View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Edinburgh Research Archive

Abstracting over Semantic Theories

Alexander Guy Brockway Holt

Doctor of Philosophy
University of Edinburgh
1993

https://core.ac.uk/display/429701331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The topic of this thesis is abstraction over theories of formal semantics for natural
language. It is motivated by the belief that a metatheoretical perspective can
contribute both to a better theoretical understanding of semantic theories, and to
improved practical mechanisms for developing theories of semantics and combining
them with theories of syntax.

The argument for a new way to understand semantic theories rests partly
on the present difficulty of accurately comparing and classifying theories, as well
as on the desire to easily combine theories that concentrate on different areas
of semantics. There is a strong case for encouraging more modularity in the
structure of semantic theories, to promote a division of labour, and potentially
the development of reusable semantic modules. A more abstract approach to the
syntax-semantics interface holds out the hope of further benefits, notably a degree
of guaranteed semantic coherence via types or constraints.

Two case studies of semantic abstraction are presented. First, alternative
characterizations of intensional abstraction and predication are developed with
respect to three different semantic theories, but in a theory-independent fashion.
Second, an approach to semantic abstraction recently proposed by Johnson and
Kay is analyzed in detail, and the nature of its abstraction described with formal
specifications.

Finally, a programme for modular semantic specifications is described, and
applied to the area of quantification and anaphora, demonstrating successfully
that theory-independent devices can be used to simultaneously abstract across
both semantic theories and syntax-semantics interfaces.

Acknowledgements

Most of all, I owe a great debt to my supervisor, Ewan Klein, for his kindness,
tolerance, inspiration and continual encouragement.

It has been a privilege to spend the last five years in the Centre for Cognitive
Science. For discussions and arguments that have shaped the ideas which follow I
thank all those that I have known here, but especially David Adger, David Beaver,
Patrick Blackburn, Lawrence Cavedon, Robin Cooper, Martin Emms, Ian Lewin,
Suresh Manandhar, Michael Newton, Mike Reape, Sheila Rock, Catrin Sian Rhys,
Peter Ruhrberg and Henk Zeevat. Beyond Edinburgh I would like to thank Mark
Ryan, and to record the influence of George Bealer’s inspiring lectures at Leuven
in 1990.

[am grateful to everyone who has worked to make CCS such a good place to
be, in particular Robert Dale, Elisabet Engdahl, Betty Hughes, Ewan Klein and
Jeremy Olsen. To Jeremy and the rest of the computing team—thanks for an
environment that I have relied on time and time again.

This thesis would have been impossible without financial support from the UK
Science and Engineering Research Council, for which I am most grateful. It would
have been hard to complete it without the occasional work kindly offered to me
by Robert Dale and Jeremy Olsen.

To my family and to my friends, for all your support—thank you very much.

Finally, I thank Chris Mellish and Henk Zeevat, my examiners, for their con-
structive suggestions.

i

Contents

1 Introduction 1
1.1 Overview 1
1.2 Formal semantics 2
1.3 Entailment 3
1.4 Summary 5
1.5 Synopsis of chapters oL 6

2 The Case for Semantic Abstraction 7
2.1 Arguments 7

2.1.1 Comparison and classification 7
2.1.2 Modularity and coherence 8
2.2 Approaches 11
2.3 Forms of abstraction 13
2.4 SUmMmary ... e 15

3 Case Study 1: IL, PT; and LQC 17
3.1 Intensional entities in semantics 17
3.2 Comparing theorieso 18
3.3 Formal specifications oL 19
3.4 Semantic theories versus intensional logics 20
3.5 Intensional identityo Lo oo 21

3.5.1 Abstraction 21
3.5.2 Propositional identity 22
3.5.3 Predication o 23
3.6 Russell’'s property 25
3.7 Summary ... e 26

4 Case Study 2: Johnson and Kay’s ‘Semantic Abstraction and
Anaphora’ 28
4.1 Introduction 28
4.2 Grammar e e e 29

4.2.1 Semantic values Lo o 30
4.3 Semantic primitiveso oL Lo 32
4.3.1 Sorts 32

il

iv

4.3.2 Interpretations L.
4.4 Implementations
4.4.1 ‘Predicate-logic’
4.4.2 ‘Discourse-representation’
4.4.3 ‘Sets-of-infons’.
4.5 Semantic abstraction 000000 L
4.5.1 Content and behaviour
4.5.2 Constraining inferential behaviour
4.6 Specifying correct implementations
4.6.1 Discourse representation languages
4.6.2 An external specification
4.6.3 An internal specification
4.7 An anaphoric specification
4.7.1 Using external representations
4.7.2 An internal approach
4.8 Summary

5 Towards a Specification of Quantification and Anaphora
5.1 Abstraction and modularity
5.2 Strategies L
5.3 Anaphora: resolution and interpretation
5.4 Bound and unbound anaphors
5.5 Constraints on anaphoric interpretation: scope
5.6 Formalizing anaphoric dependency
5.7 Formalizing quantifier scope

5.7.1 Scope ambiguity
5.7.2 Uniform presentation of scope relations
5.7.3 Connecting quantifier expressions with quantifiers
5.7.4 Connecting constituents with scope domains . . .
5.8 Specifications for other areas
5.8.1 Anaphora and binding theory
5.9 Summary

6 Conclusions and Prospects
6.1 Review
6.2 Futurework

A TImplementing the Russell’s property specification

B Implementing the Johnson and Kay specifications
B.1 The inferential map U, and the function D
B.2 The anaphoricmaps Aand P

References

Contents

75
...... 75
...... 76

78

86
...... 86
...... 89

91

Chapter 1

Introduction

1.1 Overview

This thesis is about formal semantics for natural language. The activity of formal
semantics normally involves making precise statements about the meaning of lin-
guistic expressions. To that extent, I do no formal semantics in what follows:
there are no claims that such-and-such a sentence must be analyzed in this way,
and must have that meaning, which in turn must be formalized just so. Instead,
this thesis is about the theories that do make such claims: its propositions are
metatheoretical.

The belief which motivates the following chapters is that there are interesting
things to say in formal semantics which can only be said, or can best be said, by
taking a viewpoint outside any particular theory. So this work is not committed
to any one of the many formal theories of natural language semantics currently on
offer. What it is committed to is formal theorizing about linguistic meaning in the
tradition that stems from Frege, Russell and Montague, and it places particular
emphasis on certain aspects of this tradition, as I shall shortly describe.

From my metatheoretical perspective, I do three things. First, I describe
formally how two core semantic notions vary across three representative object
theories. Second, I analyze one particular semantic framework that claims to
embody some degree of semantic abstraction, evaluating those claims by providing
a formal specification for the key notions of the framework. Finally I demonstrate
a modular approach that can be used to state constraints on and generalizations
about natural language semantics that are truly independent of any particular
semantic theory.

In the remainder of this chapter I explain what I mean by ‘formal semantics’,
clarify my use of some common terms in the field, and indicate precisely which
aspects of formal semantics are addressed by this work.

2 Chapter 1

1.2 Formal semantics

A formalized theory is one couched in terms that rely for their meaning only on
their syntactic relations to other terms, grounded by expressions that have a com-
mon logical or mathematical sense. Reasoning in such theories may, in principle,
be checked fully automatically. I call a theory formal when it is formalized in this
sense, or is generally held to be capable of being so formalized.

Until Frege’s breakthrough at the end of the nineteenth century, formal logic
was unable to represent the deductive content of all valid arguments. It is now a
commonly-held view that all correct mathematical proofs are ultimately capable
of being shown valid through representation in formal logic. Frege and Russell
initiated the application of modern logic to meaning and reasoning in natural
language, and thereby laid the foundations of formal semantics.

From the beginning of this century until the late 1960s, however, the use of
logic to analyze natural language meaning operated in a fashion that discussed the
grammatical structure of language largely informally, and which did not attempt
to model grammar with the same precision that characterized the logical repres-
entation of linguistic meaning. The pioneering work of Noam Chomsky in the
1950s demonstrated that natural language grammar was capable of formalization
to a far greater degree than had been realized, but it was Richard Montague
who first synthesized formal models of grammar and meaning into a unitary
theory of natural language semantics. The last version of this theory, described in
Montague 1973, (henceforth, PTQ) includes a formal grammar of a fragment of
English (based on the work of Ajdukiewicz rather than Chomsky, as it happens)
for which a translation to Montague’s intensional logic IL is precisely defined, so
that the translation process is capable of automation. Formulas of 1L are given a
model-theoretic interpretation, whence by putting the two processes together every
sentence of English admitted by Montague’s grammar is automatically given a
formal meaning. The contribution of Montague was not only a unified formal
treatment of syntax and semantics, but also, through his intensional logic, a
semantic domain rich enough to do justice to the fragment of English which he
formalized. In the twenty years since the publication of PTQ, it has come to
be regarded as the paradigm—though far from an unquestioned one—of formal
semantics, in the sense used throughout this work.

Since this sense encompasses the requirement that there be a formal map from
expressions of the natural language fragment to the domain of meanings, then
strictly speaking, there can be no formal semantics for any natural language: a
formal map is a function from one formally defined domain to another one, and
thus the domain of linguistic expressions must in fact be a formal language. This
is almost a trivial observation—the point is simply that any formal grammar of
a natural language is really the grammar of a formal language that resembles the
natural language to a certain degree.

Some terminology: when I talk about syntax or grammar, I will generally

Introduction 3

mean a formal grammar of natural language, such as GPSG’s account of English
(Gazdar et al. 1985), and the rules and representations that comprise it. Where
that grammar contains semantic representations (as GPSG does, for instance) I
exclude those from consideration when I use phrases such as “present in the syn-
tax”. Sometimes [may have no particular grammatical theory in mind, intending
my comments to apply to an arbitrary one. Where a theory treats discourse
consisting of a string of sentences as well as sentences in isolation, I consider
the term syntactic theory to embrace both sentence syntax and any mechanisms
required by the discourse-related aspects of the theory. Occasionally I will talk
about the syntax of non-natural languages. When that happens I will generally
qualify the sense appropriately, as in “logical syntax”. T use the term semantic
theory to mean a system, like PT(Q, that can generate formal meanings from
natural language expressions, and that is predominantly concerned with doing
that, rather than (as GPSG is) with accurately and revealingly characterizing
all and only the grammatical expressions. So I say that PTQ does contain a
syntactic theory, but that it is a minor part of the overall system, whereas GPSG
is chiefly a theory of syntax, but also contains a semantic theory (in fact, one
largely based on PTQ). Thus I do not mean by ‘semantic theory’ a hypothesis
about natural language meanings, such as the claim that generalized quantifiers
in natural language have the property of conservativity, though it is certainly the
case that semantic theories, in my sense, may incorporate hypotheses of that kind.
Finally, sometimes I will talk about the object theory, to distinguish the semantic
theory under consideration (possibly an arbitrary one) from my own theorizing
about it.

1.3 Entailment

People expect different things from formal semantics. Let a logical language be a
formal language somehow equipped with a relation on its formulas that is intended
to appeal to our intuition of logical consequence—an entailment relation. As part
of their assignment of formal meaning to linguistic expressions, nearly all semantic
theories translate natural language sentences (or discourses) into formulas of lo-
gical languages, at least at some juncture. The significance of this translation is
often disputed. A logical language, by the definition just given, guarantees that
a notion of entailment exists for its formulas. This means that any system of
translation from natural language into it automatically confers an entailment re-
lation on those natural language sentences that are thus translated (appropriately
disambiguated). I maintain, therefore, that the modelling of natural language
entailments is a core attribute of a semantic theory—if it can’t do that, it’s not
clear that it is doing formal semantics. It certainly isn’t doing it in the sense that
[adopt throughout this work.

But many people, while conceding this, think that it is reasonable to expect
rather more of a semantic theory. One of the most natural things to want is some

4 Chapter 1

insight into the meaning of a linguistic expression. A formula of a logical language
is not a meaning. Further, one of the characteristic attributes of competent
speakers of a natural language is their ability to make true statements about
the world. It is not immediately obvious how translating their statements into a
language with a formal notion of consequence explains this ability.

The most successful attempt to satisfy these expectations within formal se-
mantics has been an appeal to the model-theoretic aspect of many semantic
theories, including PTQ. From the perspective of formal logic, if a logical language
has a model theory then it has at least (i) a canonical way to define its consequence
relation; (ii) the chance of proving completeness for a syntactic—that is, proof-
theoretic—presentation of that relation, and (iii) a consistency proof, relative
to the consistency of the model-theoretic apparatus itself (which can usually be
embedded in any formal set theory).

But from the point of view of natural language semantics, a model theory
provides—as a minimum—a way to determine truth conditions for every formula
of the logical language, and again, by extrapolation, to do the same for the
expressions of natural language that are translated into it. I'll indicate briefly
how truth conditions work. Given a sentence

(1.1) Mary calls John
and a logical translation, say
call(m,j)

then if our theory is sufficiently broad and the language that call(m,j) occurs in
is sufficiently expressive we can expect it to tell us that asserting (1.1) logically
entails sentences such as

Mary calls someone
John is called by Mary

and so on. It will also tell us which sentences in their turn entail (1.1). And that’s
it, unless there is more to the semantic theory than just entailment. But if the
theory has a model-theoretic basis, then we can expect it to tell us (assuming a
first-order model) that given a certain state of affairs—any state of affairs where
Mary, calls and John mean something—then (1.1) is true if, and only if

Mary and John mean two things that stand in exactly the two-place
relation on things that the word calls means.

This at any rate does some justice to our intuitions about the meanings of words—
and the truth conditions for more complex sentences rapidly become less obvious!
(Common logical languages, like first-order predicate logic, have standard and es-
tablished model theories. Consequently I will sometimes loosely refer to first-order
formulas as ‘truth conditions’, taking their standard interpretation for granted.)

Introduction 3

It should be apparent that one of the properties of model-theoretic semantics
is that it proposes models of structures or entities that linguistic expressions
seemingly refer to. In the example, the transitive verb call is taken to stand for a
two-place relation on things. It is often argued that this feature of model-theoretic
semantic theories means that they are able to offer more insight into the nature
of linguistic meaning than a theory that talks only of entailments.

This is not the place to carry on that argument, but I hope it is clear that
by restricting my interest to entailment—a kind of lowest common denominator
among semantic theories—I am choosing to bypass at least one important issue
about what makes one semantic theory better than another. There are many
others. We may ask, for example, how directly the semantics of an expression
follows from its linguistic structure, whether the semantic theory lends any sup-
port to apparent linguistic universals, whether it is practical to use the theory to
actually compute ‘meanings’, and even whether the consequence relation for the
entities thus computed admits of a computationally tractable interpretation, so
that reasoning with them may plausibly be automated. By and large, the work
reported here addresses none of these questions.

Finally, I want to emphasize that I am well aware of the many semantic theories
which generate semantic structures—I’ll generally say semantic representations—
that cannot simply be viewed as formulas of a logical language. The system
examined in chapter 4 is one such. But as I demonstrate there, that does not
prevent me extracting from these structures a kind of content that can be so
viewed, thereby enabling comparison between these theories and the ones for which
logical forms are indeed the be-all and end-all of formal semantics.

1.4 Summary

The conception of formal semantics for natural language with which this work
is concerned sits squarely in the logic-based tradition that derives from Frege,
Russell and Montague. I am interested in formal theories which assign semantic
representations to fragments of natural languages, and in analyzing these theories I
am chiefly concerned with the entailment relations that may be defined over these
representations. It is through such relations on representations that a theory
makes empirical claims about entailments between sentences of natural language.
While many, perhaps most, semantic theories are justified more broadly than
this, often with reference to model-theoretic interpretations, I adopt a narrow
entailment-based perspective here because of its universality and the core position
of entailment in the formal semantics enterprise.

6 Chapter 1

1.5 Synopsis of chapters

The next chapter argues the general case for abstracting over semantic theories,
and considers various ways to go about this, some of which correspond to existing
work. Chapter 3 looks at how three different semantic theories choose to express
the concepts of intensional abstraction and predication, illustrating how such com-
parisons may be made formally precise. The following chapter is a second case
study, but of a single theoretical framework. The authors of this framework claim
that it provides a certain level of abstraction over semantic theories, and that by
doing so it is able to describe a variety of them in its own metatheoretical terms.
I examine these claims critically and attempt to formally circumscribe the exact
scope of their abstraction. In chapter 5 I outline the goal of modular specifications
for semantics, applicable across all semantic theories, and I demonstrate in detail
how this approach can go some way towards a specification of some constraints on
quantification and anaphora. What has been achieved is summarized in chapter 6,
where I also consider the future prospects for this approach which this thesis
presents.

Finally, I should like to apologize for a parochialism of this work: my topic is the
formal semantics of natural language, of which latter there is more than one, yet
all of my linguistic examples are from English, and all of my theoretical examples
are semantic theories applied to English. It is far from evident that cross-linguistic
differences have no significance for formal semantics. To the extent that they do,
then, I hope that they will tend to strengthen rather than weaken the theoretical
approach I argue for here.

Chapter 2

The Case for Semantic
Abstraction

2.1 Arguments

2.1.1 Comparison and classification

Since PTQ), alternatives have been proposed for almost every aspect of Montague’s
system. These include complete replacement semantic theories for comparable
fragments of English, as well as proposals that modify only part of PTQ’s appar-
atus. Some of the latter make sufficiently small changes that it is relatively easy to
see what the implications of the changes are for the overall theory. But in general,
the variety of semantic theories currently available—many only distantly related
to PTQ—can make it hard to determine exactly where they differ.

For example, when comparing two theories that address similar semantic issues
one would often like to know precisely which syntactic constructions receive dif-
ferent truth conditions under the competing analyses. Yet this can be difficult
to work out, particularly if the two theories employ incompatible formalisms.
Another common problem is dealing with the interaction of theories that focus on
different phenomena. Suppose that we have two theories, A and B, where A has
a detailed treatment of quantification and anaphora, while theory B is primarily
concerned with the semantics of plurals and mass terms. We might well want to
find a way to unify these theories, so as to get a satisfactory treatment of, for
example, plural anaphora. But in such cases it is notoriously hard to find out all
the respects in which the two theories overlap, or make incompatible assumptions
about the semantic terrain. I suspect that faced with these difficulties, researchers
have often decided it would be easier to start a new theory from scratch.

So one of the chief motivations for semantic abstraction is the desire to accur-
ately compare and classify semantic theories. The next chapter demonstrates how
this can work, by creating formal specifications for the treatment of intensional
abstraction and predication. Given an arbitrary semantic theory, one can then at-

8 Chapter 2

tempt to apply these specifications: some will hold, some won’t, and the resulting
pattern serves to locate that theory in the theoretical landscape. It also provides
concrete evidence of the actual relations and operations that the object theory
defines, information that is potentially of relevance to the problem mentioned at
the end of the previous paragraph.

One of the hopes held out by this approach is that it might become possible
to compile a library of tests, or benchmarks, of semantic behaviour. As well as
enshrining consensus views on the semantics of, say, restrictive relative clauses,
such benchmarks would help to map out areas of continuing dispute by providing
a range of possible behaviours. This is exactly what happens for abstraction and
predication in chapter 3.

As I tried to indicate in my introduction, I regard the modelling of entailment
as a core criterion for formal semantics, so I have devoted most of my energy to
describing the results of semantic theories in those terms. But the techniques of
semantic abstraction are certainly not limited to that kind of description. It might
well be productive to consider classifications based on computational criteria, for
instance.

2.1.2 Modularity and coherence

Contemporary theories of grammar integrate syntax and semantics to varying
extents. At one extreme, GB theory (Chomsky 1981), still strongly influenced by
the thesis of the autonomy of syntax, places the actual construction of semantic
forms firmly outside the domain of syntax proper. Although one of GB’s levels of
representation is called LF, after ‘logical form’, the only major difference between
the forms of LF and those of S-structure—which is one of the two core syntactic
representations—is that quantifiers move at LF (that is, transformations result in
quantifiers moving within LF representations) in order to capture quantifier scope
ambiguities.! (A consequence is that in GB scope ambiguity is unequivocally a
matter of syntactic ambiguity, since LF is a syntactic representation.) Chomsky
has always made it clear that semantic interpretation is something that happens
to the forms of LF, rather than within LF, and for him the rules that constrain
that interpretation are outside the scope of grammar proper.

The theories of categorial grammar and HPSG demonstrate positions on the
integration of syntax and semantics that lie at the other extreme, though each in
a different way. Categorial grammar (seen as a collection of related theories; see
Wood 1993 for an introduction) is notable for insisting on a tight correspondence
between the categories of syntactic expression and the kinds of semantic entity.
Standardly, the combination of syntactic categories is directly mirrored by the
combination of functional types in the semantics. HPSG (Pollard and Sag 1987,

1Other forms of activity at LF have been suggested, particularly for languages other than
English, but quantifier raising remains the primary motivation. I ignore Chomsky’s most recent
theoretical proposals (Chomsky 1992), under which LF acquires much more significance.

The Case for Semantic Abstraction 9

1993), on the other hand, connects syntax with semantics rather differently, by
taking the prime unit of linguistic description to be a conglomerate of syntactic,
morpho-phonological and semantic features called a sign. Every linguistic expres-
sion is represented by a sign and grammatical principles are stated as constraints
on signs. Among other things, this allows syntactic and semantic information to
be interdependent.

Evidently, then, categorial grammar and HPSG are theories which intertwine
syntax and semantics. But even in GB, semantics is not as cleanly separated from
syntax as one is led to believe. For instance, quantifier scope is a phenomenon
rooted in semantics, yet as just noted treated entirely with the syntax in GB; the
notation of coindexing (discussed further in §5.4) carries semantic import, and
there are other areas where distinctions that affect semantic interpretation are
regarded as purely syntactic features. So a blurred boundary between syntax and
semantics seems fairly characteristic of contemporary grammatical theories.

Is there anything wrong with this state of affairs? After all, it is supposed to
be to HPSG’s positive advantage that it allows syntactic and semantic constraints
to be integrated so easily. There certainly are benefits to be had in linguistic
description from such integration. But there are also reasons to doubt that we’ve
yet found quite the right way to do it. Here are three:

1. Monolithic structure. The core unification-based theory of HPSG (excluding
the components of constituent order and lexical inheritance) is monolithic in
the sense that any one of its principles may affect any other one. It is pre-
cisely because they do affect each other that it is a powerful theory. Just the
same holds of GB—the often-heard claim that GB is modular is true to the
extent that the various components of GB (X-bar theory, Case theory, and so
on) are stated in isolation from each other, and have theoretical notions that
are peculiar to them, but false to the extent that the ‘modules’ of GB are
functionally insulated from each other. They are not: the representations of
D-structure, S-structure and the others are global—any rule or principle of
GB can operate with impunity on these representations at any time.

In both cases this makes for a powerful, expressive theory. But it also
makes it very hard to design and to debug, borrowing a term from software
development. Because there is little true functional modularity, it inhibits
the division of labour in grammar construction. For a significant natural
language grammar, it is tempting to be able to let syntacticians hone the
grammar rules, or lexical entries, while the semanticists work out how to
implement the necessary semantic operations. Making that work demands
that the interface between the two is well-specified, which brings us to the
next problem.

2. Limited type-based security. Unusually among syntactic theories, and ad-
mirably, HPSG imposes a comprehensive type system on its main class of
theoretical entities, the signs. This ensures that syntactic attributes can

10 Chapter 2

only possess values that ‘make sense’, to a certain degree. But this type
system has limitations, particularly in the area of syntax-semantics integra-
tion. The semantic parts of signs are included in the type system, but the
types effectively serve only to ensure that the resulting semantic represent-
ations obey the logical syntax of the underlying semantic formalism, in the
same way that the syntactic types of ‘term’ and ‘formula’ in the predicate
calculus operate. Owing to the absence of any truly semantic types, what
is effectively unconstrained is the construction of semantic values by rules
and principles of the grammar—there is nothing in HPSG’s type system
to cast suspicion on a semantics principle that, say, uniformly assigns the
same logically true proposition to every sentence. The risk of this kind of
semantic incoherence is a consequence of a theory that allows grammar rules
to manipulate semantic values as they please.

3. Inappropriateness of single formalism. Another of the elegant aspects of
HPSG is the fact that its theory is predominantly couched in a single form-
alism, whose logical foundations are now quite thoroughly investigated, and
which comes with an associated model of computation. But again, when
we come to the semantics, we find that the formalism is not quite up to
the job. This was well-illustrated in the first HPSG book (Pollard and Sag
1987), by the presence of the functions ‘successively-combine-semantics’ and
‘collect-indices’ which formed an essential part of the semantics principle,
but could not be completely defined in the underlying unification-based
formalism. A system that works well for the syntactic constraints of HPSG
appears too limiting for those of the semantics: the difficulty, at least in
part, appears to be that the kind of processing required by the semantics is
more complex, or at least not of the same kind, as that which is sufficient
for the syntax.

I believe that the introduction of an appropriate level of abstraction between
syntax and semantics is the best way to solve these problems. Taking a cue from
software engineering, we should try to develop truly modular grammars, with an
especial concern to lay down clearly the interface between syntax and semantics.
In the domain of syntax, efforts have already been made to tackle the problems I
alluded to above: Newton (1992) has shown how algebraic specification techniques
developed in computer science may be applied to the modular construction of
syntactic theories.

The prospect of successfully modularizing semantic theories opens the door to
applications such as reusability and incremental development. It might become
possible to use a well-tested module for, say, quantification and anaphora, in
a variety of natural language grammars. Or logical research might turn up a
promising new approach to the logical and semantical paradoxes—if an interface
to the relevant semantic notions, such as abstraction and predication, has been
appropriately defined one could then simply ‘plug in’ the new semantic module

The Case for Semantic Abstraction 11

without disturbing the rest of the grammar.

At this point, a doubter might well cite the formalism of PATR-II (Shieber et al.
1983), particularly in response to the final point above. One could argue that the
considerable success of PATR-II in formalizing a wide range of linguistic theories
in the 1980s suggests that a unitary framework for syntax and semantics is worth
striving for. I contend that the case of PATR-II is special in a number of respects.
First, and most importantly, PATR-II primarily addressed syntactic theory. The
unification-based formalisms of PATR-II, HPSG, and other related theories do
indeed seem to be well-suited to expressing the kind of operations required by
theories of grammar (though note that PATR-II cannot unaided describe every
syntactic theory). Second, PATR-II demonstrated that a grammar formalism with
a built-in computational interpretation can still be declarative. This allowed gram-
mar development to share a number of benefits, such as fast prototyping, already
enjoyed by logic programming. In other words, PATR-II was both expressive
enough to capture a large chunk of syntactic processing, and restrictive enough
to admit a transparent computational interpretation. Third, PATR-IT built on
a growing sense among computational linguists that unification-based approaches
were fruitful, crystallizing a convergence that in some respects had already started.

In the more general area of semantics, it seems that these conditions can’t be
met. Semantic processing is inherently more complex than syntactic processing,
and owing to its connections with reasoning and knowledge representation, is much
less self-contained than the domain of syntax. Certain areas—such as anaphora
resolution—are notoriously ill-constrained, it being trivial to construct examples
where carrying out semantic interpretation requires reasoning of considerable com-
plexity over past discourse content. Nor, by contrast with computational syntax,
do we appear to be in a position to cite a convergence of research work along
lines that might lead to a unitary framework. These, then, are the arguments for
semantic abstraction.

2.2 Approaches

There are a number of ways that we could go about finding a more abstract de-
scription of semantic theories and of the connection between syntax and semantics.
If our prime aim is to abstract over semantic theories, it would be undesirable to
discover that the result is an account that is somehow tied to a fixed syntactic
theory; whatever there is that is true, or uniform, across all varieties of semantics
cannot be dependent on a particular way of doing syntax. This is not to say that
in abstracting over semantic theories one should necessarily ignore syntax—the
connection between syntax and semantics cannot be left out of the reckoning if
we are to satisfactorily address all of the issues raised above. But whether one
actually abstracts over this connection depends on the precise approach taken.
In what follows, for a given theory of formal semantics let the “syntax” be the
formal grammar and let the “semantics” be the realm of semantic representations,

12 Chapter 2

along with whatever operations and relations are defined on it. The “syntax-
semantics interface” is the mechanism the theory utilizes to connect the two. 1
use the term “interface” loosely—in particular there’s no requirement that it have
the highly constrained Montagovian sense of a function from disambiguated syntax
to semantics, and it is really the interface to the syntax that is under scrutiny. I
argued that any approach to semantic abstraction should apply across a range of
syntactic theories. Then one way to classify approaches to semantic abstraction is
according to which of the interface and the semantics they leave fixed, and which
they allow to vary. This gives rise to four categories:

1. Fized interface, fired semantics. If both are fixed, then there is no oppor-
tunity for semantic variability. All syntactic theories are forced to adopt
the same interface to the semantics, which in turn is unchanging. So this
category in fact corresponds to no abstraction at all, but rather to a claim
that just one semantic interface and underlying formalism is sufficient.

2. Fized interface, variable semantics. The approach of Johnson and Kay
(1990) falls into this category. They propose a small set of ‘semantic op-
erators’, which constitutes a fixed interface for every syntactic theory that
wishes to make use of it. The operators, however, are intended to be general
enough that alternative implementations of them can be used to model a
range of different semantic theories. I analyze Johnson and Kay’s theory in
chapter 4.

3. Variable interface, fived semantics. On this view the underlying semantic
theory is fixed, but alternative syntactic theories are catered for by providing
an interface layer for each theory. Ongoing work by Sebastian Millies and
Manfred Pinkal is apparently of this kind, with a separate interface defined
for each syntactic theory that generates a different variety of syntactic struc-
ture.

4. Variable interface, variable semantics. If both interface and semantics are
allowed to vary freely, then this approach is without content unless some
sense is made of the variation. One way to obtain content is to claim that
every semantics can be reinterpreted in a single semantic ‘metatheory’. Such
a theory would obviously have to possess a very rich and expressive semantic
vocabulary. Recent work by Robin Cooper on re-expressing discourse repres-
entation theory (DRT) within situation theory falls partly into this category.

A metatheory approach that treats only the semantic representations them-
selves, however, will in general be blind to the syntax-semantics interface,
and will therefore be unable to state generalizations which need to take ac-
count of the interface. So remaining within this category, another possibility
is to search for descriptions that simultaneously abstract over both inter-
face and semantics. Conceivably one might extend the single metatheory

The Case for Semantic Abstraction 13

approach to to incorporate a single ‘meta-interface’. But it is not necessary
to advocate just one metatheory or meta-interface in order to belong to this
category, as the next section’s discussion makes clear.

Approaches which fall into the final category are evidently maximally general,
in that they are capable of making statements across both interfaces and semantic
domains. It is this kind of semantic abstraction that I choose to advocate here.
But I have not yet been precise about the form of abstract statement I envisage
making, and it’s time to address that issue.

2.3 Forms of abstraction

[am interested in making metatheoretical statements that abstract across a num-
ber of object semantic theories. These object theories posit entities, relations on
them and operations over them, and my abstract metatheoretical statements will
necessarily also be in terms of entities, relations and operations—in general, differ-
ent ones. How can I arrange for my metatheoretical statements to say something
about the object theories? Somehow, I must relate the terms of my metatheoretical
statements to the terms of each object theory.

Essentially there are two possibilities. Either the metatheoretical statements
are interpreted in the terms of each object theory, or vice versa: the statements of
the object theory are interpreted in the terms of the metatheory. At the level of
logical theories, this is simply a matter of the direction of embedding. On the first
option, the metatheory is embedded in the object one, on the second the direction
is reversed. A related perspective comes from the field of formal specification of
programs, concerned with manipulating precise specifications of how a program
program should behave, and with proving that a program satisfies a given specific-
ation. Here, it is often the case that a program is said to satisfy—or implement—a
specification just in case the specification can be logically embedded in the formal
theory of the program. Thus on this view, our first option corresponds to the
object theory implementing the metatheory, and the second to the metatheory
implementing the object theory.?

Let us consider how these options apply to abstracting over semantic theories.
Option 1 sees metatheoretical statements as constituting an abstract specification

2This analogy is only partial, owing to the complexity of the field of formal specification.
First, it is possible to take the ‘meaning’ of a specification not to be a logical theory but rather
a class of algebras (the algebras—or models—that satisfy it, where a program is modelled as an
algebra). Given this approach, the logical framework that a specification is couched in cannot
always express every relevant property of classes of algebras, whence logical embedding is not
sufficient to characterize implementation. Second, it may well be that a central requirement
is the behavioural equivalence of the programs that satisfy a given specification. Since models
of specifications are not in general closed under behavioural equivalence, logical embedding is
also insufficient in this respect. (See Sannella and Tarlecki 1992, pp. 1-5, for an introduction to
these issues. Note also that Newton 1992, cited earlier, adopts this model-based style of formal
specification when characterizing syntactic theories.)

14 Chapter 2

which every semantic theory should be able to implement by interpreting the
specification in its own terms, with the interpreted metatheoretical statements
holding in that object theory. This requires that every entity and relation posited
by the metatheory is somehow present in each object theory. Note that for this
to be true it is not necessary that these metatheoretical entities and relations
exist as primitives of the object theory, merely that they can constructed or
expressed using the apparatus of the object theory. Since on this approach the
metatheoretical statements must hold in each object theory, there is a sense in
which they will be weak and ‘minimal’, stating only what is undisputed across all
theories.

Option 2, on the other hand, is about a metatheory into which every object
semantic theory can be embedded; that is, the metatheory ‘implements’ all of
them. Whatever particular entities or operations some semantic theory may
contain, they will all have correlates in the metatheory (again, not necessarily
as primitives, but at least constructible). So in a sense, this option presents
the metatheory as ‘maximal’, as a characterization of the entire semantic realm,
in which all ‘naturally occurring’ semantic notions can be expressed. (Cooper’s
work on interpreting DRT in situation theory, mentioned above, is an instance of
option 2.)

Which of these styles of abstraction should we prefer? Option 2 potentially
offers a unifying account of every semantic notion, across whichever theories we
choose to abstract over. Furthermore, if the metatheory of option 2 is executable,
then we would automatically obtain a computational interpretation of each object
theory that it encompassed. We know, however, that given the current state
of semantic theorizing—with its plethora of incommensurable theories—such a
metatheory is unlikely. Note also that there is nothing in this very general char-
acterization of option 2 to forbid a metatheory whose top-level structure is a
giant disjunction of subtheories. Such a structure would allow the metatheory to
interpret any object theory by effectively including a copy of it as a disjunct. So
stronger constraints on the nature of an option 2 metatheory are required before
we can have any guarantee of explanatory value.

The chief difficulty with option 1, by contrast, is the prospect of only being
able to make weak statements, since they have to be interpretable as true in every
object theory. A corollary is that option 1 metatheories are unlikely to yield an
immediate computational interpretation. One way to counter the weakness of such
statements is to consider not a single option 1 metatheory, but a range of them. By
creating a collection of option 1 metatheories there is the potential to address the
problems of comparison and classification raised at the beginning of this chapter.
Rather than a single metatheory for all of semantics, we can consider separate
metatheories for distinct subtopics of semantics, such as generalized quantification,
plurals and mass terms, propositional attitude reports, and so on. And within
each topic, alternative metatheories can capture unresolved disagreements about
empirical modelling. This is the picture I sketched in §2.1.1, and it should now be

The Case for Semantic Abstraction 15

evident that abstract statements—metatheories—of the option 1 variety are one
way to achieve it. It is this kind of semantic abstraction that I promote in the
following chapters.

Metatheories of formal semantics are not new, of course. One significant early
work is Montague’s article ‘Universal Grammar’ (Montague 1970, henceforth UG),
which T now briefly consider. In UG, Montague presents a general framework
for languages (as algebras), model-theoretic semantic realms (also algebras), and
interfaces from the former to the latter (homomorphisms). Viewed as an abstrac-
tion over theories of formal semantics (which was not the role Montague had in
mind), it falls under my option 2. As such, it fails to provide a system in which
every existing semantic theory can be interpreted—partly, of course, because many
of these theories have been developed in explicit disagreement with features of
Montague’s systems. For example, the logics of Bealer and Turner discussed in
the next chapter cannot be given a semantics within the strongly-typed model
theory of UG, and the syntax-semantics interface of standard DRT (presented
in, for example, Kamp and Reyle 1993) is not that of a homomorphism between
syntactic and semantic algebras.

2.4 Summary

The case for abstracting over semantic theories rests on a desire to better compare
and classify the semantic theories that we have, and on a claim that we can improve
future theories by strengthening their modularity and coherence through the use
of appropriate abstractions. At present, it is often difficult to predict exactly
where two theories supposedly covering the same data actually disagree, and it is
often impossible to find a natural union of two theories which aim to account for
disjoint sets of data. Within many contemporary linguistic theories, syntax and
semantics are closely intertwined, but in such a way that the monolithic structure
of the theory prevents modularization and allows only limited type-based security.
The use of single unified formalisms for both syntax and semantics has a certain
elegance and superficial computational appeal, but appears to ignore many of the
very different needs of semantic theorizing, and to prejudge semantic issues that
research has yet to clarify.

I claim that the introduction of modularity, appropriate levels of abstraction
and well-specified interfaces (familar from software engineering) can address many
of these issues within semantic theory. In considering what to abstract over,
there is a distinction to be made between the semantic realm proper and the
syntax-semantics interface. There is some existing work that abstracts over one
of these but not both, and a little that effectively does abstract over both. Only
by taking this latter course can maximum generality be achieved.

The form of abstract metatheoretical statements about concrete object se-
mantic theories must be specified. There are two options: either (option 1) we
can interpret the metatheory in the terms of the object theory, or (option 2) we

16 Chapter 2

can do the reverse. There is a parallel with formal specification of programs: in
option 1 the object theory implements the metatheory, in option 2 the metatheory
implements the object one. Option 2 unifies all semantic concepts occurring in
the object theories, but since it may do so with a purely disjunctive structure
we have no guarantee of explanatory adequacy, and indeed given the range of
existing semantic theories, good reason to doubt we can obtain it. Option 1 risks
weak statements and lack of computability, but the weakness (at least) can be
resolved through factorization into multiple metatheories, first by semantic topic,
and second by degree of consensus on contentious issues.

I favour abstract statements of the option 1 variety. The next three chapters
demonstrate the power of this approach across different domains.

Chapter 3

Case Study 1: IL, PTy and LQC

3.1 Intensional entities in semantics

In this chapter I examine three semantic theories from a classificatory perspective.
My aim is to clarify their behaviour in the domain of intensional identity and
self-predication by writing formal specifications for the operations of intensional
abstraction and predication; I begin with a brief introduction to some of the key
theoretical issues that surround them.

The terms intension and extension, as introduced by Carnap, are parallel to
Frege’s notions of sense and reference in his analysis of meaning. We need to
admit, or at least speak of, intensional entities in order to adequately describe the
meaning of things such as properties and propositions. For example, the property
of having a heart (being cardiate) and the property of having a kidney (being
renate) are distinct notions, with different meanings, but the set of things in the
world that have hearts and that which have kidneys happens to be identical. We
say that the intensions of “cardiate” and “renate” are distinct, but their extensions
are the same.

First-order logic appears to suffice for the formal modelling of extensions, but
there is still considerable disagreement on the best way to describe intensions
formally, at least for the purpose of representing natural language meaning. In
formal semantics, the most influential account of intensions has been that of
Montague, which built on Church’s formalization of Carnap’s description of in-
tension and extension. In Montague’s account, as presented, for example, in
PTQ, the model-theoretic notion of possible worlds is responsible for characterizing
intensions: the intension of an expression is a function from every possible world
to the expression’s extension in that world.

Montague’s notion of intension certainly appears rich enough to make many of
the important distinctions in formal semantics. However, the logical system which
defines this notion—the intensional logic IL—has come in for considerable criticism
over the last twenty years on the grounds that it does not capture sufficiently well
much of the behaviour of intensional entities in natural language. There are two

17

18 Chapter 3

central avenues of criticism:

1. Overly coarse-grained intensional identity. In Montague’s logic 1L, two
formulas that are logically equivalent (that is, they entail each other) al-
ways give rise to identical propositions. Since propositional attitudes such
as belief are traditionally modelled as a relation between a subject and a
proposition, this aspect of IL is responsible for the problem of so-called
logical omniscience: on Montague’s theory, to believe in a proposition p is
simultaneously to believe in every proposition that is logically equivalent to
p, a psychologically unappealing model.

2. Insufficient type-freedom. IL is a strongly-typed logic, in which a predication
(the ascription of a property to some entity) can only happen when predicate
and object have precisely matching types. But it seems that the types of
natural language expressions are more flexible than this. There are many
cases where, for example, both an individual and a proposition appear to
play the same role in a predication, yet IL is unable to represent this.

(See §4.5.1 for examples of each problem.)

The response to these criticisms has been a number of alternative logics and
semantic theories. In the remainder of this chapter I focus on two of these, as
well as on IL. George Bealer’s logic of qualities and concepts (Bealer 1982) is one
of them. In developing his theory, Bealer’s goals were primarily philosophical: he
sought an account of intensional entities that would solve philosophical puzzles
such as the paradox of analysis, while remaining fully formal and a plausible
‘foundational language’ for semantics. The other system is due to Gennaro Chier-
chia and Ray Turner (Chierchia and Turner 1988). It synthesizes on the one hand
Chierchia’s desire, as a linguist, for a semantic theory that goes some way to
explain the semi-flexible types that natural language exhibits with, on the other
hand, Turner’s work on property theories (kinds of intensional logic) that minimize
type constraints.

3.2 Comparing theories

My intention is to apply the idea of abstract metatheoretical statements developed
in the previous chapter to the comparison and classification of these three semantic
theories along the dimensions of intensional identity and flexibility of predication.
In order to do this I will create a series of small metatheories and investigate
whether or not they can be ‘implemented’ by the three object semantic theories
(thus following ‘option 17). T will use the language of many-sorted first-order logic
to represent these metatheoretical constraints, following common usage in the
formal specification of programs. The next section explains how this works.

The idea is to describe certain properties that these theories may or may not
possess, without becoming committed in the description to a particular logical

1L, PT, and LQC 19

language (or indeed a particular model theory) for the semantic theory in question.
In particular, there are two questions that, in effect, I shall ask of each theory:

1. When are two propositions equal?
2. Can Russell’s property be expressed?

My reasons for the first question should be clear enough: I want to know the
criteria for intensional identity in each object theory. The purpose of the second
question is less obvious, so I digress briefly to explain it.

As indicated above, intensional identity and type-freedom are two of the major
issues that have driven attempts to improve on Montague’s intensional logic. A
particularly extreme case of type-freedom occurs if we wish to allow the possibility
that some property may be true of itself. There is a strong case, for example, that
the (admittedly contrived) property of “being self-identical” is true of itself, as
well of everything else. But since Russell’s celebrated discovery of an inconsist-
ency in Frege’s first attempt to formalize arithmetic it has been well-known that
allowing properties to be predicated of themselves is fraught with logical danger.
Russell’s property may be defined as “the property of all things that are not true
of themselves”. It is not immediately evident that this is a more problematic
notion than that of being self-identical. But it turns out to be extremely difficult
to construct a logic in which Russell’s property may be formalized without also
rendering the logic inconsistent. Consider the question: “Is Russell’s property true
of itself?” First suppose it is true of itself. Then Russell’s property must possess
“the property of all things that are not true of themselves”, whence it it is not true
of itself. So suppose it is not true of itself. Then it is not the case that it is true of
itself, i.e., it is not the case that Russell’s property possesses “the property of all
things that are not true of themselves”, so it must therefore be true of itself! In a
completely type-free framework, it requires very little logical machinery to arrive
at a contradiction once Russell’s property is admitted as a genuine property.

So it is because of the paradoxical role that Russell’s property plays in theories
with significant type flexibility that I chose to exploit it in the second question
that I ask of my three object semantic theories.

3.3 Formal specifications

In order to obtain answers to the questions of the previous section I construct
a series of specifications of intensional and predicative behaviour, and then see
whether or not the object theories meet these specifications. Given a particular
metatheoretical property, the idea is to create a minimal specification of a se-
mantic theory that possesses that property, including in the specification only the
machinery required to demonstrate it. Then I say that an object theory has the
property of interest if and and if it can implement the minimal specification.

20 Chapter 3

To talk of theories “implementing” specifications is to lean on the analogy with
formal specification of programs. In fact, it would be rather more accurate to talk
of “partial implementations” or of “refinements” of specifications, since the object
theories under examination here do not provide executable definitions for all their
predicates and operations. In formal specification theory, the intended behaviour
of a program is initially described with a fairly broad specification. As the design
of the program is developed, the specification becomes more detailed, perhaps,
for example, breaking down into subcases a category of inputs that was simply
considered as a unit at an earlier stage. This process is called refinement, and
culminates in a specification that is actually executable—a program—which may
then be said to implement the original specification.

In formal specification, the intention is to provide formal proofs of every re-
finement step—of every point at which it is claimed a refined specification or a
program satisfies the original specification. In what follows, I shall not provide
such proofs, but rather appeal to the behaviour of the object theories directly. It
should generally be straightforward to construct corresponding formal proofs.

My specifications are metatheories in many-sorted first-order logic. Here is an
example:

ADDITION =
sorts Int
opns zero : — Int
succ : Int — Int
axioms Vz plus(zero, z) = x
Va¥y plus(succ(z), y) = succ(plus(z,y))

Here sorts identifies the different sorts of entities that the specification recognizes.
Subsort relations may hold of these; when this happens, the keyword subsorts
will be used to introduce them. Relations on entities of the various sorts may be
either operations (opns), yielding another kind of entity, or predicates (preds),
which implicitly yield Boolean values. A type such as Int, Int — Int indicates that
the operation in question takes two entities of sort Int and generates another entity
of that sort as its result. The axioms section of a specification is usually where
the real content is located: it specifies constraints on the predicates and relations.
Finally, note that I will often combine specifications with the symbol ‘4+’. One
may consider this to act as if the respective texts of the two specifications have
been added together.

3.4 Semantic theories versus intensional logics

As mentioned above, I consider three object semantic theories here:

1. Montague’s PTQ;

L, PT, and LQC 21

2. The semantic theory of Chierchia and Turner 1988, relying on the property
theory PTy (which is closely related to the theory described in Turner 1987);

3. A semantic theory employing Bealer’s property theory L, + A (Bealer 1982),
subsequently referred to as “LQC” (for the logic of qualities and concepts).

[am only truly concerned, however, with the intensional logics that underlie these
theories, whence the title of this chapter mentions only IL, PT,; and LQC. Not
only can the questions raised in the previous section be answered solely by recourse
to these theories’” intensional logics, Bealer’s system does not really constitute a
fully-fledged semantic theory at all (in the sense introduced in chapter 1), since
he provides no precise model for connecting a fragment of natural language with
his property theory—no syntax, and no syntax-semantics interface. So from this
point on I talk of logics rather than theories.

I assume some familiarity with PTQ. What is distinctive about both PTy and
LQC is their rejection of (i) most of IL’s type system (all of it in the case of LQC)
and of (ii) the ‘proposition as set of possible worlds’ notion of intensionality that
is such a core aspect of IL.

I choose to describe these logics by abstracting over their logical syntax, giv-
ing specifications in the language of order-sorted first-order logic (with operation
symbols and identity). So when one of my specifications mentions the binary
operation on formulas ‘and’, this might be realized as ‘A’ in the concrete syntax of
one logic, while not as an atomic operation in that of another. In the case of the
two operations of central interest, ‘abs’ and ‘pred’, this is precisely what happens,
given the way I model them.

By taking this line, I avoid considering model-theoretic objects. This leaves
me free—or rather forces me—to characterize the logical nature of these systems
simply in terms of a relation of logical consequence on their formulas. How a logic
actually grounds its consequence relation is not relevant here: I am modelling their
intensional behaviour independent of how consequence is defined.

3.5 Intensional identity

3.5.1 Abstraction

Call intensional abstraction any syntactic operation which takes formula-like ob-
jects to objects that stand for intensional entities, possibly binding specified vari-
ables at the same time. If no variables are bound then the result is a proposition, if
a single variable is bound it is a property, and so on. Then this is how intensional
abstraction appears in our three object logics:

IL In Montague’s system, the operator ‘~’ forms intensional entities. A propos-
ition like "love(j,m) is the intension of a formula, and properties are the
intensions of functions, which in turn are defined with the lambda-calculus,
e.g., "Azxlove(x,m).

22 Chapter 3

PT, In this system, formulas always denote propositions when used in term-like
contexts, so the nullary intensional abstraction operation is just the identity
map. Properties exist in two forms: propositional functions (formed by
lambda-abstraction), and ‘nominalized’ individual correlates of these. This
latter form is the one I am interested in here, since only in this form can
properties in PTy behave like individuals. A proposition is an expression
like love(j, m), and "Az.love(x,, m) a property of the kind I am interested
in, where ‘" is Chierchia and Turner’s nominalization operator.

Y

LQC Bealer’s language has a single intensional abstraction operation ‘[-];,. ..
which optionally binds variables. Thus love(j,m) is a formula, [1ove(j, m)]
is a proposition and [love(z,m)], is a property.

3.5.2 Propositional identity

If we wish to say something about the operation of intensional abstraction inde-
pendent of a predication operation, then initially we must restrict our attention
to the nullary variant that forms only propositions. So consider a specification
of sorts corresponding to formulas and propositions, with the proposition-forming
operator just mentioned, and a propositional logic over the formulas:

PROP =
sorts Form, Prop
opns truth : — Form
not : Form — Form
and : Form, Form — Form
prop : Form — Prop
eqprop : Prop, Prop — Form
preds seq : Form, Form

axioms V fVg seq(truth, eqprop(prop(f), prop(g))) = seq(f, g) A seq(g, f)

In the preceding specification I have added an identity relation on propositions,
eqprop, to the object logic. The predicate seq is intended to capture the relation of
logical consequence on formulas. What is missing from this specification, of course,
is anything which constrains seq to actually behave like propositional consequence.
But specifying that is not a problem peculiar to intensional logic. Therefore, I
assume some solution to it. (The simplest one in this framework might just be
a Hilbert-style axiomatization.) The axiom imposes the basic constraint that if
the propositions corresponding to two formulas are identical, then those formulas
must at least be logically equivalent.

We are now in a position to consider further constraints on the identity condi-
tions for propositions. In fact, neither PTy nor LQC make any additional identific-
ations in the realm of propositions, though in both cases the authors of the systems
are keen to point out that certain further identifications can easily be stipulated,

L, PT, and LQC 23

independent of the other logical machinery. For example, a reasonable requirement
might be that ‘intensional conjunction’ is commutative. For propositions, we can
capture this with:

PROP_COMM_CONJ = PROP +
axioms V Vg seq(truth, eqprop(prop(and(f, g)), prop(and(g, f))))

At the other end of the scale, only IL is described by

PROP_COARSE = PROP +
axioms VfVgseq(f,g) A seq(g, f) = seq(truth, eqprop(prop(f), prop(g)))

This is a specification of ‘coarse-grained’ propositions, which in IL give rise to the
problem of logical omniscience.

3.5.3 Predication

Adding variables, entities and properties to our specification, let abs be that
intensional abstraction operation that creates properties rather than propositions:

ABS = PROP +
sorts Var, Ent, Pty
subsorts Var C Ent
opns abs : Var, Form — Pty
eqpty : Pty, Pty — Form
axioms V fVgVzVy seq(truth, eqpty(abs(z, f),abs(y, g))) =
seq(f, g) A sed(y, f)

(In the preceding axiom, I am somewhat unreasonably assuming that free variables
in formulas are implicitly universally quantified for the purposes of seq. This
should probably be fixed by the introduction of explicit quantification in my model
of the object logic.)

Before I can give a specification for the predication operation pred as well,
I need to define a substitution operation that understands conventional variable
binding. The following specification does this, but it suffers from the defect that
it characterizes substitution only in terms of the (minimal) operations introduced
by earlier specifications—if object theories implementing specifications introduce
further operations then this characterization will be insufficient.!

SUBST =
opns subst : Ent, Var, Form — Form
axioms VeVzx subst(e, z, truth) = truth
VeVzV f subst(e, z, not(f)) = not(subst(e, z, f))

'I'm grateful to Henk Zeevat for pointing this out to me. A solution to this problem appears
to require a more comprehensive metatheoretical treatment of object language syntax than I can
accommodate here.

24 Chapter 3

VeVaV f¥g subst(e, x,and(f, g)) = and(subst(e, x, f), subst(e, z, g))
VeVaVyV f¥pp # abs(y, f) = subst(e, z, pred(p, x)) = pred(p, e)
VeVxV f subst(e, x, pred(abs(x, f), z)) = pred(abs(z, f),e)
VeVaVyVf x # y =

subst(e, z, pred(abs(y, f), x)) = pred(abs(y, subst(e, z, f)), €)
VdveVaVfx # d =

subst(e, x, pred(abs(z, f),d)) = pred(abs(z, f), d)
VavVeNaVyVf(z #d N x # y)

subst(e, x, pred(abs(y, f), d)) = pred(abs(y, subst(e, x, f)), d)

It now only remains to specify that pred satisfy some minimal principle of
predication. This is a delicate area, since intensional logics vary widely in their
strategies for avoiding the logical paradoxes while getting as close as possible to
the naive version of this principle. For the time being, I will choose a very limited
axiom here, based on the restriction to atomic properties (those not constructed
with abs).

PRED = ABS + SUBST +
opns pred : Pty, Ent — Form
axioms V fVgVaVyVdVeVpVq
(p = abs(z, f) A f = pred(q,d) A q # abs(y, g)) =
seq(pred(p,), subst(e, x, f)) A seq(subst(e, z, f), pred(p, €))

The above description of predication allows ‘fine-grained’ distinctions, so that
the propositions corresponding to predications before and after substitution may
differ. To get a more conventional ‘grainedness’, we can say in addition

PRED_EQFULL = PRED +
axioms VfVzVeVpp = abs(z, f) =

seq(truth, eqprop(prop (pred(p, e)), prop(subst(c, 7, f)))

which forces pred(abs(z, f), e) and subst(e, z, f) to stand for the same proposition.
In fact, because of the axiom in PRED, this entails the full principle of predication,
and is therefore impossible for any real ‘property theory’ (though not, of course,
for IL). The right description for PTy is

PRED_EQATOM = PRED +
axioms V fVgVaVyVdVeVpVq
(p =abs(z, f) A f = pred(q,d) A q # abs(y, g)) =
seq(truth, eqprop(prop(pred(p, €)), prop(subst(e, z, f)))
which restricts the identity claim to atomic properties.

Of course if PROP_COARSE holds anyway, as in IL, then these distinctions
carry no weight, since propositions are already being individuated more coarsely
than this.

I have indicated how abs is ‘implemented’ in my three sample logics; here’s
how pred comes out:

L, PT, and LQC 25

IL pred(a, 4) = “a(8).
PT, pred(e, 3) = T(“a(f)).
LQC pred(a, 8) = 5 A «a.

3.6 Russell’s property

One measure of the expressiveness, or at least the type-freedom, of an intensional
logic might be taken to be whether or not it admits an expression which stands
for Russell’s property. Here I attempt to describe a formal test for this property.
We want a minimal description of a logic that can express Russell’s property. I
propose:

RUSSELL = sorts Var, Ent, Pty, Form
subsorts Var C Ent, Var C Pty
opns not : Form — Form

abs : Var, Form — Pty
pred : Pty, Ent — Form

together with a comprehension axiom such as that given above for PRED, and of
course some specification of the propositional logic. Then given an element x of
sort Var the expression

abs(x, not(pred(x, x)))

will represent Russell’s property.

Now there is no way to implement the specification RUSSELL in IL, owing to
IL’s type constraints; this is perhaps most evident from the subsorts specification,
which requires that there be a kind of variable that is simultaneously an entity
and a property. Because variables are strongly typed in IL, and the types of entity
and property are different, there can be no such variable.

On the other hand, both PTy and LQC will satisfy this specification. Ap-
pendix A contains a Standard ML program which partially illustrates this, by
providing implementations of the syntax of PTy, LQC and the RUSSELL specific-
ation, and demonstrating that there are maps which interpret RUSSELL in those
two systems. In the case of PTy the resulting Russell’s property expression is
exactly as given on p. 267 of Chierchia and Turner 1988. More detail is provided
in the appendix.

These results show that the specification RUSSELL can be successfully used to
distinguish between the strongly-typed logic IL and the more type-free logics PT,
and LQC. It’s worth pointing out that there are further distinctions to be modelled
here. For example, there are logics (or property theories) that lie between these
two positions in terms of type-freedom, such as the system of Kamareddine and
Klein (1993), in which self-predication can be expressed, but Russell’s property

26 Chapter 3

cannot be. And it would be possible to distinguish between PT,; and LQC on
the basis of a specification which required that Russell’s property can actually be
predicated of itself to yield a proposition: this is true in LQC but false in PT5.

3.7 Summary

The correct modelling of intensional entities remains an unresolved issue in formal
semantics. Since PTQ, the central concerns have been criteria for intensional
identity and for type-freedom. 1 chose Montague’s PTQ, and theories due to
Bealer and to Chierchia and Turner as examples of post-Montagovian semantic
theories that address these issues and span a wide range. In order to compare them
I considered one question about intensional identity (of propositions), and one
about type-freedom (the ability to express Russell’s property). I constructed small
specificational metatheories corresponding to differing answers to these questions:
then the test of whether or not an object theory had the property in question
was reduced to whether or not it could implement that specification, borrowing
an idea from the formal specification of programs (from where I also borrowed the
use of many-sorted first-order logic for the form of specifications).

For these purposes I viewed my three object theories as intensional logics rather
than full semantic theories, since this was sufficient for the task in hand and
necessary in the case of one system, which fails to count as an entire semantic
theory. The style of specification was to abstract over the concrete logical syntaxes
of these systems, in effect introducing an abstract syntax. I ignored the question
of the correct specification of core logical behaviour, that is of logical consequence,
since that is a problem that standard model- and proof-theory have independently
supplied answers to.

Starting with the modelling of an intensional abstraction that takes formulas to
propositions, I introduced a basic minimal specification of propositional identity,
allowing differing notions of identity to be captured with a series of more specific
(and coarser-grained) descriptions of that identity. Extending to predication by
allowing abstraction operations to bind variables, I introduced the required notion
of substitution and again modelled varying degrees of intensional identity, this time
at the level of propositions that involve predications.

Finally, a core specification of the ability to express Russell’s property was
simple to devise, and demonstrated the required distinction between Montague’s
strongly typed theory and the two more recent competitors.

This chapter has demonstrated the potential of abstract descriptions of se-
mantic theories to compare and classify those theories on the basis of formal
specifications of their behaviour. The metaphor—and some of the techniques—of
formal specification of programs was used to achieve this, but as discussed in
chapter 2, we may equivalently talk in terms of logical embeddings. It is apparent
that is surprisingly easy to formalize notions of degree of intensional identity and
of type-freedom that are so often spoken of informally, and in the process gain

L, PT, and LQC 27

better understanding of exactly why it is that some theories have the metatheories
properties that they do.

[now move on to consider an existing approach to semantic abstraction, eval-
uating it with respect to the general framework I discussed in chapter 2.

Chapter 4

Case Study 2: Johnson and Kay’s
‘Semantic Abstraction and
Anaphora’

4.1 Introduction

This chapter is an analysis of Mark Johnson and Martin Kay’s ‘Semantic abstrac-
tion and anaphora’ (Johnson and Kay 1990). In their paper, Johnson and Kay
show how a grammar that builds semantic representations can be parameterized by
a small number of ‘semantic operators’, thereby causing the grammar to abstract
over a class of semantic representations while retaining a fixed interface to the
syntax. They give a grammar for a fragment of English, written in Prolog’s
DCG notation, in which the semantic operators are defined as ordinary Prolog
predicates. This grammar covers the core data on quantification and anaphora
that was first systematically treated by Kamp’s discourse representation theory
(DRT, Kamp 1981, see also Kamp and Reyle 1993), and it may be viewed as a
generalization of the DRT implementation described in Johnson and Klein 1986.
Along with the grammar, three candidate implementations of the semantic oper-
ators are provided, corresponding to three notions of semantic representation for
the sentences admitted by the grammar.

My concern with this work is how it relates to the general notion of semantic
abstraction motivated in chapter 2. I want to answer the following questions about
‘Semantic abstraction and anaphora’:

e What is the level of semantic abstraction that Johnson and Kay employ?

e What constraints does it impose on the grammar and on the space of possible
semantic representations?

e Can these constraints be formalized, so as to give a specification of such a
representation?

28

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 29

% Operator declaration and parse/2 predicate
:- op (1200, xfx, ==>).

parse(String, ExtSem) :-
external (IntSem, ExtSem),
s(IntSem, String, [1).

% Grammar

s(8) --> np(VP"S), vp(VP).
np(NP) --> det(N1°NP), n1(N1).
nl1(N) --> n(N).
n1(X"S) --> n(X~S1), rc(X"S2),
{ conjoin(S1, S2, S) }.
vp(X~S) --> v(X"VP), np(VP"S).
rc(VP) --> [that], vp(VP).
v(X"Y"S) --> [Verb],
{ verb(Verb, X"Y"Pred),
atom(Pred, S) }.
n(X"S) --> [Noun],
{ noun(Noun, X"Pred),
new_index (X, S1),
atom(Pred, S2),
compose(S1, S2, S) }.
det ((X"Res) " (X"Scope) “S) --> [Det],
{ determiner(Det, Res”Scope~S) }.
np((X~S1)°S) --> [Promnoun],
{ pronoun(Pronoun),
accessible_index (X, S2),
compose(S1, S2, S) }.

Figure 4.1: The Johnson and Kay grammar

e How exactly does ‘propositional’ information interact with ‘anaphoric’ in-
formation in the system? To what extent can the two kinds be teased apart?

4.2 Grammar

Figure 4.1 shows Johnson and Kay’s grammar, and figure 4.2 their example
lexicon. Regarding syntactic coverage, the grammar admits declarative sentences
with transitive verb phrases and with both indefinite and universally quantified
noun phrases, which may have restrictive relative clauses. NPs may also be
pronouns, thereby including in the grammar’s language the universally quantified
version of Geach’s donkey sentence:

Every man that owns a donkey beats it.

30 Chapter 4

% Lexicon

pronoun (he) .
pronoun(she) .
pronoun(him) .
pronoun (her) .
pronoun(it) .

verb(likes, X"Y likes(X,Y)).
verb(saw, X" Y see(X,Y)).
verb(beats, XY beat(X,Y)).
verb(owns, X" Y own(X,Y)).

noun (woman, X woman(X)).
noun(man, X"man(X)).
noun(donkey, X“donkey(X)).

determiner(a, Res”Scope”S) :-
conjoin(Res, Scope, S).

determiner (every, Res0~Scope”S) :-
compose(S1, S2, S),
subordinate(Res, ResName, S1),
compose (ResO, Resl, Res),
subordinate (Scope, ScopeName, Resl),
atom((ResName ==> ScopeName), S2).

Figure 4.2: The lexicon

As it stands, the grammar does not admit sentential conjunction or implication,
nor the sequencing of sentences to form discourses (which would permit extra-
sentential anaphora). All these are, however, easy to add to the grammar in the
spirit of the existing constructions.

The grammar takes the form of a DCG augmented with explicit calls to Prolog
predicates using the standard “{goal,...}” syntax (an introduction to DCGs may
be found in Shieber 1986). These Prolog calls fall into two categories: that of
the ‘lexical’ predicates pronoun, verb, noun and determiner, and that of the seven
so-called semantic operators, listed in table 4.2 and discussed at length in the
next section. With the exception of determiner, the lexical predicates serve only
to introduce terminal symbols, and are thus merely a convenience, rather than an
essential deviation from the form of a pure DCG.

4.2.1 Semantic values

All the non-terminal symbols of the grammar have a single argument, standing
for the semantic value of that constituent. In general, these semantic values have
the form of Montagovian lambda-terms, with the Prolog functor “°” used to

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 31

category value

S t

N, N1, VP, RC | e"t

Vv e”(e"t)

NP (e~t)"t

Det (e~t)~((e"t)"t)

Table 4.1: Syntactic categories and semantic values

represent lambda abstraction. Table 4.1 illustrates, for each syntactic category
of the grammar, the form of its semantic value, where ¢ stands for the type of
semantic value assigned to clausal constituents, and e for the underlying entity
type. In the next section I give the name rep to the type ¢, and follow Johnson
and Kay by using the name index for the type e.

In Montague’s system, the semantic value of a given constituent is always
obtained from the values of its sub-constituents by the operation of function applic-
ation. In Johnson and Kay’s system, the task is split between function application
and their distinguished semantic operators. Where function application is to take
place, Johnson and Kay utilize the Prolog implementation technique of Pereira and
Shieber (1987), in which the lambda conversion that follows function application
is captured implicitly (or partially-evaluated away) in each clause of the DCG,
via the unification of appropriate sub-parts of semantic values. In addition to
this, where one or more semantic operators are to apply, they appear as explicit
Prolog calls (as already noted) and operate only on clausal values (things of type
t), though those values may well be part of more complex lambda-terms. So in
the clause for S, for example, only function application occurs. In that for V,
only semantic operators apply. In most of the rest, both kinds of semantic value
combination happen.

One important property of this system, then, is that these distinguished se-
mantic operators are only capable of operating on semantic values, or representa-
tions, that correspond to clausal constituents.

It is with respect to these seven Prolog predicates that Johnson and Kay's
grammar is parameterized: the grammar is not fully defined until each predicate
has a definition. When it does, the set of seven definitions constitutes an imple-
mentation of the semantic operators, and it is three of these sets that Johnson
and Kay provide in their paper, as sample implementations.

Before progressing to a detailed examination of the role of the seven operators,
I wish to diverge from Johnson and Kay’s terminology and call them by the more
neutral term ‘primitives’ instead. For other than the trivial interpretation of them
as operators (functions) from their arguments to truth values, none of them need
have a functional interpretation over their arguments. Some of them, indeed,

32 Chapter 4

primitive type

external rep, ext — bool

atom rep, atprop — bool
conjoin rep, rep, rep — bool
compose rep, rep, rep — bool
subordinate rep, name, rep — bool
new_index index, rep — bool
accessible_index | index, rep — bool

== name, name — iprop
indexes Iprop — indexset

Table 4.2: The semantic primitives

cannot have that interpretation, in general—consider for example the predicate
accessible_index, of two arguments, an index and a semantic representation. Its
intended interpretation is that it is true just in case the index is anaphorically
accessible from the representation. But one representation can have many ac-
cessible indexes, and one index can be accessible from many representations, so
it is clearly nonsensical to suggest that the index and the representation could
be functionally dependent on each other. For this reason, henceforth I refer to
Johnson and Kay’s ‘semantic operators’ as ‘semantic primitives’. (One may say,
then, that the Johnson and Kay syntax-semantics interface is a relational one, not
a functional one, as it is PTQ and many other semantic theories.)

4.3 Semantic primitives

4.3.1 Sorts

Ordinary Prolog does not come with a type system, and Johnson and Kay do
not attempt to classify the arguments of their semantic primitives according to
the type of their arguments. None the less, it is possible to distinguish six sorts
of entity at work, of which one sort has two subsorts. I find it helpful to define
the primitives over these sorts, as in table 4.2, but note that the sorts are purely
a convention of mine, and only implicitly part of the Johnson and Kay system.
Note also that some of these sorts are fixed by the grammar, independent of
any implementation, while some must be defined by an implementation (of the
primitives).

I have given these sorts names: rep, ext, atprop, index, indexset and name.
Sort atprop has the subsorts lprop and iprop. In general, there are no other
subsort relations among the sorts. The sort rep is the sort of internal semantic
representations (for clausal constituents), referred to above as type ¢. Intuitively,

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 33

all and any information about the meaning of a constituent is stored in something
of sort rep. Sort ext is the ‘external’ version of rep: the semantic value which the
grammar presents to the outside world on completion of a parse. Both rep and
ext are defined by the implementation.

The sort atprop stands for ‘atomic propositions’, which come in two flavours:
those that form part of lexical entries, which belong to Iprop, and those that
are ‘implicational’ propositions, constructed by the grammar, which belong to
iprop. There is something a little odd about calling this latter category ‘atomic’;
the name comes from the fact that it is only entities of this sort that can be
arguments to the primitive atom. This primitive is true of an atprop and a rep
when the latter represents the former—it is the basic primitive that introduces
propositional information into representations, to be contrasted with those other
primitives that manipulate existing representations, such as conjoin and compose.
That is the sense in which its first argument is ‘atomic’.

The sort Iprop is completely defined by the grammar; for the one given in
figure 4.1 its membership is

U {likes(x,y),see(x,y),beat(m,y),own(x,y),}

» |woman(z), man(z), donkey(z)

where z and y range over the sort index. When lexical propositions contain indexes
they stand for the ‘holes’ that entities can occupy. Again, the sort index is defined
by the grammar, and in this case is the set of Prolog variables.! A set of indexes is
an element of the sort indexset. Finally, the sort name describes the kind of thing
which one of the primitives uses to ‘name’ things in sort rep.

With this final sort, we can partially characterize the members of iprop. They
are constructed by the grammar from entities of sort name. It is up to the imple-
mentation to say what a name is, but once this is established, all members of iprop
are merely pairs of elements from name, where the Prolog functor ==> is used to
encode the pairing. It is convenient to regard this functor as a further semantic
primitive, albeit one constrained to always act as a pairing, and I will do so from
now on, having listed it at the bottom of table 4.2. The other primitive of my
invention at the bottom of that table is indexes, which again is implicit in Johnson
and Kay’s system. Given an lprop, indexes extracts the set of indexes it contains.

4.3.2 Interpretations

In considering the meanings of the semantic primitives, it is worth bearing in
mind that an implementation is free to make its semantic representations quite

1 Using Prolog variables for this purpose is essentially an implementation decision of Johnson
and Kay; were ordinary Prolog terms to be used instead, there would be two consequences:
(i) the Pereira and Shieber style of lambda reduction could not be employed, and (ii) a number
of index equalities would have to be specified explicitly along with calls to the primitives (taking
proper account of which would require some additional Prolog machinery).

34 Chapter 4

primitive true in case

external(r, e) e is the external logical form corresponding
to r, where r represents a complete parse.

atom(r, p) r represents the proposition p.

conjoin(ry, o, t) t represents the logical conjunction of r; and
To.

compose(ry, ry, t) t represents information in both r; and ry,

combined in that order.

subordinate(ry, n, 7o) | nis a ‘name’ of ry, and rq is ‘subordinate’ to
Ta.

new_index(z,) r represents x as a new index for some (non-
anaphoric) NP.

accessible_index(z,r) | x is an anaphorically accessible index for 7.

Table 4.3: Meanings of the primitives

complex entities. In particular, it is essential that any implementation which
processes anaphora in the style of DRT uses its internal representations to store
not only the meaning of the ‘current’ constituent, but also to record information
about all prior constituents. This is exactly what the two anaphorically-sensitive
implementations do, as discussed in detail in §4.4.

Table 4.3 indicates the intended interpretation of the seven Johnson and Kay
primitives. Of these, the grammar uses the primitives external, atom and conjoin in
isolation at various points. The use of the first, in parse/2 was explained above.
The primitive atom is used alone to introduce a lexical verb meaning in the clause
for V. There are two places where conjoin is used: in the semantics of a relative
clause, to combine the noun and relative clause meanings, and in the meaning
of the indefinite determiner a, where the restrictor and scope are combined with
conjoin.

It is difficult to give convincing explanations of the meaning of some of the
primitives independent of a particular implementation. Hence I will rely on the
‘discourse-representation’ implementation—which closely follows DRT—in order
to give a better feel for the intuitions behind them.

The primitives new_index and accessible_index are responsible, respectively, for
introducing and accessing indexes that can potentially play a role as anaphoric
antecedents: the model here is the notion of discourse referent from DRT.

The semantics and anaphoric constraints of DRT rely heavily on the notion of
one DRS being subordinate to another. It is this relation that the subordinate
primitive is intended to capture. Rather than being a two-place relation, as
one might expect, subordinate is three-place, with the additional argument po-
sition being an entity of sort name. The intended interpretation is that when
subordinate(ry, n,) holds, n is a representation of the propositional entity 7y,

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 35

of a kind that can participate as an argument of the ==> primitive. Allowing
for the possibility that the ‘name’ of a propositional representation may not be
the same thing as the representation itself is supposed to allow the modelling of
‘non-extensional’ semantic theories. So far as I can establish, there is nothing
in the use of subordinate which requires that this connection between name and
representation happens in subordinate—it could have been provided via a separate
‘naming’ primitive.

These DRT-oriented primitives do not occur on their own, but only in com-
bination with others. There are three places in the grammar where this happens
(the clauses for N, pronouns, and universal quantification), and it is convenient to
define new terms for the combined effect of the primitives in these cases:

cn(z, p,r) =qger new_index(i, 1) A atom(p, ro) A compose(ry, ro,)
A indexes(p) = {z}

pro(i, 71, 72) =ger accessible_index(x,r3) A compose(ry, 13,79)

imp(r, s,t) =qer subordinate(s, ng, 1) A compose(r, 71, 13)
A subordinate(rg, n,, t1) A atom(n,==>ng, t5) A compose(ty, to, t)

The term cn is used to describe the semantics of common nouns: cn(x,p,r) is
true when abstracting over x for p results in a property, and when r represents
both the proposition p and the information that z is a new NP index. The
equation ‘indexes(p) = {z} captures the condition on abstraction, and is my
explicit rendering of a constraint implicit in the grammar—namely that lexical
entries for nouns always pair a proposition with the index over which abstraction
is intended.

The second term deals with pronouns: pro(z,r,79) is true when z is an
anaphorically accessible index for r;, and when ry represents this fact plus the
information in r,.

The third term is the mechanism whereby the meaning of conditionals and
universal quantifications is constructed. In the definition of imp(r, s, t), r repres-
ents the restrictor in a quantification and s the scope (antecedent and consequent
in a conditional, respectively). The intended propositional meaning derives only
from the use of atom and ==>. The other primitives are responsible for introducing
the notion of ‘subordinate’ representation in the way required by DRT, so as to
permit the primitive accessible_index to take advantage of this information when
calculating anaphoric accessibility. Both the two more complex implementations,
discussed below, show how this works.

Before passing to the details of the sample implementations, note that the
precise syntactic coverage of the grammar is not fixed independent of the imple-
mentation of the semantic primitives. It is quite possible for their implementation
to rule out parses on semantic, as opposed to syntactic, grounds. In the two more
complex implementations, for example, the sentence He beats him is not parsable,

36 Chapter 4

external (P, P).

atom(P, P).

conjoin(P, Q, P & Q).
compose (P, P, P).
subordinate(Sub, Sub, _).
new_index(_, _).

accessible_index(_, _).

Figure 4.3: The ‘predicate-logic’ implementation

because for neither pronoun is there sufficient context to provide an antecedent.
The sentence He beats a man is accepted, however, with the interpretation that
the antecedent of He is a man. This is a consequence of how Johnson and
Kay’s grammar rule for pronouns searches for possible antecedents: the search
includes any indexes introduced in the ‘propositional’ part of the pronoun NP
meaning (which represents the result of combining the pronoun meaning with the
meaning of the phrase it is an argument of). In particular, this means that a
subject pronoun may find antecedents anywhere in the following verb phrase (up
to subordination constraints).

The following slightly modified pronoun rule improves this behaviour by re-
stricting possible antecedents to occur only in that context which is prior to the
‘propositional’ part of the pronoun meaning:

np((X~S2)°S) --> [Promnoun],
{ pronoun(Pronoun),

accessible_index(X,S1),
compose (S1,52,S5) }.

This change is sufficient to rule out He beats a man.

4.4 Implementations

Here I discuss each of the sample implementations of the semantic primitives.

4.4.1 ‘Predicate-logic’

Figure 4.3 illustrates the ‘predicate-logic’ implementation. The final four primit-
ives, which are those that have the potential to determine anaphoric processing, are
given degenerate definitions. In particular, whatever kind of information compose

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 37

external ([[11-[S], S).

atom(P, [B|Bs]-[[PIB]|Bs]).

conjoin(P1, P2, P12) :- compose(P1, P2, P12).
compose (BOs-Bls, B1s-B2s, BOs-B2s).
subordinate([[] |BOs]-[B|Bi1s], B, BOs-Bis).
new_index(Index, C) :- atom(i(Index), C).

accessible_index(Index, Bs-Bs) :-
member (B, Bs),
member (i(Index), B).

Figure 4.4: The ‘discourse-representation’ implementation

deals with, it is the same for every representation; subordinate says nothing about
its third argument, the superordinate representation (and therefore encodes no
subordinate-superordinate relation) while new_index and accessible_index impose
no constraints at all on their arguments (or more logically, they are true for all
values of them). Hence this implementation cannot perform anaphor resolution.
We see from the definition of external that the representations it does construct,
internally, are identical to those it makes available externally.

With this implementation of the semantic primitives the grammar parses the
donkey sentence given in §4.2 and provides the following (external) meaning for
it:

(man(X) & donkey(Y) & own(X,Y)) ==> beat(X,Z)

Somewhat puzzlingly, this is not a closed sentence of ordinary predicate logic, since
there are no explicit quantifiers for the variables. But the intended interpretation
(in conventional first-order predicate logic) is evidently

VaVy(man(z) A donkey(y) A own(z,y) = Jz(beat(z, 2)))

Johnson and Kay indicate this much (p. 5), but say no more about a general rule
for the proper interpretation of the representations constructed by this implement-
ation. I return to this issue in §4.6.

4.4.2 ‘Discourse-representation’

The implementation for DRT is shown in figure 4.4. The external representations
it constructs are similar to the discourse representations structures (DRSs) of

38 Chapter 4

Kamp’s DRT, using a linearization of his box notation. The donkey sentence has
the representation

[[own(X,Y),donkey(Y),i(Y),man(X),i(X)] ==> [beat(X,Y)]]

in which a term of the form i(x) indicates that in Kamp’s notation the index x
would be listed at the top of the enclosing DRS (and called a discourse referent).

In this implementation, internal and external semantic representations are
not the same. They differ in two ways. First, an internal representation is a
list of DRSs, rather than a single one. Second, each DRS in that list does not
have the form of an ordinary Prolog list, like that above, but is instead encoded
as a ‘difference list’, in the common Prolog style (and perhaps more accurately
described as a difference pair of ordinary lists).

The first change enables an internal representation to model DRT’s subordin-
ate relation as a hierarchy of DRSs. The second change could be motivated on
efficiency grounds alone, since difference lists allow efficient implementation of a
number of list operations. But there is a more important reason: the structure of
a difference list is exploited to automatically record the semantic content of ‘prior’
constituents. In combination with the use of a list of DRSs, this means that a
given index can be considered to be anaphorically accessible if it occurs in the
prior content of any of those DRSs. This captures the DRT notion of occurrence
in some superordinate DRS.

(Modelling the structures of DRT in this way is very close to the approach
taken in Johnson and Klein (1986). The most important difference, of course,
is that in this system the DRT-like manipulation of semantic representations is
explicitly detached from the grammar. A further difference is Johnson and Kay’s
use of Montagovian lambda abstraction to combine sub-clausal semantic values.)

To see how difference lists allow an elegant representation for prior content,
recall first that the ‘value’ of a difference list A—B is a list C' with the property
that append(A, C) = B.? (If there is no such C, then A—B isn’t a difference list.)
So the value of

[man (X) ,1(X)]-[man(X),1i(X),beats(X,Y),donkey(Y),i(Y)]
is the list
[beats(X,Y) ,donkey(Y),i(Y)].

With this representation we can characterize an append relation on difference lists
very simply:

VAVBYC(dl_append(A—B, B—C, A-C))

2It’s more common to represent difference lists the other way round—as B—A rather than
my A—B. 1 diverge from this trend only for consistency with Johnson and Kay, who use the
latter ordering for their semantic value difference lists in this implementation and the following
one.

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 39

This constraint is directly usable as an efficient Prolog implementation of the
dl_append relation. It also has the following important property. Suppose a
number of difference lists are appended together thus (writing di_append in infix
notation as ‘@’):

Al—Bl EB AQ_BQ @ tee @ An_Bn
Then for any r,
Ar == U(Al—Bl) + -+ U(Arfl—BT,1>

where ‘4’ is ordinary append, and v(A—B) is the value of the difference list A—B.
This means that each difference list A,—B, automatically contains the (append
of) values of all the difference lists with which A,— B, has been ‘pre-appended’. It
is this property that the ‘discourse-representation’ implementation exploits when
it choose to represent meanings as difference lists of DRSs, and to use dl_append
directly as the implementation of the compose primitive.

It should now be clear how accessible_index works: it arranges for a null-valued
difference list to be composed into the append sequence when a pronoun is parsed,
and is then able to trawl through prior context by searching through the ordinary
list that (by being paired with itself) makes up that difference list. What it looks
for is simply a term contributed by new_index at some earlier point in the sequence.

It should also be possible to make more sense of the imp relation in the light
of this implementation. To do this we need to understand what subordinate is
doing. In this implementation, subordinate(r,n,s) is true when n (the ‘name’)
is the value (or current content) of r, when s consists of the superordinate part
of r’s meaning, and when r itself is constrained to have no prior context (at
the base level). Recall the definition of imp. Then the effect of the first two
primitives is to add the restrictor of the quantification (and any context it may
carry) to the superordinate part of the scope’s representation, thereby allowing
anaphora from scope to restrictor. The second use of subordinate combined with
the final compose allows any context acquired by the ultimate representation to
become superordinate context for the restrictor (and therefore, in virtue of the
previous sentence, also for the scope). Finally, as remarked earlier, the use of
atom and compose incorporates the truth-conditional content of the quantification
or conditional into the outgoing representation.

4.4.3 ‘Sets-of-infons’

Figure 4.5 shows the ‘sets-of-infons’ implementation. As Johnson and Kay remark
(p. 10) it may be considered a notational variant of the ‘discourse-representation’
implementation just discussed. Here, a representation consists of a difference
list of situation-and-infon pairs, and an ordinary list of situation names, which
represents their position in a subordinate ordering of situations. All that is really

40 Chapter 4

external (@([Sit],[],Is), Sit:Is) :- gensym(Sit).
atom(P, @([Sit|_],Is,[(Sit:P)|Is])).

conjoin(Il, I2, I12) :- compose(Il, I2, I12).

compose (@(Ss,I10s,I1s), @(Ss,I1s,I2s), @(Ss,I10s,I2s)).

subordinate(@([Sit|Sits],I0s,I1s), Sit, @(Sits,I0s,Ils)) :-
gensym(Sit) .

new_index(Index, S) :- atom(i(Index), S).

accessible_index(Index, @(Ss,Is,Is)) :-
member (Sit:i(Index), Is),
member (Sit, Ss).

Figure 4.5: The ‘sets-of-infons’ implementation

different from the ‘discourse-representation’ implementation is that the subordin-
ate information has been factored out into an ordered list of situations, with which
infons are tagged. Infons are then otherwise simply the contents of the previous
implementation’s DRSs. The single difference list of (tagged) infons is used to
record prior context as well as current content in an entirely analogous fashion.
Functions to translate one-to-one between the two representations may readily be
constructed.

For completeness, here is the external representation of the donkey sentence in
this implementation:

s0:[s0:81==>82,s82:beat(X,Y),sl:own(X,Y),s1:i(Y),
s1:donkey(Y),s1:1(X),sl:man(X)]

4.5 Semantic abstraction

One of the benefits of an appropriately abstract interface between syntax and
semantics ought to be that certain kinds of inherently nonsensical or incoherent
semantic operations cannot be specified by a syntactic rule. In computer science,
this is exactly the protection afforded a programmer by the use of abstract data
types to specify program components. Johnson and Kay’s approach opens the door
to this kind of security for the syntax-semantics interface of a natural language
grammar, but fails to go the whole way. Most importantly, Johnson and Kay
put no formal constraints on the implementation of their semantic primitives:
their specification is left at the informal, intuitive level, guided by their example
implementations.

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 41

The rest of this chapter consists of my attempt to rectify this. Whether or not
it succeeds in that aim, it at least serves to shed some light on the precise nature
of the abstraction that Johnson and Kay’s system achieves.

4.5.1 Content and behaviour

It has already been observed that the ‘predicate-logic’ implementation gives de-
generate definitions to those primitives that are concerned solely with anaphoric
processing, and as a consequence does none. The other two implementations do
process anaphora, however, so I shall call them the anaphoric implementations in
recognition of this. In §4.4 T showed that anaphora resolution in them is dependent
on recording prior discourse content in the internal semantic representation of
every constituent. It is natural to distinguish this part of the representation,
which one might call the contextual content, from the part which represents the
intended semantic value of the constituent, the direct content. Then we can can
relate the two, at least for these implementations, by saying that the contextual
content represents the direct content of prior constituents.

In the anaphoric implementations these two kinds of content play different
roles. Direct content is the final semantic value, as captured in an external
semantic representation, while contextual content serves to resolve ambiguities
(those introduced by anaphoric elements) in order to get at a semantic value.

This distinction seems useful, but our only precise characterization of it so far
is implementation-dependent. We would like to formally describe distinctions such
as this in a way that does not require knowledge of the particular data structures
used by an implementation. In order to do this we must speak only of the behaviour
of the primitives in an arbitrary implementation.

It would appear there are essentially two sorts of behaviour to consider: the
construction of proposition-like entities as ultimate semantic values, and the res-
olution of anaphors. Our intention, as outlined above, is to describe the correct
range of these behaviours, so that incorrect implementations can be ruled out.
(Thus we would expect the ‘predicate-logic’ implementation to fail the test for
correct anaphoric behaviour, but for all the example implementations to pass that
for correct proposition-like behaviour.)

Before proceeding, however, it is worth distinguishing between two separate
enterprises in the semantic processing of anaphora. First, there is the task of
providing a systematic map from sentences and sequences of sentences in which
the antecedent of a pronominal anaphor is clearly indicated (‘indexed discourses’)
to some semantic representation that exhibits the appropriate proposition-like
behaviour. Second, there are theories of how that indexing is set up—of the process
of anaphora resolution itself.* Kamp’s DRT makes claims in both areas, although
its primary importance is probably that it was the first theory to successfully tackle
the former one, for a particular set of data. Subsequent systems, such as that of

3These issues are discussed at more length in §5.4.

42 Chapter 4

Dynamic Predicate Logic (DPL, Groenendijk and Stokhof 1991), have tended to
be concerned exclusively with this aspect of DRT.

I shall regard the first of these enterprises, that of generating semantic repres-
entations for indexed discourses, as within the domain of ‘propositional’ behaviour.
Anaphora resolution itself, however, is clearly anaphoric behaviour.

But there is a lack of agreement on how anaphoric behaviour should be mod-
elled. Anaphora resolution is still poorly understood, and lacks even one tolerably
comprehensive formal model. For that reason, I devote most of the rest of this
chapter to what I have called ‘propositional-like’ behaviour; a partial specification
of anaphoric behaviour appears in §4.7.

There is not, of course, universal agreement on what constitutes correct beha-
viour of this kind for disambiguated English discourses. Traditionally, what I have
been calling ‘propositional-like’ (in an attempt at neutrality) is rendered simply
as ‘truth conditional’. Since to depart from this level of analysis is to give up most
of the present consensus I shall not do so, and merely use the word ‘inferential’ in
preference to ‘truth conditional’, wishing to emphasize that inferential relations
between discourses are the focus of discussion.

Even in this area there are certainly semantic theories that differ in the precise
inferential behaviour they attribute to particular syntactic constructions. I will
give two examples. First, it happens that differing notions of intensional iden-
tity give rise to differing entailment patterns for sentences involving propositional
attitudes, as in:

Tom believes that John loves Mary.
.. Tom believes that John loves Mary and someone loves Mary.

Second, certain entailments, such as the following argument, depend on the
degree of ‘type looseness’ in a semantic theory:

Everything that worries Tom worries Sue.
Peter worries Tom. That John loves Mary worries Tom.
.. Peter worries Sue. That John loves Mary worries Sue.

Montague’s PTQ theory (Montague 1973) validates the first argument but not
the second, while the property theory PTy of Chierchia and Turner (1988) does
exactly the opposite.

Despite this, there is a broad swathe of agreement across our current range
of semantic theories. For the English data encompassed by Johnson and Kay’s
grammar, restricted to the bound-variable readings favoured by DRT, there is
sufficient unanimity about the desired inferential behaviour that I now take that
as given and proceed to consider how best to specify it for an arbitrary Johnson
and Kay implementation.

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 43

4.5.2 Constraining inferential behaviour

In principle, we could describe our intended inferential behaviour merely by spe-
cifying a desired consequence relation over indexed English discourses. Then an
implementation would be satisfactory just in case this relation could be defined
on the external semantic representations which it generated for those discourses.
However this approach has drawbacks. One concern is the degree of reliance on
the grammar with which the implementation works: if that grammar’s language
does not include the premises and conclusions necessary to capture the inferential
behaviour of a particular construction, then the specification will be incomplete.
More fundamentally, there is the problem of ambiguity in plain English sentences.
Various levels of supplementary notation may be used to resolve these ambiguities,
but since they include questions of quantifier scope and other semantic notions,
such notations inevitably tend towards a representation that reflects logical struc-
ture at least as much as surface syntax. The case for working with logical forms
outright is strengthened by the tradition of using formulas of first-order logic to
describe intended inferential behaviour (or truth conditions) for this particular
range of English discourses. Finally, it seems reasonable to expect that the spe-
cification of a correct implementation of general ‘semantic primitives’ should not
depend on a particular natural language.

I conclude that one approach worth pursuing is to constrain the inferential
behaviour of a candidate implementation using a map from the implementation’s
external semantic representations to formulas of first-order logic. Then we can
state constraints in terms of the output of this map, the map itself being supplied
by a conforming implementation.

An external representation corresponds to a complete discourse. Hence in this
approach, we take some representative set of discourses and assign a ‘canonical’
first-order formula to each of them. The derived constraint on an implementation
(together with its associated first-order map) is then that the external repres-
entations it generates for each representative discourse must get mapped to the
corresponding canonical formula (or to a logically equivalent one, say). We can
dispense with the actual discourse and the syntactic processing, taking the col-
lection of constraints generated by the grammar for that discourse as the starting
point of the specification (figure 4.6 shows an implementation which automatically
makes such collections).

Evidently there is an issue about just how representative the set of test dis-
courses (or equivalent constraints) can be. Although the goal is to constrain
the interpretation of semantic primitives as comprehensively as possible, the only
combinations of primitives that can actually be tested in this approach are those
that serve to constrain the external representation of a single grammatical dis-
course. In order to parse these discourses, the candidate implementation will
have to be paired with a test grammar. The possibility cannot be excluded that
some extension of the test grammar might combine the primitives in a novel way,

44 Chapter 4

external (S:X-[external(S,E)], E:X).

atom(P, S:[atom(P,S) |X]-X).

conjoin(S1:X-Y, S2:Y-[conjoin(S1,52,83) [Z], S3:X-2).
new_index(Index, S:[new_index(Index,S) |X]-X).
accessible_index(Index, S:[accessible_index(Index,S) |X]-X).
compose (S1:X-Y, S2:Y-[compose(S1,52,53) [Z], S3:X-2).

subordinate(S1:X-[subordinate(S1,B,S2)|Y], B, S2:X-Y).

Figure 4.6: An implementation that collects constraints

still consistent with their intuitive interpretation, but not tested by any of the
discourses that the original grammar admits.

Furthermore, no finite set of representative discourses really provides sufficient
constraint on an implementation, since we would like to ensure that the semantic
primitives are defined uniformly over the domain of ‘lexical propositions’ (lprop).
For example, the implementation should do the right thing for all common nouns,
not just woman, man and donkey. We can guarantee this only by including some
form of quantification in our constraints, so that no particular members of the
non-logical syntactic categories are singled out. This should not be problematic,
however.

It appears that the main problem with this approach is its inability to specify
the behaviour of each primitive independently, or in any combination other than
those determined by particular discourses. Even in such a combination, all inform-
ation about the effect of the primitives involved is filtered through the external
primitive, since it is only via the first-order map on external representations that
any constraints can be specified. Directly constraining the primitives, on the
other hand, suggests a strategy in which internal representations are mapped to a
common logical form language, with a corresponding ‘canonical’ relation on that
language being defined for each primitive, and the form of the actual specifications
including quantification over the domain of all internal representations (rep). In
what follows I shall investigate both these approaches for the Johnson and Kay
primitives. We may note in advance, however, that in the second approach we are
not necessarily free to choose an arbitrary ‘logical form language’: it may transpire
that an internal representation in this system essentially carries more information
than, say, a formula of first-order logic.

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 45

4.6 Specifying correct implementations

There are various ways to investigate constraints for the primitives. One option
is to assume that since we're interested only in inferential behaviour, Johnson
and Kay’s ‘predicate-logic’ implementation should be some kind of boundary
case, where the implementations of the primitives only just satisfy our inferential
constraints. If so, this is a good place to start.

4.6.1 Discourse representation languages

The ‘predicate-logic’ implementation does not distinguish between internal and
external representations. I begin by taking the first approach to specification
outlined above, which requires that we find a way to map these representations to
first-order logic. As pointed out in §4.4, they are like first-order formulas which
lack explicit quantifiers. However we know that we are expected to interpret

man(X) & donkey(Y) & beat(X,Y)
as

JrJy(man(z) A donkey(y) A beat(z,y))
but to interpret

man(X) ==> (donkey(Y) & beat(X,Y))
as

Vz(man(z) = Jy(donkey(y) A beat(z,y)))

What’s going on here? The answer seems to be that the ‘predicate-logic’
representations are really expressions in a kind of minimal discourse representation
language that lacks explicit marking of discourse referents. By a ‘discourse rep-
resentation language’ (or DR language) I mean some linearized version of Kamp’s
DRS notation. A good study of such languages, and how they relate to first-order
logic, has been provided by Zeevat (1989). On page 101 of that article, Zeevat
defines a linear form in which the appearance of a variable as a discourse referent
(in the ‘top box’ of a DRS) is indicated with an asterisk. He also admits —
(absurdity) as a primitive DRS. In this language, the two representations just
given would appear as follows.

man(x*) A donkey(y*) A beat(z,y)
man(z*) = (donkey(y*) A beat(z,y))

Zeevat gives a model-theoretic interpretation for such expressions (in effect,
extending Kamp’s original DRT semantics to ‘incomplete’” DRSs) and shows that

46 Chapter 4

there exist maps between this DR language and first-order logic (FOL) which
preserve satisfaction in each direction. The map to FOL, Ty, is defined with

To(¢) = Fzy ... 3w, Ty (@) where {x1,...,2,} = V(9)

and
Ti(r(ty, ...t)) =r(ty,...,t) where t} is t; with any star removed
Ti(¢p AN y) = Ti(¢) ANTh(Y)

where {xl, oo xnt =V(e) and {y1,...,ym} = V()

Ti(-) = -

V(r(ty,...,tp)) ={2; |z} isoneof t1,... t, }
V(e Ay) =V(e) UV(Y)

Vg =) =10

The function V' collects discourse markers at the current level, and 7} uses this
information to generate the right quantification for DR language implications. Tj
completes the translation by making sure that top level referents are existentially
quantified.

Can we find a map from our minimal DR language to FOL that similarly
preserves satisfaction? We would then have most of what we need in order to
constrain the ‘predicate-logic’ implementation in the first way described in the
previous section, since we’d have a map from (external) representations to FOL
formulas.

In fact, there is such a map, despite the lack of explicit information about
discourse referents in our minimal DR language. For it is sufficient to observe
that in a well-formed DRS

1. There are no ‘free variables'—every variable (referent) is intended to be
quantified;

2. A variable should be existentially quantified unless

(a) it is already in the scope of a quantifier, or

(b) it appears in the antecedent of an implication, when it should be uni-
versally quantified, subject to the condition just given.

On this basis, we can define a function Uy to translate our minimal DR language
to FOL. The idea is to work top-down and use an auxiliary argument to the main
translation function, Uy, to keep track of those variables which have already been
quantified over. The only other real change required is to make Zeevat’s function
V behave as if every variable in its argument DRS was starred, so that it generates
all ‘candidate discourse referents’ for it.

Us(p) = Fy ... Tz, Uy (&, {1, .. ., 0 }) where {z1,...,z,} = W(¢)

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 47

Ui(r(zy,...,z), A) = (21, ...,)

U1(¢/\1/M4): <¢)/\U1<77Z)a)

Ui(¢p =, A) =V, ... Vr,(Ui(¢,B) = Ty; ... Jy,, U1 (¢, C))
where {z1,...,2,} =W(¢)\ A, B={zy,...,z,} UA,
. {yl,---,ym} W@\ B, C={y,...,ym}UB

(—
W(r(xy,...,z,)) ={x1,..., 2.}
W(pAy)=W(p)UW(y)
W(p=1¢)=0

(A Prolog implementation of this map may be found in appendix B. Since writ-
ing this chapter I have discovered that Pagin and Westerstahl (1993) discuss a
language analogous to my minimal DR language, and prove similar equivalences.)

=

1

4.6.2 An external specification

Now that we can map ‘predicate-logic’ representations to FOL, we may investigate
the first of our approaches to specifying the correct behaviour of the primitives.
We seek a semantically varied range of sentences admitted by the Johnson and
Kay grammar that each give rise to as few constraints as possible.

One such sentence is

A woman owns a donkey.

The standard grammar generates a semantic representation for this sentence by
finding a value of e that makes the following formula true:

Jx3y3ry ... Irg new_index(z, 1) A atom(woman(x), re) A compose(ry, 19, r3)
A new_index(y, 74) A atom(donkey(y), 75) A compose(ry, 5, T'g)
A atom(own(zx,y), r7) A conjoin(rg, r7,75) A conjoin(rs, rg, 7o)
A external(ry, €)

This collection of constraints exercises all the primitives except accessible_index and
subordinate, and it is not possible to find a sentence whose semantic representation
involves less primitives. However, if we are prepared to augment the original
Johnson and Kay grammar with the following rules for intransitive verbs (and
verb phrases), for which the semantic component seems clear, we can obtain a
representation that at least depends on fewer instances of the primitives.

vp(VP) --> vi(VP).

vi(X~S) --> [Verb],
{ verbi(Verb, X Pred),
atom(Pred, S) }.

verbi(walks, X" walk(X)).
verbi(runs, X run(X)).

48 Chapter 4

With these additional rules the sentence
A woman walks.
may be parsed and yields the following constraints:

Jx3ry ... Irs new_index(z, 1) A atom(woman(z), 7o) A compose(ry, ra, 73)
A atom(walk(x),r4) A conjoin(rs, r4,75) A external(rs, e)

To test universal quantification we may take
Every woman walks.
which generates

Jx3n,3Ingdry ... Irg new_index(z, 1) A atom(woman(z), rs)
A compose(ry, r9, r3) A atom(walk(x), ry) A subordinate(ry, ny, r5)
A compose(rs, 5, rg) A subordinate(rg, ng, 77) A atom(ng==>n,, rg)
A compose(rz, rg, r9) A external(ry, €)

Using these formulas, the abbreviations cn and imp defined in §4.3, and our map Uy
we see that the following constraints hold of the ‘predicate-logic’ implementation:

VpVqVe[(3xIryIreTIrs en(z, p,r1) A atom(q, r9) A indexes(q) = {z}
A conjoin(ry, r9,73) A external(rs, €)) = Up(e) = Fz(p A q)]

VpVqVe[(FxIriIreTFrs en(z, p,r1) A atom(q, r9) A indexes(q) = {z}
Aimp(ry, 79, 73) A external(rs,e)) = Up(e) = "Va(p = q)]

where p and ¢ range over Iprop. We could try to capture some constraints on the
semantics of relative clauses with the additional requirement

Vp¥qVuVe|(3x3ri3ry ... Irsen(z, p,ri) A atom(q, ra) A indexes(q) = {z}
A conjoinry, 9, 73) A atom(u, 74) A indexes(u) = {z}
A conjoin(rs, 74, 75) A external(rs, €)) = Up(e) = Fz(p AqAu)]

but this seems not to give us any additional leverage. To generalize away from the
‘predicate-logic’ implementation it now suffices to demand that every candidate
implementation provides some map F' from its external representations to FOL
such that

VpVqVe[(3xIryIreTIrs en(z, p,r1) A atom(q, ro) A indexes(q) = {z}
A conjoin(ry, 79, 73) A external(rs, e)) = F(e) = 3x(pAq)]

Vp¥qVe[(JxIriIraTrs en(z, p, 1) A atom(q, r2) A indexes(q) = {z}
Aimp(ry, 72, 73) A external(rs,e)) = F(e) = Va(p = q)]

For ‘predicate-logic’, F' = Uy. For the other two implementations, it turns out that
the required map can be obtained by composing U, with a per-implementation
map from external representations to the minimal DR-language that Uy is defined
on. Prolog definitions of these implementation-specific maps are provided in ap-
pendix B.

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 49

4.6.3 An internal specification

The ‘external’ specification just developed involves many instances of the semantic
primitives, and in two very similar configurations. Yet it is clear that basing the
specification on more complex sentences will only increase the complexity of the
derived constraints in the same limited areas. In order to get a firmer grip on the
behaviour of the individual primitives we need less complexity in our constraints
and must resort to an approach based on translating internal representations into
some common language, on which the canonical behaviour of the primitives may
be defined.

Let’s start again with the ‘predicate-logic’ implementation, where internal and
external representations are the same, so that we can immediately use U, to map
the former to FOL. Can we then constrain the primitives directly using this map?

We can do so only if we can capture the inferential behaviour of each prim-
itive in terms of a relation on formulas of FOL. For the primitive atom, this is
straightforward, at least for members of Iprop. We evidently want to say just

Vp¥r(atom(p,r) = Uy(r) = p)

where p is quantified over lprop. What about conjoin? The meaning of conjoin
certainly involves logical conjunction, so perhaps we can simply say

‘v’r1V7“2V7“3(conjoin(T1, T9, T3) = Uo(T3) = on(Tl) A\ U()(TQ)—I)

This is false, however. In interpreting A woman walks, the ‘predicate-logic’ im-
plementation solves the constraint

conjoin(ry, 72, 13)
with the following assignments (and translations under Up):

ry = woman(z) Ug(r1) = 3z woman(x)
ry = walk(x) Up(ry) = Jzwalk(z)
r3 = woman(z) A walk(z) Up(rs) = Jz(woman(z) A walk(z))

which contradicts the proposed specification. But this should not come as a great
surprise: it has already been noted that the representations of the ‘predicate-
logic’ implementation may be seen as formulas of a minimal DR-language, in
which the symbols “A” and “=" do not have their FOL interpretation. None the
less, the possibility remains that we may be able to mimic DR-conjunction (and
implication) in FOL via syntactic operations on FOL formulas other than the the
natural binary operations of FOL-conjunction and FOL-implication. In fact, we
can do this.

Let S be that function on FOL formulas that strips out all quantifiers, but
leaves everything else untouched. Then the following constraint on conjoin does
hold for the ‘predicate-logic’ implementation:

\V/T1VTQVT3(C0njOin(T1, T9, T3) = UO(T3) = rUg(S(T‘l) A S(TQ))—I)

50 Chapter 4

We can constrain imp, the set of primitives which implement DR-implication, in
an analogous fashion:

Vr VroVrs(imp(ry, rg, 73) = Up(rs) = Up(S(r1) = S(r3)))

The question is, is this a legitimate approach? I claim that it is not. As indic-
ated above, these specifications only ‘mimic’ DR-conjunction and DR-implication.
The crucial point about DR languages is that their formulas code up the semantics
of first-order formulas and information about the identity of top-level existentially
quantified variables (discourse referents, or indexes). The specifications above
rely on interpreting FOL formulas in ways that are at odds with their standard
semantics. In FOL, the formulas 3z woman(z) and Jywoman(y) have identical
inferential content—but they will behave differently under the operations intro-
duced above, since x and y are distinct variables. This means that the above
approach breaks down as soon as one exploits some of the standard identities for
FOL formulas. Imagine post-composing the map U, with a function that rewrites
FOL formulas into a kind of canonical form by renaming all bound variables, and
possibly performing other satisfaction-preserving operations. Then these specific-
ations immediately fail.

To see why a primitive like conjoin must ultimately be interpreted as DR-
conjunction, consider again the role it plays in the Johnson and Kay grammar. It
is used in obtaining the semantic value of relative clauses and the indefinite article
a. In the former case the underlying semantic operation is logical conjunction
at the level of properties. The interpretation of man that owns a donkey is a
property formed through the conjunction of the property corresponding to man
and that corresponding to that owns a donkey. In the latter case, a is interpreted
as a generalized quantifier that operates on properties to yield a proposition; the
meaning of a woman walks is the (generalized) existential quantification of the
properties corresponding to woman and to walks. But DR-languages contain no
overt mechanism for defining or operating on properties. What they do have,
however, is a way of connecting a formula with a set of variables. Thus it is that
in a DR-language, properties (and relations of higher arity) must be encoded by
using selected variables (in Johnson and Kay’s terminology, indexes) to record
an implicit abstraction operation. This is exactly what the Johnson and Kay
grammar does. In order to implement property-level conjunction, then, it is
necessary to record the abstracted-over variable (the grammar does this with
the “°” operator), to ensure that both such variables are identical for the two
properties (the grammar does this in the head of the rule that rewrites nl as
a relative clause), and finally to ensure that the operation of conjunction itself
respects the identities of variables occurring within the conjuncts. This latter is
precisely what DR~conjunction buys us, and FOL-conjunction does not. The story
is similar for the operations of generalized quantification; suffice it to point out
that in the grammar the corresponding variable-identification constraint occurs in
the rule for det. (Such observations about the nature of DR-language operations

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 51

apply equally to Kamp’s original DRT, and systems based thereon.)

The conclusion of these arguments is that any ‘internal’ specification of correct
behaviour for the primitives must be stated in terms of a (minimal) DR-language,
and hence that the map which a conforming implementation is required to provide
must be a map from its internal representations to this DR-language. We may
as well take the language of the ‘predicate-logic’ implementation’s representations
as our common, minimal, discourse referent-free DR-language. Then, finally, we
can give a correct specification for the inferential behaviour of each primitive. In
the following formulas, I use D to stand for the DR-language map provided by a
conforming implementation.

First of all, we may stipulate that the domain of D can be extended to external
representations in such a way that under D internal and external representations
are identical. Both representations are the semantic values of clauses, sentences
or discourses; the correct inferential behaviour (which is what D is supposed to
extract) must surely be the same both internally and externally. Hence:

Vr¥e(external(r,e) = D(r) = D(e))

We can resurrect essentially the same specification for atom as we mooted
earlier. In this version I'’ve made explicit the requirement that p be in |prop:

VpV¥rvn,¥ny((atom(p,7) A p # ny==>ny) = D(r) = p)
Now conjoin has the following natural specification:
VriVroVrs(conjoin(ry, ra, 73) = D(r3) = D(ry) A D(r3)")
and similarly for imp
Vr VroVrs(imp(ry, 7o, 73) = D(rs) = D(ry) = D(ry)")

That deals with all the primitives that affect inferential behaviour. I have
chosen not to give individual specifications for compose, subordinate and atom
applied to a non-lexical proposition. This is because they do not have a fixed
inferential interpretation across all implementations—only when combined as in
the definition of imp do they convey a consistent meaning, namely that of DR-
implication.*

4In both the ‘predicate-logic’ and the ‘discourse-representation’ implementations compose
does not contribute to the inferential behaviour of imp, and for these implementations it would
be possible to replace the specification of imp just given with, for example:

VriVraoVn(subordinate(ry, n,r2) = D(r1) = D(n))
Vn,VnyVr(atom(n;==>ny,r) = D(r) = D(ny) = D(ny) ")

The ‘sets-of-infons’ implementation breaks these constraints, because of its internal division
of inferential content between lists of tagged infons and the tags (situation labels) themselves;

52 Chapter 4

It remains to consider new_index and accessible_index. These primitives have no
effect on inferential behaviour. We can capture this by demanding that D maps
the representations that are constrained by these primitives into some tautologous
DR formula, such as — = —:

VaVr((new_index(z,7) V accessible_index(x,r)) = D(r) = — = —)

This is not quite the whole story, however: in the Johnson and Kay grammar
these representations are always combined via compose; for new_index this happens
in the collection of primitives that I’ve called cn, for accessible_index it happens
in the grammar’s pronoun rule. There are two ways to deal with this: either we
retain the constraint just presented and give a general specification for compose
too, or we treat specially the two contexts in which new_index and accessible_index
occur.

Both approaches are possible. On the one hand, it would seem desirable to
constrain the smallest possible unit, which argues for specifying compose individu-
ally. In this case, we may view compose simply as DR-conjunction. On the other
hand, it seems more accurate to say that compose essentially has no inferential
interpretation, and that therefore the right approach is to constrain cn and the
combination of accessible_index and compose used in the pronoun rule with two
separate specifications. Taking this latter approach we obtain:

VaVpVr VroVrs¥n,Vng ((new_index(z, 1) A atom(p, re) A p # ni==>ny
A compose(r1,72,73)) = D(r3) = 'p’)

VaVrVry¥rs((accessible_index(x, o) A compose(ry, ra, r3))
= D(ry) = D(r3))

Since we arranged for D to map to the minimal DR-language from which the
‘predicate-logic’ implementation’s representations are drawn, suitable implement-
ations of D for the two anaphoric implementations already exist in appendix B

(§B.1).

4.7 An anaphoric specification

Let us now suppose that we wish to develop a specification of the primitives which
ensures their anaphoric behaviour is reasonable. This comes in three parts:

1. Requiring that certain primitives correctly record past discourse content;

it is only the latter which are used as the names of representations in subordinate, and the
implementation relies on the operation of compose on ‘superordinate’ representations to keep the
tagged infons available. (I note here that this structure does nothing to cash out the Johnson
and Kay’s claim (p. 18) that the ‘sets-of-infons’ implementation illustrates a “non-extensional”
theory of meaning.)

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 53

2. Requiring that certain other primitives correctly determine possible ante-
cedents from such content, and

3. Stipulating that the primitives not involved at all in anaphoric processing
do not interfere with the first two tasks.

4.7.1 Using external representations

As in the inferential case, we should examine to what extent we can achieve our
goals by looking only at an implementation’s external representations. The picture
here is bleaker, however: come the external representation, all decisions about
anaphor resolution have already been taken, and we can only judge the result.
Nonetheless, one might think that given a map from ext to first-order formulas
(after the style of §4.6), then the external representation for

A donkey beats it.
would necessarily map to a FOL formula equivalent to
Jz(donkey(z) A beat(z,x))

—and that this effectively puts constraints on anaphoric behaviour. There are
numerous problems here, though. Most obviously, the above example (with the
intended reading) is not even grammatical, although it is admitted by the Johnson
and Kay grammar. If we claim, on the other hand, that

Every man that owns a donkey beats it.

maps only to a single FOL formula, we conflate judgements on anaphoric pro-
cessing with many others. It seems necessary to work at the level of internal
representations.

4.7.2 An internal approach

Returning to three tasks listed above, let us first determine what notion of ‘past
discourse content’ is required. We would like this content to be the minimum
needed for the correct anaphoric behaviour of the primitives. The only primitive
that actually extracts antecedents from past content is accessible_index, and what
it extracts is an index. Hence it should be possible to treat ‘past discourse
content’ as a set of indexes for the purposes of an anaphoric specification. We
should, however, distinguish between the set of indexes set up as antecedents
by a particular representation, and those that have been set up prior to that
representation.

So let A and P be functions from internal representations to sets of indexes
(that is, from rep to indexset). The informal interpretation of A(r) is the set of
antecedents (indexes) in r, and that of P(r) is the set of indexes that have arisen

54 Chapter 4

in discourse prior to r. We can begin our specification by requiring that when an
interpretation representation is related to an external representation by external,
then the internal representation can record no prior indexes:

Vr(Je external(r, e) = P(r) = 0)

This will have the effect (given the constraints below) of ensuring that the repres-
entation of first constituent in a discourse will also see no prior indexes.

Taking the other primitives in turn, all we can say of atom is that it should
introduce no new antecedents—and this holds whether atom’s second argument is
in Iprop or not:

Vr(3patom(p,r) = A(r) = 0)

Given A and P the constraints on new_index and accessible_index are obvious:
VaVr new_index(z,r) = A(r) = {z}
VaVr accessible_index(z,) = (x € P(r) A A(r) = 0)

It remains to regulate the conversion of current antecedents into prior ones,
and the propagation of antecedents across ‘subordinate’ divisions. Both conjoin
and compose perform the former activity, and it appears that they must have the
same anaphoric specification. When c(rq, r9,r3) holds of three representations,
where ¢ may be either conjoin or compose, three things must hold:

1. The antecedents introduced by the combined representation, r3, must be the
union of those introduced in r; and rs;

2. The prior antecedents of ry, the second of the two components, must be
the union of the prior antecedents of the first component, and the new
antecedents introduced in it.

3. The prior antecedents of the combination r3 must be exactly the prior ante-
cedents of rq;

So we have:

VrVryVrs(conjoin(ry, re, r3) V compose(ry, 1o, 13)) =
(A(rs) = A(r1) U A(rs)
A P(ry) = P(r1) U A(rq)
A P(r3) = P(ry))
Regarding subordinate, it seems that the crucial stipulation is that the prior ante-
cedents of the superordinate and subordinate representation should be equal. We

should also require that the superordinate representation created by subordinate
not introduce any new antecedents. This gives us:

Vr1VroVn subordinate(ry, n, o) = (P(r1) = P(ry) A A(rg) = 0)

Johnson and Kay’s ‘Semantic Abstraction and Anaphora’ 55

It may be instructive to see what the implications of these constraints are
for imp, the combination of primitives used to interpret implication and universal
quantification. Suppose imp(r, s, t) holds. Then according to the definition of imp
and the specification just given, we can deduce that

P(r)=P(t)
P(s) = P(r)U A(r)
At)=10

This says that the antecedents available to the ‘restrictor’ representation r are the
same as those available to the combined representation ¢, that the antecedents for
the ‘scope’ s include any antecedents introduced in r, and that the representation
as a whole introduces no new antecedents, thereby correctly insulating the effect
of any new indexes in r or s from subsequent discourse.

Prolog code that implements A and P for both the ‘discourse-representation’
implementation and for ‘sets-of-infons’” may be found in §B.2, appendix B.

4.8 Summary

The focus of this chapter has been the paper Johnson and Kay 1990, in which
the authors present a model for semantic abstraction. I explained their system: it
consists of a DCG grammar for a fragment of English, with some of the semantic
processing factored into explicit Prolog calls, which themselves reduce to seven
‘semantic primitives’. This provides a fixed interface to the syntax, but allows for
alternative semantic domains via the possibility of different implementations (in
Prolog) of the seven primitives. Johnson and Kay themselves provide three such
implementations. The most convincing intuitive interpretations of the primitives
lean heavily on DRT; the primitives cover both ‘inferential’ and ‘anaphoric’ op-
erations, and take as arguments only propositional representations and ‘indexes’,
these latter being analogous to DRT’s discourse referents. The interface provided
by the primitives is essentially relational, not functional.

I discussed the sample implementations. The ‘predicate-logic’ one generates
minimal logical forms whose interpretation is not fully explained by Johnson and
Kay. The ‘discourse-representation’ implementation constructs DRSs in a manner
quite similar to the system of Johnson and Klein (1986), and relies crucially on
the properties of difference lists in Prolog to integrate inferential and anaphoric
information. The third implementation, ‘sets-of-infons’, is a notational variant of
‘discourse-representation’.

In discussing approaches to modelling the abstraction inherent in the Johnson
and Kay system, I argued for distinguishing between inferential and anaphoric
behaviour, and further pointed out that there are essentially two approaches:
‘internal’ specifications that directly constrain the primitives, and ‘external’ ones
that rely only on generated external representations. In the case of inferential
behaviour, I showed that external specifications are possible, but unsatisfying.

56 Chapter 4

Development of an internal specification revealed that a single ‘minimal discourse
representation’ language can represent the core inferential content of the primit-
ives, irrespective of implementation. Prolog code that connects this language with
each of the sample implementations is collected in appendix B.

Regarding anaphoric behaviour, external specifications are even more inad-
equate, so I provided a simple internal specification for this too. Appropriate code
is also given in the appendix.

In conclusion, note first that in their paper Johnson and Kay do not give
any explicit characterization of the kind of semantic abstraction actually provided
by their system, and it seems reasonable to desire such a characterization. The
approach demonstrated in this chapter not only makes the nature of their ab-
straction clear, it makes it formal. I have shown that the inferential content of the
system is that of a minimal DR language: only semantic theories that re-present
or reinterpret DRT can be represented in this framework. Basically, what we have
here is an elegant interface from the syntax to DRT.

This is disappointing: it seemed reasonable to hope for something more general.
The difficulty of obtaining convincing intuitive explanations for the primitives
independent of the DRT implementation turns out to have been an important
indicator that the degree of true abstraction was limited, and this was exposed
clearly by the abstract specifications developed later in the chapter. We conclude,
then, of the Johnson and Kay work, that this particular approach to semantic
abstraction does not form a satisfactory general basis.

Chapter 5

Towards a Specification of
Quantification and Anaphora

5.1 Abstraction and modularity

We have seen how describing semantic theories with abstract specifications can
classify them along particular axes of variation (chapter 3) and can help to reveal
the underlying nature of their operations (chapter 4). In this chapter I want to
investigate to what extent the same approach can provide modular specifications
for a broad range of semantic theories. I do this by focussing on a specific area of
semantic theorizing, and developing the outlines of a modular specification for it.

Modular specifications each address a particular aspect of semantic behaviour,
and can be combined with one another so as to build up a series of interlocking
constraints on a theory. My goal is to show how one might assemble a collection
of such specifications with which to check whether any given theory of semantic
interpretation (the object theory) meets common constraints on grammar and
meaning. Where there is unanimity on the semantics of particular constructions,
or particular operators, then we may have a single specification for them. Where
there are currently a number of competing approaches, the aim is to provide a
range of specifications accordingly.

This chapter inherits from my general programme the desire to abstract away
as much of the presentational character of the object theory as possible. Theories
choose different levels of description (often multiple levels at once), employ a great
variety of logical frameworks and tend to either assume or define many notions of
computational realization. These variations are to be ignored just to the extent
that they are independent of the core semantic notions I aim to capture.

I describe first the general approach I adopt, which will be familiar in many
respects from the results of the previous two chapters. Then I proceed to consider
the topic of quantification and anaphora in detail. Finally, I comment briefly on
how extensions to other major topics in semantic theory might work.

o7

58 Chapter 5

5.2 Strategies

In order to eliminate dependence on theory-specific formulations, my approach
is to select, for each semantic notion, a minimal language of sorts and relations.
These sorts and relations are abstract in the sense that they need not, and in
general do not, correspond to any of the concrete sorts, type, relation or operations
in particular object theories. Nor is it the case that these are in some sense ‘ideal’
primitives which object theories should adopt—they are merely the minimum
required in order to state the relevant constraints.

The idea, then, is that given a new object theory it should be possible to
identify these abstract sorts and relations as combinations of the concrete ele-
ments provided by the theory. Determining whether the object theory meets the
specifications is a two-stage process: first, one must find some definition of the
abstractions introduced below in the terms of the object theory; second one must
attempt to show that the abstract specifications of behaviour are satisfied. It’s
clearly desirable to avoid an appeal to intuition in the first stage—so that any
way of defining the abstract notions in terms of the object theory’s concepts that
formally satisfies certain constraints would suffice to determine whether the theory
met the specifications. It remains to be seen whether this is achievable in practice.

Further distinctions can be made at the second stage, based on the kind
of constraint that makes up the specifications. One obvious choice is between
constraints that say, e.g., “the system can get the right semantics for pronouns
outside the scope of a quantifier” and “the system always gets the right such
semantics”.

There are dependencies between modular semantic specifications. For example,
some form of predicate logic with identity is assumed for most of the specifications.
The description of predication relies on that of abstraction. It is not yet clear how
best to formalize these dependencies.

[now move on to the semantic topic under specific investigation—quantification
and anaphora—beginning with some discussion of anaphora.

5.3 Anaphora: resolution and interpretation

I shall divide the semantics of anaphora into two parts: resolution, the problem
of determining the antecedent of an anaphor, and interpretation, the method by
which anaphoric dependencies in discourses are interpreted. Some theories, such
as DRT, address both aspects; more commonly, semantic theories of anaphora
attempt only to model what I call interpretation. In this case, their starting point
is a representation of sentences or discourses that indicates the resolved anaphoric
dependencies, typically the indexed discourse. It is important to remember that
the ambiguity associated with anaphora is not always eliminated by resolution
alone. It is possible for an anaphor to be unambiguously dependent on a partic-
ular syntactic antecedent, and yet for that dependency to have multiple semantic

Towards a Specification of Quantification and Anaphora 59

interpretations. Indeed with some kinds of anaphora, such as verb phrase ellipsis,
this is the prevalent form of ambiguity.

Anaphora resolution seems to to involve many factors, some of them certainly
non-semantic. At the end of this chapter I consider briefly one much-discussed
collection of syntactic constraints on resolution, those of binding theory.

In the main, however, my concern is with anaphora interpretation, a primarily
semantic task. Unlike resolution, it is hard to describe in isolation from a particular
semantic framework, owing to the interaction of anaphora with other semantic
phenomena. The best studied of these interactions is that between anaphora and
quantification.

5.4 Bound and unbound anaphors

For many years after the invention by Frege and others of bound variable quanti-
fication, logicians and linguists alike saw this mechanism as the natural model of
anaphoric dependencies in natural language. So in Montague’s PTQ, for example,
all pronominal anaphora is analyzed as the binding of variables by quantifiers.

It has gradually become clear, however, that not all anaphoric connections have
the semantic character of quantifier binding. Not only do some anaphors resist
description as bound variables, but for many of those that do not the precise
nature of their binding is hard to derive from syntactic realization and context.
The debate about just which anaphors are to be interpreted as bound variables,
and how to give a uniform semantics to discourses containing them whatever they
are, is far from over, and it is not my place here to take sides on particular issues.
Nonetheless, I believe it is possible to make some general observations about the
interaction of quantification and anaphora that apply to every semantic theory
which makes use of the two notions.

At this point I will state that I do not wish my analyses to be applicable
not only to those theories which rely in their logical syntax on Fregean bound
variables to perform quantification. I consider below how to avoid this assumption
when formalizing my specifications. Therefore rather than use the term ‘bound
variable’, I shall talk simply of anaphors that are interpreted as bound or unbound
(by a quantifier), leaving open the precise mechanism by which quantification is
expressed.

I should clarify my use of certain other terms. Anaphoric dependencies hold
between anaphors' and their antecedents, even when the former precede the latter.
Many kinds of expression can act as anaphors; in English, these include pronouns,
noun phrases with the determiners this and that, and definite descriptions. An
expression is referential when it refers to, or denotes, some actual entity. I use the
term quantifier to mean an element in a logical language, reserving expressions
such as quantifier phrase for constituents of natural language. I shall restrict my

T do not use the technical GB sense of ‘anaphor’.

60 Chapter 5

attention to antecedents and quantifier phrases that are noun phrases in English.

I adopt here a strictly quantificational, or logical, sense of ‘binding’. But
there is an alternative notion going by the same name which should be carefully
distinguished. Linguistic theory has a tradition of assigning indexes to noun phrase
constituents in the syntax (and in transformationally-oriented theories, also to
positions in syntactic structure that may be empty). One of the uses of such
indexes is to indicate so-called binding relations between NPs. Generally, this
relation depends both on the syntactic configuration of the NPs and on whether
they have been coindexed, i.e., assigned the same index. Certain constraints
that are based on this relation comprise binding theory; here, it is the relation of
coindexing that is relevant, since these theories use coindexing to express anaphoric
dependencies. (Though they do not thus represent all anaphoric dependencies;
those that hold outside some notion of local syntactic domain—be they still intra-
sentential—are generally referred to in the literature on binding theory as instances
of discourse-level binding or coindexing, beyond the scope of the ordinary theory.)

Now the exact semantic import of this coindexing is a matter of dispute,
one that is interwoven with the more general argument about whether particular
anaphoric dependencies should be modelled with quantifier binding. It has been
common to say that coindexing implies ‘coreference’; where in practice that means
either true coreference or quantifier binding, depending on the nature of the ante-
cedent (“[We] are concerned rather with properties of LF-representation that enter
into interpretations of sentences in terms of intended coreference ... where the
‘reference’ in question does not carry ontological commitment.”, Chomsky 1981,
p. 314 n. 2). On the other hand it has been claimed, notably by Lasnik (1976),
that it is non-coindexing that carries semantic content, namely that non-coindexed
constituents must have disjoint reference. Lasnik further argues that every in-
stance of a pronoun coreferring with its antecedent (in the loose sense just noted)
comes about through the pragmatic determination of pronoun reference, so that his
rule of disjoint reference captures the entire semantic content of indexing. Evans
(1980) has countered convincingly that Lasnik’s rule must at least be modified
to talk of intended disjoint reference, and further, that without some notion of
intended coreference being indicated by coindexing (or some equivalent device)
we are unable to explain how it is possible to interpret anaphorically-dependent
pronouns in a pragmatically neutral context.

A few examples will serve to illustrate these notions, and my terms for them. I
adopt Barwise’s notation for representing anaphoric dependencies (Barwise 1987),
in which the antecedent receives a superscript index and its anaphor the same
index as subscript. Non-lexical constituents are indicated with brackets.

In a case like

John! believes that he; is happy.

we may say that he is referential, and the truth conditions of this sentence, insofar
as they concern the pronoun, are uncontroversial. (Although some have argued

Towards a Specification of Quantification and Anaphora 61

that pronouns are never referential, not even in a case like this—notably Geach
(1962), whose analysis is that the property ‘z believes that z is happy’ is being
predicated of John. I consider Evans (1977) to have refuted Geach’s claim that
the only use of pronouns is to construct such properties.)

Where a pronoun is anaphoric to a quantifier phrase such as Every woman, as
here:

[Every woman]® believes that she; is happy.

then the pronoun cannot be referential, and the truth conditions of the sentence are
naturally represented with a quantifier for Every woman which binds the pronoun.

Where a quantifier antecedent serves to pick out a single entity, as in a sentence
like

[A certain woman]® believes that she; is happy.

then the the pronoun is still bound, even if the sentence is used to assert something
of an actual person. That indefinites do not refer is particularly clear when they
occur in the scope of some non-existential quantifier, of course, as in Geach’s
donkey sentence (with Geach’s Any replaced by Every):

(5.1) Every man that owns [a donkey]’ beats it;.

It is the treatment of anaphors with quantifier antecedents, and the condi-
tions under which they are to be interpreted as bound by them, that I wish to
concentrate on. (Strictly, I should speak of the interpretations of anaphors being
bound by the (quantifier) interpretations of their antecedents; this distinction
will, predictably, become important in the formalization below.) The crucial
observation that pronouns with quantifier antecedents are sometimes not bound
by them was made by Karttunen (1969) and has been trenchantly analyzed by
Evans (1977, 1980), who labelled them ‘E-type’ pronouns. Consider, for example,

(5.2) John owns [some sheep]’ and Harry vaccinates them,;.
On an analysis that has them bound by some sheep, this sentence is equivalent to
Some sheep are such that John owns them and Harry vaccinates them.

which may be one reading of (5.2), but is arguably not the most natural one. That
reading, yielded by taking them to be an E-type pronoun, is

John owns some sheep and Harry vaccinates the sheep that John owns.

with the implication that Harry vaccinates all of the sheep that John owns.

E-type pronouns occur in many other syntactic contexts. Sells (1986) gives
examples which include non-restrictive relative clauses, reflexive pronouns and
prenominal modifiers. And it seems clear that one of the readings of the donkey
sentence (5.1) is

62 Chapter 5

Every man that owns a donkey beats the donkey that he owns.

which may only be captured with an E-type analysis. (I omit any discussion of
the exact nature of the uniqueness requirement in the description that the E-type
analysis gives rise to, since it is not relevant to my present purposes.)

Before moving on to consider what constraints may be said to operate in this
territory, it may be as well to point out that the categories of ‘referential’, ‘bound’
and ‘unbound’ (or ‘E-type’) do not appear to exhaust the kinds of anaphoric
connection that pronouns may have with their antecedents. For example, Geach
used the phrase “pronouns of laziness” (Geach 1962, §76) to describe pronouns
whose interpretation is as if their antecedents had been reproduced verbatim in
their place. The following well-known example is from Karttunen (1969):

The man who gave |his paycheck]’ to his wife was wiser than the man
who gave it; to his mistress.

It may be noted that Geach in fact interpreted as pronouns of laziness many
(instances of) pronouns that I am here considering either referential or bound; see
the just-mentioned section of his book for examples.

5.5 Constraints on anaphoric interpretation: scope

For the remainder of this chapter I consider only anaphors that have quantifier
antecedents. When can such an anaphor be bound by its antecedent? It is evident
that the scope of a quantifier antecedent, suitably construed, bears on this issue.
Now there are various ways of construing scope. In the linguistics literature it has
been popular to define a notion of scope in the terms of a syntactic theory, and to
claim that this notion determines the underlying semantic scope of scope-creating
operators in the syntax, such as quantifier NPs. There is disagreement over the
right way to do this, and for my purposes I file this notion of scope along with the
syntactic notion of binding mentioned above.

Ladusaw (1979) took the important step of asserting that the right notion
of scope for a linguistic theory is one that is formally connected to the semantic
interpretation of scope-forming constituents. It is in this spirit that I should like to
promote a notion of derivative syntactic scope: derivative, that is, on underlying
semantic scope. The latter notion is defined on entities at a level of semantic
representation; the former is defined on syntactic constituents, but is ultimately
parasitic on the latter. The idea is roughly that an expression whose semantic
correlate is a scope-creating operator has derivative syntactic scope over those
expressions whose semantic correlates are in the scope of that operator, as defined
by the semantics.

I formalize this notion below, but some observations about bound anaphora
and semantic scope follow immediately. For example, it becomes trivially true
that every bound anaphor with a quantifier antecedent must be in the derivative

Towards a Specification of Quantification and Anaphora 63

syntactic scope of that antecedent; it doesn’t make sense, or at least no sense yet
discovered, to talk of binding outside the scope of a quantifier. Of course, some
logical languages (such as DPL) have unusual rules for the scope of quantifiers,
but it is precisely because this notion is based on the ‘true’ scope of semantic
operators that the generalization just stated always holds. In (5.1), for example,
on the DRT ‘bound variable’ reading

Every man that owns a donkey beats every donkey that he owns.

we will say that it is in the derivative syntactic scope of a donkey.

The constraint just given is trivial. But there is a non-trivial constraint close
by that I believe does hold of every semantic theory that comprehends the relevant
notions:

(A) If an anaphor with a quantifier antecedent is in the scope of that quanti-
fier, then it is bound by it.

Cf. “An E-type pronoun evidently cannot have as its antecedent a quantifier with
wider scope.”, Evans 1977, p. 527. An E-type pronoun is not bound, so Evan’s
statement follows from (A) by modus tollens. The constraint (A) is more general
just in that it extends Evans’s claim to all non-bound anaphors.

What motivates this claim? For E-type pronouns, the case is quite easy to
make, based upon their intended semantics. In Evans’s words, “Roughly, the
pronoun denotes those objects which verify (or that object which verifies) the
sentence containing the quantifier antecedent.” (ibid., p. 499). So the reference of
an E-type pronoun is fixed by a clause that its quantifier antecedent occurs in—but
exactly which clause this is needs to be pinned down. Later, Evans says that “the
antecedent sentence ... is the smallest sentence which contains the quantifier and
everything which it governs.” (p. 535). (I ignore certain complexities associated
with antecedent sentences when they form part of the restriction of a higher
quantifier.) Evans goes on to show how a description may be extracted from
this sentence which then serves to fix the denotation of the E-type pronoun in
question. What is relevant here is Evans’s use of “governs”: the sense he has
in mind is, I suspect, closer to the idea of derivative syntactic scope introduced
above that to the notions of government present in modern syntactic theory, since
what matters is that the antecedent sentence should include all the constraints
on the quantifier expression that can play a part in the construction of a suitable
description. In Evans’s sketch of a formalization, all of (i) the main clause into
which the antecedent quantifier is inserted, (ii) the common noun in the antecedent
quantifier expression, and (iii) any relative clause restricting the quantifier go to
make up the description that determines the reference of the E-type pronoun.

So anything in the derivative syntactic scope of an antecedent quantifier ex-
pression is potentially able to influence the reference of an E-type pronoun that
is anaphorically dependent on it: this is why it is reasonable to stipulate that

64 Chapter 5

E-type pronouns, at least, occur outside that scope—if they occurred within it,
they might give rise to a circularity in the description that fixed their reference.

Despite this argument, the formalization of E-type pronoun semantics offered
by Sells (1985a) appears to contradict the principle (A). T’ll briefly present Sells’s
analysis, and attempt to show that, in fact, there is no contradiction.

Sells gives his semantic analyses in the notation of standard DRT, augmented
with one extra device, the connective ‘—’, which I will come to in a moment. The
sentence

(5.3) A man owns [a donkeyl’. Tt; grazes.

receives the following DRS:

T,Y, 2
man(z)
own(z, y)
donkey(y)
graze(z)
z =y

(5.4)

On the reading in question, it is taken to be an E-type pronoun whose antecedent
is a donkey. In (5.4), y is the discourse referent corresponding to a donkey. By
the semantics of DRSs, y is interpreted as a existentially quantified variable with a
scope that takes in the entire DRS. In particular, then, this scope embraces z, the
discourse referent (also existentially quantified) that corresponds to the E-type
pronoun it, in apparent contradiction of (A), and of Evans’s statement quoted
above.

But Sells does not intend those conditions of (5.4) which involve z to be
interpreted by the normal rules for DRS conditions—indeed he could not, for
that would guarantee an extensional treatment of the connective ‘—’ (irrespective
of whatever that extension might be) and thereby modify the truth conditions of
the first sentence of (5.3) since ‘z — y’ would constrain y as well as z.

So ‘—’ has to be given special treatment, and this is spelled out on pages 20-21
of Sells 1985a. Intuitively, ‘y — 2’ means that y is an E-type anaphor whose
reference is determined by the quantified variable z (Sells says that z and y are
cospecified). Sells’s idea is to give (5.4) an implicit binary structure, viewing the
full DRS as the anaphoric extension of one that omits the conditions containing
2.2 Then if K’ anaphorically extends K with (among others) the condition y — ,

2Sells in fact talks only about omitting the condition whose connective is ‘—’; this is insuf-
ficient, pace his example on p. 22, since any conditions left in the ‘non-anaphoric’ part that
involve the E-type discourse referent will serve to generate the wrong description with which to
fix the E-type reference (by affecting which functions verify that non-anaphoric part). This is
not a matter of circularity, simply of unwanted existential commitments.

A further deficiency in Sells’s definition is that for any DRS with two or more conditions
involving ‘—’ there is no unique sub-DRS of which it is an anaphoric extension; such cases are
not handled.

Towards a Specification of Quantification and Anaphora 65

say that an embedding function g verifies K’ if and only if for all f that verify K,

Va(a € f(z) = a € g(y))

Here Sells assumes that x and y are plural discourse referents, and his discussion
implies that in this context singulars are to be treated as singleton sets.?

Returning to (5.4) in the light of this definition, it becomes apparent that in
practice the scope of y only extends to those conditions in the DRS that exclude
z; the special handling of the condition ‘z — y’ explicitly localizes the scope of y
to exactly that sub-DRS. So I do not regard Sells’s analysis as a counter-example
to principle (A). Furthermore, were Sells’s distinction between a sub-DRS and its
anaphoric extension to be given some concrete realization in DRS syntax, it would
serve to visibly limit the scope of y just as required by (A).

The only kind of non-bound anaphor considered by Evans and Sells is that
which has ‘E-type’ semantics. I explained above the general case for arguing
that an E-type pronoun cannot occur in the scope of its antecedent quantifier.
But (A) talks about all non-bound anaphors, so the point must be made more
generally. The core claim is that for an anaphor which is dependent on a quantifier
phrase, the only value to being in the scope of the quantifier associated with that
phrase is so that the anaphor may be bound by it. Which anaphors might offer
counter-examples to this claim?

Non-bound non-E-type anaphors come in assorted flavours. One variety is the
pronoun that can be given a ‘purely lazy’ interpretation, namely as standing for
the syntactic repetition of its antecedent. So in the paycheck sentence

The woman who gave [a lottery prize]® to her husband was wiser than the
woman who gave it; to her lover.

the lazy pronoun it depends on the quantifier phrase a lottery prize. Is the pronoun
in the derivative syntactic scope of the quantifier phrase? Although it is certainly
possible to make subsequent reference to the first woman’s prize, such reference is
surely always E-type, or non-restrictive—it would not affect the truth conditions
of the original sentence. Thus it seems that an anaphor subsequently dependent
on a lottery prize could not be bound by it, which lends support to the idea that
it is not in the derivative syntactic scope of a lottery prize, as required by (A).

There are, however, other cases of anaphoric dependence involving a quantifier
phrase that appear potentially troublesome. In

Every new cognitive science student that hasn’t yet met the rest of them
should go to the seminar room at 4 pm.

3Under these assumptions, and for singular pronouns or plural pronouns with existentially
quantified plural antecedents, Sells’s definition does deliver the required E-type uniqueness con-
ditions. For plural reference to non-existentially quantified antecedents the definition appears
inadequate; for a start, it’s not clear exactly which sub-DRS would qualify as that which is
anaphorically extended. But this is not my main point, so I shall not pursue it here.

66 Chapter 5

it seems possible, at least for some speakers, to regard them as anaphorically
dependent on Every new cognitive science student. If this is really what is hap-
pening, then such examples do seem to contradict (A), since them is clearly not
bound by the quantifier, yet is certainly contained in its derivative syntactic scope,
given that it contributes to the restriction or range of the quantifier Every (these
terms are discussed further below). These examples are somewhat marginal, and
I have not made a detailed study of them, but I would suggest that (A) may not,
in fact, be directly threatened by them, since it is unclear that the dependence of
the pronoun them is on the entire quantifier phrase. One may construct similar
sentences with Most in place of Every and yet still have the sense of them be ‘all
new cognitive science students’.

On the basis of the discussion above, I shall maintain principle (A) as a con-
straint on all semantic theories that are capable of expressing—or implementing—
the notions that it refers to. In order that this be a concrete claim, testable for an
arbitrary theory, those notions must be made more precise. I now consider how
to formalize the two central ideas: dependency and scope.

5.6 Formalizing anaphoric dependency

I talked earlier about the coindexing notation familiar from linguistic theory. This
device indicates anaphoric dependency at a level of syntactic structure that is
usually fairly close to unelaborated surface structure. For my purposes, it seems
best to abstract away from the additional notions (such as binding) that various
theories have associated with coindexing and instead take as primitive a relation
of anaphoric dependency that may hold of any two syntactic constituents. The
notion of ‘syntactic constituent’ is to be provided by the syntactic component of
whatever object theory is under consideration.

Formally, then, I introduce a relation depend. In order to make relativiz-
ing to particular discourses straightforward, I take this to be a ternary relation
depend(cy, ¢, d) that holds just in case ¢; and ¢y are constituents of discourse d (a
discourse may be a single sentence, of course) and ¢, is anaphorically dependent on
c1. I make the assumption that the traditional notion of coindexing coincides with
my relation of dependency, except that I do not take my relation to be symmetric.
L.e., I shall assume

Ve VeoVd coindex(cq, ¢o, d) < (depend(cy, co, d) V depend(cy, ¢, d))

This relation receives no further formal analysis here, since establishing ana-
phoric dependency is not the concern of anaphoric interpretation, on my view,
but rather of anaphora resolution. It will be as well, however, to point out some
possible shortcomings of this model of dependency before moving on.

One area that demands more consideration than I am able to give it here is
plural anaphora. It is common for a plural anaphor to anaphorically depend on
multiple distinct constituents, as in

Towards a Specification of Quantification and Anaphora 67

John’! met Mary® at the station. They,; caught a bus home.

I have so far said nothing about depend that would rule out They depending both
on John and on Mary. But in order to avoid dealing with the construction of plural
entities in the semantics, I shall assume in what follows that the first argument of
depend is a function of the second, i.e., that

\V/01VCQVd<depend<Cl, Co, d) A depend(c3, Ca, d)) = C] = C3

A deeper challenge to this formalization comes from those anaphors, typically
anaphoric uses of definite descriptions, whose interpretation may be dependent
either on a syntactic antecedent or on general discourse context, with this lat-
ter possibly having no direct representation in the syntax at all. Because such
anaphors display a continuous range of usage between the two extremes, it is
hard to know at what point to give up on a purely syntactic model of anaphoric
dependency, such as my relation depend. One intermediate position is that of
relational uses of definite descriptions, such as

John bought a new car. He had to replace the engine.

where the engine is intended to refer to the engine of the new car that John
bought. Should this kind of relationship be indicated with a device like depend?
For the purposes of my analysis, I choose to draw the line at anaphoric uses
whose interpretation requires any information not directly present in the semantic
representation of discourse; thus I do not expect depend to hold between, say, a
new car and the engine in the last example.

There is one additional issue relevant to this discussion. Pronouns, too, need
not derive their interpretation anaphorically, in the sense of being directly de-
pendent on some, generally prior, syntactic constituent. It is common for their
reference to be fixed demonstratively, but it is also possible for pronouns to refer
to some entity made salient by the linguistic context, without that entity being
the referent of any expression. An example might be:

A: Mary has got married again, you know.
B: Really? Who is he?

It has been argued that such ‘pragmatic’ pronouns introduce ambiguity into sen-
tences that might otherwise seem unambiguous, and furthermore, that this am-
biguity plays a role in the explanation of certain other phenomena, most notably
verb phrase ellipsis (see, e.g., Partee and Bach 1981, and references therein). So
it is claimed that in

John believed that he would win the case, and so did Bill.

the source of the strict/sloppy ambiguity (whether Bill believes that John or Bill
would win the case) is a parallel ambiguity in the first clause. If he is anaphorically

68 Chapter 5

dependent on John, then the property picked up by the ellipsis is ‘x believes that
x will win the case’. Whereas if he is a pragmatic pronoun that just happens to
refer to John, then the property is ‘z believes that John will win the case’.

It happens that some recent work on VP ellipsis (Dalrymple, Shieber and
Pereira 1991) locates the strict/sloppy distinction elsewhere, and does not require
that the first clause be ambiguous. In any case, what is important for my purposes
is that no truth-conditional ambiguity is introduced by the possibility of a prag-
matic pronoun in the example just given—hence I can assume a single semantic
representation, in my terms. This does not, of course, mean that my specifications
cannot apply to those theories which choose to recognize an ambiguity at some
non-truth-conditional level, even where this has a representation in the model
theory.

5.7 Formalizing quantifier scope

In order that principle (A) can be tested for an arbitrary object theory it remains
to formalize my notion of derivative syntactic scope. I shall express this via a
relation syn-scope, to be true of two syntactic constituents just in case the first
one is a quantifier expression whose (actual semantic) scope includes the semantic
correlate of the second. There are a number of difficulties to be overcome if this
relation is to be definable on a broad range of theories. The chief of these are:

1. Dealing with scope ambiguity;

2. Presenting quantifier scope relations in the semantics in a uniform way;
3. Connecting quantifier expressions with quantifiers;

4. Connecting arbitrary constituents with scope domains.

I consider them in turn.

5.7.1 Scope ambiguity

It would be possible to make syn-scope a ternary relation like depend, saying that
syn-scope(cy, ¢, d) holds just when ¢; and ¢, stand in an appropriate quantifier
scope relation to each other as constituents of d, under some scoping of the
quantifiers in d. This approach makes scope ambiguity implicit. But it has the
disadvantage that one cannot then hold fixed a particular scoping of a discourse
and state additional constraints that hold only per fully-scoped interpretation.
Thus I choose to augment syn-scope with an additional argument that stands
for a scoped semantic representation, or meaning, so that syn-scope(cy, ¢z, d, m) is
to be true just in case m is an interpretation of d, ¢; and ¢y are both constituents
of d, and (in a sense to be made precise) the semantic correlate of ¢y is in the

Towards a Specification of Quantification and Anaphora 69

scope of the semantic correlate of ¢;. (Chapter 3 of Ladusaw 1979 comes to the
same conclusion regarding the incorporation of an interpretation argument into
the scope relation.)

5.7.2 Uniform presentation of scope relations

At the level of semantic representation, quantifiers can be incorporated into a
logical language in a variety of ways. Traditional first-order predicate logic uses
the quantifier prefixes Vo and dx to bind the variable x in an open formula
¢(z). Logically equivalent variable-free languages (usefully surveyed in Quine
1976, though see also Grandy 1976 and Cresswell 1990) tend to view quantifiers
as operators on syntactic expressions that correspond to predicates or relations,
with the application of a quantifier reducing by one the arity of a relation, e.g.,
Eo¢.

Natural language, of course, possesses quantifier expressions whose semantics
cannot be captured with only the first-order quantifiers (given no additional the-
ory). Such generalized quantifiers’ have the property that they form a proposition
by operating on two predicate expressions, rather than one. For variable-free
languages, this extension is easily managed, since there must already be provision
for binary operators (the truth-functional ones) on predicate expressions; for the
traditional kind, it’s necessary to add an additional kind of syntactic construction,
such as most(z, p(x), 1 (x)). If the language has operators of intensional abstrac-
tion, on the other hand, then adding generalized quantifiers can be more like the
variable-free case: most(Azo(z), Ay (y)).

In all these cases, a quantifier takes the form either of an operator or a con-
nective, with arity varying from one to three. I shall assume that for an arbitrary
object theory the quantificational import of its semantic representations can be
expressed via a mapping to a logical language that has one of these forms of
quantifier representation. It is for this language, then, that the notion of semantic
scope is defined: the semantic scope of a quantifier is simply all of the expressions
that it applies to, be that as an operator or a connective. The actual structure
of these expressions will vary from object theory to object theory; and I wish to
avoid having to know what this structure is, wherever possible. So the relation
sem-scope is to be defined for arbitrary symbol instances of the object theory’s
quantificational language. And as for syn-scope, we must relativize to the particu-
lar reading, or scoping, in question. Thus we obtain a relation sem-scope(q, s, m),
intended to be true just in case the interpretation m maps to a formula of the
quantificational language in which ¢ is a quantifier instance and s is a symbol
instance that occurs as a substring of one of ¢’s arguments.

A consequence of this definition is that the conventional notions ‘restriction’

41 follow the usage (contrary to that of Barwise and Cooper 1981) that regards the semantic
correlate of, e.g., most as a quantifier. The word most itself may be called a quantificational
determiner.

70 Chapter 5

and ‘scope’ for a natural language generalized quantifier are subsumed into one
domain for the purposes of sem-scope. This is intentional: the arguments above
in defence of principle (A) apply equally to the restriction and scope of a quanti-
ficational determiner.

5.7.3 Connecting quantifier expressions with quantifiers

From what I have said already, syn-scope(cy, ca,d, m) can only hold when ¢; is
a quantifier noun phrase. I require an object theory to provide the means for
identifying such constituents; this is not a problem for any theory that I know
of. More problematic is ensuring that we can connect such a constituent with a
quantifier operator or connective in the language postulated above. It is sufficient
to obtain a connection between a quantifier NP and a quantifier at the level of
the object theory’s semantic representation, but this is not always immediately
available. While it is true that a meaningful quantifier phrase in the syntax must
give rise to a corresponding quantifier at some level of the semantics, processes may
intervene to render the connection weak, and possibly to eliminate it altogether in
the final representation. For a simple example of the latter, consider the analysis
of

Bill is a man.
in Montague’s PTQ. The logical form given by Montague is
man/, (b)

in which no quantifier is present. All that has happened is that (in additional
to the normal lambda-reductions) some equational reasoning has been applied to
eliminate the existential quantifier associated with a man. But given my approach,
this makes it impossible to determine the scope of a man. So it’s necessary for
me to stipulate that the object theory provide access to semantic representations
before conversions that might eliminate quantifiers have been performed on them.
For PTQ at least, this requires no changes to the formulation of the theory.

5.7.4 Connecting constituents with scope domains

The only problem that remains before we can claim to have shown how syn-scope
may be defined for any object theory is to obtain, for a given discourse inter-
pretation, a connection between an arbitrary constituent of the discourse and a
symbol instance in the quantificational formula corresponding to the discourse’s
semantic representation. We certainly cannot expect to be able to do this for
every constituent of the discourse—some obvious candidates for which there may
be no such connection are dummy elements like the semantically empty It of It’s
raining. But in order to make syn-scope capable of expressing the relevant part of
principle (A) we do need to be able to do this for all NP anaphors.

Towards a Specification of Quantification and Anaphora 71

The problem is that we cannot assume for every semantic theory that NPs
will always acquire some concrete presence—as a symbol, or string of symbols—in
that theory’s semantic representations. Some of the variable-free logical languages
described above simply do not possess the category of singular term, and even
those that do will still have no explicit representation for bound pronouns. So it is
necessary to take a more indirect route towards the scope domain corresponding
to an arbitrary anaphor.

My strategy is first to observe this: the purpose of using an anaphor is to say
something about whatever it is that the anaphor stands for. The ‘saying something
about’ is invariably expressed in semantic representations as the use of a predicate
or relation, and it is a matter of logic that a predicate and its argument cannot be
in different scope domains. Furthermore, it is reasonable to require some explicit
semantic representation for every predicate recognized by the object theory. So
I propose to establish the scope domain for an anaphor in terms of that for the
semantic entity that is predicated of it. The only remaining difficulty is to find a
way of reaching the syntactic correlate of that semantic entity from the syntactic
location of the anaphor. My claim at this point is that every anaphor is a syntactic
argument (complement) of a constituent (its ‘immediate syntactic functor’) that
must have some concrete semantic representation.

Finding this representation is not necessarily straightforward, however. The
easy, common case is when the anaphor is the syntactic argument of a open-class
lexical head that receives a uniform, concrete semantic interpretation. The difficult
cases are when the anaphor’s immediate syntactic functor

1. has a syncategorematic interpretation;
2. has a purely syntactic function (is semantically empty);
3. is non-lexical.

An example of (1) is the special treatment of the copula in PTQ (and many other
semantic theories): be is interpreted not as be., or even as ‘=", but rather as
APAzP("Ay("x = “y)). A typical case of (2) is subcategorized-for prepositions
of oblique arguments to verbs. One place that (3) crops up is in combinatory
categorial grammar (CCG; see, e.g., Steedman 1988), where an auxiliary VP
such as may wash is a syntactic functor. In each of these cases, the immediate
syntactic functor of an NP does not correspond to the NP’s immediate functor,
or predicated-of relation, in the semantics.

These difficulties can be overcome if we are prepared to accept that an ana-
phor’s scope domain may have to be determined via a predicate or relation that is
not necessarily the immediate predicating entity for the anaphor’s interpretation.
So (1) and (2) can be dealt with by stipulation: these cases are easy to recognize
in a grammar, and we can simply require that in the case of (1), some concrete
semantic element is associated with the functor (this is simply ‘=’ for PTQ) and
that in (2) semantically empty functors don’t count, so we look in turn at the

72 Chapter 5

immediate syntactic functor of the anaphor’s immediate syntactic functor, and so
on. For (3), it is sufficient to find any constituent of the non-lexical functor that
has a concrete semantic interpretation, and use that to determine the scope—in
may wash him, the semantic correlates of both verbs must be in the same scope
domain as him.

In summary, we look for the smallest syntactic constituent containing the
anaphor in question that has some concrete semantic presence—not necessarily
a well-formed expression of the semantic representation language, merely a sym-
bol instance—and follow that instance through to the quantificational language
discussed above, where we use sem-scope to determine whether or not the anaphor
is in the scope of the relevant quantifier expression.

5.8 Specifications for other areas

My attempts to develop modular semantic specifications have so far been confined
to the domain of quantification and anaphora. However I envisage extending the
approach to many other areas. Obvious candidates, given the work described
above, are areas such as generalized quantification (with capturing the constraints
identified in Barwise and Cooper 1981 being a natural aim) and binding theory, in
the sense of syntactic constraints on anaphoric dependence. I include here some
preliminary thoughts on the latter topic.

5.8.1 Anaphora and binding theory

That collection of constraints on anaphora that go by the name ‘binding theory’
are essentially constraints on anaphora resolution.

As a collection of principles, binding theory originates with Chomsky’s GB
theory, and finds alternative expression in LFG (Kaplan and Bresnan 1982; for a
good summary of LFG binding theory see Sells 1985b) and in HPSG.

Here is a first stab at representing the principles of binding theory:

reflexive_reciprocal(z) A constituent(z, s)

(4) = Vd(binding_domain(z, s, d) = 3z’ bind(z', z, d))
(B) personal_pronoun(x) A constituent(z, s)

= Vd(binding_domain(z, s, d) = -3z’ bind(2', z, d))
(©) non_anaphor(z) A constituent(z,)

= -3z’ bind(2', z, 5)

Then we can express the actual constraints of GB, LFG and HPSG as follows:

GB Here binding_domain(z, s, d) is true just in case d is a governing category for
the syntactic object = (with both and d contained in the sentence s). The

Towards a Specification of Quantification and Anaphora 73

relation bind(z, 2’, d) holds when z is in an A-position, z c-commands 2/, x
and z' are coindexed, and both z and 2’ are contained in d.

We can define reflexive_reciprocal, personal_pronoun and non_anaphor in terms
of the standard GB binary features ‘anaphoric’ and ‘pronominal’.

LFG Here binding_domain(z, s, d) holds if d is an appropriate nucleus for =, where
this notion is somewhat language-dependent. Similarly, bind(z, z’, d) is true
if = is the antecedent of 2’ in d, but there may also be stipulations about x
being a subject, or f-commanding x’.

HPSG In this theory, binding_domain(z, s, d) holds if d is a SUBCAT list on which
x occurs. The relation bind(z,2', d) breaks down into two cases: (i) if d is
a SUBCAT list, then the relation is true if z occurs before (is less oblique
than) 2/ on that list; (ii) else if d is a sentence, then the relation is true
just in case there exist z” and SUBCAT list d' such that bind(z, 2", d') and
dominate(z”, 2, d).

This is no more than a sketch, but I hope it indicates one way in which the
approach I have been arguing for could be extended.

5.9 Summary

In this chapter I have promoted the idea of modular semantic specifications by
saying how they should work, describing a strategy for creating them, and applying
this strategy to the particular area of quantification and anaphora.

In considering this domain I started by carefully distinguishing the notions
of resolution and interpretation, of binding, coindexing and dependence, and I
determined that the natural place for a theory that intentionally abstracts away
from details of particular theories of quantification and anaphora to make a sub-
stantive claim about their interaction is in the combination of derivative syntactic
quantifier scope and anaphoric dependence. I formulated principle (A) relating
these notions, defended it empirically, and showed how we might arrive at precise
notions of scope and dependence that allow (A) to hold for every extant theory
that addresses quantification and anaphora.

To what end? Well, I anticipated some clarification of the notions involved
in quantification and anaphora when I embarked on this work, and I believe I’ve
succeeded in that goal. It is very easy, when following the literature in this area,
to focus on interactions between the two phenomena that are consequences solely
of the theories involved, and which disappear in rival, though perhaps not vastly
different, accounts. It is now clear that there are notions of dependence and scope
which have validity across all theories, and I believe this work makes it easier to
categorize aspects of object theories according to whether they are irrelevant to
the interaction between quantification and anaphora, relevant to it in isolation, or
relevant but incapable of formalization without consideration of related theory.

74 Chapter 5

What was to some extent unexpected was the particular notions which ended
up being relevant, especially that of derivative syntactic scope. The principle (A)
was also something that arose out of my investigations, and which appears to
capture a worthwhile generalization. Now it is certainly possible that (A) is false,
in the sense that some object theory of quantification and anaphora may falsify it,
but should that occur I believe the way in which it is falsified will shed important
light on the theory in question, and that is one of my overriding aims.

Finally, although I have so far only pursued this kind of modular specification
in the case of quantification and anaphora, I do not see anything in the approach
that restricts it to that domain. I give some evidence of this by looking very
briefly at binding theory in a similar way. Indeed, it is worth pointing out that I see
potential for this kind of metatheorizing in more overtly logical areas: chapter 3 has
already looked at abstraction and predication (where from a modular perspective
we will surely find some interesting interfaces with generalized quantification),
and I would like to apply this approach to the question of whether it’s possible
to formally specify something about predicate logic alone—saying nothing about
abstraction or the predication of abstracts—that holds of both first-order systems
and higher-order ones such as IL.

Chapter 6

Conclusions and Prospects

6.1 Review

I began by clarifying what I meant by “formal semantics”, and on what basis I
chose to compare semantic theories. This basis is entailment: for the purposes of
this work, a semantic theory must generate semantic representations over which
it is possible to define a consequence relation.

In chapter 2 I attempted to answer the question: why should we abstract
over semantic theories? Two answers emerged: first, so as to obtain more precise
comparisons of and classifications between semantic theories, and second, in order
to address the lack of functional modularity (and type-based security) in existing
approaches. The second response applies notably to contemporary unification-
based formalisms, which while being able to state constraints across both syntactic
and semantic domains, do so in the absence of true modular structure and an
abstract syntax-semantics interface. To some extent, this response is simply the
application of design principles from software engineering to the construction of
systems for semantic interpretation.

The second part of chapter 2 analyzed the various forms that metatheoretical
statements about semantic theories might take. The primary result is a four-way
classification of approaches to semantic abstraction, based on whether the semantic
realm itself, or the syntax-semantics interface, is being abstracted over. I opted for
abstraction over both, in search of maximum generality. Two key further options
were identified: interpretation of metatheory in object theory, or vice versa. The
latter option has the attraction of unifying all semantic notions in a ‘universal’
language, but owing to scepticism about finding a truly explanatory such language
(as opposed to a mere disjunction of existing ones), I concluded that the first option
should be promoted.

This classificatory work was able to categorize the approach of Johnson and
Kay (1990) as abstracting over the semantic domain but not the interface, and in
chapter 4 I analyzed that paper in some detail. I'll consider now what we learned
about that kind of semantic abstraction from my analysis.

75

76 Chapter 6

Most importantly, we discovered that Johnson and Kay’s framework in fact
captures only a very limited kind of abstraction over semantic theories. Every
implementation of the Johnson and Kay semantic primitives that ‘makes in-
ferential sense’ is just a notational variant of Kamp’s discourse representation
language (or more accurately, of the minimal DR-language defined in §4.6.1) in
the sense made precise by the specification of §4.6.3. There is more freedom in
the anaphoric component of a Johnson and Kay implementation to depart from
DRT behaviour, but the primitives are clearly designed with this behaviour in
mind. Furthermore, recall that the semantic primitives must be used in a number
of special combinations in order that the inferential and anaphoric elements shall
interact appropriately. These combinations are actually established by the way the
primitives are embedded in the syntax—as extensions to grammar rules—so it is
the case that the syntax is forced to know more about the intended interpretation
of the primitives than is desirable.!

I regard these results about the Johnson and Kay system as lending support to
my decision to adopt a more general approach to semantic abstraction. Chapter 3
applied this approach to just two semantic notions, those of predication and
intensional abstraction, but did so for three semantic theories that take very
definite positions on the correct treatment of these notions and use quite different
formalisms to do so. The outcome was the generation of formal statements of these
alternative positions that are in themselves well known, but have not previously
to my knowledge been given precise theory-neutral formulations.

Finally, in chapter 5, I speculated about a programme that would embrace
all the major areas of semantic theorizing in a modular fashion. 1 chose to
demonstrate this approach for the topic of quantification and anaphora, which does
not have a naturally modular character, and so constitutes a revealing test. My
results were limited, but went some way in developing consistent metatheoretical
notions—such as anaphoric dependence and derivative syntactic scope—that I
was able to interpret across semantic theories with apparently incompatible ap-
proaches to semantic representation. I obviously cannot claim to have captured
all cross-theoretical constraints on quantification and anaphora, but I believe I
have shown that non-trivial constraints can be expressed in a formal framework
that is applicable to a very wide range of semantic theories. Furthermore, I hope
to have illuminated the kind of theorizing that will be necessary to sustain truly
theory-independent semantic modules.

6.2 Future work

This thesis goes only a little way towards the goal of fully modular reusable se-
mantic specifications. Continuing the theme of chapter 5, I hope in future work to
address other topics within formal semantics much more thoroughly, and to further

T owe this observation to unpublished work by Millies and Pinkal.

Conclusions and Prospects 7

develop the detailed modelling of semantic formalisms and the syntax-semantics
interface.

The approach I have adopted offers generality at the price of no immediate
computational interpretation. Tackling this latter deficit is a prime candidate for
future research; if we could find a mode of semantic abstraction that offers the
combination of sufficient descriptive power and tractable computational properties
we would have a powerful tool indeed.

But for now, given the state of semantic theorizing, I prefer to side with gener-
ality. By using formal specifications tailored for specific areas of semantics we need
neither impose nor propose a single semantic formalism into which all theories are
supposed to be translatable. I regard this as a valuable methodological position
in a world where consensus on the right semantic theory for natural language still
seems a long way off.

Appendix A

Implementing the Russell’s
property specification

The essence of the two implementations of RUSSELL is contained in the definition
of the ML functors BealerToRussell and ChierchiaTurnerToRussell. What
really matter here are the definitions of abs and pred. For the latter, we just adopt
the definitions given at the end of the previous section, but we need to take a
little more care with abs in the case of PTy. In order that the subsort relations
hold, it is essential that the sort Var becomes the sort of variables of type nf in
PT,. But PT, only allows lambda-abstraction over variables of type e. Hence the
actual definition of abs must be

abs(a, f) = "A\z.(Ja. a = 2. A B)

The last three lines of the following code construct the Russell property in the three
cases of the minimal logic itself, the Bealer implementation, and the Chierchia
and Turner implementation. After executing these, the following dialogue with
the system causes it to display the strings corresponding to the Russell property

in each case (lines beginning with the prompt ‘-’ are user input):

- MR.rstr;

val it = "abs(x,not(pred(x,x)))" : string

- BR.rstr;

val it = "["(x @ x)]_x" : string

- CTR.rstr;

val it = ""L x_e[((E x_nf. (x_nf = x_e)) & ~'hx_nf(x_nf))]"
: string

(* The RUSSELL specification -- really: just the syntax *)
signature RUSSELL =

sig
type Var

78

Implementing the Russell’s property specification 79

type Ent

type Form

type Pty

val varld : string -> Var
val entVar : Var -> Ent

val ptyVar : Var -> Pty

val not : Form -> Form

val abs : Var *x Form -> Pty
val pred : Pty * Ent -> Form
structure print

sig
val var : Var -> string
val ent : Ent -> string
val form : Form -> string
val pty : Pty -> string
end

end
(* With something providing the RUSSELL syntax, construct Russell’s property *)

functor MakeRussell(R : RUSSELL) =

struct
val r =
let
val x = R.varId "x";
in
R.abs(x,R.not (R.pred(R.ptyVar x,R.entVar x)))
end

val rstr = R.print.pty r
end

(* Provide the RUSSELL syntax directly *)

structure MinimalRussell : RUSSELL =
struct
datatype Var = Varld of string
datatype Ent = EntVar of Var
datatype Form = FormNot of Form | FormPred of Pty * Ent
and Pty = PtyVar of Var | PtyAbs of Var * Form
fun varld s = Varld s
fun entVar v = EntVar v
fun ptyVar v = PtyVar v
fun not p = FormNot p
fun abs (v,p) = PtyAbs (v,p)
fun pred (p,e) = FormPred (p,e)
structure print =
struct
fun var (Varld s) = s
fun ent (EntVar v) = var v
fun form (FormNot p) = "not(" ~ formp ~ ")"
| form (FormPred (p,e))

= "pred(" -~ Pty P ~mn o~ ant e n)n

80

and pty (PtyVar v) = var v
| pty (PtyAbs (v,p))
= "abs(" " var v ~ "," ~ form p

end

end
(* Syntax of LQC *)

signature BEALER =

sig
type Var
type Term
type Rel
type Form
val varld : string -> Var
val termVar : Var -> Term
val termAbs : Form * Var list -> Term
val relPred : Rel
val rel : string * int -> Rel
val formRel : Rel * Term list -> Form
val formNot : Form -> Form
val formEq : Term * Term -> Form
val formAnd : Form * Form -> Form
val formExists : Var * Form -> Form
structure print
sig
val var : Var -> string
val term : Term -> string
val rel : Rel -> string
val form : Form -> string
end
end
(* Provide it *)
structure Bealer : BEALER =

struct
datatype Var = VarId of string
datatype Rel = Relld of string * int | RelPred
exception BadRel
datatype Term = TermVar of Var |
and Form = FormRel of Rel * Term list
| FormEq of Term * Term
| FormNot of Form
| FormAnd of Form * Form

| FormExists of Var * Form
exception BadFormRel
fun varId s = Varld s
fun rel (s,n) = if (n > 0) then Relld (s,n) el
val relPred = RelPred
fun termVar v TermVar v
fun termAbs (f,vl) = TermAbs (f,vl)

Appendix A

II)II

TermAbs of Form * Var list

se raise BadRel

Implementing the Russell’s property specification

fun formRel (Relld (s,n),tl)
= if (length tl = n) then FormRel (Relld (s,n),tl)
else raise BadFormRel
| formRel (RelPred,[s,t]) = FormRel (RelPred,[s,t])
| formRel (RelPred,_) = raise BadFormRel
fun formEq (s,t) = FormEq (s,t)
fun formNot f = FormNot £
fun formAnd (f,g) = FormAnd (f,g)
fun formExists (v,f) = FormExists (v,f)
structure print =
struct
fun var (Varld s) = s
fun polylist _ [] = ""
| polylist £ [e]l = f e
| polylist £ (h :: t) = £ h = "," ~ polylist f t
fun varlist vl = polylist var vl
fun rel (Relld (s,)) = s
| rel RelPred = "@"
fun term (TermVar v) = var v
| term (TermAbs (f,[1))
= "[" "~ form £ ~ "]"
| term (TermAbs (f,vl))
= "[" ~ form £ -~ "]_" ~ varlist vl
and form (FormRel (Relld (s,n),tl))
= rel (Relld (s,n)) ~ "(" ~ termlist t1 ~ ")"
| form (FormRel (RelPred,[s,t]))

="(" " terms "~ " " " rel RelPred =~ " "

" termt - ")"
| form (FormEq (s,t)) = terms ~ " =" ~ term t
| form (FormNot f) = """ ~ form f

| form (FormAnd (f,g))
="(" " formf "~ "&" " formg "~ ")"
| form (FormExists (v,f))
- "(E "~ vyar v ~". " " form f ~ n)n
and termlist tl = polylist term tl
end
end

(* Interpret RUSSELL syntax in Bealer *)

functor BealerToRussell(B : BEALER) : RUSSELL =
struct
type Var = B.Var
type Ent = B.Term
type Form = B.Form
type Pty = B.Term
fun varld s = B.varld s
fun entVar v = B.termVar v
fun ptyVar v = B.termVar v
fun not p = B.formNot p
fun abs (v,p) = B.termAbs (p, [v])
fun pred (p,e) = B.formRel (B.relPred,[e,p])

82

structure print

struct

end
end

(* Syntax of PT_

fun var v = B.print.var v

fun ent e = B.print.term e
fun form p = B.print.form p
fun pty p = B.print.term p

2 %)

signature CHIERCHIA_TURNER =

sig

type Sort

type Var

type Cons

type Ent

type Func

val i Sort

val u Sort

val nf Sort

val e Sort

val func Sort * Sort -> Sort

val varId : Sort * string -> Var

val cons : Sort * string -> Cons

val entVar : Var -> Ent

val entCons : Cons -> Ent

val funcCons : Cons -> Func

val funcAbs : Var * Ent -> Func

val funcDown : Ent -> Func

val funcTrueDown : Ent -> Func

val entUp : Func -> Ent

val entPred : Func * Ent -> Ent

val entTrue : Ent -> Ent

val entNot : Ent -> Ent

val entEq : Ent * Ent -> Ent

val entAnd : Ent * Ent -> Ent

val entExists : Var * Ent -> Ent

structure print

sig
val sort : Sort -> string
val var : Var -> string
val cons : Cons -> string
val ent : Ent -> string
val func : Func -> string
end
end

(* Provide it *)

structure ChierchiaTurner :

struct

CHIERCHIA_TURNER =

Appendix A

Implementing the Russell’s property specification

datatype Sort = I | U | NF | E | SortFunc of Sort * Sort
exception BadSort
datatype Var = VarId of Sort * string
exception BadVar
datatype Cons = ConsId of Sort * string
datatype Ent = EntVar of Var
| EntCons of Cons
| EntUp of Func
| EntPred of Func * Ent
| EntTrue of Ent
| EntNot of Ent
| EntEq of Ent * Ent
| EntAnd of Ent * Ent
| EntExists of Var * Ent
and Func = FuncCons of Cons
| FuncAbs of Var * Ent
| FuncDown of Ent
| FuncTrueDown of Ent
exception BadFuncAbs
exception BadFuncDown
exception BadFuncTrueDown
exception BadEntUp
exception BadEntPred
exception BadEntNot
exception BadEntAnd
exception BadEntExists
val 1 =1
val u = U

val nf = NF
val e = E
fun func (SortFunc _,_) = raise BadSort

| func (s,t) = SortFunc (s,t)
fun source (SortFunc (s,_)) = s
fun target (SortFunc (_,t)) =t
fun le (I,U) = true
| le (I,E) = true
| 1e (U,E) true
| 1le (NF,E) = true
|
|

le (SortFunc (E,I),SortFunc(E,E)) = true
le (s,t) = (s = t)
fun varId (SortFunc _,_) = raise BadVar
| varId (s,str) = Varld (s,str)
fun cons (s,str) = ConsId (s,str)
fun entVar v = EntVar v
fun entCons ¢ = EntCons c
fun funcCons c¢ = FuncCons c
fun sortEnt (EntVar (VarId (s,.))) =
| sortEnt (EntCons (ConsId (s,_)))
| sortEnt (EntUp _) = NF
| sortEnt (EntPred (f,_)) = target (sortFunc f)
|
|

n w

S

sortEnt (EntTrue _) =1
sortEnt (EntNot _) =1

84

fun

fun

fun

fun

fun

fun
fun

fun

Appendix A

sortEnt (EntEq (_,_)) =1
sortEnt (EntAnd (_,_)) =1
sortEnt (EntExists (_,_)) =1
sortFunc (FuncCons (ConsId (s,_))) = s
sortFunc (FuncAbs (_,_)) = SortFunc (E,E)
sortFunc (FuncDown _) = SortFunc (E,E)
sortFunc (FuncTrueDown _) = SortFunc (E,I)
funcAbs (VarId (E,id),e) = FuncAbs (VarId (E,id),e)
funcAbs (_,_) = raise BadFuncAbs
funcDown e = if (sortEnt e = NF) then FuncDown e
else raise BadFuncDown
funcTrueDown e = if (sortEnt e = NF) then FuncTrueDown e
else raise BadFuncTrueDown
entUp f = if (le (sortFunc f, SortFunc (E,E))) then EntUp f
else raise BadEntUp
entPred (f,e) = if (le (sortEnt e, source (sortFunc f)))
then EntPred (f,e)
else raise BadEntPred
entTrue e = EntTrue e
entNot e = if (sortEnt e = I) then EntNot e else raise BadEntNot
entEq (e,f) = EntEq (e,f)
entAnd (e,f) = if ((sortEnt e = I) andalso (sortEnt f = I))
then EntAnd (e,f)
else raise BadEntAnd
entExists (v,e) = if (sortEnt e = I) then EntExists (v,e)
else raise BadEntExists

structure print =

struct
fun sort I = "i"
| sort U = "u"
| sort NF = "nf"
| sort E = "e"
| sort (SortFunc (s,t))
= ||<|| -~ SOI't s -~ n s n -~ SOI't t -~ I|>|I
fun var (VarId (s,id)) = id -~ "_" ~ sort s
fun cons (ConsId (s,id)) = id ~ "_" ~ sort s

fun ent (EntVar v) = var v
| ent (EntCons v) = cons v
| ent (EntUp f) = "~" ~ func f
| ent (EntPred (f,e))
= func f - "(" " ent e = ")"

| ent (EntTrue e) = "!" ~ ent e
| ent (EntNot e€) = """ ~ ent e
| ent (EntEq (e,f))
="(" ~ent e~ "=""ent £~ M"

| ent (EntAnd (e,f))
="(" " ent e~ "&" "~ ent f "~ ")
| ent (EntExists (v,e))
="(E" “var v "~ ". " "~ ent e ~ ")"
and func (FuncCons c) = cons c
| func (FuncAbs (v,e))
="L" “var v~ "[" " ent e "~ "]"

Implementing the Russell’s property specification

| func (FuncDown e) = "%" ~ ent e
| func (FuncTrueDown e) = "!%" ~ ent e
end
end

(* Interpret RUSSELL syntax in ChierchiaTurner *)

functor ChierchiaTurnerToRussell(CT : CHIERCHIA_TURNER) : RUSSELL =

struct
type Var = CT.Var
type Ent = CT.Ent

type Form = CT.Ent

type Pty = CT.Ent

fun varId s = CT.varId (CT.nf,s)
fun entVar v = CT.entVar v

fun ptyVar v = CT.entVar v

fun not p = CT.entNot p

fun abs (v,p) =

let
val x = CT.varId (CT.e,"x")
in
CT.entUp (CT.funcAbs (x,CT.entAnd (
CT.entExists (v,CT.entEq (entVar v,entVar x)),p)))
end

fun pred (p,e) = CT.entPred (CT.funcTrueDown p,e)
structure print =
struct
fun var v = CT.print.var v
fun ent e = CT.print.ent e
fun form p = CT.print.ent p
fun pty p = CT.print.ent p
end
end

(* Store the results of these interpretations x)
structure MR = MakeRussell(MinimalRussell);
structure BR = MakeRussell(BealerToRussell(Bealer));

structure CTR = MakeRussell(ChierchiaTurnerToRussell(ChierchiaTurner));

85

Appendix B

Implementing the Johnson and
Kay specifications

B.1 The inferential map U, and the function D

A Prolog implementation of §4.6’s Uy map follows.

:— op(400, xfy, &).
:- op(950, xfx, ==>).

u0O(P, exists(A, PP)) :-
v(P, A),
ul(P, A, PP).

ul(P & Q, A, PP & QQ) :- !,
ul(P, A, PP),
ul(Q, A, QQ).

ul((P ==> Q), A, forall(XS, (PP

v(P, VP),

diff(VP, A, XS),

union(XS, A, B),

v(Q, VQ),

diff(vQ, B, YS),

union(YS, B, C),

ui(P, B, PP),

ul(Q, C, QQ).

ul(P, _, P) :-
atomp(P), !.

atomp(P) :-
functor(P, N, _),
N \== &,
N \== ’==>7,

v(P & Q, A) - !,

% at the top level, existentially quantify
% any unbound variables
% then apply ul

% recurse over conjunctions

==> exists(YS, QQ)))) :- !,

% here we must pull out the right variables
% for overall universal quantification

% and for existential quantification

% in the consequent...

% ...before recursing on the antecedent
% and consequent

86

Implementing the Johnson and Kay specifications

v(P, VP),
v(Q, V),
union(VP, VQ, A).

v((C==>_), [1) - '

v(P, A) :-
atomp(P), !,
P=.. [_|A].

union([], X, X).

union([H|X], Y, Z) :-
member (H, Y),
union(X, Y, Z).

union([H|X], Y, [HIZ]) :-
\+ member (H, Y),
union(X, Y, Z).

diff([1, _, [1).
aiff([HIX], Y, Z2) :-
member (H, Y),
diff (X, Y, 7).
diff([HIX1, Y, [HIZ]) :-
\+ member (H,Y),
diff (X, Y, Z).
member (X, [XI[_1).

member (X, [_|Y]) :-
member (X, Y).

87

The output of u0 may contain representations of quantification over empty lists of
variables; post-composing u0 with the predicate simp defined below will eliminate

these.

simp(P & Q, PP & QQ) :- !,
simp(P, PP),
simp(Q, QQ).

simp(P ==> Q, PP ==> QQ) :- !,
simp(P, PP),

simp(Q, QQ).
simp(exists([],P), PP) :- !,

simp (P, PP).
simp(forall([],P), PP) :- !,

simp(P, PP).

88

simp(exists(X,P), exists(X,PP))
simp (P, PP).

simp(forall(X,P), forall(X,PP))
simp(P, PP).

simp(P, P).

Appendix B

The following Prolog code implements the map D introduced in §4.6 for the
‘discourse-representation’ implementation:

:— op(400, xfy, &).

d([TO|_1-[T1]_], MDR) :-
subtract(TO, T1, L1),
noanaph(L1, L2),
andify (L2, MDR).

subtract([], L, L).
subtract (L1, L2, [1) :-
L1 == L2, !.
subtract(_, X, _) :-
var(X), !, fail.
subtract(TO, [H1|T1], [H1|T2])
subtract(TO, T1, T2).

noanaph([1, [1).
noanaph([i(_) |T1], T2) :- !,
noanaph(T1, T2).

h
h
h

realize difference lists as single list
eliminate anaphoric indexes
turn lists into conjunctions

noanaph([(A1==>B1) [T1], [(A2==>B2)[T2]) :- !,

noanaph (A1, A2),
noanaph(B1, B2),
noanaph(T1, T2).
noanaph([H|T1], [H|T2]) :-
noanaph(T1, T2).

andify([X1], X2) :- !,
and1 (X1, X2).
andify([H1|T], H2 & T2) :-
and1(H1, H2),
andify (T, T2).

and1((A1==>B1), (A2==>B2)) :- !,
andify (A1, A2),
andify(B1, B2).

and1 (X, X).

The following version of d, together with its additional predicates and those just
defined, implements D for the ‘sets-of-infons’ implementation:

d(e([sit|_],T,L), MDR) :-

Implementing the Johnson and Kay specifications 89

subtract (T, L, Infons), % realize difference lists as list
infons(Sit, Infons, TopLevel), % extract top-level infons
expandsits(TopLevel, Infons, TL2), % and expand situation tags in them
noanaph(TL2, TL3), % eliminate anaphoric indexes
andify(TL3, MDR). % turn lists into conjunctions

infons(_, [1, [1).
infons(Sit, [S:I|T1], [II1T2]) :-
Sit == §,
infons(Sit, T1, T2).
infons(Sit, [S:_IT11, T2) :-
Sit \== S,
infons(Sit, T1, T2).

expandsits([], _, [1) := !.
expandsits([(S1==>52) |T1], I, [(L1==>L2)|T2]) :- !,
infons(S1, I, IL1),
infons(S2, I, IL2),
expandsits(IL1, I, L1),
expandsits(IL2, I, L2),
expandsits(T1, I, T2).
expandsits([H|T1], I, [H|T2]) :-
expandsits(T1, I, T2).

B.2 The anaphoric maps A and P

The following Prolog code (additional to that in the previous section) implements
A and P for the ‘discourse-representation’ implementation, demonstrating that it
satisfies the above constraints:

a([TOl_1-[T1I_1, Is) :-
subtract(TO, T1, L),
indexes(L, Is).

p(P-_, Is) :-
unvar (P, P1),
getinds(P1, Is).

indexes([], [1).

indexes([1(X) IT1], [XIT2]1) :- !,
indexes(T1,T2).

indexes([_IT1], T2) :-
indexes(T1,T2).

unvar (X, [1) :-
var(X), !.
unvar([]1, [1).
unvar([H|T1], [H|T2]) :-
unvar (T1,T2) .

getinds([1, [1).

90 Appendix B

getinds([H|T], L) :-
unvar (H, H1),
indexes(H1, Is),
getinds(T, Js),
append(Is, Js, L).

The ‘sets-of-infons’ implementation also satisfies this specification, as demon-
strated by the following code:

a(e(s,T,L), Is) :-
subtract (T, L, Infons),
unvar (S, Sits),
indexes(Sits, Infons, Is).

p(e(s,T,_), Is) :-
unvar (T, Infons),
unvar (S, Sits),
indexes(Sits, Infons, Is).

indexes(_, [1, [1).

indexes(Sits, [S:i(X)IT1], [XIT2]) :-
mem(S, Sits), !,
indexes(Sits, T1, T2).

indexes(Sits, [_|T1], T2) :-
indexes(Sits, T1, T2).

mem(X, [Y[|_1) :-
X ==Y, !.
mem(X, [_|T]) :- member(X,T).

References

Barwise, J. (1987) Noun phrases, generalized quantifiers and anaphora. In P.

Gérdenfors, ed., Generalized Quantifiers: Linguistic and Logical Approaches,
pp. 1-29. Dordrecht: D. Reidel.

Barwise, J. and R. Cooper (1981) Generalized quantifiers and natural language.
Linguistics and Philosophy 4(2), 159-219.

Bealer, G. (1982) Quality and Concept. Oxford: Clarendon Press.

Chierchia, G. and R. Turner (1988) Semantics and property theory. Linguistics
and Philosophy 11(3), 261-302.

Chomsky, N. (1981) Lectures on Government and Binding. Dordrecht: Foris Pub-
lications.

Chomsky, N. (1992) A minimalist program for linguistic theory. Occasional Papers
in Linguistics 1, MIT, Cambridge, Mass.
Cresswell, M. J. (1990) Entities and Indices. Dordrecht: Kluwer.

Dalrymple, M., S. M. Shieber and F. C. N. Pereira (1991) Ellipsis and higher-order
unification. Linguistics and Philosophy 14(4), 399-452.

Evans, G. (1977) Pronouns, quantifiers and relative clauses (I). Canadian Journal
of Philosophy 7(3), 467-536.
Evans, G. (1980) Pronouns. Linguistic Inquiry 11(2), 337-362.

Gazdar, G., E. Klein, G. Pullum and I. Sag (1985) Generalized Phrase Structure
Grammar. London: Basil Blackwell.

Geach, P. T. (1962) Reference and Generality: An Examination of Some Medieval
and Modern Theories. Ithaca, N.Y.: Cornell University Press.

Grandy, R. E. (1976) Anadic logic and English. Synthese 32, 395-402.

Groenendijk, J. and M. Stokhof (1991) Dynamic Predicate Logic. Linguistics and
Philosophy 14(1), 39-100.

Johnson, M. and M. Kay (1990) Semantic abstraction and anaphora. In H. Karl-

gren, ed., COLING-90: Papers Presented to the 15th International Confer-
ence on Computational Linguistics, Vol. 1, pp. 17-27. University of Helsinki.

Johnson, M. and E. Klein (1986) Discourse, anaphora and parsing. In Proceedings
of the 11th International Conference on Computational Linguistics, pp. 669—
675, Bonn University.

91

92 References

Kamareddine, F. and E. Klein (1993) Nominalization, predication and type con-
tainment. Journal of Logic, Language and Information 2, 171-215.

Kamp, H. (1981) A theory of truth and semantic representation. In J. A. G.
Groenendijk, T. M. V. Janssen and M. B. J. Stokhof, eds., Formal Methods
in the Study of Language: Part 1, pp. 277-322. Amsterdam: Mathematisch
Centrum.

Kamp, H. and U. Reyle (1993) From Discourse to Logic: Introduction to Model-
theoretic Semantics of Natural Language, Formal Logic and Discourse Rep-
resentation Theory. Dordrecht: Kluwer.

Kaplan, R. M. and J. Bresnan (1982) Lexical-Functional Grammar: A formal
system for grammatical representation. In J. Bresnan, ed., The Mental Rep-
resentation of Grammatical Relations, pp. 173-281. Cambridge, Mass.: MIT
Press.

Karttunen, L. (1969) Pronouns and variables. In R. I. Binnick, A. Davison, G. M.
Green and J. L. Morgan, eds., Papers from the Fifth Regional Meeting of
the Chicago Linguistics Society, pp. 108-116. Chicago, Ill.: Department of
Linguistics, University of Chicago.

Ladusaw, W. A. (1979) Polarity Sensitivity as Inherent Scope Relations. PhD

thesis, University of Texas at Austin. Reproduced by the Indiana University
Linguistics Club, 1980.

Lasnik, H. (1976) Remarks on coreference. Linguistic Analysis 2(1), 1-22.

Montague, R. (1970) Universal grammar. Theoria 36, 373-398. Reprinted in R.
H. Thomason, ed., Formal Philosophy: Selected Papers of Richard Montague,
pp. 222-246. New Haven, Conn.: Yale University Press, 1974.

Montague, R. (1973) The proper treatment of quantification in ordinary English.
In K. J. J. Hintikka, J. M. E. Moravcsik and P. Suppes, eds., Approaches
to Natural Language: Proceedings of the 1970 Stanford Workshop on Gram-
mar and Semantics, pp. 221-242. Dordrecht: D. Reidel. Reprinted in R. H.
Thomason, ed., Formal Philosophy: Selected Papers of Richard Montague,
pp. 247-270. New Haven, Conn.: Yale University Press, 1974.

Newton, M. (1992) Abstract Specification of Grammar. PhD thesis, Centre for
Cognitive Science, University of Edinburgh.

Pagin, P. and D. Westerstahl (1993) Predicate logic with flexibly binding operators
and natural language semantics. Journal of Logic, Language and Informa-
tion 2(2), 89-128.

Partee, B. and E. Bach (1981) Quantification, pronouns, and VP anaphora. In J.
A. G. Groenendijk, T. M. V. Janssen and M. B. J. Stokhof, eds., Formal
Methods in the Study of Language: Part 2, pp. 445-481. Amsterdam: Math-
ematisch Centrum.

Pereira, F. C. N. and S. M. Shieber (1987) Prolog and Natural Language Analysis.
Stanford, Ca.: Center for the Study of Language and Information.

References 93

Pollard, C. and I. A. Sag (1987) Information-Based Syntax and Semantics, Vol. 1:
Fundamentals. Stanford, Ca.: Center for the Study of Language and Inform-
ation.

Pollard, C. and I. A. Sag (1994) Head-Driven Phrase Structure Grammar. Stan-
ford, Ca. and Chicago, Ill.: CSLI and University of Chicago Press.

Quine, W. V. (1976) Algebraic logic and predicate functors. In The Ways of
Paradox and Other Essays, rev. and enlarged ed, pp. 283-307. Cambridge,
Mass.: Harvard University Press.

Sannella, D. and A. Tarlecki (1992) Toward formal development of programs from
algebraic specifications: Model-theoretic foundations. Report ECS-LFCS-92-
204, Laboratory for the Foundations of Computer Science, Department of
Computer Science, University of Edinburgh.

Sells, P. (1985a) Restrictive and non-restrictive modification. Report CSLI-85-28,
Center for the Study of Language and Information, Stanford, Ca.

Sells, P. (1985b) Lectures on Contemporary Syntactic Theories. Stanford, Ca.:
Center for the Study of Language and Information.

Sells, P. (1986) Coreference and bound anaphora: A restatement of the facts. In
S. Berman, J-W. Choe and J. McDonough, eds., Proceedings of NELS 16,
pp. 434-446. Graduate Linguistic Student Association of the University of
Massachusetts at Amherst. Papers presented at the sixteenth annual meeting
of the North Eastern Linguistic Society.

Shieber, S. M. (1986) An Introduction to Unification-Based Approaches to Gram-
mar. Stanford, Ca.: Center for the Study of Language and Information.

Shieber, S. M., H. Uszkoreit, F. C. N. Pereira, J. J. Robinson and M. Tyson
(1983) The formalism and implementation of PATR-IL. In B. Grosz and M.
E. Stickel, eds., Research on Interactive Acquisition and Use of Knowledge,
pp. 39-79. Artificial Intelligence Center, SRI International, Menlo Park, Ca.

Steedman, M. (1988) Combinators and grammars. In R. T. Oehrle, E. Bach and
D. Wheeler, eds., Categorial Grammars and Natural Language Structures,
pp. 417-442. Dordrecht: Kluwer.

Turner, R. (1987) A theory of properties. Journal of Symbolic Logic 52(2), 455—
472.

Wood, M. M G. (1993) Categorial Grammars. London: Routledge.

Zeevat, H. (1989) A compositional approach to discourse representation theory.
Linguistics and Philosophy 12(1), 95-131.

