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Abstract

The instrumented meeting room of the future will help meetings to be more efficient and 

productive. One of the basic components of the instrumented meeting room is the speech 

recording device, in most cases a microphone array. The two basic requirements for this 

microphone array are portability and cost-efficiency, neither of which are provided by current 

commercially available arrays. This will change in the near future thanks to the availability of 

new digital MEMS microphones. This dissertation reports on the first successful 

implementation of a digital MEMS microphone array. This digital MEMS microphone array 

was designed, implemented, tested and evaluated and successfully compared with an existing 

analogue microphone array using a state-of-the-art ASR system and adaptation algorithms. The 

newly built digital MEMS microphone array compares well with the analogue microphone 

array on the basis of the word error rate achieved in an automated speech recognition system 

and is highly portable and economical.
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Introduction 
Introduction

The future, according to the European Union consortium AMI/AMIDA, will bring fewer but 

more productive meetings [97]. Physical meetings will be mixed with virtual meetings, i.e. past 

meetings, remote meetings or parallel meetings that collide with each other. Changes in 

technology and the smart meeting room will lead to new business processes for people to take 

advantage of these new tools, tools which will augment the meeting experience.

What people most want from meetings, according to a survey [97], is shared notes (minutes), 

the agenda and access to documents and presentations after the meeting. They want to search 

for decisions taken, participants and speakers and topics discussed during the meeting. When 

delayed or absent, people wish to see an automated summary, a list of action points and an 

overview of the content of the meeting, all at their fingertips by browsing smart minutes.

The Centre for Speech Technology Research (CSTR) of the University of Edinburgh is an 

academic consortium partner of AMI/AMIDA (Augmented Multi-party Interaction/Augmented 

Multi-party Interaction with Distance Access). The CSTR conducts basic and applied research 

for the AMI/AMIDA project and has built a fully-functional audio-visual meeting room (G3.07) 

for their research, equipping it with audio and video recording and projecting devices. A room 

of this kind is called an instrumented meeting room (IMR). 

An IMR can be used to capture all the information that is used, said and presented during a 

meeting. The real benefits of the smart meeting room, however, are not in capturing the 

information but in processing it. The first basic task is to recognise the information produced in 

the meeting and to use applications to convert this information into human-readable form. The 

expertise of the CSTR lies in one such application, Distant Speech Recognition (DSR).

Distant Speech Recognition

Distant speech recognition is the discipline of speech recognition when the recording device is 

separated from the speaker and takes place in an enclosure, i.e. meeting room. Typical problems 

that need to be addressed are therefore dereverberation, noise and multiple speech sources. 

Some fields of distant speech recognition are shown in Figure 1.
Page 15
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Figure 1 Fields of Speech Recognition (with kind permission of [8])

Speech recognition problems which are considered as having well developed solutions are [77]:

• search, using the Viterbi algorithm

• acoustic modelling, using HMMs

• language modelling, using large corpora

• adaptation, using algorithms such as MLLR or MAP

• feature enhancement, using MFCCs or LPCs

• beamforming, using microphone arrays

While each of the above disciplines on its own is considered to be completed task, the 

combination of all of the above into a DSR does not yet produce acceptable performances. The 

aim of the AMI/AMIDA projects is to develop the smart meeting room and the necessary 

applications. The current implementation of the IMR built by the CSTR has known limitations. 

These limitations include:

• portability

• cheap commodity HW

The existing IMR (G3.07) is not portable and is built using specially designed equipment 

housed in large racks.

The aim of this dissertation is to look at one device from the IMR, the microphone array. The 

microphone array used by the CSTR is an array built of eight expensive analogue 

language
modelling

acoustic
modelling

search

automatic speech
recognition

adaptation
feature
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ment

robust speech
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omnidirectional microphones and, in addition to the microphones, requires a rather large and 

expensive amplifier and A/D converter. 

The purpose of this project is to build an inexpensive, more cost-effective and smaller digital 

MEMS microphone array and compare its performance in terms of ASR with the analogue 

microphone array.

Digital MEMS microphone array (DMA)

MEMS (Micro Electro Mechanical System) microphones are ultra small microphones that 

withstand reflow soldering in automatic manufacturing. MEMS microphones have only become 

commercially available very recently [95] while digital MEMS microphones are only available 

as samples [127]. The digital MEMS microphone array is the first of its kind to be built from 

scratch.

Overview

The overall structure of this dissertation is as follows: first a literature review covering MEMS 

microphones, microphone arrays and automatic speech recognition is presented. This is 

followed by some digital signal processing background which is required for understanding the 

building of the digital microphone array. In the second part of this dissertation, first the 

methodology for comparing the newly built digital microphone array with the existing analogue 

microphone array is presented, followed by the description of the setup and the presentation of 

the results. Finally these results are analysed and discussed. Copyright and trademark 

information and the AMI consent form are included in the appendices.
Page 17
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Review

Building a digital MEMS microphone array is a multi-disciplinary task, as the name already 

implies. The word digital implies computing and (digital) signal processing (D)SP. MEMS 

(Micro Electro Mechanical System) indicates a nano-scale system containing both electrical 

and mechanical components, while a microphone is a device that converts an acoustic signal 

into an electrical signal. If multiple (e.g. eight) microphones are built together it is called a 

microphone array.

This section first defines the terms analogue and digital. Next, reviews of MEMS microphones 

and microphone arrays are presented. Finally, speech recognition including distant speech 

recognition is reviewed.

Analogue vs. Digital

The real world is analogue. Why then are most devices digital? The answer is simple: 

processing analogue signals is infinitely more complex and difficult then working in the digital 

domain. It was only the invention of digital logic that led to the enormous technological 

progress of the last few decades.

The first problem a system designer using a digital core faces is how to communicate with the 

real world, which is still analogue. Analogue to digital conversion of input signals (e.g. audio 

signals) and the conversion from the digital to the analogue domain are therefore a critical 

system design factor.

The analogue to digital conversion of audio signals is a key issue for the digital microphone 

array. While analogue microphones were invented more than a century ago, digital microphones 

have only been around for about a decade and miniaturised MEMS digital microphones have 

only been available recently [95] [127].

The application for which the digital microphone array presented in this dissertation has been 

designed is speech recognition in meetings. Existing microphones and microphone arrays use 

expensive analogue microphones and off-the-shelf converters, i.e. the conversion of the 

acoustic signal into its digital representation is located several metres from the membrane which 

captures the acoustic wave. The digital microphone (array) addresses this by putting the 

conversion less than a millimetre away from the membrane [125]. This aims to simplify the 

microphone array and reduce costs.
Page 18
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MEMS microphones

Twenty years of research and development were required for the first silicon (MEMS) 

microphone to be commercially available ([62] in [63], [95]). In the first ten years research 

focused mainly on the sensor structure (piezoelectric vs. piezoresistive vs. capacitive) and the 

amplifier that follows the acoustic sensor (see Scheeper et al. [63] (1994) for a review). 

Manufacturing MEMS microphones involved many problems, e.g. poor uniformity of the 

microphone sensitivity on the same wafer, sticking of the membrane, non-linear frequency 

response and process choice (see Ning et al. [55] 1996). From the mid 1990s capacitive sensors 

were the dominant choice (Pederson et al. [58] 1998). A further ten years of research were 

necessary to produce MEMS microphones which would operate in a customer application 

environment. Such requirements are, for example:

• support of SMD mounting (Brauer et al. [23] 2001)

• use of standard CMOS processes (Neumann and Gabriel [54] 2002)

• good SNR performance (Neumann and Gabriel [53] 2003)

• operation with standard supply voltages (Weigold et al. [71] 2006)

Achievements such as listed above led to a breakthrough in MEMS microphone production and 

usage today. The uptake of MEMS microphones from the mobile phone market, for example, 

increased from annual sales worth $2 million in 2004 [78] to $140 million in 2006 and is 

estimated at $922 Million for 2011 [118]. 

Commercial interest in MEMS microphones has, as a consequence, increased significantly and 

research and development shifted away from the universities to industry, therefore leading to a 

change in the type of publication from academic papers to patents. Current commercial interest, 

for example, are:

• manufacturing and yield improvement [82],

• packaging [81], 

• sensitivity improvement [83], and

• performance improvement (using calibration schemes [84])

Currently over twenty companies offer digital MEMS microphones with Akustica, Knowles 

Acoustics, Sonion MEMS A/S, MEMS Technology Bhd or Wolfson Microelectronics leading 

the field ([98], [102], [110], [113], [109]). Every single one of the companies mentioned above 

claims to have the best performing MEMS microphone with key competitive features being 
Page 19



Review 
signal to noise ratio (SNR), noise floor, small packaging, linearity, low total harmonic distortion 

(THD), low cost, clear sound or flat frequency response [58]. 

Details of MEMS microphone functionality, operation, manufacturing and packaging are 

presented in what follows.

The key problems manufacturers of (digital) MEMS microphones face are yield, linearity, 

sticking of the membrane, vibration, moisture sensitivity and calibration [54] [55] [71].

Possible integration of MEMS microphones are either single chip (with the membrane and 

amplifier on the same chip) or two chip (membrane and amplifier separated) solutions. The 

following Figure 2 shows a MEMS microphone membrane (i.e. sensor) and a package cross 

section.

Figure 2 MEMS microphone in SMD package (with kind permission of [23])

In Figure 2 the package and contacts, the sensor on the chip and the bond wires connecting the 

package with the chip are clearly visible. Please note that in the above integration the sound 

coupling is from the bottom of the package. Some manufacturers claim that this results in better 

linearity, reduced moisture sensitivity and better SNR performance [23].
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Two principal operations of the MEMS microphone are known. In both cases the MEMS part 

of the microphone is a membrane, acting as a capacitor.

In the first case the capacitor is sensed using a frequency modulation (FM) scheme [58]. The 

MEMS membrane, i.e. the capacitor, changes in value stimulated by the sound wave. Being part 

of an oscillator circuit, the variable capacitor affects, i.e. modulates the oscillation frequency 

(FM) which is first converted into an analogue signal and then into a digital PDM (pulse density 

modulation) stream using an oversampling ADC.

The second principle for a MEMS microphone (in wider use) uses a pre-charged capacitor, the 

MEMS membrane ([53], [54]). Modulation of the capacitor will lead to voltage changes if the 

charge is maintained, as

with Q being the charge, V the voltage over the capacitor’s terminals and C the capacitance 

(typically between 1 and 10 nF with an air gap as little as 1 to 5 µm [53] [58]).

Using an amplifier with an ultra-high-ohmic input (i.e. JFET) the voltage variations are 

amplified and this analogue signal again converted into a digital PDM stream using an 

oversampling ADC. The principal block circuit diagram of the MEMS amplifier is shown in 

Figure 3 below.

Figure 3 MEMS microphone and amplifier circuit (with kind permission of [23])

One of the greatest difficulties in the manufacturing of MEMS sensors is the process 

environment. While the CMOS manufacturing technique involves one kind of environment (i.e. 

specific temperatures and chemicals), the MEMS sensor processes (called micro machining [9]) 

Q V C⋅ const= = Eq. (1)
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uses another environment. Both processes remove or add parts of the chip while protecting other 

parts from been damaged or removed [3] [55].

The final working system needs both the MEMS sensor and the CMOS logic, and some 

manufacturers of MEMS circuits believe is preferable to have these two different circuits on the 

same piece of silicon while other prefer two different chips [3] [112].

The following Figure 4 shows the principle mechanical structures (left) and electrical structures 

(right) of a MEMS sensor, implemented on the same piece of silicon.

Figure 4 CMOS cross section of MEMS microphone (with kind permission of [23])

The membrane and the amplifier are shown in above Figure 4. Please also note the large amount 

of substrate material that is removed (using micro machining) in order to free the membrane. 

A (MEMS) microphone, a system that converts acoustic waves into electrical signals inherently 

has to cope with three kinds of noise problems which are:

• acoustical (e.g. sound path to membrane)

• electrical (e.g. leakage, substrate noise, interconnects)

• mechanical (e.g. picking up vibrations)

MEMS microphones are very insensitive to mechanical vibrations due to their small scale and 

low weight. Electrical problems are minimised for example using one or two chip solutions or 

varied amplifier schemes. Acoustical problems are addressed as demonstrated in Figure 5.
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Figure 5 MEMS microphone sound path (with kind permission of [23])

While Akustica or Knowles Acoustics use front openings to the membrane, Analog Devices or 

Wolfson Microelectronics claim that picking up the sound from the back will give the best 

performing microphone ([98], [102], [110], [113], [109], [112]). Developing, designing and 

manufacturing MEMS microphones is an ongoing task and customers will expect the same 

performance from them as from a conventional microphone nowadays.

Microphone Arrays

Multiple microphones placed at different spacial location form a microphone array. The 

microphones may be placed in a line, circle of even onto the surface of a sphere [111]. 

Microphone arrays are able to provide noise robustness and hands-free signal acquisition and 

are therefore ideally suited for speech processing applications. For recording, even using two 

microphones instead of one can lead to a significant improvement in system performance.

The main aim of increasing the number of microphones in the system is to improve the quality 

of the input signal, i.e. reduce the effect of typical recording problems. The two most serious 

problems to overcome when recording speech in a room are noise and echoes, i.e. reverberation.

Noise

Three different kinds of noise fields have been defined for microphone array applications [45]. 

These are: 

• coherent noise fields

• incoherent noise fields

• diffuse noise fields

If the noise propagates to the microphone in a direct, undisturbed way, then it is defined as 

coherent. A high correlation is found when measuring coherent noise with multiple 
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microphones [101]. The noise field is incoherent if the noise measured at any spatial location is 

un-correlated with the noise measured at any other location. In a real environment the energy of 

the noise propagates in all directions simultaneously. Any location is therefore lowly correlated 

with any other location, but has approximately the same energy. This is defined as a diffuse 

noise. For most applications the noise environment can be characterised as diffuse. Diffuse 

noise is then treated like incoherent noise for simplification [45].

Reverberation

“Reverberation is the collection of reflected sounds from the surfaces in an enclosure” [39] and 

is defined as the length of time it takes for the reverberation, or echo, to decay to 60dB (one 

thousandth) from the level of the original sound. Many methods and algorithms have been 

devised to reduce this ever since speech has been recorded in enclosers (e.g. meeting rooms). 

For automatic speech recognition systems dereverberation can be addressed, for example, 

• before capturing the signal (ie.g. by improving the room acoustics),

• while capturing the signal (e.g. signal processing either in the time or frequency domain),

• before running the speech recognition (e.g. cepstral coefficient manipulation),

or

• while training the speech model (e.g. training the HMMs with recordings in a noisy 

environment).

Huang et al. provide a good summary in [39].

Microphone array beamforming

In this section the working and benefits of using multiple microphones are presented after first 

defining a few terms.

Sound propagates in a room like waves. While wave theory is not discussed in this dissertation, 

some terms are still important. First, the wavelength λ of a signal can be calculated knowing the 

speed of sound in air c and the frequency of the acoustic signal f as defined in Eq. (2).

The wavelength of speech (for ASR the range of interest is 50 Hz to 8 kHz) travelling in air at 

343 m/s will therefore span 4.28 cm (for 8 kHz) to 6.86 m (for 50 Hz). While some researchers 

have built arrays that span several meters ([30]) another typical choice is to separate the 

microphones by about φ = 0.2 m, defined by the distance between our ears [25]. This 

λ c
f
--= Eq. (2)with c = 343 m/s
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dissertation compares the performance of an analogue microphone array with the newly built 

digital microphone array. Both arrays have been built using 8 microphones, placed equidistant 

on a circle with diameter 0.2 m, as shown in [43] and presented in Figure 6.

Figure 6 Microphone array setup

Acoustic wave propagation in a room is a function of space and time. In mathematical terms this 

is a four-dimensional function with three spatial dimensions and one time variable. Although 

the functionality of microphone arrays can be demonstrated well using formulae, this document 

explains the benefits and workings of a microphone array diagramatically. The interested reader 

is referred to [29] and [45] for details.

Looking at a stereo microphone compared to a single microphone it is easy to imagine that any 

signals coming from the front towards the two microphones are added, while signals from the 

side cancel each other out. A stereo microphone is therefore the simplest microphone array 

making use of simple beam steering, i.e. directional sensitivity. This method of adding the 

microphone signals is called sum beamforming and is shown in Figure 7 below.
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Figure 7 General beamformer structure

Looking at the sum beamforming structure shown in Figure 7, Eq. (3) demonstrates the 

mathematics of such a system with xn being the input signal of the individual microphone and 

wn being the scaling weight with which xn is multiplied before being summed.

Adding delays to the weighted individual signals gives a delay-sum beamformer.

Delay-sum beamforming

The most basic microphone array beamformer is the delay-sum beamformer. Indeed, the best 

results in distant speech recognition (DSR) using microphone arrays are achieved with modified 

delay-sum beamformers [29]. The basic block diagram of a delay-sum beamformer is shown in 

Figure 8.

Figure 8 Delay-sum beamformer block diagram (with kind permission of [29])
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Implementing the delay-sum beamformer requires nothing more than memory (either in RAM 

or flip-flop registers if implemented in Hardware or a stack or other kinds of memory if 

implemented in Software), a multiplier and an adder, as shown in Figure 9.

Figure 9 Delay-sum beamformer

The following Figure 10 and Figure 11 illustrate how a microphone array can look forward and 

sideways, depending on how the delays of the individual channels are set, i.e. depending on 

which delay element is selected for the sum operation.

Figure 10 Delay-sum beamformer (looking forward)
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In Figure 10 the beam is set to look forward and the delay elements highlighted in green are 

selected for the sum operation, i.e.their weights are set to 1 while all others are set to 0.

Figure 11 Delay-sum beamformer (looking sideways)

In Figure 11 the beam is steered 45º to the right and the delay elements highlighted in blue are 

selected for the sum operation, i.e.their weights are set to 1 while all others are set to 0.

This delay-sum scheme can easily be applied to the digital microphone array as shown in Figure 

12.
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Figure 12 Steering the digital microphone array

In Figure 12 the delay elements highlighted in red point to the front and the individual weights 

and delays of the eight microphones on the microphone array circle are set accordingly, e.g. for 

both scenarios illustrated in Figure 12 1/5 of red, 1/10 of both blues delayed by td(1)
1,  1/10 of both 

cyans delayed by td(2), etc.

Research in microphone arrays has benefited greatly from research in sonar, radar, seismology 

and radio technology which laid all the foundations of wave propagation [45]. Knapp et al. [42] 

defined the principle of beam steering as early as 1976. They state that “the direction of an input 

signal” can be “simply estimated by the abscissa value at which the cross-correlation peaks”. 

The principle block diagram of a circuit that determines the direction of an incoming sound, as 

presented by Knapp, is illustrated in below.

Figure 13 Circuit to determine input signal direction (as defined by [42])

1. td(n) can be determined by the distance of the array microphones given the desired angle of the steered 

beam, the speed of sound c and the sample rate fs.
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The direction of the input signal is determined by filtering the different microphone input 

signals (only vowel sounds are of interest), delaying them (according to the direction the signal 

is presumed to come from), then multiplying, integrating and squaring them to determine the 

cross correlation. The direction is determined by the peak cross correlation by varying the 

delays.

A two-dimensional microphone array using two beams, a search beam and a recording beam 

was successfully implemented and tested by Flanagan et al. [30] in 1985. Cox et al. [26] proved 

that the delay-sum beamformer achieves near optimum performance and applied sideslope 

shading and oversteering of the beam to increase the array sensitivity. They later introduced the 

scaled projection algorithm to further fine-tune adaptive beamforming [27]. In 2001 McCowan 

[45] presented a very good overview of beamforming techniques and their advantages and 

disadvantages. Lincoln et al. [43] used the results and algorithms obtained by McCowan to 

design and test a multi-channel Wall Street Journal corpus for speech recognition for the AMI 

Meeting Corpus (see [43] and e.g. [34]). This system was improved further by Himawan et al. 

[37] who applied the principles to blind source speech separation.

Delay-filter beamforming

The delay-sum beamformer, as shown in Figure 9 above, can easily be modified into a delay-

filter beamformer by weighting and summing not only one element per microphone delay chain 

but all of them, as in a two-dimensional FIR filter1.

Superdirective microphone arrays

A sound source which is on the same axis as the aperture, i.e. straight in front of the centre of 

the linear array, is defined as an endfire source [45]. Conventional linear arrays have a 

directivity that is almost proportional to the number of sensors N. The theoretical directivity 

limit for linear endfire arrays in a diffuse noise field is N2 [45]. Beamforming algorithms which 

exploit this capability are called superdirective beamformers. Superdirective beamformers aim 

to optimise the array weight vector to maximise the gain by using the Lagrange method as 

defined by Cox et al. [27]. Cox et al. also present a more practical solution by iteratively 

adjusting the Lagrange multiplier using the white noise gain constraint. Although 

computationally more complex, this method works well in practise as the beamforming filters 

1. For an introduction to FIR filters please refer to “(Half-Band) FIR filter” on page 53
Page 30



Review 
depend only on the array geometry and source location and so only need to be updated once for 

a given configuration.

Note: See McCowan [45] and Bitzer and Simmer [2] for a summary on superdirective 

microphone arrays and all the possible methods that can be applied to improve the performance 

of the basic delay-sum beamformer.

Post-filtering

In addition to the different techniques to improve the beam shape, beam sideslopes and the beam 

search algorithm, post filtering using Wiener filters has demonstrated significantly improved 

signal quality. The basic problem is that beamforming is an optimisation of a narrowband input, 

i.e. super directional microphone arrays find the best solution with respect to a narrowband 

input signal. Multi-channel Wiener filtering, a broadband multi-channel filtering technique, has 

been shown to give significant improvement in SNR (see Simmer et al. [7] for a summary) and 

is widely used in speech recognition systems (e.g. [43]).

A current, comprehensive summary of microphone arrays, beamforming, gain optimisation and 

adaptive microphone arrays is given by Elko and Meyer [29]. 

In the reminder of this section two features of the microphone array are reviewed more closely. 

These are

• spacial aliasing

and 

• directivity

Microphone Array Spatial Aliasing

When considering a microphone array and the propagation of sound it should be borne in mind 

that the physical distance of the individual microphones has the same effect in space as the time 

distance has on the signal frequency when sampled. This effect is called aliasing [96].

Spacial aliasing, as defined in Eq. (4) (from [45]), is the effect of being unable to tell where the 

signal actually comes from if it is above a certain frequency.

d
λmin

2
----------< c

2f
-----= Eq. (4)
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For our microphone d and fmax are:

This implies that input signal components with f > 2.24 kHz can not be located with our 

microphone array. This is not an issue in so far as the beam search algorithm usually looks for 

phones in the received speech and the 1st and 2nd formants of either a man’s, woman’s or 

child’s voice are well below this frequency [5].

Please note that the values of d and fmax in Eq. (5) and Eq. (6) are approximations, taking the 

distance of two microphones as the minimum distance of the array.1

The following Figure 14 shows spacial aliasing.

Figure 14 Spatial Aliasing in Beamformer (with kind permission of [45])

Figure 14 demonstrates how the side-slopes grow as d approaches λ until a signal wave entering 

the array at 90º cannot be distinguished from one entering at 180º.

1. For a 8 microphone array, with microphone 1 to 8 in a circle, the signal arriving at 90º from a line from 

microphone 1 and 8, the minimal distance d is the height of the trapeze mic1 - mic2 - mic7 - mic8.

d φ π
n
--- 
 sin⋅ 0.2m

π
n
--- 
 sin⋅ 0.076m= = = Eq. (5)

fmax
c

2 d⋅
----------

343
m
s
----

2 0.076m⋅
------------------------- 2.24kHz= = = Eq. (6)
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Microphone Array Directivity

The combination of sound of a certain frequency travelling at the speed of sound in the air being 

captured with multiple microphones at a defined distance has another side effect, the effect of 

directivity. An example of directivity is presented in Figure 15 below. 

Figure 15 Directivity pattern for 400 Hz < f < 3 kHz (with kind permission of [45])

Figure 15 above shows the directivity pattern of sound from 400 Hz to 3 kHz, recorded with 5 

microphones place in a line at 0.1 m spacing. Note that the width of the beam is not constant 

over the frequency. This might or might not be a problem for the system in which the array is 

being used.

A constant beamwidth microphone array can be designed using nested microphone arrays, as 

shown in Figure 16 below.

Figure 16 Nested microphone array (with kind permission of [29])
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Using multiple arrays with different equi-distantly place microphones as shown in Figure 16 

each array is optimised for a specific frequency band. This arrays can then be combined, saving 

in the number of microphones required and the space needed to build such an array. The 

combined constant-beamwidth microphone array system directivity pattern is presented in 

Figure 17 below.

Figure 17 Nested microphone array frequency response (with kind permission of [29])

Please note that an array with an input frequency range of 500 Hz to 8 kHz as defined here is 

over 1m wide. This is quite impractical for a (portable) microphone array using in a meeting 

room. A full summary of constant-beamwidth microphone arrays can be found in Elko and 

Meyer [29].

Automatic Speech Recognition and Distant Speech Recognition

Hidden Markov models (HMMs) and their related technologies are at the core of almost all 

present-day automatic speech recognition (ASR) systems (Young 2009 [77]). Over the last two 

decades HMMs and their usage have been continuously refined and systems today use different 

kinds of feature enhancement and adaption techniques.

The usage of HMMs in speech processing originated in the 1980s [59]. Although the basic 

theory of Markov chains had been known for over 80 years, three problems and their 

corresponding solutions changed the world of speech recognition. These three problems and 

their solutions were:

• how do you calculate the probability of an observation sequence?

! use a forward-backward algorithm

• how do you find the best path through an HMM?

! use the Viterbi algorithm
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• how do you maximise the HMM parameters?

! use the Baum-Welch expectation-maximisation algorithm

Note that the Baum-Welch algorithm is a forward-backward algorithm used for calculating and 

maximising the HMM parameters, i.e. it can be applied to two of the three problems described 

above (see Rabiner and Juang for details [59]).

The invention of the Baum-Welch and Viterbi algorithms led to enormous progress in speech 

processing. In the phase that followed, research groups devised many detailed and sophisticated 

modelling techniques optimising feature extraction, phone modelling or state-tying techniques 

[77], though all with acoustic models at the core of the HMMs. Other methods such as the token 

passing algorithm or pruning were engaged in the Viterbi algorithm to optimise the HMM 

search. In the final step of decoding, a language model is engaged to further prune the decoding 

and to reoptimised the word lattice output of the Viterbi algorithm [77].

Figure 18 Architecture of HMM-based recogniser

Another fundamental problem of HMMs is that they represent the training data, i.e. not the test 

data. A speech recognition system will therefore not perform well if a new speaker needs to be 

recognised. The solution to this problem is HMM adaptation. Different adaptation techniques 

such as maximum likelihood linear regression (MLLR) or maximum a posteriori (MAP) 

adaptation algorithms have been developed [77]. MAP adaptation is a method of reinterpolating 

the original prior HMM parameters using supervised training sentences. All HMM parameters 

are updated by MAP and the major drawback is therefore sparsity of data. An alternative 
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adaptation approach is maximum-likelihood linear regression (MLLR) which is very successful 

with little or no (i.e. unsupervised adaptation) training data. 

Adaptation

Both MAP and MLLR adaption are based on modifying the parameters of the HMMs, i.e. the 

observation probabilities µ and σ of the Gaussian distributions, as defined in Eq. (7).

Applied to multiple Gaussian mixture models (GMM) the observation probability P(Y) is a 

function of the acoustic input vector sequence Y and the mean and variance matrices µ and Σ of 

the GMMs, as shown in Eq. (8).

For MAP adaptation the individual µ and Σ of each GMM are reestimated. MAP is especially 

useful for porting well-trained models to a new domain [77]. If adaptation data is sparse then 

many model parameters will not be adapted. Several alternative approaches have been 

developed to overcome the above limitation of MAP adaptation.

One such method is MLLR adaptation, an incremental adaptation algorithm. Two variants of 

MLLR are of interest for this dissertation. Means-only and constrained MLLR adaptation. In 

both schemes transformation matrices are shared for a set of GMMs. Depending on the amount 

of adaptation data available, more or fewer transformation matrices are shared between the 

GMMs. For means-only adaptation, as the name implies, only the means are modified, as 

defined in Eq. (9).

Constrained MLLR is an adaptation technique that modifies the means and variances of the 

GMMs (see Eq. (10)), but constrained in such a way that the same matrix G is used for the 

means µ and the variances Σ, i.e. G = H.

p x( ) 1

2πσ2
----------------- e

x µ–( )2

2σ2
-------------------– 

 

⋅=

Eq. (7)

P Y( ) f Y µ Σ,( );( )= Eq. (8)

πjm Gµjm b+=^ Eq. (9)
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Distant Speech Recognition

Distant Speech Recognition (DSR) combines the fields of acoustic array processing and 

automatic speech recognition (ASR). A complete DSR system includes the following distinct 

components [49]:

• a microphone array

• an algorithm to track the active speaker(s)

• a beamforming algorithm to focus on the desired speaker(s)

• post-filtering to enhance the beamforming

• a speech recognition engine and

• a speaker adaptation component

DSR therefore combines acoustic array processing and automatic speech recognition and will 

be looked at in detail in what follows (see also McDonough and Wölfel [48] [49]).

First, robust speech recognition is reviewed. Robust speech recognition is the discipline of ASR 

in adverse environments. The problem of speech recognition in adverse environments is 

basically noise such as environmental noise (e.g. a fan in an office or wind noise in cars) or 

reverberation. Other effects such as stress compensation (if the speaker changes his voice due 

to noise) or speech distortion (due to masking effects) also degrade the performance of an ASR 

system (Juang 1991 [40]). Acoustic ambient noise is usually considered additive to a system, 

i.e. what is received by the microphone is the sum of the speech and the noise. Speech 

enhancement therefore works on the principle of removing the noise from the speech so that the 

ASR system processes clean speech, where WERs of 5% or less can been achieved.

Early microphone arrays in ASR systems have already produced significant improvements in 

SNR performance, leading to a decreased WER (van Compernolle et al. 1990 [25]). Following 

van Compernolle et al. many researchers have attempted to improve the different components 

of a DSR system. Examples of this are:

• Stern et al. (1992) [69] reviewed the effect of multiple approaches to robust speech 

recognition, looking at acoustical pre-processing, microphone arrays and speech vector 

Σjm HΣjmH
T

=^ Eq. (10)
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enhancement techniques on the MFCCs or LPCs and demonstrated the combined 

improvement of these techniques on system performance

• Giuliani et al. [33] (1996) reproduced these results and also showed that HMM adaptation 

techniques have an additive effect

• Yamada et.al. [74] (1996) used pitch harmonics to locate the speaker in the room. This 

technique allows better steering of the microphone array beam and gives improved 

performance

• Kiyohara et al. [41] (1997) successfully demonstrated the positive effect of two-

dimensional arrays on speech enhancement

• Seltzer et al. [65] (2002) combined the speech pre-processing, i.e. feature enhancement 

optimisation and HMM adaptation optimisation, using a maximisation-estimation (ME) 

algorithm which led to WER improvements

• Seltzer and Raj [66] (2003) later improved the system performance further by using speaker 

specific known utterances to adapt the enhancement filters and ASR system

These research examples focus on the robustness, i.e. the noise sensitivity of the DSR system. 

Another well researched problem of DSR systems is overlapping speech. Shriberg et al. [67] 

(2001) show that overlapping speech is not a distortion as such but an important inherent 

characteristic of speech. Overlapping itself contains important information and should be jointly 

modelled in speech processing. Microphone arrays can be used to separate overlapping speakers 

and therefore improve a meeting DSR system (Moore and McCowan [51] 2003, Lincoln et al. 

[43] 2005 and McDonough et al. [50] 2006).

A review of robust speech recognition, i.e. speech recognition systems which cope in a practical 

environment such as enclosures (i.e. meeting rooms) is provided in Renals et al. [60] (2007). 

Schuller et al. [64] (2009) give a current extensive survey and analysis of feature enhancement, 

model adaptation techniques and speech signal pre- and post-processing. The authors are 

working on DSR techniques to improve speech recognition inside cars.

DSR is a very complex problem associated with the recording of meetings. The wealth of 

information exchange in meetings is often lost because note taking is subjective and incomplete. 

The AMI/AMIDA ([35], [47], [60]) and ICSI projects ([52], [68]) aim to improve the efficiency 

of meetings and decrease their number. Multimodal recording of meetings is one solution to this 
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which enables the recognition, structuring, indexing and summarising of meetings content. The 

main aims of the AMI/AMIDA and ICSI projects are:

• ASR

• ASR from far-field microphones, e.g. microphone arrays

• speaker segmentation and turn detection

• speaker identification and prosody recognition (e.g. laughter)

• dialogue abstraction, e.g. identifying rules and creating a speaker timetable

• dialogue analysis

• summarisation

Numeral instrumented meeting rooms (IMR) were built for these projects and both projects 

have successfully recorded and annotated 75 hours (ICSI) and 170 hours (AMI/AMIDA) of 

meetings. Both databases are available publicly (http://www.idiap.ch/mmm) and can be used 

for further development. 

Distant Speech Recognition problems apply to both conference room meetings and lecture room 

meetings. The ISL (Interactive System Laboratories, see Fügen et al. [32] 2006 and Wölfel et 

al. [72] 2006) demonstrate DSR in a lecturing environment. A toolkit and evaluation lecture 

recognition system has been developed and successfully tested using head microphones and 

single and multiple distant microphones.

Distant speech recognition is a new and exciting research area and “looking into the black 

boxes” of the individual DSR disciplines, i.e. bridging the gap between acoustic array 

processing and automatic speech recognition will bring progress for the IMR as McDonough 

and Wölfel ([48] [49] 2008) successfully demonstrated. The authors modified existing DSR 

components by enabling access to the internal states of e.g. the beamforming and post-filtering 

processes to the speech recogniser, i.e. the Viterbi search.
Page 39



DMA - Background 
DMA - Background

The idea of the digital microphone array (DMA) originated with the latest analogue array 

available on the market which was designed specifically for IMR [107].When looking at the 

size, not of the microphone array itself, but the amplifier following the microphone array [119], 

the question arose as to why this microphone is not implemented with the latest available digital 

MEMS microphones and more economical digital signal processing. Using MEMS 

microphones with a digital PDM (pulse density modulation) output, some signal processing and 

the correct interface, a digital microphone array can be implemented using no more than the 

microphones, a DSP chip, an Interface chip and some passive components.

Microphone arrays have been in use for speech capture in meetings for speech recognition for 

over a decade. The main benefits of arrays are reduced sensitivity to noise and reverberation and 

the ability to capture multiple speakers without the need for head-mounted microphones.

Speech recognition, speaker recognition and other speech processing techniques have become 

possible with digital signal processing and have undergone a tremendous boost with the 

immense increase in desktop computing power. The first basic problem therefore is the 

conversion of the speech signal from the analogue real world into its digital representation. 

The following section explains principles of analogue to digital conversion, signal processing 

and interfaces.

Analogue Digital Conversion

The conversion of the analogue signal into a digital value is a well known and intensively 

researched area. The principal block diagram of an ADC is shown in Figure 19 below.

Figure 19 Analogue Digital Conversion (ADC)

The three major building blocks of an ADC are the low-pass filter (to remove all undesired 

frequency components above the Nyquist frequency), the actual analogue to digital converter 

(ADC) and some digital signal processing (DSP). Almost a dozen ADC principles are known 

(see [99] for a summary). The two main ADC (Analogue to Digital Converter) types are:

x(t) x(n)
ADC

y(n)
LPF DSP
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• Nyquist converter

• Oversampling converters

The two main problems that need to be handled properly when converting a time domain 

analogue signal into the discrete digital signal are aliasing and quantisation. Oversampling 

SDM (sigma delta/∆Σ modulation) ADCs have been successful ever since they were invented 

because of their ability to handle aliasing and quantisation errors. The reason for this is best 

explained by comparing Nyquist converters with oversampling SDM ADCs.

Definitions

Three definitions are necessary before going into ADC principles in greater detail. 

• The sample frequency fs is the frequency at which the ADC produces digital values sampled 

from the analogue signal. 

• Aliasing is the problem of higher frequencies folding into lower (audible) frequencies due 

to the sampling ADC not being able to distinguish between a signal that is e.g. 0.45 fs 

compared to 1.45 fs. 

• Quantisation, i.e. quantisation errors, are errors introduced by the finite step size of a n-bit 

ADC compared to the infinite sensitivity of a real analogue signal. 

Both problems are explained in details in what follows.

Nyquist and Oversampling ADC

A Nyquist converter is an ADC that samples the analogue signal at the sample frequency fs, or 

double the Nyquist frequency1 fn (fn = fs/2). An oversampling SDM ADC, on the other hand, 

samples the analogue signals at a much higher multiple of the sample frequency, e.g. Fs = 64 fs.

The first principal problem of analogue to digital convertion, the problem of aliasing, is 

illustrated in Figure 20 below. If, for example, a 16-bit Nyquist converter were to be 

implemented, the required analogue low-pass filter (LPF) would need to have a brick-wall cut-

off frequency response at the Nyquist frequency from 0dB to 96dB2. Such a filter cannot be 

implemented in practise (see [57] for details).

1. The Nyquist frequency is also know as the folding or cut-off frequency of a sampling system.

2. A 1-bit ADC would produce a 1 for a signal > 0.5[u], and 0 for a signal < 0.5[u], therefore giving 6dB 

of input signal resolution. 10 bits therefore give 60dB, and 16 bits would give 96dB resolution, or 216, 

i.e. 65’536 steps, or, on a 1Vrms signal, 15µV step size (see [76]).
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Figure 20 Aliasing and frequency bands (with kind permission of [22])

Using an oversampling SDM ADC the requirements for the analogue low-pass filter (that is 

placed before the converter) can be greatly reduced, as shown in Figure 21 below.

Figure 21 Analogue anti-aliasing filter requirements (from [57])

Instead of a high-quality analogue brick-wall filter, the anti-aliasing filter that is necessary can 

be a simple first-order RC filter. This is feasible, cheap and easily implemented in a standard 

microchip using CMOS technology.

Oversampling or Sigma-Delta Modulation Converters

While Nyquist Converters are the only feasible solution for high-speed real-time FE Converters 

(e.g. Telecom applications) they are usually limited to resolutions of a few bits. For HiFi 

applications the Sigma-Delta Modulation (SDM) Analogue Digital Converter (ADC) is a prime 

choice. It is used in most modern electronic components [106] due to its cost effective 

implementation. The principle top-level block diagram of an SDM ADC is presented in Figure 

22.

Note: fb is used in this figure for the Nyquist frequency fn
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Figure 22 SDM ADC top-level block diagram (with kind permission of [22])

Using a nth order sigma-delta modulator (SDM) an analogue signal is converted into a PDM 

bitstream at the oversampling rate, e.g. Fs = 64 fs. This pulse density modulated (PDM) 

bitstream is then down-sampled using decimators and digital lowpass filters into a pulse code 

modulated (PCM, see [129] for details) signal at fs.

The principle of sigma-delta (or delta-sigma) modulation is shown in Figure 23 and explained 

in what follows below.

Figure 23 SDM block diagram (with kind permission of [22])

SDM ADC handle the aliasing and quantisation problem in one step. Aliasing is addressed by 

sampling at a much higher rate than the Nyquist rate fn and quantisation errors are minimised 

by dividing the analogue input signal into only two levels, zero ‘0’ and one ‘1’. This therefore 

requires only a simple one-bit ADC converter.

The SDM is built of a one-bit DAC, one bit of memory, an integrator and a comparator. The 

output of the SDM is determined by comparing the integrated difference signal of the input 

signal with the previous output. If the signal is above the threshold (the middle of Vref+ and 

Vref-, i.e. 0V in this example), then the output is 1, if it is below then the new output is 0. The 

SDM keeps track of the analogue input signal by executing this comparison many hundred 

thousand times a second, as demonstrated in Figure 24 below.
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Figure 24 SDM principle (with kind permission of [22])

The error signal, i.e. the resulting quantisation error in the SDM ADC demonstrated above, is 

shown in Figure 25 below.

Figure 25 Sampling/Quantisation error (from [22])

The sigma delta modulator is designed in such a way that the quantisation error is significantly 

less than half an LSB of the PCM output of the ADC.

Advanced schemes are added to the basic SDM which deal with the many problems that the 

SDM has. The one significant advantage of the SDM is its noise shaping characteristic. Using 
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01 0
higher-order SDMs, performance of an SDM ADC can be tuned to the maximum. For a detailed 

introduction to SDM ADCs see [57], [70] and [123].

Interfaces

The following section provides an introduction to the interfaces between the major building 

blocks of the digital microphone array:

• PDM interface, connecting the MEMS microphone with the DSP

• AC’97 interface, connecting the DSP with the USB streaming controller

• USB interface, connecting the DSP with the PC

PDM interface

The output of the digital MEMS microphone is a digital bit-stream at 64 fs. The digital MEMS 

microphone contains an analogue digital converter that converts the air density modulation first 

into an analogue electrical signal and then into a digital discrete signal using an SDM ADC. The 

output of the SDM ADC is a pulse density modulated (PDM) signal, as shown in Figure 26.

Figure 26 Pulse Density Modulation (from [121], Wikipedia “fair rules” apply [130])

Figure 26 shows that a rising analogue input signal leads to a larger (delayed) number of 1s in 

the output bit stream, while lowering the inputs signal results in a series of 0s. Looking at the 

above signal a trained eye can recognise that a simple first order RC lowpass filter connected to 

a PDM stream is enough to regenerate the analogue signal. The conclusion from this is that a 

HiFi DSP that converts the PDM MEMS microphone output into a PCM signal is simply a high 

quality lowpass filter (LPF).

AC’97 interface

While a PDM output for a digital MEMS microphone is a de facto industry standard, choosing 

a way to transfer eight channels of PCM data is not straight forward. The best-known interfaces 

are:

0110111111111111110110101001000000000000010001001101110111111111111101101010010
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• I2S: Inter-IC Sound, is a 4-wire (clock, left/right signal, input and output data) interface, 

allowing many data-only channels to be transmitted using a TDM scheme [88]

• AC’97: Audio Codec 97, is a 5-wire (clock, synchronisation, input and output data and 

reset) interface, using 13 TDM channels. One house-keeping, two control and ten data 

channels are available [85] as shown in Figure 27 below

Figure 27 AC’97 TDM scheme (from [85])

• S/PDIF: Sony/Philips Digital Interconnect Format, is a one wire (signal and shield/ground) 

serial interface combining control and 4 data channels [90]

Recently two more interfaces have emerged, which are:

• HDA: High Definition Audio, an expansion of AC’97 [87]

• SLIMbus: Serial Low-power Inter-chip Media Bus, a standard interface between processors 

and peripheral components such as microphones and loudspeakers [89]

Getting standard components and support for the HDA and SLIMbus interfaces was considered 

to involve too many risks for the implementation of the digital microphone array and in the end 

the AC’97 interface was been chosen because of the simple access to components and support.1 

I2S would be an alternative interface but it was not chosen because it does not allow the transfer 

of control data.

USB (Universal Serial Bus)

While the HDA interface would allow bypassing an interface chip between the DSP and the PC 

it would require the presence of an HDA interface on the PC. This is not usually the case and 

only the latest IBM motherboards give the user access to the HDA interface which directly plugs 

into the Southbridge device [44]. Such a scheme is only expected to become available later this 

year or next.

1. It should be noted that I designed an AC’97 codec for Wolfson Microelectronics a few years ago which 

allowed me to design the interface in a very short time.
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Because there is no direct link between the signal processing and the PC, an interface device 

needs to be added. The options are:

• USB: Universal Serial Bus, a two-wire packet based interface using half-duplex differential 

signalling which offers control and data communication, e.g. guaranteed isochronous audio 

channels [92]

• IEEE 1394: Firewire interface, a four wire packet based interface using half-duplex 

signalling which offers data and control communication as well as guaranteed isochronous 

audio transfer very similar to the USB bus [86] [116]

The Universal Serial Bus is believed to be easier to use for the digital microphone array partly 

because of easy access to the TAS1020 and TUSB3200A AC’97/I2S to USB streaming 

controllers. Modern PCs contain several USB interfaces. In addition, the wide availability of 

existing FW drivers should aid the development of the digital microphone array.
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The following section describes the building of the digital microphone array (DMA). First, the 

specification and design of the digital microphone array is shown in a top-down manner. The 

blocks components and interfaces are presented starting with the system definition. The 

implementation of the array is followed by the Software (SW), or Firmware (FW) requirements 

and designs.

System Design

The main components of the digital microphone array are:

• Microphone array

• Digital Signal Processing

• Interfacing from the microphones to the DSP and from the DSP to the PC

• Application for capturing raw audio data

• Post-signal processing (e.g. noise reduction, beamforming, etc.)

and

• Automatic Speech Recognition

The timing constraints for this dissertation, i.e. the limited time and resources for the design, 

implementation and verification of the digital microphone array put significant restrictions on 

the system design. The aim was therefore to find the best-fitting components available on the 

market to build the array.

One available analogue array [107] uses standard industrial ADCs and DACs and a general 

purpose multi-core DSP processor with block transfer capabilities into a Firewire interface 

(IEEE 1394 ). Reproducing such a scheme would require the implementation of significant 

amounts of Firmware (FW) and Software (SW) and is not feasible for this project. Alternatively, 

USB streaming devices should allow a simpler system implementation.

The following components were selected for the implementation of the digital microphone array 

after a two-week feasibility study and market analysis:

• TUSB3200A USB streamer [126]

• Xilinx Spartan 3A FPGA [131], [132]

Both devices are available with an evaluation board. The TI USB streamer comes with example 

designs and Firmware ([128]) while the Xilinx Spartan 3A (XC3S700A-FG484) FPGA is a 

reasonably sized programmable chip large enough for the digital signal processing necessary 
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but which can still be simulated and programmed with freely available Software. Choosing 

these devices also solves the second biggest problem for the system implementation, i.e. the 

choice of the interfaces. These interfaces are:

• AC’97 interface [85] from DSP to PC IF device

• USB interface [92] from digital microphone array to recording SW (on PC)

The system resulting from these choices is illustrated in Figure 28 below.

Figure 28 System

The individual components and building blocks of the digital microphone are presented in what 

follows.

Signal Processing

Using a Nyquist ADC the output of the converter is a PCM signal at fs, i.e. a 2’s complement 

binary signal of typically 16 or 24 bit width. This converter does not need any signal processing.

The output of an oversampling ADC is a 64 fs PDM signal. Although a loudspeaker could very 

easily be supplied with this signal (the speaker acts as a low pass filter, as it is used in hearing 

aids [24]), the data rate and therefore the amount of data to transfer in such a system is not 

feasible. Therefore signal processing is necessary to convert the 64 fs PDM signal into a PCM 

signal at fs. 

The signal processing required for this conversion can be described as a low pass filter (LPF), 

the same LPF required as in the Nyquist converter. Fortunately, in contrast to the Nyquist 

converter, this filter is placed after the ADC and can therefore be implemented in the digital 

domain. While it would be feasible to build a single filter removing all the spectrum from fn to 
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Fs, such a filter would be very costly in terms of processing power and size. It would need to 

run at Fs, and be an FIR filter of approx. 3400th order.

Over the decades engineers have come up with clever schemes to implement the down- (and up) 

conversion efficiently, as shown in Figure 29 below.

Figure 29 DSP

The basic trick is to down-convert in stages, i.e. from e.g. 64 fs to 8 fs to 4fs, 2 fs and finally fs. 

The following Figure 30 illustrates this.
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Figure 30 above presents a very efficient method to downsample an over-sampled signal. The 

two basic building blocks are:

• CIC (Cascaded-Integrator-Comb) filter

• Halfband FIR filter.

The principal function, features and advantages of these filters are presented in detail in what 

follows. Please note the SNR and images shown in Figure 30. Both the SNR specification of a 

digital filter and the effect of the images will also be explained in detail in this section.

CIC (Cascaded-Integrator-Comb) filter

Hogenauer [38] found CIC filters, an “economical class of digital filters for decimation and 

integration”, in the very early 1980s. Decimation is the process of down-sampling a digital 

signal from e.g. 64 fs to fs, while interpolation is the inverse, i.e. upsampling from fs to e.g. 64 

fs. Only decimation is of interest for the purpose of this dissertation (and the digital microphone 

array).

CIC filters can be used for ultra economical decimation; economical in the sense that they are 

small and fast because they do not require multipliers but are built with add/sum and delay 

elements only. The principal building blocks of CIC filters are integrators and decimators. 

These filters have the advantage that they are digital filters with all their coefficients, i.e. poles 

and zeros, on the unit circle, therefore only requiring summation operations. The basic design 

of a CIC filter is presented in Figure 31 below.

Figure 31 CIC block diagram

First the input signal is integrated using one (or more) integrators, then downsampled by n (with 

n being a power of 2, i.e. 21 = 2), and then differentiated using the same number of 

differentiators as integrators. This simple scheme results in a filter response as show in Figure 

32 and makes them a perfect fit for signal decimation.

z-1+  2

Integrator

z-1

+

-

Differentiator
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Figure 32 CIC Filter

CIC filters are very common, so common that Xilinx allow you to integrate most CIC 

decimators and interpolators using their CORE Generator tool. If the system designer knows the 

specification for the CIC filter then the CIC filter, the FPGA implementation and a model can 

be generated with very few operations. More information can be found in [18], [38] and [108].

(Half-Band) FIR filter

Although CIC filters are very efficient filters used for down-sampling signals, they are only 

efficient to a certain degree, specifically when used to downsample higher rate signals. For 

down-sampling lower rate signals Finite Impulse Response (FIR) filters, as defined in Eq. (11), 

are needed.

Looking at Eq. (11) closer, considering a two-tap (m = 2) FIR filter with bm = b1 = b2 = 0.5 and 

therefore y = b1 xn + b2 xn-1 = xn/2 + xn-1/2, a new output sample yn is calculated adding half of 

64fs32fsfs

yn bm xn m–⋅
m 0=

M 1–

∑= Eq. (11)
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the current input signal and half of the previous one. This is simply a moving average filter, 

which is the most basic high-pass filter. A more complex filter implementation is presented in 

Figure 33 below.

Figure 33 Direct form FIR filter

Half-band filters are filters that let half of the frequency band of the input signal pass. In the case 

of a decimation LPF, if the filter runs at 8 fs, any signal above 2 fs is discarded1. On close 

inspection half-band filters show two very special characteristics. The first is that the 

coefficients bm are symmetrical (i.e. b0 = bM-1, b2 = bM-3, etc.) and the second feature is that 

every second coefficient is zero (i.e. b1 = bM-2= b3 = bM-4 = 0). Using this special feature of the 

half-band filters, a filter such as FIR3 (as shown in Figure 34) with 11 coefficients bm only 

requires 4 multiplications using a pre-add-multiply-accumulate structure or 6 multiplications 

using a multiply-accumulate structure.

1. With the Nyquist frequency fn = fs / 2, a filter running at fs processes signals of the input spectrum from 

0 to fs / 2, a half-band filter therefore filters everything above or below f = fb / 2 = fs / 4.

*

+

z-1

*

+

z-1
x(n) x(n-1) x(n-M+2) x(n-M+1)

b0 b1 *

+

z-1

*
bM-2 bM-1*

b2

+
y(n)
Page 54



DMA - Building 
Figure 34 FIR3

As shown in Figure 30, three half-band filters FIR3, FIR2 and FIR1 are used to downsample 

from 8 fs to 4fs, 2fs and fs. Down-sampling in steps of 2 using half-band filters has been shown 

to be the most efficient way of implementing decimation filters (and vice versa for interpolation 

filters).

Two major building blocks are used for the implementation of an FIR filter. These are:

• (pre-add-)multiply-accumulate unit

• storage register

The FIR filters FIR3, FIR2 and FIR1 have been designed using the Matlab Filter Design and 

Analysis tool fdatool which is part of the filter design toolbox. Using the fdatool the filter can 

be specified, or, as in the case of the microphone array, pre-calculated filter coefficients can be 

imported1. After defining specific parameters (such as fixed point data widths) using the Target 

generator, Xilinx Coefficient (.COE) Files can be generated and then imported into the Xilinx 

CORE Generator (see [19] for details). Implementation files and simulation models are 

generated with the Xilinx CORE Generator and can be used to verify and build the design.

The system as shown in Figure 30 is completed with FIFOs, first-in-first-out memories, which 

collect eight parallel samples. Once each FIFO contains at least one sample the AC’97 interface 

block announces the presence of data in the synchronisation slot (0) and the eight samples are 

sent to the interface chip. The most efficient way to implement memory for a Xilinx FPGA is 

1. The filter coefficients have been kindly supplied by Anthony Magrath from Wolfson Microelectronics 

plc
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again by using Xilinx CORE Generator, specifically the Block Memory Generator (i.e. Simple 

Dual-Port RAM [17]).

Two important system aspects, signal to noise ratio (SNR) and frequency images also need to 

be considered. Both are looked at in what follows.

Signal to Noise (SNR) ratio

The specified Signal to Noise ratio (SNR) is one parameter that defines the width and 

complexity of a DSP. As shown in [76], a signed digital signal of width n is able to represent an 

analogue signal with 2n-1 steps. 16 bits therefore allow 215 steps, and 20 log 215 is 90 dB1. The 

AC’97 interface allows a maximum data width of 20 bits [85], while USB works in segments 

of 8 bits, therefore giving the choice of either 16 or 24 bits [92]. When designing the system 

every component needs to be taken into account. The MEMS microphones used specify a 

typical SNR of 56dB [12], though at a sound pressure level of 1 dB (=1 dBSPL). In reality the 

microphone can easily cope with up to 20dBSPL, therefore allowing an SNR of around 80dB.

This makes a system data width of 16 bits the obvious choice. In addition, Xilinx CORE 

Generator components allow only limited filter data and coefficient widths (i.e. 17 bits for the 

input data, 35 bits for the outputs, and 18 bits for the coefficients of the FIR filters and two bits 

for the CIC filter input and 18 bits for the output).

What is clear from the above description is that the maximum possible bit width has been 

chosen at the interfaces of each individual stage of the system while complying with the hard 

limits. In the end, the data arriving at the PC is 16-bit PCM data and the SNR of the digital 

microphone array system is limited by the MEMS microphone used and not by the signal 

processing along the way2, the correct method for system design.

The noise introduced by the digital signal processing (as shown in Figure 30) is therefore below 

-85dB.

(Frequency) Images

Using down-sampling stages (compared to one single brick-wall filter) has the disadvantage of 

introducing frequency images, as indicated in Figure 30. Gaps (or spikes as shown with the 

arrows) are left in the frequency spectrum due to the non-perfect cut-off characteristic of e.g. 

1. Using unsigned numbers 16 bits would allow 96dB SNR, while using signed 2’s complement numbers 

16 bits allow only 90dB SNR. This is just a mathematical effect. In the microphone array the output of 

the recording is 16-bit signed numbers.

2. See [75] for an introduction to practical considerations in fixed-point FIR filter implementations.
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FIR1 running at 2 fs and FIR2 running at 4fs. These gaps can be reduced to a minimum by 

careful design of the filter roll-off frequency thus ensuring that the overlapping areas (or the 

frequency responses) cross below the SNR that is necessary for the system.

DSP implementation

Several applications are needed to build the digital microphone array. These are:

• Matlab: tool to specify and generate signal processing components

• Mentor Modelsim ISE: Verilog HDL simulator to build the interfaces (e.g. AC’97) and 

assemble and simulate the digital microphone array DSP (pre- and post-synthesis and place 

and route)

• Xilinx ISE Foundation: Synthesis, translation, mapping and place and route of Verilog HDL

• Xilinx CORE Generator: DSP core generator

The modules necessary to build the digital microphone array are presented in Table 1 below.

Table 1: Digital Microphone Array components

Componenta Module nameb Description

Top top.v Top level module where everything is instanti-
ated and wired together

AC97 interface - ac97_if.v AC’97 interface module, handling all AC’97 
specific tasks such as reset, AC’97 clocking, 
slot 0 management, address and data control 
(slot 1 and 2) and audio data management 
(slots 3 to 10

DSP - dsp.v DSP top-level where 4 stereo DSPs and their 
FIFOs are instantiated and wired up

Clock manager -- clk_mgr.v DSP clock management

Synchronisation block -- dsp_sync.v DSP synchronisation, ensuring all stereo DSPs 
are working synchronously

DSP core -- dsp_stereo_x.v Individual DSP core, processing two channels 
simultaneously

CIC filter --- xcic4th.v Stereo 4th order CIC filter

FIR3 filter --- xfir3_st Stereo FIR3 filter

FIR2 --- xfir2_st Stereo FIR2 filter

FIR1 --- xfir1_st Stereo FIR1 filter
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After introducing and specifying the building blocks of the digital microphone array DSP, the 

next section describes how the individual components have to be correctly assembled and wired 

up. This is shown in Figure 35 below.

Figure 35 Digital Microphone Array DSP

The input to the digital microphone array from the MEMS microphone carries the signal of two 

microphones on one wire. First these signals need to be separated and converted from binary 0s 

and 1s to 2’s complement numbers, i.e. 0 ! -1d ! 11b and 1 ! 1d ! 01b. Then the two channels 

are processed separately with two CIC filters, i.e. downsampled from 64 fs to 8 fs. The FIR 

FIFO -- fifo2.vc FIFO memory, interfacing the DSPs and the 
AC’97 interface to ensure that eight parallel 
samples are sent via the AC’97 interface

a. Not every component is listed here - please refer to the project “work.mpf” generated in Modelsim and 

the documentation in the HDL code for a full summary

b. Hierarchy is represented by using ‘-’ with the number of ‘-’ implying the depth of the module

c. See [28] for details

Table 1: Digital Microphone Array components

Componenta Module nameb Description

CIC

CIC

FIR3

1b

2’sC

1bn

2’sC

FIR2

FIR1 FIFO
AC’97

IF

Control

Clk
Mgr

DSPCLK
Vol
Page 58



DMA - Building 
filters were implemented as stereo filters due to only 20 multipliers being available on the 

Spartan FPGA. With eight microphone channels and three filter stages a full parallel 

implementation would require 24 multipliers. This is not feasible in this device. Multiplexers 

and demultiplexers stages have been implemented in between the FIR filters. These are simple 

depth-one memory elements necessary for re-timing and post-processing the FIR filter output. 

After the last filter stage, i.e. FIR1, a volume control block is added, followed by the FIFO 

memory connecting to the AC’97 interface. The AC’97 interface block implements the AC’97 

protocol. Two additional components are the control block - which allows register read and 

write to control the volume and access test structures - and the clock controller - which generates 

the clocks for the DSP and the microphones.

The digital microphone array DSP is built as shown in Figure 36 below, using all the 

components and EDA tools as described above.
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Figure 36 DSP implementation flow

From the specification of the DSP chip (and the AC’97 interface) the building blocks are 

generated using the Matlab Filter Design and Analysis tool fdatools and the Xilinx CORE 

Generator tool. The top-level DSP and its sub-components, clocking and interfaces (i.e. 

microphone to CIC filter, CIC to FIR3 filter, etc., FIFO and AC’97) are developed parallel to 

this. The functionality of the code is verified using Modelsim ISE. Once the system is working 

in simulation, the HDL code and the Xilinx CORE Generator implementation files are 

synthesised, translated, mapped and placed and routed using Xilinx ISE. The output of ISE is a 

binary programming file with which the Xilinx Spartan 3A (XC3S700A-FG484 - see [20]) chip 

can be configured and a post-route HDL netlist generated. Using this netlist the DSP can be re-
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simulated using real timing information and compared, making sure that the reality matches the 

model.

(USB) Interface (IF)

Besides the DSP, the Interface (IF) is the second biggest component of the digital microphone 

array as shown in Figure 28. The TUSB3200A USB Streaming Controller (STC) has been 

selected for the Interface (IF) between the DSP which delivers the audio data via the AC’97 

interface and the PC, i.e. the recording SW.

Figure 37 below shows the functional block diagram of the TUSB3200 USB STC.

Figure 37 TUSB3200A Functional Block Diagram (from [16])

Three building blocks shown in Figure 37 are of interest for the digital microphone array. These 

are:

• Codec Port Interface

• DMA Controller and USB Buffer Manager

• 8052 core

The TUSB3200A USB STC is the only chip that could be found that allows the simultaneous 

streaming of eight channels of audio1. The 8052 core manages the USB protocol. The 

1. This was confirmed by TI through personal communication during the feasibility study of the project.
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TUSB3200A USB STC is provided with example FW (designed for stereo playback and mono 

record) allowing easy and fast expansion of the existing driver FW1. The DMA controller and 

USB Buffer Manager enable flexible loading of the audio from the AC’97 slots in the Codec 

Port Interface and send them upstream to the USB IF.

The amount of data that can be transferred using the USB v1.0 interface is also critical. The USB 

specification guarantees a minimal polling time of 1 ms, i.e. at least every 1ms a port is being 

checked and data up-loaded (see [1], [92] and [93]). This defines the maximum buffer size of 

the design to:

The full clock speed of the USB v1.0 interface allows a data rate of 12 MBits/s. Transferring 8 

channels of audio data each with 16 bits width at 48 kHz requires 6.144MBits/s, therefore using 

about half of the available bandwidth. The USB specification guarantees safe transfer of data 

up to 90% of the available bandwidth. Transferring eight channels of audio data from the digital 

microphone array is therefore feasible.

Taking the existing FW of the TUSB3200A evaluation board, three types of modifications to 

the digital microphone array are necessary. These required changes are:

• USB descriptor (devdesc.c)

• DMA configuration (codec.c and mmap.h)

• Codec Port Interface (device.c)

The complete example FW provided by H. Nguyen is rather complex ([14]) compared to the 

requirements of the digital microphone array. Due to the limited time available to generate the 

new USB descriptor and setting up the TUSB3200A for the digital microphone array, the 

existing FW has been modified instead of writing clean and clear new FW.

The USB descriptor used for the digital microphone array is shown in the following Figure 38.

1. The TUSB3200A with the 8052 core is also compatible with the TI TAS1020B USB streaming 

controller, the predecessor of the TUSB3200A. The TUSB1020A is also the prime choice of Wolfson 

Microelectronics for their customer evaluation boards, therefore giving me access to their knowledge 

database and resources.

max buffersize( ) t min( )
1 fs⁄

---------------- n w⋅ ⋅ 1ms
1 48kHz( )⁄
---------------------------- 8 2bytes⋅ ⋅ 768bytes= = = Eq. (12)
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Figure 38 USB Audio Device Model (from [14])

The principle of a USB descriptor for an audio device can be understood by considering only a 

few points:

A microphone (audio input)1 to the USB port on the PC is a USB In Endpoint requiring:

• an n-channel microphone Input Terminal IT

• a Feature Unit FU (describing features available for the channel, e.g. volume control or 

mute)

• a Mixer Unit MU describing how many channels are mapped in what way to the Output 

Terminal

• a USB endpoint descriptor, defining the setup and channels for the endpoint

The number of endpoints for a USB device is limited by the protocol and typically 15 ([93]). 

Each endpoint can contain a maximum of 254 channels ([92]). The existing FW contains a USB 

Out Endpoint terminal (for stereo DAC playback), a USB In Endpoint terminal (for the 

1. For a speaker output this order is reversed.
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microphone record path), an Endpoint for Interrupts and an Endpoint for the Human Device 

Interface (HDI) descriptor. The Interrupts and HDI endpoints are required to comply with the 

specification.

The example FW provided by TI as shown in Figure 38 contains an additional microphone 

feedback and line input path to the speaker output. These are irrelevant for the microphone array 

and are ignored1.

Modifications to the USB descriptor were necessary in the upstream path with regards to:

• the number of channels (in small steps from mono to stereo to 4, 6, 7 and 8 channels)

• the maximum packet size (as calculated shown in Eq. (12))

In addition, the Codec Interface configuration of the TUSB3200A device needed to be modified 

in such a way that the AC’97 interface slots 3 (mono), 3 and 4 (stereo), etc. up to 3 to 10 could 

be accessed by the DMA controller.

Finally, the DMA Controller and the memory usage had to be adapted to the number of channels 

that were accessed and transferred. TI allows DMA access from addresses F800h to FF27h, a 

total address range of 1832 bytes as shown in Figure 39 below.

Figure 39 TUSB3200A Buffer Space Memory Map

Within the available address space about 50% is used for the upstream data, 15% for the 

downstream data and a few bytes for the interrupt control and HDI descriptor.

Note: Details of the example FW provided by TI can be found in [14].

1. Ideally they would be deleted but due to the complexity of the USB standard this was not successful.
Page 64



DMA - Building 
USB Firmware Flow

As mentioned in the previous section, the modifications to the FW were executed in incremental 

steps. The process used for this is shown in Figure 40 below.

Figure 40 FW design flow1

In addition to the TUSB3200A evaluation board the Keil µVision3 80512 development kit was 

needed. The input to µVision3 is the sample code provided by TI. µVision3 generates a binary 

*.bin file which can be used to program an EEPROM on the TUSB3200A evaluation board [11]. 

A FW update is therefore performed by (re-)programming an EEPROM and replacing it on the 

evaluation board [13]. This has been done in the following sequence:

• regenerate existing FW, i.e. create backup EEPROM

• generate stereo ADC path

• generate 4-channel ADC path

• generate 8-channel ADC path

1. Both the Keil µVision3 assembler/compiler and the Leaper-48 EEPROM progammer were made 

available by Wolfson Microelectronics plc

2. The 8051 and 8052 cores are compatible, see [94]
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FW and OS limitations

During the modification of the FW several limitation were found:

• Microsoft (MS) Operating Systems (OS) - both XP and Vista - do not support more than 

stereo channels1

• Using (Ubuntu) Linux seven channels of audio were successfully recorded

The limited time available led to a detour in the process of building the digital microphone array 

as no immediate support could be expected either from the Microsoft or Linux community. As 

an alternative plan an 8in4 channel scheme was devised and implemented. Although 48 kHz 

was chosen as the desired sample rate for the microphone array (see Figure 41), ASR systems 

typically work at a 16 kHz sample rate, enough to represent human speech. This has been made 

use of and a TDM-like scheme implemented, multiplexing twelve 16 kHz channels in four 

48kHz slots, as shown in Figure 42 below.

Figure 41 8in8 channel TDM

Figure 42 8in4 channel TDM

1. According to Microsoft, the XP and Vista Operating Systems support the universal audio architecture 

(UAA) and therefore multi-channel audio streaming [91], although being limited to 5.1 channels 

playback and stereo record. Vista should support four channels of microphone recording [117]. It is, 

however, not able to recognise the newly created microphone array if more than two channels are 

defined.
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The alternative scheme of eight audio channels sampled at 16 kHz multiplexed into the 48kHz 

frame as available in the AC’97 specification requires post manipulation, using e.g Matlab. This 

is a major drawback to a realtime system (though does not render it unusable) but the only viable 

option available in the time frame of this project.

Further reading

It was only possible to give an overview of the signal and speech processing techniques used to 

design the digital microphone array in this section. Building the DSP and Interfaces and 

modifying the C code to update the USB firmware in the very short timeframe available were 

only possible due to my previous experience. 

The list of recommended further reading provided here is useful for the interested reader if they 

need to deepen their understanding in a particular field.

• “Principles of Sigma-Delta Modulation for Analog-to-Digital Converters” by S. Park is a 

excellent introduction to SDM, ADCs and over-sampling [57]

• Most Electrical Engineering standard works will have a detailed introduction to signal 

processing and FIR filters. “Understanding Digital Signal Processing” by R.G Lyons [6] is 

highly recommended

• For the best low-power least area implementation of FIR filters, specifically half-band 

filters, refer to [79] (and [80] for a summary)

• A good introduction to USB is provided by Jan Axelson’s “USB Complete: Everything You 

Need to Develop Custom USB Peripherals”, 3rd edition, 2005 [1] [115]

• A very short introduction to C programming is given in T. Zhang’s “Teach Yourself C in 24 

Hours” by Sams Publishing [10]

• The best starting point on resources on the Intel 8052 core can be found at 

http://www.8052.com [94]

• Programmers from Zitek UK wrote an introduction to the C51 compiler, “C51 Primer - An 

Introduction To The Use Of The Keil C51 Compiler On The 8051 Family”, available 

through their sales department [4]
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ASR - Methodology

As previously mentioned, the CSTR instrumented meeting room (IRM) at the University of 

Edinburgh is equipped with an analogue microphone array. The performance of this analogue 

array is well known and documented (see e.g. [34] or [43]). This analogue microphone array 

(and all the other equipment and wiring) is fixed to the tables and floor of the IMR. 

The following section analyses and compares the speech recognition performance (in terms of 

WER) of the newly built digital microphone array with the existing analogue microphone array. 

First the corpus used for the recordings is presented, followed by a description of the tools used 

for the beamforming and speech enhancement. Next an outline of the speech recognition 

software is given and last the specification of the test and evaluation method.

The methods used and the dataflow are illustrated in Figure 43 below.

Figure 43 Architecture of a DSR System (with kind permission of [8])
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In order to analyse and compare the digital and analogue microphone arrays, a body of recorded 

speech is required. Processing of the recordings is carried out first by running some speech pre-

processing and enhancement methods followed by the automatic speech recognition.

Baseline system

The baseline system used for the analysis of the digital microphone array is identical to the one 

used for the multi-channel Wall Street Journal audio visual corpus (MC-WSJ-AV), as defined 

by Lincoln et al. [43]. The HMMs for this baseline system are taken from the U.K. English 

Cambridge version of the Wall Street Journal (WSJ) WSJCAM0 (see Fransen et al. [31]). The 

original Wall Street Journal (WSJ) corpus is described by Paul and Baker [56]. 

The speaker independent WSJCAM0 database is available from the Speech Separation 

Challenge [124]. Over 140 speakers1 each speaking about 110 utterances were used to create 

the WSJCAM0 corpus of spoken British English (see Robinson et al. [61] 1995). These 

recordings were made with a head-mounted microphone in an acoustically isolated room. The 

recorded sentences were taken from the WSJ corpus. A British English pronunciation dictionary 

(BEEP) and trigram language models from the 5k and 20k WSJ corpus are also part of [124].

The specifications of the baseline recognition system used to evaluate the analogue and digital 

microphone arrays are:

• HMMs trained with HTK on the WSJCAM0 database

• 53 male and 39 female speakers with British English accents

• 11000 tied-state triphones

• three emitting states per triphone, 6 gaussian mixture components per state

• 52-element feature vectors (comprising 13 MFCCs and 0th cepstral coefficient) with 1st, 

2nd and 3rd order derivatives

Beamforming and speech enhancement

The output recordings of the microphone arrays are eight channels of raw audio data. Speech 

pre-processing and enhancement is necessary before any speech recognition can be run. The 

1. 92 from the 140 speakers were used for the training set, 20 for the development test set, and two times 

14 for two evaluation test sets.
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mdm-tools [46], a set of software tools for processing multiple distant microphone signals, were 

used for:

• noise removal

• speaker tracking

and

• beamforming (and post-filtering).

In the first stage the stationary noise in the multi-channel audio file(s) is removed by Wiener 

filtering in two passes (see [46]). After this, blind source speaker tracking is performed. The 

source(s) of the signal are tracked by calculating the cross correlation [105] of the different 

channels. A peak in the cross correlation function of two channels indicates a signal source. 

Using the speaker tracking and delay files the beam can be formed. A standard superdirective 

beamformer is engaged to generate a one channel output waveform file which is then used for 

the speech recognition. The output of the beamformer is post-filtered using Wiener filters to 

further improve the SNR.

The algorithms used for speech enhancement and beamforming are: 

• Cross-correlation to determine the signal (or speaker) source as defined in Knapp and 

Carter [42]

• Superdirective adaptive beamforming as defined in Cox et al. 1986 [27] and Cox et al. 1987 

[26]

• Wiener filtering (see Simmer et al. [7] and the reference therein for an introduction)

Speech Recognition

Automatic Speech Recognition (ASR) is performed on the microphone array data using HTK 

[114]. HTK, the HMM Tool Kit , is designed to build speech recognition systems using HMMs 

(Hidden Markov Models). The basic flow for running speech recognition in the setup as defined 

by Lincoln et al. [43] is shown in Figure 44 below.
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Figure 44 ASR flow

Two scripts have been designed to run the speech recognition, recognise.bsh and score.bsh. 

These scripts are self-documenting and it is not within the scope of this dissertation to present 

them in detail. Please note that in these bash scripts the actions are executed in sequence as 

shown in Figure 44. In addition to the basic steps, many checks are integrated which make sure 

that all the necessary information is available before HTK is run. Speech recognition is 

performed by carrying out the following steps:

• enhance, to generate MFCC coefficients from the wav files

• search, to run the Viterbi search algorithm and produce the lattice of best matching 

sentences given the input utterance

• score, to re-score the output lattice from HVite using a language model and to output the 

best sentence

Scoring of the recogniser output is done using

• analyse, to calculate the WER (word error rate) comparing the reference sentence with the 

recognised output

HMM adaption

The WSJCAM0 database ([61] from [124]) used for the analysis of the two microphone arrays 

is speaker independent (SI) and has been recorded using head-mounted microphones. In order 

to achieve improved results the HMMs can now be adapted to different scenarios. Such 

scenarios are:

• adaptation to microphone array (i.e. digital vs. analogue),

• adaptation to gender (i.e. female vs. male),
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• adaptation to speaker (using speaker dependant adaptation sentences)

and

• any combination of the above.

HTK supports two kinds of adaptation (see [114] for details):

• MLLR (Maximum Likelihood Linear Regression)

• MAP (Maximum A Posteriori)

Note: Please read “Automatic Speech Recognition and Distant Speech Recognition” on page 34 

for details on MAP and MLLR adaptation. An excellent introduction to speech recognition and 

speaker adaptation is also provided by Young (2009) [77] and the references therein.

In order to adapt the HMMs that were initially provided for the evaluation some modifications 

to the flow are necessary. This modified flow is presented in Figure 45 below.

Figure 45 Adaptive ASR flow
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As shown in Figure 45 above, in the adaptive flow a transform model file (TMF) is generated 

using MLLR. The TMF is located between the HMMs and the search algorithm, therefore 

modifying the HMM parameters when they are accessed by the Viterbi search. 

For MAP adaptation, the means and variances of the individual HMMs are modified, i.e. new 

HMMs are generated. This requires significant amounts of adaptation data [77]. For the 

evaluation of the analogue and digital microphone array only a limited number of speakers 

could be recorded so insufficient amounts of data are available for performing MAP adaptation.

MLLR adaptation was therefore chosen to evaluate the microphone arrays. TMF files (and also 

the adapted HMMs for MAP) are created by the following steps:

• enhance, to create MFCC files from the adaptation sentences

• search (align mode), to align the adaptation sentences, i.e. to assign the adaptation specific 

tri-phones to the MFCCs 

• create decision tree, to create a decision tree and to decide which models have enough data 

in order to modify/shift their HMM data

• HMM reestimation (run twice), to create TMFs. In the first pass global adaptation is 

performed and in the second pass this global adaptation forms the input transformations 

with which better frame and state alignments are produced. The transformation model files 

(TMF) act at specific points in the phone decision tree that is used by the search algorithm 

when accessing the HMMs.

Note: The flow described here follows the recommended adaptation flow as laid out by the HTK 

manual, chapter 3.6, “Adapting the HMMs” [114].
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Test and evaluation of the results

The test setup and evaluation method for comparing the analogue and digital microphone arrays 

are presented next. The following procedure is applied for testing and evaluating the arrays:

1. Recognise individual speakers

2. Generate adaptation data for different microphones (analogue/digital)

3. Repeat step 1

4. Generate adaptation for gender and microphone type (female/male and analogue/digital)

5. Repeat step 1

In the first adaptation run, only the Gaussian means of the HMMs are modified. In the second 

run both means and variances are adapted.
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ASR - Setup and Results

The following section gives a description of the setup used for recording the WSJ sentences 

followed by presentation of the results.

Equipment

As mentioned previously, this dissertation compares an analogue microphone array with the 

newly built digital MEMS microphone array. The analogue array recording setup contains:

• (8 x) Sennheisser MKE 2-P-C microphones [15]

• Motu 896mk3 firewire audio interface [120]

• Firewire interface on PC running Microsoft Vista [86] 

• Bidule recording SW [103]

The digital microphone array setup contains:

• (8 x) Knowles digital MEMS microphones [12]

• Digital microphone array as specified in “DMA - Building”

• PC running Linux Xubuntu [133]

• Audacity recording SW Version 1.3.8 [100] (capturing 8 in 4 channels TDM)

• script to generate 8-channel wav file

The equipment as set up for the recording is shown in Figure 46 below.
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Figure 46 Recording SW

On the right side is the PC running Xubuntu Linux recording the digital microphone array and 

on the left side is the PC running Microsoft Windows Vista recording the analogue microphone 

array.

Setup

The analogue microphone array is fixed in the middle of several tables in a meeting room at the 

Centre for Speech Technology Research (CSTR), Room 3.07, in the University of Edinburgh 

Informatics Forum. The digital microphone was therefore placed in an identical position and the 

prompter located between the two. This symmetrical setup, as illustrated in Figure 47 below, 

should put both microphone arrays into a similar environment.

All sources of noise were placed as far away from the array as possible, i.e. the recording PCs 

were located at the far end of the meeting room.
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Figure 47 Recording setup

A photo of the setup as defined in Figure 47 is shown in Figure 48 below.

Figure 48 Photo of Recording Setup

The PC running the prompting SW was placed in between the two microphone arrays in such a 

way so as not to hinder the sound path while the prompts are still readable, i.e. not too far away.
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Prompter

A prompter was developed for the recording of the MC-WSJ-AV corpus [43]. This same 

prompter was used for the evaluation of the microphone arrays and is shown in Figure 49 below.

Figure 49 MC-WSJ_AV prompter (screen shot)

The participants read the sentences from the screen. Sentences are displayed in a semi-random 

order in six blocks. Each block starts with a few adaptation sentences followed by some 

sentences from the WSJ 5k and then 20k vocabulary. The sentences are more readable if a few 

of them are presented in order. Participants progress to the next sentence by clicking into the 

prompt window. Though instructed to wait at the end of the sentence, a few participants clicked 

while still talking or immediately after the end of the sentence. This is audible in the recordings. 

In addition, building works were being carried out on the recording days (20th and 21st July 

2009), affecting participant T36 most.

Each participant read approximately 94 sentences and 1600 words which required about fifteen 

minutes.

Participants

Twelve participants were asked to lend their voices. Each participant received a short 

introduction to the purpose of the experiment and the following instructions:

 1.  Please sit in this chair placed in between the two arrays

2. Speak with a normal voice

3. Speak into the screen

4. Read the prompts from the screen
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5. Progress by clicking the left mouse button

6. Please pause before progressing to the next sentence using the mouse

7. Ignore the “change seat” prompts1

In addition, each participant was asked to fill in a form confirming that their recordings can be 

used within the AMI/AMIDA project. This form is attached in “Appendix B” on page 118. Each 

participant was either paid £5 for their participation or £5 were given to a charitable 

organisation.

The participants’ details are summarised in Table 2.

1. The prompter was designed for non-stationary speech recognition, i.e. sentences are to be read from six 

different pre-defined positions.

Table 2: Participantsa

a. All participants live in Edinburgh and speak neutral (RP) English

Participant Gender Ageb

b. Declaration of age was optional

Test Set Recorded Notes

1 Male 35 T7 ana: 48k /dig: 16k ML

2 Male - T8 ana: 48k/dig: 16k KE

3 Female 58 T9 ana: 48k /dig: 16k BB

4 Male 36 T10 ana: 44k1 /dig: 16k KR

5 Male 36 T21 ana: 48k /dig: 16k RC

6 Female 40 T22 ana: 48k /dig: 16k AI

7 Male 39 T23 ana: 48k /dig: 16k SK

8 Male 44 T24 ana: 44k1/dig: 16k SR

9 Female - T25 ana: 44k1/dig: 16k LH

10 Female 55 T34 ana: 44k1/dig: 16k BM

11 Female 52 T46c

c. Participant 11 was recorded before participant 4 and T10 was used for her by mistake. The data from 

T10 was therefore copied into a newly created test set T46

ana: 44k1/dig: 16k SB

12 Female - T37 ana: 44k1/dig: 16k HH

13d

d. Participant 13 is a non-native speaker of English and has been included for test purposes only

Male 39 T40 ana: 44k1/dig: 16k EZ
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Data preparation

The recorded wav files from the participants need post-processing before they can be used for 

speech recognition. This process is different for the analogue and digital microphone arrays due 

to the 8in4 channel TDM scheme which needed to be used for recording the digital microphone 

array data over the USB interface. The steps required to get a WER from the wav recordings are:

 1. Downsample wav files from analogue microphone array:

• from 48 kHz to 16 kHz (using ch_wave [104])

• from 44.1 kHz to 16 kHz (using Matlab1)

2. Separate individual channels from digital microphone array recording (8in4 channels) 

(using Matlab script)

3. Apply noise reduction, beamforming, and post-filtering (using mdm_tools [46])

4. Transcript files as described below

5. Run automated speech recognition (ASR)

Two scripts needed to be developed for the post-processing of the wav files. The first script is 

used to downsample the wav files from 44.1 kHz to 16 kHz. This needs to be done on a per 

channel basis due to the large memory usage2. The second script is used to extract the eight 

audio channels, i.e. to find and discard the synchronisation channels and to put the eight 

channels in the correct order.3

Next, the utterances from the analogue and digital microphone array recordings are split into 

individual files. These files need to be named correctly to enable comparison of the recognised 

text with the reference text in order to calculate the WER.

The actual process of automatic speech recognition can now be run with the completed 

individual files for each utterance.

1. The recording was carried out over two days. All equipment was powered off during the night. The 

recordings of the second day were done at 44.1 kHz due to the Motu 896mk3 firewire audio interface 

defaulting to this sample rate.

2. Typical recordings last 15 minutes, eight channels of 16-bits (= 2 bytes) wavefiles at 48 kHz sample 

rate occupy 700 MBytes

3. The core of both scripts is matrices manipulation which utilises the strength of Matlab which was used 

to write the scripts. Both scripts are designed for fast performance so that the processing can be carried 

out in a real time system.
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Results

After running the basic speech recognition tests four different adaptation scenarios were 

defined. The aim is to analyse the effects of channel (analogue vs. digital), gender (female vs. 

male) and individual (e.g. T7 vs. T8) on the WER. The four scenarios are defined in Figure 50 

below.

Figure 50 Adaption scenarios

First, combined effects of channel and gender using means-only MLLR adaptation is analysed. 

Second, these tests are repeated using constrained MLLR. Third, the effect of gender is looked 

at independent of channel, and last, adaptation for the individual participant and channel is 

performed.

1 means only MLLR adapt

channel analogue digital

gender m  f m f

4 means only MLLR adapt

participant T<...> T<...> T<...>

analogue digital

3 means only MLLR adapt

gender male female

2 constrained MLLR adapt

channel analogue digital

gender m  f m f
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WER

The final WER of the recogniser is determined by matching each of the recognised sentences 

with a reference sentence, i.e. by performing an optimal string match using dynamic 

programming. A typical output of such a process is:

The line starting with SENT: indicates that of the 39 test utterances, 1 (2.56%) was correctly 

recognised. The following line starting with WORD gives the word level statistics and indicates 

that of the 730 words in total, 512 (70.14%) were recognised correctly. There were 27 deletion 

errors (D), 191 substitution errors (S) and 40 insertion errors (I). The accuracy figure (Acc) of 

64.6% is lower than the percentage correct (Corr) because it takes account of the insertion errors 

which Corr ignores.

For this dissertation WER (Word Error Rate) is calculated using Acc, i.e. WER = 100% - Acc.

====================== HTK Results Analysis =======================
  Date: Wed Aug  5 22:02:37 2009
  Ref : results/T7/T7.5k.digital.mlf
 Rec : /T7c0201-d.rec
     : /T7c0202-d.rec
------------------------ Overall Results --------------------------
SENT: %Correct=2.56 [H=1, S=38, N=39]
WORD: %Corr=70.14, Acc=64.66 [H=512, D=27, S=191, I=40, N=730]
===================================================================
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Results with default settings

First, each participant’s utterances were recognised. The calculated WER is shown in Table 5 

below.

Note: Lincoln et al. [43] achieved an average WER of 55.2% compared to 33.6% in this project. 

The digital MEMS microphone array achieves 47.9%. Note that in this project the speakers are 

stationary while in Lincoln et al. they read from six different positions.

Table 3: Initial WERa

a. T<n> are the participants as defined in Table 2, the average WERs of the male, female and all par-

ticipants are also shown

Participant
analogue digital ∆

5k 20k 5k 20k 5k 20k

T7 21.92 35.13 35.34 48.76 13.42 13.63

T8 40.51 58.85 48.16 63.56 7.65 4.71

T9 28.89 55.63 39.56 64.09 10.67 8.46

T10 15.62 35.39 21.16 45.62 5.54 10.23

T21 46.87 68.76 68.69 80.62 21.82 11.86

T22 40.09 61.68 61.14 80.41 21.05 18.73

T23 38.41 58.26 47.4 67.88 8.99 9.62

T24 17.86 44.84 23.14 49.57 5.28 4.73

T25 41.72 66.07 59.64 73.48 17.92 7.41

T34 52.56 81.01 79.97 91.33 27.41 10.32

T36 23.3 47.78 33.95 61.41 10.56 13.63

T37 34.93 65.26 56.18 79.64 21.25 14.38

T40 59.97 83.97 84.51 98.97 24.54 15

Average male 30.20 50.21 40.65 59.34 10.45 9.13

Average female 36.92 62.91 55.07 75.06 18.16 12.16

Average 33.56 56.56 47.86 67.2 14.3 10.64
Page 83
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Results with adapting the means

Alignment of the individual’s adaptation sentences is necessary in order to run the ASR in 

adaptation mode. The alignment process itself is a very efficient method for checking whether 

the participants said what they were told to say. The process detected three kinds of errors, all 

of which are shown in Table 4 below.

In the case of participant 8, sentence 0102 was not recorded, as shown in “omitted”. Corrupted 

sentences are sentences which the recording SW (i.e. the recording PC) distorted. In all these 

sentences several seconds of speech are missing. Sentences marked “unknown” did not show 

any problems when listened to, but nevertheless caused problems in the alignment process. 

Those problems were overcome by increasing the threshold of the alignment process.

Table 4: Report from alignment processa

a. T8a0102-a: Participant 8, adaptation sentence 0102, analogue microphone

T23a010g-d: participant 23, adaptation sentence 010g, digital microphone

Omitted Corrupted Unknown

T8a0102-a
T8a0102-d

T8c0209-a
T9a0104-a
T23a10b-a
T25a105-a

T9a0105-a
T21a010g-a
T23a010g-a
T21a010g-d
T23a010g-d
T34a010d-d
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ASR - Setup and Results 
The calculated WERs obtained by running the ASR using means-only MLLR adaptation to the 

channel are shown in Table 5 below.

Note: Lincoln et al. [43] achieved an average WER of 36.2% compared to 22.4% in this project. 

The digital MEMS microphone array achieves 29.8%. Note that in this project the speakers are 

stationary while in Lincoln et al. they read from six different positions.

Table 5: WER after adaptation to channel (means only)

Participant
analogue digital ∆

5k 20ka

a. Due to system instability during running of these tests only part of the 20k results are available.

5k 20ka 5k 20ka

T7 15.89 n.a. 22.6 35.5 6.71 n.a.

T8 31.02 52.12 30.74 48.38 0.28 3.74

T9 22.61 50.61 25.9 56.05 3.29 5.44

T10 14.06 36.68 16.9 39.5 2.84 2.82

T21 28.8 47.52 38.64 n.a. 9.84 n.a.

T22 21.2 46.2 35.02 n.a. 13.82 n.a.

T23 30.62 n.a. 35.99 n.a. 5.37 n.a.

T24 15.37 n.a. 19.25 n.a. 3.88 n.a.

T25 22.57 52.63 28.86 58.41 6.29 5.78

T34 29.33 62.77 49.84 73.59 20.51 10.82

T36 13.78 43.0 19.89 46.91 6.11 3.91

T37 23.72 49.74 33.77 61.19 10.05 11.45

T40 49.54 n.a. 67.72 n.a. 18.18 n.a.

Average male 22.63 n.a. 27.35 n.a. 4.73 n.a.

Average female 22.2 n.a. 32.21 n.a. 10.01 n.a.

Average 22.41 n.a. 29.78 n.a. 7.37 n.a.
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ASR - Setup and Results 
The calculated WERs obtained by running the ASR using means-only MLLR adaptation to the 

channel and gender are shown in Table 6 below.

Table 6: WER after adaptation to microphone and gender (means only)a

a. The results presented in this table are for the 5k WSJ corpus only

Participant analogue digital ∆

T7 15.34 22.33 6.99

T8 27.62 29.04 1.42

T9 19.78 24.18 4.4

T10 14.2 15.77 1.57

T21 29.34 37.03 7.69

T22 21.81 33.49 11.68

T23 28.03 34.78 6.75

T24 15.05 17.68 2.81

T25 21.48 31.87 10.39

T34 25.96 49.36 23.4

T36 14.2 19.32 5.12

T37 24.26 33.28 9.02

Average male 21.6 26.14 4.54

Average female 21.25 31.92 10.67

Average 21.42 29.03 7.6
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ASR - Setup and Results 
Results with adapting the means and variances

For the second test scenario constrained MLLR is used to create the adaptation data. The 

calculated WERs obtained by running the ASR using constrained MLLR adaptation to the 

channel are shown in Table 7 below.

Table 7: WER after adaptation to microphone (means and variances)a

a. The results presented in this table are for the 5k WSJ corpus only

Participant analogue digital ∆

T7 14.25 19.86 5.61

T8 30.03 33.99 3.96

T9 16.8 20.97 4.17

T10 12.5 16.76 4.26

T21 26.12 34.53 8.41

T22 24.27 39.94 15.67

T23 30.97 35.64 4.67

T24 14.13 16.93 2.8

T25 20.38 27.77 7.39

T34 27.88 39.58 11.7

T36 15.77 18.75 2.98

T37 19.35 31.14 11.79

Average male 21.33 26.29 4.95

Average female 20.74 29.69 8.95

Average 21.04 27.99 6.95
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ASR - Setup and Results 
The calculated WERs obtained by running the ASR using constrained MLLR adaptation to the 

channel and gender are shown in Table 8 below.

Table 8: WER after adaptation to microphone and gender (means and variance)a

a. The results presented in this table are for the 5k WSJ corpus only

Participant analogue digital ∆

T7 14.66 18.08 3.42

T8 25.51 30.31 4.8

T9 15.23 20.32 5.09

T10 12.22 15.06 2.84

T21 24.51 38.28 13.77

T22 24.58 38.86 14.28

T23 27.85 33.93 6.08

T24 15.37 17.86 2.49

T25 21.48 31.87 10.39

T34 24.84 42.15 17.31

T36 12.64 18.75 6.11

T37 19.6 30.97 11.37

Average male 20.02 25.59 5.57

Average female 20.05 30.19 10.15

Average 20.03 27.89 7.86
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ASR - Setup and Results 
Results with adapting to gender

For the third scenario WERs are measured for the ASR system with adaptation data for gender 

only. The calculated WERs obtained by running the ASR using means-only MLLR adaptation 

to gender are shown in Table 9 below.

Table 9: WER after adaptation to gender (means only)a

a. The results presented in this table are for the 5k WSJ corpus only

Participant analogue digital ∆

T7 15.75 22.74 6.99

T8 29.32 28.9 0.42

T9 19.15 22.45 3.3

T10 15.06 17.33 2.27

T21 28.62 35.06 6.44

T22 19.15 22.45 3.3

T23 28.55 34.26 5.71

T24 15.53 17.39 1.86

T25 23.39 30.1 6.71

T34 27.88 48.72 20.84

T36 15.2 16.9 1.7

T37 24.38 33.77 9.39

Average male 22.14 25.95 3.81

Average female 21.48 27.88 6.4

Average 21.81 26.91 5.1
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ASR - Setup and Results 
Results after adapting to the individual participant

For the final scenario WERs are measured for the ASR system with adaptation data for the 

participants using their own adaptation data. First, this is done independently of the channel. In 

the second run the different channel characteristics (i.e. analogue vs. digital) are also 

considered. The calculated WERs obtained by running the ASR using means-only MLLR 

adaptation to the participant are shown in Table 10 below.

Note: Lincoln et al. [43] achieved an average WER of 31.6% compared to 18.9% in this project. 

The digital MEMS microphone array achieves 23.3%. Note that in this project the speakers are 

stationary while in Lincoln et al. they read from six different positions.

Table 10: WER after adaptation to speaker (means only)a

a. The results presented in this table are for the 5k WSJ corpus only

Participant analogue digital ∆

T7 15.89 18.49 2.6

T8 22.8 22.66 0.14

T9 14.13 19.0 4.87

T10 11.08 12.22 1.14

T21 20.11 25.58 5.47

T22 22.27 30.57 8.3

T23 25.61 29.24 3.63

T24 15.06 16.46 1.4

T25 22.02 27.5 5.48

T34 23.08 34.17 11.09

T36 11.08 14.77 3.69

T37 23.23 28.5 5.27

Average male 18.43 20.78 2.35

Average female 19.3 25.75 6.45

Average 18.86 23.26 4.4
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ASR - Setup and Results 
The calculated WERs obtained by running the ASR using means-only MLLR adaptation to the 

participant and channel are shown in Table 11 below.

These results will be analysed and discussed in the next section.

Table 11: WER after adaptation to speaker and channel (means only)a

a. The results presented in this table are for the 5k WSJ corpus only

Participant analogue digital ∆

T7 14.66 18.49 3.83

T8 23.23 23.8 0.57

T9 16.01 19.62 3.61

T10 10.65 13.36 2.71

T21 21.47 23.79 2.32

T22 19.97 32.26 12.29

T23 25.09 26.99 1.9

T24 13.98 17.55 3.57

T25 22.3 26.4 4.1

T34 23.4 34.13 10.73

T36 12.93 18.04 5.11

T37 21.58 25.04 3.46

Average male 18.18 20.66 2.48

Average female 19.37 25.92 6.55

Average 18.77 23.29 4.52
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Analysis and Discussion  
Analysis and Discussion

This section analyses the results from the analogue and digital microphone arrays and discusses 

the findings.

Analysis

WERs were measured from the recordings of the two arrays using ASR techniques. These 

WERs are presented in “ASR - Setup and Results” on page 75. The different options that were 

analysed are:

• basic ASR vs. ASR using adaptation techniques

• channel, i.e. analogue vs. digital microphone arrays

• gender, i.e. male vs. female

• ASR adaptation technique, i.e. mean-only vs. constrained MLLR

• ASR adaptation of the individual and 

• channel adaptation of the individual

Graphs showing the measured WERs are presented in the following Figure 51-60.
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Analysis and Discussion  
Figure 51 WER vs. adaptation and channel

The WERs of both the analogue and digital microphone arrays show the same tendencies with 

differing adaptation techniques, as presented in Figure 51 above. The best results can be 

obtained by adaptation to the individual speaker.

In the following Figure 52 the effects of the channel and gender are analysed in detail.

Legend:

Series
T<n>: Test set n

Adaptation
no: none
c:  channel
g:  gender
i:  individual

Adaptation type:
(m) : mean-only
      MLLR
(cm): constrained
      MLLR
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Analysis and Discussion  
Figure 52 WER vs. adaptation and gender (analogue microphone array)

A special effect was observed early in the process of running the ASR. It appears that certain 

participants naturally achieve good WERs while others do not. This can be clearly seen in 

Figure 52 above. Half of the male participants achieved quite good WERs from the very 

beginning, while the other half achieved WERs which were only half as good. The effect of the 

different adaptation techniques is increased if the initial WER is not high. However, while 

WERs of less than 15% were achieved with participants T7, T10 and T24, the WERs of 

participants T8, T21 and T24 were always above 20%.

The distributions of the female participants, on the other hand, are similar and do not show two 

classes. Please also note that female speakers generally have poorer starting WERs which is 

believed to be due to the database being predominantly trained on male speakers.

Legend:

Series
Tn: Test set n

Adaptation
no: none
c:  channel
g:  gender
i:  individual

Adaptation type:
(m) : mean-only
      MLLR
(cm): constrained
      MLLR
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Analysis and Discussion  
The digital microphone array shows the same behaviour, as presented in Figure 53 below.

Figure 53 WER vs. adaptation and gender (digital microphone array)

The effects of the WERs vs. the channel type and gender of the individual, as discussed above, 

are also present with the digital microphone array, although more “blurred” (see Figure 53).

WERs measured from utterances recorded by the digital microphone array are generally higher, 

but the gap between the analogue and digital array closes when the different adaptation 

techniques are applied.

The WERs for the different adaptation techniques are looked at in greater detail on two average 

individuals, one male and one female, in the following Figure 54 and Figure 55.

Legend:

Series
Tn: Test set n

Adaptation
no: none
c:  channel
g:  gender
i:  individual

Adaptation type:
(m) : mean-only
      MLLR
(cm): constrained
      MLLR
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Analysis and Discussion  
Figure 54 T7: WER vs. adaptation (male)

Figure 55 T36: WER vs. adaptation (female)

Both the analogue and digital microphone arrays display the same pattern with respect to 

adaptation technique. Applying constrained MLLR gives better results compared to means-only 

MLLR and adaptation to the individual speaker again gives better results compared to gender 

or channel (or both) adaptation.

Next, the average WERs are looked at in greater detail. The results are presented in Figure 56, 

Figure 57 and Figure 58 below.

Legend:

Series
T<n>: Test set n

Adaptation
no: none
c:  channel
g:  gender
i:  individual

Adaptation type:
(m) : mean-only
      MLLR
(cm): constrained
      MLLR
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Analysis and Discussion  
Figure 56 Average WER vs. adaptation (males only)

Figure 57 Average WER vs. adaptation (females only)

Legend:

Series
T<n>: Test set n

Adaptation
no: none
c:  channel
g:  gender
i:  individual

Adaptation type:
(m) : mean-only
      MLLR
(cm): constrained
      MLLR
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Analysis and Discussion  
Figure 58 Average WER vs. adaptation

Using averaged WERs for the two genders (Figure 56 and Figure 57) and all participants (Figure 

58) clearly improved WERs are achieved when the adaptation type is more tailored towards the 

individual, i.e. the more closely the ASR system is adapted to the individual speaker and 

situation, the better the WER that can be achieved. Note that the effect of improved WERs using 

constrained MLLR compared to means-only MLLR (as observed in Figure 52 above) is 

cancelled out when considering the average values.

Discussion

This analysis of ASR system WERs in relation to the adaptation technique, channel, gender and 

individual participant shows that the newly designed digital microphone array compares well 

with the analogue one. Specific findings of the analysis are now looked at in greater detail.

First, it was observed that certain participants achieve very low WERs without using adaptation, 

independent of gender. The WERs drop further after applying the different adaptation 

techniques. There is no obvious reason for this; there are no acoustical differences which can be 

distinguished nor had these individuals been used for initial training of the HMMs. The clear 

split in the WERs (see Figure 52) of T8, T21 and T23 (high WERs) vs. T7, T10 and T24 (low 

WERs) cannot, for example, be attributed to the sample rate as only T10 and T24 were recorded 

at 44.1 kHz. In addition, T36 (female) achieves excellent WERs though recorded at 44.1 kHz. 

It can be concluded that no effect from the sample rate could be observed and that there is no 

obvious reason why certain individuals perform better than others.

Legend:

Series
T<n>: Test set n

Adaptation
no: none
c:  channel
g:  gender
i:  individual

Adaptation type:
(m) : mean-only
      MLLR
(cm): constrained
      MLLR
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Analysis and Discussion  
Looking at the distribution of the WERs vs. participant gender, no correlation can be found 

either. The WERs of male and female participants and analogue and digital recordings are 

spread evenly (Figure 51, Figure 52 and Figure 53).

As mentioned in section “Prompter” on page 78, building works were carried out during the 

recording of participant T36. These banging noises did not have a detrimental effect on the 

WERs measured, as shown in Figure 55. Most participants, as reported in “Prompter” on 

page 78, also clicked into their recordings. These mouse clicks were removed if possible. The 

click noises affected all participants equally and will have led to a general shift of all the data, 

insofar as the post-processing of the features did not remove these noises (see “Beamforming 

and speech enhancement” on page 69 for details).

During the alignment process it was found that recording data had been lost for the analogue 

microphone array (see Table 4 for details). Only the utterances from the adaptation set were 

analysed in detail. The test set sentences were listened to during data preparation (see “Data 

preparation” on page 80) but they were not checked for accuracy. While these utterances 

sounded generally correct, repeats, hesitations, stutters and other effects were observed. If the 

participant did not repeat an utterance with a mistake, then it was still used for the ASR process. 

For this dissertation it was considered more important to have as much data as possible to 

compare the analogue and digital microphone arrays than to remove any utterances which were 

not accurate. The two arrays are tested with the same data so that they are subject to the same 

effects. If this data is to be made public accuracy tests would need to be carried out.

Another feature of the individual participants is speed. Some people spoke quite fast, while 

others had a slower tempo. T25 and T34 were slow speakers. T36 and T8 were very fast 

speakers, while T37 and T7 spoke quite fast. Looking at Figure 52 and Figure 53, speed does 

not appear to affect the WERs. T34 in particular - a speech professional, separated the words as 

if to help the ASR. This habit, compared to the fast speakers T8 and T36, certainly did not 

produce any improvement on the WER. 

Test scenarios 1 and 2 looked at the effect of constrained MLLR vs. means-only MLLR. It is 

expected that constrained MLLR leads to improved WERs, as the HMMs are better tailored to 

the individual. While the individual graphs of the WERs vs. adaptation techniques indeed 

indicate such a positive effect (Figure 51) the average WERs (Figure 58) show no significant 

effect.
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Analysis and Discussion  
No analysis of the 20k data has been carried out. Generating the 20k vocabulary results would 

take ten times longer than running the 5k test and was not feasible for this project. Initial WERs 

indicate the same behaviour as was observed for the 5k test, though significantly higher levels 

(see Table 5 and Table 6).

The performance of an ASR system improves with the type of adaptation so that the more a 

system is adapted to an individual speaker and situation the better are the WERs. This behaviour 

is as expected and rather undesirable because a system which as very tailored to any individual 

is inevitably inflexible. Designing a best possible ASR/DSR system will always be a trade-off 

of different factors.

As the digital microphone array system has a highly increased SNR but only marginally reduced 

WER performance compared to its analogue competitor, and that it can be made at a fraction of 

the cost, it is a viable option for distant speech recognition (DSR) in instrumented meeting 

rooms (IMR). Commercial products using digital MEMS microphones can be expected in the 

market within months.
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Conclusion 
Conclusion

This dissertation reports on the first successful implementation of a digital MEMS microphone 

array and its performance in comparison with an analogue microphone array. The two systems 

achieve similar word error rates in an automated speech recognition system.

An array comprising eight microphones was built with samples of Knowles digital MEMS 

microphones. The PDM output of these microphones was downsampled from 64 fs to fs using 

a DSP implemented on a Xilinx FPGA. This DSP was designed in Verilog HDL with the aid of 

a digital filter design tool and an FPGA core generator. The interface from the DSP to the 

recording SW was built using an off-the-shelf USB streaming controller that collects the audio 

data from the DSP via the AC’97 interface and sends it to the PC over the USB. 

It was not possible to find a current operating system capable of capturing eight channels of 

USB audio data. A backup scheme was therefore designed and implemented using TDM to 

transfer the eight channels of audio sampled at 16 kHz in a 48 kHz frame. Efficient post-

processing scripts were subsequently implemented to generate an eight-channel audio file.

The newly built digital MEMS microphone array was evaluated and compared with an existing 

analogue microphone array. An experiment was run in which twelve participants were asked to 

speak WSJ sentences which were then processed in an automatic speech recognition (ASR) 

system. The recordings were made in an instrumented meeting room. Distant speech 

recognition (DSR) was performed using a database made available by the CSTR. The database 

is built from the WSJCAM0 corpus using speech recorded with close-talking microphones. 

After initial WER measurements MLLR adaptation was also performed for evaluating the 

analogue and digital microphone arrays. Adaptation to channel, gender and individual speaker 

(and combinations of these) were performed. 

Overall the digital microphone array compares well with the analogue one as shown in Table 12 

below.
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Conclusion 
The average WER of the digital microphone array is less then 5% above that of the analogue 

microphone array if adaptation to the individual speaker is used with the analogue array 

producing WERs of less than 19% and the digital one WERs of less than 23.5%. 

Adaption to gender, channel or both gives WERs less than 30% for the digital array and less 

than 22.5% for the analogue array with the difference between the two being less then 8%.

The digital MEMS microphone array designed, tested and evaluated in this project is ideally 

suited to meeting the demands of audio recording for distant speech recognition in future 

instrumented meeting rooms (IMR) due to being easily portable and very cost efficient.

The future might well see the emergence of compact disc-sized microphone arrays which can 

easily be used for travelling. At a later date microphone array networks might well be found in 

every IMR which use the meeting participants’ mobile phones and a host processor which 

collects the data.

Table 12: Average WERs of analogue and digital microphone arrays

Adaptation MLLR

WER [%]
Microphone array ∆

Analogue Digital

None n.a. 33.56 47.86 14.3

Channel means-only 22.41 29.78 7.37

Channel constrained 21.04 27.99 6.95

Channel and gender means-only 21.42 29.03 7.6

Channel and gender constrained 20.03 27.89 7.86

Gender constrained 21.81 26.91 5.1

Individual means-only 18.86 23.26 4.4

Individual and channel means-only 18.77 23.29 4.52
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Conclusion 
Future Work

A project such as the one presented in this dissertation is as much a feasibility study as the 

development of a product. Indeed, it was only the recent emergence of MEMS microphones 

with direct digital PDM outputs that enabled the design of the digital MEMS microphone array 

(DMA). It can therefore be considered as a technology demonstrator. The following list of 

future work gives an idea of how the current system could be expanded and improved.

• DMA system: Due to the absence of a high-order PDM model for the digital MEMS 

microphone array no system simulations were carried out. For completeness, system 

simulations should be carried out to check the system’s frequency response and DC (direct 

current) levels.

• DMA DSP: System simulations should also be undertaken to verify the correct dithering 

[36]

• DMA DSP: The current FPGA is utilised by about 60%. This gives the option of 

implementing advanced DSP features in HW, e.g. the beamformer, noise canceller or 

Wiener filters.

• DMA gain: The insertion of a gain block into the DSP revealed the presence of a DC offset. 

In theory, the DMA DSP should not have a DC offset. System simulations were not feasible 

due to the absence of a full simulation license. The Verilog HDL simulation ran at 0.1% of 

full capacity due to license restrictions.

• The current implementation of the DMA is not 100% AC’97 compliant due to the fact that 

the AC’97 specification has not been defined for this type of DMA and because certain 

aspects of the AC’97 specifications were not implemented so far.

• The AC’97 specification defines three resets: a reset pin, a power-on reset and a SW reset. 

Although this reset architecture was designed, this circuit was bypassed due to limitations in 

the FPGA.

• Many MEMS microphones support calibration [84]. Using the AC’97 interface (register 

control) and the flexibility of an FPGA this calibration could be utilised for different 

microphone brands.

• Although both MS and Linux OSs claim to support microphone arrays, in reality MS 

officially only supports up to four channels and it was only possible to achieve seven 

working channels using Linux. This is the most unfortunate limitation of the current digital 

MEMS microphone array, preventing it from being the perfect technology demonstrator.
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Conclusion 
• If the database of speech that was recorded is to be publicly available for future 

development then all utterances need to be checked for correctness and any inaccurate ones 

removed.

• ASR: Further investigate WER gap between analogue and digital microphones. Is this due 

to lack of adaptation data, or is it inherent due to the lower SNR of the digital MEMS 

microphones?

• DMA: Improve DMA SNR by optimising MEMS microphone clocking (e.g. signal 

termination, shielding, layout).

• DMA: Improve DMA SNR by optimising DSP performance, i.e. CIC and FIR filter 

specification

• ASR: Investigate and compare DMA performance with analogue array using spontaneous 

speech.
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Appendix A

Copyright and Trademark Information

The implementation, analysis and verification of the digital microphone array required the use 

of EDA (Electronic Design Automation) tools. The product or tool names and the company 

names are protected by copyright. General copyrights and trademarks are acknowledged in this 

section to simplify further reading of the thesis.

Copyrights (© or ®) used in this thesis are:

• Dolby

• Intel

• Matlab

• Mentor ModelSim

• Microsoft, Windows, Vista and XP

• SLIMbus

• Xilinx ISE

• µVision

Trademarks (™) used in this thesis are:

• Filter Design and Analysis Tool fdatool

• ModelSim ISE

• CORE Generator

• Keil

• Python

Company names (inc and plc) used in this thesis are:

• Knowles Electronics/Acoustics

• TI/Texas Instruments

• Wolfson Microelectronics

• Xilinx
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Permissions and Copyright

All photos, figures and graphs used in this dissertation are reproduced with the permission of 

the author and, if applicable, publisher. For simplicity, this is not explicitly stated but indicated 

using (with kind permission of <author>) as shown in Figure 59 below.

Figure 59 Digital Microphone Array (with kind permission of [...])

I would like to thank the following people for allowing me to use their pictures and figures.

• Institute of Physics (http://www.ipo.org) and Infineon (http://www.infineon.com), 

particularly Jill Membrey from the IOP and Roland Helm from Infineon

• Springer Science+Business Media (http://www.springer.com), particularly Barbara 

Schmidt-Löffler and the authors G. (Arden) Huang and Gary Elko

• Uwe Beis (http://www.beis.de/)

• Matthias Wölfel (http://www.distant-speech-recognition.org/)
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Figure 60 AMI Meeting Corpus Consent Form

           AMI Meetings Corpus Consent Form   Version 1.1, October 8, 2004 

 
___________________________________________________________________________________________________  

 
Multi-modal research requires large amounts of acoustic recordings of spoken language, along with high quality video, and 
other multi-modal data recordings. Our goal is to compile such a corpus. This corpus will include a large number of Non-
Native-English-Speakers, and will therefore be unique from those compiled at other institutions.   
 
We are asking that when you participate in meetings in our specially equipped recording rooms, you allow us to record the 
meeting data. You may record multiple meetings, but will only need to complete this form once. Your participation is 
voluntary and you may stop at any point. The data will initially be used by the AMI Project Partners. It is possible however 
that at a later stage we will make some or all of the data available to the wider research community, in both transcribed and 
digitised formats. 

No one other than the project staff will have access to any forms you provide to us. However, your name and general 
demographics may be mentioned in the course of your meeting(s), and you may be recognisable to some people. For this 
reason it is impossible to completely guarantee anonymity for things you may say. Some general demographics are also 
typically included in the scientific documentation of corpora and in published findings (e.g. age, dialect information) 
however, under no circumstances will your name and contact information be divulged as part of the published demographic 
information.  

Please remember that comments you make about people or companies can defame them or invade their privacy, even if 
you/they are not specifically named but are still recognizable, so it is your responsibility to monitor your speech/behavior.    
If you are concerned about any of your data, please advise us immediately and we can arrange for you to review the 
meeting(s) online. On your request we can remove a part of a meeting.  
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

 

By signing this form, you agree to allow us to record you and accept responsibility for your conduct in the meeting(s). It is 
your responsibility to monitor your own speech and actions during the meeting(s), and advise us if any data should be 
removed.  
 
To indicate that you wish to participate as outlined above, please complete the following: 

 

I, (please print name)......................................................................................................................... 

have read this form, agree to its content and agree to take part in the research on these terms. 

Signature: ........................................................................ Date: ...................................................... 

Age: (optional)................................................................. Sex: ........................................................ 

 

Are you a native English speaker?    

  Yes, please indicate your country and region ................................................................................ 

  No, please indicate your native language...................................................................................... 

      How many months have you spent living in an English speaking country? ................................... 

      Which English speaking country have you lived in?..................................................................... 

       

Please list any other language influences (other languages spoken, dialects, etc) ................................ 

......................................................................................................................................................... 

 

Please provide your email address (or other contact information) so that we can contact you if 
necessary. 

......................................................................................................................................................... 
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