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ABSTRACT

Although conventional two-dimensional and Doppler blood-flow

echocardiography are the standard imaging approaches in the assessment of heart

disease they do not provide anatomic reconstructions in a form that resembles the

cardiac morphology as visualized by the surgeon.

The work presented in this thesis has explored the hypotheses that three-

dimensional echocardiography facilitates spatial recognition of intracardiac

structures and therefore enhances the diagnostic confidence of echocardiography in

congenital and acquired heart disease. The accuracy of three-dimensional

reconstructions has been validated in vitro using two different phantoms and in vivo

comparing the results with other established diagnostic techniques or surgical

findings. Additionally, as the main limitation of transthoracic three-dimensional

echocardiography is poor image quality in a substantial proportion of adult patients,

Doppler myocardial imaging has been tested as a potentially superior method to

conventional grey-scale imaging for transthoracic three-dimensional image

acquisition.

In vitro, using a virtual computer-generated phantom and a dynamic tissue-

mimicking phantom, the accuracy of both linear measurements and volume

computation obtained from three-dimensional images was established. For both

grey-scale and Doppler myocardial imaging, a detail of 1.0 mm dimension and two

details separated from each other by a distance of 1.0 mm were the smallest

structures and distances identified from a three-dimensional image. When testing the

accuracy of volume measurements it appeared that both techniques marginally

underestimated the true phantom volume (by approximately 1.0 ml for Doppler

myocardial imaging and 4.0 ml for grey-scale imaging), but the systematic error was
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smaller and more constant in the case of Doppler myocardial imaging over the range

of different true volumes.

In vivo, the study was designed to compare the accuracy of grey-scale and

Doppler myocardial imaging three-dimensional left ventricular volume

measurements and cineventriculography. The differences were significantly smaller

for the Doppler technique during both end-diastole and end-systole. A series of

congenital heart lesions has also been studied. It has been shown that dynamic

surgical reconstruction of the secundum atrial septal defect is feasible from the

transthoracic approach in all patients. However, in adults, Doppler myocardial

imaging proved more effective than grey-scale imaging in the accuracy of three-

dimensional defect reconstruction. In patients with sinus venosus atrial septal defect,

transthoracic three-dimensional echocardiography was more accurate than standard

echocardiography in diagnosing the defect including a detailed description of the

abnormal pulmonary venous drainage. Finally, in children with atrio-ventricular

septal defects, the 'unroofed' atrial reconstruction of the common valve accurately

displayed dynamic valve morphology en face and the mechanism of valve reflux.
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FAITH

Faith is in you whenever you look

At a dewdrop or a floating leaf

And know that they are because they have to be.

Even if you close your eyes and dream up things

The world will remain as it has always been

And the leaf will be carried by the waters of the rivers.

You have faith also when you hurt your foot

Against a sharp rock and you know

That rocks are here to hurt our feet.

See the long shadow that is cast by the tree?

We and the flowers throw shadows on the earth.

What has no shadow has no strength to live.

Czeslaw Milosz
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'But it is hardly a consolation,

that I will be read by doctoral

candidates - what they do not read!

One would like to do something

not onlyfor library dust.'

Czeslaw Milosz
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PREFACE

Three-dimensional echocardiography is an imaging technique that is in active

evolution. Since 1974 the technique has evolved from potentially interesting but

crude, and limited for practical use, to the user friendly and almost clinically

practical where the acquisition of dynamic and high-resolution three-dimensional

images of heart structures takes no longer than a couple of minutes. Although three-

dimensional echocardiography is potentially seen as the most informative method of

assessing complex heart malformations, the experience of using it in clinical practice

is limited and requires further validation in a series of clinical studies.

The aim of this thesis was to assess the feasibility of transthoracic three-dimensional

echocardiography in the assessment of congenital and acquired heart disease.

Previous studies on three-dimensional ultrasound image reconstruction have been

carried out using standard grey-scale (B-mode) imaging technique. In these reports,

due to poor transthoracic image quality, standard grey-scale images were frequently

acquired from a transoesophageal approach. In this thesis the additional value of

Doppler myocardial imaging as potentially superior to grey-scale imaging technique

for three-dimensional transthoracic echocardiography has been assessed.

After a general overview, provided in Chapter 1, the methodology of three-

dimensional image acquisition used in this thesis is presented in Chapter 2.
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Chapter 3 deals with the in vitro validation of the spatial resolution of reconstructed

three-dimensional images. Also, the in vitro accuracy of three-dimensional volume

computation has been assessed in this chapter. These in vitro studies have been

performed using the two imaging techniques of standard grey-scale and Doppler

myocardial imaging.

In the next four chapters the potential clinical applications of three-dimensional

echocardiography were evaluated in various heart conditions.

Volume measurements by three-dimensional echocardiography allow the elimination

of geometrical assumptions. This is addressed in Chapter 4 where a clinical study

has been designed to compare the accuracy of standard grey-scale and Doppler

myocardial imaging three-dimensional volume measurements by comparing them to

the clinically accepted method of left ventricular volume measurement,

cineventriculography.

Chapter 5 evaluates the usefulness of three-dimensional echocardiography in the

imaging of secundum atrial septal defect. With the growing interest in new

techniques of atrial septal defect closure, the precise assessment of the defect size,

morphology and its spatial relations to other cardiac structures is crucial for optimum

patient selection. Therefore, in Chapter 5 the feasibility of transthoracic three-

dimensional echocardiography in the assessment of size and morphology of

secundum atrial septal defect was studied. The diagnostic information obtained from

three-dimensional reconstructed images (both grey-scale and Doppler myocardial

images) has been compared to Magnetic Resonance Imaging and intraoperative

findings.
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In Chapter 6 the role of transthoracic three-dimensional echocardiography in the

diagnosis of sinus venosus atrial septal defect was evaluated. Sinus venosus is an

uncommon but also an underdetected congenital cardiac anomaly. Because of the

extraseptal location of the interatrial communication it is often not readily diagnosed

by two-dimensional transthoracic echocardiography. Therefore, an accurate

transthoracic technique to diagnose this heart defect would be of great value.

Chapter 7 describes the feasibility of transthoracic three-dimensional

echocardiography in the pre-operative assessment of atrio-ventricular septal defect.

Although, the presence of the defect can readily be diagnosed by transthoracic two-

dimensional echocardiography, three-dimensional reconstruction of the exact

morphology of the common atrio-ventricular valve and the display of the mechanism

of valve reflux should enhance preoperative information and potentially improve

surgical reconstruction.

Finally, Chapter 8 provides a summary and states the conclusions of the thesis.

Separate studies are described in each of the data chapters. A similar layout is

employed in each, consisting of the background, study aims, methods, results,

discussion and conclusions. To avoid the risk of introducing a degree of repetition in

the methods section, Chapter 1 describes the protocol for image acquisition in detail

and the consecutive methodology sections of each chapter therefore emphasise the

important differences that exist between the studies.
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CHAPTER 1

Three-dimensional echocardiography

An overview
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1.1. Introduction

Echocardiography has evolved over the last four decades from single beam

imaging to sophisticated three-dimensional and Doppler techniques which allow us

to study cardiac structure, function and haemodynamics in detail.

It was in the early 1950s that the collaboration of a cardiologist, Inge Edler

and a physicist, Hellmuth Hertz resulted in the recording of the first M-mode

echocardiogram [Edler and Hertz, 1954], A few years later, in 1957, the first paper

was published in English by Satomura about the feasibility of the Doppler

phenomenon in detecting moving cardiac structures [Satomura, 1957]. This

publication laid the foundations to another important development that was reported

in 1969 independently by Baker in the USA, Peronneau in France and Wells in

Britain and which demonstrated the clinical feasibility of the range-gated pulsed

Doppler principle [Baker, 1969; Peronneau et al., 1969; Wells, 1969], Almost in

parallel, in 1972, Bom and colleagues constructed the first practical two-

dimensional real-time scanner and demonstrated the potential of this technique in

diagnosing heart disease [Bom, 1972]. Duplex scanning, which meant that two-

dimensional imaging could be used to identify the anatomical position of the

Doppler beam, was invented in the USA in 1980 by Phillips and colleagues [Phillips

et al., 1980]. The introduction ofDoppler colour flow mapping can be regarded as a

natural extension of duplex scanning. In 1981 Eyer and colleagues described a

colour flow mapping system operating at an image frame rate of four per second

[Eyer et al., 1981]. This was regarded too slow for diagnostic cardiac investigation.

Four years later, in 1985, a Japanese engineer Kasai and co-workers developed real¬

time colour flow mapping [Kasai et al., 1985],
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Thus, echocardiography in the form that is used today in clinical practice was born

effectively in 1985.

1.2. Basic concepts of three-dimensional echocardiography

One of the chief goals of cardiac imaging is to display the anatomy of the

heart throughout its cycle. From the assessment of cardiac morphology the size,

shape, and function of the chambers and valves, as well as the spatial relationships of

these structures can be evaluated. The latter information is of the most obvious

importance in congenital cardiac disorders, where complex morphology is

commonly seen. Most cardiac imaging methods attempt to depict the details of

cardiac geometry by offering several individual projection views (e.g. angiography)

or topographic sections (e.g. echocardiography, computed tomography, or magnetic

resonance) through the heart. A mental reconstruction of these views into a three-

dimensional image of the heart is then required. The usual method of achieving this

mental picture is qualitative, based on experience examining images ofmany normal

and abnormal hearts. Another alternative is to utilise a computer-reconstructed three-

dimensional image or model of the heart. The purpose of such computer-based three-

dimensional images is to replace the mental picture of cardiac geometry with a

computer generated image that can be displayed in various orientations and even

'sliced' by the computer to delineate better the complexities of cardiac anatomy.

Two main approaches are used for the display of three-dimensional cardiac

images: (1) wire-frame displays that in general are associated with acoustic

transducer position registration systems and (2) shaded surface (volume-rendered)

displays usually associated with mechanical transducer position registration systems.
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The general steps in performing three-dimensional ultrasound reconstruction

include: (1) acquiring each two-dimensional image along with the information on its

position and orientation relative to other images acquired; (2) interpolation of data

between original two-dimensional images in order to complete the three-dimensional

data-set for display and analysis; (3) reconstructing the several two-dimensional cut-

planes into a three-dimensional data structure with a global, three-dimensional co¬

ordinate system; (4) display of the three-dimensional data; and (5) computing of

quantitative variables from the three-dimensional reconstruction, such as distances,

angles, and volumes at any phase of the cardiac cycle.

These steps differ slightly between the volume-rendered and wire-frame three-

dimensional echocardiography.

1.2.1. Image acquisition and registration

Recording of echocardiographic data for reassembly into a three-dimensional data-

set requires the use of a spatial registration device to record the position and

orientation of the transducer as each individual two-dimensional image is obtained.

This problem has been solved in a variety of ways, including the use of acoustic,

mechanical and laser-based position registration devices. So far, most experience has

been achieved with acoustic and mechanical transducer position registration systems

and these will be summarised below.

Acoustic transducer position registration systems

To acquire a three-dimensional data-set, a conventional real-time ultrasound scanner

is linked to an acoustical three-dimensional spatial locating system that associates

spatial co-ordinate information with each acquired two-dimensional image. The first
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three-dimensional spatial locator was designed by King et al. as an acoustical

position-tracking system composed of an array of four point microphone receivers

plus electronic circuitry [King et al., 1976]. Using the system of King et al., three

sound emitters need to be fixed in a small triangle on a metal plate attached to the

ultrasound transducer. The four acoustic point microphone receivers are mounted in

a square array on a frame suspended from a stand. The sound emitters, energised in a

rapid sequence, produce 60-kHz sound waves that travel to each of the four overhead

microphones. The time of flight of the sound from each emitter to each microphone

is being measured, corrected for environmental conditions, and used to calculate a

slant range between the two points. From these slant ranges the X,Y,Z co-ordinates

of the transducer and subsequently its image are computed in a spatial co-ordinate

system defined by the microphone array. The ultrasound images and their spatial co¬

ordinate data are combined in the computer video display to produce a three-

dimensional data-set. Any ultrasound scanner may be used if its video image signal

is accessible for transmission to the computer and the sound emitter array may be

attached to the transducer head. The in vitro analysis of the potential accuracy of this

system showed that (1) the three-dimensional scanner per se does not introduce

significant new errors into echocardiographic measurements; (2) the measurement of

dimensions, angles, and volumes can be achieved with a very high degree of

accuracy; and (3) the principal source of error in echocardiographic measurement is

related to the poor lateral resolution caused by the ultrasound beam width [King et

al., 1991],
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Several similar three-dimensional scanners based on the same principle of using

acoustic spatial locator have been developed by others. [Brinkley et ah, 1982; Moritz

et ah, 1983; Levine et ah, 1989].

Mechanical transducerposition registration systems

Dynamic three-dimensional echocardiographic reconstruction of the left ventricle

using a mechanical type of locator system was first described in 1974 by Dekker et

al. [Dekker et al., 1974], Later, in 1982 this approach was used again in an improved

form by Geiser et al. and Ghosh et al. [Geiser et al., 1982; Ghosh et al., 1982].

Geiser and colleagues have used a special mechanical arm with five 'degrees of

freedom'. The method described allowed for a three-dimensional reconstruction of

the contracting left ventricle from five two-dimensional short-axis cross-sections and

the parasternal and apical long-axis views. The three-dimensional reconstruction was

carried out using measurements from a mechanical arm which had five degrees of

freedom and which allowed spatial registration of two-dimensional planes with

respect to a fixed external reference point. The rotational or linear motion of the

probe was recorded by five calibrated high precision potentiometers. With the

information from this arm, the X, Y, and Z co-ordinates of each of twelve points on

the epicardial and endocardial borders in each video field of each of the five cross-

sections was calculated for one cardiac cycle. The indices that could be calculated

from these three-dimensional data-sets were muscle volume/mass, chamber volume,

stroke volume, cardiac output and volume dynamics i.e. systolic ejection rate and

diastolic filling rate. The approximate time of data acquisition was between thirty

minutes and over one hour. Cycle selection, stop-frame photography, printing border
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selection, and digitising took from four to seven days of interaction between

technician and the echocardiographer.

The difference between the report of Geiser et al. [Geiser et ah, 1982] and that of

Ghosh et al. [Ghosh et ah, 1982] is that Ghosh used an apical transthoracic window

rather than a parasternal for three-dimensional image acquisition. Once the

transducer was applied to the chest (either in parasternal or apical view) it was then

rotated in 30° increments from 0° to 180° to obtain different two-dimensional cross-

sections. The acquisition was electrocardiographically triggered, and both end-

diastolic and end-systolic frames were obtained at every angular increment. 0° and

180° images were exact mirror images of each other. For three-dimensional

reconstruction, two mutually orthogonal cursors were used to digitise two-

dimensional data with respect to a fixed co-ordinate system with its origin at the

transducer position. The left and right points of each view, were plotted at the

specified angle. The final area was reconstructed at a specified location along the

apical axis. Finally, integrating these areas along the axis, the desired volume was

calculated. A spatial averaging technique was used over all boundary data near the

extremities of the apical axis because of lack of continuity of data in these regions

caused by large (30°) angular rotation. Although this approach allowed observation

of a three-dimensional reconstructed image at any desired angle and from any

desired distance, it had a few major limitations. First of all, the transducer was

rotated in large (30°) increments. Secondly, the echocardiographic images were

traced from the oscilloscope using X-ray transparencies and this technique introduces

parallax error as well as obfuscation of the faint endocardial boundary by the
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superimposed X-ray film. Thirdly, the technique was very tedious and therefore not

practical for clinical use.

In 1991 Kuroda et al. published the first report on mechanical rotation scanning

using the transoesophageal approach [Kuroda et al., 1991], In this study they used

only a longitudinal plane of the biplane transoesophageal probe to compare the in

vitro accuracy of parallel and rotational scanning in volume measurements. Although

pull-back parallel scanning intuitively appeared easy for three-dimensional

reconstruction it was concluded to be impractical because of the anatomic

relationship between heart and chest or oesophagus.

Volume-rendered dynamic three-dimensional imaging based on mechanical

transducer position registration system became feasible for clinical use in 1991 when

the first commercial three-dimensional mechanical acquisition system was developed

(TomTec Echo-Scan, Munich Germany). Using this system, a three-dimensional

data-set can be obtained within a couple of minutes by a mechanical movement of

the ultrasound transducer controlled by electrocardiographic and respiratory gating

[Pini et al., 1991], There are three ways of acquiring a volume-rendered three-

dimensional data-set using the Echo-Scan: parallel scanning, rotational scanning, and

sweep (fan) scanning. During parallel scanning the ultrasound probe is mounted on a

parallel shift carriage device. The acquired image planes are always parallel and

equidistant to each other. The usual slice distance varies between 0.5 mm to 1.0 mm.

Using the same three-dimensional acquisition system one can obtain a three-

dimensional data-set using sweep (fan) scanning or rotational scanning. For an arc¬

like fan scanning a step angle between image planes is between 1° and 3°. The

maximum sweep angle is 90°. For rotational scanning, the rotational carriage device
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is used with ultrasound probes to perform a 180° rotation. The step angle between

image planes is usually 1° to 3°. The known relationship between images as the

transducer and the imaging plane are rotated aids in desired spatial registration of the

images. All these approaches are used in specific situations. While fan-like scanning

may be suitable for transoesophageal imaging, it is not a desirable transthoracic

approach in adults. Similarly, although rotational scanning may find application in

transoesophageal and transthoracic three-dimensional imaging, it is not preferable in

intravascular ultrasound imaging where parallel scanning is most frequently used.

Pandian et al. first reported on clinical feasibility of reconstructing dynamic three-

dimensional images of a beating heart. In addition to dynamic three-dimensional

display, they have been able to cut and visualise the heart in dynamic mode in any

desired plane and also in multiple planes [Pandian et ah, 1992],

1.2.2. Three-dimensional image reconstruction

The exact methods of assembling individual two-dimensional images into a three-

dimensional reconstruction of the heart vary between techniques, depending on the

type of transducer position registration system used. Nonetheless, all methods

essentially consist of placing the individual cross-sectional images into a common

three-dimensional co-ordinate system based on the position and orientation

information relating the tomographic planes to one another or relative to an external

reference system. Once all individual image slices have been registered in the global

three-dimensional co-ordinate system, the spaces between the individual image slices

are interpolated.

23



As mentioned earlier on, two general approaches have been widely used for the

display of three-dimensional cardiac images: (1) wire-frame displays that in general

are associated with acoustic transducer position registration systems and (2) shaded

surface (volume-rendered) displays usually associated with mechanical transducer

position registration systems.

(1) A wire-frame display exhibits the epicardial and endocardial contours from

individual images along with a series of lines calculated to connect each image to the

next and does not allow to display grey-scale information on cardiac tissue in three-

dimensions. The advantages of wire-frame displays include their relative simplicity

and the facilitation of calculation of volumes, mass, and regional volumes, since

contours dividing the reconstruction into subregions are already present. The main

disadvantage of wire-frame display is the difficulty appreciating complex structure

because of the presence ofmany, sometimes confusing lines in the display.

(2) Shaded surface displays (volume-rendered) produce a rendering of the three-

dimensional reconstruction that appears as an opaque object with appropriate shading

effects. These displays have the advantage of ease of visual qualitative interpretation

because of their closer resemblance to actual anatomy compared to the somewhat

artificial appearance of the wire-frame displays.

In both wire-frame and shaded surface displays, three-dimensional reconstructions

throughout the heart cycle may be used to produce a cine loop, leading to an

animated rendition of cardiac contraction and filling.
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1.3. Clinical applications of three-dimensional echocardiography

One of the main advantages of three-dimensional reconstruction is the ability

to precisely calculate physiological variables of interest. As will be discussed below,

calculations of simple parameters such as mass and volume have been accurately

performed using three-dimensional reconstructions. Furthermore, the precise

depiction of cardiac morphology and geometry provided by a three-dimensional

reconstruction permits the calculation of more complex variables in congenital and

acquired heart disease (Figure 1).

1.3.1. Assessment of cardiac geometry and function

The primary reason for attempting three-dimensional reconstruction to analyse

cardiac geometry and function was based on the hypothesis that more accurate

estimates will be obtained if they are calculated on the basis of realistic geometry

instead of assumed geometric models.

Analysis ofvolume

One of the first attempts to use three-dimensional echocardiography in the

assessment of heart function was to measure left ventricular systolic and diastolic

volume without making assumptions about its spatial geometry. Until 1991 all

reports from this area were based exclusively on acoustic transducer registration

systems and a wire-frame display of three-dimensional information. In 1983, three-

dimensional cardiac reconstruction proved to be an accurate method of assessing

ventricular mass and volume. Moritz and co-workers, using three-dimensional

echocardiography, with a wire-frame display, calculated volumes of excised

formalin-fixed canine ventricles and found an extremely good correlation between
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computer-predicted and actual volumes [Moritz et al., 1983], Similar work on

volume calculation was published in 1984 by Ariet et al. [Ariet et al., 1984], In this

in vitro experiment, an acoustic transducer position registration system was used to

acquire five non-triggered short-axis views and to combine them into a wire-frame

display of the left ventricle. It was calculated that the error ofmeasurement of the left

ventricular volume and mass volume was ± 10 ml as compared to the true volume

measurements. These two studies were followed by studies of others in which three-

dimensional echocardiography was used to calculate left ventricular volume in vitro

and in vivo against other established techniques [Sawada et ah, 1983; Fazzalari et ah,

1984; Stickels et ah, 1984]. Slightly later, in 1986, three-dimensional

echocardiography was used to calculate right ventricular volume. Linker et al. have

validated in vitro the right ventricular volume measurement using also an acoustic

transducer position registration system and a wire-frame display of three-

dimensional data [Linker et ah, 1986]. Their results showing good accuracy in right

ventricular volume measurement by three-dimensional echocardiography have been

confirmed by Jiang et al. in vivo using the same three-dimensional system, and by

Vogel et al. in vitro who used a mechanical transducer position registration system

and volume-rendered display [Jiang et ah, 1994; Vogel et ah, 1995a], In 1989,

Martin et ah published an interesting paper in which for the first time a

transoesophageal approach was used to acquire wire-frame (acoustic transducer

position registration system) three-dimensional data in order to calculate in vivo the

left ventricular end-systolic and end-diastolic volume in a group of ten anaesthetised

dogs [Martin et ah, 1989]. In this study, three-dimensional transoesophageal data

were based on a triggered (end-diastolic and end-expiration based) acquisition of
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twelve to fifteen consecutive two-dimensional images using mechanical transducer

position registration systems. As an end-point of the acquisition process, a wire¬

frame of the left ventricle was calculated by the computer from which stroke volume

(end-systolic and end-diastolic volumes) was calculated and compared to the stroke

volume calculated using a thermodilution method. Although, excellent agreement

was obtained between these two techniques (standard error 4.1 ml), the time of data

acquisition lasted from two to seven hours and therefore was not feasible for a

clinical use. This acquisition time has been shortened substantially by the release of

first commercial three-dimensional acquisition system for volume-rendered (shaded

surface) display.

The first comparison of three-dimensional, two-dimensional echocardiography and

cineventriculography in volume computation was published in 1993 by Sapin et al.

[Sapin et al., 1993], Using an acoustic transducer position registration system and a

wire-frame display, fifteen excised pig hearts were studied for volume measurements

using two-, three-dimensional echocardiography and cineventriculography. It was

calculated that three-dimensional echocardiography provides accuracy comparable to

that of biplane cineventriculography. Two-dimensional echocardiographic volume

computation was significantly less accurate than three-dimensional

echocardiography and cineventriculography. The same three-dimensional system and

the same study protocol was used again by Sapin et al. in 1994, but this time in a

clinical setting, to perform the first comparison in patients of left ventricular volume

computation by three-dimensional echocardiography, two-dimensional

echocardiography and cineventriculography [Sapin et al., 1994], Three-dimensional

echocardiography correlated highly with cineventriculography for estimation of left
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ventricular volume and had approximately half the variability of two-dimensional

echocardiography for volume measurements. The improvement of three-dimensional

over two-dimensional echocardiography was attributed to eliminating the use of

geometric assumptions and improved image positioning by use of the Tine of

intersection display'. The advantage of volume and mass computation by three-

dimensional reconstruction over two-dimensional echocardiography has recently

been reported in children with functionally single left ventricles. Accurate

assessment of these parameters is particularly important in this group of patients as

the mass to volume ratio is recognised as strong predictor of postoperative outcome

and long term prognosis [Altmannet ah, 1997], The conclusion of that paper was that

not only three-dimensional echocardiographic volume measurements were more

accurate than corresponding measurements obtained from two-dimensional

echocardiography but also that the interobserver and intraobserver variability for

mass and volume measurements derived from three-dimensional reconstructions

were significantly lower than those derived from two-dimensional echocardiography.

Analysis ofresional cardiac motion

There are still little data in the literature dealing with the use of three-dimensional

echocardiography to measure regional cardiac motion. The pioneering work in this

field belongs to McPherson et al. who have analysed acute ischaemia by three-

dimensional echocardiography [McPherson et al., 1987]. In 1993 King et al. showed

that using an acoustic transducer position registration system and a wire-frame

display of three-dimensional data it is possible to accurately measure in vitro the

surface area of an irregular shape by studying the total and infarcted surface area of

the left ventricle [King et al., 1993], A similar approach using an acoustic transducer
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position registration system and a wire frame display of three-dimensional data to

quantify the extent of myocardial damage after acute myocardial infarction was

published recently by Sapin et al. [Sapin et al., 1996]. In that report, an open chest

canine model of acute myocardial infarction was studied to test the ability of three-

dimensional echocardiography to quantify the extent of regional dyssynergy and

thereby to estimate infarct size. Using a polyhedral surface reconstruction algorithm

[Cook et al., 1980], end-diastolic left ventricular endocardial surface area was

computed by three-dimensional echocardiography from the traced endocardial

boundaries of each short-axis section. The extent of abnormal wall motion was

assessed subjectively from wall thickening and endocardial excursion, observed

when a cine loop was played forward. To determine total endocardial surface area

and dyssynergic surface area, the operator first traced each endocardial outline using

mouse-driven cursor and then used the cursor to delineate the segment showing

abnormal wall motion. For each image, the traced endocardial border was divided by

interpolation into 180 equally spaced co-ordinate points. The surface between

adjacent images was defined by lines connecting two consecutive points on one slice

with a single point on the adjacent slice, forming a series of triangular 'tiles'. The

area of all surface 'tiles' was summed to yield total endocardial surface area. The

area within the regions demarcated as showing abnormal wall motion were also

totalled to yield the surface area of the abnormal region, which was then expressed as

a percentage of total surface area. The percent of left ventricular mass showing

abnormal wall motion was calculated by assuming that the wall motion abnormality

extended uniformly through the thickness of the left ventricle and that wall thickness

in each image was uniform. The results obtained from three-dimensional
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echocardiography were correlated with those obtained from standard two-

dimensional images. Three different methods were used to quantitfy the extent of

abnormal wall motion from two-dimensional images: (1) summation-of-discs, (2)

summation-of-conical sections, and (3) summed endocardial lengths. The three-

dimensional echocardiographic quantification of the extent of regional wall motion

abnormality provided more accurate estimates of infarct size than all three

techniques used in two-dimensional echocardiography. The results of Sapin et al.

were confirmed in another open chest canine myocardial infarction model reported

by Yao et al. [Yao et al., 1997]. In the paper ofYao et al., as opposed to that of Sapin

et al., a mechanical transducer position registration rather than an acoustic system

was used before and three hours after coronary occlusion in sixteen dogs. Again, it

was shown that three-dimensional echocardiography accurately displays regional

dysfunction of infarcted left ventricle. Three-dimensional echocardiography

measured the dysfunctional mass accurately as compared to the anatomic infarct

mass. There was an excellent correlation between the mass of dysfunctional

myocardium and pathological infarct mass without systemic over- or under¬

estimation. The advantage of the volume-rendered three-dimensional

echocardiography over a wire frame display is that dynamic three-dimensional

images can be reconstructed without any tracing of the cardiac silhouettes on two-

dimensional images and have the characteristic appearance of cardiac tissue. This

allows visual appraisal of global and regional left ventricular function, detection of

wall motion abnormalities, and aneurysmal deformations.

It is likely that the absolute accuracy of the results obtained in both studies, that were

discussed above, will not be replicated in clinical myocardial infarction studies.
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However, the relative improvement of three-dimensional echocardiography will

probably be retained, as it has been in other human studies.

1.3.2. Assessment of cardiac structures

The ultimate goal of three-dimensional reconstruction of the heart relies on

the potential of the objective display of the anatomy and the complex relationships

among the different structures. It has been shown that with an integrated system for

three-dimensional acquisition of ultrasound data, this goal can be achieved both with

the transoesophageal and precordial approach. In general, mechanical transducer

position registration systems (shaded volume-rendered display) and the rotational

approach of data acquisition has many advantages over other acquisition techniques

[Roelandt et al., 1994a&b], The possibility of obtaining unrestricted two-

dimensional images coupled with the shaded (volume-rendered) dynamic display of

cardiac tissue allows us to explore fully the morphologic features of a given

structure.

Congenital heart disease

Because of the low attenuation factor of the ultrasound signal in children, three-

dimensional studies can be performed successfully using in a majority of cases a

transthoracic approach. Shaded display (volume-rendered echocardiography) of the

images and a rotational acquisition technique remains the most popular. To date,

ventricular septal defects [Rivera et ah, 1994] and atrial septal defects [Belohlawek

et al., 1993b; Franke et ah, 1997] have been studied. Both transthoracic and

transoesophageal three-dimensional images accurately displayed the varying

morphology, dimensions, and spatial relations of atrial/ventricular septal defects. The
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three-dimensional reconstruction of the mitral valve allows us to demonstrate the

nonplanarity of the mitral annulus [Levine et ah, 1987] and to enhance the criteria for

the diagnosis of mitral valve prolapse [Levine et ah, 1989], Salustri and co-workers

studied a group of adult patients (age range sixteen to fifty seven years) with various

congenital heart defects (mitral valve anomalies in five patients, aortic valve

anomalies in nine, subaortic membrane in five, ventricular septal defect in four, other

defects in ten patients) using transthoracic volume-rendered three-dimensional

echocardiography [Salustri et ah, 1995]. The unroofed cut plane of the left atrium

(equivalent to the 'surgical view' of the mitral valve) and visualisation of the mitral

valve from above allowed comprehensive assessment of leaflet motion, area orifice

and shape, and commissure morphology. Different cut planes of the left ventricle

allowed visualisation of the left ventricular outflow tract from below, with adequate

evaluation of this area. The three-dimensional reconstruction of the aortic cusps from

above or below was difficult and feasible only in two of the five patients studied. In

patients with ventricular septal defects, the relation between the ventricular septum

and the aortic valve was assessed easily and with confidence. The three-dimensional

reconstruction to view the defect en face was not feasible only in two patients in

whom defects were very small. In general, the additional information obtained by

transthoracic three-dimensional echocardiography was provided for 36% of patients.

The additional data provided by three-dimensional echocardiography were mostly

for the mitral valve, aortoseptal continuity and atrial septum. A similar study in

which a wide variety of congenital cardiac disorders have been studied in a group of

forty five children (age range 3 days to seventeen years) by transthoracic volume-

rendered three-dimensional echocardiography was reported by Vogel and co-workers
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[Vogel et al., 1994], Good quality transthoracic volume-rendered three-dimensional

reconstructions were obtained in forty three of the forty five patients studied. The

study group consisted of eleven patients with ventricular septal defects, nine with

subaortic stenosis, seven with atrio-ventricular septal defects, four with atrial septal

defects and fourteen others. Image acquisition took between three and five minutes

and the three-dimensional reconstruction of the images took between twenty and

ninety minutes, depending on the complexity of the underlying anatomy. The various

heart defects were displayed in a view that is similar to that seen by a surgeon during

repair of the defect. The authors concluded that transthoracic three-dimensional

echocardiography is feasible in most paediatric patients. It is easy to use and

enhances the information on intracardiac anatomy to that available from standard

two-dimensional echocardiography.

Acquired heart disease

In acquired heart disease, a mechanical transducer positioning registration system

and shaded surface display (volume rendering) of reconstructed data is also the most

successful way of image acquisition and display by three-dimensional

echocardiography. However, because of the mainly adult patient population being

dealt with, a transoesophageal approach is the most commonly used to acquire a

data-set. It provides high resolution images in virtually all patients by reducing the

effect of ultrasound signal attenuation by chest wall structures and by the use of

higher transducer frequencies. There is no doubt that two-dimensional

transoesophageal echocardiography provides excellent morphological and functional

information in a variety of disorders. However, to evaluate the abnormalities in a

three-dimensional heart, the examiner often performs a mental three-dimensional
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reconstruction of the pathology from multiple two-dimensional image. If a method

were available that provided objective three-dimensional images of the heart, proper

assessment of the cardiac morphology would be easier.

In 1994, Kupferwasser and co-workers evaluated the clinical applicability of three-

dimensional volume-rendered transoesophageal echocardiography in the assessment

of acquired heart disease [Kupferwasser et al., 1994]. A group of fifteen patients with

known varies heart defects (endocarditis in five, abscesses in five, heart tumours in

three, heart failure in two patients) and five patients with no apparent abnormalities

on standard transoesophageal echocardiograms were studied. The mean time for

three-dimensional data acquisition was twelve minutes (12 ±4 minutes).

Approximately thirty five minutes was needed (35 ±14 minutes) to complete three-

dimensional reconstruction of acquired images. The longest reconstruction times

were required in patients with perivalvular abscesses. The main advantage of three-

dimensional transoesophageal echocardiography over standard two-dimensional

transoesophageal echocardiography was in more comprehensive rendition of cardiac

anatomy. Consequently, a better differentiation between artefacts and structures-of-

interest was achieved from three-dimensional reconstructed images. Additionally,

distance measurements of mass lesions obtained from three-dimensional data were

shown to be more accurate then corresponding measurements obtained from two-

dimensional images.

The experience of three-dimensional visualisation of aneurysms and psedoaneurysms

of the aorta using a multiplane transoesophageal approach to acquire volume-

rendered three-dimensional images was reported by Roelandt et al. [Roelandt et al.,

1994b], The image acquisition time was essentially the same in the study of
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Kupferwasser et al. [Kupferwasser et al., 1994] - twelve minutes and that of Roelandt

et al. - seven minutes. The time required to complete a three-dimensional acquisition

remained also the same (between thirty to sixty minutes). It was concluded that

qualitative and quantitative assessment of both geometry and pathologic aspects of

the thoracic aorta, including aneurysm and dissection, are facilitated by three-

dimensional imaging. Their experience in the evaluation of aortic disorders by three-

dimensional imaging was repeated later by Sugeng et al. [Sugeng et al., 1997]. Using

the same rotational multiplanar imaging system as Roelandt et al., a group of twenty

eight pigs with aortic disorders (fifteen aortic dissections, five saccular aneurysms,

five coarctations of the aorta, five atheromas, and five clots within dissections) and

thirty six patients with aortic lesions on a routine two-dimensional echocardiographic

examination were studied. Again as in previous studies, dynamic three-dimensional

reconstruction of the aorta have been performed in all study subjects. The aortas

were displayed in numerous views to demonstrate the lesions in various perspectives.

These lesions were projected in several cut planes and observed in different phases of

the cardiac cycle. The location of thrombus, atheromas, and mobile plaques were

easily noted on a three-dimensional reconstruction. Also, a closer observation of

structural relationships was possible in the reconstructions of aortic dissections. The

true and false lumens were observed as well as intimal flaps. The length and width of

the intimal flap were observed, and in dynamic form the motion of this structure was

appreciated. In one case it was also possible to note the origin of the intimal flap

arising near the coronary artery ostium. Unique perspectives of the dissection from

the ascending aorta, looking down towards the aortic valve, allowed observation of

the valve leaflets and location of the intimal tear. In cases of aortic coarctations, it
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was possible to reconstruct in three-dimensions most of the aortic arch and narrowed

descending aorta. The advantage of three-dimensional echocardiography in the

quantification of aortic valve area by using a rotational method was also reported by

Nanda et al. and Kasprzak et al. [Nanda et ah, 1994; Kasprzak et ah, 1998a&b].

Mitral stenosis and both mitral and aortic regurgitation were also studied by three-

dimensional echocardiography (Figures 2, 3 & 4). Chen et al. have studied a group

of fifteen patients with mitral valve stenosis [Chen et al., 1997]. The purpose of that

study was to determine the feasibility and the reproducibility of three-dimensional

echocardiography for calculating mitral valve area. In addition, the accuracy of

mitral valve area measurement from three-dimensional and two-dimensional images

was compared with values obtained by Doppler pressure half-time. Despite

interesting results and a clear potential advantage of three-dimensional over two-

dimensional imaging this study failed to prove the superior role of the three-

dimensional technique in the assessment of mitral stenosis. Firstly, no differences

were found between techniques in the assessment of mitral valve area, and the

interobserver and intraobserver variability were essentially the same for all studied

techniques. Also, in order to measure the mitral valve area only, in half of the group

studied three-dimensional data-sets were acquired using a transoesophageal

approach. No attempt was made to analyse the morphology of mitral commissures or

to reconstruct the stenotic mitral Doppler inflow. In the report of Delabays et al. it

has been shown that three-dimensional echocardiography has the potential to depict

not only the anatomic abnormalities of the mitral valve apparatus but also to

characterise mitral regurgitant jets in greater detail than with conventional imaging

[Delabays et al., 1995]. With respect to the analysis of the mitral valve morphology

36



by three-dimensional echocardiography, their results were similar to the report of

Salustri et al. which was published one year later (see section on the congenital heart

disease) [Salustri et al., 1996]. The new information from the report of Delabays et

al. was that three-dimensional echocardiography was accurate in the assessment of

mitral reflux and particularly useful in cases with multiple or eccentric jets, which

were difficult to assess using conventional two-dimensional imaging. Also, three-

dimensional reconstruction of flow jets allowed display of the flow convergence

zone in a unique fashion. As this region of convergence zone can be viewed from

different perspectives, it allowed for accurate assessment of the global shape. This is

very important, as the initial results of the experimental work of Utsunomiya and co¬

workers indicated that the proximal flow convergence zones are not perfect

hemispheres or hemiellipses as assumed in the calculation of regurgitant volume

using the proximal isovelocity surface area method [Utsunomiya et al., 1991]. Also,

the use of three-dimensional reconstruction of valvular structure was very helpful in

the determination of the most suitable therapeutic modality for each individual

patient. The accurate measurement of left ventricular function, surface area of the

leaflets and regurgitant orifice area available from a three-dimensional data-set was

particularly valuable when pre-operative assessment ofmitral valve morphology was

performed. In the same report they have also looked at usefulness and potential

superiority of dynamic three-dimensional echocardiography in reconstructing

abnormal intracardiac blood flow jets in aortic regurgitation, tricuspid regurgitation,

mitral stenosis, and also shunts in atrial and ventricular septal defects. As in patients

with mitral regurgitation, also in patients with aortic and tricuspid regurgitation the

flow convergence zone could also be reconstructed in three-dimensions. The
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supporting results showing the feasibility of three-dimensional echocardiography in

reconstructing correctly the flow convergence zone and demonstrating its curved

geometry in valve insufficiency was published recently by Shiota et al. [Shiota et al.,

1997], Using the same volume-rendered three-dimensional acquisition system as

Delabays et al. [Delabays et ah, 1995], direct measurement of the three-dimensional

reconstructed flow convergence areas as well as measurements of flow convergence

areas estimated with two-dimensional methods with hemispherical and hemielliptical

assumptions were performed in six open-chest sheep with surgically induced chronic

aortic regurgitation. Although, in both studies, direct measurements of three-

dimensionally reconstructed proximal isovelocity flow convergence surface areas

provided more accurate regurgitant flows than conventional two-dimensional colour

Doppler methods it is important to mention the limitations of this technique. In

general, limitations inherent to the colour Doppler flow mapping for imaging the

flow convergence, including instrument factors such as colour gain, wall filter

settings, and variability of aliasing velocities, are carried into the three-dimensionally

reconstructed flow convergence images. Low frame rates (12 to 17 frames per

second) may cause underestimation of the maximal flow convergence size.

Especially important is the loss of velocity information for flows at the edges of the

flow convergence region induced by the angle between Doppler interrogation and the

actual direction of blood flow. Because of these problems, in the study of Shiota et

al. [Shiota et al., 1997], portions of the imaged flow convergence surface adjacent to

the valves did not correspond strictly to true isovelocity surfaces. Thus, the technique

still needs correction for flow constraint, competing flows, and Doppler angle

dependency.

38



Until the autumn 1998 three-dimensional reconstructions of colour Doppler blood

flow jets were possible only in grey-scale (black & white). The first reports on the

clinical applications of three-dimensional Doppler in original colour coding in

patients with mitral regurgitation were presented only recently during the XXth

Congress of the European Society of Cardiology [De Simone et ah, 1998; Coisne et

ah, 1998] (Figure 5).

1.4. Real-time three-dimensional echocardiography

In parallel to volume-rendered three-dimensional imaging systems described

already in this Chapter, a real-time volumetric three-dimensional echocardiography

is being developed by the Duke University Medical Center in Durham, USA [Snyder

et ah, 1986; von Ramm et al., 1990; Fleishman et al., 1996a; Shiota et ah, 1998], The

acquisition time is short and neither electrocardiographic nor respiratory gating is

necessary because the three-dimensional data is obtained essentially in real-time. The

data are not displayed in a conical form as in three-dimensional systems based on

mechanical registration of transducer position but as two orthogonal B-scans and two

or three C-scan images (images parallel to the transducer face) simultaneously.

Although the C-scans can be moved towards or away from the transducer and angled

relative to the transducer face to display various parts of the data set on-line, three-

dimensional reconstructions can only be displayed off-line and require a considerable

amount of data interpolation thus reducing its accuracy. Despite on-going validation

of the system, including the recent study by Fleishman et al. [Fleishman et ah,

1996b] in a group of fifteen children with various congenital heart defects, the

technique is still in its early stages and the wide-spread acceptance of the system is
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limited, not only because of the sub-optimal image quality but also due to its very

high cost and the ability to acquire only transthoracic images with no colour Doppler

flow mapping.

1.5. Conclusions

During the last two decades three-dimensional echocardiography has

undergone intensive development. Several different approaches have been used to

acquire and to reconstruct ultrasound data in three-dimensions. However, the

technique has not yet been widely applied clinically and there has been a paucity of

validative studies. Volume-rendered three-dimensional imaging obtained from either

transthoracic or transoesophageal approach would seem the best method of

reconstructing heart structures in three-dimensions. We know already that such

three-dimensional reconstructions provide views of heart chambers and intracardiac

structures that strongly resemble the views seen during cardiac surgery. The accuracy

of these reconstructed images has been tested by several investigators in vitro and in

vivo but these studies involved mainly volume and area measurements. Not much is

known on the feasibility and the accuracy of this technique in the assessment of

congenital and acquired lesions of the atrio-ventricular junction. Also the preliminary

studies on reconstruction of colour Doppler jets, although promising and interesting,

need to be further validated. It remains to be established whether three-dimensional

echocardiography simply improves our way of diagnosing heart disease or

contributed also to a better understanding of the underlying mechanism of some

disorders.
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Figure 1. Examples of volume-rendered transoesophageal three-dimensional reconstruction of the heart:
short-axis view at the level of atrio-ventricular valves directed from above (an atrial perspective). During

systole (A) and diastole (B, C) two vegetationsare seen in the ascending aorta, just in front of the aortic
valve corresponding to acute bacterial endocarditis of the aortic valve. Elevated right heart pressure with
mild tricuspid and pulmonary valves regurgitation.
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Figure 2. Examples of transoesophageal three-dimensional (3D) reconstruction of a stenotic mitral valve.

(A), top - long-axis view with the corresponding two-dimensional (2D) image on the right hand side;
bottom - reconstruction of the mitral valve en face, corresponding left atrial - (LA) and left-ventricular

perspective (LV). Small central orifice with well visualized outline of the extent of commissural fusion
from both perspectives.
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Figure 2 (cont'd). Examples of transoesophageal three-dimensional (3D) reconstruction of a stenotic
mitral valve. (B), top - long-axis view with the corresponding two-dimensional (2D) image on the right
hand side; bottom - reconstruction of the mitral valve en face, corresponding left atrial - (LA) and left-
ventricular perspective (LV). Small slightly eccentric orifice. Extensively thickened and irregular surface
of the anterior leaflet suggesting the presence of calcification. From the atrial perspective, the ouline
of commissural fusion is difficult to trace. Well visualised outline of the extent of commissural fusion

from the ventricular perspective.
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Figure 3. Examples of transoesophageal three-dimensional (3D) reconstruction of a regurgitant mitral
valve. (A), en face (short-axis) view of the mitral valve reconstructed from an atrial perspective with
corresponding two-dimensional (2D) long-axis views (grey-scale and with colour Doppler flow) on the
left hand side. Mild central mitral regurgitation caused by dilated atrio-ventricular junction and poor
central leaflet coaptation.
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Figure 3 (cont'd). Examples of transoesophageal three-dimensional (3D) reconstruction of a regurgitant
mitral valve. (B), top - long-axis view with the corresponding two-dimensional (2D) image on the left
hand side; bottom - reconstruction of the mitral valve en face from an atrial perspective with 2D image
and colour Doppler flow on the left hand side. Moderate/severe mitral regurgitation. Marked prolaps of
the anterior mitral leaflet. Degenerative mitral valve with complex mechanism of reflux originating from
the closure line (one jet) and from perforated anterior mitral leaflet (two jets).
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A. Grey-Scale Imaging
Systole

Figure 4. Example of transthoracic three-dimensional (3D) reconstruction of a regurgitant aortic valve.
(A), Grey-scale imaging - reconstruction of mitral and aortic valves en face from left ventricular

perspective. On the right hand side, marked spontaneous contrast refluxing from the ascending aorta to
the left ventricular outflow tract during diastole. Heavily calcified mitral valve. (B), Doppler myocardial

imaging technique - reconstruction of mitral and aortic valves en face from left ventricular perspective
with corresponding two-dimensional image on myocardial imaging technique
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Figure 5. Example of transthoracic three-dimensional (3D) reconstruction of a regurgitant prosthetic
mitral valve. (A), en face (short-axis) view of the prosthetic mitral valve reconstruction from an atrial

perspective with corresponding (B) long-axis views during systole (top) and diastole (bottom). 3D
reconstructions contain both grey-scale data and colour Doppler jets displaying a complex mechanism
of valve insufficiency, (courtesy of Dr Andreas Franke & Dr Harald Kiihl, University Hospital Aachen,
Germany).
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CHAPTER 2

A Review ofMethods of Three-Dimensional

Image Acquisition Used in this Thesis
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2.1. Background

As already described in Chapter 1, two different transducer position

registration systems are currently used to acquire a three-dimensional data-set. These

are based on either acoustic or mechanical registration of the spatial position of the

transducer.

The acoustic transducer position registration system was introduced in 1976 by King

et al. [King et ah, 1976]. A conventional ultrasound scanner is linked to an acoustical

three-dimensional spatial locating system. The acquired two-dimensional images and

their X, Y, Z spatial co-ordinates are combined in the computer to produce a three-

dimensional data-set and displayed in a wire-frame form.

The mechanical transducer position registration system was first described by

Dekker et al. [Dekker et al., 1974], Other than the first few reports, where a three-

dimensional data set was acquired and then displayed in a wire-frame form, this

system is now always associated with the volume-rendered (shaded surface) display

of three-dimensional data. Dynamic volume-rendered three-dimensional imaging

based on the mechanical transducer position registration system became feasible for

clinical use in 1991 when the first commercial three-dimensional mechanical

acquisition system was released (TomTec Echo-Scan, Munich Germany). Volume-

rendered three-dimensional reconstructions appear as an opaque object with

appropriate shading effects. These displays closely resemble the actual anatomy

compared to the somewhat artificial appearance of the wire-frame displays. The first

report on the clinical feasibility of reconstructing heart structures using this new

system was by Pandian and co-workers [Pandian et al., 1992], Encouraged by these
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results, other centres in Europe and the United States began work with volume-

rendered three-dimensional echocardiography.

In Edinburgh, we have designed and undertaken our first project on three-

dimensional echocardiography in December 1994. After validating the system in

vitro, the complexity of the studies undertaken has increased so that the more

difficult diagnostic problems of paediatric and adult cardiology have been tackled.

Throughout this thesis, the methodology and the protocol of image acquisition

remains the same.

2.2. Image acquisition

In this thesis, the mechanical (rotational) transducer position registration

system and volume- rendered display was used to acquire and reconstruct the data in

three-dimensions.

The instrumentation used for the three-dimensional imaging protocol consists of an

ultrasound scanner and a three-dimensional acquisition system (TomTec Echo-Scan,

TomTec Imaging Systems; Munich, Germany).

One of the following ultrasound scanners was used to acquire images: Acuson XP10

or Acuson Sequoia (Mountain View California, USA). Both scanners had additional

software which allowed the use ofDoppler myocardial imaging.

It was envisaged that Doppler myocardial imaging, based on the Doppler principle to

visualise heart structures rather than blood flow, should give better quality

transthoracic two-dimensional images than the standard grey-scale (B-mode)

imaging technique for three-dimensional reconstruction. Full details of the physical

principles of the technique that potentially make Doppler myocardial imaging
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superior to standard grey-scale transthoracic imaging for three-dimensional

transthoracic echocardiography are given in Chapter 3.

The scanner modifications and software enabling acquisition of the ultrasound

images in the Doppler myocardial imaging mode included: Lower Doppler velocity

range settings to encode myocardial velocities (0-16 cm/s) than those typically used

for blood flow. The display of Doppler information was therefore enabled for tissue

instead of blood. Image persistence was turned off to eliminate blurring of the

moving cardiac structures. Doppler receive gain was set to achieve maximum colour

Doppler information of the heart structures while limiting colour information within

the blood pool.

Figure 1 shows schematically how three-dimensional images were acquired.

The three-dimensional acquisition system used (TomTec Echo-Scan) consisted of a

486, 66 MHz computer with 64 Mbytes of storage system memory, steering logic for

image acquisition, processing and presentation.

For transthoracic image acquisition a standard apical window was used in most

cases. The two-dimensional ultrasound images were obtained using a 2.5- 4.0 MHz

phased array transducer steered by the transducer mechanical rotational device

supplied with the Echo-Scan. In each patient the appropriate transducer frequency

was selected to obtain the best quality two-dimensional grey-scale image.

During the image acquisition, the Echo-Scan was connected to the ultrasound video

output of the scanner via a black/white video cable. Thus, when Doppler myocardial

images were acquired, the colour Doppler signal was transferred as a black and white

video signal to the Echo-Scan. During the acquisition electrocardiographic and

respiration gating was used. A standard three-lead electrocardiogram cable was used
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to monitor the electrocardiogram while the patient's respiration was monitored by

measuring skin impedance. Using this information the system created an on-line

histogram based on the patient's heart rate and respiration. This enabled the setting

of a gating window based on the RR intervals of the electrocardiogram. The

expiratory phase was used for gating respiration.

During the acquisition procedure, the transducer placed in the transthoracic apical

position was rotated by the mechanical rotational device at 2° steps over 180°.

Based on the gating parameters, the computer acquired one complete cardiac cycle at

the acquisition start position and recorded it at 25 frames/sec. When one cardiac

cycle had been stored in the computer's RAM, the steering control advanced the

transducer by one step. A total of 90 cardiac cycles were stored during one

acquisition.

The same acquisition protocol was used for the acquisition of grey-scale and

Doppler myocardial images. When relevant, the acquisition started with grey-scale

data and then Doppler myocardial images were collected.

The acquisition time was approximately three minutes for both the grey-scale and

Doppler myocardial imaging technique.

Patients undergoing transthoracic three-dimensional echocardiograms were not

routinely given a sedative. Most of the children who did require mild sedation were

from the group of atrio-ventricular septal defects which in most cases co-existed

with Down's syndrome and even for routine standard ultrasound examination these

children required a mild sedation using Triclofos Elixir BP.

After acquisition, the data was stored on the system hard drive and then analysed off¬

line.
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2.3. Image processing

Image processing was performed off-line after the data was stored on the

system's hard-drive. The post-processing of images is automatic and takes

approximately ten to thirty minutes depending on the size of a data-set. During this

time the recorded images are converted from polar to Cartesian co-ordinates and the

gaps between adjacent two-dimensional cross-sections in the far field are

electronically filled with a trilinear cylindrical interpolation. Several algorithms are

used to minimise signal noise and potential artefacts created by patient and/or

transducer movement.

2.4. Image display

From the post-processed data-set, any desired cross-section can be computed

and displayed in a dynamic two-dimensional format. This so-called any-plane

echocardiography allows unlimited two-dimensional cross-sections not dependent on

the ultrasound window. After selection of an appropriate two-dimensional cross-

section, a polyhedral surface algorithm allows dynamic three-dimensional

reconstruction of tissue data behind the chosen two-dimensional plane. Three

different shading functions (distance, gradient and texture) are mixed automatically

to create a three-dimensional image. In the distance-shading, the distance from the

observer to the surface of the object is converted into grey values, with light grey

values indicating proximity and the darker ones indicating increasing distance

between the surface of the object and the observer. The role of gradient-shading is to

create a more realistic appearance of three-dimensional images by correlating grey
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values of neighbouring pixels. With texture-shading, the perception of depth is

further enhanced and the characteristic appearance of ultrasound images can be

retained. These three functions can also be adjusted manually after the data is post-

processed however because of its high susceptibility to artefacts is not recommended.

In this thesis different views were used to reconstruct heart structures in three-

dimensions. In general, for each studied cardiac malformation the view selected for

three-dimensional reconstruction was similar to that seen by a surgeon during the

defect repair. The time required to complete a reconstruction varied between five

minutes to ninety minutes depending on the complexity of the malformation.
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Figure 1. Steps taken to acquire three-dimensional data-set. Diagram shows an ECG and respiration

gated acquisition of two-dimensional cross-sections obtained from the transthoracic apical window by

rotating the transducer by the mechanical device at 2° steps over 180°. Once the acquisition was completed,
off-line processing based on interpolation of the missing information between the acquired two-dimensional

images at 2° steps and conversion of the images from polar to Cartesian co-ordinates was carried out.
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CHAPTER 3

An in Vitro Validation of the Accuracy ofMeasurements and Volume

Computation Derived by Three-Dimensional Echocardiography: a Comparison

of Grey-Scale and Doppler Myocardial Imaging Acquisition Techniques

Using Dynamic Phantoms
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3.1. Background

Several three-dimensional ultrasound systems have been developed which

allow three-dimensional images to be constructed from either the transthoracic or

transoesophageal approach. However, the accuracy of each system has to be

independently validated because the design, calibration techniques, and computer

algorithms vary between the systems. Three-dimensional acoustic position

registration systems (wire-frame display of three-dimensional images) have been

validated in a series of in vitro experiments [Brinkley et al., 1982; Moritz et al.,

1983; Levine et al., 1989; King et al., 1991]. It has been shown that dimensions,

angles and volumes can be obtained from a wire-frame three-dimensional data-set

with a very high accuracy. The in vitro analysis of the acoustic system of King et al.

showed that the mean error in distance measurements is not bigger that 0.4% of the

true value, and for volume measurement this does not exceed 1.6%. [King et al.,

1991], However, in that in vitro experiment, only a static model constructed of

several strong acoustic reflectors (steel pin heads) mounted on a metal base was

tested. It is possible that the results of King et al., would not be achieved if tested in

a dynamic setting and tissue mimicking structure rather than strong acoustic

reflectors was used.

No data have been available on the accuracy of volume-rendered dynamic three-

dimensional reconstructions. As a basis for a series of clinical studies an in vitro

model was established to test the accuracy of the three-dimensional system in

computing linear measurements and volumes. Additionally, two different imaging

techniques (standard grey-scale and Doppler myocardial imaging) were tested as
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acquisition techniques for three-dimensional echocardiography. Currently, grey-scale

is the standard imaging technique used to acquire three-dimensional data. The

limitation of the use of grey-scale imaging technique in three-dimensional

transthoracic echocardiography is that the quality of the acquired images is directly

related to the amplitude of the ultrasound signal returning from the heart which is, in

a substantial number of patients, markedly attenuated by chest wall structures. In

order to obtain good quality three-dimensional data in these patients, it is necessary

to use a transoesophageal approach. Doppler myocardial imaging is a new ultrasound

technique, based on the Doppler principle, in which special algorithms are applied to

detect heart structure instead of blood flow [McDicken et al., 1992; Sutherland et al.,

1994; Miyatake et al., 1995], As opposed to grey-scale technique, the quality of

Doppler myocardial images is dependent on two factors: the amplitude of the

returning signal, and the frequency shift of this signal which is relatively independent

of the attenuation factor. Thus, it is the latter factor which gives rise to the potential

of the Doppler myocardial imaging technique to provide more complete images of

the heart than the standard grey-scale technique from the transthoracic approach

[Fleming et al., 1996],

The aim of this study was to validate the accuracy of measurements taken from

three-dimensional ultrasound images acquired using two different imaging

techniques: grey-scale and Doppler myocardial imaging.
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3.2. Methods

To validate the accuracy of measurements taken from three-dimensional

ultrasound images, a computer-generated virtual phantom and a dynamic tissue

mimicking phantom were tested. In the preparation of the virtual phantom I was

fortunate to have a support of Mr Thomas Anderson and Professor W Norman

McDicken from the Department of Medical Physics and Medical Engineering, the

Royal Infirmary of Edinburgh in Edinburgh. Tissue mimicking phantom was

designed and made by Professor Andrzej Nowicki's group from the Institute of

Fundamental Technological Research, Polish Academy of Sciences in Warsaw,

Poland [Nowicki et al., 1996].

The virtual phantom was constructed to assess the potential accuracy of the three-

dimensional system. Also, the aim was to establish whether the three-dimensional

system does introduce a measurement error which is not observed in two-

dimensional scanner. The layout for the virtual phantom was prepared on a computer

aided drawing package (KeyCad). This allowed precise positioning and relative

sizing of the phantom components. The actual scale or size of the phantom was

determined by comparing the virtual phantom image on the three-dimensional

capture system with markers from the ultrasound system. To capture the virtual

phantom as an image, the monitor output was fed to a commercially available

interface box which provided RGB signals to the three-dimensional acquisition

system (TomTec Echo-Scan) (Figure 1).

Also, a one chamber contracting tissue-mimicking phantom was constructed to

simulate left ventricle contraction. The phantom consisted of a latex balloon (acting
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as endocardium) placed inside one centimetre thick tissue-equivalent expandable

foam (acting as myocardium) of a shape and size of the left ventricle. In order to

mimic left ventricular contractions, the phantom was connected to an

electrocardiogram gated water pump and de-gassed water was pumped into the

phantom at a rate 50 times/min. A specially constructed valve between the phantom

and the pump allowed the water from the phantom chamber to be returned back to

the pump.

To validate the accuracy of the changes in volume measurements, by both techniques

grey-scale imaging and Doppler myocardial imaging, with changes in size of the

measured volume, varying known amounts of water were pumped into the phantom

(from 24 ml to 190 ml).

In addition, in order to define the minimum size of an isolated reflector which could

be accurately identified in a three-dimensional reconstruction by this system, rings of

resin crystals of known differing dimension were implanted on the surface of the

scanned phantom.

Three-dimensional imaging protocol

The instrumentation used for the three-dimensional imaging protocol consisted of an

ultrasound scanner (Acuson XP 10 Mountain View, California) with Doppler

myocardial imaging software connected to a three-dimensional acquisition system

(TomTec Echo-Scan, Munich, Germany). The scanner modifications enabling

Doppler myocardial imaging and the steps for three-dimensional image acquisition

have been described in Chapter 2.
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For grey-scale imaging, the gain was adjusted to optimise the clarity of the phantom

'endocardial' boundaries. In Doppler myocardial imaging, 'endocardial' boundary

was defined as the line of interface between the layer of the latex connected to the

sponge and the cavity of the phantom.

Briefly, during the image acquisition consecutive two-dimensional imaging frames

were acquired from the contracting phantom using electrocardiographic gating. A

mechanical device rotated the transducer at 2° steps over 180° (Figure 2). Using a

polyhedral volume algorithm, the minimum and maximum volumes (systolic and

diastolic) of the contracting phantom were calculated from consecutive 1.0

millimetre thick short-axis slices. In order to validate the accuracy of both imaging

techniques in three-dimensional volume measurements, seventeen different volumes

of a tested object were measured during maximum and minimum contraction of the

phantom. This was achieved by pumping differing known amounts of water into the

chamber of the contracting phantom.

The same protocol was used for grey-scale and Doppler myocardial image

acquisition.

Statistical analysis

The error of inaccuracy of both grey-scale and Doppler myocardial imaging three-

dimensional volume estimation was assessed by calculating two different

parameters: bias (systematic error), and imprecision (random error) [Bishop et al.,

1975],

The differences between both grey-scale and Doppler myocardial imaging volume

measurements taken during minimum and maximum phantom contraction and true
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volume were compared with the true volume of the phantom. This allowed us to

assess whether the two tested ultrasound techniques have a tendency to

underestimate or overestimate the measured volume. In order to determine whether

the changes in the magnitude of the systematic error varied according to the changes

in the volume size, seventeen different volumes were measured and these values

were compared using linear regression analysis. The systematic error was also

expressed as a percentage of the volume being measured [percentage error =

(measured volume - true volume) / true volume x 100%], and the mean percentage

error ± one standard deviation was calculated for each method. Finally, the mean

percent error was compared by nonparametric methods using analysis of variance

(Friedman ANOVA).

To assess the accuracy of each method, each measurement was adjusted for

systematic error by applying a correcting factor based on the linear regression of the

measured three-dimensional grey-scale and Doppler myocardial imaging volumes

with the respective true volume. In these calculations a predicted true volume was

substituted for each measured volume. After this adjustment, the difference between

the predicted true volume and the true volume was calculated, and the percentage

error was expressed as an absolute value. The accuracy of each technique was

compared by applying the Friedman ANOVA test.

3.3. Results

Analysis of three-dimensional images of the virtual phantom showed that 1.0

millimetre dimension structure can still be reconstructed by the three-dimensional
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system and the smallest distance between the two structures is of 1.0 millimetre

(Figure 1).

Analysis of three-dimensional images of the dynamic phantom showed that both

imaging techniques (grey-scale and Doppler myocardial imaging) underestimated the

true volume of the phantom but the systematic error (bias) was significantly smaller

for Doppler myocardial imaging than for grey-scale imaging technique (-1.2 ±1.5 %

versus -4.3 ±3.1 %; p<0.01). Figure 3 shows that the systematic error for three-

dimensional Doppler myocardial imaging was more constant (r = -0.40; p<0.02) than

GSI (r = -0.79; p<0.001) over the range of different sizes of true volume. Thus, the

magnitude of the bias was smaller in Doppler myocardial imaging than in grey-scale

imaging when the measurements were taken from bigger volumes.

Figure 4 shows that the random error was low in both three-dimensional ultrasonic

techniques: for grey-scale imaging 2.1 ± 2.2 % and for Doppler myocardial imaging

1.2 ± 1.0; p=0.086.

Finally, we have shown that a 1.0 millimetre isolated crystal may be correctly

identified and measured in a three-dimensional grey-scale and Doppler myocardial

imaging reconstruction (Figure 5).

3.4. Discussion

In this study, both phantoms (the virtual phantom and the dynamic tissue

mimicking phantom) were created to validate the in vitro accuracy of the three-

dimensional reconstructions and also the accuracy of measurements obtained from

these three-dimensional images reconstructed using the TomTec three-dimensional
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acquisition system. This was undertaken as, despite the general agreement that three-

dimensional echocardiography enhances the understanding of cardiac anatomy, no

validation of the accuracy of dynamic three-dimensional volume-rendered images

has been performed.

The analysis of the three-dimensional reconstruction of the virtual phantom showed

excellent potential accuracy of the three-dimensional capture system (TomTec Echo-

Scan). It has been demonstrated that using this system it is possible to reconstruct a

detail of 1.0 millimetre dimension and two details separated from each other by a

distance of 1.0 millimetre.

In the second part of the study, three-dimensional volumes of a single chamber

contracting tissue mimicking phantom were measured independently by the two

techniques (grey-scale imaging and Doppler myocardial imaging) and then the

results were correlated with the true volume of the tested object. Previous studies

which were based only on grey-scale imaging and acoustic transducer position

registration systems (wire-frame display of three-dimensional images) have

demonstrated a high degree of accuracy in vitro three-dimensional volume

computation [Gopal et al., 1994; Kuroda et al., 1991; Sapin et al., 1993]. In vivo,

although grey-scale three-dimensional echocardiography was shown to slightly

underestimate the measured volume, it has been found to be superior to grey-scale

two-dimensional echocardiography [Schroeder et al., 1993; Gopal et al., 1993; Sapin

et al., 1994]. A major potential problem in transthoracic grey-scale imaging three-

dimensional echocardiography is the poor image quality obtained in a substantial

number of patients [Pearlman et al., 1993], Superimposed lungs and chest wall
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structures attenuate the ultrasound signal reducing the signal to noise ratio making

it difficult to acquire a sufficient number of clear images to represent the left

ventricular cavity accurately. Therefore, another imaging technique that would give

us clear transthoracic images in a substantial part of adult patient population would

be of great value. Doppler myocardial imaging offers clear advantages over the

standard grey-scale imaging technique for transthoracic data acquisition. Unlike

grey-scale imaging, the quality of Doppler myocardial images is dependent on two

parameters: the amplitude of the ultrasound signal, which is directly affected by

chest wall attenuation, and the frequency shift of ultrasound signal, which is

relatively independent of the attenuation. Thus, where ultrasound attenuation

produced by overlying tissues is a problem, Doppler myocardial imaging could

provide better quality transthoracic images in a substantial number of patients. In this

study, we have demonstrated that in vitro, both techniques slightly underestimated

the true volume of tissue mimicking phantom, and although there was no significant

difference in the percentage of accuracy between the two, the systematic error was

not only significantly smaller for Doppler myocardial imaging but also remained

fairly constant over the range of volumes tested. Although, a spatial resolution of

two-dimensional Doppler myocardial imaging technique is slightly lower than a

grey-scale imaging technique [Fleming et al., 1994], we have shown that for all

studied gain and depth settings, the minimum size of a relatively strong isolated

reflector which may be correctly distinguished and measured in a three-dimensional

Doppler myocardial reconstruction is 1.0 millimetre. This gives a guide to how

potentially accurate measurements taken from three-dimensional images can be.
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3.5. Conclusions

Analysis of the three-dimensional reconstruction of the virtual phantom

showed excellent accuracy of the three-dimensional capture system. It has been

shown that using this system it is possible to reconstruct a detail of 1.0 millimetre

dimension and two details separated from each other by a distance of 1.0 millimetre.

Both techniques slightly underestimated the true volume of the tissue mimicking

phantom, and although there was no significant difference in the percentage of

accuracy between the two, the systematic error was not only significantly smaller for

Doppler myocardial imaging but also remained fairly constant over the range of

volumes tested.

The spatial resolution of the in vitro acquired three-dimensional ultrasound images

using both grey-scale and Doppler myocardial imaging data has been shown to be

virtually identical. Thus, the advantage of three-dimensional Doppler myocardial

imaging over three-dimensional grey-scale images is that the Doppler technique

should provide good quality transthoracic three-dimensional images in 'poorly

echogenic' patients with the spatial resolution inherent in standard grey-scale

images.
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Figure 1. Three-dimensional reconstruction of the virtual phantom.
On the right side of the image, the thickness of the consecutive reconstructed disks is displayed. On
the left side of the image, the distances between disks is displayed.

Rotational
Device
0-180°

Figure 2. Schematic diagram presenting the set-up of the in vitro study.
An ECG gated acquisition of two-dimensional cross-sections of the phantom at 2° steps over 180°. After
the completion of the acquisition: off-line processing based on the interpolation of the missing information
between the acquired two-dimensional images at 2° steps and conversion of the images from polar to
cartesian co-ordinates.
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Figure 3. Scatterplot illustrating the in vitro relation between the magnitude and direction of systematic
error (bias) and size of the volume being measured. The differences between estimated and true volume
is plotted against the true volume. The systematic error for Doppler myocardial imaging (open circles)
remains relatively constant over the range of volumes measured, whereas for grey-scale imaging (solid

circles) is greater at larger volumes.
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Figure 4. Box plot illustrating the in vitro systematic error and imprecision of both ultrasound techniques.
The position of the box in relation to the zero line is an indicator of systematic error.
The vertical heightof the box and its error bars are an indicator of imprecision.

GSI, grey-scale imaging; DMI, Doppler myocardial imaging
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Figure 5. Three-dimensional Doppler myocardial imaging reconstruction of the tested tissue mimicking

phantom during minimum (min) and maximum (max) contraction. Arrows indicate the reconstructed
resin crystals of 1mm dimension.
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CHAPTER 4

Three-Dimensional Echocardiographic Evaluation of Left Ventricular Volume:

Comparison of Doppler Myocardial Imaging and Standard Grey-scale Imaging

with Cineventriculography
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4.1. Background

The measurement and monitoring of left ventricular volume is an important

clinical tool in patients with cardiac disease. Although cineventriculography has been

accepted as a clinical standard for left ventricular volume determination, the invasive

nature of the technique and the inherent assumptions concerning the geometry of the

left ventricle limit its application in repeated assessments [Dodge et ah, 1960; Vas et

al., 1981; Wyme et ah, 1978; Schnittger et ah, 1982], Radionuclide methods offer an

alternative, non-invasive approach [Levy et ah, 1992] but are subject to other

limitations. These are mainly related to the detection of edges and end planes as well

as the determination of the level of background activity [Starling et ah, 1981],

Previous attempts using standard two-dimensional echocardiographic techniques

have also demonstrated several important limitations, particularly in patients with

regions of left ventricular asynergy. Factors contributing to the low predictive

accuracy of two-dimensional echocardiographic volume measurements include

geometric assumptions, image plane positioning errors and imprecise endocardial

boundary detection [Wyatt et ah, 1980; Tortoledo et ah, 1982]. Recently, a number

of three-dimensional echocardiographic scanners have been developed which address

the issue of geometric assumptions [Geiser et ah, 1982; Nixon et ah, 1983; Ghosh et

ah, 1982; Sawada et ah, 1983; Snyder et ah, 1986]. These allow three-dimensional

images to be constructed from either transthoracic or transesophageal data-sets.

Using different three-dimensional acquisition systems it has been shown that

standard grey-scale imaging three-dimensional echocardiography is superior to two-

dimensional echocardiography in measuring left ventricular volume [Schroeder et

ah,1993; Gopal et ah, 1993] and that the three-dimensional measurements correlate
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well with cineventriculography and magnetic resonance imaging [Sapin et al., 1994;

Pini et al., 1997], However a major limitation of the transthoracic approach in

acquiring a three-dimensional data-set is the poor quality of grey-scale images

obtained in a substantial proportion of patients [Lange et al., 1995; Azevedo et al.,

1996; Lange et al., 1996], This is because the quality of grey-scale images is related

to the amplitude of the ultrasound signal returning from the interrogated myocardium

which is markedly attenuated by chest wall structures in a substantial number of

patients. Doppler myocardial imaging is a new ultrasound technique, based on

Doppler principles, in which special algorithms are applied to detect myocardial wall

motion instead of intracardiac blood flow [McDicken et al., 1992; Sutherland et al.,

1994; Miyatake et al., 1995]. The quality ofDoppler myocardial images is dependent

on two factors as opposed to one factor in grey-scale imaging: the amplitude of the

returning signal, which is in turn directly dependent on the attenuation, and the

frequency shift of this signal which is relatively independent of the attenuation

factor. Thus, it is this latter factor which gives rise to the potential of the Doppler

technique to provide more complete images of the myocardium than the standard

grey-scale technique. The potential clinical application of Doppler myocardial

imaging in quantifying regional left ventricular function [Donovan et al., 1995;

Miyatake et al., 1995; Palka et al., 1995&1996; Gorcsan et al., 1996&1997; Uematsu

et al., 1996] and also in differentiating left ventricular hypertrophy of different

aetiology [Rodgriguez et al., 1996; Palka et al., 1997] has been previously validated

in a series of studies. Also, Doppler myocardial imaging has been reported to be a

superior technique to grey-scale imaging in displaying the endocardial boundary

[Lange et al., 1997] and providing better quality three-dimensional reconstructions of
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heart structures when using the transthoracic approach [Lange et ah, 1996; Azevedo

et ah, 1996].

This study was designed to compare the accuracy of standard grey-scale imaging and

Doppler myocardial imaging three-dimensional left ventricular volume

measurements by comparing them to the clinically accepted method of left

ventricular volume measurement, cineventriculography.

4.2. Methods

Sixteen randomly selected patients with ischaemic heart disease undergoing

coronary angiography (eight females, mean age 63 ± 11 years) were studied. All of

the sixteen patients selected had localised regional wall motion abnormalities as

assessed by standard two-dimensional echocardiography. Prior to entry into the

study, informed consent was obtained from all volunteers.

Although, computer tomography or magnetic resonance imaging would seem to be a

more appropriate technique against which to compare three-dimensional

echocardiographic volume measurements, cineventriculography was chosen

consciously for practical reasons. All our patients planned for a surgical

revascularization had their left ventricles assessed by cineventriculography and

therefore we have used the results already available for the comparison with three-

dimensional echocardiographic measurements.
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Three-dimensional imaging protocol

The instrumentation used for the three-dimensional imaging protocol consisted of an

ultrasound scanner (Acuson XP10 Mountain View, California) with Doppler

myocardial imaging software connected to a three-dimensional acquisition system

(TomTec Echo-Scan; Munich, Germany). The scanner modifications enabling

Doppler myocardial imaging have been described in Chapter 2. In brief, the velocity

range settings used to encode myocardial velocities (0.2-24 cm/s) were lower than

those typically used for blood flow. No filters were used. Image persistence was

turned off to eliminate blurring of the moving myocardium. Doppler receive gain

was also set to achieve maximum colour Doppler information in the myocardium.

Although the Doppler information is angle dependent, the angle insonation needs to

be taken into account when measuring myocardial velocities only [Fleming et al.,

1994], In previously reported cases where Doppler myocardial imaging was used as

an acquisition technique to visualise cardiac structures, the incident angle of the

ultrasonic beam did not affect the completeness of the image [Lange et al.,

1995&1996; Azevedo et al., 1996], This is because even very low myocardial

velocities with approximate values of around 0 to 0.2 m/s are also colour coded by

Doppler myocardial imaging as a mosaic of red and blue colour [Fleming et al.,

1996]. For grey-scale imaging, the gain was adjusted to optimise the clarity of the

endocardial boundaries. In the grey-scale imaging, images endocardial boundary was

defined as the "speckle line" near the myocardial borders. Often the lines were not

continuous: in some instances, they would fade and then completely disappear. In

such cases, the trace was terminated. However, if another speckle line was present at
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a slightly different depth which appeared to be the continuation of the first line then

the trace was continued from the first to the second line across the region of "drop¬

out". In Doppler myocardial imaging, endocardial boundary was defined as the line

of interface between myocardial wall and blood pool.

The detailed protocol for image acquisition has been described in Chapter 2. The

ultrasound images (both grey-scale and Doppler myocardial images) were obtained

using 2.5 MHz phased array transducer driven by the transducer mechanical

rotational device supplied with the TomTec Echo-Scan. Electrocardiographic and

respiration gating were used. During the acquisition procedure the transducer was

placed in the standard apical position and was rotated by the mechanical rotational

device at 2° steps over 180°. A total of 90 cardiac cycles were stored during one

acquisition. In order to create the three-dimensional data-set, additional points

needed to be interpolated (off-line post-processing) between the acquired 2° step

two-dimensional images. The same protocol was used for grey-scale imaging and

Doppler myocardial imaging acquisition.

Left ventricular volumes were calculated at end-diastole and end-systole from both

grey-scale and Doppler myocardial data-sets. The protocol for left ventricular

volume computation was similar to that described in Chapter 3 where maximum and

minimum volumes of the contracting phantom were computed. The endocardial

boundary was manually traced in a series of short-axis 5 millimetre thick images,

which were acquired with reference to the pre-defined apical long-axis of the image.

The papillary muscles were excluded from the chamber volume.
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The results obtained from three-dimensional ultrasound images were then compared

to those obtained from cineventriculography.

Cineventriculographv

Within two hours after the three-dimensional echocardiograms were performed, the

patients underwent diagnostic coronary angiography and cineventriculography. All

cineventriculograms were recorded at 30 frames/s during the power injection of 30 to

40 ml of iopamidol at 10 ml/s through a 6 F pigtail catheter. In all patients, two

views 30° right anterior oblique (RAO) and 60° left anterior oblique (LAO) views

were obtained. The first three sinus beats recorded after the contrast injection that did

not follow a premature beat were used for volume calculation. Because of the lack of

software to automatically calculate left ventricular volume from two views, we

measured left ventricular volumes separately for 30° RAO and 60° LAO views and

then the average value was taken from both measurements. Papillary muscles were

excluded in the volume calculation. End-diastole was defined as the visually

estimated largest silhouette, and end-systole as the smallest silhouette of the left

ventricle. The contours were then hand-traced and the volumes calculated using the

disc-summation method as previously described and validated by others [Dodge et

al., 1960; Erbel et al., 1983],

Statistical analysis

End-systolic and end-diastolic volumes of the left ventricle were assessed by both

three-dimensional echocardiography (grey-scale and Doppler myocardial imaging)

and cineventriculography and are presented as mean values and a standard deviation

(mean ± SD). As we did not have a true value of the measured left ventricular
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volume but a value obtained from an accepted clinical standard, both grey-scale and

Doppler myocardial imaging three-dimensional volume measurements were

correlated using linear regression analysis to the volumes obtained by

cineventriculography. To assess the level of agreement between grey-scale imaging

versus cineventriculography and Doppler myocardial imaging versus

cineventriculography and to test the reproducibility of both three-dimensional

ultrasound techniques, Bland and Altman's test was used [Bland et al., 1986]. The

95% limits of agreement were calculated as twice the standard deviation and the

results were compared by Friedman ANOVA test. Interobserver variability and

intraobserver variability were assessed in a group of ten randomly selected patients.

Finally, the endocardial boundary definition obtained by grey-scale imaging and

Doppler myocardial imaging was compared using McNemars test for marginal

homogeneity. This expresses the percentage of a clearly defined endocardial

boundary to the circumference of the inner dimension for each measured slice of the

ventricle [Bishop et al., 1975]. A p value < 0.05 was considered to be significant.

4,3. Results

The mean end-systolic volumes for three-dimensional echocardiography

were: for grey-scale imaging 70 ±15 ml, for Doppler myocardial imaging 75 ±18 ml;

and for cineventriculography 77 ±18 ml. For end-diastole these values were: 127 ±18

ml, 140 ± 20 ml and 144 ± 22 ml, respectively.

There was a good correlation between both three-dimensional ultrasonic techniques

and cineventriculography: grey-scale imaging (r =0.98, p<0.0001), Doppler
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myocardial imaging (r = 0.99, p<0.0001). The standard error of estimates for grey-

scale imaging was ±7 ml and for Doppler myocardial imaging ±5 ml.

In three-dimensional echocardiography the mean difference for end-diastole using

grey-scale imaging was -12.6 ml, the limits of agreement being ± 18 ml. For end-

systole these values were -6.5 ± 10.6 ml, respectively. Using Doppler myocardial

imaging the mean difference for end-diastole was -4.2 and ± 10.6 ml and for end-

systole -1.5 ± 10 ml (Figure 1). The magnitude of the difference between three-

dimensional echocardiography and cineventriculography in volume measurement

was significantly smaller for Doppler myocardial imaging than for grey-scale

imaging for both end-diastole and end-systole (p<0.01).

Finally, Doppler myocardial imaging proved to be significantly more efficient than

the standard grey-scale imaging in endocardial boundary detection at both end-

diastole (80 ± 8% versus 67 ± 16% respectively, p< 0.05) and end-systole (85 ± 7%

versus 71 ± 13% respectively, p<0.05) (McNemars test).

Table 1 shows the intraobserver and interobserver variability which was slightly

lower for Doppler myocardial imaging.

4.4. Discussion

Although grey-scale three-dimensional echocardiography slightly

underestimates the measured volume, it has been found to be superior to grey-scale

two-dimensional echocardiography [Schroeder et ah, 1993; Gopal et ah, 1993; Sapin

et ah, 1994], A major potential problem in transthoracic grey-scale imaging three-

dimensional echocardiography is the poor image quality obtained in a substantial
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number of patients [Pearlman et al., 1993]. Superimposed lungs and chest wall

structures attenuate the ultrasound signal reducing the signal to noise ratio making it

difficult to acquire a sufficient number of clear images to represent the left

ventricular cavity accurately. It is possible to overcome this problem by using a

transoesophageal approach. Although it has been documented that this can be

performed with a low level of accompanying risk, it still remains a semi-invasive

technique, poorly tolerated by a significant number of patients [Daniel et al., 1991].

Doppler myocardial imaging offers clear advantages over the standard grey-scale

imaging technique for transthoracic data acquisition (see Chapter 3). Unlike grey-

scale imaging, the quality of Doppler myocardial images is dependent on two

parameters: the amplitude of the ultrasound signal, which is directly affected by

chest wall attenuation, and the frequency shift of ultrasound signal, which is

relatively independent of the attenuation. Thus, where ultrasound attenuation

produced by overlying tissues is a problem, Doppler myocardial imaging could

provide better quality transthoracic images in a substantial number of patients

(Figure 2). In the previous chapter (Chapter 3), it was demonstrated that in vitro,

both imaging techniques slightly underestimated the true volume of tissue mimicking

phantom. Although there was no significant difference in the percentage of accuracy

between the two, the systematic error was not only significantly smaller for Doppler

myocardial imaging but also remained fairly constant over the range of volumes

tested. In vivo, the correlation between volume measurements by three-dimensional

echocardiography and those obtained by cineventriculography was very good.

However, three-dimensional volume measurements obtained by Doppler myocardial
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imaging had significantly closer agreement with those generated by

cineventriculography than did those from grey-scale imaging.

Additionally, using McNemars test for marginal homogeneity we have shown the

superior boundary definition provided by Doppler myocardial imaging. This is also

in agreement with our previous study in which we have shown that endocardial

boundary is more reliably displayed and visually easier to detect using Doppler

myocardial imaging than grey-scale imaging [Lange et ah, 1997],

4.5. Limitations

A potential source of error was the small differences in frame rate of the

studied techniques. This was approximately 20 frames/sec for Doppler myocardial

imaging, as opposed to 25 frames/sec for grey-scale imaging and 30 frames/sec for

cineventriculography. As a consequence, end-systolic and end-diastolic volume

measurements could have been measured in slightly different time periods of the

heart cycle. Echocardiography and cineventriculography detect different endocardial

outlines and additionally cineventriculography still makes assumptions about left

ventricular shape. Finally, the changes in the heart rate and expanded circulating

volume during cineventriculography may have contributed to differences between

the left ventricular volume measurements and three-dimensional echocardiography.
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4.6. Conclusions

The results of this study indicate that if three-dimensional echocardiography

is to be used to estimate left ventricular volume, Doppler myocardial imaging is the

ultrasound technique of choice.
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Table 1. Interobserver and Intraobserver Variability

Interobserver Variability Intraobserver Variability

ml Mean ± SD % Mean ± SD %

EDV

DMI 1.9 ±5.8 9.7 1.2 ±3.0 5.3

GSI 2.2 ±5.9 10.9 1.8 ±4.4 8.7

ESV

DMI 0.9 ± 2.3 7.1 0.7 ± 2.0 6.8

GSI 1.3 ±3.0 9.8 1.1 ±2.9 9.2

EDV, end-diastolic volume; ESV, end-systolic volume; DMI, Doppler myocardial imaging; GSI, grey-
scale imaging.
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Figure 1. Difference between three-dimensional grey-scale imaging (top), Doppler myocardial imaging

(bottom) and cineventriculography plotted against the mean value.
Results are shown for end-diastolic volumes (solid squares) and end-systolic volumes (open squares).
The solid lines show the mean difference; the dotted lines show the 95% limit of agreement.
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Figure 2. An example of a transthoracic three-dimensional reconstruction of the left ventricle obtained
from a 54 year old male with coronary artery disease. Doppler myocardial imaging (DMI) technique
on the left side and grey-scale imaging (GSI) technique on the right side of the picture.
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CHAPTER 5

Assessment of Atrial Septal Defect Morphology by Transthoracic Three-

Dimensional Echocardiography Using Standard Grey-Scale and Doppler

Myocardial Imaging Techniques: Comparison with

Magnetic Resonance Imaging and Intraoperative Findings
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5.1. Background

The development of new techniques of secundum atrial septal defect closure

including minimal access surgery [Burke et al., 1994; Schwartz et al., 1996] and

percutaneous catheter closure [Rome et al., 1990; Boutin et al., 1993; Lloyd et al.,

1994] has increased the need for accurate assessment not only of atrial septal defect

size but also defect morphology and its spatial relations to other cardiac structures

[Boutin et al., 1993; Chan et al., 1993; Magni et al., 1996]. Currently, several

techniques are used to image or size atrial septal defects - echocardiography

[Schapira et al., 1979; Morimoto et al., 1990; Hellenbrand et al., 1990; Mehta et al.,

1991; Scott et al., 1992], magnetic resonance imaging (MRI) [Holmvang et al., 1995;

Diethelm et al., 1987] or balloon sizing during heart catheterisation. Two-

dimensional echocardiography is probably the most commonly used imaging

technique and with standard precordial imaging, the sensitivity in detecting

secundum and primum atrial septal defects is greater than 90% [Mehta et al., 1991;

Reeder et al., 1983]. A potentially superior role for three-dimensional

echocardiography in atrial septal defect sizing was claimed recently in a comparative

study between guided three-dimensional and conventional two-dimensional -

examinations [King et al., 1992],

Previous studies on three-dimensional atrial septal defect reconstruction have been

carried out using standard grey-scale images [Magni et al., 1996; Belohlavek et al.,

1993b; Marx et al., 1995], In these reports, due to poor transthoracic image quality,

grey-scale images were frequently acquired from a transoesophageal approach. In

this study therefore we have looked not only at the potential of transthoracic three-
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dimensional grey-scale image reconstruction but at the additional value of three-

dimensional reconstruction using Doppler myocardial imaging technique.

The principles of Doppler myocardial imaging have been described in previous

chapters. In brief, this technique is based on a colour Doppler principle that is

applied to detect heart structures rather than a blood flow. As the quality of two-

dimensional Doppler myocardial images is not directly affected by the chest wall

attenuation, as it is in grey-scale imaging, it should provide better quality images

than standard grey-scale imaging for transthoracic three-dimensional

echocardiography [Azevedo et al., 1996; Lange et ah, 1996].

In order to correlate the two ultrasound techniques in a three-dimensional setting,

patients with diagnosed secundum atrial septal defects were studied.

5.2. Methods

A prospective study of the transthoracic three-dimensional echocardiographic

definition of atrial septal defect morphology and its dynamic changes during the

cardiac cycle was performed. Two different imaging techniques: grey-scale and

Doppler myocardial imaging were used to acquire three-dimensional data-sets from

each patient. The information obtained from three-dimensional Doppler myocardial

images and grey-scale images was compared with that obtained by phase-contrast

cine Magnetic Resonance Imaging or surgery.

Patient Selection

Thirty four patients (age 20 ±17 years) with secundum atrial septal defect have been

studied. In eighteen patients (age 23 ±18 years) the measurements obtained from
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three-dimensional grey-scale and Doppler myocardial images were correlated with

phase-contrast cine Magnetic Resonance Imaging and in the remaining sixteen

patients the three-dimensional measurements were correlated with these taken during

surgical atrial septal defect repair (age 10 ±7 years). The three-dimensional

echocardiogram and Magnetic Resonance Imaging scans were performed on the

same day in sixteen patients and in two patients there was a four days interval

between the three-dimensional echocardiogram and Magnetic Resonance Imaging

scan. The average time between three-dimensional echocardiogram and surgery was

30 ±25 days. All but two patients were in sinus rhythm. These two patients were

excluded from the analysis of changes in atrial; septal defect size during the cardiac

cycle. All patients were informed about the purpose of the study and gave informed

consent to be enrolled in the study.

Three-dimensional echocardiographv

The instrumentation used for the three-dimensional imaging protocol consisted of an

ultrasound scanner (Acuson XP10 Mountain View, California) with implemented

Doppler myocardial imaging software and a three-dimensional acquisition system

(TomTec Echo-Scan, TomTec Imaging Systems; Munich, Germany).

The scanner modifications which enable Doppler myocardial images to be acquired

have been described in previous chapters. Figure 1 in Chapter 2 shows schematically

how the three-dimensional images were acquired. The detailed protocol for three-

dimensional image acquisition has also been described in Chapter 2. The ultrasound

images were obtained using a 2.5- 4.0 MHz phased array transducer steered by the

transducer mechanical rotational device supplied with the Echo-Scan. During the
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acquisition, the Echo-Scan was connected to the ultrasound video output of the

Acuson scanner via a black/white video cable. Thus, when Doppler myocardial

images were acquired, the colour Doppler signal was transferred as a black and white

video signal to the Echo-Scan. The transducer was placed in the standard apical

position and was rotated by the mechanical rotational device at 2° steps over 180°. A

total of 90 cardiac cycles were stored during one acquisition. The same acquisition

protocol was used for the acquisition of grey-scale and Doppler myocardial images.

The acquisition time was approximately three minutes for both techniques. As the

patient needs to be immobile, during the image acquisition, seven patients (age from

2 to 3.5 years) required mild sedation using Triclofos Elixir BP.

After acquisition, the data were stored on the system hard drive and then analysed

off-line. In each patient, three-dimensional reconstruction of the atrial septal defect

was carried out from the right atrium. Firstly, an apical four chamber view was

reconstructed. Secondly, the acquired data-set was cut vertically by a longitudinal

plane through the right atrial free wall, tricuspid valve and anterior right ventricular

free wall. Finally, the reconstruction was orientated anterior to posterior. These

manoeuvres provided us with an 'en face' view of the atrial septal defect from which

the following parameters were measured: minimum and maximum of horizontal (H)

and vertical (V) atrial septal defect dimensions (D) during the cardiac cycle,

distances to: coronary sinus (CS), vena cava inferior (IVC), vena cava superior

(SVC) and tricuspid valve (TV) during late left ventricular systole (maximum atrial

septal defect dimension). (Figure 1)
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Out of the thirty four defects which were reconstructed using both grey-scale and

Doppler myocardial imaging, thirty were single secundum defects and four were

multiple (from two to four defects).

From all three-dimensional atrial septal defect reconstructions, the feasibility of

detecting right atrial structures and undertaking measurements was assessed for both

techniques Doppler myocardial imaging and grey-scale imaging.

Magnetic Resonance Imaging

The Magnetic Resonance Imaging studies were performed on a 1.5 T Siemens

Magneton SP system. Fast acquisition 'Turboflash' localizer images (TR 4.9 ms, TE

2 ms, FA 8° ) were obtained in the coronal and transverse planes through the

ventricles, followed by a single angulated plane through the ventricles, followed by a

single angulated plane through the interventricular and interatrial septa to give a right

anterior oblique (RAO) two chamber plane localizer. Multiple, contiguous, six mm

slice width, sixteen cardiac phases, gated, cine gradient echo images (TR 560 ms, TE

6 ms, FA 30°) were then obtained perpendicular to the interatrial septum in the four

chamber projection, using the angulated RAO two chamber localizer.

Gated, velocity encoded, phase contrast imaging with a maximum velocity

sensitivity of 120 cm/sec was then performed using a four chamber cine image with

the imaging plane proscribed to lie parallel to, and contiguous with the right atrial

side of the interatrial septum, to provide an en face view of the defect.

The maximum dimensions of the defects were measured from the images on an

independent operating console using electronic callipers.
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Surgical data

All operations were performed by one surgeon. The surgery was performed either via

midline sternotomy or via right thoracotomy with induced ventricular fibrillation.

The aorta was not cross clamped and thus heart was not arrested in diastole using

cardioplegic solution in any of the patients. Once the heart was fibrillated and the

right atrium opened, a pump sucker was left in the coronary sinus and intermittent

suction was performed through the atrial septal defect into the left atrium to achieve

bloodless field. The various measurements as described before were taken by the

single observer using a string of black silk suture which was cut at an appropriate

measured point from the margin of the defect. The length of the suture was measured

on a ruler and the findings were noted down by the member of the team. Two

independent measurements were taken for each dimension in the first six patients.

No difference was observed between the two readings and therefore in the later part

of the study only one measurement was obtained in the remaining ten patients.

Statistical analysis

The data are expressed as mean values and standard deviations (mean ±SD). A

paired t-test was used to compare the maximum to minimum atrial septal defect

dimensional change during the cardiac cycle as measured by three-dimensional

echocardiography. Least square regression analysis was performed to test the

correlation between the horizontal and vertical dimension of an atrial septal defect,

the distances from the atrial septal defect rim to inferior vena cava, superior vena

cava, coronary sinus and tricuspid valve measured by both ultrasound techniques

grey-scale imaging and Doppler myocardial imaging, Magnetic Resonance Imaging
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and surgery. Linear regression analysis was performed to assess the correlation

between the changes in atrial septal defect size during the cardiac cycle and age.

Finally, the Bland and Altman test was used to assess: (1) the bias (systematic error)

between the two ultrasound techniques and Magnetic Resonance Imaging or surgery;

(2) how the studied techniques relate to each other (under- or overestimation); (3)

reproducibility [Altman et ah, 1983; Bland et ah, 1986], Statistical analysis was

performed using statistical package UNISTAT 4 for Windows. A p value < 0.05 was

considered to be significant.

Interobserver and intraobserver variability

In ten randomly selected patients all the measurements acquired from three-

dimensional Doppler myocardial and grey-scale reconstructions pertaining to the

maximum and minimum (horizontal & vertical) atrial septal defect dimensions,

distances to inferior vena cava, superior vena cava, coronary sinus and tricuspid

valve were analysed by two independent observers.

Additionally, in six randomly selected patients, three-dimensional echocardiographic

study was performed twice within an average period of 28 ±4 days. Analysis of

variance was used to assess the differences between the measurements of atrial septal

defect morphology obtained by two observers (interobserver variability) and between

measurements taken from the same subjects at different times (intraobserver

variability). Both intra- and interobserver variability in atrial septal defect

morphology are presented as the mean ±SD.

The interobserver variability for three-dimensional echocardiography for grey-scale

imaging was at 0.08 ±0.09 cm (systematic error 16%) and for Doppler myocardial
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imaging was 0.07 ±0.08 cm (systematic error 13%). The intraobserver variability for

grey-scale imaging was at 0.07 ±0.08 cm (systematic error 15%) and for Doppler

myocardial imaging 0.06 ±0.08 cm (systematic error 12%).

5.3. Results

Figure 2 shows the maximum atrial septal defect orifice as defined by: three-

dimensional echocardiography using both techniques Doppler myocardial imaging

and grey-scale imaging, Magnetic Resonance Imaging phase-contrast cine imaging

and surgery.

Table 1 presents the measurements of atrial septal defect dimensions and the

distances from the atrial septal defect rim to other structures of the right atrium by

three-dimensional echocardiography, Magnetic Resonance Imaging and surgery.

A significant difference was found in changes of both horizontal and vertical atrial

septal defect dimensions during the cardiac cycle (Table 1, Figure 3). The

maximum dimension of atrial septal defects was found in late ventricular systole and

minimum in late ventricular diastole. Stepwise multivariate regression analysis

showed that the changes in atrial septal defect size are not dependent on the defect

size but are inversely related to patient age. Figure 4 presents the linear regression

analysis of the relation between the changes in atrial septal defect size and patients

age.

Good correlation was obtained between both maximum horizontal and vertical atrial

septal defect dimensions by three-dimensional echocardiography and Magnetic

Resonance Imaging (grey-scale imaging: r=0.96 cm, y=0.05±0.89x, pO.OOOl;

Doppler myocardial imaging: r=0.97 cm, y=0.04+0.97x, p<0.001) or surgery (grey-
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scale imaging: r=0.92 cm, y=0.06+0.84x, p<0.001; Doppler myocardial imaging:

r=0.95, y=0.06+0.97x, p<0.0001). Figure 5 shows the difference in atrial septal

defect size as determined by three-dimensional echocardiography and Magnetic

Resonance Imaging or surgery using Bland and Altman analysis.

The systematic error (bias) between three-dimensional echocardiography and

Magnetic Resonance Imaging was low at 0.40 cm (27%) for grey-scale imaging and

0.38 cm (25%) for Doppler myocardial imaging. For surgery the systematic error

was at 0.50 cm (29%) and 0.37 cm (22%) respectively.

Additionally, good correlation was also obtained between the distances from the

defect rim to inferior vena cava, superior vena cava, coronary sinus and tricuspid

valve in its maximum opening by three-dimensional echocardiography and surgery.

(Table 2)

In children (from three to seventeen years of age, nineteen patients) the feasibility of

detecting structures and undertaking measurements was similar for both ultrasound

techniques Doppler myocardial imaging and grey-scale imaging. In adult atrial septal

defect patients (from eighteen to sixty one years of age, fifteen patients), this was

higher for Doppler myocardial imaging than for grey-scale imaging (Table 3).

5.4. Discussion

Two-dimensional echocardiography and Magnetic Resonance Imaging are

the two most commonly used techniques to assess atrial septal defect size and

morphology. The accuracy of Magnetic Resonance Imaging is well established

[Dinsomore et al., 1985; Sakakibara et al., 1987] and is claimed to have a sensitivity

and specificity greater than 90% in the identification of ostium secundum atrial
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septal defect and is superior to standard transthoracic and transoesophageal two-

dimensional echocardiography in atrial septal defect sizing [Diethelm et al., 1987],

During the last fifteen years dynamic research has been conducted in the

development of three-dimensional echocardiography which may become a bed-side

diagnostic technique in the assessment of not only atrial septal defect size and

morphology but also its spatial relations to other cardiac structures [Sheikh et al.,

1991; Pandian et al., 1992; Roelandt et ah, 1994a&b], This seems to be particularly

important in selecting patients for percutaneous atrial septal defect closure by

transcatheter device placement [Hellenbrand et al., 1990], Preliminary studies have

been carried out by others showing the ability of three-dimensional

echocardiography to reconstruct 'en face' the dynamic morphology of atrial septal

defects using transthoracic or transoesophageally acquired ultrasound data

[Belohlavek et al., 1993b; Marx et al., 1995; Franke et al., 1997], However, no

comparison has been made to define the accuracy of these reconstructions. It was

reported that the quality of transthoracic standard ultrasound images was not

satisfactory in all cases and the transthoracic three-dimensional 'en face'

reconstruction of atrial septal defect was feasible in 81% of a study group of children

[Marx et al., 1995]. Therefore, in this study we have looked not only at the potential

accuracy of transthoracic three-dimensional grey-scale reconstruction but at the

additional value of three-dimensional reconstruction using Doppler myocardial

imaging technique. We have shown that the feasibility of detecting right atrial

structures and undertaking measurements by the two studied ultrasound techniques

was different with age. In children (<17 years of age) all the required anatomical

structures were reconstructed in the similar percentage of patients. However, in
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patients over 18 years old, the feasibility of detecting anatomical structures was

higher in the case of Doppler myocardial imaging. For both age groups, superior

vena cava and coronary sinus were the most difficult to be reconstructed by both

ultrasound techniques. We have also shown, that all the atrial septal defects studied

changed significantly in dimension during the cardiac cycle with its maximum size

in late left ventricular systole and minimum in late left ventricular diastole.

Although, this difference was present in all patients, it was inversely correlated with

age. A similar finding of a significant difference in atrial septal defect area during the

cardiac cycle has been reported by others [Franke et ah, 1997], This may give us

potentially new information about the natural history of secundum atrial septal defect

which may be taken into account when assessing a patient for percutaneous atrial

septal defect occlusion using a device placement. The comparison of measurements

by three-dimensional echocardiography and Magnetic Resonance Imaging or surgery

was good and within the acceptable limits for a potential clinical application. The

maximum atrial septal defect dimension measured by three-dimensional

echocardiography correlated well with both Magnetic Resonance Imaging and

surgery. The systematic error, for the group as a whole, was slightly lower for

Doppler myocardial imaging than for grey-scale imaging when compared to both

Magnetic Resonance Imaging (25% versus 27%, respectively) and surgery (22%

versus 29%, respectively). This was not verified for the two age subgroups (Table 2)

because of the relatively small sample size. The comparison between the distances

from the atrial septal defect rim to inferior vena cava, superior vena cava, tricuspid

valve and coronary sinus, in late ventricular diastole, by three-dimensional
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echocardiography and surgery was also good with again slight favour of Doppler

myocardial imaging over grey-scale imaging technique.

5.5. Limitations

Technical limitations

(1) Despite growing interest and extensive research in developing real-time

three-dimensional echocardiography, current three-dimensional reconstructions are

available off-line only. In this particular study time was of minor importance as the

information on atrial septal defect morphology was needed as a baseline to plan the

treatment strategy. The average acquisition time of a single data-set is approximately

three minutes. The time required for the off-line processing of the ultrasound data

may take up to twenty minutes. Finally, the time required to reconstruct the data in

three-dimensions differs according to the quality of the acquired ultrasound images

and may take from two minutes to twenty minutes and sometimes in a complicated

case even longer.

(2) Using this three-dimensional acquisition system, the position of the ultrasound

transducer during the data acquisition is calculated according to the mechanical

steering logic and not according to the transducer spatial co-ordinates. Therefore, the

three-dimensional system does not record unexpected change in the transducer

position which may create a rotational artefact.

(3) Care also needs to be taken during the adjustment of image gain settings. The

three-dimensional system is sensitive enough to reconstruct the ultrasound 'noise' if
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such is left on the image. This will result in insufficiently clear three-dimensional

reconstruction.

Methodological limitations

In this study the information on atrial septal defect sizing was compared to

that obtained from Magnetic Resonance Imaging or surgery. Taking measurement

from Magnetic Resonance phase-contrast images one has to make sure that the shunt

flow is orthogonal to the cine imaging plane. This is because the technique depends

on flow-related enhancement and phase-contrast effects. In most cases the shunt

orifice is best seen at end-systole or early-diastole only. It is difficult to assess the

dynamic change in atrial septal defect size during the cardiac cycle reliably.

Therefore, in this study only the maximum atrial septal defect dimensions (horizontal

and vertical) were measured from Magnetic Resonance images.

Surgical closure of an atrial septal defect is usually performed using a cardioplegic

solution achieving diastolic arrest of the heart. This, unfortunately, does not reflect

the in vivo situation of the beating heart. The relaxed state of the heart tends to

overestimate the size of the defect and the various distances measured. In this study,

we elected to perform the surgical closure in a fibrillating heart thus maintaining the

cardiac tone. The measurements taken at surgery were therefore a more accurate

reflection of the in vivo situation.

5.6. Conclusions

Transthoracic three-dimensional grey-scale imaging and Doppler myocardial

imaging both accurately displayed the varying morphology, dimensions and spatial
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relationships of atrial septal defects. For the group as a whole there was no difference

between the two ultrasound techniques in the accuracy of reconstructed three-

dimensional images. However, in adult atrial septal defect patients, Doppler

myocardial imaging had a greater efficacy than grey-scale imaging technique in

reconstructing a surgical view of atrial septal defects. This study shows that a

dynamic 'en face' three-dimensional image of an atrial septal defect is no longer

restricted to the one seen only by a surgeon during an atrial septal defect repair, but

may be reconstructed through the closed chest prior to closure of the defect. This

should help to plan the surgical strategy or, where applicable, facilitate the selection

of patients for percutaneous device closure.
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Table1.ThemeasurementsofASDdimensionsandthedistancesfromtheASDrimtotheotherstructuresoftherightatrium. DimensionDistanceto
Mean±SD(cm)MaximumMinimum H

V

H

V

IVC

SVC

CS

TV

GSI

1.910.8*

1.610.6*

1.210.7

0.910.5

1.410.5

1.110.5

0.910.5

2.110.6

DMI

1.8±0.7*

1.610.6*

1.210.7

0.910.6

1.510.8

1.010.4

1.010.5

2.310.7

MRI

1.7±0.8

1.410.6

n/a

n/a

n/a

n/a

n/a

n/a

Surgery

1.9±0.6

1.710.5

n/a

n/a

1.310.6

0.810.3

0.910.4

1.910.7

Mean±SD

1.810.8*

1.610.6*

1.210.7

0.910.5

1.410.7

1.010.4

0.910.5

2.210.6

ASD,atriolseptaldefect;CS,coronary
sinus;DMI,Dopplermyocardialimaging;GSI,grey-scaleimaging;H,horizontal;IVS,venacavainferior;MRI,magneticresonance

imaging;SVC,venacavasuperior;TV,tricuspidvalve;V,vertical.
*,p<0.001comparedto

minimum.

Table2.Correlationbetweenthemeasurementsobtainedbythree-dimensionalechocardiographyandsurgery,(forabbreviationsseeTable1.) Dimension

DMI

r

coefficient
SE(cm)

Pvalue

r

coefficient
SE(cm)

Pvalue

IVC

0.84

0.82

0.19

0.0025

0.92

0.96

0.12

0.0001

SVC

0.64

0.57

0.21

0.0198

0.73

1.03

0.27

0.0023

CS

0.68

1.39

0.50

0.0223

0.96

0.98

0.08

0.0001

TV

0.82

0.75

0.15

0.0004

0.86

0.94

0.15

0.0001

Mean±SD

0.7510.08

0.8810.31

0.2610.140.011310.0010.8710.09
0.9810.03

0.1610.07
0.000710.001



Table3.Feasibilityofdetectingstructuresandundertakingmeasurementsfromthree-dimensionalASDreconstructionsbybothimagingtechniquesGSIandDMI. Group1(meanage8±5yrs)[n=19]Group2(meanage35±15yrs)[n=15] GSIDMIGSIDMI
n

%

n

%

n

%

n

%

max.D

19

100

19

100

12

80

15

100

min.D

16

84

18

95

11

73

14

93

SVC

13

68

15

79

10

67

12

80

IVC

14

74

16

84

11

73

12

80

CS

12

63

16

84

8

53

12

80

TV

19

100

19

100

12

80

15

100

Mean±SD

15±3

82±15

17±2

90±8

11±1

71±9

13±1

89±9

ForabbreviationsseeTable1.



Figure 1. The schematic presentation of the secundum atrial-septal defect (ASD) as seen by the surgeon.

CS, coronary sinus; IVC, vena cava inferior; LA, left atrium; RA, right atrium; SVC, vena cava superior;
TV, tricuspid valve.

Figure 2. This shows the maximum orifice of an atrial-septal defect as defined by three-dimensional

echocardiography (A); phase-contrast cine MRI (B); and surgery (C); For abbreviations see Figure 1.
DMI, Doppler myocardial imaging; GSI, grey-scale imaging
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Figure 3. Changes in atrial septal defect dimension during a cardiac cycle as seen by three-dimensional

Doppler myocardial imaging echocardiography.

Age

Figure 4. Linear regression analysis of the correlation between the patients age and the dynamic changes
in atrial septal defect dimension during the cardiac cycle.
The differences in secundum atrial septal defect dimension changes were calculated as follows:

[(HED - HES) + (VED - VES) / (HED + VED)] x 100%. Bold lines show the results obtained from

the Doppler myocardial imaging technique. The dotted lines indicate the 95% predictive interval.
HED, horizontal end-diastolic dimension; HES, horizontal end-systolic dimension; VED, vertical end-
diastolic dimension; VES, vertical end-systolic dimension.
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dimensional echocardiography using grey-scale imaging (GSI) (top) and Doppler myocardial

imaging (DMI) (bottom) technique against phase-contrast cine Magnetic Resonance Imaging (MRI).
The solid line shows the mean difference between the techniques used; the dotted lines show the 95%

limit of agreement.
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dimensional echocardiography using grey-scale imaging (GSI) (top) and Doppler myocardial
imaging (DMI) (bottom) technique against surgery.
The solid line shows the mean difference between the techniques used; the dotted lines show the 95%
limit of agreement.
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CHAPTER 6

The Role of Transthoracic Three-Dimensional Echocardiography

in the Diagnosis of Sinus Venosus Atrial Septal Defect
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6.1. Background

Sinus venosus atrial septal defect is an uncommon congenital cardiac

anomaly and accounts for 5 to 10% of all atrial septal defects [Dickenson et al.,

1981], In most cases it is associated with an abnormal connection of the right

pulmonary veins to either the right atrium or to the superior vena cava [Lewis et al.,

1955], Sinus venosus atrial septal defect was first described by Wagstaffe in 1868

[Wagstaffe, 1868], He described the deficiency of the superior auricular septum

adjacent to the orifice of the superior vena cava, along with anomalous entry of the

right pulmonary vein. The first two-dimensional echocardiographic report of sinus

venosus atrial septal defect was published in 1981 by Nasser et al. [Nasser et al.,

1981]. The anatomic classification, and the embryology of this condition, still

remains a controversial issue. This has been addressed recently by Zaghal et al. and

by Ettedguiet et al., who have suggested that the 'key anatomical criteria for the

diagnosis of sinus venosus defects is an overriding of the mouth of the superior caval

vein across the intact muscular border of the oval fossa. The interatrial

communication is then formed within the mouth of the overriding vein, but is outside

the confines of the oval fossa' [Al Zaghal et al., 1997; Ettedgui et al., 1990], In

children most cases of sinus venous atrial septal defect can be diagnosed by

transthoracic two-dimensional echocardiography using a subcostal four chamber

view [Muhler et al., 1992; Shub et al., 1983], In adolescents or adult patients

transoesophageal rather than transthoracic approach is used to acquire diagnostic

two-dimensional images [Kronzon et al., 1991]. However, although the

transoesophageal approach allows imaging of the superior part of the septum, where

sinus venosus defects are located, this technique is semi-invasive and not always

sufficient to delineate precisely the exact spatial relations between the defect and

abnormal drainage of the pulmonary veins [Pascoe et al., 1996].
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In this study transthoracic three-dimensional echocardiography was used to evaluate

its usefulness and potential superiority over currently used ultrasound techniques

(standard transthoracic and transoesophageal two-dimensional echocardiography) in

the detailed assessment of sinus venosus atrial septal defect.

6.2. Methods

Study population

Between 1993 and 1997, nine patients (age range from 5 to 84 years, 6 male,

the median age at the time of transoesophageal echocardiogram 8 years) diagnosed

as having sinus venosus atrial septal defect were studied at our institution. Five

patients presented with dyspnoea or palpitations, and one had unexplained

presyncope. Three patients had no cardiovascular symptoms and were seen for

routine medical examination. Auscultation revealed an abnormally split second heart

sound in seven patients (78%), which was fixed in four. All patients had systolic

murmur, seven patients had a predominantly pulmonary or left sternal border

murmur, and six patients had a diastolic murmur.

The diagnosis of sinus venosus septal defect was based on both echocardiography

and cardiac catheterisation. The presence of the overriding of the superior vena cava,

and the extraseptal location of an interatrial communication were accepted as

diagnostic criteria of sinus venosus atrial septal defect [A1 Zaghal et al., 1997;

Ettedgui et al., 1990], Prior to cardiac catheterisation, all patients underwent standard

transthoracic and transoesophageal two-dimensional ultrasound examination. After

the diagnosis had been made, but prior to the surgical repair of the defect, all patients

underwent transthoracic three-dimensional examination by an experienced

cardiologist who was blinded to the outcome of other tests.

In four patients, the diagnostic interpretation was correlated with the surgical

findings and in the remaining five with the outcome of cardiac catheterisation.
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Transthoracic two-dimensional echocardiography

Each patient underwent routine transthoracic echocardiography that included M-

mode and two-dimensional imaging, pulsed and continuous wave Doppler

ultrasound and colour flow mapping. The interatrial septum was explored in the

short-axis, apical four- chamber and subxiphoid views. Toshiba PowerVision

ultrasound scanner and 5 MHz phased array transducer was used to acquire

diagnostic information in all patients. The diagnosis of atrial septal defect was

considered certain when the characteristic flow velocity pattern across the septum

was identified. Attempts to identify anomalous pulmonary veins drainage were made

in each patient.

Transoesophageal two-dimensional echocardiography

Transoesophageal echocardiography was performed in a standard manner. All

studies, except for two adult patients, were carried out under general anaesthesia.

Both cardiac catheterisation and transoesophageal echocardiography (5 MHz biplane

transducer) were accomplished during the same anaesthesia.

The interatrial septum was imaged using the longitudinal view and the basal short

axis view. These views were obtained from the mid oesophagus. The defect

appeared as an absence of the atrial septum just beneath the orifice of the superior

vena cava. This was visualised both by two-dimensional imaging and colour Doppler

flow. The longitudinal view was used to identify the anatomy of venous connection

to the left atrium, while typical anomalous connection of the right sided pulmonary

veins was best visualised by the use of the transverse plane. Colour Doppler flow

complemented the appreciation of the anomalous venous connection.

Transthoracic three-dimensional echocardiography

The instrumentation used for three-dimensional images consisted of an ultrasound

scanner (Acuson Sequoia Mountain View, California, USA) and a three-dimensional

acquisition system (TomTec Echo-Scan, TomTec Imaging systems, Munich,
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Germany). The protocol for data acquisition has been described in detail in Chapter

2. The ultrasound images were obtained with a 5.0 MHz phase array transducer,

fixed in a cylindrical mechanical rotational device. After positioning it on the chest

in a standard apical position (four chamber view), the transducer was rotated by

mechanical device at 2° steps over 180° by an external stepper motor, controlled by

the Echo-Scan and according to echocardiographic and respiratory gating. None of

the patients required any sedation and the procedure was tolerated well by all

patients.

In each patient, three-dimensional reconstructions were carried out from three

different perspectives. (1) Superiorly angulated apical four chamber view which

allowed visualisation of the right sided pulmonary veins, the entrance of the superior

vena cava, and the outline of the sinus venosus septal defect. (2) The four chamber

reconstruction was then cut (a) vertically, along a longitudinal plane through the

right atrial free wall; and (b) horizontally, parallel to the line of atrio-ventricular

valves at the inferior edge of the defect to visualize the defect en face.

Cardiac catheterisation

Except for two adult patients, the procedure was carried out under general

anaesthesia. Haemodynamic measurements and oxygen saturations were recorded

according to standard catheterisation protocol for our laboratory. Pulmonary artery

angiograms were carried out and anteroposterior and lateral four chamber views

were obtained. Pulmonary venous drainage was noted on recirculation. Selective

pulmonary venous angiograms in right upper pulmonary vein were also performed

in all cases considered to be inconclusive. Cine images were recorded 25

frames/second (Lateral ARC 2/poly DIAGNOST C2, Philips Medical Systems

Netherlands B.V).
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Surgical data

Four out of nine patients have undergone corrective surgery, during the study period.

All operations were performed by a single surgeon. The surgery was carried out

through a midline sternotomy. Sinus venosus atrial septal defects were closed using

autologous pericardial patch and anomalous pulmonary veins were diverted the to

left atrium. The superior vena cava/right atrial junction were enlarged by autologous

pericardial patch in all four patients.

Surgery was performed on cardiopulmonary bypass, under moderate hypothermia.

Information acquired during surgery included, exact location of defect, the number

of anomalous pulmonary venous connections, and the presence of any associated

additional defect. The observations were documented at the end of the operation, by

the surgeon in charge, for each patient.

6.3. Results

Table 1 shows the clinical data of the study group and the diagnostic

information obtained from standard transthoracic two-dimensional echocardiograms

from all nine patients.

Transthoracic two-dimensional echocardiograms

Although in all nine patients typical echocardiographic features of right ventricular

volume overloading were detected, and seven patients (78 %) had a paradoxical

interventricular septal motion, a clear shunt that suggested an interatrial connection

above the foramen ovale was detected by transthoracic two-dimensional

echocardiogram only in two patients (22 %). Standard transthoracic echocardiograms

were also less accurate than both transoesophageal and transthoracic three-

dimensional ultrasound techniques in detecting the abnormal drainage of pulmonary

veins. Only in two patients (22 %) were these findings noted by transthoracic two-

dimensional echocardiogram. In these two patients, transthoracic two-dimensional
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images detected an abnormal drainage of the right upper pulmonary vein to the right

atrium confirmed later by cardiac catheterisation and/or surgery. In addition to the

detected anomalous drainage of the right upper pulmonary vein, one of these two

patients also had an abnormal drainage of the right mid pulmonary vein which was

not detected by the transthoracic two-dimensional echocardiogram.

Information obtained from two-dimensional transoesophageal echocardiograms,

transthoracic three-dimensional echocardiograms, cardiac catheterisation and

surgical findings are shown in Table 2.

Two-dimensional transesophageal echocardiography

In all nine patients the presence of sinus venosus defect was correctly diagnosed by

transoesophageal echocardiogram. The abnormal drainage of nine right sided

pulmonary veins (seven right upper pulmonary veins and two right mid pulmonary

veins) was detected by transoesophageal two-dimensional imaging.

Transthoracic three-dimensional echocardiography

Good quality transthoracic three-dimensional data was acquired in six of the nine

patients studied. In the remaining three patients: the quality of the three-dimensional

data-set was still sufficient in two patients to obtain the required information and in

one patient a small rotation artefact was present. Three-dimensional reconstruction of

the images took between 11 and 22 minutes (mean 15 ±4 min.) depending on the

quality of data-set and the complexity of the defect's anatomy.

In all nine patients (including both adults) transthoracic three-dimensional

echocardiograms allowed identification of the presence of a sinus venosus atrial

septal defect. The assessment of the abnormal drainage of pulmonary veins by

transthoracic three-dimensional echocardiography was superior to that by two-

dimensional both transthoracic and transoesophageal echocardiography. In all nine

patients abnormal drainage of the pulmonary veins was visualised. In two cases (8

year old boy and 10 year old boy) it was assessed that the mid upper pulmonary vein
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drained to the right atrium rather than to the junction of the right atrium and the

superior vena cava. Also, in one patient (nine year old girl) an additional anomalous

drainage of the right mid pulmonary vein was not detected.

Comparison between two-dimensional transoesophageal echocardiography and

three-dimensional transthoracic echocardiography

Both techniques correctly recognised the presence of the sinus venosus defect in all

nine patients studied. Transthoracic three-dimensional echocardiography was more

accurate in the identification of the anomalous drainage of right sided pulmonary

veins. In our study group of nine patients, thirteen right sided pulmonary veins (nine

right upper pulmonary veins and four right mid pulmonary veins) drained on the

right side of the septum. Transoesophageal two-dimensional imaging confirmed the

abnormal drainage of nine right sided pulmonary veins (seven right upper

pulmonary veins and two right mid pulmonary veins). In contrast, three-dimensional

transthoracic imaging detected the abnormal drainage of twelve right sided

pulmonary veins (nine right upper pulmonary veins and three right mid pulmonary

veins). The anomalous drainage of four pulmonary veins (two right upper and two

right mid pulmonary veins) was not detected by transoesophageal imaging

compared with only one right mid pulmonary vein that was missed by transthoracic

three-dimensional imaging. It appears that the abnormal drainage of the right mid

pulmonary vein was most difficult for visualisation by transoesophageal two-

dimensional echocardiography (two out of four detected). This was improved by

transthoracic three-dimensional echocardiography (three out of four detected).

6.4. Discussion

In this study the completeness of diagnostic information on sinus venosus

septal defect including the description of the anomalous connections of right sided

pulmonary veins was compared between transthoracic two-dimensional
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echocardiography, transoesophageal two-dimensional echocardiography and

transthoracic three-dimensional echocardiography. Although transthoracic two-

dimensional echocardiography is an effective technique in diagnosing ostium

primum and ostium secundum atrial septal defects, it has been reported to be less

sensitive in the demonstration of sinus venosus atrial septal defects [Shub et ah,

1983; Kronzon et ah, 1991; Pascoe et ah, 1996], The sensitivity of detecting both

sinus venosus defects and the anomalous drainage of the right sided pulmonary veins

improves significantly with the use of the transoesophageal echocardiography

[Kronzon et ah, 1991; Pascoe et ah, 1996]. However, transoesophageal imaging

remains a semi-invasive technique which in children is mostly carried out under a

general anaesthesia. With increasing interest in three-dimensional echocardiography,

in this study the completeness of diagnostic information obtained from two-

dimensional imaging (both transthoracic and transoesophageal) was compared to that

obtained from transthoracic three-dimensional imaging.

Transthoracic two-dimensional echocardiography

The presence of sinus venosus defect was detected by transthoracic two-dimensional

imaging in only two (22%) of the nine patients studied (eight year old male and

eighty four year old male). Additionally, in these two patients, right upper pulmonary

veins were found to drain into the right atrium. This diagnostic yield obtained from

transthoracic two-dimensional imaging was similar to that described by Pascoe et al.

and lower than that described by Shub et al. [Pascoe et ah, 1996; Shub et ah, 1983],

It is unlikely that this reflects poor imaging technique or lack of awareness of the

condition, but rather it is a consequence of the far-field location of sinus venosus

defects. Apart from the clinical spectrum of symptoms referable to the cardiovascular

system, the important features observed from transthoracic two-dimensional images

that led to further investigation by transoesophageal echocardiography and cardiac

catheterisation were the dilatation of the right side of the heart (all nine patients) and
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paradoxical septal motion (in seven of the nine patients, 78%). Again, similar

findings were reported by Pascoe et al. where 96% of studied group of patients

presented with a dilated right heart [Pascoe et al., 1996].

Transoesophageal two-dimensional echocardiography

In contrast to transthoracic two-dimensional echocardiography, transoesophageal

two-dimensional imaging proved to be an accurate way of diagnosing sinus venosus

defect. It was more accurate in diagnosing not only the presence of the defect but

also in detecting the anomalous pulmonary venous connection. Transoesophageal

imaging correctly identified the presence of the sinus venosus defect in all nine

patients. The longitudinal imaging plane in the mid-oesophagus provided the most

reliable visualization of sinus venosus defect (Figure 1). This plane allows the best

view of the fossa ovalis region with the superior limbus of the atrial septum and the

superior vena cava in long-axis. Anomalous pulmonary venous connections were

appreciated consistently with the use of the colour Doppler flow at the level of the

superior vena cava near the junction with the right atrium and more superiorly at the

level of the right pulmonary artery. The anomalous pulmonary drainage of the right

upper pulmonary vein was correctly identified in seven of the nine patients studied.

In two of these seven patients an additional mid upper pulmonary vein was found to

drain into the right atrium at cardiac catheterisation and surgery. In one patient the

right mid pulmonary vein was thought to described to drain into the right atrium was

found at surgery to drain rather into the junction of the right atrium and the superior

vena cava. In the remaining two patients in whom no clear information on the

pulmonary venous connection was obtained by transoesophageal imaging, right

upper pulmonary veins drained to the superior vena cava.
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Transthoracic three-dimensional echocardiography

Transthoracic three-dimensional imaging was as accurate in the diagnosis of sinus

venosus defect as transoesophageal two-dimensional imaging and allowed

identification of the presence of the sinus venosus defect in all nine patients (Figure

2). The assessment of the exact mechanism of the anomalous pulmonary venous

drainage by transthoracic three-dimensional echocardiography was superior to that

by transoesophageal two-dimensional imaging. It was basically correct in all nine

patients with the minor qualification that in two of these nine patients the right mid

pulmonary vein was described as draining to the right atrium rather than to the

junction of the right atrium and the superior vena cava and in one other patient the

presence of an abnormal drainage of the mid upper pulmonary vein was not observed

by transthoracic three-dimensional reconstruction.

6.5. Limitations

Technical limitations

In our previous in vitro work described in Chapter 3 it appears that the

recognition of spatial details from three-dimensional reconstruction is satisfactory

and that a minimum size of a relatively strong reflector of 1 mm dimension and two

reflectors distant from each other by 2 mm can be correctly identified from a three-

dimensional image. In vivo, this spatial resolution will vary according to several

parameters e.g. imaging frequency, depth settings, image quality and the position of

the structure-of-interest within the ultrasound sector. This therefore may create a

potential problem when looking for pulmonary vein entrance in poorly echogenic

patients. As described in previous chapters the inability of the three-dimensional

system used to change interactively the settings selected (cut-planes, threshold and

opacity) for three-dimensional reconstruction extends the time required to obtain
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diagnostic images. Future development in real-time three-dimensional scanning

should shorten the time needed to acquire and to reconstruct the data and also would

enhance the diagnostic confidence of the examiner.

Clinical limitations

A relatively small number of patients was studied. No attempt has been made

to analyse other often concomitant valvular abnormalities i.e. pulmonary or tricuspid

regurgitation, in this group of patients. To the best of our knowledge, no validation

of three-dimensional echocardiographic definition of this abnormality has been so far

undertaken. Therefore our efforts were focused on the detection of septal defects and

anomalous pulmonary drainage.

6.5. Conclusions

Based on our patient population it appears that transthoracic three-

dimensional echocardiography is highly accurate in the description of the presence of

sinus venosus atrial septal defects and provides a precise description of the

anomalous drainage of right sided pulmonary veins. Transthoracic three-dimensional

imaging was superior to transthoracic two-dimensional echocardiography in the

diagnosis of sinus venosus defects. As the size of our study group was small, it is

difficult to state emphatically whether transthoracic three-dimensional imaging was

also superior to transoesophageal imaging, although, such a trend was observed in

our results. If this is the case than there is a clear advantage of transthoracic imaging

over transoesophageal imaging which is an invasive test with well-described

although rare complications [Daniel et ah, 1991].
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Table1.Clinicalandstandardtransthoracicultrasoundtwo-dimensionaldata. Nr

Age (months)

Gender (F/M)

Rhythm

TRANSTHORACIC2DECHO
Size

RightVentricle Overloading

ParadoxicalSeptal Motion

PulmoryVein AbnormalDrainage

1

8

F

SR

noshunt

++

yes

no

2

8

M

SR

++

+++

no

RUPV—>RA

3

10

M

SR

noshunt

++

yes

no

4

7

F

SR

noshunt

++

yes

no

5

8

M

SR

noshunt

++

yes

no

6

9

F

SR

noshunt

+

no

no

7

5

M

SR

noshunt

++

yes

no

8

84

M

AF

++

++

yes

RUPV—>RA

9

76

M

AF

noshunt

++

yes

no

F,female;M,male;2D,two-dimensional;SR,sinusrhythm;AF,atrialfibrillation;RUPV,rightupperpulmonaryvein;RA,rightatrium +,mild;++,moderate,+++,severe;—>,drainingto.



Table2.Comparisonbetweentransoesophagealtwo-dimensional(2D)echocardiogram,transthoracicthree-dimensional(3D)echocardiogram,cardiaccatheterisation andsurgicalfindings. Nr

Transoesophageal2Decho
Transthoracic3Decho

CardiacCatheterisation

Surgicalfindings

1

RUPV—>RA

RUPV—>RA

RUPV->RA

RUPV—»RA

-

RMPV—»RA

RMPV—>RA

RMPV—>RA

2

RUPV—»SVC/RA

RUPV—»SVC/RA

RUPV—>SVC/RA

n/a

-

RMPV—»RA

RMPV—»SVC/RA

3

RUPV—>SVC/RA

RUPV—>SVC/RA

RUPV—>SVC/RA

RUPV—>SVC/RA

RMPV—>RA

RMPV—>RA

RMPV—>SVC/RA

RMPV—>SVC/RA

4

-

RUPV—>SVC

RUPV—>SVC

RUPV—>SVC

5

-

RUPV—>SVC

RUPV—»SVC

RUPV—>SVC

6

RUPV—»SVC/RA

RUPV-^SVC/RA

RUPV—»SVC/RA

n/a

RMPV—>RA

-

RMPV—»SVC/RA

7

RUPV—>RA

RUPV->RA

RUPV—>RA

n/a

8

RUPV—»SVC

RUPV—>SVC

RUPV->SVC

n/a

9

RUPV—»SVC/RA

RUPV—»SVC

RUPV—>SVC

n/a

RUPV,rightupperpulmonaryvein;RA,rightatrium;RMPV,rightmiddlepulmonaryvein;SVC,superiorvenacava;SVC/RA,junctionofsuperiorvenacavaandright atrium;—drainingto;-,notSeen;n/a,notperformed



Figure 1. A seventy six year old male with sinus venosus atrial-septal defect; A, longitudial view of the
atrial septum, which highlights sinus venosus atrial-septal defect (colour Doppler flow) located in the

superior fatty limbus of the atrial septum; B, transverse view of the atrial septum with the sinus venosus
defect displaying in B-mode (upper panel) and visualised shunt by colour Doppler flow (lower panel).
ASD, atrial-septal defect; LA, left atrium; RA, right atrium; SVC, superior vena cava; IVC, inferior
vena cava
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Figure 2. Three-dimensional transthoracic reconstruction delineating sinus venosus atrial septal defect
and an abnormal drainage of the right upper pulmonary vein (left side) with a corresponding schematic

diagram (right side).

LA, left atrium; LLPV, left lower pulmonary vein; LUPV, left upper pulmonary vein; LV, left ventricle;
RA, right atrium; RLPV, right lower pulmonary vein; RUPV, right upper pulmonary vein; RV, right

ventricle; SVD, sinus venosus atrial-septal defect.
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CHAPTER 7

Transthoracic Three-Dimensional Echocardiography in the Pre-Operative

Assessment of Atrio-Ventricular Septal Defect Morphology
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7.1. Background

The characteristic morphology of an atrio-ventricular septal defect has been

outlined by many authors using either post-mortem hearts [Rastelli et al., 1966;

Piccoli et al., 1979a&b; Bharati et al., 1980; Anderson et al., 1998; Suzuki et al.,

1998], angiography [Macartney et al., 1979], or echocardiography [Williams et al.,

1974; Sahn et al., 1974; Hagler et al., 1979; Smallhorn et al., 1982a&b; Cohen et al.,

1996]. Transthoracic echocardiography has been shown to be the technique of choice

in the definition of morphologic abnormalities of the atrio-ventricular junction

[Godman et al., 1974; Sahn et al., 1974; Hagler et al., 1979; Sutherland et al., 1981;

Smallhorn et al., 1982a; Sutherland et al., 1983],

From the anatomic point of view, atrio-ventricular septal defects can be diagnosed by

the presence of several characteristic features i.e. a common atrio-ventricular

junction, an unwedged aorta with an often narrowed left ventricular outflow tract and

disproportion in the left ventricular aspect of the septum (inlet/outlet disproportion).

However, the most characteristic anatomic feature is the arrangement of the five

atrio-ventricular valve leaflets that guard the common atrio-ventricular junction. The

right-side of the junction consists of two leaflets (inferior and antero-superior), one is

exclusive to the left ventricle (the mural leaflet), and the other two leaflets bridge the

ventricular septum in the superior and inferior position [Piccoli et al., 1979a&b;

Bharati et al., 1980; Anderson et al., 1998], Two potential inter-chamber shunting

spaces are often concomitant with the abnormal atrio-ventricular valve, through the

interatrial or interventricular septum. In cases when the two bridging leaflets are

joined together by a tongue of tissue running along the ventricular septal crest, only

atrial shunting is present. These cases are diagnosed as partial atrio-ventricular septal

defects. However, cases can be found where separate valvar orifices exist together

with an extensive communication between the valve leaflets and the ventricular

septum. These are sometimes called 'intermediate' or 'transitional' [Wakai et al.,
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1958; Bharati et al., 1980]. All patients however have a common atrio-ventricular

junction with the three- leaflet left component of the valve which guards this part of

the junction even when there is a separate valvar orifice for the left ventricle

[Anderson et ah, 1998], This is independent of all the above described features.

Because of the complexity of the atrio-ventricular septal defect, echocardiography

seems to be the most accurate technique to provide a clinical diagnosis and describe

the extent and the character of the malformation [Hagler et al., 1979; Smallhorn et

al., 1982a&b], In the late 1970s first reports were published on the role of M-mode

echocardiography in identifying abnormalities of the atrio-ventricular junction and

differentiation between partial and complete atrio-ventricular septal defects

[Williams et al., 1974; Godman et al., 1974; Pieroni et al., 1975; Hagler et al., 1976].

Two-dimensional imaging allows a complete diagnosis of the defect with the

demonstration of the sites and the severity of intracardiac shunting by colour

Doppler flow [Hagler et al., 1979; Smallhorn et al., 1982a&b; Cohen et al., 1996].

Despite the diagnostic accuracy of two-dimensional echocardiography, the

information on valve morphology and the mechanism of valve reflux is obtained

from several two-dimensional cross-sections using different acoustic windows which

then have to be mentally reconstructed into a three-dimensional image. More

detailed pre-operative description of the valve malformation would prove beneficial

in planning the surgical approach to correction of the defect [Han et al., 1995; Studer

et al., 1982; McGrath et al., 1987]. Volume-rendered three-dimensional

echocardiography creates such a possibility [Belohlavek et al., 1993a; Pandian et al.,

1994; Vogel et al., 1994], Dynamic volume-rendered three-dimensional

echocardiography enables the reconstruction of heart structures from views

unavailable by standard two-dimensional echocardiography [Rivera et al., 1994;

Belohlavek et al., 1993b; Ludomirsky et al., 1994; Schwartz et al., 1994; Roelandt et

al., 1995], It has been shown by Salustri and co-workers that the additional data
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provided by three-dimensional echocardiography is particularly useful in imaging the

mitral valve, aortoseptal continuity and atrial septum [Salustri et al., 1995]. Vogel et

al. have studied successfully a group of various forms of congenital heart disease that

included also seven cases of atrio-ventricular septal defects [Vogel et ah, 1994],

The aim of this study was to assess whether transthoracic three-dimensional

echocardiography enhances the assessment of the complex morphology of atrio¬

ventricular septal defects and, in particular, the dynamic mechanism of valve reflux

compared to that available from standard two-dimensional echocardiography.

7.2. Methods

A prospective study of the transthoracic three-dimensional echocardiographic

definition of atrio-ventricular septal defect morphology and its dynamic changes

during the cardiac cycle was performed. The information obtained from two-

dimensional and three-dimensional echocardiography was compared with

intraoperative findings.

Patient population

Fifteen patients (median age 22 months, age range from 7 to 96 months, 11 female)

with a common atrio-ventricular junction were studied. According to the criteria

described in the introductory section, nine patients had a complete atrio-ventricular

septal defect and six had a partial atrio-ventricular septal defect. Two-dimensional

and three-dimensional echocardiography was performed by two independent

cardiologists blinded to each other's results. The average time between the three-

dimensional echocardiogram and surgery was 10 ± 35 days. All patients were

informed about the purpose of the study and gave informed consent to be enrolled in

the study.
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Two-dimensional echocardiography

All studies were performed at 4 MHz using an Acuson Sequoia ultrasound scanner

and were recorded on both the system's hard disk and SVHS videotape. In each

patient several two-dimensional cross-sections were acquired including the

precordial four-chamber view; subcostal four-chamber, long- and short-axis views.

The information obtained from two-dimensional imaging was complemented by that

obtained from colour Doppler flow. The following was noted for each patient: the

morphology and the degree of valve insufficiency and the size of the atrial and the

ventricular septal defect (patients were categorised as having a large unrestrictive

defect or a small restrictive or no defect by two-dimensional and Doppler colour

flow echocardiography).

Three-dimensional echocardiography

A detailed protocol of the method of three-dimensional image acquisition has been

outlined in Chapter 2. In brief, the instrumentation used for the three-dimensional

imaging protocol consisted of an ultrasound scanner (Acuson Sequoia, California)

and a three-dimensional acquisition system (TomTec Echo-Scan, TomTec Imaging

Systems; Munich, Germany). The ultrasound images were obtained at 4.0 MHz

using transthoracic apical transducer position. During the acquisition, the Echo-Scan

was connected to the ultrasound video output of the Acuson scanner via a

black/white video cable. ECG and respiratory gated two-dimensional images were

acquired at 2° steps over 180°. A total of 90 cardiac cycles were stored during one

acquisition. Most of the patients required a mild sedation using Triclofos Elixir BP.

After acquisition, the data-sets were stored on the system hard drive and then

analysed off-line. In each patient, several different three-dimensional reconstructions

were carried out. Firstly, an apical four chamber view was reconstructed. Secondly,

the unroofed view from the left atrium orientated towards the atrio-ventricular
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junction was reconstructed to display the common valve en face. Thirdly, to

reconstruct the atrial and/or ventricular septal defect en face, the acquired data-set

was cut vertically by a longitudinal plane through the right atrial free wall, tricuspid

valve and anterior right ventricular free wall and then orientated anterior to posterior.

Surgical data

All operations were performed by one surgeon.

The repair was performed on cardiopulmonary bypass, under moderate hypothermia.

After the usual preparations, a median sternotomy incision was made and a large

piece of pericardium was removed and set aside. The right atrium was opened

widely. The internal anatomy was inspected. Cold saline was injected twice through

the valve(s), and the closure pattern and any regurgitant leaks were studied. The

functional anatomy of the valve(s) was re-stated with the use of sutures and/or

Dacron patches. After the closure of the interventricular septal defect with the

Dacron patch, the pericardial interatrial patch was trimmed to the appropriate shape

and size and the first part of its insertion was then accomplished. Saline solution was

then injected in order to study the valve(s) closure pattern and competence. If a

central leak persisted, an annuloplasty stitch was placed. The repair was completed

by suturing of the rest of the pericardial interatrial patch in place.

7.3. Results

In all fifteen patients with an atrio-ventricular septal defect three-dimensional

echocardiography was feasible using the standard transthoracic apical window. The

time needed to acquire a three-dimensional data-set ranged from three to fifteen

minutes. The average time of data analysis was from fifteen to ninety minutes.

All fifteen patients had a common atrio-ventricular junction with nine cases

diagnosed as complete and six as partial atrio-ventricular septal defects. In all cases

the clinical diagnosis was based on standard two-dimensional echocardiography and
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was confirmed later by both three-dimensional echocardiography and intraoperative

findings.

Standard Echocardiography

Combined information from two-dimensional echocardiography and colour Doppler

flow allowed the morphological diagnosis in all patients. Two-dimensional images

were acquired from different acoustic windows: the common atrio-ventricular

junction was best visualised using the subcostal short-axis view, and to assess both

bridging leaflets the subcostal four-chamber view (inferior bridging leaflet) and/or

the apical or the parasternal four-chamber view (superior bridging leaflet) was used.

Three-dimensional Echocardiography

Four-chamber view reconstruction was possible in all study patients (Figure 1).

Short-axis views that visualised the atrio-ventricular valve(s) en face from above

(Figure 2 & 3) or from below (Figure 4) were most useful for the comprehensive

assessment of dynamic valve morphology, leaflet morphology and motion, orifice

area, and the mechanism of valve reflux.

In all but two patients, anatomic dynamic reconstructions of the common atrio¬

ventricular valve clearly displayed valve leaflets and their morphology and function.

In two patients, the quality of the data-set was suboptimal but still allowed for data

reconstruction.

In the analysis of septa (both interatrial and interventricular), the saggital view

orientated antero-posterior allowed en face reconstruction of atrial and ventricular

septal defects with a clear description of their dynamic morphology, size and their

spatial relations to other cardiac structures (Figure 5).

The comparison between two-dimensional echocardiography, three-dimensional

echocardiography and surgery is presented in Table 1.
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Left-sided valve reflux

Left-sided valve reflux was assessed conventionally by colour Doppler flow imaging

and three-dimensional echocardiography. Both results were compared with

intraoperative findings. The assessment of valve reflux from volume-rendered three-

dimensional images was similar to that performed during surgery. In this study, the

unroofed cut plane of the left atrium was most informative and enabled the

reconstruction of the atrio-ventricular valve(s) from above displaying the anatomic

valve abnormality together with leaflet insufficiency and the completeness of leaflet

closure line during diastole.

The assessment of the severity of valve reflux by two-dimensional echocardiography

was confirmed at surgery in eleven patients. In the remaining four, there was a one

step difference between the echocardiographic and the surgical assessment. In two of

these four patients, the reflux was assessed as moderate by colour Doppler flow but

severe at surgery. In the remaining two, the left sided reflux was assessed as mild by

colour Doppler flow and as moderate and severe at surgery.

For three-dimensional echocardiography, in only one of the fifteen patients a one

step difference was found when compared with surgical data. In this one patient, left

sided valve insufficiency was assessed as mild by three-dimensional

echocardiography but moderate by the surgeon.

Right-sided valve reflux

The method of assessment of right-sided valve reflux was similar to that of the left-

sided valve. The results of colour Doppler flow (standard echocardiography) and

three-dimensional echocardiography were compared with intraoperative findings.

For the assessment of right-sided valve reflux, three-dimensional reconstruction was

performed using the unroofed cut plane of the left atrium orientated towards the

common atrio-ventricular junction.
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In seven of the fifteen patients, the severity of valve reflux described by two-

dimensional echocardiography was confirmed at surgery. In the remaining eight

patients, a one step difference was found. In three of these eight patients, the reflux

was noted as mild by colour Doppler flow but moderate at surgery. In three patients,

right-sided reflux was assessed as moderate by Doppler flow but severe by the

surgeon. In the remaining patient, no significant reflux was found by Doppler flow

but during the valve repair, right-sided valve insufficiency was assessed as mild. For

three-dimensional echocardiography, in three of the fifteen patients, a one step

difference was found when compared to the surgical data. In one patient, right-sided

valve insufficiency was assessed as mild by three-dimensional echocardiography but

as moderate by the surgeon, in one patient it was assessed as severe and as moderate

and in the third patient as moderate and as severe, respectively.

Primum atrial septal defect

Primum atrial septal defect was found in all fifteen patients by both

echocardiographic techniques. Although in all patients the diagnosis made by two-

and three-dimensional echocardiography was confirmed during surgery, in three

patients a difference was present in the description of the defect size between two-

dimensional echocardiography and surgery. Two-dimensional echocardiography

underestimated the size of defect in two patients and overestimated the size of defect

in one patient. The results obtained from three-dimensional echocardiography agreed

with those taken during surgery.

Secundum atrial septal defect

Secundum atrial septal defect was found in ten of the fifteen patients by both

echocardiographic techniques. In all ten patients the diagnosis was then confirmed at

surgery. Disagreement regarding the size of the defect was present only for two-

dimensional echocardiography. In two of the ten patients, there were small

differences in the assessment of the defect size by two-dimensional
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echocardiography. In one the defect was overestimated (moderate as opposed to

small at surgery) and in the second case it was underestimated (moderate as opposed

to large at surgery). In all ten patients three-dimensional echocardiography precisely

assessed the size of the defect. Additionally, in two cases, defects were correctly

described by three-dimensional echocardiography as fenestrated (multiple

fenestrations in both of them).

Ventricular septal defect

Ventricular septal defect was observed in eight patients by two-dimensional

echocardiography and in nine patients by three-dimensional echocardiography. At

surgery ventricular septal defect was found in nine patients. The ventricular septal

defect that was missed by two-dimensional echocardiography was very small and

positioned in the aneurysmal muscular ventricular septum. Additionally, in four of

the eight patients diagnosed by two-dimensional echocardiography defect size was

slightly underestimated. No differences in the description of the defect size was

found between three-dimensional echocardiography and surgery.

7.4. Discussion

In the present study, we investigated the three-dimensional echocardiographic

definition of the common atrio-ventricular junction and analysed the relation of this

variable to two-dimensional echocardiographic definition and surgical findings.

The technique of rotational image acquisition that has been used in this study was

relatively easy to perform but like all new techniques requires a training period.

Three-dimensional image acquisition was performed in a routine clinical setting,

with acceptable prolongation of the standard echocardiographic assessment. Good

quality three-dimensional reconstructions of the four-chamber view were achieved

in all fifteen patients studied (unselected study group). Good quality en face
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reconstructions of the common valve were obtained in thirteen of the fifteen patients

studied.

It needs to be emphasised that a clear anatomic reconstruction of either the atrio¬

ventricular valve or atrial/ventricular septal defect is more difficult than

reconstruction using an apical view alone and requires a longer learning curve. To

reconstruct a surgical view of the defect a greater experience is needed in both image

acquisition and image reconstruction. During image acquisition it is important to

select the highest transducer frequency available for optimum detail definition with

appropriate angulation of acquired two-dimensional cut-planes and elimination of

potential rotational artefacts. During image reconstruction the selection of optimum

two-dimensional cut-plane for three-dimensional reconstruction and also

threshold/opacity settings are experience related and using the current three-

dimensional system require a learning curve.

In all fifteen patients, diagnostic information by transthoracic three-dimensional

echocardiography concurred with the diagnosis by two-dimensional

echocardiography and findings at surgery. The unroofed view of the left atrium was

most useful in displaying the morphology of the atrio-ventricular valve(s) and

closely resembled the actual anatomy of the heart. In each patient three-

dimensionally reconstructed images of the valve were compared to the drawings and

observations taken at surgery. As illustrated in Table 1. good agreement was found

between standard echocardiography and surgical findings in the assessment of both

valve insufficiency and the sizing of atrial/ventricular septal defects. Apart from a

few small differences when two-dimensional echocardiography under- or over¬

estimated the severity of the anomaly the difference has never been bigger than one

step i.e. from mild to moderate but not from mild to severe. Dynamic three-

dimensional surgical reconstruction of the atrio-ventricular valve(s) was available

with only some minutes delay in the standard echocardiographic procedure. The
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advantage of the latter technique was that no mental reconstruction was required to

have a full and detailed insight into the three-dimensional morphology of the valve

and atrial/ventricular septal defects. Therefore the assessment of valve insufficiency

by three-dimensional echocardiography was closer to surgical findings than for two-

dimensional echocardiography. Also, the process of describing valve morphology to

fellow cardiologist was much easier using the three-dimensional display rather than

using complex two-dimensional information.

The en face reconstruction of both primum and secundum atrial septal defect was

feasible in all patients. Full agreement was found in the description of defect size

between three-dimensional echocardiography and surgery. Additionally in two cases

the secundum atrial septal defect had multiple fenestrations observed by three-

dimensional echocardiography but not by standard echocardiography. These results

are in agreement with previous studies, including our own, on patients with

secundum atrial septal defects [Belohlavek et al., 1993b; Franke et al., 1997; Chapter

5]. Three-dimensional reconstructions of ventricular septal defects were feasible in

all patients but the en face view of the defect was achieved in only six of the nine

patients. In the remaining three patients, the assessment of defect size was

performed from the reconstructed four-chamber view. Full agreement was found

between three-dimensional echocardiography and surgical findings in the assessment

of defect size. Additionally one small defect which was missed by two-dimensional

echocardiography was correctly identified and sized by three-dimensional

echocardiography. The reconstruction of the surgical view of the defect was more

difficult than reconstruction of the atrial septal defect. The process was affected by

the often complex anatomy of the crest of the septum, which differed according to

the attachment of the bridging leaflets and multiple cords that often run between

abnormal papillary muscles via the septal crest to the bridging leaflets [Rastelli et al.,

1966; Piccoli et al., 1979a&b; Anderson et al., 1998]. It was not always straight
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forward to find the best angulation of three-dimensional reconstruction to identify

these structures. Using the current three-dimensional system, interactive changes of

the selected parameters for three-dimensional reconstruction are not possible and in

some cases finding the right angle for three-dimensional reconstruction required

some perseverance. Our experience from this study in reconstructing ventricular

septal defects slightly differs from that of others but their reconstructions of

ventricular septal defects were performed in otherwise normal hearts [Rivera et al.,

1994; Vogel et ah, 1994&1995b; Salustri et ah, 1995].

7.5. Limitations

Technical limitations

In Chapter 3 it was shown that in vitro the recognition of spatial details from

three-dimensional reconstruction is satisfactory and that a minimum size of a

relatively strong reflector of 1 mm dimension and two reflectors distant from each

other by 2 mm can be correctly identified from a three-dimensional image. In vivo,

this spatial resolution will vary according to several parameters e.g. imaging

frequency, depth settings, image quality and the position of the structure-of-interest

within the ultrasound sector. Also, the current sampling rate of 25 frames/sec for

three-dimensional echocardiography is lower than that available in two-dimensional

echocardiography and may not be sufficient to follow rapid events. The inability of

the three-dimensional system used to change interactively the settings selected (cut-

planes, threshold and opacity) for three-dimensional reconstruction extends the time

required to obtain diagnostic images.
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Clinical limitations

Because of the complexity of the study, only the anatomy of the atrio¬

ventricular junction and septal defects was analysed. No attempt has been made to

analyse the subvalvular apparatus and papillary muscles or search for other

potentially co-existing abnormalities such as left- and/or right-ventricular tract

obstruction. To the best of our knowledge, except for one short report of Vogel et al.

in which three-dimensional echocardiography was used to reconstruct seven cases of

atrio-ventricular septal defect, no validation of three-dimensional echocardiographic

definition of this abnormality has been so far undertaken [Vogel et al., 1995b],

Therefore our efforts were focused on the atrio-ventricular valve and septal defects as

the accuracy of the information obtained on these structures could easily be

confirmed at surgery. Additionally, others experience of reconstructing the

subvalvular apparatus indicate that it is not an easy task [Salustri et al., 1996]. The

spatial resolution of the current three-dimensional acquisition system does not allow

a detailed reconstruction of both the atrio-ventricular junction and the subvalvular

apparatus in one image. To take advantage of the best spatial resolution settings in

three-dimensional reconstruction, the 'structure-of-interest' needs to be located in the

centre of the ultrasound scan sector. All structures located in the far field of the

ultrasound sector will have an inferior spatial resolution compared to that in the

centre of the image. This would not be detrimental for reconstructing the left

ventricular cavity but is an important limiting factor in the reconstruction of such

fine structures as subvalvular chordeae. Therefore, in order to analyse the

subvalvular apparatus, an additional data-set would need to be acquired which would

extend both the study protocol and the time required to complete three-dimensional

reconstructions.
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7.6. Conclusions

Two-dimensional echocardiography provided a very good description of the

morphology of atrio-ventricular septal defects and the severity of valve insufficiency.

The disadvantage of two-dimensional echocardiography is its lack of complete

spatial information, which has to be mentally reconstructed from multiple individual

tomographic planes obtained from different acoustic windows. The completeness and

accuracy of this technique is therefore dependent on the experience and good spatial

imagination of the examiner. Dynamic volume-rendered three-dimensional

reconstruction of echocardiographic images allows an enhancement of the anatomic

diagnostic capability of standard echocardiography. Transthoracic three-dimensional

echocardiography was feasible in the whole unselected study group. It provided

excellent and accurate surgical reconstructions of the common atrio-ventricular

junction and septal defects. A maximum of ninety minutes was required for detailed

and easy to comprehend information on valve morphology and the severity and

mechanism of valve insufficiency. This period of time can hopefully be shortened

with the future development of real-time three-dimensional scanners.
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Table1.Assessmentofatrio-ventricularseptaldefectsbyechocardiography(two-dimensionalandthree-dimensional)andsurgery. NrAgeGenderLeft-sidedValveRight-sidedValvePrimumASDSecundumASDVSD (months)(F/M)RefluxReflux 2D
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+
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Figure 1. Three-dimensional four-chamber view of a complete atrio-ventricular septal defect (right)
with a corresponding schematic diagram (left)
LV, left ventricle; LA, left atrium; RV, right ventricle; RA, right atrium; VSD, ventriculo-septal defect;

I'ASD, primum atrial-septal defect; II'ASD, secundum atrial-septal defect; Pveins, pulmonary veins

• superior bridging leaflet

• left mural leaflet

Figure 2. Three-dimensional reconstruction of a common atrio-ventricular valve en face directed from
the left atrium (right) with a corresponding schematic diagram (left)

antero-

superior
leaflet

inferior
leaflet
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bridging
leaflet
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Figure 4. Three-dimensional reconstruction of a common atrio-ventricular valve en face from left
ventricular perspective (right) with a corresponding schematic diagram (left).

• superior bridging
leaflet

♦ AoV

♦ TV

Figure 3. Three-dimensional reconstruction of a partial atrio-ventricular septal defect with en face view
of the atrio-ventricular junction directed from the atrial perspective (right) with corresponding schematic

diagram (left).
AoV, aortic valve; MV, mitral valve; TV, tricuspid valve.

• left mural
leaflet
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Figure 5. Three-dimensional reconstruction of a primum and a secundum atrial-septal defect en face

(right) with a corresponding schematic diagram (left).

1'ASD, primum artial-septal defect; II'ASD, secundum atrial-septal defect; RV, right ventricle; TV,

tricuspid valve.
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CHAPTER 8

Summary and Conclusions
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At present, two-dimensional echocardiography is the most commonly used

imaging technique for diagnosing congenital and acquired heart malformations. The

interpretation of two-dimensional ultrasound images requires the mental assembly of

a series of cross-sectional cut-planes of the heart and their spatial co-ordinates into a

three-dimensional image. The introduction of three-dimensional echocardiography

eliminates the need for mental reconstruction of two-dimensional images and

potentially facilitates image interpretation. Anatomic region-orientated views,

including those similar to ones encountered during cardiac surgery, have the

potential to enhance our understanding of the anatomy of cardiac malformations and

to facilitate the transfer of this understanding to fellow cardiologists and cardiac

surgeons. Furthermore, quantitative applications of three-dimensional

echocardiography for estimation of cardiac volumes, mass, and function do not rely

on geometric assumptions inherent in two-dimensional techniques and should be

more accurate and reproducible.

The prospective study presented in this thesis consisted of an in vitro and a

clinical part. Previous in vitro studies to analyse the accuracy of three-dimensional

echocardiography were based either on static phantoms (strings and nails) or

ventricular casts and therefore not valid for simulating a dynamic clinical setting. In

this thesis, to validate in vitro the accuracy of measurements taken from three-

dimensional ultrasound images, both a computer-generated virtual phantom and a

dynamic tissue mimicking phantom were designed and tested. The dynamic phantom

was exclusively designed to simulate the in vivo conditions of a contracting left

ventricle. The clinical part involved seventy four patients from different age groups

and with varied cardiac malformations.

141



The findings obtained from three-dimensional volume-rendered reconstructed

images were correlated with either other established diagnostic techniques or

intraoperative findings.

Except for the first two chapters, introductory and methods, each chapter reported in

this thesis was designed to address (1) the feasibility, (2) the accuracy, and (3) the

additional diagnostic value of three-dimensional echocardiography in the assessment

of heart disease. The selection of study groups of patients and the order in which

these were studied was made according to the complexity of cardiac anomaly (from

the simple assessment of the left ventricle to the complex analysis of the atrio¬

ventricular junction) and the potential clinical applications of this technique

perceived.

After the introductory and methodology chapters, Chapter 3 describes the in vitro

spatial resolution of dynamic volume-rendered three-dimensional tissue-mimicking

images acquired using two different imaging techniques: standard grey-scale and

Doppler myocardial imaging. As explained earlier in the thesis, Doppler myocardial

imaging is a new modality which acquires colour Doppler tissue data-sets from

cardiac structures. As the Doppler technique is less subject to chest wall attenuation

it should produce more complete data-sets than grey-scale imaging for three-

dimensional reconstruction. To measure this, a computer-generated virtual phantom

and a dynamic tissue mimicking phantom were tested. Analysis of three-dimensional

images of the virtual phantom showed that it is possible to reconstruct a detail of 1

mm dimension and two details separated from each other by a distance of 1 mm.

Analysis of three-dimensional images of the dynamic phantom showed that both

imaging techniques (grey-scale and Doppler myocardial imaging) underestimated the
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true volume of the phantom but the bias (standard error) was more than three times

greater for grey-scale imaging than for Doppler myocardial imaging technique.

Finally, it has been shown that 1 mm isolated crystal may be correctly identified and

measured in a three-dimensional grey-scale and Doppler myocardial imaging

dynamic reconstructions. These results served as a baseline for the clinical studies

indicating the potential accuracy of three-dimensional image assessment.

The clinical study described in Chapter 4 was designed to compare the accuracy of

standard grey-scale imaging and Doppler myocardial imaging three-dimensional left

ventricular volume measurements by comparing them to the clinically accepted

method of left ventricular volume measurement, cineventriculography. Although

there was a good correlation between both three-dimensional ultrasonic techniques

and cineventriculography in left ventricular volume measurements, the magnitude of

the mean difference between the three-dimensional echocardiography and the

cineventriculography was significantly smaller for Doppler myocardial imaging than

for grey-scale imaging for both end-diastole and end-systole. Additionally, Doppler

myocardial imaging proved to be significantly more efficient than the standard grey-

scale imaging in endocardial boundary detection at both end-diastole and end-

systole. On the basis of these results it appears that if three-dimensional

echocardiography is to be used to estimate left ventricular volume, Doppler

myocardial imaging is the ultrasound technique of choice.

In Chapter 5 the accuracy of transthoracic three-dimensional echocardiography in

reconstructing secundum atrial septal defects using both standard grey-scale and

Doppler myocardial imaging was assessed against Magnetic Resonance Imaging or

intraoperative findings. It has been shown that visualization of a dynamic 'en face'
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three-dimensional image of an atrial septal defect is no longer the preserve of only

the surgeon during an atrial septal defect repair, but may be reconstructed through

the closed chest prior to closure of the defect. Transthoracic three-dimensional

imaging using both grey-scale and Doppler myocardial imaging accurately displayed

the varying morphology, dimensions and spatial relationships of atrial septal defect.

However, Doppler myocardial imaging was a more effective technique than grey-

scale imaging in describing atrial septal defect morphology in adults. We have also

shown, that all the atrial septal defects studied changed significantly in dimension

during the cardiac cycle with a maximum size in late left ventricular systole and

minimum in late left ventricular diastole. Although, this difference was present in all

patients, it was inversely correlated with age. This may give us potentially new

information about the natural history of secundum atrial septal defect which may be

taken into account when assessing a patient for percutaneous atrial septal defect

occlusion using a device placement. Based on these results it appears that the use of

three-dimensional echocardiography in this group of patients should help to plan the

surgical strategy or, where applicable, facilitate the selection of patients for

percutaneous device closure.

In Chapter 6 the completeness of diagnostic information on sinus venosus septal

defect including the description of the anomalous connections of right sided

pulmonary veins was compared between transthoracic two-dimensional

echocardiography, transoesophageal two-dimensional echocardiography and

transthoracic three-dimensional echocardiography. Based on our results it appears

that transthoracic three-dimensional echocardiography is highly accurate in the

description of the presence of sinus venosus atrial septal defects and provides precise
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description of the anomalous drainage of right sided pulmonary veins. Transthoracic

three-dimensional imaging was superior to transthoracic two-dimensional

echocardiography in the diagnosis of sinus venosus defects. As the size of our study

group was small, it is difficult to state conclusively whether transthoracic three-

dimensional imaging was also superior to transoesophageal imaging, however, such

a trend was observed in our results. If this is the case than there is a clear advantage

of transthoracic imaging over transoesophageal imaging which is an invasive test

with well-described although rare complications.

In Chapter 7 the three-dimensional echocardiographic definition of the common

atrio-ventricular junction and the relation of this variable to two-dimensional

echocardiographic definition and surgical findings was investigated. In all patients,

diagnostic information by transthoracic three-dimensional echocardiography

concurred with the diagnosis by two-dimensional echocardiography and findings at

surgery. The unroofed view of the left atrium was most useful in displaying the

morphology of the atrio-ventricular junction and closely resembled the actual

anatomy of the heart. Good agreement was found between standard

echocardiography and surgical findings in the assessment of both valve insufficiency

and the sizing of atrial/ventricular septal defect. Apart from a few small differences

when two-dimensional echocardiography under- or over-estimated the severity of the

anomaly the difference has never been bigger than one step i.e. from mild to

moderate but not from mild to severe. Dynamic three-dimensional reconstruction of

the atrio-ventricular junction was available with only a couple of minutes delay in

the standard echocardiographic procedure. The advantage of the latter technique was

that no mental reconstruction was required to have a full and detailed insight into the
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three-dimensional morphology of the valve and atrial/ventricular septal defects.

Therefore the assessment of valve insufficiency by three-dimensional

echocardiography was closer to the surgical findings than for two-dimensional

echocardiography. Also, the process of describing valve morphology to fellow

cardiologist promises to be much easier using a three-dimensional display rather than

using complex two-dimensional information.

On the basis of the studies reported in this thesis it appears that volume-

rendered three-dimensional echocardiography is an accurate and a feasible technique

which provides additional diagnostic information on cardiac anatomy and function to

that available from currently used imaging techniques. Throughout the studies an

apical four chamber view was the easiest to reconstruct in three-dimensions and this

view proved reliable in the assessment of left ventricular volume and in identifying

both atrial septal defects and atrio-ventricular valve malformations. The ability of

reconstructing 'surgical views' of atrial septal defects and atrio-ventricular valves

enhanced the information on defects morphology and function to that available from

two-dimensional cross-sectional ultrasound images. Based on our results the

technique appears feasible in a clinical setting including small children. The accuracy

of measurements obtained from three-dimensional reconstructions was acceptable

and the repeatability was consistent throughout the studies. We believe that in the

future three-dimensional echocardiography will be incorporated into a routine

echocardiographic examination. Future development of a real-time volume-rendered

three-dimensional echocardiography including colour Doppler echocardiography,

which it is believed will make the technique more user-friendly and will also provide

the solutions to many of the limitations described in this work.
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Echocardiography is an accurate, repeatable and safe clinical diagnostic

tool. Recent development of dynamic three-dimensional ultrasound imaging of the

heart has the potential to further our understanding of the dynamic anatomy of

complex heart malformations. The main advantage of three-dimensional

echocardiography is that one can better define the morphology and the spatial

location of cardiac structures. Within the last two decades considerable effort has

been spent in facilitating this new imaging modality into routine clinical settings.

There have been many landmark advances in the transformation of this technique

from the research bench to clinical practice: the ability to acquire dynamic three-

dimensional data from a beating heart, the use of volume-rendered rather than

surface-rendered data to reconstruct three-dimensional images, shortening the time

ofdata acquisition and reconstruction from several hours to only a few minutes; last

but not least is the ability to reconstruct colour Doppler data in three-dimensions.

Despite this, the technique requires further transformation to achieve the ultimate

goal of becoming a real-time imaging tool. Although it has clear potential clinical

applications, its feasibility should be tested in large clinical trials. I hope that the

work presented in this thesis has cast some new information into the understanding

of the importance of dynamic three-dimensional echocardiography in every-day

cardiology.
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The precise morphologic characteristics of any intracar¬
diac tumor have important implications regarding sur¬
gical planning and operative repair. Three-dimensional
echocardiography has proved to be a valuable clinical
technique in this field. Current methods of three-di¬
mensional reconstruction of two-dimensional images
are based on the standard gray-scale imaging technique.
However, precordial gray-scale data-set information is
frequently of suboptimal quality because ofdata degra¬
dation caused by ultrasound attenuation by chest wall
structures. This has limited the use of the transthoracic
three-dimensional technique to "echogenic" patients.
Doppler myocardial imaging (DMI), a new ultrasound
technique based on the Doppler principle, is influenced

less by chest wall attenuation and in addition offers a
better boundary detection algorithm for the cardiac
structures. To determine if there may be a potential
benefit of DMI to acquire data for three-dimensional
reconstruction, a 33-year-old woman with a large intra¬
cardiac mass was studied. In this case three-dimensional

gray-scale and DMI data sets were compared and con¬
trasted with pathologic information. DMI allowed
both the quantification ofmass volume and the correct
definition of the morphology of the mass. It was also
possible to identify the precise site of attachment of the
mass to the mitral valve leaflets. The information thus
obtained was correlated with both operative and patho¬
logic findings. (J Am Soc Echocardiogr 1996;9:918-21.)

Three -dimensional (3D) echocardiography has al¬
ready proved to be clinically effective in the assess¬
ment of cardiac structures.1 At present, standard
two-dimensional (2D) gray-scale images are used to
reconstruct 3D data sets. However, the precordial
2D gray-scale imaging technique is frequendy im¬
paired because of data degradation caused by ultra¬
sound attenuation by chest wall structures. For the
first time 3D was performed with Doppler myocar¬
dial imaging (DMI). DMI is based on the Doppler
principle whereby the special algorithms are applied
to visualize cardiac structures.2 An important feature
of DMI is that it is relatively independent of the
amplitude of the returning ultrasonic signal and is
not directly affected by the attenuating effect of the
chest wall.3 Thus DMI has the potential to provide
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better-quality images than standard 2D gray-scale
echocardiography in poorly echogenic patients.
We present the precordial 3D appearance of a large

intracardiac mass attached to both leaflets of the
mitral valve causing mitral valve obstruction. We
describe the role of DMI in 3D echocardiography
and its usefulness in the surgical management of
patients.

CASE REPORT

A 33-year-old woman was admitted to the hospital with
a 6-month history of increasing shortness of breath, par¬
oxysmal nocturnal dyspnea, and two-pillow orthopnea.
She had a 10-vear history of systemic lupus erythematosus
(SLE). On clinical examination she had sinus tachycardia
with a loud first heart sound and both a 3/6 apical pan¬
systolic and a 2/6 mid-diastolic murmur. An electrocardio¬
gram showed sinus tachycardia, biatrial enlargement, and
right ventricular hypertrophy. Standard transthoracic 2D
gray-scale ultrasonic images were obtained and were of
moderate quality (Figure 1). A large echogenic mobile
mass was visualized adherent to the posterior leaflet of
what appeared to be a normal mitral valve. This mass was
approximately 2 cm in circumference. During diastole, the
mass prolapsed freely into the left ventricle. Color flow
Doppler imaging demonstrated a mitral inflow pattern
with multiple aliasing, suggesting high-velocity turbulent
flow and valve obstruction. A continuous-wave Doppler
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Figure 1 Transthoracic 2D gray-scale image ofapical four-chamber view presenting SLE mass
obstructing mitral valve orifice. (LA, Left atrium; RA, right atrium; LV, left ventricle; RV,
right ventricle.)
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Figure 2 DMI 3D reconstructions of SLE mass obstructing mitral valve orifice. Apical
short-axis view is selected as a reference cut plane beyond which by choosing appropriate
treshhold and opacity the 3D system displays all structures in three dimensions. A, Mitral valve
is in closed position. B, Mitral valve is in open position, as seen from left ventricular apex. (AoV,
Aortic valve; LV, left ventricle; M, SLE mass; MV, mitral valve; RV, right ventricle.)

study demonstrated a peak diastolic transmitral velocity of
2.5 m/sec and a mean gradient of 14 mm Hg. An effective
mitral valve area of 0.7 cm2 was calculated by the measure¬
ment of pressure half-time. There was minimal associated
mitral regurgitation. The findings were consistent with
predominant stenosis but were presumed to be due to
tumor obstruction of the valve orifice. She had no previous
ultrasonic study with which to make a comparison.

Transthoracic 3D echocardiography was performed
with an Acuson XP 10 scanner (Acuson Inc., Mountain
View, Calif.) with DMI software and a 3D acquisition
system (Echo-Scan; TomTec Imaging Systems GmbH,
Munich, Germany). During the acquisition, all images
were transferred from the scanner to the 3D system as a

black/white video signal. Images were obtained with a 2.5
MHz phased-array transducer steered by the transducer



920 Lange et al.
Journal of the American Society of Echocardiography

November-December 1996

Figure 3 Corresponding pathologic specimens of SLE mass. A, Mass visualized from the
atrial aspect. B, Mass visualized from ventricular aspect. Mitral leaflets have been fixed in open
position with mass retracted.

mechanical rotational device at 2 degrees over 180 de¬
grees. Two sets of images were acquired by different 2D
imaging techniques, standard gray scale, and DMI
velocity map. The scanner modifications for DMI have
been described previously in our work.4 Velocity range
settings were used to encode myocardial velocities (0 to
16 cm/sec) that are lower than those typically used
for blood flow. The display of Doppler information was
therefore enabled for tissue instead of blood, the distinc¬
tion being made on overall signal strength. Image per¬
sistence was turned off to eliminate blurring of the moving
cardiac structures. Doppler receive gain was also set to
achieve maximum color Doppler information of the
mitral valve while limiting color information within

the blood pool. For gray-scale imaging, the gain was

adjusted to optimize the clarity of the acquired
images.
With the gray-scale imaging technique, the acquired

data set allowed for a volume measurement of 5.8 ml but
did not provide sufficient definition to allow a satisfactory
3D reconstruction. Thus the definition of the shape of the
mass was not clear. With DMI, a high-quality data set was
acquired and a mass of inhomogeneous texture of 6.4 ml
volume obstructing the mitral orifice was reconstructed
(Figure 2). In addition, the superior quality of the 3D
DMI data set allowed a better definition of the morphol¬
ogy of the mass and detection of the site of its attachment
to the mitral valve leaflets.
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At surgery, a brown pigmented mass of 7.3 ml volume
was found attached to both valve leaflets and the chordae
tendineae (Figure 3). The mitral valve and chordae were
excised and replaced with a 27 mm Carpentier-Edwards
xenograft. The site of attachment to the leaflets and vol¬
ume measurements had been assessed accurately from the
3D DMI data set. The patient made an uneventful post¬
operative recovery and was discharged home.

Microscopically, the mass had the typical appearance of a
Libman-Sacks fibrinous vegetation with entrapped macro¬
phages. Six blood cultures have not been reported as show¬
ing any organism and two blood cultures taken after sur¬
gery were also negative.

DISCUSSION

We present a unique case of 3D DMI reconstruction
of an SLE mass causing acute mitral valve obstruc¬
tion that mimicked mitral stenosis. There are re¬

ported cases of mitral stenosis in the literature at¬
tributed to Libman-Sacks lesions, but few of these
were hemodynamicaily significant.5'8 It has been
shown previously that dynamic 3D reconstruction
may provide a unique opportunity to define and
present cardiac lesions and their relationship to in¬
tracardiac structures.'•9ao Because of the relatively
good spatial resolution of the 2D gray-scale mo¬
dality, relatively small abnormalities such as inter¬
ventricular or interatrial septal defects can be visu¬
alized. However, at present the main limitation of
3D echocardiography from the transthoracic ap¬
proach is the poor quality of acquired images avail¬
able for reconstruction. The quality of standard
gray-scale images is dependent on the amplitude of
the ultrasound signal returning from the cardiac
structure, which is often significantly attenuated by
the chest wall. DMI has slightly poorer spatial reso¬
lution than the 2D gray scale but is less subject to
attenuation and has a better boundary detection
algorithm.11 Thus from die precordial approach,
DMI offers higher image quality than the grav-scale
imaging technique. In this patient in whom gray¬
scale imaging was suboptimal, 3D DMI information

proved to be superior to that obtained from the 3D
gray-scale data set. Standard 2D transesophageal
images proved unnecessary because the DMI images
obtained noninvasively from the precordial approach
were of excellent quality, thus emphasizing the ad¬
vantage of this technique. It allowed both quanti¬
fication of mass volume and the correct determina¬
tion of the morphology of the mass.
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Abstract—Doppler myocardial imaging (DMI) is a new ultrasound imaging modality in which colour
Doppler algorithms are adapted to visualise the myocardium. It allows measurement of regional intramyo-
cardiai velocities and quantification of intramural left ventricular function. However promising the tech¬
nique is, to date the accuracy of endocardial boundary detection by DMI has not been validated. As Doppler
velocity estimation is based on measurement of phase shift rather than signal strength, the technique is
relatively independent of chest wall attenuation. In the current study, a series of in vitro and in vivo studies
was performed to compare standard B-mode grey-scale imaging (GSI) and DMI techniques in endocardial
boundary detection. In vitro, the minimum and maximum volumes of a single-chamber tissue-mimicking
phantom were calculated using both imaging techniques. In vivo, left ventricular end-diastolic (ED) volume
and end-systolic (ES) volume indices were measured from GSI and DMI images in a group of 40 volunteers.
All images were obtained in the freeze-frame mode with the Doppler display turned on and off so that
simultaneous DMI and GSI information was obtained. In vitro, the limits of agreement between the mini¬
mum volume of the phantom and the minimum volume measured by GSI and DMI was 4% and 3%,
respectively. For maximum volumes, limits of agreement were 3% for GSI and 2% for DMI. In vivo, the
limits of agreement between the two imaging techniques in volume measurements were 6 mL (9%) for ED
and 4 mL (11%) for ES. The comparison of the endocardial boundary detection by GSI vs. DMI showed
DMI to be significantly superior: ED (72 ± 16% vs. 85 ± 8%, respectively; p < 0.05) and ES (71 ± 13%
vs. 88 ± 7%, respectively; p < 0.05). The results of the study show that: (1) in vitro, based on two-
dimensional algorithms, DMI provides as accurate volume measurements as GSI; and (2) in vivo, there is
a very good agreement of left ventricular volume measurements between GSI and DMI. However, the
endocardial boundary is more reliably displayed and visually easier to detect using DMI than GSI. Copy¬
right © 1997 World Federation for Ultrasound in Medicine & Biology.

Key Words: Ultrasound, Doppler myocardial imaging, Left ventricular volume.

INTRODUCTION

Doppler myocardial imaging (DMI) is a new ultra¬
sonic technique based on colour Doppler principles in
which modified algorithms are applied to allow the
detection of myocardial velocities instead of the veloc¬
ity of blood flow within the cardiac chambers

Address correspondence to: Dr. Aleksandra Lange, Depart¬
ment of Cardiology, Western General Hospital. Crewe Road, Edin¬
burgh EH4 2XU, United Kingdom.

(McDicken et al. 1992). This algorithm makes the
distinction between myocardial tissue and blood based
on a combination of differing velocities and reflectivi¬
ties inherent in these two entities. DMI colour-encodes

myocardial motion using red to represent motion to¬
ward the transducer and blue to represent motion away
from the transducer. Velocity magnitude is represented
by the intensity of the displayed colour. Currently,
DMI (otherwise Doppler Tissue Imaging (DTI) or Tis¬
sue Doppler Imaging (TDI) software is commercially
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Acuson XP 10

Fig. 1. Schematic of the phantom study.

available in two ultrasound machines, one from Acu¬
son (Mountain View, CA, USA) and the other from
Toshiba (Tustin, CA, USA). The potential role of DMI
has been evaluated in a series of in vitro and in vivo
studies. In vitro studies have confirmed the accuracy
of DMI velocity encoding over the range of velocities
at which normal and abnormal myocardium would be
expected to move (Fleming et al. 1994b). Velocity
estimation has been shown to be affected by target
velocity, target material, system receive gain and pulse
train size, but the inherent error is, at worst, ± 10%
of the true mean velocity (Fleming et al. 1994a). The
spatial resolution of both the two-dimensional DMI
velocity and energy maps was shown to be 1 mm X
1 mm at best and 3 mm X 3 mm at worst (Fleming
et al. 1994a; Sutherland et al. 1994). Early in vivo
studies have assessed the normal range of age-related
myocardial velocities and myocardial velocity gradi¬
ents in healthy hearts (Palka et al. 1995, 1996). A
series of initial clinical studies was performed in pa¬
tients with dilated cardiomyopathies, hypertrophic car¬
diomyopathies and concentric left ventricular hypertro¬
phy. These studies determined a range of abnormalities
in intramural velocities that could not be predicted
from standard B-mode grey-scale (GSI) images
(Lange et al. 1995; Miyatake et al. 1995; Uematsu et
al. 1995). However promising the potential role of
DMI technique is in quantifying left ventricular func¬
tion, the accuracy of endocardial boundary detection
by this technique has not been validated. Theoretically,
DMI should offer a more robust approach to endocar¬
dial boundary detection, as the returning ultrasound
signal from the interrogated structures is less depen¬
dent on the attenuation caused by overlying tissues and
is mainly based on detecting tissue by measurement
of the signal frequency shift and rejecting blood pool
information. In this study, a series of in vitro and in

vivo studies was performed to compare boundary de¬
tection by standard GSI vs. DMI in volume measure¬
ments. In vitro, DMI volume measurements were vali¬
dated against a one-chamber-contracting tissue-mim¬
icking test object. In vivo, as GSI echocardiography
is a clinically accepted tool for quantification of left
ventricular volume and function [sensitivity in the as¬
sessment of end-diastolic volume (EDV) is 84%, end-
systolic volume (ESV) 86%, ejection fraction (EF)
93% (Erbel et al. 1985)], the GSI measurements were

compared with DMI volume measurements. As the
Doppler technique is not directly affected by the ampli¬
tude of the returning signal from the interrogated tissue
and the attenuating effect of the chest wall, it should,
in theory, provide very accurate boundary definition.

METHODS

To validate volume measurements by transtho¬
racic two-dimensional DMI vs. standard GSI, a series
of in vitro and in vivo studies was performed. In vitro
and in vivo ultrasound images were obtained using an
ultrasound scanner (Acuson XP 10) with DMI soft¬
ware and 2.5-MHz phased array probe. The scanner
modifications that allowed for DMI acquisition have
been previously described (Palka et al. 1995). Veloc¬
ity range settings were used to encode myocardial ve¬
locities (0-24 cm/s), which are lower than those typi¬
cally used for blood flow. The display of the Doppler
information was enabled for tissue instead of blood,
the distinction being made on overall signal strength.
Image persistence was turned off to eliminate blurring
of the moving myocardium. To analyse pure DMI in¬
formation, the underlying GSI image was turned off.
Doppler receive gain was set to achieve maximum
colour Doppler information in the myocardium while
limiting any colour information within the blood pool.
As shown by Fleming et al. (1994a), the incident angle
of the ultrasonic beam does not affect imaging of left
ventricular structure, as even very low myocardial ve¬
locities of approximate values around 0 m/s are also
colour-coded by DMI as a mosaic of red and blue
colours. For GSI studies, gain was adjusted to optimise

Table 1. Clinical characteristics of the 40 volunteers.

Number

Healthy volunteers 9
Ischaemic heart disease 19
Dilated cardiomyopathy 3
Moderate or several mitral regurgitation 2
Moderate or severe mitral stenosis I

Moderate or severe aortic regurgitation 2
Moderate or severe aortic stenosis 4
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Fig. 2. Four-chamber view obtained from a 55-year-old volunteer using standard GSI (top) and DMI (bottom)
techniques. The GSI image was assessed to be of moderate quality and the DMI image of good quality.

the clarity of the endocardial and epicardial bound¬
aries.

In vitro studies
The validation of volume measurements was car¬

ried out using a tissue-mimicking test object. A one-
chamber-contracting phantom of known volumes was
placed in a water bath and scanned using both GSI and
DMI techniques (Fig. 1). The minimum and maximum
volumes of the phantom were calculated using the
modified Simpson's method. The mean of three mea¬
surements was calculated for all images. To validate
the reproducibility of volume measurements, the in
vitro study was repeated ten times for both GSI and
DMI.

In vivo studies
To evaluate the accuracy and effectiveness of left

ventricular measurements and the derived index of left

ventricular function (EF) using GSI vs. DMI tech¬
niques, 40 randomly selected volunteers (mean age 36
± 16 y; mean heart rate 74 ± 14 beats/min, all in
sinus rhythm) with either normal or abnormal cardiac
function were studied. Table 1 presents the clinical
characteristics of the study group of 40 volunteers (30
men and 10 women). Prior to entry into the study,

Table 2. Left ventricular volumes indices and ejection
fraction average from all 40 volunteers.

EDV (mL/M2) ESV (mL/M2) EF (%)

GSI 66 ± 19 36 ± 17 46 ± 10
DMI 66 ± 19 36 ± 16 46 ± 10

DMI = Doppler myocardial imaging; EDV = end-diastolic vol¬
ume; EF = ejection fraction; ESV = end-systolic volume; GSI =
grey-scale imaging.

Data are expressed as mean ± SD. The difference between GSI
and DMI measurements were not significant (ANOVA test).
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Fig. 3. Assessment of the limits of agreement and a linear
correlation between DMI and GSI imaging techniques in left
ventricular volume and ejection fraction measurements. (A)
End-diastolic volume (EDV); (B) End-systolic volume
(ESV); (C) Ejection fraction (EF). DMI = Doppler myo¬

cardial imaging; GSI = grey-scale imaging.

informed consent was obtained from all volunteers.
Standard GSI and DMI images of the left ventricle
were obtained using an apical transducer position to
record apical four- and two-chamber views. All the
volunteers were scanned while lying in the left lateral
position.

From all GSI and DMI images, left ventricular
EDV and ESV indices and EF were calculated by two
observers using the modified biplane Simpson's
method (Fig. 2). The mean of three measurements was
calculated for all images. EDV was determined as the
frame corresponding to the peak of the R wave of the
electrocardiogram, and ESV was defined as the frame
corresponding to the smallest left ventricular silhou¬
ette. The volumes (in mL) were normalised for body
surface area (ml/M2). Body surface area was calcu¬
lated from standard tables using the patient's height
and weight.

All data were recorded and stored on video tape.

Statistical analysis
The data are expressed as a mean value and a

standard deviation (mean ± SD). To assess the level
of agreement between the two methods and to test the
reproducibility of each of the methods, the test of
Bland and Altman (1986) was used. The 95% limits
of agreement were calculated as twice the SD. The
in vitro study assessed the accuracy of minimum and
maximum volume measurements by both GSI and
DMI techniques vs. true phantom volume during its
minimum and maximum contraction. The in vivo study
was used to define the agreement between GSI and
DMI volume measurements. The differences between
GSI and DMI measurements were assessed using one¬
way analysis of variance with subgroup analysis by
Fisher's test. The endocardial boundary definition was

compared between GSI and DMI images using
McNemar's test for marginal homogeneity, which ex¬

presses percentage of the clearly defined endocardial

Table 3. Grey-scale and Doppler myocardial images
quality obtained from four- and two-chamber views.

GSI

Number of subjects Poor Moderate Good

Four-chamber view
Poor 0 0 0

DMI Moderate 2 0

Good 0 17 19

Two-chamber view
Poor 2 1 V

DMI Moderate 11 9 3
Good 0 s 6

DMI = Doppler tissue imaging; GSI = grey-scale imaging.
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Fig. 4. Two-chamber view obtained from a 48-year-old volunteer using GSI (left) and DMI (right) techniques.
The GSI image was assessed to be of poor quality and the DMI image of good quality.

boundary to the circumference of the inner dimension
for each measured image of the ventricle (Bishop et
al. 1975). p < 0.05 was considered significant.

RESULTS

In vitro studies
The limits of agreement between the known vol¬

ume of the phantom and the derived volume measure¬
ments were calculated for both techniques at minimum
and maximum volumes.

For GSI, the mean value of the minimum volume
was 76 ± 2 mL and the limits of agreement 4%; the
maximum volume was 140 ± 2 mL and the limits of

agreement 3%. For DMI, the mean value of the mini¬
mum volume was 75 ± 4 mL and the limits of agree¬
ment 3%; the mean maximum volume was 139 ± 2
mL and the limits of agreement 2%.

In vivo studies
The average left ventricular volume measure¬

ments and EF from all volunteers using GSI and DMI
are presented in Table 2.

The mean difference between the two methods

was low: 0.1 ± 2.9 mL/M2 for EDV, 0.05 ±1.9 mL/
M2 for ESV and 0.01 ± 3.6% for EF. The limits of

agreement between GSI and DMI techniques were 6
mL (9%) for ED and 4 mL (11%) for ES (Fig. 3).

The quality of images obtained for left ventricular
volume measurements as assessed independently by
two observers measured on a scale of 1-3 (where 1
was good, 2 was moderate and 3 was poor image qual¬
ity) are presented in Table 3. In the four-chamber view,
images of good quality were obtained from 21 volun¬
teers using GSI and from 36 volunteers using DMI.

Using the two -chamber view, good quality images
were obtained from nine volunteers using GSI and in
14 using DMI (Fig. 4). The assessment of the associa¬
tion between image quality by DMI and GSI scored
using a subjective scale showed that, for both apical
views, image quality was significantly (p < 0.01) bet¬
ter when using DMI (Table 3).

Finally, off-line comparison of the completeness
of endocardial boundary detection by both techniques
was performed (Bishop et al. 1975).
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Table 4. The differences between two observers in left ventricular volumes indices
measurement using standard grey-scale images and Doppler myocardial imaging.

Difference

(mL/M2)
Technique LV volume index mean ± SD r value SEE (mL/M2)

GSI EDV 0.4 ± 4.2 0.94 4.3
GSI ESV 0.2 ± 2.7 0.91 2.8
DMI EDV 0.2 ± 2.7 0.97 2.6
DMI ESV 0.3 ± 1.9 0.95 2.0

DMI = Doppler tissue imaging; EDV = diastolic volume; ESV = end-systolic volume; GSI
= grey-scale imaging; LV = left ventricle; SEE = standard error.

Tracing of endocardial boundaries was performed
off-line in each analysed B-mode GSI and DMI image.
In GSI, the endocardial boundary was defined as the
speckle line near the myocardial borders. The lines often
were not continuous: in some instances, they faded and
then completely disappeared. In such cases, the trace was
terminated. However, when another speckle line was pres¬
ent at a slightly different depth that appeared to be the
continuation of the first line, then the trace was continued
from the first to the second line across the region of drop¬
out. In DMI, the endocardial boundary was defined as the
line of interface between the myocardial wall and the blood
pool. McNemar's test then was used to assess, for both
techniques separately, the percentage (X%) of the clearly
defined endocardial boundary in analysed two-dimensional
cross-section to the circumference of its inner dimension

(100%).
DMI proved to be significantly more efficient than

standard GSI imaging technique at ED (85 ± 8% vs.
72 ± 16%, respectively; p < 0.05) and ES (88 ± 7%
vs. 71 ± 13% respectively; p < 0.05).

Interobserver variability
Table 4 presents the differences in left ventricular

volume measurements between two observers using
both GSI and DMI. The differences were low for both

techniques.

DISCUSSION

An ultrasonic imaging technique that quantifies
regional and global heart function has been an objec¬
tive of research in two-dimensional echocardiography
for more than a decade (Conetta et al. 1985; Geiser et
al. 1988; Skorton et al. 1981). Most approaches ex¬
plored have used off-line computer-assisted analysis
of GSI images (Geiser etal. 1990a, 1990b). An on-line
technique based on colour-encoded tissue backscatter
(color kinesis) has been developed recently to analyse
regional wall-motion abnormalities in real time
(Schwartz et al. 1966; Tardiff et al. 1994). In clinical

practice, conventional GSI echocardiography is used
as a standard technique for measuring cardiac chamber
dimensions and quantifying left ventricular function
(Schiller et al. 1989). Despite its potential, the infor¬
mation on myocardial function is derived indirectly
from either parameters measured from endo- and epi-
cardial specular reflections or blood pool Doppler indi¬
ces. Additionally, the transthoracic GSI image quality
is frequently reduced due to the significant attenuation
of the ultrasound signal by chest wall structures. DMI
has the potential to measure directly indices of myocar¬
dial function derived from the myocardial wall itself.
Also, since the information for Doppler techniques is
contained in the frequency of the transmitted ultra¬
sound rather than the amplitude, it is not strongly af¬
fected by the ultrasonic properties of the tissue between
the transducer and the myocardial site being studied;
thus, it is possible to obtain diagnostic quality DMI
images with clear endocardial boundary definition
from patients who would be considered poorly echo-
genic (Palka et al. 1995; Schlief et al. 1993). There¬
fore, DMI holds promise as a powerful new technique
for quantification of left ventricular function and left
ventricular endocardial border detection.

In this article, we confirmed the accuracy of the
DMI technique for endocardial border detection and
compared its merits to standard GSI. Two-dimensional
volume reconstruction both in vitro and in vivo gave

essentially the same results using the two techniques.
However, the results of the study provide good evi¬
dence that, in the clinical situation, endocardial con¬
tours could be derived more easily in DMI images. In
addition, McNemar's test for marginal homogeneity
demonstrated that DMI provided a more complete con¬
tinuous endocardial boundary when compared to GSI.
This accuracy of boundary detection has been assessed
in a very simple and indirect way. However, to the
best of our knowledge, this is the first report describing
the accuracy of DMI volume measurements and the
recognition of endocardial borders. In the future, it
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would be interesting to compare this technique with
other accepted clinical techniques for left ventricular
volume measurement i.e., biplane cineventriculogra-
phy or three-dimensional echocardiography.
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Abstract

Objective—To determine whether trans¬
thoracic three dimensional echocardio¬

graphy is an accurate non-invasive
technique for defining the morphology of
atrial septal defects (ASD).
Methods—In 34 patients with secundum
ASD, mean (SD) age 20 (17) years (14
male, 20 female), the measurements ob¬
tained from three dimensional echocardio¬

graphy were compared to those obtained
from magnetic resonance imaging (MRI)
or surgery. Three dimensional images
were constructed to simulate the ASD
view as seen by a surgeon. Measured vari¬
ables were: maximum and minimum ver¬

tical and horizontal ASD dimension, and
distances to inferior and superior vena
cava, coronary sinus, and tricuspid valve.
In each patient two ultrasound techniques
were used to acquire three dimensional
data: standard grey scale imaging (GSI)
and Doppler myocardial imaging (DMI).
Results—Good correlation was found in
maximum ASD dimension (both horizon¬
tal and vertical) between three dimen¬
sional echocardiography and both MRI
(GSI r = 0.96, SEE = 0.05 cm; DMI r =
0.97, SEE = 0.04 cm) and surgery (GSI r =
0.92, SEE = 0.06 cm; DMI r = 0.95, SEE =
0.06 cm). The systematic error was simi¬
lar for both three dimensional techniques
when compared to both MRI (GSI = 0.40
cm (27%); DMI = 0.38 cm (25%)) and sur¬

gery (GSI = 0.50 cm (29%); DMI = 0.37 cm
(22%)). A significant difference was found
in both horizontal and vertical ASD
dimension changes during the cardiac
cycle. This change was inversely corre¬
lated with age. These findings were con¬
sistent for both DMI and GSI technique.
In children (age 5 17 years), the feasibility
of detecting structures and undertaking
measurements was similar for both echo
techniques. However, in adult ASD pa¬
tients (age S 18 years) this feasibility was
higher for DMI than for GSI.
Conclusions—Transthoracic three dimen¬
sional imaging using both GSI and DMI
accurately displayed the varying mor¬

phology, dimensions, and spatial relations
of ASD. However, DMI was a more

effective technique than GSI in describing
ASD morphology in adults.
{Heart 1997;78:382-389)

Keywords: atrial septal defect; morphology; three
dimensional echocardiography; magnetic resonance
imaging

Secundum atrial septal defect (ASD) accounts
for between 7% and 10% of all congenital heart
disease and for between 30% and 40% of con¬
genital heart diseases seen in adults.1 Each year
approximately 300 to 400 patients in the
United Kingdom undergo surgical closure of
an ASD using standard sternotomy.11 The
development of new techniques of ASD
closure including minimal access surgery3 4 and
percutaneous catheter closure5"8 has increased
the need for accurate assessment not only of
ASD size but also ASD morphology and its
spatial relations.7'10 Currently, several tech¬
niques are used to image or size ASDs:
echocardiography,""14 magnetic resonance im¬
aging (MRI)," 10 or balloon sizing during heart
catheterisation. Cross sectional echocardiogra¬
phy is probably the most commonly used
imaging technique and with standard precor¬
dial imaging the sensitivity in detecting secun¬
dum and primum ASDs is more than 90%.14 17
However, anatomically the atrial septum is a
concave convex structure and therefore an

ultrasound beam can cut the defect in different
planes and may not reflect its true size. A
potentially superior role for three dimensional
echocardiography in ASD sizing was claimed
recently in a comparative investigation of
guided three dimensional studies and conven¬
tional cross sectional examinations.18
Previous studies on three dimensional ASD

reconstruction have been carried out using
standard grey scale images.10"20 In these
reports, because of poor transthoracic image
quality grey scale images were often 'acquired
from a transoesophageal approach. In this
study, therefore, we looked not only at the
potential of transthoracic three dimensional
grey scale image reconstruction but at the
additional value of three dimensional recon¬

struction using the Doppler myocardial imag¬
ing technique. Doppler myocardial imaging is
based on a colour Doppler principle in which
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special algorithms are applied to detect myo¬
cardial wall motion instead of intracardiac
blood flow.21 As the quality of cross sectional
Doppler myocardial imaging is not directly
affected by the chest wall attenuation, as it is in
grey scale images, it should provide better
quality images than the standard grey scale for
transthoracic three dimensional echocardio¬
graphy.

Methods
A prospective study of the transthoracic three
dimensional echocardiographic definition of
ASD morphology and its dynamic changes
during the cardiac cycle was performed. Two
different imaging techniques, grey scale imaging
and Doppler myocardial imaging, were used to
acquire three dimensional datasets from each
patient. The information obtained from three
dimensional Doppler myocardial imaging and
grey scale images was compared with that
obtained by phase contrast cine magnetic reso¬
nance imaging or surgery.

PATIENT SELECTION

Forty seven consecutive patients with a known
or suspected ASD underwent cross sectional
and three dimensional echocardiographic
examination to determine the defect size and
location. In five patients, the interatrial septum
appeared to be intact on both magnetic
resonance imaging and ultrasound. In seven
patients no correlative measurements of the
defect could be obtained because neither mag¬
netic resonance imaging nor surgery was
performed. In one patient the surgery was done
elsewhere and the correlative measurements

were unavailable. Therefore 34 patients, mean
(SD) age 20 (17) years, with secundum ASD
were suitable for study. In 18 patients, aged 23
(18) years, three dimensional grey scale images
and Doppler myocardial imaging measure¬
ments were correlated with phase contrast cine
magnetic resonance imaging, and in the
remaining 16 patients, aged 10 (7) years, the
three dimensional measurements were corre¬

lated with these taken during surgical ASD
repair. The three dimensional echocardiogram
and magnetic resonance imaging scans were

performed on the same day in 16 patients, and
in two patients there was a four day interval
between the three dimensional echocardio¬
gram and magnetic resonance imaging scan.
The average time between three dimensional
echocardiogram and surgery was 30 (25) days.
All but two patients were in sinus rhythm.
These two patients were excluded from the
analysis of changes in ASD size during the car¬
diac cycle. All patients were informed about
the purpose of the study and gave informed
consent to be enrolled in the study.

THREE DIMENSIONAL ECHOCARDIOGRAPHY

The instrumentation used for the three dimen¬
sional imaging protocol consisted of an ultra¬
sound scanner (Acuson XP10 Mountain View,
California, USA) with implemented Doppler
myocardial imaging software and a three
dimensional acquisition system (TomTec
Echo-Scan, TomTec Imaging Systems, Mu¬
nich, Germany). We have described the scan¬
ner modifications which enable Doppler myo¬
cardial imaging to be acquired.2' Figure 1
shows schematically how the three dimensional

Rotational
device
0-180°

__ _ , Ultrasound
3D Echo-scan scanner

ECG
respiration
gated

Off line processing Cubic data set

Figure I Steps taken to acquire three dimensional dataset. Diagram shows an ECG and respiration gated acquisition of
two dimensional cross sections obtained from the apical window by rotating the transducer by the mechanical device at 2°
steps over 180°. Once the acquisition was completed, off-line processing based on the interpolation of the missing information
between the acquired two dimensional images at 2° steps and conversion of the images from polar to Cartesian coordinates
was carried out.
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Figure 2 The schematic presentation of the atrial septal
defect (ASD) as seen by the surgeon. CS, coronary sinus;
IVC, inferior vena cava; LA, left atrium; RA, right atrium;
SVC, superior vena cava; TV, tricuspid valve.

images were acquired. The three dimensional
acquisition system consisted of a 486, 66 MHz
computer with 64 megabytes of storage system
memory, and steering logic for image acquisi¬
tion, processing, and presentation. The ultra¬
sound images were obtained using a 2.5-4.0
MHz phased array transducer steered by the
transducer mechanical rotational device sup¬

plied with the Echo-Scan. In each patient the
appropriate transducer frequency was selected
to obtain the best quality cross sectional grey
scale images. Each Doppler myocardial imag¬
ing dataset was acquired using a transducer
frequency of 2.5 MHz. During the acquisition,
the Echo-Scan was connected to the ultra¬
sound video output of the Acuson scanner by a
black/white video cable. Thus when Doppler
myocardial images were acquired, the colour
Doppler signal was transferred as a black and
white video signal to the Echo-Scan. During
the acquisition electrocardiographic and respi¬
ration gating was used. A standard three lead
electrocardiogram cable was used to monitor
the electrocardiogram while the patient's respi¬
ration was monitored by measuring skin
impedance. Using this information the system
created an on-line histogram based on the
patient's heart rate and respiration. This
enabled the setting of a gating window based
on the RR intervals of the electrocardiogram.
The expiratory phase was used for gating
respiration. During the acquisition procedure,
the transducer was placed in the standard api¬
cal position and was rotated by the mechanical
rotational device at 2° steps over 180°. Based
on the gating parameters, the computer
acquired one complete cardiac cycle at the
acquisition start position and recorded it at 25
frames per second. When one cardiac cycle had
been stored in the computer's RAM, the steer¬
ing control advanced the transducer by one
step. A total of 90 cardiac cycles was stored
during one acquisition. The same acquisition
protocol was used for the acquisition of grey
scale images and Doppler images. In each
patient the acquisition started with grey scale
image data and then Doppler imaging data
were collected. The acquisition time was

approximately three minutes for both grey
scale and Doppler imaging. As the patient
needs to be immobile during the image acqui-

"U
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Figure 3 Maximum orifice of an atrial septal defect
(ASD) as defined by three dimensional echocardiography
(A), phase contrast cine magnetic resonance imaging (B),
and surgery (C). CS, coronary sinus; DMI, Doppler
myocardial imaging; GSI, grey scale imaging; IVC, inferior
vena cava; SVC, superior vena cava; Tl; tricuspid valve.

sition, seven patients (age between two and
three and a half years) required mild sedation
using Triclofos Elixir BP (triciofos sodium).
After acquisition, the data were stored on the

system hard drive and then analysed oti-line. In
each patient, three dimensional reconstruction
of the ASD was carried out from the right
atrium. First, an apical four chamber view was
reconstructed. Second, the acquired dataset
was cut vertically by a longitudinal plane
through the right atrial free wall, tricuspid
valve, and anterior right ventricular free wall.
Finally, the reconstruction was orientated
anterior to posterior. These manoeuvres pro¬
vided us with an en face view of the ASD from
which the following variables were measured:
minimum and maximum of horizontal and
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vertical ASD dimensions during the cardiac
cycle, distances to: coronary sinus, inferior
vena cava, superior vena cava, and tricuspid
valve during late left ventricular systole (maxi¬
mum ASD dimension) (fig 2).
Although the Doppler information is angle

dependent, the angle of insonation needs to be
taken into account when measuring myocardial
velocities only."' In previously reported cases
where Doppler myocardial imaging was used as
an acquisition technique to visualise cardiac
structures, the incident angle of the ultrasonic
beam did not affect the completeness of the
image. This is because even very low myocar¬
dial velocities with approximate values of
around 0 to 0.2 m/s are also colour coded by
Doppler myocardial imaging as a mosaic of red
and blue colour."' "'
Out of the 34 defects which were recon¬

structed using both grey scale and Doppler
images, 30 were single secundum defects and
four were multiple (from two to four defects).
From all three dimensional ASD reconstruc¬

tions, the feasibility of detecting right atrial
structures and undertaking measurements was
assessed for both Doppler myocardial imaging
and grey scale imaging.

MAGNETIC RESONANCE IMAGING

The magnetic resonance imaging studies were
performed on a 1.5 T Siemens Magneton SP
system. Fast acquisition "Turbofiash" localiser
images (repetition time (TR) 4.9 ms, time to
echo (TE) 2 ms, flip angle (FA) 8°) were
obtained in the coronal and transverse planes
through the ventricles, followed by a single
angulated plane through the ventricles, and
then by a single angulated plane through the
interventricular and interatrial septa to give a
right anterior oblique (RAO) two chamber
plane localiser. Multiple contiguous, 6 mm
slice width, 16 cardiac phases, gated cine
gradient echo images (TR 560 ms, TE 6 ms,
FA 30°) were then obtained perpendicular to

SECUNDUM ASD

Figure 4 Changes in atrial septal defect (ASD) dimension during a cardiac cycle as seen
by three dimensional Doppler myocardial imaging echocardiography.

the interatrial septum in the four chamber pro¬
jection, using the angulated RAO two chamber
localiser.
Gated, velocity encoded, phase contrast

imaging with a maximum velocity sensitivity of
120 cm/'s was then performed using four
chamber cine image with the imaging plane
proscribed to lie parallel to, and contiguous
with, the right atrial side of the interatrial sep¬
tum, to provide an en face view of the defect.
The maximum dimensions of the defects were

measured from the images on an independent
operating console using electronic calipers.

SURGICAL DATA

All operations were performed by one surgeon.
The surgery was performed either through a
midline sternotomy or through a right thora¬
cotomy, with induced ventricular fibrillation.
The aorta was not cross clamped and thus the
heart was not arrested in diastole using cardio-
plegic solution in any of the patients. Once the
heart was fibrillated and the right atrium
opened, a pump sucker was left in the coronary
sinus and intermittent suction was performed
through the ASD into the left atrium to achieve
a bloodless field. The various measurements, as
described above, were taken by the single
observer using a string of black silk suture
material which was cut at an appropriate meas¬
ured point from the margin of the defect. The
length of the suture was measured on a ruler
and the findings were noted down by the
member of the team. Two independent meas¬
urements were taken for each dimension in the
first six patients. No difference was observed
between the two readings and therefore in the
later part of the study only one measurement
was obtained in the remaining 10 patients.

STATISTICAL ANALYSIS

The data are expressed as mean (SD). A paired
t test was used to compare the maximum to
minimum ASD dimensional change during the
cardiac cycle, as measured by three dimensional
echocardiography. Least square regression
analysis was performed to test the correlation

Age (years)

Figure 5 Linear regression analysis of the correlation
between the patient's age and the dynamic changes in atrial
septal defect (ASD) dimension during the cardiac cycle.
The differences in ASD dimension changes were calculated
as follows: [(HED - HES) + (VED - VES) / (HED +
VED)] x 100%, where HED — horizontal end diastolic
dimension, HES = horizontal end systolic dimension, VED
~ vertical end diastolic dimension, and VES = vertical end
systolic dimension. Circles, Doppler myocardial imaging;
squares, grey scale imaging. The dotted lines indicate the
95% predictive interval.
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Figure 6 Bland and Altman analysis of the accuracy of
atrial septal defect (ASD) dimension measurements by
three dimensional echocardiography using both grey scale
images and the Doppler myocardial imaging technique
against phase contrast cine magnetic resonance imaging (A,
B) or surgery (C, D). Empty squares, horizontal
dimensions ofASDs by grey scale images; filled squares,
vertical dimensions ofASDs by Doppler myocardial
imaging; empty circles, horizontal dimensions ofASDs;
filled circles, vertical dimensions ofASDs. The solid line
shows the mean difference between the techniques used; the
dotted lines show the 95% limit of agreement.

between the horizontal and vertical dimension
of an ASD, and the distances from the ASD
rim to inferior vena cava, superior vena cava,
coronary sinus, and tricuspid valve, measured
by grey scale imaging, Doppler myocardial
imaging, magnetic resonance imaging, and
surgery. Linear regression analysis was per¬
formed to assess the correlation between the

changes in ASD size during the cardiac cycle

and age. Finally, the Bland and Altman test was
used to assess: (1) the bias (systematic error)
between the two ultrasound techniques and
magnetic resonance imaging or surgery; (2)
how the studied techniques relate to each other
(underestimation or overestimation); and (3)
reproducibility.2'20 Statistical analysis was per¬
formed using the statistical package UNISTAT
4 for Windows. A p value of < 0.05 was
considered significant.

INTEROBSERVER AND INTRAOBSERVER

VARIABILITY

In 10 randomly selected ASD patients, all the
measurements acquired from three dimen¬
sional Doppler myocardial imaging and grey
scale image reconstructions pertaining to the
maximum and minimum (horizontal and verti¬
cal) ASD dimensions, and distances to inferior
vena cava, superior vena cava, coronary sinus,
and tricuspid valve were analysed by two inde¬
pendent observers. Additionally, in six ran¬
domly selected ASD patients, a three dimen¬
sional echocardiographic study was performed
twice within an average period of 28 (4) days.
Analysis of variance was used to assess the dif¬
ferences between the measurements of ASD

morphology obtained by two observers (inter-
observer variability) and between measure¬
ments taken from the same subjects at different
times (intraobserver variability). Both intraob-
server and interobserver variability in ASD
morphology are presented as the mean (SD).
The interobserver variability for three di¬

mensional echocardiography for grey scale
images was at 0.08 (0.09) cm (systematic error
16%) and for Doppler myocardial imaging,
0.07 (0.08) cm (systematic error 13%).
The intraobserver variability for grey scale

images was at 0.07 (0.08) cm (systematic error
15%) and for Doppler myocardial imaging
0.06 (0.08) cm (systematic error 12%).

Results

Figure 3 shows the maximum ASD orifice as
defined by three dimensional echocardiogra¬
phy using both techniques (Doppler myocar¬
dial imaging and grey scale images), magnetic
resonance phase contrast cine imaging, and
surgery.
Table 1 presents the measurements of ASD

dimensions and the distances from the ASD
rim to other structures of the right atrium by
three dimensional echocardiography, magnetic
resonance imaging, and surgery. A significant
difference was found in changes of both
horizontal and vertical ASD dimensions during
the cardiac cycle (table 1, fig 4). The maximum
dimension of ASDs was found in late ventricu¬
lar systole and the minimum in late ventricular
diastole. Stepwise multivariate regression
analysis showed that the changes in ASD size
are not dependent on the defect size but are

inversely related to patient age. Figure 5
presents the linear regression analysis of the
relation between the changes in ASD size and
patient age.
A good correlation was obtained between

maximum horizontal and vertical ASD dimen¬
sions by three dimensional echocardiography
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Table 1 The measurements of atrial septal defect (ASD) dimensions and the distances from the ASD rim to other
structures of the right atrium

Dimension

Mean (SD) (cm)

Maximum Minimum Distance to

HD VD HD VD IVC SVC CS TV

GSI 1.9 (0.8)* 1.6 (0.6)* 1.2 (0.7) 0.9 (0.5) 1.4 (0.5) 1.1 (0.5) 0.9 (0.5) 2.1 (0.6)
DMI 1.8 (0.7)* 1.6 (0.6)* 1.2 (0.7) 0.9 (0.6) 1.5 (0.8) 1.0 (0.4) 1.0 (0.5) 2.3 (0.7)
MRI 1.7 (0.8) 1.4 (0.6) N/A N/A N/A N/A N/A N/A
Surgery 1.9 (0.6) 1.7(0.5) N/A N/A 1.3 (0.6) 0.8 (0.3) 0.9 (0.4) 1.9 (0.7)
Mean 1.8 (0.8)* 1.6 (0.6)* 1.2 (0.7) 0.9 (0.5) 1.4 (0.7) 1.0 (0.4) 0.9 (0.5) 2.2 (0.6)

CS, coronary sinus; DMI, Doppler myocardial imaging; GSI, grey scale imaging; HD, horizontal dimension; IVS, inferior vena cava;
MRI, magnetic resonance imaging; SVC, superior vena cava; TV, tricuspid valve; VD, vertical dimension.
*p < 0.001 v minimum.
Table 2 Correlation between the measurements obtained by three dimensional echocardiography and surgery

GSI DMI

r Coefficient
Standard
error (cm) p value r Coefficient

Standard
error (cm) p value

IVC 0.84 0.82 0.19 0.0025 0.92 0.96 0.12 0.0001
SVC 0.64 0.57 0.21 0.0198 0.73 1.03 0.27 0.0023
CS 0.68 1.39 0.50 0.0223 0.96 0.98 0.08 0.0001
TV 0.82 0.75 0.15 0.0004 0.86 0.94 0.15 0.0001
Mean (SD) 0.75 (0.08) 0.88 (0.31) 0.26 (0.14) 0.0113 (0.001) 0.87 (0.09) 0.98 (0.03) 0.16 (0.07) 0.0007 (0.001)

CS, coronary sinus; DMI, Doppler myocardial imaging; GSI, grey scale imaging; IVC, inferior vena cava; SVC, superior vena cava;
TV, tricuspid valve.

and magnetic resonance imaging (grey scale
images: r - 0.96 cm, SEE = 0.05, p < 0.001;
Doppler myocardial imaging: r = 0.97 cm, SEE
= 0.04, p < 0.001) or surgery (grey scale
images: r - 0.92 cm, SEE = 0.06, p < 0.001;
Doppier myocardial imaging: r - 0.95, SEE =
0.06, p < 0.001). Figure 6 shows the difference
in ASD size as determined by three dimen¬
sional echocardiography and magnetic reso¬
nance imaging or surgery using the Bland and
Altman analysis. The systematic error (bias)
between three dimensional echocardiography
and magnetic resonance imaging was low at
0.40 cm (27%) for grey scale images and 0.38
cm (25%) for Doppler myocardial imaging.
For surgery the systematic error was at 0.50 cm
(29%) and" 0.37 cm (22%) respectively. Good
correlation was also obtained between the dis¬
tances from the defect rim to inferior vena

cava, superior vena cava, coronary sinus, and
tricuspid valve in its maximum opening by
three dimensional echocardiography and sur¬
gery (table 2).
In children (from three to 17 years of age; 19

patients) the feasibility of detecting structures
and undertaking measurements was similar for

Table 3 Feasibility of detecting structures and undertaking measurements from three
dimensional atrial septal defect (ASD) reconstructions by grey scale imaging (GSI) and
Doppler myocardial imaging (DMI)

Group I,
(n=19)

mean age 8 (5) years Group 2
(n-15)

, mean age 35 (15) years

GSI DMI GSI DMI

n % n % n % n %

Maximum
dimension 19 100 19 100 12 80 15 100

Minimum
dimension 16 84 18 95 11 73 14 93

SVC 13 68 15 79 10 67 12 80
IVC 14 74 16 84 11 73 12 80
CS 12 63 16 84 8 53 12 80
TV 19 100 19 100 12 80 15 100
Mean (SD) 15(3) 82 (15) 17(2) 90 (8) 11 (1) 71 (9) 13(1) 89 (9)

CS, coronary sinus; IVC, inferior vena cava; SVC, superior vena cava; TV, tricuspid valve.

both Doppler myocardial imaging and grey
scale imaging. In adult ASD patients (from 18
to 61 years of age; 15 patients), the feasibility
was better for Doppler myocardial imaging
than for grey scale imaging (table 3).

Discussion
With the growing interest in new techniques of
ASD closure, precise assessment of ASD is
crucial for optimal patient selection. Cross sec¬
tional echocardiography and magnetic reso¬
nance imaging are the two most commonly
used techniques to assess ASD size and
morphology. The accuracy of magnetic reso¬
nance imaging is well established." 28 It is
claimed to have a sensitivity and specificity
greater than 90% in the identification of ostium
secundum ASD and to be superior to standard
transthoracic and transoesophageal cross sec¬
tional echocardiography for ASD sizing."
During the last 15 years dynamic research

has been conducted in the development of
three dimensional echocardiography which
may become a bedside diagnostic technique in
the assessment not only of ASD size and mor¬
phology but also of spatial relations of the
defect to other cardiac structures.2'" This
seems to be particularly important in selecting
patients for percutaneous ASD closure by
transcatheter device placement.12 Preliminary
studies have been carried out by others
showing the ability of three dimensional
echocardiography to reconstruct en face the
dynamic morphology of ASDs using transtho¬
racic or transoesophageally acquired ultra¬
sound data." 2012 However, no comparison has
been made to define the accuracy of these
reconstructions. It was reported that the qual¬
ity of transthoracic standard ultrasound images
was not satisfactory in all cases and the
transthoracic three dimensional en face recon¬

struction ofASD was feasible in 81 % of a study
group of children.20
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In our study we therefore looked not only at
the potential accuracy of transthoracic three
dimensional grey scale image reconstruction
but also at the additional value of three dimen¬
sional reconstruction using the Doppler myo¬
cardial imaging technique. We have shown that
the feasibility of detecting right atrial structures
and undertaking measurements by the two
techniques studied was different with age. In
children (=S 17 years of age) all the required
anatomical structures were reconstructed in a

similar percentage of patients. However, in
patients over 18 years old, the feasibility of
detecting anatomical structures was greater
with Doppler imaging. For both age groups,
superior vena cava and coronary sinus were the
hardest to reconstruct by either ultrasound
technique.
We have also shown that all the ASDs stud¬

ied changed significantly in dimension during
the cardiac cycle, with maximum size in late
left ventricular systole and minimum in late left
ventricular diastole. Although, this difference
was present in all patients, it was inversely cor¬
related with age. A similar finding of a
significant difference in ASD area during the
cardiac cycle has been reported by others.'"
This could provide new information about the
natural history of secundum ASD which may
be taken into account when assessing a patient
for percutaneous ASD occlusion using a device
placement.
The relation between measurements by

three dimensional echocardiography and mag¬
netic resonance imaging or surgery was good
and within acceptable limits for clinical appli¬
cation. The maximum ASD dimension meas¬

ured by three dimensional echocardiography
correlated well with both magnetic resonance
imaging and surgery. The systematic error for
the group as a whole was slightly lower for
Doppler imaging than for grey scale imaging
when compared to both magnetic resonance
imaging (25% v 27%, respectively) and surgery
(22% v 29%). This was not verified for the two
age subgroups (table 2) because of the
relatively small sample size. Correlation of the
distances from the ASD rim to inferior vena

cava, superior vena cava, tricuspid valve, and
coronary sinus measured by three dimensional
echocardiography and surgery in late ventricu¬
lar diastole was also good, and again slightly
favoured Doppler myocardial imaging over
grey scale imaging.

LIMITATIONS

Technical limitations
Despite growing interest and extensive re¬
search in developing real time three dimen¬
sional echocardiography, current three dimen¬
sional reconstructions are available off-line
only. In this particular study time was of minor
importance as the information on ASD mor¬
phology was needed as a baseline to plan the
repair strategy. The average acquisition time of
a single dataset is approximately two to three
minutes. The time required for the off-line
processing of the ultrasound data may take up
to 20 minutes. Finally, the time required to
reconstruct the data in three dimensions differs

according to the quality of the acquired
ultrasound images and may take from two
minutes to 20 minutes, and sometimes in a

complicated case even longer.
Using this three dimensional system, the

position of the ultrasound transducer during
the data acquisition is calculated according to
the mechanical steering logic and not accord¬
ing to the transducer spatial coordinates.
Therefore the three dimensional system does
not record unexpected changes in the trans¬
ducer position which may create a rotational
artefact. In such cases any attempt at taking
measurements from the reconstructed three
dimensional image should be abandoned. In
this study to avoid problems related to the
rotational artefact, each dataset was acquired
twice, thus extending the acquisition time.
Care also needs to be taken during the

adjustment of image gain settings. The three
dimensional system is sensitive enough to
reconstruct the ultrasound noise if such is left
on the image. This will result in insufficiently
clear three dimensional reconstruction.

Methodological limitations
In this study the information on ASD sizing
was compared to that obtained from magnetic
resonance imaging or surgery. Taking
measurement from magnetic resonance imag¬
ing phase contrast images, one has to make
sure that the shunt flow is orthogonal to the
cine imaging plane. This is because the
technique depends on flow related enhance¬
ment and phase contrast effects. In most cases
the shunt orifice is best seen at end systole or
early diastole only. It is difficult to assess the
dynamic change in ASD size during the cardiac
cycle reliably. Therefore, in this study only the
maximum ASD dimensions (horizontal and
vertical) were measured from magnetic reso¬
nance images. One might also expect the defect
size to be overestimated if measured from
images acquired upstream of the orifice where
the jet converges, as well as downstream where
it diverges.
Surgical closure of an ASD is usually

performed using a cardioplegic solution
achieving diastolic arrest of the heart. This
unfortunately does not reflect the in vivo situa¬
tion of the beating heart. The relaxed state of
the heart tends to overestimate the size of the
defect and the various distances measured. In
this study, we elected to perform the surgical
closure in a fibrillating heart, thus maintaining
the cardiac tone. The measurements taken at

surgery were therefore a more accurate reflec¬
tion of the in vivo situation. In order to avoid
interobserver variability, all measurements at
surgery were undertaken by a single surgeon.
Two independent measurements were ob¬
tained initially to avoid interobserver variabil¬
ity. However, it soon became apparent that
there was little difference in the two observa¬
tions.

CONCLUSIONS

Transthoracic three dimensional grey scale
images and Doppler myocardial imaging both
accurately displayed the varying morphology,
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dimensions, and spatial relations of ASDs. For
the group as a whole there was no difference
between the two ultrasound techniques in the
accuracy of the reconstructed three dimen¬
sional images. However, in adult ASD patients,
Doppler myocardial imaging was more effec¬
tive than grey scale imaging in reconstructing a
surgical view of ASDs. This study shows that a
dynamic en face three dimensional image of an
ASD is no longer restricted to the one seen only
by a surgeon during an ASD repair, but may be
reconstructed through the closed chest before
closure of the defect. This should help to plan
the surgical strategy or, where applicable,
facilitate the selection of patients for percuta¬
neous device closure.

This study was supported by the Chest, Heart and Stroke
Association (196RR33163).
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Three-dimensional echocardiographic evaluation
of left ventricular volume: Comparison of Doppler
myocardial imaging and standard gray-scale
imaging with cineventriculography—an in vitro and
in vivo study
Aleksandra Lange, MD, Przemystaw Palka, MD, Andrzej Nowicki, PhD, Robert Olszewski, MD,
Thomas Anderson, MSc, Jerzy Adamus, MD, George R. Sutherland, MD, and Keith A.A. Fox, MD
Edinburgh, United Kingdom, and Warsaw, Poland

Background Standard gray-scale imaging (GSI), three-dimensional (3D) echocardiography has been shown to be
superior to two-dimensional echocardiography in measuring left ventricular volume. However, the often relatively poor qual¬
ity of transthoracic gray-scale data can limit the potential application of this technique. Doppler myocardial imaging (DMI) is
a new ultrasound technique that potentially offers higher-quality 3D images with a transthoracic approach than the 3D GSI
technique. This study was designed to compare the accuracy of standard GSI and DMI 3D left ventricular volume measure¬
ments in vitro and in vivo.

Methods and Results In vitro, the minimum and maximum volume of the contracting single-chamber, tissue-mimic¬
king phantom was calculated by using both techniques. In vivo, GSI and DMI 3D left ventricular volume measurements were
performed in 16 patients. End-diastolic and end-systolic left ventricular volumes were computed for both techniques and com¬

pared with those calculated by cineventriculography. In vitro, both methods tended to underestimate the true phantom vol¬
ume, but the systematic error was smaller for DMI than for GSI (- 1.2% ± 1.5% vs. -4.3% ± 3%; p < 0.01) and was more
constant in the case of DMI over the range of different sizes of true volume. In vivo, for GSI the end-diastolic volume mean
difference was - 12.6 ml and the limits of agreement were ±18 ml, and for DMI the corresponding values were -4.2 and
±10.6 ml, respectively. The difference for end-systole was -6.5 ± 10.6 ml and - 1.5 + 10 ml for GSI and DMI, respectively.
The magnitude of the difference in volume measurement between 3D echocardiography and cineventriculography was sig¬
nificantly smaller when using the Doppler technique.
Conclusions The results of this in vitro and in vivo study indicate that DMI is superior to GSI as a transthoracic acquisi¬
tion technique for 3D volume computation. (Am Heart J 1998;135:970-9.)

The initial absolute measurement and subsequent
monitoring of left ventricular volume is an important
clinical parameter in patients with cardiac disease.
Although cineventriculography has been accepted as a
clinical standard for left ventricular volume determina-
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tion, the invasive nature of the technique and the
inherent assumptions concerning the geometry of the
left ventricle limit its application in repeated assess¬
ments.1"4 Radionuclide methods offer an alternative

noninvasive approach5 but are subject to other limita¬
tions. These are mainly related to the detection of
edges and end planes as well as the determination of
the level of background activity.6 Previous attempts
with standard two-dimensional echocardiographic tech¬
niques have also demonstrated several important limi¬
tations, particularly in patients with regions of left ven¬
tricular asynergy. Factors contributing to the low
predictive accuracy of two-dimensional echocardio¬
graphic volume measurements include geometric
assumptions, image plane positioning errors, and
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Figure 1

Schematic diagram presenting setup of in vitro study: Electrocardiographically gated acquisition of two-dimen¬
sional cross sections of phantom at 2 degree steps over 180 degrees. After completion of acquisition: Off-line
processing based on the interpolation of missing information between acquired two-dimensional images at 2-
degree steps and conversion of images from polar to cartesian coordinates.

imprecise endocardial boundary detection.7'8 Recently,
a number of three-dimensional (3D) echocardio-

graphic scanners have been developed that address
the issue of geometric assumptions.9"13 These allow 3D
images to be constructed from either transthoracic or
transesophageal data sets. By using different 3D acqui¬
sition systems it has been shown that standard gray¬
scale imaging (GSI) 3D echocardiography is superior
to two-dimensional echocardiography in measuring
left ventricular volume14'15 and that the 3D measure¬

ments correlate well with cineventriculography and
magnetic resonance imaging.16'17 However, a major
limitation of the transthoracic approach to acquire a
3D data set is the poor quality of GSI images obtained
in a substantial proportion of patients.18'19 This is
because the quality of a GSI image is related to the
amplitude of the ultrasound signal returning from the
interrogated myocardium, which is markedly attenu¬
ated by chest wall structures in a substantial number
of patients. Doppler myocardial imaging (DMI) is a
new ultrasound technique, based on Doppler princi¬
ples, in which special algorithms are applied to detect
myocardial wall motion instead of intracardiac blood
flow.20 The quality of DM! images is dependent on

two factors as opposed to one factor in GSI: the ampli¬
tude of the returning signal, which is in turn directly
dependent on the attenuation, and the frequency shift
of this signal, which is relatively independent of the
attenuation factor. Thus it is this latter factor that gives
rise to the potential of the Doppler technique to pro¬
vide more complete images of the myocardium than
the standard gray-scale technique. The potential clini¬
cal application of DMI in quantifying regional left ven¬
tricular function21-24 and in differentiating left ventricu¬
lar hypertrophy of different causes25'26 has been
previously validated in a series of studies. Also, DMI
has been reported to be a superior technique to GSI in
displaying the endocardial boundary27 and providing
better-quality 3D reconstructions of heart structures
when using the transthoracic approach.18'19'28-29 This
study was designed to compare the accuracy of stan¬
dard GSI and DMI 3D left ventricular volume measure¬

ments in vitro and in vivo. In vitro, volume computa¬
tions by both DMI and GSI were compared with the
true volume of a dynamic tissue-mimicking phantom,
and in vivo these were compared with the clinically
accepted method of left ventricular volume measure¬

ment, cineventriculography.
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Methods
In vitro studies
A one-chamber, contracting tissue-mimicking phantom

was constructed to simulate left ventricle contraction (Fig. 1).
The phantom consisted of a latex balloon (acting as endo¬
cardium) placed inside 1 cm thick, tissue-equivalent expand¬
able foam (acting as myocardium) of a shape and size of the
left ventricle. To mimic left ventricular contractions, the
phantom was connected to the electrocardiogram-gated
water pump, and degassed water was pumped into the
phantom at a rate of 50 times per minute. A specially con¬
structed valve between the phantom and the pump allowed
the water from the phantom chamber to be returned back to
the pump.
To validate the accuracy of the changes in volume mea¬

surements by both techniques, GS1 and DMI, with changes in
size of the measured volume, varying known amounts of
water were pumped into the phantom (from 24 to 190 ml).
In addition, to define the minimum size of an isolated

reflector that could be accurately identified in a 3D recon¬
struction by this system, rings of resin crystals of known dif¬
fering dimensions were implanted on the surface of the
scanned phantom (Fig. 1).

In vivo

Sixteen randomly selected patients with ischemic heart dis¬
ease undergoing coronary angiography (eight women, mean
age 63 ± 11 years) were studied. All of the 16 patients
selected had localized regional wall motion abnormalities as
assessed by standard two-dimensional echocardiography.
Before entry into the study, informed consent was obtained
from all volunteers.

Although computer tomography or magnetic resonance

imaging would seem to be a more appropriate technique
against which 3D echocardiographic volume measurements
were compared, cineventriculography was chosen for practi¬
cal reasons. All of our patients for whom surgical revascular¬
ization was planned had their left ventricles assessed by cine¬
ventriculography; therefore we used the results already avail¬
able for the comparison with 3D echocardiographic measure¬
ments.

Three-dimensional imaging protocol
The instrumentation used for the 3D imaging protocol con¬

sisted of an ultrasound scanner (Acuson XP 10; Mountain
View, Calif.) with DMI software connected to a 3D acquisi¬
tion system (TomTec Echo-Scan; Munich, Germany). The
scanner modifications enabling DMI have been described
previously in our work.24 The velocity range settings used to
encode myocardial velocities (3 to 24 cm/sec) are lower than
those typically used for blood flow. The display of Doppler
information was achieved for tissue instead of blood, with
the distinction being made on overall signal strength. No fil¬

ters were used. Image persistence was turned off to elimi¬
nate blurring of the moving myocardium. Color Doppler gain
control was also set to achieve maximum color Doppler
information in the myocardium while limiting color informa¬
tion within the blood pool. Although the Doppler informa¬
tion is angle dependent, the angle insonation must be taken
into account when measuring myocardial velocities only.20 In
previously reported cases in which DMI was used as an

acquisition technique to visualize cardiac structures, the inci¬
dent angle of the ultrasonic beam did not affect the com¬

pleteness of the image, is. 19.27-29 xh;s js because even very
low myocardial velocities with approximate values of
approximately 0 to 0.2 m/sec are also color coded by DMI as.
a mosaic of red and blue.20 For GSI, the gain was adjusted to
optimize the clarity of the phantom in vitro or the endocar¬
dial boundaries in the in vivo studies. In the GSI images, the
endocardial boundary was defined as the "speckle line" near
the myocardial borders. Often the lines were not continuous:
In some instances, they would fade and then completely dis¬
appear. In such cases, the trace was terminated. However,
should another speckle line be present at a slightly different
depth that appeared to be the continuation of the first line,
then the trace was continued from the first to the second line

across the region of "dropout." In DMI, the endocardial
boundary was defined as the line of interface between the
myocardial wall and the blood pool.
The ultrasound images (both GSI and DMI) were obtained

with a 2.5 MHz phased array transducer driven by the trans¬
ducer mechanical rotational device supplied with the
TomTec Echo-Scan. During acquisition, the TomTec Echo-
Scan was connected to the ultrasound video output connec¬
tor of the Acuson scanner with a black/white video cable.

Thus when DMI images were acquired, the color Doppler
signal was transferred as a black and white video signal to
the TomTec Echo-Scan.

In the in vitro studies, consecutive imaging frames were
acquired from the contracting phantom by electrocardio¬
graphic gating. A mechanical device rotated the transducer
at 2 degree steps over 180 degrees (Fig. 1). By using a poly¬
hedral volume algorithm, the minimum and maximum vol¬
umes (systolic and diastolic) of the contracting phantom
were calculated from consecutive 1 mm thick short-axis

slices. To validate the accuracy of both imaging techniques
in 3D volume measurements, 17 different volumes of a
tested object were measured during maximum and mini¬
mum contractions of the phantom. This was achieved by
pumping differing known amounts of water into the cham¬
ber of the contracting phantom.
For the in vivo studies, electrocardiographic and respira¬

tion gating was used. The expiratory phase of breathing was
used for gating respiration. During the acquisition procedure
the transducer was placed in the standard apical position
and was rotated by the mechanical rotational device at 2
degree steps over 180 degrees. On the basis of the gating
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In vitro relation between magnitude and direction of systematic error (bias) and size of volume being measured.
Difference between estimated and true volume is plotted against true volume. Systematic error for DMI (open cir¬
cles) remains relatively constant over range of volumes measured, whereas for GSI (solid circles) it is greater at
larger volumes.

parameters, the computer acquired one complete cardiac
cycle at the acquisition start position and recorded it at 25
frames/sec. When one cardiac cycle had been stored in the
computer's random access memory, the steering control
advanced the transducer one step further. A total of 90 car¬
diac cycles were stored during one acquisition. To create the
3D data set, additional points needed to be interpolated
(offline, after processing) between the acquired 2 degree
step, two-dimensional images. The same protocol was used
for GSI and DMI acquisition.
Left ventricular volumes were calculated at end-diastole

and end-systole from both GSI and DMI data sets. The endo¬
cardial boundary was manually traced in a series of short-
axis 5 mm thick images, which were acquired with reference
to the predefined apical long axis of the image. Left ventricu¬
lar volume was computed by using the same 3D polyhedral
volume algorithm as used in the in vitro study. In assessing
volumes, the papillary muscles were excluded from the
chamber volume.

The results obtained from 3D ultrasound images were then
compared with those obtained from cineventriculography.

Cineventriculography
Within 2 hours after the 3D echocardiograms were per¬

formed, the patients underwent diagnostic coronary angiog¬

raphy and cineventriculography. All cineventriculograms
were recorded at 30 frames per second during the power

injection of 30 to 40 ml of iopamidol at 10 ml/sec through a
6F pigtail catheter. In all patients, two views were obtained:
30 degree right anterior oblique (RAO) and 60 degree left
anterior oblique (LAO). The first three sinus beats recorded
after the contrast injection that did not follow a premature
beat were used for volume calculation. Because of the lack
of software to automatically calculate left ventricular volume
from two views, we measured left ventricular volumes sepa¬

rately for 30 degree RAO and 60 degree LAO views and then
the average value was taken from both measurements. Papil¬
lary muscles were excluded in the volume calculation. End-
diastole was defined as the visually estimated largest silhou¬
ette and end-systole as the smallest silhouette of the left
ventricle. The contours were then hand-traced and the vol¬
umes calculated by using the disk-summation method as pre¬

viously described and validated by others.1 >30

Statistical analysis
In vitro studies. The error of inaccuracy of both GSI and

DMI 3D volume estimation was assessed by calculating two
different parameters: bias (systematic error) and imprecision
(random error).51
The differences between both GSI and DMI volume mea-
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Figure 3
10

GSI
Methods

DMI

In vitro systematic error and imprecision of both ultrasound techniques. Position of box in relation to zero line is
indicator of systematic error. Vertical height of box and its error bars are indicator of imprecision.

surements taken during minimum and maximum phantom
contraction and true volume were compared with the true
volume of the phantom. This allowed us to assess whether
the two tested ultrasound techniques have a tendency to
underestimate or overestimate the measured volume. To

determine whether the changes in the magnitude of the sys¬
tematic error varied according to the changes in the volume
size, 17 different volumes were measured and these values
were compared by linear regression analysis. The systematic
error was also expressed as a percentage of the volume
being measured (percentage error - (measured volume - true
volume) / true volume x 100%], and the mean percentage
error + 1 SD was calculated for each method. Finally, the
mean percent error was compared by nonparametric meth¬
ods by using analysis of variance (Friedman ANOVA).
To assess the accuracy of each method, each measurement

was adjusted for systematic error by applying a correcting
factor based on the linear regression of the measured 3D GSI
and DMI volumes with the respective true volume. In these
calculations a predicted true volume was substituted for each
measured volume. After this adjustment, the difference
between the predicted true volume and the true volume was

calculated, and the percentage error was expressed as an
absolute value. The accuracy of each technique was com¬

pared by applying the Friedman ANOVA test.
In vivo studies. End-systolic and end-diastolic volumes of

the left ventricle were assessed by both 3D echocardiography
(GSI and DMI) and cineventriculography and are presented
as mean ± SD. Because we did not have a true value of the

measured left ventricular volume but a value obtained from

an accepted clinical standard, both GSI and DMI 3D volume
measurements were correlated, by using linear regression
analysis, to the volumes obtained by cineventriculography.
To assess the level of agreement between GSI versus cine¬
ventriculography and DMI versus cineventriculography and
to test the reproducibility of both 3D ultrasound techniques,
Bland and Altman's test31 was used. The 95% limits of agree¬
ment were calculated as twice the standard deviation and the

results were compared by Friedman ANOVA test. Interob-
server variability and intraobserver variability were assessed
in a group of 10 randomly selected patients. Finally, the
endocardial boundary definition obtained by GSI and DMI
was compared by using McNemars test for marginal homo¬
geneity.32 This expresses the percentage of a clearly defined
endocardial boundary to the circumference of the inner
dimension for each measured slice of the ventricle.31 A value

of p < 0.05 was considered to be significant.

Results
In vitro studies

Both 3D ultrasound techniques underestimated the
true volume of the phantom, but the systematic error
(bias) was significantly smaller for DMI than for GSI
(—1.2% ± 1.5% vs -4.3% ± 31%; p < 0.01). Fig. 2 shows
that the systematic error for 3D DMI was more con¬
stant (r = -0.40; p < 0.02) than GSI (r= -0.79; p <
0.001) over the range of different sizes of true volume.
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Thus the magnitude of the bias was smaller in DMI
than in GSI when the measurements were taken from

bigger volumes.
Fig. 3 shows that random error was low in both 3D

ultrasonic techniques: for GSI 2.1% ± 2.2% and for
DMI 1.2% ± 1.0%; p = 0.086.
Finally, we have shown that a 1 mm isolated crystal

may be correctly identified and measured in a 3D DMI
reconstruction (see Fig. 4).

In vivo studies
The mean end-systolic volumes for 3D echocardiog¬

raphy were for GSI 70 ± 15 ml, for DMI 75 ± 18 ml;
and for cineventriculography 77 ± 18 ml. For end-dias¬
tole these values were 127 ± 18 ml, 140 ± 20 ml, and
144 ± 22 ml, respectively.
There was a good correlation between both 3D

ultrasonic techniques and cineventriculography (GSI r
= 0.98, p < 0.0001; DMI r = 0.99, p < 0.0001). The stan¬
dard error of estimates for GSI was +7 ml and for DMI

±5 ml. In 3D echocardiography the mean difference
for end-diastole by using GSI was -12.6 ml, the limits
of agreement being ±18 ml. For end-systole these val¬
ues were -6.5 ± 10.6 ml, respectively. By using DMI
the mean difference for end-diastole was -4.2 and

+10.6 ml and for end-systole -1.5 ± 10 ml (see Fig. 5).
The magnitude of the difference between 3D echocar¬
diography and cineventriculography in volume mea¬
surement was significantly smaller for DMI than for
GSI for both end-diastole and end-systole (p < 0.01).
Finally, DMI proved to be significantly more efficient

than the standard GSI in endocardial boundary detec¬
tion at both end-diastole (80% ± 8% vs 67% ± 16%,
respectively, p < 0.05) and end-systole (85% ± 7% vs
71% + 13%, respectively, p < 0.05) (McNemars test).
Table I shows the intraobserver and interobserver

variability, which was slightly lower for DMI.

Discussion
In vitro, 3D volumes were measured independently

by the two techniques and the results were then corre¬
lated with the true volume of the tested object. In
vivo, computation of left ventricular volumes by 3D
GSI and DMI were compared with measurements
obtained by using an accepted clinical method, cine¬
ventriculography. Previous studies that were based
only on GSI have demonstrated a high degree of accu¬
racy in in vitro 3D volume computation.33'3'' In vivo,
although GSI 3D echocardiography slightly underesti¬
mates the measured volume, it has been found to be

Lange et al.
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Three-dimensional reconstruction of tested tissue-mimicking
phantom during minimum and maximum contractions. Arrows
indicate reconstructed resin crystals of 1 mm dimension. From
this reconstruction angle, 2 mm crystals are not visible.

Table I. Interobserver and intraobserver variability
Interobserver Intraobserver

variability variability

ml Mean ±SD % Mean ±SD °/o

EDV
DMI 1.9 ± 5.8 9.7 1.2 ±3.0 5.3
GSI 2.2 ±5.9 10.9 1.8 ± 4.4 8.7

ESV
DMI 0.9 + 2.3 7.1 0.7 ±2.0 6.8
GSI 1.3+3.0 9.8 1.1 ±2.9 9.2

EDV, End-diasiolic volume; ESV, end-sysfolic volume.

superior to GSI two-dimensional echocardiography.14"16
A major potential problem in transthoracic GSI 3D
echocardiography is the poor image quality obtained
in a substantial number of patients.36 Superimposed
lungs and chest wall structures attenuate the ultra¬
sound signal reducing the signal to noise ratio, making
it difficult to acquire a sufficient number of clear
images to represent the left ventricular cavity accu¬

rately. It is possible to overcome this problem by using
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a transesophageal approach. Although it has been
documented that this can be performed with a low
level of accompanying risk, it still remains a semiinva-
sive technique, poorly tolerated by a significant num¬
ber of patients.37 DMI offers clear advantages over
the standard GSI technique for transthoracic data
acquisition. Unlike GSI, the quality of DMI images is
dependent on two parameters: the amplitude of the

ultrasound signal, which is directly affected by chest
wall attenuation, and the frequency shift of ultrasound
signal, which is relatively independent of the attenua¬
tion. Thus where ultrasound attenuation produced by
overlying tissues is a problem, DMI could provide bet¬
ter quality transthoracic images in a substantial num¬
ber of patients (see Fig. 6). This was confirmed in our
recent study in which DMI was more a effective tech-
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Figure 6

Example of transthoracic 3D reconstruction of left ventricle obtained from 54-year-old man. Left, DMI technique;
right, GSI technique.

nique than GSI in 3D reconstructing of a surgical view
of secundum atrial septal defects in older patients, in
whom the attenuation of an ultrasound signal by chest
wall structures is higher than that in children.29 In this
study, we have demonstrated that in vitro, both tech¬
niques slightly underestimated the true volume of tis¬
sue-mimicking phantom, and although there was no

significant difference in the percentage of accuracy
between the two, the systematic error was not only sig¬
nificantly smaller for DMI but also remained fairly con¬
stant over the range of volumes tested. Although a spa¬
tial resolution of two-dimensional DMI technique is
slightly lower than a GSI technique,20 we have shown
that for all studied gain and depth settings, the mini¬
mum size of a relatively strong isolated reflector that
may be correctly distinguished and measured in a three-
dimensional DMI reconstruction is 1 mm. This gives a

guide as to how accurate measurements taken from 3D
images can be. In vivo, the correlation between volume
measurements by 3D echocardiography and those
obtained by cineventriculography was very good. How¬
ever, 3D volume measurements obtained by DMI had
significantly closer agreement with those generated by
cineventriculography than did those from GSI. Addition¬
ally, by using McNemars test for marginal homogeneity,
we have shown the superior boundary definition pro¬
vided by DMI. This is also in agreement with our previ¬
ous study in which we have shown that the endocardial
boundary is more reliably displayed and visually easier
to detect by using DMI than by using GSI.27

On the basis of our results, we can conclude that if
3D echocardiography is to be used to estimate left
ventricular volume, DMI is the ultrasound technique
of choice.

Limitations
A potential source of error in both the in vitro and

in vivo studies was the small differences in frame rate

of the studied techniques. This was approximately 20
frames per second for DMI as opposed to 25 frames
per second for GSI and 30 frames per second for cine¬
ventriculography. As a consequence, end-systolic and
end-diastolic volume measurements could have been

measured in slightly different time periods of the heart
cycle. Echocardiography and cineventriculography
detect different endocardial outlines; additionally, cine-
eventriculography still makes assumptions about left
ventricular shape. Finally, the changes in the heart rate
and expanded circulating volume during cineventricu¬
lography may have contributed to differences between
the left ventricular volume measurements and 3D

echocardiography.
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