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ABSTRACT

Observations and theories of elastic anisotropy in the

Earth's crust and upper mantle are reviewed and discussed.

Crampin and Taylor's (1971) procedure for computation of
- seismic surface-wave characteristics in a plane-~layered anisotropic
half-space is described and a modification to incorporate a surface
water layer is developed,

Simplified models of anisotropic ocean-basin structure are
Two types of anisotropic alignment are considered, one resulting
from syntectonic recrystallisation of olivine in a horizontal-shear
~zone, . the other from olivine glide-plane slip with horizental or

vertical slip-planes.

'Aiignﬁeﬁf of the first type can cause slightl& anomalous
‘particle motion, of’tilted~Ray1eigh-type, in all surface-wave
ﬁodeé. ' The variation of anomaly amplitude with period in the
j_fﬁndémental mode gan_ihdicate fhé approkimate depth to the

anisotropic layer.

-'. 'Aiignment'of the second fype can cause highly anémalous
parﬁicle—motioﬁ, of inéliﬁed—Ra&leigh—type, in the third
_ geﬁeralised modé, corresﬁonding to the iéétropic second~Rayleigh
mode., | The anémaly amplitude is rather insensitive to details of

.S tructure .

For either type of alignment, the sense of tilt, or



inclination, varies with direction of propagation, in a manner

characteristic of the structural symmetry.

Some practical problems in observing surface-wave particle—
motion in real ocean-basins are discussed. Several seismograms
are presented.showing tilted-Rayleigh—-type particle-motion for
médes corresponding to.the isotropic fundamental-Rayleigh and
Love modes. The azimuthal variation in sense of tilt is
consistent with propagation in an anisotropic structure with a
single, vertical symmetry—-plane, parallel to the direction of
lithospheric plate ﬁoti6n5 Observations are éonéistent with
theoretical models if aligﬁed olivine b;axés are tiltgd doﬁn in
the direction of plate-motion. Ave 'Lallemant and Carter's

'(1970) syntectonic recrystallisation model then suggests that the

lithosphere is dragging the asthenosphere.

Pfeliminary results for the variation of anomaly amplitude
'with_period'suggest a high degree of alignment, stronger in the

lithosphere than in the asthenosphere.
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1. INTRODUCTION AND REVIEW OF OBSERVATIONS AND THEORIES OF UPPER-MANTLE
ANISOTROPY

Introduction

This study sets out to examine new evidence for the existence of‘
large~scale, aligned anisotropy in the oceanic upper-mantle, to
determine the symmetry of that alignment, and‘to examiﬁe the impli-
cations for theories of plate—-tectonics. The method makes uée of
the anomalous surface-wave particle-motion associated wifh large
scale anisotropy (Crampin 1975). Observations are compared wiﬁh
model predictions which are computed bf a modified versioﬁ-of Crampin
and Taylor'é (1971) program for surface-wave propagation in plane-
layered,anisotrobic media., The modification, which allows for ﬁhe
effects of a éurfacé water~layer, is_described in Chapter 2. Some
fepreséntativé oceén—baéin models are described in Chapter 3.

" Observations of surface-wave particlg—motion ana the telationshiﬁ
between observafionsAand mddei predictions are examinedvin Chaptérs 4
- and 5. The relevance of these resulfs'tdiplaté—tectonic theories is

" “discussed in Chapter 6.

There have been several previous studies of anisotropy in both
 continental and oceanic areas, and many explanations of its origin
have been proposed. The remainder of this Chapter reviews the

relevant observations and theories.

Surface~wave studies

Seismic surface-waves travel over the surface of the Earth, those with"
periods less than about 100 seconds having their energy concentrated in
the crust and upper-mantle. Their phase-velocities and particle-

‘motions depend on conditions at all depths to which they penetrate, in



the'fegion in which they are travelling, with longer-period waves
sampling : greater depth range. Group or phaSe-velocitieé,measured ’
at any single seismic statipn,reflect the average conditions along _
the whole path which the waves have travelled. "Azimuthal—anisotropy"\
may show up as a regular variation of phase or group—-velocity with

azimuth of_propagation, provided that allowance can be made for this

path~averaging effect.

In an isotropic structuré,,two'distinct types of surface-wave propagate,
Rayleigh modes and Love mohes. In an anisotropic structufe the types
"are not distinct and all surface-waves belong to one fgmily of
."Generaiized modes" (Craﬁpin and‘Taylor 1971). These modes may show a
- close resemblanée, in particlé—motion‘and dispersion, to either
isotropic tjpe énd in sucﬁ cases may be described as '"Rayleigh-type" or
"Love-type".vi The correspondance between isotropic and anis?tropic |
modéé is‘described more fully'iﬁ Crémpin (1977a), for continental

‘structure, and here, in Chapter 3, for oceanic structures.

Love-tyﬁe modes, wifh prédominantly%transvefse particle-motion, are
mést.senéitive to.thé velocities of hérizontally-polarised shear-waves
(‘SSH) in tﬁe:crgst and upber;maﬁtle; Rayleigh—-type modes, witﬁ largely
fadial and vertical particlé—motion are more sensitive to the Qelbcities

' bf 16ngi£uhal and vertically-polarised shear waves (Cl and ngv

respectively) and are also sensitive to densities.

Several_workefs haVe found evidence for anisotropy in phase and group-

~ velocities. McEvilly (1964) first'reported that, for the central Uﬁited
States, Rayleigﬁ ana Love dispérsions could not both be explained by the
same model of crust and upper-mantle structure.  Kanimuna (1966) found
é éimilaf'discreﬁancy for Japan. In both studies‘KSSH seemed to be

6 - 87 higher than FSSV in the upper mantle. It was suggested (Thatcher

2 .



and Brune l969,'Bq§re 1969) that contamination of the fundamenfal
Love mode by highef—mode energy could lead to erroneous eétimates'of
Love~wave phase—-velocity. Tﬁere was a suggéstion that this errof
should be random rather thaﬁ systematic (Boore 1969% but enough doubt
remained so that the apparent discrepancy was generally attributed

to errors in phase-velocity estimates rather than to anisotropy in

the upper mantle.

Knopoff (1972) noted that higher-mode interference could be minimised,
and useful phgse—velocity measurements.made, by ﬁéing very long travel
péths. By using several long paths of different length and events of
known focal meéhanism,vForsyfﬁ“(l975a,.19755) was able to measure phase
'.Qélocities for fundamental and first-higher Love modes, crossing the
Nazca plate. He also ﬁeasuréd fundamental—Réyleigh phase and group-
velécifiés and fbuﬁd a maximum azimuthal—anisotrpﬁy of 22 at- 70 seconds
' périod for the‘Rayleigh—ﬁave phase~-velocity, with a velocity maximum
perpeﬂdiéuléf to the ridge crest. He could not resolve any azimuthal
aﬁisotropy for the vae—waves but he did find that f3sﬁ is appafantiy

. greater than KSSV’ by about 0.15km/s, in the top 125km of the mantle.

Schlue'and Kndpoff (1976,1977) studied fundamental Love and Rayleigh
' phase—travé1~times for paths crossing the Pacific basin. They did
not resolve any azimuthal anisotropy but found structural anisotropy
- of gbout-3Z, £3SH being greater than |3SV’ in the upper mantle. They
 considered that their inversion showed that the anisotropy is confined

to the low-velocity-zone.

All'of'the surface-wave studiesbabéve have uéedvisotropic modelling
to invert data from an apparantly‘anisotropic Earth. Crampin (1976)
v’has“pointed out that isotropic.models are.inappropriate and Kirkwood
(1978) (reéroduced Héré as Appendix 2) déscribeé in some detail the

3



1.3

possible consequences for the interpretation of their reéults.

The errors are probably much.larger than those quoted so that, although
the studies show that anisotropy is almost certainly.present near the
top of the upper mantle, tﬁe degree of anisotropy and its exact depth-
range are not well determined. In particular, anisotropy may not be

confined to the low-velocity-zone.

Crampin and King (1977) take a rather different approach. Crampin
(1975) showed that the particle-motion of higher-mode surface—wavés
is particularly sensitive to the presence of anisotroﬁy in the crust or
upper—mantle. Crampin and King (1977) have observed coupled transverse

and sagittal particie—motion for higher4mode waves for a number of paths

- across Eurasia. They interpret these as third-generalised mode

(second-mode Rayleigh—type),'With aligned anisotropy in the upper-mantle

throﬁghéut'N, Eurasia..

Refraction studies in oceanic regions

‘Hess (1964) first noted that P waves, which travel immediately beneath

 the moho, in the Pacific chan;showed a strong variation of velocity

with azimuth of propagation. Other refraction studies in the Pacific

" (Raitt et al 1969,1971, Morris et al 1969, Keen and Barrett 1971, and

many others) confirmed Hess's findings. They found Pn velocity

’anisotrdpy of 3bf 87, with the maximum veloéity for propagation parallel

to fracture zones and to the direction of spreading. Keen and

Tramontini (1970) found a similar 8% Pn anisotropy in the Atlantic.

'Refraction surveys sample only the crust and the topmost few kilometers

‘'of the upper-mantle so that the anisotropy seen by Pn waves may not be

defectable by analysis of surface-waves phase~velocities,which would be

affected only by a fairly thick anisotropic layer. Hoﬁever, an 8%

4



1.4

1.5

f-velocity anisotropy, such as that found fof’P#)and aI3Z.SV4velocity
anisotropy,such as might be expected if the P-anisotropy is due to
aliéned olivine, which extendéd 50 - 100 km down into the upper-mantle, |
would give a phase-velocity énisotropy.for the fundamental Rayleigh— - |
type mode of 1 - 3% (see Chapter 3). This would be compatible with

the findings of Forsyth (1975b)

Generation of Anisotropy : proposed mechanisms

It is known that seismic anisétropy‘can be generated in several ways.
A system of aligned cracks (Crampin 1978), or of thin vertical layers

with alternating high and low velocities (Aki 1968),will show both

azimuthal-anisotropy and discrepancy between the velocity profiles

‘ ’seeh' by Love and Rayleigh waves. Such systems are important for

crustal ahisotropy,but are unlikely to be important in the upper—

: mantle. A system_of flat, penny—shapedrcracks, or pockets of partial
melt;_was investigated by Garbin and Knopoff (1975) and used to explain

" the structural anisotropy found by Schlue and Knopoff (1977). Such a

system would not explain the ézimuthal—anisotropy observed by Forsyth
(1975b)' AnbanisdtrOPicivelocity‘distribution may also be induced

directly by an anisotropic stress field in an otherwise isotropic medium

 (BackuS 1965, Morrié ét al 1969). 'However, only a very small anisotropy,

several orders of magnitude less than that observed, is likely to result

from réaSQnable stress differénceSj’(Dahlen 1972). Upper—mantle

' anisotropy'caﬁ be explained most easily in terms of preferred orientation

of mineral grains, particularly olivine. ~

Anisotropy and deformation mechanisms in minerals’

Almost all cryétalline minerals are anisotropic to both light and sound

waves. It is thought that the upper-mantle comprises mainly olivine

(60'-‘702) with sbme ortho- and clinopyroxene (15 - 207 each) (eg. Ahrens



" l972, Kennedy and Higgins 1972). The proportion of olivine willibe
greater where the mantle has been subjected to depletion by partiai
melting. Measurements have been made of the elastic constants for
Single crystals of these minerals, and of their pressure'and temper—
ature dependence (eg Verma 1960, Kumazawa 1969, Kumazawa and
Anderson 1969 Graham and Barsch 1969). . These minerals show strong
veloclty—anlsotropy of 15-257 for P-waves. For the orthorhombic
minerals,.maximum P-velocities occur for propagation along the
crystallographic a-axis with minimum Pfrelocities alcng the b;axis.
For the clinopyroxenes the f—velecity maximum is close to the c-axis
(Kumazawa 1969). A number ofIStndies have been made of seismic |
velocities in metamorphic'rocks which contain aligned olivine or
pyroxene crystals, and the expected anlsotropy has heen found (eg.

Birch 1960, 1961, Kern and Takhimi 1975, Meissner and Fakhimi. 1977)

It is”known that_preferred orientation of minerals can arise during
..deformation. Deformation may take place by slip on particular
crystallographic-planec.or byvdynamic (syntectonic) recrystallisation.
'Ralelgh (1968) observed that, for temperatures between 400 C and 800 C‘
the dominant deformatlon mechanlsm in 011VLne was slip in the [10@ o
dlrection on all» {0 k E} planes. 'Ortho— and clinopyroxenes were

found to deform by slip in the ‘[ooﬂ, directinn on (100) planes.
"(Raleighn>1967, Raleigh . and Talhot'1967). " In a mqre complexlstudy,
.Carter and Ave-'Lallemant (1970) found three different modes of glide-
plane deformation in experimentally-deformed olivine, each occuring

for different temperature, pressure and strain-rate regimes. For any
givenrpressure, the dominant slip system was (010) [lOO] at high' |
temperatnres, { ok [} [100] at intermediate temperatures and {110} .
[001]_at low temperatures. Their resulte are summarised in Figure-l.l;

They found also (Ave 'Lallemant and Carter 1970), that recrystallisation
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1.6

only in the interval 10_3 to 10_83—

of the olivine became increasingly important at highef temperatures.
Oiivine recrystallised under stress to form stféin—free graiﬁs'with
b-axes aligned parallel to the direction of maximum compressive stress, _
the grains being slightly flattened to form foliation planes perpen¥
dicular to the b-axes. There was no preferred stress direction in

the foliation plane and so, no alignment of a- or c—axes. On the

basis of field observations and thermodynamic arguments, however, the

_authors suggest that olivine a-axes would align parallel to a minimum

compressive stress. Although measurements were made for strain rates

1, the authors extrapolate their

findings to a 'representative geological strain-rate' of 10“]‘43_1 and
conclude that recrystallisation of olivine is:the dominant mechanism
of deformation in the upper mantle, above 500°¢C. - Preferred orientation

then occurs as the olivine b and a-axes align with the maximum and

.. . - ‘ . . : s 0 -
minimum compressive stresses, respectively (Figure 1.2), at 45 to shear

»plaﬁes.

Other authofs (eg. Nic@las and Poirier 1976) disagree and consider that

_alignmerit takes place by glide—plane slip, the glide-plane aligning

aloﬁg shear planes with the dominant slip direction parallel to the flow-

lines.

Crystalline Alignment in the upper—mantle:theories

Hess (1964) proposed a model where olivine in the uppermost mantle is

aligned by shear at transform faults. He supposed that the elivine

glide—piane (010) should align in a vertical plane parallel to the

transform fault, with a-and c-axes aligned randomly in that plane.
This would result in an 18% - 20% Pnanisotropy,'if the olivine were

completely aligned, with maximum velocities parallel to the transform

 fault.

Francis (1969) considered that the temperature and pressure at the

8



Figure 1.2

Schematic¢ illustrations of "flow-fields', planes of
maximum shearing stress, principal stress directions
and alignment of olivine crystallographic axes by
syntectonic recrystallisation (after Ave 'Lallemant
and Carter 1970).



1.

7

crust/mantle boundary (about ZOOOC, 2kb) are too low to perﬁit'glide—
plane creep. He therefore proposedva model in which alignment takés
place deeper in‘the mantle. Upwelling mantle material must change

its direction‘of flow, from vertical to horizoﬁtal, beneath the ocean
ridge and this would result‘in 1arge.shear-stres$es. The olivine
a-axes would align along flow lines with slip on all {0 k E} planes,
the a-axis Being carried into a horizontal orientation, paraliel to

the directibn_of spreading (Figure 1.3) ; Thus, Francis' (1969) modeI_
alsp gi&es Pn aﬁisbtropy of up to 20%, with the maximum velocity

parallel to the transform faults.

‘Ave 'Lallemant and_Carter's (1970) model of alignment by recrystall-

isation (Figure 1.2) has a— and b— axes at 45° to the horizontal, with

c-axes parailel to the mid—ocean—ridgelcrest. Ihis can give Pn'
anisotropy of up to 5% (using Kumazawa and Andersoﬁ (1969) to estimate -
the elastic constants ofbolivine), with maximum velocities parallel to
the direction of spreading, provided that the alignment produced above

500°C is 'frozen in' as the lithosphere cools.

Field observations of mantle rocks

it is not possible to sample upper—mahtlé rocks directly but thereAare
sevéral places on.the earth's surface where upper-mantle material seems
to have risen, relatively unaltered, ;hrough the crust. Kiﬁberlite
pipes; fofbekample,-conﬁaiﬁ fragments of peridotite’wﬁich have equi-
liberated at depthsvof 106-200 km benéath continenfal—shield areas

(for example see Green and Guégen 1974). Peridotite fragments have been

found in alkali basalts, the basalts being similar to those erupted at

mid-ocean ridges and in rift-valleys. These peridotites were formed at

depths of 50-120 km, probably beneath an oceanic area (Basu 1977).
Large‘intrusive bodies of peridotite are commonly found in Alpine belts, .

again thought to have risen directly from the upper-mantle (eg. Cristensen
10 ‘



','._V_‘Flgure 1. 3 Orlentatlon of olivine axis in relatlon to-ridge axis
' : following alignment by gllde-plane sllp in the upper—‘_-
o mantle (after Francis 1969) :

11



1971, Peselnick et al 1974).

Evidence for glide-plane slip, in the form of kink-bands, and.for
extensive recrystallisation, especially of oliviné, is common in these
rocks. A pattern ofvlittle deformation with no crystalline alignment,
grading into strong glidefplane deformation and étrong alignment, with
eventual_dompiete recrystallisation and weak alignment, is freqﬁentiy
found (eg. Basu 1977, Boullier and Nicolas. 1975, Mercier aﬁd Nicalas.
1975). Nicélasw‘and his co—-authors maintain that there is évidence
'only for deformation by glide—plane slip, with foliatioﬁ—planes corres-
ponding to slip-planes. They find strong alignment of olivine b-axes
perpendicular to the foliation-plane and alignmenf of.é—axes in that
plaﬁe. Inbone area (Pesélnick et al 1974), they observed that the

' foli#tion—plane corresponded to a structural plane sﬁowing evidence

of extension along it, so that alignﬁent wés by slip on the (010) piane,

now the foliation plane, in the [100] direction.

Ave ;Lallemant.and Carter (1970), however, claim that many nétufall&
deforméd peridotités shbw similar fabfic énd texture.tp those inducéd

by syntectonic recrystallisation in théir'laboratory‘experiments.  The
i c§rre1ation of reéovery—recrystéllisation with raﬁdom crystal—élignment;
méntiohed above,'may'afise when the stress causing the initial deformation

is removed before recrystallisation is complete.

Allrof these fragments'éf upper—mantle have_soﬁehOW‘been introduced

into the crust and do not have the same history as the rocks now forming -
the uppér mantie. The fragments.may have been injected foliowing
diapiric'upwelling iﬁ the upper-mantle,so that the deformation mechanisms
seen arellikeiy to be a response to the stresses, temperatures and
pressures associated with that upwelling, rather than with steady, lateral

flow in the upper—-mantle. (Green and Guegen 1974; Basu 1977).. Thus thé

12



1.8

controversy over whether the observed deformations‘took place_by
glide—plane slip, by syntectonic recrystallisation, or by a
cbmbination of both, is not necessarily directly relevant to
arguments on the mechanism of upper-mantle flow and crystal align-—
ment in the lithosphere and asthenosphere. Either mechanism

could generate large scale alignment.

Potential for study of anisotropic alignments using surface-wave

particle-motion

Each of the two mechanismémaiscussed above would result in crystalline
alignmept with a characteristic symmetry (Figure 3.2), each symmetry
pattern'haQipg a characteristic effect on surface-wave pérticle~
motion. It should be possible, therefore, to determine ﬁhe main

mechanism of alignment from analysis of surface waves. The details

of the alignmeﬁt depénd on details of the stress and flow pattern in.

the upper-mantle, which in turn depend on the mechanism of ocean-
floor spréading. _The details which can be resolved using surface~

wave particle-motion data can help discriminate between alternative

‘theories concerning that mechanism.

13



2. THEORY OF NORMAL-MODE SURFACE-WAVE PROPAGATION IN A PLANE-
LAYERED, ANISOTROPIC HALF-SPACE WITH A SURFACE WATER LAYER.

2.1 Introduction

The mathematical treatment qf elastic-wave propagation in a plane-
layered, anisotropic half-space has been developed by Crampin(1970)
and a procedure for the computation of dispersion and particle—-
motion characteristicé of .normal-mode surfacé;waves has been
described by Cfambin and Taylor (15%1).' A description Qf that
procedure follows, iﬁ sEEtion 2.2, Crampin and Taylor consider
on1y so1id layers, so a modification to their method, which ailows

oceanic structures to be modelled, is described in section 2.3.

2.2 Matrix formulation for normal-mode surface-wave propagation

Let X ,xz,x3, = standard cartesian coordinates, with Xy increasing

. downwards,

= COmponents of displacement corresponding to the

ul’.uz ’_L_I3’
‘dlrectlons Xl’XZ 3
:ipjk = the j th component of force on unit area
L perpendicular to the x  axis, that is, the jkth
elemént of the stress tensor, _
S = _<au bu%) » the mnth element of the strain tensor,
w - = angular frequency,
-t - = time,
P = density
Sk =1 fqr j=k, = 0 for j#k equations (2.1)

14



'

Summation over the values 1,2,3 is understood with respect to all

vector and tensor suffices which appear twice in any given term.

Within a homogeneous, elastic, anisotropic layer, stress is a

linear function of strain:

iﬁk = Cjknm S J,k,m,n =1,2,3 , X (2.2)
The 81 elements of Cjkmn are reduced to 21 independant elastic

constants by the symmetry relations:

C =C (2.3)

jkmn - ijmn mjk

The wave-equation is derived by setting the internal stress,per

unit volume equal to density x acceleration:

2.

ik =P Y, 3=1,2,3 o |
¥ at? : R (2.4)

The-pgriodic solution has the form:
uj =y e | fu(eg)], 3=1,2,3 2.5)

For normal-mode surface-waves, propagating in the kl direction,only
those waves with no component of propagation vector in the X, direction
need be considered. For such waves, q2=0 and qlf;. where c is the
. c

-phase velocity in the X direction. Substitution of (2.5),(2.2)

~and (2.1) into (2.4) gives three simultaneous equations in aj

paj = Cjkmn am qk qnb,_ j=1,2,3
which may be wfitten.as :
('Pﬁ-m + qk qn) aj =0, J=1’2’3 (2-6)

im ¥ Ckm
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The condition for non-trivial solutions for aj is :

det(F) =0, - | @

where elements of F are :

ij - —pdjm * Cjkmn qk qn _ . (2.8

For gi&eﬁ values of c,ql and q, are known and equation (2.8) can bé
eXpandgd to a 6th order polynomial in 5 which, in appropriate
Fonditions (Crampin 1570), has six roots, q3(n),n =1,2,3,4,5,6,

which form compiex conjugate pairs. Substitution of each vélue.for
q3(n),in turn,intb (2.6), gives the relative amplitudes of al(n),
az(n), aj(n) for each value of ﬁ. Each component of displacement is

a linear combination of the displacements for each root:

6 - ‘ :
= (=21~ : =1
u. :E; f(n)aj(g) exp iw(t c1 q3(n)x3 ), j=1,2,3

J =
" (2.9)

From (2.2) and (2.1) it follows that the stress components may be
written as :
= —1w2§jf(n)a (n)[ q3(n)C km3}
X exp[—lwq3(n)x ]exp [1w(t—~1)]
| j=1,2,3. (2.10) .

In matrix notation, the expressions for both displacement and stress
may he written :
(95 Uys Ugs Pygs Po3s Payy o |
| ER (x5) (£(1),£(2),£(3),£(4),£(5) ,£(6))
(2.11)

where, if e and rmn'are the elements of E and R , respectively :
: ’ mn
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ejn = ajghfor j =1,2,3

3 ‘ .
®n ~ mzl 2@ (5 5y am1 * Co(gyams T3]

for j = 4,5,6 with s(j) = j-3
%)
. =6t -.A. [' h ]
and rJn(x3) 3n exp ( 1wq3(n)x3) exp 1@(t 3 ).

so that matrix E is independant of Xge

The propagation of normal-mode surface-waves .is controlled by the
boundary conditions at interfaces between layers. The conditions
gre thap ul, qu u3, p13,~p23, p33 are continuous across each
interface. Consider a layered structure with (n-1) plane,

horizontal layers overlying an infinite half-space. The layers

are numbered 1 to n, starting at the free surface. Et’ Rt'and
£f(), refer toa layer numbered t, thicknmess d.
V(U,U,u,P s Pras P )at‘dEPch _ . o :
1 | 2 3 13 23 33 in layer t Et R(Z)t (£(1)seesn f(6))t
(2.12)

(12 vy» 32 P13> Pa3r P33 at depthz+d_

in layer t E, B(Z+d)  (£(1)--- £(6)),

(2.13)
but R(Z+d) = R(d)R(Z)
and B L(z+d) = R L@Z)R H(d)
'éombining (3.12) and_3.13) gives
( Ups Uys Ugy Pygs Pogo p33) at top of layer t (2.14)

) at base of

= Et R(d)E;1 (u,, u,, u
layer t

12 Yp° Y32 Py3o Pygr Pag

but the boundary conditions require uj, pj3 for 3 =1,2,3,
at'fhe base of layer t,are the same as at the top of layer t + 1,

SO :
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(2f15)

(s s Ugs Prgs Pygo P44 at top of layer t =

At(ul’ uz’ u3’ P13’ P23’ p33)
at top of layer t + 1
where A, = E R(d) E'-1
t t tt
by repeated application of (2.15)
(ul, Uys Ugs Pygs Pogo p33) at free surface = . (2.16)

A, . §n_1Ean(Zn)_(f(l)- - £(6))

Ek P13 Pogs Pyga kom0 = © (Do £O)

or (u,, u,, u
1> 2 3

(2.17)
For propagatidn of surface-waves there can be no stresses across
‘thé free surface and no sourceé.at infinity. The (f(l), f(2);-;-l
‘f(6))n a?é the relative.excitations of the six roqts,qB(r), r =1,6
"~ in thgzsemi—iwfinite half-space. These roots,qB(r),are a
functidn of the elastic constants»df the half-space and of the
phase*velocity dnd do not depend on the‘presence of other layers.
If q is real, fhere is no décay df'the wave with depth and an upward -
travelllng wave would 1mp1y a source at 1nf1n1ty. It is reasonable
: to expect that any real root +q w111 be matched by one,—q corres=
pondlng td upward and downward -travelling waves,with the same wave - ;f
d'number.. If q 1srcomp1e$)the'rootslfqrm complex-conjugate palrsf
"A root with hegdtive imaginafy paft wouid imply an increase in
;‘.dmplitude with debth. So therexcifatioh functions f(r)‘for half

of thé roots must be zero.

(2.16) and (2.17) then give :
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(a5 uys ugs 0,0,0) = G (£, £(2), £(3),0,0,0) (2.18)

For a non~-trivial solution

det (H) =0 : (2.19)
where - hmn = g.m+3’n

m,n = 1,23 _
Ny 3N Swn ‘oelng the cements oif H ond G‘respeo)rn\/_e\j.

The hmh are functions of the thicknesses and elastic constants of
the‘layers, the phase-velocity, €¢.and the angular frequency, w”of
the waves. Once these are adjusted to give def-(H) = 0 then f(1),

£(2), £(3),in the semi~infinite half séace‘can be found from

£(1)

ﬂ £(2) -=

lo

(2.20)
£(3)

and ﬁ], u,, Uy can be found using (2.18).

Thé gj are, in general? Complex and rebrésent the relative
amplitudes ahd‘phases of thé three components of particle-motion at
thé»free surface. lIo locate one point on a norﬁa1~mode dispersion-
.Curﬁe, for“a specified,iayered stfucture, the prpcedure described in
.Cfampin aﬁd féyibr‘(1971) combutes sblutions as follows:

1. fake_abvélue for ¢
- Zf' Calc@latg F (eqnf 2;7) anq solve for q3(n),‘aj(n) for

: éaéh'iayer

3. ‘Take a valué for u

4. Form-matfices E,E_I,R (eqn. 2.11) for each layer

75. ~Combine to forﬁ G (eqn. 2.16)

" 6. Find det() (eqn. 2.19)
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7. If det(H) # O increment c or u _and go to 2 or 4 |
respectively

for successful

8. Calculate £(1), £(2), £(3), Uy U, U,

values of c,w-

It is obviously more efficient to fix ¢ and search for w (step 7),
and if thé program is used in this way,then a set of dispersion-
curves for the fundamental and 3 higher-modes, with about 10 points
per curve,can be éalculated in-about‘iS minutes of ICL 4[75

c.p.u. time.

Crampin and Taylor (1971) treat -only solid layers. A modifi-

cation for oceanic models is now described.

2.3 Modification for a surface liquid layer - .

In geﬁeral; each normal;mode surface-wave in an anisotropic sfructure
has displaceméntsAin‘all three orthégonal directioﬁs.' However, in
diréctions parallél té flanes of structural.symmetry;two independant
types ofrmode propagéte: Rayleigh-type mddes‘with only veftical_
éqd radial displacements and Love-type modes with only trénsversé
hpfizonfal_displaceﬁents.' For suchzmodes the 6 x 6 E-matrices of
‘eQuatiohs (2.11) are singﬁlar,so coﬁputationé must be made using

4”x 4 and 2 x 2 éubmatripes.> AxLove-type mode will not be affected
' by a Surface ﬁater layer, so only Rayleighiand generaiised—type

modes need be considered.

"It is convenient to modify the above procedure after step 5, changing

the boundary conditions at the top of the solid layers.
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For a liquid layer :
. = 6. 6 A ' N V .".
Cjikmn k% mn | (2.21)
where A 1is Lame's constant for the liquid

using q, = L and q, = 0 and applying (2.8)

C
gives o
[A-P 0 Aqs
‘22 c
F = 0 -p O ‘ o (2.22)

equation (Z.7) gives

(2 )0 ) (5o

leading to q§ =

1
c?

>|o

3 = f;'%%<p ) %ﬁ )%» s . (223

from equation (2.6)

_ 2
Py = C1111219] * Cyq3323949;

substituting for q, and q, gives ' . ) -
. g HES NN
- | al( P -"-z) '-l.,_--( P lz) a3
c c c /-
4

a, pc2 -2

setting al(l) =a(2) =1

1
a3(1) = #qc
a3(2) = -qc
2 \4| | |
where q = QEL—?TJ£ : ‘_ ’
' Ac ' ' - (2.2h4)
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Uéisng (2.9) and 2.10) for displacement and stress components in

the water layer :
us = [f(l)qc exP(-iu)QX3) - £(2)qc exp(+iu)qx3)] expiw (t= %1)
Pyy = i [f(l) Ay (-1 )
P33 = 7% <+ 2dc exp(-iwagx,
A 2 N . . |
+£(2) i Aq ¢ exP(+1aJQX3) explu)(t—gl) (2.25)

Using the value of q in- (2.24), equations (2.25) can be written:
uy qgc  -qc exp(~1iw qx3). 0 £(1)

= ' . ‘ expiu)(t-gl)

P3g -iwpe  -iwpc 0 eXp(+iqux3) £(2)

- - ' (2.26)
from which it follows that :
u3 qc -qc exp-1iw qd 0 ~LwpC qc u33

= 1
. _ (-iw)2qc?p

P33 3 -iwpe —1QOC 0 exp+1iw qd +1wpe .qc p33 =0 ‘

'x3—d TTx

| - 3 (2.27).
- where d is the depth of the liquid layer.

The stress across the free surface of the liquid is zero, so equation

(2.27) gives :

.(

- 1, ~lwqd +iwqd . o | ,
u3)x g = 2Ce + e )(u3)x -0 (cos wqd)(u3)x =0
-2 ¥ T 3 3
(Paq), g = —iwp, -iwqd _ +iwqd|,
'33 X3 d 2q (‘e e ‘)(u3)x3 =0
wp . ‘ : ' -
—'a— (sin wqd) (u3)X -0 v . (2.28)

3

' For propagation of a generalised surfaée—wave'mddéﬁlthe 6 x 6 matrix

G (equation 2.18) is formed as if there were no surface liquid layer.
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This gives :

(ugsuy,U35P13:P535P33 bt pase of liquid

= G( f(l),f(Z) ’f(3)>O,O’O )
layer ' ' |

(2.29) -

The boundary conditions at the solid / liquid interface are that

Py3 = Pyg = 0 and u3’and P43 are continuous. Using
(U, 4 = A(u3)X _q Vhere A = coswaqd
3" 3 '
(p33)x -d = B(u3)x =d where B = éi-sin(nqd (2.30)
' 3 3 '

matrix G can be replaced by G', ﬁithn‘

1 = - U= - o]
& g Bgm3 Agm6 > | 1f”‘”f'§ . .
and:gfmn'= 8 forn#6 ,m= l,éﬁfg.-.é : . (2i31)

 where g‘mh‘and 8oy 2Te the elements of G' and G , respectively.

Then ( uj,u,,u;,0,0,0 ) = G" ( £(1),£(2),£(3),0,0,0 )

which is of the same form as equation (2.19), where H is derived

" from C'.rather:than G. The U5y, and u, then refer to displécements

3

at the top of the solid layers.

For propagation of'Rayleigh~type waves, G is a 4 x 4 matrix with
~ Cupugpy by ) = 6 CEM)LE(2),0,0)

'so G is replaced by G' with »

- g.m4>_ Bng __Agm4 » M= 1,23,k

and g'mﬁ : gmn. fof‘n £4 ,m = 1,2,3 & ‘ (2.32)
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2.4 Comparison of computed dispersions: anisotropic and

isotropic techniques

Dispersion calculated using the anisotropic modelling program,
modified in this way, can be checked for conéistancy with isotropic
modelling, AIt is possible to generate an anisotropic layer which
is trénsversely isotropic, being symmetric about, for example, the-
a~axis which is aligned horizontally. Body waves travelling in

‘a pléne perpéndicular to this axis will all travel with one of 3

velocities, say a , B.. 'and BSH’ depending on their polarisations,

SV
and indepehdant of their direction of travel within that plane.
Surface-waves travelling parallel to this plane have either‘pure
Rayleigh or pure Love-type mbtion and their equations of motion are
identicél'td those for isotropicvmddels with the.velocit@es o
Sﬁf,'respectively, in the approﬁriate layer. So, as

the direction of propagation approaches'90o away from the axis of
y

‘and BSV or B

syﬁmetry, the dispersion, calculated By the anisotropic modelling
program, should approaéh that calcﬁiated by an isotrqpiérmodelling
program for the appropriateAmédels. Such.a'compérisonAis shown
in Figﬁre 2.1. | The isofropic curves are computed by a program
'based on Dorman (1959 and 1962) for fhé plane—layér models shown in
Tabie 2.1, whiéh afe intended to répresent oéeanic crust and-upper—
.-ﬁantle._ The anisotropic data_are'for a model with the low—veldcity—
zone in the isotropic models replaced by an anisotropic layer,
with the elastic constants shown in‘Taﬁle é.2 and for propagation in a
~direction 89.9° away from the symmetry axis. As Figure 2.1
shows ,.the anisotropié modelling'technique gives excelleﬁt agree-

ment with the isotropic method.
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TABLE 2.1

description
water e
sediment - - 0.
" crust . 6.
.lithosphere 60.
60

. low-velocity zone

~ upper mantle -

;“~'frabiée2§1

coownun

'--thigkneSé

o -;T'
_km/s

' 1.50
2.02

6.60
8.10

7.172

8.25

L curves 1n Flgure 2.1,

25

B . p A"
~km/s R kg/mgxlo.3
0.00 1.0 -
0.25 1.9 -
3.80 2.9
4,40 - 3.3
4.105 for - . 3.4
Rayleigh-

o waves . . - .
4,236 for Love ' |

‘ waves ol
4.55 :
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TABLE 2.2

LOWVTOL
Density = 3400 kg/m3
jkmn - Cjkmn(kb)
1111 2252
2222 1749
3333 1749
1122 508
2233 603
3311 ‘ 508
1212 610
2323 573
1313 610
Table 2.2 Elastic constants, Cjkmn of the material forming

the low velocity zone in the model used to
~ calculate the anisotropic dispersion data shown

in Figure 2.1
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3. MODELS OF OCEAN BASIN STRUCTURE AND SURFACE-WAVE CHARACTERISTICS

3.1. Introduction

The method described in Chapter 2 has been used to calculate thev
characteristicé of normal-mode surface-~wave propagation in several
models of ocean-basin structure, described in detail in Appendix 1.
This study does not aim to model any particular ocean-basin but
tries to'assess the likely effect, on surface-wave particle-motion,
of 1arge;sca1e,aligned anisotropy in the upper-mantle, Simple six-
layer models are used, with én anisotropic layer, or layers, forming

‘part, or all, of the top 120km of the "upper-mantle".

3.2. The basic model

A1l models are variations on a basic,isotropic model, S-ISOT-, which
‘represents a simplified,stable ocean-basin, some thousands of
kilometers away from a mid-ocean ridge. The six structural layers,

and their elastic constants, are shown in Table 3.1.

Information about tﬁe stfucture of real ocean-basins comes.from
several sbufces. bin general, P-wave velocities are best estimatéd
by ;efraction studies, S-wave velocities by surface-wave étudies and -
densities-by direct sampling.(seaiments and upper-crust), by
correlatibn of seismic and gravity profiles'(crust); or by consider-
atiéns of ﬁeat—flow, topography and isostasy (uppermost upper-mantle).
.Thére have been_many fefraction studies of the crust and thg top of
tﬁe upper—mantlejgiving P-velocities similar to those used for.S—ISOT
(eg. Houtz and Ewing 1963, Bishof_and Lewis 1973, Hussong et al 1972).

(Oceanic layer 2 is not represented in the simplified model used here.
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~layer thickness . g B 3
name - km -km/s km/s g;;m _

 Crust : water . 4.5 © 1.50 0.00 1.0
S sediment 0.5 2.02 0.25 - ‘1.9
layer 3 6.0 6.60 3.80 2.9

' Lithqsphére : layer 4 60.0 8.10  4.40 3.3
Low-velocity-zone : layer 5 60.0 7.48 4.10 3.4

Uppér-mantle : layer 5., HS 8.25 4.55- 3.5

_ ‘Tab1e 3.1 Structure of isotropic ocean-basin model ‘S~ISOT. |
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This will affect dispersion at short periods, but_surface—waves ét
these periods are rather insensitiﬁé to conditions in the-uppér—
mantle and so are not important in the present study). There have
been a few refraction studies of the deeper layers, and almost all
have found zones of low P-velocity beneath oéeanic and tectonically
active regions. (eg. Green and Hales 1968, Hales et al 1970). The .
estimates of Velocity in such zones vary from 7.0 km/s to 7.8 km/s |
and for fhe region below it, from 8.1 km/s to 8.6 km/s; Valﬁes

within these ranges are used in S-ISOT.

Shear;velocities in oceanic sediments lie in the range 0.1 to 0.4 km/é
(Sykes and Olivef,‘1964b) . Such low shear-velocities cén have a
pronounced effect on particle-motion. Sykes and Oliver (1964a)
showed-that cerfain higher—modes prdpagate which have‘iarge amplitudés
in the sediment layer, although most of their energy travels-in the
“crust énd upper—mantie. The horizontal éomponent of particle-motion
-is effectively aﬁplified, and may have its phase reversed, relative

to fhe yertical coﬁponéﬁt, by.the sedimeﬁt layer. It is therefore
important that a ‘reaiistic'éediment layer be incorporated in a

modél used to study pgrticle—motion.r The thickness of sediment
éhoseﬂ, 0.5 km, is typicalnbf the areas near thé continental margins,
and hence ﬁear recording stations,.in thé Atlantic, Western»Pacifié

and Indian oceans (Lisitsyn 1974).

Shear—-velocities in the crust and upper mantle, and the thicknesses
of therlayers in the upper mantle, are similar to those found in the
 various surface-wave studies (eg. Kovach and Press 1961, Forsyth

19755,Schlue and Knopoff 1976).
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Sédiment densities have been measured directly and are reported in
Nafe and Drake (1963). Crustal denmsities have been estimated by Talwani
et al (1965), by correlation of seismic and gravity data, for part

_of the North Atlantic. Densities in the lithosphere and asthenos-
phere are those used by Sclater and Francheteau (1970) in relating
heat-flow to topography for the North Pacific. The density of the
deeper mantle is that found by Press (1970) for the depth range 100 -
200 km, the only range in which he found that dénsity estimates were

well-constrained by the seismic and moment-of-inertia data.

3.3. Anisotropic upper—méntle layers

Two studies, Foréyth 1975 and Schlue and Knopoff 1976, have found
shear-wave anisotropy of 2-67 in the top 130 km of the oceanic upper
mantle. Asbdﬁtlingd‘in Chapter 1, it is thought that this.may Be
due té a ﬁfeferred orientétion of olivine in_tﬁe upper-mantle. The
eléstic.éonstants of single crystals of olivine, and the P-wave |
-ﬂvelocitiés_in anAoliVine—rich péridbtite have been measured for
teﬁpeféﬁures ﬁp'to BQOOK, and pressurés up to IOkb'(Graham and Barsch.
1969, ﬁeis#ﬁer‘aﬁd Fakhiﬁi 1977; Peselnick et a1.1974)f It has been
fo;ﬁd’phéﬁvthe‘dégree,of'énisotropy does.not vary significantiy
within fhe tempefature and preésure range of the eiperiments. The
 pﬁfe'oli§ine samplés showed waavé aniéotropyvof about 257 and
avefége S-wave énisbtroby'of‘lo~18z, depending on fhe particular

sample. The peridotite showed a P-wave anisotropy of about 57.

Pressures and temperatures in the lower lithosphere and asthenosphere
are pfobably highef than those used in the experimental work,

although there is some controversy over temperatures. Sclater and
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Francﬁeteau.(1970), for examplé, consider that temperétures must rise
rapidly in the upper mantle, to reach 1300°K near the base of the“
lithosphere. Tozer (1972), on the other hand, believes that temper-
atpfés are controlled by large-scale convection and may be much less
than 13000K, down to several hundred kilometers. Howevér, bressures;
within the lithosphere and asthenosphere, being below 20kb; are well
below those.which might éause phase—changes in the olivine, so thatl
Créham and Bar§ch's (1969) results can reasonably be extrapolated to
the higher temperatures, if they exist, and pressures;in the top 200 km

of the upper-mantle.

The anisotropy observed in surface-wave studies and in the peridotite
samples may, therefore, be modelled by assuming a.composition of
20-507% aligned olivine, 50-80% isotropic material.

Foréyth (1975b)founa that the maximum phase;velocity_anisotropy
occurred for Rayléigh—wéves with periods near‘70 seconds and showed 
that, if this was.dué to shéérfwave anisétropy, fhe anisotropy is
probably more pronoﬁnced in thé lowfvelocityfzone than in the litho-
sﬁhéfe. - So, the initial moael used here for anisotropy in:the‘low—v,
velocity-zone héé a Iayer with 50% aligﬁed olivine (TTOLSOSO-in

‘Table Al.4). Anisotropy in the lithosphere is modelled with ZOZ'”
aligﬁed olivine (XTOL2080 in Table Al.4). ‘Different prdportions‘are -

used in the later models.

' Anisotrépic materials are based on the elastic constants for olivine
determined by Verma (1960),which are not significantly different from '
those reported by. other authors. . They are listed in Table Al.4

(Appeﬁdix 1) and the associated body-wave velocities are illustrated
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by Figure Al.2. The isotropic materials mixed with the olivine
are chosen so that the average seismic velocities are close to those

for the basic,isotropic model, S-ISOT.

It might seem more realistic to extrapolate Graham and Barsch's
(1969) measurements-on olivine to appropriate temperatures and
pfessures‘and then combine with a proportion of isotropic material.
The>necessary isotropic materials would then be more realistic but,
as the degree of aﬁisotropy is not expected to change significantly
within the appropriate range of temperature or pressure, the elastic
constants of the mixture would not differ greatly from those formed
as above. In view of the comsiderable uncertainty iﬁ estimating
appropriate temperatures, and thé non—detailed nature of models used

in this study, such extrapolations are not considered worthwhile.

The»oliviﬁe is modified to a transversely isotropic form (TOLIVINE

in Table Al.4) which is symmetrical about the crystallographic a-axis.
_Such a}ignment, ﬁith theva—axis and (010) or (001) plane horizontal;'

"is a likely consequence of deformatidn by glide-plane slip in fhe
uppér—mantie‘(Carter and Ave 'Lallemant 1970). “Alignment by |
syﬁfeétonic'recfystallisation may.also be important and may even
.pfedomiﬁate (Ave 'Lallemanf‘and Carter 1970); This should be modelled’_
b& oliviﬁe with preferred 6rientatioﬁ»of all three crystallographic

axes, with a; andbb-axes incliﬁed at 45° to the vertical and with c~

axis horizontal. However the'vglocity variations in orthorhombic éliviné.v
are very similar to those in the transversely isotrbbic olivine
(Figure Ai.Z) sé that, as a first apprqximation, the same materials
as above (XTOL2080 and TTOLSOSO) are used,tiited into an appropriate

orientation. -
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3.4. Structural symmetry and characteristic surface-wave particle

motion

Models with olivine aligned by glide-plane slip have two vertical
planes of symmetry, parallel to the olivine a—- and c—- axes. The
names of such models here include the suffix 010. Where olivine is

. aligned by syntectonic recrystallisation, the structure hés only one
plane of symmetry, perpendicular to the c— axis. Models of this type

.are indicated by the suffix 110.

" The character of surface-wave particle-motion is detefmined by the
symmetry of the structure (Cfampin 1975). The chafacteristic
particle-motions of the two types of structural symmetry are illust~
rated in ?igures 3.1 and 3.2. Waves travelling parailgl to any of
the vertical éymmetfy planes have pure Rayleigh or pure Love~type
particle;métion, "Waves travelling in other directions have, in any.
-structufe with two pianes of symmetry (010 models), inclined-Rayleigh—-
type particle motion, ie. elliptical, in a vertical plane inclined to
‘the direcfion>of propagation, at some anglg between zero.and ninety
degrees. 4Sucﬁ_partic1e—motion shows.vertical and radial components
goupled to,é transverse compbneﬁt, with veftiéal component #%} out
'of_phaéé with fherthér two. When a struéture has only one vertical
' plané of sfmmetry (110 models), the surface-wave particle-motion, for
probagationAaway from é plane of symmetry, is a combination of
inclined; and filted—Rayleigh—typé, ‘ie. elliptical, in a plane which
is inﬁlined to the direction of propagation and tilted away from the
Vertiéal. "In this case radial, transverse and vertical components

of particle ﬁotion are again coupled.but.the relative phases are

different from those in simple,inclined-Rayleigh motion. For
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Figure 3.1

(a)

Characteristic particle-motion for surface-waves in models with (a) one vertical plane of

structural symmetry or (b) two vertical planes of symmetry. The orientations of olivine
crystallographic axes in (a) 110-models and (b) 010-models (see text) are indicated at the
centers of the diagrams. Angles indicate the convention used for azimuth of wave-propagation.

Note that pure Raylelgh- or pure Love-type partlcte motion occurs for pronagatlon parallel

»to symmetry planes, i.e. at O in (a) and at 0" and 90 in (b).




9¢

180° 0
90/ \+90°

s S

(ay (b

Figure 3.2 Characteristic azimuthal variation in relative phases of transverse and vertical components
of surface-wave particle motion and amount of (a) anomalous tilt for 110-models and
(b) anomalous inclination for 0lO-models (see text). Lines SS indicate the directions of

planes of structural symmetry



propagation at right angles to the plane of symmetry, the radial
motion is +E out of phase with the other two components. In other
directions the phase relations depend on the mode, the period, and

the model.

The details of particle-motion will vary from model to model so

several models must be considered in an examination of possible effects
in;real surface~waves.  The dispersion and particle-motion for several
differenf models, and thé struétures of the various models examined,
are described in detail in Appendix 1. Thoée detailé are summarised

in Figures 3.3 to 3.15.

3.5 Model Phase-velocities, particle-motion and the correspondanée

between isotropic and anisotropic modes

‘TheAdispersions of the first four generalised modes, G, 2G, 3G, and
4G for two anisotropiﬁ models, S3T aﬁd SlX‘are plotted in Figures
3.4 and:3.5. Model S3T has‘an anisotropic low-velocity—zone, SiX
aﬁ:énisotropié lithosphere. Data are for four directions of
propagatlon, at 30 1nterVals.awa§ from a plane of symmetry (see
Appendlx 1 for detalls) The dispersion of the first‘two Rayleigh_'
and Love modes for the 1sotrop1c model S~ISCT are plotted in Figure
3.3, for comparlson5 ‘On the basis of their dlsper31on, FG and 3G
correépond to isotropic fundamental and flrstfhlgher Raylelgh modes,
2G and 4G corréspond to fundamental and first*higher‘Love modes.

The anisbtropic_low—velocity—zbnevih S3T has a greater degree of
anisotropy than the lithosphere in S1X and this is reflected in the

degree of surface-wave phase-velocity anisotropy. It is worth
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noting that the minimum and maximum phase-velocities occur at 900_

| intervals for modes corresponding to isdtrobic Rayleigh modes, and at
approximately hSOintervals for modes corresponding to isotropic Love modes.
The degree of phase—veldcity anisotropy is generally rather greater
for FG than for 2G, but is similar for both types of model, 110 and

olo.

The particle-motion for surface-waves in these two models are
illustrated by Figures 3.6 ana 3.7. The symmetry planes lie in the
direétions 00, for 110-models, and 0° and 900, for 010-models. The
- pafticle motion in FG and 3G is generally similar to that in isotropic
Rayleigh waves, that in 2G and 4G is closer to that for isotropic Love

waves . (Mode 3G in S3T110 is exceptional in that it seems closer to

a Léve—mode, Figure 3.6a)

3.6 Particle-motion anomalies

3.6(a) General dascription

Particle-motion diagrams for all the models are shown iﬁ

Figures 3.6 - 3.15

The most striking anomalies, ie. departures from pure Rayleigh;
type or pure Love-type particle-motion, are in ﬁode 36. Inclined-
Rayleigh-type motion occurs in the 0l0-models with inclinétioné

vof up to 600, and particle-motion cémplétely intermediate between
Love- and Rayleigh— type occurs in the 110—mo&els. In these 110-
models, Ehere are also fairly large anomalies in FG and 2G, and
smaller effects in 4G. There are no anomalies in modes FG and 2G

in any model of 010-type, except at the shortest periods.
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In general.the amplitudes of.anomaliés do not vary much with
direction of propagation except very close to é symmetry "
’directién where they fall rapidly to zero. This can be seen
in the individual particle-ﬁotion diagrams, and is illustrated

in more detail in Figure 3.16.

3.6(b) Effects of location of anisotropic layers

Modelé with anisotropy in the lithosphere include the letter X
in their néme, T indicates anisoﬁropy in the low-velocity-zomne.
The variations of anonomaly amplitudes with'period are summarised
in Figure 3.17, which shows that, in 2G and 3G,anomalies tend to
increase with decreasing period, down to about 15s. In FG, for
moaels with anisotropy in the loﬁ—velogity—zohe, anomalies have
'a_maximum at intermediate periods and become smaller at éhort
:periods. Models with an anisotropic lithospﬁere show FG

anomalies increasing at short periods.

The location of the anisotropyvalso has'an éffectbon the maximum
 amp1itude of aﬁy anomaly. For example, the anomaliéé generated -
" in FG and 2G in S1X are slightly larger than those in S3T (Figures -

3.7 and 3.6), although the latter has a greaterbdegree of intrinsic.

lanisotropy, so that the partic1é4motion in these ﬁodes is rather
more éensitive to anisotropy in.;he lithoéﬁhere. Convérsely,

comparison.of S3X and S1T (Figures 3.9‘and 3.8), where the former
inclﬁdes a.greater degfee‘of aﬁisotropy,‘shOWSthat apbmalies in
3G are affected more by anisotropy'in the 1ow—ve16city zone.,

This is particularly marked for 0l0-models.
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3.6(c) Changes in degree of.anisotropy

Models S3T and S3X have similar structures to S1T and S1X
réspectively, but incorporate a greaterldegree of olivine
‘alignment. Comparison of the particle-motion diagrams (Figures
3.6 with 3.8 and 3.7 with 3.9) shows that an increase in the
degree of.anisotropy results in a large inérease in the énomalies
in FG and 2G in the 110-mo&els, but 1itt1e‘change‘in the 3G‘

anomalies for either 110-or 010-models.

3.6(d) Changes in the thickness of an anisotropic layer

Figuresb3.iO, 3.11 and 3.12 show resulfs for models A3T; AlX and
C1X which have only é.thin (10km) anisbtropic 1ayer, si?pated at
the top of the low-velocity-zone, the top of the lithosphere or
the base of the low-velocity-zone,respectively. There are
virtually no anomalies visible in any mode, excebt for 3G, in

- model A3T. |

"~ So, although a rather thick layer is neceséary to generate
significant anoﬁalies in FG_aﬁd_ZG; a ratﬁér thin layer can =

_generate large anomalies in 3G.

JIf thé‘aﬁisotropy extends throughout both the lithésphére and

the 1bevelocity—zone (model S3XT, Figure 3.13), there are large
anomaliesvin FG, 2G and 3G. Those in 2G are rather larger than
the sum of those produced by an anisotropicAlithosphefe and 16w—
velocity-zone in isolation. Those in 3G are simiiar to those

found for an anisotwpic low-velocity-zone, additional evidence
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that 3G 1s particularly sensitive to anisotfopy in that zone.

The anomalies in FG and 2G in tﬁis model, S3XT, are larger than in
any dther model examined. However, the particle-motion is still
close enough to Rayleigh or Love-type, respectivel&, especially af
long periods, ;hat anomalies would not be noticed‘on seismograms ,

unless a specific search were made.
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" 3.6(e) Pure olivine vs. transversely isotropic olivine

Olivine aligned by synteetonic recrystallisation is not likely
to be transversely isotropic, so two models with fully
anisotropic olivine have been generated, S6T and S4X, with
similar structure and degree of anisotropy to S3T and SiX.

' Details are in Appendix 1, particlefmotion is illustrated by
Figures 3.14 and 3.15. The particle-motioh is very similar to
that in S3T and S1X, the only significant difference being an,
increase in the anomalous vertical componenttef 2G, at short
‘periods, in model S6T110. This might be expected as the pure
olivine has a larger velocity variatien in any vertical plahe
- than the ttansversely 1sotrop1c 011v1ne, apparently giving a

greater t11t1ng effect on the plane of partlcle—motlon.

3.7 Effects of the Earth's sphericity

No method has yet been “developed which would allow modelllng of
surfaceﬁwaves 1n a spherlcal, grav1tat1ng, anisotropic Earth. 1In '

the isotroplc case; the effects of sphericity can be modelled by
'1mp051ng an extra Veloc1ty—grad1ent on a plane—layered strueture
y(eg Biswas and Knopoff, l970), resultlng in 1ncreased phase—
velocities,veepecially at long periods} and slight changes in particle—
ﬁ.@otibnhiv These effects for model S-ISOT are illustfated in Figure

3.18, and ere QUite small.

.It is feaeonable‘to expect similar effects in the anisotropic case,
so that the amplitude‘of particle-motion anomalies might be changed -
_-by a few per cent. However; the charactet of particle-motion, |
.whether 1nc11ned—Rayle1gh or tllted-Raylelgh type, depends 51mp1y on
. the presence of two or one vertical, structural-symmetry planes, and

will not be affected by sphericity.
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Figures 3.6-3.15 Plots of particle-motion in each of the first four
generalised surface-wave modes for models of
anisotropic ocean basin structure. Particle-motion v
plots are in pairs, the upper plot being a horizontal .
cross-section, the lower plot a vertical section,
parallel to the direction of wave-propagation. Vertical
and horizontal sections are drawn to the same scale
(see below). : '

The exact composition of each model is detailed in

Appendix I
X
N
1
i |
horizo'nfal

""""""""""" section

:
!

o | ver‘ri;al
== ?2X section
- | | |

[}
V%
Z

X : direction of propaga’rion'
z : vertically down
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3.8 General Conclusions

Large particle-motion anomalies are likelybto occur in the third
generalised surface-wave mode, 3G, which corresponds approximately
EO the isotropic second-Rayleigh mode, in the presence of almost

any reasonable amount and alignment of anisotropic material in the
top 120km of the oceanic upper-mantle, only a very thin

anisotropic layer being required if located in the low—velociﬁy
zone. Similar anomalies are fouﬁd for.surface—waveé propagating

in models of continental'structure, whieh can also be generated |
by rather thin (10km or less) anisotropic layers in the upper-mantle

(Crampin and King 1977).

When olivine hes been aligned by glide-plare slip on herizontal,
planes (010- models), even a rather 1arge.thickness of anisotropic
material does not cause any significant ahemalies in the other
'surface—wdve modes, FG, 2G and 4@. If, however, the olivine is
_aligned, as by syntectonic reerystallisatiqn iﬁ a zone of horizontél
shearing, with a- and b—exes inclined to the horizontal (110-modeis)
then quite large particlefmotion anomalies oeeﬁr in all modes,r
provided that a faifly thick (a few tens of kiiometers),anisotfopic'

.zone 1is present,

If olivine aligﬁment ih fhe real Earth has occurred in glide-plane
slip,‘then the 010~-models -are appropriete end observations of
particle—motien ferlfhe 3G mode should show‘inclined—Rayleigh—type
motion, with a variation in inclination, with azimuth of propagation,
such as that indicated in Figure 3.2b. For several reasons it will

be difficult to observe such particle-motion on seismograms. Any error
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in assigning a direction of travel to the‘wave, Or any error in
calibration of horizontal éeismograms,will cause.pure Rayleigh-type
motion to appear as inclined-Rayleigh-type. More important is the
fact that the group-velocity of the 3G mode is very close to those‘
of 2G, 4G and higher modes, so that several,interfering wave-trains
will be recorded on the seismogram. Only events in which 3G is
preferentially excited will be useful. If observations can be méde,
then.the relative phases of the radial and transverse components of
particle motion, as shown by the + and - signs in-Figure 3.2b, will
providé a good method for locating the‘ﬁlanes of symmetry of the
underlying étructure. However, since these 3G anoﬁaliesVarq rather
}?fégal§ruﬁuﬁth the depth, thicknesé,or degree of anisotropy pfesent,
“little information about these parameters is likeiy to be resolvable

from the observations.

" If olivine alignment in the real earth is similar to that in the 110-
models,’theﬁ'anomalous particle-motion should be fairly easily
_oBserVed in any mode. Anomalies in 2G should be easiest to observe
as, over.a range ofvperiods for which anomalies‘should oécur, for very
long travélrbathé,:this mode will arrivé after the higher surface-wave
-modés_aﬁd befdrevthe‘fundameﬁtal mode. For paths longer_than about
7@00km; it also arrives after most of the body—wave phases. Vertical
and>transvefse components will show coupling on the seismogfam. Such
Coubiiﬁgvdanﬁét result ffbm direction of travel or calibration errors
so that accuracy in measuring these barameters is much less iﬁporiaﬁt
than-ﬁér observation of the inélined Rayleigh—-type motion charééteristic
‘of the 010-models. The'péttern of‘rélative phases of vertical and
tfaﬁéVerse cémponeﬁts, as shown,in:Figure 3.2a,will, again, indiéétev

the planeibf symmetry of the underlying structure.
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In all the 110-models used here, the particle—metioﬁ ellipse in

mode 2G is tilted towards the direction of olivine a-axes,in fhe
manner illustrated by Figure 3.la, so that a pattern of relative
phases as shown in Figure 3.2a also indicates the direction of.
‘alignment of the a-axes within the plane of structural symmetry.
This in turn indicates the sense of shear, for alignment by
syntectonic recrystallisation, in the anisotropic zone (Figure 1.2)
The period for which the amplitude of particle-motion anomalies is
greatest, especially in FG, depends on the depth to the anisotropic
layer, so some information about this parameter should be reselvable

(Figure 3.17)

' If; as is likely, both glide-plane slip and syntectenic recrystallis—
"atioh produce alignment of olivine in tﬁe.upper—mantle,each mechanism
predominating in avdifferent depth range, thenvanomalies due'ﬁovthe_
'1atter alignment will be mueh more obvious. Even quite large amounts’
- of 01ivine aligned by glide—blane slip may be present, although the

’partlcle—motlon appears to 1nd1cate only the alternatlve a11gnment.
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4.

RECORDING AND MEASURING PARTICLE-MOTION ANOMALIES

4.1 Introduction

There are five major problems in observing the particle-motion of

oceanic surface-waves:

1.

Several oceanic higher-modes, including 2G, have rather similar

group—velocity dispersions. To allow observation of particle-

. motion in a particular mode,at a particular frequency, that

mode must either travel at a different group -velocity ,or be pre-

ferrentially excited, compared with the other modes, at similar
frequencies.

Recording stations are sited on land, either on islands or on

the edge of a continent,and so cannot record the true particle—

" motion of an oceanic wave. Records from long-period ocean-

bottom seismographs would be useful, provided three orthogonal

components were recorded, and the orientations of the instruments

~accurately known. - However, such records are not yet genera11y f
~available.

. Certain particle-motion anomalies can only be observed if the

direction of the wave's phase-velocity is known (Figure 3.1b).-

As the earth is not spherically symmetfic, a wave will not

" travel exactly along the great-circle path from epicenter to

recording station and‘it's diregtion of travel cannot be
accurately meashred, unless a large array is available.
Inhbmogeneities in the structure close to a recording station
caﬁ.distort particle;motion, sometimes in a higﬁly symmetric
fashion, imitating the effects of large-scale,anisotropic'

alignments.
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5. Few recording instruments are sufficiently accurately
calibrated to allow precise measurements of the relative
amphitudes and and phases of the components of particle-motion. .

Each of these problems must be considered in some detail before

useful observations can be collected.

4.2 Surface-wave group-velocities

As explained in Chaptef 3, anisotropy in the oceanic uppef—mantle

may. be indicated by anomalous particle-motion in modes FG and 2G,

for one type of anisdtropic alignment, or invmode 3G, for the second
type. It is nécéssary to observe such a que ovér a.range of
periods without interference from other modes. If the various
surface-wave modes excited by an_event travel at different velocities,
Vin_the pefiod range of interest, they may be separated on &

seismogram By filtering.

The group—velocities of the first four modes, for model S—ISOT,‘are
shown in Figurg 4.1, Group—veloéitieé depend on the structure_of
the modéi, but,kfor periods aone 20 seéonds, similar results are
found for most modéls of océan—Bésin structure. (eg. Saito énd

Takeuchi 1966, Thatcher and Brune 1969).

At periods below 15 seconds, the group-velocities of the higher-modes,
and the fundamental Love-mode, are all rather close ahd the dispersion
may change markedly between similar models (eg. Sykes and Oliver

1964a).

Approximate group velocities may be calculated for anisotropic models

- by differentiating the phése—velocity dispersion (Crampin and Taylor
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1971). This will give similar results to S—ISOT,>for_periods

down té about 20 seconds, as isotropic and anisotropic phase—
velocity dispersions are similar (Figures 3.3 - 3.5). At shorterv
periods particularly below 15 seconds, ﬁhe aniéotropic modes may
exchange characteristics, from Love-type to Rayleigh-type, or vice-
versa, with corresponding sharp changes in gradient in the phase-
vglocity dispersioﬁ. As a result, there may be marked maxima and
minima in group~velocity, at periods which vary from one direction

- to another in the same model, and between models.

It is, therefore, impossible to predict group-velocities at periods
less than 20 seconds accurately, without detailed knowledge of the

structure, and of any anisotropy present.

The group—Qeloéity curves in FiguréIQ.l:show that, for suiggblyFIOng
. tfavel paths,‘the fundamental Rayleigh-mode, or FG invthe ani#otropic
case, for periods:aﬁove 20 seconds,will arrive after all the othe?
modes.- The fundamental Lové—mode, or 2G, will arrive after fhek
higher modes at périods above 30 éecdﬁds. ' When the éecond—Rayleigh
‘mode, or 3G, as'éppropriate, is not present, as is likély for many |
vevents~(éee next séction), 2G may be isolated down to 20 seconds. -
At shortgf periods there may be gfoub—velocity differénces between
>modes sufficient to isolate eacﬁ mode on a seiémcgrgm. It Will,
'hoﬁever, be impossible to identify a mode By its group—velocity a16ne.
The seéond Rayleigh and Love modes, or 3G and 4G, and any higher
modes; cannot be separatéd; even at périods ébove 15 seconds, as
their groﬁp—velocities aré too close together. (There are no

computations for the higher modes shown here, but Kovach and Anderson

(1964) for example , féport group—veloéity computations for several
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higher modes. In the period range 10 - 30 seconds manj of these

have velocities between 4 and 4.5 km/s.)

4.3 Relative excitations of surface-wave modes

Excitation of surface-waves depends on focal depth, focal mechanism,
direction of propagation (for most focal mechanisms) and on the
structure in whichAan event occurs. Methods are aVailable for
computation of the relative excitation of differént.modes iﬁ

isotropic structures (eg. Séito 1967) and Forsytﬁ (1975a), for example,
gives results for fundamental and secoﬁﬁ Love-modes, for a surface-

focus and an oceanic structure (Figure 4.2).

Relative excitation in the anisotropic caée can be roughly estimated
from the pafticie—displacement/depth Variations, for the differént
modes,:providédvthat focal mechanism and direction of propagation
are‘favourabief Thesg variations, for the oceanic models used in’
;ﬁis stpdy, are illustrated by Figﬁfe 4.3. A particular mode afvév'
partiéular peribd is most likely to be excited by an event which .
occurs at a dépth»correéponding to a'particle-displacemeﬁt maximum,

and will not be excited by an event at the same depth as a node.

‘ in order to ébsérve particle—mbtion anomalies in mode 3G, it is
hecessary tﬁat thiS‘mode be-prefereﬁtially excited relative to 2G,
4G ana'other higher-modes. ‘This mode is most likely to occur for
'-éﬁenté at 80.— iSO km depth, which are also iikely‘to excite 2G and
4G at éimilar periods. ﬁodes 2G énd 4G have pfedominanfly trans—
: Veréé particle—motion and so might be eliminated by suitable choice
-of fécal mechanism. . However, maﬁy higher Rayléigh—modes,cdrres—

\

ponding to the odd numbered generalised modes, also have large
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displécements in the low-velocity,-zone (Kovach and Anderson 1964)
and so éeverai modes are likely to be excited. So, although it
may be possible to find higher Rayleigh—type modes for a few earth-
quakes, it will be very difficult to determine which mode is

present, 3G, 5G or higher .

In order to observe particle-motion anomalies in 2G down to périods

be excluded. ;ince the higher Rayleigh-modes, similar to mode 3G,

ﬁave large displacements in the low-velocity zone, and only small

displacements above 50 km depth, they should have less relative exc%tation
inshalloﬁ eérthquakes. However, such events are likely tovexcite 4G

infpreference to 2G, at the sﬁofﬁ periods under consideration

(Figure 4.2).

There is a node for 4G, and for all higher Love—modes, (Stephens and
Igaaés 1977), corresponding td even numbered generalised modes;

at the top of the low-velocity zone, so an event near 70 km depth
should excite_oﬁly 2G, and odd numbered generalised modes. Gfoup-_
_velocities may allow isolation of.the separate modes and any

predominantly transverse arrival is then likely to be mode 2G.

4.4. Distortion of particle-motion by changes in structure

Slight, localiéed,'changes in structure, such as thoée associated
with the presence of an oceanic island in the middle of a stable
ocean basin, will have little effect on the characteristics of a
passing surface-wave, whose wavelength is likely to be. comparable
with, or larger than,.fhe size of the anomalous reéion.» However,

particle-motion within the anomalous region may be rather different
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from that expected on the ocean floér. A large deviation is
vlikely when particle-motion is é rapidly varying function of debth
within the crust, as the existence of an island implies an increase
in crustal thickness to at least twice that common beneath thevdeep—
ocean. Fortunately, for all the modes of interest in this study,
FG, 2G, 3G and 4G, there is only a slow variation of particle-motion
through the crust (with the exception of mode 3G at periods less
than 12 secs), and so particle-motion is likely to be reliably

recorded at ocean island sites.

The changé'in structure in passing ffom an oceanic to a continental
region will have a much 1argef efféct.  At the boundary, a wave

may be transmitted, reflected or converted to other modes, depending
‘on the period, the mode,.and the detailed structures at the boundary.
Severalraffeﬁpts have'been made to modgl sufface—wéve bropagatiqn'
ac;bsé both_passiyé éﬁd actiﬁe margins (eg. McGéfr 1969a, Kan¢~and
Spence.1963, Mal and Kﬁopoff 1965, Gregerson and Alsop 1976) and it
seems»likely';hat considerable mode-éonversion must téke place. Only
:thosé“mddes whose energy~depth'distributions are similar in both |
: contiﬂént§i'and_éceéhic structures (ie.'FG and 2G at long periods)
‘willuérdés'the margiﬁ relafiveiy undisturbed. CIf anisotropy is‘
:cpnfihed to the oceanicvregion, some conversipn mﬁst take place»eﬁen
Vfbf‘theée:modes. 7 For example, a fransverse'cqmponent associated
with_the Rayleigh—-type mode FG would be cohverted fo a Love-mode in
the.continental‘sﬁructure. The oceanic modes 3G and 4G have large
'amounts'df enefgy travelling in the low-velocity zone, and modes.FG and 2G
at“shoft periods are concentrated in the crust and upper-lithoéphére.
:Cdntihental and oéeanic areas have very different crustal and uppér?

mantle structures, so considerable reflection and mode-conversion
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are likely to take place at the contiﬁental margin. It may be
possiBlevto estimate the oceanic particle-motion from reéordings
made close to the margin, provided a large proporfion of the energy
is transmitted rather than reflected at the structural boundary,

és fhe sum of the newly generéted modes should then show the same
particle-motion as the original wave. It is probable that only
the longer periods of FG and 2G will be transmitted with sufficient

energy (McGarr 1969a).

4.5 Lateral refraction of surface waves

Studies of refraction of surface-waves have been reported by

several authors including Evernden (1953‘and 1954) , McGarr (1969b)
and Capon (1970). The fullest investigation is Capon's, which

uéed tPe Large Aperture Seismic Array in Montana (LASA) to measure
th; direction of approach of Rayleigh wave energy for 26 events,
each at several éeriods and at different time intervals along the
wave train. Capon was looking for arrivals thch had been reflected
or refracted at continental edges and ‘many of his paths.croséed
or passed close .to regions of complex structure. In the present
study, only waves:which have travelled mainly in a single ocean.
basin will be useful so only 6 of Capon's paths,shown in Figure 4.4,
. are relevant. His findings, for tﬁé enérgy arriving first\along.
these paths, are sumﬁarised in Table'4.1. To eliminate any effect

" due to the location of LASA, a study has been made of fundamental
Rayleigh and Lo?e arrivalsvat the Alaskan Long Period Array (ALPA).
.Difection of appfoach has been determined by beam—energy analysis

using a procedure developed by A.L.Levshin and J.Fyen (private

COmmunicatiqn) at NORSAR.
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Figure 4.4 Travel-paths of surface-waves examined for lateral refraction
- effects. C8-C2L are from Capon (1970), a-h from the present
" study. ,
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Azimuthal deviations (degrees)

.Eyent all periods LhOsecs 33secs 25secs 20secs
c8 0 0 0 -5
cz21 0 -5 l

c22 0 0 3 3
c23 0 0 =29 '
o2 0 0 13
Cc26 0] O: 0 6
a L

e 0]

£ 0

g 0

h ‘10

i 6

k 0

Table 4.1 Direction of approach of first arrival of Rayleigh-wave
: energy, relative to great-circle path from epicenter.
C8-C26 are arrivals at LASA, measured by Capon(1970).

a~k are the present study, measured at ALPA (see text).
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source, within the ocean basin.

The paths used are shown in Figure 4.4 and the plots of beam-energy:

against azimuth and arrival time are shown in Figure 4.5. These

results are also summarised in Table 4.1, which shows that, in most
cases, the energy arriving at the start of a wave train approaches
along the great-circle path from the epicentre. However, in three
cases, C21,C23 and (h),quite large deviations are found and smaller
deviations can be seen for paths(a),(i)and C22. The records for (h)
(Figure 4.6) show radial and vertical motion with the Love-wave arrival and
tranéverse-motion with the Rayleigh-wave arrival, consistant with the
suggestion that both Love and Rayleigh waves have been similafly

refracted. The same effect can be seen for event (i) on Figure 4.7.

That refraction is observed at both LASA and ALPA for signals from

events in the same area suggests that refraction takes place near the

;

McGarr (1969b), proposed similar horizontal refraction of Rayleigh -

waves, in the Pacific basin, to account for large variations in the

recorded amplitude of signals between closély spaced stations in

North America. None of the long-period arrays is sufficiently close

‘to an ocean-basin to be useful for observation of oceanic particle-

motion, so single stations in more suitable sites must be used. In
view of the array results described above, the direction of
propagation of energy arriving at the start of a surface-wave train

can only be taken as the great-circle azimuth plus or minus 10-15°,

 So, small anomalies of the inclined-Rayleigh type (Figure 3.1b) will

not be observable.
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4.6 Distortion of particle-motion by local inhomogeneities near

a recording station

Inhomogeneities in the rock immédiately surrounding a seismic vault
may cause the strains associated with incoming seismic waves to
produce a local tilting effect, introducing spurioué components of
particle-motion (Rodgers 1968, King 1971). It is unlikely that this
could préduce a highly symmetric pattern of anomalous ?article—motiqn,
and cerfainly different stations should show rather different
anomalies. This,hoﬁever,can introduce a large error in any single

observation of the magnitude of a particle-motion anomaly.

One particular local condition would produce é‘syﬁmetrical pattern of
anomalies, similar to that produced by énisotropy, and that is a'dipping
layer beneath the station. Langé%on (1977) , for example, has
Ademonstrated that a dipping moho. will generate, from an incoming
vertically-polarised shear-wave, reflected waves of both horizontally? »
folarised~shear_and longitudonal type, and vice—versa. Ffom this it
foilows that an iﬁcoming pure Love—type wave, for example, could
generate transverse, radial and verﬁical compbﬁents 6f particlefmotion
at the recording station. No anomalous components would be generéted-
by waves travelling paréllél tq the dip of the inclined 1a§er, SOFthét
tﬁe pattern of partiélé—motion might.feSemble that for.propégation in
an anisotropic structure with dne vertical pléne of symmetry |

(Figure 3.la)

So, only when similar anomalies can be observed at several recording
stations, each situated in an area of different structure, will it be

possible to say that they are caused by anisotropic alignments along.
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the wave paths. Anomalies, even if arranged in a symmetrical
pattern, which occur at only one stationm, or at several stations
in similar locations, must be explained in terms of the special

situations of those stations.

4.7 Recording instruments and response characteristics

Three types of seismograph are used in this study, WWSSN, HGLP and
SRO. There are 115 stations in the World wide?Standard‘ Seismograph
Netwérk, offering a wide coverage of suitable béeanic afeas. ' The
three-compoﬁent set of long-period instruments'is usually‘located in
a vault,‘with.rgcordings made photographically on paper chart. Low »
magnitude signals will be lost in the unavoidable noise, mainly due

Ito surface weather. Only a limited recording range is available;

so that.fairly low magnification must‘be used if 1arge,10caf signais
are.to be conﬁaiﬁed. 'So, only 1arge—magnitude;distapt events.are
recorded with,sufficientiampiitude for particle-motion studies. ihe
High Gain,Long Périod stations, of which 10 were operational by

1976, lécated as shown in Figure 4.8,bare basically improved versions
- of the WWSSN long;ﬁeriod'stafions.‘ The System is described in'detail
.by »Saviﬁo et al. (1972). The senSQfs are sealed in airtight tanks
:aﬁd_located in minés_br tunnels, to’minimise noise due to air-pressure
chaﬁges. .ACaréful éhapingrof the seismograph respoﬁse,to coincide
with é minimum in background noisé at periods near BOs,alléws lower
iamplitude Signals to be seen and recording on digitai tape aliows‘a
much greaterArange of amplitudes to bé reéorded, S0 that magnifications
:around fifty times those on WWSSN'sta#ions are available (see Figure
4.9a). ~This greatly increases the numBer of distaﬁt events which can

 be studied. -
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The Seismic Research Observatories, locations shown on Figure 4.8,

are a more recent development. Instrumentation and installation

are described by Peterson et al (1975). Broadband seismdmeters

are used, the output being filtered to produce short and long-period
records on both paper chart and digital ﬁagnetic—tape. The
seismometers are located in boreholes,at depths of about 100m, to
reduce weéfher noise. These SRO statiops operaté with magnifications

about four times those of the HGLP stations.

The three séismograms produced at any one stafion show the vertical,
north-south and east-west components of‘groundfmotion; respectively,
each modified by the response function 6f the appropriate recofding
iﬁstrument. Typical response.functions are shown iﬁ Figure 4.9. A
In a étudy of pérticie—motion’anomaiies only the relative ampiitudes
and phases- of the thrée cémpbﬁents of ground—mofion, at the:same period,
neéd Be measured. >So, no. correction need be made for the Qériatibn
" of response‘withAperiod, provided that'eaéh instfumént in a th?ee4 -
comboﬁent set shows thé.same variation. However, very few stations
have such well matched instruments. Of thbsé ﬁsed in this.studf;'
‘ oniy the SRO stations, the HGLP stations since early 1976, ana KIP
.(HGLP) before then, have.the séme respbnse curves for each of their
. Vthfee seiémometers (Figure 4.9b). At other stations, discrepanciés
- of up to 50%Z in ampiitudé response and.loo»inrphaSe fespdnsé aré-

common (Figure 4.9a).

In this study, while searching simply to determine the character of
particle-motion anomalies, these discrepancies can be ignored. The
phase-discrepancies are small compared to the phase-differences

required to discriminate between inclined-Rayleigh and tilted—Rayléigh—'
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type anomalies,ﬁhich are around 900_(Figure 3.1). The

discrepancies in amplitude response between horizontal components

are generally less than 257, and much lees for periods less than

35 seconds. Any spurious inclination for Rayleigh-wave motion
introduced by this response'disCrepancy would be iess than 80, less

~ than the uncertainty in determining the direction of propagation (Figure
4.10). Any 1arge-inclination, similar te those expected in mode

3G in the presence of anisotropy, could not be genefated4by the 

discrepancies in response curves.

Generally, discrepancies in amplitude response will introduce an
‘error in measuring the relative amplitudes‘of components of particle-
motion. This is important only when fhe variation of anomaly
‘amplitude with pegiod is being studied, perhape to determine the
depth to the anisotropic layer, or the exact iocation of symmetrf
planes. For such studies HGLP (post 1976) or SRO records will be
most useful. WWSSN records are unlikely to be useful as their
responses cannot be sufficiently accurately determined from their
calib:ation pulses, due to slight.mis—alignmente of the recordiné

mechanisms (James and Linde 1971, Mitchell and Landisman 1969).
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5. OBSERVATIONS OF PARTICLE-MOTION IN OCEANIC SURFACE-WAVES

5.1 Sources of data

The Pacific Ocean was chosen for study as it offers a good aéimuthal
range of purely-oceanic,long travel-paths to several recording
stations. Initially, WWSSN records were examined, these being readily
available in microfilm form at the.Institute of Geological Scienées in
- Edinburgh. Several records of surface-waves f;om events along the
East Pacific;&ise,.recordedAat WWSSN stations on fhe west coast of
South America are included ih this stu&&. These show, mainly;'the
fundamental Rayleigh—type mdde-(FG)ralthéugh, in a few cases, the
firstALové—type mode (2G) carries enough short feriod energy to be
clearlj.visible.on top of FG. In these records ?he_moder2G can be
éeparatea by filtering. Generally, however, the path lengths fof
‘moét.events reéorded aﬁ WWSSN stations are too short to allow
separatidn of thé higher-modes (including 2G) from the many body wave

phases (see travel-time curves in Figure.5.1).

A sécond problem with the WWSSN records is the skewness introduced
by siight mié~élignment in the recording system (James and Linde 1971),
illustfated in Figure 5.2. This - skewness,generally of the order of

10
2

,éan be eétiméted if a large amplitﬁde, monotonic signal is. present
on é.rgcord, and is found to vary ffom iﬁstrument to instrument, and -
from.day to aay. Because»of the e§er—present noise the skewness
cannot‘be measured to better than about 207, even undef the most
favourable conditions, and so corrections;cannot be accurately made.
Any smallvuncbrrected'skéw can lead to large errors in the relative

phase of N-S, E-W and vertical components which, in turn, will lead

to spurious radial or transverse components, which are formed by.
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~ imin
‘ Figgze 5.2-Seismogram trace digitiéed using (c) zero—-deflection
ST line as base line, (b) after correction for spiraliihg
of zero-deflection trace around recording drum and
.(a) after correction for mis?alignment of éélvanometer
_ _’:deflection with drum aﬁis. L -
.3~jf:;"';;'i;'Vefticél scale reduced to exaggerate skewness. ';:
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rotating the horizontal seismograms. Since'smallaanomalous~
components, and relative phases, are very important in this study
of ‘particle-motion, WWSSN records must be supplemented with more

accurate data.

Data from HGLP and SRO seismometers is recorded directly in digital
form, and so avoids the \akewness problems described above. The
increased magnification available at these stations also allows more
distant earthquakes to be recorded. Thé'greater aCcuraay'provided
by direct recording, rather‘than manual digitisation of.a photo-
graphic record, also allpws smaller—ampli;ude, shorter-period signals
to be separated‘by filtering. One.disadvantage is thaf data from |

these stations are not so easily accessible.

Tapes‘bontaining both‘HGLP and SRO Aata are ayailable only for selected
days, since 1975,.and theae have to be ordered from Tele&yn;—Geoaech? .
in Alexandria, Virginia, For this study, three of the most active

of the days offered, which aépeared to have the ﬁost'suitably spaced
events; in spacé aad time, were seleated, with the aid of U.S.C.G.S.
'P.ﬁ.E. listings. These providad useful recordings for 13'trave1;

- paths.  In additjon,recordings for 12 specific-events from pre-1975

~ HGLP tapes were obtained, providing records for another 12 travel-paths.

'Many of the possible station—avent pairs ayailable oh‘these tapes -
Ware not used. In some cases the»data could not be recovered from
the tape, in-others one componenf was missing. Where a complete
record was'obtained, it is includedain this study only if there is a
clear maximum on the vertical and/or horizontal components, corres-—

’_ponding to the expected arrival times of the fundamental or highar

~ surface-wave modes. All the stations, events and travel-paths .
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Figgre 5.3 Map showing travel paths of surface-waves used in this particle-motion study.

'Solid lines correspond to the seismograms shown in Figures 5.6a-5.6n.



Station type of
“instrument

code
ANT
" BOG
CTA
GUMO
KIP
KIP
MAT
SNZO

WWSSN
WWSSN
HGLP
SRO
WWSSN
HGLP
HGLP
SRO

location

Antofagasta,Chile
Bogota,Colombia

Charters Towers,Australia
Guam,Marianas Islands
Kipapa,Hawaiil
Kipapa,Hawaii
Matsushiro,Japan

South Karori,New Zealand

Table 5.1 Locations of recording stationms.

- 88

latitude

23

4
20
13
21
21
36
41

41'56"S
37'23"N

5'18"S
35'16"N
25'24"N
25"24"N
32'30"N
18'37"s

longitude

70

74
146
144
158
158
138
174

24'54"W
3'54"W
15'16"E
51'59"E.
0'54"W -
0'54"W
12'23"E
42'17"E



68

code

- OK2
OK3
022
041
053
072
070

101
103
106
107
108a
108b
110

202
203
205

302
303
311

403

Table 5.2 Locations and origin times of earthquakes (from USCGS PDE listings).

location

Toﬁgé Islands Region

Tonga Islands Region . _ .
Northern Easter Islands Cordilliera

Easter Islands Region

West Chile Rise"

Easter Islands Cordilliera
Easter Islands Cordilliera

Solomon Islands

Southern California

New Hebrides

Galapagos Islands Region
Tonga Islands Region
Tonga Islands Region

Aleutians

Solomon Islands ,
Off Coast of Central America
Guatemala

Marianas Islands
Fox Islands,Aleutian Islands
Hokkaido,Japan Region

‘Tonga Islands.

'létitude

-18.82

. =6.15
-22.13

-41.44

-49.40
-35.41

-6.88

25.84

~21.93
-4.,37

'-16.06

-15.52
52.41

- -6.26
3.99
14,77

13.77

52.70
41.73

=21.93

1ongitude depth (km)

- -179.
-179.
-107.
-113.

.50

.20

.00

=85
-116
-106

154,
-85.
-90.

144.
-167.
142.

=175.

40
50

30

80

150.03
-169.
173.
~-102.
-179.
=179.
-168.

93
71
11
38
11
28

72
81
61

69
15
81

03

70

55

33

180
33

33
33

38
17
33
"33
29
33
41

50
76
70

116
36

53

54

(G0, W

.

o

S SssU,;
. « o e »
W oOoONNNNPD

(S, NNV, B e WV, I ¥, BYe))
. e o o o
NOWWwHOMFW

~O U

uuu
. [ ] .
=N W

W
.
W

12
13

20
31

18
25
23
10

-13

13
24

13
13
13

28

28
28

date

Aug
Aug
Sep
Nov
Jan
Sep
Aug

Jan
Mar
Mar
May
Aug
Aug
Aug

Mar
Mar
Mar

Mar
Mar
Mar

May

1974
1974
1964
1965
1965
1964
1964

1973
1973
1974
1974
1974
1974
1974

1976
1976
1976

1976
1976
1976

1976

time

02
12
21

N &S~WO O

52
52

22
19
33
14

28
42
25
12
53
20
41

22
31
30

42
55
20

30

42
47
47

30
20

14
01
52

17
11

44
46
42

37
15



Length Back Length Back

Fath (km) azimuth Fath ) azimuth
ANTO022 4396 290 " KIPOK2 4746 211
ANTO041 4430 263 KIPOK3 5024 209
ANTO53 2416 212 KIP101 6472 247
ANTO70 3660 241_ KIP106 5690 214

: KIP108a 4752 211
BOGO70 - 5543 214 KIP108b 4687 211
BOGO72 7230 209 . KIP202 5993 245

- ' KIP205 7071 84
CTA103 12288 69 KIP302 6105 272
CTA1O07 12081 102 KIP311 5922 307
CTAl108a 3656 89 KIP403 5135 202
CTAl108b 3697 88
CTA203 14108 100 MAT103 10092 57
CTA205 13930 86 MAT108a 7325 135

- CTA303 9228 26 : "MAT108b - 7295 134
CTA403 10373 112 MAT110 4489 50
o MAT403 8118 135

GUM205 13110 . 65 :
SNZ203 11092 93

SNZ205 11423 82

Table 5;2 Paths for which surface-waves were observed.
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included in the study are tabulated in Tables 5.1 — 5.3, and are

shown on the map in Figure 5.3.

Ideally, travel paths should be longer than 8000km, so that.surface-
wavés are not contaminated by body-wave arrivals (Figure 5.1).

However, few good records were found for very long paths. The shorter
period surface~waves, in particular, are generally recorded only for
shorterApaths, so several of these areAincluded in the study. The
multiple-S body-phases will generally interfere with the higher;mode
surface-waves, including ZG; only at the onger péfio&s. The lengths
of the paths used (Table 5.3) and the &ispersion of the surface-waves
»(Figure 4.1),are such that fbr periods below about. 20 seconds

the que 2G,.at least, should arrive after any large-amplitude_body—

wave.

5.2 Treatment of data

“WWSSN microfilm fecords'are printed and digitised at one second tiﬁe
intervals. . Béforé_further analysis; corrections are made for skewness
if there is a iarge enough signal for measurement; _ Appropriate
sectioné‘éf‘HGLP data afevselected froﬁ the day~tapes and each':
_compohenf adjﬁsfed according to the 30 second digital sensitivity
setting, takén from the station log for pre-1976 data, or from the
standardised'settings listed‘ih the system description provided by
Tele&yne—Geétech, for later records. SRO instrumeﬂts~a11 record

with_the same digital sensitivity so no corrections are needed.

The records are now plofted (Figurev5.6). N - S and E - W components

are rotated to give components transverse to and radially along the
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FILTER RESPONSE

STANDRRD HGLP

2
1 1'./545 112
o | =N
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(VTAPIN i LA
/88 aniiim “ 5 /\
Pericd  100s - 10s 1s " Period 100s - 10s 1s
- ©(e) — — @ :

Figure 5 1 Amplltude response of bandpass filters (1) 32-6lhseconds, ST
-(2) 2h4-48seconds, (3) 16-32seconds, (i) 12-2hseconds, (5) 8-16seconds.
(&) filter response alone, (b),(c) and (d) the effect of combining
filter and instrument responses. for typical WWSSN, post-1976 HGLP
and SRO selsmometers :
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presumed direétion of travel, the great—circle‘aﬁimuth from‘the
event, at the recording station. Vertical, radial and transverse
components, labelledZ, R and T, are then filtered, by each of five,
overlapping bandpass-filters in turn. The filtering allows the
characteriétics of particle-motion at several periods to be examined.
The filter responses, and the effect of these responses combined
with individual instrument responses are shown in Figure 5.4. The
filfers_are convolution—-type and a filfer half-width equai to twice
the loﬁg—period limit of the filter is used, giving steep-sided
response-bandsf Particle-motion is plotted for eacﬁ one-minute -
section vof record, for each!filter—band, each plot comprising a
horiiontal seétion and‘the vertical section along the direction of
travel. (seé Figure 5.5) A selection of the records used are shown

in Figuré 5.6a - 5.6n.

5.3 Surface-wave modes recorded

Most records show Rayleigh—type-arrivalé corresponding to a group—
velbcity of‘ﬁ.O km/s or 1ess, and Love-type arrivals at group-velocities - .
.ﬁeafVA;S kﬁ/s. | These cérfespond'to the modes FG (Rayleigh—tyﬁe);:ZG
'ahd~higher, evenénﬁmﬁered, generalised modes (Love-type). Most of the
fecordsirepréducéd here (Figures 5.6a.— 5{630 are those for which
suffaég—wave ar?i?ais ére visibie in all filter-bands. On many
otﬁér‘reCO;ds.studied the signals”are Lost in noise, for periods below

about 20 seconds, as in Figure 5.6n.
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Figures 5.6a-5.6n

Multiply-filtered selsmograms and particle-motion plots for selected
surface~wave travel paths in the Pacific Ocean.

Partlclejmotlon plots are in pairs, as shown below, each pair
corresponding to a one-minute time interval of a filtered trace.
Each member of the pair is drawn to the same scale.

Seismograms are in alphabetical order according to station name and
numerical order of event number

“horizontal
section

vertical |
section

R+ve: direction ofpropagaﬁon
L +ve: vertically up |

Figure 5.5 Key to particle-motion plots.
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5.3(a) Fundamental Rayleigh—type mode

Rayleigh~type wave trains with regular dispersion and slowly decaying‘
amplitude occur only at the island station, Kipapa (HGLP and WWSSN),
(Figures 5.6f - 5.60). At other stations, especially at shorter
periods (below 24 seconds) the wave trains show rapid beating,
indicating either multipathing of the fundamental mode, or inter-

ference with other modes, which are likely to be generated at the

continent/ocean boundary.

5.3(b) Love-type modes

Body-wave afrivals are apparant on all the records for paths of
less than 6000km, arriving more or less simultaneously with the
start of the Love-type wave-train, corresponding to the SS-phase.
(Figures 5.6a -j,L).

The surface-waves show dispersion, appearing later in each filtered
section, as the period decreases, while the body-wave arrives at

‘the same time, whatever the period.

The surface-wave train may include more than one Love—-type mode.
Most of the events considered, for thch depth determinations are
available, occurred in the depth range 20-80km. The quoted depths
~are subject tobuncertainties of i‘20 km or more, so it is not pbsé-
iBle to determine which events occurred close to the displacement-
amplitude node for higher Love-type modes, which is near 70km depth.
In general then, both 2G and higher modes are expected, but some’

events may show only 2G.
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The difference in arrival times between 2G and the highér‘modes'is,_
for periéds above 20 secon&s, befween one and fhree minutes,
depending on the particular path.length. The modes wiil overlap
where theibath is short and the length of the wave train is
coﬁparable to this time difference, but may appear separate for the
very long travel paths. On many records for short paths,the wavé—
train shows variations in amplitude, or beats, suggesting the

- presence of two or more interfering Love—fype modes. (eg. ANTO41,
ANTO53, CTAIO8a, CTALOSb, KIP403, Figures 5.6a,b,d,e,l). There
is‘some sﬁggestion of a 2G arrival,‘affer the.main Love-type arrivél;

on the records for long paths, MAT103 and SN7205. (Figures 5.6m,n).

5.3(c) Higher Rayleigh-type modes

Recordé'fof'ten'évents occurring below 80km depﬁh'were examined, butv
_zonly two,clear sufface—waveﬁrecords were found, KIP302 and ANTO41 .
(Figﬁre 5.6&).  These arefthe only records on which higher Rayleigﬁ;
, Ey#e modes might be’expectea. However, there are large Love~type ..
arrivals on Both fecords, and onl& small.vertical and radiai
.¢§mponénts‘at thé:éppropriate arrival time, so no higher Rayleigh—

_.type modes can be isolated.

5.4 Surface-wave particle-motion anomalies : observations

- The most obvious anomalies on the seismograms occur in the Love-type
modes, Wherever there is an evenly dispersed wave-train on the
transverse component, this is coupled to a small,vertical component.

This is'apparent at all periods, but is clearest at short periods,

'parficdiarly on the Kipapa records KIPOK2, KIPOK3, KIP108a and
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KIPlO8b,‘(Figures 5;6f,g,i,j), Qhere the.vertical and transverse
components are nearly 180° out of‘phase,.over_nine or ten‘cycles.
The relative phase of vertical and transverse -components appeérs
to change with period, proBably due to interference with the SS-=
arrival and between different modes at the longer periods.  On one
récord, where there 1is no simultaneous body-wave arrival ana only
one Love-type mode appears to be present, KIP205 (Figﬁre 5.6k),

the vertical and transverse components are in phase at all periods. .

The particle-motion plots highlight‘other anomalous features.  Both
Love—type and fundamental-Rayleigh—-type waves have particle-motion
which 1s elliptical,rather than linear, in horizontal section.

This, again, is clearest on the records from Kipapa.

‘Particlefmotion is, clearly, tilted—Rayleigh—type in all the'surface;
wave modes recorded. There is ﬁo evidence of any signific;nt
inclined~Rayleigh—~type anomaly, but tﬁese might Be_expected.only in':
higher Rayleigh—-type modes, Whiéh are not clearly shown on.any of thé

selsmograms.
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_ 5.5 Anisotropy or noise ?

Similar particle—motion anbmalies are recorded on different types of
.iﬁstrument (WWSSN, HGLP and SRO), installed in different sites and

in very different tectonic settings. Antofagasta, forvexample,is
situated above an active éubduction zone, Kipapa is on a mid-ocean
island and Charters,fowers on a stable continental shield. It seems
.unllkely that the anomalies are generated near the recording statlon,
and much more probable.that they are genuine effects of the structure

along the waves' paths.

Anomélies>such as those visible in theILove—typé modes might arise

~ from a chance coincidence of the group-velocities of Love and'higher-
Rayleigh modes; To gxplain the féatures of conétant phase-difference
at all périods.(KIPQOS) aﬁd over paths of differént lengthé (KIPOK2,
_KIP106;1 KIP403) would require an exact coincidence over a ;énge,of‘

" periods and through slightly different structurés, which is highlyv

, unlikély. Also, ;he higher Rayleigh~modes should not be'sighificantly
excited by the shallow events‘used.: The anomalies in the fundamental
‘Rayleigh;type mode could not arise in this waj, theré‘being no Loﬁé; :
type mode.with appfopfiate dispersion, nor could they result from

Hlateral refraction.

"The preséncé of 1arge—sca1e‘anisotropic alignments in the Pacific
upper-mantle has been demonstratgd by otﬂer studies (Forsyth 1975b;
Schlue and Kﬁoquf 1977) so that it is quite reasonable to propose
that this is responsible for the‘observed énomalies, provided those
apomalies show a symmetrical pattefn which is consistant with the

bbroposedvalignments,

112



5.6 Patterns in particle-motion anomalies: predictions

The tilted-Rayleigh-type particle-motion observed on the seismogram °
is characteristic of propagation in a structure with only one
vertical plane of symmetry. The consequent pattern of anomalies is
illustrated by Figures 3.la and 3.2a. If several waves of the same
mode arrive at a central péint along different directions, then the
direction of the structural symmetry plane divides them into two
groups; The particle-motion ellipse for those arriving on one side
of the symmetry plane is tilted down to the right (looking along the
difectioh pf travel) , For waves arriving on the other side, the tilt
is down to the left. This is shown on the seismggrams'(Figure 5.6)
as a phase difference between vertical and transverse componenté of

0° (tilt down to left) or 180° (tilt .down to right).

‘5.7  Patterns at a single station:i observations

The Best.azimuthal fange of travel-paths in é single region is

- provided by the arrivéls at Kipapa. The.sense of_tiltvfor the Love-
typé médes.cah be determined by the vertiéal-tfansversé phase—'
diffefénce at short periods, where thg modés are isolated from the :
SS-arrivals. where thére are two or more modés interfering to

¢ause beats in the wave train,vthen the modes are in phase when there
is é maximum iﬁ Eeat—amplitude. The model studies in Chapter 3

show that the Love-type higher modes 2G and 4Gbshow the same phase-
difference between vertical and.transverse components. So, if
traﬁsverse components of two modes are in phaée, so are the vertical
' compoﬁents. | The chafacteristic phase—diffefence fér the Love-type

. modes can therefore/
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therefore be measured where there is clear beating, or a clear

single mode.

The sense of tilt for the fundamental Rayleigh-type mode might also
be estimated from the phase-differences on the seismogram. However,
as there_is likely to be a spurious transverse component génerated
by the large radial component, if the direction of travel is slightly
different from that assumed, it is better to determine the sense of

tilt for mode FG from the particle-motion diagrams.

The simplest check on consistancy with -the expécted pattern is

provided by KIP205 and KIPOK2, (Figures 5.6k, 5.6a). These record

waQes which have arrived from approximately opposite directions, énd

so should show tilts of opposite sense, For KIPOK2, the-particle—
.;motion ellipse in the Love-type mode at 12 secbnds, tilfs down to the
right, ih the Rayleigh-type moae FG; at about 20 seconas, if_tilts to

the 1éft. .‘For KIP205, mode 2G (appafaﬁtly the only higher:méde,present),
the tilt is to fhe.left. For FG tﬁere is a significant transvefse
componénf only_at_father sﬁort periodé, where the tilt is down tp
the‘riéht. ~ So these'aﬁbmaiies are consistant Qith fhe predicfed

pattern.

(Note that, sihce,these waves are travelling approximately north-east
‘(KIPOKZ)and west (KIP205), the particle-motion ellipse in both cases
is tilted down to the south or south-east in mode 2G, and to the north

or north-east in mode FG).

The other arrivals at Kipapa are along azimuths close to KIPOK2, and
.show the same phase?differences as that record. A greater azimuthal

range of travel paths is needed to determine the direction of the
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structural symmetry plane, or to check for consistency with some

assumed direction.

5.8 Patterns at several stations: a consistent model

The data from all the recordihg stations may be combined if if is
assumed that the vertical structural symmetry plane coincides with
the difection~in_whiéﬁ the oceanic lithosphere is moving, relative
to the rest of the upperfmantle. Estimates of the direction qf'
movement for eéch of the major tectonic plétes have been made by
Morgan (1971),‘as shown in Figure 5.7. It is possible that the
anisotropic alignment in a region is controlled by the direction
of plate~motion at the time when that reéion of the'lithosphefev
formed (Crampin 1977p)and this may be different from the Ereéent
direction.of movement. The Pacific lithosphere near Hawaii, for
example, was formed when the plate wasvmoving in a slightl& mqré
wesférly directidn,but the difference is small (about 130),

: espécially wheﬁ considered'in rélation té the uncertainties in

determining motion relative to the underlying mantle.

Direction of wave travel relative to the direction of plate move—
ment near the recording station have been determined for each C

path usihg Tahle 5.4, which is derived from Figure 5.7.

The éense of tilt for the tilted-Rayleigh-type particle-motion can. :'-

be détermined from the seismograms. Thé program which plots the |
seismograms and particle-motion diagrams routinely determineé thé
maximum aﬁplitude of each comﬁonent, in each one minute interval,

and this information can be used to calculate the degree of tilt.
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therefdre be measured where there is .clear beating, or a clear

single mode.

The sense of tilt for tﬁe fundamental Rayleigh-type mode might also
bé estimated from the phase differencé on the seismogrsams. Hdwever,
as there is likely to be a spurious transverse comﬁonent generated
by the large radial component, if the direction of travel is slightly
different from that assumed, it is better to détermine the sense of |

tilt for mode FG from the particle-motion diagrams.

The simﬁlest check on consistency with the expected pattern is'
provided by KIP205 and KIPOKQ,(Figures 5.6k,5.6f). These record w;ves
for travel-paths l20°apart so it is likély that the structurai—
symmetry plane lies between them. For a given mode, the particle-
‘motions for fhe two paths should then show tilts of opposite éense.
Fdr KI?OKQ, the particle-motion ellipse in thevLove—type mode, at

| 12 seconds period, tilts down to the right. For KIP205, mode 2G |

. (apparantly the only Love-type mode present) the tilt isbto the

left. For KIPOK2, the particle-motion ellipse in the Rayleigh-type
mode,FG, at 20 seconds period, tiits to the left. For KIP203, ﬁode

FG,the tilt is down to the right. So these anomalies are consistent

with the expected pattern.

(Note that, since these waves are travelling approximately north-east
(KIPOK2) and west (KIP205), the particle-motion ellipse for both paths
is tilted down to the south or south-east in mode 2G, and to the

north or north-west in mode FG).

. The other arrivals at Kipépa are along azimuths close to KIPOK2 ,and
" show the same particle-motion tilts as that record. A greater azimuthal

range of travel paths is needed to determine the direction of the
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Figure 5.7 Direction and speed of lithospheric plate-motion
relative to the undelying mantle. Bold arrows
are for 'hot spots'. (from Morgan 1971) -

Stdtion Direction of plate-motion
ANT 093°
BOG 083°
CTA 007°
GUMO 280°
KIP 300°
MAT . 276"
SNZO0 299 °

Table 5.4 Direction of lithospheric-plate movement relative .
to the underlying mantle near seismic stations.
(derived from Figure 5.7)
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Figures 5.8 and 5.9 ehow the effect of pleotting the measured tilts
against direction of wave travel, for the fundamental Rayleigh;type
mode (Figure 5.8) and for the Love-type modes (Figure 5.9).

The anomalies are measured where they are most clearly shown, near
15 seconds period in Love-type modes and near 20 seeonds peribd in
FG. The.degree of tilt, effectively the reiative amplitudes of
vertical and radial components, is used only to indicate the
significance of each data point. AnAeven variation of anomaiy
amplitude, or degree of tilt, with azimuth would be expected in an
idealised model (Figure 3.16). Because of differences in
structure near each site, slight variations in period bet&een wave
'tfains measured and the possibility of interference between 2G and
other Love*type modes, it is not likely tﬁat any simple pettern in

anomaly-amplitude would be apparant in the observational data.

-The plots in Figures 5.8 and 5.9 do each shpw a pattern in tilt- ‘
sense which is consistent with the proposed structural'eym@etry,
with very few 1ncon51stent ‘observations. In hode FG, the tilt is
down towards the dlrectlon of plate-movement, in the Love-type
modes the tilt is down in the opp051te direction. This pattern of
'opposite tilts for FG eﬁd 2G (or 4G) 1is found in all the model‘
structures of 110 type considered in Chapter 3 with the 011v1ne
‘a—axis tilted downeln the same d1rect10n as the Love-type partlcle-_

motion, that is, away from the direction of plate-motion.
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Figure 5.8 Sense and degree of tilt for particle—fl

motion in mode FG plotted against
direction of wave travel,relative to
the direction of plate-motion, SS.
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Figure 5.9 Sense and degree of tilt for particle-

- motion in mode 2G plotted against :
direction of wave travel,relative to
the direction of plate-motion, SS.



5.9 Implications of observed patterns

- The oﬁserved particle-motion.anomalies, and the symmetrical.pattern '
into which they fit, can be explained by anisotropic alignment in.

" the upper-mantle, only if the alignment is such as to produce oﬁly'
one Vertical plane of structural symmetry. In particular, align-
ment of olivine by glide—~plane slip in a zone of horizontal shearing,
could 225 éccount for the observations,-as‘this would produce two
vertical plaﬁes of symmetry (the 010-models in Chapter 3), with
charactefistiéally different patterns of particie—motion (Figures

3.1b, 3.2b).

" If aligned olivine is responsible for the observed éffects,vfhen .
one ofvthe thfee grystallographic axes’mﬁst show préfefred align-

: meﬁt in a direction which is neither verticai nér horizontal. If
fhe synfeétonic—recrystéllisation mechanism proposed by Ave
‘Lallemant and Cartgr_(1970) is responsible for the oliviné align-
ment, then the 61iyine b-axes should be aligned parallel to fhe

" maximum compressive-stress, and the a-axes parallel to the minimum, -
(Figufe 1.2). The‘mbdelé'studied in Chapfer43 are conéistent with
tﬁe obser&atiéns onlyjif the oli?iﬁe b~axes are‘tiited'down towards
the direction of élate¥movémént. This corresponds to Figuré 1.2b. -
In other words, the partic1e~motioﬁ data suggests that‘the_

lithosphere is dragging the asthenosphere and not vice-versa.
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5.10 Amplitude of particle-motion anomalies : some preliminary results

Two amplitude measurements are useful: the ratios of Z/T for mode
2G, and the horlzontal—sectlon e111pt1c1ty for mode FG. | These
ratios are rather insensitive to small variations in assumptionsv
about direction.of propagation, and are expected to show a
Qariation with period that may be useful in_discriminating between

possible model structures. (see Figure 3.17)

Only a few of the records used in this study'are suitable for such
measurements, these being the records from KIP (HGLP) for dates
~since 1976. The recordingnsensitivity settings and instrument
responses are not sufficiently well documented prior to that date
and at other stations the range of periods for which part1c1e~
motion can be determined is too small. With such a small number.
of recdtds no azimuthal variatibn:of,anomaly megnitude cae Be “
resolved. Heﬁever, the models on Chapter 3 indicate that thlS
variation may indeed be small for all dlrectlons of propagatlon

more than a few degrees away from the trace of the structural

symmetry plane. ‘

The maximum.amplitudes bf‘Z,R and T cemponents, for each 60 second
time interval,'ére reutinelyilistedvby the program which blots-the
seismograms. Using this data in conjunction with the plots it is
possible to select:appropriate Z/T ratios for the Love-type modes
at each‘period.' Similarly, horizontal-section ellipticity can be -
"feend for mode FG from the maximum R and T amplitudes so long as any
inciinatioﬁ_is very small. (In:fact the ratio I/Z, which is
vVirtuaily the -same as,T/R;'is.used to allow direct comparison with
the‘ﬁodel results‘in Figure 3.17);v The corresponding periods can

be measured on the seismogram.
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The measured ratio of Z/T for the Love-type modes will'usually :
refer to two or more interfering modes, usually 2G and 4G, andeill
lie between the valuesAappropriate for each mode in isolation, |
being closest to that for the dominant mode. According to the
models in Chépter 3, the ratio of Z/T should be about‘twice‘as
.large for mode 2G as for mode 4G, so measurements of the ratio of

Z/T may be up to 1007 lower than the true value for 2G.

The results are shown in Figure 5.10 and, even with allowance for
the uncertainty for mode 2G, demonstrate that both FG and 2G show
an increase in anomaly magnitude with decreasing period. The

Figures 5.a - 5.6hﬁprovide‘quélitative confirmation of this.

As the model curves in Figure 3.17 show, the incréase in FG

anomaly magnitude suégests that the‘aﬁisotropic alignment is stronger
in thé lithosphere than in the aSthenosphere, but, in view of the »
very small numbef‘of records used, and the -small  number of models
‘studied, thié'result can provide no definite proof. The level of
anomaiy:ampiitude'in both FG and 2G suggests a fairly sfrbng align-—-
ment (ﬁeérer 50% than 20%) even if a 60km thick zone is evenly

-anisotropic.
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6. CONCLUSIONS

6.1 Results of surface-wave particle-motion study

a) Theoretical models

~ The study of surface-wave characteristics in anisotropic models of
ocean—Basin structure predicted that particle-motion anomalies
might provide a powerful méthod for determining the geometry of
alignea anisotropy in the océanic upper—mantle,vand might also yié1d 
information about the location and degree of alignment in any
anisotropic layer.“ Anbmaliés could be expected in the third-
generalised surfacefwavermode, corresponding to the isotropic
second—Rayleigh~mode, in,the.presence of almost any)reagonable

. »
anisotropic.layer. Anomalies would occur in the fundamental,
second and fourth genergiised modés, corresponding to the,isotfopic
fundamental Rayleigh, and fifst énd second ﬁove—modes, in the preSenée

of fairly thick anisotropic layers, with certain symmetries.

b) Observations, symmetry and possible geometry of anisotropic

alignments

Using relatively féonbServations it has:been poésible to derive
considerable information about anisotropy in the upper—mantle
beneatﬁ tﬁe Pacifié’Ocean. The observation of.prédominantly,éiited—
Rayleigh—type particle-motion indicates éontrol by a structure wifh
a_single vertical symmetry plané. Such symmetry cannot result from
aiignmentvof anisotropic elements, such as flat cracké or pockets of
bartial ﬁelt (Garbin and Knopoff, 19755 of mineral crystallographic
~axes, alohg purely horiéontai or vertical_directions. - There must be

alignment of some anisotropic element in a direction between
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horizontal and vertical.

-

Results obtained from measurement of the amplitude of particle-
motion anomalies suggest that there may be a high degree of
alignment, particularly in the lithosphere. Howéver, more

observations and further modelling will be required to confirm

and refine this hypothesis.

¢) Generation of anisotropy, shear-zones and the driving-

mechanisms of plate-tectonics

Anisotropic elements may align along slip~p1anes in shear-zones.

To produce the correct geometry of alignment these slip-planes must

be tilted significantly away from the horizontal or vertical. It
is difficult to imagine how the predominantly horizontal movements

associated with plate-tectonics could cause such tilted slip-planes.

A more plausible explanation is offered by Ave 'Lallemant and
Carter's (1970) theory of alignment of olivine by syntecfonicﬂ
recrystallisation, where horizontal shearing results in alignment
of olivine a and b- axes at 45° to the horizontal (Figure 1.2) The
observed_particle—motion andmalies are consistent with models in-
corpbrating such olivine aligﬁment, where the single vertical
structural symmetry plane in the anisotropic model coincides with
the direction of lithospheric-plate movement over the mantle below,

and the olivine b-axes are tilted down in the direction of plate

‘motion

According to Ave'Lallemant and Carter (1970) such alignment should

. ' - o
be generated in the upper-mantle at temperatures above 500 C, where
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the lithosphere is moving faster than the asthenosphere (Figufe i.2).
Alignment might be generated in young, hot‘lithosphere, ciose to
the mid-ocean ridge, and be 'frozen in' aé it cools and thickeﬁs,
moving away from the ridge. Alternatively, alignment might be
generated in the hétter aéthenospheré, throughout the ocean-basin.
In either case, the moving oceanic lithosphere must drag the»

asthenosphere beneath it at some stage in its evolution.

6.2 Comparison with other studies of anisotropy in the oceanic

upper—mantle

The model 6f'oceanic upper—-mantle aﬁisotropy suggested by the
particle~-motion data,‘with fairly strong alignment of crystalline
olivine by syntectonic recrystallisation, probably 'frozen in' to
‘the oceanic lithosphere, is not necessarily a complete one. Layers
&itﬁ'alignment of higher symmetry may be present whicﬁ would not

affect particle-motion in the surface-wave modes observed.

~Ihe proposed alignment of oliﬁine by syntectonic recrystallisétion
:is inadequate fo account for the Pn anisotropy of 8%, found by
refraction studies, at the top of the lithosphere, aé it predicts
less fhan 3% Pn aniéotropy, althbugh with the right sénsé (ie.
maximum P—Qelocity paréllel to the direction of plaﬁe—motion).

Somé other élignmeht must océur at the very top of>the lithosphere,'
‘perhaps slip-plane alignment of olivine or a system of parallel

cracks.

The results of surface-wave dispersion studies can be qualitatively

explained by the syntectonic recryétaliisation model. Taking -
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-SiX110 (Figure 3.5a) as a suitable model, but perhaps with.
strongér oiivine»alignment, ghe theoretical phase-velocities for
the fundamental Rayleigh~type mode, FG, are greatest for propagatio;A
parallel to the direction of plate motion (OO), which agrees with
the observations of Forsyth (19?5b) for the‘Nazca plate. The
azimuthél anisotropy is only 1Z, half that found by Forsyth, but
:stronger olivine alignment Qould givglalsuitable increase.
Comparison of the FG and 2G dispersions for §1X110 (Figure 3.5a)
‘with those for the fundamental‘Rayl\eigh and 'I;ove—modes in the |
isotropic model S-ISOT (Figure 3.3) indicates that an 1isotropic
model very similar to S;ISOT could model the anisotropic FG
dispersion, but shear—velocitiesf higher than those in S-ISOT
. would be required to model the anisotropic 2G mode. This
correspoﬁds.to the structural anisotropy found by Forsyth (1975b)

‘and Schlue and Knopoff (1977).

fhe ﬁodel of anisotropy derived, rather simply, from observations .
of surface~ﬁavé particle-motion is therefore consistent with

" models based on the much mére sophisticated analysis of surface-

; wévé phésé;véldcities; and in facf tglls more about the geometry

aﬁdrhehce the possible causes, of oceanic upper-mantle anisotropy.
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APPENDIZX I

Models of ocean-basin structure incorporating anisotropic

layers

Details of models and characteristics of

normal-mode surface-wave propagation.

Key to model names: full names have form ABChk1l - xy~pq

ABC model structure as shown in Tables Al.l1 - Al.4

hkl indicates orientation of olivine—axis in the
" anisotropic layer (See Figure Al.1)

xy  indicates thickness of anisotropic layer in
kilometers
Pq indicates direction of propagation relative to

vertical plane containing olivine a-axis
(See Figure Al.1)
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et

(a) - (b)
. Flggge Al.l Relatlve orientation of cryslallographlc 8, b and ¢ axes and partlcle-motlon X,Y, and Z axes

for models with (a) 110-cut olivine , azimuth of propagation 90°
(b) 010~cut olivine , azimuth of propagation 30°
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TABLE Al.1

Model

S~ISOT
51X
$3X
S4X
A1X
C1x
S1T
83T
©S6T
31

S3XT

all
all
all
top
top
all
all

all

SUMMARY OF MODEL STRUCTURES

of
of
of
of
of
of
of

of

Location

lithosphere
lithosphere
lithosphere
lithosphere
lpw—velocity
low—Velocity
low-velocity

low-velocity

base of lithosphere

Anisotropic layer

zone’

zone

zZone

zZone

all of lithosphere plus
low-velocity zone
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thickness (km)

7 Aligned olivine

60
60
60

10

10
60
60
60

10

120

20
50
20
20
20
20
50
50

50

20,50



"TABLE Al.2 'COMPOSITION OF MODEL S-ISOT .

crust:

lithosphere: .

low-velocity-
zone . 3

Model S-ISOT

tHickness : a:

(km) km/s’

water 4.5 1.50
sediment - 0.5 A 2.02

~ layer 3. 6.0  6.60
layer 4  60.0 = -8.10
layer LV 60.0 = 7.48

iayef.S. 0.00

upper mantle:

8.25

135

' km/s -

10.00

0.25

73.80

4,40

4,10

4.55

.
‘kg/m3x 10_3
1.0 _:‘
1.9
2.9

3.3

3.4

©3.5°



TABLE

Model

Model -

Model

‘Model

Model

 Model

Model

Al.3

AlX

A3T

ClX -

S1X

S1T

S3X

S 3XF

[ AR A

N = Ln

o O

o o "
SO0

{

thickness

(km)

QOO o
[cNoNoNoNV,

.

.

.

U = O
S OO o
[eNeoNeNeRT,

o o '
OO0 O~ SO0~ S0 0 o~
S O O ULt [oNeNeRV, NV, QOO UL oNoNoNeoNT, |

QOO
O OO UL

[exlK=N
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STRUCTURE OF ANISOTROPIC MODELS

layer name

Water
layer 3
XTOL2080
layer 4
layer LV
layer 5

water
layer 3
layer 4
TTOL5050
layer LV
layer 5

- water

layer 3
layer 4
XT0L2080
layer LV
layer 5

©  water

sediment
layer 3

XTOL2080
layer LV

“layer 5

water

sediment’
layer 3
layer 4
TTO0L2080
layer 5

water
sediment
layer 3
XTOL5050

-layer LV

‘layer 5

water
sediment
layer 3
XTOL2080.
TTOL5050

* layer 5 -



TABLE Al1.3 (cont)

" thickness layer name

Model S3T 4.5 water
0.5 sediment
6.0 layer 3
60.0 layer 4
60.0 TTOL5050
layer 5
Model S4X 4.5 water
S 0.5 " .sediment .
6.0 layer 3
60.0 ~ XAOL2080
60.0 layer LV -
layer 5
Model S6T 4.5 water
' 0.5 sediment
6.0 layer 3
60.0 layer 4
60.0 XAOL5050
layer 5.
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TABLE Al.4 - ELASTIC CONSTANTS OF ANISOTROPIC LAYERS

~ AOLIVINE: : XTOL5050:

Olivine elastic constants 507 TOLIVINE

from Verma 1960 3 50% o= 7.34km/s, B= 4.69 km/s
Density = 3324 kg/m Density = 3324 kg/m3

jkmn C. o (kb) k mn C. o (kb)

[ APy

ik jk
1111 3240 1111 2465
2222 1980 22 22 1962
3333 2490 3333 1962
1122 590 1122 710
2233 780 2233 755
3311 790 3311 - 710
1212 793 1212 766
2323 667 - 2323 604
1313 810 1313 766
TOLIVINE : : - TTOL2080:
Transversely isotropic olivine, 207 TOLIVINE :
symmetrical about a-axis 807 o= 7.10km/s, B = 3.91 km/s .
Density = 3324 kg/m3 : A Density = 3324 kg/m3 ’
jkmn C. (kb) ' jkmn - . (kb)

Jkmn Jkmn
1111 3240 1111 1989
2222 2235 2222 1788
3333 2235 3333 1788
1122 690 1122 680
2233 780 2233 698
3311 690 3311 - 68
1212 801.5 1212 559
2323 727.5 2323 545
1313 801.5 1313 559
XTOL2080: R XAOL2080 :
207 TOLIVINE o ' 207% AOLIVINE
8070 = 7,78 km/s, B = 4.54 km/s 8070 =7.78 km/s,8 = 4.54 km/s
Density = 3324 kg/m3 ~ Demsity = 3324 kg/m3
jkmn Cjkmn(kb) " Jkmn Cjkmn(kb)
1111 2254.87 1111 2255
2222 2052.37 2222 2003
3333 2052.37 3333 2105
1122 665.26 1122 630 .
2233 710.26 2233 668
3311 665.26 3311 670
1212 708.05 1212 707
2323 671.05 2323 681
1313 708.05 1313 710
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TABLE Al.4 (cont)

TTOL5050: : o . TAOL5050

507 TOLIVINE o -507% AOLIVINE .

" 50% a= 5.65 km/s, B=3.27 km/s " 50% o= 5.65 km/s, B= 3.27 km/s
Density = 3324 kg/m3 Density = 3324 kg/m3 .
jkmn | _Cjkmh (kb) ] k: m n ~Cjknh .(kb)"

1111 . 2151.75 . 1111 '2151.75
2222 1649.25 - 2222 .1520
3333 1 1649.25 3333 . 17715
1122 522,25 1122 - 470

2.2 373 567.25 2233 - 565
3311 © 522.25 i 3311 570
1212 578 1212 574
2323 541 2323 511
1313 1313 582

578
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Figure Al1.2 Body-wave velocities in AOLIVINE (top) and

TOLIVINE. (see Table Al.L )
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Table AlVS'DisperSionEand parficle—motion'data'for ocean-basin models.
Models are arranged in alphabetical order.

Data comprise period, phase—velocity (PHVEL), ‘relative
amplitudes and phases of the three components of ' .
particle-motion at the top of the solid layers  (U,PHI), -
angle between directions of group and phase~velocities
(GPANG), and XYANG which is tan™t yY/ux S

)
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Ta,ded & ¢ =D.373 0.C16 0. 1 72. G.036 9. 8.397 4 26 0 =0.923 G.624 183, 1,30
12,542 4 O =0.220 0,009 =0, 1.300 =106, 5,014 =g, 16.1%0 4 ¢ 0 =1.0879 9,401 150, G, 2%
16,722 4 0 §.220 10290 Je 0158 =67, 2,056 52, 11.575 4 BTG 0.17¢ 2,329 120, 1.
S.ié1 4 0 =0.3C1 5.623 Te 1,000 =84, 0.900 e, 9,257 & Y D007 0.7201 139, 1.,
G.uZ2 & < S.901 CLeut O« 1.000 =735, 0,000 5C. 9.531 4 37 CLUCI 9.000 10w, 1.,
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T1.U%A dus YD) 2. G.365 be 0,272 =50, 17.545 4,540 I57 G128 100, 1.5
17,097 4.4 J =030 =0. 0,113 15, D.126 650 14,734 4,490 SEZ L0857 1e9. 1.3
T1ea%5 4.5 ¢ 111 Je V.06 She ©oU6D  -4¢, 12.3%9 4,441 b 320 0,150 140, 1,0
11,317 4.5 G DL.G500 e U106 54, 0,014 =350, C11.447 0 4,390 25 32& 1.¢00 : 8.3
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¢0=5% £G6 25 36 45
PEYEL  XYAUG SPANG ux PuIx Uy PHIY vz Ptz
4.750 5,150 0 ~30.452 04703 0. 0,064 106. 1.000 0.
L0550 7,393 0 =0.835 0.6%6 ~0. 0,096 1Cé6. 1.000 G0,
GeCAl  T,450 0 =1,762 0,704 -0. $.1C5 106. 1.0C00 9%
3.0 7.6%4 0 =1.130 0,725 ~0e 0.v98 105, 1,000 G¢a,
3.940  5.132 ¢ =3.333 0.7 “0e B.0269 1054 1,980 S0,
Za360  0.252 0 =U,0¢1 G.R29 =de 0,004 105, 1,200 9%
(TR VRS o VIVEVIRR PR RN X 4 R ] QUDG”CQUOUCOrOOOOOOOUﬁuOuOO“OUOOUOO 03000000€00
40540 26,154 0 =~3.539 0.015 =0, 1.000 w¥7. 0,005 84,
Lo49¢ 27.392 0 =2,277 C.046 =0 1.000 =34e 0,043 29,
Lol 86,123 0 =04485 0.004 Ve 1,000 =83, 0.034 90a
£.390 85,15¢ ¢ =C,% C.C3% 0. 1,000 4. 04115 9.
bo340 Eued6d 9 =0.4%3 (.194 0. 1.040 -36. 0.141 90,
Locue 22,7¢7 0 =3.321 €127 Ve 1.0C0 =397, (173 90.
Gal40 8€.432 0 =u,397 5,062 0. 30 =%1. D.1e7 90.
4.15¢ I5.712 0 =0.343 1,20¢C C. 0.719 87+ 0.030 sC.
4.130 L1857 O =0 378 1,000 D. 0.020 93. 0.100 SN,
hoGTT g 265 0 ~G.022 1,000 0. 0,004, 9Ge U,113 G0,
44040 2,076 ¢ =3.0C3 1,000 d. ¢.20 96, 04115 20,
.90 4.027 0 =0.UC3 1,000 -0, 0.03¢ 101, 0.105 S0,
3.990 J.811 0 -U.GC1 1,000 0. ¢.300 103, C.URS 90.
J.340 0 2,065 ¢ G.000 1,000 ~0. D.000 1054 C.047 90.
GCGOLGCC?‘L«:quOOU"OCIUCUCCOOOOOOOOOCG.0000000000000000000000
L9540 E6,3846 € 2344 0,437 0. 1.000 804 C.068 20,
4,4%C 77,436 0 -0.353 D.223 =0. 1.000 30. 0.329 90,
Lobal 32,613 0 =0.%26 0.120 6. 1,300 80. 0.194 G0.
4.39C 25,7¢9 0 =~0,4C7 0,057 0. 1.000 79. 0.099 50
4,340 E9.,845 0 =0.,472 0.003 ~Je 1,300 =102, 6,033 =G0,
4.23¢ 35,012 0 =U.199 0.123 =0e 1.000 =103, 0.004 =90.
4,240 10,129 ¢ =0.141 1,000 0 0,179 =63, 0.05%6 G0,
6a150 24,242 ¢ ~0.4G62-1,009 J. 450 =%92. 0.097 90.
o140 E9,642 3 =y.023 0,006 0. 1,000 <236, C.uM S0
4,950 37.935 0 ~v.9C1 0,001 w0e 1,000 =24. 3,000 90
hoval 89,377 0 ~=2.000 0.00N O¢ 1.900 =81. 0,009 G0.
3.99G 20,550 € -U.UCC 0.000 04 1,300 =75, 0.000 S0,
3.9%90 €7,9%5 0 <00 0,000 0. 1.300 -77. 0.000 20,
Todav N5.797 & —).JCC ¢.CN0 0s 1,320 «75. 0.7210 She
QUToRICGENRIGTA00000GG0 bOOOOUGOOOOOD)Ou’ 40Cu0na0c0uNI030000000
L340 250233 6 =0.c17 0,043 0o 1.70C =99, C.121 - 9G1,
Lond0 25,306 ¢ =2.3¢2 3.502 O 1,000 =105, V.16 G0,
4,040 30 107 9 =3,1(9 0,103 Ge 1.300 70, 24177 =G0l
6,390 22,330 ¢ =2.5¢0 1,000 0. 0.421 66« 04104 =90,
46,340 12,433 0 =i,559 1,000 -0, 0,221 6%. 0,022 =G0,
4.290 63,585 ¢ =9.1Gu 1,000 =0. V.856 75, 0.02¢6 G0.
4,246 28,731 ¢ =~0.0€8 0,022 0. 1.200 79. 0.003 90.
4,193 82,004 0 =3.111 0.017 ~J¢ 1.000 85. 0.0602 90,
4140 22,376 9 =J3.693 1,000 0. v.406 a2, 0,072 =50,
ho90  GL,0C7 ¢ =3.,982 1,009 Ve G.930 Phe 04217 =G0,
L,040 (0,001 0 ~-9,0C0 1,000 =0¢ 0.000 93+ V4281 =50,
3.993 € 000 0 =0.5C0 1,600 -0. 0,90C 191, 0,332 =g¢,
3.9640 4,000 ¢ «2.0C0 1,000 =0. 0.000 103. 0,533 ~99,
2,343 G.0G00 0 C.000 0.7¢3 0. 0,000 95+ 1.000 =G0,
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S3TYIN=60=60,1 FG 26 306 644
PERTIUD PuvEL KTAG GPANG ux PHIX JY PrlY vz Pz
1763253 6140 ©.149 0 =0,153 0.655 120. 9.022 =152. 1.70% =55,
113.261 4,070 1,720 € =0,272 0.€83 129, 9.°021 -{ e oot d 2 -9 )
02.72% 4 040 2.36(3 U =1.427 0.636 128. 6.134 =0, 1.008 =63,
75173 3.990  3.411 0 =0.536 (6,790 130, £.342  =C. 1,007 =50,
59,201 3,940 J.37L O =0 709 0.725 140. U.943 Bu 1.903 =80,
17.422 3.840 w147 0 =C.055 04832 180, 0,002 =0. 1,300 e5n,
00000000060\uOOOUuOnOOOOOP‘)JOuOO £0500900200039307 0000500200602 10000
175.206 4,540 89.8%0 0 =3.320 0.001 130. 1,200 1¥5. 2.32% G4l
53.536 4,490 89, ASS 0 -1.552 U0 189, 1,280 16¢C [V I Gle
24742 A hbe 30,200 0 ~1.664 0.012 1s3. 1,332 130, D.003  =9C,
21.6%4 4 390 B9.641 0 ~1.155 2,006 189 1,290 =1&0. G.407 =50,
16.145 4,340 23,902 0 =1,114 0.613 120, 0.341 fe 1.562 =50,
11,507 4.290 B3,716 0 =0Ge120 (.022 150, 1.750¢ 2 % n2 Cile
10,212 4,190 0,521 0 JLE? 1,632 130, 0,919 ¢ £5  =3i.
10,483 4,140 £,173 9 =0.084 1,008 150, 0.203 =0 55 =57,
10.159 4,090 9,071 0 =3.922 1,370 152, J.001 =5, 15 =50,
9.830h 4,040 U.C23 0 =0,007 10300 160, 4.329 C. 15 =36,
9,647 3.990 1,512 0 ~0,003 1,000 130, ﬁ.;oc Geo ns =50,
92.124 3,940 U.GUS 0 ~=4.,9C1 1,000 120, 0,008 o =4 -t
F,673 3,840 JuN2 0 =), 300 1,000 199, ”.,(0 N Li =52,
00000900000000000006000000JOOOUOOOOU@OOQOOOOGQwH 3300800
28,429 A 5A0 58,377 U =0.417 0.652 186, 3L =57
23. 1v hodG0 52,415 0 =3,.7C4 0a0E3 100, 200 =Th,
20.320 L 440 49,526 0 =0.373 0654 160. weil 1,870 =59,
15.119  4.390 57,500 6 =1.051 €,627 130. 1.1 L3135 =52,
14,620 4,540 49,706 0 =0.449 0,005 189, AR Qeuld =54,
11.077  4.290 11.623 0 =0 488 1,092 150, 5.226 235 =30,
9.615 4,150 82.965 0 =0,012 0,091 135, : 37 ~%6,
3.257 A 140 89.965 0 =0.004 0,351 130, 93 =30
G051 4,090 29,5383 ¢ =0.002 0.000 R : 3 a0 -7,
B.670 4060 £7.992 0 =v.001 0.000 130. 1,330 Cou30 =50,
3.763  3.99C §9.995 0 =0.009 0.080 15C. 1.703 S.0ns =50,
8,677 3,940 25,997 ¢ =0.000 0,090 180, 1,729 3,770 =60,
3.554 3,360 87,9099 0 =0 UCU Ja0d3 160e 14500 Coen 3D -7
COONQUGOUOTONC0NaGEaN0000000300303020809000uS8 201 336?¢OCCCGOC§Q
15.673  4.540 24,140 0 -u./16 0,103 160. 1.325 Ue2d3 =G,
12,749 4,680 722,775 0§ 2331 U198 180, 1,290 2.227 5o,
11768  Loitd 19,925 0 -0.359 1,000 180. 0,244 u.153 50,
11,482 4,390 7.237 0 =0.273 1,032 120, 9.139 185, 0. 55,
11,284 4,340 5,722 0 =0,322 1,000 1320, 0.1vf =130, C, ~wc S0,
oooouoooooooooooooooaooooooouooooocaucoooooouuwo,ovuuuocuou 2006000050
000000000000000€0C0006000033C00000360000000000CIC00CTLSICEILOCCLOCE0LIL
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PERIOD  PAVEL  AYALS GPANG Ux o PHIX uy PHIY z  PulIZ
166.91) 4,140 2.644 9 =0.001 0,700 Je 0.032 90, 1,000 50,
110,952 4.09C  4.936 0 =3,903 0.6990 0. 0,060 P0e 1,000 G0,
85,507 4,060 5,913 0 ~d,u04 (1,695 ~0. 0,072 $0. 1,000 90.
670721 3.99C 5.7%97.0  =3.,9¢4 (.72 O U573 90, 1,000 90,
50.006 3.940 4,739 0 =0.0C4 0,747 Oe N,063 9d. 1.300 90.
17.356 3,340 G.206 0 =2.JCC €.339 Ve T.033% Stle 1,200 93,
JCOCCRICO00CIGLINLADGLTI00NRICINNIICEI000U000EYI05009000900066000300C00
3644432 4,540 27,575 ¢ =~0.UCC S.0M2 0. 1,000 =90. 0,002 90, ;
121.104 L 450 82,622 € =G.002 d.023 =0e 1,200 =90, 0.018 G0
7C.237 L4460 Z7.5702 0 =2.203 2,055 0e 1,900 =90, C.u39 %0, :
51.502 4.39C 27,3547 ¢ ~0,uC4 0.046 0. 1090 =90, 3.060 GO i
33.070 44340 86.576-0 =L.005 0.0060 Qe 1.0200 =90, C,081 $0. :
15,093  4L.240 24,653 ¢ =5.,903 0,093, 0. 1.90C =6C. 0.171 50. .
4 L,1408 1,471 G =0,8C3 1,000 0. 0,226 9d. 2.099 GC,
L.0%0 0 G238 ¢ ~0,000 1,990 -0. 0,204 5. J.113 50,
hooay  Geudéb 0 =CL.000 1,000 =04 J.001 TCe 0?15 90,
3.990 L,u22 ¢ =0,000 1,009 =0. D.,000 90. (2109 90,
3.740 ¢ =¢.i02 1,000 Ce J.00G S, (a3 90,
3.072 3.340 3 =0.389 1,000 =0, L8500 90 Cala? $n. ;
[P IR I EARVEVESE VR 95dQ0020C3C00U0R00000009002500066C0003L0N000000000
27.573  4.540 U =J,001 J.656 - 0. 0.3 9. 1.000 94J. '
22.507 b4J.4uC & 10 =al.004 2,517 Go 1.4 Gl. 0,752 53,
19.667 4 ha0 ?u.u,7 0 =3.003 0.351 0, 1.7U0 90. 0.511 G0,
17.251  A.350 72.13% 0 =2.0C7 0.219 Ue 1T.9l0 90, G.320 Gl
14,091 4,340 26,211 G ~J.989 0,066 0 1.020 920. 0.151 Gile
16,970  4.247 13,725 ¢ =5,.0C3 1,900 w0, J.244 =90, 0,050 G0,
§.271 4,140 32,203 0 -2,001 9.014 0. 1.700 =4%0. 0.001 90,
S.u32 4,650 G%.334 0 =0,0C0 0,001 Qe 1.000 =%0. 0,000 90,
R.376 4,040 F3.920 0 =0,000 0,000 0 1,000 <%0, 0.900 G0,
§.7¢3 3,990 I7.951 0 =C.u00 0,399 Qe 1000 «$C, Co0C 90.
G.a77 3,940 &9, Ouc ¢ =J.9CC 0.000 0, 1,000 «90, 0,600 90
2,554 TL,347 Z9,963 ¢ =3,000 0,006 Ce 1.00C =%C. Ca070 GC.
COT200I0630000 GC\V»F OQOOFJ'70CCO00000009000OC000000000000000060000000
19.,9%4 4,540 C 0 =0.,003 0.0¢2 ~0e 1,000 «90. 0,074 G0,
17.5183 4.49G 0 =0,006 0,060 Co 1,000 =50, 04095 90,
15.547  d.bug Q =2,003 4,244 =0 1002 %0, 0,034 G0.
13.6%2 4.3%0 J =0.010 0.C06 =0 1,000 «50. C.065 Gl
11,971 4,540 0 w»3.,012 ¢.155 (U 1.0CO G0e 0.044 =50,
16.239  &.240 0 =d,001 0,037 0. 1.u G0, Co0CA 50.
2.826 4,140 0 =u0.003 v,607 -0. .J)v 0. Deu32 G0,
7.220 4bouyt ¢ =G,790 1.600 =y U 30 9Ne (4216 =959,
7.u01 4,049 v =0,000 1,00V «0. 0,000 90e Cod81 =90.
706 3,990 ¢ 2,000 1,000 . 0., 2.0CC 90. 2.382 =90,
6.351 3.940 0 =0.003 1,000 0. 0,000 91. Cub33 =90,
5.336 3,340 C€.20C 0 ~=9,000 0,963 0. 0.000 92, 1.000 =9C,
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PERIND  PHVEL XYAUG GPANG Ux PHIX Uy
133.397 4,140 Q.0603 0 D000 0ab94 13530, ULGC0
121,913 4,.69¢ 0.607 Q 5,001 0,040 130, 3.32%
96.021 4,040 0,010 0 2.902 (.632 13¢. 2.3
78.6817 3,990 v,010 G G.GCZ'O.GG} 180e Cal?0
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325.576 4,540 S, 000 9 0,002 0,090 150, 1.300
109.155 4 490 997,995 9 CodTT D,GUD 133, 1,700
68.871 4,440 87.996 0 - 0,018 0.500  13v¢,. 1,090
45,240 4,390 29,997 0 0,622 0,000 100, 1.97¢
27.657 4.24G 839.9%0 0 d.025 3,000 1Hu. 1.3
13,127 4,240 0,426 0 9,085 J.256 158l 0,200

10499 4,140 0,081 GJA01 1,096 150,
10.1¢2  4.C90 6,005 o 0.3CC 1,330 150

G307 4L 4G GL000 U 0,000 1,000
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Q124 3,940 0,000 C D 0y 1,000
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L o132 4,090 G.125% O Ged(2 Ue62D 150
21.184 4,640 0,101 O C.JI03 0.69h 139,
18.988 4,590 o.072 0 Ualla 9,697 159,
17.053  4.340 o027 O C.O0h Cob67 120,
10,332 4,240 .16 0 n,002 1.060 ;
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9.u31 Loud0 G0 000 .0 G,300C C.C)’
3.2726 4,00 50,000 C 0,000 (,0990
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H 554 3.640 50000 O 3,000 0.NgD Tode 14200 :
00000 unouﬁnoou00uwonoocoooonvuf)o)o|ﬂooonnnwn,vun")c‘o'
20.2¢7 4,540 &85, 3 Ged 1) 0,620 1S5Ce 14286
17.953 4,490 89.006 0 0.%22 0,000 185, 1,030
15.504 4,440 89,950 @ Decdd 0,000 192. 1.79¢

3.039  4,39C GU.,000 3 Ge.023 0,090 139, 1.300
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10,3480 4,240 85,957 O U.011 0,000 185, 1,302

00CVU3C00u003GCEEUGHA0CV0105A0CITO0D04093C0ITHIIDTH

0000000000000000G0

v

000000G00000000000300003306000CLTY

]
-

PHLY Uz PHIZ
1354 1 -50.
130 1au ity
130, 1,570 =50,
1¢fe 145 =Gl
1¢0. 1.59%5 =50,
e, 1.3?) -5
FA0DLTOANANCLGE0E0E
-, C.uﬂﬁ T
-C, (.27 50,
-, (et -3
Lo (oiN) =G,
=Ge Tl =37,
1306 14209 0.
" -
-33.
1 -7,
£ -Gt
A -3
20630 GOrIE50D
c 1 -G,
< 1 i -l
I3} 1eu%3 %
Lo 1o0C3 =32,
Qe 1L =50
ate faub3 %
Ge Goin
[
Ny a1
=N,
-l
-:'v

(ﬂ"?Lf\O
NLEDLR IRy



LST

S4X110=6C-=90.C FG 26 3G 46
PERIOD PHVEL XYA{G GPANG . UX PHIX uy PpPutry uz Pulz
156.653 4,140 0.8C2 0 2.5C0 0.631 0., 0.307 =90. 1,000 90.
167.357 4,090 1,337 0 6.000 0.635 -0. V.016 =90. 1.990 0.
21.767 44043 1.263. 0 0.200 0,7Ch -0, G.025 =90, 1,000 90,
9.023 3.598 2.242 0 0,000 0.745 Go. D037 =920, 1.000 90,
15.354  3.270 7,212 © 3.00C ¢.731 Os Ne099 =904 1,000 GU.
»COCu-nﬁbOOdDuOCﬂCCJOOOOOOOOOOG 00000000000000000000000000000000000000
272.256  4.54C 25.637 € 0.00C G.006 0, 1.000 0. C.001 90.
Ch.5¢E9 90 83,533 0 O.CCO 0.020 -0. 1.300 90.‘0.011 S0.
L7.500 4,640 27,9346 0 0.3CC 0,036 0. 1,200 20. 0.027 $Y.
23.793 4,390 26, ’96 Q 6.330 0.005 =0, 1.500 90. 0.059 G0.
15.52%  4.34¢ 0.00uU (109 ~0. 1,000 GC. 04110 SC.
14,742 4,290 0.0¢0 0.101 0. 1.000 90. 0.143 GO,
11,3186 4,24y 5,000 0.460 Ue 1.000 =70, 8.011 =50,
5295 41906 O.QCO (Ga145 =0, 1.000 93. 010 G0,
3.733 4.9490 L300 0.170 =0, 1.00¢ 70. 0.008 9¢.
020200300TGCI0 bOCPbCuUOUJUUOJOUOOOU 10600¢0CN0C0NA000000000
2¢.2¢% 9 4,540 =0.000 G.744 D¢ 04199 =204 1.099 93, ‘
21.1 b4l 2.000 04773 0. 0,300 <60, 1.000 S0,
18.445 4,440 0.002 0,770 0. 0.359 =50+ 1.300 90,
10.235 4,390 ¢.0C0 0,711 0e V.A08 =50, 1,007 90.
14.142 4L.540 0.9C0 0.414 =0 0.452 =%C. 1,909 G0,
11.997  4.290 €.00G 1.0600 0, $.078 90 0.521 =90,
10,477 4,240 16,847 0 3.3006 1.060 0o U.192 =50, Jes102 9C.
3.227 - 4,190 €7.3%6 U 1.0C0 0.418 0o 1,900 =9i3. D.003 =G0,
6.622 4,060 5.752 0 2,000 1,901 0. V,1¢1 =9C. 0.412 =G0,
OUOPnuIOO”OP nO“uuCObq00003Cb0 $0O030000000070000C000320000N0000000000
15.513 4,540 2¢9 ¢ G.0C0 0,043 C. 1.00% 0. 0.U42 9C.
13,327 4,498 u.,‘o 9 3,200 0.U13 0., 1.000 90e Q4938 SGC.
11,973 4,648 7o.7u4 ¢ U.300 0,200 0. 1.00C =90, 0.026 =90,

11,153 4, 390 33,587 9 =0,900 1,900 J. 0,763 =70, 0.026 GGe
Cl00,50000 ﬂCOquGCOJOUO“OOOQVCOOOOOOOOOOOOOG000000»00"0000000000000
»000000000000000)JOO3000OOUQOCO“OOGOOOOO“OOOUO"0000”000000000000000000
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SeT110-60-=503.2 FG 26 36 4G
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Summary. The limitations of isotropic modelling in the inversion of aniso-
tropic surface-wave phase velocities are examined. Inversion of synthetic
dispersion data for some model ocean-basin structures is used to demonstrate
that isotropic inversions can give inaccurate and misleading estimates  of
upper-mantle properties when anisotropy is present.

1 Introduction

The dispersion of fundamental-mode Rayleigh and Love waves has been widely used to
determine average seismic velocities in the Earth's crust and upper mantle. The observed
dispersion, either phase or group velocity, is compared with that predicted by models using
curve-fitting or, more recently, linear-inversion techniques (e.g. McEvilly 1964; Forsyth
1975). It is not yet practicable to use anisotropic models with these techniques as
calculations would require very large amounts of computer time. In several studies (e.g.
Schule & Knopoff 1977; Forsyth 1975; McEvilly 1964), anisotropic structures have been

" - inferred from inversions using isotropic modelling. Schlue & Knopoff studied waves crossing

the Pacific Basin and found that different velocity profiles were requiired to satisfy
Rayleigh-wave and Love-wave data, but no azimuthal variation of velocity was resolved.
Forsyth found, in waves crossing the Nazca plate, both a 2 per cent azimuthal variation of
Rayleigh-wave phase velocity and a discrepancy between the models required to fit the
Rayleigh and Love data. o

The use of isotropic models in inversion of observations from an anisotropic earth is
inappropriate (Crampin 1976). This paper discusses the limitations of isotropic models. An
inversion of synthetic dispersion data, simulating observations of mixed oceanic paths is
presented, and the accuracies of the results are examined.

2 Limitations of isotropic models

In an isotropic earth the dispersion of Rayleigh waves depends on the distribution of
~ velocities of longitudinal waves, a, and vertically-polarized shear waves, gy, and on density,
. within the Earth. The dispersion of Love waves is. most sensitive to the velocities of
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horizontally-polarized shear waves. fgy;. However, in an anisotropic material, energy is
distributed among three, independent body waves with mutually orthogonal polarizations:

a quasi-longitudinal wave, qP, and two quasi-shear waves. qSIf and qSV, according to the
isotropic polarization which they most resemble. These three waves have velocities which

~ vary with direction of propagation and have polarizations which are intermediate between

P, SH and SV, but which, for each direction of propagation, are fixed relative to the
symmetry directions of the anisotropic medium (Crampin 1977). Except for propagation in
isolated symmetry directions. these body waves do not have pure P.S// or SV polarization.

In a layered structure with an anisotropic layer, boundary conditions at interfaces rcqunrc
that P, SH and SV waves must all coexist in the isotropic layers. Correspondingly. any -
surface-wave mode in an anisotropic structure generally has coupled sagittal and transverse
particle-motion. These generalized modes may have polarizations which resemble isotropic
Rayleigh or Love modes and, for convenience of notation. are termed Rayleigh-type or
Love-type. Numerical examination of reasonable models of ocean-basin structure indicates
that the dispersion and near-surface particle-motion of the first and second generalized

-modes. FG and 2G, respectively, are similar to those of the isotropic fundamental-Rayleigh

and fundamental-Love modes respectively (Kirkwood 1977). At depth, houever, in both FG
and 2G, the polarization of particle motion is intermediate between Love-type and Rayleigh-
type. A significant fraction of the energy carried by the FG wave, for example, is associated
with transverse particle motion. In the samé way, a Love-type mode, 2G, which samples
mainly sy in layers near the surface, is sensitive to a, Bst. and Bsy (or agp. Basws Basvs
where appropriate) in all the layers, to a degree which depends on the nature of the aniso-
tropy. the distribution of velocities with depth and on the period of the wave. It is,
therefore, difficult to make detaiied general statements about the effects of anisotropy on
dispersion and a numerical approach is required. ) ’

3 Anisotropic phase velocity data .

The calculated phase-velocity dispersions of FG and 2G (and in one case fundamental
Rayleigh and Love), for five models of ocean-basin structure, form the synthetic data used

in the inversions. Model parameters are given in Table 1. These are simple, six-layer models

Table 1. Parameters for five models of ocean-basin structure. Miller indices are referred to a cubic lattic
whose axes are parallel to those of the true orthorhombic lattices.

P-WAVE S-WAVE

THICKNESS yeoerty votocity  DENSITY
s kass xg/mixiod
CRUSTAL MODEL : s 1509  0.000 1.0
0.5 2,016  0.25t 19
6.0  6.600 3.8 2.9
UPPER PANTLE : 1S103 60.0  8.100  6.400 1.3
N 60.0 7.172 4.0%8 3.4
S1X010 60.0 (010)-cut T0L2080
6.0 7.172  4.0% 3.4
Six101 60.0 101)-cut TOL2080
$0.0 7.7z 4.0% 3.4
-7 , SI1Y011 60.0  8.100  4.400 3.3
60.0 (011)-cut $50L2080
$37010 60.0  8.100  4.400 3.3
0.0 {010)-cut ELOWVTOL
- .. MANTLE BELOW 131km : 8251  4.48 15
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Table 2. Elastic constants of anisotropic layers uscd in ocean-basin models.

TOL2080 - ELevyToy 55012080

CANSTITLENTS 20 transversely- 60, transvor<ely-  20% OLIVINE. - !

isotronic "LIVINE dsotropic NLIVINE .- .

80 @-7.81{3-4.57 50 Q:5.07(3:3.75 @ Q-7.470-4.10
DENSITY 3.4 3.324 3.335
[SRRRRD] 225.487 215.175 217.120
C(22d2) 205.237 164.944 121,120
€{3313) 205.2% 164.925 292.120
ey 66.526 52.225% 57,470
€(2213) 7,028 . 56.725 61.28)
€y €6.526 52.225 R 61.49%
c{r212) . 70.305 57.810 61.%40
€(232)) &7.105 $4.100 $9.320
{1313} 70. 805 57.800 61.830)

based on Forsyth (1975). One model has only isotropic layers (IS103), two have an aniso-
tropic low-velocity channel at 71—131 km depth (S3T010 and S1YOI 1). and two have an
anisotropic lid at 1171 km depth, overlying an isotropic channel (S1X010 and S1X101).
" The anisotropic layers are formed by mixing orthorhombic olivine with isotropic materials
in order to derive materials with seismic velocities similar to those found by Forsyth (1975),
and with shear-wave velocity anisotropy of 4-8 per cent. The elastic constants of these
materials are shown in Table 2 and the velocities of body waves through them are illustrated

by Fig. 1.
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Figure 1. Body-wave velocities in anisotropic media.
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Figure 2. Model 1S103 phase-velocity dispersion.

It has been suggested by several authors (e.g. Francis 1969) that a transversely isotropic
alignment. with a horizontal symmetry axis, due to preferred orientation of orthorhombic
olivine, is a likely configuration for anisotropy in the upper mantle. This is modelled by
S1X010 and S2T010. The possibility of other configurations cannot be excluded and
models S1X101 and S1YO011, having only one (vertical) plane of symmetry, represent other
possible alignments of olivine or pyroxene. Phase velocitics for anisotropic models are
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Figure 3. Model S1X010 phase-velocity dispersion for azimuths at 30° intervals between [100] and

{011}
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Figure 4. Model S1X101 phase-velocity dispcrsio'n\ for azimuths at 30° intervals between [101] and
[010]. :

calculated using the program of Crampin & King (1977), modified to admit a liquid layer at
the surface. Isotropic dispersions are found using the PV7 program of Dorman (1959, 1962).
The anisotropic phase-velocities are for plane-layered models as no corrections for earth-
curvature have been developed. Isotropic dispersions have also been calculated for a flat
carth. Both procedures give compatible results for isotropic structures. Dispersion curves,
for four different directions of propagation, are shown in Figs 2—6. ’
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Figu_re 5. Model S1YOl1 phase-velocity dispersion for azimuths at 30° intervals between [100] and
{o1l]. .

(@]

164



S. C. Kirkwood A v
L6 =T T T 0

A
~

~
o

Phase velocity (km <)
~
N

S3T010

W
(0]
T

I 1 !
L0 80 120 160
Period (s)

anure(r Model S3T010 phase- velocxt) dispersion for azimuths at 30° intervals between [100] and
[oo1]. ,

o

In_ the anisotropic models, the azimuthal variation of phase velocity varies with period,
is never more than 0.1 km/s (about 2 per cent) and is usually much less. It is difficult to
resolve such a small velocity variation in surface waves which have travelled long distances
over the real Earth. Surface waves travelling long oceanic paths will cross many isochrons
and so areas of possibly differing anisotropic alignments. When no azimuthal dependance of
velocity can be resolved, observations will indicate some average over several directions of ~
propagation (as in Schlue & Knopoff 1977). In this paper azimuthal averages are estxmated
for each anisotropic model.

The variation of velocity with azimuth at a given period can be expressed as a Fourier
series which, for orthorhombic symmetry, has the form:

c@, T) cn+ Y An(T) cos 2n0 )
n=1 - ’ -
where
T = period

@ = angle between direction of propagation and a direction df'sagitlal symmetry
C(T)= average phase velocity over all 8 for period T
A,(T) = are constants for period (T)

Smith & Dahlen (1973) showed that, for weakly anisotropic media, only the constant term
and terms in 20 and 46 are required to describe the Rayleigh or Love-type phase velocities.
In this study. dispersions for four values of 8 were calculated (9 = 0, 30, 60, 90°) so that the
fourth coefficient in equation (1), the term in 68, couid be resolved. For all models. and all
periods, |A3(7) 1 is an order of magnitude less than [4,(T)]|+ [A,(T)| and higher-order
terms were assumed negligible. The value for C(T) found from the four values of C(8, T)
can then be taken as an estimate of the azimuthal average. The value of C(7) for the models
used are shown in Table 3. ‘
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Fundineatat Mod: ( Rayleigh-Type )

L MODEL PHASE VELOCITY { nes™} )

1205 100s 80s 60s  40s  20=
15103 4.10 4,07 4,02 3.96 3.92 3.88
SINiol  64.1Q1 4.08 4.0% 3.93 3.96 3.92
SIX010 4.11 4.08 4.06 3.99 3.95 3.91
slyoll 4,15 6,12 4,10 4.06 3.99 3,89
531010 4.10 4.06 4.02 3.96 3.92 3.86

Second Generalised Mode { Love-Type )

PHASE VELOCITY ( x=s~1 )

MODEL
120s 1CO0s 80s 60s 40s 20s
1S103  4.49 4.47 &4.44 4.40 4.35 6.29
SIXIOl  4.51 4.50 6.49 4.46 4.42 4.3
SIXOI0  4.52 4.51 4.50 4.48 64.45 4.35
SIYOll  4.53 4.52 4.50 4.48 4.45 4.38 _
SITOI0  4.52 4.50 4.48 4.46 4.62 4.35 - - -

Table 3. Dispersion data: azimuthal averages for anisotropic modcls values calculated by program based
on Dorman PV7 for 1S103.

4 Inversion method

A grid of isotropic models is~set up for comparison with the four anisotropic models and
IS103. Since the structures of the anisotropic models and IS103 are known, only a small
number of isotropic models with similar structures need be considered. It is well known that
Rayleigh phase velocities are an order of magnitude less sensitive to variations in P-wave
velocity than to variations in shear-wave velocity so « is held constant across the grid.
Although Rayleigh phase-velocities are also sensitive to density this parameter is not usually
determined by inversion. If an attempt is made to resolve both shear velocities and densities,
large uncertainties in densities result (Schlue & Knopoff 1977). Therefore, a$ in the surface-
wave studies cited above, density is here held constant. The only parameters which vary
across the grid are the shear velocities in the lid and low-velocity zone which are incremented
in steps of 0.05 km/s. The isctropic models are otherwise identical to IS103.
-The dispersion of an anisotropic mode (or IS1O3 mode) is compared with.that calculated
for the corresponding mode in each model of the grid. Anisotropic FG modes are com-
pared with isotropic fundamental Rayleigh, 2G wnth fundamental Love. The closeness of fit
is calculated for each point: :

R?= }6: (Cen ~Con P x 10° | e

n=t
where

Cen = phase velocityiin km/s, at period 20 n s, for the isotropic mode
Con = phase velocity in km/s. at period 20 # s, for the anisotropic (or IS103) mode.

The variation of R? over thc grid isiillustrated by contour plots, as shown in Figs 7(a) to (e),
~ where the lowest values of R? occur for the isotropic models which best fit the anisotropic

(or 1S103) data. Additional isotropic models were interpolated between those of the basic
. grid, where necessary, to determine whether contours form separa'e closed loops or merely
- pinch together. :
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of R? correspond to parameters which give the closest fit to surface-wave dispersion. (a) model 1S103,
(b) model S1X010, (c) model S1X101, (d) model S1YQ11, (e) model S3T010.

5 Interpretation of contour plots

The isotropic models which give the lowest values of R?, separately for each mode, are the
best solutions, but any model which yields R? less than the error in the anisotropic data is
an acceptable solution. The anisotropic dispersion curves (Figs 2—6) are derived from
computations of period for a discrete series of fixed phase velocities. generally at intervals of -
0.05 km/s. These periods can be computed to only three decimal places because of rounding
errors in the computations. Interpolation to particular periods must be made by curve
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fitting and the phase velocities so found are then averaged according to equation (1). The
azimuthal-average phase-velocities are then accurate to about *0.005 km/s. A further source
of error is the discrepancy in P-wave velocities and densities between anisotropic and iso-
. tropic models.

In the isotropic models, P-wave velocities and densities were fixed at 8.10 km/s and
33x10°kgm™ in the lid and at 7.18 km/s and 3.4 x 10°kg m™ in the low-velocity
channel. The densities and average gP velocities in the anisotropic models differ slightly
from these values. For example, in model $3T010 the average values of gP velocity and
density in the low-velocity channel are 7.55 km/s and 3.324 x 10°kgm™>. It would be
unreasonable to expect a close fit to the S3TQL0 dispersion even for an isotropic model
with shear velocities close to the average values for S3T010. By comparing, with ISt03,
similar models with a P-velocity of 7.5 km/s or a density of 3.325 x 10°kg m™ in the low- -
velocity channel, the effect of these paranieters on phase velocity can be estimated. In the

- period range of interest, the increase in P velocity of 0.32 km/s leads to an increase in

Rayleigh phase-velocity of just less than 0.005 km/s. The decrease in density of 75 kg m™>
gives a decreasc in Rayleigh phase-velocities of, on average, 0.012 km/s and a decrease in
Love phase velocities of about 0.004 km/s. Combining this with the possible error in the
estimates of anisotropic phase-velocities of £0.005 km/s, it can be seen that any isotropic
- model whose Rayleigh phase-velocities lic between 0.002 and 0.012 km/s less than those
~ for S3TO10 should be considered as fitting that data. The inversion method is such that any
“isotropic model with phase velocities within £0.012 km/s of those for S3T010 is considered
to satisfy the data The conclusions drawn from this study are not affected by thls approxi-
*‘mation. :
The parameter R?, defined by'equation (2), is simply the sum of squares of the
_ differences between isotropic and anisotropic phase velocities. A maximum difference at
- each period of 0.012 km/s corresponds to a maximum value for R? of 9. A fit to S3T010
for Rayleigh waves is therefore defined by R < 9, and for Love waves by R*< 5. For all
the other anisotropic models, densities are closer to the fixed values and, for Love waves,
R?*< 2 is required. Consideration of the appropriate gP velocities and densities gives the
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requirement for Rayleigh waves of R?< 9, for SIYOI I, R?< 2 for SIXIO0I and R < 7
for S1X010.

6 Results of inversions ' - .

Given the above conditions. all inversions have found isotropic models with dispersions. .
which fit the Rayleigh-type models. For two of the models. S1 X010 and S1X101. there are
apparently no models to fit the Love-type modes. as the lowest contour is R =3, A
discrepancy between isotropic and anisotropic dispersion. which is larger than the errors in
the data. must be allowed for acceptable isotropic models to be found. In the inversion of
the isotropic model IS103, Fig. 7(a). the best fit to the Love mode is found for models in
the middle of a diagonal zone of almost-acceptable models. For all the anisotropic models.
7(a) to (e). that diagonal zone is longer and the closest fit is found for isotropic models at
one or both ends of the zone. This means that, although the solutions require the presence
of anisotropy. in that different isotropic models are required to fit FG and 2G modes, it is
not possible to determine whether anisotropy is confined to the low-velocity channel or to
the lid. Where it is possible to make some distinction, the result may be misleading, for
example, for model S3T010, Fig. 7(e). the data are best satisfied by models with an isotropic
channel, f=4.15km/s and an anisotropic lid, g5y =4.50 km/s and Bggsp- =4.35 km/s.
In fact. in S3TO10 it is the channel which is anisotropic. Even if larger values of R? are
admitted such misinterpretation could still occur.

Consider model S1X010., which has an anisotropic lid, and the contours for R? shown in
Fig. 7(b). Acceptable models might be defined as those for which R? is less than 6. and
which are closest to a starting model with an isotropic lid in which §=4.4 km/s and an
anisotropic channel in which f,5y = 4.4 km/s and f 451 = 4.1 km/s. There are closed areas
of acceptable models close to this starting model, so an anisotropic channel would be
erraneously confirmed.

7 Discussion of solutions ) .

It is frequently assumed that models found by isotropic inversion indicate the true body-
wave velocities in any isotropic layers and some average of body-wave velocities in the aniso-
tropic layer, allowing for different values for gy and Bg-. This might be expected to be
particularly true at long periods, where the wavelength of surface waves is much greater than
- any likely layer thickness and the associated body-wave decompositions in the anisotropic
layer will be travelling nearly horizontally. Inversion of FG and 2G would then indicate the
average velocities in an anisotropic layer of Bggy- and B sy waves, respectively, travelling in a
horizontal plane, provided .the polarizations of these waves are close to pure S¥ or SH. The
quasi-shear velocities for the models used in this study can be found from Fig. 1 and Table 1
and their locations in parameter-space are marked on Fig. 7(a) to (e). ’

The acceptable models found by the inversion procedure discussed in Section 6 do not
indicate the same quasi-shear velocities. If a less exact fit is allowed, say R* < 12, .then the
true values of f in the isotropic layers can occur in an acceptable isotropic model, as can the
average value for f,sy in the anisotropic layer. This is true for all the data inverted.
However, even if one admits yet larger values of R?, say R? < 24, then the expected values
-for Bgsy in the models with an anisotropic lid (Fm 7(b) and (c)) are not found in any
acceptable isotropic model.

It seems, then, that isotropic inversion can indicate the true velocmes in the isotropic
layers adjoining anisotropic layers, only if low resolution is accepted, no matter how good
the data. It cannot always give a useful estimate of velocity in any anisotropic layer.
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Anisotropic surface-wave dispersion

Forsyth (1975) was able to resolve azimuthal anisotropy so that his data do not
correspond to azimuthal averages. However, an average FG dispersion is nearly the same as
the dispersion for 0 =45° and an average 2G dispersion resembles the 2G dispersion for
6 = 30 or 60° (equation (1)). The body-wave averages are similarly refated to body-wave
velocities in particular directions. So remarks in this section. although derived from inversion .
of azimuthal averages. are equally applicable to inversion of dispersion for those particular
directions for FG and 2G modes. :

8 Conclusions

When inverting data from an anisotropic earth, isotropic inversion can indicate a higher
resolution than is really valid. This has to important consequences:

(a) isotropic layers may be labelled as anisotropic and vice-versa,
(b) in restricted inversions, the result is likely to depend heavily on the choice of starting
model.

_This means that upper-mantle shear velocities found for Forsyth (1975) and Schlue &
Knopoff (1977) cannot be considered an accurate guide to the elastic constants in that zone.
“In addition. it will not be possible to determine whether amsotropy is confined to one depth

range, using only isotropic modeclling. v

Forsyth (1975) recognized such ambiguity in his inversion but Schiue & Knopoff's
(1977) results suggested anisotropy confined to the low-velocity zone. However, in neither
work has allowance been made for the possibly large, possibly systematic error inherent
in isotropic inversion so that the uncertainty in the resuliant upper-mantle models has been
under estimated. Inversions will be more useful if a wider range of models, either isotropic
_or anisotropic, is considered. Monte Carlo methods may, therefore. be more appropriate
than linear inversion techniques. If isotropic models are used, even those giving only a poor
fit to the data should not be rejected. It is likely that the ambiguity mentioned above will
“not be resolved by the use of anisotropic modelling in phase or group-velocity inversions, so
information must be sought in other ways. For example, studies of surface-wave particle
motion, such as Crampin & King 1977, may indicate the type of alignment present and this
may place constraints on temperature and pressure conditions in any anisotropic layer
~ (Ave'Lallemant & Carter 1970). '
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in isotropic inversion so that the uncertainty in the resultant upper-mantle models has been
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