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Abstract 

The concept of input impedance is a very useful representation of the resonance 

characteristics of an acoustic horn. A large part of this work discusses its theo-

retical and experimental determination. It is demonstrated that higher modes, 

waves with a non-uniform pressure distribution on the plane perpendicular to 

the axis of the instrument, should be used in the theory of wave propagation in 

musical instruments featuring a flared bell as an improvement on assuming plane 

wave propagation. 

The impedance at the output end of an acoustic horn is known as the radiation 

impedance. The existing method for the calculation of the multimodal radiation 

impedance of a cylindrical tube terminated in an infinite baffle is reviewed. New 

work is then presented for the calculation of the radiation impedance of a rect-

angular duct terminated in an infinite baffle. An existing method for calculating 

the input impedance of an acoustic horn of cylindrical cross-section starting from 

the radiation impedance is utilised. The method is then formulated for horns of 

rectangular cross-section. Pressure field calculations are also presented. 
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In acoustic pulse reflectometry an acoustic pulse is directed into the object 

under test and the sampled reflections analysed to provide the internal profile and 

the input impedance. It is shown that better agreement is observed between the 

experimental and theoretical input impedance when higher modes are included 

in the calculation. 

Currently the bore reconstruction analysis assumes plane wave propagation 

since this provides a simple formula for the frequency independent reflection and 

transmission coefficients at changes in cross-section in a pipe. The multimodal 

reflection and transmission coefficients are, however, frequency dependent. A 

higher-mode method is presented to calculate the reflection of an impulse with 

the aim of improving the technique's accuracy for horns which feature a large 

rate of flare at the end. Digital filters designed to represent losses and cancel 

reflection from the sound source are also shown to increase accuracy and make 

possible the measurement of longer objects. 
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Chapter 1 

Introduction to the study of wind 

instrument acoustics 

1.1 Background 

The physical principles responsible for the sound we hear from musical instru-

ments have been the subject of study since ancient Greek times. As the physical 

sciences developed, wave motion was used to explain the behaviour of water and 

light in addition to the production of audible sound. Frequency analysis tech-

niques were developed illuminating the sensations of pitch and tone. The arrival 

of accurate microphones and sound reproduction equipment allowed quantita-

tive experimental measurement of the resonance characteristics of musical instru-

ments. With the invention of the computer, numerical methods became available 



for predicting the properties of musical instruments, to confirm the accuracy of 

the wave motion theory and to analyse how suggested changes in an instrument 

would effect the playing properties. 

This work concentrates on brass musical wind instruments. The sounds we 

hear from such instruments result from wave motion caused by rapid compres-

sions and expansions of the air inside the tubing. We begin with a qualitative 

explanation of the acoustic behaviour of air columns. This discussion will show 

how a quantity called the input impedance can provide information on the playing 

frequencies of brass musical instruments. This quantity, along with the internal 

profile, will be investigated both experimentally and theoretically in the body of 

work which follows. 

1.2 Acoustic resonance 

Consider a cylindrical pipe open at both ends. We define the acoustic pressure as 

the difference between the air pressure and the equilibrium atmospheric pressure. 

To a first approximation the acoustic pressure is zero at the open ends of the 

tube. The acoustic pressure inside the air column, however, may be non-zero and 

change with time. The air column can therefore contain standing waves giving a 

sinusoidal pressure amplitude along the length of the tube such that an integer 

number of half wavelengths fit into the tube length. 
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This condition is obviously fairly crude since it ignores the radiation of sound 

from the ends of the tube. However, in reality, the acoustic pressure amplitude 

is generally much higher in the tube than outside, meaning that this condition 

gives a reasonable first approximation for the wavelengths of sound which lead 

to resonance. These standing waves have frequencies which are integer multi-

pies corresponding to the set of musical pitches we call the harmonic series. The 

harmonic series consists of a fundamental, the pitch an octave above the funda-

mental, the octave and a fifth (or twelfth) above the fundamental, the double 

octave above the fundamental and so on. 

Now going on to consider a cylindrical pipe open at one end and closed at the 

other, our first approximation indicates that the pressure is only required to be 

zero at the one open end. The air column can therefore contain standing waves 

such that an odd number of quarter wavelengths fit into the tube length. The 

fundamental has a frequency half that of a tube of the same length open at both 

ends and the frequencies are the odd components of the harmonic series. 

1.3 Exciting the air column 

In order to create a musical sound in a wind instrument the player blows air into 

some sort of excitation mechanism. For the clarinet and saxophone this consists 

of a single piece of reed mounted onto the mouthpiece with a small gap between. 



Increasing the air pressure in the mouth cavity initiates an oscillatory regime 

with the reed opening and closing the gap, periodically letting air flow into the 

instrument to support pressure standing waves in the air column. The oboe and 

bassoon feature a double reed, with the gap between two pieces of cane regulating 

the flow. 

When brass musical instruments are played, the player's lips are stretched 

across the mouthpiece. The lips behave much like the reeds of woodwind instru-

ments, therefore brass instruments are said to have a lip reed mechanism. The 

operation of this lip reed can be understood by considering the forces acting on 

the lips and the pressure field in the instrument. 

There are two simplified models which help to explain lip reed action, called 

the inward and outward striking reeds [1]. Obviously a brass player's lips will blow 

open if the mouth cavity pressure is sufficiently large. A reed which follows this 

behaviour is called the outward striking reed. On the other hand a high pressure 

in the mouth will lead to air moving in the gap between the lips, lowering the 

pressure there. The lips are thus sucked together, experiencing a force known as 

the Bernoulli force. This is what we refer to as an inward striking reed. The actual 

nature of the lip reed is the study of current research, as reviewed in Campbell 

[2]. The results seem to suggest that the lip reed can behave more like inward or 

outward striking reeds depending on the resonance frequencies of the lips and of 

the air column. 
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1.4 Input impedance 

The pressure standing waves in a brass musical instrument have a pressure anti-

node at the mouthpiece end. This indicates that the lips effectively close the 

mouthpiece end of the instrument. If the air column of the instrument was 

cylindrical then the resonance frequencies would be the odd components of the 

harmonic series. However, brass instruments have internal profiles which expand 

along their length meaning that the mode frequencies are raised, with the lower 

modes being raised to the largest extent. The flare of the bell is designed to bring 

the resonances into an approximately harmonic relationship. The exception is the 

lowest resonant frequency which is lower than it would be for a true harmonic 

relationship in instruments with a significant amount of cylindrical tubing such 

as the trumpet and trombone. 

As discussed previously, an oscillating volume velocity is put into the instru-

ment through the lips to support the resonance. A small fraction of the energy in 

the pressure oscillations in the instrument's air column will be transmitted out to 

the surrounding air. These pressure waves are audible to the player and listeners 

as musical notes at the pitch corresponding to the frequency of the excitation. 

Valves and tuning slides are often included to enable the player to alter the length 

of the air column and therefore change the resonances. 

Sound can be produced by skilled players at any of the resonant frequencies or 
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at a frequency slightly away from a resonance by careful control of lip tension. It 

should also be noted that the velocity source at the lips will in practice have many 

harmonically related frequency components. The amplitude of the impedance 

at these frequencies will then influence the pitch and harmonic content of the 

resulting sound. For instance, well-tuned, harmonically related resonance peaks 

will mean more harmonic content and a brighter tone. 

If the frequencies present in the excitation are all well away from resonant 

frequencies, very low sound levels will result and in practice the reflections of 

sound within the instrument will force the lips of the player to change their oscil-

lations to play at a frequency where components of the excitation are supported 

by air column resonances. As mentioned before, the resonance frequencies of 

the trumpet and trombone are close to being harmonically related, except the 

lowest resonance which is flat (ie. lower in frequency than would be required for 

a harmonic relationship). If the player excites the instrument at the frequency 

of this bottom resonance the note is weak because the upper harmonics are not 

supported by resonances. However, if a note is played such that the harmonics 

in the excitation match the harmonically related resonances, the note is strong. 

This is known as the pedal note. Note that the pitch perceived by a human 

listener is the same as that for a sinusoidal oscillation at the fundamental of the 

harmonic series even when the component of the fundamental actually present in 

the sound is very weak. 
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In order to characterise the behaviour of an instrument we use a frequency 

dependent quantity called the input impedance. The input impedance is the ratio 

of the pressure and volume velocity at the input or mouthpiece end. In terms of 

brass instruments this means the input impedance gives a measure of the sound 

pressure amplitude in the mouthpiece due to a given amplitude of sinusoidal 

excitation created by the varying flow of air between the lips. A plot of input 

impedance against frequency will have peaks at the resonance frequencies. The 

sharpness of the peak also indicates information a player can recognise. The 

sharper a peak is, the easier the resonance will be to play and the more difficulty 

a player will experience in attempting to play at a frequency slightly away from 

the resonant frequency. 

1.5 Input impedance measurement techniques 

1.5.1 Frequency domain measurement 

Accurate experimental measurement of the input impedance was first achieved 

by closing the mouthpiece with a flat plate containing a small capillary and a 

microphone [3, 4, 5]. The capillary feeds a known sinusoidal volume velocity 

into the mouthpiece and the microphone measures the pressure response. The 

input impedance is deduced from the ratio of the measured pressure and volume 

velocity. We call this a frequency domain experiment since it must be repeated for 



each frequency of interest. Recent developments in the field of frequency domain 

excitation include the use of a chirp signal which consists of a sinusoid of rapidly 

changing frequency. All frequencies of interest may then be measured in a short 

time interval. 

1.5.2 Acoustic pulse reflectometry 

The alternative to frequency domain measurement is to measure the time do-

main response, for instance, by acoustic pulse reflectometry. The history of this 

technique has been reviewed in detail in the thesis of Sharp [6]. A summary is 

presented here. 

Acoustic pulse reflectometry was at first developed as a technique for the 

study of the earth's crust, especially for oil exploration. Generating an explosion 

at the surface causes an impulsive acoustic wave to travel down into the earth. A 

proportion of the incident wave is reflected when a change in density occurs within 

the rocks. In general there will be many layers of different density within the rocks 

in the earth's crust resulting in a complicated response which can be measured at 

the surface. Ware and Aki [7] were the first to provide an algorithm for calculating 

the densities of the layers from this impulse response. Their method assumed no 

acoustic energy was lost to heat during propagation. 

Applying the same technique to propagation in air means producing an air- 



borne pulse, for instance using a loudspeaker or spark discharge. Reflections of 

sound within tubular acoustic structures then arise at changes of cross-sectional 

area. This was first suggested by Sondhi et al. as a way of determining the inter-

nal area profile of the mouth cavity [8, 9]. Experiments were performed on vocal 

tracts and lungs by Jackson et al. [10, 111. A spark was used as a sound source, 

with the resulting pulse travelling along a section of cylindrical tubing called a 

source tube, then into the airway under test. The resulting reflections were mea-

sured by a microphone in the source tube wall. The reason for the source tube 

was to physically separate the in-going pulse signal from the impulse response. 

Measurements on human patients were performed by Fredberg et al. [12] and 

clinical use followed [13]. 

The first attempt at using pulse reflectometry on musical wind instruments 

was made by Benade and Smith [14]. While the lack of losses in the Ware-Aki 

algorithm posed no problem for the measurement of human airways, the longer 

length of many musical instruments means that losses play an important role in 

the impulse response and need to be included for an area profile algorithm to 

provide accurate results. Further work was performed by Smith [15]. Watson 

and Bowsher found that a reasonable reconstruction could be found by changing 

the dc offset in the experimental measurement untill the algorithm predicted the 

desired value of the bore radius at the open end [16]. This method of finding the 

bore is not always accurate since losses are not included explicitly. The effect of 

losses and dc offset are qualitatively similar meaning that the lack of losses may 
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be loosely compensated for by a false dc offset value. An alternative algorithm 

was developed by Amir et al. which incorporated viscothermal losses [17, 18]. 

This was used by Sharp et al. to provide accurate reconstructions of the internal 

profile of brass instruments [6, 19, 20]. 

While the main motivation for development of time domain measurement was 

to perform the calculation of the area profile from the measured response, the 

input impedance can also be deduced from the impulse response. The experi-

ments presented in this thesis were performed using acoustic pulse reflectometry. 

Chapter 5 describes the existing setup for the measurement of musical wind in-

struments and we then go on to discuss practical improvements to the technique 

in chapter 7. 

1.6 Calculation of the input impedance 

As discussed in section 1.4, a plot of the input impedance of a wind instrument 

provides information on its resonance properties. Theoretical calculation of the 

input impedance is therefore useful for analysing the effect of a change to the 

bore of an instrument without having to build a new one each time. Also the 

theoretical study of sound propagation in instruments provides an insight into 

the way in which the instruments work. 
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1.6.1 Multimodal propagation 

In chapter 2 we describe how the input impedance may be calculated theoretically 

using multimodal decomposition. We present the background to this technique 

here and go on to explain why it is useful for describing the behaviour of musical 

instruments in the introduction to chapter 2. 

The problem of wave propagation in a uniform duct has a well known solu-

tion in the form of a sum of modes. While the lowest order mode has planar 

wavefrorits, the higher order modes have non-uniform pressure distributions on a 

plane perpendicular to the direction of propagation. In a uniform pipe the modes 

propagate independently while at a change in cross-section the modes couple [21]. 

Each mode propagates with a different wavelength along the central axis for a 

given excitation frequency [22]. Furthermore, each mode (with the exception 

of the planar component) has a cut-off frequency below which the wavelength 

is imaginary and propagation is not possible. In general, the wave equation in 

an acoustic duct with a non-uniform cross-section is not solvable analytically, 

meaning we must resort to numerical methods. 

A numerical calculation is often performed ignoring the effects of the higher 

order modes [23, 24]. The results are valid at low frequency because the higher 

order modes are non-propagating and at low rates of flare because the coupling 

between modes is minimised. 
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Higher order modes have been included in the theory of acoustic ducts by 

various authors. Individual discontinuities in tubes were probably first treated 

with higher modes included explicitly in papers by Miles [25, 26, 27]. The solution 

of the wave equation in ducts of varying cross-section was treated by Stevenson for 

acoustic horns [28] and for electromagnetic waves in conducting horns known as 

waveguides [29]. In electromagnetic theory there are 6 components of the electric 

and magnetic vector fields whereas the acoustic pressure is a scalar field. The 

theory of acoustic horns followed as a simplification of the electromagnetic theory, 

hence tubular objects in acoustics are refered to as acoustic waveguides. The 

equations provided by Stevenson cannot be solved explicitly, however. In order 

to determine the behaviour of a duct of varying circular cross-section, the internal 

profile must be approximated by a series of concentric cylinders as described by 

Aifredson [30]. The same may be done for horns of varying rectangular cross-

section by using concentric oblongs. 

Input impedances have been calculated by Oie et al [31] and in papers by 

Pagneux et al [32, 33] which form the basis for the theoretical work of chapter 2. 

Part of the procedure inevitably involves calculation of the radiation properties 

at the mouth of the horn. 

If we assume that the highest frequency of interest is sufficiently low that 

only the plane mode may propagate in the duct, the radiation condition may 

be obtained from Levine and Schwinger [34] for a cylindrical pipe of zero wall 
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thickness or from Ando et al. [35, 36] for a cylindrical pipe of a certain wall 

thickness. We wish to keep the applicability of our method at high frequencies. 

There is no general expression currently available for the radiation condition 

without assuming that an infinite baffle is present around the opening of the 

horn. This radiation condition is due to Zorumski [37] for a cylindrical pipe and 

due to Kemp et al. [38] for a rectangular duct. Chapter 3 reviews the analysis 

of the radiation condition. The input impedance calculation method is then 

implemented in chapter 4. 

In chapter 6 a multimodal method for calculating the reflections of a pres-

sure wave from a tubular object is discussed. Initial work is shown for the case 

of a single discontinuity in two infinite tubes with acoustic pressure waves inci-

dent from only one side. This theory was initially formulated by Miles [25] in a 

summation notation and no calculations were presented. We will show how the 

situation may be easily represented in the matrix notation of Pagneux et al. [32] 

and calculations performed will show the response in both the frequency and time 

domains. 

1.7 Aims and outline of thesis 

The aims of this thesis are: 

1. to study and develop the theory of multimodal propagation in acoustic 
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horns, in order to enable the influence of higher mode propagation to be assessed. 

to describe acoustic pulse reflectometry as a means of measuring the prop-

erties of brass musical instruments, and to perform experiments to give examples 

of its use. 

to develop acoustic pulse reflectometry to enable the measurement of longer 

instruments and to speed up the measurement process. 

to discuss the possibility of including higher modes in the analysis of pulse 

refiectometry data. 

Chapter 2 consists of a review of the theory of wave propagation in tubu-

lar objects first assuming plane wave propagation and then using multimodal 

expressions. This material is a review with amendments and corrections of the 

method of Pagneux et al. [32] for waveguides of circular cross-section and new 

work for objects of rectangular cross-section is also presented. A method for the 

calculation of the input impedance and pressure field is then derived. 

In order to perform a multimodal calculation of the input impedance, the 

radiation impedance (the impedance at the open end of the horn) is needed as a 

starting point. Chapter 3 presents a numerical method for its calculation. The 

method for pipes of cylindrical cross-section is due to Zorumski [37] while the 

results for pipes of rectangular cross-section is due to the current author [39]. 

Chapter 4 brings chapters 2 and 3 together, giving an example calculation of the 
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input impedance and pressure field calculations for the bell section of a trumpet. 

Chapter 5 is a review of acoustic pulse reflectometry. Experimental measure-

ments of the input impulse response, the input impedance and the bore recon-

struction are presented together with the analysis techniques. 

In chapter 6 the multimodal reflection of sound from a single discontinuity be-

tween two infinite pipes is considered. The reflection is frequency dependent, with 

theoretical results presented showing the reflectance as a function of frequency and 

the time domain response. Analysis of pulse reflectometry experiments currently 

assumes plane wave propagation. A discussion of the possibility of incorporating 

multimodal propagation in the pulse reflectometry bore reconstruction algorithm 

then follows. 

In chapter 7 we discuss and implement various improvements to pulse reflec-

tometry. The first of these simply makes an existing process for removal of a dc 

offset in the measurement more accurate and convenient. Next we increase the 

length of instruments that may be measured by using post-processing to remove 

unwanted interference due to reflection of sound from the source. Finally we inves-

tigate the use of maximum length sequences, pseudo random signals resembling 

white noise, which are used to increase the signal to noise ratio in measurements. 

Chapter 8, which concludes the thesis, gives an overview of the achievement 

of the aims and suggests ideas for future work. 
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Chapter 2 

Multimodal propagation in 

acoustic horns 

2.1 Introduction 

Pressure disturbances in air-filled free space travel away from their source at a 

rate known as the speed of sound. The simplest mode of propagation of sound is 

in the form of plane waves where the wavefronts are flat two dimensional planes. 

The pressure variations can then be described entirely by a propagating sinusoidal 

pressure profile along the third spacial direction, perpendicular to the wavefront 

planes. 

Most musical wind instruments consist of pipes of circular cross-section. In 
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fact many, such as the flute and the clarinet, feature an air column roughly 

cylindrical in shape. The acoustic waves set up within wind instruments have 

wavefronts perpendicular to the walls, meaning that the waves inside a cylindrical 

pipe are plane waves. Instruments whose bore is conical with a small enough apex 

angle object may also be assumed to contain plane waves in their air column. The 

air column can then be modelled by approximating the bore by a series of short 

concentric cylinders whose radius matches that of the instrument at each step 

along its length. If there are very many very short cylinders the bore of the 

cylinder series almost exactly matches the bore of the instrument. The plane 

waves in the cylindrical sections behave like plane waves in free space except that 

they are partially reflected and partially transmitted by any changes of cross-

sectional area within the pipe. 

For acoustic horns (such as the brass musical instruments) which feature 

rapidly flaring air columns, the wavefronts become more spherical in the bell 

section of the instrument in order to meet the wall at 90 degrees. A calculation 

of the properties of the instrument may still be made assuming plane wave propa-

gation although the results will be far less accurate than for instruments without 

any flaring section. The basic theory of sound propagation in a musical wind 

instruments is set out in the literature mainly assuming plane wave propagation. 

To go beyond this, the actual pressure field can be expressed in terms of the 

sum of the plane waves present in the tube and the contribution from the modes 

of the duct whose pressure profile is not uniform on the plane perpendicular to 
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the central axis. This method is labelled modal decomposition or multimodal 

propagation. 

This chapter comprises of a review of plane wave propagation in pipes of con-

stant cross-section and at a discontinuous change in cross-section. The discussion 

then moves on to treat multimodal propagation. In order to describe fully the 

acoustic behaviour of an acoustic horn we must include the acoustic effect of ra-

diation of sound from the open end. Chapter 3 will therefore treat this problem. 

2.2 Plane waves in a uniform section of tube 

Consider an infinite cylindrical pipe whose central axis we label z. We will begin 

by treating loss-less plane wave propagation in such a pipe. The pressure on any 

plane perpendicular to z is constant, so the pressure is simply a function of z and 

time, t. The wave equation is then ([40] p.107) 

a2 	la2p 	
(2.1) 

where c 343 rn/s is the speed of sound. The complex solution is 

p(z, t) = (Ae 	+ Be  21 ) et 	 (2.2) 
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where the real part of p is the physically observable pressure variation from the 

equilibrium atmospheric pressure value. A is the complex amplitude of the for-

ward travelling pressure wave (in the positive direction along z) with the absolute 

value being the peak pressure in the forward wave and the real part defining the 

wave's phase by setting the value of the pressure at z = 0, t = 0. Similarly B 

is the complex pressure amplitude for the backward travelling wave. k is the 

wavenumber of the sinusoidal wave with the corresponding wavelength A = 27r/k. 

w is the angular frequency given by w = 27rf where f is the frequency of the 

wave. 

To verify that equation (2.2) is indeed a solution we can substitute into equa-

tion (2.1) giving 

—k 2P= — p. 	 (2.3) 

The equality holds because c = w/k = f A. 

These pressure changes are compression waves; they correspond to changes 

in the typical movements of gas molecules in the direction of propagation. The 

motion of the molecules in the air may be modelled by considering the motion 

of an "acoustic particle" large enough to contain millions of molecules but small 

enough that the acoustic variables are constant throughout its volume [40] p. 99 . 

To find the volume velocity from the pressure we use the linear inviscid force 

equation ([40] p.104): 

at = — VP- 	 (2.4) 
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Here v is the acoustic particle velocity and V is the gradient operator given by 

Vp 
09P 

 + y- 

	

,.Dp + z ,Dp 
— 	 (2.5) 

ax 	09Y Dz 

where i is a unit vector along the x direction etc. For plane waves the pressure 

varies only along the z axis. The velocity is then a vector parallel to the z axis. 

Like the pressure, the velocity will be sinusoidal with time dependence exp(iwt). 

Substituting equation (2.2) into equation (2.4) gives the z component of the 

velocity as 

Vz = 1 (kAe 	- kBe')e iwt .
( 2.6) 

Pw 

We will see when we come to consider ducts of varying cross-section, that it is 

useful to deal with a quantity called the volume velocity, defined as U = vS 

where S is the cross-sectional area of the pipe. The volume velocity is then 

U(z, t) = 	(Ae 	- Beikz e Wt . 	
( 2.7) 

PC 

The acoustic impedance is then defined as being the ratio of the pressure and 

volume velocity. For forward travelling waves this is the characteristic impedance, 

= pc/S and for backward travelling waves this is —Z = —pc/S where p = 

1.21kgm 3  is the equilibrium density of air. While the acoustic impedance of 

travelling plane waves is ±pc/S, the acoustic impedance of the combination of 

forward and backward going waves must be calculated from the ratio of the 
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pressure and velocity resulting from both: 

P - 	 B e ikz  

- U - SAe' - Bc2 	
(2.8) 

So far we have provided a formula for the volume velocity and impedance at 

any point in a duct of constant cross-section provided A and B (the complex 

amplitude of the forward and backward travelling pressure waves at z = 0) are 

known. Our eventual aim is to be able to work out the acoustic variables at one 

end of a series of concentric cylinders from the acoustic variables at the other 

end. The first step is to be able to project acoustic variables down a cylindrical 

section from an arbitrary z axis position. Consider the cylindrical pipe in figure 

2.1. Two planes are defined: plane 1 is at z = z1  and plane 0 is a distance d 

to the left of this. We want to know how to project the acoustic variables from 

plane 1 to plane 0. 

0 	 1 

• z- 

d 

Figure 2.1: Uniform pipe 

Labelling (°) as the pressure on plane 0, by substituting the z coordinate of 
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= z1  - d into (2.2) we get 

	

(o) = Ae_iz1_dl) + 	 ik(zi 

= (Ae' + Beu ' 1 ) cos(kd) + (A&' - Bc 1 )i sin(kd). 	(2.9) 

Now the pressure on plane 0 can be found from (l)  and 	the pressure and 

volume velocity on plane 1. 

= cos(kd)p 1  + isin(kd)ZU 1 	 (2.10) 

where Z = pc/S. Similarly, for the volume velocity on plane 0, putting z = z, - d 

into (2.7) gives: 

= isin(kd)Z'p' + cos(kd)U 1 	 (2.11) 

The impedance, z° on plane 0 can be obtained by dividing the pressure and 

volume velocity there: 

= (o) = cos(kd)p( 1 ) + i sin(/cd)ZU (1)  

	

U(°) 	1 sin(kd)Z 1 p( 1 ) + cos(kd)U(1) 	
(2.12) 

Dividing through by U' gives z° in terms of 	the impedance on plane 1: 

= 	- cos(kd)Z( 1 ) + isin(kd)Z 
U(°) - isin(kd)Z 1 Z( 1 ) + cos(kd) 	

(2.13) 

Notice that if a travelling wave is present at plane 1 in say the positive z direction 
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only we get B = 0 and z1 = Z. Equation (2.13) then reduces to Z °  = 

showing that the impedance is unchanged by projection along the cylinder. In 

general, however, the impedance will be changed by projection. 

2.3 Plane waves at a change in cross-section 

A wave experiences partial reflection and partial transmission at a change in 

impedance. Such a change occurs at a change in cross-sectional area since the 

characteristic impedance depends on S. Consider the discontinuous join between 

two cylinders shown in figure 2.2. We label as plane 1 the cross-section with area 

o 	12 

1 : S2 
I .............................  

Figure 2.2: Detail of a waveguide consisting of straight sections of length d joined 
discontinuously 

Si immediately to the left of the discontinuity. Plane 2 is defined to be the cross- 

section with area 82 immediately to the right. The pressure and volume velocity 

on either side of a change of cross-section are equal, meaning that (l) = ( 2 ) and 

= u2 in the current notation. It follows that the acoustic impedance is the 

same on each side of the discontinuity (ie. z' = 
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It should not seem strange that the acoustic impedance is unaltered by the 

change in cross-section because the characteristic impedance Z = pc/S has 

changed and the acoustic impedance has therefore altered relative to the charac-

teristic impedance. We may use equation (2.13) to work out the impedance at 

plane 0 and the effect of the new cross-section will then have an effect on the 

resulting z° value. 

To further illustrate the point, we must deal with the forward and backward 

going waves in each cylinder. A and B are the complex pressure amplitudes for 

the waves in the cylinder to the left of discontinuity, meaning the pressure there 

from equation (2.2) is 

PM= (Ac 	+ Beikz) e "t . 	 ( 2.14) 

C and D are the forward and backward going complex pressure amplitudes in 

the cylinder on the right of the discontinuity giving 

	

( 2 ) = (Ce_ikz + D eikz) e twt . 	 ( 2.15) 

Using PM = ( 2) at the discontinuity (noting that planes 1 and 2 may be taken 

to be at the same z coordinate, just on opposite sides of the infinitely sharp 

discontinuity) gives 

A+B=C+D. 	 (2.16) 
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From equation (2.7) the we volume velocity in plane 1 is 

UM= S1 (Ae_ikz -Be ikz) it 	 (2.17) 
PC 

and the volume velocity in plane 2 is 

= 	(Ce ikz- De)e iwt .
( 2.18) 

PC 

Using the u1 = u2 condition leads to 

(A - B)S 1  = ( C - D)S2 . 	 (2.19) 

While the sum of the forward and backward waves is the same on either side of 

the discontinuity, the difference depends on the ratios of the cross-sections, hence 

the waves experience reflection and transmission coefficients. 

In particular, consider if our pipes in figure 2.2 are infinite in length. A 

pressure wave is incident on the discontinuity from —oo with amplitude A. It is 

partially reflected with amplitude B back down the tube to —oo and partially 

transmitted to +00 with amplitude C. D = 0 since there is no backward going 

wave in 82.  We can solve (2.16) and (2.19) by eliminating C to get the reflection 

coefficient: 

— S1 /S2 -1 
(2.20) 

A S1 /S2 +1 
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A decrease in area means a positive reflection coefficient and an increase in area 

means a negative reflection coefficient while there is no reflection when S 1  = S2 . 

The transmission coefficient is obtained by eliminating B in the same equations: 

C - 2S/S 
(2.21) A - S1 1S2+ 1 

To summarise, impedance is not effected by changes in cross-section and equa-

tion (2.13) describes how impedance changes when projected along a pipe of given 

cross-section. Now we have the equations necessary to work out the impedance at 

one end of a instrument of known internal profile provided the impedance at the 

other end is known. The impedance at the open end will depend on the geometry 

of the opening and is treated in detail in chapter 3. Projecting the impedance 

down to the input (mouthpiece) end gives us the input impedance, the amount 

of pressure produced in the mouthpiece by a unit volume velocity source. Now 

we have derived a method of input impedance calculation in the plane wave ap-

proximation, we will go on to do the same for multimodal propagation. 
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2.4 Multimodal equations in a uniform wave-

guide 

The inclusion of higher modes in horn acoustics has been studied recently [32, 33, 

38, 41, 42]. In general, the pressure and velocity in a cylinder can be expressed in 

terms of the modes of the duct whose amplitude patterns have n nodal circles and 

I nodal diameters on a circular cross-section where (n, I) = (0, 0) is the plane wave 

mode. We are analysing axi-symmetric systems so we will treat axi-symmetric 

(nodal circle) modes only. The pressure and volume velocity are then vectors 

with a single subscript, n. 

In the case of rectangular cross-section, the modes of the duct will have an 

integer number of nodal lines parallel to the y axis and an integer number of nodal 

lines parallel to the x axis. We will only treat systems that preserve symmetry 

about the central axis, so only modes with an even number of nodal lines in both 

dimensions need to be considered and the subscript n = (ny , nt,) will be used 

where there are 2n, nodal lines parallel to the y axis and 2n?,,  nodal lines parallel 

to the x axis. 

The pressure for each mode obeys the 3 dimensional wave equation: 

Lp = 	 (2.22) 



Here A is the Laplacian operator which may be expressed as the sum of the z 

direction component and the component on the x-y plane: 

a2  
(2.23) 

where A 1  is given in Cartesian coordinates as 

'a2 	92\ 

	

A1 = 
	+ 	

(2.24) 

and in cylindrical polars as 

	

'02 	la 	I a2 
A1 =+ 	+ 	

(2.25) 

The wave equation can be solved by expressing the pressure as a sum of the 

contributions of the modes of the duct where each term is the multiplication of 

the profiles along z, t and the x-y plane. 

We can then solve the problem by separation of variables ([43] pp.540-556) 

From Pagneux et al. [32] the pressure and axial velocity are: 

00 

p(x, y, z, t) 
=

P(z)(x, y) exp(iwt), 	 (2.26)

00  
v(x, y )  z, t) = 	U(z)(x, y)exp(iwt), 	 (2.27) 
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where 0,, is the pressure profile on the x-y plane and P(z) is the pressure profile 

of the nth mode along the length of the tube. Similarly, U(z) is the axial volume 

velocity profile of the nth mode along the length of the tube. P(z) and U(z) are 

in general complex numbers to take phase into account. Note that although it is 

convenient to refer to U(z) as the volume velocity, the net volume velocity is U0 ; 

the other entries are the amplitudes of the axial velocity distributions multiplied 

by the surface area but have no net contribution to the volume velocity [32]. 

Equation (2.26) gives the pressure as a series of terms, çb o  being unity, and so 

the n = 0 contribution represents plane wave propagation while the other modes 

have a non-uniform pressure profile. Substituting p from equation (2.26) into the 

wave equation (2.22) and dividing through by p gives: 

1 	1 92  

0. 	P öz2 - exp(iwt) 	
exp(iwt) 	(2.28) 

Since each term in this equation is a function of a different variable, each term 

must equal a constant. The differentiation with respect to t is straightforward 

giving 

1 192 
exp(iwt) = —k 2  -- 	 exp(iwt) (2.29) 

with the eigenvalue k = w/c being the free space wavenumber. Defining k to be 
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the wavenumber along z (commonly referred to as the propagation factor): 

a2 	
= —kP(z). 	 (2.30) 

The transverse term gives 

LjjI'n(X,y) = —ci/' n (x,y) 	 (2.31) 

with a being the eigenvalue of the nth mode. Physically a n  is the wavenumber 

in the x-y plane and is zero for plane wave propagation and is positive and real 

for the modes which feature nodal lines or circles. 

It then follows from equation (2.28) that the wavenumbers follow the relation 

k 2 = k 2  - a. 	 (2.32) 

The wavelength along z will be .\,, = 27r/k. 

Note that in a pipe of uniform cross-section the solution of equation (2.30) 

gives 

P, W = A ,, -ik + Bn e 2 kt 	 (2.33) 

To find the corresponding volume velocities we use the force equation (2.4). The 
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z component of the velocity is 

	

P--=—. 	 (2.34) 
19t 	'9z 

giving the corresponding axial volume velocity as 

U71  (z) = k S 
	- Bn e1k). 	 (2.35) 

kpc 

We can note from this that the characteristic impedance, defined to be the ratio 

of pressure and volume velocity of forward travelling waves, also depends on the 

mode number, n. For plane waves it was Z, = pc/S but for the nth mode this 

becomes: 

kpc 
- k,, S 

(2.36) 

Assuming loss-less propagation k is positive and real above cut-off point 

(k = a) so the pressure varies sinusoidally along the z axis with a wavelength 

of A, > A where A = 27r/k is the free-space wavelength. Below the cut-off point 

kn  is negative and imaginary [42] so the pressure will be exponentially damped. 

Calculation of k first requires calculation of c, which in turn depends on the 

boundary conditions in equation (2.31) (and therefore on the geometry of the 

duct). It will be treated for both lossy and non-lossy propagation in section 2.4.1 

for ducts of circular cross-section and in section 2.4.2 for rectangular ducts. 
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of tube will now be discussed. 

In matrix notation the pressure vector on plane 0 is given in terms of the 

vectors on plane 1 by 

P(0) = D 1 P 1  + D2 ZU 1 	 (2.39) 

where D1 , D2  and Z are diagonal matrices with the elements given by 

Di(n,m) = { cos(kd) : n = m, 	
(2.40) 

0 	: 

isin(k71d) : n=m, 
D2 (n,m)= 	 (2.41) 

0 : nm, 

kpc/kS : n = m, 
Z(n,m) = 	 (2.42) 

0:nm. 

Similarly the volume velocity on plane 0 is given in terms of the vectors on plane 

1 as 

= D2 Zç 1 P(1)  + D 1 U 1 . 	 ( 2.43) 

2.4.1 Solutions for a cylinder 

In this section we will show the solutions of the wave equation for pipes of uniform 

cross-section. Consider a cylinder of radius R (cross-sectional area is S = 7rR2 ) 
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as shown in figure 2.3. First we will examine the case of loss-less propagation 

Figure 2.3: Cylindrical waveguide with radius R 

along a duct of infinitely hard walls. No flow is allowed through the walls so 

the gradient of the pressure along the radial direction must equal zero at the 

wall. This boundary condition will be used to derive expressions for the mode 

profiles on the x-y plane, and the corresponding wavenumbers along the different 

dimensions. The modes in a uniform cylindrical duct will then be illustrated in a 

colour pressure map. We then go on to show the solutions for lossy propagation. 

The profile of the various modes are the eigenfunctions defined in equation 

(2.31). In general, the solution need not be axially symmetric. Musical wind 

instruments are, however, generally designed so that the internal profile has no 

sharp sideways steps and only feature relatively gradual bends. This means that 

the behaviour may be modelled accurately by approximating the profile by a 

series of concentric cylinders. Only axially symmetric modes will have an effect 

on the response of an instrument assuming the excitation is also axi-symmetric. 

The present discussion will therefore be limited to axi-symmetric modes only. 

This approximation ignores the fact that the excitation from a brass instrument 
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player's lips is not perfectly axially symmetric. 

Loss-less propagation 

Assuming axi-symmetric pressure distributions only, equation (2.31) becomes: 

fa2 
I  

+
(r) = —a(r) 	 (2.44) 

Or 2 r Or ) 

which can be manipulated into Bessel's equation of order zero [43] with the general 

solution ([43] p567) 

= ci Jo (ar) + c2 Yo (ar) 	 (2.45) 

where J0  is Bessel function of the first kind of order zero and 1"o  is the Bessel 

function of the second kind of order zero. While Yo  is singular at the origin, the 

pressure cannot have a singularity there. All the physically realisable solutions 

will therefore have C2=  0. The pressure on a cross-section on the x-y plane will 

therefore follow the shape of the Bessel function Jo . A three dimensional plot 

of J0  is shown in figure 2.4 while figure 2.5 shows the function along the radial 

direction. It has a maximum at r = 0 and smoothly varies between positive and 

negative values. The rate at which this happens for 0,, = ci Jo (ar) is determined 

by the x-y plane wavenumber, a. In order to work out the allowed values of c, 

we must consider the boundary conditions. 
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Figure 2.4: Three dimensional plot of the Bessel function of the first kind of order 0 
against radius on the .r-y plane 

The boundary condition for loss-less propagation is 

r=R. 	 (2.46) 
c9 r 

Using the orthogonality relation (as used by Kergomard [42]) 

jO.Vy ndS = Snm 	 (2.47) 

we get the solution 

Jo(r/R) 
On = 	 (2.48) 

Jo  ( yn) 

where 'y  are the successive zeros of the derivative of the Bessel function of order 
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Figure 2.5: The Bessel function of the first kind of order 0 

zero. From relation (A.3) in Appendix A we see that the derivative of Jo  is Ji. 

-yn  is therefore also equal to the zeros of the Bessel function of order one. These 

are tabulated for n = 0 to 45 in Appendix A. The corresponding values of a n  are 

then: 

an  = y/R. 	 (2.49) 

Recalling equation (2.32) the z direction wavenumber is given in terms of the x-y 

plane wavenumber and the free space wavenumber as 

kn  =±jk an 	 (2.50) 

For k > c the square root is of a positive number and the positive sign should 

be taken in equation (2.50) so that kn  is a positive real wavenumber. For Ic < a., 

however, the square root is of a negative number and the mode will have an 

0. 
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imaginary wavenumber in the z direction. Provided the negative sign is chosen 

in equation (2.50), the z direction pressure profile of that mode will then be 

P,, (z) = A n  e' + Be' 	 (2.51) 

which shows exponential damping. The modes of a duct will therefore propagate 

provided the wavenumber (and therefore frequency) is above the cut-off frequency 

= a,,= y/R and will be exponentially damped otherwise. To summarise, the 

signs are chosen to be 

{ _V2 - ()2 : k< 
k 	 , 	 (2.52) = 

V 	( -Iff 	 R k>. 

Figure 2.6 displays a false colour image of the forward travelling modes in a 

cylinder (note one mode is in cut-off so is not really travelling). The horizontal 

axis runs parallel to the axis of the cylinder (z) while the vertical axis runs 

perpendicular to the axis of the cylinder such that the value 0 is the centre of the 

cylinder and -1 and 1 are the walls. To obtain the pressure distribution along the 

axis of the cylinder equation (2.52) was substituted into equation (2.33). This 

was multiplied by the transverse eigenfunction from equation (2.48) to give the 

full pressure field. 

The real value of the complex pressure amplitude was chosen so that a snap- 
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shot of the pressure field is shown, rather than a time averaged value, as would be 

the case if the absolute value was shown. The relationship between the complex 

pressure amplitude and the time dependence of the pressure field will be discussed 

in more detail later, in section 2.7. Red indicates the pressure maximum and blue 

the pressure minimum in each graph. 

Figure 2.6 shows plane wave propagation (n=0) for a wavenumber of kR = 

7.071. The n=1 mode with the same free space wavenumber is also shown. 

Notice that the pressure distribution follows the Bessel function profile across 

a line perpendicular to the cylinder axis. Since the modes we are considering 

are cylindrically symmetric the two nodal lines parallel to the z axis for n=1 

become one nodal cylinder when this image is considered in 3 dimensions. The 

whole distribution varies sillusoidally along the z axis with the wavenumber k. 

Notice that k1R = /(kR)2 - = V'7.0712- 3.8322  5.943 so the z direction 

wavenumber has decreased and therefore the z direction wavelength has increased. 

This effect can be seen more clearly with the n=2 mode. The pressure distribution 

has two nodal cylinders and we can see that k 2  is approaching zero for this choice 

of free space wavenumber: k2R =- = V'7.0712 -- 7.0152  0.884. 

The k value is below the cut-off point, k = 'y/R in the case of the n=3 mode. 

k3R = _ 1J(kR) 2  - = _07.0712 -- 10.17.3 2  —7.3141 meaning that the wave 

is exponentially damped or evanescent. 
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Figure 2.6: The modes in a cylindrical duct with n = 0 (plane wave mode), n = 1, 
n = 2 and n = 3 (evanescent). All have the same free space wavenumber 

Lossy propagation 

So far we have discussed the behaviour of acoustic waves in tubes assuming that 

none of the acoustic energy is lost to heat. In reality there is a boundary layer 

immediately beside the tube walls in which viscous and thermal losses occur. It 

is possible to use a lossy boundary condition to give lossy versions of on  and c-, 

but the effect of losses will be noticeable in the z direction only because we will 

be considering objects which are significantly longer than they are wide. The 

inclusion or exclusion of the effect of losses will therefore be represented entirely 

by the choice of z direction wavenumber, k. Starting with a lossy boundary 

condition which allows a small acoustic particle velocity flow into the wall of the 
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tube, Bruneau et a! [44] have produced a complex z direction wavenumber: 

k = +Jk - 	+ 
2 (y) 2 7 2k" 
	

(2.53) 

where e is the boundary specific admittance at the wall. Admittance is the 

reciprocal of the impedance, so gives a measure of the acoustic velocity into the 

wall for a given acoustic pressure. The implication is not that there is really a 

flow into the walls (which are rigid in reality) but that the loss of energy at the 

boundary layer is simulated by imagining that such a flow exists. The boundary 

specific admittance is given by [44]: 

En 	/(k2R2)) € j + t 	 (2.54) 

with €, = (1 + i) 2.03 x 10 5 f 1 / 2  and ct = ( 1 + i) 0.95 x 105f1"2  under standard 

conditions. The full expressions for €, and c t  in terms of the thermodynamic 

constants of air are given in [44]. 

The choice of signs is complicated by the fact that we are performing the 

square root operation on a complex number. To split k into real and imaginary 

parts, it is helpful to first express (2.53) as follows 

k = 	+ I - iR 	 (2.55) 
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where A n  is the square of kn  in the absence of losses: 

/ y 
An 

 
= k2 

- t\R)2 ' 
	 ( 2.56) 

Rn  gives the imaginary part of the correction in k. n' 

 (2k/R)Re(), 	 (2.57) 

and In  is the real part of the correction in k: 

In  = (2k/R)Im(). 	 ( 2.58) 

Now we can express k n  in terms of real and imaginary parts: 

kn  = Xn + I K,. 
	 (2.59) 

Equating equations (2.55) and (2.59) we get 

x1 - 'c, + 2ixk = A + I - iR 	 (2.60) 

which can be solved by simultaneous equations for the real and imaginary parts 

giving [44] 

1 
Xn = 	+ In + (A + 1)2  + R} 	 (2.61) 
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and 

rIn = _{_(A + I) ++ I)2  + R}. 	(2.62) 

Putting n = 0 this equation gives the imaginary part of the plane mode wavenum-

ber as —2.98 x 1O -5 f' /2 /R. 

2.4.2 Solutions for a uniform rectangular duct 

Consider a duct with rectangular cross-section with halfwidths a and b (cross- 

sectional area is S = 4ab) as shown in figure 2.7. The multimodal treatment 

Figure 2.7: Rectangular waveguide with halfwidths a and b 

discussed for cylindrical geometry was due to Pagneux et al [32]. A geometry 

was also discussed in [32] in which the walls are flat and parallel. The z axis 

went along the pipe axis, the pipe had a finite width in the y direction and was 

infinite in width along x. What follows is new work using the same method which 

formulates the problem of multimodal propagation in rectangular guides which 

are finite in both the x and y directions. 
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Loss-less propagation 

The boundary condition for the eigenfunction of the nth higher mode defined in 

equation (2.31) is: 

Ox 
- U, 	x = —a, a 	 (2.63) 

0 11) 71 
= 0, 	y = —b,b 	 (2.64) 

The solution is most conveniently expressed by separating it into the x dependent 

and y dependent parts: 

On = cbn r  a_ny 
	 (2.65) 

where 

I 	 1 : n=0, 
'1)fl = 	 ( 2.66) 

I \/cos(n7rx/a) : nx  > 0. 

1 : n=0, a_fly  = 	 (2.67) 
/cos(niry/b) : n, > 0. 

Performing the differentiation from equation (2.31) gives the corresponding eigen- 

values as 

= /(flr)2 + (±)2. 	
(2.68) 

As with circular cross-section it is possible to use a lossy boundary condition 

to give lossy versions of 0 and a but the effect of losses will be noticeable in 

the z direction only and will therefore be represented entirely by the choice of z 
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direction wavenumber, k. 

k 	
{ _Jk2 _(n ,7r/a)2  - (n7r/b)2  

- n.,, 7r/a) - (n7r/b)2  

k 2  <(nir/a)2  + (nr/b)2 , 

k 2  > (n... 7r/a)2  + (n7r/b)2  

(2.69) 

Lossy propagation 

Lossy propagation may be represented as with circular cross-section by working 

out the lossy z direction wavenumber, (Bruneau et al [44]). Starting from the 

iossy boundary condition gives k,, as 

k. = ±/A,, + I - 
	 (2.70) 

where A. is the square of the non-lossy version of k which in rectangular geom-

etry is 

A 
= k2 - (n7r) 2  - (n y 7,)2 	

(2.71) 

The real part of the correction to k is [44] 

I = 2k2 - (( 	
Re()  

 + (2 - ( 2.72) 
a 	 b )  

where the boundary specific admittances are 

(nx7r ) 2\ 
c + € 	 (2.73) 

ka 
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f 	
(1 	
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)

2"

I
\

- 	
(2.74) 
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with cv  = (1 + i) 2.03 x 105f12  and et 	0.95 x 10-511/2. The imaginary 

part of the correction to k is [44] 

(2 - S7 ,o)_
cs)  + (2 

- 8) Tm(cY)\ 
R = 2k ( 	

Tm(  

a 	 b 	
(2.75) 

Using the same method as for cylindrical geometry, kn  is the sum of real and 

imaginary parts 

kn  = Xn + n 
	 (2.76) 

where Xn and rIn  are given by 

1 
 2 	 (2.77)Xn  = 	 }  

and 

rIn = _{ —(A 7, + I) + (A + 1,,,, ) 2 + R}. 	(2.78) 

2.5 Multimodal equations at a discontinuity 

So far we have provided the equations describing the behaviour of the modes of 

uniform ducts with circular and rectangular cross-section. As mentioned before, 

the aim of this chapter is to enable the calculation of acoustic variables in a duct 
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of varying cross-section. The method employed here is to discretise the smoothly 

varying duct into a large number of concentric cylinders (or rectangles). While 

we have already seen equations which describe propagation within each cylinder, 

we still need to analyse how the modes of the duct are effected by changes of 

cross-section. This section deals with this problem. 

Consider again the typical discontinuous join between two sections of tube of 

differing cross-section shown in figure 2.2. The pressure field at either side of the 

discontinuity must be equal on the section of air they share. However, the nth 

mode on S1  will not match the nth mode on 52 because the cross-sections are 

different. This means that when the nth mode is incident on the discontinuity, the 

pressure on the other side must consist of the sum of the contributions of many 

modes. We say that the wave experiences mode conversion at the discontinuity. 

Now this will be put into our mathematical framework. We recall p(i)  is the 

vector of modal pressure amplitudes on the surface Si  and define p(2)  as the 

vector of modal pressure amplitudes on the surface S2 . In circular cross-section, 

when R 2  > R1, p(l)  can be found from p(2)  by projection. This procedure can 

also be performed in rectangular geometry when a 2  > a1  and b2  > b1 . 

The following expression relating the pressure vectors on either side of the 

discontinuity is derived in appendix B using the orthogonality of Bessel functions: 

P (1)  = FP 2 , 	Si < S2 	 (2.79) 

M. 



where F is a matrix with the elements defined by 

F711  = --- f V,( 1 ) çbdS. 	 (2.80) 
Si  

S i  

When B 1  > R2  or a 1  > a 2  and b 1  > b2 , the pressure must be equated on the 

smaller S2  surface. This means that the equations look the same but with the 

labels 1 and 2 interchanged: 

p(2) = p(l), 	Si > S2 	 (2.81) 

where V is a matrix with the elements defined by 

v, = -- I
0 (2) V)(')dS. (2.82) n m S2  

S2  

The integration in equation (2.80) will be performed analytically to get the el-

ements of the matrix F. The expression for the elements of the matrix V will 

follow from the derivation by symmetry. Note that to avoid unnecessary compli-

cation we will not treat rectangular ducts which contract along the x direction 

while at the same time expanding along the y direction or vice versa. 

The vector U can be projected by equating the axial velocity on the air shared 

by S1  and S2 . Also the axial velocity is required to be zero into the wall surface 

perpendicular to the z axis which results from S 1  not equalling S2 . For S < S2  

the axial velocity on either side is therefore matched on S and set to zero on the 



Part of S2  which is not in contact with S. The calculation is performed in detail 

in appendix B to give 

= FTUW, 	Si <S2 
	 (2.83) 

where FT  is the transpose of F. For Si > S2  the axial velocity is therefore 

equated over 52 and set to zero on the part of Si  not in contact with 82. 

= VTU(2), 	Si > S2 . 	 (2.84) 

2.5.1 Solutions for circular cross-section 

The matrices F and V defined in (2.80) can be found analytically for circular 

cross-section using the standard integral in equation (A.1) of appendix A. A full 

derivation is given in appendix B. The result is that each element is a function 

of 0 = R, /R2  and the element (n, m) is given by 

- 20ymJi(/97m) 
(2.85) (22 - 

where /? = R 1 /R 2  and F(0, 0) = 1 and 

Vnm(fi)Fnm(1I,@) 	 (2.86) 

911 



When the change in cross-section tends to zero (ie. 0 tends to 1) we obtain 

FI — fQ 
	

(2.87) 

with I being the identity matrix (a diagonal matrix with all the entries having a 

value of 1). c is the fractional change in cross-section, c = (S - S)/S and  Q is 

a matrix whose elements are given by 

= Qnm 	

n=m, 	
(2.88) 

 

2 

2 otherwise. _ 
,m I 

2  
n 

2.5.2 Solutions for rectangular cross-section 

The F matrix defined in (2.80) may be presented most conveniently in rectangular 

coordinates by expressing each entry as the multiplication of two terms: 

Fnm(13x,Ay) = 
it 

Si  

a 1 	 b1 

1 	 1 1 = 	f 
dx4 

flx mx ' 2 	dya,c'aMY  
-a 1 	 — b1 

= Xnx m x Yn y m y 	 ( 2.89) 

1 	: 

= J 	sinc(m) : 	= O,m > 0, 	(2.90) 

I 2sinc((m 	- Thz)) 	
f3 

	

mxx+nx : 	> 0. \ m 

5 1 
ji 	- -- 



I 	n=m=0, 

Yn y m y ( y ) - 	 sinc(m) : n, = 0, my  > 0 1  

2sinc((m 	- 	 > 0. I mf3 y  

where j3 = and f3, = L . When both 0 and 0 tend to 1 we get 
a2 	b2 

	

1 	: 

	

1—f 	: fl=mO, 
Xn x m x (x) 

n 	= 0, 

	

2(_l)m x + (_) m2  m2
ffn2 	fix 	> 0. 

(2.91) 

(2.92) 

1 	: 

	

1 - 	: fl 	= m > 0, 
Ynmy ( y ) 

	

fl 	m,rt = 0, 

	

2(_1)mv+h1 Y(_Ey ) m2 
 m2

mn2  : fl 	m,ri > 0. 

(2.93) 

where cx = ( a 2 -  ai )/a i  and €,, = (b2 -  b1 )1b1 . The V matrix will have entries 

given by 

Vnm = Fnm (1//3x ) 1/13y ). 	 (2.94) 

2.6 Method for calculation of input impedance 

We have presented the equations for the pressure and axial velocity in a duct 

in terms of the unknowns P(z) and U(z). Now we define the left hand side 
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(negative z side) of a waveguide of arbitrary cross-section as the input end and 

the right hand side (positive z side) as the output end. The waveguide is then 

approximated by a series of uniform sections as shown in figure 2.8 (cylinders in 

circular geometry and rectangular sections in rectangular geometry). 

0 	 L 

Figure 2.8: Horn approximated by a series of cylinders 

z 

In plane wave acoustics the impedance is defined as the ratio of the acoustic 

pressure and volume velocity. For the multimodal case we define the acoustic 

impedance matrix, Z, as follows: 

P=zU 
	

(2.95) 

so that 

00  Pn  = E Znm Um 	 (2.96) 
m=O 

and therefore Znm  is the factor of contribution to the pressure amplitude of the 

nth mode due to the volume velocity amplitude of the mth mode. The vectors 
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and matrices are infinite but must be truncated before numerical implementation. 

2.6.1 Projection across a discontinuity 

Using equations (2.79) and (2.83) we can show that the impedance matrix on 

surface 1 can be found from the impedance matrix on surface 2 at an expansion 

as follows: 

= FZ(2)FT, 	Si  < 82. 
	 (2.97) 

The equivalent at at a contraction of the bore follows from equations (2.81) and 

(2.84): 

= V_lZ(2)(VT), 	Si  > 82. 	 (2.98) 

2.6.2 Projection along a cylinder 

Substituting (2.39) and (2.43) into (2.95) gives an equation for the impedance at 

the left hand side of a uniform section of duct in terms of the impedance at the 

right hand side, being the multimodal version of equation (2.13): 

= (D 1 z(1)  + D2Z)(D2Z 1 Z 1  + D 1 ) -1 	(2.99) 
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Now if we simplify by multiplying top and bottom by D i  1 , 

= (z(1) + iD3Z)(iD3Z 1  Z 1  + 1)_i. 	 (2.100) 

Here 

tan(kd) : n = m, 
D3 (n,m) = 	 (2.101) 

0:nm. 

The input impedance matrix may then be calculated from the output end 

impedance matrix by projecting alternately along a cylinder using equation (2.100) 

and across a discontinuity using equation (2.97) until the input end is reached. 

Typically the acoustic horns that we will consider are cylindrical at the input 

end and only flare out towards the open end. The radiation impedance matrix 

at an open end is the subject of the next chapter. A waveguide terminated in an 

infinite cylindrical pipe is also a useful subject of theoretical study. In such an 

infinite terminating pipe all waves are forward going and the impedance is simply 

given by the characteristic impedance matrix of equation (2.42). 

2.7 Method for calculation of pressure field 

If we set U0  = 1 and U = 0 for m> 0 at the mouth of the horn, we have a plane 

velocity at the input end of the horn. Physically this corresponds to driving the 

input with a rigid piston. Using stored values of the impedance along the guide 
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we can project the volume velocity vector forward to the end of the guide using 

the following equations: 

= (—D2z1(z(°) - Z) + E)U (°) 	 (2.102) 

where D2  is a diagonal matrix with the nth diagonal given by i sin(kd) and E 

is a diagonal matrix with the nth diagonal given by e'"1 . 

u2 = FTU(l) . 	 (2.103) 

The pressure vector at each point along the horn is then given by P = ZU. 

The entries in the vector give the complex amplitude of each mode. Consider 

the time dependence of the plane wave component of the pressure at the input, 

having a complex amplitude A -I- iB: 

PO (t) = (A+iB)expiwt. 	 (2.104) 

This will have a maximum amplitude of 'A2 —+B2  and vary sinusoidally in time: 

PO(t) = v'A 2  + B2et_0) 	 (2.105) 
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where co is the angle of the pressure on the complex plane at t = 0: 

arctan(B/A) : A>0, 
co = L(A + iB) = 	 (2.106) 

ir+arctan(B/A) : A<0. 

Since the plane wave term in the volume velocity vector was chosen to be real 

at the input end, the volume velocity is at its maximum at t = 0 and the phase 

angle qo  for the plane component of the pressure vector at the input gives the 

phase angle by which the pressure leads the volume velocity. We will choose to 

plot the pressure field when the pressure at the input is at its maximum. From 

equation (2.105) we see that this occurs at time t = 

Now consider the pressure at some point along the length of the duct where 

the complex pressure amplitude of the nth mode is C + iDa : 

00 

p(x, y, z, t) = 	(C(z) + iD(z))(x, y) exp iwt. 	(2.107) 
n=O 

Putting t = — 4 0 1w and taking the real part gives the physically observable 

pressure field when the plane pressure is maximum at the input: 

AX, y,z,— o /w) = 	 (2.108) 

Figure 2.9 shows the pressure field calculated in this manner for a cylinder of 

length 5mm and radius R 1  = 10mm driven by a piston vibrating sinusoidally at 10 
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kHz connected to a cylinder of radius R 2  = 15mm assuming iossy propagation. 

25 modes were used and the system was approximated by 1000 cylinders for 

the calculation. The termination on the right is the infinite cylindrical pipe 

termination Z = pc/S where S = irR. Here red indicates the maximum value 

of the real part of the pressure and blue the minimum. 

Notice that the wavefronts expand out from the opening. The contours of 

equal pressure are perpendicular to the walls as required by the hard walled 

boundary condition. The pressure is continuous at the discontinuity showing 

that the algorithm correctly projects the modes across. 
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Figure 2.9: Pressure field of a piston driven cylinder terminated in an infinite cylin-

drical pipe 
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Chapter 3 

Radiation impedance 

3.1 Introduction 

In chapter 2 a method was presented for calculating the impedance at any point 

along an acoustic horn from the impedance at any other part of the horn. For 

this to be useful we must get a starting point. In practice we are dealing with 

horns with a narrow input end and a wide flaring bell which radiates some of 

the sound into free space. While the input impedance will depend on the whole 

of the horn we are dealing with, the radiation impedance only depends on the 

geometry of the opening into free space and serves as our boundary condition. 

Various methods of analysing the behaviour of the open end of a duct are 

discussed. As mentioned previously, in a pipe of constant cross-section, the higher 



order modes propagate independently, while at a change of cross-section there 

exists mode coupling. If the rate of flare of an acoustic horn is large, the coupling 

of modes has a significant effect on the musical performance of the horn. An 

expression for the radiation impedance at an open end should therefore include 

mode coupling. In order to achieve a multimodal expression for the radiation 

impedance, it is currently necessary to assume the duct is terminated in an infinite 

baffle. Obviously, practical examples will not feature an infinite baffle at the 

opening and a small error in the input impedance calculation results. Numerical 

evaluation of the multirnodal radiation impedance is performed by reference to 

Zorurnski [37] for a cylindrical duct and to the current author, Kemp et al. [39], 

for a rectangular duct. 

3.2 Ideal open end condition 

A first approximation to the behaviour at the end of a duct may be obtained 

using the plane wave approximation. Recalling equation (2.20), the plane wave 

approximation reflection coefficient at a change in cross-section from S 1  to S2  is 

given by: 

.— S1 /s2 -1 
A - S 1 /S2 +1 

(3.1) 

An open end corresponds to S 2  tending to infinity, so B/A tends to -1. The 

acoustic wave is reflected back down the duct 180° out of phase implying standing 
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waves with zero pressure amplitude at the open end as mentioned in chapter 1. 

While this is useful for obtaining a first, approximation for the behaviour of musical 

instruments it is obvious that, even ignoring mode conversion at the opening for 

the moment, a more accurate analysis of the end condition should account for 

the sound radiated from the end of the instrument. 

3.3 The piston approximation 

Going beyond the ideal open end condition, we may assume that only plane waves 

propagate in the duct but that a non-zero pressure arises at the end due to the 

radiation of sound from the end. This is called the piston approximation. In the 

low frequency limit, the result is that the pressure node is moved a fraction of a 

tube radius down the axis of the duct from the actual tube end. This is known 

as length correction and is discussed in pp.180-181 of Fletcher and Rossing [45]. 

The full expression for the piston approximation radiation impedance is available 

for an unflanged cylindrical duct due to Levine and Schwinger [34] and in the case 

of a flanged cylindrical duct due to Rayleigh [46]. Both are graphed in Fletcher 

and Rossing [45] pp.181-182.  In rectangular geometry the radiation impedance 

of a rectangular piston (which is the equivalent to the impedance for the plane 

velocity and plane pressure modes in a rectangular duct) mounted in an infinite 

baffle has been treated [47, 48, 49, 50, 511. 
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3.3.1 Pressure radiation from a piston terminated in an 

infinite baffle 

Consider a rigid piston in a rigid infinite baffle as shown in figure 3.1. The piston 

vibrates uniformly with a sinusoidal velocity of amplitude v normal to the baffle. 

In order to calculate the behaviour of this system, we split the piston into in- 

Figure 3.1: Piston in an infinite baffle 

finitesimal simple source elements and sum the resulting pressure fields. A piston 

surface element of area dS0  is present at (x 0 , yo,  0). This surface element oscillates 

with a velocity amplitude of v normal to the baffle and acts as a simple source of 

spherical pressure waves. These are represented on the diagram by a hemispheri-

cal shell, with the acoustic pressure at a distance h = J(x - x0 ) 2  + (y - yo) 2  + z 2  
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from the source element given by [40] 

Q 

	

dp(x,y,z) = zwp— 
27r h , 
	 (3.2) 

	

where Q = vdS0  is the simple source strength and a 	time factor is assumed 

throughout. The part e_tkh/h  is known as the Green's function and implies that 

the pressure oscillates sinusoidally in space with wavelength ). = 2r/k and with 

an amplitude that dies as 11h. Integrating (3.2) over S, the surface of the whole 

piston, we get the total pressure field due to the sum of all the source elements 

that make up the piston. 

-ikh 
V 

p(x,y,z)=iwp 	fS dSO e (3.3) 
2ir 	h 

Note that the integrand is singular (tends to infinity) as h tends to zero. This 

problem must be addressed before numerical integration is possible. 

3.4 Pressure radiation from a duct terminated 

in an infinite baffle 

An expression has been derived for the pressure field due to a rigid piston with 

a velocity amplitude of v on the surface of a baffle. Consider a uniform duct 

terminated in an infinite baffle. The plane wave mode will have a velocity source 



identical to that of the piston. Recalling equation (2.27), the axial velocity due to 

the mth mode is given by the modal velocity amplitude Urn/S multiplied by that 

mode's transverse velocity profile /' m (x, yo). Replacing the piston velocity source 

in (3.3) with this velocity distribution gives the total pressure field assuming only 

the mth mode is present to provide a velocity source on the surface S. 

fp(x,y,z) = iwp dSOUm'brn(XO,yO) h (3.4) 

In general, the total pressure field will be the sum of the contribution by all the 

modes: 

C,Op(x,y,z) = 	 dS0Umbrn( 	
C 

2irS S 	
x0,y0) 

h 	
(3.5) 

3.5 Multimodal radiation impedance of a duct 

terminated in an infinite baffle 

In chapter 2 we defined the acoustic impedance in a duct as the ratio of the 

pressure amplitude to the volume velocity amplitude. We therefore wish to define 

the radiation impedance as the ratio of the pressure amplitude and the volume 

velocity amplitude on the radiating surface. An expression has been derived for 

the total pressure field in terms of the volume velocity amplitude. The next step 

is therefore to calculate the pressure amplitude of a particular mode at z = 0 
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from the total pressure field. To do this we first express the pressure field there 

as the sum of the contributions of all the modes, 

00  p(x,y,O) = 	Pm cbm (x,y). 	 (3.6) 
rn=O 

Now we recall the orthogonality of the modes from equation (2.47): 

j 0,,,O n dS = S8nm . 	 ( 3.7) 

Multiplying p by i and integrating over the surface area therefore gives 

f p(x, y, O)(x, y)dS = 	f Pmm (X, y) n (X, y)dS = P,, S. 	(3.8) 
M=O S 

When this is rearranged, the pressure amplitude of the nth mode is given in terms 

of the total pressure field as 

P. = 	f p(x,y,0)m(x,y)d8. 	 (3.9) 

Now we will work out how the pressure and velocity modes couple. Substi-

tuting equation (3.5), which gives the total pressure field due to the contribution 

of the velocity modes, into equation (3.9) gives 

P. 
- WP 	

Urn fS 
dS I dS0 m (X0, yo)n(X, 	

h 	
(3.10) 

2irS20   



This expression gives the pressure amplitude of the nth mode due to the contri-

butions of all the velocity modes, not just the nth velocity mode. The modes are 

therefore coupled at the opening as was expected. 

Looking back to equation (2.95), the relationship between the pressure and 

velocity modes was given as 

P=zU 
	

(3.11) 

where Z is known as the impedance matrix. P is the column vector whose nth 

element is the pressure amplitude of the nth mode, P. Similarly, U is the column 

vector whose mth element is the volume velocity amplitude of the mth mode, Urn. 

Expressing this in summation notation, we get 

00  P. - E Znm Um. 	 (3.12) 
rn=O 

Comparison of equations (3.10) and (3.12) yields 

eik 
Z 

- 	
fs dS f dS0rn(Xü,yü)n(X,y) 

h 	
(3.13) 

- 2irS 2    

where Znm  is the (n, in) element of the impedance matrix and gives the contri-

bution to the nth pressure mode by the mth velocity mode. Because this is the 

impedance at the open end, we call the impedance matrix here the "radiation 

impedance matrix". Note that we are integrating twice: first we integrate to 

get the pressure field at (x, y, 0) due to the sum of all source elements and then 
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we integrate this pressure at every point in the piston to isolate a single modal 

pressure amplitude component. 

3.6 Multimodal radiation impedance of a cylin-

drical duct terminated in an infinite baffle 

Radiation from a circular opening occurs in the majority of musical wind instru-

ments and loudspeaker systems. In this section we review the radiation impedance 

resulting from the coupling of higher order modes in a cylindrical pipe terminated 

in an infinite flange. The method is that of Zorumski [37]. 

3.6.1 Analysis 

Expressing (3.13) in cylindrical coordinates for a cylindrical duct of radius R: 

27r 	R 	27r 	R 

Z 
- 	

f dO  f rdr  f dO0  f rodro i m (ro , Oo )(r, 0) 	 (3.14) Z. 
- 2irS2  

0 	0 	0 	0 

where 

h = [r2  + r - 2rrocos(O - 00 )] -21 . 	 ( 3.15) 



As discussed in section 2.4.1, we will be treating cylindrically symmetric modes 

only. From equation (2.48), the mode profile on the surface is 

On 
 Jo(yr/R) 

=
(3.16) 

where 	is the nth zero of the Bessel function J1  and is tabulated in appendix 

rA' 

Now we will give c_iIch/h  in terms of r, a dummy variable of integration. We 

will show that all the other variables of integration will then have an analytic 

solution. Sonirie's integral from Watson [52] p.416  gives: 

e— ikh 	00 

h = kf T(T 2  - 1)J0(rkh)dr. 	 (3.17) 
0 

The integrand is imaginary when -r < I and real when r > 1. Care must be 

taken when choosing the sign of (r2 - i)4 with the negative and imaginary 

interpretation taken here when r < 1. Notice that we have been using the 

opposite sign convention from Zorumski [37] for the imaginary part throughout 

because we are assuming a time factor of e rather than e_t .  

Neumann's addition formula [52] p.358  is 

00  Jo(rkh) = 
	

Jq (rkr)Jq (rkro)e °9° , 	 (3.18) 



which can be substituted into (3.17) to give 

00 
e_tkh 

- k 	e 960) fr(r2 - l)Jq (rkr)Jq (rkro )dr. 	(3.19) 
h q—oo 

Now substituting (3.19) into (3.14) we get 

21r 	R 	27r 	R 

ZnZ.1111 = 	

C 

f dO  f rdr  f dOo  f rodrobm(ro)bn(r) 
2irS 2  

0 	0 	0 	0 
_CO 

2 	 J (2  	Jq (Tkr)Jq (Tkr o)dr. 	 (3.20)xk 	 -4   
q=-00 

Note that f d0e = 0 unless q = 0, in which case it is equal to 27r. Integrating 

by 0 and Oo then gives a factor of (27r )2.  When rearranged, the integral can be 

reduced to 

00 

	

Z - 	f '(72  

	

n  m  _ 	 - 1)Dn ()Dm ()d, 	 (3.21) S 
0 

where 

D(r) k\/ 

R 

= 	I rJo (-rkr)O,,(r)dr. 	 (3.22) 
0 

The integration in equation (3.22) can be found analytically (see equation (A.1) 

in appendix A): 

- —\/TJl(TICR) 

(

1)2 - 72 
kR 

(3.23) 

The four dimensional integral has now been reduced to a one dimensional inte- 

gration, with the variable h (and therefore the singularity mentioned at the end 
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of section 3.3.1) eliminated. Noticing that in equation (3.21) the integral is real 

for 0 < r < 1 and imaginary for 1 < r < oo, we split the integral into real and 

imaginary parts with variables r = sin 0 and r = cosh respectively. 

2 

Znm - S f sin q(sin - 1)D(sin cb)Dm (sin  q)  cos qdq _ 
0 

00 

zPC  
+ 	f cosh ~ (cosh2 

 - 1) Dn (cosh  e)Dm  (cosh  )sinh 	(3.24) 

Now cosh  26 
 - 1 = sinh2  e and sin 2 0 - 1 = - cos2  q. Remembering that the 

negative imaginary interpretation should be taken for the resulting 
(- 

cos2 

we get 

2L 
2 

Z - 

	
f sinOD,,(s]nO)D,,,(sinO)dO nm 
0 

00 

+ 	fcosheDn (cosh)Dm (coshe)de. 	 (3.25) 

The first integral can be performed by numerical integration using Simpson's rule 

or an equivalent. In the second integral, however, the range extends to infinity. 

The integrand is an oscillatory function of 6 whose amplitude of oscillation decays 

exponentially to 106  typically at around = 10. Numerical integration can then 

be performed from 0 and 10 without incurring any significant numerical errors 
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3.6.2 Results 

Graphs of the radiation impedance at a circular opening in an infinite baffle were 

produced by performing the numerical integration in equation (3.25) for a number 

of dimensionless frequencies (lvR). In order to keep the general applicability of 

the results, as is standard practice, we will normalise the radiation impedance by 

dividing through by pc/S rather than choosing a particular value of S = 7rR2 . 

Remembering that the radiation impedance is a matrix whose element Znm  gives 

the pressure amplitude of the nth mode due to a given volume velocity amplitude 

of the rnth mode, it is useful to distinguish between the n = m and n 0 m 

elements. The n = m elements are referred to as direct impedances since they 

give the contribution to a pressure mode by the velocity mode with the same 

amplitude distribution. 

Figure 3.2 shows the real and imaginary parts of the first three direct radiation 

impedances for a cylindrical opening in an infinite baffle. The real part is known as 

the radiation resistance and a large positive value for this indicates that acoustic 

energy is radiated efficiently from the opening. The imaginary part is called the 

radiation reactance and a positive value for this indicates a mass loading of the 

air column [40] pp.191-192, or equivalently a length correction [45] pp. 180-181  

At low enough frequency the radiation impedance is effectively zero. In this case, 

no matter how large the velocity amplitude is, no pressure is produced, indicating 

the presence of a pressure node at the open end. The ideal open end condition 

72 



then holds. 

At low frequencies, ka << 1 and the impedance is small and imaginary. 

The very low radiation resistance means that almost no sound is radiated from 

the instrument. Nearly all the sound is reflected back down the tube. The 

small imaginary value of the impedance means that the velocity produces a small 

pressure, 90 degrees out of phase in the time domain, as is the case close to a 

pressure node in a tube supporting standing waves. A pressure node is therefore 

present, but has been shifted slightly from the end of the tube, which is why a 

correction must be made to the tube length when calculating the length of the 

standing waves. 

At intermediate frequencies the resistance becomes larger than the reactance. 

The oscillatory look of all the graphs which follow in this chapter result from 

local maxima which occur as the wavelength becomes comparable with the tube 

width. In the high frequency limit the radiation impedance converges to the real 

value 1 (or pc/S before normalisation) which is the characteristic impedance of 

plane waves in free space. This indicates that the waves are not reflected at the 

opening, but propagate out of the tube undisturbed and with 100% efficiency. 

This agrees with the intuitive behaviour of wave diffraction from an opening; 

high frequency waves are transmitted in a beam of the same cross-section as the 

opening. Standing waves cannot be set up in this regime as no energy is reflected 

back to contribute to resonance. 
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Note how the direct impedances of the modes converge more slowly as n 

increases. The normalised characteristic impedance of the mode n from equation 

(2.36) is k/k u  which tends to 1 from above when kR >> 'y. It is therefore 

observed that the radiation impedance tends to the characteristic impedance 

termination value, which in turn tends to 1, more slowly as n (and therefore 'yn) 

increases. 

Next we consider the elements of the impedance matrix for which m =A n. 

These are referred to as coupled impedances since they give the contribution to a 

pressure mode by a velocity mode with a different amplitude distribution. Figure 

3.3(a) shows the radiation impedance resulting from the coupling of the plane 

wave pressure mode (n = 0) and the mth velocity mode for m = 1 and m = 2. 

Figure 3.3(b) shows the radiation impedance resulting from the coupling of the 

pressure mode with one nodal circle (n = 1) and the mth velocity mode for m = 0 

and m = 2. 

At the zero frequency limit, the coupled radiation impedances go to zero, in-

dicating that there is no component of the nth pressure mode due to the mth 

velocity mode and therefore no coupling for kR << 1. At intermediate fre-

quencies we can see non-zero impedance terms (less in magnitude than for direct 

impedances) which indicate a certain amount of inter-modal coupling is taking 

place. In the high frequency limit we observe the radiation impedance tending 

to zero. The infinite pipe termination or characteristic impedance condition has 
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1.5 

= 
a 

a 
S 1 1  

0.5 

(1 

no inter-modal coupling, or equivalently the m =A n elements of the characteristic 

impedance matrix have a value of zero. The radiation impedance matrix therefore 

tends to the characteristic impedance matrix at high frequencies for all elements, 

for those with n m in addition to those with n = m discussed earlier. 

2 

I \ 

/A 
I 	'\' 

(00) real part 
(0,0) imaginary part 
(ii) real part 

Imaginary part 
(2,2) real part 
(2,2) imaginary part 

0 	 5 	 10 	 15 	 20 
kR 

Figure 3.2: Normalised direct radiation impedance of the nth mode in a circular duct 
of radius Rfor n = 0,1,2. 

3.7 Multimodal radiation impedance of a rect-

angular duct terminated in an infinite baffle 

Radiation from a rectangular opening occurs in a variety of contexts, including 

organ pipes and horn drivers. This section derives an analytic expression for 

the radiation impedance resulting from the coupling of higher order modes in a 

rectangular pipe terminated in an infinite flange according to Kemp et al. [39]. 

Horn drivers mounted in loudspeaker cabinets are expected to be particularly 
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(b) Normalised coupled radiation 
impedance of the pressure mode 
with one nodal circle (n = 1) and 
the mth velocity mode for in = 0, 2. 

dances of a circular duct of radius R 

suited to the infinite baffle approximation. 

The radiation impedance for the modes of simply supported rectangular plates 

is also closely related to the current problem and is reviewed in Nelisse et al. [53]. 

3.7.1 Analysis 

Consider a rectangular duct of half widths a and b terminated in an infinite baffle, 

as shown in figure 3.4. 

Expressing (3.13) in rectangular coordinates for a rectangular duct of half- 
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Figure 3.4: Geometry of infinitely flanged rectangular duct 

widths a and b gives: 

a 	b 	a 

Z 
- 

	

fdXfdyfdXøf 	
h

dyü m (Xø,y0) n (X,y) 	 (3.26) 
- 2irS 2  

-a 	—b 	-a 	—b 

where 

h = [(x - x0 ) 2  + (y - yo ) 2], 	 (3.27) 

and 

0. = 	 (3.28) 

with 

flx = 
	 ( ) 

, 	 ( 3.29) 

= N cos
b  

(n ,,,,y
) ' 	 (3.30) 
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1 	: 
- 	 (3.31) 

n>0. 

Changing variables as in Swenson et al. [49] and Levine [51] to 6 = x - 

ri = x + x0 , (= y - y, and ,u = y + Yo the integral becomes 

Znm = 

2a 	2b 	2a- 
iwp 	___ 

2S2ffh 

—ikh 

 I 
0 	0 	—2a+ 

2b—( 

dnxmo 
f 

dnmo 

—2b+ 

(3.32) 

where 

h = V62  + ( 2. 	 (3.33) 

The quadruple integral can now be reduced to a double integral by performing 

integration by ij and y analytically. The first step is to expand the cosines in 

equations (3.29) and (3.30): 

cbmo  = N N. X 

{cos(z-r-- cos(.)  cos(9.2!1) cos('-)+cos( 2 
7r m 

a 	 2a 	 2a 	 2a 

	

• / 	S 	 / m,rF • n-irP • mxnt 

	

- sini 	I COSI ---' 05(r11) 	 sin(—) sin 
2a

sin(mnh1)'. 
2a ' 	' 2a ' 	2a 	 2a 	 2a 	 2a 	 2a 	 2a j 

(3.34) 

The second and third terms go to zero since we are integrating over a symmetric 



interval in ij. Performing integration gives: 

2a- 

G(n,m,,a) = f dnmo 
—2a+ 

	

= NnxNm(2a - )[siflc ((n y  + m) (i - 
	

cos ((n., -  m)) + 

\. 	2a) 	2a 

sinc ((nm - m) 7r 6 
) 	

((ny  + m) 
 Cos 
) 	

)].(3.35) 

	

2a 	 2a 

The integral for the impedance is then: 

2a 	2b 

d f d 
e  

Znm=S2J 	h 
0 	0 

mT, , a)G(n, m, C, b). 	(3.36) 

Changing variables to u = k and v = kç means that the radiation impedance 

is expressed in terms of the dimensionless variables ka and kb: 

2ka 	2kb 	_i.J2+v2 

	

ipc 	 ______ 
Znm = 	

J 
du  f dv _____ (n x , m, -, ) (m y , m, 	

, ).2ka27rS 	 /u2 + v 2  
0 	0 

(3.37) 

Note that if we put nx  = m x  = n. = m = 0 into equation (3.35) we obtain 

U 1\ 
G (nx, 	) 	m, 

	
= (i -) (i 

-
(3.38) 

 2ka 2, 

The radiation impedance from equation (3.37) is then identical to the radiation 

impedance of a rectangular piston in an infinite baffle [47, 48, 49, 50, 511 (note 

that most authors have used a and b as widths rather than half widths). Equation 
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(3.37) has a singularity at the origin if ri = m and r, = m which must be 

removed if the radiation impedance is to be calculated by numerical integration. 

To do this the integral is first split into two parts: 

Znm 

2ka 	2kb 
zPC

d  f 	_du
27i-S 	 \/U2+V2 

0 	0 

[ , ) G(fly,'rny, 	
— f1 

2Uka   	(1— g ) 	 j 

2ka 	2kb U 	 — 

ZPC j 	J dv1_— _ 	 2kbIf(n) m) 	 (3.39) +—du 	_____
27i-S 

0 	0 

where 

f (ii, in) = N, Nm x  N. Y  Nmy  

[sinc((n + m)ir) + sinc((n — m)ir)] [sinc((n + m)ir) + sinc((n — m)ir)] 

(3.40) 

The first part is non-singular and the singularity in the second half may be re-

moved by integration, giving: 

EIC 



z.fl7n 

2ka 	2kb 
ipc 	

dufdv ( '  —   J 	 >< 
Vu 2  +v2  

0 	0 

[ e_js1u2+v2 G(n, m, 2ka ,  ) G(n,, n' 	
- f(n, m)] 

	

( 1 5) 	( 1— k) 
2ka 

ipc P 

+ — J 	 2ka) 
0 

In (2kb + Ju2  + (2kb)2)  + u 
	1 - 	+ (2kb)2] f(n, m) 

ipc I 

+ 	I—kaln(2ka) + ka] f(n,m). 
2irS I 

(3.41) 

Equation (3.41) may be evaluated by numerical integration to provide the radia-

tion impedance. 

3.7.2 Results 

Taking a = b gives the radiation impedance of a square duct terminated in an 

infinite baffle. It is interesting to compare this with the result derived by Zorumski 

[37] for the radiation impedance for a circular duct terminated in an infinite baffle. 

The direct impedance of the plane wave mode (n = (0, 0), m = (0, 0)) for a square 

duct of half width a is shown in figure 3.5(a). Also shown is the equivalent for 

a circular duct of the same cross-sectional area (radius = 2a//). The results 

show very similar behaviour. 

Figure 3.5(b) shows the impedance of the plane wave pressure mode (n = 

(0, 0)) coupled with the m = (0, 2) velocity mode for a square duct of half width 
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a along with the plane wave pressure mode coupled with the pressure mode with 

two nodal circles in a cylindrical duct of the same cross-sectional area. While the 

analogue between the two situations is less strong, the same qualitative behaviour 

is observed. 

Figures 3.6(a) and 3.6(b) display various direct radiation impedances for a 

square duct. As was the case with circular cross-section, the radiation impedance 

starts at zero for the zero frequency limit (as for the ideal open end condition). 

At low frequencies the impedance has a small, positive imaginary value. As with 

the circular cross-section discussion, this means that the acoustic pressure has a 

node a small distance from the end of the tube due to out of phase reflection of 

sound. At high frequencies the impedance converges on the infinite cylindrical 

pipe termination value of 1 (or pc/S before normalisation). Modes with shorter 

transverse wavelengths converge more slowly. 

Figure 3.7(a) and 3.7(b) display coupled radiation impedances for a square 

duct. Figure 3.7(a) shows examples where the pressure and velocity are direct 

in one dimension and coupled in the other. Figure 3.7(b) shows examples where 

the pressure and velocity are coupled in both dimensions with a correspondingly 

smaller range of impedance values. As with the cylindrical geometry, the coupled 

radiation impedance and therefore the amount of inter-modal coupling tends to 

zero in both the zero frequency and high frequency limits. 

Figure 3.8(a) shows the effect of varying the aspect ratio (a/b) on the plane 



wave pressure and plane wave velocity radiation impedance. This graph is in 

agreement with the values of the rectangular piston radiation impedance as pub-

lished by Burnett and Soroka [48]. Making the opening rectangular rather than 

square while keeping the cross-sectional area constant is observed to make the 

direct impedance of the plane mode converge much more slowly on the char-

acteristic impedance termination value. Physically this is a consequence of the 

opening having one very narrow dimension, meaning that higher frequencies must 

be accessed before the effects of diffraction at the opening disappear. The direct 

impedance of the plane mode in a duct of a given aspect ratio b/a will equal that 

of duct of aspect ratio b/a by symmetry. This effect only holds if the pressure 

distribution has the same number of nodal lines in both the x and y directions 

(ie. nx  = n) and the velocity distribution similarly has m x  = m. 

Figure 3.8(b) shows the effect of aspect ratio on a coupled impedance. The 

velocity distribution has twice as many nodes on the y axis as there are on the 

x axis while the pressure mode is planar. The a/b = 1 case shows the coupled 

impedance for a square duct. Setting a/b = 2, the duct width along y direction 

is half that along x. The transverse wavelength of the velocity distribution is 

therefore four times as large along y as along x. The wavelength along one 

dimension is then very short, and we observe that higher frequencies must be 

reached before coupling takes place for the rectangular duct in comparison to a 

square duct of the same area. For a/b = 0.5 the duct is twice as wide in the y 

direction meaning that the transverse wavelength is the same along y as along x. 



In this this case we therefore observe that coupling with the plane pressure mode 

can happen at lower frequencies for the rectangular duct. 
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Chapter 4 

Numerical implementation of 

multimodal theory 

4.1 Review of input impedance method 

In section 2.6 a multimodal method of calculating the input impedance and pres-

sure field of a duct from a known terminating radiation impedance matrix was 

presented. In chapter 3 we went on to derive the expression for the radiation 

impedance matrix of a cylindrical pipe terminated in an infinite baffle. Now we 

will bring these together, reviewing the equations and giving numerical results 

for the input impedance and pressure field for an example object of cylindrical 

cross-section. The theoretical input impedance calculated here will be compared 

to experimental results in the following chapter. 



4.1.1 The radiation impedance matrix 

From section 3.6 the radiation impedance matrix for a cylindrical pipe terminated 

in an infinite baffle is: 

Znm - - 1 sinqDn (sin4)Dm (sinq)dc  
PC 

0 
00 

ipc I +--- J cosh D72 (cosh )Dm (cosh )d 	 (4.1) 
0 

where 

- —./rJi (rkR) 
(4.2) D,(7-)

- 	

) 

I\2 -7  2 
. kR 

4.1.2 Projecting the impedance matrix 

The equations for projection of the impedance matrix were derived in section 2.6. 

Remember that the labels (0), (1) and (2) refer to planes 0, 1 and 2 in figure 4.1. 

0 	12 

S1:S2 	z 

Figure 4.1: Detail of a waveguide consisting of straight sections of length d joined 
discontinuously 

[1'1 



0 

By way of summary, the equation for projection across a discontinuity is 

= FZ( 2)FT , 	Si  <82 	 (4.3) 

where S1  = irR, 52 = irR are the cross-sectional areas and 

= V1Z(2)( VT)-, 	S1 > 82. 	 (4.4) 

The projection matrices are given by 

- 	2/3y'm Ji (0'ym ) 
(4.5) 

- 

where 0 = R 1 /R2  with F(O, 0) = 1 and Vnm(/3) = Fmm (110). 

The equation for projection through a distance d is 

	

= (z(1)  + iD3Z)(iD3Z'Z (1)  + I) 	 (4.6) 

where 

tan(kd) : ii = m, 
D3 (n,m) = 	 (4.7) 

0:nm. 

Here 

{ _V2 - ()2 : k< I  
k 	 , 	 (4.8) = ______ 

k>. 



is the wavenumber of the nth mode along the tube neglecting the effect of losses; 

the corresponding expression for lossy propagation is given in section 2.4.1. is 

the nth zero of the Bessel function J1  as tabulated in appendix A. 

4.2 Numerical implementation 

Starting from the radiation impedance matrix, the equations above can be used 

to project the impedance matrix along cylinders and across discontinuities al-

ternately until the input end is reached, giving the input impedance matrix. 

Remembering that the element Znm gives the contribution to the pressure of the 

nth mode due to a given volume velocity of the mth mode, the corner value (Z00 ) 

gives the component of the plane pressure due to a given plane volume velocity. 

If the air column is driven by a plane piston vibrating sinusoidally at the input 

end with a velocity amplitude of v, we know the acoustic volume velocity will be 

planar with a volume velocity amplitude of U = vS. Physically, the corner value 

thus corresponds to the ratio of the plane component of the pressure and the 

(planar) volume velocity. The objects we are interested in (such as brass musical 

instruments) are much narrower at the input end than any wavelength present 

in the excitation meaning that higher modes will not propagate there. On the 

other hand, in most brass instruments there is a fairly rapid change of area in 

the mouthpiece. This causes some loss of energy to evanescent higher modes. 



In chapter 5 we will verify our theoretical results using the experimental tech-

nique of acoustic pulse refiectornetry. It is difficult to put significant energy into 

the main bore of the instrument using this technique when the mouthpiece is in 

place. In order to compare the experiment with theory effectively we will there-

fore perform all experiments and theoretical calculations in the absence of the 

mouthpiece. 

The objects we will be looking at will therefore be both narrow and approx-

imately cylindrical at the input. Higher modes will not be excited at the input 

and both the pressure and volume velocity are plane there. The corner value of 

the input impedance matrix can then be labelled as the input impedance with-

out ambiguity. The theoretical results which follow plot the corner value of the 

input impedance matrix calculated at a range of frequencies of musical interest, 

showing maxima at resonances of the air column. 

Because there are, in principle, an infinite number of modes in a cylindrical 

pipe, the vectors and matrices used in the calculation should ideally be infinite. 

In practice, however, at high enough mode numbers the pressures represented are 

insignificant to the propagation of sound. This is because they have very high 

cut-off frequencies so are strongly damped and have negligible coupling with the 

plane mode. 

The matrices can then be truncated to exclude all modes with mode numbers 

above a certain value. Note that we cannot exclude all mode numbers which 
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are in cut-off; energy lost from propagating modes to the many non-propagating 

modes with lower mode numbers must still be modelled for an accurate analysis 

In practice, the number of propagating modes depends on the maximum radius in 

the object while the number of significant non-propagating modes also depends on 

the flare rate. The calculation must be repeated including more and more modes 

until the answer converges (ie. adding more modes only changes the answer by a 

small factor corresponding to the percentage error required). The length of time 

taken to perform the calculation increases exponentially as the number of modes 

increases since matrix multiplication is involved. 

In addition to the number of modes under consideration, the number of cylin-

ders used in approximating the bore is another numerical consideration. Obvi-

ously the more cylinders used in approximating the bore, the closer the approx-

imate bore will resemble the actual bore of the instrument. The values in the 

impedance matrix converge on a final answer as the number of cylinders increase 

with the computational load increasing linearly. The number of cylinders required 

depends on the flare rate. 

As mentioned previously, viscothermal losses may be included in the calcu-

lation by using a lossy wavenumber. The effect of losses may be determined by 

performing calculations with and without losses. 



Inclusion of losses is observed to decrease the strength of resonance behaviour 

in the instrument. The height and frequency of the peaks in the input impedance 

are reduced. This is characteristic of loss of energy; less pressure is built up for the 

same excitation velocity at resonance. The depth of the troughs are reduced at 

impedance minima when losses are included because the reflections which return 

from the open end of the instrument are less strong, so decreasing the destructive 

interference responsible for anti-resonance. 
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Figure 4.2: Trumpet section input impedance 

Figure 4.3 shows the absolute value of the input impedance of the trumpet 

section calculated with the first 11 modes included and the lossy wavenumber 

used. The calculation was performed by approximating the horn by 100 cylinders 

of length 5.04 mm, then the calculation was repeated using 500 cylinders of length 

1.008 mm and 1000 cylinders of length 0.504 mm. 
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The results are very similar, showing that the input impedance calculation 

is not sensitive to the exact step size chosen. The 500 and 1000 cylinder calcu-

lations show convergence to an accuracy of 2%. This accuracy is good enough 

for this type of calculation because peaks and troughs differ by several orders of 

magnitude, as can be seen from the logarithmic scale. 
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Figure 4.3: Trumpet section input impedance 

Figure 4.4 shows how the calculation of the absolute value of the input impedance 

of the trumpet section (approximated by 1000 cylinders with the lossy wavenum-

ber used) varies with number of modes included. Results are shown when the 

vectors and matrices in the calculation are truncated to 1 mode (which gives 

a plane wave calculation), 2, 3, 7 and 11 modes. The 7 and 11 mode calcula-

tions show convergence to 2% indicating that the inclusion of more modes in the 
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calculation would have no significant effect. 

It is worth noting the cut-off frequency of the second mode (first non-planar 

mode) at the bell. Here the radius is maximum at R = 6.45 cm and so the cut-off 

frequency is at its minimum at f = kc/(27r) 3.83 x 343/(0.0645 x 27r) 3240 

Hz. All modes except the plane mode are in cut-off (ie. are strongly evanescent) 

at all points along the trumpet in the frequency range of interest. The input 

impedance of the first five or so modes clearly still has an effect on the input 

impedance due to mode coupling. Including extra modes has a similar qualitative 

effect to the inclusion of viscothermal losses. The frequency and height of the 

impedance peaks are reduced at resonance while the anti-resonance behaviour is 

less marked because of the energy lost due to coupling with evanescent modes. 

Figure 4.4: Trumpet section input impedance 
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The impedance matrix was stored at each step along the guide for the 580 

Hz excitation, and this information was used to calculate the complex pressure 

amplitude vector at each step using the method described in section 2.7. Figure 

4.5 shows the resulting pressure field when the calculation is truncated to 1, 2, 

3, 5 and 11 modes. The frequency 580Hz is just above the second resonance 

peak. At the input, the phase angle is (ko  = —1.06 = —0.3377r radians which 

indicates that the volume velocity is leading the pressure. This is characteristic 

of a tube playing above resonance [2]. Results not presented here for frequencies 

just below resonance show a very similar pressure field but with the pressure 

leading the velocity at the input. 

Red indicates a global maximum pressure and blue a global minimum pres-

sure while the black lines are equipotential contours. All graphs show the same 

qualitative pressure along the axis of the horn. There are two pressure anti-nodes 

along the axis of the horn because we are close to the second resonance frequency 

of the horn. The first is a pressure maximum at the input end indicated by the 

red colour. The second anti-node is 180 degrees out of phase with the first and so 

gives a negative pressure peak (ie. global pressure minimum) at this point in the 

resonance cycle. It is visible as the dark blue colour 27 cm down the horn. The are 

two pressure nodes. The first is where the acoustic pressure crosses zero around 

15 cm down the horn. The other is where the acoustic pressure approaches zero 

at the bell. These are represented by a mid-range colour, turquoise. 
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The plane mode calculation has flat pressure wavefronts as expected. The 

2 mode calculation allows the pressure on a cross-section to be the sum of the 

plane wave and the n = 2 mode pressure distribution which has a maximum in 

the middle, one nodal circle and a local maximum at the edge. The resulting 

pressure map therefore shows non-planar pressure wavefronts. As more modes 

are added, the pressure field converges to show wavefronts meeting the wall at 

90 degrees as required by the hard walled boundary condition. Notice that the 

radius and z scales are the same, as required to prevent distortion of the angle at 

which the equipressure contours meet the wall. 

Figure 4.6 shows a close up of the 11 mode pressure field at the bell. Here 

the equipressure contours can be seen as stripes of uniform colour, without the 

aid of black lines. Notice that the colour map has been changed in that the full 

range of colours are used for an area of bore which was previously all the same 

colour. The node at the bell has an acoustic pressure of approximately zero while 

the nearest anti-node on the left has negative acoustic pressure. The node at the 

bell is therefore the maximum pressure on the graph and is represented by red. 

The increasingly negative acoustic pressures on the left then give the minimum 

pressures present, represented by dark blue. 
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Chapter 5 

Acoustic pulse reflectometry 

5.1 Introduction 

Acoustic pulse reflectometry was introduced in section 1.5.2. Here we describe 

the apparatus and theory used in applying the technique for the measurement 

of musical wind instruments. The apparatus used was developed by Sharp et al. 

[6, 19, 20]. An acoustic pulse or audible click is produced by a loudspeaker and is 

directed down a cylindrical source tube and into the object to be measured. The 

resulting reflections are then measured and analysed to find the internal profile 

and input impedance. 

Since we are sampling digitally, we receive information on the reflections from 

the instrument once every sample (ie. once every T = 11F3  seconds where F3  
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is the same rate). The result is that information is obtained on the change in 

internal profile at discrete points along the instrument's bore. The reconstructed 

bore will therefore be approximated by a series of cylinders whose length is such 

that the primary reflections from successive cylinders occur at the sample rate. 

5.2 Input impulse response 

Consider an object connected to a source tube as shown in figure 5.1. Notice 

that for a musical wind instrument, the input plane is the position at which 

the mouthpiece must be placed if the instrument is to be played. In order to 

carry out pulse reflectometry experiments, the mouthpiece must be removed to 

prevent leaks and to allow efficient transfer of acoustical energy into and out of 

the instrument. The length of the cylindrical sections is 1 = cT12 where T = l/F 

is the sample period such that the time for travel from the left hand side of a 

cylinder to the right hand side, reflection off the discontinuity and return to the 

left hand side will correspond to one sample in the time domain. 

We label section 1 as the plane at the end of the source tube. The forward 

and backward going waves here are labelled p  and  p  respectively. Section 2 

is then the plane immediately on the other side of the input plane discontinuity. 

Section 3 is a distance I away at the other end of the first cylindrical section used 

in approximating the bore of the object. Section 4 is the plane immediately on 
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object under test 

coupler 

source tube 

(I) 	(2) 	 (3) 	(4) 

I 	 I 

Figure 5.1: Travelling waves in a typical object split into cylindrical sections 

the other side of the next discontinuity and so on. 

We define the input impulse response as the sequence of reflections which 

return from the object under test when an ideal delta function impulse is fed into 

the input. We define t = 0 as the time of arrival of the input pulse at the input 

plane. The forward going wave on section 1 is then an impulse 

1 : n=0, 
p[nT] = 8[nT] = 	 ( 5.1) 

1 0 : n>1 

where T = 11F3  is the same period. n is an integer running from 0 to N - 1 
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where N is the total number of samples taken. The backward going wave is the 

input impulse response: 

p[riT] = iir[rtT]. 	 (5.2) 

5.3 Input impedance from the input impulse 

response 

We will use the theory of plane wave propagation as set out at the start of chapter 

2 for the analysis which follows in this chapter. The possibility of including higher 

mode effects in the analysis will be discussed in chapter 7. 

The pressure at the input to a tubular object will be the sum of the forward 

and backward going waves from equations (5.1) and (5.2): 

P( 1 )  [nTJ = 5[nT] + iir[nT]. 	 (5.3) 

Similarly, the volume velocity follows from equation (2.7), giving 

U'[nT] = --(6[nT] - iir[nT]). 	 (5.4) 
PC 

The input impedance is defined as the ratio of the pressure and volume velocity 

at the input plane. So far we have obtained a time domain expression for the 
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pressure and volume velocity if the input impulse response is known. The input 

impedance is generally frequency dependent however, so we must take the Fourier 

transform of the signals and divide the frequency components to get the input 

impedance at a particular frequency. The Fourier transform of an impulse is 1 

for all frequencies. We define IIR(w) as the Fourier transform of iir[riT]. The 

Fourier transform of the pressure is then 

= 1 + IIR(w) 	 (5.5) 

and the volume velocity is 

	

UM GO) = 	- IIR(w)). 	 (5.6) 
PC 

Dividing in the frequency domain gives the input impedance as 

	

 PC I  Z1(w) 
- 
- 	+ MR(w)  

(5.7) 
 S1—IIR(w) 

This equation lets us easily calculate the input impedance of an object once the 

input impulse response is obtained by measurement. Since it is impossible to 

produce a perfect impulse, measurement of the input impulse response is not a 

straight forward task and will be discussed later in the chapter. For now we 

proceed with the background theory to pulse reflectometry. 
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5.4 Layer peeling bore reconstruction 

We now want to analyse the input impulse response to find out the reflection 

coefficients (and therefore the changes in cross-section) at each step along the 

bore. This will enable us to reconstruct the bore profile. Bore reconstruction was 

first performed using the algorithm developed by Ware and Aki [7] as reviewed 

in [6]. Since losses cannot be incorporated in the Ware Aki algorithm, we will 

instead use the lossy reconstruction method developed by Amir et al. [17] as used 

by Sharp [6, 19, 20]. 

Consider a junction between two infinite tubes. If a pressure wave is incident 

from negative infinity and no wave is incident from positive infinity, then the ratio 

of the backward and forward going waves is given by the reflection coefficient of 

equation (2.20). 

Going back to the general case of an object attached to the source tube of a 

reflectometer from figure 5.1, at the first time step (ie. when the forward going 

pulse arrives at the input plane), there cannot be any backward going waves 

on surface 2. The ratio of the first term in the reflection sequence (or input 

impulse response) and the first term in the input sequence (which is unity) is 

therefore equal to the reflection coefficient from equation (2.20). We will label this 

reflection coefficient as r1 , 2 . The subscripts indicate that this reflection coefficient 

is for reflection from the discontinuity between surfaces 1 and 2 when waves are 
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incident from the surface 1 side only. 

81/52 - 1 	
(5.8) = 

81/82 + 1' 

P(1)  [OT] 

= P(1) 
 [OT] = zir[OT], 	 (5.9) 

where we have labelled the surface area of surface 1 as S 1  and the surface area of 

surface 2 as S2 . Now S2  follows from S1  and r 1 , 2  by rearranging equation (5.8): 

/1 - r1 , 2 \ 
82 = S 	

+ i,2) 
(5.10) 

Now we know the cross-section on section 2, we will proceed to calculate the 

forward and backward going time sequences there. The forward going wave on 

section 2 is equal to the sum of the transmission of the forward going wave on 

section 1 and reflection of the backward going wave on section 2. Similarly, the 

backward going wave on section 1 is equal to the sum of the transmission of the 

backward going wave on section 2 and the reflection of the forward going wave 

on section 1. It can be expressed in matrix notation as follows: 

( (2) 	 / 
i+ [nT] 	- I 1,2 

P(_1 )  [nT]) 

T2,1 	(P[nT 

I 	(2)i m t2, 1 ) 	p 1n1] / 

(5.11) 

T2,1 gives the reflection coefficient from the discontinuity between surfaces 2 and 
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I when waves are incident from the surface 2 side only: 

821S1 - 1 	1 - S1 /S2  
= —r1 , 2 . 	 (5.12) 

S21S1 + 1 	si /s2 + 1 

t 1 , 2  gives the transmission coefficient from the discontinuity between surfaces 1 

and 2 when waves are incident from the surface 1 side only. From equation (2.21) 

this is 

	

2S1 /S2 	51/52 - 1 

	

ti,2 = 	 = 1 + 
51/52 + 1 

= 1 + r i , 2 . 	 (5.13) 
S 1 /82  + 1 

t 2 , 1  gives the transmission coefficient from the discontinuity between surfaces 2 

and 1 when waves are incident from the surface 2 side only: 

	

ti,2 = 	 = 1 - 

	

2S2 1S1 	51/52 - 1 
= 1 - r 1 , 2 . 	 (5.14) 

52181 + 1 	51152 + 1  

We may rearrange the simultaneous equations in equation (5.11) to give the 

travelling waves on the right of the discontinuity in terms of the travelling waves 

on the left of the discontinuity: 

+ [nT] 

) - 

	 1 	

( 

1 	—r1,2 

) ( 

p [nT] ~' 	"\ ( (2) 

1 - , 

	

P- )  [nT] 	 —r 1 ,2 	1 	P- )  [nT]  (2 	 ri2 ) 

This equation is performed for all values of ii from 0 to N - 1. For the current 

situation, the forward going sequence on surface 1 is an impulse, p[nT] = 

and the backward going pressure sequence on surface 1 is the input impulse 
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response, p[nT] = iir[nT]. Notice that 

(2) P [0] = —r1 , 2  x S[O] + 1 x iir[0] = 0 	 (5.16) 

as no reflections return from surface 3 until t = T. 

The forward travelling pressure sequence, at the right hand side of the cylin-

drical section, will be found simply by adding a delay time of T/2 = 1/c to the 

forward going wave on the left, to account for the time taken to travel a distance 

of 1. 

[( 
  + ) 

T] = p[nT]. 	 (5.17) 

(3) is therefore known at I = T/2 and in steps of T up to I = (N — 1/2)T. 

The backward travelling wave at surface 3 is found by subtracting a delay of 

T/2 from the backward travelling wave at surface 2. 

(3) 1/ 	 1 	(2) 
'- 	 (5.18) 

is therefore known at I = —T/2 and in steps of T up to I = (N — 3/2)T. 

Notice that there is no backward going wave on surface 3 until t = T/2: 

(3) (2) P- [—T/2] = p [0] = 0 	 (5.19) 

since no waves reach surface 3 until this time. 
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The ratio of the backward and forward travelling waves at surface 3, at time 

t = T/2, is equal to the reflection coefficient 7'3,4 since this corresponds to a 

primary reflection. 
(3) 

	

P-  [T/2] 
r3,4 = (3) 	

(5.20) 
+ [T/2] 

5.4.1 Numerical implementation issues 

In terms of numerical implementation of the algorithm, the time domain pressure 

travelling waves are stored in vectors with elements referred to by an index (which 

we shall call i) which runs from 1 to N. Care must be taken over what time is 

represented by the index. On surfaces 1 and 2 we know the pressure at t = 0, T, 

2T,..., (N-1)T so the ith element of the vector in the numerical implementation 

therefore corresponds to the pressure at time t = (i - 1)T. 

Equations (5.9) and (5.15) are then simply 

(1) p___(i = 1) 
(5.21) 

+ ( = 1) 

( 	(1) . ( (2) 	

( 	

1 	—r1,2 

) 	

p 	z P+ (i) 

J 
- 	1 	

' 	(5.22) 
(2) . 	- 1 - ri,2 	 (1) 	I P- (z) 	 1 	p_ 

The forward going pressure wave on surface 3 is sampled at t = T/2, 3T/2, 

5T/2, ..., (N - 1/2)T and the ith element refers to the time t = (i - 1/2)T. 
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Comparison with equation (5.17) then yields 

(3) . 	(2) 
+ (i) = + ( z). 	 (5.23) 

For the pressure on surface 3, we know the backward going pressure at t = —T/2, 

T/2, 3T/2, ..., (N - 3/2)T. At t = —T/2 the backward going pressure is zero, 

so we only need to carry on using the non-zero pressures at t = T/2 ,3T/2, 

(N - 3/2)T. The ith element refers to the time at t = (i - 1/2)T. Comparison 

with equation (5.18) gives 

(3) . 	(2) 
P_ (z) = p_ (i + 1). 	 (5.24) 

The pressure waves p(i) and p(i) are then the forward going and backward 

going sequences for the left hand side of the junction at surface 3. We have 

therefore peeled off the first layer in the object. Equations (5.21) to (5.24) can 

then be used to peel off the next layer. First the primary reflection coefficient 

for the junction from surface 3 to surface 4 is calculated, then the forward and 

backward travelling waves on surface 4 are obtained and then the delay for travel 

along the cylinder to next discontinuity is added. The algorithm repeats as 

necessary, peeling off successive layers in the object, calculating the new cross-

section using equation (5.10) each time. 

111 



5.4.2 Losses 

So far the effect of propagating waves down each cylindrical section is simply 

represented by a delay of T/2, therefore ignoring losses. A way of including 

losses in the layer peeling algorithm has been presented by Amir et al. [18]. 

The frequency domain formula for losses associated with propagation of plane 

acoustic waves down a tube of length L, due to Keefe [54], forms the basis of 

the inclusion of losses in the layer peeling algorithm. The effect of losses are 

characterised by the complex wavenumber, k: 

(5.25) 

where ic is the frequency dependent attenuation due to boundary layer effects, 

while x = w/v is the ratio of the angular frequency and the phase velocity for 

propagation of sound along the tube. They are given by Keefe [54] as: 

wI A C] 	 rA B Cl 
x=—Il+--- ;:  ' 

c L 	r 	 c LTv 	r 	
(5.26) 

where the normalised boundary layer thickness is r = R(pw/?]) 1 / 2  and depends 

on the tube radius, R. p is the density and 77 is the coefficient of viscosity of air. 

The coefficients A, B and C are also functions of the thermodynamic constants 
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P  = 	1.1769(1 - 0.00335LT)kg m 3  

77  = 1.846 x iO- (i + 0.0025T)Pa s 

ly  = 	1.4017(1 - 0.00002LT) 
ii = 	 0.8410(1 - 0.0002LT) 
C = 	347.23(1 + 0.00166LT)m s 

Table 5.1: Thermodynamic constants 

of air: 

A= -- 
1b1 	 b 1 	b 

B=1+b1 — 

= J_ ( + b - b
1 	b 1 	b2  b2  b3

) 
(5.27) 

• 	 1 	 1 	 • 	 • 

with v = 	where 	is the specific neat of air at constant pressure, K is the 

thermal conductivity of air and b1 = where y  is the ratio of the specific heats 

of air. Temperature dependent values of the thermodynamic constants of air due 

to Keefe [54] are provided in table 5.1. The imaginary part of the wavenumber 

responsible for attenuation is then —2.92 x 1 0 5 f' /2  /R for T = 20°, which agrees 

with the value quoted in Kinsler et al. [40] to within 1% and differs from the 

plane wave value from the multimodal losses theory due to Bruneau [44] by 3%. 

This means that the resulting transmission coefficient is: 

F(w) = exp(—ikL) 	 (5.28) 

There are numerical difficulties which arise when trying to use this as a filter 
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within the bore reconstruction algorithm. These issues are treated in detail by 

Amir et al. [18]. 

5.5 Apparatus 

A schematic diagram of the apparatus used is shown in figure 5.2 and a photo-

graph of the apparatus is shown in figure 5.3. 

Loudspeaker 	 Source tube 	 Object 

Figure 5.2: Schematic diagram of the apparatus 

The computer sends out a 5 V electrical pulse of 80 js duration to an audio 

amplifier. A horn driver loudspeaker attached to the output then produces an 

acoustic pulse (audible click) which travels down the air column of a cylindrical 

source tube of internal radius 5 mm and then enters the object to be measured. 

The complicated object reflections are then picked up by a microphone in the 

side wall of the source tube and sampled by the computer at a sample rate of 

F = 50, 000 Hz. This experiment is repeated 1000 times and the result averaged 

to increase the signal to noise ratio. Length 12 is chosen so that the input pulse 

114 



Figure 5.3: The acoustic pulse reflectometer 

has completely passed the microphone before the first reflections return from the 

object. The length Li  is ideally chosen so that the round trip time t = c/(21 1 ) is 

sufficient to record the full object reflections without interference from reflections 

from the source. This is of course dependent on the length of the instrument; 

longer instruments have reflections which carry on for more time meaning that 

a longer distance is required for li. The reflectometer used in this chapter has 

lengths i i  = 7.37 m and 12 = 3.10 m. 
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5.6 Experimental measurement of the input 

impulse response 

Figure 5.4 shows the reflections measured at the microphone from a test object 

consisting of stepped cylinders. A schematic diagram of the stepped tube attached 

to the source tube is shown in figure 5.5. A coupler is attached to the source tube 

which contributes a 50 mm long section with a radius of 5 mm (the same as the 

source tube) to the bore of the object. The first section of the stepped tube object 

is 129 mm long with an internal radius of 6.25 mm and the second section is 177 

mm long with an internal radius of 9.4 mm. At the end of the second section, 

the object is open, allowing sound to radiate. 

2.5 

2 

1.5 

0.5 

a, 
0 

0 
0 
> 

—0.5 

—1 

—1.5 

—2 

—25 0 
	5 	10 	15 	20 	25 	30 	35 	40 	45 

Time (milliseconds) 

Figure 5.4: Object reflections 
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coupler 	stepped tube object 

source tube 

input plane 

177 mu, 

Figure 5.5: Stepped tube connected to source tube 

The pressure signal can be understood as follows. Since the recording is 

triggered to start just before the reflections from the test object arrive at the 

microphone, the first few milliseconds consist only of background noise. There is 

no significant reflection of sound between the cylindrical source tube and the first 

section of the test object since the radii match. There is then a negative spike 

corresponding to the reflection of the input pulse from the expansion at the first 

step. The second negative spike corresponds to sound transmitted into the second 

section of test object, then reflected from the expansion at the second step before 

transmission to the microphone. The only sign change is due to the reflection 

from the expansion because transmission is always positive. The third negative 

spike is the component of the input pulse that is transmitted to the open end 

where it receives a negative reflection and is transmitted back to the microphone. 

These are the primary reflections, where the input pulse experiences only one 
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reflection process before reaching the microphone. The remaining parts of the 

recorded pressure signal are secondary reflections where the pulse experiences 

at least one reflection back down towards the open end before returning to the 

microphone. 

5.6.1 Deconvolution 

The input impulse response of a system is defined as the reflections resulting 

from excitation by an ideal acoustic impulse. The acoustic pulse that is produced 

experimentally is not an ideal impulse because of its finite duration. To get the 

input impulse response, we need to deconvolve the pulse entering the object's 

input from the reflections which return to the object's input. However, the mea-

surement we make is of the object reflections when they have experienced losses 

corresponding to travel down the distance 12 back to the microphone. By termi-

nating the source tube in a flat plate or cap, we can give a 100% reflection of the 

input pulse down the same length of tube to the microphone. This measurement 

is referred to as the calibration pulse. 

The input impulse response at the input plane is the deconvolution of the 

backward and forward going signals there. Our measurement records these signals 

once they have travelled an extra distance of 12. In order to recover the signals 

present at the input plane we could apply the same loss filter to both. This 

corresponds to multiplying both by the same function in the frequency domain. 
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Since deconvolution is frequency domain division, the effect of the loss filter will 

be divided out. The input impulse response is therefore equal to the deconvolution 

of the signals measured at the microphone: 

- R( w )I*(w ) 
(5.29) IIR(w) - I(w)P(w) + q 

where I is the Fourier transform of the calibration pressure pulse and R is the 

Fourier transform of the reflected pressure signal. q is a constraining factor used 

to prevent division by zero which would otherwise occur since the calibration pulse 

measurement consists only of background noise at high frequencies. In practice 

it low pass filters the input impulse response, removing high frequency noise. 

Choosing too large a value for q introduces errors into the deconvolution. For 

the current set up, q = 0.00001 was found to remove much of the high frequency 

noise, with a small change in q having no effect on the input impulse response 

within the bandwidth of our calibration pulse. 

Figure 5.6 shows a measurement of the calibration pulse and figure 5.7 shows 

the input impulse response resulting from the deconvolution of the calibration 

pulse from the object reflections. The characteristic shape of the calibration pulse 

has been removed from the object reflections, making the individual reflections 

from the steps in the bore impulsive as is expected. 
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Figure 5.6: Calibration pulse 

5.7 Experimental measurement of the input 

impedance 

The input impedance of the stepped tube object was calculated from the measured 

input impulse response shown in figure 5.7 using equation (5.7). This result is 

shown in figure 5.8. Also shown is the test object consisting of stepped cylinders 

plotted against the multiinodal theory results. These results were generated using 

the method described in chapter 4. 

The agreement is very good between the plane wave calculation, the two mode 

calculation and the three mode calculation showing that the effect of higher modes 

is not significant in the frequency range we are considering. In fact, the lowest cut- 
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Figure 5.7: Input impulse response 

off frequency is that belonging to the mode with one nodal circle in the wider of 

the two cylinders. This has a frequency of f = c'y/(27rR) 22 kHz, considerably 

higher than the range of interest. The higher modes are therefore all strongly 

exponentially damped in the object and, similarly, very little mode conversion 

takes place at the discontinuities and at the open end. 

The experimental and theoretical input impedance peaks agree best at low 

frequencies, with the deviation increasing as frequency is increased. In fact, the 

experimental peaks are at higher frequency than the theoretical peaks by a factor 

of 1.015+0.005. A calculation of the musical pitch interval implied (see [1]) gives 

an answer of around 17 percent of a semitone. Notice that the theory assumes 

that the object is terminated in an infinite baffle and no baffle was used in the 
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experiment. The length correction at the open end for a baffled duct is slightly 

larger than the end correction for the unbaffled duct, hence the theoretical result 

(which assumes a flange) has lower frequency resonances than the experiment 

(which was on an unbaffled object). Still, the reasonable agreement between 

experiment and theory indicates that the resonance peaks are sufficiently well 

defined by the geometry of the object to ensure that the effect of small changes 

at the open end is minimal. 
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Figure 5.8: Stepped cylinder test object input impedance 

Figure 5.9 shows the experimentally measured input impedance of the trumpet 

bell section described in section 4.3. The experimental data is plotted against 

the results of multimodal theory. Because the theory assumes that the object 

is terminated in an infinite baffle, in order for experimental results to verify the 
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accuracy of the theory, the experiment was performed with the trumpet section 

opening out onto a circular hole in a square hardboard baffle section of width 

1 m. This time there is a significant drop in the sharpness and position of the 

higher frequency resonance peaks when more modes are included. The lowest cut-

off frequency is the one nodal circle mode at the bell which has a frequency of 

f = c'f/(27rR) 3242 Hz. All the modes are therefore still in cut-off throughout 

the frequency range of interest. The fact that there is a significant difference in 

the plane wave impedance depending on how many modes are included indicates 

that a significant amount of energy is lost by conversion of plane waves into the 

evanescent higher modes. 
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Figure 5.9: Trumpet section input impedance 
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5.8 DC offset 

The bore reconstruction is very sensitive to the dc offset since a small constant 

positive value will be interpreted by the bore reconstruction algorithm as a small 

positive reflection coefficient. For this reason Sharp et al. [19] placed a 40.3 cm 

long cylindrical connector with a radius of 4.8 mm (here referred to as the dc 

tube) between the source tube and the object. There will be no reflected signal 

from the dc tube (because there are no expansions and contractions) and the 

object reflections will arrive at the microphone 2 ms later because of the round 

trip time taken to travel in the dc tube. The average value of the input impulse 

response within the first 2 ms range may be subtracted from the whole input 

impulse response, so removing the dc offset. 

Figure 5.11 shows the reflections from the dc tube and stepped cylinder object. 

The reflections from the stepped cylinder object are preceded by the reflections 

from the join between the source tube and the dc tube. A schematic diagram of 

the test object attached to the source tube through the dc tube is shown in figure 

5.10. 

We can observe reflections from the stepped cylinder object are preceded by 

the reflections from the join between the source tube and the dc tube. This 

small reflection will also be present in the input impulse response. Ideally, this 

small bump in the internal profile would be perfectly reconstructed by the bore 
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coupler stepped tube object 
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R = 9.4 turn 

R = 6.25 mm 
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403 mm 
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input plane 
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Figure 5.10: Stepped tube connected to source tube through dc tube 

reconstruction algorithm. However, because the input impulse response is limited 

in frequency range, the impulsive reflection is spread out to make the pulse a small 

number of samples wide in the time domain. This means that the small leading 

edge occurs before the first sample. In accordance with signal processing theory, 

this small leading edge shows up in the last few samples in the time domain input 

impulse response. Errors result in the dc offset and bore reconstruction if this 

problem is ignored. The solution is to calculate the average value of the input 

impulse response between ims and 2ms and subtract this from the whole input 

impulse response. The response between Oms and ims can then be replaced with 

zeros. 
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Figure 5.11: Object reflections using dc tube 

5.9 Experimental measurement of the bore 

profile 

Figure 5.12 shows the bore reconstruction of the test object consisting of stepped 

cylinders. The bore profile was calculated by putting the input impulse response 

from figure 5.7 into the lossy bore reconstruction algorithm developed by Amir 

et al. [17] as set out in section 5.4. Dotted lines show the radii of the cylindrical 

sections of the object. The first 40.3 cm of the bore reconstruction reproduces 

the cylindrical dc tube of radius 4.8 mm. The initial 0.17 m is perfectly flat 

because the input impulse response has been set to zero for the corresponding 

round trip travel time of ims and the next 0.26 m of the bore consists of the 

126 



remaining length of dc tube. Since no reflections occur within this section, the 

small changes in the bore reconstruction are due to background noise in the input 

impulse response. 
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Figure 5.12: Reconstruction of test object consisting of stepped cylinders 

The step up from the dc tube and coupler radius of 4.8 mm to the test object 

cylindrical section of radius of 6.25 mm is spread over a distance of 2 cm along 

the axis of the bore reconstruction when in reality the bore stepped up sharply. 

The reason for this spread is that the input impulse response measurement has a 

limited bandwidth; there were no significant components of the measured input 

impulse response above about 10 kHz because losses in the source tube damped 

out high frequency information in the pulse before it was able to enter the object 

under test. Removing the high frequencies in the impulsive reflection from a step 
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widens the pulse, hence the algorithm interprets the reflections as coming from a 

more gradual expansion. The behaviour is also an example of Gibb's phenomenon 

[6]. When a sharp step is represented as a set of frequency components, if the 

high frequencies are removed, the resulting step will be oscillatory such that the 

filtered version is too low on the lower side of the step and over shoots to be too 

high at the higher side [55] pp.601-603. This effect can be more clearly seen in 

the step from 6.25 mm to 9.4 mm. Here the over shoot and under-shoot in the 

bore reconstruction is about 0.3 mm. 

Within the cylindrical sections, the bore reconstruction oscillates with an 

amplitude of less than 0.1 mm. The average value during each cylindrical section 

is accurate to 0.1 mm, with the largest error at the open end of the object. In 

the bore reconstruction algorithm, the cross-section at each point is worked out 

as a fraction of the cross-section at the previous point. Hence errors accumulate 

as the reconstruction continues. The object chosen for measurement was useful 

for a test of the accuracy of the technique. 

Actual musical instruments tend to have more smoothly varying bores so 

preventing problems due to Gibb's phenomenon. The typical accuracy of 0.1 mm 

for short objects has recently been successfully used to aid a manufacturer to 

distinguish between different trumpet leadpipes [56]. 

The theory in this chapter all assumed plane wave propagation in the object 

under test. We will see in later examples that this means that the bore recon- 
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struction algorithm will produce errors in tubes with a large flare rate. In the 

following chapter we will go on to study the reflection of sound when multimodal 

effects are taken into account and consider how these effects might be included 

in a bore reconstruction algorithm. 
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Chapter 6 

Multimodal reflections 

6.1 Introduction 

The reflectance is a quantity which gives the relative amplitudes of the forward 

and backward going waves at a particular place in an acoustic system. In the 

plane wave approximation it is a scalar ratio. For a simple discontinuity between 

two tubes, if the waves are incident from only one side, the reflectance does not 

vary with frequency. In general, however, the reflectance of an object is frequency 

dependent, equivalent to the frequency spectrum of the input impulse response. 

In chapter 2 we presented a multimodal method of calculating the impedance 

throughout a tubular object provided the impedance at one end is known. Here we 

show how the impedance matrix can be used to derive the multimodal reflectance, 
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a matrix relating the amount of each mode reflected due to each mode incident. 

Because the non-planar modes always have frequency dependent impedances, the 

reflectance matrix will be frequency dependent, even for the special case of a plane 

wave incident from only one side. Theoretical results follow for this situation, 

showing both the frequency spectrum of the reflectance and the input impulse 

response obtained by performing an inverse Fourier transform on the reflectance. 

In order to accurately reconstruct the bore of an instrument with a rapidly 

flaring bell, the effects of higher modes should be included. However, the layer 

peeling algorithm discussed in chapter 5 assumed plane wave propagation. This 

chapter concludes with a discussion of two possible solutions to this problem and 

the difficulties involved. 

6.2 Multimodal reflectance matrix 

A formula relating the forward and backward components of the volume velocity 

amplitude vector in terms of the impedance matrix was quoted in Pagneux et al. 

[32] p.2046.  Here we show the derivation for the pressure amplitude vector. The 

first step is to express the total pressure amplitude vector P as the sum of the 

forward going (P t ) and backward going (P_) components: 

P = P+  + P. 	 (6.1) 
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Now the total volume velocity is expressed using the same notation for forward 

and backward components: 

U = U+  + U- 	 (6.2) 

Recalling the characteristic impedance of higher modes from equation (2.36), the 

ratio of the nth element in the forward going pressure vector to the nth element 

in the forward going volume velocity vector is kpc/kS. Using Z, the diagonal 

characteristic impedance matrix defined in equation (2.42): 

U+  = Z -1 P+. 	 (6.3) 

Similarly for the backward going waves, 

U_ = 	 (6.4) 

Defining the impedance matrix at a particular point as Z with P = ZU we get 

	

P + P.... = ZZ1(P+ - P) 	 (6.5) 

which may be rearranged to give 

	

(ZZ -1  + I)P_ = (ZZc1 - I)P 	 (6.6) 
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so the result is 

P- = RP 
	

(6.7) 

where R is the reflectance matrix: 

7(w) = (Zz-1 + i)-' (ZZ-1 - i). 	 (6.8) 

Notice that this is a correction to the reflectance matrix quoted in [41]. The 

correction arises because ABA` B in general, even when A is a diagonal 

matrix. The correction only has an effect on the non-diagonal entries in R. 

The graphs presented in [41] are of the R 00  element and are unaffected by the 

correction. 

6.3 Multimodal reflectance of a single 

discontinuity 

The simplest case of a multimodal calculation of the reflectance matrix is for the 

reflection of plane waves from a single discontinuity in cross-section between two 

semi-infinite cylinders. We will define the plane on the left of the discontinuity as 

plane 1 and the plane on the right as plane 2 (see figure 2.2). If a plane sine-wave 

is incident from the left, it will be partially reflected and partially transmitted at 

the boundary. The impedance matrix on the right hand side of the boundary will 
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be equal to the characteristic impedance matrix because only forward propagating 

waves are present there: 

= z2 
	

(6.9) 

where Z
(  2 is simply the characteristic impedance matrix defined in equation 

(2.42) when S = S2 . This matrix can then be projected to get the impedance 

matrix on the left by substitution into equation (2.97): 

= FZ 2)FT . 	 (6.10) 

The reflectance matrix at surface 1 can then be found from equation (6.8) by 

substituting in Z = z1 from equation (6.10), also noting that Z = Z) is the 

characteristic impedance matrix on surface 1 with S = Si: 

(w) = (FZ 2)FT (z(1)) + i)' (FZ 2)FT (Z(i)) - i). 	(6.11) 

If particular values of the cylinder radii, R1  and R2  are chosen, the reflectance 

matrix can be calculated for a number of frequency values. However, as with 

the radiation impedance calculations in chapter 3, the results may be presented 

in a form valid for all radius values by reformulating the equations in terms 

of the dimensionless frequency variable kR1  and the radius ratio P = R 1 /R2 . 

The characteristic impedance of the nth mode on the left of the discontinuity 

becomes z' = (kRipc)/(kRiSi ) where /vRi  = ±/(kRi)2 - 'y. Dividing by 
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pc/S i  normalises the characteristic impedance of the nth mode to give 

	

c(kR1) = 	
= 	kR1 	

(6.12) 
- PC 	±J(kRi) 2 
 In 

Similarly, the normalised characteristic impedance of the nth mode on surface 2 

is 

	

C2(kR1,/3) = 	Z(2) = 	kR1/i3 	
(6.13) 

PC 

using kR 2  = kR1 10. The reflectance matrix is then 

	

= ( (FC(2)FT) (c(1))_1 	+ 
)_1 

(02 (FC(2)FT) (c(1)) - i) 	(6.14) 

where 01 ) and C 2  are diagonal matrices with the entries on the nth diago-

nals given by equations (6.12) and (6.13) respectively. The reflectance is now a 

function of the dimensionless variables kR 1  and 3 only. 

Before proceeding to produce graphs from the reflectance matrix we should 

consider which elements determine the reflected sound. For our example we have 

a plane sine-wave of unit amplitude incident on the discontinuity from the left. 
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This forward travelling wave is represented by 

1 

0 

= 	o 	 (6.15) 

0 

From equation (6.7) the reflection is then 

1oo 

1 10 

P_ = ltP+ = 120 	
(6.16) 

R 3  

The plane wave component of the reflection is therefore simply given by the corner 

value of the reflectance matrix, 7t 00 . We will refer to the R 00  value as the plane 

reflectance. Although we will discuss only the plane reflection from an incident 

plane wave, it is important to note that we are doing a multimodal calculation. 

Depending on the frequency, some of the incident energy is converted into the 

other modes. In turn the plane reflectance will vary with frequency. 

Figure 6.1 displays the absolute value of the plane reflectance for radius ratio 

136 



of R 1 /R 2  = 0.5 against the dimensionless frequency variable, kR 1  as a green 

line. At low frequencies the plane reflectance matches the plane wave reflection 

coefficient of equation (2.20) which is —0.6 for R 1 /R 2  = 0.5. The maximum in 

the graph corresponds to the cut-off of the first non-plane mode in the larger of 

the ducts. A blue line shows the absolute value of the plane reflectance from 

the inductance method published by Kergomard and Garcia [57]. The use of 

the inductance method to calculate reflectance is summarised in appendix C. 

The inductance method is designed to be accurate in the region kR 2  < 3.5, ie. 

kR 1  < 1.75 in this example. Agreement between the inductance method and the 

current multimodal method is very good in this region. 

Figure 6.2 shows the plane reflectance decaying to zero at high frequencies. 

We can understand this by noting that high frequencies do not experience much 

diffraction meaning almost 100% of the energy is transmitted across an expansion. 

Figure 6.3 shows the plane reflectance against frequency for a number of differ-

ent radius ratios. The low frequency limit shows that large cross-section changes 

reflect more energy in agreement with the plane wave approximation reflection 

coefficient. Large cross-section changes also lead to a quicker drop off of plane 

reflectance with frequency. The detail in the graphs can be understood by con-

sidering the cut-off frequencies in the smaller pipe (section 1) and the larger pipe 

(section 2). The cut-off wavenumber for the n = 1 mode in section 1 is kR 1  3.83 

and the n = 2 cut-off in section 1 is kR 1  7.02. We can see all the graphs have 
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small minima at these values. The large peaks, however, are due to the cut-off 

frequencies in the pipe on the right. 

In order to show the cut-off frequencies on surface 2, the graphs are replotted 

using a dimensionless frequency variable of kR 2  = kR1  x R 2 /R 1 . The resulting 

plot is shown in figure 6.4. The lowest cut-off wavenumber present is for the ri = 1 

mode in section 2 with a dimensionless frequency of kR 2  3.83. All the spectra 

show peaks at this point because above this frequency energy is absorbed from 

the plane reflection by transmission into the propagating mode. The reduction in 

reflected amplitude after the n = 1 cut-off frequency is particularly marked in the 

R 1 1R 2  = 0.5 case. The pressure profile of the n = 1 mode on S2  has a circular 

amplitude maximum in the centre taking up an area similar to the pressure 

amplitude of the plane mode on S 1 . Since the pressure profile on S 2  must match 

the pressure profile on S, above the cut-off frequency strong transmission of the 

propagating n = 1 mode is favoured. The n = 2 mode in section 2 is responsible 

for the peaks at kR 2  7.02 in the plane reflectance spectra. 

6.4 Multimodal input impulse response 

Now we will use an inverse Fourier transform of the plane reflectance to give 

the plane component of the input impulse response of our simple discontinuity 

between cylindrical pipes. A similar calculation was performed by Boone et al. 
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Figure 6.1: Plane reflectance for a single discontinuity with R 1 /R 2  = 0.5 

[58] for the input impulse response of a lightly damped rectangular cavity. In order 

to work out the inverse Fourier transform we need to calculate the reflectance for 

a number of equally spaced frequencies. The zero frequency component cannot 

be worked out with the present multimodal method because k = 0 means that 

Z1 1  has elements which go to infinity. It may, however, be noted that the plane 

reflectance tends to the plane wave approximation reflection coefficient at low 

frequency, so the k = 0 plane reflectance is taken from equation (2.20) in what 

follows. 

When the Fourier transform of a real signal is performed the result is a conju-

gate symmetric spectrum. That is, the real part of the spectrum is symmetric and 

the imaginary part anti-symmetric. The point of symmetry is called the Nyquist 

frequency, and has a value half that of the sample frequency. We require that 
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Figure 6.2: Plane reflectance for a single discontinuity with R 1 /R 2  = 0.5 showing 
high frequency behaviour 

there are no significant components in the signal above the Nyquist frequency to 

prevent numerical errors due to aliasing. Similarly, when we calculate an inverse 

Fourier transform, we require that the spectrum decays to zero by the Nyquist 

frequency. From figure 6.2 we note that if we go to very high frequencies the 

plane reflectance does indeed decay to zero, meaning that numerical problems 

may be avoided if the Nyquist frequency chosen is high enough. The vector of 

the plane reflectance must then be made conjugate symmetric for the inverse 

Fourier transform to be calculated [59]. 

The result of an inverse Fourier transform of the plane reflectance is shown 

in figure 6.5 for a radius ratio of R 1 1R2 . Progressively higher values for the 

Nyquist frequency in the calculation of the plane reflectance were taken until 

the inverse transform showed convergence on a final answer. The appearance of 
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Figure 6.3: Plane reflection spectrum for different discontinuity ratios against kR 1  

the time response is that of a negative pulse. This is to be expected as we are 

calculating the reflection of an impulse from a expansion which has a negative 

reflection coefficient. The finite width of the pulse shows how the high frequency 

components have been removed and the oscillations in the time domain response 

correspond to the peak in the plane reflectance due to the lowest frequency cut-off. 

The results presented so far are for scattering from a junction between two 

infinite pipes. In order to treat physically realisable systems we want to have 

a method of calculating the input impulse response of any musical instrument 

approximated by a series of cylinders. This is achievable by first calculating 

the input impedance matrix by the multimodal method described in section 2.6. 

The reflectance matrix can then be found using equation (6.8). The plane wave 

component of the input impulse response can be calculated by taking the inverse 

Fourier transform of the plane reflectance in the same manner as in section 6.4. It 
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Figure 6.4: Plane reflection spectrum for different discontinuity ratios against kR 2  

should be noted that this method involves calculating the multimodal radiation 

impedance; this can be readily done if the instrument is assumed to have an 

infinite baffle termination. It is logical that the input impulse response should 

not depend on the radiation impedance for the first t = 2L/c seconds taken for 

sound to reflect from the radiating end and arrive back at the input where L is 

the length of the instrument. 

6.5 Issues in multimodal bore reconstruction 

Now we will discuss possible approaches to the inclusion of multimodal calcula-

tions in acoustic pulse reflectometry bore reconstruction. This procedure has yet 

to be implemented because of the difficulties arising from the frequency depen-

dent reflections and the additional computation power required for computing 
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Figure 6.5: Plane input impulse response calculated for a single discontinuity with 
RI/R2= 0.5 

multimodal behaviour in an already computationally expensive procedure. This 

section therefore is a review of the theoretical background on which future work 

may be based, and a discussion of the problems and possible solutions. To start, 

it is useful to present a brief summary of the plane wave approximation algorithm 

set out in chapter 5. 

In an acoustic pulse reflectometry measurement the first step is the experimen-

tal measurement of the input impulse response. If a forward going ideal impulse 

enters the input, by definition the reflections are the input impulse response Se-

quence. We therefore know both the forward and backward going waves at the 

input. The plane reflection coefficient of equation (2.20) gives the amplitude of 

the primary reflection of an incident wave in terms of the change in cross-section. 

The plane reflection coefficient (and therefore the change in cross-section) are 
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found from the the ratio of the first entries in the forward and backward going 

pressure vectors respectively, since they correspond to a primary reflection. 

Scattering equations are then used to find the forward and backward going 

waves in the next cylindrical section. This process is then repeated, working out 

the forward and backward going waves and the change in bore at each step along 

the bore in turn untill the output end is reached. The scattering equations used 

are equations (5.11), (5.17) and (5.18): 

	

- 	 (6.17) 

	

+ [nT] - 	1 	( 1 	_r12) (P 	' 

	

( (2) 	
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( 3)17 	1 
+ 	+ ) TJ = p[nT]. 	 (6.18) 

(3) 1 1
)  

1\ 
T] 

1  
- 	- 	

= p)[nT]. 	 (6.19) 

Here surfaces 1 and 2 are on the left and right of the initial discontinuity re-

spectively and section 3 is a distance cT/2 to the right of surface 2 (see figure 

5.1). 

For a multimodal theory, the reflection coefficient is frequency dependent, 

meaning that the primary reflection of an impulse from the first step is not 

impulsive, but is spread out over a finite time. Ideally, the primary reflections then 

should not simply be calculated from the ratio of the first time step in the forward 

and backward going pressure vectors. A rigorous analysis should look at the plane 
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reflectance, the frequency spectrum of the impulse response of the step in the 

absence of secondary reflections. As with figure 6.4 the plane wave approximation 

reflection coefficient corresponding to the cross-section change would then be 

equal to the low frequency limiting behaviour of this plane reflectance. The 

problem with this is that the secondary reflections are present in the input impulse 

response and are as yet unknown; after the first time step the primary reflection 

from the first cross-section change is swamped by information about the rest of 

the instrument. 

Further investigation is necessary to see if the plane wave approximation re-

flection coefficient from the first time step of the primary reflection can give 

accurate enough results. The bore reconstruction algorithm may still incorporate 

multimodal effects by the use of a multimodal scattering equation. While the first 

change in cross-section would be calculated without multimodal effects, the for-

ward and backward going waves on the other side of the step would be calculated 

including the loss of energy to higher modes. The value of the primary reflection 

from the next step would therefore be effected by the multimodal treatment. 

6.5.1 Multimodal scattering matrix 

In sections 6.3 and 6.4 we performed multimodal scattering from a discontinuity 

for an example in which there was no backward going wave on the right hand 

side. In order to create the multimodal version of our scattering equation (6.17), 
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we must drop this assumption and express the pressure and volume velocity as 

the sum of forward and backward going waves on both sides. The aim then is to 

start with the known forward going and backward going waves at the input to 

a discontinuity (ie. from an experimentally measured input impulse response), 

and calculate the forward and backward going waves on the other side of the 

discontinuity. This method was suggested by van Walstijn [60]. 

We will denote the forward going pressures on surface 1 and surface 2 respec-

tively as P and p(2)  . The backward going pressure on surface 1 and surface 2 

respectively will be p(')  and p(2)  . Again the surfaces are as shown in figure 5.1. 

Using the pressure projection equation (2.79) we get: 

	

PM + P M  = F (p) - pu)), 	S1  <S2 . 	( 6.20) 

Putting equations (6.3) and (6.4) into the volume velocity projection equation 

(2.83) gives: 

(Z2))(p) - p) = FT (Z(1)) 	- 	

, 	 s1 < 52 	(6.21) 

These two simultaneous equations can be solved by eliminating P to give 
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P (2)  +— 

1  (Z C(2 T ((1))' + F_i) p(i) 

+ (ZC(2)
F 

 T (Z(i))1 — F1) p)• 	 (6.22) 

Eliminating p)  in the simultaneous equations gives 

_ (Z c(2 T  (Z( 1 )) 1  - F_i) p) 

+ (ZC(2
) F  T (Z1))1 + F_i) P). 	 (6.23) 

It is possible to express both equations (6.22) and (6.23) in one equation. This 

is done by making column vectors consisting of the forward going and backward 

going pressure vectors end to end. If the vectors P and P are each truncated 

to have N elements, the resulting end to end vector will have a length of 2N 

elements. This is then set equal to a single scattering matrix with 2N x 2N 

elements multiplied by a vector of length 2N consisting of the pressure vectors 

P ( ' )  and p(i)  placed end to end. The first N columns in our scattering matrix 

then come from the coefficients of p in the previous equations and the second 

N columns from the coefficients for P. The resulting equation is 

p) 	= 	
P +( i ) 
	

(6.24) 
p) 	.77 E 	p) 
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where e is an N x N matrix given by 

= (ZFT (Z(1))1 + F_i) 	 (6.25) 

and .F is an N x N matrix given by 

= (z 	(Z1))1 - F 1). 	 (6.26) 

Notice that if there is no backward going wave in section 2, then P = 0, and 

from equation (6.24), p) = -'rp which agrees with the results of section 

6.3. 

Each of the elements in equation (6.24) is frequency dependent so we must 

compute the scattering matrix for each frequency in the Fourier transform of the 

pressure signals and perform the matrix multiplication in the frequency domain. 

This method means a significant increase in the computational load. Only a small 

number of modes could be added for this method of bore reconstruction to be 

feasible. 

In addition to scattering across discontinuities, scattering along cylindrical 

sections is also necessary. We will therefore require multimodal versions of equa-

tions (6.18) and (6.19) which give the pressure value at surface 3 from the pres-

sure value at surface 2 in figure 5.1. The modes propagate independently between 

these surfaces because the cross-section remains constant. For a given frequency 



of sound, the wavelength along the axis of the duct depends on the mode un-

der consideration, with higher order modes having longer wavelengths untili at 

high enough mode numbers the waves are exponentially damped. This means the 

pressure is not just delayed by travel along the pipe, it also experiences dispersion. 

The dispersion is described in the time domain by Morse and Ingard [22] p. 498 . 

Firstly, below cut-off the n > 1 modes are exponentially damped meaning that 

the low frequencies are filtered out. Above cut-off, the phase velocity is larger 

than c and the group velocity is smaller than c, with both converging on c in 

the high frequency limit. The time domain impulse transfer function for a higher 

mode pressure distribution is calculated by Fourier transform to give an impulse 

travelling at the speed of sound c with a wake trailing behind. Physically this is 

realistic since an impulse contains all frequency components, with the very high 

frequencies responsible for the sharp impulse travelling with a group velocity of 

c and the lower frequency components following behind. 

Using this impulse transfer function for time domain convolution with the 

forward and backward going pressure vectors is a possible solution for scattering 

down a cylindrical section. Alternatively, frequency domain multiplication can 

be used. The pressure amplitude of the nth higher mode in a uniform pipe is 

described in equation (2.33). Projecting the forward going part gives 

D() - 	
( 6.27) 
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and the backward going part gives 

= e2kdp(2) 	 (6.28) 

6.5.2 Iteration method with multimodal control 

We have shown how including higher modes within a layer peeling bore recon-

struction algorithm may be possible and have highlighted the problems which 

must be addressed before it is achieved. It is also worthwhile presenting an al-

ternative way of including multimodal effects in reconstructing the bore. This 

section discusses how a multimodal calculation of the input impulse response may 

provide the control for an iteration procedure designed to arrive at the correct 

bore. 

Iterative bore reconstruction has been studied by Kausel [61] for the case of 

deducing the bore from measured input impedance. As a starting point, a fairly 

arbitrary starting bore was chosen and the iteration procedure used to minimise 

the difference between a plane wave calculation of the input impedance of the 

bore and that which was measured. We will refer to the result as the "plane wave 

equivalent bore" since it is the bore whose input impedance, according to the 

plane wave approximation, would match that which was measured experimentally. 

Our aim is to find a bore where the multimodal method calculation of some 
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acoustic variable matches that which was measured experimentally. We do not 

know the multimodal open end condition without assuming an infinite baffle so 

it may be helpful to use the time domain response as a control for iteration. This 

does not depend on the choice of end condition until the primary reflections from 

the open end arrive. Our starting point is to calculate the plane approximation 

bore reconstruction from the measured input impulse response. This is also a 

"plane wave equivalent bore." 

In the experimental impulse response measurement some energy was lost to 

the non-planar modes within the instrument. The measured reflected amplitudes 

are therefore smaller than we would expect from plane wave approximation scat-

tering. A slight under-prediction of the cross-section changes within the real 

instrument is therefore expected in a plane wave equivalent bore. 

The impulse response of the plane wave equivalent bore may then be calculated 

by the multimodal method. This calculation will not match the experimentally 

measured input impulse response. Firstly, we expect the amplitude of the reflec-

tions to be reduced because the plane wave equivalent bore slightly under-predicts 

the cross-section changes within the real instrument. Secondly, as mentioned be-

fore, the correct radiation impedance is not known. We must assume that the 

instrument is terminated in an infinite baffle, so the impulse responses may differ 

slightly after the primary reflection from the open end returns to the input. 

By comparing the impulse response of the plane wave equivalent bore with 
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that measured experimentally, we have information on how the reconstructed bore 

needs to be changed to bring it in line with the experimental results. An iteration 

procedure could be used where we modify the reconstructed bore, calculate the 

impulse response including higher modes, compare the result with experiment 

and continue. The final result would be achieved when the difference between 

the multimodal calculation of the impulse response of the bore profile and the 

experimental impulse response is minimised. Obviously, the information in the 

impulse response after the primary reflection from the end condition would not 

be used in such a procedure because of the end condition problem. 

In order to provide a guide for how the bore reconstruction deviates from 

the actual bore, the difference between the measured input impulse response and 

the calculated input impulse response of the bore reconstruction could be fed into 

the reconstruction algorithm. This would return an almost cylindrical bore which 

expands at points along the bore where the reconstruction is under-predicting and 

contracts where the bore is over-predicting. The iteration procedure should then 

proceed quickly towards a final answer. 

The iteration procedure may be too computationally taxing if every point in 

the bore is varied separately by the iteration procedure. The bore profile could 

instead be represented by a polynomial fit to a number of points along the bore. 

This gives a number of degrees of freedom which can be changed by the iteration 

procedure before their effect on the response is calculated. In general, convergence 
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will be faster if the number of degrees of freedom is reduced. Too low a number of 

degrees of freedom however will mean any improvement due to the modelling of 

multimodal effects will be counteracted by over simplification of the bore. Since 

a multimodal calculation must be performed at each step of the procedure, the 

computational power required would be large. 
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Chapter 7 

Improvements to pulse 

reflectometry 

7.1 Introduction 

In this chapter refinements to pulse reflectometry are presented. First we remove 

the need for a dc tube between the source tube and the instrument under test. 

The main improvement this provides is a greater level of convenience but the 

elimination of the inevitable small discontinuity between the source tube and 

dc tube is another benefit. Next we show changes which increase the length of 

the time window in which the object reflections can be measured, allowing the 

measurement of longer instruments. Using a longer source tube means that there 

is more time to sample the object reflections before they suffer interference from 
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the source reflections. A post-processing method for source reflection cancellation 

is also presented. 

All experiments presented so far use a pulse-like excitation signal. The ob-

vious advantage of this is to minimise the processing which must be done to 

determine the input impulse response. However, the corresponding disadvantage 

is that we are limiting the amount of energy input into the system. This chapter 

therefore also includes the use of pseudo-random noise signals called maximum 

length sequences (MLS) in pulse reflectometry. These signals share many prop-

erties with white noise, but one significant difference is that the phase response 

of the system can be extracted in addition to the frequency response. 

7.2 The virtual DC tube method 

Physically, having a dc tube between the source tube and object under test is 

inconvenient. Also the join between source tube and dc tube will not be perfectly 

smooth, so a small reflection will be present at the start of the input impulse 

response. As discussed in section 5.8 the result is that only half of the available 

two milliseconds in the input impulse response data is used in the dc offset cal-

culation. As an alternative we present a new method described as the virtual dc 

tube method [62]. The effect of the dc tube is simulated by starting recording the 

reflections from the object under test 2ms earlier, using a digital filter (see section 
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5.4.2) to add the losses that would have occurred if the sound had travelled across 

a dc tube. 

In effect, the last 40cm of the source tube has been turned into a virtual 

dc tube, perfectly joined onto the source tube. Notice how about 2ms into the 

dc tube method reflections in figure 5.11 there was a small reflection from the 

join between the source tube and the dc tube. The object reflections measured 

using the virtual dc tube method from figure 7.1 show that the problem has been 

avoided entirely. 

2.5 

1.5 

0.5 

15 	20 	25 	30 	35 	40 	45 
Time (milliseconds) 

Figure 7.1: Object reflections using virtual dc tube 

A bore reconstruction achieved using the virtual dc tube method is shown in 

figure 7.2. The reconstruction is much the same as that achieved using the dc 

tube method (see figure 5.12) except that the small error of about 0.1mm in the 
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average value of the radius of the last cylindrical section is absent in the new 

method. Because the frequency bandwidth of the measurement is not altered, 

the oscillations at the changes of cross-section and at the open end are of the 

same size irrespective of whether the virtual dc tube method is used. 

9 11 ------------------------ 	1 

8 

0 

0 

E 7 

4 
Axial distance (metres) 

Figure 7.2: Reconstruction of test object consisting of stepped cylinders 

7.3 Measuring longer objects 

If the leading edge of the object reflections undergoes a further reflection from 

the loudspeaker and returns to the microphone before the original trailing edge 

arrives, then the measurement of the object reflections will be disturbed. For 

this reason the measurements presented so far have a time length of 21 1 /c = 

2 x 7.37/343 = 0.043secs where 1 1  is the length of source tube between the mi- 
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crophone and the source (see figure 5.2). The length of instrument that can be 

measured must be less then 21 since the primary reflections from the end of 

such an instrument would arrive at the end of our time window simultaneously 

with the source reflections. It is not realistic to expect that such a limit will be 

approached in practice, however, since we would lose the secondary reflections 

from the object which carry on after the last primary reflection has arrived. In 

practice the maximum length measurable depends both on 1 1  and the radius of 

the object in question since long sections of large radius will mean low losses 

and many secondary reflections will return before all of the reflection sequence is 

finished. 

Increasing 1 1  will mean that the source reflections will arrive later and the 

measurement time window will be longer. The aim of this section is to measure 

long objects so we will therefore use a reflectoineter with 1 1  = 9.68m rather than 

the 7.37m used up to now. This option is not without its drawbacks. Firstly, 

since the losses in the source tube reduce all frequency components, a higher 

amplitude of sound must be input in order to preserve the signal to noise ratio on 

sampling the reflections. This is easily achieved by turning up the volume on the 

audio amplifier used in pulse production, although when taken to extremes this 

could damage the amplifier and speaker or cause non-linear sound propagation 

not accounted for in the analysis. Also, the high frequencies are attenuated 

proportionally more than the low frequencies meaning that the further a pulse 

travels, the wider it gets. The source tube section 12 must therefore also be 

IW 



lengthened to allow the longer input pulse to completely pass the microphone 

before the object reflections arrive. For the reflectometer in this section 12 = 

6.52m was chosen (3.10m was used previously). 

7.3.1 Source reflection cancellation method 

The increase of the length of the source tube to measure longer objects is clearly 

limited by the resulting larger losses in the source tube. Since the aim is to 

isolate the backward going object reflections from the waves going forward from 

the source, the use of multiple microphones is a possible technique. This has 

been attempted by Louis et al. [63]. Active real-time cancellation of the source 

reflections has also been attempted by Sharp [64] with limited success. Here we 

discuss a method of cancelling the source reflections by post-processing [62]. 

We define the backward travelling calibration pulse as I. This is shown in 

the first 40ms of figure 7.3. The last 40ms of figure 7.3 shows the forward going 

reflections of the calibration pulse from the source which we will refer to as I. 

The filter H representing the source reflection function can be derived from these 

signals by deconvolution: 

I(w)I(w) 
I(w)I(w) + q 

(7.1) 

Now consider the reflections from a extended object. We define R as the first 
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Figure 7.3: Calibration pulse including source reflections 

part of the object reflections, consisting entirely of backward travelling waves. 

R, the second part of the object reflections, however, is in general R3 = Rt  + RI 

where Rt is the forward travelling reflection of R2  off the loudspeaker and RI  is 

the remains of the backward travelling wave. In order to reconstruct the bore we 

want to isolate RI  by calculating Rt  and subtracting: 

R(w) = H(w) x R(w) 	 (7.2) 

and R7 = R3  - Rt 

0 
0, 

I$II] 



7.4 Results 

Figure 7.4 shows the object reflection data for a test object consisting of stepped 

cylinders and is a longer version of the test object used in chapter 5. The first 

section of the object is a 50 mm long section with a radius of 5mm (the same 

as the source tube), the second section is 650 mm long with an internal radius 

of 6.25 mm and the third section is 650 mm long with an internal radius of 9.4 

mm. The object reflections are not long enough in this example to overlap with 

the source reflections, which can clearly be seen starting at around 60 ms. 
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Figure 7.4: Reflections from long stepped cylinder test object including source re-
flections 

Figure 7.5 displays the second half of the object reflection data, labelled R3 . 

Also shown is R, the result of applying the source reflection filter to give the 
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forward travelling component of R,, due to source reflections. RI is the result 

of subtracting R+
t  from R3  to give the backward travelling component, due to 

any remaining object reflections, with the source reflections cancelled. As we 

expect for this example, the data in the region shown consists entirely of source 

reflections with R7 equal to zero, give or take a small amount of noise. Figure 

7.6 shows the full object reflection data, before and after the cancellation of the 

source reflections. The success of the post-processing subtraction of the source 

reflections can be clearly seen. 
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Figure 7.5: Second half of long stepped cylinder test object reflections 

Figure 7.7 on the other hand shows the reflections from a French horn. The 

object reflections are too long to be separated in the time domain from the source 

reflections. Subtracting the source reflections is therefore vital if the response of 

the instrument is to be measured. 
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Figure 7.6: Long stepped cylinder test object reflections 

Figure 7.8 and figure 7.9 show bore reconstructions of the French Horn. Both 

use the virtual dc tube method. The line labelled "Old method" shows the re-

constructed bore of a French horn using the pressure signal shown in figure 7.7 

truncated just before the source reflections arrive. There is an upward trend in 

the bore reconstruction of a section of the pipe which is, in reality, cylindrical. 

The reconstruction is not accurate because the object reflections have not com-

pletely died out at this point. Also shown is a line labelled "Crook," which shows 

the reconstructed bore of the detached crook (the section of tubing between the 

mouthpiece and the rest of the instrument). Since the crook section is short, 

the object and source reflections are separated in the pressure recording and, in 

this case, truncation of the signal gives an accurate reconstruction. The "New 

method" result uses the post processed version of the figure 7.7 object reflections 
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Figure 7.7: French horn object reflections 

with the source reflections removed. 

The source reflection cancellation reconstruction of the French horn agrees 

with the reconstruction of the crook section showing that the technique enables 

longer objects to be measured accurately. While we have not verified that the 

remainder of the horn is reconstructed correctly (in fact there will still be errors 

due to higher mode propagation at the hell), it is clear that deviation has been 

greatly reduced. 
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Figure 7.8: French horn bore reconstruction, first 3.5 metres 

7.5 Maximum length sequences 

The method used so far for measuring the input impulse response involves in-

jecting a pulse into the source tube and measuring the reflections. By using a 

signal that continues over a longer time interval we may put more energy into 

the system, improving the signal to noise ratio and removing the need to average 

over 1000 measurements. Obviously, white noise cannot be used because we need 

the phase information as well as frequency response. Equivalently there must 

be some way of analysing the measured reflections to recover the time domain 

response to a single pulse. 

One solution is to use a pseudo-random binary signal called a maximum length 
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Figure 7.9: French horn bore reconstruction, first 4.3 metres 

sequence (MLS). An MLS signal consists of an apparently random sequence of 0's 

and l's that has a flat frequency spectrum for all frequencies up to the Nyquist 

frequency with the exception of the dc value. It is also computationally efficient 

to generate such a sequence on computer and unlike white noise an MLS signal is 

deterministic and therefore repeatable. The input impulse response of a system 

can be extracted by a cross-correlation procedure. This method of excitation has 

been employed frequently in measuring the input impulse response of rooms for 

reverberation measurement [65, 66, 67]. Here we discuss how MLS signals may 

he generated and the resulting measurements analysed. The discussion leads on 

to the application of MLS excitation in acoustic pulse reflectometry. 
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7.5.1 Generating an MLS sequence 

Generation of an MLS signal can be done using a feedback shift register [68, 651. 

The shift register consists of a group of m binary memory elements in a line. 

At each time unit the numbers held in the memory elements are passed on one 

step to the right and the vacated element on the left is generated by a recursion 

relation which depends on the number of memory elements, m. The values which 

exit the element group on the right hand side form the output sequence. 

There are several recursion relations that may be used to generate an MLS. 

We will not derive these, rather we will use the simplest (and therefore most 

computationally efficient) available. As an example, consider a shift register of 

m = 4 elements. The recursion relation we use is directly related to the primitive 

polynomial [69] 

h(x) = x4  + x + 1. 	 (7.3) 

The memory elements corresponding to the terms in h(x) are added and the 

result taken modulo 2 (ie. the remainder when divided by two) to give the left 

entry on the following time step. As is shown in figure 7.10, the term 1 in h(x) 

corresponds to the value held in a, the term x refers to the term a+i and the term 

x4  is not part of the sum because there are only 4 memory elements. The primitive 

polynomial therefore corresponds to the recursion relation a2+4 = a+i + a 2 . The 

last and second last elements are therefore used to calculate the new left hand 
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element, and since the sum is taken modulo 2 the operation is equivalent to the 

exclusive OR gate as shown in the figure. 

h(x)=x4  +x+ 1, i44  

~ i 
 output 

X 
4 	

+ x + 

Figure 7.10: Feedback shift register and recurrence relation for m = 4 

In order to generate an MLS in practice we have to specify an initial state for 

the memory elements. Here we will use 1111. The last and second last elements 

are both 1, so the sum is 2, which when taken modulo 2 gives a result of 0 for 

the left hand element at the next step. The other elements shift one step to the 

right, giving 0111 as the next state of the four elements, and the 1 which exited 

on the right is the first term in the output sequence. 

Table 7.1 shows the state of the memory element group at each time step and 

the MLS can be seen building up vertically down the right hand column. The 

MLS sequence appears random, but repeats with a period of 15. In fact, the 

element group takes every binary value possible except 0000 which would be a 

dead end for the sequence since a 1 would never be generated. The number of 

possible values for a binary number with m digits is 2 so the maximum length 

for an MLS signal must therefore be 2m 
- 1, hence the name maximum length 
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Time step, i Elements, (a2+3,ai+2,aj+i,aj)  MLS signal, a2  
0 1111 1 
1 0111 1 
2 0011 1 
3 0001 1 
4 1000 0 
5 0100 0 
6 0010 0 
7 1001 1 
8 1100 0 
9 0110 0 

10 1011 1 
11 0101 1 
12 1010 0 
13 1101 1 
14 1110 0 
15 1111 1 
16 0111 1 

Table 7.1: MLS element sequence for m = 4 

sequence. It follows that the initial state is unimportant to the properties of the 

MLS signal (as long as 0000 is not taken) since the sequence covers all non-zero 

states and is periodic. 

For other values of in, the only difference in the method for generating an 

MLS is that we use m memory elements and we must use a different primitive 

polynomial, of order m. The polynomials up to m = 168 are listed by Stahnke 

[69] and are shown in recursion relation form up to m = 20 in table 7.2. The 

length of an m = 20 sequence is 220 - 1 = 1048575 samples which corresponds to 

over 23 seconds of sound when played as an acoustic signal at 44.1 kHz. 
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rn Recursion relation 
1 a2+1=a. 
2 a+2 = a+i + a2  

3 a 	= a+i + a2  

4 a 	= a+i + a2  

5 a 	= a+2 + a2  

6 a2+6 = a2+i + a2  

7 a 7  = a+i + a 

8 a+s = a+6 + a2+5 + a2+i  + a2  

9 a 9  = a2+4 + a2  

10 a+io = a2+3 + a2  

11 = a+2 + a2  

12 a+12 = a+7 + a2+4 + aj+3 + a2  

13 a+13 = a1+4 + az+3  + az+i  + a 

14 a+14 = a+12 + a+11 + a+i + a 

15 a+15 = a+i + a2  

16 a2+16 = a+s + a2+3 + a1+2  + a2  

17 a+17 = a+3 + a2  

18 a+18 = a+7 + a2  

19 a+19 = a2+6 + a+s + az+i  + a 

20 a+20 = a2+3 + a2  

Table 7.2: Recursion relations for MLS of length 2 - 1 
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7.5.2 Auto-correlation property of MLS 

In order to use an MLS in a measurement, it is preferable to convert the signal to 

one which oscillates around zero rather than above zero because this reduces the 

dc offset and therefore improves the efficiency of loudspeakers and measurement 

systems. This can be done by defining s as a sequence obtained by replacing 

every 0 with 1 and replacing every 1 with -1 as follows: 

= (_l)ao,(_l)al,(_l)a2,(_1)a3.... 	 (7.4) 

The auto-correlation function, p, is defined as [68] 

P (i) = 	 (7.5) 

where n = 2 - 1 is the length of the sequence. Note that the subscript i+ j can 

exceed n. When this happens the subscript is taken modulo n (ie. n is subtracted 

so that s 3  is a circularly shifted version of s). The symbol * denotes complex 

conjugation which may be dropped in the current application because all entries 

in the sequence are real. 

For the MLS defined in equation (7.4), the auto-correlation becomes: 

A—D 
P 
	

= 	, 	 (7.6) 
n 
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where A is the number of times the elements .s 3  and 	agree and D is the 

number of times they disagree. The first term in p is given by i = 0 50 33  and 

agree for all values ofj giving p(0) = 1. When 1 < i < n—i we are calculating the 

agreement between the signal and a circularly shifted version. Since the signals 

appear random, it is intuitive that the agreement and disagreement should be 

almost equal. The proof in [68] shows that A - D = —1 for 1 < < n - 1. The 

auto-correlation of the MLS is therefore 

1 : i=0, 
P (i) = 	 (7.7) 

—1/n : i<i<n—i, 

which is distinguished from a perfect digital impulse by the presence of the small 

non-zero value when i 0 0. While the frequency spectrum of an ideal digital 

impulse is equal for all frequencies, the frequency spectrum of p is the same for 

all frequencies except for the zero frequency component. 

7.5.3 Extracting the system impulse response from MLS 

measurement 

The frequency content of the signal recorded at the microphone will contain 

information on the frequency response of the system under test. In order to 

go beyond this and get the impulse response of the system, we must use the 

auto-correlation property of the MLS signals. First recognise that the measured 
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signal is the convolution of the MLS and the system impulse response. We will 

define the input impulse response of our system as h. We will refer to h as the 

system impulse response to prevent confusion with the input impulse response 

of a pulse reflectometry test object. This distinction will be discussed in more 

detail in section 7.5.4. The MLS signal is s, so the pressure, y, measured at the 

microphone will be 

	

y=s*h 
	

(7.8) 

where * here denotes convolution. Performing correlation with respect to s on 

both sides of equation (7.8) gives [70]: 

(7.9) 

where /ab is notation for the correlation of a and b. Note that convolution in 

the time domain is multiplication in the frequency domain, so the fact that the 

frequency spectrum of p is flat, except for the zero frequency component, means 

that h is left unchanged by convolution with p except for a small dc offset of 

the order of 1/n. The impulse response of the system can therefore be extracted 

from the measurement of the system response by correlation with the MLS input. 

Correlation is defined as 

q sy (i) - 	 = 	sj_iy; 	 (7.10) 

173 



which can be converted to a matrix notation by making a matrix S consisting 

of n circularly shifted versions of s [70]: 

sy 
	 (7.11) 

The elements of S are given by S71 (i,j) = 	where j - i is taken modulo n so 

that the successive rows of the matrix contain s shifted one step to the right each 

time with the values leaving on the right appearing on the left. Y is a column 

vector of the measured system response and 4, a column vector of the resulting 

correlation. 

The cross-correlation can also be performed in the frequency domain by con-

sidering the close relationship between cross-correlation and convolution. Decon-

volution was performed by frequency domain division in chapter 5. Convolution 

on the other hand may performed by multiplication in the frequency domain. 

Cross-correlation of two signals is the reverse of the first sequence convolved with 

the second sequence [59] pp.92-96: 

4),b(t) = a(-t) * b(t). 	 (7.12) 

Reversal in the time domain means complex conjugation in the frequency domain: 

fft(a(-t)) = (fft( a(t)))* . 	 (7.13) 
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It therefore follows that the cross-correlation of two signals in the time domain 

becomes the conjugate of the first signal multiplied by the second signal in the 

frequency domain. 

fft(ab) = (fft( a))* x (fft(b)). 	 (7.14) 
H 

Discrete Fourier transforms are used for the analysis in this chapter. The speed of 

analysis is acceptable for the measurements we present here. Before acceptable 

computational power was available, it was necessary to perform interpolation 

to make the length of the sequence up to 2m  enabling the use of fast Fourier 

transforms [66]. Another option is the fast Hadamard transform technique as set 

out in Borish and Angell [70] which does not require interpolation and is less 

computationally expensive. 

7.5.4 Acoustic pulse refiectometry measurement with MLS 

excitation 

It is important to realise at this stage that the system impulse response, h, of a 

reflectometer is not simply the input impulse response of the object on the output 

end of the reflectometer; it includes the impulse response of the loudspeaker, the 

losses in the source tube, the input pulse passing the microphone on its way to 

the loudspeaker, the source reflections and so on. The system impulse response, 

h, that we have calculated can be chopped to isolate the object reflections. These 
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object reflections are equivalent to those that can be measured by the conven-

tional pulse excitation except that our signal to noise ratio is much improved. 

The deconvolution of object reflection and calibration pulse measurements is still 

necessary when using MLS excitation. 

MLS signals are inherently periodic with a period of in 2  - 1. In equation 

(7.8) the system impulse response, h, (which is not periodic) is convolved with 

the MLS signal, s. The result is that y is the periodic response of the system to 

continuous excitation by the periodic MLS. When we perform our experiments, 

we must choose an MLS signal whose period time is larger than the total response 

time of the system in order to prevent the end of our calculation of the system 

response folding back onto the start. Similarly, we must play the MLS signal end 

to end twice and ignore the response during the first run through in order to make 

sure that the response we are measuring conforms to the periodicity condition. 

Figure 7.11 shows the signal recorded at the microphone when an MLS signal 

of order m = 15 is fed into the loudspeaker. The shorter reflectometer with 

1 1  = 7.37m and 12 = 3.10m is used and data acquisition is performed in Matlab 

for Windows with a Guillemot soundcard at a sample rate of F3  = 4410011z. 

Sampling of the microphone reflections is started and then the start of the MLS 

signal is fed to the loudspeaker. The signal from the loudspeaker should take 

l i /c = 7.37/343 0.02s to reach the microphone. In fact, the first 0.04 seconds 

of the recording consists only of undesired background noise, showing that there 
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is delay of 0.02 seconds between the start of the sampling and the start of the 

MLS signal leaving the loudspeaker. This delay is caused by computer processing 

time and means that care must be taken when we are isolating the part of the 

system impulse response corresponding to the object reflections or calibration 

pulse. 

The time period for a in = 15 sequence is (2 - 1)/F3  = 0.743 s which will 

also be the time length of our resulting measurement data for the system impulse 

response. This is considerably longer than the total time taken for an acoustic 

pulse to decay to zero as can be deduced from the fact that the pressure waves 

are much reduced by losses and reflection from the loudspeaker after 0.1 seconds 

in say figure 7.3. As mentioned previously, both the MLS and measured response 

are assumed to be periodic by the theory. Figure 7.11 shows the microphone 

pressure sampled while two periods of the MLS are played by the loudspeaker, 

end to end. The microphone signal during the second period therefore features 

the response to the last part of the previous period of excitation so satisfying the 

periodicity requirement. This signal is shown isolated in figure 7.12. 

The auto-correlation of the MLS input and the recorded response from figure 

7.12 was performed in the frequency domain using equation (7.14). Figure 7.13 

shows the result. This is the full system impulse response and features the input 

pulse passing the microphone, the reflection of the pulse from the closed end of 

the source tube and the source reflections. The response shows that all acoustic 
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Figure 7.11: Microphone signal for excitation with a m = 15 MLS signal repeated 
twice 

energy decays to zero about 0.2 seconds after a pulse is produced as was expected. 

Figure 7.14 shows the calibration pulse or reflections from the closed end of 

the source tube obtained by chopping the system impulse response. The exact 

recorded time at which the calibration pulse arrives in the system impulse re- 

sponse depends on the time lag between the starting of sampling and the starting 

of the excitation as mentioned previously. This time lag depends on the soft- 

ware, hardware specifications and the computational load. In order to avoid this 

problem, the sample in the system impulse response with the maximum value 

(corresponding to the maximum of the input pulse) is first found. The position 

of the reflections from the closed end or test object can be defined relative to 

this point, meaning that the input/output time lag does not effect the results. 
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Figure 7.12: Microphone signal chopped to show one period of response to continuous 
excitation with a m = 15 MLS signal 

This experiment can be repeated with a musical instrument or test object on the 

end of the source tube and analysed with the calibration pulse measurement to 

obtain the bore reconstruction and input impedance. By selecting appropriate 

delay times, the virtual dc tube and source reflection cancellation methods can 

be used. 

Figure 7.15 shows the object reflections obtained by chopping a system im-

pulse response measurement performed with the short stepped cylinder test object 

used in chapter 5 on the end of the source tube. As with the previous experiment 

an MLS of order m = 15 was used. The object reflections were isolated from the 

system impulse response 2ms earlier than for the calibration pulse, meaning that 
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Figure 7.13: System impulse response 

the virtual dc tube method can be applied. 

Figure 7.16 shows the resulting bore reconstruction with m = 15. Also shown 

is the result of performing the experiment with excitation with a much longer 

MLS signal of m = 19. Such an MLS signal will have a time length of (27" - 

1)/F8  = 11.89 s. Calculating the discrete Fourier transform of a signal this length 

takes several seconds with the current computational power available. Using an 

increased order means that more energy is added to the system, so improving 

the signal to noise ratio. The bore reconstruction with m = 15 measures the 

radius of the final cylindrical section to be 0.4 mm too large, while the m = 19 

measurement is much improved, averaging just 0.1 mm more than the correct 

value. The level of oscillations in supposedly cylindrical sections of bore are 
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Figure 7.14: Calibration pulse isolated from system impulse response 

slightly reduced by the increase in order. This implies that the noise level at high 

frequency is reduced by the fact that we have added more energy to the system. 

The fact that the m = 19 reconstruction of the last cylinder has an average value 

closer to the correct radius is evidence of greater accuracy at low frequencies. 
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Figure 7.15: Object reflections isolated from system impulse response 
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Chapter 8 

Conclusions 

8.1 Achievement of aims 

8.1.1 Aim 1 

The first aim was to study and develop the theory of multimodal propagation in 

acoustic horns, in order to enable the influence of higher mode propagation to be 

assessed. 

The theory of propagation of modes in pipes has been reviewed. Plane wave 

propagation was discussed, followed by the theory of multimodal propagation. 

This work centred on a method of calculation of the input impedance of an 

acoustic horn. This quantity gives information on the resonance properties. Also 



discussed was a method for studying the pressure field inside the horn. New work 

presented includes the treatment of ducts of rectangular cross-section in addition 

to the existing theory for circular cross-section. In order to perform calculations, 

the properties of radiation of sound from the open end must be characterised by 

calculation of the radiation impedance. 

An expression for the multimodal radiation impedance of both cylindrical 

and rectangular ducts terminated in an infinite baffle has been derived. From 

the initial quadruple integral expression the problem was reduced to one dimen-

sion in cylindrical geometry and two dimensions in rectangular geometry with 

the singularity removed to allow practical numerical integration. Results are pre-

sented highlighting the difference between direct and coupled impedances and 

comparisons made between the geometries. 

Numerical calculations of the input impedance and pressure field of the bell 

section of a trumpet then followed. The inclusion of just one extra mode made 

a large difference in the input impedance, modelling the absorption of energy 

from plane wave propagation by mode conversion. Inclusion of each successive 

extra mode made changes of ever decreasing magnitude to the input impedance 

calculation. 

The reflection of sound from a single step between two infinite tubes is trivial 

if the plane wave approximation is used. We went on to discuss the reflection from 

such a geometry when multimodal propagation is used. In this case the reflected 

IMB 



amplitude of a sinusoidal pressure wave is frequency dependent. Calculations of 

the frequency response were presented. The results demonstrate how the reflected 

amplitude increases with frequency in the low frequency range where only the 

plane wave mode can propagate. The time domain input impulse response was 

then calculated by Fourier transform. If an ideal impulse is incident from one 

side of the geometry, the plane wave component of the reflection is a pulse with 

a wake consisting of oscillations. These oscillations are caused by a peak in the 

frequency domain reflection at the first cut-off frequency; only the plane wave 

mode is propagating below the cut-off frequency but the plane wave mode and 

one higher mode may propagate above cut-off. 

8.1.2 Aim 2 

The second aim was to review acoustic pulse reflectometry as a means of mea-

suring the properties of brass musical instruments, and to perform experiments 

to give examples of its use. 

The theory behind acoustic pulse reflectometry has been reviewed. This in-

cluded the calculation of the input impedance and bore profile from the input 

impulse response. An existing practical system used for the measurement of the 

input impulse response of brass instruments was then set out. Measurements of 

the input impulse response, input impedance and bore profile were carried out 

on a test object consisting of two cylindrical sections. Because the actual bore 
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profile was well known, the accuracy of the of the layer-peeling algorithm was 

readily quantified to be around 0.1mm for this object. Also, the input impedance 

was compared with theoretical calculations using the multimodal theory for both 

the stepped tube test object and the bell section of a trumpet. 

8.1.3 Aim 3 

The third aim was to develop acoustic pulse reflectometry to enable the measure-

ment of longer instruments and to speed up the measurement process. 

In the original pulse reflectometry method, a cylindrical connector called the 

"dc tube" was placed between the source tube and the object under test. This 

was necessary to enable easy removal of the dc offset in the measurement upon 

which the bore reconstruction is highly sensitive. By developing the virtual dc 

tube method, the need for attaching this cylindrical connector was eliminated, 

making the measurement process quicker, more reliable and compact. In addition 

to this, a source reflection cancellation method was shown to successfully remove 

the reflections from the source, enabling the measurement of longer objects. MLS 

excitation has been shown to be useful for improving signal to noise ratio, thereby 

removing the need to perform many measurements and average the results. 
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8.1.4 Aim 4 

The fourth aim was to discuss the possibility of including higher modes in the 

analysis of pulse reflectometry data. 

The existing algorithm used to calculate the bore profile of an object from 

the measured input impulse response assumes plane wave propagation. The pos-

sibility of including the frequency dependence of primary reflections derived from 

multimodal theory within the bore reconstruction algorithm has been discussed. 

Projection matrices have been derived which allow projection of forward and 

backward going multimodal pressure waves across discontinuities and cylinders. 

Deducing the cross-section changes is complicated by the frequency dependence 

of the reflections, even when the forward and backward going waves are known 

from multimodal calculation. This problem is an area suitable for further work. 

A large increase in computational load is another problem. 

An iteration procedure could be an alternative option. The multimodal 

impedance method could be used to calculate the input impulse response of the 

bore profile obtained by the plane wave bore reconstruction. Comparison with 

the actual measured input impulse response would then give a useful estimate of 

the error in the bore reconstruction calculated using the plane wave algorithm. 

The bore could then be corrected to compensate for this difference and the pro-

cess of correction repeated iteratively until a bore is obtained for which the input 

impulse response agrees with that measured experimentally. 
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8.2 Future work 

Ideas for the development of pulse reflectometry which may be useful for improv-

ing the technique will now be reviewed, followed by a discussion of possible future 

work on multimodal propagation. 

One of the fundamental limitations of the pulse reflectometry is the bandwidth 

of the source of acoustic energy. The compression driver loudspeakers used at 

present give little energy above 10 kHz, due to their limited frequency response 

and due to losses in the source tube. This means that sharp steps in the bore 

are reconstructed relatively poorly. More of a problem, however, are the very 

low frequencies (50 Hz and below) which have long wavelengths, so will have 

an influence on the general upward and downward trend of the reconstructed 

bore. In particular, no energy may be produced by the loudspeaker at the zero of 

frequency, hence the zero frequency bin in the frequency domain response is not 

accurately measured. This means a lack of accuracy in the dc offset in the time 

domain input impulse response, which is why the dc offset must be calculated by 

averaging the response from a cylindrical tube section (an actual or virtual dc 

tube) and subtracted in post-processing. 

An alternative is to deduce the value of the zero frequency bin from first prin-

ciples. The zero frequency bin of the input impedance must be zero for all open 

ended instruments because pressure will not build up due to a steady velocity. 
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Studying the equations relating the frequency domain input impedance and in-

put impulse response reveals that the zero frequency bin of the input impulse 

response will have a value of -1. Setting the zero frequency bin of the frequency 

domain input impulse response to -1 before inverse Fourier transforming to the 

time domain should then remove the dc offset. While much effort has been ex-

pended in removing the dc offset in more complicated ways, preliminary results 

suggest that this simple technique is effective for dc offset removal. It should be 

noted that this method has not been implemented previously due to bandwidth 

problems which we will now discuss. 

There is an inevitable discontinuity between the end of the source tube and the 

object under test. Ideally this would show as a small impulse at the start of the 

input impulse response. Because of the limited bandwidth of the measurement 

this impulse is spread over several samples in the time domain, both before and 

after the t = 0 sample. There are no samples before t = 0, so the measurement is 

in some way corrupted. A signal introduced "before" the first sample is actually 

observed in the final few samples of the signal because Fourier transforms are 

inherently periodic. This apparently non-causal signal represents part of the 

energy of the reflection from the first step however, and should be present after 

the first sample in the input impulse response if a bore reconstruction is to be 

accurate. We may achieve this by using the virtual dc tube method to delay the 

object reflections. Because the dc offset was calculated by averaging the response 

over the first couple of milliseconds, the dc tube was previously around 40 cm 



long. The method suggested here would only require a very short virtual dc tube 

whose length corresponds to the distance sound propagates in a few time samples. 

As mentioned previously, the bandwidth is partly controlled by losses. High 

frequencies are attenuated by travel in the source tube much more strongly than 

low frequencies. The use of longer source tubes to enable measurement of longer 

objects accentuates this problem. A solution currently being investigated is to 

use multiple microphones. This enables the forward and backward going waves to 

be separated, so removing the problem of interference between the input signal, 

the reflected signal and the source reflections. The source tube can then be made 

far shorter, decreasing the losses at high frequency and increasing the bandwidth. 

A source tube with five microphones is currently being developed to enable large 

bandwidth measurement. Preliminary results for two microphones have been 

presented recently by van Walstijri et al. [71]. 

The formula used in deconvolution of the object reflections and calibration 

pulse to produce the input impulse response is another area of useful study. A 

constraining factor is included in the frequency domain division to prevent high 

frequency noise occurring. The effect of this is to filter out any high frequencies 

in the input impulse response. This is not mathematically rigorous; the answer 

depends slightly on the arbitrary choice of constraining factor. Work on applying 

truncated singular value decomposition, a more advanced method of deconvolu-

tion, to pulse reflectometry data is discussed by Forbes et al. [72]. 
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A more minor improvement to the single microphone method of acoustic pulse 

reflectometry which may be applied to increase the speed at which experiments 

can be performed is to measure the calibration pulse simultaneously with the 

object reflections. At present, tho calibration pulse (the reflection from closing 

the end of the source tube) is deconvolved from the object reflections to calculate 

the input impulse response of the object. We may improve upon this by recording 

the full system impulse response, including the pulse passing the microphone on 

the way to the object under test. The calibration pulse may then be calculated 

by applying a loss filter to the recording of the pulse passing the microphone the 

first time, to account for the difference in propagation distance between the pulse 

passing the microphone initially and the reflections which return from the end of 

the source tube. The object reflections may be isolated as normal. This method 

will be especially easy to apply with MLS excitation because full system impulse 

response measurements have already been performed. 

The derivation of an expression for the multimodal radiation impedance of 

an open ended pipe without a baffle would be a productive area of research as 

it would enable increased realism, and therefore accuracy, in input impedance 

calculations. Further work is also necessary to include higher modes in a pulse 

reflectometry bore reconstruction algorithm using the approaches discussed in 

chapter 6. Optimisation methods are currently being studied with a view to cor-

recting the plane wave bore reconstruction algorithm results by minimising the 

difference between the theoretical input impulse response of the bore reconstruc- 
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tion and the measured input impulse response. 
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Appendix A 

Properties of Bessel functions 

-- )'n  /n _Yn 

0 0.0000000 16 51.0435352 32 101.3126618 
1 3.8317060 17 54.1855536 33 104.4543658 
2 7.0155867 18 57.3275254 34 107.5960633 
3 10.1734681 19 60.4694578 35 110.7377548 
4 13.3236919 20 63.6113567 36 113.8794408 
5 16.4706301 21 66.7532267 37 117.0211219 
6 19.6158585 22 69.8950718 38 120.1627983 
7 22.7600844 23 73.0368952 39 123.3044705 
8 25.9036721 24 76.1786996 40 126.4460139 
9 29.0468285 25 79.3204872 41 129.5878033 

10 32.1896799 26 82.4622599 42 132.7294644 
11 35.3323076 27 85.6040194 43 135.8711224 
12 38.4747662 28 88.7457671 44 139.0127774 
13 41.6170942 29 91.8875043 45 142.1544297 
14 44.7593190 30 95.0292318  
15 47.9014609 31 98.1709507  

Table A.1: Zeros of the Bessel function J1  to 7 decimal places 
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Standard integral from Jahnke and Emde [73] p146: 

fxJp(ax)Jp(13x)dx 
= i3xJ(cx)J_ i (/3x) - axJ_i (ax)J(13x) 

2 	
(A.1) 

01 -,62 

From Kreyszig [55] p230: 

J_(x) = (—i)J(x) 	 (A.2) 

and p232: 

[xJ(x)] = —xJ+1(x) 	 (A.3) 
dx 
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Appendix B 

Projection at a discontinuity 

B.1 General expression 

In this section we will derive the general equations resulting from matching the 

acoustic pressure and velocity fields on the air shared at a discontinuous join be-

tween two tubes of differing cross-sectional area. The geometry we are considering 

is shown in figure B.1. 

B.1.1 Pressure 

We denote the pressure field on surface 1 as p ( ' )  (x, y) and the pressure field on 

surface 2 as p(2) (x,y). In plane wave propagation we saw that the pressure is 

taken to be the same on both sides of the discontinuity. In the multimodal case 
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Figure B.1: Detail of a waveguide consisting of straight sections of length d joined 
discontinuously 

the pressure field is matched at either side. For the case shown where S 2  > S 

the pressure is matched on the air they share, S i . 

p ( 1 ) = 	on S, 	S1  <S2 	 (B. 1) 

Now the concept of orthogonality of the modes is used. Recalling our orthogo-

nality relation from equation (2.47): 

f = SS,,,,, 	 (B.2) 

it follows that the integration of the mode profile 0,, with a general pressure field, 

p will extract the component of the nth mode in the pressure field. Using the 

fact that the pressure may be expressed as a sum of the modes from equation 

2.26 (ignoring the exp(iwt) time factor): 

bpdS fbn 	bm Pm dS = Pn S. 	 (B.3) f  
S 	 s 	m=O 
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We will use p1)  and p2)  to denote the complex mode amplitudes on surfaces 1 

and 2 respectively. OM and ) are the corresponding mode profiles on surfaces 

1 and 2. Combining equations (B.1) and B.3) gives 

00 

D(1) - I I 1 p 1 dS = 
- 

fb(I)P(2 dS 	
1 	

b) 

	

f 	P ) dS (B.4) = n 1 	 n S1 

	

M=O 
 

which may be written as 

00 

p7l) 
= 	

J 	D m(2) 	 (B.5) 
- nm'  

m=O 

where 

	

Fnm 
= 11 b'bds. 	 (B.6) 

Si  
Si 

Using matrix notation, p(2)  is a column vector whose entries are given by p) 

and 

P (1)  = FP2 , 	S1  < S2 	 (B.7) 

where F is a matrix with elements F 70 . We have now proved equations (2.79) 

and (2.80) from chapter 2. 

We now have a formula giving the pressure on a smaller cross-section at a 

discontinuity from the pressure on a larger cross-section on the other side. Since 

S1  and S2  are assumed to not be separated by any distance along the z axis the 

formula holds whatever side the largest cross-section is on. Consider if S 1  > S2 . 

Now section 1 is the larger cross-section meaning that we just have to interchange 
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the labels 1 and 2 in equation (B.7): 

p(2) = p(i), 	S1 > S2 	 (B.8) 

where V is a matrix with the elements defined by 

V. = 	f 0(2) V) ( ' ) dS 
	

(B.9) 
S2  

S2 

B.1.2 Volume velocity 

In plane wave propagation the continuity condition was that the volume velocity 

must be equal on S1  and S2  meaning that the mass of air flowing out of S 1  equals 

the flow of mass into 82 at any given time. This implies that the velocity, which is 

assumed to be constant over the cross-section, is different on either side because 

of the difference of cross-sectional area. When we are treating the velocity field 

accurately in three dimensions it is clear that the velocity on the two surfaces 

should match and that the velocity into the x-y plane wall on the larger cross-

section is zero. For the case where 82 > 5 we have 

1) = V 2 	on .91, 81 < S2  

= 0 on 82 - S, S1 < 82 	 (B.10) 



where S2 - S1 is a shorthand for the x-y plane wall resulting from the part 

of surface 2 which is not shared with surface 1. In terms of volume velocities 

this means that U(1) /S 1  = U(2)/S 2  on S1  and u2 0 on 82 - Si . Now we 

will use equation (2.27) (again ignoring the exp(iwt) time factor) and use the 

orthogonality of the modes. This time in order to include the fact that the 

volume velocity is zero on 82 - S we must perform the integration over surface 

2: 

00  U ( 2) 

 f 2v2dS = f çf4v'dS +! '20d5 
= '

f (2) 	4)UdS 

(B.11) 

which may be written as 
00 

= 	Frn 
ir(1) 	 (B.12) n U rn  

rn=O 

where F is given in equation (13.6). It should be noted that the integration in F 

is this time over the 0,, on surface 1 and overO n  on surface 2, hence m and n 

in the subscript to F are swapped for equation (13.12). In matrix notation the 

result is 

U(2) = FTU(l), 	S1 < 82 	 (B.13) 

proving equation (2.83). The swapping of indices in F is denoted by the transpose 

operation represented by the superscript T. 

As with the pressure, when S > S 2  the volume velocity calculation can be 
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performed simply be interchanging the labels 1 and 2 giving equation (2.84): 

= VTU(2), 	S1 > 82. 	 (B.14) 

with V given in equation (13.9). 

B.2 Projection matrix in cylindrical geometry 

In polar coordinates equation (13.6) becomes 

R 1  2ir 

	

Fnm = 	f f V) (1) 0 (2) rd0dr 	 (B.15) 
00 

Substituting in equation (2.48) for 	(r) and performing the integration with 

respect to 0 gives: 

R1 

Fnm = 2 	
2 	f rJo (-y.r/R,)Jo (-ym r/R2 )dr. 	(B.16) 

R 1 J0 (y)J0 (y7 ) 

0 

This is in the form of the standard integral from equation (A.1) of appendix A. 

Substituting in the variables: x = r, p = q = 0, a = -y/R1  and 8 = -y,,,/R 2  gives 

( 	2 

= RJ0(yn)Jo(m)) 
X  

(7m /R2)Jo(yn 1/Ri )J_ 1  (y 1 r/R2 ) - ('yr/R i )J_i  (yr/R i  )Jo(ymr/R2) 
r=Ri 

('y/R1)2 - ("ym/R2)2 	 r=0 

(B.17) 
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When the evaluation is carried out the contribution when r = 0 is zero giving: 

= RJ0 (mn )J0 ( m )) 
Fnm ( 
	2 

( m Ri /R 2 )Jo ('mn )J_i ('ym &/1 2 ) - (yn )J_i ("mn )J0 (ym R i /R 2 ) 
 

('y/R1)2 - ('ym/R2)2 

Now noticing from equation (A.2) that L i (x) = —Ji (x) and using the fact that 

'y is a zero of J1  the second term vanishes: 

Fnm(
2) 

('ymRi/R2)J0(7n)Ji(ymRi/R2) 
 

= RJ0(n)J0(m) 	( 1 /R 2 ) 2  - (/R 1 ) 2  

Expressing this in terms of the ratio of the radii, 0 = 	we get 

2,8 -y. J, (0 -y.) 
Fnm = (/322 - 	

( B.20) 

hence we have proved equation (2.85). 

The integration used to obtain the analytical expression for Vnm is identical 

to that for Fnm  except that the labels are interchanged for surface 1 and surface 

2. Interchanging R 1  and H2  means that 0 = R 1 /R 2  will be replaced with 17/3 = 

R2 /R 1  giving V,(/3) = Fnm (1113). 
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Appendix C 

Inductance method 

The inductance method due to Kergomard and Garcia [57] is reviewed here. The 

multimodal method was treated and the results used to get a polynomial for the 

frequency dependent inductance, L, so that the formula 

pi =p2 +iwLU, 	U1 =U2 =U  

matches the multimodal treatment when 0.05 < R 1 /R 2  < 0.95 and 0.001 < 

kR 2  <3.5. Here Pi  is the pressure immediately to the left of the discontinuity and 

P2 is the pressure immediately to the right of the discontinuity. U is the volume 

velocity, matched on both sides as with the plane wave approximation. The 

pressures and volume velocity are scalars here, not vectors since the multimodal 

effects are represented by the inductance. 
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Now we will work out the reflectance for a plane wave incident on a disconti-

nuity between two infinite cylinders. We do this by expressing both the equations 

in (C.1) in terms of forward and backward going waves and solving. The pressure 

on the left is the sum of incident and reflected waves: P1 = p + p. The pressure 

on the right is simply the transmitted term P2 = P2 - 

The volume velocity on the left is then 

U1  = (p - pfl (Si  /pc) 	 (C.2) 

while on the right the volume velocity is 

U2  = p(S2 1pc). 	 (C.3) 

From equation (C.1) the volume velocity is the same on each side of the discon-

tinuity for this method giving: 

P =  (74W - pfl(Si /S2 ). 	 (C.4) 

Now we turn to the first part of equation (C.1). Substituting in the pressure 

as the sum of the forward and backward going waves and putting U = U1  = 

(p;- - pfl (Si  /pc) gives 

P11 +pr =p +iwL(p —pfl(Si /pc). 	 (C.5) 
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In order to work out the reflectance we need to remove p to obtain an expression 

featuring only p i  and p. We therefore substitute p from equation (C.4) into 

equation (C.5). 

= (p —pfl(S i / S2 )+iwL(p—pfl(S i /pc). 	(C.6) 

Rearranging we get the reflection coefficient, the ratio of the reflected and incident 

waves: 

- (S/S) - 1 + iwL(Si/pc) 	
(C.7) 

- (S/S2) + 1 + iwL(S i /pc) 

As with the multimodal method this may be expressed in terms of dimensionless 

variables kR 1  and 3 = Ri /R 2 ; 

- 	_I+ i7r(kRi)(LR1/p) 
-2  + 1 + iir(kR i )(LR 1 /p) 

(C.8) 

where LR 1 1p is a function of the dimensionless variables and is tabulated in table 

2 (A) of [57]. This formula is used to calculate the inductance method reflectance 

shown in figure 6.1 of section 6.4. 

204 



Bibliography 

D. M. Campbell and C. A. Created. The musician's guide to acoustics. Dent, 

1987. 

D. M. Campbell. Nonlinear dynamics of musical reed and brass wind instru-

ments. Contemporary Physics, 40(6) :415-431, 1999. 

J. Backus. Input impedance curves for the reed woodwind instruments. J. 

Acoust. Soc. Am., 56(4):1266-1279, 1974. 

J. Backus. Acoustic impedance of an annular capillary. J. Acoust. Soc. Am., 

58(5):1078-1081, 1975. 

J. Backus. Input impedance curves for the brass instruments. J. Acoust. 

Soc. Am., 60(2):470-480, 1976. 

D. B. Sharp. Acoustic pulse reflectometry for the measurement of musical 

wind instruments. PhD thesis, University of Edinburgh, 1996. 

205 



J. A. Ware and K. Aki. Continuous and discrete inverse scattering problems 

in a stratified elastic medium. i: Planes at normal incidence. J. Acoust. Soc. 

Am., 45(4):911-921, 1969. 

M. M. Sondhi and B. Gopinath. Determination of vocal-tract shape from 

impulse response at the lips. J. Acoust. Soc. Am., 49(6):1867-1873, 1971. 

M. M. Sondhi and J. R. Resnick. The inverse problem for the vocal tract: 

numerical methods, acoustical experiments and speech synthesis. J. Acoust. 

Soc. Am., 73(3):985-1002, 1983. 

A. C. Jackson, J. P. Butler, E. J. Millet, F. G. Hoppin, and S. V. Dawson. 

Airway geometry by analysis of acoustic pulse response measurements. J. 

Appi. Physiol., 43(3):523-536, 1977. 

A. C. Jackson and D. E. Olsen. Comparison of direct and acoustical area 

measurements in physical models of human central airways. J. Appi. Physiol., 

48(5):896-902, 1980. 

J. J. Fredberg, M. E. B. Wohi, G. M. Glass, and H. L. Dorkin. Airway area by 

acoustic reflections measured at the mouth. J. Appi. Physiol., 48(5):749-758, 

RM 

L. J. Brooks, R. G. Castile, G. M. Glass, and N. T. Griscom. Reproducibil-

ity and accuracy of airway area by acoustic reflection. J. Appi. Physiol., 

57(3):777-787, 1984. 

206 



A. H. Benade and J. H. Smith. Brass wind instrument impulse response 

measurements. J. Acoust. Soc. Am., 70:S22, 1981. 

R. A. Smith. It's all in the bore! Journal of the International Trumpeters 

Guild, 12:42-45, 1988. 

A. P. Watson and J. M. Bowsher. Impulse measurements on brass musical 

instruments. Acustica, 66:170-174, 1988. 

N. Amir, G. Rosenhouse, and U. Shimony. A discrete model for tubular 

acoustic systems with varying cross section - the direct and inverse problems. 

parts 1 and 2: Theory and experiment. Acustica, 81:450-474, 1995. 

N. Amir, G. Rosenhouse, and U. Shimony. Losses in tubular acoustic sys-

tems - theory and experiment in the sampled time and frequency domains. 

Acustica, 82:1-8, 1996. 

D. B. Sharp and D. M. Campbell. Leak detection in pipes using acoustic 

pulse reflectometry. Acustica, 83:560-566, 1997. 

D. B. Sharp, A. Myers, R. Parks, and D. M. Campbell. Bore reconstruc-

tion by pulse reflectometry and its potential for the taxonomy of brass in-

struments. In Proc. 15th International Congress on Acoustics, Trondheim, 

Norway, pages 481-484, 1995. 

207 



[21] A. H. Benade and E. V. Jansson. On plane and spherical waves in horns 

with nonuniform flare. 1. theory of radiation, resonance frequencies, and 

mode conversion. Acustica, 31:79-98, 1974. 

[22] P. M. Morse and K. U. Ingard. Theoretical Acoustics. McGraw-Hill, 1st 

edition, 1968. 

[23] E. Eisner. Complete solution of the webster horn equation. J. Acoust. Soc. 

Am., 41(4):1126-1146, 1967. 

[24] G. R. Putland. Every one-parameter acoustic field obeys webster's horn 

equation. J. Audio Eng. Soc., 41(6):435-451, 1993. 

[25] J. W. Miles. The reflection of sound due to a change in cross section of a 

circular tube. J. Acoust. Soc. Am., 16(1):14-19, 1944. 

[26] J. W. Miles. The analysis of plane discontinuities in cylindrical tubes. part 

1. J. Acoust. Soc. Am., 17(3):259-271, 1946. 

[27] J. W. Miles. The analysis of plane discontinuities in cylindrical tubes. part 

2. J. Acoust. Soc. Am., 17(3):272-284, 1946. 

[28] A. F. Stevenson. Exact and approximate equations for wave propagation in 

acoustic horn. Journal of Applied Physics, 22(12):1461-1463, 1951. 

[29] A. F. Stevenson. General theory of electromagnetic horns. Journal of Applied 

Physics, 22(12):1447-1460, 1951. 



R. J. Aifredson. The propagation of sound in a circular duct of continuously 

varying cross-sectional area. Journal of Sound and Vibration, 23(4):433-442, 

1972. 

S. Oie, R. Takeuchi, and T. Shindo. Sound radiation from a concave radiator 

in an infinite baffle. Acustica, 46:268-275, 1980. 

V. Pagneux, N. Amir, and J. Kergomard. A study of wave propagation in 

varying cross-section waveguides by modal decomposition. part 1. theory and 

validation. J. Acoust. Soc. Am., 100(4):2034-2048, 1996. 

N. Amir, V. Pagneux, and J. Kergomard. A study of wave propagation in 

varying cross-section waveguides by modal decomposition. part 2. results. J. 

Acoust. Soc. Am., 101(5):2504-2517, 1997. 

H. Levine and J. Schwinger. On the radiation of sound from an unflanged 

circular pipe. Physical review, 73(4) :383-406, 1948. 

Y. Ando. On the sound radiation from semi-infinite circular pipe of certain 

wall thickness. Acustica, 22:219-225, 1969-1970. 

Y. Ando and T. Koizumi. Sound radiation from a semi-infinite circular pipe 

having an arbitrary profile of orifice. J. Acoust. Soc. Am., 59(5):1033-1039, 

1976. 

W. E. Zorumski. Generalized radiation impedances and reflection coefficients 

of circular and annular ducts. J. Acoust. Soc. Am., 54(6):1667-1673, 1973. 

209 



J. A. Kemp, N. Amir, and D. M. Campbell. Calculation of input impedance 

including higher modes. In Proc. 5th French Congress on Acoustics, Laus-

sane, Switzerland, pages 314-317, 2000. 

J. A. Kemp, D. M. Campbell, and N. Amir. Multimodal radiation impedance 

of a rectangular duct terminated in an infinite baffle. Acustica, 87:11-15, 

2001. 

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals 

Of acoustics. Wiley, 3rd edition, 1982. 

J. A. Kemp, N. Amir, D. M. Campbell, and M. van Walstijn. Multirnodal 

propagation in acoustic horns. In Proc. International Symposium on Musical 

Acoustics (ISMA), Perugia, Italy, pages 521-524, 2001. 

J. Kergomard. Calculation of discontinuities in waveguides using mode-

matching method: an alternative to the scattering matrix approach. J. 

Acoustique, 4:111-138, 1991. 

K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical methods for physics 

and engineering. Cambridge University Press, 1st edition, 1998. 

A. M. Bruneau, M. Bruneau, Ph. Herzog, and J. Kergomard. Boundary 

layer attenuation of higher order modes in waveguides. Journal of Sound 

and Vibration, 119(l):15-27, 1987. 

210 



N. H. Fletcher and T. D. Rossing. The physics of musical instruments. 

Springer, 1st edition, 1991. 

Lord Rayleigh. Theory of sound. Macmillan, 1940. 

J. Lee and I. Seo. Radiation impedance computations of a square piston in a 

rigid infinite baffle. Journal of Sound and Vibration, 198(3):299-312, 1996. 

D. S. Burnett and W. W. Soroka. Tables of rectangular piston radiation 

impedance functions, with application to sound transmission loss through 

deep apertures. J. Acoust. Soc. Am., 51(2):1618-1623, 1972. 

Jr. G. W. Swenson and W. E. Johnson. Radiation impedance of a rigid 

square piston in an infinite baffle. J. Acoust. Soc. Am., 24(1):84, 1952. 

E. M. Arase. Mutual radiation impedance of square and rectangular pistons 

in a rigid infinite baffle. J. Acoust. Soc. Am., 36(8):1521-1525, 1964. 

H. Levine. On the radiation impedance of a rectangular piston. Journal of 

Sound and Vibration, 89(4):447-455, 1983. 

G. N. Watson. A treatise on the theory of Bessel functions. Cambridge 

University Press, 2nd edition, 1962. 

H. Nelisse, 0. Beslin, and J. Nicolas. A generalised approach for the acoustic 

radiation from a baffled or unbaffled plate with arbitrary boundary condi-

tions, immersed in a light or heavy fluid. Journal of sound and vibration, 

211(2):207-225, 1998. 

211 



D. H. Keefe. Acoustical wave propagation in cylindrical ducts: Transmission 

line parameter approximations for isothermal and nonisothermal boundary 

conditions. J. Acoust. Soc. Am., 75(1):58-62, 1984. 

E. Kreyszig. Advanced engineering mathematics. Wiley, 7th edition, 1993. 

J. M. Buick, J. A. Kemp, D. B. Sharp, M. van Walstijn, D. M. Campbell, and 

R. A. Smith. Distinguishing between similar tubular objects using pulse re-

flectometry: a study of trumpet and cornet leadpipes. Measurement Science 

Technology, 13:750-757, 2002. 

J. Kergomard and A. Garcia. Simple discontinuities in acoustical waveguides 

at low frequencies: critical analysis and formulae. Journal of Sound and 

Vibration, 114(3) :465-479, 1987. 

M. M. Boone, G. Janssen, and M. van Overbeek. Modal superposition in 

the time domain: Theory and experimental results. J. Acoust. Soc. Am., 

97(1):92-97, 1995. 

F. de Coulon. Signal theory and processing. Artech House Inc., 1st edition, 

Um 

M. van Walstijn, J. A. Kemp, N. Amir, and D. M. Campbell. Acoustic bore 

reconstruction using the layer-peeling algorithm: signal processing aspects 

and future development involving the inclusion of higher modes. In Proc. 

17th International Congress on Acoustics, Rome, Italy, 2001. 

212 



W. Kausel. Bore reconstruction from measured acoustical input impedance; 

equipment, signal processing, algorithms and prerequisites. In Proc. In-

ternational Symposium on Musical Acoustics (ISMA), Perugia, Italy, pages 

373-378, 2001. 

J. A. Kemp, J. M. Buick, and D. M. Campbell. Practical improvements to 

acoustic pulse reflectometry: the virtual dc tube method and source reflec-

tion cancellation. In Proc. International Symposium on Musical Acoustics 

(ISMA), Perugia, Italy, pages 387-390, 2001. 

B. Louis, C. Glass, B. Kresen, and J. Fredberg. Airway area by acoustic 

reflection: the two-microphone method. Journal of Bio mechanical Engi-

neering, 115:278-285, 1993. 

D. B. Sharp. Increasing the length of tubular objects that can be measured 

using acoustic pulse reflectometry. Measurement Science Technology, 9:1469-

1479, 1998. 

K. C. Hsu. Simulation of room acoustics. Undergraduate thesis, Uni-

versity of Queensland, Australia, 1996. 	(Downloadable from website 

http://www.e1ec.uq.edu.au/marks/thesis/thesis96/hsu/).  

M. R. Schroeder. Integrating-impulse method measuring sound decay with-

out using impulses. J. Acoust. Soc. Am., 66(2):497-500, 1979. 

213 



W. T. Chu. Impulse-response and reverberation-decay measurements made 

by using a periodic pseudorandom sequence. Applied Acoustics, 29:193-205, 

1990. 

F. J. MacWilliams and N. J. A. Sloane. Pseudo-random sequences and 

arrays. Proceedings of the IEEE, 64(12):1715-1729, 1976. 

W. Stahnke. Primitive binary polynomials. Mathematics of Computation, 

27:977-980, 1973. 

J. Borish and J. B. Angell. An efficient algorithm for measuring the im-

pulse response using pseudorandom noise. Journal of the Audio Engineering 

Society, 31(7):478-487, 1983. 

M. van Walstijn and D. M. Campbell. Large-bandwidth measurement of 

acoustic input impedance of tubular objects. In Proc. Institute of Acoustics 

Spring Conference, Salford, UK, 2002. 

B. J. Forbes, D. B. Sharp, and J. A. Kemp. Acoustic pulse reflectometry: 

singular system analysis and regularisation of the inverse problem. In Proc. 

Institute of Acoustics Spring Conference, Salford, UK, 2002. 

E. Jahnke and F. Emde. Tables of functions with formulae and curves. Dover, 

4th edition, 1945. 

214 


