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Abstract 

We prove L"(R), 1 < p < 00, boundedness of oscillatory singular integral 

operators of the form 

	

Tf(x)=v.v.J 	 f(y)dy, 

for P a real—valued polynomial, and y: R -* R a convex curve satisfying certain 

conditions that permit it to vanish to infinite order at the origin. The bounds are 

shown to be independent of the coefficients of the polynomial. This work allows 

us to conclude that, under the same conditions on 'y,  the Hubert transform H, 

given by _ 
2 

Hf(x i , x 2 ) = p.v. 
j : 

f(x i  - t, x 2  - P(xi)(t)) dt 
CO 

1 , 

is bounded on L 2 (1R2 ), with a bound that does not depend on the coefficients of 

P. We also obtain weak type 1-1 boundedness, and boundedness from H' (R) to 

L' (R) of the operator T, when P is linear, under similar conditions on 'y. 

In the final chapter we give necessary and sufficient conditions for a Calderón-

Zygmund singular integral operator, of convolution type, to be injective on L 1  (R'). 

In addition, we show how our techniques allow us to reach similar conclusions for 

certain classes of oscillatory singular integrals. 
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Chapter 1 

Background 

1.1 Introduction 

In this thesis we shall be concerned with some questions that have arisen in 

the modern Calderón-Zygmund theory. Much of the thesis will be devoted to 

the study of singular integral operators whose kernels have an oscillating fac-

tor. The intimately related theory of singular and maximal Radon transforms, 

which has been largely responsible for the current far reaching perspective on 

Calderon-Zygmund theory, will form a complementary theme. We shall, there-

fore, begin with some well established preliminaries and a brief review of the 

theory of Calderón and Zygmund. 

1.2 Preliminaries 

The Fourier Transform. 

For f E L' (Rn) fl L 2  (1R') the Fourier transform is defined by 

= 1(e) = JRn 

f(x)e2dx. 

Plancherel's theorem states that 1 can be extended to a unitary operator on 
L2 (R'). The Fourier transform is the central tool in the study of a variety of 

translation invariant operators. The simplest interesting example is the L2  (R) 

boundedness of the Hilbert transform, which is defined a priori on a Schwarz 

function f by 

1 

 Joo 

f(z-y) 
Hf(x)=p.v.- 	 dy.  

7r 00 	y 

Taking the Fourier transform we see that Hf() = -isign()f(). Given Plancherel's 

theorem, L 2  (R) boundedness of H now becomes obvious. Another classical ex-

ample is the Hilbert transform along the parabola, defined a priori on a Schwarz 
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function f by 

Hparf(xi, x 2 ) = p.v. 
	
f(x i  - t, x2 - t2). 	 (1.2) 

—00 

By taking the Fourier transform of (1.2) we obtain 

= 

where 

M(6, 2) = p.v.e2i1t2t2) dt  

	

100 	 t 

is the Fourier multiplier corresponding to Hpar. 

Any translation invariant, L 2—bounded linear operator may be represented by 

a Fourier multiplier in this way; i.e. if T is such an operator and has Fourier 

multiplier  : RTh -+ C, then Tf = mf. For 1 <p < oo, we say that mis an 

L"—multiplier (or m E M(JW)), if T is bounded on LP(R). As we have observed, 

by Plancherel's Theorem, L00(Rfl) C M 2 (R). In fact, one can easily see that 

there is equality here. 

Interpolation of operators 

An operator T is said to be bounded on LP(R), or of strong type p—p, if there is 

a constant A > 0 for which 

IITfMLP(Rn) :; ApIfILP(Rn) 	 (1.3) 

for all f E LP(R). The smallest constant A for which (1.3) holds is called the 

LP(R7) operator norm of T, and is often denoted by lITM_. 
An operator T is said to be of weak type p—p if there is a constant A > 0 for 

which 

{x E 	ITf(x)I> ozj I 	(APIIfMLP(Rn))P 	
(1.4) 

for all f e LP(RTh) and a > 0. The smallest constant A for which (1.4) holds is 

called the weak type p—p operator bound of T. We observe that, by Chebychev's 

inequality, (1.3) implies (1.4). 

On several occasions we will need to interpolate between operator norm esti-

mates of a certain type. The following theorems will be sufficient. The reader is 

referred to [34] for the stronger forms. 

Theorem 1 (Riesz—Thorin). If a linear operator T is bounded on both L° (RTh) 

and L'(]R), for some 1 < Po < Pi < 00, then T is bounded on Ll)t(Rn)  for 

0 < t < 1, where 
1 	1—t 	t 

+—. 
Pt 	Po 	P1 
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Moreover, 
I1-t ITII P _P  ~ TIi 0 _ 0 	IIPi -pi• 

Theorem 2 (Marcinkiewicz). If a sublinear operator T is both of weak type 

Po Po and of weak type p1-p1 for some 1 < po <P1 < oo, then T is bounded on 

LP (R7) for po <p <p1. 

Weak—type estimates are generally thought of as 'end—point' results in the 

sense that they often hold in limiting cases where strong—type estimates fail. 

There are other types of end—point estimates that may be interpolated in a similar 

way. For example, for H1  (Ii") the real Hardy space defined at the end of this 

chapter, the following theorem is a special case of one proved in [15]. 

Theorem 3. If a linear operator T is bounded from H'(]R') to L1 (]R), and is 

also bounded on LP0 (11n) for some 1 <PU < 00, then T is bounded on LP (R7) for 

1 <p < Po• 

The Hardy—Littlewood Maximal Function, and Decompo-
sitions of W1 . 

For an appropriate function f 	-f C, its Hardy—Littlewood Maximal Function 

is defined to be 	
1 

Mf(x)=sup 	J 	f(y)dy. 
r>0 B(x, r)I B(x;r) 

Using a covering lemma one can establish the weak type 1-1 inequality 

I{x: Mf(x) > all <3Ilf I II 
a 

This estimate can be interpolated with the trivial LC  -+ L°° estimate (via the 

Marcinkiewicz Interpolation Theorem), to give L' boundedness of M for 1 <p < 

oo. The next important concept for us is that of a Whitney decomposition. 

Theorem 4 ([35]). Let F be a non-empty closed set in RTh. There is a disjoint 

sequence of cubes {Qk},  whose sides are parallel to the axes, and whose interiors 

are mutually disjoint, for which UQk = Fc, and 

diam(Q k ) <dist(Qk , F) < 4diam(Qk .) 

By applying a Whitney decomposition to the set 

F = {x : Mf(x) <a}, 

and using the weak type 1-1 boundedness of M, one may arrive at the following 

theorem, which is a variant of the Calderón—Zygmund decomposition; see Stein 

[35] for further discussion. 
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Theorem 5. Let f be a non—negative integrable function on R', and let a be a 

positive constant. There exists a decomposition of f = g + E b3 , and a sequence 

of cubes {Q3} such that 

11g1j00 :5 Ca, 11g1j' :5 11f 111, 

bj  is supported on Q3 , 

the Q3  's have pairwise disjoint interiors, and in addition, 

if dist(Q3 ,Qk) <diam(Q3 ), then 1 < l QjlllQkl 4, 

f bj  = 0 and, 

there is a constant c depending only on n for which 

1  J bI<ca 
1Q31 

for all j. 

The above theorem lies at the roots of Calderón—Zygmund theory, and is one 

of the main ideas in all of the weak—type estimates that we will discuss in this 

thesis. 

In the following section, details of results not otherwise referenced can be 

found in Stein [35] and [36]. 

1.3 Calderón—Zygmund Theory. 

The Calderón—Zygmund theory of singular integral operators largely evolved from 

a real variable understanding of the classical Hilbert transform by Besicovitch [2] 

and Titchmarsh [38] in the late 1920's. Prior to this, the Hubert transform, given 

by (1.1), had long been understood to be a fundamental operator in Complex 

Analysis. To be precise, if f is an analytic function on {z e C : Im(z) > 01 with 

boundary values given by u+iv, where u, v : ll -p R, and u e LP (R) for some 1 < 

p < 00, then H can be defined on u, and v = Hu. Before the work of Besicovitch 

and Titchmarsh (see for example, work of Plessner [30], and Kolmogorov [18]), 

all of the techniques involved were essentially complex analytic. Besicovitch and 

Titchmarsh gave real variable proofs of the weak type 1-1 boundedness of the 

Hubert transform, and its almost everywhere existence on L" for 1 <p < oc. As 

these techniques made no use of the special role of H in Complex Analysis, the 

way was paved for a general theory of singular integral operators. 



The modern n-dimensional theory originates in Calderón and Zygmund [4], 

and a popular formulation of their ideas, due to Hörmander, is as follows. 

Suppose K: T1\{0} -* C satisfies 

	

Ji
IK(x 

- 
y) - K(x)Idx < c 	 (1.5) 

xI ~ 21y1 

for all 9 =A 0. Suppose T is bounded on L 2 (R), commutes with translations and 

satisfies 

Tf(x)=fK(y)f(x_y)d 	 (1.6) 

whenever! E S(T1) with x supp(f), then such an operator is called a Calderón-

Zygmund operator, with Calderón-Zygmund kernel K. 

Theorem 6. T, as defined above, satisfies the weak type 1-1 inequality 

{x E R : ITf(x)I > all < a 	
(1.7) 

and is bounded on LP(R) for 1 <p < oo. 

In order to explain the relevance of the smoothness condition (1.5) in the 

definition of K, we shall outline the proof of Theorem 6. 

Fix f E L 1 (R) and a > 0. We decompose f as in Theorem 5. By the triangle 

inequality 

{x: ITf(x)I > all 	{z: Tg(x)l > a/2} 	 (1.8) 

	

+ {x: T 	> 

and so in order to prove (1.7) it is enough to dominate each of these two terms 

by CfI I I /a- By Chebyshev's inequality, and the L 2 (R) boundedness of T, 

{x: Tg(x)l > a/211 
< (2IITgII 2 2  < llIl 
k a) 	a2 

Using the trivial fact that llgll 	IlgIlooligIli and part (i) of Theorem 5, gives the 

required estimate for the first term of (1.8). We now turn to the second term. 

Let Q be the concentric double of Q3 , lii the centre of Q3 , and let l = (uQ)c .  

By part (vi) of Theorem 5, ll 	CIIfIli/a, so it suffices to show that 

	

{X E Q : T(b)(x)I > 	<Cli 
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By Chebychev's inequality, 

IX E 0 :T(bj )(x) I > a/21 

< J If b(y)K(x—y)dydx 
a i 

b3(y)(K(x 
- 

y) - K(x - y))dy dx 

(since fbi  = 0 for each j) 

< 	f b3(y) 
fRn\Q! 

 IK(x 
- 

y) - K(x - y)Idxdy, 

which by the smoothness condition on K, (1.5), is 

~ 	J Ib(y)dyC' 
a. 	 a 

This completes the proof of (1.7). 

The LP(R) boundedness of T now follows from the Marcinkiewicz Interpola-

tion Theorem, and a duality argument. 

In Chapter 3 we consider the behaviour on L' of a class of singular integral 

operators for which the smoothness condition (1.5) fails. 

Remarks 

In order to make the conditions on T more explicit, we remark that the 

hypothesis of L 2  (TR') boundedness may be replaced by the size condition 

C 
K(x) < 	x 0, 	 (1.9) 

along with the cancellation condition 

sup V-<1X1<O
K(x)dx <oo. 	 (1.10) 

O<3  

Injectivity of T. Since T is bounded on L 2 (R) and commutes with trans-

lations, it has a Fourier multiplier representation, i.e. there is a bounded 

function m such that Tf = mf for all f E L 2 (]W). Consequently T is 

injective on L 2  (R') if and only if m 0 0 almost everywhere. The question 

of injectivity on L'(R) is much more subtle since it is not immediately 

clear how we should interpret Tf for f E L1 (]1). In [1] we have recently 

overcome this problem under the additional size condition (1.9). In fact, 



the pointwise size condition (1.9) may be weakened at the expense of a 

strengthening of the smoothness condition (1.5). An appropriate setting 

for this more balanced result is in a class of operators which respect more 

general sets of dilations. 

Calderón—Zygmund theory with general dilations. 

If K is a convolution kernel giving rise to an LP bounded operator T, and if 

A e GL(n; R), then the I)' operator norm of convolution with det A 1 K(A'x) 

is independent of A. However, the conditions imposed on the Calderon—Zygmund 

kernel in (1.5) and (1.9) do not hold uniformly under such actions by general 

A E GL(n; R). They are only invariant in this way under isotropic dilations, i.e. 

those given by A = XI, for A E R. A Calderón—Zygmund theory for kernels with 

a more general homogeneity has been developed in [6], see also [5]. It turns out 

that an appropriate condition to impose on the dilations is the so called Rivière 

condition. That is, we suppose that for each t > 0, A(t) e GL(n; IR), and that 

IIA(s)-'A(t)II < C(t/s), 	 (1.11) 

for all  > t and some E > 0. 

Let B0  be the unit ball in R. 

Theorem 7. Suppose Tf = f * K is an L2(R11)b ounded operator. Suppose also 

that the distribution 

K = 
jEZ 

with K 3  supported in A(2i 1 )B 0 . Let I(3  (x) = detA(2i)K 3 (A(2)x). Suppose 

f k(x)ldx 

and 

f k(x - y) - k(x)Idx < Cy 	 (1.12) 

for some c> 0. If {A(t)} satisfies the Rivière condition (1.11), then T is of weak 

type 1-1, and bounded on LP(R7) for 1 <p < oo. 

In Chapter 5 we give necessary and sufficient conditions for such an operator 

to be injective on L 1 (1R7). 

The analogue of the classical Hardy—Littlewood maximal function, where the 

averages are now taken over translates of the family of 'balls' {A(2)B o } €z, is 

also of weak type 1-1, and bounded on LP(R') for 1 < p < oo. The reader is 

again referred to [6]. 



The Calderón-Zygmund theory for general dilations and its variants under -

pin the subtle theory of Singular and Maximal Radon Transforms; to which our 

discussion now turns. 

1.4 Beyond the Calderón—Zygmund Theory 

1.4.1 Singular and Maximal Radon Transforms 

We begin by making some formal definitions in order to set the scene. 

Let k be an integer strictly less than n. Let us asign to each point x E R7, a 

"k-dimensional surface" given by IF (x, t) : t e W }, for some F : R7 x Rk -+ R. 

To this family of surfaces we associate the Maximal Radon Transform 

Mf(x)= sup 	
V 

 f(F(x,t))dt. 	 (1.13) 
h>O hI<h 

In addition, if K is a k-dimensional Calderón-Zygmund kernel, we may form the 

Singular Radon Transform 

Tf(x) 
= Lk 

f(F(x,t))K(t)dt. 	 (1.14) 

The question that we wish to address is the following: 

Under what conditions on the family of surfaces, F, are M and T bounded on 

J1P(R7) for 1 <p < oc? 

Even though the above operators are much more singular than the standard 

Calderon-Zygmund operators, (i.e. the singularities of the kernels live on higher 

dimensional varieties), their LP(11) boundedness can be seen partly as a conse-

quence of the classical Calderón-Zygmund theory of the previous section. This 

often materialises in the form of Littlewood-Paley theory. In what follows we 

will discuss L 2 (R) boundedness, and then, where possible, briefly describe the 

appropriate Calderón-Zygmund theory. 

The translation invariant case. 

In this case the surfaces involved are all translates of one fixed surface F : 

Jl, i.e. F(x,t) = x - F(t). Since the associated operators T, and M, are now 

translation invariant, one has the Fourier transform as a tool. For the singular 

integral, LP() boundedness is equivalent, via the Fourier transform, to 

m(e) = JRk 
e tK(t)dt 	 (1.15) 

being an LP(R) multiplier. For the maximal function, a further argument is 

required before we employ the Fourier transform. 
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For the sake of simplicity we shall describe the theory in the case of the 

parabola in JR2, r,  (t) = (t, t2). In this case, 

Mf(x)= sup -' sup 
-- f f(x i  - t, x2 - t2 )dt 	 (1.16) 

h>O 2h tL<h 

and, 

Tf(x) 
= J f(x i  - t, x2 - t2). 	 (1.17) 

	

—00 	 t 

We shall begin with L 2 (Tl 2 ) estimates for T. The nature of the measure dt/t 

suggests we write 

T = 
k€Z 

where 

Tkf(x)  	f(x 1  -  t, X2  - t2)f2k<jtI<2k+1 	

. 
 t 

Changing variables gives 

Tkf(x) = 
L jtj!~ 2

f(xi - 2kt,x2 - 22kt2) dt  

(1.18) 

= 

 

	

I<t2 	
- 

	dt  

where 
( 2 k 0

Jk 	0 22/c 

Taking the Fourier transform of (1.18) gives 

Tkf (0 = m(ö)f(),  

where 

m(ei, 2) 
= 

 f <ltl<2 

et1 +t22) 

 t 

The curvature of the parabola ensures that the phase is not stationary to infi-

nite order for any one e W. This allows one to make the estimate m(j 

cmin{IeI, I 112 } and conclude that 

	

m(61) 	 (1.20) 

is bounded, and hence that T is bounded on L 2 (1l 2 ). 

The L 2  (1R2 ) estimates for the maximal function use the dilations 16k }  in a 

more explicit way, which we now describe. We first remark that we may suppose 

11 



the supremum in (1.16) is taken over h of the form 2, for j E Z. Define the 

averaging operators A 3  by 

I 
A3f(x) = 1 T 

1It2j 
f(x - F(t))dt. 

We now wish to define some less singular averaging operators, S,, which approx-

imate A 3  in some sense. Let 0 E C(R2 ) be non-negative and satisfy 0) = 1. 

For Oj  (x) = detö'çb(8'x) define 53 ! = * f. Now 

Mf(x) = sup IAf(x) 	sup (A3 - 53)1(x) I + sup IS3 f(x)I. 
i 	 i 	 i 

By [3] (see also [61), f -4 sup3  ISf()I is bounded on L' (1R2 ) for 1 < p < 00. 

Hence it suffices to control 

f '-+ sup I (A - S 3 )f(•)I. 
3 

The idea now is to dominate the above by the square function 

1/2 

Gf(x)= (I(A_sf(x 2) 

which can be thought of as the 12  norm of an 1 2-valued singular integral operator, 

as described in [36]. Through this reasoning we see that, in principle, the analysis 

of M is very similar to that of T. By Plancherel's theorem, L 2 (I1 2 ) boundedness 

of G is equivalent to the boundedness of 

'2 (1.21) 
i 

where m3  is the Fourier multiplier corresponding to A 3 . The boundedness of 

(1.21) may now be established in a similar way to that of (1.20). 

As remarked, the LP(1l 2 ) estimates for p 2 may be obtained by an appro-

priate variant of the Calderón-Zygmund theory, which we now sketch for T. Let 

K3  be the distributional convolution kernel of T3 . Next observe that {K 3 } and 

{A(2 3 )} satisfy the conditions of the Calderon-Zygmund theorem for general di-

lations (Theorem 7), with the exception of the smoothness estimate (1.12). This 

is not surprising since each K3  is singular with respect to Lebesgue measure on 
2  However, by decomposing each K3  in e-space in an appropriate way, one 

may express K3  as the sum of kernels, each of which has enough smoothness to 

apply Theorem 7. An interpolation argument then gives LP(R2 ) boundedness for 

1 <p < oo. For a fuller explanation of this argument see [5]. 
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The LP(W) estimates, p 0 2, for T and M were originally obtained using 

Stein's Complex Interpolation. See [36]. 

As we alluded to in the above example, curvature has a decisive role to play 

in the wider theory of singular and maximal Radon transforms. In the 1970's 

Nagel, Rivière, Stein, and Wainger introduced the following notion of curvature 

for curves in W. See [33] for further discussion. 

Definition 8. A curve F : R -+ R' is well curved if for all t in a neighbourhood 

of the origin, F(t) lies in the span of the vectors F(0), r'(0),..., F (3) (0), for some 

fixed j. 

Theorem 9 ( Nagel, Rivière, Stein, Wainger [33]). If F : R -4 W well 

curved, and F(0) = 0, then the local Hubert transform 9-{, and local maximal 

function M1, given by 

1 

7rf(x) = p.v. I f(x — 
-1 

and 
i h 

M
I 

u 110f(x)= sup —f(x—F(t))dt
O<h<lh I 

are bounded on L7'(R) for 1 <p < oc. 

Following these satisfactory results in the well curved situation, it was observed 

that one could obtain positive results for curves under much weaker curvature 

conditions than those in the statement of Theorem 9. In fact certain curves that 

vanish to infinite order may be permitted. It became interesting to characterise 

the bounded operators in terms of geometrical properties of the curves. A great 

deal of this work has been focused on convex curves in the plane of the form 

F(t) = (t,'y(t)), (1.22) 

where there has been much success. This was facilitated by the discovery of 

appropriate sets of dilations {4} for certain classes of flat curves. Some of the 

main results are as follows. 

Let F be a curve in ]R2  of the form (1.22), where 

R —+ R is convex on [0, cc) and 'y(0) = 'y'(0) = 0. 	(1.23) 

For 'yE C2 (0,00), let 

h(t) = t-y'(t) — 'y(t), t > 0. 	 (1.24) 

13 



The Hubert transform and maximal function along the curve F are defined by 

oe 

1(x) p.v. 	f(x - J_  

and 
h 

Mçf(x)= sup 
 1 

— VO  f(x—F(t))dt 
h>Oh 

Theorem 10 (Nagel, Vance, Wainger, and Weinberg [20]). Suppose that F 

satisfies (1.22) and (1.23), and y  is an odd function of class C 2 (O, oo). Suppose 

also that h satisfies the doubling property 

	

2C < 00 50 that for each t> 0, h(Ct) ~! 2h(t), 	(1.25) 

then both Mr,  and Hr  are bounded on L2 (R2 ). Moreover (1.25) is a necessary 

condition for the L 2 (R2 ) boundedness of Hr. 

If 'y satisfies (1.25) then we say that 'y is h-doubling. 

Theorem 11 (Carbery, Christ, Vance, Wainger, and Watson [6]). Suppose 

that F satisfies (1.22) and (1.23), 'y is of class C2 (0,00), and is odd. Suppose 

also that 

	

c > 0 so that for each t > 0, h'(t) > eh(t)/t, 	 (1.26) 

then both Mr and Hr are bounded on 11(R2 ), 1 <p < 00. 

We refer to condition (1.26) as the infinitesimal doubling condition. 

Theorem 12 ([11]). Suppose that F satisfies (1.22) and (1.23), and 'y is of class 

C2 (0, oo). If F is either even or odd and 'y' satisfies the doubling property 

C <00 so that for each t> 0, "y'(Ct) > 2'y'(t), (1.27) 

then Mr and Hr are bounded on L(R2 ), 1 < p < oo. Moreover if is even, 

(1.27) is a necessary condition for 11(R2 ) boundedness of Hr, 1 <p < 00. 

Carbery, Vance, Wainger, and Watson [7], later constructed appropriate dila-

tions for convex curves in R', and used them to extend Theorem 11. In [7] they 

also describe some different dilations which are particularly curious because of 

their connection with the theory of asymptotic stability of systems of ordinary 

differential equations. 
For surfaces in R7 of dimension greater than or equal to two, natural dilations 

seem less apparent. Consequently, the operators associated to flat surfaces have 
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been largely neglected; see however, [42] and [41]. In Chapter 3 we present 

a simple perspective on singular integrals and maximal functions associated to 

surfaces based on results for curves, such as Theorems 10, 11, and 12. Some 

very simple sufficient conditions for L 2  (and L', 1 <p < oo) boundedness of the 

operators are given which treat very many surfaces that vanish to infinite order 

at the origin. 

The non translation invariant case 

In the full non translation invariant case one might hope for a diffeomorphism 

invariant theory. In [13], Christ, Nagel, Stein, and Wainger achieve this under a 

certain local curvature condition on F. In the special case when the operators are 

translation invariant, they recover Theorem 9. 

As yet there are no diffeomorphism invariant results for classes of curves or 

surfaces which allow the curvature condition in [13] to fail. To provide such a 

result is a major aim for the future of this theory. We refer the reader to [32] for 

partial results. 

1.4.2 Oscillatory Singular Integrals. 

In much of this thesis we shall be interested in singular integral operators whose 

kernels also have an oscillating factor. For an n—dimensional Calderón—Zygmund 

kernel K, a phase 4P : R x TI —* 1l, and .A e R, we formally define the singular 

oscillatory integral operator T, by 

Tf(x) = p.v. 
JRn 

e'K(x, y)f(y)dy. 	 (1.28) 

Under certain conditions on and K, we can make sense of this operator. 

The study of the operators T has been largely motivated by their intimate 

connection with the theory of singular integrals along curves . For example, if 

n= 2, K(x,y) = X '

Y

, 4 E C(R) and 

dt 
Hf(x) = p.v. f f(x i  - t, x 2  - (x 1 , x 1  - t)), 

R 2  

then 

.F2 Hf(x i , )) = TA(F2f(, A))(x i ) 

where F2  denotes the Fourier transform in the second variable. By applying 

Plancherel's theorem we see that 

sup IITA1IL2oi_+L2R = IIHlIL2R2_*L2o2 
AER 

'Or singular Radon transforms 
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It should be-remarked that in order to make sense of the above we need to 

suppose that H or the TA's  make sense as principal values in an appropriate 

operator norm. All of the operators that we will discuss will exist as principal 

values in the strong operator norm. The operators TA also inherit uniform LP(li), 

1 <p < oo, boundedness, via the following vector—valued version of deLeeuw's 

Theorem. For the standard scalar—valued version see [19]. 

Proposition 13. Suppose e C(Tl 2 ). If H, defined as a principal value in the 

strong operator topology, is bounded on LP(R2 ) for some 1 <p < oo, then TA is 

similarly well defined and 

sup IITAIILPR LP(R) 	IIHIILP(R 2 )1LP(rv). 
AEII 

Proof. Let € > 0 and g E C'°(R). For some 0 E C'°(R) with q(0) = 1, define 

f, (X) = €h/Pg(x i )eX 2 (€x 2 ) 

Now observe that 

IHff lI LP2) - IITA glI LPR IIILP(R) 

as € -+ 0, and 

IIffILP(rv) = I9II L p (R) IIqIl L P(R ) 

hence 

sup lTA Ip_p !~_ lIHII_. 
AER 

A brief review of some known results. 

(i) L' Theory. 

Oscillatory singular integrals were first described at this level of generality, and in 

this context, by Phong and Stein [29]. For a discussion of the history thereto the 

reader is referred to [29]. In their paper Phong and Stein show LP(R 7 ) bounded-

ness (1 <p <oo) of the operator 

Tf(x) = 
JRn 

e'>K(x - y)f(y)dy, 

where (Bx, y) is a real bilinear form and K is a Calderon—Zygmund kernel. The 

bound is shown to be independent of the matrix B. An important step was then 
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made by Ricci and Stein in [31], where for a polynomial P : TIf x 11 —+ R, and 

a Calderón-Zygmund kernel K, they bound 

Tf(x) 
= kn e"'K(x — y)f(y)dy 

on LP(R) for 1 < p < oo. The bound is shown to be independent of the 

coefficients of P. In [21], Pan makes the natural extension of this to operators 

whose phases are smooth and of finite type. We say that D : R' x W —* R is of 

finite type at point w E DV x RTh if for some 1 < j, k < n, 

ôXjt9Yk 

does not vanish to infinite order at w. To be precise, Pan concludes that if 

E C(R' x Rn), and is of finite type on 

I (x, y) E R7 xR :x=y}flsupp(), 

then 

Tf(x) = JRn 
e'K(x — y)(x, y)f(y)dy 

 
is bounded on LP(R) for 1 <p < CX), uniformly in A. 

We remark that these finite-type results can also be obtained (via Proposition 

13) from the far reaching work of Christ, Nagel, Stein, and Wainger [13]. 

It is known that finite type conditions are not necessary for uniform L" bound-

edness. For example, one can apply Proposition. 13 to results about Hilbert trans-

forms along curves in R2  such as Theorems 10, 11, and 12. This immediately 

gives positive results for the operators 

 1° 
T,xf(x) = f_co -X— 

y f(y)dy, 	 (1.29) 

under certain conditions which permit 'y to vanish to infinite order at the origin. 

In particular, Theorem 12 implies the following. 

Theorem 14. Suppose 'y : R —+ 11 is either even or odd, convex on [0, oo), and 

'y(0) = Y(0) = 0. 
If "y'  is doubling; i.e. (1.27) holds, then the operators TA given by (1.29) are 

uniformly bounded on LP(R) for 1 <p < . 

More recently, in [32], Seeger has generalised Theorem 14 to handle a class of 

phases that is diffeomorphism invariant. This clearly takes one out of the realm 

of translation invariant operators, but still permits the finite-type condition to 

fail. Previously, Carbery, Wainger, and Wright [9], by very different methods, 

concluded the following. 
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Theorem 15 (Carbery, Wainger, Wright). Suppose y is either even or odd, 

convex, 'y(0) = y'(0) = 0 and t'y"(t)/7 1 (t) is decreasing and bounded below. Then 

the Hilbert transform 

dt 
Hf(x) = p.v. 

roo 

f(x 1  - t, x 2  - 

is bounded on LP(R 2 ) for 1 <p < 00. 

Again, using Proposition 13, one can deduce the uniform L1'(R), 1 <p < 00, 

boundedness of the non translation invariant operators 

TA! (x)=J 	 f(y)dy, 	 (1.30) 

for 'y satisfying the conditions of Theorem 15. 

In Chapter 2 we consider generalisations of the operators (1.30), given by 

L
00

Tf(x)= f(y)dy, 

where P is a polynomial. 

(ii) L' Theory. 

The question of weak type 1-1 boundedness of singular integrals and maximal 

functions along non-trivial curves has, so far, not been answered even in the 

simplest of cases. However there has been much success for the operators TA. 

Behind all of the known weak type 1-1 results is a certain L' —* L estimate, the 

principle behind which first arose in a fundamental paper of C. Fefferman from 

1970. See [161. Using this principle, Chanillo and Christ [12] were able to obtain 

weak type 1-1 boundedness of TA when the phase is a polynomial, with bounds 

depending only on the degree of the polynomial. Through work of Pan, this was 

extended to cover real—analytic, and later, finite type phases. See [26] and [28] 

respectively. However, in dimension greater than one, Pan makes the additional 

assumption that the phase is of the form 1(x, y) = (x — y); i.e. the associated 

operators are translation invariant. 

Restricting himself to the translation invariant operators 

f(y)dy, TAf(x) = fix-Y1<1e 

7 	) 

 x — y 

Pan was able to obtain uniform weak type 1-1 boundedness for a class of phases 

which permit flatness at the singularity x = y. 

In Chapter 3 we look for weak type 1-1 boundedness of the family of non 

translation invariant operators given by (1.30), under conditions on 'y  which also 

permit flatness at the origin. 

Is] 
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(iii) The Real Hardy Space H1 (R) 

The n—dimensional analogues of the Hubert transform on the line are the Riesz 

transforms R3 , given by convolution with the distributions (or Calderón—Zygmund 

kernels) for 1 <j n. Since R3 f, 1 < j < n, are the boundary values 

of the conjugates of the harmonic extension of f to R', then, by analogy with 

the one dimensional case we may define the real Hardy space H'(r) as 

<n}, 

with norm given by 

IfIH'(R) = If ML 1 (n) + 	IRj III L 1(Rn). 

,  

This is one of several equivalent definitions of H' (]R), and can be found in [36]. 

Definition 16. A function a: 1I —+ R is an H'(R) atom if 

a is supported in a ball B, 

J al < 1Bl1, and 

fa(x)dx = 0. 

Theorem 17 (The Atomic Decomposition of H'(R?)). Given f e H1  (W), 

there is a sequence of H'(R') atoms {ak}, and complex numbers {Xk}  such that 

f = 1: Akak 

in H(R)  norm. Moreover, 

A1 	cIIfIIHl(Rn). 

The Atomic Decomposition has the following very practical corollary. 

Corollary 18. If a linear operator T satisfies 

ITaII L 1 (Rn) < C 

uniformly over all H' (1) atoms, then T is bounded from H' (1l7)  to L' (W). 

As we discussed earlier (see Theorem 3), one of the main motives for studying 

the behaviour of operators on H' is that H 1 —L 1  estimates may be interpolated 

with L—L' estimates, for 1 <p < 00. 
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The known H1—L' boundedness results for the operators (1.28) run essentially 

parallel to the weak type 1-1 results discussed earlier. However, in certain cases, 

variants of H' are used that are tailored to the particular class of operators in 

question. For example, if P : R7 x 11 —+ R is a polynomial, we may alter the 

definition of an atom by replacing f a(x)dx = 0 with 

f e'a(y)dy = 0, 

where XB is the centre of B. For our purposes we will refer to such an a as a 

modified atom. The definition of the corresponding Hardy space HE' is as follows. 

Definition 19. A function f is said to be in H(R) if f E L 1 (R), and f can 

be written as 

f=i3a 

for some { 3 } C R and modified atoms a 3 . The H(R7) norm off is given by 

MfMHn) = inf 
{ 	

: f = 	iai}. 

These variants of the classical Hardy space H1  (11) first appeared in work of 

Phong and Stein [29]. Phong and Stein also observe that H,—L' estimates can 

be used for interpolation purposes just as in the standard case. 

It was proved by Pan in [22] that 

Tf(x) = p.v. JRn e'K(x - y)f(y)dy, 

where K is a standard Calderón—Zygmund kernel, is bounded from H(R) to 

L'(R), with a bound that does not depend on the coefficients of P. In [27] this 

is extended to cover real—analytic phases, but only in dimension 1. The natural 

extension from polynomial to finite—type phases has, so far, only been successful 

in the case where the operators are translation invariant; i.e. the phase is of the 

form 4(x,y) = 0 (x - y), see [23]. 

In [25] Pan has shown uniform H 1  (R)—L 1  (R) boundedness of a class of trans-

lation invariant operators whose phases may be flat. We refer the reader forward 

to Chapter 3 for a precise formulation of Pan's result. In Chapter 3 we extend 

what is known by showing that a class of non translation invariant operators, for 

which the finite—type condition may fail, is uniformly bounded from the standard 

H'(11) to L'(R). 
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1.5 The structure of the thesis - a summary.. 

Chapter 2 

In this chapter we prove LP(R), 1 <p < oo, boundedness of oscillatory singular 

integrals of the form 

1-- ei((x)  
Tf(x) = ••

00 x -y 
 f(y)dy, 

for P a real valued polynomial, and y : R —p R a convex curve satisfying certain 

conditions that permit it to vanish to infinite order at the origin. The bounds are 

shown to be independent of the coefficients of the P. 

Chapter 3 

In this chapter we obtain weak type 1-1 boundedness and boundedness from 

H' (R) to L 1  (R) of the operators 

e(x_) 
Tf(x) = P•• 	

1 
- y f(y)dy, f 

under conditions on 'y similar to those in Chapter 2. The bounds we obtain are 

seen to be uniform in ) E R. 

Chapter 4 

In this chapter we describe a simple perspective on singular integrals and maximal 

functions associated to surfaces in R'. Our perspective allows us to formulate 

a variety of simple conditions that guarantee their LP(W) boundedness. These 

conditions treat many surfaces that vanish to infinite order at the origin. Our 

results are consequences of the known theorems for Hilbert transforms and max-

imal functions along plane curves. We are also able to bound on L 2 (R') some 

singular integrals associated to variable flat surfaces using the results of Chapter 

2. 

Chapter 5 

The main purpose of this chapter is to characterise those Calderón—Zygmund 

operators, of convolution type, that are injective on L' (R). We do this by proving 

a Fourier multiplier relation on L' (R') which uses a generalised integral. Our 

techniques also allow us to come to a similar conclusion for a class of oscillatory 

singular integral operators. 
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Chapter 2 

Some oscillatory singular 
integrals with variable flat 
phases; estimates on LP(R), 

1<p<oo. 

This chapter is devoted to the study of the operators 

r_00

Tf(x) = p.v. 	
e (x)

- 

 ( 
y) f(y)dy, 

for P a real—valued polynomial, and 'y : JR -* R satisfying certain growth condi- 

tions. What is of prime interest to us is that these conditions will not exclude 

that vanish to infinite order at the origin. For example, ' -y may behave like 

exp(—t 2 ) for small t. 

The following Theorem is a significant step forward from Theorem 15 of Car-

bery, Wainger, and Wright [9]. The proof we give uses many ideas from [9]. 

Theorem 20. Let P : JR —+ JR be a real polynomial of degree n, and let e C3  (R) 

be either odd or even, convex, and satisfy 

-Y (0) = 7'(0) = 0, 

)(t) = t'y"(t)/7'(t) is decreasing and bounded below on (0, oo), 

then 
e((x!) 

Tf(x)=P.v.J 	 f(y)dy 

is bounded on LP(R), 1 < p < oo, with bound independent of the coefficients of 

P. 

An amusing feature of the proof of the above Theorem is that if we do not look 

for independence of the coefficients, we are unable to conclude that the operators 
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are bounded. This is because our proof goes by induction, and the independence 

claim in the inductive hypothesis is crucial. 

By the observation preceding Lemma 13, we can immediately conclude the 

following from Theorem 20. 

Corollary 21. If P is a polynomial, and 'y satifsies the conditions of Theorem 

20, then the Hubert transform 

dt 
Hf(x i , x 2 ) = p.v. 

J 00 

f(x i  - t, x2 
- P(x 1 )(t))T ,  

is bounded on L 2 (R2 ) with a bound that depends only on the degree of P. 

Remarks 

The proof of Theorem 20 shows that IIHM2_2 < G\ 1 "2 , where AO = 

inf >o  )(t). 

It is not possible to deduce LP(R2 ) boundedness, 1 < p < oc, of H from 

Theorem 20. Given the techniques developed in [9] and in this chapter, 

LP(R2 ) boundedness of H seems a viable proposition; this we hope to return 

to at a later date. 

Prerequisites 

We begin by establishing some simple properties of the curves 'y. 

Lemma 22. y' is doubling; i.e. there exists C < oc for which 

y'(Ct) > 2y'(t) for all t > 0. 	 (2.1) 

Proof. IfC=ek then 

Ct 	 Ct 	 Ct 

'(Ct) = [ 	 "(s)ds ~ it 7"(s)ds> A0 it 	
'(s)dS 

~ A'(t) logC = 2'(t), 
Jo   

for all t > 0. 

Lemma 23. If g(s, t) = '(s)-71(t) then 

0 for s, t > 0, s 	t. 	 (2.2) 
as 
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Proof 

- ('y(s) - 	 - ('y'(s) - 

as - (7(s) - 

Y(s) (7"(s) - 71 (t) - 

7(s) - 7(t) 7'(s) 7(5) - 7(t) 

Y(s) - 

 

(7"(s) 'y "()'\ 
7(s) - 7(t) - 

for some 9 between s and t, by the Generalised Mean Value Theorem. Since 

is decreasing,0. 	 E 

Lemma 24. There exists c> 0 for which 

7(s) - 7(t) ~! c(s - t) -Y(s)' 	 (2.3) 

and 

- 71 (t) > c(s - t)7'(s), 	 (2.4) 

for all 1 <t <s <2. 

Proof. We will prove (2.4); (2.3) is similar. We may suppose that 7 1 (t) > 

since on the other hand, 

71 (t) > 7'(s) ~ (s - t)'y'(s), 

for 1 < t < s <2. 

Let A o  = inft>o  A(t). If 7 1 (t) > 'y'(s), then 

it 7(X) 
- 7'(t) = 

	
7"(x)dx 

= it A(x) 	dx> (s - t)7'(t) > (s - 
x 

for 1 <t < s <2. 	 U 

In what follows we shall need the following well—known lemma, which is a 

consequence of the Mean Value Theorem. 

Lemma 25. If P is a real monic polynomial of one variable, and of degree n, 

then, there is a constant C which depends only on n for which 

1 
{x e R: P(x) < J}1 < C6, 

for all 5 > 0. 

Lemma 26. Suppose T is an LP (W) bounded operator for some 1 < p < oo, and 

has integral kernel K(x, y). If 0 e C°° (1RJ), then the operator To  with integral 

kernel K(x,y)çb(x 
- 

y) is bounded on LP(R'), and lITI_ IIIHITII_. 
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Proof. By writing 0 as the inverse Fourier transform of q,  we have 

	

Tf(x) = f 	) f e 2 K(z, y)f(y)dyd 
t ll  

= JRn 	

ex J K(x, y ) e_ 2 if( y )dyde 
 

	

= J 	)e2Tf(x)de, 

where f(y) = e2 'f(y). Since JjfCjjp = If lip for all e E R, the conclusion of 

	

Lemma 26 follows by Minkowski's inequality for integrals. 	 El 

Before we begin the proof of Theorem 20 we need to introduce the notion of 

the 'Minkowski content' of a subset of ]R 2 . If 0 < d < 2, a set E C R2  is said to 

have d—dimensional Minkowski content C if 

IE5I 

where 

= {x E V : dist(x, E) <6}. 

Example. Suppose 	R —+ R is a monotone function and F = {(x, (x)) 

x E R}. If El is the interior of the unit square in 112,  then the 1—dimensional 

Minkowski content of the set F fl El is bounded above by 9. In what follows, our 

conclusions concerning Minkowski content will be of this nature. 

The proof of Theorem 20 

The proof of Theorem 20 will proceed by induction on the degree of the polyno-

mial. 

When n = 0, the class of operators is reduced to {S} E , where 

Sf(x) = 
	

e (a1) 

 J_ 	— f(y)dy. 

By Proposition 13, uniform (in A) L 7 (1l) boundedness of S) is a consequence of 

the L(R 2 ) boundedness of 

P00 	 dt 
Hf(x) = Jf(x i  —t,x 2  —(t)),

00  

which, by Lemma 22, follows from Theorem 12. 

Suppose Theorem 20 is true for polynomials of degree n - 1. 
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Firstly we shall observe that it is enough to consider P monic, and 'y satisfying 

'y(l) = 1. Suppose M is the coefficient of x' in P, and that w satisfies Mw(w) = 

1. Now, 

1' °°  
T 00  f(wz)=j 	

x — y 	
f(wY)dY=J 	 f(wy)dy,

00 

e 

where P(z) 'y()P(x) and (x) = y(x)/'y(w). We now simply observe that 

P is monic, satisfies the conditions of Theorem 20, and (1) = 1. Since the 

LP(R) operator norm of T is equal to that of 

e(x)) 
Tf(x)=J 	 f(y)dy, 

our claim follows. In what follows P will be monic, and 'y will be 'normalised' in 

the sense that 7(1) = 1. 

We now decompose 

T = T 1  + 

k>O 

where 
e2P (x)( 1_#) 

T'f(x) = f(y)dy, 
fix— Yj 	X — Y <1 

and 

Tkf(x) = f (y) dy. 
ei(x_ 

<2k+1 X - Y 

2.1 The local part 

Since the integral defining T' is restricted to ix - 	< 1, it suffices to consider 

T 1  acting on functions supported in balls of radius 1. Suppose f EL(R) is 

such a function, and has centre b. Let Qb(x) = P(x) - (x - b). Since Qb  is a 

polynomial of degree n - 1, by the induction hypothesis 

)x) 

Sb! (X) =f 
e 	

f(y)dy 

is bounded on LP(R) with bound independent of b and the coefficients of P. Let 

E C°° (1) be such that q(t) = 1 when Itl < 1. By Lemma 26 

ftYJ ei(x)7(h3) 
Sb,f(x) = 	- y)f(y)dy 

-00 

is also bounded on L(R) with bound independent of b and the coefficients of P. 
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We now define the operator S by 

1(u) dy. Sf(x) 
= 	

eiQb((x_ 

<1 

On observing that 

Sb,t,f(x) - Sf(x) ~ 	* 

we conclude that S b1  is bounded on L°(R) with bound independent of b and the 

coefficients of P. 

Now 

 ~j 
lT 1 f(x) - Sf(z) I 

= 	

(x—y) - e((x_ 
f (y) dy 

1 

<Ix-bI
JIX-YIJ 7 

	
f(y)Idy 

(x-y)I 
 —Y 

<2nfi
f(y)dy  

x—yI ~ l 

(since is convex, 'y(0) = 0, and 'y(l) = 1) 

= 2Af(x), 

where A is the averaging operator given by 

Af(x)=f
ix—Y1:51 

f(y)dy. 

Since A is trivially bounded on LP(R), T' is bounded on LP(R) for 1 <p < 00, 

with a bound that is independent of the coefficients of P. 

2.2 The global part. 

Define the operator Tk by 

Tkf(x) = Tk (f(2_k.))(2kx), 

i.e. 
ej2(2k)v_!) 

Tkf(x) = 	 f(y)dy, 
151x—yl<2 	X 

- y 

where Pk(x) = 2_nkp(2k x ), and k(X) = y (2cx)/ y (2k). We should remark that 

this type of rescaling preserves the operator norm. 

Since 'y  is either even or odd, we need only consider 

Tk f (x) 
= Lx—y<2

ej2n (2Jc)P, (x)?k (x—y) 
f(y)dy. 

x — y 
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Since we are unable to bound the global part using the oscillation alone, we 

are forced to define some 'bad' sets Ek,  on which we rely entirely on the size of 

the kernels of the operators Tk.  Let 

I  Ao  PkEk = 	
' 

x E 	 (x) >0 and  Pk 

{ 
Pk) 	 Pk (X) 	4f' 

where 

A 0  = infA(t). 
t>o 

We define the 'good' part of the operator Tk to be T, where 

Tf(x) = XE(X)Tkf(x), 

and the 'bad' part to be 

Tf(x) = XE k (X)Tkf( 

Lemma 27. Let P be a monic polynomial, and 'y be as in Theorem 20, with 

'y(l)=l. If, for >0, 

Rf(x) = XEC(X) 
L2

eiUP(x)-r(x—V)

_ 	
f(y)dy, 

< 

where 	
PI 

E={xER: () ' (x)>O and ~ } 

then there is an c> 0 and a constant A, independent of the coefficients of P, for 

which 

IlRIl2_2 < 

for all p> 0. 

Lemma 28. For any a > 0, 

IEk Ic 
k>0 

is convergent, with a bound which depends only on a and the degree of the poly-

nomial P. 

We first show how Lemmas 27 and 28 imply Theorem 20. 

By Lemma 27 
:5 A(2Thk 7(2k))_, 

for all k > 0. Since T9  is trivially bounded on L' and L°°, uniformly in k, by 

interpolation we have 

	

llT_p 	A 	(2 y (2Ic))_ 1 ' < 00, 

k>0 	 k>0 
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with bound independent of the coefficients of P. Here we have used the fact that 

'y(l) = 1, and y is increasing. 

By interpolating between the trivial estimates 

IITf lii < IEk HIf lk 

and, 
lTbk f Il 	<CIIflI, 

we obtain 

ITIl 	CIEkl, 

and so by Lemma 28, 

E IITlI_ < 00, 

k>O 

with bound independent of the coefficients of P. 

We now turn to the proofs of Lemmas 27 and 28. 

The proof of Lemma 27 

In order to exploit the oscillation in R,, we will use the fact that II 	112-2 = 

lIRRIl2. 
Let L(x, y) be the kernel of RR,; i.e. 

i,,) - 	
ei,P(z)(y(z_x) 7(z_y)) 

LP  (X, 	1,1<Z—x,z—y<2;zEEc - 	( z - x)(z - y) 

Let 

	

(x, y, z) = P(z)('y(z - x) - 	- 

and 
:1 <z—yz—x2; ZEEC}. 

It suffices to consider the kernel 

L(x,y) = 
jz:(z,x)E} (z - 	

z - dz, 
Y) 

since L = L + L,*, - 
Since the L°° operator norm of RR L  is bounded uniformly in jt, it is enough, 

by interpolation, to obtain appropriate decay estimates for its L 1  operator norm. 

To this end we seek an estimate of the form 

sup f IL(x,y)Idx < cp 	 (2.5) 

for some €> 0. 
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Throughout this chapter we will use the standard notation for partial deriva- 

tives where, for a twice differentiable function f : W —+ R, one writes f2 for axi  
and fij  for ax0 c  

In what follows y E R will be fixed. 

Lemma 29. If 	< 0, and z is fixed, then there exists at most one value of 

X <y for which 03 (x,y,z) = 0, and at most one for which 031 (x,y,z) = 0. 

Proof 

03 (x,y, z) = P(z)('y'(z - x) - 	- y)) + P'(z)(y(z - x) - 7(z - y)), 

and 

31 (z, y, z) = - P(z)7"(z - x) - P'(z)"y'(z - 

and so 
ô (031(X,Y,Z)) - - Pz-- (A(z-x)) -,  

z - x 

which is of constant sign for fixed z. Hence is a monotone function of x, 

and so has at most one zero. Hence 	can have at most two zeros; one of which 

must bex=y. 	 El 

Lemma 30. For fixed y, the zero sets of 03  and  031  in L have bounded one-

dimensional Minkowski content, with bound depending only on the degree of the 

polynomial P. In particular, the bound does not depend on y. 

Proof. Since z E, either 

(i) 
P,  (z) < 
P(z) - 4' 

or (ii) 
P,1  

(P) 

If (i), then by the Generalised Mean Value Theorem 

P'(z)('y(z - x) - -Y (Z - y)) - P,  (z) y'(0) 

- P(z) 

	0 

P(z)(7 1 (z - x) - -y'(z - y)) - P(z) 'y"(0) - P(z) A(0)' 
(2.6) 

for some 0 e (1, 2). Since )(0) > A0 , and 0 E (1, 2), (2.6) is less than 

P,  (z) 2 	1 
P(z) I )' 

- 2' 

and consequently 03  has no non-trivial zero as a function of x. 
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In case (ii), if 03  has a non—trivial zero, say c(z), as a function of x, then it 

is defined implicitly by 

P(z)[7'(z - cx(z)) - 	
- 

y)] + P'(z)[y(z - 	 - 	
- y)] = 0, 

or 

g(z -a(z),z- y) = - 
P' (z) 	

(2.7) 
P(Z)' 

where g(s, t) =
Since 031 has at most one zero, and 0 3  has at most two 

zeros (including x = y) as functions of x, then 31 (ay (z),y,z) 0 0. This implies, 

by the Implicit Function Theorem, that c is defined on an open set Ui,, and is 

differentiable. Differentiating (2.7) with respect to z on Ui,, gives, 

( zy)_
1 

daag 	 ôg 

(
p ) 

dz 
) 	

at 

By Lemma 23, 

	

as —<0 and <0, and so 	~ 1. He nce {(z,x) e : x = a(z)} 

has bounded one—dimensional Minkowski content. 

We now turn to the zero set of 0 31 

If '/'i  has a zero, say O(z), as a function of x, then it is defined implicitly by 

P(z)711 (z—/3(z))+P'(z)'y'(z—/3(z)) =0. 

Clearly /3 does not depend on y, so we simply write ,i3, = @. Since 

- P'(z) 

P(Z)' 

and 	is strictly decreasing, z - /3(z) changes monotonicity exactly when 

does; i.e. boundedly often. Hence {(z,x) e A : x = z - 16(z)} has bounded 

one—dimensional Minkowski content. By considering the shear 	: 

given by (x, y) = (x, x 
- 

y) (a global diffeomorphism with Jacobian determinant 

equal to 1), one can deduce that {(z,x) e A : x = 0(z)} also has bounded 

one—dimensional Minkowski content. 

At this point the following observation is appropriate. Since ) is decreasing 

and bounded below on (0,00), -ft -+ oo as t -+ 0, and 	-4 0 as t -4 00. 

Consequently 	: (0, oo) - (0, oc) is surjective, and so 0 is defined exactly on 

the set fzER:?<0}. 	 0 

Let 

F1  = {(z, x) E A : P(z) = 01, 

F2  = {(z,x) E L P'(z) = 0}, 
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F3  = {(z,x) E A: P"(z) = 01, 

F4  = {(z,x) e A: x = 

F5  = {(z, x) E A: x = 

F6  = {(z, x) E A: x = 

and 

F7 = 9A. 

Our aim in what follows is to establish some lower bounds for 03  on A. To do 

this we will divide A up into three pieces A 1 , A 2 , and A 3 , and make estimates of 

a different type on each. For technical reasons we need to understand the nature 

of some of the boundaries between these regions; these are given by 

F8  = {(z,x) E A: x = 

and 

Fg ={(z,x) EA:x=/L(z)}, 

where 3+  and 0_ are given by 

1')/'(z—/3 +( z)) - P'(z) 
2'y'(z—/3±(z)) - 	P(Z)' 

and 
- 	- P'(z) 

- P(z) 

As for z - 3(z), z - 0+  ( z) and z - /3_(z) change monotonicity boundedly often, 

and so F8  and F9  have bounded one—dimensional Minkowski content. As for /3 
again, and 0_ are defined exactly on { e R: <o}. 

Let 

F=U F.  
By Lemma 30, F has one—dimensional Minkowski content bounded by a constant 

depending only on ri = deg(P); i.e. not on y or the coefficients of P. 

Decompose A\F into a union of Whitney cubes {Bi,m}i>, mEN  whose sides 

are parallel to the axes, and for which diam(B j ,m ) = 2 1 .  Since F has bounded 

one—dimensional Minkowski content, 

	

#{B E {B i ,m } : diam(B) = 21 < C2 1 . 

	 (2.8) 

Next, we write 

dz 
L(x,y) = 

JIz: (z 'X)E A) 	
= 

 (z - x)(z - 	1,m 
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where 

dz 
Li,m(,y) = 

 z

(2.9) 
(z—x)(z—y) 

We now claim that it is enough for us to obtain an estimate of the form 

2M1 

sup 
JlL1,m(,y)dx 	

C, 	 (2.10) 
Y 	 II 

for some M > 0 which is independent of 1. 

Assuming (2.10), and the trivial estimate, 

sup 
I 

Lt,m(X,y)IdX 	C2 1 , 	 (2.11) 
Y 

we obtain 

sup  JIL(XY)IdX < E 5UP1Li,in(XY)IdX 
y 	 Im 

• C 	min{21, 2M1/} 

1,rn 	 (2.12) 

(by (2.8)) 

<C;i- r, 

as required. From here we will focus on finding an estimate of the form (2.10). 

Before we integrate by parts in (2.9), we must establish some lower bounds 

for 03  in terms of dist((z, x), F). 

Let 
I 	P' 	1"— 

____  

P(z) 	27(z—x)) 

( 	P'1 z 	 - x 
L 2 '(z,X)EA 	'<-2'' 

1 	P(z) 	7
,
(z—x)J 

L3 = { (z , x) E A 	
- x) < P'(z) <_ (z_x) 

	

y(z — x) 	P(z) 	27(z—x) 

Since ) is decreasing, {x : (z, x) E L} is a line segment for each z E R and 

1 < j <3, and in fact 

= 

 

	

(z, x) e 	~ 0, or 	<0 and x > 

2  ~ ( z , x)= 	P(z)  <0  and x<_(z)} 
' 

P(z) 

L3 	
(z, x)  

= 	
P'(z) 	

< <0  and (z)x< +(z)}. 
{  P(z) 
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Lemma 31. On Li and A 2, 

3(x,y,z) >—
{dist((z,x),F)'P(z)Vy'(z 

- x) 	
(2.13) C 

 dist((z,x),F)P'(z)y(z—x), 

and on 

{ dist((z, x), F)21P(z)I7'(z - x) 
03 (x, y ,z) > c 

dist((z, x), F) 2 P'(z)"y(z - x). 

Before we begin the proof of Lemma 31 we remind the reader that 

a, (Z) 
 </3(z) <y, 

and 

/3(z) < /3(z) :!~ 3+(z), 

onL2UL3. 

Proof. Considering Li 

if > 0, then by Lemma 24, 

{3(X,

y,Z) 	
x - yHP(z)I'y'(z - x) 	

(2.14) I >C 
- 

 

I x 

which implies (2.13) since Ix 
- 

> dist((z, x), F). We will use Lemma 24 in this 

way several times in subsequent estimates. 

If _!Y','(z) < 	<0, then by the Generalised Mean Value Theorem 
2 y (z-x) - P(z) 

P'(z)(7(z - x) 
- 'Y (z - y)) - 

P(Z) 

y'(0) 
P(z)(7'(z - x) - 	

- 
y)) - P(z) "y"(0) 

(for some z—y<O<z—x) 

< 
P'(z) 'y'(z - x) 

< 1 
- P(z) y"(z—x) - 2' 

since A is decreasing. (2.13) now follows on L. 

Considering A 2 

Y, z) = —P(z)'y"(z - x) - P'(z)'y'(z - x). 

On A2 1)1 > 	and so P(z) 

P'(z)'y'(z - x) I 
I > 2. 	 (2.15) 

P(z)'y"(z  
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Consequently, 031  is of constant sign as a function of x on L2, and so by (2.15), 

{ 	 - 

F'3i(x, y, z)I > C 
IP(z)h (z x)

-  

If ay  (z) </3_(z), then by (2.16), 

(2.16) 

ck(z) 

	

I3(X, y, z)I >—cIPz)J 	 - s)ds 

=cP(z)II'y'(z - x) 
- -Y' (z -  cly W) 

~!c'IP(z)IIx - ay (z)'y'(z - x) 

>c'dist((z,x),F)IP(z)I'y'(z - x). 

On the other hand, by (2.16) 

I3(X,Y,Z) 	clP'(z) 	'Az —s)ds 

=cP'(z)I'y(z - x) - 'y(z - 

>c'IP'(z)Ux - a(z) Vy(z - x) 

>c'dist((z, x), F) jP'(z)l'y(z - 

If ay (z) 
? 

fl-(z), then 

	

3(x,y,Z)I ~!clP(z)I 	7"(z - s)ds 

=ctP(z)II'y'(z - x) - y'(z - 3(z)) 

~!c'P(z)Ix - 3_(z)'y'(z - x) 

>c'dist((z,x),F)P(z)I'y'(z - 

and, 

103 (x,y,z)l ~! c'dist((z,x),F)IP'(z)I'y(z —  x). 

Considering L 3  

9 

(1(x'y,z)\
=_P(z)-() 

09X 	'y'(z—x) 
) 	

ax 	z — x 

= —P(z) ()!(z 
- x) - A(z - 

z - x 	(z - X) 2 ) 

Since A is decreasing is a monotone function of x, and since 1 < z — x < 2, 
7'(z—x) 

t9 

(b3'(X,y,Z)) 	

iy"(z—x) 

'(z—x) 	- 2(zx) 
(2.17) 
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On L 3  

P(z)Vy"(z - x) '-'f IP'(z) 'y'(z - x), 	 (2.18) 

and so 

a 	031 	
((x,y,z)) 

~ cP'(z)L 	 (2.19) 
9x 	'y'(z—x) 

Since is monotone as a function of x, and (z, /3(z)) E L3, (2.19) implies 

031 (X, y, z) I 
~ cJP'(z)Ix - 

- x) 

which implies, by (2.18), 

031(x,y, z)I 
> C fP'(zThx —13(z)17'(z - x) 

P(z)Ix - /3(z)h/'(z - x). 

The estimates we make now will depend on the location of x relative to the zeros 

Of 03, i.e. o(z) and y. Since a(z) < /3(z) < y we consider three cases: 

x < 

a(z) <x < /3(z), 

X > /3(z). 

Since 'y E C3(R), 031  e C'(R) as a function of x. Consequently, 0 31  is of 

constant sign in each of the regions (i)—(iii). This observation allows us to make 

the following estimates. 

In case (i) we may suppose that c(z) > 0_(z), (or else (i) is vacuous), and 

so 

ay  (z) 

3(X,y,Z) ~:CIP(z)If 	lt—/3(z)"(z - t)dt 

J 2  >ClP(z) 	 - /3(z)'y"(z - t)dt 
x 

Ia(z)+x 	
/3(z) 	

' 
(z 	2 

a(z)+x\ —7'(z—x) 
- 	 ) ~ CIP(z) 	

2 
 

I  
>CIP(z) 

c(z) + x 

_ay(z)+X _XH'(z_x) 2 	 2 

=C'P(z)Ix - c y (z) 2 'y'(z - x). 

Similarly, 

> CIP'(z)ljx—a(z)2'y(z—x). 
36 



In case (ii), if ay  (z) > /3_(z) then 

I3(X,Y,z)I >CIP(z)IZ 	It— /3(z)j"(z—t)dt 
y(Z) 

~!CIP(z)Hx - /3(z)II'y'(z - x) - '/(z - a(z)) 

>CIP(z)IIx - /3(z)IIx - a(z)I'y'(z - x). 

Similarly, 

?/'3(x,y,Z)I > CJP'(z)IIx—/3 (z)IIx—a(z)J'y(z—x). 

If a,(z) </3_(z), we observe that 6- (z) <x </3(z), and 

I3(X,Y,Z)I ~!CIP(z)If 	It—/3(z)1711(z—t)dt 

>_CIP(z)IIx - /3(z)II'y'(z - x) - 	 - /3_(z)) 

>—CIP(z)Hx - fi(z)IIx - 0_(z)I' y'(z - x). 

Similarly, 

103 (x, y , z)I ~! CIP'(z)IIx - /3(z)IIx - 0_(z)y(z - x). 

In case (iii), if y < /3+(z) then 

Y 

3(X,y,Z)I >CIP(z)Ij It—fl(z)17 11 (z —t)dt 

~ CIP(z)Hx - /3(z)I Vy'(z - x) - 'y'(z 
- 

~ CIP(z)Ux - 8(z)IIx - yI'y'(z - x). 

Similarly, 

'b3 (x,y,z)I > CIP'(z)Hx
— /3(z)Hx — yIy(z--x). 

If y > 0(z) then we observe that /3(z) x < 0(z) and argue as before. El 

Lemma 32. Let P be a real monic polynomial of degree n and of one real vari-
able. Let U be the union of the set of roots of P and of P' over R. There exists 

C > 0, depending only on n, such that if dist(x, U) > e, then 

IP(x)I > Cci', 

for all e > 0. 

Proof. Let e > 0, and suppose x is chosen so that dist(x, U) > E. Let Yx  e U be 

such that Ix - is minimal; so Ix 
- y > e. Without loss of generality we may 

suppose that Yx > x. We observe that P is monotone on [x, yr]. There are two 

cases to consider. 

Case 1: P(y) = 0 
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By Lemma 25, 

{z E 	: IP(z)I < P(x)I}I 15  cIP(x), 
	 (2.20) 

with constant c independent of the coefficients of P. Since P is monotone on 

[x, yx], (2.20) implies that 

P(x)j ~! Ox — j' xI 

as required. 

Case 2: P(y)  =A 0 

Since Yx  E U, P'(y) = 0. Let y  E U be such that y < x < Yx and is 

maximal in U. 

If P(y) = 0, the argument in case 1 applies. 

If P(y) 	0, then since y  was chosen maximally, P is single signed on 

[Y, Yx]. Without loss of generality we may suppose that P(y) < P(y)I, and 

hence IP(x)l > IP(x) - P(y)I. An application of the argument in case ito the 

polynomial Q(z) = P(z) — P(y) completes the proof of Lemma 32. 	El 

Remark 

By applying Lemma 32 to the estimates in the statement of Lemma 31 we can 

conclude that on 

> C f dist((z, x), F)n+2-y,(Z  X ) 

- 	 dist((z, x), F) 1 'y(z - x). 

We now show how Lemmas 31 and 32 finish the proof of Lemma 27. 

Integrating by parts, 

Li ,m  (x, y) 
=

dz  

fl-~~ :(Z ,X)EBI,—} 	 (z — x) (z — y) 

Jj 	

11
IL z:(z,x)EB1m} 3 (x, y, z) (z — x)(z 

- ) 	
(exY) dz 

1 1 

	 I {z:(z,x)E iA 03  Lx, y, z)(z — x)(z — Y) Bt, m } 

1 
 f 

	3 ( 	1 	1 	
) e''"dz, 

z:(z,x)EB1,} aZ 	3(x,y,z) (z — X) (Z - y) 

and so, for y fixed, 

(2.21) 

f ILl,m(X,ydX< 
I faBI,, 

1 
+- 

1 	B1,m  

1 	
f1T. 

3(x,y,z)(z—x)(z—y)i 	 (2.22) a  ( 1 

19Z 03(X,Y,Z)(Z—X)(Z—Y)) ~ 



where dui,,,, is Lebesgue measure on aBi ,m . 

By (2.21), the partially integrated term in (2.22) is bounded above by 

1 	 1 	 C 

P 	

1 	C2 
ôBtm l  1ÔB1,m 	3 (x, y, z) dUi,m 

uniformly in y. 

The remaining term in (2.22) is bounded above by 

1 j 
	

1./)33(X , y , Z)dd 
P i,m l  

It 	

If 	1 
±— 

P Bjm az (z - x)(z - 	
dzdx sup 

(z,x)EBj,m '/ 3 (x, y, z) 

(2.23) 

(2.24) 

The second term in (2.24) is (by (2.21)) bounded above by 
It 

The remaining term in (2.24) is, by the triangle inequality, bounded by 

1 f 

UJBl,m  

+ I 	
P'(z)('y'(z - x) — 7'(z 

- Y ))  1  dzdx 
P Bi,m 	 3(x,y,z)2 

+ 2 1 

	

P"(z)(y(z x) - -/ (z  Y))ld ZdX  
P Bi, m  

= 1+11+111. 

By Lemmas 31 and 32, 

C 

 I <— I — P(z)1'y" (z - x) — 	"(z 'y 
- 	dzdx 

P 	Bt,m P(z) 2 2 41 'y'(z - 

C2 41 P (z_x) 
+ 

'y "(z—y)\ dzdx 

P  P(z) '(z - x)2 7'(z - y )2) 

C2' 41  < 5 1 1 	
" 

— 	P fBI'M az z dzdx 

C2 31  < 
- 	P 

uniformly in y. 

(2.25) 
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Again by Lemmas 31 and 32, 

	

ii < I 	
P'(z)I'y'(z - x) - 	- dzdx 

P Bi,m 	P(z) 2 2 41 y'(z - 

C241 ' 	1 

P JB1,m19Z 
P(Z) )dzdx 

C2It 	a 	1 

P 	B1,m 	
) dzdz 	

(2.26)

Oz P(z)  

(since P is monotone on Bi, m ) 

Ii 

uniformly in y. 

Similarly, 

JB 
<—

C

P 1,m 	P'(z) 2 2 41 7(z - 

<C241 	ô / 1 
dzdx 

- p JBI'—  

C241  < 	a 7 

- p JBI'M 	

1 

P'(z)) dzdx 
	

(2.27) 

(since P is monotone on Bt, m ) 

C2(2)1  <  
A 

uniformly in y. 

Combining these estimates gives 

sup f ILi ,m (, y)dx < C2 

	

Y 	 I_I 

which is (2.10) with M = n + 3. 

This concludes the proof of Lemma 27. 

Proof of Lemma 28 

	

Suppose the rootsof P are {v} 1  C 1R, and 	
{} 	

C C\]R, where 
- n rn — 

ii, - -- and 3j = a2  + ib3 . Now 

Pk (x) = H1(x - 2_k u )H 1 ( x  - 2'/3)(x - 
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and so, 

1 	 1 1 
  

P(x) 	
m 	 ml  

+
= 

Pk (x) 	(x - 2-kv) + 
	(x - 23) (x — 2- ) 

m 	
1 	

nI / 	1 	\ 

(x_2_ku) +2Re(X2_kI3) 

m 
1 	 ____________________________ 

= 	
(x - 2_k 	

+ 2 
u.) 	

I - 2_k aj  

(x - 2' 	 ) 2 ' a) 2  + (2b 
j=1 

and, 

nl  

	

( PI  \ 	_________  1 	
_2Re((k)2) (x)=— 

	

Pk 	 (x - 2_k z,.)2 

1 	
— 2 jj 

j=1 	

(x — 2_kaj)2 - (2_Ic b) 2  
= - 	

(x-2 k 
Vi 

 )2 	
j=1 

((x - 2_ka3.) 2  + (2b) 2 ) 2 ' 

If x E E,, then, by definition, 

(x — 2_kaj)2 - (2_kb3 )2 1 	 __________________ 

31 	
2_kv)2 

+ 2 	
((x — 2_kaj)2 + (2_kb3)2)2 	

(2.28) 

j= 1  

and, 

M 	 m l  x _2_k aj 	Ao  

j=1 	
2_kv) + 

2 	
(x - 2_kaj)2 + (2_kb) 2 1  — 	

(2.29) 

By the triangle inequality, (2.29) implies that 

M 	 n'  
1 

E 
  Ao  

Ix -- 2_kiijl + 
 2 
	

Ix - 2_kaj l 

(x - 2_k aj )2 + (2_kb)2 - 4 
j=1 

and by the equivalence of the 11  and 12  norms on 	, the above implies 

1 	 _____ _______ (x _2_Icaj ) 2  

3 	
2-k Vi +2 	

(Ix - 2 ka.)2  + (2_kb)2)2 
>  cA, 	(2.30) 

1 j=1 	 3 

for some constant c depending only on n. Combining (2.28) and (2.30) we obtain, 

ri' 	 (2_Ic b) 2  

	

((x — 2_kaj ) 2  + (2  -kbj )2)2  > cA, 	 (2.31) 

or, using the 11  norm, 

E (x — 2_kaj ) 2  (2_kb)2 ~ ' O• 	 (2.32) 

j= 1  
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If x satisfies (2.32), then 

12 —kbjl 	 c')0 
> 	 (2.33) 

(x - 2_/c aj)2 + (2-'b)2  - ml  

for some 1 <j <m l . Hence 

Ek CUEjk 

where 

Ek = {x E R: 12 -k b j j <, and x - 2_k aj l <A_1/2I2 —kb  h/2 } 	(2.34) 

and so, for 0 <a < 1, 

\a 	
fli 

IEkI <—i: (j=1 IEikI 	 EjkI'
k>O 	k>O 	 j=1 k>O 

For a> 1 the above holds with a constant factor depending only on m' and a. 

Since Ek = 0 if 12_kbj l > )', and IEjk 	
1/2 12 

	if 2'b 

k>O 

uniformly in j, for some constant C depending on a. Consequently, 

i lEk I' < Cn'' "0 
k>0 

This completes the proof of Lemma 28, and hence the inductive step which leads 

to Theorem 20. 
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Chapter 3 

Some oscillatory singular 
integrals with variable flat 

phases; estimates on L'(R) and 
H'(R). 

Naturally we would like to look for weak type 1-1 boundedness of the opera-

tors studied in Chapter 2. The techniques used there seem too brutal for this 

much more subtle problem. Although we have been unable, as yet, to make the 

induction argument complete, we have been successful with certain non-trivial 

subclasses of the operators of Chapter 2. Our alternative techniques are also 

appropriate for obtaining boundedness from H 1  (R) to L 1  (R). 

This chapter is mainly devoted to the study of the family of operators 

TAI(x)=P.v. 
00 e 	(x_h1) 

f(y)dy, 	 (3.1) 
J- 00 

for A E IR, and y : R —* JR satisfying certain growth conditions. What is, once 

again, of prime interest to us is that these conditions will not exclude 'y that 

vanish to infinite order at the origin. 

As described in Section 1.4.2 of the introductory chapter, operators such as 

TA arise when a partial Fourier transform is applied to certain Hubert trans-

forms along curves. The TA's are non translation invariant, and arise from semi 

translation invariant operators; the simplest of which is 

Hf(xi,x2) = 	! f_ o 	

-t,x 2  -x 17(t)), 

whose LP boundedness is studied in [9]. However, it is more insightful to view 

the operators TA as arising from certain translation invariant operators on the 

Heisenberg group. An appropriate operator (studied in [8]), is given by

dt  
Hf(xi,x2,x3) 

= f f (X . 

 00 	 t 
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where the group operation on R3  is given by 

(x i ,x 2 ,x3) (y,y,y) = (x 1  +Y1,x2 +2X3 +3 + (xiy2 - Y1 X2)), 

and F(t) = (t, 7(t), t'y(t)) for certain 'y : R -* R. In [8] it is observed that the 

operators TA are obtained (after a simple diffeomorphism of RI) by taking the 

Fourier transform in the second and third variables. 

A far reaching theory of singular integrals and maximal functions along vari-

able curves and surfaces has been developed in [13] through an understanding 

of general nilpotent Lie groups in this context. Unlike in [9] and [8], the curves 

considered there are required to satisfy a certain finite type condition. 

Our aim is to study the behaviour of the operators TA on L'(R) and H'(R). 

3.1 Weak type 1-1 

Theorem 33. Suppose 'y is either even or odd and 

'(0) = -Y,  (0) = 0, 

'Y  and  y'  are convex on (0, oo), 

'y"(t)/'y'(t) is decreasing on (0,00) 

then 

TAf(x)=P.v.J e 
	(x) 

f(y)dy 

satisfies the weak type 1-1 inequality 

I{x eR: ITAf (x)l > a}1 < c1, 
a 

for any a> 0, uniformly in ). C R. 

Remark 1 

We may also come to the conclusions of Theorem 33 for the local operators 

T0cf(x) = P.V. 	 f(y)dy, f <1 

with essentially no change in the analysis. The advantage of this observation is 

that we can treat curves that only satisfy the conditions of Theorem 33 locally. 
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Remark 2 

The conditions imposed on 'y in the above theorem differ from those in Theorem 

20 of Chapter 2. In the above, we ask for 'y"(t)/'y'(t) to be decreasing, rather 

than t'y"(t)/-'/(t) decreasing. However, in Theorem 20 we ask for t'y"(t)/'y'(t) to 

be bounded below on (0, oc), whereas in the above the stronger condition, 'y'" > 0 

on (0, oo), is imposed. These differences are explained after the proof of Theorem 

33. 

As observed in Chapter 2, by rescaling it suffices to prove Theorem 33 in the 

case A = 1, and 'y satisfying 'y(l) = 1. 

Let 

Tf(x) = p.v. J-00

00 

ei(x_y) 
f(y)dy, 

where 'y satisfies 'y(l) = 1. 

Before we continue it will be helpful to discuss the theorem from which our 

work grew. 

Theorem 34 (Pan [24]). Suppose 'y E C 3 ([0, d}) for some d> 0 and satisfies 

'y is either even or odd, 

7(0) = 'Y'(0) = 0, 

'y"(t) > 0 on [0,d], 

then the operator 8), given by 

f(y)dy ),f(x) = 
	_y1_ e() 

S  
<1 

is weak type 1-1 uniformly in A. 

In his proof, Pan writes S as the sum of a local part S,, and a global part 

S, where for w satisfying A7() = 1, 

Sf(x) =  
fix-yl<- 

e -y(x-y) 

f(y)dy. 
 X - y 

With this choice of w, the difference 

Sf(x) 
- fix-YI<'a X - Y 

can be controlled by the Hardy-Littlewood maximal function. The uniform L, 

1 <p <00, and weak type 1-4 boundedness of the local Hubert transform 

Hf(x) 
= L_1 	

dy, 
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and the Hardy-Littlewood maximal function then implies the same uniform bounds 

for S. jX  
In the case of our non translation invariant operators 

Tf(x) = p.v. 
1-00 x 

- 

y f(y)dy, 

such an approximation by a local Hilbert transform is not possible, since the 

estimates will depend on where the function f is supported; i.e. if f is supported 

in a ball of radius 1 and centre b, then 

fix-Y1<1 

	

	 fix—Yj <1 	
dy 

 X - 
y f(y)dy 

- 	X - y 

<(b + 2)f
ix 	

7(x - 
lf(y)dy 2(b + 1)Mf(x). 

-yI<l 	- 

We will overcome this problem by allowing Pan's operators SA,  to take the role of 

the local Hubert transforms above. On this note we begin the proof of Theorem 

33. 

The local part. 

We define the local part of the operator TA to be 

f(y)dy. T'f(x) 
= fix -Y1< 1

C(X_y) 
 

Proposition 35. Under the conditions of Theorem 3, T' is bounded on 

1 <p < oo, and is weak type 1-1. 

Proof. For E R, let 

f 
= _

e(x_y) 
(y)dy. 

1x -Y1< 1   

Since the range of integration is localised to Ix - 	1, it suffices to check the 

claim for f e L' supported in a ball of radius 1. Suppose this ball has centre b. 

T'f(x) - Sbf(x)I 
=

(e(x_Y) - 

1j1X-Y1<1 	X —  Y
)f ()d 

2
< 

	

fix -Y 1<1 
x_bI lf(y)Idy 
 I x—Y  I 

j 	
If(y)Idy 

x-yI ~ l 

(since 'y  is convex, 'y(0) = 0, and 'y(l) = 1) 

= 2Af(x), 

me 



where A is the averaging operator given by 

Af(x)=4-Y1<1 f(y)dy. 

By Theorem 34, Sb  is weak type 1-1 and LP(R) bounded for 1 <p < oo, with 

bound independent of b. Since A is similarly bounded, the proposition follows. 0 

We now turn to the remainder of the operator T 2  - T - T' 

The global part. 

For the classical Calderon-Zygmund singular integral operators, weak type 1-1 

bounds can be obtained once L 2  boundedness has been established. For similar 

reasons, we shall first seek L2  boundedness of the operator T 2 . This was done in 

Chapter 2, but under different conditions on the curve 'y. 

Proposition 36. Under the conditions of Theorem 33, T 2  is bounded on L 2 (R). 

Proposition 36 will follow from the following lemma, which will prove useful 

to us on a number of occasions. 

Lemma 37. Let 0 1  and 02 be positive, and let 

(z) = z('y(z—y)-7(z—x)). 

ForA=min{x+Oi ,y+02}, andr>A, let 

jr 

= r 

edz. A 
 

Under the conditions of Theorem 33, 

jri <c(Ix - 

where 0 = min{0l,02}. 

Before we prove Lemma 37, we shall show how it implies Proposition 36. 

Since 'y  is either odd or even, it suffices to control 

2 	 f (y) dy. Tf(x) = 
I.-Y> 1  

Since JIT2j2_2 = Il(T2 )*T2 iI 2 , it suffices to obtain L 2  boundedness of (T2)*T2 ,  

whose kernel is given by 

00 eiz(7(z_y)_z_ 
L(x,y)=f (z—x)(z—y) dz, 
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where A = max{x + 1, y + 11. Equivalently, we may write 

L(x, y) = 00 
dz VA 	 (z  

eds" 	
dz 

  ) 
(z—x)(z—y)' 

which by integration by parts is equal to 

JZ 	]0O 	d " 	1 	
(3.2) 

—y)(z—x) A 	A 	dzI (
z 	 -J jz_( 

For z E [A,00), 

	

d 7 	1 

dz(z—y)(z—x))  

and so 

d / 	1 	
dz <sup 	i_1  00 

 iz 

J 	dz (z—y)(z—x)j 	z>A 	(z - Y)(z - X)] A 
By applying this estimate to (3.2) we see that 

	

I 	1 	I 

	

L(x,y)l :!~ 2 sup IJz I< 2 sup IJzIIz_yI_l. 	(3.3) 
z>A 	(A—y)(A—x)1 	z>A 

By Lemma 37, with 01 = 02 = 1, 

IL(x, )I <c(Ix - 

Since 'y and 'y' are convex, 'y"(l) ~! 7'(1) ~! 7(1), and so, 

IL(x, )I <c(Ix - 

and since 7(1) = 1, this reduces to 

L(x, )I <dx - y 312 . 	 (3.4) 

We also make the trivial estimate, 

00 

	

1 	I 
dz < C. 	 (3.5) I IL(xY)I 	JA'  I  z—x)(z—y) I  

We now use (3.4) and (3.5) to estimate the L 1  - L 1  and L°° -+ L°° operator 

norms of (T2 )*T2 .  

	

f L(x, y)Idx 
< f 	cdx + fix- 

uniformly 	

cjx - y1312dx 	c'
lx-yI ~ 1 	yI> 1 

 in y. By symmetry, the same estimate is true of fR IL(x,y)Idy. By 

interpolation we conclude that (T2)*T2  is bounded on L2 (11), completing the 

proof of Proposition 36. 

We now turn to the proof of Lemma 37. 



The proof of Lemma 37. 

The non translation invariance of the operators that we are considering prevents 

a direct application of the standard Van der Corput Lemma, as we shall see. 

Instead we shall argue from first principles. 

Central to the proof of Lemma 37 is the following, which which will be our 

substitute for the monotonicity requirement in the first Van der Corput test. 

Lemma 38. If 7 11 (t)/'y'(t) is decreasing on (0, oo), then for each fixed a > 0, 

- y'(a + t) - 
(a+t) —7(t) 

is decreasing on (0, oo). 

Proof. A. (t) =g(a+t,t), where g(u,v) = and so by Lemma 23, 
y(u)-'y(v) ' 

Og  
A(t) = 	(a+t,t) + 	(a+t,t) <0. 

Suppose x > y are fixed, and that 

ON = -y(Z - y) - 'y(z - x). 

By Lemma 38, 

z)=z+ 
'y(z 

- 
y) - 'y(z - x) 	

(3.6) 

	

- 
y) - 	 - x) 

is an increasing function of z, with derivative greater than or equal to 1. Hence 

can have at most one zero in the domain. Let this zero be jt = 

Consequently, 

~! fl ~ z-4 	 (3.7) 

and so 

'(z)I >— Ix - yIIz - 

Let 6> 0. Let D = 

I I 
 (z)  

e )+ ) b'z) dz = Ji + J2.e'dz (z)2 
D dz 0'(z) )  

= - dz= 
d (e ( ) q5'(z) 	[e1(z) 

I 	f 	d 	(z) '\ 

ID dz 	'(z) i'(z) 	i'(z) ÔD - D '(z) 	i'(z)) 

we 



The integrated term is less than 4(Ix - y6'y"(0))' in modulus, and 

f e (  d 	'(z)\ 
 '(z) dz i'(z)) dz 

/  

<(inf I'(z)I) - ' [ I 
d / '(z) \ 

- ZED 	 JD j ' (Z)) 

and by monotonicity of 011, 

P d ((z) 
(I x - Y  "()Y1 

JD 	

c5 

1(Z)) 

dz, 

which by (5) 

1I1c51 1 8J x - yl'y" 	L(0)Y 	< 4(6x - yI'y"(0))1 
- 

= J 

çb"(z) 	çb(z) dz
1  < sup 1 	I d /1 I

I D) zEDz)l 

	

(3.8) 

<4(8x - 

by the monotonicity of qY, which in turn follows from the convexity of 'y'. Trivially, 

fB6
edz <26, 

,c5) 

so, 

jri <c(6Ix - y'y"(0))' + 26. 

Setting 6 = ( Ix - y17"(0))112 gives 

IJrI <c(x - 

This completes the proof of Lemma 37. 
We are now in a position to begin the proof of the weak type 1-1 boundedness 

of T2  (completing the proof of Theorem 33). 

Let a > 0. To a fixed non-negative f E L 1 (R), we perform a Calderón- 

Zygmund decomposition, 

f =g+b3 , 

as described by Lemma 5. 

For each j, let wj  = max{1, III}, and 

f(x) 	
e(x_y) 

= JX-Y>Wj 	
f(y)dy. 

2;— y 
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Let 1 be the concentric double of Ij,  and = (wj)c By Lemma 5(vi), 

ii < Cf 1 /c. 

Hence it suffices to show that 

I{x E : IVf(x) > 	Cf1/a 

for some absolute constant C. By the triangle inequality 

lfx eQ : T2 f(x)I > al I < I I x E Q: T2 g(x) I > c/21 

+ Ij x e Q: IT 2 (E bj ) ( X) > 

and so it is enough to dominate each of these two terms by ClfIi/a. The first 

term may be dealt with by the L 2  boundedness of T2  in the standard way; see 

the proof of Theorem 6 in the introductory chapter. 

We now turn to the second term. For x e Q, we observe that 

T2  (b) (x) = E T2 b(x) = E Tb(x). 

Consequently we seek an estimate of the form 

{x E Q: I E Tb(x) I > 	CfIII/a. 

This would follow from Chebychev's inequality if the following lemma were true. 

Lemma 39. There is a constant C > 0, not depending on a, for which 

 Callf  11 
1- Tjbj 

112 
< 

Before we prove Lemma 39, we make some reductions. Let L, 3  be the kernel 

of 	So 

°° 

Lij (xY)=J 	
(z—y)(z—x) dz 

where A = max(x + w, y + w3 ). Since 

 112 
Tb 	<2 	(Tb,Tb) I 

wjwi 

< 2 i 1: 1 3  lb T*T.b) 
-  

wj<wi 

<2(Ibl 	i 	IT*iT.3b.3l), 
j 	j:Wj<Wj 

/ 
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Lemma 39 would follow if we could show that 

sup 	: 1Ti*T
3
.b

3'
I <Ca, 

I  

xEI 3:wj<Ji 

i.e. 

sup 	f L,(x,y)b(y)dy 	Ca 	 (3.9) 
XEI2j: Wj <,Jj  

independently of i, and a. In order to achieve this we need to make some pointwise 

estimates on L,3  of a very specific nature. We point out that we were unable to 

obtain pointwise estimates of a similar type by the methods of Chapter 2. 

Lemma 40. 

Lij  (X1  Y) < Cw'(l + 1og(w/w3 )), 	 (3.10) 

Clx - yl 312 . 

Proof. We obtain (3.10) simply by taking the absolute values inside the integral. 

We will now prove (3.11). As in the proof of Proposition 36 we write 

z) 

	

e( 	
dz L,(x,y) 	

00 

-L (z—y)(z—x) 

- 

	

dz 	
(3.12) d 

 (f e)ds) (z - y)(z =L 	A 

Integrating by parts in (3.12), and applying Lemma 37 with 01  = wi  and 92 = W2 

gives (3.11). 	 II 

It remains now to prove estimate (3.9). This proceeds in the same way as in 

[24] for the translation invariant operators. Let 

Si = {I : dist(I,I) < 	< wil 

and, 

F = {Ij dist(Ij ,I) > 	w}. 

If wi = 11i j and I E S, then by Theorem 5, there is a constant c (which we 

can take to be equal to 4 here) such that 1 < lw i lwj  I < C; and so the number of 

elements of Si is less than or equal to 2c. Hence by (3.10) we have 

f L,(x,y)b(y)dy <Ca. 
IjEsi 13 

52 



If w 2  = 1 and I E S, then w3  = w2 . So 

	

Jr L,(x,y)b(y)dy 	Ca 	Ij 	Ca. 
IES 'i 	 IES1  

If I)  e F, x e I, and y e I, then I a; - I is essentially constant, and so by (3.11) 

and Lemma 5 (vi), 

	

f L,(x,y)b(y)dy < 	
b) 

fii I x - 

caJ x-y 312dy, 
Ii 

so that 

f L,(x,y)b(y)dy <cafix-Y1>1   Ix- y 312dy <Ca. 
IEF1  'i  

This completes the proof of (3.9), and hence Theorem 33. 

Remark 

We have now proved uniform L 2  (R) boundedness of operators of the form 

Tf(x)=P.v. 	 f(y)dy 
r-00

e(x) 

  

in two different ways; once in Chapter 2, and once by Propositions 35 and 36 in 

this chapter. The most significant difference is that Theorem 20 of Chapter 2 

	

requiresdecreasin rather than just 	decreasing. This is essentially be- 

7' 
M 	 YM 

cause, in Chapter 2, many of the 'decay' estimates are obtained from quantitative 

estimates on the derivative ofon [1, 21; i.e. 

d ( 'y"(t) - d 	(t) - '(t) 	(t) < 	(t) 

dt 1yy'(t)) 	
( 

- dt k t ) - t 	t2 - 	4 

on [1, 2]. See the proof of Lemma 31 for more explanation. The oscillatory integral 

estimates in the proof of Proposition 36 rely on the presence of the factor 'a;' in the 

phase, for the appropriate decay. We refer the reader back to (3.6) for details. 

On the other hand, Proposition 36 requires ' -y' to be convex, and Theorem 20 

does not. However, by a further argument, this condition may be removed from 

Proposition 36 (and replaced by .A bounded below on (0, oo)). As this chapter is 

concerned with weak type 1-1 boundedness, we leave this as a remark. 
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Remark 

We can also prove uniform weak type 1-1 boundedness of the family of operators 

too e2(x1) 

Tf(x)=P.v.j 	 f(y)dy, 

under the conditions on 'y given in Theorem 33. To prove this we use Theorem 

33 to control the local part, and we observe that the global part presents no new 

obstacles. 

3.2 Boundedness from H' to L' 

Theorem 41. If -y satisfies the conditions of Theorem 33, then 

TAf(x) = p.v. 
100 X-Y 

f(y)dy 

is bounded from H 1  to L', with bound independent of A E lit 

Based on our experience of the weak type estimates in the previous section, it 

comes as no surprise that we will need to use the following theorem of Pan [25]. 

Theorem 42 (Pan [25]). If 'y satisfies the conditions of Theorem 3, and 

C'°(ll), then 
e')  

TAf(x) = 	q5(x - y)f(y)dy J X7J 

is bounded from W to L 1 , with bound independent of A e lit 

A review of the proof of Theorem 42 shows that qf has no role to play. As 

such, we merely remark that Theorem 41 may also be localised in this way. 

Let a be an H 1 (lit) atom supported in an interval I. By the Atomic Decom-

position of H1 (R7) (Theorem 17), Theorem 41 will follow if we can show that for 

any such atom, 

lTA aIL 1(R) < C < oO. 	 (3.13) 

When we considered the questions of uniform LP(R) boundedness and weak 

type 1-1 boundedness, we chose to rescale the operators so that the local—global 

cut—off was at Ix - = 1. However, in proving Theorem 41, what we mean by 

the so called local and global estimates will be very different from their analogues 

in the weak type 1-1, and LP(R) boundedness proofs. With this different local—

global notion a different rescaling is more natural, and so the parameter A will 

persist. By making a change of variables in (3.13) one can see that it suffices to 



obtain uniform boundedness of (3.13) when the atom a is supported in an interval 

I of width 2. 

Let yj  be the centre of I. 

Lemma 43. If ij satisfies )i7'y'(277) = 1, then 

fi
TAO(x)Jdx < C, 

x-yiI ~ ri 

where 71* = max{ij, 2}. 

Proof. Firstly, suppose i = 2. Using the Cauchy-Schwarz inequality and the 

uniform L 2 (IR) boundedness of TA (Propositions 35 and 36), 

f TAa(x)dx < 2 lTAll22IaII2 <C. 
Ix-yiI2 

Now suppose that r' =77
. 

By the above argument it suffices to control 

J2 <1 x-Y1 1 <'7  

uniformly in A. 

Let 
eu1 

SA1f(x) 
= f - 

-Y(X-Y) 

 f(y)dy. 

By Theorem 42, S,\ 1  is bounded from H1  to L 1  with bound independent of Ayj. 

In particular fR  I SA 1 a(x)dx < C. Now, 

I TAa(x) - e  x_Y 1 ) 7(X_Y 1 )SAyI a(x)I dx 

IIR

e(x) -

L_1 < 	 x 
- 	

a(y)dy dx 

<CA J J<Ix-yjI<i 	 X 
- Y 	I 

<CA71 I a(y) J2<1x-YI1<77  

7(x 
-- - dxdy 

	

R 	 - Y 

< 
CA71J 

a(y)Hy - yiI f2<1x-YI1< 771 

(2(x - dxdy 
 x 

- Y 	I 

	

CA71 f 	

JO 277 '(t) 
dt 

21? 

<CA71 10 

 
y"(t)dt < CA717 1 (271) <C. 

This completes the proof of Lemma 43. 
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It now remains to show that 

f Ta(x)dx < C 
Ix-yiI ~ i 

uniformly in ) and I. 

Merely for technical reasons, we make the trivial observation, 

f'7*:5jx—yjj<577* ITAa(x)Idx < laIIL) f 	1
dx < C. 	(3.14) 

We will content ourselves with showing that 

fx-yi >577* 
ITa(x)Idx < C. 

The integral over x 
- Yi :!~ _5j*  is similar since, by assumption, 'y  is either odd 

or even. 

Let k* be the smallest integer for which 21c* > 277*, and let L' be a smooth 

bump function satisfying /'(t) = 1 for ItI < 1. For k > k* define 

Tkf(x) 
= 	

e(y - y j)f(y)dy. 

(Here we are supressing the dependence on ,\ and I.) 

Since ly 
- 

iI 1, and x 
- Yl > 5j* > 10, x 

- 
yj and x 

- 
y are comparable. 

With this in mind, we write 

TAa(x) dx 

< Jx-yj>5, f 	__
- 

	a(y)dy dx 
 - 

y X 
- yj) 

+Jx-yj>5,j'

j e 	a(y)dy dx. 
 x 

- Yr  

Since if > 2, the first term in the above is dominated by 

c 	1dx<C. 

	

fR f_yj>10 
I 
(x_y)(x_yj)(dY 	JX>q   

x 	- 

The second term can be expressed as 

jyi ~ 5 	 f_2 

eix_a(y)dy dx 
k>k 

 

	

C 	
1 

T'a(x)dx ~ 	
-  

k>k* 	 X 
- yj-  

	

; C 	2_ 2 lT IcaI 2  
k>k 

:f C 2_k/211(Tk)*Tk1il/2 
12-2 

k>k* 
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Lemma 44. 
(T)Tk_ 

We first indicate how Lemma 44 finishes the proof of our theorem. Applying 

Lemma 44 to the expression immediately preceding it gives 

C 
k>k 

( 2k* 71( 2k*) 1/8 
(A2l(2k*))_1/8 	

2k7!(2k) ) 	
C, 

k>k* 

since the factor outside the sum is bounded by (2A'y'(277))'/8 = 2 -1/8  

We now turn to the proof of Lemma 44. 

Proof. Let L''(x, y) be the kernel of (Tc)*Tk,  i.e. 

Lk(x, ) = 	- 	- Yl) I-x,z-y-2k ei7(z___dz. 

By Lemma 37 of the previous section, with 01 = 02 = 2k ,  

Lk( x,y ) I < C(x Yll(2k))_112(x - yj)b(y - 

and trivially, 
Lk( x,y ) 

Taking the geometric mean of these two estimates gives 

\ 1/2 C()x - Yyll(2k))_l/42k/2(x - y)112( - y') 

Using this to estimate the L 1  —+ L' and L'° —+ L°° norms of (T)*Tc,  proves the 

lemma. 	 LI 
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Chapter 4 

Singular Integrals and Maximal 
Functions Associated to Flat 

Surfaces 

4.1 Introduction 

The aim of this chapter is to illustrate a method of deducing LP(R7) boundedness 

of maximal functions and singular integrals on surfaces in R7 from boundedness of 

their counterparts along curves in RI (for some k < n). The modern proofs of the 

theorems for plane curves place emphasis on finding a set of dilations for a curve 

which localise the problem. This approach is appropriate even for flat curves. 

From this point of view, one of the main barriers to theorems for fiat surfaces 

has been the problem of constructing dilations for surfaces which serve a similar 

purpose. See Section 1.4.1 of the introductory chapter for further discussion. 

Since the surfaces under consideration have an 'identified point', the origin, one 

possibility would be to consider non linear dilations inherited from the curves 

produced by restricting the surfaces to hyperplanes passing through the origin. 

An example of this simple idea is the following. 

Let c : 	-p (1, oc). Define the surface F : V -* R by 

F(t) = (t 1 , 
t2, t1(t11t1)). 

For each w G S 1 , and s > 0, let 

5(s) = diag(s, s, '(w)) 

Now, if we write x e V as (x', x3 ) e RF x R, we can define the action of the 

non—linear dilations on x to be 

ö(s)x = 611111(s)x = (sx', s('11x'1)x3). 

'I.] 



We observe now that 

8(s)F(t) = F(st). 

Most of our results for surfaces will be consequences of known results for plane 

curves. On first sight this rather crude approach seems surprisingly effective, 

especially since our theorems cover surfaces that are not radial. We may explain 

this as follows. 

We observe that for a plane curve (t, '-y(t)), the corresponding operator norm 

is unchanged if 'y is replaced by a'y(b.) for any a, b e R. The implications of 

this are that our conditions are invariant under 'star shaped dilations'; i.e. if 

s : S' -f ]1, then the conditions of our theorems are unaltered if 'y is replaced 

by 'y(t) ='y(s(t/It)t). 
As we shall see, all of our results (which are technically quite trivial), rely 

heavily on the fact that the theorems for curves give bounds which are invariant 

under certain transformations. 

Our approach is also appropriate for studying singular integrals and maximal 

functions associated to variable surfaces. 

Spherical Polar Coordinates 

The maximal functions 

Surprisingly some interesting results come from the following simple majorisation. 

Let F : 	-f R7 for some k < ri, and let 

JItj <h 
Mrf(x) = sup 

-Ck 	 f(x - F(t))dt. 
h>O   

(4.1) 

For each w e S' 1 , let 

h  
Mr, 	

l  J (x) = sup - 
	

if (x - F(rw))Idr. 
h>Oh 

Lemma 45. If 

Isk-1 

I I Mr. I 	do,  (w) <00 

then lIMrI_ < 00. In particular, the conclusion follows if I lMFj_ is uniformly 

bounded in w. 
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Proof Using spherical polar coordinates we see that 

Ck I 	
h 

Mrf(x) = sup 	i I f (x - F(rw))Irk_ldrda(w) 
h>O h JSk-1  0 

r f1L 

< / 	CASUp 
1

1 f(x—F(r))ldrdcx() 
J5k-1 h>O h j0  

< I Ck Mr. (x)da(w). 
J5 k-1 

The conclusion now follows from Minkowski's integral inequality. 

Remarks 

The above analysis can be equally well applied to the operator 

f*( x ) = SUP 	
J 	f(x—F(t))A(t)dt 

h>0 h 	I<h 

for any homogeneous of degree zero A E Ls(Sc_l) ,  1 < s < oo. In this case 

the condition in Lemma 1 becomes 
us' 

- 

Usk-1 

Mr '  da()) "pp 

where s' is the dual exponent of s. 

Our techniques also apply to certain singular integrals associated to surfaces. 

We will discuss an example later in this chapter. 

Some simple examples of this approach 

Surprisingly, many of the previously known positive results can be proved using 

Lemma 45. 

(1) Suppose F : 	—* 117 is a polynomial, i.e. 

IF (t) = (Pi  (t), ..., P,, (t)) for polynomials Pj . 

Now for fixed w e S"', Mr,, is just a maximal function along the polynomial 

curve F(r) = F(rw). Since the bound of such an operator is dependent 

only on the degree of the polynomial we see that 

E 

So by Lemma 1, Mr  is bounded on IY(W") for 1 <p < oo. It is appropriate 

to remark that the independence of the above estimates on the coefficients 

of the polynomials can be seen as a consequence of GL(N, R) invariance 

of certain operator norms; see [36] for further discussion. This will be a 

common consideration. 
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(2) Suppose F : 	-* R' is an homogeneous surface with respect to a 1 pa- 

rameter group of dilations {ö(s)} 8>o. For fixed w e §k_1,  F is an homoge-

neous curve with respect to the same 1 parameter dilation group {(s)}3 > o. 
An application of the appropriate theorem for homogeneous curves, which 

can be found in [33], gives the desired uniform estimates for IMp, p-p, 

l<p:oo. 

4.2 Surfaces of codimension 1 in W' 

In this section we will use the theory developed for Hubert transforms and maxi-

mal functions along convex curves in R2 , (see for example Theorems 10, 11, 12), to 

obtain some simple theorems for surfaces of codimension 1 in 117.  The theorems 

we obtain apply to many surfaces that vanish to infinite order at the origin. 

Most of the theorems involving convex curves are formulated in terms of cer-

tain functionals acting on the graphing function 'y.  For example, Theorem 11 

requires the functional F, given by 

F()(t) - th'(t) 
(4.2) 

- h(t)' 

where h(t) = t'y'(t) - 'y(t) to be bounded below on (0, oo). 

In general the corresponding functional associated to the graphing function of 

the surface 'y R 1 	R is given by 

F(y)(rw) = F('y)(r), 

where w E S 2  and r > 0. 

The functionals for curves in R 2  that we will encounter have a natural scale 

invariance, i.e. 

F('y(A.))(t) = 

It is this homogeneity that is largely responsible for the natural appearance of 

the corresponding F's that we have encountered. For example, for F given by 

(4.2), 
y)(t) = t .VH(t) 

where, H(t) = t - V'y(t) - 'y(t). 

We come to the following conclusion based on the above example. 

Theorem 46. Suppose r: 	-* 	R, and 

F(t) = (t,'y(t)), 

where 	C2 (Rn_i).  If in addition, 
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'y(0) = 0 and V'y(0) = 0, 

for each w E S 2 , ' Yw (T) = I7(r))I is convex on (0, co), and 

IE > 0 such that 

	

t - VH(t) I > 	Vt e 

where H(t) = t - Vy(t) - 

then Mr, given by (4.1), is bounded on LP(R') for 1 <p < 00. 

Proof. Let w E S' 2  and suppose w j  54 0 Vj. Let 

r,, (r) = (rw i ,r 2 ,...,rwn _ i ,7w (r)) 

and 

wj 1 	0 . 	0 -L)1 0 

	

o w 1  0 	0 	0 

-wfl h l 0 
o 	•.. 	0 	1 

Clearly there are other matrices which serve the same purpose. Since det D = 

w 1  ... w_ 1 , 	E GL(n,11) for a.e. w E S 2 , and 

DF(r) = (O,...,O,r,y(r)). 

So by Lemma 1 and the GL(n, R) invariance of the operator norms, it suffices 

to bound the maximal function associated to the plane curve (r, 'y,) with bound 

independent of w. By Theorem 11, it is enough for 'y,  to satisfy the infinitesimal 

doubling property, (1.26), uniformly in S 2 . Let h,, (r) = r' -y, (r) - 'yw (r). By the 

chain rule, 

h(r) = rw V7(rw) - 'y(rw)I 

= H(rw. 

So by hypothesis (iii), 

rh,(r) = Irw VH(rw) 

> €H(rw)I 

= fh(r). 

Hence '-y, satisfies the infinitesimal doubling condition uniformly in w. 	LI 
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Remark 

In the statement of Theorem 46 we asked for the functional I t.VH(t) to be bounded 11(t) 

below by a positive constant. This condition may be weakened considerably, since 

by Lemma 45, we only require to be integrable over S" 2 . A possible 

way to formulate this weaker condition would be to observe how the bound in 

Theorem 11 depends on the constant E. We will take this improved approach in 

Section 4.3 for a different class of operators. 

Theorem 47. Suppose F : 7-1 	and 

F(t) = (t, 7(t)), 

where 'y E C 2 (PJ- '). If in addition, 

'y(0) = 0 and V7(0) = 0, 

for each w 	'yw (r) = I 'y(rw)  is convex on (0,00), and 

3C <oo such that 

t - V'y(Ct) I > 2t V7(t) I Vt E 

then Mr,  is bounded on LP(W) for 1 <p < :o. 

The proof of Theorem 47 is very similar to that of Theorem 46. Obviously we 

use Theorem 12 instead of Theorem 11. 

In a similar way an L 2  theorem corresponding to Theorem 10 can be formu-

lated. Clearly we would require H to be doubling. 

Some examples 

(1) A natural application of Theorem 46 is the following. 

Let p: 7 -1  -+ R be homogeneous of degree 1. Let : T1 - R be convex, 

C2 , and satisfy (0) = '(0) = 0. 

Let 

h(s) = sc/i(s) - 

'y(t) = q(p(t)), and F(t) = (t,7(t)). 

If for some e > 0, 

sh'(s) > eh(s) Vs E R 

then Mr  is bounded on L(1R?) for 1 <p < oc. 
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(2) Theorems 46 and 47 apply to surfaces F : R 1  —+ R7 of the form 

where c and 0 are multi indices with each /3 even. 

Remark 

The main drawback of our approach is that we totally disregard any curvature 

of the surface that might exist in the angular variable w. In fact, in certain cir-

cumstances, where the level curves of 'y are of finite type, much more appropriate 

techniques have been developed by Wainger, Wright, and Ziesler (see [41]), which 

lead to much better results for the singular integrals on L 2 . In [41] they consider 

surfaces of the form 

F(t) = (t, 0((0))1 	 (4.3) 

for smooth, convex, and of finite type. Remarkably, as Wainger, Wright, and 

Ziesler rely on curvature in the angle variable, the only condition imposed on 

is that 0 E C'(R), and q(0) = 0. This is in stark contrast to our approach since 

we exploit curvature of the surface along rays emmanating from the origin, and 

impose no conditions on the level sets of 'y. 

Wainger, Wright, and Ziesler are currently working on extending their tech-

niques in order to handle surfaces not of the specific form (4.3). 

4.3 Variable surfaces 

Our aproach also applies to operators associated to variable hypersurfaces. We 

will give an example based on Corollary 21 of Chapter 2. Let K be a n - 1—

dimensional Calderon—Zygmund kernel satisfying 

(x) 
- Q(X) 

1XI n-1 K - 

where ci is odd and homogeneous of degree 0. Suppose in addition that ci 

L' (S n-2) for some 1 < s < oc. 

The following notation will help to facilitate our discussion. 

For x = (X1, X2, ...,x) e IJ', we let x' = ( XI, X2, 	 E R 1 , and x" = 

(xl,x2,...,x_2) eR 2 . 

Let P : 	—+ R be a real polynomial, and let : R 1  -+ R be C3  and 

satisfy 

'So far the results for the maximal function are less satisfactory. 



'y(0) = 0, V'y(0) = 0, 

is convex on rays emmanating from the origin, and 

is odd or even on each ray passing through the origin. 

Let 
t. VH(t) 

A(t) = t. V(t) 

Theorem 48. If 

A(t)l is decreasing on rays emmanating from the origin, and 

A(t) > A0(t/Itl) on Rn, where 	E L'(S 2), ± -- = 1, 
S 	S 1  0 

then the singular Radon transform 

Tçf(x) = 
	

f(x' - t, Zn - P(x')y(t))K(t)dt, 

is bounded on L2(R7)  with a bound that is independent of the coefficients of P. 

Proof. Let 

F(x, rw) = (x 1  - rw1 , x2 - r 2 , ..., x_i - P(x')7(r)). 

Let 

S + ={wS 2 :wi >0}. 

Using polar coordinates we can write 

Tf(x) 
= J 	) (f f(F(x,rw))) do ,  (w) 

=f 
where, 

00  Hrf(x) = 
 I- 00

f(r(x, 	
dr 
r 

By GL(n, 1) invariance of the operator norms it suffices to consider the max-

imal function corresponding to the curve 

F(x, r) = (x 1 , ..., X_2, Zn_i - r, Zn  
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where [,(x, r) - M' (Mx, r), and - w 

W1 0 
o W2 0 

M = 

0• 

• 	 0 Wi 0 
• 	. 	0 w 2  0 

£AJn_2 Wn_2 

0 0 
• 01 

We observe that det(M) = 	 0 for almost every w e S 2 , which is 

sufficient for our purposes. 

Let P(x') = P((Mx)'). For \ E R 2  let 

dr 
H,9(y1,y2) =  

foo9(Yi - r, Y2 - P(A,y 1 )2(r)) 

For fixed ,\ E r-2, P( , is a polynomial in Yi  of degree less than or equal to the 

degree of P. Since 

= r'(r) = A(rw), 

and 	is odd or even, the remark following Corollary 21 of Chapter 2 implies 

that 
TT 	 ,A1/2/ \ 

	

2-2 - L'110 	t,W), 

uniformly in ) and W. If f"(x_, x) f(x), then we observe that 

Hf(x) = 

and so 

lIHflL2dxldx 	CA" 2 (w)lIfi' 2 , 

for all x" E R 2 . Taking the L 2  norm in x" gives 

HfllL2n) < CA 112 (W)IIfllL2(Rn), 

which implies, 

Tul122 <— C 	
-1/2 

[ A 0  (w)(W)da 	
< ,- -1/2

(W) 	A0 	 <00. 
J 

LEI 

Theorem 48 applies to many fiat surfaces. For example, if 3 is a multi index with 

each 3j  even, then 

"y(t) = e, 

satisfies the conditions of Theorem 48 for t in a certain neigbourhood of the origin 

in TR'. 
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Surfaces of higher codimension in R 

Using our techniques one may also obtain LP(R7) boundedness of singular inte-

grals and maximal functions associated to certain flat surfaces in R7 of codimen-

sion greater than one. Using the generalisation of Theorem 11 to curves in R7 for 

n > 2, (see Carbery, Vance, Wainger, and Watson [71) one may generalise The-

orem 46 to surfaces of any codimension. As we have illustrated the underlying 

principle several times, we leave this as a remark. 
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Chapter 5 

A multiplier relation for 
Calderón-Zygmund operators on 

L'(R) 

In this chapter we address a question raised in section 1.3 of the introductory 

chapter. As remarked there, injectivity on L 2 (R) of a translation invariant 

Calderón-Zygmund operator is equivalent to its Fourier multiplier being almost 

everywhere non-zero. Our aim here is to come to a similar conclusion on L'(R) 

for a wide class of these operators. 

5.1 Introduction 

The Hilbert transform, defined almost everywhere (a.e.) for f E LP(R) ,1 <p < 

Do, by 

Hf(x) =limf f(x_Y)d 
IYI> 	Y 

is well known to be bounded on LP(R) for 1 <p < oo, and weak type 1-1. This 

is discussed in Chapter 1. For f e L 2 (R), the action of H can also be described 

by a Fourier multiplier, (Hf)(c) = — isign()i(). This multiplier relation also 

holds for all f E V (R) such that Hf e L' (R). This may be seen as follows; the 

reader is referred back to section 1.4.2 of the introductory chapter for the relevant 

background. Recall that if E L'(R) : Hf e L 1 (R)} is the real Hardy space 

H'(T1), and H is bounded from HI(R) to L 1 (R). If f e H'(R), by the atomic 

decomposition of H'(1l) (Theorem 17), there exist non-negative constants {\k} 
such that E A k  <oo, and H'(R) atoms {ak} such that f = E A,ak in the H'(R) 

norm. Since H is bounded from H 1  (R) to L 1 (R), Hf = >)\kHak in L' (R). On 

taking the Fourier transform of this expression we get the desired result, since 

each atom is in L 2 (]l), and hence satisfies the multiplier relation. Observe that 



this implies that H is injective on L'(IR). 

The above discussion has its roots in Zygmund [43], where the analogue for 

Fourier series is proved using the classical complex Hardy spaces. The analogue 

states that if f and its conjugate f are in LI(T), then ck(f) = — isign(k)c k (f). 

Zygmund also describes a very different approach. He considers a generalised 

integral, refered to as integral B, with which the above multiplier relation for 

Fourier coefficients holds for all f E L' (T). 

The purpose of this chapter is to deduce analogous L' (R') results for a wide 

class of Calderón-Zygmund operators for which Hardy space techniques are not 

necessarily appropriate. The main conclusion is the following, which is Corollary 

65 of Section 5.4. 

Theorem Let the operator T satisfy the conditions (5.2), (5.3) , and (5.4). If 

u e L' (W) is such that Tu E L 1 (T1), then 

= 

for every 	0, where m is the Fourier multiplier corresponding to T. 

The above will be achieved by obtaining a multiplier relation on L 1 (R?) using a 

generalised integral. This was done for the Hubert transform by Toland in [39], 

following the alternative approach in Zygmund. 

It is worth remarking that the previous observations about H suggest we 

might try to characterise those Calderón-Zygmund operators T for which If E 

L 1 (11) Tf E L'(R)} = H'(R). For some related results see Janson [17], and 

Uchiyama [40]. 

5.2 The class of operators 

As remarked in the introduction, we have some choice in how we define a so called 

Calderón-Zygmund singular integral operator. We are able to obtain positive 

results in a number of situations, however, we shall concern ourselves here with 

a class that is invariant under generalised dilations. For further discussion the 

reader is refered to Section 1.3 of the introductory chapter. 

Suppose that for each t> 0, A(t) e GL(n; R), and that the Rivière condition 

holds; i.e. 

IIA(s) -1 A(t)I1 :< C(t/s) 5 , 	 ( 5.1) 

for ails > t, and some 6 > 0. 
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Let B 0  be the unit ball in RTh. 

Suppose Tf = f * K is an L 2 (1R7) bounded operator. Suppose also that the 

distribution 

K = 	 (5.2) 
jEZ 

with K3  supported in A(2i+')B0.  Let k3 (x) = detA(2)K 3 (A(2)x). Suppose 

f k3(x)Idx C, 	 (5.3) 

and 

I (5.4) 

for some co  > 0. 

It will be convenient to denote by T 1  and T9 , convolution with the distributions 

Kt =K and 
j<0 	 j>0  

respectively. 

Some useful properties of this class 

For z, ii e Z with 1L < ii, 

JRn 
K(z)dx 

is bounded uniformly in u and ii. 

There is an m e L°°(RTh) such that (Tf)() = m(e)i(e) for  f E L 2 (R') 

T is bounded on LP(R) for 1 <p < oc, and is weak type (1,1). 

For (P1) and (P3) see [5], and for (P2) see [36]. 

It is of great importance for us to observe that the Fourier multiplier m is 

continuous on W\{O}. This may be shown directly, but we prefer to give a more 

elegant proof based on the following lemma. 

Lemma 49. If a is an H'(TW) atom then Ta e L 1 (TR). 

Proof. As T commutes with translations, we may suppose that the ball, B, asso-

ciated to a is centred at the origin. 
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Firstly, by the Cauchy-Schwarz inequality and the L2 (1I) boundedness of T, 

JI
Ta(x)Idx < TaII2I 2BI 112  

xI 2 IBI 

Secondly, 

f
x

Ta(x)Idx=f
(2B)c  fB

K(x_y)a()ddx 
.J j>2B   

=  f(2 B)~ fB 

 (K(x - y)  - K(x)) a(y)dy dx 

(since J a = o) 

<BI-'f  (f( 2 B),: 
K(x_)_K(x)Idx)dY. 

B  

If y E B and x e (2B)c then Ix - yj > diam(B). By the Rivière condition there 

is a J e Z such that IIA(2')11 < diam(B) for all j < J. Since K3  is supported 

in A(2i')B 0 , where B0  is the unit ball in R', 

f(M)c 

for all j <J and y E B. Consequently, 

4 1>21BI  
Ta(x)Idx BI'f >f K(x—y) 
 B j>J R 

<BI'ff i(x—A(2') - 'y) —K(x)dxdy 

<cB' f 	A(2i+l )_ l yl fo dy < oo, 
B j>J 

by the Rivière condition. 

Lemma 50. m is continuous on TI\{O}. 

Proof. let a be a non zero H'(R) atom. By Lemma 49, Ta E L 1  (R), and so a 

and Ta are continuous. Since a E L 2 (TJ), Ta = ma a.e. Therefore m is continuous 

at every point for which a 0  0. Choose any e R'2 \{0}. For some ij e 
0. Let .A be a non zero real number and p be an orthogonal matrix such 

that 7] = Ape. Now 0 a(ij) = f a(x)e2\xdx = f a(x)e2 e P1X)dx = 

where aA,(x) = )ca(Ac 1 px). Since a x , is an HI(RI ) atom, m is continuous at 

and hence on TR.7\{0}. 

We wish to thank F.Ricci for pointing out this alternative to the author's 

original argument. This proof is more appealing as it may be applied to any 

translation invariant L 2 (R') bounded operator for which Lemma 49 holds. 
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Lemma 51. K9  e Lf/(n—Eo)(Rn). 

Proof. By conditions (5.3) and (5.4), 

IIf 1 +sup 	 dx<oo M 	f(x—y)—f(x)I 	

}, yE ja 	 IIEO 

uniformly in j. By [37], A°° (]R') is continuously embedded in 	(Rn), and 

so K3  is in Lf/(n0)(Rn)  uniformly in J. Consequently, 

ilmrgi 
II

i 	< 	IKII iir  
j>o 

I = 	(I IKi(A(2ix))IPdetA(2i)dx) 
ll 

— 
(det A(2))

1=2  
P IIKlI 

j>o 

~
:: 

IIA(2Y1 
n(p-1) 

P <00, 

j>o 

for p = m/(rt - e0 ), by the Rivière condition (5.1). 	 LI 

Realising the operators as principal values 

Before we can make any progress, we must establish a workable relationship 

between the Fourier multiplier m, and the kernel K. That is, we must describe a 

way to define the Fourier transform of K pointwise, and then compare it with m. 

For a, v E Z with p < ii, let 

V 

K= 
  

It is well known (see [5]) that k,, is uniformly bounded in p and ii. The 

following lemmas are refinements of this. 

Lemma 52. For 	0, K, () converges as v — + cc, and 

= lim 1) 
V-+oo 

is bounded independently of p . 

Proof. Fix 	1l\{0}, and let ii' > ii > 0. It suffices to show that 

=
'So 
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as ii, ii' —+ 00. If z =4 , z 	= 1, and so 

Iv' 	 I 

= f(e2 	— e2 )Kj (x )dx  

j= I) 	I 	Ij:=V 	 I 

= 	(K(x) - K(x — z )) e2 edx  
2' 	JRn 

j=Li 

< ' 	JRn I k(x)-k(x-A(2)-'z)dx 
3L' 

Li,  

< c> IA(2 3 )_ l zIE 0 	0 
jL' 

as ii, v' -4 oo, by the Rivière condition (5.1). Hence K ,,,, (~) converges to a 

bounded function as ii —+ x. 	 Li 

Lemma 53. There exists a decreasing sequence of integers {j}, for which {K,(e)} 

converges everywhere on R7\{0} to a bounded function. 

Proof. Fix e 	0. {k()}< 0  is a bounded sequence in C, so there exists a 

subsequence {} such that {K,, (ffl j>o  converges. Let ( e 11\{0}. We shall 

show that {K (' ) } also converges. 

(c 	— i;;(e')) — (k~' (o —  K-' (o) 
ILI 

=E lr() — kr  
r=pj  
ILI 

IA(2r+l)BO  

At 

T ILj IA(2r+ ' )Bo 

K, (x) ( e 27r
ix- ~

- e2') dx 

— 'IIIIKr(X)I 

AI 
Ie — Cl 	IIA(2r+l)II JRn  Kr(X)ldX 

 r='L 
At 

<cI — CI i: IA(2 1 )II —40 

as j, 1 —+ oo, by the Rivière condition (5.1). So {]K,.,(e) — k(')} 3  converges, 

and hence {K (')}, converges. 	 LI 

Define fi e L°°(T1) by iii(e) = 1imj,QKrL,(e) , 	
0. We now make some 

observations. 
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By the Dominated Convergence Theorem (D.C.T.) and Plancherel's theo-

rem 

IIK * f - 	 -+ 0 as j -+ 00, 

where .F denotes the inverse Fourier transform. 

Fix f e S(W) and x 0 supp(f).  There is a J E N such that 

	

Tf(x) = JR K(x)f(x - y)dy = f K, (y)f(x - y)dy = 	* f(x) 

for j> J. 

These observations allow us to define an operator S : 	- L(R') satisfying 

Sf = iij, and 

Sf(x) = Tf(x) whenever f e S(11) and x supp(f). 

The fact that T - S is bounded on L 2 (R) and commutes with translations 

allows one to show that T - S = Al, for some A e C. This is equivalent to 

m() = i() + A. For our purposes we may suppose that A = 0, i.e. S = T. For 

further details of this argument, the reader is refered to [36], Chapter 1, Section 

7. 

5.3 A generalised integral 

For a set E C R, JEJ shall denote its Lebesgue measure. 

As we intend our integral to be a type of principal value, it is appropriate to 

initially define it on functions of compact support. 

Let f : 1I -+ R have compact support, t E [0, 1] Th, and rn E Z. Let 

Im(f)(t) 	 f (t + 
	

(a finite sum) 
kEZ n  

Definition 54. For I E R, write I = # fRn f(x)dx (or more briefly I = # f f), 
if Im(f)(t) —f I in measure on [0, I]n as m -+ cc 

Observe that if f e C(]f(), then Im(f)(t)  is a Riemann partial sum. Hence 

# f f = f f. From this we can deduce the following. 

Lemma 55. For f e L'(R) of compact support, # f f = f  
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In order to prove this lemma, we shall define a simple extension of # f to 

functions of non compact support. This is not an appropriate extension since it 

fails to acknowledge any global cancellation, however, we take this brief diversion 

because our techniques naturally encompass it. 

Definition 56. Define for some measurable f R —+ R, 

 
I. (f)(t) = 	_ j2 f (t

+ 
	

E [0, 1] 
kEZ 

whenever the sum is absolutely convergent for a. e. t E [0, 1] 72 . (So for! E L' (R) 

of compact support, Imf = Im f.) Define f f in analogy with # f f. 

Lemma 57. For f E L 1 (R), # f f = ff. 

Proof. We must first show that Im(f)  is defined for f e L 1 (T1). Let G be the 

set of lattice points in [0, 2m)72. Observe that 

> 	jf (t+ L dt= > 	4f f  t+Ldt 2nm

kEZ' 	I 	 -'yEG kE2mZn+{y} 	[0, 1 

= i IIfIk = Ilf Ili <00. 

yEG 

So by the Monotone Convergence Theorem, E k,Z If (t + 	< 00 a.e. t E 

[0, i]n  as required. Observe that we also have, 

J
[ 
	
Idt 	lIfII'( 	 (5.5) 

0,1] 

Let f E L' (W), and a, € > 0. Choose f e C(l1), and f2 E L 1 (1l) such that 

f = fi + 12 and I 1f2 Iii < mm (€, 1). By (5.5) and Chebychev's inequality, 

E [0,i]: I 	>
<211f211i < 	 (5.6) 

By the triangle inequality, 

E [0,1]: 	(f)(t) — I f > 

E [0,1]: Im(fi)(t) 	ffi 
~ 	

(5.7) 

+ {t E [0,1]: Im(f2)(t) >
(5.8) 

[0,1]: f >(5.9) 

Since 11f2111 < , the term (5.9) is zero. By (5.6) the term (5.8) is less than . 

Since fi E C(IR72 ), the remark preceding Lemma 55 implies that the term (5.7) 

can be made less than for sufficiently large m. This concludes the proof. E 
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For our purposes it is more appropriate to extend # f to functions of non-compact 

support by the following limiting process. 

Let p E Co(Rn) satisfy 

p(0) = 1 

0 <_ P(X) 	1 

Let PN(X) = P(s). 

Definition 58. For f ll —* ll, we write I = # fR f(x)dx (or I = # f f), if 
for every such p, # j pN (x)f(x)dx converges to I as N —+ 00. 

By Lemma 55 and the Dominated Convergence Theorem, / f f = f f for 

every f E L1(W1). 

In order to exploit the translation invariance of T, we shall need the following 

Lemma. 

Lemma 59. Let v e Q1  (R7 ), u E L' (R 7 ), 

S(u)(x) = (T 1 vu)(x) — v(x)(T t u)(x) and, : 

S(u)(x) = (Tvu)(x) — v(x)(T 9u)(x). 

S is bounded on L 1 (R), and S is bounded from L'(PJ) to Lf/(r)(Rn). 

Proof. By Minkowski's inequality for integrals, it is sufficient to show that 

sup I(v(y) — v(.))K1 ( — y)IlL'(TI) < oc and, 
yERn 

sup (v(y) — V( - )) K(' — Y)IILn/n-(Rn) <00. 
yERn 

Now, 

f (v(y) —v(x))K 1 (x—y)ldx 	ivvf xHK1 (x)Idx 

xIIK(x)ldx 
j<O JA(2j+')Bo 

<c 	IIA(21)I1 lKjIIL1Rn <00 

j<o 

and, by Lemma 51, 

(JR. 
I  (v (y) _v(x))K(x — )Idx) < 2 IIvI ooII 	lip < 00, 

for p = n/(n — 	 •1 
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Remark. If we were to strengthen the Rivière condition (5.1) by requiring it to 

hold for all s, t > 0, then we would also have that S,',  : L'(1P) —+ L(1R'), for 

1 <p < This would simplify the proof of the following lemma, since there 

would be no need to consider S, and S ,9,  separately. The said strengthening of 

the Rivière condition implies that there are constants c 1  and c2  so that 

CS 	j jA(s)jj < CS 

for all s > 0. 
Our next lemma is at the heart of this chapter, since it allows us to approxi-

mate L' (P) functions by smooth functions. In what follows we should think of 

the function u as an error of such an approximation. 

Lemma 60. Suppose 0 e C(R), c > 0, and 0 < i < 1. There is a constant 

- ic(q, n) such that for u E L' (W) with 1jull 1 <icac, 

EE [0,1] : Im (çbTu)(t)I ~: al  < € for all  eN. 	(5.10) 

Proof. Let t E [0, 11 and suppose N is chosen so that supp() e [—N, N]. Let 

	

A m ,t = {k e Zn :t+ 	e [_N,N]'} 
2ra 

We shall dominate Im (TU)(t) by the sum of three terms, each of which will 

satisfy an expression of the form (5.10). 

i 	 I 	1 i 
S(u)(t+) I1m (T)I <

— 2mm — I 	T(u) (t +2
m 	2nm 	 0 	2m 
) I 

IkEA'n,t 	 IkEAmt 

S(u)(t+)5.11) 
kEAm,t 

where S and S are defined in Lemma 59. Let 

Vk(X) 	x+ = 	_1 u  ix+ 
( 	 k 	7 	k\ 

L 
2m) k 	2) 

Since T is linear and commutes with translations, 

1 
T(u) (t + = T (2nIm 	Vk) (t). 	(5.12) 

kEAm,t 	
2 	

kEAm,t 
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Observe that for each m, Amt is constant, say A m , on (0, 1). Using this, (5.12), 

and the fact that T is weak type 1-1, we get for some constant c, 

	

{t e [0, 1] 	
1 	

T(u) ( 
+ k 	

>

ce  
2nm 	 2M 

kEAm,t 

=t E (0,1): T V  k)  (t) ~  Ce 
2 	

kEAm,t 

C II 	1 

kEAm 	IIL1(Rfl) 

L' (Rn) < c2nNn 0  I uI I <  

provided IIuIIL1(Rn) < 	 This deals with the first term of (5.11) with c2N'9IIj,0  

= c2'N0 	
We now turn to the remaining terms. Let 

1 	( 	 k 	
Th)1<poo. 

2m 

	

f t+ ) —  forfeL7'(1l 	<  
kEAm,t 

By (5.5), IIJm,Ø(f)IIL'([O,l]') 	IIfIIvcin, and by considering the number of ele- 

ments Of A m ,t, Ik1m,(f)IIL0o([0,l]) < 2(N+1)IIfII Lco ( n ) . Therefore by the Riesz 
n q  convexity theorem, IIJm,(f)IILP([O,lIn) :5(2(N + 1)')IIfIILP(Rn) for 1 <P< 00. 

Here, as usual, 1 + 1  = 1. By Lemma 59 and composition of Jm , o  with S, 

	

P 	q 

1 
u —* ---- 	S,(u)It+— 

2 	 \\ 	2'' 
kEAm,t 

is bounded on L' (W) with bound independent of m. By Chebyshev's inequality, 

there is a constant ,c = ,, n) such that 

	

{ E [0,1]; 	
kEAm,t 	

(t+ 	> 	IIuIn 

provided IIuIIL1n <ka€. 
Similarly, since 

u —  1---H 	sog  
kEAm,t 

is bounded from L 1  (1R) to L"/('° )  (T), with bound independent of m, there is 

a constant ,c' = n'(0,  n) such that 

{ 	 [0, 1] 	 S(u) t + 	>a 	< 
2nm I kEAm,t 	

2m) - 	 - 	 ) 
< fn/(n—co) < 

W. 



provided 1UIlL1(n) < ,c'ae. This deals with the second and third terms in (5.11). 
U 

Lemma 61. For 0 e C,1  (R7 ), Tçb e L°°(r). 

Proof. For any non—negative integer k, 

*(x) = E
JRn  

K(x —y)((y) - (x))dx 
j>k 	 k<j<O 

J K(x—y)dy+K 9  *(x) =1+11+111. 
k<j<O 

Now, as in the proof of Lemma 59, 

Il <cIlV00 sup 	 j2 IlA(21)II <00. 

j 	 j<o 

By (P1), 

Ill < 11 011. sup J K,(x)dx <00. 

By Lemma 51, ]K9  e Lf/(o), and so by Holder's inequality, 

11111 = 1K9 * c5(x)I < IIKI IIn/(n—eo)lI0lIn/€o < 00. 

Combining the above three estimates completes the proof of the lemma. 

Lemma 62. IfqEC(1P) and uEL 1 (R) then 

#1 (x)(Tu)(x)dx=f 

where T*  is the L 2  adjoint of T, having Calderón-Zygmund kernel K* (x) = 

K(—x). (Note that in general Tn V L  loc. ( 1R?).) 

Proof. Let u = v + wj  where v3  e C(R) and IIwjIIL1Rn 4 0 as j -* oc. Let 

a> 0 and 0 <€ < 1. By the triangle inequality, 

e[0, 1]: I. () (t) 	f (T*)(x)u(x)dx  

E [0, 1]: 	(t) - f (T* O)(x)v j (x)dx 	
a~j 	

(5.13)

a~ j 
+ 	E [0,1]:  i f(T*)(x)wj(x)dx 

> 	
(5.14) 

+ 
 1

{t e [0, 
 1]_  

: 
In 
() 	

(5.15) 
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By Lemma 60, there is an integer J such that 

So the term (5.15) is less than e for j > J. By Lemma 61, T*q  E L(R), and 

hence 

J (T*)( x ) w (x )dx  0 

as j —+ oc, so increasing J if necessary we may suppose that 

Ce f 	< Vj > J. 

So for j > J, the term (5.14) is zero. As v, 0 E L 2 (R), 

f (Tt)(x)v(x)dz 
= f 

so term (5.13) now becomes 

 {t E [0, 1]: 'rn () (t) 
- J (x)(Tv)(x)dx 	} 

Fix j > J. qTvj  e L'(R), so by Lemma 55 this term (5.13) tends to zero as 

m — oo. 	 E 

5.4 The multiplier relation on Ll(Rn) 

Lemma 63. Jf'L4(y) = pN(y)e 2 ', 	0, then 

(x) T*(x) — pN m(—)e 	—* 0 

uniformly in x as N —* cx. 

Proof. Let K*  (x) = K(—x), and 	0. 

T*J(x) — 

= lim lim e2X ITRn  K. (y)(pN(x — y) - pN(x))edy. 
3-*00V+OO  

By writing p as the inverse Fourier transform of , and then by Fubini's theorem, 

JRn 
K,(y)(pN(x - y) pN(x))e2Ydy 

= 

 J.~ 
K,(y)  Ln 

v( S) (e_ 2hi 8  — e_21/8) e2''dsdy 

( s) e 	
/ 

2,rzx 	( K   j 	( - - 

c,(-e)) ds 

J (s) kT 	—  e) — ( — e)ds 

JR (s)Im(_e)_m(—ds 

MIJ 



as v -+ oo and j -+ oo by Lemmas 52, 53, and the D.C.T.. The last expression 

tends to zero uniformly in x as N -+ 00, by the continuity of m on 

(Lemma 50), and the D.C.T.. 	 El 

Theorem 64. Let T satisfy (5.2), (5.3), and (5.4). If u E L 1 (RV) then, 

#1 (Tu)(x)e 2 dx = 

for every e 0. 

Proof. If u e L' (R 2 ), and 	0 then 

# 1 
# 1  

= f u(x) (T'V) ( _~ ) ) (x)dx (by Lemma 63) 

—+ I u(x)e27xm(e)dx 

as N —* oo by Lemma 63 and the D.C.T.. Hence 

# I (Tu)(x)e 2 dx = 

* 

Corollary 65. Let T satisfy (5.2), (5.3), and (5.4). If u e L 1 (]R7) is such that 

Tu E L'(W), then 

0. 

Proof. Use Theorem 64 and the remark after Definition 3. 	 El 

Corollary 66. If T satisfies (5.2), (5.3), and (5.4), then T is injective on L' (W) 

if and only if 

E = { : m() = 01 

has empty interior. 

Proof. Suppose u e L'(ll) is such that Tn = 0. By Theorem 64, m()ü() = 0 

for all 0. Hence I() is supported in E. Since is continuous and E has 

empty interior, we conclude that ii = 0. Since u E L' (R7 ), u = 0. 

Conversely, suppose T is injective on L' (R). If E has non—empty interior, 

then there is a 0 E S(W), with 0, such that is supported in E. By the 

L 2 (R7) Fourier multiplier relation, T() = m(e)q) = 0, for e 0, contradict-

ing the injectivity of T. El 



Corollary 67. Suppose K is homogeneous of degree —n and f E L'(T) is non-

negative. If 	0 then Tf 0 L'(TI). 

Proof. Use Corollary 65 and the fact that m is homogeneous of degree 0. 	E 

Remark 

For 1 <p < 2, it is easy to see that T is injective on LP(W) if and only if 

LP = If E LP(R7) : supp(1) C E} = {0}. 

Trivially L = {O} 	El = 0, and by Corollary 66, L ={0} == int(E) = 

0. For 1 <p < 2, we have little qualitative information about f, for  f e L'(R), 

other than that it is in L(R7).  Hence a simple characterisation of those E for 

which LP = {0} is less apparent. 

5.5 Application to Oscillatory Singular Integrals 

The techniques used in the proof of Theorem 64 can be applied to a much greater 

variety of translation invariant operators that are weak type 1-1. For example, 

one can handle some oscillatory singular integrals of the type described in the 

introductory chapter. 

Theorem 68. Suppose 0: R —* R satisfies 

4' is either even or odd, 

0(0) = 1(0) = 0 1  

/I" > 0 on (0, cc), 

and define the operator T by 

e (x1) 

	

Tf(x) = p.v. 	- f(y)dy. 

If m is the Fourier multiplier corresponding to T, then the generalised multiplier 

relation 

4 f
00  

Tf(x)e 2 idx = m(e)I(e), e so, 
 00 

holds for all f E L'(R). 

WE 



In order to avoid repetition of many of our earlier arguments, we give a sketch 

of only the main points of the proof. 

The proof of Theorem 68 essentially follows the same sequence of lemmas as 

that of Theorem 64. The appropriate version of Lemma 49 immediately follows 

from the H' boundedness of T (see Theorem 42). We are able to approximate the 

Fourier multiplier pointwise by a principal value integral (providing the analogues 

of Lemmas 52 and 53) by an integration by parts argument. The key calculation 

is the following. 

For O<R<R'<oo, 

1 	
x 

R' ei((x)) 	 R' 	1 	
d (e) dx 

R 	dx=L ix ( '(x)+)dx 

e 	
R' 

R' 	
+X)d 

 ( 	
1 	

dx 
 dx 

-  fR  

=:I+II. 

Since qY" > 0, çb'(R) - 00 as R -+ oc, and so 

2 

RI(R) + ei 
as R, R' -+ 00. 

JR'id 
( 	

1 	
dx. 

R 
 Idx \x('(x) +)) 

If '(x) = x('(x) + ), then 

'(x) =x"(x)+'(x)+, 

and since q' is convex, there is an R = R() > 0 such that '(x) ~: 0 for all x > R. 

Consequently, 

I 	T'd( 	
I 	 ) dx J  

2 
< 

Rçb'(R) +I 
as R, R' -* oc, as in the estimate for 1 11. 

The remaining parts of the proof use the L 2  and weak type 1-1 boundedness 

	

of T, and the size of the absolute value of its kernel 	i.e. no new ideas are 

required. 
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