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AbstractThe topic of this thesis is abstraction over theories of formal semantics for naturallanguage. It is motivated by the belief that a metatheoretical perspective cancontribute both to a better theoretical understanding of semantic theories, and toimproved practical mechanisms for developing theories of semantics and combiningthem with theories of syntax.The argument for a new way to understand semantic theories rests partlyon the present di�culty of accurately comparing and classifying theories, as wellas on the desire to easily combine theories that concentrate on di�erent areasof semantics. There is a strong case for encouraging more modularity in thestructure of semantic theories, to promote a division of labour, and potentiallythe development of reusable semantic modules. A more abstract approach to thesyntax-semantics interface holds out the hope of further bene�ts, notably a degreeof guaranteed semantic coherence via types or constraints.Two case studies of semantic abstraction are presented. First, alternativecharacterizations of intensional abstraction and predication are developed withrespect to three di�erent semantic theories, but in a theory-independent fashion.Second, an approach to semantic abstraction recently proposed by Johnson andKay is analyzed in detail, and the nature of its abstraction described with formalspeci�cations.Finally, a programme for modular semantic speci�cations is described, andapplied to the area of quanti�cation and anaphora, demonstrating successfullythat theory-independent devices can be used to simultaneously abstract acrossboth semantic theories and syntax-semantics interfaces.
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Chapter 1Introduction
1.1 OverviewThis thesis is about formal semantics for natural language. The activity of formalsemantics normally involves making precise statements about the meaning of lin-guistic expressions. To that extent, I do no formal semantics in what follows:there are no claims that such-and-such a sentence must be analyzed in this way,and must have that meaning, which in turn must be formalized just so. Instead,this thesis is about the theories that do make such claims: its propositions aremetatheoretical.The belief which motivates the following chapters is that there are interestingthings to say in formal semantics which can only be said, or can best be said, bytaking a viewpoint outside any particular theory. So this work is not committedto any one of the many formal theories of natural language semantics currently ono�er. What it is committed to is formal theorizing about linguistic meaning in thetradition that stems from Frege, Russell and Montague, and it places particularemphasis on certain aspects of this tradition, as I shall shortly describe.From my metatheoretical perspective, I do three things. First, I describeformally how two core semantic notions vary across three representative objecttheories. Second, I analyze one particular semantic framework that claims toembody some degree of semantic abstraction, evaluating those claims by providinga formal speci�cation for the key notions of the framework. Finally I demonstratea modular approach that can be used to state constraints on and generalizationsabout natural language semantics that are truly independent of any particularsemantic theory.In the remainder of this chapter I explain what I mean by `formal semantics',clarify my use of some common terms in the �eld, and indicate precisely whichaspects of formal semantics are addressed by this work.
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2 Chapter 11.2 Formal semanticsA formalized theory is one couched in terms that rely for their meaning only ontheir syntactic relations to other terms, grounded by expressions that have a com-mon logical or mathematical sense. Reasoning in such theories may, in principle,be checked fully automatically. I call a theory formal when it is formalized in thissense, or is generally held to be capable of being so formalized.Until Frege's breakthrough at the end of the nineteenth century, formal logicwas unable to represent the deductive content of all valid arguments. It is now acommonly-held view that all correct mathematical proofs are ultimately capableof being shown valid through representation in formal logic. Frege and Russellinitiated the application of modern logic to meaning and reasoning in naturallanguage, and thereby laid the foundations of formal semantics.From the beginning of this century until the late 1960s, however, the use oflogic to analyze natural language meaning operated in a fashion that discussed thegrammatical structure of language largely informally, and which did not attemptto model grammar with the same precision that characterized the logical repres-entation of linguistic meaning. The pioneering work of Noam Chomsky in the1950s demonstrated that natural language grammar was capable of formalizationto a far greater degree than had been realized, but it was Richard Montaguewho �rst synthesized formal models of grammar and meaning into a unitarytheory of natural language semantics. The last version of this theory, described inMontague 1973, (henceforth, PTQ) includes a formal grammar of a fragment ofEnglish (based on the work of Ajdukiewicz rather than Chomsky, as it happens)for which a translation to Montague's intensional logic IL is precisely de�ned, sothat the translation process is capable of automation. Formulas of IL are given amodel-theoretic interpretation, whence by putting the two processes together everysentence of English admitted by Montague's grammar is automatically given aformal meaning. The contribution of Montague was not only a uni�ed formaltreatment of syntax and semantics, but also, through his intensional logic, asemantic domain rich enough to do justice to the fragment of English which heformalized. In the twenty years since the publication of PTQ, it has come tobe regarded as the paradigm|though far from an unquestioned one|of formalsemantics, in the sense used throughout this work.Since this sense encompasses the requirement that there be a formal map fromexpressions of the natural language fragment to the domain of meanings, thenstrictly speaking, there can be no formal semantics for any natural language: aformal map is a function from one formally de�ned domain to another one, andthus the domain of linguistic expressions must in fact be a formal language. Thisis almost a trivial observation|the point is simply that any formal grammar ofa natural language is really the grammar of a formal language that resembles thenatural language to a certain degree.Some terminology: when I talk about syntax or grammar, I will generally



Introduction 3mean a formal grammar of natural language, such as GPSG's account of English(Gazdar et al. 1985), and the rules and representations that comprise it. Wherethat grammar contains semantic representations (as GPSG does, for instance) Iexclude those from consideration when I use phrases such as \present in the syn-tax". Sometimes I may have no particular grammatical theory in mind, intendingmy comments to apply to an arbitrary one. Where a theory treats discourseconsisting of a string of sentences as well as sentences in isolation, I considerthe term syntactic theory to embrace both sentence syntax and any mechanismsrequired by the discourse-related aspects of the theory. Occasionally I will talkabout the syntax of non-natural languages. When that happens I will generallyqualify the sense appropriately, as in \logical syntax". I use the term semantictheory to mean a system, like PTQ, that can generate formal meanings fromnatural language expressions, and that is predominantly concerned with doingthat, rather than (as GPSG is) with accurately and revealingly characterizingall and only the grammatical expressions. So I say that PTQ does contain asyntactic theory, but that it is a minor part of the overall system, whereas GPSGis chie
y a theory of syntax, but also contains a semantic theory (in fact, onelargely based on PTQ). Thus I do not mean by `semantic theory' a hypothesisabout natural language meanings, such as the claim that generalized quanti�ersin natural language have the property of conservativity, though it is certainly thecase that semantic theories, in my sense, may incorporate hypotheses of that kind.Finally, sometimes I will talk about the object theory, to distinguish the semantictheory under consideration (possibly an arbitrary one) from my own theorizingabout it.1.3 EntailmentPeople expect di�erent things from formal semantics. Let a logical language be aformal language somehow equipped with a relation on its formulas that is intendedto appeal to our intuition of logical consequence|an entailment relation. As partof their assignment of formal meaning to linguistic expressions, nearly all semantictheories translate natural language sentences (or discourses) into formulas of lo-gical languages, at least at some juncture. The signi�cance of this translation isoften disputed. A logical language, by the de�nition just given, guarantees thata notion of entailment exists for its formulas. This means that any system oftranslation from natural language into it automatically confers an entailment re-lation on those natural language sentences that are thus translated (appropriatelydisambiguated). I maintain, therefore, that the modelling of natural languageentailments is a core attribute of a semantic theory|if it can't do that, it's notclear that it is doing formal semantics. It certainly isn't doing it in the sense thatI adopt throughout this work.But many people, while conceding this, think that it is reasonable to expectrather more of a semantic theory. One of the most natural things to want is some



4 Chapter 1insight into the meaning of a linguistic expression. A formula of a logical languageis not a meaning. Further, one of the characteristic attributes of competentspeakers of a natural language is their ability to make true statements aboutthe world. It is not immediately obvious how translating their statements into alanguage with a formal notion of consequence explains this ability.The most successful attempt to satisfy these expectations within formal se-mantics has been an appeal to the model-theoretic aspect of many semantictheories, including PTQ. From the perspective of formal logic, if a logical languagehas a model theory then it has at least (i) a canonical way to de�ne its consequencerelation; (ii) the chance of proving completeness for a syntactic|that is, proof-theoretic|presentation of that relation, and (iii) a consistency proof, relativeto the consistency of the model-theoretic apparatus itself (which can usually beembedded in any formal set theory).But from the point of view of natural language semantics, a model theoryprovides|as a minimum|a way to determine truth conditions for every formulaof the logical language, and again, by extrapolation, to do the same for theexpressions of natural language that are translated into it. I'll indicate brie
yhow truth conditions work. Given a sentence(1.1) Mary calls Johnand a logical translation, saycall(m; j)then if our theory is su�ciently broad and the language that call(m; j) occurs inis su�ciently expressive we can expect it to tell us that asserting (1.1) logicallyentails sentences such asMary calls someoneJohn is called by Maryand so on. It will also tell us which sentences in their turn entail (1.1). And that'sit, unless there is more to the semantic theory than just entailment. But if thetheory has a model-theoretic basis, then we can expect it to tell us (assuming a�rst-order model) that given a certain state of a�airs|any state of a�airs whereMary , calls and John mean something|then (1.1) is true if, and only ifMary and John mean two things that stand in exactly the two-placerelation on things that the word calls means.This at any rate does some justice to our intuitions about the meanings of words|and the truth conditions for more complex sentences rapidly become less obvious!(Common logical languages, like �rst-order predicate logic, have standard and es-tablished model theories. Consequently I will sometimes loosely refer to �rst-orderformulas as `truth conditions', taking their standard interpretation for granted.)



Introduction 5It should be apparent that one of the properties of model-theoretic semanticsis that it proposes models of structures or entities that linguistic expressionsseemingly refer to. In the example, the transitive verb call is taken to stand for atwo-place relation on things. It is often argued that this feature of model-theoreticsemantic theories means that they are able to o�er more insight into the natureof linguistic meaning than a theory that talks only of entailments.This is not the place to carry on that argument, but I hope it is clear thatby restricting my interest to entailment|a kind of lowest common denominatoramong semantic theories|I am choosing to bypass at least one important issueabout what makes one semantic theory better than another. There are manyothers. We may ask, for example, how directly the semantics of an expressionfollows from its linguistic structure, whether the semantic theory lends any sup-port to apparent linguistic universals, whether it is practical to use the theory toactually compute `meanings', and even whether the consequence relation for theentities thus computed admits of a computationally tractable interpretation, sothat reasoning with them may plausibly be automated. By and large, the workreported here addresses none of these questions.Finally, I want to emphasize that I am well aware of the many semantic theorieswhich generate semantic structures|I'll generally say semantic representations|that cannot simply be viewed as formulas of a logical language. The systemexamined in chapter 4 is one such. But as I demonstrate there, that does notprevent me extracting from these structures a kind of content that can be soviewed, thereby enabling comparison between these theories and the ones for whichlogical forms are indeed the be-all and end-all of formal semantics.1.4 SummaryThe conception of formal semantics for natural language with which this workis concerned sits squarely in the logic-based tradition that derives from Frege,Russell and Montague. I am interested in formal theories which assign semanticrepresentations to fragments of natural languages, and in analyzing these theories Iam chie
y concerned with the entailment relations that may be de�ned over theserepresentations. It is through such relations on representations that a theorymakes empirical claims about entailments between sentences of natural language.While many, perhaps most, semantic theories are justi�ed more broadly thanthis, often with reference to model-theoretic interpretations, I adopt a narrowentailment-based perspective here because of its universality and the core positionof entailment in the formal semantics enterprise.



6 Chapter 11.5 Synopsis of chaptersThe next chapter argues the general case for abstracting over semantic theories,and considers various ways to go about this, some of which correspond to existingwork. Chapter 3 looks at how three di�erent semantic theories choose to expressthe concepts of intensional abstraction and predication, illustrating how such com-parisons may be made formally precise. The following chapter is a second casestudy, but of a single theoretical framework. The authors of this framework claimthat it provides a certain level of abstraction over semantic theories, and that bydoing so it is able to describe a variety of them in its own metatheoretical terms.I examine these claims critically and attempt to formally circumscribe the exactscope of their abstraction. In chapter 5 I outline the goal of modular speci�cationsfor semantics, applicable across all semantic theories, and I demonstrate in detailhow this approach can go some way towards a speci�cation of some constraints onquanti�cation and anaphora. What has been achieved is summarized in chapter 6,where I also consider the future prospects for this approach which this thesispresents.Finally, I should like to apologize for a parochialism of this work: my topic is theformal semantics of natural language, of which latter there is more than one, yetall of my linguistic examples are from English, and all of my theoretical examplesare semantic theories applied to English. It is far from evident that cross-linguisticdi�erences have no signi�cance for formal semantics. To the extent that they do,then, I hope that they will tend to strengthen rather than weaken the theoreticalapproach I argue for here.



Chapter 2The Case for SemanticAbstraction
2.1 Arguments2.1.1 Comparison and classi�cationSince PTQ, alternatives have been proposed for almost every aspect of Montague'ssystem. These include complete replacement semantic theories for comparablefragments of English, as well as proposals that modify only part of PTQ's appar-atus. Some of the latter make su�ciently small changes that it is relatively easy tosee what the implications of the changes are for the overall theory. But in general,the variety of semantic theories currently available|many only distantly relatedto PTQ|can make it hard to determine exactly where they di�er.For example, when comparing two theories that address similar semantic issuesone would often like to know precisely which syntactic constructions receive dif-ferent truth conditions under the competing analyses. Yet this can be di�cultto work out, particularly if the two theories employ incompatible formalisms.Another common problem is dealing with the interaction of theories that focus ondi�erent phenomena. Suppose that we have two theories, A and B, where A hasa detailed treatment of quanti�cation and anaphora, while theory B is primarilyconcerned with the semantics of plurals and mass terms. We might well want to�nd a way to unify these theories, so as to get a satisfactory treatment of, forexample, plural anaphora. But in such cases it is notoriously hard to �nd out allthe respects in which the two theories overlap, or make incompatible assumptionsabout the semantic terrain. I suspect that faced with these di�culties, researchershave often decided it would be easier to start a new theory from scratch.So one of the chief motivations for semantic abstraction is the desire to accur-ately compare and classify semantic theories. The next chapter demonstrates howthis can work, by creating formal speci�cations for the treatment of intensionalabstraction and predication. Given an arbitrary semantic theory, one can then at-7



8 Chapter 2tempt to apply these speci�cations: some will hold, some won't, and the resultingpattern serves to locate that theory in the theoretical landscape. It also providesconcrete evidence of the actual relations and operations that the object theoryde�nes, information that is potentially of relevance to the problem mentioned atthe end of the previous paragraph.One of the hopes held out by this approach is that it might become possibleto compile a library of tests, or benchmarks, of semantic behaviour. As well asenshrining consensus views on the semantics of, say, restrictive relative clauses,such benchmarks would help to map out areas of continuing dispute by providinga range of possible behaviours. This is exactly what happens for abstraction andpredication in chapter 3.As I tried to indicate in my introduction, I regard the modelling of entailmentas a core criterion for formal semantics, so I have devoted most of my energy todescribing the results of semantic theories in those terms. But the techniques ofsemantic abstraction are certainly not limited to that kind of description. It mightwell be productive to consider classi�cations based on computational criteria, forinstance.2.1.2 Modularity and coherenceContemporary theories of grammar integrate syntax and semantics to varyingextents. At one extreme, GB theory (Chomsky 1981), still strongly in
uenced bythe thesis of the autonomy of syntax, places the actual construction of semanticforms �rmly outside the domain of syntax proper. Although one of GB's levels ofrepresentation is called LF, after `logical form', the only major di�erence betweenthe forms of LF and those of S-structure|which is one of the two core syntacticrepresentations|is that quanti�ers move at LF (that is, transformations result inquanti�ers moving within LF representations) in order to capture quanti�er scopeambiguities.1 (A consequence is that in GB scope ambiguity is unequivocally amatter of syntactic ambiguity, since LF is a syntactic representation.) Chomskyhas always made it clear that semantic interpretation is something that happensto the forms of LF, rather than within LF, and for him the rules that constrainthat interpretation are outside the scope of grammar proper.The theories of categorial grammar and HPSG demonstrate positions on theintegration of syntax and semantics that lie at the other extreme, though each ina di�erent way. Categorial grammar (seen as a collection of related theories; seeWood 1993 for an introduction) is notable for insisting on a tight correspondencebetween the categories of syntactic expression and the kinds of semantic entity.Standardly, the combination of syntactic categories is directly mirrored by thecombination of functional types in the semantics. HPSG (Pollard and Sag 1987,1Other forms of activity at LF have been suggested, particularly for languages other thanEnglish, but quanti�er raising remains the primary motivation. I ignore Chomsky's most recenttheoretical proposals (Chomsky 1992), under which LF acquires much more signi�cance.



The Case for Semantic Abstraction 91993), on the other hand, connects syntax with semantics rather di�erently, bytaking the prime unit of linguistic description to be a conglomerate of syntactic,morpho-phonological and semantic features called a sign. Every linguistic expres-sion is represented by a sign and grammatical principles are stated as constraintson signs. Among other things, this allows syntactic and semantic information tobe interdependent.Evidently, then, categorial grammar and HPSG are theories which intertwinesyntax and semantics. But even in GB, semantics is not as cleanly separated fromsyntax as one is led to believe. For instance, quanti�er scope is a phenomenonrooted in semantics, yet as just noted treated entirely with the syntax in GB; thenotation of coindexing (discussed further in x5.4) carries semantic import, andthere are other areas where distinctions that a�ect semantic interpretation areregarded as purely syntactic features. So a blurred boundary between syntax andsemantics seems fairly characteristic of contemporary grammatical theories.Is there anything wrong with this state of a�airs? After all, it is supposed tobe to HPSG's positive advantage that it allows syntactic and semantic constraintsto be integrated so easily. There certainly are bene�ts to be had in linguisticdescription from such integration. But there are also reasons to doubt that we'veyet found quite the right way to do it. Here are three:1. Monolithic structure. The core uni�cation-based theory of HPSG (excludingthe components of constituent order and lexical inheritance) is monolithic inthe sense that any one of its principles may a�ect any other one. It is pre-cisely because they do a�ect each other that it is a powerful theory. Just thesame holds of GB|the often-heard claim that GB is modular is true to theextent that the various components of GB (X-bar theory, Case theory, and soon) are stated in isolation from each other, and have theoretical notions thatare peculiar to them, but false to the extent that the `modules' of GB arefunctionally insulated from each other. They are not: the representations ofD-structure, S-structure and the others are global|any rule or principle ofGB can operate with impunity on these representations at any time.In both cases this makes for a powerful, expressive theory. But it alsomakes it very hard to design and to debug, borrowing a term from softwaredevelopment. Because there is little true functional modularity, it inhibitsthe division of labour in grammar construction. For a signi�cant naturallanguage grammar, it is tempting to be able to let syntacticians hone thegrammar rules, or lexical entries, while the semanticists work out how toimplement the necessary semantic operations. Making that work demandsthat the interface between the two is well-speci�ed, which brings us to thenext problem.2. Limited type-based security . Unusually among syntactic theories, and ad-mirably, HPSG imposes a comprehensive type system on its main class oftheoretical entities, the signs. This ensures that syntactic attributes can



10 Chapter 2only possess values that `make sense', to a certain degree. But this typesystem has limitations, particularly in the area of syntax-semantics integra-tion. The semantic parts of signs are included in the type system, but thetypes e�ectively serve only to ensure that the resulting semantic represent-ations obey the logical syntax of the underlying semantic formalism, in thesame way that the syntactic types of `term' and `formula' in the predicatecalculus operate. Owing to the absence of any truly semantic types, whatis e�ectively unconstrained is the construction of semantic values by rulesand principles of the grammar|there is nothing in HPSG's type systemto cast suspicion on a semantics principle that, say, uniformly assigns thesame logically true proposition to every sentence. The risk of this kind ofsemantic incoherence is a consequence of a theory that allows grammar rulesto manipulate semantic values as they please.3. Inappropriateness of single formalism. Another of the elegant aspects ofHPSG is the fact that its theory is predominantly couched in a single form-alism, whose logical foundations are now quite thoroughly investigated, andwhich comes with an associated model of computation. But again, whenwe come to the semantics, we �nd that the formalism is not quite up tothe job. This was well-illustrated in the �rst HPSG book (Pollard and Sag1987), by the presence of the functions `successively-combine-semantics' and`collect-indices' which formed an essential part of the semantics principle,but could not be completely de�ned in the underlying uni�cation-basedformalism. A system that works well for the syntactic constraints of HPSGappears too limiting for those of the semantics: the di�culty, at least inpart, appears to be that the kind of processing required by the semantics ismore complex, or at least not of the same kind, as that which is su�cientfor the syntax.I believe that the introduction of an appropriate level of abstraction betweensyntax and semantics is the best way to solve these problems. Taking a cue fromsoftware engineering, we should try to develop truly modular grammars, with anespecial concern to lay down clearly the interface between syntax and semantics.In the domain of syntax, e�orts have already been made to tackle the problems Ialluded to above: Newton (1992) has shown how algebraic speci�cation techniquesdeveloped in computer science may be applied to the modular construction ofsyntactic theories.The prospect of successfully modularizing semantic theories opens the door toapplications such as reusability and incremental development. It might becomepossible to use a well-tested module for, say, quanti�cation and anaphora, ina variety of natural language grammars. Or logical research might turn up apromising new approach to the logical and semantical paradoxes|if an interfaceto the relevant semantic notions, such as abstraction and predication, has beenappropriately de�ned one could then simply `plug in' the new semantic module



The Case for Semantic Abstraction 11without disturbing the rest of the grammar.At this point, a doubter might well cite the formalism of PATR-II (Shieber et al.1983), particularly in response to the �nal point above. One could argue that theconsiderable success of PATR-II in formalizing a wide range of linguistic theoriesin the 1980s suggests that a unitary framework for syntax and semantics is worthstriving for. I contend that the case of PATR-II is special in a number of respects.First, and most importantly, PATR-II primarily addressed syntactic theory. Theuni�cation-based formalisms of PATR-II, HPSG, and other related theories doindeed seem to be well-suited to expressing the kind of operations required bytheories of grammar (though note that PATR-II cannot unaided describe everysyntactic theory). Second, PATR-II demonstrated that a grammar formalism witha built-in computational interpretation can still be declarative. This allowed gram-mar development to share a number of bene�ts, such as fast prototyping, alreadyenjoyed by logic programming. In other words, PATR-II was both expressiveenough to capture a large chunk of syntactic processing, and restrictive enoughto admit a transparent computational interpretation. Third, PATR-II built ona growing sense among computational linguists that uni�cation-based approacheswere fruitful, crystallizing a convergence that in some respects had already started.In the more general area of semantics, it seems that these conditions can't bemet. Semantic processing is inherently more complex than syntactic processing,and owing to its connections with reasoning and knowledge representation, is muchless self-contained than the domain of syntax. Certain areas|such as anaphoraresolution|are notoriously ill-constrained, it being trivial to construct exampleswhere carrying out semantic interpretation requires reasoning of considerable com-plexity over past discourse content. Nor, by contrast with computational syntax,do we appear to be in a position to cite a convergence of research work alonglines that might lead to a unitary framework. These, then, are the arguments forsemantic abstraction.2.2 ApproachesThere are a number of ways that we could go about �nding a more abstract de-scription of semantic theories and of the connection between syntax and semantics.If our prime aim is to abstract over semantic theories, it would be undesirable todiscover that the result is an account that is somehow tied to a �xed syntactictheory; whatever there is that is true, or uniform, across all varieties of semanticscannot be dependent on a particular way of doing syntax. This is not to say thatin abstracting over semantic theories one should necessarily ignore syntax|theconnection between syntax and semantics cannot be left out of the reckoning ifwe are to satisfactorily address all of the issues raised above. But whether oneactually abstracts over this connection depends on the precise approach taken.In what follows, for a given theory of formal semantics let the \syntax" be theformal grammar and let the \semantics" be the realm of semantic representations,



12 Chapter 2along with whatever operations and relations are de�ned on it. The \syntax-semantics interface" is the mechanism the theory utilizes to connect the two. Iuse the term \interface" loosely|in particular there's no requirement that it havethe highly constrained Montagovian sense of a function from disambiguated syntaxto semantics, and it is really the interface to the syntax that is under scrutiny. Iargued that any approach to semantic abstraction should apply across a range ofsyntactic theories. Then one way to classify approaches to semantic abstraction isaccording to which of the interface and the semantics they leave �xed, and whichthey allow to vary. This gives rise to four categories:1. Fixed interface, �xed semantics. If both are �xed, then there is no oppor-tunity for semantic variability. All syntactic theories are forced to adoptthe same interface to the semantics, which in turn is unchanging. So thiscategory in fact corresponds to no abstraction at all, but rather to a claimthat just one semantic interface and underlying formalism is su�cient.2. Fixed interface, variable semantics. The approach of Johnson and Kay(1990) falls into this category. They propose a small set of `semantic op-erators', which constitutes a �xed interface for every syntactic theory thatwishes to make use of it. The operators, however, are intended to be generalenough that alternative implementations of them can be used to model arange of di�erent semantic theories. I analyze Johnson and Kay's theory inchapter 4.3. Variable interface, �xed semantics. On this view the underlying semantictheory is �xed, but alternative syntactic theories are catered for by providingan interface layer for each theory. Ongoing work by Sebastian Millies andManfred Pinkal is apparently of this kind, with a separate interface de�nedfor each syntactic theory that generates a di�erent variety of syntactic struc-ture.4. Variable interface, variable semantics. If both interface and semantics areallowed to vary freely, then this approach is without content unless somesense is made of the variation. One way to obtain content is to claim thatevery semantics can be reinterpreted in a single semantic `metatheory'. Sucha theory would obviously have to possess a very rich and expressive semanticvocabulary. Recent work by Robin Cooper on re-expressing discourse repres-entation theory (DRT) within situation theory falls partly into this category.A metatheory approach that treats only the semantic representations them-selves, however, will in general be blind to the syntax-semantics interface,and will therefore be unable to state generalizations which need to take ac-count of the interface. So remaining within this category, another possibilityis to search for descriptions that simultaneously abstract over both inter-face and semantics. Conceivably one might extend the single metatheory



The Case for Semantic Abstraction 13approach to to incorporate a single `meta-interface'. But it is not necessaryto advocate just one metatheory or meta-interface in order to belong to thiscategory, as the next section's discussion makes clear.Approaches which fall into the �nal category are evidently maximally general,in that they are capable of making statements across both interfaces and semanticdomains. It is this kind of semantic abstraction that I choose to advocate here.But I have not yet been precise about the form of abstract statement I envisagemaking, and it's time to address that issue.2.3 Forms of abstractionI am interested in making metatheoretical statements that abstract across a num-ber of object semantic theories. These object theories posit entities, relations onthem and operations over them, and my abstract metatheoretical statements willnecessarily also be in terms of entities, relations and operations|in general, di�er-ent ones. How can I arrange for my metatheoretical statements to say somethingabout the object theories? Somehow, I must relate the terms of my metatheoreticalstatements to the terms of each object theory.Essentially there are two possibilities. Either the metatheoretical statementsare interpreted in the terms of each object theory, or vice versa: the statements ofthe object theory are interpreted in the terms of the metatheory. At the level oflogical theories, this is simply a matter of the direction of embedding. On the �rstoption, the metatheory is embedded in the object one, on the second the directionis reversed. A related perspective comes from the �eld of formal speci�cation ofprograms, concerned with manipulating precise speci�cations of how a programprogram should behave, and with proving that a program satis�es a given speci�c-ation. Here, it is often the case that a program is said to satisfy|or implement|aspeci�cation just in case the speci�cation can be logically embedded in the formaltheory of the program. Thus on this view, our �rst option corresponds to theobject theory implementing the metatheory, and the second to the metatheoryimplementing the object theory.2Let us consider how these options apply to abstracting over semantic theories.Option 1 sees metatheoretical statements as constituting an abstract speci�cation2This analogy is only partial, owing to the complexity of the �eld of formal speci�cation.First, it is possible to take the `meaning' of a speci�cation not to be a logical theory but rathera class of algebras (the algebras|or models|that satisfy it, where a program is modelled as analgebra). Given this approach, the logical framework that a speci�cation is couched in cannotalways express every relevant property of classes of algebras, whence logical embedding is notsu�cient to characterize implementation. Second, it may well be that a central requirementis the behavioural equivalence of the programs that satisfy a given speci�cation. Since modelsof speci�cations are not in general closed under behavioural equivalence, logical embedding isalso insu�cient in this respect. (See Sannella and Tarlecki 1992, pp. 1{5, for an introduction tothese issues. Note also that Newton 1992, cited earlier, adopts this model-based style of formalspeci�cation when characterizing syntactic theories.)



14 Chapter 2which every semantic theory should be able to implement by interpreting thespeci�cation in its own terms, with the interpreted metatheoretical statementsholding in that object theory. This requires that every entity and relation positedby the metatheory is somehow present in each object theory. Note that for thisto be true it is not necessary that these metatheoretical entities and relationsexist as primitives of the object theory, merely that they can constructed orexpressed using the apparatus of the object theory. Since on this approach themetatheoretical statements must hold in each object theory, there is a sense inwhich they will be weak and `minimal', stating only what is undisputed across alltheories.Option 2, on the other hand, is about a metatheory into which every objectsemantic theory can be embedded; that is, the metatheory `implements' all ofthem. Whatever particular entities or operations some semantic theory maycontain, they will all have correlates in the metatheory (again, not necessarilyas primitives, but at least constructible). So in a sense, this option presentsthe metatheory as `maximal', as a characterization of the entire semantic realm,in which all `naturally occurring' semantic notions can be expressed. (Cooper'swork on interpreting DRT in situation theory, mentioned above, is an instance ofoption 2.)Which of these styles of abstraction should we prefer? Option 2 potentiallyo�ers a unifying account of every semantic notion, across whichever theories wechoose to abstract over. Furthermore, if the metatheory of option 2 is executable,then we would automatically obtain a computational interpretation of each objecttheory that it encompassed. We know, however, that given the current stateof semantic theorizing|with its plethora of incommensurable theories|such ametatheory is unlikely. Note also that there is nothing in this very general char-acterization of option 2 to forbid a metatheory whose top-level structure is agiant disjunction of subtheories. Such a structure would allow the metatheory tointerpret any object theory by e�ectively including a copy of it as a disjunct. Sostronger constraints on the nature of an option 2 metatheory are required beforewe can have any guarantee of explanatory value.The chief di�culty with option 1, by contrast, is the prospect of only beingable to make weak statements, since they have to be interpretable as true in everyobject theory. A corollary is that option 1 metatheories are unlikely to yield animmediate computational interpretation. One way to counter the weakness of suchstatements is to consider not a single option 1 metatheory, but a range of them. Bycreating a collection of option 1 metatheories there is the potential to address theproblems of comparison and classi�cation raised at the beginning of this chapter.Rather than a single metatheory for all of semantics, we can consider separatemetatheories for distinct subtopics of semantics, such as generalized quanti�cation,plurals and mass terms, propositional attitude reports, and so on. And withineach topic, alternative metatheories can capture unresolved disagreements aboutempirical modelling. This is the picture I sketched in x2.1.1, and it should now be



The Case for Semantic Abstraction 15evident that abstract statements|metatheories|of the option 1 variety are oneway to achieve it. It is this kind of semantic abstraction that I promote in thefollowing chapters.Metatheories of formal semantics are not new, of course. One signi�cant earlywork is Montague's article `Universal Grammar' (Montague 1970, henceforth UG),which I now brie
y consider. In UG, Montague presents a general frameworkfor languages (as algebras), model-theoretic semantic realms (also algebras), andinterfaces from the former to the latter (homomorphisms). Viewed as an abstrac-tion over theories of formal semantics (which was not the role Montague had inmind), it falls under my option 2. As such, it fails to provide a system in whichevery existing semantic theory can be interpreted|partly, of course, because manyof these theories have been developed in explicit disagreement with features ofMontague's systems. For example, the logics of Bealer and Turner discussed inthe next chapter cannot be given a semantics within the strongly-typed modeltheory of UG, and the syntax-semantics interface of standard DRT (presentedin, for example, Kamp and Reyle 1993) is not that of a homomorphism betweensyntactic and semantic algebras.2.4 SummaryThe case for abstracting over semantic theories rests on a desire to better compareand classify the semantic theories that we have, and on a claim that we can improvefuture theories by strengthening their modularity and coherence through the useof appropriate abstractions. At present, it is often di�cult to predict exactlywhere two theories supposedly covering the same data actually disagree, and it isoften impossible to �nd a natural union of two theories which aim to account fordisjoint sets of data. Within many contemporary linguistic theories, syntax andsemantics are closely intertwined, but in such a way that the monolithic structureof the theory prevents modularization and allows only limited type-based security.The use of single uni�ed formalisms for both syntax and semantics has a certainelegance and super�cial computational appeal, but appears to ignore many of thevery di�erent needs of semantic theorizing, and to prejudge semantic issues thatresearch has yet to clarify.I claim that the introduction of modularity, appropriate levels of abstractionand well-speci�ed interfaces (familar from software engineering) can address manyof these issues within semantic theory. In considering what to abstract over,there is a distinction to be made between the semantic realm proper and thesyntax-semantics interface. There is some existing work that abstracts over oneof these but not both, and a little that e�ectively does abstract over both. Onlyby taking this latter course can maximum generality be achieved.The form of abstract metatheoretical statements about concrete object se-mantic theories must be speci�ed. There are two options: either (option 1) wecan interpret the metatheory in the terms of the object theory, or (option 2) we



16 Chapter 2can do the reverse. There is a parallel with formal speci�cation of programs: inoption 1 the object theory implements the metatheory, in option 2 the metatheoryimplements the object one. Option 2 uni�es all semantic concepts occurring inthe object theories, but since it may do so with a purely disjunctive structurewe have no guarantee of explanatory adequacy, and indeed given the range ofexisting semantic theories, good reason to doubt we can obtain it. Option 1 risksweak statements and lack of computability, but the weakness (at least) can beresolved through factorization into multiple metatheories, �rst by semantic topic,and second by degree of consensus on contentious issues.I favour abstract statements of the option 1 variety. The next three chaptersdemonstrate the power of this approach across di�erent domains.



Chapter 3Case Study 1: IL, PT2 and LQC
3.1 Intensional entities in semanticsIn this chapter I examine three semantic theories from a classi�catory perspective.My aim is to clarify their behaviour in the domain of intensional identity andself-predication by writing formal speci�cations for the operations of intensionalabstraction and predication; I begin with a brief introduction to some of the keytheoretical issues that surround them.The terms intension and extension, as introduced by Carnap, are parallel toFrege's notions of sense and reference in his analysis of meaning. We need toadmit, or at least speak of, intensional entities in order to adequately describe themeaning of things such as properties and propositions. For example, the propertyof having a heart (being cardiate) and the property of having a kidney (beingrenate) are distinct notions, with di�erent meanings, but the set of things in theworld that have hearts and that which have kidneys happens to be identical. Wesay that the intensions of \cardiate" and \renate" are distinct, but their extensionsare the same.First-order logic appears to su�ce for the formal modelling of extensions, butthere is still considerable disagreement on the best way to describe intensionsformally, at least for the purpose of representing natural language meaning. Informal semantics, the most in
uential account of intensions has been that ofMontague, which built on Church's formalization of Carnap's description of in-tension and extension. In Montague's account, as presented, for example, inPTQ, the model-theoretic notion of possible worlds is responsible for characterizingintensions: the intension of an expression is a function from every possible worldto the expression's extension in that world.Montague's notion of intension certainly appears rich enough to make many ofthe important distinctions in formal semantics. However, the logical system whichde�nes this notion|the intensional logic IL|has come in for considerable criticismover the last twenty years on the grounds that it does not capture su�ciently wellmuch of the behaviour of intensional entities in natural language. There are two17



18 Chapter 3central avenues of criticism:1. Overly coarse-grained intensional identity . In Montague's logic IL, twoformulas that are logically equivalent (that is, they entail each other) al-ways give rise to identical propositions. Since propositional attitudes suchas belief are traditionally modelled as a relation between a subject and aproposition, this aspect of IL is responsible for the problem of so-calledlogical omniscience: on Montague's theory, to believe in a proposition p issimultaneously to believe in every proposition that is logically equivalent top, a psychologically unappealing model.2. Insu�cient type-freedom. IL is a strongly-typed logic, in which a predication(the ascription of a property to some entity) can only happen when predicateand object have precisely matching types. But it seems that the types ofnatural language expressions are more 
exible than this. There are manycases where, for example, both an individual and a proposition appear toplay the same role in a predication, yet IL is unable to represent this.(See x4.5.1 for examples of each problem.)The response to these criticisms has been a number of alternative logics andsemantic theories. In the remainder of this chapter I focus on two of these, aswell as on IL. George Bealer's logic of qualities and concepts (Bealer 1982) is oneof them. In developing his theory, Bealer's goals were primarily philosophical: hesought an account of intensional entities that would solve philosophical puzzlessuch as the paradox of analysis, while remaining fully formal and a plausible`foundational language' for semantics. The other system is due to Gennaro Chier-chia and Ray Turner (Chierchia and Turner 1988). It synthesizes on the one handChierchia's desire, as a linguist, for a semantic theory that goes some way toexplain the semi-
exible types that natural language exhibits with, on the otherhand, Turner's work on property theories (kinds of intensional logic) that minimizetype constraints.3.2 Comparing theoriesMy intention is to apply the idea of abstract metatheoretical statements developedin the previous chapter to the comparison and classi�cation of these three semantictheories along the dimensions of intensional identity and 
exibility of predication.In order to do this I will create a series of small metatheories and investigatewhether or not they can be `implemented' by the three object semantic theories(thus following `option 1'). I will use the language of many-sorted �rst-order logicto represent these metatheoretical constraints, following common usage in theformal speci�cation of programs. The next section explains how this works.The idea is to describe certain properties that these theories may or may notpossess, without becoming committed in the description to a particular logical



IL, PT2 and LQC 19language (or indeed a particular model theory) for the semantic theory in question.In particular, there are two questions that, in e�ect, I shall ask of each theory:1. When are two propositions equal?2. Can Russell's property be expressed?My reasons for the �rst question should be clear enough: I want to know thecriteria for intensional identity in each object theory. The purpose of the secondquestion is less obvious, so I digress brie
y to explain it.As indicated above, intensional identity and type-freedom are two of the majorissues that have driven attempts to improve on Montague's intensional logic. Aparticularly extreme case of type-freedom occurs if we wish to allow the possibilitythat some property may be true of itself. There is a strong case, for example, thatthe (admittedly contrived) property of \being self-identical" is true of itself, aswell of everything else. But since Russell's celebrated discovery of an inconsist-ency in Frege's �rst attempt to formalize arithmetic it has been well-known thatallowing properties to be predicated of themselves is fraught with logical danger.Russell's property may be de�ned as \the property of all things that are not trueof themselves". It is not immediately evident that this is a more problematicnotion than that of being self-identical. But it turns out to be extremely di�cultto construct a logic in which Russell's property may be formalized without alsorendering the logic inconsistent. Consider the question: \Is Russell's property trueof itself?" First suppose it is true of itself. Then Russell's property must possess\the property of all things that are not true of themselves", whence it it is not trueof itself. So suppose it is not true of itself. Then it is not the case that it is true ofitself, i.e., it is not the case that Russell's property possesses \the property of allthings that are not true of themselves", so it must therefore be true of itself! In acompletely type-free framework, it requires very little logical machinery to arriveat a contradiction once Russell's property is admitted as a genuine property.So it is because of the paradoxical role that Russell's property plays in theorieswith signi�cant type 
exibility that I chose to exploit it in the second questionthat I ask of my three object semantic theories.3.3 Formal speci�cationsIn order to obtain answers to the questions of the previous section I constructa series of speci�cations of intensional and predicative behaviour, and then seewhether or not the object theories meet these speci�cations. Given a particularmetatheoretical property, the idea is to create a minimal speci�cation of a se-mantic theory that possesses that property, including in the speci�cation only themachinery required to demonstrate it. Then I say that an object theory has theproperty of interest if and and if it can implement the minimal speci�cation.



20 Chapter 3To talk of theories \implementing" speci�cations is to lean on the analogy withformal speci�cation of programs. In fact, it would be rather more accurate to talkof \partial implementations" or of \re�nements" of speci�cations, since the objecttheories under examination here do not provide executable de�nitions for all theirpredicates and operations. In formal speci�cation theory, the intended behaviourof a program is initially described with a fairly broad speci�cation. As the designof the program is developed, the speci�cation becomes more detailed, perhaps,for example, breaking down into subcases a category of inputs that was simplyconsidered as a unit at an earlier stage. This process is called re�nement, andculminates in a speci�cation that is actually executable|a program|which maythen be said to implement the original speci�cation.In formal speci�cation, the intention is to provide formal proofs of every re-�nement step|of every point at which it is claimed a re�ned speci�cation or aprogram satis�es the original speci�cation. In what follows, I shall not providesuch proofs, but rather appeal to the behaviour of the object theories directly. Itshould generally be straightforward to construct corresponding formal proofs.My speci�cations are metatheories in many-sorted �rst-order logic. Here is anexample:ADDITION =sorts Intopns zero : ! Intsucc : Int! Intaxioms 8x plus(zero; x) = x8x8y plus(succ(x); y) = succ(plus(x; y))Here sorts identi�es the di�erent sorts of entities that the speci�cation recognizes.Subsort relations may hold of these; when this happens, the keyword subsortswill be used to introduce them. Relations on entities of the various sorts may beeither operations (opns), yielding another kind of entity, or predicates (preds),which implicitly yield Boolean values. A type such as Int; Int! Int indicates thatthe operation in question takes two entities of sort Int and generates another entityof that sort as its result. The axioms section of a speci�cation is usually wherethe real content is located: it speci�es constraints on the predicates and relations.Finally, note that I will often combine speci�cations with the symbol `+'. Onemay consider this to act as if the respective texts of the two speci�cations havebeen added together.3.4 Semantic theories versus intensional logicsAs mentioned above, I consider three object semantic theories here:1. Montague's PTQ;



IL, PT2 and LQC 212. The semantic theory of Chierchia and Turner 1988, relying on the propertytheory PT2 (which is closely related to the theory described in Turner 1987);3. A semantic theory employing Bealer's property theory L!+� (Bealer 1982),subsequently referred to as \LQC" (for the logic of qualities and concepts).I am only truly concerned, however, with the intensional logics that underlie thesetheories, whence the title of this chapter mentions only IL, PT2 and LQC. Notonly can the questions raised in the previous section be answered solely by recourseto these theories' intensional logics, Bealer's system does not really constitute afully-
edged semantic theory at all (in the sense introduced in chapter 1), sincehe provides no precise model for connecting a fragment of natural language withhis property theory|no syntax, and no syntax-semantics interface. So from thispoint on I talk of logics rather than theories.I assume some familiarity with PTQ. What is distinctive about both PT2 andLQC is their rejection of (i) most of IL's type system (all of it in the case of LQC)and of (ii) the `proposition as set of possible worlds' notion of intensionality thatis such a core aspect of IL.I choose to describe these logics by abstracting over their logical syntax, giv-ing speci�cations in the language of order-sorted �rst-order logic (with operationsymbols and identity). So when one of my speci�cations mentions the binaryoperation on formulas `and', this might be realized as `^' in the concrete syntax ofone logic, while not as an atomic operation in that of another. In the case of thetwo operations of central interest, `abs' and `pred', this is precisely what happens,given the way I model them.By taking this line, I avoid considering model-theoretic objects. This leavesme free|or rather forces me|to characterize the logical nature of these systemssimply in terms of a relation of logical consequence on their formulas. How a logicactually grounds its consequence relation is not relevant here: I am modelling theirintensional behaviour independent of how consequence is de�ned.3.5 Intensional identity3.5.1 AbstractionCall intensional abstraction any syntactic operation which takes formula-like ob-jects to objects that stand for intensional entities, possibly binding speci�ed vari-ables at the same time. If no variables are bound then the result is a proposition, ifa single variable is bound it is a property, and so on. Then this is how intensionalabstraction appears in our three object logics:IL In Montague's system, the operator `̂ ' forms intensional entities. A propos-ition like l̂ove(j;m) is the intension of a formula, and properties are theintensions of functions, which in turn are de�ned with the lambda-calculus,e.g., �̂xlove(x;m).



22 Chapter 3PT2 In this system, formulas always denote propositions when used in term-likecontexts, so the nullary intensional abstraction operation is just the identitymap. Properties exist in two forms: propositional functions (formed bylambda-abstraction), and `nominalized' individual correlates of these. Thislatter form is the one I am interested in here, since only in this form canproperties in PT2 behave like individuals. A proposition is an expressionlike love(j;m), and \�xelove(xe; m) a property of the kind I am interestedin, where `\' is Chierchia and Turner's nominalization operator.LQC Bealer's language has a single intensional abstraction operation `[�]x1:::xn'which optionally binds variables. Thus love(j;m) is a formula, [love(j;m)]is a proposition and [love(x;m)]x is a property.3.5.2 Propositional identityIf we wish to say something about the operation of intensional abstraction inde-pendent of a predication operation, then initially we must restrict our attentionto the nullary variant that forms only propositions. So consider a speci�cationof sorts corresponding to formulas and propositions, with the proposition-formingoperator just mentioned, and a propositional logic over the formulas:PROP =sorts Form;Propopns truth : ! Formnot : Form ! Formand : Form; Form ! Formprop : Form! Propeqprop : Prop;Prop! Formpreds seq : Form; Formaxioms 8f8g seq(truth; eqprop(prop(f); prop(g)))) seq(f; g) ^ seq(g; f)In the preceding speci�cation I have added an identity relation on propositions,eqprop, to the object logic. The predicate seq is intended to capture the relation oflogical consequence on formulas. What is missing from this speci�cation, of course,is anything which constrains seq to actually behave like propositional consequence.But specifying that is not a problem peculiar to intensional logic. Therefore, Iassume some solution to it. (The simplest one in this framework might just bea Hilbert-style axiomatization.) The axiom imposes the basic constraint that ifthe propositions corresponding to two formulas are identical, then those formulasmust at least be logically equivalent.We are now in a position to consider further constraints on the identity condi-tions for propositions. In fact, neither PT2 nor LQC make any additional identi�c-ations in the realm of propositions, though in both cases the authors of the systemsare keen to point out that certain further identi�cations can easily be stipulated,



IL, PT2 and LQC 23independent of the other logical machinery. For example, a reasonable requirementmight be that `intensional conjunction' is commutative. For propositions, we cancapture this with:PROP COMM CONJ = PROP +axioms 8f8g seq(truth; eqprop(prop(and(f; g)); prop(and(g; f))))At the other end of the scale, only IL is described byPROP COARSE = PROP +axioms 8f8g seq(f; g) ^ seq(g; f)) seq(truth; eqprop(prop(f); prop(g)))This is a speci�cation of `coarse-grained' propositions, which in IL give rise to theproblem of logical omniscience.3.5.3 PredicationAdding variables, entities and properties to our speci�cation, let abs be thatintensional abstraction operation that creates properties rather than propositions:ABS = PROP +sorts Var;Ent;Ptysubsorts Var � Entopns abs : Var; Form ! Ptyeqpty : Pty;Pty! Formaxioms 8f8g8x8y seq(truth; eqpty(abs(x; f); abs(y; g))))seq(f; g) ^ seq(g; f)(In the preceding axiom, I am somewhat unreasonably assuming that free variablesin formulas are implicitly universally quanti�ed for the purposes of seq. Thisshould probably be �xed by the introduction of explicit quanti�cation in my modelof the object logic.)Before I can give a speci�cation for the predication operation pred as well,I need to de�ne a substitution operation that understands conventional variablebinding. The following speci�cation does this, but it su�ers from the defect thatit characterizes substitution only in terms of the (minimal) operations introducedby earlier speci�cations|if object theories implementing speci�cations introducefurther operations then this characterization will be insu�cient.1SUBST =opns subst : Ent;Var; Form ! Formaxioms 8e8x subst(e; x; truth) = truth8e8x8f subst(e; x; not(f)) = not(subst(e; x; f))1I'm grateful to Henk Zeevat for pointing this out to me. A solution to this problem appearsto require a more comprehensive metatheoretical treatment of object language syntax than I canaccommodate here.



24 Chapter 38e8x8f8g subst(e; x; and(f; g)) = and(subst(e; x; f); subst(e; x; g))8e8x8y8f8p p 6= abs(y; f)) subst(e; x; pred(p; x)) = pred(p; e)8e8x8f subst(e; x; pred(abs(x; f); x)) = pred(abs(x; f); e)8e8x8y8f x 6= y )subst(e; x; pred(abs(y; f); x)) = pred(abs(y; subst(e; x; f)); e)8d8e8x8f x 6= d)subst(e; x; pred(abs(x; f); d)) = pred(abs(x; f); d)8d8e8x8y8f(x 6= d ^ x 6= y))subst(e; x; pred(abs(y; f); d)) = pred(abs(y; subst(e; x; f)); d)It now only remains to specify that pred satisfy some minimal principle ofpredication. This is a delicate area, since intensional logics vary widely in theirstrategies for avoiding the logical paradoxes while getting as close as possible tothe naive version of this principle. For the time being, I will choose a very limitedaxiom here, based on the restriction to atomic properties (those not constructedwith abs).PRED = ABS + SUBST +opns pred : Pty;Ent! Formaxioms 8f8g8x8y8d8e8p8q(p = abs(x; f) ^ f = pred(q; d) ^ q 6= abs(y; g)))seq(pred(p; e); subst(e; x; f)) ^ seq(subst(e; x; f); pred(p; e))The above description of predication allows `�ne-grained' distinctions, so thatthe propositions corresponding to predications before and after substitution maydi�er. To get a more conventional `grainedness', we can say in additionPRED EQFULL = PRED +axioms 8f8x8e8p p = abs(x; f))seq(truth; eqprop(prop(pred(p; e)); prop(subst(e; x; f)))which forces pred(abs(x; f); e) and subst(e; x; f) to stand for the same proposition.In fact, because of the axiom in PRED, this entails the full principle of predication,and is therefore impossible for any real `property theory' (though not, of course,for IL). The right description for PT2 isPRED EQATOM = PRED +axioms 8f8g8x8y8d8e8p8q(p = abs(x; f) ^ f = pred(q; d) ^ q 6= abs(y; g)))seq(truth; eqprop(prop(pred(p; e)); prop(subst(e; x; f)))which restricts the identity claim to atomic properties.Of course if PROP COARSE holds anyway, as in IL, then these distinctionscarry no weight, since propositions are already being individuated more coarselythan this.I have indicated how abs is `implemented' in my three sample logics; here'show pred comes out:



IL, PT2 and LQC 25IL pred(�; �) = ��(�).PT2 pred(�; �) = y([�(�)).LQC pred(�; �) = � � �.3.6 Russell's propertyOne measure of the expressiveness, or at least the type-freedom, of an intensionallogic might be taken to be whether or not it admits an expression which standsfor Russell's property. Here I attempt to describe a formal test for this property.We want a minimal description of a logic that can express Russell's property. Ipropose:RUSSELL = sorts Var;Ent;Pty; Formsubsorts Var � Ent;Var � Ptyopns not : Form ! Formabs : Var; Form ! Ptypred : Pty;Ent! Formtogether with a comprehension axiom such as that given above for PRED, and ofcourse some speci�cation of the propositional logic. Then given an element x ofsort Var the expressionabs(x; not(pred(x; x)))will represent Russell's property.Now there is no way to implement the speci�cation RUSSELL in IL, owing toIL's type constraints; this is perhaps most evident from the subsorts speci�cation,which requires that there be a kind of variable that is simultaneously an entityand a property. Because variables are strongly typed in IL, and the types of entityand property are di�erent, there can be no such variable.On the other hand, both PT2 and LQC will satisfy this speci�cation. Ap-pendix A contains a Standard ML program which partially illustrates this, byproviding implementations of the syntax of PT2, LQC and the RUSSELL speci�c-ation, and demonstrating that there are maps which interpret RUSSELL in thosetwo systems. In the case of PT2 the resulting Russell's property expression isexactly as given on p. 267 of Chierchia and Turner 1988. More detail is providedin the appendix.These results show that the speci�cation RUSSELL can be successfully used todistinguish between the strongly-typed logic IL and the more type-free logics PT2and LQC. It's worth pointing out that there are further distinctions to be modelledhere. For example, there are logics (or property theories) that lie between thesetwo positions in terms of type-freedom, such as the system of Kamareddine andKlein (1993), in which self-predication can be expressed, but Russell's property



26 Chapter 3cannot be. And it would be possible to distinguish between PT2 and LQC onthe basis of a speci�cation which required that Russell's property can actually bepredicated of itself to yield a proposition: this is true in LQC but false in PT2.3.7 SummaryThe correct modelling of intensional entities remains an unresolved issue in formalsemantics. Since PTQ, the central concerns have been criteria for intensionalidentity and for type-freedom. I chose Montague's PTQ, and theories due toBealer and to Chierchia and Turner as examples of post-Montagovian semantictheories that address these issues and span a wide range. In order to compare themI considered one question about intensional identity (of propositions), and oneabout type-freedom (the ability to express Russell's property). I constructed smallspeci�cational metatheories corresponding to di�ering answers to these questions:then the test of whether or not an object theory had the property in questionwas reduced to whether or not it could implement that speci�cation, borrowingan idea from the formal speci�cation of programs (from where I also borrowed theuse of many-sorted �rst-order logic for the form of speci�cations).For these purposes I viewed my three object theories as intensional logics ratherthan full semantic theories, since this was su�cient for the task in hand andnecessary in the case of one system, which fails to count as an entire semantictheory. The style of speci�cation was to abstract over the concrete logical syntaxesof these systems, in e�ect introducing an abstract syntax. I ignored the questionof the correct speci�cation of core logical behaviour, that is of logical consequence,since that is a problem that standard model- and proof-theory have independentlysupplied answers to.Starting with the modelling of an intensional abstraction that takes formulas topropositions, I introduced a basic minimal speci�cation of propositional identity,allowing di�ering notions of identity to be captured with a series of more speci�c(and coarser-grained) descriptions of that identity. Extending to predication byallowing abstraction operations to bind variables, I introduced the required notionof substitution and again modelled varying degrees of intensional identity, this timeat the level of propositions that involve predications.Finally, a core speci�cation of the ability to express Russell's property wassimple to devise, and demonstrated the required distinction between Montague'sstrongly typed theory and the two more recent competitors.This chapter has demonstrated the potential of abstract descriptions of se-mantic theories to compare and classify those theories on the basis of formalspeci�cations of their behaviour. The metaphor|and some of the techniques|offormal speci�cation of programs was used to achieve this, but as discussed inchapter 2, we may equivalently talk in terms of logical embeddings. It is apparentthat is surprisingly easy to formalize notions of degree of intensional identity andof type-freedom that are so often spoken of informally, and in the process gain



IL, PT2 and LQC 27better understanding of exactly why it is that some theories have the metatheoriesproperties that they do.I now move on to consider an existing approach to semantic abstraction, eval-uating it with respect to the general framework I discussed in chapter 2.



Chapter 4Case Study 2: Johnson and Kay's`Semantic Abstraction andAnaphora'
4.1 IntroductionThis chapter is an analysis of Mark Johnson and Martin Kay's `Semantic abstrac-tion and anaphora' (Johnson and Kay 1990). In their paper, Johnson and Kayshow how a grammar that builds semantic representations can be parameterized bya small number of `semantic operators', thereby causing the grammar to abstractover a class of semantic representations while retaining a �xed interface to thesyntax. They give a grammar for a fragment of English, written in Prolog'sDCG notation, in which the semantic operators are de�ned as ordinary Prologpredicates. This grammar covers the core data on quanti�cation and anaphorathat was �rst systematically treated by Kamp's discourse representation theory(DRT, Kamp 1981, see also Kamp and Reyle 1993), and it may be viewed as ageneralization of the DRT implementation described in Johnson and Klein 1986.Along with the grammar, three candidate implementations of the semantic oper-ators are provided, corresponding to three notions of semantic representation forthe sentences admitted by the grammar.My concern with this work is how it relates to the general notion of semanticabstraction motivated in chapter 2. I want to answer the following questions about`Semantic abstraction and anaphora':� What is the level of semantic abstraction that Johnson and Kay employ?� What constraints does it impose on the grammar and on the space of possiblesemantic representations?� Can these constraints be formalized, so as to give a speci�cation of such arepresentation? 28



Johnson and Kay's `Semantic Abstraction and Anaphora' 29% Operator declaration and parse/2 predicate:- op(1200, xfx, ==>).parse(String, ExtSem) :-external(IntSem, ExtSem),s(IntSem, String, []).% Grammars(S) --> np(VP^S), vp(VP).np(NP) --> det(N1^NP), n1(N1).n1(N) --> n(N).n1(X^S) --> n(X^S1), rc(X^S2),{ conjoin(S1, S2, S) }.vp(X^S) --> v(X^VP), np(VP^S).rc(VP) --> [that], vp(VP).v(X^Y^S) --> [Verb],{ verb(Verb, X^Y^Pred),atom(Pred, S) }.n(X^S) --> [Noun],{ noun(Noun, X^Pred),new_index(X, S1),atom(Pred, S2),compose(S1, S2, S) }.det((X^Res)^(X^Scope)^S) --> [Det],{ determiner(Det, Res^Scope^S) }.np((X^S1)^S) --> [Pronoun],{ pronoun(Pronoun),accessible_index(X, S2),compose(S1, S2, S) }.Figure 4.1: The Johnson and Kay grammar� How exactly does `propositional' information interact with `anaphoric' in-formation in the system? To what extent can the two kinds be teased apart?4.2 GrammarFigure 4.1 shows Johnson and Kay's grammar, and �gure 4.2 their examplelexicon. Regarding syntactic coverage, the grammar admits declarative sentenceswith transitive verb phrases and with both inde�nite and universally quanti�ednoun phrases, which may have restrictive relative clauses. NPs may also bepronouns, thereby including in the grammar's language the universally quanti�edversion of Geach's donkey sentence:Every man that owns a donkey beats it.



30 Chapter 4% Lexiconpronoun(he).pronoun(she).pronoun(him).pronoun(her).pronoun(it).verb(likes, X^Y^likes(X,Y)).verb(saw, X^Y^see(X,Y)).verb(beats, X^Y^beat(X,Y)).verb(owns, X^Y^own(X,Y)).noun(woman, X^woman(X)).noun(man, X^man(X)).noun(donkey, X^donkey(X)).determiner(a, Res^Scope^S) :-conjoin(Res, Scope, S).determiner(every, Res0^Scope^S) :-compose(S1, S2, S),subordinate(Res, ResName, S1),compose(Res0, Res1, Res),subordinate(Scope, ScopeName, Res1),atom((ResName ==> ScopeName), S2).Figure 4.2: The lexiconAs it stands, the grammar does not admit sentential conjunction or implication,nor the sequencing of sentences to form discourses (which would permit extra-sentential anaphora). All these are, however, easy to add to the grammar in thespirit of the existing constructions.The grammar takes the form of a DCG augmented with explicit calls to Prologpredicates using the standard \fgoal,: : : g" syntax (an introduction to DCGs maybe found in Shieber 1986). These Prolog calls fall into two categories: that ofthe `lexical' predicates pronoun, verb, noun and determiner, and that of the sevenso-called semantic operators, listed in table 4.2 and discussed at length in thenext section. With the exception of determiner, the lexical predicates serve onlyto introduce terminal symbols, and are thus merely a convenience, rather than anessential deviation from the form of a pure DCG.4.2.1 Semantic valuesAll the non-terminal symbols of the grammar have a single argument, standingfor the semantic value of that constituent. In general, these semantic values havethe form of Montagovian lambda-terms, with the Prolog functor \^" used to



Johnson and Kay's `Semantic Abstraction and Anaphora' 31category valueS tN, N1, VP, RC e^tV e^(e^t)NP (e^t)^tDet (e^t)^((e^t)^t)Table 4.1: Syntactic categories and semantic valuesrepresent lambda abstraction. Table 4.1 illustrates, for each syntactic categoryof the grammar, the form of its semantic value, where t stands for the type ofsemantic value assigned to clausal constituents, and e for the underlying entitytype. In the next section I give the name rep to the type t, and follow Johnsonand Kay by using the name index for the type e.In Montague's system, the semantic value of a given constituent is alwaysobtained from the values of its sub-constituents by the operation of function applic-ation. In Johnson and Kay's system, the task is split between function applicationand their distinguished semantic operators. Where function application is to takeplace, Johnson and Kay utilize the Prolog implementation technique of Pereira andShieber (1987), in which the lambda conversion that follows function applicationis captured implicitly (or partially-evaluated away) in each clause of the DCG,via the uni�cation of appropriate sub-parts of semantic values. In addition tothis, where one or more semantic operators are to apply, they appear as explicitProlog calls (as already noted) and operate only on clausal values (things of typet), though those values may well be part of more complex lambda-terms. So inthe clause for S, for example, only function application occurs. In that for V,only semantic operators apply. In most of the rest, both kinds of semantic valuecombination happen.One important property of this system, then, is that these distinguished se-mantic operators are only capable of operating on semantic values, or representa-tions, that correspond to clausal constituents.It is with respect to these seven Prolog predicates that Johnson and Kay'sgrammar is parameterized: the grammar is not fully de�ned until each predicatehas a de�nition. When it does, the set of seven de�nitions constitutes an imple-mentation of the semantic operators, and it is three of these sets that Johnsonand Kay provide in their paper, as sample implementations.Before progressing to a detailed examination of the role of the seven operators,I wish to diverge from Johnson and Kay's terminology and call them by the moreneutral term `primitives' instead. For other than the trivial interpretation of themas operators (functions) from their arguments to truth values, none of them needhave a functional interpretation over their arguments. Some of them, indeed,



32 Chapter 4primitive typeexternal rep; ext! boolatom rep; atprop! boolconjoin rep; rep; rep! boolcompose rep; rep; rep! boolsubordinate rep; name; rep! boolnew index index; rep! boolaccessible index index; rep! bool==> name; name! ipropindexes lprop! indexsetTable 4.2: The semantic primitivescannot have that interpretation, in general|consider for example the predicateaccessible index, of two arguments, an index and a semantic representation. Itsintended interpretation is that it is true just in case the index is anaphoricallyaccessible from the representation. But one representation can have many ac-cessible indexes, and one index can be accessible from many representations, soit is clearly nonsensical to suggest that the index and the representation couldbe functionally dependent on each other. For this reason, henceforth I refer toJohnson and Kay's `semantic operators' as `semantic primitives'. (One may say,then, that the Johnson and Kay syntax-semantics interface is a relational one, nota functional one, as it is PTQ and many other semantic theories.)4.3 Semantic primitives4.3.1 SortsOrdinary Prolog does not come with a type system, and Johnson and Kay donot attempt to classify the arguments of their semantic primitives according tothe type of their arguments. None the less, it is possible to distinguish six sortsof entity at work, of which one sort has two subsorts. I �nd it helpful to de�nethe primitives over these sorts, as in table 4.2, but note that the sorts are purelya convention of mine, and only implicitly part of the Johnson and Kay system.Note also that some of these sorts are �xed by the grammar, independent ofany implementation, while some must be de�ned by an implementation (of theprimitives).I have given these sorts names: rep, ext, atprop, index, indexset and name.Sort atprop has the subsorts lprop and iprop. In general, there are no othersubsort relations among the sorts. The sort rep is the sort of internal semanticrepresentations (for clausal constituents), referred to above as type t. Intuitively,



Johnson and Kay's `Semantic Abstraction and Anaphora' 33all and any information about the meaning of a constituent is stored in somethingof sort rep. Sort ext is the `external' version of rep: the semantic value which thegrammar presents to the outside world on completion of a parse. Both rep andext are de�ned by the implementation.The sort atprop stands for `atomic propositions', which come in two 
avours:those that form part of lexical entries, which belong to lprop, and those thatare `implicational' propositions, constructed by the grammar, which belong toiprop. There is something a little odd about calling this latter category `atomic';the name comes from the fact that it is only entities of this sort that can bearguments to the primitive atom. This primitive is true of an atprop and a repwhen the latter represents the former|it is the basic primitive that introducespropositional information into representations, to be contrasted with those otherprimitives that manipulate existing representations, such as conjoin and compose.That is the sense in which its �rst argument is `atomic'.The sort lprop is completely de�ned by the grammar; for the one given in�gure 4.1 its membership is[x;y(likes(x; y); see(x; y); beat(x; y); own(x; y);woman(x); man(x); donkey(x) )where x and y range over the sort index. When lexical propositions contain indexesthey stand for the `holes' that entities can occupy. Again, the sort index is de�nedby the grammar, and in this case is the set of Prolog variables.1 A set of indexes isan element of the sort indexset. Finally, the sort name describes the kind of thingwhich one of the primitives uses to `name' things in sort rep.With this �nal sort, we can partially characterize the members of iprop. Theyare constructed by the grammar from entities of sort name. It is up to the imple-mentation to say what a name is, but once this is established, all members of ipropare merely pairs of elements from name, where the Prolog functor ==> is used toencode the pairing. It is convenient to regard this functor as a further semanticprimitive, albeit one constrained to always act as a pairing, and I will do so fromnow on, having listed it at the bottom of table 4.2. The other primitive of myinvention at the bottom of that table is indexes, which again is implicit in Johnsonand Kay's system. Given an lprop, indexes extracts the set of indexes it contains.4.3.2 InterpretationsIn considering the meanings of the semantic primitives, it is worth bearing inmind that an implementation is free to make its semantic representations quite1Using Prolog variables for this purpose is essentially an implementation decision of Johnsonand Kay; were ordinary Prolog terms to be used instead, there would be two consequences:(i) the Pereira and Shieber style of lambda reduction could not be employed, and (ii) a numberof index equalities would have to be speci�ed explicitly along with calls to the primitives (takingproper account of which would require some additional Prolog machinery).



34 Chapter 4primitive true in caseexternal(r; e) e is the external logical form correspondingto r, where r represents a complete parse.atom(r; p) r represents the proposition p.conjoin(r1; r2; t) t represents the logical conjunction of r1 andr2.compose(r1; r2; t) t represents information in both r1 and r2,combined in that order.subordinate(r1; n; r2) n is a `name' of r1, and r1 is `subordinate' tor2.new index(x; r) r represents x as a new index for some (non-anaphoric) NP.accessible index(x; r) x is an anaphorically accessible index for r.Table 4.3: Meanings of the primitivescomplex entities. In particular, it is essential that any implementation whichprocesses anaphora in the style of DRT uses its internal representations to storenot only the meaning of the `current' constituent, but also to record informationabout all prior constituents. This is exactly what the two anaphorically-sensitiveimplementations do, as discussed in detail in x4.4.Table 4.3 indicates the intended interpretation of the seven Johnson and Kayprimitives. Of these, the grammar uses the primitives external, atom and conjoin inisolation at various points. The use of the �rst, in parse/2 was explained above.The primitive atom is used alone to introduce a lexical verb meaning in the clausefor V. There are two places where conjoin is used: in the semantics of a relativeclause, to combine the noun and relative clause meanings, and in the meaningof the inde�nite determiner a, where the restrictor and scope are combined withconjoin.It is di�cult to give convincing explanations of the meaning of some of theprimitives independent of a particular implementation. Hence I will rely on the`discourse-representation' implementation|which closely follows DRT|in orderto give a better feel for the intuitions behind them.The primitives new index and accessible index are responsible, respectively, forintroducing and accessing indexes that can potentially play a role as anaphoricantecedents: the model here is the notion of discourse referent from DRT.The semantics and anaphoric constraints of DRT rely heavily on the notion ofone DRS being subordinate to another. It is this relation that the subordinateprimitive is intended to capture. Rather than being a two-place relation, asone might expect, subordinate is three-place, with the additional argument po-sition being an entity of sort name. The intended interpretation is that whensubordinate(r1; n; r2) holds, n is a representation of the propositional entity r1,



Johnson and Kay's `Semantic Abstraction and Anaphora' 35of a kind that can participate as an argument of the ==> primitive. Allowingfor the possibility that the `name' of a propositional representation may not bethe same thing as the representation itself is supposed to allow the modelling of`non-extensional' semantic theories. So far as I can establish, there is nothingin the use of subordinate which requires that this connection between name andrepresentation happens in subordinate|it could have been provided via a separate`naming' primitive.These DRT-oriented primitives do not occur on their own, but only in com-bination with others. There are three places in the grammar where this happens(the clauses for N, pronouns, and universal quanti�cation), and it is convenient tode�ne new terms for the combined e�ect of the primitives in these cases:cn(x; p; r) =def new index(i; r1) ^ atom(p; r2) ^ compose(r1; r2; r)^ indexes(p) = fxgpro(i; r1; r2) =def accessible index(x; r3) ^ compose(r1; r3; r2)imp(r; s; t) =def subordinate(s; ns; r1) ^ compose(r; r1; r2)^ subordinate(r2; nr; t1) ^ atom(nr==>ns; t2) ^ compose(t1; t2; t)The term cn is used to describe the semantics of common nouns: cn(x; p; r) istrue when abstracting over x for p results in a property, and when r representsboth the proposition p and the information that x is a new NP index. Theequation `indexes(p) = fxg' captures the condition on abstraction, and is myexplicit rendering of a constraint implicit in the grammar|namely that lexicalentries for nouns always pair a proposition with the index over which abstractionis intended.The second term deals with pronouns: pro(x; r1; r2) is true when x is ananaphorically accessible index for r1, and when r2 represents this fact plus theinformation in r2.The third term is the mechanism whereby the meaning of conditionals anduniversal quanti�cations is constructed. In the de�nition of imp(r; s; t), r repres-ents the restrictor in a quanti�cation and s the scope (antecedent and consequentin a conditional, respectively). The intended propositional meaning derives onlyfrom the use of atom and ==>. The other primitives are responsible for introducingthe notion of `subordinate' representation in the way required by DRT, so as topermit the primitive accessible index to take advantage of this information whencalculating anaphoric accessibility. Both the two more complex implementations,discussed below, show how this works.Before passing to the details of the sample implementations, note that theprecise syntactic coverage of the grammar is not �xed independent of the imple-mentation of the semantic primitives. It is quite possible for their implementationto rule out parses on semantic, as opposed to syntactic, grounds. In the two morecomplex implementations, for example, the sentence He beats him is not parsable,



36 Chapter 4external(P, P).atom(P, P).conjoin(P, Q, P & Q).compose(P, P, P).subordinate(Sub, Sub, _).new_index(_, _).accessible_index(_, _).Figure 4.3: The `predicate-logic' implementationbecause for neither pronoun is there su�cient context to provide an antecedent.The sentence He beats a man is accepted, however, with the interpretation thatthe antecedent of He is a man. This is a consequence of how Johnson andKay's grammar rule for pronouns searches for possible antecedents: the searchincludes any indexes introduced in the `propositional' part of the pronoun NPmeaning (which represents the result of combining the pronoun meaning with themeaning of the phrase it is an argument of). In particular, this means that asubject pronoun may �nd antecedents anywhere in the following verb phrase (upto subordination constraints).The following slightly modi�ed pronoun rule improves this behaviour by re-stricting possible antecedents to occur only in that context which is prior to the`propositional' part of the pronoun meaning:np((X^S2)^S) --> [Pronoun],{ pronoun(Pronoun),accessible_index(X,S1),compose(S1,S2,S) }.This change is su�cient to rule out He beats a man.4.4 ImplementationsHere I discuss each of the sample implementations of the semantic primitives.4.4.1 `Predicate-logic'Figure 4.3 illustrates the `predicate-logic' implementation. The �nal four primit-ives, which are those that have the potential to determine anaphoric processing, aregiven degenerate de�nitions. In particular, whatever kind of information compose



Johnson and Kay's `Semantic Abstraction and Anaphora' 37external([[]]-[S], S).atom(P, [B|Bs]-[[P|B]|Bs]).conjoin(P1, P2, P12) :- compose(P1, P2, P12).compose(B0s-B1s, B1s-B2s, B0s-B2s).subordinate([[]|B0s]-[B|B1s], B, B0s-B1s).new_index(Index, C) :- atom(i(Index), C).accessible_index(Index, Bs-Bs) :-member(B, Bs),member(i(Index), B).Figure 4.4: The `discourse-representation' implementationdeals with, it is the same for every representation; subordinate says nothing aboutits third argument, the superordinate representation (and therefore encodes nosubordinate-superordinate relation) while new index and accessible index imposeno constraints at all on their arguments (or more logically, they are true for allvalues of them). Hence this implementation cannot perform anaphor resolution.We see from the de�nition of external that the representations it does construct,internally, are identical to those it makes available externally.With this implementation of the semantic primitives the grammar parses thedonkey sentence given in x4.2 and provides the following (external) meaning forit: (man(X) & donkey(Y) & own(X,Y)) ==> beat(X,Z)Somewhat puzzlingly, this is not a closed sentence of ordinary predicate logic, sincethere are no explicit quanti�ers for the variables. But the intended interpretation(in conventional �rst-order predicate logic) is evidently8x8y(man(x) ^ donkey(y) ^ own(x; y)) 9z(beat(x; z)))Johnson and Kay indicate this much (p. 5), but say no more about a general rulefor the proper interpretation of the representations constructed by this implement-ation. I return to this issue in x4.6.4.4.2 `Discourse-representation'The implementation for DRT is shown in �gure 4.4. The external representationsit constructs are similar to the discourse representations structures (DRSs) of



38 Chapter 4Kamp's DRT, using a linearization of his box notation. The donkey sentence hasthe representation[[own(X,Y),donkey(Y),i(Y),man(X),i(X)] ==> [beat(X,Y)]]in which a term of the form i(x) indicates that in Kamp's notation the index xwould be listed at the top of the enclosing DRS (and called a discourse referent).In this implementation, internal and external semantic representations arenot the same. They di�er in two ways. First, an internal representation is alist of DRSs, rather than a single one. Second, each DRS in that list does nothave the form of an ordinary Prolog list, like that above, but is instead encodedas a `di�erence list', in the common Prolog style (and perhaps more accuratelydescribed as a di�erence pair of ordinary lists).The �rst change enables an internal representation to model DRT's subordin-ate relation as a hierarchy of DRSs. The second change could be motivated one�ciency grounds alone, since di�erence lists allow e�cient implementation of anumber of list operations. But there is a more important reason: the structure ofa di�erence list is exploited to automatically record the semantic content of `prior'constituents. In combination with the use of a list of DRSs, this means that agiven index can be considered to be anaphorically accessible if it occurs in theprior content of any of those DRSs. This captures the DRT notion of occurrencein some superordinate DRS.(Modelling the structures of DRT in this way is very close to the approachtaken in Johnson and Klein (1986). The most important di�erence, of course,is that in this system the DRT-like manipulation of semantic representations isexplicitly detached from the grammar. A further di�erence is Johnson and Kay'suse of Montagovian lambda abstraction to combine sub-clausal semantic values.)To see how di�erence lists allow an elegant representation for prior content,recall �rst that the `value' of a di�erence list A�B is a list C with the propertythat append(A;C) = B.2 (If there is no such C, then A�B isn't a di�erence list.)So the value of[man(X),i(X)]-[man(X),i(X),beats(X,Y),donkey(Y),i(Y)]is the list[beats(X,Y),donkey(Y),i(Y)]:With this representation we can characterize an append relation on di�erence listsvery simply:8A8B8C(dl append(A�B;B�C;A�C))2It's more common to represent di�erence lists the other way round|as B�A rather thanmy A�B. I diverge from this trend only for consistency with Johnson and Kay, who use thelatter ordering for their semantic value di�erence lists in this implementation and the followingone.



Johnson and Kay's `Semantic Abstraction and Anaphora' 39This constraint is directly usable as an e�cient Prolog implementation of thedl append relation. It also has the following important property. Suppose anumber of di�erence lists are appended together thus (writing dl append in in�xnotation as `�'):A1�B1 � A2�B2 � � � � � An�BnThen for any r,Ar = v(A1�B1) + � � �+ v(Ar�1�Br�1)where `+' is ordinary append, and v(A�B) is the value of the di�erence list A�B.This means that each di�erence list Ar�Br automatically contains the (appendof) values of all the di�erence lists with which Ar�Br has been `pre-appended'. Itis this property that the `discourse-representation' implementation exploits whenit choose to represent meanings as di�erence lists of DRSs, and to use dl appenddirectly as the implementation of the compose primitive.It should now be clear how accessible index works: it arranges for a null-valueddi�erence list to be composed into the append sequence when a pronoun is parsed,and is then able to trawl through prior context by searching through the ordinarylist that (by being paired with itself) makes up that di�erence list. What it looksfor is simply a term contributed by new index at some earlier point in the sequence.It should also be possible to make more sense of the imp relation in the lightof this implementation. To do this we need to understand what subordinate isdoing. In this implementation, subordinate(r; n; s) is true when n (the `name')is the value (or current content) of r, when s consists of the superordinate partof r's meaning, and when r itself is constrained to have no prior context (atthe base level). Recall the de�nition of imp. Then the e�ect of the �rst twoprimitives is to add the restrictor of the quanti�cation (and any context it maycarry) to the superordinate part of the scope's representation, thereby allowinganaphora from scope to restrictor. The second use of subordinate combined withthe �nal compose allows any context acquired by the ultimate representation tobecome superordinate context for the restrictor (and therefore, in virtue of theprevious sentence, also for the scope). Finally, as remarked earlier, the use ofatom and compose incorporates the truth-conditional content of the quanti�cationor conditional into the outgoing representation.4.4.3 `Sets-of-infons'Figure 4.5 shows the `sets-of-infons' implementation. As Johnson and Kay remark(p. 10) it may be considered a notational variant of the `discourse-representation'implementation just discussed. Here, a representation consists of a di�erencelist of situation-and-infon pairs, and an ordinary list of situation names, whichrepresents their position in a subordinate ordering of situations. All that is really



40 Chapter 4external(@([Sit],[],Is), Sit:Is) :- gensym(Sit).atom(P, @([Sit|_],Is,[(Sit:P)|Is])).conjoin(I1, I2, I12) :- compose(I1, I2, I12).compose(@(Ss,I0s,I1s), @(Ss,I1s,I2s), @(Ss,I0s,I2s)).subordinate(@([Sit|Sits],I0s,I1s), Sit, @(Sits,I0s,I1s)) :-gensym(Sit).new_index(Index, S) :- atom(i(Index), S).accessible_index(Index, @(Ss,Is,Is)) :-member(Sit:i(Index), Is),member(Sit, Ss).Figure 4.5: The `sets-of-infons' implementationdi�erent from the `discourse-representation' implementation is that the subordin-ate information has been factored out into an ordered list of situations, with whichinfons are tagged. Infons are then otherwise simply the contents of the previousimplementation's DRSs. The single di�erence list of (tagged) infons is used torecord prior context as well as current content in an entirely analogous fashion.Functions to translate one-to-one between the two representations may readily beconstructed.For completeness, here is the external representation of the donkey sentence inthis implementation:s0:[s0:s1==>s2,s2:beat(X,Y),s1:own(X,Y),s1:i(Y),s1:donkey(Y),s1:i(X),s1:man(X)]4.5 Semantic abstractionOne of the bene�ts of an appropriately abstract interface between syntax andsemantics ought to be that certain kinds of inherently nonsensical or incoherentsemantic operations cannot be speci�ed by a syntactic rule. In computer science,this is exactly the protection a�orded a programmer by the use of abstract datatypes to specify program components. Johnson and Kay's approach opens the doorto this kind of security for the syntax-semantics interface of a natural languagegrammar, but fails to go the whole way. Most importantly, Johnson and Kayput no formal constraints on the implementation of their semantic primitives:their speci�cation is left at the informal, intuitive level, guided by their exampleimplementations.



Johnson and Kay's `Semantic Abstraction and Anaphora' 41The rest of this chapter consists of my attempt to rectify this. Whether or notit succeeds in that aim, it at least serves to shed some light on the precise natureof the abstraction that Johnson and Kay's system achieves.4.5.1 Content and behaviourIt has already been observed that the `predicate-logic' implementation gives de-generate de�nitions to those primitives that are concerned solely with anaphoricprocessing, and as a consequence does none. The other two implementations doprocess anaphora, however, so I shall call them the anaphoric implementations inrecognition of this. In x4.4 I showed that anaphora resolution in them is dependenton recording prior discourse content in the internal semantic representation ofevery constituent. It is natural to distinguish this part of the representation,which one might call the contextual content , from the part which represents theintended semantic value of the constituent, the direct content . Then we can canrelate the two, at least for these implementations, by saying that the contextualcontent represents the direct content of prior constituents.In the anaphoric implementations these two kinds of content play di�erentroles. Direct content is the �nal semantic value, as captured in an externalsemantic representation, while contextual content serves to resolve ambiguities(those introduced by anaphoric elements) in order to get at a semantic value.This distinction seems useful, but our only precise characterization of it so faris implementation-dependent. We would like to formally describe distinctions suchas this in a way that does not require knowledge of the particular data structuresused by an implementation. In order to do this we must speak only of the behaviourof the primitives in an arbitrary implementation.It would appear there are essentially two sorts of behaviour to consider: theconstruction of proposition-like entities as ultimate semantic values, and the res-olution of anaphors. Our intention, as outlined above, is to describe the correctrange of these behaviours, so that incorrect implementations can be ruled out.(Thus we would expect the `predicate-logic' implementation to fail the test forcorrect anaphoric behaviour, but for all the example implementations to pass thatfor correct proposition-like behaviour.)Before proceeding, however, it is worth distinguishing between two separateenterprises in the semantic processing of anaphora. First, there is the task ofproviding a systematic map from sentences and sequences of sentences in whichthe antecedent of a pronominal anaphor is clearly indicated (`indexed discourses')to some semantic representation that exhibits the appropriate proposition-likebehaviour. Second, there are theories of how that indexing is set up|of the processof anaphora resolution itself.3 Kamp's DRT makes claims in both areas, althoughits primary importance is probably that it was the �rst theory to successfully tacklethe former one, for a particular set of data. Subsequent systems, such as that of3These issues are discussed at more length in x5.4.



42 Chapter 4Dynamic Predicate Logic (DPL, Groenendijk and Stokhof 1991), have tended tobe concerned exclusively with this aspect of DRT.I shall regard the �rst of these enterprises, that of generating semantic repres-entations for indexed discourses, as within the domain of `propositional' behaviour.Anaphora resolution itself, however, is clearly anaphoric behaviour.But there is a lack of agreement on how anaphoric behaviour should be mod-elled. Anaphora resolution is still poorly understood, and lacks even one tolerablycomprehensive formal model. For that reason, I devote most of the rest of thischapter to what I have called `propositional-like' behaviour; a partial speci�cationof anaphoric behaviour appears in x4.7.There is not, of course, universal agreement on what constitutes correct beha-viour of this kind for disambiguated English discourses. Traditionally, what I havebeen calling `propositional-like' (in an attempt at neutrality) is rendered simplyas `truth conditional'. Since to depart from this level of analysis is to give up mostof the present consensus I shall not do so, and merely use the word `inferential' inpreference to `truth conditional', wishing to emphasize that inferential relationsbetween discourses are the focus of discussion.Even in this area there are certainly semantic theories that di�er in the preciseinferential behaviour they attribute to particular syntactic constructions. I willgive two examples. First, it happens that di�ering notions of intensional iden-tity give rise to di�ering entailment patterns for sentences involving propositionalattitudes, as in:Tom believes that John loves Mary.) Tom believes that John loves Mary and someone loves Mary.Second, certain entailments, such as the following argument, depend on thedegree of `type looseness' in a semantic theory:Everything that worries Tom worries Sue.Peter worries Tom. That John loves Mary worries Tom.) Peter worries Sue. That John loves Mary worries Sue.Montague's PTQ theory (Montague 1973) validates the �rst argument but notthe second, while the property theory PT2 of Chierchia and Turner (1988) doesexactly the opposite.Despite this, there is a broad swathe of agreement across our current rangeof semantic theories. For the English data encompassed by Johnson and Kay'sgrammar, restricted to the bound-variable readings favoured by DRT, there issu�cient unanimity about the desired inferential behaviour that I now take thatas given and proceed to consider how best to specify it for an arbitrary Johnsonand Kay implementation.



Johnson and Kay's `Semantic Abstraction and Anaphora' 434.5.2 Constraining inferential behaviourIn principle, we could describe our intended inferential behaviour merely by spe-cifying a desired consequence relation over indexed English discourses. Then animplementation would be satisfactory just in case this relation could be de�nedon the external semantic representations which it generated for those discourses.However this approach has drawbacks. One concern is the degree of reliance onthe grammar with which the implementation works: if that grammar's languagedoes not include the premises and conclusions necessary to capture the inferentialbehaviour of a particular construction, then the speci�cation will be incomplete.More fundamentally, there is the problem of ambiguity in plain English sentences.Various levels of supplementary notation may be used to resolve these ambiguities,but since they include questions of quanti�er scope and other semantic notions,such notations inevitably tend towards a representation that re
ects logical struc-ture at least as much as surface syntax. The case for working with logical formsoutright is strengthened by the tradition of using formulas of �rst-order logic todescribe intended inferential behaviour (or truth conditions) for this particularrange of English discourses. Finally, it seems reasonable to expect that the spe-ci�cation of a correct implementation of general `semantic primitives' should notdepend on a particular natural language.I conclude that one approach worth pursuing is to constrain the inferentialbehaviour of a candidate implementation using a map from the implementation'sexternal semantic representations to formulas of �rst-order logic. Then we canstate constraints in terms of the output of this map, the map itself being suppliedby a conforming implementation.An external representation corresponds to a complete discourse. Hence in thisapproach, we take some representative set of discourses and assign a `canonical'�rst-order formula to each of them. The derived constraint on an implementation(together with its associated �rst-order map) is then that the external repres-entations it generates for each representative discourse must get mapped to thecorresponding canonical formula (or to a logically equivalent one, say). We candispense with the actual discourse and the syntactic processing, taking the col-lection of constraints generated by the grammar for that discourse as the startingpoint of the speci�cation (�gure 4.6 shows an implementation which automaticallymakes such collections).Evidently there is an issue about just how representative the set of test dis-courses (or equivalent constraints) can be. Although the goal is to constrainthe interpretation of semantic primitives as comprehensively as possible, the onlycombinations of primitives that can actually be tested in this approach are thosethat serve to constrain the external representation of a single grammatical dis-course. In order to parse these discourses, the candidate implementation willhave to be paired with a test grammar. The possibility cannot be excluded thatsome extension of the test grammar might combine the primitives in a novel way,



44 Chapter 4external(S:X-[external(S,E)], E:X).atom(P, S:[atom(P,S)|X]-X).conjoin(S1:X-Y, S2:Y-[conjoin(S1,S2,S3)|Z], S3:X-Z).new_index(Index, S:[new_index(Index,S)|X]-X).accessible_index(Index, S:[accessible_index(Index,S)|X]-X).compose(S1:X-Y, S2:Y-[compose(S1,S2,S3)|Z], S3:X-Z).subordinate(S1:X-[subordinate(S1,B,S2)|Y], B, S2:X-Y).Figure 4.6: An implementation that collects constraintsstill consistent with their intuitive interpretation, but not tested by any of thediscourses that the original grammar admits.Furthermore, no �nite set of representative discourses really provides su�cientconstraint on an implementation, since we would like to ensure that the semanticprimitives are de�ned uniformly over the domain of `lexical propositions' (lprop).For example, the implementation should do the right thing for all common nouns,not just woman, man and donkey . We can guarantee this only by including someform of quanti�cation in our constraints, so that no particular members of thenon-logical syntactic categories are singled out. This should not be problematic,however.It appears that the main problem with this approach is its inability to specifythe behaviour of each primitive independently, or in any combination other thanthose determined by particular discourses. Even in such a combination, all inform-ation about the e�ect of the primitives involved is �ltered through the externalprimitive, since it is only via the �rst-order map on external representations thatany constraints can be speci�ed. Directly constraining the primitives, on theother hand, suggests a strategy in which internal representations are mapped to acommon logical form language, with a corresponding `canonical' relation on thatlanguage being de�ned for each primitive, and the form of the actual speci�cationsincluding quanti�cation over the domain of all internal representations (rep). Inwhat follows I shall investigate both these approaches for the Johnson and Kayprimitives. We may note in advance, however, that in the second approach we arenot necessarily free to choose an arbitrary `logical form language': it may transpirethat an internal representation in this system essentially carries more informationthan, say, a formula of �rst-order logic.



Johnson and Kay's `Semantic Abstraction and Anaphora' 454.6 Specifying correct implementationsThere are various ways to investigate constraints for the primitives. One optionis to assume that since we're interested only in inferential behaviour, Johnsonand Kay's `predicate-logic' implementation should be some kind of boundarycase, where the implementations of the primitives only just satisfy our inferentialconstraints. If so, this is a good place to start.4.6.1 Discourse representation languagesThe `predicate-logic' implementation does not distinguish between internal andexternal representations. I begin by taking the �rst approach to speci�cationoutlined above, which requires that we �nd a way to map these representations to�rst-order logic. As pointed out in x4.4, they are like �rst-order formulas whichlack explicit quanti�ers. However we know that we are expected to interpretman(X) & donkey(Y) & beat(X,Y)as 9x9y(man(x) ^ donkey(y) ^ beat(x; y))but to interpretman(X) ==> (donkey(Y) & beat(X,Y))as 8x(man(x)) 9y(donkey(y) ^ beat(x; y)))What's going on here? The answer seems to be that the `predicate-logic'representations are really expressions in a kind of minimal discourse representationlanguage that lacks explicit marking of discourse referents. By a `discourse rep-resentation language' (or DR language) I mean some linearized version of Kamp'sDRS notation. A good study of such languages, and how they relate to �rst-orderlogic, has been provided by Zeevat (1989). On page 101 of that article, Zeevatde�nes a linear form in which the appearance of a variable as a discourse referent(in the `top box' of a DRS) is indicated with an asterisk. He also admits ?(absurdity) as a primitive DRS. In this language, the two representations justgiven would appear as follows.man(x�) ^ donkey(y�) ^ beat(x; y)man(x�)) (donkey(y�) ^ beat(x; y))Zeevat gives a model-theoretic interpretation for such expressions (in e�ect,extending Kamp's original DRT semantics to `incomplete' DRSs) and shows that



46 Chapter 4there exist maps between this DR language and �rst-order logic (FOL) whichpreserve satisfaction in each direction. The map to FOL, T0, is de�ned withT0(�) = 9x1 : : :9xn T1(�) where fx1; : : : ; xng = V (�)and T1(r(t1; : : : ; tn)) = r(t01; : : : ; t0n) where t0i is ti with any star removedT1(� ^  ) = T1(�) ^ T1( )T1(�)  ) = 8x1 : : :8xn(T1(�)) 9y1 : : :9ym T1( ))where fx1; : : : ; xng = V (�) and fy1; : : : ; ymg = V ( )T1(?) = ?V (r(t1; : : : ; tn)) = f xi j x�i is one of t1; : : : ; tn gV (� ^  ) = V (�) [ V ( )V (�)  ) = ;The function V collects discourse markers at the current level, and T1 uses thisinformation to generate the right quanti�cation for DR language implications. T0completes the translation by making sure that top level referents are existentiallyquanti�ed.Can we �nd a map from our minimal DR language to FOL that similarlypreserves satisfaction? We would then have most of what we need in order toconstrain the `predicate-logic' implementation in the �rst way described in theprevious section, since we'd have a map from (external) representations to FOLformulas.In fact, there is such a map, despite the lack of explicit information aboutdiscourse referents in our minimal DR language. For it is su�cient to observethat in a well-formed DRS1. There are no `free variables'|every variable (referent) is intended to bequanti�ed;2. A variable should be existentially quanti�ed unless(a) it is already in the scope of a quanti�er, or(b) it appears in the antecedent of an implication, when it should be uni-versally quanti�ed, subject to the condition just given.On this basis, we can de�ne a function U0 to translate our minimal DR languageto FOL. The idea is to work top-down and use an auxiliary argument to the maintranslation function, U1, to keep track of those variables which have already beenquanti�ed over. The only other real change required is to make Zeevat's functionV behave as if every variable in its argument DRS was starred, so that it generatesall `candidate discourse referents' for it.U0(�) = 9x1 : : :9xn U1(�; fx1; : : : ; xng) where fx1; : : : ; xng = W (�)



Johnson and Kay's `Semantic Abstraction and Anaphora' 47U1(r(x1; : : : ; xn); A) = r(x1; : : : ; xn)U1(� ^  ;A) = U1(�;A) ^ U1( ;A)U1(�)  ;A) = 8x1 : : :8xn(U1(�;B)) 9y1 : : :9ym U1( ;C))where fx1; : : : ; xng =W (�) n A; B = fx1; : : : ; xng [ A;fy1; : : : ; ymg =W ( ) nB; C = fy1; : : : ; ymg [BU1(?) = ?W (r(x1; : : : ; xn)) = fx1; : : : ; xngW (� ^  ) = W (�) [W ( )W (�)  ) = ;(A Prolog implementation of this map may be found in appendix B. Since writ-ing this chapter I have discovered that Pagin and Westerst�ahl (1993) discuss alanguage analogous to my minimal DR language, and prove similar equivalences.)4.6.2 An external speci�cationNow that we can map `predicate-logic' representations to FOL, we may investigatethe �rst of our approaches to specifying the correct behaviour of the primitives.We seek a semantically varied range of sentences admitted by the Johnson andKay grammar that each give rise to as few constraints as possible.One such sentence isA woman owns a donkey.The standard grammar generates a semantic representation for this sentence by�nding a value of e that makes the following formula true:9x9y9r1 : : : 9r9 new index(x; r1) ^ atom(woman(x); r2) ^ compose(r1; r2; r3)^ new index(y; r4) ^ atom(donkey(y); r5) ^ compose(r4; r5; r6)^ atom(own(x; y); r7) ^ conjoin(r6; r7; r8) ^ conjoin(r3; r8; r9)^ external(r9; e)This collection of constraints exercises all the primitives except accessible index andsubordinate, and it is not possible to �nd a sentence whose semantic representationinvolves less primitives. However, if we are prepared to augment the originalJohnson and Kay grammar with the following rules for intransitive verbs (andverb phrases), for which the semantic component seems clear, we can obtain arepresentation that at least depends on fewer instances of the primitives.vp(VP) --> vi(VP).vi(X^S) --> [Verb],{ verbi(Verb, X^Pred),atom(Pred, S) }.verbi(walks, X^walk(X)).verbi(runs, X^run(X)).



48 Chapter 4With these additional rules the sentenceA woman walks.may be parsed and yields the following constraints:9x9r1 : : :9r5 new index(x; r1) ^ atom(woman(x); r2) ^ compose(r1; r2; r3)^ atom(walk(x); r4) ^ conjoin(r3; r4; r5) ^ external(r5; e)To test universal quanti�cation we may takeEvery woman walks.which generates9x9n19n29r1 : : :9r9 new index(x; r1) ^ atom(woman(x); r2)^ compose(r1; r2; r3) ^ atom(walk(x); r4) ^ subordinate(r4; n1; r5)^ compose(r3; r5; r6) ^ subordinate(r6; n2; r7) ^ atom(n2==>n1; r8)^ compose(r7; r8; r9) ^ external(r9; e)Using these formulas, the abbreviations cn and imp de�ned in x4.3, and our map U0we see that the following constraints hold of the `predicate-logic' implementation:8p8q8e[(9x9r19r29r3 cn(x; p; r1) ^ atom(q; r2) ^ indexes(q) = fxg^ conjoin(r1; r2; r3) ^ external(r3; e))) U0(e) = p9x(p ^ q)q]8p8q8e[(9x9r19r29r3 cn(x; p; r1) ^ atom(q; r2) ^ indexes(q) = fxg^ imp(r1; r2; r3) ^ external(r3; e))) U0(e) = p8x(p) q)q]where p and q range over lprop. We could try to capture some constraints on thesemantics of relative clauses with the additional requirement8p8q8u8e[(9x9r19r2 : : :9r5 cn(x; p; r1) ^ atom(q; r2) ^ indexes(q) = fxg^ conjoinr1; r2; r3) ^ atom(u; r4) ^ indexes(u) = fxg^ conjoin(r3; r4; r5) ^ external(r5; e))) U0(e) = p9x(p ^ q ^ u)q]but this seems not to give us any additional leverage. To generalize away from the`predicate-logic' implementation it now su�ces to demand that every candidateimplementation provides some map F from its external representations to FOLsuch that8p8q8e[(9x9r19r29r3 cn(x; p; r1) ^ atom(q; r2) ^ indexes(q) = fxg^ conjoin(r1; r2; r3) ^ external(r3; e))) F (e) = p9x(p ^ q)q]8p8q8e[(9x9r19r29r3 cn(x; p; r1) ^ atom(q; r2) ^ indexes(q) = fxg^ imp(r1; r2; r3) ^ external(r3; e))) F (e) = p8x(p) q)q]For `predicate-logic', F = U0. For the other two implementations, it turns out thatthe required map can be obtained by composing U0 with a per-implementationmap from external representations to the minimal DR-language that U0 is de�nedon. Prolog de�nitions of these implementation-speci�c maps are provided in ap-pendix B.



Johnson and Kay's `Semantic Abstraction and Anaphora' 494.6.3 An internal speci�cationThe `external' speci�cation just developed involves many instances of the semanticprimitives, and in two very similar con�gurations. Yet it is clear that basing thespeci�cation on more complex sentences will only increase the complexity of thederived constraints in the same limited areas. In order to get a �rmer grip on thebehaviour of the individual primitives we need less complexity in our constraintsand must resort to an approach based on translating internal representations intosome common language, on which the canonical behaviour of the primitives maybe de�ned.Let's start again with the `predicate-logic' implementation, where internal andexternal representations are the same, so that we can immediately use U0 to mapthe former to FOL. Can we then constrain the primitives directly using this map?We can do so only if we can capture the inferential behaviour of each prim-itive in terms of a relation on formulas of FOL. For the primitive atom, this isstraightforward, at least for members of lprop. We evidently want to say just8p8r(atom(p; r)) U0(r) = ppq)where p is quanti�ed over lprop. What about conjoin? The meaning of conjoincertainly involves logical conjunction, so perhaps we can simply say8r18r28r3(conjoin(r1; r2; r3)) U0(r3) = pU0(r1) ^ U0(r2)q)This is false, however. In interpreting A woman walks, the `predicate-logic' im-plementation solves the constraintconjoin(r1; r2; r3)with the following assignments (and translations under U0):r1 = woman(x) U0(r1) = 9x woman(x)r2 = walk(x) U0(r2) = 9x walk(x)r3 = woman(x) ^ walk(x) U0(r3) = 9x(woman(x) ^ walk(x))which contradicts the proposed speci�cation. But this should not come as a greatsurprise: it has already been noted that the representations of the `predicate-logic' implementation may be seen as formulas of a minimal DR-language, inwhich the symbols \^" and \)" do not have their FOL interpretation. None theless, the possibility remains that we may be able to mimic DR-conjunction (andimplication) in FOL via syntactic operations on FOL formulas other than the thenatural binary operations of FOL-conjunction and FOL-implication. In fact, wecan do this.Let S be that function on FOL formulas that strips out all quanti�ers, butleaves everything else untouched. Then the following constraint on conjoin doeshold for the `predicate-logic' implementation:8r18r28r3(conjoin(r1; r2; r3)) U0(r3) = pU0(S(r1) ^ S(r2))q)



50 Chapter 4We can constrain imp, the set of primitives which implement DR-implication, inan analogous fashion:8r18r28r3(imp(r1; r2; r3)) U0(r3) = pU0(S(r1)) S(r2))q)The question is, is this a legitimate approach? I claim that it is not. As indic-ated above, these speci�cations only `mimic' DR-conjunction and DR-implication.The crucial point about DR languages is that their formulas code up the semanticsof �rst-order formulas and information about the identity of top-level existentiallyquanti�ed variables (discourse referents, or indexes). The speci�cations aboverely on interpreting FOL formulas in ways that are at odds with their standardsemantics. In FOL, the formulas 9x woman(x) and 9y woman(y) have identicalinferential content|but they will behave di�erently under the operations intro-duced above, since x and y are distinct variables. This means that the aboveapproach breaks down as soon as one exploits some of the standard identities forFOL formulas. Imagine post-composing the map U0 with a function that rewritesFOL formulas into a kind of canonical form by renaming all bound variables, andpossibly performing other satisfaction-preserving operations. Then these speci�c-ations immediately fail.To see why a primitive like conjoin must ultimately be interpreted as DR-conjunction, consider again the role it plays in the Johnson and Kay grammar. Itis used in obtaining the semantic value of relative clauses and the inde�nite articlea. In the former case the underlying semantic operation is logical conjunctionat the level of properties. The interpretation of man that owns a donkey is aproperty formed through the conjunction of the property corresponding to manand that corresponding to that owns a donkey . In the latter case, a is interpretedas a generalized quanti�er that operates on properties to yield a proposition; themeaning of a woman walks is the (generalized) existential quanti�cation of theproperties corresponding to woman and to walks. But DR-languages contain noovert mechanism for de�ning or operating on properties. What they do have,however, is a way of connecting a formula with a set of variables. Thus it is thatin a DR-language, properties (and relations of higher arity) must be encoded byusing selected variables (in Johnson and Kay's terminology, indexes) to recordan implicit abstraction operation. This is exactly what the Johnson and Kaygrammar does. In order to implement property-level conjunction, then, it isnecessary to record the abstracted-over variable (the grammar does this withthe \^" operator), to ensure that both such variables are identical for the twoproperties (the grammar does this in the head of the rule that rewrites n1 asa relative clause), and �nally to ensure that the operation of conjunction itselfrespects the identities of variables occurring within the conjuncts. This latter isprecisely what DR-conjunction buys us, and FOL-conjunction does not. The storyis similar for the operations of generalized quanti�cation; su�ce it to point outthat in the grammar the corresponding variable-identi�cation constraint occurs inthe rule for det. (Such observations about the nature of DR-language operations



Johnson and Kay's `Semantic Abstraction and Anaphora' 51apply equally to Kamp's original DRT, and systems based thereon.)The conclusion of these arguments is that any `internal' speci�cation of correctbehaviour for the primitives must be stated in terms of a (minimal) DR-language,and hence that the map which a conforming implementation is required to providemust be a map from its internal representations to this DR-language. We mayas well take the language of the `predicate-logic' implementation's representationsas our common, minimal, discourse referent-free DR-language. Then, �nally, wecan give a correct speci�cation for the inferential behaviour of each primitive. Inthe following formulas, I use D to stand for the DR-language map provided by aconforming implementation.First of all, we may stipulate that the domain of D can be extended to externalrepresentations in such a way that under D internal and external representationsare identical. Both representations are the semantic values of clauses, sentencesor discourses; the correct inferential behaviour (which is what D is supposed toextract) must surely be the same both internally and externally. Hence:8r8e(external(r; e)) D(r) = D(e))We can resurrect essentially the same speci�cation for atom as we mootedearlier. In this version I've made explicit the requirement that p be in lprop:8p8r8n18n2((atom(p; r) ^ p 6= n1==>n2)) D(r) = ppq)Now conjoin has the following natural speci�cation:8r18r28r3(conjoin(r1; r2; r3)) D(r3) = pD(r1) ^D(r2)q)and similarly for imp8r18r28r3(imp(r1; r2; r3)) D(r3) = pD(r1)) D(r2)q)That deals with all the primitives that a�ect inferential behaviour. I havechosen not to give individual speci�cations for compose, subordinate and atomapplied to a non-lexical proposition. This is because they do not have a �xedinferential interpretation across all implementations|only when combined as inthe de�nition of imp do they convey a consistent meaning, namely that of DR-implication.44In both the `predicate-logic' and the `discourse-representation' implementations composedoes not contribute to the inferential behaviour of imp, and for these implementations it wouldbe possible to replace the speci�cation of imp just given with, for example:8r18r28n(subordinate(r1; n; r2)) D(r1) = D(n))8n18n28r(atom(n1==>n2; r)) D(r) = pD(n1)) D(n2)q)The `sets-of-infons' implementation breaks these constraints, because of its internal divisionof inferential content between lists of tagged infons and the tags (situation labels) themselves;



52 Chapter 4It remains to consider new index and accessible index. These primitives have noe�ect on inferential behaviour. We can capture this by demanding that D mapsthe representations that are constrained by these primitives into some tautologousDR formula, such as ? ) ?:8x8r((new index(x; r) _ accessible index(x; r))) D(r) = p? ) ?q)This is not quite the whole story, however: in the Johnson and Kay grammarthese representations are always combined via compose; for new index this happensin the collection of primitives that I've called cn, for accessible index it happensin the grammar's pronoun rule. There are two ways to deal with this: either weretain the constraint just presented and give a general speci�cation for composetoo, or we treat specially the two contexts in which new index and accessible indexoccur.Both approaches are possible. On the one hand, it would seem desirable toconstrain the smallest possible unit, which argues for specifying compose individu-ally. In this case, we may view compose simply as DR-conjunction. On the otherhand, it seems more accurate to say that compose essentially has no inferentialinterpretation, and that therefore the right approach is to constrain cn and thecombination of accessible index and compose used in the pronoun rule with twoseparate speci�cations. Taking this latter approach we obtain:8x8p8r18r28r38n18n2((new index(x; r1) ^ atom(p; r2) ^ p 6= n1==>n2^ compose(r1; r2; r3))) D(r3) = ppq)8x8r18r28r3((accessible index(x; r2) ^ compose(r1; r2; r3))) D(r1) = D(r3))Since we arranged for D to map to the minimal DR-language from which the`predicate-logic' implementation's representations are drawn, suitable implement-ations of D for the two anaphoric implementations already exist in appendix B(xB.1).4.7 An anaphoric speci�cationLet us now suppose that we wish to develop a speci�cation of the primitives whichensures their anaphoric behaviour is reasonable. This comes in three parts:1. Requiring that certain primitives correctly record past discourse content;it is only the latter which are used as the names of representations in subordinate, and theimplementation relies on the operation of compose on `superordinate' representations to keep thetagged infons available. (I note here that this structure does nothing to cash out the Johnsonand Kay's claim (p. 18) that the `sets-of-infons' implementation illustrates a \non-extensional"theory of meaning.)



Johnson and Kay's `Semantic Abstraction and Anaphora' 532. Requiring that certain other primitives correctly determine possible ante-cedents from such content, and3. Stipulating that the primitives not involved at all in anaphoric processingdo not interfere with the �rst two tasks.4.7.1 Using external representationsAs in the inferential case, we should examine to what extent we can achieve ourgoals by looking only at an implementation's external representations. The picturehere is bleaker, however: come the external representation, all decisions aboutanaphor resolution have already been taken, and we can only judge the result.Nonetheless, one might think that given a map from ext to �rst-order formulas(after the style of x4.6), then the external representation forA donkey beats it.would necessarily map to a FOL formula equivalent to9x(donkey(x) ^ beat(x; x))|and that this e�ectively puts constraints on anaphoric behaviour. There arenumerous problems here, though. Most obviously, the above example (with theintended reading) is not even grammatical, although it is admitted by the Johnsonand Kay grammar. If we claim, on the other hand, thatEvery man that owns a donkey beats it.maps only to a single FOL formula, we con
ate judgements on anaphoric pro-cessing with many others. It seems necessary to work at the level of internalrepresentations.4.7.2 An internal approachReturning to three tasks listed above, let us �rst determine what notion of `pastdiscourse content' is required. We would like this content to be the minimumneeded for the correct anaphoric behaviour of the primitives. The only primitivethat actually extracts antecedents from past content is accessible index, and whatit extracts is an index. Hence it should be possible to treat `past discoursecontent' as a set of indexes for the purposes of an anaphoric speci�cation. Weshould, however, distinguish between the set of indexes set up as antecedentsby a particular representation, and those that have been set up prior to thatrepresentation.So let A and P be functions from internal representations to sets of indexes(that is, from rep to indexset). The informal interpretation of A(r) is the set ofantecedents (indexes) in r, and that of P (r) is the set of indexes that have arisen



54 Chapter 4in discourse prior to r. We can begin our speci�cation by requiring that when aninterpretation representation is related to an external representation by external,then the internal representation can record no prior indexes:8r(9e external(r; e)) P (r) = ;)This will have the e�ect (given the constraints below) of ensuring that the repres-entation of �rst constituent in a discourse will also see no prior indexes.Taking the other primitives in turn, all we can say of atom is that it shouldintroduce no new antecedents|and this holds whether atom's second argument isin lprop or not:8r(9p atom(p; r)) A(r) = ;)Given A and P the constraints on new index and accessible index are obvious:8x8r new index(x; r)) A(r) = fxg8x8r accessible index(x; r)) (x 2 P (r) ^ A(r) = ;)It remains to regulate the conversion of current antecedents into prior ones,and the propagation of antecedents across `subordinate' divisions. Both conjoinand compose perform the former activity, and it appears that they must have thesame anaphoric speci�cation. When c(r1; r2; r3) holds of three representations,where c may be either conjoin or compose, three things must hold:1. The antecedents introduced by the combined representation, r3, must be theunion of those introduced in r1 and r2;2. The prior antecedents of r2, the second of the two components, must bethe union of the prior antecedents of the �rst component, and the newantecedents introduced in it.3. The prior antecedents of the combination r3 must be exactly the prior ante-cedents of r1;So we have:8r18r28r3(conjoin(r1; r2; r3) _ compose(r1; r2; r3)))(A(r3) = A(r1) [ A(r2)^ P (r2) = P (r1) [ A(r1)^ P (r3) = P (r1))Regarding subordinate, it seems that the crucial stipulation is that the prior ante-cedents of the superordinate and subordinate representation should be equal. Weshould also require that the superordinate representation created by subordinatenot introduce any new antecedents. This gives us:8r18r28n subordinate(r1; n; r2)) (P (r1) = P (r2) ^ A(r2) = ;)



Johnson and Kay's `Semantic Abstraction and Anaphora' 55It may be instructive to see what the implications of these constraints arefor imp, the combination of primitives used to interpret implication and universalquanti�cation. Suppose imp(r; s; t) holds. Then according to the de�nition of impand the speci�cation just given, we can deduce thatP (r) = P (t)P (s) = P (r) [ A(r)A(t) = ;This says that the antecedents available to the `restrictor' representation r are thesame as those available to the combined representation t, that the antecedents forthe `scope' s include any antecedents introduced in r, and that the representationas a whole introduces no new antecedents, thereby correctly insulating the e�ectof any new indexes in r or s from subsequent discourse.Prolog code that implements A and P for both the `discourse-representation'implementation and for `sets-of-infons' may be found in xB.2, appendix B.4.8 SummaryThe focus of this chapter has been the paper Johnson and Kay 1990, in whichthe authors present a model for semantic abstraction. I explained their system: itconsists of a DCG grammar for a fragment of English, with some of the semanticprocessing factored into explicit Prolog calls, which themselves reduce to seven`semantic primitives'. This provides a �xed interface to the syntax, but allows foralternative semantic domains via the possibility of di�erent implementations (inProlog) of the seven primitives. Johnson and Kay themselves provide three suchimplementations. The most convincing intuitive interpretations of the primitiveslean heavily on DRT; the primitives cover both `inferential' and `anaphoric' op-erations, and take as arguments only propositional representations and `indexes',these latter being analogous to DRT's discourse referents. The interface providedby the primitives is essentially relational, not functional.I discussed the sample implementations. The `predicate-logic' one generatesminimal logical forms whose interpretation is not fully explained by Johnson andKay. The `discourse-representation' implementation constructs DRSs in a mannerquite similar to the system of Johnson and Klein (1986), and relies crucially onthe properties of di�erence lists in Prolog to integrate inferential and anaphoricinformation. The third implementation, `sets-of-infons', is a notational variant of`discourse-representation'.In discussing approaches to modelling the abstraction inherent in the Johnsonand Kay system, I argued for distinguishing between inferential and anaphoricbehaviour, and further pointed out that there are essentially two approaches:`internal' speci�cations that directly constrain the primitives, and `external' onesthat rely only on generated external representations. In the case of inferentialbehaviour, I showed that external speci�cations are possible, but unsatisfying.



56 Chapter 4Development of an internal speci�cation revealed that a single `minimal discourserepresentation' language can represent the core inferential content of the primit-ives, irrespective of implementation. Prolog code that connects this language witheach of the sample implementations is collected in appendix B.Regarding anaphoric behaviour, external speci�cations are even more inad-equate, so I provided a simple internal speci�cation for this too. Appropriate codeis also given in the appendix.In conclusion, note �rst that in their paper Johnson and Kay do not giveany explicit characterization of the kind of semantic abstraction actually providedby their system, and it seems reasonable to desire such a characterization. Theapproach demonstrated in this chapter not only makes the nature of their ab-straction clear, it makes it formal. I have shown that the inferential content of thesystem is that of a minimal DR language: only semantic theories that re-presentor reinterpret DRT can be represented in this framework. Basically, what we havehere is an elegant interface from the syntax to DRT.This is disappointing: it seemed reasonable to hope for something more general.The di�culty of obtaining convincing intuitive explanations for the primitivesindependent of the DRT implementation turns out to have been an importantindicator that the degree of true abstraction was limited, and this was exposedclearly by the abstract speci�cations developed later in the chapter. We conclude,then, of the Johnson and Kay work, that this particular approach to semanticabstraction does not form a satisfactory general basis.



Chapter 5Towards a Speci�cation ofQuanti�cation and Anaphora
5.1 Abstraction and modularityWe have seen how describing semantic theories with abstract speci�cations canclassify them along particular axes of variation (chapter 3) and can help to revealthe underlying nature of their operations (chapter 4). In this chapter I want toinvestigate to what extent the same approach can provide modular speci�cationsfor a broad range of semantic theories. I do this by focussing on a speci�c area ofsemantic theorizing, and developing the outlines of a modular speci�cation for it.Modular speci�cations each address a particular aspect of semantic behaviour,and can be combined with one another so as to build up a series of interlockingconstraints on a theory. My goal is to show how one might assemble a collectionof such speci�cations with which to check whether any given theory of semanticinterpretation (the object theory) meets common constraints on grammar andmeaning. Where there is unanimity on the semantics of particular constructions,or particular operators, then we may have a single speci�cation for them. Wherethere are currently a number of competing approaches, the aim is to provide arange of speci�cations accordingly.This chapter inherits from my general programme the desire to abstract awayas much of the presentational character of the object theory as possible. Theorieschoose di�erent levels of description (often multiple levels at once), employ a greatvariety of logical frameworks and tend to either assume or de�ne many notions ofcomputational realization. These variations are to be ignored just to the extentthat they are independent of the core semantic notions I aim to capture.I describe �rst the general approach I adopt, which will be familiar in manyrespects from the results of the previous two chapters. Then I proceed to considerthe topic of quanti�cation and anaphora in detail. Finally, I comment brie
y onhow extensions to other major topics in semantic theory might work.57



58 Chapter 55.2 StrategiesIn order to eliminate dependence on theory-speci�c formulations, my approachis to select, for each semantic notion, a minimal language of sorts and relations.These sorts and relations are abstract in the sense that they need not, and ingeneral do not, correspond to any of the concrete sorts, type, relation or operationsin particular object theories. Nor is it the case that these are in some sense `ideal'primitives which object theories should adopt|they are merely the minimumrequired in order to state the relevant constraints.The idea, then, is that given a new object theory it should be possible toidentify these abstract sorts and relations as combinations of the concrete ele-ments provided by the theory. Determining whether the object theory meets thespeci�cations is a two-stage process: �rst, one must �nd some de�nition of theabstractions introduced below in the terms of the object theory; second one mustattempt to show that the abstract speci�cations of behaviour are satis�ed. It'sclearly desirable to avoid an appeal to intuition in the �rst stage|so that anyway of de�ning the abstract notions in terms of the object theory's concepts thatformally satis�es certain constraints would su�ce to determine whether the theorymet the speci�cations. It remains to be seen whether this is achievable in practice.Further distinctions can be made at the second stage, based on the kindof constraint that makes up the speci�cations. One obvious choice is betweenconstraints that say, e.g., \the system can get the right semantics for pronounsoutside the scope of a quanti�er" and \the system always gets the right suchsemantics".There are dependencies between modular semantic speci�cations. For example,some form of predicate logic with identity is assumed for most of the speci�cations.The description of predication relies on that of abstraction. It is not yet clear howbest to formalize these dependencies.I now move on to the semantic topic under speci�c investigation|quanti�cationand anaphora|beginning with some discussion of anaphora.5.3 Anaphora: resolution and interpretationI shall divide the semantics of anaphora into two parts: resolution, the problemof determining the antecedent of an anaphor, and interpretation, the method bywhich anaphoric dependencies in discourses are interpreted. Some theories, suchas DRT, address both aspects; more commonly, semantic theories of anaphoraattempt only to model what I call interpretation. In this case, their starting pointis a representation of sentences or discourses that indicates the resolved anaphoricdependencies, typically the indexed discourse. It is important to remember thatthe ambiguity associated with anaphora is not always eliminated by resolutionalone. It is possible for an anaphor to be unambiguously dependent on a partic-ular syntactic antecedent, and yet for that dependency to have multiple semantic



Towards a Speci�cation of Quanti�cation and Anaphora 59interpretations. Indeed with some kinds of anaphora, such as verb phrase ellipsis,this is the prevalent form of ambiguity.Anaphora resolution seems to to involve many factors, some of them certainlynon-semantic. At the end of this chapter I consider brie
y one much-discussedcollection of syntactic constraints on resolution, those of binding theory.In the main, however, my concern is with anaphora interpretation, a primarilysemantic task. Unlike resolution, it is hard to describe in isolation from a particularsemantic framework, owing to the interaction of anaphora with other semanticphenomena. The best studied of these interactions is that between anaphora andquanti�cation.5.4 Bound and unbound anaphorsFor many years after the invention by Frege and others of bound variable quanti-�cation, logicians and linguists alike saw this mechanism as the natural model ofanaphoric dependencies in natural language. So in Montague's PTQ, for example,all pronominal anaphora is analyzed as the binding of variables by quanti�ers.It has gradually become clear, however, that not all anaphoric connections havethe semantic character of quanti�er binding. Not only do some anaphors resistdescription as bound variables, but for many of those that do not the precisenature of their binding is hard to derive from syntactic realization and context.The debate about just which anaphors are to be interpreted as bound variables,and how to give a uniform semantics to discourses containing them whatever theyare, is far from over, and it is not my place here to take sides on particular issues.Nonetheless, I believe it is possible to make some general observations about theinteraction of quanti�cation and anaphora that apply to every semantic theorywhich makes use of the two notions.At this point I will state that I do not wish my analyses to be applicablenot only to those theories which rely in their logical syntax on Fregean boundvariables to perform quanti�cation. I consider below how to avoid this assumptionwhen formalizing my speci�cations. Therefore rather than use the term `boundvariable', I shall talk simply of anaphors that are interpreted as bound or unbound(by a quanti�er), leaving open the precise mechanism by which quanti�cation isexpressed.I should clarify my use of certain other terms. Anaphoric dependencies holdbetween anaphors1 and their antecedents, even when the former precede the latter.Many kinds of expression can act as anaphors; in English, these include pronouns,noun phrases with the determiners this and that, and de�nite descriptions. Anexpression is referential when it refers to, or denotes, some actual entity. I use theterm quanti�er to mean an element in a logical language, reserving expressionssuch as quanti�er phrase for constituents of natural language. I shall restrict my1I do not use the technical GB sense of `anaphor'.



60 Chapter 5attention to antecedents and quanti�er phrases that are noun phrases in English.I adopt here a strictly quanti�cational, or logical, sense of `binding'. Butthere is an alternative notion going by the same name which should be carefullydistinguished. Linguistic theory has a tradition of assigning indexes to noun phraseconstituents in the syntax (and in transformationally-oriented theories, also topositions in syntactic structure that may be empty). One of the uses of suchindexes is to indicate so-called binding relations between NPs. Generally, thisrelation depends both on the syntactic con�guration of the NPs and on whetherthey have been coindexed, i.e., assigned the same index. Certain constraintsthat are based on this relation comprise binding theory; here, it is the relation ofcoindexing that is relevant, since these theories use coindexing to express anaphoricdependencies. (Though they do not thus represent all anaphoric dependencies;those that hold outside some notion of local syntactic domain|be they still intra-sentential|are generally referred to in the literature on binding theory as instancesof discourse-level binding or coindexing, beyond the scope of the ordinary theory.)Now the exact semantic import of this coindexing is a matter of dispute,one that is interwoven with the more general argument about whether particularanaphoric dependencies should be modelled with quanti�er binding. It has beencommon to say that coindexing implies `coreference'; where in practice that meanseither true coreference or quanti�er binding, depending on the nature of the ante-cedent (\[We] are concerned rather with properties of LF-representation that enterinto interpretations of sentences in terms of intended coreference : : : where the`reference' in question does not carry ontological commitment.", Chomsky 1981,p. 314 n. 2). On the other hand it has been claimed, notably by Lasnik (1976),that it is non-coindexing that carries semantic content, namely that non-coindexedconstituents must have disjoint reference. Lasnik further argues that every in-stance of a pronoun coreferring with its antecedent (in the loose sense just noted)comes about through the pragmatic determination of pronoun reference, so that hisrule of disjoint reference captures the entire semantic content of indexing. Evans(1980) has countered convincingly that Lasnik's rule must at least be modi�edto talk of intended disjoint reference, and further, that without some notion ofintended coreference being indicated by coindexing (or some equivalent device)we are unable to explain how it is possible to interpret anaphorically-dependentpronouns in a pragmatically neutral context.A few examples will serve to illustrate these notions, and my terms for them. Iadopt Barwise's notation for representing anaphoric dependencies (Barwise 1987),in which the antecedent receives a superscript index and its anaphor the sameindex as subscript. Non-lexical constituents are indicated with brackets.In a case likeJohni believes that hei is happy.we may say that he is referential, and the truth conditions of this sentence, insofaras they concern the pronoun, are uncontroversial. (Although some have argued



Towards a Speci�cation of Quanti�cation and Anaphora 61that pronouns are never referential, not even in a case like this|notably Geach(1962), whose analysis is that the property `x believes that x is happy' is beingpredicated of John. I consider Evans (1977) to have refuted Geach's claim thatthe only use of pronouns is to construct such properties.)Where a pronoun is anaphoric to a quanti�er phrase such as Every woman, ashere: [Every woman]i believes that shei is happy.then the pronoun cannot be referential, and the truth conditions of the sentence arenaturally represented with a quanti�er for Every woman which binds the pronoun.Where a quanti�er antecedent serves to pick out a single entity, as in a sentencelike [A certain woman]i believes that shei is happy.then the the pronoun is still bound, even if the sentence is used to assert somethingof an actual person. That inde�nites do not refer is particularly clear when theyoccur in the scope of some non-existential quanti�er, of course, as in Geach'sdonkey sentence (with Geach's Any replaced by Every):(5.1) Every man that owns [a donkey]i beats iti.It is the treatment of anaphors with quanti�er antecedents, and the condi-tions under which they are to be interpreted as bound by them, that I wish toconcentrate on. (Strictly, I should speak of the interpretations of anaphors beingbound by the (quanti�er) interpretations of their antecedents; this distinctionwill, predictably, become important in the formalization below.) The crucialobservation that pronouns with quanti�er antecedents are sometimes not boundby them was made by Karttunen (1969) and has been trenchantly analyzed byEvans (1977, 1980), who labelled them `E-type' pronouns. Consider, for example,(5.2) John owns [some sheep]i and Harry vaccinates themi.On an analysis that has them bound by some sheep, this sentence is equivalent toSome sheep are such that John owns them and Harry vaccinates them.which may be one reading of (5.2), but is arguably not the most natural one. Thatreading, yielded by taking them to be an E-type pronoun, isJohn owns some sheep and Harry vaccinates the sheep that John owns.with the implication that Harry vaccinates all of the sheep that John owns.E-type pronouns occur in many other syntactic contexts. Sells (1986) givesexamples which include non-restrictive relative clauses, re
exive pronouns andprenominal modi�ers. And it seems clear that one of the readings of the donkeysentence (5.1) is



62 Chapter 5Every man that owns a donkey beats the donkey that he owns.which may only be captured with an E-type analysis. (I omit any discussion ofthe exact nature of the uniqueness requirement in the description that the E-typeanalysis gives rise to, since it is not relevant to my present purposes.)Before moving on to consider what constraints may be said to operate in thisterritory, it may be as well to point out that the categories of `referential', `bound'and `unbound' (or `E-type') do not appear to exhaust the kinds of anaphoricconnection that pronouns may have with their antecedents. For example, Geachused the phrase \pronouns of laziness" (Geach 1962, x76) to describe pronounswhose interpretation is as if their antecedents had been reproduced verbatim intheir place. The following well-known example is from Karttunen (1969):The man who gave [his paycheck]i to his wife was wiser than the manwho gave iti to his mistress.It may be noted that Geach in fact interpreted as pronouns of laziness many(instances of) pronouns that I am here considering either referential or bound; seethe just-mentioned section of his book for examples.5.5 Constraints on anaphoric interpretation: scopeFor the remainder of this chapter I consider only anaphors that have quanti�erantecedents. When can such an anaphor be bound by its antecedent? It is evidentthat the scope of a quanti�er antecedent, suitably construed, bears on this issue.Now there are various ways of construing scope. In the linguistics literature it hasbeen popular to de�ne a notion of scope in the terms of a syntactic theory, and toclaim that this notion determines the underlying semantic scope of scope-creatingoperators in the syntax, such as quanti�er NPs. There is disagreement over theright way to do this, and for my purposes I �le this notion of scope along with thesyntactic notion of binding mentioned above.Ladusaw (1979) took the important step of asserting that the right notionof scope for a linguistic theory is one that is formally connected to the semanticinterpretation of scope-forming constituents. It is in this spirit that I should like topromote a notion of derivative syntactic scope: derivative, that is, on underlyingsemantic scope. The latter notion is de�ned on entities at a level of semanticrepresentation; the former is de�ned on syntactic constituents, but is ultimatelyparasitic on the latter. The idea is roughly that an expression whose semanticcorrelate is a scope-creating operator has derivative syntactic scope over thoseexpressions whose semantic correlates are in the scope of that operator, as de�nedby the semantics.I formalize this notion below, but some observations about bound anaphoraand semantic scope follow immediately. For example, it becomes trivially truethat every bound anaphor with a quanti�er antecedent must be in the derivative



Towards a Speci�cation of Quanti�cation and Anaphora 63syntactic scope of that antecedent; it doesn't make sense, or at least no sense yetdiscovered, to talk of binding outside the scope of a quanti�er. Of course, somelogical languages (such as DPL) have unusual rules for the scope of quanti�ers,but it is precisely because this notion is based on the `true' scope of semanticoperators that the generalization just stated always holds. In (5.1), for example,on the DRT `bound variable' readingEvery man that owns a donkey beats every donkey that he owns.we will say that it is in the derivative syntactic scope of a donkey .The constraint just given is trivial. But there is a non-trivial constraint closeby that I believe does hold of every semantic theory that comprehends the relevantnotions:(A) If an anaphor with a quanti�er antecedent is in the scope of that quanti-�er, then it is bound by it.Cf. \An E-type pronoun evidently cannot have as its antecedent a quanti�er withwider scope.", Evans 1977, p. 527. An E-type pronoun is not bound, so Evan'sstatement follows from (A) by modus tollens. The constraint (A) is more generaljust in that it extends Evans's claim to all non-bound anaphors.What motivates this claim? For E-type pronouns, the case is quite easy tomake, based upon their intended semantics. In Evans's words, \Roughly, thepronoun denotes those objects which verify (or that object which veri�es) thesentence containing the quanti�er antecedent." (ibid., p. 499). So the reference ofan E-type pronoun is �xed by a clause that its quanti�er antecedent occurs in|butexactly which clause this is needs to be pinned down. Later, Evans says that \theantecedent sentence : : : is the smallest sentence which contains the quanti�er andeverything which it governs." (p. 535). (I ignore certain complexities associatedwith antecedent sentences when they form part of the restriction of a higherquanti�er.) Evans goes on to show how a description may be extracted fromthis sentence which then serves to �x the denotation of the E-type pronoun inquestion. What is relevant here is Evans's use of \governs": the sense he hasin mind is, I suspect, closer to the idea of derivative syntactic scope introducedabove that to the notions of government present in modern syntactic theory, sincewhat matters is that the antecedent sentence should include all the constraintson the quanti�er expression that can play a part in the construction of a suitabledescription. In Evans's sketch of a formalization, all of (i) the main clause intowhich the antecedent quanti�er is inserted, (ii) the common noun in the antecedentquanti�er expression, and (iii) any relative clause restricting the quanti�er go tomake up the description that determines the reference of the E-type pronoun.So anything in the derivative syntactic scope of an antecedent quanti�er ex-pression is potentially able to in
uence the reference of an E-type pronoun thatis anaphorically dependent on it: this is why it is reasonable to stipulate that



64 Chapter 5E-type pronouns, at least, occur outside that scope|if they occurred within it,they might give rise to a circularity in the description that �xed their reference.Despite this argument, the formalization of E-type pronoun semantics o�eredby Sells (1985a) appears to contradict the principle (A). I'll brie
y present Sells'sanalysis, and attempt to show that, in fact, there is no contradiction.Sells gives his semantic analyses in the notation of standard DRT, augmentedwith one extra device, the connective `!', which I will come to in a moment. Thesentence(5.3) A man owns [a donkey]i. Iti grazes.receives the following DRS:(5.4) x; y; zman(x)own(x; y)donkey(y)graze(z)z ! yOn the reading in question, it is taken to be an E-type pronoun whose antecedentis a donkey . In (5.4), y is the discourse referent corresponding to a donkey . Bythe semantics of DRSs, y is interpreted as a existentially quanti�ed variable with ascope that takes in the entire DRS. In particular, then, this scope embraces z, thediscourse referent (also existentially quanti�ed) that corresponds to the E-typepronoun it, in apparent contradiction of (A), and of Evans's statement quotedabove.But Sells does not intend those conditions of (5.4) which involve z to beinterpreted by the normal rules for DRS conditions|indeed he could not, forthat would guarantee an extensional treatment of the connective `!' (irrespectiveof whatever that extension might be) and thereby modify the truth conditions ofthe �rst sentence of (5.3) since `z ! y' would constrain y as well as z.So `!' has to be given special treatment, and this is spelled out on pages 20{21of Sells 1985a. Intuitively, `y ! x' means that y is an E-type anaphor whosereference is determined by the quanti�ed variable x (Sells says that x and y arecospeci�ed). Sells's idea is to give (5.4) an implicit binary structure, viewing thefull DRS as the anaphoric extension of one that omits the conditions containingz.2 Then if K 0 anaphorically extends K with (among others) the condition y ! x,2Sells in fact talks only about omitting the condition whose connective is `!'; this is insuf-�cient, pace his example on p. 22, since any conditions left in the `non-anaphoric' part thatinvolve the E-type discourse referent will serve to generate the wrong description with which to�x the E-type reference (by a�ecting which functions verify that non-anaphoric part). This isnot a matter of circularity, simply of unwanted existential commitments.A further de�ciency in Sells's de�nition is that for any DRS with two or more conditionsinvolving `!' there is no unique sub-DRS of which it is an anaphoric extension; such cases arenot handled.



Towards a Speci�cation of Quanti�cation and Anaphora 65say that an embedding function g veri�es K 0 if and only if for all f that verify K,8a(a 2 f(x)) a 2 g(y))Here Sells assumes that x and y are plural discourse referents, and his discussionimplies that in this context singulars are to be treated as singleton sets.3Returning to (5.4) in the light of this de�nition, it becomes apparent that inpractice the scope of y only extends to those conditions in the DRS that excludez; the special handling of the condition `z ! y' explicitly localizes the scope of yto exactly that sub-DRS. So I do not regard Sells's analysis as a counter-exampleto principle (A). Furthermore, were Sells's distinction between a sub-DRS and itsanaphoric extension to be given some concrete realization in DRS syntax, it wouldserve to visibly limit the scope of y just as required by (A).The only kind of non-bound anaphor considered by Evans and Sells is thatwhich has `E-type' semantics. I explained above the general case for arguingthat an E-type pronoun cannot occur in the scope of its antecedent quanti�er.But (A) talks about all non-bound anaphors, so the point must be made moregenerally. The core claim is that for an anaphor which is dependent on a quanti�erphrase, the only value to being in the scope of the quanti�er associated with thatphrase is so that the anaphor may be bound by it. Which anaphors might o�ercounter-examples to this claim?Non-bound non-E-type anaphors come in assorted 
avours. One variety is thepronoun that can be given a `purely lazy' interpretation, namely as standing forthe syntactic repetition of its antecedent. So in the paycheck sentenceThe woman who gave [a lottery prize]i to her husband was wiser than thewoman who gave iti to her lover.the lazy pronoun it depends on the quanti�er phrase a lottery prize. Is the pronounin the derivative syntactic scope of the quanti�er phrase? Although it is certainlypossible to make subsequent reference to the �rst woman's prize, such reference issurely always E-type, or non-restrictive|it would not a�ect the truth conditionsof the original sentence. Thus it seems that an anaphor subsequently dependenton a lottery prize could not be bound by it, which lends support to the idea thatit is not in the derivative syntactic scope of a lottery prize, as required by (A).There are, however, other cases of anaphoric dependence involving a quanti�erphrase that appear potentially troublesome. InEvery new cognitive science student that hasn't yet met the rest of themshould go to the seminar room at 4 pm.3Under these assumptions, and for singular pronouns or plural pronouns with existentiallyquanti�ed plural antecedents, Sells's de�nition does deliver the required E-type uniqueness con-ditions. For plural reference to non-existentially quanti�ed antecedents the de�nition appearsinadequate; for a start, it's not clear exactly which sub-DRS would qualify as that which isanaphorically extended. But this is not my main point, so I shall not pursue it here.



66 Chapter 5it seems possible, at least for some speakers, to regard them as anaphoricallydependent on Every new cognitive science student. If this is really what is hap-pening, then such examples do seem to contradict (A), since them is clearly notbound by the quanti�er, yet is certainly contained in its derivative syntactic scope,given that it contributes to the restriction or range of the quanti�er Every (theseterms are discussed further below). These examples are somewhat marginal, andI have not made a detailed study of them, but I would suggest that (A) may not,in fact, be directly threatened by them, since it is unclear that the dependence ofthe pronoun them is on the entire quanti�er phrase. One may construct similarsentences with Most in place of Every and yet still have the sense of them be `allnew cognitive science students'.On the basis of the discussion above, I shall maintain principle (A) as a con-straint on all semantic theories that are capable of expressing|or implementing|the notions that it refers to. In order that this be a concrete claim, testable for anarbitrary theory, those notions must be made more precise. I now consider howto formalize the two central ideas: dependency and scope.5.6 Formalizing anaphoric dependencyI talked earlier about the coindexing notation familiar from linguistic theory. Thisdevice indicates anaphoric dependency at a level of syntactic structure that isusually fairly close to unelaborated surface structure. For my purposes, it seemsbest to abstract away from the additional notions (such as binding) that varioustheories have associated with coindexing and instead take as primitive a relationof anaphoric dependency that may hold of any two syntactic constituents. Thenotion of `syntactic constituent' is to be provided by the syntactic component ofwhatever object theory is under consideration.Formally, then, I introduce a relation depend. In order to make relativiz-ing to particular discourses straightforward, I take this to be a ternary relationdepend(c1; c2; d) that holds just in case c1 and c2 are constituents of discourse d (adiscourse may be a single sentence, of course) and c2 is anaphorically dependent onc1. I make the assumption that the traditional notion of coindexing coincides withmy relation of dependency, except that I do not take my relation to be symmetric.I.e., I shall assume8c18c28d coindex(c1; c2; d), (depend(c1; c2; d) _ depend(c2; c1; d))This relation receives no further formal analysis here, since establishing ana-phoric dependency is not the concern of anaphoric interpretation, on my view,but rather of anaphora resolution. It will be as well, however, to point out somepossible shortcomings of this model of dependency before moving on.One area that demands more consideration than I am able to give it here isplural anaphora. It is common for a plural anaphor to anaphorically depend onmultiple distinct constituents, as in



Towards a Speci�cation of Quanti�cation and Anaphora 67Johni met Maryi at the station. Theyi caught a bus home.I have so far said nothing about depend that would rule out They depending bothon John and onMary . But in order to avoid dealing with the construction of pluralentities in the semantics, I shall assume in what follows that the �rst argument ofdepend is a function of the second, i.e., that8c18c28d(depend(c1; c2; d) ^ depend(c3; c2; d))) c1 = c3A deeper challenge to this formalization comes from those anaphors, typicallyanaphoric uses of de�nite descriptions, whose interpretation may be dependenteither on a syntactic antecedent or on general discourse context, with this lat-ter possibly having no direct representation in the syntax at all. Because suchanaphors display a continuous range of usage between the two extremes, it ishard to know at what point to give up on a purely syntactic model of anaphoricdependency, such as my relation depend. One intermediate position is that ofrelational uses of de�nite descriptions, such asJohn bought a new car. He had to replace the engine.where the engine is intended to refer to the engine of the new car that Johnbought. Should this kind of relationship be indicated with a device like depend?For the purposes of my analysis, I choose to draw the line at anaphoric useswhose interpretation requires any information not directly present in the semanticrepresentation of discourse; thus I do not expect depend to hold between, say, anew car and the engine in the last example.There is one additional issue relevant to this discussion. Pronouns, too, neednot derive their interpretation anaphorically, in the sense of being directly de-pendent on some, generally prior, syntactic constituent. It is common for theirreference to be �xed demonstratively, but it is also possible for pronouns to referto some entity made salient by the linguistic context, without that entity beingthe referent of any expression. An example might be:A: Mary has got married again, you know.B: Really? Who is he?It has been argued that such `pragmatic' pronouns introduce ambiguity into sen-tences that might otherwise seem unambiguous, and furthermore, that this am-biguity plays a role in the explanation of certain other phenomena, most notablyverb phrase ellipsis (see, e.g., Partee and Bach 1981, and references therein). Soit is claimed that inJohn believed that he would win the case, and so did Bill.the source of the strict/sloppy ambiguity (whether Bill believes that John or Billwould win the case) is a parallel ambiguity in the �rst clause. If he is anaphorically



68 Chapter 5dependent on John, then the property picked up by the ellipsis is `x believes thatx will win the case'. Whereas if he is a pragmatic pronoun that just happens torefer to John, then the property is `x believes that John will win the case'.It happens that some recent work on VP ellipsis (Dalrymple, Shieber andPereira 1991) locates the strict/sloppy distinction elsewhere, and does not requirethat the �rst clause be ambiguous. In any case, what is important for my purposesis that no truth-conditional ambiguity is introduced by the possibility of a prag-matic pronoun in the example just given|hence I can assume a single semanticrepresentation, in my terms. This does not, of course, mean that my speci�cationscannot apply to those theories which choose to recognize an ambiguity at somenon-truth-conditional level, even where this has a representation in the modeltheory.5.7 Formalizing quanti�er scopeIn order that principle (A) can be tested for an arbitrary object theory it remainsto formalize my notion of derivative syntactic scope. I shall express this via arelation syn-scope, to be true of two syntactic constituents just in case the �rstone is a quanti�er expression whose (actual semantic) scope includes the semanticcorrelate of the second. There are a number of di�culties to be overcome if thisrelation is to be de�nable on a broad range of theories. The chief of these are:1. Dealing with scope ambiguity;2. Presenting quanti�er scope relations in the semantics in a uniform way;3. Connecting quanti�er expressions with quanti�ers;4. Connecting arbitrary constituents with scope domains.I consider them in turn.5.7.1 Scope ambiguityIt would be possible to make syn-scope a ternary relation like depend, saying thatsyn-scope(c1; c2; d) holds just when c1 and c2 stand in an appropriate quanti�erscope relation to each other as constituents of d, under some scoping of thequanti�ers in d. This approach makes scope ambiguity implicit. But it has thedisadvantage that one cannot then hold �xed a particular scoping of a discourseand state additional constraints that hold only per fully-scoped interpretation.Thus I choose to augment syn-scope with an additional argument that standsfor a scoped semantic representation, or meaning, so that syn-scope(c1; c2; d;m) isto be true just in case m is an interpretation of d, c1 and c2 are both constituentsof d, and (in a sense to be made precise) the semantic correlate of c2 is in the



Towards a Speci�cation of Quanti�cation and Anaphora 69scope of the semantic correlate of c1. (Chapter 3 of Ladusaw 1979 comes to thesame conclusion regarding the incorporation of an interpretation argument intothe scope relation.)5.7.2 Uniform presentation of scope relationsAt the level of semantic representation, quanti�ers can be incorporated into alogical language in a variety of ways. Traditional �rst-order predicate logic usesthe quanti�er pre�xes 8x and 9x to bind the variable x in an open formula�(x). Logically equivalent variable-free languages (usefully surveyed in Quine1976, though see also Grandy 1976 and Cresswell 1990) tend to view quanti�ersas operators on syntactic expressions that correspond to predicates or relations,with the application of a quanti�er reducing by one the arity of a relation, e.g.,E�.Natural language, of course, possesses quanti�er expressions whose semanticscannot be captured with only the �rst-order quanti�ers (given no additional the-ory). Such generalized quanti�ers4 have the property that they form a propositionby operating on two predicate expressions, rather than one. For variable-freelanguages, this extension is easily managed, since there must already be provisionfor binary operators (the truth-functional ones) on predicate expressions; for thetraditional kind, it's necessary to add an additional kind of syntactic construction,such as most(x; �(x);  (x)). If the language has operators of intensional abstrac-tion, on the other hand, then adding generalized quanti�ers can be more like thevariable-free case: most(�x�(x); �y (y)).In all these cases, a quanti�er takes the form either of an operator or a con-nective, with arity varying from one to three. I shall assume that for an arbitraryobject theory the quanti�cational import of its semantic representations can beexpressed via a mapping to a logical language that has one of these forms ofquanti�er representation. It is for this language, then, that the notion of semanticscope is de�ned: the semantic scope of a quanti�er is simply all of the expressionsthat it applies to, be that as an operator or a connective. The actual structureof these expressions will vary from object theory to object theory; and I wish toavoid having to know what this structure is, wherever possible. So the relationsem-scope is to be de�ned for arbitrary symbol instances of the object theory'squanti�cational language. And as for syn-scope, we must relativize to the particu-lar reading, or scoping, in question. Thus we obtain a relation sem-scope(q; s;m),intended to be true just in case the interpretation m maps to a formula of thequanti�cational language in which q is a quanti�er instance and s is a symbolinstance that occurs as a substring of one of q's arguments.A consequence of this de�nition is that the conventional notions `restriction'4I follow the usage (contrary to that of Barwise and Cooper 1981) that regards the semanticcorrelate of, e.g., most as a quanti�er. The word most itself may be called a quanti�cationaldeterminer.



70 Chapter 5and `scope' for a natural language generalized quanti�er are subsumed into onedomain for the purposes of sem-scope. This is intentional: the arguments abovein defence of principle (A) apply equally to the restriction and scope of a quanti-�cational determiner.5.7.3 Connecting quanti�er expressions with quanti�ersFrom what I have said already, syn-scope(c1; c2; d;m) can only hold when c1 isa quanti�er noun phrase. I require an object theory to provide the means foridentifying such constituents; this is not a problem for any theory that I knowof. More problematic is ensuring that we can connect such a constituent with aquanti�er operator or connective in the language postulated above. It is su�cientto obtain a connection between a quanti�er NP and a quanti�er at the level ofthe object theory's semantic representation, but this is not always immediatelyavailable. While it is true that a meaningful quanti�er phrase in the syntax mustgive rise to a corresponding quanti�er at some level of the semantics, processes mayintervene to render the connection weak, and possibly to eliminate it altogether inthe �nal representation. For a simple example of the latter, consider the analysisof Bill is a man.in Montague's PTQ. The logical form given by Montague isman0�(b)in which no quanti�er is present. All that has happened is that (in additionalto the normal lambda-reductions) some equational reasoning has been applied toeliminate the existential quanti�er associated with a man. But given my approach,this makes it impossible to determine the scope of a man. So it's necessary forme to stipulate that the object theory provide access to semantic representationsbefore conversions that might eliminate quanti�ers have been performed on them.For PTQ at least, this requires no changes to the formulation of the theory.5.7.4 Connecting constituents with scope domainsThe only problem that remains before we can claim to have shown how syn-scopemay be de�ned for any object theory is to obtain, for a given discourse inter-pretation, a connection between an arbitrary constituent of the discourse and asymbol instance in the quanti�cational formula corresponding to the discourse'ssemantic representation. We certainly cannot expect to be able to do this forevery constituent of the discourse|some obvious candidates for which there maybe no such connection are dummy elements like the semantically empty It of It'sraining . But in order to make syn-scope capable of expressing the relevant part ofprinciple (A) we do need to be able to do this for all NP anaphors.



Towards a Speci�cation of Quanti�cation and Anaphora 71The problem is that we cannot assume for every semantic theory that NPswill always acquire some concrete presence|as a symbol, or string of symbols|inthat theory's semantic representations. Some of the variable-free logical languagesdescribed above simply do not possess the category of singular term, and eventhose that do will still have no explicit representation for bound pronouns. So it isnecessary to take a more indirect route towards the scope domain correspondingto an arbitrary anaphor.My strategy is �rst to observe this: the purpose of using an anaphor is to saysomething about whatever it is that the anaphor stands for. The `saying somethingabout' is invariably expressed in semantic representations as the use of a predicateor relation, and it is a matter of logic that a predicate and its argument cannot bein di�erent scope domains. Furthermore, it is reasonable to require some explicitsemantic representation for every predicate recognized by the object theory. SoI propose to establish the scope domain for an anaphor in terms of that for thesemantic entity that is predicated of it. The only remaining di�culty is to �nd away of reaching the syntactic correlate of that semantic entity from the syntacticlocation of the anaphor. My claim at this point is that every anaphor is a syntacticargument (complement) of a constituent (its `immediate syntactic functor') thatmust have some concrete semantic representation.Finding this representation is not necessarily straightforward, however. Theeasy, common case is when the anaphor is the syntactic argument of a open-classlexical head that receives a uniform, concrete semantic interpretation. The di�cultcases are when the anaphor's immediate syntactic functor1. has a syncategorematic interpretation;2. has a purely syntactic function (is semantically empty);3. is non-lexical.An example of (1) is the special treatment of the copula in PTQ (and many othersemantic theories): be is interpreted not as be0�, or even as `=', but rather as�P�x�P (̂ �y(�x = �y)). A typical case of (2) is subcategorized-for prepositionsof oblique arguments to verbs. One place that (3) crops up is in combinatorycategorial grammar (CCG; see, e.g., Steedman 1988), where an auxiliary VPsuch as may wash is a syntactic functor. In each of these cases, the immediatesyntactic functor of an NP does not correspond to the NP's immediate functor,or predicated-of relation, in the semantics.These di�culties can be overcome if we are prepared to accept that an ana-phor's scope domain may have to be determined via a predicate or relation that isnot necessarily the immediate predicating entity for the anaphor's interpretation.So (1) and (2) can be dealt with by stipulation: these cases are easy to recognizein a grammar, and we can simply require that in the case of (1), some concretesemantic element is associated with the functor (this is simply `=' for PTQ) andthat in (2) semantically empty functors don't count, so we look in turn at the



72 Chapter 5immediate syntactic functor of the anaphor's immediate syntactic functor, and soon. For (3), it is su�cient to �nd any constituent of the non-lexical functor thathas a concrete semantic interpretation, and use that to determine the scope|inmay wash him, the semantic correlates of both verbs must be in the same scopedomain as him.In summary, we look for the smallest syntactic constituent containing theanaphor in question that has some concrete semantic presence|not necessarilya well-formed expression of the semantic representation language, merely a sym-bol instance|and follow that instance through to the quanti�cational languagediscussed above, where we use sem-scope to determine whether or not the anaphoris in the scope of the relevant quanti�er expression.5.8 Speci�cations for other areasMy attempts to develop modular semantic speci�cations have so far been con�nedto the domain of quanti�cation and anaphora. However I envisage extending theapproach to many other areas. Obvious candidates, given the work describedabove, are areas such as generalized quanti�cation (with capturing the constraintsidenti�ed in Barwise and Cooper 1981 being a natural aim) and binding theory, inthe sense of syntactic constraints on anaphoric dependence. I include here somepreliminary thoughts on the latter topic.5.8.1 Anaphora and binding theoryThat collection of constraints on anaphora that go by the name `binding theory'are essentially constraints on anaphora resolution.As a collection of principles, binding theory originates with Chomsky's GBtheory, and �nds alternative expression in LFG (Kaplan and Bresnan 1982; for agood summary of LFG binding theory see Sells 1985b) and in HPSG.Here is a �rst stab at representing the principles of binding theory:(A) re
exive reciprocal(x) ^ constituent(x; s)) 8d(binding domain(x; s; d)) 9x0 bind(x0; x; d))(B) personal pronoun(x) ^ constituent(x; s)) 8d(binding domain(x; s; d)) :9x0 bind(x0; x; d))(C) non anaphor(x) ^ constituent(x; s)) :9x0 bind(x0; x; s)Then we can express the actual constraints of GB, LFG and HPSG as follows:GB Here binding domain(x; s; d) is true just in case d is a governing category forthe syntactic object x (with both x and d contained in the sentence s). The



Towards a Speci�cation of Quanti�cation and Anaphora 73relation bind(x; x0; d) holds when x is in an A-position, x c-commands x0, xand x0 are coindexed, and both x and x0 are contained in d.We can de�ne re
exive reciprocal, personal pronoun and non anaphor in termsof the standard GB binary features `anaphoric' and `pronominal'.LFG Here binding domain(x; s; d) holds if d is an appropriate nucleus for x, wherethis notion is somewhat language-dependent. Similarly, bind(x; x0; d) is trueif x is the antecedent of x0 in d, but there may also be stipulations about xbeing a subject, or f-commanding x0.HPSG In this theory, binding domain(x; s; d) holds if d is a SUBCAT list on whichx occurs. The relation bind(x; x0; d) breaks down into two cases: (i) if d isa SUBCAT list, then the relation is true if x occurs before (is less obliquethan) x0 on that list; (ii) else if d is a sentence, then the relation is truejust in case there exist x00 and SUBCAT list d0 such that bind(x; x00; d0) anddominate(x00; x0; d).This is no more than a sketch, but I hope it indicates one way in which theapproach I have been arguing for could be extended.5.9 SummaryIn this chapter I have promoted the idea of modular semantic speci�cations bysaying how they should work, describing a strategy for creating them, and applyingthis strategy to the particular area of quanti�cation and anaphora.In considering this domain I started by carefully distinguishing the notionsof resolution and interpretation, of binding, coindexing and dependence, and Idetermined that the natural place for a theory that intentionally abstracts awayfrom details of particular theories of quanti�cation and anaphora to make a sub-stantive claim about their interaction is in the combination of derivative syntacticquanti�er scope and anaphoric dependence. I formulated principle (A) relatingthese notions, defended it empirically, and showed how we might arrive at precisenotions of scope and dependence that allow (A) to hold for every extant theorythat addresses quanti�cation and anaphora.To what end? Well, I anticipated some clari�cation of the notions involvedin quanti�cation and anaphora when I embarked on this work, and I believe I'vesucceeded in that goal. It is very easy, when following the literature in this area,to focus on interactions between the two phenomena that are consequences solelyof the theories involved, and which disappear in rival, though perhaps not vastlydi�erent, accounts. It is now clear that there are notions of dependence and scopewhich have validity across all theories, and I believe this work makes it easier tocategorize aspects of object theories according to whether they are irrelevant tothe interaction between quanti�cation and anaphora, relevant to it in isolation, orrelevant but incapable of formalization without consideration of related theory.



74 Chapter 5What was to some extent unexpected was the particular notions which endedup being relevant, especially that of derivative syntactic scope. The principle (A)was also something that arose out of my investigations, and which appears tocapture a worthwhile generalization. Now it is certainly possible that (A) is false,in the sense that some object theory of quanti�cation and anaphora may falsify it,but should that occur I believe the way in which it is falsi�ed will shed importantlight on the theory in question, and that is one of my overriding aims.Finally, although I have so far only pursued this kind of modular speci�cationin the case of quanti�cation and anaphora, I do not see anything in the approachthat restricts it to that domain. I give some evidence of this by looking verybrie
y at binding theory in a similar way. Indeed, it is worth pointing out that I seepotential for this kind of metatheorizing in more overtly logical areas: chapter 3 hasalready looked at abstraction and predication (where from a modular perspectivewe will surely �nd some interesting interfaces with generalized quanti�cation),and I would like to apply this approach to the question of whether it's possibleto formally specify something about predicate logic alone|saying nothing aboutabstraction or the predication of abstracts|that holds of both �rst-order systemsand higher-order ones such as IL.



Chapter 6Conclusions and Prospects
6.1 ReviewI began by clarifying what I meant by \formal semantics", and on what basis Ichose to compare semantic theories. This basis is entailment: for the purposes ofthis work, a semantic theory must generate semantic representations over whichit is possible to de�ne a consequence relation.In chapter 2 I attempted to answer the question: why should we abstractover semantic theories? Two answers emerged: �rst, so as to obtain more precisecomparisons of and classi�cations between semantic theories, and second, in orderto address the lack of functional modularity (and type-based security) in existingapproaches. The second response applies notably to contemporary uni�cation-based formalisms, which while being able to state constraints across both syntacticand semantic domains, do so in the absence of true modular structure and anabstract syntax-semantics interface. To some extent, this response is simply theapplication of design principles from software engineering to the construction ofsystems for semantic interpretation.The second part of chapter 2 analyzed the various forms that metatheoreticalstatements about semantic theories might take. The primary result is a four-wayclassi�cation of approaches to semantic abstraction, based on whether the semanticrealm itself, or the syntax-semantics interface, is being abstracted over. I opted forabstraction over both, in search of maximum generality. Two key further optionswere identi�ed: interpretation of metatheory in object theory, or vice versa. Thelatter option has the attraction of unifying all semantic notions in a `universal'language, but owing to scepticism about �nding a truly explanatory such language(as opposed to a mere disjunction of existing ones), I concluded that the �rst optionshould be promoted.This classi�catory work was able to categorize the approach of Johnson andKay (1990) as abstracting over the semantic domain but not the interface, and inchapter 4 I analyzed that paper in some detail. I'll consider now what we learnedabout that kind of semantic abstraction from my analysis.75



76 Chapter 6Most importantly, we discovered that Johnson and Kay's framework in factcaptures only a very limited kind of abstraction over semantic theories. Everyimplementation of the Johnson and Kay semantic primitives that `makes in-ferential sense' is just a notational variant of Kamp's discourse representationlanguage (or more accurately, of the minimal DR-language de�ned in x4.6.1) inthe sense made precise by the speci�cation of x4.6.3. There is more freedom inthe anaphoric component of a Johnson and Kay implementation to depart fromDRT behaviour, but the primitives are clearly designed with this behaviour inmind. Furthermore, recall that the semantic primitives must be used in a numberof special combinations in order that the inferential and anaphoric elements shallinteract appropriately. These combinations are actually established by the way theprimitives are embedded in the syntax|as extensions to grammar rules|so it isthe case that the syntax is forced to know more about the intended interpretationof the primitives than is desirable.1I regard these results about the Johnson and Kay system as lending support tomy decision to adopt a more general approach to semantic abstraction. Chapter 3applied this approach to just two semantic notions, those of predication andintensional abstraction, but did so for three semantic theories that take veryde�nite positions on the correct treatment of these notions and use quite di�erentformalisms to do so. The outcome was the generation of formal statements of thesealternative positions that are in themselves well known, but have not previouslyto my knowledge been given precise theory-neutral formulations.Finally, in chapter 5, I speculated about a programme that would embraceall the major areas of semantic theorizing in a modular fashion. I chose todemonstrate this approach for the topic of quanti�cation and anaphora, which doesnot have a naturally modular character, and so constitutes a revealing test. Myresults were limited, but went some way in developing consistent metatheoreticalnotions|such as anaphoric dependence and derivative syntactic scope|that Iwas able to interpret across semantic theories with apparently incompatible ap-proaches to semantic representation. I obviously cannot claim to have capturedall cross-theoretical constraints on quanti�cation and anaphora, but I believe Ihave shown that non-trivial constraints can be expressed in a formal frameworkthat is applicable to a very wide range of semantic theories. Furthermore, I hopeto have illuminated the kind of theorizing that will be necessary to sustain trulytheory-independent semantic modules.6.2 Future workThis thesis goes only a little way towards the goal of fully modular reusable se-mantic speci�cations. Continuing the theme of chapter 5, I hope in future work toaddress other topics within formal semantics much more thoroughly, and to further1I owe this observation to unpublished work by Millies and Pinkal.



Conclusions and Prospects 77develop the detailed modelling of semantic formalisms and the syntax-semanticsinterface.The approach I have adopted o�ers generality at the price of no immediatecomputational interpretation. Tackling this latter de�cit is a prime candidate forfuture research; if we could �nd a mode of semantic abstraction that o�ers thecombination of su�cient descriptive power and tractable computational propertieswe would have a powerful tool indeed.But for now, given the state of semantic theorizing, I prefer to side with gener-ality. By using formal speci�cations tailored for speci�c areas of semantics we needneither impose nor propose a single semantic formalism into which all theories aresupposed to be translatable. I regard this as a valuable methodological positionin a world where consensus on the right semantic theory for natural language stillseems a long way o�.



Appendix AImplementing the Russell'sproperty speci�cationThe essence of the two implementations of RUSSELL is contained in the de�nitionof the ML functors BealerToRussell and ChierchiaTurnerToRussell. Whatreally matter here are the de�nitions of abs and pred. For the latter, we just adoptthe de�nitions given at the end of the previous section, but we need to take alittle more care with abs in the case of PT2. In order that the subsort relationshold, it is essential that the sort Var becomes the sort of variables of type nf inPT2. But PT2 only allows lambda-abstraction over variables of type e. Hence theactual de�nition of abs must beabs(�; �) = \�xe(9�: � = xe ^ �)The last three lines of the following code construct the Russell property in the threecases of the minimal logic itself, the Bealer implementation, and the Chierchiaand Turner implementation. After executing these, the following dialogue withthe system causes it to display the strings corresponding to the Russell propertyin each case (lines beginning with the prompt `-' are user input):- MR.rstr;val it = "abs(x,not(pred(x,x)))" : string- BR.rstr;val it = "[~(x @ x)]_x" : string- CTR.rstr;val it = "^L x_e[((E x_nf. (x_nf = x_e)) & ~!%x_nf(x_nf))]": string(* The RUSSELL specification -- really: just the syntax *)signature RUSSELL =sig type Var 78



Implementing the Russell's property speci�cation 79type Enttype Formtype Ptyval varId : string -> Varval entVar : Var -> Entval ptyVar : Var -> Ptyval not : Form -> Formval abs : Var * Form -> Ptyval pred : Pty * Ent -> Formstructure print :sig val var : Var -> stringval ent : Ent -> stringval form : Form -> stringval pty : Pty -> stringendend(* With something providing the RUSSELL syntax, construct Russell's property *)functor MakeRussell(R : RUSSELL) =structval r =let val x = R.varId "x";in R.abs(x,R.not(R.pred(R.ptyVar x,R.entVar x)))endval rstr = R.print.pty rend(* Provide the RUSSELL syntax directly *)structure MinimalRussell : RUSSELL =structdatatype Var = VarId of stringdatatype Ent = EntVar of Vardatatype Form = FormNot of Form | FormPred of Pty * Entand Pty = PtyVar of Var | PtyAbs of Var * Formfun varId s = VarId sfun entVar v = EntVar vfun ptyVar v = PtyVar vfun not p = FormNot pfun abs (v,p) = PtyAbs (v,p)fun pred (p,e) = FormPred (p,e)structure print =structfun var (VarId s) = sfun ent (EntVar v) = var vfun form (FormNot p) = "not(" ^ form p ^ ")"| form (FormPred (p,e))= "pred(" ^ pty p ^ "," ^ ent e ^ ")"



80 Appendix Aand pty (PtyVar v) = var v| pty (PtyAbs (v,p))= "abs(" ^ var v ^ "," ^ form p ^ ")"endend(* Syntax of LQC *)signature BEALER =sig type Vartype Termtype Reltype Formval varId : string -> Varval termVar : Var -> Termval termAbs : Form * Var list -> Termval relPred : Relval rel : string * int -> Relval formRel : Rel * Term list -> Formval formNot : Form -> Formval formEq : Term * Term -> Formval formAnd : Form * Form -> Formval formExists : Var * Form -> Formstructure print :sig val var : Var -> stringval term : Term -> stringval rel : Rel -> stringval form : Form -> stringendend(* Provide it *)structure Bealer : BEALER =structdatatype Var = VarId of stringdatatype Rel = RelId of string * int | RelPredexception BadReldatatype Term = TermVar of Var | TermAbs of Form * Var listand Form = FormRel of Rel * Term list| FormEq of Term * Term| FormNot of Form| FormAnd of Form * Form| FormExists of Var * Formexception BadFormRelfun varId s = VarId sfun rel (s,n) = if (n > 0) then RelId (s,n) else raise BadRelval relPred = RelPredfun termVar v = TermVar vfun termAbs (f,vl) = TermAbs (f,vl)



Implementing the Russell's property speci�cation 81fun formRel (RelId (s,n),tl)= if (length tl = n) then FormRel (RelId (s,n),tl)else raise BadFormRel| formRel (RelPred,[s,t]) = FormRel (RelPred,[s,t])| formRel (RelPred,_) = raise BadFormRelfun formEq (s,t) = FormEq (s,t)fun formNot f = FormNot ffun formAnd (f,g) = FormAnd (f,g)fun formExists (v,f) = FormExists (v,f)structure print =structfun var (VarId s) = sfun polylist _ [] = ""| polylist f [e] = f e| polylist f (h :: t) = f h ^ "," ^ polylist f tfun varlist vl = polylist var vlfun rel (RelId (s,_)) = s| rel RelPred = "@"fun term (TermVar v) = var v| term (TermAbs (f,[]))= "[" ^ form f ^ "]"| term (TermAbs (f,vl))= "[" ^ form f ^ "]_" ^ varlist vland form (FormRel (RelId (s,n),tl))= rel (RelId (s,n)) ^ "(" ^ termlist tl ^ ")"| form (FormRel (RelPred,[s,t]))= "(" ^ term s ^ " " ^ rel RelPred ^ " "^ term t ^ ")"| form (FormEq (s,t)) = term s ^ " = " ^ term t| form (FormNot f) = "~" ^ form f| form (FormAnd (f,g))= "(" ^ form f ^ " & " ^ form g ^ ")"| form (FormExists (v,f))= "(E " ^ var v ^ ". " ^ form f ^ ")"and termlist tl = polylist term tlendend(* Interpret RUSSELL syntax in Bealer *)functor BealerToRussell(B : BEALER) : RUSSELL =structtype Var = B.Vartype Ent = B.Termtype Form = B.Formtype Pty = B.Termfun varId s = B.varId sfun entVar v = B.termVar vfun ptyVar v = B.termVar vfun not p = B.formNot pfun abs (v,p) = B.termAbs (p,[v])fun pred (p,e) = B.formRel (B.relPred,[e,p])



82 Appendix Astructure print =structfun var v = B.print.var vfun ent e = B.print.term efun form p = B.print.form pfun pty p = B.print.term pendend(* Syntax of PT_2 *)signature CHIERCHIA_TURNER =sig type Sorttype Vartype Constype Enttype Funcval i : Sortval u : Sortval nf : Sortval e : Sortval func : Sort * Sort -> Sortval varId : Sort * string -> Varval cons : Sort * string -> Consval entVar : Var -> Entval entCons : Cons -> Entval funcCons : Cons -> Funcval funcAbs : Var * Ent -> Funcval funcDown : Ent -> Funcval funcTrueDown : Ent -> Funcval entUp : Func -> Entval entPred : Func * Ent -> Entval entTrue : Ent -> Entval entNot : Ent -> Entval entEq : Ent * Ent -> Entval entAnd : Ent * Ent -> Entval entExists : Var * Ent -> Entstructure print :sig val sort : Sort -> stringval var : Var -> stringval cons : Cons -> stringval ent : Ent -> stringval func : Func -> stringendend(* Provide it *)structure ChierchiaTurner : CHIERCHIA_TURNER =struct



Implementing the Russell's property speci�cation 83datatype Sort = I | U | NF | E | SortFunc of Sort * Sortexception BadSortdatatype Var = VarId of Sort * stringexception BadVardatatype Cons = ConsId of Sort * stringdatatype Ent = EntVar of Var| EntCons of Cons| EntUp of Func| EntPred of Func * Ent| EntTrue of Ent| EntNot of Ent| EntEq of Ent * Ent| EntAnd of Ent * Ent| EntExists of Var * Entand Func = FuncCons of Cons| FuncAbs of Var * Ent| FuncDown of Ent| FuncTrueDown of Entexception BadFuncAbsexception BadFuncDownexception BadFuncTrueDownexception BadEntUpexception BadEntPredexception BadEntNotexception BadEntAndexception BadEntExistsval i = Ival u = Uval nf = NFval e = Efun func (SortFunc _,_) = raise BadSort| func (s,t) = SortFunc (s,t)fun source (SortFunc (s,_)) = sfun target (SortFunc (_,t)) = tfun le (I,U) = true| le (I,E) = true| le (U,E) = true| le (NF,E) = true| le (SortFunc (E,I),SortFunc(E,E)) = true| le (s,t) = (s = t)fun varId (SortFunc _,_) = raise BadVar| varId (s,str) = VarId (s,str)fun cons (s,str) = ConsId (s,str)fun entVar v = EntVar vfun entCons c = EntCons cfun funcCons c = FuncCons cfun sortEnt (EntVar (VarId (s,_))) = s| sortEnt (EntCons (ConsId (s,_))) = s| sortEnt (EntUp _) = NF| sortEnt (EntPred (f,_)) = target (sortFunc f)| sortEnt (EntTrue _) = I| sortEnt (EntNot _) = I



84 Appendix A| sortEnt (EntEq (_,_)) = I| sortEnt (EntAnd (_,_)) = I| sortEnt (EntExists (_,_)) = Iand sortFunc (FuncCons (ConsId (s,_))) = s| sortFunc (FuncAbs (_,_)) = SortFunc (E,E)| sortFunc (FuncDown _) = SortFunc (E,E)| sortFunc (FuncTrueDown _) = SortFunc (E,I)fun funcAbs (VarId (E,id),e) = FuncAbs (VarId (E,id),e)| funcAbs (_,_) = raise BadFuncAbsfun funcDown e = if (sortEnt e = NF) then FuncDown eelse raise BadFuncDownfun funcTrueDown e = if (sortEnt e = NF) then FuncTrueDown eelse raise BadFuncTrueDownfun entUp f = if (le (sortFunc f, SortFunc (E,E))) then EntUp felse raise BadEntUpfun entPred (f,e) = if (le (sortEnt e, source (sortFunc f)))then EntPred (f,e)else raise BadEntPredfun entTrue e = EntTrue efun entNot e = if (sortEnt e = I) then EntNot e else raise BadEntNotfun entEq (e,f) = EntEq (e,f)fun entAnd (e,f) = if ((sortEnt e = I) andalso (sortEnt f = I))then EntAnd (e,f)else raise BadEntAndfun entExists (v,e) = if (sortEnt e = I) then EntExists (v,e)else raise BadEntExistsstructure print =structfun sort I = "i"| sort U = "u"| sort NF = "nf"| sort E = "e"| sort (SortFunc (s,t))= "<" ^ sort s ^ "," ^ sort t ^ ">"fun var (VarId (s,id)) = id ^ "_" ^ sort sfun cons (ConsId (s,id)) = id ^ "_" ^ sort sfun ent (EntVar v) = var v| ent (EntCons v) = cons v| ent (EntUp f) = "^" ^ func f| ent (EntPred (f,e))= func f ^ "(" ^ ent e ^ ")"| ent (EntTrue e) = "!" ^ ent e| ent (EntNot e) = "~" ^ ent e| ent (EntEq (e,f))= "(" ^ ent e ^ " = " ^ ent f ^ ")"| ent (EntAnd (e,f))= "(" ^ ent e ^ " & " ^ ent f ^ ")"| ent (EntExists (v,e))= "(E " ^ var v ^ ". " ^ ent e ^ ")"and func (FuncCons c) = cons c| func (FuncAbs (v,e))= "L " ^ var v ^ "[" ^ ent e ^ "]"



Implementing the Russell's property speci�cation 85| func (FuncDown e) = "%" ^ ent e| func (FuncTrueDown e) = "!%" ^ ent eendend(* Interpret RUSSELL syntax in ChierchiaTurner *)functor ChierchiaTurnerToRussell(CT : CHIERCHIA_TURNER) : RUSSELL =structtype Var = CT.Vartype Ent = CT.Enttype Form = CT.Enttype Pty = CT.Entfun varId s = CT.varId (CT.nf,s)fun entVar v = CT.entVar vfun ptyVar v = CT.entVar vfun not p = CT.entNot pfun abs (v,p) =let val x = CT.varId (CT.e,"x")in CT.entUp (CT.funcAbs (x,CT.entAnd (CT.entExists (v,CT.entEq (entVar v,entVar x)),p)))endfun pred (p,e) = CT.entPred (CT.funcTrueDown p,e)structure print =structfun var v = CT.print.var vfun ent e = CT.print.ent efun form p = CT.print.ent pfun pty p = CT.print.ent pendend(* Store the results of these interpretations *)structure MR = MakeRussell(MinimalRussell);structure BR = MakeRussell(BealerToRussell(Bealer));structure CTR = MakeRussell(ChierchiaTurnerToRussell(ChierchiaTurner));



Appendix BImplementing the Johnson andKay speci�cations
B.1 The inferential map U0 and the function DA Prolog implementation of x4.6's U0 map follows.:- op(400, xfy, &).:- op(950, xfx, ==>).u0(P, exists(A, PP)) :- % at the top level, existentially quantifyv(P, A), % any unbound variablesu1(P, A, PP). % then apply u1u1(P & Q, A, PP & QQ) :- !, % recurse over conjunctionsu1(P, A, PP),u1(Q, A, QQ).u1((P ==> Q), A, forall(XS, (PP ==> exists(YS, QQ)))) :- !,v(P, VP), % here we must pull out the right variablesdiff(VP, A, XS), % for overall universal quantificationunion(XS, A, B), % and for existential quantificationv(Q, VQ), % in the consequent...diff(VQ, B, YS),union(YS, B, C),u1(P, B, PP), % ...before recursing on the antecedentu1(Q, C, QQ). % and consequentu1(P, _, P) :-atomp(P), !.atomp(P) :-functor(P, N, _),N \== '&',N \== '==>'.v(P & Q, A) :- !, 86



Implementing the Johnson and Kay speci�cations 87v(P, VP),v(Q, VQ),union(VP, VQ, A).v((_ ==> _), []) :- !.v(P, A) :-atomp(P), !,P =.. [_|A].union([], X, X).union([H|X], Y, Z) :-member(H, Y),union(X, Y, Z).union([H|X], Y, [H|Z]) :-\+ member(H, Y),union(X, Y, Z).diff([], _, []).diff([H|X], Y, Z) :-member(H, Y),diff(X, Y, Z).diff([H|X], Y, [H|Z]) :-\+ member(H,Y),diff(X, Y, Z).member(X, [X|_]).member(X, [_|Y]) :-member(X, Y).The output of u0 may contain representations of quanti�cation over empty lists ofvariables; post-composing u0 with the predicate simp de�ned below will eliminatethese.simp(P & Q, PP & QQ) :- !,simp(P, PP),simp(Q, QQ).simp(P ==> Q, PP ==> QQ) :- !,simp(P, PP),simp(Q, QQ).simp(exists([],P), PP) :- !,simp(P, PP).simp(forall([],P), PP) :- !,simp(P, PP).



88 Appendix Bsimp(exists(X,P), exists(X,PP)) :- !,simp(P, PP).simp(forall(X,P), forall(X,PP)) :- !,simp(P, PP).simp(P, P).The following Prolog code implements the map D introduced in x4.6 for the`discourse-representation' implementation::- op(400, xfy, &).d([T0|_]-[T1|_], MDR) :-subtract(T0, T1, L1), % realize difference lists as single listnoanaph(L1, L2), % eliminate anaphoric indexesandify(L2, MDR). % turn lists into conjunctionssubtract([], L, L).subtract(L1, L2, []) :-L1 == L2, !.subtract(_, X, _) :-var(X), !, fail.subtract(T0, [H1|T1], [H1|T2]) :-subtract(T0, T1, T2).noanaph([], []).noanaph([i(_)|T1], T2) :- !,noanaph(T1, T2).noanaph([(A1==>B1)|T1], [(A2==>B2)|T2]) :- !,noanaph(A1, A2),noanaph(B1, B2),noanaph(T1, T2).noanaph([H|T1], [H|T2]) :-noanaph(T1, T2).andify([X1], X2) :- !,and1(X1, X2).andify([H1|T], H2 & T2) :-and1(H1, H2),andify(T, T2).and1((A1==>B1), (A2==>B2)) :- !,andify(A1, A2),andify(B1, B2).and1(X, X).The following version of d, together with its additional predicates and those justde�ned, implements D for the `sets-of-infons' implementation:d(@([Sit|_],T,L), MDR) :-



Implementing the Johnson and Kay speci�cations 89subtract(T, L, Infons), % realize difference lists as listinfons(Sit, Infons, TopLevel), % extract top-level infonsexpandsits(TopLevel, Infons, TL2), % and expand situation tags in themnoanaph(TL2, TL3), % eliminate anaphoric indexesandify(TL3, MDR). % turn lists into conjunctionsinfons(_, [], []).infons(Sit, [S:I|T1], [I|T2]) :-Sit == S,infons(Sit, T1, T2).infons(Sit, [S:_|T1], T2) :-Sit \== S,infons(Sit, T1, T2).expandsits([], _, []) :- !.expandsits([(S1==>S2)|T1], I, [(L1==>L2)|T2]) :- !,infons(S1, I, IL1),infons(S2, I, IL2),expandsits(IL1, I, L1),expandsits(IL2, I, L2),expandsits(T1, I, T2).expandsits([H|T1], I, [H|T2]) :-expandsits(T1, I, T2).B.2 The anaphoric maps A and PThe following Prolog code (additional to that in the previous section) implementsA and P for the `discourse-representation' implementation, demonstrating that itsatis�es the above constraints:a([T0|_]-[T1|_], Is) :-subtract(T0, T1, L),indexes(L, Is).p(P-_, Is) :-unvar(P, P1),getinds(P1, Is).indexes([], []).indexes([i(X)|T1], [X|T2]) :- !,indexes(T1,T2).indexes([_|T1], T2) :-indexes(T1,T2).unvar(X, []) :-var(X), !.unvar([], []).unvar([H|T1], [H|T2]) :-unvar(T1,T2).getinds([], []).



90 Appendix Bgetinds([H|T], L) :-unvar(H, H1),indexes(H1, Is),getinds(T, Js),append(Is, Js, L).The `sets-of-infons' implementation also satis�es this speci�cation, as demon-strated by the following code:a(@(S,T,L), Is) :-subtract(T, L, Infons),unvar(S, Sits),indexes(Sits, Infons, Is).p(@(S,T,_), Is) :-unvar(T, Infons),unvar(S, Sits),indexes(Sits, Infons, Is).indexes(_, [], []).indexes(Sits, [S:i(X)|T1], [X|T2]) :-mem(S, Sits), !,indexes(Sits, T1, T2).indexes(Sits, [_|T1], T2) :-indexes(Sits, T1, T2).mem(X, [Y|_]) :-X == Y, !.mem(X, [_|T]) :- member(X,T).
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