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CHAPTER 1

Introduction

The first suggestion that the electron might

possess an intrinsic magnetic moment was made by

A.L. Parson, in 1916. In an attempt to explain the

mechanism of chemical binding (Parson, 1916), he

postulated that the electron is itself magnetic and

has, in addition to a negative charge, the

properties of a circulating current. This was

pictured as a negative charge distribution around

a ring which rotated about an axis perpendicular to

its plane, the peripheral velocity being comparable

with that of light.

Prom this, it follows that the magnetic

moment of the Parson magneton must be approximately

irec, where e is the electronic charge, c is

the velocity of light, and r is the average

radius of the circulating current distribution.

Talcing r to be about 1.5 x 10 cms., we find a

•■22
value of 3.6 x 10 weber-metres for the magnetic

moment of the Parson magneton; this is about

fifty times greater than the moment of the Bohr

magneton. It should be emphasised that, in

Parson's view, the concept of the magneton is to be



substituted for that of the orbital electron, and

not added to it.

Five years later, the magneton idea was

developed further by Compton, in an effort to show

that the ultimate unit of magnetism is the

spinning electron (Compton, 1921). It had already

been shown that this ultimate magnetic unit did

not consist of any group of atoms, such as a

chemical molecule (Compton and Trousdale, 1915)»
nor was it an atom as a whole (Corapton and Rognley,

1920). By regarding the electron as being a

rotating system with one degree of freedom and

hence possessing an amount of energy Ihco at

absolute zero (h is Planck1s constant divided by

27t, and w is the spin angular velocity),

Compton showed that the spin angular momentum of

the electron should be of the order of h. After

citing evidence from an investigation of the

rotation of the plane of polarisation of light by

optically active substances (Allen, 1920), and

from Wilson Cloud Chamber photographs showing

helical tracks of electrons passing through para¬

magnetic substances such as air, Compton concludes:

"The electron itself, spinning like a tiny gyro¬

scope, is probably the ultimate magnetic

particle."

Immediately afterwards, Crowther and
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Schonland attempted to verify the Rutherford

formula for the scattering of (3-particles by

nuclei (Crowther and Schonland, 1922); the

formula had previously been verified by Chadwick

for a-particles. Considerable disagreement be¬

tween theory and their experimental results was

found, and it was suggested that this mi^it be

due to the operation of some force between the

scattering centre and the scattered particle

which was not of the Coulomb type. In addition,

they put forward the following explanation:

"The theory that the electron is also a magneton,

though not yet orthodox science, lends colour to

the suggestion that, in a collision between two

electrons, magnetic forces might be called into

play."

These vague and tentative ideas about the

properties of the electron were synthesised by

Uhlenbeck and Goudsmit. They showed (Uhlenbeck

and Goudsmit, 1925 and 1926) that many of the

more puzzling features of atomic spectra, such as

the doublet character of alkali atoms, and the

anomalous Zeeman effect, could be understood

immediately if it were assumed that the electron

possessed an intrinsic angular momentum of irh,

and an intrinsic magnetogyric ratio of e/m,



- l.U

where m is the electron mass. Thus the intrin¬

sic raagnetogyric ratio is twice the orbital

magnetogyric ratio; this is discussed in detail

: in Appendix I.

In the study of atomic spectra, it is custom¬

ary to express the magnetic moment of an atom in

i any state in the form

M- = gjM-0

where u 5 /2m is the Bohr iaagneton, j isO

the total angular momentum quantum number and

measures the angular momentum in units of h,

and g is the Lande" splitting factor, or g-

factor, and is a pure number. If we apply this

notation to a system of only one electron, we may

write by analogy

M- = gsnQ .

I Prom the postulates of Uhlenbeck and Goudsmit,

we see immediately that s = 2 and

| (j. = e/m x ^h = |x • Thus, for an electron, we
must have g = 2.

It was soon shown that electron spin could

be included in a logical way in quantum mechanics,

both within the framework of matrix mechanics

(Heisenberg and Jordan, 1926), and using the

formalism of wave mechanics (Pauli, 1927). It
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turns out that the angular momentum M associat¬

ed with a system having spin (quantum number) \
cannot be expressed in the form M = £*£» where

r is the displacement of the system from the

point about which M is calculated, and where £

is the linear momentum. This emphasises the

intrinsic nature of the electron's spin angular

momentum.

The type of quantum mechanics just mentioned,

where the spin of a particle was assumed from the

start and merely added to the system as an

additional degree of freedom, could not be used

to describe a particle moving with a velocity

approaching that of light} the relevant

equations are not relativist!cally invariant,

Dirac approached the problem of finding a rela-

tivistic wave equation by requiring, as a

necessary condition for relativistic invariance,

that the Hamiltonian for a free particle should

be symmetric with respect to space and time deriva

tives, and hence linear in the space derivatives,

(Dirac, 1928), In the presence of a magnetic

l field B, it was shown that, in the non-

relativistic limit, an additional term appears in

the expression for the energy of the particle and

| is of magnitude ||jB. This is precisely the



- 1.6 -

energy possessed by a magnetic dipole of strength

one Bohr magneton when aligned in a magnetic field,

Further, it turns out that when such a particle

moves in a central field of force, the orbital

angular momentum L is not a constant of the

motion, but that the vector sum of L and a seconcji
vector of magnitude ?h is a constant of the motion.

Hence we conclude that an electron possesses an

intrinsic or spin angular momentum of amount i"h.
These and related matters are considered in

Appendix I.

Such was the success of Dirac* s theory that

no attempt was made to measure the magnetic moment

of the electron in any direct fashion. It is

certain that the much-quoted arguments of Bohr

(for example, Mott, 1929)» that an experiment of

the Stern-Gerlach type could not demonstrate the

existence of the magnetic moment of a free electron,

did much to discourage any such investigation.

Indeed, in their book on atomic collisions, Mott

and Massey go so far as to say: "We must conclude

that it is meaningless to assign to the free

electron a magnetic moment." (Mott and Massey,

19U9).

Interest in the subject was revived when

various experimenters reported discrepancies
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between Dirac theory and measured doublet

separations in the spectra of hydrogen and

deuterium (Houston, 1937; Williams, 1938). It

was suggested that these were due to a perturbing

interaction between the electron and the nucleus,

though the mechanism of the perturbation was not

specified (Pasternak, 1938). Investigators using

optical methods were hampered in their efforts

to check the Dirac theory by the Doppler broaden¬

ing of the lines being large compared to the very

small splittings which had to be observed.

In the immediate post-war years, refined

optical beam methods and recently developed

microwave techniques were applied to the problem,

and a succession of papers, both theoretical and

experimental, soon followed. Nafe, Nelson and

Rabi used an atomic beam method to examine the

hyperfine structure separation of atomic hydrogen

and deuterium; they found a discrepancy between

calculated and measured values which was about

five times greater than their estimated experi¬

mental error (Nafe, Nelson and Rabi, 19bl). Lamb

and Retherford, using microwave techniques to

examine the hyperfine structure of hydrogen,

found a similar disagreement with theory (Lamb and

Retherford, 19U7); this latter was immediately
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given a theoretical interpretation in terns of a

shift of the energy levels caused by the inter¬

action of the electron with the radiation field of

the nucleus (Bethe, 19*4-7). The results of Nafe

et al. were confirmed independently, using a

similar apparatus (Uagel, Julian and Zacharias,

19*4-7)» and an optical study of a line in the

spectrum of ionised helium gave a result in fair

agreement with Bethe*s approximate calculation

(Mack and Austern, 19*4-7). Breit pointed out that,

if the observed discrepancies really were due to

an interaction between the electron and the

nucleus, it would be difficult to understand why this

interaction should be the same for the deuteron

as for the proton. He claimed that the experi¬

mental evidence was not inconsistent with the

electron* s having a magnetic moment of the order

of m-0( 1 + «•)» where a is the fine structure con¬
stant (Breit, 19*4-7). This implies that the g-

factor of the electron should be approximately

2(1 + a) = 2(1 + 0.0073).

Using an atomic beam apparatus to examine the

Zeeman spectrum of gallium, Kusch and Foley con¬

cluded that their results could be explained by

taking the electron g-factor to be 2(1 + 0.0011*4-5)

(Kusch and Foley, 19*4-7). The observations were
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then extended to the spectra of sodium and indium,

and it was found that theoretical and experimental

results fitted "best when the electron g-factor was

taken to toe 2(1 + 0.00119), with an uncertainty

of 5 in the last place (Kusch and Foley, 19U8a;

19U8to).

Meanwhile, a new evaluation of radiative

corrections to electron phenomena (avoiding the

divergence difficulties which toeset earlier cal¬

culations) had toeen accomplished toy Schwinger

(Schwinger, 19*4-8$ 19*4-9). Using the methods of

quantum electrodynamics, a radiative correction

was derived, expressing the effect of the electro¬

magnetic field of the electron upon itself. Work¬

ing to second order in perturbation theory,

Schwinger showed that when the theory is applied

to an electron in a magnetic field, the correction

to the magnetic interaction energy corresponds to

an additional magnetic moment associated with the

electron spin, of amount )n0« Thus the
electron g-factor is 2(1 + i(^))» or

2(1 + 0.001162). A precision measurement of the

hyperfine structure separation of the ground state

of hydrogen and deuterium atoms, using an atomic

beam method, confirmed Schwinger's calculation

within the experimental error, and also agreed

with the results of Kusch and Foley (Nafe and
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Nelson, 1948).

A more precise determination of the g-factor

for electrons "bound in atoms could be achieved by

combining the results of two independent experi¬

ments: in the first, the magnetic moment of the

proton is determined in units of the Bohr mag¬

neton (|jy/V0), while in the second, the ratio of
the magnetic moment of the electron to that of

the proton is found (p/g^). The product of these
two results gives 5 gs = gg, or one half

of the g-factor for the bound electron.

The first determination of was made by
Jr

Taub and Kusch, using a molecular beam method

(Taub and Kusch, 191+9). More precise results

have been obtained by observing the ratio of the

electronic spin g-value of atomic hydrogen to the

proton g-value in a sample of mineral oil in the

same magnetic field (Koenig, Prodell and Kusch,

1952; Beringer and Heald, 195k; Geiger, Hughes

and Radford, 1957)• If the ratio g/g is required
ir

for the free electron, a relativistic correction

is applied, to account for the binding energy of

the electron in the hydrogen atom. According to

a recent review (Du Mond, 1958), the best value

at present is (for free electrons)

g/gp( oil) = 658.2288 t 0.0001+ .
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The first determination of j+p(oil)/l+0 was
made by Gardner and Pureell} the ratio of the

nuclear magnetic resonance frequency of protons

in a sar/^le of mineral oil to the cyclotron

frequency of free (low energy) electrons in the

same magnetic field was measured (Gardner and

Purcell, 191+9). Their results, which gave a low

value for the electron g-factor when combined with

the above value of n/M-p* have recently been re¬
evaluated (Hardy and Purcell, i960). A second

measurement of j+^( oil)/y,0, using the same
technique, was carried out by Franken and Liebes

(Franken and Liebes, 1956). Using the above best

value of jj/i-ip, we find the following values for
the g-factor for free electrons:

Gardner & Purcell, g = 2 (1 + 0.00111+6 £ 0.000012/
(original) *

Gardner & Purcell. g = 2 (1 + 0.001156 £ 0-000002/
(revised) *

Franken & Liebes : g = 2 (1 + 0.001165 £ 0.000005)

In step with the development of the more

precise experimental methods outlined above, there

have been successive refinements of the theory re¬

lating to the anomalous g-factorcf the electron.

The first calculation to fourth order was made by
p

Karplus and Kroll, as far as terms in a (Karplus



- 1.12 -

and Kroll, 1950). It yielded

g = 2£l+ 4(f) - 2.973(f)2]
or g = 2 il+ 0.0011U5U} .

This lengthy calculation was considerably shorten¬

ed by Soirsnerfield, using the formalism introduced

by schwinger (Sommerfield, 1957* 1958)* The self-

energy of the electron in a steady, externally

applied magnetic field was calculated, and the

magnetic moment of the electron identified as the

coefficient of that term in the expression for the

energy which was linear in the magnetic field. He

found

g = 2 (l + 4(f) - 0.328(f)2].
or g = 2 [l+ 0.0011596}.

An identical result was obtained by Petermann in a

quite independent calculation (petermann, 1957).

As we have seen, it is possible to deduce the

g-factor for free electrons if we know its value

for electrons bound to atomic nuclei. Less in¬

direct measurements would, however, be very desir¬

able, and three experiments have been devised to

measure directly the g-factor of free electrons.

In a fourth experiment, the g-factor of the free

electron has been compared with that of the valence

electron in the sodium atom. These exi eriments

will be discussed in the following chapters.
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The author has been concerned (In conjunction

with others) with the construction and testing of

an apparatus designed hy Farago (Farago, 1958).
The success of this experiment depends largely on

the formation of a suitable electron beam in

crossed electromagnetic fields. In addition to

constructing and developing some of the apparatus

described in Chapter 3» notably the first proton
resonance probe, the vacuum system and the special
3.H.T. unit (no suitable commercial unit was

available), the required type of electron beam
has been produced and studied^ this is described
in Chapter 4. The theory relating to various

aspects of the experiment is reviewed and present¬

ed in condensed form in Appendices I - IV, In

Appendix V, the theory of focussing a beam of
electrons in crossed fields is worked out, and a

possible experimental arrangement is discussed.



CHAPTER TWO

Experiments Using Free Electrons

In this section we outline three g-factor

experiments, all of which involve free electrons

directly. Two of these experiments have already

yielded results,

(a) Dehmelt's Experiment

The aim of this experiment (Dehmelt, 1958a,
see also (1958b) was not to measure the g-factor

of the free electron explicitly, but to compare

it with that of the valence electron of the sodium

atom.

Consider a volume filled with sodium vapour

in which sodium atoms are oriented, that is to sayj
the spin of the valence electron has the same

orientation for each atom. If free electrons are

somehow produced in the same volume, having their

spins oriented at random, collisions will occur

between the sodium atoms and the electrons. As a

result of these exchange collisions, free elec¬
trons will be oriented in the direction of the

valence electron spins, and, since angular
momentum must be conserved, partial disorientation
of the sodium atoms will occur. Eventually an
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equilibrium state will be reached, with partial
orientation of both electrons and sodium atoms.

Suppose now that the equilibrium is upset by

completely destroying the polarisation of the

electrons. Equilibrium will be re-established by

the sodium atoms giving up to the electrons a

further degree of polarisation in a second series

of exchange collisions. In this way, a change in
the state of polarisation of the free electrons

can produce a change in the state of polarisation

of the sodium atoms.

It was shown by Kastler that partial orien-

i tation of alkali atoms may be produced and detect-
,

ed by optical means (Kastler, 1954). This tech¬

nique, known as optical pumping, was apnlied by

Dehmelt. Sodium vapour was contained in a vessel

the walls of which were coated with caesium

which, when irradiated with ultraviolet light,

produces photo-electrons. To prevent the vapour

atoms and the photo-electrons from making too

many disorienting collisions with the walls, an

inert buffer gas was added. Orientation of the

sodium atoms, and hence of the electrons, was

achieved by illuminating the bulb containing the

vapour with circularly polarised sodium light.

The intensity of light transmitted through the
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vapour was detected by a photo-cell, and gave a

measure of the polarisation of the sodium atoms:

the greater the degree of orientation, the more

intense will be the transmitted light.

A constant, uniform magnetic field, BQ, was
applied to the sample, in the direction of the
incident illumination, and a loop was arranged to

produce a radio-frequency magnetic field in a

direction perpendicular to 33Q (this is equivalent
to two oppositely-rotating fields with axes of

rotation parallel to BQ). When the radio frequency
became equal to the spin resonance frequency of

electrons in the field BQ, energy was absorbed
from the radio-frequency field by the partially

oriented electrons, thereby destroying the

polarisation of the electron gas. As a result,
the degree of orientation of the sodium atoms

was reduced, giving rise to a decrease in the
current from the photo-cell. In practice, BQ
was modulated at a low frequency to sweep through

the field strength required for resonance. By

applying an alternating voltage at the same low

frequency to the x-plates of an oscilloscope,
and by feeding to the y-plates the amplified

photo-cell signal, the resonance curve could be

observed.



To compute the g-factor in this experiment,
both the applied resonance frequency and the mag¬

netic field strength at resonance must be knownj
measurement of the former presents no problems

but, rather than determine the magnetic field

strength, an auxiliary experiment was performed

in which transitions between hyperfine levels in

the ground state of sodium were induced, in the
same magnetic field, by an applied radio-frequency
field. Combining the results of these two ex-

periments with data acquired previously from

atomic beam experiments, Dehmelt found that the

g-factors for the free electron and for the

valence electron of sodium were equal, to an

accuracy of 3 parts in 100,000,

(b) Frisch's Experiment

The energy of a non-relativistic electron

in a magnetic field B may be written as

Ei,s " 2m pz + <2^ + 1 + 8S)^0B
where pz is the component of the electron's
momentum which is parallel to B, JL is the
orbital quantum number, and m, g, s and jxQ have
their usual meanings. From this we have

Bi,4 - si,-£ = gll°B = •



where u_ = If- B is the spin precession frequency,s <~m

Also

a^+l,s - Ifes = 2"oB = H: '

where uc = ~B is the cyclotron frequency,
us

Hence g = 2 /w .c

An experiment was suggested by Bloch to

determine u„ and for slow electronss c

(Bloch, 1953)* The method makes use of the fact

that, in a homogeneous magnetic field, the elec¬

tron can exist only in certain stationary states,

each with a well-defined energy. In the follow¬

ing paragraphs, we outline an experiment under¬

taken by Frisch which is based on Bloch's sug¬

gestion (Frisch , 1954; see also Tolhoek, 1956),
Thermal electrons are made to describe spiral

orbits by entering a constant, homogeneous magnet¬

ic field B, applied in the z direction. The

electron energy will then be 3^ g, as given
above. When a potential well of depth 0 is

suddenly set up by the application of suitably

chosen electrostatic fields, those electrons for
which 3 , will be trapped in the well,
while those of greater energy will continue to

spiral onwards. It may be shown that the result

of establishing an additional, inhomogeneous,

magnetic field with a gradient in the z direction



is to raise one side of the potential well and

to lower the other. The effect of this will be

to "blow" the more energetic electrons out of the

trap. If the Inhomogeneity is removed, and if the

system is not disturbed in any way, a second

application of the inhomogeneous magnetic field

cannot eject any more electrons.

Suppose that, with the particular depth of
well chosen, the establishment of the inhomogeneoufe
field "blows out" all electrons having energy

greater than 3^, which is just greater than
E^,+1 (it is easily seen that, if g = 2,
these energies are equal, that is, there is a

degeneracy). After the inhomogeneity is removed

again, a radio-frequency magnetic field is

applied to the trapped electrons, in a direction

perpendicular to the z-axis. If the frequency

of this field is u = , absorption of radio-c'

frequency energy will cause transitions in which

JL increases by unity, and two such transitions
will be 1 and JL+ 1—* -£+ 2. If, on

the other hand, the applied frequency is u = u ,

absorption of radio-frequency energy will cause

transitions ("spin flips") In which s goes from

to 4"*j» In either case, subsequent application
of the inhomogeneous magnetic field will eject
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electrons and, after being accelerated, these

ejected electrons may be detected. By determining

the two frequencies at which energy is absorbed

(the frequencies after the application of which

electrons are "blown out"), the value of g may

be determined.

If, in a practical arrangement, we take
2

B = 0.1 webers/m (• = 1,000 gauss), the resonant
frequencies will be about 1.8 x 10"*"° radians/sec.,
the corresponding wavelength being around 10 cms.

Since hw £ etf, we find fH 4 10 u, volts, so that
• •

the trapping voltage has to be very small. Be¬

cause of space charge effects, only a very few

(about ten) electrons can be trapped at a time,
and the trapping time must be sufficient for the

required transitions to occur. Hence, even when

the cycle of operations is repeated many times

per second, counting rates will be low and, while
in the trap, electrons will move through large

distances, so very low pressure (about 10m.m,

mercury) is essential. Another difficulty is that

the u>c resonance is much more intense than that
for wg and, as the frequencies are very close
together, the former may mask the latter. Further

complications may arise on account of energy

exchange with the surroundings through radiation.
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As a result of these and other difficulties, this

experiment has not yielded results so far,

(c) Crane's Sxperiment

It was recently reported (Schupp, Pidd and

Crane, 1961) that the research programme started

in 1952 by Crane had succeeded in measuring direct-*

ly the g-factor of free electrons with an accuracy

of about 2 parts in 1,000,000. An earlier
version of this experiment had been described

previously (Louisell, Pidd and Crane, 1954), but
we shall consider here only the later and more

successful version (first described by Louisell,
Pidd and Crane, 1953)»

The experimental arrangement is as followst

a pulsed (and unpolarised) beam of electrons from

an electron gun, moving parallel to a constant and

uniform magnetic field inside a 20 ft. long

solenoid, is scattered through a right-angle by

a thin gold foil. As shown by Mott scattering

theory (see Appendix IV), the beam will then be

partially polarised; it is allowed to drift for¬
ward in a helix.

In order that the electrons should perform a

prescribed number of orbital revolutions in the

constant magnetic field, the axial component of
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their velocity is decreased by a pulse of about

-40 volts applied to coaxial electrodes. At this

point, an auxiliary magnetic field modifies the
main field so that it decreases radially. The

electrons in this "trap" oscillate parallel to

the axis of the solenoid. A second voltage

pulse is applied after they have described the

required number of revolutions, and they spiral
forward again. After a second Mott scatter, the

*

electrons move parallel and antiparallel to the mag¬

netic field and are detected.

As discussed in Appendix II the cyclotron

and spin precession frequencies, uc and wg ,

of electrons in a pure magnetic field are related

by the equation

(u, - uc)A,c = Y(®/2 . 1) .

Thus the relative orientation of the spin and

momentum vectors changes by A. if per revolution,
where

At = 2xT(g/2-l).

If the asymmetry in the counting rates in the

two counters is measured as a function of
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the number of orbital revolutions described in the

magnetic field, a sinusoidal variation should be

obtained, A whole period will be covered after n

revolutions, where

2% = 2u n Y(§ - 1)

so that ^ = Y(§ - 1 ) .

Hence, a measurement of the number of orbital
revolutions which correspond to a complete period

in the variation of the scattering asymmetry gives

directly the deviation of the g-factor from the

value 2,

In the Crane experiment, the number of com¬

pleted orbits is controlled by the time (up to

300 jxsec.) spent by the electrons in the magnetic

trap. Therefore the variation of the scattering

asymmetry was measured as a function of the time

spent in the magnetic trap, the frequency of the
variation being (u_ - uO/2x, Instead of usings c

the expression

■t-» ■
c

which involves a knowledge of the electron veloc-
2

ity (through the factor Crane uses

It Is therefore necessary to measure B and,
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since the magnetic field in the trap is not homo¬

geneous, this involves evaluating the time average

of B as experienced by the electrons, which

presents some difficulty.

Crane et al. determined the g-factor anomaly,

(If- - 1), for electron energies between 50 and 100

kev* They found that the anomaly showed a slight

dependence on energy, which is attributed (without

complete conviction) to stray electrostatic charges

in the region of the magnetic trap, but it is

pointed out that this variation of the anomaly with

energy might be real. After making certain

assumptions, they arrive at their final result:

g = 2(1.0011609 i 0.0000024) .

In an earlier report (Schupp, Pidd and Crane,

1959)» it was suggested that the above-mentioned

apparent variation of the g-factor anomaly with

energy might be interpreted by assigning to the

electron an electric dipole moment. By assuming

!the best theoretical value for g to be exact,

I they showed that such a dipole moment could not

exceed (1.8 » 1.4) x 10""^ x e coulomb-metres, and
this point has been investigated further (Nelson,

| Schupp, Pidd and Crane, 1959). It is worth noting
that the spin kinematics for an electron with an

electric dipole moment has already been worked out
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(Bargmann, Michel and Telegdi, 1959), and the
effect of such a dipole moment on electron scatter4

ing has been calculated (Margolis, Rosendorff and

Sirlin, 1959)• The theoretical implications of
the electron's having an electric dipole moment

have been pointed out by Landau, and by Lee and

Yang (Landau, 1957? Lee and Yang, 1957a).



CHAPT3R THR3S

The Present Jgxperiment

An experiment similar to that of Crane et al.

was suggested (Farago, 1958), and has been under

development for the past three years. The

variation of the angle between the spin and

momentum vectors of a beam of polarised electrons,

performing approximately circular orbits in a

homogeneous electromagnetic field, is detected

by Mott scattering. By measuring the variation

of the state of polarisation of the beam as a

function of the number of orbital revolutions des¬

cribed in the field, the quantity (ws - wc)/wc is
obtained directly, where us, u>c are respectively
the spin precession and cyclotron frequencies.

In two important respects, this experiment is
much simpler than that of Crane: a polarised

beam of electrons is obtained directly frcm a

suitable beta-active isotope, and, by applying an

electrostatic field in a direction perpendicular

to the magnetic field, the number of orbital

revolutions performed before detection may be

controlled without the necessity of a magnetic

trap of any kind.
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Outline of the Experimental Method

The main features of the experimental

arrangement are shown in Figure 3.1.

Figure 3»i.

The radioactive source, R, is placed in the crossed,

homogeneous, electric and magnetic fields
S = (0, S, 0), and B = (0, 0, B), and emits
electrons into one hemisphere only. Let the

magnitude of the velocity of these electrons he v;

then, as explained in Appendix V, the electron
orbits may be considered to be, to a good approxi¬

mation, circular, of radius Ymv/eB, (where
2 ^ i

Y = (1 - v /c )"2), provided that E/vB 1.



Because of the electric field, these "circular"
orbits drift in the direction of the positive

x-axis with a velocity S/B, the drift per revolu¬

tion being & - 2uYmS/eB2. If the electrons drift

a total distance, I (which is approximately

equal to the diameter of the orbits), before

striking the target, T, then the number of orbital
revolutions described in the crossed fields will

be L/5^ = cBB/tiS, where 0 = v/c.
In the present experiment, the radius of the

electron orbits is restricted to about 5 cms., so

that L = 0.1 m. For 128 kev electrons,
2

p = 0.6, and so we require B = 0.025 webers/in.
(= 2^0 gauss). From Appendix II we find, if

3/cB«,1,

(us - wc)/u>c = Y(f"1)*
The relative orientation of the spin and momentum

vectors therefore changes by an angle 4 per

orbital revolution, where

= 2kY(§ - 1) .

Hence, the relative orientation will change by 2%
after n revolutions, where

2% = 2nnY(§ - 1) .
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jNow (^ - 1) = 0.001 and, if p = 0.6, we find
Y = 1.25. So the number of orbital revolutions

required to give a complete period of relative

spin precession is n = 800 turns, which leads to

| T5 = 1,500 volts/m. For a quarter of a period
(which will transform a longitudinally polarised

beam into a transversely polarised beam), 200 turns

will be necessary, the required electric field

being about 6,000 volts/m.
If the electric field is produced by estab¬

lishing a potential difference between two parallel

plates, P-^ and P2, which are approximately 10 cms.

apart, the necessary potential differences to

give 800 and 200 turns will be about 150 volts and

600 volts respectively. Should we require that

the electrons strike the target after only 10 turns,

then S = 120,000 volts/m., the corresponding

potential difference being 12,000 volts. We then
have E/cB = 0.016, so that, for a number of
orbital revolutions as low as 10, the approximation
made above ceases to be valid.

When the target is a thin gold foil, the
numbers of electrons scattered by the gold nuclei in

directions parallel and anti-parallel to the mag¬

netic field will not, in general, be equal. Hence,
if detectors are placed above and below the foil,
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the two counting rates will not normally be the

same. Mott scattering theory, which is discussed
in Appendix IV, shows that the counting rate

asymmetry depends on the state of polarisation of

the electron beam when it strikes the foil; the

asymmetry is a maximum for a transversely polarised

beam, and is zero for a longitudinally polarised
beam.

It is clear from Figure 3.1 that for a given

magnetic field, the baffle C, together with the
condenser plates, and P2, limits the maximum
particle energy (that is, the maximum diameter of

orbit) which can reach the target T. Remembering

that the orbits drift from left to right, we see

that the position of the edge of the source-

holder furthest from T will define the lowest

particle energy which can reach the target; hence,
the breadth of the source-holder is an important

parameter. Likewise, the source must be mounted

very close to the edge of the source-holder near¬

est to T, especially at low values of the electric

field; otherwise, in spite of drifting towards
the target, the electrons will strike the back of
the source on completing the first orbit. It

should be noticed that the angular aperture of the

beam which, in practice, was taken to be about 30°,
is limited by the separation of the condenser
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plates. The actual dimensions of the apparatus

used are given in the following section.

An important feature of the above electron-

optical system is that, whatever their initial

velocities, all electrons emitted from a point
source with no z component of velocity are brought

to a point again after an integral number of

orbital revolutions. In other words, there is

focussing in the plane of symmetry of the system.

This point is discussed in Appendix V, where the

possibility is considered of focussing in the z

direction also.

: . - '• ■ » , ■ .

Dimensions of the Electron-Optical System

In the course of the experiment, two arrange¬

ments have been used to produce the required

electrostatic field distribution. The first, com¬

posed of brass and perspex components, was designee,
for the initial development work and has recently

been used to obtain the preliminary data discussed

in Chapter 4. The second is described in detail

below.

The maximum size of the apparatus was con¬

trolled by the area of the magnetic field which

was sufficiently homogeneous, and by the separation



of the magnet pole-faces. The minimum size was

determined principally by considerations of

machining tolerances and alignment difficulties.

For these and for practical reasons, it was decided
to use a condenser plate separation of 10.28 cms.

By requiring that electrons be accepted frctn the

source within an angle of 30° in the x-y plane,

the mean electron orbit diameter was fixed at

8.166 cms. The two extremal orbits and the central

orbit are shown, in Figure 3.ii, leaving the
source R and subsequently striking the target T.

From this, we find that the total distance drifted

by the (almost) circular orbits before striking

the source is 7«6l cms., the breadth of the source*

holder is O.278 cms., and the distance from the
source at R to the baffle C is just one orbit

diameter.

To correct for end effects and thus preserve

the homogeneity of the electric field, equally

spaced conducting grids of rectangular shape, each

at a potential appropriate to its position, were

placed between the condenser plates. These are

shown in Figures 3.ii and 3»iii. To obtain the

requisite potential on the grids, each was con¬

nected to its neighbour by a 4 Mil precision

resistor. The condenser plates and P2 were
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were raised to equal and opposite potentials, the

centrd grid then being at earth potential.

In an effort to reduce bremsstrahlung, con¬

denser plates, grids, baffle, source-holder and

target foil-holder were constructed of aluminium.

upfe*

COOjJ-TER

\
nOOOOODDDO □ .□DDODDDDQn

SCAf-feRitJ^
Foil.

-JDODOOOODO Q ODOOOQQDOL-

Figure 3.iii.

(Drawn to scale)
Lowe*

CoUHftR

Because of its satisfactory mechanical and vacuum

properties, end-pieces and grid spacers of accur¬

ately machined fluon were used, and the entire
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electrostatic system was positioned in the plane of

symmetry of the magnetic field by fluon spacers.

*_/8ftffld sou*ee

"T

colujt££

scatffrirms
Foil

Lowe/?
geicer
cootjtfr.

1

7^

Figure 3»iv.

(Drawn, to scale)

The central grid is shown in Figure 3.iv in

side elevation. The target foil-holder could be

rotated through 180° from outside the vacuum box

so as to present to the beam either a thin gold
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foil or a thicker aluminium foil (or, for some in-
■3 (J

vestigations, no foil at all). The source of

was deposited on a suitably shaped piece of

aluminium rod, care being taken to ensure that
most of the source was situated very close to the

edge of the source-holder. Two small, thin-window

Geiger counters were placed above and below the

target foil, with their axes parallel to the grids,T
as shown in Figure 3.iii*

The Magnet

The soft-iron pole-faces were circular and

were spaced 11.80 cms. apart, a shim of height and

breadth 0.693 cms. being incorporated to improve

the homogeneity of the magnetic field. The inside

radius of the shim was 16,6 cms. Each pole was

attached to a square, soft-iron plate, 1 in. thick
and of side 27ins., the length of each pole

-

being 3.145 ins. The return path for the magnetic

flux was through four triangular soft-iron corner

pieces, each of area 24.6 sq. ins.
The magnet was energised by passing current

through coils of copper strip, 400 turns of which
were mounted on each pole piece. Current was

supplied, from a mains stabiliser, through a

rectifier capable of producing up to 10 amps.
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Smoothing was provided by an LC-filter (1,000 jxF,

0.5 henries), followed by two resistance-coupled
banks of "floating" accumulators. This supply

system will be described in detail elsewhere.

To measure the magnetic field in the gap

between the pole-faces, a simple proton resonance

device was constructed, and two small modulating
coils were added to the pole pieces. The original

circuit is shown in Figure 3.v, being based on a

marginal oscillator arrangement (Watkins and

Pound, 1951; Pound^ 1952). By measuring the
resonance frequency (around 1 Mc./s.) on a

commercial detector, preliminary investigations
showed that a current of about 3 amps produced a

o
field of 0.02 5 webers/m. To measure magnetic field

inhomogeneities, a more elaborate system (using

simultaneously two proton resonance probes) was

developed, and will be described elsewhere.

After adding a small correcting coil to one pole

piece, it was shown that, within the volume to be

traversed by the electrons, the magnetic field was
4

homogeneous to 4 parts in 10 .

The Vacuum System

Electrons which describe* 1,000 turns in the

crossed fields before striking the foil will

cover a path about 250 metres long. Clearly, a



Figure3*v.
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| good vacuum will be essential if the majority of
electrons in the beam are not to be lost by gas

scattering.

In order to estimate the required pressure,

we may proceed as follows! each gas nucleus is

surrounded by a "disc of influence" of radius

about 5 x 10"9 cms,, and hence of area, ,

about 8 x ID"1? cms? This is derived from the

Rutherford scattering formula, assuming that a

128 kev, electron which is deviated by an angle

of about 10"*3 radians will be lost frcm the beam.

Alternatively, the cross-section for 1^0 kev,
~19 2

electrons in hydrogen is about 6 x 10 7 cms.

Since the cross-section is proportional to the

square of the atomic number, this will be about
17 2

4 x 10 7 cms, for air, in fair agreement with
the first result. If there are I electrons per

square cm. passing through a gas containing n

molecules per c.c., then the number lost from the
beam in a distance dt will be

- dl = 2nl<r-dt

since the chief constituents of air are diatomic.

Hence

I<t) = I0e-2no"t
where I = IQ at t = 0.

Let us require that 90f of the initial beam
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should be unscattered after travelling 250 metres.

Then

l0Se(^^ = 2n0"2«5X 104
.'. Vn = 4 x 10ccs.

Now the gas pressure, P = nkT, where k is
Boltzmann^ constant and T is the absolute

temperature. Hence, taking T = 300°K,
2

P = 10 J dynes/cm.

or P = 10"^ mm, mercury. j
The vacuum chamber consisted of a portion of

circular sectioned brass tubing, of 11 ins. inter¬
nal diameter and % in. wall thickness. This was

grooved top and bottom to accommodate rubber 0-

rings, and then fitted between the magnet pole

faces. The chamber was evacuated through a

8 ins. x 3 ins. rectangular pipe, leading to a

5^.ins. diameter and 9 ins. long circular section¬
ed pipe, to which was attached a Leybold Do501 oil
diffusion pump. The pump oil used was Diffelen V,

ft'

for which an ultimate pressure of less than 10~

mm. mercury is claimed.

To prevent oil vapour from diffusing into the

vacuum chamber, a water-cooled baffle consisting

of three copper cups, each with just less than
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half its base removed, was mounted immediately

above the vapour pump. A Pollard-type liquid air

trap (Pollard, 1959) was fitted; this consisted
of a 9/16 ins. copper rod which penetrated into

the system immediately above the water-cooled

baffle, being insulated thermally from the pumping

pipe by a stainless steel tube, 4 ins. long and of
.

0.01 ins, wall thickness. A brass reservoir for

the licuid air was soldered to one end of the

copper rod, and could be surrounded by a Dewar

flask. A small, brass "fan" was attached to the

inside end of the copper rod, to provide a large,

cold surface area.

When the aluminium and fluon electrode system

was placed in position inside the vacuum box, the

pressure (as measured on an Edwards ionisation
—5

gauge) fell to about 10 mm, in four hours with¬

out liquid air, and to about - 2 x 10^ after a week,

again without liquid air. The addition of liquid
I

-6
air reduced the pressure to around 10 mm. mer¬

cury. This was considered to be satisfactory,
at least for a preliminary investigation. When

the brass and perspex electrode system was used,

pressures below about 6 x 10"^ mm. could not

be achieved without the use of liquid air.
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The S.H.T. Sup-ply

We saw earlier that, to vary the number of

orbital revolutions described by the electrons

before being scattered by the foil from 800 to

10 turns requires an electric field which can be

varied between about 1,500 volts/to. and 120,000

volts/m. Since the condenser plates are 10.14 cms.

apart, the necessary potential difference between

the plates must vary from approximately 150 volts

to 12,000 volts.

Further, the potential difference, once

established, must be stable over periods comparable

with the necessary counting times; and it must be

possible to measure the applied potential differ¬

ence with sufficient accuracy. Now since

I s rcf - i) = r.io"3 ,

where n is the number of complete orbits required

to cause a relative spin precession of 2x, n must
be determined with an accuracy of 1 part in 100 if

g is to be measured with a precision of 1 part in
<

10 . But n = "const." x B/S ; so we require to
know B and S with a total accuracy better than 1

part in 100, and both fields must be stable to this

degree. (The "constant" in the above equation is
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v/x, where v is the magnitude of the velocity
of the electrons striking the foil; clearly the

energy selection of the electron-optical system

must therefore be better than 2 parts in 100,

since the energy is proportional to the square of

v).

Bearing in mind the above considerations, a

high voltage generator was constructed, the circuit

diagram being shown in Figure 3»vi. The oscillator

consists of two 6L6*s in parallel, the level of
oscillation being controlled by the screen poten¬

tial of these valves. In turn, this Is governed

by the conductance of the SCC 33 which depends,

through the d.c. amplifier consisting of two CV

358*s and an SCC 35? on the potential applied to

the right hand grid of the HCC 35. The control

loop is completed by sampling the output of the

rectifiers (on the negative side) and comparing

this with a steady (positive) voltage from the

helipotentiometer: the difference in potential

is then the voltage applied to the right-hand grid

of the SCC 35.

Six "Westalite" rectifiers and six H.T.

condensers are used in the voltage tripling stage.

The controlling voltage and two small voltages

suitable for measurement by a precision
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potentiometer are obtained by applying the output

voltage of the tripler to a chain of high pre¬

cision resistors. The radiofrequency transformer

is shown in Figure 3.vii, the grid coil being

coupled to the secondary of the transformer to an

extent which may be varied manually.

The initial adjustment of the unit is as

follows! close switch 1, thereby earthing the

right-hand grid of the FCC 35. Set the 5 KJ2.

variable resistor to give + 350 volts on the

stabilised H.T. line. Note the variation in the

tripled voltage caused by moving the centre tap of

the 50 K&. variable resistor from one end of its

range to the other, and adjust this resistor

setting to give an output voltage approximately

in the centre of the range available; the D.C.

amplifier will then be at approximately the

centre of its controlling range. Adjust the

position of the grid coil to give maximum output

consistent with no drop in the potential of the

stabilised H.T. line. Open switch 1, and set the

helipotentiometer to give the required output

voltage.

Using the circuit as shown, the resonant

frequency is around 77 kc./s., and the total
maximum voltage is about 19 kilovolts (that is,
+ and - 8.5 kilovolts approximately). Lower
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Voltages may be obtained by decreasing the coupling

between the grid coil and the secondary of the

transformer. For output voltages below about 1

kilovolt, the oscillator became rather unstable,
so a stack of dry batteries was used instead.

Measurement of the voltage was made by applying

the battery output to the precision resistor chain.

At a total output of 15 kilovolts, the 77

kc./s. ripple measured at the low voltage side of

the 0.025 p.F feedback condenser was less than

2 volts peak.to peak? that is, the ripple is about
4

1 part in 10 . At the same output the overall

stability as measured across both the 2kil pre¬

cision resistors in the output chain was better
4

than 4 parts in 10 over a period of 24 hours.

Since the centre grid of the electrode system

is not actually earthed, the exact equality of the

positive and negative outputs is not essential.

However, because of the proximity of various

earthed components (vacuum box, Geiger counters),
it is desirable that the potential of the x - z

plane of the system should not be greatly differ¬

ent from zero. During a 24 hours test run, the

"lopsidedness" of the output (15 kilovolts)

varied between 56 and 24 parts in 10^. This means

that when an output of 15 kilovolts is applied to

the electrode system, the potential of the mid-
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plane differs from zero by about 4.25 volts.

From Figure 3«vi, it is clear that the output

voltage may be calculated in terms of the poten¬

tial differences across the two 2k-iL precision

resistors, Strictly, this is possible only when

the right-hand grid of the ECC 35 valve is at

earth potential. In practice, if a high-precision
measurement of the output voltage is required, it
is always possible to alter the grid coil coupling

so that, for any required voltage, the potential
on the right-hand grid of the ECC 35 is actually

zero. Then we find that:

Half total output = 6071 x P.D. across 2k JL.

The error in the measurement of the output

voltage arises from the tolerance in the values

of the resistor chain components, and from the

sensitivity of the precision potentiometer used

to make the measurement. The chain consisted of

24 components, the stated tolerance being 0.1^.
Temperature stability was achieved by immersing

all the resistors in a large oil-bath. It is

safe to say, therefore, that the error arising
from the first source will be less than 1 part in

10^. The lowest voltage to be measured on the

potentiometer is about 0.025 volts; this arises

when the total output is about 150 volts, which

corresponds to around 800 orbital revolutions.
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Changes in voltage of a few microvolts could be

detected, but absolute measurement of voltage is

limited by the stability of the standard cell.

The error from the second source should therefore
cr

be less than 1 part in 10 • From this, we see

that the dominant error in the electric field

intensity arises from instability in the output

voltage. Over periods of several hours, this
4

error will be less than 4 parts in 10 •

The total resistance of the output precision

resistor chain is just over 20 Mil, With the

aluminium and fluon electrode system, the total

resistance of the potential divider is 88 M_fL.

At maximum output, the total power consumption
in the resistor chains is about 20 watts, of which
less than 4 watts is dissipated inside the vacuum

box.

The Source

For practical reasons, electrons with

energies in the range 100 - 150 kev. are required.

To reduce background to a minimum, a pure beta-

emitter is desirable. Since several sources

would be required in the development of the

apparatus, an isotope was sought which was readily

available, convenient to handle, and which could



Figure3«viii.
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be deposited with reasonable precision on such

backings as thin wires and small metal studs.

Some of the mounts actually used are described

in Chapter 4. The electrons emitted must be

longitudinally polarised; as discussed in

Appendix III, all known beta-emitters satisfy

this condition to some extent. To minimise

depolarisation in the source itself, and to give

high counting rates without excessive source

thickness, a carrier-free isotope of high specific

activity is required.

The isotope fulfills all the requirements

listed above. The end-point energy is 167.4 kev.

(Connor & Fairweather, 1957) and the half-life is

87 days (Hendricks, Bryner, Thomas & Ivie, 1943).

Figure 3«viii shows the energy spectrum of S-,

as measured with a proportional counter (Cockroft

& Insch, 1949; for further references, see

Strominger, Hollander & Seaborg, 1958).

The Scatterer

Since the differential cross-section for the

scattering of electrons by the Coulomb field of a

2
nucleus is proportional to Z , where Z is the
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atomic number of the scattering material, it is
desirable to use scatterers of high atomic number,

especially in cases such as the present experiment

where counting rates are low. Further, the count¬

ing rate asymmetry in a single scattering experi¬

ment is proportional to Z. For these reasons, it
is customary to use foils of gold (Z = 79) in

Mott scattering experiments.

In experiments where absolute measurements

are required, for example, where Mott cross-

sections or where helicity of beta-particles have

to be determined, it is necessary to use either
2

very thin foils (of the order of 0.1 mg/cm.) or a

series of foils of different thicknesses and to

extrapolate results to zero foil thickness. If

this is not done, then the effects of plural and

multiple scattering in the foil will cause serious

error (see, for example, Spiegel, Fuane, Anthony,
WSaldman & Miller, 1959).

While no such measurements were required

in the present experiment, excessive foil thick¬
ness would mask any genuine spin-dependent counting

rate asymmetry. It was convenient to use gold
2

foil of 1 mg/cm. which, although very fragile,
was found to possess adequate mechanical properties.

|The dimensions of the foil used with the aluminium
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and fluon system are shown in Figure 3,iv.

The Detectors

Because of lack of space above and below the

grid system, and because of the magnetic field,
the only form of detector which could be used in

the present experiment was a small, thin-window

Geiger counter. The presence of the grids, and

the effect of electrons spiralling in the magnetic

field, restricted the scattering angle to around

90°.
From the table in Appendix IV, we see that,

at energies around 100 kev, the product polarisa¬
tion x asymmetry x cross-section is maximum at a

scattering angle of 90°. Although this product

increases rapidly as 0 = v/c decreases, it was

thought that, for electrons with 0 less than about

0.5, this advantage would be more than offset by
increased absorption in the counter window.

In addition to being small, the counters used
had to be non-magnetic and must have very thin

windows. Side window counters supplied by

Twentieth Century Electronics were used, the

thickness of the mica windows being in the range
p

1-2 mg/cm • The metal-to-glass seals of these
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counters are, in fact, slightly magnetic, but
their effect on the magnetic field was found to

be sufficiently small to be neglected. The

positioning of the counters, which were in the

form of circular cylinders ^/8 ins. in diameter

and about 4 ins. long, is shown in Figures 3.ii
and 3.iii.



4.1

CHAPT3R FOUR

Formation and Properties of an Electron Beam In

Crossed Electromagnetic Fields

Using the aluminium and fluon electrostatic

system described in the previous chapter, and a
2

thick gold foil (1 mg./cm.), asymmetry deter¬
minations were made at three different voltages.

The results obtained are tabulated below, where

the suffix 1 refers to the upper Geiger counter,
x^hile 2 refers to the lower Geiger counter.

The number of turns, n, was calculated from

the expression

n _ LeB2d
27iYmV

where L is the total distance drifted 2 7.61
cms.

B is the magnetic field strength
o p

= 2.74 x 10 webers/m •

d is the condenser plate separation
= 10.28 cms.

e/m is the electron charge-to-mass
ratio — 1.76 x 10 coulombs/kgm.

V is the total applied voltage.



AppliedNo,ofCountingRate/min,Asymmetry VoltageturnsC]LC22(C1-C2)/(C1+C2) 3.4?kv

40

268.4i2.0272.4i1.80.16?10.011
2.76kv

?0272.812.6229.4t2.40.173-0.014
0.74kv

186

260.7-0.?220.3i0.?0.168-0.003
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Now, for electrons with (3 = 0,55 (= 102 kev.),
the number of turns required to produce a rela¬

tive spin precession of 2% is approximately 720,
if we take the g-factor anomaly to be 0.00116.

Hence we should expect to find that the scattering

asymmetry is a maximum after about 180 turns}
we see from the above table that no such asymmetry

was observed#

While this negative result was almost cer¬

tainly due in part to multiple and plural scatter¬

ing in the gold foil, it was felt that other

factors, principally the electron optics of the

system, were contributing as well. It was there¬
fore decided that a more detailed study of the

behaviour of electrons in the electromagnetic

field should be undertaken.

For this investigation, which would be con¬

cerned with small numbers of orbital revolutions

only, the brass and perspex system used in the
initial stages of the experiment was adequate, and

produced a more uniform electric field than the

later system since it employed larger condenser

plates.
■at?

A new source, in the form of a circular
disc about v32 ins. in diameter, was prepared.

To reduce the electron background, a small metal



- 4.3 -

cylinder, about 1 cm long, was fitted over the

source, the axis of the cylinder being in the y

direction, that is, in the direction of the

required initial electron velocity.

The scattering foil and foil-hclder were

replaced by a piece of thin plastic scintillator

(of type NE 103) mounted on the end of a perspex

light-guide the axis of which coincided with the

positive z-axis. The effective breadth of the

crystal could be contrelied by a moveable

aluminium mask. Scintillations were detected by

an S.M.I. type 6097B photomultiplier.

The spacing between the brass condenser

plates was 12.70 cms., which corresponds to a 30°
beam acceptance with mean orbit diameter 10.08

cms. Using the same magnetic field as before

(2.74 x 10"2 webers/m.2), we find 3 = O.63
(150 kev.).

The effects of the magnetic field, B
>3&~x o

(2.74,webers/m. ), and the electric field, S

(Potential difference of 10.5 kv.), on the count¬

ing rate were studied with the crystal (1 mm.

wide) placed 6.0 cms. away from the source. The

following results were obtained!

B off, E off ; counting rate! 247 - 12/min.
B on, E off ; counting rate! 285 - 12/fain.
B on, E on counting rate! 379 - 12/min.



The small Increase in counting rate produced by

the magnetic field alone is due to scattering

from the back of the source. In the following

discussion, the term "background" means the

counting rate with B on and S off, while "signal"
means counting rate with B and E on minus back¬

ground.

Because the background, as defined above,

includes the true background of the photomulti-

plier, it is not constant even for periods of a

few minutes. Therefore, background had to be

sampled at regular intervals during the period

of any count. To facilitate this, a two-channel

counting system was set up: for the first half-

minute, one scalar counted with E on, while for
the next half-minute, the other scalar counted
with E off. A device incorporating a synchronous

motor which actuated microswitches was used so

that the switching operation was fully automatic.

We shall now attempt to predict, from purely

theoretical considerations, the manner in which

counting rate should vary with applied voltage

when the crystal detector is placed at a given

constant distance from the source, the electron

optical system having been set up in a given

fashion. Later, we shall compare these pre¬

dictions with experimental results.
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Using those values of the various parameters

which were actually employed in the experimental

arrangement, we takeI

Distance from source to crystal, L = 7*0 cms.

Separation of condenser plates, d = 12.7 cms.
-2

Applied magnetic field, B = 2.74 x 10
webers/m.2.

Now, if n is the number of turns described

by the electrons before striking the crystal when

the potential difference between the condenser

plates is V volts, then

n = Les2d , where Y = (l-p2)"^ .
2'jiYmV

Figure 4.i shows how p and V are related for

values of n between 8 and 20.

To investigate the electron optical proper¬

ties of the system, we assume first that there is
no baffle. Figure 4iii then shows that, if Q

is half the emission angle which is accepted by

the system, then

r (1 + sin 0) = d/2 ,

where r is the radius of an electron orbit.
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Now, _ Ymflc
eB

so that

1 + sin © =

Y£ 2m c

After half a revolution in the magnetic field,
the breadth of the electron beam for a given

energy will be 2r(l - cos ©). The following

table gives r, ©, and 2r(l - cos ©) as

functions of 3.

£ r(cms) ©(deg.) 2r(l-cos©)(cms.)

0.35 2.32 90 4.64
0.40 2.72 90 5.44
0.45 3.14 90 6.28
0.50 3.60 50 2.57
0.55 4.10 33.3 1.35
0.60 4.67 21.1 0.63
0.65 5.32 11.2 0.20
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We now take account of the fact that the

source, on a small brass stud, was mounted on a

square rod of approximate breadth 0.5 cms.5 and

recall that a baffle was fitted, the distance from

source to baffle being 8,0 cms.

It is readily seen that, if

2r cos d y 7.5 cms.,

the source holder will not intercept the electron

beam at all while, if

2r ^ 7*5 cms.,

the beam will be cut off completely by the source

holder.

Similarly, if

2r cos 6 y 8.0 cms.,

the entire beam will be cut off by the baffle

while, if

2r ^ 8.0 cms.,
the baffle will not intercept the beam at all.

This effect of the source holder and baffle

restricting the transmitted beam is shown

graphically in Fig. 4.iii.
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From this graph, we see that only those

electrons for which p lies between 0.515 and

0.580 can be transmitted by this arrangement.

Electrons of higher energy are cut off by the

baffle, while those of lower energy are stopped

by the source holder.

In order to predict counting rates, x^e assume

that the number of electrons of a given energy

which are transmitted is proportional to the

"slit width" as determined from Figure 4.ill,

taking the maximum width as unity. Further, we

require to know how the number of electrons

emitted by the source varies with p. This

variation is shown in Figure 4.iv, which is
derived from Figure 3.viii. The counting rate
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scale has been normalised in an arbitrary-

fashion.

One further factor must be considered: if

we assume perfect focussing in the x-y plane,

with no focussing in the z-direction then the

number of electrons which reach the detector will

decrease linearly with the distance between source

and detector; that is, with the number of turns

described before the beam strikes the crystal.

From these considerations, the counting rate,

c, should be given by

e = s(a)M(a)
n
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where S((3) Is the "slit width" as given by-

Figure 4.iii, N((3) is the number of electrons

emitted by the source per unit range of 0, as

given by Figure 4,iv, and n is the number of
turns. The quantities SO) and N(0) are

tabulated belowJ

0 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58

S(0) o 0.15 0.55 0.95 1.00 1.00 0.75 0

NO) 30.0 26.5 23.0 20.0 17.0 14.0

Finally the counting rate is computed from

the above, using Figure 4.i, This leads to the

following table for the variation of counting rate

with applied voltage.

V(kv) 18.0 17.8 17.6 17.5 17.4 17.2

0 0.52 0.53 0.54 0.54 0.56

n 9 9 9 9 9

c o 0.50 1.62 2.42 2.42 1.89

V(kv) 17.0 16.8 16.6 16.5 16.4 16.2

0 0.57

n 9

c 1.17 0 0 0 0 0
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V(kv) 16.0 15.8 15.6 15.5 15.4 15.2

(3 0.52 0.535 0.55 0.56 0.565

n 10 10 10 10 10

c 0.45 1.80 2.00 1.70 1.40 0

V(kv) 14.8 14.6 14.5 14.4 14.2 14.0

0 0.52 0.53 0.55 0.57

n 11 11 11 11

c 0 0 0.41 1.33 1.82 0.95

V(fcv) 13.8 13.6 13.5 13.4 13.2 13.0

0 0.53 0.55

n
1

12 12

c 0 0 0 0 1.22 1.67

V(kv) 12.8 12.6 12.5 12.4 12.2 12.0

0 0.57 0.53 0.55

n 12 13 13

c 0.88 0 0 0 1.12 1.54

V(kv) 11.8 11.6 11.5 11.4 11.2 11.0

0 0.57 0.52 0.545 0.57

n 13 14 14 14

c 0.81 0 0 0.32 1.50 0,75

V(kv) 10.8 10.6 10.5 10.4 10.2 10.0

0 0.525 0.53 o.55 0.57 0.52

n 15 15 15 15 16

c 0 0.60 0.99 1.33 0.70 0.28
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Figure 4.v Is a graph of this theoretical

counting rate as a function of the total applied

voltage.

This should be compared with the experiment¬

ally determined curve in Figure 4.vi. It is seen

that, while there is poor agreement between the

general shapes of the two curves, the maxima and

minima occur at very nearly the same voltages in

each. The fact that the observed counting rate

between successive maxima does not drop to zero

implies that there is some spreading of the beam

in the x-directionj that is, focussing in the

x-y plane is not perfect.

It is significant that, in the theoretical

curve, the counting rate at successive maxima

decreases more slowly than was found in practice

as the voltage decreases. This implies that, in
the above calculation, sane attenuating factor has

been overlooked.

Whan, as must be the case, the focussing in
the x-y plane is not perfect, we may suppose that

a fraction f of that beam is "lost" each turn.

If N(0) is the original number of electrons in

the beam, the number surviving in the beam after

n turns will be

N(n) = N(0)(1 - f)n .
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If f<( 1, then we may write

N(n) = N(0)(1 - nf),

so that the fractional decrease is

N<0) - = nft
N(0)

Hence, provided the focussing is reasonably

good (f« 1), the decrease in counting rate from

this cause should be proportional to n. Combining

this with the above-mentioned decrease arising from

the absence of focussing in the z-direction, we

might expect that the observed counting rate should

be proportional to "*"/n2 •

If the theoretical counting rate is thus

modified, the curve shown in Figure 4.vii is
obtained. From this we see that, while the ampli¬
tudes of successive maxima approximate more closely

to those found by experiment, the rate of decrease
is still insufficient. The deficiency is doubtless

due to gas scattering which, being an absorption

type of effect, will increase exponentially with
n :

C(n) = const, x e"^11 .

At 10 kilovolts, the distance drifted per

revolution is about 4.5 mm. Clearly, a detector
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of width 1 mm. will be adequate to resolve

maxima and minima in counting rate at such volt¬

ages. However, because of the finite size of the

source and because of the cylinder fitted over the

source, it must be expected that some electrons

v/ill fail to clear the source system at the end

of the first turn when the voltage falls below

about 10 kilovolts. This explains the decrease

in counting rate at low voltages.

For the reasons discussed in Appendix V,
two rectangular coils, each of three turns of

wire, were placed one above and one below the

electrode system, the longer sides of the coils

being close to the edges of the condenser plates.

At the expense of sharp focussing in the x-y

plane, the magnetic field associated with a cur¬

rent passed through such an arrangement of coils

should produce focussing parallel to the direc¬

tion of the main magnetic field. The effect of

the coils is to modify the otherwise uniform

magnetic field distribution, causing the field
lines to be convex outwards. Electrons with a

component of velocity parallel to the z-axis are

therefore affected by the component of the field

parallel to the x-y plane; such electrons will

experience a force tending to deflect them back

towards the x-y plane.
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Application of such focussing current should,

therefore, increase signal strength, provided the
electrons have spent a tirae in the crossed fields

of the same order as their period of oscillation

parallel to the z-axis. The increased signal will

be achieved at the expense of the pronounced

counting rate periodicity which was observed with

no focussing field.

Before this was investigated experimentally

the disc source was replaced by a deposit of

on a thin copper wire which was placed parallel

to the magnetic field, and was surrounded on three
sides by a screen of thin aluminium sheet. The

active length of the wire was 11 rams,, and the

strength about 0.5 mC.

When focussing current was aoplied at a

constant electric field setting, it was found that

the counting rate increased rapidly as the

focussing current increased. At 14.1 kilovolts,

the counting rate of 3?000 per minute with no

focussing was increased by almost 400$ when the

focussing current was 8 amps., and was still

rising rapidly at 10 amps. However, the effect

of an 8-amp. focussing current was to reduce the

periodicity in the counting rate even at high

values of the electric field intensity.
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Figure 4.viii shows the variation of counting

rate as a function of applied voltage when the

focussing current was 8 amps., the drift distance

being 7*8 cms. It is seen that the effect of

focussing is to maintain the counting rate at an

almost constant value over a wide range of electric

field intensities. Since the crystal width used

was 1 mm., any periodicity in the counting rate
should show up even at the lowest field intensities.

The sharp drop in counting rate below 3 kllovolts

is caused by electrons failing to clear the

aluminium screen round the source, at the end of
the first orbit.



CHAPTER V

Conclusions

To sum up, it may be said that conclusive
evidence for the existence of trochoidal orbits

of the required type has been obtained. Further,
it has been shown that, by the use of focussing
in the direction of the magnetic field, it is

possible to maintain the beam strength at the

expense of sharp focussing in a plane perpendicular

to the magnetic field.

The equation used to calculate the g-factor

anomaly involves not only the number of orbital

revolutions corresponding to a relative spin pre¬

cession of 2n, but also the factor Y. Hence, to

compute accurately the anomaly, the electron

energy must be sharply defined. This means that

the mechanical adjustment of the baffle and the

foil relative to the source, and the breadth of
the source mounting, must be set very precisely.
For this reason, it is not possible to overcome

defocussing caused by field inhomogeneities simply

by reducing the physical dimensions of the experi¬

ment •

A further difficulty is the following I to

reduce the background of unwanted electrons to a
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tolerable level, it was necessary to screen the
source. As we have seen, the thickness of the
screen between source and foil sets a lower limit

on the drift per revolution of the electrons.

Belox* this limit, electrons will strike the back
of the screen and be lost. To achieve 800

orbital revolutions with the present arrangement

required a minimum drift distance of about 0.1 ra.m»

?5ven with a completely open source, the fact

that the source has finite breadth will cause the

beam strength to be severely attenuated as the

drift distance per turn becomes very small. If

an unscreened source has to be used, then it will

be essential to use an energy-sensitive detector

to cut out a substantial fraction of the background

Because of vacuum difficulties, perspex light

pipes are undesirable. In any case, because of the

upsetting influence of the magnetic field, and

because of the restricted space, any light guide
would have to be of such a length as to make the

energy resolution of the system very poor. The

development of a suitable solid state device

would be most welcome.

Recently it has been shown that, while

approximately 800 turns in the crossed fields are

required to give a complete period of polarisation

asymmetry, the g-factor anomaly may be computed
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with the required precision (about 0.1$) even if

only one quarter of the complete period is deter¬

mined experimentally. This will be possible pro¬

vided each point on the quarter-period curve is

known with an accuracy of about 0.1$. Further,
scattered electrons have been detected after

performing about 150 turns in the crossed fields.

It therefore seems likely that a measurement of

the g-factor anomaly of free electrons may be

possible in the near future.



APPENDIX I

Electron Spin

In this Appendix, we start by assuming that

the electron does possess a spin, and. then verify

the non-quantum mechanical part of the Uhleribeck

and Goudsmit hypothesis: that the intrinsic
£t

raagnetogyric ratio of the electron is /ra, and

that this is twice the electron's orbital magneto-

gyric ratio. This is followed by a brief account

of the Dirac relativistic wave equation, and some

deductions from it are discussed.

We first deduce the orbital magnetogyric

ratio for an electron. Without loss of generality

only the non-relativistic limit is considered.

The magnetic vector potential A at position r

due to current densities j,' at positions r' whic

are confined to a volume V* is

- y >/|-r\ f-r'i
where = Ux.io"^ henries/metre. For discrete,

moving particles, each carrying a charge e and

moving with a velocity v£, this becomes

cHi) - 4.7T

so, for a single charged particle,



— T O —J. # £_

A &) = /j£±'(*x+ f')"*"

Using the relations

(r' *r*) Ar - (rf .rXr* - ( r* ,r)r*.

•^iCr.r')£* « (£•£*)£* + (£•£*)£*
we find

A(£) = "r +
since the moving charge is confined to a finite

volume of space, and since we have taken the

origin to "be the centre of the system (of one

particle), the time average of the 4-:, terms rrrus

he zero. Hence

V* Qe (£**£' )-£
=

k* 2r3

But the vector potential at r from a magnetic

dipole ^ is

, f'oA(£) = -57 -^3

bo the orbiting electron is equivalent to a mag¬

netic dipole
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Now, the angular momentum of the particle about

the origin is

L = m r' A r

where m is the mass of the particle. So we

have finally

* - SJi
whence the magnetogyric ratio for the orbital

motion of the electron is

e

Vli = 2m

This result is readily derived in the

special case when the electron orbit is assumed

circular.

We shall now calculate the intrinsic magneto*

gyric ratio of the electron. Let the spin of the

particle in the rest frame (R) be s and assume

that there exists a four-vector s'f" such that,

in (R), it coincides with £ j thus:

s'4" = (s, s^) 5 in (R), s^(R) = (s, 0).
The four-velocity of the electron is denoted by

u^ = (u, u^) = Y(v, ic)
where v is the ordinary velocity vector,

Y = (1 - £2)"~¥ and 3 = v/c, c being the

velocity of light. In the rest frame of the
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j particle,

u^(R).£+(R) = (0, iTc).(s, 0) = 0 . |

Since the scalar product of any two four-vectors

is invariant tinder Lorentz transformation, we

have, in all frames,

u^.s*4" = 0 (1.1)

yielding

sl+ ~ To * !

We assume further that, in (R), s obeys

the usual equation of motion

s = a sAB (R) (1.2)

where the dot indicates differentiation with

respect to the proper time, and B is the mag¬

netic field acting on the electron. We define a

Toy

ja = a M ,

y, being the magnetic moment and M the intrinsic

angular momentum of the electron} a is thus the

required intrinsic magnetogyric ratio.

If m is the mass of the electron, the

equation of motion of the particle is

J+
our « f

f^ being the four-force acting.

For a homogeneous electromagnetic field, the
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field tensor is (Stratton, 19hl)

\*

0 "By -~E
c

-Bx 0 Bx _IE;
By -Bx 0 -Is
& cKy —E

c z
0

= Ye *f(E + vab) ,

This is the usual Minkowski four-force acting on

a particle of charge e in a homogeneous electro¬

magnetic field. Hence the equation of motion of

the electron is

u
e __ k
m — —• (1.3)

We now wish to generalise (to arbitrary

frames of reference) equation (1.2) and its

fourth component, which is

s,
i *

Yc

Such a generalisation must he bilinear in P and

s and must satisfy, from (l.l),
k *k *k

u .5 + u .8 0 (I.U)

The most general bilinear equation (Michel, 1959)
is of the form

kk = K^.s^ + (1.5)

Using (1.3) and (l.h), and recalling that P is
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antisymmetric and that (u ) = -c , we find

Kx - K2c2 = e/m
In the rest frame (R)> (1.5) becomes

? = K2 F.si+ (R)

and the spatial part of this is

s = Ki SaB (R)

Comparison with (1.2) gives immediately

Kx = a

and hence 'ak= a t1-6)

Comparing (1.3) and (1.6), we find

a = e/m (1.7)

Thus the intrinsic magnetogyric ratio of the

electron is

^/M =

Using equations first given by Abraham

(Abraham, 1903)» Uhlenbeck and Goudsmit derived

this result taking as a model a spherical, rotat¬

ing electron, with a surface electrical charge

(Uhlenbeck and Goudsmit, 1925).
The following outline of the Dirac wave

equation for a relativistic electron is based on

the treatment given by Schiff (Schiff, 1955).
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If we take the positive square root of the

usual relativistic expression for the energy E

of a particle with momentum £ and mass m, i.e.

E = + £C2£2 + ra2e1+}
and make the usual substitution £ —> - ihV,

the resulting wave equation is not symmetrical

with respect to space and time derivatives, and

hence cannot be relativistic. Dirac modified the

Hamiltonian for a free particle so as to make it

linear in both space and time derivatives (Dirac,

1928). Thus, instead of a wave equation of the

form

(E2 - c2£2 - m2cV)\Jf =0 (1.8)

he wrote

(E + ea.£ + Pmc2)\|r =0 (1.9)

where a and p are independent of E, £, and of

the space coordinates and the time.

To learn more about a and (3, we require

that any solution of (1.9) should be a solution

of (1.8) also. We find that the four quantities

a , a , a , P anticommute in pairs, and soX JT Z

only one of the four can be diagonallsed at a time;

we seek a representation in which one of them,

say P, is diagonal, and require that this repre¬

sentation should have as low a rank as possible.
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It turns out that each may be represented by a

b x b matrix which are abbreviated to

a
\

cr

0

0 =

where each "element" is a 2 x 2 matrix, and

where

cr =
x

0 1

0

* <r~ = 109 y '
o

' <r 1 0'

0 -1

are the Pauli spin matrices, "v'e now define three

new b x k matrices, or.' , , 0b* byx y zs

<T^ = I c~

0

\
0

<r-

The reason for doing this will soon be clear.

If now the particle is in an electromagnetic

field derived from scalar and vector potentials,

j6 and A respectively, the wave equation becomes

- e<j + a.( c£ - ecA) 4- 0mc2^i|f = 0
If this is multiplied from the left by

i 2
E - e<p - a.( C£ - ecA) - 0mc f

we find, after much algebra

Ccja-ecAf-«£crr8 - q .
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The first three terms are Just those which occur

in the relativistic Sehrodinger equation (1.8)

when extended to include the electromagnetic

potentials. To find the physical significance of

the last two terms, we proceed to the non-rela-

tivistic limit by writing E = E* + mc and

assuming that E* and e cfr are small compared
2

to mc . Then

(E - e^>)2 - m2cl * 2 mc2(E* - e <j> )
and so

It turns out that the last term, involving 3, is

of order (V/°)^ times e <j> , and hence is
negligible} the second last tern, involving B,

has the forra associated with the energy of a

magnetic dipole of moment

it - U <e' . (1.10)

To investigate the orbital motion of an

electron, we work with a central field of force,

i.e. we take A to be zero and (j> to be
spherically symmetric. r e find that the orbital

angular momentum

L = rA£

does not commute with the Hamiltonian and therefore

is not a constant of the motion. However, it turns
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out that the quantity

L + *?h

does commute with the Harniltonian, and hence is

a constant of the motion. It therefore repre¬

sents the total angular momentum of the system.

The quantity ih <rf is called the spin angular

momentum, M, where

M = ¥h£-' . (1.11)

It may be shown (Bohrn, 1951) that for any

two operators, A and B, the uncertainties in the

measurement of these quantities, A A and A B,

satisfy the relation

(A A)2(A B)2 35, [|(AB - BA)} 2 . (1.12)
' ' '

, , ?

This implies that, if two operators do not com¬

mute, they cannot be measured simultaneously with

perfect precision.
/ /

It is readily seen that no one of oz, <Fx y

commutes with any other, and hence only one

of the components of CO measured exactly

at any time. Since or1 is already diap;onal, wez
.

choose <7^ to be the component which is to be
measured.

By inspection, the eigenvalues of CT~' are

+1 and -1. Hence, from (1.10) and (I.11)
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spin magnetic moment of the
eh

electron, u =' ^ 2m
t

spin angular momentum of the

electron, M = -|h .

It should he observed that the above results have

not been added to the Sehrodinger theory in any

way; they have been, as it were, "built into*
the Dirac equation.

It is usual to say that, in a magnetic field,

the electron spin will be aligned either parallel

or antiparallel to the direction of the field. If

the field is in the z-direction, then we have

iM„ = - ?>h\ Nowz

m2 2 . 2 , 2 1-2/ _ y 2 12 *2 \M = Mx + My + Mz = ( <r£ + <r±. + )
i.e. M2 = ^ h2

since the square of each component of cr"' is

unity. Hence

2 2 2 2
M +M = M -M

x toy - iWz
2 I*2

4 "* |^h
a |"h2 0 •

Thus, the angular momentum vector is not aligned

along the direction of the magnetic field.

Without loss of generality, let us consider

the case when M_ = +|rh, that is, when <7~' hasz z
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the eigenvalue +1. In the representation in which

<j-% is diagonal, with eigenvalue +1, what are

the average values. M and M , of M and M ?x y x y

If \Jr is an eigenfunction of CTf in this re-+ z

presentation, then

Mx - !h (,* <q * +

My = ih ,* .

| Possible eigenfunctions are easily seen to be

=(1 0 0 0)

or \|r* = (0 0 1 0)
T

or = ^-(1 0 10)

and the same with negative signs. Using any of

these, we find

Mx = My = 0 .

To confirm our earlier result that Mv and

I are non-zero, we compute

"7 = I *2 *+( "V )2 ♦♦

*7 = | "2 <V >2 ■

We find

"2 —2 12
. = M - ~ ^
x y ^ h , so that
T —? 1 2
Mx = M = gh , as expected.

From this, we conclude that even when one component
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(the z-component here) of the angular momentum

is precisely defined, the other two components

are not zero; we must suppose that they cover

simultaneously the entire range of values consis¬

tent with M2 » |*h2 and = |h.



APP3KDIX II

Spin Kinematics

Prior to the suggestion that electrons emit tec.

in beta-decay should be longitudinally polarised,

Mott scattering was the only experimentally

realisable method of producing a beam of

(partially) polarised electrons (see Appendix III),

Because of this, and because early Mott scattering

experiments had gi%ren negative results (Dymond,
1932 and 1934; Thomson, 1934; Richter, 1937),
little interest was shown in either the theoretical

or the experimental aspects of the motion of a

spinning electron in an electromagnetic field.

A theoretical investigation of spin kine¬

matics was undertaken by Tolhoek and de Groot

(Tolhoek and de Groot, 1951a and 1951b) when it
was realised that electrons emitted from aligned

beta-active nuclei would be polarised (Tolhoek and

de Groot, 1951c; for possible experimental method
of alignment, see Gorter, 1948; Rose, 1948a and

1948b). Using Dlrac theory, in which in electron

g-factor is exactly 2, the effect of electromag¬

netic fields on the spin orientation of electrons

in a beam was worked out. It was shown that, when
a magnetic field is applied in a direction perpen¬

dicular to the beam, the spin precession frequency
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and the cyclotron frequency are identical.

In a later paper (Tolhoek, 1956), the spin

precession frequency was found to exceed the

cyclotron frequency by a fractional amount equal

to the g-factor anomaly, that is, by about one part

in one thousand. This result was derived only for

infinitesimal rotations, but was wrongly generalise
ed to the case where the electrons perform large

numbers of cyclotron revolutions in a transverse

magnetic field. Hence it was concluded that,
after a number of revolutions, n = |(§ - l)-1 = 25p,
a longitudinally polarised beam would become trans-.

versely polarised, and vice versa. As we shall see,

1
2

this expression is in error by a factor of ^/Y
2 JL

where Y = (1 - v being the electron
c

ve^-ocityj it is therefore accurate only in the
limit of low electron energies.

The problem was studied in detail by

Mendlowitz and Case, using Dirac theory (Case,

1954; Mendlowitz and Case, 1955$ Case, 1957$

Mendlowitz, 1958), They showed that, when a pure

magnetic field was applied, perpendicular to the

velocity of the electrons,

ws " p^ = Y(f - 1) ,wc
where ug, wc are the spin precession and cyclotron
frequencies respectively. This differs frctn
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Tolhoek's (incorrect) result by the factor Y.

An identical result was obtained independent¬

ly by Carrassi who emphasised the importance of

the factor Y in the above equation, pointing out
that rotation through a semi-circle would suffice

to transform a longitudinally polarised beam of

2f>0 Mev electrons into a transversely polarised

beam. (Carrassi, 1958$ see also Carrassi, 1957)*
He stressed that these results are obtained by

assuming that the influence of a uniform magnetic
.

field on the spin orientation of electrons may be

described by a Dirac-Pauli equation, even when the

electrons are required to havp an anomalous mag-
'

netic moment. If, in fact, the anomaly is a pure-:

ly radiative effect and not an intrinsic property

of electrons, then Carrassi doubts whether a

Dirac equation with an added Pauli-type term in

the energy, proportional to (j| - 1), will suffice
to describe the behaviour of an election.

An entirely different approach to the subject

of spin kinematics was adopted by Bargmann, Michel
and Telegdij to solve the problem for arbitrary

spin in the relativistic case, they concluded that
it was sufficient to produce a consistent set of

covariant classical equations of motion (Bargmann,
Michel and Telegdi, 1959). Because of the brevity
of their paper, some steps in the argument are by
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no means clear. Using the notation and sane of

the results of the last part of Appendix I, we

shall consider their calculation in detail.

Because of the g-factor anomaly, equation

(1.2), the equation of motion of the spin in the
rest frame of the electron (R), has to be modified
to

i « gjgi OI.D |
The general equation of motion of the spin (1.5)

then becomes

i4 = I [f + J? (f " (I*-2)
shall use this equation to compute the

rate at which a longitudinally polarised beam is

transfoimed into a transversely polarised beam.,
4

To do this for motion in a plane, we express £

in the laboratory frame,, L, in terms of two unit
4 4

four-vectors, e^and 3^ , which describe the
4 4

polarisation. If s = (is .s, )2 is the magnitude

of s4, then

s4 = s ^ e.^ cos + e^ sin fS j ; (II.3)
we require

g^.js4 «= - I > ~ (II.4)
Tet v be the unit vector in the direction of v,

and let n be a unit vector in the plane of the

motion and perpendicular to v . The required unit

vectors are then
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4 = Y(& if'
■ (II.5)

4 = (£> °' •

From dl.4), we have

I4 < _4 *4 _ n

^•at + a^-St ~ 0 *
From (II.5), remembering that T is not constant,
we find

x\ • 4 • 4
• 4 4 at-*aaj-4 ■ Y— = yS7-

and so
. 4 4

4 *4 Y ^ / TT
slj^SL^ - • Y v (II.6)

Now M4.e4, = Y(v, ic).Y(v, i^) = 0 ;

so, from (II.2) ,

*4 4
_ e e 4 w 4

- '-JL ~ m t
= 3 f f cos ^ + 4 sin tf) >

so s4.e^ = 3 § f 4*-*®t sin ^ > (H*7)
4 4 4

since a. #F.a = 0, where §. is any four-vector.

Differentiating (II.3) with respect to the

proper time, and recalling that, from (II.4),

4 and e^ are orthogonal, we find, using (II.6),
s4. e4 s - s + £ 4.i4}«in .

Using (1.3)» this becomes

[i - §; 4.F.4 ; Y W.8)
•4 4
A -2^ - - ■
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since F is antisymmetric. Equating (II.7) and

(II.8) then gives

* = ! a4 - f 4 ] -1-4 • (n-9)
From the definition of F (see Appendix I), we

find

and substitution in (II.9) gives

* = Sr + <8 - ^2 -
S ince ^ = T ^ , t being the time

dt dt

measured in L,

M = S [<8-2>V.BaS + (S - £ - 2)J(".10)dt

Equation (11.10) gives the rate of change of the

state of polarisation of a particle in a homo¬

geneous electromagnetic field.

In the present experiment, since the motion
is in a plane perpendicular to B,

v.B £ = n v.B = B.B = B . (11.11)
A A

If now we Introduce an angle © defined by

S.v = E sin © ; E.£ = - S cos © (11.12)

d©
then ^ Is the angular velocity of the electron
in L.

From the spatial part of (1.3)
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v = : (s + v B)— m — ~"A~"

from which we find, using (II#11) and (11.12)

$ = ^ (B - | cos O) (11.13)

Again using (11.11) and (11.12), equation (11.10)
becomes

dg
at

= [(g-2)(B - fcos ©) + (-% | cos 0)} .C
(11.14)

In order to calculate ^ per revolution,
we may eliminate the time by dividing (11.14) by

(11.13)• However, since T, v and 0 are all

variables, the integration is very troublesome.

We choose an alternative approach.

In the above, J» and B are the field vectors
in the laboratory system, L, Let S1 and B' be

the field vectors in a frame moving with velocity

V relative to L. Lorentz transformation gives

(Stratton, 1941) , when £.B = V.E = 0 ,

3* = Yy (3 + VaB)
B' = Yy (B - ^ V S)

c
2 x

where Yy = (1 - "2 # (11.15)
0

If we choose V such that 3' = 0, then

3 + V aB = 0.

.'.SB + (V.B)B - B2V = 0
TV"

In addition, we use V.B = 0$ then
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tr S BV - ^
If 3 and B are orthogonal, |E | = BB,
and so

IK - | . (11.16)

Hence we see that, if S and |3 are ortho¬

gonal, it is possible to define a frame moving at
J3

a speed V = /B in a direction perpendicular

; to both B and B, in which a particle will be
.

! acted on by a magnetic field only, W& denote

variables in this system by primes.

In this moving system, equations (11.13) and

(11.14) become

do'
_ e T31

dt« Y*m

Ml = (g m 2) B1
dt' 2m

where V = (X - Mvision then gives

= ^(g - 2) (11.17)
d0« 2

Now, since the motion of the eleptron is

periodic, with period T, say (i.e. s4 returns to
its original direction after a time T), we have

from (II.3)

!S4(t4-T) S s j^e4(t+T)cos tf(t+T)+ e^(t+T)sin$Kt+T)j
= s ^e^(t) cos jzKt+T) + e^(t )sin^(t+T)
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s4(t+T).s.4(t) = s2 cos £jrf(t+T) • *f(t)j
2

= s cos A jrf, say,

where A. f6 is the change in the relative direc¬

tions of the spin and momentum vectors after one

complete revolution. Since the product of two

four-vectors is Lorentz invariant, we have

A s6 - Lorentz invariant . (II.18)

Returning to (11.17), if we consider one

complete revolution in the primed system,

Ail = n cg - a>
2n 2

and so, from (II.18) ,

^ = II (g - 2) % (11.19)
2% 2

All that remains is to express Y' in terms of

known quantities. From the Lorentz transformation

for velocity components, we have (taking V to
be in the x direction),
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Using the relations
2

a ■ © * ©
©* • Cif 'ft)

we find

vxV
Y' = YVT (1 - -*2 )w c

Substituting this in (11.19), and using (II.16),
we find

= YVY(1 - 55 . -f)(§ - 1)

°r - y<§ - ^(i - ^2^(i - A
£ :In the present experiment £ = 0*5,

B = 2 x 10""2 webers/m2 and S = 10^ volts/m,
• *

at most. So g| i ^ | jjg ard,
to a good approximation, we find

i0 — U)_ /\ M rr

M = - U • (II»21)
«« - W,

c

12
Thus, provided (-^r) <3cT 1, we have the same ex¬
pression for ??.§■ 7, MS. as was deduced by Mendlowitz

u>
c

and Case, and by Carassi, for the special case when
TP

0 = 0* In other words, provided 1, the

contribution of the electric field to the relative

rats of spin precession is negligible.

-A



Recently, Fradkin and Good have reviewed
the mathematical theory of electron polarisation,
and have shown the relations between the various

approaches. (Fradkin and Good, 1961). The con¬

ditions under which the classical (non-quantum)

limit may be applied are discussed; one such

condition is that fields and potentials should

exhibit negligible variations over the dimensions

of the wave packet describing the particle.
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Blectron Polarisation

It might appear that the most likely way to

produce a beam of polarised electrons would be by

means of a Stern-Gerlach experiment. However,

since the electron possesses an electric charge

as well as a magnetic moment (neutral atoms are

used in the normal Stern-Gerlach experiment), it
is found that, unless the beam of electrons Is

confined to the symmetry plane of the inhomogeneous

magnetic field by so fine a slit that diffraction

occurs, a component of force due to the electron

charge will so spread the beam that the desired

splitting will be completely masked (Mott, 1929)*
Another possibility might be to reflect an

electron beam at an abrupt discontinuity of elec¬

tric potential. By analogy with the behaviour of

light on being reflected at a mirror (the Malus

effect), it might be expected that the reflected

beam should be partially polarised. It may be

shown theoretically that no such polarisation

will occur (Frenkel, 1929)•
It Is conceivable that, on interacting with

a homogeneous or slowly varying electromagnetic
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field, an unpolarised beam of electrons might be¬
come polarised, Tolhoek showed that, under these

circumstances, an unpolarised beam would always
remain unpolarised (Tolhoek, 1956).

Since electron spin is essentially a quantum

mechanical phenomenon, it must not be expected

that any of the above, purely classical, effects
should be capable of changing the state of polar¬

isation of an electron beam. Only a quantum

mechanical process can produce a quantum mechanic¬

al effect.

Until recently, the only method whereby it

could be demonstrated experimentally that polaris¬

ed electrons were produced was" Mott scattering -

the scattering of electrons by the (screened)

Coulomb field of heavy nuclei. This is discussed

more fully in Appendix IV. Several other methods,

all possible in principle, are listed by Tolhoek

(Tolhoek, 1956), perhaps the most interesting

being that proposed by Kastler and used later by

Dehmelt in the experiment described in Chapter 2

(Kastler, 1954).
The first suggestion that electrons emitted

in beta-decay should be polarised was made by

Tolhoek and de Groot, five years before parity

non-conservation in weak interactions was suspected
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(Tolhoek and de Groot, 1951c). They found that
for allowed transitions, if the decaying nuclei
were aligned, then electrons emitted in a direc¬

tion parallel or antlparallel to the axis of

polarisation of the nuclei would be longitudinally

polarised, while electrons emitted in a direction

perpendicular to this axis would be transversely

polarised. Further, they showed that the angular
distribution of electrons emitted from the beta-

decay of aligned nuclei would possess spherical

symmetry if the corresponding beta-transitions

were allowed, that is, if the emitted electrons

carry off no orbital angular momentum. No attempt

to verify this theory was made.

In 1956, Lee and Yang drew attention to the

fact that, while there was experimental evidence
that in strong and in electromagnetic interactions

the parity of a system is conserved, parity con¬

servation In weak interactions (Lee and Yang, 1956)
was only an extrapolated hypothesis, altogether

unsupported by experiment. They proposed a simple

experiment to test parity conservation in beta-
* *

decay* if parity Is not conserved, the angular

distribution of electrons emitted from aligned

beta-active nuclei should be asymmetric; in other

words, if Q is the angle between the nuclear
orientation axis and the direction of emission of
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a particle, the numbers of electrons emitted in
directions Q and u - © should not be equal.

Such an experiment was immediately undertaken

by Wu et al., who used a Co^° source, the nuclei
of which were aligned (Wu, Ambler, Hayward, Hoppes

and Hudson, 1957)* A very large asymmetry of

negative sign was found, showing that the emission
of beta-particles is more favoured in the direc¬

tion opposite to that of the nuclear spin. This

was the first experimental evidence in favour of

parity non-conservation in weak interactions, and
contrasts strongly with the earlier predictions

of Tolhoek and de Groot which were mentioned above.

Vfti's experiment shows that, in beta-decay,
there is a correlation between the nuclear spin

(an axial vector) and the beta-particle momentum

(a polar vector). In a second paper, Lee and Yang

pointed out that such a correlation can be under¬

stood only in terms of a violation of the law of

space inversion invariance in beta-decay (Lee and

Yang, 1957b). They went on to propose a new

theory of the neutrino, according to which the

neutrino has only one spin state: the spin is

always parallel to the momentum. This implies

that the wave function describing the neutrino

need have only two components instead of the usual

four. One conclusion to be drawn from this is that
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electrons emitted in beta-decay will be longitudin¬

ally polarised, whether or not the nuclear spins
are aligned. Grodzins has restated their argument

in a very simple form (Grodzins, 1959)•
Lee and Yang's two component theory of the

neutrino was immediately developed and the con¬

clusion reached that, if the theory were correct,
electrons emitted in beta-decay should be longi¬

tudinally polarised to an extent i V/c, where v

is the magnitude of the velocity of the emitted

particles; the positive sign applies to positrons,
the negative sign to electrons (Jackson, Treiman
and Wyld, 1957? Landau, 1957? Curtis and Lewis,

1957).

Several experiments devised to measure the

longitudinal polarisation of beta-particles were

carried out, the first reported being that of
Frauenfelder et al. 5 electrons from Co^° were

sent through an electrostatic spin-twister

(Tolhoek and de Groot, 1951b), the spin orienta¬
tion being detected by Mott scattering. For

£ = v/c = 0.49, they found a polarisation
P = - 0.40 (Frauenfelder, Bobone, von Goeler,

Levine, Lewis, Peacock, Rossi and De Pasquali,

1957)* Using crossed electric and magnetic fields

to rotate the electron spins, followed by Mott
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scattering, Cavanagh et al. measured the longi¬
tudinal polarisation of beta-particles from two

radioisotopes: for Co80 with 3 = 0.6, they found
P = - 0.65 - 0.13, while for Au198, with £ = 0.6,

»

the polarisation was P = - 0.58 - 0.12 (Cavanagh,

Turner, Coleman, Gard and Ridley, 1957).
After a review of these and later experiments,

Grodzins concludes that for all types of beta-

decay transition (with one exception), the degree
of longitudinal polarisation, or helicity, of the
emitted beta-particles should be i v/c. Except

for the isotope RaS,the experimental evidence is
/

consistent with this (Grodzins, 1959).

Recently, two high-precision experiments to

measure beta-particle polarisation have been re¬

ported. By the use of an electrostatic spin-

twister followed by Mott scattering from gold

foils of different thicknesses, Greenberg et al.
measured the helicity of 194 kev electrons from

Co80. After making many corrections (but without

correcting the Mott theory for screening of the

nucleus, since no suitable calculation bas been

performed), they find P = -(0.994 i 0.057)3

(Greenberg, Malone, Gluckstern and Hughes, i960).
Ullman et al. investigated the helicity of

beta-particles from four isotopes, using electron-
electron (Mjrfller or Bhabha) scattering:

(Miller, 1932; Bhabha, 1936). This has
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the advantage that the longitudinal polarisation

of the particles is used directly, without the

necessity of transforming to a state of transverse

polarisation. Their results are summarised below

(1) P^2, electron emitter, P = -v/c to within
2f. \

(2) Au1^, electron emitter, P = - v/c to within

i $ !
(3) Ga^, positron emitter, P = +v/c to within

10f

(4) RaS, electron emitter, P = - 0.75 V/c to
within 0 .

(Ullman, Frauenfelder, Lipkin and Rossi, 1961).

For reasons given in Chapter 3, it was decided
to use a source of in the present experiment.

The first measurement of the helicity of beta-

particles from was made by Langevin-Joliot&

Marty 1957, using an electrostatic spin-twister
follo\tfed by Mott scattering. For 128 kev elec¬

trons (0 = 0.6), they found P = - (0,63-0.17)0*
the low value being attributed mainly to de-

polarisation in the rather thick source. A more

recent determination by Murray, using a Cavanagh-

type spin-twister followed by Mott scattering,

yielded P = -(1.14 i 0.03)0, the beta-particle

energy being 100 kev. (Murray, I960). This high
value was thought to be caused by errors in Sher¬

man's computed values for the Mott asymmetry,

which assume an unscreened nuclear field.



APPENDIX IV

Mott Scattering

It was first shown by Mott that the scatter¬

ing of electrons by the Coulomb field of a nucleus

involves the spin of the electron (Mott, 1929 and

1932). Thus, if an unpolarised beam of electrons
is scattered, the scattered particles will be

partially polarised, and the direction of

polarisation will be perpendicular to the plane

of scattering. Further, if a beam of electrons is

partially polarised in a direction perpendicular

to the plane of scattering, the numbers of par¬

ticles scattered are not equal in the two

directions making equal angles with the initial

beam direction.

The underlying physical reason why such

scattering is spin-dependent is that, on approach¬

ing the nucleus, the electron is moving through a

highly inhomogeneous electric field which is vary¬

ing on a microscopic scale. Because of its

motion, the electron experiences not only an

electric but also a magnetic field, and this
latter interacts with the magnetic moment of the

electron. This is known as spin orbit coupling.

To investigate the effect quantitatively, Mott
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considered the solutions which represent the

scattering of an electron wave, according to the

Dirac equation, with a spherically symmetric
electrostatic potential. The calculation is out¬

lined by Tolhoek, who also reviews scmie of the

difficulties experienced in Mott scattering

experiments (Tolhoek, 1956),
To understand more fully the effects of Mott

scattering, suppose that an unpolarised beam of

electrons, moving in the positive z direction, is
scattered at T through a right angle (see sketch).

We may imagine that the beam, of total intensity

I, has half of its particles polarised in the

positive y direction, the remainder being polaris¬
ed in the negative y direction. Detectors are

placed at X+ and X_ on the positive and negative
x-axes.

Figure IV. i.
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The counting rates at X^ and X will he:
"T~

c+ = ii'd - s) + £ifd + s) = i'

c_ = £i»d + s) + £i*d - s) = i* .

Hence the scattered intensities in the posi¬

tive and negative x directions are equal, but in

the positive-going beam, the ratio of the number,

of electrons with spin "down" to the number with

spin "up" is ■*" + S/1 - S, while in the negative-
1 •» s

going beam, this ratio is /I + S.

Consider now the scattering of an electron

beam, of intensity I, in which a fraction P of

the particles is polarised in the positive y

direction. The fraction remaining, (1 - P), has

randomly oriented spin (for an unpolarised beam,
P = 0, while if the beam is completely transverse¬

ly polarised, P = 1). As before, we have J

Pi'M io-p)i'(i-s)

Figure W.ii.



-IV. 4

In this case, the counting rates at X+ and
X_ will be

C+ = PI*(1 - S) + £(1 - P)I»^(1 - S) + (1 + S)J
= I'd - PS)

c_ » Pi'U + s) + £<i - P)i*£(i + s) + (1 - s)j
= 11 (1 +• PS) .

Q
_+ _ [Jr,,r. jt i unless P = 0, or S = 0.
C_ (1 + PS)

From this, we see that the scattered inten¬
sities in the positive and negative x directions

are not, in general, equal. The theory shows that
S = S(©), where © is the scattering angle (in
the above, © = 90°), and that S °C Z, the atomic
number of the material of the scatterer. The quan*

tity S is called the single scattering asymmetry.

In Appendix III» we saw that in many beta-

decay processes, a fraction v/c = p of

electrons emitted with velocity v would be

longitudinally polarised. After describing a

sufficient number of turns: in a homogeneous

electromagnetic field, this longitudinal

polarisation will be transformed into transverse

polarisation, as explained in Appendix II. In
this case, the degree of polarisation of the
electron beam will be
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P = 0 .

Thus, in choosing the most suitable electron

energy for the present experiment, we should
select the maximum value of the quantity

(3S d°/dXL
where 0 = v/c = P is the degree of polarisa¬

tion, S is the single scattering asymmetry, and

/d-fl. is the differential scattering cross-

section.

Recently, calculations of absolute cross-

sections and asymmetries for Mott scattering have

been greatly extended and improved, with the aid
of electronic computers (Doggett and Spencer,

1956; Sherman, 1956). These calculations use

potentials which do not take account of the

screening of the nucleus by atomic electrons, and

point nuclei are assumed. In the following table,
which is based on Sherman's results, the differen¬
tial cross sectipns, do/dA , are in (barns per

steradian) x 10"*4, S is the single scattering

asymmetry, energies are in kev, 6 is the scatter¬

ing angle, and the scatterer is mercury (Z = 80).
The bottom line of the table shows, for comparison,
values of the single scattering asymmetries which

have been derived directly from one of Mott's

original papers (Mott, 1932)*



3<=v/e)

0,4

0.5

0.6

0.7

0.8

Q

Snergyt

46

79

128

204

340

75°

d(T/d/2.

3.81

1.59

0.725

0.337

0.148

S

0.104

0.143

0.160

0.162

0.150

p.Sdcr/d-O.

0.1585

0.1137

0.0696

0.0382

0.0178

o

o

ON

dcr/d-Q.

2.35

0.964

0.429

0.194

0.083

S

O.234

0.261

0.271

0.265

0.242

p.Sd<r/d-a

0.2200

0.1258

0.0698

0.0360

0.0161

105°

dr/dii

1.66

0.656

0.281

0.122

0.050

s

0.333

0.356

0.367

0.364

0.340

£.Sdcr/dA

0.2211

0.1168

0.0619

0.0311

0.0136

o

o

ON

S(Mott)

0.123

0.240

0.278

0.265

0.224
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A later calculation has been undertaken for

gold (Z = 79), the electron energies being 121 kev

(3 = 0.59) and 75 kev (3 = 0.49). (Sherman and

Kelson, 1959). The cross-sections and asymmetries
are only slightly different frcra those given above

for mercury (Z = 80) at 128 kev and 79 kev res¬

pectively.

An experiment has recently been carried out

by Spiegel et al. in which Mott scattering theory

was checked (with a precision of about 2%) over a

wide range of conditions. (Spiegel, Ruane,

Anthony, i/aldman and Miller, 1959)* They used a

monoenergetic electron beam and, to ensure that

single scattering was being observed, foils of

different thicknesses were employed, and the

energy of the scattered electrons was analysed by

a magnetic spectrometer. The ratio of the observ¬

ed absolute cross-section to the calculated cross-

section was computed for energies between 1.0 and

2.5 Mev and, in every case but one, this ratio
was less than unity.

To account for this discrepancy, it was sug¬

gested that the theoretical Mott cross-sections

should be corrected fori (a) the finite size of

the nucleus; (b) the effect of screening of the

nucleus by atomic electrons; (c) radiative
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effects. All three effects tend to reduce the

Mott cross-section but, even when these were

allowed for, the discrepancy was still well out¬

side the experimental error; it was felt that an

accurate evaluation of the screening correction

(the least certain of the three) might remove this.

It is worth noting that Tassie has worked out

the single scattering asymmetry for electrons on

gold (Tassie, 1957)» using the screened field of

gold previously calculated by Mohr and Tassie

(Mohr and Tassie, 1924). He finds S = 0.28 for

scattering of 121 kev electrons through ninety

degrees. Comparing this with Sherman's unscreened

field calculation for the scattering of 128 kev

electrons on mercury (see above table) he con¬

cludes that, at least for these energies and large

angles of scatter, the effect of screening of the
nucleus by atomic electrons is altogether

jnegligible. In view of this and of the results of

jSpiegel et al., it would appear that a thorough

investigation of Mott scattering theory at low

energies is very desirable, for it is surely
reasonable to suppose that the effect of screening

will decrease as the energy of the incident par¬

ticle increases (since high energy electrons will

approach closer to the nucleus, and hence will be
less affected by the atomic electrons).



APPENDIX V

Electron Optics

We shall define an electric field* E, and a

magnetic field, B, to be "crossed" if, at all

points, they satisfy the relation

l(r).B(r) = 0 . (v.l)

If E has no x component, we may write

Ex = 0 » Ey = - % IEZ- - H '

where /i is the scalar potential such that

E = -V/5(y,z). Similarly, B is derived from a

vector potential, At B = VA^; we shall consider

only the special case where

Ax = A(y»z) * Ay - Az = 0, so that
B = 0 f B = 4^- J B = - .x * y dz ' z dy *

Using (V.l), we find

dj6 dA d6 dA
Hy* "Sz = H dy

which will be satisfied if

j6(y,z) = f^A(y,z)J . (V.2)
2 2 2 2 2 2

Since E = E + ; and B = By^ + Bz ,
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Squaring and adding leads to

E dZ
f

. dA .

Hence, S/B will be constant if

/S(y,z) # ejA(y,*) + c2 (V.3)
where c^, c9 are constants. Then

F E0
^ = const. = g- , say, (V.h)

o

where EQ = E(0,0,0), Bq = B(0,0,0) •

In the following discussion, we consider only

crossed fields which are derived from potentials

satisfying the condition (V.3).

The analysis of the focussing properties of

such fields is simplified when it is realised

that there exists a coordinate system, moving with

a unique velocity in the x direction, in which a

moving particle experiences no electric field.

Relative to this system, the motion of a particle

is therefore determined by a pure magnetic field.

If two particles are emitted from the same

point at the same instant, t' =0, in this moving
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frame, and if at some later time t* = T*,
their positions in space again coincide, in the

moving frame, then an observer in the fixed,

laboratory, frame would detect that the two

particles coincided in position at t = 0 and

again at t = T. This is so since to every point

in the moving frame there corresponds one, and

only one, point in the laboratory frame, the two

points being related by Lorentz transformation.

Prom this we see that, if particles are emitted

from a point and subsequently brought to a point

in the moving system, that is, they are focussed,

then there will be focussing in the laboratory

system also.

As mentioned already, in Appendix II, the

field vectors in the moving (primed) system are

related to those in the laboratory (unprimed)

system by the equations

B' = Yy(B - VAS)
c

s* = Yy(E + VaB)

yv « (i -4r*
c

where V is the relative velocity of the two

systems. These equations hold only when s and B

are perpendicular to V, that is, when
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Choosing E* = 0, we find

E*B
V = -

B2

and, using (V.l),

F E0
v = | = — = const.,

from (V.U).

Hence, in a coordinate system moving in the
E /

x direction with a velocity V = B0> a moving
particle will "be influenced by a pure magnetic

field, B*. Now

B* = Yy(£ - \ VaE)

and VaE = VE = ;

c

so

V2
B* a Y„(B - *5 B)v C*

or B* =s B . (V.5)
*V

Since y* = y and z' = z, the field distribution

will be the same in both frames, the relative

velocity, V, appearing only in the scaling factor

Vv
In the moving system, electrons with velocity

v* will describe circular orbits of radius of

curvature R*, where

r- = r- f£-
_rt . 2 ■)

with -. b-&Y.
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The angular frequency of the motion will "be

to* =to *

If v is the velocity of an electron in the-

1ahoratory frame, then

vx = (vx* + V)(l ♦ ISgl) "X
o

42 i v *V ,

v = v *(1 -^)*(1 ♦ -V) "1* * C c

tt.2 ± v *V 1
v. = v «(i - -v r1

c c

so the condition that the path of an electron,

which is circular in the moving system, should

approximate to a circle in the laboratory system

iE
V, , « 1.

X

Now V = /B , and ▼ * is of the order

of magnitude of v* j so the above condition becomes

e/v«B « i;

If this is so, then v* and v are of the same

order, so we must have

3/vB « 1. (V.6)

This certainly implies

e/cB S v/0 « (V*7>
so, in the limit of the orbits approximating

iclosely to circles in the laboratory coordinate

system, we have, to a good approximation Yy = 1.
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The radius and angular frequency of the

(almost) circular orbits will then be

R = Y (V.8)

- = f (V.9)

with „2
Y = (l-T/c2 )

Suppose there exists a magnetic field which

is everywhere perpendicular to a given plane. If

there is a closed curve in this plane such that a

particle of given momentum moves on this curve,

the curve is called the equilibrium orbit. The

problem which we wish to investigate is the

following! if a particle, with momentum appro¬

priate to the given equilibrium orbit, starts

with a small initial displacement from, and at a

small initial angle to the equilibrium orbit,

under what conditions will the particle remain

close to this orbit for all time?

It was suggested by Gabor that, a field of

the following type might be suitable to producing

focussing (Gabor, 1958):

Ex - 0

Ey = Eq cosh(kz)cos(ky) (V.10)
Ez a E0 sinh(kz)sin(ky)



B = -B sinh(kz)sin(ky) (V.ll)
iy ^

Bz = Bq cosh (kz)cos(ky) .

The corresponding potentials are

Eo
/6(y,z) - - -J- cosh(kz)sin(ky)

B

Ax(y,z) = - ~ cosh(kz)sin(ky)

Ay - Az

so that (V.3) is satisfied.

Since the relative velocity of the primed and
'

I unpriined systems is in the x direction,

y = yf j z = z* .

Prom (V.5)»

B * = BnO Yy o .

In the primed system, the equation of motion of an

electron is

Y'rar* = eVAB' (V.12)

Using the above transformation relations, (V.12)
bee ones, in components,

x = to ^ y co3h(kz)cos(ky)+ z sinh(kz)sin(ky)J
y = -to x cosh(kz)cos(ky) (V.13)

z = -to x sinh(kz)sin(ky)

where, for convenience, the primes have been
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t

dropped, and where we have written

w ■ siV S Bn (V.14)T'Yy m o •

Note that BQ is the magnitude of the magnetic
field as measured in the laboratory system.

In the plane 2=0, the equations (V.13)
reduce to

x = w y cos(ky)

y = - co x coB(ky) (V.15)
••

z = 0 •

The third equation gives z = const. If we

consider an electron with initial velocity in the
p p • ?

x - y plane, then v = vQ = const. = x + y ;
so z = 0, and the motion will be confined to

the x - y plane for all time.

The first equation integrates immediately to

x = ^ sin (ky) + const.
If x = 0 at the origin (that is, the source at

the origin emits electrons with initial velocities

perpendicular to the x-axis), then

x = | sin(ky) . (V.16)
Then

y = £v02 - (|)2sin2(ky)j¥ .
The differential equation of the orbit is then
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dx
_ x _ (g)sln(ky)

"

[v02 - (f)W(ky)}* '
Writing R = vo/w
where R has the dimension of length, we have

dx
= I.(1/Rk)sin(ky) ^^ ^1 Rk) sin ( ky

If the electron path is to "be a closed orbit,

then at some point we must have ^/dx = 0, so a

necessary condition for closed orbits is

sin(ky) = - Rk

or |RkJ ^ 1 . (V.17)

Substituting (VRk)sin(ky) = sin \|r ,

x = R / sinJLdL^i
Jo 1 - (Rk) sin v 2

and hence

ky)-?(Ek)g-8ln2(ky# (V.18)Ccos (
kx = log ( yW|°

1 - Rk

where condition (V.17) has been applied.

The "top" of the orbit is reached when

sin(ky) = Rk ; let the corresponding value of

x be X } then

,*
kX = log

< 1 + Rk ?

^1 - Rk ]

Subtracting kX from (V.18) and rewriting the

result in exponential form, we find
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e-k(X-x) = coeOc/l- f(Rk',2 -alng( tor)] 3
[l-(Rk)2}3

From the above, Rk = tanh(kX), and so we find

coe(Jcy) = oosh k(X - x) ( >
cosh(kX)

Since cos is an even function, there are two

values, - y, corresponding to a given value of x.

In other words, the orbit is symmetrical about

the x-axis. It is symmetrical, also, about an

axis parallel to the y-axis through the point

x = X, since cosh is an even function. The closed,
orbit thus found in the plane z = 0 is the require

ed equilibrium orbit.

We may rewrite (V.19) as

cos(ky) » cosh(kx) - Rk sinh(kx) .

As k becomes vanishingly small, the fields be¬

come homogeneous, and the above reduces to

1 - ?(ky)2 = 1 + £(kx)2 - (Rk)(kx)

leading to

(x - R)2 + y2 = R2 .

This is the equation of a circle of radius R,

passing through the origin (that is, through the

source), as might have been anticipated from the

definition of R.

We now assume that a particle is displaced
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from a point (x,y,0) of the equilibrium orbit to

a neighbouring point (x + a, y + 0, Y), The com¬

ponents of the magnetic field at x + a, y + p, Y

are

Bx(y+e,r) = o
B (y+0,Y) = B (y,0) ♦ (£?£)p + (SsC)Y<y y dy oz

dB #B
B (y+P,Y) = B (y,o) + (-3y)P + (—)Y

where, after the partial differentiation is

carried out, we put z - 0. Using (V.ll), (V.13)
and (V. 14), we find

a ss co ^pcos(ky) - ky0 sin(ky)l
0 = -w ^acos(ky) - kx0 sin(ky)J (V.20) j
Y = —co kxY sin(ky) .

The first equation integrates immediately

to

a = w0 cos(ky) . 0&21)

Using this and (V.16), the second equation gives

0 - - w20 cos( 2ky)

or 0 = - w20 ^1-2 sin2(ky)] . (V.22)
The third equation gives, using (V.16),

Y = - w2Y sin2(ky) . (V.23)

If k = 0, that is, when the field is homo¬

geneous, (V.22) becomes
•• Q

0 = - O)"0 ,
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showing that, in the z = 0 plane, a small dis¬

placement in the y direction is restored by a

quasi-elastic force, and the particle oscillates

about the equilibrium orbit with angular frequency

w, which is the same as that of the orbital motion.

This is simply an alternative description of the

normal focussing effect in the symmetry plane.

Notice that, when k = 0, there is no restoring

force in the z direction.

To integrate (V,22) and (V.23)» we shall re-
2

place the function sin (ky), which varies

periodically over a small range, by its mean

value. We have already seen that when y (and

hence ky) has its maximum value, then

sin (ky) = Rk

so (ky)max = 8in~1(Rk)
Writing sin 9 = Rk, we have (V.2U)

(ky)TO„v = 9 ," 'max

and so 9

• •

sin2(ky) = | J sin2(ky)d(ky)
= i {v<25)

Substituting this into (V.22) and (V.23)

gives

p = - to2(s^S)P (v.26)
v = (v.27)
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Prom (V.27)» we see that the electron will

execute simple harmonic motion parallel to the

z-axis with angular frequency

(0=0)
z . (v.28)

Equation (V.26) shows that, in the plane of

the equilibrium orbit, the particle will execute

simple harmonic motion parallel to the y-axis

with angular frequency

t<>y = to(S%2S)i (V.29)
The x component of the displacement may be

found from (V.21):
C7

a = top ~ J* cas(ky)d(ky)
« -„p(a4p) .

If we write 0 = pQ sln(u)yt), then
a = - a) p0(-~2^)sin(o)yt), and so

* - p0 £
w

= aQ cos (wyt), say.

Hence, the displacement of the electron from

the equilibrium orbit in a direction parallel to

the x-axis also varies sinusoidally, and this

variation has the same angular frequency as that

in the y direction; but there is a phpse dif-
rtr

ference of '"/2 between the oscillations. The
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ratio of the two amplitudes is

i

ao cousin _ / Sin sin 2©\ 2
_n 2G ; »

a /
from (V.29)} so ' $Q—> 1 a3 k —^ 0.

If we consider orbits which approximate

closely to circles, then the period of one

orbital revolution will be

2%
w

Since we are considering k to be small,

Si§-2S = 1 . |(2e)2
= 1 - |(Rk)2

So, to this degree of approximation, (V.28) gives

^|.|(Rk)2]ft>z = ft) ^ kk;~> = ft) RicV3

* T = ^2: — 2=Zi: — nv)' i . (y -zq ^• * V ">z » (v-30)
If, for example, Rk = 0.1, then

Tz = 1?T
so that a complete cycle of oscillation in the z

direction would require about 17 orbital

revolutions.

Prom (V.29) we see that, when Rk is small, !

ft)v s w_ = ft), so that the focussing properties
j X
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of the homogeneous field (k = 0) are scarcely

affected. In one complete orbital revolution,

the oscillating electron will cross the equili¬

brium orbit (that is, will be brought to a focus)
twice.

Even when Rk is small, the foci produced

in the x - y plane will not occur after exactly

integral numbers of orbital revolutions. Further,

(V.30) shows that, when Rk is small, focussing

in the z direction requires V"3/2Rk orbital

revolutions and this will not, in general, be

integral. Therefore a field distribution of the

type considered cannot produce precise focussing

on a target after a large integral number of

orbital revolutions. However, even this somewhat

imperfect focussing will confine the spread of

an electron beam both in the plane of the equili¬

brium orbit and in a direction perpendicular to

this plane.

If aQ and YQ are the amplitudes of the
oscillations parallel to the x- and z-axes

respectively, then

a sr a sin cat | Y = Y.sin 00 tox' o z

and so, at t =0,
« •

a. = aw, 5 Y^ = Y_ to„ .o ox ' o oz
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Let the angle between the direction of the initial

velocity, vQ, and the z-axis he {%/2 - * an<^
tween the projection of vQ on the x-y plane and the
y axis he

Then, from Figure V.i,
a_ a^u„

J o ox
^ - 7o " '0
*. I?. - IfiS«

V V
o o

Using (V.29) and (V.28), and recalling that

vQ = Ru>, we find, when Rk is small,
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c ■ %
- t - -r •

Rk

V3

We shall now consider one possible arrange- !
■

ment whereby fields approximating to those of

(V.10) and (V.ll) might be realised in practice.

Suppose there are four long conductors

running parallel to the x-axis having (y,z) co¬

ordinates (a,b), (-a,b), (-at-b) and(a,-b);
let these at ( a »*>)# ( a»-k) carry a current -I

while those at (-a,b), (-a,-b) carry a current +1^
The resulting vector potential is

Xm-q fry-a)2+z2+b2}2 - (2zb)2Ax(y,*)- - sr io,

where x 10~^ henries/metre,

or Ax(y#z) = G log F(y,z), say.
Then

Bx = 0

B, = ^ » f I =
■

-5T ■ - I f = - °°2(y'Z> •

Carrying out the differentiations, and confining

our investigation to the x - y plane, we find
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13 = 0
xo

Byo = CG1(y,0) =

Bzo - -cg2<y>°>

= 4c y + § P - y - § > ,
(y+a) +b (y-a) +b

The distribution of B„ with y is shown inzo

Figure V.iiJ it has a maximum value of

^•o . 8a
i' ' ' ' ' JBl""

4rc (a +b ")

and falls to zero at y = £ (a2 + b2)^ •

The third of equations (¥.11) gives, with
z = 0,

Bzo " Bo cos (ky)*

Considering the expression

^ o 8a it/ 2 ••A-—a" 'A*1 cos Wa +b ) " y
4ai (a +b )

+ y 2 2„Af
which vanishes at y = - (a +b )2 and has a

H|x • g
maximum value of —• —g-'-jy1 , we see that

(a +b )
the above system of four parallel conductors will

approximate to the required focussing field pro¬

vided

B0 = ^'o . 8a (V.31)
431 (a +b2)

and k = |(a2+b2)"^ . (¥.32)
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As before, let us require Rk = 0.1. In

the present experiment, R = 5 x 10""Sa. and
«,p >2 «•!

Bq = 2 X 10 webers/m. . Then k = 2 m.
and so (V.32) gives

,2
A .2s 10 2(a + b ; = fg ra«

4

If we take a = b. we find a = 0.5 m. and

so (V.31) gives

I = 30,000 amps.
/ '

If a 50 kilowatt power supply were avail¬

able, a -possible arrangement could consist of

two rectangular coils, each l-gm. x 1 m. and

spaced 1 m. apart. Each coil would consist of

300 turns of 10 gauge copper wire, through each

turn of which was passed a current of 100 amps.
•

i

The total coil wire diameter would be about

6 cms. and the total resistance about 5 ohms.

Current would be supplied at about 500 volts.

To produce an electric field orthogonal to

the magnetic field described above, we take four

conductors in the form of cylinders charged with

+Q and -Q coulombs per unit length, corresponding

to and co-axial with the currents + I and -I.

The scalar potential /(y,z) has the same form

as A , the constant C being replaced by
A

- where eo = (36x x lO^)"*1 farads/
metre. We see than that
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/Ky»z) = const. Ax(y,z),

so that condition (V.3) is satisfied.

We find, putting z = 0,

Bxo = 0

Evo ~ ^ * '"^2 "'2 "" p' ' 2Iyo Ujce C(y+a) +b2 (y-a) +b2J

E = 0 .
zo

The maximum value of E„rt is —-Ife x ■■ •y° U7ce0 (a +b )
We saw, in Chapter 3, that the maximum value of

E that might be required in the present experi¬

ment is about 10^ volts/m., which corresponds to

about 12 turns in the field. Taking

a = b sa 0.5 m., we then find

Q f ijjr x 10**^ coulombs.
To find the required potential of the con¬

ductors, we use the general expression for the

potential at any point (y,z)s

z\ 0. , f(.Y-a)2+z2+b2}g - (2zb)2/(y'Z) • 106 j(y+a)2+ZW)2 - UJ)2 .

The potential at a point on a cylinder centred

at (a,b) and of radius r may be found by sub¬

stituting y = a -t- r 5 z=b in the above.

Putting a = b =t 0.3 metres and r = 0.05 metres,

we find

/5( a + r, a) = 10^ volts,
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U —6
where we have used Q = | x 10 coulombs.

Since we are interested mainly in the case

when a hundred or more turns are performed in

the crossed fields "before scattering, potentials

of the order of 10^ volts would suffice, and

these my be obtained without difficulty.
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