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Abstract 

There are many applications of materials science which involve the interface 
between two bulk media. Such junctions play an important part in the opera-
tion of electronic devices, and in electrical contacts. With new crystal growth 
techniques such as molecular beam epitaxy, it is possible to grow almost per-
fect epitaxial interfaces. The properties of these interfaces are different from 
the bulk due to the variation in potential across the interface, which can lead 
to states which are localised at the interface being formed. These states can 
pin the Fermi level, and play an important part in the transport properties of 

the interface. 
This work deals with the development of a new method of calculating in-

terface electronic structure. The loss of periodicity in the z direction means 

that the usual methods of bulk electronic structure calculations cannot be used 
directly, unless the interface is repeated periodically. This is the basis of su-
perlattice calculations, where the unit cell has finite length, meaning that the 
states obtained are discrete, and that states localised on different interfaces 
can interfere, giving rise to energy bands. It is often difficult to distinguish be-
tween interface states and the bulk band structure in these calculations. The 
method presented in this thesis treats a single isolated interface, by represent-
ing each substrate properly via an embedding potential term which is added 
to the slab llaniiltonian for the first few layers of atoms around the interface. 
The embedding potentials are derived from the Green functions for the bulk 
substrates. The effect of the embedding potentials is to ensure that the inter-
face wavefunction is correctly broadened, and that its logarithmic derivatives 
match correctly onto the substrate continuum. Thus interface states can be 
easily identified, and their energy determined. 

The interface Hamiltonian is solved self consistently using the LAPW 
method. One problem in the case of insulator and semiconductor systems 
is that the potential shift across the interface has to be included at the outset, 
but apart from this the calculation is done entirely from first principles. The 
method has been tested on bulk aluminium and nickel systems, where each 
substrate is the same. Good agreement with the known band structure of 
these materials is obtained. Next an Al-Ni (001) interface is used as an exam-
ple of a simple metallic system. Interface states are found to exist at certain 
points of the two dimensional Brillouin zone. Finally, an Al-Si junction is used 
as an example of a Schottky barrier. Interface states and other departures 

from bulk behaviour are noted. 
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Introduction 

This thesis deals with the electronic properties at the interface betweeri two 

crystals. The changes in bulk electronic structure which occur at interfaces 

are important for the detailed operation of electronic devices, and for bonding 

between materials. Examples of the former are semiconductor-semiconductor 

junctions, and metal-semiconductor Schottky barriers. The latter may be a 

metallic contact for example. The potential change from the bulk which oc-

curs across such junctions can cause states to form which are localised at the 

interface, and decay exponentially into each substrate. These states can exist 

either in a direct gap or a symmetry gap in each material. In the case of 

the latter, the localised state is superimposed on the continuum of bulk states 

which leaks across the interface into the opposite substrate. 

Interface states may be important in determining the position of the Fermi 

level in insulator or semiconductor systems. The position of the Fermi energy ,  

determines the potential barrier across the junction. For example, the potential 

shift across an Al-Si Schottky barrier diode is typically around 0.6V. Clearly 

the transport properties of such interfaces will also be affected, as charge will 

become trapped in these localised states. There has also been much recent 

interest in heterostructure systems, which consist of alternating layers of two 

materials. Each substrate may not have the same lattice constant, but can 

often still be grown to form an epitaxial interface with the same lattice constant 
nxm 

on either side. In such systems the lattice mismatch is acco1 odated by strain, 

forming the so called strained layer superlattices, an example being the Si-Ge 

superlattice. Changing the interface orientation or substrate parameters in 

such systems can alter the potential shift and detailed electronic structure in 
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the interface region. 

Despite the technological importance of these junctions, not much is known 

about even the most common examples, such as the aluminium-silicon Schot-

tky barrier. In order to gain insight into the problem there has recently been 

increased interest in performing ab initio interface calculations using new com-

putational techniques. The most common method is the so called superlattice 

scheme, where the interface is periodically repeated in space, forming a large 

unit cell, and thus allowing bulk band structure methods to be used. This 

is useful for studying thin layer superlattices, but for thicker systems or an 

isolated interface, computational restrictions limit the size of unit cell which 

can be considered. The finite unit cell length means that all the calculated 

states are discrete, and also states localised at each interface may interfere, 

giving rise to energy bands. Now, it is not desirable to have to explicitly in-

clude substrates which are severl layers of atoms thick in any computational 

scheme. There are two good reasons for this. Firstly, the electronic structure 

usually varies over a few layers on either side of the junction, after which it 

becomes like the bulk. Secondly, the computer time required is much reduced 

if only those layers of interest are included. 

A technique which allows us to concentrate on the local region of interest 

is described in this thesis. Each substrate is assumed to have the properties 

of the bulk, and is included in the -interface Hamiltonian via an embedding 

potential term (Chapter 1) which can be calculated once and for all. These 

embedding potentials are derived from the Green functions for the bulk sub-

strates. Only a few layers on either side of the interface are explicitly consid-

ered in the interface region. The effect of the embedding potentials is to ensure 

that the interface wavefunction matches correctly in value and gradient onto 

the substrate wavefunct ions, and that it is correctly broadened, thus allowing 

localised states to be easily distinguished from the bulk continuum. The in-

terface Hamiltonian is reduced to the problem of a single electron moving in 

the mean field of all the others (Chapter 2), as is usually the case in band 

structure calculations. Having developed a suitable one electron Hamiltonian, 



it is then solved to obtain the interface Green function (Chapter 3). This is 

a useful quantity to evaluate, as the density of states and charge density are 

easily obtained via integration of the Green function. The method of solution 

is the linearised augmented plane wave (LAPW) method, which is applicable 

to a wide range of materials. No spatial separation of states into core and va-

lence electrons is required with this method. Thus elements with d-electrons, 

such as the transition metals can be easily handled. Such elements are often 

a problem in band structure calculations using the pseudopotential technique, 

as d-electrons may have energies in the valence band region, but be localised 

near the core states, thus making this technique less valid. In order to solve 

the interface Hamiltonian one must have some starting potential in the in-

terface region. The true potential is obtained by using a self consistent field 

procedure, using the local density approximation for the exchange-correlation 

potential. This involves constructing a new potential from the charge density 

(Chapter 4), which is then used as the input potential for the next iteration, 

and so on, until input and output potentials are in good agreement. 

The method is implemented in the form of a somewhat large (5000 line) 

FORTRAN 77 computer program which runs on the FPS-164 attached pro-

cessor at Daresbury laboratory. The program is loosely based on one which 

is used to study surface electronic structure using the embedding potential 

formalism, derived by Dr. J. Inglesfield of Daresbury Laboratory, and Dr. G. 

Benesh of Baylor University, Texas. The present work involved rewriting most 

of the surface code, except for thtreatment of the core states. Bulk alu-

ininiuin and nickel systems are used as program tests, by considering the same 

material for each substrate as is embedded in the interface. The results are 

in good agreement with the known band structures of Al and Ni. Next an 

Al-Ni (001) interface is considered as an example of a simple metallic system. 

Interface states are identified within symmetry gaps in the Ni at certain points 

in the Brillouin zone, which decay into Al band gaps. Finally, an Al-Si (001) 

junction is used as an example of a Schottky barrier. Interface states are again 

found, confirming that the interface electronic structure plays an important 
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role in such junctions. 

Note that atomic units are.used throughout this work. These are such that 

h = m e  = e = 1. The unit of length is the radius of the first Bohr orbit in the 

Hydrogen atom (0.5292A), and the unit of energy is the Hartree (27.2eV). 

Some of the work of this thesis has been submitted for publication. This 

consists of the application of the embedding method to interfaces, and the 

Al-Ni results. 
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Chapter 1 

The Embedding Potential 

Method 

This chapter deals with the basic principles of the embedding potential method, 

and how it is applied to the case of an interface. To date, only surfaces and im-

purities have been treated by other workers using this method. An expression 

for the total energy is derived in terms of a trial wavefunction in the inter-

face. This variational expression is then minimised to obtain the Hamiltonian, 

which is then used to construct the interface Green function. Finally, a brief 

description of how the embedding potentials are constructed is given. This is 

unchanged from the case of embedding potentials at surfaces, but has been 

included for completeness, and to justify the use of such embedding potentials 

at both sides of the interface. 

1.1 Background to the Embedding Potential 

Method 

The embedding potential technique was first developed by Inglesfield [1], and 

has been successfully applied to the case of surface electronic structure [2]. 

Here it is extended to the case of an isolated interface. Previous interface cal-

culations have been based on the superlattice method, where the interface is 

periodically repeated to produce a three dimensional crystal with  a very large 
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unit cell [3]. These calculations describe the properties of a real thin layer 

superlattice, where typically about four to ten layers of each bulk material are 

included in the calculations, but they are not suitable for either thick layer su-

perlattices, or for an isolated interface, due to the large unit cell required. This 

superlattice method has also been used for the study of surfaces [4], where a 

supercell consisting of the bulk material and vacuum is periodically repeated. 

There are however problems with this technique, which first prompted the 

development of the embedding potential method for use at surfaces. Firstly, 

the computation involved is very large due to the large unit cell used. Sec-

ondly, there is no distinction between localised and bulk band states as both 

are discrete in these systems, due to the finite unit cell length, which also 

leads to interference between localised states on different interfaces. Using the 

embedding potential technique, one only has to consider a few layers of ma-

terial on either side of the interface, since in practice the electronic properties 

are usually found to be as in the bulk within one or two atomic layers of the 

interface [3]. This reduces the amount of computation to be done relative to 

the superlattice method. Each embedding potential is derived from the Green 

function for the relevant bulk substrate. Also, as the substrates are properly 

represented via the embedding potentials, the wavefunctions calculated in the 

interface region are correctly broadened, so that the confusion between bulk 

states and interface states does not arise. 

1.2 The Embedding Potential Method at an 

Interface 

The embedding potential formalism has been generalised to the case of an 

interface between two bulk media. The relevant analytic work and its inter-

pretation is presented in this section. 

Consider the interface between two media, regions 2 and 3. The interface 



is region 1 in the following diagram. 

I' 

SI 

In regions 2 and 3, the potential is that of a perfect crystal. 

Initially we derive a variational principle for the whole of regions 1,2, and 

3, in terms of an arbitrary trial wavefunction defined explicitly only in the 

interface region 1. In the two substrates (2 and 3) the trial functions XF2  and 

I3 are exact solutions of the Schrödinger equation at some trial energy . 

matches in amplitude onto over 52,  and IF3  matches onto over 53. Note 

that the first derivative with respect to z of the total trial wavefunction is in 

general discontinuous across S 2  and S3 . 

The expectation value for the energy is 

(IF H IF ) 

('I') 
' is the total wavefunction, and H is the total Hamiltonian 

Hence 

E 
= f1  H4d3r+f9 	I',d3r+Ef3'J!'P3d3r—[Is +153] 	(11) 

d3  'r + f2 W 2 ' 2  d3   + f3  'I1 3 I! 3  d3r 

where 

Is2 
= f2 

(O'IJ2 

- 	

d2r52 

IN 



and 

is3 = f (- - 	d2rs3 
3 k 	az 	5z) 

The 4"  and 5th  terms in 1.1 arise due to the discontinuity in the gradient 

of the wavefunction at S, and S 3 . Note the sign change in the 5th  term to 

account for the opposite direction of n 3  to n2 and the positive z-axis. 

We require a relationship between the solutions of the Schrödinger equation 

in the three regions, which we will then use to eliminate I2  and 413  from the 

expression for the energy (equaton 1.1). 

In region 2 

	

V + V(r) - E) G(r,r') = 8(r— r') 	 (1.2) H 

	

(-2 

1 
	+ V(r) - E) 'P 2(r) = 0 	 (1.3) 

G(r, r') is the Green function in substrate 2, having zero derivative with re-2 

spect to z on S2 . 

Multiplying 1.2 by 'I' 2 (r), 1.3 by G(r, r') and subtracting gives 

	

- r ') = 	{G(r,r')V'P(r) - 2 (r)VG(r,r')] 

	

= W2(r') = 	fdr [GO (r, r')V 2 (r) - 2 (r)VG(r, r')] 

Now use Green's theorem, and impose the boundary condition OG  
= 0, to az 52 

give 

2(r)= 
-If d2 r;3 G( r, 

r52) ô'2rs2) 
(1.4) 

Invert 1.4 to obtain 
8412(r52) 

9n3 

	

19'P2(r52 = _- 2I d2r2G i ( rs2,r2 ) 2 ( r2 ) 	 ( 1.5) 
8n2 	S2 

Now) = 1'2 over 52,  so 

	

f d2r2G'(rs2,r2)(r2) 	 (1.6) 

	

8n 2 	52 

We now require the normalisation of 'I' 2 . 

HW 2  = 



H6W 2  - E8'I' 2  + 5EW 2  

= EW;5W 2  + 8E1P;W2  

6EI W21 = '1';H6w2  - 

2 	OW 2 	5'P2  
I '2I =WH-----H'1' 

( aq'2 V2qj -  = . 	 -w;v2 
 

Hence 

I  d 3 
 r JXF2 12 	= 	f d2rs2  

2 .i52 
(w;-.- k 	5fl2 

(8'I'2 \ a 'I'20W 2 )  

- 
1 	

d2  r52 
= 	2 152 

U 
2 

/0'P 2 \ OW 2 OW ; \ 

- 	- ;;) 

Using 1.5 for 	
c9 and 	, gives 

8fl2 	 8n3 

f d3rlW2I2 = _ J d2rs2f d2r52  [;(G'W2 ) - 

	

1I2 	
* 0_i 

O2 

	

d2rgJ d
2r' 2  Jr 	

W
fs2 52 

 

9W2Goi 
'ii;] 

- 	!G0_1W;] (1.7) 
8E 2  

G' is asymmetric function of re.,, 	so the final two terms in 1.7 cancel, 

leaving 

f2 
 r2I = - f

S2
drs2fS2d2r2W2(rS2)2s2r52) d3 	2 	 _____ 

  OE 	
W2(r2)  

The results we require for region 2 are given by equations 1.6 and 1.8. For 

region 3, the equivalent results are the same as for region 2. These are 

8W3(r53) - —
2

fS3 
 

69% -   
(1.9) 

31 = 
	f53 

d2rs3f
S3 

d2r 3 W(r s3 	'W3(r'g3 (1.10)
aE  d3r 	

2 	 _

13   

Finally notethat '2  and W 3  can be replaced by 4 in equations 1.7 and 

1.10. 



Using 1.6, 1.8, 1.9, 1.10 in 1.1 gives 

—1 

	

E 
= If *H d3r - I d2rs2 fS2

d2r2 	
DG (r52, r,)

(rs2) 92
152 	 OE 	

c(r 

ôG'(rs r 
—f 	d2rs3 	d2 r 	(rs 	

3 	)(lI
s3 	

I
s3 	

3 	3 	
) 

	

fS2 	
.d2rs_ 	 2

+2 	5z 	2  fS3  -b-- d T53  

+ f d2rs2fS2 

 
 

+ 

 

f13 

d
2 	2 	V(rs3  )G' -l (r r' ) 4) (r' r S3fS3 

/ [I 2  d3r - d2rs2f d2r2*(r 
1  

fS2  	
52) OE 

DG0 (rs3 r 3  

fS 3 

 - 	 d2rs3fd2r3*(rs3) 	
0E 

where 

H = —V + V(r) 

The energy is now purely in terms of , our trial wavefunction in the inter-

face. G0'  plays the role of an effective surface potential, and is the embedding 

potential. Also, from 1.6 and 1.9, we see that G01  can be interpreted as being 

a generalised logarithmic derivative. 

Now we derive a Schrödinger equation from 1.11. For compactness, an 

abbreviated notation is used in the following derivation 

	

E~f—ff* 	____
2 	53 0E 

2 	 3
ID] 

	

i fS, - 11 	+ 
	

- 2 fS, Oz 

+ f f *O' + I ' 
is2 2 	 is3 is3  

fs'fs' 
j* f  f 
 0E 	3 3 	9E 

10 



So, to first order 

SE  Lii 	is2 is2 	OE 	Js3is3 	OE 

+E11S— I I 
01 

	fS3fS3
s  Lii 	JS2 i52 	 E 	aE (D I 

= [5*H+'f 1  

ii 	2Js2 fS3 

+ I I 	+ ff sG' 
S2 S2 - 	3 s 

fS2
ç DG 	

fS3  152 	ÔE 	is3 aE 

+ similar terms involving 64 	 (1.12) 

If E is stationary with respect to small changes in , then 

-  E I 	
aGo-i ÔG 	

S(r - rs,) - E 1 	S(r'— rs3 ) 

	

is2 ?E 	 is, aE 

	

1a 	 1a 
=H+— 5 

2 	
- —

z 
 5(r rs 

+ / G'S(r—rs2 )+fS3  G 6(r—rs3 ) 
S2  

—6 
fS2 

G0 	 OG'  

aE 
S(rrs2)_Ej 	

ÔE 
 S(r - rs,) 

Rearranging this gives 

{H + 5(r -rs2)-- 5(r - rs3)-} (r)
C9 z 

+5(r - r53) fs d2 r 2  [G(rs2 ,r 2 E) ± (E 
- E) aGr'rs2,r2) 	1 

OE 	E=J 

	

+S(r - rs3) fS3 
d2 r53 G'(rs3 ,rE) + (E - ) 	

' 53, 3 ) s3  3   

= E4(r) 	 (1.13) 

The energy derivatives of G0'  in 1.13 correct the effective surface potential 

G°'(r g ,r,e) to the value appropriate for the energy E. 
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We choose to calculate the Green function in the interface region, evaluated 

at the same energies as the substrate embedding potentials. Hence, E=6 in 

1.13, thus removing the energy derivatives of the embedding potentials. This 

leaves us with the following Schrödinger equation for the Green function, C, 

in the interface 

{H+ .6(r—r s2 )- - 5(r_rs3 )_}C(rr'E) 

+6(r— r g2 )fd 2 r 2 G_ 1 (r s2 ,r 2 ,E)G(4,r 1 ,E) 

- rs3) 	d2 r'53  G 1  (rs3 , r 3 , E)G(r 3 , r', E) 

—EG(r, r', B) 

= Or - r') 

r, r' are in re gion 1. 

In future the energy E at which the embedding potentials and Green func-

tion are evaluated will be dropped from the notation. 

G(r, r') is expanded as 

	

G(r,r') = 	 (1.14) 
ij 

Hence 

) 

cjj [{H + 	- rs2 )- —S(r - rg3) 8 — ? 8Z) 

+5(r— r52 )f d2r2C (rs2 ,r 2 )(r 2 ) 

- rs3) 

	

fS3 	S3 3 	S3 S3 	SO 

—E(r) I 	(r') = 8(r - r') 	 (1.15) 

Multiplying equation 1.15 by 	(r)(r'), and integrating over region 1, gives 

1: Gij(Hki - ESk 2 )5j = Ski 
ij 

12 



where 

Hk = f d3r(r) (-v + V(r)) (r) 

11' 1  f d2rs34(rs3)-4(rs3) +J d2 r52  (rs2)(rs2) 
- 52 

+f 

+
fS2

drs2f d2r2(rs2)G'(rs2,r2)j(4) 
 52 

drsfS3 	
(1.16) 

153  

and 

Ski = f d3r(r)(r) 1 

where (_ }v + V(r)) has been written explicitly for H in equation 1.16. 

Hence 

Gij  = (H - ES) 

As we have two dimensional periodicity in planes parallel to the interface, 

we can define a two-dimensional Bloch. wavevector K. The Bloch embedding 

potential is now given by the inverse over S 2  and S3  repectively, of 

G ' (r, r') = 	G°(r, r' - R3 ) exp(—iK.R3 ) 

The {R} run over the direct two dimensional lattice vectors. We can 

therefore reduce the matrix elements of the Hamiltonian to be over a single 

two dimensional unit cell. 

- The next step is to consider the surfaces on which the embedding potentials 

are defined. Consider the case of the right side of the interface. The embedding 
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potential is defined over the surface shown in the following diagram. 
(G 

S2  is obviously iiot a convenient surface to use, so we shift the embedding 

surface to S which is flat. 

uirccE 



We must justify this shift of embedding surface. To do this we consider the 

physical interpretation of 1.12. Rearrange this equation into the form 

SE x fid3r5*[H -E1 
 

+f   d2 r52  S4 * 	+ f d2r2 {Gt + (E 
 

I__ 

	

2 	L2äz 	s2  

I &  +f drs3 S 	 +f d2r' 3  {c' + ( E - €) 	
} ] 

	

153 	 20z 	53 

+ similar terms involving SI 

So SE = 0, i.e. the functional is stationary when 

H=E4 

and 

	

= —2 1 d2 rS2 	2 +(E—€) OE }'52 	(1.17) 

There is a similar result to equation 1.17 for 53. 

So it is apparent that the solution of the Schrödinger equation in region 1 

must have the correct logarithmic derivatives on 52  and 83  . To move to the 

new embedding planes S and S, we integrate the Schrödinger equation over 

a flat potential between S 2  and S, and also between S 3  and S. In practice, 

the embedding potentials are calculated on S and S, so the procedure is 

as before, but 52  is replaced by S, and S 3  by S. This forces the interface 

wavefunction to have the correct logarithmic derivatives on S and S, and 

thus also on 82 and 83 , as required. 

In future G0'  will refer to the embedding potentials on the flat surfaces. 

i.e. the tilde on the new embedding surface, G°', is dropped. 

In summary, we use equation 1.16 to solve for the matrix elements of the 

Hamiltonian, H, then construct the matrix (H - ES) and invert it to obtain 

the interface Green function matrix, G. We have assumed that a point of 

two dimensional inversion symmetry exists, so the G°' are symmetric. The 

Hamiltonian is also symmetric. 
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1.3 Construction of the Embedding Potentials 

The computer program to calculate the embedding potentials was supplied by 

Daresbury Laboratory. The exact details of the calculation are not therefore 

considered here, but a summary of the method of construction is given. 

Consider the embedding potential for the right substrate (substrate 2). 

This is constructed for the following geometry. 
CL 

Consider a plane wave incident on the crystal from the left. The total 

wavefunction in vacuum is 

exp (i [K + G] .R) exp(ikz) + T 7ZG',G exp (i [K + G'] .R) exp ( -yGtz) 
G' 

where 1?. is the reflection matrix and -yG is given by 

= (K + G1 2 _2E) 

E being the energy of the incoming wave, namely .(jK + G 2  + k). 

At the embedding plane (z=O), the Fourier components of 'I' are 

SG',G + 7 G'G 

Similarly those of - are 

= -1'( -5G',G + 7ZGIG) 
ans G, 

Now, the Fourier transform of equation 1.5 gives 

I 
—2 

-1 

G" 
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av 	 6V% 

0 ni 

So 

7G 1 (öG1,G + 7G',G) = — 2G G ,I(SGuG + RG SI G) 

In terms of matrices we obtain 

G0 = .( 1 - R.)(1 + 7Z) 	 (1.18) 

Hence the embedding potential is simply related to the reflection matrix 

of the crystal. To construct this matrix, the phase shift of the wavefunction 

for each atom is calculated, leading to the reflection and transmission matrices 

for a layer. The reflection matrix for multiple layers is then calculated using 

the layer doubling method, due to Pendry [5]. The energy at which the re-

flection matrix is calculated has a small imaginary component. This ensures 

rapid convergence of the reflection matrix elements as more layers of atoms 

are considered. 

The type of potential used in the embedding potential calculation is of 

the simple 'muffin-tin' form. This consists of spheres centred on each nucleus, 

within which the potential is taken to be spherically symmetric, and a con-

stant potential in the interstitial region. It is also possible to have spheres 

not containing a nucleus, should a constant interstitial potential be a poor 

approximation. The spheres must not overlap, but they can touch. A two di-

mensional representation of such a potential for a diatomic material is shown 

in the following diagram. 

r L 

There are extensions to this simple muffin-tin form, but for constructing the 

embedding potential, the simple form is adequate, as it is a good approximation 

around the ion cores where most scattering occurs. 
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The discussion so far has been concerned with the embedding potential for 

the right substrate. We also require GO  for the left substrate. Conveniently, 

it turns out that the embedding potential for a given material appropriate to 

a substrate at the right can be used at the left with no changes. This is easy 

to see if one considers the point K = (K., K) at which Gk  is evaluated, and 

the set of reciprocal lattice vectors {G = (G m , G,)} in which Gk  is expanded. 

Let these be the parameters for G at the right side. For example, for two 

reciprocal lattice vectors G and G', looking at the right side gives 

Looking at the left side, it is clear that we must evaluate G0'  at (Ks , — Is), 

in terms of {(G, —G)}. i.e. 

GO
-1 

for (Kr , — Ku ) expanded in {(G, —G)} is clearly the same as G0_L 

for (Ks , I) expanded in {(G, G)}, if there is a mirror plane perpendicular 

to (0, 1). Thus we can use the embedding potentials generated by the existing 

program at either side, with no modification-as long as the lattice has the 

required symmetry plane. 
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1.4 Summary 

The interface Hamiltonian has been derived in terms of the two substrate 

embedding potentials. The construction of the embedding potentials and their 

use has been described. Finally, one should take note of the method used to 

shift the embedding surfaces. This must be understood in order to make sense 

of later work dealing with the construction of the full potential in the interface. 
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Chapter 2 

One Electron Theory 

This chapter presents current methods of solving the many body problem in 

crystals, or in this case an interface, within a one electron framework. The 

development of one electron equations where each electron moves in the mean 

field of all the others is discussed. This leads on to density functional theory, 

and in its simplest form, the local density approximation. The limitations of 

this theory and the reason for its successes are dealt with, along with more 

recent work which attempts to explain its shortcomings. As the calculations 

in this thesis are of the self-consistent-field type, this chapter should be seen 

as explaining and justifying this approach. 

2.1 The Many Body Problem in Crystals 

It is important to consider how the many body problem of interacting electrons 

and nuclei can be reduced to one which can be readily solved. In practice we 

have of order 1023  electrons per mole of solid, which clearly makes any exact 

solution impossible to obtain. The solution is to use a mean field approach, 

where each electron moves in the average potential of all the others. This 

potential must include correlation effects between the electron in question and 

the rest of the electron gas. The result is a set of one electron equations. 
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The many body Hamiltonian for a crystal is written 

	

1 	V2 	e 2  ' Z3 Zb 
H=— E ' + 

	

 
2 	 R —Rb 

	

a JVIa 	a,b I  
2 	I 

	

1 	e 	1 	2S' _______Z L  

	

—. 	+ 	:;: r, - rI - 
e 	

IRa - rI 	
(2.1) 

Primes on summations exclude i = j and a = b. 

r= electron positions 

R = nuclei positions 

Ma  = nuclear masses 

Atomic units are used, except that e 2  is explicitly included. In these units 

= m e  = 1. 

The terms in equation 2.1 are, in order, nuclear kinetic energy, nuclear-

nuclear potential energy, electronic kinetic energy, electron-electron potential 

energy, electron-nucleus potential energy. 

In order to separate the electronic motion from that of the nuclei, we appeal 

to the 'adiabatic approximation'. The principle here is that the many electron 

wavefunction can be separated from the nuclear wavefunction. 

'(R, r) = 

where 'IJ(R,r) is the total wavefunction, 	(r) is the many electron wavefunc- 

tion for a fixed nuclear configuration {R,,}, and 77(R) is the nuclear wavefunc-

tion. This is valid as the electrons move much faster than the nuclei, so that 

the electronic wavefunction can be considered as adjusting instantaneously to 

any change in the nuclear coordinates. 

This gives the Hamiltonian, H, for the electronic motion, given some fixed 

nuclear configuration as (dropping the constant nuclear-nuclear potential) 

1 	' 	e 2 	Za e 2  
- 	 (2.2) 

, 	- r3 I 	IR0  - rI 

So the many electron eigenvalue equation is 

	

H(ri,r2,.. .,r) = E(r 1 ,r2 ,. . .,r) 	 (2.3) 
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where r denotes both the spatial and spin coordinates of an electron. 

Before continuing, it is worth mentioning some recent work due to Car and 

Parinello [6]. They have tried to unify electronic structure and lattice dynam-

ics. The general idea is to introduce a fictitious dynamics for the electronic 

wavefunction, nuclear coordinates, and any other system parameters. Using 

simulated annealing they obtain the equilibrium configuration of the system. It 

turns out that once the system is in equilibrium, the dynamics for the nuclear 

motion has the usual physical interpretation. Thus electronic states, atomic 

configurations, phonon frequencies, and information on electron-phonon in-

teractions can be obtained in one simulation. This technique is likely to be 

of importance in future work on surface and interface reconstructions. How-

ever, as electronic structure work on such systems is still in its infancy, the 

Car-Parinello method will first find application in bulk crystal calculations. 

Returning to the many electron hamiltonian, H, which we will now write as 

H, leaves us with the task of constructing a suitable form for the many electron 

wavefunction (r 1 , r2 ,. . . , rn ). Hartree [7] wrote as a simple product of 

one electron wavefunctions, çó. However, this completely ignores the fermion 

nature of electrons, which requires the total wavefunction to be antisymmetric 

under interchange of the electrons' coordinates or spins. Fock [8] and Slater 

[9] were the first to include this antisymmetry property by writing the total 

wavefunction as a determinant of one electron wavèfunctions. 

	

&(ri) 	1(r2) ... 01(rn) 

1 
	

2(r2) 	2(r2) 	.. 02 (r,,) 
	

(2.4) 

	

0(r1) 	(r2) •.. 

Interchanging two rows or columns of 2.4 changes the sign of 4 (r i , r2 ,. . . , 

and is equivalent to changing the coordinates or spins of two electrons. 
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To derive the Hartree-Fock equations, 2.4 is inserted in 2.3, with H given 

by 2.2. Th total energy is then minimised by varying E with respect to each 

q5j, subject to the constraint that the {q5 j } are kept orthonormal. Lagrange 

multipliers are included to impose this constraint. The resulting equations 

are 

[

_V 2  - 	Za 2  + 	
e f (r')q(r') dr'1 

(r)  
2 	a IRa  — ri 	j 

- 	
e(r) j ;(r')(r') d3 fr' 

 = e(r) 	 (2.5) 
j 

The last term on the left of 2.5 is the exchange term, and is non-local, making 

it difficult to evaluate. 

The Hartree-Fock eigenvalues {e} are a good approximation to the mag-

nitudes of the energies required to remove a given electron from the system. 

i.e. Ei  = EHF (n, = 1) - EHF (ni  = 0), where n, is the occupancy of the th  

state. This is "Koopman's theorem". Note that the wavefunctions used for 

the n i  = 0 case are those which have been calculated for ni  = 1. i.e. they are 

not allowed to relax. This is therefore an approximation. 

The summations in 2.5 now include j=i, leading to self-interaction terms. 

This poses no problem here, as the j=i term in the exchange sum exactly 

cancels the Coulomb self-interaction term. 

Slater [10] has given a simple physical interpretation of the exchange term. 

Its effect is to exclude electrons of the same spin from the region of the electron 

in question. The charge removed equals one electronic charge, so that the total 

charge, excluding the electron in question is (m - 1)e, as it should be. However, 

the Hartree-Fock equations do not include any Coulomb correlation effects. In 

the real system, electrons of opposite spin will also tend to remain apart due to 

Coulomb repulsion. Despite this, attempts were made, mainly by Slater [10], 

to produce a form of the Hartree-Fock equations which could be more easily 

solved. 

First he rewrote the exchange term, V, in the form of a normal potential 
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energy times the (r) 

= _e2 	
d3'r' 

i f 	(r)j(r)Ir-r'I 
Slater went on to calculate the average exchange potential for jellium, this 

being a uniform electron gas with a uniform distribution of positive charge, 

ensuring overall charge neutrality. The result is 

/3 \3 

(Vex ) = — 3e 2  ( \ —p I
I 

87r  

This is then applied to the crystal charge density, using p = p(r) at the 

point r in question. So p is now the local density of the inhomogeneous electron 

gas. Hence 

Vex(r) = _ 3e2 (p(r)) 	 (2.6) 
.87 

PIFA 

This approximation is most likely to be valid in regiQns where p varies only 

slowly 

There is no formal justification for Slater's approach. However, the depen-

dence of on p is clearly appealing as it greatly simplifies the calculation 

of the exchange potential. It is in fact possible to derive rigorous theorems 

relating the total energy to the charge density. This is the subject of the next 

section. 

2.2 Density Functional Theory 

This is based on two theorems proved by Hohenberg and Kohn [11]. These 

are, for the spinless case 

The ground state energy of a system of identical spinless fermions is a 

unique functional of the particle density. 

This functional attains its minimum value with respect to variation of 

the particle density, subject to the usual normalisation constraint, when 

the density has the correct value. 
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V ,, (r) = 

p(r) = 

DE(p) 
Up(r) 

occupied 

Including spin leads to similar results, except that the ground state is now 

a unique functional of the charge and spin densities. 

Thus, if we know the charge density, we can calculate H, and hence all 

ground state properties of the system. 

Kohn and Sham [12] went on to derive a set of single particle equations. 

Write the total energy as 

E(p) = f Vi on (r)p(r) d3r + T(p) + 
e2 

f p(r)r - r'
p(r')d3r' + E(p) 
	(2.7) 

2 	i 1 

T(p) is the kinetic energy, and Erc(p) is the exchange-correlation energy. 

Minimising E with respect to p, and keeping the total number of particles 

constant gives the Kohn-Sham equations 

1_2 

1 	+ Vj0 (r) + e2 f 
p(r') d3r' + V

xc (r)] (r) = 
r - r'I 

V(r) may be non-local. 

(2.8) 

(2.9) 

(2.10) 

Note that we have now written an explicit form for T(p), taking it to be 

the kinetic energy of a non-interacting electron gas. 

As p(r) is not known at the outset, equations 2.8 -2.10 must be solved 

self-consistently. i.e. We use an initial potential to calculate the wavefunctions 

(r) using 2.8. Then we use 2.10 to calculate p(r), construct a new potential 

and repeat the cycle until the desired level of convergence is obtained. The 

form of V is not specified by density functional theory (referred to as DFT 

in future). It is only an existence theorem. Note that in DFT, the {} no 

longer have any rigorous physical interpretation. In fact Ei = , where the ani  

derivative is with respect to a set of continuous occupation numbers [13]. In 

practice the {e} are taken to be the actual crystal eigenvalues. There are two 

pieces of evidence to support this stance. 
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The quasi-particle equation, which gives the true crystal eigenvalues, is 

(_V2 + Vi. (r) + e2
çp(r) d3r' 

	+ J E(r, r', E)(r') d3r' = 0 
J 	r - r'I 

where E is the self-energy operator. 

This is of the same form as equation 2.8, but with V r  replaced by E. 

Later we shall see that many of the approximations to Vax, in common 

use are very close to the actual self-energy for the ground state. 

The energy of the highest occupied state can be shown to equal the 

ionisation energy of the relevant electron [161. 

There have been numerous calculations bsed on DFT over the past twenty 

years. The results obtained have confirmed the validity of DFT for ground 

state properties. i.e. Total ground state energy, wavefunctions, energies of 

occupied states. In practice the problem is one of choosing a suitable Erg,, from 

which we obtain Vxc  from 2.9. 

A generalisation of the Slater V is to use the local density approximation 

(LDA), except that correlations can now be included. So within LDA 

Exc  = f p(r)c.c  (p(r)) d 3  r 

where 	(p(r)) is the exchange-correlation energy per unit volume of a homo- 

geneous electron gas of density p(r). Kohn and Sham [12] derive an expression 

for V,, (neglecting correlation) of the form 
I 

Vex  = — 2e 2  (p(r)) 
8w 

(2.11) 

Note that this differs from that given by Slater (equation 2.6) by a factor 

of I. This is because Kohn and Sham calculate for an electron at the 

Fermi energy, with wavevector k = kF, rather than with average wavevec-

tor. Equation 2.11 is thus more realistic, since density adjustments occur by 

redistribution of the electrons near the Fermi level. 

In practice, equations 2.6 and 2.11 led to the X a  method, with V c  of the 

form 
3 

V(r) = _2ae 2 (—p(r)
/ 	

(1 a 	 (2.12) 
8.7r 
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The value of a to be used in a given situation was calculated using one of 

several approaches. The most common was to choose a such that the X c, total 

energies for isolated atoms agreed with the Hartree-Fock energies for the atom 

in question. This value of a was then used for the crystal calculations. If there 

was more than one element present, then typically an average value of a was 

used. Schwarz [14] gives suitable values of a for most elements. 

Hedin-Lundqvist [15] produced an Erc  which included correlation effects. 

This gave rise to the exchange-correlation potential 

V(r) = 0(r)Vea,(r) 	 (2.13) 

where 
f4.2\T 

3(r)=1+ 	ln(1+) 

and 
41 
—irr, 

3 = - 
3 	p 

Ve i, in 2.13 is given by 2.11. 'r3  is the Wigner-Seitz radius. 

3 varies between about 1 for very high densities, and 1  for very low densi-

ties. This therefore gives credibility to the X c, approach, which is still used to 

this day. 

2.3 Problems with LDA 

There are several known problems which appear when using the LDA [16]. 

The most important is the poor values which LDA gives for the excitation 

energies. That is, the energy of unoccupied states when the system is in its 

ground state. This leads to band gaps in insulators and semiconductors which 

are too small by a factor of 10% to 100%, and even negative in some cases. 

There have been numerous attempts to resolve this problem, in particular 

to understand whether the errors are due to the use of the LDA or to a failure 

of density functional theory itself to cope with excited states, but only recently 

has any progress been made. 
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Of course, the cynic would say that DFT is only valid for the ground state, 

so cannot by definition be used to gain information about excited states. This 

is not strictly true, as the band gap can be expressed as the difference in total 

energies between the N-i, N, and N+1 electron states. The lowest conduction 

band energy is given as 

EN+l - EN 

where EN is the total energy of the N electron insulating ground state. Simi-

larly, the highest valence band energy is 

= EN - EN_i 

So the fundamental band gap is 

E9  = 

= EN+l + EN_i - 2EN 
	

(2.14) 

The problem is that the exchange-correlation potential has a discontinuity 

on going from the N particle insulating ground state to the N+1 particle sys-

tem. If there was no discontinuity in then use of the same V for the terms 

in 2.14 would give the correct energy gap. This problem has been discussed 

in many recent papers [17,18,19,20,21,22]. Sham and Schlüter [17] show that 

Cc = EN+i (N + 1), where this denotes the (N + l)th eigenvalue of the N+i 

particle system, and c,,, = CN (N) in the same notation. So the true bandgap 

is 

E9  = EN+1 (N + 1) - N (N) 	 (2.15) 

The naive definition of the bandgap is 

EN+i (N) - €N(N) 	 (2.16) 

where EN4.i (N) 	is the (N + l)th eigenvalue of the N particle system. 

The difference L from 2.15 and 2.16 is 

= N+i (N + 1) - N+i (N) 



Sham and Schlüter go on to show that 

where V denotes the limit of particle number tending to N+1 from above, 

and V denotes the limit tending to N-i from below. For an insulator they 

show that L 54 0. 

Godby et al. [21,22] have studied the relationship between the exact self-

energy operator E(r,r',E) and the exact DFT V. It is easy to derive an 

expression linking V, and E. 

EP  
p(r) = f-' ImGDFT(r,r,)d 	 (2.17) 

Also 
p 

p(r) = f-' ImG(r,r, La) dw 

Now C and GDFT  obey the Dyson equation 

C = GDFT + GDFT (E - Vxc) C 	 (2.18) 

Combining 2.17-2.18 gives 

IM LEF 
dW(GDFT(E - Vxc) G) = 0 

E is calculated using the 'GW' approximation. i.e. We write 

f W 	w)G(r, r', w + w') dw' 	(2.19) 
21r  

W is the screened Coulomb inteaction, and is calculated using the random 

phase approximation (RPA) [21]. GDFT  is used for G in 2.19. Hence, the 

calculated E is itself an approximation. The result is that V from E is very 

similar to VDA.  So for ground state properties, there is no point in going 

beyond LDA. However, for excitation spectra, the self energy approach must 

be explicitly used. In this work the LDA is used in the form of the Kohn-Sham 

equations. More accurate calculations of the energies of interface states would 

require extensions to DFT, though DFT is clearly adequate for the calculation 

of the potential shift across interfaces. 

AR 



2.4 Summary 

The many body problem has been reduced to that of a single electron, which 

can be more readily solved. The process is however computationally intensive 

due to the self-consistent procedure used. The justification for this approach, 

along with its limitations, has been given, so we can now proceed, confident 

that the foundations on which the work of this thesis rests are understood. 
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Chapter 3 

Method of Solution 

The method of solution in the interface is dealt with in this chapter. A suitable 

basis set for the interface wavefunction expansion is chosen, and the matrix 

elements of this basis are evaluated. The form of the potential used in the 

interface is described, and finally, the Green function is obtained from the 

Hamiltonian, which is then used to construct the density of states and the 

charge density. Most of the techniques in this chapter are based on standard 

methods of one electron band theory. Here they are applied to the particular 

geometry of the interface problem. 

3.1 Interface Geometry and Symmetry 

Before proceeding to consider the solution in the interface region, it is first 

necessary to describe the geometry involved, and also include the use of sym-

metry 
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The various planes are as shown in the following diagram. 

- 

The interface is of width D. (1  and (2  are the embedding planes. The basis 

to be used in the wavefunction expansion is defined over —D/2 to D/2. The 

reason for this will become apparent later (section 3.4). 

Region I is the muffin-tins. Region II is the substrate muiffin-tins which 

intersect (. or (2.  The z-axis points to the right, with the x-y axes parallel to 

the embedding planes. 

The two dimensional real space lattice basis, a 1 , a2  are written with respect 

to the x-y axes. b 1 ,b 2  is the two dimensional reciprocal lattice basis, related 

to a1 ,a2  in the usual manner. 
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For simplicity, only fourteen 2-D point group symmetry operations are 

used. These are 

Number Symmetry Operation 

1 Identity 

2 Rotate by ir 

3 Rotate by 

4 Rotate by - 

5 Rotate by 

6 Rotate by - 

7 Reflection in mirror plane .1. to (0, 1) 

8 Reflection in mirror plane I. to (1, 0) 

9 Reflection in mirror plane I to (T, 1) 

10 Reflection in mirror plane ± to (1, 1) 

11 Reflection in mirror planr I to 	1) 

12 Reflection in mirror plane I to 	1) 

13 Reflection in mirror plane I to (1, /) 

14 Reflection in mirror plane ± to (1, /) 

Six-fold rotations are not included. 

The symmetry of the two dimensional lattice is used to greatly reduce the 

amount of computation done, as all the data for symmetry related atoms and 

wavevectors can be generated if we know the result for any one of them. 

Let Si  denote a 2 x 2 matrix representing one of the symmetry opera-

tions, a denote an atom, and K a two dimensional wavevector. Consider the 

construction of the crystal charge density as an example, written as 

p(r) = E [pzm(r)  cos m + pl,—m(r) sin m] Pi,m (8) 	(3.1) 
1,m>O 

Now 

PS(cz);S 2 (K) (Si (r)) = p ;K(r) 

po,;K(r) being the charge density at r, on atom a, associated with wavevector 

K. 
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So, the sum over symmetry related K points gives 

(

Pi,m;a;K 

) = 	

(sr') 
( 

P1,m;S();K 

 ) 	

( 3.2) 
P1, -rn;a;EK 	 P1,-m;S(cz);K 

So given PL,±m;a;K,  we evaluate P1,±m;S,);K  for each atom in the star, mul-

tiply by 81 1 , and add to obtain P1,±m;a;7K 

The relevant matrices for rotations by x are 

R -1  = 

( 

cos mx 

- sin mx 

sin mx 
cos mx 

and for reflections through a mirror plane rotated by q are 

M-1 	cos 2m7 sin 2m77 
=I 

sin 2mi - cos 2m7 

Atoms or wavevectors related by symmetry form 'stars'. The stars of atoms, 

2-D and 3-D wavevectors are evaluated. Incomplete stars of wavevectors are 

not used. - 

3.2 The LAPW Method of Solution 

The technique used to expand the wavefunction in the interface region is the 

Linear Augmented Plane Wave (LAPW) method. This is a development of the 

older Augmented Plane Wave (APW) method [23,24]. Each APW basis state 

of wavevector k consists of the solution to the radial Schrödinger (or Dirac) 

equation within the muffin-tins joined onto a plane wave of wavevector k in 

the interstitial region. This is a good basis to use as it is rapidly varying near 

the nucleus, and smooth far from the nucleus, as in the real crystal. There are 

however three main problems with the APW method 

1. The basis is not continuous in gradient at the muffin-tin radius. This 

makes extensions to the simple muffin-tin form of the potential harder 

to incorporate. 
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The solution of the radial equation involves the evaluation of the loga-

rithmic derivatives of the wavefunction at the muffin-tin radius. If the 

wavefunction has a node here, then the solution has an asymptote at this 

point, making the computation harder to control. 

The radial Schrödinger equation must be solved at the actual crystal 

eigenvaiue energy. As this is what we wish to find, repeated calculation 

of the Hamiltonian matrix elements over a wide range of energies is 

necessary. The zeros in the determinant of the secular equation are then 

searched for. This is very time consuming. 

There have been several attempts to improve the APW method. The main 

effort was concentrated on removing the energy dependence of the APW ma-

trix elements. Schlosser and Marcus [25] removed this problem by using a 

variational expression suitable for trial functions discontinuous in both value 

and gradient at the sphere radii. The reason this works is that the wave-

function expansion outside the sphere, which minimises the energy, will not 

in general be continuous with the radial solution, unless it is evaluated at the 

relevant crystal eigenvalue. In this case, a series of trial energies are used for 

the evaluation of the radial wavefunction. 

The other approach due to Andersen [261,  and first used by Koelling and 

Arbman [27], is the LAPW method. Here the basis is taken to be a linear com-

bination of the radial solution and its energy derivative within the spheres. 

This is then matched in value and gradient to the plane wave in the inter-

stitial region. The result is to eliminate the three main problems associated 

with the APW approach. The basic features of the LAPW method are given 

here, but for full details, and the relationship between the LAPW method and 

pseudopotential theory, see Andersen's paper [261. 

The radial solutions for an energy parameter E1 (different for each angular 

momentum. quantum number 1) are solutions of the equation (non-relativistic 

here, but generalised to the relativistic case later) 

hj uj - Elu l  = 0 
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ul is the radial wavefunction, and h1  is the radial hamiltonian, defined in this 

case as 
1 d2 	1(1+1) 

hj=---r+ 	+V(r) 
rdr2 	r2  

The normalisation condition is 

f
R 

	

'r2 ui' dr = 1 	 (3.3) 

where R is the radius of the muffin-tin sphere in question. From 3.3 

J ru1 u dr = 0 
0 

So ul and a1  are orthogonal, üi being the energy derivative of ul. The equation 

for ii j  is obviously 

h j rij  - E1 d 1  = Eu1  

In the interstitial region the LAPWs are plane waves 

ç(k,r) = cexp(ik.r) 	 (3.4) 

where 

k=k+K 

1 is the unit cell volume. {K} are the reciprocal lattice vectors. 

Inside the spheres, the LAPW is a linear combination of UI and rij  

r) = E [A i ,m (kn ) i (, E1 ) + Bi, m (kn) ii i  (, E1 )] Yi,(i) 	(3.5) 

3.5 is now matched in value and gradient to 3.4 for each {k}, giving a set 

oicoefficients {Ai, m (k n ),Bi, m (k n )}. 

3.3 The Radial Dirac Equation 

Before going on to consider the use of the LAPW technique in the interface 

calculation, it is first necessary to derive a suitable form for the Dirac equation 

which can be readily solved in the muffin-tins. To do this we consult Rose [28]. 

A form is required which includes relativistic effects, but excludes the spin-orbit 
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interaction, which we do not consider in our calculations except for the core 

states. Justification for this approach is discussed later. 

The Dirac equation in a usual notation is 

•
'IhLO [c.p + /3mc2] 

at 

(0 17 \ 

a=I 	
2 0 

12) 

10 i '\ 	0 —i\ 	Ii 0 

k\ 10) 	 i 0) 	\ 01 

The radial Dirac equation is 

HO = [ 75  0r/ 

8 1 	
+V+ ,3  

r ) 

	

75 = 71727374 7j = —i/3cx (i = 1,2,3) 	= 0 K = /3(A+ 1) 

Writing 

- ( g(r) 
- 

gives two coupled differential equations for f and g 

1 

C 	 7,  

	

- —(V - E)g, + ( 	) fpc; 	 (3.6) 

	

ag"
- 	 \ 	1 

	

- 	____ 

— ( 	 ) g, + 2MCf M, 	 ( 3.7) 

	

- 	\ 7, 1 

E is the energy with the rest mass subtracted. 

M = m±(E—V) 

1 —(1+1) j=l+ 

= i  

We solve for the large component gK  only, as the lower component is smaller 

by a factor of EK/(E + mc 2 ) [29] for the outer electrons. For core electrons, 

both components must be considered [29]. 
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Loucks [24], Koelling and Harmon [29] give the method of solving 3.6 and 

3.7 7  which is straightforward. The results are 

1 (b2g 	20g 	1(1+1) \ 	 V' 	,+1 V' 

- 7 	+ 	- r 	) + Vg 
- 4iVI2c2 - 	4M2c29 = Eg (3.8) 

The terms are, in order, non-relativistic equation but including mass-

velocity effects via M, Darwin term, and spin-orbit. We do not consider the 

spin-orbit term for the valence bands as for most elements its effect is only 

a first order change in the energy of the states. If detailed excitation spec-

tra for heavy elements were required, then the spin-orbit term would have to 

be included. So, dropping the spin-orbit term from 3.8 leads to another two 

coupled equations 

- 1 8g 
- 2Mcôr 
- —201 11(1+1) V - El 

+ 	Igi 

	

- 	 1, 	 C 

Putting 

P=rg 	Q='rcçb 

gives 

(3.9) 
9r 	r 

8r - 	r 	I 2JVIr2 + V - E] P 	 (3.10) 

Changing to a logarithmic grid which becomes more coarse as r increases 

x = ln r 

leads to 

OP 
-  
8x 

= P+2Mexp(x)Q 	 (3.11) 

I l(l -I- 1) 
-Q +  2M exp(—x) +(V - E)exp(x)] P 	(3.12) 

Now as r -i 0, V(r) -* - and M - 	p, Z being the atomic nunber. So 

starting values for the numerical solution of 3.11 and 3.12 are (from 3.9 and 

3.10) 
fc-1\ 2 
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where 

P = 	Q = qr 

The normalisation condition is 

f0 rMT 'rg2 	1 dr = 
 

f
?MT

P2 dr = 1 

or on the logarithmic scale 

f
ln( rMT) 

exp(X)p 2  dx=1 

The energy derivative of g is obtained from 

a' 	 exp(x)Q 
- P + 2Mexp(x)Q + 

C2 	
(3.13) 

and 

ac - 	

l(1+1) +[  
- 	2M exp(—x) + (V - E)exP(x)] p 

11(1+ 1) 

- L 4M2c2 
exp(—x) + exp(x)] P 	 (3.14) 

The starting values for 3.13 and 3.14 are P = Q = 0. 

3.11, 3.12, 3.13, 3.14 are solved using Mime's predictor-corrector method 

[30]. The forementioned starting values are used to generate the first six values 

using the Runge-Kutta algorithm [30], which are then used to initiate the-Milne 

algorithm. 

The integration in 3.3 uses Simpson's rule on a and of points. The contri-

bution up to the first grid point, r 1 , is explicitly added, but only for the 1 = 0 

component. The value of g(r) for r <Ti and 1 54 0 is insignificant. For T <r1  

and 1 = 0, g constant. Hence 

f 2 	r 1  P12  
j drT g= 

0 	 3 

Hence, g and 	are calculated, as required for the construction of the aE 

LAPW basis. Note that the energies at which the radial equation is solved can 
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be different for each 1. The exact choice of {E 1 } is not critical in the LAPW 

method. Koelling and Arbman [29] suggest using the E1  at the centre of the 

band for that 1 character. They also find that the {E 1 } can differ from the true 

eigenvalues by up to 0.5Ryd. for non-d-states, and O.lRyd. for d-states, while 

still maintaining good accuracy. 

3.4 Construction of the LAPW Basis in the 

Interface 

The LAPWs in the interstitial region are defined to be 

cos 	n even 
m , n (K,r) = 	exp(iKm.R) {  (3.15) 

sin 	nodd 

where 

Km  = K+Gm  

Gm  = hb1 +kb2 	h,kEZ 

r=R+zk 

nw 
k n  

=AD 

A is the area of the 2-D unit cell, and D is the slab thickness. k, is defined 

over D, not D, in order to give sufficient variational freedom to the basis when 

matching the logarithmic derivatives of the wavefunction over the embedding 

planes. 

The LAPWs are put in the order even first, then odd, with each section 

being ordered in terms of increasing Km1 2  + k. 

Inside the mufflir-tins the LAPW is the large component of the solution of 

the radial Dirac equation with no spin-orbit coupling, as derived in section 3.3 

We write in muffin-tin a 

J + Bi,m , c* (K)ii, c (r)] Yi, m (1) 
' j

(3.16) 
1,m 
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where the upper term is for n even, and the lower for a odd. This convention 

will be implied in future equations. Also 

kK+k 

For r on the surface of muffin-tin a write r = ra  + 

i.e. 

Write 3.15 in the form 

41~ 	1  exp(iK m .r) 	x [exp ( (Km .p + Ap)) exp(ikz) 

- 	 ± exp ( (K m .p 	JCnpa, z )) exp(_ikz)J 

Defining 

K ± kn 

and using the Rayleigh expansion of a plane wave 

exp(iK.p) = 47r 	(Kp)Y(IC)Y, m() 	(3.17)rn  

where Tj  is the Bessel function of order 1, gives 0,,n  in the interstitial region 

as 

Orn,n
= v 2r 

1 	
exp (iK.r) E i 1  [exp ('ikn za ) Y1 (Q,) ,rn

1,m 

± exp (—ikz) Y()] (K m pa ) m () 	 (3.18) 

Use 3.16, 3.18, and their first derivative with respect to p, to solve for 

41,m,a, Bi,m,a. This produces 

47r 	 tJUa - J11 U1,cr  

Ai,m,a = - exp (Km .R) 	ii) 
- 
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47r 
Bl, a 

 

= 	exp (Km .R) Y a (m, n)_
71,c  

U1,cU1,a - 

where 

1 
Y 	(M'  n) = - [exp (ikz) 	 + exp (—ikz) Y(K , )} (3.19) 

u, 	U CL , -ii I , c, are evaluated at r = p —cr 

Define 

W = p(ujiL - UiLi,a) 

to give 

Aimcg 
- 4p 

exp (K.Ra ) al,, (m, n)Y a(m, n) 	(3.20) 

Bt m 
- 4irp 

- 	
exp(iK m .R)b z ,(m,n)1?7(rn,n) 	(3.21) 

/ 

where 

1 

w [Ji(KmnPa)i; a  - (J(Km ,npa )) ai,(m,n) = - 

1 	 1W 
 [

IJ bi,(m,n) = - 

We now have the LAPW basis. 

3.5 Form of Potential used in the Interface 

The simple muffin-tin type of potential- was described in section 1.3. In the 

interface region we do not restrict the potential to have this form, but include 

non-spherical components within the spheres, and a Fourier expansion in the 

interstitial region. Within the spheres we write 

V(r) = E [V, m (r) cos mq+ Vi,_m  sin mq]Pi,m (9) 	(3.22) 
1,m>O 

The Pl,m  are-the Legendre polynomials, and 9, 0 are the usual spherical polar 

angles. 
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In the interstitial region we have the 'warping potential' 

cos kz 
+Vi z+V2 z 2  

	

V(r) = 	exp (Gm .R) Irn  ,n 
	

sin knZ 

	

+ 	(Vm , +  exp(G m z) + V 	exp(—G m z))exp(iG rn .R) (3.23) 
rn 

3.6 LAPW Matrix Elements 

The overlap and Hamiltonian matrix elements must be evaluated. The matrix 

elements of the warping potential are also required. 

Overlap Inside the Muffin-Tins 

Consider first the even-even and odd-odd contributions. The following results 

are required 

21+ 1 
Y n(I,n )Yt, rn(Ii,ns) 	 P1 (K m n .K 	) 

47 	 m n 	 (3.24) 
M 	 1-  

(exp(—ikza)Yi,m(i n i) ± exp(ikz a )Yz ,m(s n,)) 

2 m  

x (exp (ik n za ) 	K n ) ± exp (—ik n za ) Y1 (K , )) 
,M M

- 

 

21+1 
[cos(k - kn')Za] Pi(K n .Ki ni) 

- 411- 

± [cos(k + k:)zj Pi(K n .Ki ni)} 	 (3.25) 

So, putting 3.20, and 3.21 in 3.16 and using 3.19 and 3.25 gives for the even-

even and odd-odd overlap (summing over the muffin tins ) 

(cbrn s, n s I 	= pexp(i(Km  - Kms).R 

	

Lm,n/ 	
ç 

CX  

• >(21 + 1)(a1 (m',n')aj,(m,n) +  

• {[cos(k n  - k ' )z a] P1 "K 	.K11) ± [cos(k + k)z] P1 (K , .K11)} m,n 

where 
'Pa 

r2 i 2  di' 
Jo 
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A similar derivation gives the even-odd term as 

47r 

	

I 	= 	p exp(i(Km  Km ').Ra  
a 

x 	(21 + 1)(aj,a (m', n.')ai a (m, n) + bi,a (m', n')bi a (m, fl)Ni, a ) 

x {[sin(k - kni)Zal P1 (K.K,1) + [sin(k + kns)Z a] P1 0K , .K1 , 1)1 

Hamiltonian Inside the Muffin-Tins 

The even-even/odd-odd terms, after some manipulation are 

4ir 
= 	p exp(i(Km  Km ').Ra  

a 

x 	(21 ± 1)(aj,a(m',n')aj,a(m,n)Ei ± bt a (m',n')bi a(m,n) (tti HIiti,a) 

+ ala  (m', n')bi,a (rn, n) (Ui,a 11(1 iii,)) 

X f [cos(k - kns)Z a] P1(K in,n Km  ' ',r!i ± [ cos(k + kns)zal P1 (K , .K1 , 1)1 

The even-odd term is 

	

 Ci Kc'' 	= 	pexp(i(K - 

x >(21 + 1) (aj a (rn' , n')aja(rn, n)E1  + bi,a (m', ril)b j ,a (rn, n) (ti,,, 1 HI Iti,a ) 

+ai ,a (m', n' ).ai,a (m, n)Et + bi,a(m', n')bz a(m, n) (ii i ,, JHJ 1,a) 

+ ai,a (m', n')bi ,a (m, m) (ti,a I-1I 'ai,a)) 

>< ([sin(k, - k&)Za] + [sin(k + k n')Za ] P1 (K.K11)) 

Overlap in the Interstitial Region 

The even-even/odd-odd terms are 

P(1 
± \ = / dz 

12D unit cell 
2 R 

fr in M' T ce 	

mn  u m,n/ 

- 	 (3.26) 

Note that 2  is negative. 



q'rn,n in the interstitial region and its continuation into the muffin-tins. 

The first term in 3.26 is (using 3.15) 

25m',m 

f dz 	
k'z f cos kz 

D 	(2 	 sinkiz 	sinkz 	
(3.27) 

After integration this is 

Sm'm - sin(ki - k)( 2 	sin(k: + k)2 + sin(k - 	 sin(k'i + k)( 1  

D 	k, , - 	 k 7 1 + k 	 - k 	 + k 
(3.28) 

The choice of signs is determined by the integrand in 3.27. 

If k' = k,  we have 

Sm',m t' 	 i5m',m 

~(i 	 2 	
2k 2 	Sfl 2k(1 J D i(2 

dz(1±  cos 2kz) 
= D 	- 	 2k 	' 	 2k 

Now the second term in 3.26 is 

in MT a 	

coskiz J coskz 2 	
d3r exp(i(K m  - K1).R) I  sin kiz 	sin kn z Jr  

2 
= jPa exp(i(Km - Km').Ra  {[cos(kn - kn')ZaI Ja (K 	K rn' n'' mn) 

± [cos(k + ki)z] J,  (K11,K)} 	(3.29) 

using 
Pa  

	

dp exp(iK.p) = 4 J1 (Kpa ) 	 (3.30) f  - 	 - 

and defining 

Ja(Ki,K2) 
= L(1K1 - K 2 p) 

IK 1  - K21 
If Km , n  - Km t,n' = 0, then T - 

cz 
- 3 
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Grouping 3.28 and 3.29 together gives 

8m,ms I - sin(k: - k)( 2 	sin(k; + k)(2  K '' 

	

	

= D 	 - 	 k + 

+ sin(ki - k)1 ± sin(ki + k)(1  

k—k 	 k1+k 
47r 

---pexp(i(K m  - Km:).Ra  ([cos(k1 - k)z]J, (K11,K) 

+ [cos(k: + k)zjJ (K+, ri''  K))} 

The even-odd overlap is likewise derived, giving 

cos(ki + k)(2  
\ m',TL' l' 1 m,n / - D l 	+ k 	 + k 

+ 
cos(ki - k)( 1 	cos(ki - k)(2 I kn'- k 	 -k n  

4lr V.. 2 
--j-. 

a 
p,, exp(i(Km  - Km').Ra {- sin[(k,: - k'n)za]Ja (K + 	K " 

	

m'& 	m,n) 

+ sin[(ki + 	(K11,K)} 

Hamiltonian in the Interstitial Region 

This is 
Km 2  + 

H m,n) = 	2 	(1m',n'kbrn,n) 

This assumes zero potential in the interstitial region, and does not include 

the warping potential. As there is a potential shift across the interface, the 

potential used in shifting the embedding planes is not zero at both sides. 

The integral of the constant substrate potentials across the muffin-tin caps 

which intersect the embedding planes must therefore be added/ subtracted. 

The following diagram shows the signs to be used when adding the volume 

- L- \ 	6mm' f -cos(ki + k) 1  



integrals over the caps. 

V'1  V 1 

In practice, the addition of these terms is done in the program along with 

the evaluation of the warping potential, but this is purely for convenience. 

Before considering the evaluation of the warping potential matrix elements, 

the surface integrals in the Hamiltonian 1.16 will be dealt with. 

On (, i.e. S2 , we have 

1  
d 2   -J 	Tmin: 

2 	 9z 

1 f2D 

 
= 	

ce 
- 	

ll d
2 R exp ((Km  - K).R) 

{ 

	k,, C, f Sfl k n i kn 

  sin k-,, ( j 	cos 

k I cos k:1 f —sin k( 1  

1 C0Sn1 

On C2,  i.e. S3 , we have a similar contribution 

1  f d2 	 ______ - 	r53 
k I cos k1( 2  I 	5fl k n 2 

2 	
'2 

= 
k1( 2  cos k( 2  
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Now consider the matrix elements of the warping potential. The potential 

is defined in equations 3.22 and 3.23. Consider first the warping potential in 

the muffin-tins. Write 3.22 in the form 

V(r) = 
1  E [V m (r) {Yim (9,) + Y(9,)} 

l,m>O 

V 	
) - 

Y17(9, 
)}] 
	

(3.31) 

The matrix element betweenO,,n  and  c6m'n'  of a typical term in 3.31 is 

fr in MT d 
3  r (A m'  (m', n')u js +  

1,1 mm 

>< (At ,,,,,, ( -m, n)Uj,a  + Bi,m ,c (m, )itj,c) 1'm'",m"'m 

—i i ' 	 I it x 

Jr in 
MT dar Y17,YigYn 

n')A i ,,(m, n) f T 2  l' V1  mflul a dr 

+Bz;,m ; a (m', n')Bj ,m ,a (m, n) f r2 iti s a Vi s; m tsÜia  dr 

+A,m ; a (m', m')Bi, m ,a(m, n) f T 2 U1l ,a Viii ,m iiUi a  dr 

+ Bi',m ; a (m', n')A i ,m ,a (m, n)f r 2 i:,a V;;, m uui a  dr} 

f •— i' 
  

x 	 (3.32) 

I —i11' 	I i11 

To evaluate 3.32 the following procedure is used 

Determine the {A t ,m , cg ,B i ,m , cx } 

Evaluate the radial integrals in 3.32 

Evaluate the part of 3.32 independent of (m, ii) and (m', n') 

The radial integrals for different atoms in the same star are easily deter-

mined from those for one atom, by operating on the Viu, m ;i and V1n_u integrals 

with the symmetry matrices. 



The matrix elements of the warping potential in the interstitial region are 

somewhat more complicated to evaluate. They must be evaluated between the 

true embedding planes, with no warping potential between these and the flat 

embedding planes. - 

We only evaluate the matrix elements of the warping potential in the shaded 

region. In practice this is done by evaluating the matrix elements between (2 

and (, and subtracting the volume integrals of Vwatp  over the muffin-tin caps 

which intersect (1  and (2.  It is also at this stage where the cap integrals of the 

constant substrate potentials referred to earlier are incorporated. 

The general form of the matrix elements of the warping potential is as 

follows. 

CL 

IVWarp I m,n) = f dz 
 f2D cell 	

r lVwarprrL , n  d2 R 

- 	 d 3 
 qi:Vwarpcbm,n 

Jr in MT Ce 

fr in cap )3 
d3risVwarpm , n 	(3.33) 

13 

The sign in the last integral of 3.33 over the caps is as shown in the previous 

diagram. 
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Consider first the plane wave contribution from the first term in 3.23 to 

the first term in 3.33. This is 

"  f
Cl 

dz 
f2D unit cell 

d 2  R exp (14K, + Gm" - K m').R) 

coskz f Cos k?isz f coskz 

{ 	

(3.34) 
sin n:z 	sin kz 	sin is  

	

8m" m'—m f (I  d 	
cos k 	 cos kz 

{ sin k,iz { sin kisz 	
sinkz (3.35) 

D  

The trigonometric triple products can be expanded as 

cosk& z 	COS  kuz 	Cos k,z 	1 4 	a, Cos i2z 	

(3.36) 

	

sin lc&z I sin k"z 	sin kz 	i=i [ bi  sin icz 

where 

n i  = + 	- k 	K2 = - 	+ k 

	

= —k + + k 	K4= k + + k 

The {a 2 , b 2 } in 3.36 are given by the following table. 

ccc a2 = 

ccs bi  = —1,1,1,1 

cs c bi  = 1,-1,1,1 

css a 2  = 1 1 1 7 -1 7 —1  

scc bi  = 1,1,—1,1 

scs a2  = 1, —1, 1, —1 

ssc di =  

	

sss 
	

bi  = 1,1,1,—i 

Note that 's'=sin and 'c'=cos. Where not explicitly stated, the relevant coef-

ficients are zero. 

Hence 3.35 becomes 

V,. 	 i { a2  (sin c(1  - sin k2) 

2 D 
8rn",-rn'—m 	- 

	

i=1 	b, (- cos k 2 (i + cos icj(2) 
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The plane wave contribution to the second term in 3.33 is 

Vm ", rz" 	a cos i'cz 

2 	b Jr in1T 
d3r exp(i(Gm  + Gm " - Gm').R) { sin 

i=lt.  i 
(3.37) 

Now, putting 

and 

gives 

G(m, Tn", rn') = ( m + Gm " Gm' 

r=Ra +za +p 

(3.38) 

J d3r exp ((Gm  + Gm " - Gm').R) 
COS kZ 

{ 

sin ri z 

COS kiZ - 4p 	
ex(iG.Ra ){

a 
 Ji(G+jpa ) 

- sin 'cz, 

where equation 3.30 has been used. 

So 3.37 becomes 

4 
27rp,Vm"n" 	

a2 

i=1 I bi 
exp(iG.Ra) 	

cos frc j za 
 

sin 

J1 (G + 'SIpa) 

IG + re i ij  

Hence 

(m1,nI1warpm,n)pw 	
Vm"ni' 	J ai 

 I6m1'm'_m 
1 { 	

- sin i(2 

2 	i=1 I b  L - D 	' 	- cos /j(i + cos KiG 

4 	 c 
- 	pexp(iG.R) 	

OSkiZa Ji(IG +#ciIPa)1 
CI 	 { sin IjZa 	G + 'j 	j 

+ corrections from the caps 

The cap corrections will be dealt with later. The next stage is to consider 

the other terms in the warping potential (3.23), with regardto the first two 

terms in 3.33. So we require the matrix elements of the linear, quadratic, and 

exponential terms in 3.23. 
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Linear Term 

The integral between 2  and is 

2V1  ri 
- I dz

f12'D 	
d2 R exp ((K m  - K).R) z 

{ cos k1z f cos 

ci Jc 	unit cell sinksz 	sink,z 

(3.39) 

Writing 

Cos ksz 	cosk1z - 1 2 	acos,cz 

	

sin k&z 	sin Icz 	2 bi sin Icj z 

where 

	

= - 	 = + Jc 

and the {a, b} are 

cc a2 =1,1 

Cs bi = —1,1 

ss a, = 

gives 3.39, after some integration, as 

V1 	2  1 { a 1  (cos ic(1 - cos k(2 + ni( i  sin ,c(1 - 'i2 sin 'i(2) 

- sin 	- ii COS j( + j2 COS i(2) 	

(3.40) 
=1 1S 	b  

When r i  = 0 

f zdz= 
1  
—((—) 

	

Jc 2 	2 

The muffin-tin contribution is 

2 	ai 

o 
d3r exp ((Km  K).R) Z 

{

COS rViz 	
(3.41) 

frinMT sin icz 

We require the result 

Jr in MT ci d 
3  z exp ((Km  - K1).R) exp(ikjz) 

= exp(i(Km  - Km').Ra  exp(iicz) 

	

[Z.  4 	
Ji(cp) + 
	

J2(frPa)] 	 (3.42) 
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where 

= Km - Km' + kill 

As ic -f 0, 3.42 becomes 
47r  

Taking real and imaginary parts of 3.42 gives the cos Ic j z and sin kZ inte-

grals in 3.41 respectively, giving the final result (using 3.40) as 

2 	a, 
(m',nulVwarplm,n) linear term = Vi 

i=1 

	

I cos 	- cos k2 + k1 sin ic(1 - k(2 sin ic(2 
x 

	

sin 	- sin k(2 - 	 cos k1 + k(2 cos 

v- 4 3  
- 	 exp(i(Km  - Km').R 	

Ji(kpa) J cos kiZa 

	

k+p 	
51fl/'CiZa

Ki  + (k+)2J2(k+Pa)J 	

SflkiZa 

)] 

CO5kZ 

+ corrections from the caps 

Quadratic Term 

The derivation is similar to that for the linear term, but more cumbersome. 

The following result is required. 

d3'r exp ( (i.r)) z 2  = 4irpexp(i(Km - Km').Rexp(ikiza ) 
fr . in MT  

	

X J
2 J1(icp) 	2izaicj 

(kp) + 
()2 —3K 	

~ ) Z
cz 	+ (,4)2  L72 	

3(k+)3 	

( 

 

+ 	
1

3(+)53 
[(3(k+)2p 

- 6) sin içpa  - ((k)3p - kP) COS k Pa1.} (3.43) 
 Pct 
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Taking real and imaginary parts of 3.43, and including the matrix element 

of z 2  over (2  to (i  gives 

(m1, nhIVwarpIzn ,n)quadratic term 

2 	a 1s,i 	f 	cos 	- 2'i(2 cos ,c(2  + r, ? ( sin 
=V2> 

i=1 	b 	L DI 	2ic(1  sin /j(1  - 2,c(2  Sfl ij( - c( COS 

 -,( sin ij( - 2 sin k(1 + 2 sin 'i(2 

cos r 1 (2 + 2 cos ic(i - 2 cos 

4ir  	 2 

J(c+p) I CO5/jZa 
--p exp((K -Km').R 

	

a 

a 	
( 

 

2zc  
+(+)2J2(! 

+ Pot ){ 
COS tCiZa  

+ (3(ic)2 p - 6) sin icpa - ( 
3(-1- 

+ corrections from the caps 

+)2 - 3,c2  ( 

+ 	3(+)3 
zPJ3(+P){ 

COS?iZa 

sin !jZa 

(,+)3p3 	s6'pa) COS  tpa { S1fl/Z 

3 
/ Pa COSkiZ a  

(3.44) 

As Ki —+ 0, 3.44 becomes 

(m',0 I Vwarp I Om , O) quadratic term 

	

2V2 8m ',rn  1((—() 3 (Z 2  

  D 	>Hpa  a +_)j 
CL 

Exponential Terms 

The integral between (2  and (i  of exp(Gisz) is 

2Vm:0,+ f' dz f d 2  R exp ((Km  + Gm" - Km').R) 
Q 	-'C2 

x 	 exp(G m sz) 	 (3.45) 

	

cos'z 	 { coskz 

	

sin kiz 	 sin kz 

2 	a 	<i 	cos icz 

f dz 	 exp(Gisz) 	(3.46) 

	

- D 	 I b 	 sin ,z 
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After integrating, 3.46 becomes 

	

Vmu+ 2 	a, 	1 { 

D 	i—i 	b IGm t;12 + 

I (Gm ': cosic;1 + kj sin kji)exp(G m:i1) 

sin ic2 (1 - ic, COS icjj)exp(Gmiij) 

+HGmu' COS 	- ri sin i2) exp(Gm's2) 
(3.47) 

+(Gm u' sin KiG + tccos icj2)exp(G mis(2) 

The muffin- tin terms are 

Vmi:,+ 2 1 a 

r b 	
d3'r exp ((Km  +  

in MT a =1 

X exp(Gmiiz) 

{

COS Kiz 	
(3.48) 

sin iz 

Now 

fr in MT a 
d 3  r exp (i(K m  + Gm " - Km ').R) exp(Gm"z) exp(iiçz) 

= exp(Gssza )exp(i(Gm  + Gm" - Gmi).Ror )exp(iiizc,) 

x f'od 3 p exp(i(Gm +G," - Gm').R') exp(Gmuz ') exp(ii1z ' ) 	(3.49) 

where (R' , z') are now understood to be referred to the centre of muffin-tin 

alpha. In future the prime on these coordinates will be dropped, but has been 

included explicitly here, to avoid confusion. Write 

exp ((Gm  + Gm" - Grn ').R) exp(Gnz) e;p(ic 1 z) = exp(iKr) 

where 

K=x — iy 

and 
1 

= 	 + 	G, +(IG 2  + 	G,)+4G,2   I  
= ± 	G - 	, + 1 2 	G,,) +{l 	 G G   f( 	c  
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Note that G is defined as in 3.38. y has the same sign as 

Now exp(iKr) can be expanded using the Rayleigh expansion as in 3.17. 

On integrating 3.17 through the muffin-tin, only the 1 = 0 term is non-zero. 

This term is given as Jo (Kr). So 

fo P 
dp exp(iG.R) exp(G m i'z) exp(i j z) 

= I d3pY0([jyIpa) 
Jo 

2 JI QX  - iy]p) 
= 4Pa 	[x - iyj 

So 3.49 becomes 

- yIPQ) 47rp exp(G!sz Q ) exp(iG.R) exp(i/cjza) 	r - iy] 
(3.50) 

If G = Gm ', r i  = 0, then 

frin MT a d
3r exp(iGu.R)exp(±Guz) 

4ir 
=  - -p exp(iGmis.R,) exp(±Gm"za ) 
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Putting 3.50 in 3.48, taking the real and imaginary parts, and adding 3.47, 

gives for the Vm it +  and Vm tt terms 	- 

(qSini,ndVwarpIm ,n)exponential terms 

	

I 	 2 1 a 

=,, (DG + n) 

	

rnMir 	 i=1 	bi 	fl  

cos ic 2 (1 + nj sin ic i (i )exp(G m " j ) 
x 

(G m" sin 'cCi - icj COS icj(i )exp(G mii(i ) 

- k, sin k(2) exp(Gmu(2) 

+(Gm u' sin ,c2 (2  + r1i cos k 2 (2) exp(Gu(2 ) 

_E --p, exp(i(Gm  + G m " - Gm').Ra ) exp(Guz) 
a 

I Re (exp(iKjzC').  X 

 Tm 	 [x — zy] 	) 

2  f a ( 
+ 	

b 	D(GII + nfl) Mir i=1 

I (GM" coscj (i  + icj sin #cj i )exp(—G m :s j ) 

[ (_Gm is sin ,c 1  - ri COS icj(i )exp(—Gm" i ) 

cos ,c(2  + r i sin 'c(2) exp(—G m :'(2) 

+(Gm " sin ic2 + rti cos Ici(2 )exp(—G m tI(2 ) 

- 	exp(i(G m  + G71 - Gm').R a ) exp(—Gmnza ) 

Re
. _______ 

( 

	

X 	 i exp(z j za ) I Im \. 	 [x+'iy] 

+ corrections from the caps 

The integrals over the muffin-tin caps (third term in 3.33) are now required. 

Consider the problem for the right embedding plane (c). The left embedding 
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plane (2)  is treated similarly. The geometry for the caps to the right of is 

7 

We wish to integrate some function of z, f(z) over the caps. The matrix 

element has the form 

, 

f
Pa

dzf(z) f 	
2r 

RdR f dG exp(iGR cos 9) 	(3.51) 

Now 

I dO exp(iGR  cos t9) = 2irJo(GR) 
Jo 

and 

fo 0 
x'Jo(x') dx' = x -71  (x) 

So 3.51 becomes 

27r Pa 

-57  fz I 
d-  f (z)  Fp2  ~— z 2 	G Vp &7— z 2 ) 
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For the caps to the left of ( j  we have the geometry 

The cap integral is now 

2ir 	— k'I 

La dzf(z)/p - z2 J1 (G/ 'p; _ 2 
) 	

(3.53) 

Now consider the left embedding plane ((2).  Caps to the left of 2  are 

treated using 3.53, and caps to the right of ç 2  using 3.52. The integrations in 

3.52 and 3.53 are done by a Gauss-Chebyshev method [30]. 

Finally, the energy dependent matrix elements of the embedding potential 

are required over both embedding planes. Over (, these are 

(n',nuIG '  
(1 

= 	G,i,:g I d2 R I d2 Rcb m ',n' exp(i(Kii.R - Km".W)) mn  (3.54) 
A 	

rn 

where the embedding potential has been expanded in two dimensional plane 

waves 

1 
GO -1 (R, R') - 	G rt u m iii exp(i(Kmi'.R - Kmui.R')) 

Hence, 3.54 reduces to 

	

f cos 	I cos 	
(3.55) 

D 2,m',m 	
sin 	sin kç 1  

The matrix element of G' over (2  is identical to 3.55 except ( I  is replaced 

by (2- 
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The matrix H - ES can now be evaluated. It is inverted to give G as in 

equation 1.14. i.e. 

	

GK(r, r') = 	 m',n'(r)Gm',n',m,n n , n (i") 	 (3.56) 
m • nm' 

3.7 Construction of the Density of States and 

Charge Density 

The local density of states with wavevector K is related to the Green function 

via 

K(r, E) = -Im GK(r, r, E + iE) 	 (3.57) 
ir 

The ie shifts the energy off the real axis where G has a branch cut. Using 

3.56 gives 3.57 as 

K(r, E) = 11m ' 	rn',n'(r')Gm'n',rn,n nn (r') 	(3.58) 
I_s 

m,n,rn ,n 

To evaluate the density of states in a particular region, 3.58 is integrated 

over the volume of interest. In practice the density of states in the muffin-tins 

of each star, and the density of states in the embedded region (between S 2  and 

S3 ) are evaluated. Also, the total density of states, summed over wavevector 

K is evaluated. 

The charge density is found by integrating the Green function over the 

energy range of interest. In practice this energy will encompass the valence 

bands of both substrates, allowing for the potential shift across the interface. 

So 

f
Ep 

E1
pK(r) = dEOK(r,E) 	 (3.59) 

 
Ep 

= 

	

f IM 	q5m i, n'(r)Gm',n',rnn(E + ie)4? 	dE (3.60) 
E1 rn,n,in',n' 

El 



E1  and EF are the initial and final energies respectively. In the case of a 

metallic interface, EF is the Fermi energy. Write 3.60 as 

pK(r) = 	 ( 3.61) 
- 	mn,m',n' 

where 
1

fE r
EF  

Gm',r',m,n 
= 	

Im Gm ',n ', m , n (E + ie) dE 	 (3.62) 

Equation 3.62 is evaluated on the contour which is a semi-circle in the 

upper half plane, of radius (EF - E1 )/2. Rearranging this integral into a 

more suitable form yields 

= (EF - E1) 

fo7r 

d [sin Im Gm',n,m,n - cos Re Gm',n',m,n] 
2r 

The charge density inside the muffin-tins is expanded in the form (equa-

tion 3.1) 

pK(r) = E (pl',m'l,K(r) cos m"q + pp",-" K(r) sin rn")P1" m s'(9) 
1I ,rn,I >o 

where the {Pi",m",K,Pl",-m",K}  are real. 

If we initially write 

	

pK(r) = E P1h, , mh , ,aK(r)hiht,m"( 9 ,ct) ) 	 ( 3.63) 
1'' rn'' 

then the real coefficients are related to the complex coefficients in 3.63 by 

	

= 2 Re P",rn",a,K 1 	(3.64) 
P1",-rn",a,K = —2 Imp,,m,,aK I 

If m" = 0, then Pi",o,K = RePIIS,O,K. 
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The Pv'rn"a,K  of 3.63, using 3.16, 3.61, 3.63 are 

i Cm' 	 E 	,a (7Th', 	,a +  
rn,n,rn',' 

(A ma (m,n)ui, a  + B, rn ,a (m,n)iii,a) 

{.',. 	{ 	

•1 f 
	Ys,miY m iiYi d 

jl'_' 	_t -i 	in MT 

Pi",rn",a,K = 	(ui'a(r)uia(r)C, msirn + àii,a(r)i,a(r)C,rn, ,i,m 

+uii,a(r)ii,a(r)C m :,z , m  + 

X Jr in MT 
a Yi',m'Yiml"m" dl 

where 

Clll,,nl,i,m 	 f 
rn,n>m' ,&;m',n' 

[A i t,m i cx (m', n')A ma (m, n) + Ais,rn'a(m, m)A'ma(m' , n')] 

, , ,rn 	 I 	n' ,rn,n 
m,n>m',n';rn' n' 

[Ei',m s,a (m', n')B a(m, n) + Ei t, rn',a(m, i)B m ,a (m', n')] 

Cjmi ,i,rn = 	12 	,m,n 
tn,n>m'ri' rn' ,n' 

[A i t, i& , a (m', n')Brma (m, ii) + Ai s m i,a(m, n)Ema(m' , n')] 

Cii m i,i,m  = 	 fGm',nira,n 

rn' n' 

[Ei ',m i,a (m', n')A, a (m, n) + 14 m ',a(m, n)Erma (m' , n')] 

where 
1 ifm',n'm,n 

I ifm',n'=m,n 
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and 

- 	I i i  
Ai, m ,cx (m ) n) =  4i,m ,a (m ) n) 

- 	 I i 

Bi,m, a(m,n) = 	 ( 7n, n) 
2 1  

The sum over symmetry related K points is obtained by using the symme-

try operations as described in section 3.1, and given in equation 3.2. 

In the interstitial region, the charge density is expanded as 

I cosk,z 
pK(r) = 7,  PK,m h 1 ,nh 1 exp(iGm' 1 ) 	 ( 3.65) 

1I,IS 	 sin )cz 

Using 3.15 and 3.61, gives pK(r)  as 

f 
pK(r) = 

2 
- 	Omi,ni,mnexp(i(Km 	

cos kiz 	coskz 
— Km).R) { sin 

k'z 	sin kz rn ,n',m,n 

(3.66) 

Writing the trigonometric products in the form of a trigonometric sum, 

gives for the  coefficients in 3.65 

nil even 

1 
Pm" n" = 
	

:i: 	Gm',n',,n,,iSm"m'_in ( 6n,iri -n 	,n' 

rn'n',m,n 

where 

+ —* cosk'z coskz 

— —p sin ksz sin kz 

in 3.66 

n" odd 

= 
1 	

T,  Om m nh  m,6m" rn' -m( 8n" ,n'+n ± sn" ,n' n) (3.67) 
in' ,?3' ,m ,n 



In 3.67 we use the + sign if keven < k0 , and the - sign if keven > kojc . 

The total charge density is found by summing over 'special K points'. 

These will be described in the next chapter. 

3.8 Summary 

Much of the work presented in this chapter is somewhat laborious to work 

through in detail. However, this is mainly an artefact of the geometry invioved, 

and the reader need only understand the principles involved in order to gain 

insight into the method of solution. The key points to note are the use of 

symmetry, the LAPW basis set, and the form of the potential used. If the 

calculations were non-self-consistent, then the work would end here, as we 

now have the density of states and the charge density, given some form for 

the potential. Since in this work the self-consistent field procedure is used, 

we must now go on to construct the new potential from the charge density 

calculated above. 
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Chapter 4 

Construction of the New 

Potential 

The second part of the self-consistent process, namely obtaining the new poten-

tial, is developed here. In chapter 3, the valence charge density was evaluated. 

The core charge density must now be calculated and added to this valence 

density. Fortunately, this part of the calculation is identical to the surface 

case, so this section of the surface program is unchanged. A description of the 

method of obtaining the core charge density is given. 

As we are interested in calculating the total charge density, we require a 

method of integrating the charge density, evaluated at different wavevectors, 

across the Brillouin zone. The 'special K points' scheme is described, this being 

an efficient and computationally feasible method to perform this integration. 

In order to compute the Fourier coefficients of the potential, the charge 

density must first be Fourier transformed. Due to the rapid variations in 

the charge density near the nuclei, this is not an easy task. The problem is 

overcome by forming a pseudo charge density inside the muffin-tins, which gives 

rise to the same interstitial potential as the real muffin-tin charge density. The 

construction of this pseudo charge density is described, as an understanding 

of this is required in order to make sense of the parameters chosen in the 

calculations presented later. 

Finally, the construction of the potential from this pseudo charge density 
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is dealt with Having obtained the interstitial potential, the boundary value 

problem for the muffin-tin spheres is solved. The exchange-correlation poten-

tial is then added to give a potential which is mixed with the potential of the 

previous iteration, to give the new potential. 

4.1 The Core Charge Density 

For the core states, a fully relativistic treatment is used, but only the spher-

ically symmetric part of the muffin-tin potential is used. So we require both 

the lower and upper parts of the wavefunction given by 3.6 and 3.7. 

Now, putting 

P=rg 	Q=rf 

and using a logarithmic grid, x = In r, changes 3.6 and 3.7 to 

ÔQ - 	 'V 
 

— E 
exp(x)( 	)P+Q 	 (4.1) 

OP 

	

—itP + exp(x)2McQ 	 (4.2) 

where 

2Mc 
= 2mc2  +(E - V) 

The starting values are obtained from the limit of small and large r, giving 

as r -p 

z 
q 	

c(k - a) 

where 

P = 	 Q = qrc 

Asr — oo  
Q 	

____ 

- ~ exp(- -yr)El- 2mc 2  E 
 

where 
/IEl(2mc 2  + E) 

7= 
C 

The method of solution closely resembles that described by Liberman et 

al. [31], except that the self-consistency part of his paper does not arise here. 

W. 



Liberman performs calculations on free atoms and ions, for as we are only 

interested in the solution for the core electrons here. The total charge density 

is calculated from the sum of the core and valence charge densities. 

Briefly, the equations 4.1 and 4.2 are first integrated outwards from r = 0 

to the classical turning point (r j ) at some initial trial energy. The number of 

nodes of the wavefunction is evaluated, and if this is not equal to the correct 

number, (n - 1 - 1), then the energy is successively refined until this is true. 

The equations are then integrated inwards from an 'effective infinity' (r2 ), 

determined from the condition that 

II exp - {2(V(r) - 	dr iO 
T - 2 

From the discontinuity in the upper and lower components of the wavefunction 

at r 1 , a correction to the energy can be found [31]. This procedure is continued 

until SE/E 	Thus the core charge density can now be calculated using 

p(r) 
= 	

{fJ(r) + g(r)] 

4.2 Special K Points 

Section 3.7 dealt with the construction of the valence charge density at fixed 

wavevector, pK(r). The total valence charge density p(r) is required. The 

obvious approach is to sum the {p,(r)} over a fine mesh of points {K 2 } in 

the irreducible part of the Brillouin zone. However, this would be very time 

consuming. Another, and a more practical approach, is to use the so called 

'special' or 'representative' K points. These are chosen so that the sum of a 

weighted charge density at these points is a good approximation to the total 

charge density. This approach was initiated by Baidereschi [32], who suggested 

using a single mean value point. This is the optimal K point for approximating 

the mean value of a periodic function across the Brillouin zone. The technique 

has been generalised to the case of more K points in papers by Chadi and 

Cohen [33,34], and Monkhorst and Pack [35]. The method is most suitable for 

insulators and semiconductors, where the valence bands are full. 
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Since the interface Brillouin zone is two dimensional, we require the 2-D 

special K points. Cunningham [36] has derived suitable points for each of the 

five 2-D lattices. The periodic function f(K) is expanded as 

f(K) =10+ E fm 4m (K) 	 (4.3) 

where 

A m (K) = 	exp('iK.R) 	(m E .if) 

I l Cm 

K, R are the two dimensional wavevectors and lattice vectors respectively. 

The Cm correspond to the rings of 2-D lattice vectors. As m increases, IR 

also increases. 

Now we require the integral of 1(K) over the two dimensional Brillouin 

zone. The mean value of 1(K) is 

- 	A 
I = ( 27r) 1 f(K) d 2  

Z 	
K 

B 

Also 

1=10 

The following conditions are imposed on the {K 2 } and weights {a} 

i A m (K i) = 0 	(m = 1 -* N) 

- 

So 4.3 becomes 

10 = 	af(K) - 	fmIi'4m(1(i) 	 (4.4) 

As m increases, IfmI decreases, since the valence charge density is in general 

well behaved and smooth. Thus the second term in 4.4 can be made as small 

as one chooses, by choosing N large enough. The method used to obtain the 

{K} is given in Cunningham [36]. 



This method can also be used for metals although the discontinuity in the 

charge density at the Fermi energy means that a larger set of {K2 } may be 

required. Metal surface calculations performed by my co-workers at Daresbury 

have shown that three K points in the irreducible part of the Brillouin zone 

are often adequate, and even only one K point is sufficient for the first few 

iterations in the self-consistent process. 

4.3 Construction of the Pseudo Charge Den-

sity 

The charge density has already been determined, and the problem is now 

to solve Poisson's equation to obtain the potential. This is done by Fourier 

transforming the charge density, and then calculating the Fourier components 

of the potential via Poisson's equation. However, due to the rapid variation 

of the charge density near the nuclei, any Fourier expansion will be slowly 

convergent. To overcome this, a recently developed method of solution due 

to Weinert [37] is used, which uses the concept of multipole moments of the 

charge density inside the muffin-tins. A description of multipole moments can 

be found in Jackson [38], but briefly, given a charge distribution p(x'), the 

potential at x is 

4(x) =f
p(x') 

d3 x' 	 (4.5) 
Ix - x'l 

Now, Ix X11
can be expanded as [38] 

Ix - x'I 
= 47r 	

21 	
11n(')Yi,m() 	(4.6) 

10 

r <  (r > ) is the smaller (larger) of lxi and lx'i. 

Consider a sphere, outside of which p(x') = 0. Write the potential outside 

the sphere as 
00 	47r 	_____ 

(x) = 
21+1   q1,m r11 	

(4.7) 
1=0 m-1 



Now use 4.6 in 4.5 to obtain another expression for (x) 

(x) = 	
1 	V YM(i,)r 

I1
p(X 1) j3X1I Yi,rn(*) 

7.1+1 
1,rn 

21 + 1 

where r' = r < , and r = r>. 

So the {q,1}  are 

qz = I v .Ll*m (x
I\
) 7' p( x )d 3 x' 	 (4.8) 

These are the multipole moments. 

Weinert [37] derives a pseudo charge density which is the same as the 

actual charge density in the interstitial region, and has the same multipole 

moments as the real charge density inside the muffin tins. It therefore gives 

rise to the correct interstitial potential via 4.7. Knowing this potential, the 

boundary value problem for the potential inside the muffin-tins is then solved, 

finally giving the potential throughout the interface. Weinert's analysis as-

sumes three dimensional periodicity, but this can be readily generalised to the 

two dimensional case, as exists in the interface. 

As in equation 3.65, the charge density in the interstitial region is expanded 

as 

p(r) = 	p,,,, exp(iG,.R) I cos kz 
(4.9) 

sin lcz 

Inside the muffin-tins p is expanded as 

p(r) = E (pl,m(?)  cos mq + p1,-rn sin mq5) P1,m (9) 
1,m>O 

The total charge density in the interface is now written in the form 

p( r)  = 	+ E [pmt-Q(r - r) - pint (r)] O(r in a ) 	(4.10) 
mt a 

® is the unit step function. pt(r) has been extended over the entire interface, 

including inside the muffin-tins. 
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As real spherical harmonics are used for the charge density expansion inside 

the muffin-tins, real multipole moments of the charge density inside muffin-

tin a are defined as 

ql,m,a = f 
Pa 

rI+ 2 p1,m,a (r) dr 
0 

f 
Pa 

ql,_m,a = 	rl+2p1, _ m,a (r) dr  

p is the radius of muffin-tin a. 

The real 	in 4.11 are related to the complex qm  in 4.8 via 

	

qY j ,,(k) = E (qz,, cos m + qz,—m,a sin mq5) Pi,m (9) 	(4.12) 
M. 	 m>0 

The real multipole moments (mt)  of the muffin-tin charge density can 

therefore be easily calculated via the integrals in 4.11. 

To find the multipole moments of the interstitial charge density in muffin-

tin a, first write this charge density (4.9) relative to the sphere centres. So 

= 	Pm,n,a exp(iG m  .ra ) exp(iG m .p) 

mn 

J COSk y Z COSICnPz 

sink,z. sinkp 

 —sinkz sinkp 
(4.13) 

+coskz sin /Cnp z  

where r = r+p, ra  being the centre of muffin-tin a, Za  being the z component. 

Hence, the multipole moments of 

cos kn p:  exp(iG.p) 

sin kp exp(iG m .p) 

are required in muffin-tin a. 

Using the definition of the ordinary multipole moments (4.8), and following 

Weinert [3], gives the multipole moments of cos k,p z  exp(iGs.p) as 

9i  Pa 
qi,m 

= { 

4j 1 p 1 +3 	t(9m'nPa)y1*(,) (1 + m) even 	
(4.14) 

0 	 (l+m)odd 
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and those of sin kp exp(iG m i.p) as 

	

= {

(1 + m) odd 	
(4.15) 

0 	 (l+m)even 

where 

= Gm ' + kni 	9.1,n = 

The 	= 0 terms are 

( '; 3 	=0
3 Pa 

qx,o 

= 	

(4.16) 
0 	1 0  

Equations 4.14, 4.15, and 4.16, substituted into 4.13, give the multipole 

moments of pint(r)  inside muffin-tin a. The real and imaginary parts of these 

complex multipole moments are taken to give the real multipole moments 

(qt). Hence, the second term in 4.10 gives rise to multipole moments 

(including the nuclear charge) 

qmt — qjnt 	l7::0 
(4.17) 

z 
qmt — qjnt — 	1=0 

The problem now is to find a pseudo charge density inside the muffin-

tins which has the multipole moments 4.17, but which can be easily Fourier 

transformed. Weinert writes in muffin-tin a 

1,rn 	 71 

where a71, lI71  are parameters for the power series, and the {Qim}  are chosen 

such that the pseudo charge density, 3, has the correct multipole moments. 

These are (using 4.8) 

4 
	

Ct 

1,111, = v,7 + 1+ 3 
(4.18) 
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Again, following Weinert, we choose 

(iEZ) 

and determine the Fourier transform of ,3 in muffin-tin c as 

fMT dr 
,3a (r) exp(—ik.r) > 47TQi,m()1Yi,m(k)p3 

 
TI 	77! 	2ii J1+v+i(kpa)  

X 

E(-2) " (p)&'+l 	 (4.19) 
( -  

where for the present, k is a three dimensional wavevector. 

Weinert imposes the condition 
TI 

>an 	p=O 	(zi=0,1,2,...,n—l) 	(4.20) 
'lW 	( 

This set of equations has the solution 

2(n-) 
a.7 = (— i) 	

ri
a  P (n - 77)!17! a 	 (4.21) 

At this stage it is very easy to lose track of the Physics involved, so the 

meaning of equation 4.20 will be considered. Weinert proves that imposing 

condition 4.20 is equivalent to setting the first (n — i) derivatives, , equal to 

zero at the muffin-tin surface. Thus n measures the smoothness of the pseudo 

charge density. With hindsight, the conditions imposed by Weinert are chosen 

to give this result. Using 4.20 and 4.21 in 4.19 gives 

im T a 
d3r 13(r)exp(—ik.r) = 	4irQjm (—i) 1 Y1 , m (k) 

_____________ 
XP 	 (4.22) 

C1 

1+2n+3 
(kpa ) TI+l  

Now Qim  is defined by 4.18, with zi, = 277+1 as before, and using a q  defined 

in 4.21 gives 

_____________ 	(4.23) Qi,m = a(l) 21+2n+3 
Pa 
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The following result, proved by Weinert is required 

n 	
17 	n! 	 2n!(21 + 1)!! 

	

- )!!(21 + 2 + 3) = (21 + 2n + 3)!! 	
(4.24) 

Using 4.24 in 4.23 and rearranging gives 

Qi,rn = 	
( 1)'i,m 	

x 
 (21+2n+3)!! 	

(4.25) 
(21 + 1)!!  

Put 4.25 into 4.22 to obtain 

fMT.d 
3 
 . 	

qi, 	(21+2n+3)!! 
r pa (r) exp(—zk.r) = 4ir 2_ 21+2n+3 X 

	
(21 + 1)!! 1,m Pa 

< 	
L7+n+i(1pa) 

(4.26) 

	

(7. 	n+1 

We now wish to find the Fourier coefficients of the pseudo charge density, 

having two dimensional periodicity. The total 5 is written in a form analagous 

to the real p. This is 

(r) = 	m,a exp(iGm.R) I cos kz 

m ,n sin kz 

So 

m,n = f2D.(r)exp(—iGm.R) { 
coskz 	

x if = 0) 
 unit cell sin kz 

Again, writing r = ra  + p, using 4.26, and the relationship between real and 

complex multipole moments (4.12) gives after -some manipulation, in muffin-

tin a 
pta

m n - sin kz m,n 	
(4.27) .nP(_Gm) 	

a "
{ 	

a Cm ",n + cos nz 5  sin 	 mn 
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where the 1 nJ  are I. 	 m,  

8r 1 ______  

— - -(x if n = 0) 	
( . )1 (21 + 2n + 3)!! 	Ji+n+i(kp cx ) 

AD 2 	Zm ~O;(1+m) even 	(21 + !! 	
X 
 k'p' 

x (qm  cosmq + 41,—rn sin mq5) Pi,m(9) 

and 

81r 
- 	

( . )1 _ 1 (21+2fl+3)!! 	J+n+i(sa0a) 

(21+ 1)!! 	
X 

AD 
l,m>O;(1+m) odd 	 Pa 

X ('t,m  cos mb+ z,_ m  sin mc5)Pi ,m (9) 

where k = G + k,,, and (9, 0) are the spherical polar angles defining k. For 

k=0 

++i(kp a 	 1=0 ) 	5 (2n+3)!! 

k'p,+"' = 
	0 	1 0 

So, from4.27, we now have the pseudo charge density coefficients. Note that 

the maximum value of i = ii) can be different for each 1 (See equation 4.19). 

Weinert suggests using n such that the first zero of J++1(z)  occurs at about 

Z = kmaxp,, where p d,, is the radius of muffin-tin a, and k,maz is the magnitude 

of the largest wavevector in the plane wave expansion of p. kmax  is given by 

(6ir2 N'\ 
v) 

V being the unit cell volume, and N the number of plane waves. The table 

of n values for different values of I and (k 0 p) is reproduced from Weinert's 

paper in figure 4.1. 
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15 14 13 12 11 10 9 8 7 6 5 4 3 	2 
0) 	20.54 19.45 18.35 17.25 16.14 15.03 13.92 12.79 11.66 10.51 9.36 8.18 6.99 	5.76 	4.49 

14 13 12 11 10 9 8 7 6 5 4 3 2 	1 	0 
13 12 11 10 9 8 7 6 5 4 3 2 1-0 
12 11 10 9 8 7 6 5 4 3 2 1 0 
II 10 9 8 7 6 5 4 3 2 1 0 
10 9 8 7 6 5 4 3 2 1 0 

9 8 7 6 5 .4 3 2 1 0 
8 7 6 5 4 3 2 1 0 
7 6 5 4 3 2 1 0 
6 S 4 3 .2 1 0 

Figure 4.1: n values for different 1 and (kma pa ). From Weinert [37]. 

4.4 Construction of the Electrostatic Poten-

tial 

The charge density is now in the required form. The next step involves the 

solution of Poisson's equation. Initially we solve for the interstitial potential, 

using the potential shift across the interface as boundary conditions. Knowl-

edge of the position of the Fermi level (EF) in each bulk material, and the fact 

that EF is constant across the interface, allows this shift to be calculated at 

the outset. In metals, EF is known, so the shift can be easily calculated. In a 

semiconductor system we do not know EF,  so either the experimentally mea-

sured value is used, or one places EF at the centre of the band gap, as a first 

approximation. The muffin-tin, potential is now & boundary value problem, 

the boundary conditions being determined by the expansion of the interstitial 

potential over the muffin-tin surfaces. 

Interstitial Potential 

In the interstitial region the charge density is written as 

Pint (r) + 13(r) 
	

(4.28) 

Pint (r) being the charge density as defined by equation 3.65, and 15(r) is the 

pseudo charge density. 



4.28 is expanded as 

cos  
Pm,n exp (Gm.R) 

{

kz 

in rL Z ,n 	 sin k  

where 

Pm,n = Pm,n + Pm,n 

First consider the Gm  = 0 component of the charge density. The 	term 

is given by 
2Tr 

(1 V0, 

	

- i9z2 
= 	1 0 

with solution 

V=Vo ,o + Vi z —2ir,3o,0z 2  

Vo ,o , V1  being constants. 

The full G = 0 component is 

' 	cosk,z 
V(z) = Vo ,o  + Vi z - 2ir150 ,0 z 2  + 	

4ir 
-i3o, 

f 	(4.29) 
sink,.z 

4.29 must match onto the G m  = 0 component of the substrate potential over 

the two true embedding surfaces. At present, the potential is specified at 

with corrections being included later. Letting the G = 0 component of the 

potential at ±- be V0  (±), and solving for Vo ,o  and V1  gives 

D 2 	'4ir 	I cosk 
V0,0 = 1r/,o-- - I jPo,n ç 	+ 0 

71 	71 	 10 

where 
(_D) + V  

00 = VO — 	
0  (+ D) 

I 10 
V1  = - I 2 	 +&j 

L 71 	 1sinkn 
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where 

VO (+ D 
	

V. (— ) 

The general solution of Poisson's equation (finite G,), given by 

92 V 
m+G2V 	

coskz 

8z2 	m m 
sin kz 

where 

V = E Vm  exp(iGm .R) 
rn 

is given by 

	

41r 	f coskz 
Vm (z) = Vm , +  exp(G m z) + Vm ,_ exp(—Gmm z) + E 

k 2  + G2  n TL 	 m 
(4.30) 

Matching 4.30 onto the mt  component of the substrate potentials at ±. gives 

1 	[ 	4ir 	f cos k - sinh Gm 	
- 2m] Vm,+ = - SjflhG m D 	k + G2 	 cosh Gm 

Pm,n 
n n 	m 	sin kq-  

where 

2,m = 	() exp (_) - vm 
( - ) 

exp (Gm ) 

and 

1 	[47r 	f cos kn511uh1Gm 	
- 3.m] V, 	- 

hGm D 	k 2  + G2 Pm,n Sifl 	
L n n 	m 	- sin k cosh Gm 

where 

3,m = (_ D) 
exp (Gm ) - Vm () exp (_G m ) 
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The potential is now in the form 

V(r) = E V exp(iGm.R) { 

	

kz 
+Viz+V2z2 

in ,n 	 sin kz 

+ E (Vrn , +  exp(G m z) + 	exp(—Gz)) exp(iG.R) (4.31) 

We specify the bulk potential (Vjk(r)) at random points {r2 } across the in-

terface, and must adjust all the potential coefficients so as to make {V(r)} as 

calculated by 4.31, the best fit to {V,,,1k(r1)}. This is done using a least squares 

fit. The procedure is 

Set {4,} = 0 Vi, m, then calculate {V(r 2 )}. 

Subtract V(r 2 ) from Vb1k(r) to give the electrostatic potential, Veiec(rz). 

FormW(r) = Vezec(ri) - V(r) 

Also 

SV(r) = 5V0 ,o +6Vi z 

+ 	E 	5V,,+ 	E 	exp(Gz) cos 

2D stars p 	2D waves in star p 

+ 	E 	5V. 	E 	exp(—Gz) cos G.r 

2D stars p 	2D waves in star p 

Note that in practice the sum over 2D waves is taken as a sum over the 2D 

stars, with a coefficient Vp , ±  for each star. 

Let Ni and N2 be the number of random points on C, and 2  respec-

tively, and NVSTR be the number of 2D stars. We set up ,  a (Ni + N2) by 

(2*NVSTR + 2) matrix, A, containing in each row 

1 zi  E exp(G,,,_zi)cosG,,,.ri.. - 	exp(—Gz) cos 

Also, a column matrix P with (Ni + N2) entries 6V(r 2 ) is set up. So 

Ax=P 

The least squares fit gives the 2*NVSTR+2 coefficient corrections in x. 
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Muffin-Tin Potential 

The muffin tin potential can now be determined from the charge density inside 

the muffin tin spheres and using the boundary conditions set by the previously 

evaluated interstitial potential. First, this interstitial potential must be ex-

panded over the surface of each muffin-tin a, to give the components of the 

potential for each value of 1 and m. 

Plane Wave Term 

= exp(iGm.ra) { 

	

[exp(iKn.)exp(iknza) exp(iGm.R) { 
cosz 

sin kz 2i 

/ 	 ± exp(iK , .g)exp(_ik n z a )] 

where 

= Gm  ± k,I 

and 

ra +p=R+z 

The coefficient of 	in the expansion of exp(iK. , ) is 

411J1(Km,npa)Yjn( 9 , ') 

where K 	- IK ' and (9, ) are the spherical polar angles defining K rn ,y m,n - 

Also, the coefficient of exp(iK;.) is 

4iii'Jj(Kmnpc)Y( 7r -0 ,O) 

= (_1)l+m41riJ(Km,npa)Yi*,n(9, ) 
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After some manipulation 

exp(iGm .R) COS knzlima = exp(iGm.ra)4iri1 Ji(Km,npa)Y(9, ) 

I cos /cz 	(1 -F- m) even 

i sin kz, (l -i -m)odd 

and 

exp(iGm .R) COS knZlima = exp(iG m  .ra)4i'' Ji(K,npa)l'7m(9 , ) 

II 1'CnZa (1 +m) even 

cos kn  (1 + m) odd 

z Term 

Zj,m = fSurfaceofMTa 

= )surface of MT 
a Y(f)(z a  + p cos 9) d 

- 	a6LO 	V - 	- 	, ;in,o + 	jPcx 1 11;mo 

Z2 Term 

2 
lL,rn,a = fsurface of MT a 	

1)(z + 2Zapa  cos 9 + p COS2  9) d1 

= )surface of MT a 	
+ 2zpa Y1 o() 

V Y  + f 

	
2,0()+4) 

2 	 7r 

{ 	

1 

= 	(+ 	81,O;m,O + a  3)FL3 

+I
45 p51,2jm,O  

M  



exp(iG m .R ± Gm Z) Terms 

exp(iGm .R ± Gm ) = exp(iG m .ra  ± Gm ,,) exp(iGm. ± Gmpz) 

exp(iGm . ± Gmpz) = exp(Gm p(i sin  cos 0 ± cos 9)) 	(4.32) 

where 9 is the usual spherical polar angle of Pa,  and 0 is the angle between.p 

and Gm. 4.32 is expanded as 

(GrnPaY 
(±1)'(cos 9 ± i sin  cos 

But from Hobson [39] 

	

(cos 9 ± i sin  cos 	= Pi (cos 9) + 2 E (1)m exp (_im) 

M=1 

 

it 
X 

p lm'(9)  
(l+m)! 

4. 	{ 	 I 

= (21+1) 	
Y1 ,0 (9, ) +2 	(±1) exp (im  ) 

m=1 	 ((1 + m)! (I - m)!) 

X Y m (9) COS  mq} 
1 	 I 	 1! 

(21+1 
4r \ I

)  

	

m=1 	((1 + m)!(l - 

X lexp (im) Y1,(9, ) + exp (_im) Yi,m( 9 , )] } 

r 

= 	
1(21 + 1)(1 + m)!(i - j rn-I I 

Hence 

1. 

	

4ir 	

]
exp(?G m.. ± Gmpz)li,,a = (±1y+n(_i)m [(21 + 

1)(1 + m)!(l - m)! 

X (Gm pa ) 1 Yt, m (9,0) 	 (4.33) 
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Now 0 in 4.33 is given by p— q5G,Jhese being the usual spherical polar angles 

of 	and G,,respectively. So 

exp(iGm .R ± Gz)Ii,m,a = exp(iGm .ra  

I 	4ir 	 (Gmpa)texp(_imcbG) 
[(21 + 1)(1 + m)!(l - m).d  

The coefficients of the real spherical harmonics are determined as in the con-

struction of the charge density (3.64). 

Now that we have derived the (1, m.)t1 components of the interstitial po-

tential on the muffin tin surfaces, we can integrate Poisson's equation, using 

these as the boundary conditions, to find Vi, m (r). In spherical coordinates, 

Poisson's equation is 

- (r2) + 47r2 r2p,m (r) 1(1 + 1)17i ,m  = 0 

A similar procedure to that used for solving the Dirac equation is imple-

mented here. Change variables to 

r = exp(x) 

a 	a 
= exp(—x)-- 

Also, put W = exp()Vm. So 

a 
exp(—x)— (exP(x) (exp(_)W)) 

ax 

+47rexp(2x)pi,m - 1(1 + 1)exp(—)W = 0 

=, 

 

W 	(1 + ) 2W - 4irexp( 
5x 
j-)pi,m 	 (4.34) 

r and x are discretised as before. 

rn  = r0  exp(5(n - 1)) 	x,-, = lnr0  + 5(n - 1) 

To solve W" = f(W), first find a predictor 

W!' = 2 W6 - 	+ 2 fo 



where 

f0 =f(W0 ) 

The corrected value for W+  is 

W=W+(f+f -2 fo) 

Finally, take 

W_, = W+C + (f+c — f+p) 30 

This is the Baylis-Peel version of the Numerov algorithm [40]. 

The first two values of W are required. Neglecting the inhomogeneous term 

in 4.34 gives 

W I'  = ( 1 + ) 2W 

So, take W = exp((l + z) for the first two values of x. 

Now integrate Poisson's equation to obtain a solutioii Vi, m (). Add 

--s./161,0/r (nuclear potential) to this, and a solution to Laplace's equa-

tion such that the total potential equals Vi, m (pa ) as given by the interstitial 

expansion. So 

v/4-71  51,0  

Vi, zn (r)
1'  

 

f 	v/4-7rZ 61 ,0 

	

+ r 
	

IV .

l,(PQ) - m(Pa) + 

	

Pa 	 1' 	J 

The average pseudo charge density and potential in a plane at given z are 

evaluated. These are given by 

- 	-. 	Cos
n 

 
On 	 sin kz 

and 

- 	. 	 coskz 

On 	 sin kz 
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4.5 Exchange-Correlation Potential 

The exchange-correlation potential must now be added to the electrostatic po-

tential determined in section 4.4. In the interstitial region, V(rj is expanded 

as 

V(r) = 	 exp(iGm.R) I coskz 

stars j 	in 	 sin kz 

Random points {r} are chosen in the interstitial region and {V(r 2 )} is 

calculated, the coefficients {V} then being determined via a least squares 

fit at these points. The calculations in this thesis use the Kohn-Sham local 

density approximation to V, as given by equation 2.11. 

Inside the muffin-tins, a Taylor expansion foris used. Write 

1 
p(r) = 	p0,0(r) + = pi,m(r)Yi,m() 

1,m 

Hence, to first order 

  'Dvx .:
V(r) = xc

_
oo(r) + 

	_ 
Poo(T)) pi,m ()Yi m() 

47r
y

1
(

_

),m 	

(  

Having added the exchange-correlation potential to the previously calcu-

lated electrostatic potential, the new potential is mixed with that from the 

previous iteration. Let f be the mixing factor. Then 

yin _fV , ut+(l_f)Vn 
n+1 - 

a 

Once partial convergence has been achieved using a constant mixing factor, 

the alternating factor scheme of Dederichs and Zeller [41] has been found to 

greatly increase the rate of convergence. 

4.6 Summary 

The self-consistent cycle has now be completed, with the construction of the 

new potential. The mixing is necessary in order to prevent instabilities in the 
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potential from building up at the next iteration. The analytic and implemen-

tation details are now finished, and the next stage involves program tests and 

applications. 



Chapter 5 

Program Tests and Metallic 

Systems 

In this chapter the method and program are applied to several metallic sys-

tems, and the problems encountered are discussed. An obvious first test is to 

consider the junction between two identical materials, by treating a slab of 

that material embedded between the same material in both substrates, which 

should recover the bulk electronic structure. This test is done for the nearly 

free electron metal, Al, and the transition metal, Ni, and the results compared 

with the known electronic structure of bulk Al and Ni respectively. Finally, 

an aluminium-nickel (001) junction is used as an example of a simple metallic 

interface. Calculations have been done using different numbers of LAPWs, 

charge density plane waves, and different positions of the embedding planes. 

It is observed that instabilities in the charge density or density of states can 

arise with certain sizes of basis set, although consistent results can be obtained 

by avoiding these particular bases. The Al-Ni (001) calculation shows the exis-

tence of states other than those due to the bulk, and the nature of these states 

is discussed. 

The calculations were performed on the FPS-164 vector processor attached 

to the 'NAS' mainframe at Daresbury Laboratory. 



5.1 Bulk Aluminium System 

The (001) direction is considered, by including two layers of Al in the interface 

slab, with an Al embedding potential on either side. Fig. 5.1 shows the geom-

etry, parameters used, and illustrates the two dimensional direct lattice basis. 

The embedding planes are placed half way between the layers of Al atoms. 

The starting potential is of the simple muffin tin form, and is taken from the 

output of a self consistent LMTO bulk Al calculation. The Fermi energy for 

this potential is known, and is used as the upper energy limit for the charge 

density construction, with the lower energy limit lying below the bottom of 

the valence bands, but above the core states. 

The basis set parameters used are as in Table 5.1. NAPW refers to the 

number of LAPWs, NSM to the number of rings of two dimensional wavevec-

tors in the LAPW basis set, and NCPW to the number of charge density 

plane waves. Initially the volume of reciprocal space filled by the LAPWs 

NAPW 100 

NSM 4 

NCPW 1500 

Table 5.1: Basis set parameters for bulk Al 

was spherical, as is usually the case in band structure calculations. However, 

for this work, this has often been found to produce instabilities in the charge 

density. Typically, these cause large non-physical fluctuations in the charge 

density, with virtually no charge in large volumes of the unit cell, and very 

high concentrations elsewhere. This problem is also characterised by the loss 

of overall charge neutrality when evaluating the total charge in the embedded 

region. Increasing the number of wavevector components perpendicular to the 

embedding plane, (k), by restricting the number of (k k 1,,) vectors has re-

duced, but not elim.aated this problem. Essentially this is equivalent to filling 

an ellipsoidal volume of reciprocal space, with the major axis of the ellipse 



perpendicular to the embedding planes. The effect of this is to allow greater 

variation of the wavefunction along the z-axis. One conclusion may be that 

the improvement could be obtained by simply increasing the LAPW basis set 

size, while keeping it spherical. There are two problems associated with this. 

Firstly, using 200 LAPWs with no ring restriction did not eliminate the prob-

lem. Secondly, attempts to use more than 200 LAPWs would involve using a 

prohibitively large amount of computer time. The value of NSM in Table 5.1 

above refers to the number of rings used for this restriction. Note that the 'n' 

values for the pseudo charge density expansion, as described in section 4.3, are 

given in Fig. 5.1. The program reads in nine values for 1 = 0 to 8, but in this 

case only the first four are used, as using larger 1 has not been found to be 

necessary. The values are taken from Table 4.1. 

Before continuing this discussion it is worth noting the parameters used for 

constructing the embedding potentials. There are four parameters of interest. 

These are 

Number of rings of real space lattice vectors to be used in the real space 

contribution to the structure constants. 

As 1 but for reciprocal space. 

Maximum number of reciprocal lattice vectors to be used for expanding 

the embedding potentials. 

Number of energy points at which the embedding potentials are evalu-

ated. 

The values 6,6,8,16 have been found to be suitable in most cases. Smaller values 

more often give rise to unstable charge densities. This is because there must 

be sufficient plane waves in the embedding potential expansion to match the 

two dimensional components of each LAPW in the interface slab. Increasing 

3 or 4 above uses considerably more computer time. The values chosen reflect 

a suitable compromise, having been arrived at via trial and error. Of course, 

for density of states calculations, many more energy points are used, typically 

100. In this case 3 above is reduced from 8 to 6. 
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Initially only one cycle is done, with the charge density and density of 

states shown inFigs. 5.2 to 5.5. The core region is omitted from the charge 

density plots for clarity. The density of states is calculated at the symmetry 

points [', X, M of the two dimensional Brillouin zone, which is related to the 

= 0 plane of the usual face centred cubic Brillouin zone as shown in Fig. 

5.6. The bandstructure of Al has been calculated at the symmetry points F, 

X, M (Figs. 5.7-5.9), to facilitate comparison with the density of states. The 

program to construct the embedding potentials has an option to produce the 

bands, which is used here. Since the density of states is inversely proportional 

to VkE, there will be a peak wherever the bands are fiat. Comparison of Figs. 

5.3 to 5.5 with Figs. 5.7 to 5.9 shows remarkably good agreement. The peaks 

in the density of states are broadened due to the energy points being shifted 

off the real axis by including a small imaginary part in the energy, in this case 

taken to be 0.002 Hartrees. 

As the starting potential is a good approximation to the real Al potential, 

we should expect self-consistency to be rapidly attained. This is indeed the 

case, with the maximum error in the output potential being 0.004 llartrees 

after 15 iterations. This error refers to the difference in potential at the muffin 

tin grid points for the output potential, relative to the input potential. Three 

representative K points are used. The first five iterations use a mixing factor 

of 0.05, and the last ten use alternating mixing factors of 0.05 and 0.25. The 

charge density, potential, and density of states are in Figs. 5.10 to 5.14. These 

compare well with the non-self-consistent results, showing no major changes, 

which would be indicative of a program problem in the self-consistent loop. 

Finally we examine the effect of moving the embedding planes. For self 

consistency these must be half way between atomic planes in order to preserve 

charge neutrality. Hence, moving the planes to some other position will not 

allow self consistency to be attempted. A calculation using the LMTO po-

tential as before, but for C, and 2  at ±D/2, has been performed and agrees 

well with the previous results (See Figs. 5.15 to 5.18). The number of LAPWs 

in this case is 150, but 4 rings are still used. It has beefi found that charge 
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density instabilities are less of a problem with the embedding planes at ±D/2 

than half way between the atomic.planes. The main difference in this case is 

that the embedding planes no longer intersect the muffin tin spheres in the 

interface slab, although it is not apparent why this should improve matters. 

This completes the program tests for Al, an example of a nearly free electron 

metal. Next we consider the case of a transition metal, namely nickel. 
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5.2 Bulk Nickel System 

The lattice is still face centered cubic as for Al, with parameters as in Table 5.2. 

The list of figures relevant to bulk Ni is given in Table 5.3. 

a 	 = 4.699 au 

= 3.322695 au 

-3.322695au 

Ni muffin tin radius 	= 2.34957 au 

D 	 = 8.021835 au 	 - 

D 	 =9au 

E 	 = -0.08 -+ 0.215 Hartrees, 16 energy points. 

'n' for pseudo p expansion 	= 11,10,9,8 

Table 5.2: Parameters for bulk Ni 

5.19 - 5.22 Non self consistent, NAPW=100, NSM=4, NCPW=1500. 

5.23 -* 5.25 Bands at t', 9 7  £'. 

5.26 -- * 5.30 Self consistent, maximum error=0.01, 

10 iterations required. Constant mixing factor of 0.02 used. 

5.31 -+ 5.34 Embedding planes at z = ±D/2, NAP W=150. 

Table 5.3: List of Figures for bulk Ni 

In Figs. 5.23-5.25, the interpolation between the discrete points in the cal-

culated band structure was aided by using existing energy band diagrams [42]. 

As for Al, the calculated density of states correlates very well with the band 

structure. Also, good agreement between the non-self consistent, self con-

sistent, and shifted embedding plane densities of states is obtained. Slight 

differences in the appearance of some plots can be attributed to small move-

ments of peaks, which because of the relatively flat Ni d-bands, are very sharp. 

The only anomaly is a peak in the density of states at M (-, .) of energy 0.16 



Hartrees, for the embedding planes at ±D/2 (Fig. 5.34), which does not ap-

pear in the other Ni densities of states at M, nor in the Ni bands at *1. As 

is to be expected, the Ni densities of states are dominated by the effect of the 

relatively flat d-bands. 

5.3 Aluminium-Nickel Junction 

The Al-Ni (001) interface is considered in this section, as an example of an s-p 

bonded metal on a transition metal. Experimental data using electron induced 

x-ray emission spectroscopy [43] indicates that there is little 3d-sp interaction, 

and that the interface is steep, with little AIM compound being formed. The 

geometry and parameters are as shown in Figs. 5.35. Only one layer each of Al 

and Ni are explicitly considered, due to the short screening length in metals. 

Thirty iterations using 150 LAPWs were required for maximum errors in the 

Al and Ni muffin tin potentials of 0.004 Hartrees. Alternating mixing factors 

of 0.05 and 0.200, and three representative K points were used. 

Account had to be taken of the potential shift across the interface. This 

is easily evaluated as the Fermi energy (EF) in each material is known, and 

when in equilibrium, EF is constant across the interface. The relevant shifts 

for Al-Ni are shown below, and the zero of energy in the interface is taken as 

the average of the interstitial potential in each of the two substrates. 

Rt 
	

N; 
Eo oc ?oTEJTIfrk Itj 

10•0 I- 1 f 
--9.o ° 	içV it'J, 

E_o of ØTc.JTAL. 
	 SLAB 

IJ 	L. 

The shift at each side is used as the boundary conditions when solving Poisson's 

equation, as described in section 4.4. 
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The charge density, potential, and density of states are in Figs. 5.36 to 5.48. 

The charge density and potential plots are for each plane of atoms, that is, 

through the Al and Ni planes respectively, and containing the z-axis. Where 

the potential is negative, dashed lines are used, and solid lines are used where 

positive (Figs. 5.38-5.39). The density of states plots are at the symmetry 

points F, X, M, and are plotted for each atomic star, as well as for the whole 

embedded region. Atomic star 1 is Al, and star 2 is Ni. Note that 120 LAPWs 

are used for the density of states, but 150 for the charge density. 150 LAPWs 

produced no problems with the charge density, but led to spurious peaks in 

the density of states, which disappeared when using either 80, 100, 120, or 200 

LAPWs. Finally note that when comparing the Al-Ni results with the bulk 

case, one should remember to take account of the shift in zero of energy across 

the interface. The potential shift (0.04675 Hartrees) must be subtracted on 

the Al side, and added on the Ni side, in order to obtain the energy in the 

interface calculation. 

Referring first to the density of states at F in the Al muffin tin (Fig. 5.40), 

shows an initial broad peak due to the Al s-p band, then a flat section from the 

overlap of the Ni s-p band inside the Al muffin tin. Most interesting is the peak 

at 0.192 Hartrees, which lies in the nearly free electron gap of the bulk Al as in 

Fig. 5.12. This peak is also seen in the Ni muffin tin (Fig. 5.41), but it is not 

so evident, due to the proximity of the Ni d-bands. To examine this further, 

the charge density for this state has been plotted (Figs. 5.49-5.51). This shows 

the localised state to be due to the d2 orbitals on the Ni, meaning that it is 

of A. symmetry. To facilitate comparison with the bulk electronic structure, 

the band structures have been calculated for the same lattice constant as used 

in the interface (Figs. 5.58-5.63). The Ni bands at F (Fig. 5.61) show the 

states of L symmetry in bulk Ni, and it is easily seen that the localised state 

lies at about the middle of the L band gap, proving that it is not a bulk Ni 

state. It is a true interface state in the sense of decaying exponentially into 

both materials, but the fact that most of its charge density is localised on the 

Ni suggests that it is akin to a Ni surface state. The electronic structure of 
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the Ni (001) surface shows d2 surface states at 1 near the top and bottom 

of the L1 gap [44], and these presumably become the interface state of this 

calculation. The Al is behaving almost like the vacuum as far as the Ni states 

are concerned, for energies in the Al band gap. 

Turning now to the density of states at R in the Al and Ni muffin tins (Figs. 

5.43 and 5.44) reveals a localised state at energy 0.12 Hartrees. This state lies 

in the Al free electron gap at X as shown in Fig. 5.59. The charge density 

of this state (Figs. 5.52-5.54) shows it to be due to either d: or d zy  orbitals 

on the Ni. Since the program symmetrises the charge density, we cannot say 

which. The localised state is similar to the one at IT, as it is mainly associated 

with the Ni, but decays exponentially into both materials. 

Finally, the density of states at M (Figs. 5.46-5.48) shows a sharp peak at 

energy 0.216 Hartrees, which is not present in either the bulk Al (Fig. 5.14) or 

bulk Ni (Fig. 5.30) densities of states. The charge density for this state (Figs. 

5.55-5.57) reveals that it is a d2 state on the Ni, thus implying Z 1  symmetry. 

Examination of the Ni bands at M (Fig. 5.63) reveals that this state lies in 

the Z 1  gap, near the bottom of the upper Z 1  band. This time the state does 

not decay into a direct band gap of the Al (Fig. 5.60), but it lies just below 

the Al Z 1  band, and cannot interact with the Al Z3  band which is of different 

symmetry, so essentially the situation is as before, with the state decaying 

exponentially into the Al. 

Apart from the features noted above, the Al and Ni densities of states 

are very similar to the bulk calculations, indicating little interaction between 

the two materials, in agreement with the experimental data of Fargues et al 

[43]. To conclude this section, the planar averaged pseudo charge density and 

electrostatic potential are given in Fig. 5.64. 

5.4 Summary 

The bulk aluminium and nickel results have verified the correct operation of 

the program. Good agreement between results, and with the known band 
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structures is obtained. Problems with instabilities when using certain sizes 

of basis set have been noted. The exact reason for these problems remains 

unknown, but with care they can be reduced or even eliminated. The Al-Ni 

- results show the existence of localised states at the Ni surface which decay into 

the Al band gap. These states are easily distinguished from the continuum of 

bulk states. 
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Chapter 6 

Aluminium-Silicon Junction 

In this chapter an Al-Si (001) junction is considered as an example of a metal-

semiconductor system. Such interfaces are important for the operation of 

many electronic devices, in particular the Schottky barrier diode. As might be 

expected, the Si band gaps are predominately filled with bulk states from the 

Al which decay into the Si side of the interface. However, true interface states 

are also observed in regions of reciprocal space where both materials have a 

band gap. 

The Si lattice is face centred cubic of side 10.22au, with a basis at (0,0,0) 

and (, , ), which can be represented by the repeat sequence of two dimen-

sional unit cells in Fig. 6.1, of side 7.227au. The Al lattice constant is also 

taken to be 7.227au, which is close to the true value of 7.600au. One layer 

of each material is explicitly considered, with the interface separation being 

the mean of that between the layers in each substrate (Fig. 6.2). The final 

geometry chosen is somewhat ad hoc, but constitutes a plausable guess at the 

likely atomic arrangement, assuming no diffusion. In reality, it is likely that 

diffusion occurs at the interface, mainly of the Al into the relatively open Si 

lattice, as this has been found to be the case in the Si-Ni (001) interface [45]. 

As the Si structure is relatively open, extra spheres are inserted in the Si sub-

strate, which is a better representation to the true potential, rather than the 

usual constant potential in the interstitial region. This is not necessary in the 

interface region, where the full 'warping' potential is used. The Fermi level in 
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Si is taken to lie at the middle of the optical gap at t', and consideration of 

the Fermi level in the Al leads to the potential shifts shown below. 

AL 

coc33 

o oç3 3 

Ii  

42 iterations, using 200 LAPWs and 8 rings in the interface and embedding 

potential expansions, were required to obtain maximum errors in the Al and 

Si potentials of 0.002 and 0.02 Hartrees respectively. Good overall charge 

neutrality was obtained in the interface slab, with there being 9.8 valence elec-

trons in the interface after convergence, compared with the expected value of 

10 electrons. This suggests that the potential shifts used are close to the true 

values, and also that consideration of more than one layer of each material 

would not greatly alter the results, even though the screening length in semi-

conductors is larger than in metals. The charge density (Figs. 6.3-6.4) looks 

fairly smooth, and does not exhibit any of the instabilities noted in Chapter 5. 

The potential (Figs. 6.5-6.6) is found to be a good fit at each boundary, and 

over the muffin tin surfaces. Initially, problems were encountered with 'extra' 

non-physical spheres appearing at the Si embedding plane, but this was traced 

to an anomaly in the construction of the potential boundary conditions due 

to the use of empty spheres in the substrate. By default, the program which 

generates the embedding potentials and boundary conditions assumes that the 

atomic basis in the interface is the same as the substrate, and constructs the 

boundary conditions accordingly. In this case the empty spheres are used in 

the Si substrate, but not in the interface slab, thus violating this assumption. 
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The density of states has been calculated at t (0, 0), X (.,0), and M 

(., ) for each atomic star, and also for the whole embedded region (Figs. 6.7- 

6.18). Comparison with the bulk results is facilitated using the calculated bulk 

band structures of Al and Si for the chosen geometry (Figs. 6.19-6.24), and 

remembering that the density of states is inversely proportional to VkE.  In 

regiotis of reciprocal space where the Si has band gaps, these are predominaz1y 

filled in the interface region by bulk states from the Al leaking across the 

interface, and decaying into the Si. Most of the features can thus be ascribed 

to bulk band structure effects, with three noted exceptions. These are: 

Fig. 6.8, F, Al star 2, energy 0.42 Hartrees. This can also be seen as a 

shoulder in the Si density of states (Fig. 6.7). 

Figs. 6.15-6.18, M, 0.14 Hartrees. 

Figs. 6.15-6.18, M, 0.24 Hartrees. 

Looking at each of these in turn, we see that the first lies in the optical gap 

of Si at F (Fig. 6.22), after allowing for the energy shift across the interface. 

However, the Al (Fig. 6.I9) does not have a band gap at this energy, so the 

situation is probably as in the Al-Ni examples, with the interface state lying 

in a symmetry gap of the Al. As we do not know the symmetry of the Al 

bands for the given lattice, this has not yet been clarified. The charge density 

(Figs. 6.25 and 6.26) is in this case not helpful in determining the symmetry. 

The first state at M of energy 0.14 Hartrees lies in a band gap of Si (Fig. 

6.24) and below the lowest valence band of Al (Fig. 6.21), so essentially is in 

a band gap of both materials. The charge density (Figs. 6.27 and 6.28) shows 

a considerable build up of charge between the Al and Si, indicating that this 

is associated with the bonding. The odd looking charge density of Fig. 6.27 

can be discounted due to the very small charge density range present in this 

plane. Moving on to the second state at M of energy 0.24 Hartrees, we see 

that it lies in the same band gap of Si (Fig. 6.24), but is now in the valence 

band gap of Al (Fig. 6.21), with the charge density (Fig. 6.29 and 6.30) again 

concentrated between the layers. 
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Summary 

The electronic structure of the Al-Si (001) interface correlates well with the 

bulk band structures for the given geometry. Localised interface states are 

also found to exist in band gaps of one or both materials. Comparison with 

other workers' results is not possible, as the calculations done to date have 

mainly dealt with the total density of states, rather than that at symmetry 

points. However, Louie and Cohen [46] and Vekilov et al [47] give results for 

the Si(111)-A1(110) interface which show interface states near the symmetry 

point K of the two dimensional hexagonal Brillouin zone. The nature of these 

states is analogous to the interface states at M in this calculation, in the sense 

that they exist in band gaps of both the Si and Al. The continuum of Al states 

is also found to decay into the Si band gaps [46]. 
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, \ 

Fig. 6.1a: FCC Si unit cell (-and------), showing only those atoms at 

(0,0,0), and the 2-D unit cell (---) to be used. 

Fig. 6db: Repeat sequence of 2-D cells to give Si lattice. 

165 



Al 

_______ 	
o 

- 	 . 	

- 

1000 
-3. 

au I = a21 	 = 7.227 au 

D 	 = 7.85845 au 

D 	 = 9.00 au 

Rsi  = Re , 	 = 2.21267 au 

RAI 	 = 2.54578 au 

(1 	 = 2.994055 au 

= -3.190195 au 

Atomic star 1 = 	Si at (01 .) 

Atomic star 2 = 	Al at (0,0) 

Atomic star 3 = 	Al at 
.(., 	 .) 

1 —0.1066 — 0.3734 	in Al 
E 1  = 

0.0000 -* 0.4800 	in Si 

16 energy points 

Al: 	9876 
n for pseudo p expansion 

Si: 	7 	6 	5 	4 

Fig. 6.2: Al-Si interface geometry and parameters. 

•: Al and Si atoms, 0: empty spheres. 

166 



"1 

0) 

o 
Cl) 

H 
rl) 

)CD 

-b 
XO.00O 

U) 	8 'O.00O 

Z3.19O 

uj 

UQ 
m co 

91 c:3 

rA 
H. 

XO.00O 

TO.00O 

Z2.994 

CD 

Charge Densit y  
A1.Si (Range0 .0-0.1 :NCONT25 :NAPW=200 :NSM=8 :NCPW1 500) 

Y14 44 

Y=O .00O 

Z-3.190 

ft 

ft 

t.  

C 

ft 	

C 	 C 

I ~ EM 
I   

X14.454 

Y=0.000 

Z=2.994 

X AXIS m1O 	X DISTANCE (A.U.) 	CONTOUR HEIGHT 



Churge Density 
AI..Si (Range0 0-0 1 :NCONT=25 :NAPW200 :NSM8 :NGPW=1 500) 

X=14.454 
I 	 I 	 I 	 I 	 I 	 I 	 I 	

IY=3.13 

(\ 	._------.--... 	Z-3.190 

1.5-I 
x=0.000 	J 
Y3.613 0.5-I 

Z2.994 0.0-I- 

0.0 
	

0.2 	0.4 

03 

o . 

Cl) 

)CD 
I-' 

C',', 
'0 

Cl) 
'-a. 

0) C', 
0) 

CD 

C, 

CD 

CD 

Cl) 
I- 

SI) 
tf 
CD 

X=O .000 

'fr3.613 6 

Z=-3.190 

w 
C-) 

-<3 
co 
•-4 
cm 
>- 

029 

12 

X14.454 

'fr3.613 

Z2.994 

.6 	0.8 
	

1.0 	1.2 
	

1.4 	1.5 

X AXIS 'lO 	X DISTANCE (A.U.) 
	

CONTOUR HEIGHT 1110 -3  



0) 

I—I 
a) 
fD 

o 
U, 

I—J 

'CD 

I:nC) 
0 
ts 

CD 

rf 

0 
ci-
CD 

I- 

I— 

PoenhiaI Mop 
RISi (NRPN=200:NSM=8:NCPN=1500) 
Min PoeniaI= -0. 14000 : Max PoeniaH 	0.2000 : NCONT20 c'J 

D 

X = 	0. 0000 
'1 = 	0.0000 
Z = 	-3.1902 ci 

14 .4540 
1 = 
	

0.0000 
-3. 1902 

14.4540 
1 = 
	

0.0000 
2.99141 



PoeniaI Mop 

P151 (NAPN=200:NSM=8:NCPN=1500) 
Min PoIenmaI 	-0JE000 : Max PoIeniaI= 	0.2000 : NCONT=20 c\J 

D 

X = 	0.0000 
I = 	3.6135  
Z 	—3.1902 ci 

1= 

X = 
1= 

H 

CD 

LU.-4 
(JD 

zcr; 
CE 
F- 

 of) 

X = 	0.0000 1,—`  

I = 	3.6135 D 
D 

Z = 	2.99111 	>.... 

— 	 llUll\ 

,llu 	 I/man... 	 m1i :) 	

UU 	

unc 
-I'll 

lflhl 
_lnn I - 	 11111 

llIfl 	 I, iliil 	 _llul I 
ail,, \ J!','  

lluI  __ 	 IIll 
n

psi 

jç 	
l, 

'; '-.--- 	I 

	

AV It 	 -C• 

••\ 	Mgt '-S.. '_' '$. 
il 

tsa p 	 5 / 	 I i.11I 
n% % I 

% )lIl• 

I 
II5 	 I slum 	 miiii 	 I •ll 

I 1111 	 mills 	 I 1111 
Belief \ __. 	J 5Il%mln. 	 tn.lg5l5  

I * 

%5 	 I S. 5 — 

1.00 	3.01 	6.02 	9.03 	12.04 
X DISTANCE (AU) 

1 11.115 110 
3.6135 

—3. 1902 

111.45140 

3.6135 
2.991-Il 

0 

C-, 

Cl) 
Cl) I-• 
I-.. 

U) 
D) CD 

rho 
0 

!1) 

U) 
c-f 
CD 

c-f 

10 
0 
c-f 
CD 

c-I- 

I-i 



xi 

CD 

(n 
I-i. 
ci-

1< 

0 

(n 
ci- - 

CD 
(p 

l-. 

C!) 

I-li 

rt 

I-.. 

P) 
ci- 

-11 

H 
-13 
H 

A1.Si (NAPW=200 :NSM=8 :NCpW1 500) 
Im.(Energy) 0.2E -2 	K vector 	(0.00000 ) 0.00000 ) 	Atoms oP star 1 

X10-1  
55 

50 

45 

Ln 40 

35 

-,-) 

U.' 

CL- 
0 

30 
-4-,  

I-n 
c25 
0 

20 

15 

10 

5 

.
I  

-6-4-20 2 4 68 10 12 14 16 1820222426283032343638404244464850525456 

Energy (Hartrees) 

L 	 . 	 I 



(D 

w 
P. 
rt 

1< 

0 
I-h 

() 
rt 
Pi 
rt 
(U 
(1) 

P. 

H 

I-h 
I-h 
I-.. 

çt 
P. 

P) 
rt 

0 

0 

U) 
rt 

-31 

H 

I'J 

At.Si (NAPW200 :NSM8 :NCPW=1 500) 
Im.(Energy) 	0.2E -2 	K vector 	(0.00000 ,0.00000 ) 	Atoms oF star 2 

8. 

7, 

6. 

-I-) 

Lfl5 
(L 
0 

U) 

Cl 

C 

3 

2. 

.
I  

-6-4-202 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 

Energy (Hartrees) 	 X102 

L 	 J 



AI..Si (NAPW200 :NSM=8 :NCPW1 500) 
Im.(Energy) 0.2E -2 	K vector 	(0.00000 1 0.00000 ) 	Atoms oF star 3 

9 

8 

7 
U.' ci) 

-I-)  

I), 

CL- 
0 

5 
-I-,  

U.' 

cii 

3 

2 

-6 ...-2 ..... 1012141618 ...fl 24 26 28 30 32 34 36 38 40 42 ..5°52 5 14 56 

Energy (Hartrees) 	 X10..2 

'1 

CD 

U, 
l-. 
ct 

1< 
0 

I—. 
	

U, 
I-f 

Li 	
ft 
CD 
U, 

I-.. 

ft 
P. 

ft 

Li 

p) 
ft 

L 	 . 	 I 



At.Si (NAPW=200 :NSM8 :NCpW1 500) 
Im.(Energy) 0.2E -2 	K. vector 	(0.00000 1 0.00000 ) 	Embedded region 

40. 

35. 

tn 30 
a) 

kn 25. 

20 

(L 
0 

Lfl 

CMI

C  a) 

IS. 

10 

5 

01 . ......................................................................................................... . I 

-6-4-20 2 4 6 8 1012141618202224262830323436384042.44
.
4648
.
50525456 

Energy (Hartrees) 	 X10..2 

I.IJ 
1-'• 

0 

CD 

(n 

Cf 

0 

In 
rt 
CD 
-f 

Fl CD 
In 

I-.. 

CD 

CD 

CD 

CD 

Fl- 
0 

CD 
I-f 

-ii 

L 	 I 



ci 
CD 

U) 
l-. 
C-f 

1< 

0 
Cl) 

U) 
ft 

Cf 
CD 
0) 

P. 

C/) 

I-h 
I-h 

Cf 
H 

Cf 

XI 

H 

Lit 

AL.Si (NAPW200 :NSft8 :NCPW=1 500) 
Im.(Energy) 02E -2 	K. vector = (0.50000 ) 000000 ) 	Atoms oP star 1 

a 

7 	A 

Ill 	5 
CL 
0 

I-n 
C 
Cu  

.
II....p".I'l' , I. ,,, I'•I'!'•I.•••................................................ I 

-6-4-20 2 4 6 8 10 12 14 16 1820222426283032343638404244 46 48 50 52 54 56 

Energy (Hartrees) 	 X102 

( 

L 	 I 



Energy (Hartrees) 	 X102 

tA 
ci)l 

In 

(i- 
0 

.4) 

In 

0) 

I H 
M 

H

ON 

(D 

U) 
I-.. 
rt 

1< 
0 

rt

I-h  

U) 

If 
ID 
U) 

I— 

H 

Fj- 

I-h 
1-h 

rf 
I-, . 

If 

0 

0 

Di 
(-f 

AISi (NAPW=200 :NSM8 :NCPW1 500) 
Im.(Energy) = 02E -2 	K vector = (0.50000 9 0.00000 ) 	Atoms oF star 2 

L 	 I 



AL..Si (NAPW200 :NSM8 :NCPW=1 500) 
Im.(Energy) 0.2E -2 	K vector (0.50000 ) 0.00000 ) 	Atoms oF star 3 

9 

8 

7 
Ln 

61 
c:I) 

tJ1 

U- 
0 5 

Ln 

a) 

3 

2 

01 -. I  
-6-4-20 2 4 6 8 10 12 14 16 18202224262830323f 36381042f4464850525456 

Energy (Hartrees) 	 X102 

l-. 

Li 

CD 

In 

It 
1< 

0 
I-h 

(1) 
et 

I—. 
	sJ 

It 
—I CD 

(p 

I—. 

I-h 

ft 

1) 
rt 

1 
It 

L 	 J 



At.Si (NAPW200 :NSM8 :NCpW1 500) 
Im.(Energy) 0.2E -2 	K vector (0.50000 1 0.00000 ) 	Embedded region 

40. 

35. 

Ln 
30 

C, 
-I-) 

I,fl25. 

0 

20 
Lfl 

CD

C  
C, 

IS 

10. 

5, 

-6-4-20 2 4 6 8 10 12 14 16 1820222426283032343638404244464850525456 

Energy (Hartrees) 	 X102 

1xj 

CD 

(D 

in 

Cf 

0 

(I) 
Cf 

OD 	Cf 

in 

I-i. 

(D 

CD 
fl 
0J 
(D 

CD 

0 

rf 

L 	 . 	 I 



H 

I-.. 

H 
01 

(D 

Cl, 
P. 
C-f 

1< 

0 

(n 
C-f 

(t• 
CD 
In 

H. 
tj 

C') 

I-h 

C-f 
H 

3 
rt 

AI..Si. (NAPW=200 :NSM=8 :NCpW1 500) 
Im.(Energy) 0.2E -2 	K vector 	(0.50000 ) 0.50000 ) 	Atoms oF star I 

18 

14 
U.' 
'LI 

-I-) 

12 
in 

(I- 

° 10 

U, 

a) 

6. 

4. 

2. 

0..I uuluuull. .......................................................................................' -' -I 

-6-4-20 2 4 6 8 i6 ' 1  2 14 16 1820222426283032343638404244464850525456 

Energy (Hartrees) 	 X102 

L 
	

I 

1 



I-. 

CD 

U) 
P. 
1• 

1< 

0 

(I, 
(-t 

rt 
CD 

rt

U)  

H) 
H) 

H. 

Di 
rf 

rt

0  

0 

DI 

A1.Si. (NAPW200:NSM8:NCPW1500) 
Im.(Energy) 02E -2 	K vector (0.50000 1 0.50000 ) 	Atoms oF star 2 

16- 

12 
U) 

-I-) 

-4-) ,n 10 
(L 
0 

4) 

I-n 
C 
U) 

6. 

IuuIuuIIIIuII .................................. 

-6-4-20 2 4 6 8 101214161820222426283032343638404244464850525456 

Energy (Hartrees) 	 X102 

L 	 I 



xj 

H 

CD 

U) 
H- 

0 
Hi 

U) 

Di 
It-
CD 
U) 

H- 

H 

rt 

Hi 
Hi 
H- 

H 

Dl 

Dl 

H 
OD 
H 

u-i 

Lfl 

CL 
0 

-4-,  

I-n 
C a) 

AI..Si. (NAPW200 :NSft8 :NCpW1 500) 
Im.(Energy) = 0.2E -2 	K vector = (0.50000 ) 0.50000 ) 	Atoms oF star 3 

I 

Energy (Hartrees) 	 X102 

L 	 : 	 I 



I-.. 
0 

H 

CD 
li 
In 
H. 
rf 

1< 
0 
I-h 

0, 
rt 
CD 
rt 
(0 
0, 

(0 

CD 

CD 
0J 

tl 
CD 

H 
0 

0) 

H 
w 
to 

AI..Si (NAPW=200 :NSM8 :NCpW1 500) 
Im.(Energy) 0.2E -2 	K vector 	(0.50000 1 0.50000 ) 	Embedded region 

70. 

65. 

Go-

55 :  

Ln 
50. 

45- Ln 

(L 
040. 

Ln 

20- 

15- 

10 .  

Iimiyuuiii..i....j... 
-6-4-20 2 4 6 8 101214161820222426283032343638404241464850525456 

Energy (Hartrees) 	 X102 

L 	 J 



> 
0) 
C-. 
ci:' 
C 

LU 0.12 

0 0.20 

-0.04 

-0.12 
0.00 

0.44 

0.36 

0.28 

0.04 

0.18 	0.36 	0.54 	0.72 	0.90 

RIuminum Bands a r 
(a=7.227 a. u. ) 

kz 

Fig.6.19: Aluminium bands at r 

183 



d 0.20 

0) 
L 
CD 
C 

Lii 0.12 

- -0.04 

-0.12 
0.00 

0.44 

0.36 

0.28 

0.04 

0.18 	0.36 	0.54 	0.72 	0.90 

Aluminium Bands of X 
(a7D227 au.) 

kz 

Fig.6.20: Aluminium bands at  

184 



> 
a-) 
L 

u_i 0.12 

d 0.20 

-0.04 

-0. 12 
0.00 

0.44 

0.36 

0.28 

0.04 

0.18 	0.36 	0.54 	0.72 	0.90 

Aluminium Bands a1 M 
(a -7. 227 o. u. 

kz 

Fig.6..21: Aluminium bands at  

185 



d 0.32 

> 
0) 
L 
ED 
C 

LLJ 0.24 

0.56 

0.48 

0.40 

0.16 

0.08 

0.00 
0.00 0.14 	0.28 	0.42 	0.56 	0.70 

Silicon Bands a1 r 
(a=7. 227au.) 

WIA 

Fi.6.22: Silicon bands at 1' 

186 



> 
0) 
L 

LIJ 0.24 

t0.32 

0.56 

0.48 

0.40 

0.16 

0.08 

0.00 
0.00 0.14 	0.28 	0.42 	0.56 	0.70 

Si I icon Bands at X 
(o7D227 au.) 

kz 

Fig.6.23: Silicon bands at  

187 



> 
0) 
L 
CD 
C 

LU 0.24 

0 0.32 

0.56 

0.48 

0.40 

0.16 

0.08 

0.00 
0.00 0.14 	0.28 	0.42 	0.56 	0.70 

Si I icon Bands a1 M 
(a7227 au) 

kz 

Pig.6.24: Silicon bands at 7 -  



(O 
(t, 

0 
H, a X0.000 
I_i 	U 

v—n 	6. I — i.nvvint  

c* Z=-3.190 
0 5. 
53 := 
En 	0 - 

-< 
4. 

Lu 
C-) 

I— H, 

0 
CD  2 >— 

(.4- 
CD X0.000 
co 

'ro.000 	0. 
Z=2.994 	0. 

I. 

Charge Density 
A1.Si (r :Runge=0 £-0 025 :NCONT=25 :NAPW=200 :NSM8:NGPW=1 500) 

X14.454 
I 	 I 	I 	I 	I 	I 	

Jio.000  
Z=-3.190 

.0 	0.2 	.4 	0.6 	0.8 	1.0 	1.2 

	

X AXIS 110 
	

X DISTANCE (A.U.) 	CONTOUR HEIGHT 

! 1.5 X14.454 



1. 

03 

dC) 

(DQ 
CD 

0 X--O.00O  
1=3.613 

rf 

Lo 0 

H. w 
tj  (-) 

CD 
'1 	 I- 

'-4 

CD 

En 
rf 

rt- 
CD X=O.000 

1=3.613 
Z=2.994 

Chur'qe Density 
AL.Si ('r:Runge=0 00025 :NCONT=25 :NAPW=200 :NSM8 :NCPW1 500) 

X=14.154 
1=3.613 
Z=-3.190 

X14.454 
1=3.613 
Z=2.994 

J.J 	I.j 

X AXIS *10 	X DISTANCE (A.U.) 
	

CONTOUR HEIGHT 



X=0 .000 

1=0.000 6 

Z=-3.11910 SO 

= 

w 
L) 

(I) 

cm 
>-- 2 

X=0 .000 

1=0.000 0 

2=2.994 0 

11 
I-.. 

LCD 

NJ 
-.1 

—C) 

1 p) 
CD h( 
tlLQ 

LCD CD 

II Q 
'0 
	

0(0 

Di 
I1Pt) 
rt0 

CD 
CD N 
(n 

rt 
- 	CD 

11 
I- Hi 

a 
CD 

plW 

(DP) 
rf 

0(0 

DI 

DI 

	I 
rf 
0 
B 
U) 

Chur'cie Density 
AL.Si (ThRange0 0-0N001 :NCONT=25 :NAPW200 :N$M8:NCPW=1 500) 

X=14.454 
I 	 I 	 I 	 I 	 I 	 I 	 I 

1=0.000 

	

______ 	 ______ 	 Z=-3.190 

X14.454 

1=0.000 

2=2.994 

X AXIS 110 	X DISTANCE (A.U.) 	CONTOUR HEIGHT 110 



X=14.454 

. 1=3.613 
I Z=2.994 

1 	Ni 
c-to • 
CD 
(DI-' 

--- '.5 : 
- 	CD W - 

'1 (_) 

-C 3.5- : 
0 • I--- - 

'dCD LO 
H 

- 25 >—.— 
rt 

00 
Ni 

C/) 	c-t X0.000 a 

: 	i 1=3.613  0.5 
rt Z=2.99i 0.0 - 
U) 0.0 

	

0.2 	0.4 	0.6 

	

XAXIS 110 	X DISTANCE (A.U.) 

1.4 1.5 

\. 

0.8 	1.0 	1.2 

CONTOUR HEIGHT 110_ 4  

H 
'0 

I-.. 

0:, 

—C) 
ti1 

Char  Density  I1Q 

	

CD 	

At.Si (ThRunge000-0 g025 :NCONT25 :NApW2QO:NSft8:NCpW1 500) IIQ 
OCD 

X=0.000 	 X=14.454 

	

•t:;: 	1=3.6136.5 
 

1=3.613 

- 	 Z=-3. 190 



X0 .000 
6. 

Z-3.190 
5. 

4. 
w 
C-) 

-<3 

2. 

'-4 

>- 

X0 .000 

0. 
Z=2.994 0. 

'.0 

'.0 

—0 
ttj 

(D Fj 
1 .0 
'.00 

H 0. 

' 	I-.. 
ft 

p3 
Fl 	1i 
(-to 

0 
CD H- 
cn:i 
- Ct 
. CD 

H Hi 

C) 

H 
)(fl 

::$ ft 
(D 0) 

ft 
om 
-h 

Dl 
rt 

H 

0) 
çl- 
0 
El 
(n 

H 
'0 
(-i) 

Charge Density 
AI.Si (Runge0 0-0 0025:NCONT=25:NAPW200:NSM8 :NCPW1 500) 

X14.454 
I 	I 	 I 	 I 	 I 	 I 	 I 	 I 	

Y0.000 

I 	 (I\\\i/JJHJ 

L  Sam 

(c i U)) 
\ D, 

X14.454 

Y=0.000 

Z2.994 
I I  

0.8 	1.0 	1.2 	1.4 	1.5 0.0 	0.2 	0.4 	0.6 

CONTOUR HEIGHT 110-4 

	

XAXIS 1110 	X DISTANCE (A.U.) 



I-i. 

1) 
0 

pj 

(D)1 
IILQ 

II 
O(D 

tlj La 

	

rt 	Y3.613 

	

Ft 	Z-3.19O 
rfO 

= 

	

- lb 	 w 
C-.) 

I-•-Ii 
-<3 

C) 

p)o) 
2 

	

(DP) 	 >- 
I-f.  

0  
I-h 

	

rf 	x=0.000 

p, 	T3.613 
rt 

Z=2.994 
El 
En 

Fl 
Io 

e 

Charge Density 
A1.S1 (Range=0 D00 p025 :NCONT=25 :NAPW=200 :NSM=8 :NCPW=1 500) 

X14.454 
I 	 I 	 I 	 I 	 I 	 I 	 I 	

IT3.613 
Z-3.190 

Sam 
X=14.454 

1=3.613 

Z=2.894 

0.0 	0.2 	0.4 	0.6 
	

0.8 	1.0 	1.2 	1.4 	1.5 

	

X AXIS *10 	X DISTANCE (A.U.) 
	

CONTOUR HEIGHT 110 -4  



Conclusion 

Apart from a couple of remaining problems, the method has proved itself ca-

pable of producing useful results. There is no other technique available which 

correctly represents the bulk substrates in an interface calculation. The prob-

lems of discrete states in finite sized systems, and of energy level splitting due 

to interference have been eliminated. Thus as the results of Chapters 5 and 6 

show, interface states and other interesting features can be readily identified. 

As discussed in Chapter 2, the calculations are performed within the frame-

work of density functional theory (DFT), in particular within the local density 

approximation (LDA). This is enfirely adequate for most applications, but 

studies of excited states, such as unoccupied interface states, would make it 

desirable to move beyond the LDA, for example, by explicitly considering the 

self energy of the system. Much of this theory has been formulated in the 

recent past, so a universal picture has yet to emerge, making any such modi-

fications somewhat specific. In some instances the correction to LDA simply 

involves moving the conduction and valence bands rigidly apart, but in other 

cases the solution is more complicated. 

The major remaining problems which warrant comment are the inability 

to predict potential shifts across the junction, except in the case of metallic 

interfaces, and the instabilities which sometimes occur. At present the poten-

tial shift across the interface is essentially determined via intuition in insulator 

or semiconductor systems, which in an otherwise ab initio calculation, capable 

of going to self consistency, is clearly undesirable. Such shifts depend on the 

charge transfer across the interface, and the condition of overall charge neu-

trality. Since most of the charge transfer is often localised near the interface, 
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it is in principle possible to integrate the Green function over an energy range 

which gives charge neutrality in the interface region. This would require the 

Green function to be integrated many times, with the energy range being re-

fined at each iteration, leading to a considerable increase in computer time. 

Also, varying the potential shift throughout the self consistent process would 

mean that one of the embedding potentials be recalculated at each iteration, 

somewhat defeating the purpose of using the embedding potential method. 

The problem of instabilities appearing with certain sizes of basis set has yet 

to be completely resolved. Varying the method of construction of the LAPW 

basis improved but did not always eliminate the problem. In retrospect, this 

situation is understandable, as the convergence of the embedding potential 

expansion will certainly depend on the material and lattice geometry stud-

ied. Thus one would expect to have to reach a compromise between basis set 

size and computer requirements, and as previously discussed, the solution for 

a given system is determined mainly via trial and error. Furthermore, the 

embedding potentials are calculated for the simple muffin tin potential in the 

substrates, but used in a full potential calculation in the interface. It would 

be desirable to evaluate the embedding potentials from a full potential bulk 

calculation, which would also allow the potential boundary conditions to be 

more accurately determined. 

Further work on the existing embedding potential formalism remains to 

be done. At present the atomic positions are fixed at the outset, using an 

intuitive approach. This is justified in many situations, as either the lattice 

is known from experiment, or the interface has been grown using molecular 

beam epitaxy (MBE), where the underlying lattice is continuous across the 

junction. It would be useful to include total energy in the program, so that 

the lowest energy configuration of a number of options could be determined. 

Often one does not know the exact nature of the interface reconstruction, but 

does know that it is likely to be one of a finite number of possibilities. It is here 

that knowledge of the total energy would be useful. Also, recent experimental 

work by Martensson et al [481 has allowed interface adhesion energies to be 
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measured by considering the energy shifts of atomic core levels. Self consistent 

calculations of the total energy would be useful for comparison with this data. 

It is apparent that in order to properly understand the electronic properties 

of interfaces, there is no substitute for both experiment and computational 

work of the scale presented in this thesis. There is no simple set of rules 

which can universally determine interface behaviour, mainly due to the detailed 

nature of the potential in the interface region. 
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