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If you can look into the seeds of time,
And say which grain will grow and which will not, 

Speak then to me, who neither beg nor fear 
Your favours nor your hate.

— Banquo, from Macbeth Act 1, Scene 3



Abstract

The principled use of models in design and maintenance of a system is fundamental to 
the engineering methodology. As the complexity and sophistication of systems increase 
so do the demands on the system models required to design them. In particular the 
design of agent systems situated in the real world, such as robots, will require design 
models capable of expressing discrete and continuous changes of system parameters. 
Such systems are referred to as mode-switching or hybrid systems.

This thesis investigates ways in which time is represented in automata system models 
with discretely and continuously changing parameters. Existing automaton approaches 
to hybrid modelling rely on describing continuous change at a sequence of points in 
time. In such approaches the time that elapses between each point is chosen non- 
deterministically in order to ensure that the model does not over-step a discrete change. 
In contrast, the new approach this thesis proposes describes continuous change by a 
continuum of points which can naturally and deterministically capture such change. 
As well as defining the semantics of individual models the nature of the temporal 
representation is particularly important in defining the composition of modular com­
ponents. This new approach leads to a clear compositional semantics based on the 
synchronization of input and output values.

The main contribution of this work is the derivation of a limiting process which provides 
a theoretical foundation for this new approach. It not only provides a link between dis­
crete and continuous time representations, but also provides a basis for deciding which 
continuous time representations are theoretically sound. The resulting formalism, the 
Continuous I/O  machine, is demonstrated to be comparable to Hybrid Automata in 
expressibility, but its representation of time gives it a much stronger compositional 
semantics based on the discrete synchronous machines from which it is derived.

The conclusion of this work is that it is possible to define an automaton model that 
describes a continuum of events and that this can be effectively used to model complete 
mode-switching physical systems in a modular fashion.
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Preface

A long time ago 

In a galaxy far far away...

— George Lucas

The story so far

This thesis began in autumn of 1993 in a stuffy lecture theatre in the University of 

Edinburgh. I was in the final year of my undergraduate degree in Artificial Intelligence 

(AI) and Computer Science (CS) and for the first time we were being presented with 

the work of Rodney Brooks in the form of his paper “A Robot that Walks; Emergent 

Behaviors from a Carefully Evolved Network” [Brooks 89]. I was excited by the ideas. 

Instead of concerning himself with the knowledge representation issues that so much of 

AI seemed to be hung up on Brooks was focusing on the problems to do with an agent’s 

interaction with the environment. His robots were controlled by a system of interacting 

finite state machines. Each machine was responsible for controlling a behaviour of the 

robot, and they were arranged into layers of increasing sophistication. His walking 

robot, Genghis, was a compelling demonstration of these ideas, but it seemed to me, 

that his ad-hoc construction could be significantly improved on. I decided to abandon 

my plans to do a PhD in bio-computing and instead consider how formal CS methods 

could be used to improve design methodology in this new area of robotics.
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I began by investigating various formalisms that could be applied to behaviour based 

systems. After considering basic finite state machine theory [Hartmanis & Stearns 66], 

and Milner’s CCS [Milner 89], Stuart Anderson, in the CS department at Edinburgh, 

pointed me at synchronous languages. In many ways the synchronous languages, 

and the associated field of reactive systems, represented a movement in computer 

science parallel to the behaviour based movement in AI which Brooks championed. 

Like behaviour based systems, reactive systems are focussed on real world interac­

tion, and modularity is based on behavioural sub-units. Unlike behaviour based sys­

tems, they use formally defined languages and clever compilers [Berry & Gonthier 92, 

Halbwachs et al. 91a] that can reduce parallel descriptions to efficient serial code and 

verification techniques [Halbwachs et al. 93] capable of automatically proving proper­

ties of real code. One of the drawbacks in Brooks’ approach is the unpredictable nature 

of the distributed control system. Decompositional aspects of formalisms like the syn­

chronous languages are well understood [Abadi & Lamport 90, Abadi & Lamport 91], 

and so a controller constructed in this way would have a well defined behaviour.

Armed with these powerful tools from computer science, I set about looking at the 

problem of designing a robot control system. Many workers in the field are looking at 

problems to do with controller architecture and organization: how do you arrange the 

interaction of your behaviours? These tools went a long way to solving or removing 

these problems so it seemed that all that was needed was a convincing demonstration. 

Unfortunately two significant problems remained.

Both problems became apparent to me during my time at the department of Computer 

and Information science in Linköping University, Sweden. The first and most damning 

was pointed out to me by Ake Wernersson. I had been struggling for some time to 

think of a suitable example to investigate the use of these design tools. The problem 

was that all the examples I could think of were either too trivial, or led to a number 

of low level sensory-actuator problems that would need to be solved. I reached the 

conclusion that the main reason for this was that, in fact, the most significant problem 

that currently faces a robot designer is the uncertainty in sensing the real world. In 

other words, the biggest problem in robotics is that of perception.

It is felt, particularly in behaviour based robotics, that sensors are inherently noisy and
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unpredictable, and the solution to this lies in controller architecture. In my opinion, 

this position is fallacious. The solution to this problem is to properly understand and 

use the physics of the transducers themselves. Even in cases where behaviour based 

architectures have seemed to help [Westhead 93] closer inspection reveals that the 

improvements in performance are really due to increased understanding of the robots 

interaction with the world. A good example is provided by the use of Polaroid SONAR 

transducers which provide a notoriously noisy range reading. The reason for this is 

that a very crude controller is used to drive the transducer to do things to which it 

is not well suited. Very sophisticated perception is possible with these transducers, if 

their properties are properly used and understood [Walker et al. 97, Kuc & Siegel 87]. 

In Linköping, Ake Wernersson was carrying out similarly detailed investigations of 

other sensor capabilities [Bergqvist et al. 95]. This seems to me the over-riding issue 

in intelligent robotics.1

The second problem to keep me from designing robot systems is a modelling problem 

which I discussed at length with Jan-Eric Stromberg and Simin Nadjm-Tehrani. In 

order to design interactions in which state is maintained in the environment, it is 

necessary to build models which represent relevant parts of the environment. It is 

possible to build discrete models of the environment; in many real-world systems there 

are points at which natural switches in the systems dynamics occur, and between 

these points continuous changes can be approximated by a discrete system. However, 

there comes a point beyond which the discretization of a model inherently leads to 

inaccuracies, and a new approach is required.

It is this problem of modelling mode-switching systems which this thesis addresses. I 

felt dissatisfied with existing approaches to hybrid systems which displayed poor mod­

ularity and would not interface neatly with discrete formalisms that might describe 

controllers. Furthermore the presence of technical problems such as Zeno time (dis­

cussed in Chapter 4), led me to feel that the existing approaches to the modelling of 

time were clumsy. Anders Ravn pointed out to me that it is a feature of the field 

of hybrid systems that everyone must invent their own hybrid modelling system. In

1 By perception I do not mean a passive sensing process. On the contrary the word is chosen to imply 
a process o f extracting information from the environment which is likely to involve moving around 
and interacting with it.
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many ways that is what I set out to do. It appeared to me that many of the problems 

with hybrid systems resulted from trying to squeeze a description of continuous change 

into a sequence of events. I became fascinated with the idea that it might be possible 

to define a limiting process over a finite state machine so that both continuous and 

discrete changes could be described as a continuum of events.

My first attempts failed, and I am deeply grateful to Jacek Malec for taking the trouble 

to spot the flaws and explain them to me. Eventually, I came up with a limiting process 

which has the necessary properties.

The resulting model is fundamentally different from any that I am aware of in computer 

science or engineering. It is more elegant in its representation of time than existing 

hybrid representations. This elegance leads to a sound and well defined semantics 

based on the synchronous product for composing hybrid models. Unlike Hybrid auto­

mata [Alur et al. 95] or Hybrid transition systems [Nadjm-Tehrani 94] which introduce 

labels for synchronization, Continuous I/O  machines synchronize on input and out­

put signals. This not only allows the composition of continuous machines with other 

continuous machines, but also the composition of continuous machines with discrete 

controllers.

Furthermore is possible to extract from the continuum a sequence of events that avoids 

all the Zeno time issues. The approach has the potential for practical advantages too. 

The use of a limiting process means that, for any continuous automata that you might 

build, there is a discrete machine which will approximate it to arbitrary accuracy; 

furthermore the relationship to the continuous machine is a well defined. This discrete 

machine can be executed to provide a simulation of the model and could perhaps 

be used to formally prove properties of the system that could not be proved in the 

continuous case.

However, establishing the usefulness of Continuous automata is beyond the scope of 

this thesis. As Milner points out in his preface [Milner 89], the establishment of a 

modelling theory depends on factors which are very hard to quantify such as how well 

it captures the intuitions of the designers. The main contribution of this thesis is not 

the modelling system itself, but the limiting process which makes such a system possible
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by bridging the theoretical gap between discrete and continuous time representations 

of the world.

Thesis structure

The thesis is structured in two parts. The first part takes a philosophical perspective 

on the modelling issues involved in representing situated agent systems which contain 

discrete and continuous components. In this section the problems which the thesis 

addresses are described intuitively and several alternative approaches are explored. 

The issues surrounding the modelling of change through time are discussed in detail.

The second part of the thesis builds on this analysis of the modelling problems to de­

velop a theoretically sound description of a novel approach based on applying a limiting 

process to a discrete automaton. After presenting some examples which demonstrate 

the compositionality of the approach, the modelling system is compared to existing 

hybrid system representations.

Conventions

This thesis draws on work from a number of different disciplines including mathematics, 

computer science, artificial intelligence, engineering and philosophy. Since the ideas 

contained in it may be of interest to workers from any of these areas, I have tried to 

make as few assumptions as possible about the reader’s backgrounds. A summary of 

notation can be found at the end of the thesis (pp 172) along with an index of technical 

terms.

The term continuous is used in two distinct ways in this thesis. This ambiguity is 

unfortunate but follows from two distinct ways in which it is used in different bodies of 

literature. Its first meaning is the classical mathematical description of a function that 

describes an unbroken curve. The second use is an adjective derived from the noun 

continuum which refers to the topological properties of a connected, dense set such as 

the real numbers. It is used in this second way to refer to the following:

• continuous time referring to the topology of events describing the evolution of a

xvm



system as a continuum,

• continuous automata meaning an automata model whose output is a continuum,

• continuous temporal metric meaning a metric over time which is a continuum,

In modern scientific writing it can be considered bad form to use the first person 

singular presumably because it can lead to an apparent lack of objectivity. This leads 

to text that over uses the passive voice or the authorial ‘we’ . I intend to follow the 

well established tradition in philosophical writing and use the first person where I feel 

it is appropriate, particularly to emphasize when a statement is a personal opinion. I 

will use the second person to refer to you, the reader, and use first person plural to 

refer to both of us.
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Part I 

Philosophy

1



1

Modelling interaction

A theory has only the alternative o f being right or wrong. A model has 

a third possibility: it may be right, but irrelevant.

—  Manfred Eigen1

The difference between craft and engineering is the principled use of models. Modelling 

in this context refers to the activity of deriving mathematical relations over variables 

representing physical quantities in a system. This chapter attempts to characterize the 

types of systems which are of interest here and to justify the modelling approach that 

is adopted.

1.1 The study of interaction

In a special double issue of Artificial Intelligence (1995) Phil Agre characterized what 

he saw as a new emerging area of Artificial Intelligence which he summarized as follows:

Using principled characterizations o f interactions between agents and 

their environments to guide explanation and design. [Agre 95]

For a long time Artificial Intelligence was focused on the problems of describing an 

intelligent system in almost complete isolation from an environment. Increasingly many

1 Jagdish Mehra (ed.) The Physicist’s Conception of Nature, 1973.
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researchers, particularly those involved in robotics, have been trying to address the 

problems, and take advantage of the opportunities, that arise when an agent interacts 

with a real environment.

When you begin to look at the dynamics of the interaction of a physical agent with its 

physical environment, the importance of modelling complete behavioural loops becomes 

clear. Take for example an aircraft autopilot. The task of the autopilot is to adjust 

the aircraft’s controls in order to maintain a particular speed, altitude and heading.

Suppose you are presented with a design for new autopilot software. How could you 

determine whether or not it will work? It is impossible to answer this question given 

just the program, you would need to understand the complete system including the 

aerodynamics, system sensors etc. Of course there are questions that can be answered 

about the software in isolation but the most interesting and useful behaviour is a 

product of the interaction between the various system components and the environment 

and cannot be attributed to any individual piece.

The importance of representing the complete system is not just limited to tightly 

coupled dynamical systems either. Studies such as [Kirsh 95] suggest that we make 

continual use of our interaction with the world, in order to simplify everyday tasks. 

This is not surprising when you bear in mind that the world around us has a great 

deal of inherent structure. We face in a single direction at a time, we can only directly 

manipulate objects within reach, we can only sense the world in the immediate vicinity. 

These limitations simplify the reasoning that we, as agents, have to perform to carry 

out tasks that involve interacting with the world around us.

The problem that is then to be addressed in this part of the work is how to go about 

modelling the interaction of an agent with its environment. There is a very wide class 

of system that can be usefully modelled in this way. Such systems we will call situated 

agent systems.

1.1.1 Situated agents

In order to provide a general vocabulary for talking about components of the sys­

tems that we will discuss in this thesis, the concept of a situated agent is intro-

CHAPTER 1. MODELLING INTERACTION  3
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Environment

Agent

Figure 1.1: A situated agent system

duced [Rosenshein & Kaelbling 86, Sandewall 94]. A situated agent system, is com­

posed of three components: a controller, a plant and an environment (see Figure 1.1). 

The plant represents the physical system that is being controlled by the controller. The 

environment represents a source of uncontrolled and unpredictable disturbance.

Consider, for example, a lift (or elevator). The lift controller will typically be some 

piece of programmable logic which remembers which buttons have been pressed and 

can direct the lift to go to the appropriate floor. The plant is the lift itself including 

the lifting mechanism and all the doors, door sensors and buttons inside and outside 

the lift. The environment consists of the users of the lift who provide input by calling 

the lift, selecting a floor, getting trapped in the doors, etc.

The boundaries between these components are not always very clear. For example a 

lift will have a continuous control mechanism that allows it to smoothly approach its 

destination. This continuous control system might be considered part of the controller 

or part of the plant depending on the intentions of the model’s designer. In closed 

systems {i.e. ones without inputs or outputs) there may be no environment, and of 

course, an environment may contain any number of agents.

The purpose of this system description is to define terms, not to suggest an architecture. 

Most embedded systems -  regardless of their control architecture -  will have parts that 

can be identified with these components.
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1.2 Existing models
5

This section reviews briefly a number of different modelling formalisms that have, or 

could, be used to represent situated agent systems. In order to structure this section 

the models have been loosely categorized as discrete valued, continuous valued2 and 

mode switching. There are several models that do not fall particularly well into this 

categorization and these have just been grouped with their most sensible companions. 

Particular emphasis has been given to mode switching models as these are the focus 

of this work.

1.2.1 Discrete valued models

Discrete valued models are models in which the parameters can only take values from 

a discrete set. In some, but not all cases, this set of values will be finite.

Rosenschein and Kaelbling [Rosenshein & Kaelbling 86, Rosenschein &; Kaelbling 95] 

developed a logical representation based around situated automata. Their logical form­

alism can be used to precisely specify individual elements in the world and their rela­

tions to each other from the perspective of an agent. The descriptions can be used to 

compile efficient implementations of agent controllers that preserve the logical relations. 

The biggest drawback is the limited expressibility of the logic which does not seem 

suitable for representing dynamic properties of the world. Important related work was 

carried out by Eric Sandewall whose book Features and fluents [Sandewall 94] develops 

a broad categorization of logics for representing the interactions of agents with their 

environments. It is argued that different logics should be applied to different classes of 

world depending on the nature of the features that an agent might encounter. An im­

portant feature for example is inertia. A world is inert if properties in it are preserved 

unless changed by the agent. Inert worlds are easier to reason about. Sandewall’s 

classification extends to worlds which are represented with continuous values and in 

continuous time. However this part of the work has not yet been developed very far.

Lyons et al. [Lyons & Hendriks 95, Lyons & Arbib 89] approached this modelling prob­

lem with a process algebra. The algebra is designed specifically for the purpose, and

2 Not to be confused with discrete and continuous time models, see Chapters 4 and 5



the agent’s described within this algebra can have behaviours added to their repertoire 

online by a higher level planning process. The system is so designed that even with 

incremental additions certain properties of the systems can be guaranteed.

In many ways the use of process algebras would seem appropriate for this problem. The 

interaction of agent and environment is certainly a communication. It is clear from the 

first chapter of his book that Milner [Milner 89] intended to keep the concepts of agent 

and of communication in CCS sufficiently abstract that they could apply to modelling 

of systems such as these. Indeed some interesting theoretical work has been carried out 

using CCS and its variants [Toffs 89b, Moller & Toffs 89, Moller & Toffs 91] to model 

the behaviour of ants and their group interactions [Toffs 89a, Toffs 91].

Amongst the modified versions of CCS that were used in these studies is SCCS, which 

replaces the asynchronous communication of CCS with a synchronous model3. Syn­

chronous communication is at the heart of a family of languages called the synchronous 

languages which have been specifically designed for the construction of discrete em­

bedded control systems. Synchronous languages [Halbwachs 93] come in several types, 

E s t e r e l  [Berry & Gonthier 92, Berry 92] is a language based on a process algebra of 

the same name. L u s t r e  [Halbwachs et al. 91a] and S i g n a l  [Benveniste et al. 93a] 

are both functional, data flow languages [Benveniste et al. 93b, Halbwachs et al. 91b] 

(S i g n a l  has already been used to represent hybrid systems [Benveniste et al. 93b]). 

Argos [Maraninchi 91] and Statecharts [Harel 86, Harel 87] are graphical languages 

based on hierarchical automata representations. Synchronous languages are very im­

portant to this thesis. They are used to describe the discrete sequences of machines 

over which limits are taken.

Underlying all the process algebras and synchronous system representations are auto­

mata [Hartmanis & Stearns 66]. Automata do not represent complex systems very 

elegantly. It becomes difficult for a human to understand what an automata is doing 

once it gets beyond a small number states. However they are important in that they 

provide the underlying semantics for all these models.

3 The tradeoffs between synchronous and asynchronous communication will be discussed in section 2.5
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1.2.2 Continuous models

7

Continuous dynamical systems are used extensively in control engineering. They are 

particularly effective at representing real world dynamics such as chemical plants, aero­

plane flight and robot motion. They are however very limited in their ability to deal 

with discrete changes in system parameters such as the end points of the motion of a 

robot arm. Most of the work of control engineering focuses on the continuous control 

problem that occurs between such end points.

It has been argued by anti-representationalists in the Artificial Intelligence community 

such as [Smithers 92, Smithers 94] and [vanGelder 94] that agent environment inter­

actions are most appropriately modelled using continuous dynamical systems. It is 

suggested that conventional models of computation are inappropriate because they 

focus on calculation and representation. Their alternative is continuous dynamical 

systems which focus on change and interaction.

In fact reactive systems (discussed in section 2.1) are a more appropriate alternative 

that would answer most of their objections [Westhead 95]. They too focus on change 

and interaction but are discrete. Nonetheless some interesting work has been done 

using this approach, notably that of Beer [Beer 95] and Steels [Steels 87].

1.2.3 M ode-switching systems

At the risk of oversimplifying, the previous two sections can be summarized as follows. 

Discrete models from computer science are very well understood and can be manip­

ulated to design very complex systems. However, they are limited in their ability to 

express continuous change. Continuous models from engineering, on the other hand, 

are very expressive but can only be usefully manipulated in limited simple circum­

stances (essentially linear systems). Mode-switching or hybrid systems bring together 

continuous representations with discrete switches between modes of operation. If this 

is done successfully it will combine the advantages of discrete and continuous models.

It might be argued that, in fact, no real systems display perfect switching behaviour; 

all changes in the real world occur continuously. The question is however: what is 

the most effective model? The systems that interest us here are continuous dynamical
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Figure 1.2: The discrete states of a water tank

systems which exhibit occasional, catastrophic dynamical changes, at which points the 

dynamics change orders of magnitude faster than at other times. This behaviour is 

often most usefully modelled as a discrete switch.

Switching behaviour is ubiquitous in engineering systems, it occurs naturally in many 

forms. Consider the water tank shown in Figure 1.2. The mode-switches in this system 

are inherent. When the water level is between h and 0 the tank’s behaviour conforms 

to a simple dynamic equation. When the level reaches either of these end points, the 

system’s behaviour changes abruptly to be either overflowing or empty. There are of 

course many other examples of naturally occurring switches including end points of 

motion of say a robot arm, or the electro-chemical firing of a neuron.

In addition to naturally occurring switching, devices are often designed to exhibit 

near perfect switching behaviours; examples include relays, transistors, clutches, free­

wheeling devices, hydraulic valves etc. One reason for introducing switching behaviour 

into a system is economy. For example, the near perfect switching capabilities of 

MOS (Metal Oxide Silicon) transistor technology allows for the construction of smaller, 

cheaper and more powerful power supplies. A second reason is that the use of discrete 

switches also makes it easier to design systems that maintain complex logical properties. 

It is hard to imagine that something as complex as a modern microprocessor, for 

example, could be designed without a model based on discrete switches4.

4 O f course the brain evolved without recourse to modelling, but can still be seen to use switching
technology



Attempts to represent mode-switching systems have come from Artificial Intelligence, 

Computer Science and Engineering disciplines. We will look at the contributions of 

each field in turn.

Artificial intelligence

Artificial Intelligence approaches to the modelling of mode-switching systems have 

been largely motivated by attempts to find representations of these systems that can 

be manipulated by a computer. Qualitative Physics is an approach to this area that 

attempts to characterize physical interactions using only a qualitative representation 

of their parameters. Producing a qualitative representation involves carving up the 

continuous space into suitable discrete pieces. The states in the water tank 1.2 are 

good examples. The qualitative abstraction of this model might include three distinct 

states: empty, overflowing and in-between. Qualitative reasoning might allow you to 

say that if the model was in the in-between state and the level I was decreasing then 

at some point in the future the model would enter the empty state.

Examples of this work include the component based approach [deKleer & Brown 84, 

deKleer 84], the compositional approach [Falkenhainer & Forbus 91] and the graphs- 

of-models approach [Addanki et al. 91].

Other AI approaches have centred around the use of logics to represent mode-switching 

properties, examples include [Sandewall 89].

Computer science

Hybrid systems have been receiving increasing interest from computer scientists over 

the last 20 years. There are two main approaches taken, logical representations and 

automata representations. Logical representations provide high level, concise and ex­

pressive description languages. Automata representations are more concrete and suit­

able for modelling system dynamics; they allow automatic verification techniques al­

though these are currently quite limited in scope. For a theoretical comparison between 

logic and automata approaches see [Bouajjani et al. 95, Bouajjani & Lakhnech 96],

There are a number of logical representations that have been applied to this area, they
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include: timed temporal logics TPTL [Alur & Henzinger 89] and MITL [Alur et al. 91], 

the Duration temporal logic DTL [Bouajjani et al. 93], the Calculus of Durations (ex­

tended in [Chaochen et al. 92]), temporal logic of actions TLA [Abadi & Lamport 91] 

and TLA+ [Lamport 93].

The closest work to that presented in this thesis are the automata approaches. Each 

discrete state of the automata describes a dynamic mode of the system. The auto­

mata transitions are discrete switches that take the system from one mode to another. 

Examples of these systems include Hybrid Transition Systems [Nadjm-Tehrani 94] the 

Nerode-Kohn model [Nerode & Kohn 93] and Hybrid Automata [Alur et al. 95] (this 

latter work is returned to in more detail in Chapter 14). Simpler timed automata can 

also be used [Maler et al. 92, Nicollin et al. 92].

All the computer science approaches betray their computational origins by working 

with a sequential, i.e. discrete, perspective of time, despite the continuous nature of 

the systems being modelled. This allows analysis of the systems using the same math­

ematical tools used for sequential machines, but leads to some inelegant consequences 

which will be discussed at the end of Chapter 4.

Engineering

The engineers also have two subfields that address mode-switching systems: physical 

modelling and control.

Physical modelling is a branch of engineering that focuses on systematic approaches to 

the extraction, construction and manipulation of models of physical systems, of par­

ticular interest are modular techniques for representing large, complex systems. An 

important formalism in this subfield is that of Bond graphs which represent systems 

in terms of the energy transfered between components. This high level of abstrac­

tion allows Bond graphs to be applied to electrical, hydraulic and mechanical sys­

tems. It also abstracts away a number of causality issues that are at odds with the 

principles of modularity, allowing the causality to be decided after a model has been 

composed (see [Stromberg 94] for more details). There have been several attempts to 

introduce switches to bond graph representations including [Gebben 81, Karnopp 83,
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Karnopp 85, Dauphin-Tanguy et al. 89, Rinderle & Subramaniam 91, Ducreux et al. 93, 

Broenick & Wijbrands 93, W. Borutzky & Wijbrands 93, Stromberg 94, Soderman 95].

Control engineers have also approached the problem of mode-switching systems, but 

from a more pragmatic perspective, typically with the intention of analyzing or design­

ing a specific class of system. These approaches have grown up by introducing mode 

transitions to continuous dynamical representations, examples include [Tavernini 87, 

Back et al. 93, Antsaklis et al. 93, Brockett 83, Branicky et al. 94],

Unlike the computer science models these formalisms use continuous representations 

of time.

1.2.4 Relationship to this work

This thesis is concerned with the development of a new approach to the modelling of 

mode-switching systems which involves building a discrete model that approximates 

the continuous behaviour of the system in time steps parameterized by a single bounded 

variable A. The idea is then to make the model precise by allowing the bounds on A 

to tend to zero. The resulting system falls somewhere between the computer science 

and engineering models. On the one hand rather than describing sequence it describes 

a continuum similar to the engineering models. On the other it is constructed from an 

abstraction of the synchronous languages and so shares with them important aspects 

of compositionality and verification methodology.

The focus of the work has been on solving the mathematical problems associated with 

describing a suitably robust and general limiting process, rather than on trying to 

develop a design tool. Nevertheless the approach has a number of practical advantages:

• every continuous model is guaranteed to have a discrete approximation of arbit­

rary accuracy,

• furthermore, that discrete approximation can be implemented using existing com­

pilers to simulate the system’s behaviour,

• both continuous model and discrete approximation can be composed with discrete 

controller models (or indeed implementations if they have been implemented in

CHAPTER 1. MODELLING INTERACTION  11



a synchronous language) to provide complete system descriptions,

• because of the strong compositional semantics, properties of the composed sys­

tems can be verified using the technique of synchronous observers [Halbwachs et al. 93]. 

In the case of simple (discrete) properties, this verification process can be carried

out automatically with existing tools [Westhead & Nadjm-Tehrani 96].

From a modelling point of view, this approach differs from many others in that the im­

portance of a modular composition of models in which real controller implementations 

(in an appropriate synchronous language) can be included.

More importantly the approach breaks new theoretical ground in taking the limit of 

a sequence of automata. It brings closer together the understanding of discrete and 

continuous processes and opens up the possibilities of extending discrete sequential 

techniques to the study of continuous change.

1.3 Summary

In this chapter the modelling objective was identified as the representation of situated 

agent systems. A large number of possible representation schemes were discussed.

These fell broadly into three areas:

• discrete models,

• continuous models,

• and mode-switching models.

The third of these was identified as the most promising for complete agent systems, 

and an automata based representation was favoured because of the focus on dynamics 

and the possibility of automatic verification.

The next chapter looks specifically at issues in finding automata representations for 

situated agent controllers.
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2

Agent Control

Intelligent control exerts influence without appearing to do so. Unintel­

ligent control tries to influence by making a show o f force.

—  Lao Tzu1

This chapter looks at issues involved in modelling the controller of a situated agent 

system. The controller model is used as starting point for this work because in order to 

model the whole system the interface between the controller and the rest of the system 

is very important. From the previous chapter it is assumed that the controller will be 

a discrete automaton and it turns out that several of the criteria for choosing it as a 

controller also make it suitable as a starting point for a limit machine.

2.1 Reactive systems

What sort of model is appropriate to describe the controller of a situated agent? In 

the last decade several workers both in intelligent robotics [Malcolm 91, Smithers 92, 

vanGelder 94] and computer science [Harel & Pnueli 85] have recognized the short 

comings of classical models of computation in real time applications. Harel and 

Pnueli [Harel & Pnueli 85] propose a distinction between what they call transform­

ational systems and reactive systems as follows:

1 from Tao Teh King c. 600 A.D.
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• A transformational system involves information processing. In modelling such 

systems attention is focused on the capability of a system to return with the 

answer within a reasonable time, described as a function of input size. Classical 

models of computation, such as Turing Machines, tend to be transformational.

• The operation of a reactive system, in contrast, is primarily about its interaction 

with the environment. Such systems include digital watches, microwave ovens, 

video recorders, computer games, word processors, operating systems, micropro­

cessors, communications systems, etc. Reactive systems would ideally respond 

instantaneously to their environment.

This is not to suggest that transformational models don’t interact, or that reactive 

systems don’t process data, but this distinction provides different perspectives that 

can be taken on a system that reflect the designer’s intention and should influence the 

way it is modelled.

Controllers of situated agents, by their interactive nature, are going to be most ef­

fectively modelled using modelling descriptions that are reactive in nature. There is 

a range of formalisms which meet this requirement, including process algebras such 

as CCS and the synchronous languages discussed in Section 1.2.1. At the heart of all 

these modelling descriptions is the automata model.

2.2 Automata

An automaton or machine is a representation of a dynamical system. The simplest 

automaton is a finite state machine. A finite state machine has a fixed number of 

states, a transition function describing how it moves from one state to another with 

inputs and outputs associated with transitions. Figure 2.1 illustrates a standard way of 

depicting machines as graphs where states are represented by nodes and the transitions 

between them by labelled directed edges. The labels on the edges show the inputs and 

outputs associated with an edge separated by a sign. For example, suppose this 

machine is in state A. If it receives the input signal x it will emit the output signal 

y and move to state B. The occurrence of an input, and the output it triggers will 

be referred to as an event. The transition from state A  to state C  illustrates that
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Figure 2.1: A finite state machine 

transitions can occur with no output.

Finite state machines can be extended to describe more general systems including plant 

and environment by adding values to the signals, and allowing simple mathematical 

operations and functions to be carried out over them. When valued signals are added 

the machines “state” strictly becomes not just the node of the graph it is in but also 

the values of those signals. However in this thesis state is always used to refer to the 

system’s discrete state and current event is used to refer to the signal values.

It would appear that the operation of such systems is inherently sequential; inputs and 

outputs will occur in sequence so each event (apart from the first) will have a unique 

predecessor. The aim of this thesis is to demonstrate how the automata model can be 

extended to represent continua of events, and thus, how it can be used to model not 

only the controller, but also continuous changes in the plant and environment.

The rest of this chapter outlines some of the issues that need to be addressed in choosing 

an appropriate automata model.

2.3 Determinism

Determinism refers to whether the relation describing output and next state of the 

machine is function respect to the machine’s state and current input or not. If it is a 

function then the machine is deterministic and the outcome for a given input and state 

is fixed, if not then machine is nondeterministic and one of many possible outcomes



may occur. In other words in a deterministic machine the state and output of the 

model are determined entirely by the inputs the machine receives and the time. In 

a nondeterministic model there are points in time at which a nondeterministic choice 

must be made between alternative transitions with the same inputs. The physical 

systems that we would like to model are generally above the quantum level and so can 

be considered to be deterministic, and we would certainly intend to build deterministic 

controllers.

Nondeterminism can be used to model uncertainty in the plant or environment. It 

is considered by some [Nadjm-Tehrani 94] to be a very important tool in modelling. 

Because there is a duality between nondeterminism and input, nondeterministic choices 

can be made deterministic by adding extra oracle input signals which choose between 

the alternatives. An oracle is a theoretical machine which can accurately predict the 

outcome of nondeterministic events. So in the presence of an oracle the machine is 

deterministic. We cannot, of course build an oracle but since inputs are by their 

nature undetermined (in advance) this model could be thought of as having the same 

range of behaviour as the nondeterministic one.

For example consider the machine in Figure 2.2 (a). This is a very simple machine 

which on input of the signal x will go nondeterministically to either state B  or C . 

Figure 2.2 (b) shows the same machine but with oracle input signal a added. This 

new model is strictly deterministic, however since we can never know when this special 

input will occur its behaviour is effectively the same as before. Moreover from the 

point of view of verification the two machines are largely considered to have the same 

properties.

This is all that is required to model uncertainty in the world. For this reason non- 

deterministic models are not considered explicitly here and this simplifies the theory.

2.4 Input and output

Many modelling systems (such as CCS [Milner 89]) ignore the distinction between input 

and output, treating a communications event as a synchronization in which it is unim­

portant who transmitted and who received. However, when specifying the behaviour
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Figure 2.2: Removing nondeterminism with oracle input signals

of a situated agent it is desirable to be able to make assumptions about the behaviour 

of the environment. For example, if we wanted to prove that an agent displayed a 

property P  under environmental assumptions A, we would attempt to prove “A =>• P ” 

let us call this <f>. So A  is not being used as a specification of the environment’s beha­

viour, if it were then the property would fail if the environment failed to satisfy A, 

rather, it is a prerequisite for testing <f>. If the environment fails to satisfy A, then $ 

is immediately true. Thus the agent’s behaviour is only tested against P  if the envir­

onment conforms to the assumptions A. In order to write specifications which include 

environmental assumptions it is necessary to be able to distinguish whether a signal 

was generated by agent or environment [Abadi & Lamport 90, Halbwachs et al. 93], 

so it is necessary to describe the interfaces in terms of inputs and outputs.

An important topic in automata theory is the question of language acceptance. In this 

study the automaton is taken to be a state machine with inputs but no outputs, and 

one distinguished accepting state. The question is, when started from an initial state, 

and given a sequence of inputs, will the automata end up in the accepting state or not. 

The set of input sequences that lead to the automata ending in the accepting state is 

called the language that is accepted by the machine. Let us call models which have no 

outputs accepting.

A second class of model is one which has no inputs and simply generates an output, 

examples of these can be seen in [Ramadge & Wonham 87, Ramadge & Wonham 89]. 

Let us call such models generating. If a generating machine is deterministic then it 

describes a single output sequence.



Finally our third class of model is one which accepts input and generates output. Let 

us call such models interactive2.

Having described the interface a model may have, we must now consider how two 

models might be combined.

2.5 Parallelism

The composition of models in parallel is extremely important since it allows modular 

construction. Modularity in a formalism is highly desirable. It allows models to be 

built up from different reusable components, making them easier to construct and ana­

lyze. Of course modularity does not require parallelism, but, in any reasonably system 

the ability to describe concurrently interacting components is desirable [Westhead 92], 

In particular in an agent system it is clearly useful to be able to exchange discrete 

controllers in the same hybrid model, or to introduce an agent into a new environment 

without having to rebuild the entire model each time. This requires a strong, well 

understood composition semantics.

Parallelism is poorly understood by some research communities. It has been sugges­

ted implicitly in the robot literature that the use of parallelism in the implementation 

of a robot controller can make it capable of behaviour that a serial implementation 

could not manage. In information processing terms the only advantage that a parallel 

implementation can lend is speed. A multi-processor computer has the potential to 

work faster than a single equivalent processor. However, whilst speed is significant 

in the construction of reactive systems none of the architectures proposed for parallel 

design of behaviour based robot controllers address efficient use of their parallel re­

source [Brooks 89, Malcolm et al. 89]. Without care, communications overheads can 

lead to a parallel implementation running slower than a serial one. Parallelism can 

also introduce unforeseen and unintended behaviour.

The real advantage of parallelism, in this area, is in modelling, particularly in modelling 

the controller. A typical reactive system may have to execute several tasks in parallel.

2 The term interactive is chosen over an alternative such as transducer to emphasize the reactive 
nature of the system
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It is perfectly useful for a designer to be able to consider each concurrent task in 

isolation rather than having to consider the global behaviour at each stage. It is not 

important whether the parallel model is then run on multiple processors, on a single 

machine using threaded execution, or even passed through a compiler that turns it into 

a serial piece of code. This descriptive parallelism is fundamentally different from the 

execution parallelism discussed above.

In computer science, models of parallelism come in one of two flavours depending 

whether the communications are synchronous or asynchronous. Just as there are mis­

understandings about parallelism itself, so there are also misunderstandings about 

these terms. In an asynchronous model, concurrent communication events are mod­

elled as taking place one after the other but the order in which they occur is non- 

deterministic. So if we have two signals a and b emitted in parallel by an agent in an 

asynchronous model, this means that the agent will either emit a followed by b or b 

followed by a but before the event actually happens we cannot know which will occur. 

The assumption is that events will never synchronize, but two events in parallel are so 

close together that it is undetermined which will come first.

In contrast, in a synchronous model, concurrent events are modelled as really happening 

at exactly the same instant. A common misconception is that synchronous systems 

presuppose a synchronizing clock. This is not the case. The synchronization that takes 

place is the synchronization of output with input.

At first glance, you might suppose that the synchronous model seems more credible as a 

model of parallelism since it allows two events to occur at the same instant. However it 

has the apparent drawback that computation is modelled as occurring instantaneously 

i.e. the output is modelled as being synchronized with the input that triggered it. 

Infinitely fast computation is difficult for anyone to swallow.

It has to be remembered that both these approaches are modelling approaches which 

make abstractions from the real world. It turns out that a system designed with 

synchronous parallelism can work perfectly well in an extremely asynchronous envir­

onment. Gerard Berry’s digital watch program [Berry et al. 91], for example, was 

decomposed and successfully run across the Internet on different sides of the Atlantic.
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The synchrony assumption allows the compiler to determine a causal preordering on 

events that is preserved even if the events do not occur simultaneously in practice. 

Likewise a system designed using an asynchronous parallel model need not preclude 

events in an implementation really synchronizing.

There are other differences between the two models. Combining two asynchronous 

models leads to a rapid explosion in the number of states and transitions to be con­

sidered because all of the nondeterministic possible orderings of events must be con­

sidered. In a synchronous model this problem is significantly simplified and, in tightly 

coupled systems, combining machines in parallel can actually lead to a reduction in 

the number of reachable states [Westhead & Nadjm-Tehrani 96].

On the other hand, modelling computation as occurring instantaneously can lead to 

causality problems. These arise in the situation where a conflicting sets of events are 

triggered or signals could be responsible for triggering themselves. This is a much 

studied issue and details can be found in [Halbwachs et al. 93, Berry & Gonthier 92, 

Berry 95].

The work in this thesis is based on a synchronous description of parallelism. The ori­

ginal motivation for this decision came from the theoretical advantages of smaller com­

bined machines, and the powerful synchronous tools explicitly designed with reactive 

control in mind [Westhead 95]. However, in retrospect, a synchronous view of parallel­

ism is necessary in order for the limiting process to work. One of the consequences of 

an asynchronous view is that time is represented by an incomplete (partial) ordering 

of events. The limiting process makes use of the temporal structure, and requires a 

total ordering on the events, which is of course provided by synchronous parallelism.

It may be possible to extend the limiting process to work for partially ordered events. 

On the other hand, it may be easier to investigate simulating asynchronous parallelism 

using the existing model. Milner [Milner 83] showed that synchronous systems could 

simulate asynchronous ones, but not the other way around. By assuming synchrony, 

just as by assuming determinism, the temporal structure of the models is simplified 

making it easier to define a limiting process. Adding these extensions lies beyond the 

scope of this thesis.
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Figure 2.3: A synchronous observer

2.6 Verification

Adopting a synchronous approach to parallelism allows us to use synchronous observ­

ers [Halbwachs et al. 93] to express and verify properties. The synchronous observer 

is a special kind of accepting machine which, instead of having an accepting state, has 

an alarm state. Any transitions to this alarm state result in the emission of an alarm 

signal ‘a ’ . This machine can be used to express safety properties of a system. For 

example consider the observer in Figure 2.3. Observers watch the input-output sets of 

systems. In this simple case the input-output set is {x ,y }. This observer allows any 

sequence of these except the event {x } followed by the event {y } at which it raises the 

alarm.

When our observer is combined in parallel with the system under observation, the result 

is a single machine which expresses their combined operation. If, in this machine, there 

is no reachable transition with an a  signal on it then the system will not violate the 

property. If such a transition exists then not only does it demonstrate that a violation 

can occur, but all the paths that lead to that transition illustrate the sequences of 

events and states that will lead to that violation.

2.7 Summary

This chapter discussed a number of general features that might be possessed by the 

automaton used to control a situated agent.

Determinism refers to whether the output and next state of the machine are defined 

as a function or a relation with respect to the machines state and current input. If it



is a relation one of many possible outcomes are possible, if a function the outcome is 

fixed. A machine is accepting if it has inputs but no outputs, it is generating if it has 

outputs but no inputs and it is interactive if it has both inputs and outputs. Synchrony 

and asynchrony refer to communication models of parallel agents. If communication 

is synchronous then two events from different machines are modelled as occurring 

at the same instant (even if one caused the other), in contrast if communication is 

asynchronous then concurrent events are modelled as occurring one after the other but 

in a nondeterministic order.

Throughout this thesis a number of different automata models are developed. All of 

them will be deterministic synchronous machines.

The focus of this thesis is the way in which time is represented in modelling situated 

agent systems. The next three chapters look at different aspects of the representation 

of time, before we move on to look at the mathematics.
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3

Time

Alice sighed wearily. “I think you might do something better with the 

time,” she said, “than waste it asking riddles with no answers.”

“I f  you knew Time as well as I do,” said the Hatter “you wouldn’t talk 

about wasting it. I t ’s h im .”

“I don’t know what you mean, ” said Alice.

“O f course you don’t!” the Hatter said tossing his head contemptuously.

“I dare say you have never even spoken to Time!”

“Perhaps not,” Alice cautiously replied: “but I know I have to beat 

time when I learn music. ”

“Ah! that accounts for it,” said the Hatter. “He won’t stand beat­

ing...”

— Lewis Carrol1

3.1 W hat is time?

The concept of time presents us with a strange enigma. On the one hand, we use time 

constantly in everyday thought and communication. It is very deeply ingrained in the 

way we think about our lives and the world about us. Children easily develop a usable 

notion of time. Indeed there are few abstract concepts that are as well used or implicitly

1 Alice in Wonderland
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understood as time, and yet time continues to defy philosophical analysis. Many books 

have been written on the subject from a philosophical [Grunbaum 63, Landsberg 82, 

Seddon 87, White 92, Gale 68] and an Artificial Intelligence perspective [Hajnicz 96]. 

Yet still it raises controversy and paradox at every turn. St. Augustine writes:

For what is time? Who can easily and brieñy explain it? Who can even 

comprehend it in thought or put the answer into words? Yet is it not true 

that in conversation we refer to nothing more familiarly or knowingly than 

time? And surely we understand it when we speak o f it; we understand it 

also when we hear another speak o f it.

What then, is time? I f  no one asks me, I  know what it is. I f I wish to 

explain it to him who asks me, I  do not know.

—  Augustine 2

The first serious attempt to analyze the concept of time occurs in Aristotle’s “Phys­

ics” [Aristotle 68]. He took time to be made up of a continuum of indivisible, preset 

now-moments. His analysis is still studied today, although many of the questions it 

raised remain unanswered.

3.1.1 Tim e and change

One of the issues that Aristotle tried and failed to explain was the relationship between 

time and change expressed best in the famous arrow paradox attributed to Zeno of Elea: 

The arrow in flight must be moving at every instant in time. But at every instant it 

must be somewhere in space. However if the arrow must always be in some one place, 

it cannot at every instant also be in transit, for to be in transit is to be nowhere.

It took the mathematics of Weierstrass to finally lay this paradox to rest. Weierstrass 

provided the e — 5 tools that allow a rigorous understanding of the infinitesimal, and 

in so doing showed that the moving arrow is really always at rest. Bertrand Russell 

commented:

2 (354-430) Tr 1948 ch XIV[Augustine 68]

CHAPTER 3. TIME 24



Weierstrass, by strictly banishing from mathematics the use o f infin­

itesimal, has at last shown that we live in an unchanging world, and that 

the arrow in its Eight is truly at rest. Zeno’s only error lay in inferring (if 

he did infer) that, because there is no such thing as a state o f change, the 

world is in the same state at any one time as at any other. [Russell 81]

This idea that time can be captured as a set of static moments is used later in describing 

our system models.

3.1.2 The unreality of time

Since the time of Aristotle many others have questioned the nature of time and mod­

ern paradoxes associated with the concept also haunt us. Perhaps the most famous 

and controversial paper on the philosophy of time this century was that by McTa- 

ggart [McTaggart 93] in which he argues that “nothing that exists can be temporal 

and therefore time is unreal.” This surprising conclusion is generally felt to be flawed. 

Moore pointed out that “if time is false then there are no temporal facts: nothing is 

earlier or later than anything else. But plainly it is false that there are no temporal 

facts, for it is a fact that I am presently inscribing this sentence and that my breakfast 

yesterday preceded my lunch.” Unfortunately it is still disputed where the error in 

McTaggart’s argument lies.

McTaggart suggested that we essentially have two perspectives on time. The first is 

the notion of an instantaneous present that divides the past from the future, from this 

perspective we can speak of the relative position of an event in time with respect to our 

present, that is we can refer to tomorrow, last month, next Tuesday etc. This could be 

seen as a relative view of time. The second perspective on time he presents is in terms 

of fixed events which are temporally ordered thus we refer to the 12th of January 1714, 

which is before the 25th March 1999. This is an absolute view of time. The former he 

calls A series time, the latter B series (these concepts will be used later):

I shall give the name A series to that series o f positions which runs from 

the far past through the near past to the present moment, and then from 

the present through the near future to the far future, or conversely. The
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series oi positions which runs from earlier to later, or conversely, I  shall call

the B series. [McTaggart 93]

His argument then proceeds by attempting to establish that B series time was depend­

ent on A series time in the sense that without A series time, B series time can not 

exist. He then goes on to give an argument regarding the logical implications of tense, 

inherent in an A series perspective, which leads to a vicious circle when viewed as a B 

series. The argument is based around the following contradiction: a moment can only 

be in one of the past, the present or the future, and yet every moment in time will at 

some stage begin in the future, become present and then eventually past. Thus every 

moment has to be past, present and future, contradicting our first premise. The answer 

to this contradiction is, of course, that no moment is in the past, present and future 

simultaneously; rather there are three separate and non-contradictory statements that 

can be made for a current moment M , say, it was in the future, is in the present, 

and will be in the past. However McTaggart then responds that all this is saying is 

that M  is in the future at a moment of past time, is past at a moment of future time 

and present at a moment of present time. This too, he argues, is inconsistent. This 

is because the answer sets up a second order time for which there are inconsistencies 

similar to his original objection. The answer to this second order situation sets up 

a third order time and this is where the infinite regress enters. For a more complete 

account of this argument, I refer the reader to the paper itself [McTaggart 93] and an 

insightful reconstruction of the argument by Mellor [Mellor 93].

The paradox arises from juxtaposing the two distinct perspectives on time. In the 

observer’s perspective of moving through time given in the A  series, events such as the 

death of Queen Anne are at one point in the future, they momentarily occur in the 

present and then move into the past. This idea is called temporal becoming and is 

strongly linked with time as being changing and dynamic. This is in contrast to the 

static, god-like view of time taken from the B series perspective in which time is static 

and changeless. Events are fixed and unmoving: Queen Anne died in 1714.

There are three approaches to answering the paradox. The first is to claim that time 

can be explain entirely by the B  series, and to reject the idea of temporal becoming 

(Bertrand Russell was considered the father of this approach). The second approach
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is conversely to reject the idea of B  series time. One of the strands of this counter

argument, presented by C.D. Broad, is that there are important ontological differences 

between the past and the future, “the future is open, a realm of possibilities where as 

the past is closed, a realm of actualities” [Broad 68]. The third answer to McTaggart

is to accept both time series, but insist they are never confused. This position is taken

by J. N. Findlay and J. J. C. Smart (both in [Gale 68]). Essentially, they propose that 

each explanation in its own right is satisfactory and the contradiction only arises when 

the two are used together.

3.2 Classifying models of time

This section considers temporal systems, system models that evolve through time, and 

attempts to tease apart and classify different features of these models that are often 

bundled together.

3.2.1 Tem poral structure

Having presented some of the ideas as to the nature of time let us turn our attention 

to the problem of modelling a system whose behaviour evolves through time. What we 

are interested in is modelling the parameters that characterize the state of the system 

and their change through time. At an instant in time, which we will call an event, 

these parameters are assumed to have unique (static) values. Continuous change can 

be described, as Russell and Weierstrass suggest, by a continuum of such instants.

The behaviour of the system over time is thus described by an ordered set of events 

called a flow. The structure of a flow describes its topology. A topological property is 

defined as any property which is preserved under all continuous one-one transforma­

tions of that structure. So, for example, a circle is topologically equivalent to an ellipse 

or a square or a triangle, but topologically different from a bounded line. A circle can 

be mapped to the other shapes by stretching it; mapping it to a line would involve 

cutting it, thus introducing a discontinuity.

A very important feature of a flow is the completeness of its ordering. This thesis deals 

only with totally ordered models of time but partial orders are possible and could have
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interesting theoretical properties. Essentially partial ordering implies asynchronous 

parallelism in a model.

Another topological property, density, determines how tightly packed together the 

instantaneous events in the flow are. There are two structures that we will consider. 

Chapter 4 looks at discrete time in which the points are arranged in a sequence, such 

that each one (apart from the first) has a unique predecessor. In Chapter 5 we will 

look at flows of time in which the events are dense, so that between any two events 

there is a third, and consequently no points have unique successors or predecessors.

A continuum is a flow which is dense and connected. A connected flow is one in which 

not only are the points tightly packed together, but there are no gaps. This property 

is described in more detail in Chapter 5.

The final structural property that is of interest is whether a flow has end points. In 

other words in the ordering there is a start point which is less than any other point, or 

an end point which is greater than any other point. A flow with a start point is said 

to be closed at the start and a flow with an end point is said to be closed at the end. 

Most of the flows that we will consider will be closed at the start but may be open or 

closed at the end because although we will usually be modelling systems from some 

fixed starting point, the end point may or may not be fixed.

3.2.2 Synchrony labels and temporal metrics

Closely associated with the structure of a flow are its synchrony labelling and metric. 

A flow must have a structure, but these properties are optional refinements which 

increase the descriptive power of the flow.

A synchrony labelling relates events in one flow to events in another so that the flows 

can be combined. It allows models to be combined in parallel by providing a mechanism 

for identifying simultaneous events. When two models are being composed, a one-one 

order preserving (isotonic) function is needed to match up simultaneous events from 

each model. In a synchronous language, for example, synchrony labellings are provided 

implicitly by the signal names.

A metric relates events within a flow by providing a measure of distance in time between
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any two events. It provides a yardstick against which rate of change can be measured. 

Typically the metric is defined by identifying the flow with a monotonic set of values. 

Such values can also be used as a synchrony labelling and are then referred to as a 

temporal metric.

Synchronous languages do not possess metrics. Metrics can be added to a model; 

indeed more than one can be used (referred to as multiform time). However in a 

synchronous language time is represented as just an ordered sequence of changes.

Separating out structure, synchrony labels, and the metric can lead to confusing ideas 

of time. For example, what is meant by time in which the ordering of the metric does 

not correspond to the ordering of the flow’s structure? Synchronous languages are 

examples of models without metrics. Special relativity theory provides examples of 

models (see Chapter 13) in which the synchrony labelling of model components differs 

from the metric they use.

The temporal metric in most cases is effectively a time stamp on an event. In this 

thesis these time stamps are simply considered as special parameters of events. (The 

parameters of the models described in the second part of this thesis are given as signal 

values and the temporal metric is given a special signal t.)

3.2.3  Parameter assignment

Modelling a temporal system involves describing the values of parameters at each event. 

The same descriptions can be given in different ways depending on the nature of the 

model.

Consider Figures 3.1 and 3.2 which shows three representations of systems changing- 

over time, Figure 3.1 (a) describes r a s a  function of whole number time t, (b) describes 

r  as a difference equation and (c) is a finite state input/output machine.
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Figure 3.1: System models

Models (a) and (b) could describe the same system, but the natures of the descriptions
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Figure 3.2: Another system model

are different. Model (a) gives a static view of time which I suggest corresponds to 

McTaggart’s B series (absolute) time. The only way in which we see change is by 

comparing two static events. The value of x at time t is denoted by a function f ( t )  in 

this case i2, but it could just as well represent the health of Queen Anne in which case 

t in 1715, would have a different value when t is 1700. Model (b) on the other hand 

describes the system in terms of its change, from one value to the next, corresponding 

closely to McTaggart’s A series (relative) time. Associated with the evolution of the 

difference equation is a natural notion of past, present and future. Inherent in the 

representation is the idea of current state, which is a reflection of some or all of the 

past states that it has been through and determines the future states. It should also 

be noted that Model (b) is under-specified. In order to describe Model (b) in the form 

of a function of time (like Model (a)) initial conditions must be specified.

Model (c), shown in Figure 3.2 is an interactive automaton, which is included to 

demonstrate a second notion of past, present and future in models, the ontological 

difference suggested by C. D. Broad and alluded to earlier in the chapter. Much 

like the difference equation, the interactive automata describes a dynamical system 

possessing an internal state, and consequently expresses the same idea of past present 

and future. However unlike the difference equation, the future of the automaton is 

unknowable in that it depends on the inputs that it will receive. So in considering the 

behaviour of the automaton there is an ontological difference between what has been 

and what is to come.

Let us refer to the stateless function of time exemplified by model (a) as being static, 

and the dynamical system (model (b)) as dynamic.
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Figure 3.3: A system model with variable step size 

t i c k / r = f  + A z / 1 = t +A

Inputs: t i c k  
Outputs: t

Inputs: 0 
Outputs: t

Figure 3.4: Reactive and proactive time machines

As we noted in the last section the temporal metric, if it exists, will be defined as 

a special parameter of the model. An important distinction can be drawn between 

models in which the temporal metric is internal, i.e. described with respect to a 

change in internal parameters, or external, where the values are imported.

Consider model (d) in Figure 3.3. This model has a single parameter A  which can 

be varied to alter the temporal size of each step the model takes. In a model with an 

internal metric, the value of A is determined within the model. In a model with an 

external metric, A  is an input to the model which cannot be determined in advance.

3.2 .4  Im petus

Just as the metric can be internal or external to a model, so can the impetus for change 

to occur. Consider the two machines in Figure 3.4. The first shows changes occurring 

reactively in response to an input signal t ic k  from the outside world. The name of 

the input is not important. In the standard reactive model change is triggered by any 

input. The second model shows change occurring on a transition labelled with an e. 

This is a symbol used to label transitions that can occur spontaneously. In contrast to 

the term reactive, I call such machines proactive.

Control systems can be entirely reactive, responding to changes that occur in the real 

world. On the other hand, plants and environments may be capable of initiating action



and so are modelled better by proactive models.

As a final note I should point out where the continuous automata developed in the 

second part of this thesis falls in this classification. I claim that they are continu­

ous (obviously), their output is totally ordered, and they use dynamic descriptions 

of change. Their temporal metric is internal and they are proactive. These features 

distinguish them from other modelling systems. Most other continuous models have 

external metrics and are reactive.

3.3 Summary

This chapter introduced a number of ideas about the nature of time and offered a 

classification of temporal models. Various aspects of structure were touched on: the 

difference between continuous and discrete time; total and partial order; and periods 

of time with closed ends. Two different purposes for a temporal metric were explored 

first as a measure of temporal distance, and second as a synchrony labelling.

Different ways of describing parameters assigned to events were considered: static, 

where time provides an index over events; and dynamic, in which events are described 

in terms of changes from one to another. The temporal metric was also considered a 

parameter and the terms internal and external metric were presented to convey whether 

the rate of change of a machine was an internal feature or the result of an input. Finally 

impetus was discussed and reactive and proactive change were distinguished depending 

on whether the machine could initiate changes for itself or whether it depended on 

external input to trigger change. These features were used to classify the model that 

will be developed in Part II.

The next chapter considers, in more detail, discrete models of temporal systems. Dis­

crete models represent the starting point for this work, and it is assumed, as we saw 

in Chapter 2 that in system design discrete descriptions would be used to model an 

agent’s controller.
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4

Discrete time

Time is nature’s way o f making sure that everything doesn’t happen at 

once.

— Unknown

Modern scientists and philosophers generally take time to be continuous. Some early 

thinkers, notably Aristotle, also believed time to be continuous although most Helenic 

models considered time to be discrete.

The idea that time may be quantized is not really so strange when you consider that 

most people are ready to accept the idea that matter is atomic, so, for example, the 

seemingly solid and continuous page in front of you is composed of a finite number of 

very small, but indivisible packets of matter separated by large amounts of free space.

The quantization of matter has led to a modern argument for discrete time. It has been 

suggested that there is a smallest subatomic particle, whose diameter is one hodon. The 

fastest velocity that can be attained is that of light. So we can calculate the time it 

would take for a pulse of light to travel a hodon, that is the length of time it would 

take to cross the smallest distance at the fastest speed. This quantity of time is called 

a chronon.

It has been argued that the chronon represents the smallest meaningful unit of time. 

Therefore, since it has a natural quantization, time must be discrete. However as
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Newton-Smith points out [Newton-Smith 80], this construction presupposes that the 

pulse of light travels gradually across the distance of the hodon; it does not jump 

suddenly from one side to another. So, despite the fact that this unit of time may turn 

out to be important in physics, the argument does not lead us to the conclusion that 

time is discrete.

Perhaps, the most compelling argument against a discrete view of time is that our 

strongest physical theories of the universe assume its continuity. So, if time is best 

represented as continuous, then why bother with discrete models?

4.1 Discrete time models

There are ways in which discrete time models can be very useful. For example, the 

operation of a digital computer is often described as discrete. What we mean by 

this is that there is a useful level of abstraction at which a computer’s state can be 

modelled as being constant for an interval of time and then switching discretely and 

instantaneously to another. In fact the state of the machine is not constant over this 

interval, but it is guaranteed by the design to be stable and uniquely defined before 

the next switching occurs, and so the abstraction is valid and it allows us to focus on 

a sequence of global states of the machine.

This abstraction to sequence is a very powerful modelling assumption that has lead to 

the development and application of an armory of mathematical, software engineering 

tools and programming languages. Modern discrete finite state methods can automat­

ically verify, decompose, synthesize and efficiently implement in hardware, systems of 

many hundreds of thousand of states. Modular use of such tools have enabled human 

beings to design and build artifacts as complex as a microprocessor and so it is reason­

able to conclude that agent controllers will frequently be best designed and modelled 

as a discrete system.

4.1.1 Limitations of discrete time

So let us turn our initial question around: why do we need to consider continuous 

change at all if discrete time provides such a useful simplification? There are two
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Figure 4.1: The water tank revisited

answers to that question. The first is that some of the properties of the system that we 

would like to investigate are most effectively modelled using continuous techniques. The 

stability of a system is such a property. There are circumstances in which oscillations 

can occur that do not resolve themselves to a single steady state. Even when a steady 

state is guaranteed, there remains the question: How long will it take to reach it? 

The second problem with discrete models of continuous systems is that of finding the 

right discrete abstraction. In discretizing time, what we are really doing is discretizing 

change. Therefore, for every parameter of our model that we might think of as changing 

continuously, we need to characterize that parameter by a series of discrete changes. 

The question is: which ones?

4.1 .2  Discrete unlabeled nonmetric time

We saw, in Chapter 1, an example of a water tank (Figure 1.2). In this system there is 

a natural discretization of the world into three states: the tank is empty, overflowing, 

or at some height in between. This allows us to build the simple discrete model we 

saw earlier and which is shown here in Figure 4.1.

A problem arises when these three states are insufficiently expressive to meet our needs. 

Suppose the water tank was feeding a hydraulic system, and there was a requirement 

for a critical pressure. In order to achieve this critical pressure the tank had to be at 

least half full. Our three state model of the world would be insufficient to determine 

whether the tank could provide that pressure.

You might argue that the modelling approach itself is not flawed, it is just that this 

model is too limited. If we were to split the center state into two (see Figure 4.2) we 

could model this property. If the model stays in states A and B then the property
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Figure 4.2: A refined water tank model

succeeds, otherwise it fails. However this still leaves three problems with the model:

• For each such property we could be forced to make a new split and we do not 

want to have to construct a new model to investigate each property.

• There is no way of measuring or talking about the rate of change of the water- 

level.

• The model tells us nothing about how to integrate the changes in state of the 

water tank with the behaviour of any other components of the system, unless 

they are causally related to those changes in the tank. Suppose we had another 

water tank in the system, we should be able to combine the two and have a 

model which expresses which will empty first, but there is no way to relate the 

emptying of one with the other.

The first problem is related to the granularity of the decomposition, the second is due 

to the lack of a metric in the model, and the third problem is due to the absence of 

a synchrony labelling. As it stands the model is an example of the simplest form of 

time: discrete, nonmetric, unlabeled time. It amounts to no more than a sequence of 

changes in the world.

Instead of refining the model by adding more discrete states, we can introduce discrete 

dynamics to the states themselves. This is illustrated in Figure 4.3. This is obviously a 

more elegant refinement despite the oversimplification of the dynamics, since it allows 

us to easily vary the granularity of the model by changing the value of c.

You might suggest that this model also allows us to talk about rate of change: the 

water level will change by an amount c every iteration. However, to do so is to use the
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iterations as an implicit metric. The statement is really: the water level will change by 

an amount c in the time taken for every iteration. This is not necessarily a useful 

thing to do. There is no guarantee that the period of time taken for every iteration 

is fixed since there is no measure of that in the model. So the time may vary in an 

unknown way, in which case the “time taken for every iteration” will simply reflect the 

time that it took for the water level to change by an amount c at that iteration. In 

other words the statement we started with becomes the water level will change by an 

amount c in the time taken for the water to change by an amount c; which is obviously 

true, but not useful.

4.1 .3  M etric labeled models

Now consider the model in Figure 4.4. In this model a temporal metric has been 

introduced in the form of the clock signal t . This provides both a measure of distance 

in time, and a synchrony labelling. In this case the integers are being used as a 

metric. With the value of t  establishing the temporal distance between changes, it 

now makes sense to talk about the rate of change of the water level being c. If the 

same temporal metric is used by other parts of the system then these parts can now be 

meaningfully combined since we understand the way in which their respective changes 

will be synchronized.

So we have laid to rest two of the three problems that we faced. The problem of 

granularity is still with us though. Indeed we have just made it worse. Choosing the 

integers as a metric has the effect of fixing the granularity of the model. The only way 

to change the granularity now is to rescale time in the model, and of course this would 

mean rescaling time in all the other models we might combine with this model, so it
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Figure 4.5: Tank with a real metric

is not an ideal solution.

A much better solution would be to change the metric from integers to reals. This 

will return us to the situation that we were in with Figure 4.3 in which the granularity 

of the model could be made arbitrarily small. This is shown in Figure 4.5 where the 

step size is fixed by the parameter A. Unfortunately, this is not an end to the story. 

This model still leaves us with the daunting task of having to choose the right value 

for A. The choice is very important. Making A smaller reduces the inaccuracies in the 

model but at the same time it increases the number of iterations that are required to 

describe the parameter changes over any interval of time. This in turn makes it harder 

to simulate or analyze the model.

Furthermore, although the size of the errors can be made arbitrarily small by reducing 

the step size there is no guarantee that they can be eliminated altogether. It is possible 

to construct models for which no fixed step size will accurately hit the parameter values 

at all the state transitions.

Of course there is no reason why the step size should be fixed, but allowing it to vary 

complicates the problem further because now there are many values to choose rather 

than one, and it is difficult to predict in advance how the step size should be changed.
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Essentially the problem boils down to the fact that the discretization required is not an 

inherent property of the physical system, but dependent on the particular properties 

of that system that are being investigated.

When a synchronous observer is used to check a property a number of critical state 

transitions are added to the system, which lead to the emission of an a alarm sig­

nal if the property is violated. So switches can be placed anywhere in the system’s 

parameter-state space and if the system contains continuously varying parameters any 

discretization of those parameters will be inadequate in some circumstances.

4 .1 .4  Nondeterm inistic increments

Must we then resign ourselves to the fact that discrete models of time are inherently 

approximate? There is at least one more alternative, which is used by most auto­

mata based hybrid systems models (including [Alur et al. 95, Caspi & Halbwachs 86, 

Henzinger & Ho 95, Nadjm-Tehrani 94]) and that is to use a nondeterministic step size 

so that the transition parameters are hit precisely.

As before, the output of the machine is a sequence of events advancing in time. However 

an output sequence is only considered to be valid if the state transitions occur at the 

earliest possible opportunity. In other words any sequences containing events which 

over-step a state transition are rejected. For example consider a sequence of outputs 

from the model in Figure 4.5, in which the model begins in the middle state, with 

0 <  I < h and I increasing. Ideally the model would change state just as I =  h. 

However depending on the values of A and c some runs of the model may overshoot 

h before they can change state. Nondeterministic time steps allow you to reject such 

runs as invalid and so the critical transitions will always be hit. However this piece of 

mathematical magic does not come problem free.

The first problems that it introduces is that of Zeno time (after Zeno of Elea). Since 

we have now a very loose description of the sequences that our model is producing care 

must be taken to avoid degenerative Zeno time sequences in which A  is always positive 

but time is ultimately bounded. An example is the sequence A =  0, | which will

never advance t beyond 1. Zeno sequences can be avoided by insisting that valid time
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sequences must be unbounded.

A less well considered problem with nondeterministic sequences of time is that there 

is no way of predicting what the output of the model will be on any particular run, 

aside from the fact that it will hit the parameter values on transitions. Indeed, since 

an infinite number of possible sequences can be generated from a run of finite length, 

the probability of the model generating the same output twice is strictly zero.

Why should this be a problem? After all, if the model is guaranteed to have the 

correct value on state transitions; isn’t that enough? In many ways it is, but it leads 

to a strange situation when trying to decide whether two models are equivalent. There 

are various ways in which the equivalence of two models can be defined. An important 

concept in systems design is that of behavioural equivalence, where two models are 

equivalent when, regardless of their internal structure, they produce the same output 

in response to the same input events 1.

By this definition, an automaton which selects nondeterministic increments of time is 

not even equivalent to itself. Now, we might insist that, in assessing the equivalence 

of such machines, they not only receive the same input, but also use the same time 

sequence. Then a machine would be equivalent to itself. However, this leaves us with a 

new problem: for each machine there is a set of valid time sequences, and two machines 

with different internal structures will have different sets of valid time sequences even 

if the systems they describe are essentially equivalent. So, the two machines can only 

be compared with respect to the intersection of their valid time sequences. Such an 

intersection is guaranteed to exist, but this remains an inelegant solution.

It has already been emphasized that the compositionality of models is a strong theme 

in this work. Synchronous languages demonstrate how a synchrony labelling can be 

defined directly in terms of machine events to provide a very natural basis for compos­

ition. Because their events are nondeterministically chosen many existing automata 

based hybrid models (e.g. [Alur et al. 95]) have to introduce a new labelling systems 

for composition. Defining continuous change in terms of a continuum of events on 

the other hand allows us to continue to use events as the basis for synchronization,

1 The implied relation is an extension of trace equivalence to input/output systems.
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although a metric is needed to define a unique mapping.
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4.2 Summary

This chapter considered the benefits and drawbacks of discrete time representations. 

We considered a model of the water tank system beginning with the simplest possible 

view of time: discrete unlabelled nonmetric. This model was incrementally enhanced 

to consider a number of different discrete views of time, ending with a labelled, metric, 

nondeterministic time which would give a precise model of our system. This final 

model still retained certain undesirable features. In the next chapter we address these 

by looking at continuous representations of time.



5

Continuous Time

While time can coherently he supposed to be discrete we have no good 

reasons for taking seriously the hypothesis that it is so. For no one has been 

able to produce viable physical theories that treat time as discrete. Indeed, 

all mainline physical theories represent time by a parameter ranging over 

the real numbers and in so doing treat time as continuous. Interestingly,

. . .  we can construct equally viable alternatives to these physical theories 

in which time is treated as merely dense and not continuous.

— Newton-Smith1

It was Aristotle who first spoke of time as being continuous when he wrote:

. . .  what is moved, is moved from something to something and all mag­

nitude is continuous. Therefore the movement goes with the magnitude. 

Because the magnitude is continuous, the movement too must be continu­

ous, and if the movement, then the time; [Aristotle 68]

It is a moot point exactly what Aristotle meant by continuous. Bereft as he was of the 

mathematics of Cantor, it is unclear if he was using the word in the same way that we 

do here. It is clear that one property of time that he considered continuity to imply

1 “The Structure of Tim e” [Newton-Smith 80]

42



was infinite divisibility: “it is clear that everything that is continuous is divisible to 

what is itself always divisible” .

5.1 Density and continuity

By itself, however, infinite divisibility leads only to a space that is merely dense such 

as the rational numbers Q. A continuous space such as the real numbers is both 

dense and connected. In practice it is difficult to tell the two apart. As he suggests 

in the quotation (see chapter head), Newton-Smith shows that an approximation to 

continuous physics can be constructed which only uses the rationals. For every real 

there is a rational arbitrarily close, and since every experiment we might propose to 

test the theory is subject to some level of inaccuracy in the instrumentation, this 

approximation is indistinguishable from the real thing by any empirical investigation.

Nevertheless, there are important mathematical differences between these spaces. A 

dense set has the property of infinite divisibility, that is, between any two points in the 

set there is always a third point. However, it differs from a continuous space in that is 

unconnected, i.e. it has gaps in it. For example consider the square root of two, this 

is a number which is a member of the reals, but not of the rationals and its absence 

leaves a hole albeit not a very noticeable one.

More precisely we can define the difference by considering the idea of a cut. A cut 

divides an ordered set S into two sets S', S" such that (i) every member of S is in S' 

or S", (ii) no member of S is in both and (iii) every member of S' comes before every 

member of S ". The set S is then continuous if and only if for every cut of S into S', S" 

there exists either a unique least member of S" or a unique greatest member of S'. 

For example the reals are continuous so supposing we make a cut at 2, and take S" to 

be all numbers greater than or equal to 2, and S' to be all numbers strictly less than 

2, then S" has no unique greatest member, since the numbers in S" come arbitrarily 

close to 2, and for any number you might choose, there is one closer. However S' has 

a unique least member, 2 itself.

Now we can see that the rationals cannot be continuous. Let us make a cut at \/2 

such that every member of S' is a rational whose square is less than 2 and S" is a
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rational whose square is greater than 2. Then there is no unique greatest member in 

the former, and no unique least member in the latter.

Another important difference between the reals and the rationals is their cardinality. 

Any infinite set from which there is a one-one mapping to the natural numbers is said 

to be countable. There is such a mapping for the rationals, but there is not for the 

reals. Thus the reals are said to be uncountable. This feature will be revisited when 

we look at limiting processes in Chapter 8.

So, in principle continuous time models are possible, and in practice such models can 

be indistinguishable from their continuous counterparts despite the missing values. 

However dense models are more cumbersome by nature and do not tend to be used. 

The possibility was introduced here to introduce some important concepts that will be 

revisited in the theoretical investigation of the limiting process (Chapter 8). Let us 

now move on to look at continuous time models.

5.2 Continuous time models

Most physical models including the dynamical systems used by control engineers use 

a continuous representation of time. The hybrid models that have grown out of this 

tradition also use continuous time. As we saw in Chapter 1 these include [Tavernini 87, 

Back et al. 93, Antsaklis et al. 93, Brockett 83, Branicky et al. 94], In principal we 

could build dense physical models of time however the mathematics of such models is 

much less appealing and they have no advantages.

This work however is the first attempt (to my knowledge) to have an automata model 

describe a continuous output. The rest of this chapter will provide an overview of what 

a continuous automaton will be like, and intuitively how we will get there.

Recall the final model of the water tank, Figure 4.5 used in the previous chapter. The 

size of each time step is parameterized by the single value A. As we saw in the previous 

chapter, the usual way to produce a precise model of the system is to allow A to vary 

nondeterministically. The alternative to this is to allow the value of A to tend to zero 

in such a way that the machine describes a continuum rather than a sequence, and thus
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models every point of the continuously changing parameters rather than an arbitrary 

choice of points.

There are a number of restrictions required in order to make the limiting process valid. 

Perhaps the most important of these is that the machine is restricted on the frequency 

of state changes. In an automaton, let us refer to a transition that goes from a state q 

to a different state q', as a state transition, and let us call a transition that goes from 

state q back to state q a looping transition. Then a continuous machine is restricted to 

having, at most, a finite number of state transitions or discontinuities in its parameters 

in any closed, bounded interval of time. The machine can, of course, make an infinite 

number of looping transitions in such an interval2.

The continuous automaton provides us with a mechanism to express precisely the 

continuous and discontinuous features of the systems that we want. It avoids any Zeno 

time problems because it describes every point instead of a nondeterministically chosen 

sequence and the output of a deterministic machine is deterministic so there are no 

equivalence complications either.

This simplification of the output means that it becomes straightforward to define a syn­

chronous product over continuous machines giving a strong compositional semantics.

Because of these strong semantics safety properties of a continuous automaton can be 

expressed using the technique of synchronous observers [Halbwachs et al. 93] (provid­

ing introducing the observer does not bring about infinitely many state changes in any 

closed bounded interval of time.) The observer would have to make uncountably many 

transitions, but there is no reason why this should be a problem for an observer.

Carrying out uncountably many transitions is a problem for a discrete controller. As­

suming that we want such a controller to be implementable it is important that it sees 

only a sequence of inputs. It is also important that successive inputs are not infinitely 

close together, i.e. they are separated by some interval of time. In order to achieve this, 

when combining a sequential machine with a continuous one, the sequential machine is

2 The distinction here between state and looping transitions is unfortunate, since it distinguishes 
between bisimilar machines i.e. it is possible to have two bisimilar machines A  and B  such that A  
has a limit and B  doesn’t. However if they exist the limit of bisimilar machines will be bisimilar. If 
any machines in a bisimilar class have limits, the unique minimal machine will also have a limit.
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restricted to seeing signals only at state transitions of the continuous machine. Since 

these have already been restricted to occurring at most finitely often in suitable inter­

vals of time their occurrences must be countable in total and separated by intervals of 

time of nonzero length (see Chapter 11).

It may be that state transitions are not frequent enough in a model or don’t occur 

in the right places for a particular controller. However, the model can be combined 

in parallel with machines that provide additional discontinuities for the purpose of 

making the parameter values visible at particular moments, or at regular intervals.

We have now come full circle. Having sketched a continuous model of time, we have 

described how it can be sampled to produce a discrete sequence which includes every 

mode change of the system. Interestingly, this will include all the points that the 

nondeterministic model is designed to describe, but in a deterministic way.

5.3 Summary

In this chapter we made a distinction between sets that are just dense and sets that 

are dense and connected and hence continuous. We then looked at some of the issues 

involved in defining a continuous automaton. This chapter concludes the first part of 

the thesis. In the second part the process of defining a continuous automaton as the 

limit of a discrete approximation is explored mathematically.
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Part II

Theory
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6

Flows

“certainly we feel that time flows”

— J. J. C. Smart1

The idea of a flow is to introduce a mathematical object which can express all the 

different notions of time that we have considered so far. In particular, the flow has to 

be able to express a sequence, as well as a continuum of events. Its definition must be 

independent of a metric, and we will need to define properties of a flow that will allow 

us to distinguish sequence from continuum. Clearly the common factor in all of this is 

that a flow should be defined as an ordered set of points.

In this second part of the thesis there will be great deal of new notation and concepts 

introduced to help the reader keep track of this there is a summary and index at the 

back of the thesis.

6.1 W hat is a flow?

A flow is a totally ordered set of points (see Figure 6.1), each of which can be associated 

by means of a function 9 with an item of data, from a set V. Typically this data item 

will be a valuation over a signal set. Total ordering of the set means that the ordering 

relation is defined to apply to any two pairs in the set. Partially ordered flows are

1 Taken from [Gale 68]
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{ ( x ,  2 . 2 )  ,

( y , 5 . 7)  ,

( t ,  3 . 4 2 )  }

Figure 6.1: A flow of valuations

possible but will not be considered here as they complicate the limiting process. The 

flow is formally defined as follows.

Definition

A flow X  is a tuple (F, ^,9)  where F  is a set of elements with a total order X 
(and hence: —<, >— and « )  defined over them. Each point x  G F  has a value
0(x), where 6 : F  -> V  is a function from F  to a dataset V.

Let us also define some flow notation for a flow X  — {F,f. ,9) .  In order to simplify 

the notation in places, X  will occasionally be written in place of the set F,  so x G X  

will be taken mean x £ F  and X  \ F'  for a set of points F'  C F  to mean the flow 

(.F  \ F ' ,W  ,6'), where W  and 9' are just A and 9 with suitably restricted domains. 

(Notice that a total ordering is preserved under the removal of points.) Finally, the
def

cardinality of the flow is taken as |X| =  |Fj.

Here is a simple example of a flow:

dcf
Example 6.1 Consider the points: F  =  {red, orange, yellow, green, blue, indigo, violet}.

Let f. be an ordering defined by the order in which F  is listed above, and let 9 be a
dcf dcf

number which maps them to the numbers 7 , . . . ,  1 such that 9{red) — 7,9{orange) — 

6 , . . . ,  9{violet) d=  1. Then X  =  (F, 9) is a flow.

The next few examples are useful in that they illustrate infinite flows with different 

structures. However, they may also be a little confusing. A crucial feature of the 

concept of a flow is that the value of a point x itself is not important, it may not have



one, only the ordering of x  and the value 0(x) matter. In Example 6.1 the fact that the 

first point has the value red is not significant to the flow what is important is that it 

is the first point and its flow value, 6(red), is 7. The examples that follow use numeric 

flow points. This means that they already have an ordering defined over them, and 

it is easy to describe mappings to the values. However it is important to realize that 

references to a “point’s value” refer to its flow value, i.e. 0(x).

Example 6.2 The tuple (N, < , Ax.x) is a flow. The values of the points are the natural 

numbers, in order. This will be referred to as the natural number flow, or ||N||.

Notice that flow points are notated using a boldfaced text: x 6 f .

Example 6.3 Similarly, the flow, (R, <,Ax.x) is a continuous flow whose values are 

the real numbers, again in order. This will be referred to as the real number flow, or 

| | K | | .

The ordering of the points in a flow is, of course, independent of their values. So we 

can define flows such as those in examples 6.4 and 6.5 in which the values descend and 

oscillate along the respective flows.

Example 6.4 This flow, X  =  (N, <,A x.^), has points with values ^,Vn £ N. Notice 

that these points will get smaller along the flow.

Example 6.5 This flow, X  =  (N, <, Ax. sin(x)), has points with values sin(n),Vn € 

N. Notice that these points will oscillate along the flow.

Many different types of flow are possible depending on the type of the values. The 

term ‘dataset’ is used here to suggest the possibility of complex structured objects, 

such as functions, sets, trees etc. The most common dataset associated with a flow will 

be valuations which relate signal names to values. Valuations will be defined formally 

in Chapter 7.

The concept of a flow is closely related to the idea of a fluent, a concept used in the AI 

literature but thought to have originated with Newton. A fluent is a function from a
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time domain to a data object. The difference here is that the intention is to explicitly 

throw away all information about the time domain except its underlying structure.
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6.2 Equivalence of flows

One of the most important aspects of defining a new mathematical object is to provide 

a definition of what it means for two such objects to be considered equivalent. The 

equivalence property that is required for flows is one that compares the flow values 

point by point, but ignores the points themselves. For example the following flow is 

equivalent to the flow we met in Example 6.1:

defExample 6.6 Let us define a flow X  =  (F,fl,9) where F  =  {a,b,c,d,e,  f , g } ,  fl 

is defined by their position in the alphabet and 6 is defined as 9(a) =  7,9(b) =  

6, • • ■, 9(g) =  1.

So we need a way to maintain the order of points; let us define a mapping as isotonic 

if it preserves order between flows.

Definition

A function g : F x  —» Fy  from the points in a flow X  — (Fx,  f lx ,  9x)  to the points 
in a flow Y  =  (Fy, fly,  9y) is order preserving (or isotonic) if Vx, x' G Fx,

x x ' g(x) f ly g(x')

On the other hand, it has already been pointed out that a flow should be independent 

of any values or metric defined over the flow points. So we come to the following 

definition of equivalence.

Definition

Two flows X, Y  are equivalent X  =  Y  if there is a one-one order preserving 
function g : F y  -> Fx  such that Vy G Y,

9x(g(  y)) = M y )

It is not difficult to see that this relation will have the properties of reflexivity, symmetry 

and transitivity that are required of an equivalence relation.



Pairwise equivalence can be extended to global equivalence over a set as follows 

definition will be important in defining the limit of a sequence of flows.)

Definition

A set of flows R, is said to be globally equivalent if

VX G R,\/Y G R, X  =  Y
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6.3 Flow structure

In this section we define the structural (topological) properties of flows. In particular 

it will be useful to define properties of a flow which is like a sequence, and properties 

of a flow which is like a continuum. So far the only tools that we have to examine flows 

are equivalence, and flow ordering. This is enough to get us started. The simplest 

structural property that we can look for is the presence of a start or an end to the flow.

Definition

The end end(X) of a flow X  =  {F,A,6),  if it exists, is a point x G X  such 
that Vy £ fi,y ^  x. Similarly the start start(X) is a point x 6 X  such that 
V y e F j ^ x .  If start(X) exists then X  is said to be closed at the start, if 
end(X) exists it is said to be closed at the end.

It has already been noted that we are especially interested in flows which are closed 

at the start, but open or closed at the end. We will refer to these as forward flows. 

Forward flows will be used to represent the output of our automata models. They are 

closed at the start because automata are conventionally assumed to have a starting 

point or initial state.

Another property that can be immediately defined is density of a flow. A flow is dense

if there is a third point, between any two points you care to choose.

Definition

A flow, X , is said to be dense, if for any points x, x' G X , with x -< x', there
exists a third point, y G X , such that x -< y -*< x'.

. (This
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In order to take our investigation further we will need to be able to chop flows up into 

smaller pieces in order to examine their structure. This is done with a subflow.

Definition

The flow y  is a subflow of a flow X  =  (Fx , P x ,9;x), written Y  Ç X  if Y  is 
equivalent to a flow (F F x , 6x ) such that F' Ç Fx
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As you would expect, for two flows X  and Y  if X  C Y  and Y  C X  then X  =  Y. 

Indeed, it might have been more natural to introduce the concept of subflow before 

that of equivalence. However, equivalence was presented first because it formalized the 

irrelevance of the values of members of F.

In particular, a subflow Y  of a flow X  is contiguous if the points in Y  are contiguous 

in X .

Definition

A subflow Y  of a flow X  is contiguous if for all isotones g : Y  —> X , Vx € X  if 
3y ',y " € Y  such that g(y') -< x -<; g(y")  then 3y € Y  such that x =  g(y) .

The operator Sub°Px (X)  is used to define contiguous subflows, where op is one of 

y  j >~ or P. For a flow X  — (F, P, 9) and a point x € X  it is taken to mean any flow
defequivalent to (F' , ^ ,0 ) where F' =  { y 6 X|y op x}.

With this operator we can define intervals of a flow, so an interval (x, y) of a flow X  is 

taken to mean Sub^(Suby x (X))  and [x,y] is taken to mean Sub-^(Sub-x (X))  and 

so on.

Now that we can divide flows into intervals, it is possible to investigate how tightly 

packed a flow is. We already have a definition of density, with this definition we can 

approach the definition of a sequence. In previous chapters a sequence was described 

as an ordered set in which every point (except the first, if it exists) has a unique 

predecessor. We will call flows with this type of structure regular. In order to formally 

define regular flows we must first define what it is for a point to be the predecessor of 

another.
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Definition

For point x in a flow X  =  (F , ^,0)  the predecessor point, written x, if it exists, 
is the end of the subflow upto x. i.e. end(Sub<yi(X ) ) . Likewise the start of the 
subflow from a point x start{Subyyi {X))  is the successor to x written x.

Definition

A flow X  =  (F , A, 6) is regular if Vx G X  \ { start(X )}, the predecessor point 
xG  X  is well defined.

Example 6.7 ||N|| is a regular flow.

Having already defined density we can now show that points in dense flows never have 

predecessors, and therefore dense flows cannot be regular.

Lemma 6.1 For a dense flow X , V x 6 l , ^ x .

Proof (adapted from classical mathematics) Take some x G X  (x y  starflX ), if
■‘—def

start(X) exists). Now assume the lemma is false, and there does exist x =  end{Sub'<x( X ) ) . 

But density of X  implies that 3y G X,  x-< y -< x and this contradicts the definition of 

x so there can be no x. □

It can also be shown that regular flows cannot be dense. Although there are flows 

which have regular regions and dense regions, such flows are neither regular nor dense.

A third important structural property is that of connectedness. An intuitive definition 

of connectedness was given in Chapter 5. This definition is formalised here.

Definition

A cut (A, B)  is the partitioning of a flow X  into two continguous subflows A, and 
B,  such that Va G A, b G B, a -<; b. The flow X  is connected if for any cut 
(A,J3), A is closed at the end or B  is closed at the beginning.

These two definitions lead to an obvious example:

Example 6.8 The flow (Q, <, Ax.x) is a dense but unconnected flow.



With the definition of connected we can now define a continuous flow which we’ll refer 

to as a continuum.

Definition

A continuous flow, or continuum is a flow which is dense and connected.
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That concludes our investigation of flow structure, we move on now to look at math- 

mathical properties of flows with values.

6.4 Valued flows

In this section some properties of flows with metric values are considered. These 

properties include monotonicity and continuity of values in the flow.

The concept of a continuous function is extremely important in mathematical analysis. 

Intuitively, it represents a function whose graph is represented by an unbroken line, 

that is, a line that can be drawn without lifting your pen from the paper. The notion 

is very useful to us here too. A ^-continuous flow is a dense flow such that for any 

point a, all the points in the immediate neighbourhood have values as close as you like 

to the value of a. The size of the neighbourhood will depend on how close you want 

the values to be but no matter how close you choose there is a suitable neighbourhood.

It is important to note the distinction between a continuous flow, which is defined above 

as a dense connected flow, and a ^-continuous flow which is a flow with a ‘smooth’ value 

set.

This definition uses the term metric dataset. This refers to a dataset with a distance 

operator d (such as absolute difference etc.) which conforms to the standard require­

ments of a metric (for more details see the proof that © is a metric in Appendix A.)
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Definition

A flow with a metric dataset, T  is ^-continuous at a point a if for every e >  0 
there exist points k and k7 (with k a -< k7) such that d(9(x), 0(a)) <  e for all x 
such that k -< x -< k7.
A flow T  is ^-continuous if it is ^-continuous at all points a G T.
For a flow to be (9-continuous to the left of a point (or ^-continuous upto 
a point) a requires only the existence of k above. Similarly for a flow to be 9- 
continuous to the right (or (^-continuous from a point) a requires only the 
existence of k7.

Another important feature of a flow is monotonicity. A flow is monotonic if successive 

values always either increase or decrease, respectively.

Definition

A flow F,  with an ordered dataset, is said to be monotonic if

• either 6(x) >  9(x') for all x -< x7

• or 0(x) < 0(x') for all x x'.

The term strictly monotonic is used when the inequalities are strict.

In addition to talking about the end points of flows, it is useful to be able to talk about 

the value at the limit of a flow, even if the end point doesn’t exist. This point is the 

flow’s supremum. The supremum is essentially the upper closure point of the flow, if 

the flow is closed at the end then the supremum of X  is simply end(X). Otherwise it 

is defined as a point greater than any in X,  with a value defined as the limit along the 

flow. The point is guaranteed to exist because a point can be added and the ordering 

relation can be explicitly changed to ensure that it satisfies the properties. The value 

on the other hand may not exist if the flow values do not tend to a limit.

Definition

For a flow X  =  (F ,^ ,9)  which is closed at the end the supremum sup(X) is
end(X). Otherwise construct a flow X 1 =  (F + , ^ + , 9+) where F + =  FU  {p } , p §£
F. The relation is the same as A except that V x £ l , p ^ + x. The function
0+ d=  Q u { ( p ; t>)}, and finally V + =  V U  {u}.
Where p, is taken to have the value v, if it exists such that Ve > 0 3k G

def
X , s.t.d(v,9(y)) <  e Vy >- k. If this value does not exist then v =  ± .  Sym­
metrically an infimum can be defined.



Our last definition defines how flows can be composed. It is assumed that there exists 

a suitable union operator over the flow values, and that a suitable one-one isotonic 

function can be defined between the points in the respective flows. The new flow is 

then just a pointwise union of the flow values.

Definition

Two flows X  — ( F x , ^ x > 9 x ) , Y  =  (Fy , ^ y ,Qy ) can be z ip p e d  together, written 
X  Jlj Y  =  (Fx,  AX) Qxuf y)  with respect to a one-one order preserving function 
/  : Fx  - »  Fy  where 6Xuf y (x )  =  0*(x ) U 0 y (/(x )), providing 0*(x ) U 0 y (/(x ))  
exists for all x. For regular forward assignment flows we write X  II Y  since there 
is only one suitable / .
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6.5 Summary

In this chapter the concept of flows was introduced. Properties regarding the structure 

and value set of the flow were defined. In particular a continuum was defined to be a 

dense connected flow.

The flow was presented as a description of the evolution of events through time. This 

is the beginning of the theory the next stage is to define models which can describe 

regular flows.
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Discrete automata

On two occasions I have been asked [by members o f Parliament], ‘Pray,

Mr. Babbage, if  you put into the machine wrong figures, will the right 

answers come out?’ I am not able rightly to apprehend the kind o f confusion 

o f ideas that could provoke such a question.

—  Charles Babbage (1792-1871)

Automata are dynamic relations describing flows of events. In this chapter we will 

define exactly how these dynamics are specified in the case where the flows are discrete. 

Schematically the relation is illustrated in Figure 7.1. This shows a flow of input events 

I  and a flow of output events O related by a machine M  with internal state and a 

characteristic function %. The machine is shown to take input from the current input 

event, the previous input event and the previous output event in order to calculate 

its output. All the automata types that will be presented will be capable of defining 

sensible generating machines, that is machines which produce output flows but do not 

accept inputs.

In a modular modelling framework the way in which models are combined is critically 

important to their overall semantics. The flow machines described in this chapter will 

be composed using a synchronous product based on the one used in E s t e r e l  and 

L u s t r e  etc. This provides a strong compositional semantics which is inherited by the
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Figure 7.1: A discrete automata relating input and output flows through time, 

limit machines.

Automata are presented as descriptions of event flows where a complete event is the 

union of corresponding input and output events. This chapter begins by looking at 

how events themselves are defined.

7.1 Events

You may recall that an event is intended to be a snapshot of the state of the world. 

The world that we are observing in this snapshot is represented by a set of parameters 

which are typically real valued, although they could take values from any set you 

please. These parameters will also provide the machines with the means with which 

to communicate. For this reason they are called signals.

Signals are used both as value stores and communications mechanisms, and in this 

sense they behave very much like a shared memory. Output signal values persist so, 

at each step of a machine’s operation, unless a signal value is explicitly modified, its 

value remains the same as it was on the previous step.

7.1.1 Valuations

The signals in our model are drawn from a set S. An event is defined by a valuation 

which is a function V  : S —>• V from the signal set to some value set V. In fact, the value



set must include the value _L which represents the undefined value which all signals 

take initially, so let us write V"*" — V U { ! } .  The definition of a valuation is given by:
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Definition

A valuation is a function V  : S -> V+ . The domain of F, written D(V)  is the 
set S.

Valuations are typically represented as sets of pairs, so, for example, a valuation over a
defsignal set S =  {x, y} which sets x to 3 and y to 4, would look like: V  =  { (x, 3), (y , 4 )}, 

and of course D { V ) =  {x ,y }.

The set of all valuations is given the symbol £ and the set of valuations Vs over a 

signal set S is £$■ The union of two valuations Vs U Vr is defined simply as their set 

union unless there is a signal s G S fl R  such that Vr {s) ^  Fs(s), in which case the 

union is undefined.

The notion of 0-continuity (introduced in Chapter 6), which expresses continuity of 

parameter change, can be extended to apply to valuations if a distance metric is defined 

over them. This can be defined as follows (in Appendix A a proof is given that this is 

indeed a metric):

Definition

The distance between two valuations Vs, Vg over the signal set S is defined as:

\vsev̂ \ =  Eses \ V s ( s ) - v ^ s)\

We say that the difference between any non-numeric values x  and y is 1 unless 
they are equal in which case it is 0. e.g.

X - X  &  0

(to  € V+ \ {X }) X -  V = X = ' 1

In another version of this work [Westhead & Hallam 96a], the value semantics distin­

guished between signal presence and signal value, just as the semantics of E s t e r e l  

[Berry & Gonthier 92] does. However, this led to an unnecessarily complicated model 

which did not help illustrate the limiting process, and so it fell by the wayside. In this 

presentation of the model the presence or absence of a signal is irrelevant, transitions
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are predicated entirely on signal values.
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7.2 Automata Components

This section describes the automata themselves. The automata description is given 

in three parts: the signal set of input, output and state signals; the value set; and 

the characteristic relation. We will look at each in turn before presenting a formal 

definition of a machine.

7.2 .1  Signal sets

The signal set of a machine M  is notated Sm  h is made up by a union of three disjoint 

signal sets : the input signals Im  the output signals Om  and the state signal £m- The 

state signal is used to store the machine’s state, it is an internal signal which is not 

available to the machine’s environment. Occasionally the E m  may be used to refer to 

the event set I'm  O O m  which are the externally available signals.

There are a couple of notation conventions regarding signals that need to be described.

Let us say that the current event of a machine is described at a point x  in the event
dcfflow (F, F,0).  Now we will occasionally refer to the current event as e =  0(x) and

—̂ (Igf •£—
the previous event as e =  0 (x ). For a signal s e  S from the set S of signals in the 

machine, its value will be represented by s. Finally the notation S will be applied 

to the signal set S when the signal values being referenced come from the previous 

valuation. So, in a sense S =  D (9 (x ) )  and a for valuation V  £ ¿V, F (s) =  s.

7.2 .2  Value sets

The machine’s value set Vm  is the union of two sets of values: V which define the 

values over the signals in E m  and Qm  which defines the set of values the state signal 

can take. In most of the examples in this thesis V will be K although any metric value 

set could be used. The state signals usually range over a set of finite values (this will 

be assumed from here on) although infinite value sets could perfectly well be used.
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7.2.3 Characteristic relation
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The characteristic relation x m  is the meat of the machines description. It is a relation 

between valuations:

XM : X

So x m  relates the values of the previous signals S m and the current input signals Im  

to all the current signals Sm -

If the characteristic relation is a function, then the machine is deterministic. If for all 

combinations of previous event and input, there is an output defined then the machine 

is proactive. It has already been observed that this formulation of flow machines 

removes the distinction between signal presence and signal value which exists in many 

of the synchronous languages. This leads to a simplified semantics, but removes the 

distinction between reactive and proactive machines. For a reactive machine to produce 

an output, at least one input signal must be present. A proactive machine can produce 

an output even when there are no input signals present. Signal presence is not defined 

here and transitions occur based only on signal value.

Definition

A machine M  with characteristic relation x m  can be said to be:

• Deterministic: if Vx £ £ there exists exactly one (x , y ) £ x m -IM US M

• Proactive \/x £ £ *- , s. t. 3(x,y)  £ xmImUS M

It is going to be important to us to be able to compose characteristic relations, so let 

us define a union operation over valuation relations. This union reflects the classical 

composition of signal values in the synchronous product. First we need another piece 

of notation.

def
For a set of pairs (a, b) £ S,a £ A,b £ B,  and a set A! C A let S 4- A' =  {(a, b) £ 

S\a £ A'}.
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Definition

The union of two valuation relations R\ : x £ri and R.2 : £&-> x <?r2 signal
domains d\, d2 and ranges ri, r2 respectively is defined as follows:

(x, y) G Ri U R2 (((x U y) f, di), {y I  ri)) G Ri and 
(((x U y) I  d2), (y I  r2)) G R2.

In order to facilitate the limiting process it is necessary to “unfold” the characteristic 

relation along a flow. The resulting flow is called the realization of the relation.

The characteristic relation in a deterministic machine defines current output value at 

a particular point in time in terms of the current and previous input, and the previous 

output (see Figure 7.1). The realization expresses this global function as a flow of 

functions each of which is tied to its predecessor. The resulting realization flow is a 

flow of functions each of which defines a valuation in terms of all the inputs to that 

point previous inputs and the initial conditions of the machine. In a nondeterministic 

machine these functions are relations. Formally the realization is defined as follows.

Definition

For a characteristic function x  with initial valuation Vo, the realization of x  is a 
forward regular flow (F, A, 6) in which 6 is defined recursively, as follows:Vx G F

0(xo) =f { ( { } ,  Vb)}
0(x) =  {(m, {y i  SM))\{x,y) G xU (9 (x )}

In effect this definition recursively composes the characteristic function along the flow. 

At each point however the output side of the relation is restricted to the current 

signal set. Otherwise the relations at each point would output all the previous signal 

valuations up to that point.

7.3 Flow machines

We are now in a position to define a flow machine.
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Definition

An I /O  flow machine is a triple (Sm ,Vm ,R(xm )) where:

dcf
• Sm  — I m  U Om  U {£ } is a signal set formed by the disjoint union of the input 

and output signals and the state signal.

• Vm  '■ I'm U Q the set of values the signals can take composed of external 
signal values and a set of state values including an initial value qO G Q.

• X m  '■ £ *- x £ s m  , is the characteristic function for the machine. It isSm^Im
restricted such that V(x,y) G x m , (x 4 Im ) =  (y 4 Im )-

Notice that the characteristic function is restricted to ensure that the input signals are 

unchanged on both sides of the relation. The set of state values Q is assumed to be 

finite.

7.3.1 The synchronous product

Two flow machines can be composed using the synchronous product this is defined by 

the following.

Definition

The synchronous product of two flow machines M\ =  (Sm x , Vmx , R(x m x) and 
M 2 =  [Sm2, Vm2,R (x m2) f°r which Omx D Om2 =  01 is defined to be

M JAfa =f  (SM, VM, R(XMl)H  R(Xm2)

where:

• Sm  ■ Im  d— {Im i \ Om2) U (Im» \ OmJ, Om  d— Omx U Om2, £m  d— £,Mi or 
£m2,

dcf dsf
• Vm ■ Vm =  Vm! u Vm2 > Qm =  Qmx x  Qm-2,

There are two obvious ways in which the synchronous product could be defined these 

are either to zip the two realization flows together (as we have done here) or to take the 

realization of the union of the two characteristic relations. However the two definitions 

are equivalent, and a proof of this is given in Appendix A.

1 T h i s  r e s t r i c t io n  o v e r  t h e  m a c h in e  o u t p u t s  is  n o t  e s se n t ia l  a n d  is a v o id e d  in  s o m e  s y n c h r o n o u s  la n ­
g u a g e s  (e.g.  E s t e r e l  ) .  H o w e v e r  it  s im p li fie s  t h e  s e m a n t ic s .
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[stop ¿1 }/  
t \—t + A

[ stop

:/t \= 0

[> iop= l]/

Vm

[s topM]/  
t:=t + A

I M =  { s t o p }  U 
Om =  { t }  U 
{ 0  U {A }  
y  =  I U  {T, 5 }  u 
Qm =  { A , B , C }
{({(£ ,A ), (stop,T}, {(£ ,£ )(* , 0 )}), 

({(£>4), (sio.P>-5}, { ( £ , 0 ) } ) ,
( { (e ,^ ) ,(5 to p ,F ) } ,{ (e ,5 ) ( i ,  * + a )}), 
({(£>-5), (s£op,T)}, {(£, C )}),
m C ) , ( s t o p , F ) } , { ( Ç , B ) ( t M  + A )}), 
( { ( £ , C ) , ( Sf o p , T ) } , { ( £ , C ) } ) }

Figure 7.2: Modelling a stopwatch

A major drawback with this definition of the synchronous product is that it can lead 

to causality problems. The problem is that this product operation does not preserve 

determinism or proactivity. In other words the product of two machines with uniquely 

defined outputs, can have no outputs, or many possible outputs. This is a well stud­

ied problem, the theoretical solution is to define the synchronous product as the res­

ult of a fixed point operation. In practice compile time checks on synchronous lan­

guages pick out these causality problems. For more details see [Halbwachs et al. 93, 

Halbwachs & Maraninchi 95, Berry & Gonthier 92, Berry 95]

7.4 Delta flow machine

This final definition describes the delta flow machine as a flow machine with an addi­

tional internal signal A  which is subject to certain restrictions.

Definition

A delta I /O  flow machine M  is a flow machine with an extra internal signal 
A  G Sm,  A g  I m , Om,  it takes real values so M C V u  and x  is constrained such 
that

0 < min(A)M < A <  max(A)^// 

for constants min(A);w, max(A)j\/f.

The signal A  is added to provide a variable time step. It is conventionally used to



parameterize change in values in particular it defines the step size of the standard 

temporal metric signal t.

Flow machines can be represented as a graph of states connected by transitions. Fig­

ure 7.2 shows the formal description of a simple machine next to the graphical repres­

entation. The machine starts in state A  and immediately moves to state B  setting the 

value of signal t  to zero. Notice how an italic font is used to represent signal value. 

From here the machine loops in state B  incrementing the value of signal t  until the 

input signal stop is set to 1 at which point the incrementation of t  ceases.

The symbol e is used to label empty conditions, effectively it represents the predicate 

T  which is always true.

7.5 Summary

Automata are considered here as defining relations between valuation flows. This 

chapter began by presenting an overview of flow machines. Valuations were formally 

defined followed by flow machines themselves. An example machine was present and we 

then went on to define a composition operator, the synchronous product. The chapter 

ended with a definition of the delta flow machine an extension of the flow machine with 

an additional internal signal.

In the next chapter we begin to look at the mathematics behind the limiting process 

itself.
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8

The search for the uncountable

The infinite! No other question has ever moved so profoundly the spirit 

o f man.

— David Hilbert (1862-1943) 1

To infinity and beyond!

—  Buzz Lightyear2

In this chapter we face the grizzly problem of turning a discrete sequence of sharp points 

into an infinitely smooth continuum. Flows were originally conceived with the idea 

that they could describe both sequences and continua. It is reasonably straightforward 

to see how to construct a discrete machine, which can describe an approximation to 

continuous change, to an arbitrary degree of accuracy. Let us suppose that we can take 

a sequence of such machines which steadily increase in their accuracy. The problem is; 

how to define a robust formal limiting process that makes the jump to the continuous 

machine? For the purposes of this discussion a continuous machine can be seen as one 

which is capable of producing a flow which contains the values of all the real numbers, 

in order.

A naive approach might be to look at the sequence of flows of these machines as a 

sequence of sets of points, which indeed they are, and then take the limit of these sets.

1 in J. R. Newman (ed.) The World of Mathematics, 1956.

2 from Toy Story Walt Disney 1995
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Every step in the sequence adds new values to the flow. Intuitively one might expect 

this to lead to the limit that we want. However it turns out that there will be lots of 

points missing. It is reasonably instructive to understand why, because it motivates 

the more complex limiting process that has been defined instead.

The problem lies in the definition of the limit of a sequence of sets.

The limit of a sequence of sets is defined as the union over an infinite sequence of sets. 

A consequence of this definition is that any value that occurs in the limit must have 

been introduced at some finite point in that sequence. Unfortunately this approach 

cannot introduce all the points that we need. One way to see this is that the number 

of sets in the sequence is countable, as is the number of points in each set. The union 

of countably many countable sets can only lead to the construction of a countable set 

and unfortunately the reals are uncountable.

Another way to see the problem is to consider an example. Suppose that we are taking 

the limit of the simplest of all delta machines, the delta clock, to whose study Chapter 9 

is devoted. The delta clock is a very simple beast with a single signal t  initialized to 

zero and incremented as t := t +A .

Suppose that for each machine the value of A is taken to be a constant such that at 

each machine in the sequence A is divided by two. So the first flow will have values 

(0, Ao, 2Ao, 3A o,. . .) ,  the second flow will be (0, ^  Ao, •..) and so on. Then this 

sequence will only produce limit values of the form —̂  where n G N and A; is a power 

of two.

Using this sort of construction it is possible to construct a limit set containing all 

the rationals. If we start with A  =  1 and, at level n, divide A  by n, then we get 

(0 ,1 ,2 ,3 ...)  followed by (0, 1, | ,. . .)  and then (0, g, |, . . .) .  To show that the

limit contains all the rationals you simply have choose one at random and show where 

it was introduced. So for an arbitrary rational  ̂ if you go far enough along the 

flow in the sequence, this number is guaranteed to be there. On the other hand, \/2 

will not be there at all.

This construction will only model a system with rational numbers. It was argued in 

Chapter 5 that in practice only elegance is lost in restricting a model to the rationals;
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so would this limiting process suffice? Unfortunately it suffers other deficiencies. Most 

notably it is not very robust. Small changes in the values of A  can significantly change 

the ultimate result. For example if you set the initial value of A  to be \/2 instead of 1 

but keep the same descent sequence, then there will be no rationals in the limit values. 

Instead the limit will be composed of numbers of the form for u,v € Z.

The limiting process that was eventually arrived at is far more robust than this. It 

does not even require that A be constant along a flow, simply that the bounds over A 

decrease down the sequence. It also supplies an uncountable limit, and as we shall see 

in the next chapter, the limit of a sequence of delta clocks expresses the whole of the 

positive real number line.

The trick to achieving this limit is to define branching paths, collectively called a comb, 

which connect individual points in the sequence of flows. If there are enough branches 

in the paths, then following these paths to infinity can lead to enough points. Before 

we see how there needs to be a short digression to introduce some new notation. We 

will use strings to provide an indexing over the comb and ultimately give the ordering 

of the limit flow.

8.1 Strings

A string is simply a concatenation of characters taken from an alphabet. For example 

a =  rlr is a string over the alphabet {rl}.  Strings can be concatenated simply by 

juxtaposition so if o' =  11 then oo' =  rlrll and olrl =  rlrlrl. The notation cq refers to 

the ith character in o  and o[i\ refers to the string of the first i characters of a. |oj is 

the length of a string.

If a string is composed of characters which have an ordering defined over them this can 

be extended to form a lexicographical ordering over the strings. For example consider 

alphabet A =  {0 ,1 ,2 ,3 ,4 } we can say that for two strings o, o ’ over A,

o  < o' iff on <  o'n

where n is the first place at which o  and o' differ, i.e. Vi <  n, oy =  o\ and on ^  o'n. If
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Figure 8.1: A piece of a comb cn over the flow sequence X n 

such an n does not exist then

cr <  cr7 iff |cr| <  |c/|

8.2 Combs

In this section the concept of a comb is introduced. The comb provides a structure 

over a sequence of flows X n. The idea is depicted in Figure 8.1. The flows X n,X n+\ 

and X n+2 are depected as horizontal sequences of circles. The comb is a sequence of 

functions cn represented by arrows which map all the points of X n to points in X n+i. 

These links form paths called descents which can be considered as individual limiting 

sequences.

The comb is constructed as a sequence of child functions cn that map the parents - 

members of flow X n, to the children - members of flow X n+\. This is illustrated in 

Figure 8.1. Child functions have three properties they must be :

• isotonic —  that is the mapping preserves the ordering of the two flows

• exclusive —  that is each child has at most one parent, though parents may have 

multiple children.

• com plete  —  every point in every flow in the sequence after the first has a parent.

So the comb defines a function from points in a flow to points in the next flow. The 

child function e(x, i ),i € { 0 , . . . ,  k) maps from a single point x  G X n to a set of k +  1 

children in X n+\. The value k is the reach of the point written r(x).
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Formally, the comb is defined as follows.

Definition

A com b over a sequence of flows Xi =  {Fi, 9{), is a sequence of isotonic child 
functions Cj : Fi x {0..iV} -»  Fi+\. These are functions defined for all x  G X l, for 
some range of values k G {0 ..N}. The reach of x  is defined to be r(x) =  N.  Child 
functions must have the following properties:

isoton icity  c(x, k) fi. c(x ', k') x  -< x '

exclusivity  c(x, fc) =  c(x ', A/) 43- x  ~  x ', k =  k'

com pleteness x  G Xi,i  >  0 3x' G s.t. x =  c(x', fc) for some k.

Points in a comb can be uniquely identified by strings, called comb identifiers. These 

uniquely identify a point by describing a path through the child functions. The first 

character in the string is an index to the flow Xo (also known as the root flow). From 

then on each successive character of the string describes the number of the child chosen 

at that branch. For example the great grand child of the ith point in Xo found by taking 

its j th child, the kth child of that and then the Ith child of that can be described by the 

string ijkl formed from the concatenation of the four integers. This point is notated 

as {ijkl).

If the sequence of flows is infinite the strings can also be infinite. An infinite string 

which describes a path from a point in the flow is called a descent of the comb. Asso­

ciated with a descent is a descent point. The descent points identified by the infinite 

string a  is notated as (a) .  If the flows have values then the descent also defines a 

value sequence. If this sequence converges to a limit, then the value associated with 

the descent point is the limit of this value sequence.

In particular let us identify two special descents, an infinite string of 0’s which repres­

ents a descent down the leftmost path from a point, and the rightmost descent which 

corresponds to always choosing the c(x, r(x)) child at each point. Taking these des­

cents from points in the comb will be very useful in proving properties about combs. 

The rightmost and leftmost descents from the point (a) are notated (crL) and ( crR ).

The set of infinite descents can be thought of as analogous to the decimal expansion of 

the reals, except that there are always ten choices of character for each place in that



expansion where as in a comb the number of children at each point in a descent can 

vary arbitrarily.
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Definition

A com b identifier of a comb Cn defined over a sequence of flows Xi, is a finite 
string ct which can be defined recursively as follows: a is a comb identifier if \/i >  0

xo e *o ,
(<7o) =  CTo,
CTj G { 0 , . . . ,  (r((cr[i -  1 ])))},and (ct*) =  Ci_i((cr[i -  1]))

Definition

A string ct is a descent if it has unbounded length (i.e. there is no N  such that 
N  > |ct|) and Vn, cr[n] is a comb identifier.
Associated with a descent is a descent point ( a ) . The value assigned to this point 
is called the descent value, 0((er)), and is defined as the limit of the sequence of 
values 0i((ct[1])), 02((cr[2] ) ) , . . . ,  if it exists.
The rightm ost descent from any point (ct) is an infinite string aR where aR =  
r((cr[m — 1])), for all m > n. Likewise the leftm ost descent is a string aL where 
ct^ =  0 for all m > n.

Having defined the infinite paths through the comb we are now ready to define the limit 

of a comb over a sequence of flows. This is a flow made up of the descent points, with 

a total ordering defined over them by their descents and a value, if it exists, defined to 

be the corresponding descent value. It should be clear that this satisfies the definition 

of a flow.

Definition

The lim it -X îm o f  a com b Cj over a sequence of flows X.t, is a flow 
defA’lim =  (Alim, l̂irru Ĥm) consisting of root descent points

Ajim =  { (c t )  | Vn >  0,ct„ G { 0 , . . . ,  [r{{cr[n — 1 ]))) }  and ct +  a[n -  1}R} 

with an ordering defined as

(cr)  ^ iiin (p ) -t» ct < p

The function 0nm is defined, where it exists, as mapping the descent points (cr) to 
their respective descent values. And T>\\m is the set of all these values.

Notice that at every stage the rightmost descents are removed. This is because those



descents lead to a duplication of values in a well behaved comb, just as 0.999... is a 

decimal duplication of the value 1. The removal of all rightmost descents ensures that 

every value in a strictly monotonic limiting flow is uniquely defined by a descent (see 

proof of uniqueness of descents of the continuous clock flow — Lemma 9.2.)

A useful refinement of this definition is to look at the way in which values approach 

the limit across the comb. If the limits of values are approached at very different rates 

the comb can converge unevenly. For example, in the worst case, all the points in the 

delta clock can converge to a value of zero.

This is very similar to the situation that arises in the analysis of limits of functions. 

The solution there is to define a special kind of convergence: uniform convergence. If 

the sequence converges uniformly to the limit, then all the points approach the limit 

at a similar rate and some of the collapsing points are avoided.

Definition

Let X n be a convergent sequence of valuation flows, and Z\im be any contigu­
ous subflow of -X)im which is closed at both ends. Then a comb C{ is said 
to converge uniform ly if, for any e > 0, there exists an N  such that V(cr) £ 

|0n((o"N)) © ^iim((cr))| < U Vn >  N.  Uniform convergence is also defined 
over real valued flows, in which case \dn((a[n])) ~  #iim((<T})| <  e, Vn >  N.
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When a limit is being taken of a Delta machine there is a second related problem that 

can cause adverse effects on the values of final limit flow. In this case, there are two 

limiting processes going on simultaneously: the limiting of the flow points with the 

comb, and the limiting of the values of the bounds over A. With no way of relating 

these processes to one another it is easy to end up with combs that collapse in places 

because they don’t branch fast enough with respect to the decreasing size of A. Such 

combs are difficult to analyze, so we define a class of combs that avoids the problem.

The critical property is the spread of each point which intuitively measures the sum 

of the A values at each ancestor of that point in the limit. In the delta clock this 

corresponds to the difference between the rightmost ancestor’s value and the leftmost 

ancestor’s value.

Figure 8.2 illustrates the idea. Spread is defined using the concept of descendants. The
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Figure 8.2: The calculation of spread Sp((cr)) for a point (a)

ith descendants of a point are the set of its ith generation ancestors. The exploded area 

in Figure 8.2 shows the first set of descendants of the point (a). The sum of the values 

of A  at each of the descendants at each level can be found (labelled as E i , . . . ,  S n in 

Figure 8.2). The spread of the point, Sp((cr)), is defined as the limit of these sums as 

the generations tend to infinity.

Spread is said to be even if for some flow Xi in the sequence, for any subflow of X{ 

there is a minimum bound M  such that every point in the subflow has a spread larger 

than M .

Definition

The descendants ej({a)) at level j  of a point (a) in a comb over a sequence of 
flows X n where (a) € X n so |cr| =  n, can be defined as follows. Let I  be the set 
of all comb identifiers with prefix a (i.e. ip E I  <=$ ip[n] =  a. Then ej({a))  is the 
set {ip G I 1 \ip\ — n +  j } .  The sequence eo((cr)),. . . ,  ei((cr)),. . .  is the descendant 
sequence.
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Definition

Consider a sequence of valuation flows, X n, defined over a signal set S s.t. A  E S. 
The spread Sp((cr)) of a point (a) E X j  with respect to a comb c over X n is given 
by

Sp((cr» =  lim ^  6n( y ) ( A )
n—̂ oo z J

yeen((a))

The comb over the sequence {X j} is said to be spread evenly if Vn, 3M  >  0 
such that Sp(x) >  M, \/x G Zn, where Zn is any contiguous subflow of X n which 
is closed at both ends.

One final important definition associated with a flow is the sequence of children in each 

descent. Such a sequence is called a branching sequence, and some of the results we 

obtain will require properties of the branching sequence.

Definition

The branching sequence {bn} for a descent a from a point (p) is an integer 
sequence of the number of possible branches at each point in the descent, i.e.
K  =  (r((crp[n]))).

Having defined combs and described various features of them, I will now go on to 

present some general results about the structure of the limit flow and about its values. 

Then I  will use these concepts to arrive at a definition for continuous I/O  machines at 

the end of this chapter.

8 .2 .1  L im it flow  s tru ctu re

The first result is to show that providing all the descents in comb have enough children, 

the number of points in the limiting sequence will be uncountable. In fact not many 

children are needed, but every branching sequence must have an infinite subsequence 

in which every point has at least two children.

T h eorem  8.1 In convergent comb cn over a sequence of flows X n, if in any branching 

sequence {bn}, there is an infinite subsequence {bi} such that for all i bi > 2, then the 

limit flow Xiim is uncountable.



A complete proof of this result is given in Appendix B, with other results from this 

chapter. The idea of the proof is fairly straightforward. It can be seen that each descent 

point is identified uniquely by its descent. This is clear from the definition of ordering 

of the limit points, since two points are only equal in the order if they share a descent. 

It is then shown that these strings are uncountable, by the process of diagonalization, 

the same technique used to show that the real numbers are uncountable.

The next two lemmas are consequences of the isotonic property of child functions in 

combs. The first result demonstrates that if two descents are distinct at a point in 

the flow sequence, then their limit points will be in the same order that each of their 

respective ancestors were.

Lem m a 8.2 (Monotonicity of limit flow points) For a convergent comb Ci over a 

sequence of flows X n,

3n0, (cr[n0]) -<: <a'[n0]> (a ) -< (a').

P r o o f  Because the child functions are exclusive and isotonic then (ojno]) -< (cr'frio]) ^  

Vn >  no, (cr[n]) -< (a'[n\). Then see that the ordering of the points (cr), (a' )  € Xyim 

is based on string ordering, as it is in any of the flows in X n. This ordering is based 

on the first difference in the strings, which must occur at some finite n if it is to occur 

thus:

Vn, a[n} <  cr'[n] a < o'

□

8 .2 .2  L im it flow  values

The next lemma is related to the previous one but reflects orderings on values rather 

than on points. Notice that it is a slightly weaker result since two branches that 

strictly differ at each level can still tend to the same value. To simplify the notation 

a shorthand is used in the next lemma: the value of a signal s at a point (a) in a 

valuation flow is normally written 0({cr))(s), but this will be shortened to (cr)s (and 

(cr)s for points in the limit).
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Lem m a 8.3 (Monotonicity of limit values) For a convergent comb Ci over a sequence 

of valuation flows Xi,\fn >  1
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Vn, {a[n])s < <CT'[n])s => (<r)s <  ( a ' ) s .

P r o o f  The statement is established by contradiction. Assume that Vn, (cr[n])s < 

(a'[n])s but (or)s >  (o-/) s . Let (<x)s — (cr')s =  S. By convergence of the two 

sequences, it must be possible to find an N  such that Vn >  N

(ff[n])s >  (o-)s -  i

and

but ( a ' ) s +  f  =  (cr)s -  f  so

+  (CT'>s >

(a[n])s > <cr)s -  -  >  (a '[n ])£

giving a contradiction. □

The last result of this chapter provides conditions under which the limit flow of a comb 

will be ^-continuous at a point. You may recall from Chapter 6 that a 0-continuous 

flow was a flow in which the values along the flow change smoothly. Intuitively, the 

theorem says that for a point (a), providing the comb converges uniformly and the 

distance between the values of (cr[n]), and the values of its successor and predecessor 

continue to decrease with n, then the limit flow is ^-continuous at the point ( a ) .

T h eorem  8.4 The limit X\\m, if it exists, of a sequence of valuation flows X n with 

respect to a comb cn is 9-continuous at a point (a )  G Aijm if:

Ci converges uniformly

for any e >  0 there exists N  such that for all n >  N.

9{{a[n])) Q 6{(a[n])) <  e and < e



A full proof of this result can be found in Appendix B. To prove continuity it is 

necessary to find points on either side of the point (cr) which are arbitrarily close in 

value. This is done by considering the sequences of the point’s neighbours which are 

sufficiently far down to lead to suitably close points.

That ends our investigation of general properties of combs. The chapter is concluded 

by providing a definition of a continuous machine which makes use of these limits.

8.3 Continuous I /O  machines

We are now ready to define the limit of a sequence of flows, and following from this, 

the limit of a sequence of delta flow machines. This definition is significant since most 

of the rest of the thesis is devoted to demonstrating its validity

Definition

For a sequence of flows X n, let the set of combs c which converge uniformly with 
even spread over X n be called C. Then the limit of X n exists if the set of all flows 
defined by the limits of c € C is globally equivalent. In this case it is taken to be 
any one of these limit flows from that set.
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An important aspect to of this definition is its generality. The limit of a sequence of 

flows is defined to be a limit over all combs which converge uniformly with even spread. 

The following questions must be asked:

• Do any such combs exist?

• And, if they do, do they produce the same limit?

If the answer to either is no then the limit is not well defined. From this definition the 

limit of a sequence of delta flow machines is simply:

Definition

The limit, if it exists, My,m of a sequence of delta flow machines 
=  (Sm ,Vma ,R (x )) is a continuous I /O  m achine Myim =

(SMa \ {A } ,  VMA,R{x)\im)- Where R{xhm  is the limit of R(x),  if it exists.

Proving that this definition for continuous machines is valid for a wide range of delta



machines is the task of the next two chapters. In the first, we look in detail at the 

limiting process as it is defined for the simplest non-trivial delta machine, the delta 

clock. These results for the clock are then built on in the subsequent chapters to show 

that the definition applies to more sophisticated machines.

8.4 Summary

This chapter began the investigation of a limit over Delta flow machines. The chapter 

began by introducing combs and a number of important concepts associated with them. 

Then their structural properties were investigated, and under fairly loose constraints 

a class of combs was found which had uncountable limits. Properties of flow value 

were investigated next, in particular a class of combs in which the parameters changed 

continuously (0-continuous) was described. Finally the definition of a Continuous I/O  

machine was presented.
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9

The continuous clock

When your watch gets out o f order you have a choice o f two things to 

do: throw it in the fire or take it to the watch-tinker. The former is the 

quickest.

—  Mark Twain1

This chapter investigates the definition of a continuous I/O  machine by looking at 

the simplest example, the continuous clock. All the results in this chapter lead up to 

the final result, Theorem 9.5, which states that the continuous clock is well defined. 

This involves first proving that at least one comb exists for a suitably general class of 

sequences of delta clocks, and then demonstrating that all combs over these sequences 

give equivalent limiting flows.

The existence of the continuous clock is important for the development of this theory. 

In principle continuous machines could be defined to be reactive, taking the positive real 

number flow ||M+ || as a input and producing trajectories as output. The existence of 

the continuous clock removes the need for an input to define the topology of the output 

flow and means that continuous machines can, as originally intended, spontaneously 

produce output.

1 Following the Equator, P udd’nhead W ilson’s New Calendar
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e / t : = f +  A

0

Figure 9.1: A delta clock

9.1 The clock definition

The continuous clock is defined to be the limit of a delta clock which, as we have 

already seen, has a single initialization transition which sets t  to 0, and a single looping 

transition which increments the value of t by A each iteration. This is shown in 

Figure 9.1, formally it is defined as follows.

Definition

The continuous clock is a machine C\\m defined as the limit of the sequence of delta 
flow machines Cn =  (ScA, VcA, Tn) called delta clocks, where ScA =  {t, £, A VcA =
M U {g0, g l} , and Tn =  R (x) and

X =^_{({U .9O )},{(t.O ),(f>0l)})>

( { (7 ,g i ) } , { ( t , t+A ) , (C ,g i ) } ) }

Notice that the signal values lf  are presented in italics, whereas the signal names ‘t ’ 

are in Courier font.

9.2 Validating the definition

Having formally defined the continuous clock we must now begin the process of proving 

that the limit is well defined for some non-empty set of sequences of delta clocks. There 

are two stages to this process. The first is an existence proof which involves finding 

a non-empty set of sequences of delta machines for which at least one comb can be 

found which meets the criteria for a limit sequence. The second stage is to show that 

all sequences that meet these criteria lead to equivalent, well defined, limit flows.
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9.2.1 Finding combs

82

A very important measure for assessing any limiting process is its generality. In this 

case: how big is the set of sequences of delta clocks over which the limit is well defined? 

Consider, for example, the limiting process that defines a Riemann Integral. This takes 

an approximation of the area under a curve as the sum of a set of rectangles that are 

drawn underneath it, called the Riemann sum. As the width of the rectangles decreases 

to zero the difference between their area and the area under the curve tends to zero, 

so that the approximation becomes exact. Part of the reason that this technique is 

so well accepted as a theory of integration is its generality. The set of sequences of 

Riemann sums over which the limit is well defined is very large. When integrating a 

region of a curve, any set of rectangles can be used at each stage so long as they fit 

side by side in the region under consideration and the top of each one intersects with 

the curve at some point. If the maximum width of the rectangles at each stage tends 

to zero, their sum will tend to the area.

The point is that Riemann did not insist that the rectangles were of equal widths 

or that they tended to zero at the same rate. Either of these conditions would have 

made the final result less compelling. One of the strongest results of this thesis is the 

generality of the limiting process, which is comparable to that of Riemann’s limiting 

process.

Let us define a broad restriction on sequences of delta machines. For any machine, the 

values of A are bounded; let us insist that these bounds converge down the sequence. 

Machines which satisfy these restrictions are said to have convergent delta bounds

Definition

A sequence of delta flow machines Mn is said to have convergent delta bounds, 
if for all e > 0, 3N  such that max(A)„ < e, Vn > N.

So the first step in validating the definition is to show that with this general restriction 

on sequences, a comb can always be found which meets the required criteria. In fact, 

the result states that for any sequence of clocks with convergent delta bounds there 

is a subsequence of them over which a clock can be defined. This is a weaker result



that stating that all clocks with convergent delta bounds have limits but the proof 

requires tighter constraints on the changes in A, in particular we need to ensure that 

the maximum value of A  at each flow is half the minimum value of A  for its predecessor.

Theorem 9.1 For all sequences of delta clocks Ck which have convergent delta bounds, 

there exists a subsequence of clocks Cn which have a well defined limit: the continuous 

clock Cnm.

The proof of this result is involved, but not very instructive. It involves defining, for 

the general case, a subsequence and corresponding comb, and the proving that these 

have the required properties. It can be found in Appendix C.

9.2 .2  Limit equivalence

Having shown that suitable combs exist the next step is to show that the set of limits 

over all of them is globally equivalent. This process is simplified because we already 

know that the flow we are expecting is a valuation flow intuitively equivalent to the 

positive real number flow ||lR+ |i. To prove that this is indeed the result of the limiting 

process we begin with two lemmas. The first shows that each descent value is unique 

and the second proves that these values are unbounded.

Lemma 9.2 Any two distinct points in the continuous clock have different values.

The proof relies on the fact that if two limit points are different then either they 

are from different root points or their descents differ. An argument is presented that 

demonstrates, that in either case, because of the even spread of the flow, the limit 

points must be separated by a finite value, and so must differ. The proof is shown in 

full in Appendix C.

Lemma 9.3 The values of points in the flow T\\m are unbounded.

The proof of this result uses the fact that the root flow is unbounded and the comb is 

evenly spread. The full proof is in Appendix C.
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These lemmas help us to prove the following theorem, which states that the limit 

contains all the positive real numbers.
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Theorem 9.4 For any ro E U {0}, there is a point (a) E Tnm in the continuous 

clock such that 0iim((cr))('t ) =  i"o-

This proof involves choosing an arbitrary real number ro and demonstrating that there 

is a descent whose values become arbitrarily close to it. The descent value is the limit, 

of this sequence, so must be ro- The details can be found in Appendix C.

Finally the main result of the chapter which ties together all the results so far, and 

shows, as promised, that the limit of any convergent sequence of delta clocks is uniquely 

defined as the continuous clock.

Theorem 9.5 For any sequence of delta flow clocks with convergent delta bounds, the 

limiting continuous clock is well defined.

Proof First at least one example of a clock exists (from Theorem 9.1).

Secondly it is necessary to show that any two limiting combs cn,dn over a set of delta 

clock flows will produce equivalent limits. This is the case because any flow in the limit 

of a sequence of delta clocks is equivalent to the flow X  — ([0, oo), < , A x.{(t, x )} ). Since 

for x  <5 X , y  G TUm the mapping

<?(*) d- Y  &  / ( x )  =  0iim(y )(t)

is:

• well defined (since values are unique Lemma (9.2)

• covers R+ (Theorem 9.4)

• is isotonic by monotonicity of values (lemma 8.3).

Therefore, up to flow equivalence, there is only one flow defined. □



As a corollary to this result it can now be proved that the output of the continuous 

clock is a continuum2.
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Corollary 9.6 The history of a continuous clock is a continuum.

(LgJProof Clearly the flow X  =  ([0, oo), <, / ( x )  =  {(t , x )} , [0, oo)) is dense and connec­

ted, and therefore a continuum. The proof above shows the history of the continuous 

clock to be equivalent to this. □

9.3 Summary

In this chapter the continuous clock was defined formally, and the definition validated. 

The validation involved demonstrating the existence of a general set of delta clocks for 

which a suitable comb was guaranteed to exist, and then showing that all such combs 

lead to an equivalent limit.

The next chapter continues the investigation into continuous I/O  machines by building 

on this result, to define machines which will express continuous functions of time, in­

tegrations, dynamical systems, and ultimately allow for the construction of interactive 

machines.

2 It would be nice to be able to prove this result over limit flows of some more general class o f combs. 
Unfortunately the proof of completeness (which is the missing piece) over reals requires the axiom 
of completeness. Since we have no such axiom, and cannot reasonably add one to this invented 
structure, this result could not be established earlier.
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Generating machines

I have always hated machinery, and the only machine I ever understood 

was a wheelbarrow, and that but imperfectly.

— Eric Bell (1883-1960) l

So far, it has only been shown that the definition of the limit of a delta machine can be 

applied to a sequence of delta clocks. This chapter builds on that result to demonstrate 

how the definition of continuous machines can be applied to machines with output 

flows which can be described as trajectories (functions of time), dynamical systems 

and integrator functions (functions involving integration of parameters). Each of these 

results builds on the final result of the last chapter by showing that the limits of these 

machines are well defined for any sequence of delta bounds and corresponding comb 

for which the continuous clock is well defined.

10.1 Trajectories

In this section we look at machines with output flows defined as trajectories, that is 

functions of the signal t (see figure 10.1 ).

u := / ( f ) .

1 In H. Eves Mathematical Circles Adieu, Boston: Prindle, Weber and Schmidt, 1977.
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£/ u:= f ( t )

Figure 10.1: A trajectory machine (the assignments to t are assumed)

The aim of this section is to show that, with certain restrictions on / ,  the limits of 

machines containing such assignments are well defined. The continuity properties of 

the outputs of these machines are also investigated and it is demonstrated for example 

that a flow defined in this way is ^-continuous if /  is a continuous function.

The flows that we are about to encounter involve increasing numbers of signals. In 

order to help deal with this let us introduce a piece of flow notation, the flow component 

X (s ) ,  which refers to a flow of the values (note: not valuations) of a single signal ‘ s ’ .

Definition
def

For a valuation flow X  =  {F,fl.,0), a flow component X (s ) is defined to be 
X (s )  (F , A, Ax.0(x)(s)).

Associated with this definition is a small lemma which shows that if all the components 

of a valuation flow converge, then the whole flow converges. The proof is straightfor­

ward, and given in Appendix D.

Lemma 10.1 For a sequence of valuation flows X n over a signal set S, if Vs E 

S ,X n(s) converges then so does X n.

The next result shows that a delta machine that describes a simple trajectory of a 

continuous function has a well defined limit for any comb and delta bounded sequence 

over which a delta clock would converge. The theorem refers to a sequence of delta
defflow machines Mn =  (qO,V,S,Xn), like that shown in Figure 10.1, defined over the 

signal set S == {11, t , A }.

Theorem 10.2 For the sequence of machines Mn if f  is continuous then for any 

comb over which X n(t) converges, X n also converges to a limit Xijm in which the 

values of the signal u are defined as the trajectory f (t) .



The proof of this can be found in full in Appendix D. It involves showing that the 

valuation sequences which contain t  and x converge as the value of t converges.
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10.1.1 Continuity of trajectories

Before moving on to look at dynamical systems there are a number of corollaries 

regarding the continuity of the limit flow X{\m that lead on from the last result. The 

relationship between continuity of assignment functions and 0-continuity of the flows 

is very important since it is not until Chapter 11 that we will look at how to introduce 

discontinuities into the flows.

defThese results refer to a second machine M'n =  (S',V, X'n), which is very similar M n
defexcept that there are additional signals v and w so S' =  S'U {v, w}. As before the value 

of signal u is given by u := f ( t ) .  Here the value of signal w is described as a function 

of the signal v given by w :=  h(v).

C orollary  10.3

1. The flow X[im(u) is 9-continuous (except at sfari(A1/im)J iff f  is continuous.

2. If X(-m(v) is 9-continuous then it can be described as a continuous trajectory 

where v =  g(t) for a continuous function g.

3. The flow A/- (w) is 9-continuous (except at start(X(m)) if h is continuous and v 

is 9-continuous.

The proofs for these, unsurprising, results are in Appendix D along with the proof of 

the next lemma which extends the continuity result to valuations.

L em m a 10.4 In a dense value flow Aiim over a signal set S, ¿/Vs E S, Aijm(s) is a 

9-continuous flow then A[jm is a continuous flow.

10.2 Dynamical systems and integrators

In this section we extend the limiting process to machines which contain dynamical 

systems. Dynamical systems are extremely important in modelling all kinds of physical



systems. Control engineering depends heavily on the mathematics of these equations.

In general a dynamical system can be modelled by the limit of a machine with signals 

defined by expressions of the form:

u :—u + A / ( e ) .  (10.1)

where e is a valuation of all previous signal values including u .

The following result establishes criteria under which the limit of some of these machines 

is well defined. It refers to a sequence of delta flow machines M n with output flow X n 

and signal set S with { t ,u }  C S where, the value of u is assigned by the expression:

u := u  + A / (  t , u)

Theorem 10.5 The limit flow Xiim exists for any comb which converges over the 

delta clock if f  has a bounded partial derivative with respect to its second variable and 

if the solution of the differential equation:

rjni
—  =  / (* ,« )  (10.2)

has a bounded second derivative. Furthermore the flow it describes satisfies equa­

tion 10.2.

The proof makes use of a standard result in numerical analysis. In effect the delta 

machine is calculating an Euler’s method approximation to the differential equation. 

Under the conditions in the theorem, the error in this approximation is bounded by a 

constant multiple of max(A) and so the result will tend to the required limit. More 

details are given in Appendix D.

It is reasonably straightforward to extend this result to the more general case in equa­

tion (10.1). Applying Corollary 10.3 and Lemma 10.4 any continuous valuation can be 

rewritten as a trajectory. Once expressed as a trajectory, Theorem 10.5 can be applied.

Let us introduce here a piece of notation. A dynamical system taken to be the limit 

of an expression like
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which, at the limit will conform to the equation:

du u  \
i t  =  / (e)

Since the delta machine is describing an assignment to u , and that assignment is an 

integration, this limit will usually be written:

Integrator functions are a special case of dynamical systems where signals have assign­

ments of the form

in which a is a valuation which does not containing u or any signals whose values 

depend on u. The above result applies to integrators without modification. However a 

separate proof of the limit of integrator assignments is offered as Theorem D .l which 

can be found in Appendix D. This proof uses the concept of divider points which is 

not introduced until Chapter 11.

As a final note to conclude this section, it is worth pointing out that the continuous 

clock is a simple example of an integrator system, in which / ( )  '= 1 thus t := f  1. In 

other words it is an integration over a constant unitary rate of change, and so makes 

the natural choice for a global temporal metric.

10.3 Summary

In this chapter the definition of a continuous machine was extended from clocks to 

apply to functions of time, integrals and dynamical systems. In the next chapter the 

limit is taken one stage further and applied to machines which not only output values 

but also accept input.

u := u  + A f ( a )
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Filling in the holes

Time sneaks up on you like a windshield on a hug.

—  Jon Lithgow

In this chapter we consider how to handle discontinuities in flow values. So far we 

have considered generator machines which deal exclusively with continuously changing 

parameters. Since the state of a machine is represented by a set of discrete valued 

signals and discrete valued signals cannot change continuously this has actually meant 

that, excluding the initial state, these machines have been restricted to a single state.

A discontinuity is a point in the flow at which the values jump, so the values imme­

diately before it and the values immediately after it do not meet. The discontinu­

ities that we will consider will be isolated so that the points on either side will be 

^-continuous and so present no problem to the existing limiting process. The trouble 

is that some combs will find these points to have values meeting those on the right 

hand side (right-continuous) and some will have them meeting the values on the left 

hand side (left-continuous). The limit flow only exists if the set of all limits is globally 

equivalent and if the combs do not agree on the values of these points of discontinuity, 

the limit cannot be defined.

To begin with it will be demonstrated that the limits of the machines that we have 

seen so far are only affected at the points of discontinuity themselves. Next we will 

consider how the limit can be redefined to exclude the values at these points. The last
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Figure 11.1: A machine with a discontinuity (the assignments to t are assumed)

part of the chapter will then present how to fill in the missing values.

We will only consider discontinuities caused by state changes explicitly. However most 

of the results will be sufficiently general that they would apply to discontinuous traject­

ories or dynamical systems without modification. Furthermore any sort of discontinuity 

can be effectively modelled with a state discontinuity.

11.1 Divider points

Let us begin by defining the sequence of points at which the discrete change occurs 

that leads to the discontinuity. We’ll call these points divider points.

The definition refers to the general state change depicted in Figure 11.1. This shows 

a machine fragment Mn =  [V, S, X n) with a signal set S with { t ,u }  C S , in whose 

output flow X n, the values of the signal u are defined with respect to an assignment 

u :=  a  in state q and as v, :=  ¡3 in state q' after the predicate -k becomes true. The 

value of u on the transition between the two will be undefined at the limit since this 

is the point of discontinuity.

Notice that all state changes will look like this because by assumption there can only 

be at most finitely many discontinuities in any closed bounded interval of time. So the 

machine must spend some non-zero period of time in a state and therefore, each state 

will have to have a loop in it which is executed for some nonzero interval of t.

Definition

In each flow X n there is a point at which n becomes true and the assignment to u 
switches from a  to (3. Let us call this point k„  E X n a divider point for u. We 
insist that state signals are right-continuous (see section 11.3) so let E Wim 
be the point at which n becomes true in -Xjim.



The next definition identifies an important property of divider point sequences, that of 

being constrained. This is necessary to prove that each discontinuity only disrupts the 

limit at a single point. This definition uses the value of )(t). Now the point

k-Hm wifi exist but since it is a discontinuity it will not have a well defined valuation 

there. However the clock variable t  contains no discontinuities and were we to constrain 

the flow of the machine to this signal, it would therefore have a well defined limit. So 

0i i m ) ( t ) is, in fact, a well defined value.

Definition

In a sequence of flows X n successive divider points for a signal u can form a 
sequence k“^. Such a sequence is said to be constrained if there exists an M  
such that

M k “ l/J)(t) -  6>lim( k ^ ) ( t )  < max(A )nM
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11.1.1 Trajectories

The divider point thus marks a discontinuity in the state valuation of the machine. 

This may be a discontinuity in the signal u. It is possible that the assignment a  and 

the assignment f3 meet at the value k , but in that case the flow is continuous and there 

is nothing further to do so let us assume the worst. The next result shows that even if 

kiim is a discontinuity, then if a is a trajectory the limit flow is convergent up to ki;m. 

Similarly if /? is a trajectory then the flow is convergent from knm.

Lemma 11.1 For the general transition depicted in Figure 11.1. Where the sequence 

of divider points k°^ for u is constrained.

• If a  is a continuous trajectory f ( t )  then for any comb c which converges over 

X n{t), the limit Xiim(u) is well defined up to (but not necessarily including)
l«l/3 rz y,. 

lim  e  l lm ’

• If (3 is a continuous trajectory g(t) then for any comb c which converges over 

X n(t), the limit X um(u) is well defined from (but not necessarily including) k“]̂  6 

- ĵim •



The proof of this result (given in detail in Appendix E) shows that the points either 

side of a change in the mode of a machine can be well defined at the limit.
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11.1.2  Dynam ical systems

Discontinuous dynamical systems provide less of a problem. Because of the way in 

which the limit is described for a dynamical system, it is clear that the flow up to a 

constrained divider point will be well defined. It simply remains to show that the flow 

from a constrained divider point will be unaffected. This situation is dealt with in the 

extension to Theorem 10.5 in Appendix D. In essence the addition of a divider point 

adds an extra error term, but because it is a constrained divider the term tends to zero 

neatly, and uniform convergence is unaffected.

11.2 Limit flows

So the limit of flows up to a discontinuity, Sub~<̂i (X\[rn), and from a discontinuity, 

Suby ^ (X i;m), are well defined. However in order to complete the description of con­

tinuous generating machines, it is necessary to provide a definition of the limit that 

can cope with a finite number of discontinuities in any closed bounded interval of time.

The definition is in two parts. The first part provides the structure of the flow, and 

defines the point values where they are 0-continuous. This is analogous to what we 

have already seen, except that the points of contention, the discontinuities, are left 

undefined. The second part fills in these missing values.

To achieve the first part it is necessary to define a new type of equivalence. Two 

uncountable flows are equivalent almost everywhere if they differ by, at most a countable 

sequence of points.
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Definition

Two flows X , Y, each with uncountably many points are said to be equivalent 
almost everywhere written X  =  Y , if SSx y  C X, S yx  C Y  such that

X  \ S xy  =  Y  \ SYX

and the subflows: (Sx y , ^,6)  and {Syx,  A, 9) are regular. The smallest such set 
Sx y  is called the set of nonequivalent points (of X  to Y)  in which case flow 
X  \ S xy  is called the equivalence flow.

Notice that the equivalence flow is uncountable, since the set of nonequivalent points is 

regular and therefore countable. Removing a countable number of points (a null set), 

from an uncountable one leaves an uncountable set.

From this definition we can construct a corresponding definition of global equivalence 

over a set of flows.

Definition

A set of flows R, each with uncountably many points are said to be globally 
equivalent almost everywhere , if for any flow X  e R

X  =  Y, VY e R

dsf
such that P x  =  U y e i i ^ y  and the subflow (Px, A, 9) is regular. The set P x  is 
called the set of global nonequivalent points (of X  over R). The flow X  \ Px  
is called the global equivalence flow of R.

Before we use this new definition of global equivalence to fix the definition of flow 

limits, it is necessary to prove that the global equivalence flow is a well defined object 

i.e. for a set of flows R  that are globally equivalent almost everywhere, there is 

a single global equivalence flow defined above. The following result gives this for 

piecewise ^-continuous valuation flows, that is, valuation flows which are ^-continuous 

at all but a finite number of points in any closed bounded interval, and either left or 

right-continuous at those.

Lemma 11.2 For a set of uncountable piecewise-9-continuous valuation flows R  

which are equivalent almost everywhere, the global equivalence flow is well defined.

The proof of this is given in Appendix E. It involves establishing that for any two flows



taken from R, the definition of the global equivalence flow gives an equivalent result.

There is a potential theoretical problem in removing the set of global nonequivalent 

points. Even if each comb has a null set of isolated discontinuities, there are almost 

certainly uncountably many suitably convergent combs, and the union of uncountably 

many null sets may be non-null. This could result in a contiguous stretch of the 

flow being undefined, rather than the expected isolated points. Of course such a 

set of combs would fail to satisfy the definition of being globally equivalent almost 

everywhere, because the global nonequivalence points would be non-regular.

It is important to notice that this situation can only arise for machines which do not 

have sensibly defined limit flows. The reason is that uniformly convergent combs with 

even spread cannot introduce discontinuities into the limit flow. This is a corollary of 

Lemma 11.1. Therefore the only discontinuities in the limit flow are present because 

the delta machine is not waiting a nonzero length of time in each state or because of 

the use of discontinuous functions.

Having established that this definition is sound, let us refine the definition of the limit 

of a sequence of flows.

Definition

For a sequence of flows X n, let the set of combs c which converge uniformly, with 
even spread over X n be called C . Then the limit of X n, exists if the set of all flows 
defined by the limits of c E C  is globally equivalent almost everywhere. In which 
case it is taken to be any one of these limit flows from that set and redefining the 
values of the global nonequivalent points, to ‘_L’ .
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This definition leaves undefined values in the flow. In the next section we see how to 

provide definitions for these values.

11.3 Filling in the holes

In this section we discuss the conventions used to define the values of the nonequivalent 

points in a limit flow. All points are instantaneous in time so from one point of view 

the value of isolated individual points is not very significant for a physical model. On 

the other hand these discontinuities are the points at which a discrete controller can



read the machine’s parameters (as we decided in Chapter 4), and so from that point 

of view, the values are critical.

Fortunately, there is a very natural way to decide what a point’s value should be. 

There are two principal candidates: either the flow should be left-continuous and meet 

up with the continuous values to the left or it should be right-continuous and meet up 

with the values to the right.

For most signals it is up to the designer of the machine as to whether its value should 

be left or right-continuous at a point. However, there is a special case: the value of the 

state signals at a discontinuity should always be right-continuous if the definition of a 

continuous machine is to retain the conventions of its discrete delta machine parents.

The value of a point at a state discontinuity is reflected by its value on the state 

transition between different states. In order for this to make sense in the discrete case 

the value of the state signals on the transition itself will be those that define the new 

state, the previous values will be those that define the old state. If this is to be retained 

in the limit the state signals will always be right-continuous.

11.3.1 Left continuity

Left continuity is the most straightforward to demonstrate in a continuous machine, as 

shown in Figure 11.2. This shows a looping transition in state qO predicated by [x <  1] 

which when the predicate on the state transition becomes true (x  =  1) the transition 

to q 1 is taken, whereupon the value of x is immediately set to zero.
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[x < \ ]/ x :

Figure 11.2: A left-continuous state transition

Left-continuous discontinuity occurs whenever the assignment to a signal on a state 

transition is the same as the assignment on the looping transition from the state that it



left. In the case of ambiguity, a left continuous transition can be indicated by notating 

the assignment on the state transition with a superscript (I), as in: :=  f  1

Values at left-continuous discontinuities are defined as the supremum of the flow up to 

the point of discontinuity.

11.3.2  Right continuity

Right continuity, in the simplest case, is just as straight forward. Consider, for example 

Figure 11.3. Here the machine loops in state qO, until y — 1, when it moves to state 

ql. In the first state x is set to 1, on the transition the value is set to 0, and there it 

stays in ql.
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x :=  1

Figure 11.3: A right-continuous state transition

In this example a different signal, y, was used in the predicate to trigger the exiting 

of the loop. The reason that this extra signal was introduced relates to the causality 

conditions of the synchronous machine. You may recall that a signal on a transition 

in a synchronous machine must have exactly one value. If the transition is predicated 

on x to occur when say x  >  1, (see Figure 11.4 (a)) then, in order for that transition 

to be taken, the value of x must have just satisfied this predicate. It is impossible to 

set the value of x to 0 on the same transition. So the machine fragment in Figure 11.4

(a) for example is causally impossible. However, there is a trick that helps solve this 

problem, called a mirror signal.

A mirror signal for x, written x, follows the value of the signal through a loop and then 

copies its dynamic assignment on the exit transition. This is illustrated in Figure 11.4

(b). In order to simplify the labelling this situation can be summarized by simply using
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[x>  l ]/x:=0

7  7 7 8< 1 ] / x '~j 1 eA :-0 [x .

(a)

Figure 11.4: The use of mirror signals: (a) A causality error (b) The solution (c) Same 
as (b) with syntactic sugar

the mirror signal in the test Figure 11.4 (c).

So a right-continuous discontinuity occurs whenever the assignment to a signal on a 

state transition differs from the assignment on the looping transition from the state 

from which it has departed. In the case of ambiguity, a right continuous transition can 

be indicated by notating the assignment on the state transition with a superscript (r), 

as in: x ^  0

Right-continuous discontinuities are defined as the infimum of the flow from the point 

of discontinuity.

11.4 Extracting sequences

It was pointed out in Part I of the thesis that one of the problems with taking a 

continuous approach to time for plants and environments is that it makes it difficult 

to combine them with discrete controllers. In order to make this combination possible 

we have to find suitable sequences that can be extracted from the continuum of values.

The points of discontinuity in the model are ideal for this because not only are they 

guaranteed to form a sequence, but they also represent the most interesting points in 

the model where changes of mode take place. To extract these points we define another 

set of signals called discrete shadowing signals as follows:
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Figure 11.5: The relationship between a continuously varying signal and its discrete 
shadow, the points a and b represent places where discontinuities occurred in other 
values.

Definition

For a continuous machine M  with a signal set S the set of discrete shadowing 
signals S* is a set of signals

x* E S* &  x € S

with values defined at every transition in the machine as

 ̂ ( x if x x

[ x * otherwise

At the limit the value x is taken to be sup(lm&x (̂ATijm)).

Figure 11.5 shows how the shadow signal might relate to a signal of continuously chan­

ging value. Notice that the value of the shadow signal will be set on every discontinuity 

of the machine.

It may be the case that we are interested not only in the values of signals at the 

existing discontinuities, but also at points between them. This problem is solved by 

adding a sampling clock (Figure 11.6) which periodically brings about a discontinuity. 

This results in a shadow trace like the one in Figure 11.7.

Finally different sample clocks with different rates can be mixed together and turned on 

and off at different points in the operation of a machine, to allow fine grained sampling 

of fast changes, and coarse sampling of slower.
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Figure 11.6: A bistable sampling clock

Figure 11.7: A continuously varying signal and its sampled discrete shadow, once again 
the points a and b represent places where discontinuities occurred in other values.

11.5 Summary

This chapter addressed the problem of discontinuities in the limiting flow. It began by 

demonstrating that the limiting processes that have already been developed continue to 

define flows on either side of a discontinuity even though the value at the discontinuity 

itself may be lost. Then, a new definition of the limiting process was presented which 

allowed us to define limits of flows which contain discontinuities. We moved on to 

look at how to define the values of these discontinuities at the limit. Finally discrete 

shadowing signals to provide a piecewise constant signal that could be read by a discrete 

controller.
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Interactive machines

Eternal nothingness is fine if you happen to be dressed for it.

—  Woody Allen

In this chapter inputs are added to the continuous machine. So far we have concen­

trated on generating machines and all the flows that we have been dealing with have 

been valuation flows. This chapter extends these results to define continuous interact­

ive machines. The main result of this chapter, and of the thesis, is that the synchronous 

product of two limit machines is equivalent to the limit of the synchronous product of 

their respective delta machine parents.

Most of the hard work has already been done in showing that valuation flows converge. 

All that remains is to show that, under appropriate circumstances, assignment flows 

also converge as expected.

12.1 Limits over assignment flows

The first step is to define convergence over assignment flows. This is done in the same 

way that convergence is defined for functions. The following definition uses a new 

shorthand xW ] X U {({}> Ifl}-
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Definition

A sequence Xn of characteristic functions is said to converge at a point V  to a 
limit xiim if Ve >  0, 3Ns.t.

\Xn[V] ©Xmiyil <  e,Vn,m >  N

A sequence Xn ° f  characteristic functions is said to converge uniformly to a 
limit Xlim if 31V, VV G Sd(Xn), Ve >  0,s.t.

IXn[V] QXm[V]| <  e,Vn,m > N

A characteristic function is said to be convergent almost everywhere if it fails 
to converge at at most finitely many points in any closed bounded interval, in 
this case the limit is defined only at the points at which it converges. It is said 
to be uniformly convergent almost everywhere if it is convergent almost 
everywhere and converges uniformly over those points at which it does converge.

The first result shows that convergence of valuations and convergence of characteristic 

functions are mutually consistent in the sense that the limit of a sequence Xn\Yn] is 

equal to XHmff’lim]-

Lemma 12.1 Consider a characteristic function Xn Xlim and a valuation sequence 

Vn —*■ Viim with Vn G £d(xn)> and seQuence of valuations Xntyn}- Then providing 

Xhm ^  continuous at V\\m,

lim Xn[f^n] =  Xlim[f'/Hm]- n—!■ oo

The proof is straightforward and is found by applying the limit first to the function, 

and then to the valuation, and using the triangle inequality for ‘0 ’ to combine them 

(see Appendix F for details).

Let us restrict the type of assignments that we will consider to those that we have 

already found limits for as generating machines. We call such machines standard.
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Definition

A characteristic function is said to be standard if it consists only of assignments 
of the form:

u : = u + A f ( e )  (12.1)

or
u : = f ( e ) .  (12.2)

A standard characteristic function can be partitioned into two pieces the delta 
partition  Xn consisting of assignments of the form (12.1), and the fixed parti­
tion  xfi the set consisting of assignments of the form (12.2).

A standard delta flow machine is just one in which the characteristic function is stand­

ard.

Next it is proved that for two standard characteristic functions, the limit of their union 

is the same as the union of their respective limits. This result is critical in enabling us to 

reach a definition of the synchronous product for continuous machines; the synchronous 

product relies on the process of zipping the assignment flows together, which in turn 

involves taking the union of the assignments at each point. It is important, therefore, 

to check that the union is still well defined at the limit.

Lem m a 12.2 Consider two standard characteristic function sequences Xn and ifn. 

L etX m i’n be uniformly convergent almost everywhere, such thatx-a —•► XlimiV’n Vlim- 

Let XnCipn be well defined for all n. Then Xn.C'fin Is guaranteed to converge to XiimU'i/’lim 

at all points Vs where Yiim U f/>iim[Vs] I  D ( x { m u V’nm) continuous.

The proof of this lemma can be found in Appendix F. It proceeds by dealing with the 

delta partition and the fixed partition separately, since one is changing, and the other 

is not.

12.2 Synchronous product

We are now nearly ready to define the synchronous product for continuous machines. 

Before doing so, we need to define a way for the flows of the respective machines to 

synchronize. There is only one way to map two forward regular flows together, but



the uncountable number of points in continuum flows could be aligned in an infinity 

of ways.

The answer is that we need to decide on a temporal metric for the machines. The 

obvious way to do this is to use t. If both machines share the signal t  then this provides 

a unique mapping for them to synchronize with. Proving this happens automatically 

is the next result.

L em m a 12.3 Consider the flows X\,X^ of two timed continuous I/O machines M\, M 2 

which share only the clock signal t. There is at most one order preserving 1-1 mapping 

f  : X 1 —¥ X 2 such that X\ Ily X 2 is well defined.

P r o o f

(Xi 11/ X/) is well defined 

V x G l i ,  (^ i(x ) U X 2 ( / (x ) ) )  is well defined => 

V x € l 1, I 1 ( x ) ( t ) = I 2( / (x ) ) ( t )

The right hand-side defines a unique 1-1 order preserving mapping between the points, 

hence the result. □

It should be pointed out that insisting that both machines define t  does not imply 

that only one such metric can be defined for each machine. In Chapter 13 an example 

of a model of relativistic clocks is given to illustrate this point. In this case the 

synchronizing clock t  is chosen for a particular frame of reference.

We can now define the synchronous product of two Continuous I/O  machines.
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Definition

Let Mi and M 2 be two Continuous I/O  machines with Omi O Om2 =  { t } .  The 
synchronous prod u ct of M\ and M 2, denoted by Mi || M 2, is the machine M  
where

• q0m  =  qOMi U qOM2

• VM =  VMl U VM2

del — M "• SM =  1 U ^m2

• I m  =  (-fiVii \ O m 2) u (.I  M i \ O m i ) ,  O m  — O m i  u  O m 2

• Fm  =  FMl H Fm2

Finally, the main result of the thesis is to show that the synchronous product of two 

continuous machines is equivalent to the limit of the synchronous product of their delta 

flow parents.

T h eorem  12.4 For any two delta-flow machine M&,M'A the synchronous product of 

their limits is equivalent to the limit of their synchronous product, i.e.

=  lim.M A \\M'A
A -»0

The proof of this theorem involves showing that the flows of the respective machines 

are equivalent. This is done by choosing an arbitrary point in one of the flows, finding 

the corresponding point in the other with a matching value of t, and showing that the 

other signal values also match.

12.3 Summary

This concludes our investigation of the limiting process. It has been demonstrated to be 

a well defined limit over a very wide variety of machines, limiting sequences and combs. 

It was shown that the limiting process can also be applied to an assignment flow which 

describes an interactive machine. The result was approached by first investigating the 

limits of characteristic functions, and then applying these limits to entire flows. To 

conclude the chapter the main result established the validity of a synchronous product 

over Continuous I/O  machines.
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Examples

...the source o f all great mathematics is the special case, the concrete 

example.

— Paul R. Halmos 1

Elwood: Its 106 miles to Chicago. W e’ve a full tank o f gas, half a pack 

o f cigarettes, its dark and we’re wearing sunglasses 

Jake: Hit it!

— Dan Ackroyd and John Belushi 2

In this chapter we look at a number of simple examples which illustrate continuous 

automata as modelling systems. The final example shows how delta machine simulation 

can be used for verification.

13.1 Thermostat

The model in figure 13.1 shows a model of a thermostat heating a room. The room has 

a thermal capacity C, and leaks heat at a rate L, so the dynamical system describing

1 I Want to be a Mathematician, Washington:MAA Spectrum, 1985.

2 in The Blues Brothers Warner Brothers 1980
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e [ e < e „ ] / e : = 2 (i>

e :=0

e / e - = t i  e l h ^ o j / q . = o ,

_______________  e := ©

e / e  := 0

0 :=^ / e - L 2

Figure 13.1: A thermostat

the room’s temperature is:

Q =  L0 +  C ^
at

where Q is the quantity of heat input into the system, and 6 is the temperature of the 

room. A thermostat controlled heater introduces two states. When the room exceeds 

a temperature, let us call it do, the thermostat turns the heater off and Q is set to zero. 

Once the temperature has fallen back below 6q the thermostat switches the heater back 

on and it outputs a fixed quantity of heat Qo until the room is once again hot enough.

13.2 Hour glass

Consider the hour glass and model depicted in figure 13.2. The hour glass itself is 

labelled as having two ends, A and B. The model has five states in total, an initial 

state, and four others. States 1 and 2 represent the A end of the hour glass being 

uppermost, states 3 and 4 represent the B  end of the hour glass being uppermost. In 

states 1 and 3 there is sand in the upper bulb draining down, in states 2 and 4 the 

draining is complete, the upper bulb is empty and the system is static. The model has 

one continuous parameter V  which represents the amount of sand in the A  bulb, and 

two constants: F, the total volume of sand, and R, the rate at which it can flow from 

one bulb to the other. Finally there is a single input T which controls the turning of 

the glass.



CHAPTER 13. EXAMPLES 109

13.3 Twin clocks

This example is a very simple illustration of the modelling of a problem in Einstein’s 

Special Theory of Relativity (STR) [Einstein 61]. It is included here to demonstrate 

how real physical models can consider synchronization of components to be independent 

of the local temporal metric, and that we can build two continuous I/O  machine models 

with local and sensibly compose them using the synchronous product.

The underlying premise in STR is that observations of physical systems must take 

place from a frame of reference that is located in space. Suppose, for example, I am 

observing a distant event such as a lightning flash, the event only occurs in my frame 

of reference when information about the event has reached me. The speed at which 

information can travel is limited by the velocity of light, and so the lightning does 

not strike in my perspective until I see the lightning flash from my frame of reference. 

Einstein thus rejects the idea of global synchronization of events since there is no way 

to know if two clocks that have been separated are still running at the same rate. He 

proposes instead that synchronization is relative to the observer for whom an event 

has only occurred when he or she has seen it. Consequently the velocity of an object 

relative to the frame of reference of the observer can affect the observer’s perception 

of the time it takes that object to change.
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clocked with t,

tock'.-1 f ' £  /  took-—0

d '=  0 /  ,d : = 0 p
x:= I v x\= /  V

ii xo

J
t : = y  p

A I /

e / ^ f l  x , :±

clocked with t

Figure 13.2: Two clocks in different relative frames of reference.

The idea is illustrated here with a simple example of two clocks modelled here in 

Figure 13.2. Let us suppose that each clock turns a light on for a second and then 

off for a second. In our model this is represented by the signals t ic k  and tock  in the 

respective clocks that are switched from one to zero and back.

Let us suppose that the clock on the left (tick) is stationary, on earth say, and the 

clock on the right (tock) is moving at a velocity v close to the speed of light. In order 

to avoid any effects of acceleration, let us also suppose that the path of tock brought it 

momentarily within the same frame of reference as tick and at that instant the clocks 

were synchronized.

Now as tock pulls further away the light that it emits has to travel further to reach 

earth, and so the appearance is, from the perspective of the observer on earth with the 

first clock, that it is getting slower.

The relationship between the stationary, earth bound frame of reference, and that of 

the moving clock is given by Lorenz’s equation. To model the effect we can first build



a model of each clock, as it would appear from a local frame of reference. Both clocks 

are identical and flash at the same rate when seen from their local perspectives. Time 

in these local perspectives is given a special signal, t\ for tick and ¿2 for tock. These 

signals are assumed in the model but omitted from the transitions to simplify the 

diagram.

To vary the frame of reference we will fix a global t that will be used to synchronize 

the models. Since we decide to observe the clocks from the frame of reference of the 

first, we set t ~  t\ in the left hand model. On the other hand the other clock is rapidly 

disappearing and so we apply the Lorentz transformation and set t :=  ^  where (3 is 

given by ¡3 == , 1 2 . This provides an appropriate synchronization for this frame of
v 1- ^

reference. The two models can now be combined in parallel as usual and it can be seen 

that the second clock will appear to run slower.

Of course the interesting thing is that if you were to take the frame of reference 

of the second clock and watch the flashes of light from the earth bound clock the 

converse effect would occur and the earth bound clock would appear to run slower. 

Therein lies the essence of the twin’s paradox, an excellent treatment of which is given 

in [Newton-Smith 80].

13.4 Blues Brothers

In the opening scene of The Blues Brothers, Elwood (Dan Ackroyd) collects his elder 

brother Jake (John Belushi) from jail in a second-hand ex-police car. In order to prove 

to Jake the performance of the vehicle, he later calls his “lady of blessed acceleration” , 

he performs the following stunt (see Figure 13.3). They are waiting in a line of traffic 

for a bridge to open. Pulling out of the queue Elwood hits the throttle and sends the 

car powering towards the rising bridge. He continues to accelerate up the slope until 

the car reaches the end and hurtles through the air in a graceful arc towards the other 

side. Will the car make it across the gap?

This example is used to illustrate a number of aspects of this approach to the modelling 

of mode-switching systems.
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Figure 13.3: A car jump

• It illustrates the use of modularity in modelling mode switching systems.

• It provides a discretization over a geometric space.

• It illustrates the use of simulation for verification purposes.

I should emphases that the system model used is very simplistic, and the example is 

only intended to illustrate the use of the formalism.

13 .4 .1  T h e  b r id g e

Let us begin by modelling the bridge. It consists of two symmetric spans driven by 

motors that exert a constant torque T. In addition each span is under the influence 

of gravity which pulls downwards with magnitude mg through its centre of gravity, 

at 1/2  units along its length. This produces a torque of magnitude ^^ cosd . Finally 

opposing the direction of travel is a force composed of friction and back emf fi — kO. 

Equating with rotational inertia gives us the following:

ml2 m mql „ , • 9 — T  cos 9 — k6
3 2

which can be reparameterized to give:

9 =  A -  B9 -  C  cos e

The bridge can travel between 9 =  0 to 9 — f . It is triggered to raise by setting the 

value of up to 1 .
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[6> f ] / 0o

©0 0 i

e 0
0

0 A — B6 — C  cos 9

[0<O ]/ u p = l/ T - Tup
6

9
6

J*
¡ 1

8 [0< 0] /  0 O

Figure 13.4: The model of the bridge

The model can be seen in Figure 13.4 in which the bottom state represents the lowered

bridge, and the top state the bridge raised to its maximum. For simplicity the velocity 

and acceleration of the bridge in these states is assumed to be zero. The state in 

between shows the bridge moving under the applied force Tpp or Td o w n  depending 

on its direction.

13 .4 .2  T h e  car

The car is modelled by a single point at a position (¡3,7). In order to maintain inde­

pendence of the car from the rest of the model the geometry component of the model 

switches the coordinate system of the car at a couple of points in its journey. To enable 

these switches to take place the car also has two input signals (/?',7') which can be 

used to set (/3,7) on state transitions between dynamics. The car also takes as input 

9, the angle of the bridge.

The car has a motor which drives its mass M  with force F  against air resistance r so 

that on the flat road it has an basic equation:

(13.1)

On the bridge the coordinates system will switch so that the horizontal axis will lie
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[c= R O A D  /O  [C=A1R l/O,
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Figure 13.5: The car model

along the bridge so this equation becomes on the upward slope:

and on the downward slope:

F  — tB
P =  — ^ --------9 sin(0) (13.2)

¡3 =  F  j J  +gsin(fl). (13.3)

These simplified dynamics do not take into account the force applied by the bridge to 

the car, or the force applied by the car to the bridge. It is assumed that the mass of 

the car is sufficiently small that it makes no difference to the raising of the bridge, and 

it is also assumed that the speed of the raising of the bridge is sufficiently slow that it 

has little effect on the forward motion of the car.

Finally the car in flight is assumed to be in free fall:

¡3 -  -Î&
.. ™ n  (13-4)T =  - f f  +  ü?

The car model is shown in Figure 13.5. It takes as input information from the envir­

onment to cause it to switch between the different dynamical models. The symbols
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(xl.yl) (x2,y2)

X  /

(xO.yO) (x3,y3)

Figure 13.6: The critical points and coordinate systems

$ ROADi^B.UPi^B.DOWN, and $ air represent equations systems derived from equa­

tions (13.1),(13.2), (13.3) and (13.4) respectively. The state the car is in is determined 

by the input signal c which can be set to one of five constant values ROAD, B_UP, 

B-DOWN, AIR  or CRASH. The car model is fully connected, so it can move from any 

state to any other based on changes to the input c, except for the CRASH state from 

which it cannot leave.

13 .4 .3  T h e  g e o m e try

There are a number of parameters in this model, which describe critical points in the 

scene (see Figure 13.6):

(xO,yO) Foot of the first span (constant)
(ml, y 1) End of the first span (dependent on 6)
(x2 , y2) End of the second span (dependent on 9)
(x3, y3) Foot of the second span (constant)

Figure 13.6 also shows a number of coordinate systems that the geometry uses to keep 

the car ignorant of the geometry of the world, and hence to keep the components 

modular. The coordinates (x , y) represent the global coordinates system. Then (p , q) 

is a coordinates systems with the origin at the foot of the first span of the bridge, which 

rotates with the bridge, and (r, s) is coordinates system with origin at the foot of the 

second span which rotates with that part of the bridge. Let us define projections H.vq 

and n rs which map from (p , q) to (x , y) and from (r, s) to (x , y) respectively.

The geometry of the scene is modelled in Figure 13.7. The world is modelled in five 

states. One for the road, one for the first span of the bridge, one for the second span of 

bridge, one in between where the car is in flight, and a fifth below this to represent the 

crash state. Each looping transition makes the appropriate conversion from the car’s
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CRA SH c:=C R A SH

Figure 13.7: The geometry of the world

coordinate system (/?, 7 ) to the world coordinates (x,y).  Each state transition signals 

the car to switch to the appropriate dynamics, by changing c, and reinitializes the 

car’s coordinates scheme appropriately. Notice that the geometry of the scene could 

be significantly changed without having to change the model of the car.

13 .4 .4  R esu lts

This system was investigated by writing a delta machine for this model, and executing 

it as a simulation. The models were first written in E s t e r e l  which performed the 

synchronous product, then the resulting finite state machine simulation was hand coded 

in Mat-lab, to produce the simulation figures. In principle by writing floating point 

extensions for E s t e r e l  (a straight forward task) the model could have been simulated 

entirely in E s t e r e l  .

The results are not very meaningful in absolute terms because I have very little idea 

as to the actual values for any number of the physical constants used. (What is the 

air resistance of a 1969 Dodge sedan? What is the mass of a road bridge?) However 

I fixed the values of the car so that it had a top speed of around 200kmh~1 which it
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x1

meters

Figure 13.8: A trace of the car’s (x,y)  positions over 30 runs, crashes are shown with 
a *.

could reach in around 20 seconds, and the bridge took around 340 seconds to rise from 

horizontal to fully raised (y ), which it did with a short initial acceleration.

I combined the models together, allowing the bridge to begin raising for 50 seconds 

before advancing the car. The car had a 20 metre stretch of road before it hit the first 

bridge span, and each bridge span was 20m long.

The car was then run over the bridge around thirty times, increasing the torque de­

livered by the engine at each stage. The results are plotted on Figure 13.8, which 

shows the trace of the car’s (x, y ) position over the 30 runs. The runs that ended in 

the car crashing are marked with a *. Lines have been added to the graphs to show 

where the car met the foot of the bridge, where it left the first span into the air, and 

for those successful runs where it landed on the bridge at the other side3. The jagged 

appearance of the lines is due to the time step of the simulation.

3 Any readers who have not seen the film will be happy to know that Jake and Elwood’s car did 
indeed have the required torque to take it safely to the other side of the bridge in the words of Jake 
“The car’s got pickup” .

landing

runs



The example illustrates the simulation of a reasonably complex scenario, and it can 

be seen that, with the appropriate tools, this type of modelling, which tends to be 

confined to continuous systems, could be used to determine critical properties of a 

mode switching system.

In principle formal verification techniques could be applied to this type of problem. 

It would be possible, for example, to construct an observer that monitored the crash 

condition, such that if the car had left the first span of the bridge, but dropped below 

the tip of the second span then it emitted an alarm signal. Combining this observer 

in parallel with the model then provides an automata which will emit an alarm if the 

car crashes. All that remains is to determine the reachable states of that automata. If 

they include the alarm state then the car fails otherwise it will succeed. Unfortunately 

the reachability problem for automata with variables (let alone real valued ones) is 

hard and still a big research question. Models such as this are way to complicated for 

the tools currently available.

On the other hand there may be potential in combining formal techniques with simu­

lation methods, for which Continuous I/O  machines and their Delta-flow I/O  machine 

partners would be ideally suited. The problem with simulation as a verification tech­

nique is covering the operating space of the model. On the one hand the simulation 

skips over points and so may skip over a property violation. On the other simulation 

time is expensive and an exhaustive search of real valued parameter spaces could be 

totally impractical.

It might be possible to solve the first problem if certain properties of the model can 

be proved. For example if it can be proved that the system parameters cannot change 

faster than some bound G. Then time steps can be chosen to ensure that important 

property violations will not be overlooked.

To address the second problem it might be possible to use observer-like techniques to 

limit, the areas of simulation to those in which property violations could occur.
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In this chapter we have looked at a number of examples of mode switching models 

constructed from continuous automata. Other examples have been published including 

a gate in [Westhead & Hallam 96b] and the landing gear system of a Swedish J39 

fighter defense aircraft [Westhead & Nadjm-Tehrani 96]. This last example focuses on 

the use of observers to carry out formal verification of the system, rather than on 

its mode switching nature. The version of Continuous I/O  machines that was used 

differed somewhat from that used here, but the same techniques can be applied to 

these models.



14

Related work

A Mathematician is a machine for turning coffee into theorems.

—  Paul Erdos

This chapter is intended to relate continuous I/O  machines to other work in the field 

of hybrid systems. Two other modelling systems have been chosen for this comparison 

Branicky, Borkar and Mitter’s unified framework of hybrid control [Branicky et al. 94] 

which comes from the control engineering and Hybrid Automata [Alur et al. 95] from 

computer science. Both alternative models are presented and in each case a result is 

given relating the expressiveness of the formalisms.

Because of the different ways in which the outputs are expressed in each case rigor­

ous proofs would be very tedious. In both cases constructive proofs are sketched (in 

appendix G), and although they only relate the machines in one direction they are 

intended to illustrate that the formalisms are comparably expressive.

The final section in this chapter focuses on the Continuous I/O  machine and emphasizes 

how it differs from these existing representations.

14.1 Branicky, Borkar and M itter’s model

For brevity let us refer to this model as the BBM model. It was built to provide 

a descriptive formalism that encompassed a number of different formalisms from the
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engineering side of Hybrid systems, these include Tavernini’s model [Tavernini 87], the 

Back-Guckenheimer-Myers model, the Nerode-Kohn [Nerode & Kohn 93] model and 

Brockett’s [Brockett 83] model.

Branicky, Borkar and Mitter’s focus on hybrid model’s of the form:

¿(f) =  £(t),t > 0 (14.1)

where x(t)  is the continuous component of the state taking values in some subset 

of Euclidean space. £(f) is a controller vector field that generally depends on x(t),  

the continuous component u{t) of the control policy and the aforementioned discrete 

phenomenon.

They distinguish four types of discrete change:

A u ton om ou s Switch —  This is a discontinuity in £(■) which is brought about by x(-) 

hitting some boundary. An example might be a control system with hysteresis.

A u ton om ou s Jum p — This is a discontinuity in x(-) brought about by hitting a 

boundary. Collisions are a good example, such as ball hitting a wall which will 

result in a discontinuous change in the balls velocity.

C ontrolled  Switch — This is a discontinuity in £(■) in response to a control com­

mand. A good example of this would be the discontinuities brought about in the 

manual transmission of a car [Brockett 83].

C ontrolled  Jum p — This is a discontinuity in x(-) in response to a control command. 

The inventory management system given in [Bensoussan & Lions 84] provides 

examples of such control.

Instead of the explicit discrete states found in automata models this approach carves 

up the world states into discrete subsets. For x(-) the state space is S C Rd, which 

is split into subspaces Si such that S =  [Ji and Si C ]Rrf*, d{ <  d £ N. Then 

each Si is further divided into A i,C i,D i C Si. These are the autonomous jump sets, 

controlled jump sets and destination sets respectively. The sets A, C, D  will refer to 

Uj A, Ui \JiD. The sets U, V  will be used to represent the sets of continuous and 

discrete control respectively. Then the following mappings are assumed:
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• vector- fields fi : Si x Si x U - »  Rdi, i G N.

• transition map G \ A x  V  —>• D.

• transition delay Ax : A x V  R+ .

• impulse delay A 2 : U(^» x A )  —>• K+ .

The dynamics of the system consists of a sequence of jumps. There is a sequence of 

prejump times { t /  and a sequence of post jump times {I\} which satisfy 0 =  To < 

t\ <Y\ < T 2 < V 2 <  ... <  00. Over each interval [r j_ i,T j_ i) with nonempty interior, 

x(-) evolves according to equation 14.1 in some Si. At the next jump time Tj it j umps 

to some Dk G Sk in one of two ways:

• x(rj)  G Ai in which case it must jump to x(Tj)  =  G(x(rj ) ,Vj ) G D  at time 

Tj =  Tj +  Ax (x(Tj),Vj), Vj G V  being a control input. This is an autonomous 

jump.

• x (r j ) G Ci and the controller chooses to move the trajectory discontinuously to 

x (T j) G D  at time Tj =  Tj +  A 2(X(Tj),x(Tj)).  This is an impulsive jump.

During a jump, i.e. in the period [rj,Tj) the system is frozen. For t G [0, 00), let 

[f] =  m axjlF jirj <  t}. The vector field of equation (14.1) is given by:

f( i)  =  fi(x{t),x[t],u{t)),

where i is such that x(i),x[i\ G Si and u(-) is a [/-valued control process. For clarity the 

short hand G(x,v\i) =  (x' ; j)  will be used to denote the transition from x  G Ai C Si 

to x'D j C Sj.

It is not difficult to see that this model could be seen as describing the flow (R+ , <

, 0(x) =  x(t) ,Rd). This leads us to the following theorem

T h eorem  14.1 For any system H  described as a BBM model, there exists a Continu­

ous I/O machine M  such that the output flow M  is equivalent to the flow described by 

H.



The proof involves the construction of a machine to simulate the hybrid system. It is 

sketched in Appendix G.

An immediate corollary of this result is that Continuous I/O  machines can also express 

any model described by either Tavernini’s model [Tavernini 87], the Back-Guckenheimer- 

Myers model, the Nerode-Kohn model or Brockett’s model.

14.2 Relationship to hybrid automata

The most prominent automata based modelling approach to hybrid systems from com­

puter science is Hybrid Automata. The hybrid automaton [Alur et al. 95] is probably 

the most established alternative formalism for representing hybrid systems. This sec­

tion will briefly introduce the formalism, and presents a result that a Continuous I/O  

machine is at least as expressive as a hybrid automaton (a sketch of the proof is given 

in Appendix G. The converse result should also hold because as the proof illustrates 

the machines are quite conceptually close, but a proof of this is not offered.

In order to establish how continuous automata fit into the hybrid systems literature, 

a proof is offered that demonstrates that for any time deterministic hybrid automaton 

H  there is a Continuous I/O  machine which describes a flow describing all the points 

in any run of the H. The converse result is that for any Continuous I/O  machine there 

is a hybrid automata H  that will produce only points described in the flow of M .

A hybrid  autom aton  H = (Loc, Var, Lab, Edg, Act, Inv) is a six tuple:

• Loc a finite set of vertices called locations

• Var a finite set of real valued variables. A valuation v is a function that assigns 

a real value v{x)  £ i  to each variable x E Var. The set of valuations is V. A 

state a G E is a pair (I, v)

• Lab a set of synchronization labels including r ELab

• Edg a finite set of edges, called transitions. Each edge e =  (l,a, ¡i,l'), goes 

from I to I' with synchronization label a, and a transition relation p C V 2. 

Each location must have a stutter transition (I, r, {(¡y v)},  I). This is an identity
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transition which simplifies the definition of the parallel product and ensures that 

the transition system is reflexive.

• Act a labelling function that assigns to each location, a set of activities. An 

activity is a function from the non-negative reals to V. The activities of each 

location are time-invariant: VI G Loc,x G Var, t G R - ° , ( /  +  t) G Act{l) where 

{ f  +  t){t') = f ( t  +  t')Vt' gR ^ °.

For all locations I, activities /  and variables x we write f x the function R -° R 

such that f x(t) =  f ( t) (x) .

• Inv a labelling function that assigns each location I an invariant Inv(l) C V.

The state of a hybrid automaton a =  (I, u) can change in two ways: either by a dis­

crete transition that changes the location and the variables according to the transition 

relation, or by a time delay that changes only the value of the variables according to 

the activities of the current location.

The automaton stays at a location iff the location invariant is true. Associated with 

the automaton H  is a labelled transition system Tn =  {cr, Lab U R -0, —>•), where the 

step relation —> is the union of the transition-step relations - i a, for a ELab,

(1, a, p, I') E Edg (v, v1) E p v,v' E Inv{l)
V y )

and the time-step relations —V for t E R - ° ,

/  G Act(l) /(0 ) =  v VO <  t1 < t . f ( t ' ) G Inv(l)
(,l,u ) — V ( l , / ( t ) )

The following theorem relates Continuous I/O  machines and Hybrid Automata. A 

sketch of the proof is given in Appendix G. An earlier proof of this result was offered 

in [Westhead & Hallam 96a], it was constructed when the ideas were in an early stage 

and contains constructions that have been since shown to be invalid.

T h eorem  14.2 For any hybrid automaton H  in which the activities can be described as 

trajectories or dynamical systems, there exists an equivalent Continuous I/O Machine 

M .
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A proof of this result is sketched in Appendix G. It shows how to construct a Con­

tinuous I/O  machine that has behaviour equivalent to an arbitrary hybrid automaton. 

Nondeterminism in the Hybrid Automata is modelled using inputs to the Continuous 

I/O  machine. The converse result should also follow.

This equivalence result has a number of immediate corollaries that can be drawn from 

work that has been done on Hybrid Automata.

• Any model expressible by timed automata [Alur & Dill 94] can be described by a 

Continuous I/O machine. Timed automata are essentially automata with clocks 

which are subsumed by Hybrid Automata.

• The reachability problem for Continuous I/O machines is undecidable (since it 

is undecidable for Hybrid Automata [Alur et al. 95].) The reachability problem 

is the following. Given a machine M , a state q and a valuation VoMx over the 

output signals the question is can M  ever be in state q and output Vm *? This 

result is very significant because reachability is central to verification. In fact the 

situation is worse than this, the result actually holds for very much simplified 

machines.

14.3 Continuous I /O  machines

Continuous I/O  machines take a radically different approach from either of the pre­

ceding models. As we have seen the resulting formalism is similar in expressibility to 

these approaches however there are a number of important differences. In this section 

we explore those differences and argue that the Continuous I/O  machine provides a 

stronger model of hybrid systems than either of these approaches.

14.3.1 Com positionality

Compositionality of models is very important. Modular modelling can support much 

more complex models and more consistent experimentation and comparison between

1 In general the question can actually be reduced to will M  ever reach q because the entry conditions 
to q could be made to include the valuation.
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models. This is particularly true of situated agent representations where we would 

like to build separate controller plant and environment models and compose them for 

validation. In these terms important compositional features of models include the 

following:

• the distinction between input and output to a model component which is essential 

for analyzing the properties of interactions between an environment, plant and 

controller [Abadi & Lamport 90].

• a precise understanding of when models can and cannot be composed,

• the ability to compose discrete controllers with complex continuous systems.

• the ability to compose multi-agent systems.

The BBM and hybrid automata models do not satisfy all these properties. The BBM 

model is based around a system of equations so it is relatively straightforward to com­

pose models, however it is difficult to determine if the composed model has a solution. 

It does make a distinction between input and output in the sense that controller and 

plant are described separately. However the intention is to represent a single controller 

and plant so it is not an ideal formalism to represent multiple agent systems in an 

environment.

Composition in hybrid automata is more complicated. It is not described here but 

involves a product operation which composes machines by synchronizing their dis­

crete changes with respect to a special label set. Composition was something of an 

afterthought in this approach. It does not distinguish between input and output and 

composition with a discrete controller is not addressed.

The most important distinction between the Continuous I/O  machine and the other 

models is the strength of its compositional semantics. The limiting process allows us 

to extend the synchronous product to continuous event systems. The causality issues 

that arise from this operation also exist and the analysis that has already been done in 

this area can be applied directly, giving a precise understanding of composition failure. 

There is a clearly defined notion of input and output signals corresponding to that 

suggested in [Abadi & Lamport 90]. It has already been demonstrated how discrete
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controllers can be composed with continuous plant models and it has even been shown 

how separate model components can have independent local temporal metrics.
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14.3.2 W orld view

One of the consequences of the limiting processes is that the machine’s output is a 

continuum. This is an important difference when compared to Hybrid automata. Their 

approach of choosing nondeterministic time steps is intended to produce a sequence of 

points that can be analyzed using existing computer science approaches. However it 

also leads to the introduction of Zeno time and equivalence complications.

The continuous output produced by continuous automata are amenable to general­

izations of sequential analysis techniques. We have already discussed, for example, 

how synchronous observers can be applied. Furthermore, this new approach can yield 

a deterministic sequence of points capturing all the important behaviour of the non­

deterministic hybrid automata sequence without raising any of the associated issues.

The BBM model like the Continuous I/O  machine describes a continuous output. 

However it is a passive description that has to be fed a continuous time series in 

order to produce its output. The Continuous I/O  machine, on the other hand, is self 

contained; it can be generative and provide a complete description of system change 

through time without external input. This generative property would not be possible 

without the limiting process.

14.3.3  Discrete change

The BBM model is capable of describing complex discrete changes. However the auto­

mata approach provides a stronger framework for understanding and analyzing those 

changes bringing with it, as it does, the opportunity for the application of existing 

computer science approaches.

This places Hybrid automata and Continuous I/O  machines in a stronger position to 

make sense of the discrete changes in the system. However the flip side to this is that 

the BBM model could be argued to provide a stronger representation of the continuous 

dynamics.



14.4 Summary
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This chapter described two general formalisms for modelling hybrid systems one from 

engineering, one from computer science. Results were stated for the equivalence of 

these representations to Continuous I/O  machines, and proofs of these results are 

outlined in Appendix G. Corollaries of these results lead to Continuous I/O  machines 

being capable of describing models represented in one of six other formalisms, and 

having an undecidable reachability problem. Overall this demonstrates the generality 

and expressibility of this approach.



15

Conclusion

The machines that are first invented to perform any particular move­

ment are always the most complex, and succeeding artists generally discover 

that, with fewer wheels the same effects may he more easily produced.

— Adam Smith

The aim of this thesis was to investigate the use of time in the modelling of systems 

which involved the interaction of an agent with its environment [Agre 95]. We called 

such systems situated agent systems [Rosenshein & Kaelbling 86, Sandewall 94]. Three 

different approaches were proposed

• discrete valued, which includes logics [Rosenshein & Kaelbling 86, Sandewall 94] 

as well as process algebra approaches such as [Lyons & Hendriks 95, Milner 89], 

the various synchronous languages [Berry & Gonthier 92, Halbwachs et al. 91a, 

Benveniste et al. 93a, Iiarel 86, Maraninchi 91] and finite state automata 

[Hartmanis & Stearns 66].

• continuous valued involving descriptions of continuous dynamical systems, ad­

vocated by [Smithers 92, Smithers 94, vanGelder 94] exemplified by [Beer 95, 

Steels 87].

• mode-switching or hybrid systems which describe both continuous change and 

discrete switching. Formalisms which can be used to model mode switching
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systems include
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-  the Qualitative Physics approaches which include [deKleer & Brown 84, 

deKleer 84, Falkenhainer & Forbus 91, Addanki et al. 91],

-  the various logic based formalisms which have been applied in­

cluding [Alur & Henzinger 89, Alur et al. 91, Bouajjani et al. 93, 

Chaochen et al. 92, Abadi & Lamport 91, Lamport 93] ,

-  the automata models [Nadjm-Tehrani 94, Alur et al. 95, Maler et al. 92, 

Nicollin et al. 92, Nerode & Kohn 93],

-  the various switched extensions to bond graphs which in­

clude [Gebben 81, Karnopp 83, Karnopp 85, Dauphin-Tanguy et al. 89, 

Rinderle & Subramaniam 91, Ducreux et al. 93, Broenick & Wijbrands 93, 

W. Borutzky & Wijbrands 93, Stromberg 94, Soderman 95],

-  and finally piecewise continuous dynamics [Tavernini 87, Back et al. 93, 

Antsaklis et al. 93, Brockett 83, Branicky et al. 94],

The conclusion was that discrete models could be powerfully manipulated but were 

insufficiently expressive, continuous models could only be manipulated to a limited 

extent but were highly expressive, and that a mode switching approach might be able 

to take advantage of the best aspects of both the other alternatives.

The exploration of modelling issues began by focusing on the discrete controller to 

begin with. It was decided that it would be deterministic, have inputs and outputs 

and communicate synchronously. Progress through time would be represented as an 

ordered set of events that we called a flow. Discrete time is represented by a flow in 

which events occur in sequence. Continuous time is represented by a continuum of 

events.

In Chapter 4 the consequences of adopting a discrete representation of time were ex­

plored. It was demonstrated that any sequence of fixed time steps would lead to 

inaccuracies in the model because threshold values would be overshot. The only way 

to ensure that a sequence of points hit every threshold was to make the step size non- 

deterministic. This can lead to problems in defining behavioural equivalence, and Zeno



time problems in which time sequences could occur in which time would never advance 

beyond a point.

In Chapter 5 continuous modelling of time was investigated. Continuous time models 

avoid these equivalence and Zeno time concerns, and it was proposed that a continuous 

automata model could be constructed by letting the time interval in a discrete machine 

tend to zero.

The theoretical part of the thesis began with Chapter 6 which formalized the concept of 

flows and defined flow properties such as continuous, regular (sequential), (9-continuous 

(or value continuous). Chapter 7 then formally defined the discrete valued machines 

called Delta-flow I/O  machines which were used to define regular flows. Chapter 8 

defined the limiting process over a sequence of machines which involved taking limits 

down tree structures called combs which threaded their way through the flows described 

by the sequence of machines.

The next four chapters were then involved in proving that this definition was sound 

for increasingly complex classes of machine. Chapter 9 demonstrated that the limit 

existed under very broad conditions, for sequences of simple incrementing machines 

called Delta clocks. Chapter 10 built on this result to prove that for machines which 

described trajectories (functions of time) and dynamical systems that the limit also 

existed. Chapter 11 extended the definition of the limit to incorporate discontinuities 

in flow values. Chapter 12 showed that the definition could apply to machines whose 

output was dependent on inputs, and proved the primary result of the thesis, that the 

synchronous product over Continuous I/O  machines was well defined.

Chapter 13 provided some simple examples of the use of Continuous I/O  machines to 

model mode-switching systems. Finally Chapter 14 formally described two alternat­

ive hybrid formalisms Branicky, Borkar and Mitter’s unified framework of hybrid con­

trol [Branicky et al. 94] and Hybrid Automata [Alur et al. 95]. Results were presented 

of their equivalence to Continuous I/O  machines, and their limitations and differences 

discussed.
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15.1 Contributions

132

The major contribution of the thesis is the development of a limiting process that 

marries discrete and continuous time models. This opens up the possibility of new 

formalisms, such as Continuous I/O  machines, which are fundamentally different from 

any that I am aware of in computer science or engineering.

Continuous I/O  machines offer a number of theoretical advantages over existing hybrid 

representations:

• They have much stronger compositional semantics than the alternatives, based 

on the continuous extension the synchronous product. So

— they are more suitable for modelling complex hybrid systems

— they can be composed with discrete controllers and

— observer based verification can be applied.

• They describe their output as a continuum rather than a nondeterministic se­

quence so they do not suffer from Zeno time problems or equivalence issues.

• For every continuous machine output flow there is a deterministic sequence de­

scribed by shadow signals which captures all the behaviour of the hybrid auto­

mata’s nondeterministic sequence in a deterministic way.

It was already stated in the introductory chapters that the resulting formalism has a 

number of practical advantages over existing models:

• every continuous model is guaranteed to have a discrete approximation of arbit­

rary accuracy

• furthermore that discrete approximation can be implemented using existing com­

pilers to simulate the system’s behaviour,

• both continuous model and discrete approximation can be combined with discrete 

controller models (or indeed implementations if they have been implemented in 

a synchronous language) to provide complete system descriptions,



• properties of the composed systems can be verified using the technique of syn­

chronous observers [Halbwachs et al. 93]. In the case of simple (discrete) prop­

erties, this verification process can be carried out automatically with existing 

tools [Westhead & Nadjm-Tehrani 96].

It also has a number of theoretical advantages because of the continuous description 

of continuous change. The limiting approach leads to a more elegant solution to the 

problem of Zeno time. Zeno time only arises because of the attempt to choose a 

sequence of points from a continuum. If you describe the whole continuum there is 

no Zeno time problem. Similarly the issues regarding equivalence between machines 

which were discussed in Chapter 4 also disappear. A Continuous I/O  machine produces 

a deterministic output and so behavioural equivalence is not difficult to determine. 

Furthermore the results of Chapter 14 demonstrate that the resulting formalism is at 

least as expressive as existing models.

More importantly, however, the work breaks new theoretical ground in taking the limit 

of a sequence of automata. The limiting process is very robust and very general. As 

we saw in Chapters 9 to 12 sequence of machines of the forms discussed need only 

have convergent delta bounds for it to be guaranteed that there exists a convergent 

subsequence that tends to a well defined limit machine.

Overall the work brings closer together the understanding of discrete and continuous 

processes and opens up the possibilities of extending discrete sequential techniques to 

the study of continuous change.

15.2 Future work

The work presented in this thesis focused on a theoretical problem. Whilst initial 

decisions were guided by practical concerns the final modelling system was arrived at 

in order to demonstrate the theoretical results.

Nevertheless this new approach holds significant potential for the modelling of mode 

switching systems. Providing a formal link between the precise continuous system and 

its discrete approximation may hold a number of practical and theoretical advantages.
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The last example in Chapter 13 illustrated how the discrete approximation can be 

executed as a simulation of a system. It may also be the case that formal results can 

be proved in the discrete case that under certain circumstances may hold over the 

continuous, or vice versa.

There is a great deal of work that could follow on from this thesis. It falls into three 

areas, verification, computational properties and practical application.

15.2.1 Verification

There are a number of approaches to model verification that could be adopted for 

Continuous I/O  machines. They were originally designed with the idea of verification 

using synchronous observers [Halbwachs et al. 93] in mind. An example of this in use is 

given in [Westhead & Nadjm-Tehrani 96]. However, in general, automatic verification 

with observers will not currently work in situations which depend on the values of 

signals. It may be the case, in a restricted class of model, that mathematical reasoning 

could be used to extend existing techniques to deal with valued signals.

The verification of safety properties can be seen as the reachability problem. In general 

the problem asks: is there any input flow such that the machine will reach any one 

of some set of states with any of a set of valuations over its signals set? By simple 

manipulations of a machine this problem can be translated to a simpler one: for a 

special state q is there any input flow such that the machine will reach ql

Intuitively it seems feasible that, for a suitably restricted model, some sort of math­

ematical analysis might be possible which could reduce simple real-valued predicates 

to Boolean valued signals that could be dealt with using existing techniques. Undecid- 

ablity would mean that any such analysis could not be guaranteed to terminate, but 

it would provide an exact solution in the cases that it did.

An alternative approach might be to use simulations of delta machines to search for 

violations. In Chapter 13 it was suggested that under certain assumptions that this 

could be done without loss of rigour and that observer-like technology could be used 

to identify those areas of the model where this would be necessary.

It should also be possible to apply the approximate verification technique used on
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Hybrid Automata [Alur et al. 95] that uses polygon approximation of the reachability 

space of the systems parameters.
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15.2 .2  Com putational properties

The computational properties of hybrid systems are surprisingly unpleasant. Even 

for extremely simple systems the reachability problem is undecidable [Alur et al. 95]. 

Continuous I/O  machines suffer this too, although the new perspective they provide 

on the problem may lead to alternative classes of decidable machines.

The limiting process itself may also open up new possibilities to take existing computa­

tional results which have only been applied to sequences and consider their application 

to continua. It is interesting to speculate for example, whether results regarding com­

putability and decidability might have analogies in the continuous case.

15.2.3  Practical application

A final area of further work is the practical application of the modelling technique to 

the design and analysis of real systems. Using theoretical models is essential if they are 

to develop into useful mathematical models, as Milner points out the establishment of 

such formalisms

.. .  is a different thing from a physical theory... it does not stand or fall 

by experiment in the conventional sense. But there is a kind o f  experimental 

yardstick with which to measure it. People will use it only if  it enlightens 

their design and analysis o f systems; therefore the experiment is to determ­

ine the extent to which it is useful, the extent to which the design process 

and analytic methods are indeed improved by the theory. [Milner 89]

One approach to practical application of these ideas would be to use the limiting process 

to extend existing calculi to provide continuous descriptions. In this regard Lu stre  is 

possibly the strongest contender. The advantage of this approach is that the discrete 

semantics are already available, known by the community and have tool support.



15.3 Final note

To conclude this thesis I would like to draw your attention to the quotation at the 

chapter head, which I am afraid to say, I feel applies to this work. When developing 

new ideas so much effort goes in to finding any way to express the ideas and prove the 

results that there is little left to seek the most elegant.

Despite this I feel that the underlying mathematics does have an intrinsic elegance to it 

and hope that the ideas here might be taken forward to lose a few unnecessary wheels.
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A

Proofs from chapter 7

Lem m a A . l  The operation ’© ’ defined over valuations with the same domains is a 
valid metric.

Proof To be a valid metric it must have the following properties:

1 . |P5 0 fPs| > 0

2. \Vs e W s \ = 0 ^ V s  =  W s

3. |Vs © Ws\  =  f c e V s l

4. I Vs e  Ws\ < \Ws © 17s I +  | Us © Vs I

The first three follow directly from the definition. The last one is proved by the
following argument.

Consider any signal s 6 S; now we show that

|Vs(s) -  WS{s)| < |V5 (s) -  Us {s)| + \Us (s) -  lVs(s)|

For numeric values this is obvious, because ’ is a metric over reals. For non-numeric
values either:

• Vs(s) =  IVs(s) in which case |Vs(s) — Ws(s)| =  0 and the inequality must hold 
because of (1) above or

• Vs(s) /  Ws(s) in which case either

-  Vs (s) = Us {s) ^ Ws(s) => R.H.S. =  1 L.H.S. =  1
-  Vs(s) Us{s) =  VVs(s) => R.H.S. =  1 L.H.S. — 1
-  Vs(s) ^  Us {s) ^ Ws {s) =* R.H.S. =  1 L.H.S. =  2

In all three cases the inequality holds. □
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There are two obvious ways in which the synchronous product can be defined these are 
either to zip the two realization flows together (as we have done here) or to take the 
realization of the union of the two characteristic relations. However the two definitions 
are equivalent, because of the following lemma.

Lem m a A .2 For two characteristic relations x i, X2 the following is true

R{ Xi  U X2 ) =  R ( x  1) H R ( X 2 )

Proof First we need to prove a sub result, that:

(i?i U R2) U J?3 =  i?i U (i?2 U R3)

This is clear since
(.x , y ) G (Rx U R2) U F 3 «  ( ( (x  U y) (dx \r2 Ud2 \ rx) ,y  I  {rx U r 2)) G {Rx U E 2)and

(((x U y) I  dx,y | rx) G R x and 
( (x U y) l d 2,y I  r2) G R2) and 
( ( x U  y) i d 3,y  l r 3) G R3 

( x ,y )  G i?-i U (R2 U R3)

The main result can then be proved as follows. Let

• ( F , l , e )  = f R ( X 1 U X 2 )

• ( F ' , ^ , 6 1) =f R(Xi) H R{X2)

• (Fû udi) =fR(x 1)

• (F2, ± 2, e2) =f R(X2)-

Since the flows are forward and regular we can assume that (F, =  (F1, W), and all
that needs to be proved is that 9 — 6'. This is done by induction. First the base case:

0 ' ( x o) =  0 i ( x 0) U 02( x 0)
=  { ( { } , ^ o 1) } U { ( { } , V b 1) }
=  { ( O . ^ u v b j }
=  0 ( x o)

Now the inductive step, from the definition of a realization we get:

0(x) =  { [ x , y  I  {rx U r 2))|(x,y)  G % U 0 ( x ) }

Where ri and r2 are the ranges of x i and X2 repectively. By induction we can substitute 
for 0(x ) to give:

0(x) =  {(x ,y  | (rx U r2))|(x,y) G (x i LI * 2) LI 0' ( x ) }
=  { ( x , y  I  (rx U r 2))|(x, y) G (x i  U X2 )JJ ( 0 i ( x )  U 0 2( x ) ) }
=- { ( x , y  4 (ri U r 2))|(x,y) G (xiJJ 0 i(x )) U (*2) U 02(x ) ) }
=  4- ^i)I(^52/) e (xi LJ 6̂ !(x))}U

{ { x , y  l r 2)\{x,y) G (%2) U02(x ) ) }
=  0i (x) U 02(x)
=  0'(x)

□
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B

Proofs from chapter 8

T h eorem  8.1 In a convergent comb cn over a sequence of flows X n, if in any branching 
sequence { bn}, there is an infinite subsequence {&,} such that for all i b{ >  2 then the 
limit flow X\[m is uncountable.

P r o o f  This is a proof by contradiction, using the standard technique of diagonaliza- 
tion. We will suppose that the points in the flow can be counted, and then show that 
regardless of the way they are counted, there is at least one point that has been left 
uncounted.

First notice that each of the points in a limit flow is uniquely identified by its complete 
descent. This is clear from the definition of ordering of the limit points, since two 
points are only equal in the order if they share a complete descent.

So for a comb cn over flows X n consider all descents a and their corresponding branch­
ing sequences {bn}, each of which has a subsequence with each point bi >  2. Since the 
other branching points add no extra children, we will ignore them, and consider only 
the { 6j}s. Let us suppose that Vi, bi =  2, since if it is larger it can only add more 
points. With bi =  2 the set of descents is the set of infinite strings over {0 ,1}.

Let us assume that all the points are present and suppose that these points can be 
counted, that means that we can assign a number to index each descent a call them 
<7i, 02, ■ ■ These descents can then be written out one after the other:

o \  = an0«iii o. i20ai2i •••
<72 = a210a210 a22oa22i
03 = &31oa31o a320a32i ' • ‘

where each aijk £ {0 ,1 }. Now choose the descent a1 — a'lo, a '^, a'2o ■ ■ ■ such that:

anoani ¥  ^nno^nni (B .l)

Notice also that at each point there will be three alternatives which satisfy requirement 
(B.l).
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Figure B.l: Illustrating the proof of continuity.

Now this descent o' defines a descent of the comb. However it may be that o' is a 
rightmost descent and so not included in the limit flow. However it has been noted 
that there were three alternative at choosing every pair of characters in o' so if it is a 
rightmost descent, it can be replaced by another string that also satisfies (B .l).

So therefore (o ' )  is a point in the flow -Xijm, however the element (o') 0 {(o "i), (02) ,  ■ ■ ■} 
because its index differs from every one of those in at least one place so it is an 
uncounted point, and we have a contradiction.

□

T h eorem  8.4 The lim it X\\m, if it exists, of a sequence of valuation flows X n with 
respect to a comb cn is 6-continuous at a point (o )  G -Xfim if:

• Ci converges uniformly

• for any e >  0 there exists N  such that

0((ff[n])) e 6>((<r[n])) 

for all n >  N.

<  e and 0(Mn]>) © 0((o-[n])) <  e

P r o o f  We are required to show that for all values of e' >  0, there exist k, k ' G Xijm 
with k -< (o )  ~< k' such that

I Slim (x) 0  Siim((o-))| Vx G Xiim,k  -<; x  -< k.

By completeness of ct the point (0 ) must be the limit of descent from a point in Xq.

Notice that due to monotonicity and completeness of flows, Vn all the points in the 
descent to start(X\\m) are start(Xn), and all the points in the descent to end(X\\m) are 
end(Xn). So by exclusivity since a is neither top nor bottom of all the points 
(ij[n]) are neither bottoms nor tops and hence have both a successor and a predecessor.
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Now consider the sequences of strings c^n\ 6 X n which lead to points which 
precede, and succeed (cr[n]) at each point in the descent o. i.e. Vn, ~(<7[n]) and

<r/,W) a(a[n]).

Now find N  sufficiently large that (see Figure B .l):

|0((a[ri])) 0  6{(o\n\v))\ < j ,  for all descents v from (cr[n])

10(('i/;(n))) 0  9((ip(nV )) | < for all descents v from ( tp)^  and 

\d((4>^) © 0((<^nV))| <  y , for all descents v from {(f>^) and 

\ 9 ( ( ^ ) ) e e ( ( a [ n ] ) ) \ < ^ ,

|0((^ (n)»  © 6>((a[n]))| <

for n >  N.  By uniform convergence of X n and for the last two bullet points, by 
assumption such an N  exists.

Then take k =  and k' =  (0 (n)z'). Clearly this satisfies k -< (cr) -< k '. Now
observe that by monotonicity of the limit (lemma 8.2), any point x  € Xijm satisfying 
k -< x  -< (a)  must be a descendant of either (a[n\) or In the former case its
difference from (a )  is bounded by and in the latter case j  +  <  e' (by the
triangle inequality.)

Similarly any point x  G X];m satisfying k' y  x  y  (a )  must be a either a descendant of 
(crjn]) or the point itself. In the former case its difference from (a) is bounded
by j  and in the latter case j  +  j  +  j  < e' (by triangle ineq.). □
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c
Proofs from chapter 9

T h eorem  9.1 For all sequences of delta clocks C& which have convergent delta bounds 
there exists a subsequence of clocks Cn which have a well defined limit which is the 
continuous clock Cwm-

P r o o f  The proof is required to show that over the sequence of clock flows T& a 
subsequence Tn with a corresponding comb converges uniformly with even spread.

This involves the following steps:

1 . specifying a subsequence and suitable comb

2. proving that the comb is well defined

3. proving that the comb will be uniformly convergent

4. proving that the comb will have even spread.

def
As always we take (a =  9((a))(t).

Specifying the com b First take a subsequence Tn from the sequence of delta clocks 
Tk such that for each max(A)n+i =  \ min(A)n By convergence of the delta bounds 
such a subsequence must exist.

Now define a comb cn over Tn as follows (see Figure C .l.) For each x  £ Tn define a
subflow *Sx E Tn+1, such that Vu £ Sx ,9n(x.)(t) -  ¿&n(x)(A ) < 6n(u )(t) <  0 „(x )(t) +

  ̂ d gj  d gf
^0n(x )(A ). Take these in order as the children of x, c(x, 0) =  start(S) , . . . ,  c(x, |5|) =  
end(S).

P rovin g  it is well defined To show that the comb is well defined, we need to 
demonstrate four things:

1. For each x  £ Tn, there is at least one child
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A A

T
X

-4f-

Tn+1 x 0 x i x 2
• •

Figure C .l: Illustrating the existence of a general comb over convergent delta bounds 
where Xj d=  c(x, i)

2. m on oton icity  Cj(x, A;) -< Ci(x!,k') x  -< x ' or (x ss x ' and A: <  A/) for x ,x ' 6 
X,  k, k' £ N

3. exclusivity  c(x, A;) =  c(x ', A:') <t4 x  w x', k — k!

4. com pleteness x  G >  0 =» 3x' G X ^ x  s.t. x  =  c(x', k) for some k.

Monotonicity is evident from the fact that the children are chosen from the set Sx  in 
order. Exclusivity is guaranteed by the fact that the bounds that delimit the S'x are 
non-overlapping. Completeness is guaranteed by the fact that the bounds that delimit

def
the S'x cover R+ U {0 } since Vn,xo =  start(Xn),9n(x)(t) =  0.

So it just remains to show the existence of at least one child for each point. In fact 
(because we need it later) we prove the existence of at least two children. That is for 
any x  £ Tn, By, z G Tn+i such that x — ^0(x)(A) < y, z < x +  ^6*(x)(A)

There are two cases:

• If x  =  start(Tn) then c(x, 0) =  start(Tn+1) and has value zero, call this point y. 
Then 9n(y )( t )  < 0 +  max(A)n+i <  ^m in(A)„ < x  +  ^6(x)(A).  So yG S'x and 
we have two points y  G Sx and y, as required.

• Otherwise observe that ^0n(x )(A ) +  |0n(x)(A ) >  min(A)n > 2m ax(A)n+i. 
If there were no points in this region that would imply a distance of at least 
2 m ax(A)n+i between points leading to a contradiction. Furthermore suppose 
there is only one point y  in this range, then either 0 (y )(t )—0 (y )(t)  > m ax(A)n+i 
or 0 (y )(t )  — 0 (y )(t )  > max(A)n+i. Either way there is a contradiction. So there 
must be at least two children.

U niform  C onvergence Let x  «  (a) then the N  children of (aj) £ Tn have values 
bounded to be within the region:

(CT>t -  \ ( a ) A < (al ) t  ^ (a )t  +  \ (ct>a
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and therefore bounded within the region:

1 1
W t  ~ g m ax(A )n < ^ ’) t  < (CT)t  +  g m ax(A )"

So consider the rightmost and leftmost limits ( a R)^, ( a L)^ they must be bounded as 
follows:

(crR ) t  <  (a)t  +  \ m ax(A)„ +  \ max(A)n+1 +  . . .
<  ( CT) t  +  h max(A)n +  \ max(A)n . . .
<  (a)t  +  max(A)n

Similarly
( a L) t  < (a) t  -  max(A)n

So by monotonicity of the comb and the limit (Lemma 8.3) all the descents from 
(a), lie within ± m a x(A )n of (a)t . Since max(A) tends to zero, for any e > 0 we can 
choose N  such that Vn >  N, 2m ax(A)n <  \e and hence meet the criterion for uniform 
convergence.

Even spread It has already been demonstrated that every point has at least two 
children. For a point (a) £ Tn let the leftmost child be (crO) € Tn+1 and the rightmost 
child be (ar) £ Tn+\. Now we show that (crO)t  < (cr)t  < (or )t .

(a0)t  <  (cr)t -  \ +  m ax(A)„+i
(o-0)t <  (cr)t -  \ m in(A)„ +  max(A)n+1 
(crO)t <  (o-)t

similarly

(o-r)t >  (cr)t +  \ (ct)a -  max(A)n+1 
(or )t >  (cr)t  +  | min(A)„ -  m ax(A)n+i 
(ar)t  >  crt

The spread of the children of (a) £ Tn at level n +  1 must be at least min(A)n+i 
since there are at least two children. Now consider the children of (ctO). The left 
most child (crOO) must be less than (or equal too in the case of start(X) its parent 
(u00)t  <  ((r0)t . Similarly for the children of (ar), the rightmost child must be greater 
than its parent (arr)^ > (ar)t . So the values of (cxOO) and (arr) are also separated 
by at least min(A)n+i. Since each rightmost child cannot be less than its parent, and 
each leftmost child cannot be greater than its parent the point’s spread at the limit 
must be greater than min(A)„ □

Lem m a 9.2 Every point in the continuous clock has a unique value.

P ro o f

Suppose the contrary, then there must exist (cr), (cr') £ Ti;m where (cr)t  =  (cr')t  but 
a ^ a ' .  (Taking (cr)t =  d((a))(t ) ) .

Since a ^  a1 and they are both infinite strings, they must differ at some finite place, 
call this no- i.e. an =  a'n\/n <  n0, but ano ^  a'nQ.
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Figure C.2: Illustrating the proof of uniqueness of values in the continuous clock.

Without loss of generality we can assume cr <  a', so a[no] <  a'[no]. Now by definition 
a ^  a[n\R, so there must exist some n\ such that, crno+ni ^  r((cr[no +  n\ — 1])) so 
a [no +  ni] ^  a[no\R[n-i\l . (see Figure C.2) By monotonicity (cr) x  (cr[no]'R[nx]-L), 
and (cr[no]K) -< (cr') .  Now by lemma 8.3 (cr)t < (o ‘[no]'R[n i]L) t  but

diction. □

L em m a 9.3 The values of points in the flow Ti;m are unbounded.

P r o o f  Suppose V(cr) G Tnm, the value (<x)t  is bounded by a value L. Consider the 
spread of points in Tn. In the continuous clock Sp((cr[n])) =  (cr[n]'R) t -  (fj[n ]z') t , 
since it is the sum of the values of A  dividing up the children at each level, in the 
clock this is the same as the difference between the first and last child at each level. So 
because the comb must be spread evenly, 3M  >  0 such that Sp((cr[n])) > M, V (cr[n]) G 
Tn. By monotonicity of the flows

clock such that (c r =  tq.

P r o o f First consider the leftmost limit of the point xo G To (0L). Because of mono­
tonicity and completeness in the comb this descent must contain the bottom of each

1 T h i s  n o t a t i o n  d e s e r v e s  a  l i t t le  e x p la in a t io n . c f n o j ^ n i ]  is  in t e n d e d  t o  m e a n  t h e  fir s t  m  c h a r a c te r s  
o f  t h e  in f in it e  s t r in g  cr[no]R.

(cr[n]L) t =(cr[n\L) t  +Sp((<z[n])) > (a [ n ] L) t  +M.

So (cr[n]i ) t  >  iM  where i S u b ^ ^ (T n) since Tn is open on the right, there
must exist an (cr[n]) such that iM  >  L and there is a contradiction. □

T h eorem  9.4 For any ro G M+ U { 0 } ,  there is a point ( a )  G Ti;m in the continuous
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Figure C.3: Illustrating the proof that there is a descent to any ro- Note: — {&)■

flow in the sequence. By definition of the delta clocks these values will all be zero, and 
so consequently their limit in Ti;m must also be zero. So the lemma is true for ro =  0.

So now consider all ro >  0; it is necessary to demonstrate the presence of a descent 
which tends to ro- This is done by finding a point (a) G Tn for each n such that its

leftmost limit is less than ro i.e. ( <j l < ro but its successor (cr) has a leftmost limit

greater than ro i.e.(cri ) t > ro- Then we show that (cr)t  lies within e of ro for suitably 
large n, showing the existence of a sequence of values tending to ro- It then remains 
to be shown that this is a descent.

Every descent value in the clock is unique (by lemma 9.2), and the values in the limit 
are unbounded (lemma 9.3). So there must be points be points (p) G Tn such that 
(pL) >  ro take the minimum over of these and call it (ip), since the flow is regular

def ' _
(cr) =  (ip) will exist, and by monotonicity it will have a leftmost limit less than or equal 
to ro (otherwise (ip) is not the minimum (p)).

Now for some e >  0 find a value N  such that for n >  N  the following hold:

• |(cr>t — <crZ/)-tl <  t

•  \ W t  ~  ( ^ ) t | <  |
• I W t  ~  (ff)tl =  A n <  f

By convergence of the comb, and inax(A)„, such an N  must exist, (see Figure C.3). 
Now by the triangle inequality

b  -  ( b t l  <  lr'o -  ( ° L) t \ +  \(a L ) t  ~  b ) t l

and we know that ro lies between the values of (crL) and (ipL) i.e. (crL) t  <  ro <

r0 - ( ^ L) t | < |(o-£ ) t - ( ^ ) t |
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and by further application of the triangle inequality:

\ ( ^ L ) t  ~  ( ( j L > t l  <  K ^ ) t  -  M t l  +  I W t  -  ( a > t l  +  \ W t  -  ( a L ) t \

so
k o  -  <  | ( V ’ i > t  -  ( V O t l + 1 ( V ’ ) t  -  ( c r ) t l  +  \ ( a L ) t  ~  ( a ) t |  < e

So for large enough n there is a point in Tn arbitrarily close to r$. It remains to show 
that these points form a descent which would lead to a point with value ro in T]jm.

So given (a) G Tn satisfying the properties required, we need to show that (o ') G Tn+1 
which also satisfies these properties in Tn+\ is a child of (a) i.e. 3i s.t. (a1) =  c((cr) , i). 
Let us suppose that no such i exists. Then by monotonicity either {&'R) (a'L) or
(cr,L) y  (ipL)■ In other words if (a1) is not a child of (a) the closest its descendants 
can get to ro is (crL) or (ipL), but we have already seen that we can get arbitrarily 
close so we have a contradiction. □

156



D

Proofs from chapter 10

Lemma 10.1 For a sequence of valuation flows X n over a signal set S, ifMs G S ,X n(s) 
converges then so does X n.

P r o o f  First notice that because Vs G S ,X n(s) converges, then (cr)s is well defined 
and therefore so is 6((a)) .

It is required to show that Ve >  0, 3IV such that:

|0«o>i)) e 0«o-»|  < e

By assumption we have: Vs G S

d{(cr[n])s , ( a ) s ) <  e'

so let e' =  T̂y then

0((o-[n]» 0  9((a)) =  S s e 5 ii((cr[n])s , (cr)s ) <  e' |5 | =  e.

□
clef

The next theorem refers to a sequence of delta flow machines Mn =  (gO, V, S, X n), as 
shown in Figure D.l.

Theorem 10.2 For the sequence of machines M n if f  is continuous then for any comb 
over which X n(t) converges, X n also converges to a limit X\\m in which the values of 
the signal u are defined as the trajectory f  (t).

P r o o f  It is necessary to show that for any comb c which converges uniformly with 
even spread over X „ (t ) ,  the flow sequence X n(u) also converges uniformly with even

e / u := f (t )

q0 ql

Figure D .l: A trajectory machine (the assignments to t are assumed)
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spread at all points (cr) £ Xyim where /  is continuous and that the values of u are 
defined in the limit flow as u =  f(t) .

First of all notice that spread is a property of the comb which is dependant only on 
the value of A, so even spread over X n(u) follows immediately from the even spread 
o f X n(t).

Proving uniform convergence is a little more involved. Continuity of /  means that over 
any closed bounded interval I

Ve >  0, 35 s.t. | f (k )  — / (a )  \ < eVk with \k — a\ < 5 (D .l)

for any a £ I.

For uniform convergence we require, for some contiguous subflow Zym c  Xym closed 
at the top and bottom, that Ve' > 031V s.t.

V(cr) £  Z Mmj |(o-[n])u -  <cr)u )| <  e'

For an arbitrary e' >  0 we have to show the existence of a suitable N.

Let e =  e', for e from D .l, this fixes a value for 5. Now X n(t) is uniformly convergent 
so we know that 3N' s.t. Vn > N'

[(o 'N )t  -  (<T) t l  < 6

So with N  =  N 1 and by D.l,

l / ( ( ^ N ) t )  - / ( M t ) !  < e  =  e'

V(<t) £ Zym. Since Z\¡m was arbitrarily chosen this gives our result. □

Leading on from this result there are a number of corrolaries regarding the continuity of
d ef

the limit flow Xiim. These results refer to a second machine — (<jO, V, S', X^),  which
defis very similar M n except that there are additional signals v and w so S' =  S U {v, w}. 

As before the value of signal u is given by u f(t) .  Here the value of signal w is 
described as a function of the signal v given by w ~  h(v).

Corollary 10.3

1. The flow Aiim(u) is 6-continuous (except at start(Xyim)) iff f  is continuous.

2. If Xijm(v) is 6-continuous then it can be described as a continuous trajectory 
where v =  f ( t )  for a continuous function f .

3. The flow X lim(w) is 9-continuous (except at start(Xyim)) if h is continuous and v 
is 9-continuous.

Proof
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Part 1 The first proof demonstrates the commonality of the definition of continuity 
of a function, and 0-continuous of a flow.

First let us prove the ‘if’ direction of the theorem. For all points x  G Xnm such that 
x  >- start(X), x satisfies all three criteria for Theorem 8.4:

1. From the definition of the limit the comb must be uniformly convergent

2. We need to show that d(f(t),  f ( t  — A )) <  e below an arbitrary point in the comb. 
Because of the bounds on A and the continuity of /  this will hold.

3. The last condition is symmetric to the second.

So is Aum(u) is 0-continuous.

The ‘only if ’ direction can be established by contradiction. Suppose /  is not continuous 
but X (u ) is ^-continuous. So at all points a G Xi;m(u), it is dense and for every 
e >  0 there exist points k and k' (with k -< a -< k ') such that |0(x) — 0(a)| <  e 
for all x  such that k -< x  -< k'. Take one of the discontinuities of / ,  that occurs 
at a point d with value d The 0-continuity of X (u) implies that for all e >  0,35 
s.t. | f(d) — f ( z ) | <  e,Vz, \d — z\ <  5, simply by finding k, k' above and taking 5 — 
min(0(k) — 0(d), 0(k') — 0(d)). This would mean that /  is continuous and so leads to 
a contradiction.

Part 2 There is an implicit function from the values of t to the value of w, call it g,
def

defined for all x  G -Xum by g(0(x)(t)) =  0(x)(u). By the first proof this function must 
be continuous.

Part 3 From part 2 there is a continuous function g such that g(t) =  v. Since 
the composition of two continuous functions is continuous and w =  h(g(t)) then by 
corollary 10.3, -Xijm(w) is a 0-continuous flow. □

Lem m a 10.4 In a dense value flow Xi;m over a signal set S, if Vs G S, -X"ijm(s) is a 
0-continuous flow then Anm is a 0-continuous flow.

P r o o f  By 0-continuity of Xijm(s) we have V(<x) G 3fum, Vs G S',

3ks,k 's s.t. |(cr)s -  <-0>s | < es 
V(-0) s.t. |kg ^ {if) -< k's |

let h =  |S|. Choose an arbitrary e > 0, and then fix each es ^  §.

Choose k to be the least upper bound of {k r } i.e.

k d=  kr s.t. Vs G S k s A kr -< {a ) 

and similarly choose k' to be the greatest bound of {k (}  i.e.

k' d=  k;r s.t. Vs G S {a ) k̂ - -< k's
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Then for all (ip) such that k -< (ip) -< k'

|0( ( (r » © 0( ( ^ ) ) | < E es = e ,  
s es

□

The following result establishes sufficient criteria for which the limit of Delta I/O  
machines is well defined. It refers to a sequence of delta flow machines M n with output 
flow X n and signal set 5  with { t ,u }  C S where, the value of u updated with respect 
to an expression:

u :=u  + A f ( t ,  u )

T h eorem  10.5 The limit flow Xnm exists for any comb which converges over the delta 
clock if /  has a bounded partial derivative with respect to its second variable and if 
the solution of the differential equation:

^r =  / ( M )  (D.2)

has a bounded second derivative. Furthermore the flow it describes satifies equa­
tion D.2.

P r o o f  The result follows because under these conditions the delta machine is calcu­
lating the Euler’s method approximation to the differential equation 10.2 and there 
is a standard result which states that the error in the approximation is bounded by 
M sm a x(A )n, (for some fixed constant M e ) and thus uniformly convergent.

E xtension  This extension deals with the case where the assignment of the value of 
u given above follows a constrained divider point kn. An additional error will be intro­
duced into the calculation as a result of the flow starting at a divider point. Because 
the divider point is constrained, this error will be bounded by Mjc max(A)n. So the 
total distance |(er[n])u — (o")ul f°r any (^ N ) ^  will be bounded by M e m ax(A)n +  

m ax(A)ra, so can be made arbitrarily small, thus giving uniform convergence. □

This next Theorem does not appear in the main body of the text but is included here 
as an addendum.

T h eorem  D .l  Consider a sequence of delta flow machines M n with output flow X n 
and signal set S with { t ,u }  C S where, beyond a constrained divider point kn, the 
value of u updated with respect to an expression:

u := u  + A / (  t )

for the usual clock signal t. Then for any comb c over which X n(t) converges uniformly 
with even spread, X n(u) will also converge uniformly with even spread. Furthermore 
the value of u at a point z E X\\m,z, y  k]jm will be defined by:

re(z)(t)
9(z)(u) := 6>(kiim)(u) +  / f (v)  dv

Jo{ k Hm) ( t )
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P r o o f  Let a be the unique descent to z. Then consider the value of a point u at any 
point x n d=  (tr[n]).

6»n(x„)(u) =  0„(kn)(u) +  E  0 (y )(A )/(0 (y )(t ))
y  eYn

for Yn =  { y £ A n|kn -<; y -< xn}. This is a Riemann sum from kn to x n, which is close 
to a Riemann sum between kum and z. The maximum amount by which it differs is:

Err =f  A |0(k„)(t) -  0(kiim)(t)| +  B  |0(xn)(t) -  0(z)(t)|

where
A =  m ax(/(0 (k n)( t ) ) , / (0 (k 1Jm)(t)))

B =  max ( /(0 (x n)(t)), /(0 (z ) (t ) ) )

However /  is being considered over a closed bounded interval, so its value is bounded 
by a maximum, call it M f. Then because the sequence of divider points is constrained, 
and because c is convergent we see that Err is bounded by:

Err < M fM ^ max(A)n +  M /M x max(A)n

where M y  is the divider point constraint bound, and M x is the bound of uniform 
convergence of t  descents. Since max(A)n —>■ 0 as n —> oo this error term disappears, 
and the point tends to the integral given.

It remains to show that the descent tends to this value in a uniform way. In order 
to do this we show that over some contiguous subflow Zum of X\\m closed at top and 
bottom that Ve, BIVs.t.

|0n (xn )(u) -  0iim(z)(u)| <  e, Vn >  N

So first observe that the error bound Err is fixed for all points in Z\\m since My. and 
M x  are both fixed and M f is fixed for any closed bounded interval.

Now consider the Reimann sum from kn to any point x ff[n] y  kiim such that z 6 Z\\m. 
It is necessary to show that the error in the Riemann sum is less than M r m ax(A)n, 
for any set of 5 values. Because /  is well behaved, there exists a bound, call it G, on f  
over the region [0 i im (k n ) ( t )> 0 1 im (x n ) (t ) ] -  Let Yn =  { y | k „  ^  y ^  x n}. Then the total 
error in the Riemann sum over Yn must be less than

J 2  ^ n(y )(A )2G
yeTn

and

G l ° n ( y ) ( A )2 < G  |0n(y)(A )m ax(A )n < G
y  eYn 

so take

y  eVn

G E  n0n(y)(A )
y  eYn

yeVn
max(A),
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which is bounded. Let us call the bound M r .

We can now see that

|0n(xn)(u) -  #iim(z)(u)| < (M f My. +  M f M *  +  M r ) m ax(A)n

since m ax(A)n —> 0 for any e >  0 there is an N  beyond which this holds for all n. □
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Proofs from chapter 11

Lem m a 11.1 For the general transition depicted in Figure 11.1, where the sequence 
of divider points for u is constrained,

• If a  is a continuous trajectory f { t )  then for any comb c which converges over 
X n(t),the limit X nm(u) is well defined up to (but not necessarily including) G 
^lim-

• If [3 is a continuous trajectory g(t) then for any comb c which converges over 
X n{t),the limit Xnm(u) is well defined from (but not necessarily including) k ^ G

P r o o f  Even spread of c is immediate so we simply need to show uniform convergence 
of those descents of the comb which lead to the sub flow up to k j^ . This is done by 
showing that for any point to the left of k ^  for sufficiently large N  the values of its 
descent are defined entirely in terms of a.

By uniform convergence of X n(t) with respect to c, Ve >  03N  such that

l(crN ) t  -  (<7) t l < e> Vn > N

for any point (<x) G X\[m.

Choose a point (a )  G Xnm such that (cr) -<; k ^ .  Because of uniqueness of descent

(Lemma 9.2) 0 < (cr)t -  0lim(k [^ )(t )
dg§

Now we can choose N  such that Vn > N , |max(A)„M +  e| <  6 where M  is the divider 
point constraint bound. The value of 5 is fixed, so such an N  must exist. Beyond this 
point the value u will just be defined with respect to a {i.e. f ( t ) )  and so will converge 
by lemma 10.2, i.e.

Vn > N ,en{{a[n])u =  f {{a[n])t )

The second part can be shown by symmetry. □

Lem m a 11.2 For a set of uncountable piecewise-6-continuous valuation flows R which 
are equivalent almost everywhere the global equivalence flow is well defined.
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P r o o f  We are required to show that for any two uncountable piecewise-0-continuous 
flows X ,Y  E R that X  \ P x =  Y  \ Py

First notice that P x ,P y  are regular flows and since 1  =  7  we know that

X  \ Px  =  Y  \ PY =* 
{X  \ Px ) \ S'XY =  {Y \ Py) \ S'YX

what we need to show is that the smallest sets S'XY, S'YX which satisfy this are empty.

Now S xy  Q P x  and SyX Q Py so if SXy  — Px  and SyX =  Py then we are done.

So suppose that there are additional points in Px  which are not S y x ■ These points 
represent points which are equivalent in X  and Y  but which differ between X  and 
other flows in R. Now it will be demonstrated that for every such point in Px  there 
is a matching point in Py that has been removed from the flow Y . If all these points 
match then there will be no need to remove any further points from Y  \ Py  to make it 
match X  \ Px  and so SYX will be empty.

So choose an arbitrary point x £ Px  such that x ^ SXy- Now there must exist Z  £ R 
such that x £ Sxz-

Now assume this sequence of flows is timed i.e. there is a strictly monotonic clock signal
def

t  with a value at each point. Then let fx  =  0x (x )(t) and let y  £ Y  be the point such 
that 9y(y )(t )  =  fx  and similarly let 2; be the point in Z  such that 9z{z )(t) =  fx .

Since x ^ S xy  that implies that 9x {x.) =  9(y), but x  £ S x z  which implies that 
9x(x)  =  9(z) so 9y(y) ^  9(z) and therefore y £ Py.

The point x  was chosen arbitrarily from Px  \  Sx y  so for every such point there is a 
matching point y, and so therefore SYX is empty. By symmetry S'XY must also be 
empty and the result holds.

It was assumed that the flow was timed; however, this assumption was only necessary 
to make the proof neater. The temporal metric provided a function that mapped the 
set of nonequivalence points from different flows to one another. However, because 
the flows are piecewise-0-continuous such a function is already available. Because any 
two flows are equivalent almost everywhere to each other, there is a one-one isotone 
which maps all the points except the discontinuities to each other. However, because 
the discontinuities are isolated there is an implicit mapping between these points too. 
□
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Proofs for chapter 12

Lem m a 12.1 Consider a characteristic function Xn Xlim and a valuation sequence 
Vn Mim mxi/i Vn G £d(xn)’ and the sequence of valuations XnWn]- Then providing 
Xlim continuous at V\\m,

lirn XnWn] =  XlimWim].n f̂oo

P r o o f  For some e >  0, choose an N  such that:

|Xn Wn\ © Xlim[^n]I ^  2
|Xlim[Fn] © Xlim[Flim]I 2

By convergence of Xn, convergence of Vn and continuity of xnm respectively such an N  
exists. So by the triangle inequality for ‘© ’ :

|Xn[̂ ri] © Xlim[Fn]| <  £

as required. □

Lem m a 12.2 Consider two standard characteristic function sequences Xn and i/jn. Let 
Xm'f’n he uniformly convergent almost everwhere over A n, such that Xn XlirmVVi ~* 
4>Um- Tel Xn © ifn he well defined for all n. Then Xn U ipn is guaranteed to converge to 
Xlim U V’lim at all points Vs where xiim © V’lim[Vs] I  D (x{im U if{-m) is continuous.

P r o o f  We are required to show that Ve >  0, 3N  such that

I (Xn © VVi) [V] © (Xlim U V’lim) [^] I <  £

At first sight this would appear straightforward; however, there is a problem because 
of the way in which the union operator is defined over characteristic functions is as a 
fixed point. The assignment values may provide input to each other, and so care must 
be taken to show that the limit is approached as expected.

First choose an arbitrary e > 0. Now (xn U VVi)A is independant of the fixed partition 
in that their input comes entirely from T]u^- Consequently for any V over which x  
and if are convergent, there exists an N  such that

|(XnUV’n)Am © (Xlim U ^lim )m | < \

165



The rest of the characteristic function (xn U ifn) is fixed with respect to A n, but may 
depend on the output of ( x n  U ifn)A-

Observe that

( X n U V ’n ) i y ]  =  ( ( X n  U ^ n ) A  U U ^ ?i) / ) [ y ]

=  / lX . (X n  U $ n ) A [ V  U X] u (Xn  u [ V  U X]
=  (Xn  U l f n ) A [V ]  U {Xn  U lf>n)f [ W n}

where Wn d=  V  U (xn U'^n)A[V]. Then see that because of continuity and lemma 12.1, 
3N  such that Vn >  N

(Xn  U l f n ) f  [W n} 0  (X lim  U [W\im] '

Now notice that because 0 is a sum of differences that 

I (Xn  u  i>n)[V ]  ©  ( x i i r a  U 'i/’l im ) [V ] | <

< 2

{Xn  U ^ „ ) A [F ]  ©  (xiim U V’lim)A [V]| +  
(XnU'i/’n)/ [ K ] 0 (XHmUi/>lim)/ [^ira]| < t

as required. □

T h eorem  12.4 For any two delta-flow machine M a ,M'a  the synchronous product of 
their limits is equivalent to the limit of their synchronous product i.e.

=  hm M a \\M'a

P r o o f  Clearly on both sides the set of states, initial state and signal sets are identical. 
It remains to show that the two flows are equivalent, i.e.

Jim {FMa H Fm 'J  =  FMum U FM>im.

Let X  =  FMum II FM>.m and Y  =  limA^o {FMa H FM'J.

First we show X C 7  i.e. there exists an isotonic mapping g :Y  -> X  s.t.

V y G T  dx {g{y)) =  0Y{y).

It can be assumed without loss of generality that the machines are timed in which case, 
this mapping would have to be isotonic. If we can prove the existance of equivalent 
points the mapping will be well defined. In other words for every x  e X  there is a 
unique y  € Y  such that 9y(y)  =  6X (x)

What we do now is to prove that equivalent points exist assuming that the same comb 
has been used for both limits. If the the limits are the same for any arbitrary comb, 
then the global equivalence set will also be the same.

d&fTake an arbitrary point y  e l ,  let t0 =  dY{y){t) .  Now by lemma 12.2

M y )  =  (XM A U X m ' ) y  =  (X M A ) y  U {x m a ) Y
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Now let tp =f (xMA)y (t) clearly (xM; ) y (t) =  V

There must exist a point x e l  such that # x (x )(t) =  to- 0(x) =  (xma )x  U (xma )X- 
Since t is strictly monotonic we can deduce that (xma )X — (XMA)y  and likewise 
(X m ;)X =  (XM^)y so therefore:

M x ) =  ( x m a ) x  u  ( x m ; ) x  =  ( x m a ) y  u  {xM'Jy  =  (x m a  u  X M k ) y  =  M y )

The point y  was arbitrarily chosen so X  C 7 ,  and the mapping is one-to-one and onto 
s o f C I  and therefore X  =  Y □
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Proofs for chapter 14

T h eorem  14.1 For any system H  described as a BBM model, there exists a Continuous 
I/O  machine M  such that the output flow M  is equivalent to the flow described by H.

P r o o f  (sketch) First we’ll need some new pieces of notation. The double arrow shown 
in Figure G .l is short hand for the machine fragment beneath it. This will be used to 
model the timed transitions of the BBM model.

Let us define a vector valuation as simply a valuation which ranges over each of the 
vector components. Then define A(i) as being a set of valuations such that V  € A{i) 
implies that V  defines a point in the space Ai, for all i and let A(i) be the complement. 
Similarly let us define C(i) for the space G{. Let us assume that the controller can 
signal the occurrence of a discrete change with the signal k =  1. Let n be the valuation 
k =  {(& ,1)} and let k =  {(k,v)\v € K,v 1}. Let us also assume that a function 
r](x(t)) or rj(x(t),v) can be defined such that when x(t) makes a discrete jump to
x'{t) E Sj rj(-) =  j.

Now observe that from the partitioning of the space in H  there are two significant 
states for each 5). These represent whether x(t) 6 C{ in which case the controller may 
instigate a discrete change, or it is not.

These two states are represented in the machine M  shown in Figure G.2. State qO 
represents the state in which x  6 C{. There are two transitions from qO, (1) and (2), 
and there are three looping transitions (0), (3), and (4).

• (0) The looping transition (0) represents takes place unless a change takes place.

• (1) The transition (1) represents what happens if nothing changes transition (2) 
represents the system dynamics continuously taking x out of Ci and thus to state 
ql.

• (2) and (5) Transitions (2) or (4) takes place when k becomes 1, that is when a 
discrete j ump is instigated by the controller. Let the new value of x be x' £ Sj. 
Transition (2) takes place when the destination of x falls outside Cj. Transition 
(4) takes place if it falls inside.

• (3) and (4) take place when x € Ai, i.e. an autonomous jump. In which case
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Figure G.l: A delay transition

(3) occurs when the destination of x falls outside Cj and (5) takes place when it 
falls inside.

Similarly there are 3 transitions from state ql, (6), (7) and (8):

• (6) is a looping transition which occurs so long as x  remains in C (i) U A(i).

• (7) and (9) if x enters A(i ) then an autonomous jump takes place. If the destin­
ation is not in Cj (for j  =  p{x )) then transition (9) will be taken, otherwise the 
looping transition (7) will be taken.

• (8) finally transition (8) represents a continuous change of x from Ci to Cj.

So the signals in the machine will be as follows (where all but t , i , j are vector signals.

• IM =  { u , v , x ’ }

• O m  =  j }

The destination sets Di do not effect the presence of dynamics so can be ignored in 
modelling the system.

From the construction it should be clear that M  will model the dynamics of H. □

T h eorem  14.2 For any Hybrid, Automaton H in which the activities can be described 
as trajectories, integrator functions or dynamical systems, there exists a Continous I/O 
Machine M  such that there is an isotonic function h which will map every point in 
any run of H to a point in the flow from the M .

P r o o f  (sketch) The correspondance between the two types of machine is fairly close. 
A full proof of the theorem is not offered here, but an outline is given of the first part 
that illustrates this correspondance.

So for a Hybrid Automaton H  =  (Loc, Var, Lab, Edg, Act, In v ), I construct a Continu­
ous I/O  Machine M  =  (Sm , Vm , R(x m ))-
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[C(i)u A(i) ] / a

a  : x  :=  £(t)

A : j  :=  t} ( x )

f t : x  : =  x ' ,  i j

71 : j  :=  T](x)

72 : :=  j , x  :=  G ( x , v )

A i  : A i ( x , v )

A 2 : A i ( x , x ' }

Figure G.2: Proof of equivalence to BBM model 

Recall that Vm  =  VU Qm  where V is the set of values that system parameters take,
tLef def

and Q m  is the set of state values. In M  set V =  E and Qm  — LocU q^M- The initial 
state does not seem to occur explicitly in the description of hybrid automata, but we 
can add an explicit initial state qOM with an initialization transition associated with 
it.

def
Next let us to define the signal set Sm  — Im  U Om  U {£ }, Im  =  { }  and Om  — Var.

Finally let us define the characteristic function x m - The characteristic function in M  
is used to describe two aspects of H  —  the activities and the transitions. Let us take 
activities first.

By assumption each activity in H  can be represented as a trajectory, integrator func­
tion or dynamical system, so for each /  call its corresponding representation / ' .  Then 
package up all the activities thus represented for each location I G Loc into an assign­
ment on and place this on a looping transition. It just remains to predicate these with 
the appropriate invariants Inv(l) and add the state transitions which gives the set:

Xm =  { ({(£,*)} U/m,(0,{(£,Z)} Ua,)|V/ G Loc}

In which each transition looks like:

[Inv{l)]/ai

Next the transitions are defined, for each transition e =  ( ' )  in Edg, let us define 
a transition of M.

Xm d-  i (x  u { { stsig, l ) } ,y  U {{stsig,l')})\{x,y) G ¡i}
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Care must be taken in reassigning signal values on these transition and to avoid possible 
causality problems mirror signals should be used.

def
Then x m  =  x'm u X m  and we’re done.

It should be reasonably straightforward to see that this construction will satisfy the 
required properties. □
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Notation

This insert summarizes the notation used, in the second part of the thesis. An index 
of technical terms is also available at the back for reference.

Flows

x ...............................................................................................................................a flow point
X .............................................................................................................precedes (flow points)
X ........................................................................................ precedes or equal to (flow points)
«  ..............................................................................................................equal to (flow points)
y  ........................................................................................ succeeds or equal to (flow points)
X .............................................................................................................succeeds (flow points)
X  =  (F, A, 6) ................................................................................................. a flow for which:
x  G X ...................................................................................................................................x  G F
X \ F '  .................................................................................................................... { F \ F ' ,F , 9 )
\X\..............................................................................................................................................|F|
||N|| natural number flow
||R|| real number flow
Sub°P*{X ) ...................................................................(F\ A, 9) for F' =f  {y  G X\y op x }
x  .....................................................................................predecessor point {end{Sub~<x(X)))
x  ........................................................................................successor point (start(Suby x (X)))
= ..................................................................................................................................equivalence
=  equivalence almost everywhere
su p (X )................................................................................................... supremum of a flow X
in f (X ) .......................................................................................................... infimum of a flowX
star t (X ) ................................................................................................. start point of a flowX
end(X) ...................................................................................................... end point of a flowX

......................................................................................................................... divider point
X  11/ Y” ..............................................................................................zip of X  and Y  w.r.t. /
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Values and signals

_L .........................................................................................................................undefined value
V ........................................................................................................................... a set of values
A I  B  { ( x ,y )  G A\x ^ B }
V+ ....................................................................................................................................V U { 1 }
V  ...................................................................................................................................a data set
S .........................................................................................................................set of all signals
£ ..................................................................................................................set of all valuations
£s .........................................................................set of all valuations over the signal set S
© ........................................................................................................... metric over valuations
s ......................................................................................................................................a signal
s ...............................................................................................................a current signal value
s ........................................................................................................... a previous signal value
S ................................................................................................................... previous signal set
e  current machine event
e .......................................................................................................... previous machine event
X  .......................................................................... valuation X  renamed to previous signals
D ( V ) ..................................................................................................... domain of valuation V
R ( x ) ........................................................................... realization of characteristic function x
U ..................................................................................................................union over relations
x[V] .................................................................................................. xu{ ( { } ,F) }
x ...............................................................................................................................mirror signal

.....................................................................................................discrete shadow signalx♦

Strings and Combs

\o\ length of string a
a*, n character of a

Hio[m] .................................................................................... string of first m characters of a
o L ....................................................................................................................... leftmost descent
o R ....................................................................................................................rightmost descent
x  flow point in a comb
(cr)................................................................................................................... a point in a comb
(c r ) ........................................................................................ a point at the limit of a comb o
(o )s  value of the signal s at (a)
( o ) s  value of the signal s at (<x)
Sp((cr))........................................................................................................ the spread of a flow
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Index

0-continuous, 56

accepting, 17 
agent system, 4 
automaton, 14

branching sequence, 75

cardinality, 44 
characteristic function 

standard, 104 
closed, 52 
comb, 71

convergence, uniform, 73 
limit, 72 

comb identifier, 71, 72 
connected, 43, 54 
continuous, 55 
Continuous I/O  machine

synchronous product, 106 
continuous I/O  machine, 78 
continuum, 55 
controller, 4
convergent delta bounds, 82 
countable, 44 
cut, 54

delta flow machine, 65 
standard, 104 

delta partition, 104 
dense, 43, 52 
descendants, 74 
descent, 72

leftmost, 72 
rightmost, 72 

descent point, 72 
descent value, 72 
discrete shadowing signals, 100 
divider point, 92

constrained sequence, 93

dynamic, 30

environment, 4 
equivalence flow, 95 
equivalence, flow, 51 
equivalent almost everywhere, 95 
event, 27

fixed partition, 104 
flow, 27, 49

(9-continuous, 56 
connected, 54 
continuous, 55 
dense, 52 
end, 28, 52 
equivalence, 51 
equivalence, global, 52 
forward, 52 
monotonic, strictly, 56 
montonic, 56 
regular, 54 
start, 28, 52 
structure, 27 
supremum, 56 

flow component, 87 
flow machine, 64

generating, 17 
global equivalence flow, 95 
globally equivalent almost everywhere, 

95
globally equivalent, 52

hybrid automata, 123

interactive, 18 
isotonic, 51

metric, 28 
metric dataset, 55
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mirror signal, 98 
monotonic, strictly, 56 
montonic, 56

nonequivalent points, 95

order preserving, 51

plant, 4 
proactive, 31

reach, 71 
reactive, 31 
reactive systems, 13 
root flow, 71

signals, 59 
situated agent, 3 
spread, 75 
spread, even, 75 
static, 30 
string, 69 
subflow,53

contiguous, 53 
supremum, 56 
synchronous observer, 21 
synchronous product, 64 
synchrony labelling, 28

temporal metric, 29 
external, 31 
internal, 31 

temporal system, 27 
transformational systems,

uncountable, 44

valuation, 50, 60
distance metric, 60

zipped, 57


