
Learning and Generalization

in Feed-Forward Neural Networks

Frank J. Smieja

Submitted for the degree of

Doctor of Philosophy

Department of Physics

University of Edinburgh

1989

To my parents, Joy and Jan,

dziçkujç,

bo da1icie mi wybór.

Declaration

This thesis has been composed by me and all the work is my own apart from some

of the work in chapter 3, which was done in collaboration with Gareth Richards.

Some of the work has been published in [R88, gmi88, mi89}.

1

Acknowledgements

This work has been supported by the Science and Engineering Research Council.

I would like to acknowledge the support and encouragement of my supervisors

David Wallace and Alastair Bruce, and thank them for their useful comments on

this thesis. Although my former supervisor, Elizabeth Gardner, was unable to see

through the completion of my thesis, I would like to acknowledge her encourage-

ment and stimulating discussion in the early stages of this work. We all miss her

greatly.

Throughout my time in the physics department I have enjoyed an open and

friendly working environment, and I would like to thank my fellow postgradu-

ates for encouraging free flow of their expertise, from which we all benefit. I

would especially like to thank Nick Radcliffe, Brian Wylie, Greg Wilson, Steven

Booth, Andrew Thornton and Lyndon Clarke for showing me what it means to

compute, and Nick Stroud for his friendly and cheerful attitude to the whole busi-

ness. I would also like to thank Winston Sweatman, John Lunt and Rik Eyre-Todd

for putting up with my persistent questioning, and especially Winston with the

material concerning the equivalence relations in chapter 5.

For keeping my pecker up when I was down, and thrashing me at snooker, tennis,

chess..., when I thought I was up, .1 say mmmmerci, grazie, danke, dzickujç, ta,

to Bruce Forrest (na'at'a'mean!?). Thanks too to the guild of Georges (so cruel,

but I love it - reeeally?!), to Steve Hayward and his sobering logic and wit from

old London town, to Nick Radcliffe and Gareth Richards, to Martin Simmen,

Jeremy Craven and Nigel Wilding (the three Stooges), and to Lydnod Clarke and

Stewartie Springham for keeping me up on Tuesdays and convincing me that I

was not such a bad potter after all...

11

Abstract

Aspects of learning and generalization in feed-forward neural networks are studied.

The networks are taught using the backpropagation learning algorithm.

The performance of the algorithm is studied using a training set which can be

made to have a variable difficulty. Using such a training set the performance is

evaluated and improvements and modifications suggested.

A simple classification of problem domain types is made and a particular class

is suggested to be the most appropriate for the 3—layer feed-forward network to

learn. This class is characterized by underlying regularities among the training

set members, such that the mapping required for each pattern in the training set

is consistent with all the other required pattern mappings. The suitability of this

class of training sets is demonstrated with observation of the emergent properties

of the network in actual learning speed and nature, and in the generalization ability

displayed after learning an incomplete training set. This behaviour is contrasted

with training sets not possessing the underlying properties of this class, from which

it is concluded that this type of network is more effectively used for extracting

salient information about a training set, given that underlying regularities exist,

rather than for other classes of mappings.

The dependence of generalization of the network on such problem domains is

studied as a function of hidden layer size. It is shown that in general the number of

different solutions available in the algorithm's search space increases rapidly with

the hidden layer size. Despite this, it is shown that the generalization performance

does not degrade correspondingly, but in fact remains at a steady high level. This

observation suggests that the salient information about a training set is more

likely to be extracted during learning, as opposed to merely mapping the patterns

independently (which form a large set of other possible solutions), and that this

information is stored in a distributed manner throughout all the weights of the

network.

111

Contents

1 Outline and motivation of the thesis 	 1

	

1.1 	Background1

	

1.2 	The research in this thesis2

	

1.3 	Organization of the thesis3

2 	Introduction 5

2.1 	Learning by experience 6

2.2 	Connectionism 10

2.2.1 	Introduction 10

2.2.2 	Learning 12

2.2.3 	Generalization 13

2.2.4 	Perceptrons 14

2.2.5 	Multi-layer perceptrons 17

2.2.6 	Feed-forward networks and -pattern classification 20

lv

3 Backpropagation: investigations and improvements 	 23

	

3.1 	Introduction23

3.2 The backpropagation learning algorithm24

3.2.1 	Notation24

3.2.2 Derivation of the weight changes24

3.3 The rounding problem and its training set29

3.4 Unit response functions33

3.5 Evaluation of the basic algorithm's performance37

3.5.1 The success rate of the basic algorithm37

3.5.2 Error maps in weight space41

3.5.3 	Local minima43

3.5.4 The influence of hidden units47

3.5.5 	The danger of c54

3.6 The deformation procedure56

3.6.1 	Motivation and description56

3.6.2 Deformation and the rounding problem58

3.6.3 Learning digits in the presence of noise60

3.7 Varying the learning parameters68

3.7.1 	Critical slowing-down68

V

3.7.2 The problem of "valley ascent" 	 . 	69

3.7.3 Learning parameter variation (method A)71

3.7.4 Learning parameter variation (method B)73

	

3.8 	Summary 75

4 The importance of underlying correlations 	 77

4.1 Categories of problem domains77

	

4.2 	Overview of the chapter79

4.3 Predicting protein structure82

4.3.1 	The format of the data83

4.3.2 	Net architecture83

4.3.3 	Performance85

4.3.4 	Discussion88

4.4 Reduction to a simple model89

4.5 The training sets93

4.6 The cost function and learning algorithm96

4.7 Implementation on transputers99

4.7.1 	The transputer99

4.7.2 Parallelizing the neural network model100

4.7.3 	Transputer configuration101

vi

4.8 Observations of the learning performance103

4.8.1 Details of the learning schedules103

4.8.2 Scaling of the learning ability with hidden layer size 106

4.8.3 Form of the learning curves112

4.9 Observations of generalization behaviour112

4.9.1 	Over-learning114

4.9.2 	Learning speeds117

4.9.3 	Bootstrapping119

4.10 Discussion and conclusions121

5 Solutions and scaling of generalization ability 	 127

5.1 Introduction127

5.2 Unique solutions to a mapping problem128

5.3 Scaling of available solutions for the parity problem134

5.4 Resume138

5.5 Generalization and a diagnosis problem139

5.5.1 	Effect of training set size140

5.5.2 Scaling with hidden layer size143

5.6 	Conclusions147

vu

A Appendix 	 149

A.1 The Trypsin proteins used in chapter 4149

Bibliography 	 153

vu'

Chapter 1

Outline and motivation of the thesis

1.1 Background

One of the fundamental goals of Artificial Intelligence is to develop machines

capable of learning about their environment, from their interaction with the en-

vironment and the changes in the environment. Perhaps most important is a

capability of generalizing from experiences encountered in the environment so as

to be able to make predictions and thenceforth plans and strategies in further

interaction with the environment. The standard approach to this task is based on

the construction of theories and computer programs which embody all the sen-

sory, syntactical and reasoning skills required in the machine's interaction with the

particular, well-defined environment. The initial emphasis is generally on strin-

gent and unambiguous definition of machine responses to typical environmental

situations. If general rules can be identified with respect to desired forms of in-

teraction then these are also included as a priori rules which can be obeyed by

the machine. However, the problem of how to enable a system to learn is, as

pointed out by McCarthy [McC75], inseparable from that of how to represent

the knowledge concerned. Connectionism, or neurally-inspired models, consider

correct representation to be the key to successful learning and generalization.

- 	These models are inspired by observation of the processing power and speed

achieved in the brain, and attempt to reproduce this through having a basic

-

structure of simple processing units ("neurons") connected together by weights

("synapses"). The speed is to be emulated by the parallel operation of sets of

units, and the complexity of processing by the mutual interactions of all the units.

The emphasis is on trying to evolve non-localized, non-symbolic, robust represen-

tations of tasks in the machine by some form of learning from experience, and to

use such representations to achieve the above-mentioned goal of generalization.

1.2 The research in this thesis

In this thesis we make a study of a particular type of connectionist model, or neural

network, and its associated learning algorithm. The neural network is known as

feed-forward and the learning algorithm backpropagation.

Such a study is interesting from the physics point of view, because it involves the

operation of complex systems of nonlinear units, from which it is desired to obtain

firstly an optimization power, and secondly an emergent generalization effect. This

generalization can be viewed as a synergetic effect of the combined influences of

the features extracted from the input space and stored in the weights.

As in many nonlinear systems, especially complex systems such as this, the theo-

retical work which can be done is limited, and so it is more expedient to perform

computer simulations, observe general effects, and from there to make predictions

as to the behaviour of other such systems. Nevertheless, if it is possible to reduce

the problems to a simpler level, the deductions made will be easier to formalize,

and probably more general. This research is performed in just such a reductionist

spirit, exemplified by the approach to the rounding problem of chapter 3, which

leads to the more general deformation tool, and the reduction of the "natural"

problem domains to a level at which we can make the analogy to simple spin

systems (chapter 4).

Important features of the algorithm and considerations which should be made

in its use are explored. The main thrust of the work involves the study of the

'This term is explained in section 4.1.

learning and generalization capabilities of this model when the problem domain

used involves underlying correlations between its members. We also introduce

a method of defining solutions to simpler problem domains discovered by the

network, in terms of the representations of patterns in the "hidden layer" (the

layer in which the units are not required to have any particular states, as opposed

to the input and output layers).

1.3 Organization of the thesis

Chapter 2 introduces the ideas of connectionism and outlines the difference be-

tween these types of models and the symbolic program structures also used in Ar-

tificial Intelligence to allow learning and generalization. The ideas of learning and

generalization in the connectionist framework are explained, and the forerunner

of the multi-layer perceptron, the perceptron, is described and discussed, before

the multi-layer perceptron itself is introduced. Finally, we compare the processing

performed by perceptrons and multi-layer perceptrons with traditional pattern

classification techniques, and suggest how the multi-layer perceptron, through

learning about the input space rather than using parametric or non-parametric

techniques explicitly to fit generating functions to it, can be viewed as a simpler

and more general form of classifier.

Chapter 3 presents the details of the feed-forward network model and backprop-

agation algorithm used, and results of its performance on the rounding problem.

Various properties of the net and the basic algorithm are studied, using learn-

ing curves, error maps and net scaling. Two major improvements are suggested:

the deformation procedure and a parameter changing procedure. The deforma-

tion procedure is applied to another problem, noisy digit restoration, in which it

is shown how the procedure improves performance, and the parameter changing

procedure is employed again in later simulations for efficient minimization.

In chapter 4 we offer a simple classification of problem domains, and then study

the suitability of one of them, the"natura1". domains, through preliminary ex- -

periments with learning protein sequences. Simplifying assumptions as to the

- 	-3---- 	.- 	---

underlying nature of this and other such problem domains are made to reduce

their basic characteristics to a form such that an analogy can be made to a spin-

like model. The learning and generalization of this new training set and two other

types of training set, not possessing the characteristics of the natural problem do-

mains, are compared. We observe that the former training set gives rise to faster

learning, a far smaller requirement of hidden units to perform the mappings, and

clear generalization. We conclude that the network learns about the underlying

correlations used in the generation of the pattern in the training set and that it

is this which enables the observed emergent properties to arise.

Chapter 5 is involved with the question of the influence of training set content and

size and hidden layer size on generalization performance, for the type of network

defined in chapter 4. First we introduce the idea of a "solution", defining it in

terms of the relative hidden-unit representations of the training set patterns. This

idea is used for the estimation of how the number of possible solutions which exist

for the parity problem scales with the size of the network, in terms of input and

hidden units. The rapid increase in solution number with hidden unit size is

suggested to be a cause for concern, since the generalization performance may

degrade with the increase in the number of available solutions to the problem.

In order to test this, the generalization behaviour of the network on an artificial

diagnosis network, derived from similar underlying correlations as the training set

in chapter 4, is examined. The results of this examination allay the scaling fears

expressed above, and this is explained in terms of the most likely solutions found

by the algorithm being those which display the very emergent properties which

are desired.

4 	 - 	- 	--

Chapter 2

Introduction

In this chapter the ideas of connectionism will be introduced.

First we describe some "non-neural" ways in which a machine may be taught to

learn about the environment,' with reference to some well-known examples from

Artificial Intelligence (Al). A brief review like this is useful in bringing to light the

main difficulties associated with getting a machine to learn and generalize sensi-

bly. It is also interesting to note techniques, such as the optimization procedure

which is used in Samuel's checker player, to find appropriate values for parame-

ters in an evaluation function. This operates in its basic form as hill-climbing in

the parameter space - the same basic idea as in the network algorithm used in

this thesis. However, the ideas behind connectionism differ in the fundamental

representational structure of the models, and in the way in which parameters are

modified through experience with the environment.

Having made the distinction between these two ways of getting machines to learn,

we concentrate on the technical aspects of feed-forward networks, describing the

idea of distributed representations, and learning and generalization within this

framework. The forerunner of the multi-layer perceptron (MLP), the perceptron

with its simple learning rule, is briefly described. Having noted the limitations

of this model, we then introduce the multi-layer perceptron, and explain how

the complexity of mappings it can perform in principle overcome many of these

limitations. The range of functions it is possible for the multi-layer perceptron to

realize results from the number of layers of nodes it possesses, combined with the

5

nonlinear response functions of the nodes.

Finally we outline the similarities of the optimizations performed by perceptrons

and multi-layer perceptrons with classical pattern classification techniques, and

suggest that it is the greater generality of pattern distributions realizable in theory

by the neuron-based models, that makes such models both interesting and worthy

of study.

2.1 Learning by experience

As has already been mentioned, the most important difference between connec-

tionist models and conventional AT models is the way the knowledge is represented

in the model. In connectionist models the representation of the knowledge is or-

ganized such that the knowledge unavoidably influences the course of processing.

In this section we demonstrate this distinction, with a brief review of some well-

known symbolic programs for achieving artificial learning. In the next section we

shall describe in detail the neuron-based methods.

J. M. Tenenbaum et al [TGWW74, TW75] constructed a program which was able

to recognize various common objects in grey-scale photographs after a period of

instruction which allowed the reallocation of symbols to various, structures. As

an example, consider the recognition of a telephone.' The program does not have

• telephone described to it explicitly, but is told that such an object exists in

• highlighted field of view (for example a portion of a photograph) and defines

necessary constraints on what a telephone looks like itself, by eliminating unnec-

essary features through a form of indirect questioning of the teacher (operator).

The program uses two data structures which represent two types of concepts that

it learns about, semantic and iconic. Thus the semantic data structure would

contain the information that a telephone is characterized by a black rectangular

block of medium size supported by a table which itself supports a black rectangu-

lar wedge with a grey square area with small blocks equally spaced in the square

'The telephone 'example used below is taken from [B6d87J, where it was used in a slightly

different form.

6 	 - 	 --

area on its sloping surface. This description is gradually deduced by the program

as it becomes more discriminatory, making use of the iconic representation (the

visual, pictorial description of the object). Thus the program can learn what an

object looks like either by seeing it, or by being told that it resembles something

seen before. The operators (symbols) which may be useful for the program to

identify particular objects are suggested by the teacher and a semantic and iconic

description is built up by the program. The usefulness (whether they are suffi-

cient to define an object) of the operators is then tested by getting the program

to isolate areas in the picture satisfying the current requirement for classification

as each object, and then further operators are chosen, and so on.

Thus this program dynamically alters its understanding of the environment by

interaction with it and the teacher, building more constraining and complex data

structures along the way. Here learning can be achieved by the system only if

it has the ability to construct, analyze and manipulate complex symbols. Thus

the knowledge is built up as it is encountered, rather than incorporated into the

pre-existing knowledge. The generalization possible here is thus limited by the

generality of the object descriptions. Also the system is limited by its dependence

on the teacher for guidance on which features to use as discriminatory descriptions

of. images.

P. H. Winston tackles the latter requirement in a program which learns to recog-

nize structures (such as arches, bridges, etc.) merely by being shown examples

and counterexamples of them [Win75]. All that a "teacher" is required for is to

provide information as to what is and is not an example of the structure being

considered. The nature of the world is necessarily already part of the program's

structure, i.e. the program can manipulate various building-block concepts such as

"brick" and "prism", and connecting concepts such as "supported by" and "mar-

ries", etc. from the start. Using the examples and counterexamples of various

types of object shown to it, it can deduce their essential descriptions in terms of

these basic concepts. It can also build on its world-knowledge using the concepts

it has defined itself, to new definitions for more complex structures, which may

be constructed from several of the structures it now knows about.

This program is interesting in that it searches explicitly for the necessary and

- 	 7 	 . 	.

sufficient features of a particular structure through progressive information derived

from examples and counterexamples of the structure, which is similar to the way

connectionist models work. In fact, the representational structures of the objects

are in the form of connecting pointers (unit "weights") to descriptive relations

between concepts ("nodes") and the network of relative pointers is altered as the

new examples are seen. However, this program can not quite be described as a type

of neural network, albeit its method of extracting new information from patterns

rather than storing complete images is an interesting parallel. The program lacks

any appreciation of the problem, in that it considers and stores every feature and

does not look for anything in particular in an image. It also cannot but specify

each description stringently rather than in a broadly defined way. Conversely, the

neural 'models are designed to extract information in a less constrained manner,

thereby allowing the possibility of varying descriptions through the influence of

underlying regularities.

One of the more successful learning machines was Samuel's checker (draughts)

playing program [Sam63]. Part of the program's mechanism involved learning

from mistakes and good moves made during the game playing (a large part of the

machine's knowledge also came from "rote" learning, where the values of moves

judged by human experts were fed into the machine explicitly). Each node of the

tree in the move-searching (minimax procedure) has a value assigned it, indicat-

ing the "goodness" of the move which it represents. The evaluation function from

which these values are derived consists of a number of parameters marking strate-

gic features of a game. The learning procedure involves improving the evaluation

decisions, by continually adjusting the weighting of the test parameters involved,

according to their success in actual performance. Samuel's program improved with

practice to such an extent that it once beat a checkers master - the moves proving

to be original after about half-way into the game. Samuel's program learnt in the

sense of changing its understanding of the world only in altering the evaluation

function, according to the success of the comprising parameters. Thus the machine

was used to optimize the form of a function whose nature could only be specified

approximately' by the human programmer, by varying its coefficients according to

the feedback from the match-play. The actual process of the coefficient-changing

is interesting for comparison with neural net learning, in that: "... the entire

'By the inclusion of 38 possibly useful board features.

-- 	 - 	 -- 	

-

learning process is an attempt to find the highest point in multidimensional scor-

ing space in the presence of many secondary maxima on which the program can

become trapped." [Sam63]. Learning is essentially a hill-climbing procedure in

the scoring space, with the possibility of extrication from local maxima by manual

intervention.

The similarities in Samuel's learning procedure and neural net techniques lies only

in the fact that a cost function is being optimized, the representation of informa-

tion and the basic mechanism being totally different. Generalization is possible,

and good, through the unconstrained manner in which information is built into the

evaluation function. The only drawback of this model of learning however, is the

initial requirement that an evaluation function be defined and suitable terms speci-

fied. Connectionist methods may partially eliminate this requirement through the

unconstrained extraction of relevant features from a problem domain. In this

thesis we explore this basic principle through observation of the generalization

performance of one class of connectionist models, the feed-forward net.

Not surprisingly, more "intelligent" programs have been written since Samuel's

Checkers program, involving deeper knowledge of the actual task required. Some

of these programs achieve generalization through the manipulation of new sym-

bolic names in structures which are learnt, rather than extracting information

{FN71, Sus751.

The basic idea behind all these programs has been the allocation of symbols to

features in the environment, and then manipulating these symbols. The basic

mechanism of connectionist models is in the distributed representation of features,

and their interaction, to produce emergent properties such as generalization.

One of the first examples of a network approach to making decisions was Self-

ridge's Pandemonium system, in which decisions are made on the basis of "which

demon shouts the loudest", with the demons being in a hierarchical layered struc-

ture [SN63, Se159]. The learning was a simple type of hill-climbing. In such a

system, however, each demon has to have a function assigned it, as opposed to

the distributed, non-localized nature of connectionism.

9

2.2 Connectionism

2.2.1 Introduction

In many tasks performed by humans, and in the tasks it would also be desirable to

have performed by machines, a number of different pieces of information must be

kept in mind at once. Each plays a part, constraining others and being constrained

by them.

Parallel Distributed Processing (PDP) models assume that information process-

ing takes place through the interaction of a large number of simple processing

elements, each sending excitatory and inhibitory signals to other units. These

models are composed of many nonlinear computational elements operating in

parallel and arranged in patterns reminiscent of biological neural nets. It may

be that all or some units represent possible hypotheses or goals and actions, with

the connections representing the constraints the system knows to exist between

the hypotheses or the relationship of goals to subgoals, to actions and so on. The

most robust and non-localized forms of these networks assume no particular rep-

resentational role for some of the units, but merely link aspects or correlations of

the information possessed by the network in a distributed and non-fixed way. The

computational elements are connected via weights that are adapted during use to

improve performance.

For example, a network concerned with the processing of visual data might consist

of a set of units whose job it is to process activations from a set of receptive areas

on the retina in such a way that the structure of images received as input may be

identified and so define a concept for further processing. In order that this might

be possible, another set of units, which may not have any particular identification

with retinal points, respond to certain characteristic shapes, edges etc., eventually

to produce a set of activations somewhere else to indicate the association of a

particular concept with the image.

Thus such- networks- by their very structure process in parallel a number of simul-

taneous constraints present in a certain input, and are in this way able quickly

- 	 10 	-

Hard limiter
	

Threshold logic
	

Sigmoid

Figure 2.1: Three types of nonlinear response function commonly used in connec-

tionist models.

to link concepts (or actions) with inputs characterized by many contributory fea-

tures.

Computational elements (nodes) used in these models are nonlinear, typically

analogue, and may be slow compared with modern digital circuitry. A simple

node sums N weighted inputs and passes the results through a nonlinearity (see

figure 2.1). We demonstrate in section 2.2.5 how important this nonlinearity is, as

in many areas of physics, for giving rise to more interesting behaviour. The node

is characterized by an internal threshold or offset 9 and by the type of nonlinearity.

The three common types of nonlinearity used are illustrated in the figure. These

are the hard limiters, the threshold logic elements, and sigmoidal nonlinearities.

The actual network model is specified by the functionality of the node and the

learning rule used, and by the nature of the connections. The learning rule specifies

how the weights (connections) should be updated during use to improve the net

performance.

Neural nets in theory provide a greater degree of robustness or fault tolerance than

von Neumann sequential computers, through the possibility of a large number of

processing nodes, each processing mostly local connections, or more - fundamen-

tally, each representing a small part of a number of pieces of information which

11 	 - 	--

are distributed throughout the net. Thus damage to a few nodes or links need not

impair overall performance significantly. The possibility of adaptation or learning

is one of the major attractions of neural net models, especially in areas such as

speech recognition, where training data is limited and new talkers, new words,

dialects and phrases are continually encountered. Robustness is also provided by

the compensation of minor damage to nodes or weights during further adaptation.

In connectionist models, the knowledge about any individual pattern is not nec-

essarily stored in the connections of a special unit' reserved for that pattern, but

may be distributed over the connections among a large number of processing units.

This allows generalization on underlying pattern trends to take place (chapter 4).

2.2.2 Learning

The representation of the knowledge in a net is set up in such a way that it

necessarily influences the course of the processing. Using knowledge in processing

does not mean that one has to locate the relevant information in memory and

make use of it; the knowledge is intrinsic in the processing itself.

Now, if the knowledge is the strength of the connections, learning must be a matter

of finding the right connection strengths so that the right patterns of activation will

be produced under the right circumstances. This is a very important possibility -

an information processing system which can learn - because then such a system

could learn to capture the interdependence between activations that it is exposed

to in the course of the processing.

The basic approach of connectionism or PDP models to the question of adapt-

ability is different to traditional symbolic learning techniques in that firstly, the

goal of learning is not assumed to be the formulation of explicit rules. The goal

is taken to be the acquisition of connection strengths which allow a network of

simple units to act as though it knew the rules. Secondly, the learning mech-

anism is not attributed with powerful computational capabilities. Instead one

'but may be. See for example section 3.6.3 for the "grandmother cell" idea, and the type of

generalization which this may afford.

12

assumes very simple connection strength modulation mechanisms which adjust

the strength of connections between units based on information locally available

at the connections.

2.2.3 Generalization

The possibility of some form of generalization arises when the network learns a set

of mappings which involve some or all of the weights being used strongly during

the presentation of more than one pattern. This can be illustrated with the simple

pattern associator [WBLH69, AS87]). The pattern associator consists of two sets

of units, with connections from the first (input) set to the second (output) set. A

pattern of activation over the input causes a pattern of activation over the output.

The simplest way in which such an associator can learn is through the use of the

Hebb rule [Heb49] - when units A (input) and B (output) are simultaneously

excited, increase the strength of the connection between them. Or, th6#:,
IT

1WAB cc SASB
	

(2.1)

where the activations of the units A and B have values {1, —11.

Now, if one wishes to learn multiple non-orthogonal patterns in the same set of

representations, one may experience two distinct synergetic effects. Firstly, if the

set of mappings required fall into some consistent trend depending on some un-

derlying characteristic of the data, each pattern and therefore each weight-change

will in some way cause the other patterns on average to produce activations closer

to the desired outputs. Using the Hebb rule and the simple associator, the class

of mappings for which the effect is positive, due to underlying consistencies, is

quite small, but other nets employing continuous-valued node states and weight

changes allow significant accumulative learning effects. Secondly, with the infor-

mation of a particular class of mappings stored in the network weights through all

the example patterns used, the network most lily has retained only the relevant

structure of a pattern that makes it a member of this class, and thus may be

reasonably expected to display such general knowledge of the class in deciding

13

INPUT

X
0

-* OUTPUT

A
N-i

Figure 2.2: A perceptron.

on the classification of a previously unseen pattern. Such an effect is known as

generalization, and illustrates what is meant by a network acting as if it knew

the "rules" but not actually storing them in an explicit way.

2.2.4 Perceptrons

Basically, a perceptron is a device which computes a state y by processing the

weighted sum of a set of simultaneous inputs (x 0 , x 1 ,.. . ,ZN_i) through some

function (usually a hard nonlinearity).

Figure 2.2 shows a perceptron that decides whether an input pattern belongs to

one of two classes (A or B), depending on whether the computed state y is high

or low. The perceptron computes a weighted sum of the input elements, subtracts

a threshold (9) and passes the result through a hard limiting nonlinearity so that

the output y is either +1. or —1. The decision is taken to be class A if the output

is +1 and class B if the output is —1.

-- 	 14 	 -

x l
In

-c 0

Figure 2.3: A decision boundary to be found by a perceptron, separating the two

classes A and B.

For the purposes of explanation of the behaviour of such a device, consider a

perceptron with just two inputs. One can then plot a map of the decision re-

gions created in the 2-dimensional space spanned by the input variables. These

regions specify the input values which result in a class A and class B response

by the perceptron. The decision regions are separated by a hyperplane, which in

2 dimensions is a straight line. Figure 2.3 shows such a decision boundary. The

equation of this line is

wo 	9
= -- + - 	 (2.2)

Wi

and so its orientation and position is dependent on the connection weights w0 and

w 1 and the threshold 9. In order that the perceptron might distinguish a whole

range of classes (rather than those it distinguishes in its initial configuration)

it must be taught using a learning algorithm. The learning algorithm should

adjust the weights and threshold such that the decision boundary is repositioned

to classify correctly example -patterns chosen from the classes A and B (if this

is possible). Rosenblatt [Ros59] developed the original perceptron convergence

procedure, which will be described here since it is similar in form, albeit much

15 	 -

simpler than, the backpropagation learning algorithm used for the MLPs used in

this thesis. This procedure is similar to the fixed increment procedure of pattern

recognition [1J1173].

First the connection weights and threshold are initialized to small random non-

zero values. Then a new input with N continuous valued elements is applied to

the input, and the output (y) is computed. Connection weights are adapted only

when an error occurs, using the formula:

w 1 (n + 1) 	= 	v 1 (n) + 771d(n) - y(m)1x(n) 	 (2.3)

	

d(n)=
	

{ +1 if class A

—1 if class B 	
(2.4)

0 << 1 	 (2.5)

where 77 is a gain term, controlling the adaptation speed, and the perceptron

output state at time n, y(n), is defined by

N-i
y(n) = Fh(E w(n)x(t) - 9), 	 (2.6)

Fh being the Heaviside function.

The procedure is repeated for each pattern at every time-step n until either all the

mappings are reproduced correctly, or the weight vector is seen to cycle repeatedly

and fails to improve the performance (this occurs when the classes are not linearly

separable).

Associated with Rosenblatt's learning procedure there is a convergence rule, which

states that if two classes are linearly separable then the perceptron convergence

procedure converges. In other words, if a hyperplane exists which separates the

two classes, the perceptron convergence procedure will find it in a finite time.

The perceptron convergence procedure is clearly very simple and numerous mod- -

ifications can be, and have been, made to the basic idea to allow the perceptron

- 	 16 	-- 	-

to perform better when the condition of the convergence theorem is not satisfied.

One such example is the Widrow-Hoff algorithm [WH60].

It is the very simplicity of the perceptron which allowed the possibility of a con-

vergence theorem, and simple analysis above, which was also responsible for the

possibility of a complete mathematical analysis of its fundamental capabilities

and limitations. The obvious limitation is its clear inability to separate classes

if a hyperplane cannot be drawn between them. This eliminates the vast major-

ity of general mappings. This can be resolved using more layers of perceptrons

and combining their decision boundaries to form particular shapes, but then it is

(currently) not possible to prove a convergence theorem for whatever learning pro-

cedure now has to be used.' Using the simple framework of perceptrons, Minsky

and Papert [MP69] were able to define the types of mappings which could not be

performed and, more importantly, show the generally poor scaling performance

that can be expected. (Incidentally, the book by Minsky and, Papert is viewed by

many to have contributed to the lack of research funding in this area of Artificial

Intelligence for the next decade or so [01a89].)

2.2.5 Multi-layer perceptrons

Multi-layer perceptron (MLP) is a generic name given to feed-forward nets with

one or more layers of nodes between input and output layers. The nodes may have

any type of nonlinear or linear response function. The layers which are neither

input nor output layers are known as hidden layers, since their actual states at

any particular time are not required to be anything in particular, unlike the input

nodes (whose states are fixed by the input pattern) and the output nodes (whose

states represent some specific value associated with the input patterns). Figure 2.4

shows a general MLP.

Many of the limitations of perceptrons pointed out in [MP69] can be overcome

by nonlinear MLPs, in so far as mapping complexity is concerned. A theorem by

Kolmogorov states that any continuous function of N variables can be computed

using only linear summations and nonlinear but continuously increasing functions - -

'Apart from stochastic methods, such as the Boltzmann machine [AHS85, Bou861.

-- 	 ' 	' 	1'7

00 • • • 	INPUT

00 0
HIDDEN

00

00 • • • Q OUTPUT

Figure 2.4: A general multi-layer perceptron (feed-forward network).

of only one variable [Lor76]. Effectively it implies that a three layer perceptron

with N(2N + 1) nodes using continuously increasing nonlinearities can compute

any continuous functions of N variables [Lip87]. However, there is the inevitable

problem of a satisfactory learning procedure to be solved. It will be demonstrated

in chapter 3 how the simple gradient descent search in a multi-dimensional space

can be used to alter the weights in such networks, given a global cost function.

The benefits of MLPs are possible directly as a result of the nonlinearities used

in the node response functions, combined with the extra layers of processing or

mapping. Several layers of linear processing units can be shown to be equivalent

to using just two layers (input and output), i.e. the linear hidden layers make no

difference to the decision region complexity which the network can form. This can

easily be seen if we consider each set of weights between two layers 1 and 1 + 1 as

an N1 by N1+1 matrix (T1+1 , 1), where N1 is the number of nodes in layer 1. Thus

each matrix of weights Tl+, ,l performs a transformation on the vector defined by

the statesof the nodes in 1yerl, yz zl,z2,..,viNJ Thus the states of the

layer 1 + 1 become:

18-

vl+1 =
	 (2.7)

Given that L is a linear function, the left-hand side of (2.7) can be rewritten

Mj,z+1vr where M is a new matrix given by the product of the matrix T and the

diagonal matrix defining the linear function L. Thus the output vector Vm (states

of the output nodes) is given by:

V.= m,,n1.Mm1,m2
	 (2.8)

where v1 is the input vector. But the product of matrices M in (2.8) is equivalent

to one matrix Sm ,i, and so the hypothetical multi-layer linear network with the

weight matrices T2 , 1 . . . Tm,m...i and the linear response functions represented by

the diagonal matrices Lm . L 2 is simply equivalent to a two-layer network with

identity response functions and the weight matrix T2 , 1 =

To demonstrate the types of decision regions particular MLPs can support, as a

measure of the complexity they can manage, consider networks of nodes with hard

limiting nonlinearities (Heaviside functions).

Then the 2 layer perceptron can form a decision region in a 2—dimensional input

space defined by a single straight line. Thus the 2 classes are given respectively by

the region on one side of the line and the region on the other side. With 3 layers

of nodes one can consider each of the nodes in the hidden layer as separating the

classes with a straight line (i.e. acting as 24ayer perceptrons). The output layer

then combines all these boundaries to form a convex open or closed decision region

(the region formed by the intersection of a number of straight-line segments).

Similarly, a 4—layer perceptron has an extra layer again and thus the output layer

combines all the convex open or closed decision regions to which the nodes in

the layer above respond. Effectively then, given enough nodes, each node in the

layer before the output in a 4-layer MLP can isolate a single point in the input

space, and then each node in the output layer can combine any of these. Thus, in

principle, the 4-layer perceptron, can form regions of-arbitrary complexity, limited

only by the number of nodes in the hidden layers.

19 	 -

The difference when a sigmoid response function is used is in the shape of the

boundary lines, and effectively modifies the final decision regions into a collection

of curved segments rather than line segments. The degree of curvature can be

modified through variation of the gain parameter , 8 in the sigrnoid equation:

1

= 1 + e_13z 	
(2.9)

The sigmoid nonlinearity is used in general in MLPs because a response function

is required for the backpropagation learning algorithm which is differentiable,

and the sigmoid has a particularly simple derivative (see chapter 3), while also

resembling to a reasonable approximation the desirable hard limiting nature of

the step nonlinearity.

Although the limitations on the complexity of mappings which can be performed

by perceptrons is in principle overcome by nonlinear multi-layer perceptrons, the

analyses of Minsky and Papert [MP69] regarding order and coefficient size suggest

that various kinds of scaling problems are likely to stand in the way of attempts

to exploit their potential. However, s uch obstacles may perhaps be avoided if

suitable network architectures and learning rules are employed.

2.2.6 Feed-forward networks and pattern classification

Consider the problem of estimating the conditional probability P(rJX) that, given

a pattern X, it is a member of pattern class R,.. Once this is done, the patterns can

be classified according to the maximum likelihood decision rule, i.e., an unknown

pattern X should be assigned to the class R, such that, for all r except r =

P(sX) > P(rIX).

A parametric statistical way of doing this is to use Bayes law for conditional

probabilities to reduce the problem to determining not P(rIX), but the conditional

probability P(XIr) of a pattern being X, given that it is class R,.. If we assume

20

a 1—dimensional input pattern x, then we can see how a perceptron structure can

be used to mimic a gaussian classifier [Lip87, U1173].

If Mi and o, are the mean and variance of input x when the input is from

class 3, and 	and o are the mean and variance of input x 2 for class t, and

= Or2 . = of,, then the likelihood values are related to as

= -
	M)2 	

2 	

(2.10)
i=O 	01

= 	 M 	
(2.11)

and similarly for class t. The maximum likelihood classifier must calculate L, and

L t to determine to which class to assign the pattern. The first term in (2.11) is

identical for both classes and so can be dropped. It can be seen that a simple

perceptron can calculate the difference between the second terms and between the

third terms. This can be realized by setting weight wi in the perceptron equal to

wi
 = 2(M8 - M)

and the threshold 9 equal to

N-i

e= 	Si

i=O

In general, the elements of the input pattern will be correlated in some way. If we

assume the patterns are normally distributed, then we have that

= exp[—(1/2)(X - 	; M)T C(X - M)}
P(XIr) (2.12) (27r)/2(det C)1/2

with X and M,. being vectors of the pattern and the means for class R,.. The

gaussian classifier will estimate the rth class covariance matrix C,.. This is done

21

by estimates of the average correlation between pattern elements, given the pat-

tern's membership to the class r. By making various simplifications, such as the

statistical variability of all pattern elements being equal (C ji = c,.jj), the patterns

can be efficiently classified. A simple example of a non-parametric method of

pattern classification is the nearest neighbour method, which determines simply

the distance of an unknown pattern X from every other pattern in the training

set, and finds the training set pattern which is nearest to X. Various metrics may

be used to determine this distance.

Various other parametric methods exist for such classification of patterns, but

they involve strong assumptions about the underlying distributions.

It can be seen how the task of a neural net may be likened to parametric methods

of pattern classification, and it may be argued that all a net is "really" doing is

this basic function (one such example is the Boltzmann machine {A11S85]). Even if

this were the whole story, we may also note how the neural nets do this. It is done

through non-explicit assignation of suitable values to the weights, which allow the

neural net to reproduce the input distribution. Thus neural net classifiers are non-

parametric 5 and make weaker assumptions concerning the shapes of underlying

distributions than standard statistical classifiers. In this way they tend to be more

robust when distributions are generated by nonlinear processes and are strongly

non-gaussian. Together with an easily-specifiable learning rule, such nets should

be positively viewed as general and adaptable classifiers.

5 In the sense of an initial assumption of the input space; although it maybe argued that the

nets act in a parametric way in the ensuing learning, through deciding on a structure for the

input space.

- 	 -

Chapter 3

Backpropagation: investigations and

improvements

31 Introduction

In this chapter the backpropagation learning algorithm is described and various

studies are made of its performance on the variable difficulty rounding problem.

The first part of the investigation involves the observation of learning curves and

error maps, from which it can be seen how the algorithm fares for different system

sizes and different difficulties of problem. The influence of the number of hidden

units used in the networks is studied in detail for the rounding problem and the

scaling behaviour is discussed. The second part of the chapter is concerned with

two methods of improving the algorithm. First we introduce a deformation proce-

dure, which also is applied to another problem domain to illustrate its generality.

Secondly we develop a method for automatically varying the learning parameters

during the course of training, to allow a fast but controlled descent.

23

3.2 The backpropagation learning algorithm

3.2.1 Notation

Since all applications in this thesis use nets of three layers (input, hidden and

output), the notation used can be made more simple, and we will speak of the

nodes in "the hidden layer" rather than "layer 1" for example. This allows the

specification of a node state in any layer through use of a different letter rather

than subscript, in this way making the equations easier to understand. Table 3.1

shows the notation used in this chapter.

3.2.2 Derivation of the weight changes

The. backpropagation algorithm' is a method of adjusting the weights in a feed-

forward network so that the output pattern, when pattern p is processed through

from input to output, is the same as a target pattern, for all patterns p in the

training set. The way the pattern is processed from input to output is as follows.

The input pattern p is clamped to the input nodes:

1'=v' 	Vi, 	 (3.13)
/

these states are then processed to the hidden nodes:

HjP = FH(4) 	 . 	 (3.14)
N1

where 	OjP= >wI'. 	. 	 (3.15)

Note that the summation over i runs from 0 to N1 . The unit zero in the input

and hidden layers has constant value (I =H' = 1, Vp) and thus represents a

constant bias connecting to each node, irrespective of the pattern being processed.

We will sometimes talk of the hidden unit threshold, denoted by 8, and equal to

'We shall use the Rumeihart [RHW86] formulation, although other derivations have been

independently discovered [Wer74, 1C85, Par85]

24

Symbol Meaning

I input unit state

H hidden unit state

0 output unit state

V input pattern

t target pattern

5(o) error term for an output unit

5(h) error term for a hidden unit

potential at a unit

FO response function of an out-

put unit

FH response function of a hid-

den unit

subscript on any of above labels the unit in a layer

superscript on any of above labels the pattern being pro-

cessed

subscript of zero indicates a fixed node giving

the threshold values

prime (F) indicates the differential

wf weight from input unit i to

hidden unit j

weight from hidden unit i to

output unit j

N1 number of input nodes

NH number of hidden nodes

No number of output nodes

Table 3.1: Notation.

- 	
25

w 01310 (and similarly for the output unit threshold 9). Finally, the output pattern

emerges as some function of the output states:

o = FOk() 	 (3.16)
NH

where Opk = E wH?. 	 (3.17)

If we take the output pattern to be a direct mapping of the output states, then

we can define a total error (E) between the net's output and the target output as.

a sum of squared errors at each of the output nodes for each of the patterns:

1 N N0
E := 	(t - QP)2 	 (3.18)

P=1 k=1

Other measures of the error can be defined (see chapter 4), but we use this one

here to illustrate the derivation of the weight changes using gradient descent. The

backpropagation algorithm for reducing this error by changing the weights uses

gradient descent on the surface E in the space in which it is defined (i.e. the space

of the network weights), thus:

AW
OE

cK -.--,
ow (3.19)

where w represents a general weight anywhere in the system. The constant of

proportionality is taken to be 17, and is known as the step-size, thus:

OE
tXw = - 77

9w
-. 	 (3.20'

The error E is an implicit function of all the weights, but the form of A w for all

the weights between the same two layers will be the same. The weight changes

for the weights from hidden to output are:

= 	 (3.21)
P 	 1k

26

8op
= 	awk(t_') 	 (3.22)

=-) a(>wHr), 	 (3.23)
pa 	 8wf/ 	

F

where F07 FO,(), and represents the derivative of the output response func

tion. The partial derivative in (3.23) is clearly zero for all but the i = l,j = k

term in the {ij} summation, since all the weights vary independently, thus we

have:

AWIk = 77 E(tp - O)FO'Hr 	 (3.24)

AWjk = > i,S(o)Hr 	 (3.25)

	

where 	6(o) := (t - O)FO'. 	 (3.26)

For the input to hidden weights we have a similar derivation until (3.23):

	

AWA = 	::(t - 	
a (w1Hr), 	

(3.27)
P j 	 8Wfk

where now the hidden states H are implicit functions of the input to hidden

weights, thus:

	

AwjIk = 	 - O)FO7wfFH
(mti1)

. 	 (3.28)

Again here the only term in the {im} summation which survives is the i = 1, m = k
term:

=77 E E(t l? - O7)FO7wgFH'1 	 (3.29)
Pj

= 	S(o)wFH"1r, 	 (3.30)
P 	j

AW, = 	i7S(h)7J 	 (3.31)

27

if we define S(h)r := FHr' 	5(o)wf. 	 (3.32)

So we see from equations (3.25) and (3.31) that all the weight changes are com-

puted from the product of the state of the unit from the which the weight orig-

inates, and an error term associated with the unit the weight influences directly,

summed over all the patterns. Since the error term for the hidden units involves

a weighted summation over the error terms for the output units, this procedure

is known as back propagating the errors. Notice how the processing of the S's in

the backpropagation phase is almost the same (apart from the nonlinear response

function) as the processing of activations in the forward direction.

One further point is that if sigmoidal response functions are being used, then it is

not possible for the state of the units to reach the limiting values of zero or one.

Thus it is normally decided to consider outputs within some tolerance tol of the

actual targets as sufficiently well learnt.

The basic algorithm is thus given by equations (3.25) and (3.31). However, a

slight modification pointed out in [RHW86] theoretically gives a more stable and

faster descent, by adding on a fraction of the last weight change at time n - 1 in

calculating the new weight change at time n:

Lw(n) = _?7 ;; + aLw(n - 1), 	 (3.33)

the idea being that if the system is progressing down a long gentle slope the weight

changes will be in the same direction and therefore additive, hence speeding up

the descent, while if the system is continually crossing from one side of a valley to

the other, the weight changes will be damped into an average downward direction.

cr controls the fraction of the weight to be added on each time, and is known as

the "momentum". Its actual usefulness is discussed later.

Thus the learning schedule for a network commences in the following way. The

weights are initialized with small random values in order to break the symmetry, as

described in [RHW86]. At each epoch of learning the complete set of patterns is

presented to the network and the gradients for each weight accumulated, using the

28

Input Output

[0.5+r,1.0]

[0.0,0.5—r]

1.0

0.0

Table 3.2: The mapping required to be learnt between an input unit and its

corresponding output unit. The parameter r defines the difficulty of the task.

backpropagation procedure. After all the patterns have been presented the weights

are changed according to equation (3.33). This is continued until the output values

for each pattern are within tolerance for each pattern, or learning is abandoned

due to the network getting stuck in a local minimum (see section 3.5.3). There

are other schemes 'for updating the weights, which approximate to the gradient

descent procedure for small values of the step-size, but we shall not consider

them here. The type of updating scheme described above is known as "batch

learning" [Wal87a].

3.3 The rounding problem and its training set

The learning algorithm was applied to the following task. The network is required,

when trained, to be able to round-off a set of numbers applied to its input to zeroes

and ones at the output. There is a corresponding output unit for each input unit.

The numbers applied to the input lie in the interval [0,1], and outside the range

(0.5 - r, 0.5 + r), where r is the parameter defining the difficulty of the task. Thus

the problem domain to be learnt consists of the mappings in table 3.2 for a certain

task difficulty r.

Thus the network can be trained to perform tasks which require differing levels of

discernment. The easiest task takes the form of a one-to-one mapping of binary

patterns input to output (r = 0.5), and the greater difficulties are found when

numbers either side of 0.5 are very similar and yet have to be mapped to different

extremes. So the closer r is to zero, the harder it should be for the network to

adjust its weights to achieve the required function.

Since the nature of this problem is such that each element forming an input picture

29 	 '

is totally independent of the other elements (i.e. this is an order 1 problem, in the

terminology of Minsky and Papert [MP69]), the elements in the output picture

should correspondingly be independent. The only dependence between input and

output is between elements corresponding to the same positions in input and

output pictures. With this restriction it is clear that the network should tend

to alter its weights such that it forms large weights for non-intersecting routes

from the input elements through the hidden layer to the corresponding output

elements, and negligible weights for the weight paths which would interfere with

these routes.

This problem is linearly separable, so it is not necessary to use a hidden layer

to perform the mapping. However, for the purposes of illustrating the perfor-

mance of the backpropagation algorithm in learning the mappings when there are

hidden units present, since in general they will be necessary, we perform these

experiments solely on networks with one hidden layer. Given that hidden units

are present, we must also ensure that we have at least as many hidden units as

input/output pairs. The reason for this is that as r -* 0, the numbers leading

from the input nodes become extremely small and so unless there exist paths

which are independent of the other input values, the output will not be able to

discriminate between 05 + r and 0.5 - r values at the input. The input layer

contained up to seven units, the output layer had the same number of units as

the input layer, and the hidden layer could contain up to 25 units. If there are

more hidden units in the hidden layer than are required to find a solution, then

there are expected to be a larger number of possible solutions, and one of these 	(
will have to be chosen by the system. The choice can depend only on the initial 	$
random weights. Thus the system can descend into different global minima of the

error surface, by starting off at different points on the surface. The spectrum of

global minima includes solutions where routes between input/output pair involve

varying numbers of hidden units, and also the cases where some hidden units are

not used at all. We are not concerned with whether the network can generalize

on this problem, although a form of simple generalization is possible, which is

instructive to examine, before more complicated generalizations are examined in

later chapler- A._It can be demonstrated usingthe decision regions mentioned in

chapter 2. If we take a network with two input nodes (and thus two output nodes), 	1 and draw

30 I

Output(1)
	

Output(2)

	

input(2)
	

input(2)

	

1.0. 	 1.0.

	

0.5
	

El
	

0.5

0.5 	 1.0
	C 	 0.5 	 1.0

	

input(l)
	

input(1)

Figure 3.1: The two types of decision regions for output nodes 1 and 2, when

there are two input nodes input(1) and input(2), in the rounding problem.

the desired decision regions in figure 3.1 for each of the output nodes, we notice

that the decisions of the respective output nodes (we consider them to be binary

classifiers) require an independence of the other input node, and a sharp dividing

line at the value 0.5 on the relevant input unit. For any particular difficulty of

problem if all sample points have been learnt then the decision line will exist in

the region constrained by the learnt points on either side of the perfect decision

line. Figure 3.2 shows the types of lines which may arise after the points shown

have been learnt. It may be that the perfect line is found straightaway, although

this is unlikely, nevertheless it is certain that some points either side of the line

will be mapped very well, thanks to the learning of particular hard numbers in the

training set, and so generalization to a larger or smaller extent can be achieved. It

can be seen that for certain values of input(1) the decision line crosses the perfect

decision line, which may also be regarded as some form of (weak) generalization.

Thus generalization is limited by, but maybe better than, the hardest examples

in the training set.

The simple preliminary study above actually gives some guidance on what patterns

to include in the training set for the most efficient weight changes and economical

31 	-

input (2)
In

0.5

0.0
0.0
	

0.5 	 1.0
input (1)

- Class mapped to

+ Class mapped to +1

Figure 3.2: Possible decision lines which output(1) node may form on having

successfully learnt the data points shown, which indicate the inputs in terms of

the point (input(1), input(2)).

pattern numbers. Clearly we should organize the patterns such that the two basic

properties of the decision lines are obvious: firstly, independence of decisions with

the other input units (i.e. those not corresponding to the output in question), and

secondly, inclusion only of the hardest examples for a particular problem difficulty.

The task for a particular range r is that the network should learn to round off all

numbers (N) in the range

(0.5-f-r) < N< 1.0 and 0.0< N< (0.5—r). 	 (3.34)

In order to ensure this then, writing R+ = (0.5 + r), and R_ = (0.5 - r), the

pictures at the input units are taken to be all the permutations of 0, 1, R
and R_, with R's only present at one of the inputs per picture. An example of

this is given in table 3.3. It can be seen that such a training set satisfies the

conditions mentioned above, for optimal constraining of the decision boundary.

Notice too that for c input units the number of pictures required (for the guarantee

of reproducing the whole set of possible inputs and their combinations correctly)

will be

- 	 - 	 32 	 -

unit 1 unit unit

R+ 1.0 1.0

R_ 1.0 1.0

0.0 1.0

0.0 1.0

1.0 0.0

R_ 1.0 0.0

R 0.0 0.0

0.0 	1 0.0

Table 3.3: Part of the training set for a three input unit network. The rest of the

set is obtained by permutations of the columns.

N(c) = c2c, 	 (3.35)

thus the number of pictures required in the training set scales worse than expo-

nentially with the number of input units. Such problems with scaling are not

surprising. Although, as mentioned above, this an order 1 problem, the strong

independence of the input elements can only be ensured by at least this set of

patterns. These patterns define the boundary . exemplars [AT88] of the training

set. In fact, the main task asked of the network, is to learn the independence in

the input/output pairs.

3.4 Unit response functions

The response functions FO and FH are normally taken to be the same for all units

(although this is not necessary). As mentioned in chapter 2, the sigmoid function

is normally used, because of its properties of being similar in approximation to

the perceptron step nonlinearity, and confining the response to lie in alixed range.

The form of the sigmoid function is given in equation (2.9), which we rewrite here

for convenience:

1

= 1 + e3- 	
(3.36)

- 	 33 	-

The differential of the sigmoid function is

dy 	 e -
dx - 	= 	(l + €_130)2 	 (3.37)

= —/3y(y - 1), 	 (3.38)

and so we see also that another nice feature of this function is that the differential

involves only the value of the function and not its argument, which is convenient

for efficient computer implementation.

So it seems that the sigmoid function would be an appropriate one to choose for

the node responses. However, there is still the question as to whether the nodes

should be confined to positive states in the range [0, 1], or allowed to use the

entire range [-1, 1]. This may depend on the type of problem studied, but we

shall demonstrate how in the problem studied in this chapter the full range is the

more appropriate.

Note first that the only state ranges which are important are the ones in use by

the hidden units, since the input units have their values clamped by the input

patterns and the output units can be converted easily to any range using a linear

post-processing stage. The range of values which can be adopted by hidden units

will in general affect the size of the space which can be used to represent the

patterns (chapter 5 discusses this concept more fully).

We can understand the effect of using the ranges [-1, 1] and [0, 1] in the hidden

layer of units by considering the effect on an output unit as the values of the inputs

are varied. We will discover that the maximum difference to be obtained is about a

factor of two in the learning speed, given the most suitable application. The [0, 1]

range can only cause positive state values to be transmitted down the weights,

while the [-1,1] range allows the full range of positive and negative values. But

the value of an output unit is given by:

Oi = FO (,)
	

(3.39)
NH

= y(wFH3 +9). 	 (3.40)
1=1

The quantity in parentheses has the same range (7Z) whatever the range of values

FIT3 can adopt, because the parameters w 47 and Oi are able to take on all real tj

34 	-

values. The only benefit to be derived from allowing the F11 3 to be of the form

1 is to provide it with a symmetry about zero, thus enabling the network

to learn automatically half the mappings required (in the optimal case of the

rounding problem),' or equivalently, if all mappings are in the training set, provide

a reinforced update for the weights by summing the reinforcing weight changes.

This doubles the learning speed which would be achieved using the [0, 1] hidden

unit ranges.

For a network with the same number of hidden nodes as input and output nodes,

then if we assume that the optimal-solution (consisting of "paths" from input node

to corresponding output node) is reached, the inputs 0 to a hidden node will be

opposite in sign for values of the input node at the top of the path symmetrically

about 0.5, and in order for the output unit at the end of the path to respond

correctly, the weight from hidden unit j to output unit i and the threshold of the

output unit must satisfy:

w FH3 (g 5) + Oj = — (wZ .7 H,(- 2) + 9) 	 (3.41)

Thus for the [-1, 1] response function (FH = 	- 1) this requires that

Oj = 0 Vi, 	 (3.42)

while for the [0, 1] response function (FH = y) it requires that

= —20i Vi, 	 (3.43)

where w represents the large weight making the path from hidden unit to output

unit. In both the derivations above we assume that all the other weights not

involved in the paths are zero.

The actual effect of this requirement can be demonstrated if we monitor the values

of the quantitièsw and 8i above, when the two different response functions are

'This reasoning assumes the "heavy route" solution is the one which is always found.

35 	- 	 --

threshold value

1.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

-6.00

-1.00

-8.00

-9.00

00

Figure 3.3: Thresholds as function of learning cycle for a 3-3-3 network, r = 0.01.

used. Figure 3.3 shows how the threshold 9 is much more stable in the [-1, 1]

case, hardly moving from its optimal value of zero, while for the [0, 1] case the

threshold increases negatively all the time, being forced to follow the value of the

large weight making the path (as required in (3.43)). This is undesirable since

the dependence of the two quantities upon one another will make the descent less

stable (because both the variables are iterating to values which depend on each

other). Also in figure 3.4 we see that the learning speed is approximately double

for the [-1, 1] case all the time (note the logarithmic scaling on the abscissa).

The response functions used therefore in this chapter are:

FO= 	 (3.44)

and

FR = 1 + -' - 1,
	 (3.45)

which give weight changes specified by the following S's (from equations (3.26)

and (3.32)): 	 .

36

error

10.00

9.00

800

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

I 	2 	5 	10 	20 	50 100 200 	500 1000 2000 5000 10000

teaming cycles

Figure 3.4: Learning curves for the 3-3-3 network, learning down to range

r = 0.01.

= 	- O)O(1 - O)
	

(3.46)

(3.47)

=
	(HIP +

1)(1— Hr)s(o)wi. 	 (3.48)

These S's can then be substituted in equations (3.25) and (3.31) to get the weight

changes.

3.5 Evaluation of the basic algorithm's perfor-

mance

3.5.1 The success rate of the basic algorithm

A further note about the notation: N1 —N 2—N 3 denotes a network of N1 input

units, N2 hidden units and N3 output units.

37

r % nodes correct % patterns correct

100 0.5 100

0.1 100 100

0.01 88.8 43.8

0.008 89.0 45.0

0.006 83.0 15.0

0.004 77.3 9.38

0.002 77.1 11.3

0.001 80.0 0.00

0.0001 80.0 0.00

Table 3.4: Comparison of the percentage of output nodes and patterns correct,

for the system 5-5-5, using the basic algorithm, for various difficulties r.

The performance of the algorithm in learning different levels of problem difficulty,

for different sizes of network, is summarized in figure 3.5 and table 3.4, where we

have used networks with. just the necessary number of hidden units to perform

the mapping; Figure 3.5 shows how the performance of the algorithm, monitored

by the total number of output nodes correct,' decreases as the problem difficulty

is increased (represented by a decreasing r), for all the system sizes, there being

a sharp change in the number of nodes correct at a particular value of r (usually

somewhere about 0.002, but it can be seen that it was sooner for the largest

system. In table 3.4, we compare the percentage of output nodes correct with the

corresponding percentage of complete patterns which were correct, for the 5-5-5

network. Note how the network can get all the patterns wrong although most of

the nodes are actually correct. Closer examination of these numbers suggests that

most if not all the incorrect patterns were actually a result of the nodes responsible

being "flipped", causing the outcome that nodes are mapped either very well or

very badly.

The nature of the learning can be studied using the learning curves - plots of

the progress of the total error at the output units as a function of the training

cycle. This is shown for systems 2-2-2, 3-3-3 and 4-4-4 in figure 3.6.

5 1f the network was having difficulty learning, i.e. it was in a local minimum (see section 3.5.3),
the learning was terminated.

- 	 38

% nodes correct

100

90

80

70

60

50

40

0.0001 0.0010 	 0.0100 	 1.00

difficulty (r)

Figure 3.5: Performance of the algorithm for various problem sizes and difficulties.

39

IC
training cycles

total error
40.0

38.0

32.0

28.0

24.0

20.0

16.0

12.0

8.0

4.0

0.0

training cycles

r=0.5
total error
40.0

36.0

32.0

28.0

24.0

20.0

16.0

12.0

8.0

4.0

0.0

r=0.01
total error
40.0

36.0

32.0

28.0

24.0

20.0

16.0

12.0

8.0

4.0

0.0

r = 0.0001

100
training cycles

Figure 3.6: Learning curves for the basic algorithm at various net sizes and prob-

lem difficulties.

40

On each graph is plotted the progress of total error with training cycle for each

system for a certain difficulty r (0.5, 0.01, and 0.0001), with 77 = 0.1 and c = 0.6.

It can be seen how, for a difficulty of 0.5, all the systems manage to locate a global

minimum within a reasonable period. The descent is marked in all the systems by

a relatively steep descent for the first 10 to 100 epochs., followed by a region of low

gradient until the end. For the second difficulty, 0.01, only two systems manage

to locate a global minimum. The descent is marked again by a steep fall in error

during the first 10 to 100 epochs, but this time the almost level descent which

follows is terminated by another relatively steep drop at 100 to 1000 epochs. The

4-4-4 curve is characterized by a rapid drop at the end, indicating the location

of a sudden steeper descent, leading ultimately to a solution. It can be seen that

the 3-3-3 system, however, does not locate a similar feature, and is destined to

remain stuck on a plateau-like surface. With the third difficulty (0.0001) none of

the systems manage to find a solution. The relatively steep initial descents are

terminated at 10 to 100 epochs by a very flat portion, which shows no sign of

ending.

Finally, from figure 3.7 the speed with which the algorithm finds a solution start-

ing at various (random) points on the error surface can be seen to centre quite

closely about 250 cycles for the majority of the runs, although there are a num-

ber of runs (14%) which get stuck in local minima and fail to find solutions at

all, and also a number that take much longer times, and do not form part of the

main distribution. These runs fell victim to the "crack" problem, discussed in

section 3.5.5. In general, however, if a solution is going to be found quickly, the

point in weight space at which the iteration is started can be expected to cause

about a 40 - 50% difference in run time.

3.5.2 . Error maps in weight space

A useful, but limited, probe into the terrain of the error surface is the error map, or

two-dimensional cross-section of the error surface in weight space. The technique

(described in [PN1186]).is to work out the current weight-change vector Lw, . and,

from this the unit vector giving the direction in weight space of the system'slawp

next step. The error is then plotted in an appropriate range of values of step size

41

Runs

50

45

40

35

30

25

20

15

10

5

0

0 	200 	400 	600 	800 	1000 	1200 	1400 	1600 	1800 	2000

Learning Time

Figure 3.7: Histogram showing the distribution of learning times for a 4-4-4

network at a difficulty r = 0.01, for the basic algorithm.

42

total error
4.2

3.8

3.5

3.1

2.8

2.4

2.1

1.8

1.4

1.0

0.7
-2C) 	-15 	-10 	-5 	0 	5 	10 	15 	20

displacement

Figure 3.8: Descent into a local minimum.

5

6

4
2

3

about the system's current position (say [-2IIwII,2IIwI]), to give an idea of

the kind of terrain down which the system is progressing.

On some of these graphs an asterisk indicates the present position of the system,

and a vertical line indicates the destination point.

3.5.3 Local minima

When the learning curve remains essentially flat for a relatively long time (Com-

pared to the rest of the descent) it is assumed that the algorithm is unable to

converge to a global minimum, and has settled into a local minimum. It is not

easy to "escape" from such local minima by taking perhaps a large step in a ran-

dom direction, since if a lower basin exists somewhere else, the chances of reaching

it in this manner are very slim, and especially as the dimension of weight space

increases, the time needed for a reasonably thorough search is prohibitive.

43

training cycles
5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
1500 1600 	1700 	1800 	1900 	2000

total error

Figure 3.9: Attempted "escape" from a local minimum at cycle 1750.

As an example, consider figure 3.8, which shows a 2-2-2 system learning a mapping

of slifficulty 0.0001. The initial descent, shown in figure 3.6, is reasonably quick,

but before long the error becomes quite stationary. The graph maps the terrain

as the system clearly begins to iterate to the bottom of a local minimum. Imagine

the system at the point on the curve given by zero displacement, and the rest of

the curve as being the surrounding terrain in the direction in which the system is

about to move. We can see how as the system settles into the local minimum the

steepest gradient decreases, and the minimum is characterized by a steep wall in

one direction and a plane in the other. It is possible to make the system climb out

of this by giving it a large step size. However there is no reason why the direction

it takes (current steepest descent in this case) should be one which brings the

system to the brow of a hill, indeed the normal scenario is for the system to climb

up to another local minimum, or a plateau, and stay there, as in figure 3.9 (a

large increase in the step for one cycle at 1750 cycles brought the system out of

the current minimum, but unfortunately left it on a higher one).

Why should it be the case that a local minimum has such a shape described above

44

rather than the more intuitive "basin" shape? The reason is that the response

functions used by (in particular) the output units are of such a form that if the

potential becomes greater than an upper limit, or lowerthan a lower limit, the

actual state of the unit changes very little. With semi-linear threshold functions

there is an explicit cut-off when the state of the unit reaches one or zero, such that

it remains there should the potential become higher or lower respectively, and it

might be expected that the very slowly sloping plateaus here would be perfectly

flat in such a case. Thus the contrasting flatness in one direction and steepness in

the opposite direction indicate that all the output units are bound very closely to

zero or one for each pattern, and increasing all the weights in the current direction

will merely serve to push the units closer to the extreme values of the nodes at

the output (and possibly at the hidden layer too). If the weights are increased in

the opposite direction the opposite should happen, with some of the output units

being pulled back towards mid-range values.

Now we are in a position to explain the shape of at least the last two curves

in figure 3.8. The height of the flat portion is given by the number of output

nodes which are bound to the wrong extreme, the gradient of the flat portion has

already been explained as a result of the low gradients at the top and bottom of

the sigmoid function, and the mountainous region to the left is characterized by an

overall increase in error due to the larger number of otherwise correctly mapped

outputs being moved to intermediate values countering the beneficial movement

away from the extremes of the smaller number of incorrectly mapped outputs.

As we move further away from the current position of the system the error falls

again, as some outputs again become correctly mapped, while others get pushed

to incorrect extremes. It could be that the error increases overall; this depends

on the actual weight changes. Finally, at far left we see another flat portion again

being located. Figure 3.9 can also be explained in this way. The large step size

given to the system pushes it onto a plateau because it was large enough not only

to change the weights sufficiently to leave the current local minimum, but also

to locate another area of weight space characterized by outputs being bound to

extreme values, this time with more outputs wrong than before.

45

3.33

2.77

2.22
L
0
L
L
a)

1.66

C
1

0
1.11

0.55

0.00 -f-
-0.40
	

-0.27 	-0.13 	0.00 	0.13 	0.27
	

0.40

displacement (IdwI)

Figure 3.10: Comparison of the initial gradients for the 2-2-2 and the 2-25-2

systems, at r = 0.5.

46

3.5.4 The influence of hidden units

Gradient of early descent

The descent for the simplest system (2-.-N--2 with r = 0.5) is shown for the first

six training cycles in figure 3.10. The terrain for the system with two hidden units

is compared with that for the system with 25 hidden units. It can be seen how

much steeper the descent is when there are a large number of hidden units.

Observation of gradients for the 2—N-2 system indicated that the gradient in-

creases uniformly with hidden unit number. To obtain an approximate scaling

law, assume that all the weights in a network are of equal importance in the early

stages of learning, so that each weight is made to change in the learning algorithm

such as to reduce the error, by about the same magnitude 6p, and if this change

is small, then since

3E
cx

awii
(3.49)

and the gradient is given by

dEli - 	
8wij

Iii' 9wij
(3.50)

we have

IldEll 0c II 	Ii

dw
6p

II ii 	II I]

(3.51)

But if Sw,, = 5p ê,,, where ê is a unit vector in the direction w,,, so if there are

NW weights in the system,

1

ldEI
cx { (sPre) (5)2e.) }

	
(3.52)

dw

cx (5p)2(N) 	 (3.53)

47

Gradient (first epoch)

Number of weights

Figure 3.11: Scaling of the gradient with the number of weights in a network.

Note the logarithmic scaling of the axes.

since the 6ij are orthogonal. Thus we should expect the gradients to scale linearly

as a function of the square root of the number of weights used in the system.

In figure 3.11 we plot the logarithm of the gradients at r = 0.01 against the

logarithm of the number of weights in the networks. A least-squared fit to these

points produces a line of gradient 0.51 ± 0.04, in accordance with the simple

argument above.

Figure 3.12 shows the same situation as figure 3.10 for a larger network. However,

here the surface is so much more mountainous anyway that the beneficial effect of

the extra hidden units is best seen by noticing the cliff-like terrain of the 7-25-7

network, as opposed to the valley-like terrain of the 7-7-7 network. The cliff-like

descent is much quicker and more penetrating.

The addition of hidden units clearly consistently increases the size of the gradi-

ent, together with stability of the descent, and thus seems to have a consistently

beneficial effect (although it must be remembered that the actual computing time

increases as we increase the hidden units in the network).

L
1733.33

L
L

1)

IINII

- 1155.56
0

1

0
1

577.78

1955.56 	

051

7-7-7

o 1466.67

L
L
ci)

977.78

488.89

0.00 -1--
-22.00

3
N

-13.20 	-4.40 	4.40 	13.20 	22.00

displacement- (Idwi)

0.001 	I 	I 	I 	I 	 I 	I 	I 	I
-35.00 	-21.00 	-7.00 	7.00 	21.00 	35.00

displacement- (Idwi)
Figure 3.12: Comparison of the initial error surface for the 7-7-7 and 7-25-7

systems, for r = 0.5.

49

Redundancy

With the addition of more hidden units, it becomes difficult to analyze the patterns

of heavily weighted routes from input to output, since this typically includes more

than one path for each input/output pair. Thus it is useful to represent the system

graphically, to provide an indication of the routes taken. The intensities were

normalized to the weight with the greatest (absolute) value. Weights of negligible

size compared with the larger weights have negligible intensities. Analyses of

various sizes of system showed that one frequently obtained hidden units with

negligible weights to and from all output and input units. An example is shown

in figure 3.13, a graphics screen dump of a 5-15-5 network which has learnt down

to a range of 10. Similar patterns are observed in other networks with large

numbers of hidden units. It appeared that such occurrences were the results of

competition between two or more input/output routes of similar strength resulting

in a draw, with the weights concerned subsequently becoming negligible compared

with weights in other routes, and the routes themselves thenceforth abandoned.

Scaling of learning time

In figure 3.14 we observe the effect of extra hidden units on the learning, at

difficulty 0.5, for different network sizes. The graphs show the number of epochs

to solution for each system size, averaged over.50 - 100 runs with different random

starts. The error bars give some idea of the variation in learning time depending

on a particular starting point on the error surface. It can be seen that for each of

the networks shown, there is a definite trend for a quicker descent as the number

of extra hidden units increases. Also there is possibly a trend for the addition

of one or two hidden units producing a more dramatic effect as the network size

increases. In all cases the addition of more hidden units has less effect as the total

number of units in the hidden layer increases.

From the results of section 3.5.4 it might be expected that the scaling has some

kind of dependency on a power of the number of weights in the network, or

'Learning down to such a low range for a network of this size was only possible after the

improvements described in sections 3.6 and 3.7 were implemented.

50

/
W4
CO / .

\•.. C).

../ • ..' : 	••.•
/

U

U) \ /•
I... . 	

N 	/
N ..:

... .. .lN ..
iII• •\ '.:/ /•f

•

U)
"I. 	/
•.\/ ___

w

•"\. 	".:..

- 	.
C)
C)

• ,tt !'\ 	/ U

7: ".• f"

C)
C)

/• /•

	

\.. 	 /
I 	

\\• 	

S.

 ,4k:'•

'!!

•'•-•- 	. 	.. 	
'• ;•:' qW //;/Y\

LO

Figure 3.13: Graphics screen dump of the network (redundancy).

2 input nodes

79

:

47

37

26 	 I1 IIII IIIII
16

5

3 input nodes
learning cydes

60

55

49

44

38

33

27

22 	1
16

11
I III IIIIII"I

a

learning cycles
110

100

89

	

nodes 	 nodes

• 	 4 input nodes 	 5 input nodes
learning cycles 	 learning cycles

40 	 27

37 	 25

33 	 23

30 	 20

26 	 18

23 	 16

19 	 14

16 	 12

12 	

:
0 	 6 	a 	ib 	12 	14 	16 	1 	20 	0 	 6 	8 	10 	12 	14 	16 	1-8 iG

	

hidden nodes 	 hidden nodes

Figure 3.14: Scaling of learning times for r = 0.5 with the number of hidden units.

52

Learning time

100

90

80

70

60

50

40

30

20

10

0

1 	 2 	 5 	 10 	 20 	 50 	100

Number of extra hidden units

Figure 3.15: Scaling of learning time versus logarithm of extra hidden units.

more specifically, on the number of extra hidden nodes. By extra is meant the

number over and above the number required to solve the problem, i.e. NH - N1 .

If we assume 'a power law, then plotting log(learning time) vs. log(N g - N1)

should give a straight line of gradient given by the power. However, due to the

rapid levelling off at higher numbers of hidden units, it is more likely that it

is a logarithmic relationship. In figure 3.15 is plotted the log of the number of

extra hidden units along the abscissa, and the training time as before on the

ordinate. The first portions of the lines show approximate agreement with the

scaling relation T x log(NH - N1), with the constant of proportionality being

a function of the number of input units (note how the gradient of these lines

decreases with the number of input units). The latter portions of the lines veer

away from the logarithmic dependency. This is suspected to be due in part to the

redundancy effect described in the last section: as the number of. extra hidden

nodes increases, the probability of'more of them being redundant increases, and

so the learning time will not decrease so rapidly with increasing hidden units,

53

or ultimately produce a levelling off. It is also possible that yet more hidden

units may increase learning time, because the node redundancy is a result of

competition, and this competition may slow down the algorithm's descent.

3.5.5 The danger of a

The influence of the momentum parameter (a) is sometimes very important for

finding a solution. For example, it was pointed out in [PN1186] how an initially

large value of the momentum parameter can cause unstable descent, due to the

large weight changes this causes at early stages, when the error surface is steep.

For instance, on a run with a 7-25-7 system with zero momentum a solution was

reached after only 6 training cycles (r = 0.5), whereas when the system was trained

with a momentum of 0.6 a solution was not found until more than 50 epochs. The

descent during the initial few epochs was quite similar for the two cases, however,

at an error of about 3.5 the second system landed on a plateau. The following 40

or so epochs were taken up by slow progress along this plateau, until the cliff-like

edge was found. This descent was interesting, and so the surrounding terrain for

the relevant epochs was mapped out in figure 3.16. The graphs show how flat

the plateau is and how steep the plunge at the end is. Following the sequence of

graphs from left to right, top to bottom, it can be seen how the system slowly

moves toward the cliff-like drop (slowly because the gradient is small) and rolls

down the cliff quickly. This can be explained in the same vein as the graphs in

section 3.5.3. The flat portion this time however has an end in sight, but the

surprise is how sudden the drop in error is. The actual drop is approximately 3.5,

and if we assume that this change in error is due entirely to incorrect outputs

being suddenly switched from the wrong extreme to the right one, then each

incorrect output would contribute an error of 1/2 to the overall error, and so all 7

incorrect outputs are suddenly rectified (the rest of the descent merely involves

minor improvements). The fact that they are all rectified together implies that

the source of the error was a single weight to which a particular output node was

very sensitive, and happened to result in all mappings of a particular type being

wrong.

54

0

4.4

11

18

22

1.?

1.1

0.6

0.0

4.4

18

13

18

12

1.7

1.l

0.6

0.0

4.4

18

13

18

12

1.7

1.1

0.6

0.0

4.4

3.8

13

28

12

1.7

1.1

0.6

0.0

4.4

18

13

18

12

1.7

1.1

0.6

0.0

4.4

3.8

3.3

3.8

12

1.7

I.'

0.8

0.0

Figure 3.16: Location of a cliff-like crack in the error surface. The small circle

indicates the position of the system on the error surface (read left to right, top to

bottom).

55

Comparison of the scale of these graphs with the 7-25-7 descent in figure 3.12

shows how small a crack was actually found by the system. It seems that the

presence of the momentum caused the system, by chance, to jump onto the plateau

rather than continue with a reasonably comfortable descent. That was presumably

when the sensitive weight mentioned above was increased just too much that it

caused binding of the incorrect output nodes to the extreme values of the sigmoid

function. However, it is this kind of unpredictable behaviour in solving tasks such

as this one which makes the bare gradient descent learning algorithm unattractive.

Sometimes the system was helped by interactively altering step size and momen-

tum at various stages in the learning. However, this was not considered to be

a very satisfactory way of pursuing a better learning procedure, since the error

surface could not be predicted for an arbitrary network at any particular point in

the learning. Below we introduce two ways of improving the performance of the

algorithm.

3.6 The deformation procedure

3.6.1 Motivation and description

We have seen in the preceding sections how inability to learn is marked by the

system finishing up in a local minimum, characterized by a certain number of

outputs being incorrectly mapped, and bound to extreme values of the sigmoid

function. It is also clear that the harder the problem becomes, the greater the

number of outputs that are incorrectly mapped (see the higher minima in fig-

ure 3.6). Since it is clear that unless outputs are kept very close to the correct

extremes of the response function they will very probably be "flipped" over to the

incorrect extreme from which the learning algorithm is unable to extricate them,

the sensible thing to do would be to ensure that this condition is met. To do this,

and to learn greater difficulties, the answer is clearly to use easier mappings of

the same class to push the outputs to the correct extremes, and then gradually to

make the problem harder, keeping the outputs from flipping. We call this method

56

deformation of the error surface. 7

Thus the idea of deformation is to start the system off by training it to learn a

relatively straightforward mapping task, and gradually to increase the difficulty of

the mapping, in such a way that the task is eventually deformed into the task of

the desired difficulty. This process can be viewed as a "topological" deformation

of a problem which can be represented as a simple shape in some space, into a

more difficult problem whose extra difficulty is represented by the same topological

surface, forming a more complex shape in the same space. Alternatively, one can

imagine a task of classifying articles of clothing. A basic picture of an article of

clothing might be shown, followed by a set of progressively more unusual or highly

decorated versions of such an article. In learning to classify or recognize a whole

range of clothing,, the basic object is understood first, in its essence, rather than

presenting the whole set all at once and expecting the net to organize sensibly

from the start.

The entire problem is completely defined by the error surface in multi-dimensional

weight space. The harder the problem one requires the network to solve, the more

treacherous will be the terrain of the error surface, and the harder it will be for

the system successfully to descend into one of the global minima of the surface.

Thus one can picture the deformation procedure as moulding the error surface

about the point occupied by the system, as the system descends towards the

point of the final global minimum. In this way the system is able to avoid a lot of

the treacherous terrain it would have to descend were it started off at a random

position on the final error surface. This technique does not guarantee descent to

a global minimum; the difficulty used at the beginning, and the parameters used

to vary the deformation, need to be such that the surface can be gently deformed,

with the task required to be learnt to vary smoothly at each deformation.

Deformation can be compared with the simulated annealing technique [KGV83] in

which the system is eased into a global minimum of the surface defined by the cost

function by reducing the noise of the system down to the value it has in the actual

'Wieland {WL88} has suggested a similar technique for the gradual learning of a classification,

involving learning exemplars far from the decision boundary first, and then working towards

the boundary.

57

problem. The idea here is that by starting the surface descent at a high noise

value (or high temperature), the system will tend to locate the global minimum

from the beginning, and as temperature is reduced will remain within the basin

of attraction of the global minimum. The difference between the two is that the

annealing prevents the system from becoming trapped in local minima, while the

deformation removes the need for the system to descend a hazardous surface, by

moulding the surface around the system.

3.6.2 Deformation and the rounding problem

The rounding problem is clearly an ideal candidate for the deformation method.

The deformation parameter is r, which is to be decreased in stages from 0.5 to a

final value r0 .

The difficulty can be varied continuously in the rounding problem, so it is necessary

to determine the change in r required as a function of r. For a problem with a

discrete set of difficulty levels it may be a simpler matter to determine such a

schedule. Initially r was changed by a constant factor (0.99) each time. It was

found that the factor was required to be closer to unity as the r decreased in order

that the system remained near enough to the bottom of a "ravine-like" structure

in the error surface that it did not break out of it into some local minimum (i.e.

"flip"). Thus it is necessary to find some way of getting the r-change to cause

an alteration in the error surface which is sufficiently small that the new error is

not significantly different from that attained after completion of learning for the

old r.

The expression derived below gives the change in position of the system on the

error surface (E) after it has been deformed due to a change in r.

The error defined in (3.18) is rewritten as

	

E =
	

(3.54)

where 	E2 := 	(tfl, - o2) 2 .

	 (3.55)

After a difficulty has been learnt the system is able to round numbers outside that

r to zero or one respectively (within a tolerance tol). Thus for a single output

unit and a single picture the maximum error at the end of a deformation cycle is

given by

Emax = (tol) 2 . 	 (3.56)

It is necessary to control the change in r such that the error at this output unit

increases by the same (tolerable) amount each time. The assumption is that the

error at the other units, and for other pictures, will behave similarly, or at least

no worse than that at the output unit with the maximum error.

In deriving the expression for 	Z for a three-layer network we use the same

notation as in section 3.2. Thus

Eip = P21 (01) 	
(3.57)

dropping the subscript p, and so

5E2 = 	50, 	 (3.58)

where

80i 	 (3.59)

for fixed values of the weights. Similarly

(3.60)

Using equations (3.44) and (3.45), equations (3.59) and (3.60) become

SO. ={wfO(1—o)sH 3 } 	 (3.61)

6113 = 	{1(H+1)(1_Ha)a1} 	
(3.62)

59

From the definition of E, we have that

SE, = — (t i —O,)SO, 	 (3.63)

= —' : 50 . 	 (3.64)

Due to the pictures that are presented to the system, SI, is only non-zero for one

of the input units per input picture, and always has the values:

SI, = +2r 	for 	= 1 	 (3.65)

6I, = — 2r 	for 	= 0. 	 (3.66)

Now, substituting (3.61) and (3.62) in equation (3.64) we find

SE, = 	 —H3) >w'6I} 	(3.67)
2 	 in

I

= —2E, (i - 	{(i + H3)(1 - 	 Sr, 	(3.68)
I

where Sj is here the Kronecker delta. Hence the change in error with r is given

by:

- —2E (1 - 	{ (1 - Hfl w'wjS}. 	 (3.69)
3

Equation (3.69) was used in determining the amount by which r should be changed

after each stage in the deformation had been successfully learnt. The maximum

tolerable error change (SE) was taken to be 0.0005 for all simulations (with tol =

0.1), however this value is not critical.'

3.6.3 Learning digits in the presence of noise

The schedule for deformation in the last section was somewhat complicated. This

was mainly because it was desired, and it was possible, to obtain such a schedule

that perfect learning could be ensured. In most real-world problems however, this

81t is important for SE, not to exceed an upper limit (so that the system stays in the ravine),

while an optimum value is determined by the minimum number of cycles required to learn at

the new r.

60

is not viable. So as an example of another problem in which deformation can

be used to improve significantly on the bare learning procedure, the deformation

procedure being any reasonable one, we consider the learning of digits in the

presence of noise. The deformation parameter here is the degree of noise in binary

images.

The network used has a 45-10-45 architecture. The input and output layers are

to be viewed as 5 by 9 arrays of pixels. The input units themselves take on only

the binary values 1 or 0. The training set consists of a set of noisy images of digits

which are to be mapped to their corresponding clean images at the output. The

difficulty of the problem is a function of the amount of noise present in the inputs,

since the greater the noise the less the basic structure of the digit is seen. Thus

one can imagine the error surface becoming very hazardous at various points,

especially when the training set contains digits already very highly correlated

without noise.

The training schedule is clear: teach the network first of all the clean images

(i.e. N-H-N encoding), and then introduce noise at the input patterns, until the

desired noise value is obtained. That is, the final operation of the net is to be

one in which for any digit corrupted by noise of value less than or equal to n%, a

clean image of a digit will be produced at the output. For relatively large noise

values it may be the case that the noisy image of a particular digit is "closer" (in

terms of a distance measure the net is using) to another digit. In this case the net

should produce as output the second digit. The network can be viewed as a device

(characterized by a particular noise tolerance ii) which cleans up noisy images by

producing at output the digit which is closest, in terms of general structure, to

the input image.

It is clear that the error surface for such a functionality is necessarily very highly

structured and will contain many crevices and steep descents.

First we observe the performance of the basic algorithm on the 5%, 10%, 15% and

20% noise domains. Each training set consists of ten examples of each digit, i.e.

100 patterns in all. The learning parameters used here and in all subsequent runs

are c = 0.9, q = 0.1, tol = 0.15.

61

% noise I final I % patterns

error correct

5 20.018 80

10 20.021 80

15 20.027 80

20 20.032 80

Table 3.5: Performance of the basic algorithm (training set).

The network was not able to achieve 100% success in any of the noise categories.

(A run was terminated after 10,000 epochs, when the rate of change of error was

slower than one part in a thousand per epoch, indicating a local minimum of the

type in section 3.5.3 had been located.) Table 3.5 shows the performance of the

network in terms of the percentage patterns correct.

We show in figure 3.17 typical ways in which the network got stuck. The pictures

show the input, hidden and output unit states for a particular pattern in the

training set. In one case all the mappings were correct apart from all the "1"s

with one pixel wrong, and all the "2"s with the same three pixels wrong. This

type of error is characteristic of the "flipping" in the last section, and confirms

suspicions that the network had reached local minima. Clearly, certain patterns

are very similar to each other, and the net is most likely to descend into a local

minimum giving rise to mixture states. The minimum the net is required to reach

probably becomes either narrower or further away (or both), the more noise that

is present.

% noise J final I accumulated I % patterns

error epochs correct

0 0.467 1051 100

10 1.021 1430 iOO

20 0.608 2351 100

Table 3.6: Deformation schedule 1 (clean -+ 10% -+ 20%).

Next three deformation procedures were tried. The first involves the sequence

clean -+ 10% -+ 20% 1 the second the sequence clean - 5% -* 10% -* 15% -+

20%, and the third clean --+ 20%. It was not attempted to find an optimal defor-

62

ri...
MEN

Figure 3.17: Typical incorrect mappings learnt by the bare algorithm.

63

% noise I final I accumulated I % patterns

error epochs correct

0 0.467 1051 100

5 1.122 1300 100

10 1.021 1562 100

15 0.302 3361 100

20 1.505 15,000 99

Table 3.7: Deformation schedule 2 (clean - 5 -* 10 -* 15 - 20).

% noise final accumulated % patterns

error epochs correct

0 0.344 1160 100

20 1.563 5000 99

Table 3.8: Deformation schedule 3 (clean - 20).

mation schedule for learning up to the 20% noise training set. These experiments

were done to demonstrate the suitability of the deformation procedure for this

type of problem. It is not even necessary to use such a hard problem; as was

suggested above the idea is more to build on current more general knowledge in a

sensible way. We show below that deformation enables the network to find very

good minima in a hazardous error surface. Deformation may help even when a

global minimum may not exist (i.e. in the cases when there are conflicting mem-

bers present in the training set), by keeping track of the optimal minimum using

previous knowledge.

Tables 3.6, 3.7 and 3.8 show the performance of the net for each deformation

schedule. Using the first schedule the network was able to learn successfully all

the training sets. Typical mappings for the 20% noise network are shown in

figure 3.18. Using the second or third schedules the net was not able to complete

the learning, but the local minima in which it got stuck are much lower than for

the basic net. Actually nearly all the patterns were correct. We show an example

of an incorrect mapping in figure 3.19. The optimum deformation schedule lies

somewhere between the second and third schedules tried above.

64

Turning to figure 3.18 again, it can be seen how the net performs the mapping

of apparently quite different noisy images of the same digit, by responding to the

features in the image which are most typical of the digit. This can be seen in the

activations in the hidden layer for patterns in the same digit class. This represen-

tation in the hidden layer is then used to reproduce the digit at the output layer.

This is a more general example of the grandmother cell mechanism, in which a

certain hidden unit (or units) is responsible solely for the recognition of a particu-

lar family of features, or patterns. In this case, the same units have approximately

the same states for noisy versions of a particular digit. Thus, instead of assigning

a single hidden unit for the recognition of a particular digit, the network assigns

certain vectors in hidden-unit space (section 5.2 explains this idea more fully) to

be the encoded representation of the family of noisy versions of the same digit.

The generalization afforded in this way (unseen noisy versions can be recognized

correctly, so long as the noise is small enough) is of a a content- addressability

nature, as opposed to that produce through indirect learning of trends typical of

the entire training set. Without the two-level processing capability allowed by

the layer of hidden units, networks would not be able to perform most interesting

tasks involving extraction of the relevant information from the activations at the

input. The net recognizes the typical patterns which are sufficient to identify a

- particular digit. These are by no means obvious, looking at figure 3.18, but clearly

the inputs have enough in common to warrant the similar hidden-unit representa-

tions. The common properties of this class of patterns are known as the minimal
microfeatures, or minimal information in the input pattern sufficient to distinguish

it from other patterns in the group and therefore to classify it correctly {KL89}.

The representations achieved in the hidden layer is in general an interesting and

important property of the network studied in this thesis, and chapters 4 and 5

contain further discussions on the subject.

65

•iUI
EU..: U -• U EM U.. • 	M. • 	.• i; _.,::.. U •:E

•. • .. •i .••• •••••
•U !?,U;UU U...UU .. -. 	U. .,--•. U•

••MUU •UEu. •UUU• UUUU• • 	U ::U •L..E • • 	• E ,. 	.; 	.•
'U U :. 	•. 	• U

EERIE EUlER lURE • 	•.. • 	. • •.. U.
U
IlIUM

•.••.••.
lURE UEUU

U.:;
MElEE

RUlE UUUU . IEEE U UUI
::R:: •..• 	NE . RU UI... I

• U • •• iR:i
•IUUU UUUE • .•• ME

'EU U U RE U 'U 	I
u• E 	U I NEW
ERR U UUU RUE. UUI

UUUEU EERIE REURU UUUU' UU• u-U 	• U-U-

UUUUU URUUU ElMER UUIEI

U
U
U

U
U

.::.A 	• :: •
UEUUU UREU UUIUU RUIRI

•J 	U
U • U

U
:• 	I

I
UUUI UUUUU

U
URIUI

I
11111

U U ERR.. . MORE UUURI
UU U.:..

11.1
RUM

UH
U 	• U-..... 	U

•••
UUUU •ERUU OMENE RUlE
U:.. 	1 	• •. 	U •:•
U. 	•..: ER • •'U
UN. U 	U U 	UI W, ME
IRUUU UURR UUUUU •UUIU

UU EU ERIE UI-EU RU--EU
• --ME U 	UI •'.-ME

IEEE UUERU EUlER UUURU
I. U. U 	•.

I U U
lIEU •UUUU 11111 EUlER

• •. 	U U 	U •l • . 	• _..'. 	- _.. :. 	-

L IUUI
ENNO

R WAS

Figure 3.19: An example of a case in which the deformation procedure got stuck.

Notice how at such a high noise level the network actually mistakes the digit for

another digit, which it can be seen is a plausible alternative.

67

0) 	(1

0.00021

•0.0022 'k 	(2

3

Figure 3.20: Example of the weight situation in a 1-1-1 system at a particular

point in the learning. The input is at the top and output at the bottom. The

numbers on the lines indicate weight values and those in the circleslabel units.

3.7 Varying the learning parameters

3.7.1 Critical slowing-down

The deformation process was very successful in the rounding problem in allowing

networks to solve tasks of much greater difficulty (ro = 0.0001), however it became

clear that the updating procedure for the weights became more inefficient as r was

decreased. This can be demonstrated with a simple example where the network

has one unit in each of its three layers (see figure 3.20). The system has just

learned at the deformation stage of 0.005, and is about to start error propagation

at the next r of 0.004881. The numbers which are presented are: 0.504881 (R)
and 0.495119 (R_), with the state of the threshold unit always at 1.0. The total

error at the output unit at the end of the last r is 0.01. Tables 3.9 and 3.10 show

the S's and gradients at this point in the training of the system.

It can be seen how inefficiently the large weights are updated. The reason for this

20.8

21.17

input 	Put 	8 hid

R+ 	0.00988 0.002445

R_ 	-0.00988 -0.002446

Table 3.9: Values of S for r = 0.011 for the system in figure 3.20.

weight I gradient

W20 -0.000001

W21 0.0000477

w30 +1.OE-08

0.00200

Table 3.10: Gradients for the weights in the system in figure 3.20 (r = 0.011).

small update, despite the comparatively large 5's, is contained in the expression

for the gradients

OE
awij= - 	

Sip7jp.

P
(3.70)

The values of the S's remain similar as r is decreased, since the deformation ensures

the system remains close to the tolerance error, while the values gip decrease
with decrease in r. Thus the time (in learning cycles) taken to learn each new r

unavoidably increases as the system learns to round numbers closer to 0.5. This

is to be expected, since the values of the (heavy) weights required also scales

inversely proportionately with r.

3.7.2 The problem of "valley ascent"

Steps were taken to try to speed up the learning, and it was found that the

acceleration provided by the momentum parameter was very effective - provided

the acceleration was suitably controlled.

With acceleration turned off, the following fate often befell a system. Figure 3.21

shows how the system climbs up a valley using gradient descent, bouncing from one

wall to the other (the initial point is the lowest, with each successive point joined).

69

0.013

0.011

0.010

L.
0
C.
C.
CD

0.006

0
4-

0
1

0.006

0.005

0.003
-0.0100 -0.0067 	-0.0033 	0.0000 	0.0033 	0.0067 	0.0100

a IhreshoJd weighi-

Figure 3.21: "Valley ascent". The system starts at the lowest point and each

gradient calculation sends it higher up the valley.

70

The explanation for this effect, which ultimately leads to the system hanging on

a flat region outside the valley (again the "flipping" mentioned above), is that the

step size at the first (lowest) point is just too big at that point on the valley wall

to produce a weight change which will send the system down the valley. Thus

the system finishes at a point higher up on the opposite valley wall. It might

be expected that with its next step the system would have rectified this, there

being less chance of the weight change being so large that the same occurrence is

repeated. However, this is hardly ever the case, due to the effect of deformation on

the shape of the valley. This is best illustrated when we observe the alteration in

the error surface, taking a cross-section in the direction of the threshold weights

(9,) about the value threshold = 0, as the value of r is decreased to very small

values. This error map is shown in figure 3.22, and it is clear how due to the great

steepness of the valley walls, which increases as the valley is climbed, the system is

squeezed out of the valley, with no chance of getting back in. Such an occurrence

is much more likely when deformation is used, because the system is guaranteed

to remain in such a narrow valley, at these difficulties, while without deformation

the valley would either never be found, due to the surrounding plateaux, or if

found would only be descended a short way if at all. Note also from figure 3.22

how the topological shaping performed by the deformation is nicely illustrated -

the system would be kept at some point near the bottom of the valleys, with the

folding of the error surface happening harmlessly above.

3.7.3 Learning parameter variation (method A)

The valley ascent above became a recurring problem for all system sizes below a

certain value of r. The method of combating this was to reduce 77 at the point this

behaviour was detected. The onset of the valley ascent is marked by two weight

changes in opposite directions, the second of which has a greater magnitude than

the first. When this is detected 77f/ ,q for that weight is reduced by the amount:

I,H
(n —i)I I,H

ii
- 	I,H 	Tiij ,

(ii) 	
(3.71)

71

L
0
L
L
(1)

0.55

a
-I-

0
F-

0.37

0.92

0.73

0.18•

1.10

0.00
-0.10

rQ. 01
r=(J. 4
r0. I

0.10 -0.07 	-0.03 	0.00 	0.03 	0.07

Threshold WeighI

r1 . OE-04

r=2. OE-04

r=0. 001

Figure 3.22: The terrain in the neighbourhood of a threshold weight for various

levels of problem difficulty.

72

where the argument n indicates the update number as before. So the procedure

is for a new step to be made from the backtracked previous point using this new

value of 7l. Thus 71 now becomes dependent on the direction in weight space.

Use of momentum was found to be indispensable as a way of speeding up descent

of slightly sloping regions (which characterize error surface in the directions of the

heavy weights), and also for descent down valley walls when step size is small.

However, it is important to ensure that momentum is 'switched off' whenever the

descent reaches a stage at which it crosses the valley bottom (adding the previous

weight change after this would result in ascent of the opposite wall). This is

recognized by the gradient having the opposite sign on opposite valley walls.

By carefully controlling the speed of descent using this automatic parameter vari-

ation, and deformation, it was possible to solve tasks down to very small values

of r (1010), for all the systems studied. A comparison with the typical

performance of the basic algorithm in figure 3.5 shows the effectiveness of the

improvements suggested here.

3.7.4 Learning parameter variation (method B)

The method of changing 77 and c just described is good really only for a special

case of descent such as the rounding problem provides. Thus a second more

general way of altering these parameters was developed, and in fact used in the

simulations in chapters 4 and 5, for a fast but safe descent.

The general task of gradient descent algorithms is to move the system down to the

bottom of the nearest minimum, and this should be done as quickly as possible.

However there are one or two points to consider first:

• The size of the minimum: it is not desired to descend into the nearest

slight depression in the surface, or little dip. The question is however, when

is a dip a valid (but not global) minimum, and when is it merely a "glitch"?

• The speed of the descent: exactly how fast is fast enough?

73

The first point is the hardest one in any descent procedure; it was decided here

to descend into whatever was nearby but to allow leaps and bounds of a certain

(specifiable) size, in order to free the system from any minor glitches in which

it would otherwise perfectly trap itself, using the rest of the variation technique

described below. Thus the methods for variation of the parameters 77 and a were

based on control decisions over and above variations in network height caused by

glitches in the surface. In practice this means that the, parameters were not varied

if there was a rise in error less than the amount taken to be a glitch, which we

shall call e. This is a way of allowing a small amount of "jumping" to enter into

the descent, although it is still strictly a non-stochastic procedure.

The second point is similar, and follows on from what was said in the last para-

graph. We allow the system to descend as fast as possible up to a rate r, and in

so increasing the rate ensure that there is no jump in error greater than eY We

shall denote the rate of descent. by

R= 	
- E(n. - 1) - E(n)

E(n)
(3.72)

for integer units of time t, (n)

The procedure for changing the parameters basically falls into the control and

speed types:

R > r (satisfactory descent): No change to the parameters.

0 < R < 1' (requires speed-up): the surface is being descended, but not fast

enough. The parameters 77 and a are both increased:

77' = 77 X 77 	 (3.73)

a' = a+Sa 	 (3.74)

where there is the constraint

cr = a1 	 (3.75)

but if 	a' 	1 	 (3.76)

Act = Cif /i, 	 (3.77)

9 Note that this does not allow gradient ascent, but merely odd leaps of a limited size.

74

and so on until the constraint is satisfied, or i > 100 (further precision is

not necessary for the momentum parameter). The initial value of i is 1.

—e < R < 0 (small leaping): No change to the parameters.

R < - (requires control): The wild behaviour is being caused either by a

too large a or a too large 77, or both.

First a is set to zero, the network backtracked to the last point and

the move made again. If R is now ok, the acceleration was clearly to

blame, and is reduced by the amount a 1 .

If R is still bad, the step size must be too large, so it is reduced by

the factor i, a remains off (so as not to confuse the issue), the step is

backtracked and a new step calculated. This continues until a value of

77 is found which brings R to a satisfactory value.

The values of 77f and a1 are not too critical, but they are required to be small

enough to allow a reasonable range of values of a and 77 to be tried.

3.8 Summary

In this chapter we have been concerned with technical aspects of the.backpropaga-

tion learning algorithm. The limitations of the basic algorithm were demonstrated

with the performance of the feed-forward net on the rounding problem domain.

Before suggesting ways of improving this performance, we introduced the ideas of

learning curve, error maps in weight space and local minima. These were

used for an appreciation of the processes going on in the learning. The effect of the

number of hidden units on the network performance was studied, and scaling laws

suggested. The otherwise sensible introduction of a momentum term to speed up

training was shown to have drawbacks in that it could make the initial descent too

uncontrolled, and jeopardize the rest of the learning. General "tweaking" of the

parameters was found to be unsatisfactory as a method of speeding up learning,

and so the deformation procedure was introduce. This procedure helped to'sta-

bilize the descent and enable much harder difficulties of mapping to be achieved,

75

through holding the system always in a low value of error, while shaping the error

surface above, and therefore away from, the optimization area of the system. Thus

the difficulties of descending a treacherous error surface were never encountered

by the system. The optimization had in fact been split into two distinct parts: de-

forming the error surface, and descending the error surface. It was demonstrated

with the mapping of noisy digits how the procedure for effective deformation need

not be particularly complicated for other types of problems.

The observation of valley ascent, combined with the critical slowing-down of the

network learning, inspired the development of a method for automatically adjust-

ing the learning parameters step-size and momentum, for a faster descent. The

use of this method, and the deformation procedure, enabled a vast improvement

on the basic algorithm performance, as well as a much better controlled descent.

A more general procedure for adjusting the network parameters was also intro-

duced, based on similar ideas, which will be used in the rest of the simulations in

this thesis.

76

Chapter 4

The importance of underlying correlations

4.1 Categories of problem domains

If the brain can be thought of as consisting of a large number of simple nonlinear

processing units, then surely an MLP, given enough layers and units, could perform

any function, however intelligent, that we might wish it to? Indeed, it should

be able to perform any function that the brain can. The exact nature of the

processing may not be known, but one is faced with the observation that the

brain can perform extremely complex functions, whilst comprising in the main

just a large number of seemingly simple nerve cells, which have straightforward

behaviour when observed individually, but whose collective behaviour can produce

a myriad of high-level processing. However, just because it is possible for the brain,

with its almost unlimited supply of neurons, to process information in a particular

way, using a system of simple processing units, it may not follow that an MLP of

a given size and connectivity is the ideal model for this processing.

With this proviso, it is evident that in order to talk sensibly about the kinds of

training sets which are "learnable", we must first define the scope of the analysis.

The scope shall be defined here using the three layer MLP, that is a multi-layer

perceptron with input, hidden and output layers, and no others. We believe this

is a natural unit for the discussion of any level of processing we might want a

feed-forward neural network to perform, since it allows us to organize the process-

77

ing into sets of [input -* representation space (extraction of relevant

features) -p linking of features to form new inputs -* next level]

and so on. In an actual system the linking stage could probably be combined

with the next input stage, but for analysis purposes, it is necessary to be able to

specify outputs explicitly. The three-layer MLP is therefore considered here to be

the basic processing network from which generalization might emerge.

Now it is possible to be more specific about types of problem domains. We shall

consider three types:

High-level domains. These include all training sets which require more than

one intermediate level of processing to map from input to output. Many of these

would require perhaps just one extra layer before the input layer of the basic

three-layer MLP, to provide the appropriate coding. As it is though, the MLP

would be required, from trying to reproduce the target outputs, to find a single

transformation which both recodes the inputs so that the salient information is

being used in the processing, and combines this information into a form which

allows the inferences at the output to be made. Examples of such domains include

the many types of scene analysis, letter and (even worse) word recognition and

(still worse) also understanding or pronouncing them, and most other visual and

auditory cognitive processing which call for transformation-invariance of some

description. Even if an MLP with more than three layers is used to solve the

mapping, we believe that the necessity to organize more than one hidden layer

will prevent the network from discovering solutions which first code the inputs

sensibly, and then combine these features. In short, we believe that these problem

domains are best implemented in stages, so that, if an MLP is used, it can be

directed to solving a specific mapping (for example, first identify the letter A,

then identify the word containing A, then syntactically process the meaning of the

word, etc.).

Numerical domains. By this is meant those domains which are easily defined,

but interesting only from the point of view of defining predicates of a certain

order, and exposing the limitations of the processing which may be performed,

but rarely from the point of view of generalization [LB87, P1187, R88]. Such

domains include many of the predicates used by Minsky and Papert [MP69] such

78

as exclusive-OR and connectedness, and also random mappings and "counting"

problems such as parity.

Low-level domains. As might be anticipated, these fall into a category roughly

midway between the first two. They combine the interesting generalization pos-

sibilities of the first and the single level of processing of the second. Indeed, any

high-level domains could be constructed in a hierarchical manner from combina-

tions of low-level and/or academic domains (i.e. combining nets). This idea in

general is an attractive one, and is broadly discussed in [Min79]. The low-level

domains themselves are characterized by the input being in a form ready to be

processed right away into the representational stage of the hidden layer, such that

salient information can immediately be manipulated and combined in the hidden

layer, ready for inference to be performed in the output stage. This allows any

generalization to emerge in the form of key linking of inputs to their required

representational form [BB87]. Many experiments with these types of domains

confirm the suspicion that just the single intermediate layer' is necessary for the

MLP to find good solutions. Dodd remarks in [Dod87] how one intermediate layer

was sufficient for learning texture information, and that "A second intermediate

layer was used to try to avoid the problems of output coding but was found to

be unnecessary when the MLP was otherwise suited to the problem." We believe

that this is true for many problems and that if possible they should be re-coded

so as to allow network learning to be a matter of forming associations between

"minimal microfeatures" [KL89]. We demonstrate the emergent properties which

are possible from such a class of problem domains in the following sections.

4.2 Overview of the chapter

It is often the case when analyzing neural networks from a mathematical or physics

point of view to use patterns selected from a random probability distribution.

Such mapping problems fall into the numerical - domain category. Unfortunately,

this eliminates one of the more interesting features of distributed representations:

the ability to capture the similarity between concepts by the similarity of their

hidden-unit representations, resulting in the ability to generalize in sensible ways.

79

In order to study such emergent properties, one must be able to study the type of

domains with underlying regularity; these are the other two categories of problem

domains defined above.

In this chapter we generate low-level problem domains, and investigate the suit-

ability of such domains, as opposed to certain numerical domains, for learning by

a three-layer MLP. We observe the emergent properties of these nets when they

are used to learn such domains, including learning speed and generalization. We

generate such domains by associating each input pattern with a target calculated

from a function which depends on a set of (fixed) parameters and the pattern

vector itself. The fixed set of parameters serves to link the set of input/target

pairs in the training set, such that we can speak of an underlying correlation'

between each of the pairs.

The success of the MLP in learning low-level domains, which can also be referred to

as the natural domains, since they are often those lifted from natural processes

and functions, is demonstrated in experiments such as "NetTalk" and "NetS-

peak" [SR87, MBB87] (translating from text to phonemic codes), a net which

learns the past tense of English verbs [RM86], a backgammon-playing net [TS88],

nets which perform medical diagnosis [1C85, YPB88], texture classification [Dod87]

and predicting protein secondary structure [QS88}.

In this chapter we suggest a method of generating artificial problem domains

displaying similar characteristics to the natural domains. Once this is established,

it is possible to study generalization and learning properties of problem domains

clearly more suited to exploiting the emergent properties of MLPs, but using

definable training sets.

The chapter has the following layout. Section 4.3 demonstrates the success of

MLPs in learning and generalizing from the natural problem domains, with a

preliminary evaluation of the performance of the net in learning to predict the

middle amino acid in a family of proteins, in a window of 5 consecutive amino

'In the sense that fixed correlations between the elements of the input vectors give rise to the

particular set of target values, and so the targets are correlated because of their common set

of underlying generators.

acids. The results suggest that this, and other natural problem domains, are

special in that the network can deduce some underlying regularity in the set

of examples with which it is presented, which thenceforth allows it to predict

the middle letter in many unseen Windows (or some other task, in other natural

domains), basing its choice on the assumption of a similar structure for the whole

family of exemplars it has seen.

Following the preliminary observations of the feed-forward network results on the

protein problem, we suggest a reduction of such natural problem domains into

a form which reproduces only their postulated basic - underlying properties. In

order to verify that this minimal representation of the problem is sufficient to

qualify for the categorization of "natural domain", various aspects of the learning

performance and the generalization behaviour of the feed-forward net are studied

with training sets taken from the domain. If the reduced domain retains the

properties of learning and generalization possessed by the natural domains, then

it can be assumed that it also embodies the essential generating characteristics of

such domains.

In order to provide controlled experiments, two further problem domains are moni-

tored alongside the reduced natural domain. The first is defined by purely random

target values (i.e. a numerical domain, with no underlying regularities intention-

ally built in), and the second has permuted target values taken from the reduced

natural domain. These are both categorized under a "no correlations" and thus

"no generalization" group of domains. All three training sets are described in

section 4.5.

As well as supporting the suggested extent of the reduction, the learning properties

also indicate that fewer hidden units are required in order to learn natural domains,

as opposed to the other two domains. This, and also the emergent properties of

the MLP on this domain, are discussed in the context of the representations of

the set of patterns which the MLP forms in hidden-unit space.

The method used for the learning is the backpropagation algorithm, as in the last

chapter, but the cost function is modified to permit more efficiently the learning

of real-valued (rather than binary) targets.

81

4.3 Predicting protein structure

Proteins are constructed from sequences of amino acids, which are linked into a

polymer with a specific sequence determined by the translation of the messenger

RNA (ribonucleic acid) three bases at a time. The ultimate goal in protein research

is to be able to design them. For example an amino-acid sequence would be

specified such that, when synthesized, it would assume a desired three-dimensional

structure, bind any desired substrate, and then carry out any reasonable enzymatic

reaction. The current state of research has not reached this stage, primarily

because of the difficulty of understanding why certain proteins exist, rather than

any of the millions of other possible combinations of amino-acids. The structure of

a protein can be divided into various levels. For example, the primary structure of

a protein is its linear sequence of amino-acids, the secondary structure is the local

spatial structure of small numbers of amino acids, independent of the orientations

of their side groups.

It is currently possible to determine long stretches of "cloned" genetic material.

This sequence information needs to be interpreted by its relation to known genetic

sequences (over 10 million bases are currently known), by inferring what regions

are copied for translation into proteins and by the assessment of possible biological

function of the putative protein. The comparison of protein sequences with each

other has been extensively developed (see, for example, [LHCC86] for a DAP

implementation) and can be applied to the entire set of known proteins in the

databases.

With the rapid increase in the numbers of known proteins, it is becoming ever

more desirable to have some form of intelligent database.

The Hopfield [Hop82] neural network model has been used as a content-addressable

memory to store sequences, working on the assumption that the contextual in-

formation of incomplete sequences will restore varieties of possible complete se-

quences, depending on the (bit) noise in the input pattern [Wa187b]. Other work

has been performed using feed forward networks [QS88, NRR89] attempting to

predict the secondary structure (alpha helix, beta sheet or beta turn) of proteins

from windows of amino acids. The results using these networks look promising,

82

giving good generalization performance, and they may possibly form a major part

of a future hybrid database, to provide the search techniques with a modicum of

expert knowledge as guidance.

In this section we use a feed-forward net to predict the middle amino acid in

a window of 5 (primary structure information) from a sample of proteins all of

which are in the family trypsin. All these proteins have a common function, and

so we might expect the groups of amino acids found together in the proteins to be

similar. The trend for particular groupings in the protein chain is what we expect

to give rise to any generalization ability.

4.3.1 The format of the data

The proteins are represented in their raw form as a set of chains of letters (see

appendix A.1). Each letter codes one of 20 amino acid groups. Our data set

comprises 14 members of the family trypsin, each of which has about 220 amino

acids. Although in reality the proteins are coiled up in some way, in three dimen-

sional space (the secondary structure), so that the neighbourhood of a particular

amino acid may consist of amino acids from a long way down the chain, for this

experiment the presence of each amino acid is assumed to depend on amino acids

only in the neighbourhood of the window size (2 amino acids either way). It can be

seen from the results of the network -learning, that this is a reasonable assumption.

It was decided to split the 14 proteins into two halves. One half, consisting of the

first 7 proteins, formed the training set, and the second half the test set. In the

experiment we used both sets to gauge the performance of the network.

4.3.2. Net architecture

The network architecture is shown schematically in figure 4.1. Four letters form

the input to-the net: the four letters which surround the middle one the network

is supposed to learn. The middle letter is not input to the net as then all the

net would need to learn would be a straight one-to-one mapping of the middle

position 1 	position 2
	

position 4 	position 5

INPUT NODES
—
	

—

— -

—

HIDDEN NODES 	 - -- ._.
- .- 	.os- . .- . 	Adw- . 	-
—

OUTPUT NODES 	 • 	(position 3)

Figure 4.1: The net architecture for the protein experiment (weights not shown).

letter to itself, ignoring all the surrounding letters. The task of the network is

to use the contextual information of the window amino acids to suggest possible

middle amino acids. Each position in the window is represented by 20 letter-

nodes. Thus if the window "ABCDA" were being read by the network, the four

nodes representing A, B, D and A respectively would be activated at the input,

with the target node being the node C at the set of nodes representing the middle

letter at the output. This example situation is shown in figure 4. 1, the state of +1

(on) being indicated by a white node, and 0 (off) by a black node. 50 hidden units

are used, and the network is fully connected from input through hidden to output

layer. The amino acids are therefore represented orthogonally by the network,

which assumes no correlations exist between the amino acids, other than the ones

which are discovered by the net in the course of the processing, and these are

stored in the connections.

During a learning cycle each protein was presented to the network by shifting

its length across the window, thus all but the four end amino acids (two at each

end) per protein were used in the target set. The gradients were summed for the

84

entire training set before the weights were updated (batch learning). This was

determined to be the best method since periodic updating resulted in undesirable

"recency" effects (later patterns are much better learnt than earlier ones, see

also [Wa187b}), and also it was found that learning was much faster and ultimately

more successful when batch learning was used. If the target for a node was 1 then

the tolerance (tol) was taken to be 0.1, otherwise it was taken to be 0.2. (This

was done because of the relatively large number of times a node state would be

required to be zero as compared to the times it would need to be one, which might

run the risk of the states getting trapped on the response function extreme, if they

were trained to be too close to zero).

The total number of patterns in the training set is 1599, and in the test set 1576.

4.3.3 Performance

The performance of the network was examined twice: first after 1100 cycles of

learning, and then after 8800 cycles. In order to test the network a protein was

processed using the same window method as in the learning, and the states at

all the output nodes were compared. If the node with the maximum activation,

which was also greater than the acceptance threshold (a number between 0 and 1,

which we use to cut off lower values when examining the network after learning,

and which is not related to the tolerance used during the learning), happened to

be the correct one (i.e. the target value for that protein window), the pattern was

considered to be learnt.

The performance was judged on the basis of percentage correct patterns '2 out

of the whole testing set. The training set and the test set were both used, in

order to gauge both aspects of the acquisition performance. Figure 4.2 shows

the performance on both sets for both the testing sessions, as a function of the

acceptance threshold.

Several interesting observations can be made from the graph:

2 Note that this is equal to the percentage correct nodes, and so does not give rise to the same

ambiguity as was experienced in the last chapter.

EI

% patterns correct

100

80

60

40

20

0

set)

set)

0.0 	 0.2 	 0.4 	 0.6 	 0.8 	 1.0

Acceptance threshold

Figure 4.2: Performance of the network on the training and test set for the protein

problem.

86

• The network can learn the training set to a high level.

• Increasing the acceptance threshold generally diminishes the performance.

• The diminution rate is much less for the well-trained network than for the

less well-trained one.

• For the training set, the zero threshold performance for the well-trained

network is not so good as that for the less well-trained one.

• The network generalizes on the test set.

• This generalization is better for low thresholds with the less well-trained net

than the low threshold generalization for the well-trained net.

• The generalization performance diminishes slower with acceptance threshold

for the well-trained net.

From the observation that the generalization performance is very good for low

acceptance thresholds after only a short period of learning, it seems that the net

learns the basic structure of the trypsin family fast. Since this low acceptance

threshold generalization performance diminishes on training the net for a longer

period, and a similar situation is seen in the training set performance, we infer

that although the patterns are in general better learnt (we can be more confident

about the output), the information about the general nature of the mappings is

no longer so good. Also it appears that the fast learning of the basic training set

structure is echoed in the generalization performance (i.e. the performance on the

test set) which seems to have similar characteristics, with respect to zero threshold

performance and diminution rate.

One of the more significant observations is that the better the net learns the

training set, the worse the low acceptance threshold performance becomes, most

markedly for the test set. This is, we believe, a common occurrence in such

learning, where the general structure of a training set, or family, is gradually lost

through over-learning of the training set.

There are a certain number of exemplars common to the training set and the test

set. The total number of patterns which should not be put down to generalization

I

r:Ij

of the correlations knowledge, but to replication in the test and training sets, is

109. Thus the net should always perform to about the level of 109/1576, or about

7%, of its training set performance, when processing the test data. If we assume

no generalization, and that the net can merely guess the output letters on the basis

of the output probabilities learnt from the training set, then we can work out the

no generalization case of chance guesses. This behaviour (the probability of a

correct guess on the test set is given by the sum of the products of the probability

of each letter occurring in the training set and the probability of it occurring the

test set) produces a 6.2% performance. The graph shows that the net always

performs much better than if we were to attribute the stored knowledge solely to

these factors, and so it is reasonable to assume that real generalization is taking

place. The generalization normally takes the form of making some kind of decision

as to what amino acid to use when the window may allow various possibilities. It

is then that the knowledge gained implicitly, from the learning of the training set,

of the correlations which characterize it, is brought into play. Thus, for example,

if we have the test window AACD, and there have been various occurrences of, for

example, AABDD, AEAED and CEECD, etc., then the significance of each letter in the

window for the presence or absence of any letter in the middle, is implicit in the

network weights, since all these examples have been successfully mapped. This

knowledge then is drawn upon in the form of the relative strengths of the letters

suggested at the output, the largest output will be that which is most favourable

for the window.

We saw how the zero threshold performance gave the best generalizing perfor-

mance. This indicates that one should not be so much interested in actual size of

output as in the relative sizes of output. This, then is the important information

which the network extracts from the training set: the relative strengths of each

amino acid for a particular window.

4.3.4 Discussion

The success of feed forward nets in learning about proteins indicates that there is

something particularly consistent in the formations which are presented. In reality

various forces are operating to determine the ultimate structure of a protein. These

Il

forces include electrostatic forces, such as direct ionic interactions between charged

amino acids, dipole-dipole interactions, dispersion forces (very short range, with

a strength depending on the shape of the molecules), hydrogen bonding, and the

chelate effect (orientation dependent higher order interactions). All these forces

act to determine the proteins which exist in nature. It is natural to consider these

proteins to be low-energy states in the large group of possible configurations.

In this section we have seen how an environment of amino acids can provide

sufficient information to allow the network to suggest a possible middle amino

acid, using the knowledge it has gained from the learning period. In the next

section we attempt to mimic the characteristics of the learning, by a simple model

of the basic structure of a natural problem domain. This work does not propose

to explain the way protein structure might be determined from the electrostatic

potentials in which they exist, but merely to reduce this, and similar problems,

to a tractable form, which still displays the vital features.

4.4 Reduction to a simple model

The important information which the net extracted from the training set in the last

section was not the absolute size of the output activations, but the relationships

between the outputs for each particular input. Thus we are not looking for the

number of binary yes's in the output, but the relative strengths of each of the

output node responses, to determine the information the network has deduced

from the training set. In order to develop a training set which can be said to

have similar properties to the protein, or "natural" training sets, we must define

what it is that is special about the natural data. The postulate we explore is that

there is underlying regularity in natural data, and that this can be reduced to

a form of correlation between the individual elements of a pattern, giving rise

to an activation of each pattern for a particular output state.

In the protein example, for instance, we can assume that the environment of letter

C in the window ABCDE determines the probability that the letter C will be found

within this grouping. The reasoning behind this is straightforward. If, as in the

89

Input I target I number of occurrences

1010 1000 10

1010 0100 7

1010 0001 3

1100 0100 7

1100 1000 7

1100 0010 7

0110 0010 10

0110 0001 3

0110 1000 3

1110 0001 1

1110 0100 7

1110 1000 3

Table 4.1: A training set with conflicting targets.

protein example, there is more than one possible target for a given input amongst

all the training cases, that is input p has target t, j in N 1 of the cases, ti, 2 in Ni,2

of the cases, etc., and if the training is done, in batch mode (update only after

seeing all the patterns in the training set), then the linearity in t of the error at

the output layer implies that one may alternatively train that input with the mean

target [Wa187a]:

EktkNk
pp= 	, 	m=Nk. 	 (4.78)

Ic

If the training of all the patterns achieves this mean target output for that input,

then the net will be producing a probabilistic output determined by the frequency

of presentation. In the protein case, a particular letter i will be trained to have a

target of one in n2 of the cases of the input window I,,, being presented, and to be

zero in the other ni, - n2 cases.

As an example we shall consider the training set in table 4.1. The probabilities

for each output node for each pattern p are shown in table 4.2, with the values

settled on by a feed-forward network in actual simulation. The network settled to

a constant error. It can be seen how the actual values obtained are very close to

90

pattern

1010

1100

0110

1110

P, actual outputs

0.5 0.35 0.0 0.15 0.5 0.35 0.0 0.15

0.33 0.33 0.33 0.0 0.32 0.34 0.31 0.02

0.19 0.0 0.63 0.19 0.19 0.01 0.61 0.18

0.27 0.64 0.0 0.09 0.27 0.63 0.02 0.05

Table 4.2: Actual probabilities and outputs obtained, at a steady error. The

tolerance was set to 0.01.

the theoretical probabilities.

Absolute strengths of the possible letters which may be found in groupings are

of secondary importance to relative probabilities between the letters. Thus, if

the network has learnt to map the most favourable letter to an activation a1 ,

for example, the important knowledge would be contained in the relative set of

activations

f ai a2 	a1
1 	, 	 ,...(,
Iai a1 	a1)

which can be normalized to form a set of probabilities. The tests made on the

network in section 4.3 actually indicate that the relative probabilities of letters in

groupings were learnt very early on in the learning.

The model training set introduced below tries to embody the main characteristics

of the natural training sets, in a minimal form. Actually the number, of possible

input letters is effectively reduced to two, and the effective number of output

letters to one. We demonstrate the origin of this reduction below.

First assume that for each letter at each position in the window there is an in-

dependent set of interactions (correlations) with every other letter at every other

position in the window. So, the input layer in figure 4.1 can be pictured as a fully

connected Hopfield net [Hop82], where each connection 1' between letters i and j
in positions a and b respectively represents an interaction strength. Note here that

the situation has already been assumed to be representable by pair interactions

alone. We now imagine a pattern of activations on the Hopfield net to comprise

zeroes at all nodes except for those representing the letters present in a window,

91

where the nodes are set to ones. There is an associated energy function for the

Hopfield net, which we can write as:

Nw 20

E := >ESaTabSb
	

(4.79)
a<b t<3

where Sia represents the state of node i in position a, and the summation is over

all the node pairs, with Nw = 5 positions in the window and 20 possible letters.

Now, for some letter groupings the energy E will be lower than for others, and

we can take these to be more favourable states. More specifically, for a particular

letter environment AB IJDE the energies of the system when letter X is at the centre

position is given by the energy of pattern ABXDE.

For the next stage in reducing this problem, we reduce the number of letters in

the input window to 2. Adding more letters will not affect the basic nature of the

problem, since we are assuming the letters to be orthogonal (and therefore each

letter is characterized by its own set of weights to the hidden layer, containing

the information about its relationship with the rest of the letters in the window

and the output letter.). Also, if we reduce the number of output letters to one,

a further simplification comes about in that the presence of this letter and its

associated interaction strengths is unnecessary. (That is, the letter itself does not

need its own interaction strengths with the letters in the window to distinguish its

energies from those of any others.) Thus, to recapitulate, there are now 2 types

of letter which can be present in a window, in N - 1 possible positions, and

each configuration of letters has a characteristic energy given by equation (4.79).

This energy tells us about the probability of the output letter being found in the

particular environment of letters.

The final stage comes in reducing the number of letter nodes in the input window

to one. This is possible if we say that each position, now represented by a single

node, can take on the two values +1 and —1, so that each window still represents

an environment of N - 1 objects. A better way of viewing this is to consider that

each position in the window is now characterized by the presence (+1) or absence

(-1) of an object. Now it can be seen that the situation we have is analogous

to an interacting spin system. The probability of an output letter being in the

92

environment of input letters has been reduced to the energy of a spin system

consisting of pair interactions only. We can now simplify the notation, and so the

probability of the output node being on when the set of inputs {S} is presented

to the net, is some function of the energy of the configuration of spins {S}, with

pair interactions J83 :

N1

	

p(o)= f(E) = f(SJ 1 S), 	 (4.80)
i<j

where there are N1 = Nw - 1 input nodes (or, in the analogous model, spins).

Finally, it is sensible also to include self-interactions I, so: 3

N1 	 N1

p(o) = f(E) = f (E Sili + E 	SJ 2 S2).

	 (4.81)
i 	i<i

The major assumption made above is that the probability a letter will be present

in an environment of other letters is a function of the letters present and where

they occur in the window, and that this function can be expressed as one of a

summation of terms involving increasing orders of interaction strengths between

the letters, the only significant terms being the first and second order ones.

4.5 The training sets

Now we are ready to specify the three types of training set which will be used in

this chapter. The networks used will be of size NJ—NH-1, as in figure 4.3, and

will be required to map a set of input vectors {v"}, where p = 1,2,... , N, labels

the pattern, to a set of target outputs {t}, which are real numbers in the range

[0.1, 0.9]. The training sets differ in the set of targets associated with the inputs.

3The reason for this is that otherwise the energies for mirror configurations will be identical,

thus rendering the window equivalent to a size N1 - 1.

93

ci) E • • • 	
INPUT

0 . 0 • • • 	 HIDDEN

\ ZZ

	

0 	OUTPUT

Figure 4.3: Network architecture.

The first training set is referred to as correlated and is derived from equa-

tion (4.81):

input: 	vp = {S}, 	with 	SiE {1,-1}

(4.82)

target: t(VP) = f(vP , {I ; J})

which becomes

N1 	N1

t(v") = f(>Jv'I + E v'J 3 v').
i 	i<j

The form of the function f(x) is

1 - 2t
f(x)= A (x—B)+t

(4.83)

(4.84)

where

B = min{ x}
	

(4.85)

94

and A = —B+max{z}. 	 (4.86)

This simply rescales the energies in equation .(4.83) so that the targets lie in the

range [t, 1 - t]. The value oft was taken to be 0.1, avoiding the very low gradient

regions of the output response function. Thus the targets lie in the range [0.1, 0.9].

Since the parameters {I,; J23 } are fixed for a particular training set in this group,

all the members can be said to belong to the same "family", in the same way

as we understood the proteins to belong to the family trypsin. Any number of

families can be generated, just by changing the parameters {I; J}. In these

simulations the parameters were chosen randomly from the range [-0.05, 0.1] and

[0.05, 0.1], which was determined, in preliminary experiments, to be a suitable

range for a good distribution of target values (i.e., if we allow widely differing

interactions, by having a large range in which to choose them, we might find a

particular letter with a very large influence on the total energy, thus giving rise

to an over-correlated training set, which would not be useful for the properties we

wish to investigate.)

This method of generating targets for each of the patterns can be considered a

general way of synthetically writing in low-level similarities between patterns in a

training set.

The second type of training set is referred to as the random set, and is generated

by taking all the input configurations and associating each with a number, b1 ,

which is chosen randomly from a uniform distribution in the interval [t, 1 - t].

The function f from equation (4.82) for the random group is therefore given by

I = f(v,{b})=f({b})=b 1

(4.87)

where 	b1 E [t, 1 - t],

Thus both the correlated and random training sets have normalized targets, in

the range [t, 1 - t], and the same set of inputs.

The third type of training set is a combination of the correlated and the random.

The random training set is really the worst-case type of control domain, and in

order to make better comparisons of the more subtle properties of the correlated

95

set we need to compare with a training set which is almost the same except that

it does not possess consistent correlations between specific patterns. The training

set is formed by taking a correlated training set and re-arranging the linking of

inputs to target values. So this type of training set has exactly the same set of

targets as a correlated training set, but they are associated with different input

patterns. Thus the distribution of output values is of identical form to that of

the correlated set, but the underlying regularity is missing. We shall call this the

permuted-correlated training set.

In figure 4.4 are shown the numbers in the training sets ordered in terms of distri-

bution in the output range, for examples of the random and correlated/permuted.

correlated types of training set, for 5 and 7 input nodes.

4.6 The cost function and learning algorithm

If we write the actual output obtained when the pattern v 9 is processed through

the net as op , then the cost function to be minimized is defined as

(1—t)
L 	 I tp log 	+(1 —t)log

(1_o)f 	 (4.88)
P

The origin of this cost function is from a measurement of the "distance" between

probability distributions: for a given input pattern I i,, the output o, tells us the

conditional probability

= P{x = ONIp} = op

that the attribute x represented by the output is on. Clearly we also have the

associated probability

P- = P{x = OFFp} = 1 - o.

96

Correlated (5 inputs)
N(t)

5

4

3

2

0

0
target value (t)

Random (5 inputs)
N(t)

5

4

3

2

0
0

target value (t)

Random (7 inputs)
N(t)

20

16

12

8

4

0

Correlated (7 inputs)
N(t)

20

16

12

8

4

0

	

---------0 	 C

	

target value (t) 	 target value (t)

Figure 4.4: Example distributions of target values for the random and corre-

lated/permuted-correlated training sets.

97

The Kulback [Ku159} distance between the target probability distribution (repre-

sented by a prime) and the network's distribution is

F'- 	
(4.89)

P

from which we derive (4.88).

The measure (4.89) is related to the likelihood function used in information the-

ory [BJM83]. Further instances of the use of distance measures similar to G can

be found in [A11S85, Hin87, SLF88, P1186, 11op87, Wri88].

Although L has been derived from a distance measure designed for probabilities

it can be used generally (and in fact is used here for this sole purpose) to measure

the degree to which real numbers in the range [0,1] have been learned. The

global minimum of the function is zero, when all the numbers are equal to the

targets. Solla [SLF88] has tested such a cost function in learning the contiguity

problem, to provide evidence that this "entropy" measure produces a generally

more favourable (i.e. steeper with less local minima) error surface, as compared

with the least squares error function.

This cost function is minimized by gradient descent of the surface defined by L(w).

Thus a weight w is changed on each update by the amount

91;
8w

(4.90)

where ?I is the step-size. The weight changes are calculated in the same way as in

chapter 3. Inserting the cost function L for the E (indicating the sum of squared

errors) in the derivations in section 3.2 the weight-change equations (3.25) and

(3.31) become

N

WOj = 	- o)H'}
	

(4.91)

and

N

Lw ={(ç, - o)wH?(l - Hr)I'}, 	 (4.92)

where o = O and t, 	t. The response functions are the same for hidden

and output nodes, and are sigmoids in the range [0,1]. Note that factors from

the differentiation of the logarithm and the differential of the response function

(o(1 - or)) cancel out to produce a simplified expression for the output S's.

4.7 Implementation on transputers

The simulations in this thesis were all performed on the Meiko Computing Sur-

face, a modular, reconfigurable array of transputers. This is an MIMD (Multiple

Instruction, Multiple Data) machine, manufactured by Meiko Ltd., and run in

Edinburgh by the Edinburgh Concurrent Supercomputer Project (ECS).

4.7.1 The transputer

The T800 transputer is a single VLSI chip that combines processing power, mem-

ory and communication links for direct connection to other transputers. It con-

tains a fast integer and floating-point processor and can be used as a building

block for even faster parallel processing systems, ranging from embedded systems

to supercomputers. Each transputer has four bi-directional links through which it

can communicate with the other transputers in order to transfer data and receive

instructions for new operating modes (if this is necessary, since each transputer is

able to work in "stand-alone" mode, processing its own data, running its own pro-

gram). Each transputer in a system (transputer array) uses its own memory and

can address up to 4 GBytes of off-chip memory with a 25 MByte/s band-width.

The transputer implements the process model of concurrency embodied in the high

level language occam. In occam, communication between parallel processes is

effected by uni-directional channels, which may connect processes on the same or

99.

different processors. Each transputer link implements two such channels, one in

each direction.

4.7.2 Parallelizing the neural network model

There are various ways of implementing neural network models on parallel com-

puters. The Ising-like Hopfield model is ideally parallelized by simultaneous bit

manipulation, since update consists of all the neurons adopting a new (boolean)

state, summing all the contributions from the other neurons in the network at

that time. Hence this is best implemented on the computer which is almost de-

signed for Ising model simulations, the ICL Distributed Array Processor, an SIMD

(Single Instruction, Multiple data) machine (see, for example, [Wa187a}). If more

compute-intensive calculations are required at each neuron however, a larger grain

parallel computer may be more useful, such as the Computing Surface. The only

drawback in using such a large grain computer as a transputer array to simulate

neural networks, however, is the problems which arise with the high connectivity

which may be necessary in such models. An image restoration program [For88],

which was based on a Hopfield-type network, did not have such problems when

implemented on a transputer array, because the connectivity of the network was

sparse and well structured, so that the transputer array could be mapped onto

the network almost directly, with each link handling the boundary information

required for each transputer. The problem becomes less than trivial when near or

total connectivity is required, combined with a learning algorithm requiring near

global information for each neuron on each update.

Such are the characteristic problems associated with the feed-forward network

and its backpropagation algorithm. Implementations include splitting up the neu-

rons on different transputers and using sophisticated communications schemes to

transfer data quickly when it is needed, [Wo188, BD87, Snii87], splitting the ma-

trix multiplications over a number of transputers {R1c88], splitting the patterns

in the training set over a number of transputers, with each transputer retaining a

complete copy of the network in its memory, and combinations of the latter two.

Because of the way in which the number of patterns used in most simulations in

100

this thesis scales with the size of the network (exponentially or faster), and the

associated limitations on the actual useful sizes of network which could be im-

plemented, the training set division method of implementation was used. In the

protein simulations, however, and also the noisy digit simulations (section 3.6.3),

the networks were large and the training sets comparatively small, and so a sim-

ulator embodying both the matrix multiplication splitting and the training set

splitting was used (see [Ric88]).

4.7.3 Transputer configuration

Having decided on the method in which the model is to be partitioned on the

transputers, the configuration of transputers which is to be used must now be de-

termined. As in all such implementations, the important quantity to be minimized

is the overhead

transputer idle time

transputer busy time*
(4.93)

A transputer is idle when it is waiting for data in order to perform its next stage

in the calculation. This data comes through the links connecting the transputers,

and if the configuration is such that messages take a long time to reach some,

or one particular transputer, the entire calculation is slowed down, with valuable

compute time being wasted. Ideally, if communications cost nothing, the training

set parallelization should allow a linear speed up of the execution time with the

number of worker transputers being used. Practically, communication does cost,

firstly through the actual time spent sending the packets, and more importantly,

through the increasing effective distance of transputers as the array size increases

(due to the transputer having only 4 links).

A suitable configuration used in these simulations was the binary tree, shown

in figure 4.5, where each transputer has two "children". The information about

the network weights is passed to each transputer in the tree from the top after

each update cycle, and each transputer has stores a (different) subset of the total

training set. The gradient changes for each subset of patterns is accumulated

101

Figure 4.5: Binary tree configuration for transputers: each block represents a

transputer, with the actual transputer links used indicated by arrows (these are

2-way links).

on its route to the top of the tree, where the weight changes are made. This was

compared with a chain configuration, with the same calculations performed by the

transputers. The number of links through which a message has to pass in order to

reach the master transputer (where the weight updates and parameter variation

are performed) scales linearly with the number of (worker) transputers Nt in the

chain, but proportionately to 109 2 Nt for the tree, for full trees. Thus, if the

transputers are to spend a relatively short time computing before communicating

data, the chain configuration will suffer much faster than the tree configuration.

Clearly, there are several factors influencing overall speed, and we demonstrate

the scaling of speed with array size and network size (with the number of training

patterns scaling exponentially with the input layer size) for the two configurations,

in figure 4.6. We show graphs of the time (in units of transputer ticks) taken to

perform one learning epoch (t(N)) against the reciprocal of the number (Ne) of

worker transputers being used, multiplied by the time taken using one transputer

(t(1)). A straight line of unit gradient indicates linear scaling of the program's

execution time with the number of transputers available, which is the upper bound

on paralleization gain. The tree configuration manages to achieve linear scaling

102

for more than about 2 workers, but the gradient is below the optimum. This

improves with system size, however, and is altogether much better than the timings

for the chain configuration.

Another important consideration is the number of slaves which should be used

for any particular network simulation. This is important because of the way the

statistics were gathered. If a number of different size simulations are going to be

performed on the same series of runs, then the number of worker transputers used

should be optimized such that the correct number of workers are used at any one

time. Such considerations are especially important for the smaller net sizes. In

order to get this worker optimization the first few epochs of update were each

performed on different numbers of slaves, and the actual time recorded. After this

exhaustive search, the number of workers producing the fastest time was used.

Such optimization was done each time the system size changed. The ease with

which this could be done was a direct result of the paralleLization of the model

that was used.

In order to make full use of the number of transputers available, even when adding

more transputers for the net size in use would actually slow the performance

down, the network of transputers was replicated a number of times (this number

depending on the particular number of transputers available at the time). Thus

several trees, each with each own sub-master was allocated network simulations

by the master, and on completion was immediately given another, and so on

until the whole series of simulations was complete. Clearly in this higher level of

parallelization the gain factor scales linearly with the number of replicas, and thus

is optimal.

4.8 Observations of the learning performance

4.8.1 Details of the learning schedules

Due to the existence of real target outputs, it was not a simple matter to determine

when the training was completed. Furthermore, it is not unreasonable to assume

103

chain configuration
time for one epoch

5600

4900

700

0
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0

I / (number of workers)

tree configuration
time for one epoch

x 3--la--i

4900

4200

700

0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

1 / (number of workers)

Figure 4.6: Time taken to perform one cycle vs. the number of worker transputers

available, for the chain and tree configurations.

104

that, given enough hidden units, the network would asymptotically reach any

desired accuracy for the target mappings. Therefore, it was necessary to curtail

the learning at certain points, which were the same for all the training sets.

All the runs were terminated after 5000 cycles, whether finished or not. A run was

considered finished when the value of L reached below iO x Ni,, which represents

an average of better than two percent accuracy per pattern, for the range of values

used (i.e. [0.1,0.9]), which would in practice be near enough to distinguish the

outputs. It turned out that greater accuracy was indeed superfluous, giving no

extra information about the relative performance of the three types of training set

or the generalization behaviour.

The learning parameter variation procedure outlined in section 3.7.4 (method B)

was used in the simulations in this chapter, and so the learning basically consisted

of finding the nearest minimum as quickly as possible. In such a procedure it is

often going to be the case that the system becomes stuck in local minima, rather

than finding a solution. Such occurrences cannot be foreseen, and so the best way

to proceed is to take a sample of the best runs. First, between 5 and sometimes 20

runs were made on the same data, starting at different points on the error surface.

The weights were initialized randomly (from a uniform distribution) in the range

[-0.5,0.5] each time. This increased the chances of the network finding a good

solution. The best out of these runs was used for the next averaging procedure.

The second sampling was of the different examples of the same training set type.

Any number of training sets can be generated for both the random, correlated

and permuted-correlated type, simply by initializing new values of {I} and {J1 }

for the correlated and permuted-correlated sets, and new values of {b} for the

random set (these too being chosen from a uniform distribution). The actual

values of the parameters {I; J13 } are not important, what is important is that

they form a set of common parameters linking all the members of the training

set, whereas the random set members are as independent as the random number

generator allows.

Thus averages of the best solutions (the first sample) for each of the example

training sets, which numbered 5 (although for the smaller system sizes it was

possible to take larger samples), were taken to give an average performance for

105

parameter I value

initial 77 0.6

initial cz 0.0

?7j 1.1

a1 0.1

small jump 0.001

r 0.005

Table 4.3: The parameters used in method B parameter variation procedure.

each of the random and the correlated training sets. Such averaging was done for

most of the points plotted in this section.

The values of the parameters used in the learning parameter variation are listed

in table 4.3, and were chosen after some preliminary runs, although they are in

general (apart from T) not too crucial for the learning speed.

4.8.2 Scaling of the learning ability with hidden layer size

Figures 4.7, 4.8 and 4.9 show the average value of L ("mean lowest error") after

learning (i.e. after at most 5000 epochs) for system sizes 3-N-1, 4-N-1, 5-N--1,

6-N-1, 7-N-1 and 8-N-1, for the two types of training sets, as the number of

hidden units is increased. For the small system sizes (3-N-1 and 4-N-1), gener-

ally the performance of the random permuted-correlated and correlated training

sets is comparable, the large error bars making it impossible to make any defi-

nite distinction between them. However, for larger net sizes the differences begin

to become clear. The correlated set performance is significantly better than the

permuted-correlated and random set performance, and this difference in perfor-

mance increases with the net size. We notice that:

The net finds it easiest to learn the mappings of the correlated set, with the

permuted-correlated and random sets significantly worse.

The number of hidden units the net requires to learn the mappings well

increases with the size of the network, but much faster for the random and

106

Mean lowest error
0.7

0.7

0.6

0.5

0.4

0.4

0.3

02

0.2

0.1

0.0

3 inputs

Hidden units

Hidden units

'I

4 inputs
Mean lowest error

1.3

1.1

1.0

0.9

0.8

0.6

0.5

0.4

0.3

0.1

0.0

Figure 4.7: Scaling of the performance (final error) with hidden layer size, for the

three types of training set, for input layer sizes 3 and 4.

107

Mean lowest error
2.6

2.3

2.1

1.8

1.6

1.3

1.0

0.8

0.5

0.3

0.0

5 inputs

Hidden units

Mean lowest error
7.5

6.8

6.0

5.3

4.5

3.8

3.0

2.3

1.5

0.8

0.0

6 inputs

Hidden units

Figure 4.8: Scaling of the performance (final error) with hidden layer size, for the

three types of training set, for input layer sizes 5 and 6.

108

Mean lowest error
	7 inputs

A

7.2

6.4

5.6

4.8

4.0

3.2

2.4

1.6

0.8

0.0

Hidden units

Mean lowest error
	8 inputs

20.0

18.0

16.0 	IT

14.0

12.0 	 random TS

1O.(
	 - permuted-correlated TS

a correlated TS

8.0

6.0

4.0

2.0

0.0
1 	15 	19 	23 	26 	30

Hidden units

Figure 4.9: Scaling of the performance (final error) with hidden layer size, for the

three types of training set, for input layer sizes 7 and 8.

109

permuted-correlated training sets than for the correlated.

We suggest reasons for this behaviour in section 4.10:

It is instructive to compare the performance scaling with the hidden layer size,

with the scaling of the number of patterns to be mapped vs. the number of inde-

pendent variables which are available for their representation. We assume that the

important quantity in the scaling relation is the number of weights from the input

to the hidden layer, since the weights from hidden to output perform in effect

just an NH—dimensional to one-dimensional projection of the hidden unit repre-

sentations to the output node, thus adding nothing to the actual representational

power of a network. Then the number of active parameters for the representation

of the patterns is N1 x NH + NH = N1 , including the threshold weights. If we

now assume that the mapping problem is solvable only if the ratio of the number

of free parameters to the number of independent output values which need to be

reproduced (Np) is greater than some critical value f, then for a solution to be

possible:

N L_ NH(NI+1)
>f.
	 (4.94)

Whatever the value of f is (probably of order one), it will be the same for any

value of N1 and NH, and so we have an estimate of the scaling behaviour for a

machine which is simply storing the values of N independent binary variables in

a complex system of N1 x NH free parameters. This provides us with a yardstick

with which to gauge the network's learning of the random, permuted-correlated

and correlated training sets. If the random training set were truly random then,

for large enough numbers of required associations, we would expect its scaling

to be the same as that suggested above. Figure 4.10 shows the critical number

of hidden units required to solve the mapping problems, taken from the scaling

graphs referred to above, compared with a line representing the worst case of

completely random associations, with a value of unity assumed for f, at the

critical hidden unit number.

It can be seen how both the random and the permuted-correlated training set

scaling with problem size approximately follow the worst case theoretical line,

110

critical hidden
35

32

28

25

21

18

14

11

7

4

0
2 	3 	4 	5 	6 	7 	8

number of inputs

Figure 4.10: Scaling of critical number of hidden units with input layer size, for

the three types of training set, and a theoretical scaling line (see text).

111

while the correlated set, despite starting near to this line, as would be expected

for small problem sizes (since the number of free parameters is comparable to

training set size), soon pulls away as the size is increased, showing a much slower

rate of increase in critical hidden unit number.

4.8.3 Form of the learning curves

The learning curves are also helpful in evaluating the learning performance, and

examples are shown in figure 4.11 for each of the training sets, for the network size

6-12-1 (at which all training sets can achieve good mappings), for five different

training sets examples each.

It can be seen that the correlated training set performs once again significantly

better than the other two, at a hidden layer size which enables all the training

sets to find solutions easily. The descent is much quicker and steeper; the error

decreases very rapidly at the start and reaches a very low value at about 600

epochs for all examples, as compared to the value of 900 epochs for the random,

and even longer (actually about 1200 epochs) for the permuted-correlated.

4.9 Observations of generalization behaviour

Experiments were performed to determine the degree to which the network had

"understood" the information about underlying trends provided by learning only

some of the full training set, by examining the generalization on the patterns

forming part of the complete training set family but which were excluded from the

training set. The experiments done in this section concentrate on the comparison

between the generalization performed on the correlated training set and the control

system of the random set, in order to establish that the generalization is real.

Chapter 5 is concerned with the scaling of generalization behaviour on similar

training sets.

Three areas of generalization were studied: over-learning, learning times, and

112

Permuted-Correlated

epochs

cost function L

8.0

7.2

6.4

5.6

4.8

4.0

3.2

2.4

1.6

0.8

0.0

epochs

epochs

Random
cost function L

8.0

7.2

6.4

5.6

4.8

4.0

3.2

2.4

1.6

0.8

0.0

Correlated
cost function L

8.0

7.2

6.4

5.6

4.8

4.0

3.2

2.4

1.6

0.8

0.0

Figure 4.11: Five examples each of learning curves for the three types of training

set at problem size 6-12-1. Note the scale is the same for each graph.

113

bootstrapping.

4.9.1 Over-learning

If the random training set is truly random it should show no generalization be-

haviour at all (on average). A characteristic of the natural training sets, such as

the proteins in section 4.3, is that often better generalization is found when the

learning of the training set is not done to too high a level. That is, if the patterns

in the part of the family used as the training set are learnt too well there is the

danger that the rest of the family will not be guessed as well as if the network

had a more general feeling of the family.

In figure 4.12 are shown 3 examples of over-learning occurring with the correlated

set. One line represents the value of L' for the training set being used, which was

always the complete family (2N1 members) less one (randomly chosen) pattern, for

which the value of L' was plotted alongside. The prime on L indicates the value

of L per pattern in the training set, or L/N. This allows more useful comparison.

The first part of the learning displayed shows the generalization proceeding well for

all examples - the error of the absent pattern decreases as the error for the other

patterns is reduced. However at certain points in the learning, which depends on

the absent pattern, the error starts increasing to a greater or smaller extent again.

Occasionally it is found that the error for the missing pattern remains stable to

the end (bottom example in figure 4.12).

In figure 4.13 we show similar curves for the random and permuted-correlated sets.

We do not expect any over-learning to be found, and what is actually seen is a

fairly controlled movement to a final error of a large value. (Note for these graphs

the large difference in the y-axis scales compared with the previous figures). As

the rest of the training set is learned there is no reason for the missing pattern to

cause an output anywhere near its target output, and this is reflected in the graphs.

The end points of the lines reach up to about L' 1. The maximum a pattern

might be incorrectly mapped (0.1 for 0.9 for example) gives an L of about 1.75.

The same scenario was observed for the permuted-correlated net, although very

occasionally, as can be seen from the bootstrap curves in section 4.9.3, a pattern

114

-- 'S

error L error L

epochs epochs

error L

epochs

Figure 4.12: Three examples of the variation of the error of missing pattern (mon-

itored alongside the training set error per pattern) for the correlated training set

The network size is 6-10-1.

115

error L
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

epochs

Random

Permuted-Correlated
error L

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

missing paxtem #1

171 	341 	510 	680 	850
epochs

Figure 4.13: Three examples of the progress of error for the random and per-

muted-correlated sets for the missing pattern, for the system 6-10-1.

116

can be generalized; however, this is more to do with a consistent distribution of

target values rather than underlying trends. The extent of the overlearning in the

correlated net is much more widespread than in either of the other types of net.

4.9.2 Learning speeds

It might be imagined that removal of a pattern from the training set would "lighten

the load" of the mapping, thus making it easier, and therefore allow the mapping

to be performed (assuming it was possible with all the patterns) in less epochs

than before. This should certainly be the situation for the random training set,

since the more the mappings the harder it is to find the correct representation for

the independent patterns in the weights. Figure 4.14 shows the distribution of

learning times for the 6-12-1 system, for several weight initializations, using ten

randomly chosen examples of the 64 possible one-pattern depleted training sets.

The small black bar indicates the average learning time using the complete set of

patterns.

It can be seen how the distribution is peaked to the left of the black bar for the

random and permuted-correlated training sets, showing that, as expected, pattern

removal improves the learning time in general. In fact, there is on average an

18% decrease in learning time for the random set. With the permuted-correlated

training set removal of a pattern on average improves learning time, but less

markedly than with the random set. The average time is reduced by 3.4%. This

reduction in improvement can be put down to the adverse effect removal of a

pattern has on the fast initial learning of the general training set distribution (as

in figure 4.4). Conversely, for the same experiment with the correlated training set,

shown also in figure 4.14, removing a pattern has little or no effect in the learning

time, on average. The average percentage change in learning time in removing

a pattern from the training set is actually a 1% increase. Thus the difference

between this value and the 3.4% decrease of the permuted-correlated set, shows

that cooperative weight-updating is an important feature in the learning of the

correlated training set, all other things being equal.

117

Random Permuted-Correlated
number of cases

IA

8

6

4

2

0

number of cases
In

8

6

4

2

0

8

6

4

2

0

Correlated
number of cases

In

learning time

Figure 4.14: Distribution of learning times for the three training sets, with one

pattern removed. The black bar indicates the average learning time for the full

training set.

118

4.9.3 Bootstrapping

Bootstrapping the training set means taking each of the patterns out in turn (one

at a time), learning the rest of the training set, and after learning asking the

net to provide a guess as to the value of the missing pattern (by processing this

pattern). If any correlations exist among the patterns in a complete training set,

the learning of a majority of these patterns should provide enough constraints to

suggest reasonable values for the others.

Figure 4.15 shows the bootstrap curves for the three training sets, for a net size of

4-5-1, for which there are 16 patterns in all. If the points are joined up then we

notice that the target curve and actual curve compare quite well for the correlated

set, actually far better than chance guesses. This can be seen by comparison with

the random bootstrap graphs for the same system size. We can put a number to

the bootstrap performance by defining the error in fit F of the two curves in the

following way:

F:= >::i(xkr Yi)2 = ((x - 	 (4.95)

The worst value F can have, if the two curves are independent, and the points are

chosen from a uniform distribution in the range [0, 1], is given by

F0 = ((Y)
2) =-

2xy +z?) 	 (4.96)

= 2f y 2 dy— 2f f x y dxdy 	 (4.97)

= 	 (4.98)

= 0.167. 	 (4.99)

Actually, the targets are always in the range [0.1,0.9], while the outputs are free

to take on values in the range [0, 1], so the worst estimate is modified to 0.176.

Any departure from this value indicates a greater or lesser degree of non-random

behaviour. The values for the curves in figure 4.15 are 0.044 and 0.126 respectively

for correlated and random bootstrapping. The permuted-correlated set scored

0.102 - almost as bad as the random net! The random and permuted-correlated

nets effectively make guesses based on the distribution of target values (as was

119

value
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

value
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

value
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

4--5--1 Random
	

4--5--1 Permuted-Correlated

pattern 	 pattern

4--5--1 Correlated

pattern

Figure 4.15: Bootstrap curves for the three training sets with 4 inputs (sec text

for explanation).

120

assumed in the estimate (4.99) for a uniform distribution). Since the permuted-

correlated training set is peaked (see figure 4.4), the average error will be less

than for the approximate uniform distribution of the random. Note also, that

as the number of exemplars increases, we would expect the permuted-correlated

performance to improve (since the target distribution becomes more peaked) while

the random should reach nearer the worst case of 0.176 above.

Figure 4.16 shows the situation for the 5-5-1 network. These are more impressive

still, as would be expected from previous results for larger networks. The values of

F for these curves are 0.161 for the random training set, 0.015 for the correlated,

and 0.081 for the permuted-correlated.

Figure 4.16 for the correlated set is particularly impressive when one considers

that the network has not in fact received any knowledge about what is plotted

directly, but merely through picking up the underlying trends in the training set

and generalizing to a missing input. In this way, although none of the mappings

on the graph was actually seen, the network can' produce a remarkable guess at

the complete set of target outputs.

For the 6-12--1 net, the correlated set produced an F of 0.006, the random 0.078

and the permuted-correlated 0.065. The improvement in the random performance

is surprising, considering what was said above, but we would expect values of

F averaged over many training set examples to tend to the predicted value. The

significant result is the clear improvement in the correlated set behaviour for larger

training sets. The consistent factor of more than ten better than the permuted-

correlated provides clear evidence for the underlying correlations in the training

set guiding the generalization.

4.10 Discussion and conclusions

The observations above indicate that there is a significant difference between the

correlated training set and the other two. The main cause of this difference is

the fact that there exists underlying regularity in the input/output pairs in the

121

value
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

value
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

value
1.0

0.9

0.8

0.7

0.8

0.5

0.4

0.3

0.2

0.1

0.0

5--5--1 Random
	

5--5--1 Permuted-Correlated

pattern 	 pattern

5-5-1 Correlated

pattern

Figure 4.16: Bootstrap curves for the three training sets with 5 inputs (see text

for explanation).

122

correlated training set, while such regularities are absent from the other two.

The regularities give rise to the better learning behaviour and the generalization

behaviour.

The form of the learning curves. As was pointed out, the descent for the

correlated training set was much steeper and reached low values much quicker,

than either of the other two training sets. We believe this to be due to the

cooperative effect of the 6 terms in the backpropagation. If the mapping of pattern

i is consistent with the mapping of pattern j, then not only will the error terms

serve to reduce the error of the respective patterns, but the error term for pattern

i will to a certain extent benefit the pattern j, and vice versa. Hence we see

the cooperative effect in the learning curves, which is apparent even when all the

networks have enough hidden units to be able to perform their respective mappings

easily. By the same token, we find that the learning curves, when there are not

enough hidden units to perform the mappings, differ in the opposite direction:

the correlated set stops at a plateau very early on (after a fast initial descent),

while the random sets decrease in stages of short plateaus, always reducing the

error a little bit with each step, although tending to an error well above that for

a solution, but also much lower than the correlated plateau. The correlated error

terms, which call for similar conflicting (because of the number of hidden units

available) weight changes, cancel each other out.

The critical number of hidden units. This property tells us quite emphat-

ically of the presence of any underlying correlations. The fewer the number of

independent parameters used in the definition of the patterns (which defines the

extent of the correlations in the input/output pairs), the fewer independent pa-

rameters there are to be stored in the network (from a purely information theory

point of view), and so the fewer the number of free parameters that are needed in

order to achieve the mappings. We note how the scaling of good performance at

a certain problem size, with the number of hidden units (which specifies the num-

ber of free parameters in the system), differs for the three types of training sets.

The random training set in general has the worst performance, with the scaling

proceeding almost parallel to the theoretical worst case. We would not in gen-

eral expect the permuted-correlated set to have as bad an absolute performance

123

as the random set, but nevertheless note how the scaling of the performance too

follows the theoretical worst case for no correlations. The absolute performance

is expected to be better because of the distribution of the target values. These

provide the set with a pseudo-correlation through giving a higher occurrence for

certain ranges of target values than others, and thus a free parameter may be used

to store information for more than one pattern. It must be realized, however, that

this is not real correlation between patterns and their targets, but solely between

the targets. This is actually a relatively small effect insofar as the learning curves

are concerned, with the permuted-correlated curves having similar general forms

to the random ones. The form of the scaling for the correlated set is considerably

better than the theoretical worst case. This type of non-exponential scaling is

what should be expected from real problems of this nature. Academic problem

domains are often characterized by such exponential scaling of hidden layer size.

It should also be pointed out here that although the number of hidden units is a

crucial factor up to the critical number, after this point further addition makes

little difference in learning speed and the form of the learning curves. One may ask

if any difference at all is made in real terms through further hidden unit addition.

We explore this question in the next chapter.

We have discussed the learning.above in terms of weight changes and cooperative

behaviour, but it is also useful to move from the reference frame of the individual

weights to that of the hidden units. This is also used in the next chapter to define

a solution found by an MLP. The hidden layer can be thought of as defining a

representational space for the input patterns. As the mappings are being learnt,

the representations will change relative to one another. If it is possible, the rep-

resentational stage of the mapping organizes the patterns such that it is possible

to produce the correct output values. If the patterns are independent, the rep-

resentational space will need to be larger, because, in the worst case, each input

pattern needs to be represented as far apart from every other pattern as is possi-

ble. However, with correlated patterns, the space can be smaller because patterns

can be much closer to one another, and indeed it is possible for them all to fit

into a very small space and still achieve all the required relative representations

for the very reason that they are self-consistent.

Over-learning. These observations indicate that at a certain point (the mini-

124

mum) the net pays less attention to the general structure of the training set than

it does to the specific requirements of the chosen patterns. This behaviour is a

warning against the over-learning of exemplars, if a certain degree of general be-

haviour is desired at the outcome of training. We believe this is a result, of the

learning proceeding in two steps:

the optimization heads towards the area in weight space where the global

minimum for the complete training set exists, but,

after this level, the optimization heads towards the nearest minimum which

is relevant for the current training set. This sub-minimum is (a) not neces-

sarily the same as the one for the complete training set (i.e. that containing

the whole family of mappings), (b) possibly different depending on direction

of entry to this region of weight space, and (c) not necessarily in a sub-region

of weight space which is closer to the full training set minimum than the

starting point.

The existence of many solutions for an incomplete training set, which do not

necessarily include a solution for the full training set, is thought to be a major

problem in the search for "clever" artificial neural nets (i.e. ones that generalize on

previous relevant but scattered information). We suggest in this thesis however,

that maybe the search for "a good generalization" is a red herring, and that, given

the right type of problem (usually possible through appropriate input codings)

correct generalization is no problem. The over-learning observed here is minor,

as we note from the bootstrap curves (plotted using the "over-learned" values

of the outputs). The results show, however, that it is always a possibility, and

care should be taken in not learning the training set so well that generalization

performance is noticeably curbed (as in the protein example).

Learning times. With single pattern removal the average learning time of the

training set is affected differently for each of the training set types. This has been

discussed in the last section. We emphasize that for the correlated case, due to

cooperative behaviour, removal of a pattern in general slows down the learning.

Bootstrap behaviour. This is one of the impressive displays of the generalizing

125

power the MLP has. The curve built up through the network's "educated guesses"

for single patterns, after leaning all the others, so closely models the target curve

for the correlated set, that we can see clearly how the network has correctly

"stored", in its weights, the salient information about the training set.

With these positive results, the reduction made in section 4.4 can be fully justi-

fied, and suggests also that, having made the reduction and reproduced the main

characteristics of the natural training sets, it might also be possible to say some-

thing about the types of correlations (we have used just pair correlations here)

dominant in the particular natural training set the network is learning.

126

Chapter 5

Solutions and scaling of generalization ability

5.1 Introduction

In this chapter we investigate the effect on the generalization ability of an MLP

of increasing the size of the hidden layer, using an artificial diagnosis problem do-

main. We use the relative hidden-unit representations of the training set patterns

to provide a definition of an MLP solution to a mapping. This is then used to

establish that the possible number of different solutions which a network may find,

given a certain range of starting positions in weight space, increases very quickly

with increase of number of hidden nodes above the critical number required to

solve the problem. This being so, we ask whether the prospect for satisfactory

generalization ability grows correspondingly poorer, as many more solutions are

made available, each perhaps with its own set of generalizations. Results sug-

gest that, for a wide range of hidden layer sizes, the generalization performance

remains high.

Such findings on this artificial problem domain confirm what has been observed

on many occasions with the low-level problem domains cited in section 4.1, and

is encouraging, in that getting the "correct" number of hidden units may not

necessarily be too critical a factor in the training of MLPs on real problems.

We illustrate the factors which may be more important in successful training, with

a study of the way the generalization scales with the number of patterns included

127

in the training set, and the variation of this with the actual patterns included in

the training set. We note that the inclusion of some patterns rather than others

may have a significant effect on the generalization performance.

52 Unique solutions to a mapping problem

The backpropagation learning algorithm is mathematically gradient descent of a

surface in Nw—dimensional space, where Nw is the number of parameters speci-

fying the MLP (the weights). Clearly for Nw> 2 it is no longer a helpful concept

to think of the algorithm as some kind of flow down a hill. It would be more

useful to know something about the distribution of different solutions populating

the search-space. One way of understanding such a property of the search-space

is to run the algorithm several times starting at different points on the (NW + 1)—

dimensional surface, and then to observe the occupation numbers of the different

final network configurations obtained. However, one must first allow for various

symmetries in the network states, since the mapping solution discovered by the

algorithm may have many equivalent weight realizations. Before the class of sym-

metries in the NW—dimensional parameter-space can be identified however, it is

necessary to define what is meant by a mapping "solution".

In this section we offer a method of specifying uniquely the solutions found, and a

way of counting the different solutions available to an MLP, for problem domains

in which the solutions do not overlap:

In order to learn the correct mappings for several patterns at the same time, the

network must choose a set of weights which allows the representations of all the

patterns in the hidden layer to have the correct relative relationships. Depending

on the type of problem domain, the patterns will require a greater or lesser degree

of independence from one another. Given a certain number of hidden units, there

will be a number of different ways of representing the patterns in order to achieve

this. Each of these ways characterizes an interpretation of the problem domain

(that is to say, how each pattern is related to every other pattern), and can be

justifiably used to specify a solution to the mapping task in hand. There may be

128

many different weight realizations of one particular solution, and so the way to

proceed is to define a solution not by the weights found by an MLP, but by the

set of relative representations of the patterns these give rise to.

Each dimension in hidden-unit (hu-) space is specified by one of the hidden units

in the system. The space spans the range of values which may be taken on by the

hidden units, in each .direction. Thus each hidden unit defines an axis in an NH-
dimensional space, where NH is the number of units in the hidden layer. Then

each pattern is represented by a point in this space, or equivalently, by a vector
1-.p_ (Li'

II.P
	 LP

IL - 	 , . . . , NH

The vectors h' need to satisfy the following requirements:

hi'.o, = 9j + ei 	V p, i 	 (5.100)

where i labels output units, q5,j is the target activation for output unit i on pre-

sentation of pattern p, and 9, is the threshold value of output unit i. 0, is the

output vector from the hidden layer to the output unit i. This vector is in fact the

representation of the weights from the hidden layer to the output unit, as drawn

in the hu-space, using the axes defined by the hidden unit states. Thus one can

imagine various configurations of representation vectors hi' producing the correct

set of scalar products as defined by (5.100), but which have different relative ori-

entations and lengths. Hence a solution can be represented by {{h 1'},O}, where

the {hP} specify the relative pattern representations, and 0 is the output matrix

(matrix of all the vectors o,).

If the hidden units have states ranging from 0 to 1, the representation vectors

are defined in the region of the NH-dimensional hypercube of unit side with one

corner at the origin and a diametrically opposite corner at the point (1,1,.. . 1 1),

and if they range from -1 to 1, in a hypercube of side 2 with centre at the

origin and a corner at (1,1,.. . ,1). We need to determine the class of symmetry

operations under which a solution will be invariant. If the vectors lie within

the hypersphere of unit radius (we will assume the hidden unit states lie in the

range [-1,1] centred at the origin), then the representations will be invariant

to the class O(NH) of rotations and reflections (orthogonal transformations) in

129

NH—dimensional space. Global scaling operators also leave solutions invariant,

if these operators keep the representations within the hypersphere. The same

symmetry operation must always be performed on the matrix 0 in the case of

the O(Nw) class, and the inverse operation on 0 for the scaling class', in order

to get correct values at the output of the net (however, this need not concern us

here since we know that all solutions must satisfy this requirement by definition).

Invariance to this set of symmetry operations allows sets of weight configurations

for identical solutions to range quite considerably. In general, however, we cannot

assume the vectors lie within the hypersphere mentioned above. Indeed, it is often

the case that hidden units have values close to the upper and lower ends of the

response function. If this is so we have to decide at what point two representations

containing the same set of relative angles but different set of magnitudes are

different. The case of the hypersphere was valid for linear response units, but not

for the nonlinear case. Indeed, it is precisely the nonlinearities which afford the

MLP the capability of performing arbitrarily complex mappings [Lip87]. Before

we answer the above question, we define more specifically what will be taken as

the parameters specifying the representations.

A representation set defining a solution, 1Z, is written as

1,2,.. . NTS; i <j} 	 (5.101)

where 	lij = 	h' - lij I, 	 (5.102)

and NTS is the number of patterns in the training (representation) set. Thus the

representation 7?. is defined by the set of distances {l} between all the points

representing patterns in the hu—space, which contains information about the rel-

ative pattern representations. To allow for scaling symmetry we use the set {h'P},

which is the set {hP} rescaled such that the condition

.IhmI = max{IWI}
P

jh'Pj = Ih"I/IhmI 	V p

is satisfied.

'The set of output states is given by O(hP)T, and remains invariant when the pattern repre-
sentations {hP} are scaled globally, provided 0 is scaled inversely by the same factor.

130

Provided the combination of relative angles and relative magnitudes are not per-

mitted to vary more than the differences in these quantities between different

solutions, it is possible to compare solutions unambiguously. Actually, the more

output units there are to constrain the tolerable variation in the representations,

the better will be the comparisons. Similarly, the lower the dimension, of the hu-

space available in which to represent the patterns, the less freedom and therefore

tolerable variation there is. As a measure of the similarity of two representation

sets iza and RP, we define the quantity Cab:

1
Cab :=

1 Nrg la 	1b • 	 (5.103)
+E <3 	jI

Thus Cab ranges from 0 to 1, and can be interpreted as the similarity between two

solutions a and b. In order to allow for a certain leeway in the 1 values, we use a

tolerance to determine whether to include a value Il - lJ in the summation. The1 3

presence of this leeway is needed because of the tolerance allowed in the training of

the values of the output units, deriving from the nonlinear response functions, and

is equivalent to assuming the bottom of a minimum in solution space is a ring a

certain height above the true minimum. We need to take account of such a leeway

since we do not wish to accumulate little differences in 1, which become significant

in (5.103) as NTS becomes large causing quite similar representations to have low

values of C. The tolerance was generally taken to be of the order Aj j = 0.1,

although allowance was made for generally larger i—values as the dimension of the

hypercube (number of hidden units) increased. The suitability of the C measure

depends entirely on the type of training set used, and the distribution of solutions

available, and we use it here mainly to illustrate scaling of solutions for the parity

problem, which are clearly defined.

First we give an example of identical solutions having different weight configura-

tions, and show how this can be understood with reference to more obvious net

symmetry.

Consider a network with NH = 2 7 the hidden units taking on values in the range

[-1, 1]. Figure 5.1a shows a set of representations in this space for 4 patterns.

Since these representations lie within the circle of unit radius centred at the origin,

131

)0

1_nfl
h2

1-nfl

)O 	-1,

(a)
	

(b)

Figure 5.1: (a): a set of hidden-unit representations in 2—d space; the hidden units

1 and 2 label the axes h 1 and h2 respectively. (b): the same set rotated through

90 degrees in a clockwise direction. (a) and (b) are equivalent solutions.

132

any of the group of 0(2) operations will leave the solution invariant in so far as

the net is concerned. But even if some of the representations lie outside the circle

we can still perform global rotations of multiples of 90 degrees about the origin,

and the solution will be the same (figure 5.1b). This set of operations is the

symmetry group of a square, or more generally an NH—dimensional hypercube.

Furthermore, a rotation of 180 degrees is just equivalent to changing the sign of

all the hidden units for each pattern, and that is the same as changing the sign

of all the weights going into each hidden unit. Clearly, we must also do the same

to the output vector o, and it is also clear that we can perform the 180 degree

rotation by using two reflections, one in the h1—axis and another in the h2—axis.

In general, we can reflect in any number of axes and the solution will remain

the same, provided the same type of operation is performed on 0. But this is

just the same as saying that any network is invariant when we change the sign of

all the weights going into and out of a hidden unit, a symmetry pointed out in

[DSB87]. It is also clear that the hidden units can have their labels permuted

without changing anything. This trivial symmetry is equivalent to relabelling the

axes in figure 5.1. In general, when there may be instances of the representations

lying in the hypersphere, 0(NH) is a continuous group of transformations, and

symmetrical solutions will not be so easy to spot.

Given a set of T representations, {7Z 1 , 'R 2 ,... , 1Zr}, we should be able to isolate

how many unique solutions there actually are. It is necessary for the set of val-

ues {Cab} between all the solutions to satisfy an equivalence relation, if the set

of unique solutions is discrete (i.e. there are no solutions which can be continu-

ously transformed into others while remaining solutions to the mapping problem).

Thus we expect to have a distribution of C—values consisting of two overlapping

distributions, one centred towards zero, and the other towards one. The higher

distribution is the scatter of values of C between solutions which are similar, and

the lower one those values between dissimilar solutions. For some problems it may

not be obvious where to draw the line between the two distributions, and for this

reason an equivalence relation constraint may be used. The equivalence relation

requires that, if we establish a value of C 0b above which two solutions a and b are

the same (i.e. a -'-* b), and below which they are different, then:

133

a --+ a 	 (reflexivity)

a-'-b=,b-'...+a 	(symmetry)

b, b— c- a-* c (transitivity)

To illustrate the use of this coefficient we will take three solutions to the parity

problem for a 2-2-1 MLP (this is similar to the XOR problem), and note the values

of C obtained. Figure 5.2 shows the three network configurations. It is not clear

which solutions are the same. We obtain the following values of C:

C12 0.271

C13 0.274

C23 1.000

It is clear that we have two different solutions, configurations 2 and 3 being equiv-

alent. One solution consists of the patterns (00) and (11) being clustered together

and the other two at opposite corners, while the other consists of the patterns

(01) and (10) being clustered, with the other two at opposite corners. The MLP

must do this kind of mapping in order to separate the patterns (01) and (10) from

(00) and (11).

5.3 Scaling of available solutions for the parity

problem

In order that the solution sets might satisfy an equivalence relation with regard

to their relative C—values, it was required above that solutions be discrete. If

the dimensionality of the hu—space is increased beyond the minimum size required

for a solution to be possible, we expect the following scenario to become more

likely: a particular hidden unit may be used for the sole representation of a single

pattern, and thus we may perform symmetry operations on the other dimensions

of hu—space without changing the basic representation of the above pattern. Sim-

ilarly we can scale the weights going into and coming out of the hidden unit in

question without disturbing the other pattern representations. Although such a

134

92 -5.

INPUT

OUTPUT

INPUT

OUTPUT

Solution 1 	 Solution 2
INPUT

3. 49

OUTPUT

Solution 3

Figure 5.2: Three examples of net configurations after solving the parity problem

for a 2-2-1 system. Numbers inside nodes indicate threshold values.

135

representation will be a rare case, the probability of such independence between

patterns becomes more likely with the number of hidden units used above the

essential number. The upshot of this is that we do not expect to satisfy, the

constraint of the equivalence relation between C—values for large numbers of hid-

den units. This progressive change is characterized by the values of C for a set

of solutions becoming less easy to separate into those which indicate a definite

equivalent solution, and those which indicate no equivalence. Initially, for the

smallest number of hidden units required to solve a problem, it is relatively easy

to separate the equivalent solutions from different ones. However, as hidden unit

number is increased the two types merge, and at large numbers of hidden units,

all representations appear to be different. Although it is possible to have complete

independence of solutions at 4 hidden units, for the 2-2-1 system, since there are

4 patterns, this is not necessarily the easiest solution, but such solutions become

more probable later on.

When such independent or semi-independent solutions are possible then we might

not expect good generalization behaviour, since the independent pattern represen-

tations are created by weight values which are not constrained to be consistent with

the other mappings in the training set.

It is the transition between rigidly interdependent pattern representations and the

type of independence mentioned above, which should have important consequences

for the generalization ability of a net.

The basic plan of the parity problem is to transform the pattern representations

such that an (NH -1)—dimensional hyperplane can separate the two sets of patterns

(those mapped to 1, and those mapped to 0). The solutions will vary in the

different ways it is possible to represent the patterns in the hu—space. We will

now use the C coefficient to count the number of such solutions, for various system

sizes.

Figure 5.3 shows how the percentage of solutions found to the parity problem

which are unique, scales with NH. From this plot we see that the possible solutions

diversify much quicker with hidden units when a higher number of input units is

used. This may sound strange since as the number of inputs in the parity problem

136

percent unique solutions
inn

90

80

70

60

50

40

30

20

10

0
0 	1 	2 	3 	4 	5 	.6 	7

hidden units

Figure 5.3: Scaling of the number of different solutions which can be distinguished

as hidden layer size is increased. Shown here is the scaling for 2, 3, 4 and 5 inputs,

for the parity problem.

137

increases, so the number of patterns requiring to be mapped increases, and one

would expect that this is a harder task with fewer solutions. But one must also

remember that no solution is possible until the number of hidden units reaches

Ni (number of input units), and after that solution multiplicity is aided by the

range of permutations of solutions possible, each themselves different in the sense

of hu—representations. The parity problem is hard, and the learning algorithm

looks for a solution whereby it can represent input patterns which are very close

as far apart as possible in the hu—space. This is done by generally putting as

many patterns as possible in a different corner of the NH—dimensional hypercube.

For NH < N., there are many less corners than patterns, and a solution cannot

be found (we have found none using the backpropagation algorithm). As we

increase NH after this bound, there are increasingly many possibilities, and much

more chance of different solutions being found. This is especially so with larger

values of N1, due mainly to the solutions resulting from the greater number of

permutation possibilities.

5.4 Resume"

We have established that the number of solutions found by an MLP using a

M1 training set scales very quickly with the number of hidden units used in the

network, and that this scaling is quicker the larger the number of mappings which

are to be made. We wish to know now how this affects a guess at a missing pattern,

since it might be expected that the more solutions that can be found, the more

probable it is that patterns are represented semi-independently or independently,

and the less the chance that the correct generalization will emerge from them.

In the next section we observe the actual generalization scaling for an artificial

diagnosis problem.

138

5.5 Generalization and a diagnosis problem

Another example of a natural problem domain, with good prospects for gener-

alization, is fault diagnosis, given a collection of symptoms. Experiments with

medical diagnosis of diseases has been successfully performed using feed-forward

networks [1C85, YPB88]. It is reasonably straightforward to set up an artificial

diagnosis problem domain, extending the derivation of the correlated domain of

the last chapter to include multiple sets of correlations, and more than one output.

We use the diagnosis type of problem in this section to illustrate the generality of

the artificially generated problem domain in the last chapter, and to show how it

might be used for training sets of more than one output.

This time we allow an input unit to take on the values {0, 11, and this is interpreted

as the absence or presence of a particular symptom. An output unit can take on

values in the range [0, 11, and is interpreted as the likelihood of a particular disease,

each output unit representing a particular type of disease (or fault). We define

the function mapping input states to the target tk in the same way as in the last

chapter for the reduced correlated domain:

	

1-2t fNJ 	
I —B 1 f(I, Jc)=t=

	

Ak [1<m 	
m 	k] + t 	 (5.104)

where Ak and Bk serve to confine the set of numbers such that they all lie within

the range [t, 1— t]. Thus

Bk = Em mi
Z<m

Ak = — Bk+max{>IrJjI},
1<m

(5.105)

(5.106)

as before, except that now there is more than one output node, each one repre-

senting the likelihood of a particular disease. Each disease Ic has its own set of

interactions {J} which define the way in which the symptoms influence the like-

lihood of the particular disease. The diseases have been made to be independent

139

(that is, there are no conditional probabilities between the diseases), and there are

still self-interaction terms as in the correlated set of the last chapter, so that the

presence of symptoms at all, and the co-occurrence of symptoms, both influence

whether a disease or fault is present.

Since the values to be learnt are real numbers, we use the L-cost function from

chapter 4, summing overall output units N0 :

N N0 I t,,
 P k 	 °kp 	 1—Okpj 	

(5.107)

The network used in all the simulations below had N1 = 5 inputs and No = 3
outputs. This was sufficient size for the exploration of the generalization scaling

properties in this chapter. 'The training was considered to be finished when the

value of L reached 10-4 x N x N 0 , giving about 2 percent accuracy per output

node per pattern as before (or each pattern was learnt to within a tolerance of

about 0.01).

5.5.1 Effect of training set size

In the first experiment we study the effect of training set size on the success in

generalizing the remainder of the whole set of inputs. Each point in figure 5.4

represents the best generalization obtained, chosen from 5 different initial weight

starting points, and 10 different, randomly selected, training sets, using the same

complete training set.

The generalization G is defined using the mean output unit error e which a

random classifier might be expected to obtain, and the mean output unit error e
obtained by the network:

G := e,. - en
e

(5.108)

with e given by

140

Generalization (G)

0.0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1.0
Fraction of patterns in training set

Figure 5.4: Dependence of the generalizing ability of a net on the number of

patterns in the training set, and the composition of the training set. The points

indicate the best generalizations obtained for a particular size of training set, and

the error bars indicate the range of generalizations obtained for each particular

training set size.

141

Nt 3

1:e.= - o) 2 	 (5.109)
pEF, i

where Nt indicates the number of patterns in the test set .F, and M = Nt x 3

is the total number of unit comparisons. From section 4.9.3, the value expected

from a random classifier is about e = 0.176, and this is the value we shall use

when calculating G. The best value G can have is 1, and G = 0 indicates no

generalization, and less than zero some kind of anti-generalization. 2

The actual points plotted in the figure indicate the best generalization obtained

out of the range of training set compositions which were used. We observe that

as we include more of the patterns in the training set, the performance in best

generalization improves steadily. The quantity plotted reflects the mean closeness

of the actual output with the target output, per output node. Thus as we use a

larger training set, the generalization set is shifted closer to the target values as

a whole. Thus the more patterns we use in the training set, the closer the typical

generalizations will be to the ones we want.

Shown also in the figure are the range of generalizations obtained, for each training

set size. These are the positive error bars, leading from the plotted points. From

these we see how the best generalization obtainable with a given training set

size depends on the actual set of patterns included in the training set. Some

patterns are more important than others for the attainment of good generalization.

This becomes less crucial as the size of the training set increases. Particularly

bad generalization could be a result of an unproportionately large number of

patterns in the training set being chosen from the high and low ends of the target

distribution (see figure 4.4). The likelihood of this happening of course decreases

as we allow more patterns in the training set.

Each pattern provides some information about the underlying trends behind the

generation of the target values. It is interesting to note from the figure that the

generalization remains relatively stable once more than about 60% of the patterns

are included in the training set, irrespective of which patterns we include. Thus

'The meaning of this is not clear, but since such a phenomenon is not observed in this thesis,

we shall not pursue it further.

142

the extra information provided by more patterns, about the trends in the training

set, does not improve significantly on that information extracted from the given

set of patterns.

Ahmad and Tesauro have found [AT88] that, in the majority mapping function,'

the fraction of patterns in the test set which are correctly mapped, scales with

the exponential of the number of patterns included in the training set. If we plot

the logarithm of 1 - G (G is the average generalization performance) against the

fraction of patterns in the training set (figure 5.5), we obtain an approximate

linear relationship. The gradient of the least-squares fit to these points (the line

shown in figure 5.5) is —4.47 ± 0.14 = —k, with the y-intercept a = — 0.36 ± 0.04.

Thus we have the approximate relation

G = 1 - 	 (5.110)

where f is the - fraction of patterns, from the total set of input patterns, that are

in the test set.

5.5.2 Scaling with hidden layer size

We now examine how generalization performance is influenced by the number of

hidden units between input and output, and relate this to the idea of relative

hu—representation sets and solution number, introduced in the first part of the

chapter.

Figure 5.6 shows the performance of the net on a particular training set of a

fixed size (we chose 0.7 x Ne). The results are surprising. We would expect

to observe that as we increase hidden layer size, the generalization performance

would get worse, since the number of available solutions increases. This is not

what happens. The generalization performance remains about the same for the

range of sizes chosen. The smallest hidden layer chosen was the smallest one

'The single output node is to be 1 if the number of ON bits in the input is greater than the

number of OFF bits.

143

1-G

0.0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1.0
Fraction of patterns in training set

Figure 5.5: log(1—G) plotted as a function of the fraction of the full set of patterns

in the training set. The line is a least-squared fit to these points.

144

generalization (G)

.5 	10 15 20 25 30 35 40 45 50 55 60 65 70
hidden units

Figure 5.6: Generalization as a function of the number of hidden units. The error

bars indicate the standard error of the sample of generalizations for each network

size.

which could actually find a solution to the mapping. Even though the number of

solutions found by the network on average increases with the hidden layer size,

these solutions, although different with respect to relative pattern representations,

produce on average similar generalizations.

145

Hidden
	

Weights

units I 1st layer 	I 	2nd layer

10 0.0046 ± 2.237

30 —0.058 ± 1.553

50 —0.0038 ± 1.306

70 —0.0047 ± 1.056

—0.017 ± 0.742

—0.032 ± 0.378

—0.0049 ± 0.331

—0.0052 ± 0.310

Table 5.1: Distribution of weights in the two layers (layer 1 = input to hidden) of

the MLP as a function of hidden layer size. The entries indicate the mean value

of the weights and the standard deviation of the weights about this mean.

So it must be concluded that for this problem, and problems like this (and there

are probably many which can be defined in a similar way to this), the number

of hidden units used is not so crucial as originally suspected. This conclusion is

borne out in the applications cited in section 4.1, where the number of hidden

units used is typically an arbitrary, but reasonable choice (i.e. perhaps half as

many again as are required to perform the training set mappings).

It might be argued that only a certain number of hidden units are actually being

used to produce the mapping, and that this is giving rise to the almost constant

value of the generalization in figure 5.6. Table 5.1 shows that the weights in

general are reduced in magnitude, as more are used to do the mapping, with the

weights in the layer from input to hidden occupying a wider range than the weights

from hidden to output. Thus the increase in the number of hidden units available

in general causes the weights to assume lower values, as might be expected if

they were all being used in learning the mapping. It must be concluded that

the information about the underlying trends in the training set is stored in a

distributed manner, throughout all the weights in the network.

Therefore it seems that despite the large increase in availability of different solu-

tions as the hidden layer grows, demonstrated in the last section, the algorithm

favours those solutions producing the emergent effect of good generalization. Ad-

ditional hidden units merely cause the network to distribute the information about

the training set over a larger number of weights, rather than encouraging increas-

ingly independent mappings.

146

This behaviour can be understood if we consider the results on learning presented

in chapter 4. The emergent properties of learning and generalization derive from

the same source: the underlying regularities in the training set. Thus acquisition

of the regularities allows the mappings to be better and faster learnt. Therefore

we can think of this type of solution as having a greater probability of being found,

or to have either a higher frequency of occurrence in the search space, or a larger

basin of attraction. The solutions which are most quickly and readily learnt are

those which also display good generalization.

Thus although the actual number of solutions available to the network scales very

quickly with the number of hidden units, the solutions actually found for such

low-level domains are distributed closely about the optimal solution (that found

for the full training set).

5.6 Conclusions

We conclude that the solutions available to an MLP as it proceeds through search-

space do, in general, increase in number as the dimension of the search-space (hid-

den unit number) increases. However, this is in general not problematical for the

subsequent generalizing ability of the network, in the sense that the performance

is pretty much the same for each hidden layer size.

The above conclusion may only be valid for the particular low-level problem do-

main used in this chapter, but we believe it to be more general. Finding the

solution characterized by good generalization performance is another emergent

property of the network. That is, learning of the patterns proceeds such that

the underlying correlations effectively speed up the learning (the cooperative effect

discussed in section 4.8), and these solutions are characterized by steeper and

broader minima in weight-space, however many hidden units (or dimensions) are

present. These, therefore, are the solutions that will most likely be found.

We note that the choice of patterns to include in the training set, of any partic-

ular size, has a greater effect on the final generalization ability than the size of

147

the hidden layer. We conclude that judicial choice of training exemplars is an

important factor in the effective training of feed-forward networks, and suggest

that this, together with the choice of an appropriate input coding strategy, are

the chief considerations likely to entice the best emergent behaviour from these

networks.

148

Appendix A

Appendix

A.1 The Trypsin proteins used in chapter 4

Below are listed the seven proteins used in the training set:

Protein 1:

ILGGHLDAKGSFPWQAKMVSHHNLrrGAm INEQWLLTT

AKNLFLNHSENATAKD IAPTLTLYVGKKLvEIEIcvvLHpNys QVD IGL I

KLKQKVSVNERVNP ICLPSKDYAEVGRVGYVSGWGRNANFKFTDHLKyI,M

LPVADQDQCIRBYEGSTVPEKKTPKSPVGVQP ILNEHTFCAGMSKYQEDT

CYGDAGSAFAVHDLEEDTWyATG ILSFDKS CAVAEYGVY VKVTS IQDWVQ

KTIAEN.

Protein 2:

VVGGEDAKPGQFPWQVVLNGJCVDA

FCGG S IEKWIVTAAHCVETGVKITVVAGEHNIEETEHQKRN1JIPI

IPHHNYNAAINKYNHD IALLELDEPLVLNSYVTPICIADKEYTNIFLKFG

S GYVSGWGRVPHKGRSALVLQYLRVPLVDRATCLRSTKFTIYNCAGF

HEGGRD SCqGDSGGPHVTEVEGTSFLTG I IS WGEECANKGKYG IYTKVSR

YVNWIKEKTKLT.

149

Protein 3:

RPQGSQQN

LLPFPWQVKLTNSEGKDFCGGVL IDNF VLTTATCSLLYANI SVKTRSHF

RLHVRGVRVHTRFEADTGHNDVALLDLARpvRCpDAGpVcTFs

VLLPQPGVLGGWTLRGREMVPLRLRVTHVEPAECGRALNATVTrRTSCER

GA.AAGAARWVAGGAVVREHRGAWFLTGLLGAAPPEGPGPLLL IKVPRYAL

WLRQVTQQPSRASPRGDRGQGRDGEPVPGDRGGRWAPTALPPGPLV.

Protein 4:

IVGGYTCGANTVPYQVSLNS GYHFCGGSLINS QWVVSAAHCYKS

GIQVRLGEDNINVVEGNEqFISASKSIVHPSYNSNTLNNDIMLIKLKSAA

SLNSRVAS ISLPTSCASAGTQCLISGWGNTKSSGTSYPDVLKCLKAPILS

DSSCKSAYPGQ ITSNNFCAGYLEGGKDSCQGDSGGPVVCSGKLQGIVSWG

SGCAQKNKPGVYTKVCNYVSWIKQTIAsN.

Protein 5:

IVGGYTCAANS IPYQVSLNSGSHFCGGSLINSQWVVSAAHCY

KSRI QVRLGEHNID 'JLEGNEQFINAAKI ITHPNFNGNTLDNDfl!LIKLss

PATLNSRVATVSLPRS CAAAGTECL IS GWGNTKSSGSSYPSLLQCLKAPV

LSDSSCKSSYPGQITGNNICVGFLEGGKDSCGDSGGPVVCNGqLQGIVS

WGYGCAQKNKPGVYTKVCNYVNWIQ QTIAAN.

Protein 6:

IVGGYTCPEHSVPYQVSLNSGyHFCGG

SLINDQWVVSAAHCYKSRI qvRLGEHNINVLEGDEqFINAAKIIKHpNyS

SWTLNNDIMLIKLS SPVKLNARVAPVALPSACAPAQTQ CLIS GWGNTLSN

GVNNPDLLQCVDAPVLSQADCEAAYPGEITSSMICVGFLEGGKDSCQGDS

GGPVVCNG QLQG IVSWGYGCALPDNPG VYTKVCNFVGWI QDTIAAN.

Protein 7:

IVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWV

VSAAHCYKSRI QVRLGEHNINVLEGNEQF VNAAKI IKHPNFDRXTLNND I

MLIKLSSPVKLNARVATVALpS SCAPAGTQCLISGWGNTLSSGVNEPDLL

150

Q CLDAPLLPQADCEASYPGKITDNMVCVGFLEGGKD SC GDSGGPVVCNG

ELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIA.

The following seven proteins were used in the test set:

Protein 8:

IVGGYECPKHAAPWTVSLNVGYHFCGGSLIAPGWVVSAAHCYQ

RRIQVRLGEHDISANEGDETYIDSSNVIRHPNYSGYDLDNDIMJIKLSKP

AALNRNVDLISLPTGCAYAGEMCLI SG WGNTMDGAVSGD QLQCLDAPVLS

DAECKGAYPGMITNNNNCVGYNEGGKDSCqGDSGGPVVCNGMLQGIVSWG

YGCAERDHPGVYTRVCHYVSWIHETIASV.

Protein 9:

IVGGTDAVLGEFPYQLSFQETPLGFSFHFCGAS IYNENYAITAGHCVYGD

DYENPS GL Q IVAGELDMSVNEG SEQTITVSKI ILHENFDYDLLDND I SLL

KLSGSLTFNNNVAP IALPAQ GHTATGNVIVTGWGTTSEGGNTPDVLQKVT

VPLVSDAECRDDYGADEIFDSNICAGVPEGGKDSCQGDSGGPLAASDTGS

TYLAGIVSWGYGCARPGYPGVYTEVSYHVDWIKANAV.

Protein 10:

CGVPAIQPVLSGLSRIVNGEEAVPGSWPWQVSLDKTGFHFCGGSLINEN

WVVTAAHCGVTTSDVVVAGEFD Q GS SSEKI QKLKIAKVFKNSKYNSLTIN

NDITLLKLSTAASFSqTVSAVCLPSASDDFAAGTTCVTTGWGLTRYTNAN

TPDRL QASLPLLSNTNCKKYWGTKIKDANICAGASGVSSCMGDSGGPLV

CKKNGAWTLVGIVSWGSSTCSTSTPGVYARVTALVNWVQQTLAAN.

Protein 11:

CGVPAIQPVLSGLARIVNGEDAVPGSWPWQVSLQDSTGFCGGSLISED

WVVTAAHCGVTTSDVVVAGEFDQGLETEDTQVLKIGKVFKNPKFS ILTVR

NDITLLKLATPAQFSETVSAVCLPSADEDFPAGMI.CATTGWGKTKYNALK

TPDKLQQATLP IVSNTDCRKYWGSRVTD V'MICAGASGVS SCMGDSGGPLV

CQKNGAWTLAG IVSWGSSTCSTSTPAVyARVTALNPWVQETLAAN.

151

Protein 12:

IVGGTNAPRGKYPYQVSLRAPKHFCGGS ISKRYVLTAAHCLVGKSEHQVT

VGSVLLNXEEAVYNAKELIVNKNYNS IRLIND IGL IRVSKD ISFTQLVQP

VKLPVSNTIKAGDPVVLTGWGRIYVNGP IPNNLQQ ITLS IVNQQTCKSKH

WGLTDS QICTFTKRGEGAC}IGDSGGpr.. VANGVQ IGIVSYGHPCAIGSpNV

FTRVYSFLDWIQKNQL.

Protein 13:

IVGGTDAPRGKYPYQVSLRAPKHFCGGS ISKRYVLTAAHCLVGJCSKHQVT

VHAGSVLLNKEEAVYNAEEL IVNKNYNS IRL IND IGLIRVSKDI SYTQLV

QPVKLPVSNTIKAGDPVVLTGWGRIYVNGP IPNNL Q Q ITLS IVNQQTCKF

KHWGLTDSQ ICTFTKLGEGACDGDSGGPLIJANGVQ IGIVSYGHPCAVGSP

NVFTRVYSFLDWIQKNQL.

Protein 14:

VVGGTRAAQGEFPFMVRLSMGCGGALyAQD IVLTAAHCVSGSGNNTS ITA

TGGVVDLQ SAVKVRSTKVLQApGyNGTGKDWAL IKLAQP INQPTLKIATT

TAYNQGTFTVAGWGANREGGSQ QRYLLKANVPFVSDAACRSAyGNELVAN

EEICAGYPDTGGVDTCQ GDS GGPMFRKDNADEW IQVGIVSWGYGCARPGY

PGVYTEVSTFASAIASAARTL.

152

Bibliography

[AHS85] 	D. A. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algo-

rithm for boltzmann machines. Cognitive Sciences, 9, 1985.

[AS87] 	J. Austin and T. J. Stonham. The ADAM associative memory.

Technical Report YCS 94, Dept. of Computer Science, York Univer-

sity, 1987.

{AT88} 	S. Ahmad and G. Tesauro. A study of generalization in neural

networks. In Abstracts of the First Annual Meeting of the INNS,

September 1988.

[BB87] 	M. Bedworth and J. S. Bridle. Experiments with the backpropa-

gation algorithm: A systematic look at a small problem. Technical

Report RIPRREP/1000/9/87, Royal Signals and Radar Establish-

ment, 1987.

[BD87] 	T. Beynon and N. Dodd. The implementation of multi-layer percep..

trons on transputer networks. Technical Report RIPRREP/1000-

/13/87, Royal Signals and Radar Establishment, 1987.

[BJM83] 	L R Bahl, F Jelineck, and R. L. Mercer. A maximum likelihood ap-

proach to continuous speech recognition. IEEE transactions on pat-

tern analysis and machine intelligence, PAMI-5(2):179-190, March
1983.

[Bod87] 	M. A. Boden. Artificial Intelligence and Natural Man. MIT Press,
1987.

[Bou86} 	D. G. Bounds. A statistical mechanical study of boltzmann ma-

chines. Technical report, Royal Signals and Radar Establishment,

153

1986.

[Dod87] 	N. Dodd. Texture discrimination using multi-layer perceptrons.

Technical Report RIPRREP/1000/15/87, Royal Signals and Radar

Establishment, 1987.

[DSB87] J. Denker, D. Schwartz, Wittner B, S. Solla, R. Howard, L. Jackel,

and J. Hopfleld. Large automatic learning, rule extraction and gen-

eralization. Complex Systems, 1(5), 1987.

[FN71] 	R. E. Fikes and N. J. Nilsson. Strips: A new approach to the appli-

cation of theorem proving to problem solving. Artificial Intelligence,

2:189-208, 1971.

[For88] 	B. M. Forrest. Restoration of binary images using networks of ana-

logue neurons. In Parallel Architectures and Computer Vision, pages

19-31. Oxford University Press, 1988.

[Heb49] 	D. 0. Hebb. The Organization of Behaviour. Wiley & Sons, 1949.

[11in87] 	G. E. Hinton. Connectionist learning procedures. Technical Report

CMU- CS-87- 115, Carnegie-Mellon University, 1987.

[Hop82] 	J. J. Hopfield. Neural networks and physical systems with emer-

gent collective computational abilities. Proceedings of the National

Academy of Science, 79:2554-2558, 1982.

[Hop87] 	J. J. Hopfield. Learning algorithms and probability distributions in

feed forward and feed back networks. In Proceedings of the National

Academy of Science, USA, 84, pages 8429-8433, 1987.

[KGV83] 	S. Kirkpatrick, C. D. Celatt, and M. P. Vecchi. Optimization by

simulated annealing. Science, 220:671-680, 1983.

[KL89] 	J. Kindermann and A. Linden. Detection of minimal microfea-

tures by internal feedback. In J. Retti and K. Leidimair, editors,

5. Osterreichische Artificial-Intelligence Tagung, Berlin Heidelberg,

1989. Springer.

[Ku159] 	S. Kulback. Information Theory and Statistics. Wiley, New York,

1959.

154

[LB87] 	P. Lloyd and D. Bounds. A numerical study of the back propagation

algorithm for multi-layer perceptrons. Technical Report RIP RREP-

/1000/11/87, Royal Signals and Radar Establishment, 1987.

[1C85] 	Y. le Cun. Medical diagnosis using neural networks. In Proceedings

of Cognitiva, Paris, 1985.

[LHCC86] A. Lyall, C. Hill, J. F. Collins, and A. F. W. Coulson. Implemen-

tation of inexact string matching algorithms on the ICL DAP. In

M. Feilmeier, G. Joubert, and U. Schendel, editors, Parallel Com

puting '85, pages 235-240. 1986.

[Lip87] 	R. P. Lippmann. An introduction to computing with neural nets.

IEEE ASSP Magazine, April 1987.

[Lor76] 	G. G. Lorentz. The 13th problem of Hilbert. In F. E. Browder, ed-

itor, Mathematical developments arising from Hilbert problems. The

American Mathematical Society, 1976.

[MBB87] 	N. A. McCulloch, M. D. Bedworth, and J. S. Bridle. Netspeak:

A multi-layer perceptron that can read aloud. Technical Report

RIPRREP/1000/4/87, Royal Signals and Radar Establishment, 1987.

[McC75] 	J. McCarthy. Programs with common sense. In R. C. Schank and

B. N. Nash-Webber, editors, Semantic Information Processing, June

1975. Proceedings of the Workshop of the Association of Computa-

tional Linguistics.

[Min79] 	M. Minsky. The society theory of thinking. In P. H. Winston and

R. H. Brown, editors, Artificial Intelligence: An MIT Perspective,

pages 421-452. MIT Press, Cambridge, Mass., 1979.

[MP69] 	M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.

[NRR89] M. G. Norman, N. J. Radcliffe, G. D. Richards, F. J. mieja, D. J.

Wallace, J. F. Collins, S. J. Hayward, and B. M. Forrest. Neural

network applications in the Edinburgh Concurrent Supercomputer

Project. In Proceedings of the NATO Advanced Study Institute on

Neural C1omputing, Les Arcs, 1989.

155

[01a89] 	M. Olazaran. The perceptron debate: An insight into the history of

connectionism. Technical report, Dept. of Sociology, University of

Edinburgh, April 1989.

[Par85] 	D. B. Parker. Learning logic. Technical Report TR-47, Sloan School

of Management, April 1985.

[P1186] 	B. A. Pearlmutter and G. E. Hinton. G-maximization: an unsu-

pervised learning procedure for discovering regularities. In Neural
Network's for Computing. American Institute of Physics, 1986.

[P1187] 	D. A. Plaut and C. E. Hinton. Learning sets of filters using back-

propagation. Computer Speech and Language, 2, 1987.

[PNH86] 	D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on

learning by backpropagation. Technical Report CMU-CS-86-126,

Carnegie-Mellon University, June 1986.

[QS88] 	N. Qian and T. J. Sejnowski. Predicting the secondary structure of

globular proteins using neural network models. Journal of Molecular
Biology, 202:865-884, 1988.

[R11W86] D. E. Rumelhart, C. E. Hinton, and R. J. Williams. Learning inter-

nal representations by error propagation. Nature, 323(533), 1986.

[Ric88] 	G. D. Richards. Implementation of backpropagation on a transputer

array. In J. Kerridge, editor, Proc. 8th Technical Meeting of the

Occam User Group, pages 173-179, Amsterdam, 1988. lOS.

[RM86] 	D. E. Rumelhart and J. L. McClelland. On learning the past tense

of English verbs. In D. E. Rumelhart and J. L. McClelland, editors,

Parallel Distributed Processing, volume 2,' chapter 18. MIT Press,
1986.

[Ros59] 	F. Rosenblatt. Principles of Neurodynamics. Spartan Books, New
York, 1959.

[Sam63] 	A. L. Samuel. Some studies in machine learning using the game of

checkers. In A. Feigenbaum and J. Feldman, editors, Computers and
Thought. McGraw-Hill, New York, 1963.

156

[Se159] 	0. G. Selfridge. Pandemonium: A paradigm for learning. In D. V.

Blake and A. M. Uttley, editors, Proceedings of the symposium on

mechanization of thought processes, pages 511-529, London, 1959.

National Physical Laboratory, HMSO.

[SLF88] 	S. Solla, E. Levin, and M. Fleischer. Accelerated learning in layered

neural networks. Complex Systems, 2(6), 1988.

[Smi87] 	L. Smith. Simulation of connectionist machine on a transputer array.

Technical report, University of Stirling, 1987.

F. J. inieja. The significance of underlying correlations in the train-

ing of a layered net. In Abstracts of the First Annual Meeting of the

INNS, September 1988. Available as Edinburgh preprint 88/447.

F. J. inieja. Mip solutions, generalization and hidden-unit represen-

tations. In proceedings of the DANIP Workshop 1989. Oldenbourg

Verlag, 1989.

[SN63] 	0. G. Selfridge and U. Neisser. Pattern recognition by machine. In

A. Feigenbaum and J. Feldman, editors, Computers and Thought.

McGraw-Hill, New York, 1963.

[SR871 	T. J. Sejnowski and C. R. Rosenberg. NETtalk: A parallel network

that learns to read aloud Complex Systems, 1(1), 1987.

{R88] 	F. J. Smieja and G. D. Richards. Hard learning the easy way: Back-

propagation with deformation. Complex Systems, 2(4), 1988.

[Sus75] 	G. J. Sussmann. A Computer model of skill acquisition. New York,

1975.

[TGWW741 J. M. Tenenbaum, T. D. Garvey, S. Weyl, and H. C. Wolf. An

interactive facility for scene analysis research. Technical Report 87,

Stanford Research Institute, 1974. Al technical Note.

[TS88] 	G. Tessauro and T. Sejnowski. A parallel network that learns to play

backgammon. Artificial Intelligence, 1988. in press.

157

[TW75] 	J. M. Tenenbaum and S. Weyl. A region-analysis subsystem for

interactive scene analysis. In 4th International Joint Conference in

Artificial Intelligence, pages 682-687, Tbilisi, USSR, 1975.

[U1173} 	J. R. Ullmann. Pattern Recognition techniques. Butterworth & Co.

(publishers) Ltd., London, 1973.

[Wa187a] 	D. J. Wallace. Neural network models: a physicist's primer. In

R. D. Kenway and G. S. Pawley, editors, Computational Physics,

pages 167-210. SUSSP Publications, 1987. Proceedings of the 32nd

Scottish Universities Summer School in Physics.

[Wa187b] 	D. J. Wallace. Using neural networks to analyse protein sequences,

1987. Confidential Report to RSRE Malvern.

[WBLH69] D. J. Willshaw, 0. P. Buneman, and H. C. Longuet-Higgins. Non-

holographic associative memory. Nature, 222(5197), June 1969.

[Wer74] 	P. J. Werbos. Beyond Regression: New Tools for Prediction and

Analysis in the Behavioural Sciences. PhD thesis, Harvard Univer-

sity, 1974. unpublished.

[WH60] 	B. Widrow and M. E. Hoff. Adaptive switching circuits. 1960 IRE

WESCON Cony. Record, Part 4, pages 96-104, August 1960.

[Win75] 	P. H. Winston. Learning structural descriptions from examples. In

P. H. Winston, editor, The Psychology of Computer Vision. McGraw-

Hill, New York, 1975.

[WL88] 	A. Wieland and R. Leighton. Shaping schedules as a method for

accelerated learning. In Abstracts of the First Annual Meeting of the

INNS, September 1988.

[Wo188] 	K. Wolf. Werkzeuge zur simulation neuronale netze auf parallelrech-

nern. Master's thesis, Uthversitàt Bonn, 1988. Diplomarbeit.

[Wri88] 	W. A. Wright. Toward a generic learning algorithm. preprint

AIP/AW/88/4, British Aerospace, Sowerby Research Center, Bris-

tol, UK, 1988.

158

[YPB88] 	Y. Yoon, L. L. Peterson, and P. R. Bergstresser. Desknet: The der-

matology expert system with knowledge-based network. In Abstracts

of the First Annual Meeting of the INNS, September 1988.

159

