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SUMMARY 

Glutamine has been found by several workers to be present 

as the free amino acid in all animal tissues but little is known 

of its functions and the way it accumulates in the cells. The 

existence of the enzyme, glutamine synthetase which catalyses the 

synthesis of glutamine from glutamate and ammonia in the presence 

of ATP and a divalent cation, has been well established in brain, 

liver and kidney, but it is much less certain whether it occurs 

in skeletal and cardiac muscle. 

Hormones play an important role in the regulation of the 

activity of several enzymes in various tissues. Although the 

growth hormone is known to stimulate protein synthesis, very few 

studies have been made on its effect in the regulation of 

glutamine synthesis, although glutamine may be thought of as a 

reservoir and transport form of amino -N, in tissues, and is 

essential for nucleic acid synthesis. 

The present studies were carried out as part of an 

investigation into the origin and function of glutamine in 

skeletal and cardiac muscles and to explore the effect of growth 

hormone, if any, on its synthesis in these tissues. Since 

glutamine synthetase activity is already known to exist in kidney, 

this tissue was also studied in parallel with skeletal and cardiac 

muscle, so as to be able both to check the efficiency of the 

methods employed and to see whether the enzyme if it existed in 

the skeletal and cardiac muscles would be similar to the kidney 

enzyme. 



Glutamine synthetase can be assayed by making use of 

the fact that hydroxylamine will serve as second substrate in 

place of ammonia. The product of the reaction is y- glutamyl- 

hydroxamic acid, which can be quantitatively determined through 

the colour of the complex which it forms with ferric ions. 

In order to make sure that the colour produced was due to 

the enzyme activity and to obtain a preparation giving maximum 

activity, it was necessary to study extraction methods before 

determining optical d.e,isity. This was achieved by employing a 

dialysed high -speed supernatant, the activity of which was found 

to be about 3 - L+ times greater than that found in the homogenate. 

On average 183'2 + 65'1 units glutamine synthetase 

activity /g. wet tissue was found in kidney by the hydroxamate 

method using dialysed high -speed supernatants; 19'1 + 10'3 

units /g. were found in skeletal muscle and 2'5 + 0'8 in heart. 

In the case of cardiac muscle, no activity could be detected in 

some of the extracts by the hydroxamate method, and the activity 

could also not be measured by the NADH oxidation method (see 

below) . These results have been compared with those of others 

and the possible reasons for the differences in results have been 

discussed. 

Inorganic phosphate was incidently found to be an inhibitor 

of the enzyme, both in kidney and muscle extracts. In order to 

study the kinetics of the phosphate inhibition, a method for 

freeing the extracts from most of the interfering ATP -ase, and a 

more sensitive assay method, in which ADP does not accumulate, 
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were developed. The enzyme was separated from ATP -ase by 

precipitation with l'5 M and 1'8 M ammonium sulphate for muscle 

and kidney respectively. The assay method, measures glutamine 

synthetase activity by measuring the rate of ADP production. 

This is coupled to oxidation of NADH by pyruvate and lactic 

dehydrogenase. Adenosine diphosphate is re- phosphorylated 

with phosphoenol -pyruvate and pyruvate kinase; adenylate kinase 

was also added to remove traces of adenosine monophosphate which 

interfered with the assay. 

Inorganic phosphate was found to be a competitive 

inhibitor of ATP for the muscle enzyme and a noncompetitive 

inhibitor for the kidney enzyme. Possible reaction mechanisms 

which would account for these findings have been discussed. 

Several differences in the properties of the enzymes in 

muscle and kidney extracts were found (including this difference 

in inhibition by phosphate) and it is suggested that the enzyme 

in muscle is an isoenzyme of that found in kidney. 

Bovine growth hormone both in vivo as well as in vitro 

was found to have no significant effect on the synthesis of 

glutamine in any of the tissues studied. The type of inhibition 

in the two tissue enzymes was also not affected. 
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INTRODUCTION 

Amongst the free amino acids, glutamate and glutamine are 

found in the highest concentrations in many animal tissues; the 

values reported by Herbert, Coulson and Hernandez (1966) are shown 

in Table I. Our present knowledge about the origin and functions 

of these amino acids in tissues is rather limited. The major bio- 

synthetic pathway leading to the synthesis of glutamine has long 

been known to be from glutamate and ammonia, the reaction catalysed 
gluto maive 

by the enzyme,synthetase as shown in equation 1: 

++ 
1. HOOC.CH(NH2).CH2.CH2COOH + ATP + NH3 M-1g --L 

HOOC.CH(NH2).CH2.CH2.CONH2 + ADP + Pi. 

Table I. 

Free amino acids (glutamine and glutamate) contents of rat's 

tissues. 

'notes 
The values given are as m i /kg. wet tissue. 

Tissue Glutamine Glutamate 

Brain 259 7'89 

Heart 5.99 4'45 

Kidney 0.32 4.09 

Liver 2.68 1'64 

Muscle 2.34 1.10 

Plasma 055 0.15 

It is the activity of this particular enzyme in animal tissues 

which has been the subject of investigation for this thesis. 
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The enzyme has been studied by several workers but mainly 

in brain (Elliott, 1951; Meister and his collaborators, Meister, 

1956, 1962, 1965; Berl, 1966; Meister, 1968) , liver (Speck, 

1949a, 1949b; Wu, 1961; de Duve, Baudhuin and Wattiaux, 1962), 

retina (Krebs, 1935; Piddington and Moscona, 1965) and also 

kidney (Reiner and Hudson, 1953; Richterich and Goldstein, 

1958) . Only one detailed report on the synthesis of glutamine 

in rat skeletal muscle and cardiac muscle showing very low levels 

of enzyme activity (4.4 and 4.6 i. moles of y- glutamylhydroxamic 

acid (GHA) synthesised per g. wet tissue per hour) has appeared 

(Trush, 1963). This worker assayed the enzyme activity by 

measuring optical density of a cherry red complex of Fe3+ ions 

with y- glutamylhydroxamic acid (GHA.) . The latter is formed when 

ammonia in equation 1 is substituted by hydroxylamine (a method 

devised by Lipmann and Tuttle, 1945) (see equation 2 given in the 

later pages) . 

The present investigation therefore aimed to confirm if 

possible that glutamine synthetase is present in rat skeletal and 

cardiac muscle; to ascertain whether the enzyme if present is 

similar to that known to exist in other tissues, i.e. brain, kidney 

and liver (the enzyme from these sources being similar, kidney was 

investigated for the purposes of this thesis), and to investigate 

whether pituitary growth hormone either in vivo or in vitro 

affects the rate of the enzyme reaction in muscle tissues in 

particular, for this hormone (as discussed in detail later in 

the text) is known to increase the intracellular accumulation of 
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glutamine in certain animal tissues (Peekham and Knobil, 1962) 

which may be a result of an increase in glutamine synthetase 

activity. The inhibition of glutamine synthetase by inorganic 

phosphate (Pi), which was incidentally observed in the course of 

these studies, was also investigated. 

The importance of glutamine synthetase is obvious both from 

the significant biochemical functions of glutamine, its physiolo- 

gical role and the wide distribution of the enzyme that catalyses 

its synthesis both in plants, micro -organisms and in animals. 

L( +) Glutamine, a neutral amino acid participates in a number of 

biosynthetic pathways, for instance those leading to the synthesis 

of purines, glucosamine, histidine, p- aminobenzoic acid, 

asparagine, anthranilic acid, phenyl -acetylglutamine, diphospho- 

pyridine nucleotide and guanosine -5- phosphate (Meister, 1956, 

1962). The amide group of glutamine is chemically extremely 

labile; phosphate, arsenate and bicarbonate catalyse the nonenzymic 

deamidation of glutamine and pyrrolidone carboxylic acid is 

formed. Glutamine in liver and kidney transaminates with a large 

number of a -keto acids, with subsequent hydrolysis of the a -keto 

acid -w -amide catalysed by a specific transaminase- amidase [see 

equations (a) and (b) ] forming the corresponding amino acid, 

a- ketoglutarate and ammonia (Meister, 1956): 

(a) + ---> 

II II 

0 NH2 0 

Glutamine a-ketoacid 
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H N-C-CH -CH -C-COOH + R-CH-COON 
2112 2 

1 

0 0 NH2 

a,-ketoglutaramic acid a,-Amino acid 

(h) H2N - CH2 

II-COOH 

+ H20 - 
0 0 

HOOC-CH2 -CH 2-C-000H + NH3 

0 

a-ketoglutaric acid. 

Glutamine which may serve as an ammonia store is 

enzymically deamidated in mammalian brain, liver, retina, kidney 

(Krebs, 1935) and muscle (Trush, 1963; Ottaway, 1969) by the 

enzyme called glutaminase. Deamidation of glutamine also occurs 

by reversal of glutamine synthesis or in association with 

w- transfer reactions (discussed below in detail) . 

The physiological significance of glutamine is mainly due 

to its role in the detoxification and possibly also in the 

storage and transport of ammonia. Increased levels of brain and 

blood ammonia cause coma and convulsions (McDermott and Adams, 

1951; Seegmiller, Schwartz, and Davidson, 1954) which could be 

due to inhibition of the citric acid cycle by lowering of the 

intracellular concentration of a- oxoglutarate, following its 

reduction to glutamate by the enzyme, glutamate dehydrogenase 

(Recknagel and Potter, 1951) ; this may be prevented by utiliz- 

ation of ammonia for glutamine synthesis. Conversion of ammonia 

to glutamine amide nitrogen may in fact represent an important 
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mechanism for ammonia storage and transport. Ammonium ion being 

very toxic, does not pass in the blood as such from the peripheral 

tissues to the liver but is probably transported as glutamine 

which may be synthesised in the muscle (by glutamine synthetase) 

by utilizing the large amounts of ammonia produced due to the 

oxidation of glutamic acid (formed by the transamination of 

a- ketoglutaric acid and L -amino acid) by the enzyme, glutamate 

dehydrogenase. A high ratio of glutamine to glutamate in body 

fluids suggest that the amide may also function in the transport 

of glutamic acid for it enters the tissues relatively easily as 

compared to glutamic acid (Schwerin, Bessman and Waelsch, 1950; 

Tigerman and MacVicar, 1951) . 

Although dietary glutamic acid and glutamine are not needed 

by mammals for growth or maintenance of nitrogen equilibrium, 

certain mammalian cells like a mouse fibroblast cell and a human 

uterine carcinoma, when grown in chemically defined media, do 

specifically require L- glutamine for growth and survival (Eagle, 

1955) This may be due to its reactivity in certain transamin- 

ation reactions, transpeptidation and in providing nitrogen for 

purine synthesis. This suggests that the cells in which 

glutamine is not synthesised depend on the tissues which do 

synthesise it, through the blood stream. Glutamine supplied 

from blood stream or medium may therefore be a limiting factor 

for protein synthesis in those cells which lack glutamine 

synthetase. It is, therefore, interesting that many cells have a 

very high glutamine concentration which may be because of their 
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inability to synthesise it (by glutamine synthetase), and the 

glutamine transported by blood stream is stored in such cells 

for the metabolic activities. 

It is desirable at this point to describe in detail both 

the properties of glutamine synthetase and the mechanism which 

has been proposed for the synthesis (Krishnaswamy, Pamiljans 

and Meister, 1962; Meister, Krishnaswamy and Pamiljans, 1962; 

Meister, 1962, 1965, 1968). 

PROPERTIES OF GLUTAMINE SYNTHÉTASE 

The synthesis of glutamine has been found to be reversible 

by several workers (Levintow and Meister, 1954; Boyer, Mills 

and Fromm, 1959); the equilibrium constant at pH 7'0 and 37 °C 

is l'2 x 10 -3. In reaction 2, (equation on page 7) the equili- 

brium constant for the hydroxamate formation lies farther to the 

right than the amide synthesis (Ehrenfeld, Marble and Meister, 

1963; Meister, 1965) for the hydroxamate formation has been 

reported to proceed virtually to completion. 

Glutamine synthesis is an endothermic reaction (Krebs, 

1935) ; ATP and Mg ++ were found to accelerate the synthesis of 

glutamine (Bujard, 1947; Leuthardt, 1947). Speck (1947) and 

Elliott (1948) established that the energy requirement for 

glutamine synthetase activity in cell free systems could be 

derived from the hydrolysis of ATP. 

Glutamine synthetase, as mentioned earlier, also catalyses 

the formation of y-glutamylhydroxamic acid when ammonia in the 
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equation 1 is substituted by hydroxylamine as shown below in 

equation 2. This latter reaction (equation 2) has been 

extensively made use of as a method for the assay of glutamine 

synthetase activity (see Chapter II for detailed discussion) . 

Both the synthesis of glutamine and the hydroxamate formation 

are associated with cleavage of stoichiometric amounts of ATP 

(Speck, 1949b) . 

2. HOOC . CH (NH2). CH2 . CH2 . COOH + ATP + NH2OH MMgg++ , 

HOOC.CH(NH2).CH2.CH2.00NHOH + ADP + Pi. 

The enzyme which catalyses the synthesis of glutamine and 

y- glutamylhydroxamic acid also catalyses a transfer reaction as 

shown in equation 3 (Meister, 1956, 1962, 1965, 1968) . 

ATP or ADP, 
3. HOOC.CH(NH2).CH2.CH2.CONH2 + NH2OH Pi or Asi 

H00C.CH(NH2).CH2.CH2.CONHOH + NH3 

Like reactions 1 and 2, divalent cation, i.e. Mg 
+ +, ++ 

or Co 
++ 

is required for this transfer reaction. Catalytic quantities 

of adenosine diphosphate (ADP) or ATP and inorganic phosphate 

or arsenate are also required for this reaction. This y- glutamyl 

transfer reaction is doubtless catalysed by the same enzyme, 

glutamine synthetase, but for the purpose of the present investi- 

gation only reactions 1 and 2 have been studied and are referred 

in this text as glutamine synthetase activity. 

The glutamine synthetase activity shows considerable 

specificity both with regard to its substrates and its requirement 
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for divalent cation as an activator. D- Glutamate can substitute 

for L- glutamate both in hydroxamate formation and the synthesis 

of glutamine, but the rate of the latter reaction is much slower 

with D- glutamate than with its enantiomorph (Levintow and Meister, 

1954; Khedouri and Meister, 1965) . L- Glutamate in the enzyme 

system can also be substituted by several rather less active 

dicarboxylic amino acids (Levintow and Meister, 1953; Lichtenstein, 

Ross and Cohen, 1953; Levintow, Meister, Kuff and Hogeboom, 1955; 

Kagan, Manning and Meister, 1965; Kagan and Meister, 1966; 

Wellner, Zoukis and Meister, 1966) . 

Ammonia in the glutamine synthetase system can be substituted 

by hydroxylamine, hydrazine, methylamine or glycine ethyl ester. 

The corresponding y- glutamyl derivative is formed in each case 

(Speck, 1949b; Elliott, 1951; Levintow and Meister, 1954) 

Guanidine triphosphate (GTP), inosine triphosphate (ITP), 

cytidine triphosphate (CTP) and uridine triphosphate (UTP) are 

much less active than adenosine triphosphate (ATP) in glutamine 

synthesis (Levintow, Meister, Kuff and Hogeboom, 1955; Monder, 

1965) . 

Amongst various cations, only Mn + +, Co ++ and Fe ++ ions have 

been shown to replace Mg ++ in the activation of glutamine 

synthetase; Fe ++ is much less active as compared to the other 

cations (Greenberg and Lichtenstein, 1959; Monder and Jacobson, 

1964; Monder, 1965) 
. 

The pH optimum for glutamine synthesis activity by prepara- 

tions obtained from pigeon liver (Speck, 1949a, 1949b) and sheep 
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brain (Elliott, 1951) has been found to be in the range of 7'0 

to 7'4. Later Greenberg and Lichtenstein (1959), and Monder 

(1965) from their studies on sheep brain glutamine synthetase has 

concluded that the optimum pH depends on the nature and concen- 

tration of divalent cations individually, their relative 

concentration where more than one cation is present, and the ratio 

of ATP to metal ion. These workers found that the pH optimum was 

about 7'2 with ATP:Mg ++ ratios from 1 :2 to 1 :20, and the broadening 

of the optimal pH range was observed with a ratio of 1:40; an 

increase in cation concentration shifted the optimum pH to 

acidic values. 

The purified brain glutamine synthetase is completely in- 

active in the absence of Mg ++ or Mn ++ (Meister, 1962). Speck 

(1900, and Baerle, Goldstein and Dearborn (1957) reported that 

Mg ++ was essential in the synthesis of glutamine. A 0'02 M Mg 
++ 

concentration was shown to give the optimum enzyme activity 

(Elliott, 1951). As discussed below in the mechanism of action 

of the enzyme, Mg ++ and ATP are required for the binding of 

glutamate to the enzyme. A Km value of 2'5 x 10 -3 for glutamate, 

1'8 x 10 -4 for NH 
4 ' 

1.5 x 10 -4 for hydroxylamine and 2'5 x 10 -3 

for ATP has been reported by several workers (Speck, 1949b; 

Elliott, 1951; Meister, 1962; Pamiljans, Krishnaswamy, Dumville 

and Meister, 1962) for glutamine synthetase. 
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11ECHANISM OF GLUTAMINE SYNTHESIS 

Most of the work on the mechanism of glutamine synthesis in 

animal tissues is due to Meister and his collaborators; Meister 

(1962, 1965, 1968) has on several occasions reviewed the contri- 

butions of various workers in this field as discussed below. 

The first step in the synthesis of glutamine is the 

relatively optically non specific activation of glutamate (i.e. 

L- and D- forms), which is followed by a more specific reaction of 

the activated glutamate intermediate (activated L- glutamate is more 

active than the corresponding form of D- glutamate) with ammonia. 

This was demonstrated by ultra centrifugation and filt -ration 

techniques and also by a pulse -labeling enzymatic procedure using 

highly purified enzyme (Krishnaswamy, Pamiljans and Meister, 1962; 

Pamil jans et al., 1962) . [Hydroxylamine is not afcted by this 

specificity of the activated glutamate intermediate for hydroxyl - 

amine is known to react even non enzymically with acylphosphates 

(Levintow and Meister, 1953)]. It was later on established that 

nucleotide and metal ions were a requirement for the binding of 

glutamate to the enzyme and that binding is associated with 

cleavage of ATP to ADP and inorganic orthophosphate (Pi) , which 

are also bound and are a part of the activated enzyme- glutamate 

complex; this activated form of glutamate reacts with ammonia to 

yield glutamine, or in the absence of ammonia, it may undergo 

cyclization to form pyrrolidone carboxylate (the rate of this 

reaction is considerably much slower than the synthesis of glutamine 

or the hydroxamate) (Meister, 1965, 1968) . Divalent cation and 
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ADP or ATP are also required for the binding of glutamine to the 

enzyme in arsenolysis (equation 4) and y- glutamyl transfer 

reactions (equation 3) catalysed by the enzyme. 

Arsenate enat e 
4. HOOC.CH(NH2).CH2.CH2.CONH2 + H2O > 

H00C.CH(NH2).CH2.CH2.COOH + NH3 

Wenner and Meister (1966) have recently reported that nucleo- 

tides are tightly bound to the enzyme; direct evidence for binding 

of ATP and ADP to glutamine synthetase was found by gel filteration 

experiments with columns of sephadex. These workers also 

observed that in glutamyl transfer reactions the binding of ATP 

to the enzyme is not associated with its cleavage to ADP, and the 

bound ATP is available for glutamine synthesis. 

All the reactions catalyzed by purified preparation of enzyme 

studied by various workers (Krishnaswamy, Pamiljans and Meister, 

1962; Meister, 1962; Meister, Krishnaswamy and Pamiljans, 1962) 

can be diagrammatically interpreted as shown in Fig. I, a modified 

form of that given by Krishnaswamy, Pamiljans and Meister (1962); 

Meister, Krishnaswamy and Pamiljans (1962); Meister (1962, 1965, 

1968) , so as to make it ccnvenient to discuss my own findings as 

reported in later pages. Meister has postulated that the activated 

enzyme glutamate complex involves adenosine diphosphate (ADP) and 

y- glutamyl phosphate (III, Fig. I); this intermediate reacts with 

nucleophilic agents to yield another intermediate IV or VI, and 

undergo cyclization. Representation of the activated glutamate 

as y- glutamyl phosphate is supported both by the reports of several 

workers (Boyer, Koeppe and Luchsinger, 1956; Kowalsky, Wyttenbach, 
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Langer and Koshland, 1956) that the transfer of an oxygen atom 

from glutamate to inorganic phosphate, and that chemically 

synthesised 3- aminoglutaryl phosphate, an expected intermediate 

in the enzymic synthesis of ß- glutamine from (3- glutamate, is 

utilized by glutamine synthetase for the synthesis of ATP which 

is analogous to the experiments with tripeptide (glutathione) 

synthetase and succinyl thiokinase (Meister, 1968). The 

hypothesis that enzyme bound glutamyl phosphate is formed in the 

reactions catalysed by glutamine synthetase has been further 

supported by the finding that the enzyme catalyses the synthesis 

of ATP from ADP and 3- aminoglutaryl phosphate (Meister, 1965) . 

INHIBITION OF GLUTAMINE SYNTHÉTASE 

This section of the properties of glutamine synthetase was 

intentionally left for discussion after describing the mechanism 

of enzyme action, so as to give the reader a clearer picture of 

the way the inhibitions are caused. 

Adenosine diphosphate (ADP) has long been known to cause 

inhibition of glutamine synthetase being competitive to ATP 

(Speck, 1949b; Elliott, 1951) . Elliott (1951) reported 50% 

inhibition of the crude preparation of sheep brain enzyme at an 

ADP:ATP ratio of 0'3. Meister (1962, 1965, 1968) has suggested 

that ADP and ATP are bound at the same site and the formation of 

enzyme -ADP or enzyme- ADP -glutamate complexes (see Fig. I) causes 

this inhibition. According to Cleland (1963) , this is standard 

product inhibition. 



+ ATP 

- ADP 

E-ADP 

Fig. 1. 

13 -1L} 

II 

E-ATP 
+ Glu 

- AT P - Glu 

+ ADP 

E---ADP 

G1uNHOH 

- GluNHOH 

VI 

III 

E -ADP 
GluPi 

-NH3 

+ Pi 

+ G1uNH2 
E-ADP 

- GluNH2 GluNH2 

V 

+ NH3 

- Pi 

Mechanism of action of glutamine synthesis and hydroxamate 

formation, according to Krishnaswamy, Pamiljans and Meister (1962), 

Meister, Pamiljans and Krishnaswamy (1962) and Meister (1962,1965, 

1968) . 

Glut amine synthesist' I - II III V - VI I 

Hydroxamate formation: I -- II --> III --> IV VI -- I 

E = enzyme: Glu = glutamate; GluPi = glutamylphosphate; 

Pi = inorganic phosphate; Glu -NH2 = glutamine; 

Glu -NHOH = glutamylhydroxamate. 
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Elliott (1951) showed Ca ++ to be a strong inhibitor of 

glutamine synthesis by the purified sheep brain enzyme; this 

inhibition is reduced by increasing the concentration of Mg 
+ +, 

suggesting that Ca ++ competes with Mg ++ in binding to the enzyme. 

An inhibition of 93% was demonstrated by this worker using an 

equimolar concentration (0'01M) of Ca ++ and Mg ++ in the assay 

system, which seems to rule out competition with Mg ++ for ATP, 

as postulated by Meister (1962), since the binding constants are 

about equal in this case. Calcium was found to inhibit the enzyme 

activity at all pH values without shifting the pH optimum. The 

inhibition by Ba ++ re sembled that caused by Ca 
+ +. 

Speck (1949b) found that maximum activity could be obtained 

by the addition of cyanide, cysteine or 'glutathione to the pigeon 

liver glutamine synthetase preparation. Elliott (1951, 1953), 

later on reported that p- mercuribenzoate caused inhibition of 

purified preparations of both pea seed and sheep brain enzyme which 

could be reduced by prior addition of cysteine to the system. 

Pamiljans, Krishnaswamy, Dumville and Meister (1962) described the 

use of 2- mercaptoethanol to stabilize the enzyme during isolation 

and storage. These observations suggested a requirement of a 

sulphydryl group for maximum enzyme activity. The dithiol- 

mediated inhibition by arsenite has suggested the presence of only 

one sulphydryl group of glutamine synthetase (Wu, 1965) . Wu 

(1964c) has reported that glutamine synthetase contain a metal ion 

and a dithiol component. The presence of a metal ion in glutamine 

++ synthetase (Wu, 1964c) and the fact that excess of Mg inhibits 
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the enzyme activity (Speck, 1949b; Trush, 1963; Wu, 1964c) 

shows that the metal ion directly binds to the enzyme and not 

as Mg ATP as postulated by Meister (1962), for the enzyme 

inhibition by excess of the metal ion may well be due to its 

binding to ATP and hence making ATP unavailable to the enzyme; 

the enzyme inhibition due to excess of ATP reported by Trush 

(1963) in crude extracts may be due to accumulation of ADP due 

to the high levels of ATP -ase in it. 

Methionine sulfone , methionine sulfoxide and methionine 

sulfoximine inhibit the glutamine synthetase activity by 

competing with glutamate in binding to the enzyme (Elliott and 

Gale, 1948; Speck, 1949; Meister, 1968) . Both crystal violet 

and fluoride are also known to be the inhibitors of glutamine 

synthetase (Speck, 1949; Elliott, 1951). 

I feel it important to mention here that many of these 

inhibitors of glutamine synthetase (as discussed above) are 

either products of the enzyme reaction (like ADP) or naturally 

occurring in tissues (e.g. Ca + +). The estimation in crude 

extracts may therefore be misleading and the answers may depend 

on the method of measurement e.g. whether ADP accumulates or not. 

The mechanism of enzyme action (as already discussed) put forward 

by Meister (1962, 1965, 1968) for instance is based on the enzyme 

measurements by the hydroxamate method in which ADP and Pi 

accumulate in the system and hence may be looked upon with some 

suspicion. 



GROWTH HORMONE AND NITROGEN METABOLISM 

It is probably not out of the way here to describe in a 

little detail the various facts which induced the author to study, 

as mentioned earlier, the effect of growth hormone on the rate of 

the enzyme reaction and to investigate also whether growth 

hormone treatment causes enzyme activity to appear in muscle, if 

not present in the control animals. 

A considerable amount of evidence now exists that growth 

hormone exerts its effect on protein metabolism primarily on the 

processes of protein synthesis (Friedberg and Greenberg, 1948; 

Russell, 1951, 1955). Ulrich, Tarner and Li (1951) for instance 

have reported a decrease in albumin synthesis after hypophysectomy 

of a rat and an increase on treatment with growth hormone. 

The role of growth hormone in the regulation of various 

enzymes involved in protein metabolism has been investigated by 

several workers in recent years (Reid and Stevens, 1958; Panda, 

Goel, Mansoor and Talwar, 1962; Liberti, Colla, Pilsum and Ungar, 

1966; Lakatna, Pilsum and Ungar, 1966); this has been reviewed 

by Knox, Auerbach and Lin, (1956) ; and Knobil and Hotchkiss 

(1964) . The growth hormone treated hypophysectomized rats have 

been shown to have a much greater kidney transamidinase activity 

as compared to the hypophysectomized animals (Ungar and Pilsum, 

1966). 

Both amino acid transport and protein synthesis are stimulated 

by growth hormone (Kipnis and Reiss, 1960). Kostyo (1964) has 

recently shown that the action of growth hormone on protein bio- 
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synthesis in muscle is not mediated solely through its action on 

membrane amino acid transport. But on the other hand the effect 

of the hormone on transport may be dependent to some extent on the 

stimulation of protein synthesis (Kostyo, 1968). According to 

Korner (1965), growth hormone makes energy for protein biosynthesis 

available by stimulating the synthesis of particular messenger RNA 

molecules in adipose tissue, which in turn causes the synthesis of 

enzymes needed for fat metabolism. 

Growth hormone in vitro has been reported to accelerate the 

incorporation of amino acids including glutamine and asparagine 

(Knobil and Hotchkiss, 1964), glycine (Manchester and Young, 1959) 

and leucine (Kostyo and Knobil, 1965; Hjalmarson, 1968) into the 

protein of hypophysectomized rat diaphragm, but the hormone has no 

effect on diaphragm from normal rat (Manchester and Young, 1959; 

Kostyo and Knobil, 1965) . According to Korner (1959) growth 

hormone treatment increases the ability of normal rat liver micro - 

somes to incorporate amino acid into protein. 

An increase in the accumulation of amino acids by certain 

tissues including muscle due to growth hormone treatment of hypo - 

physectomized rats was demonstrated by Riggs and Walker (1960). 

Peekham and Knobil (1962) reported that the addition of bovine 

growth hormone to intact diaphragms from hypophysectomized rats 

significantly increased the intracellular accumulation of 

glutamine, asparagine, glycine, alanine, threonine, praline, 

histidine and tryptophan, as measured by isotopic techniques but 

not that of the dicarboxylic acids. 
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According to Wu (1964a, 1964b) a change in protein synthesis, 

RNA synthesis and DNA synthesis affects the activity of glutamine 

synthetase. Kirk and Moscona have recently demonstrated that 

protein synthesis is required for the increase in retinal 

glutamine synthetase activity (Kirk and Moscona, 1963; Kirk, 

1965; Moscona and Kirk, 1965); these authors showed this in 

cultures of retinal tissue by using inhibitors of protein and RNA 

synthesis. This was further established by Wu (1964a) who 

showed that administration of puromycin and of p -f luorophenyl- 

alanine which inhibit protein synthesis in vivo also inhibited 

the glutamine synthetase activity of rat liver. 

On the basis of these findings by various workers, it was 

thought to be very interesting to learn if the muscle enzyme 

activity is also affected by growth hormone treatment. 
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MATERIALS AND METHODS 

(1) MATERIALS 

Only glass distilled water was used for making up all 

solutions. 

Growth Hormone 

Bovine pituitary growth hormone (BGH) was a gift from the 

Endocrinology Study Section of National Institutes of Health, U.S.A. 

The lot, N.I.H.- GH -Bll, used in the present investigations was 

stated to have a potency of 0'81 USP units per mg. 

Lactic dehydrogenase (LDH) was a crystalline suspension in 2'2 M 

(NH4)2804 solution; pH approximately 6, prepared from pig heart. 

It was analytical grade having a specific activity of approximately 

360 U /mg. 

Myokinase (MK) was a suspension of 3'2 M (NH4)2SO4 solution with a 

pH of approximately 6 and was of analytical grade having a specific 

activity of approximately 360 U /mg. It was prepared from rabbit 

muscle. 

Pyruvate kinase (Pk) . Pyruvate kinase was an analytical grade 

product and was crystalline suspension in 2'1 M (NH4) 2SO4 (pH 

approximately 6) prepared from rabbit muscle. Its specificity 

was approximately 150 U /mg. 

Creatine phosphokinase (CPK) was of analytical grade (lyophilized 

dry powder, free from salt) and was prepared from rabbit muscle; 

its specific activity was approximately 18 U /mg. protein. 

All these four enzymes were purchased from C.F. Boehringer 

& Soehne, GmbH Mannheim, W. Germany. They were kept in a 
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refrigerator at about 2 °C except CPK which was kept dessicated 

in a deep freeze (ca - 20 °C). 

ADP, ATP, CP, NADH & PEP 

Adenosine -5- diphosphoric acid (ADP) , trisodium salt; 

adenosine -5- triphosphoric acid (ATP), a crystalline disodium salt; 

creatine phosphoric acid (CP) , disodium crystalline salt; reduced 

nicotinamide adenine dinucleotide (NADE), disodium salt; and 

phosphoenol pyruvate (PEP), crystalline monopotassium salt were 

all purchased from C.F. Boehringer & Soehne, GmbH Mannheim, 

W. Germany. These chemicals were stored in a deep freeze (ca - 

20 °C) in a dessicator. 

Y -Glut amylhydr oxami c acid (GHA ) 

y- Glutamylhydroxamate was obtained from Sigma Chemical Co., 

U.S.A. It was stored in a deep freeze at about -20 °C in a 

dessicator over P205 and it was found to be anhydrous by C, H 

and 0 analysis (Dr. Minnis of this Department was kind enough to 

carry out this analysis). 

Ammonium sulphate [ (NH4) 2504 ] 

Ammonium sulphate, especially low in heavy metals for enzyme 

work, was a product of The British Drug Houses (BDG) Ltd., England. 

Ferric nitrate [Fe(NO3)3.9H20] 

Ferric nitrate, laboratory chemical grade, was purchased 

from May & Baker Ltd., England. 
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2' -Mercapt oethanol 

Mercaptoethanol was an Eastman Chemical product of Kodak 

Ltd., U.S.A. It was stored in a refrigerator (ca 2 °C). 

Pentabromophenol (PB rP)(C6Br5OH) was a 'technical' grade product 

of Aldrich Chemical Company, Inc. Milwaukee, Wis., U.S.A. It 

was recrystallised from ethanol before use. 

Pentachlorophenol (PCP)(C6C150H) was a 'fine chemicals' grade 

product of Hopkin & Williams Ltd., England. 

Sodium deoxycholate (SDC) was a product of British Drug Houses 

(BDH) Ltd., England. 

Sodium dodecylsulphate (SDS) was purchased from Koch Light Labs., 

Ltd., England. 

di- Sodium hydrogen orthophosphate was obtained from Dr. Ottaway. 

It was BDH 'Analar' grade recrystallised from EDTA solution. It 

contained 2 molecules of water of crystallization. 

Ethylene glycol -bis D- aminoethyl ether) N,N' -tetra acetic acid 

(EGTA), and L- glutamic acid, mono sodium salt, were purchased 

from Sigma Chemical Co., U.S.A. 

Diamino- ethane -tetraacetic acid (EDTA), imidozole, and sodium azide 

were of 'laboratory reagent' grade and were purchased from The 

British Drug Houses Ltd., England. 

All the rest of the chemicals used in the present investi- 

gation were ' Anclar' grade from British Drug Houses Ltd., England. 
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Animals used 

Female albino rats, of a local strain, weighing about 225 g 

were employed for the present investigation, since they grow very 

slowly and were hence suitable for studying the effects of growth 

hormone as shown later in the text. They were fed ad lib on a 

rat -cake diet with free access to water. An animal was killed, 

after giving it an anaesthetic (ether), by removing its heart, 

which makes it very convenient to wash the blood from the tissue. 

For treatment with growth hormone (BGH), which was dissolved 

in 0'9% NaC1 at a concentration of 2.5 mg. /ml. by adjusting the pH 

to 9.0 - 9.5 with 0'1 M NaOH. A dose of almost 1 mg. /day was 

injected subcutaneously into the experimental animals, which gave 

a gain in weight, as compared with controls, of about 2 g. /day. 

A final dose was given 2 -3 hours before killing the animal. 

(2) METHODS 

(A) PREPARATION OF TISSUE EXTRACTS 

Step I. 

Heart, both kidneys and about 2.5 g. of leg skeletal muscle 

(gluteus maximus) were quickly removed from the carcase and trans- 

ferred to an ice -cold solution of 0'15 M NaCl + 0'005 M NaHCO3. 

Each tissue was washed with an excess of this solution, blotted, 

weighed and left in a deep freeze (ca - 20 °C) for a minimum 

period of 45 minutes. After this the tissue was chopped and 

finally homogenised, as recommended by Trush (1963), in 5 ml. of 

ice cold sodium chloride - sodium bicarbonate solution per g. of 

wet tissue. Heart and kidney were homogenised in a teflon glass 
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homogeniser, but the skeletal muscle being tougher was homogenised 

in an "Ultra- Turrax" (Janke and Kunkel, K.G., Stanfen i.Br.W. 

Germany). The homogenate was allowed to stand for about 2 hours 

in a refrigerator at 2 °C for extraction of the enzyme, with 

frequent shaking. 

Step II 

This total homogenate as obtained above was centrifuged at 

a speed of 30,000 R.P.M. for 45 minutes in a Spinco Preparative 

Ultracentrifuge using the type L+0 rotor at about 2 °C. The residue 

was rejected and the supernatant was filtered through four layers 

of cheese cloth to remove any floating fat particles. 

Step III 

The supernatant was then dialysed against two changes each 

of 100 vols. of sodium chloride - sodium bicarbonate solution 

containing 1 mM EDTA and 5 mM 2'- mercaptoethanol for about 3 hours 

in a cold room at a temperature of about 5 °C. 

The enzyme preparation obtained was stored at about 2 °C 

and used on the day of preparation. 

Potassium salts (KC1 and KHCO3) were used instead of NaC1 

and NaHCO3 in the enzyme preparation used for the assay by the 

NADH oxidation method (as described later in this chapter), since 

Na+ inhibits pyruvate kinase (PK) (used in this method), while K+ 

is an activator for this enzyme. 
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(B) GLUTAMINE SYNTHETASE ASSAY 

(i) HYDROXAMATE METHOD 

The most popular method for the assay of glutamine synthetase 

is the one due to Speck (1949) and Elliott (1951) which is based 

on the fact that y- glutamylhydroxamic acid (GHA) is formed when 

ammonia in the reaction mixture is replaced by hydroxylamine 

[see Chapter I, equations (1) and (2)]. The y- glutamylhydroxamic 

acid can then be estimated by means of its cherry -red complex 

with ferric ions (Lipmann and Tuttle, 1945). Moreover the 

equilibrium for the hydroxamate formation lies much farther to 

the right than for the synthesis of glutamine, since the standard 

free energy of hydrolysis of the hydroxamate has been reported by 

Ehrenfeld, Marble and Meister (1963) to be about 700 cal. /mole. 

This method is, however, not very sensitive; a solution 

of 1 ..mole of GHA /ml. has an optical density of about 0.5, which 

is not very convenient for measuring the low levels of glutamine 

synthetase activity which are to be expected, for example, in 

muscle extracts. The sensitivity of the assay method was improved 

by replacing the ferric chloride in the reagent by colourless 

ferric salts, e.g. the nitrate or perchlorate (Ottaway and Khalid 

Iqbal, 1969) . This approximately doubled the sensitivity of the 

estimation. The method was not developed at the beginning of the 

investigation. Therefore the ferric reagent (using ferric 

chloride) was employed in some of the experiments reported in 

Chapter III (i.e. from section A to section E) . 
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Reagents 

0'3 M imidazole -HCl buffer, pH 7'2 

0'5 M Magnesium chloride 

t.0 M Hydroxylamine. 

A stock solution of 2 M hydroxylamine hydrochloride was 

neutralised with 2 N sodium hydroxide immediately before use and 

the volume was adjusted with water. 

05 M sodium glutamate, pH 7 °2 

0'25 M 2'- Mercaptoethanol, pH 7'2 

0'1 M Sodium ATP, pH 7'2 

Ferric reagent (Lipmann and Tuttle, 1945), equal volumes 

of 8'5 N HC1; 15% FeC13.6H20 in 0'3 N HC1; and 36% Trichloro- 

acetic acid. 

Ferric reagent (Ottaway and Khalid Iqbal) equal volumes 

of 40% trichloroacetic acid (TCA) and 0.6 M Fe(NO3)3.9H20. 

Procedure 

Incubations were carried out at 37 °C for 10 minutes (except 

where the enzyme activity was measured at different time intervals 

as mentioned in the text) in 15 ml. centrifuge tubes containing 

150 moles (0'5 ml.) of imidazole -HCl buffer: 300 [moles (0'3 ml.) 

of hydroxylamine, 75 µmoles (0'3 ml.) of 2'- mercaptoethanol, 

30 µmoles (0'3 ml.) of ATP together with enzyme + water to a final 

volume of 3'0 ml. 

The amount of enzyme was adjusted so that not more than 

3 µmoles of y- glutamylhydroxamate (GHA) were formed, when the 

amount of hydroxamate produced was proportional to the enzyme 

added (Elliott, 1955). 

60 µmoles of magnesium chloride (0.3 ml.), 150 moles of glutamate (0.3 ml.), 
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In all the assays carried out by this method except where 

specifically stated in the text, the tissue extract equivalent 

to 50 mg. wet tissue in the case of kidney or 250 mg. in the case 

of both cardiac and skeletal muscle per assay were employed. 

After incubation, 2 ml. of the ferric reagent was added to 

each tube, mixed quickly, and after standing for about 10 minutes, 

the protein was removed by centrifuging for about 10 minutes in a 

bench centrifuge. The hydroxamate in the supernatant was estimated 

by measuring the absorbance at a wavelength of 500 mµ on an SP 500 

Spectrophotometer using 1 cm. glass cuvettes. A sample in which 

ATP was omitted served as a control (validity of the control is 

discussed in Chapter III. Synthetic y- glutamylhydroxamic acid 

(GHA) was used as a standard. The colour produced with this 

ferric reagent obeys Beer's Law over the range 0.0 - 0.6 .moles 

hydroxamate /ml. A standard ct&'rve is shown in Fig. 2. The optical 
densities of the samples were read against solution containing 2 ml. of the 

Definition of Unit 
ferric reagent diluted to 5 ml. with water. 

x 

One unit of enzyme is defined as that amount which produces, 

under the standard test conditions, 1 timole of GHA /hr. 

(ii) NADH Oxidation Method 

This method, which measures the ADP formed in the enzyme 

reaction was independently developed in this laboratory. Similar 

methods have been published by Wellner, Zoukis and Meister (1966) ; 

Kingdon, Hubbard and Stadtman (1968), and Liess, Varricchio, 

Mecke and Holzer (1968). 

In this method, the glutamine synthetase is coupled to an 

The reading for the control was substracted from samples. 
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ADP assay method which involves coupling the phosphorylation 

of ADP (to ATP) with the oxidation of NADH using pyruvate kinase 

(PK) and lactic dehydrogenase (LDH) together with phosphoenol 

pyruvate (PEP) as shown below: 

PK,MG; +K +N 
(a) ADP + PAP ATP + pyruvate 

+ LDH 
(b) Pyruvate + NADH + 11-1- \ lactate + NAD 

The disappearance of NADH was measured by recording the 

decrease in optical density at 340 mj.. 

The method is clearly not specific for glutamine synthetase. 

Any pyruvate or ADP present in the reagents or extract will cause 

a disappearance of NADH, and care must be taken not to start the 

assay reaction until the fall in absorbance due to this has been 

completed. 

Any enzyme which produces ADP will be measured together with 

glutamine synthetase. In general this interference is negligible, 

since the substrates are either absent or present in very low 

concentrations. Considerable interference was, however, experienced 

with ATP -ase, particularly in the heart and skeletal muscle 

extracts, since ATP is a common substrate for both enzymes, and the 

ratio of ATP -ase to glutamine synthetase was much greater than 

unity in these extracts. Methods of overcoming the difficulty 

are described in detail later in the text. 

Trouble was also experienced with a drifting baseline on the 

addition of the tissue extract. The rate of drift appeared to be 

proportional to the concentration of ATP in the reaction mixture, 
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and the trouble was traced to contamination of the ATP with about 

0'1% of AMP. The tissue extracts contain low and variable amounts 

of adenylate kinase, catalysing the reaction 

AMP + ATP N 2 ADP 

and this reaction, running from left to right, was causing the drift. 

Since it would have been very troublesome to remove either the 

AMP or the adenylate kinase completely from the system, the 

expedient was adopted of adding a low concentration of adenylate 

kinase routinely to the reaction mixture, so that the AMP is 

removed before the assay begins. 

Reagents 

0'3 M Imidazole -HC1 buffer, pH 7'0 

0.3 M Magnesium chloride, pH 7'0 

0'25 M 2'- Mercaptoethanol, pH 7'0 

0'5 M L- Glutamic acid (monosodium salt), pH 7'0 

0'1 M ATP (disodium salt), pH 7'0 

0.5 M Hydroxylamine, pH 70; a stock solution of M hydroxyl - 

amine hydrochloride was neutralised with 2 M KOH solution 

immediately before use and the volume was adjusted with water. 

LDH -PK -MK solutions, 0'2 ml. of lactic dehydrogenase (LDH) 

(10 mg. /ml.), 0'2 ml. of myokinase (MK)(5 mg. /ml.), and 0'5 ml. 

of pyruvate kinase (PK) (10 mg. /ml.) were diluted with the imidazole- 

HC1 buffer to a final volume of 3 ml. and this was then dialysed 

to remove ammonium sulphate from it, in which solution these 

enzymes were suspended. The dialysis was carried out for about 
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3 hours in a cold room (ca 5 °C) against two changes, each of 

100 volumes of 0'001 M EDTA solution, pH 7'0; 0'1 ml. of this 

LDH -PK -MK solution (containing 2L+, 25 and 12 units of LDH, PK 

and MK respectively) was employed per cuvette (1 ml.); this 

solution was always freshly prepared and kept at about 2 °C. 

NADH- PEP -KC1 -EDTA solution, a solution containing 3'3 mg. 

NADH, 10'3 mg. PEP, 0'75 ml. of 2 M KC1 and 0'05 ml. of 0'1 M 

EDTA, pH 7'0, per ml. was prepared immediately before use and 

neutralised with 0'1 M KOH solution. 

0'05 ml. of this solution containing approximately 0.3 

.mole of NADH, 2 p.moles of PEP, 75 t.moles of KC1 and 0'25 ,.moles 

of EDTA, was added to each cuvette (l'0 ml.). 

Procedure 

A reaction mixture consisting of 60 j.moles (0'2 ml.) of 

imidazole -HC1 buffer, 30 p.moles (0'1 ml.) of magnesium chloride, 

25 pmoles (0'05 ml.) of hydroxylamine, 25 pmoles (0'1 ml.) of 

2'- mercaptoethanol, 50 imoles (0'1 ml.) of glutamate, 0'05 ml. 

of the NADH- PEP -KC1 -EDTA solution, 10 t.moles (or different in 

experiments where enzyme activity was studied at different ATP 

concentrations)(0'1 ml.) of ATP and 0'1 ml. of the LDH -PK -MKS 

solution were incubated at 37 °C in a semi micro 1 cm. silica 

cuvette in a Unicam SP 800 Recording Spectrophotometer and the 

optical density was recorded for 3 -5 minutes until it became 

constant. During this period impurities such as AMP and ADP were 

removed, with a corresponding fall in concentration of NADH. Then 

0'2 ml. of the tissue extract suitably diluted with water was 

It was found that doubling the amount of these ancillary enzymes did not 
increase the rate of the reaction. 
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quickly stirred into the cuvette to give a final volume of 

1'0 ml. The decrease in the absorbance was recorded for about 

3 minutes. The rate of decrease should be linear over almost 

all this period. The rate of NADH oxidation after addition of 

the tissue extract to a cuvette in which glutamate was omitted 

served as a control. 

The absorbance was recorded at a wavelength of 340 mµ. The 

accuracy of the system was frequently checked with a standard 

solution of ADP. 

Similarly the ATP -ase activity was also determined by this 

method by employing a sample in which both ATP and glutamate were 

omitted as a control. 

Calculations 

The difference in the rate of decrease of the absorbance 

between the sample and the control gave the rate of NADH oxidation 

due to glutamine synthetase activity, which was multiplied by an 

appropriate factor to calculate the decrease of absorbance due to 

1 g. of the wet tissue /hr. of incubation. This was then divided 

by the extinction coefficient of NADH at 340 mµ i.e. 6'22 

[Cm.2 /µmole] to give the number of moles of NADH oxidised or 

µmoles of ADP produced in the system per g. of wet tissue /hr. 

This was equivalent to the glutamine synthetase activity. 

Definition of Unit 

One unit of enzyme was defined as that amount which 

produced, under the standard test conditions, 1 µmole of ADP /hr. 
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(C) PHOSPHATE DETERMINATION 

The inorganic phosphate (Pi) content of the tissue extracts 

used for the estimation of glutamine synthetase activity, were 

determined by a colorimetric method based on that of Taussky and 

Shorr (1953) . 

Reagent s 

Trichloroacetic acid (TAC), 20% solution (w /v) . 

0.2 mM KH2PO4 solution was prepared by dissolving 27.2 mg. 

of it in 500 ml. 

Phosphate reagent, a stock solution of 10% ammonium 

molybdate in 10 N H2SO4 was prepared. Then 10 ml. of this stock 

solution was diluted to about 70 ml., and 5 g. of FeSO4.7H20 were 

dissolved in it and volume was made up to 100 ml. This reagent 

was always prepared fresh each day before use. 

Procedure 

1 ml. of 20% trichloroacetic acid (TCA) was mixed with 

3 ml. of the sample. After standing for about 15 minutes in a 

refrigerator (ca. 2 °C), it was centrifuged for about 10 minutes 

in an ordinary bench centrifuge in a cold room (about 5 °C) . 1 ml. 

of the supernatant obtained was diluted to 5 ml. with water, and 

then 3 ml. of the phosphate reagent was mixed quickly in it. 

After standing for 10 minutes the blue colour produced was read 

against water at a wavelength of 600 mµ on an SP 500 spectrophoto- 

meter. 

Phosphate contents of the sample were read directly from 
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µmoles of phosphate present (in 8 ml.) 

Fig. 3. 

Standard curve for phosphate determination. 
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the standard curve (Fig. 3) obtained by plotting different 

concentrations i.e. 0.1 - 0'.8 timoles of phosphate (standard 

KH2PO4 solution used) against the corresponding optical densities 

obtained in the same way as the unknown samples. 

(D) DETERMINATION OF ADP 

Adenosine- 5!diphosphate (ADP) determination was carried 

out by a method described by Adam (1963) . In this method, ADP 

is phosphorylated with pho sphoenolpyruvat e (PEP) and pyruvate 

kinase (PK) . The pyruvate formed is reduced with NADH and 

lactic dehydrogenase (LDH) [see equations (a) and (b) on page 30]. 

Reagents 

5 x 10 -2 M Triethanolamine buffer; pH 7.55 

0'5 M Magnesium sulphate 

2 M Potassium chloride 

100 mg. /ml. Ethylene -diamine- tetra -acetate (EDTA); 10 g. 

of EDTA- Na2H2.2H20 was dissolved in water, neutralized with 2 M 

NaOH and diluted with water to 100 ml. 

4 x 10 -2 M Phosphoenolpyruvate (PEP) 

10 -2 M NADH, it was always prepared immediately before use 

and was neutralised with 10 mM KOH. 

10 -2 M Adenosine triphosphate (ATP) 

0'1 mg. protein /ml. Lactic dehydrogenase (LDH), 0'01 ml. 

of a crystalline suspension (10 mg. protein /ml.) was diluted to 

1 ml. with 2'25 M ammonium sulphate solution (pH 6'5). 

0 °5 mg. protein /ml. Pyruvate kinase (PK), 0'05 ml. of a 
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crystalline suspension (10 mg. protein /ml.) was diluted to 1 ml. 

with 2'1 M ammonium sulphate solution (pH 5'5). 

M Perchloric acid 

2 M Potassium hydroxide. 

Procedure 

Deproteinization: To the assay mixture (3'0 ml.) in the 

hydroxamate method after 30 min. incubation at 37 °C was added 

0.6 ml. of M perchloric acid and after being allowed to stand for 

about 5 -7 minutes in an ice bath, was centrifuged in an ordinary 

bench centrifuge, placed in a cold room (ca 5 °C) , for about 10 

minutes. The supernatant was decanted off and was neutralised 

with 2 M potassium hydroxide solution, volume made to 4.0 ml. with 

water, and again allowed to stand for about 5 -7 minutes in an ice 

bath. The crystalline precipitates of potassium perchlorate 

were settled at the bottom and 0'5 ml. of the clear supernatant 

was taken out for estimating ADP in it. 

Spectrophotometric measurements: From the above described reagents, 

the following reaction mixture was prepared and quickly neutralised 

with 10 mM KOH solution. 

0.36 ml. Magnesium sulphate solution 

0'76 ml. potassium chloride solution 

0'04 ml . EDTA solution 

0'40 ml. PEP solution 

030 ml. NADH solution 

0'07 ml. ATP solution 

or multiple of the individual volumes. 
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Then 05 ml. of the deproteinized sample, 1'3 ml. of the 

triethanolamine buffer and 0.15 ml. of the reaction mixture were 

pipetted successively in a 1 cm. silica cuvette. This cuvette 

was.then placed (25 °C) in a recording SP 800 Spectrophotometer. 

0.02 ml. of the LDH solution was very quickly mixed in it with 

a plastic stirrer and optical density was recorded at 340 mµ for 

about 5 minutes until no further change occurred. This value of 

optical density was marked as El. After this 0'03 ml. of the PK 

solution was stirred in the cuvette and again optical density 

recorded for about 10 minutes till no further change. This new 

value of optical density was marked as E2. 

A reference containing all the reagents except the sample 

was employed. Working of the method was checked with standard 

solution of ADP. 

Calculations 

The optical density difference El - E2 = EADP was determined, 

and the amount of ADP in [moles present /assay of the hydroxamate 

method was calculated as under: 

EADP x VA x VE 
= µmoles of ADP/assay of the hydroxamate method. 6x dxVP 

- where EADP E 
1 E2 

VA = Volume of the test mixture in the cuvette (20 ml.) 

VE = Total volume of the test sample after deproteinizing 
(4.0 ml.) 

VP = Volume of the test sample added to the cuvette 
(0.5 ml.) 

= Extinction coefficient for NADH at 340 mµ which is 
6.22 [cm2 /µmole] 

d = Light path of the cuvette (1 am.) 
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ACTIVITY OF ENZYME IN EXTRACTS MEASURED BY THE 

HYDROXAMATE METHOD 

This chapter begins with a systematic discussion of the 

importance of a valid control in the hydroxamate method especially 

in measuring low levels of enzyme activity. This chapter also 

includes the most important part of this thesis - an answer to the 

question whether there is really any glutamine synthetase activity 

in rat cardiac and skeletal muscle, which depends on the criteria 

by which the presence of enzyme activity may be established. 

The check of the optimum concentrations of substrates and 

the effect of detergents for more efficient extraction of the 

enzyme are also reported. 

Finally the possibility that inorganic phosphate is the 

inhibitor responsible for the observed non -linearity of the 

reaction, and the unsuitability of the hydroxamate method for 

studying this inhibition, are discussed. 

(A) CONTROL 

Controls with enzyme and ATP separately omitted have been 

employed by Pamiljans, Krishnaswamy, Dumville and Meister (1962), 

and Berl (1966) , while Trush (1963) has suggested a sample 

containing all the reagents but with previously boiled enzyme or 

a sample containing no ATP as a control. 

As the glutamine synthetase activity in the muscle extract 

was very small, the absorbance of the sample was comparable with 

that of the control (see Fig. 4) and hence the latter became very 
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important. A good deal of time was therefore spent in finding 

a valid control. 

Various possible controls such as (i) all the reagents 

omitted except the enzyme (B), (ii) glutamate and ATP omitted (C), 

(iii) only ATP omitted (E) , (iv) only glutamate omitted (G) and 

(v) all the reagents omitted except glutamate, ATP and the enzyme 

(J) were tried for heart, skeletal muscle and kidney extracts as 

shown in Table II (tissue extracts up to Step I of the procedure 

for the preparation of the extract were used; see Chapter II) . 

The absorbance of the control B for each tissue showed that 

there was some absorbance due to the heart extract, rather less 

with the kidney extract and none with muscle extract. The use 

of a control with boiled extract as employed by Trush (1963) was 

therefore avoided. The absorbance of control B was found to be 

equal to that of control J, which showed that no reaction occurred 

with glutamate and ATP in the absence of the activators. Since 

the absorbance of control B was smaller than that of C or E or G, 

the other components of the reaction mixture, i.e. the buffer, 

hydroxylamine, magnesium chloride and 2'- mercaptoethanol must also 

be responsible for a part of the colour in a control, in addition 

to that of the extract itself. Since controls C, E and G were 

equal, it may be concluded that the omission of either glutamate 

or ATP will produce a colour which was due only to the extract 

and to the hydroxylamine, Mg ++ and mercaptoethanol, and which may 

reasonably be taken to be the control optical density to be sub- 

tracted from the experimental observations. It was not necessary 



TABLE II 

Composition and optical density measurements of various 
controls. 

Optical density (0.D.) measured per assay at 500 mil on an SP 500 

Spectrophotometer against ferric reagent + H20. 

Incubations were carried out at 37 °C for 10 minutes using non 

dialysed tissue supernatants. 

Reaction mixture 
Control Sample 

B C E G J 

Imidazole-HC1 buffer x / J V x ,/ 

Hydroxylamine x ,/ J J x J 

Glutamic acid x x J x J I 

Magnesium chloride x I ,/ ,/ x / 

2'-mercaptoethanol x J J ,/ x J 

Adenosine triphosphate 
(ATP) x x x N/ J J 

Enzyme / V / J J J 

Optical Densities 

Skeletal muscle 0'00 0'04 0'04 0'04 0'00 0.08 

Kidney 0'01 0'05 0'05 - 0'01 029 

Heart 0'02 0'05 0'05 0'05 0'02 0'07 
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to omit both glutamate and ATP because the amounts of these 

substances present in the extract itself were not sufficient to 

sustain a measurable reaction. 

However, in another experiment in which no enzyme was added 

to the reaction mixture, it was found that addition of glutamate 

either in the presence or absence of ATP caused a slight increase 

in optical density (from 0'02 to 0'03), whereas addition of ATP 

either in the presence or absence of glutamate caused no change 

in optical density. It was concluded that glutamate was 

responsible for a part of the observed colour, not due to glutamine 

synthetase activity, and the omission of ATP would give a better 

estimate of the enzyme activity. A sample containing all the 

reagents, but no ATP was therefore employed as a control. 

The control was also incubated together with the samples 

because its optical density also increased with the time of 

incubation. This may be due to some enzyme similar to a 

bacterial enzyme reported by Meister, Levintow, Greenfield and 

Abendschein (1955), and Ehrenfeld, Marble and Meister (1963) which 

catalyses the synthesis of L- y- glutamylhydroxamic acid from L- 

glutamic acid and hydroxyl amine without requiring ATP, or to some 

nonenzymic reaction. If this were to be the case, the use of a 

control containing all the reagents but with boiled enzyme, as 

recommended by Trush (1963) would not give a true estimate of 

glutamine synthetase activity as defined by equation (1) in 

Chapter I. This was another reason for not employing it as a 

control. 
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(B) PRELIMINARY RESULTS 

After finding a valid control, I turned to investigating 

whether the low optical density differences between the sample and 

the control, when cardiac and skeletal muscle extracts were used 

(see Table II), were due to glutamine synthetase activity or were 

some form of artefact. Trush (1963) clearly took these small 

optical density differences as evidence of enzyme activity in 

cardiac and skeletal muscle homogenates, but in order to be certain, 

it is necessary to satisfy certain criteria. For instance, 

hydroxamate formation should be proportional to incubation time, 

and to concentration of extract added. Moreover, unless the first 

criterion, in particular, is satisfied, the rates observed are 

almost certainly not the maximum rates. For both these reasons, 

it was necessary to carry out further work on cardiac and skeletal 

muscle extracts. In order to check both the efficiency of the 

assay system, and to compare the results of cardiac and skeletal 

muscle extracts with those of other workers, the enzyme activity in 

kidney, which is already known (see Chapter I) to contain a high 

level of the enzyme was also studied. 

The enzyme activity was therefore determined in all three 

tissues by incubating the reaction mixture for different intervals 

of time. Tissue homogenates (see Chapter II; up to Step I of the 

procedure for the preparation of the extract) were used, since these 

experiments were done before I investigated high -speed supernatants. 

The enzyme activity was found to be nonlinear with increase 

in the time of incubation for both muscle and kidney homogenates 
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(see Table III, Fig. 5), suggesting the presence of some 

inhibitor, which needed further investigation. 

As regards cardiac muscle, the increase in absorbancy even 

after one hour of incubation, using extract equivalent to 250 mg. 

of tissue was of the order of 0.05 and it was therefore very 

difficult to decide if any enzyme activity was really present. 

TABLE III 

Amount of y- glutamylhydroxamic acid (GHA) produced by the 

total homogenate on incubation for various time intervals. 

(Glutamine synthetase activity expressed as t.moles of 

GHA/g. wet tissue) . 

Time of 
incub- 
ation 
in min. 

Skeletal muscle Kidney 

1 2 3 1 2 3 4 

5 3'71 7'04 2.24 20'00 14.24 22'00 11'84 

10 - - - - - 23.00 

15 4'55 7'20 3'36 26.40 16.96 - 23.20 

20 - - - - - 32.20 

30 5.15 7'84 4'48 33.12 23'68 35'40 39'04 

45 5.24 8'88 4.80 36.96 35.84 39.60 44.16 

60 - - - 38'56 - - 47'20 

In order to cut down the unnecessary amount of work, further 

investigations on this tissue were postponed until some improve- 

ments in the preparation of the extracts and the development of a 

more sensitive assay method could be achieved. If one could get 

glutamine synthesis by muscle and kidney extracts to be proportional 
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to incubation time, and concentration of extract, it would then 

be profitable to study cardiac muscle extracts again. 

(C) ACHIEVEMENT OF LINEARITY 

(i) Effect of high speed centrifugation 

Reiner and Hudson (1953) reported that high -speed centri- 

fugation of rat kidney homogenates increased the glutamine 

synthetase activity 3 -fold. They found that all the activity was 

recovered in the supernatant after centrifuging the tissue homo- 

genate for one hour at 40,000 R.P.M. in a Spinco Preparative 

Ultracentrifuge, using the type 40 rotor. 

This observation was confirmed and it was found that the 

supernatant SII obtained after centrifuging the total homogenate 

at 30,000 R.P.M. for 45 minutes was more active than supernatant 

SI, centrifuged at 30,000 R.P.M. for 15 minutes, or supernatant 

SIII, centrifuged at 40,000 R.P.M. for one hour. This is shown 

in Table IV. The decrease in enzyme activity due to further 

centrifugation of the supernatant SII may be due to loss of some 

unknown activator of glutamine synthetase which is spun 

down during 1 hour at 40,000 R.P.M. 

TABLE IV 

Effect of differential spinning of the total homogenate on 

the glutamine synthetase activity of the tissue.(Enzyme 

activity expressed in units /g. wet tissue). 

Tissue SI SII SIII 

Skeletal muscle 8.2 23'8 11'2 

Kidney 187'2 198'0 157'5 
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It was established in another experiment 

that the residue RII obtained when supernatant SI was further 

centrifuged, caused inhibition when added to the supernatant SII 

(see Table V). The supernatant SII was therefore employed in 

all subsequent assays. 

TAB T,R V 

Inhibition of the tissue supernatant (SII) glutamine 

synthetase by the residue (RII) obtained by high speed 

centrifugation of the supernatant SI. 

The enzyme activity is expressed in units /g. wet tissue. 

Tissue SI SII SII + RII 

Skeletal muscle 12.2 27.6 16.2 

Kidney 122'4 136.2 124'2 

The enzyme activity was found to be linear with increase in 

the time of incubation using kidney supernatant only when small 

amounts (i.e. extract equivalent to 50 mg. of wet tissue) of the 

extract were used (see Fig. 6). The activity in this tissue was 

also found to be linear with increase in the volume of the 

extract (see Fig. 8). 

On the other hand, the glutamine synthetase activity of muscle 

extracts was still quite nonlinear with increase in the time of 

incubation (see Fig. 7) and with increase in the amount of the 
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extract (see Fig. 9). Since the muscle extract was expected to 

have low level of the enzyme activity, if present at all, tissue 

supernatant equivalent to 250 mg. of wet muscle per assay was 

used. The results clearly suggest that the high -speed supernatant, 

SII, still contained some inhibitor, in addition to that removed 

in the residue. 

(ii) Effect of dialysis 

In order to see whether this additional inhibitor was a 

protein, like for instance the enzyme found to inhibit bacterial 

glutamine synthetase (Mecke, Wulff, Liess and Holzer, 1966) or 

whether it was of low molecular weight, the tissue supernatant SII 

was dialysed against two changes each of 100 vols. of sodium 

chloride - sodium bicarbonate solution containing 1 mM EDTA and 

5 mM 2' -mercapt oethanol for about 3 hours as described in the 

procedure for the preparation of extract in Chapter II. This 

resulted in an increase of about 30% in muscle glutamine synthetase 

activity, while the kidney enzyme activity was slightly decreased. 

The most important effect of dialysis was that the activity of the 

dialysed muscle extract was found to become linear both with time 

of incubation (see Fig. 10), and with increase in the volume of 

the extract (see Fig. 11) . This result removed any doubts that 

the colour measured after incubation of muscle extracts with the 

assay mixture might be due to an artefact, and not due to the 

enzyme, glutamine synthetase. Only dialysed tissue supernatants, 

as described in Chapter II, were therefore employed for the 

determination of the enzyme activity in all the experiments carried 
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Incubations were carried out for 10 minutes at 37 °C. 
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out with the hydroxamate method. Since the linearity of the 

activity with increase in the time of incubation using kidney 

extracts was only true when small amounts of the extract (i.e. 

equivalent to 50 mg. of wet kidney) were employed, they were also 

dialysed when measuring enzyme activity in subsequent experiments 

using the hydroxamate method. An investigation into the nature 

of the inhibitor responsible for the nonlinearity of the enzyme 

activity in nondialysed extracts is discussed later in this 

chapter [see section (G)]. 

(D) OPTIMUM CONCENTRATIONS OF SUBSTRATES 

It is necessary to check whether the substrates in an assay 

system are present in optimum concentrations before one measures 

the enzyme activity of a tissue extract. In this section the 

optimum concentrations of substrates for glutamine synthetase are 

reported. 

These optimum concentrations have been studied by several 

workers (Speck, 1949a, 1949b; Elliott, 1951; Baerle, et al., 

1957; Pamiljans, Krishnaswamy, Dumville and Meister, 1962; Trush, 

1963). There is a good measure of agreement between the results 

except for ATP and Mg 
-1-1- concentrations (see Chapter I) which thus 

need confirmation. Different concentrations of ATP have been 

employed by each worker, perhaps because of different amounts of 

ADP produced by their preparations (containing ATP -ase as an 

interfering enzyme) during the reaction. 

In view of this, an optimum concentration of ATP was deter- 

mined as shown in Fig. 12. The enzyme activity reached a plateau 
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at an ATP concentration of 10 mM, and this concentration was 

therefore used for all other experiments and is quoted in the 

hydroxamate method described in Chapter II. These results dis- 

agree with those of both Levenbook and Kuhn (1962) and Trush 

(1963) , according to whom an excess of ATP above 5 mM causes 

inhibition of the enzyme. Levenbook and Kuhn (1962) stated that 

the inhibition which they found is not due to cation binding, while 

Trush (1963) gave no explanation. 

A Km value of 8.8 x 10 
-4 

M for muscle and 12'4 x 10 
-4 

M for 

kidney was obtained from the Lineweaver and Burk (1934) plots 

from the above- mentioned experiment. The significance of the 

difference between these estimates is discussed in Chapter VI. 

As regards the optimum concentration of Mg + +, it is known 

to depend on ATP concentration and also the pH at which the 

reaction is carried out, as discussed in Chapter I. The optimum 

concentration of Mg ++ was therefore established at the optimum ATP 

concentration (10 mM) obtained above, by studying the enzyme 

activity at different concentrations of magnesium chloride. A 

graph was plotted (see Fig. 13) between the concentration of 

magnesium ions and the enzyme activity. The highest activity 

was found at a Mg ++ concentration of 15 mM both for muscles and 

the kidney extracts for 10 mM ATP concentration. Since this 

value, i.e. 15 mM Mg ++ was very close to that value of 20 mM 

quoted by Elliott (1951) and Baerle, et al. (1957) 20 mM Mg 
++ 

was employed for all other experiments done with the hydroxamate 

method. 
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(E) SOLUBILISATION OF THE ENZYME BY DETERGENTS 

Glutamine synthetase, as already discussed in section (C) 

of this Chapter, is known to be mainly distributed in the micro- 

somes, where it is chiefly associated with vesicles, and a small 

portion of it is also attached to the ribonucleoprotein particles 

(Wu, 1961; Sellinger and Verster, 1962; Wu, 1963; Hsu and 

Tappel, 1964) . Wu (1961) has reported that glutamine synthetase 

in the nuclear and microsome fractions can be solubilised with 

0'1 - 0'5% deoxycholate. It was therefore thought useful to check 

whether, by the use of detergents, a more efficient extraction of 

the enzyme from the microsomes was possible. In an experiment to 

confirm this, two detergents, i.e. sodium dodecyl sulphate (SDS) 

and sodium deoxycholate (SDC) were used, but no change in activity 

was observed, suggesting that the enzyme might already be 

completely solubilised by the sodium chloride - sodium bicarbonate 

solution, in which the extract was prepared. This would be in 

accordance with the report of Wu (190a). Neither detergent was 

therefore used in the preparation of extract (see Chapter II) in 

other experiments. 

(F) AMOUNT OF THE ENZYME IN TISSUES 

In the light of the findings so far reported, estimates of 

tissue glutamine synthetase activity were therefore determined in 

dialysed supernatant fractions of tissue homogenates. The homogen- 

ates were prepared from tissue samples obtained from a group of 

animals and the hydroxamate method was used. The results are given 

in Table VI. 
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TABTR VI 

Glutamine synthetase activity as units /g. wet tissue + 

standard deviation. 

The kidney, muscle and heart extracts were not necessarily 

prepared from the tissues obtained from the same rat. 

Kidney Skeletal muscle Heart 

307.2 33'1 1.2 

198.0 23.8 27 

136.2 27.6 3.6 

146.2 10.5 2'4 

119.7 31.1 2.0 

313.0 9.0 20 

171'3 12.0 2'4 

1)!)j 0 21.6 3'7 

129.0 7.2 20 
204.0 92 

144'0 33'0 

186.0 10.4 

Average 183'2 + 65'1 19'1 + 10.3 2.5 + 0.8 
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Fig. 15. 

Rate of the glutamyl hydroxamate synthesis with 

increase in amount of the heart extract. 

Incubations were carried out for 30 minutes 

at 37 °C. 

The nondialysed ( - ) (a) and dialysed (O -O ) (b) 

heart supernatants used in this experiment were prepared 

from different rats. 
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The average glutamine synthetase activity was found to be 

19'1 + 10.3 units (for definition of unit, see Chapter II) per g. 

of wet muscle and 183.2 + 65'1 units per g. of wet kidney. The 

value for muscle was more than four times as great as that reported 

by Trush (1963), while the activity found in kidney was about 50% 

more than that reported by Reiner and Hudson (1953). 

In dialysed supernatants of cardiac muscle extracts, colour 

production was reduced to about 60% during 30 minutes incubation 

compared with undialysed supernatants,but the criteria of 

linearity both with increase in incubation time (Fig. 14), and the 

amount of tissue (Fig. 15) appeared to be satisfied. Since the 

activity was so low, the standard incubations were carried out 

for 30 minutes. The enzyme activity in heart was found to be on 

average 2'5 + 0'8 units /g. wet tissue (see Table VI) ; and with 

3 extracts, the activity was so low (i.e. less than 2 unit /g. wet 

tissue) that it could not be measured by this method. It will be 

seen later that no detectable activity (i.e. less than 0'75 unit /g. 

wet heart) could be found by the NADH oxidation method (see 

Chapter IV). When this latter result was established, two more 

assays of heart glutamine synthetase activity were carried out by 

the hydroxamate method, and in both there was no detectable 

activity. Trush (1963) found on average 4'L t.moles of hydroxamate 

produced /g. wet cardiac muscle /hr. using total tissue homogenates 

which is about twice as much as measured by me. This difference 

in results might just be due to different rats. 

Glutamine is therefore also synthesised in skeletal muscle 
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beside liver, brain and kidney while heart is partly dependent 

on the blood stream for its supply of glutamine, at least in the 

rat (Ottaway, 1969). 

After establishing the presence of glutamine synthetase in 

muscle, it seemed worthwhile to investigate the nature of the 

inhibitor which was responsible for the nonlinearity of the 

enzyme activity in the nondialysed tissue extracts, since it 

may be of physiological significance in the regulation of the 

enzyme in the body, even though this is not strictly related to 

the main investigation with which this thesis is concerned. The 

investigation of the inhibitor was limited to the skeletal muscle 

extracts and for comparison the kidney extracts were also studied 

in parallel to it. 

(G) POSSIBLE NATURE OF THE INHIBITOR 

The effect of dialysing the tissue supernatant SII, as found 

above, clearly indicated that the inhibitor was nonenzymic in nature. 

A look at various already known inhibitors of glutamine synthetase 

(as discussed in Chapter I) which may exist physiologically in the 

animal body suggests Ca ++ as a possibility; the Ca ++ content of 

rat kidney and lean somatic muscle is known to be 3 and l'S pg atoms/ 

g. wet tissue respectively (Long, 1961). This could explain the 

inhibition produced by adding increasing amounts of extract (Fig. 9) 

and the increase in the enzyme activity by dialysis of the muscle 

extract. But had the inhibition in the muscle enzyme been due to 

Ca ++ alone, the inhibition would have not been progressive with time 
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(see Fig. 7), i.e. the true course of the inhibited reaction 

would still be linear. This nonlinearity of the enzyme activity, 

when using nondialysed muscle extract, could therefore be only 

due to a product or products of some enzyme, even glutamine 

synthetase itself, which accumulated during the incubation causing 

progressive inhibition with time. Looking at this hypothesis 

that the inhibitor is an enzymic product, I considered ADP. ATP - 

ase is known to be present in both muscle and kidney, and is 

activated by Ca ++ (Du Bois and Potter, 1913; Martonosi, 1968; 

Martonosi, Donley and Halpin, 1968) . Since ATP is a common sub- 

strate both for glutamine synthetase and ATP -ase, its hydrolysis 

results in both a constant decrease in the concentration of ATP, 

and at the same time accumulation of ADP and inorganic phosphate 

(Pi) . It may therefore be responsible for the progressive 

inhibition with time of incubation (Fig. 7) . 

The amount of ADP which accumulates during 30 minutes incubation 

in the assay system using nondialysed tissue supernatant was deter- 

mined by the method given in Chapter II and was not found to be 

enough in either nondialysed muscle [viz. 3 .mole /assay (250 mg.) 

per 30 minutes incubation], or kidney (viz. 0'9 ..mole /assay 

(50 mg.) /30 min. incubation] supernatants to account for the 

progressive inhibition of glutamine synthetase activity with time 

(Fig. 7). This low rate of ADP accumulation suggested that the 

ADP produced in the system might be converted to AMP and ATP by 

adenylate kinase present in the tissue supernatants. Elliott 

(1951) has reported that 
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2 ATP ATP -ase; G.synth.\ 

2 ADP Adenylate kinase 

2 ADP + 2Pi 

AMP + ATP 

AMP is only slightly inhibitory and that this inhibition may be 

due to the formation of ADP from it by adenylate kinase. These 

results therefore suggested that inorganic phosphate accumulating 

in the reaction system during incubation may be responsible for 

the progressive inhibition with time. Gothoskar, Raina and 

Ramakrishnan (1960) have reported that phosphate at a concentration 

of 90 mM or over completely inhibits chicken heart glutamine 

synthetase activity, while Pamiljans, Krishnaswamy and Meister 

(reported by Meister, 1962) failed to find any phosphate 

inhibition of the enzyme in mammalian tissues. This needed further 

investigations. The amount of inorganic phosphate which accumulates 

during 30 minutes incubation both due to ATP -ase and glutamine 

synthetase was, therefore, determined in an experiment using non - 

dialysed supernatants, by a method based on that of Taussky and 

Shorr (1953) and described in Chapter II. It was found to be 

221 .moles /assay (250 mg.) in nondialysed muscle and 9.3 timoles/ 

assay (50 mg.) in nondialysed kidney supernatants, while the 

corresponding values in dialysed muscle and kidney supernatants were 

9'7 and 7.1 respectively. In addition to this the amount of 

endogenous inorganic phosphate present in the undialysed supernatants, 

when measured by the same method, was found to be 5'0 µmole /assay 

(250 mg.) in muscle and l'3 µmole /assay (50 mg.) in kidney. This 

endogenous amount of inorganic phosphate together with that which 
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accumulates as a result of both ATP -ase and glutamine synthetase 

activities in nondialysed muscle extract could therefore be the 

cause of progressive inhibition of glutamine synthetase activity, 

if phosphate is, in fact, an inhibitor of the mammalian enzyme. 

The reason for linear activity in the case of kidney even in the 

nondialysed supernatants might be that the amount of extract 

used (i.e. equivalent to 50 mg. of wet tissue) was only 1/5th of 

that used for assays with muscle supernatants and consequently as 

shown above, both the amount of endogenous inorganic phosphate, 

and the accumulation of Pi during incubation, were not enough to 

inhibit the enzyme significantly (see Fig. 16) . In the light 

of these results, it was decided to study glutamine synthetase 

activity in the presence of added inorganic phosphate. 

When glutamine synthetase activity was studied in the presence 

of 5 mM phosphate (disodium hydrogen phosphate solution, 

neutralised to pH 7'2 was employed) using dialysed tissue super- 

natants, about 25% decrease in the enzyme activity of muscle 

supernatant and 10% decrease in kidney supernatant was found 

(see Table VII) suggesting that the inorganic phosphate does 

inhibit the enzyme. This agrees with the inhibition of the enzyme 

from chicken heart found by Gothoskar, Raina and Ramakrishnan 

(1960) . The reason for the greater inhibition of the enzyme in 

the muscle extracts was not clear at this point. 
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TABLE VII 

Determination of the phosphate inhibition of glutamine synthetase 

activity by the hydroxamate method. 

The enzyme activity is expressed as units /g. wet tissue. 

The incubations were carried out at ° 37 C for 30 minutes. 

Expt. 
Skeletal muscle Kidney 

No. No.phosphate 5mM 
phosphate 

No phosphate 5mM 
phosphate 

1 10'0 7.4 110'0 100.0 

2 10.7 8.2 165.0 143.0 

3 - - 120'0 106'0 

4 - - 205'0 187'0 

Average 10'4 7'8 150'0 134'0 

Inhibition 25% 10% 

Further study of the inorganic phosphate inhibition of the 

enzyme needed to be carried out in an assay system essentially 

free from any other inhibitor, for otherwise it would not have 

been possible to identify the type of inhibition. In the hydrox- 

amate method ADP constantly accumulates. Hence it is not a 

suitable method to study the effect of the phosphate (Pi) on the 

rate of the enzyme reaction, unless some way can be introduced of 

removing the ADP from the assay system as soon as it is formed. 
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Attempts to do this by adding creatine phosphate (CP) (10 p.moles) 

and creatine phosphokinase (CPK) (100 µg.) were unsuccessful, 

perhaps because the enzyme was inhibited in the reaction mixture. 

Moreover, even if the ADP can be prevented from accumulating, 

Pi will still accumulate in considerable quantities during the 

time required for an accurately measurable amount of glutamyl- 

hydroxamate to be produced. This would mean that the concentration 

of inorganic phosphate (Pi) at the end of the incubation will be 

different from that added at the beginning, which would make 

estimation of the inhibitor constant, for example by Lineweaver- 

Burk plots, impossible. For these reasons it is necessary to 

choose both a more sensitive assay method and one in which ADP 

does not accumulate. 
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C H A P T E R IV 
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NADH OXIDATION METHOD 

(A) NADH Oxidation method 

(B) Interference by ATP -ase and its removal from 
the extract 

(C) Measurement of both ATP -ase and glutamine 
synthetase in the same cuvette 

(D) Determination of inorganic phosphate inhibition 
of glutamine synthetase 

(E) Check of heart extracts for glutamine synthetase 
activity by the NADH oxidation method 
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PHOSPHATE INHIBITION OF THE ENZYME REACTION 

STUDIED BY THE NADH OXIDATION METHOD 

As discussed in the previous Chapter, the hydroxamate 

method is unsuitable for accurate study of the effect of inorganic 

phosphate (Pi) on the glutamine synthetase reaction. In this 

Chapter the development of a new method is discussed. The removal 

of most of the ATP -ase present in the crude enzyme extracts, which 

interferes in the assay has also been described. An economic 

method of measuring residual ATP -ase and glutamine synthetase 

activity in the same cuvette is also reported. The main part 

of the Chapter is concerned with establishing the effect of 

inorganic phosphate (Pi) on the rate of the enzyme reaction, which 

clearly showed it to be an inhibitor. 

This Chapter also includes a further test for the existence 

of glutamine synthetase in cardiac muscle by the NADH oxidation 

method using ammonium sulphate treated extracts (see section B). 

(A) NADH OXIDATION METHOD 

The details of the NADH oxidation method are given in 

Chapter II. It is not only several times more sensitive than 

the hydroxamate method but also has the great advantage that ADP 

does not accumulate in the assay system. Moreover, the initial 

rate of the enzyme reaction can conveniently be studied. This 

was not possible with the hydroxamate method owing to its 

relatively low sensitivity. Measures of the glutamine synthetase 

activity by the NADH oxidation method were found to be comparable 

with the hydroxamate method only in the case of muscle extracts, 
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while when using kidney extracts the former method measured, 

on average, only about half of the activity, as compared with 

that found by the hydroxamate method. The values of the enzyme 

activity measured by the NADH oxidation method are given in 

Table VIII, and those found by the hydroxamate method are given 

TABLE VIII 

Determination of glutamine synthetase activity in dialysed 

supernatants by the NADH oxidation method + standard deviation. 

The activity is expressed as units /g. wet tissue. 

The muscle and kidney extracts were prepared from tissues 

obtained from different rats. 

Skeletal muscle Kidney 

24.78 82.40 

18'23 113'40 

22'10 87'09 

14'90 86'71 

23'88 93'26 

Average 20'78 + 4'14 92'57 + 12.27 

in Table VI (Chapter III). These results suggest that the 

kidney enzyme,unlike the muscle enzyme may be inactivated (of 

course, partly) by some component or components of the assay 

mixture used in the NADH oxidation method. This shows a different 

behaviour of the enzyme from the two sources, i.e. muscle and 

the kidney. 
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(B) INTERFERENCE BY ATP -ASE AND ITS REMOVAL ±IEOM THE EXTRACT 

In spite of the increased sensitivity of the NADH 

oxidation method, the rate of change in optical density due to 

the glutamine synthetase reaction itself was in most cases very 

small because of the high ATP -ase activity and comparatively very 

low glutamine synthetase activity of the extracts. It could not 

be increased by adding more extract because NADH disappearance 

was then too fast to be accurately measured (see Fig. 17). This 

was true even with saturating concentrations of ATP, but with low 

ATP concentrations the rate of the reaction could not be 

accurately measured at all. Hence it was necessary to devise 

a method of inhibiting or removing the ATP -as e present in the 

dialysed tissue supernatants. 

Weinbach (1954, 1956, 1957), and Weinbach and Bowen (1958) 

have demonstrated that pentachlorophenol (PCP) in concentrations 

of 5 x 10 -4 M and higher, inhibits the ATP -ase of damaged mito- 

chondria as well as that of soluble preparations of mitochondria. 

These workers also reported pentabromophenol (PBrP) to be a 

stronger inhibitor than PCP. The effects of both these substances 

on the ATP -ase activity of tissue extract were investigated. A 

0'5 M PCP solution in ethanol and a 0'2 M solution in 2'- methoxy- 

ethanol were employed. About 40% of the ATP -ase and 45% of the 

glutamine synthetase activities were inhibited by PCP (5 x 10 -3 M) 

in muscle extract, while the corresponding inhibition found in 

kidney extract was 60% of ATP -ase and 15% of glutamine synthetase 

activities. Pentabromophenol (2 x 10 -3 M) was found to be less 
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(a) 

(b ) 

Fig. 17. 

Actual recording of glutamine synthetase assay done by 

the NADH oxidation method, showing fast rate of NADH disappearance 

when a dialysed tissue supernatant (i.e. the one not treated with 

ammonium sulphate) is employed. 

Extract equivalent to 25 mg. of wet skeletal muscle /assay 

was used. 

(a) Control (assay mixture without glutamate, i.e. ATP -ase activity). 

(b) Sample (assay with complete assay mixture, i.e. ATP -ase + 

glutamine synthetase activity). 
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effective than PCP with both kinds of extract (see Table IX). 

Due to the inhibition of glutamine synthetase and an unc ompl et e 

inhibition of ATP -ase, the use of both of these substances was 

abandoned. 

Vigers and Ziegler (1968) have recently shown that ATP -ase 

from both rat liver and beef heart mitochondria is strongly 

inhibited by azide at concentrations about 10 -5 M, with maximal 

inhibition at about 10 mM, while Martonosi (1968) reported that 

the Mg + +- moderated soluble microsomal ATP -ase of skeletal muscle 

is activated 10 -20 fold by 10 -5 M Ca ++ and inhibited by 0'5 mM 

ethylene glycolbis (ß -amino ethyl ether) tetracetate (EGTA) . 

However, neither of these two substances were found to inhibit 

the ATP -ase activity of either muscle or kidney extracts. 

TABLE IX 

Effect of pentachlorophenol (PCP) and pentabromophenol 

(PBrP) on ATP -ase and glutamine synthetase (G. synth.) 

activities. 

The activities measured by the NADH oxidation method as 

units /g. wet tissue. 

Treatment 
Skeletal muscle Kidney 

ATP -ase G. synth. ATP -ase G. synth. 

No treatment 34'7 12.7 81.0 88o 

PCP (5 x l0 -3 M) 20'9 7o 33'6 75'2 

PBrP (2 x 10 -3 M) 30.1 9.3 55'6 72-o 
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As these attempts to inhibit the ATP -ase were unsuccessful, 

I turned to removing it physically. This was more successful, 

using differential precipitation with ammonium sulphate. 

The procedure used for investigating this was as follows. 

The tissue supernatant obtained by centrifuging the total 

homogenate (up to Step II of the procedure for the preparation 

of extract; see Chapter II)was treated with solid ammonium 

sulphate to give various concentrations (see Table X). The extract 

was shaken frequently and kept in a refrigerator for about 15 

minutes, after which it was centrifuged in an ordinary bench 

centrifuge for about 10 -15 minutes and the supernatant was discarded. 

The residue was redissolved in ice cold potassium chloride -potassium 

bicarbonate solution (0'15 M KC1 + 0'005 M KHCO3) so as to be 

equivalent to 1 g. of wet tissue per ml. This was then dialysed 

against two changes each of 100 vols, of potassium chloride - 

potassium bicarbonate solution containing 1 mM EDTA and 5 mM 

mercaptoethanol overnight in a cold room (ca 5o.C). The preparation 

obtained by precipitation with an ammonium sulphate concentration 

of l'5 M for muscle and 1'8 M for kidney extracts contained only 

about 10% of the original ATP -ase in muscle extracts, and about 

30% in kidney extracts. The recovery of glutamine synthetase 

activity in these precipitated fractions was found to be about 

60% for muscle and 70% for kidney of that measured in the 

corresponding untreated extracts (see Table X). Moreover, as 

this NADH oxidation method was used in the present investigation 

to study the phosphate inhibition of the enzyme activity, NH2OH 
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TABLE X 

Effect of ammonium sulphate treatment on the ATP -ase and 

glutamine synthetase activities of the centrifuged 

extracts. 

The fractions having no ammonium sulphate treatment are 

the ordinary dialysed supernatants. The activities 

measured by the NADH oxidation method are expressed as 

units /g. wet tissue. 

Ammonium sulphate 
Skeletal muscle Kidney 

treatment ATP -ase Glutamine 
synth. 

ATP -ase Glutamine 
synth. 

No treatment 36.5 11'6 69'0 125'0 

1'5 M (ppt. fraction) 4'5 7'0 21'9 60'5 

1.5 M (supt. fraction) 18'5 1.2 - - 

1'8 M (ppt. fraction) - - 23.0 86'0 

1.8 M (supt. fraction) - - 37'0 4'6 

20 M (ppt. fraction) 5'2 7.3 22.7 83'6 

4'0 M (ppt. fraction) 6'0 4'0 
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instead of NH4 (which forms MgNH4PO4 precipitates as discussed 

in Chapter II), was used. In equimolar concentrations (100 mM) 

the rate of the reaction is only about 60% (muscle) and 50% 

(kidney) of that found when using NH4 (see Table XI) . In 

practice, a NH20H concentration of 25 mM was found to be better 
4. 

than 100 mM for it measured about 75% (muscle) and 60% (kidney) 

TABLE XI 

Comparison of glutamine synthetase activity measurements 

by the NADH oxidation method using NH4 (as NH4C1) and NH2OH. 

The activity is expressed as units /g. wet tissue. 

(Ammonium sulphate treated extracts were used). 

Substrate Skeletal muscle Kidney 

100 mM NH4 9.6 114.6 

100 mM NH2OH 5.9 56.0 

25 mM NH2OH 7.3 69.3 

of the activity found when using 100 mM NH4 (see Table XI). Hence, 

25 mM NH2OH was used in all other experiments with the NADH 

oxidation method. This means that the glutamine synthetase 

activity left in the ammonium sulphate treated extracts was only 

about 45%, in muscle, and L +2 %, in kidney, of that originally 

present as measured by the most efficient NADH oxidation method, 

i.e. that using NH4. 

* 
This decrease in activity when using NH2OH in concentrations higher than 
25 mM in the NADH oxidation method may be due to the inhibition of some 
ancillary enzyme or enzymes used in the assay system for NH2OH does not 
inhibit the glutamine synthetase activity (Elliott, 1953). 
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In the course of this work it was found that NH4 is a 

strong inhibitor of ATP -ase activity in dialysed extracts not 

treated with ammonium sulphate (see Fig. 18). 

In the removal of ATP -ase by the above described technique 

which was used in all the studies reported in this and the 

subsequent Chapter, it was found that the sum of glutamine 

synthetase activity in the two fractions (precipitates and the 

supernatant) obtained was less by about 15 -30% than that existing 

in the untreated extract (see Table X) suggesting that the 

precipitation permanently inactivated some of the enzyme. 

Gothoskar, Raina and Ramakrishnan (1960) have found that sulphate 

inhibits the chicken -heart glutamine synthetase activity; these 

workers reported 73% inhibition of the enzyme with 89 mM or 

higher concentration of sulphate (as ammonium sulphate). This 

suggested an experiment in which the activity found when using 

NH4C1 and (NH4)2SO4 was compared. About 15 -30% less glutamine 

synthetase activity was found in the presence of SO4 compared 

with CI-. This suggests that SO4 inhibits the enzyme. Of 

course, this is a different kind of inhibition from that caused 

by precipitation of the enzyme by ammonium sulphate treatment. 

However, the observation is important because SO4 is an analogue 

of HPO , for example both activate glutaminase as well as the 

y- glutamyl transfer reaction, and is further evidence that inorganic 

phosphate binds to glutamine synthetase, and does not merely form 

y-glutamyl phosphate, for which there would be no sulphate analogue. 



300 

85 

200 400 

µmoles of NH4 /ml. 

Fig. 18 

600 800 

Inhibition of ATP -ase activity by NH4. 

(ammonium chloride solution (pH 7'0) was used) 

The ATP -ase activity was measured by the NADH oxidation method. 

The extract used was dialysed kidney supernatant. 
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(C) MEASUREMENT OF BOTH ATP -ASE AND GLUTAMINE SYNTHETASE IN 

THE SAME CUVETTE 

In order to cut down the time and the cost of the experiments, 

the method was modified so as to study both the ATP -ase (control) 

as well as the glutamine synthetase activities in the same cuvette. 

In order to do this, the decrease in optical density was 

recorded for about 3 minutes for a sample in which the glutamate 

was omitted (ATP -ase activity) but otherwise exactly the same. 

After this 0'1 ml. (50 ..moles) of glutamate was mixed very quickly 

into the solution with a plastic stirrer, and the decrease in 

optical density was recorded for about another 3 minutes (for 

actual recording, see Fig. 19). This latter optical density 

change measured the rate of NADH oxidation due to both ATP -ase + 

glutamine synthetase activity; from this value when the former 

is subtracted, determines the glutamine synthetase activity. 

As the glutamine synthetase activity was measured after the 

addition of 0'1 ml. of glutamate to the cuvette, which previously 

contained 0'9 ml., a correction for a change in the concentration 

of ATP -ase in the extract as well as of the substrate ATP, was 

necessary because of the change in volume of the system. 

The rate of optical density change due to ATP -ase activity 

(i.e., the decrease in optical density recorded before adding the 

glutamate) was multiplied by a factor of 9/10 to correct for the 

change in enzyme concentration. The values so obtained were 

then plotted against the corresponding actual concentrations of 
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Fig. 19. 

Actual recording of measurement of both ATP -ase and 

glutamine synthetase in the same cuvette by the NADH oxidation 

method. 

Ammonium sulphate treated muscle extract equivalent to 200 mg. of 

wet tissue /assay was employed. 

A and B in the figure represents the points where extract 

(i.e. ATP -ase activity) and glutamate 

(i.e. ATP -ase + glutamine synthetase activity) were added to the 

assay mixture. 
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ATP in the cuvette at the time of measurement of ATP -ase activity. 

The actual concentration of ATP comprised the concentration of 

the ATP [S] added to each cuvette i.e. in the 0'9 ml., present 

before the glutamate was added, together with any ATP [So] 

present as a "contaminant" of the reaction system for each 

experiment. The method of determining [So] is discussed later 

in this Chapter. From this curve, the ATP -ase activity (V) in 

optical density units appropriate to the ATP concentration in the 

ATP -ase + glutamine synthetase estimation was read off. This 

ATP concentration was 910 ([s] + [S 
o 
]). The difference in 

the rate of optical density change between the corrected ATP -ase 

activity and the ATP -ase + glutamine synthetase activities gave 

the decrease in optical density caused by the glutamine synthetase 

activity of the tissue extract. This was then multiplied by an 

appropriate factor to calculate the value per g. of wet tissue/ 

hour; and from this the glutamine synthetase activity expressed 

as timoles of ADP produced was calculated as described earlier 

(see Chapter II). 

(D) DETERMINATION OF INORGANIC PHOSPHATE INHIBITION OF GLUTAMINE 

SYNTBETASE 

The initial rate of the enzyme reaction was determined at 

various concentrations of ATP both in the absence of Pi and in 

the presence of 5 mM and 20 mM phosphate (02 M sodium phosphate, 

pH 7.0 was employed for the purpose) using extracts partially 
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purified by (NH4) 2SO4 treatment. To avoid any precipitation 

due to MgNH4PO4 in the assay system, hydroxylamine was employed 

instead of NH4 (see Chapter II). 

The amount of tissue extract added was equivalent to 50 mg. 

of wet kidney or 200 mg. of muscle per assay. This gave a high 

rate of reaction in the controls, so that there was still a 

measurable rate in the phosphate inhibited assays. 

An increase in NADH disappearance after addition of 

glutamate, which must be assumed to be due to glutamine synthetase 

activity was found even without any addition, of ATP to the assay 

mixture (see Fig. 20). This must have been due to an impurity, 

probably ADP, in the reagents used, possibly in the NADH, or 

nucleotide too tightly bound to be completely removed by dialysis 

of the tissue extract, or both. Any ADP added would be converted 

to ATP by the PEP and PK present in the assay system, and the 

concentration of the latter would of course be maintained during 

the measurement. Had the NADH been oxidised non -specifically 

by 02, it would not be affected by addition of glutamate. Hence, 

this increase in NADH disappearance at zero ATP addition was 

almost certainly due to glutamine synthetase activity. 

To determine this unknown concentration of nucleotide, the 

following calculations were carried out. 

Let the unknown concentration of ATP be So. 

Then the rate of ATP -ase in the absence of added ATP 
AS 

0 1 
Vo (1) 
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Fig. 20. 

Showing both ATP -ase and glutamine synthetase activity 

in the absence of any added ATP [So]. 

Actual recording of measurement of both ATP -ase and 

glutamine synthetase in the same cuvette by the NADH oxidation 

method. 

Ammonium sulphate treated extract equivalent to 200 mg. 

of wet muscle /assay was used. 

A and B in the figure indicates the points at addition 

of extract (giving ATP -ase activity) and glutamate (giving ATP -ase 

+ glutamine synthetase activity) to the assay system. 
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or ASo = Vo(B + So) (la) 

The observed rate of ATP -ase activity V, after addition 

of a nominal concentration of ATP equal to S. 

A(S + So) AS + Vo(B + So) 
V - = (2) + So + S (B + So) + S ( ) 

V (B + So) + VS = AS + Vo (B + So) 

or (V - Vo) (B + So) = AS - VS 

V - V 
° (B + So) = A - V 

S 

V - V 
Thus by plotting 

S 
° against V, (see Fig. 21) a straight 

line should be obtained whose intercept on the V axis should be 

A(= 
Vmax), 

and whose slope gives (B + So). 

Then from equation (la) 

S 
o 

Vo (B + So) 

A 

Since (B + is is known, B (= Km) can also be obtained. For the 

experiments with phosphate B was replaced by B t = B (1 + i /Ki) , 

from which Ki could also be obtained. These values refer, of 

course, only to the ATP -ase of the extracts, and are therefore 

not of great interest in present circumstances. 

The data for one of the experiments and the calculation of 

the value of [So] is shown in Table XII (Fig. 21 corresponds to 

the data given in this Table). Table XIII shows the values of 

[So] obtained in the experiments given in this and the next 



V 

V - Vo 
s 

Fig. 21. 

Determination of the unknown substrate concentration i So ] 

present in the reaction system at zero ATP addition. 
V V 

For values of V and 
s 

°, see Table XII. 

(This figure corresponds to Table XII) . 

0 -0 For no added phosphate A A For 5 mM phosphate 
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TABLE XIII 

The value of the unknown ATP concentration, [So] 

present in the reaction system at zero ATP addition. 

The values are given in mM. 

(These values are calculated for 0'9 ml. i.e. from the 

ATP -ase activity). 

Skeletal muscle Kidney 

0'02 

0.03 

0'04 

0.03 

0.03 

0.03 

0.05 

0'03 

0.03 

0.02 

0'0l 

0'00 

0'01 

0'01 

0.02 

0.01 

Average 0.03 0.01 
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Chapter. They are pretty constant, averaging 0.03 mM for 

muscle, and 0'01 mM for kidney. These values are comparable 

with the 0'1 mM, which was the lowest nominal concentration of 

ATP used, and therefore the correction was a necessary one. 

6 out of 11 experiments when using muscle and 10 out of 19 when 

using kidney extracts gave linear plots of V-V0 against V, while the 

rest gave nonlinear plots especially with phosphate. 

Inorganic phosphate (Pi) was found to inhibit the glutamine 

synthetase activity of both kidney and muscle extracts. The 

data, after making the necessary corrections (as described above) 

both for the unknown concentration of the substrate [So] at 

zero ATP addition and the change in volume on addition of 

glutamate in the assay system, are shown in Table XIV for skeletal 

muscle and Table XV for kidney. The estimates of Km are given 

in Table XVI for the muscle and Table XVII for kidney enzymes. 

The estimates were computed by a program due to Cleland (1967) 

which determines the parameters of the Michaelis Menten equation 

by a least squares method. 

All the data given in Tables XIV and XV when plotted 

graphically [Lineweaver Burk plots (1934)] suggested inorganic 

phosphate to be a competitive inhibitor of the muscle enzyme 

(see Fig. 22) and a non -competitive inhibitor of the kidney 

enzyme (see Fig. 23). Figures 22 and 23 are only illustration. 

Since the inhibition with the muscle extracts appeared to 

be competitive, values of Ki for each concentration of the 
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Fig. 22. 

Phosphate inhibition of the muscle glutamine 

synthetase activity. 

(a) Plots of the enzyme activity at various concentrations 

of the substrate. 

(b) The lineweaver -Burk plots of (a). 

411---4 Shows the activity of the control, i.e. 

the one without any added phosphate. 

Shows the activity in the presence of 

5 mM phosphate. 

Shows the activity in the presence of 

20 mM phosphate. 



Fig. 22 (a) 

Fig. 22 (b) 

C.,Í 
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Fig. 23. 

Phosphate inhibition of the kidney glutamine 

synthetase activity. 

(a) Plots of the activity at various concentrations 

of the substrate. 

(b) The Lineweaver -Burk plots of (a) . 

shows the activity of the control, i.e. 

the one without any phosphate. 

shows the activity in the presence of 

5 mM phosphate. 

A shows the activity in the presence of 

20 mM phosphate. 



99 

Fig. 23(b) 

i 2 
µmoles of ATP /ml. [Sa] 
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inhibitor (Pi) was calculated using the equation, 

1 V - Vm (1 + 
KI) 

1 1 
max 1 

S 
J Vmax 

These values of Ki (see Table XVI) were not found to be nonconsistent 

for the two phosphate concentrations, i.e. 5 mM and 20 mM. 

'I 

The mean Km of the muscle enzyme was found to be 

l'62 x 10-4M (see Table XVI) which was about half of the 

corresponding value obtained for kidney enzyme, i.e. 2'99 x 10 -4 M 

(see Table XVII). The significance of the difference in the 

mean Km values of the two sources of the enzyme_was calculated 
X _ 

by the "student t- test" using the equation t = 
1S 

2, where 

/S1 
+ S2 xl and x2 are the mean values, and S = 

2' 
where 

N1 + N2 - 2 

S1 and S2 are the respective sums of squares of the deviations 

from the mean value, and N1 and N2 were the number of observations 

from which x1 and x2 respectively were calculated (SD1 and SD2 

were the standard deviations of x1 and x2). The 't- value' was 

found to be 2'15 at 6 degrees of freedom (F) . The probability 

(P) was therefore 0'l0 > P > 0'05. This showed the difference 

in the mean Km values of the two sources of the enzyme to be at 

the border of significance. But assuming the inhibition of the 

kidney enzyme to be pure non -competitive the apparent Km values 

obtained for each concentration of the inhibitor (i.e. 5 mM and 

20 mM phosphate) would also be the true Km values. Therefore, 

when all the seven values of K for kidney enzyme as given in 
m, 
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TABLE XIV 

Showing the data for the experiments done to study the phosphate 

inhibition of the muscle glutamine synthetase activity. 

[Sa] is the actual ATP concentration [S + So] as µmoles /ml., and 

V (containing no added phosphate), VP5 (containing 5 mM added 

phosphate) and VP20 (containing 20 mM added phosphate) show the 

corresponding values of the glutamine synthetase activity 

expressed as units /g. wet tissue. 

[The saline injected control group experiments are marked (S) ] 

Expt.Enzyme 
No. 

[Sa] 
Activity 

0.03 0.13 0'23 0.28 0.53 1.03 2.03 5'03 

1 v 326 8.97 10.78 - 12.30 13'75 - 

vP5 - 6.52 9.26 - 10.78 11.58 13.38 

VP20 - - 5'93 6'58 8.61 11.14 13'53 

2 V 1'45 4'41 6'22 6'95 8'25 8'47 10'56 

VP5 094 2'97 - 4'27 - 7'66 - 9.19 

VP20 0.80 - 3'47 3'62 5.57 6.3o - 

3 V 3.18 8.25 - - 11.30 12'23 12'73 - 
VP 2.24 6.30 - - 9.84 10.56 12.15 - 

VP20 - - - - 8.46 8.90 9-77 13.89 

4 v 0.72 3'47 4'56 - 6'73 7'45 7'90 
(s) 

vP5 0.65 2.24 4.05 - 5'79 7'45 752 
VP20 0'07 - 3.26 - 521 6.30 767 

5 V 1.29 5.28 666 - 1027 11'87 12'52 

(5) vP5 0.94 3.91 5'57 - 8'75 10'72 11.29 
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TABLE XV 

Showing the data for the experiments done to study the 

phosphate inhibition of the kidney glutamine synthetase 

activity. 

For the description of [Sa], V, VP5 and VP20 see the 

previous table (Table XIV) . 

Expt. 
No. 

Enzyme 
Activity 

[S a] 
a 

0'01 0'11 0'21 0'26 0'51 1'01 2'01 5'01 

1 V 2'02 13'60 21'70 25'46 33'28 41'96 51'22 52'96 

VP5 - 12'42 18'24 18.82 25.46 33'00 39.64 40.00 

VP20 - - 13'90 14'48 21'42 27'80 26'04 32'12 

2 V - 21.42 33'28 - 49.78 59'32 70.36 
(S) 

VP20 - 14'76 22.86 - 30.68 35.88 1111'28 

3 V - 17'94 28.66 - 40.80 50.06 53'54 - 

(s) 

VP20 - - 18'24 - 25'76 31'54 35'98 38.48 
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TABLE XVI 

Showing the value of Km obtained by computing the data given 

in Table XIV, as described in the text, for the experiments 

done using the skeletal muscle enzyme, and the values of Ki 

calculated from it with each concentration of the inhibitor (Pi). 

The standard deviations for each constant are also given. 

Expt. No. Km(x 10 4 M) K. (x 103M) 

5 mM Phosphate 20 mM Phosphate 

1 0.93 11'56 5'78 

2 l'82 6'32 23'75 

3 0.86 878 4'46 

4 (S) 2'1l l0'14 l7'96 

5 (S) 237 16'93 

Average 162 + 0.69 10.75 + 3.96 12'99 + 940 
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TABLE XVII 

Showing the value of Km obtained by computing the data 

given in Table XV, as described in the text, from the 

experiments done with the kidney enzyme, and the value 

of K. calculated from it for each concentration of the 
1 

inhibitor (Pi) . 

Standard deviation for each constant are also given. 

Expt. No Phosphate 5 mM Phosphate 20 mM Phosphate 

No. K (x 10 4 M) Km(x 10 4 M) Ki (x 103M) Km(x 10 4 M) Ki (x 103M) 

1 

2 (S) 

3 (S) 

3'50 

3'01 

2.47 

3'15 

- 

- 

25'91 

- 

- 

294 

254 

2'72 

V92 

49'62 

30'17 

Average 2'99 + 0'51 3'15 25'91 2'73 + 0.20 40'90 + 9'88 
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Table XVII are taken into consideration, 

and the significance of the difference of their mean 

Km with that of, the mean value of Km for muscle enzyme is 

calculated as above, a 't- value' of 2'46 with 11° of freedom (F) 

is obtained. The probability read from the tables is found to 

be P < 0'05, which is significant. This suggests the enzyme 

from the two sources i.e. muscle and kidney to be non -identical. 

The mechanism proposed by Meister (1962, 1965, 1968) gives 
absence of 

a rate equation, which, when simplified by assumingAsaturation with 

glutamate and hydroxylamine, and absence of all products other 

than inorganic phosphate (Pi), predicts uncompetitive inhibition. 

To obtain a mechanism predicting non -competitive inhibition, in 

the case of the phosphate inhibition of kidney enzyme, a dead -end 

EI (enzyme- phosphate) complex was added to the mechanism. 

A rate equation of the form 

1 a c[Il 1 b d(11 
V - (K'E KtE Ì 

( K'E K'E ) 
o o o o 

can be derived from this mechanism in a similar way as explained on 

p. 129 -130. In this equation LAS and CI 3 are the concentrations of 

ATP and inhibitor (phosphate) respectively and E 
0 

is the concentration 

of the enzyme at the beginning of the reaction; K', a, b, c and d are 

complex constants compounded from the rate constants of individual 

reactions from specific stages in the mechanism. 



105 a 

The values of Ki for the kidney enzyme (see Table XVII) when calculated 

using this equation simplified as 

slope (inhibited) [Il 
slope (control) - (1 + 

K1 ), 

was not found to be very consistent for 5 mM and 20 mM phosphate. 

Nevertheless, the large apparent value of K. for the kidney enzyme 

compared with that for the muscle enzyme, especially at 20 mM phosphate, 

agrees with slighter inhibition of the kidney enzyme found using the 

hydroxamate method (see Chapter III). 

Interestingly enough the ATP -ase in the two sources of enzyme 
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was also different. A Km value of 2'7 x 10 -3 M for muscle and 

5 x 10 -3 M for kidney ATP -ase was also found. 

On average, a Vmax value of 11'95 for muscle and 66'01 for 

kidney was found in these experiments. These values when 

100 multiplied by an appropriate factor (i. e. for muscle and 

7 for kidney), as discussed earlier in this Chapter (see 

section B) , to calculate activityin the tissue supernatants not 

treated with (NH4)2SO4, give an enzyme activity of 19.9 in muscle 

and 94'3 units in kidney per g. wet tissue. These values when 

compared with those found and given in Chapter III (see Table VI) 

i.e. 19'4 in muscle and 183'2 in kidney by the hydroxamate method 

show that only about half of the kidney activity unlike the muscle 

activity, is found with the NADH oxidation method when using 

NH2OH. The significance of these results have already been 

discussed earlier in this Chapter (see section A). 

(E) CHECK OF HEART EXTRACTS FOR GLUTAMINE SYNTHETASF ACTIVITY 

BY THE NADH OXIDATION METHOD 

As mentioned earlier in Chapter III, enzyme activity though 

found in some heart supernatants by the hydroxamate method could 

not be measured in such extracts by the NADH oxidation method. 

Ammonium sulphate- treated extracts were prepared from cardiac 

muscle using the conditions employed for skeletal muscle. The 

enzyme activity was determined in both fractions, i.e. the 

precipitate and the supernatant fraction. For each extract the 
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tissue was obtained from 6 -8 animals. In four such extracts, 

no enzyme activity could be measured by the NADH oxidation 

method, using extract equivalent to 500 mg. of wet tissue per 

assay. 

Failure to measure any enzyme activity in the ammonium 

sulphate treated extracts might only mean that the enzyme from 

heart (or because there was only a low concentration of it any- 

way) is particularly sensitive to (NH4)2SO4, or perhaps is more 

sensitive when present in very low concentration. Nevertheless, 

the enzyme activity in heart, as already discussed in Chapter III, 

was measured in some of the extracts by the hydroxamate method, 

suggesting that the activity in this organ is present in very 

low levels in rat. 
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CHAP T E R V 

EFFEC T OF GROWTH HORMONE ON GLUTAMINE SYNTHETASE 
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EFFECT OF GROWTH HORMONE ON GLUTAMINE SYNTHETASE 

As already discussed in detail in Chapter I, growth hormone 

may play an important role in the metabolism of glutamine in 

animal tissues. The effect of growth hormone on glutamine 

synthet as e activity was therefore studied as part of the present 

investigation, by investigating the effect of bovine growth 

hormone (BGH) both in vivo, to see whether there was any increase 

in activity per unit mass of tissue, and in vitro on the rate of 

the enzyme reaction. Both muscle and kidney extracts were used. 

In order to see whether the hormone has any effect on the binding 

sites of the enzyme attacked by phosphate, the study of the effect 

of growth hormone was also extended to the phosphate inhibition 

of the enzyme. A search for enzyme activity was also made in 

the cardiac muscle of growth hormone- treated rats. 

A group of female albino rats, each weighing about 225 g. 

was taken; the weight of each rat was recorded daily at about 

the same time (11 a.m. to 12 noon) for about a week and then half 

of them were injected subcutaneously with 1 mg. of purified bovine 

growth hormone (dissolved in 0'4 ml. saline) per rat per day for 

5 -7 days while the other half were injected similarly with 0'9% 

saline and kept as a control group. Both groups of rats had 

free access to food and water and were kept in the same place 

side by side. The process of weighing was started about a week 

before giving injections, so as to minimize any reaction of these 

animals to handling. The growth hormone treated rats were found 
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to grow on average by 2 -3 g. per rat per day while the 

corresponding growth rate in the control group was less than 

0.5 g. (see Fig. 24). 

Each animal was killed about 2 -3 hours after the final 

injection; its heart, both kidneys and about 2.5 g. of its leg 

muscle were removed very quickly one after another and the 

partially purified (ammonium sulphate treated) extract of each 

tissue was prepared as described in the previous chapter. A 

set of three rats was employed for each experiment so as to get 

enough tissue extract. 

The data, after making the necessary corrections (as 

described in the previous chapter) both for the unknown 

concentration of the substrate [S 
o 

] at zero ATP addition and the 

change in volume on addition of glutamate in the assay system, 

are shown in Tables XVIII (for skeletal muscle) and XIX (for 

kidney) for the extracts prepared from the growth hormone treated 

rats, while the corresponding data for the control group are given 

in the previous chapter in Tables XIV (for skeletal muscle) and 

XV (for kidney) . The values of Km computed and the calculated Ki, 

as described in the previous chapter are shown in Tables XVI (for 

skeletal muscle) and XVII (for kidney) for the control group of 

rats, and those of the growth hormone treated are given in 

Tables XX (for skeletal muscle) and XXI (for kidney) . On average, 

a Vmax value of 13'17 for muscle and 62.99 for kidney enzyme was 

found. 
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2 

2/ 

C C C 

Fig. 24. 

3 4 

number of days 

Effect of growth hormone on the growth rate of rats. 

C represents control group rats 

1, 2 and 3 represents three growth hormone injected 

groups rats 

tindicates the start of growth hormone injections 
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TABT,F XVIII 

Showing the data for the experiments done to study the 

effect of growth hormone in vivo, on the enzyme activity 

and its inhibition by phosphate using the skeletal muscle 

extracts. 

of [Sa], V and VP20 see Table XIV. For the description 

Expt. Enzyme [Sa] 

No. activity 0'03 0'13 0'23 0'53 1.03 2.03 5'03 

1 V 2'68 6.66 9.19 11.00 12.23 13.10 

VP20 1'59 - 5'35 7'74 9'91 10'49 12.60 

2 V 2.17 6'00 8'46 1049 12.73 14.00 

VP20 1.09 - 4.27 6.73 9.04 10.85 13.00 

3 V 2'24 5'57 6'58 9'33 10'92 11.80 



113 

TABT,F XIX 

Showing the data for the experiments done to study the 

effect of growth hormone in vivo, on the kidney enzyme 

activity and its inhibition by phosphate. 

For the description of [Sa], V and VP20 see Table XIV. 

Expt. 
No. 

Enzyme 
activity 

[Sa] 

0'01 0'11 0'21 0'51 1'01 2'01 5'O1 

1 14.18 20.54 35'88 43'40 51'22 - 

VP20 - 15'62 23')) 27'58 31'84 33'58 

2 V 0'28 15.20 24.16 39'28 1111'18 57'12 - 

VP20 0'14 15'48 25.62 31'02 34'44 38.2o 
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TABLE XX 

Showing the value of Km obtained by computing the data 

given in Table XVIII, as described in the text, for the 

experiments done using the skeletal muscle enzyme of the 

growth hormone injected rats, and the values of Ki 

calculated from it for 20 mM phosphate (Pi). 

Expt. Km (x 10 4 M) K. (x103M) at 20 mM Phosphate 
No. 

1 1.30 

2 1.96 

3 184 

12.62 

10'29 

TABLE XXI 

Showing the value of Km obtained by computing the data given 

in Table XIX, as described in the text, for the experiments 

done using the kidney enzyme of the growth hormone injected 

rats, and the value of Ki calculated from it for 20 mM 

phosphate (Pi) . 

Expt. 
No. 

No Phosphate 

Km (x 10 M 

20 mM Phosphate 

K (x 10 M ) K.(x103M) . 

1 379 

2 3.69 

268 95'1 

3.22 49.75 
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Growth hormone was found to have no significant effect on 

the enzyme activity of either muscle or kidney extract, and no 

enzyme activity could be detected in the growth hormone treated 

cardiac muscle extracts. The type of phosphate inhibition of 

the enzyme was also not affected by growth hormone treatment. 

This is shown in Figs. 25 and 26 for growth hormone -treated 

muscle and kidney enzymes respectively. 

The rate of the enzyme reaction was also observed to be 

unaffected by in vitro addition of growth hormone in all the 

tissues studied; in vitro growth hormone studies were carried 

out by adding 10 1.g. of BGH to the assay system directly in a 

cuvette. These findings of the effect of growth hormone differ 

from those of Wu (1964a) . They suggest that an increase in the 

rate of protein synthesis may not in itself cause an increase in 

the glutamine synthetase activity at least of muscle and kidney - 

a different behaviour of these enzyme sources from that found in 
and Bauer Wu, 

liver but similar to brain (Wu, 1960, 1964a, 1964b) . It might 

also suggest that the method of causing a change in the rate of 

the protein synthesis used by Wu (1964a) was important. It also 

suggests that the apparent mobilisation of glutamine into blood 

by growth hormone reported by Bartlett (19L1.9) does not depend on 

prior synthesis or activation of glutamine synthetase. Wu (1964b) 

also found that the concentration of free glutamine in liver after 

regeneration remains almost the same as that of a normal liver, 

but glutamine synthetase does not increase with increase in 
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Fig. 25 

Effect of growth hormone on the phosphate 

inhibition of the muscle glutamine synthetase 

activity. 

(a) Plots of the activity at various concentrations 

of the substrate. 

(b) The Lineweaver -Burk plots of (a). 

al-. shows the activity of the control, i.e. the 

one without any added phosphate. 

L -A shows the activity in the presence of 

20 mm phosphate. 



Fig. 25(a) 
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Fig. 26 

Effect of growth hormone on phosphate inhibition 

of the kidney glutamine synthetase activity. 

(a) Plots of the activity at various concentrations 

of the substrate. 

(b) The Lineweaver -Burk plots of (a) . - shows the activity of the control, i.e. the 

one without any added phosphate. 

A -A shows the activity in the presence of 

20 mM phosphate. 



Fig. 26(a) 
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glutamine suggesting that it may either be supplied from other 

tissues or the enzyme is enough to maintain the glutamine 

concentration. 
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C H A P T E R VI 

DISCUSSION 
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DISCUSSION 

It is unsatisfactory to put forward results of the 

measurement of the activity of an enzyme without 

(i) employing an appropriate tissue extract preparation. 

This must satisfy the criteria of linearity both with increase 

in incubation time and with the volume of the extract added, 

because these are properties by which an enzyme reaction differs 

from a nonenzymic reaction. 

(ii) checking the validity of the analytical method or 

methods used. A good deal of time was spent in satisfying both 

of these requirements (see Chapter III), and comparison of my 

results with those of others is perhaps the best way of demonstrating 

the efficiency of the methods which I used. 

Since kidney glutamine synthetase activity has been 

investigated by a number of workers (Reiner and Hudson, 1953; 

Baerle, et al., 1957; Richterich and Goldstein, 1958; Wu, 

1963b; Wu, 1964a) and it was included in the present studies 

so that the results of the investigation of the enzyme activity 

in skeletal and cardiac muscle could be compared with it, it is 

best first to compare my results for kidney with those of others. 

A mean value of 183.2 + 65.1 units glutamine synthetase 

activity per g. of wet tissue was found in kidney (see Chapter III, 

section F) by the hydroxamate method using dialysed high -speed 

supernatants (see Chapter II, section 2A) and 92.6 + 12.3 units 

per g. wet tissue when using the NADH oxidation method. The 

almost 50% lower activity found by the latter method may be 
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because the enzyme in the NADH oxidation method was extracted 

in KC1 -KHCO3 solution, while N aCl- NaHCO3 solution was used in 

the hydroxamate method. This suggests that the kidney enzyme 

may be sensitive to K+ ions (the activity found in' the muscle 

extracts was the same with both the methods). Alternatively, 

some reagent or reagents of the NADH oxidation method inhibited 

the kidney enzyme. Both reasons may of course be true. It is 

interesting to note here that Reiner and Hudson (1953) found 

133 units of enzyme activity /g. wet kidney by the hydroxamate 

method using high -speed supernatants of homogenates extracted 

from the tissue with KC1- KHCO3. This value is about 70% of 

that which I found, using the same method, but extracting with 

sodium salts. This discrepancy may possibly be due to their 

use of KC1 -KHCO3 for extracting the enzyme. If so, this would 

explain why the activity of kidney extracts appeared to be about 

50% lower when using the NADH oxidation method. This is supposing 

that the correction for loss in the ammonium sulphate precipitation 

step is always good (see Chapter IV, section B) . Another reason 

for the difference between the results of Reiner and Hudson (1953) 

and those reported here may, however, be that the high -speed 

supernatant used by these workers was centrifuged at 40,000 R.P.M. 

for sixty minutes, while I centrifuged at 30,000 R.P.M. for 45 

minutes. By experiment, the supernatant from the latter was 

found to contain about 20% more activity than the former (see 

Chapter III, section C). Reiner and Hudson (1953) also reported 

that the activity was not linear with differing amounts of extract, 
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while the preparation used for these studies did satisfy this 

criterion of linearity (see Chapter III, section D). 

Richterich and Goldstein (1958) found 30 + 6 units glutamine 

synthetase activity as iM ammonia taken up per g. wet kidney 

using tissue homogenates, while Wu (1963b) reported 49'6 units 

of enzyme activity (as tmoles of GHA /hr.) per g. of wet kidney. 

The activity which can be measured in homogenates is only about 

1 /3rd to 1/4th of that of high -speed supernatants (Reiner and 

Hudson, 1953; see also Chapter III, section C). Despite this, 

the activity measured by Richterich and Goldstein (1958) was much 

lower than that found in these studies. This may be because 

these workers assayed the enzyme activity by measuring the 

disappearance of ammonia from the assay system. Wu t s (1963b) 

results on the other hand, when multiplied by an appropriate 

factor (3 - 4 times) to make them comparable to a high -speed 

supernatant, give a value much the same as found in the present 

investigation. The differences between my results and those of 

previous workers may also be due to difference in the rats used. 

Nevertheless, this comparison suggests that both the enzyme 

preparation, i.e. the dialysed high -speed supernatant, and the 

assay method (i.e. the hydroxamate method) used in the present 

investigation were satisfactory. 

In skeletal muscle, I found on average, 19'1 + 10'3 units 

(see Chapter III, section D) and 20'8 + 4'1 units (see Chapter IV, 

section A) glutamine synthetase per g. of wet tissue by the 

hydroxamate method and the NADH oxidation method respectively. 

These values are more than four times as great as that reported by 
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Trush (1963) (4.6 units /g. wet tissue using the hydroxamate 

method) . This difference was probably because he measured the 

activity in tissue homogenates while I used dialysed supernatants, 

which I found to be more active than the homogenates (see 

Chapter III, section C). Wu (1963b) failed to find any activity 

both in skeletal and cardiac muscle extracts. This is undoubtedly 

because he employed tissue homogenates which are less active than 

the supernatants. In addition to this the minimum activity he 

could measure by the method he used was 10 units /g. wet tissue. 

The actual rate of glutamine synthesis in muscles in vivo 

will be only a fraction of the maximum activity (about 20 units /g. 

wet tissue) using substrates in saturating concentrations. This 

is because while the concentration of ATP (ca 5 mM) (see White, 

Handler and Smith, 1964) is almost saturating, and that of 

glutamate (2.34 imoles /g. wet tissue, Herbert, Coulson and 

Hernandez, 1966) is not inconsiderable, only a very small quantity 

of ammonia is available and it is this which limits the rate of 

glutamine synthesis in this tissue. The ammonia mainly comes 

from the hydrolysis of adenylic acid by adenylic acid deaminase 

(see White, Handler and Smith, 1964), and from the hydrolysis of 

glutamine by glutaminase (Ottaway, 1969) . Some ammonia also 

came from the oxidation of glutamic acid by glutamate dehydro- 

genas e (P et te, Kl engenb erg and Bucher, 1962; Wergedal and 

Harper, 1964) . No precise figures exist for the actual 

concentration of ammonia in muscle, and without them it is very 

hard to say anything about actual rate of glutamine synthesis in 
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this tissue and to suggest whether muscle gets a part of its 

glutamine through the blood from the liver, or whether some of 

the glutamine synthesised in muscle is supplied to other tissues 

by way of the blood. Nevertheless, these results do show that 

glutamine can be synthesised in skeletal muscle. 

With regard to activity in cardiac muscle, Doell and 

Felts (1959) found that glutamine is formed from labelled glutamic 

acid in isolated perfused rabbit heart. Trush (1963) later 

reported on average an enzyme activity of 4.4, 5.6 and 5.4 units /g. 

wet tissue in rat, rabbit and cat heart respectively by the 

hydroxamate method using tissue homogenates. However, I found 

only about half of this activity, i.e. 2.5 + 0.8 units /g. wet 

heart by the hydroxamate method (see Chapter III, section F), 

when using dialysed high -speed supernatants although I would have 

expected to find 3 to 4 times as much activity as in homogenates. 

In 3 out of 12 cardiac muscle extracts I failed to detect any 

activity (see Chapter III, section F) . In addition to this, I 

could not detect any activity at all, using the NADH oxidation 

method, either in ordinary dialysed supernatants or even in 

ammonium sulphate -treated extracts (see Chapter IV, section E). 

It may be, of course, that the enzyme was sensitive to extraction 

by KC1 -KHCO3 solution, as has been suggested for the kidney 

enzyme; or that the enzyme was inhibited by treatment with 

ammonium sulphate. However, none of these possibilities seems 

to apply with equal force to all three sets of experiments. I 

am forced to conclude that in the rats that I used, the glutamine 

synthetase activity in heart muscle was at the limit of detect - 

ability. 
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The results reported at least confirm that glutamine is 

synthesised in skeletal muscle as well as in brain, liver and 

kidney. Some glutamine may be synthesised by heart muscle in 

the rat, but this organ must be largely dependent for its 

glutamine on the liver (Trush, 1963; Wu, 1964b) via the blood 

stream. This probably also applies to mammals other than the 

rat. In the cardiac muscle of birds, on the other hand, the 

activity is known to be quite high. Gothoskar, Raina and 

Ramakrishnan (1960) found 88'9 units /g. wet chicken -heart by 

the hydroxamate method. Trush (1963) reported 47'2 units /g. 

wet tissue for pigeon heart, while Wu (1963b) found 27.6, 34'4, 

63-3 and 45'6 units of enzyme /g. wet tissue in chicken, pigeon, 

duck and goose heart respectively. Gothoskar, Raina, Tate and 

Ramakrishnan (1960) have pointed out that chick heart cells in 

tissue culture do not require glutamine as a growth factor, in 

contradistinction to rat heart cells. In the light of this 

and the results of this investigation, one may suppose that the 

mammalian heart cells are unable to synthesise enough glutamine 

to meet their requirements for cellular nucleic acid synthesis 

for instance, and are therefore dependent for their supply of 

glutamine on other tissues. 

SUITABILITY OF THE NADH OXIDATION METHOD TO STUDY THE PHOSPHATE 

INH1t3ITION OF GLUTAMINE SYNTHETASE 

Since the enzyme activity in muscle extracts was found to 

be the same by both the hydroxamate method and the NADH oxidation 
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method, while the corresponding values for kidney extracts were, 

as already discussed earlier in this Chapter, found by the 

latter method to be only about half of that measured by the 

former method, it seems to be not only unnecessary but disadvan- 

tageous to employ the NADH oxidation method simply to measure 

the maximum activity of tissue extracts. But for the purposes 

of studying phosphate inhibition of the enzyme, the NADH 

oxidation method, as discussed in Chapter III, section G and 

Chapter IV, section A, does have some advantages. In the first 

place, ADP does not accumulate. Secondly the NADH oxidation 

method is several times more sensitive than the hydroxamate method 

and the initial rate of the reaction can be conveniently studied. 

As the sensitivity of the hydroxamate method is low, a considerable 

time must elapse before an accurately measurable amount of 

glutamylhydroxamate is produced, and in this interval, since the 

sources of glutamine synthetase always contained ATP -ase, ATP 

was continuously disappearing and inorganic phosphate (and ADP) 

appearing. Consequently the concentration at the end of the 

incubation would necessarily be notably different from that added 

at the beginning. This would make the estimation of the inhibitor 

constant, for example by Lineweaver -Burk plots, impossible. 

MECHANISM OF ACTION OF THE ENZYME AND COMPARISON OF MUSCLE 

GLUTAMINE SYNTHETASE WITH THAT OF THE KIDNEY ENZYME 

Both inorganic phosphate and sulphate were found to inhibit 

both muscle and kidney glutamine synthetase (see Chapter IV) . 

These results agree with those of Gothoskar, Raina and Ramakrishnan 
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(1960) reported for chicken -heart glutamine synthetase. On the 

other hand, Pamil jans, Krishnaswamy and Meister (as reported by 

Meister, 1962) failed to find phosphate inhibition of the glutamine 

synthetase of mammalian tissues. The mechanism of action of the 

enzyme proposed by Krishnaswamy, Pamil jans and Meister (1962) , 

Meister, Krishnaswamy and Pamiljans (1962), and Meister (1962, 

1965, 1968) which is discussed in Chapter I (see Fig. 1 on 

p.13 -14) is based on the assumption that inorganic phosphate 

does not inhibit the enzyme. This is not correct in the light 

of my own findings. As the phosphate inhibition of the muscle 

enzyme was found to be competitive (see Chapter IV), a mechanism 

which will predict competitive inhibition must exist. The 

mechanism proposed by Meister and his associates (see Fig. 1 on 

p. 13 -14) gives a rate equation which predicts in the absence of 

saturating concentrations of substrates uncompetitive inhibition. 

On the other hand, when glutamate and hydroxylamine (or NH3) are 

used in saturating concentrations, the reaction from step II to 

step VI (see Fig. 1) is practically irreversible, and consequently 

no inhibition by phosphate would be observed. This is shown 

by a rate equation which can be derived by the method of King 

and Altman (1956) from the mechanism shown in Fig. I (see 

Chapter I, page 13 -14) . The rate equation obtained is: 

[Eu ] [G ] [N ] 

V K3K5K7K9[G] [N] + K1K3K5K9[G][N][A] + K1K3K5K7[G][N][A] 

+ K2K5K7K9 [N ] + K1K5K7K9 [A ] + K1K3K7K9 [ G ] [ A ] 

(Where [A], [G] and [N] are the concentrations of ATP, glutamate 
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and hydroxylamine (or ammonia) respectively; [Eo ] is the amount 

of enzyme at the beginning of the reaction; K1 and K2 are the 

rate constants for forward and backward reactions from step I to 

step II (Fig. 1) respect ively;K3, K5, K7 and K9 are the constants 

for the forward reactions from step II- III- IV -(or V)-VI-I 

respectively) . 

Few studies have been made of the complex kinetics of three -substrate 
enzymes. It is well known, however, from experimental observations 
that when one of the substrates of a two -substrate enzyme is used at 
saturating concentration, the kinetics with respect to the second substrate 
are much simplified. Reiner (1964) has made theoretical use of this and 

as a first approach, it has seemed reasonable to extend the idea to glutamine 
synthetase which is a three -substrate enzyme. Thus all terms not containing 
[G]CN] i. e. , saturating substrates are ignored and the equation reduces to 

Eo K1 13 15 K7 K9 [ [C4 1[13 
V 

113 115 K7 K9 Ut) [Isk + K13 15 K9 [dr yri [A] + 13 15 K7 [dprt Al 

taking K1 K7 K9 = K', K7 K9 = a, and (K1 K9 + K1 K7) = b, the above equation 

can be simplified to 

V = 

E KT A-1 
0 

a+bCAl 
which can be reduced to one of the type (see Cleland, 1963) 

1 a 1 b 

V -( K'Eo [A3 + K'Eo 

(All other rate equations were similarly worked out; see pages 105, 131, 134). 
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where [Al stands for ATP concentration, and it is clear that there is no 

term corresponding to inhibition by phosphate. 
The addition of a dead -end EP (enzyme -phosphate) complex to this 

scheme gives a mechanism which predicts competitive inhibition with 

respect to ATP when the other substrates are saturating (see Fig. 27). 

This scheme gives a rate equation of the form 

V [A1 
[1:1 

(K E + K' E ) + ( K'E ) . . . (ii) 
o o o 

according to which any change in the phosphate concentration will change 

the slope of the Lineweaver -Burk plot but the y intercept will remain the 

same. These are the criteria of competitive inhibition. This scheme 

also takes account of the competitive inhibition of ATP by ADP found by 

Gothoskar, Raina and Ramakrishnan (1960) in cardiac muscle enzyme. 

This latter evidence, which is supported by a number of workers (see 

Chapter I), and 
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the related evidence that in the reverse reaction the divalent 

cation and the nucleotide bind first, rules out a mechanism in 

which the positions of ADP and phosphate are reversed, giving a 

dead -end enzyme -ADP complex. The form of the rate equation 

obtained from this mechanism is the same as (ii), i.e. both 

these mechanisms are theoretically possible. 

As regards the kidney enzyme, for which phosphate was a 

noncompetitive inhibitor, the mechanism proposed for the muscle 

enzyme (Fig. 27) cannot be true. The possibility that phosphate 

may also form another dead -end complex, i.e. enzyme- ATP -phosphate, 

in addition to the EP complex postulated in the mechanism shown 

in Fig. 27, cannot be true because the reaction from step II to 

step VI is practically irreversible when using saturating 

concentrations of glutamate and hydroxylamine in which situation 

almost all the enzyme is as EAG complex, and hardly any EAP 

complex is formed. The rate equation given by such a scheme 

would therefore be of the same type as described for the muscle 

enzyme, i.e. competitive at saturating substrate concentrations. 

A possible mechanism of the kidney enzyme which also 

accounts for the competitive inhibition of ATP by ADP in the 

kidney enzyme as reported by Baerle, et al. (1957), is that shown 

in Fig. 28(a). This gives a rate equation of the form: 

1 B + C[P] 1 D+ F[P] 
V ( K'Eo ) I. A 1 + ( K'Eo ) 

According to this equation, any change in phosphate concentration 

will, in the Lineweaver -Burk plots, change both the slope and the 
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intercept of the curve -- the criteria of a non -competitive 

inhibition. 

An alternative scheme is the one shown in Fig. 28(b), 

which gives an equation of the form 

V (LE03(Kr + YLpJ + 1CK' +[yLp) [_ + (LEo](KP+ yLp)...(iv) LE] 

In contradistinction to equation (iii), this equation (iv) predicts 

that the value of the inhibitor constant (Ki) will be dependent 

on the phosphate concentration. This mechanism is to some 

extent supported by my observation of nonconsistent values for 

the inhibitor constant (Ki) at 5 mM and 20 mM for the kidney 

enzyme (see Chapter IV) . However, it cannot be decided which 

of the two mechanisms, i.e. that shown in Fig. 28(a) or in 

Fig. 28 (b) is correct until some more observations of the 

inhibitor constant (Ki), at varying Pi concentrations, are available. 

It may be, of course, that neither is correct. Nevertheless it is 

proposed to carry out some more observations so as to confirm 

whether the inhibitor constant is dependent on, or independent of, 

phosphate concentration. If the latter, the mechanism shown in 

Fig. 28(a) will be very likely true, and if the former, then the 

mechanism shown in Fig. 28(b) may be true. The scheme proposed 

in Fig. 28(b) will only be confirmed if a plot of JI against 

I' is a straight line, where I' and I are the Y intercepts in the 

presence and the absence of any phosphate concentration [P] 

respectively. This relationship can be obtained by simplifying 

the Y intercept 
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E(KH[ +]YLPJ) in equation (iv) to an equation 

I t 

EoK' = H - I' E0Y (y) 

This difference in phosphate inhibition of glutamine 

synthetase activity from the two sources is important in that 

it suggests that the enzyme from the two sources is not identical. 

In addition to this evidence, the Km values of the two enzymes 

were also significantly different (see Chapter IV) . The Km 

values found from the experiment done to find the optimum 

concentration of ATP by the hydroxamate method, using dialysed 

supernatants, given in Chapter III, section D, were also 

different for the muscle and the kidney enzyme. The actual 

values for the were were about four times bigger than those found 

by the NADH oxidation method (see Chapter IV) , which might be 

due to accumulation of both ADP and phosphate in the assay 

system. As already discussed earlier in this chapter, the 

maximum activity of the kidney enzyme measured by the NADH 

oxidation method was about 50% of that found by the hydroxamate 

method. This difference is not likely to be due to a decrease 

in the release of kidney enzyme from the cells because K+ extracts 

the enzyme as efficiently as does Na+ (Wu, 1963a) . Anyway, 

whatever is the reason, this suggests the kidney enzyme to be 

different from the muscle enzyme. All these findings suggest 

that the kidney enzyme was different from the muscle enzyme. No 

previous report of an isoenzyme of glutamine synthetase in animal 

tissue has appeared, although it is clear that the bacterial 
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enzyme studied by several workers mainly by Holzer and his 

associates, and Stadtman and his collaborators (Holzer, Schutt, 

Masek and Mecke, 1968; Kingdon, Hubbard and Stadtman, 1968) , 

which differs from that of the animal tissues in many properties 

(Ravel, Humphreys and Shive, 1965; Woolfolk and Stadtman, 1967; 

Kingdon and Stadtman, 1967; Liess, Varrichio, Mecke and Holzer, 

1968) exists in different forms. 

GROWTH HORMONE AND GLUTAMINE SYNTHETASE 

Growth hormone, unlike estradiol, thyroxine, cortisone 

and hydrocortisone (Moscona and Piddington, 1966; Piddington, 

1967; Piddington and Moscona, 1967) was found to cause no 

increase in glutamine synthetase activity per unit mass of tissue 

in vivo. An in vitro addition of growth hormone also did not 

effect the kinetics of the enzyme reaction. A similar lack of 

effect of growth hormone on metabolism of glutamine and other 

amino acids have been observed by other workers. For instance, 

Bertlett and Gaebler (1949a) failed to find any effect of growth 

hormone on liver glutaminase II activity of hypophysectomised 

and the normal rats. These workers ( Bertlett and Gaebler, 1949b) 

also found that growth hormone which increased the activity of 

liver glutaminase I of hypophysectomised rats, did not have any 

effect on the enzyme activity of the normal rats. It is also 

interesting to mention here that Kostyo and Knobil (1965) have 

recently found that hypophysectomy decreases and growth hormone 
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stimulates leucine -2 -C1 incorporation in the diaphragm of fed 

and fasted rats but growth hormone treatment which doubled the 

rate of gain of body weight in normal rats, did not alter 

significantly the incorporation of leucine by the diaphragm. 

A detailed discussion of the experimental results of growth 

hormone treatment has already been given in Chapter V. The well - 

established effects of this hormone on nitrogen retention in 

animals do not seem to depend on changes in the rate of synthesis 

of glutamine. 
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