
An Investigation Into the Application of Parallel
Computers for the Dynamic Simulation of

Chemical Processes

Roderick C. McKinnel

Doctor of Philosophy
University of Edinburgh

1994

Declaration

The work described in this thesis is the original work of the author and was

carried out without the assistance of others, except where explicit credit is given

in the text It has not been submitted, in whole or in part, for any other degree

at any University.

1

11

Acknowledgements

I would especially like to thank Professor Jack Ponton for initiating and sup-

porting this project, Dr Eric Fraga for his help with the mathematics and proof

reading, Neil Skilling for keeping the computer system up and running and Mur-

ray Laing for his infinite wisdom on Postscript.

Finally I would like to thank all those people in and outside of the department

who have helped and supported me along the way.

111

Abstract

The detailed dynamic simulation of chemical processes is computationally ex-

pensive. Standard single processor (sequential) computers are not of sufficient

power to tackle such simulations in a reasonable time frame. In particular, it is

not possible to run complex simulations in less than real time. The solution to

obtaining the processing power required lies in moving towards the use of multi-

pie processor (parallel) computers. Unfortunately, obtaining the full benefit from

parallelism requires the problem being solved to be partitionable into parts, each

of which can be solved concurrently. For the majority of problems, locating this

parallelism is not trivial.

An investigation into the use of MIMD parallel computers for dynamic process

simulation has been performed. Initially the parallel dynamic simulation of dis-

tillation was studied. Later work moved on to the parallel dynamic simulation of

complete processes. As a result, two parallel process simulators have been pro-

duced: PDist (Parallel Distillation simulator) and PNet (Parallel Process Net-

work simulator). Throughout the work a parallel modular approach, rather than

a parallel equation based approach, has been adopted. Results shown that the

parallel modular approach maps efficiently to parallelism and that excellent re-

ductions in execution time can be obtained.

As well as the exploitation of parallelism for processing power reasons, a large

amount of the work aimed to show the benefits which the parallel modular ap-

proach offered from a usability point of view. Both PDist and PNet were designed

with usability in mind. The simulation model interfaces created were designed

to hide the majority of the parallelisation from the modeller. A large amount

of work was also carried out on simulation input, interaction and graphical out-

put. PDist and PNet are now much more than just concept provers. PDist is

particularly usable and has been used for an industrial case study.
0

Contents
0

1 Introduction 	 1

1.1 Parallel Processing3

1.1.1 Development of the Technology3

1.1.2 Parallel Architecture Types5

1.1.3 Programming, the New Architectures9

1.2 Computer Use in Chemical Engineering11

1.2.1 Current Computer Usage in Chemical Engineering12

1.2.2 Requirements for the Future13

1.3 Aims of Work14

1.3.1 The Dynamic Simulation of Distillation16

1.3.2 Complete Plant Simulation17

1.3.3 Interaction and Usability of Parallelism17

	

1.4 	Summary 18

2 Literature Review 	 19

2.1 	Introduction19

iv

	

CONTENTS
	

V

2.2 	General Overviews20

2.3 General Equation Solving23

	

2.3.1 	Linear Algebraic Equations24

2.3.2 	Other Equation Types 31

2.4 	Process Simulation 33

2.4.1 	Steady State Simulation (Flowsheeting) 34

2.4.2 	Dynamic Simulation 38

2.5 	Process Synthesis 40

2.6 	Summary 42

3 	Dynamic Process Simulation 43

3.1 Dynamic Simulation: Theory and Parallelism 44

3.1.1 	Equation-Based Methods 46

3.1.2 	Modular Based Methods 50

3.1.3 	Comparison of Methods 54

3.2 Parallel Dynamic Simulation of Distillation 56

3.2.1 	Distillation 57

3.2.2 	Modularising Distillation for Parallelism 58

3.2.3 	Modular Algorithms Used 64

3.3 Distillation Models Overview 66

3.3.1 	Model Overview 66

3.4 Summary 71

CONTENTS 	 vi

4 PDist 	 72

4.1 Introduction72

4.2 PDist Development History75

4.3 PDist Software and Portability78

4.4 Parallel Distillation Implementation80

4.4.1 	Decomposition Overview80

4.4.2 	PDist Model Interface83

4.4.3 Simulation Critical Communications87

4.4.4 	Utility Communications99

4.4.5 	Complete Parallel Algorithm102

4.4.6 Implementation Summary106

4.5 The Front End106

4.5.1 The Dynamic Simulation Input Problem106

4.5.2 PDist Input Format112

4.5.3 Accessing Input Information from PDist Models116

4.5.4 	Interaction117

4.5.5 	Front End Conclusion117

	

4.6 	The Back End118

4.6.1 	Introduction119

4.6.2 Simulation Solution Management in PDist120

4.6.3 	PDist's Graphical Tools125

CONTENTS 	 Vii

4.6.4 	Back End Summary131

	

4.7 	Summary 132

5 PNet
	

134

5.1 Introduction134

5.1.1 Connecting Dynamic Simulators136

5.1.2 PNet Approach to Simulator Construction140

5.1.3 Other Simulator Connection Issues142

5.1.4 The Current and Proposed Structure of PNet145

5.1.5 Summary147

	

5.2 	Creating a PNet Pipe148

5.2.1 	The PNet Pipe148

5.2.2 Pipe Creation and the Pipe Interface Routines151

5.2.3 	Example Pipes Created156

5.2.4 	Summary160

5.3 Creating a PNet Connectable Simulator160

5.3.1 	The PNet Interface Routines160

5.4 Describing and Executing a PNet Simulation165

5.4.1 	Describing a PNet Process165

5.4.2 	Supporting Parallel Simulators168

5.4.3 	Execution of PNet169

5.4.4 	Solution Display 172

0

CONTENTS
	

Viii

	

5.5 	Summary 173

6 Evaluation 	 174

	

6.1 	PDist Results174

6.1.1 	The Usefulness of PDist175

6.1.2 	The Robustness of PDist176

6.1.3 	The Usability of PDist178

6.1.4 	Gain from Parallelisation179

6.1.5 	Summary 189

6.2 PNet Results189

6.2.1 Steady State Simulator Construction Results190

6.2.2 Parallel Dynamic Simulation Results193

6.2.3 Summary197

7 Conclusions and Future Work
	

199

	

7.1 	The Modular Approach199

	

7.2 	Load Balancing200

	

7.3 	Robustness 202

	

7.4 	Flexibility202

	

7.5 	Usability203

	

7.6 	User Interfaces 204

7.7 	Summary 205

CONTENTS
	

ix

7.8 	Future Work205

7.9 	The Future 207

A PDist Test Models 	 209

A.1 General Tray Model Description 209

A.2 Tray Liquid and Vapour Flowrate Models213

A.3 Tray Hydraulic Models214

A.4 Conventional Reflux Model Description217

A.5 Conventional Reflux Flowrate Models220

A.6 Liquid/Liquid Separator Reflux Model221

A.7 Liquid/Liquid Separator Flowrate Models224

A.8 Liquid/Liquid Isothermal Flash Model225

A.9 Conventional Reboiler Model Description228

A.10 Conventional Reboiler Flowrate Models230

A.11 Reactor/Reboiler Model Description231

A.12 Reactor/Reboiler Flowrate Models234

A.13 Vapour/Liquid Equilibrium Models236

A.14 Proportional/Integral Control Model238

A.15 Level Control Models239

A.16 Simulation Input Ramping Models240

A.17 Simulation Input Oscillation Models241

A.18 The Regula-Falsi Method242

CONTENTS
	

x

A.19 Newtons Method243

B Symbols Used In PDist Model Descriptions 	 245

B.1 General Model Symbols245

B.2 Hydraulic Symbols248"

B.3 Control Symbols 249

B.4 Ramping and Oscillation Symbols249

B.5 Numerical Method Symbols250

C PDist Input Files 	 251

CA PDist Input Variables251

C.2 PDist Reactive Distillation Input File255

C.3 PDist Graphical Output Description File267

D PNet Example Input Files 	 272

D.1 	Esspross Examples 272

D.l.l 	ESSPROS Example Program 1................ 272

D.1.2 	PNet Input for ESSROSS Example Program 1 273

D.1.3 	ESSPROS Example Program 2 275

D.1.4 	PNet Input for ESSROSS Example Program 2 276

D.2 	Dynamic PNet Example Input Descriptions 281

D.2.1 	Example 1: PDist Linear Train Simulation 281

D.2.2 Example 2: PDist Train Simulatoin with Recycle283

CONTENTS
	

xi

D.2.3 Example PDist Loader Text under PNet284

E Input File Syntax Diagrams

E.1 PDist Graphics Description Syntax289

E.2 P.Dist Model Input Format296

E.3 PNet Input File Syntax304

F Bibliography 	 308

List of Figures

1.1 CM-200 Fortran Example 	 . 	7

3.1 Modular Approach without Recycle52

3.2 Modular Approach with Recycle52

3.3 Single Distillation Vapour/Liquid Equilibrium Stage59

3.4 Information Flow for Various Distillation Solution Methods . . 60

3.5 Conventional Distillation Column68

3.6 Reactive/Azeotropic Distillation Column69

4.1 PDist Program Connection Strategy81

4.2 	PDist Model Interface83

4.3 Effect of Various Factors on Communication Efficiency89

4.4 Effect of Various Factors on Communication Efficiency 90

4.5 Possible Communication and Control Configurations for PDist . 	 93

4.6 Example of Simulation Input Format Functionality 108

4.7 	The Interaction Panel118

4.8 Example of Solution Structure Declaration Format122

xli

LIST OF FIGURES
	

xlii

4.9 Example of Data Management Recommendations for 3D Graphs . 125

4.10 PDist Graphical Display Selection Panel127

4.11 Selection of 3D Context Items127

4.12 Example of Solution 3D Graphical Window129

4.13 Example of Solution 2D Graphical Window130

4.14 Example of Solution Tabulation Mechanism131

4.15 Example of Run Time Graphics132

5.1 Diagram of General PNet Structure135

5.2 The PNet Connection Manager: The Pipe140

5.3 Diagram Showing the Implementation Structure of PNet146

5.4 Structure of the Pipe Interface Routines152

5.5 Simple Dynamic Mixer Using PNet164

5.6 Example PNet Process Description167

5.7 Example Input Description with System Call 170

5.8 Example PNet Loader Command171

5.9 Screen Dump of the PNet Solutions Viewer172

6.1 Timings Plot for Simulation With Simple Physical Properties. . . 183

6.2 Timings Plot for Simulation With Complex Physical Properties . 184

6.3 Parallel Efficiency Plot for Simple and Complex Simulations . . . 185

6.4 Graph of Calculation Load Distribution During 10 Processor Sim-
ulation186

LIST OF FIGURES 	 Xlv

6.5 Graph of Communications Load Distribution During 10 Processor
Simulation187

6.6 Process Flowsheet for PDist Column Sequence194

6.7 Process Flowsheet for PDist Column Sequence with Recycle . . . 195

A.1 Distillation Tray n in a Stage Section210

A.2 Figure Showing Hydraulic Features of a Distillation Tray215

A.3 Conventional Reflux Section217

A.4 Reactive Distillation Reflux Section221

A.5 Isothermal Flash225

A.6 Conventional Reboiler Section228

A.7 Reactor/Reboiler Section232

A.8 Oscillation Approach Used241

A.9 The Regula-Falsi Method243

List of Tables

1.1 Flynn's Taxonomy 	 . 	5

2.1 Table of Applications for Parallelism in Chemical Engineering . . 21

0

xv

Chapter 1

Introduction

Since the development of the computer in the late 1940's, engineers have been

able to tackle ever more computationally intensive problems. Unfortunately the

computational requirements always exceed that which the current computer hard-

ware can provide. As new computational speeds are achieved, users either find

new problems to tackle which were previously thought too difficult, or remove

some simplifications from their existing models. Either way there is a self per-

petuating loop of computational requirements to hardware requirements back to

computational requirements.

Until the early 1970's all computers were based on the so called von Neumann

architecture. This architecture incorporates one central processor, connected to

one central memory, executing one instruction at a time. Computers with this

type of architecture are more commonly referred to as "sequential". Sequential

computers make up the majority of computers in use today. Great advances in

chip, memory and circuit board technology have meant that these computers

are still growing in computational performance and are likely to for some years

to come. In conjunction with this scientists have been developing specialised

algorithms, geared specifically to obtain the maximum performance from the

sequential architecture.

1

CHAPTER 1. INTRODUCTION 	 2

Unfortunately there is a physical upper limit to the computational speed ob-

tainable with sequential machines. For engineers requiring computational per-

formance more than two orders of magnitude greater than current levels, not

only improved computer components will be required, but a different architec-

ture which will be scalable enough to provide the performance engineers are

demanding for the foreseeable future.

It is now widely recognised that the solution to future computing requirements

lies in moving from sequential to "parallel" architectures. Parallel architectures

differ in that they allow the execution of two or more sets of computer instruc-

tions at the same time. This is performed using specialised numerical hardware

or multiple, usually von Neumann style, processors. Computers incorporating

parallel concepts, or supercomputers, began to appear in the early 1970's. Until

now they have tended to be mainly research tools, with the majority of machines

being installed in research establishments. However the 1990's has seen an ever

widening range of relatively low cost /performance machines beginning to appear.

With the lowering costs and better software being provided by vendors, parallel

machines are slowly beginning to make a place for themselves in the industrial

arena.

The main problem with these new parallel architectures is that the extra per-

formance comes at a cost. Problems must be partitionable into separate and

concurrently executable pieces. The more concurrency obtained, the better the

performance. This means that existing algorithms must be rewritten to suit the

new architectures. This is not a simple task. Unlike with sequential architectures,

there are many types of parallel architecture. Each of these require different pro-

gramming strategies to produce the maximum performance. Each architecture

also exploits parallelism at different levels, or granularities. The granularity goes

from fine to coarse grained. The coarser the grain the larger the concurrent

tasks become. Most problems are best solved using a specific granularity. This

CHAPTER 1. INTRODUCTION 	 3

somewhat limits the range of architectures that can be used. It also presents a

problem when two or more coupled problems, or a given solution method, require

different granularities to be solved. In this case a compromise must be made or

a heterogeneous approach to problem solving employed.

1.1 Parallel Processing

This section gives a brief overview of the development of parallel computers and

the various architecture types. Included in the description are some of the main

"buzz" words and acronyms used throughout this thesis. Most of the information

regarding the various different machine types was obtained from Trew and Wilson

[1].

1.1.1 Development of the Technology

In the mid 1940s John von Neumann, who originally trained as a Chemical En-

gineer [2], proposed the first basic design for the computer. The design involved

having a single processing unit connected to a single store of memory. The proces-

sor fetched instructions and operands from the memory, performed a computation

and wrote the results back in to memory. The first computers produced of this

type were composed of vacuum tubes and tended to be unreliable. Even at this

early stage, von Neumann realised the potential of parallelism but could not put

it in to practice with the current hardware available.

The 1960's saw the vacuum tube replaced by solid state components. The first

minicomputers and mainframes began to appear. The operating systems on these

machines incorporated inter process communication, time-sharing and memory

management and were designed to be used by all, from small businesses to large

companies.

CHAPTER 1. INTRODUCTION 	 4

In 1976 the first ever "vector supercomputer" appeared on the market. This was

produced by Cray Research Incorporated and was the brain child of Seymour

Cray. The Cray 1 was based on Control Data Corporations CDC7600 and was

the first computer to incorporate pipelined vector processing hardware. This

hardware allowed independent tasks to be executed concurrently in a similar

manner to a production line. Since the Cray 1 many different Crays have been

produced and Cray Research Inc still produce some of the fastest computers

available today.

By the end of the 1970s the idea of parallel computing was beginning to take

off. The development of Very Large System Integration (VLSI) technology was

allowing hundreds of thousands of transistors on a single chip. Programming was

being made easier by higher level languages such as Fortran, Pascal and C. At the

same time many techniques for handling concurrency had been developed such

as Semaphores, Monitors and Signals and were being taught widely to computer

science students giving rise to a large number of well versed programmers.

The first multiprocessor computer produced was the Iliac IV. This was designed

at Carnegie-Mellon University. The machine was based on many new ideas but

failed due to lack of usable programming languages and environments and its

reliance on very state of the art hardware. Vendors learned many lessons from

the failure of this machine and, as a result, most modern computers are build

using very common processing units.

Throughout the 1980s, the use of parallel processing increased greatly. This was

mainly brought about by the lowering cost of the parallel hardware. With a

large number of parallel machines being installed in research establishments, the

software environments were also beginning to improve.

Now in the 1990s, parallel hardware is ever cheaper. The software is slowly

catching up with developments and with most hardware now being hosted by

CHAPTER 1. INTRODUCTION

Unix workstations, the mechanism for creating and running parallel programs is

very similar to that used for sequential ones. The technology is now at a state

where it is ready to move from academia into industry. The main difficulty is in

locating where parallelism can be applied and targeting the appropriate parallel

architecture.

.1

1.1.2 Parallel Architecture Types

Parallel architectures are usually classified by their general approach to paral-

lelism. In 1967 Michael J. Flynn [3] put forward his classification taxonomy of

computer architectures. Table 1.1 below shows the different classifications.

Single Instruction Stream Multiple Instruction Stream
Single Data Stream
Multiple Data Stream

SISD (von Neumann, PC ..)
SIMD (DAP, CM, MP-1)

MISD
MIMD (Cray, CM5, Meiko ..)

Table 1.1: Flynn's Taxonomy

The classifications divide architectures into groups based on how instructions are

executed and on the data structure which they operate. An Instruction Stream

is "the sequence of instructions as performed by the machine". A Data Stream is

"the sequence of data called for by the instruction stream (including input and

partial or temporary results)". The different classifications are now described:
0

SISD: Single Instruction Stream-Single Data Stream

SISD is the general classification into which the von Neumann style com-

puter architecture fits. It describes a computer which executes one instruc-

tion at a time operating on one data stream. Current sequential computers

are classified as SISD although most modern machines are slight divergences

from the classic von Neumann architecture.

SIMD: Single Instruction Stream-Multiple Data Stream

CHAPTER 1. INTRODUCTION

This classification refers to an architecture type in which many processors

execute the same instruction but on different data. Such machines are of-

ten referred to as "data parallel", "massively parallel" or "fine grained"

machines. The best known machines of this type are the Connection Ma-

chine (CM), the AMT Digital Array Processor (AMT DAP) and the MasPar

MP-l.

All these machines use large numbers of simple processors: up to 65,536

in the CM. Data is distributed between the processors and instructions are

broadcast to each processor from a central program. The machines work in

"lock step". This involves every processor receiving the same instruction.

At the end of each instruction the processors synchronise and then move

on to the next instruction. The "lock step" process makes the parallelism

simpler to control and helps to avoid dead lock problems for communica-

tions. Interprocessor communication is available and performed using vast

connection arrays. The machines are particularly good for problems where

processor communication is nearest neighbour.

SIMD machines tend to be suited. to problems where parallelism can be

found at a very fine grain. This can be at a physical or algorithmic level.

They are especially suited to problems such as image processing where pixel

calculations can be distributed and mesh problems such as finite difference

calculations.

To program these machines a number of current high level languages have

been extended to include array calculations. A simple fortran example for

the CM-200 [4] is shown in figure 1.1 below.

The example shows the general way SIMD machines are programmed. The

nature of the machines means that they are most efficient when matrices are

large and all of the processors can be used. For more complex operations

such as matrix multiplication and QR factorisation, specialised routines are

typically provided as writing routines to perform such operations requires

CHAPTER I. INTRODUCTION
	

7

Conventional Fortran 77
	

CM-200 Fortran Extension

double precision A(100)
	

double precision A(100)

add 1 to every element of A 	 ! add 1 to every element of A

do i1,100 	 A = A + 1
A(I)=A(I)+1

end do

Figure 1.1: CM-200 Fortran Example

a good knowledge of the hardware to get the problem decomposition right

and thus the best performance. Similar routines are also available for vector

processor machines like the Cray series.

The programming style for these machines is probably their best feature.

Given a standard language it should be possible to port code across different

machine types. Unfortunately most vendors supply their own language

extensions and there is no sign of standardisation at present above and

beyond existing high level languages. The main drive by some vendors

seems to be towards supporting the new Fortran 90 style syntax. This

allows many of the matrix operations required by SIMD machines to be

declared in a meaningful and usable manner. Until recently there were no

Fortran 90 compilers available.

Overall SIMD machines make up a substantial amount of current supercom-

puter usage along with vector processors such as the Cray series. The SIMD

approach works well for many problems. Unfortunately the approach is not

applicable to all problems and not realistically scalable enough to provide

future performance requirements. There is now a move by vendors towards

coarser grained parallelism using fewer but much more powerful processors.

Some of these new machines are capable of being run in a SIMD manner but

are designed for more coarse grained parallelism. These machines belong

CHAPTER 1. INTRODUCTION 	 8

to the classification MIMD and are explained below.

MISD: Multiple Instruction Stream-Single Data Stream

There are currently no computers of this classification in existence. It is

difficult to visualise how such a machine could function and whether any

great benefit could be obtained from such an architecture.

MIMD: Multiple Instruction Stream-Multiple Data Stream

The MIMD classification of architectures covers any architecture in which

the processors can run different instructions concurrently and where each

processor has access to different data streams.

MIMD is a natural progression from SISD and is regarded as the way for-

ward for parallel computing. The MIMD approach involves running com-

plete programs on different processors, where each processor is usually of

equal power. These programs are stored locally by the processor and com-

municate to other programs by way of hardware/software communications

links. The programs are often referred to as "Communicating Sequential

Processes" and most communication software attempts to emulate the com-

munication theory described by Hoare [5].

MIMD machines tend to be built from either small numbers of powerful

processors or larger numbers of smaller processors. In the machines with

smaller numbers of processors the memory used is quite often "shared mem-

ory". In these machines each processor can either access all of the memory

or in certain cases private blocks of the memory. An example of a MIMD

shared memory machine is the Cray Y-MP. This uses a number of very

powerful vector processors connected to a central memory store. The main

advantage of shared memory is that they are generally simpler to pro-

gram. Unfortunately as the number of processors increases the contention

for memory usage becomes significant and a bottleneck occurs. For this

reason shared memory machines are somewhat limited in terms of future

CHAPTER 1. INTRODUCTION

development.

The other form of memory usage is "distributed memory". In machines

with distributed memory each processor has its own memory store. Pro-

gramming these machines is more difficult since information must be explic-

itly communicated between programs due to lack of direct memory access.

Some machines such as the BBN Butterfly use distributed memory, but by

way of a communications network library mimic shared memory usage.

Distributed memory machines offer the greatest performance since they

are technically very scalable. Companies such as Thinking Machines, who

manufacture the Connection Machine series, have now turned to this type

of architecture. Their main intention is to be the first company to produce

a TeraFLOPS machine. The new Connection Machine, the CM5, is a 1000

processor MIMD machine. Unlike the earlier SIMD CM-200 this machine

has much fewer but more powerful processors and is designed to support the

MIMD style of architecture. As a selling point it is also capable of running

SIMD style code from previous machines. Machines of this type represent

the future of computing at the high performance end of the market.

1.1.3 Programming the New Architectures

The biggest drawback to parallel processing at present is the lack of standard

software environments and tools. Almost all vendors supply their own compilers

which either extend the functionality of existing languages such as Fortran or

C, or provide specialised libraries which allow the user to perform specialised

hardware tasks.

The main requirement is for a language which allows the parallel operations of

SISD, SIMD and MIMD machines to be expressed in a simple and meaningful

manner. Unfortunately there is always resistance to change and most people

CHAPTER 1. INTRODUCTION 	 10

want to stick with their existing languages. Also vendors are not going to use

languages developed by their competitors. This is not to say that nobody has

attempted to produce a parallel language. Probably the most popular example is

OCCAM [6]. This was specifically developed as the programming language for the

INMOS Transputer. In the words of Fountain [6], "Occam is the first language

to be based upon the concept of parallel, in addition to sequential execution, and

to - provide automatic communication and synchronisation between concurrent

processes". When transputer based systems first appeared OCCAM was used by

almost everybody. Unfortunately OCCAM lacked many of the features provided

by most high level languages and was conceptually difficult to program. Its other

main drawback was that it had to be used from within a development system.

This was keyboard based and involved many alien style tools such as a folding

editor. There are still a lot of people using OCCAM today, but this is reducing

rapidly with most people referring back to extended versions of classic high level

languages. Programs written in existing high level languages are more easily

ported to other architectures since most processors have Fortran and C compilers.

OCCAM does not appear to be dead however. INMOS's new processor the Hi

(or T9000) is due out in early 1994. Along with this a revised OCCAM is going to

be implemented. This has extensions to provide it with more of the functionality

of high level languages. It is also going to be usable under the X-Window system

and ported on to a wide range of computer architectures. At some point languages

are going to have to standardise and OCCAM has played and is likely to play a

leading role in researching exactly what future languages should be like.

It has already been mentioned that some vendors provide specialised libraries

for performing mathematical tasks, especially for vector and SIMD architectures.

In an attempt to provide a more standard set of mathematical libraries the Ba-

sic Linear Algebra Subroutines (BLAS) [7,8] have been developed. These are

designed to provide a set of standard routines to perform basic linear algebra

operations. They are written in three levels: Level-1, Level-2 and Level-3. Levels

CHAPTER 1. INTRODUCTION 	 11

2 and 3 are developments from level 1 [9,10]. Level-2 BLAS was very successful

at exploiting parallelism in vector machines, but not so good for coarse grained

machines and SIMD machines. Level-3 BLAS takes into account these other

machines by including matrix/matrix operations and has proved very successful.

From these basic routines it is possible to build systems to solve most numeri-

cal problems. These have been included in such software packages as UNPACK

Which is now used for benchmark comparisons of various machines. The BLAS

routines are available on vector machines such as the Cray series and are im-

plemented to some extent on SIMD machines such as the CM. There is talk of

producing similar routines for the NAG library for MIMD type architectures, but

as yet it is mostly speculation [11].

The programming of MIMD systems still requires specialised tools. This is likely

to continue for some years until either standard communication software exten-

sions to existing languages or a good and generally acceptable parallel language

is produced. The main software challenge for the application writer at present is

to locate the parallelism and program it as well as possible given current tools.

1.2 Computer Use in Chemical Engineering

Chemical engineering is a very numerical subject and spans a wide range of

problem types. For this reason computers have become well established as an

integral part of everyday engineering for a great many years. Many of the typical

chemical engineering problems can now be solved quite efficiently on modern

computers. For these problems there is little need for larger machines. However

there is a still a set of extremely computationally intensive problems for which

there is currently no quick solution.

CHAPTER 1. INTRODUCTION 	 12

1.2.1 Current Computer Usage in Chemical Engineering

There now exists a wide range of software to perform many common chemical

engineering tasks. Typical everyday tasks performed are:

• Modelling and Design/ Synthesis

• Flowsheeting

. Control Simulations

Thermodynamics and Physical Property Estimation

• Simple Equation Solving (P.D.Es, O.D.Es, Non-linear equations etc ..)

• Optimisation

• Word Processing, Spread Sheeting etc.

Most of this software requires more user time than computer time, with packages

running reasonably quickly on current machines. From the industrial viewpoint

current software is probably sufficient enough to let them function to a reasonable

level. For this reason there is a high degree of resistance to change in terms of

computer usage. Most companies still adopt a predominantly PC/VAX based

computer system with limited networking. In these areas modern computing is

going to take some time to break through since there is not enough incentive for

companies to change. In the end the main incentive is going to come from the

future requirements for processing power. These requirements are being driven

by external influences beyond the control of single companies.

CHAPTER 1. INTRODUCTION 	 13

1.2.2 Requirements for the Future

The world is rapidly becoming more constrained with low emission limits and

energy conservation measures being enforced. To make sure that chemical plants

meet the new standards, much more optimisation, simulation and analysis of

alternatives is required. A lot of research has gone into designing suitable al-

gorithms and approaches for tackling these problems. A reasonable amount of

software has also been written to implement these new algorithms. The main

problem arises when the programs begin to include the more complex attributes

required to provide truly realistic solutions. Simply adding heat integration con-

siderations to a distillation train synthesis program can give rise to a program

which takes up to 24 hours to run on a modern workstation. The growth in com-

putation required is exponential for these problems and for the engineer wishing

to get a result in a few minutes they are either going to have to put up with

a simplified solution or buy a computer which has the processing power they

require.

With current sequential computers there is a maximum obtainable performance.

This is dictated by the speed of light and the physical limit to circuit densities on a

chip. To get the performance required by major applications, multiple processors

will be required. The current thinking of many people is that processors will keep

getting faster and produce the performance required. Even if this were the case

it is quite often cheaper to use multiple old processors to get the performance

than the current state of the art chip technology. Also, the world is demanding

results now and is not going to wait decades for single processor computers to get

fast and cheap enough to use. The technology to get the power required exists

now in the form of parallelism. If parallelism is targeted for use now, even when

processor speeds increase, the multiple processor approach should always provide

much better performance than the single processor approach when compared on

equal terms.

CHAPTER 1. INTRODUCTION 	 14

To design and operate the plants of the future, the engineer is also going to

require a multitude of simple and specialised tools. This will involve integrating

existing programs running on current machines with those specialised parallel

programs which require specialised hardware. With engineer's time becoming

ever more expensive, new packages are required which aid them to do their work

more efficiently rather than hinder them. As packages tackle ever more difficult

problems so the number of parameters for these will increase. Somehow most of

these will have to be managed for the user. Graphical User Interfaces (GUI), are

required which allow the user to move and manipulate information in a standard

way within and between different programs. This is especially true for parallel

programs where there is the added complexity of multiple program execution.

Technology has now reached a state where many of these requirements can begin

to be satisfied.

1.3 Aims of Work

The overall aim of this work has been to explore the use of MIMD parallel com-

puters for the dynamic simulation of chemical processes. Firstly, MIMD archi-

tectures rather than the other architecture classifications mentioned have been

targeted for the following reasons:

1. Cost

MIMD architectures can be bought at relatively low entry level prices.

These entry level machines contain enough processors to allow parallelism

to be explored adequately and also to provide performance in excess of

most modern workstations. The latest communications software also al-

lows workstation networks to be used as a MIMD parallel resource. This is

especially attractive, since parallel programs can be built and tested with

standard hardware.

0

CHAPTER 1. INTRODUCTION
	

15

The utilisation of cheap MIMD machines also offers a greater incentive for

industry to get involved. The average company is unlikely to spend millions

of dollars on a state of the art supercomputer for more than one, if any,

of its locations. However it is quite likely to support the purchase of a

multiprocessor workstation, especially if it is relatively cheap and fits into

their existing network with minimal disruption.

Largely Undeveloped Technology

Compared with other architectures, MIMD machines are still not fully

utilised. In chemical engineering virtually all parallel usage of machines

has been on SIMD and vector architectures. These machines have their

place and are best for problems which can be solved as a large set of equa-

tions. A great deal of research into equation solving on these machines

has been performed already and it seems pointless to re-explore such a well

trodden area.

MIMD machines differ in that they rely much more on suitable decompo-

sition of the problem being solved into separate subproblems. Chemical

engineering has many examples which contain the possibility for such de-

composition. There has been virtually no research on applying MIMD ma-

chines to chemical engineering. For this reason all of the work carried out

for this thesis is targeted at MIMD architectures, although some account

of the applicability of problems to other architectures is taken.

Heterogeneous Parallelism

Most modern computer systems are now networked and can contain a vast

array of different hardware. Such a network can be thought of as a MIMD

resource with various processor types. Given fast network links, simulation

systems could be developed to make use of such networks with different

subproblems being targeted at different but yet specific hardware. Some of

the hardware on the network could be parallel resources in their own right.

CHAPTER 1. INTRODUCTION 	 16

Dynamic simulation has been targeted because it represents one of the most under

developed and computationally expensive areas in chemical engineering. Very few

commercial dynamic simulators are available, and those which are are limited in

their use. Chemical plants are also highly modular, and this modularity offers

possible areas for exploiting parallelism. If parallelism can be successfully used

to tackle the computationally difficult aspects of simulation, it should be possible

to dynamically simulate whole processes in less than real time. If this can be

done robustly, the benefits for industry would be enormous.

1.3.1 The Dynamic Simulation of Distillation

The dynamic simulation of single chemical processing units can be computation-

ally expensive in its own right. Many process units also exhibit a highly modular

structure. For this reason, there exists the possibility of exploiting parallelism

for them as well as complete processes. Examples of such modular processes are

reactor systems, heat exchange networks and distillation.

Of these, distillation is probably the most modular. Distillation is also one of

the most common pieces of equipment in use today and most computationally

demanding to simulate. The main complexity is in estimating the liquid and

vapour interactions taking place inside.

Given distillation's unique characteristics, it was decided to focus the initial at-

tempts at exploiting parallelism on distillation rather than complete processes.

By starting with a smaller problem, it was possible to get a feel for parallelism

much quicker, and with distillation being so highly connected, a feel for the lim-

itations on expansion of any software to use for whole processes.

The result of this initial research was a package called PDist (Parallel Distillation

simulator). As it turned out, this became more of a usable tool than just a

CHAPTER 1. INTRODUCTION 	 17

demonstration program. This happened primarily due to the work which went

into showing that although complex, parallel hardware could be utilised as simply

as the sequential variety.

1.3.2 Complete Plant Simulation

After the success with PDist, it was felt that rather than simulate a different

process unit in a similar manner, it would be better to tackle a larger problem.

The next level up from a process unit is a process section or complete plant. A

complete process contains a high degree of modularity. This modularity is of

a form similar to that obtained in distillation, except with a greater number of

possible connected units.

Given this specification it was decided to produce a simple prototype plant sim-

ulator. The main aim being to show that, as with distillation, a complete plant

could potentially be simulated very fast given the appropriate hardware. The

resulting package is called PNet and builds greatly on the work carried out with

PDist. Again much of the work focuses on not only the parallelism, but also the

usability of the resulting package.

1.3.3 Interaction and Usability of Parallelism

The main drawback with current packages is in the amount of time spent changing

from one package to another and manipulating information manually through

whatever operating system is being used. Also the more specific programs like

flowsheeting packages are quite user unfriendly and are not as well developed as

they could be.

The main advantage in having a comprehensive interface is that much more

CHAPTER 1. INTRODUCTION 	 18

complex programs can be used with little effort from the front end user. Most of

the complexity can be hidden in sublayers by the application programmer with

the front end user only having to provide the most essential information. Future

programs are going to be much more complex due to the nature of the problems

that will be tackled. Simply executing some of these programs will be complex.

It is unreasonable to expect an engineer to be a packages expert. Their job is to

find a way of solving a given problem. If a package is available they should be

able to run it without having to read a manual and manipulate the results using

the same tool they use for all the other packages they run.

With this in mind the development of PDist and PNet was extended to allow

user interaction along with a standard input and graphical output format. The

resulting package aims to demonstrate that it is possible to have an efficient

parallel simulator which takes a standard input, can use many different models,

can be interacted with dynamically, creates standard output and requires no other

packages to manipulate results. A large proportion of the work performed was

spent developing the interaction system and testing it on various models. The

eventual success of the packages was as much down to the usability as the benefit

obtained from parallelism.

1.4 Summary

The general concept of parallel computing has been introduced. This thesis

aims to show how parallel computing can be used for the dynamic simulation

of chemical processes. In particular distillation simulation and whole process

simulation is examined. The work also aims to show that parallelism can be used

simply and efficiently, even though the complexity of execution is much greater

than for sequential hardware.

Chapter 2

Literature Review of Parallel
Processing Research Applicable
to Chemical Engineering

This chapter contains a literature review of work performed in the field of parallel

processing which is either directly or indirectly applicable to chemical engineering.

2.1 Introduction

Compared with the total volume of work in the field, little research has been

published on the use of parallel computers for solving chemical engineering prob-

lems. Of the research papers written, the majority are concerned with exploiting

the use of vector processors such as the Cray series. Little other than speculative

work has been performed on the use of SIMD and MIMD machines. The main

body of the work published has also appeared during the course of this thesis.

Very little work had been published prior to 1988, except for that associated with

general equation solving.

The actual papers published fall into a number of categories:

19

CHAPTER 2. LITERATURE REVIEW
	

20

• General Overviews

. General Equation Solving

• Process Simulation

- Steady State Simulation(Flowsheeting)

- Dynamic Simulation

. Process Synthesis

The majority of these are not directly relevant to this thesis. However, they do

help to show the overall picture of where parallelism is being applied and where

the actual work for this thesis fits in.

2.2 General Overviews

As with every evolving technology, there are always a number of papers dedicated

to laying out the possible areas for where, and how, it can best be applied. For

chemical engineering, the number of overview papers is extremely limited. Most

have also been written around the middle of the last decade, when the Cray series

vector processors were the most generally available source of processing power.

By fax the best paper is that of McRae [2]. This is mainly concerned with

modelling but provides an overview of parallel processing and its applicability for

chemical engineering. Table 2.1 shows the application areas where he envisages

parallel processing being applied. In the table he divides these into traditional

applications and those which are emerging as a result of the availability of more

computer processing power. Few, if any, papers have been published on applying

parallelism to the bulk of the application areas tabled.

CHAPTER 2. LITERATURE REVIEW
	

21

Traditional Applications
Dynamic control of large processing facilities
Estimation of thermodynamic properties
Molecular dynamics
Non reactive polymer processing
Oil field reservoir engineering
Process modelling and flow sheet simulation
Solution of FEM/FDM models of chemically reacting flows
Solution of very large linear programming models

Emerging Applications
Biomolecular dynamics
Computational chemistry (ab initio SCF calculations)
Integrated design, analysis and process optimisation
Non heuristic methods for batch process operation
Integration, of process control and design
Robust and adaptive control
Model Building
Plant level real-time process optimisation
Large scale data assimilation for estimation and control

Table 2.1: Table of Applications for Parallelism in Chemical Engineering

For these applications, McRae states that simply parallelising existing serial al-

gorithms is the wrong course of action. He feels that a rethink of old ideas is

required and that there are three main areas where improvement must come

from: namely algorithms, architectures and modelling. The majority of the pa-

per focuses on modelling and on how the various solution methods for linear and

nonlinear equations can be tackled on specialised hardware. These are overviewed

in Section 2.3.

The most interesting thing about the paper are McRae's views on heterogeneous

computing. He outlines plans for a flowsheet modelling environment built from

• number of SUN workstations, a Warp machine (a very fast matrix multiplier),

• Cray Y-MP vector processor and a specialised high speed networking system

called NECTAR. The design aims to show how a flowsheets solution can be split

up into a number of tasks, where each task is particularly well suited to efficient

CHAPTER 2. LITERATURE REVIEW 	 22

execution on a given type of computer hardware. The idea is to reduce execution

times by distributing the tasks between the specialised hardware and use fast

communications (NECTAR) to pass the intermediate solutions between tasks.

Theoretically this should be faster than trying to solve the complete problem

on a single computer using a generic solver. The heterogeneous viewpoint is

one taken for the work in this thesis. The simulation# systems described in later

chapters have been designed around using focussed applications which run on

various hardware types and work together, through communications, to provide

the overall simulation environment.

Other than the paper by McRae, which takes into account many types of parallel

architecture, the remainder of the general overview literature is aimed specifi-

cally at vector processors. The earliest of these papers is that of Stadtherr and

Vegeais[12]. They present an overview of the various performance characteris-

tics of vector processing computers and the areas in chemical engineering where

they are seen as being applicable. The most noticeable feature of the paper is

the attention given to performance differences when code written in Fortran is

compared with that written in Assembly Language. Code written in the latter

ran as much as four time faster on some machines. This highlights one of the

problems of vector processors. The majority of programmers want to use Fortran

or C. However this leaves them at the mercy of the compiler. To obtain the

maximum performance on individual vector processors, the particular hardware

must be taken into account. This usually involves programming at an Assem-

bly Language level. McRae [2] mentions similar reservations. Later papers by

Vegeais et al [13], CEP[14]and Harrison [15] reiterate the feelings of the papers

already mentioned. The only notable difference in these papers is that the use of

multiprocessor vector machines are taken more into account.

The final paper in the overview category is by Zitney et al [16]. This outlines

what the Cray series of computers are being used for in the process industries.

CHAPTER 2. LITERATURE REVIEW 	 23

A number of large companies now appear to have at least one Cray machine.

The major usage of these is for oil reservoir simulation and running optimised

versions of existing packages such as the steady state simulators PROCESS and

ASPEN PLUS [17]. Some performance results for ASPEN PLUS are given. These

are described in Section 2.4.1. As with McRae, the paper also mentions the

importance of heterogeneous computing. Cray want their machines to be part of

the network and usable on-line rather than being detached special entities. -

Perhaps the most noticeable feature of all the overview papers is that they are

mainly interested in the most expensive computers of the age. Cray style ma-

chines cost many millions of dollars to buy and maintain. Nothing is said about

how lower scale/cost parallelism can be used by the every day engineering com-

pany to improve its efficiency.

2.3 General Equation Solving

The solution of sets of equations is at the heart of all numerical problem solving.

Over the years many numerical algorithms have been produced for solving or

estimating the solution to sets of equations. Unfortunately the majority of these

are geared specifically towards sequential computer architectures. This section

describes some of the published work on parallel equation solving. The aim is

not to provide concise overviews of actual algorithms, but to outline the general

methods which are being tailored for parallel execution and to provide pointers for

further reading. Where the theory is particularly relevant to dynamic simulation

and the work described in later chapters, more explanation is given. This is

particularly the case where linear and non-linear systems are concerned.

CHAPTER 2. LITERATURE REVIEW 	 24

2.3.1 Linear Algebraic Equations

The solution of most forms of equations results in 	need to solve a linear set

of algebraic equations. For this reason the efficient)f the linear solution step

can be critical to an overall solution methods perfo .nce.

Sets of linear equations can be represented by the r ix formula:

Ax=b 	 (2.1)

where A is the square matrix of equation coefficient 	is the vector of solutions

and b is the vector of equation right hand sides. Tb 	imerical solution of these

equations is usually carried out in one of two ways 	her using an elimination

method or an iterative method.

Elimination Methods

Elimination methods are probably the most comm' 	rhe rows and columns of

2.1 are manipulated to eliminate particular element 	the matrices. The aim is

to produce a more structured and manageable forn: 	3.1.

The best known of these methods is Gaussian Elim

ulates the matrix A into an upper triangular form L

of U, the solution vector x can be evaluated simply

times the elimination step is complicated by the :

the main diagonal or numbers which cause round'

elimination. This usually results in the need for ro

and columns (full pivoting) to be reordered so as t

element in the diagonal position.

ion. The method manip-

y starting at the bottom

)ack substitution. Some-

nce of zero elements on

:ror problems if used for

partial pivoting) or rows

a particularly desirable

CHAPTER 2. LITERATURE REVIEW 	 25

The two other popular elimination methods are Gauss-Jordan Elimination and

L.U. (Cholesky) Decomposition. Gauss-Jordan elimination is similar to Gaus-

sian Elimination except that the matrix manipulation is designed to produce the

inverse matrix of A as well as the solution. With Gauss-Jordan elimination the

solution is obtained directly. No back substitution step is required. Back substi-

tution is a highly sequential operation and not trivial to parallelise. Gauss-Jordan

is thus .potentially more parallelisable. Unfortunately, Gauss-Jordan has a. much

higher operation count than Gaussian Elimination.

L.0 Decomposition involves decomposing 2.1 to the form:

Ax=LU•x=b 	 (2.2)

where L is a lower triangular matrix and U is an upper triangular matrix. Once

decomposed, the overall solution is obtained by solving L.y = b using forward

substitution followed by solving U.x = y, using back substitution as with the

Gaussion Elimination method.

Iterative Methods

Iterative, or relaxation, methods take equation 2.1 and rearrange the structure

such that from an initial estimate of x, a series of evaluations can be performed

giving rise to a new estimate of x. This can then be repeated until the value of

x convergences to a predefined tolerance. The main difference between methods

is in the evaluation path used and the way in which the newly updated estimate

x are used.

The two most common relaxation methods are the Gauss-Jacobi and Gauss-Seidel

methods. In each of these equation 2.1 is decomposed as follows:

CHAPTER 2. LITERATURE REVIEW

A'x=(L+D+U)x=b 	 (2.3)

where L is the lower triangular matrix of A with zeros on the diagonal, D is the

diagonal part of A and U is the upper triangle of A with zeros on the diagonal.

For the Gauss-Jacobi method 2.3 is rearranged to the form:

D . x = —(L + U) x(c_]) + b 	 (2.4)

where the superscript on x refers to the iteration number on which the value was

generated. The feature of the Gauss-Jacobi method is that at each iteration only

values from the previous iteration are used.

In contrast to this, the Gauss-Seidel method uses the following rearrangement of

2.3:

(L + D) . 	= _U. 	+ b 	 (2.5)

In this case the presence of L on the left hand side causes the new values x(c) to

be incorporated in the iteration as soon as they are generated. The Gauss-Seidel

method is usually faster to converge than the Gauss-Jacobi method, but this is

not guaranteed.

Further adaptations of the Gauss-Seidel method are made by adding a relaxation

parameter w. This acts as an acceleration parameter to the method. When

w is in the range [0, 1] the method is said to be under-relaxed. When w is in

the range [1,2] the method is said to be over-relaxed and gives rise to the SOR

(Simultaneous Over-Relaxation) method. There are a wide variety of methods

CHAPTER 2. LITERATURE REVIEW 	 27

for choosing the value of w and manipulating it throughout a solution.

Parallel Solution

The bulk of the literature examines the parallelisation of the above methods. Of

these, most are highly theoretical. The algorithms presented ignore the overheads

associated with memory access, input/output, data management and interproces-

sor communication. The algorithms are thus targeted for many more processors

than can realistically be used in practice. The number of papers which actually

present implementation results is minimal.

All the algorithms presented are highly dependent on the particular hardware.

For vector processors the main aim is to reduce the number of numerical op-

erations that must be performed sequentially and to maximise the number and

size of vector operations. For MIMD style machines, the aim is to maximise the

amount of parallel computation which can be performed. For machines such as

vector multiprocessors, the aim is to find a trade off between the two. Miranker

[18], Poole and Voigt [19], and Heller [20]. provide overviews of the work on linear

systems up until the end of the 70s. For elimination methods the Gauss-Jordan

method appears to be the most suited to MIMD style architectures. This is

mainly down to the highly concurrent nature of the method. The only difficulty

is when pivoting is required. However, the operation count for implementing this

is stated as being relatively insignificant when comparing the algorithm to that for

other elimination methods. For vector processors, Gaussian elimination appears

better. Gaussian elimination requires much fewer operations than Gauss-Jordan

on a sequential computer and contains similar operations from a vectorisation

viewpoint.

For iterative methods there are much fewer algorithms. The Gauss-Jacobi method

parallelises simply on MIMD machines. However, the convergence of the method

CHAPTER 2. LITERATURE REVIEW 	 28

is slow and solution via another method is probably desirable. A variant of

the SOR method is outlined. Instead of the calculation sequence being highly

sequential, the evaluations and solution updates are performed chaotically. The

overall approach is very Gauss-Jacobi like. The main difference is that solution

estimates are used as soon as they are re-evaluated. Problems associated with

algorithm control are mentioned, but the overhead associated with implementing

the control mechanism is not.

The most noticeable omission from this early work are algorithms for solving

sparse systems. Sparseness causes real problems for vector processors. Vector

operations become inefficient as vector lengths reduce. For any conventional

solution method it is difficult to locate vectors of any length which can be usefully

operated on. From a MIMD viewpoint, relaxation methods are viewed as the most

promising. The very nature of these methods means that they effectively deal

with sparseness.

Since 1980, a number of other papers have been published which further expand

on this work. The algorithms described are extremely technical and their ex-

planation serves no real purpose for this thesis. For those interested the various

papers found are listed. For iterative methods there are the papers by Dekker [21],

Reed and Patrick [22], Baker et al [23] and Vorst [24]. For elimination methods

the number of relevant papers is much larger. These cover a much wider range of

equation structures and methods. Gaussion elimination is however particularly

popular. The papers worth examining are those by Meier [25], Dongarra and

Johnsson [26], Liu [34], Chu and George [28], O'Leary [29], Vorst [30], Bjorstad

[31], Cosnard et al [32] and Marrakchi and Robert [33].

A number of the papers listed make extensive use of the BLAS (Basic Linear Al-

gebra Subprograms), either directly or indirectly through the UNPACK package.

The BLAS routines provide basic operations such as vector update, dot product,

vector scaling, rank 1 updates, triangular solver etc. These have been optimised

CHAPTER 2. LITERATURE REVIEW 	 29

for use on various specialised hardware. In particular vector processors. Descrip-

tions of BLAS are given by Lawson et al[7], Dongarra et al[8], Croz and Mayes[9],

Mayes [11]. and Dongarra et aJ[10]. Recent developments are towards providing

similar routines for use with MIMD machines. Phillips [35] presents some work

towards achieving this aim.

Of more interest to this thesis is the work published relating to the solution of

sparse systems. The linear equations produced during the solution of steady

state and dynamic process simulation problems tend to be of this type. On

sequential machines, specialised algorithms are usually used to indirectly index

matrix entries and thus reduce the overall storage requirement for the matrices in

question. The sparse methods then work with this reduced data structure. For

vector and parallel machines this causes a number of problems. Vector processors

do not cope particularly well with vectors which are not continuous in memory.

Some modern processors have special hardware for this, but the operation is still

less efficient than a conventional vector operation. By leaving the matrices as full,

larger and. more continuous vectors can be operated on. However, a large amount

of the vector operation is wasted on zero entries. For MIMD machines, these

problems are enhanced. Parallelising the specialised sparse solvers is difficult

due to the highly sequential nature of the mechanisms used to cope with sparse

storage. If this is removed, the same problems associated with the solution of

dense systems are experienced. Additionally, with sparse systems it is more

difficult to provide each processor with an even amount of work. Particularly

when the equations are of an uneven structure.

Heath et al [36] present and review the recent developments in parallel algorithms

for sparse systems. As well as examining the numerical factorisation of the equa-

tions, algorithms for the other stages in solution are also reviewed. The overall

conclusion of the paper is not particularly hopeful. Of the papers reviewed, none

appear to have produced any results which stand out as exciting. The most

CHAPTER 2. LITERATURE REVIEW 	 30

successful results having been produced on shared memory MIMD machines.

Of the algorithms overviewed by Heath, the class known as Frontal methods

appear to have been those targeted for use with chemical engineering problems.

In particular they have been applied to the solution of steady state flowsheeting

problems on Crays, see Section 2.4.1. Frontal methods were developed as a

means of saving storage space and working around the problems associated with

the indirect addressing of vectors. The method works by keeping only a small

amount of the equation matrix in main memory at any given time. This matrix

is called the Frontal matrix. It is stored in full form, and thus vector operations

on the matrix do not suffer from indirect addressing. The solution method begins

at the top of the equation matrix and works downwards. At each row, the frontal

matrix is expanded to take into account the variable additions from the current

row. Once all of the rows which contain a particular variable have been added,

an elimination on the Frontal matrix is performed to eliminate that variable from

the frontal matrix. The deleted pivot row is stored in memory for use with back

substitution at the end to obtain the overall solution. This continues until the

complete matrix has been processed. The method is most effective when the

Frontal matrix is kept small. To facilitate this, the overall equation matrix is re-

ordered to a more amenable form. If the Frontal matrix does increase in size, its

solution on multiple processors becomes feasible. When applied to multiprocessor

machines the Frontal method becomes known as the Multi-Frontal method. More

information on Frontal methods can be found in Heath [36] and Dave and Duff

[37].

As yet no one method appears to be radically more efficient than any other.

The method implementations are highly technical and very hardware specific,

with the main efficiencies arising from clever encoding of the algorithms. Their

realistic use for major applications is only going to be through standard library

packages such as the BLAS and UNPACK.

CHAPTER 2. LITERATURE REVIEW 	 31

2.3.2 Other Equation Types

This section moves on to consider the solution of other types of equations. These

are all dealt with together. Linear systems have been treated separately, since the

main body of solution methods for the equations now described, usually require

the solution of a linear system of equations at some point. Of main concern to this

thesis is the solution of nonlinear, ordinary differential and differential algebraic

equations. These are the most directly relevant to dynamic simulation. Of less

interest here is the solution of partial differential equations. These are however

touched on because of their importance for Oil Reservoir simulation.

The numerical solution of almost all forms of differential equation systems in-

volves replacing the differential terms with discrete approximations. This pro-

duces a discretised set of equations. The method used to discretise the equations

varies from method to method. However, the resulting system of equations is

either a linear or nonlinear system. The solution of linear systems has already

been overviewed. The main body of this section is thus dedicated to the solution

of nonlinear equations.

All nonlinear equation solution methods are essentially iterative. Some of these

iterative methods, the fixed point methods, axe very similar to the Gauss-Jacobi

and Gauss-Seidel methods for linear systems. The parallelisation of these meth-

ods is thus analogous to that of their linear counterparts. The use of these has

been particularly targeted at partial differential equations, where blocks of mesh

calculations can be solved in a Gauss-Jacobi fashion. Hart and McCormick [38,

39] and Saltz and Naik [40] present parallelisation work in this area. By far the

most popular of the other nonlinear solution methods are the Newton and Quasi-

Newton methods. These methods work by taking a linear approximation of the

functions at an estimate of the root. This approximation is then used to produce

a new estimate which is hopefully more accurate. This linear approximation is

CHAPTER 2. LITERATURE REVIEW 	 32

taken as the tangent to each equation at the root estimate. The linear approx-

imation thus contains an estimate of the first derivative of each function. The

general update formula for Newton's method is shown below. In the equation z is

the vector of dependent variables, J is the Jacobian matrix and I is the vector of

function values evaluated at z. The superscript describes the iteration to which

the values refer.

= z(c-1) - 	. 	 (2.6)

The main feature of the method is that to obtain the new estimate of the root,

the linear system J . (Z(C) - z(k_1)) = — f must be solved at each iteration. This

linear solution phase presents a problem for parallelism as previously discussed.

However, as well as the linear solution phase, the calculation of the Jacobian

J and the function values f are also required. These can be calculated eas-

ily in parallel and it is this which the majority of published work has focussed

on. Quasi-Newton methods work in a similar manner, except that the Jacobian

is regularly estimated from historic iteration data rather than being rigorously

calculated. The advantage is reduced calculation load. The disadvantages are

reduced convergence speed and reduced parallelisability.

In many chemical engineering problems, the calculation of the Jacobian and func-

tion value matrices can be the most computationally expensive part of the over-

all solution. This is particularly the case for process simulation, where some of

the function evaluations require complex physical property calculations. Of the

published work, most describe an algorithm for partitioning the function and

Jacobian evaluations between processors. The papers by McRae [2], Juarez and

Pantelides [41,42] and Ponton et al [43] present a good overview of the problem.

In the last two of these, actual implementation results are published. In both

the overall time spent in performing function and Jacobian evaluations was sig-

CHAPTER 2. LITERATURE REVIEW 	 •33

nificantly reduced. However, the examples used were not particularly complex

and the linear solution step was found to dominate the overall solution. Pon-

ton et al. [43] attempted to avoid this problem by parallelising the linear solver.

However, communication overheads were found to be significant and little overall

benefit was obtained. The best results were obtained when a full sparse solver

was used for the linear solution phase. Although these results do not look par-

ticularly promising, for larger and more complex systems the efficiency is likely

to be greatly improved.

Overall, the efficient solution of nonlinear and differential systems on parallel

computers is extremely difficult. This is primarily due to the requirement for the

solution of a linear sub system and the difficulties associated with distributing the

calculation load evenly between processors. In this area there is still a lot of work

to be done. For many problems this difficulty can be avoided by geometrically

splitting the overall problem into a number of subproblems, each of which can be

solved on separate processors using efficient and well tested sequential algorithms.

The majority of the published work on parallelism and chemical engineering uses

this partitioning approach.

2.4 Process Simulation

The simulation of chemical processes comes in two forms: steady state (flow-

sheeting) and dynamic. In either case, the most common solution methods are

categorised as being either "equations based" or "modular based". Equation

based methods take the set of equations which model the process and solve them

as a single set. Modular based methods split the overall process into blocks based

on process topology and solve each block separately. On sequential machines, the

blocks are usually solved in the order they appear in the real process, with the

newly calculated output from one block being used as the input to the next.

CHAPTER 2. LITERATURE REVIEW
	

34

nce is repeated until the overall

known as the "sequential mod-

iich has been published on the

thods. For the moment the de-

are not greatly elaborated on.

ieir applicability for parallelism

When recycles are present this calculation sec

process has converged. In this form the metho

ular" method. This section reviews the work

parallelisation of process simulation via these

tails of equation based and modular based met

A detailed description of the methodologies an

is deferred until Chapter 3.

2.4.1 Steady State Simulation(owsheeting)

Flowsheeting requires the solution of sets of D1 	aear equations. The structural

nature of chemical processes results in these eq 	ons being predominantly block

diagonal with a number of off-diagonal eleme 	rhe off-diagonal elements rep-

resent the variables shared by the equations o 	ferent process units which are

connected. The equations are also sparse.

For equation based methods, the only option if 	ise a parallel nonlinear solver.

The various ways of achieving this have alread: 	m discussed. In the literature,

the main focus of attention has been toward. 	e parallelisation of the linear

solution phase. For the most part the overh 	associated with the Jacobian

and function evaluations has been ignored. 	contrasts with the work on

modular methods, where for the most part t 	terature is concerned mainly

with distributing the function and Jacobian ev 	tions.

For the linear solution phase, the most signifi

Zitney and Stadtherr [44,45]. All of the work

ods to enhance solution times on the Cray ser.

section 2.3.1, Frontal methods were designed t

problems associated with vector processors an

age. The papers examine the performance of

work has been performed by

been on using Frontal meth-

I computers. As described in

event the indirect addressing

save on overall memory us-

%I solvers against the general

CHAPTER 2. LITERATURE REVIEW 	 35

sparse solver LU1SOL used for an experimental equation based simulator called

SEQUEL-II. For the actual nonlinear equations, the thermodynamic properties

were estimated using Peng-Robinson and a Quasi-Newton method was used to

solve the system. Peng-Robinson is not particularly complex to compute. For the

examples run, this meant that the linear solution phase contributed a significant

part to the overall computational load. The results show that the highly opti-

mised frontal solvers at best out performed LU1SOL by a factor of 10. The overall

result is encouraging. However, little is mentioned about the amount of optimisa-

tion which has gone into the LU1SOL solver. The frontal solvers developed have

parts written in assembly language. This alone can enhance performance greatly

on vector processors. The modelling approach used is also designed to minimise

somewhat the overhead associated with physical property and Jacobian/function

evaluations. Complex physical property evaluation is usually highly iterative and

vector lengths are greatly dependent on the number of components. The vectori-

sation of these is thus difficult when component numbers are small. The really

time consuming fiowsheets to solve are usually those which are highly non ideal.

In such cases the physical property calculations are likely to overwhelm the linear

solution phase quite significantly.

Other work related to this general area of optimising the linear solution phase for

fiowsheets are presented by Coon and Stadtherr [46], Wait and Landauro [47] and

O'Neill et al[48]. The latter two of these focus particularly on distillation and the

banded linear systems produced by the Napthali and Sandholm [49] approach to

simulation. No implementation results are shown for these.

Of the equation based method papers, the only one to really target the overall

solution from both a linear and Jacobi an /function evaluation viewpoint is McRae

[2]. He outlines plans for what is essentially a heterogeneous parallel nonlinear

equation solver. The various parts of the solution are split between different hard-

ware platforms: the linear solution phase is carried out using a Systolic Array

CHAPTER 2. LITERATURE REVIEW 	 36

(Warp) machine with the Jacobian, function and physical property evaluations

being performed on a parallel processor. An extremely fast communications sys-

tem is then used to pass the various solution parameters between machines. In

the paper, the machine is only hypothetical. However, since then McRae [50] has

presented results from the use of such a machine for the atmospheric modelling

of pollution effects around Los Angeles. The overall approach is an extremely

interesting one. However, very few companies could warrant the purchase the

connection mechanism, never mind the complete machine.

The remainder of the literature on flowsheeting is concerned with modular meth-

ods. Again Zitney [51,52] has performed a large proportion of the work related

to their adaptation for vector multiprocessors. The earliest work was not really

targeted at optimising the overall simulator, but at parts of it, in particular the

solution of the complex distillation modules. Again frontal methods are used.

This time the Harwell MA28 sparse linear solver used in ASPEN PLUS is re-

placed. As before, overall speedups of around 10 were achieved. For the actual

linear solution phase, speedups as great as 80 were obtained for some problems.

This suggests that the function and Jacobian evaluations were dominant during

the overall solution phase. Harrison [53] also presents implementation results of

a simulator FLOWTRAN [54] on similar hardware. No actual optimisation is

carried out in this case however.

The other main contribution to the literature on sequential modular flowsheeting

is by Best [55,56]. In this case the hardware targeted is of the MIMD variety, in

particular a transputer based, distributed memory machine. The papers examine

the adaptation of a two-tier solution method for flowsheeting developed by Johns

and Vadhwana [57]. This two-tier method uses parametric approximations of the

complex physical properties to speed up the overall rate at which the flowsheet

can be solved. Every so many iterations, the parameters used for the approxi-

mations are rigorously updated. The approach taken by Best is to distribute the

CHAPTER 2. LITERATURE REVIEW 	 37

overall process units among the processors available and have them calculate in

a sequential modular fashion. This is a highly sequential operation and for the

majority of the time only one processor is actually actively solving a particular

unit. The rest are idle. Best uses this idle time to update the parameters used by

the simple models. A series of actual timings results are presented. From these

it is difficult to draw any real conclusions, especially since 10% greater speedup

than that theoretically possible was obtained for some of the simulation runs.

This was put down to hardware fluctuations between runs, but given that only

four processors were used it would not have been hard to produce a series of

averages. Again results look promising, but a much more rigorous analysis of the

method is required.

The remaining publication looks at a hybrid of the equation based and sequential

modular methods. The "simultaneous modular" approach takes the flowsheet

and splits it into sections based on process topology. Instead of solving these in

a sequential manner, a set of nonlinear equations is produced which describe the

connections of these blocks. These connection equations are then solved using a

standard nonlinear solver. The partitioned process blocks are used to evaluate

the connection functions and to produce the connection equations Jacobian. This

Jacobian is usually calculated by perturbation of the inputs to the process block

and analysis of the resulting changes in the outputs. The overall methodology is

again, close to that of the distributed function and Jacobian solution method for

nonlinear systems. Unlike with straight forward nonlinear solution, the equation

system being solved is much smaller. The linear solution phase is thus much less

of a performance bottleneck. Chimowitz and Bielinis [58] explore the use of this

approach. Unfortunately no actual implementation results are presented.

CHAPTER 2. LITERATURE REVIEW 	 38

2.4.2 Dynamic Simulation

The dynamic simulation of chemical processes requires the solution of sets of

differential and algebraic equations, DAEs. For equation based methods, the

DAEs can be solved in two ways: either using a single DAE solver or by solving

the differential and algebraic parts separately. Either way, the solution of a set of

nonlinear equations is eventually required. All of the parallel nonlinear solution

methods described previously are applicable here. Modular methods tackle the

overall problem in a different way. The main problem found when trying to

modularise the solution of flowsheets was in partitioning the overall equations

into blocks which were not sequentially dependent on each other. The main

reason for this is that at the start of a flowsheet calculation a good estimate of

the overall solution is not known. With dynamic simulation this is not the case.

Dynamic simulations progress in discrete time steps. Over a given time step the

actual changes in the connection variables between process blocks is relatively

small. The starting point for a given time step thus provides an excellent estimate

of the solution. Modular methods take advantage of this feature by separating

the process into decoupled blocks. Each block can then be solved to estimate the

output for the next time step either explicitly using the current input or implicitly

by using an estimate of the input at the next time step calculated from historical

data. In the later case, all the blocks usually repeat this step until a converged

state is reached. This iterative process is normally performed in a sequential

modular manner to reduce the amount of connection estimation required. It is

however possible to completely parallelise this approach. A detailed analysis of

modular methods and their parallelisability is given in the next chapter.

Little work has been published on parallel dynamic process simulation. A recent

survey by Moe and Hertzberg [59] confirms this. Of that published, most is con-

cerned with the simulation of distillation. No literature was found on parallel

implementations of complete process simulators. The most significant work on

CHAPTER 2. LITERATURE REVIEW 	 39

equation based methods has been carried out by Skjellum [60], Skjellum et al

[61] and Secchi et al [62,63]. In the earliest work by Skjellum [60], a parallelised

version of the DAE solver DASSL, [64] was used to simulate 7 connected dis-

tillation columns. For the Jacobian and function evaluation stage the speedup

obtained was around 100 for 128 processors. However, the linear solution step

was found to be the main bottleneck and the overall speedup obtained was around

5 when compared to an efficient sequential algorithm. The later work by Skjel-

lum et al[61]and Secchi et al [62,63] considers the use of Waveform Relaxation

to solve similar problems. Waveform Relaxation is analogous to the relaxation

methods used for linear systems. In this case subsystems of equations are iter-

ated upon rather than individual variables. The results from this work has been

more encouraging that that obtained with parallel DASSL. For the larger column

examples run, speedups as high as 60 were obtained over the best sequential al-

gorithm. The problems used here were relatively simple from a thermodynamic

viewpoint. It is likely that greater efficiency would be obtained if more complex

models were used. This may however not prove to be the case. The work in

this thesis has shown that for more complex models, the even loading of proces-

sors becomes more difficult to achieve, especially when large dynamic changes are

only occurring in certain parts of the process. Other related work in this area has

been performed by Lin and McGreavy[65]. Again a distributed Jacobian/function

evaluation approach has been used. This time however, actual implementation

has only been simulated using the multitasking features of the ADA language.

For modular methods there is a similar lack of literature. The earliest work is

that of Ponton et al [66]. A number of Acorn BBC computers were connected via

a LAN (Local Area Network) to produce what could be regarded as a distributed

memory MIMD machine. This was used to simulate a series of simple processes

including an LPG cargo plant and a four bed pressure swing absorption unit. The

overall result was not not that the simulations were particularly fast, but that the

approach was possible. For the hardware used, communication times were highly

CHAPTER 2. LITERATURE REVIEW 	 40

significant and no great speedup could have been expected. Of the literature

reviewed, this is the only one to contain work on actual parallel modular process

simulation, where different unit types are involve.

The remainder of the modular literature is again concerned with distillation.

Cera [67] describes the parallelisation of the distillation algorithm from a dynamic

simulator called DYFLO. The models used are simple and the integration method

an explicit one. The best result obtained was a speedup of around 8 using 14

processors. The machine used was a BBN Butterfly which is a shared memory

machine. Watanabe [68] presents similar work but at a much smaller scale. The

rest of the published work on parallel modular process simulation methods has

been by this author and associated co-workers [69], [70], [43,71], [72]. The work

goes much farther than that published by other authors, both from a complexity

and usability viewpoint. This thesis is designed to fill a large gap in the literature

concerning parallel modular process simulation. The resulting modular simulator,

PNet, is thought to be the first of its kind. No literature on process simulators

of this type was found by this author or by Moe and Hertzberg [59] who have

published a recent survey of the field.

2.5 Process Synthesis

Process synthesis is the automatic generation of one or more chemical processes

based on an initial design specification. The task is an exceptionally complex one.

For any given design problem, there are usually many different ways of solving

it. Some of these will be attractive from one perspective but not from another:

e.g. cheap but dangerous. The overall problem is thus one of finding alternatives

and examining the viability of each. For each of these alternatives, some may be

invalid for obvious reasons and discarded at an early stage. For those alternatives

left, a process design study must be carried out. This design study itself may

CHAPTER 2. LITERATURE REVIEW 	 41

result in whole series of other alternatives being examined. This method of locat-

ing and evaluating alternatives is extremely computationally demanding. Given

that the rules of search and evaluation are optimised, there is no obvious way in

which the computational requirement can be reduced. The only real solution to

enhancing performance is thus to use parallelism. The nature of the synthesis

methodology is highly modular. Many design evaluations can conceptually be

carried out at the same time.

The main publications in this area are by Fraga et al [73] and Fraga and McK-

innon [74], [75], [76], [77]. A parallel(MIMD) synthesis package called CHiPs

has been produced for generating costed distillation column sequences given an

initial input stream specification. The package designs columns via a comprehen-

sive unit model interface. This allows many different models to be used, ranging

from simple ideal models to highly complex azeotropic models. The other main

feature of CHiPs in its ability to automatically consider heat integration during

synthesis. The parallel methodology used is a master/slave approach, where de-

sign calculations are distributed amongst the available slave processors. To help

avoid bottleneck problems with the master, some of the search algorithm is par-

allelised as well. ChiPs has been run on a number of architecture types ranging

from transputer and i860 based Meiko Computing Surfaces to networks of SUN

workstations. Significant speedups over efficient sequential algorithms have been

obtained on all of these platforms using simple thermodynamic property esti-

mation. Work is now underway on using complex thermodynamic estimation to

allow the synthesis of separation systems which contain azeotropic components.

For these more complex synthesis problems the amount of design required is en-

hanced and results should continue to improve. The only real problem with using

extra processors is in finding enough for them to do. All problems have an upper

limit of processors which can usefully be utilised.

The only other parallel work on synthesis found has been by Zitney et al[78].

CHAPTER 2. LITERATURE REVIEW
	

42

Again Cray computers are the main target for this work. The paper describes the

authors views on the provision of a computer-integrated environment for process

operations. This takes into account steady state and dynamic simulation, expert

systems etc. There are no actual implementation results. The paper is mentioned

here purely for interest.

2.6 Summary

The literature on parallel processing for chemical engineering is extremely limited.

Of that published, most is hypothetical and has never been implemented on real

hardware. It is also noticeable, that for all of the topic areas except equation

solving, the literature that exists is being published by a small and select group.

The overall field is thus very open. This thesis aims to fill a large gap in the

dynamic simulation area for MIMD machines.

Chapter 3

Dynamic Process Simulation:
Theory, Parallelism and
Application to Dynamic
Distillation Simulation

The dynamic simulation of chemical processes is computationally expensive. It

is therefore not surprising that very few dynamic simulators have models which

contain adequate complexity to be truly useful. Coupled with this, the nature

of the equation systems which model the processes make their solution non-

trivial. Until recently, vector supercomputers offered the main alternative to

using standard sequential hardware to solve models. However, the advent of low

cost/high performance MIMD machines has opened a new source for obtaining

the raw processing power required. The problem remaining is how can MIMD

machines be exploited for the types of problem we wish to solve.

This chapter introduces the theory behind dynamic process simulation and ex-

amines the possibility of using MIMD parallel computers to obtain improved

performance. Descriptions of the implementations of this theory are given in

Chapters 4 and 5. Of the methods described, a number are highlighted as suit-

able for parallel execution. The chapter ends with a description of the initial

43

CHAPTER 3. DYNAMIC PROCESS SIMULATION
	

MI-1 I

work carried out on the parallel simulation of distillation columns using one of

these methods and of the models developed.

3.1 Dynamic Simulation: Theory and Paral-
lelism

The dynamic simulation of a chemical process requires the solution of a number

of differential and algebraic equations (DAEs). These DAEs have a number of

characteristics:

• "stiffness"

A stiff system of equations occurs when there are two or more very different

time scales of the independent variable on which the dependent variables

are changing. When explicit integration techniques are applied to approx-

imate the solution, stability concerns force the integration time step to

become small even when a very much larger one could be used from an ac-

curacy point of view. The term stiff systems comes from their application

in analysing the motion of spring and mass systems having large spring

constants [79].

The solution to stiffness is to use implicit integration methods. Unfortu-

nately these tend to be iterative and more computationally demanding.

• Highly Nonlinear

This is especially true when complex physical property, kinetic and hy -

draulic relationships are used.

• Sparse

The equations representing each unit share very few variables with those of

other units. The equations representing single units can also be sparse, as

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 45

in a distillation column. The resulting system of equations is usually over

95 % sparse and requires the use of efficient algorithms which take into

account this sparsity. Sparsity is also a major problem when it comes to

parallelisation, see Chapter 2.

• Discontinuities

During dynamic simulation, a situation often arises where the original equa-

tions describing the system are no longer valid. Locating and handling these

can be extremely difficult.

A set of DAEs can be defined by:

f(,z,v,t) = 0
	

(3.1)

where f is the vector of all equations, z and i are the vector of variables and time

derivatives respectively, v is the vector of external inputs and t is time.

The equations making up 3.1 can also be represented by a set of equation vectors,

f, which represent the block of equations strictly applying to a particular unit i

in the overall chemical process. For a unit i of rn, there is a vector of associated

functions f, where

f(1,z2,u1,v,t) = 0 	 (3.2)

such that 3.1 becomes

f(,z,v,t) 	{f1 ,f2 fm} = 0 	 (3.3)

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 46

zi are the state variables of unit i, v, are the subset of inputs v which apply to

unit i and ui are the input variables from other blocks f : j = [1, m], j i. ui is

essentially a subset of z.

There are a number of different approaches used to solve such systems. These are

usually categorised as either being "equation" or "modular" based. Overviews of

the various approaches are given by Hillestad and Hertzberg[80]. The terminology

comes from methods used initially for solving the large nonlinear systems associ-

ated with flowsheeting. Shacham et ad [81] provide an overview of the methods

and terminology used by flowsheeting systems.

3.1.1 Equation-Based Methods

Equation-based solution methods treat the equations as a whole and solve them

using a single solver. The most common method of solution involves using a

difference approximation to the differential terms and solving the resulting set of

nonlinear equations over a single global time step.

The main disadvantage of using the equation based approach is the requirement

to discretise all the equations at the same point. This results in the stepsize

for all equations being dependent on the fastest moving variables in the system.

Stiffness is avoided by using implicit integration algorithms or so called "multi

rate" methods. For multi rate methods the equations are split into slow and fast

moving subsystems which can be solved separately using different integration

methods.

From a parallel processing viewpoint, the main problem is in solving the set of

nonlinear equations produced by whichever integration algorithm is employed.

After discretisation we are left with the following:

	

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 47

f(z,z ° ,v)=O 	 (3.4)

where z° are the known state variables at time t.

These. nonlinear equations can be solved in a variety of ways. The most common

methods are Newton or Quasi-Newton methods. Newton's method for nonlinear

systems uses the update formula shown below.

= 	- J(z('1))1 . f(z(c_)) 	 (3.5)

Here z is the vector of dependent variables, J is the Jacobian matrix and f is the

vector of function values evaluated at z. The superscript describes the iteration

to which the values refer.

The general algorithm for a system of ri equations involves evaluating the n func-

tion values f and the Jacobian J which usually requires ii2 function evaluations.

Once evaluated the linear system shown below is solved for (Z(C) - z(c_1)) and z(c)

is updated. This is repeated until (Z(C) - z(')) is less than a specified tolerance.

	

J . (z(') - z(k_ 1)) = _ f(z(c_I)) 	 (3.6)

Overall the function and Jacobian values require n2 + ii function evaluations per

iteration. Quasi-Newton methods avoid this overhead by estimating some of the

Jacobian calculations rather than fully evaluating them. Usually these methods

can reduce the number of function evaluations to n.

Newton's method works well, especially when a good estimate of the solution

is available. In such circumstances the convergence is quadratic. Quasi-Newton

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 48

methods also display good convergence, but less so than straight forward Newton.

The convergence of Quasi-Newton methods is usually referred to as super linear.

In both methods the effort required for the linear solution phase per iteration

is the same. It is usually advantageous to accept slower convergence, given the

reduction in overall function evaluations required.

In terms of parallelising such methods, two realistic options are available. These

are:

Distribute f and J calculations and solve the linear system locally.

Distribute f and J calculations and parallelise the linear solver.

Fraga et al[43]have tried these different approaches for Newton's method. Method

1 where the function and Jacobian calculation alone is partitioned produces a

speedup with added processors. This speedup however, decays more rapidly

than expected. The reason is that the function and Jacobian processors are

idle during the linear solution phase. This is an example of Amdahls Law [82],

where a sequential portion of the solution limits the possible speedup. In method

2, where the linear solution phase is parallelised, communication delays due to

implementing the solver were also found to limit speedup. Inpractice the best

results were produced using method 1 with a full sparse linear solver.

The parallel Newton approach obviously suffers from the requirement for the

repeated solution of the linear system. It is going to be most successful when f

and J evaluations are expensive and dominate the overall calculations. This is

likely to be the case in chemical processing where physical property evaluation is

usually the dominant calculation. The amount of calculation can be reduced using

Quasi-Newton style methods, but this only reduces the amount of distributed

evaluations and does not affect the linear solution phase.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 49

The other main difficulty is in distributing the calculations. The equations being

solved are very patchy and require differing amounts of computation. Assigning

blocks to processors so as to assure load balancing and stability is not simple.

Other approaches to solving sets of non-linear equations are "fixed-point" meth-

ods. • These involve rearranging the equations being solved to express each one

in terms of its respective variables. Then, starting at one end and working to-

wards the other, each variable is calculated sequentially. Depending on whether

old or newly evaluated variables are used, the methods are analogous to the

Gauss-Jacobi and Gauss-Seidel methods for linear systems respectively.

Paraflelising such methods is simple in the Gauss-Jacobi case. Unfortunately the

sequential nature of the Gauss-Seidel approach offers less possibilities. The main

advantage of fixed point methods is that they effectively deal with sparseness.

The main difficulty is in rearranging the equations into the form required. This

is especially difficult when subsystems of equations are highly dependent on one

another as in vapour/liquid equilibrium systems. Convergence is also slower than

Newton's method and not guaranteed. At first glance fixed point methods do not

look very promising, however as shall be explained in the next section, a similar

approach can be used at a much coarser level.

Overall equation-based methods should be parallelisable. However, the aims of

the project are to provide robustness as well as speed. Using a single method

to solve a complete process is always going to be problematic, since a general

method is being applied to a collection of equation blocks which each have differ-

ent characteristics defined by the unit they represent. It is also difficult to cope

with discontinuities, especially in a parallel environment.

Finally, a full solver does not easily allow the inclusion of existing simulation

code. A lot of modelling code already exists, in particular reactor, distillation,

flash and kinetic models. Most will have been solved using an integration method

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 50

specifically designed for the local problem. It would be a undesirable to throw

away such past work. The solution to using this code lies in modular integration

methods. The next section explains what they are and how they provide the

functionality and robustness we are looking for.

3.1.2 Modular Based Methods

Modular based methods take the set of equations represented by equation 3.1

and divide them up into sub blocks based on process topology. For each of these

sub blocks the equations can be solved to provide a set of outputs given a set of

inputs.

To solve the complete system there are two possible modular approaches. These

are:

simultaneous modular

The sub blocks connections are all integrated by a single integration routine.

The sub block models are used to provide derivatives for the solver. This

is usually done by perturbation of the input variables.

sequential/uncoupled/independent modular

Sub blocks are treated as individual simulators with their own integration

routines. Input variables are controlled in a variety of ways depending

on the connection strategy employed. Similarly the name depends on the

connection strategy used. Each sub block is integrated over a common

time horizon. Each block is able to use whichever method and integration

time step it requires within this time period. Intermediate input values are

usually provided by interpolation polynomials.

Method 1 is similar to the parallel Newton's method where the function and Ja-

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 51

cobian evaluations are distributed. This time the system being solved is smaller,

since only the connection equations are being solved. However a parallel method

would still suffer similar problems. This method is essentially a half way house

between equation-based and full modular methods.

Method 2 is much more promising. The key is to be able to suitably decompose

the problem to allow all of the blocks to be independent of each other over a

given time horizon.

Using the vector notation from before, at each unit i, new values for the output

and state variables are being evaluated from the current state variables and the

newly updated input variables. Hence

zi = f(z, z, u, v) 	 (3.7)

For a process with no recycles as shown in figure 3.1, u 1 is not affected by any

future evaluations of z. In this case the process may be solved in a single pass

by starting at block A and working sequentially through blocks B,C and D.

Usually there are quite a few recycles in a given process and this no longer holds.

Figure 3.2 shows such a process. Here there is no sequential path of calculation

which avoids using an input stream which is unaffected by this and future block

evaluations. In such cases, the unknown inputs have to be estimated and multiple

iterations performed. After each pass the recycle streams are updated and this

continues until convergence is obtained. The method now involves iterating on

a number of unknown streams. These are called "tear" streams and are key to

the modular solution methodology. Usually the updated tear stream values are

calculated using an extrapolation algorithm. The method described here is the

classical sequential modular approach.

Although this approach suits serialism, it does not map well to parallelism. By

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 52

Block 	t 	I Block 	I 	I Block C I 	I Block

Figure 3.1: Modular Approach without Recycle

Figure 3.2: Modular Approach with Recycle

tearing only a few streams, there is too much inter unit dependency, and hence

blocks cannot usefully run concurrently.

The solution is to tear all of the streams connecting the sub blocks together. In

order to allow each block to operate concurrently the tear stream values over

the time horizon(TH), [t,t + TH] must be estimated. This can be performed

using a suitable extrapolation method. All of the sub blocks can now be run in

parallel. Once complete the estimated tear variables can be compared with those

calculated. Depending on the error another estimate of the tear variables can be

performed followed by another iteration, or the time horizon can be reduced for

the next integration.

This approach is fax from new. Liu and Brosilow [83,84] and Hillestad and

Hertzberg, [80] have described a number of tearing algorithms. The main dif-

ference in the algorithms being in the way tear streams are estimated. In all the

modular algorithms there are essentially two ways of dealing with inaccurate tear

stream estimation. These are to either reduce the time horizon used for the next

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 53

integration or to reiterate on the current one.

The general algorithm is now described. In the following description ut is the

vector of known tear stream inputs at time t, uTI1 is the vector of known tear

stream inputs at time t + TH and u4.TJ1(t) is the vector of estimated tear stream

variables at time t + TH calculated by extrapolation from known values up to

time t.

For each unit in the system, execute the following concurrently:

Predict the tear streams at time t + TH, ut+TF(t), by extrapolation.

Solve the local problem f, (i,' z, uTl(t), v,) = 0, using the local integra-

tion method. Use an interpolation formula to obtain input values for times

between t and t + TH.

Equate the output streams of the unit to the respective inputs of the con-

nected units.

Calculate the relative error, €, between the calculated and estimated tear

variables.

= 	- uTt(t) 	 (3.8)

Analyse the error. If unacceptable there are two options: Either reduce the

time horizon and continue, or re-estimate the tear streams and return to

step 2.

In the latter case the new tear stream estimate can simply be set equal to the

latest calculated value. This is essentially direct substitution and leads to a

solution method analogous to the Gauss-Jacobi method for linear systems.

This is also referred to as Waveform Relaxation by Skjellum [61] and Secchi

et al [62,63].

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 54

Set t to be t + TH and update old and new variables.

If not finished go to step 1.

The Jacobi approach is guaranteed to converge if all the sub units converge.

Similarly Liu and Brosilow [83] state that the algorithm will converge for any

problem which can be shown to have a stable unique solution.

3.1.3 Comparison of Methods

Overall, modular methods appear to provide more of the desired attributes for

parallelism than equation based methods. The following looks at the various

requirements and compares the equation based and modular approaches in each

one.

• Robustness

Equation based solution is as robust as the solver. Given a good solver,

there still remains the problem of discontinuity handling and the require-

ment to tackle all unit problems in the same manner. Also, including other

modelling approaches to given blocks is not possible. Finally equation-based

systems have fallen behind on robustness issues in the past. Equation based

methods were advantageous mainly from the viewpoint of design and opti-

misation calculations in flowsheeting. At the dynamic simulation stage the

process will already be specified and hence the main advantage given by

equation based methods is not required.

By modularising the problem, each simulator can be assigned a suitable

algorithm geared to the local problems characteristics. This will also allow

the inclusion of very complex models such as Computational Fluid Dynamic

(CFD) models, cellular automata models and the like. Some of these may

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 55

also be parallel in their own right under a modular approach. Some of these

blocks may also use equation based methods to solve the local problem.

This flexibility should enhance robustness to an approach already known

for its robust characteristics.

• Efficiency

By allowing different integration methods and different local integration

steps across models, each sub block can be optimised. This is not possible

in equation based systems where all equations are discretised at the same

point. In such an environment the modular approach should be more ef-

ficient when compared using the same integration method. Hillestad and

Hertzberg [80] present results to this effect.

Ease of modelling and reusability of code

The very nature of modular methods allows for the simple inclusion of

existing simulation code. Similarly providing new models is also simplified.

Utilities such as simulation interaction tools can be greatly simplified, since

each tool can be tailored for specific unit types and can link directly to

the local model rather than the whole system. This applies to simulation

output utilities as well.

• Parallelism

The modular approach maps as well to parallelism as the equation based

approach. Both methods require some form of global management process

which will always produce some sequential part to the overall solution and

hence non optimal speedup.

For the modular approach most of the work can be distributed. The only

management required is time horizon and convergence control. Equation

based methods require similar management features, but are also likely

to require a local linear system to be repeatedly solved. Overall modular

methods appear slightly better.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 56

From the above it would appear that a modular approach to simulation provides

us with more of the features we require for parallel processing than equation-based

methods.

Many researchers are currently looking into the various ways of solving large sets

of equations on parallel machines. Conversely for the parallel modular approach

there has been very little research. This is especially the case with regards to

using very complex models and making these simulators interactive and user

friendly enough to be usable by the industrial community.

For these reasons, the modular approach has been used for all of the work pre-

sented in this thesis. It would be a brave thing to say that the modular approach

is definitely the one to use. The arguments for and against have been going for

many years and are likely to do so for the foreseeable future. From the viewpoint

of this thesis, equation based methods are not being disregarded, they are merely

being left to the mathematicians.

The remainder of this chapter describes how the modular approach can be applied

to dynamic distillation simulation. The majority of the theory presented is also

applicable to complete plant simulation. The actual implementation of the theory

for distillation is described in Chapter 4 and for complete plants in Chapter 5.

3.2 Parallel Dynamic Simulation of Distillation

Chemical processes can easily be broken down into sub blocks by breaking the

overall process structure around individual processing units. This leaves us with

the problem of simulating these individual unit blocks. Unfortunately some of

these unit blocks are themselves computationally expensive to solve, and ideally

should be parallelised in their own right.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 57

As with complete processes some sub blocks contain a high degree of modular-

ity at a more conceptual level. Examples include distillation columns, reaction

systems and heat exchange networks. It should be possible to apply the same

modular approaches as we intend to use for complete processes onto these units.

Based on this theory, it was decided to initially focus on the use of parallelism for

the dynamic simulation of a single process unit. The process unit selected was the

distillation column. This section deals with the theory of the distillation column

and how it can be simulated using the modular approach already described.

3.2.1 Distillation

The distillation column was selected as a suitable starting point for exploring the

modular approach to dynamic simulation for the following reasons:

It is a major piece of equipment.

The distillation column is one of the most common pieces of equipment

used in chemical processing.

• It is conceptually modular.

The distillation column can be viewed as a number of vapour/liquid equilib-

rium stages connected together. The arrangement of the stages is analogous

to a chemical process with high interconnectivity between process units.

• Complex to simulate.

The equations which represent distillation systems display all of the char-

acteristics displayed by complete chemical process systems. They are stiff,

highly nonlinear, are a set of DAEs and contain discontinuities.

• Difficult to visualise intuitively

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 58

It is very difficult to tell where components accumulate and move during

the operation of a real column by simply analysing outlet streams and

temperatures. Simulation, especially with good visualisation can provide

this information. The ability to visualise this sort of information was key

to performing successfully the industrial case studies examined here.

The characteristics of distillation 'made it an ideal starting point for research.

Many of the features envisaged for full process simulation could be built into the

initial test package: highly complex models, programmability and visualisation

and interaction mechanisms. Starting on a smaller scale also offered an ideal en-

vironment for gaining experience with parallel programming, which at the start

of this project was extremely difficult because of new hardware systems and the

unreliability of early communications software. As it turned out starting small

was for the best. Only after many releases of software and a complete language

change was the eventual simulation package, called PDist, produced. The im-

plementation and development history of this package is described in the next

chapter. The remainder of this section deals with the modularisation approach

used.

3.2.2 Modularising Distillation for Parallelism

The distillation column can be viewed as a number of single vapour/liquid equi-

librium stages which pass information, in the form of liquid and vapour, to and

from their nearest neighbours. Figure 3.3 below shows a conceptual stage.

Although the figure represents a tray process, a packed stage section can be

viewed in much the same way, the main difference being the way liquid and

vapour are being contacted. Each stage is affected not only by local conditions,

but by the stages it is directly connected to. In the following description, the

variables associated with the liquid stream will be labeled by the vector x, and

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 59

Liquid from tray above

Tray n+1

\, \
-. - - 	'P g 	 • 	

. 	.• 	 I'.

Tray n
	T_SiI

Vapour from tray below

Tray n—i

Figure 3.3: Single Distillation Vapour/Liquid Equilibrium Stage

those associated with the vapour by the vector y. Added to this will be a subscript

describing the stage of the column to which the vector refers to. Function vectors

are similarly labeled except a subscript is added describing the vector type on a

given stage. e.g. fij refers to a vector of functions of type j on stage i.

Using this notation a typical stage can be expressed by a number of functions of

its local and neighbour variables.

f,1(*, xi, x+1,y1,y1_1) = 0 	 (3.9)

f,2 (x,y) = 0 	 (3.10)

f,1 refers to the mass and heat balance equations across the stage, f 2 , 2 refers to

the equations used to define liquid and vapour interaction.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 60

The complete set of equations can be represented by:

F(X,X,Y) = 0 	 (3.11)

The equations are predominantly block diagonal, except in the case where offtaices

are reintroduced into the column. This makes the system highly sparse. The

larger the number of trays the sparser the system.

The equations represented by equation 3.9 can be integrated by replacing the

kj derivatives with finite difference approximations. Depending on the form of

the integration formula different effects are obtained. There are essentially two

possible forms: explicit and implicit.

EI

EI 1

mo Y2

Yi
L X1

Y4 A

I'll
Y4 	$x n

n-i

4 	X_]•

y n_i.

Y44

141
Y34 	x 4

24

y1+ 	$x

I 	ii

(a)
	

(b)
	

(c)

- Explicit integration
- Implicit integration, serial arrangement
- Implicit integration, parallel arrangement

Figure 3.4: Information Flow for Various Distillation Solution Methods

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 61

Explicit Integration

If an explicit or forward difference formula is used then 3.9 can be reduced to the

form:

= 0 	 1 	 (3.12)

From this equation set it is possible to calculate xi and using equation set 3.10 y

This can be done without ever referencing the new time variables of any other

block, and hence all blocks may be solved in parallel. The speedup for such an

approach should be close to the theoretical maximum. The flow of information

for this approach is shown in scheme (a) of figure 3.4 below.

Unfortunately explicit methods are not usually successful, since they are prone

to numerical instability or require very small time steps. It is more common to

use a fully implicit method.

Implicit Integration

If an implicit or backward difference approximation to ki is used, equation 3.9

takes the form

= 0 	 (3.13)

This significantly complicates the local block of equations. Equations 3.13 and

3.10 must now be solved simultaneously and hence iteratively for x i and y.

Blocks cannot easily be run in parallel since each block requires new time in-

formation from adjacent blocks, xi and yj 1 , which will not be available until

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 62

these blocks have themselves been solved. Usually this will result in the need to

iterate over all the blocks as well as locally, unless the new connection stream

values can be accurately estimated.

The various ways of decoupling the blocks were described in the last section.

Given the high interconnection of the blocks it would be extremely difficult to

estimate all of the interconnection streams over a given time horizon. Given

this we are left with having to use an iterative approach to solving the collective

blocks.

On a sequential machine the most efficient method of performing this is to rear-

range the equations in the block to allow for a purely sequential calculation path

through the column. This is done by rearranging 3.10 to compute yt from x:

yi = f(x)
	

(3.14)

Given such a relationship 3.13 can be rearranged to compute x+1 from x, y,

and yi_i:

x 1 =f(x,y,y_ 1 ,x,y) 	 (3.15)

This is going against the usual philosophy for the sequential modular approach,

since the blocks no longer model the actual physical operation of the unit in the

sense of calculating outputs from inputs. Scheme (b) of Figure 3.4 shows the

flow of information as a result of this method. By starting at the bottom of the

column with an estimate of xi, equations 3.14 and 3.15 can be successively solved

for each block to calculate x2 , x3 and so on, up the column to the top. At the

top, block n, x, 1 should be 0. Based on the difference of x n from zero a new

estimate for x1 can be made. Using this approach we are reducing the problem

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 63

to the solution for x 1 of the equation:

yn(Xi) - X,1 = 0 	 (3.16)

This approach is efficient in terms of calculation. It is, however, useless from a

parallel processing point of view due to its serial nature. It also goes against the

input/output model expressed as the desired format. It is mentioned here purely

to show the most efficient method for solving the system in a modular fashion on

sequential machines.

The final approach available is to solve the blocks for xj and yj in terms of x 1

and Yi-1. The flow of information would be as shown in scheme (c) of Figure

3.4. Such a solution method results in the information flow reflecting the physical

process. This time all of the columns streams are being torn at the same time.

The various ways of managing these tear streams has already been described in

described in Section 3.1.2.

Although likely to be less efficient than the purely sequential method, it does

map well to parallelism. The method also has the advantage of allowing indi-

vidual blocks to be easily grouped together on a single processor and solved as

column sections. The main use of this is for when there are less processors avail-

able than blocks to be solved. In this case the blocks simply have to be solved

sequentially, since only the old iteration variables are used and the blocks are es-

sentially independent of each other. It is possible, however, to use newly updated

variables as the block calculations proceed. This changes the local processor al-

gorithm to being more like Gauss-Seidel than Gauss-Jacobi. This results in a

Gauss-Seidel approach on each processor within an overall Gauss-Jacobi method.

In such circumstances the overall method tends from pure Gauss-Seidel to. pure

Gauss-Jacobi as processor numbers increase. Although worrying from a stability

viewpoint, these results obtained indicate that there is no problem. A similar

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 64

method has been used by Skjellum [61] which he calls Waveform Relaxation.

Of these various approaches, the solution methodology built into PDist was to

support both the explicit and iterative implicit methods. No attempt was made

to implement the multirate approach of tear stream estimation and interpolation

for this system. This is catered for in the more recent work on complete process

simulation described in Chapter 5. The next section now describes the exact

algorithm used by PDist.

3.2.3 Modular Algorithms Used

This section describes the modular algorithms used to solve column models. The

algorithm is in two parts: the overall column solution method implemented by

PDist and the local column block solution method.

Overall Solution Algorithm

The overall solution algorithm is the Gauss-Jacobi approach with direct substi-

tution. Each processor executes the following functional operations.

Load up local stage section setup. i.e number of trays, position, feed pa-

rameters etc.

Initialise time variables.

Initialise the users column section models.

Communicate boundary conditions with neighbour column sections. Send

subset of xi and yj and get x+1 and Yi-1.

Solve local columns section models given the boundary conditions.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 65

6. Test for local convergence. If an explicit integration method is being used,

convergence will always be set.

7. If locally converged and all other processor models have converged perform

the following:

Perform any inter time step modelling operations.

Perform any user interaction, setting the appropriate variables.

If required store the current solutions.

Update the time variables.

If not finished go to step 4, otherwise display the results and stop.

8. Check for excessive iterations. If so display results and stop.

9. Update the interconnection variables and go to step 4.

The column section modelling operations described above are implemented in

PDist via a series of interface routines. Each routine is given a specific function-

ality, and is called at the appropriate time to implement the above algorithm.

Everything else is coordinated by the PDist system, including boundary commu-

nication, global convergence checking, time management and global interaction

and solution management. PDist is analogous to an equation solver for distilla-

tion systems which requires a set of operations to be performed by the user.

Local Column Section Algorithm

The local column section solution method is independent of PDist. The column

section can be solved as a single block with a single solver or via a modular

approach. PDist plays no part in the solution other than to request it, provide

the boundary input streams from other processors and to manage the resulting

output streams produced.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 66

With the models developed in this thesis, a modular approach is used locally.

The algorithm used is as follows:

Start at the bottom of the column with current boundary conditions Y:-i

provided by PDist.

Solve the current stage section, equations 3.13 and 3. 10, using an appropri-

ate input/output model.

If the Gauss-Seidel approach is being used, use the vapour input information

newly calculated from the stage below. Otherwise, simply use the input

from the previous iteration for this stage. In all models developed by this

author, the Gauss-Seidel approach has been used.

If at the top of the column return control to PDist. If not move on to the

stage directly above and go to step 2

3.3 Distillation Models Overview

This section describes in more detail the models which have been written to

test PDist. The models have been built around the input/output formulation

described above. The actual modelling equations and solution methods are de-

scribed in Appendix A.

3.3.1 Model Overview

A number of different models have been used within PDist. The majority have by

written specifically for this thesis. Other models used were developed by Vasek

[85]. Their use with PDist is described by Vasek et al [72].

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 67

Two main distillation columns have been modelled: a conventional column and a

reactive/azeotropic distillation column industrial case study. For all the models

developed, both steady state and dynamic versions have been created. The full

industrial case study is described by McKinnel [86].

Conventional Distillation

Figure 3.5 below shows the conventional distillation column simulated. The col-

umn is composed of a conventional sieve tray section, a conventional reboiler and

conventional refiux section with a total condenser and a refiux drum. A number

of control options were modelled for the column. The refiux rate can either be

fixed by rate, reflux ratio or by a composition controller on the tops product.

The boilup can be fixed by rate, boilup ratio or by a composition controller on

the bottoms product. Level controllers are used on both the reflux and reboiler

holdups, manipulating the tops and bottoms products respectively.

The models can be used to simulate any column of this format, provided that

the suitable physical properties are available. Almost all of the models use an

implicit, and hence iterative, integration method. The models of Vasek use ex-

plicit methods. For physical property estimation, PPDS [87] is accessed via the

department's local interface functions [88].

Reactive Distillation

As well as conventional column simulation, a reactive/azeotropic distillation in-

dustrial case study was carried. The reactive/ azeotropi c column simulated is

shown in Figure 3.6.

The column is designed to carry out a reversible esterification reaction and sepa-

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 68

Reflux
Drum

Total Condenser

TOPS

Column

LC - Level Control
CC - Composition Control

Reboiler
__ 	LC•.

I 	, BOTTOMS

Figure 3.5: Conventional Distillation Column

rate the desired product from its reactants. The reaction, carried out in a reactor

which also acts as a reboiler, can be described as follows:

AceticAcid + Ethanol 	EthylAcetate + Water

CH3COOH + C2H5 OH 	CH802 + H20

F

The purpose of the column is to remove the product ethyl acetate. To aid sep-

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 69

Liquid/Liquid Separator

A

B

Lai

C

Column Streams

A - Ethyl Acetate Rich Phase
B - Water Rich Offtake
C - Recycled Ethyl Acetate Phase
D - Butyl Acetate + Ethyl Acetate Makeup
E - Reactor/Reboiler Feed

Reactor! 	
E Reboiler

Figure 3.6: Reactive/Azeotropic Distillation Column

aration butyl acetate is used as an entrainer. The main feed for the column (E)

enters the reactor/reboiler. This feed contains mostly Acetic Acid and Ethanol

along with recycled overheads from downstream processing. Acetic acid is in

excess in the reactor with only trace amounts leaving in the tops. No bottoms

product is taken from the reactor/reboiler. The vapour leaving the top of the

column contains predominantly ethyl acetate, water and butyl acetate. Some

ethanol may also be present. This vapour stream passes through a total con-

denser and separates into two layers. Some of the ethyl acetate rich layer is

returned as reflux (C). The rest of the two tops products (A) and (B) are then

sent to entrainer recovery. The second feed to the column (D), enters on the top

tray. This contains a mixture of ethyl acetate and butyl acetate entrainer.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 70

All of the models use an implicit integration method. PPDS was again used for all

vapour liquid equilibrium calculations. For the liquid/liquid separator an NRTL

model was produced using interaction parameters provided by the company. The

reactor was modelled using full reaction kinetics also provided by the company.

The operational nature of the column prevented the use of the steady state mod-

els. The column is initially started with a fixed amount of entrainer in the system.

This is never allowed to build up once operation has started. The steady state

models have no concept of mass holdup. When used, the steady state models

produce a solution which contains butyl acetate well in excess of the initial quan-

tity specified, i.e. at its steady state concentration based on the overall mass

balance of the column. In order to maintain the entrainer at the correct levels,

dynamic models had to be used to calculate the steady state.

The main interest of the company concerned was to be able to actually simulate

this column. Attempts at using other packages had been unsuccessful. Once

working the main requirements were to study the effects of various step changes

and oscillations in the column feeds. In particular the location and movements

of the entrainer during operation were of interest since these were unknown and

could not be measured on the actual plant. The visualisation provided by PDist

was seen as a major feature in analysing such simulation results. The company are

also taking an active interest in parallelism and have their own parallel hardware

installed.

The models were produced for a very specific problem. However, they have been

designed to be general enough to allow their use for other problems. The main

requirement is to change the kinetics and NRTL parameters used.

CHAPTER 3. DYNAMIC PROCESS SIMULATION 	 71

3.4 Summary

The various approaches to parallel dynamic simulation have been presented.

Modular based, rather than equation based, methods were selected as the most

suitable to use with respect to the overall requirements defined in chapter 1.

The subsequent application of the parallel modular approach resulted in an ex-

perimental parallel dynamic distillation simulator, PDist. The theory behind the

simulation approach used and the various distillation models have been described.

The actual modelling equations and solution methods are described in Appendix

A.

Chapter 4

PDist: A Parallel Dynamic
Distillation Simulator

This chapter describes the implementation of the parallel dynamic distillation

simulator PDist. The main emphasis is on the use of parallel hardware, efficiency

issues and the provision of the various support tools within a parallel environment.

In conjunction with the general implementation issues, the chapter also aims to

act as an introductory manual to anyone wishing to use PDist.

4.1 Introduction

PDist was originally designed to be a demonstration program which implemented

the parallel simulation theory described in Chapter 3. Through industrial involve-

ment and the need to prove that parallel computers could be utilised in as user

friendly a manner as sequential ones, the resulting package is now much more a

usable tool than a demonstration.

The majority of software developed for parallel machines ignores the requirement

for usability of the software. The main emphasis is on showing how fast the

software can run with no excess baggage. For programs such as dynamic simu-

CHAPTER 4. PDIST
	

73

lators, they are useless if the average engineer has to perform a large amount of

adjustments by hand to get things to work. What is required is a package within

which models and data can be manipulated and visualised in a standard way.

The majority of commercial dynamic simulation packages fall short of providing

these types of features.

PDist was developed to demonstrate that a parallel simulation program can be

written which exhibits this desired functionality. Even forgetting parallelism,

PDist is designed to show industry the features which modern software can pro-

vide on top of any simulator and the type of functionality they should be expect-

ing in the commercial packages.

To achieve these aims, PDist is built up from sets of programs. Each set of

programs is designed to perform a specific task. Tasks can be categorised as

either modelling or utility tasks. The programs and their tasks are as follows:

. The Distillation Simulation Programs.

The simulator is composed of a number of separate programs where each

simulates a particular section of the distillation column. For all simulations

there is a reboiler program, a reflux program and one or more stage section

programs.

Each simulation program is built from two sets of routines. These are:

- The Distillation Communications and Solver Routines

This is the code used to parallelise the simulation calculations across

multiple processors. The code manages the distillation models, conver-

gence, interaction and all communications relating to solution transfer

and boundary condition transfer. Simulation models are linked in via

a number of modelling interface routines.

- The Modelling Interface Routines

CHAPTER 4. PDIST
	

74

These routines contain all of the modelling code. The routines each

have specific functionality and are called at the correct times by the

solver routines.

• The Master Program

This program controls the setup and execution of the distillation simulator.

It is also responsible for the collection and storage of solutions and' their'

graphical display.

• The Interaction Program

This is a standalone program which can be used to interact with the distil-

lation simulator during execution.

• The PDist Solution Viewer

This program takes the simulation solutions and displays them in a user

defined manner. The code can either be run standalone or called from

an existing program. For PDist both options are used with the viewer

being linked into the master program for solution display at the end of any

simulation. This particular program can be used within any distillation

simulator.

• The Runtime Graphics Program

This program displays simulation solutions during execution.

The programs mentioned cooperate together through a communications layer to

provide the overall functionality of PDist. For basic operation there must always

be a set of distillation simulation programs and a master program.

The remainder of this chapter is now dedicated to describing the development of

PDist and the above functional parts. The categories described are as follows:

CHAPTER 4. PDIST
	

75

• PDist Development History

This section reviews the overall developme of PDist and the various de-

cisions which have guided its development.

• PDist Software and Portability Issues

This section examines the software and pi

other software developed for, this thesis.

• Parallel Distillation Implementation

This section describes the implementation

ulator programs and their associated mode

methodoligies used to connect to the suppo

• The Front End

This section covers the input, programmin

ated with the parallel simulator.

• The Back End

This section deals with the storage of soh

eventual visualisation.

ability issues for PDist and

;he parallel distillation sim-

.t also describes the various

Dols used.

d interaction issues associ-

s, their management and

• Limitations and Future Directions

This final section describes the limitations of 	;t, what can be done about

them and what role PDist can play in comp", 	Dlant simulator.

4.2 PDist Development list FA

The first work on parallel dynamic distillation sim 	on began in 1989. All of

the software developed at the time was written ii 	anguage called OCCAM

[6] and was aimed at transputer [89] based MIMD 	iines. OCCAM was used

in preference to other languages purely for reliabi 	tnd language availability

CHAPTER 4. PDIST 	 76

reasons. 0CC AM is essentially the assembly language for the INMOS Transputer

and was the most reliable way of using the local MEIKO hardware at the time.

It was not until two years later that robust fortran and C compilers along with

usable communications routines began to appear.

The original program progressed as fax as simulating a simple binary column

along with limited visualisation. . In addition to single column simulation some

work was also carried out on using the models for predictive control. Two models

were run in parallel, one simulating the real column and the other acting as a

prediction model for control. The model simulating the real column was made

sufficiently different from the prediction model to make the tests more realistic.

A description of this and other initial work using the OCCAM program can be

found in [69,90]. The early OCCAM work is not further described in this thesis

since later work is essentially a recreation and extension of the OCCAM program.

The predictive control work referenced represents an investigation into one of the

possible applications for fast dynamic simulators.

By 1990, OCCAM had outlived its usefulness. The static and inflexible nature of

communications links and the general difficulty in programming and debugging.

mathematical routines was making further development slow. There was also no

way of utilising the existing fortran code available in the industrial community.

In particular physical property estimation packages were unusable. Fortunately

the first Fortran and C compilers for transputers were becoming available. More

importantly a set of communications libraries had been produced which allowed

concurrent Fortran and C programs to communicate with each other. This soft-

ware, produced by MEIKO, was called CSTools [91] and has been the main com-

munications system used by PDist to date. CSTools allows parallel processes to

communicate via virtual, rather than hardware, communications links. Virtual

communications links allow any processor to talk to any other in the network.

The underlying software takes care of routing the messages across the limited

CHAPTER 4. PDIST 	 77

inter processor hardware links. To aid the software routing, the user can wire

the processor domain to any pattern desirable within the physical limitations

of the connection hardware. For programs, such as PDist, where the most ef-

ficient connection strategy is known [92], processes can be placed in an order

so as to minimise the number of processors through which any messages must

be routed during execution. All this can be performed dynamically from a pro-

gram and hence means the package can reconfigure itself for different processor

numbers without the need for recompilation, extraction and rewiring as with

the old OCCAM system. Similar communications software has been written for

other hardware platforms. The use of standard languages with linked communi-

cations libraries is now the most common method used for programming MIMD

machines.

With the advent of CSTools the OCCAM program was scrapped and work be-

gan on using Fortran and C for all code development. These standard languages

should have allowed for much faster development. Unfortunately, as with the

early OCCAM system, the first versions of the compilers and CSTools were bug

ridden. Many months were wasted on locating compiler and communications er-

rors. The current versions of this software are now reasonably reliable. Recent

work on complete plant simulation has resulted in a move to more portable com-

munications systems. This is and other portability issues are discussed in the

next section.

PDist's development has been an evolutionary one. In many ways parallel soft-

ware development has dictated the pathway the project has taken. As with any

new technology this has been, and will be for the near future, in a state of flux.

The only way to proceed is to make the best use of what is available until a

better option becomes available. Throughout the parallel approach has remained

relatively stable. It is only the implementation of the theory which has changed

drastically. The decision to move from OCCAM, has proved to be a fortunate

CHAPTER 4. PDIST 	 78

one, and although painful at the time has resulted in reduced development times

and enhanced functionality of the resulting package. In particular the package

could not be run as easily by the average user without the dynamic nature of

CSTools' loading and communications libraries.

This concludes the development, history of.PDist. The next section describes,

from a software viewpoint, the current state pf.PDist and the factors which,make

and will make it truly portable in the future.

4.3 PDist Software and Portability

The industrial community is sceptical about the use of parallelism on the grounds

of hardware dependency and lack of software portability. With this in mind the

dependencies of PDist are described and what future developments are likely to

provide the portability for PDist and other parallel engineering applications.

The current version of PDist now relies solely on the C and Fortran languages, the

X-Windows windowing system for visualisation and CSTools for communications.

All of these except CSTools are available on all the major Unix systems in the

world. At present PDist will run on MEIKO computing surfaces and single or

multiple SUN workstations. The ability to run on single workstations has proven

to be of great benefit. With modern multitasking operating systems, programs

designed for parallel hardware can run in essentially simulated parallel on a single

machine. From an industrial viewpoint this is useful since parallel hardware will

not always be available. This was found to be the case with the industrial case

study company who used the SUN version when their own MEIKO Computing

Surface was in use by other users. The main stumbling block for portability to

other platforms is the portability of the communications layer. This problem is

now being tackled and already some exciting new software has been produced.

CHAPTER 4. PDIST 	 79

Recently the use of Unix workstation networks as parallel resources has come

to the forefront. A number of communications layers capable of running across

almost all Unix platforms have appeared. A large proportion of these have been

developed in academia and as such are usually in the public domain. The advent

of these new communications layers is making the portability problem virtually

non existent. The new software is also allowing a heterogeneous approach to

utilising computer resources. Workstation networks can now cooperate with spe-'

cialised hardware, if available, on single problems. With this in mind, recent work

on complete plant simulation has resulted in the local development of an inde-

pendent communications layer RGC (Robust General Communications). This

has already been ported to sit on top of CSTools and PVM (Parallel Virtual Ma-

chine) [93]. PVM runs on almost all Unix platforms and has been and is being

ported to a number of specialised MIMD hardware platforms. Once PDist has

been converted to using RGC, all of the software developed for this project will

be portable across almost all major platforms. This also includes PCs now that

they are of sufficient power to run the Unix operating system. PVM represents a

significant player in the move towards producing more portable communication

systems.

As well as software, significant developments are taking place in the parallel

computer hardware market. The latest trend appears to be towards using very

standard processors, in particular those already used in the workstation market.

Two of the main vendors, Thinking Machines and MEIKO, have opted to use

the SPARC based processors commonly seen in SUN workstations in their latest

machines. On top of this their machines are Unix hosted and in the case of

MEIKO use a revised SUN Unix kernel on all processors to launch processes and

manage communications. Companies like SUN are also producing multiprocessor

workstations, similar to those already produced by Sequent. The trend is obvious.

Vendors want to provide hardware which is compliant with what is already out

there, but yet offer that bit more in the way of processing power. The main

CHAPTER 4. PDIST 	 80

advantage these machines offer is faster communications links. Standard LAN

networks do not yet offer high enough bandwidth for the majority of parallel

applications. With this in mind the future for parallelism is looking better all the

time. In the brief history of PDists development, the package has moved from

a transputer based non standard operating system to one which can be ported

across the major workstation and parallel hardware available

Portability of software across hardware will happen, sooner rather than later. For

the moment the important task is to highlight the potential areas for exploiting

parallelism. Given that portability is no longer a major issue, from this point on,

all of the work on PDist is described without reference to particular hardware

or software. The text simply assumes the availability of a MIMD environment

made up of a number of processors with independent local memory and a modern

virtual communications layer.

4.4 Parallel Distillation Implementation

This section describes the implementation of PDist. Firstly an overview of the

general decomposition strategy is presented along with the various features which

the software aims to provide. This is then followed by an in depth analysis of the

modelling interface, the communications harness and finally the complete parallel

algorithm.

4.4.1 Decomposition Overview

Figure 4.1 shows the processes, or programs, which make up PDist and the con-

nections between them. These programs are eventually downloaded onto what-

ever computing resource is available.

CHAPTER 4. PDIST
	

81

Computing Resource

Figure 4.1: PDist Program Connection Strategy

In the figure a square box represents a PDist process. The single coloured boxes

are utility processes and the twin coloured boxes are modelling processes which

are composed of some PDist system code and some user modelling code. In

the modelling processes the two code sections are linked via a set of interface

routines. The connecting lines represent communication links and the arrows

indicate the direction in which information may travel between processes. Where

one link appears in the diagram, many software links may be used in the actual

implementation.

CHAPTER 4. PDIST 	 82

For basic operation the simulator requires four processes: A reflux process, a

minimum of one stage process, a reboiler process and a governing/master process.

Together these programs cooperate to implement the parallel solution strategy

outlined in Chapter 3. The modelling processes are almost standalone and only

require the master process for initialisation, solution storage and solution display

purposes. The other processes shown provide interaction and run time graphics

support.

As with all MIMD programs, the manner in which the communications between

processes is managed is critical to the programs success or failure. In PDist the

communications links appear as two distinct types. These are:

• Solution Critical Communicatons

These are communication links along which information essential to solving

the simulation problem travels.

• Utility Communications

These are the communications links along which non solution critical infor-

mation travels such as solution output and interaction requests

A usable simulator requires both sets of communications to work efficiently to-

gether. The main aim is to minimise the amount of time spent communicating

versus the time spent calculating. The ratio between the two times is very hard-

ware dependent. If communication rates are low, even the most efficiently written

program will perform badly. In PDist the majority of work has focused on the

efficiency of the solution critical communications. The utility communications

are less developed.

Before going on to describe the communication implementation, an explanation

of the modelling interface to PDist is given. This is presented here because of

the modelling interfaces close relationship to the parallel distillation algorithm.

CHAPTER 4. PDIST 	 83

The two are closely tied, since when PDist is not communicating it is performing

some modelling tasks via the interface.

4.4.2 PDist Model Interface

The PDist modelling interface is designed to allow PDist to make use of many dif-

ferent distillation models within a single system. The interface is also modularised

to provide specific modelling requirements between communications. Figure 4.2

shows the modelling interface.

Figure 4.2: PDist Model Interface

The interface routines are divided into three groups. These groups are each

associated with a particular function of the simulator. The routines in each

CHAPTER 4. PDIST
	

RVI

group are either called by the PDist driver program, or can be used to control

the way the driver program operates. The groups are as follows:

. PDist Model Interface

The model interface splits the overall distillation simulation into separate

tasks. For every task there is an interface routine. The modeller must pro-

vide.these routines and include the appropriate modelling code to perform

the relevant task. The various routines are called by PDist when required.

This enables PDist to hide the majority of the parallelism from the user.

Variable selection is left entirely up to the modeller. This enables large

pieces of existing code to be used. Input parameters to PDist are pro-

vided via global variables at present. This is discussed later. The interface

routines and their tasks are as follows:

- pdist.init

This routine is called at the start of all simulations. Within this rou-

tine all PDist initialisation must be performed alongside any model

initialisation required by the user models.

- pdist...solve

This routine is called every time PDist requires the local distillation

problem to be solved.

- pdist..converged

Convergence checking is left to the modeller. This routine is called

after each iteration. Within this routine the modeller must check for

local convergence, returning true if converged. Once called, PDist

works out if all the other processes have converged and takes the ap-

propriate action. For explicit integration methods this function simply

needs to return true on every call.

- pdist..changeover

CHAPTER 4. PDIST

After all the processes have converged, PDist calls this change over

routine. Within this routine, all variable updates and once per inte-

gration time step changes can be performed.

- pdistiinish

At the end of every simulation this routine is called. It is particularly

useful for writing out the status of all models at the termination point.

This way it is feasible to startup up future simulations from where they

have left off. It is difficult to cater for such things directly in PDist.

PDist Packing Interface

The packing interface represents the only aspect of parallelism which the

modeller must understand to use the simulator. These routines are designed

to allow the modeller to pack and unpack the liquid and vapour streams

which are to be passed between different simulator modules. Again these

routines are called by the PDist driver. The routines are as follows:

- pdist_pack.streams

This is called every time PDist requires the modeller to pack up the liq-

uid and vapour streams leaving the local column section. The stream

size is user defined using the call pdist -set ..stream...size. See below.

- pdist..unpackstreams

This is called every time PDist receives new stream information from

local simulation processes. Since the modeller packs up the streams,

the modeller must unpack them as well.

- pdist..solutions

PDist manages the collection and display of all solutions. The struc-

ture of the information leaving PDist is defined by the modeller. The

mechanism for this is discussed later. This routine is called when PDist

wants to pack up and send solutions in the format which the modeller

has specified. This makes the system very flexible.

CHAPTER 4. PDIST

. PDist Control Interface

The control interface routines differ from the other routines in that they can

be used within the others to control the way in which the PDist driver code

operates. Some of these routines must be used before PDist can function

correctly. The routines are as follows:

- pdist..set..inode

This routine sets the simulation mode. Two modes are provided:

steady state mode and dynamic mode. Either can be set as the start-

ing mode. In the case of steady state mode, a dynamic simulation may

be run afterwards.

- pdist -set -broadcast -size

This routine is used to control the amount of shared variable space

between processes. Shared memory is implemented to allow processes

which are not adjacent to broadcast information to each other. To

maximise efficiency the amount of shared space must be declared. An

example of this is described later. The shared variables are updated

every iteration in a similar manner to the stream boundary conditions.

- pdist -set -broadcast -slot

PDist provides a block of shared memory for storing double precision

numbers. Each number is assigned to a particular slot of the memory.

This routine is used to set numerical slots in the shared memory area.

- pdist -set -stream -size

This routine must be called by the user in the pdistinit routine. It

is used to set the size of the streams being passed between modelling

processes.

- pdist..set.next.state

This routine is used to invoke changes pre-programmed into the sim-

ulator via the input system. This is described in greater detail later.

11

CHAPTER 4. PDIST

- pdist...set_terminate

The clean termination of parallel programs is always difficult. This

routine indicates to PDist that premature termination is required.

With this mechanism PDist can always shut down cleanly and make

sure that no solutions are lost.

The interface tries as much as possible to hide any parallelism. The breakdown of

the modelling into the tasks described is not radically different from the standard

approach used for sequential algorithms. In fact it probably forces a more struc-

tured approach to model development. The interface is by no means complete.

The current set is designed to provide a working and usable demonstration. Many

niceties could be added. This includes a more generic input mechanism, rather

than the static one currently used. However such additions are also useful in the

much wider context of complete process simulation, where other tools will require

similar functionality. This and other extensions are described, where appropriate,

in the sections which follow.

Now that the model interface has been presented, the overall parallel algorithm

and communication structure can be explained. In the text which follows the

model interface will be referred to as a means of showing what functions PDist

is performing during non communication periods.

4.4.3 Simulation Critical Communications

The simulation critical communications are those communications required to

implement the parallel distillation simulation alone. They do not include any

communications to provide solution or interaction support. The tasks which

these communications must cater for are as follows:

• Boundary condition transfer

CHAPTER 4. PDIST

The passing of liquid and vapour streams between concurrent simulation

processes.

• Simulation control

The control of PDist relies on information about the status of all the sim-

ulation blocks being available to the decision making process, wherever it

may be. It also relies on the decision making process being able to instruct

all simulation processes on the various courses of action available.

. Shared Memory Support

In PDist most information is transferred between adjacent simulation blocks.

In the event of a process requiring information from farther away, a mech-

anism must be provided by which one process can access information in

another. The simplest way of achieving this is to provide a block of shared

memory to and from which all processes can read and write.

• Utility Management

Although not critical to the solution, the communications described here

must be designed with a knowledge of how utility requirements will fit into

the system.

The bulk of information transferred between processes is boundary condition

information. Shared memory information may also contribute significantly to

information size, but is highly variable. The information associated with control

function and utility management is small in comparison. The main problem is

how to combine both types of message efficiently within a single environment.

An efficient parallel program is one which minimises the amount of time spent in

a given run communicating and maximises the amount of concurrent calculation.

The theory associated with the overall breakdown of the calculation has been

dealt with in Chapter 3. There are two sets of factors which affect communication

CHAPTER 4. PDIST

efficiency: those associated with single communications and those associated with

multiple communications.

Single Communication Efficiency Factors

Communication Time vs Packet Size on MEIKO CS

...........
No Routing - 	 j--

iRouting 	 H ----------
2Routings 	 -
3 Routings 	•-.

--

	

01 	 I 	 I

	

0 	200 	400 	600 	800
	

RIJI
Communicated Packet Size (Bytes)

Figure 4.3: Effect of Various Factors on Communication Efficiency

The time taken for a single communication between two processors is dependent

on:

• The time taken to set the communication up

Setting up a communication incurs an overhead. This is both hardware and

software dependent. The size of this overhead can be significant for small

messages.

• The size of the message being communicated

1.2

1

0.8

M

0.4

0.2

5.5
U,

E
U)

0

C)

E
E
0
U
C

I-

0

E

Cd,

E
E
0
U

MI

4.5

4

3.5

CHAPTER 4. PDIST
	

KC

Communication Time vs Packet Size on SUN SPARCstation
I 	

I. jilt I 	U.itiM
I 	

MLM
0

J,IJIIhLLI4 	Ii

Standalone Sun
Across Ethernet

0 	200 	400 	600 	800 	1000
Communicated Packet Size (Bytes)

Figure 4.4: Effect of Various Factors on Communication Efficiency

The larger the message, the longer it takes to communicate it. Transmission

rate is usually a fixed quantity and hence time is a linear function of size.

. The route the communication path takes

The route a message takes significantly affects the time taken. Where

two processes are not directly connected, a communication may be routed

through another processor. For every routing, the equivalent of another

complete communication is being performed. This is again highly hard-

ware dependent.

The above all significantly contribute to the overall time for a communication.

The graphs in Figures 4.3 and 4.4 illustrate these factors using communications

timings from a MEIKO Computing Surface and a SUN SPARCstation respec-

tively. The graphs show the average time taken to pass packets of varying size

between two processes which are either directly connected or farther apart requir-

CHAPTER 4. PDIST 	 91

ing messages to be routed through other processors. In the case of the SPARC-

station the link is either virtual on a single machine or across the ethernet.

From the graphs one can see that, even for directly connected processes, the over-

head associated with setting up a communication is significant. When sending

small packets it is better to tag them onto existing messages, when possible, than

to pass them in a separate communication. In PDist there are the large boundary

condition packets and the small control related packets. It is more efficient to

pack all of these together rather than have separate messages. This is especially

the case for connected workstations where the communication startup overhead

is much more significant. From Figure 4.3 it is also obvious that routing can

affect message transfer: not only with respect to startup cost, but transfer rate

as well. It is thus important to try and arrange for communications to be as

direct as possible.

Multiple Communication Efficiency Factors

As well as implementing single communications efficiently, it is equally important

to make sure that all communications work efficiently together. Factors which

affect multiple message efficiency are:

• Concurrency of communications

Where possible communications should be passed concurrently. Communi-

cation works on the same principle as parallelising the workload. The more

you do at the same time, the less time it will take.

• Load Balanced Processes

Load balancing greatly affects a parallel programs ability to synchronise

successfully its communications. If all programs reach their communication

point at different times some will undoubtedly end up waiting for others

CHAPTER 4. PDIST

to catch up before being able to communicate with them. This problem

becomes severe with tightly coupled programs like PDist.

The two factors are very closely related. Concurrency of communication can

only occur if all programs are able to communicate at the same time. Load

balancing a program is highly complex. In distillation load balancing can be

roughly achieved by placing equal numbers of trays in every modelling program.

Unfortunately, changes in a column usually start in one location and move around.

For this reason the simulation of some trays will always be computationally more

expensive than others. This inevitably results in an imbalance. There is no easy

solution to the problem. In severe cases it is sometimes worthwhile to move part

of the work load from one processor and put it on another. This is referred

to as process migration. For PDist the imbalances produced do not warrant

such drastic action. However in a complete plant simulator such action may be

required.

The Implementation of Solution Critical Communication

The implementation of PDist's communication layer attempts to incorporate all

of the efficiency issues described. Three possible configurations were examined.

These are shown in Figure 4.5. The main difference between the configurations

is in how boundary, control and shared memory information is managed. The

configurations shown have the following characteristics:

I. Centralised Control and Communications

Each simulator is managed by a central coordinating program. This is

responsible for managing all control, shared and boundary information. It

is essentially the master/slave approach.

2. Centralised Control and Distributed Communications

CHAPTER 4. PDIST
	

93

;n

(1) Centralised Control and Communication 	(2) Centralised Control and Distributed Communication

F1 1A 2 	 trF

(3) Distributed Control and Communication

Figure 4.5: Possible Communication and Control Configurations for PDist

This is an adaptation of 1. Instead of having a central program coordinat-

ing all information transfer, the control and shared information transfer is

separated from that associated with boundary condition transfer.

3. Distributed Control and Communication

In this case the control module is built into the simulation programs. Again

one process is responsible for final decision making, but the overall message

transfer involves combining messages of different types.

It would be possible to build functional simulators from all three of these ap-

proaches. Each one provides the overall structure required to implement the

- 	functionality PDist requires. The pros and cons of each structure are now exam-

med.

Structure 1

This suffers from having to manage all connection information sequentially

in a single program. Given the volume of information being managed, the

simulation processes would be idle for a significant period. From a commu-

CHAPTER 4. PDIST
	

94

nication viewpoint there is the benefit of being able to bundle information

together. Unfortunately there is no scope for passing these packets concur-

rently since they are all heading towards a single program which can only

receive them sequentially. Likewise the return packets can only be sent

sequentially. Overall for (ri) simulation processes there are n messages to

the controller and (n) messages returned. Since these are all sequential the

communications take (2n) communication time units. There is also a delay

associated with the control action taken by the program.

Structure 2

This suffers in a similar manner to 1 but offers more from an efficiency

viewpoint. Again there is an extra program for control and there is still

the same volume of communication to and from it. This time however

the controller has less to do and will thus take less time. Also during the

control period the simulators do not need to be idle since they are free to

pass their boundary information while waiting. This boundary condition

transfer can also be performed in a highly concurrent way. There are (2n)

control messages and (2ri —2) boundary condition messages. The boundary

condition messages can be passed concurrently in approximately (4) time

units, two sends and two receives for every process. Since this can be done

while the controller is collating information the overall communication time

is roughly (2n) communication time units. The control delay should be less

in this case, but with imbalances in loading it is difficult to say whether

this or structure 1 would be the most efficient.

Structure 3

This structure immediately offers the benefit of requiring one less program.

The implementation is however more involved. The problem is how to

pass the boundary information between nearest neighbour processes and

yet make sure that the controller process receives information about the

state of the whole network.

CHAPTER 4. PDIST
	

95

Before communication every process has boundary conditions to transmit

and receive. During this transmission, tagged control and shared mem-

ory information must reach the control process. After the control process

has finished, the control action and unified shared variable map must be

returned to every process.

The most efficient method for achieving this involves leapfrogging con-

trol information from one boundary condition packet to the other during

the boundary condition communication phase. To make this possible the

boundary conditions must be passed in a sequential manner to allow the

information to be passed on from one message to the other before trans-

mission. To do this the control process must first be placed in the centre of

the column pipeline. Then, starting from either end the tops and bottoms

processes pass their liquid and vapour boundary conditions respectively to

their nearest neighbour processes. Each boundary condition packet con-

tains the convergence status and shared memory slots associated with the

sending process. The neighbouring processes then receive these packets,

remove the control related information and add it to their own boundary

condition packets. These are then sent on as before. This results in a wave

of information heading from the outside to the centre. At each passing the

process can AND its convergence state with that just received. Similarly the

local shared memory information can be set. Eventually the central control

process receives two packets of information: one from above and one from

below. The control information can be removed from these packets and

combined with the control process state to provide a unified view of all the

processes in the network. At this point the control process can decide on

the next course of action. The reverse communication sequence can now be

initiated. This time the other half of the boundary condition information

is transmitted, starting at the control process and moving outwards. Each

boundary condition packet now includes the new control information and

the now unified shared memory map. As this returning wave passes each

CHAPTER 4. PDIST
	

96

process, the process can move on to begin whatever task has been set by

the control process.

For (n) processes there are (n - 1) inward communications. Communica-

tions on either side of the control process can be performed concurrently.

The control process can only receive the above and below incoming packets

sequentially which results in the inward wave of packets taking a maximum

of ((n+ 1)/2) communication time units. During this communication trans-

fer many of the control decisions have already been made. By the time the

control process receives the inward packets, the only actions required are

to AND the local convergence state received with those of above and below

and to combine the shared memory slots together. This takes very little

time. The outward wave of information similarly takes ((ii + 1)72) com-

munication time units. Overall the time taken is (n + 1) time units with

negligible control overhead. This is approximately twice as fast as the time

taken for the other structural options.

Finally this approach also scales better. With the master slave approach in

1 and 2 many processes are writing to one. In such cases routing is likely to

play a significant part in message transfer times as process numbers increase.

Message transfer is always nearest neighbour with this final structure and

so routing should never present a problem.

From the above we can see that structure 3 is the most efficient. This is the

structure which has been used in PDist. This particular structure only owes its

existence to the fact that the movement of boundary conditions allows informa-

tion to travel in both directions. This is very particular to distillation. For a

complete plant simulator the direction of boundary information is predominantly

uni-directional, and hence a structure similar to 2 would be more efficient.

So far the actual control methodology has been ignored. It has only been de-

scribed with reference to packet size. The next section describes what the control

CHAPTER 4. PDIST 	 97

information actually contains.

Simulation Control Structure

The control information is divided in two: that passed with the inward wave and

that passed with the outward wave. The inward wave contains information about

the processes passed and this includes:

• Convergence state

This is either true or false and gives the convergence state of the column

from the current process to the farthest out.

• Overall Current State

Preprogrammed setup changes are executed either at a given time or when

the simulation reaches a particular state. At any time the overall simula-

tions state is represented by a number. When a particular state has been

reached in the simulation, the process responsible for identifying when this

point has been reached can increment the current state level using the

modelling call pdis -set -next ..stateQ. The inward wave is used to inform

the control process of the highest state reached. This is then broadcast to

all process on the outward wave.

• User Control Requests

Through the wave, processes can indicate special requests from the con-

trol process. An example is a user shutdown request which would tell the

controller to cleanly shutdown the parallel application and save the results.

• Time Step Changes

Through the wave mechanism it is possible to present the controller with

the minimum requested local time step from all the processes. From this a

CHAPTER 4. PDIST 	 98

global time step can be set by the controller on the outward wave.

. Shared Memory Information

As the wave passes each process it sets its local shared variables. By the

time the controller gets the inward waves it simply has to combine the two

blocks with its own, thus producing a unified block ready for retransmission

on the outward wave.

The outward wave contains the control actions:

. The next simulation action to be performed:

Shutdown Cleanly shut down.

Solve Continue on the current time step for another iteration.

Changeover Start next time step.

Changeover and Interact Allows the controller to tell all the processes

to go into interaction mode after the time step changeover has been

completed. Interaction can only occur after a time step has been

completed.

• Overall simulation state

The highest state reached by the simulation. Once received each process

must execute any, state labelled, preprogrammed setup changes.

• Time step information

The next time step to be used.

• Shared memory data

A complete copy of the shared memory map

CHAPTER 4. PDIST
	

WE

This control structure is simple, extensible and above all reliable. Interaction

utilities are easily catered for since the control process can switch the other pro-

cesses into different modes. If extra functionality is required, extra modes can

simply be added.

4.4.4 Utility Communications

The utility communications must blend as efficiently as possible with the solu-

tion critical ones. At present the utilities supported are simulation interaction,

solution management and run time graphics.

Interaction Handling

The support for interaction handling is relatively simple. The mechanism es-

sentially involves sending changes in the original column setup to each of the

simulation processes being used.

Interaction with the simulator is an infrequent event. For this reason the inter-

action system should be relatively non-intrusive on the normal function of the

simulator as a whole. The other main issue is how interaction should be handled.

There are two options:

The interrupt/change/restart approach

With this approach a change to the simulation setup can only be made by

first interrupting the simulation. The simulation would then be in interac-

tive mode during which period the desired changes could be made. Finally

the simulation is restarted.

The online change approach

CHAPTER 4. PDIST
	

100

Here the data is changed as soon as it is registered without the need to

interrupt the simulation.

The implementation of both cases involves executing the steps laid out in option

1. The difference is in who is in control of the sequence. At present option 1

has been implemented. This is essentially down to the behaviour of the interac-

tion graphical user interface (GUI). Option 2 could easily be implemented as an

alternative.

Either way the mechanism for actually making a change is the same. The sim-

ulation processes must be told to go into interaction mode followed by a restart

message. Within the current control communication structure the control pro-

cess uses the outward wave of information to inform all processes about the next

course of action. The best approach is to inform the control process that inter-

action is required and to get it to inform the other processes that they should

enter interaction mode.

Interaction has been implemented in this way. After every time step has com-

pleted, the control process in PDist looks to see if the interaction panel is trying

to communicate. This involves using what is called a non-blocked receive. This

type of receive either returns nothing or a message and is very fast to execute.

Using this mechanism the control process is unaffected by the presence of an in-

teraction panel until the panel registers an interest in communicating. Similarly

the interaction panel only uses up resources when it is being used. The rest of

the time it is idle.

Once the interaction panel has made contact with the control process, the simu-

lation can be shut down by passing an interaction instruction with the outward

wave. Each process then goes into interaction mode which essentially involves

receiving setup changes and processing them. The final action is to send the

control process a restart signal, after which the simulation simply continues as

CHAPTER 4. PDIST 	 101

before. The actual message structure used for interaction is described in Section

As well as interaction via an interaction panel, PDist also allows changes to be

preprogrammed before execution. These changes are loaded onto the individual

processes at run time and can easily be executed. at the end of the appropriate

time steps. Again this mechanism is explained in Section 4.5

Overall the interaction mechanism is efficient, non-intrusive and fits easily into

the existing communication structure. It can easily be switched off by simply not

running the interaction panel program. Such functionality shows the benefits of

breaking a monolithic application up into smaller and more focused communicat-

ing ones.

Solution Handling

The collection of solutions from the simulator presents a much larger efficiency

problem then interaction. Here information must be exported from the simulator

at regular intervals to a central collection program. As with simulation control

there are a number of ways this can be done.

The most obvious method is the master/slave approach. This involves a central

collection program, or master, receiving solution packets from each simulation

process. This has already been shown to be inefficient since the collection process

can only receive one packet at a time. However, due to its ease of implementation,

this method has been used in the initial version of PDist. The overall time spent

sending solutions is only significant where simple distillation models are used. As

the timings results in Chapter 6 show, for more complex models, the transfer of

solution information is small in comparison to the calculation time for the models

used.

CHAPTER 4. PDIST 	 102

Although the master/slave approach has been used, another option is available.

Within the existing simulator the inward wave of boundary data has already

been used to pass a global view of the shared memory data for all processes.

This mechanism could also be used to pass the solutions for all processes to the

central control process. Once this has obtained all of the solution data it could

transmit it as a single solution packet out of the simulator. This is likely to be

more efficient than the master/slave approach for the same reasons as those given

when considering the solution critical communication structures possible.

Run Time Graphics

The run time graphics present much less of a problem since the program generat-

ing the graphs simply requires a copy of all solutions given to the master process.

In fact, the amount of data passed can be reduced to the amount which is actu-

ally to be displayed. This can also be passed within a single packet. At present

all data entering the master process is simply copied and sent on to the runtime

graphics program. This program was originally created to show a concept and

has not been the main focus of attention throughout the project.

4.4.5 Complete Parallel Algorithm

The complete parallel algorithm, including model interface calls, is now described.

The algorithm is presented using pseudo code. The code description includes the

action for the reflux, stage and reboiler processes. In PDist at present the reflux

and reboiler processes are distinctly separate. In any future version a single

program would be used for all process types.

CHAPTER 4. PDIST
	

103

Run the procedure PDistMainProgram in parallel with itself.

procedure PDistMainProgram
Initialise local PDist variables and the communications layer
Analyse local configuration. i.e. Number of plates, Interactive status etc...
Create the communications links

Register ports to receive incoming stream information
Locate external ports to transmit outgoing stream information to
Locate port on master to send solutions to
if interactive and the control process then

Register a port to receive interaction information on
Locate the port on the interaction process to send back replies

end if
Download the initial column setup from the master process
Extract the PDist simulation data from the setup and initialise local

variables
Extract the PDist model information and set the user setup variables
Initialise the PDist models by a call to pdist'init()
Analyse the simulation variables setup within pdistinit() via the

PDist Control Interface

simulating - true
while simulating do

Pack up the outward boundary streams by a call to pdisfpackstreams()

Perform the boundary condition wave communications:
call procedure PerformBoundaryCommunication()

Perform the requested control action set in outward wave communication:
call procedure PerformNextSimulationOperation()

end while
Simulation has completed. Finish up with a call to pdistfinish()
Close down the communications layer

procedure P Dist MalnProgram

CHAPTER 4. PDIST 	 104

procedure PerformBoundaryCommunication
if you are the refiux process then

Tag convergence, state and shared variable info onto liquid out stream
Start the top inward wave off by sending the liquid stream
Receive the outward wave vapour stream
Unpack the control signal, state and shared memory block

else if you are the reboiler process then
Tag convergence, state and shared variable info onto vapour out stream
Start the bottom inward wave off by sending the vapour stream
Receive the outward wave liquid stream 	 .
Unpack the control signal, state and shared memory block

else if you are above the control process then
Receive the incoming wave liquid stream and remove tagged information
AND received convergence state with local one
Add local shared memory slots to those received
Set the simulation state to maximum of the received and local state
Tag new information on to liquid out stream
Send the liquid stream to the inward process
Receive outward wave vapour stream
Copy tagged information onto the outward vapour stream and send it

else if you are below the control process then
Receive the incoming wave vapour stream
AND received convergence state with local one
Add local shared memory slots to those received
Set the simulation state to maximum of the received and local state
Tag new information on to vapour out stream
Send the vapour stream to the outward process
Receive outward wave liquid stream
Copy tagged information onto the outward liquid stream and send it

else if you are the control process then
Receive incoming liquid stream from above
Receive incoming vapour stream from below
Extract convergence and other tagged information
Check for global convergence
Set the outward control signal:
if global convergence and interaction is waiting then

set the control signal to INTERACTCHANGEOVER
else if global convergence then

set the control signal to CHANGEOVER
else if user terminate signal set in inward wave then

set the control signal to USERTERMIN ATE
else if the end of the simulation then

set the control signal to TERMINATE
else

set the control signal to SOLVE
end if
Combine the received shared memory slots with the local ones to create a uni-

fied block for export to all processes on the outward wave
Set the global State level based on maximum of those received
Tag the new control information onto the outward liquid and vapour streams
Start off the outward wave by sending the liquid and vapour streams

else
simulating i- false

end if
end procedure PerformBoundaryComrnunication

CHAPTER 4. PDIST
	

105

procedure PerformNextSimulationOperation
if action is INTERACT CHANGEOVER then

Send solutions to master if applicable. Pack using pdistsolutions()
Execute any preprogrammed setup changes
Enter interaction mode:

if you are the control process then
Send a confirmation packet to the interaction process
interacting - true
while interacting do.

Receive an encoded setup change
Send copies to processes above and below
Decode the setup change and set the local setup variables
if setup change is a finish then

interacting i- false
end if

end while
else
interacting - true
while interacting do

Receive encoded setup change from inward process
Send encoded setup on to the outward process
Decode the setup change and change local setup variables
if setup change is a finish then

interacting i- false
end if

end while
end if

Perform end of time step updates by a call to pdisfchangeover()
Check simulation time against the finish time Set TERMINATE if done

else if action is CHANGEOVER then
Send solutions to master if applicable. Pack using pdistsolutions()
Execute any preprogrammed setup changes
Perform end of time step updates by a call to pdistchangeover()
Check simulation time against the finish time. Set TERMINATE if done

else if action is USERTERMINATE or TERMINATE then
Send solutions to master if applicable Pack using pdistsolutions()
simulating - false

else if action is SOLVE then
Unpack the received boundary information with pdistunpackstreams()
Perform any preprogrammed state changes if the state has changed
Solve the local distillation models by a call to pdistsolve()
Find out if models have converged by a call to pdistconverged()
if you are the control process then

if interaction message present then
set the interaction pending flag

end if
end if

end if
end procedure Perform Next Simulation Operation

CHAPTER 4. PDIST 	 106

4.4.6 Implementation Summary

Overall the majority of attention has been focused on getting the solution critical

communications to be efficient. There is little which can now be done to enhance

the solution critical communications structure which has been implemented. As

for utility, management, the current communication structure is less well defined.

Some improvements to the solution and runtime management could be made.

However, the current utility communications represent an almost worst case sce-

nario. Given that at present they do not present any major efficiency problems,

any improvement is likely to make the utility management relatively insignificant.

A full analysis of the various communication times during execution are given in

Chapter 6.

The rest of this chapter now focuses on the utility programs written for PDist

and how they represent demonstrations of the type of utilities that could be used

in a full dynamic plant simulator.

4.5 The Front End

The front, end of PDist allows the user to setup and interact with the distillation

models being used. This section describes the overall simulation input problem

and describes the input mechanism which has been used for PDist.

4.5.1 The Dynamic Simulation Input Problem

Creating a generic input format for any dynamic process simulator is difficult.

Any format created must be capable of describing the following:

1. The process to simulate. This is composed of two parts:

CHAPTER 4. PDIST 	 107

The process structure and associated process unit attributes

The specific attributes required by the models used to simulate the

process units in question

2. The changes to the above structure and attributes during a simulation.

In. any simulation, the original process setup changes as a function of time. The

changes can be either modelling changes, structural changes or both combined.

Figure 4.6 highlights such changes for a distillation process with time. Describing

these changes on paper is relatively simple and obvious when viewed by the

trained eye. Providing a similar mechanism for a program to analyse is a much

greater problem.

Describing a Process

A chemical process is composed of two obvious parts: The actual chemical pro-

cessing equipment and the control mechanisms which have been added. The

control layout depends on the equipment available and hence the actual equip-

ment layout must first be defined.

A chemical process is built out of connected pieces of process equipment. Every

piece of equipment can be categorised as being of a specific type. Also a given

type of equipment may be made out of other types of equipment. For every type

of equipment there is a specific set of attributes. An example is a sieve tray

column which always has a number of trays as an attribute but is built out of

a number of tray equipment types. Within these tray equipment types would

be all of the attributes associated with a tray, i.e weir height. Given a standard

representation for different pieces of possible equipment it is relatively simple to

see how a simulation model could dissect a structure to get the physical attributes

required.

'01~

Setup

,>N O.O

CHAPTER 4. PDIST
	

10

Figure 4.6: Example of Simulation Input Format Functionality

Given that the chemical process structure has been defined, there is now the

problem of control information. Before attaching a control system, there must

first be points for the controllers to attach to. Example points are analysis ports

of varying types, valves and the like. For a process built out of well defined

equipment, the equipment definition must cater for the possible locations where

control ports may be added. For example a tray equipment specification should

allow for the possibility of a number of temperature and pressure probes being

CHAPTER 4. PDIST 	 109

present. For any single process structure there is a large variety of configurations

in which control information can be added. Also in a given process more than

one control system may be present on a given set of equipment, some active and

some inactive depending on the actual operational mode of the process.

We are now left with a highly complex process description, which like a real•

process contains many options of structure, depending on how it is being used.

Given that a storage format can be produced which represents all this information

and likewise a nice process drawing package on top to simplify its creation from

the user, how would a modelling program go about analysing this process and

whether it is capable of actually simulating the structure described?

Modelling Based on a Process Description

Simulation models are usually written with a specific process structure in mind.

For different structures, different models are written. This includes both control

and equipment models. The problem for a given set of models is in how to analyse

a given process and work out whether the models available apply to the structure

provided. There are a number of possible ways of tackling the overall problem.

The most obvious ones are:

1. The modeller produces a series of possible input process templates.

In this case the modeller would advertise the possible process structures

that can be simulated. The front end of the package could then compare

all input processes presented with the templates provided by the modeller

and decide which if any of the models are applicable.

Once selected the models would then simply interrogate the process struc-

ture using some dissection functions provided with the process description

library.

CHAPTER 4. PDIST 	 110

2. The modeller writes a process analyser for the particular models.

Here the modeller writes a process analyser using function calls from the

process description library. Using this mechanism the models are free to

explore the process rather than simply having to take one which matches

a particular template. The idea is similar to the template option except

• here the templates are represented in the programming rather than as input

descriptions in their own right.

Option 1 offers a more generic method of describing possible input. For this

mechanism, a front end process matcher would be usable for many simulators

of varying types. The main problem is that at first glance, the format is very

static. A template would have to be provided for all possible variations around a

theme. What would be much more usable would be a template description which

has a more dynamic flavour: i.e. one that describes the theme and the rules

under which it is applicable. An example would be a controller that requires a

temperature reading from the stripping section of a column. This temperature

reading could thus be taken from any tray under the feed tray. Since the number

of trays and the feed location are not known until a simulation is requested and

an input object provided, the template for the models should be able to state

rules relating to actual parameters in the input object. In our example this could

be a rule stating that the control connection must be to a probe which is at a tray

number below the feed tray in any column used. Another type of rule which the

template could contain is one relating to limits of the models usage for a given

problem type. An example of this type of rule is that a particular model cannot

cope with more than a certain number of components. A simulator should never

be run with an input it cannot cope with.

Option 2 is unusable as a generic tool, since the modeller is being asked to write

a specific process analyser. In this case the models are also up and running when

the input process is received. The advantage of this option however, is that it

CHAPTER 4. PDIST 	 111

does provide the modeller with a more dynamic viewpoint of the simulation input.

Explicit knowledge of the limits of the program etc can be hard coded into the

analyser.

Of the two, option 1 is by far the most attractive but would require much more

work to develop. This option not only requires a method for describing a process

structure, but also a layer above which can explore and validate particular parts

and relationships within the process structure itself. Unfortunately this particular

option represents the only real solution for a large process simulator which is built

out of smaller more focused ones. At some point the front end of such a simulator

has to break the overall problem up into parts. The only way it can do this is by

knowing what simulators are available, and what types of inputs they can accept.

The overall problem then boils down to taking the overall process, separating it

into a number of simulatable parts based on knowledge of the simulators available

and putting them back together. Only a simulator with this functionality is really

going to be simple to use for large problems. The theory behind this type of input

is further explored in Chapter 5.

In addition to the general process structure, the specific information associated

with a given modelling methodology must be present. In the template described

here, this would have to be incorporated as a set of rules which define the infor-

mation required in addition to that obtainable from the basic process description.

How this information would be input is a difficult problem in its own right.

Finally whatever structure is defined, it must also be able to represent changes

that occur with time. This can either be done by providing a list of time stamped

formats, or as a single format with a list of time stamped changes. Either way,

the changes must be valid as far as the models are concerned and also easily

analysed by the modelling code.

CHAPTER 4. PDIST 	 112

Input Format Conclusions and PDists Input

The input format described represents the ideal format for a dynamic simulator of

any type and size. The work required to produce such a mechanism is enormous.

It may not even be possible. The programs produced in this thesis aim to show

how a simulator can be broken down into parts. It is thus also part of this thesis

to attempt to show how an input structure conceptually similar, but much more

simplistic, can be used to input structural and control related information in a

standard way to a simulator which can technically contain many different models.

Many of the complex issues described in this section are now being tackled by

the épée project [94], of which this author is a part. This project aims to create

an environment where all engineering programs used, communicate information

to each other via engineering objects. Part of this involves the creation and

manipulation of process objects via various tools.

4.5.2 PDist Input Format

The input mechanism for PDist uses a standardised file format to describe a

distillation column. Instead of representing the distillation process as a series of

connected process units, it uses a more general engineering viewpoint of what an

actual distillation column is like.

In the format a column is assumed to be made up from a tray column section,

a refiux section and a reboiler section. The file format is structured to allow

these various parts to be described. The format is very fixed and designed to

be usable for tray columns only at present. If required, it could be tailored for

packed columns. The exact syntax of the input format is described in Appendix

E.2 and an example is given in Appendix C. The overall format is composed of

three sections. These are:

CHAPTER 4. PDIST
	

113

The column section and its standard attributes.

The reflux and reboiler sections.

A programming section for registering dynamic changes to the above.

Column Section Attributes

The column section description is subdivided into contexts. Each context con-

tains the information associated with that context. At the moment the contexts

provided are:

. Size information

The number of components, stages and feeds etc.

• Component names

• Feed information

This includes location of, composition of, temperature, pressure and q value.

• Thermodynamic information

Molecular weights, densities etc.

• Simulation information

Finish time, time step, history time step etc.

• Tray hydraulic information

• Model specific information

This allows model specific input variable declarations to be made.

CHAPTER 4. PDIST 	 114

All of this information is reasonably standard and unlikely to change between dif-

ferent column simulations. The only really changeable part is the user modelling

variables.

Reflux and Reboiler Attributes

The refiux and reboiler sections are not so invariant. Probably the greatest

variation between columns is in what the ends look like. To work around this

problem, the input format for these sections allows models of varying types to be

associated with the four main controllable streams. These being the refiux, tops,

reboil and bottoms streams. For each stream a number of models or controllers

can be defined. To each one the associated model and structure parameters are

added. Additionally the description includes a default model to use for each

stream. Changes to these defaults can be detected during model execution. This

is described in section 4.5.3.

Using this input mechanism it is possible to provide a single input format to a set

of models which are capable of simulating many column structures. The industrial

case study model input file shown in Appendix C displays this functionality. Here

the input describes models capable of simulating both conventional distillation

columns with various control options and also reactive azeotropic distillation

columns. The choice of structure is controlled by changing the default model

selection variables mentioned above.

Programming Attribute Changes

The final part of the input mechanism allows a number of preprogrammed per-

turbations to the initial column setup to be entered. These changes are referred

to as events in PDist. There are two types:

CHAPTER 4. PDIST 	 115

TIME events

These events are set to execute at a particular time in the simulation.

STATE events

A STATE event differs from a TIME event in that it is executed when a

simulated column reaches a given state of operation. The exact point at

which this occurs can only be detected by the simulation models themselves.

Each STATE that is likely to occur is given a preprogrammed number.

When a set of models reach the expected state, they can execute all of

the events registered with this state. An example use of this would be

for declaring events to execute when a dynamic simulation reaches steady

state.

These changes can either be preprogrammed, added dynamically via the interac-

tion panel or a combination of both. Either way this mechanism allows a complete

log of all changes to be kept. After an interactive session the original input file

is reproduced, complete with additional TIME events added. When PDist is

run in batch mode with this produced input file, it will completely recreate the

simulation performed interactively.

This recording structure would be most useful for operator training. A simulation

could be set up and preprogrammed with known changes. The trainee could then

run the simulation interactively and try to correct the hidden changes based on

output observations from the simulation. At the end of the simulation the revised

input file could be used to review the changes made. If wrong actions where taken,

the file could be adjusted and the simulation rerun to show the correct course of

action.

CHAPTER 4. PDIST
	

116

Input Format Summary

The input format described provides a mechanism for describing a column, if

somewhat abstract, and the changes which must be made. It can also be used by

a variety of tools, which understand the format, to pass column setup information

between each other. All of the tools in PDist read the input file on running. In

interactive runs, the interaction panel uses the format to inform other tools of

new setups.

4.5.3 Accessing Input Information from PDist Models

At the beginning of a simulation the input format is parsed and the associated

information bundled up and communicated to the individual model simulators

which make up PDist. The communicated information is then unbundled and

presented to the models as global setup variables. The variables used are shown

in Appendix C.1.

The models can either use these variables directly or copy over the contents to

local storage. As well as the initial setups, the individual simulators keep track

of any events which are preprogrammed. The input variables are updated at

the appropriate times. Any models which directly link to these variables, will

automatically pick up any changes. Changes made via the interaction panel are

encoded and transmitted to the various simulators for decoding. Both prepro-

grammed and interactive changes are always presented to the models via changes

in the global setup variables.

This mechanism, although usable, lacks any real error control. The current mech-

anism requires the models to check that the input data matches the expected

format, spot dynamic changes in the input and cope with illegal model changes.

There is also no unit checking for input variables. All inputs variables are simply

CHAPTER 4. PDIST 	 117

numbers. A more acceptable mechanism would be one which provides a layer

between the input data and the modelling variables. Providing such a mecha-

nism is again complex. For the purposes of this thesis it would only really offer

a more refined way of providing the input functionality which already exists. It

has thus not been improved farther. Again the épée [94] project tackles many

of the issues discussed.

4.5.4 Interaction

The final part of the front end is the interaction panel. This is a program which

can read the input format, allow it to be changed, start the simulation and change

the initial setup dynamically during execution.

Figure 4.7 shows a screen dump of the interaction panel during execution. The

interaction panel simply displays all of the information in the input format and

allows it to be changed. Much of the input format contains information which is

purely there to allow the interaction program to present the input in the users own

terminology. Specialised windows are provided to allow the reflux and reboiler

models to be switched on and off. More appreciation of it is gained from its use

rather than its description. The graphical user interface allows full control of the

simulation input.

4.5.5 Front End Conclusion

The front end to PDist shows how a parallel simulator can be utilised as easily

as a sequential one. It is a concept prover; the épée environment goes a long

way towards providing a more generic and robust input mechanism. The future

of process engineering tools relies on them being able to talk engineering to each

other. PDist shows some of the benefits of getting them to do this.

CHAPTER 4. PDIST
	

118

Figure 4.7: The Interaction Panel

The next section now moves on to the back end of PDist. This is by far the most

developed and tackles many of the problems associated with managing the kind

of information that is likely to come out of large, modular simulators.

4.6 The Back End

This section describes the tools that manage and manipulate the solutions leav-

ing PDist. The section begins by examining the various issues associated with

managing large volumes of highly variable data. The remainder of the section de-

CHAPTER 4. PDIST 	 119

scribes each tool and how it tackles the various problems associated with solution

management.

4.6.1 Introduction

Dynamic simulators produce vast quantities of solutions at either regular or irreg-

ular time stamped intervals. The structure of this information is highly dependent

on the problem being solved and the models being used to solve it.

The produced solutions are only useful if they can be presented to the user in

a meaningful manner. To do this a solution management and display program

is required. This is not trivial to produce. The main problem is not so much

related to actual solution display, but to finding and extracting the solutions of

interest.

The only way that solutions can be managed is if the overall solution structure

can be broken down into definable and hence manageable parts. For a chemical

process the first step is relatively simple: split the solutions into groupings based

on process topology. With the modular approach being used for this thesis, this

process is provided for free. Solution data are already being exclusively managed

by the individual simulators being used.

Given that the solutions are now separated into groupings based on process topol-

ogy, the remaining task is to provide a mechanism for describing and manipulating

this more defined information.

Managing Process Unit Solution Information

Earlier text has already shown that in order to simulate a process, an input

description is required which defines the process along with its associated static

CHAPTER 4. PDIST 	 120

and model dependent attributes. The structure of the solutions is also highly

dependent on this input information. The number of solutions being produced

is a direct function of process attributes. i.e The number of components and the

number of stages in a column.

A format is thus required which can describe the solutions based on information

taken from the input mechanism and on information about what the particular

models used are capable of producing. As with the input problem, producing a

completely generic process output format is beyond the scope of this thesis. As

with the input mechanism however, PDist has been written with a more targeted

version of what is required.

4.6.2 Simulation Solution Management in PDist

All of the tools which manipulate solutions within PDist obtain information about

the solution structure from a solutions description file. This file is created by the

author of the models being used. For every set of models produced, a suitable

solutions description file must be created. The main purpose of the file is to

declare explicitly what information is being exported from the simulation models

along with recommendations for how these solutions should be managed.

The solution description format is composed of two parts: the solution structure

declarations and the solution management recommendations. Each of these is

now described. An example description file is shown in Appendix C.3 and the

complete syntax is described in Appendix E. I.

CHAPTER 4. PDIST 	 121

The Solution Structure Description

PDist's solutions are packed and exported from the modelling code via the model

interface routine pdist..solutionsQ. Within this function the solutions for a given

tray are packed by the models into a single vector. The order that this information

appears in the vector is defined by the modeller. The main reason for this is that.

it caters for the display of any solutions the modeller wishes to export to the

outside world.

To allow tools to usefully manage this information, the first part of the solution

description file is designed to allow the modeller to declare how many entries

are being placed in these solution vectors and to assign informative labels to

them. Since the number of entries are usually highly dependent on the problem

being solved the description format also allows the use of certain system variables

which are automatically instantiated once the problem input file has been read.

System variables include: the number of components, the component names, the

component molecular weights and densities and the number of distillation plates

in the column. Variables are declared by using a $ symbol followed by the variable

name enclosed in curly brackets. e.g. In the format the name of component 1 is

defined as ${COMP1}.

For every set of models the description file must contain declarations for the

solution vectors leaving the reflux, stage and reboiler models. An extract of the

format is shown in Figure 4.8.

Each solution entry in the overall vector is called a slot. For each slot in the

format a label must be added along with a shortened version which can be used

within graphs as keys. The example shown in Figure 4.8 highlights the use of

system variables for making the slot numbering a function of the input problem

and thus highly flexible. The example also shows how the system variables can

CHAPTER 4. PDIST
	

122

begin stage
slot 1 for ${NCOMP} "Molefraction ${COMP}" "Liq Mfrac ${COMP}"
slot (${NCOMP}+1) f)r ${NCOMP} "Molefraction ${COMP}" "yap Moifrac ${COMP}"
slot (2*${NCOMP}+1) "Total Molar Liquid Flow" "Ref].ux (Kmols/s)"
slot (2*${NCOMP}+2) "Total Molar Vapour Flow" "Tops Prod. (Kinols/s)"
slot (2*${NCOMP}+3) "Temperature (K)" "Temperature (K)"

end stage

Figure 4.8: Example of Solution Structure Declaration Format

be used to enhance the names given to slot labels.

The structure declaration provides any tool reading the format with information

about the amount of data that exists and how it can be located and referenced.

The next section of the description format deals with the declaration of how this

information can be grouped together and managed in an intuitive manner for the

engineer.

The Solution Display Recommendations

The solutions produced by PDist are stored as a series of time stamped solution

vectors. Each time slice contains a reflux solution vector, a reboiler solution

vector and a solution vector for each stage of the column. Each vector is further

described by the solution structure description discussed previously.

The remainder of the solution description file allows recommendations for solution

slot grouping to be made under various labels. Different tools can analyse the

groupings recommended under the label which applies to their particular function.

At present the groupings catered for are purely for the use of display tools. The

groupings currently supported are:

3d 3 dimensional plot recommendations.

CHAPTER 4. PDIST 	 123

2d 2 dimensional plot recommendations.

tables Solution tabulation recommendations.

runtime Recommendations for run time graphics to be displayed.

Any tool which reads the solution description format can access the information

under any of the groupings shown. They can. then either use or ignore the rec' :

ommendations given. All of the tools within PDist use the recommendations at

all times.

Each grouping of recommendations is built out of "contexts". A context is the

label given to a number of recommendations which are associated with a sub

part of the overall simulation problem. e.g Solution data which is associated

with the context of liquid molefractions. For every context defined, a series of

items associated with that context can be declared. Each item must be given a

name and a solution vector slot location for where the particular solution data is

stored.

Figure 4.9 shows the 3d graph recommendations from the example description

file in Appendix C.3. The recommendations shown are grouped into the con-

texts of fiowrates, liquid compositions, vapour compositions and thermodynam-

ics. Within each context the solution management recommendations are listed as

items. Each of these items has a number, a label for the item and a description of

the solution information to be used. The solution information can be expressed

in two ways:

1. As a solution vector slot number

This declares the slot where the particular solution values can be retrieved

from.

2. As an algebraic function of slot numbers

CHAPTER 4. PDIST
	

124

In this case the solution value to be used is expressed as an algebraic func-

tion of variables, numbers and slot locations. This function is symbolically

evaluated as required. The main reason for providing this mechanism is to

allow complex solution relationships to be declared. In the example shown,

this is used to declare a relationship for converting mole fractions to weight

fractions. It is also used as a means of providing temperature plots in

centigrade as well as kelvin.

The symbolic maths evaluation facility can be used in other parts of the de-

scription file. Any text enclosed with single back quotes will be evaluated and

replaced with the result. Again the figure shows an example of its use in slot

number evaluation.

The other groups of recommendations are all encoded using a similar format.

The main exception is the runtime graphics tool recommendations. The format

for this is slightly different due to the simplicity of the current tool being used.

Solution Format Conclusions

The solution description format provides a flexible and descriptive mechanism

for the PDist model provider to declare and recommend the way in which the

tools associated with PDist manipulate the solutions produced. The format is

again fairly static and is specifically aimed towards describing the solutions being

produced by PDist. The format does however go a long way towards showing

that, given time, it should be possible to produce a generic output mechanism

that is usable by any dynamic simulator.

The mechanism for describing the solutions leaving PDist has now been described.

The rest of this section describes the tools within PDist which read this solution

description.

CHAPTER 4. PDIST
	

125

* Calculate the molecular weight sum for use in converting molefraction
* to mass fraction.
MWTSUN=
do i1 for ${NCOMP}

MWTSUM(${MWTSUN} + (${SLOT${i}} * ${MWT${i}}))

done

if Define the 3d Graphing Recommendations
begin 3d

context "Flowrates C:]
stage menu "Flowrates"

item 1 "Total Liquid Flowrate" slot (2*${NCQMP}+1)
item 2 "Total Vapour Flowrate" slot (2*${NCOMP}+2)

context "Liq Molefractions" [0.0:1.0]
stage menu "Liq Molefractions"

item 1 for ${NCOMP} "${NCOMP}" slot ${INDEX}
item (${NCOMP}+1) for ${NCOMP} "wt frac ${COMP}"

eval C (${MWT${BASEINDEX}}*${SLOT${BASEINDEX}}) / ${MWTSUM})
"wt frac ${COMP}"

context "yap Molefractions" [0.0:1.0]
stage menu "Vap Molefractions"

item 1 for ${NCOMP} "${COMP}" slot (${INDEX}+${NCOMP})

context "Thermodynamics" C:]
stage menu "Thermodynamics"

item 1 for ${NCOMP} "RV of ${COMP} slot (2*${INDEX}+3+${BASEINDEX})
item (${NCOMP}+1) "Temperature (K)" slot (2*${NCOMP}+3)
item (${NCOMP}+2) "Temperature (oC)"

eval (${SLOT'(2*${NCOMP}+3)'} - 273.0) "Temperature (oC)"
end

Figure 4.9: Example of Data Management Recommendations for 3D Graphs

4.6.3 Mist's Graphical Tools

The solution output description is used by a number of PDist's programs:

• The master program

CHAPTER 4. PDIST
	

126

. The back end solutions viewer

s The runtime solutions viewer

Each of these programs is described in turn.

The Master Program

The master program is used to set up and collect solutions from the individual

simulators which make up PDist. The program uses the solutions .description

format to calculate the amount of storage required for a particular simulation.

The program ignores all of the display recommendations. The master program

uses very little of the output description. However, at the end of a given simula-

tion, it does call the back end solution viewer which does use the majority of the

recommendations given. This viewer is now described.

The Back End Solutions Viewer

At the end of a simulation, the tool used for general solution display is the back

end solution viewer. This viewer can either be executed from a program via

a library call or run as a standalone program. For the standalone version a

set of stored solutions is required. The viewer can display the solutions either

graphically, in 2 or 3 dimensions, or in tables. The graphs and tables available

are dictated by the recommendations given in the solution description file. All

of the window tools are written in XWindows and all graphics are written in a

revised version of TPlot which was originally developed by Eric Fraga [95].

To highlight how the output description file is used by the viewer a number

of figures showing screen dumps from the viewer are shown. In particular the

CHAPTER 4. PDIST 	 127

figures show the viewer produced for a three component distillation simulation

with model output described by the file given in Appendix C.3.

Miscefleous

Save Results ff Help Tool

Figure 4.10: PDist Graphical Display Selection Panel

Figure 4.10 shows the main viewer window through which all display options are

selected. The main window contains three row of selectors. The top row contains

selectors for 3d graphs, the middle row selectors for 2d graphs and the bottom row

a selector for tables. For the graph selectors, there is one for each context defined

in the description file. To provide simulation efficiency diagnostics, an extra

selector is provided for each graph type to allow timings information produced

by PDist to be analysed along with the modelling solution produced.

PDist Simulation Results Graphical Display Tool

3D simidatfonwaffle menu buttons

J FbxwratesT7 Liq Mo1efractioJw! "

MoIefractimj Thodondc

ofle menu buttons_______

vt frac Methanol

Results UieID Tool

Figure 4.11: Selection of 3D Context Items

For each row of buttons the mechanism for displaying solutions is slightly differ-

CHAPTER 4. PDIST 	 128

ent. For 3 dimensional graphs, a single graphing window is produced for each

item specified in a given context. For this reason each selector on the top row

contains a menu of context items which can be selected. Figure 4.11 shows the

way the display items are selected by the user. In the menu shown some items

have a tick symbol beside them and others a chip symbol. A tick indicates that

the solutions being selected are known A chip indicates that the solutions being

selected for display are symbolically evaluated from known sOlution data.

After a given item has been selected, a 3d graph tool is produced which displays

the solution information selected. Each 3d graph displays the required solutions

on the vertical axis against time and plate number. The time scale, viewing

angle and vertical plot ranges are all changeable. Figure 4.12 shows a 3d plot of

temperature through the column.

For the 2 dimensional graphs, a single viewer is produced for each context. For

this reason the main window selectors are simply buttons. Once selected a 2d

dimensional graph viewer for that context is produced. The items to be plotted

are then selected from a menu. All 2d graphs plot the selected item against time.

There is an item selection menu for each stage in the column. Every item selected

is added to a list. Once the draw button is selected, all of the stored selected

items are plotted. Figure 4.13 shows how various items are selected and displayed

for the compositions context defined in the output description file.

The final part of the solution viewer is the tabulator. The tabulator is selected

using the "Tabled Output" button on the bottom row. Figure 4.14 shows the

tabulation window produced. Within the window a complete set of solutions is

displayed for a selected time in the simulation. Each row of the table contains

solution information relating to either the refiux section, the reboiler section or

a particular plate in the column. The columns of the tables display the solutions

for all of the items declared in the various contexts of the table display recom-

mendations. The columns contain headers which show which items belong to

CHAPTER 4. PDIST 	 129

Figure 4.12: Example of Solution 3D Graphical Window

which contexts.

The viewer as a whole is extremely usable. It can be used to display any of the

solutions leaving the simulation models, provided they have been recommended

for display within the output description file. The viewer was found particularly

useful by the industrial case study company for viewing changes in the column

which had previously been unmeasurable on a real column.

The Run Time Solutions Viewer

When PDist is executed with the run time graphics option set on, a copy of

all solutions produced is passed from the master program to a run time graphics

CHAPTER 4. PDIST
	

130

20 Plot To!
	

laying Compositions Related P01st Solution Data

:V1 T11
	

DreeMotea] Made: I Add to ,

Compuitonl
.1 UpdEtheI 	I 	Key toPlot

_____________• ... P1: Li q Mfr.c Medionol

___________ • .

Pit: UjMfrocMethonci

Vapow Water _. PM: I.MfracMedazio1

•... P31:LiqMfracEthannl

. P37:Uq.MfrecWotox

20 Plots Selected

2D Plot, Akeady Pro

I Ph 1: Uq. Mfrec

I Ph 11: Llq. Mfrac Methmaol
Pit 23:Llq.MfracMatbezol
Ph 31: Lie. Mfrc Dhmd
Ph 37: LIq. Mfrac Weaer

Su1enonThns (gem)

Figure 4.13: Example of Solution 2D Graphical Window

program. This program displays the information onto the chosen graphics display.

At present this program can only display 3 dimensional graphs. Again the pro-

gram only displays graphs for the solutions recommended in the output descrip-

tion file. Figure 4.15 shows the run time solutions viewer in use.

Of all the programs in PDist, this is the least developed. It mainly lacks the

ability to display 2 dimensional graphs and tabled output during execution. The

addition of these features is relatively simple, just time consuming.

CHAPTER 4. PDIST 	 131

P01st Solution Tabulator

[51iolrThb1e'LSeve8e.ldtI'I ThIs: I t I 250=8 am

Coimei Profile at lie. 250.000000 Seconds

(Teeperatsire 36 Flows 36 Tops Coiçositiana
leap (K) Ref lux Tape Ref Ratio lethonol Ethanol Mater

Reflex: 0.0000006.00 0.00700 0.01400 0.50002 0.88304 041698 8.1696098-08

6 Teaperat.we IC 	 Ficex It r. 	LUCK= It
Tape (K) Liquid Vepo* lethonol ' Ethanol Mater "ethanol

Plate .82; 	.' 339.50138 0.00700' 0.01400 0.91080 0.18920 3.072278E.07 0.74882
Plate. 41: 340.12819 0.00700 0.01400 	' 0.75892 0.24108 7.115416E-07 0.68851
Plate 40: : 340.56595 0.00700 0.01400 0.72328'' 0.27673 1.483669E-06 0.64515
Plate 39: 340.88388 0.00700 0.01400 0.59945 	' 0.30055 2.867312E-06 0.61217
Plate 38: 	.. 341.06058 0.00700 0.01400 0.68378 - 0.31821 4.831080E-06 0.60068
Plate 37: 341.19122 0.00700 0.01400 0.67344 0.32655 8.592377E-06 0.58926
Plate 38: 341.28080 0.00700 0.01400 0.68839 0.33360 0.00002 0.58152
Plate 35: 341.34848 0.00700 0.01400 0.66107 0.33890 0.00003 0.57572
Plate 34: 341.41010 0.00700 0.01400 0.65826 0.34370 0.00005 0.57048
Plate 33: 341.48090 0.00700 0.01400 0.65074 0.34918 0.00008 0.56452
Plate 32: 341.57774 0.00700 0.01400 0.64323 0.35662 0.00015 0.59641
Plate 311. 341.72083 0.00700 0.01400 0.63221 0.36150 0.00029 0.54470
Plate 30: 341.93413 0.00700 0.01400 0.61598 0.38343 0.00061 0.52759
Plate 29: 342.24420 0.00700 0.01400 0.58278 0.40588 0.00137 0.50365
Plate 20: 342.67799 0.00700 0.01400 0.56143 0.43528 0.00330 0.47219
Plate 27: 343.26388 0.00700 0.01400 0.52154 0.47012 0.00824 0.43395
Plate 26; 344.04416 0.00700 0.01400 0.47430 0.50553 0.02038 0.39129
Plate 25: 345.10341 0.00700 0.01400 0.42089 0.53130 0.04771 0.34748
Plate 24: 346.59007 0.00700 0.01400 0.35350 0.53494 0.10158 0.30588
Plate 23: 348.65919 0.00700 0.01400 0.30444 0.50347 0.19209 0.25794
Plate 22: 351.27607 0.00700 0.01400 0.24885 0.43977 0.31338 0.23561
Plate 21: 354.04259 0.00700 0.01400 0.20329 0.38332 0.43339 0.20972
Plate 20: 358.38400 0.02200 0.01400 0.17162 0.29799 0.53040 0.19104
Plate 19: 355.35752 0.02200 0.01400 0.20620 0.29001 0.51379 0.70
Plate 18: 354.41159 0.02200 0.01400 0.23795 0.26547 0.49858 0.28472
Plate 17: 353.51795 0.02200 0.01400 0.26768 0.25397 0.47636 0.29682
Plate 16: 352.65933 0.02200 0.01400 0.89 0.24527 0.49884 0.32839
Plate 15: 351.82882 0.02200 0.01400 0.32293 0.23919 0.43788 0.35367
Plate 14: 351.01207 0.02200 0.01400 0.34897 0.23556 0.41547 0.37819
Plate 13: 350.21999 0.02200 0.01400 0.37412 0.23417 0.39171 0.40121
Plate 12: 349.44989 0.02200 0.01400 0.39835 0.23481 0.36683 0.78
Plate 11: 348.70752 0.02200 0.01400 0.42161 0.23723 0.341.1.6 0.44170
Plate 10: 347.99943 0.02200 0.01400 0.44371 0.24119 0.31510 0.49853
Plate 9: 347.33349 0.02200 0.01400 0.46440 0.24850 0.28910 0.47322
Plate 8: 346.71858 0.02200 0.01400 0.48332 0.25305 0.26364 0.48557

1. H
Figure 4.14: Example of Solution Tabulation Mechanism

4.6.4 Back End Summary

The back end of PDist has proven to be extremely useful in presenting the use-

fulness of dynamic simulators to the industrial community. There has been a

lot of interest shown in the ability of the simulator to provide complete solution

management for the user in a simple and easily used form.

Molefracüon Water

0.8

0.6

0.4

02

.8

.6

.4

.2

tr

CHAPTER 4. PDIST
	

132

Runtime 31) CFX Display for Molefraction Methanol

Molefracüon Methanol

0.8

0.6

0.4

02

0.8

0.6

0.4

02

0
41

%ber

Runtime 3D GFX Display for Molefraction Ethanol

Molefracuon Ethanol

Runtime 3D GFX Display for Molefraction Water

200 "Ii.,
400

Time. (sacs)

Figure 4.15: Example of Run Time Graphics

4.7 Summary

PDist was originally written to show that parallelism could be used effectively

for dynamic distillation simulation. The current version shows that it is indeed

possible to produce parallel simulators which are not only highly parallel but also

0.8

0.6

0.4

02

CHAPTER 4. PDIST
	

133

highly usable.

As far as parallelism is concerned, the main work for the future is in connecting

simulators like PDist together to produce a single plant simulator. Some work

has already been performed in this area. This has resulted in a package called

PNet. The next chapter describes the aims of PNet and how it has been used to

connect PDist to multiple version of itself.

Chapter 5

PNet: A Parallel/ Process
Network Simulator

The work on PDist shows that it is possible to utilise parallel processing for the

dynamic simulation of distillation columns. It also shows the benefit of adopting

a highly modular approach to both model and utility management construction.

Given that it is possible to produce similar simulators for other highly complex

process units, it should be possible to connect a number of these simulators

together to produce a complete plant simulation.

This chapter describes PNet, a Parallel/Process Network simulator. It has been

written to demonstrate that this approach is possible. As with PDist, PNet builds

upon the parallel simulation theory described in Chapter 3.

5.1 Introduction

PNet was written to demonstrate the use of parallelism for the dynamic simula-

tion of highly complex chemical processes. PNet is not a dynamic simulator in

its own right but more of a mechanism for producing one. Figure 5.1 shows what

PNet provides.

134

CHAPTER 5. PNET
	

135

Parallel Simulator

• U 	U _ _ •
U 	U 	•U

. 	a
U.:: 	• U.

U.
____ 	• •j 	U ..

Reactor 	Flash 	U a 	• _____

Cl C2 	 C3
uTrLrrr

Figure 5.1: Diagram of General PNet Structure

In the figure there are two shaded boxes. The top box contains the process which

is to be simulated dynamically. The process as shown has already been broken

down into a series of connected process blocks. The methodology for breaking the

process up is based on the availability of specialised dynamic simulators which

can be used to simulate the process blocks produced.

Once the process has been broken into blocks, the idea is to load up the local

computing hardware with the individual simulators available. Some of these

simulator programs may be parallel, PDist being an example. The lower shaded

box in the figure shows how the individual simulators would be loaded. Small

black boxes represent individual programs,so in the case of the column simulators

shown, they are parallel. Once the individual simulators are loaded, the remaining

task is to allow them to communicate and act as a single simulator.

CHAPTER 5. PNET
	

136

PNet is designed to load these simulators and then create and manage the re-

quired connections. There are a number of ways in which simulators can be

connected. This is now examined, and the eventual mechanism used by PNet

described.

5.1.1 Connecting Dynamic Simulators

The theory behind modular simulator construction has already been described

in Chapter 3. Briefly, there are three possible ways of connecting dynamic sim-

ulators together with a view to utilising parallelism. In general, each simulator

is attempting to simulate over a specified time horizon. This horizon represents

a global rendezvous point for all simulators. To reach this horizon, each individ-

ual simulator may take a varying number of time steps to get there. The three

approaches which can be used for multiple simulators to attain this goal are:

Explicit Modular Approach

This is the simplest way of connecting simulators together. Over a given

time step each simulator uses fixed inputs. These inputs having been pro-

duced by the connected input simulator on the previous time step. Since

the input is fixed, each simulator only calculates a given time step once and

once only. There is no iteration between simulators. Since simulators can

use different time steps to cross a given time horizon, some of the required

input variables at a given time may be unavailable. In this case they can

be obtained by extrapolating known input values at other times. Matters

can be simplified greatly by using a small enough time horizon and forc-

ing connected simulators to only use inputs calculated at the previous time

horizon.

Implicit Modular Approach

CHAPTER 5. PNET
	

137

The implicit modular approach is an iterative one. In this case each simu-

lator must use the inputs produced for the currrent time step by the con-

nected simulators. All of the simulators keep recalculating the time step

until there is global convergence over all of the connections. This approach

is the same as that used within PDist. It is likely to be more robust, but

will consume much more computer time and be more difficult to coordinate.

Again each simulator may use a multistep approach across the time horizon

and interpolation may be required to provide intermediate stream values.

3. Implicit Lookup Modular Approach

This represents a half way house between the explicit and implicit ap-

proaches. In this case the aim is to avoid the requirement for all of the

simulators to iterate together to a globally converged state but yet retain

the robustness produced by the iterative method. This is achieved by us-

ing historical connection information to guess the connection status for the

end of the current time horizon. These guesses are then used as input for

the simulators over the time horizon. If the guess was a good one, at the

end of the time horizon, each simulators output should closely match the

estimated one. In the event that they are drastically different, the time

horizon for future calculations can be reduced. In severe cases this may

involve backing up the simulator(s) for the time horizon just calculated. Of

all the approaches this is the most difficult to implement, since all simu-

lators must be able to backtrack. However, for processes likely to display

discontinuities, this is a useful feature to have.

All of these approaches have their advantages and disadvantages. The aim with

PNet has been to attempt to produce a connection mechanism which allows

all of these approaches to be used within a consistent framework. With all of

the approaches described the simulators remain relatively unaffected. They are

always receiving inputs for a given time and either doing a once only calculation,

or repeating the same calculation procedure until converged. Either way the

CHAPTER 5. PNET 	 138

variation between simulation approaches is in the management of connection

information.

Given that connection management is the main stumbling block, the question is

how should it be implemented? For each connection between simulators there

are three possible locations for implementing connection management:

At the source simulator

At the sink simulator

Between the connected simulators

The first two options are unrealistic from a programming viewpoint. In both

cases information is being managed by either a source or sink simulator. In order

to pass information from one to the other both source and sink simulators would

have to synchronise their actions to a large extent. This becomes near impossible

to implement when simulators are both source and sinks and also highly con-

nected. Providing flexibility in connection strategies is also problematic. Chang-

ing the connection management algorithms would involve the recompilation of

any simulator which contains the inbuilt PNet connection management code.

This leaves option 3. Here the solutions are being managed by an intermediate.

The only way of providing this, is via an external program dedicated to managing

the connection information separate of the two simulators being connected. There

are a number of advantages to this approach:

• Simulators can run asynchronously

This creates less idle time since there are no major simulator synchronisa-

tion problems.

CHAPTER 5. PNET 	 139

• Simulator connection/construction is simplified

Simulators simply need to know how to send and receive information from

a connection manager. This can be provided via a set of simple routines.

• Connection algorithms are detached from the simulator algorithms

The• connection managers contain: all of the extrapolation/interpolation.

code. This allows the mathematicians to focus on data management al-.

gorithms and the engineers to focus on simulator construction. Again this

shows one of the benefits of a highly modular approach.

• Changing connection strategies is simplified

Since the connection is managed by a separate program, changing the con-

nection strategy simply involves changing the connection program. There

is no recompilation of simulator code required.

• Simplified solution management

Since PNet is providing the connections, it is only natural for it to manage

the collection of connection information. This is easily provided since all

connection programs have to be managed by a central program anyway.

Of the three possibilities, the intermediate connection management approach

appears to be the best. It is also by far the simplest to implement and continues

the highly modular theme which has been present throughout the majority of

this thesis.

The version of PNet produced is designed around intermediate connection man-

agers. The PNet approach to simulator connection is now described.

CHAPTER 5. PNET 	 140

5.1.2 PNet Approach to Simulator Construction

PNet connects process simulators together via intermediate connection managers.

From now on these shall be referred to as "pipes". Figure 5.2 shows how a pipe

is used to bind two simulators together.

Idealised Process Connection

Process 	 I Process

	

I 	A 	I 	 I 	B

I 	"I

Connection Management Within PNet (the pipe)

Pipe

• 	 Data Store
Process A 	 Process B

Process 	 Process User Supplied Simulation 	 Simulation Data Handlers Program 	 Program

	

PNet Interface 	 Pipe Kernel 	 : 	PNet Interface

L
th:;P1es 	

: ., Y/V J
To/Fro her Pipes

To/From 	 PNet Master
Other Pipes

I

To/From User

Figure 5.2: The PNet Connection Manager: The Pipe

The figure shows the management of data transfer across a connection between

a process simulator A and a process simulator B. Each process simulator has a

number of other connections. These are managed elsewhere by other pipes. In the

CHAPTER 5. PNET 	 141

figure each dotted box is a separate program. Again arrows indicate information

transfer between programs.

Each process simulator program transmits and receives stream connection infor-

mation via the PNet Interface. For each input/output connection a simulator

has, .the library allows the simulator to read and write from the particular pipe

associated, with it. The PNet Interface also provides the simulator with a gateway

to a PNet Master program. This is responsible for convergence checking, solution

collection and other related management functions.

Once the simulator network has been loaded, every simulator is talking directly

to one or more pipe programs. The pipe program itself is built out of three parts.

Some of these parts are supplied with PNet. The rest are supplied by the creator

of the management algorithm being used by the pipe. The parts are as follows:

The pipe kernel

This is supplied by PNet and is responsible for managing all of the in-

teractions of the pipe with its source and sink simulators. The kernel is

essentially a continuous loop program which simply responds to requests

for information storage and retrieval. As with the PNet Interface Library

the kernel also has a connection to the PNet Master program.

The user supplied data handlers

The user supplied data handlers are responsible for managing storage and

retrieval requests from the kernel. The data handling code must be written

within a number of kernel callback functions.

The data store

The data store is the area where all current and historical connection data

are stored. At present this must be user supplied.

A fuller description of the PNet pipe and how one is produced is given in Section

CHAPTER 5. PNET 	 142

5.2. For the moment PNet uses a single pipe for every process connection. From

an efficiency viewpoint, it may be necessary to manage more than one connection

in a single program. This and other related issues are dealt with in Section 5.2.

5.1.3 Other Simulator Connection Issues

The description of PNet so fax has focussed on the direct connection of simulators.

Although this represents a large part of the overall problem, there are a number

of other issues which affect the way in which PNet has been structured. These

issues are now described.

Controllers and Control Information

The connections managed by pipes represent the process connections through

which actual material is transferred. In a plant this material transfer is managed

by process controllers.. In reality these controllers act on information read from

the process and manipulate a series of control valves. The actual controllers can

be situated near the process being controlled or be part of one large centralised

control system.

At present PNet has no controller management facilities. Each simulator is re-

sponsible for providing the control algorithms it requires for its own process.

There is also no mechanism for one simulator to access process information from

another. Hence control algorithms cannot span multiple simulators.

Although not yet implemented, control can be added in a similar fashion to

material connections. At present a process simulator declares a serious of inlet

and outlet connections for pipes. To this could be added a number of outlet

analysis ports and a series of control setting input ports.. A set of interface

CHAPTER 5. PNET 	 143

functions could then be written to allow external control programs to read process

information from the analysis ports and write control actions to the control setting

ports. Unlike with material connections, there is likely to be a wide variety of

analysis ports required.

With such a framework it would be possible to build localised control programs

for localised controllers and larger control programs which represent the main

on site control centre. For all control program produced the binding to the

process simulators would be the same. These control programs are more closely

related to pipe data managers than the actual simulators. The control programs

are essentially data managers in their own right. In this case data is no longer

relayed unaltered to a destination port, but is mapped by a control algorithm to

another form. For this reason the implementation of a control program would be

very similar to that for a pipe.

With the addition of control programs the full structure of PNet is beginning

to take shape. PNet is not so much a set of simply connected simulators, but a

whole series of specialised programs cooperating together. The structure evolving

is beginning to closely represent the structure of an actual plant. The only real

difference is that the continuous world is being mapped into a discrete one.

Solution and Interaction Utilities

For a dynamic simulator to be usable, the user must be able to interact with it

and view the data being produced. The benefits of this have already been shown

with PDist.

In PNet, all of the pipes are being managed by a centralised control program:

The PNet Master program. It is a simple matter to make this program a sim-

ple solution collector for pipe information at regular time intervals. The larger

CHAPTER 5. PNET 	 144

problem is the collection of solutions from the simulators themselves.

The work on PDist has already highlighted the difficulty associated with providing

a generic interaction and solution viewer for process simulators, see Chapter 4.

The overall solution relies on being able to fully specify the process structure

being simulated, This includes being. able to:

. Describe the physical equipment and topology

• Describe the models used to simulate the equipment

• Specify the inputs for a particular set of models

• Specify the output from the models being used

This usually relies greatly on the input specification.

The production of a description format capable of describing all of these features is

well beyond the scope of this thesis. As mentioned in Chapter 4, the épée project

[94] tackles many of the issues relating to process description and manipulation.

At the moment PNet assumes that individual simulators can provide their own

input format and solution display mechanism. For future simulators, this individ-

ual simulator management approach is seen as the correct methodology to use.

The aim in the end would be to provide a standardised method for providing

simulator interaction and solution display. Such a mechanism would have to rely

greatly on the overall process description. Again the mechanism would probably

be provided through a series of ports attached to simulators, to which specialised

interaction and display tools could bind and send and receive information from.

CHAPTER 5. PNET 	 145

5.1.4 The Current and Proposed Structure of PNet

The majority of the functionality described here is hypothetical. At present only

simple pipe managers have been implemented. No control, simulator solution

management or interaction mechanisms have been produced. These are still

provided internally by the specific simulators being connected. PNet has however

been designed with a view to providing these -extra features. Figure 5.3 shows the

implementation structure of P Net. This includes current and envisaged features.

The diagram shows two distinct parts to PNet: The PNet Front End and the

PNet Simulator.

The PNet Front End is the mechanism for creating a process and launching a

PNet simulation of it. The final product of this creation mechanism is a PNet

Simulation Process Object. This contains a complete description of the process,

the simulators to be used, the utility programs required, the initial input specifi-

cation and the solutions which can be produced. There are two possible ways in

which this process description can be created: either via a process editing pack-

age which has a local data base of available simulators, or via some engineering

design system similar to the épée environment mentioned earlier.

At present most of the PNet Front End is fictitious. The only existing part is a

simple PNet Simulation Process Object. This specifies the process topology and

simulator loading instructions. At present it must be generated by hand. This is

fully described in Section 5.4.1.

The PNet Simulator shown in the Figure 5.3 closely resembles the current ver-

sion. PNet is designed to allow many tools to cooperate. To do this they have

to communicate with each other. In the diagram this is labelled as the PNet

Communications Layer. This is accessed via a series of specialised interface rou-

tines. These routines are specific to the PNet features being used. i.e talking to

CHAPTER 5. PNET
	

146

PNet Front End:

epee

Environment

S.

Simulator 	 'N 	 epeto PNet
Program

Database .,

PNet Simulation Process ObjecV

:Prpt'iamuIntor
Process Simulation
Programs

Conol Simulation
PNet Solution Master f Programs

KM

PNet Communications Interface

Sp 	led Process h
Interaction UtI11ties.

9 PNet Processinteract ion Handlers 	I es _____________________
tffiti:

Figure 5.3: Diagram Showing the Implementation Structure of PNet

a pipe. The PNet Communications Layer is written in a package called RGC,

developed by myself. RGC is designed to be a bridge between PNet applications

and a number of various third party communications systems. At present PNet

can run on any hardware platform supporting either PVM [93] or CSTools [91].

CHAPTER 5. PNET 	 147

Similarly any parallel applications written in RGC are executable under PNet.

This is described in greater detail in section 5.4.

As shown all of the programs which make up PNet are functionally grouped.

At present direct support, via specialised interface routines, is only provided for

simulators and pipe programs. to intercommunicate. Solution management is pro-

vided for pipes by the PNet Master program. Although the other features men-

tioned above are not yet implemented, the diagram does show how the structure

of PNet can be easily extended to support these extra tools. PDist displays the

intended functionality of the features not yet supported, especially those related

to simulator interaction and solution management.

5.1.5 Summary

The proposed and actual structure of PNet has been described. The current ver-

sion of PNet aims to demonstrate that it is possible to connect various dynamic

simulator programs together via a series of intermediate connection managers,

referred to as pipes. It does not yet include support for external control pro-

grams, simulator interaction mechanisms or solution management. Supporting

these extra features within the structure of PNet is relatively simple. PNet is

designed around allowing extra connection types to be added to the simple pipe

connections which already exist. The main difficulty with supporting these extra

features is in the definition of the data being transferred rather than the actual

transferral of it. This is especially the case for solution management and simula-

tor interaction, which require information about the process structure, the models

being used to simulate them and what solution data these models produce. Al-

though not supported in PNet, the utility provisions within PDist demonstrate to

some degree how a generic set of interaction tools and solution manager programs

would fit into a fully working PNet simulation.

CHAPTER 5. PNET 	 148

The remainder of this chapter now describes the initial version of PNet which

has been produced. In particular the implementation of pipes, the creation of

connectable simulators and the actual mechanics behind the execution of a PNet

simulation are described.

5.2 Creating a PNet Pipe

The pipe is the main building block of a PNet simulation. Without pipes it is

impossible for one simulator to communicate with another. This section describes

the functionality a PNet pipe aims to provide, and how pipes are implemented

and created within the current version of PNet.

5.2.1 The PNet Pipe

Each pipe is responsible for managing a single simulator to simulator connection.

It is quite likely that, for efficiency reasons, each pipe program should be capable

of handling multiple connections. For the moment this has been ignored since

once PNet is fully working with single connection pipes, the effort required to

produce multi-connection pipe programs is relatively trivial.

Before describing the implementation of pipes, it is first important to understand

exactly what each pipe is supposed to provide in terms of functionality. The

current version of PNet requires the following:

1. Full Simulator Connection Data Management

The main function of a pipe is to manage connection data. This involves

storing the time stamped data being produced by the source simulator and

retrieving the time stamped data being requested by the sink simulator.

Since each pipe is a separate program, connected simulators can run asyn-

CHAPTER 5. PNET
	

149

chronously and thus the data storage time intervals do not necessarily have

to correspond to the requested ones. The local data management algo-

rithms should be able to provide the requested data by extrapolating or

interpolating on the data which has actually been stored. This process is

simplified somewhat by the requirement for all pipes to work over a com-

monly recognised time horizon.

A Global Convergence Mechanism

Some of the parallel connection strategies require there to be a global con-

vergence mechanism. As described in Chapter 3, all of the connections are

essentially tear streams. For connection strategies requiring iteration be-

tween simulators, each simulator must be able to determine when the whole

process network of simulators has converged. To do this each pipe must be

able to register its convergence status to a centralised manager, which can

then decide when the whole network has converged. Once this occurs each

simulator and pipe must then be informed that a globally converged state

has been reached.

Information Flow Management

Information flow around the simulator network is totally controlled by the

pipes. There is no global pipe controller in PNet. Each pipe program must

thus be able to control the way in which connected simulators can store and

access information. This not only allows connections to be managed more

efficiently, but allows the PNet to behave in specialised ways. One example

being that it is a simple task to make the PNet act as a sequential modular

flowsheeting package.

PNet Shutdown

Global shutdown of PNet is a cooperative event. Neither pipes or simulators

are designated as having overall control. This allows all simulators and

pipes to keep running until a general agreement on shutdown is reached.

CHAPTER 5. PNET
	

150

This approach also allows simulators which have finished to shutdown while

others are still running, thus freeing up hardware resources immediately for

other users. To provide this feature, pipes must be able to contribute to

shutdown decisions and also be able to work out when connected simulators

are finished.

For the moment these features are all that is required. For the future the main

extensions would cater for:

• Illegal Storage Detection

At present, simulators are free to send any data they wish to a pipe. There

is no mechanism for a pipe to reject incoming information. This presents

a problem when the down stream simulator wishes to put constraints on

particular input data slots. In particular this is likely to be with respect

to fiowrates. Managing such restrictions would involve the sink simulator

having to register its input limitations to the source pipe. The pipe could

then reject storage requests that were unacceptable. A simulator whose

storage request was denied, would have to cope with the change in its

output from that calculated to that allowed.

• Remote data access

Allowing remote access to connection information from control programs

and other simulators not actually connected to the pipe. As mentioned

before, this is relatively simple to implement within the current structure.

Depending on the simulator connection strategy being used and the type of sim-

ulation being run, different pipes will be required. It would be possible to build

a single pipe to cater for all connection strategies, but this would be inefficient.

This requirement for many pipes means that their construction must be simple.

The framework for pipe construction must be relatively standard, yet allow the

CHAPTER 5. PNET 	 151

above mentioned pipe features to easily built in a flexible and intuitive manner.

How this has been achieved is now described.

5.2.2 Pipe Creation and the Pipe Interface Routines

All pipes must be built using a set of pipe interface routines. These routines

are designed to hide the underlying communications code from the pipe writer

leaving them free to concentrate on connection management. At present these

are only available for the C language.

Figure 5.4 shows the structure of the pipe interface routines. The interface rou-

tines are grouped under the functionality they provide. Each box contains a

group of interface routines. The arrows indicate the execution path usually taken

from one set to another.

The majority of the routines are part of the PNet library and can thus be called

within a program. Some however must be supplied by the pipe writer. These

routines are called by the pipe kernel during execution and through these the

pipe writer must implement the particular connection management strategy for

the pipe.

The main programming code for each pipe must be supplied by the pipe writer.

From this code the various pipe interface routines can be called. The routines

are grouped as follows:

• Initialisation/ Shutdown Routines

These routines are the first and last routines to be called in a pipe main

program.

- pipe..init

Initialises the pipes communications layer and underlying structure

CHAPTER 5. PNET 	 152

Figure 5.4: Structure of the Pipe Interface Routines

- pipe-exit

Tidies up the communication layer ensuring clean pipe program shut-

down.

• Pipe Information Routines

In order to efficiently implement the various connection strategies, each

pipe needs to know various things about itself. These routines provide all

the information available.

- pipe_isa_feed

Returns TRUE if the pipe is a feed. i.e Has no source simulator.

- pipe_isa_recycle

Returns TRUE if the pipe is a recycle.

- pipeisaproduct

Returns TRUE if the pipe is a product. i.e Has no sink simulator.

- pipe_riatasize

Returns the expected size of the stream data being managed.

CHAPTER 5. PNET 	 153

- pipe-number

Returns the unique number given to the pipe by PNet.

- pipe-name

Returns the name of the pipe specified in the PNet Process Input

Object.

- pipeilnishtime

Returns the duration of the current simulation.

- pipeiiiststep

Returns the interval over which solutions are collected.

- pipe_timestep

Returns the current time horizon for the simulation.

- pipe-import

This is a speçialised function which can be used for importing special

simulation parameters. Imports are described later in Section 5.4.1.

The Pipe Kernel Routine

pipe-main-loop is the routine which implements the pipe kernel. This rou-

tine never returns until the pipe has finished.

• Pipe Kernel Callback Routines

The main features of the pipe are implemented via a set of callback routines.

Each routine must be supplied by the pipe writer. The callback routines

are called by pipe-main-loop at the appropriate times.

- pipe-solutions

This is called when solutions for a given time are required. The code

in the routine must retrieve the data for the time requested. Solutions

are never requested for a time greater than any that have yet been

stored.

CHAPTER 5. PNET
	

154

- pipe-store

This is called when the kernel receives a request for storage from the

source simulator.

- pipe-request

This is called when the kernel has received a request for information

at a given time from the sink simulator. The code in this routine

must retrieve the information from the local store or get it via ex-

trapolation/interpolation. If the request cannot be satisfied, then by

returning FALSE from this routine, the kernel will queue the request

and recall this routine once new data has been stored by pipe-store.

- pipe-converged

The pipe kernel contains code for registering and deregistering its con-

vergence state. Once all of the pipes in the simulator network converge,

the pipe kernel calls this routine. In this routine all of the code relating

to convergence management is usually placed.

• Pipe Kernel Control Routines

This final set of routines are used to control and manipulate the way in

which the pipe kernel behaves. These routines are usually called from the

kernel callback routines. They can also be called from the main program

for initialising the pipe kernel before its started with pipe-main-loop.

- pipe-stop-store

This stops the kernel from accepting store requests. It forces any

source simulator to wait.

- pipe_start_store

This restarts the kernel receiving storage requests.

- pipe_stop..request

This stops the kernel receiving requests for data from a sink simulator.

It forces the sink simulator to wait.

CHAPTER 5. PNET 	 155

- pipe_start-request

This restarts the kernel receiving data requests.

- pipe_set_converged

This tells the kernel that the pipe has converged. The kernel then tells

the PNet Master program. This monitors all of the pipes convergence

states. This routine only needs to be called once per convergence.

- pipe_unset_converged

This tells the kernel that you are now unconverged. If this is called

before the pipe receives a global convergence from the PNet Master,

the kernel informs the PNet Master of the change. The routine is only

to be used for unsetting a previously set convergence.

- pipe-finished

Any PNet simulation can either be shutdown by the pipes, the sim-

ulators or a combination of both. This routine indicates to the pipe

kernel that the pipe has finished as far as the programmer is con-

cerned. However, the pipe cannot simply shutdown. It must wait

until the neighbouring simulators are either informed, or have com-

pleted themselves. On finishing the pipe-main-loop routine returns to

the calling program. The mechanism also helps in propagating pipe er-

rors to connected simulators, thus enabling clean and efficient program

shutdown.

The routines described allow pipes to be easily constructed, with the majority

of user code having to be supplied within a few routines. The pipes which have

been constructed for this thesis are now described.

CHAPTER 5. PNET 	 156

5.2.3 Example Pipes Created

Three example pipes have been written. The following description is designed to

point out the purpose of the pipes which have been developed. The results from

their actual use in PNet simulations are described in Chapter 6.

Pipes have been produced to allow the creation of the following simulators:

A Sequential Modular steady state simulator

A parallel dynamic process simulator

A hybrid steady state/parallel dynamic simulator

Each of these is now described.

A Sequential Modular Steady State Simulator

The main use for dynamic simulators is for analysing process changes around

the steady state operating point. If the steady state models are available for the

process being simulated, and are usable, it is a lot faster to use them to estimate

the steady state point than to use dynamic models.

The steady state pipe is designed to connect a series of steady state simulators

together. The connection strategy used in the pipe, forces the overall process

network to act like a sequential modular fiowsheeting package. The sequential

approach is the only alternative available since PNet cannot be used to produce

an equation based flowsheeting package. It can however connect equation based

flowsheeting packages together in a sequential modular fashion. The aim here is

to produce something useful. It is unlikely that any benefit from parallelisation

will be obtained. The reasons for this have been described in Chapter 3.

CHAPTER 5. PNET 	 157

Another reason for developing this pipe is its usefulness in testing PNet. Im-

plementing the steady state methodology requires the use of almost all of the

features that the pipe interface routines can provide. In particular the data flow

control routines, global convergence routines and global shutdown routines are

extensively used. The resulting test simulations are also an excellent test of

the process communications since the sequential modular method relies on data

flowing efficiently around the whole process.

Sequential modular flowsheeting requires solving the steady state models of the

various processes being connected in a strict order. This order is usually defined

as the sequence of units obtained by starting at the front of the process and

moving downstream. Certain connections are regarded as tear connections: these

are usually the recycles of the process. The sequence of solution is repeated

until these tear connections have converged. Rather than direct substitution,

convergence algorithms are quite often used on the tear connection data. The

pipes produced here can find out if they are tear pipes and as such can easily

implement such algorithms if required.

This sequential calculation sequence can most easily be obtained by making each

pipe only allow requests for data from the sink simulator once new data has been

received from the source simulator. This being implemented using the various

pipe data flow control routines. At the start of operation, each pipe stops the sink

simulator from requesting data. The only exceptions are feed and recycle pipes.

Feed pipes have preset data and always allow requests since that is their function.

Recycles usually represent the tear streams in a process. They also represent a

back flow of information. In order to start the desired flow of information within

PNet, the recycle pipe data must be estimated and requests allowed within the

pipe. From this point each pipe is only allowed to either store data or receive

requests for data. This condition is alternated as data is stored and received.

This is implemented, as would be expected, in the pipe-store and pipe-request

CHAPTER 5. PNET 	 158

callback routines executed by the pipe kernel. The upshot of all this is that only

one simulator is executing at any one time, except where branches in the process

allow for parallel execution.

Each pipe continues to operate until it has locally converged. This is registered

using the routine pipe_set_converged with the PNet master. process. The pipes

then keep going until the callback routine pipe-converged is called by the kernel,

indicating that the complete set of pipes have converged. Each pipe then registers

its intent to quit with pipe-finished. -

The actual simulators used with this pipe must keep going until the pipe network

has shutdown or until they pick up the new convergence state. The former

is picked up using a PNet library call which is described in the next section.

There is no real need for the simulators to use both methods of pipe completion

detection; using both simply results in slightly faster shutdown.

Overall this pipe works well, as will be shown in Chapter 6. This pipe has been

used as the main testbed pipe for making sure that PNet is connecting and passing

information around correctly.

A parallel dynamic process simulator

This next pipe is the first pipe to be produced for building a parallel dynamic

simulator with PNet. It has been designed to implement the explicit modu-

lar parallel connection strategy highlighted in section 5.1.1. As yet no iterative

implicit modular or implicit lookup modular dynamic pipes have been created.

However, this pipe has proved extremely good at connecting the type of simula-

tors so far used. The other pipes are likely to be required where the dynamics of

the connections are faster than those tested.

CHAPTER 5. PNET 	 159

This pipe is a lot simpler than the steady state one. Gone are the complexities

of convergence and information flow control. It also has no complex interpola-

tion/extrapolation algorithms at present. Any connected simulators are forced

to either do this themselves or use a globally recognised time step.

The main function of the pipe is to simply store and relay data from one simulator

to the other. Each pipe must always be ready to store data and to give it out if

available. If data is unavailable, the sink simulator must wait.

The connected simulators for a given time step from time t to time t + St must

always use the input conditions calculated for time t. To allow all of the simulators

to effectively work in parallel, it is important that each simulator registers its

outlets for time t = 0 immediately on startup, thus making sure that all initial

requests for data can be satisfied.

Shutdown, in this case, can either be detected as before by monitoring the status

of the pipe network, or simply keeping a local count of time and finishing at the

appropriate moment.

Although simple, this pipe works extremely well. In particular it is well suited to

connecting simulators across dynamically slow connections. Results of this pipes

use for connecting multiple PDist simulators together are given in Chapter 6.

A hybrid steady state/parallel dynamic simulator

This final pipe is a hybrid of the last two. Instead of the steady state pipe

simply exiting on completion, it reverts to having the functionality of the explicit

modular pipe. Again, the use of this pipe with PDist is described in Chapter 6.

CHAPTER 5. PNET
	

160

5.2.4 Summary

The mechanism for creating a pipe has been described. It is possible to build

highly complex intermediate data managers within the current framework. Three

test pipes have been created and described. Although simple, they have already

been used to build some complex simulators from various smaller ones. These

are fully described in Chapter 6:

5.3 Creating a PNet Connectable Simulator

Simulators running under PNet, communicate to the surrounding pipes via the

PNet Interface routines. Unlike pipes, simulators do not require a large amount

of system code to operate. This has been made possible by moving the majority

of the system management code into the pipe kernels. All that is required is a

series of routines which allow each simulator to communicate and use the facilities

each pipe kernel provides.

5.3.1 The PNet Interface Routines

The PNet Interface has to allow PNetsimulators to do the following:

• Request inlet information

Involves asking the connected inlet pipes for stored information at a par-

ticular time.

• Store outlet information

Involves asking the connected outlet pipes to store information at a partic-

ular time.

CHAPTER 5. PNET 	 161

• Access the global convergence manager.

Iterative and steady state simulators require information about the status

of the complete network. This information can be easily obtained from the

connected pipes since each pipe knows the status of the complete network.

• Access the network status and control shutdown

As mentioned before, PNet shutdown can be initiated by the simulators or

the pipes. Either way there must be routines supporting both cases.

• Allow parallel processing for the simulators

Each pipe can only be accessed by a single program at each end. For

simulators designed to run in parallel, the simulators input and output

connections are likely to be distributed over a number of programs. The

interface routines must cater for this.

• Allow simulators to access information from the input description

To simplify matters, connections are referenced via numbers. i.e If a simulator has

3 inlets, they are referenced as inlets 1,2 and 3. At present the only mechanism

for a simulator to distinguish between connections is from the order. Ideally

there should be some mechanism for determining what exactly each connection

is with respect to the process being simulated. By using connection numbers, it

is a simple matter to provide support for the majority of programming languages

available. At present both FORTRAN and C are supported. As with the Pipe

Interface routines, the PNet routines are grouped under the functionality they

provide. The current set of PNet Interface routines are as follows:

• Initialisation/Shutdown Routines

These routines are the first and last routines to be called by a PNet simu-

lator.

CHAPTER 5. PNET
	

162

- pnet.init

Initialises the local communications layer. The routine assigns a num-

ber of information parameters. These include the number of inlet

pipes, the number of outlet pipes, the expected data size being trans-

mitted via the pipes, the various time sizes and the name assigned to

the simulator.

- pnet_exit

Cleanly shuts down the communications layer and pipe connections.

• PNet Information Routines

These allow the simulator to obtain information about itself and from the

input description of the process. At present the local information about the

simulator is returned in the pneL.init function. As for accessing information

from the input description, this is achieved via the routine pneLimport. It

is analogous to the routine pipe-import in the Pipe Interface. The exact

function of this routine is described in Section 5.4.1.

• Pipe Connection Initiation

These routines open the gateways to the simulators connected pipe kernels.

- pnet_open..in

Opens a connection to the requested inlet pipe

- pnet_open_out

Opens a connection to the requested outlet pipe

- pnet_open_all

Opens connections to all connected pipes. This is the most common

routine used for simulators which are not parallelised.

• Pipe Kernel Communications Routines

These routines manage all of the kernel requests from the simulator. The

routines are:

CHAPTER 5. PNET
	

163

- pneLrx

Receive routine. Used to request time stamped information from an

inlet pipe.

- pnet_tx

Transmission routine. Used to send time stamped information to an

outlet pipe.

- pnet _convergence

Returns the current convergence level of the simulator. Obtains this

from the connected pipes.

- pneUsup

Returns TRUE if the connected pipes are up and running. This routine

is usually used to monitor for pipe initiated termination.

- pneLshutdown

This routine is used to inform all connected pipes that the simulator

is shutting down. It does not return until all of the pipes have been

informed. After this call the kernel routines are unavailable.

Figure 5.5 shows how a simple dynamic mixer simulator could be constructed

using these routines. In the example the actual simulation step is being carried

out by a routine called dynamic..inixer. The example shown is in Fortran.

The current set of routines described are totally dependent on the pipes for

information. The communication link to the PNet Master program is unused.

This is being reserved for implementing the time management functions required

to allow simulators to back up and change time horizons etc. Once implemented

the routines above will be extended appropriately.

Although simple, the routines effectively allow simulators to bind together and

use the pipes effectively. The routines have been fully tested using the pipes

CHAPTER 5. PNET
	

164

include 'PNet . mc'

C 	*** Define maximum sizes and variables
integer MAXIMS ,MAXDATASIZE,nins ,nouts , streainsize
parameter (MAXINS=10 ,MAXSTREANSIZE3O)
double precision inlets (MAXSTREANSIZE ,MAXINS) ,outlet (MAXSTREANSIZE)
double precision endtime,histdt,tm
character* 100 name
external dynamic-mixer

C 	*** Initialise PNet ***
call pnet_init(nins ,nouts ,streainsize,endtime,histdt ,name)
if (nouts.ne .1) then

print *,'mixer error: only 1 outlet allowed'
call pnet_exit()
stop

end if

C 	*** open up all the connections to the surrounding pipes ***
call pnet_open_all()

c 	*** Go into main mixer calculation loop ***
tm=O.Od+0

10 continue
c 	*** get the inlet streams ***

do 20 i=1,nins,1
call pnet_rx(i,tm,inlets(1,i),streanisize))

20 continue

C 	*** Perform the dynamic mixing process ***
call dynamic_mixer(inlets ,nins , outlet, streamsize)

C 	*** Move on to the next time step ***
tmtm+histdt

C 	*** Send out the mixed stream for new time ***
call pnet_tx(1 ,tm,outlet,streamsize)

C 	*** Am I finished ***
if ((tm+histdt/2.0) .lt.endtime) then

goto 10
else

c 	*** Clean up PNet ***
call pnet_shutdown()
call pnet_exit()

endif
end

Figure 5.5: Simple Dynamic Mixer Using PNet

CHAPTER 5. PNET 	 165

described in the last section. In particular the routines have been used to convert

an existing fiowsheeting package to be PNet compliant and to connect multiple

PDist simulators together. The latter is an effective demonstration of the use of

the PNet routines to allow a parallel simulator to become part of an even bigger

one.

5.4 Describing and Executing a PNet Simula-
tion

The difficulties associated with describing the input and output of a process

simulation have already been discussed. The ideal mechanism for PNet has also

been described in Section 5.1.4. This section describes the input mechanism which

is currently being used for PNet, and how it supports the connection strategies

already described and the execution of simulators on various types of hardware.

5.4.1 Describing a PNet Process

The PNet loader and PNet Master program find out about the simulation being

run from a PNet input description file. This file completely describes the topology

of the process network being simulated, the simulator programs which are being

connected and the stream data which is to be transmitted. All simulator input,

output and interaction must be managed by the individual simulators. Example

input descriptions are given in Appendix D and the exact syntax is described in

Appendix E.3.

The input file is built out of sections. Each of these sections describes a different

part of the simulation being run.

CHAPTER 5. PNET

The Data Exchange Description

All of the connected programs in Met need to know the amount of data that

they are supposed to be passing between each other. Likewise the solution man-

ager needs to know what each data slot being passed represents, so that it can

effectively display the solutions produced.

This information is declared in input description as a series of number name

pairs. The number refers to the slot index and the name is the name to be used

in displaying the final solutions.

The Process Network

Each process network is described by the processes connected together. For each

process the input pipes, output pipes and simulation program to be used are

declared along with any input parameters required. Figure 5.6 shows a PNet

process declaration. The pipe declarations are very simple. Only the names of

the pipes are specified. These names must be unique. A process connection is

defined where a process outpipe has the same name as an other processes inpipe.

A useful extension would be to add a position name which helps distinguish the

various pipe connections from each other. e.g. A column could label its outpipes

as having position names "Tops" and "Bottoms". However, where these pipes

meet another simulator as inpipes they may have the position name "Feed". For

complex simulators with complex connections this feature would be extremely

useful to the programmer allowing them to easily distinguish which pipes are

which.

The program definition is designed to allow the declaration of a parallel program.

All of the programs to be executed are registered as processes: the computer

kind. Each process is given the program name, the arguments it takes and the

CHAPTER 5. PNET
	 167

A Distillation Process Description

begin process "Column 101-1"
inpipes
outpipes

program "DistSim"
process 0

exec "column"
args
imports ["mt NumnStages" ,"40",

"mt NumnFeeds","l",
"mt NumComps" , "3"]

proc_type "sun4"
end process

Figure 5.6: Example PNet Process Description

processor type. The PNet loader works out where best, out of the computing

resources available, to place the various programs declared at runtime.

Every program description can also contain a series of so called "imports". These

are declarations of the variables you want exported to the program at runtime. On

program execution the data can be imported using the routines pipe-import and

pnet_import for pipes and simulators respectively. As yet there is no mechanism

for declaring pipe imports. Only the system defined pipe imports can currently be

accessed. Each import has two parts: the import type/name and the actual data

in string form. The import types supported are integers, reals, double precisions,

vectors of these types and strings. The mechanism was originally designed to

simplify the initialisation of loaded programs in RGC, but was later extended for

use in PNet.

CHAPTER 5. PNET 	 168

The Feed Data Declarations

The final part of the description file is used to declare 	data which feed pipes

send to their sink simulators at every data request. 	format is simply the

name of the pipe followed by a list of real numbers. 	list must contain the

same number of entries as the data exchange descript

5.4.2 Supporting Parallel Simulators

The PNet description file is designed to allow paral1e 	grams to be declared.

The only specific hardware declarations required in 	description file is the

processor type that each simulator program should id 	run on.

As already mentioned, PNet is written in RGC (Rot

tions). All programs must be compiled with the con

provides. RGC is designed to support various hardw,

specific communications layers provided for the harc

tunately this means that for any one program, a s%

required for each hardware type and communication

hardware.

General Communica-

iications library RGC

rirough the use of the

in question. Unfor-

e compiled version is

r supported on that

To make program location simpler, PNet insists thatograms produced are

given specific name extensions. In the description flic 	h program is referred

to by its basename. The actual program names proda 	must be extended to

include the communications software name and the 	ssor type it is com-

piled for. i.e. For a SUN4 workstation, a program 	r would be compiled

as mixerYVM...sun4 for PVM and mixer..MKCSLsun 	CSTools. This same

naming convention applies to pipes as well as simulat 	The actual hardware

programs are run on is determined by PNet at runtime 	is allows it to load up

the local hardware as efficiently as possible.

CHAPTER 5. PNET 	 169

The local hardware available is declared in RGC databases. There is a database

for each supported communications layer. Each database contains all of the

supported hardware types, how many of each type are available, what their names

are and if they are remotely usable through the network.

The current loader attempts to use all of the hardware available by default. The

overall usage can however be limited at the command line. The actual execution

details of PNet are now described.

5.4.3 Execution of PNet

Until now, all of the text has focussed on describing how PNet programs are

created and declared. Within the definition of these programs, reference has

been made to a number of routines which can extract knowledge about each

program's setup and place in the overall process network. This section describes

how PNet is actually executed and how this information is picked up by the

various programs launched.

Creating a PNet Input Description

Before executing PNet, an input description file is required. At present this must

be created by hand. Writing the general process descriptions is relatively simple.

Unfortunately the simulator program definitions can be extremely involved, espe-

cially for parallel programs. To work around this problem, the input description

has been extended to allow parts of the description to be filled in by external

builder programs at runtime. Figure 5.7 shows a modified description file.

Figure 5.7 shows the program description replaced by a system call description.

When PNet is executed, a preprocessor is run over the input description sup-

CHAPTER 5. PNET
	

170

* A Distillation Process Description

begin process "Column 101-1"
inpipes ["1"]
outpipes ["2","3"]

* system call to create a 9 processor PDist simulator program
for use with CSTdols

system "pdist -p 9 -config MKCS1a DEFAULT -d -map PNET setup.pdist"
end process

Figure 5.7: Example Input Description with System Call

plied by the user. Wherever a system call is found, the text is removed and

replaced with the text produced when the system call is executed. In the figure

shown a PDist command is being used to create a nine processor PDist program

description.

This feature has proven very useful for setting up simulations. Manipulating the

system calls is much simpler than manipulating the 20+ lines of description text

required to setup simulators like PDist. To highlight the saving, an example

loader description created by PDist is shown in Appendix D.2.3.

Running the Simulator

Once an input description file has been created, PNet can be executed. The

command used to run PNet is extremely simple. An example command is shown

in Figure 5.8.

The loader command expects a number of arguments. These specify the limits on

processor usage, the pipe program to be used, the finish time of the simulation, the

history time step and the input description file to be used. Example declarations

CHAPTER 5. PNET
	

171

command: pnet -p sun4 3 -pipe std-dyn -f 1000.0 -d 5.0 setup. pnet

The arguments are as follows:
-p sun4 3 	: Limits the usage of SUN4 workstations to 3.
-pipe std-dyn : Sets the pipe program to use to be std-dyn
-f 1000.0 	: Sets the finish time to 1000.0 seconds.
-d 5.0 	: Sets the time step to 5.0 seconds.
setup.pnet 	: The name of the input description file.

Figure 5.8: Example PNet Loader Command

of all of these are shown in the figure.

Once executed the PNet loader performs the following:

Parses the input description file

Builds a network graph from the list of processes created

Builds up a list of the programs required

Checks that all the programs required exist

Analyses the process network graph, locating recycles etc.

Assigns the requested pipes to the network connections

Builds a hardware load map for simulators, pipes and utilities

Builds an RGC loader description

All of the information about recycles, names etc. are encoded for each

program using the import mechanism previously discussed.

Loads and starts up the network of programs using RGC

Exits when all programs loaded are finished

CHAPTER 5. PNET
	

172

Once loaded with RGC, the simulator is up and running. At the end of a given

simulation, the only remaining program is the PNet Master program. This dis-

plays all of the solutions collected. Once this exits, the PNet simulation is com-

plete.

5.4.4 Solution Display

The main solution collector is the PNet Master program. All solutions are cur-

rently shown as time stamped tables of numbers. An example of the output is

shown Figure 5.9. It would be nice to be able to view these results graphically

in a similar manner to PDist. However viewer allows all solution output to be

viewed and is suitable for making sure that the initial simulator is working.

PNet's Pipe Contents Viewer

(FHe 	
) CPIot) CPrint v)

PNet Generated Pipe Solutions for Time 0.000000 seconds

compl cornp2 comp3 comp4 comp5

1 0 0 0 0 0
2 310.5 166.5 134.3 19.9 77.4
6 310.5 166.5 134.3 19.9 77.4
7 249.819 96.3809 50.2541 4.76069 15.7812
8 60.6815 70.1191 84.0459 15.1393 61.6188
9 237.328 91.5619 47.7414 4.52266 14.9922
10 1 	12.4909 4.81905 2.51271 0.238035 0.789062
3 1 	67.6493 82.8694 98.2647 13.7338 46.6744
11 I 	304.977 174.431 146.006 18.2565 61.6666
12 1 	297.84 159.357 115.74 11.8228 35.9216
13 7.13653 15.0747 30.2658 6.43366 25.745
14 60.6815 70.1191 84.0459 15.1393 61.8188
15 0 0 0 0 0
16 67.818 85.1938 114.312 21.573 87.3637
17 61.3745 61.7653 56.7338 6.91611 23.3411
18 6.44355 23.4285 57.5779 14.8569 64.0226
4 1 	7.06321 26.0387 61.1098 13.3713 54.283
19 1 	68.4377 87.804 117.844 20.2874 77.6241
20 1 	0.788364 4.93454 19.5789 6.55359 30.9497
5 1 	0.000225075 0.00398391 0.0287711 0.0138643 0.0829586
21 1 	8.44378 23.4325 57.6067 14.6707 64.1056

how Solu tions)

Figure 5.9: Screen Dump of the PNet Solutions Viewer

CHAPTER 5. PNET
	

173

5.5 Summary

PNet is designed to prove that a number of simulators can be connected to-

gether to form a larger one. An initial test version has been developed which

uses intermediate connection managers, or pipes, to do this. These pipes are cre-

ated using a series of specialised routines. Likewise the simulators being connect

communicate with the pipes via a similar set of routines.

The interface routines have been designed to allow both pipes and simulators to

be easily constructed. Using these a number of test pipes and simulators have

been built. The next chapter describes and examines the various tests which have

been carried out using these pipes and simulators within PNet. The chapter also

describes all of the test results obtained using PDist.

Chapter 6

Evaluation

This chapter examines the performance of the dynamic simulators PDist and

PNet. Since the simulators are conceptually different, each is dealt with in turn.

For PDist the main interest is in showing the usefulness, robustness and efficiency

of the simulator. For PNet the main interest is to prove that the connection

strategy works, is usable for complex simulations and that the parallelism can

provide the performance required for the future.

6.1 PDist Results

There are two questions to be asked about a dynamic simulator: what can it do

and how well can it do it? The first obviously takes precedence over the second. A

large amount of research has been carried out elsewhere on parallelism using very

simple problems. There is often no allowance for how the algorithm is extendible

to more realistic problems. With PDist, however, this is not the case. All of

the work carried out has been towards producing a simulator which is not only

usable but capable of tackling real problems.

This section begins by examining the usefulness, robustness and usability of

174

CHAPTER 6. EVALUATION
	

175

PDist. This is followed by an examination of the actual performance of the

simulator on parallel hardware. Finally, the overall conclusions from the tests

are summarised.

6.1.1 The Usefulness of PDist

PDist has been tested on a number of problems using a number of models. The

actual models have already been described. Recapping, the models produced are

as follows:

. Conventional Distillation Models

These are a set of models produced by myself to simulate conventional dis-

tillation columns. Conventional meaning that they contain a refiux drum,

tray column and reboiler. The models contain simple hydraulics, full v.l.e

via the PPDS [88] physical properties package and use an implicit, and

hence iterative, integration algorithm.

• Conventional Distillation Models for Startup

These models were written by Vladimir Vasek [85]. They are designed to

allow startup conditions to be simulated. The models use an explicit inte-

gration algorithm and contain complex tray hydraulic models. The original

simulation program produced by Vladimir was dismantled and restructured

to fit into the PDist Interface structure described in Section 4.4.2. Some of

the results using these models are described in [72].

• Industrial Case Study Models

These models were developed to simulate a reactive azeotropic distillation

column. The problem was tackled because the company concerned could

not get any commercial packages to solve the problem. The models used

were an extension of the conventional models already described. To these

CHAPTER 6. EVALUATION
	

176

were added a set of liquid/liquid separator models and a reactor/reboiler

model. A particular feature of the models is that they incorporate a wide

variety of data sources. The company provided NRTL coefficients for the

liquid/liquid separator and full kinetic information for the reactor. These

were used alongside PPDS, which was again used for the tray v.l.e calcula-

tions.

All of the models described are focussed at particular problems. However the

models do cover a wide range of possible columns and control arrangements. The

models can also simulate highly non-ideal separations. The industrial case study

column represents about as non-ideal a problem as you can get. From a PDist

testing viewpoint, the models also use the majority of the features PDist provides.

In particular the models use both explicit and implicit integration strategies. For

the industrial case study a mixture of the two is in fact used.

Overall, PDist is more than just a simple exercise in exploring parallelism. The

package can be easily tailored to simulate highly non-ideal and complex distilla-

tion columns. The successful use of PDist for the industrial case study highlights

its usefulness in this area.

6.1.2 The Robustness of PDist

With PDist, the overall simulation is as robust as the individual simulation blocks.

If any one of these blocks does not converge under certain conditions, then the

whole simulation will not converge. Similarly, any block not designed to handle

possible discontinuities is likely to cause convergence problems elsewhere. e.g.

Two phases appearing and disappearing in a liquid/liquid separator can cause

oscillation in an iterative solution strategy.

Making a simulator robust relies on making the models robust. For equation

CHAPTER 6. EVALUATION 	 177

based simulators, this has always been a problem since all of the equations are

being solved simultaneously and managing discontinuities is difficult. The ad-

vantage of the modular approach has always been that by subdividing the overall

problem, the robustness problem is also subdivided. Each sub block is a single

process whose outputs must be calculated from its inputs. The solution method

• used to perform this task is completely optional and allows specific problems to be

solved with targeted solution methods. Since PDist is a modular simulator, the

robustness advantages are inherent. Any discontinuities can be managed locally

where they occur before they affect the rest of the system.

This theory bears out in practice. It has proven very difficult to make PDist fall

over without setting it up to simulate problems with unrealistic inputs. In the

cases where it has fallen over, it has been for expected reasons: e.g. too high a

time step for the explicit models, discontinuities not yet handled by the models

and errors in external physical properties packages.

The biggest success has been with the industrial case study models. The task

here was to find the steady state for the column and analyse the effect of various

input perturbations around this steady state point. The main interest was in

finding out how the entrainer distribution and reaction was affected. For various

reasons relating to the operational mode of the column, the steady state point

had to be dynamically simulated. Until the problem was tackled with PDist, this

steady state point had not been successfully found. A number of commercial and

inhouse packages had apparently been used. The models for PDist took about

2 months to write and test. The steady state point was successfully located and

a number of requested test cases run. The results produced were reputedly very

close to those expected. Although a highly non-ideal column, the simulations

proved extremely robust. Simulations were run for over 24 hours on some of the

test cases. PDist was eventually purchased by the company.

CHAPTER 6. EVALUATION 	 178

6.1.3 The Usability of PDist

PDist has been written to show that parallel hardware can be used for dynamic

simulation in as usable a fashion as sequential hardware. A lot of effort has been

put into PDist to demonstrate this. This is especially the case as far as the

input programming, interaction and solution display is concerned. The flexibility

of input 'is best described with reference to an example input file. Appendix

C.2 shows how one of the industrial test cases was set up. In the example, the

programming section of the input file is being used to set up a number of changes

in the column's inputs. The modelling code was designed to allow the feeds to be

changed either as oscillations or step changes around a base setting. The example

shows how the parameters to this code have been preprogrammed to produce the

desired effect.

Overall the input mechanism has proven extremely effective. There is still a lot

of work required in the general area of simulator input. This is however a thesis

project in its own right. Hopefully the input for PDist highlights the potential

of moving towards standardising on the description of chemical processes. Again

this is one of the aims of the épée project [94].

The interaction mechanism has also proved useful. All simulators need to be

controllable. If the changes required are not known in advance, then the ability

to interact with the simulation is essential. This is of particular benefit when

simulators are being used to investigate control solutions to particular process

changes or operators are being trained. The interaction mechanism produced for

PDist works well but could be improved. To implement an advanced interaction

mechanism you need an advanced process description to allow complex changes

to be made and fully described. Although simple, the current mechanism displays

all of the qualities required: all variables in the setup can be easily changed and

recorded using the standard input description. The method of implementation

CHAPTER 6. EVALUATION 	 179

is correct. The main flaw is that the data structure being manipulated is not as

complex and flexible as that really required.

The final utility within PDist is the runtime and post runtime solution viewing.

Of all the utilities, this is the most highly developed. It is also the utility which

has generated the greatest interest in demonstrations. The ability to be able

to monitor what a simulator is doing in real time, is seen as essential by the

industrial community. The ease of display of solutions at the end is also seen

as highly desirable. The feature most appreciated has been the ability of the

solution viewer to automatically tailor itself to display the solutions produced by

a given set of models in a predefined and context sensitive manner.

Generally speaking, PDist is extremely usable. It displays many features not yet

available in most commercial simulators, although things are slowly beginning to

change. If anything, the features within PDist should highlight to industry what

modern computing can offer them and what they should be asking for from the

commercial packages they are currently so reliant upon.

6.1.4 Gain from Parallelisation

Given that PDist is usable for real problems, does the parallelisation produce the

reduction in execution times expected? The remainder of this section describes

and analyses the results produced from running PDist on various numbers of

processors.

Defining Efficiency

The performance of a parallel program is usually defined by either speedup or

efficiency. The speedup of a parallel program running on p processors is defined

CHAPTER 6. EVALUATION
	

IM

by:

Execution time on single processor T1
SpeedupS= 	 =- 	(6.1)

Execution time on p processors 	T

The efficiency is defined by:

--- Efficiency E - SP
- p - 	

(6.2)
pT,

The execution time on a single processor can be taken as either the execution time

of the best sequential algorithm or the execution time of the parallel program on

a single processor. Comparison with the best sequential algorithm is preferred,

but this is not always available.

In the case of PDist, the best sequential algorithm is not available. The models

being used are designed around the input output model of calculation to allow

parallel execution. The most efficient sequential modular algorithm does not use

this input/output model but reverses it somewhat. The two algorithms are only

equivalent when explicit integration is being used on a per tray basis. The full

theory behind this has already been discussed in Section 3.2.

For the results presented here, the parallel runs are compared with those run on

a single processor. This is allowable since the modelling methodology used has

proven to be extremely useful and robust. Any improvement in execution of this

approach through parallelism still represents a distinct benefit.

There is another problem relating to the analysis. At the moment the reflux and

reboiler sections are simulated separately from the stage sections. The reboiler

and reflux programs normally use the same processing time as a single tray stage

program. This means that in a parallel simulation, the stage simulations use much

CHAPTER 6. EVALUATION 	 181

more processing power than the reflux and reboiler simulations. To combat this

the refiux and reboiler are usually run in simulated parallel with one of the stage

blocks on a single processor. Unfortunately this means that it is not possible to

run a single processor sequential version of the whole column. It is thus difficult

to produce fully correct speedup curves.

The separation of the models follows the strictly modular approach which has

been taken throughout this thesis. It does however present problems when view-

ing efficiency. It would be possible to incorporate the reflux, reboiler and stage

models together into a single interface, but the work involved to change the un-

derlying communications and management algorithms was not really warranted.

To work around this problem, the results are presented in a slightly different,

yet analogous, way. If the code for the reflux, reboiler and stages were merged,

the overall effect would be to add the calculation load of two trays to the overall

simulation. The end result is essentially the parallelisation of an extended block

of stages. If the stage blocks in the test runs are assumed to represent the overall

column, the resulting timings can be used if the contribution from the reflux

and reboiler can be extracted. This is simply achieved by making sure that the

reboiler and reflux programs run on their own processors. Since they use little

calculation time compared to the stage programs, the overall execution times will

purely represent the time taken for the slowest stage blocks to simulate. This

will be valid up to the point where the stage calculation load reaches that of

the reflux and reboiler. This occurs at around 1 tray per stage block. With the

limited number of processors available for testing this point is never reached. The

efficiency of the overall strategy can thus be judged by the efficiency of the stage

parailelisation.

Finally, before each set of results was produced, care was taken to ensure that

the overall algorithm paraflelised cleanly with the models used. Initial testing

has made sure that single processor runs take the same number of iterations

CHAPTER 6. EVALUATION 	 182

to converge as multi-processor runs. The modularisation approach can cause

problems with parallel efficiency if anomalies in the modelling equations are not

picked up and correctly managed.

Parallelisation Results

The main factor affecting overall efficiency of a parallel program is the calcula-

tion to communications ratio. The higher this ratio the more efficient the parallel

simulator will run. For a given simulation problem, the amount of calculation

required is fixed. Thus, the only way of maximising the calculation to communi-

cation ratio is by minimising the overall communications overhead and making

sure that the work load is evenly distributed.

The design of PDist has focussed greatly on making sure that the communica-

tions overhead is as low as possible for a well balanced system. To examine the

effectiveness of the overall strategy, two sets of simulation results are presented.

Each set contains the simulation execution times for the same dynamic simulation

problem on a number of different processors. The main difference between the

two simulations are that one uses simple v.l.e and the other uses complex v.1.e

provided by PPDS [88]. When compared, the two give a good impression of the

variation of the parallelisation approach for both simple and relatively complex

problems. The actual simulation is of a 40 tray Methanol/Ethanol/Water column

perturbed with a feed composition drop.

The timings obtained from a number of test runs are shown graphically in Figures

6.1 and 6.2. Both graphs show the overall execution time of the simulation versus

the number of processors used. In each graph, the execution times obtained with

solution transfer on and off are shown. The timings curve expected for linear

speedup, 100% efficiency, is also shown on both graphs. To accompany these,

Figure 6.3 shows a graph of the parallel efficiencies calculated from the two sets

of results.

200

180

160
0

140
C.,

120

100

W 	00

0

60 =
E

40

20

0
1 	2 	3 	4 	5 	6

Number of Proce

Simple Simulation Execution Tir: vs Processors Used
I 	 I

Solution Transfer OFF ----
Solution Transfer ON

Linear Speedup Speedup

I 7 	8 	9 	10

CHAPTER 6. EVALUATION
	

183

	

Figure 6.1: Timings Plot for Simulation With 	tple Physical Properties

	

The timings curves obtained with solution transfe 	mmunications off, describe

	

the raw performance of the parallel simulation str 	'. The curves with solution

	

transfer communications on, show the effect that
	ng utility requirement can

have on the overall efficiency.

•n strategy appears to work

:ith added processors. The

lex models, where almost

rocessors tested. This is

hich PDist is targeted at.

iple problems shows that

Ignoring solution management effects, the paralleli

well. In both runs the overall simulation time reduc

parallelisation is particularly good for the more c

linear speedup is being obtained over the range

encouraging, since it is the more complex probler

The fact that the parallel approach also works fc

the overall parallel implementation is efficient.

CHAPTER 6. EVALUATION
	

184

Complex Simulation Execution Time vs Processors Used
1800

Solution Transfer OFF
Solution Transfer Transfer ON --'---

Linear Speedup

1400

1200
rz

E- 	1000

800

J 	600

400

200 I-

0 1
2 	3 	4 	5 	6 	7 	8 	9 	10

Number of Processors

Figure 6.2: Timings Plot for Simulation With Complex Physical Properties

As described in the theory, the implementation methodology was selected for its

highly concurrent communication structure and thus potential scalability. The

success of the implementation in this area is highlighted in the timings graphs.

The distance between the actual timing and the theoretical limit is the overhead

incurred in implementing the parallel algorithm. One feature of the results shown,

is that the overhead remains roughly constant as more processes are used. This

applies equally to both sets of results.

The overall implementation overhead is a product of communication startup costs

and imbalances in calculation load distribution. During any simulation, dynamic

changes move around in the column. This results in some trays requiring more

solution time than others. The parallel implementation used, is designed to be

most efficient when the tray calculation loading is equal. When this is not the

case, the stage blocks which finish first end up having to wait on the others to

catch up. The particular test simulations described here are designed to show

CHAPTER 6. EVALUATION
	

185

Parallel Efficiency vs Processors Used
100,

80

60

40

0

0

20

0

- ---------

 - - - - - - - '-

x 	 -

Complex with solutions OFF
Complex with solutions ON --'---- 	 - .- 	..,-
Simple with solutions OFF -a---
Simple with solutions ON

2 	3 	4 	5 	6 	7 	8 	9 	10
Number of Processors

Figure 6.3: Parallel Efficiency Plot for Simple and Complex Simulations

the effect of uneven loading. Figures 6.4 and 6.5 show 3D plots of calculation

time and communications delays versus tray number and simulation time for a

10 processor dynamic simulation.

The simulation carried out was a feed composition drop, where the feed was lo-

cated at tray 20. The effect of this propagates quickly to the surrounding trays.

This shows up in the 3D calculation timings, where the processors above the

feed are initially taking less time to solve than the bottom and top trays. The

uneven loading also moves as the simulation progresses. For the trays where the

calculation load is lowest, the expected result would be an increase in commu-

nications delay due the the required wait for the other trays to catch up. This

is in fact what happens. The 3D communication timings graph shows that the

communication delays peak where the calculation load graph troughs. The inter-

esting point is in the relative size of delay that the uneven loading causes. The

uneven loading time is fax bigger than the actual communication implementation

CHAPTER 6. EVALUATION
	

IM

Figure 6.4: Graph of Calculation Load Distribution During 10 Processor Simu-
lation

overhead. For the results shown, as much as 75% of the overall communications

overhead is down to uneven tray calculation loading. This is a significant amount.

As well as uneven individual tray calculation load, the efficiency is also affected

by the distribution of the actual trays. Unfortunately the number of trays in

a column does not always divide equally by the number of processors. In such

cases, some stage blocks always have one more tray than the others. This means

that linear speedup is only achievable when using certain numbers of processors.

Furthermore, as the number of processors increases, so the number that has to

be added to obtain any new benefit also increases. e.g For a 40 tray column, the

points of exact divisibility are at 1,2,4,5,8,10,20 and 40 processors. For proces-

sors used up to 8, the maximum trays on any one processor is always different.

However, after 8 the maximum tray count on any of the stages does not change

until 10,15,20 and 40 processors are used. Between these numbers of processors

no parallel benefit will be obtained since there is always one stage block with

CHAPTER 6. EVALUATION
	

187

Figure 6.5: Graph of Communications Load Distribution During 10 Processor
Simulation

the same limiting number of trays. Within this period, the execution time would

be expected to increase, if anything, due to slight increases in communications

overhead.

The results shown highlight the problem caused by uneven tray distribution. The

parallel efficiency oscillates based on the number of processors used, see Figure

6.3. Normally, for a totally scalable problem, this would be expected to simply

reduce. The peaks in the efficiency graphs are always found at processor numbers

which divide equally into the number of trays. The lack of parallel benefit for

higher numbers of processors is also apparent for processor numbers 8 and 9,

where at least one stage block always has 5 trays to solve. At 10 processors the

trays reduce to 4 and hence a slight parallel benefit is obtained. Although not

shown, the next benefit would not be obtained until 15 processors were used. The

effect is less distinct for the simpler models since the calculation load of a single

tray is much less. This effect is problematic but not disastrous. There are simply

CHAPTER 6. EVALUATION 	 188

restrictions on the higher numbers of processors that can effectively be used.

The final observation to be made is the detrimental effect which solution transfer

communications obviously have on efficiency. This is especially so for simpler

problems. The effect is also a cumulative one. Unlike with the simulation critical

communications, the solution communication overhead increases as more proces-

sors are used. This effect was expected, given that the solution management

structure is of the master/slave kind. The graphs shown, do however represent

a worst case scenario. For the majority of simulations, highly frequent solution

retrieval is only required if fast updating runtime graphics are essential. The

problem disappears as soon as solution transfer is made a relatively infrequent

event. At present this involves losing all intermediate solutions. However, it is . a

simple matter to make processors locally store solutions ready for later transfer.

Parallelisation Summary and Conclusions

The parallelisation strategy works well. This is particularly true for problems

which are computationally demanding. The more complex each tray calculation

is made, the better the overall simulator will perform.

There is very little which can now be done to enhance the overall performance of

the simulator. The main remaining problems are associated with utility manage-

ment and load balancing. Utility management is easily corrected. Load balancing

presents a more difficult problem. Besides uneven tray distributions, dynamic

changes in columns tend to move around. For this reason some stage blocks

are always more computationally demanding than others. This computational

requirement also moves around with the column changes. In extreme cases, it

has been suggested that tray calculations could be dynamically moved from one

stage block to another. However, the time overhead in moving a tray would be

significant since all of the tray models state variables would have to move. This

CHAPTER 6. EVALUATION 	 189

overhead would likely overwhelm any real benefit obtained.

Finally, all of the results shown have been run on a transputer based Meiko

Computing Surface. Although the transputer is no longer the fastest processor

around, the transputer based system used is still an excellent piece of hardware

for exploring parallelism. The newer platforms being produced use much more

powerful processors. However, the hardware communication rates have seen sim-

ilar speed increases and PDist should thus produce similar results on these newer

machines.

6.1.5 Summary

The usefulness and efficiecy of PDist have been examined. The simulator achieves

all of the aims it originally set out to prove. It exploits parallelism, it is extremely

usable, it is robust and can be used to tackle real problems.

PDist successfully simulates single columns. One of the most difficult things to

cater for has been the types of input that real columns receive from surrounding

equipment. This was particularly so for the industrial case study carried out. The

simplest way of providing realistic input is to simulate the surrounding equipment.

The process network simulator PNet has been designed to make this possible;

some tests have been done which include the connection of PDist to other external

equipment simulators and these are described in the next section.

6.2 PNet Results

This section describes the initial tests which have been carried out using PNet.

The primary aim of the tests has been to make sure that the pipe connection

strategy works and that the interface routines for building pipes and simulators

CHAPTER 6. EVALUATION
	

190

are fully functional. The secondary aim of the tests is to find out how successful

the parallelisation strategy works and how useful it is likely to be for the future.

The testing has been carried out by using Met to create two types of simulator.

The simulators created were:

A sequential modular steady state simulator

One of the test pipes created is designed to allow PNet to connect steady

state simulator modules together in a sequential modular fashion, see Sec-

tion 5.2.3. For the simulator to work, information must move smoothly

around the network in an orderly manner. The pipe mechanism to cre-

ate this simulator relies heavily on being able to control this information

flow and also monitor the convergence of all the pipes in the network. The

creation of such a simulator provides an excellent test of the overall com-

munications and connection interface routines.

A parallel dynamic simulator

The other pipes created have been designed to allow dynamic simulators

to be connected together. For the moment these pipes implement the ex-

plicit modular connection strategy, see Section 5.2.3. These pipes, although

simple, can be used to find out how well the parallel simulator connection

strategy works and where the main inefficiencies lie.

The testing and results obtained are now described.

6.2.1 Steady State Simulator Construction Results

To fully test Met as as steady state simulator, an inhouse steady state flow-

sheeting package, ESSPROS [96], has been adapted for use. ESSPROS, is a

simple sequential modular flowsheeting package. It contains a number of for..

CHAPTER 6. EVALUATION 	 191

tram routines for calculating the steady state outputs of various process units

given their inputs. A simulation is built by writing a program which contains

the required process unit routines in the order of calculation stipulated by the

sequential modular approach. Where recycles are present, initial guesses must be

provided and the sequence repeated until convergence is obtained. The example

ESSPROS programs which have been used in the following 'description are shown

in Appendices D.1.1 and D.1.3.

The main reason for using ESSPROS is that it can be used to build and simulate

complex networks extremely quickly. The main purpose of these tests is to make

sure that the Met network works correctly. The calculation load on the actual

simulation nodes is irrelevant.

To adapt ESSPROS for use with PNet, the Fortran routines have been replaced by

programs. In ESSPROS, each routine's stream connection information is stored

in a local database. For the PNet programs, the put and get routines for accessing

this database have been replaced with put and get PNet pipe interface routines.

For the tests carried out the mixer, splitter, separator, reactor and flash routines

have been converted for use. The input description for PNet is built by a simple

conversion program. This reads the ESSPROS program, separates the routines

and replaces each by a PNet process description. The stream connection names

from the routines become pipe names. The various parameters of the ESSPROS

routines are passed to the PNet programs using the PNet import mechanism.

Appendices D.1.2 and D.1.4 show how the converted ESSPROS examples look.

The two examples shown represent small and highly connected problems. The

first example is relatively simple and does not represent any real process. The

second example is the flowsheet of an oil separation process on an oil rig. For the

tests, the processes used are not particularly relevant. What is important is the

number of simulators and pipes required to solve them when using P Net. The

two examples have the following topology:

CHAPTER 6. EVALUATION
	

192

4 process units, 7 pipes of which 1 is a recycle.

14 process units, 24 pipes of which 3 are recycles.

Both ESSPROS and PNet produced identical results for the examples shown.

This included the number of iterations taken by each routine or program. PNet

also worked well on other ESSPROS problems tested.

In terms of efficiency, the simulators did not behave as badly as expected. In both

cases the simulations took only a few seconds, once loaded. The examples were

run on a range of processor numbers and also on two hardware platforms: Namely

a 12 processor Meiko Computing Surface and a network of SUN4 SPARCstations.

For the second example, a single processor run was not possible due to the number

of programs involved. It did however run on two workstations and upwards. This

fact is not all that worrying. The simulator is designed to use multiple processors

and for complex dynamic simulations it is unlikely that all of the simulators could

be run on one processor anyway.

Overall, the steady state testing has proved invaluable. The majority of the

debugging on PNet was carried out using ESSPROS examples. The simulator

and pipe interface routines now work extremely well. The front end loader also

worked well. The process structures are being successfully analysed, with all

feeds, recycles and product connections being correctly located. In terms of

hardware use, RGC worked as expected. ESSPROS simulator programs were

run under both CSTools and PVM with no complications. We can conclude that

steady state simulation can be performed using the PNet. This is likely to be

extremely useful for finding the initial start point for any dynamic simulations

being run.

CHAPTER 6. EVALUATION 	 193

6.2.2 Parallel Dynamic Simulation Results

This section describes the initial results obtained from using PNet for actual

dynamic simulation. All of the test runs used have been with the dynamic pipes

described in Section 5.2.3.

To use PNet to build a simulator network, some individual process unit simulators

are needed. The only relatively complex simulator available to us was PDist. For

this reason, PDist has been the main simulator used for the test runs other

than some simple mixer and splitter simulators which were created for managing

recycles. The PNet connections are not implemented within PDist itself but in

the actual PDist modelling interface routines. This way different models with

varying connection strategies can easily be catered for.

Two separate simulation examples are presented here. In both cases the pipes

which support both the sequential modular steady state and parallel dynamic

connection strategies is used. This allows the steady state models in PDist to

be used to bring the PNet process examples to steady state before the dynamic

simulations are performed.

The two examples used are both distillation train simulations. In each case the

components being separated are Methanol, Ethanol, Propanol and Butanol. The

first example process is a simple linear train. A fiowsheet of this is shown in

Figure 6.6. The second example is a similar train with a recycle. The recycle is a

potential source of difficulty for the simulations. The example is designed to test

how PNet copes with recycles adequately. A fiowsheet of this example is shown

in figure 6.7. The PNet input descriptions used for the two examples are shown

in Appendices D.2.1 and D.2.2.

A number of simulations were carried out using the example networks shown. As

with the PDist examples, runs with both simple and complex v.Le were carried

CHAPTER 6. EVALUATION 	 194

(I)

Figure 6.6: Process Flowsheet for PDist Column Sequence

out. The local number of transputers available was 12. PNet ran each column

shown on approximately 4 transputers. As well as PDist code, the transputers

also had to run the 7+ pipe managers required for simulator connection.

In both examples the steady state was correctly calculated using the enforced

sequential modular connection strategy. The dynamic simulations also worked

well. The simulations ran successfully for the full duration. The recycle in the

second example caused no problems. In all of the simulations, each column could

be interacted with separately and at the end, separate PDist solution viewers were

available for analysing the individual column results. The overall connection

solutions were also successfully collected and displayed by the PNet solutions

manager.

The connection mechanism appears to work very well. A number of changes were

CHAPTER 6. EVALUATION 	 195

'I ')

Figure 6.7: Process Flowsheet for PDist Column Sequence with Recycle

made to the first column in both examples. These changes produced the expected

perturbations in the columns farther down stream. No problems were obtained

from the connection strategy used. This is probably down to the nature of the

inter column links which are dynamically slow. For dynamically faster links, the

explicit connection aproach may not work so well.

As fax as parallelisation efficiency is concerned, the results were better than ex-

pected. With the explicit approach used, the overall dynamic simulation is com-

pletely parallelised. There is no central control mechanism required, except for

solution collection and convergence checking for the steady state calculation. This

should make the overall parallelisation efficient. Unfortunately, the loading pat-

tern of the transputers makes it very difficult to estimate the actual efficiency

obtained. At the moment PNet simply distributes the simulator programs evenly

between the available processors. No account of the likely processor usage of

CHAPTER 6. EVALUATION 	 S 	 196

each program is used. Each column can take varying amounts of time to solve,

depending on where and when certain perturbations are taking place.

The strategy used for PNet results in the fact that any simulation can only run

as fast as the slowest simulator in the network. The only effective measure of

performance is thus to compare the overall simulation time with that of the slow -

est simulator. In the three column simulations carried out, the overall simulation

took almost exactly the same time as the slowest simulation. Hence the par-

allelisation appeared to work as well as could be expected. To make sure that

the actual parallelisation was not extending solution times, the load map was

dismantled and the slowest column run using the same processor pattern as in

the larger simulation. The times taken for the single column run as compared

to the times for a three column simulation were approximately the same. e.g.

With simple v.Le models, a single column took 166 seconds to run as compared

to 172 seconds for the three column network. The 6 second difference here being

primarily due to the extra communications overhead associated with the PNet

master running on the host workstation talking to an extra 8 transputers and

slight imbalances in work load between columns throughout the simulation. This

overhead should be compared to the saving in execution time of approximately

330 seconds by running the other two columns in parallel.

Overall the parallelisation works well. The biggest problem is obviously going

to be with load balancing. The examples described here are relatively simple

to load balance, since each column is roughly the same. For more complex pro-

cess networks with highly variable simulators, a much more sophisticated loader

would be required. This loader would need statistics on the average calculation

load of each simulator, the communications requirements and a measure of the

calculation to communication ratio to help with communication rendezvous opti-

misation. Work is ongoing in this area by other researchers, some of which used

the OCCAM distillation simulator as an example, see Skilling et a! [92,97,98].

CHAPTER 6. EVALUATION 	 197

As well as parallelisation, the other main result is the usability of the simulator.

Since each simulator is a program in its own right, building the overall process

simulations is simple: it is as easy as drawing a connected set of process units.

Once started, manipulating the network simulator is performed by manipulating

the individual simulators which make it up. In the examples shown here, each

PDist is as usable when connected as when run standalone. The input and output

mechanism is identical. The only real difference is that the changes made in one

affect all the others. Even if the parallelism produced no benefit, the ease of

simulator construction and manipulation which this modular approach provides

is, in the view of this author, enough reason to use it.

6.2.3 Summary

PNet has been tested on a number of initial problems. Overall, the modular

simulation approach using pipes as simulator connectors has worked well. Both

steady state and dynamic problems have been simulated.

The dynamic simulation results have been the most encouraging. Given good

load balancing, the parallelisation produces almost linear speedup. For more

complex process layouts, this benefit is likely to be much less. The greatest area

of work for the future is in working out how best to load process simulators

so as to maximise the parallel benefit. The connection approach used should

however facilitate this. Given that each simulator is connectable, it is a simple

matter to produce a wrapper program for testing out individual simulators. This

could be used to fully test a simulator over a range of inputs and also to collect

operational statistics as it. does so. These statistics could then be used in a

loading optimisation package.

Finally, the modular approach has proved extremely useful in its own right for

simulator construction and usability. The methodology used is felt to be the way

CHAPTER 6. EVALUATION
	

HE

ahead for the future.

Chapter 7

Conclusions and Future Work

The aim of this work was to investigate the use of MIMD parallel computers for

the dynamic simulation of chemical processes. This investigation has been carried

out at two levels: the process unit level and the process network level. Through-

out a parallel modular approach, rather than a parallel equation based approach,

has been used. The modular approach was chosen because of its greater potential

for parallelisation, robustness on sequential machines and the ease with which ex-

isting and varied simulator code could be combined. The modular approach is

also intuitive for the engineer.

7.1 The Modular Approach

The modular approach has been found to be particularly well suited to paral-

lel execution on MIMD machines. Even for simple models, excellent speedups

have been obtained using both PDist and PNet. The efficiency of the simu-

lators is primarily down the concurrent structure which the modular approach

provides. Almost all communications can be kept as nearest neighbour, with no

master/slave bottleneck or routing overhead being present. This has resulted

in the parallelisation overhead being dominated by load balance considerations.

199

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 200

Even with PDist, which can be relatively well load balanced by simple geometric

division, the load imbalance constituted as much as 75% of the total parallelisa-

tion overhead. This load imbalance was also found to become more distinct as

models were increased in complexity. Much of the work has focussed on making

the communication structures used efficient. For PDist, the results have shown

that the communication strategy used is indeed efficient. The results also show

that -this efficiency is not affected greatly as processor numbers are increased.

With PNet, there is still room for improvement with the pipe mechanism. In

particular, the feasibility of using one pipe to manage many connections needs to

be investigated. Load balancing, on the other hand, has been less well studied.

In both PDist and PNet, the loader simply attempts to distribute the simulation

programs as evenly as possible between the available processors. For PDist this

works well due to the even nature of the problem. For PNet balancing is more

complex and it is in this area that future work is required. The actual simulator

connection strategy has been proven to work, but it is only through good load

balancing that the real benefits of the approach can be obtained.

7.2 Load Balancing

The load balancing problem is common to both parallel modular and parallel

equation based methods alike. There is no simple solution in either case. With

PDist the load balancing is not particularly uneven. This is due to the nature

of distillation, where all the tray calculations are computationally similar. Here,

the main imbalances occur when large dynamic changes are taking place in iso-

lated, but changeable, sections of the column. One solution to this is to migrate

tray calculations from processor to processor. This would involve having one

column section export all of the tray model information from one processor to

another. This would incur a large overhead and the load imbalance would have

to be significant to warrant such action. The approach is however feasible. For

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 201

P Net, individual process block simulators take varying times to solve a given time

horizon. This solution time also changes depending on where the disturbances in

the process are located. A simulator built out of many simulators can only run

as fast as the slowest one over any given time horizon. It is thus important to

try and place simple simulations together on single processors, leaving the more

complex ones to run on processors of their own. It is not possible to completely

-load balance a parallel simulator because the problem being simulated is one of

fluctuating complexity. It should however be possible to produce a relatively well

load balanced simulator if runtime statistics • on the various connected simulators

can be collected. The modular approach lends itself well to obtaining such sta-

tistical information. Any simulator which is adjusted to run in PNet uses pipes

to obtain input and send output. It would be a simple matter to produce a test

program into which a given simulator could be plugged. The simulator could

then be run through a variety of test input scenarios and the statistics associated

with solution times collated. The resulting statistics could then become part of

the input description to the simulator. At run time the loader could analyse

the statistics for each simulator being loaded and attempt to produce as even a

program loading as possible on the available hardware. An exceptionally clever

loader could even analyse the changes which were to be made in a simulation and

attempt to isolate those simulators which are going to go through the biggest dy-

namic changes. Once the simulators have been loaded there is little which can be

done if the load balancing for some reason becomes inefficient. Again a possible

solution could be to move simulators from one processor to another. Unfortu-

nately migrating running programs is extremely difficult, expensive to initiate

and not a standard operation provided by any hardware and software suppliers.

If the load balancing problem can be solved, which this author believes to be

possible via the method outlined above, the modular approach can be extremely

efficient. Simulation results from PDist have shown the efficiencies which can be

obtained given reasonable load balancing.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 202

7.3 Robustness

The parallel modular approach was also expected to be robust. From test cases

run using PDist, it does appear to retain the robust characteristics of its sequen-

tial counterpart. The single most significant contribution to this robustness is the

fact that each individual simulation module can be programmed to use the most

robust approach to solving its local problem. This includes choice of integration

method, time step, physical properties, solution method and general discontinu-

ity management. The industrial case study models showed the benefit of this,

where the problem was solved by combining information and solution methods

from many sources into specialised modules. The onsite modelling attempt of the

company was only finally made to work once the results from PDist were used to

provide initial solution estimates for their column simulator.

Overall, the parallel modular approach is as robust as the modules which make

it up. To make sure that the individual modules are robust, similar tests to

those suggested for collecting execution time statistics could be used, with input

changes designed to test the robustness of the module rather than its execution

efficiency.

7.4 Flexibility

Given that parallel modular approach can offer a robust mechanism for building a.

large simulator out of many smaller ones, it could also be used as a mechanism for

breaking up large equation based simulations. Instead of using a single solver,

the equations could be split, based on process topology, and a separate solver

used on each subset of equations. In this case the PNet pipes would be the

partition points between sets of equations. By partitioning the equation based

simulators in this way they would become flexible and interchangeable. Many

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 203

industrial users find that they can only use certain commercial packages to solve

certain process sections. Unfortunately this means that if the two process sections

belong to the same chemical process, the whole process can only be simulated

by joining the simulators together. This is not usually possible when different

packages are involved. The parallel modular approach used with PNet offers a

solution to this. Any simulator which is connectable via pipes can connect to

any other, no matter what it is like internally. Although the modularisation of

equation based simulators offers the benefit of efficient parailelisation and ease of

connection to other packages, it goes directly against the grain of the perceived

advantages of modular versus equation based. It is quite possible however that

the argument has gone on for so many years purely because the real solution lies

somewhere in between. From a recent keynote speech by Herbert Britt of Aspen

Technology Ltd [99], it appears that such an approach is now being taken with the

equation based simulator SPEEDUP for simulating complete plants in very great

detail. SPEEDUP represents the most significant implementation to date of the

equation based approach to simulation. For very complex problems SPEEDUP is

to be split into connected sections, each running on a separate workstation. The

company is aiming more towards workstation technology than supercomputers of

the Cray variety. PNet has already shown that the modular approach works well,

and it is encouraging to note that the biggest simulator company now feels that

our approach taken is the solution to obtaining the processing power required to

run an equation based simulator on many processors.

7.5 Usability

As well as exploiting parallelism for processing power reasons, this work has at-

tempted to show that, within a parallel environment, simulators can be as usable

as their sequential counterparts. We have shown the effectiveness of using spe-

cialised programs for specialised tasks. PDist uses this effectively by having the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 204

simulator programs completely separate from the graphics and interaction utility

programs, the only connection being through data communication. By standar-

dising on this data format, programs can relay requests simply and efficiently to

each other. Software development is also simplified. The software writer's task is

reduced from being one where new and existing codes must be closely integrated,

to one where the new code requires only to understand the communication proto-

col .with its associated programs. This in turn allows many different solutions to

a single problem. Changing a single unit simulator, interaction or graphics mech-

anism involves changing a single program. Column models are built into refiux,

stage and reboiler programs. Different columns are simulated by using different

versions of these programs. Changing a model requires no recompilation or equa-

tion reordering. Also, although the modelling programs are being changed, the

support tools remain the same since they always talk to the simulation modules

using the same protocol.

7.6 User Interfaces

The final topic in this work has been that of providing input, output and inter-

action for the simulators, again in a modular way. For all simulators loaded with

PNet, each is allowed its own input and output mechanism. It is thus possible

to write very specialised graphical interfaces which are tailored specifically to the

process unit or section being simulated. This has been demonstrated with PDist,

where a comprehensive input and output representation is used. The input and

output data formats provide a mechanism for fully defining the process being

simulated, the models, the changes required during execution and the structure

of the output along with a number of useful solution display recommendations.

The formats were designed only to test the concept, but work well. Having the

simulation input and output descriptions in a standard form provides a conve-

nient mechanism for informing many different programs about a given problem.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 205

The programs can then be designed around the data format rather than the sim-

ulation problem itself. An example of this is the PDist solutions viewer. Once it

has been given the PDist model output description it automatically tailors itself

to present the solutions for a particular set of column models in the exact form

and grouping recommended by the modeller. When many PDists are together,

each PDist viewer is the same program but may appear differently depending on

the specific models being used. For simulation input, interaction and solutions

viewing, the future definitely lies in this direction. The hard task is to find the

correct data representation which can describe all of the various fixed and vari-

able attributes of the problem being simulated. The representation of such data

is now being investigated by such projects as épée [94], of which this author is

a part, and STEP [100]. The épée project is particularly concerned with process

engineering.

7.7 Summary

The parallel modular approach shows significant potential. This work has shown

that the approach is feasible, maps efficiently to parallel processing, can be ap-

plied to real problems and is above all robust. It is the view of this author that

the approach used by P Net, rather than a solely equation based approach, repre-

sents the way forward. It is felt that the best role for equation based simulators

is in the solution of the individual connected simulators.

7.8 Future Work

The simulators produced have been designed to show the benefits of using a

parallel modular approach to dynamic simulation. With PDist, the simulator

has been taken to a level were there is little in the way of future work required.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 206

The simulator embodies all of the original concepts envisaged and has been used

to simulate real problems. The main area were work is required is in the simulator

input and output. However, this work applies to simulation in general and not

just PDist.

In contrast, PNet is in a less well developed state. The areas where future work

is required are:

. Development of control connections

The only connection types currently available are material connections. It

should be possible to manage control connections in a similar way. The

control data managers would be used to take control analysis readings from

simulators and produce control actions in return. The managers would

more closely resemble simulators than pipes.

. Full support for implicit integration strategies

The convergence control mechanism in PNet does not yet fully support

implicit integration. It is important that PNet support this feature to help

provide a more robust connection mechanism.

• The production of a statistics based load balancing mechanism

For PNet to be efficient on parallel hardware, it must be well load balanced.

A mechanism is required which can provide this load balancing. To do this

it will have to utilise statistical information on the processing requirement of

each simulator being connected. A mechanism for obtaining these statistics

was outlined in Section 7.2.

• The connection of existing industrial simulators

The real test of PNet will be to use it to connect the simulators used by

industry. If all of the above changes can be made, it should be possible to

build very large and complex simulations out of varied and existing codes.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 207

• The data structures for defining the input and output to simulators

The description of the input and output of simulations needs to be ad-

dressed. It is only through standardisation on the description of the overall

problem and the models used to solve it that the approach used by PNet

can be automated. The épée [94] project is already tackling this problem.

7.9 The Future

The future is a parallel one. The technology which was once so specialised is

slowly beginning to merge with more conventional hardware. The same proces-

sors used to build workstations are now being used to build parallel machines.

Workstations are also being produced with multiple processors as standard. The

point will come when many single or multiple processor workstations will be con-

nectable to produce an efficient MIMD style parallel machine. It is only slow

hardware and software networking which is preventing this from happening now.

Through packages like PVM [93] this work has already shown that workstation

networks can be easily programmed in a manner analagous to parallel machines.

For the engineer, the ability to use standard equipment as a parallel resource will

offer a cost effective way of obtaining raw processing power.

In terms of utilising this processing power there is still a lot of research required.

Most work to date has been theoretical. There has been very little in the way

of actual implementation. For the majority of problems, the main requirement

is still for a good general parallel equation solver. It is only in areas such as

dynamic simulation, were there is obvious internal parallelism, that specialised

solution approaches become possible. In the end, the effective use of parallelism

is going to require both standard and specialised approaches. The work on PNet

has been built around this concept. At the moment the specialised approaches

are being paid the greatest attention. The main drive for the future should

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 	 208

be towards developing standard techniques for equation solving. The parallel

hardware is ready to use. It is up to industry to decide if they want to exploit it.

Appendix A

PDist Dynamic Simulation
Model Descriptions

This appendix contains the modelling equations and solution methods produced

by this author for testing PDist. Together the models described can be used to

simulate both conventional columns and the reactive/azeotropic column.

The symbols used in the model descriptions which follow are fully defined in

Appendix B.

A.1 General Tray Model Description

Two different models have been produced: One for steady state simulation and

one for dynamic simulation. Figure A.1 below shows a general distillation tray.

The unsteady state material balance for tray n is:

dM = F + L 1 + V_ - - V 	 (A.l)
dt

209

APPENDIX A. PDIST TEST MODELS
	

210

Ln+1 	Vn

F

Figure Ad: Distillation Tray n in a Stage Section

The unsteady state component balance for component i on tray n is:

dt = FXF + L+ix+i,1 + V_iy_i, - 	- 	 (A.2)

We want to try and express everything in terms of as few unknowns as possible.

The liquid and vapour fiowrates from the tray can be calculated from tray hy -

draulics. This is discussed in the next section. We can also express Yn,i in terms

Of Xn,i from simple vapour/liquid equilibrium:

=
	

(A.3)

In most trays, vapour equilibrium is never reached. An alternative way to express

y,,j is to use the definition of the Murphree Efficiency:

yn,i = eff(K,2x, - Yn-1,i) + Yn-i,i 	 (A.4)

is evaluated from a vie model.

dt can also be expressed in terms of

APPENDIX A. PDIST TEST MODELS
	

211

_____ - d [Mx,]
	

dM
dt - 	

= M. dt + 	dt 	
(A.5)

and can be integrated from known conditions M° and x at time t to the

unknown conditions at time t + St. In general any integration procedure may be

used. However, because of the potential stiffness of the problem and the need to

ensure robustness of the solution, a method which guarantees numerical stability

is required. The simplest method is the backward implicit Euler formulation,

from which Equation A.5 becomes:

dM,1 - M('
_Xi)

+ 	
dM 	

(A.6)
dt dt -

In this equation 	can be calculated from Equation A.I. The value of A/In can dt

be calculated either by simple integration of dmn or from tray hydraulics. In the dt

models described here tray hydraulics are used to determine M.

We can now express Equation A.2 in terms of two unknowns. The unknowns are

Xn,i and K,,,. Overall this gives us C equations with 2C unknowns, where C is

the number of components. However, we can express K, 1 in terms of a base K

value KB and the relative volatility of the component, rv,:

= KBrV, 	 (A.7)

If the relative volatility is assumed constant over the solution we now have an

equation in just x,,, and KB. Overall we have C equations and (C+ 1) unknowns.

To solve the system we need another equation. This equation is simple and is

based on the principle that the liquid and vapour molefractions must add up to

one. The best way of expressing this has been found to be:

APPENDIX A. PDIST TEST MODELS 	 212

— 1 = 	
rV,1KBXTh,1

1 	

- 1=0 	 (A.8)
>1 Xfl,i 	 Z1 x,

To solve the system of equations we could use a standard nonlinear equation

solver. However for this system of equations there is a simpler method which can

be used. By rearranging equation A.2 we can obtain an explicit equation for x

in terms of KB. This has two forms: one for the steady state and one for the

dynamic state. For the steady state case there are no differential terms. This

gives us:

FXF + L+1,x+1,1 + V._1y,_i, + Vy_ 1 , 1 (eff - 1)
x n,i = 	 (A.9)

L + Vrv,KBeff

For the dynamic case we get:

FXF + L+i,x+1, + V_1 _ 1 , +
Mx1 + Vy_,1(ef I - 1)

x n,i =
L + Vrv,KBeff ± Ma ± Mn 	

(A.10)
St 	St

For both cases Yn,i can be calculated from Equation A.4. Since Equations A.9

and A.10 are explicit, it is simple to find the overall solution for any given value

of KB. All that is required is a suitable method for locating the correct value of

KB which satisfies the constraint Equation A.8.

The method used by the routines to locate the correct value of KB is the Regula-

Falsi method. This method involves making a guess for K. From this guess the

liquid and vapour molefractions can be calculated using the above explicit equa-

tions. The constraint Equation A.8 can then be calculated. From the resulting

value and some old guesses of KB the Regula-Falsi is used to make a new guess at

the correct value for KB. This continues until the constraint equation is satisfied

to a given tolerance.

APPENDIX A. PDIST TEST MODELS 	 213

A.2 Tray Liquid and Vapour Flowrate Models

This section describes the models used to determine the liquid and vapour flowrates

from a tray.

Firstly the liquid flowrate model. As before the overall tray mass balance is:

dM =F+L +1 +V_1—L—V 	 (A.11)
dt

The simplest hydraulic model uses the relationship:

L!M
Tn

(A.12)

where 	is a characteristic of the tray and fluid. See the section A.3 on tray

hydraulics.

From this we can say:

	

dM 	dL

	

di 	1nã 	 (A.13)

By substituting Equation A.11 in Equation A.13 and again applying backward

implicit Euler an expression for L n is obtained:

- (F + L 1 + Va_ i - V)5t + Lr 	
(A.14) 'In— 	 (r+t)

r and M, the hydraulic tray constant and the tray holdup are determined from

tray hydraulics. This is described in the next section.

APPENDIX A. PDIST TEST MODELS
	

214

For the steady state model no hydraulics are used. Thus the steady state equiv-

alent of Equation A.14 is:

L. = L_ 1 + qF 	 (A.15)

The vapour model is very simple. For both. steady state and dynamic models it

takes the form:

V. = V 1 + (1 - q)F 	 (A.16)

A.3 Tray Hydraulic Models

This section describes the hydraulic models used to determine the tray holdup

and tray hydraulic constant.

The hydraulic equations which have been used are those used by Gani [101,

1021. The tray hydraulic equations are used to determine r, the hydraulic tray

constant, and M, the tray holdup.

Figure A.2 below shows a typical distillation tray and its hydraulic features.

The holdup M of a tray can be calculated from:

M = hjAp
M", 	

4-1 t
(A. 17)

where h1 is the head due to the liquid on the tray. This can be calculated from

the following equation:

APPENDIX A. PDIST TEST MODELS
	

215

how

hi

4
Active Lengt1'""i

FrA

Figure A.2: Figure Showing Hydraulic Features of a Distillation Tray

= Q(h + h)
	

(A.18)

Q is the aeration factor for the tray. The height over the weir, h0, can be

calculated using various correlations. The correlation used in this model is:

hQW = O . 26W_0 .37(_) 0 . 67
WI

(A.19)

q is the volumetric liquid flowrate, W1 is the weir length and W is a flow ratio

group defined by the following equation:

Pn
WI 	

(A.20)

LiVIt
q = p L 	 (A.21)

n

APPENDIX A. PDIST TEST MODELS
	

216

Substituting Equations A.18, A.19, A.20 and A.21 into Equation A.17, we obtain

an equation of the form:

Lo

	

L n = a'(M - 	 (A.22)

where

/
	

MnW)(O•26P1) 1 .2333(
p,Wi

) 	 (A.23)
a = QAOpI 	UP" 	

Mwt

and

= QhAp1 	
(A.24) MWt

Ln = f(M). By Taylor expansion we get:

L n = f(M) + (M - M)f'(M,) + ... 	 (A.25)

Rearranging:

L n = [f(iVI) - Mno 	+ Mf'(M) 	 (A.26)

If we take a linear approximation for L, i.e

L=A+M 	 (A.27)

then we can say:

APPENDIX A. PDIST TEST MODELS 	 217

= f'(M) 	 (A.28)

From Equation A.22 we get:

f'(M) =
10 	z - 	 (A.29)

This gives us the following expression for the tray hydraulic constant:

3 	1
T = 10a1 (jVI o -

3) 7) 	 (A.30)

A.4 Conventional Reflux Model Description

In this section the simulation models developed for a conventional reflux section

are described. The word conventional refers to a reflux section composed of a

total condenser and reflux drum. Figure A.3 below shows a conventional reflux

section.

Condenser 	 Reflux
Drum

VT

Column

REF 	 TOPS

Figure A.3: Conventional Reflux Section

APPENDIX A. PDIST TEST MODELS

Firstly the general component balance model is described. This assumes that

the reflux rate, REF, and the tops product rate, TOPS, have already been

calculated. The models used to calculate these flows are dealt with in the next

section.

The unsteady state material balance for the section is:

dMR
dt = VT - REF - TOPS 	 (A.31)

The unsteady state component balance for component i is:

dMR,
di = VTYT,1 - REFXR, - TOPSxR, 	 (A.32)

At steady state:

dMR,
di

(A.33)

VT = REF + TOPS 	 (A.34)

This gives a very simple equation for the steady state model where:

= YT,i
	

(A.35)

For the dynamic model dM can be expressed as a function of XR,i using the dt

product rule:

APPENDIX A. PDIST TEST MODELS
	

219

	

dMR, 	d 	 dxR, 	dMR

dt
= [MRXR,] = MR dt + XR,i dt

	
(A.36)

dM 	d3p 	 i 	 conditions MR — and -s- can be integrated from known conditions 	and XR,i at time t

to the unknown conditions at time t + dt. In general any integration procedure

may be used. To maintain consistency with the stage models and avoid stiffness

problems the backward implicit Euler formulation is again used:

dxR,, - XR,j -
dt - 	dt 	

(A.37)

Substituting Equations A.36 and A.37 into A.32 we get an explicit equation for

MR4 1
VTYT, + ôt 	 (A.38)

dMR
XR, -+fr+ REF +TOPS dt

Since Equation A.38 is an explicit equation there is no need for a nonlinear solver

this time.

Finally the holdup MR can be calculated from simple explicit integration using:

MR = M + dMRSt 	 (A.39)
di

In the routines used this integration is performed as part of the level control

models.

APPENDIX A. PDIST TEST MODELS
	

220

A.5 Conventional Reflux Flowrate Models

In this section the models used to calculate the reflux rate, REF, and the tops

product, TOPS, are described.

In all the models developed so fax the tops product is always expressed as a

function of the refiux rate. In other words the refiux rate is usually calculated

first.

For the steady state model the refiux rate is always set equal to a user defined

value. This can similarly be used for the dynamic models. The other option for

the dynamic models is to have the rate controlled by a composition controller on

the tops product. This model uses a proportional /integral controller to calculate

the reflux rate required to try and bring the tops product composition to a given

setpoint. The controller models are described later, but for now we can express

the reflux rate as:

REF = pi controller (xR,, XSET,1) 	 (A.40)

Once the refiux rate is known the tops product can be calculated. For the steady

state model the tops product is obtained by rearranging Equation A.32:

TOPS=VT — REF 	 (A.41)

For the dynamic model the tops product is calculated from the molar holdup of

material in the tank. The model used is again a controller model. This model

calculates the tops product required to maintain the holdup at a given setpoint.

For now we can say:

APPENDIX A. PDIST TEST MODELS
	

221

TOPS = controller(MR, MSET) 	 (A.42)

There is a choice of two control models for the tops product calculation: a pro-

portional /integral model and a proportional controller model.

A.6 Liquid/Liquid Separator Reflux Model

This section describes the reflux model used for the reactive distillation problem.

Figure A.4 below shows a diagram of the reflux section being modelled.

Condenser
	 TOPS2

ri 	(•) JiI

Column
REF

Figure A.4: Reactive Distillation Reflux Section

In the reactive distillation problem the vapour stream from the top of the column

is cooled. The liquified stream then settles out into two liquid layers. Tops

product streams are taken from each layer. The reflux stream is taken from the

ester rich layer.

To make the model simpler the refiuxed layer is always made the bottom layer.

This may not be correct from a density point of view but it means that only one

model is required.

APPENDIX A. PDIST TEST MODELS
	

222

The unsteady state material balance for the reflux section is:

dMR - dMR1 dMR2

dt - A
+
 di =

VT - REF - TOPS1 - TOPS2 	(A.43)

The unsteady state component balance for the section is:

dMR,i - dMRl, dMR2,

dt - di + dt =
VTYT,1 - REFXRl, - TOPS1XR1,, - TOPS2XR2,

(A.44)

As before dM can be expanded by the product rule. This gives:
dt

dMR, 	dxR l , 	dMR1 	dxR2, 	IMR2

dt = MR1 di
+ XR1,j dt + MR2 di + XR2, di + 	(A.45)

To simplify the model it can be assumed that the holdup in each liquid phase

does not change. Hence:

dMR1 dMR2

dt = di
= o 	 (A.46)

As with vapour/liquid equilibrium, the same relationships can be assumed for

the liquid/liquid split. Thus XR2,i can be expressed as a function of XR1,i so that:

= k2 xR1, = rvKBxR 1 , 	 (A.47)

The K values for the components can be calculated from an isothermal flash

model. This model is explained in the next section.

APPENDIX A. PDIST TEST MODELS
	

223

Finally dt1 can be integrated from the known condition x 	at time t to the

unknown condition at time t + St. Again for compatibility the backward implicit

Euler formulation is used.

Substituting Equations A.45 and A.47 into Equation A.44, integrating and rear-

ranging we get an explicit expression for XR1,i in KB:

MR1x1 + MR2rVKBX°I1

6t 	 St 	+ VTYT,
XR1,i = M

+ rVKB 	+ REF + TOPS1 + rviKBTOPS2 	
(A.48)

at

The steady state equivalent of this equation is:

VTYT,
= REF + TOPS1 + rvKBTOPS2 	

(A.49)

As with the stage section models the same constraint equation can be used. This

is the equation that states that the molefractions in either phase must add up to

one.

= 0 	 (A.50)

There are now (C + 1) equations and (C + 1) unknowns. The structure of the

equations is almost identical to the structure of the stage section tray equations.

Again the Regula-Falsi method can be used to find the KB value which satisfies

the constraint Equation A.50.

APPENDIX A. PDIST TEST MODELS 	 224

A.7 Liquid/Liquid Separator Flowrate Models

This section describes the models used to calculate the refiux rate and tops prod-

uct for the reactive distillation refiux section.

The fiowrate models are very simple. This is because in the component balance

equations we have assumed that there is no change in the total holdup of material

in the separator. Thus the fiowrates can be calculated from the steady state

material balance.

VT - REF - TOPS1 - TOPS2 =0 	 (A.51)

The relux rate is calculated from the refiux ratio. This defines the ratio of the

refiux rate to that of the tops product being taken from the same layer. i.e.

RR = REF/TOPS1 	 (A.52)

If TOPS2 is user defined then by rearrangement an explicit expression for REF

is obtained:

REF = RR(VT(R12)
	

(A.53)

Finally TOP Si can be calculated by rearrangement of equation A.43:

TOPS1 = VT - REF - TOPS2 	 (A.54)

APPENDIX A. PDIST TEST MODELS 	 225

A.8 Liquid/Liquid Isothermal Flash Model

This section describes the isothermal liquid/liquid flash model developed to derive

the K values used in the liquid/liquid component balance models. Figure A.5

below shows an idealised isothermal flash.

000

Figure A.5: Isothermal Flash

The isothermal flash is used to determine how a given feed of material will split

into two liquid phases at a given temperature. The steady state material balance

for the separator is:

F = TOPS1 + TOPS2 	 (A.55)

The steady state component balance:

FxF,i = TOPS1x1 , 1 + TOPS2x 2 , 	 (A.56)

For a liquid/liquid mixture, the chemical potential of each liquid phase must be

the same at steady state. The chemical potential for component i is defined as

follows:

3(gnT)
14= [= (T) + RTln(a) 	 (A.57)

APPENDIX A. PDIST TEST MODELS
	

226

where ai is the activity for the component, g is the molar Gibbs free energy

function for the mixture and 0 is some function of temperature T. Since the

chemical potential of each phase is the same the 0 terms cancel and we are left

with:

= a2 , 	 (A.58)

This can then be expressed in terms of activity coefficients:

'f1,jX1,j = "12,iX2,i 	 (A.59)

where

a
Xi

(A.60)

Thus by rearranging we get an expression for x l ,i in terms of x 2 , 1 :

x 2 ,, = 2tx 1 , 	 (A.61)

By substituting this into Equation A.56 and rearranging, Xi,i can be expressed

as:

FXF, 2 TOPS1
x1,i

= TOPS1(TOPS1 + 4TOPS2) 	
(A.62)

The activity coefficients can be calculated from the expression which defines the

excess chemical potential for a component:

APPENDIX A. PDIST TEST MODELS
	

227

E
- a(gEn)
- 	on, 1p,T,n i0i = RTln('y) 	 (A.63)

where gE is the molar excess Gibbs free energy function for the mixture. This

is the amount by which the Gibbs function of the solution exceeds that of a

hypothetical ideal solution of the same composition. 7i is the activity coefficient

for the component.

Since the activity coefficients are strong functions of composition the component

balance equations must be solved iteratively. This involves calculating the activ-

ity coefficients followed by new estimates for the liquid fractions using Equation

A.62. This is repeated until convergence of the liquid fractions is obtained.

There are many different thermodynamic equations for the molar excess Gibbs

free energy function. The models developed here use the NRTL equation to

calculate the activity coefficients. The NRTL equation is:

- E 	
C 	

XrTrjGrjj 	
(A.64) [r +

j=1 	G1x1 	- 	G13x1

where:

= (gjjgjj)• (gjj = gjj, Tj 	r) 	 (A.65)
RT

and

Gji = exp(—aj z rj j); (aji = c.) 	 (A.66)

The three adjustable parameters (gj, - g,3), (g,j - gj) and aij are obtained from

APPENDIX A. PDIST TEST MODELS
	

228

experimental data.

A.9 Conventional Reboiler Model Description

In this section the simulation models developed for a conventional reboiler section

are described. Figure A.6 below shows a conventional reboiler section.

B

Figure A.6: Conventional Reboiler Section

The unsteady state material balance for the section is:

dM 	
(A.67)

The unsteady state component balance for component i is:

dMi
= L1x1, - V y - Bx2 	 (A.68)

We want to try and express everything in terms of as few unknowns as possible.

The boilup rate and bottoms product compositions can be calculated from known

data. y' can also be expressed as a function of xi from simple vapour/liquid

equilibrium:

APPENDIX A. PDIST TEST MODELS
	

229

y j = Kixi = rVKBX 	 (A.69)

dmi can also be expressed in terms of Xi and expanded using the product rule: dt

dM =
	— i

d 	dx 	dM
—[Mx 1] 	 -

dt 	di 	- 	dt 	
(A.70)

and can be integrated from known conditions M° and x at time t to the

unknown conditions at time t + St. In general any integration method may be

used. To maintain consistency with the stage and reflux models and to avoid

stiffness problems the backward implicit Euler formulation is again used:

dx 	X io

St 	
(A.71)

Substituting Equations A.69, A.70 and A.71 into Equations A.68 and rearranging

we get an explicit equation for x i in terms of K. This has two forms: one for

the steady state and one for the dynamic state. For the steady state case:

L 1 x 1 ,
Xi = 	 (A.72)

VrVIIB + B

For the dynamic case we get:

L 1 x 1 , 1 +
Xi
 =L + VTVKB + B 	

(A.73)
1- Stdt

As with the stage models the same constraint equation applies here. This con-

straint is that the sum of the molefractions in each phase must add up to one.

This is expressed by:

APPENDIX A. PDIST TEST MODELS
	

230

1:L Yi - I= 	rVKBX
= 0 	 (A.74)

E1 xi 	J:q Xi

Since Equations A.72 and A.73 are explicit in terms of KB, it is simple to find

the liquid molefractions given a suitable value of KB. Thus the same solution

method as used for the stage models was used. Here the Regula-Falsi method is

used to search for the correct value of KB which satisfies the constraint equation

A.74.

Finally the holdup M can be calculated from simple explicit integration as follows:

M = M° + !i8t (A.75)

In the routines used for the simulation this integration is performed as part of

the level control models.

A.10 Conventional Reboiler Flowrate Models

In this section the models used to calculate the reboil rate, V, and the bottoms

product, B, are described.

In all the models developed so far the bottoms product is always expressed as a

function of the reboil rate. In other words the reboil rate is always calculated

first.

For the steady state model, the reboil rate is always set by the user. This can

also be used for one of the dynamic models. The other dynamic model uses a

proportional/ integral controller to calculate the boilup rate required to try and

bring the bottoms product composition to a given setpoint. The controller models

APPENDIX A. PDIST TEST MODELS
	

231

are described later, but for now we can express the boilup rate as:

	

V = pi controller (x, XSET,) 	 (A.76)

Once the boilup rate is known the bottoms product can be calculated. For the

steady state model the bottoms product is calculated by rearranging equation

A.67:

B=L 1 —V 	 (A.77)

For the dynamic model the bottoms product is calculated from the molar holdup

of material in the reboiler, again using a controller model. The model calculates

the bottoms product rate required to maintain the holdup at a given setpoint.

The control models are described later. For now we can say:

	

B = controller(IVI, IVISET) 	 (A.78)

There is a choice of two control models for the tops product calculation: a pro-

portional/integral model and a proportional model.

A.11 Reactor /Reboiler Model Description

This section describes the general reactor/reboiler model used for the reactive

distillation problem. Figure A.7 below shows a diagram of the reactor/reboiler

being modelled.

The unsteady state material balance for - the section is:

APPENDIX A. PDIST TEST MODELS
	

232

so
F

Figure A.7: Reactor/ Reboiler Section

dM
dt = F + L1 - V - St oich.Rate .Mwt 	 (A.79)

where Stoich is the overall stoichiometry of the reaction. Rate is the reaction

rate per unit mass and IVP1t is the mass holdup of material in the reactor. In the

case of the reactive distillation problem the overall stoichiometry is zero.

The unsteady state component balance for the section is:

dM
= FXF, + L1 x1, i - Vy - St oi chj RateM'T 	(A.80)

dt

This time Stoichi is the stoichiometry of the individual component with respect

to the reaction rate. For example in the reaction:

A+B=C+D 	 (A.81)

the stoichiometry of A and B is 1 and the stoichiometry of C and D is —1. The

overall stoichiometry is 0.

We want to try and express Equation A.80 in as few unknowns as possible. y

can be expressed in terms of xi using simple vapour/liquid equilibrium:

	

APPENDIX A. PDIST TEST MODELS
	

233

y j = Ki xi = rVKBX (A.82)

The rate term in the equation is usually dependent on composition. This means

that we can no longer simply rearrange the equation to allow the Regula-Falsi

method to be used. The functions are much more non linear.

The same constraint equation again applies here. This being that the sum of the

molefractions in each phase must add up to one. This is best expressed by:

Eq 	EC rVKBX
= o 	 (A.83) EIF xt 	 xi

Two different approaches have been used to solve the model shown: One uses

explicit Euler as the integration method and the other uses backward implicit

Euler as the integration method. These approaches are now described:

• Explicit Integration Method

This model uses simple explicit Euler to integrate Equation A.80:

M=M° +
dM
--8t 	 (A.84)
dt

The rate and vapour liquid equilibrium variables are all calculated using

variables from the previous time step. Once this has been done the new

holdup can be calculated by simple summation:

C

	

JvI=1vfi 	 (A.85)

The new molefractions can then be calculated using:

vii 	
(A.86)

M

	

APPENDIX A. PDIST TEST MODELS
	

234

The vapour fractions can then be calculated using Equation A.82. Finally

the system must be adjusted to satisfy the constraint Equation A.83. This

can be performed as before using the Regula-Faisi method to find the correct

KB value.

• Implicit Integration Method

dt
can be expressed in terms of xi by rearrangement and expansion using

the product rule:

dM, d 	
=M 	

dM

	

-a-- = -[Mx] 	
dt +
	 (A.87)

dt

dM can be evaluated from Equation A.79 and 	can be integrated using

the backward implicit Euler formulation:

dxi - (x 2 - x)
(A.88)

	

--- 	St

Substituting Equations A.82, A.87 and A.88 into Equations A.80 we are

left with a set of nonlinear equations. These are the C component balance

equations and the constraint equation A.83. These equations can be solved

using a standard nonlinear solver. For the models developed here Newton

Raphson is used. This is described in section A.19.

The steady state model for this section also requires the use of a nonlinear solver.

The equations to be solved are the same as the implicit dynamic ones without

the time dependent terms.

A.12 Reactor /Reboiler Flowrate Models

This section describes the models used to calculate the boilup rate for the reac-

tor/reboiler.

APPENDIX A. PDIST TEST MODELS
	

235

There are two different approaches used to calculate the boilup rate: one for the

steady state model and one for the dynamic model. The steady state model uses

a simple rearrangement of the steady state material balance:

	

V=F+L1
	 (A.89)

The dynamic model is slightly more complex. If the steady state equation is

used the overall change in molar holdup remains constant. This does not mean

that the volumetric holdup remains constant. For mixtures whose components

have very different molecular weights, slight changes in composition can give

large changes in volumetric holdup. Thus in the dynamic model the boilup rate

calculated is that which prevents any change in the volumetric holdup in the

tank. It essentially models a perfect level controller.

Firstly the volume increase which will be caused by the incoming material must

be calculated:

dM' 	C L1x1,iVIwi
+

FXFi11/IWii) 	
(A.90)

di 	i=1 	pi 	 Pi

This defines the volume of liquid material which must be removed as vapour.

The liquid volume expressed in terms of the vapour variables is:

dM' C VyMwt
di = 	Pi 	

(A.91)

where pi is still the liquid density of component i.

Equating these equations and rearranging we get an expression for the boilup

rate:

APPENDIX A. PDIST TEST MODELS
	

236

,L,xi,1Mwt + Frp1Mwt

- 	=' 	p 	 /

- 	
(A.92)

Pi
yimwti)

A.13 Vapour/Liquid Equilibrium Models

The purpose of the vapour/liquid equilibrium models is to calculate the tempera-

ture, K values and relative volatilities for given mixtures. This requires a bubble

point calculation.

The bubble point of a mixture is the point at which the first bubble of vapour

begins to appear. This can be represented by the following equation for ideal

mixtures:

C 	C

(A.93)

where Ki can be calculated from Raoults Law as follows:

K=Y!=ç 	 (A.94)
Xi

The vapour pressure for the mixture can be calculated from the Antoine correla-

tion:

In(Pr) = A, - B, 	 (A.95)
T+C,

where A 1 , B1 and Ci are the ideal component Antoine coefficients. These are avail-

able for most components. Unfortunately the Antoine equation cannot be used

APPENDIX A. PDIST TEST MODELS 	 237

directly for non ideal mixtures since the coefficients are based on pure properties.

For non ideal mixtures more rigorous methods are required.

For non ideal mixtures the bubble point can be calculated using equations of state

which take into account the affect components have on each other when mixed

together. Fortunately these methods have been implemented in various computer

packages. For the models developed here the PPDS package is used. The main

drawback of these packages is the time required to find a given bubble point.

To attempt to reduce the execution time that would be required it was decided

that a hybrid of the Antoine equation and the PPDS bubble point method would

be used. This involves using the rigorous bubble point calculation to estimate

pseudo Antoine coefficients.

In the Antoine equation the coefficient which tends to vary most for different

components is the B coefficient. The A coefficient is virtually a global constant

and the C coefficient varies only slightly when compared to the variation in B.

By assuming that the A and C components are fixed, a non ideal estimate for

the B coefficient can be calculated:

= —(In (Pi*) - A)(C1 + T) 	 (A.96)

where T and P are calculated from a non ideal bubble point calculation using

PPDS. The value of P being calculated by rearrangement of equation A.94.

During the simulation these pseudo Antoine coefficients can be used instead of

the rigorous methods for the vle calculations. This works well as long as the

pseudo coefficients are updated once every few iterations.

APPENDIX A. PDIST TEST MODELS

A.14 Proportional/Integral Control Model

The proportional/integral control models are used for composition control of the

tops and bottoms streams. The controller proportional part is calculated from

the following:

u(`") = bias(t) + K(h t - hSET) 	 (A.97)

where u is the manipulated variable, K is the gain of the controller, bias' is the

current bias, h is the current value of the controlled variable and hSET is the

setpoint value. The integral part has the form:

(t+St) u 	= ut+st) + 	J(h - hSET)dt 	 (A.98)

The integral term can be discretised to give an equation in terms of the integration

time step öt and an updated bias, where the updated bias contains the integrated

error from previous time steps:

LtK C (t+6t) 	bias(t) + K(h(t) - hSET) + (h(t) - hSET) 	(A.99) = 	 T

where bias(t) is updated at the end of each time step to bias(tt) using a rear-

rangement of A.99:

bias(tt) = bias(t) + 	(h(t) - hSET)St =
	- 	- hSET) 	(A. 100)

T
Pt

APPENDIX A. PDIST TEST MODELS
	

239

A.15 Level Control Models

There are two different types of level controllers used: a proportional controller

and a proportional/integral controller. For a tank with controlled flowrate f the

overall material balance is:

dM
- = net flowin - f 	 (A.101)
dt

where net flowin is the sum of all the flows for the unit not including the con-

trolled flow.

This equation can be integrated from known condition M° at time t to the un-

known condition at time t + St using explicit Euler:

M =
dM
—St + M° 	 (A.102)
dt

Substituting Equation A.101 into this equation and expanding f using the ap-

propriate controller equations an expression for the holdup 1VI is obtained:

• Proportional Level Controller

M=
M° + St((netflowin - bias) + KCMSET) 	

(A.103)
1+(StK)

• Proportional/ Integral Level Controller

M° + St((netflowin - bias) + K(l +) MsET)
M =
	 1 + (6tK)(1 +) 	

(A.104)

APPENDIX A. PDIST TEST MODELS
	

240

A.16 Simulation Input Ramping Models

The ramping of a variable involves changing its value in a linear fashion from

an initial condition to a target condition over a specified period. In the current

models the feed fiowrate and compositions can be ramped. This can be expanded

to other variables if required.

For feed flowrates the ramping equation is analogous to the equation for a straight

line, where the intercept is taken as the flowrate at the start of the ramp:

	

= (f mat - finit)t + fi.it
	 (A.105)

perR

where fi,,i t is the starting feed condition, ffjnal is the target feed condition, perR

is the ramp period and t is the time which has elapsed since the start of the ramp.

For molefractions the ramp is carried out on the individual component molar

flowrates. For component i:

	

(ffinalXfinal,i - ftnitXinit,i)t +
	 (A.106) fxf, =

perR

Substituting equation A.105 into A.106 and rearranging an expression for xf,i is

obtained:

(ffinaIX final, 	 finttnit,)
perR 	

t + ftflttzfltt,t 	
(A.107) Xf,2 =

	 (f;inalfinit)t +
per R 	finit

The ramping of other variables can be performed in a similar way. The set is

limited at present since most of the work involved is concerned with the detection

of feed changes and error checking rather than the actual ramping process itself.

APPENDIX A. PDIST TEST MODELS
	

241

A.17 Simulation Input Oscillation Models

The oscillation of variables involves changing its value sinusoidally between an

initial and target condition with a given period. In the current models the feed

flowrate and molefractions can be oscillated. This can be expanded to other

variables if required.

Unlike with ramping the reference point used for all calculations is the mean of

the start and finish condition. A sine wave is then generated around this value

with maximum amplitude equal to half the difference between the initial and

target conditions. Figure A.8 below shows the approach used:

"mit

finit + 1fInaI
2

finai

Figure A.8: Oscillation Approach Used

For feed fiowrates the oscillation equation is:

I = 	+ fjinai) + (ffinal - sin(0) 	(A.108)
2

where 0 is calculated from:

APPENDIX A. PDIST TEST MODELS 	 242

t 	3r
9 = per, —2ir + 4 -. 	 (A.109)

The last term ensures that at time zero the fiowrate is set equal to the initial con-

dition. As before the oscillation of molefractions is calculated from the oscillation

of component molar flowrates. For component i:

fx1, = 	2
_______+ ffinalXfinal,i)

+
(hinalXfinal,i

2 -
	sin(0) (A.110)

Substituting equation A.108 into A.110 and rearranging an expression for x f ,i is
obtained:

	

Ziinai,i) + (fiinaijinat,i 	 sin(9)
X1j =
	

2 	 2

 (f••+ffz) + (f1•f..) 	
(A.111)

The oscillation of other variables can be performed in a similar way. The set is

limited at present since most of the work involved is concerned with the detection

of feed changes and error checking rather than the actual oscillation process itself.

A.18 The Regula-Falsi Method

The Regula-Falsi method is a root finding method for nonlinear equations. It is

generally used for functions which are smooth near the root. The method works

by assuming that the function is approximately linear in the region of interest

and the next estimate of the root is taken as the point where the line between

the last two function values crosses the axis. Figure A.9 shows how the method

is used to find a new estimate at the root.

APPENDIX A. PDIST TEST MODELS
	

243

Figure A.9: The Regula-Falsi Method

The updated value x,, can be calculated using similar triangles where:

12 	- (x2 -
(A.112)

(12 fl) - (x2 —x i)

Rearranging this we get:

fi x2 - f2 x 1
Xnew 	 (A.113)

fi — 12

The order of convergence of the Regula-Falsi method is approximately the "Golden

Ratio" 1.618.

A.19 Newtons Method

Newtons method is used here to solve systems of nonlinear equations. It is espe-

cially suited for systems where the neighbourhood of a root can be identified. This

makes it ideal for solving component balance equations where the molefractions

have known bounds.

APPENDIX A. PDIST TEST MODELS 	 244

A typical problem gives N functional relationships to be zeroed:

f(x 1 ,x2 XN)=O i=1,2. N 	 (A.114)

Let X denote the entire vector of values x, then in the neighbourhood of X, each

of the function values fi can be expanded by Taylor series:

Na;

	

f1 (X + SX) = f(X) + 	-8x 2 + O(5X 2) 	 (A.115)
j=1 	J

By neglecting terms of order higher than 8X2 , a set of linear equations for the cor-

rections SX that move each function closer to zero simultaneously are obtained:

aii8xj = 	 (A.116)

where

J5x 	= -f 	 (A.117)

This set of equations can be solved using a linear solver. The corrections can

then be added to the solution vector:

	

new = x1d + 6x, 	= 1....., N
	

(A.118)

This process can be be repeated until convergence is obtained.

Appendix B

Symbols Used In PDist Model
Descriptions

B.1 General Model Symbols

a 	- The activity of component i.

a1, 	- The activity of component i in the bottom layer of a two phase mixture.

a2,1 	- The activity of component i in the top layer of a two phase mixture.

a 3 	- An NRTL parameter.

cii 	- An NRTL parameter.

A 	- Antoine A coefficient for component i.

B 	- The total molar bottoms product.

bij 	- An NRTL parameter.

B 	- Antoine B coefficient for compoennt i.

B 	- Pseudo non-ideal antoine B coefficient for component i.

Ci 	- Antoine C coefficient for compoennt i.

C 	- The number of components.

eff 	- Tray efficiency.

f 	- Total molar feed flowrate.

F 	- Total molar feed flowrate.

245

APPENDIX B. SYMBOLS USED IN PDIST MODEL DESCRIPTIONS 246

g 	- The Gibbs molar free energy function.

9 	- The excess Gibbs molar free energy function.

gij 	- An NRTL parameter.

G3 	- An NRTL parameter.

K' 	- The current value of the equilibrium ratio.

KE 	- The equilibrium constant.

lCf 	- The forward reaction rate constant.

K 	- K value for component i.

KB 	- Root K value of the base component.

- K value of component i on tray n.

L 1 	- The total molar liquid flowrate leaving the bottom of the column.

L n 	- Total molar liquid flowrate leaving tray n.

L+1 	- Total molar liquid flowrate entering tray ii from above.

M 	- Total molar holdup.

M° 	- Total molar holdup at last time step.

MR 	- Total molar holdup of material in the refiux decanter.

MR1 	- The total molar holdup of the bottom layer in the reflux decanter.

MR2 	- The total molar holdup of the top layer in the reflux decanter.

M' 	- The volumetric holdup of material.

rnwt 1 	- The molecular weight of component i.

Mt 	- Total mass holdup of material on tray n.

ni 	- The number if moles of component i.

nT 	- The total number of moles.

- Vapour pressure of component i.

PT 	- Total pressure.

q -
Q value for feed.

R - The Gas constant.

Rate - The reaction rate.

REF - The molar reflux rate.

RR - The reflux ratio.

APPENDIX B. SYMBOLS USED IN PDIST MODEL DESCRIPTIONS 247

- Relative volatility of component i on tray n.

Stoich 	- The overall stoichiometry of a reaction.

Stoich 	- The reaction stoichiometry with respect to component i.

T 	- Temperature.

TK 	- The temperature in kelvin.

TOPS 	- The molar tops product rate.

TOPS 1 - The molar tops product offtake from the bottom layer.

TOPS2 - The molar tops product offtake from the top layer.

V 	- Total molar vapour flowrate leaving tray n.

V 1 	- Total molar vapour flowrate entering tray n from below.

- Molefraction for component i in feed.

XF 	- Molefraction of component i in feed.

X,j 	- Liquid molefraction of component i on tray 'n.

- Molefraction of component i on tray ri at last time step.

- Liquid molefraction of component i in liquid entering tray n.

- The liquid molefraction of component i in the reflux drum.

XR1, 	- The liquid molefraction of component i in the bottom layer of the reflux decani

x 1 	- The liquid molefraction of component i in the top layer of the reflux decanter f

XR2,i 	- The liquid molefraction of component i in the top layer of the reflux decanter.

Yi 	- Vapour molefraction of compoennt i.

- Vapour molefraction of component i on tray n.

Yn-i,i 	- Vapour molefraction of component i in vapour entering tray n.

YT,i 	- The vapour molefraction of component i in the vapour stream exiting the colur

- Rate of change of liquid flowrate leaving tray n. dt

dM
dt - Rate of change of molar holdup.

dMn
dt - Rate of change of total molar holdup on tray n.

dM
dt - Rate of change of molar holdup of component z on tray n.

dMg 	
- The rate of change of molar holdup of component i in the reflux drum.

dt - Rate of change of total molar holdup in the reflux decanter.

aij 	- An NRTL parameter.

APPENDIX B. SYMBOLS USED IN PDIST MODEL DESCRIPTIONS 248

- The activity coefficient of component i in the bottom layer of a two phase mix

P72,1 	 - The activity coefficient of component i in the top layer of a two phase mixture

St 	- Time step

Pi 	- The chemical potential of component i.

EF As 	- The excess chemical potential of component i.

Pn 	- Density of liquid leaving tray n.

Tij 	 - An NRTL parameter.

O(T) 	- A function of T used in chemical potential equation.

B.2 Hydraulic Symbols

A 	- Active area of tray n.

- Height of liquid on tray n.

h0 	- Height of the liquid over the tray weir.

h 	- Height of the tray weir.

Q 	- Aeration factor for tray.

U9 	- The vapour velocity based on active area.

W1 	- The length of the tray weir.

Pn 	 - Density of liquid leaving tray ri.

Pn 	- Density of vapour le.ving tray n

- Variable used for hydraulics.

- Variable used for hydraulics.

Tn 	 - Hydraulic time constant for tray n.

W 	- Hydraulic variable representing an empirical relationship.

APPENDIX B. SYMBOLS USED IN PDIST MODEL DESCRIPTIONS 249

B.3 Control Symbols

bias(t) 	- Controller bias at time t.

bias(t+St) - Controller bias at new time t + St.

h 	- Measured variable.

V) 	- Measured variable value at time t.

hSET 	- Setpoint value for the measured variable.

K 	- Controller gain.

MSET 	- Setpoint total molar holdup.

net flowin - Net sum of all flows except manipulated flow.

urst) 	- New manipulated variable value calculated by a proportional controller.

UPI 	 - New manipulated variable value calculated by a proportional/integral control r

r 	- Time constant for proportional /integral controller.

B.4 Ramping and Oscillation Symbols

finit - Initial value for total molar feed flowrate.

II inal - Target value for total molar feed flowrate.

perR - Ramping period.

pero - Oscillation period.

t - Time since start of ramp /oscillation.

Xj jnal,i - Target value for feed molefraction of component i.

- Initial value for feed molefraction of component i.

0 - Phase term for oscillation mode.

- Physical constant ir = 3.141592.....

APPENDIX B. SYMBOLS USED IN PDIST MODEL DESCRIPTIONS 250

B.5 Numerical Method Symbols

10 	- A function f.

f'() 	- The derivative of a function f.

r 	- Relative linearity of function at local point.

- First guess for root in secant method.

- Second guess for root in secant method.

Xnew 	- New guess for root in secant method.

Xnow 	- New guess for root in secant method.

X 	- Vector of all values of x.

axj
	 - Rate of change of function i with respect to variable j.

8 	- A finite size.

8X 	Vector of changes in X when Newtons method is used.

6x3 	- Finite change in the value of x.

Appendix C

PDist Input Variables and
Example Input Files

This appendix contains a description of the PDist input variables accessible from

the PDist Model Interface routines. The appendix also contains an example

PDist input description and PDist output description.

C.1 PDist Input Variables

The following text is taken from the PDist model interface header file pdist..setup.inc.

It contains all of the global variables initiated and updated by the PDist envi-

ronment.

C

• File: pdist_setup.inc
• Release: 1
• Revision: 1.1
• Author: R.C. McKirinel
• Last Update: 3/22/93
• Copyright 3/22/93 , Roderick C. McKinnel, All Rights Reserved
C

c Purpose:

251

APPENDIX C. PDIST INPUT FILES
	

252

c 	PDist input file variables.
c 	These are setup and manipulated by PDist.
C

C 	*** Overall Column Sizing Variables ***

integer nosofcomps ,nosoffeeds ,no ,basecomp

c 	### nosofcomps 	- The number of components in the column.
c 	### nosoffeeds 	- The number of feeds in the column.
c 	### no 	 - The total number of plates in the column.
c 	### basecomp 	- base component for vie

c 	*** Local Column Sizing Variables ***

integer localbot ,nplates , localtop

c 	### localbot - The bottom plate number in modelling section.
c 	*## nplates - The number of plates in modelling section.
c 	### localtop - The top plate number in modelling section.

C 	*** Feed Setups ***

double precision f(MAXFEEDS) ,ftemp(MAXPLATES) ,fpress(MAXPLATES)
double precision xf(MAXPLATES ,NAXCOMPS) ,q(MAXPLATES)
logical youarefeed(NAXPLATES)
integer feednumber(MAXPLATES)

c 	#*# f(*) - Vector of feed flowrates per plate.
c 	### ftemp(*) - Vector of feed temperatures.
c 	### fpress(*) - Vector of feed pressures.
c 	#** xf(*,*) - Array of feed fractions per plate.
c 	### q(*) - Vector of heat qualities per plate.
c 	*## youarefeed(*) - Indicates feed plates. True if plate has a feed.
c 	### feednumber(*) - The number of the feed if any.

c 	*** Simulation Time Variables ***
double precision currenttiine,finishtime ,dt ,histdt

C 	### currenttime - The current simulation time.
c 	*## finishtime - The finish time for the simulation.
C 	*** dt - The overall simulation time step.
C 	### histdt - The time step for solution storage.

C 	*** Column Variables ***
double precision e(O:MAXPLATES) ,press(O:NAXPLATES)

APPENDIX C. PDIST INPUT FILES 	 253

C 	### e(*) 	 - The plate efficiencies.
C 	### press(*) 	- The pressure on each plate.

C 	*** Thermodynamic Variables ***
double precision compmwt(MAXCOMPS) ,denscomp(MAXCOMPS)
double precision ant a (MAXC OMPS) , antb(MAXCOMPS) , ant c (MAXCOMPS)

C 	### compmwt(*) - The component molecular weights.
c 	*#* denscomp(*) - The component densities.
c 	### anta(*) - Antoine A values for components
C 	##* antb(*) - Antoine B values for components
C 	#*# antc(*) - Antoine C values for components

C 	*** Tray Hydraulic Variables ***

double precision d,aa, ap ,ad,admin,ah,dh,nh,ha,hw,lw,oc,qp

C 	### d - Diameter of holes.
c 	##* aa - Actual plate area.
c 	##* ap - Active plate area.
c 	*** ad - Area of downcomer.
c 	### admin - Minimum donwcomer area.
C 	**# ah - Area of holes.
c 	### dli - Diameter of holes.
c 	### n.h - Number of holes.
c 	### ha - Height of the apron.
c 	#** hw - Height of the weir.
c 	##* lv - Length of the weir.
c 	*#* oc - Orifice coefficient.
c 	### qp - Aeration factor.

c 	*** Controller/Model Variables ***

C 	*** Ref lux ***
integer reflux_controller
double precision reflux_params(MAXCONTROLLERS ,MAXCONTPARANS)
integer nreflux_controllers ,nreflux_params(MAXCONTROLLERS)

C 	*** Tops ***
integer tops-controller
double precision tops _params(MAXCONTROLLERS ,NAXCONTPARAMS)
integer ntops_controllers ,ntops_params(MAXCONTROLLERS)

C 	*** Boilup ***
integer reboil-controller
double precision reboil_params(MAXCONTROLLERS ,MAXCONTPARAMS)
integer nreboil_controllers ,nreboil_params(MAXCONTROLLERS)

APPENDIX C. PDIST INPUT FILES 	 254

C 	*** Bottoms ***
integer bottoms-controller
double precision bottoms _params (MAXCONTROLLERS ,MAXCONTPARAMS)
integer nbottoms_controllers ,nbottoms_parains(MAXCONTROLLERS)

C 	### reflux_controller - Current ref lux controller set.
C 	##* reflux_parains(*,*) - Ref lux controller parameters.

C 	### nreflux_controllers - The number of ref lux controllers.

C 	### nreflux_params(*) - The number of parameters per controller.

C 	### tops-controller 	- Current tops product controller set.
c 	### tops_paralns(*,*) 	- Tops controller parameters.
c 	#*# ntops_controllers - The number of tops product controllers.
C 	### ntops_params(*,*) 	- The number of parameters per controller.

c 	#*# reboil-controller - Current boilup rate controller set.
C 	*## reboil_params(*,*) - The controller parameterts.
C 	### nreboil_controllers - The number of boilup controllers.
C 	### nreboil_params(*) 	- The number of parameters per controller.

c 	### bottoms-controller - Current bottoms product controller set.

c 	### bottoms_params(*,*) - The controller parameters.

C 	*#* nbottoms_controllers - The number of bottoms controllers.
C 	#*# nbottoms_pa.rains(*) 	- The number of parameters per controller.

C 	*** User Arguments ***
double precision userargs(MAXARGS)
integer nuserargs

C 	*## u.serargs(*) 	- The user defined arguments.
C 	### nusera.rgs 	 - The number of user arguments.

c 	*** Simulation Mode Control ***
logical usingsteadystate

c 	### .isingsteadystate 	- If true. Steady state mode used initially,
C 	### 	 followed by dynamic mode.

C 	*** Shared Memory Space ***
double precision broadcastbuf (BROADCASTSIZE)

C 	*** Common blocks containing all of the above ***

common/pdistsizesl/nosofcomps,nosoffeeds ,no,basecomp
coininon/pdistsizes2/localbot ,nplates , localtop
common/pdistfeed/f ,ftemp ,fpress ,xf ,q,youarefeed,feednumber

	

APPENDIX C. PDIST INPUT FILES
	

255

coinmon/pdisttime/currenttime ,finishtime , dt ,histdt
couimon/pdistetc/e ,press
cominon/pdistthermo/compxnwt , dens comp, ant a,antb, antc
common/pdisthydr/d,aa,ap,ad,adinin,ah,d.h,nh,ha,hw,lw,oc,qp
common/pdistcontl/reflux_controller , ref lux...parains,

*

	

	nreflux_controllers ,nreflux_parains
common/pdistcont2/tops_controller ,tops_params,

* 	ntops_controllers ,ntops_params
common/pdistcont3/reboil_ controller, reboil_paranis,

* 	nreboil_controllers ,nreboil_params
common/pdistcont4/bottoms-controller, bottoms-params,

* 	nbottoxns_controllers ,nbottonis_params
conunon/pdistuser/userargs ,nuserargs
conunon/pdistmode/us ingsteadystate
conimon/pdistshare/broadcastbuf

C.2 PDist Reactive Distillation Input File

This section contains an example PDist input description. The example shown

is one used to set up a reactive azeotropic distillation simulation. The actual

simulation being set up is explained in the description header.

1*
* Purpose:
* 	This is the data file required to perform Case Study 1.
* 	This case study involves investigating the effect of a feed
* 	ethanol/water change to the reactor.
*
* The following tables show the initial condition of the reactor feed.
* This case is concerned with the Ethanol/Water feed which is set as
* 96 \'/.wt initially. It is then ramped to 92 \'/.wt and run for 3hrs.
* Finally it is ramped back up to the initial state of 96\'/.wt.
*
* Acetic Acid Feed
* =================
* 	 Kg/hr 	Kinol/hr 	kmol/s 	wt'/, 	mol 'h

*
* Acetic Acid 	6424.0000 107.0667 	0.0297 	1.0000 	1.0000
* Ethanol 	 0.0000 	0.0000 	0.0000 	0.0000 	0.0000

APPENDIX C. PDIST INPUT FILES
	

256

• Water 0.0000 0.0000 0.0000 0.0000 0.0000
• Butyl Actetate 0.0000 0.0000 0.0000 0.0000 0.0000

• Ethyl Acetate 0.0000 0.0000 0.0000 0.0000 0.0000
* --
* Totals 6424.0000 107.0667 0.0297 1.0000 1.0000
*
* Ethanol/Water Feed

* Kg/hr Kinol/hr kmol/s wt'/, mol h
*

* Acetic Acid 0.0000 0.0000 0.0000 0.0000 0.0000
* Ethanol 5198.4000 113.0087 0.0314 0.9600 0.9038
* Water 216.6000 12.0333 0.0033 0.0400 0.0962
* Butyl Actetate 0.0000 0.0000 0.0000 0.0000 0.0000
* Ethyl Acetate 0.0000 0.0000 0.0000 0.0000 0.0000
* --
* Totals 5415.0000 125.0420 0.0347 1.0000 1.0000
*
* D Col Heads

* Kg/hr Kmol/hr kmol/s wt'/. mol 'h
*

* Acetic Acid 0.0000 0.0000 0.0000 0.0000 0.0000
• Ethanol 423.0000 9.1957 0.0026 0.3246 0.3365
• Water 184.0000 10.2222 0.0028 0.1412 0.3741
• Butyl Actetate 1.0000 0.0086 0.0000 0.0008 0.0003
• Ethyl Acetate 695.0000 7.8977 0.0022 0.5334 0.2890
* --
* Totals 1303.0000 27.3242 0.0076 1.0000 1.0000
*
* =======================================
* Total Feed State At Start of Simulation
* ======================================
*
* Kg/hr Kniol/hr kinol/s wt7, mol 'I.

*
* Acetic Acid 6424.0000 107.0667 0.0297 0.4888 0.4127
* Ethanol 5621.4000 122.2043 0.0339 0.4277 0.4710
* Water 400.6000 22.2556 0.0062 0.0305 0.0858
* Butyl Actetate 1.0000 0.0086 0.0000 0.0001 0.0000
* Ethyl Acetate 695.0000 7.8977 0.0022 0.0529 0.0304
* --
* Totals 13142.0000 259.4329 0.0721 1.0000 1.0000
*
*
* The next two tables show the perturbed Ethanol/Water Feed and the
* resulting total feed settings that give the perturbation requested

0.0000 0.0000 0.0000
0.0301 0.9200 0.8182
0.0067 0.0800 0.1818
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

0.0368 	1.0000 	1.0000

APPENDIX C. PDIST INPUT FILES
	

257

*
* Ethanol/Water Feed
* ===================
*
* 	 Kg/hr

*
Kznol/hr 	kmol/s wt7, 	mol %

• Acetic Acid 0.0000 0.0000
• Ethanol 4981.8000 108.3000
• Water 433.2000 24.0667
• Butyl Actetate 0.0000 0.0000
• Ethyl Acetate 0.0000 0.0000
* -----------------------------------
* Totals 5415.0000 132.3667
*

* Total Feed State After Perturbation

*
* Kg/hr Kmol/br

*
kmol/s 	wt% 	mol 'I.

• Acetic Acid 6424.0000 107.0667 0.0297 0.4888 0.4014
• Ethanol 5404.8000 117.4957 0.0326 0.4113 0.4405
• Water 617.2000 34.2889 0.0095 0.0470 0.1285
• Butyl Actetate 	1.0000 0.0086 0.0000 0.0001 0.0000
• Ethyl Acetate 695.0000 7.8977 0.0022 0.0529 0.0296
* --
* Totals 13142.0000 266.7576 0.0741 1.0000 1.0000
*
*
* The following graph outlines the perturbations taking place in the
* Ethanol/Water Feed.
* Here time 0 represents the steady state point.
*
*
* 	 I
* 	0.96 wt'/, 	I
* 	 I * *
* 	 I * *
* 	0.92 wt'/. 	I *----------- *
* 	 I--- >
* 0.0 	0.5 3.5 4.0 7.0 Time hrs

BEGIN

COLUMN-SIZE-BEGIN
{

APPENDIX C. PDIST INPUT FILES
	

258

number_of - comps5
number-of _stages24
number_of _feeds= i.

COLUMN-SIZE-END

COMPONENT-NAMES-BEGIN

componentl"acetic acid"
coniponent2=" ethanol"
component3="water"
component4="butyl acetate"
component5="ethyl acetate"

COMPONENT-NAMES-END

FEED-DATA-BEGIN
1:

feedstagel stage24

{

flowrate=0.00386 /* flowrate (kinols/sec) */
xmolfracl=0.0 	/* mole fractions
xmolfrac2=0 .0
xmolfrac3=0 .0
xinolfrac4=0 .48
xmolfrac5=0 .52
q_value=1 .0
texnperature=300.0 /* not used */
pressure1.0 	1* not used *1

}

}

FEED-DATA-END

THERMO _DATA_BEGIN

MOLECULAR-WEIGHTS
{

component 160 .052
component246 . 069
component318 .015
component4116. 16
component5=88. 107

}

DENSITIES 1* all densities are in (kg/m3) */

componentl=1049 .0
component2=789.0

APPENDIX C. PDIST INPUT FILES 	 259

component3=1000 .0
component4=898.0
comporients=90 1.0

}

1* All antoine coefficients refer to the following equation: *1
1* ln(p*) = A-B/(T+C) where p* = mmHg and T in Kelvin. 	*1

ANTOINE_A
{

componentl16 .8080
component218 .9119
component318 .3036
component416. 1836
component5=16. 1516

}

ANTOINE_B
{

component 13405.57
component23803 .98
component33816 .44
component43151 .09
component52790 .5

}

ANTOINE_C

component 1=-56 .34
component2-41 .68
component3-46. 13
coxnponent4=-66. 15
component5-57. 15

}

}

THEPINO _DATA_END

SIMULATION-DATA-BEGIN
{

finish_time25000.0 /* Total period for simulation (secs) */
time_stepo.1 1* integration 	time step (secs) *1
hist_step25.0 1* history save time step (secs)
control_plate12 1* should be set to approx nplates/2 */

}

SIMULATION-DATA-END

COLUMN-DATA-BEGIN
{

APPENDIX C. PDIST INPUT FILES 	 260

plate_efficiency=O.65 1* muxphree efficiency for plates *1
total_pressure=1163.0 1* total pressure in mmHg. 	*1

}

COLUMN-DATA-END

HYDRAULIC-DATA-BEGIN

interual_diameter=0.0 /* (m) 	*1
active_plate_area=0.366 1* (m2) *1
real_plate_area=0.455 1* (n(2) *1
downcoiner_area=0.0 /* (m2) */
min_downcomer_area=0.0 /* (m2) */
area-of _holes0.0 /* (m2) *1
diameter_of _holes=0.0 /* (m) */
number_of _holes=0 .0
apron_height=0.0 1* (m) *1
weir_height=0.0381 1* (m) *1
weir_lengtb.0.5319 /* (m) 	*1
orifice_coefficient0 .0
aeration_f actor0 .6

HYDRAULIC-DATA-END

CONTROL-DATA-BEGIN
{

REFLUX_RATE default 4

controller 1
{

description "Fixed Ref lux Rate"
type "Fixed rate controller"
parazneterl "ref lux rate (kmols/sec)" 0.0474

}

controller2
{

description "Rate controlled by tops product composition"
type "Proportional/integeral controller"
parameterl "setpoint" 0.99
parameter2 "controller gain" 4.0
paraineter3 "controller reset" 40.0
para.meter4 "mvc component" 0.0

controller3

description "liquid/liquid split"
type "NRTL for lie with No Dynamics"

APPENDIX C. PDIST INPUT FILES
	

261

pararneterl "reflux ratio of ester phase" 1.42
pa.rameter2 "component rich layer to find" 5.0
1* for rich phase +ve means ref lux, -ye means take as tops */
paraineter3 "temperature (K)" 303.0
paraineter4 "pressure (bar)" 1.34
parameter5 "ppds vie method" 8.0 /* unifac *1
paraineter6 "reflu.x layer holdup (m3)" 15.7
parameter7 "tops layer holdup (m3)" 1.0
paraineter8 "offtake of water phase (kmols/sec)" 0.0318
1* The next parameter is a switch which tell the models *1
1* to set the butyl acetate feed flowrate equal to the *1
1* butyl acetate flowrate leaving the column. 	 *1
paraineter9 "Butyl Acetate Recycle mode" 1.0

}

controller4

{

description "liquid/liquid split"
type "NRTL for lie with Composition Dynamics"
parameterl "ref lux ratio of ester phase" 1.42
paraineter2 "component rich layer to find" 5.0
/* for rich phase +ve means ref lax, -ye means take as tops *1
paraineter3 "temperature (K)" 303.0
paraineter4 "pressure (bar)" 1.34
paraineter5 "ppds vie method" 8.0 1* unifac */
parameter6 "ref lux...layer holdup (m3)" 15.7
paraineter7 "top layer holdup (in3)" 1.0
paraineter8 "offtake of water phase (kmols/sec)" 0.0318
/* The next parameter is a switch which tell the models *1
/* to set the butyl acetate feed flowrate equal to the *1
1* butyl acetate flowrate leaving the column. 	 *1
paraineter9 "Butyl Acetate Recycle mode" 1.0

}

TOPS-PRODUCT default 3
{

controller 1
{

description "Tops rate controlled by level in tank"
type "Prop/Integral level controller"
parameterl "reflux drum holdup (kmols)" 5.0
paraineter2 "setpoint (kmols)" 2.5
parameter3 "controller gain" 4.0
parameter4 "controller reset" 40.0

}

controller2

description "Tops rate controlled by level in tank"

APPENDIX C. PDIST INPUT FILES
	

262

type 'Proportional level controller"
paraineterl "reflux drum holdup (kmols)" 5.0
paraineter2 "setpoint (kmols)" 2.5
parameter3 "controller gain" 4.0

J.
controller3

{

description "no controller, flow controlled by ile split"
type "null controller"

BOILUP_RATE default 4

controllerl
'C

description "Fixed Boilup Rate"
type "Fixed rate controller"
paraineterl "reboil rate (kmols/sec)" 0.082

controller2

'C
description "Rate controlled by bottoms product composition"
type "Proportional/integeral controller"
paraineterl "setpoint" 0.99
parameter2 "controller gain" 4.0
parameter3 "controller reset" 40.0

3.
controller3

'C
description "Reactor/reboiler"
type "Explicit Integration Model"
parameterl "feed rate (kmols/s)" 0.0721
parameter2 "acetic acid feed conc" 0.4127
parameter3 "ethanol feed conc" 0.4710
parameter4 "water feed conc" 0.0858
parameter5 "butyl acetate conc" 	0.0
parameter6 "ethyl acetate conc" 	0.0305
parameter7 "reaction pressure (bar)" 1.55
parameter8 "reactor initial holdup(m3)" 12.0

1* The next parameter allows the user to select a different */
1* holdup for the reaction compared to the dynamic holdup. */
/* This is only supposed to be used when a steady state is *1
1* being searched for. By reducing the dynamic holdup the *1
1* simulation reacts quicker and thus takes less time. The *1
1* reactor holdup must be set at the actual holdup for the *1
1* desired column since the reaction rate varies with holdup */

APPENDIX C. PDIST INPUT FILES 	 263

paraineter9 "reaction holdup correction On3)" 12.0
parameterlO "catalyst concentration" 2.5

1* the next parameters controll the ramping and oscillation *1
1* of the feed in to the reactor reboiler. They work in the *1
1* same way as the standard feed changes. See USER-DATA. 	*1

parameteril "set ramping mode" 0.0 	1* 0 for off 1 for on 	*1
parameter12 "ramping period" 0.0 	/* time for ramp *1
parameter13 "set oscillation mode" 0.0 1* 0 for off 1 for on *1
parameter14 "oscillation period" 0.0 	1* oscillation time *1

}

controller4

description "Reactor/reboiler"
type "Implicit Integeration Model"
paraineterl "feed rate (kmols/s)" 0.0721
parameter2 "acetic acid feed conc" 0.4127
paraineter3 "ethanol feed conc" 0.4710
parameter4 "water feed conc" 0.0858
pa.rameter5 "butyl acetate conc" 	0.0
parameter6 "ethyl acetate conc" 	0.0305
parameter7 "reaction pressure (bar)" 1.55
parameter8 "reactor initial ho1dup(m3)" 12.0

1* The next parameter allows the user to select a different *1
1* holdup for the reaction compared to the dynamic holdup. *1
/* This is only supposed to be used when a steady state is *1
/* being searched for. By reducing the dynamic holdup the */
/* simulation reacts quicker and thus takes less time. The *1
/* reactor holdup must be set at the actual holdup for the */
/* desired column since the reaction rate varies with holdup *1

parameter9 "reaction holdup correction (m - 3)" 12.0
parameterlO "catalyst concentration" 2.5

1* the next parameters controll the ramping and oscillation *1
1* of the feed in to the reactor reboiler. They work in the *1
1* same way as the standard feed changes. See USER-DATA. 	*1

parameteril "set ramping mode" 0.0 	1* 0 for off 1 for on
parameter12 "ramping period" 0.0 	/* time for ramp *1
paraiueter13 "set oscillation mode" 0.0 /* 0 for off 1 for on *1
paraineter14 "oscillation period" 0.0 	1* oscillation time *1

}

APPENDIX C. PDIST INPUT FILES
	

264

BOTTOMS-PRODUCT default 3

controllerl

{

description "Bottoms rate controlled by level in tank"
type "Prop/Integral level controller"
paraineterl "reboiler drum holdup (kmols)" 5.0
parameter2 "setpoint (kmols)" 2.5
parameter3 "controller gain" 4.0
parameter4 "controller reset" 100.0

}

controller2

{

description "Bottoms rate controlled by level in tank"
type "Proportional level controller"
parameterl "reboiler drum holdup (kmols)" 5.0
paraineter2 "setpoint(kmols)" 2.5
parameter3 "controller gain" 0.1

}

controller3

description "no bottoms"
type "dummy controller"

}

}

CONTROL-DATA-END

USER-DATA-BEGIN

{

slotl "VLE METHOD" 3.0 /* unifac */

/* The following are the ppds codes. See ppds manual */

slot2 "ppds code for acetic acid" 134.0
slot3 "ppds code for ethanol" 93.0
slot4 "ppds code for water" 63.0
slot5 "ppds code for butyl acetate" 168.0
slot6 "ppds code for ethyl acetate" 158.0

/* The next slots are for latent heats. All in KJ/kmol */

slot7 "latentheat for acetic acid" 23697.0
slot8 "latentheat for ethanol" 38770.0
slot9 "latentheat for water" 40683.0
slotlO "latentheat for butyl acetate" 36006.0

APPENDIX C. PDIST INPUT FILES
	

265

sloth "latentheat for ethyl acetate" 32238.0

/* The next two slots are the initial flowrates in the column.
These can be calculated using the following formula.

liquidllow = RR*(RFEED-AQ_OFFTAKE)+MAKEUP
vapourf low = RR* (RF-AQ_OFFTAKE) +MAKETJP+RFEED
ref lux rate = liquidf low-MAKEUP

where: RR = Ref lux Ratio, RFEED = Reactor Feed,
AQOFFTAKE = aqueous offta.ke from liq/liq separator,
MAKEUP = Butyl Acetate Makup Stream, PS = Reactor Feed

Performing this calculation can save a lot of time in finding
the steady state.

*1

slot12 "initial liquidf low" 0.065204
slot13 "initial vapourf low" 0.140204
slot14 "initial ref lux rate" 0.061344

1* The following slot allows the user to select the update time
interval for vie calculations */

slotlS "vie update time" 5.0

1* The following slots are used to set and control how feed */
1* changes are handled. *1

1* The next variable sets or unsets ramping. 0 for off, 1 for on *1
slot16 "set ramping mode" 0.0

/* The next variable specifies the time period of the ramp */
1* If a ramp is set with 0 period it is handled as a step change */
slotlT "ramping period" 0.0

/* The next variable sets or unsets oscillation. 0 for off, 1 for on
slot18 "set oscillation mode" 0.0

1* The next variable sets the oscillation period */
1* If an oscillation is set with 0 period it is taken as a step change */
slot19 "oscillation period" 0.0

1* The next slot switches on or off initialisation from file */
slot20 "mit from file yIn" 1.0

1* The next slot switches on or off the simulation start mode *1

APPENDIX C. PDIST INPUT FILES
	

266

1* If 0 simulation start with steady state calculations. If 1 */
1* it starts doing dynamic calculations. */
slot2l "simulation start mode" 0.0

}

USER-DATA-END

PROGRAM-BEGIN
{

1* At time 100.0 the downward ramp is started. This is performed *1
1* by setting the target feed condition and setting the ramp mode *1
1* to 1.0 and the ramp period.

TIME 100.0 BOILUP_RATE controller4

parameterl "feed rate (kmols/s)" 0.0741 /* was 0.0721 *1
parameter2 "acetic acid feed conc" 0.4014 1* was 0.4127 *1
parameter3 "ethanol feed conc" 0.4405 1* was 0.4710 *1
parameter4 "water feed conc" 0.1285 1* was 0.0858 *1
parameterS "butyl acetate conc" 	0.0 1* was 0.0 *1
parameter6 "ethyl acetate conc" 	0.0296 1* was 0.0305 *1
parameter7 "reaction pressure (bar)" 1.55
parameter8 "reactor initial holdup(m3)" 12.0

/* The next parameter allows the user to select a different *1
/* holdup for the reaction compared to the dynamic holdup. *1
1* This is only supposed to be used when a steady state is *1
1* being searched for. By reducing the dynamic holdup the *1
1* simulation reacts quicker and thus takes less time. The */
1* reactor holdup must be set at the actual holdup for the *1
1* desired column since the reaction rate varies with holdup *1

parameter9 "reaction holdup correction(m3)" 12.0
parameterlO "catalyst concentration" 2.5

1* the next parameters controll the ramping and oscillation */
1* of the feed in to the reactor reboiler. They work in the *1
1* same way as the standard feed changes. See USER-DATA. 	*1

parameterli "set ramping mode" 1.0 1* 0 for off 1 for on *1
parameter12 "ramping period" 1800.0 1* time for ramp *1
parameter13 "set oscillation mode" 0.0 /* 0 for off 1 for on */
parameter14 "oscillation period" 0.0 1* oscillation time *1

ii

/* The simulation has now run for 3.5 hours since the start of */
1* the down ramp. This is 0.5 hours for the ramp and 3 hours of */
1* simulation at the new feed condition. The next event ramps *1

APPENDIX C. PDIST INPUT FILES
	

267

/* the feed back to its initial condition. Again this is set to *1
1* 0.5 hours for the ramp. 	 *1

TIME 12700.0 BOILUP_RATE controller4

parameterl "feed rate (kmols/s)" 0.0721
parameter2 "acetic acid feed conc" 0.4127
paraineter3 "ethanol feed conc" 0.4710
parameter4 "water feed conc" 0.0858
parameter5 "butyl acetate conc" 0.0
paranieter6 "ethyl acetate conc" 0.0305
parameter7 "reaction pressure (bar)" 1.55
parameter8 "reactor initial holdup(m3)" 12.0

1* The next parameter allows the user to select a different *1
1* holdup for the reaction compared to the dynamic holdup. *1
/* This is only supposed to be used when a steady state is *1
1* being searched for. By reducing the dynamic holdup the */
1* simulation reacts quicker and thus takes less time. The *1
/* reactor holdup must be set at the actual holdup for the *1
1* desired column since the reaction rate varies with holdup *1

parameter9 "reaction holdup correction (m3)" 12.0
parameterlo "catalyst concentration" 2.5

1* the next parameters controll the ramping and oscillation *1
/* of the feed in to the reactor reboiler. They work in the */
1* same way as the standard feed changes. See USER-DATA. 	*1

parameteril "set ramping mode" 1.0 1* 0 for off 1 for on *1
parameter12 "ramping period" 1800.0 1* time for ramp *1
parameter13 "set oscillation mode" 0.0 /* 0 for off 1 for on */
parameter14 "oscillation period" 0.0 1* oscillation time */

}

PROGRAM-END
}

END

C.3 PDist Graphical Output Description File

This section contains an example PDist graphical output description.

APPENDIX C. PDIST INPUT FILES 	 268

begin

Define the ref lux solution vectors

begin ref lux
slot 1 for ${NCOMP}
slot (${NCOMP}+1) f
slot (2*${NCOMP}+1)
slot (2*${NCOMP}+2)
slot (2*${NCOMP}+3)

end

"Molefraction ${COMP}" "Liq Mfrac ${COMP}"
r ${NCOMP} "Molefraction ${COMP}" "yap Moifrac ${COMP}"
"Total Molar Liquid Flow" "Ref lux (Kmols/s)"
"Total Molar Vapour Flow" "Tops Prod. (Kmols/s)"
"Temperature (K)" "Temperature 	'I

Define the stage solution vectors

begin stage
slot 1 for ${NCOMP} "Molefraction ${COMP}" "Liq. Mfrac ${COMP}"
slot (${NCOMP}+1) for ${NCOMP} "Molefraction ${COMP}" "yap. Mfrac ${COMP}"
slot (2*${NCOMP}+1) "Total Molar Liquid Flow" "Liq. Flow (Kmols/s)"
slot (2*${NCOMP}+2) "Total Molar Vapour Flow" "yap. Flow (Kmols/s)"
slot (2*${NCOMP}+3) "Temperature (K)" "Temperature (K)"
slot (2*${NCOMP}+4) for ${NCOMP} "RV of ${COMP}" "RV ${COMP}"

end

* Define the reboiler solution vectors

begin reboiler
slot 1 for ${NCOMP} "Nolefraction ${COMP}" "Liq. Mfrac ${COMP}"
slot (${NCDMP}+1) for ${NCOMP} "Molefract ion ${COMP}" "yap. Mfrac ${COMP}"
slot (24{NCOMP}+1) "Total Molar Liquid Flow" "Bottoms (Kmols/s)"
slot (2*${NCOMP}+2) "Total Molar Vapour Flow" "Boilup (Kmols/s)"
slot (2*${NCOMP}+3) "Temperature (K)" "Temperature (K)"
slot (2*${NCOMP}+4) for ${NCOMP} "RV of ${CDMP}" "RV ${COMP}"

end

calculate the molecular weight sum for mole to mass fraction conversion

MWTSUM=
do i1 for ${NCOMP}

MWTSUM=(${MWTSUM} + (${SLOT${i}} * ${MWT${i}}))
done

Describe 3D graphing recommendations

begin 3d
context "Flowrates" C:]

stage menu "Flowrates"

APPENDIX C. PDIST INPUT FILES
	

269

item 1 "Total Liquid Flowrate" slot (2*${NCOMP}+1)
item 2 "Total Vapour Flowrate" slot (2*${NCOMP}+2)

context "Liq Molefractionsu [0.0:1.0]
stage menu "Liq Molefractions"

item 1 for ${NCOMP} "${COMP}" slot ${INDEX}
item (${NCONP}+1) for ${NCOMP} "Vt frac ${COMP}"

eval C (${NWT${BASEINDEX}}* ${SLOT${BASEINDEX}})
"wt frac ${COMP}"

/ ${MWTSUM})

context "yap Molefractions" [0.0:1.0]
stage menu "yap Molefractions"

item 1 for ${NCOMP} "${COMP}" slot (${INDEX}+${NCOMP})

context "Thermodynamics" C:]
stage menu "Thermodynamics"

item 1 for ${NCOMP} "RV of ${COMP}" slot (2*${NCOMP}+3+${BASEINDEX})
item (${NCOMP}+1) "Temperature (K)" slot (2*${NCOMP}+3)
item (${NCOMP}+2) "Temperature (oC)" eval (${SLOT'(2*${NCOMP1+3)'1 - 273.0)

"Temperature (oC)"
end

* Describe 2D graphing recommendations

begin 2d
context "Flowrates" C:]

ref lux menu "Flowrates"
item 1 "Ref lux Rate" slot (2*${NCOMP}+1)
item 2 "Tops Product Rate" slot (2*${NCOMP}+2)

stage menu "Flowrates"
item 1 "Total Liquid Flow" slot (2*${NCOMP}+1)
item 2 "Total Vapour Flow" slot (2*${NCOMP}+2)
item 3 for ${NCOMP} "Liquid flowrate of ${COMP}"

eval (${SLOT'2*${NCOMP}+1 '}*${SLOT'${BASEINDEX} t })
"Liq. Flow. ${COMP}"

item (3+${NCOMP}) for ${NCOMP} "Vapour flowrate of ${COMP}"
eval (${SLOT' 2*${NCOMP}+2 '}*${SLOT ${BASEINDEX}+${NCOMP}

"yap. Flow. ${COMP}"
reboiler menu "Flowrates"

item 1 "Bottoms Product" slot (2*${NCOMP}+1)
item 2 "Reboil Rate" slot (2*${NCOMP}+2)

context "Compositions" [0.0:1.0]
ref lux menu "Compositions"

item 1 for ${NCOMP} "Liquid ${COMP}" slot ${INDEX}

APPENDIX C. PDIST INPUT FILES
	

PKII

stage menu "Compositions"
item 1 for ${NCOMP} "Liquid ${COMP}" slot ${INDEX}
item (${NCOMP}+1) for ${NCOMP} "Vapour ${COMP}" slot ${INDEX}

reboiler menu "Compositions"
item 1 for ${NCOMP} "Liquid ${COMP}" slot ${INDEX}
item (${NCOMP}+1) for ${NCOMP} "Vapour ${COMP}" slot ${INDEX}

context "Thermodynamics" C:]
ref lux menu "Thermodynamics"

item 1 "Temperature (K)" slot (2*${NCOMP}+3)

stage menu "Thermodynamics"
item 1 for ${NCOMP} "Relative Volatility ${CONP}"

slot (2*${NCOMP}+3+${BASEINDEX})
item (${NCOMP}+1) "Temperature (K)" slot (2*${NCOMP}+3)

reboiler menu "Thermodynamics"
item 1 for ${NCOMP} "Relative Volatility ${CONP}"

slot (2*${NCOMP}+3+${BASEINDEX})
item (${NCOMP}+1) "Temperature (K)" slot (2*${NCOMP}+3)

end

* Describe the tabling graphing recommendations

begin tables
context "Temperature"
reflux menu "Temperature"

item 1 "Temp (K)" slot (2*${NCONP}+3)
stage menu "Temperature"

item 1 "Temp (K)" slot (2*${NCOMP}+3)
reboiler menu "Temperature"

item 1 "Temp (K)" slot (2*${NCOMP}+3)

context "Flows"
ref lux menu "Flows"

item 1 "Ref lux" slot (2*${NCOMP}+1)
item 2 "Tops" slot (2*${NCOMP}+2)
item 3 "Ref Ratio"

eval ($f SLOT' (2*${NCOMP}+1) '1/$f SLOT' (2*${NCONP}+2) '}) "Ref Ratio"
stage menu "Flows"

item 1 "Liquid" slot (2*${NCOMP}+1)
item 2 "Vapour" slot (2*${NCOMP}+2)

reboiler menu "Flows"
item 1 "Bottoms" slot (2*${NCOMP}+1)
item 2 "Boilup" slot (2*${NCOMP}+2)
item 3 "B'up Ratio"

APPENDIX C. PDIST INPUT FILES
	

271

eva]. (${SLOT' (2*${NCOMP}+2) '}/$(SLOT' (2*${NCOMP}+1) '}) "B'up Ratio"

context "Compositions"
ref lux menu "Tops Compositions"

item 1 for ${NCONP} "${CONP}" slot ${BASEINDEX}
stage menu "Compositions"

item 1 for ${NCOMP} "${COMP}" slot ${INDEX}
reboiler menu "Bottoms Compositions"

item 1 for ${NCONP} "${COMP}" slot ${INDEX}

context "Compositions"
ref lux menu "Tops Mass Compositions"

item 1 for ${NCOMP} "${COMP}"
eva]. C (${MWT${BASEINDEX}}* ${SLOT${BASEINDEX}})

"wt frac ${COMP}"
stage menu "Mass Compositions"

item 1 for ${NCOMP} "${COMP}"
eva]. C (${MWT${BASEINDEX}}* ${SLOT${BASEINDEX}})

"wt frac ${COMP}"
reboiler menu "Bottoms Mass Compositions"

item 1 for ${NCOMP} "${COMP}"
eval C (${NWT${BASEINDEX}}* ${SLOT${BASEINDEX}})

"wt frac ${COMP}"
end

* Describe the runtime graphing recommendations

begin runtime
slot 1 for ${NCOMP} [0.0:1.0]

end

/ ${MWTSUN})

/ ${MWTStJN})

/ ${MWTStJN})

end

Appendix D

PNet Example Input Files

This appendix contains all of the example PNet input files used for the various

PNet tests described in Chapter 6. The testing described was carried out in two

parts. The first of these focussed on using a PNet complient version of the steady

state simulator ESSPROS. The second set of tests moved on to examine PNets

performance on actual dynamic simulations. The two sets of respective input

files are described separately.

D.1 Esspross Examples

This section contains the input files used for the ESSPROS testing of PNet. In

total two ESSPROS examples were described. For each example, the original

ESSPROS program is shown along with the created PNet input description.

D.1.1 ESSPROS Example Program 1

The first ESSPROS example is of a simple reactor and separator with recycle.

The program used is as follows:

272

APPENDIX D. PNET EXAMPLE INPUT FILES 	 273

program process
integer i

sample program
implicit integer (a-z)
call setnc(3)
call feed(1, 1 100,100,0;')
call recycle(2, 1 10,10,0;')

do
i=i+l
call inixer(1,2,3)
call reactor(3,4,pa.ram('-1,-1,1;'),1,O.9)
call separator(4,5,6,param(1 1,1,1; '),l)
call splitter(5,2,7,0.75)
if (unconvergedO<=O) exit
end do
call reportstreams
print *,'iterations ',i
end

To run this program under PNet, the program description is converted to a PNet

input description, were the fortran routines are replaced by programs.

D.1.2 PNet Input for ESSROSS Example Program 1

The PNet input description for ESSPROS example 1 is as follows:

begin "ess2pnet converted file"

output format

begin pipe-format 3
slot 1 "compi"
slot 2 "comp2"
slot 3 "comp3"

end pipe-format

setstream 11 1" [100,100,01

APPENDIX D. PNET EXAMPLE INPUT FILES 	 274

* mixer unit
begin process unit1"

inpipes [11 1", 11 2# 1 1
outpipes ["3"]
program "mixer program"

process 0
exec "mixer"
imports ["mt nc " , " 3 11 1
proc_type "t8"

end process

* reactor unit
begin process "unit2"

inpipes ["3"]
outpipes ["4"]
program "reactor program"

process 0
exec "reactor"
imports ["mt nc", 11 3 61 ,

"string para.ms" , "-1,-1,l;",
"doublevec realvec","l 0.9 11 1

proc_type "t8"
end process

* separator unit
begin process "unit3"

inpipes [114 11]
outpipes [11 ,5 11 , 11 6 11 1
program "separator program"

process 0
exec "separator"
imports ["mt nc", 11 3 11 ,

"string parants" ,"1,1,1;",
"doublevec realvec" , "1"]

proc_type "t8"
end process

1* splitter unit
begin process "unit4"

inpipes ["5"]
outpipes ["V, 11 7 11 1
program "splitter program"

process 0
exec "splitter"
imports ["mt nc", 11 3 11 ,

"doublevec realvec" , "0 .75"]

APPENDIX D. PNET EXAMPLE INPUT FILES 	 275

proc_type "t8"
and process

end

D.1.3 ESSPROS Example Program 2

The second ESSPROS example is much more complex. This time the process

simulated represents an oil rig separation system. The example is taken from a

Final Year project performed for Shell UK.

F8X Fortran program generated by Esspros Tool

implicit integer (a-z)
call setnc (19)
call feed(1, 'O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O;')
call feed(2, '310.5,166.5,134.3,19.9,77.4,31.5,57.7,72.5,47.9,105.9,142.9,

154.5,138.0,100.9,58.4,34.9,11.8,22.7,0.06;')
call recycle(3, 1 0;')
call recycle(4, 1 0; 1)

call recycle(5, 1 0;')
do
call inixer(1,2,6)
call flash(6,7,8,param('79.73,26.62,11.58,6.09,4.96,2.62,2.21,1, .448, .0858,

.0214,.0054,.0003,0,0,0,149.5,37.18,28.79; 1),8,0.0491)
call
separator(7,9,10,param(' .95, .95, .95, .95, .95, .95, .95, .95, .95, .95, .95, .95,

.95,.95,.95,.95,.95,.95,.95; 1),l)
call mixer(3,9,11)
call
flash(11,12,13,parazn('201.9,51.14,18.5,8.89,6.75,3.23,2.45,1.0,.409,

.057,.014,0,0,0,0,0,1820,123,45;'),8,0.1713)
call sepazator(8,14,15,parain('l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l; ') ,1)
call mixer(13,14,16)
call flash(16,17,18,param('174,48.16,18.0,8.62,6.66,3.13,2.56,1.O, .381,.0515,

.0103,.0012,.0001,0,0,0,353,78.3,30.18;'),8,0.0519)
call inixer(4,17,19)
call flash(19,3,20,param('536,104.9,31.35,13.09,9.42,3.93,3.0,1.O, .311, .0324,

.0067,0,0,0,0,0,1625,235,60.8;1),8,0.138)

APPENDIX D. PNET EXAMPLE INPUT FILES 	 276

call mixer(5,18,21)
call mixer(20,21,22)
call flash(22,23,24,param('230,61.55,20.93,9.38,7.34,3.32,2.69,1.0, .369, .0466,

.0082,.0009,0,0,0,0,497.5,86.8,29.56; 1),8,0.154)
call flash (23,4,5,parain('423,88.1,28.63,13.0,8.82,3.79,2.89,1.0, .328, .0352,

.0068,.0006,0,0,0,0,950,129.4,30; 1),8,0.9867)
if (un.convergedO<=0) exit
end do
call report streams
end

To run this program under PNet, the program description is converted to a PNet

input description, were the fortran routines are replaced by programs.

D.1.4 PNet Input for ESSROSS Example Program 2

The PNet input description for ESSPROS example 2 is as follows:

begin "ess2prun converted file"

output format
begin pipe-format 19

slot 1 "compi"
slot 2 11 comp2"
slot 3 "comp3"
slot 4 11 comp4"
slot 5 "conipS"
slot 6 11 comp6"
slot 7 "comp7"
slot 8 11 comp8"
slot 9 "comp9"
slot 10 "complO"
slot 11 "compli"
slot 12 11 comp12"
slot 13 "comp13"
slot 14 "compl4"
slot 15 "comp15"
slot 16 "compl6"
slot 17 11comp17"

APPENDIX D. PNET EXAMPLE INPUT FILES 	 277

slot 18 "comp18"
slot 19 °comp19 1 '

end pipe-format

setstream l° [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
setstream "2" [310.5,166.5,134.3,19.9,77.4,31.5,57.7,72.5,47.9,

105.9,142.9,154.5,138.0,100.9,58.4,34.9,11.8,22.7,0.06]

* mixer unit
begin process "unitV'

inpipes [11 1 11 , 11 2 11 1
outpipes [11611]
program "mixer program"

process 0
exec "mixer"
imports ["mt nc","19 11 1
proc_type "t8"

end process

* flash unit
begin process "unit2"

inpipes [11611]
outpipes ["7","8"]
program "flash program"

process 0
exec "flash"
imports ["mt nc", 11 19 11

,

"string params","79.73,26.62,11.58,6.09,4.96,2.62,2.21,1, .448,
.0858,.0214,.0054,.0003,0,0,0,149.5,37.18,28.79; 11 ,

"doublevec realvec" ,"8 0.0491"1
proc_type "t8"

end process

* separator unit
begin process uu.nit3hl

inpipes ["7"]
outpipes [11911,1110111

program "separator program"
process 0

exec "separator"
• 	imports ["mt nc", 11 19 11 ,

"string params",".95,.95,.95,.95,.95,.95,.95,.95,.95,.95,.95,
95 ' . 95 ' .95, .95, .95, .95, .95, .95;",

"doublevec realvec" ,"l"]
proc_type "t8"

end process

APPENDIX D. PNET EXAMPLE INPUT FILES 	 278

mixer unit
begin process "unit4"

inpipes [I3II,1I9I]

outpipes ["ii"]
program "mixer program"

process 0
exec "mixer"
imports ["mt nc","19 11 1
proc_type "t8"

end process

* flash unit
begin process "unitS"

inpipes ["11"]
outpipes ["12","13"]
program "flash program"

process 0
exec "flash"
imports ["mt nc", 11 19",

"string params","201.9,51.14,18.5,8.89,6.75,3.23,2.45,1.0, .409,
.057,.014,0,0,0,0,0,1820,123,45; - ',

"doublevec realvec" , "8 0.1713 11 1
proc_type "t8"

end process

It separator unit
begin process "unit6"

inpipes [11 8"]
outpipes [11 14 11 , 11

15 11 1
program "separator program"

process 0
exec "separator"
imports ["mt nc","19 11

,

"string
"doublevec realvec" , "1"]

proc_type "t8"
end process

It mixer unit
begin process "unit7"

inpipes [11 13 11 , 11 14 11 1
outpipes ["16"]
program "mixer program"

process 0
exec "mixer"

APPENDIX D. PNET EXAMPLE INPUT FILES 	 279

imports ["mt nc","19":I
proc_type "t8"

end process

flash unit
begin process "unit8"

inpipes ["16]
outpipes C' 1 17","18"]
program "flash program"

process 0
exec "flash"
imports ["mt nc", 11 19 11 ,

"string pa.rams","174,48.16,18.O,8.62,6.66,3.l3,2.56,l.0, .381,
.0515,.0103,.0012,.000l,0,0,0,383,78.3,30.18;",

"doublevec realvec" , "8 0.0519"1
proc_type "t8"

end process

* mixer unit
begin process "unit9"

inpipes [114 11 , 11 17 11 1
outpipes ["19"]
program "mixer program"

process 0
exec "mixer"
imports ["mt nc","19"]
proc_type "t8"

end process

* flash unit
begin process "unitlO"

inpipes ["19"]
outpipes ["T', 1120 11 1
program "flash program"

process 0
exec "flash"
imports ["mt nc","19 11

,

"string params","536,104.9,31.35,13.09,9.42,3.93,3.0,1.0, .311,
.0324,.0067,0,0,0,0,0,1625,235,60.8; 11 ,

"doublevec realvec" , "8 0.138 11 1
proc_type "t8"

end process

* mixer unit
begin process "unitli"

APPENDIX D. PNET EXAMPLE INPUT FILES 	 280

inpipes ["5,, , 18]
outpipes ["21"]
program "mixer program"

process 0
exec "mixer"
imports ["mt nc","i.9"]
proc_type "t8"

end process

* mixer unit
begin process "unit12"

inpipes P20","21"]
outpipes ["22"]
program "mixer program"

process 0
exec "mixer"
imports ["mt nc","19"]
proc_type "t8"

end process

* flash unit
begin process "unitl3"

inpipes [11 22 11]
outpipes [1123 11 , 11 24 11 1
program "flash program"

process 0
exec "flash"
imports ["iat nc", 11 19 16

,

"string params","230,61.55,20.93,9.38,7.34,3.32,2.69,1.0, .369,
.0466,.0082,.0009,0,0,0,0,497.5,86.8,29.56; 11 ,

"doublevec realvec" , "8 0.154 11 1
proc_type "t8"

end process

* flash unit
begin process "unit 14"

inpipes ["23 11]
outpipes [114", 11 -5 11 1
program "flash program"

process 0
exec "flash"
imports ["mt nc","19 11

,

"string params","423,88.1,28.63,13.0,8.82,3.79,2.59,1.0, .328,
.0352,.0068,.0006,0,0,0,0,950,129.4,30;",

"doublevec realvec" , "8 0.9867 11]
proc_type "t8"

APPENDIX D. PNET EXAMPLE INPUT FILES 	 281

end process

and

D.2 Dynamic PNet Example Input Descrip-
tions

The dynamic simulation tests were performed using connected PDists. The two

examples run were very similar. The first was of a simple linear train of three

columns. The second was of the same train with a recycle. The recycle being put

in to full test the simulators independent connection strategy.

The actual input descriptions are small. This was made possible by using the

system command, described in section 5.4.3, to get PDist to create the simulator

loading descriptions required. The two example input files are shown below.

To highlight the simplification which the system call mechanism provides, the

created load map for a single PDist is shown at the end.of the section.

D.2.1 Example 1: PDist Linear Train Simulation

This is the PNet input description for the simple linear column train using PDist.

PNet Example 1:
* Simple Linear Train of 3 Distillation Columns.
* Separation is of Methanol, Ethanol. Propanol and Butanol.
U

begin "Alcohol Separation Sequence"

* Describe the pipe stream data format.

APPENDIX D. PNET EXAMPLE INPUT FILES 	 282

begin pipe-format 7
slot 1 "Flowrate"
slot 2 "mf Methanol"
slot 3 "nit Ethanol"
slot 4 "tat Propanol"
slot 5 t 1m± Butanol"
slot 6 "Temp (K)"
slot 7 "Q value"

end pipe-format

* Coltunn 1
*

begin process "Column 1"
inpipes ["1"]
outpipes ["2","3"]

* Use system call on PDist for program parameters
system pdist -p 5 -config MKCS1a DEFAULT -group 0 -d -map PNET mepbl.dat

end process

begin process "Column 2"
inpipes ["3"]
outpipes ["4 11 , 11 -5 11 1
system pdist -p 5 -config MKCS1a DEFAULT -group 1 -d -map PNET mepb2.dat

end process

begin process "unit 3"
inpipes ["5"]
outpipes [116 11 , 11 7 11 1
system pdist -p 5 -config MKCS1a DEFAULT -group 2 -d -map PNET iaepb3.dat

end process

* Set the feed stream to column 1
setstream "1" [0.015, 0.3, 0.3, 0.2, 0.2, 300.0, 1.01

end

APPENDIX D. PNET EXAMPLE INPUT FILES 	 283

D.2.2 Example 2: PDist Train Simulatoin with Recycle

This is the PNet input descrition fopr the PDist column train with recycle. The

description includes loading instructions for a mixer and splitter program.

* PNet Example 1:
* Train of 3 Distillation Columns with Recycle
* Separation is of Methanol, Ethanol. Propanol and Butanol.
*
begin "Alcohol Separation Sequence"

Describe the pipe stream data format.

begin pipe-format 7
slot 1 "Flowrate"
slot 2 'in± Methanol"
slot 3 "in± Ethanol"
slot 4 "mf Propanol"
slot 5 "m± Butanol"
slot 6 "Temp (K)"
slot 7 "Q value"

end pipe-format

* Column 1
*
begin process "Recycle Mixer"

inpipes ["1" ,"R"]
outpipes ["M"]

program "Recycle Mixer"
process 0

exec "mixer"
proc_type "t8"

end process

begin process "Column 1"
inpipes ["M!']
outpipes [11 2 11 , 11 3 11 1

* Use system call on PDist for program parameters

APPENDIX D. PNET EXAMPLE INPUT FILES 	 284

system pdist -p 4 -config MKCS1a DEFAULT -group 0 -d -map PNET inepbl.dat
end process

begin process "Column 2"
inpipes ["3"]
outpipes ["4","5"]
system pdist -p 4 -config MKCSi.a DEFAULT -group 1 -d -map PNET mepb2.dat

end process

begin process "unit 3"
inpipes [11 5 11]
outpipes [11 6" , "7"]
system pdist -p 4 -config MKCS1a DEFAULT -group 2 -d -map PNET mepb3.dat

end process

begin process "Recycle Splitter"
inpipes [114 11]
outpipes ["a" , 11 8 11 1

program "Dynamic Splitter"
process 0

exec "splitter"
imports ["double SplitFrac" ,"0.6"]
proc_type 11t8"

end process

* Set the feed stream
setstream "1" [0.015, 0.3, 0.3, 0.2, 0.2, 300.0, 1.03

end

D.2.3 Example PDist Loader Text under PNet

This final section shows the PNet loading description created for PDist by PDist

itself.

begin process "Column 1"
inpipes ["M"]
outpipes C11211,$13111

APPENDIX D. PNET EXAMPLE INPUT FILES 	 285

* Use system call on PDist for program parameters
U PNet Preprocessor:
* Executed: pdist -p 4 -i -gfx ling:O.O -config MKCS1a DEFAULT -group 0 -d
-map PNET mepbl.dat I awk '(for (i0;i<4;i++) printf(" "); print $01'

U
U
* PDist
*
U 	(A Parallel Interactive Dynamic Distillation Simulator)
*
* 	Loader Version : 1 4/22/93
* 	Developer 	: Roderick C. McKinnel
* 	 : Ecosse Project
*
* 	Copyright : Roderick C. McKinnel, All Rights Reserved
*
*
U
U PDist: Interrogating Hardware:
* 	 sun4(s) available = 1
* 	 t8(s) available 	= 12

* PDist: Launching specific version for MKCSLRGC hardware.
* PDist: exec = /home /rory/work/pa.rallel /PD ist/bin/pdist_MKCS1_RGC_sun4 -p 4
*
* File : PNet loading description for PDist
U Creator: PDist loader
* Author : Roderick C McKinnel

program "PDist"

process 0
exec "pdist_xnaster"
args "-gfxmode -interactive mepbl .dat /home /rory/work/p ar all el/PD i st /model

/pnet_models/gfxform. dat"
imports ["mt pdistgrp", 11 0 1 '1
proc_type "sun4"
linkto [3]

process 1
exec "pdist_interaction"
args "mepbl .dat /home /rory/work/parallel/PDist/model/pnet_models/gfxf

orm. dat"
imports ["it pdistgrp " , " 0 "]
proc_type "sun4"

APPENDIX D. PNET EXAMPLE INPUT FILES 	 286

process 2
exec "pdist_rgfx"
args "mepbl .dat /home /rory/work/parallel/PDist /model /puet -models /gfxf

orm.dat liug:O.O"
imports ["mt pdistgrp" , "Ofl]

proc_type sun4"
process 3

exec "pdist_reb"
args U 11

imports ["jut pdistnProcs","4",
"jut pdistprocld" , U1fl

"jut pdistlocalld" , "0",
"jut pdistnLocals" ,"O",
"mt pdistgrp" ,"O",
"jut localbot" , "0",
"jut n.plates" ,

110181

proc_type "t8"
1inito [4]

process 4
exec "pdist_st"
args 11 11

imports ["jut pdistnProcs" , "4",
"mt pdistprocld" , "2",
"jut pdistlocalld" , "0",
"jut pdistnLocals" , "0",
"jut pdistgrp" , "0",
"i.nt interactive", "1 11 ,

"jut localbot" , "1",
"jut nplates","20"]

proc_type "t8"
linkto [5]

process 5
exec "pdist_st"
args "

11

imports ["jut pdistnProcs","4",
"jut pdistprocld" , "3",
"jut pdistlocalld" , "0",
"jut pdistuLocals" , 11011,

"jut pdistgrp","O",
"jut interactive", "1",
"jut localbot" "21",
"jut nplates","20"]

proc_type "t8"
linkto [6]

process 6
exec "pdist_ref"
args "

11

APPENDIX D. PNET EXAMPLE INPUT FILES 	 287

imports ["it pdistnProcs","4",
"mt pdistprocld" .11411,
"mt pdistlocalld" ,"Ol',
"mt pdistnLoca].s","O",
"mt pdistgrp" "0",
"mt localbot" , "41",
'l int nplates","O"]

proc_type "t8"

* end of PNet format PDist description
* PDist: Launcher completed execution.

end process

Appendix E

Syntax Diagrams for the Various
Input Files Developed

This appendix contains the syntax descriptions for the input files used for PDist's

model routines, PDist's graphical back end and PNet. The syntax for each format

is presented using rail diagrams.

Rail diagrams are built out of input syntax rules. Each rule is built up from

further rules and tokens. A token is a specific grouping of text within the data

file. Everything which appears in a round ended box is a token. Everything in a

rectangular box contains the name for a set of rules which are expanded further

down the page. In the diagrams each token or rule is connected to the next one

by rails. Starting from the left hand side the rail layout dictates the way in which

you can pass through various tokens and internal rules. Loops in the rail layout

circle rules which can be repeated before proceding further. Branches in the rail

layout provide a choice of rules to follow.

Specific text is used to describe tokens. The exception is where a choice of

characters is available. A choice of one from many is shown between square

brackets. e.g. [a - z] means any lower case alphabetic character.

288

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 289

E.1 PDist Graphics Description Syntax

The following diagrams show the syntax used to describe the solutions which are

exported from the PDist models.

DataFile

begin) ç I Categories I 	(end

HashC H OldStyleFormat

The old format graphics file was based on a fixed output suite of data. The

old format had a simple header followed by the solution data whose format was

known. This has now been replaced by a backward compatibility format file of

the type described here.

OldStyleFormat

ComponentNames

HashC 	String 	DataFile

The contents of the format file are split into categories. The categories are either

associated with solution structure declarations or for setting up variables used

within these declarations.

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 290

Categories

The equality rules are relatively simple. To add functionality a simple loop struc-

ture is provided. At present this is limited to one nest deep. The reason being

that loops are difficult to program in a Rule Based parser. If required this can

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 291

be added at a later date.

LoopList

Equality H VaiueString

;i;')-•I Equality H LoopRange 	 done

LoopList 1

NB. If the "do" token in the next rule is picked up the parser fails with a "too

many nests" error.

LoopListi

Equality H ValueString -

If this track then eor
do

ValueSt ring

Integer

Real I-

String h
Variable

Expression

DataFormat

(i)_-] RangeTypel H String H String

Contexts

context)—] String H MaxAndMin ,- ContextSpecs

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS
	

292

MaxA ndMin

Real 	H Real]

Real

RealJ

ContextSpecs

ContextMcnu

()-1 RangeTypel H String H SlotDefinition

SlotDefinition

:S:l :Ot~
:sl:oDt—E~~~~
:ev:aDl —

Eipression H String

eval -fessio1-----

Run Tim eSlots

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS
	

293

LoopRange

Integer I-(I1EiEEI)-1
Integer F-€:E::-] T

Integer

Variable

-

Integer -'--J Expression_H

Variable F-()--1 Integer

Variable for Variable_H

Variable F-)--] Expression F
Expression _()-I Integer H
Expression ---] Variable_F

Expression -(')--I Expression

Range Type 1

Integer —(fo,)--1 Integer

Integer 	Variable

Integer 	Expression_H

Variable [-()---] Integer

Variable 	Variable

Variable .-()--] Expression F
Expression _——]_ Integer _H

Expression F---] Variable_F
forExpression _—--]_Expression

Integer

~a ~able~~~~~

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS
	

294

Variable

-(1 {) ,.- (any character except } and newline]) 	(}

The following represents the format used for a mathematical expression.

Expression

(

Integer -

Variable

Expression

Integer_H

Eeal]—

Variable

Expression

Equality

any character except = and newline

Integer

1,j D-
DigitI

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 295

Real

Exp

String

any character except "

Digit

Hash C

,- any character except newline

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 296

E.2 PDist Model Input Format

Comments may appear at any time within the format. There are two formats.

Hash and enclosed commemts.

Comment

DataFile

BEGIN)-({) - DataList 	(})-(END

	

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 297

DataList

1
(JCOLUNN-SIZE-BE9---7 	CSizes 	—(COLUMN-SIZE-END

k_(i1PONENT-NANES-BEGI1')_(1) 	CompNms

-(COMPONENT-NAMES

FEED-DATA-BEGIN)--i 	Feeds 	T—(FEED-DATA-END

THERNa-DATA-BEGIN -7 	ThermDyn
j ED—@ERMO-DATA-EN)----

COLUNN-DATA-BEGIJ--(ColData 	D-_(COLUMN-DATA-END

SIMULATION-DATA-BEGIN)--(i) 	SimData

-(S IMULATI

HYDRAULIC-DATA-BEGIN)--(J') ç Hydraulics]-7---r}

'—HYDRAULI C-DATA-

-(CONTROL-DATA-BEGIN _r 	CModels 	—(CONTROL-DATA-EMJ_-

-us ER-DATA- BEGIN}-(cJ UserD ataL
	

D-_6is ER-DATA-EN

PROGRAM-BEGIN 	 ProgramData I PROGRAM-END

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 298

CSizes

nos-of-comps)--(= H Integer

nos-of-stages)--(=)-1 Integer

nos-of -feeds)—(= H Integer

CompNms

Component -6'--I String

Feeds

feedstage}-] Integer -('7'---j FeedParameters_HOD

FeedParameters

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 299

The rmDyn

MOLECULAR-WEIGHTS —(D 	ThermoData 	
()

DENSITIES)—(.I 	ThermoData 	
()

ANTOIN-4 	ThermoData

ANTOINE-B}-I 	ThermoData 9 ()
ANTOINE)—(i) 1 ThermoData 	()

Therm oData

(componen)_-j Integer -()--j Real

ColData

(r1ate_eff1ciencj—(—_Real

_(aj._pressur_-Ø--]_Real

SimData

R

time-step

hist-step Real

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 300

Hydraulics

CModels

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 301

Controllers

controller H Integer F-({) 	- CSpecs

CSpecs

Us erD at a

1iE-1 Integer H String H Real

Pro gramData

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 302

Pro gramEvent

(REFLUX-RATEJ.—(defau1)--j Integer

TOPS -PRODUC iJ--] Integer

BOILUP-RAT_-('efau1)—j Integer

BOTTOMS_PRODUCT)— 	etau])-_] Integer

REF

 LUX-R

ATE

)---(ontro11ei)—] Integer -() 	- 	
CS pecs 	

(

TOPS-PRODUCT)--(controller}H Integer F-({) 	- I CSpecs
	

}

BOILUP-RATE)—(controller)--1 Integer F-({) ,, CSpecs 	(}

BOTTOMS -PRODUCT)---(controller)-1 Integer I-({)_,- I CSpecs

USER-DATA)--(s1o)_-j Integer H Real

USER-DATA slot 	Integer H String H Real

FEED-STAG ')--(f)—j FeedParameters

Integer

IDigitI

}

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 303

Real

Exp

String

any character except

Digit

(Eo-9

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 304

E.3 PNet Input File Syntax

DataFile

Cb eSin)4 String 	ProcessUnit

Process Unit

(ji')—(' roces'}--1 String 	String I 	UnitDefs

begin)—{process H String 	UnitDefs 1 - (end}—(process

begin)—(pipe±ormat)-- Integer 	- PFormats 1 -\ (end}—(pipe.iorinat)-

setstreaxaH String I—(C) ,- SetStream 	(1

UnitDefs

StreamName I -.

outpipes)—(C
	

StreamName! - 	(]

ipeJmports)—J String —(C) ,- Strlmports
	

F

graxn)—j String 1 ,- I ProgramProcesses

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 305

StreamName

Tm:s
S et St ream

Real

Real

Integer

Integer

Pro gramProcesses

process H Integer 1—(for)--j Integer 	ProcessData

process)-1 Inetger 	J ProcessData

P rocessD at a

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 306

Imports

String I-C)--] String HE)
String F-Cl)-] String

Strlmports

String F-Cll)--1 String

String 	String

LinkList

PFormats

slot)-1 Integer H String

slot)-I Integer -(for H Integer H String

Integer

ID
IDiitI

APPENDIX E. INPUT FILE SYNTAX DIAGRAMS 	 307

Real

Exp

String

any character except "

Digit

Appendix F

Bibliography

Arthur Trew & Greg Wilson, "Past, Present, Parallel: A Survey of Available

Parallel Computer Systems," in Past, Present, Parallel: A Survey of Available

Parallel Computer Systems, Springer-Verlag, Oxford, 1991.

Gregory J McRae, "Chemical Process Modeling and Simulation Using Ad-

vanced Computational Architectures," Proceedings of the Third International

Conference on Foundations of Computer Aided Process Design Meeting, Snow-

mass, Colerado (9-14 July 1989).

M J Flynn, "Very High Speed Computing Systems," Procedings IEEE 54 (De-

cember 1966), 1901-1909.

Thinking Machines Corporation, "Connection Machine CM-200 Series Tech-

nical Summary," in Connection Machine CM-200 Series Technical Summary,

Thinking Machines Corporation, Cambridge, Massachusetts, June 1991.

[5] C A R Hoare, Communicating Sequential Processes, Ellis Horwood, 1984.

RE

APPENDIX F. BIBLIOGRAPHY

Dick Pountain & David May, "A Tutorial Introduction to Occam Program-

ming," in A Tutorial Introduction to Occarn Programming, BSP Professional

Books, Oxford, London, 1987.

C Lawson, R Hanson, D Kincaid & F Krough, "Basic Linear Algebra Sub-

programs for Fortran Usage," ACM Transactions on Mathematical Software 5

(1979), 308-371.

J J Dongarra, J Du Croz, S Hammarling & R J Hanson, "Algorithm 656: An

Extended Set of Fortran Basic Linear Algebra Subprograms: Model Implemen-

tation and Test Programs.," ACM Transactions on Mathematical Software 14

(1988).

J Du Croz & P J D Mayes, "Vectorization Review," NAG Technical Report

TR6189 (1989).

J J Dongarra, J Du Croz, S Hammarling & I S Duff, "A Set of Level 3 Ba-

sic Algebra Subprograms," ACM Transactions of Mathematical Software 16

(1990), 1-17.

Peter Mayes, "Parallelism and the NAG Library," Proceedings of One-Day

Workshop on Parallel Numerical Analysis EPCC-TR92-05, Edinburgh Parallel

Computing Centre, Edinburgh (21 June 1991).

Mark A Stadtherr & James A Vegeais, "Advantages of Supercomputers for

Engineering Applications," CEP (September 1985).

James A Vageais, Alan B Coon & Mark A Stadtherr, "Advanced Computer Ar-

chitectures: An Overview," Chemical Engineering Progress (December 1986).

APPENDIX F. BIBLIOGRAPHY
	

310

Chemical Engineering Progress, "Supercomputing in Chemical Engineering,"

Chemical Engineering Progress (October 1989).

B Keith Harrison, "Exploiting Parallelism in Chemical Engineering Compu-

tations," AIChE Journal Vol. 36 (February, 1990), 291-292.

Stephen E Zitney, Richard D La Roche & Robert Eades, "Chemical Process

Engineering at Cray Research," CAST Communications 13 (Summer 1990).

Aspen Technology Inc, Aspen Plus User Guide, Aspen Technology Inc, Cam-

bridge MA 02139, 1988.

W L Miranker, "A Survey of Parallelism in Numerical Analysis," SIAM Review

13 (October 1971), 524-547.

W G Poole Jr & R G Voigt, "Numerical Algorithms for Parallel and Vector

Computers: An annotated bibliography.," Computer Review 15(1974), 379-

Don Heller, "A Survey of Parallel Algorithms in Numerical Linear Algebra,"

SIAM Review 20 (October 1978), 740-777.

L Dekker, "Parallel Gauss-Seidel Algroithm and Applicability in Continous

Simulation," Proceedings of the 3rd European Simulation Congress, Edin-

burgh (September 5-8, 1989).

A Reed & Merrell L Patrick, "Parallel, Iterative Solution of Sparse Linear

Systems: Models and Architectures," Parallel Computing 2 (1985), 45-67.

lvi A Baker, K C Bowler & R D Kenway, "MIMD Implementations of Linear

Solvers for Oil Reservoir Simulation," Parallel Computing 16 (1990), 313-334.

APPENDIX F. BIBLIOGRAPHY
	

311

Henk A van der Vorst, "Large Tridiagonal and Block Tridiagonal Linear Sys-

tems on Vector and Parallel Computers," Parallel Computing 5(1987), 45-54.

U Meier, "A Parallel Partition Method for Solving Banded Systems of Linear

Equations," Parallel Computing 2 (1985), 33-43.

Jack J Dongarra & Lennart Johnsson, "Solving Banded Systems on a Parallel

Processor," Parallel Computing 5 (1987), 219-246.

Alan George, Michael T Heath, Esmond NG & Joseph Liu, "Symbolic Cholesky

Factorisation on a Local-Memory Multiprocessor," Parallel Computing 5 (1987),

85-95.

Eleanor Chu & Alan George, "Gaussian Elimination with Partial Pivoting and

Load Balancing on a Multiprocessor," Parallel Computing 5 (1987), 65-74.

Dianne P O'Leary, "Parallel Implementation of the Block Conjugate Gradient

Algorithm," Parallel Computing 5 (1987), 127-139.

Henk A Van der Vorst, "Analysis of a Parallel Solution Method for Tridiagonal

Linear Systems," Parallel Computing 5 (1987), 303-311.

Petter E Bjorstad, "A Large Scale, Sparse, Secondary Storage, Direct Linear

Equation Solver for Structural Analysis and its Implementation on Vector and

Parallel Architectures," Parallel Computing 5 (1987), 3-12.

M Cosnard, M Marrakchi & Y Robert, "Parallel Gaussian Elimination on an

MIMD Computer," Parallel Computing 6 (1988), 275-296.

Mounir Marrakchi & Yves Robert, "Optimal Algorithms for Gaussian Elimi-

nation on an MIMD Computer," Parallel Computing 12 (1989), 182-194.

APPENDIX F. BIBLIOGRAPHY
	

312

W H Liu, "Computational Models and Task Scheduling for Parallel Sparse

Cholesky Factorization," Parallel Computing 3(1986), 327-342.

Chris Phillips, "The Performance of the BLAS and LAPACK on a Shared

Memory Scalar Multiprocessor," Parallel Computing 17(1991), 751-761.

Michael T Heath, Esmond NG & Barry W Peyton, "Parallel Algorithms for

Sparse Linear Systems," SIAM Review 33 (September 1991), 420-460.

K Dave & S Duff, "Sparse Matrix Calculations on the Cray-2," Parallel Com-

puting 5 (1987), 55-64.

L Hart & S McCormick, "Asynchronous Multilevel Adaptive Methods for Solv-

ing Partial Differential Equations on Multiprocessors: Basic Ideas," Parallel

Computing 12 (1989), 131-144.

L Hart & S McCormick, "Asynchronous Multilevel Adaptive Methods for Solv-

ing Partial Differential Equations on Multiprocessors: Performance Results,"

Parallel Computing 12 (1989), 145-156.

Joel H Saltz & Vijay K Naik, "Towards Developing Robust Algorithms for

Solving Partial Differential Equations in MIMD machines," Parallel Comput-

ing 6 (1988), 19-44.

D Jaurez & C C Pantelides, "Multiprocessor Solution of Nonlinear Equations

for Chemical Process Simulation," SERC/DTI Transputer Initiative Mailshot

(September, 1990).

APPENDIX F. BIBLIOGRAPHY
	

313

D Juarez & C C Pantelides, "Multiprocessor Solution of Nonlinear Equations

for Chemical Process Simulation," Centre for Process Systems Engineering

Internal Report, Imperial College, London. (1990).

Jack W Ponton, Eric S Fraga, Rory C Mckinnel & Neil Skilling, "Simulation of

Nonlinear Chemical Processes and Control Using Transputers," in Transputer

Control, Research Studies Press, March 1991, Chapter 1.

S E Zitney & M A Stadtherr, "A Frontal Algorithm for Equation-Based Chem-

ical Process Flowsheeting on Vector Computers," Third International Sym-

posium on Process Systems Engineering, Sydney (28 August - 2 September,

1988).

S E Zitney & M A Stadtherr, "Frontal Algorithms for Equation-Based Chem-

ical Process Flowsheeting on Vector and Parallel Computers," Computers and

Chemical Engineering 17(1993), 319-338.

A B Coon & M A Stadtherr, "Parallel Implementation of Sparse LU Decom-

position for Chemical Engineering Applications," Computers and Chemical

Engineering 13 No. 8 (November 1988), 899-914.

R Wait & J Landauro, "Parallel Algorithms for Multicomponent Separation

Calculations," AIChE Journal Vol. 34 (June. 1988), 964-968.

Alfred J O'Neill, Daniel J Kaiser & Mark A Stadtherr, "A Parallel Computing

Strategy for Multicomponent Separation Calculations," in Computer Appli-

cations in Chemical Engineering, H.Th. Bussemaker & P.D. ledema, eds.,

Elsevier Science Publishers, Amsterdam, 1990.

APPENDIX F. BIBLIOGRAPHY
	

314

L M Napthali & D P Sandholm, "Multicomponent Separation Calculations by

Linearization," AIChE Journal 17(1) (1971), 148.

Gregory J McRae, "Engineering the Future With Supercomputers," Depart-

mentsof Chemical Engineering and Engineering and Public Policy, CMU, Key

Note Lecture at the EPCC Annual Seminar, Edinburgh, 23 September 1991..

Stephen E Zitney, "A Frontal Code for ASPEN PLUS on Advanced Architec-

ture Computers," Presented at AIChE 1990 Annual Meeting, Chigago, illinois

(November 16, 1990).

Stephen E Zitney, "The Development of Chemical Process Flowsheeting on

SuperComputers," Proceedings of PSE 91, Montebello, Quebec, Canada (Au-

gust 5-9, 1991).

B K Harrison, "Performance of a Process Flowsheeting System on a Super-

computer," Computers and Chemical Engineering 13 (1989), 855-857.

C M Rosen & A C Pauls, "Computer-Aided Chemical Process Design: The

FLU WTRAN System," Computers and Chemical Engineering 1(1977), 11-21.

R J Best, "The use of Parallel Computation in Process Modelling and Simu-

lation," South Bank Polytechnic Internal Report.

R J Best, "Process Simulation Using Parallel Computers," Transactions of

IChemE Vol. 68 (September, 1990).

R Johns & Vadhwana, "A Dual-Level Flowsheeting System," I Chem E Sym-

posium Series 92 (1982), 55-66.

APPENDIX F. BIBLIOGRAPHY
	

315

E H Chimowitz & R Z Bielinis, "Analysis of Parallelism in Modular Flowsheet

Calculations," AIChE Journal Vol. 33 (June, 1987), 976-986.

Moe H I & Hertzberg T, "Advanced Computer Architectures Applied in Dy-

namic Process Simulation," Computers and Chemical Engineering 18 (1994),

375-384.

A Skjellum, "Concurrent Dynamic Simulation: Multicomputer Algorithms Re-

search applied to Ordinary Differential-Algebraic Process Systems in Chemical

Engineering," Calafornia Institute of Technology, PhD thesis, California, 1990.

Anthony Skjellum, Manfred Morari & Sven Mattisson, Waveform Relaxation

for Concurrent Dynamic Simulation of Distillation Columns," The Third Con-

ference on Hypercube Computers and Applications Vol. 2 - Applications (Jan-

uary 19-20 1988).

Arigimiro R Secchi, Frank S Laganier & Manfred Moran, "Dynamic Process

Simulation Using a Concurrent Differential and Algebraic Solver," European

Symposium in Computer Aided Process Engineering, Toulouse, France (5 - 7

October, 1992).

Anigimiro R Secchi, Manfred Moraxi & Evaristo C Biscaia Jr, "The Waveform

Relaxation Method in the Concurrent Dynamic Process Simulation," Euro-

pean Symposium in Computer Aided Process Engineering, Toulouse, France

(5 - 7 October, 1992).

L R Petzold, "DAEs are Not ODEs," SIAM J. Sci. Stat. Corp. 33 (1982), 367-

384.

APPENDIX F. BIBLIOGRAPHY
	

316

L Lin & C McGreavy, "Parallel Processing Algorithm for Muilticomponent

Distillation," Proceedings of the 1991 IChemE Research Event, Cambridge

(9-10 January, 1991).

J W Ponton, E M Johnston, J M Forsyth, A Matheson & F M Rutherford,

"Real Time Dynamic Simulation Using Networked Computers," The Third

International Symposium on Process Systems Engineering, Sydney (28 August

- 2 September 1988).

[671 G D Cera, "Parallel Dynamic Process Simulation of a Distillation Column on

the BBN Butterfly Parallel Processor Computer," Computers and Chemical

Engineering 13 (1989), 737-752.

Norihiro Watanabe, "Dynamic Simulation of Large-Scale Systems Using Par-

allel Computing Systems," Proceedings of PSE'91 Vol III (August 5-9, 1991).

Prof J W Ponton & R C McKinnel, "Nonlinear Process Simulation and Control

Using Transputers," lEE Proceedings 137 (July 1990), 189-196.

J W Ponton, E S Fraga, R C McKinnel & N Skilling, "Parallelisation Strategies

for Process Modelling on MIMD Computers," Proceedings of the 1991 IChemE

Research Event, Cambridge (9-10 January, 1991).

Jack W Ponton, Eric S Fraga, Rory C Mckinnel & Neil Skilling, "Simulation

of Nonlinear Chemical Processes and Control Using Transputers," Technical

Report 1991-3, Department of Chemical Engineering, Edinburgh University,

1991.

APPENDIX F. BIBLIOGRAPHY
	

317

V Vasek, R C McKinnel & J W Ponton, "Detailed Dynamic Simulation of

Distillation Columns Using Parallel Computers," Proceedings of COPE91,

Barcelona (October 1991).

E S Fraga, K I M. McKinnon & W R Johns, "Process Synthesis Using a

Parallel Computer," in Computer-Oriented Process Engineering, L. Puigjaner

& A. Espufia, eds., Elsevier Science Publishers, Amsterdam, 1991, 235-240.

E S Fraga & K I M McKinnon, "Parallel Optimization Techniques for Optimal

Heat Integrated Separation Sequence Generation," EDINBURGH PARALLEL

COMPUTING CENTRE, University of Edinburgh, Proceedings of the One-Day

Workshop on Parallel Numerical Analysis, PNAW'91, EPCC-TR92-05, Edin-

burgh, 1991.

E S Fraga & K I M McKinnon, "A Portable Code for Process Synthesis Using

Workstation Clusters and Distributed Memory Multicomputers," Department

of Chemical Engineering, University of Edinburgh, TR 1993-05, Edinburgh,

UK, 1993, to appear in Computers and Chemical Engineering.

E S Fraga & K I M McKinnon, "Process Synthesis Using Parallel Graph

Traversal," Comput. chem. Engng. 18 (1994), S119-S123.

E S Fraga & K I M McKinnon, "The Use of Dynamic Programming with

Parallel Computers for Process Synthesis," Comput. chem. Engng. 18 (1994),

1-13.

Stephen E Zitney & Richard D La Roche, "Chemical Process Synthesis, De-

sign, and Operations Using Supercomputers," Submitted for publication in

CAST Communications 14 (Summer 1991).

APPENDIX F. BIBLIOGRAPHY
	

318

Richard L Burden & J Douglas Faires, "Numerical Analysis," in Numerical

Analysis, PWS-KENT Publishing Company, Boston, 1989.

M Hillestad & T Hertzberg, "Dynamic Simulation of Chemical Engineering

Systems by the Sequential Modular Approach," Computers and Chemical En-

gineering Vol. 10 (1986), 377-388.

M Shacham, S Macchietto, L F Stutzman & P Babcock, "Equation Oriented

Approach to Process Flowsheeting," Computers and Chemical Engineering

Vol. 6(1982), 79-95.

G lvi Amdahl, "Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities." AFIPS Con gerence Proceedings 30 (1967), 483-

485.

Yin-Chang Liu & Coleman B Brosilow, "Simulation of Large Scale Dynamic

Systems-1. Modular Integration Methods," Computers and Chemical Engi-

neering Vol. 11 (1987), 241-253.

Yin-Chang Liu & Coleman B. Brosilow, "Simulation of Large Scale Dynamic

Systems-2. A Modular Simulator for the Dynamics of Distillation Systems,"

Computers and Chemical Engineering Vol. 11(1987), 255-264.

Vladimir Vasek, "Dynamic Simulation of Distillation Columns," ECOSSE

Project Internal Report, Department of Chemical Engineering, Edinburgh

University (July 1992).

R C McKinnel, "Reactive Distillation PDist Modelling Manual," ECOSSE

Project Technical Report RCPvI1992-1 (1992).

APPENDIX F. BIBLIOGRAPHY
	

319

"PPDS (Physical Property Data System) User Manual," National Engineering

Laboratory, UK (1982).

Haitham M S Lababidi, Bob Thomson & Neil Skilling, "The PPDS Fortran In-

terface," ECOSSE Project Technical Report 1991 -11, Department of Chemical

Engineering, Edinburgh University (July 1991).

INMOS, "The Transputer Databook," in The Transputer Databook, Redwood

Burn Ltd, Trowbridge, 1989.

R C McKinnel & J W Ponton, "Use of a MIMD Parallel Computer for Sim-

ulation and Control of Distillation," Proceedings of 16th Annual Reasearch

Meeting of the IChemE, University of Newcastle (11 April, 1989).

Meiko, "CS TOOLS for SunOS," in Meiko Computing Surface Manual, Meiko

Limited, Bristol, UK, 1991.

Rosemary Candlin, Qiangyi Luo & Neil Skilling, "The Investigation of Com-

munication Patterns in Occam Programs," Occam User Group Technical Meet-

ing 11(1989).

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek

& Vaidy Sunderam, "PVM 3.0 Users Guide and Reference Manual," Technical

Report ORNL/TM-12187, Oak Ridge National Laboratory, Tenessee (Febru-

ary 1993).

Geoffrey H Ballinger, Rene Banares-Alcantara, Des Costello, Eric S Fraga,

Jens Krabbe, Haitham Lababidi, D Murray Laing, Rory C McKinnel, Jack W

Ponton, Neil Skilling & Martin W Spenceley, "epee: A Process Engineering

Software Environment," Computers and Chemical Engineering 18 (1994), 283-

287.

APPENDIX F. BIBLIOGRAPHY
	

320

Eric Fraga, "The TPlot Programming Manual," Personal Correspondence (1991).

N Skilling, "ESSPROS Programming System," ECOSSE Project Internal Re-

port (May 1991).

Rosemary Candlin, Thomas Guilfoy & Neil Skilling, "A Modelling System

for Process-Based Programs," Proceedings of the 3rd European Simulation

Congress, Edinburgh (September 5-8, 1989).

Rosemary Candlin & Neil Skilling, "A Modelling System for the Investiga-

tion of Parallel Program Performance," Fifth International Conference on

Modelling Techniques and Tools for Computer Performance Evaluation, Turin

(February 1991).

Herbert Britt, "Key Note Speach: Process Systems R&D. the View from As-

pen," Ecosse Project Open Day, Edinburgh (16-17 September 1993).

Paul Sawyer, "STEP Steps In," The Chemical Engineer (8th April, 1993).

B. Gani, C A Ruiz & I T Cameron, "A Generalized Model for Distillation

Columns - 1: Model Description and Applications," Computers and Chemical

Engineering Vol. 10(1986), 181-198.

R Gani, C A Ruiz & I T Cameron, "A Generalized Model for Distillation

Columns - 2: Numerical and Computational Aspects and Applications," Com-

puters and Chemical Engineering Vol. 10 (1986), 199-211.

