iterations and a further 50,000 iterations from which we will be averaging the full con-

ditional densities to obtain our final answers. The long chain provides higher chance of 

reaching stationarity. The burn-in computational time is negligible (less than 5 seconds 

for all 3m -- 6 random effects and parameters), and its adequate length will be graph-

ically confirmed by displays of the trajectories of five number summaries (minimum, 

first quartile, median, third quartile, maximum) for all parameters of interest, across a 

number of short parallel chains. These percentiles typically settle down after few tens 

of iterations. For the last 50,000 iterations we will be checking the five successive 10,000 

iterations averages for consistency, and average the five partial averages to conclude the 

computation of every marginal posterior distribution of interest. Following McEachern 
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and Berliner (1994), who showed that it results to poorer estimates, thinning won't 

be used. Typically, 1,000 burn-in iterations followed by averaging 3,000 densities give 

results very close to the true (10,000+50,000 iterations) ones. No previously adopted 

formal convergence assessment criteria will be used, but we will confirm convergence 

by obtaining estimates of all the marginal posterior distributions using Laplacian ap-

proximations and contrasting pairs of graphical displays. 

2.3.3 Full conditional distributions 

Each of the following statements is made conditionally upon the data, and all other 

unknown random variables and parameters in the model: 

Al: For i = 1, .. . ,m, the Oi  are independent and normally distributed with respective 

means O, defined in (2.12), and variances (n 2  + 

For i = 1, .. . ,m, the 3 are independent and normally distributed with respective 

means 	defined in (2.13), and respective variances (s +A 1 ) 1 , where s is defined 

in (2.8). 

For i = 1,... , m, the Oi  are independent, and vA1q5 possesses a chi-squared 

distribution with i degrees of freedom, with v and A 2  defined in (2.30) and (2.31). 

N.B. All the full conditional distributions in A1-A3 can be regarded as relating to the 

sampling model described in section 2.1. They do not refer to the prior assumptions of 

section 2.2, which are now addressed. 

The mean 1uc1 is normally distributed with mean 	defined in (2.35), and variance 

/ m 	—1 A61 i-1  çb 

The mean 1u1  is normally distributed with mean , defined in (2.38), and variance 

—1 A3,/ E ZT=l çb 

For the parameter A O , the quantity (w1 + m)A/Ao has a chi-squared distribution 

with w + m degrees of freedom, where 

= 	
+1(O _o)2}/(wl  +m). 	 (2.42) 

For the parameter A, the quantity (w2 + m)A * /Ap has a chi-squared distribution 

with w2 + m degrees of freedom, where 

rn  AO*= { w2T2 
+ 	

- )2} /(w2 + m). 	 (2.43) 



For the parameter (, the quantity v( 1  çç 1  + 	has a chi-squared distribution 

with ii(o + m) degrees of freedom. 

The full conditional distribution of v is described in equation (2.39), for situations 

where the prior density of ii is continuous. If instead u possesses the discrete distribution 

already indicated in section 2.3.2, then for 1, 2,... , M, the posterior probability, that 

V = i, is Q(i)/E N  
V= 1 Q(v), where Q(u) represents the right hand side of equation (2.39), 

but with 7r(v) replaced by the prior probability qv.  One possible choice is to take the 

prior probabilities q2 , that v = i, to be proportional to ir(i), where ir(v) is the density 

of a gamma distribution with parameters a/2 and b/2. 

AlO: For i = 1,... , m, the are independent and normally distributed with respective 

means defined in (2.27), and variances V.çb2 , with V. defined in (2.28). 

2.4 Interpretation of scale parameters 

Consider the parameter A0 initially. It has a posterior density concentrated on the 

positive real numbers, (0, oo). Suppose we are investigating the hypothesis A0 = 

against A 0  0 ), with ) > 0. It is a well known procedure in the Bayesian literature 

(e.g. and Leonard and Hsu pp.  109-110), though usually conflicting with Bayes factors, 

to use a, the posterior probability that ) ). Then refute H0, if a is too small 

or too large, for example, if a < 0.005 or a ~! 0.995, for two-sided tests. That is, a 

plays the role of a "Bayesian significance probability". An analogous method can be 

employed for one-sided tests. 

A problem would arise if the value we wish to test is a boundary point of the 

parameter space. In the Xg situation, if we want to test the null hypothesis H0 : A0 = 0, 

against H1 : Ag > 0, then a always equals 0. One possibility for interpreting the 

posterior density is by reference to some important, in the context of the problem, 

fixed value d together with a, the posterior probability that Ag <d, (see, for example, 

Carlin and Louis, 1996, p.  45). Again, we would tend to reject the null hypothesis, if 

the previous probability is too small. However, there is no reason for comparing a with 

1% or 5% (see also the developments in Chapter 1). The decision about the validity 

of the tested hypothesis is rather the product of experience from analyzing lots of data 

sets. In the ANCOVA problem, intuitive choices for A0 are minni1  and max n, 

for A are mm and max s 2  , and for v are max n i  and min n, as the discussion 

of the remainder of this section illustrates. We remember that we cannot compare 
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the subsequent Bayesian significance probabilities with 1% and 5%. We instead use 

interpretations based on simulations to suggest what to do. Our later computations 

suggested that the first of each of the preceding pair of choices for the three ANCOVA 

model parameters are preferable. In general we suggest either using practical experience 

or simulated data, to judge these Bayesian significance probabilities. 

The parameters A9, A q  and v may be interpreted by reference to the first three 

conditional distributions of section 2.3.3. The conditional median of the 9, given y2 ., 

as described in (2.12), is the weighted average of the mean pg and the observed value 

y2 ., with weights proportional to the corresponding precisions. Hence, 0' will be closer 

to the parameter pg than to y2 ., if and only if A9 < nT1. This can be interpreted as 

indicating that "if A0 <jrm  ri 1  then our model is more supportive of a hypothesis 

H0, which takes all the Oi  to be equal to pg, than a hypothesis H3, which takes the O 

to be mutually unequal fixed effects. If A0 > rntx
m n11,  then the reverse is true. A 

value of A0 between these limits suggests that some subset of the Oi  may be equal, and 

the remainder unequal". 

Consideration of (2.13) suggests a similar form of weighted average for the condi-

tional median of 13, 8.', and a similar interpretation of the parameter A, but with O, 

n, pg, H9 , and H respectively replaced by /3k, s, p, H, and H, where Hh denotes 

the hypothesis that the 3 are mutually unequal fixed effects. In particular the equality 

hypothesis H,3 is preferred to Hh if A0 <.nin 

Equations (2.31)-(2.33) tell us that the conditional mean of q5 j , given Yj.  is 

= (zi( + njU2*)/(v  + n j ), 	 (2.44) 

where U denotes the conditional expectation, given nj., of nT ' (Uj + W i  + W2), and 

U, Wi, and W2 satisfy (2.6), (2.32) and (2.33). Since the U depend upon all our 

 ni random effects assumptions, the following interpretation is needed: "If v > mjx m  

then our model is more supportive of H: all 95i  equal to , than H: our entire random 

effects model is true, with v < 00. If ii < jrin m  n2 , then H 1, is preferred. A value 

of v between those limits suggests that some subset of the Oi may be equal, and the 

remainder unequal". 
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2.5 Multivariate generalizations of the ANCOVA model 

2.5.1 Sampling model 

Consider m groups of observations {yji;  j = 1,... ,n}, for i = 1,... in, (m > 4), 

each assigned two vectors of explanatory variables uj and xij of dimension d1 and 

d2  respectively. Consider also the two sets of random effects 171, 12' •.. ,l'm} and 

12 ,  ..., 13m}, with 'y (di x 1), for i = 1,... in, the main parameters of interest 

(means, slopes, adjusted means), and 8 (d2 x 1), for i = 1, . . . m, the secondary ones, 

and finally a third set random effects, the conditional variances 1 5 1, 02, ..., Om  I. The 

means of the three sets of random effects are , tt,3 and Three further parameters 

Q.7  (di x d1 ), Qp (d2  x d2) and v measure departures of the random effects from 

their corresponding means. 

The following hierarchy describes our sampling model: 

Conditionally on -y, 8 and q5j, the observations Yij are independent, for i = 1,... , in 

and j = 1, ... , n, and normally distributed with means 

ujj'y + X ij 	(i = 1,... ,m), 	 (2.45) 

and variances çb, with the rows of the specified design vectors uj and xj corresponding 

to main effects appropriately centered, and chosen to ensure that all matrices appearing 

in (2.52) and (2.53) exist. 

Conditionally on the Oi and the model parameters /, pa,  Q., and  Q, the -y 

and )3i  are mutually independent and normally distributed, with the -Y i  having mean 

ft.y  and variance Qçb, for i = 1,. . . m, and the Oi  mean jt1 and variance Q00i, for 

i = 1,... ,rn. A special case of this model is the mixed effects model, where IQI -* oo 

and hence the -y i  are fixed effects and only the 8 are random. 

The çb, given and z-', are independent with densities identical to the ones in (2.3), 

that is scaled inverse chi-squared distributions with ii degrees of freedom. 

The joint distribution of the observations and the random effects is 

Ay' Y,/ 3 , 0 1, /Jy, /A13, Q- )f, Qf3, 

= u1 n 	(27 )_1/2exp{1 (Yj  - 	- Xij 

- 1/2 

• fl 	(27r  1iQ0I) -1
"2  exp {- (i3 - /2)T (Q)1 (0 - 

• riial K(v)ç'/2q5 (v/2+1)exp {_-}, 

(2.46) 
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with K(.) defined in (2.4). Let 

Ui  
ni 

tLijUijT, 1  (2.47) 

X i  
ni 

= Xij Xij 77 , (2.48) 

UoX 
ni 

= 	i: u 3 x 3 T (2.49) 

and 	XoU 
ni 

= 	x2 u 3 T. (2.50) 

Maximizing 

ni 

(Yij - uTr - 	 (2.51) 

with respect to -f j  and f3, we obtain the respective least squares estimates, ji and f3, 

which are 

' 
	 ni 

= (i - U_ 1 UoXX_ 1 XoU) u' 	uijyij - 
j=1 	

) I.  

(2.52) 

and 

 ni 	

= ( xiiYii _xo uiui_ 1 uiiii) 

(2.53) 

with I denoting the identity matrix of the appropriate dimensions. Setting 

Si  
=j (Yij - ujjTy j  - 	 (2.54) 

and 

F u uoxl 
= I 	] , 	 (2.55) 

xou x 

(2.51) can be written as 

s2  + w ,1 T V ,1 w ,1 , 	 ( 2.56) 
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with 

Wi,i = ( - -?, 13i 
- ) T 	

(2.57) 

Completing the square for -y j  and 3 in (2.46) using Lemma 1.1 and (2.56), and setting 

IV2 

= [ 	Q13_1 
	

(2.58) 

and 

Wi,2 = (Yj - / Ly, 13i 
- ,)T 	 (2.59) 

we find that 

- w,1  )T V,3 (wj,2 - 

(2.60) 

= Vj,i(Vi,i + V2) 'V2 	 (2.61) 

, 

W2,3 = 	- 	f3 - ,* )
T , 	 (2.62) 

where 

(\

fj* 	 UoXJ3 + U- + Q- j- 

* = ( 	+ V2)' I 
	

+ XoUii + 	) . 

	(2.63) 
'8ij 	

,' 
 

The matrix inversion of (2.61) can be performed using the following Lemma, found in 

Seber (1977, pp.  390-391). 

Lemma 2.1. If A is (p x p) and D is (r x r) symmetric matrices, B is (p x r) matrix, 

and all inverses exist, then 

-1 

A B I 	A - ' + FE_ 1 FT —FE -1  
= 	 , 	 (2.64) 

BT D 	 _E_ 1 FT 	E' 

with E = D - BTA 1 B and F = A'B. 

This result can be verified by performing the multiplication of the matrix times its 

inverse and of the inverse times the original matrix, which are equal to the identity 

matrix, and then using the uniqueness of the inverse to complete the proof. 

with 

and 
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Applying Lemma 2.1 we can obtain that 

(V,1 + V2)' - 	 , 	 ( 2.65) 
- [A i-1  + FEFT —FE I _E2._ 1 F.T 	E'   2 

with 

Ai = LJ + Q-1 (2.66 

Bi = UoX, (2.67) 

Di = 1 X+Q, (2.68 

Ei = Di - BTA_lB, (2.69) 

and 	F = A'B. (2.70) 

Similarly to the model of section 2.1, it is possible to integrate out, using the multi-

variate normal integral definition, the -y i  and f3, and subsequently the variances, qj, 

to obtain the joint density of the observations, Yij,  unconditionally upon the random 

effects. The joint density is thus equal to 

= 
= (2)K()m(9 	{r (i)  2 2 	IQQI_m/ 2  jrn IVi , i  + v2 "2  

n1 { + s + (wi,2 - w,1)T Vj3 (wj,2 

(2.71) 

with N = n. Having obtained the maximum likelihood estimates of j, jp, 

Q., Q, v and ( using a suitable maximization routine, it is possible to construct a 

Bayesian information criterion, similar to (2.17) to choose between competing models 

(equal variances, further covariates). The number of parameters to be estimated in the 

current model is d1(d1 + 3)/2 + d2(d2 + 3)/2 + 2. 

2.5.2 Prior to posterior inference 

In the prior assessment, we assume that p y , Mp, Q.., Qp and the pair (, v) are 

independent. For the inverse of the matrices Q y  and Q3 we will assume Wishart dis-

tributions. The inverse of a symmetric positive definite matrix U (p xp), has a Wishart 

distribution.with k degrees of freedom and scale matrix E, also positive definite, if and 
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only if the probability density function of U is 

IUI _k+p+1 
2 exp{_trace 	, 	(2.72) AU) = 

Elk!2 	F {i + 1 - i)} 

(Mardia et al, 1979, p. 85). We assume that the inverse of Q has a Wishart distribution 

with k7  degrees of freedom and scale matrix E and the inverse of Qp has the same 

distribution with parameters k# and E, which can be altered as part of a sensitivity 

analysis. We will also assume flat priors for p and ,i, and the same chi-squared priors 

as in the single covariate model for the multiples of v and ((section 2.2). Using this 

formulation, the posterior density of -y, 3, 4) and the parameters j.z, Q, Q, I' 

and ç is 

ir(y,3,4),p,,Q7 ,Qp,v,(Iy) cx 

cx ( v)K(v)mK( ii(o)( 
2V 	m-I-?K0)1 exp(— vt() 	4)T+212) 

(k+d+m+1) Q1 (k+d2+m+1) 	 (E 1 Q_ 1   E_ 1 Q_ 1  7 	 3 	 exp_tracex Q1_ 	 { 	 + 	)}  

• exp - 	' {+ s + w,1Tvj,1w 	T 
  

1 + w,2 V2w,2 }],  

(2.73) 

with -,ir(v) denoting the prior of v, which may be either discrete or the continuous 

chi-squared already described. 

Obtaining the marginal posterior distributions of every quantity of interest involves 

another application of the Gibbs sampler. To derive the full conditional distributions, 

we need to observe that the following results hold: 

Tn 	 m 
- )T 

Q_ l 	- ) = trace {Q — ' 	T 1  (i - ) (i - )T} 

(2.74) 

and, by Lemma 1.2, 

M 	 m 

- tL-Y)
T 
 Q_ l 	- 	) cx trace {Q_1 	

( 	
- *) ( 
	

- 

(2.75) 

as a function of 	with 
rn 	m 

12* = 	 ( 2.76) 

Analogous to (2.74) and (2.75) formulae hold, if y,  tt y  and Q.y  are replaced by /3, tip 
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and Q3  respectively, and 	by 

M 	 m = 0-'Oil 	i 	 (2.77) 

2.5.3 Full conditional distributions 

The following statements are made conditionally on the data and the rest of the un-

known random effects and parameters in the model: 

Bi: For i = 1,. . . , m, the 	are independent and normally distributed with respective 

means yj", and variances (U + Q. 1 ) 1 .  Oi 

For i = 1, . . . , in., the Oi  are independent and normally distributed with respective 

means 

/3j, 

 and respective variances (X + Q')'. 

For i = 1,... , m, the q5j  are independent, and 	possesses a chi-squared 

distribution with yr  degrees of freedom, with yr = z-' + n + d1 + d2, and 

= v + S + w,1TV,1w,1  + w,2 TV2w,2 . 	 (2.78) 

The mean M., is normally distributed with mean * and variance Q.../ 
The mean M O  is normally distributed with mean 	and variance Qp/ > 

The inverse of the matrix Q 7  has a Wishart distribution with k7  + m degrees of 

freedom and scale matrix equal to 

{ 	

f , - 	) T + E_1 }. 	 (2.79) 

The matrix Q' has a Wishart distribution with k, + in degrees of freedom and 

scale matrix equal to 

M 

(f3 - 	()3 
- 	)T + 	. 	 (2.80) 

The full conditional distribution of C is identical to that of A8, p.  59. 

The full conditional distribution of ii is identical to that of A9, p.  59. 

In order to generate matrices of dimension p from a Wishart distribution with k 

degrees of freedom and scale matrix E, it is sufficient to add the crossproducts of k 

independent multivariate normal vectors with mean 0 and covariance matrix E. Each 

multivariate normal vector can be generated by multiplying the lower triangular matrix 
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of the Cholesky decomposition of E by a vector of p independent random numbers 

drawn from the standard normal distribution. A previous implementation of the Gibbs 

sampler with Wishart matrices by the author of this thesis can be found in Izenman 

et al (1998). The Cholesky decomposition of a non-negative definite symmetric matrix 

can be obtained by standard numerical routines, (Press et a!, 1994, p.  97). 

For testing hypotheses of the form H0  : cTf3j = 0, (i = 1,... ,m), we will need 

to consider the posterior densities of the quantities aTQpa.  These can be computed 

using the fact that if a matrix U has the distribution (2.72), then the distribution of 

aTE—l a/aTUa is chi-squared with k—p + I degrees of freedom and hence the required 

posterior density can be computed by averaging the successive full conditional posterior 

densities, that is, using the "Rao-Blackwellization" method described in section 2.3.1.2. 

The previous algebraic calculations can be greatly simplified, if we assume orthog-

onality of the uij and xij vectors., i.e., if the following condition holds: 

ni 

ccuj = 0 	(i = 1,... , m). 	 (2.81) 

In this case, the matrices UoXi and XoU2  in (2.49) and (2.50) are equal to 0, the least 

squares estimates of and Oi in (2.51) and (2.52) reduce to their usual standard form 

and are uncorrelated with each other, and the 'yj and 

/3j1 

 are the same as in (2.63), 

with the matrix V,1 + V2  being inverted in a straightforward fashion, since it is of block 

diagonal form. Also, Vi,3 = diag(U(U+Q 1 ) - 'Q', Xj(Xj+Qp  1)1Qp1). The 

preceding full conditional distribution statements B1-B9 hold without any modifica-

tions. 

2.5.4 An ANCOVA model with several covariates 

Perhaps the most important special case of the general ANCOVA model, in practical 

terms, is described by the following hierarchy: 

Conditionally on the random effects 9j, )3i and q5,  the observations Yij  are indepen-

dent, and normally distributed with means 

Oj  + Xij 	(i = 	 (2.82) 

and variances q5. 

Conditionally on the 4j and the model parameters po, a"P,  A0 and Q, the Oi  and /3j 



are mutually independent and normally distributed. The Oi have mean Po and variance 

A00, and the )3i mean jc and variance Qçb, for i = 

(c) The çb, conditionally on and ii, are independent and have scaled inverse chi-

squared distributions, with ii degrees of freedom and scale parameter (, exactly as in 

(2.3). 

This formulation is a combination of the two models already described in this chap-

ter, and implies that it is desirable to test for equality of the group means (O s ), in the 

presence of a number of covariates (x), with xij being a d2 x 1 centered vector. If this 

vector corresponds to a set of main effects then the following (orthogonality) condition 

holds: 
ni 
Exij = 0 	(i = 1 ' ... , M). 	 (2.83) 

If, on the other hand, it contains second or higher order terms (including quadratic, 

multiplicative interaction ones etc), (2.83) may not be true. 

In this case the joint distribution of the observations, given the model parameters 

reduces to 

p(yI1Lo,I&t,Ao,QI3,v,) = 
= (2)_'K(v)m 	U {r (!nL)  2 2 	(l o QI)_m/ 2  jm IV + V2 "2  

X fl1 { + S + (w,2 - w,1)T Vi,3 (w,2 - 

(2.84) 

with the least squares estimates of O i  and 

3, 

respectively 

= (i - nx.TX._1x.)' (iii. - x.TX_l E XiYij) , 	(2.85) 

and 

= (x - njxj.xj.T 
	

(

ni 

Xy - fliXi.Yi.) , 	 ( 2.86) 

with 
ni 	

2 S2 = 

	
(Yii — öi - xT$), 	 (2.87) 

with V,1, V2, V,3, w,1 and w,2 defined as in (2.55), (2.58), (2.62), (2.57) and (2.59) 

respectively, with U2  = n, XoU2  = nix., and UoX2 = njx j.T .  

Notice that in the main effects centered covariate situation (2.83) holds. This con-

dition is a simplification of the orthogonality condition (2.81), and its effect reduces 



di  to yj. and f3i to its standard form. Obtaining the maximum likelihood estimates 

and constructing a Bayesian information type criterion for model comparison, requires 

estimating d2 (d2  + 3)/2 + 4 parameters. 

Assuming the same prior distributions for jig, A9, v and c as in section 2.2 and for 

tzp and Q3  as in section 2.5.2, we obtain the posterior distribution of the three sets of 

random effects and model parameters to be 

cx 
(ii+n2  +d2 +3) 

cx (u)K()mK( v 	 exp(—v) fIi 
Q1—(ko+d2+m+1) exp [- {A1w1r1 + trace (E,3 'Q,')}] 

x exp{- >ii 	(v ± S + w,1TV,1w,1  + w,2TV2w,2)}. 

(2.88) 

Hence the full conditional distributions for the applications of the Gibbs sampler, 

conditionally on the data and the remaining random effects and parameters in the 

model, become: 

Cl: For i = 1,. . . , m, the Oi  are independent and normally distributed with respective 

means and variances identical to Al, p. 58. 

For i = 1, . . . , m, the Oi are independent and normally distributed with respective 

means and variances identical to B2, p.  66. 

For i = 1,... , in, the Oi  are independent, and v i*Miloi  possesses a chi-squared 

distribution with v' degrees of freedom, with '4 = v + ri + d2 + 1 and Mi  defined in 

(2.78) with the adjustments described in page 68. 

The mean ig is normally distributed with mean 4 defined in (2.35), and variance 

/ 	Tfl çb-1 A91 	j1  

The mean tLB is normally distributed with mean ,*, defined in (2.77), and 

variance Q/ ETJ=I 
OIL 

The quantity (m + wi)A/Ag has a chi-squared distribution with in + Wi degrees 

of freedom, with A as in (2.42). 

The matrix Q' has a Wishart distribution with kfi + m degrees of freedom and 

scale matrix equal to that in (2.80). 

The full conditional distribution of (is identical to that of A8, p. 59. 

The full conditional distribution of ii is identical to that of A9, p. 59. 

ClO: For i = 1,... ,m, the adjusted means 	= - 3 7'(x. - x..) are independent 
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and normally distributed with respective means 	and variances V. çb, where 

= 	- (/3*)T(x - x..), 	 (2.89) 

and 

Vi,. = (n2  + 	+ (X 2  + Q')'(x. - X.Y. 	 (2.90) 

If the vector xj contains only main effect terms, then the multivariate normal 

density of the 8 can be replaced by a set of independent normal distributions with 

mean AO,k  and variances ),k0, for k = 1,... , d, with the prior distribution for the 

)tf3,k, scaled inverse chi-squared with W2,k degrees of freedom and scale parameters 7-2,k-  

In this case, because E,%i j  xij = 0, the aforementioned steps, C2, C5, and C7 involving 

generating a d2 dimensional vector the first two, and a d2  x d2  symmetric matrix the 

third, can be replaced by C2', C5', and C7', involving generating d2 scalar quantities 

each as, follows: 

C2': For i = 1,... , m, and for k = 1,... , d2  the 13j,k  are independent and normally 

distributed with respective means /3k'  and respective variances (k + 

C5': For k = 1,... , d, the means 110,k  are independent normally distributed with 

respective means and respective variances A$,k/ >I 
C7': For k = 1,... , d, the quantities (in + w2,k)k/Afi,k are independent and have a 

chi-squared distribution with m + W2,k degrees of freedom. 

The remaining C steps hold as already presented, with the usual simplification 

because of the orthogonality condition. The new algebraic symbols appearing in the 

C2', C5', and C7' have the same definitions as in Al-A10, (pp.  58-59), with the k 

index denoting which element of the ,8i vector they refer to. 

The models already presented should cover any random means, slopes and variances 

ANCOVA, whatever its complexity, and allow to test for the equality of any particular 

set of random effects or other hypotheses of interest. Practical considerations regarding 

their application and resulting inference will be explored in detail in the following 

chapter. 
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Chapter 3 

Case studies 

In this chapter we will present the application of the random effects ANCOVA model 

for the analysis of a number of data sets. We will begin with the comprehensive analysis 

of the visual functions neuropsychological test, which was completed by three groups 

of Scottish prison inmates and two control groups in Stanford, USA, and proceed with 

the illustration of the main results and conclusions drawn from the entire set of tests, 

twelve in total, taken by the same five groups. The chapter will conclude with a study 

of food additives on the weight gain in animals, and a study of the performance of the 

proposed, in section 2.4, test statistic for testing equality of the group variances by 

using simulated data. 

3.1 Analysis of neuropsychological tests 

The current analysis is motivated by an ongoing investigation by Scottish forensic 

scientists, in the area of offender profiling. One possible objective is to be able to use 

the results of neuropsychological tests to predict type of offender. 

A comprehensive review of offender profiling techniques is presented by Jackson and 

Bekerian (1997). Daeid et al (1998) have previously investigated inmates of Irish prisons 

for the purposes of offender profiling. Neuropsychological tests have been studied by 

Moses et al (1992), with the aim of providing normal scores and decision rules for 

mentally healthy and unhealthy people. 

Our main objective will not be validating these previous results, but rather pro-

viding comparisons of the scores of the five groups using the appropriate model for 

the responses and covariates available. Our preliminary investigations, using standard 

constant variance models, suggested that most of the neuropsychological tests did not 
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yield significant differences, between the three offender groups. Furthermore, the one 

or two tests yielding apparently significant results were shown to be less significant 

when confounding variables such as age and intelligence were considered (paedophile 

prisoners tend to be more intelligent and older). As a result of our subsequent analyses 

we conclude that neuropsychological tests appear more likely to be able to predict the 

presence of a medical condition than type of offender, based on age and neuropsycho-

logical test score information, the sole pieces of information available for all five groups. 

This is however a classic situation involving many important confounding variables (see 

Box, Hunter and Hunter, 1978, pp.  8, 493-495). 

3.1.1 Visual functions test 

We now report the analysis of the scores Yij  on a neuropsychological test (for visual 

functions) which was completed by (a) n i  = 67 Stanford students, (b) n2  = 22 Scottish 

rapists, (c) n 3  = 40 Scottish paedophiles, (d) fl4 = 20 Scottish murderers, and (e) 

n5  = 128 Stanford medical patients. The explanatory variable x ij  represents age of 

participant. The offenders in the middle three groups were all interviewed in Scottish 

prisons. The values of the sufficient statistics di = y,, ,8, and j = U/(n —2), provide 

unbiased estimators for O, 13, and çb, and their estimated standard errors are reported 

in Table 3.2. Furthermore, numerical values of the quantities in (2.8) are s 2 = 9236.99, 

S
2 = 795.27, s = 4390.40, s = 944.20 and 4 = 20850.62. An initial ANOVA of 

the dependent variable, assuming equal variances indicated a statistically significant 

difference between the group means (F = 12.16 on 4 and 272 d.f.) This statistically 

significant difference was also observed using ANCOVA to incorporate the age variable 

(F = 10.97 on 4 and 271 d.f.). Two of the slopes (131 and /32)  were significantly greater 

than zero. A test for equality of the slopes gave F = 2.66 on 4 and 267 d.f.. For 

these data, the information criterion in (2.17) gave BIC* = —768.47, very favourably 

comparing with BIC* = —777.78 for the equal variance (unequal Oi  and /3) model. 

Our analysis proceeds under the choices of prior parameters Wi = 4, ri  = 1, W2 = 4, 

T2 = 0.005, (o = 10, = 0.02, a = 3, and b = 0.04. These were chosen to ensure that 

the posterior distribution roughly matched the posterior distribution under uniform 

prior distributions for Ag, )g, , and v. We however confine attention in the current 

example to proper distributions for these parameters, in the prior assessment, together 

with a sensitivity analysis (see Dickey, 1973), described below. 

To assess the adequacy of the length of the burn-in, we use a suggestion by Ritter 
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(1992, P.  103) and plot the trajectories of the 0th, 25th, 50th, 75th and 100th percentile 

of all random effects and model parameters from a number of parallel realizations of 

the chain, thus using some aspects of the Gelman and Rubin convergence assessment 

criterion mentioned in section 2.3.1.3. Similarly to Ritter, we used one hundred parallel 

chains, however unlike his non-linear regression study, where the settling down of the 

trajectories happened after about 2,000 simulations, in our situation it takes place after 

less than 10. 

[I 

0 	50 	100 	150 	200 	250 	300 

iteration 

C 
C 
CIJ 

> CC 

0 	50 	100 	150 	200 	250 	300 

iteration 

Figure 3.1: Visual functions test. Quantile (0th, 25th, 50th, 75th, 100th percentile) 
traces for 01 (Top) and v (Bottom). The traces stabilize after about ten iterations. 

The two plots of Figure 3.1 represent the trajectories of 01  and v, for the first 300 

iterations. They were obtained using overdispersed and uniformly distributed starting 

values for all random effects and model parameters. We omitted the remaining 19 

corresponding plots to avoid being repetitious, however the conclusion reached would 

remain the same: Even when using starting values which are away from reasonable 
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estimates, only a very short burn-in period is necessary. If the starting values are 

realistic initial estimates of the corresponding parameters, then it may be possible that 

no burn-in is required at all. 

MIKE 

C w 

a) 
c'J 

2 	 4 	 6 	 8 	 10 
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0 

U) 
C a) 
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•C a, 
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0 
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51 /\_I 
10+100iter. 
50+500 iter. 
50+1500 iter. 

/ 	 10,000+50,000 iter. 

I 	\\ 

I 
N 

0 	 50 	 100 	 150 	 200 

V 

Figure 3.2: Visual functions test. Posterior density of 01 (Top) and v (Bottom) for 
different numbers of iterations. The two 01 and longest iteration two ii curves are 
indistinguishable. 

Motivated by the previous conclusion, and assuming that the marginal posterior 

distributions produced using 10,000 burn-in and 50,000 density averages are the "true" 

ones (an assumption validated in Chapter 4 using Laplacian approximations), we next 

attempted to find the minimum number of iterations needed to obtain posterior infer-

ences practically identical to the "true" ones. For all quantities whose full conditional 

distribution is normal, using unrealistic starting values, 10 burn-in iterations followed 

by 500 density averages provided marginal posterior distributions visually indistinguish-

able from the "true" ones, although in some situations 10+100 iterations proved to be 
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adequate. The parameter requiring the maximum number of iterations was ii with 

50+1500. The two plots of Figure 3.2 illustrate these results for various choices of 

chain lengths. 

The posterior densities of 01,. . . , 05 are described in Figure 3.3. These were cal-

culated by each of the three simulation procedures (approximate MCMC, acceptance 

sampling for v, a discrete point prior for ii matching the continuous prior) described in 

section 2.3.2, giving results which are identical up to visual accuracy. The convergence 

of the simulations will be validated by Laplacian procedures in Chapter 4. 

a) 

0 

a) Lt 

0 

group means 
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0 	1 	2 	3 	4 	5 	6 	 0 	1 	2 	3 	4 	5 	6 
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Figure 3.3: Visual functions test. Top: Posterior density of five, (a)-(e), group means 
(0). Bottom left: Posterior density of A,i under three choices, (1)-(3), of prior dis-
tribution. Bottom right: Integrated likelihood (solid line) and prior density (dotted 
line) of A, under three choices, (1)-(3), of prior distribution. The dashed vertical lines 
correspond to A0 = A0. 

The curves in the top plot of Figure 3.3 suggest the ordering (a), (b), (d), (c), 

(e) of the five groups, according to the magnitude of the test results, and take into 
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account the unequal variances, and the uncertainty about the six model parameters. 

A visual inspection suggests that the differences between the three groups of Scottish 

offenders, (b), (c), and (d), are not of practical significance. However the Stanford 

medical patients (e) give substantially higher scores than both the Stanford students 

(a) and the Scottish rapists (b). The Stanford students (a) also have substantially 

lower scores than the paedophiles (c). We can only make these comparisons if the 

overall investigation of ), as described in the bottom left plot of Figure 3.3, suggests 

that AO  is very different from zero. The posterior densities of the adjusted group means 

in (2.2) and the contrasts O - 0 can be similarly calculated, and give similar results to 

our interpretations for the O. 

U, 

U, 

-C 
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ci) 
LC) 

0 
CL 
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-0.4 	 -0.2 	 0.0 	 0.2 	 0.4 

slopes 

0.0 	0.01 	0.02 	0.03 	 0.0 	0.01 	0.02 	0.03 

113 	 110 

Figure 3.4: Visual functions test. Top: Posterior density of five, (a)-(e), group slopes 
(/3). Bottom left: Posterior density of Ap under three choices, (1)-(3), of prior dis-
tribution. Bottom right: Integrated likelihood (solid line) and prior density (dotted 
line) of ), under three choices, (1)-(3), of prior distribution. The dashed vertical lines 

correspond to Ap = 
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The posterior densities of the conditional slopes 8 are described by the curves in 

the top plot of Figure 3.4. It is not obvious whether these densities refute a parallel line 

model with ,@i = ... = /3. This hypothesis will be further investigated by considering 

the posterior density of ). Posterior densities of the contrasts 3 - 0. can also be 

computed. 

The posterior densities of the conditional variances Oi are described in the top plot 

of Figure 3.5. The curves indicate that the variance for the Stanford medical patients 

(e) is substantially higher than the Stanford students (a) and the rapists (b). An overall 

evaluation of equality of the variances may be obtained from the posterior density of ii. 
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Figure 3.5: Visual functions test. Top: Posterior density of five, (a)-(e), group vari-
ances (). Bottom left: Posterior density/probability mass function of ii (solid line 
under continuous prior, ... under discrete prior) under three choices, (1)-(3), of prior 
distribution. Bottom right: Integrated likelihood (solid line) and prior density (dotted 
line) of v, under three choices, (1)-(3), of prior distribution. The dashed vertical lines 
correspond to v = 
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It is straightforward to demonstrate that the posterior densities for the O, ,3, and 

Oi contain noticeable differences when compared with the t-densities and chi-squared 

densities based upon a fixed effects analysis with uniform distributions for the O, f3, 

and log çb, in the prior assessment. For example, the inferences for 02 and 64  are quite 

substantially different. 

The posterior density of Ao, curve (2) in the bottom left plot of Figure 3.3, gives 

the initial, incorrect, impression, that AO is close to zero. No Bayesian significance 

probability is available for the hypothesis H0 : AO = 0, as this value also provides 

an extreme value of the parameter space. The interpretation of this density therefore 

possesses an interesting problem. We answer this problem, by considering the point 

AO = m1in5 nI', and the posterior probability, F0, that AO A0, (see vertical line in 

the same plot). If P0 is small then the data refute H0. In our example P0 is less than 

10 -15 , strongly refuting H0. For an interpretation of A0, see section 2.4. 

In connection with the vertical line in the bottom left plot of Figure 3.4, we see that 

Pfi, the posterior probability that ) A, = min  curve (2) corresponding 

to the prior distribution already described, is again less than 10_15,  thus refuting the 

hypothesis H13 that the regression slopes are all equal. The vertical line in the bottom 

left plot of Figure 3.5 should be interpreted by noting that P0, the posterior probability 

that v> vo = rnx n, is equal to 0.000598, thus refuting the hypothesis HO of equality 

of the variances. For interpretations of To  and v, again see section 2.4. The posterior 

densities of ii under the continuous and discrete priors described in section 2.3.3 very 

closely match each other for all sets of priors. 

3.1.1.1 Sensitivity analysis 

The dotted curve (2) in the bottom right plot of Figure 3.3 denotes the current prior 

density for A0. Two further choices of parameters were made. The second choice was 

	

= 1, T, = 0.7, W2 = 1, T2 = 0.0035, (o = 10.5, 	= 0.029, a = 2, and b = 0.025 

and third choice was w 1  = 20, r1 = 2, W2 = 20, '2 = 0.01, = 15, = 0.013, a = 

10, and b = 0.1. Dotted curves (1) and (3) of the same plot denote the corresponding 

prior densities for A9. Curves (1), (2), and (3) of the bottom left plot of Figure 3.3 

describe the posterior density of A0 under our three choices of prior distribution. They 

are quite sensitive to the choice of prior distribution. Moreover, the solid curves in 

the bottom right plot of Figure 3.3, describe three integrated likelihoods for A9, each 

obtained by dividing the corresponding posterior densities in the same figure, by the 



prior densities for ), and then renormalizing to ensure that the integrated likelihood 

integrates to unity. The integrated likelihoods are remarkably insensitive to the choices 

of prior distribution, and should also be considered as part of our inferential procedure. 

Similar results are presented in Figure 3.4 for the parameter AO and in Figure 3.5, for the 

important parameter u. The dots in the latter figure describe the posterior probabilities 

for u under the discretization for the prior probabilities indicated in section 2.3.2. 

While the marginal posterior density of A O , Ap and v are influenced by the choice 

of prior, the posterior distributions of the O, ,9, and 4j, (reported in Figure 3.6 for the 

three sets of priors, are quite insensitive to these choices, with the posterior densities of 

the variances slightly more sensitive. This stability is expected since the random effects 

are further apart from the specified prior parameters in the model hierarchy than the 

three parameters. 
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Figure 3.6: Visual functions test. Top: Posterior density of group means (Top), slopes 
(Middle), and variances (Bottom), under three choices, (1)-(3), of prior distribution. 
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3.1.2 Analysis of twelve neuropsychological tests 

In Tables 3.1-3.4 we describe the results of the twelve neuropsychological tests, including 

these of the visual functions test described in section 3.1.1. In all cases, the results of 

the tests are compared for all five groups (a)-(e), with age as covariate, and hence 

common values for s, (i - 1,... , 5). Additionally, for every test, higher score signifies 

more pathological condition. Our analysis used the three prior distributions as already 

described. We computed the posterior probabilities P9, P,3, and P0 , for A9, ), and v, 

to assess whether the means, slopes and variances, respectively, can be considered to 

be equal or not. 

The numerical values presented in the four tables include the posterior means and 

standard deviations of all three sets of random effects (statistics A and B, respectively), 

under the prior distribution (2) of the previous section, and the corresponding unbiased 

estimators and estimated standard errors (statistics C and D). The posterior means and 

standard deviations were computed by numerical integration of the marginal posterior 

densities obtained by MCMC and the discrete version of the full conditional distribution 

of v. The unbiased estimates and estimated standard errors of the group means and 

slopes as well as the unbiased estimates of the group variances are included in the 

output of standard statistical packages, like Splus. Noticing that the quantities U/q5 

have chi-squared distributions with ri - 2 degrees of freedom, the estimated standard 

error for the ith variance can be derived to be equal to 

I2U 

V (n-2)3' 	
(3.1) 

with Ui  defined in (2.6) and ni the ith group sample size. 

The initial conjecture of the forensic scientists who undertook this study, was that 

the Scottish offenders of groups (b) and (c) would have significantly higher scores than 

the general population, hence included group (d) in their study as a control group. 

Given that murderers can hardly be considered to be representative of a general pop-

ulation, it was suggested to include another control group. In this manner, the two 

groups from a study that used the same neuropsychological tests in Stanford were 

used. The different origin of the various groups in the study and different interviewer 

would automatically raise questions as to whether any differences that might be ob-

served are indeed real, although the direct manner in which the test scores are obtained 

would tend to diminish these reservations. 
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Table 3.1: Statistical analysis of results of twelve neuropsychological tests. A: Posterior 
mean, B: Posterior standard deviation, C: Unbiased estimate, D: Estimated standard 
error. 

Group 
Parameter Statistic (a) (b) (c) (d) (e) 

Test: Motor functions 
Group Mean A 10.186 17.296 17.335 13.954 16.899 

B 
( 

0.885) (1.899) 
( 

1.190)  
( 

1.487) (1.033) 
C 10.075 17.500 17.450 13.900 16.930 
D 

( 
0.887) (1.962) 

( 
1.200)  

( 
1.521) (1.040) 

Slope A 0.225 0.153 -0.118 0.183 -0.091 
B 

( 
0.075)  

( 
0.276)  

( 
0.112)  

( 
0.194)  

( 
0.081) 

C 0.230 0.177 -0.135 0.213 -0.094 
D 

( 
0.076)  

( 
0.326)  

( 
0.115)  

( 
0.221)  

( 
0.082) 

Variance A 53.751 85.094 58.932 48.062 138.281 
B 

( 
9.363) (26.392) (13.368) (15.699) (17.355) 

C 52.739 84.725 57.638 46.269 138.569 
D 

( 
9.251) (26.792) (13.223) (15.423) (17.458) 

Test: Rhythm 
Group Mean A 2.160 5.835 5.400 4.934 5.823 

B 
( 

0.261)  
( 

0.696)  
( 

0.688)  
( 

0.817)  
( 

0.405) 
C 2.119 5.955 5.450 5.000 5.844 
D 

( 
0.257)  

( 
0.698) (0.701) (0.841) (0.407) 

Slope A 0.083 0.171 -0.010 -0.014 -0.064 
B 0.022) 

( 
0.101)  

( 
0.064)  

( 
0.107)  

( 
0.032) 

C 0.083 0.215 -0.015 -0.038 -0.066 
D 0.022) 

( 
0.116)  

( 
0.067)  

( 
0.122)  

( 
0.032) 

Variance A 4.646 11.365 19.637 14.331 21.271 
B 

( 
0.810)  

( 
3.528)  

( 
4.453)  

( 
4.679)  

( 
2.670) 

C 4.413 10.713 19.656 14.146 21.247 
D 

( 
0.774)  

( 
3.388)  

( 
4.509)  

( 
4.715)  

( 
2.677) 

Test: Tactile functions 
Group Mean A 4.034 6.244 6.258 6.497 6.746 

B 
( 

0.338)  
( 

0.960)  
( 

0.620) (1.500) 
( 

0.566) 
C 4.000 6.318 6.300 6.600 6.766 
D 

( 
0.336)  

( 
0.992)  

( 
0.628) (1.578) 

( 
0.571) 

Slope A 0.079 0.114 0.087 -0.080 0.007 
B 

( 
0.029)  

( 
0.139)  

( 
0.058)  

( 
0.195)  

( 
0.044) 

C 0.080 0.134 0.088 -0.133 0.006 
D 

( 
0.029)  

( 
0.165)  

( 
0.060)  

( 
0.230)  

( 
0.045) 

Variance A 7.855 21.840 16.046 49.051 41.603 
B (1.368) 

( 
6.774)  

( 
3.639) (16.007) 

( 
5.222) 

C 7.559 21.629 15.800 49.786 41.700 
D (1.326) 

( 
6.840)  

( 
3.625) (16.595) 

( 
5.254) 
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Table 3.2: Statistical analysis of results of twelve neuropsychological tests (Cont'd). A: 
Posterior mean, B: Posterior standard deviation, C: Unbiased estimate, D: Estimated 
standard error. 

Group 
Parameter Statistic (a) (b) (c) (d) (e) 

Test: Visual functions 
Group Mean A 3.749 4.667 6.421 5.423 7.516 

B 
( 

0.305)  
( 

0.526)  
( 

0.531)  
( 

0.616)  
( 

0.406) 
C 3.716 4.636 6.475 5.450 7.547 
D 

( 
0.305)  

( 
0.526)  

( 
0.538)  

( 
0.630)  

( 
0.409) 

Slope A 0.112 0.158 -0.040 0.014 -0.014 
B 

( 
0.026)  

( 
0.077)  

( 
0.050)  

( 
0.081)  

( 
0.032) 

C 0.114 0.192 -0.048 -0.003 -0.015 
D 

( 
0.026)  

( 
0.088)  

( 
0.051)  

( 
0.092)  

( 
0.032) 

Variance A 6.396 6.527 11.767 8.217 21.408 
B (1.114) 

( 
2.027)  

( 
2.669)  

( 
2.684)  

( 
2.687) 

C 6.251 6.092 11.573 7.941 21.387 
D (1.097) (1.926) 

( 
2.655)  

( 
2.647  

( 
2.694) 

Test: Receptive speech 
Group Mean A 3.600 7.921 9.211 8.428 8.441 

B 
( 

0.364)  
( 

0.834)  
( 

0.853)  
( 

0.855)  
( 

0.537) 
C 3.537 8.000 9.300 8.550 8.461 
D 

( 
0.358)  

( 
0.847)  

( 
0.865)  

( 
0.867)  

( 
0.540) 

Slope A 0.120 0.049 -0.064 0.002 -0.066 
B 

( 
0.031)  

( 
0.121)  

( 
0.080)  

( 
0.111)  

( 
0.042) 

C 0.123 0.052 -0.072 -0.011 -0.068 
D 

( 
0.031)  

( 
0.141)  

( 
0.083)  

( 
0.126)  

( 
0.042) 

Variance A 9.044 16.210 30.091 15.686 37.256 
B 

( 
1.576)  

( 
5.029)  

( 
6.824)  

( 
5.124)  

( 
4.676) 

C 8.597 15.794 29.940 15.046 37.300 
D 

( 
1.508)  

( 
4.995)  

( 
6.869)  

( 
5.015)  

( 
4.699) 

Test: Expressive speech 
Group Mean A 5.066 11.253 12.446 8.662 12.884 

B 
( 

0.516)  
( 

1.059) (1.067) 
( 

1.187)  
( 

0.923) 
C 4.985 11.409 12.575 8.650 12.930 
D 

( 
0.511)  

( 
1.069) (1.082) (1.219) 

( 
0.929) 

Slope A 0.145 0.083 -0.005 0.053 -0.127 
B 

( 
0.044)  

( 
0.153)  

( 
0.100)  

( 
0.153)  

( 
0.072) 

C 0.148 0.088 -0.011 0.045 -0.131 
D 

( 
0.044) (0.178) 

( 
0.103)  

( 
0.177)  

( 
0.073) 

Variance A 18.209 26.265 47.229 30.256 110.280 
B 

( 
3.173)  

( 
8.152) (10.711) 

( 
9.881) (13.841) 

C 17.501 25.161 46.821 29.700 110.531 
D 

( 
3.070)  

( 
7.957) (10.742) 

( 
9.900) (13.926) 



Table 3.3: Statistical analysis of results of twelve neuropsychological tests (Cont'd). A: 
Posterior mean, B: Posterior standard deviation, C: Unbiased estimate, D: Estimated 
standard error. 

Group 
Parameter Statistic (a) (b) (c) (d) (e) 

Test: Writing 
Group Mean A 3.913 7.556 9.877 7.515 8.399 

B 
( 

0.293)  
( 

0.870)  
( 

0.843)  
( 

0.735)  
( 

0.475) 
C 3.866 7.636 10.000 7.600 8.422 
D 

( 
0.288)  

( 
0.892)  

( 
0.853)  

( 
0.745)  

( 
0.477) 

Slope A 0.103 0.042 -0.040 0.037 -0.014 
B 

( 
0.025)  

( 
0.125)  

( 
0.079)  

( 
0.095)  

( 
0.037) 

C 0.105 0.037 -0.047 0.030 -0.015 
D 

( 
0.025)  

( 
0.148)  

( 
0.081)  

( 
0.108)  

( 
0.037) 

Variance A 5.870 17.620 29.373 11.555 29.122 
B (1.023) (5.465) 

( 
6.661)  

( 
3.774)  

( 
3.655) 

C 5.559 17.500 29.112 11.107 29.145 
D 

( 
0.975)  

( 
5.534)  

( 
6.679)  

( 
3.702)  

( 
3.672) 

Test: Reading 
Group Mean A 1.761 2.235 3.189 2.210 6.153 

B 
( 

0.217)  
( 

0.503)  
( 

0.445)  
( 

0.478)  
( 

0.511) 
C 1.746 2.227 3.225 2.200 6.203 
D 

( 
0.216)  

( 
0.517)  

( 
0.452)  

( 
0.489)  

( 
0.514) 

Slope A 0.087 0.069 -0.033 0.069 -0.068 
B 

( 
0.018)  

( 
0.073)  

( 
0.042)  

( 
0.062)  

( 
0.040) 

C 0.088 0.074 -0.040 0.073 -0.070 
D 

( 
0.018)  

( 
0.086) (0.043) 

( 
0.071) (0.040) 

Variance A 3.227 5.978 8.267 4.962 33.819 
B 

( 
0.562)  

( 
1.854) (1.875) 

( 
1.621)  

( 
4.245) 

C 3.134 5.875 8.161 4.785 33.785 
D 

( 
0.550)  

( 
1.858) (1.872) 

( 
1.595)  

( 
4.257) 

Test: Arithmetic 
Group Mean 	A 1.984 4.090 7.432 6.763 8.104 

B 
( 

0.321)  
( 

0.652)  
( 

0.920) (1.029) (0.662) 
C 1.940 4.09 7.550 6.950 8.148 
D 

( 
0.316)  

( 
0.654)  

( 
0.933) (1.042) 

( 
0.666) 

Slope 	 A 0.117 0.061 -0.082 -0.119 -0.066 
B 

( 
0.027)  

( 
0.095)  

( 
0.086)  

( 
0.134)  

( 
0.052) 

C 0.120 0.068 -0.091 -0.172 -0.067 
D 

( 
0.027)  

( 
0.109)  

( 
0.089)  

( 
0.152)  

( 
0.052) 

Variance 	A 7.029 9.903 34.995 22.740 56.658 
B 

( 
1.225)  

( 
3.074)  

( 
7.936)  

( 
7.427)  

( 
7.111) 

C 6.698 9.405 34.820 21.725 56.728 
D 

( 
1.175)  

( 
2.974)  

( 
7.988)  

( 
7.242)  

( 
7.147) 

83 



Table 3.4: Statistical analysis of results of twelve neuropsychological tests (Cont'd). A: 
Posterior mean, B: Posterior standard deviation, C: Unbiased estimate, D: Estimated 
standard error. 

Group 
Parameter Statistic (a) (b) (c) (d) (e) 

Test: Memory 
Group Mean A 5.156 7.060 8.452 7.760 9.927 

B 
( 

0.407)  
( 

0.682)  
( 

0.613)  
( 

0.969)  
( 

0.454) 
C 5.104 7.045 8.500 7.800 9.961 
D 

( 
0.406)  

( 
0.692)  

( 
0.622) (1.007) 

( 
0.457) 

Slope A 0.186 0.034 0.040 0.003 -0.000 
B 

( 
0.034)  

( 
0.099)  

( 
0.058)  

( 
0.127)  

( 
0.036) 

C 0.191 0.020 0.038 -0.019 -0.001 
D 

( 
0.035)  

( 
0.115)  

( 
0.059)  

( 
0.147)  

( 
0.036) 

Variance A 11.375 10.985 15.658 20.364 26.774 
B (1.982) 

( 
3.409)  

( 
3.551)  

( 
6.649)  

( 
3.360) 

C 11.042 10.531 15.466 20.269 26.720 
D (1.937) 

( 
3.330)  

( 
3.548)  

( 
6.756)  

( 
3.366) 

Test: Intellectual processes 
Group Mean A 10.464 15.634 17.910 18.987 19.229 

B 
( 

0.805)  
( 

1.497)  
( 

1.381)  
( 

1.957)  
( 

0.813) 
C 10.343 15.636 18.000 19.250 19.273 
D 

( 
0.801) (1.530) (1.404) 

( 
2.006)  

( 
0.818) 

Slope A 0.193 -0.046 -0.213 -0.345 -0.140 
B 

( 
0.068)  

( 
0.219)  

( 
0.130)  

( 
0.257)  

( 
0.064) 

C 0.203 -0.038 -0.224 -0.436 -0.142 
D 

( 
0.068)  

( 
0.254)  

( 
0.134)  

( 
0.292)  

( 
0.064) 

Variance A 44.496 52.628 79.203 82.833 85.675 
B 

( 
7.752) (16.327) (17.962) (27.049) (10.753) 

C 42.984 51.496 78.851 80.467 85.549 
D 

( 
7.540) (16.285) (18.090) (26.822) (10.778) 

Test: Intermediate memory 
Group Mean A 3.130 4.644 5.494 5.027 6.269 

B 
( 

0.300)  
( 

0.536)  
( 

0.378)  
( 

0.466)  
( 

0.365) 
C 3.090 4.636 5.525 5.050 6.289 
D 

( 
0.301)  

( 
0.551)  

( 
0.382)  

( 
0.472)  

( 
0.367) 

Slope A 0.060 0.059 -0.000 0.063 0.018 
B 

( 
0.025)  

( 
0.077)  

( 
0.035)  

( 
0.060)  

( 
0.028) 

C 0.061 0.066 -0.004 0.070 0.018 
D 

( 
0.026)  

( 
0.092) (0.036) 

( 
0.069) (0.029) 

Variance A 6.197 6.788 5.968 4.710 17.237 
B 

( 
1.079)  

( 
2.106)  

( 
1.354)  

( 
1.539)  

( 
2.163) 

C 6.079 6.681 5.840 4.461 17.269 
D 

( 
1.066)  

( 
2.113)  

( 
1.340)  

( 
1.487)  

( 
2.176) 
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The posterior distributions of A0, A, and ii were somewhat sensitive to the choice 

of prior, as already illustrated in the analysis of the visual functions test. The posterior 

probabilities P9, Pfi, and P0, even if very sensitive quantitatively, in the overwhelming 

majority of situations were very small apart from P1, for the memory test and prior 

(3) that gave value 0.078, hence indicating less validity of the equal mean, slope and 

variance hypotheses. The exact values of the Bayesian significance probabilities are not 

reported here since they were very low. 

The values of the posterior means of the random effects are very stable to the 

choice of prior distribution, especially if the corresponding posterior standard deviations 

are considered, and quite close to their unbiased estimates. It is worth noticing the 

shrinking of the posterior means towards an overall mean, compared with the respective 

unbiased estimates, since they incorporate the information on the distribution of the 

O, )3i and q5j of the model hierarchy. The shrinkages are quite small and this is related 

to the sample sizes, which are quite high. The saving in the estimated standard errors 

compared to the unbiased estimates are also very limited, since we don't actually know 

the hyperparameters of the random effects. 

The means of the student group are the ones with the smallest posterior means for 

all twelve tests and three sets of priors, as expected. However, contrary to forensic 

scientist expectations, we didn't observe the highest means being those of groups ((b) 

and (c), rather, in eight out of the twelve tests, the medical patient group (e) had the 

highest posterior mean, although only for the reading test the difference was significant. 

For the remaining seven tests, the difference of the means of group (e) and at least two 

of the three offender groups was not of practical significance. For the motor functions 

test, offender group (c) had the highest posterior mean closely followed by groups (b) 

and (e), with the murderer group (d) having the second lowest mean. For the rhythm 

test the (descending) group ordering was (b), (e), (c), (b) and (a), for the receptive 

speech test it was (c), (e), (b), (b) and (a), and for the the writing test the ordering 

was (c), (e), (b), (d) and (a). The ordering depended on the choice of prior for the 

last four tests, however in all of them there were no practical differences between the 

three offender groups and the medical one, while all four groups appeared to have quite 

hiher scores than the students (a). 

In all cases, the posterior means of the slopes are very small in absolute value. As 

a result, combined with the values of x. - x.., the deviation of the ith group covariate 

mean from the overall one, the slopes would tend to change the posterior distribution 
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of the unadjusted group means, O, very slightly to obtain the posterior density of the 

adjusted means, , and hence the values of the latter are not reported here. For most 

of the tests the posterior means are positive suggesting higher scores for older people. 

This appear to be reversed in groups (c) and (e), where for most tests the posterior 

means are negative. 

The posterior means of the variances of the five groups present a stable pattern 

across all tests for all three priors. The estimate for the medical patients group is 

always the highest and significantly higher than the estimate for the student group, 

which is always the smallest apart from the motor functions test. The variances of the 

three offender groups tend to be close to each other with variable orderings, just as 

observed with the posterior means of the group means. 

The results suggest that none of the neuropsychological tests can be used to distin-

guish any one of the offender groups (b), (c), (d) from both the other offender groups, 

and the Stanford medical group (e). Age being the only confounding variable for which 

data are available for all five groups, our results are a bit restricted. Moreover, as with 

all observational studies, we cannot rule out the existence of another confounder that 

unlike age has a very substantial effect on the test scores, according to which the cur-

rent data are highly imbalanced and which could potentially dramatically change the 

current conclusions, after adjusting the scores for this confounder. It is however not 

obvious that the current neuropsychological tests with the data available can be used 

to profile offenders in a meaningful way. Additionally the results obtained definitely 

contradict any initial guesses. 

3.2 Nutrition data example 

We proceed by reporting the results of our analysis of the data coming from an ex- 

periment in food microbiology and toxicology. It was conducted to study the effects 

of different food additives on animal weight gain. Two levels (0.25% and 0.5%) of an 

additive (CLA), a control and a single level (0.5%) of a second additive (LA) were used. 

We label them 1 to 4, in the same order. Feed intake was a possible covariate, with 

quite different values across the four groups. Table 3.5 presents a summary of the data. 

A fixed effects constant variance ANCOVA analysis is described by Yandell (1997, 

pp. 256-273). By using a constant slope model and adjusted for the rest of the param- 

eters in the model F (Type III) tests, significant differences between the four different 
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additives were obtained, as well as a positive slope for feed intake relating higher weight 

gain to more feed intake. In a further step, a test for a statistically significant interac-

tion between factor and covariate, corresponding to different slopes for different levels 

of the factor, was not significant (F = 3.60 on 3 and 4 d.f.), while an attempt to use 

two different slopes, one for the two high levels of additives and one for the control 

and the low level of additive CLA gave a rather significant result, (F = 15.14 on 1 and 

6 d.f.), indicating the intuitive conclusion that equal increases in feed intake result in 

steeper weight gain for animals taking smaller concentration additives. 

Table 3.5: Data summary for nutrition example. 

Group (i) ri2 	s 
1 3 21110.542 1457.567 0.459 96.344 
2 3 2875.227 1479.033 0.057 519.133 
3 3 93219.447 1409.667 0.496 243.430 
4 3 18906.887 1338.900 0.145 17.394 

The information criterion in (2.17) was BIC* = — 65.18, against BIG* = — 90.74 

for the constant variance, unequal slope and mean model, suggesting the plausibility 

of the unequal variance assumption. Note however that, due to the extremely small 

sample sizes, there is little information in the data about the variances. BICt uses point 

estimates for the 0j, but ignores their high standard errors. We will proceed with the 

analysis assuming we have definite prior information. If this is not true, the subsequent 

analysis would be rather implausible, since the data contain little information. 

We performed the analysis using three sets of prior parameters Wi = 4.5, r1 = 1.2, 

= 1, 12 = 0.0035, co = 60, 0 = 2/15, a =2.2 , and b = 0.4 for set (1), Wi = 4.5, 

-rl = 2, w2  = 4.5, T2 = 0.005, (o = 120, 	= 1/60, a =18, and b = 2 for set (2), and 

= 4.5, Ti = 5, w2  = 20, 12 = 0.01, o = 198, = 1/90, a=30 , and b = 1 for set (3). 

We report the posterior densities of the O, )3i  and Oi under the second choice of prior 

distribution. As in all previous cases studies, the posterior densities of the random 

effects are quite insensitive to the choice of prior and result to identical inference in 

practice. 

The posterior densities of the group means, in the top left plot of Figure 3.7, suggest 

the ordering (d), (c), (a) and (b), with significant pairwise differences, apart the one of 

groups (a) and (b). Hence there is an indication that the first additive (CLA), at both 
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Figure 3.7: Nutrition data. Top left: Posterior density of four, (a)-(d), group means 
(0). Top right: Posterior density of four, (a)-(d), adjusted group means (). Bottom 
left: Posterior density of A, under three choices, (1)-(3), of prior distribution. Bottom 
right: Integrated likelihood (solid line) and prior density (dotted line) of A8, under three 
choices, (1)-(3), of prior distribution. The dashed vertical lines correspond to AO = A0. 

concentrations, is associated with higher weight gain than the control and the other 

additive (LA). The , in the top right plot of Figure 3.7, that compare the different 

group means at the same level of the covariate, x • , give slightly different conclusions. 

Although the ordering of the four groups has remained the same, the difference of groups 

(c) and (d) no longer is of statistical significance, while the adjusted mean of group (b) 

has quite larger variance, compared to the mean, 02, has much higher posterior variance, 

reflecting the high posterior variance of the corresponding slope parameter. We address 

the question of overall equality of the group means by considering the posterior density 

of A0, in the bottom left plot of Figure 3.7, and P0, the posterior probability that 

A9 A0 = 1/3. The posterior density of AO is quite sensitive to the choice of prior 
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Figure 3.8: Nutrition data. Top: Posterior density of four, (a)-(d), group slopes (0). 
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Bottom right: Integrated likelihood (solid line) and prior density (dotted line) of ), 
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distribution, but in all three cases, Po is negligible, less than 10 5 , strongly refuting 

H0 : A0 = 0, the hypothesis of equality of the group means. The integrated likelihood 

for ), in the bottom right plot of Figure 3.7, is very stable to the choice of prior 

but quite fiat. Adopting the criterion already described for testing the hypothesis H9, 

this time using the integrated likelihood, would result in contradictory inference to the 

one already obtained based on the posterior density of A. This an indication of the 

substantial part played by the prior in the posterior inference, in conjunction with the 

small sample sizes. Our findings, however, seem to confirm the practical results of the 

analysis by Yandell. 

The posterior densities of the slopes, in the top plot of Figure 3.8, suggest that (b) 
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Figure 3.9: Nutrition data. Top: Posterior density of four, (a)-(d), group variances 

(q). Bottom left: Posterior density/probability mass function of v (solid line under 
continuous prior, -. . under discrete prior) under three choices, (1)-(3), of prior dis-
tribution. Bottom right: Integrated likelihood (solid line) and prior density (dotted 
line) of ii, under three choices, (1)-(3), of prior distribution. The dashed vertical lines 
correspond to ii = v. 

and (d), the two 0.5% treatments, are associated with slower increases in weight gain 

with feed intake, than additives (a) and (c), confirming results already discussed. The 

posterior density of A, is, in the bottom left plot of Figure 3.8, is typically sensitive 

to the choice of prior and again P, the probability that AO , is very small, less 

than 10 -10 .in all three cases, strongly refuting the slope equality hypothesis, H. The 

integrated likelihood of AO is quite stable and would also indicate rejection of H, 

according to our proposed criterion. 

The posterior densities of the variances q5, under prior distribution (2), are described 

in Figure 3.9. Based on that figure and without studying the posterior density of ii, 
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or calculating the posterior probability that ii > v, we can conclude that the data 

do not provide enough evidence for the rejection of H,, the variance equality hypoth-

esis. Comparing the posterior means of the variances with their unbiased estimates 

(in Table 3.5), we can see that they are very far apart and their ordering hasn't been 

preserved. This ordering reversal can be explained by the dependence of the posterior 

density of the variances on s and the big discrepancies of the latter across different 

groups, as depicted in Table 3.5. In fact, the original suggestion, based on the same 

table, that the variances are unequal, is not true. To see this, observe that by equation 

(3.1), for n2  = 3, the estimated standard error of the variance is equal to its unbiased 

estimate multiplied by The fact that the variances do not appear to be unequal, 

however, doesn't mean that we should set them to be equal. Inference about the vari-

ances on such small sample sizes is not reliable, a conclusion supported by the flat 

integrated likelihoods in Figure 3.9, and the close agreement of the prior and posterior 

distributions of ii. 

3.3 Simulated data examples 

So far, in the practical examples we studied, the decision about whether the groups 

variances were equal or not, was quite clear, given the graphs of the corresponding 

posterior densities. We will proceed by presenting examples of simulated data sets to 

examine whether our suggestion, of considering the posterior probability that v > v 

as a Bayesian significance probability for testing the variance equality hypothesis, is 

useful in practice. 

We considered two sets of simulated data, both of which with m = 10 and, for 

simplicity, Pi = 0, essentially reducing our model to a random effects ANOVA one. The 

data for the first set were generated using Oi  = 10i and Oi  = 4 + 25i for i = 1,... , m, 

and used K = 10 runs. For each run k, with k = 1,. .. , K, the ten sample sizes were 

equal to n i  = 5k, for i = 1,.. . , in, hence we were just increasing the sample sizes 

between each run, while keeping them equal within each run. For the second set of 

data we used Oi  = 0 and sample sizes randomly generated and equal to 23, 46, 23, 39, 

28, 45, 21, 41, 31, and 22, for all k = 1,... , K simulations, then randomly generated the 

observations using the variance vector q5j = 10, for i = 1,... ,5, and Oi  = 10+(k-6)x8, 

for i = 6,. .. , 10, hence increasingly separating the variances. As we mentioned in the 

previous example, because of the large sampling variation of the observed residual sums 
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of squares, for the second set of data, we replaced them by their expectations, hence 

being able to observe the gradual separation of the posterior densities of the variances, 

since in this case, the posterior densities were more settled.. 

For each data set, we report the posterior densities of the variances, the posterior 

density of the parameter v, the suggested Bayesian significance probability, and the 

value of Bartlett's test statistic (see Draper and Smith, 1999, p.  56), together with 

the corresponding exact significance probability for the hypothesis of variance equality. 

The exact significance probability was very close to the approximate one, based on the 

chi-squared distribution with 9 degrees of freedom. The results for the first set of data 

are displayed in Figure 3.10 and Table 3.6 and for the second one in Figure 3.11 and 

Table 3.7. 

The significance probability of Bartlett's test does not numerically agree with our 

suggested significance probability, P, so strictly speaking, if we wanted to base a 

decision only on a significance probability, we would get contradictory answers in some 

situations, although the orderings of the significance probabilities seem to roughly agree.. 

On the other hand, our method enables us to make an applied decision regarding 

variance equality looking at their posterior densities. This applied decision, in both sets 

of simulated data, very well matches the posterior density of the qj with the posterior 

density of v and the corresponding interpretation via the posterior probability that 

ii> vo  = max n. 

Based upon applied considerations of the posterior densities of the variances in 

Figures 3.10 and 3.11, e.g. overlapping tail areas, we judge that it is reasonable to infer 

variance inequality for k = 5,... , 10 for the first data set and k = 4 or 5,... , 10 for the 

second. Hence Bayesian significance probabilities as small as 0.05 (see Figure 3.10 and 

Table 3.6), and in the range 0.01 to 0.08 (see Figure 3.11 and Table 3.7) correspond 

to our applied judgement of inequality. More generally, we have found that if the 

Bayesian significance probability is less than 0.05, then this corresponds well with an 

applied judgement of the posterior densities of the variances and gives an intuitive 

justification for the choice vk = max n. This can be extremely useful for an applied 

statistician. 

For the first data set, as we demonstrated in the nutrition example, inference about 

the variances with small sample sizes is quite difficult to obtain, hence although the 

variances from which we generated the data were quite different, the small sample sizes 

together with the large sampling errors conceal these differences. For the second data 
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Figure 3.10: Posterior density of the ten group variances (q,) and posterior density of ii 
for the first set of simulated data. The dashed vertical lines correspond to ii = vo = 10. 

Table 3.6: Variance equality test results for first group of simulated data sets. 	A: 
Bayesian significance probability, B: Bartlett's test statistic value, 	C: Bartlett's test 
significance probability. 

Data Set 1 2 3 4 5 
A 	1.000 0.992 0.693 0.786 0.504x10 1  

Statistic B 	6.653 15.354 31.181 30.026 48.157 
C 	0.674 0.816x10' 0.254x10 3  0.424x10 3  < 10 10  

Data Set 6 7 8 9 10 
A 	0.240x10 2  0.552x10 2  0.427x10 5  0.152x10 4  0.209x10 5  

Statistic B 	64.352 57.506 94.376 82.274 106.147 
C 	< 10-10  < 10-10  < 10-10  < 10-10  < 10 -10  
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Figure 3.11: Posterior density of the ten group variances () and posterior density 
of v for the second set of simulated data. The dashed vertical lines correspond to 
v = vo = 46. 

Table 3.7: Variance equality test results for second group of simulated data sets. 	A: 
Bayesian significance probability, B: Bartlett's test statistic value, 	C: Bartlett's test 
significance probability. 

Data Set 1 2 3 4 5 
A 	0.937 0.776 0.302 0.817x10 1  O.111x10' 

Statistic B 	15.435 23.094 30.921 38.711 46.353 
C 	0.795x10 1  0.588x10 2  0.269x10 3  0.130x10 4  < 10 0  

Data Set 6 7 8 9 10 
A 	0.197x10 2  0.130x10 3  0.261x10 4  0.808x10 5  0.194x10 5  

Statistic B 	53.792 61.002 67.972 74.702 81.198 
C 	< 10 10  < 10-10  < 10-10  < 10 -10  < 10 -10  
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set, where we used the expected values of the variances and quite large sample sizes, 

the decrease of the P0  very well reflects the gradual separation of the two subsets of 

five variances. 

We have established the usefulness of our proposed models in the analysis of several 

data sets, however, all the results presented were obtained assuming the convergence 

of the MCMC simulations, having taken precautionary measures (i.e. long chains), but 

without having validated this assumption. In the next chapter we will address this 

problem, not by using some formal convergence criterion, whose weaknesses have been 

previously discussed, but by obtaining posterior inferences through completely different 

methods and comparing the relevant results. 
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Chapter 4 

Applications of Laplacian 

methods 

The main subject of this chapter is the description and application of Laplacian type 

approximations to obtain the marginal posterior density of each of the random effects 

and parameters of the random variance ANCOVA model studied in sections 2.1 to 2.4. 

In the first part of this chapter we will present a brief review of Laplacian methods 

leading to the derivation of the approximation we will be applying to the ANCOVA 

problem. They will be followed by two simple introductory examples and the full 

application in all algebraic detail. 

4.1 Background 

Laplacian methods do not only provide simple initial approximations useful for starting 

points for further exact computations, e.g. starting points for MCMC simulations, but 

can produce extremely accurate results when compared to those of the exact meth-

ods and substantially more accurate than results produced by normal approximations, 

while being computationally less intensive than simulation methods. Hence, their com-

putational efficiency and potential accuracy provide an appealing alternative to MCMC 

and other methods, like the quadrature based one by Naylor and Smith (1982), for ob-

taining marginal posterior distributions. Hence their application will have a twofold 

purpose, both confirming the convergence of the MCMC procedures of Chapter 2 and 

saving computer time. 

The central idea in Laplace's method for evaluating integrals is approximating the 
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integrand by a normal curve centered at its mode and having variance equal to minus 

the inverse of the Hessian matrix of the log of the integrand evaluated at its mode. 

Leonard (1982), having justified Laplacian approximations to predictive distribu-

tions, recommended using a conditional version of Laplace's method to approximate 

marginal posterior densities for subsets of a vector parameter by using a normal ap-

proximation to the posterior density of the nuisance parameters conditional on the 

parameters of interest. He similarly obtained a modified expression for the profile like-

lihood function, the modification being the inverse of the square root of the determinant 

of the likelihood information matrix of the parameters of interest, conditionally on the 

remaining parameters. 

Tierney and Kadane (1986) suggested approximations to posterior moments, in ad-

dition to marginal posterior densities, and provided detailed derivations of their asymp-

totic errors. They concluded that these Laplacian approximations are of the same order 

as the errors of saddlepoint approximations. In particular they showed that the error 

of approximating a marginal density is asymptotically of the order of n 1  in some fixed 

neighborhood of the parameter of interest, where n is the sample size, and hence smaller 

than the error of the normal approximation, which is of the order O(n'/2 ). This error 

is further reduced to become of the order 0(n 3 /2 ), if one elects to renormalize the 

resulting marginal posterior density, and hence remove the error in the constant of in-

tegration. It needs to be emphasized, however, that these error magnitude results are 

asymptotic and may not be that useful for finite sample inference. Nevertheless, when 

carefully applied, conditional Laplacian procedures can be very accurate. 

Let a p x 1 vector 9 possess posterior density lry (9), and ij = ckT9 denote a linear 

transformation of 9, with c = ( ai, a2, ..., ap)T fixed and specified. Assume that pre-

liminary transformations adjust the conditional density of 9, given ij, towards either a 

multivariate normal or generalized multivariate t—density. Following the developments 

by Leonard (1982), and Tierney and Kadane (1986), and further advances by Leonard 

and Novick (1986), who used Laplacian approximations to marginalize posterior den-

sities in the context of log-linear models for contingency tables, and Leonard, Hsu and 

Tsui (1989), Tierney, Kass and Kadane (1989a) show that the posterior density of 77 

can be represented, to saddle point accuracy, by 

7ry 	cx 19y  ( 0, 0,T  {II h / 2 (aTR 1 a) h1 ' 2 }, 	 (4.1) 



where 9 maximizes ir y (0) subject to ct To = j, and 

	

R17 
= _ô2 log 7ry (0)1ô(OOT)1 0=9 . 	 (4.2) 

This approximation is not completely accurate for hierarchical models and only ap-

plies to positive functions ij. Extensions to expectations of nonpositive functions, by 

applying the approximation to moment generating functions, thus ensuring positive 

integrands, and then taking the appropriate derivatives, or adding a large constant to 

the nonpositive function and then subtracting it from the approximation, as well as 

similar approaches for approximating variances of nonpositive functions are discussed 

by Tierney, Kass and Kadane, (1989b). 

4.2 A Laplacian approximation 

We can however refer to a modification, which is a special case of suggestions by Leonard 

et al (1989), and Sun et al (1996), and is briefly reported by Leonard and Hsu (1999). 

The modification is 

iry (0) exp(G)/ (lRI h / 2 /2), 	 (4.3)
2 17 	 71 

where 

	

= Dlog7ry (0)/ô9 99;, 	 (4.4) 

	

= _ô2 logiry(0)/ô(OOT )19.9., 	 (4.5)
77  

G = (R)T' - 	 (4.6) 

and 

W77 = a T(R;)_l a, 	 (4.7) 

where 	denotes some representative of the region D = 18 : a To 
= i}, with high 

77 

conditional posterior density, given i. This approximation reduces to (4.1) when 
77 

is replaced by the conditional mode e. A direct derivation of approximation (4.3) 

follows. 

Let 7ry (9) denote the posterior density of a p x 1 vector 6, and j = aTO be some 



linear function of 9. Expanding log lry  (9) in a Taylor series about 0 = 8 and neglecting77  

cubic and higher order terms in the series, gives the second order approximation 

log ir(8) = log 7ry (0) + £'(9 - 9) - '9 - 8)TR(8 - 8) 

	

2 	77 	77 

= log 7ry (0) +'(R) 1t17  - (9 - 911)TR(9 - 0) 	(4.8)77  77 	2 77 	77 

where £17  and R satisfy (4.4) and (4.5) and 
77 

0 11 = 0* + (R 1 . 	 (4.9) 
77 	77 

Consequently, when aTO = i, and in some neighborhood of 0 = 9, 7ry (0) is approxi-

mated by 

ir,(9) = 7ry (0) exp {e'(R)_1t - 1(9 - ö)TR(9 - 2 77 	77 77 	 11 	2' 

oc 7ry(8)IRI 1/2  exp { ltT'R*_lt } " o (ö, (R)_ 1 ) , 	(4.10) 
77 	77 2?7\ 	17) 	17 77 

where W9 (p, C) denotes a multivariate normal density for 9, with mean vector 1A and 

covariance matrix C. The next step can be rigorized via the D—region described by 

Leonard, Hsu, and Tsui (1989). In particular, the following statement holds, 

= 
71fD7 7ry (0)dO, Q  R, (4.11) 

with D7  denoting the region, D7  = D(i7,'y) = 19 : ij < cT0 < 71 + 'y}, since the 

following probabilistic argument is true in the posterior: 

= liM -Y - 1p (77  < T9 < 77 + ) = lim 'P(9 : 9 E D) = lim 
74fD 

y (0)d9. 
-0  

(4.12) 

Combining (4.10) with (4.11), we obtain that the marginal posterior density of 77 is 

approximated by 

	

x ry (9)IRL" 2 exp {4(R )_ 1
17

} 	(QT171aT(R)_1a), 	(4.13) 
 77 	 77 

where 4i17(,  a2 ) denotes a normal N(t, a2 ) density for i. Using the definition of the 

normal density and equation (4.7), the previous expression can be rewritten as 

99 



7r 1  (?7) x 7ry (9)IRI_h/2whh/2exp 	 - 	- aT) 2 } 	(4.14) 
77 	77 	71 

By equality (4.9), we have that 

(1] - 	= t(R)_l acT(R)_l4. 	 (4.15) 
77 	77 	 77 

A final substitution of (4.15) into (4.14), using definition (4.6), gives the expression 

(4.3). 

The previous result does not suggest a simplification to (4.1) when 	is replaced 
77 

by 9 7  for general form of the function 77 = g(0). However, the two approximations are 

algebraically equivalent when 71 = oTO, and 	= 87 . This result can be demonstrated 
77 

using the fact that if 	= O,, then from the application of the Lagrange multiplier 
77 

method for obtaining the conditional maximum, we have that 

t 77 = Aa, 	 (4.16) 

with A the Lagrange multiplier. Using (4.16) and (4.9), we can derive that 

1)) 	'l - ( - a"9,) = A2 . 	 (4.17) 
77 	 —77 

Substituting the last equality in (4.14), the exponent becomes 0, and the expression 

reduces to (4.1), since R = R,. 

Although, (4.3) possesses inferior asymptotic properties to (4.1), the quadratic term 

within the exponent can provide an essential extra contribution to this approximation 

for finite sample sizes and thus make it more useful, as demonstrated by Leonard et al 

(1989) with several relevant examples, all with general form of r = 

In case the suggested approximation failed to give sufficiently accurate results, we 

could consider further possibilities, like the Laplacian t approximation (Leonard et al, 

1994), which can be rather more accurate in the tails of the required distributions, 

but involve the additional complication of having to estimate the degrees of freedom of 

the multivariate t distribution, and saddlepoint approximations (Daniels, 1954, Reid, 

1988), which are generalizations of Edgeworth expansions, and can be considered a 

complex analysis and rather more complicated analogue of Laplacian approximations. 
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4.3 Two examples of Laplacian methods 

4.3.1 A simple hierarchical model 

Suppose that Yi, Y2,. .. , 	are independent and normally distributed given respective 

means 01,02,... , 0m and known variances r2  /n1, T 2 /n2,... , T 2 /fl, that 01 ,02 ,..., °m 

are independent and normally distributed with common mean, p,  and common variance 

a2 , and that v/a2  has a chi-squared distribution with v degrees of freedom. The joint 

posterior density of 01,02,... ,°m and a2  is 

1 Tfl 	 In 	 v() 

	

iry (O, a2) (a2 )_ m+v+2) exp 	n(0 - 	- 	
- )2 - 

_j•
r2 E(0, 

(4.18) 

Integrating out a 2  from (4.18), we find that the posterior density of 01,02,... ,Om , is 

( 	m 	 ( m 
iry(0) oc 	+ 	(0, - IL) 2 J 	exp 	n(0 - Yi)2/2T2J>. 	(4.19) 

	

j=1 	 i=1 

Consider an example with m = 10, t = 0, r2  = 1, ni  = 20, for i = 1,... ,m, and 

ii = = 1. Suppose the observations are -1.7, -0.5, -0.8, -1.11, -1,14, 1.3, 1.5, 0.7, 0.9, 

and 1.11. Curve (i) in Figure 4.1 gives the exact posterior density of 77 = - (0i + 02 + 

03 +04 +05) + 1  (0 +07 +08 +09 + 010). This was computed by numerically integrating 

the posterior density of i, given a2 , with respect to the posterior density of a 2 , 

2 ) o (2)_2) 
i=i1 	

'2 	2)'2  

	

{ V( 	(Yi-I)2 
lry (a a fl(nr + a 	

exp2a2 
	I 

. 	n- I T + 6r2 J• 	
(4.20) 

The latter can be obtained from (4.18), by applying Corollary 1.1 and integrating 

out the 0. Observe also that the posterior density of i, given a2 , is normal with mean 

and variance or, , with 

M 

a(a 2 i + njT 2 yj) 
(4.21) 

	

= 	
a 2  +nr 2  

i=1 

and 

M 

a,1  = 	
2  + 	-- 2 	 (4.22) 

i=1 a  
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Curve (ii) gives the Laplacian approximation (4.1) when applied to the joint posterior 

density of the Oi  and 'y = log a2 , and when 9, represents the joint posterior modes 

of the Oi  and 'y, given ij. The computation of 9, involves application of Lagrange's 

multiplier method and the solution of a cubic equation in a 2 , which can be achieved 

using Cadran's formulae (see Abramowitz and Stegun, 1965, p.  17). A curve of similar 

accuracy may be observed when the Laplacian approximation (4.1) is instead applied 

to the posterior density (4.19) and when O, represents the joint posterior modes of the 

O, given i. 

There is clearly room for improvement. Following O'Hagan (1976) and Sun et al 

(1996), it is beneficial to consider other sets of modes. In particular, the joint posterior 

modes of the G,  given 77 = ciOi +... + am Orn , and a2 , are 

Oj = (oi + fljT 2 j - Aa)/(a 2  + nr 2 ) 	( i = 1,... , m), 	(4.23) 

where 

= 	
- 1 	 (4.24) 

We base our approximations upon quantities O which replace a 2  in (4.23) by e, where 

is the marginal posterior mode of = log a 2 . The marginal mode of 'y should be 

obtained numerically by maximizing its marginal posterior density. However, while 

= (Or,. . , 0* )T satisfies 97 = 9 no longer maximizes any particular density.
77 77 

Unfortunately (4.1) does not possess a precise theoretical derivation, if 9, is replaced 

by O. 

Curve (iii) of Figure 4.1 gives the approximation (4.3) when applied to (4.19) using 

the preceding definition of O, and L, = (Lj), R 77  = (r 3 ), with 

m 	 -1 

ei = fljT2 (y  _0) - (m+)(O _) {v + 	(O - ) 2 } 1,... ,m) (4.25) 

and for i, j = 1,... , m, 

I 	
—2 — 2(m + v)(O - IL I)_2 {v( + >'(Oj - 

2 -1 
+(m +V)  {vç + >:=(O - ) } , 	 when i = 

= 	 (4.26) 

—2(m + v)(O - p)(Oj - i) {v( + 	i(Oj - )2}_2, when i 54 j, 
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Figure 4.1: First example of Laplacian methods: Posterior density of ij. (i) Exact result; 
(ii) initial Laplacian approximation; (iii) recommended Laplacian approximation; (iv) 
alternative Laplacian approximation. 

obtained by straightforward differentiations of the log of (4.19). It is identical, to 

visual accuracy, to curve (i). However, considerable care should also be taken when 

applying approximation (4.3). Curve (iv) of Figure 4.1 gives the same approximation, 

when applied to the posterior density of O, . . , m and 'y,  with the elements of 
77 

now replaced by the previous elements, together with y.  This does not give as good 

accuracy as our recommended approximation (iii). 

4.3.2 A single stage model 

Extreme care is also needed when choosing O, as demonstrated by a further example. 

Suppose that given 01,  q5,. .. , Om, the statistics U1 , U2,... ,Urn  are independent, and 

that, for i = 1,... , in, Uiloi has chi-squared distribution with ni degrees of freedom, 

and the distribution of Oi = log Oi  in the prior assessment is uniform over (—oo, oo). 

Then the posterior density of the 9, given the U, is 
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7r(OIU)oexP(_niOi_e°iUi) . 	 (4.27) 
2 	 2 

We seek an approximation to the posterior density of the contrastq = Ej  c02 , where 

Ej  a2  = 0. The exact conditional posterior modes of the O, given that Ej  a2 02  = 71, 

satisfy the equations 

= log {U2 /(n+aA)} 	(i = 1,...,m), 	 (4.28) 

where A satisfies the non-linear equation 

= 	ai log {U/(n + A)}. 	 (4.29) 

It is possible to invert (4.29) so that A can be expressed in terms of 77. Consider 

a numerical example with U1 = 439.77, U2 = 121.83, U3 = 142.94, U4 = 406.32, U5 = 

2694.74,n1 = 39, n2 = 21,n3 = 19,n4 = 66, and n5 = 127. Curve (i) of Figure 4.2 

denotes the exact posterior density of ij = —(O1+O2+O3)+(O4+O5). It was computed 

by N = 10, 000 Monte Carlo simulations. In particular, using that the posterior density 

Of 7),2,•.• ,m is 

with 

m 

it(ij, 02,••• , 0.1U)mIU) 	 exp(—Ui/2) H çb-(n/2+1) exp(—U/2q5 2 ), 	(4.30) 
i=2 

M 

ti=exp{ai1 (7)_ai  log cbi)} 	 (4.31) 
i=2 

the marginal posterior density of 77 can be obtained as 

N 

-7r(771U) i 	
-nj/2

IU) = N1 	4ii,k 	exp(—U1/2,k), 	 (4.32) 
k=1 

where 0,7,k  is the q of equation (4.31) corresponding to the kth independent realization 

of 0j, for i = 2,... , m, from a scaled inverse chi-squared distribution with ni  degrees of 

freedom and Uj /nj scale parameter. 

Curve (ii) gives our Laplacian approximation (4.3) based upon the preceding con-

ditional posterior modes and with £, = (4), R = (r), where 
77 

= —n 2 /2 + Ue ° /2, 	(i = 1,... , in) 	 (4.33) 
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Figure 4.2: Second example of Laplacian methods: Posterior density of ij. (i) Exact 
result; (ii) recommended Laplacian approximation; (iii) alternative Laplacian approx-
imation (linear case); (iv) alternative Laplacian approximation (quadratic case); (v) 
alternative Laplacian approximation (cubic case). 

and for i,j=1,...,m, 

{  
r3 	

Ue°/2, when i=j 
= 	 (4.34) 

0, 	when ij. 

This approximation is effectively identical to the exact curve. 

We might however be tempted to approximate A in terms of 77, with the objective of 

obtaining an algebraically explicit approximation to the posterior density. The terms 

of the expression 

log(ni  + aL A) = log n2  + n 1aA - n 2aA 2 /2 + rç 3aA3 /3, 	(4.35) 

provide successive approximations to the right hand side of (4.29), which are linear, 

quadratic, and cubic in A. The Laplacian solutions, based upon the linear and quadratic 
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approximations are given by curves (iii) and (iv) of Figure 4.2, and are less accurate. 

However (v) gives the Laplacian solution based upon the cubic approximation to (4.29), 

(choose the root which is closest to the linear solution), and is quite accurate. 

Based upon those two examples, we conclude that Laplacian approximations should 

not be unequivocally applied, but if employed with care, can provide remarkably accu-

rate results. Asymptotic properties may not particularly help when comparing finite 

sample approximations (Leonard, Hsu and Tsui, 1989) because substantial finite terms 

can vanish as n —+ 00. 

4.4 Application of Laplacian methods to ANCOVA mod-

els 

The aim of this section is the development of Laplacian approximations for the poste-

rior density of the random effects and six parameters of the random variance ANCOVA 

model studied in Chapter 2. In particular, following the results obtained in the preced-

ing two examples, we will seek to approximate the marginal posterior density of each 

of the random effects, O, /3, and qj, by applying approximation (4.3) on the joint pos-

terior density of the O, /3, and -yi = log qj, evaluated at the conditional modes of 8, ,13, 

and 'yi, given the six model parameters, for values of these parameters maximizing their 

joint posterior density. To obtain approximations to the marginal posterior density of 

each of the six model parameters /10, i-ta, Au, ), v and (, we will employ approximation 

(4.3) directly on their joint posterior density. 

4.4.1 Approximations of random effects and parameter marginal den-

sities 

The joint posterior density of O, 6, and -yi = log qj can be obtained from (2.21) by 

integrating out the six model parameters. In particular, having modified the quadratic 

forms in po and jt1 of the exponent of (2.21) to obtain similar expressions to (2.36) and 

(2.37), we can integrate out both io  and /ii to obtain the joint posterior density of Oj, 

13i, q5j , A0, A, ii, and (, which, after some rearrangement, is 
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7r(0j3Ao ,As ,v,Iy) 

cx ir(v) {K(v)} m K('çbo) 

'(v+n2 +4) 
• (1')'fli 	 exp(—Bi) 	

(4.36) 

• 	
(W2+m+1) 

	

exp(—AB2)A 	 exp(— I A 

B1 — 	{ u + (. — 	+ Si (ii - i3) 2 }, 	 (4.37) 
i=1 

M 

B2 = win + i: 	(0,
— 

 /_,* 
0

) 2  , 	 (4.38) 
i=1 

M 

	

B3 = w2n2 + 	e (/3 — ) 2, 	 (4.39) 
i=1 

with K(.) defined in (2.4), and 	in (2.35) and (2.38), with the obvious trans- 0 	10 

formation for çb. A further step involves the integration of )o  and A0  which results in 

the following expression for the posterior density of O, /3, 0j, v, and : 

7r(O, 3, 0 , ii, 

cx ir(v) {K(v)}m K( vo ) 2 	o ((m+(o)_ 1 e_vc( )+ 1 T') 
(4.40) 

X 	 — —( v+n+4) exp(_Bi)B1+m_l)B2+m_l). 

Subsequent integration of (, provides the posterior density of the model 3m random 

effects and v as 

ir(9,/3, 0, vIy) 

cx ir(v) {K(v)} m  K(vo)(° 	')' fIi 
(v+n+4) exp(—B1) 

' ( 1 +m_1)_ 	p x B 2 	 B (w2+m_1) (vm + v(o) 	+ v 	ii)_V(rn+(0). 2  

(4.41) 

Employing Stirling's approximation for the Gamma function, (4.41) as a function of v 

is proportional to 

vl exp(—Bi), 	 (4.42) 

where 
In 

+ b. 	(4.43) B4 = 	'yj  + o log o  + (m +/'(o)log 
i=1 	

o+m I 

with 

and 
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Hence integrating out v from (4.41) and transforming to -yi = log q5, provide the pos-

ter ior density of the O, 6, and 'yj, unconditionally on the six model parameters 

r(9,i3, y I y ) cx 
-j n 1  6—(nj+2)7j 	e Y) exp (_B1) B2(w1+m1)B32(w2+ml)B42m). 

(4.44) 

The preceding posterior density forms the basis for the application of approximation 

(4.3) to obtain the marginal posterior density of each of the random effects in the model. 

The approximation also requires the computation of the vector £, and the matrix 77 1 

for which explicit expressions are presented in Appendix 4.5.1. They both need to be 

evaluated at the values of 9, 3 and described next. 

The conditional density of the O, 3, and qj, given the y2 . and the six model param-

eters, is proportional to (2.21). Consider for example that the parameter of interest is 

77 = 0j, for a single j in 1,... ,rn. Maximizing (2.21), with respect to O, 8, and 

conditionally on the values of the six model parameters and Oj  = i, gives the maximiz-

ing values Oi = O~ for i = 1, 	m, i :A ', and 	Oi* for i = 1, 	m, where Oi* and 

j3 satisfy (2.12) and (2.13). Similarly for i 

{

( v + ni +2)_1 { v  +U+(n+ 1 )1_o) 2 +}, when 	
() 

(v+nj+2Y'(v+Uj+Zi), 	 when ij, 

where 

= (ny' + Ao)'(y. - j) 2  + (T2 + AY'(/j 
- 	 2 	(4.46) 

If the parameter of interest is 71 = 6j, the corresponding values are Oi = O for i = 

q5j 	 (4.47) 

and Oi same as in (4.45) for i 54 j. When we wish to approximate the marginal posterior 

density of Oj, the maximizing values are Oi = 0' and 3i = 'r for i = 1,... , m, and qi 

as appearing in (4.45) for i j. 

Furthermore, the joint posterior density of the six model parameters, rig,po, Eg = 

log A0, €, = log A, E , = logy and e = loge is 
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x exp [_wieo - wlT1e° - 	- w2T2e 	+ (oe' {e, + log(V)/2) + 

X exp (_eee  + lae, - be") 

(4.48) 

where the last contribution to the right hand side may be obtained, by the obvious 

substitution, from (2.16). When any single random effect is the parameter of interest, 

we employ the values gig, Ap, FO, , , and ç  unconditionally maximizing (4.48), and 

substituting these for the parameter values in the conditional modes described in the 

previous paragraph. 

O'Hagan (1976), concluded that marginal modes provide better approximations to 

posterior means than joint modes with nuisance parameters, when using a hierarchi-

cal linear multiple regression model and wanting to estimate the variances with the 

slopes as nuisance parameters. Kass and Steffey (1989), obtain very accurate asymp-

totically expressions for the mean and variance of functions of first stage parameters 

for conditionally independent hierarchical models, using marginal posterior modes for 

the second stage parameters, and prove the insensitivity of these results to the choice 

of prior distribution. 

Hence, this procedure is preferred to joint modes of the O, 3, and /j together with 

the model parameters, because of our results in the first example of section 4.3, and 

the suggestions by O'Hagan and Kass and Steffey. The maximization just described 

was done by a modification of Powell's direction set method (Press et al, 1994, pp. 

412-420). 

We approximate the marginal posterior of 03  by application of the Laplacian ap-

proximation (4.3) to the joint posterior density of 9, 8 and '-y in (4.44) (i.e. the 0 

vector in (4.3) represents the three vectors 0, 8 and y in (4.44)) . The conditional 

mode vector 9 appearing in (4.3) should be replaced by the values for the elements of 

0, 8 and y,  defined in the third paragraph of the current section. Similar procedures 

are available for approximating the marginal posterior density of any particular O, 13 

or 'y. Laplacian approximations for the densities of linear combinations of these pa-

rameters, involve slightly more complex algebra. It is important to refer our Laplacian 

approximation to (4.44), rather than the joint posterior density of the 0, 6, 'y,  and six 

model parameters to avoid the problems introduced by the first example of section 4.3. 

The latter procedure can again lead to numerical inaccuracy. 

In the numerical example of section 3.1.1, our Laplacian approximations (dotted 
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Figure 4.3: Visual functions test. Posterior density of five, (a)-(e), group means (O s ), 
group slopes (/3), and group variances by MCMC (solid line) and Laplacian ap-
proximation (dotted line). 
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Figure 4.4: Nutrition data. Posterior density of five, (a)-(e), group means (Of ), group 
slopes ( ) 3), and group variances by MCMC (solid line) and Laplacian approxima-
tion (dotted line). 
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curves) to the posterior densities of the Oi  and 6 are extremely close to the exact 

curves (solid curves), calculated by MCMC, as represented in the top two plots of 

Figure 4.3, and seem to have validated the convergence of MCMC. Our approximations 

to the posterior densities of the Oi  are described by the dotted curves of the bottom plot 

of Figure 4.3. These are again reassuringly close to the exact densities, represented by 

the solid curves. All posterior densities correspond to choice (2) of prior distribution, 

described in section 3.1.1, with similar results obtained for choices (1) and (3). All 

Laplacian approximations for the O, 6, and Oi  were calculated in 11.8 seconds of 

CPU time on a Sun Ultra 1 workstation. For the exact procedure, 10,000 MCMC 

iterations, after 10,000 iterations on burn-in (4.6 seconds) took 238 seconds. This is 

typically enough for virtually exact calculations. The closeness of the approximate 

results to the exact ones together with the computational time saving justifies the use 

of Laplacian approximations to assess MCMC convergence and improve time efficiency, 

when computing the posterior densities of the random effects in the model. 

In Figure 4.4 we present the corresponding results for the nutrition data example 

of section 3.2. The agreement of the MCMC and the Laplacian approximation results 

is not as close as before, not surprisingly though, given the extremely small sample 

sizes. The Laplacian approximation confirms the reversal of the ordering of the group 

variances, as we already discussed in Chapter 3. 

The first of the preceding benefits, i.e. validation of the MCMC convergence, is 

also achieved when computing the posterior densities of the six model parameters. The 

marginal posterior density of any of the six model parameters, may be obtained by direct 

application of (4.3) to the posterior density (4.48). The corresponding £, vector and 

matrix are described in Appendix 4.5.2. The Laplacian approximations to the posterior 

densities of 9 , iie,A0, A, v and , under the three different choices of prior distribution, 

are described by the dotted curves in Figure 4.5. They are identical to visual accuracy 

to the exact curves (solid lines), computed by MCMC, despite the high skewness of 

some of the posterior densities. However, because of the high number of numerical 

maximizations needed, one maximization of a five variable function for each point of 

each marginal posterior density, this procedure is not much faster computationally than 

MCMC, nevertheless it is valuable for assessing its convergence. For obtaining marginal 

posterior densities of the model parameters, our approximation is identical to (4.3). 

We also need to point out that if uniform distributions are instead assumed for 

), .X,, z-', and in the prior assessment, then the Laplacian approximations for the 
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random effects can work extremely well. If the quadratic term in the exponent of (4.3) 

is omitted and instead (4.3) is used, with the conditional modes of the random effects, 

then this method may lead to substantial inaccuracies (see Figure 4.6), certifying that 

this quadratic term can potentially play a dominant part in the accuracy of the results. 

However, this modification, which was suggested by Sun (1992), provided very accurate 

results when using proper priors for our ANCOVA models. 

Figure 4.6: Visual functions test. Posterior density of five, (a)-(e), group means 
under prior distribution (2). Left: Using approximation (4.3). Right: Using approxi-
mation (4.1). 

Concluding, we should mention that although applying Laplacian procedures is not 

as simple as applying MCMC, they can provide substantial computational efficiency 

and numerical accuracy. In some situations they can also provide algebraically closed 

expressions for marginal posterior densities, which is another characteristic that makes 

them appealing. Clearly, however, their application involves pitfalls, for example trying 

to apply an approximation on the full posterior distribution of all the random effects and 

parameters in our case would lead to very inaccurate results. Hence they potentially 

require more mathematical derivations than MCMC. Nevertheless, in the ANCOVA 

models we studied, the availability of both methods very effectively complemented 

each other's shortcomings. 
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4.5 Appendix: Derivatives of log-posterior density 

4.5.1 Posterior density of random effects 

The joint posterior density of the 3m random effects, 'yi = log çb, O,  3, for i = 1,. . . m, 

is given by expression (4.44). Let 9 = (7i,... ,Ym, 01,..., 0 m,,/3m ) T . The first 

derivative of the log of the posterior density of the the 3m random effects, with respect 

to 9 is t i  = (i(1),. .. ,.i(3m))T, where 

3
1  

= —nj - 1 + 	+ e - ti (Uj + Wji) 

1 
+ (m+wi —1)e'(Oj —14)B' (o -i4 _2B5B1) 

+ 
1

(m+w2 - 1)e-"? (3j _p)B' (i3 _,_2B6B1) 

- 	(m + a)B(1 - eiB8) 	 (4.49) 

£i(m+j) = njei(yj.  —Gj) - (m+wi - 1)eiB' (o - _ B5B') (4.50) 

£i(2m+j) = se'Yi(/3j  —I3) - (m+w2 - 1)eiB' (t3 - _B 6 B 1 ) 
(4.51) 

for j = 1,... m, with 

B5 = 	e' (O - 	 (4.52) 

Tn  B6 = 	e (j3j - 	 (4.53) 

rn  B7 = 	 (4.54) 

B8 = (+B7)'(m+(o), 	 (4.55) 

and B2, B3, B4, Wi, j, 	, Uj, /3i,  s defined in (4.38), (4.39), (4.43), (2.32), (2.35), 

(2.38), (2.6), (2.7), and (2.8) respectively. 

The negative of the Hessian matrix of the log of the posterior density of the 3m 

random effects with respect to the vector 9 is the symmetric matrix R1 = (—ri(i,j)), 

with 

r1(i,j) = 02 log  7r(yi ,..., 7m , 01, 	Om , 01,...,fim y)/ô9(i)ô9(j) (i,j = 1...,3m), 

(4.56) 

where the elements of its upper triangular part are 
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ri(j,j) 	= + 	- 	(U + Wji) 

+ (m + w1 - 1)ei (93  - 	B'B5B 1  (i - 2e_7iB 1 ) 

+ 
1 

+ ü.'1 - 1)e7i (9j - 	) 2 B' (2e_7iB1 - i) 

+ 1(m+wi - 1)B 2 {2 e _'Yi(9 j  —4)B5B 1  — ei(O 	tt*)2 
2 2 

+ (rn + w2 - 1)ei (f3 - 	B'B6B' (i - 2e 	B 1 ) 

+ 
1

(rn+w2— 1)e 	i(/3—p7)2B1 (2e_7.B1 - i) 

+ 
1

(m + w2 - 1)B 2 {2e1i  (/3 - i)B6B' - e' (/3 - 
3 2 

+ 
1 

(m + a)B' 1 eiB8 - (m + 	o)_1e_27iB2} 

+ 
1

(m + a)B 2  (1 - e'i B8) 2  (4.57) 

ri(j,k) 	= —eB 2  + 	(m + a)B 2  (1 - eiB8) (1 - e'ThB8) 

- (rn+wi - 1)ei!c (03  +Ok - 2)B'B5B 2  

+ (m + Wi - 	 —^tk 	- 14)(Ok - 

+ e2k(0j - 14)(Ok - 

x (o, - 	- 2B5B1) ( 9k - 	- 2B5 B 1 ) 

- (rn+w2 - 1)e — "j -7k ()3 +13k - 2i) BB6B 2  

+ (m+w2 - 1)e'()3j —1)(/3k —p)BB1 

+ ei(/3j - 	)(/3k - 

< ( 	- 	- 2B6B') (/3k - 	- 2B6B') 

+ 
1

(m + a)(m + 	o )e 7kB'B 2  (4.58) 

ri(j,m+j) 	= —ne 2 (y.-9) 

- (B5 B_ 1  —0• (m+Wi - 1)(1 - eiB 	)eiB 	 3 7 

+ (m + Wi - 1)e 2' (03  - 

x (-03  + /4 + 2B5 B 1 ) (o - 	- B5B') (4.59) 

ri(j,m+k) 	= 

	

(m+wi - 1)eBB 	(B5B1 	93 	 p- 2 	7  

+ (m+wi - 1) e .7k(0j  —/4)B 2  

x (_o + 
,; 

+ 2B5B) (Ok - /4 - B5B) (4.60) 
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r1(j,2m+j) = 

- (m+2 - 1)(1 —e B')eiB' (B6B' — i3+i) 

+ (m + W2 - 1)e2')'i (13, - 

< 	
(- 	

+ + 2B6B1) 
( 	-p- -  B6B') (4.61) 

ri(j,2m + k) = (m + w2 - 1)eB'B' (B6B' - /33  + 

+ (m+w2 - 1)e 	i_7k(/3 	 0—)B2 

( —i + + 2B6B') ( 6k - 	- B6B') (4.62) 

ri(m +j,m +j) = 	_ne'Yi - (m +wi - 1)eiB 1 (1 - eiB 1 ) 

+ 2(m+wi - 1)e 2 'Yi B 2  (O j-—B5B 1 ) 2  (4.63) 

ri(rn+j,m+k) = (m+wi - 1)eB'B' +2(m+wi - 1)ei7kB 2  

x 	(O - 	- B5B1)(Ok - 	- B5B') (4.64) 

ri(rn+j,2rn+j) = 0 (4.65) 

r1 (m + j, 2m + k) = 0 (4.66) 

ri(2m + j, 2in + j) = —se 	- (m + w2 - 1)eiB'(1 - eiB') 

+ 2(m + w2 - 1)e 2)'iB 2 (/3 - 	- B6B') 2  (4.67) 

ri(2m + j, 2m + k) = (m + W2 - 'B7 1  + 2(m + L0 2 - 1)ei'ThB 2  

x 	(/33  - 	- B6B 1 )(/3k - I.Lo -  B6B') (4.68) 

for j=1,...,m, and k=j+1,...,m-1. 

4.5.2 Posterior density of six model parameters 

The joint posterior density of the six parameters po , ,a, €8 = log A0, €, = log ), 

= log ( and €, = log v is given by expression (4.48). Let 9 = (pe, 	e, 60 1 €ç, 

The first derivative of the log of the posterior density of the six parameters, with respect 

to 0 is £2 = (6 (1),. . . , f2 (6)) T
, with 

£2(i) = 	 (i = 1,... ,6), 	(4.69) 

and 

m 
(e 5- + nj)(yj. - /o) 

£2(1) = i(n + e69) j=1 	- 
(4.70) 
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£2(2) 
'e 	+ 	— P/3) 

= (4.71) 
i=1 	(s 2 + es) 

£2(3) 
e° 	m 

	(e6- +fli)(yi. —P0)2 	1 
= 	 + ef o —w1—m 

1 

n + e° 
i=1 	 i=1 	Ej(riT'+e°)2 

+ 	
1 	

iT1e ° , (4.72) 

£2(4) 
m 	 m (e6 ' +n)( 	p,) 2 	1 

= 	
s + e, ,3 + 	

Ej(sT 2  + eI3)2 	
— 2 W2 — 

1 

i=1 

+ 	
1 	

27-2e ° , (4.73) 

£2(5) = 	 fl) 
+ 	+ 	- (4.74) 

£2(6) 
M 	

M 1 = 	—e 	log(E/2) — 	
(e'± n) 

+ 	me 	log(e'/2) 

+ 	me 	+ 	b(o e" log(eeC/2) + 	+ 
1 
 a - — 

/ 
— 	 me1(e/2) - 	oe 	boe/2) + 

)' 
(4.75) 

2 

where 

	

1l(z)=d log F(z)/dz, 	 (4.76) 

(see Abramowitz and Stegun, 1965, PP.  258-260, for computational details), 

	

(. - P0) + 	
— ,)2 + 
	 (4.77) 

	

ni—
U+19 	

8 2 +e 

and U, /j and s defined in (2.6), (2.7), and (2.8) respectively. 

The negative of the Hessian matrix of the log of the posterior density of the six model 

parameters with respect to the vector 8 is the symmetric matrix R2 = (—r2(i, j)), with 

	

r2(i,j) = 92 log  7r(po,p/3,fo ) f/3, EC,  fy)/8O5O 	(i,j = 1,... ,6), 	(4.78) 

where the elements of its upper triangular part are 

M e'+n 	m 

r2(1,1) 	
- 	(NT' 	

+2 	
— Po)2 (e +n) 

+ eE9)-j 	=i 	(n j—  + e8)2E 	
(4.79) 

rn 

r2(1,2) = +2 	o)(13 —/2 /3 )(e +n) 

(n11 + ec6)(s2  + eEfl 	
(4.80) 

m  
r2(1,3) = 	 + 

- Po) (e' + n) 	
m 	

— Po) 3 (e' + n) 

i=1 (nI' + e°)2  

	

—i 	i=1 	(n1+e°)3E 	
(4.81) 
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r2(1,4) 	ei 	—ito)(A — i-t,3) 2 (e' +n) 
(ny' + e ° )( sT2  + e€I)2 

r2(1, 5) = 	 (ri. — ito)(e' + n) 

i=1 	(n 1  + e 8 )E 
m 

r2(1, 6) = 	
- 	 (Yi. — i.to)(e' + n) 

	

i=1 (nv' + e°)E - 	_________________ i=1 	(nT' + e°) 
12 

	

efv  + ni 	__  
r2(2,2) = 	(2 +e) +2 	

(A -) 2 (e +n) 
(8-2 	)2 + efl 

r2(2, 3) = e° > (A — li)(Yi. — Iio) 2 (e + n) 

i=1 
 (811-2 + e$) (n[1  + e°)2 E 

r2(2,4) = -e 
	p) (e' +n) + ea 	— i-i) 3 (e' + n) 

	

i=1 	
(s12  + edf3)2j 	

i=1 	(_2 + e)3 E 

T2(2, 5) = —e1' 	(!i 	1ii3)(e' + n) 

i= 	(s + eI3)E 

m 
r2(2, 6) = e 	_ — 	— 	 (A — 	(e' + n) 

j1 (s + e13)E 	 j1 	(s12 + e$) 

M 	e° 	m(  e° 	
2 

r2(3, 3) = —w1rie 9  — 	
ni + e° + 
	

+ eo) 

i  
+ 	

In (y,.— po)(e + ii) 	
e2° 

m 	- Iio) 2 (e' + n) 

	

i=1 	(ny' + e0)2 	
-  

i=1 	(n11 +e°)3E 

	

+ 
1 e 2ce 

m 	
- /29) 4 (e" + n) 

r2 (3,4) = e °13  m 
(yi. — j) (A - ii) 2 (e + n) 

j=1 (n2-' + e ° ) 2 (sT 2  + eI3 ) 2  

r2(3, 5) = 	 (ni. — i-to) 2 (e' + n) 

j' 	(nT1+e° ) 2E  

r2(3,6) = 
1 	m 	 1efo

j=1 (ni '  + e°)2 	
- 	 (ui. - i-to) 2 (e' + n) 

i=1 	(n + e°)2  

(4.82) 

(4.83) 

(4.84) 

(4.85) 

(4.86) 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

1 e 13 	1 m ( e13 
r2(4,4) = -w2re 	- 	s + e_Ea + 	+ e- $) 2 	 2

1 	m 	— i-i)2(e' + n) 	
m 	

- 	 2(e + n) 
+ e> 

1  

j=1 	(812 + eEO 	
- e2  

i=1 	(s12 + e)3  

1 	m 
 (/3 -ii)4(e'  +n1 ) 

+ 
, 	(s + es )4: 

r2(4, 5) = 	
( — tt) 2 (e' + ii) 

(s 2 +e$)2 E 

1 	m  C4 2 	1 
T2(4,6) = _e€9 v 

i=l
( - 2  + e8)2j — 
	 (A — i-i) 2 (e' + n) 

2 
i=1 	(s2+e'3)2E 

(4.94) 

(4.95) 
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(4.96) 
m 

	

r2(5, 5) = _ec' 	
e± n + 2 
	

- 	 (4.97)  7pe 
j=1 	 i=1 	i 

m 	 m 

	

r2(5, 6) = 	 - 
	e"± ni + 

1 

	

+ 	+ 	- 	 (4.98) 

M 1 	 m 

	

r2(6, 6) = 	 - 	 + 	

Tfl e 

	

- 	log(E2/2) - 	+ b(oe 1og(eC'/2) - 
i=:1 

+ me' 1og(e(/2) + me' + /oe' - me1(e/2) 

	

- 	 -oeI(iKoe12) - l2(2e2EvçI((ef/2) 

m 

	

-I- 	
(eE-±ni) + e2 	( 	

2 	)' 	
(4.99) 

i=1 

where 

	

= d2  log F(z)/dz 2 . 	 (4.100) 
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Chapter 5 

Spat io-temporal models for oil 

well pressures 

In this final chapter we will extend some of the Bayesian techniques already used to 

spatio-temporal models for oil well pressures. Initially, we will give a detailed descrip-

tion of the problem and discuss some data characteristics. An exploratory data analytic 

method that detects potentially good predictor wells and its application on a homoge-

neous sector of the oil field under study which contains twelve producer wells will then 

be presented. A self-similarity spatio-temporal multiple response model for pressures 

with discussion of its Bayesian analysis will then be indicated. A reduced model for 

a single well, and its analysis via an application of the Gibbs sampler will then be 

proposed, followed by a confirmatory study of the results of the previously mentioned 

predictive method on the twelve wells. We conclude with some indication of directions 

for future research. 

5.1 Background 

We will analyze data obtained from the British Petroleum oil field at Kuparuk, in 

Alaska. They consist of monthly measurements of flow rate taken over a period of 171 

months, beginning in January 1981. These measurements denote flow rates (volume in 

barrels per day), averaged over 1 month. For injectors they are the flow rates of the 

water injected, while for producers, the oil production rate is one component of the 

total volume flow rate. If we denote by VC the volume of each compound, C, produced, 

then the average overall production in a given well over a certain period can be obtained 
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via the following standard formula: 

1.25 X V01 + 0.8 X (VG - 0.45 X V01) + VWater 	
(5.1) Flow Rate = 

Days in operation 

which accounts for differences in each component volume between the rock formation 

underground and the surface pipes. The flow rates are proportional to the well pressure. 

Injection is needed to maintain pressure and hence production in producer wells. 

The data set consists of measurements recorded from all the 840 wells in the field, 

in units of barrels per day.. For each well, there is a number of months during which 

no measurements are available, because of closure due to maintenance, insufficient 

data recording and other reasons. Additionally, during the period of study, some wells 

were operated as both injectors during some months and producers during some other 

months. The oil field is divided into two sectors, north east and south west, by a fault 

across which it is thought that there is no oil, gas and water flow. 

It is of major interest to be able to predict the output of producer wells, given 

past and present values of the pressures of injector and producer wells that have been 

identified as strongly related to the producers of interest. Current values can be im-

portant predictors because of the time interval it takes an injector to actually have 

an effect on production levels. The development of such a procedure can potentially 

lead to huge financial savings associated with the optimal operation of existing oil wells 

and the targeted drilling of new ones. In this context, it is important to investigate 

the hypothesis of long-term correlation between pairs of wells. Geologists use the term 

long-term correlation to denote correlation between wells at distances greater than can 

be accounted for by simple Darcian flow, due to non-linear mechanical effects. 

Earlier work by Banks (1995), concentrated on computing Spearman's rank cor-

relation coefficient for all possible pairs of injector/producer wells and trying, quite 

successfully, to match the directions of higher correlations implying good communica-

tion between wells parallel to the orientations of the maximum horizontal stress. The 

correlation with the maximum stress implies that the non-linear mechanism probably 

involves coupling between the fluid permeability, the local pore fluid pressure, and the 

tectonic stress field. 

The work we will present in this chapter, is an initial attempt at identifying injectors 

and other producers whose pressures can help predict the actual pressure of a given 

producer well and at modelling the production pressures of wells in a relatively small 
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homogeneous area. Such studies will help detect the physical reason for the correlations, 

as well as potentially form the basis for the design and operation of production fields. 

A map of the part of the south west section of the oil field, which we will use in our 

analysis, is displayed in Figure 5.1 (page 125). 

5.2 Exploratory analysis 

5.2.1 Methods 

In order to identify wells with pressures associated with the pressures of a chosen 

producer well of interest at time t, Yt,  t = 2,... , 171, we will use a predictive mean 

squared error criterion of the form 

171 

E (Yt - i3fx - /3x_i - / 'y - /3 Yt_i) 	 (5.2) 
t=2 

with Xt the injection at selected wells at time t, Xt_1 the injection at selected, possibly 

different than before, wells at time t - 1, Vt  the production at selected wells at time 

t, and Vt-i  the production at selected wells, including possibly the chosen producer 

well, at time t - 1, and 81, /2,  /33 , and 04  unknown vector parameters. This set up 

is completely general, and can be modified to include further lags of producers and 

injectors, or possibly less terms that the ones appearing in (5.2). 

Using this method, it is easy to identify wells that substantially increase the coef-

ficient of determination, R2 , and hence are potentially useful for prediction. Although 

we are using the least squares method and standard statistical packages to obtain es-

timated values for i3 , /32, 0 3 , and 34 , we do not focus on the inference for these 

parameters, since clearly the independent error assumption of the linear model theory 

is violated, e.g. by including Vt  as predictors and because the Yt  are time correlated. 

Rather, at this exploratory stage, we just use R2  and the Bayesian criterion described 

below to obtain some initial suggestions of good predictors. 

Adding new predictors may reduce the number of observations because of the miss-

ing values, so we will use at this stage a modification of the Bayesian criterion presented 

in (2.17) to compare different models. This criterion is defined as 

BICt = - log 2-7r - log()_,_ 	max {log (.) , 2}, 	(5.3) 
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where k is the number of estimated parameters, including the error variance, N is 

the number of observations in the model, and S the standard residual sum of squares. 

This modification can be derived by obtaining the maximized log likelihood of the linear 

model, penalizing it by the same factor as in (2.17) and then dividing by N12. In this 

manner, the resulting criterion gives a value per observation and can be applied for 

comparing models with different number of observations by selecting the model with 

higher criterion value. 

5.2.2 Results 

For the twelve producers wells enclosed in the rectangle of Figure 5.1, we applied the 

criterion (5.2) in order to identify corresponding sets of good predictors. Due to the 

absence of expert geological advice concerning potential wells highly correlated with 

any of the producers of interest, we proceeded using a parallel of forward selection 

regression, adding one predictor at a time. For this and all subsequent analyses we 

standardized each well time series to have sample mean 0 and standard deviation 1. 

Table 5.1: Exploratory analysis summary for twelve oil wells. I and P refer to injectors 
and producers respectively, the numeric subscript to well numbers and a superscript 1 
to lagged values of the corresponding wells. 

Producer Predictor 
Well Wells 
D 
' 280 

1DI 
' 280 

I 
'301 

Eli 
' 552 

ni 
' 361 

El 
' 514 0.9057 

P281 281 498 1334  P280 '518 1269 0.9278 
P282 P1 

282 1394 1271 SSO  0.9161 

'283 
1D 283  1347  P552  P292  1396 1297  1529 	1467 0.9077 

I) 
' 518 

Eli 
' 518 

1) 
' 497 

i 
' 548 

fl 
' 517 0.9325 

P517 P1 
517 P 48  0.9108 

P304 P1 
304 P354  0.8647 

P292 P1 
292 1508 1506 175 1271 154  1494 	159  1569 	1274 	0.7262 

'515 
P1 

515 
'D553  

'3l8 P295  P514  P331  0.9026 
P516 516 '548 1561 P393  P294  1567 1364 	1372 1394 	1273 	0.9149 

'305 305 1506 1372 '372 '552 549 1467 0.8535 

'306 306 P497  P294  0.8677 

At every step, out of all south-east sector wells (injectors, producers and their one 

month lagged values), the next best predictor was selected, i.e. the one that maximized 

(5.3) and increased R2 , while, at the same time, its introduction didn't result in a 
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Figure 5.1: Map of the Kuparuk oil field. The numbers represent the number of each 
oil well. I and P refer to injector and producer wells respectively. The straight line is 
the sector dividing boundary. The rectangle encloses the set of producers under study. 
The circles denote good predictor wells according to our exploratory analysis. 
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greater than 10% loss of observations due to missing values. Our stopping rule was 

either a value of R2  greater than 0.90 or the reduction of R2 , that can be explained by 

the possible sample size reduction, when introducing a new predictor. 

Table 5.1 contains the predictor wells in the order they were introduced and the 

final value of R 2 . For all the twelve wells of the region, the first predictor was the one 

month lagged value. There was no consistent pattern for the following steps, however, 

there seemed to be a high number of relatively distant wells in the oil field that led 

to substantial increases of R2 , as the high number of circles away from the rectangle 

in Figure 5.1 illustrate. Although at this preliminary stage we are not focusing on 

modelling these relationships, but just identifying possible relationships, the hypothesis 

of long-term correlation appears to be reasonable, based on these data. 

5.3 Multiple well model 

The proposed model for multiple wells can be expressed as 

Yit = 	xf3 + °jt + cit, (5.4) 

°it = 	0i,t-1 + git + 	t + ait + 7/t, (5.5) 

gt = 	gi,t-i + hit  + a.it , (5.6) 

hit = 	h,_1 + Tjt, (5.7) 

= 	_i+).t+wt, (5.8) 

= 	)t—i+yt+(t, (5.9) 

yt = 	'yt—l+Kt' (5.10) 

for i = 1, 2,.. . , r and t = 1, 2, . .. , N, with the error terms c it, 77it, ait, Tit, wt, (t and 

't mutually independent and normally distributed with corresponding variances V1 , 

Vi,, Via,  Vi, Vs,, V and V,ç . Additionally the ajt are independent for different t and 

(alt,. . . ,art ) have a multivariate normal distribution with zero mean and covariance 

matrix satisfying 

cov(at, a3t) = ve_b<i,j>, 	 (5.11) 

with •v and b unknown parameters and < i, j > the distance measure between wells i 

and j. 
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This model is a version of the normal dynamic linear model (DLM) studied by 

Harrison and Stevens (1976), Pole et al (1994), and West and Harrison (1997), with 

constant variances over time (constant DLM). According to this formulation, the pro-

duction of well i at time t, as expressed by the observation equation (5.4), depends 

on the past and current pressures of some good predictor wells through the regres-

sion function xT,8i  and the level of a well specific underlying process 9it,  with Eit  the 

corresponding observational error. There are also two quadratic growth elements (the 

quadratic growth model is discussed in the following section), one for individual wells, 

equations (5.5)-(5.7), and an overall one, equations (5.8)-(5.10). Additionally, ajt is the 

spatial component of the model and 6 t the self-similarity component. Many geological 

and geophysical processes exhibit self-similarity, e.g. Turcotte (1992) and Main (1996). 

Hence a statistical model with this property is reasonable and desirable. West and 

Harrison (1997) mainly present results with all variances specified or only the observa-

tional variance unknown and the ratios of the system variance(s), as all the variances 

excluding Vi, are referred to, to the observational one specified. We assume instead 

that all variances are unknown and will have to be estimated, following Leonard and 

Hsu's (1999) analysis for a simple case and improving on Mehra (1979) who obtains 

point estimates for variances. 

This is the model proposed for future research. Its full Bayesian analysis can be 

performed by MCMC, along the lines we will demonstrate for the single well model in 

the subsequent sections. The only difficult parameter to simulate is b, which we can 

discretize over a range, similarly with the parameter 1 in the ANCOVA models. It 

is thought that by introducing the regressors, we will be able to explain the spatial 

correlation and hence render the spatial component terms insignificant (b 0). 

5.4 Single well model 

5.4.1 Sampling model 

A simplified version of the full model for the analysis of pressures of individual wells is 

Yt = xf3 + Ot  + t, 	 (5.12) 

Ot = Ot-1+9t+17t, 	 (5.13) 

gt = gt_i+ht +at , 	 (5.14) 
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ht = h_1 + Tt, 	 (5.15) 

for t = 1, 2,... , N, with the error terms €, 'it, at and Tt mutually independent and 

normally distributed with mean 0 and variances V6 , V, V and V., respectively. For 

analytic convenience, we also assume 90, go, h0 , to be mutually independent and nor-

mally distributed with mean 0 and respective variances k,7 V, and kTVT, with the 

k77 I k and k specified. 

This is related to the quadratic growth model described by West and Harrison (1997, 

p. 226) with the additional regression terms in (5.12) and the four variances Vf , Vi,, VQ  

and VT  unknown. The terms Ot, gt and ht  correspond to level, growth and change of 

growth of the underlying process at time t. The quadratic growth model is considered 

adequate for short and long term forecasting in many practical situations (see West 

and Harrison, 1997, pp.  208 and 225). 

This model without covariates can be expressed in an ARIMA(0,3,3) form, 

(1 - B) 3 y = €t - eiqt-i - e2qt-2 - 3qt-3, 	 (5.16) 

with the errors, qt,  independent and normally distributed with zero mean and variance 

'Vf , and B the backward shift operator, defined by Byt = Yt-1, provided that the 6j, 

for i = 1, 2,3, satisfy the following equations 

= (20+671+2'y2+y3) 

- 1e2 - e23) = (15 +4'yi +'y2) 	 (5.17) 

= 

where -yj = V/V € , 'Y2 = Va/1T€  and -y3 = VT /V( . Additionally, the roots of the equation 

1 - 1z - -63 

 Z3  = 0 must be greater than one in absolute value, so that the series 

satisfies the invertability condition for moving average processes. 

Reduced versions of the proposed single well model can be obtained if some of the 

variance components are found to equal zero. In particular, if VT =O, then all the ht  are 

zero, and we effectively have the linear growth model of West and Harrison (1997, p. 

218) plus the regression terms. This model, can also be expressed in the ARIMA(0,2,2) 

form 

(1 - B )2yt 
= - iqt-i + e2qt-2, 	 (5.18) 
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with the qt  independent and normally distributed with zero mean and variance 

if the following equations are satisfied, 

= (6+2'yl+72) 	
(5.19) 

62 ' (e1+12) = (4+'y), 

and the roots of the equation 1 - 1z + 6Z 2  = 0 are all greater than one in absolute 

value. 

If additionally V=0, then ht  and 9t  are all zero, (5.13) is the last evolution equation, 

and the reduced model is a Markovian one with superimposed random noise plus the 

regressors. The equivalent ARIMA representation is a (0,1,1), that is, of the form 

(1 - B)yt = ct - qt-j, 	 (5.20) 

with the qt,  independent and normally distributed with zero mean and variance 

if ' + 6 = 2 ± 'yi and with 60, the smallest root of the previous equation, satisfying 

o < 1 (Leonard and Hsu, 1999, p.  233). The equivalence between the constant 

DML and ARIMA forms of the previous three models are obtained by matching the 

autocovariance structures under the two formulations. Finally, if VT, V and V all 

equal zero, the reduced model is a linear regression one, since all the h, gt and Ot  equal 

zero, for t = 0, 1,.. . , N. 

Using the described formulation for the quadratic growth model including the re-

gressors, the likelihood of the slope vector, 3, and the four variance components is equal 

to 

p(yt,Ot,gt,htI) 3 ,V,V,V,VT) = 

= 	(2irV) "2  exp {_v' - 	- Ot ) 2 } 

• 	(2rT')' 2  (2ikV)" 2  exp {_v 1 ' >I(O —  Ut_i - gt)2 - 	k 1 v b O} 

• 	(27rVQ)_N/2 (2kV) 112  exp {—vc1' E N
i(t - gt-i - h)2 - 	k 1 V 1 g } 

(2irV) 	' 2   (27rkT VT )"exp 2 {v' —   ) 2 	- }h - ht - kvhx  .  
(5.21) 

5.4.2 Prior to posterior inference 

We assume that, a priori, 3 and the four variance components VE , V, V Q  and VT  

are independent. We also assume that /3 is normally distributed with mean 8 and 
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covariance matrix C, and, for the prior distribution of the four variances, that wlAl/VE, 

w2A2/V, w3\31V0 , and 4)4/V possess chi-squared distributions with w 1 , W2, W3 and 

W4 degrees of freedom respectively. 

Using the prior distribution already described, the joint posterior density of the Ut, 

gt, h, the vector of slopes and the four variances, becomes 

7r(Ot,gt , h,/3, V, V, V ( , V,-Iy)  oc  P(Yt, 9 t, 9t, htl/3 , Vf , V, Va, V)7r(/3, V, V 	V) 

x P(Yt, 9t, 9t, ht  1,3, V, V, V a , V) jc 1 /
2  exp { (/3 - 13 )T C-1 

 

(wi+2) 	 (2+2) 	
V'w.)t) xV 	exp(—V7'w i A i )V, 	exp(- 

(3+2) 	 (w4+2) 
xV 	exp(—V'w 3 A 3 )V 	exp(- 

(5.22) 

Similarly with section 2.3.2, we can use the joint posterior density in (5.22) to obtain 

the full conditional densities of each of its parameters and subsequently apply the Gibbs 

sampler to obtain the marginal posterior density of every quantity of interest. A minor 

algebraic complication relates to the fact that for t = 1, 2,... , N - 1, each of the Ut, 

gt and ht  appear in three different terms of (5.21) and thus of (5.22). For example the 

full conditional posterior density of O, for t = 1,2,.. . , N - 1, is 

x exp { — I V'(y t  - 	- Ut)2} 	
(5.23) 

exp{_v_ 1 (ot — Ut—i —gt)2 - T/_i(Ot+i _Ut_gt+i)2}. 

The previous expression is a normal density for O. This can be shown by using the 

following lemma. 

Lemma 5.1. If a, b, c, x, A, B and C are scalars with A, B or C 0, then 

/ Aa+Bb+Cc\ 2  
A(x—a)2+B(x—b)2+C(x—c)2=k+(A+B+C)(x— A+B+C ) , ( 5.24) 

with k constant in x. 

For a proof see Lemma 1.2 and Corollary 1.2 of which the current lemma is a special 

case, or expand the squared terms on the left and right hand side of (5.24) and equate 

the coefficients of x 2  and x. 

Using Lemma 5.1, the full conditional posterior density of O t  becomes 

7r * (0t ) cx exp {_(V_1 + 2V') (Ut - 0fl2}, 	 (5.25) 
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with 

= (v - ' + 2V -1 ) 1  {v -1  (Yt - xe) + v -  (O + 0+ + 9t - gt+i)}, (5.26) 

so it is normal with mean O and variance (vf  + 2V,_') -1 . Similar algebraic deriva-

tions can demonstrate that the full conditional densities of the gt  and h, for t = 

1, 2,..., N - 1 are also normal. The full conditional densities of g, gv,  h0, hN, the 

slope vector, j3, and the four variance components can be derived using computations 

analogous to these of sections 2.3.2 and 2.5.1. The relevant results for all parameters 

are presented in the next section. 

5.4.3 Full conditional distributions 

Each of the following statements is made conditionally upon the data, and all other 

unknown random variables and parameters in the model: 

Si: 00 is normally distributed with mean O, where 

0'= (1+ç')(oi_gi), 	 (5.27) 

and variance V. (i + k1) 
'. 

77 

Fort = 1,2,... ,N -1, Otis normally distributed with mean O, defined in (5.26) 

and variance (V_1 + 2Vç_1)1. 

ON  is normally distributed with mean 0 * , where 

o;= (vp' +v - ')' {v' (vN — x3@) +V 1  (ON-1 +gN)}, 	(5.28) 

and variance V-1-1  1 •  

go  is normally distributed with mean g, where 

g = (i + k') 1  (91 - h1), 	 (5.29) 

-1 and variance V (1 + ka  ) 
For t = 1,2,.. . , N - 1, g t  is normally distributed with mean g, where 

g = (i - ' + 2V') 1  {v 7 ' (Ot - Ot-1) + V; 1  (gt-i + gt+i  + h - h+i)}, 	(5.30) 
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and variance (V--i + 2V). 

Thy  is normally distributed with mean g* , where 

g1 = (v '  + v-1)'  {v1 (ON - ON-1) +V ON-1 + hN)}, 	(5.31) 

and variance (v + v-i) 

h0 is normally distributed with mean h, where 

h*= (1+k;i)hi , 	 (5.32) 

-1 -i and variance V7- ( 1 + k1. ) 

For t = 1, 2,... , N - 1, h t  is normally distributed with mean h, where 

= (V_i + 21_i)_i {Vi 
(gt - gt-1) + V,71  (ht-1 + ht+i)}, 	(5.33) 

and variance (V; 1  + 2V_')_' 

hN is normally distributed with mean h* , where 

h = (V;i + V_i)'  {V (9N - gN-i) + V'hN_i}, 	(5.34) 

-i 	-1 and variance ( 	+ V,. ) 
-1 

 

SlO: For the variance V, the quantity (wi + N)V*/V  has a chi-squared distribution 

with w1 + N degrees of freedom, where 

= 	
+ 	(Yt - 	- o)2} /(Wi + N). 	 (5.35) 

For the variance V,, the quantity (w2 + N +1) V /V, has a chi-squared distribution 

with W2 + N + 1 degrees of freedom, where 

= {W2A2+ 	(Ot - Ot_i - 9t) 2  + k- 1192 
/(w2 + N + 1). 	(5.36) 

For the variance V, the quantity (w3+N+1)V'/V has a chi-squared distribution 

with w3 + N + 1 degrees of freedom, where 

= {w3A3 + 	(9t -gt-qt - h) 2  + k - 1 g/(w3 +N+ 1). 	(5.37) 

132 



For the variance V.-, the quantity (w4+N+l)V/VT  has a chi-squared distribution 

with w4 + N + 1 degrees of freedom, where 

= {W44 + 	(ht  _ht_l)2  +kh}/(w4+N+1). 	(5.38) 

The vector /3 is normally distributed with mean /3*,  where 

N 	 -1 	N 
/3* = (V_ 1 	+ c-i) (va' 	xx '73  + C_h/30), 	(5.39) 

and variance (V_i > "=i xxT + c_1)'. 

To obtain the corresponding full conditional posterior densities under the linear 

growth model, we only need S1-S6, S10-S12 and S14, with ht = 0, for t = 0, 1,. .. , N, 

Finally, for the two-stage model, we need to iterate between S1-S3, SlO, Sli and 

S14, with Yt = 0, for t = 0, 1,.. . , N, in order to obtain the marginal posterior dis-

tributions of all parameters of interest. Unlike the Kalman filter (e.g. Kalman, 1960, 

Kalman and Bucy, 1961, Harrison and Stevens, 1976, and Meinhold and Singpurwalla, 

1983), the Gibbs sampling iterations use both past and future values of the underlying 

unobservable quantities Ot, gt, and h. 

5.4.4 Results of analysis 

Using the quadratic growth and the reduced DLM models already described, we re-

peated the analysis for the response and predictor wells of section 5.2.2, aiming to 

confirm the relationships observed earlier, but using more formal statistical methodol-

ogy this time. 

The missing values, that were omitted in the exploratory analysis, were tackled in 

two different ways. If predictor well values were missing, we imputed them as the 

weighted average of the immediately preceding and following available values with 

weights inversely proportional to their distance from the missing value. This is, of 

course, a rather simplistic imputation method that could be changing some of the re-

sults. Particularly, since it is flattening the predictor time series the significance of the 

corresponding slope coefficient may be downweighted. On the other hand, if a predic-

tor is found to be important using the exploratory predictive method of section 5.2.1, 

as well as a constant DLM model despite the imputation inefficiency, then this is an 

indication that this predictor is quite good. If only a response value was missing, then 
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terior density of VT  for the quadratic growth model. All results correspond to models 
with producer well 280 as response and its predictor wells of Table 5.1 as covariates and 
are presented for three choices, (1)-(3), of prior distribution. The solid curves denote 
the posterior densities and the dotted curves the proper prior densities. 

it was generated as part of the Gibbs sampling iterations according to equation (5.12). 

The latter situation was rather rare for the twelve wells analyzed, a maximum of 10 

values needed to be generated this way for well 517, however the percentage of impu-

tation for each of the predictors of the twelve wells ranged from 0% to 25%. Typically, 

for the first 30 to 40 months there were no response or predictor observations available 

for neither of the twelve wells we studied. For modelling the response of each producer 

well its lagged value is no longer included in its predictors. 

The analysis was performed under three sets of priors for the variance components. 
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For the first choice, prior (1), wi = -2 and Ai = 0, i = 1,... ,4, that is, we assumed 

uniform priors. For the second, prior (2), wi = 5 and X = 0.5, i = 1,... , 4, and for the 

third, prior (3), wi = 3 and Ai = 0.1. For the slope vector 8, we assumed always the 

same prior with mean 0 and diagonal covariance matrix with the variances all equal to 

10, hence a rather uninformative prior given the scale of the observations (mean 0 and 

standard deviation 1). Finally we set, k = k0  = = 2. 
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Figure 5.4: Posterior densities of slope coefficients of predictor wells for producer wells 
515, 516, 517, 518 and 306 under the two stage Markovian model and uniform prior 
for the variance components. The stated percentages express proportion of imputed 
predictor values for the corresponding response. 

Figure 5.2 contains graphs of the posterior densities and the corresponding priors 

of the variance components V, V, V, V.,- for three different models for well 280. The 

results we describe were identical to these of the variance components of the corre-

sponding models for the other 11 wells studied. The graphs for V.,- relate to the full 

quadratic growth model including the predictors. The posterior density of V.,- was quite 

insensitive to the choice of prior, however, it was always shifted towards zero for all 
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Figure 5.5: Posterior densities of slope coefficients of predictor wells for producer wells 
292 and 305 under the two stage Markovian model and uniform prior for the variance 
components. The stated percentages express proportion of imputed predictor values 
for the corresponding response. 

the priors tried, culminating at a spike at zero under uniform prior distribution. This 

suggested that the model had to be reduced, thus omitting (5.15). The graphs for 

Va  were obtained using the linear growth model with covariates and lead to the same 

conclusion as before, that Va  equals zero, hence omitting the last state equation (5.14). 

The graphs for Ve  and V,, correspond to the two stage Markovian model with covariates 

that includes only the O.  Clearly, for these two variances the posterior densities are 

less sensitive to the choice of prior and definitely not zero. These results, together 

with the ARIMA/DLM correspondence, seem to verify initial indications of the predic-

tive method, which led us to use only up to one month lagged values in the analysis. 

The statistical confirmation of an one month lag will form a strong constraint for any 

physical models for the observed correlation. 

Hence, for producer 280 and the remaining eleven ones studied, we subsequently 
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Figure 5.6: Map of the Kuparuk oil field. The numbers represent the number of each 
oil well. I and P refer to injectors and producers wells respectively. The straight line 
is the sector dividing boundary. The rectangle encloses the chosen set of producers. 
The circles denote good predictor wells according to the exploratory predictive analysis 
with non-zero slope according to the DLM analysis. 
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display the posterior densities of the slope coefficient for all their predictors under the 

current model (Figures 5.3-5.5). Our computations demonstrated that these posterior 

densities were very stable under the three different models. All the results presented 

were obtained by averaging 50,000 densities after 50,000 iterations of burn-in. 

The absolute value of all the coefficients is smaller than 1 generally, a fact reflecting 

the scale of the data. Many of the wells that were considered good predictors in 

the exploratory analysis have insignificant slope coefficient. We did not only observe 

injectors with significantly positive slope, in which case their effect on the corresponding 

producer is easily understandable, but also injectors with significantly negative slope. 

In this situation, it is possible that this injector obstructs the flow towards the producer 

of interest from another injector, which is positively associated with that producer, so 

it may actually need to be shut off to increase the production. We have observed 

positive slope coefficients for producer predictor wells, possibly signifying pairs of wells 

benefiting from the same injectors, but not negative slopes, signifying pairs of competing 

producers. 

Figure 5.6 represents a second map of the southeast section of Kuparuk field, this 

time with the predictor wells having significantly different than zero slope coefficients, 

according to the DLM analysis, encircled. Contrasting Figure 5.1 with Figure 5.6, we 

can observe that although a total of 20 wells lost their good predictor status with the 

DLM analysis, there is still a big number of wells, situated away from the twelve well 

rectangle, with significantly different than zero slope. It is also encouraging to notice 

that 14 of these wells are injectors and to remember the potential downweighting of the 

significance due to missing values. 

5.5 Suggestions for future work (Chapter 5) 

The convergence of the MCMC applications needs to be validated using Laplacian 

approximations, similarly to the ANCOVA computations and Chapter 4. To do this, 

the equivalence between the ARIMA and constant DLM models could be used to obtain 

estimates of the variance components. 

Better imputation methods need to be developed, possibly after consulting more 

detailed records from the Kuparuk site and obtaining expert advice from petroleum en-

gineers about the missing value meaning (failure to record, no production, maintenance, 

and so on). 
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Having obtained a fuller data set using a geologically sound imputation method the 

analysis of the multiple well model will become feasible. The analysis via MCMC and 

Laplacian approximations could be repeated, in order to examine whether a model with-

out the spatial component is adequate and to examine the hypothesis of self-similarity, 

which is of major importance. 

A desirable final stage would be to examine the predictive performance of the mul-

tiple well model against future observations, when these become available. 
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Chapter 6 

Concluding remarks 

In this final chapter we will describe some of the main conclusions obtained in the 

different subject areas covered in this thesis and indicate possibilities for future research. 

6.1 ANCOVA models 

Motivated by a related result of Crook and Good (1982), a more general theorem involv-

ing the optimal average power property of the Bayes factor was proved in section 1.5.1. 

The latter, combined with the lack of an optimal test statistic for testing equality of 

the group means in the parallel line ANCOVA model, triggered a search of alternative 

statistics and a study of their frequency properties. The main conclusion was that al-

though different statistics, including the Bayes factor and the likelihood ratio statistic, 

could provide slight power improvements over the standard F test and differences in the 

significance probabilities that could result in opposing decisions, their computational 

complexity, which could only increase in more complicated models, rendered them less 

appealing. 

In all situations, the Bayes factor was treated as a test statistic. We did not seek to 

interpret its values, due to the well established relevant problems. On the other hand, 

we used the Bayes factor in its most elementary form. More advanced forms studied by 

O'Hagan (1995), Berger and Perrichi (1996) and Berger and Mortera (1999) could also 

be considered in future research, however our opinion is that their appeal as possible 

test statistics would be questionable, as a result of the computational complications 

already described. 

The last few sections of Chapter 1, included some initial suggestions concerning 

inference of mean equality by interpreting the posterior densities of the appropriate 
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parameter through carefully selected Bayesian significance probabilities and simplified 

Bayes factors. 

The main thrust of the work in ANCOVA models was the proposal of a hierarchical 

model with random means, slopes and variances (section 2.1) and extensions to multi-

covariate situations (section 2.5), that extended previous models in the literature and 

provided a novel way of addressing the question of variance equality, as well as a prior 

specification ensuring algebraic tractability (section 2.2). This provided a very compre-

hensive finite sample analysis of an ANCOVA model with unequal random variances. 

Based on results of Chapter 1 concerning the lack of an optimal test statistic, the idea 

of judging different equality hypotheses through Bayesian significance probabilities was 

fully developed in section 2.4. Using the standard idea in Bayesian statistics, of obtain-

ing the posterior means of quantities of interest as the weighted averages of frequentist 

estimates and prior means, key cut off points used for the interpretation of posterior 

densities through posterior probabilities were suggested. 

These suggestions were validated using several real data sets in Chapter 3. The mag-

nitude of the Bayesian significance probabilities corresponding to acceptance/rejection 

of the hypotheses of interest was left to the experience of the data analyst and can 

provide stimulation for future work through lengthy simulations. A conclusion drawn 

from the study of two sets of simulated data (section 3.3) was that for the parameter 

v, used for judging variance equality across groups for essentially ANOVA models with 

unequal variances, inferences based on visual inspection of the posterior densities of the 

variances were in close agreement with Bayesian significance probabilities with cutoff 

in the region of 0.01 to 0.05. Similar methods of inference could prove very valuable in 

variance components models in general for testing whether different variances could be 

considered to be equal to zero. 

6.1.1 MCMC and Laplacian approximations 

Inference for all random variances ANCOVA models, whether these included one or 

several covariates, was based on an application of the Gibbs sampler. The full condi-

tional distributions of all random effects and parameters of the models proposed were 

relatively easy to obtain, a typical situation with hierarchical linear models. The only 

exception was the parameter ii. For the latter, three alternative methods were proposed, 

including a discretization one, similar to the griddy Gibbs sampler, and an approximate 

one, based on a suggestion of Lindley (1971), all of which gave extremely consistent 

results. 

The implementation of the Gibbs sampler for the single covariate model, which was 

applied to the twelve neuropsychological test results, showed that the stabilization of the 
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marginal posterior densities occurred after a maximum total of less than 2,000 iterations 

for all quantities generated, and after a few hundreds for some of them. The facility and 

speed of the implementation of the MCMC procedures was thus clearly demonstrated. 

However, the word "stabilization" was just mentioned instead of "convergence", because 

it is known that this visual stabilization does not necessarily imply convergence (Cowles 

and Carlin, 1996). The well established weakness of MCMC methodology is that it is 

not possible to know at which point of the iterations the generated values come from 

the targeted distribution. In other words, the lack of relevant theoretical results, make 

it impossible to confirm that the apparent convergence is also actual convergence. 

To compensate for this weakness, a study aimed at reproducing the MCMC based 

inferences using Laplacian approximations, a completely different method, was under-

taken. Having as starting point the impossibility of obtaining accurate approximations 

using joint modes, and two rather simple relevant examples, we used a special case of 

an approximation suggested by Leonard et a! (1989) to achieve practically identical 

inferences compared to those obtained with MCMC. These approximations used the 

joint posterior distribution of the model parameters and the corresponding modes for 

the marginal posterior distributions of all model parameters, and the joint posterior 

density of all random effects and conditional modes of the random effects given the 

model parameters to obtain approximations to the marginal posterior distributions of 

each of the random effects. 

The implementation of Laplacian approximations confirmed first and foremost that 

MCMC is easier to apply and that subsequently one would most probably consider 

it as the first choice method of inference. However, it also confirmed that Laplacian 

approximations can be more time efficient and provide extremely accurate results even 

for small sample sizes. Tierney, Kass, and Kadane (1989a) regard Laplacian approxi-

mations as involving asymptotic justifications and develop their saddlepoint properties 

as the sample size tends to infinity. We have, however, demonstrated by the proof of 

section 4.2 and our computations, that they can provide excellent finite sample approx-

imations, i.e. whenever a multivariate normal approximation to a conditional posterior 

density is accurate. Hence, when applied carefully, these approximations can be used 

both as a confirmatory tool of MCMC methods but also as the main method of infer-

ence for people with relevant experience, especially if the corresponding software was 

made publicly available. Although, we did not obtain any theoretical results for more 

general situations, the results of sections 4.3.1 and 4.4.1 provide a good indication of 

how to accurately approximate the marginal posterior distributions of random effects in 

hierarchical linear models in general. The methodology we presented greatly simplifies 

the Laplacian t approximation (Leonard, Hsu and Ritter, 1994, and Sun et al 1996), by 

avoiding the need for a complicated choice of the degrees of freedom. Hence, the latter 
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methodology would appear to be overcomplex. 

As our implementation of the Gibbs sampler was only studied in a rather simple 

case, we did not address possible problems such as slow mixing chains and inefficient 

parameterizations. These could be studied, as topics of future research, with the general 

ANCOVA models of section 2.5, where it is possible that such problems might occur, 

together with the corresponding extensions of our Laplacian approximations, when 

appropriate data sets become available. 

6.2 Neuropsychological tests 

Exploring the relationships between neuropsychological test scores and offender type 

was one of the principal motivations for undertaking this research. The general single 

covariate random variances model of Chapter 2 was used to analyze the data avail-

able. It provided a major improvement to previous standard ANCOVA models used 

for this data, as the unequal variance assumption was proved to be valid in the analysis 

presented in section 3.1. 

From a practical viewpoint the obtained results provided a major surprise. Con-

trary to expectations of our forensic pathology collaborators, who anticipated higher 

scores, corresponding to more pathological conditions, for the two sex offender groups, 

the mean score of the medical patient control group was the highest, though usually 

not significantly higher compared to the scores of some offender groups, for eight out of 

the twelve available tests. For the remaining four tests, their mean scores were not sig-

nificantly different from those of most of the offender groups. Hence, our data analytic 

results certified that, at least using a single response and age as the only covariate, 

discriminating between the different groups is impossible. Therefore, we do not be-

lieve that neuropsychological test scores can be used to predict offender type, given the 

information currently available, with the obvious implications. 

Nevertheless, our conclusions could be regarded as rather preliminary. Future stud-

ies could be designed to include a carefully selected random sample from the general 

population as a control group and to record other possible confounders for all groups. 

In this situation, a model of the form studied in section 2.5.4 could be used in the 

analysis. However, as the common characteristic of all the ANCOVA models studied 

in this thesis was the single response, no questions pertaining to the correlation of the 

scores in different tests were addressed. In that context, the extension of our ANCOVA 

model to multiresponse situations could be desirable, or at an additional stage, the 

use of an established multivariate analysis technique, such as discriminant analysis, or 

possible extensions of it. 
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6.3 Models for oil well pressures 

The last subject tackled in this thesis was modelling output pressures of oil wells in a 

BP oilfield in Alaska. The work completed had an exploratory character, however it 

led to the important initial conclusion, confirmation of expert geological beliefs, of the 

existence of long-term correlation of the pressures of different oil wells over time. 

This preliminary conclusion was reached through two distinct routes, a purely data 

analytic one and a second one that involved formal statistical modelling. The first 

method detected injector and producer wells whose pressures were highly correlated 

with the pressures of a given producer well of interest, according to a proposed modified 

information criterion, defined in (5.3), that takes into consideration the varying number 

of data points available as a result of the introduction of new predictors. It used a 

subjective application of forward selection using the coefficient of determination of the 

linear regression model to identify good predictors. The second method involved the 

development of time series (constant DLM) models, that were analyzed using MCMC, 

which had the same regressors as the ones identified using the data analytic method, 

and served as a confirmatory study for about half of the relationships detected by the 

latter. The combined good performance of the MCMC procedures for temporal models 

as well as for the ANCOVA promises well for the analysis of any linear random effects 

model with unknown variance components. For nonlinear random effects models, the 

application of MCMC methodology is more complicated (see Zeger and Karim, 1996). 

Finally, to address the full complexity of the complete Alaskan data set, which is 

by nature multivariate, a general multiresponse spatio-temporal model was proposed 

in section 5.3. Its study is intended to be part of a two year externally funded re-

search effort that should cover a number of statistical issues that arose from the single 

well implementations and rest of the thesis. Namely, the development of imputation 

methods for the missing responses and regressors, the reduction of the model by the 

elimination of specific system equations and related variance components testing, the 

simplification of the spatial process to a constant over time or climatic seasons one, the 

efficient applications of the Gibbs sampler, and the verification of MCMC convergence 

using Laplacian approximations, are all envisioned to be covered, with long term aim 

the development of an automated system for reservoir management. 
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Appendix A 

Publications by 0. Papasouliotis 

Papasouliotis, 0., and Leonard, T. (1999). The Madison Drug and Alcohol Abuse 
Study. Chapter 4 of A Course in Categorical Data Analysis, by Leonard T., with 
contributions from Papasouliotis 0.. New York: Chapman & Hall/CRC. 

Papasouliotis, 0. (1999). Contributions to A Course in Categorical Data Analysis, by 
Leonard T.. New York: Chapman & Hall/CRC. 

Main, I. G., Leonard, T., Papasouliotis, 0., Hatton, C. G., and Meredith, P. G. 
(1999). One slope or two? - Detecting statistically significant breaks of slope in 
geophysical data, with application to fracture scaling relationships. Geophysical 
Research Letters, 26, 2801-2804. 

Brown, R. L., Leonard, T., Saunders, L. A., and Papasouliotis, 0. (1998). The preva-
lence and detection of substance use disorders in inpatients of ages 18 to 49: an 
opportunity for prevention. Preventive Medicine, 27,101-110. 

Aitken, C. G. G., Bring, J., Leonard, T., and Papasouliotis, 0. (1997). Estimation 
of quantities handled and the burden of proof. Journal of the Royal Statistical 
Society, Ser. A, 160, 333-350. 

Parton, R. M., Fischer, S., Mahlo, R., Papasouliotis, 0., Jelitto, T. C., Leonard, T., 
and Read, N. D. (1997). Pronounced cytoplasmic pH gradients are not required 
for tip growth in plant and fungal cells. Journal of Cell Science, 110, 1187-1198. 

Brown, R. L., Brown, R. L., Saunders, L. A., Castelaz, C. A., and Papasouliotis, 0. 
(1997). Physicians decisions to prescribe benzodiazepines for nervousness and 
insomnia. Journal of General Internal Medicine, 12, 44-52. 

Brown, R. L., Leonard, T., Rounds, L. A., and Papasouliotis, 0. (1997). A two-
item screen for alcohol and other drug problems. Journal of Family Practice, 44, 
151-160. 

Brown, R. L., Patterson, J. J., Rounds, L. A., and Papasouliotis, 0. (1996). Substance 
abuse among primary care patients with chronic back pain. Journal of Family 
Practice, 43, 152-160. 

146 



References 

Abramowitz, M., and Stegun, I. (1965). Handbook of Mathematical Functions. New 
York: Dover Publications. 

Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of 
the Institute of Statistical Mathematics, 30(A), 9-14. 

Aitken, C. G. G., Bring, J., Leonard, T., and Papasouliotis, 0. (1997). Estimation 
of quantities handled and the burden of proof. Journal of the Royal Statistical 
Society, Ser. A, 160, 333-350. 

Aitkin, M. (1997). The calibration of p-values, posterior Bayes factors and the AIC 
from the posterior distribution of the likelihood. Statistics and Computing, 7, 
253-261. 

Arnold, S. F. (1981). The Theory of Linear Models and Multivariate Analysis. New 
York: Wiley. 

Atkinson, A. C. (1978). Posterior probabilities for choosing a regression model. 
Biometrika, 65, 39-48. 

Bailey, A. L. (1931). The analysis of covariance. Journal of the American Statistical 
Association, 26, 424-435. 

Banks, J. (1995). Correlation analysis of Kuparuk production data. British Petroleum 
internal report. 

Berger, J. 0., and Mortera, J. (1999). Default Bayes factors for nonnested hypothesis 
testing. Journal of the American Statistical Association, 94, 542-554. 

Berger, J. 0., and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection 
and prediction. Journal of the American Statistical Association, 91, 109-122. 

Bernardo, J. M., and Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley. 

Besag, J., and Higdon D. (1999). Bayesian analysis of agricultural field experiments 
(with discussion). Journal of the Royal Statistical Society, Ser. B, 61, 691-746. 

Billingsley, C. (1986). Probability and Measure. New York: Wiley. 

Blattberg, R. C., and George, E. I. (1991). Shrinkage estimation of price and pro-
motional elasticities: Seemingly unrelated equations. Journal of the American 
Statistical Association, 86, 304-315. 

147 



Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters. 
New York: Wiley. 

Box, G. E. P., and Tiao, G. C. (1968). Bayesian estimation of means for the random 
effects model. Journal of the American Statistical Association, 63, 174-181. 

Box, G. E. P., and Tiao, G., C. (1992). Bayesian Inference in Statistical Analysis. 
New York: Wiley. 

Brooks, S. P. (1998). Quantitative convergence assessment for Markov chain Monte 
Carlo via cusums. Statistics and Computing, 8, 267-274. 

Brooks, S. P., Dellaportas, P., and Roberts, G. 0. (1997). A total variation method 
for diagnosing convergence of MCMC algorithms. Journal of Computational and 
Graphical Statistics, 6, 251-265. 

Brooks, S. P., and Roberts, G. 0. (1998). Convergence assessment techniques for 
Markov chain Monte Carlo. Statistics and Computing, 8, 319-335. 

Carlin, B. P., and Louis, T. A. (1996). Bayes and Empirical Bayes Methods for Data 
Analysis. London: Chapman & Hall. 

Casella, G., and Berger, R. L. (1990). Statistical Inference. California: Wadsworth. 

Cochran, W. G. (1957). Analysis of covariance: Its nature and uses. Biometrics, 13, 
261-281. 

Cohen, A. (1974). To pool or not to pool in hypothesis testing. Journal of the 
American Statistical Association, 69, 721-725. 

Coons I. (1957). The analysis of covariance as a missing plot technique. Biometrics, 
13, 387-405. 

Cowles, M. C., and Carlin, B. P. (1996), 
Diagnostics: A Comparative Review 
ciation, 91, 883-904. 

Markov Chain Monte Carlo Convergence 
Journal of the American Statistical Asso- 

Cox, D. R., and McCullagh, P. (1982). Some aspects of analysis of covariance. Bio-
metrics, 38, 541-561. 

Crook, J. F., and Good, I. J. (1982). The powers and strengths of tests for multinomi-
als and contingency tables. Journal of the American Statistical Association, 77, 
793-802. 

Daeid, N. N., Lynch, J., and Wideman, D. A. (1998). Statistical differences between 
offender groups. Forensic Science International, 98, 151-156. 

Daniels, H. E. (1954). Saddlepoint approximations in statistics. Annals of Mathemat-
ical Statistics, 25, 631-650. 

David, H. A. (1995). First(?) occurrence of common terms in mathematical statistics. 
The American Statistician, 49, 121-133. 

Dickey, J. M. (1973). Scientific reporting. Journal of the Royal Statistical Society, 
Ser. B, 35, 285-305. 

148 



Draper, N. R., and Smith, H. (1998). Applied Regression Analysis (third edition). 
New York: Wiley. 

Evans, M., Hastings, N. A. J., and Peacock, B. (1993). Statistical Distributions. New 
York: Wiley. 

Fairfield Smith, H. (1957). Interpretation of adjusted treatment means and regressions 
in analysis of covariance. Biometrics, 13, 282-308. 

Federer, W. T. (1957). Variance and covariance analysis for unbalanced classifications. 
Biometrics, 13, 333-362. 

Finney, D. J. (1957). Stratification, balance and covariance. Biometrics, 13, 373-386. 

Fisher, R. A. (1932). Statistical Methods for Research Workers. Edinburgh: Oliver 
and Boyd. 

Garren, S. T., and Smith, R. L. (1993). Convergence diagnostics for Markov chain 
samplers. Technical report, University of North Carolina, Department of Statis-
tics. 

Gelfand, A. E., Sahu, S. K., and Carlin, B. P. (1995). Efficient parametrizations for 
normal linear mixed models. Biometrika, 82, 479-488. 

Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-based approaches to calculating 
marginal densities. Journal of the American Statistical Association, 85, 398-409. 

Gelfand, A. E., Hills, S. E., Racine-Poon A., and Smith, A. F. M. (1990). Illustration 
of Bayesian Inference in Normal Data Models Using Gibbs Sampling. Journal of 
the American Statistical Association, 85, 972-985. 

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data 
Analysis. London: Chapman & Hall. 

Gelman, A., Meng, X., and Stern, H. (1996). Posterior Predictive Assessment of 
Model Fitness via Realized Discrepancies (with discussion). Statistica Sinica, 6, 
733-807. 

Gelman, A., and Rubin, D. B. (1992). Inference from iterative simulation using mul-
tiple sequences. Statistical Science, 7, 457-472. 

Gelman, A., and Speed, T. P., (1993). Characterizing a joint probability distribution 
by conditionals. Journal of the Royal Statistical Society, Ser. B, 55, 185-188. 

Gelman, A., and Speed, T. P., (1999). Characterizing a joint probability distribution 
by conditionals (correction). Journal of the Royal Statistical Society, Ser. B, 61, 

483. 

Geman, A., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and 
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 6, 721-741. 

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the 
calculation of posterior moments. In Bayesian Statistics 4 ( J. M. Bernardo, J. 
0. Berger, A. P. Dawid, and A. F. M. Smith eds), pp.  169-193. Oxford: Oxford 
University Press. 

149 



Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statistical 
Science, 7, 473-511. 

Gilks, W. R. (1995). Full conditional distributions. In Markov Chain Monte Carlo 
in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds), pp.  75-88. 
London: Chapman & Hall. 

Gilks, W. R., Richardson, S., and Spiegelhalter D. J. (1995). Introducing Markov 
chain Monte Carlo. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. 
Richardson and D. J. Spiegeihalter, eds), pp.  1-19. London: Chapman & Hall. 

Gilks, W. R., and Roberts, G. 0. (1995). Strategies for improving MCMC. In Markov 
Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegeihal-
ter, eds), pp.  89-114. London: Chapman & Hall. 

Good, I. J. (1991). Weight of evidence and the likelihood ratio. In The Use of 
Statistics in Forensic Science (C. G. G. Aitken and D. A. Stoney, eds), pp.  85-
106. Chichester: Ellis Horwood. 

Good, I. J., and Crook, J. F. (1974). The Bayes/non-Bayes compromise and the 
multinomial distribution. Journal of the American Statistical Association, 69, 

711-720. 

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and 
Bayesian model determination. Biometrika, 82, 711-732. 

Guihenneuc-Jouyaux, C., and Robert, C. P. (1998). Discretization of continuous 
Markov chains and Markov chain Monte Carlo convergence assessment. Jour-
nal of the American Statistical Association, 93, 1055-1067. 

Harrison, J. P., and Stevens, C. (1976). Bayesian forecasting (with discussion). Jour-
nal of the Royal Statistical Society, Ser. B, 38, 205-247. 

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and 
their applications. Biometrika, 57, 97-109. 

Henderson, C. R. (1982). Analysis of covariance in the mixed model: Higher-level, 
nonhomegeneous, and random regressions. Biometrics, 38, 623-640. 

Heidelberger, P., and Welch, P. D. (1983). Simulation run length control in the pres-
ence of an initial transient. Operations Research, 31, 1109-1144. 

Hendrix, L. J., Carter, M. W., and Scott, D. T. (1982). Covariance analyses with 
heterogeneity of slopes in fixed effects. Biometrics, 38, 641-650. 

Hill, B. M. (1965). Inference about variance components in the one-way model. Jour-
nal of the American Statistical Association, 60, 806-825. 

Hobert, J. P., and Casella, G. (1996). The effect of improper priors on Gibbs sam-
pling in hierarchical linear mixed models. Journal of the American Statistical 
Association, 91, 1461-1473. 

Hsu, J. S. J. (1990). Bayesian Inference and Marginalization. Ph.D. thesis, University 
of Wisconsin-Madison. 

Hsu, J. S. J. (1995). Generalized Laplacian approximations in Bayesian inference. The 
Canadian Journal of Statistics, 23, 399-410. 

150 



Izenman A. J., Papasouliotis, 0., Leonard, T., and Aitken, C. G. G. (1998). Bayesian 
predictive evaluation of measurement error with application to the assessment 
of illicit drug quantity. Technical Report 3, Statistical Laboratory, University of 
Edinburgh. 

Jackson, J. L., and Bekerian, D. A. (1997). Offender Profiling: Theory, Research and 
Practice. Chichester: Wiley. 

Johnson, V. E. (1996). Studying convergence of Markov chain Monte Carlo algorithms 
using coupled sample paths. Journal of the American Statistical Association, 91, 
154-166. 

Jeffreys, H. (1935). Some tests of significance, treated by the theory of probability. 
Proceedings of the Cambridge Philosophy Society, 31, 203-222. 

Jeffreys, H. (1961). Theory of Probability, third edition. Oxford: Oxford University 
Press. 

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. 
Transactions of the ASME, Journal of Basic Engineering, Series D, 82, 35-45. 

Kalman, R. E., and Bucy, R. S. (1961). New results in linear filtering and prediction 
theory. Transactions of the ASME, Journal of Basic Engineering, Series D, 83, 
95-108. 

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American 
Statistical Association, 90, 773-795. 

Kass, R. E., and Steffey, D. (1989). Approximate Bayesian inference in conditionally 
independent hierarchical models (parametric empirical Bayes models). Journal 
of the American Statistical Association, 84, 717-726. 

Katz, R. W. (1981). On some criteria for estimating the order of a Markov chain. 
Technometrics, 23, 243-249. 

Khuri, A. I., Mathew, T., and Sinha, B. K. (1998). Statistical Tests for Mixed Linear 
Models. New York: Wiley. 

Koch, G. G., Amara, I. A., Davis G. W., and Cillings, D. B. (1982). A review of some 
statistical methods for covariance analysis of categorical data. Biometrics, 38, 
563-595. 

Koehler, A. B., and Murphree, E. S. (1988). A comparison of the Akaike and Schwarz 
criteria for selecting model order. Applied Statistics, 37, 187-195. 

Lane, P. W., and Nelder, J. A. (1982). Analysis of covariance and standardization as 
instances of prediction. Biometrics, 38, 613-621 

Lehmann, E. L. (1991). Theory of Point Estimation. California: Wadsworth. 

Lehmann, E. L., and Casella G. (1998). Theory of Point Estimation (second edition). 
New York: Springer-Verlag. 

Lehmann, E. L. (1994). Testing Statistical Hypotheses. New York: Chapman & Hall. 

Leonard, T. (1975). A Bayesian approach to the linear model with unequal variances. 
Technometrics, 17, 95-102. 

151 



Leonard, T. (1976). Some alternative approaches to multiparameter estimation. 
Biometrika, 63, 69-75. 

Leonard, T. (1982). Comment on "A simple predictive density function." Journal of 
the American Statistical Association, 77, 657-658. 

Leonard, T., and Hsu, J. S. J. (1992). Bayesian inference for a covariance matrix. The 

Annals of Statistics, 20, 1669-1696. 

Leonard, T., and Hsu, J. S. J. (1999). Bayesian Methods. New York: Cambridge 

University Press. 

Leonard, T., Hsu, J. S. J., and Ritter, C. (1994). The Laplacian t-approximation in 
Bayesian inference. Statistica Sinica, 4, 127-142. 

Leonard, T., Hsu, J. S. J., and Tsui, K. W. (1989). Bayesian marginal inference. 
Journal of the American Statistical Association, 84, 1051-1058. 

Leonard, T., and Novick, M. R. (1986). Bayesian full rank marginalization for two-
way contingency tables. Journal of Educational and Behavioural Statistics, 11, 
33-56. 

Leonard, T., and Ord, K. (1976). An investigation of the F-test procedure as an 
estimation short-cut. Journal of the Royal Statistical Society, Ser. B, 38, 95-98. 

Lindley, D. V. (1957). A statistical paradox. Biometrika, 44, 187-192. 

Lindley, D. V. (1971). The estimation of many parameters. In Foundations of Sta-
tistical Inference (V. P. Godambe and D. A. Sprott, eds), pp.  435-455. Toronto: 
Holt, Rinehart and Winston. 

Lindley, D. V., and Smith, A. F. M. (1972). Bayes estimates for the linear model 
(with discussion). Journal of the Royal Statistical Society, Ser. B, 34,.1-41. 

Liu, C., Liu, J., and Rubin, D. B. (1992). A variational control variable for assessing 
the convergence of the Gibbs sampler. In Proceedings of the American Statistical 
Association, Statistical Computing Section, pp.  74-78. 

MacEachern, S. N., and Berliner, M. L. (1994). Subsampling the Gibbs sampler. The 
American Statistician, 48, 188-190. 

Main, I. G. (1996). Statistical physics, seismogenesis, and seismic hazard. Reviews in 
Geophysics, 34, 433-462. 

Mardia, K. V., Kent J. T., and Bibby J. M. (1979). Multivariate Analysis. London: 
Academic Press. 

Mehra, R. K. (1979). Kalman filters and their application to forecasting. In Fore-
casting. Studies in the Management Sciences, Volume 12, pp.  75-94. New York: 
Elsevier. 

Meinhold, R. J., and Singpurwalla, N. D. (1983). Understanding the Kalman filter. 
The American Statistician, 37, 123-127. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller E. 
(1953). Equations of state calculations by fast computing machine. Journal of 
Chemical Physics, 21, 1087-1091. 

152 



Miller, R. B., and Fortney, W. G. (1984). Industry-wide expense standards using 
random coefficient regression. Insurance Mathematics and Economics, 3, 19-33. 

Moses, J. A. Jr., Scheift, B. K., Wong, J. L., and Berg, R. A. (1992). Revised norms 
and decision rules for the Luria-Nebraska neuropsychological battery, form III. 
Archives of Clinical Neuropsychology, 7, 251-269. 

Mykland, P., Tierney, L., and Yu, B. (1995). Representation in Markov chain samplers. 
Journal of the American Statistical Association, 90, 233-241. 

Naylor, J. C., and Smith, A. F. M. (1982). Applications of a method for the efficient 
computation of posterior distributions. Applied Statistics, 31, 214-225. 

O'Hagan, A. (1976). On posterior joint and marginal modes. Biometrika, 63, 329-333. 

O'Hagan, A. (1979). On outlier rejection phenomena in Bayes inference. Journal of 
the Royal Statistical Society, Ser. B, 41, 358-367. 

O'Hagan, A. (1994). Kendall's advanced theory of statistics. Volume 2B: Bayesian 
inference. London: Edward Arnold. 

O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). 
Journal of the Royal Statistical Society, Ser. B, 56, 99-138. 

Pole, A., West, M., and Harrison J. (1994). Applied Bayesian Forecasting and Time 
Series Analysis. New York: Chapman & Hall. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1994). Nu-
merical recipes in C. the art of scientific computing, second edition. Cambridge: 
Cambridge University Press. 

Quade, D. (1982). Nonparametric analysis of covariance by matching. Biometrics, 
38, 597-611. 

Raftery, A. E., and Lewis, S. (1992). How many iterations in the Gibbs sampler? In 
Bayesian Statistics 4 ( J. M. Bernardo, J. 0. Berger, A. P. Dawid, and A. F. M. 
Smith eds), pp.  763-773. Oxford: Oxford University Press. 

Reid, N. (1988). Saddlepoint methods and statistical inference (with discussion). 
Statistical Science, 3, 213-238. 

Richardson, S., and Green, P. J. (1997). On Bayesian analysis of mixtures with an un-
known number of components (with discussion). Journal of the Royal Statistical 
Society, Ser. B, 59, 731-792. 

Rice, J. A. (1988). Mathematical Statistics and Data Analysis. California: Wadsworth. 

Ripley, B. D. (1987). Stochastic Simulation. New York: Wiley. 

Ritter, C. (1992). Modern Inference in Nonlinear Least Squares Regression. Unpub-
lished doctoral thesis, University of Wisconsin-Madison. 

Ritter, C., and Tanner, M. A. (1992). Facilitating the Gibbs sampler: The Gibbs 
stopper and the griddy-Gibbs sampler. Journal of the American Statistical Asso-
ciation, 87, 861-868. 

153 



Roberts G. (1992). Convergence diagnostics of the Gibbs sampler. In Bayesian Statis-
tics 4 (J. M. Bernardo, J. 0. Berger, A. P. Dawid, and A. F. M. Smith eds), pp. 
775-782. Oxford: Oxford University Press. 

Roberts G. (1995). Markov chain concepts related to sampling algorithms. In Markov 
Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegeihal-
ter, eds), pp.  45-57. London: Chapman & Hall. 

Roberts G. (1996). Methods for estimating L 2  convergence of Markov chain Monte 
Carlo. In Bayesian Statistics and Econometrics: Essays in Honor of Arnold 
Zeliner ( D. Berry, I. Chaloner, and J. Geweke eds), pp.  373-384. Amsterdam: 
North-Holland. 

Schruben, L. (1982). Detecting initialization bias in simulation output. Operations 
Research, 30, 569-590. 

Schruben, L., Singh, H., and Tierney, L. (1983). Optimal tests for initialization bias 
in simulation output. Operations Research, 31, 1167-1178. 

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 
461-464. 

Searle, S. R. (1987). Linear models for unbalanced data. New York: Wiley. 

Seber, G. A. F. (1977). Linear regression analysis. New York: Wiley. 

Smith, A. F. M. (1973a). A general Bayesian linear model. Journal of the Royal 
Statistical Society, Ser. B, 35, 65-75. 

Smith, A. F. M. (1973b). Bayes estimates in one-way and two-way models. 
Biometrika, 60, 319-329. 

Smith, A. F. M., and Spiegeihalter, D. J. (1980). Bayes factors and choice criteria for 
linear models. Journal of the Royal Statistical Society, Ser. B, 42, 213-220. 

Spiegeihalter, D. J., and Smith, A. F. M. (1982). Bayes factors for linear and log-linear 
models with vague prior information. Journal of the Royal Statistical Society, Ser. 
B, 44,377-387. 

Stone, M. (1977). Asymptotics for and against cross-validation. Biometrika,. 64, 29-
35. 

Sun, L. (1992). Bayesian Estimation Procedures for One- and Two- Way Hierarchical 
Models. Unpublished doctoral thesis, University of Toronto. 

Sun, L., Hsu, J. S. J., Guttman, I., and Leonard, T. (1996). Bayesian methods for 
variance components models. Journal of the American Statistical Association, 
91, 743-752. 

Tanner, M. A., and Wong W. (1987). The calculation of posterior distributions by data 
augmentation (with discussion). Journal of the American Statistical Association, 
82, 528-550; 

Theobald, C. M., Nabugoomu, F., and Talbot, M. (1999). A Bayesian approach to 
regional and local-area prediction from crop variety trials. Submitted to Biomet-
rics. 

154 



Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals 
of Statistics, 22, 1701-1762. 

Tierney, L., and Kadane, J. B. (1986). Accurate approximations for posterior moments 
and marginal densities. Journal of the American Statistical Association, 81, 82-
86. 

Tierney, L., Kass, R. E., and Kadane, J. B. (1989a). Approximate marginal densities 
of nonlinear functions. Biometrika, 76, 425-433. 

Tierney, L., Kass, R. E., and Kadane, J. B. (1989b). Fully exponential Laplace ap-
proximations to expectations and variances of nonpositive functions. Journal of 
the American Statistical Association, 84, 710-716. 

Turcotte, D. L. (1992). Fractals and Chaos in Geology and Geophysics. New York: 
Cambridge University Press. 

Venables, W. N., and Ripley, B. D. (1994). Modern Applied Statistics with S-Plus. 
New York: Springer-Verlag. 

Urquhart, N. S. (1982). Adjustment in covariance when one factor affects the covariate. 
Biometrics, 38, 651-660. 

West, M., and Harrison J. (1997). Bayesian Forecasting and Dynamic Models, second 
edition. New York: Springer-Verlag. 

Wilkinson G. N. (1957). The analysis of covariance with incomplete data. Biometrics, 
13, 363-372. 

Yandell, B. S. (1997). Practical data analysis for designed experiments. London: 
Chapman & Hall. 

Yu, B. (1994). Monitoring the convergence of Markov samplers based on estimated 
L' error. Technical Report 409, University of California at Berkeley, Department 
of Statistics. 

Yu, B., and Mykland, P. (1994). Looking at Markov samplers through cusum path 
plots: A simple diagnostic idea. Technical Report 413, University of California 
at Berkeley, Department of Statistics. 

Yu, B., and Mykland, P. (1998). Looking at Markov samplers through cusum path 
plots: A simple diagnostic idea. Statistics and Computing, 8, 275-286. 

Zeger, S. L. and Karim M. R. (1991). Generalized linear-models with random effects: 
A Gibbs sampling approach. Journal of the American Statistical Association, 86, 
79-86. 

Zelen, M. (1957). The analysis of covariance for incomplete block designs. Biometrics, 
13, 309-332. 

Zellner, A., and Mm, C.-K. (1995). Gibbs sampler convergence criteria. Journal of 
the American Statistical Association, 90, 921-927. 

155 


