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Abstract

There are many applications of materials science which involve the interface
between two bulk media. Such junctions play an important part in the opera-
tion of electronic devices, and in electrical contacts. With new crystal growth
techniques such as molecular beam epitaxy, it is possible to grow almost per-
fect epitaxial interfaces. The properties of these interfaces are different from
the bulk due to the variation in potential across the interface, which can lead
to states which are localised at the interface being formed. These states can
pin the Fermi level, and play an important part in the transport properties of
the interface.

This work deals with the development of a new method of calculating in-
terface electronic structure. The loss of periodicity in the z direction means
that the usual methods of bulk electronic structure calculations cannot be used
directly, unless the interface is repeated periodically. This is the basis of su-
perlattice calculations, where the unit cell has finite length, meaning that the
states obtained are discrete, and that states localised on different interfaces
can interfere, giving rise to energy bands. It is often difficult to distinguish be-
tween interface states and the bulk band structure in these calculations. The
method presented in this thesis treats a single isolated interface, by represent-
ing each substrate properly via an embedding potential term which is added
" to the slab Hamiltonian for the first few layers of atoms around the interface.
The embedding potentials are derived from the Green functions for the bulk
substrates. The effect of the embedding potentials is to ensure that the inter-
face wavefunction is correctly broadened, and that its logarithmic derivatives
match correctly onto the substrate continuum. Thus interface states can be
easily identified, and their energy determined.

The interface Hamiltonian is solved self consistently using the LAPW
method. One problem in the case of insulator and semiconductor systems
is that the potential shift across the interface has to be included at the outset,
but apart from this the calculation is done entirely from first principles. The
method has been tested on bulk aluminium and nickel systems, where each
substrate is the same. Good agreement with the known band structure of
these materials is obtained. Next an Al-Ni (001) interface is used as an exam-
ple of a simple metallic system. Interface states are found to exist at certain
points of the two dimensional Brillouin zone. Finally, an Al-Si junction is used
as an example of a Schottky barrier. Interface states and other departures
from bulk behaviour are noted.
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Introduction

This thesis deals with the electronic properties at the interface betweern two
crystals. The changes in bulk electronic structure which occur at interfaces
are important for the detailed operation of electronic devices, and for bonding
between materis,ls. Examples of the former are semiconductor-semiconductor
junctions, and metal-semiconductor Schottky barriers. The latter may be a
metallic contact for example. The potential change from the bulk which oc-
curs across such junctions can cause states to form which are localised at the
interface, and decay exponentially into each substrate. These states can exist
either in a direct gap or a symmetry gap in each material. In the case of
the latter, the localised state is superimposed on the continuum of bulk states
which leaks across the interface into the opposite substrate.

Interface states may be important in determining the position of the Fermi
level in insulator or semiconductor systems. The position of the Fermi energy:
determines the potential barrier across the junction. For example, the potential
shift across an Al-Si Schottky barrier diode is typically around 0.6V. Clearly
the transport properties of such interfaces will also be affected, as charge will
become trapped in these localised states. There has also been much recent
interest in heterostructure systems, which consist of alternating layers of two
materials. Each substrate may not have the same lattice constant, but can
often still be grown to form an epitaxial interface with the same lattice constant
on either side. In such systems the lattice mismatch is accor odated by strain,
forming the so called strained layer superlattices, an example being the Si-Ge
superlattice. Ché,nging the interface orientation or substrate parameters in

such systems can alter the potential shift and detailed electronic structure in



the interface region.

Despite the technological importance of these junctions, not much is known
about even the most common examples, such as the aluminium-silicon Schot-
tky barrier. In order to gain insight into the problem there has recently been
increased interest in performing ab initio interface calculations using new com-
putational techniques. The most common method is the so called superlattice
scheme, where the interface is periodically repeated in space, forming a large
unit cell, and thus allowing bulk band structure methods to be used. This
is useful for studying thin layer superlattices, but for thicker systems or an
isolated interface, computational restrictions limit the size of unit cell which
. can be considered. The finite unit cell length means that all the calculated
states are discrete, andv also states localised at each interface may interfere,
giving rise to energy bands. Now, it is not desirable to have to explicitly in-
clude substrates which are several layers of atoms thick in any computational
scheme. There are two good reasons for this. Firstly, the electronic structure
usually varies over a few layers on either side of the junction, after which it
becomes like the bulk. Secondly, the computer time required is much reduced
if only those layers of interest are included.

A technique which allows us to concentrate on the local region of interest
is described in this thesis. Each substrate is assumed to have the properties
of the bulk, and is included in the interface Hamiltonian via an embedding
potential term (Chapter 1) which can be calculated once and for all. These
embedding potentials are derived from the Green functions for the bulk sub-
strates. Only a few layers on either(side of the interface are explicitly consid-
ered in the interface region. The effect of the embedding potentials is to ensure
that the interface wavefunction matches correctly in value and gradient onto
the substrate wavefunctions, and that it is correctly broadened, thus allowing
localised states to be easily distinguished from the bulk continuum. The in-
terface Hamiltonian is reduced to the problem of a single electron moving in
thé mean field of all the others (Chapter 2), as is usually the case in band

structure calculations. Having developed a suitable one electron Hamiltonian,



it is then solved to obtain the interface Green function (Chapter 3). This is
a useful quantity to evaluate, as the density of states and charge density are
easily obtained via integration of the Green function. The method of solution
is the linearised augmented plane wave (LAPW) method, which is applicable
to a wide range of materials. No spatial separation of states into core and va-
lence electrons is required with this method. Thus elements with d-electrons,
such as the transition metals can be easily handled. Such elements are often
a problem in band structure calculations using the pseudopotential technique,
as d-electrons may have energies in the valence band region, but be localised
near the core states, thus making this technique less valid. In order to solve
the interface Hamiltonian one must have some starting potential in the in-
terface region. The true potential is obtained by using a self consistent field
procedure, using the local density approximation for the exchange-correlation
potential. This involves constructing a new potential from the charge density
(Chapter 4), which is then used as the input potential for the next iteration,
and so on, until input and output potentials are in good agreement.

The method is implemented in the form of a somewhat large (5000 line)
FORTRAN 77 computer program which runs on the FPS-164 attached pro-
cessor at Daresbury laboratory. The program is loosely based on one which
is used to study surface electronic structure using the embedding potential
formalism, derived by Dr. J. Inglesfield of Daresbury Laboratory, and Dr. G.
Benesh of Baylor University, Texas. The present work involved rewriting most
of the surface code, except for the treatment of the core states. Bulk alu-
minium and nickel systems are used as program tests, by considering the same
material for each substrate as is embedded in the interface. The results are
in good agreement with the known band structures of Al and Ni. Next an
Al-Ni (001) interface is considered as an example of a simple metallic system.
Interface states are identified within symmetry gaps in the Ni at certain points
in the Brillouin zone, which decay into Al band gaps. Finally, an Al-Si (001)
junction is used as an example of a Schottky barrier. Interface states are again

found, confirming that the interface electronic structure plays an important



role in such junctions.
Note that atomic units are used throughout this work. These are such that
h =m. = e = 1. The unit of length is the radius of the first Bohr orbit in the
Hydrogen atom (0.5292A), and the unit of energy is the Hartree (27.2eV).
Some of the work of this thesis has been submitted for publication. This
consists of the application of the embedding method to interfaces, and the

Al-Ni results.



Chapter 1

The Embedding Potential
Method | ’

This chapter deals with the basic principles of the embedding potential method,
and how it is applied to the case of an interface. To date, only surfaces and im-

purities have been treated by other workers using this method. An expression |
for the total energy is derived in terms of a trial wavefunction in the inter-
face. This variational expression is then minimised to obtain the Hamiltonian,
which is then used to construct the interface Green function. Finally, a brief
description of how the embedding potentials are constructed is given. This is
unchanged from the case of embedding potentials at surfaces, but has been
included for completeness, and to justify the use of such embedding potentials

at both sides of the interface.

1.1 Background to the Embedding Potential
Method

The embedding potential technique was first developed by Inglesfield [1], and
has been successfully applied to the case of surface electronic structure [2].
Here it is extended to the case of an isolated interface. Previous interface cal-
culations have been based on the superlattice method, where the interface is

periodically repeated to produce a three dimensional crystal with a very large



unit cell [3]. These calculations describe the properties of a real thin layer
superlattice, where typically about four to ten layers of each bulk material are
included in the calculations, but they are not suitable for either thick layer su-
perlattices, or for an isolated interface, due to the large unit cell required. This
superlattice method has also been used for the study of surfaces [4], where a
supercell consisting of the bulk material and vacuum is periodically repeated.
There are however problems with this technique, which first prompted the
development of the embedding potential method for use at surfaces. Firstly,
the computation involved is very large due to the large'unit cell used. Sec-
ondly, there is no distinction between localised and bulk band states as both
are discrete in these systems, due to the finite unit cell length, which also
leads to interference between localised states on different interfaces. Using the
embedding potential technique, one only has to consider a few layers of ma-
terial on either side of the interface, since in practice the electronic properties
are usually found to be as in the bulk within one or two atomic layers of the
interface [3]. This reduces the amount of computation to be done relative to
the superlattice method. Each embedding potential is derived from the Green
function for the relevant bulk substrate. Also, as the substrates are properly
represented via the embedding potentials, the wavefunctions calculated in the
interface region are correctly broadened, so that the confusion between bulk

states and interface states does not arise.

1.2 The Embedding Potential Method at an
Interface

The embedding potential formalism has been generalised to the case of an
interface between two bulk media. The relevant analytic work and its inter-
pretation is presented in this section.

Consider the interface between two media, regions 2 and 3. The interface



is region 1 in the following diagram.

3 \ L

In regions 2 and 3, the potential is that of a perfect crystal.

Initially we derive a variational principle for the whole of regions 1,2, and -
3, in terms of an arbitrary trial wavefunction ® defined explicitly only in the
interface region 1. In the two substrates (2 and 3) the trial functions ¥, and
U3 are exact solutions of the Schrédinger equation at some trial energy e. ¥
matches in amplitude onto ® over S;, and ¥; matches onto ® over S;. Note
that the first derivative with respect to z of the tofa.l trial wavefunction is in
general discontinuous across S, and Ss.

The expectation value for the energy is

VI|H| Y
2= Sy
¥ is the total wavefunction, and H is the total Hamiltonian.
Hence
£ L@ HEEr +¢ [, U3¥,d% + e [; 3¥;5d% — 3 [Is, + Is,] (L1)
LEOdr+ [, U39, Br + [; ¥3¥3d%
where

Is, = [5 (qra;i 2 _ @'%f) d2rs,



and

84 BZ

The 4% and 5%* terms in 1.1 arise due to the discontinuity in the gradient

Is, = / (@ 02 @*B‘I’*"> d*rs,

of the wavefunction at S, and S;. Note the sign change in the 5** term to
account for the opposite direction of n3 to ny and the positive z-axis.

We require a relationship between the solutions of the Schrédinger equation
in the three regions, which we will then use to eliminate ¥, and ¥; from the
expression for the energy (equaton 1.1).

In region 2

(_%vf +V(r) - B) Gir,r) = §(r—r (1.2)
(_%vg V() - E) Ty(r) = 0 (1.3)

G3(r,r’) is the Green function in substrate 2, having zero derivative with re-
spect to z on S,.
Multiplying 1.2 by ¥,(r), 1.3 by G3(r,r') and subtracting gives
1 2
Ty(r)s(r - 1) = 5 [G3(x, ) V2T, (r) — Ty(r)V2G5(r, )]

= Uy(r') = %/zdsr[Gg(r, r')Vi¥,(r) — ¥y (r)VIGi(r, )]

Now use Green’s theorem, and impose the boundary condition %G} 5 = 0, to
give ‘ )
1 ° 8\11 1‘52)
\Ilg(r) = —'é' szd2r52G2(r,rgz)Tz(n2———
Invert 1.4 to obtain M—)—
0¥,(rs, o
Puls) = 2 [, 677 (s w5, sl (15)
1z
Now, ® = ¥, over S5, so
oY -1
(l‘sz = —2/ d?rl .G (rs,,rs,)®(rs,) (1.6)
a’nz

We now require the normalisation of ¥,.

(1.4)



= U HV, = EV0¥, + 0EV;Y,
= SE|W,|* = U HEY, — T, HY;

v Vj
= |¥,° = U;H aEf %Ezlf\p'

1(0%,, . , (0¥,
’E(aEV‘I' ‘I’V(BE»

Hence
o 8v,\ 9Y,dY;
[ds"'wz - / d'rs, ( 2 n. (8E2) - 8E2 3n22)
1 L0 [0%,\ 8,89
= 5/, 4 (‘I’zaE (anz) oE an2>

. EY ov;s .
Using 1.5 for 532 and a2 gives

v
3 2 2 2 o~ 2 ~o~
/2‘“"1'” /d”*/d’"5=[ 26E(G ¥2) - aEG ]

8Gy™ 0¥, O¥
—_— 2 2 ./ * [*) 2 _ _2 o~
s, /52d s, [wz U+ 06y o - S 2] (1.7)

-1 . . . .
G5 is a symmetric function of rg,, rs,, so the final two terms in 1.7 cancel,

leaving

8G°_1 rs,,T"
/2d3r|\II2|2 /d2r52/ d*rg, Uy(rs, ) — ég Sz)q:z(rg,) (1.8)

The results we require for region 2 are given by equations 1.6 and 1.8. For

region 3, the equivalent results are the same as for region 2. These are

OY;(r - , ,
551353) = -2 /gadZTsJG3 (l‘ss,rsj)@(rsa) ' (19)

! aGO-l r 3,1'/ '
/?’dsr s = — s dzrsa/&dz?‘ss‘l’g(l‘s,) 3 ths ss)‘ps(rs,) (1.10)

Finally note\.that ¥, and ¥3 can be replaced by @ in equations 1.7 and
1.10.



Using 1.6, 1.8, 1.9, 1.10 in 1.1 gives

- [ [eH® & - / d’rs, / drly &7 (rs,) 2 (T Ts) g
1

OF
B (ng) 258 s te) o
_e/ d%s,/ 4, " (rs,) g 2B (x,)
*aé 2 ,8@ 2
i dre g [ o g s

+ /S d'rs, [ &, (rs,)G5 " (v, v, )B(xY,)
+ [ s, [ @ @ (rs)G5 (15,0, 255,

1 * aGo—l(rs’z’rlz) !
/[/1|<1>|2 dsr—L2d2r52L2d2r52¢ (rs,) —2 o S2) (vl )

- 9GS (rsy,1%) -,
- [ s [ s 2 ) (111)

where

H= _%vf +V(r)

The energy is now purely in terms of ®, our trial wavefunction in the inter-

face. G° ' plays the role of an effective surface potential, and is the embedding
potential. Also, from 1.6 and 1.9, we see that G°~' can Be interpreted as being
a generalised logarithmic derivative.

Now we derive a Schrdodinger equation from 1.11. For compactness, an
abbreviated notation is used in the following derivation

l:/é ®- /.;2 Sz é*aGo ®- 53 Ss3 @*ag‘; @]

o
_ (o go+i[ o202 L[ 92
v/l + 2 /52 32 2 Ss az

+ &Gy @+ G @
S’Z 52 53 53 .

L0Gy™ - ] .06
"6/52 Y @_6/53 Ny

10



So, to first order

aG° 0G3™
§F * =3
[/@@ /52 sz(p E ¥~ s, 53@ oF (I)]
6G° 3G°
‘® / so7 22 56° 23 o
B [/1 o 27 S ® 0E 5375 ® OF ]
. 1 09 1 ,0@
_/16<I>H@+2 R T
+ 5<I>*G3_ d + 5<D’G§
52 52 53 53
a(‘ro ano -1
— 5® _ / sor T3
e/s Ss oF ® 5378, oF e
+ similar terms involving 6® (1.12)

If E is stationary with respect to small changes in ®, then

E® - E/ ac <I>6(r rs,) E/ 9Gs 2 95(r'— Ts,)
1 8@ 10®
-H¢+§a—~5( rs2)— 5-8'76(1'-1‘53)
+/S Go @5(r—r5,)+/53 G ®6(r — rs,)
oGy~ oGy
—€ My ®(r —rs,) — My ®4(r —rg,)
Rearranging this gives
1 g 1 o}
{H + 56(1'— I'sz)— - 56(1‘ rss)a—} (P(l')
o , OGSy (rs,, 1, ,
cate—ra){ [ o, 657 () + (B - 9 TEpts)l o)l

#o(r—ra) { [ atrs [ 657 (rarnt 0+ (8- 9 TS a) )
3 E=e

= E®(r) (1.13)

The energy derivatives of G°™' in 1.13 correct the effective surface potential

G°"'(rs,r’s,€) to the value appropriate for the energy E.

11



We choose to calculate the Green function in the interface region, evaluated
at the same energies as the substrate embedding potentials. Hence, E=¢ in
1.13, thus removing the energy derivatives of the embedding potentials. This
leaves us with the following Schrodinger equation for the Green function, G,

in the interface

1 0 1 17 .
{H + 56(1' - 1'52)5 - 55(1‘ - rss)a} G(l‘, r ,E)

+6(r —rs,) /s zdzr'szcg“ (rs,,¥s,, E)G(rs,, v, E)
+5(r - rs,) /5 3d2r’ssG§_l(rg,, v, E)G(r,, v, E)
—EG(r,r', E)
=§(r — 1)
r, r’ are in region 1.
In future the energy E at which the embedding potentials and Green func-

tion are evaluated will be dropped from the notation.

G(r,r') is expanded as

G(I‘, l‘,) = Z G,J@,(I‘)@;(I") (114)

‘Hence

1 g 1 0
lz,]: G,‘j [{H + —2-6(1‘ - l‘sz)g + 56(1‘ — 1'53)5;} @,’(I‘)

#8(e = 1s) [, 5,61 (rsp 16 u(rs)
-I—5(l‘ - 1'53) [gsdz"',ﬁGg-l(rSa’ri?;)(pi(rlsa)

—E®(r) ] oi(r') = §(r— 1) | (1.15)

Multiplying equation 1.15 by ®;(r)®;(r'), and integrating over region 1, gives

> Gij(Hii — ESki)bjt = bu
1,j

12



where

Hi = [ drdi(x) (—%V3+V(r)) By(r)
1 Y. 1 N
+§/..$2d27'52¢k(1'5?)$@;(1’52) - ifssdzrss(bk(rsa)a@i(rsa)
+ [ dirs, [ dir,8i(rs, G5 (s, ) 2lES,)

+ [ dirs, [ dirl @i(rs, )65 (v, 15, BileS,) (1.16)

and
Sk =/ &r&;(r)®;(r)
1
where (—%Vf + V(r)) has been written explicitly for H in equation 1.16.
Hence
Gi;=(H - ES);}
As we have two dimensional periodicity in planes parallel to the interface,

we can define a two-dimensional Bloch wavevector K. The Bloch embedding

potential is now given by the inverse over S; and S; repectively, of
%x(r,r') => G°(r,r' — R;) exp(—iK.R;)
3

The {R;} run over the di'rect two dimensional lattice vectors. We can
therefore reduce the matrix elements of the Hamiltonian to be over a single
two dimensional unit cell.

" The next step is to consider the surfaces on which the embedding potentials

are defined. Consider the case of the right side of the interface. The embedding

13



potential is defined over the surface shown in the following diagram.
-1

C‘O

QussTRATE

L

Y
S, is obviously not a convenient surface to use, so we shift the embedding

surface to S} which is flat.

SuesTRATE

L

14



We must justify this shift of embedding surface. To do this we consider the

physical interpretation of 1.12. Rearrange this equation into the form
§E / Pr6® [H® — E3)
1

10% - Gy~
2, | -7 Y o _ 2
+ [ dr, 62 [2 5 +/52d ", {02 +(E- =t }@}

10% - Gy
2 S| _1OF 2 1 10 _ 3
+/53drs,5q> [ 2az+/53dr53{c;3 +(E-a=L }@]

+ similar terms involving 6%

So §E = 0, i.e. the functional is stationary when
H® =E®

and

0_@
0z

There is a similar result to equation 1.17 for S3.

- 8Gy™ |
:_——2 Szdz'r'.:;2 {G’; +(E - e)—-a%—} ®(rs,) (1.17)

So it is apparent that the solution of the Schrodinger equation in region 1
must have the correct logarithmic derivatives on S, and S3 . To move to the
new embedding planes S and S}, we integrate the Schrédinger equation over
a flat potential between S, and S;, and also between S3 and S3. In practice,
the embedding potentials are calculated on S and Sj, so the procedure is
as before, but S, is replaced by S;, and S; by S;. This forces the interface
wavefunction to have the correct logarithmic derivatives on S and Sj, and
thus also on S, and S3, as required.

In future G° ' will refer to the embedding potentials on the flat surfaces.
i.e. the tilde on the new embedding surface, G°™, is dropped.

In summary, we use equation 1.16 to solve for the matrix elements of the
Hamiltonian, H, then construct the matrix (H — ES) and invert it to obtain
the interface Green function matrix, G. We have assumed that a point of
two dimensional inversion symmetry exists, so the G°~ are symmetric. The

Hamiltonian is also symmetric.
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1.3 Construction of the Embedding Potentials

The computer program to calculate the embedding potentials was supplied by

Daresbury Laboratory. The exact details of the calculation are not therefore

considered here, but a summary of the method of construction is given.
Consider the embedding potential for the right substrate (substrate 2).

This is constructed for the following geometry.

VAacuum CaysTAaL
N :
z£=0 '
_
% .

Consider a plane wave incident on the crystal from the left. The total

wavefunction in vacuum is

¥ = exp (i [K + G| .R) exp(ik.z) + D Ra.cexp (i [K + G| .R)exp (vgr2)
G’ )

where R is the reflection matrix and vg is given by
1o = ([K+G - 2E)

E being the energy of the incoming wave, namely } (IK + G+ kf)
At the embedding plane (z=0), the Fourier components of ¥ are

Vs =bg.¢+Rac

Similarly those of gT'I" are

ov
5. =7e(bect R .q)
Ty G
Now, the Fourier transform of equation 1.5 gives
ov -1
= =2CG%: ~n ¥ An
ans GI - 'G G

16



So _
ve(=bcic + Rag) = =265 gr(Sgn ¢ + Rer.a)

In terms of matrices we obtain

~1

G = %( ~R)(1+R)™ (1.18)
Hence the embedding potential is simply related to the reflection matrix
of the crystal. To construct this matrix, the phase shift of the wavefunction
for each atom is calculated, leading to the reflection and transmission matrices
for a layer. The reflection matrix for multiple layers is then calculated using
the layer doubling method, due to Pendry [5]. The energy at which the re-
flection matrix is calculated has a small imaginary component. This ensures
rapid convergence of the reflection matrix elements as more layers of atoms
are considered.

The type of potential used in the embedding potential calculation is of
the simple ‘muffin-tin’ form. This consists of spheres centred on each nucleus,-
within which the potential is taken to be spherically symmetric, and a con-
stant potential in the interstitial region. It is also possible to have spheres
not containing a nucleus, should a constant interstitial potential be a: poor
approximation. The spheres must not overlap, but they can touch. A two di-

mensional representation of such a potential for a diatomic material is shown

in the following diagram.

=AY

There are extensions to this simple muffin-tin form, but for constructing the
embedding potential, the simple form is adequate, as it is a good approximation

around the ion cores where most scattering occurs.
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The discussion so far has been concerned with the embedding potential for
the right substrate. We also require G°~ for the left substrate. Conveniently,
it turns out that the embedding potential for a given material appropriate to
a substrate at the right can be used at the left with no changes. This is easy
to see if one considers the point K = (K, K,) at which Gk is evaluated, and
the set of reciprocal lattice vectors {G = (G.,G,)} in which Gk is expanded.
Let these be the parameters for G% at the right side. For example, for two
reciprocal lattice vectors G and G’, looking at the right side gives

\L* A

A

py

Looking at the left side, it is clear that we must evaluate G° at (K, -K,),
in terms of {(G.,—Gy)}. i.e.
| kx N

X
.

*

¢!

Ead

G°™" for (K,,—K,) expanded in {(G,—G,)} is clearly the same as G°~'
for (K., K,) expanded in {(G,G,)}, if there is a mirror plane perpendicular
to (0,1). Thus we can use the embedding potentials generated by the existing
program at either side, with no modificationj-as long as the lattice has the

required symmetry plane.
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1.4 Summary

The interface Hamiltonian has been derived in terms of the two substrate
embedding potentials. The construction of the embedding potentials and their
use has been described. Finally, one should take not‘e of the method used to
shift the embedding surfaces. This must be understood in order to make sense

of later work dealing with the construction of the full potential in the interface.
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Chapter 2

One Electron Theory

This chapter presents current methods of solving the many body problem in
crystals, or in this case an interface, within a one electron framework. The
development of one electron equations where each electron moves in the mean
field of all the others is discussed. This leads on to density functional theory,
and in its simplest form, the local density approximation. The limitations of
this theory and the reason for its successes are dealt with, along with more
recent work which attempts to explain its shortcomings. As the calculations
in this thesis are of the self-consistent-field type, this chapter should be seen

as explaining and justifying this approach.

2.1 The Many Body Problem in Crystals

It is important to consider how the many bédyfprrobléﬁl of ihtefaéting electrons
and nuclei can be reduced to one which can be readily solved. In practice we
have of order 10?® electrons per mole of solid, which clearly makes any exact
solution impossible to obtain. The solution is to use a mean field approach,
where each electron moves in the average potential of all the others. This
potential must include correlation effects between the electron in question and

the rest of the electron gas. The result is a set of one electron equations.
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The many body Hamiltonian for a crystal is written

}:, ZoZs
M |R Ry|

N M B o

H_.

(2.1)

- ;] - il

Primes on summations exclude : = j and a = b.

r= electron positions
R = nuclei positions

M, = nuclear masses

Atomic units are used, except that e? is explicitly included. In these units
h=m,=1.

The terms in equation 2.1 are, in order, nuclear kinetic energy, nuclear-
nuclear potential energy, electronic kinetic energy, electron-electron potential
energy, electron-nucleus potential energy.

VIn order to separate the electronic motion from that of the nuclei, we appeal
to the ‘adiabatic approximation’. The principle here is that the many electron

wavefunction can be separated from the nuclear wavefunction.
¥(R,r) = ®r(r)7(R)

where ¥(R,r) is the total wavefunction, @r(r) is the many electron wavefunc-
tion for a fixed nuclear configuration {R,}, and n(R) is the nuclear wavefunc-
tion. This is valid as the electrons move much faster than the nuclei, so that
the electronic wavefunction can be considered as adjusting instantaneously to
any change in the nuclear coordinates.

This gives the Hamiltonian, H., for the electronic motion, given some fixed

nuclear configuration as (dropping the constant nuclear-nuclear potential)

=-=) Vit 2.2
LV e S 22

So the many electron eigenvalue equation is
H,®(r),r3...,r,) = E®(r;,r2,...,1,) (2.3)
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where r denotes both the spatial and spin coordinates of an electron.

Before continuing, it is worth mentioning some recent work due to Car and
Parinello [6]. They have tried to unify electronjc'structui'e and lattice dynam-
ics. The general idea is to introduce a fictitious dynamics for the electronic
wavefunction, nuclear coordinates, and any other system parameters. Using
simulated annealing they obtain the equilibrium configuration of the system. It
turns out that once the system is in equilibrium, the dynamics for the nuclear
motion has the usual physical interpretation. Thus electronic states, atomic
configurations, phonon frequencies, and information on electron-phonon in-
teractions can be obtained in one simulation. This technique is likely to be
of importance in future work on surface and interface reconstructions. How-
ever, as electronic structure work on such systems is still in its infancy, the
Car-Parinello method will first find application in bulk crystal calculations.

Returning to the many electron hamiltonian, H,, which we will now write as
H, leaves us with the task of constructing a suitable form for the many electron
wavefunction ® (ry,rz,...,r,). Hartree [7] wrote ® as a simple product of
one electron wavefunctions, ¢. However, this completely ignores the fermion
nature of electrons, which requires the total wavefunction to be antisymmetric
under interchange of the electrons’ coordinates or spins. Fock [8] and Slater
[9] were the first to include this antisymmetry property by writing the total

wavefunction as a determinant of one electron wavefunctions.

. $1(r1) $1(rz) - ¢1(rn)

®(ry,ra,...,rn) = \/1__5 qu(grz) ‘752(3"2) ¢2(;‘n) (2.4)
(an(rl) ¢n(r2) ttt ¢n(rn)
Inferchanging two rows or columns of 2.4 changes the sign of @ (ry,rs,...,Tn),

and is equivalent to changing the coordinates or spins of two electrons.
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To derive the Hartree-Fock equations, 2.4 is inserted in 2.3, with H given
by 2.2. The total energy is then minimised by varying E with respect to each
¢;, subject to the constraint that the {¢;} are kept orthonormal. Lagrange
multipliers are included to impose this constraint. The resulting equations

are

- ¢(r'>¢,(r ) dor
[—§v Z|R —r|+z / - }d”'(r)

Y e*e;(r) /‘75 R r/)d A = €;¢i(r) (2.5)

, |

The last term on the left of 2.5 is the exchange term, and is non-local, making
it difficult to evaluate.

The Hartree-Fock eigenvalues {¢;} are a good approximation to the mag-
nitudes of the energies required to remove a given electron from the system.
i.e. ¢ = Egr(n; = 1) — Egr(n; = 0), where n; is the occupancy of the ith
state. This is “Koopman’s theorem”. Note that the wavefunctions used for
the n; = 0 case are those which have been calculated for n; = 1. i.e. they are

not allowed to relax. This is therefore an approximation.

The summations in 2.5 now include j=i, leading to self-interaction terms.
This poses no problem here, as the j=i term in the exchange sum exactly
cancels the Coulomb self-interaction term.

Slater [10] has given a simple physical interpretation of the exchange term.
Its effect is to exclude electrons of the same spin from the region of the electron
in question. The charge removed equals one electronic charge, so that the total
charge, excluding the electron in question is (n —1)e, as it should be. However,
the Hartree-Fock equations do not include any Coulomb correlation effects. In
the real system, electrons of opposite spin will also tend to remain apart due to
Coulomb repulsion. Despite this, attempts were made, mainly by Slater [10],
to produce a form of the Hartree-Fock equations which could be more easily
solved.

First he rewrote the exchange term, V,,, in the form of a normal potential
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energy times the ¢;(r)

2}:/ ¢ r)¢ ¢;(r)i(r’) d*'
¢,(r)ir - r'|
Slater went on to calculate the average exchange potential for jellium, this
being a uniform electron gas with a uniform distribution of positive charge,

ensuring overall charge neutrality. The result is

3\
—_ _9.2 (2
(Ver) = =3¢ (87rp)

This is then applied to the crystal charge density, using p = p(r) at the
point r in question. So p is now the local density of the inhomogeneous electron

gas. Hence

Ll

Vee(r) = ~3¢" (5=(r)) - (26)

This approximation is most likely to be valid in regions where p varies only
slowly.

There is no formal justification for Slater’s approach. However, the depen-
dence of V,, on p is clearly appealing as it greatly simplifies the calculation
of the exchange potential. It is in fact possible to derive rigorous theorems
relating the total energy to the charge density. This is the subject of the next

section.

2.2 Density Functional Theory

This is based on two theorems proved by Hohenberg and Kohn [11]: These

are, for the spinless case

1. The ground state energy of a system of identical spinless fermions is a

unique functional of the particle density.

2. This functional attains its minimum value with respect to variation of
the particle density, subject to the usual normalisation constraint, when

the density has the correct value.
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Including spin leads to similar results, except that the ground state is now
a unique functional of the charge and spin densities.

Thus, if we know the charge density, we can calculate H, and hence all
ground state properties of the system.

Kohn and Sham [12] went on to derive a set of single particle equations.
Write the total energy as

E(p) = [Venldolr) 7 + (o) + 5 [ PO g () (2

2 Ir —r/|

T(p) is the kinetic energy, and E,..(p) is the exchange-correlation energy.
Minimising E with respect to p, and keeping the total number of particles

constant gives the Kohn-Sham equations

SV Vien(x) + ¢ [ AL |y )] dir) = cti(r)  (28)

v —r'|
ey = -
p(r) = > ) (2.10)
i occupied

Vze(r) may be non-local.

Note that we have now written an explicit form for T'(p), taking it to be
the kinetic energy of a non-interacting electron gas.

As /ir) is not known at the outset, equations 2.8 -2.10 must be solved
self-coﬂsistently. i.e. We use an initial potential to calculate the wavefunctions
#;(r) using 2.8. Then we use 2.10 to calculate p(r), construct a new potential
and repeat the cycle until the desired level of convergence is obtained. The
form of V,. is not specified by density functional theory (referred to as DFT
in future). It is only an existence theorem. Note that in DFT, the {¢} no
longer have any rigorous physical interpretation. In fact ¢; = g—'ﬁ, where the
derivative is with respect to a set of continuous occupation numbers [13]. In

practice the {¢;} are taken to be the actual crystal eigenvalues. There are two

pieces of evidence to support this stance.
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1. The quasi-particle equation, which gives the true crystal eigenvalues, is
7 d3 7
<-v2 + Vienl(r) + ¢* [ ”—l(f—)TT- - ei> #i(x) + [ S(r,v, B)gi(x') ' = 0
where ¥ is the self-energy operator.

This is of the same form as equation 2.8, but with V. replaced by &.
Later we shall see that many of the approximations to V. in common

use are very close to the actual self-energy for the ground state.

2. The energy of the highest occupied state can be shown to equal the

ionisation energy of the relevant electron [16].

There have been numerous calculations bsed on DFT over the past twenty
years. The results obtained have confirmed the validity of DFT for ground
state properties. i.e. Total ground state energy, wavefunctions, energies of
occupied states. In practice the problem is one of choosing a suitable E,. from
which we obtain V. from 2.9.

A generalisation of the Slater V., is to use the local density approximation

(LDA), except that correlations can now be included. So within LDA

Exe = [ p(r)ewc(pl(r)) &r
where €., (p(r)) is the exchange-correlation energy per unit volume of a homo-

geneous electron gas of density p(r). Kohn and Sham [12] derive an expression

for V.. (neglecting correlation) of the form

Ve = 26 (2 40))’ (2:11)

Note that this differs from that given by Slater (equation 2.6) by a factor

of % This is because Kohn and Sham calculate V., for an electron at the

Fermi energy, with wavevector ¥ = kp, rather than with average wavevec-

tor. Equation 2.11 is thus more realistic, since density adjustments occur by
redistribution of the electrons near the Fermi level.

In practice, equations 2.6 and 2.11 led to the X, method, with V.. of the

form

o

N

—

VAN

R

A

| @
A

Vaelr) = —2a¢’ (ip(r)>

= (212)
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The value of o to be used in a given situation was calculated using one of
several approaches. The most common was to choose a such that the X, total
energies for isolated atoms agreed with the Hartree-Fock energies for the atom
in question. This value of a was then used for the crystal calculations. If there
was more than one element present, then typically an average value of a was
used. Schwarz [14] gives suitable values of o for most elements.

Hedin-Lundgqvist [15] produced an E,. which included correlation effects.

This gave rise to the exchange-correlation potential

Vze(r) = B(r) Vea(r) (2.13)
where L
B(r) =1+ (-g—) o (1+22)
and
4 5 1
§7I'7" = ;

V.o in 2.13 is given by 2.11. r, is the Wigner-Seitz radius.

B varies between about 1 for very high densities, and 2 for very low densi-
ties. T his therefore gives credibility to the X, approach, which is still used to
this day.

2.3 Problems with LDA

There are several known problems which appear when using the LDA [16].
The most important is the poor values which LDA gives for the excitation
energies. That is, the energy of unoccupied states when the system is in its
ground state. This leads to band gaps in insulators and semiconductors which
are too small by a factor of 10% to 100%, and even negative in some cases.
There have been numerous attempts to resolve this problem, in parti;Tar
to understand whether the errors are due to the use of the LDA orto a failure
of density functional theory itself to cope with excited states, but only recently

has any progress been made.
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Of course, the cynic would say that DFT is only valid for the ground state,
so cannot by definition be used to gain information about excited sfates. This
is not strictly true, as the band gap can be expressed as the difference in total
energies between the N-1, N, and N+1 electron states. The lowest conduction
band energy is given as

€c = EN+1 - EN
where Ey is the total energy of the N electron insulating ground state. Simi-
larly, the highest valence band energy is

€& = Exy — En_,

So the fundamental band gap is

E, = e —¢

= FExy + En_1 —2EyN , (2.14)

The problem is that the exchange-correlation potential has a discontinuity
on going from the N particle insulating ground state to the N+1 particle sys-
tem. If there was no discontinuity in V., then use of the same Vz for the terms
in 2.14 would give the correct energy gap. This problem has been discussed
in many recent papers [17,18,19,20,21,22]. Sham and Schliiter [17] show that
€. = en41(N + 1), where this denotes the (IV + 1)** eigenvalue of the N+1
particle system, and ¢, = ey (V) in the same notation. So the true bandgap
is

Eg = EN+1 (N + ].) — €N (N) (2.15)

The naive definition of the bandgap is

&g = ent1 (V) — en(N) (2.16)

where ex 1 (N) ~ is the (IV + 1)** eigenvalue of the N particle system.
The difference A from 2.15 and 2.16 is

A=eyp(N+1)—enp (N)
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Sham and Schliiter go on to show that

where V! denotes the limit of particle number teﬁding to N+1 from above,
and V_ denotes the limit tending to N-1 from below. For an insulator they
show that A # 0.

Godby et al. [21,22] have studied the relationship between the exact self-
energy operator X(r,r’, F) and the exact DFT V.. It is easy to derive an

expression linking V. and X.
Ep '
p(r) =/ Im Gppr(r, ryw) dw (2.17)

Also
Ep
p(r) = / ImG(r,r,w) dw

Now G and Gprr obey the Dyson equation
G = Gprr + Gprr (2 — Vxc)G , (2.18)
Combining 2.17-2.18 gives
Ep
Im / dw (Gprr (£ — Vye)G) = 0
2 is calculated using the ‘GW’ approximation. i.e. We write

£(r,v',w) = o /_Z W(r,r',w)G(r,r',w + o) dw' (2.19)

W is the screened Coulomb inteaction, and is calculated using the random
phase approximation (RPA) [21]. Gppr is used for G in 2.19. Hence, the
calculated ¥ is itself an approximation. The result is that V.. from X is very
similar to VP4, So for ground state properties, there is no point in going
beyond LDA. However, for excitation spectra, the self energy approach must
be explicitly used. In this work the LDA is used in the form of the Kohn-Sham
equations. More accurate calculations of the energies of interface states would

require extensions to DFT, though DFT is clearly adequate for the calculation

of the potential shift across interfaces.
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2.4 Summary

The many body problem has been reduced to that of a single electron, which
can be more readily solved. The process is howe'ver computationally intensive
due to the self-consistent procedure used. The justification for this approach,
along with its limitations, has been given, so we can now proceed, confident

that the foundations on which the work of this thesis rests are understood.
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Chapter 3

Method of Solution:

The method of solution in the interface is dealt with in this chapter. A suitable
basis set for the interface wavefunction expansion is chosen, and the matrix
elements of this basis are evaluated. The form of the potential used in the
interface is described, and finally, the Green function is obtained from the
Hamiltonian, which is then used to construct the density of states and the
charge density. Most of the techniques in this chapter are based on standard
methods of one electron band theory. Here they are applied to the particular

geometry of the interface problem.

3.1 Interface Geometry and Symmetry

Before proceeding to consider the solution in the interface region, it is first
necessary to describe the geometry involved, and also include the use of sym-

metry.
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The various planes are as shown in the following diagram.
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The interface is of width D. (; and (> are the embedding planes. The basis
to be used in the wavefunction expansion is defined over —D/2 to D/2. The
reason for this will become apparent later (section 3.4).

Region I is the muffin-tins. Region II is the substrate mufffin-tins which
intersect ¢; or {;. The z-axis points to the right, with the x-y axes parallel to
the embedding planes.

The two dimensional real space lattice basis, a;, a; are written with respect
to the x-y axes. by,b, is the two dimensional reciprocal lattice basis, related

to a;,a, in the usual manner.
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For simplicity, only fourteen 2-D point group symmetry operations are

used. These are

Number Symmetry Operation

1 Identity

2 Rotate by m

3 Rotate by 7

4 Rotate by —3

5 Rotate by 2?"

6 Rotate by —%"

7 Reflection in mirror plane L to (0, 1)

8 Reflection in mirror plane L to (1,0).
9 Reflection in mirror plane L to (T,1)

10 Reflection in mirror plane 1 to (1,1)

11 Reflection in mirror planr L to (ﬁ, 1)

12 Reflection in mirror plane L to (\/§, 1)

13 Reflection in mirror plane L to (1, \/§)

14 Reflection in mirror plane L to (1,—3:)

Six-fold rotations are not included.

The symmetry of the two dimensional lattice is used to greatly reduce the
amount of computation done, as all the data for symmetry related atoms and
wavevectors can be generated if we know the result for any one of them.

~Let S; denote a 2 x 2 matrix representing one of the symmetry opera-
tions, a denote an atom, and K a two dimensional wavevector. Consider the
construction of the crystal charge density as an example, written as
p(r) = D [p1m(r)cosme + pi_m(r)sinme] P . (9) (3.1)
I,m>0
Now

PSi(a);Si(K) (Si(r)) = pax(r)

Pa:K(r) being the charge density at r, on atom «, associated with wavevector

K.
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So, the sum over symmetry related K points gives

pl,m;a;ZK _ Z (S'—l) Pim;S;(«);K (32)
pl,—m;a;z K i Pl,—m;S;(a);K

So given p; 1 m.oK, We evaluate p; 4 m;s,(a);k for each atom in the star, mul-
tiply by S;', and add to obtain p; 105" K-

The relevant matrices for rotations by x are

Rl — cosmy sinmy

—sinmy cosmy
and for reflections through a mirror plane rotated by n are

A1 cos2mn  sin2mn
sin 2mn — cos 2my

Atoms or wavevectors related by symmetry form ‘stars’. The stars of atoms,
2-D and 3-D wavevectors are evaluated. Incomplete stars of wavevectors are

not used.

3.2 The LAPW Method of Solution

The technique used to gxpand the wavefunction in the interface region is the
Linear Augmented Plane Wave (LAPW) method. This is a development of the
older Augmented Plane Wave (APW) method [23,24]. Each APW basis state
of wavevector k consists of the solution to the radial Schrédinger (or Dirac)
equation within the muffin-tins joined onto a plane wave of wavevector k in
the interstitial region. This is a good basis to use as it is rapidly varying near
the nucleus, and smooth far from the nucleus, as in the real crystal. There aré

however three main problems with the APW method

1. The basis is not continuous in gradient at the muffin-tin radius. This
makes extensions to the simple muffin-tin form of the potential harder

to incorporate.
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2. The solution of the radial equation involves the evaluation of the loga-
rithmic derivatives of the wavefunction at the muffin-tin radius. If the
wavefunction has a node here, then the solution has an asymptote at this

point, making the computation harder to control.

3. The radial Schrédinger equation must be solved at the actual crystal
eigenvalue energy. As this is what we wish to find, repeated calculation
of the Hamiltonian matrix elements over a wide range of energies is
necessary. The zeros in the determinant of the secular equation are then

searched for. This is very time consuming.

There have been several attempts to improve the APW method. The main
effort was concentrated on removing the energy dependence of the APW ma-
trix elements. Schlosser and Marcus [25] removed this problem by using a
variational expression suitable for trial functions discontinuous in both value
and gradient at the sphere radii. The reason this works is that the wave-
function expansion outside the sphere, which minimises the energy, will not
in general be continuous with the radial solution, unless it is evaluated at the
relevant crystal eigenvalue. In this case, a series of trial energies are used for
the evaluation of the radial wavefunction.

The other approach due to Andersen [26], and first used by Koelling and
Arbman [27], is the LAPW method. Here the basis is taken to be a linear com-
bination of the radial solution and its energy derivative within the spheres.
This is then matched in value and gradient to the plane wave in the inter-
stitial region. The result is to eliminate the three main problems associated
with the APW approach. The basic features of the LAPW method are given
here, but for full details, and the relationship between the LAPW method and
pseudopotential theory, see Andersen’s paper [26].

The radial solutions for an energy parameter E; (different for each angular
momentum.quantum number 1) are solutions of the equation (non-relativistic

here, but generalised to the relativistic case later)
h;ul - E['ul = 0
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u; is the radial wavefunction, and h; is the radial hamiltonian, defined in this

case as
1 d° (l+1
h) = ————7 + t+1) + V(r)

T dr? r?

The normalisation condition is

R
/ rPuldr =1 (3.3)
0
where R is the radius of the muffin-tin sphere in question. From 3.3

R 2
/ rryu;dr =0
0

" So u; and 1, are orthogonal, ; being the energy derivative of u;. The equation

for 4, is obviously

hlu[ Elul Eul
In the interstitial region the LAPWs are plane waves

¢ (kn,r) = Q'%exp(ikn.r) (3.4)

where

k,=k+ K,

Q is the unit cell volume. {K,} are the reciprocal lattice vectors.

Inside the spheres, the LAPW is a linear combination of u; and u;
kn, I‘ Z [Al m ul(r E[) + B, m(k )u;(r El)} Km(r) (35)

3.5 is now matched in value and gradient to 3.4 for each {k,}, giving a set

of coefficients {A; m(kn), Bim(kn)}.

3.3 The Radial Dirac Equation

Before going on to consider the use of the LAPW technique in the interface
calculation, it is first necessary to derive a suitable form for the Dirac equation
which can be readily solved in the muffin-tins. To do this we consult Rose [28].

A form is required which includes relativistic effects, but excludes the spin-orbit
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interaction, which we do not consider in our calculations except for the core

states. Justification for this approach is discussed later.

The Dirac equation in a usual notation is

'ih%—f = [cg.p + ﬂmcz] ()

0 a Iz 0
g 0 0 —Iz
_ 0 1 .' _ 0 —2 . _ 1 0
Tlro) Y L o) o -1

The radial Dirac equation is

Ys = imY2YsYe Y= —Bo; (1=1,2,3) va=p8 K=p(cl+1)

b = g(r)xk )
if(r)onxi

gives two coupled differential equations for f and ¢

Writing

0f. 1 k—1
5 = V=Bt (5)
%? :._CHJ)%+2Mq;

E is the energy with the rest mass subtracted.

) 1
o {—(1+1) j=1+1
1 j=1-%

We solve for the large component g, only, as the lower component is smaller

by a factor of Ex/(E + mc?) [29] for the outer electrons. For core electrons,

both components must be considered [29].
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Loucks [24], Koelling and Harmon [29] give the method of solving 3.6 and
3.7, which is straightforward. The results are

1 32g 2 89 l(l + 1) V! k+1 V'
—_ m (E‘—z— + ;57 - r2 g+ Vg - AM 22 - - 41‘/[,_,629 = E'g (38)

The terms are, in order, non-relativistic equation but including mass-
velocity effects via M, Darwin term, and spin-orbit. We do not consider the
spin-orbit term for the valence bands as for most elements its effect is only
a first order change in the energy of the states. If detailed excitation spec-
tra for heavy elements were required, then the spin-orbit term would have to
be included. So, dropping the spin-orbit term from 3.8 leads to another two

coupled equations

& 1 9g¢
: 2Mc Or
% =2 l(l+1)+V—E
or r 2Mcr? c gt
Putting
P=rg Q =rcod
gives
OP P '
- 7 +2Mo (3.9)
0Q Q I(l+1)
3_7' = ;— + YES +V —-FE| P (3.10)

Changing to a logarithmic grid which becomes more coarse as r increases

z=Inr
leads to
P
%; = P +2M exp(z)Q (3.11)
0Q I(1+1)
5 -Q + [ 53T exp(—z) + (V — E)exp(z)| P (3.12)
Now asr — 0, V(r) —» —Z and M — ;%-, Z being the atomic nunber. So

starting values for the numerical solution of 3.11 and 3.12 are (from 3.9 and

3.10)
a—1\ ,
0= (7)
Z
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where

P =re Q = gqr®

The normalisation condition is

/TMTrz 2dr = 1
g ar =
0

T™T 2
= [ Ptar =1
0
or on the logarithmic scale
In(rarr) )
/ exp(z)P*dr =1
0

The energy derivative of g is obtained from

?_)—f —P+2M exp(:z:)Q + S}ip—izi)g (3.13)
and
%g- = -Q+ [1(12;[1) exp(—z)+(V — E) exp(a:)] P
_ [li;;clz) exp(_x)HXP(w)] P (3.14)

The starting values for 3.13 and 3.14 are P=Q=0.

3.11, 3.12, 3.13, 3.14 are solved using Milne’s predictor-corrector method
[30]. The forementioned starting vaiues are used to generate the first six values
using the Runge-Kutta algorithm [30], which are then used to initiate the Milne
algorithm.

The integration in 3.3 uses Simpson’s rule on a grid of points. The contri-
bution up to the first grid point, rq, is explicitly added, but only for the [ =0
- component. The value of g(r) for » < 7, and [ # 0 is insignificant. For r < r;
and [ =0, g = constant. Hence

/1‘1 dr rzg = T1P12
0 3

Hence, ¢ and g%— are calculated, as required for the construction of the

LAPW basis. Note that the energies at which the radial equation is solved can
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be different for each [. The exact choice of {E;} is not critical in the LAPW
method. Koelling and Arbman [29] suggest using the E; at the centre of the
band for that [ character. They also find that the { £;} can differ from the true
eigenvalues by up to 0.5Ryd. for non-d-states, and 0.1Ryd. for d-states, while

still maintaining good accuracy.

3.4 Construction of the LAPW Basis in the
Interface

The LAPWs in the interstitial region are defined to be

2 ) cosk,z mn even
dmna(K,r) =/ = exp(iK~.R) (3.15)
Q sink,z n odd
where
K, = K+G,
G,, = hb, + kb, h,ke Z

r = R+:zk

kn = —
D

Q = AD

A is the area of the 2-D unit cell, and D is the slab thickness. k, 1s defined
over D, not D, in order to give sufficient variational freedom to the basié when
matching the logarithmic derivatives of the wavefunction over the embedding
planes.

The LAPWs are put in the order even first, then odd, with each section
being ordered in terms of increasing |K,|* + k2.

Inside the muffin-tins the LAPW is the large component of the solution of
the radial Dirac equation with no spin-orbit coupling, as derived in section 3.3.
We write in muffin-tin «

Pmnalr) = Z (At m o (K)uwa(r) + Bima(K)ia(r)] Yim(F) { 2_1 (3.16)

I,m
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where the upper term is for n even, and the lower for n odd. This convention

will be implied in future equations. Also
k=K + k,2

For r on the surface of muffin-tin o writer =r, + e,

1.e.

2t
1\
W0

Write 3.15 in the form

Omm = \/%exp(iKm.ra) {

; A + exp ('i (Km._p_a - knpa,z)) exp(—iknza)]

X [exp (i (Km L, + k‘npa,;)) exp(tknzy)

Bl 1

Defining ,
Kz =K. ko

and using the Rayleigh expansion of a plane wave

exp(iK.p_) = dr " Ti(K pa)Yyn(K)Yim(B,) (3.17)
lm

where J; is the Bessel function of order [, gives ¢, in the interstitial region

as

Do

Im

1 .
2#{ _ etp(zK L) D i [e‘tp thnza) Y (K5 )
2

£ exp(—iknza) Vin(Ko)] iEnpa)Yim(s,)  (3.18)

Use 3.16, 3.18, and their first derivative with respect to p, to solve for
Aimay, Bime This produces ‘
47 «71'11;'& - \7llul,a

Al,m.a = ﬁe‘{p(lK R )}/lma( n)”u.( ' _,u; ‘l:l,[
s St - o ha
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4 ) + n Jivy e = T Ua

\/ﬁ B ‘u;’a'i"l,a - ul,a'l.l'l,a

where

Y, exp (iknza) Yim(K7 ) £ exp (=iknza) Vin(K5 )] (329)

a(m f[

Ula, Ulay Ug, U, are evaluated at r=p_.

Define
W = pi(ul.avi‘;,a - u;,ai"l,a)
to give
4mp . +
Al,ma - \/ﬁ eXP (ZKm-Ra) al,a(m) n)Yi,m,a(m7n) (320)
4wpa +
Bima = \/—ﬁ exp (1Km.Ra) b o(m, n)Y7, (m,n) (3.21)
/
where
1 . 0 .
ao(m,n) = — «Z(Km.npa)ul,a - a—p'(m(Km,npa)) Uler
1 - '
bio(m,n) = w [ (T(Kmnpa)) te — jl(}gm‘npa)u!,a}

We now have the LAPW basis.

3.5 Form of Potential used in the Interface

The simple muffin-tin type of pote.ntial_was described in section 1.3. In the
interface region we do not restrict the potential to have this form, but include
non-spherical components within the spheres, and a Fourier expansion in the
interstitial region. Within the spheres we write
V(r) = ). [Vim(r)cosmo + Vi_nsinme] P, .(8) (3.22)
I,m>0
The P;,, arethe Legendre polynomials, and 6, ¢ are the usual spherical polar

angles.
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In the interstitial region we have the ‘warping potential’

cos ky, z
V(I‘) = Z Vm,n exp (ZGmR) { + ‘/12 + ‘/222

sin k,z

+ D (V4 €xp(Gmz) + Vin_ exp (=G mz)) exp (iGn.R) (3.23)

3.6 LAPW Matrix Elements

The overlap and Hamiltonian matrix elements must be evaluated. The matrix

elements of the warping potential are also required.

Overlap Inside the Muffin-Tins

Consider first the even-even and odd-odd contributions. The following results

are required

. - 20+ 1
> Vi (R ¥im (K ) = o PUK K ) (3.24)
1 - -
=3 > (exp(—ik,"za)Yl'm(K:l,.n,) + exp(ik;zQ)Y},m(K;,,n.))

x (exp (iknza) Vim(Kf ) £ exp (—iknza) Yim(K7 )
20+ 1

= = {leos(kn — kw)za] PKY, K )
- [cos(kn + ku)za] P(KF, K 20)} —  (3.25) -

So, putting 3.20, and 3.21 in 3.16 and using 3.19 and 3.25 gives for the even-

even and odd-odd overlap (summing over the muffin tins a)
(61 650) = 2 3 g4 expli(Kon — Ko) R
X (2L + 1) (ara(m',n")ara(m, n) + bia(m', n')ba(m, n)Niq)
l
x {[cos(kn — kL)za) P(K}, K ) & [cos(kn + kL) za] P(KE, . K00}
where

N _ Pa 2.9 d
la = o ' ul‘a T
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A similar derivation gives the even-odd term as
- 4m :
(e | G7n) = 57 2 Phexp(i(Km ~ Kpni). R
X Z('Zl + 1) (aro(m/,n")a; o(m,n) + by o(m',n" )b o(m,n) N o)
!

X {[sin(kn — knt)za| P(KG, . KL ) + [sin(kn 4 kni)za) H(K;’,’,,n.K;,,n,)}

Hamiltonian Inside the Muffin-Tins
The even-even/odd-odd terms, after some manipulation are

<¢rin’.n’ ¢rin,n> = 4% Z pi exp(z(Km - Km’)'Ra

x > (21 + 1) (aa(m’,n")ao(m, n) Ey + by o(m', n')byo(m,n) (o | H] i a)
]

+ 4l (m/7 n,)bl,a(my TL) <ul,a |H| dl,a))
x {[cos(kn — kn)za] PUKY, K1 ) £ [cos(kn + ki) za] P(K}, . Ko )}

The even-odd term is
4 .
<¢:—n',n' ’¢;,n> = ﬁ Zpi exp(z(Km - Km')'Ra
X 2(21 + 1) (aio(m',nYa o(m,n)E; + byo(m',n')b o(m,n) (o | H| tq)
l
+al_a(m', n').al,a(m, TL)E[ + bl,a(ml, n')bl,a(m, n) (ﬂl,a |H‘ ?..Ll,a>

+ aro(m',n" Yo a(m,n) (w o |H| tq))
x ([sin(kn — ku)za] P(KE, K0 0) + [sin(kn + ko) 2a] PUKF, K7 0))

Overlap in the Interstitial Region

The even-even/odd-odd terms are

¢ - -
(#rore [670) = /c dz[zD unit cell it B 'R

- ’ -ij ’ -:t d3 .2
Xa:/r in MT « Ot Pmin 4T (3.26)

Note that (; is negative.
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ng,n = @m» in the interstitial region and its continuation into the muffin-tins.

The first term in 3.26 is (using 3.15)

28, m S coskpz cos k,z _
' / dz (3.27)
D ¢z

sin kpr z sink,z

After integration this is

Omim | —sin(kn — kn)C2 _ sin(ka + k)¢ + sin(kn — kn)C N sin( k. + kn)Cy
D ko — ke ko + k, ko —k, ko + k,
(3.28)

The choice of signs is determined by the integrand in 3.27.
If &, = k,, we have

5m'm G . 5m’m
——/ dz (1 £ cos2kpz) = T 1 —GCF

sin 2k, (3 . sin 2knC1]
D 2

2%, 2k,

Now the second term in 3.26 is

2 [ dr exp (i(Km —Kn.).R){ 08 k2 { ©0sknz
QJrinMT o sinkyz | sinknz
= %pi exp(i(Km — Kmt).Ra {[cos(kn — kn')za] Ju (Ko, K7 )
+ [cos(kn + kn')zal Ja (Kiv o, Knn) ) (3:29)
 using
" dp exp(iK.p) = 4’;§iq(Kpa) (3.30)
and defining

J (1K1 — Ks|pa)
1K — K|

Ja(K17K2) =

If Km,n - Kml‘nl = 0, then Ja = 23;5
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Grouping 3.28 and 3.29 together gives

<¢j: |¢,i:.n> _ O mm { —sin(kn — kn)Ca _ sin(kn + k,)C

mh D ki — kn ks + ki
sin(kp — ko )G N sin(kn + kn)G
kn’ - kn kn’ + kn
4T

——=> plexp(i(Km — Km).R, ([cos(kn: — kn)zalJa (K;,,n,, K;','m>

* [cos(knr + kn)zalJa (Kjr-z',n” K;-n>)}

The even-odd overlap is likewise derived, giving
<¢+ !¢_ > b [ —cos(kn +k,)( | cos(kn + k)G
mhnt Yme /T D ks + kn kns + ki,
cos(kny — ko) cos(kn — kn)Cz}

kn' - kn knl - kn
~ Y P2 exp(i(Kn — Ko R {— sinf(ky = b)zal s (K K )

T+ sin[(kn: + kn)za]Ja ('Kr-:’,n"K;‘-n)}

Hamiltonian in the Interstitial Region

This is
KL+ k2

<¢m’,n’ |H| ¢m,n> = 2 <¢m',n’|¢m,n>

This assumes zero potential in the interstitial region, and does not include
the warping potential. As there is a potential shift across the interface, the
potential used in shifting the embedding planes is not zero at both sides.
The integral of the constant substrate potentials across the muffin-tin caps
which‘intersect the embedding planes must therefore be added/subtracted.

The following diagram shows the signs to be used when adding the volume
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integrals over the caps.

3“)\ ' 3\ ‘

In practice, the addition of these terms is done in the program along with
the evaluation of the warping potential, but this is purely for convenience.
Before considering the evaluation of the warping potential matrix elements,
the surface integrals in.the Hamiltonian 1.16 will be dealt with.

On (1, i.e. S;, we have

1 9%
- d? T —
2 Je 752 $miin Oz ,
' kn —sink,
= / £R exp (i(Kn — Ko)R){ O sin kaGy
_ Q1 /2D cell sinkn:(; cos kn(y
P k, | coskny —sin k. (3
“™D sin k(- cos-k,(q
On (3, i.e. S3, we have a similar contribution
2 Je 9z D | sin kniCo cos k. (

47



Now consider the matrix elements of the warping potential. The potential
is defined in equations 3.22 and 3.23. Consider first the warping potential in
the muffin-tins. Write 3.22 in the form

V(E) =5 3 [Vim(r) {in(8,8) + Yirn(6,8)}

2 I,m>0

~iViem(r) {Yim(8,8) — Y5 (6, 6)}] (3.31)
The matrix element between ¢, . and ¢,/ . of a typical term in 3.31 is

/r inMT o &7 (A5 s (7" Yt 0 + But gt (1, s ) Vir ()

L' m,m'

X (Al,m,a('m) n)ul,a + Bl,m,a(ma n)i"l,a) Y::m' l”,m”YE,m

= > [, &1 Yy Yir mrYim
/T in MT o ;

X {Al",m’.a(ml’n/)Al.m,a(m’n)/ 2 U o Vi ity o dr
a
‘*“Bl',m';a(m,, n')B[,m,a(m, TL) Tz'il'l’,avi",m"ul,a d?‘

Tzul',a V;”,m” ﬁl,a dr

+A;’,m’,a(ml’ n/)Bl,m.a(m’ TL)

— T

+ Bl’,m’,a(‘m/) nl)Al,m,a(m, TL) 7‘21.1'1',01 I/2”,177,”7“,0: d’l"}

-+ i | 33
% __,L'l’—l -t ( ) )

To evaluate 3.32 the following procedure is used
1. Determine the {A;ma; Bima}
2. Evaluate the radial int-egra.ls in 3.32
3. Evaluate the part of 3.32 independent of (m,n) and (m',v;z’)

The radial integrals for different atoms in the same star are easily deter-
mined from those for one atom, by operating on the Vi# ,,v and Vin _,» integrals

with the symmetry matrices.
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The matrix elements of the warping potential in the interstitial region are
somewhat more complicated to evaluate. They must be evaluated between the
true embedding planes, with no warping potential between these and the flat

embedding planes.

We only evaluate the matrix elements of the warping potential in the shaded
region. In practice this is done by evaluating the matrix elements between (;
and ¢;, and subtracting the volume integrals of V,,,,, over the muffin-tin caps
which intersect (; and ;. It is also at this stage where the cap integrals of the
constant substrate potentials referred to earlier are incorporated.

The general form of the matrix elements of the warping potentia.liis as

follows.

61
m'nt | Vwar mmn) / dz / ! nt Vwarp®Pm,n d’R
(¢ 7 l PI ¢ } ) G 2D Cell m'’ n P¢ )
- d3' b ! 'Vwar m,n
2 J in o £ B Voo,

+ Br o, Vars®Pmn 3.33).
;Aincapﬂ T P pPm, ( )

The sign in the last integral of 3.33 over the caps is as shown in the previous

diagram.
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Consider first the plane wave contribution from the first term in 3.23 to

the first term in 3.33. This is

2 1
—Vm” nll/ d / d2R 2 1 Km Gmll - Kml .R
Q"™ Jo % Jap unit cen @ P ((Km + )-R)
cos k,rz cos ki z cos k,z
X (3.34)
sin K,z sin k,nz sin k, z

2Vt G cos ki z cosk,nz cosk,z
= D' 6mll,ml_m/ dz (3'3'5)
¢

2 sin kniz sin kpnz sink,z

The trigonometric triple products can be expanded as

cos kniz cos kpuz cosk,z 14 a; COS K;z
=-% (3.36)
sin k' z sin k,nz sink,z 4= b;sin x;z
where
K1 = ]Cnl + kn" — kn Re = knl - knu + kn
K3 = —knl + kn'l + kn kg = knl + knn + kn

The {a;,b;} in 3.36 are given by the following table.

ccc a; =1,1,1,1

ces b, =-1,1,1,1

csc b;=1,-1,1,1

css a; =1,1,—-1, -1
scc b;=1,1,-1,1

scs  a; = 1,—1,.1, -1
ssc a; = —1,1,1, -1
sss b;=1,1,1,-1

Note that ‘s’=sin and ‘c’=cos. Where not explicitly stated, the relevant coef-

ficients are zero.

Hence 3.35 becomes

a; (sin k;¢; — sin k:i(z)

V 1" o0 4 1 '
it 6 " ml_m _—
2D e ; K

b; (— cos k;(; + cos k;(s)
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The plane wave contribution to the second term in 3.33 is

Vi ouw & a; COS K;2
- d® (Gm + G — G ).R
20 ; b, /r inMT o ¢ Pl JR) { sin .z
(3.37)
.Now, putting
G(m,m”,m') =Gn+ G — G (3.38)
and
r=R, + z,Z + P,
gives
COS K;Z
/ d®r exp (i(Gm + G — Gpt).R)
sin K;z
4 p? . COS KiZg X
= —=—exp (tG.R,) J1(|G + kiZ|ps)
|G + riz| SIN K; Zg
where equation 3.30 has been used.
So 3.37 becomes
’ 4 a; COS K; 24 G 2| Po
27"P§,Vm",n" Z exp (LG.RQ) jl(! + K ?lp )
i=1 | b | Sin K;zZq |G + k2
Hence
' Viron | @i | Epriom 1 | sin k(1 — sin k;(s
<¢m',n’lvwar |¢m,n>, w Z — Z . _,——_ o : . :
’ PO i 2 o b; D Ri | — coskiy + cosk;(a

cosmiza (|G + midlp)
[G + h:iil

o > %pi exp (1G.Rq)

sin K; 24

+ corrections from the caps

The cap corrections will be dealt with later. The next stage is to consider
the other terms in the warping potential (3.23), with regard to the first two
terms in 3.33. So we require the matrix elements of the linear, quadratic, and

exponential terms in 3.23.
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Linear Term

The integral between (, and (; is

2V, ra ) . cos ki z cos knz
—-/ dz / ) d°R exp(i(K,n, — K,.).R)z
Q Ja 2D unit cell sin k2 sin knz

(3.39)
Writing
cos ki z coskpz 1 22: a; COS K; 2
sinkniz sin k,, z 24 b;sink;z
where
K1 :kn'_kn K3 =kn'+kn
and the {a;,b;} are
cc a;=1,1
cs b =-1,1
ss a; =1,—-1
gives 3.39, after some integration, as
Z 1 (cos k(1 ~ cos ki(2 + K:(y sin k;{; — K; (2 sin K;(3) (3.40)
ot K b; (sm ®iC1 — sin k;(> — K;(y cos ;{1 + K;(z cos K;(z) . .
When «; =0
G 1 2 2
/ zdz = 5(41 - ¢3)
The muffin-tin contribution is
Vi~ | o / & (K —Kn)R)z{ 3.41
Q= b, ‘rin MT « 7 exp ({(Km ~ Kw).R) - sin k;z (3.41)
We require the result
a3 ) - K,). 1K;
/r O MT o & 77 eXP (i(Km — K.v).R) exp(ix;z)
= exp(i(K - K..).R, exp(inz,‘.a)
4mp? 4rip° K;
X [z T (T pa) + (EP; T2 (k¥ pa) (3.42)
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where

t = le - K.+ K,,'zl

As k; — 0, 3.42 becomes
dr ,

Za
3pa

Taking real and imaginary parts of 3.42 gives the cos ;2 and sin «;z inte-

grals in 3.41 respectively, giving the final result (using 3.40) as -

2 )
(¢m’,n’|Vwarp|¢m,n> linear term = Z { ' [DK.

cos 1;(; — cos K;(2 + K;Cy sin k;(; — Kz sin K;(;
X

Sin £;Q; — SIn K;(y — K;(; €0s K;( + K2 €OS K;(,

Ji(kTps) | cOsKizq

¥ )
K7 Pa SIN K;Zo

4
et - e

— SN KiZq

+ (,{4.)2‘72(& Pa){

+ corrections from the caps

COS K;Z4

Quadratic Term

The derivation is similar to that for the linear term, but more cumbersome.

The folldwing result is required.

Lo vpp o & exp (i (5%5)) 27 = 4mpl exp(i(Kom — Kon)- R exp(imiza)

\7 + a 21 alvy 3
{2l Bt gy 1 L0 (e

1 +32 2 : + 3 +
+ 3(xt)p2 [(3(’9 ) ps — 6)sinsps — ((67)°p% — k¥ pa) cos pa],} (3.43)
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Taking real and imaginary parts of 3.43, and including the matrix element

of z? over (3 to (; gives

(Dmi,nt | Vivarp| #m.n) quadratic term

a; | 8mim { 2k;Cy cos K;(; — 2K;(3 cos K;Ca + nfg‘f sin K;(;

2

2k;(y sin ;¢ — 2k:Ce sin k:Ca — k2(E cos k:(y

—rk2(Esin ki(y — 2sin ;¢ + 2sin (s

+82(3 cos Ki(z + 2 cos k(1 — 2 cos ;{2

4 ) | * D COS K;iZq
-3 0% exp(i(Km — Ko).Ra 22&'&—)
Rt A SIN K;Zq
2zK; — SIN K; 24 (kt)? — 3x2 COS K; 24
+ T2(5% pa) + i PaJs(K T pa)
(=*)? COS K;Zq 3(r*)? SIN K;Z4

N (3(k*)2p2 — 6)sinktp, — ((£1)%02 —Bkrtpa)cosk?p, { sin Kz, )jl

3(k*)°p3 COS K;Zq

+ corrections from the caps , (3.44)

As k; — 0, 3.44 becomes

<¢m',o|Vwarp|¢m,0>quadratic term
- Wil [(=6) _ dm s < N P_)]

3 D

a

Exponential Terms

The integral between (; and (; of exp(Gmrz) is

" ¢
2V';2 it / dz /dzR exp (I(K,n + Gar — Kr).R)
¢z
cos ki z cosk,z
X exp(Gmn 2) (3.45)
sinknpz sink,z
Vo 2 a; G COS K;Z
= L Gt mi—m > / dz exp(Gnnz)  (3.46)
D i= | b V¢ SIN K;2
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After integrating, 3.46 becomes

an 2 a; 1
,+ 6m" m—m Z —-—-—9——2-
D ' bi IGmII |" + K’i

i=1

(G cos K¢y + K;sin £;(;) exp(Gmn(y)
X
(Gmr sin k:(1 — K; cos k;(;) exp(Gmn(1)

+(—=Gmn cos k;(2 — K; sin K;(2) exp(Gmn(2)

4 (3.47)
+(—Gmr sin k(2 + K; cos K;(2) exp(Gmn(2)
The muffin-tin terms are
V.. + 2 a; .
= ' d*r exp (i(Km + Gpmv — Kov).R
0 ;{bi/rinMTa r exp (i(Km + VR
| cosk;z
X exp(Gnnz) (3.48)
sin K;z
Now
/ ) d’r exp (4(Km + Gmr — Kpnr).R) exp(G o z) exp(ix; z)
rin MT «

= exp(Grnza) exp(i(Gm + Gmr — G ).Ro) exp(ikiza)
Pa
X d®p exp(i(Gm + Gmr — Gt ).R') exp(Gnz') exp(isiz’)  (3.49)
0
where (R',2') are now understood to be referred to the centre of muffin-tin

alpha. In future the prime on these coordinates will be dropped, but has been

included expl‘icitly here, to avoid confusion. Write

exp ({(Gm + G — Gm:).R) e?(;;(Gm;r'z) exp(m,z) = exp(:Kr)

where
K=z-1y
and
1 2- 2 2 2 2 2712 %
T = +§ |G| +Kzi —Gm”+\/(IG|2+ni _Gm")+4"eiG:n“}
1 2 2 2 2 2 2772 %
Yy = :I':E —IG‘| —fii +Gml:+\/(|G|2+Ki —Gm:r)+4ﬂmeu

55



Note that G is defined as in 3.38. y has the same sign as «x;G».
Now exp(iKr) can be expanded using the Rayleigh expansion as in 3.17. 4
On integrating 3.17 through the muffin-tin, only the [ = 0 term is non-zero.

This term is given as Jo(K7r). So

a d®p exp(:G.R) exp(Gnnz) exp(ix;z)
0

= [ &0 Jollz ~ ivlp)

» Ji([z — 2y]pa)
[z -1yl

= 4mp

So 3.49 becomes

Ji([z — iylpa)
[z — ]

amp? exp(G iz, ) exp(iG.R,) exp(ikizq) (3.50)

If Gm = Gml, K; = 0, then

/r CMT o &7 P(iGmr R)exp(£Gmz)
4
= g-pz exp(tGmr.Ra) exp(£Gmrzq)

56



Putting 3.50 in 3.48, taking the real and imaginary parts, and adding 3.47,

gives for the V,» , and V,,» _ terms

(¢m’,n’|Vwarp|¢mm)exponential terms

A { “ (————5”‘"'”"‘"‘ )
7 = | 6 \D(GhLu+ i)
(G cos k;(y + Kisin ;¢ ) exp(Gmn(y)
g { (Gmr sink;C; — K; cos k;(;) exp(Gmny)
+ (=G cos £;(s — K;sin £;(3) exp( G (a)

+(=Gmo sin £;(; + K; cos k;(3) exp(Gmn(2)

4
= -ﬁﬂ-pi exp(i(Gm + G — Gov).Ry) exp(Gmnza)

[23

y { R cpfonany Sz = 8e2)

Im [z —2y]
! 2 a; 5 "ot
V”_ m' m/-m
> Z{b ()

(=G cos K:(1 + ki sin k;(;) exp(~Gmny)
v :
(—Gmr sink;(; — K; cos K;(;) exp(—Gmny)

+(Gmr cos K;(3 + K;sin kiC2) exp(—Gmn(2)
+(G o sin k;C; + K; €08 £;(z) exp(— G (a)

) .
-3 _ﬁ’ipg exp(i(Gm + Gmi — Gomt).Ra) exp(— Gz )

. { R plonzn U i8e2)

Im [‘73 + iy]

+ corrections from the caps

The integrals over the muffin-tin caps (third term in 3.33) are now required.

Consider the problem for the right embedding plane (¢;). The left embedding
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plane ((3) is treated similarly. The geometry for the caps to the right of ¢; is

B
P
Q %—)
e?l |

We wish to integrate some function of z, f(z) over the caps. The matrix

element has the form

o Vpi-z2 27
/" dz f(z) /0 " Rd4R /0 d6 exp(iGR cos ) (3.51).

s

Now

/J df exp(iGR cos0) = 27 Jo(GR)
, 0

and

/: z'Jo(z') dz' =z Ji(=)

So 3.51 becomes

21 fra » - / | :
aukil s f(2) /02 — 22 2 _ 2 :
- /;' dz f(z)\/p? ‘z T (G p: —z ) (3.52)
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For the caps to the left of {, we have the geometry

ks

il

The cap integral is now

il Sy EN A (N © (353)

—~Pa

Now consider the left embedding plane ({;). Caps to the left of (; are
treated using 3.53, and caps to the right of {; using 3.52. The integrations in

3.52 and 3.53 are done by a Gauss-Chebyshev method [30].

Finally, the energy dependent matrix elements of the embedding potential ... _.

are required over both embedding planes. Over (;, these are

(|G 1),

1 -1 2 . ’
== X G /ﬁd'R /C &R b exD(i( Ko B~ Ko R)) s (3.54)

ml’,mlll

where the embedding potential has been expanded in two dimensional plane

waves o —
o=t ’ 1 ot . /
Gz,K(R7 R ) = Z Z Gz'mu'mul exp('L(Kmn.R - Kmm.R ))
Hence, 3.54 reduces to
2 .- cos k. cos k,, '
265 G G (3.53)
D sinkn(y sink,(;

The matrix element of Gg“ over (, is identical to 3.55 except (; is replaced

by (..
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The matrix H — ES can now be evaluated. It is inverted to give G as in
equation 1.14. i.e.

GK(P, rl) - Z ¢m’.n’(r)Gm',n’,m,n¢:n,n(r,) (356)

m,nm’,n'

3.7 Construction of the Density of States and
Charge Density

The local density of states with wavevector K is related to the Green function
via

ok(r,E) = TI—I_Im Gk(r,r, E + i¢) (3.57)

The ie shifts the energy off the real axis where G has a branch cut. Using
3.56 gives 3.57 as

1 ! 1 * !
oK(EE) = =Im Y () Cmimtmabia(s)  (358)

m,nm' n'

To evaluate the density of states in a particular region, 3.58 is integrated
over the volume of interest. In practice the density of states in the muffin-tins
of each star, and the density of states in the embedded regioil (between S, and
S3) are evaluated. Also, the total density of states, summed over wavevector
K is evaluated.

The charge density is found by integrating the Green function over the
energy range of interest. In practice this energy will encompass the valence

bands of both substrates, allowing for the potential shift across the interface.

So

Ep
pk(r) = . dE ok(r, E) (3.59)
Ep
= . Im Z (ﬁml,nr(l‘)Gmr'nl.m.n(E + ie)q&,’nm dE (360)
I mn,m’ n’ . .
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E; and Ep are the initial and final energies respectively. In the case of a
metallic interface, Er is the Fermi energy. Write 3.60 as

()= 3 G ()Gt n(F) (3.61)

m,n,m’,n’

where
R 1 rEr .
Gm’,n',m,n = - Im Gm',n’,m,n(E + ‘LG) dE . (3.62)

w JE;

Equation 3.62 is evaluated on the contour which is a semi-circle in the
upper half plane, of radius (Er — E;)/2. Rearranging this integral into a

more suitable form yields

(E_F__E_[_)_ /1r d¢ [sin ¢ Im Gt i mn — €08 ¢ Re G nt m n)
2 0

v
Gm',n’,rn,n -

The charge density inside the muffin-tins is expanded in the form (equa-

tion 3.1)

pk(t) = Y (pirr(r) cosm"$ + pro_pun () sin ") P ()

1" m">0
where the {pn K, pin —m» K} are real.

If we initially write

pK(r) = Z p;",m”,a,K(r)}/l",m”(97 ¢) (363)

" "
" m

then the real coefficients are related to the complex coeflicients in 3.63 by

Pl mra K = 2 Re p;”,m”,a,K (3 64)

pl",—m",a,K = —2 Im p;",m”,a,K

If m" = 0, then pl.”,O,K = Re p[ll'()'Ka
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The py# m» ok of 3.63, using 3.16, 3.61, 3.63 are

~

Pl m"a, K = Z Gm',n’,m,n. Z (Al’,m’,a(mlan,)ul',a + Bl',m’,a‘('mx nl)dl',a)

mn,m!} Iml'm'
X (A;,m,a(m7 TL)'U,['a + Bl”,m,a(m’n)ul,a)
g .
v -7 / Yo Yo o ¥y d)
X . Um! L Dy
-1 -1 Jrin MT « m e hm

So

Pt m! o K = Z (ul':a(r)ul-a(r)cll’,m',l,m + ‘i"l',a(r)'al.a(r)clz’,m’,l,m

Iml'm!
+'ul’,a(r)il'l,a(r)Cﬁ,m’,l,m + ’l'l.l',a(r)ul,a(r)Cﬁ,m',l,m)

Ylmly* Tl udQ
x/rinMTa tomt L L 1nm

where
Cll',m’,l,m = Z fémirnlumvn
m,n>m! n';m' n'
X [A[:'m,.a(m',n')fil',ma(m,n) + /L,,m,,a(m,n)fil',m,a(m',n’)]
Clz’,m’,l,m = Z fém’,n’,m,n
mn>m! n';m/ n’
X [Bp'm:‘a(m', n’)B[’,mla(m, n) + Bl:,m:,a('m, n)B,’:m’a(m', Tll)]
' Cl?;,m',l,m = Z fém"nl'm’n
m,n>m! n'm' n’ .
X [fi,,'m,la(m', n')Bl’_m,a(m,n) + Ay|m,,a(m, n)f)’l*ym,a(m',n')]
Cﬁ,m’,l,m = Z fém’,n',m,n
mn>m! n/;m' n'
% [Bimt (s ) Af () + Bus (1, 1) By o (', 1)]
where

ek

if m',n' #m,n

f=

o=

ifm/,n" =m,n
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and

fil'm,a(m,n) = Aima(m,n)
Bl,m‘a(m,n) = Bima(m,n)

The sum over symmetry related K points is obtained by using the symme-
try operations as described in section 3.1, and given in equation 3.2.

In the interstitial region, the charge density is expanded as

) cos kpz
pK(l‘) = Z PK m" n' €EXP (ZGmH.R) . (365)
mh ntt v ' sink,z
Using 3.15 and 3.61, gives pk(r) as
2 N ] cos kn z cos kpz
pK(r) = 9 Z G nt.mn €Xp ({(Km — Kin).R)
m' n',mn sink,z sink,z

(3.66)

Writing the trigonometric products in the form of a trigonometric sum,

gives for the coefficients in 3.65

n' even
1 R
e d pm",n" = - Z Gm',n'.m,ném”,m’—m(5n”,|n’—n| :i’: 5n",n’+n)
m/n' mn :
where
+ — coskyzcosk,z
— — sinkyzsink,z
in 3.66.
n' odd

1 R
—_ pm”,n" = 5 Z GmllnlIm'n5mll,ml_m(5nll’nl+n i 6n”,|n'—n|) (367)

[
m/'n' mn
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In 3.67 we use the + sign if koyen < Kodd, and the - sign if keyen > koga-
The total charge density is found by summing over ‘special K points’.

These will be described in the next chapter.

3.8 Summary

Much of the work presented in this chapter is somewhat laborious to work
through in detail. However, this is mainly an artefact of the geometry invloved,
and the reader need only understand the principles involved in order to gain
insight into the method of solution. The key points to note are the use of
symmetry, the LAPW basis set, and the form of the potential used. If the
calculations were non-self-consistent, then the work would end here, as we
now have the density of states and the charge density, given some form for’
the potential. Since in this work the self-consistent field procedure is used,
we must now go on to construct the new potential from the charge density

calculated above.

64



Chapter 4

Construction of the New

Potential

The second part of the self-consistent proces;s, namely obtaining the new poten-
tial, is developed here. In chapter 3, the valence charge density was evaluated.
The core charge density must now be calculated and added to this valence
density. Fortunately, this part of the calculation is identical to the surface
case, so this section of the surface program is unchanged. A description of the
. method of obtaining the core charge density is given.

As we are interested in calculating the total charge density, we require a
method of integrating the charge density, evaluated at different wavevectors,
across the Brillouin zone. The ‘special K points’ scheme is described, this being

an efficient and computationally feasible method to perform this integration.

In order to compute the Fourier coefficients of the potential, the charge

density must first be Fourier transformed. Due to the rapid variations in
the charge density near the nuclei, this is not an easy task. The problem is
overcome by formirig a pseudo charge density inside the mufﬁn'-tins, which gives
rise to the same inte:stitial potential as the real muffin-tin charge density. The
construction of this pseudo charge density is described, as an understanding
of this is required in order to make sense of the parameters chosen in the
calculations presented later.

Finally, the construction of the potential from this pseudo charge density
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is dealt with. Having obtained the interstitial potential, the boundary value
. problem for the muffin-tin spheres is solved. The exchange-correlation poten-
tial is then added to give a potential which is mixed with the potential of the

previous iteration, to give the new potential.

4.1 The Core Charge Density

For the core states, a fully relativistic treatment is used, but only the spher-
ically symmetric part of the muffin-tin potential is used. So we require both
the lower and upper parts of the wavefunction given by 3.6 and 3.7.

Now, putting
P=rg Q=rf

and using a logarithmic grid, ¢ = Inr, changes 3.6 and 3.7 to

0Q V-F
ol exp(z) ( ) P+ kQ (4.1)
oP
5, = —rP+exp(z)2McQ (42)
where
2 —_
oMe = 2me +£E V)

The starting values are obtained from the limit of small and large r, giving
asr — 0
z
—_— —
1 c(k — a)
where

P=re Q = qr®

E
Q— —y/ 2712%_—5 exp(—r)

E|(2mc® + FE
L _ VIEI@me + E)

c

Asr -

where

The method of solution closely resembles that described by Liberman et

al. [31], except that the self-consistency part of his paper does not arise here.
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Liberman performs calculations on free atoms and ions, for as we are only
interested in the solution for the core electrons here. The total charge density
is calculated from the sum of the core and valence charge densities.

Briefly, the equations 4.1 and 4.2 are first integrated outwards from r = 0
- to the classical turning point (r;) at some initial trial energy. The number of
nodes of the wavefunction is evaluated, and if this is not equal to the correct
number, (n — [ — 1), then the energy is successively refined until this is true.
The equations are then integrated inwards from an ‘effective infinity’ (r;),
determined from the condition that

[T exp—{2(V(r) — E)}? dr <1073
ri—r2

From the discontinuity in the upper and lower components of the wavefunction
at v, a correction to the energy can be found [31]. This procedure is continued

until §E/E < 107%. Thus the core charge density can now be calculated using

¥, [F(r) + g3(r)]

p(r) = - '

4.2 Special K Points

Section 3.7 dealt with the construction of the valence charge density at fixed
wavevector, px(r). The total valence charge density p(r) is required. The
obvious approach is to sum the {pk,(r)} over a fine mesh of points {K,} in
the irreducible péft of the Brillouin zone. However, this would be very time
consuming. Another, and a more practical approach, is to use the so called
‘special’ or ‘representative’ K points. These are chosen so that the sum of a
weighted charge density at these points is a good approximation to the total
charge density. This approach was initiated by Baldereschi [32], who suggested
using a single mean value point. This is the optimal K point for approximating
the mean value of a periodic function across the Brillouin zone. The technique
has been generalised to the case of more K points in papers by Chadi and
Cohen [33,34], and Monkhorst and Pack [35]. The method is most suitable for

insulators and semiconductors, where the valence bands are full.
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Since the interface Brillouin zone is two dimensional, we require the 2-D
special K points. Cunningham [36] has derived suitable points for each of the
five 2-D lattices. The periodic function f(K) is expanded as

HK) = ot 3 fmAn(K) (4.3)

where

An(K)= Y  exp(iK.R) (meN)
IR|=Cm

K, R are the two dimensional wavevectors and lattice vectors respectively.
The C,, correspond to the rings of 2-D lattice vectors. As m increases, |R|
also increases.

Now we require the integral of f(K) over the two dimensional Brillouin

zone. The mean value of f(K) is

5 A
= — K)d’K
F= Gy [ 7B
Also
f = fo
The following conditions are imposed on the {K;} and weights {c}
Za,’Am(Ki) = 0 (m=1—>N)

Za;:l

So 4.3 becomes

fo= Zaif(Ki) - i fmzaiAm(Ki) (4.4)

m>N i

As m increases, |f,,| decreases, since the valence charge density is in general
well behaved and smooth. Thus the second term in 4.4 can be made as small
as one chooses, by choosing N large enough. The method used to obtain the

{K;} is given in Cunningham ([36].
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This method can also be used for metals although the discontinuity in the
charge density at the Fermi energy means that a larger set of {K;} may be
required. Metal surface calculations performed by my co-workers at Daresbury
have shown that three K points in the irreducible part of the Brillouin zone
are often adequate, and even only one K point is sufficient for the first few

iterations in the self-consistent process.

4.3 Construction of the Pseudo Charge Den-
sity

The charge density has already been determined, and the problem is now
to solve Poisson’s equation to obtain the potential. This is done by Fourier
transforming the charge density, and then calculating the Fourier components
of the potential via Poisson’s equation. However, due to the rapid variation
of the charge density near the nuclei, any Fourier expansion will be slowly
| convergent. To overcome this, a recently developed method of solution due
to Weinert [37] is used, which uses the concept of multipole moments of the
charge density inside the muffin-tins. A description of multipole moments can
be found in Jackson [38], but briefly, given a charge distribution p(x’), the

potential at x is

&(x) = /lp(x) &z’ (4.5)

Now, ‘lexq can be expanded as (38]

1 o ! 1 L. )
x — x| 247"2 Z §l+—1 zflym(xl)yl,m(x) (4.6)

r< (rs) is the smaller (larger) of |x| and |x'|.
Consider a sphere, outside of which p(x’) = 0. Write the potential outside
the sphere as .

%)= > 2l+1 I%TSC ! (47

-l=0 m=-!
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Now use 4.6 in 4.5 to obtain another expression for ®(x)

d(x) = 47r}: 21 g [/ Yl"m(fc’)r"p(x’) daz:'] Y;r';‘ffc)

where 7' =7, and r =r,.
So the {qi.m} are

n= [ Y& p(x') &2 (4.8)
These are the multipole moments.

Weinert [37] derives a pseudo charge density which is the same as the
actual charge density in the interstitial region, and has the same multipole
moments as the real charge density inside the muffin tins. It therefore gives
rise to the correct interstitial potential via 4.7. Knowing this potential, the
boundary value problem for the potential inside the muffin-tins is then solved,
finally giving the potential throughout the interface. Weinert’s analysis as-
sumes three dimensional periodicity, but this can be readily generalised to the
two dimensional case, as exists in the interface.

As in equation 3.65, the charge density in the interstitial region is expanded

as

' cosk,z
p(r) = pmaexp(iGnm.R) (4.9)

sink,z

Inside the muffin-tins p is expanded as

= Y (p1m(r) cosme + pi—msinme) Prm(8)

I,m>0

The total charge density in the interface is now written in the form

p(r) = pint() + T [Pmt-a(r =) = pine(r)] O(rine)  (4.10)

mt «

'O is the unit step function. Pint(r) has been extended over the entire interface,

including inside the muffin-tins.



As real spherical harmonics are used for the charge density expansion inside
the muffin-tins, real multipole moments of the charge density inside muffin-

tin a are defined as

Pa
Qima = /(; 7'[+2Pl,m,a(r) dr

Pa
Q-ma = /0 P20 _ma(r) dr (4.11)

Pa is the radius of muffin-tin a.
The real ¢+, in 4.11 are related to the complex g;,, in 4.8 via

Z q{'m‘aY,lm(fc) = Z (gt,m o COS MO + G1,—m.a SiDMP) P (0) (4.12)

m>0

The ‘real multipole moments (gt) of the muffin-tin charge density can
therefore be easily calculated via the integrals in 4.11. '

To find the multipole moments of the interstitial charge density in muffin-
tin o, first write this charge density (4.9) relative to the sphere centres. So

« . . cos knz, cos k,p.
pint(r) = Z Prmna €XP(1Gm.To) exp(iGm.p) . .
mn sin k,z4 sink,p.

—sin k2o Sink,p.

(4.13)
+ coskpzq sin knp,

where r = r,+p, ro being the centre of muffin-tin a, z, being the z component.

Hence, the multipole moments of

cos knp. exp(iGm.p)

sink,p, exp(iGm-p)

are required in muffin-tin a.

Using the definition of the ordinary multipole moments (4.8), and following

Weinert [37], gives the multipole moments of cos k,p. exp(iGm:.p) as

47r1:lp£,+3 Tis1(gpmt ,.Pa)Y[:,m(gml’n) (l +m ) even

— Im! nPa

qm =
0 (1+m) odd

(4.14)
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and those of sink,p, exp(iG.:.p) as

Amqt-1 L+3 Ti41(gpm? n.p“)Y'm ~S l+m) odd
Um = p smrnpe Yim(Bmin) ) (4.15)
0 (I4+m) even

where

Em'n = G + knz gm';n = Igm’.n!

The gm'n = 0 terms are

Var 3
=3 Pa l= 0
qo=1{ ° (4.16)

0 [ #0

Equations 4.14, 4.15, and 4.16, substituted into 4.13, give the multipole
moments of p;,¢(r) inside muffin-tin a. The real and imaginary parts of these
complex multipole moments are taken to give the real multipole moments
(gnt)- Hence, the“ second term in 4.10 gives rise to multipole moments
(including the nuclear charge)

dmt — %int [#0 (417)

Z
Imt —%int — 75 [ =0

The problem now is to find a pseudo charge density inside the muffin-
tins which has the multipole moments 4.17, but which can be easily Fourier
transformed. Weinert writes in muffin-tin o

- pa(r) = Z QtmYi,m(T) Zanr?

lm

where a,, v, are parameters for the power series, and the {Q;n} are chosen
such that the pseudo charge density, p, has the correct multipole moments.

These are (using 4.8)
- — Ql,m Zn anpg’,+l+3
o vy +1+3

(4.18)
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Again, following Weinert, we choose

vy =1+ 27 (ne€Z¥)

and determine the Fourier transform of j in muffin-tin o as

Jpp €7 palr) exp(—ik.r) = > 47Q1m (1) Vi m ()P

x 3 (~2) 7'+v+1 fﬁa) > an; 'u)"’a (4.19)

v=0 ( n=v

where for the present, k is a three dimensional wavevector.

Weinert imposes the condition

Z " )'pg{': (v=0,1,2,...,mn = 1) (4.20)

This set of equations has the solution

n!
=0T T n)'n'pf‘(n "a, (4.21)

At this stage it is very easy to lose track of the Physics involved, so the
meaning of equation 4.20 will be considered. Weinert proves that imposing
condition 4.20 is equivalent to setting the first (n —1) denvatlves, * 2, equal to
zero at the muffin-tin surface. Thus n measures the smoothness of the pseudo
charge density. With hindsight, the conditions imposed by Weinert are chosen
to give this result. Using 4.20 and 4.21 in 4.19 gives

/MT 3 d*r po(r)exp(—ik.r) = g 47rQ,lm(—z')lY¢,m(l~<)

x plF2nt3(— 2)"—————‘7‘&"“)(2”1“) ann! (4.22)
| >

Now Q. is defined by 4.18, with v,, = 2n+1 as before, and using a,, defined-
in 4.21 gives

Qim = @ (4.23)

1+2n n n!
an('—l) 2 +2n+3 Z —0( ) (n—n)'n'(2i+2n+3)




The following result, proved by Weinert is required

z ! 2mnl(20 + 1!
S (-1)" ” - Pt (424
vy, (n—n)nl(2l+2n+3) (204 2n +3)!
Using 4.24 in 4.23 and rearranging gives
-1)"qim 20+ 2 )M '
Qi = (-1)"g, (20 + 2n + 3) (4.25)

a,2rnlpltints 20 + 1)!

Put 4.25 into 4.22 to obtain

(20 + 2n + 3)!!
20+ D)

s - . . él,m
/MT 47 pa(r)exp(—ikr) = 4 lzm pal+ants

- ‘ " n \7 n k a
x (=) Yim(k)ol? *3—'(4’,9—[,“)(,;—+p1) (4.26)

We now wish to find the Fourier coefficients of the pseudo charge density,
having two dimensional periodicity. The total j is written in a form analagous

to the real p. This is:

) cos k,z
p(r) = Z pm.nexp(iGm.R) {

m,n sin k,z

So

cosk,z

1
-mn = 0 —GmR —ifn=
prm. [2D unit celt P(F) SXP(= ){ (xzifn=0)

sink,z

Again, writing r = r, + p, using 4.26, and the relationship between real and
complex multipole moments (4.12) gives after some manipulation, in muffin-
tin

cos knzo Cp, | —sinkpz, 57,

™ (4.27)

ﬁf‘n'n = exp(—iGm.ra)
sinknzq Co , + cosknza S,
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where the {C7 ,S% .} are
. 8 1 . . (2l + 2n + 3)!! \7'1+n+1(kpa)
Ca _ —= —_ f = 0 J— l
- AD(>< 2 " ) l.mZO;(l-l-zm)»even( ) 20+ 1) -kt plintt
X (@m cOsMP + §1,—m Sin MP) Py ()
and
8w (20 +2n + 3)!! % Tisn+1(kpa)

a- T -1
Sm,n AD Z ( I‘)

1,m>0;(1+m) odd (20 +1)n ki pgmtt

X (QI,m cos m¢ + [jl,—m Sinm¢) B,m(g)

where k = G,, + k.2, and (6, ¢) are the spherical polar angles defining k. For
k=0

Tient1(kpa) _ (TF:TEW 1=0
fent 1 gl 0 1 £0

So, from4.27, we now have th_e pseudo charge density coeflicients. Note that
the maximum value of 7 (= n) can be different for each I (See equation 4.19).
Weinert suggests using n such that the first zero of Jj4n+1(2) occurs at about
2 = kmazpPa, Where p, is the radius of muffin-tin a, and kmqe is the magnitude

of the largest wavevector in the plane wave expansion of p. kmaz is given by
672N\ 3
V

V being the unit cell volume, and N the number of plane waves. The table

of n values for different values of [ and (kmezpa) is reproduced from Weinert’s

paper in figure 4.1.
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9

15 14 13 12 1t 10 9 8 7 6 5 4 -3 2

1

20.54  19.45 1835 1725 16.14 1503 13.92 1279 1166 10.51 9.36 8.18 6.99 5.76 4.49
14 13 12 il 10 9 8 7 6 5 4 3 2 1 0
13 12 11 10 9 8 7 6 5 4 3 A 1 - 0
12 1 10 9 8 7 6 5 4 3 2 1 0
13 10 9 8 7 6 5 4 3 2 1 0
10 9 3 7 6 5 4 3 2 i 0
9 8 7 6 5 -4 3 2 1 0
8 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
6 S 4 3 2 -1 0

Figure 4.1: n values for different ! and (kmazpo). From Weinert (37).

4.4 Construction of the Electrostatic Poten-
tial

The charge density is now in the required form. The next step involves the
solution of Poisson’s equation. Initially we solve for the interstitial potential,
using the potential shift across the interface as boundary - conditions. Knowl-
edge of the position of the Fermi level (Er) in each bulk material, and the fact
that Ep is constant across the interface, allows this shift to be calculated at
the outset. In metals, Er is known, so the shift can be easily calculated. In a
semiconductor system we do not know Ep, so either the experimentally mea-
sured value is used, or one places Er at the centre of the band gap, as a first
approximation. The muffin-tin potential is now a boundary value problem,
the boundary conditions being determined by the expansion of the interstitial

potential over the muffin-tin surfaces.

Interstitial Potential

In the interstitial region the charge density is written as

pine(x) + A(r) - (4.28)

pine(r) being the charge density as defined by equation 3.65, and p(r) is the

pseudo charge density.



4.28 is expanded as

cosk,z
Z Pmn€xp (1Gm.R)

sin k,z

where

pm,n = Pm,n =+ ﬁm,n

First consider the G,, = 0 component of the charge density. The pq term

is given by
Voo

~ Tz~ dmhes

with solgtion

V = Voo + Viz — 2mpg o2’

Voo, V1 being constants.

The full G,, = 0 component is

" 4w cos knz
V(z2) = Voo + Viz — 2mpooz’ + D —5hon (4.29)
k2 sink,z

4.29 must match onto the G,, = 0 component of the substrate potential over
the two true embedding surfaces. At present, the potential is specified at :t%,
with corrections being included later. Letting the Gy, = 0 component of the

potential at i-lzl be V, (:t-lzz), and solving for V5o and V) gives

. D? "4 cos k2
Voo = 7"Po,o-'——z:—,‘,/’o,n 2+ ¢o
2 —~ k2
where
D D

() (D

$o = Vo 5 ) T Velt+3

1 "Am 0

I/l::_— 2X:'—f;t)n +¢1
D ~ kA sinkn—g—
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where

= (+2) - (-2)

The general solution of Poisson’s equation (finite G,,), given by

PV

~ 55 +GlY, —47r2pmn{

cos kn,z

sink,z

where

V=) Vaexp(iGn.R)

is given by

4r cosknz
Vii(2) = Viu s €xp(Gnz) + Vi - exp(—=Gmmz) + Z mpm n { ‘

sink,z

(4.30)

Matching 4.30 onto the m** component of the substrate potentials at :t% gives
1 T 4T { cos k,2sinh G, 2 5 }
=5 Pmn - Y2m
k2 + G2 D ’
n ka+ G G my

Vmt = R GD

sin k, 2 cosh

where

and

1
sinh G,.D

Vin,- = —

Z 4 5 { cosk, QsinhG Q 5 ]
- en " far

—sink,2 5 cosh G.2 5

where

et (B)om (0.2 (B (03
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The potential is now in the form

cos k,z )
+ ‘/12 + VgZ

sin k,z

V(r) = ZVm,nexp(iGm.R){

!

+ Z (Vi + €xp(Gmz) + Vin,— exp(—Gmz)) exp(:Gn.R) (4.31)

m

We specify the bulk potential (V;u(r)) at random points {r;} across the in-
terface, and must adjust all the potential coefficients so as to make {V (r;)} as
calculated by 4.31, the best fit to {Vsui(r:)}. This is done using a least squares

fit. The procedure is

1. Set {¢im} =0 Vi,m, then calculate {V(r;)}.

2. Subtract V,.(r;) from Vi (r;) to give the electrostatic potential, Vetec(T:).

3. Form§¥(r;) = Verec(r:) — V(i)
Also

§V(r;) = 6Voo+ Wiz

+ Y Vou > exp(Gmz;) cos Gp.r;
2D stars p 2D waves in star p

+ Z oV, - Z exp(—Gnz;) cos Gpp.r;
2D stars » 2D waves in star »

Note that in practice the sum over 2D waves is taken as a sum over the 2D
stars, with a coefficient V, ;. for each star.
Let N1 and N2 be the number of random points on (; and (; respec-

tively, and NVSTR be the number of 2D stars. We set up a (N1 + N2) by
(2*NVSTR + 2) matrix, A, containing in each row

1 z Yexp(Gmz:i)cos Gn.ri... L exp(—Gmzi)cos Gp.r;..

Also, a column matrix P with (N1 + N2) entries §V(r;) is set up. So

Az =P

The least squares fit gives the 2*NVSTR+2 coefficient corrections in z.
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Muffin-Tin Potential

The muffin tin potential can now be determined from the charge density inside
the muffin tin‘spheres and using the boundary conditions set by the previously
evaluated interstitial potential. First, this interstitial potential must be ex-
panded over the surface of each muffin-tin «, to give the components of the

potential for each value of [ and m.

Plane Wave Term

_ cos k,z B % ' .
exp(iGm.R) = exp(iGm.ra) [exp(zK;’n.ga) exp(iknza)
sin k,z 21;
% + exp(iK,, .0 )exp( —'iknza)]
where
KZ . =Gt ka2
and

~

ra+£a=R+zz

The coefficient of ¥i(p_) in the expansion of exp(iK}, .0 ) is

A Ti(Km,npa)Yim(0, 8)

where K., = |KZ |, and (9, $) are the spherical polar angles defining K}, .
Also, the coefficient of exp(:K, ,.p_) is

ari' Ty Kmnpa)Yim(m — 0,)
= (=1)*"47i' Ji( Ko npa) Yim(6, ¢)
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After some manipulation

exp(iGm.R) cosknzl; o = exp(iGm.Ta)dmi' Ti(Kmnpa)Yiim(8, 9)

cosknz, (Il + m)even
X
isinkn,zq (I 4+ m) odd

and
exp(iGn-R) cosknzl o = XP(iGm.ra)dmi ™ T(Kmnpa)Vin(6 )
isink,z, (I 4+ m) even
X
oS knzqy (l + m) odd
z Term
m = Y (Q)zd)
& /surface of MT « L ()
- Y (Q)(2a + pa cos 8) d2
-/;urface of MT « 1m (2)(2a + pa cosb)
Vo /4
= 47rza61,0;m,o + .tr::pab-l.l;m,o
22 Term
22 ma — Y (D 22 2za o 9 2 20
b /;urface of MT « 1m () (25 + 22apa cos 8 + p,, cos™ 0) d

' 4T
= Y' Q 22 22,_-, a —'Y Q
/surfa.ce of MT « l'm( ) ( at p V 3 10(f)

167 1
20y ==Y20(Q) + =
+ Pa { 45 2.0( ) + 3})
2
4
= Vé4r (zi + %ﬁ) 61,0;m0 + \/ §2zapa6l,l;m,0

/167
—— 028,50
+ 15 PaO1,2;m,0
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exp(iGm.R + G,z) Terms

exp(1Gm.R £ Gmz) = exp(tGp.ra £ Gmza) exp(iGm-ga £ Gmp:)
Now

exp(iGm-2a £ Gmp.) = exp(Gmpa(isinb cos ¢ + cos §)) (4.32)

where 8 is the usual spherical polar angle of p,, and ¢ is the angle between o,

and G,,. 4.32is expanded as

Z (Gmpa) (il) (cos 8 £ isin @ cos qb)

But from Hobson [39]

!
(cos 8 + isinfcos p)' = Pcosf) +2 ) (F1)™exp (——im%)
n

m=1

X Pl |(cos 8) cos me

(l+ m)!"!
.o I
- (a) {“"”)”E 0 e (im3) G
X Y ()c sme
I
- (a7 { Yol d’”zl R Tr—T
[ () 0 () 0]
! - 3 o
= 2 [2l+1)(l+m) (—m )] ("m0, 9)
Hence
exp(iGma £ Gmp:)lima = (1) (=)™ [(2l+1)(l:;)!(l—m)!]2
X (Gmpa)lYl,m(o’qs) (4'33)
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Now ¢ in 4.33 is given by ¢f’°‘-— ¢, these being the usual spherical polar angles
of pec and Grespectively. So

exp(iGm.R + Gm2)|ima = exp(tGm.Ta = sza)(:tl)l+'"(—i)m
1

4 2

@I+ D+ my(l —m)!

(GmPa )Z exp(—-im¢c,)

The coefficients of the real spherical harmonics are determined as in the con-
struction of the charge density (3.64).

Now that we have derived the (I,m)!" components of the interstitial po-
tential on ‘th‘e muffin tin surfaces, we can integrate Poisson’s equation, using
these as the boundary conditions, to find Vim(r). In spherical coordinates,

Poisson’s equation is

0 2am,m 2.2 —
3 (r 5 ) +4riripa(r) — (1 + I)K,m =0

A similar procedure to that used for solving the Dirac equation is imple-

mented here. Change variables to
r = exp(z)

= 2 (o)
or P\

Also, put W = exp(5)Vim- So
exp(v-m)a—az- (exp(z)% (exp(——g-)W))
+4mexp(2z)pim — (1 + 1) exp(—%)VV =0
" 1
= W= (4 5P W - 47rexp(§2f)p,,m (4.34)
r and z are discretised as before.
T, = roexp(é6(n — 1)) z, =lnro + 6(n — 1)
To solve W' = f(W), first find a predictor

WP = 2Wg— W_ + 8% f,
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where
fo = f(Wo)

The corrected value for W, is

62
wé =wP + E(ff + f- —2fo)

Finally, take
52
W, =Wy + -ﬁ(ff - )

This is the Baylis-Peel version of the Numerov algorithm [40].

The first two values of W are required. Neglecting the inhomogeneous term
in 4.34 gives
1

W“:l +
((+3)

‘w
So, take W = exp((l + })z) for the first two values of z.

Now integrate Poisson’s equation to obtain a solution Vim(r). Add
—V4ntb o/r (nuclear potential) to this, and a solution to Laplace’s equa-
tion such that the total potential equals V.(pa) as given by the interstitial

expansion. So

\/-—?.510

r

Vim(r) = Vin(r) —

( l{ Vim(pa) = Vim(pa) + ﬁy_}

The average pseudo charge density and potential in a plane at given z are

evaluated. These are given by

coskpz
p = Z ﬁO,n {
on

sink,z
and

_ : cos k,z
V = ‘/0'02’ + Vlzz + Z‘/O,n, {

on sink,z
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4.5 Exchange-Correlation Potential

The exchange-correlation potential must now be added to the electrostatic po-
tential determined in section 4.4. In the interstitial region, V,.(r) is expanded

as
. ] cosk,z
Vee(r) = Y. Vee; Y. exp(iGn.R)
stars j mnin j sink,z
Random points {r;} are chosen in the interstitial region and {V.(r;)} is
calculated, the coefficients {V,.;} then being determined via a least squares
fit at these points. The calculations in this thesis use the Kohn-Sham local
density approximation to V.., as given by equation 2.11.

Inside the muffin-tins, a Taylor expansion for V.. is used. Write

plr) = —=poalr) + 5 punl)¥in()

Hence, to first order

Vielr) = Ve <7=poo r)) > 36" (ﬁpo,o(r)) P (1) Yim(€)

Having added the exchange-correlation potential to the previously calcu-
lated electrostatic potential, the new potential is mixed with that from the

previous iteration. Let f be the mixing factor. Then

Vit = vt - v

n+1

»

Once partial convergence has been achieved using a constant mixing factor,
the alternating factor scheme of Dederichs and Zeller [41] has been found to

greatly increase the rate of convergence.

4.6 Summary

The self-consistent cycle has now be completed, with the construction of the

new potential. The mixing is necessary in order to prevent instabilities in the
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potential from building up at the next iteration. The analytic and implemen-
tation details are now finished, and the next stage involves program tests and

applications.
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Chapter 5

Program Tests and Metallic
Systems

In this chapter the method and program are applied to several metallic sys-
tems, and the problems encountered are discussed. An obvious first test is to
consider the junction between two identical materials, by treating a slab of
that material embedded between the same material in both substrates, which
should recover the bulk electronic structure. This test is done for the nearly
free electron metal, Al, and the transition metal, Ni, and the results compared
with the known electronic structure of bulk Al and Ni respectively. Finally,
an aluminium-nickel (001) junction is used as an example of a simple metallic
interface. Calculations have been done using different numbers of LAPWs,
cbharge density plane waves, and different positions of the embedding planes.
It is observed that instabilities in the charge density or density of states can
arise with certain sizes of basis set, a.lthvough consistent results can be obtained
by avoiding these particular bases. The Al-Ni (001) calculation shows the exis-
tence of states other than those due to the bulk, and the nature of these states
is discussed.

The calculations were performed on the FPS-164 vector processor attached

to the ‘NAS’ mainframe at Daresbury Laboratory.



5.1 Bulk Aluminium System

The (001) direction is considered, by including two layers of Al in the interface
slab, with an Al embedding potential on either side. Fig. 5.1 shows the geom-
etry, parameters used, and illustrates the two dimensional direct lattice basis.
The embedding planes are placed half way between the layers of Al atoms.
The starting potential is of the simple muffin tin form, and is taken from the
output of a self consistent LMTO bulk Al calculation. The Fermi energy for
this potential is known, and is used as the upper energy limit for the charge
density construction, with the lower energy limit lying below the bottom of
the valence bands, but above the core states.

The basis set parameters used are as in Table 5.1. NAPW refers to the
number of LAPWs, NSM to the number of rings of two dimensional wavevec-
tors in the LAPW basis set, and NCPW to the number of charge density
plane waves. Initially the volume of reciprocal space filled by the LAPWs

NAPW 100
' NSM 4
NCPW 1500

Table 5.1: Basis set parameters for bulk Al

was spherical, as is usually the case in band structure calculations. However,
for this work, this has often been found to produce instabilities in the charge
density. Typically, these cause large non-physical fluctuations in the charge
density, with virtually no charge in large volumes of the unit cell, and very
high concentrations elsevx'rhere. This problem is also characterised by the loss
of overall cha'mrge ne—utrality when evaluating the total charge in the embedded
region. Increasing the number of wavevector components perpendicular to the
embedding plane, (k.), by restricting the number of (k,,k,) vectors has re-

duced, but not eliminated this problem. Essentially this is equivalent to filling

an ellipsoidal volume of reciprocal space, with the major axis of the ellipse
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perpendicular to the embedding planes. The effect of this is to allow greater
variation of the wavefunction along the z-axis. One conclusion may be that
the improvement could be obtained by simply increasing the LAPW basis set
size, while keeping it spherical. There are two problems associated with this.
Firstly, using 200 LAPWs with no ring restriction did not eliminate the prob-
lem. Secondly, attempts to use more than 200 LAPWs would involve using a
prohibitively large amount of computer time. The value of NSM in Table 5.1
above refers to the number of rings used for this restriction. Note that the ‘n’
values for the pseudo charge density expansion, as described in section 4.3, are
given in Fig. 5.1. The program reads in nine values for [ = 0 to 8, but in this
case only the first four are used, as using larger [ has not been found to be
necessary. The values are taken from Table 4.1.

Before continuing this discussion if is worth noting the parameters used for
constructing the embedding potentials. There are four parameters of interest.

These are

1. Number of rings of real space lattice vectors to be used in the real space

contribution to the structure constants.
2. As 1 but for reciprocal space.

3. Maximum number of reciprocal lattice vectors to be used for expanding

the embedding potentials.

~4. Number of energy points at which the embedding potentials are evalu-

ated.

The values 6,6,8,16 have been found to be suitable in most cases. Smaller values
more often give rise to unstable charge densities. This is because there must
be sufficient plane waves in the embedding potential expansion to match the
two dimensional components of each LAPW in the interface slab. Increasing
3 or 4 above uses considerably more computer time. The values chosen reflect
a suitable compromise, having been arrived at via trial and error. Of course,
for density of states calculations, many more energy points are used, typically

100. In this case 3 above is reduced from 8 to 6.
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Initially only one cycle is done, with the charge density and density of
states shown in Figs. 5.2 to 5.5. The core region is omitted from the charge
density plots for clarity. The density of states is calculated at the symmetryi
points ', X, M of the two dimensional Brillouin zone, which is related to the
k. = 0 plane of the usual face centred cubic Brillouin zone as shown in Fig.
5.6. The bandstructure of Al has been calculated at the symmetry points T,
X, M (Figs. 5.7-5.9), to facilitate comparison with the density of states. The
program to construct the embedding potentials has an option to produce the
bands, which is used here. Since the density of states is inversely proportional
to Vi E, there will be a peak wherever the bands are flat. Comparison of Figs.
5.3 to 5.5 with Figs. 5.7 to 5.9 shows remarkably good agreement. The peaks
in the density of states are broadened due to the energy points being shifted
off the real axis by including a small imaginary part in the energy, in this case
taken to be 0.002 Hartrees.

As the starting potential is a good approximation to the real Al potential,
we should expect self-consistency to be rapidly attained. This is indeed the
case, with the maximum error in the output potential being 0.004 Hartrees
after 15 iterations. This érror refers to the difference in potential at the muffin
tin grid points for the output potential, relative to the input potential. Three
representative K points are used. The first five iterations use a mixing factor
of 0.05, and the last ten use alternating mixing factors of 0.05 and 0.25. The
charge density, potential, and density of states are in Figs. 5.10 to 5.14. These
compare well with the non-self-consistér; results, showing no major changes,
which would be indicative of a program problem in the self-consistent loop.

Finally we examine the effect of moving the embedding planes. For self
consistency these must be half way between atomic planes in order to preserve
charge neutrality. Hence, moving the planes to some other position will not
allow self consistency to be attempted. A calculation using the LMTO po-
tential as before, but for {; and {; at £D/2, has been performed and agrees
well with the previous results (See Figs. 5.15 to 5.18). The number of LAPWs
in this case is 150, but 4 rings are still used. It has been found that charge
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density instabilities are less of a problem with the embedding planes at £D/2
than half way between the atomic. planes. The main difference in this case is
that the embedding planes no longer intersect the muffin tin spheres in the
interface slab, although it is not apparent why this should improve matters.
This completes the program tests for Al, an example of a nearly free electron

metal. Next we consider the case of a transition metal, namely nickel.
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5.2 Bulk Nickel System

The lattice is still face centered cubic as for Al, with parameters as in Table 5.2.

The list of figures relevant to bulk Ni is given in Table 5.3.

a = 4.699 au

¢ = 3.322695 au

C2 = -3.322695au

Ni muffin tin radius = 2.34957 au

D = 8.021835 au -

D = Qau

E = -0.08 — 0.215 Hartrees, 16 energy points.
‘n’ for pseudo p expansion = 11,10,9,8

Table 5.2: Parameters for bulk Ni

5.19 — 5.22 Non self consistent, NAPW=100, NSM=4, NCPW=1500.
5.23 — 5.25 Bands at T, X, M. '
5.26 — 5.30 Self consistent, maximum error=0.01,

10 iterations required. Constant mixing factor of 0.02 used.

5.31 — 5.34 Embedding planes at z = £D/2, NAPW=150.

Table 5.3: List of Figures for bulk Ni

In Figs; 5.23-5.25, the interpolation between the discrete points in the cal-
culated band structure was aided by using existing energy band diagrams [42].
As for Al, the calculated density of states correlates very well with the band
structure. Also, good agreement between the non-self consistent, self con-
sistent, and shifted embedding plane densities of states is obtained. Slight
differencesAin the appearance of some plots can be attributed to small move-
ments of peaks, which because of the relatively flat Ni d-bands, are very sharp.

The only anomaly is a peak in the density of states at M (3> 3) of energy 0.16
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Hartrees, for the embedding planes at £D/2 (Fig. 5.34), which does not ap-
pear in the other Ni densities of states at M, nor in the Ni bands at A7. As
is to be expected, the Ni densities of states are dominated by the effect of the

relatively flat d-bands.

5.3 Aluminium-Nickel Junction

The Al-Ni (001) interface is considered in this section, as an example of an s-p
bonded metal on a transition metal. Experimental data using electron induced’
x-ray emission spectroscopy [43| indicates that there is little 3d-sp interaction,
and that the interface is steep, with little AINi compound being formed. The
geometry and parameters are as shownin ‘Figs. 5.35. Only one layer each of Al
and Ni are explicitly considered, due to the short screening length in metals.
Thirty iterations using 150 LAPWs were required for maximum errors in the
Al and Ni muffin tin potentials of 0.004 Hartrees. Alternating mixing factors
of 0.05 and 0.200, and three representative K points were used.

Account had to be taken of the potential shift across the interface. This
is easily evaluated as the Fermi energy (Er) in each material is known, and
when in equilibrium, EF is constant across the interface. The relevant shifts
for Al-Ni are shown below, and the zero of energy in the interface is taken as

the average of the interstitial potential in each of the two substrates.

N - EF
AL Ny
TERo of PoTENTIAL v NI
IO‘OMTD’
O IRY /1 4y e I VRARYREES ~-%ER0 oF ENERGY W,
N ARTUEES T NTELFA
ZERO ofF RwoTENTIAL ' CE $LAS

I Aw.

Y -

The shift at each side is used as the boundary conditions when solving Poisson’s

equation, as described in section 4.4.
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The charge density, potential, and density of states are in Figs. 5.36 to 5.48.
The charge density .and potential plots are for each plane of atoms, that is,
through the Al and Ni planes respectively, and containing the z-axis. Where
the potential is negative, dashed lines are used, and solid lines are used where
positive (Figs. 5.38-5.39). The density of states plots are at the symmetry
points T, X, M, and are plotted for each atomic star, as well as for the whole
embedded region. Atomic star 1is Al, and star 2 is Ni. Note that 120 LAPWs
are used for the density of states, but 150 for the charge density. 150 LAPWs
produced no problems with the charge density, but led to spurious peaks in
the density of states, which disappeared when using either 80, 100, 120, or 200
LAPWs. Finally note that when comparing the Al-Ni results with the bulk
case, one should remember to take account of the shift in zero of energy across
the interface. The potential shift (0.04675 Hartrees) must be subtracted on
the Al side, and added on the Ni side, in order to obtain the energy in the

interface calculation.
’ Referring first to the density of states at I in the Al muffin tin (Fig. 5.40),
shows an initial broad peak due to the Al s-p band, then‘ a flat section from the
overlap of the Ni s-p band inside the Al mufﬁn tin. Most interesting is the peak
at 0.192 Hartrees, which lies in the nearly free electron gap of the bulk Al as in
Fig. 5.12. This peak is also seen in the Ni muffin tin (Fig. 5.41), but it is not
so evident, due to the proximity of the Ni d-bands. To examine this further,
the charge density for this state has been plotted (Figs. 5.49-5.51). This shows _
the localised state to be due to the d.. orbitals on the Ni, meaning that it is
of A, symmetry. To facilitate comparison with the bulk electronic structure,
the band structures have been calculated for the same lattice constant as used
in the interface (Figs. 5.58-5.63). The Ni bands at T' (Fig. 5.61) show the
states of A; symmetry in bulk Ni, and it is easily seen that the localised state
lies at about the middle of the A; band gap, proving that it is not a bulk Ni
state. It is a true interface state in the sense of decaying exponentially into
both materials, but the fact that most of its charge density is localised on the

Ni suggests that it is akin to a Ni surface state. The electronic structure of
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the Ni (001) surface shows d,» surface states at I near the top and bottom
of the A, gap [44], and these presumably become the interface state of this
calculation. The Al is behaving almost like the vacuum as far as the Ni states
are concerned, for energies in the Al band gap.

Turning now to the density of states at X in the Al and Ni muffin tins (Figs.
5.43 and 5.44) reveals a localised state at energy 0.12 Hartrees. This state lies
in the Al free electron gap at X as shown in Fig. 5.59. The charge density
of this state (Figs. 5.52-5.54) shows it to be due to either d., or d., orbitals
on the Ni. Since the program symmetrises the charge density, we cannot say
which. The localised state is similar to the one at T, as it is mainly associated
with the Ni, but decays exponentially into both materials.

Finally, the density of states at M (Figs. 5.46-5.48) shows a sharp peak at
energy 0.216 Hartrees, which is not present in either the bulk Al (Fig. 5.14) or
bulk Ni (Fig. 5.30) densities of states. The charge density for this state (Figs.
5.55-5.57) reveals that it is a d_2 state on the Ni, thus implyiﬁg Z, symmetry.
Examination of the Ni bands at M (Fig. 5.63) reveals that this state lies in
‘the Z, gap, near the bottom of the upper Z; band. This time the state does
not decay into a direct band gap of the Al (Fig. 5.60), but it lies just below
the Al Z; band, and cannot interact with the Al Z; band which is of different
symmetry, so essentially the situation is as before, with the state decaying
exponentially into the Al ..

Apart from the features noted above, the Al and Ni densities of states
are very similar to the bulk calculations, indicating little interaﬁtion between
the two materials, in agreement with the experimental data of Fargues et al
[43]. To conclude this section, the planar averaged pseudo charge density and

electrostatic potential are given in Fig. 5.64.

5.4 Summary

The bulk aluminium and nickel results have verified the correct operation of

the program. Good agreement between results, and with the known band
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structures is obtained. Problems with instabilities when using certain sizes
of basis set have been noted. The exact reason for these problems remains
unknown, but with care they can be reduced or even eliminated. The Al-Ni
results show the existence of localised states at the Ni surface which decay into

the Al band gap. These states are easily distinguished from the continuum of

bulk states.
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Fig. 5.1: Bulk Aluminium geometry and parameters.
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Chapter 6

Aluminium-Silicon Junction

In this chapter an Al-Si (001) junction is considered as an example of a metal-
semiconductor system. Such interfaces are important for the operation of
many electronic devices, in particular the Schottky barrier diode. As might be
expected, the Si band gaps are predominately filled with bulk states from the
Al which decay into the Si side of the interface. However, true interface states
are also observed in regions of reciprocal space where both materials have a
band gap.

The Si lattice is face centred cubic of side 10.22au, with a basis at (0,0,0)
and (%, 31,%), which can be represented by the repeat sequence of two dimen-
sional uﬁit cells in Fig. 6.1, of side 7.227au. The Al lattice constant is also
taken to be 7.227au, which is close to the true value of 7.600au. One layer
of each material is explicitly considered, with the interface separation being
the mean of that between the layers in each substrate (Fig. 6.2). The final
geometry chosen is somewhat ad hoc, but constitutes a plausable guess at the
likely atomic arrangement, assuming no diffusion. In reality, it is likely that
diffusion occurs at the interface, mainly of the Al into the relatively open Si
lattice, as this has been found to be the case in the Si-Ni (001) interface [45].
As the Si structure is relatively open, extra spheres are inserted in the Si sub-
strate, which is a better representation to the true potential, rather than the
usual constant potential in the interstitial region.AThis is not necessary in the

interface region, where the full ‘warping’ potential is used. The Fermi level in
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Si is taken to lie at the middle of the optical gap at I', and consideration of
the Fermi level in the Al leads to the potential shifts shown below.

E
. |3
Al S¢
00533
HagrTrees
0-0473%3
HARTREES

42 iterations, using 200 LAPWs and 8 rings in the interface and embedding
potential expansions, were required to obtain maximum errors in the Al and
Si potentials of 0.002 and 0.02 Hartrees respectively. Good overall charge
neutrality was obtained in the interface slab, with there being 9.8 valence elec-
trons in the interface after convergence, compared with the expected value of
10 electrons. This suggests that the potential shifts used are close to the true
values, and also that consideration of more than one layer of each material
would not greatly alter the results, even though the screening length in semi-
conductors is larger than in metals. The charge density (Figs. 6.3-6.4) looks
fairly smooth, and does not exhibit any of the instabilities noted in Chapter 5.
The potential (Figs. 6.5-6.6) is found to be a good fit at each boundary, and
over the muffin tin surfaces. Initially, problems were encountered with ‘extra’
non-physical spheres appearing at the Si embedding plane, but this was traced
to an anomaly in the construction of the potential boundary conditions due
to the use of empty spheres in the substrate. By default, the program which
generates the embedding ﬁotentials and boundary conditions assumes that the
atomic basis in the interface is the same as the substrate, and constructs the
boundary conditions accordingly. In this case the empty spheres are used in

the Si substrate, but not in the interface slab, thus violating this assumption.

162



The density of states has been calculated at T' (0,0), X (3,0), and M

(3, 3) for each atomic star, and also for the whole embedded region (Figs. 6.7-

2
6.18). Comparison with the bulk results is facilitated using the calculated bulk
band structures of Al and Si for the chosen geometry (Figs. 6.19-6.24), and
remembering that the density of states is inversely proportional to V. E. In
regions of reciprocal space where the Si has band gaps, these are predominantly
filled in the interface region by bulk states from the Al leaking across the

interface, and decaying into the Si. Most of the features can thus be ascribed

to bulk band structure effects, with three noted exceptions. These are:

1. Fig. 6.8, T, Al star 2, energy 0.42 Hartrees. This can also be seen as a
shoulder in the Si density of states (Fig. 6.7).

2. Figs. 6.15-6.18, M, 0.14 Hartrees.

3. Figs. 6.15-6.18, M, 0.24 Hartrees.

Looking at each of these in turn, we see that the first lies in the optical gap
of Si at T' (Fig. 6.22), after allowing for the energy shift across the interface.
However, the Al (Fig. 6.19) does not have a band gap at this energy, so the
situation is probably as in the Al-Ni examples, with the interface state lying
in a symmetry gap of the Al. As we do not know the symmetry of the Al
bands for the given lattice, this has not yet been clarified. The charge density
(Figs. 6.25 'and 6.26) is in this case not helpful in determining the symmetry.
The first state at M of energy 0.14 Hartrees lies in a band gap of Si (Fig.
6.24) and below the lowest valence band of Al (Fig. 6.21), so essentially is in
a band gap of both materials. The charge density (Figs. 6.27 and 6.28) shows
a considerable build up of charge between the Al and Si, indicating that this
is associated with the bonding. The odd looking charge density of Fig. 6.27
can be discounted due to the very small charge density range present in this
plane. Moving on to the second state at M of energy 0.24 Hartrees, we see
that it lies in the same band gap of Si (Fig. 6.24), but is now in the valence
band gap of Al (Fig. 6.21), with the charge density (Fig. 6.29 and 6.30) again

concentrated between the layers.
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Summary

The electronic structure of the Al-Si (001) interface correlates well with the
bulk band structures for the given geometry. Localised interface states are
also found to exist in band gaps of one or both materials. Comparison with
other workers’ results is not possible, as the calculations done to date have
mainly dealt with the total density of states, rather than that at symmetry
points. However, Louie and Cohen [46] and Vekilov et al [47] give results for
the Si(111)-Al(110) interface which show interface states near the symmetry
point K of the two dimensional hexagonal Brillouin zone. The nature of these
states is analogous to the interface states at M in this calculation, in the sense
that they exist in band gaps of both the Si and Al. The continuum of Al states

is also found to decay into the Si band gaps [46].

164



Fig. 6.1a: FCC Si unit cell (
(0,0,0), and the 2-D unit cell (-=-—-) to be used.

and------ ), showing only those atoms at

Fig. 6.1b: Repeat sequence of 2-D cells to give Si lattice.
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Conclusion

Apart from a couple of remaining problems, the method has proved itself ca-
pable of producing useful results. There is no other technique available which
correctly represents the bulk substrates in an interface calculation. The prob-
lems of discrete states in finite sized systems, and of energy level splitting due
to interference have been eliminated. Thus as the results of Chapters 5 and 6
show, interface states and other interesting features can be readily identified.

~As discussed in Chapter 2, the calculations are performed within the frame-
work of density functional theory (DFT), in particular within the local density
approximation (LDA). This is entirely adequate for most applications, but
studies of excited states, such as unoccupied interface states, would make it
desirable to move Beyond the LDA, for example, by explicitly considering the
self energy of the system. Much of this theory has been formulated in the
recent past, so a universal picture has yet to emerge, making any such modi-
fications somewhat specific. In some instances the correction to LDA simply
involves rﬁoving the conduction and valence bands rigidly apart, but in other
cases the solution is more complicated.

. The major remaining problems which warrant comment are the inability
to predict potential shifts across the junction, except in the case of metallic
interfaces, and the instabilities which sometimes occur. At present the poten-
tial shift across the interface is essentially determined via intuition in insulator
or semiconductor systems, which in an otherwise ab initio calculation, capable
of going to self consistency, is clearly undesirable. Such shifts depend on the
charge transfer across the interface, and the condition of overall charge neu-

trality. Since most of the charge transfer is often localised near the interface,
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it is in principle possible to integrate the Green function over an energy range
which gives charge neutrality in the interface region. This would require the
Green function to be integrated many times, with the energy range being re-
fined at each iteration, leading to a considerable increase in computer time.
Also, varying the potential shift throughout the self consistent process would
mean that one of the embedding potentials be recalculated at each iteration,
somewhat defeating the purpdse of using the embedding potential method.
The problem of instgbilities appearing with certain sizes of basis set has yet
to be completely resolved. Varying the method of construction of the LAPW
basis improved but did not always eliminate the problem. In retrospect, this
situation is understandable, as the convergence of the embedding potential
expansion will certainly depend on the material and lattice geometry stud-
ied. Thus one would expect to have to reach a compromise between basis set
size and computer requirements, and as previously discussed, the solution for
a given system is determined mainly via trial and error. Furthermore, the
embedding potentials are calculated for the simple muffin tin potential in the
substrates, but used in a full potential calculation in the interface. It would
be desirable to evaluate the embedding potentials from a full potential bulk
calculation, which would also allow the potential boundary conditions to be
more accurately determined.

Further work on the existing embedding potential formalism remains to
be done. At present the atomic positions are fixed at the outset, using an
intuitive approach. This is justified in many situations, as either the lattice
is known from experiment, or the interface has been grown using molecular
beam epitaxy (MBE), where the underlying lattice is continuous across the
junction. It would be useful to include total energy in the program, so that
the lowest energy configuration of a number of options could be determined.
Often one does not know the exact nature of the interface reconstruction, but
does know that it is likely to be one of a finite number of possibilities. It is here
that knowledge of the total energy would be useful. Also, recent experimental

work by Martensson et al [48] has allowed interface adhesion energies to be
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measured by considering the energy shifts of atomic core levels. Self consistent
calculations of the total energy would be useful for comparison with this data.

It is apparent that in order to properly understand the electronic properties
of interfaces, there is no substitute for both experiment and computational
work of the scale presented in this thesis. "There is no simple set of rules
which can universally determine interface behaviour, mainly due to the detailed

nature of the potential in the interface region.
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