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Abstract 

Aspects of learning and generalization in feed-forward neural networks are studied. 

The networks are taught using the backpropagation learning algorithm. 

The performance of the algorithm is studied using a training set which can be 

made to have a variable difficulty. Using such a training set the performance is 

evaluated and improvements and modifications suggested. 

A simple classification of problem domain types is made and a particular class 

is suggested to be the most appropriate for the 3—layer feed-forward network to 

learn. This class is characterized by underlying regularities among the training 

set members, such that the mapping required for each pattern in the training set 

is consistent with all the other required pattern mappings. The suitability of this 

class of training sets is demonstrated with observation of the emergent properties 

of the network in actual learning speed and nature, and in the generalization ability 

displayed after learning an incomplete training set. This behaviour is contrasted 

with training sets not possessing the underlying properties of this class, from which 

it is concluded that this type of network is more effectively used for extracting 

salient information about a training set, given that underlying regularities exist, 

rather than for other classes of mappings. 

The dependence of generalization of the network on such problem domains is 

studied as a function of hidden layer size. It is shown that in general the number of 

different solutions available in the algorithm's search space increases rapidly with 

the hidden layer size. Despite this, it is shown that the generalization performance 

does not degrade correspondingly, but in fact remains at a steady high level. This 

observation suggests that the salient information about a training set is more 

likely to be extracted during learning, as opposed to merely mapping the patterns 

independently (which form a large set of other possible solutions), and that this 

information is stored in a distributed manner throughout all the weights of the 

network. 
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Chapter 1 

Outline and motivation of the thesis 

1.1 Background 

One of the fundamental goals of Artificial Intelligence is to develop machines 

capable of learning about their environment, from their interaction with the en-

vironment and the changes in the environment. Perhaps most important is a 

capability of generalizing from experiences encountered in the environment so as 

to be able to make predictions and thenceforth plans and strategies in further 

interaction with the environment. The standard approach to this task is based on 

the construction of theories and computer programs which embody all the sen-

sory, syntactical and reasoning skills required in the machine's interaction with the 

particular, well-defined environment. The initial emphasis is generally on strin-

gent and unambiguous definition of machine responses to typical environmental 

situations. If general rules can be identified with respect to desired forms of in-

teraction then these are also included as a priori rules which can be obeyed by 

the machine. However, the problem of how to enable a system to learn is, as 

pointed out by McCarthy [McC75], inseparable from that of how to represent 

the knowledge concerned. Connectionism, or neurally-inspired models, consider 

correct representation to be the key to successful learning and generalization. 

- 	These models are inspired by observation of the processing power and speed 

achieved in the brain, and attempt to reproduce this through having a basic 
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structure of simple processing units ("neurons") connected together by weights 

("synapses"). The speed is to be emulated by the parallel operation of sets of 

units, and the complexity of processing by the mutual interactions of all the units. 

The emphasis is on trying to evolve non-localized, non-symbolic, robust represen-

tations of tasks in the machine by some form of learning from experience, and to 

use such representations to achieve the above-mentioned goal of generalization. 

1.2 The research in this thesis 

In this thesis we make a study of a particular type of connectionist model, or neural 

network, and its associated learning algorithm. The neural network is known as 

feed-forward and the learning algorithm backpropagation. 

Such a study is interesting from the physics point of view, because it involves the 

operation of complex systems of nonlinear units, from which it is desired to obtain 

firstly an optimization power, and secondly an emergent generalization effect. This 

generalization can be viewed as a synergetic effect of the combined influences of 

the features extracted from the input space and stored in the weights. 

As in many nonlinear systems, especially complex systems such as this, the theo-

retical work which can be done is limited, and so it is more expedient to perform 

computer simulations, observe general effects, and from there to make predictions 

as to the behaviour of other such systems. Nevertheless, if it is possible to reduce 

the problems to a simpler level, the deductions made will be easier to formalize, 

and probably more general. This research is performed in just such a reductionist 

spirit, exemplified by the approach to the rounding problem of chapter 3, which 

leads to the more general deformation tool, and the reduction of the "natural" 

problem domains to a level at which we can make the analogy to simple spin 

systems (chapter 4). 

Important features of the algorithm and considerations which should be made 

in its use are explored. The main thrust of the work involves the study of the 

'This term is explained in section 4.1. 



learning and generalization capabilities of this model when the problem domain 

used involves underlying correlations between its members. We also introduce 

a method of defining solutions to simpler problem domains discovered by the 

network, in terms of the representations of patterns in the "hidden layer" (the 

layer in which the units are not required to have any particular states, as opposed 

to the input and output layers). 

1.3 Organization of the thesis 

Chapter 2 introduces the ideas of connectionism and outlines the difference be-

tween these types of models and the symbolic program structures also used in Ar-

tificial Intelligence to allow learning and generalization. The ideas of learning and 

generalization in the connectionist framework are explained, and the forerunner 

of the multi-layer perceptron, the perceptron, is described and discussed, before 

the multi-layer perceptron itself is introduced. Finally, we compare the processing 

performed by perceptrons and multi-layer perceptrons with traditional pattern 

classification techniques, and suggest how the multi-layer perceptron, through 

learning about the input space rather than using parametric or non-parametric 

techniques explicitly to fit generating functions to it, can be viewed as a simpler 

and more general form of classifier. 

Chapter 3 presents the details of the feed-forward network model and backprop-

agation algorithm used, and results of its performance on the rounding problem. 

Various properties of the net and the basic algorithm are studied, using learn-

ing curves, error maps and net scaling. Two major improvements are suggested: 

the deformation procedure and a parameter changing procedure. The deforma-

tion procedure is applied to another problem, noisy digit restoration, in which it 

is shown how the procedure improves performance, and the parameter changing 

procedure is employed again in later simulations for efficient minimization. 

In chapter 4 we offer a simple classification of problem domains, and then study 

the suitability of one of them, the"natura1". domains, through preliminary ex- - 

periments with learning protein sequences. Simplifying assumptions as to the 
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underlying nature of this and other such problem domains are made to reduce 

their basic characteristics to a form such that an analogy can be made to a spin-

like model. The learning and generalization of this new training set and two other 

types of training set, not possessing the characteristics of the natural problem do-

mains, are compared. We observe that the former training set gives rise to faster 

learning, a far smaller requirement of hidden units to perform the mappings, and 

clear generalization. We conclude that the network learns about the underlying 

correlations used in the generation of the pattern in the training set and that it 

is this which enables the observed emergent properties to arise. 

Chapter 5 is involved with the question of the influence of training set content and 

size and hidden layer size on generalization performance, for the type of network 

defined in chapter 4. First we introduce the idea of a "solution", defining it in 

terms of the relative hidden-unit representations of the training set patterns. This 

idea is used for the estimation of how the number of possible solutions which exist 

for the parity problem scales with the size of the network, in terms of input and 

hidden units. The rapid increase in solution number with hidden unit size is 

suggested to be a cause for concern, since the generalization performance may 

degrade with the increase in the number of available solutions to the problem. 

In order to test this, the generalization behaviour of the network on an artificial 

diagnosis network, derived from similar underlying correlations as the training set 

in chapter 4, is examined. The results of this examination allay the scaling fears 

expressed above, and this is explained in terms of the most likely solutions found 

by the algorithm being those which display the very emergent properties which 

are desired. 

4 	 - 	- 	-- 



Chapter 2 

Introduction 

In this chapter the ideas of connectionism will be introduced. 

First we describe some "non-neural" ways in which a machine may be taught to 

learn about the environment,' with reference to some well-known examples from 

Artificial Intelligence (Al). A brief review like this is useful in bringing to light the 

main difficulties associated with getting a machine to learn and generalize sensi-

bly. It is also interesting to note techniques, such as the optimization procedure 

which is used in Samuel's checker player, to find appropriate values for parame-

ters in an evaluation function. This operates in its basic form as hill-climbing in 

the parameter space - the same basic idea as in the network algorithm used in 

this thesis. However, the ideas behind connectionism differ in the fundamental 

representational structure of the models, and in the way in which parameters are 

modified through experience with the environment. 

Having made the distinction between these two ways of getting machines to learn, 

we concentrate on the technical aspects of feed-forward networks, describing the 

idea of distributed representations, and learning and generalization within this 

framework. The forerunner of the multi-layer perceptron (MLP), the perceptron 

with its simple learning rule, is briefly described. Having noted the limitations 

of this model, we then introduce the multi-layer perceptron, and explain how 

the complexity of mappings it can perform in principle overcome many of these 

limitations. The range of functions it is possible for the multi-layer perceptron to 

realize results from the number of layers of nodes it possesses, combined with the 
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nonlinear response functions of the nodes. 

Finally we outline the similarities of the optimizations performed by perceptrons 

and multi-layer perceptrons with classical pattern classification techniques, and 

suggest that it is the greater generality of pattern distributions realizable in theory 

by the neuron-based models, that makes such models both interesting and worthy 

of study. 

2.1 Learning by experience 

As has already been mentioned, the most important difference between connec-

tionist models and conventional AT models is the way the knowledge is represented 

in the model. In connectionist models the representation of the knowledge is or-

ganized such that the knowledge unavoidably influences the course of processing. 

In this section we demonstrate this distinction, with a brief review of some well-

known symbolic programs for achieving artificial learning. In the next section we 

shall describe in detail the neuron-based methods. 

J. M. Tenenbaum et al [TGWW74, TW75] constructed a program which was able 

to recognize various common objects in grey-scale photographs after a period of 

instruction which allowed the reallocation of symbols to various, structures. As 

an example, consider the recognition of a telephone.' The program does not have 

• telephone described to it explicitly, but is told that such an object exists in 

• highlighted field of view (for example a portion of a photograph) and defines 

necessary constraints on what a telephone looks like itself, by eliminating unnec-

essary features through a form of indirect questioning of the teacher (operator). 

The program uses two data structures which represent two types of concepts that 

it learns about, semantic and iconic. Thus the semantic data structure would 

contain the information that a telephone is characterized by a black rectangular 

block of medium size supported by a table which itself supports a black rectangu-

lar wedge with a grey square area with small blocks equally spaced in the square 

'The telephone 'example used below is taken from [B6d87J, where it was used in a slightly 

different form. 
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area on its sloping surface. This description is gradually deduced by the program 

as it becomes more discriminatory, making use of the iconic representation (the 

visual, pictorial description of the object). Thus the program can learn what an 

object looks like either by seeing it, or by being told that it resembles something 

seen before. The operators (symbols) which may be useful for the program to 

identify particular objects are suggested by the teacher and a semantic and iconic 

description is built up by the program. The usefulness (whether they are suffi-

cient to define an object) of the operators is then tested by getting the program 

to isolate areas in the picture satisfying the current requirement for classification 

as each object, and then further operators are chosen, and so on. 

Thus this program dynamically alters its understanding of the environment by 

interaction with it and the teacher, building more constraining and complex data 

structures along the way. Here learning can be achieved by the system only if 

it has the ability to construct, analyze and manipulate complex symbols. Thus 

the knowledge is built up as it is encountered, rather than incorporated into the 

pre-existing knowledge. The generalization possible here is thus limited by the 

generality of the object descriptions. Also the system is limited by its dependence 

on the teacher for guidance on which features to use as discriminatory descriptions 

of. images. 

P. H. Winston tackles the latter requirement in a program which learns to recog-

nize structures (such as arches, bridges, etc.) merely by being shown examples 

and counterexamples of them [Win75]. All that a "teacher" is required for is to 

provide information as to what is and is not an example of the structure being 

considered. The nature of the world is necessarily already part of the program's 

structure, i.e. the program can manipulate various building-block concepts such as 

"brick" and "prism", and connecting concepts such as "supported by" and "mar-

ries", etc. from the start. Using the examples and counterexamples of various 

types of object shown to it, it can deduce their essential descriptions in terms of 

these basic concepts. It can also build on its world-knowledge using the concepts 

it has defined itself, to new definitions for more complex structures, which may 

be constructed from several of the structures it now knows about. 

This program is interesting in that it searches explicitly for the necessary and 
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sufficient features of a particular structure through progressive information derived 

from examples and counterexamples of the structure, which is similar to the way 

connectionist models work. In fact, the representational structures of the objects 

are in the form of connecting pointers (unit "weights") to descriptive relations 

between concepts ("nodes") and the network of relative pointers is altered as the 

new examples are seen. However, this program can not quite be described as a type 

of neural network, albeit its method of extracting new information from patterns 

rather than storing complete images is an interesting parallel. The program lacks 

any appreciation of the problem, in that it considers and stores every feature and 

does not look for anything in particular in an image. It also cannot but specify 

each description stringently rather than in a broadly defined way. Conversely, the 

neural 'models are designed to extract information in a less constrained manner, 

thereby allowing the possibility of varying descriptions through the influence of 

underlying regularities. 

One of the more successful learning machines was Samuel's checker (draughts) 

playing program [Sam63]. Part of the program's mechanism involved learning 

from mistakes and good moves made during the game playing (a large part of the 

machine's knowledge also came from "rote" learning, where the values of moves 

judged by human experts were fed into the machine explicitly). Each node of the 

tree in the move-searching (minimax procedure) has a value assigned it, indicat-

ing the "goodness" of the move which it represents. The evaluation function from 

which these values are derived consists of a number of parameters marking strate-

gic features of a game. The learning procedure involves improving the evaluation 

decisions, by continually adjusting the weighting of the test parameters involved, 

according to their success in actual performance. Samuel's program improved with 

practice to such an extent that it once beat a checkers master - the moves proving 

to be original after about half-way into the game. Samuel's program learnt in the 

sense of changing its understanding of the world only in altering the evaluation 

function, according to the success of the comprising parameters. Thus the machine 

was used to optimize the form of a function whose nature could only be specified 

approximately' by the human programmer, by varying its coefficients according to 

the feedback from the match-play. The actual process of the coefficient-changing 

is interesting for comparison with neural net learning, in that: "... the entire 

'By the inclusion of 38 possibly useful board features. 
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learning process is an attempt to find the highest point in multidimensional scor-

ing space in the presence of many secondary maxima on which the program can 

become trapped." [Sam63]. Learning is essentially a hill-climbing procedure in 

the scoring space, with the possibility of extrication from local maxima by manual 

intervention. 

The similarities in Samuel's learning procedure and neural net techniques lies only 

in the fact that a cost function is being optimized, the representation of informa-

tion and the basic mechanism being totally different. Generalization is possible, 

and good, through the unconstrained manner in which information is built into the 

evaluation function. The only drawback of this model of learning however, is the 

initial requirement that an evaluation function be defined and suitable terms speci-

fied. Connectionist methods may partially eliminate this requirement through the 

unconstrained extraction of relevant features from a problem domain. In this 

thesis we explore this basic principle through observation of the generalization 

performance of one class of connectionist models, the feed-forward net. 

Not surprisingly, more "intelligent" programs have been written since Samuel's 

Checkers program, involving deeper knowledge of the actual task required. Some 

of these programs achieve generalization through the manipulation of new sym-

bolic names in structures which are learnt, rather than extracting information 

{FN71, Sus751. 

The basic idea behind all these programs has been the allocation of symbols to 

features in the environment, and then manipulating these symbols. The basic 

mechanism of connectionist models is in the distributed representation of features, 

and their interaction, to produce emergent properties such as generalization. 

One of the first examples of a network approach to making decisions was Self-

ridge's Pandemonium system, in which decisions are made on the basis of "which 

demon shouts the loudest", with the demons being in a hierarchical layered struc-

ture [SN63, Se159]. The learning was a simple type of hill-climbing. In such a 

system, however, each demon has to have a function assigned it, as opposed to 

the distributed, non-localized nature of connectionism. 
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2.2 Connectionism 

2.2.1 Introduction 

In many tasks performed by humans, and in the tasks it would also be desirable to 

have performed by machines, a number of different pieces of information must be 

kept in mind at once. Each plays a part, constraining others and being constrained 

by them. 

Parallel Distributed Processing (PDP) models assume that information process-

ing takes place through the interaction of a large number of simple processing 

elements, each sending excitatory and inhibitory signals to other units. These 

models are composed of many nonlinear computational elements operating in 

parallel and arranged in patterns reminiscent of biological neural nets. It may 

be that all or some units represent possible hypotheses or goals and actions, with 

the connections representing the constraints the system knows to exist between 

the hypotheses or the relationship of goals to subgoals, to actions and so on. The 

most robust and non-localized forms of these networks assume no particular rep-

resentational role for some of the units, but merely link aspects or correlations of 

the information possessed by the network in a distributed and non-fixed way. The 

computational elements are connected via weights that are adapted during use to 

improve performance. 

For example, a network concerned with the processing of visual data might consist 

of a set of units whose job it is to process activations from a set of receptive areas 

on the retina in such a way that the structure of images received as input may be 

identified and so define a concept for further processing. In order that this might 

be possible, another set of units, which may not have any particular identification 

with retinal points, respond to certain characteristic shapes, edges etc., eventually 

to produce a set of activations somewhere else to indicate the association of a 

particular concept with the image. 

Thus such- networks- by their very structure process in parallel a number of simul- 

taneous constraints present in a certain input, and are in this way able quickly 
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Hard limiter 
	

Threshold logic 
	

Sigmoid 

Figure 2.1: Three types of nonlinear response function commonly used in connec-

tionist models. 

to link concepts (or actions) with inputs characterized by many contributory fea-

tures. 

Computational elements (nodes) used in these models are nonlinear, typically 

analogue, and may be slow compared with modern digital circuitry. A simple 

node sums N weighted inputs and passes the results through a nonlinearity (see 

figure 2.1). We demonstrate in section 2.2.5 how important this nonlinearity is, as 

in many areas of physics, for giving rise to more interesting behaviour. The node 

is characterized by an internal threshold or offset 9 and by the type of nonlinearity. 

The three common types of nonlinearity used are illustrated in the figure. These 

are the hard limiters, the threshold logic elements, and sigmoidal nonlinearities. 

The actual network model is specified by the functionality of the node and the 

learning rule used, and by the nature of the connections. The learning rule specifies 

how the weights (connections) should be updated during use to improve the net 

performance. 

Neural nets in theory provide a greater degree of robustness or fault tolerance than 

von Neumann sequential computers, through the possibility of a large number of 

processing nodes, each processing mostly local connections, or more - fundamen-

tally, each representing a small part of a number of pieces of information which 
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are distributed throughout the net. Thus damage to a few nodes or links need not 

impair overall performance significantly. The possibility of adaptation or learning 

is one of the major attractions of neural net models, especially in areas such as 

speech recognition, where training data is limited and new talkers, new words, 

dialects and phrases are continually encountered. Robustness is also provided by 

the compensation of minor damage to nodes or weights during further adaptation. 

In connectionist models, the knowledge about any individual pattern is not nec-

essarily stored in the connections of a special unit' reserved for that pattern, but 

may be distributed over the connections among a large number of processing units. 

This allows generalization on underlying pattern trends to take place (chapter 4). 

2.2.2 Learning 

The representation of the knowledge in a net is set up in such a way that it 

necessarily influences the course of the processing. Using knowledge in processing 

does not mean that one has to locate the relevant information in memory and 

make use of it; the knowledge is intrinsic in the processing itself. 

Now, if the knowledge is the strength of the connections, learning must be a matter 

of finding the right connection strengths so that the right patterns of activation will 

be produced under the right circumstances. This is a very important possibility - 

an information processing system which can learn - because then such a system 

could learn to capture the interdependence between activations that it is exposed 

to in the course of the processing. 

The basic approach of connectionism or PDP models to the question of adapt-

ability is different to traditional symbolic learning techniques in that firstly, the 

goal of learning is not assumed to be the formulation of explicit rules. The goal 

is taken to be the acquisition of connection strengths which allow a network of 

simple units to act as though it knew the rules. Secondly, the learning mech-

anism is not attributed with powerful computational capabilities. Instead one 

'but may be. See for example section 3.6.3 for the "grandmother cell" idea, and the type of 

generalization which this may afford. 
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assumes very simple connection strength modulation mechanisms which adjust 

the strength of connections between units based on information locally available 

at the connections. 

2.2.3 Generalization 

The possibility of some form of generalization arises when the network learns a set 

of mappings which involve some or all of the weights being used strongly during 

the presentation of more than one pattern. This can be illustrated with the simple 

pattern associator [WBLH69, AS87]). The pattern associator consists of two sets 

of units, with connections from the first (input) set to the second (output) set. A 

pattern of activation over the input causes a pattern of activation over the output. 

The simplest way in which such an associator can learn is through the use of the 

Hebb rule [Heb49] - when units A (input) and B (output) are simultaneously 

excited, increase the strength of the connection between them. Or, th6#:, 
IT 

1WAB cc SASB 
	

(2.1) 

where the activations of the units A and B have values {1, —11. 

Now, if one wishes to learn multiple non-orthogonal patterns in the same set of 

representations, one may experience two distinct synergetic effects. Firstly, if the 

set of mappings required fall into some consistent trend depending on some un-

derlying characteristic of the data, each pattern and therefore each weight-change 

will in some way cause the other patterns on average to produce activations closer 

to the desired outputs. Using the Hebb rule and the simple associator, the class 

of mappings for which the effect is positive, due to underlying consistencies, is 

quite small, but other nets employing continuous-valued node states and weight 

changes allow significant accumulative learning effects. Secondly, with the infor-

mation of a particular class of mappings stored in the network weights through all 

the example patterns used, the network most lily has retained only the relevant  

structure of a pattern that makes it a member of this class, and thus may be 

reasonably expected to display such general knowledge of the class in deciding 

13 
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Figure 2.2: A perceptron. 

on the classification of a previously unseen pattern. Such an effect is known as 

generalization, and illustrates what is meant by a network acting as if it knew 

the "rules" but not actually storing them in an explicit way. 

2.2.4 Perceptrons 

Basically, a perceptron is a device which computes a state y by processing the 

weighted sum of a set of simultaneous inputs (x 0 , x 1 ,.. . ,ZN_i) through some 

function (usually a hard nonlinearity). 

Figure 2.2 shows a perceptron that decides whether an input pattern belongs to 

one of two classes (A or B), depending on whether the computed state y is high 

or low. The perceptron computes a weighted sum of the input elements, subtracts 

a threshold (9) and passes the result through a hard limiting nonlinearity so that 

the output y is either +1. or —1. The decision is taken to be class A if the output 

is +1 and class B if the output is —1. 
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Figure 2.3: A decision boundary to be found by a perceptron, separating the two 

classes A and B. 

For the purposes of explanation of the behaviour of such a device, consider a 

perceptron with just two inputs. One can then plot a map of the decision re-

gions created in the 2-dimensional space spanned by the input variables. These 

regions specify the input values which result in a class A and class B response 

by the perceptron. The decision regions are separated by a hyperplane, which in 

2 dimensions is a straight line. Figure 2.3 shows such a decision boundary. The 

equation of this line is 

wo 	9 
= -- + - 	 (2.2) 

Wi 

and so its orientation and position is dependent on the connection weights w0  and 

w 1  and the threshold 9. In order that the perceptron might distinguish a whole 

range of classes (rather than those it distinguishes in its initial configuration) 

it must be taught using a learning algorithm. The learning algorithm should 

adjust the weights and threshold such that the decision boundary is repositioned 

to classify correctly example -patterns chosen from the classes A and B (if this 

is possible). Rosenblatt [Ros59] developed the original perceptron convergence 

procedure, which will be described here since it is similar in form, albeit much 
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simpler than, the backpropagation learning algorithm used for the MLPs used in 

this thesis. This procedure is similar to the fixed increment procedure of pattern 

recognition [1J1173]. 

First the connection weights and threshold are initialized to small random non-

zero values. Then a new input with N continuous valued elements is applied to 

the input, and the output (y) is computed. Connection weights are adapted only 

when an error occurs, using the formula: 

w 1 (n + 1) 	= 	v 1 (n) + 771d(n) - y(m)1x(n) 	 (2.3) 

	

d(n)= 
	

{ +1 if class A 

—1 if class B 	
(2.4) 

0 << 1 	 (2.5) 

where 77 is a gain term, controlling the adaptation speed, and the perceptron 

output state at time n, y(n), is defined by 

N-i 
y(n) = Fh( E w(n)x(t) - 9), 	 (2.6) 

Fh being the Heaviside function. 

The procedure is repeated for each pattern at every time-step n until either all the 

mappings are reproduced correctly, or the weight vector is seen to cycle repeatedly 

and fails to improve the performance (this occurs when the classes are not linearly 

separable). 

Associated with Rosenblatt's learning procedure there is a convergence rule, which 

states that if two classes are linearly separable then the perceptron convergence 

procedure converges. In other words, if a hyperplane exists which separates the 

two classes, the perceptron convergence procedure will find it in a finite time. 

The perceptron convergence procedure is clearly very simple and numerous mod- - 

ifications can be, and have been, made to the basic idea to allow the perceptron 
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to perform better when the condition of the convergence theorem is not satisfied. 

One such example is the Widrow-Hoff algorithm [WH60]. 

It is the very simplicity of the perceptron which allowed the possibility of a con-

vergence theorem, and simple analysis above, which was also responsible for the 

possibility of a complete mathematical analysis of its fundamental capabilities 

and limitations. The obvious limitation is its clear inability to separate classes 

if a hyperplane cannot be drawn between them. This eliminates the vast major-

ity of general mappings. This can be resolved using more layers of perceptrons 

and combining their decision boundaries to form particular shapes, but then it is 

(currently) not possible to prove a convergence theorem for whatever learning pro-

cedure now has to be used.' Using the simple framework of perceptrons, Minsky 

and Papert [MP69] were able to define the types of mappings which could not be 

performed and, more importantly, show the generally poor scaling performance 

that can be expected. (Incidentally, the book by Minsky and, Papert is viewed by 

many to have contributed to the lack of research funding in this area of Artificial 

Intelligence for the next decade or so [01a89].) 

2.2.5 Multi-layer perceptrons 

Multi-layer perceptron (MLP) is a generic name given to feed-forward nets with 

one or more layers of nodes between input and output layers. The nodes may have 

any type of nonlinear or linear response function. The layers which are neither 

input nor output layers are known as hidden layers, since their actual states at 

any particular time are not required to be anything in particular, unlike the input 

nodes (whose states are fixed by the input pattern) and the output nodes (whose 

states represent some specific value associated with the input patterns). Figure 2.4 

shows a general MLP. 

Many of the limitations of perceptrons pointed out in [MP69] can be overcome 

by nonlinear MLPs, in so far as mapping complexity is concerned. A theorem by 

Kolmogorov states that any continuous function of N variables can be computed 

using only linear summations and nonlinear but continuously increasing functions - - 

'Apart from stochastic methods, such as the Boltzmann machine [AHS85, Bou861. 
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Figure 2.4: A general multi-layer perceptron (feed-forward network). 

of only one variable [Lor76]. Effectively it implies that a three layer perceptron 

with N(2N + 1) nodes using continuously increasing nonlinearities can compute 

any continuous functions of N variables [Lip87]. However, there is the inevitable 

problem of a satisfactory learning procedure to be solved. It will be demonstrated 

in chapter 3 how the simple gradient descent search in a multi-dimensional space 

can be used to alter the weights in such networks, given a global cost function. 

The benefits of MLPs are possible directly as a result of the nonlinearities used 

in the node response functions, combined with the extra layers of processing or 

mapping. Several layers of linear processing units can be shown to be equivalent 

to using just two layers (input and output), i.e. the linear hidden layers make no 

difference to the decision region complexity which the network can form. This can 

easily be seen if we consider each set of weights between two layers 1 and 1 + 1 as 

an N1  by N1+1 matrix (T1+1 , 1 ), where N1  is the number of nodes in layer 1. Thus 

each matrix of weights Tl+, ,l performs a transformation on the vector defined by 

the statesof the nodes in 1yerl, yz zl,z2,..,viNJ Thus the states of the 

layer 1 + 1 become: 
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vl+1 = 
	 (2.7) 

Given that L is a linear function, the left-hand side of (2.7) can be rewritten 

Mj,z+1vr where M is a new matrix given by the product of the matrix T and the 

diagonal matrix defining the linear function L. Thus the output vector Vm (states 

of the output nodes) is given by: 

V.= m,,n1.Mm1,m2 
	 (2.8) 

where v1  is the input vector. But the product of matrices M in (2.8) is equivalent 

to one matrix Sm ,i, and so the hypothetical multi-layer linear network with the 

weight matrices T2 , 1  . . . Tm,m...i and the linear response functions represented by 

the diagonal matrices Lm  . L 2  is simply equivalent to a two-layer network with 

identity response functions and the weight matrix T2 , 1  = 

To demonstrate the types of decision regions particular MLPs can support, as a 

measure of the complexity they can manage, consider networks of nodes with hard 

limiting nonlinearities (Heaviside functions). 

Then the 2 layer perceptron can form a decision region in a 2—dimensional input 

space defined by a single straight line. Thus the 2 classes are given respectively by 

the region on one side of the line and the region on the other side. With 3 layers 

of nodes one can consider each of the nodes in the hidden layer as separating the 

classes with a straight line (i.e. acting as 24ayer perceptrons). The output layer 

then combines all these boundaries to form a convex open or closed decision region 

(the region formed by the intersection of a number of straight-line segments). 

Similarly, a 4—layer perceptron has an extra layer again and thus the output layer 

combines all the convex open or closed decision regions to which the nodes in 

the layer above respond. Effectively then, given enough nodes, each node in the 

layer before the output in a 4-layer MLP can isolate a single point in the input 

space, and then each node in the output layer can combine any of these. Thus, in 

principle, the 4-layer perceptron, can form regions of-arbitrary complexity, limited 

only by the number of nodes in the hidden layers. 
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The difference when a sigmoid response function is used is in the shape of the 

boundary lines, and effectively modifies the final decision regions into a collection 

of curved segments rather than line segments. The degree of curvature can be 

modified through variation of the gain parameter , 8 in the sigrnoid equation: 

1 

= 1 + e_13z 	
(2.9) 

The sigmoid nonlinearity is used in general in MLPs because a response function 

is required for the backpropagation learning algorithm which is differentiable, 

and the sigmoid has a particularly simple derivative (see chapter 3), while also 

resembling to a reasonable approximation the desirable hard limiting nature of 

the step nonlinearity. 

Although the limitations on the complexity of mappings which can be performed 

by perceptrons is in principle overcome by nonlinear multi-layer perceptrons, the 

analyses of Minsky and Papert [MP69] regarding order and coefficient size suggest 

that various kinds of scaling problems are likely to stand in the way of attempts 

to exploit their potential. However, s uch obstacles may perhaps be avoided if 

suitable network architectures and learning rules are employed. 

2.2.6 Feed-forward networks and pattern classification 

Consider the problem of estimating the conditional probability P(rJX) that, given 

a pattern X, it is a member of pattern class R,.. Once this is done, the patterns can 

be classified according to the maximum likelihood decision rule, i.e., an unknown 

pattern X should be assigned to the class R, such that, for all r except r = 

P(sX) > P(rIX). 

A parametric statistical way of doing this is to use Bayes law for conditional 

probabilities to reduce the problem to determining not P(rIX), but the conditional 

probability P(XIr) of a pattern being X, given that it is class R,.. If we assume 

20 



a 1—dimensional input pattern x, then we can see how a perceptron structure can 

be used to mimic a gaussian classifier [Lip87, U1173]. 

If Mi and o, are the mean and variance of input x when the input is from 

class 3, and 	and o are the mean and variance of input x 2  for class t, and 

= Or2 . = of,, then the likelihood values are related to as 

= - 
	M)2 	

2 	

(2.10) 
i=O 	01 

= 	 M 	
(2.11) 

and similarly for class t. The maximum likelihood classifier must calculate L, and 

L t  to determine to which class to assign the pattern. The first term in (2.11) is 

identical for both classes and so can be dropped. It can be seen that a simple 

perceptron can calculate the difference between the second terms and between the 

third terms. This can be realized by setting weight wi  in the perceptron equal to 

wi 
 = 2(M8 - M) 

and the threshold 9 equal to 

N-i 

e= 	Si 

i=O 

In general, the elements of the input pattern will be correlated in some way. If we 

assume the patterns are normally distributed, then we have that 

= exp[—(1/2)(X - 	; M)T C(X - M)} 
P(XIr)  (2.12) (27r)/2(det C)1/2 

with X and M,. being vectors of the pattern and the means for class R,.. The 

gaussian classifier will estimate the rth class covariance matrix C,.. This is done 
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by estimates of the average correlation between pattern elements, given the pat-

tern's membership to the class r. By making various simplifications, such as the 

statistical variability of all pattern elements being equal (C ji  = c,.jj ), the patterns 

can be efficiently classified. A simple example of a non-parametric method of 

pattern classification is the nearest neighbour method, which determines simply 

the distance of an unknown pattern X from every other pattern in the training 

set, and finds the training set pattern which is nearest to X. Various metrics may 

be used to determine this distance. 

Various other parametric methods exist for such classification of patterns, but 

they involve strong assumptions about the underlying distributions. 

It can be seen how the task of a neural net may be likened to parametric methods 

of pattern classification, and it may be argued that all a net is "really" doing is 

this basic function (one such example is the Boltzmann machine {A11S85]). Even if 

this were the whole story, we may also note how the neural nets do this. It is done 

through non-explicit assignation of suitable values to the weights, which allow the 

neural net to reproduce the input distribution. Thus neural net classifiers are non-

parametric 5  and make weaker assumptions concerning the shapes of underlying 

distributions than standard statistical classifiers. In this way they tend to be more 

robust when distributions are generated by nonlinear processes and are strongly 

non-gaussian. Together with an easily-specifiable learning rule, such nets should 

be positively viewed as general and adaptable classifiers. 

5 In the sense of an initial assumption of the input space; although it maybe argued that the 

nets act in a parametric way in the ensuing learning, through deciding on a structure for the 

input space. 
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Chapter 3 

Backpropagation: investigations and 

improvements 

31 Introduction 

In this chapter the backpropagation learning algorithm is described and various 

studies are made of its performance on the variable difficulty rounding problem. 

The first part of the investigation involves the observation of learning curves and 

error maps, from which it can be seen how the algorithm fares for different system 

sizes and different difficulties of problem. The influence of the number of hidden 

units used in the networks is studied in detail for the rounding problem and the 

scaling behaviour is discussed. The second part of the chapter is concerned with 

two methods of improving the algorithm. First we introduce a deformation proce-

dure, which also is applied to another problem domain to illustrate its generality. 

Secondly we develop a method for automatically varying the learning parameters 

during the course of training, to allow a fast but controlled descent. 
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3.2 The backpropagation learning algorithm 

3.2.1 Notation 

Since all applications in this thesis use nets of three layers (input, hidden and 

output), the notation used can be made more simple, and we will speak of the 

nodes in "the hidden layer" rather than "layer 1" for example. This allows the 

specification of a node state in any layer through use of a different letter rather 

than subscript, in this way making the equations easier to understand. Table 3.1 

shows the notation used in this chapter. 

3.2.2 Derivation of the weight changes 

The. backpropagation algorithm' is a method of adjusting the weights in a feed-

forward network so that the output pattern, when pattern p is processed through 

from input to output, is the same as a target pattern, for all patterns p in the 

training set. The way the pattern is processed from input to output is as follows. 

The input pattern p is clamped to the input nodes: 

1'=v' 	Vi, 	 (3.13) 
/ 

these states are then processed to the hidden nodes: 

HjP = FH(4) 	 . 	 (3.14) 
N1 

where 	OjP= >wI'. 	. 	 (3.15) 

Note that the summation over i runs from 0 to N1 . The unit zero in the input 

and hidden layers has constant value (I =H' = 1, Vp) and thus represents a 

constant bias connecting to each node, irrespective of the pattern being processed. 

We will sometimes talk of the hidden unit threshold, denoted by 8, and equal to 

'We shall use the Rumeihart [RHW86] formulation, although other derivations have been 

independently discovered [Wer74, 1C85, Par85] 
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Symbol Meaning 

I input unit state 

H hidden unit state 

0 output unit state 

V input pattern 

t target pattern 

5(o) error term for an output unit 

5(h) error term for a hidden unit 

potential at a unit 

FO response function of an out- 

put unit 

FH response function of a hid- 

den unit 

subscript on any of above labels the unit in a layer 

superscript on any of above labels the pattern being pro- 

cessed 

subscript of zero indicates a fixed node giving 

the threshold values 

prime (F) indicates the differential 

wf weight from input unit i to 

hidden unit j 

weight from hidden unit i to 

output unit j 

N1 number of input nodes 

NH number of hidden nodes 

No  number of output nodes 

Table 3.1: Notation. 
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w 01310  (and similarly for the output unit threshold 9). Finally, the output pattern 

emerges as some function of the output states: 

o = FOk() 	 (3.16) 
NH 

where Opk  = E wH?. 	 (3.17) 

If we take the output pattern to be a direct mapping of the output states, then 

we can define a total error (E) between the net's output and the target output as. 

a sum of squared errors at each of the output nodes for each of the patterns: 

1 N N0 
E := 	(t - QP)2 	 (3.18) 

P=1 k=1 

Other measures of the error can be defined (see chapter 4), but we use this one 

here to illustrate the derivation of the weight changes using gradient descent. The 

backpropagation algorithm for reducing this error by changing the weights uses 

gradient descent on the surface E in the space in which it is defined (i.e. the space 

of the network weights), thus: 

AW 
OE 

cK -.--, 
ow (3.19) 

where w represents a general weight anywhere in the system. The constant of 

proportionality is taken to be 17, and is known as the step-size, thus: 

OE 
tXw = - 77

9w
-. 	 (3.20' 

The error E is an implicit function of all the weights, but the form of A w for all 

the weights between the same two layers will be the same. The weight changes 

for the weights from hidden to output are: 

= 	 (3.21) 
P 	 1k 
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8op  
= 	awk(t_') 	 (3.22) 

=- ) a(>wHr), 	 (3.23) 
pa 	 8wf/ 	

F 
 

where F07  FO,(), and represents the derivative of the output response func 

tion. The partial derivative in (3.23) is clearly zero for all but the i = l,j = k 

term in the {ij} summation, since all the weights vary independently, thus we 

have: 

AWIk = 77 E(tp - O)FO'Hr 	 (3.24) 

AWjk = > i,S(o)Hr 	 (3.25) 

	

where 	6(o) := (t - O)FO'. 	 (3.26) 

For the input to hidden weights we have a similar derivation until (3.23): 

	

AWA = 	::(t - 	
a ( w1Hr), 	

(3.27) 
P j 	 8Wfk 

where now the hidden states H are implicit functions of the input to hidden 

weights, thus: 

	

AwjIk = 	 - O)FO7wfFH 
(mti1) 

. 	 (3.28) 

Again here the only term in the {im} summation which survives is the i = 1, m = k 
term: 

=77 E E(t l? -  O7)FO7wgFH'1 	 (3.29) 
Pj 

= 	S(o)wFH"1r, 	 (3.30) 
P 	j 

AW, = 	i7S(h)7J 	 (3.31) 
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if we define S(h)r := FHr' 	5(o)wf. 	 (3.32) 

So we see from equations (3.25) and (3.31) that all the weight changes are com-

puted from the product of the state of the unit from the which the weight orig-

inates, and an error term associated with the unit the weight influences directly, 

summed over all the patterns. Since the error term for the hidden units involves 

a weighted summation over the error terms for the output units, this procedure 

is known as back propagating the errors. Notice how the processing of the S's in 

the backpropagation phase is almost the same (apart from the nonlinear response 

function) as the processing of activations in the forward direction. 

One further point is that if sigmoidal response functions are being used, then it is 

not possible for the state of the units to reach the limiting values of zero or one. 

Thus it is normally decided to consider outputs within some tolerance tol of the 

actual targets as sufficiently well learnt. 

The basic algorithm is thus given by equations (3.25) and (3.31). However, a 

slight modification pointed out in [RHW86] theoretically gives a more stable and 

faster descent, by adding on a fraction of the last weight change at time n - 1 in 

calculating the new weight change at time n: 

Lw(n) = _?7 ;;  + aLw(n - 1), 	 (3.33) 

the idea being that if the system is progressing down a long gentle slope the weight 

changes will be in the same direction and therefore additive, hence speeding up 

the descent, while if the system is continually crossing from one side of a valley to 

the other, the weight changes will be damped into an average downward direction. 

cr controls the fraction of the weight to be added on each time, and is known as 

the "momentum". Its actual usefulness is discussed later. 

Thus the learning schedule for a network commences in the following way. The 

weights are initialized with small random values in order to break the symmetry, as 

described in [RHW86]. At each epoch of learning the complete set of patterns is 

presented to the network and the gradients for each weight accumulated, using the 
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Input Output 

[0.5+r,1.0] 

[0.0,0.5—r] 

1.0 

0.0 

Table 3.2: The mapping required to be learnt between an input unit and its 

corresponding output unit. The parameter r defines the difficulty of the task. 

backpropagation procedure. After all the patterns have been presented the weights 

are changed according to equation (3.33). This is continued until the output values 

for each pattern are within tolerance for each pattern, or learning is abandoned 

due to the network getting stuck in a local minimum (see section 3.5.3). There 

are other schemes 'for updating the weights, which approximate to the gradient 

descent procedure for small values of the step-size, but we shall not consider 

them here. The type of updating scheme described above is known as "batch 

learning" [Wal87a]. 

3.3 The rounding problem and its training set 

The learning algorithm was applied to the following task. The network is required, 

when trained, to be able to round-off a set of numbers applied to its input to zeroes 

and ones at the output. There is a corresponding output unit for each input unit. 

The numbers applied to the input lie in the interval [0,1], and outside the range 

(0.5 - r, 0.5 + r), where r is the parameter defining the difficulty of the task. Thus 

the problem domain to be learnt consists of the mappings in table 3.2 for a certain 

task difficulty r. 

Thus the network can be trained to perform tasks which require differing levels of 

discernment. The easiest task takes the form of a one-to-one mapping of binary 

patterns input to output (r = 0.5), and the greater difficulties are found when 

numbers either side of 0.5 are very similar and yet have to be mapped to different 

extremes. So the closer r is to zero, the harder it should be for the network to 

adjust its weights to achieve the required function. 

Since the nature of this problem is such that each element forming an input picture 
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is totally independent of the other elements (i.e. this is an order 1 problem, in the 

terminology of Minsky and Papert [MP69]), the elements in the output picture 

should correspondingly be independent. The only dependence between input and 

output is between elements corresponding to the same positions in input and 

output pictures. With this restriction it is clear that the network should tend 

to alter its weights such that it forms large weights for non-intersecting routes 

from the input elements through the hidden layer to the corresponding output 

elements, and negligible weights for the weight paths which would interfere with 

these routes. 

This problem is linearly separable, so it is not necessary to use a hidden layer 

to perform the mapping. However, for the purposes of illustrating the perfor-

mance of the backpropagation algorithm in learning the mappings when there are 

hidden units present, since in general they will be necessary, we perform these 

experiments solely on networks with one hidden layer. Given that hidden units 

are present, we must also ensure that we have at least as many hidden units as 

input/output pairs. The reason for this is that as r -* 0, the numbers leading 

from the input nodes become extremely small and so unless there exist paths 

which are independent of the other input values, the output will not be able to 

discriminate between 05 + r and 0.5 - r values at the input. The input layer 

contained up to seven units, the output layer had the same number of units as 

the input layer, and the hidden layer could contain up to 25 units. If there are 

more hidden units in the hidden layer than are required to find a solution, then 

there are expected to be a larger number of possible solutions, and one of these 	( 
will have to be chosen by the system. The choice can depend only on the initial 	$ 
random weights. Thus the system can descend into different global minima of the 

error surface, by starting off at different points on the surface. The spectrum of 

global minima includes solutions where routes between input/output pair involve 

varying numbers of hidden units, and also the cases where some hidden units are 

not used at all. We are not concerned with whether the network can generalize 

on this problem, although a form of simple generalization is possible, which is 

instructive to examine, before more complicated generalizations are examined in 

later chapler-  A._It can be demonstrated usingthe decision regions mentioned in 

chapter 2. If we take a network with two input nodes (and thus two output nodes), 	1 and draw 
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Figure 3.1: The two types of decision regions for output nodes 1 and 2, when 

there are two input nodes input(1) and input(2), in the rounding problem. 

the desired decision regions in figure 3.1 for each of the output nodes, we notice 

that the decisions of the respective output nodes (we consider them to be binary 

classifiers) require an independence of the other input node, and a sharp dividing 

line at the value 0.5 on the relevant input unit. For any particular difficulty of 

problem if all sample points have been learnt then the decision line will exist in 

the region constrained by the learnt points on either side of the perfect decision 

line. Figure 3.2 shows the types of lines which may arise after the points shown 

have been learnt. It may be that the perfect line is found straightaway, although 

this is unlikely, nevertheless it is certain that some points either side of the line 

will be mapped very well, thanks to the learning of particular hard numbers in the 

training set, and so generalization to a larger or smaller extent can be achieved. It 

can be seen that for certain values of input(1) the decision line crosses the perfect 

decision line, which may also be regarded as some form of (weak) generalization. 

Thus generalization is limited by, but maybe better than, the hardest examples 

in the training set. 

The simple preliminary study above actually gives some guidance on what patterns 

to include in the training set for the most efficient weight changes and economical 
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0.0 
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input (1) 

- Class mapped to  

+ Class mapped to +1 

Figure 3.2: Possible decision lines which output(1) node may form on having 

successfully learnt the data points shown, which indicate the inputs in terms of 

the point (input(1), input(2)). 

pattern numbers. Clearly we should organize the patterns such that the two basic 

properties of the decision lines are obvious: firstly, independence of decisions with 

the other input units (i.e. those not corresponding to the output in question), and 

secondly, inclusion only of the hardest examples for a particular problem difficulty. 

The task for a particular range r is that the network should learn to round off all 

numbers (N) in the range 

(0.5-f-r) < N< 1.0 and 0.0< N< (0.5—r). 	 (3.34) 

In order to ensure this then, writing R+  = ( 0.5 + r), and R_ = (0.5 - r), the 

pictures at the input units are taken to be all the permutations of 0, 1, R 
and R_, with R's only present at one of the inputs per picture. An example of 

this is given in table 3.3. It can be seen that such a training set satisfies the 

conditions mentioned above, for optimal constraining of the decision boundary. 

Notice too that for c input units the number of pictures required (for the guarantee 

of reproducing the whole set of possible inputs and their combinations correctly) 

will be 
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unit 1 unit  unit  

R+  1.0 1.0 

R_ 1.0 1.0 

0.0 1.0 

0.0 1.0 

1.0 0.0 

R_ 1.0 0.0 

R 0.0 0.0 

0.0 	1 0.0 

Table 3.3: Part of the training set for a three input unit network. The rest of the 

set is obtained by permutations of the columns. 

N(c) = c2c, 	 (3.35) 

thus the number of pictures required in the training set scales worse than expo-

nentially with the number of input units. Such problems with scaling are not 

surprising. Although, as mentioned above, this an order 1 problem, the strong 

independence of the input elements can only be ensured by at least this set of 

patterns. These patterns define the boundary .  exemplars [AT88] of the training 

set. In fact, the main task asked of the network, is to learn the independence in 

the input/output pairs. 

3.4 Unit response functions 

The response functions FO and FH are normally taken to be the same for all units 

(although this is not necessary). As mentioned in chapter 2, the sigmoid function 

is normally used, because of its properties of being similar in approximation to 

the perceptron step nonlinearity, and confining the response to lie in alixed range. 

The form of the sigmoid function is given in equation (2.9), which we rewrite here 

for convenience: 

1 

= 1 + e3- 	
(3.36) 

- 	 33 	- 



The differential of the sigmoid function is 

dy 	 e - 
dx - 	= 	( l + €_130)2 	 (3.37) 

= —/3y(y - 1), 	 (3.38) 

and so we see also that another nice feature of this function is that the differential 

involves only the value of the function and not its argument, which is convenient 

for efficient computer implementation. 

So it seems that the sigmoid function would be an appropriate one to choose for 

the node responses. However, there is still the question as to whether the nodes 

should be confined to positive states in the range [0, 1], or allowed to use the 

entire range [-1, 1]. This may depend on the type of problem studied, but we 

shall demonstrate how in the problem studied in this chapter the full range is the 

more appropriate. 

Note first that the only state ranges which are important are the ones in use by 

the hidden units, since the input units have their values clamped by the input 

patterns and the output units can be converted easily to any range using a linear 

post-processing stage. The range of values which can be adopted by hidden units 

will in general affect the size of the space which can be used to represent the 

patterns (chapter 5 discusses this concept more fully). 

We can understand the effect of using the ranges [-1, 1] and [0, 1] in the hidden 

layer of units by considering the effect on an output unit as the values of the inputs 

are varied. We will discover that the maximum difference to be obtained is about a 

factor of two in the learning speed, given the most suitable application. The [0, 1] 

range can only cause positive state values to be transmitted down the weights, 

while the [-1,1] range allows the full range of positive and negative values. But 

the value of an output unit is given by: 

Oi  = FO (,) 
	

(3.39) 
NH 

= y(wFH3 +9). 	 (3.40) 
1=1 

The quantity in parentheses has the same range (7Z) whatever the range of values 

FIT3  can adopt, because the parameters w 47  and Oi  are able to take on all real tj  
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values. The only benefit to be derived from allowing the F11 3  to be of the form 

1 is to provide it with a symmetry about zero, thus enabling the network 

to learn automatically half the mappings required (in the optimal case of the 

rounding problem),' or equivalently, if all mappings are in the training set, provide 

a reinforced update for the weights by summing the reinforcing weight changes. 

This doubles the learning speed which would be achieved using the [0, 1] hidden 

unit ranges. 

For a network with the same number of hidden nodes as input and output nodes, 

then if we assume that the optimal-solution (consisting of "paths" from input node 

to corresponding output node) is reached, the inputs 0 to a hidden node will be 

opposite in sign for values of the input node at the top of the path symmetrically 

about 0.5, and in order for the output unit at the end of the path to respond 

correctly, the weight from hidden unit j to output unit i and the threshold of the 

output unit must satisfy: 

w FH3 (g 5 ) + Oj = — ( wZ .7 H,(- 2 ) + 9) 	 (3.41) 

Thus for the [-1, 1] response function (FH = 	- 1) this requires that 

Oj = 0 Vi, 	 (3.42) 

while for the [0, 1] response function (FH = y) it requires that 

= —20i  Vi, 	 (3.43) 

where w represents the large weight making the path from hidden unit to output 

unit. In both the derivations above we assume that all the other weights not 

involved in the paths are zero. 

The actual effect of this requirement can be demonstrated if we monitor the values 

of the quantitièsw and 8i  above, when the two different response functions are 

'This reasoning assumes the "heavy route" solution is the one which is always found. 
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Figure 3.3: Thresholds as function of learning cycle for a 3-3-3 network, r = 0.01. 

used. Figure 3.3 shows how the threshold 9 is much more stable in the [-1, 1] 

case, hardly moving from its optimal value of zero, while for the [0, 1] case the 

threshold increases negatively all the time, being forced to follow the value of the 

large weight making the path (as required in (3.43)). This is undesirable since 

the dependence of the two quantities upon one another will make the descent less 

stable (because both the variables are iterating to values which depend on each 

other). Also in figure 3.4 we see that the learning speed is approximately double 

for the [-1, 1] case all the time (note the logarithmic scaling on the abscissa). 

The response functions used therefore in this chapter are: 

FO= 	 (3.44) 

and 

FR = 1 + -' - 1, 
	 (3.45) 

which give weight changes specified by the following S's (from equations (3.26) 

and (3.32)): 	 . 
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Figure 3.4: Learning curves for the 3-3-3 network, learning down to range 

r = 0.01. 

= 	- O)O(1 - O) 
	

(3.46) 

(3.47) 

= 
	(HIP +

1 )( 1— Hr)s(o)wi. 	 (3.48) 

These S's can then be substituted in equations (3.25) and (3.31) to get the weight 

changes. 

3.5 Evaluation of the basic algorithm's perfor-

mance 

3.5.1 The success rate of the basic algorithm 

A further note about the notation: N1 —N 2—N 3  denotes a network of N1  input 

units, N2  hidden units and N3  output units. 

37 



r % nodes correct % patterns correct 

100 0.5 100 

0.1 100 100 

0.01 88.8 43.8 

0.008 89.0 45.0 

0.006 83.0 15.0 

0.004 77.3 9.38 

0.002 77.1 11.3 

0.001 80.0 0.00 

0.0001 80.0 0.00 

Table 3.4: Comparison of the percentage of output nodes and patterns correct, 

for the system 5-5-5, using the basic algorithm, for various difficulties r. 

The performance of the algorithm in learning different levels of problem difficulty, 

for different sizes of network, is summarized in figure 3.5 and table 3.4, where we 

have used networks with. just the necessary number of hidden units to perform 

the mapping; Figure 3.5 shows how the performance of the algorithm, monitored 

by the total number of output nodes correct,' decreases as the problem difficulty 

is increased (represented by a decreasing r), for all the system sizes, there being 

a sharp change in the number of nodes correct at a particular value of r (usually 

somewhere about 0.002, but it can be seen that it was sooner for the largest 

system. In table 3.4, we compare the percentage of output nodes correct with the 

corresponding percentage of complete patterns which were correct, for the 5-5-5 

network. Note how the network can get all the patterns wrong although most of 

the nodes are actually correct. Closer examination of these numbers suggests that 

most if not all the incorrect patterns were actually a result of the nodes responsible 

being "flipped", causing the outcome that nodes are mapped either very well or 

very badly. 

The nature of the learning can be studied using the learning curves - plots of 

the progress of the total error at the output units as a function of the training 

cycle. This is shown for systems 2-2-2, 3-3-3 and 4-4-4 in figure 3.6. 

5 1f the network was having difficulty learning, i.e. it was in a local minimum (see section 3.5.3), 
the learning was terminated. 
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Figure 3.5: Performance of the algorithm for various problem sizes and difficulties. 
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Figure 3.6: Learning curves for the basic algorithm at various net sizes and prob-

lem difficulties. 
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On each graph is plotted the progress of total error with training cycle for each 

system for a certain difficulty r (0.5, 0.01, and 0.0001), with 77 = 0.1 and c = 0.6. 

It can be seen how, for a difficulty of 0.5, all the systems manage to locate a global 

minimum within a reasonable period. The descent is marked in all the systems by 

a relatively steep descent for the first 10 to 100 epochs., followed by a region of low 

gradient until the end. For the second difficulty, 0.01, only two systems manage 

to locate a global minimum. The descent is marked again by a steep fall in error 

during the first 10 to 100 epochs, but this time the almost level descent which 

follows is terminated by another relatively steep drop at 100 to 1000 epochs. The 

4-4-4 curve is characterized by a rapid drop at the end, indicating the location 

of a sudden steeper descent, leading ultimately to a solution. It can be seen that 

the 3-3-3 system, however, does not locate a similar feature, and is destined to 

remain stuck on a plateau-like surface. With the third difficulty (0.0001) none of 

the systems manage to find a solution. The relatively steep initial descents are 

terminated at 10 to 100 epochs by a very flat portion, which shows no sign of 

ending. 

Finally, from figure 3.7 the speed with which the algorithm finds a solution start-

ing at various (random) points on the error surface can be seen to centre quite 

closely about 250 cycles for the majority of the runs, although there are a num-

ber of runs (14%) which get stuck in local minima and fail to find solutions at 

all, and also a number that take much longer times, and do not form part of the 

main distribution. These runs fell victim to the "crack" problem, discussed in 

section 3.5.5. In general, however, if a solution is going to be found quickly, the 

point in weight space at which the iteration is started can be expected to cause 

about a 40 - 50% difference in run time. 

3.5.2 . Error maps in weight space 

A useful, but limited, probe into the terrain of the error surface is the error map, or 

two-dimensional cross-section of the error surface in weight space. The technique 

(described in [PN1186]).is to work out the current weight-change vector Lw, . and, 

from this the unit vector giving the direction in weight space of the system'slawp

next step. The error is then plotted in an appropriate range of values of step size 
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Figure 3.7: Histogram showing the distribution of learning times for a 4-4-4 

network at a difficulty r = 0.01, for the basic algorithm. 
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Figure 3.8: Descent into a local minimum. 
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3 

about the system's current position (say [-2IIwII,2IIwI]), to give an idea of 

the kind of terrain down which the system is progressing. 

On some of these graphs an asterisk indicates the present position of the system, 

and a vertical line indicates the destination point. 

3.5.3 Local minima 

When the learning curve remains essentially flat for a relatively long time (Com-

pared to the rest of the descent) it is assumed that the algorithm is unable to 

converge to a global minimum, and has settled into a local minimum. It is not 

easy to "escape" from such local minima by taking perhaps a large step in a ran-

dom direction, since if a lower basin exists somewhere else, the chances of reaching 

it in this manner are very slim, and especially as the dimension of weight space 

increases, the time needed for a reasonably thorough search is prohibitive. 
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Figure 3.9: Attempted "escape" from a local minimum at cycle 1750. 

As an example, consider figure 3.8, which shows a 2-2-2 system learning a mapping 

of slifficulty 0.0001. The initial descent, shown in figure 3.6, is reasonably quick, 

but before long the error becomes quite stationary. The graph maps the terrain 

as the system clearly begins to iterate to the bottom of a local minimum. Imagine 

the system at the point on the curve given by zero displacement, and the rest of 

the curve as being the surrounding terrain in the direction in which the system is 

about to move. We can see how as the system settles into the local minimum the 

steepest gradient decreases, and the minimum is characterized by a steep wall in 

one direction and a plane in the other. It is possible to make the system climb out 

of this by giving it a large step size. However there is no reason why the direction 

it takes (current steepest descent in this case) should be one which brings the 

system to the brow of a hill, indeed the normal scenario is for the system to climb 

up to another local minimum, or a plateau, and stay there, as in figure 3.9 (a 

large increase in the step for one cycle at 1750 cycles brought the system out of 

the current minimum, but unfortunately left it on a higher one). 

Why should it be the case that a local minimum has such a shape described above 
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rather than the more intuitive "basin" shape? The reason is that the response 

functions used by (in particular) the output units are of such a form that if the 

potential becomes greater than an upper limit, or lowerthan a lower limit, the 

actual state of the unit changes very little. With semi-linear threshold functions 

there is an explicit cut-off when the state of the unit reaches one or zero, such that 

it remains there should the potential become higher or lower respectively, and it 

might be expected that the very slowly sloping plateaus here would be perfectly 

flat in such a case. Thus the contrasting flatness in one direction and steepness in 

the opposite direction indicate that all the output units are bound very closely to 

zero or one for each pattern, and increasing all the weights in the current direction 

will merely serve to push the units closer to the extreme values of the nodes at 

the output (and possibly at the hidden layer too). If the weights are increased in 

the opposite direction the opposite should happen, with some of the output units 

being pulled back towards mid-range values. 

Now we are in a position to explain the shape of at least the last two curves 

in figure 3.8. The height of the flat portion is given by the number of output 

nodes which are bound to the wrong extreme, the gradient of the flat portion has 

already been explained as a result of the low gradients at the top and bottom of 

the sigmoid function, and the mountainous region to the left is characterized by an 

overall increase in error due to the larger number of otherwise correctly mapped 

outputs being moved to intermediate values countering the beneficial movement 

away from the extremes of the smaller number of incorrectly mapped outputs. 

As we move further away from the current position of the system the error falls 

again, as some outputs again become correctly mapped, while others get pushed 

to incorrect extremes. It could be that the error increases overall; this depends 

on the actual weight changes. Finally, at far left we see another flat portion again 

being located. Figure 3.9 can also be explained in this way. The large step size 

given to the system pushes it onto a plateau because it was large enough not only 

to change the weights sufficiently to leave the current local minimum, but also 

to locate another area of weight space characterized by outputs being bound to 

extreme values, this time with more outputs wrong than before. 
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Figure 3.10: Comparison of the initial gradients for the 2-2-2 and the 2-25-2 

systems, at r = 0.5. 
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3.5.4 The influence of hidden units 

Gradient of early descent 

The descent for the simplest system (2-.-N--2 with r = 0.5) is shown for the first 

six training cycles in figure 3.10. The terrain for the system with two hidden units 

is compared with that for the system with 25 hidden units. It can be seen how 

much steeper the descent is when there are a large number of hidden units. 

Observation of gradients for the 2—N-2 system indicated that the gradient in-

creases uniformly with hidden unit number. To obtain an approximate scaling 

law, assume that all the weights in a network are of equal importance in the early 

stages of learning, so that each weight is made to change in the learning algorithm 

such as to reduce the error, by about the same magnitude 6p, and if this change 

is small, then since 

3E 
cx 

awii  
(3.49) 

and the gradient is given by 

dEli  - 	
8wij 

Iii' 9wij 
(3.50) 

we have 

IldEll 0c II 	Ii 

dw 
6p 

II ii 	II I] 

(3.51) 

But if Sw,, = 5p ê,,, where ê is a unit vector in the direction w,,, so if there are 

NW  weights in the system, 

1 

ldEI 
cx { (sPre) (5)2e.) } 

	
(3.52) 

dw 

cx (5p)2(N) 	 (3.53) 
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Figure 3.11: Scaling of the gradient with the number of weights in a network. 

Note the logarithmic scaling of the axes. 

since the 6ij  are orthogonal. Thus we should expect the gradients to scale linearly 

as a function of the square root of the number of weights used in the system. 

In figure 3.11 we plot the logarithm of the gradients at r = 0.01 against the 

logarithm of the number of weights in the networks. A least-squared fit to these 

points produces a line of gradient 0.51 ± 0.04, in accordance with the simple 

argument above. 

Figure 3.12 shows the same situation as figure 3.10 for a larger network. However, 

here the surface is so much more mountainous anyway that the beneficial effect of 

the extra hidden units is best seen by noticing the cliff-like terrain of the 7-25-7 

network, as opposed to the valley-like terrain of the 7-7-7 network. The cliff-like 

descent is much quicker and more penetrating. 

The addition of hidden units clearly consistently increases the size of the gradi-

ent, together with stability of the descent, and thus seems to have a consistently 

beneficial effect (although it must be remembered that the actual computing time 

increases as we increase the hidden units in the network). 
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Figure 3.12: Comparison of the initial error surface for the 7-7-7 and 7-25-7 

systems, for r = 0.5. 
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Redundancy 

With the addition of more hidden units, it becomes difficult to analyze the patterns 

of heavily weighted routes from input to output, since this typically includes more 

than one path for each input/output pair. Thus it is useful to represent the system 

graphically, to provide an indication of the routes taken. The intensities were 

normalized to the weight with the greatest (absolute) value. Weights of negligible 

size compared with the larger weights have negligible intensities. Analyses of 

various sizes of system showed that one frequently obtained hidden units with 

negligible weights to and from all output and input units. An example is shown 

in figure 3.13, a graphics screen dump of a 5-15-5 network which has learnt down 

to a range  of 10. Similar patterns are observed in other networks with large 

numbers of hidden units. It appeared that such occurrences were the results of 

competition between two or more input/output routes of similar strength resulting 

in a draw, with the weights concerned subsequently becoming negligible compared 

with weights in other routes, and the routes themselves thenceforth abandoned. 

Scaling of learning time 

In figure 3.14 we observe the effect of extra hidden units on the learning, at 

difficulty 0.5, for different network sizes. The graphs show the number of epochs 

to solution for each system size, averaged over.50 - 100 runs with different random 

starts. The error bars give some idea of the variation in learning time depending 

on a particular starting point on the error surface. It can be seen that for each of 

the networks shown, there is a definite trend for a quicker descent as the number 

of extra hidden units increases. Also there is possibly a trend for the addition 

of one or two hidden units producing a more dramatic effect as the network size 

increases. In all cases the addition of more hidden units has less effect as the total 

number of units in the hidden layer increases. 

From the results of section 3.5.4 it might be expected that the scaling has some 

kind of dependency on a power of the number of weights in the network, or 

'Learning down to such a low range for a network of this size was only possible after the 

improvements described in sections 3.6 and 3.7 were implemented. 
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Figure 3.13: Graphics screen dump of the network (redundancy). 
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Figure 3.14: Scaling of learning times for r = 0.5 with the number of hidden units. 
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Figure 3.15: Scaling of learning time versus logarithm of extra hidden units. 

more specifically, on the number of extra hidden nodes. By extra is meant the 

number over and above the number required to solve the problem, i.e. NH - N1 . 

If we assume 'a power law, then plotting log(learning time) vs. log(N g  - N1) 

should give a straight line of gradient given by the power. However, due to the 

rapid levelling off at higher numbers of hidden units, it is more likely that it 

is a logarithmic relationship. In figure 3.15 is plotted the log of the number of 

extra hidden units along the abscissa, and the training time as before on the 

ordinate. The first portions of the lines show approximate agreement with the 

scaling relation T x log(NH  - N1 ), with the constant of proportionality being 

a function of the number of input units (note how the gradient of these lines 

decreases with the number of input units). The latter portions of the lines veer 

away from the logarithmic dependency. This is suspected to be due in part to the 

redundancy effect described in the last section: as the number of. extra hidden 

nodes increases, the probability of'more of them being redundant increases, and 

so the learning time will not decrease so rapidly with increasing hidden units, 
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or ultimately produce a levelling off. It is also possible that yet more hidden 

units may increase learning time, because the node redundancy is a result of 

competition, and this competition may slow down the algorithm's descent. 

3.5.5 The danger of a 

The influence of the momentum parameter (a) is sometimes very important for 

finding a solution. For example, it was pointed out in [PN1186] how an initially 

large value of the momentum parameter can cause unstable descent, due to the 

large weight changes this causes at early stages, when the error surface is steep. 

For instance, on a run with a 7-25-7 system with zero momentum a solution was 

reached after only 6 training cycles (r = 0.5), whereas when the system was trained 

with a momentum of 0.6 a solution was not found until more than 50 epochs. The 

descent during the initial few epochs was quite similar for the two cases, however, 

at an error of about 3.5 the second system landed on a plateau. The following 40 

or so epochs were taken up by slow progress along this plateau, until the cliff-like 

edge was found. This descent was interesting, and so the surrounding terrain for 

the relevant epochs was mapped out in figure 3.16. The graphs show how flat 

the plateau is and how steep the plunge at the end is. Following the sequence of 

graphs from left to right, top to bottom, it can be seen how the system slowly 

moves toward the cliff-like drop (slowly because the gradient is small) and rolls 

down the cliff quickly. This can be explained in the same vein as the graphs in 

section 3.5.3. The flat portion this time however has an end in sight, but the 

surprise is how sudden the drop in error is. The actual drop is approximately 3.5, 

and if we assume that this change in error is due entirely to incorrect outputs 

being suddenly switched from the wrong extreme to the right one, then each 

incorrect output would contribute an error of 1/2 to the overall error, and so all 7 

incorrect outputs are suddenly rectified (the rest of the descent merely involves 

minor improvements). The fact that they are all rectified together implies that 

the source of the error was a single weight to which a particular output node was 

very sensitive, and happened to result in all mappings of a particular type being 

wrong. 
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Figure 3.16: Location of a cliff-like crack in the error surface. The small circle 

indicates the position of the system on the error surface (read left to right, top to 

bottom). 
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Comparison of the scale of these graphs with the 7-25-7 descent in figure 3.12 

shows how small a crack was actually found by the system. It seems that the 

presence of the momentum caused the system, by chance, to jump onto the plateau 

rather than continue with a reasonably comfortable descent. That was presumably 

when the sensitive weight mentioned above was increased just too much that it 

caused binding of the incorrect output nodes to the extreme values of the sigmoid 

function. However, it is this kind of unpredictable behaviour in solving tasks such 

as this one which makes the bare gradient descent learning algorithm unattractive. 

Sometimes the system was helped by interactively altering step size and momen-

tum at various stages in the learning. However, this was not considered to be 

a very satisfactory way of pursuing a better learning procedure, since the error 

surface could not be predicted for an arbitrary network at any particular point in 

the learning. Below we introduce two ways of improving the performance of the 

algorithm. 

3.6 The deformation procedure 

3.6.1 Motivation and description 

We have seen in the preceding sections how inability to learn is marked by the 

system finishing up in a local minimum, characterized by a certain number of 

outputs being incorrectly mapped, and bound to extreme values of the sigmoid 

function. It is also clear that the harder the problem becomes, the greater the 

number of outputs that are incorrectly mapped (see the higher minima in fig-

ure 3.6). Since it is clear that unless outputs are kept very close to the correct 

extremes of the response function they will very probably be "flipped" over to the 

incorrect extreme from which the learning algorithm is unable to extricate them, 

the sensible thing to do would be to ensure that this condition is met. To do this, 

and to learn greater difficulties, the answer is clearly to use easier mappings of 

the same class to push the outputs to the correct extremes, and then gradually to 

make the problem harder, keeping the outputs from flipping. We call this method 
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deformation of the error surface. 7  

Thus the idea of deformation is to start the system off by training it to learn a 

relatively straightforward mapping task, and gradually to increase the difficulty of 

the mapping, in such a way that the task is eventually deformed into the task of 

the desired difficulty. This process can be viewed as a "topological" deformation 

of a problem which can be represented as a simple shape in some space, into a 

more difficult problem whose extra difficulty is represented by the same topological 

surface, forming a more complex shape in the same space. Alternatively, one can 

imagine a task of classifying articles of clothing. A basic picture of an article of 

clothing might be shown, followed by a set of progressively more unusual or highly 

decorated versions of such an article. In learning to classify or recognize a whole 

range of clothing,, the basic object is understood first, in its essence, rather than 

presenting the whole set all at once and expecting the net to organize sensibly 

from the start. 

The entire problem is completely defined by the error surface in multi-dimensional 

weight space. The harder the problem one requires the network to solve, the more 

treacherous will be the terrain of the error surface, and the harder it will be for 

the system successfully to descend into one of the global minima of the surface. 

Thus one can picture the deformation procedure as moulding the error surface 

about the point occupied by the system, as the system descends towards the 

point of the final global minimum. In this way the system is able to avoid a lot of 

the treacherous terrain it would have to descend were it started off at a random 

position on the final error surface. This technique does not guarantee descent to 

a global minimum; the difficulty used at the beginning, and the parameters used 

to vary the deformation, need to be such that the surface can be gently deformed, 

with the task required to be learnt to vary smoothly at each deformation. 

Deformation can be compared with the simulated annealing technique [KGV83] in 

which the system is eased into a global minimum of the surface defined by the cost 

function by reducing the noise of the system down to the value it has in the actual 

'Wieland {WL88} has suggested a similar technique for the gradual learning of a classification, 

involving learning exemplars far from the decision boundary first, and then working towards 

the boundary. 

57 



problem. The idea here is that by starting the surface descent at a high noise 

value (or high temperature), the system will tend to locate the global minimum 

from the beginning, and as temperature is reduced will remain within the basin 

of attraction of the global minimum. The difference between the two is that the 

annealing prevents the system from becoming trapped in local minima, while the 

deformation removes the need for the system to descend a hazardous surface, by 

moulding the surface around the system. 

3.6.2 Deformation and the rounding problem 

The rounding problem is clearly an ideal candidate for the deformation method. 

The deformation parameter is r, which is to be decreased in stages from 0.5 to a 

final value r0 . 

The difficulty can be varied continuously in the rounding problem, so it is necessary 

to determine the change in r required as a function of r. For a problem with a 

discrete set of difficulty levels it may be a simpler matter to determine such a 

schedule. Initially r was changed by a constant factor (0.99) each time. It was 

found that the factor was required to be closer to unity as the r decreased in order 

that the system remained near enough to the bottom of a "ravine-like" structure 

in the error surface that it did not break out of it into some local minimum (i.e. 

"flip"). Thus it is necessary to find some way of getting the r-change to cause 

an alteration in the error surface which is sufficiently small that the new error is 

not significantly different from that attained after completion of learning for the 

old r. 

The expression derived below gives the change in position of the system on the 

error surface (E) after it has been deformed due to a change in r. 

The error defined in (3.18) is rewritten as 

	

E = 
	

(3.54) 

where 	E2  := 	(tfl, - o2 ) 2 . 

	 (3.55) 

After a difficulty has been learnt the system is able to round numbers outside that 

r to zero or one respectively (within a tolerance tol). Thus for a single output 



unit and a single picture the maximum error at the end of a deformation cycle is 

given by 

Emax = (tol) 2 . 	 (3.56) 

It is necessary to control the change in r such that the error at this output unit 

increases by the same (tolerable) amount each time. The assumption is that the 

error at the other units, and for other pictures, will behave similarly, or at least 

no worse than that at the output unit with the maximum error. 

In deriving the expression for 	Z for a three-layer network we use the same 

notation as in section 3.2. Thus 

Eip  = P21 (01 ) 	
( 3.57) 

dropping the subscript p, and so 

5E2 = 	50, 	 (3.58) 

where 

80i 	 (3.59) 

for fixed values of the weights. Similarly 

(3.60) 

Using equations (3.44) and (3.45), equations (3.59) and (3.60) become 

SO. ={wfO(1—o)sH 3 } 	 (3.61) 

6113 = 	{1(H+1)(1_Ha)a1} 	
(3.62) 
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From the definition of E, we have that 

SE, = — (t i  —O,)SO, 	 (3.63) 

= —' : 50 . 	 ( 3.64) 

Due to the pictures that are presented to the system, SI, is only non-zero for one 

of the input units per input picture, and always has the values: 

SI, = +2r 	for 	= 1 	 (3.65) 

6I, = — 2r 	for 	= 0. 	 (3.66) 

Now, substituting (3.61) and (3.62) in equation (3.64) we find 

SE, = 	 —H3) >w'6I} 	(3.67) 
2 	 in 

I 

= —2E, (i - 	{(i + H3 )(1 - 	 Sr, 	(3.68) 
I 

where Sj  is here the Kronecker delta. Hence the change in error with r is given 

by: 

- —2E (1 - 	{ (1 - Hfl w'wjS}. 	 (3.69) 
3 

Equation (3.69) was used in determining the amount by which r should be changed 

after each stage in the deformation had been successfully learnt. The maximum 

tolerable error change (SE) was taken to be 0.0005 for all simulations (with tol = 

0.1), however this value is not critical.' 

3.6.3 Learning digits in the presence of noise 

The schedule for deformation in the last section was somewhat complicated. This 

was mainly because it was desired, and it was possible, to obtain such a schedule 

that perfect learning could be ensured. In most real-world problems however, this 

81t is important for SE, not to exceed an upper limit (so that the system stays in the ravine), 

while an optimum value is determined by the minimum number of cycles required to learn at 

the new r. 
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is not viable. So as an example of another problem in which deformation can 

be used to improve significantly on the bare learning procedure, the deformation 

procedure being any reasonable one, we consider the learning of digits in the 

presence of noise. The deformation parameter here is the degree of noise in binary 

images. 

The network used has a 45-10-45 architecture. The input and output layers are 

to be viewed as 5 by 9 arrays of pixels. The input units themselves take on only 

the binary values 1 or 0. The training set consists of a set of noisy images of digits 

which are to be mapped to their corresponding clean images at the output. The 

difficulty of the problem is a function of the amount of noise present in the inputs, 

since the greater the noise the less the basic structure of the digit is seen. Thus 

one can imagine the error surface becoming very hazardous at various points, 

especially when the training set contains digits already very highly correlated 

without noise. 

The training schedule is clear: teach the network first of all the clean images 

(i.e. N-H-N encoding), and then introduce noise at the input patterns, until the 

desired noise value is obtained. That is, the final operation of the net is to be 

one in which for any digit corrupted by noise of value less than or equal to n%, a 

clean image of a digit will be produced at the output. For relatively large noise 

values it may be the case that the noisy image of a particular digit is "closer" (in 

terms of a distance measure the net is using) to another digit. In this case the net 

should produce as output the second digit. The network can be viewed as a device 

(characterized by a particular noise tolerance ii) which cleans up noisy images by 

producing at output the digit which is closest, in terms of general structure, to 

the input image. 

It is clear that the error surface for such a functionality is necessarily very highly 

structured and will contain many crevices and steep descents. 

First we observe the performance of the basic algorithm on the 5%, 10%, 15% and 

20% noise domains. Each training set consists of ten examples of each digit, i.e. 

100 patterns in all. The learning parameters used here and in all subsequent runs 

are c = 0.9, q = 0.1, tol = 0.15. 
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% noise I final I % patterns 

error correct 

5 20.018 80 

10 20.021 80 

15 20.027 80 

20 20.032 80 

Table 3.5: Performance of the basic algorithm (training set). 

The network was not able to achieve 100% success in any of the noise categories. 

(A run was terminated after 10,000 epochs, when the rate of change of error was 

slower than one part in a thousand per epoch, indicating a local minimum of the 

type in section 3.5.3 had been located.) Table 3.5 shows the performance of the 

network in terms of the percentage patterns correct. 

We show in figure 3.17 typical ways in which the network got stuck. The pictures 

show the input, hidden and output unit states for a particular pattern in the 

training set. In one case all the mappings were correct apart from all the "1"s 

with one pixel wrong, and all the "2"s with the same three pixels wrong. This 

type of error is characteristic of the "flipping" in the last section, and confirms 

suspicions that the network had reached local minima. Clearly, certain patterns 

are very similar to each other, and the net is most likely to descend into a local 

minimum giving rise to mixture states. The minimum the net is required to reach 

probably becomes either narrower or further away (or both), the more noise that 

is present. 

% noise J final  I accumulated  I % patterns 

error epochs correct 

0 0.467 1051 100 

10 1.021 1430 iOO 

20 0.608 2351 100 

Table 3.6: Deformation schedule 1 (clean -+ 10% -+ 20%). 

Next three deformation procedures were tried. The first involves the sequence 

clean -+ 10% -+ 20% 1  the second the sequence clean - 5% -* 10% -* 15% -+ 

20%, and the third clean --+ 20%. It was not attempted to find an optimal defor- 
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Figure 3.17: Typical incorrect mappings learnt by the bare algorithm. 
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% noise I final I accumulated I % patterns 

error epochs correct 

0 0.467 1051 100 

5 1.122 1300 100 

10 1.021 1562 100 

15 0.302 3361 100 

20 1.505 15,000 99 

Table 3.7: Deformation schedule 2 (clean - 5 -* 10 -* 15 - 20). 

% noise final accumulated % patterns 

error epochs correct 

0 0.344 1160 100 

20 1.563 5000 99 

Table 3.8: Deformation schedule 3 (clean - 20). 

mation schedule for learning up to the 20% noise training set. These experiments 

were done to demonstrate the suitability of the deformation procedure for this 

type of problem. It is not even necessary to use such a hard problem; as was 

suggested above the idea is more to build on current more general knowledge in a 

sensible way. We show below that deformation enables the network to find very 

good minima in a hazardous error surface. Deformation may help even when a 

global minimum may not exist (i.e. in the cases when there are conflicting mem-

bers present in the training set), by keeping track of the optimal minimum using 

previous knowledge. 

Tables 3.6, 3.7 and 3.8 show the performance of the net for each deformation 

schedule. Using the first schedule the network was able to learn successfully all 

the training sets. Typical mappings for the 20% noise network are shown in 

figure 3.18. Using the second or third schedules the net was not able to complete 

the learning, but the local minima in which it got stuck are much lower than for 

the basic net. Actually nearly all the patterns were correct. We show an example 

of an incorrect mapping in figure 3.19. The optimum deformation schedule lies 

somewhere between the second and third schedules tried above. 
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Turning to figure 3.18 again, it can be seen how the net performs the mapping 

of apparently quite different noisy images of the same digit, by responding to the 

features in the image which are most typical of the digit. This can be seen in the 

activations in the hidden layer for patterns in the same digit class. This represen-

tation in the hidden layer is then used to reproduce the digit at the output layer. 

This is a more general example of the grandmother cell mechanism, in which a 

certain hidden unit (or units) is responsible solely for the recognition of a particu-

lar family of features, or patterns. In this case, the same units have approximately 

the same states for noisy versions of a particular digit. Thus, instead of assigning 

a single hidden unit for the recognition of a particular digit, the network assigns 

certain vectors in hidden-unit space (section 5.2 explains this idea more fully) to 

be the encoded representation of the family of noisy versions of the same digit. 

The generalization afforded in this way (unseen noisy versions can be recognized 

correctly, so long as the noise is small enough) is of a a content- addressability 

nature, as opposed to that produce through indirect learning of trends typical of 

the entire training set. Without the two-level processing capability allowed by 

the layer of hidden units, networks would not be able to perform most interesting 

tasks involving extraction of the relevant information from the activations at the 

input. The net recognizes the typical patterns which are sufficient to identify a 

- particular digit. These are by no means obvious, looking at figure 3.18, but clearly 

the inputs have enough in common to warrant the similar hidden-unit representa-

tions. The common properties of this class of patterns are known as the minimal 
microfeatures, or minimal information in the input pattern sufficient to distinguish 

it from other patterns in the group and therefore to classify it correctly {KL89}. 

The representations achieved in the hidden layer is in general an interesting and 

important property of the network studied in this thesis, and chapters 4 and 5 

contain further discussions on the subject. 
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Figure 3.19: An example of a case in which the deformation procedure got stuck. 

Notice how at such a high noise level the network actually mistakes the digit for 

another digit, which it can be seen is a plausible alternative. 
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Figure 3.20: Example of the weight situation in a 1-1-1 system at a particular 

point in the learning. The input is at the top and output at the bottom. The 

numbers on the lines indicate weight values and those in the circleslabel units. 

3.7 Varying the learning parameters 

3.7.1 Critical slowing-down 

The deformation process was very successful in the rounding problem in allowing 

networks to solve tasks of much greater difficulty (ro  = 0.0001), however it became 

clear that the updating procedure for the weights became more inefficient as r was 

decreased. This can be demonstrated with a simple example where the network 

has one unit in each of its three layers (see figure 3.20). The system has just 

learned at the deformation stage of 0.005, and is about to start error propagation 

at the next r of 0.004881. The numbers which are presented are: 0.504881 (R) 
and 0.495119 (R_), with the state of the threshold unit always at 1.0. The total 

error at the output unit at the end of the last r is 0.01. Tables 3.9 and 3.10 show 

the S's and gradients at this point in the training of the system. 

It can be seen how inefficiently the large weights are updated. The reason for this 

20.8 

21.17 



input 	Put 	8 hid 

R+ 	0.00988 0.002445 

R_ 	-0.00988 -0.002446 

Table 3.9: Values of S for r = 0.011 for the system in figure 3.20. 

weight I gradient 

W20 -0.000001 

W21 0.0000477 

w30  +1.OE-08 

0.00200 

Table 3.10: Gradients for the weights in the system in figure 3.20 (r = 0.011). 

small update, despite the comparatively large 5's, is contained in the expression 

for the gradients 

OE 
awij= - 	

Sip7jp. 

P 
(3.70) 

The values of the S's remain similar as r is decreased, since the deformation ensures 

the system remains close to the tolerance error, while the values gip  decrease 
with decrease in r. Thus the time (in learning cycles) taken to learn each new r 

unavoidably increases as the system learns to round numbers closer to 0.5. This 

is to be expected, since the values of the (heavy) weights required also scales 

inversely proportionately with r. 

3.7.2 The problem of "valley ascent" 

Steps were taken to try to speed up the learning, and it was found that the 

acceleration provided by the momentum parameter was very effective - provided 

the acceleration was suitably controlled. 

With acceleration turned off, the following fate often befell a system. Figure 3.21 

shows how the system climbs up a valley using gradient descent, bouncing from one 

wall to the other (the initial point is the lowest, with each successive point joined). 
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Figure 3.21: "Valley ascent". The system starts at the lowest point and each 

gradient calculation sends it higher up the valley. 
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The explanation for this effect, which ultimately leads to the system hanging on 

a flat region outside the valley (again the "flipping" mentioned above), is that the 

step size at the first (lowest) point is just too big at that point on the valley wall 

to produce a weight change which will send the system down the valley. Thus 

the system finishes at a point higher up on the opposite valley wall. It might 

be expected that with its next step the system would have rectified this, there 

being less chance of the weight change being so large that the same occurrence is 

repeated. However, this is hardly ever the case, due to the effect of deformation on 

the shape of the valley. This is best illustrated when we observe the alteration in 

the error surface, taking a cross-section in the direction of the threshold weights 

(9,) about the value threshold = 0, as the value of r is decreased to very small 

values. This error map is shown in figure 3.22, and it is clear how due to the great 

steepness of the valley walls, which increases as the valley is climbed, the system is 

squeezed out of the valley, with no chance of getting back in. Such an occurrence 

is much more likely when deformation is used, because the system is guaranteed 

to remain in such a narrow valley, at these difficulties, while without deformation 

the valley would either never be found, due to the surrounding plateaux, or if 

found would only be descended a short way if at all. Note also from figure 3.22 

how the topological shaping performed by the deformation is nicely illustrated - 

the system would be kept at some point near the bottom of the valleys, with the 

folding of the error surface happening harmlessly above. 

3.7.3 Learning parameter variation (method A) 

The valley ascent above became a recurring problem for all system sizes below a 

certain value of r. The method of combating this was to reduce 77  at the point this 

behaviour was detected. The onset of the valley ascent is marked by two weight 

changes in opposite directions, the second of which has a greater magnitude than 

the first. When this is detected 77f/ ,q for that weight is reduced by the amount: 

I,H 
(n —i)I I,H 

ii 
- 	I,H 	Tiij , 

(ii) 	
(3.71) 
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Figure 3.22: The terrain in the neighbourhood of a threshold weight for various 

levels of problem difficulty. 
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where the argument n indicates the update number as before. So the procedure 

is for a new step to be made from the backtracked previous point using this new 

value of 7l. Thus 71 now becomes dependent on the direction in weight space. 

Use of momentum was found to be indispensable as a way of speeding up descent 

of slightly sloping regions (which characterize error surface in the directions of the 

heavy weights), and also for descent down valley walls when step size is small. 

However, it is important to ensure that momentum is 'switched off' whenever the 

descent reaches a stage at which it crosses the valley bottom (adding the previous 

weight change after this would result in ascent of the opposite wall). This is 

recognized by the gradient having the opposite sign on opposite valley walls. 

By carefully controlling the speed of descent using this automatic parameter vari-

ation, and deformation, it was possible to solve tasks down to very small values 

of r (1010), for all the systems studied. A comparison with the typical 

performance of the basic algorithm in figure 3.5 shows the effectiveness of the 

improvements suggested here. 

3.7.4 Learning parameter variation (method B) 

The method of changing 77 and c just described is good really only for a special 

case of descent such as the rounding problem provides. Thus a second more 

general way of altering these parameters was developed, and in fact used in the 

simulations in chapters 4 and 5, for a fast but safe descent. 

The general task of gradient descent algorithms is to move the system down to the 

bottom of the nearest minimum, and this should be done as quickly as possible. 

However there are one or two points to consider first: 

• The size of the minimum: it is not desired to descend into the nearest 

slight depression in the surface, or little dip. The question is however, when 

is a dip a valid (but not global) minimum, and when is it merely a "glitch"? 

• The speed of the descent: exactly how fast is fast enough? 
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The first point is the hardest one in any descent procedure; it was decided here 

to descend into whatever was nearby but to allow leaps and bounds of a certain 

(specifiable) size, in order to free the system from any minor glitches in which 

it would otherwise perfectly trap itself, using the rest of the variation technique 

described below. Thus the methods for variation of the parameters 77 and a were 

based on control decisions over and above variations in network height caused by 

glitches in the surface. In practice this means that the, parameters were not varied 

if there was a rise in error less than the amount taken to be a glitch, which we 

shall call e. This is a way of allowing a small amount of "jumping" to enter into 

the descent, although it is still strictly a non-stochastic procedure. 

The second point is similar, and follows on from what was said in the last para- 

graph. We allow the system to descend as fast as possible up to a rate r, and in 

so increasing the rate ensure that there is no jump in error greater than eY We 

shall denote the rate of descent. by 

R= 	
- E(n. - 1) - E(n) 

E(n) 
(3.72) 

for integer units of time t, (n) 

The procedure for changing the parameters basically falls into the control and 

speed types: 

R > r (satisfactory descent): No change to the parameters. 

0 < R < 1' (requires speed-up): the surface is being descended, but not fast 

enough. The parameters 77 and a are both increased: 

77' = 77 X 77 	 (3.73) 

a' = a+Sa 	 (3.74) 

where there is the constraint 

cr = a1 	 (3.75) 

but if 	a' 	1 	 (3.76) 

Act = Cif  /i, 	 (3.77) 

9 Note that this does not allow gradient ascent, but merely odd leaps of a limited size. 
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and so on until the constraint is satisfied, or i > 100 (further precision is 

not necessary for the momentum parameter). The initial value of i is 1. 

—e < R < 0 (small leaping): No change to the parameters. 

R < - (requires control): The wild behaviour is being caused either by a 

too large a or a too large 77, or both. 

First a is set to zero, the network backtracked to the last point and 

the move made again. If R is now ok, the acceleration was clearly to 

blame, and is reduced by the amount a 1 . 

If R is still bad, the step size must be too large, so it is reduced by 

the factor i, a remains off (so as not to confuse the issue), the step is 

backtracked and a new step calculated. This continues until a value of 

77 is found which brings R to a satisfactory value. 

The values of 77f  and a1  are not too critical, but they are required to be small 

enough to allow a reasonable range of values of a and 77 to be tried. 

3.8 Summary 

In this chapter we have been concerned with technical aspects of the.backpropaga-

tion learning algorithm. The limitations of the basic algorithm were demonstrated 

with the performance of the feed-forward net on the rounding problem domain. 

Before suggesting ways of improving this performance, we introduced the ideas of 

learning curve, error maps in weight space and local minima. These were 

used for an appreciation of the processes going on in the learning. The effect of the 

number of hidden units on the network performance was studied, and scaling laws 

suggested. The otherwise sensible introduction of a momentum term to speed up 

training was shown to have drawbacks in that it could make the initial descent too 

uncontrolled, and jeopardize the rest of the learning. General "tweaking" of the 

parameters was found to be unsatisfactory as a method of speeding up learning, 

and so the deformation procedure was introduce. This procedure helped to'sta-

bilize the descent and enable much harder difficulties of mapping to be achieved, 
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through holding the system always in a low value of error, while shaping the error 

surface above, and therefore away from, the optimization area of the system. Thus 

the difficulties of descending a treacherous error surface were never encountered 

by the system. The optimization had in fact been split into two distinct parts: de-

forming the error surface, and descending the error surface. It was demonstrated 

with the mapping of noisy digits how the procedure for effective deformation need 

not be particularly complicated for other types of problems. 

The observation of valley ascent, combined with the critical slowing-down of the 

network learning, inspired the development of a method for automatically adjust-

ing the learning parameters step-size and momentum, for a faster descent. The 

use of this method, and the deformation procedure, enabled a vast improvement 

on the basic algorithm performance, as well as a much better controlled descent. 

A more general procedure for adjusting the network parameters was also intro-

duced, based on similar ideas, which will be used in the rest of the simulations in 

this thesis. 
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Chapter 4 

The importance of underlying correlations 

4.1 Categories of problem domains 

If the brain can be thought of as consisting of a large number of simple nonlinear 

processing units, then surely an MLP, given enough layers and units, could perform 

any function, however intelligent, that we might wish it to? Indeed, it should 

be able to perform any function that the brain can. The exact nature of the 

processing may not be known, but one is faced with the observation that the 

brain can perform extremely complex functions, whilst comprising in the main 

just a large number of seemingly simple nerve cells, which have straightforward 

behaviour when observed individually, but whose collective behaviour can produce 

a myriad of high-level processing. However, just because it is possible for the brain, 

with its almost unlimited supply of neurons, to process information in a particular 

way, using a system of simple processing units, it may not follow that an MLP of 

a given size and connectivity is the ideal model for this processing. 

With this proviso, it is evident that in order to talk sensibly about the kinds of 

training sets which are "learnable", we must first define the scope of the analysis. 

The scope shall be defined here using the three layer MLP, that is a multi-layer 

perceptron with input, hidden and output layers, and no others. We believe this 

is a natural unit for the discussion of any level of processing we might want a 

feed-forward neural network to perform, since it allows us to organize the process- 
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ing into sets of [input -* representation space (extraction of relevant 

features) -p linking of features to form new inputs -* next level] 

and so on. In an actual system the linking stage could probably be combined 

with the next input stage, but for analysis purposes, it is necessary to be able to 

specify outputs explicitly. The three-layer MLP is therefore considered here to be 

the basic processing network from which generalization might emerge. 

Now it is possible to be more specific about types of problem domains. We shall 

consider three types: 

High-level domains. These include all training sets which require more than 

one intermediate level of processing to map from input to output. Many of these 

would require perhaps just one extra layer before the input layer of the basic 

three-layer MLP, to provide the appropriate coding. As it is though, the MLP 

would be required, from trying to reproduce the target outputs, to find a single 

transformation which both recodes the inputs so that the salient information is 

being used in the processing, and combines this information into a form which 

allows the inferences at the output to be made. Examples of such domains include 

the many types of scene analysis, letter and (even worse) word recognition and 

(still worse) also understanding or pronouncing them, and most other visual and 

auditory cognitive processing which call for transformation-invariance of some 

description. Even if an MLP with more than three layers is used to solve the 

mapping, we believe that the necessity to organize more than one hidden layer 

will prevent the network from discovering solutions which first code the inputs 

sensibly, and then combine these features. In short, we believe that these problem 

domains are best implemented in stages, so that, if an MLP is used, it can be 

directed to solving a specific mapping (for example, first identify the letter A, 

then identify the word containing A, then syntactically process the meaning of the 

word, etc.). 

Numerical domains. By this is meant those domains which are easily defined, 

but interesting only from the point of view of defining predicates of a certain 

order, and exposing the limitations of the processing which may be performed, 

but rarely from the point of view of generalization [LB87, P1187, R88]. Such 

domains include many of the predicates used by Minsky and Papert [MP69] such 
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as exclusive-OR and connectedness, and also random mappings and "counting" 

problems such as parity. 

Low-level domains. As might be anticipated, these fall into a category roughly 

midway between the first two. They combine the interesting generalization pos-

sibilities of the first and the single level of processing of the second. Indeed, any 

high-level domains could be constructed in a hierarchical manner from combina-

tions of low-level and/or academic domains (i.e. combining nets). This idea in 

general is an attractive one, and is broadly discussed in [Min79]. The low-level 

domains themselves are characterized by the input being in a form ready to be 

processed right away into the representational stage of the hidden layer, such that 

salient information can immediately be manipulated and combined in the hidden 

layer, ready for inference to be performed in the output stage. This allows any 

generalization to emerge in the form of key linking of inputs to their required 

representational form [BB87]. Many experiments with these types of domains 

confirm the suspicion that just the single intermediate layer' is necessary for the 

MLP to find good solutions. Dodd remarks in [Dod87] how one intermediate layer 

was sufficient for learning texture information, and that "A second intermediate 

layer was used to try to avoid the problems of output coding but was found to 

be unnecessary when the MLP was otherwise suited to the problem." We believe 

that this is true for many problems and that if possible they should be re-coded 

so as to allow network learning to be a matter of forming associations between 

"minimal microfeatures" [KL89]. We demonstrate the emergent properties which 

are possible from such a class of problem domains in the following sections. 

4.2 Overview of the chapter 

It is often the case when analyzing neural networks from a mathematical or physics 

point of view to use patterns selected from a random probability distribution. 

Such mapping problems fall into the numerical - domain category. Unfortunately, 

this eliminates one of the more interesting features of distributed representations: 

the ability to capture the similarity between concepts by the similarity of their 

hidden-unit representations, resulting in the ability to generalize in sensible ways. 
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In order to study such emergent properties, one must be able to study the type of 

domains with underlying regularity; these are the other two categories of problem 

domains defined above. 

In this chapter we generate low-level problem domains, and investigate the suit-

ability of such domains, as opposed to certain numerical domains, for learning by 

a three-layer MLP. We observe the emergent properties of these nets when they 

are used to learn such domains, including learning speed and generalization. We 

generate such domains by associating each input pattern with a target calculated 

from a function which depends on a set of (fixed) parameters and the pattern 

vector itself. The fixed set of parameters serves to link the set of input/target 

pairs in the training set, such that we can speak of an underlying correlation' 

between each of the pairs. 

The success of the MLP in learning low-level domains, which can also be referred to 

as the natural domains, since they are often those lifted from natural processes 

and functions, is demonstrated in experiments such as "NetTalk" and "NetS-

peak" [SR87, MBB87] (translating from text to phonemic codes), a net which 

learns the past tense of English verbs [RM86], a backgammon-playing net [TS88], 

nets which perform medical diagnosis [1C85, YPB88], texture classification [Dod87] 

and predicting protein secondary structure [QS88}. 

In this chapter we suggest a method of generating artificial problem domains 

displaying similar characteristics to the natural domains. Once this is established, 

it is possible to study generalization and learning properties of problem domains 

clearly more suited to exploiting the emergent properties of MLPs, but using 

definable training sets. 

The chapter has the following layout. Section 4.3 demonstrates the success of 

MLPs in learning and generalizing from the natural problem domains, with a 

preliminary evaluation of the performance of the net in learning to predict the 

middle amino acid in a family of proteins, in a window of 5 consecutive amino 

'In the sense that fixed correlations between the elements of the input vectors give rise to the 

particular set of target values, and so the targets are correlated because of their common set 

of underlying generators. 



acids. The results suggest that this, and other natural problem domains, are 

special in that the network can deduce some underlying regularity in the set 

of examples with which it is presented, which thenceforth allows it to predict 

the middle letter in many unseen Windows (or some other task, in other natural 

domains), basing its choice on the assumption of a similar structure for the whole 

family of exemplars it has seen. 

Following the preliminary observations of the feed-forward network results on the 

protein problem, we suggest a reduction of such natural problem domains into 

a form which reproduces only their postulated basic - underlying properties. In 

order to verify that this minimal representation of the problem is sufficient to 

qualify for the categorization of "natural domain", various aspects of the learning 

performance and the generalization behaviour of the feed-forward net are studied 

with training sets taken from the domain. If the reduced domain retains the 

properties of learning and generalization possessed by the natural domains, then 

it can be assumed that it also embodies the essential generating characteristics of 

such domains. 

In order to provide controlled experiments, two further problem domains are moni-

tored alongside the reduced natural domain. The first is defined by purely random 

target values (i.e. a numerical domain, with no underlying regularities intention-

ally built in), and the second has permuted target values taken from the reduced 

natural domain. These are both categorized under a "no correlations" and thus 

"no generalization" group of domains. All three training sets are described in 

section 4.5. 

As well as supporting the suggested extent of the reduction, the learning properties 

also indicate that fewer hidden units are required in order to learn natural domains, 

as opposed to the other two domains. This, and also the emergent properties of 

the MLP on this domain, are discussed in the context of the representations of 

the set of patterns which the MLP forms in hidden-unit space. 

The method used for the learning is the backpropagation algorithm, as in the last 

chapter, but the cost function is modified to permit more efficiently the learning 

of real-valued (rather than binary) targets. 

81 



4.3 Predicting protein structure 

Proteins are constructed from sequences of amino acids, which are linked into a 

polymer with a specific sequence determined by the translation of the messenger 

RNA (ribonucleic acid) three bases at a time. The ultimate goal in protein research 

is to be able to design them. For example an amino-acid sequence would be 

specified such that, when synthesized, it would assume a desired three-dimensional 

structure, bind any desired substrate, and then carry out any reasonable enzymatic 

reaction. The current state of research has not reached this stage, primarily 

because of the difficulty of understanding why certain proteins exist, rather than 

any of the millions of other possible combinations of amino-acids. The structure of 

a protein can be divided into various levels. For example, the primary structure of 

a protein is its linear sequence of amino-acids, the secondary structure is the local 

spatial structure of small numbers of amino acids, independent of the orientations 

of their side groups. 

It is currently possible to determine long stretches of "cloned" genetic material. 

This sequence information needs to be interpreted by its relation to known genetic 

sequences (over 10 million bases are currently known), by inferring what regions 

are copied for translation into proteins and by the assessment of possible biological 

function of the putative protein. The comparison of protein sequences with each 

other has been extensively developed (see, for example, [LHCC86] for a DAP 

implementation) and can be applied to the entire set of known proteins in the 

databases. 

With the rapid increase in the numbers of known proteins, it is becoming ever 

more desirable to have some form of intelligent database. 

The Hopfield [Hop82] neural network model has been used as a content-addressable 

memory to store sequences, working on the assumption that the contextual in-

formation of incomplete sequences will restore varieties of possible complete se-

quences, depending on the (bit) noise in the input pattern [Wa187b]. Other work 

has been performed using feed forward networks [QS88, NRR89] attempting to 

predict the secondary structure (alpha helix, beta sheet or beta turn) of proteins 

from windows of amino acids. The results using these networks look promising, 
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giving good generalization performance, and they may possibly form a major part 

of a future hybrid database, to provide the search techniques with a modicum of 

expert knowledge as guidance. 

In this section we use a feed-forward net to predict the middle amino acid in 

a window of 5 (primary structure information) from a sample of proteins all of 

which are in the family trypsin. All these proteins have a common function, and 

so we might expect the groups of amino acids found together in the proteins to be 

similar. The trend for particular groupings in the protein chain is what we expect 

to give rise to any generalization ability. 

4.3.1 The format of the data 

The proteins are represented in their raw form as a set of chains of letters (see 

appendix A.1). Each letter codes one of 20 amino acid groups. Our data set 

comprises 14 members of the family trypsin, each of which has about 220 amino 

acids. Although in reality the proteins are coiled up in some way, in three dimen-

sional space (the secondary structure), so that the neighbourhood of a particular 

amino acid may consist of amino acids from a long way down the chain, for this 

experiment the presence of each amino acid is assumed to depend on amino acids 

only in the neighbourhood of the window size (2 amino acids either way). It can be 

seen from the results of the network -learning, that this is a reasonable assumption. 

It was decided to split the 14 proteins into two halves. One half, consisting of the 

first 7 proteins, formed the training set, and the second half the test set. In the 

experiment we used both sets to gauge the performance of the network. 

4.3.2. Net architecture 

The network architecture is shown schematically in figure 4.1. Four letters form 

the input to-the net: the four letters which surround the middle one the network 

is supposed to learn. The middle letter is not input to the net as then all the 

net would need to learn would be a straight one-to-one mapping of the middle 
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Figure 4.1: The net architecture for the protein experiment (weights not shown). 

letter to itself, ignoring all the surrounding letters. The task of the network is 

to use the contextual information of the window amino acids to suggest possible 

middle amino acids. Each position in the window is represented by 20 letter-

nodes. Thus if the window "ABCDA" were being read by the network, the four 

nodes representing A, B, D and A respectively would be activated at the input, 

with the target node being the node C at the set of nodes representing the middle 

letter at the output. This example situation is shown in figure 4. 1, the state of +1 

(on) being indicated by a white node, and 0 (off) by a black node. 50 hidden units 

are used, and the network is fully connected from input through hidden to output 

layer. The amino acids are therefore represented orthogonally by the network, 

which assumes no correlations exist between the amino acids, other than the ones 

which are discovered by the net in the course of the processing, and these are 

stored in the connections. 

During a learning cycle each protein was presented to the network by shifting 

its length across the window, thus all but the four end amino acids (two at each 

end) per protein were used in the target set. The gradients were summed for the 
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entire training set before the weights were updated (batch learning). This was 

determined to be the best method since periodic updating resulted in undesirable 

"recency" effects (later patterns are much better learnt than earlier ones, see 

also [Wa187b}), and also it was found that learning was much faster and ultimately 

more successful when batch learning was used. If the target for a node was 1 then 

the tolerance (tol) was taken to be 0.1, otherwise it was taken to be 0.2. (This 

was done because of the relatively large number of times a node state would be 

required to be zero as compared to the times it would need to be one, which might 

run the risk of the states getting trapped on the response function extreme, if they 

were trained to be too close to zero). 

The total number of patterns in the training set is 1599, and in the test set 1576. 

4.3.3 Performance 

The performance of the network was examined twice: first after 1100 cycles of 

learning, and then after 8800 cycles. In order to test the network a protein was 

processed using the same window method as in the learning, and the states at 

all the output nodes were compared. If the node with the maximum activation, 

which was also greater than the acceptance threshold (a number between 0 and 1, 

which we use to cut off lower values when examining the network after learning, 

and which is not related to the tolerance used during the learning), happened to 

be the correct one (i.e. the target value for that protein window), the pattern was 

considered to be learnt. 

The performance was judged on the basis of percentage correct patterns '2  out 

of the whole testing set. The training set and the test set were both used, in 

order to gauge both aspects of the acquisition performance. Figure 4.2 shows 

the performance on both sets for both the testing sessions, as a function of the 

acceptance threshold. 

Several interesting observations can be made from the graph: 

2 Note that this is equal to the percentage correct nodes, and so does not give rise to the same 

ambiguity as was experienced in the last chapter. 
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Figure 4.2: Performance of the network on the training and test set for the protein 

problem. 
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• The network can learn the training set to a high level. 

• Increasing the acceptance threshold generally diminishes the performance. 

• The diminution rate is much less for the well-trained network than for the 

less well-trained one. 

• For the training set, the zero threshold performance for the well-trained 

network is not so good as that for the less well-trained one. 

• The network generalizes on the test set. 

• This generalization is better for low thresholds with the less well-trained net 

than the low threshold generalization for the well-trained net. 

• The generalization performance diminishes slower with acceptance threshold 

for the well-trained net. 

From the observation that the generalization performance is very good for low 

acceptance thresholds after only a short period of learning, it seems that the net 

learns the basic structure of the trypsin family fast. Since this low acceptance 

threshold generalization performance diminishes on training the net for a longer 

period, and a similar situation is seen in the training set performance, we infer 

that although the patterns are in general better learnt (we can be more confident 

about the output), the information about the general nature of the mappings is 

no longer so good. Also it appears that the fast learning of the basic training set 

structure is echoed in the generalization performance (i.e. the performance on the 

test set) which seems to have similar characteristics, with respect to zero threshold 

performance and diminution rate. 

One of the more significant observations is that the better the net learns the 

training set, the worse the low acceptance threshold performance becomes, most 

markedly for the test set. This is, we believe, a common occurrence in such 

learning, where the general structure of a training set, or family, is gradually lost 

through over-learning of the training set. 

There are a certain number of exemplars common to the training set and the test 

set. The total number of patterns which should not be put down to generalization 
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of the correlations knowledge, but to replication in the test and training sets, is 

109. Thus the net should always perform to about the level of 109/1576, or about 

7%, of its training set performance, when processing the test data. If we assume 

no generalization, and that the net can merely guess the output letters on the basis 

of the output probabilities learnt from the training set, then we can work out the 

no generalization case of chance guesses. This behaviour (the probability of a 

correct guess on the test set is given by the sum of the products of the probability 

of each letter occurring in the training set and the probability of it occurring the 

test set) produces a 6.2% performance. The graph shows that the net always 

performs much better than if we were to attribute the stored knowledge solely to 

these factors, and so it is reasonable to assume that real generalization is taking 

place. The generalization normally takes the form of making some kind of decision 

as to what amino acid to use when the window may allow various possibilities. It 

is then that the knowledge gained implicitly, from the learning of the training set, 

of the correlations which characterize it, is brought into play. Thus, for example, 

if we have the test window AACD, and there have been various occurrences of, for 

example, AABDD, AEAED and CEECD, etc., then the significance of each letter in the 

window for the presence or absence of any letter in the middle, is implicit in the 

network weights, since all these examples have been successfully mapped. This 

knowledge then is drawn upon in the form of the relative strengths of the letters 

suggested at the output, the largest output will be that which is most favourable 

for the window. 

We saw how the zero threshold performance gave the best generalizing perfor-

mance. This indicates that one should not be so much interested in actual size of 

output as in the relative sizes of output. This, then is the important information 

which the network extracts from the training set: the relative strengths of each 

amino acid for a particular window. 

4.3.4 Discussion 

The success of feed forward nets in learning about proteins indicates that there is 

something particularly consistent in the formations which are presented. In reality 

various forces are operating to determine the ultimate structure of a protein. These 
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forces include electrostatic forces, such as direct ionic interactions between charged 

amino acids, dipole-dipole interactions, dispersion forces (very short range, with 

a strength depending on the shape of the molecules), hydrogen bonding, and the 

chelate effect (orientation dependent higher order interactions). All these forces 

act to determine the proteins which exist in nature. It is natural to consider these 

proteins to be low-energy states in the large group of possible configurations. 

In this section we have seen how an environment of amino acids can provide 

sufficient information to allow the network to suggest a possible middle amino 

acid, using the knowledge it has gained from the learning period. In the next 

section we attempt to mimic the characteristics of the learning, by a simple model 

of the basic structure of a natural problem domain. This work does not propose 

to explain the way protein structure might be determined from the electrostatic 

potentials in which they exist, but merely to reduce this, and similar problems, 

to a tractable form, which still displays the vital features. 

4.4 Reduction to a simple model 

The important information which the net extracted from the training set in the last 

section was not the absolute size of the output activations, but the relationships 

between the outputs for each particular input. Thus we are not looking for the 

number of binary yes's in the output, but the relative strengths of each of the 

output node responses, to determine the information the network has deduced 

from the training set. In order to develop a training set which can be said to 

have similar properties to the protein, or "natural" training sets, we must define 

what it is that is special about the natural data. The postulate we explore is that 

there is underlying regularity in natural data, and that this can be reduced to 

a form of correlation between the individual elements of a pattern, giving rise 

to an activation of each pattern for a particular output state. 

In the protein example, for instance, we can assume that the environment of letter 

C in the window ABCDE determines the probability that the letter C will be found 

within this grouping. The reasoning behind this is straightforward. If, as in the 
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Input I target  I number of occurrences 

1010 1000 10 

1010 0100 7 

1010 0001 3 

1100 0100 7 

1100 1000 7 

1100 0010 7 

0110 0010 10 

0110 0001 3 

0110 1000 3 

1110 0001 1 

1110 0100 7 

1110 1000 3 

Table 4.1: A training set with conflicting targets. 

protein example, there is more than one possible target for a given input amongst 

all the training cases, that is input p has target t, j  in N 1  of the cases, ti, 2  in Ni,2  

of the cases, etc., and if the training is done, in batch mode (update only after 

seeing all the patterns in the training set), then the linearity in t of the error at 

the output layer implies that one may alternatively train that input with the mean 

target [Wa187a]: 

EktkNk 
pp= 	, 	m=Nk. 	 (4.78) 

Ic 

If the training of all the patterns achieves this mean target output for that input, 

then the net will be producing a probabilistic output determined by the frequency 

of presentation. In the protein case, a particular letter i will be trained to have a 

target of one in n2  of the cases of the input window I,,, being presented, and to be 

zero in the other ni, - n2  cases. 

As an example we shall consider the training set in table 4.1. The probabilities 

for each output node for each pattern p are shown in table 4.2, with the values 

settled on by a feed-forward network in actual simulation. The network settled to 

a constant error. It can be seen how the actual values obtained are very close to 
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pattern 

1010 

1100 

0110 

1110 

P, actual outputs 

0.5 0.35 0.0 0.15 0.5 0.35 0.0 0.15 

0.33 0.33 0.33 0.0 0.32 0.34 0.31 0.02 

0.19 0.0 0.63 0.19 0.19 0.01 0.61 0.18 

0.27 0.64 0.0 0.09 0.27 0.63 0.02 0.05 

Table 4.2: Actual probabilities and outputs obtained, at a steady error. The 

tolerance was set to 0.01. 

the theoretical probabilities. 

Absolute strengths of the possible letters which may be found in groupings are 

of secondary importance to relative probabilities between the letters. Thus, if 

the network has learnt to map the most favourable letter to an activation a1 , 

for example, the important knowledge would be contained in the relative set of 

activations 

f ai a2 	a1  
1 	, 	 ,...(, 
Iai a1 	a1 	) 

which can be normalized to form a set of probabilities. The tests made on the 

network in section 4.3 actually indicate that the relative probabilities of letters in 

groupings were learnt very early on in the learning. 

The model training set introduced below tries to embody the main characteristics 

of the natural training sets, in a minimal form. Actually the number, of possible 

input letters is effectively reduced to two, and the effective number of output 

letters to one. We demonstrate the origin of this reduction below. 

First assume that for each letter at each position in the window there is an in-

dependent set of interactions (correlations) with every other letter at every other 

position in the window. So, the input layer in figure 4.1 can be pictured as a fully 

connected Hopfield net [Hop82], where each connection 1' between letters i and j 
in positions a and b respectively represents an interaction strength. Note here that 

the situation has already been assumed to be representable by pair interactions 

alone. We now imagine a pattern of activations on the Hopfield net to comprise 

zeroes at all nodes except for those representing the letters present in a window, 
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where the nodes are set to ones. There is an associated energy function for the 

Hopfield net, which we can write as: 

Nw 20 

E := >ESaTabSb 
	

(4.79) 
a<b t<3 

where Sia represents the state of node i in position a, and the summation is over 

all the node pairs, with Nw = 5 positions in the window and 20 possible letters. 

Now, for some letter groupings the energy E will be lower than for others, and 

we can take these to be more favourable states. More specifically, for a particular 

letter environment AB IJDE the energies of the system when letter X is at the centre 

position is given by the energy of pattern ABXDE. 

For the next stage in reducing this problem, we reduce the number of letters in 

the input window to 2. Adding more letters will not affect the basic nature of the 

problem, since we are assuming the letters to be orthogonal (and therefore each 

letter is characterized by its own set of weights to the hidden layer, containing 

the information about its relationship with the rest of the letters in the window 

and the output letter.). Also, if we reduce the number of output letters to one, 

a further simplification comes about in that the presence of this letter and its 

associated interaction strengths is unnecessary. (That is, the letter itself does not 

need its own interaction strengths with the letters in the window to distinguish its 

energies from those of any others.) Thus, to recapitulate, there are now 2 types 

of letter which can be present in a window, in N - 1 possible positions, and 

each configuration of letters has a characteristic energy given by equation (4.79). 

This energy tells us about the probability of the output letter being found in the 

particular environment of letters. 

The final stage comes in reducing the number of letter nodes in the input window 

to one. This is possible if we say that each position, now represented by a single 

node, can take on the two values +1 and —1, so that each window still represents 

an environment of N - 1 objects. A better way of viewing this is to consider that 

each position in the window is now characterized by the presence (+1) or absence 

(-1) of an object. Now it can be seen that the situation we have is analogous 

to an interacting spin system. The probability of an output letter being in the 
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environment of input letters has been reduced to the energy of a spin system 

consisting of pair interactions only. We can now simplify the notation, and so the 

probability of the output node being on when the set of inputs {S} is presented 

to the net, is some function of the energy of the configuration of spins {S}, with 

pair interactions J83 : 

N1 

	

p(o)= f(E) = f(SJ 1 S), 	 (4.80) 
i<j 

where there are N1 = Nw - 1 input nodes (or, in the analogous model, spins). 

Finally, it is sensible also to include self-interactions I, so: 3  

N1 	 N1 

p(o) = f(E) = f (E Sili + E 	SJ 2 S2 ). 

	 (4.81) 
i 	i<i 

The major assumption made above is that the probability a letter will be present 

in an environment of other letters is a function of the letters present and where 

they occur in the window, and that this function can be expressed as one of a 

summation of terms involving increasing orders of interaction strengths between 

the letters, the only significant terms being the first and second order ones. 

4.5 The training sets 

Now we are ready to specify the three types of training set which will be used in 

this chapter. The networks used will be of size NJ—NH-1, as in figure 4.3, and 

will be required to map a set of input vectors {v"}, where p = 1,2,... , N, labels 

the pattern, to a set of target outputs {t}, which are real numbers in the range 

[0.1, 0.9]. The training sets differ in the set of targets associated with the inputs. 

3The reason for this is that otherwise the energies for mirror configurations will be identical, 

thus rendering the window equivalent to a size N1 - 1. 
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Figure 4.3: Network architecture. 

The first training set is referred to as correlated and is derived from equa-

tion (4.81): 

input: 	vp = {S}, 	with 	SiE {1,-1} 

(4.82) 

target: t(VP) = f(vP , {I ; J}) 

which becomes 

N1 	N1 

t(v") = f(>Jv'I + E  v'J 3 v'). 
i 	i<j 

The form of the function f(x) is 

1 - 2t 
f(x)= A (x—B)+t 

(4.83) 

(4.84) 

where 

B = min{ x} 
	

(4.85) 
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and A = —B+max{z}. 	 (4.86) 

This simply rescales the energies in equation .(4.83) so that the targets lie in the 

range [t, 1 - t]. The value oft was taken to be 0.1, avoiding the very low gradient 

regions of the output response function. Thus the targets lie in the range [0.1, 0.9]. 

Since the parameters {I,; J23 } are fixed for a particular training set in this group, 

all the members can be said to belong to the same "family", in the same way 

as we understood the proteins to belong to the family trypsin. Any number of 

families can be generated, just by changing the parameters {I; J}. In these 

simulations the parameters were chosen randomly from the range [-0.05, 0.1] and 

[0.05, 0.1], which was determined, in preliminary experiments, to be a suitable 

range for a good distribution of target values (i.e., if we allow widely differing 

interactions, by having a large range in which to choose them, we might find a 

particular letter with a very large influence on the total energy, thus giving rise 

to an over-correlated training set, which would not be useful for the properties we 

wish to investigate.) 

This method of generating targets for each of the patterns can be considered a 

general way of synthetically writing in low-level similarities between patterns in a 

training set. 

The second type of training set is referred to as the random set, and is generated 

by taking all the input configurations and associating each with a number, b1 , 

which is chosen randomly from a uniform distribution in the interval [t, 1 - t]. 

The function f from equation (4.82) for the random group is therefore given by 

I = f(v,{b})=f({b})=b 1  

(4.87) 

where 	b1  E [t, 1 - t], 

Thus both the correlated and random training sets have normalized targets, in 

the range [t, 1 - t], and the same set of inputs. 

The third type of training set is a combination of the correlated and the random. 

The random training set is really the worst-case type of control domain, and in 

order to make better comparisons of the more subtle properties of the correlated 
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set we need to compare with a training set which is almost the same except that 

it does not possess consistent correlations between specific patterns. The training 

set is formed by taking a correlated training set and re-arranging the linking of 

inputs to target values. So this type of training set has exactly the same set of 

targets as a correlated training set, but they are associated with different input 

patterns. Thus the distribution of output values is of identical form to that of 

the correlated set, but the underlying regularity is missing. We shall call this the 

permuted-correlated training set. 

In figure 4.4 are shown the numbers in the training sets ordered in terms of distri-

bution in the output range, for examples of the random and correlated/permuted. 

correlated types of training set, for 5 and 7 input nodes. 

4.6 The cost function and learning algorithm 

If we write the actual output obtained when the pattern v 9  is processed through 

the net as op , then the cost function to be minimized is defined as 

(1—t) 
L 	 I tp log 	+(1 —t)log 

(1_o)f 	 (4.88) 
P 

The origin of this cost function is from a measurement of the "distance" between 

probability distributions: for a given input pattern I i,, the output o, tells us the 

conditional probability 

= P{x = ONIp} = op 

that the attribute x represented by the output is on. Clearly we also have the 

associated probability 

P-  = P{x = OFFp} = 1 - o. 
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Figure 4.4: Example distributions of target values for the random and corre-

lated/permuted-correlated training sets. 
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The Kulback [Ku159} distance between the target probability distribution (repre-

sented by a prime) and the network's distribution is 

F'- 	
(4.89) 

P 

from which we derive (4.88). 

The measure (4.89) is related to the likelihood function used in information the-

ory [BJM83]. Further instances of the use of distance measures similar to G can 

be found in [A11S85, Hin87, SLF88, P1186, 11op87, Wri88]. 

Although L has been derived from a distance measure designed for probabilities 

it can be used generally (and in fact is used here for this sole purpose) to measure 

the degree to which real numbers in the range [0,1] have been learned. The 

global minimum of the function is zero, when all the numbers are equal to the 

targets. Solla [SLF88] has tested such a cost function in learning the contiguity 

problem, to provide evidence that this "entropy" measure produces a generally 

more favourable (i.e. steeper with less local minima) error surface, as compared 

with the least squares error function. 

This cost function is minimized by gradient descent of the surface defined by L(w). 

Thus a weight w is changed on each update by the amount 

91; 
8w 

(4.90) 

where ?I is the step-size. The weight changes are calculated in the same way as in 

chapter 3. Inserting the cost function L for the E (indicating the sum of squared 

errors) in the derivations in section 3.2 the weight-change equations (3.25) and 

(3.31) become 

N 

WOj = 	- o)H'} 
	

(4.91) 

and 



N 

Lw ={( ç, - o)wH?(l - Hr)I'}, 	 (4.92) 

where o = O and t, 	t. The response functions are the same for hidden 

and output nodes, and are sigmoids in the range [0,1]. Note that factors from 

the differentiation of the logarithm and the differential of the response function 

(o(1 - or)) cancel out to produce a simplified expression for the output S's. 

4.7 Implementation on transputers 

The simulations in this thesis were all performed on the Meiko Computing Sur-

face, a modular, reconfigurable array of transputers. This is an MIMD (Multiple 

Instruction, Multiple Data) machine, manufactured by Meiko Ltd., and run in 

Edinburgh by the Edinburgh Concurrent Supercomputer Project (ECS). 

4.7.1 The transputer 

The T800 transputer is a single VLSI chip that combines processing power, mem-

ory and communication links for direct connection to other transputers. It con-

tains a fast integer and floating-point processor and can be used as a building 

block for even faster parallel processing systems, ranging from embedded systems 

to supercomputers. Each transputer has four bi-directional links through which it 

can communicate with the other transputers in order to transfer data and receive 

instructions for new operating modes (if this is necessary, since each transputer is 

able to work in "stand-alone" mode, processing its own data, running its own pro-

gram). Each transputer in a system (transputer array) uses its own memory and 

can address up to 4 GBytes of off-chip memory with a 25 MByte/s band-width. 

The transputer implements the process model of concurrency embodied in the high 

level language occam. In occam, communication between parallel processes is 

effected by uni-directional channels, which may connect processes on the same or 
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different processors. Each transputer link implements two such channels, one in 

each direction. 

4.7.2 Parallelizing the neural network model 

There are various ways of implementing neural network models on parallel com-

puters. The Ising-like Hopfield model is ideally parallelized by simultaneous bit 

manipulation, since update consists of all the neurons adopting a new (boolean) 

state, summing all the contributions from the other neurons in the network at 

that time. Hence this is best implemented on the computer which is almost de-

signed for Ising model simulations, the ICL Distributed Array Processor, an SIMD 

(Single Instruction, Multiple data) machine (see, for example, [Wa187a}). If more 

compute-intensive calculations are required at each neuron however, a larger grain 

parallel computer may be more useful, such as the Computing Surface. The only 

drawback in using such a large grain computer as a transputer array to simulate 

neural networks, however, is the problems which arise with the high connectivity 

which may be necessary in such models. An image restoration program [For88], 

which was based on a Hopfield-type network, did not have such problems when 

implemented on a transputer array, because the connectivity of the network was 

sparse and well structured, so that the transputer array could be mapped onto 

the network almost directly, with each link handling the boundary information 

required for each transputer. The problem becomes less than trivial when near or 

total connectivity is required, combined with a learning algorithm requiring near 

global information for each neuron on each update. 

Such are the characteristic problems associated with the feed-forward network 

and its backpropagation algorithm. Implementations include splitting up the neu-

rons on different transputers and using sophisticated communications schemes to 

transfer data quickly when it is needed, [Wo188, BD87, Snii87], splitting the ma-

trix multiplications over a number of transputers {R1c88], splitting the patterns 

in the training set over a number of transputers, with each transputer retaining a 

complete copy of the network in its memory, and combinations of the latter two. 

Because of the way in which the number of patterns used in most simulations in 
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this thesis scales with the size of the network (exponentially or faster), and the 

associated limitations on the actual useful sizes of network which could be im-

plemented, the training set division method of implementation was used. In the 

protein simulations, however, and also the noisy digit simulations (section 3.6.3), 

the networks were large and the training sets comparatively small, and so a sim-

ulator embodying both the matrix multiplication splitting and the training set 

splitting was used (see [Ric88]). 

4.7.3 Transputer configuration 

Having decided on the method in which the model is to be partitioned on the 

transputers, the configuration of transputers which is to be used must now be de-

termined. As in all such implementations, the important quantity to be minimized 

is the overhead 

transputer idle time 

transputer busy time* 
(4.93) 

A transputer is idle when it is waiting for data in order to perform its next stage 

in the calculation. This data comes through the links connecting the transputers, 

and if the configuration is such that messages take a long time to reach some, 

or one particular transputer, the entire calculation is slowed down, with valuable 

compute time being wasted. Ideally, if communications cost nothing, the training 

set parallelization should allow a linear speed up of the execution time with the 

number of worker transputers being used. Practically, communication does cost, 

firstly through the actual time spent sending the packets, and more importantly, 

through the increasing effective distance of transputers as the array size increases 

(due to the transputer having only 4 links). 

A suitable configuration used in these simulations was the binary tree, shown 

in figure 4.5, where each transputer has two "children". The information about 

the network weights is passed to each transputer in the tree from the top after 

each update cycle, and each transputer has stores a (different) subset of the total 

training set. The gradient changes for each subset of patterns is accumulated 
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Figure 4.5: Binary tree configuration for transputers: each block represents a 

transputer, with the actual transputer links used indicated by arrows (these are 

2-way links). 

on its route to the top of the tree, where the weight changes are made. This was 

compared with a chain configuration, with the same calculations performed by the 

transputers. The number of links through which a message has to pass in order to 

reach the master transputer (where the weight updates and parameter variation 

are performed) scales linearly with the number of (worker) transputers Nt  in the 

chain, but proportionately to 109 2  Nt  for the tree, for full trees. Thus, if the 

transputers are to spend a relatively short time computing before communicating 

data, the chain configuration will suffer much faster than the tree configuration. 

Clearly, there are several factors influencing overall speed, and we demonstrate 

the scaling of speed with array size and network size (with the number of training 

patterns scaling exponentially with the input layer size) for the two configurations, 

in figure 4.6. We show graphs of the time (in units of transputer ticks) taken to 

perform one learning epoch (t(N)) against the reciprocal of the number (Ne ) of 

worker transputers being used, multiplied by the time taken using one transputer 

(t(1)). A straight line of unit gradient indicates linear scaling of the program's 

execution time with the number of transputers available, which is the upper bound 

on paralleization gain. The tree configuration manages to achieve linear scaling 
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for more than about 2 workers, but the gradient is below the optimum. This 

improves with system size, however, and is altogether much better than the timings 

for the chain configuration. 

Another important consideration is the number of slaves which should be used 

for any particular network simulation. This is important because of the way the 

statistics were gathered. If a number of different size simulations are going to be 

performed on the same series of runs, then the number of worker transputers used 

should be optimized such that the correct number of workers are used at any one 

time. Such considerations are especially important for the smaller net sizes. In 

order to get this worker optimization the first few epochs of update were each 

performed on different numbers of slaves, and the actual time recorded. After this 

exhaustive search, the number of workers producing the fastest time was used. 

Such optimization was done each time the system size changed. The ease with 

which this could be done was a direct result of the paralleLization of the model 

that was used. 

In order to make full use of the number of transputers available, even when adding 

more transputers for the net size in use would actually slow the performance 

down, the network of transputers was replicated a number of times (this number 

depending on the particular number of transputers available at the time). Thus 

several trees, each with each own sub-master was allocated network simulations 

by the master, and on completion was immediately given another, and so on 

until the whole series of simulations was complete. Clearly in this higher level of 

parallelization the gain factor scales linearly with the number of replicas, and thus 

is optimal. 

4.8 Observations of the learning performance 

4.8.1 Details of the learning schedules 

Due to the existence of real target outputs, it was not a simple matter to determine 

when the training was completed. Furthermore, it is not unreasonable to assume 
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Figure 4.6: Time taken to perform one cycle vs. the number of worker transputers 

available, for the chain and tree configurations. 
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that, given enough hidden units, the network would asymptotically reach any 

desired accuracy for the target mappings. Therefore, it was necessary to curtail 

the learning at certain points, which were the same for all the training sets. 

All the runs were terminated after 5000 cycles, whether finished or not. A run was 

considered finished when the value of L reached below iO x Ni,, which represents 

an average of better than two percent accuracy per pattern, for the range of values 

used (i.e. [0.1,0.9]), which would in practice be near enough to distinguish the 

outputs. It turned out that greater accuracy was indeed superfluous, giving no 

extra information about the relative performance of the three types of training set 

or the generalization behaviour. 

The learning parameter variation procedure outlined in section 3.7.4 (method B) 

was used in the simulations in this chapter, and so the learning basically consisted 

of finding the nearest minimum as quickly as possible. In such a procedure it is 

often going to be the case that the system becomes stuck in local minima, rather 

than finding a solution. Such occurrences cannot be foreseen, and so the best way 

to proceed is to take a sample of the best runs. First, between 5 and sometimes 20 

runs were made on the same data, starting at different points on the error surface. 

The weights were initialized randomly (from a uniform distribution) in the range 

[-0.5,0.5] each time. This increased the chances of the network finding a good 

solution. The best out of these runs was used for the next averaging procedure. 

The second sampling was of the different examples of the same training set type. 

Any number of training sets can be generated for both the random, correlated 

and permuted-correlated type, simply by initializing new values of {I} and {J1 } 

for the correlated and permuted-correlated sets, and new values of {b} for the 

random set (these too being chosen from a uniform distribution). The actual 

values of the parameters {I; J13 } are not important, what is important is that 

they form a set of common parameters linking all the members of the training 

set, whereas the random set members are as independent as the random number 

generator allows. 

Thus averages of the best solutions (the first sample) for each of the example 

training sets, which numbered 5 (although for the smaller system sizes it was 

possible to take larger samples), were taken to give an average performance for 
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parameter I value 

initial 77 0.6 

initial cz 0.0 

?7j  1.1 

a1  0.1 

small jump 0.001 

r 0.005 

Table 4.3: The parameters used in method B parameter variation procedure. 

each of the random and the correlated training sets. Such averaging was done for 

most of the points plotted in this section. 

The values of the parameters used in the learning parameter variation are listed 

in table 4.3, and were chosen after some preliminary runs, although they are in 

general (apart from T) not too crucial for the learning speed. 

4.8.2 Scaling of the learning ability with hidden layer size 

Figures 4.7, 4.8 and 4.9 show the average value of L ("mean lowest error") after 

learning (i.e. after at most 5000 epochs) for system sizes 3-N-1, 4-N-1, 5-N--1, 

6-N-1, 7-N-1 and 8-N-1, for the two types of training sets, as the number of 

hidden units is increased. For the small system sizes (3-N-1 and 4-N-1), gener-

ally the performance of the random permuted-correlated and correlated training 

sets is comparable, the large error bars making it impossible to make any defi-

nite distinction between them. However, for larger net sizes the differences begin 

to become clear. The correlated set performance is significantly better than the 

permuted-correlated and random set performance, and this difference in perfor-

mance increases with the net size. We notice that: 

The net finds it easiest to learn the mappings of the correlated set, with the 

permuted-correlated and random sets significantly worse. 

The number of hidden units the net requires to learn the mappings well 

increases with the size of the network, but much faster for the random and 
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Figure 4.7: Scaling of the performance (final error) with hidden layer size, for the 

three types of training set, for input layer sizes 3 and 4. 
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Figure 4.8: Scaling of the performance (final error) with hidden layer size, for the 

three types of training set, for input layer sizes 5 and 6. 
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Figure 4.9: Scaling of the performance (final error) with hidden layer size, for the 

three types of training set, for input layer sizes 7 and 8. 
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permuted-correlated training sets than for the correlated. 

We suggest reasons for this behaviour in section 4.10: 

It is instructive to compare the performance scaling with the hidden layer size, 

with the scaling of the number of patterns to be mapped vs. the number of inde-

pendent variables which are available for their representation. We assume that the 

important quantity in the scaling relation is the number of weights from the input 

to the hidden layer, since the weights from hidden to output perform in effect 

just an NH—dimensional to one-dimensional projection of the hidden unit repre-

sentations to the output node, thus adding nothing to the actual representational 

power of a network. Then the number of active parameters for the representation 

of the patterns is N1  x NH + NH = N1 , including the threshold weights. If we 

now assume that the mapping problem is solvable only if the ratio of the number 

of free parameters to the number of independent output values which need to be 

reproduced (Np ) is greater than some critical value f, then for a solution to be 

possible: 

N L_ NH(NI+1) 
>f. 
	 (4.94) 

Whatever the value of f is (probably of order one), it will be the same for any 

value of N1 and NH,  and so we have an estimate of the scaling behaviour for a 

machine which is simply storing the values of N independent binary variables in 

a complex system of N1  x NH free parameters. This provides us with a yardstick 

with which to gauge the network's learning of the random, permuted-correlated 

and correlated training sets. If the random training set were truly random then, 

for large enough numbers of required associations, we would expect its scaling 

to be the same as that suggested above. Figure 4.10 shows the critical number 

of hidden units required to solve the mapping problems, taken from the scaling 

graphs referred to above, compared with a line representing the worst case of 

completely random associations, with a value of unity assumed for f, at the 

critical hidden unit number. 

It can be seen how both the random and the permuted-correlated training set 

scaling with problem size approximately follow the worst case theoretical line, 
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Figure 4.10: Scaling of critical number of hidden units with input layer size, for 

the three types of training set, and a theoretical scaling line (see text). 
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while the correlated set, despite starting near to this line, as would be expected 

for small problem sizes (since the number of free parameters is comparable to 

training set size), soon pulls away as the size is increased, showing a much slower 

rate of increase in critical hidden unit number. 

4.8.3 Form of the learning curves 

The learning curves are also helpful in evaluating the learning performance, and 

examples are shown in figure 4.11 for each of the training sets, for the network size 

6-12-1 (at which all training sets can achieve good mappings), for five different 

training sets examples each. 

It can be seen that the correlated training set performs once again significantly 

better than the other two, at a hidden layer size which enables all the training 

sets to find solutions easily. The descent is much quicker and steeper; the error 

decreases very rapidly at the start and reaches a very low value at about 600 

epochs for all examples, as compared to the value of 900 epochs for the random, 

and even longer (actually about 1200 epochs) for the permuted-correlated. 

4.9 Observations of generalization behaviour 

Experiments were performed to determine the degree to which the network had 

"understood" the information about underlying trends provided by learning only 

some of the full training set, by examining the generalization on the patterns 

forming part of the complete training set family but which were excluded from the 

training set. The experiments done in this section concentrate on the comparison 

between the generalization performed on the correlated training set and the control 

system of the random set, in order to establish that the generalization is real. 

Chapter 5 is concerned with the scaling of generalization behaviour on similar 

training sets. 

Three areas of generalization were studied: over-learning, learning times, and 
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Figure 4.11: Five examples each of learning curves for the three types of training 

set at problem size 6-12-1. Note the scale is the same for each graph. 
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bootstrapping. 

4.9.1 Over-learning 

If the random training set is truly random it should show no generalization be-

haviour at all (on average). A characteristic of the natural training sets, such as 

the proteins in section 4.3, is that often better generalization is found when the 

learning of the training set is not done to too high a level. That is, if the patterns 

in the part of the family used as the training set are learnt too well there is the 

danger that the rest of the family will not be guessed as well as if the network 

had a more general feeling of the family. 

In figure 4.12 are shown 3 examples of over-learning occurring with the correlated 

set. One line represents the value of L' for the training set being used, which was 

always the complete family (2N1  members) less one (randomly chosen) pattern, for 

which the value of L' was plotted alongside. The prime on L indicates the value 

of L per pattern in the training set, or L/N. This allows more useful comparison. 

The first part of the learning displayed shows the generalization proceeding well for 

all examples - the error of the absent pattern decreases as the error for the other 

patterns is reduced. However at certain points in the learning, which depends on 

the absent pattern, the error starts increasing to a greater or smaller extent again. 

Occasionally it is found that the error for the missing pattern remains stable to 

the end (bottom example in figure 4.12). 

In figure 4.13 we show similar curves for the random and permuted-correlated sets. 

We do not expect any over-learning to be found, and what is actually seen is a 

fairly controlled movement to a final error of a large value. (Note for these graphs 

the large difference in the y-axis scales compared with the previous figures). As 

the rest of the training set is learned there is no reason for the missing pattern to 

cause an output anywhere near its target output, and this is reflected in the graphs. 

The end points of the lines reach up to about L' 1. The maximum a pattern 

might be incorrectly mapped (0.1 for 0.9 for example) gives an L of about 1.75. 

The same scenario was observed for the permuted-correlated net, although very 

occasionally, as can be seen from the bootstrap curves in section 4.9.3, a pattern 
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Figure 4.12: Three examples of the variation of the error of missing pattern (mon-

itored alongside the training set error per pattern) for the correlated training set 

The network size is 6-10-1. 
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Figure 4.13: Three examples of the progress of error for the random and per-

muted-correlated sets for the missing pattern, for the system 6-10-1. 
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can be generalized; however, this is more to do with a consistent distribution of 

target values rather than underlying trends. The extent of the overlearning in the 

correlated net is much more widespread than in either of the other types of net. 

4.9.2 Learning speeds 

It might be imagined that removal of a pattern from the training set would "lighten 

the load" of the mapping, thus making it easier, and therefore allow the mapping 

to be performed (assuming it was possible with all the patterns) in less epochs 

than before. This should certainly be the situation for the random training set, 

since the more the mappings the harder it is to find the correct representation for 

the independent patterns in the weights. Figure 4.14 shows the distribution of 

learning times for the 6-12-1 system, for several weight initializations, using ten 

randomly chosen examples of the 64 possible one-pattern depleted training sets. 

The small black bar indicates the average learning time using the complete set of 

patterns. 

It can be seen how the distribution is peaked to the left of the black bar for the 

random and permuted-correlated training sets, showing that, as expected, pattern 

removal improves the learning time in general. In fact, there is on average an 

18% decrease in learning time for the random set. With the permuted-correlated 

training set removal of a pattern on average improves learning time, but less 

markedly than with the random set. The average time is reduced by 3.4%. This 

reduction in improvement can be put down to the adverse effect removal of a 

pattern has on the fast initial learning of the general training set distribution (as 

in figure 4.4). Conversely, for the same experiment with the correlated training set, 

shown also in figure 4.14, removing a pattern has little or no effect in the learning 

time, on average. The average percentage change in learning time in removing 

a pattern from the training set is actually a 1% increase. Thus the difference 

between this value and the 3.4% decrease of the permuted-correlated set, shows 

that cooperative weight-updating is an important feature in the learning of the 

correlated training set, all other things being equal. 
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Figure 4.14: Distribution of learning times for the three training sets, with one 

pattern removed. The black bar indicates the average learning time for the full 

training set. 
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4.9.3 Bootstrapping 

Bootstrapping the training set means taking each of the patterns out in turn (one 

at a time), learning the rest of the training set, and after learning asking the 

net to provide a guess as to the value of the missing pattern (by processing this 

pattern). If any correlations exist among the patterns in a complete training set, 

the learning of a majority of these patterns should provide enough constraints to 

suggest reasonable values for the others. 

Figure 4.15 shows the bootstrap curves for the three training sets, for a net size of 

4-5-1, for which there are 16 patterns in all. If the points are joined up then we 

notice that the target curve and actual curve compare quite well for the correlated 

set, actually far better than chance guesses. This can be seen by comparison with 

the random bootstrap graphs for the same system size. We can put a number to 

the bootstrap performance by defining the error in fit F of the two curves in the 

following way: 

F:= >::i(xkr Yi)2 = ((x - 	 (4.95) 

The worst value F can have, if the two curves are independent, and the points are 

chosen from a uniform distribution in the range [0, 1], is given by 

F0  = (( 	Y) 
2) =-

2xy +z?) 	 (4.96) 

= 2f y 2 dy— 2f f x y dxdy 	 (4.97) 

= 	 (4.98) 

= 0.167. 	 (4.99) 

Actually, the targets are always in the range [0.1,0.9], while the outputs are free 

to take on values in the range [0, 1], so the worst estimate is modified to 0.176. 

Any departure from this value indicates a greater or lesser degree of non-random 

behaviour. The values for the curves in figure 4.15 are 0.044 and 0.126 respectively 

for correlated and random bootstrapping. The permuted-correlated set scored 

0.102 - almost as bad as the random net! The random and permuted-correlated 

nets effectively make guesses based on the distribution of target values (as was 
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Figure 4.15: Bootstrap curves for the three training sets with 4 inputs (sec text 

for explanation). 
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assumed in the estimate (4.99) for a uniform distribution). Since the permuted-

correlated training set is peaked (see figure 4.4), the average error will be less 

than for the approximate uniform distribution of the random. Note also, that 

as the number of exemplars increases, we would expect the permuted-correlated 

performance to improve (since the target distribution becomes more peaked) while 

the random should reach nearer the worst case of 0.176 above. 

Figure 4.16 shows the situation for the 5-5-1 network. These are more impressive 

still, as would be expected from previous results for larger networks. The values of 

F for these curves are 0.161 for the random training set, 0.015 for the correlated, 

and 0.081 for the permuted-correlated. 

Figure 4.16 for the correlated set is particularly impressive when one considers 

that the network has not in fact received any knowledge about what is plotted 

directly, but merely through picking up the underlying trends in the training set 

and generalizing to a missing input. In this way, although none of the mappings 

on the graph was actually seen, the network can' produce a remarkable guess at 

the complete set of target outputs. 

For the 6-12--1 net, the correlated set produced an F of 0.006, the random 0.078 

and the permuted-correlated 0.065. The improvement in the random performance 

is surprising, considering what was said above, but we would expect values of 

F averaged over many training set examples to tend to the predicted value. The 

significant result is the clear improvement in the correlated set behaviour for larger 

training sets. The consistent factor of more than ten better than the permuted-

correlated provides clear evidence for the underlying correlations in the training 

set guiding the generalization. 

4.10 Discussion and conclusions 

The observations above indicate that there is a significant difference between the 

correlated training set and the other two. The main cause of this difference is 

the fact that there exists underlying regularity in the input/output pairs in the 
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Figure 4.16: Bootstrap curves for the three training sets with 5 inputs (see text 

for explanation). 
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correlated training set, while such regularities are absent from the other two. 

The regularities give rise to the better learning behaviour and the generalization 

behaviour. 

The form of the learning curves. As was pointed out, the descent for the 

correlated training set was much steeper and reached low values much quicker, 

than either of the other two training sets. We believe this to be due to the 

cooperative effect of the 6 terms in the backpropagation. If the mapping of pattern 

i is consistent with the mapping of pattern j, then not only will the error terms 

serve to reduce the error of the respective patterns, but the error term for pattern 

i will to a certain extent benefit the pattern j, and vice versa. Hence we see 

the cooperative effect in the learning curves, which is apparent even when all the 

networks have enough hidden units to be able to perform their respective mappings 

easily. By the same token, we find that the learning curves, when there are not 

enough hidden units to perform the mappings, differ in the opposite direction: 

the correlated set stops at a plateau very early on (after a fast initial descent), 

while the random sets decrease in stages of short plateaus, always reducing the 

error a little bit with each step, although tending to an error well above that for 

a solution, but also much lower than the correlated plateau. The correlated error 

terms, which call for similar conflicting (because of the number of hidden units 

available) weight changes, cancel each other out. 

The critical number of hidden units. This property tells us quite emphat-

ically of the presence of any underlying correlations. The fewer the number of 

independent parameters used in the definition of the patterns (which defines the 

extent of the correlations in the input/output pairs), the fewer independent pa-

rameters there are to be stored in the network (from a purely information theory 

point of view), and so the fewer the number of free parameters that are needed in 

order to achieve the mappings. We note how the scaling of good performance at 

a certain problem size, with the number of hidden units (which specifies the num-

ber of free parameters in the system), differs for the three types of training sets. 

The random training set in general has the worst performance, with the scaling 

proceeding almost parallel to the theoretical worst case. We would not in gen-

eral expect the permuted-correlated set to have as bad an absolute performance 
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as the random set, but nevertheless note how the scaling of the performance too 

follows the theoretical worst case for no correlations. The absolute performance 

is expected to be better because of the distribution of the target values. These 

provide the set with a pseudo-correlation through giving a higher occurrence for 

certain ranges of target values than others, and thus a free parameter may be used 

to store information for more than one pattern. It must be realized, however, that 

this is not real correlation between patterns and their targets, but solely between 

the targets. This is actually a relatively small effect insofar as the learning curves 

are concerned, with the permuted-correlated curves having similar general forms 

to the random ones. The form of the scaling for the correlated set is considerably 

better than the theoretical worst case. This type of non-exponential scaling is 

what should be expected from real problems of this nature. Academic problem 

domains are often characterized by such exponential scaling of hidden layer size. 

It should also be pointed out here that although the number of hidden units is a 

crucial factor up to the critical number, after this point further addition makes 

little difference in learning speed and the form of the learning curves. One may ask 

if any difference at all is made in real terms through further hidden unit addition. 

We explore this question in the next chapter. 

We have discussed the learning.above in terms of weight changes and cooperative 

behaviour, but it is also useful to move from the reference frame of the individual 

weights to that of the hidden units. This is also used in the next chapter to define 

a solution found by an MLP. The hidden layer can be thought of as defining a 

representational space for the input patterns. As the mappings are being learnt, 

the representations will change relative to one another. If it is possible, the rep-

resentational stage of the mapping organizes the patterns such that it is possible 

to produce the correct output values. If the patterns are independent, the rep-

resentational space will need to be larger, because, in the worst case, each input 

pattern needs to be represented as far apart from every other pattern as is possi-

ble. However, with correlated patterns, the space can be smaller because patterns 

can be much closer to one another, and indeed it is possible for them all to fit 

into a very small space and still achieve all the required relative representations 

for the very reason that they are self-consistent. 

Over-learning. These observations indicate that at a certain point (the mini- 
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mum) the net pays less attention to the general structure of the training set than 

it does to the specific requirements of the chosen patterns. This behaviour is a 

warning against the over-learning of exemplars, if a certain degree of general be-

haviour is desired at the outcome of training. We believe this is a result, of the 

learning proceeding in two steps: 

the optimization heads towards the area in weight space where the global 

minimum for the complete training set exists, but, 

after this level, the optimization heads towards the nearest minimum which 

is relevant for the current training set. This sub-minimum is (a) not neces-

sarily the same as the one for the complete training set (i.e. that containing 

the whole family of mappings), (b) possibly different depending on direction 

of entry to this region of weight space, and (c) not necessarily in a sub-region 

of weight space which is closer to the full training set minimum than the 

starting point. 

The existence of many solutions for an incomplete training set, which do not 

necessarily include a solution for the full training set, is thought to be a major 

problem in the search for "clever" artificial neural nets (i.e. ones that generalize on 

previous relevant but scattered information). We suggest in this thesis however, 

that maybe the search for "a good generalization" is a red herring, and that, given 

the right type of problem (usually possible through appropriate input codings) 

correct generalization is no problem. The over-learning observed here is minor, 

as we note from the bootstrap curves (plotted using the "over-learned" values 

of the outputs). The results show, however, that it is always a possibility, and 

care should be taken in not learning the training set so well that generalization 

performance is noticeably curbed (as in the protein example). 

Learning times. With single pattern removal the average learning time of the 

training set is affected differently for each of the training set types. This has been 

discussed in the last section. We emphasize that for the correlated case, due to 

cooperative behaviour, removal of a pattern in general slows down the learning. 

Bootstrap behaviour. This is one of the impressive displays of the generalizing 
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power the MLP has. The curve built up through the network's "educated guesses" 

for single patterns, after leaning all the others, so closely models the target curve 

for the correlated set, that we can see clearly how the network has correctly 

"stored", in its weights, the salient information about the training set. 

With these positive results, the reduction made in section 4.4 can be fully justi-

fied, and suggests also that, having made the reduction and reproduced the main 

characteristics of the natural training sets, it might also be possible to say some-

thing about the types of correlations (we have used just pair correlations here) 

dominant in the particular natural training set the network is learning. 
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Chapter 5 

Solutions and scaling of generalization ability 

5.1 Introduction 

In this chapter we investigate the effect on the generalization ability of an MLP 

of increasing the size of the hidden layer, using an artificial diagnosis problem do-

main. We use the relative hidden-unit representations of the training set patterns 

to provide a definition of an MLP solution to a mapping. This is then used to 

establish that the possible number of different solutions which a network may find, 

given a certain range of starting positions in weight space, increases very quickly 

with increase of number of hidden nodes above the critical number required to 

solve the problem. This being so, we ask whether the prospect for satisfactory 

generalization ability grows correspondingly poorer, as many more solutions are 

made available, each perhaps with its own set of generalizations. Results sug-

gest that, for a wide range of hidden layer sizes, the generalization performance 

remains high. 

Such findings on this artificial problem domain confirm what has been observed 

on many occasions with the low-level problem domains cited in section 4.1, and 

is encouraging, in that getting the "correct" number of hidden units may not 

necessarily be too critical a factor in the training of MLPs on real problems. 

We illustrate the factors which may be more important in successful training, with 

a study of the way the generalization scales with the number of patterns included 
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in the training set, and the variation of this with the actual patterns included in 

the training set. We note that the inclusion of some patterns rather than others 

may have a significant effect on the generalization performance. 

52 Unique solutions to a mapping problem 

The backpropagation learning algorithm is mathematically gradient descent of a 

surface in Nw—dimensional  space, where Nw is the number of parameters speci-

fying the MLP (the weights). Clearly for Nw> 2 it is no longer a helpful concept 

to think of the algorithm as some kind of flow down a hill. It would be more 

useful to know something about the distribution of different solutions populating 

the search-space. One way of understanding such a property of the search-space 

is to run the algorithm several times starting at different points on the (NW  + 1)—

dimensional surface, and then to observe the occupation numbers of the different 

final network configurations obtained. However, one must first allow for various 

symmetries in the network states, since the mapping solution discovered by the 

algorithm may have many equivalent weight realizations. Before the class of sym-

metries in the NW—dimensional parameter-space can be identified however, it is 

necessary to define what is meant by a mapping "solution". 

In this section we offer a method of specifying uniquely the solutions found, and a 

way of counting the different solutions available to an MLP, for problem domains 

in which the solutions do not overlap: 

In order to learn the correct mappings for several patterns at the same time, the 

network must choose a set of weights which allows the representations of all the 

patterns in the hidden layer to have the correct relative relationships. Depending 

on the type of problem domain, the patterns will require a greater or lesser degree 

of independence from one another. Given a certain number of hidden units, there 

will be a number of different ways of representing the patterns in order to achieve 

this. Each of these ways characterizes an interpretation of the problem domain 

(that is to say, how each pattern is related to every other pattern), and can be 

justifiably used to specify a solution to the mapping task in hand. There may be 
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many different weight realizations of one particular solution, and so the way to 

proceed is to define a solution not by the weights found by an MLP, but by the 

set of relative representations of the patterns these give rise to. 

Each dimension in hidden-unit (hu-) space is specified by one of the hidden units 

in the system. The space spans the range of values which may be taken on by the 

hidden units, in each .direction. Thus each hidden unit defines an axis in an NH-
dimensional space, where NH is the number of units in the hidden layer. Then 

each pattern is represented by a point in this space, or equivalently, by a vector 
1-.p_ (Li' 

II.P 
	 LP 

IL - 	 , . . . , NH 

The vectors h' need to satisfy the following requirements: 

hi'.o, = 9j + ei 	V p,  i 	 (5.100) 

where i labels output units, q5,j  is the target activation for output unit i on pre-

sentation of pattern p, and 9, is the threshold value of output unit i. 0, is the 

output vector from the hidden layer to the output unit i. This vector is in fact the 

representation of the weights from the hidden layer to the output unit, as drawn 

in the hu-space, using the axes defined by the hidden unit states. Thus one can 

imagine various configurations of representation vectors hi' producing the correct 

set of scalar products as defined by (5.100), but which have different relative ori-

entations and lengths. Hence a solution can be represented by {{h 1'},O}, where 

the {hP} specify the relative pattern representations, and 0 is the output matrix 

(matrix of all the vectors o,). 

If the hidden units have states ranging from 0 to 1, the representation vectors 

are defined in the region of the NH-dimensional hypercube of unit side with one 

corner at the origin and a diametrically opposite corner at the point (1,1,.. . 1 1), 

and if they range from -1 to 1, in a hypercube of side 2 with centre at the 

origin and a corner at (1,1,.. . ,1). We need to determine the class of symmetry 

operations under which a solution will be invariant. If the vectors lie within 

the hypersphere of unit radius (we will assume the hidden unit states lie in the 

range [-1,1] centred at the origin), then the representations will be invariant 

to the class O(NH) of rotations and reflections (orthogonal transformations) in 
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NH—dimensional space. Global scaling operators also leave solutions invariant, 

if these operators keep the representations within the hypersphere. The same 

symmetry operation must always be performed on the matrix 0 in the case of 

the O(Nw) class, and the inverse operation on 0 for the scaling class', in order 

to get correct values at the output of the net (however, this need not concern us 

here since we know that all solutions must satisfy this requirement by definition). 

Invariance to this set of symmetry operations allows sets of weight configurations 

for identical solutions to range quite considerably. In general, however, we cannot 

assume the vectors lie within the hypersphere mentioned above. Indeed, it is often 

the case that hidden units have values close to the upper and lower ends of the 

response function. If this is so we have to decide at what point two representations 

containing the same set of relative angles but different set of magnitudes are 

different. The case of the hypersphere was valid for linear response units, but not 

for the nonlinear case. Indeed, it is precisely the nonlinearities which afford the 

MLP the capability of performing arbitrarily complex mappings [Lip87]. Before 

we answer the above question, we define more specifically what will be taken as 

the parameters specifying the representations. 

A representation set defining a solution, 1Z, is written as 

1,2,.. . NTS; i <j} 	 (5.101) 

where 	lij = 	h' - lij I, 	 (5.102) 

and NTS is the number of patterns in the training (representation) set. Thus the 

representation 7?. is defined by the set of distances {l} between all the points 

representing patterns in the hu—space, which contains information about the rel-

ative pattern representations. To allow for scaling symmetry we use the set {h'P}, 

which is the set {hP} rescaled such that the condition 

.IhmI = max{IWI} 
P 

jh'Pj = Ih"I/IhmI 	V p 

is satisfied. 

'The set of output states is given by O(hP)T,  and remains invariant when the pattern repre-
sentations {hP} are scaled globally, provided 0 is scaled inversely by the same factor. 

130 



Provided the combination of relative angles and relative magnitudes are not per-

mitted to vary more than the differences in these quantities between different 

solutions, it is possible to compare solutions unambiguously. Actually, the more 

output units there are to constrain the tolerable variation in the representations, 

the better will be the comparisons. Similarly, the lower the dimension, of the hu-

space available in which to represent the patterns, the less freedom and therefore 

tolerable variation there is. As a measure of the similarity of two representation 

sets iza and RP, we define the quantity Cab: 

1 
Cab := 

1 Nrg la 	1b • 	 (5.103) 
+E <3 	jI 

Thus Cab ranges from 0 to 1, and can be interpreted as the similarity between two 

solutions a and b. In order to allow for a certain leeway in the 1 values, we use a 

tolerance to determine whether to include a value Il - lJ in the summation. The1 3  

presence of this leeway is needed because of the tolerance allowed in the training of 

the values of the output units, deriving from the nonlinear response functions, and 

is equivalent to assuming the bottom of a minimum in solution space is a ring a 

certain height above the true minimum. We need to take account of such a leeway 

since we do not wish to accumulate little differences in 1, which become significant 

in (5.103) as NTS  becomes large causing quite similar representations to have low 

values of C. The tolerance was generally taken to be of the order Aj j  = 0.1, 

although allowance was made for generally larger i—values as the dimension of the 

hypercube (number of hidden units) increased. The suitability of the C measure 

depends entirely on the type of training set used, and the distribution of solutions 

available, and we use it here mainly to illustrate scaling of solutions for the parity 

problem, which are clearly defined. 

First we give an example of identical solutions having different weight configura-

tions, and show how this can be understood with reference to more obvious net 

symmetry. 

Consider a network with NH = 2 7  the hidden units taking on values in the range 

[-1, 1]. Figure 5.1a shows a set of representations in this space for 4 patterns. 

Since these representations lie within the circle of unit radius centred at the origin, 
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Figure 5.1: (a): a set of hidden-unit representations in 2—d space; the hidden units 

1 and 2 label the axes h 1  and h2  respectively. (b): the same set rotated through 

90 degrees in a clockwise direction. (a) and (b) are equivalent solutions. 
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any of the group of 0(2) operations will leave the solution invariant in so far as 

the net is concerned. But even if some of the representations lie outside the circle 

we can still perform global rotations of multiples of 90 degrees about the origin, 

and the solution will be the same (figure 5.1b). This set of operations is the 

symmetry group of a square, or more generally an NH—dimensional hypercube. 

Furthermore, a rotation of 180 degrees is just equivalent to changing the sign of 

all the hidden units for each pattern, and that is the same as changing the sign 

of all the weights going into each hidden unit. Clearly, we must also do the same 

to the output vector o, and it is also clear that we can perform the 180 degree 

rotation by using two reflections, one in the h1—axis and another in the h2—axis. 

In general, we can reflect in any number of axes and the solution will remain 

the same, provided the same type of operation is performed on 0. But this is 

just the same as saying that any network is invariant when we change the sign of 

all the weights going into and out of a hidden unit, a symmetry pointed out in 

[DSB87]. It is also clear that the hidden units can have their labels permuted 

without changing anything. This trivial symmetry is equivalent to relabelling the 

axes in figure 5.1. In general, when there may be instances of the representations 

lying in the hypersphere, 0(NH) is a continuous group of transformations, and 

symmetrical solutions will not be so easy to spot. 

Given a set of T representations, {7Z 1 , 'R 2 ,... , 1Zr}, we should be able to isolate 

how many unique solutions there actually are. It is necessary for the set of val-

ues {Cab} between all the solutions to satisfy an equivalence relation, if the set 

of unique solutions is discrete (i.e. there are no solutions which can be continu-

ously transformed into others while remaining solutions to the mapping problem). 

Thus we expect to have a distribution of C—values consisting of two overlapping 

distributions, one centred towards zero, and the other towards one. The higher 

distribution is the scatter of values of C between solutions which are similar, and 

the lower one those values between dissimilar solutions. For some problems it may 

not be obvious where to draw the line between the two distributions, and for this 

reason an equivalence relation constraint may be used. The equivalence relation 

requires that, if we establish a value of C 0b above which two solutions a and b are 

the same (i.e. a -'-* b), and below which they are different, then: 
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a --+ a 	 (reflexivity) 

a-'-b=,b-'...+a 	(symmetry) 

b, b— c- a-* c (transitivity) 

To illustrate the use of this coefficient we will take three solutions to the parity 

problem for a 2-2-1 MLP (this is similar to the XOR problem), and note the values 

of C obtained. Figure 5.2 shows the three network configurations. It is not clear 

which solutions are the same. We obtain the following values of C: 

C12  0.271 

C13 0.274 

C23  1.000 

It is clear that we have two different solutions, configurations 2 and 3 being equiv-

alent. One solution consists of the patterns (00) and (11) being clustered together 

and the other two at opposite corners, while the other consists of the patterns 

(01) and (10) being clustered, with the other two at opposite corners. The MLP 

must do this kind of mapping in order to separate the patterns (01) and (10) from 

(00) and (11). 

5.3 Scaling of available solutions for the parity 

problem 

In order that the solution sets might satisfy an equivalence relation with regard 

to their relative C—values, it was required above that solutions be discrete. If 

the dimensionality of the hu—space is increased beyond the minimum size required 

for a solution to be possible, we expect the following scenario to become more 

likely: a particular hidden unit may be used for the sole representation of a single 

pattern, and thus we may perform symmetry operations on the other dimensions 

of hu—space without changing the basic representation of the above pattern. Sim-

ilarly we can scale the weights going into and coming out of the hidden unit in 

question without disturbing the other pattern representations. Although such a 

134 



92 -5. 

INPUT 

OUTPUT 

INPUT 

OUTPUT 

Solution 1 	 Solution 2 
INPUT 

3. 49 

OUTPUT 

Solution 3 

Figure 5.2: Three examples of net configurations after solving the parity problem 

for a 2-2-1 system. Numbers inside nodes indicate threshold values. 
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representation will be a rare case, the probability of such independence between 

patterns becomes more likely with the number of hidden units used above the 

essential number. The upshot of this is that we do not expect to satisfy, the 

constraint of the equivalence relation between C—values for large numbers of hid-

den units. This progressive change is characterized by the values of C for a set 

of solutions becoming less easy to separate into those which indicate a definite 

equivalent solution, and those which indicate no equivalence. Initially, for the 

smallest number of hidden units required to solve a problem, it is relatively easy 

to separate the equivalent solutions from different ones. However, as hidden unit 

number is increased the two types merge, and at large numbers of hidden units, 

all representations appear to be different. Although it is possible to have complete 

independence of solutions at 4 hidden units, for the 2-2-1 system, since there are 

4 patterns, this is not necessarily the easiest solution, but such solutions become 

more probable later on. 

When such independent or semi-independent solutions are possible then we might 

not expect good generalization behaviour, since the independent pattern represen-

tations are created by weight values which are not constrained to be consistent with 

the other mappings in the training set. 

It is the transition between rigidly interdependent pattern representations and the 

type of independence mentioned above, which should have important consequences 

for the generalization ability of a net. 

The basic plan of the parity problem is to transform the pattern representations 

such that an (NH -1)—dimensional hyperplane can separate the two sets of patterns 

(those mapped to 1, and those mapped to 0). The solutions will vary in the 

different ways it is possible to represent the patterns in the hu—space. We will 

now use the C coefficient to count the number of such solutions, for various system 

sizes. 

Figure 5.3 shows how the percentage of solutions found to the parity problem 

which are unique, scales with NH.  From this plot we see that the possible solutions 

diversify much quicker with hidden units when a higher number of input units is 

used. This may sound strange since as the number of inputs in the parity problem 
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Figure 5.3: Scaling of the number of different solutions which can be distinguished 

as hidden layer size is increased. Shown here is the scaling for 2, 3, 4 and 5 inputs, 

for the parity problem. 
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increases, so the number of patterns requiring to be mapped increases, and one 

would expect that this is a harder task with fewer solutions. But one must also 

remember that no solution is possible until the number of hidden units reaches 

Ni  (number of input units), and after that solution multiplicity is aided by the 

range of permutations of solutions possible, each themselves different in the sense 

of hu—representations. The parity problem is hard, and the learning algorithm 

looks for a solution whereby it can represent input patterns which are very close 

as far apart as possible in the hu—space. This is done by generally putting as 

many patterns as possible in a different corner of the NH—dimensional hypercube. 

For NH < N., there are many less corners than patterns, and a solution cannot 

be found (we have found none using the backpropagation algorithm). As we 

increase NH after this bound, there are increasingly many possibilities, and much 

more chance of different solutions being found. This is especially so with larger 

values of N1, due mainly to the solutions resulting from the greater number of 

permutation possibilities. 

5.4 Resume" 

We have established that the number of solutions found by an MLP using a 

M1 training set scales very quickly with the number of hidden units used in the 

network, and that this scaling is quicker the larger the number of mappings which 

are to be made. We wish to know now how this affects a guess at a missing pattern, 

since it might be expected that the more solutions that can be found, the more 

probable it is that patterns are represented semi-independently or independently, 

and the less the chance that the correct generalization will emerge from them. 

In the next section we observe the actual generalization scaling for an artificial 

diagnosis problem. 
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5.5 Generalization and a diagnosis problem 

Another example of a natural problem domain, with good prospects for gener-

alization, is fault diagnosis, given a collection of symptoms. Experiments with 

medical diagnosis of diseases has been successfully performed using feed-forward 

networks [1C85, YPB88]. It is reasonably straightforward to set up an artificial 

diagnosis problem domain, extending the derivation of the correlated domain of 

the last chapter to include multiple sets of correlations, and more than one output. 

We use the diagnosis type of problem in this section to illustrate the generality of 

the artificially generated problem domain in the last chapter, and to show how it 

might be used for training sets of more than one output. 

This time we allow an input unit to take on the values {0, 11, and this is interpreted 

as the absence or presence of a particular symptom. An output unit can take on 

values in the range [0, 11, and is interpreted as the likelihood of a particular disease, 

each output unit representing a particular type of disease (or fault). We define 

the function mapping input states to the target tk in the same way as in the last 

chapter for the reduced correlated domain: 

	

1-2t fNJ 	
I —B 1  f(I, Jc)=t= 

	

Ak [1<m 	
m 	k] + t 	 (5.104) 

where Ak and Bk serve to confine the set of numbers such that they all lie within 

the range [t, 1— t]. Thus 

Bk = Em mi 
Z<m 

Ak = — Bk+max{>IrJjI}, 
1<m 

(5.105) 

(5.106) 

as before, except that now there is more than one output node, each one repre-

senting the likelihood of a particular disease. Each disease Ic has its own set of 

interactions {J} which define the way in which the symptoms influence the like-

lihood of the particular disease. The diseases have been made to be independent 
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(that is, there are no conditional probabilities between the diseases), and there are 

still self-interaction terms as in the correlated set of the last chapter, so that the 

presence of symptoms at all, and the co-occurrence of symptoms, both influence 

whether a disease or fault is present. 

Since the values to be learnt are real numbers, we use the L-cost function from 

chapter 4, summing overall output units N0 : 

N N0 I t,, 
 P k 	 °kp 	 1—Okpj 	

(5.107) 

The network used in all the simulations below had N1  = 5 inputs and No  = 3 
outputs. This was sufficient size for the exploration of the generalization scaling 

properties in this chapter. 'The training was considered to be finished when the 

value of L reached 10-4  x N x N 0 , giving about 2 percent accuracy per output 

node per pattern as before (or each pattern was learnt to within a tolerance of 

about 0.01). 

5.5.1 Effect of training set size 

In the first experiment we study the effect of training set size on the success in 

generalizing the remainder of the whole set of inputs. Each point in figure 5.4 

represents the best generalization obtained, chosen from 5 different initial weight 

starting points, and 10 different, randomly selected, training sets, using the same 

complete training set. 

The generalization G is defined using the mean output unit error e which a 

random classifier might be expected to obtain, and the mean output unit error e 
obtained by the network: 

G := e,. - en  
e 

(5.108) 

with e given by 
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Figure 5.4: Dependence of the generalizing ability of a net on the number of 

patterns in the training set, and the composition of the training set. The points 

indicate the best generalizations obtained for a particular size of training set, and 

the error bars indicate the range of generalizations obtained for each particular 

training set size. 
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Nt 3 

1:e.= -  o) 2 	 (5.109) 
pEF, i 

where Nt  indicates the number of patterns in the test set .F, and M = Nt  x 3 

is the total number of unit comparisons. From section 4.9.3, the value expected 

from a random classifier is about e = 0.176, and this is the value we shall use 

when calculating G. The best value G can have is 1, and G = 0 indicates no 

generalization, and less than zero some kind of anti-generalization. 2  

The actual points plotted in the figure indicate the best generalization obtained 

out of the range of training set compositions which were used. We observe that 

as we include more of the patterns in the training set, the performance in best 

generalization improves steadily. The quantity plotted reflects the mean closeness 

of the actual output with the target output, per output node. Thus as we use a 

larger training set, the generalization set is shifted closer to the target values as 

a whole. Thus the more patterns we use in the training set, the closer the typical 

generalizations will be to the ones we want. 

Shown also in the figure are the range of generalizations obtained, for each training 

set size. These are the positive error bars, leading from the plotted points. From 

these we see how the best generalization obtainable with a given training set 

size depends on the actual set of patterns included in the training set. Some 

patterns are more important than others for the attainment of good generalization. 

This becomes less crucial as the size of the training set increases. Particularly 

bad generalization could be a result of an unproportionately large number of 

patterns in the training set being chosen from the high and low ends of the target 

distribution (see figure 4.4). The likelihood of this happening of course decreases 

as we allow more patterns in the training set. 

Each pattern provides some information about the underlying trends behind the 

generation of the target values. It is interesting to note from the figure that the 

generalization remains relatively stable once more than about 60% of the patterns 

are included in the training set, irrespective of which patterns we include. Thus 

'The meaning of this is not clear, but since such a phenomenon is not observed in this thesis, 

we shall not pursue it further. 
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the extra information provided by more patterns, about the trends in the training 

set, does not improve significantly on that information extracted from the given 

set of patterns. 

Ahmad and Tesauro have found [AT88] that, in the majority mapping function,' 

the fraction of patterns in the test set which are correctly mapped, scales with 

the exponential of the number of patterns included in the training set. If we plot 

the logarithm of 1 - G (G is the average generalization performance) against the 

fraction of patterns in the training set (figure 5.5), we obtain an approximate 

linear relationship. The gradient of the least-squares fit to these points (the line 

shown in figure 5.5) is —4.47 ± 0.14 = —k, with the y-intercept a = — 0.36 ± 0.04. 

Thus we have the approximate relation 

G = 1 - 	 (5.110) 

where f is the - fraction of patterns, from the total set of input patterns, that are 

in the test set. 

5.5.2 Scaling with hidden layer size 

We now examine how generalization performance is influenced by the number of 

hidden units between input and output, and relate this to the idea of relative 

hu—representation sets and solution number, introduced in the first part of the 

chapter. 

Figure 5.6 shows the performance of the net on a particular training set of a 

fixed size (we chose 0.7 x Ne ). The results are surprising. We would expect 

to observe that as we increase hidden layer size, the generalization performance 

would get worse, since the number of available solutions increases. This is not 

what happens. The generalization performance remains about the same for the 

range of sizes chosen. The smallest hidden layer chosen was the smallest one 

'The single output node is to be 1 if the number of ON bits in the input is greater than the 

number of OFF bits. 
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Figure 5.5: log(1—G) plotted as a function of the fraction of the full set of patterns 

in the training set. The line is a least-squared fit to these points. 
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Figure 5.6: Generalization as a function of the number of hidden units. The error 

bars indicate the standard error of the sample of generalizations for each network 

size. 

which could actually find a solution to the mapping. Even though the number of 

solutions found by the network on average increases with the hidden layer size, 

these solutions, although different with respect to relative pattern representations, 

produce on average similar generalizations. 
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Hidden 
	

Weights 

units I 1st layer 	I 	2nd layer 

10 0.0046 ± 2.237 

30 —0.058 ± 1.553 

50 —0.0038 ± 1.306 

70 —0.0047 ± 1.056 

—0.017 ± 0.742 

—0.032 ± 0.378 

—0.0049 ± 0.331 

—0.0052 ± 0.310 

Table 5.1: Distribution of weights in the two layers (layer 1 = input to hidden) of 

the MLP as a function of hidden layer size. The entries indicate the mean value 

of the weights and the standard deviation of the weights about this mean. 

So it must be concluded that for this problem, and problems like this (and there 

are probably many which can be defined in a similar way to this), the number 

of hidden units used is not so crucial as originally suspected. This conclusion is 

borne out in the applications cited in section 4.1, where the number of hidden 

units used is typically an arbitrary, but reasonable choice (i.e. perhaps half as 

many again as are required to perform the training set mappings). 

It might be argued that only a certain number of hidden units are actually being 

used to produce the mapping, and that this is giving rise to the almost constant 

value of the generalization in figure 5.6. Table 5.1 shows that the weights in 

general are reduced in magnitude, as more are used to do the mapping, with the 

weights in the layer from input to hidden occupying a wider range than the weights 

from hidden to output. Thus the increase in the number of hidden units available 

in general causes the weights to assume lower values, as might be expected if 

they were all being used in learning the mapping. It must be concluded that 

the information about the underlying trends in the training set is stored in a 

distributed manner, throughout all the weights in the network. 

Therefore it seems that despite the large increase in availability of different solu-

tions as the hidden layer grows, demonstrated in the last section, the algorithm 

favours those solutions producing the emergent effect of good generalization. Ad-

ditional hidden units merely cause the network to distribute the information about 

the training set over a larger number of weights, rather than encouraging increas-

ingly independent mappings. 
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This behaviour can be understood if we consider the results on learning presented 

in chapter 4. The emergent properties of learning and generalization derive from 

the same source: the underlying regularities in the training set. Thus acquisition 

of the regularities allows the mappings to be better and faster learnt. Therefore 

we can think of this type of solution as having a greater probability of being found, 

or to have either a higher frequency of occurrence in the search space, or a larger 

basin of attraction. The solutions which are most quickly and readily learnt are 

those which also display good generalization. 

Thus although the actual number of solutions available to the network scales very 

quickly with the number of hidden units, the solutions actually found for such 

low-level domains are distributed closely about the optimal solution (that found 

for the full training set). 

5.6 Conclusions 

We conclude that the solutions available to an MLP as it proceeds through search-

space do, in general, increase in number as the dimension of the search-space (hid-

den unit number) increases. However, this is in general not problematical for the 

subsequent generalizing ability of the network, in the sense that the performance 

is pretty much the same for each hidden layer size. 

The above conclusion may only be valid for the particular low-level problem do-

main used in this chapter, but we believe it to be more general. Finding the 

solution characterized by good generalization performance is another emergent 

property of the network. That is, learning of the patterns proceeds such that 

the underlying correlations effectively speed up the learning (the cooperative effect 

discussed in section 4.8), and these solutions are characterized by steeper and 

broader minima in weight-space, however many hidden units (or dimensions) are 

present. These, therefore, are the solutions that will most likely be found. 

We note that the choice of patterns to include in the training set, of any partic- 

ular size, has a greater effect on the final generalization ability than the size of 
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the hidden layer. We conclude that judicial choice of training exemplars is an 

important factor in the effective training of feed-forward networks, and suggest 

that this, together with the choice of an appropriate input coding strategy, are 

the chief considerations likely to entice the best emergent behaviour from these 

networks. 
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Appendix A 

Appendix 

A.1 The Trypsin proteins used in chapter 4 

Below are listed the seven proteins used in the training set: 

Protein 1: 

ILGGHLDAKGSFPWQAKMVSHHNLrrGAm INEQWLLTT 

AKNLFLNHSENATAKD IAPTLTLYVGKKLvEIEIcvvLHpNys QVD IGL I 

KLKQKVSVNERVNP ICLPSKDYAEVGRVGYVSGWGRNANFKFTDHLKyI,M 

LPVADQDQCIRBYEGSTVPEKKTPKSPVGVQP ILNEHTFCAGMSKYQEDT 

CYGDAGSAFAVHDLEEDTWyATG ILSFDKS CAVAEYGVY VKVTS IQDWVQ 

KTIAEN. 

Protein 2: 

VVGGEDAKPGQFPWQVVLNGJCVDA 

FCGG S IEKWIVTAAHCVETGVKITVVAGEHNIEETEHQKRN1JIPI 

IPHHNYNAAINKYNHD IALLELDEPLVLNSYVTPICIADKEYTNIFLKFG 

S GYVSGWGRVPHKGRSALVLQYLRVPLVDRATCLRSTKFTIYNCAGF 

HEGGRD SCqGDSGGPHVTEVEGTSFLTG I IS WGEECANKGKYG IYTKVSR 

YVNWIKEKTKLT. 
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Protein 3: 

RPQGSQQN 

LLPFPWQVKLTNSEGKDFCGGVL IDNF VLTTATCSLLYANI SVKTRSHF 

RLHVRGVRVHTRFEADTGHNDVALLDLARpvRCpDAGpVcTFs 

VLLPQPGVLGGWTLRGREMVPLRLRVTHVEPAECGRALNATVTrRTSCER 

GA.AAGAARWVAGGAVVREHRGAWFLTGLLGAAPPEGPGPLLL IKVPRYAL 

WLRQVTQQPSRASPRGDRGQGRDGEPVPGDRGGRWAPTALPPGPLV. 

Protein 4: 

IVGGYTCGANTVPYQVSLNS GYHFCGGSLINS QWVVSAAHCYKS 

GIQVRLGEDNINVVEGNEqFISASKSIVHPSYNSNTLNNDIMLIKLKSAA 

SLNSRVAS ISLPTSCASAGTQCLISGWGNTKSSGTSYPDVLKCLKAPILS 

DSSCKSAYPGQ ITSNNFCAGYLEGGKDSCQGDSGGPVVCSGKLQGIVSWG 

SGCAQKNKPGVYTKVCNYVSWIKQTIAsN. 

Protein 5: 

IVGGYTCAANS IPYQVSLNSGSHFCGGSLINSQWVVSAAHCY 

KSRI QVRLGEHNID 'JLEGNEQFINAAKI ITHPNFNGNTLDNDfl!LIKLss 

PATLNSRVATVSLPRS CAAAGTECL IS GWGNTKSSGSSYPSLLQCLKAPV 

LSDSSCKSSYPGQITGNNICVGFLEGGKDSCGDSGGPVVCNGqLQGIVS 

WGYGCAQKNKPGVYTKVCNYVNWIQ QTIAAN. 

Protein 6: 

IVGGYTCPEHSVPYQVSLNSGyHFCGG 

SLINDQWVVSAAHCYKSRI qvRLGEHNINVLEGDEqFINAAKIIKHpNyS 

SWTLNNDIMLIKLS SPVKLNARVAPVALPSACAPAQTQ CLIS GWGNTLSN 

GVNNPDLLQCVDAPVLSQADCEAAYPGEITSSMICVGFLEGGKDSCQGDS 

GGPVVCNG QLQG IVSWGYGCALPDNPG VYTKVCNFVGWI QDTIAAN. 

Protein 7: 

IVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWV 

VSAAHCYKSRI QVRLGEHNINVLEGNEQF VNAAKI IKHPNFDRXTLNND I 

MLIKLSSPVKLNARVATVALpS SCAPAGTQCLISGWGNTLSSGVNEPDLL 
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Q CLDAPLLPQADCEASYPGKITDNMVCVGFLEGGKD SC GDSGGPVVCNG 

ELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIA. 

The following seven proteins were used in the test set: 

Protein 8: 

IVGGYECPKHAAPWTVSLNVGYHFCGGSLIAPGWVVSAAHCYQ 

RRIQVRLGEHDISANEGDETYIDSSNVIRHPNYSGYDLDNDIMJIKLSKP 

AALNRNVDLISLPTGCAYAGEMCLI SG WGNTMDGAVSGD QLQCLDAPVLS 

DAECKGAYPGMITNNNNCVGYNEGGKDSCqGDSGGPVVCNGMLQGIVSWG 

YGCAERDHPGVYTRVCHYVSWIHETIASV. 

Protein 9: 

IVGGTDAVLGEFPYQLSFQETPLGFSFHFCGAS IYNENYAITAGHCVYGD 

DYENPS GL Q IVAGELDMSVNEG SEQTITVSKI ILHENFDYDLLDND I SLL 

KLSGSLTFNNNVAP IALPAQ GHTATGNVIVTGWGTTSEGGNTPDVLQKVT 

VPLVSDAECRDDYGADEIFDSNICAGVPEGGKDSCQGDSGGPLAASDTGS 

TYLAGIVSWGYGCARPGYPGVYTEVSYHVDWIKANAV. 

Protein 10: 

CGVPAIQPVLSGLSRIVNGEEAVPGSWPWQVSLDKTGFHFCGGSLINEN 

WVVTAAHCGVTTSDVVVAGEFD Q GS SSEKI QKLKIAKVFKNSKYNSLTIN 

NDITLLKLSTAASFSqTVSAVCLPSASDDFAAGTTCVTTGWGLTRYTNAN 

TPDRL QASLPLLSNTNCKKYWGTKIKDANICAGASGVSSCMGDSGGPLV 

CKKNGAWTLVGIVSWGSSTCSTSTPGVYARVTALVNWVQQTLAAN. 

Protein 11: 

CGVPAIQPVLSGLARIVNGEDAVPGSWPWQVSLQDSTGFCGGSLISED 

WVVTAAHCGVTTSDVVVAGEFDQGLETEDTQVLKIGKVFKNPKFS ILTVR 

NDITLLKLATPAQFSETVSAVCLPSADEDFPAGMI.CATTGWGKTKYNALK 

TPDKLQQATLP IVSNTDCRKYWGSRVTD V'MICAGASGVS SCMGDSGGPLV 

CQKNGAWTLAG IVSWGSSTCSTSTPAVyARVTALNPWVQETLAAN. 
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Protein 12: 

IVGGTNAPRGKYPYQVSLRAPKHFCGGS ISKRYVLTAAHCLVGKSEHQVT 

VGSVLLNXEEAVYNAKELIVNKNYNS IRLIND IGL IRVSKD ISFTQLVQP 

VKLPVSNTIKAGDPVVLTGWGRIYVNGP IPNNLQQ ITLS IVNQQTCKSKH 

WGLTDS QICTFTKRGEGAC}IGDSGGpr.. VANGVQ IGIVSYGHPCAIGSpNV 

FTRVYSFLDWIQKNQL. 

Protein 13: 

IVGGTDAPRGKYPYQVSLRAPKHFCGGS ISKRYVLTAAHCLVGJCSKHQVT 

VHAGSVLLNKEEAVYNAEEL IVNKNYNS IRL IND IGLIRVSKDI SYTQLV 

QPVKLPVSNTIKAGDPVVLTGWGRIYVNGP IPNNL Q Q ITLS IVNQQTCKF 

KHWGLTDSQ ICTFTKLGEGACDGDSGGPLIJANGVQ IGIVSYGHPCAVGSP 

NVFTRVYSFLDWIQKNQL. 

Protein 14: 

VVGGTRAAQGEFPFMVRLSMGCGGALyAQD IVLTAAHCVSGSGNNTS ITA 

TGGVVDLQ SAVKVRSTKVLQApGyNGTGKDWAL IKLAQP INQPTLKIATT 

TAYNQGTFTVAGWGANREGGSQ QRYLLKANVPFVSDAACRSAyGNELVAN 

EEICAGYPDTGGVDTCQ GDS GGPMFRKDNADEW IQVGIVSWGYGCARPGY 

PGVYTEVSTFASAIASAARTL. 
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