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Abstract 
 

Cycad species exist as small fragmented populations, therefore understanding their 

genetic variation is imperative for their conservation to ensure their long-term 

survival. Genetic data plays a fundamental role in identifying genotypes and 

detecting populations with the highest genetic diversity. This project uses next 

generation sequencing (NGS) and restriction associated DNA sequencing (RADseq) 

to identify thousands of genome-wide polymorphisms from populations of selected 

cycad species from the Northern Territory, Australia, namely: Cycas armstrongii, 

Cycas calcicola, Cycas maconochiei ssp. maconochiei and the interspecific hybrid 

C. armstrongii x maconochiei. RADseq was used to determine intra- and 

interspecific genetic variation in populations, verify the putative hybrid, recognize 

populations of conservation priority and determine if botanic garden collections 

currently represent the genetic diversity inherent in the wild. Cycas calcicola showed 

very low levels of genetic diversity and high inbreeding, and although there was 

significant geographic partitioning between populations in the Katherine and 

Litchfield National Park regions, which correlated with genetic differentiation. 

Additionally, the results showed that C. calcicola was not genetically, well 

represented in ex-situ collections. The genomic diversity of Cycas armstrongii, C. 

maconochiei ssp. maconochiei and C. armstrongii x maconochiei differs from that of 

C. calcicola and shows very low levels of genetic diversity yet generally with lower 

levels of inbreeding. The results show little genetic distance between Cycas 

armstrongii and C. maconochiei ssp. maconochiei, the most likely explanation is that 

they represent morphological extremes of a single species. The results from 

RADseq have far reaching significance for the conservation of cycads. In the case of 

C. calcicola, a far more structured acquisition of genetic material will be required if 

the full genetic diversity of this species is to be preserved in ex-situ collections.  
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Lay Summary 
 

More than sixty percent of Cycad species are threatened, with many existing in 

small and isolated populations. As a result, understanding the diversity of cycads is 

imperative for their conservation to ensure their long-term survival. In order to 

understand the diversity of cycads, genetics plays a fundamental role in helping us 

to identify how populations differ from one another. Australia represents a diversity 

hotspot for cycads where there are many different species and also many large, 

clustered and undisturbed populations. This project uses the latest DNA 

sequencing technologies to understand the genetic diversity of populations of 

selected cycad species from the Northern Territory in Australia, namely: Cycas 

armstrongii, C. calcicola, C. maconochiei ssp. maconochiei and a hybrid population 

C. armstrongii x maconochiei. Our results find that populations of C. calcicola 

showed evidence of inbreeding and low genetic diversity, and geographic distance, 

populations in the Katherine and Litchfield National Park regions were confirmed 

based genetic evidence. The results also showed that genetic diversity of C. 

calcicola was not well represented in botanic garden collections, presenting 

conservation concerns. Cycas armstrongii and C. maconochiei ssp. maconochiei 

populations also showed low levels of genetic diversity in C. calcicola, but less 

inbreeding. In addition, based on the DNA evidence were found no genetic 

difference between C. armstrongii and C. maconochiei ssp. maconochiei, despite 

looking very different. Furthermore, these findings show that the notion of a hybrid 

between the two species (C. armstrongii x maconochiei) is invalid. Our results will 

have far-reaching significance for the conservation of vulnerable populations of 

cycads. In the case of C. calcicola, a far more structured acquisition of seeds from 

the wild will be required so that the species can be preserved in botanic gardens.  
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Chapter 1 - Introduction 

 
1.1 The cycads 

 
Cycadales have long been considered the most ancient lineage of extant seed 

plants, as they have the oldest fossil record of all gymnosperms (Norstog & Nicholls 

1997). The cycad fossil record dates back to around 300 million years ago 

(Martínez et al. 2012). Cycads were at their peak of diversity during the Jurassic 

and Cretaceous periods (199.6-65.5 million years ago) and are often considered 

‘living fossils’ (Norstog & Nicholls 1997). Despite their age as a group, the cycad 

species of today represent a series of recent radiations no more than 12 million 

years old (Nagalingum et al. 2011). 

 
Living Cycadales are monophyletic (Rai et al. 2003), although some fossil 

Bennetitales which were morphologically similar have been erroneously included 

in the group in the past. The group as defined today consists of around 353 

species that are split between two morphologically and phylogenetically 

differentiated families. Cycadaceae is monotypic, containing only Cycas L. (116 

spp.). Zamiaceae, the larger family, contains nine genera: Bowenia Hook. ex 

Hook.f. (2 spp.), Ceratozamia Brongn. (31 spp.), Dioon Lindl (14 spp.), 

Encephalartos Lehm. (65 spp.), Lepidozamia Regel (2 spp.), Macrozamia Miq. (41 

spp.), Microcycas (Miq.) A.DC. (1 sp.), Stangeria T. Moore (1 sp.), and Zamia L. 

(78 spp.) (Calonje et al. 2019). Salas-Leiva et al. (2013) provided strong support 

for the backbone of the Cycadales. However, a comprehensive high-level and 

deep phylogeny of the group is still to be resolved (Nagalingum et al. 2011). 
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Figure 1 Bowenia spectabilis growing in habitat in the Daintree Rainforest, Queensland, Australia. 

 

Figure 2 Cycas platyphylla growing in habitat in the dry Petford District in Queensland, Australia. 
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Cycads are predominantly woody, long-lived and slow-growing perennials found in 

a variety of habitats from closed forests (Figure 1) to deserts (Figure 2), with most 

species in tropical wet forests, dry forests and savannah (Norstog & Nicholls 1997). 

Some fire-prone savannah species form geoxylic suffrutexes, but most species 

have an aerial caudex and their woody stems are formed from leaf bases, so they 

typically have a central pith and do not form true secondary wood (Cousins et al. 

2013). 

 
Figure 3 World distribution of cycad genera, image Nagalingum et al., 2011 

 

Cycadales have a pantropical distribution (Figure 3), and are found throughout the 

tropical Americas, Africa, Asia and Australasia. Cycads offer some of the highest 

levels of endemism found in any plant group, with endemics found all over the 

world, including China, Australia, South Africa, Central Africa and India. 

Many species are also considered island endemics and, often endemic to 

individual provinces, especially in Mexico and South America (Cibrián-Jaramillo et 

al. 2010; Long-Qian et al. 2004; Sosa et al. 1998). 
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The genus Cycas L. 
 

Cycas L. (Cycadaceae) sensu stricto is the largest genus of the cycads and 

represents the earliest divergent lineage from the remainder of the cycads. It 

consists of 116 extant species and six subspecies (Calonje et al. 2019; Stevenson 

1992). Megasporophylls in Cycadaceae are loosely arranged on the main axial 

spiral of the stem and do not form a distinct megasporangiate cone or strobilus 

(Figure 4). Comparatively, Zamiaceae megasporophylls are connected to a central 

axis forming a discrete cone/strobilus. Cycadaceae has a lesser degree of 

organisation than found in Zamiaceae, and the loose arrangement of the 

megasporophylls in Cycas is considered a more ancestral character (Lindstrom & 

Hill 2007). Other key identifying characteristics of Cycadaceae (and Cycas) that 

differentiate them from Zamiacae are circinate emerging leaves and leaflets, and 

platyspermic seeds vs. the radiospermic seeds of Zamiacae (Stevenson 1992). Hill 

(2003) classified Cycas into five taxonomic sections based on morphology: 

Asiorientales, Cycas, Wadeanae, Indosinenses and Stangerioidies. The sections

Figure 4 Loosely arranged megasporophylls of Cycas maconochiei growing ssp. maconochiei in 
habitat. 
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within Cycas can be differentiated based on the external surface of the ovule, 

megasporophyll lamina shape, microsporangiate strobilus morphology, terminal 

bullae of microsporophylls, structure of sclerotesta, and the terminal lamina of 

megasporophyll. However, more recent molecular data (Liu et al. 2018; Nagalingum 

et al. 2011; Sangin et al. 2006;) do not support all sections of Cycas as some are 

polyphyletic, and the morphology does not always agree with the molecular 

relationship among the taxa, with the exception of a few characters. As with many of 

the other genera in the Cycadales, the phylogenetic relationships within Cycas 

remain to be fully resolved due to the inability of current molecular markers to 

resolve between species and infra-species levels (Nagalingum et al. 2011). 

 
The leaves and leaflets of Cycas can be highly informative characters, particularly in 

the epidermis, with leaf cuticles potentially able to differentiate taxa within the genus 

(Mickle et al. 2011). A more recent study by Griffith et al. (2014) found that some 

leaf micromorphological characters show strong correlations with the phylogenetic 

relationship of species sensu Nagalingum et al. (2011), and these characters are 

often synapomorphic within a phylogenetic species group. 

 
Distribution. Cycas is the most ecologically and morphologically diverse genus 

within the Cycadales, and has the widest geographic distribution of any cycad 

(Osborne et al. 2012). Cycas can be found throughout Madagascar, India, Sri Lanka 

to China, Japan (Ryukyu islands, Cycas revoluta Thunb.), Thailand, Malaysia, 

Indonesia, Papua New Guinea (Pacific islands), Australia and New Caledonia 

(Figure 3) (Chaw et al. 2005). In Australia, Cycas is represented by 38 of the 117 

cycad species, with most Australian species being endemic (Osborne et al., 2012). 

The genus is distributed in Western Australia (three species), Northern Territory (16 

species) and Queensland (19 species). 

 

  



6  

Phenology and pollination. The main means of cycad pollination was once 

assumed to be anemophily, but has subsequently been shown to be entomophily 

(Terry et al. 2012; Schneider et al. 2002; Norstog & Nicholls 1997). However, the 

open cone morphology in Cycas, where the megasporophylls are loosely arranged 

and not connected to central cone axis (unlike Zamiaceae, Cycas does not form a 

true cone) means there is some potential for anemophily (Keppel 2001). In 

comparison with species in closed canopy habitats, anemophily may account for 

pollination in primarily coastal (e.g. Cycas micronesica K.D. Hill and Cycas 

seemannii Braun) and open grassland species (e.g. Cycas wadei Merr.) (Terry et al. 

2009).  

 

Many species of cycad have a specific pollinator association (Taylor et al. 2012). 

The array of insects known to pollinate cycads ranges from weevils in the families 

Brentidae, Curculionidae and Boganiidae (Brookes et al. 2015; Procheş & Johnson 

2009; Hall et al. 2004; Vovides et al. 1997; Tang 1987), thrips (Mound and Terry 

2001) and some species of bees (Schneider et al. 2002; Forster et al. 1994).  

 

Cycad pollinators are involved in a push-pull pollination system (Terry et al. 2007). 

This process has been best documented in the South African cycad Encephalartos 

villosus Lem., where beetles swarm and feed upon the microstrobili which emit 

volatiles (e.g. pyrazines) and heat up to 12°C above ambient temperature in a 

process called thermogenesis (Suinyuy et al. 2012). The emission of volatiles and 

thermogenesis act as the initial pollinator push from the microstrobili to the 

megastrobili where pollination occurs. Once the male cone stops producing volatiles 

and cools down to ambient temperature, the pollinators return to the microstrobili 

and the process repeats (Suinyuy et al. 2013). All cycad species are known to have 

synchronous phenology, the pattern of which can be used to differentiate between 

species (Clugston et al. 2018.; Ornduff 1992). This is especially important for the 

push-pull pollination, since the phenology of each species needs to be synchronised 

for successful pollination (Taylor et al. 2012; Griffith et al. 2012).  

 

Seed dispersal. Today’s cycad species have very few seed distributors and low 

rates of dispersal, mainly due to the size and toxicity of the seeds (Nadarajan et al. 

2018). However, the known distributors for seeds of cycads are mostly large 

mammals such as large rodents, possums, peccaries and other large herbivores 

(Snow & Walter 2007; Farrera & Vovides 2004). One good example is in northern 

Australia, where cassowaries have been known to eat the seeds of both Bowenia 

and Lepidozamia, thereby acting as dispersal agents for both species (Hall & Walter 
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2014). But for many species of cycads the seeds rarely distribute greater then 5 m 

(Hall & Walter 2013). The most likely cycad seed dispersal agents were once the 

now extinct species of megafauna, which would have been the main dispersal 

mechanisms for species of Cycas and Macrozamia in some parts of Australia 

(Ingham et al. 2013). However, some species of Cycas, particularly species in 

Cycas rumphii complex (section Rumphiae) have a spongy air-filled layer within the 

sclerotesta of the seeds that acts as buoyancy aid (Hill 1994). This allows the seeds 

to float on water and aid in their dispersal (Nadarajan et al. 2018, Dehgan and Yuen 

1983). Species within the Cycas rumphii complex have some of the widest 

distribution of any groups of cycads throughout Indonesia, New Guinea and the 

western Pacific (Keppel et al. 2008; Hill 1994).  

 

Threats posed to cycad populations. Today, many species of cycad are at risk of 

extinction, including the monotypic, endemic Microcycas, found in western Cuba, 

some species of Zamia in Colombia and Central America, Ceratozamia in Mexico, 

Cycas in Indonesia and China, and several species of Encephalartos in southern 

Africa (Osborne et al., 2012). Many cycad species have a restricted geographic 

distribution. Furthermore, there are typically few individuals participating in a given 

reproductive event (Da Silva et al. 2012). Usually, few plants produce 

megasporangiate strobili in a population and are receptive to pollen for a limited time 

(Clugston et al. 2016). Although they are long-lived plants, they are very slow to 

reproduce, and populations often have low levels of seedling recruitment. 

Compounding this is the fact that populations are often small, and this makes them 

very vulnerable to environmental change. Any significant negative change to the 

dynamics of a population can take the population a long time to recover - even if 

conditions do become favourable again (Raimondo & Donaldson 2003). 
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More than 60% of extant taxa of cycads are on the IUCN Red List of Threatened 

Species, where they are listed as extinct in the wild, critically endangered, or 

endangered (Smith et al. 2011; Donaldson 2003). Climate change and human-

activities have greatly reduced many habitats for cycads (Donaldson, 2003). 

Collectors also pose a threat to populations, as they often go to great lengths to 

obtain plants and illegally collect them from the wild due to their rarity, horticultural 

appeal and medicinal value (Cousins et al. 2012; Cousins et al. 2011; Kessler 2005; 

Jones 2002). Plants are often illegally exported from Mexico and South Africa 

(Donaldson, 2003). 

 
A significant problem in recent years is the introduction of cycad scale insect 

(Aulacaspis yasumatsui) to India (Muniappan et al. 2012), Guam (Marler & 

Muniappan 2006), USA (Howard et al. 1999), Taiwan (Bailey et al. 2010), and 

Indonesia (Muniappan et al. 2012). Cycad scale insects feed on the sap, and often 

cover the leaves causing the plant to constantly produce a new flush of leaves until 

the plant becomes weakened (Marler & Niklas 2011). Marler and Muniappan (2006) 

found that the insect has damaged many plants in populations of Cycas 

micronesica, preventing reproduction of infected individuals. Although cycad scale 

insect has not yet been recorded from Australia, it poses a significant threat to many 

wild populations. 

 

Cycad diversity and threats in Australia. Australia is one of the world’s key areas 

for biodiversity and has a rich floristic diversity (Sloan et al. 2014). With Australia’s 

diverse flora, the country also has a high number of endemic species (Coates & 

Atkins 2001). The highest level of cycad diversity exists along the eastern and 

northern coastal areas, with hotspots ranging from Cape York Peninsula (northern 

Queensland) to the Northern Territory, and central Queensland to New South Wales 

(Donaldson 2003). 

 

Australia has the highest cycad genus diversity, comprising both families and four 

genera. Australian Zamiaceae include the endemic genera: Bowenia (far north 

Queensland), Macrozamia (New South Wales, Queensland, Western Australia and 

the Northern Territory) and Lepidozamia (New South Wales and Queensland). 
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Cycas have adapted to a diverse variety of habitats in Australia ranging from the 

open or closed wet tropical rainforests of Queensland; coastal, sub-coastal forests 

and open old-beach dunes near coastal sites in Western Australia; and dry rocky 

outcrops, open savannah, coastal plains and eucalypt woodlands of the Northern 

Territory. Cycas are often found growing alongside rivers, and steep slopes and 

mountainsides. Soils range from wet heavy clay-loam soils in tropical Queensland 

to sandy soils over granite or coarse sandstone, and heavy limestone soils (Hill 

1996). This diverse range of conditions can be broadly described as either very wet 

or dry conditions that are consistently nutrient-poor (Jones 2002). Northern Territory 

Cycas species are considered to be some of the most morphologically diverse, 

exhibiting a complex geographical pattern of distribution throughout their range. 

Due to their morphological diversity, they have also developed a wide range of 

adaptations, allowing them to occur in a range of habitats (Hill, 1996). 

 

Unlike species that occur in Africa and Central America, collectors have targeted 

fewer species of cycads in Australia. Cycad populations in Australia are often 

relatively large and show a high level of recruitment. However, few population data 

are available for the Australian taxa (Donaldson, 2003). There are many threats that 

affect cycad populations in Australia. Fire is a major threat to seedlings, although 

many species are well adapted to survive regular burning, due to their monoxylic 

stems and Crassulacean Acid Metabolism (CAM) pathway (Vovides et al. 2003). 

Habitat loss is by far the greatest concern for wild cycad populations in Australia, as 

large-scale clearing of land has removed entire populations of some species. 

Despite this, many species have viable populations, sometimes with considerable 

numbers of individuals (Donaldson, 2003), and represent immense conservation 

value.
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1.2 Conservation genetics and genomics 
 

Conservation genetics and genomics uses genetic data, theory and techniques to 

help understand the genetic diversity and genetic history of a species to better 

understand the risk of their extinction (Harrisson et al. 2014). The long-term aim of 

conservation genetics is to retain enough genetic variation in populations so future 

adaptation, expansion and re-establishment of natural populations is possible, 

ultimately increasing the survival of a species (Hedrick & Miller 1992). Conservation 

genetics has also been used to help identify populations that have high levels of 

genetic diversity and should be the highest priority for conservation; the reasoning 

for this is that it maximises the potential genetic resilience of a species through the 

adaptability of populations (Frankham et al. 2004). 

 

The applications of conservation genomics. Conservation genomics is an 

applied science, with a foundation that first originated in the late 1970s. 

Through conservation genetics, evolutionary and molecular genetics have been 

used to aid in biodiversity conservation and species conservation (Frankham 

2010). Molecular genetic markers have been important in measuring many 

detrimental parameters that are imperative to conservation, including reduced 

population size, past bottlenecks, sex specific gene flow and founder 

contribution to a population (Hedrick 2001). In addition, conservation genetics 

applies a number of techniques that directly and indirectly aid conservation. 

Genetic data have been used to resolve taxonomic uncertainties, such as 

defining evolutionary divergence between species, and are used to design 

individual management plans (Frankham 2010). González-Astorga et al. (2003) 

and Vovides, et al. (2008) used population genetics to differentiate Dioon edule 

var. angustifolium from D. edule var. edule, which was then later recognised as 

a separate species (Dioon angustifolium Miq.) based on further study 

(González-Astorga et al. 2005). 
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Genetics can also be used to develop conservation management plans, which helps 

minimise the level of inbreeding and loss of allelic diversity in wild populations, this 

is especially important with species that are at risk of extinction (Frankham 2010). 

Calonje et al. (2013) carried out a conservation genetic assessment of Zamia 

lucayana Britton in the Bahamas using microsatellites. They found populations of 

the species were once a single population that had become differentiated into 

multiple sub-populations over time. The results indicated that despite the 

differentiation between the populations, the species should be managed as a single 

unit. Additionally, conservation genetics can aid in the management of ex-situ 

conservation collections to minimise the level of inbreeding and decrease the loss of 

genetic diversity in cultivation (Frankham, 2010). This was demonstrated by Da 

Silva et al. (2012), who developed a management plan for Encephalartos latifrons 

Lehm. in cultivation using RFLPs, as the F1 generation showed a significant 

decrease in allelic diversity compared to the parent plants. Due to this reason, they 

developed a comprehensive breeding programme to prevent inbreeding. In addition, 

Griffith et al. (2015) addressed whether botanic gardens can represent the genetic 

diversity of wild populations of cycads. They inferred that the knowledge gained by 

understanding the genetic diversity of wild populations can be used to assess the 

optimum number of individuals required to represent the genetic diversity of a 

species. 

 
Before the use of next generation sequencing (NGS) techniques, applying genomics 

in conservation genetics had been limited, mainly because the techniques are often 

seen as being challenging and expensive. However, NGS techniques promise 

considerable advantages over more traditional methods (Allendorf et al. 2010). 

Population genomic approaches, unlike traditional population genetics that use 

around 15-20 markers, use a wide range of markers often covering the entire 

genome, and often using thousands of informative markers (Narum et al. 2013). 

Population genomic techniques have proven valuable in understanding the 

differentiation between neutral markers and non-neutral markers. This information 

allows more reliable estimates of the demography and history by excluding non-

neutral markers from an analysis (Ouborg et al. 2010). This ability to examine 

thousands of markers would answer many questions that were unanswered until 

now (Allendorf et al., 2010). 
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NGS allows researchers to sequence an entire genome and produces gigabases 

of DNA sequence data at minimum cost. However, full genome sequencing is 

generally not required for conservation genetics because not all markers will be 

informative. But, genome-wide marker discovery and analysis of populations is 

essential for understanding the evolutionary process that effects change (Davey 

& Blaxter 2010). 

 
Most studies in conservation genetics, population genetics and molecular ecology 

have focused on a small number of neutral markers, including allozymes, RFLPs, 

AFLPs and microsatellites. Genotyping-by-sequencing offers major advantages to 

conservation genetics and genomics by being able to screen for thousands of 

polymorphisms throughout the genome that are subject to the full evolutionary 

history of a taxon, including genetic drift, selection, natural selection, 

recombination, mutation and speciation (Narum et al. 2013). 

 
NGS techniques can be used to answer many new questions with a variety of 

techniques and methods such as the ability to explore informative genetic makers, 

that are either neutral (not involved in natural selection) or non-neutral (involved in 

natural selection) (Freamo et al. 2011). These informative markers can also be used 

to understand the effects of inbreeding, outbreeding and depression, and levels of 

heterozygosity and homozygosity across populations (K. R. Andrews et al. 2014). 

NGS can also be used to eliminate exogenous alleles brought about during 

hybridisation, which can be problematic for population genetics (Barton 2001). 

Although next generation sequencing does not need a reference genome, the use 

of a reference can enable exploration into wider species diversity, target selected 

regions of the genome to sequence, and aid in the development of new markers 

(Lister et al. 2009). This can also increase effectiveness of NGS in conservation 

management in more conserved populations as population-specific markers can be 

identified (Toro et al. 2014). Additionally, NGS can be used to find markers that link 

genotypes to phenotypes using the identification of outlier loci or candidate genes 

under natural selection (Stapley et al. 2010). 
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1.3 Cycad conservation and population genetics 
 

Population genetics comprises a set of techniques that has allowed a wide range of 

studies to be done on many organisms – from epidemiology to species, or drug 

discovery to conservation. Ranging from AFLP and RFLP data of twenty-five years 

ago, through to the current next-generation platforms, the methods and power of the 

techniques have been refined immensely through this period (Benestan et al. 2016). 

Cycads are among the many groups that have been studied using a variety of the 

available techniques over the years. 

 
Due to the threats posed on cycad populations they are often small and 

fragmented, especially in Africa (Ekué et al. 2008; Da Silva et al. 2012) and Central 

America (Cabrera-Toledo et al. 2008). This is reflected in the genetic diversity of 

their populations, where many species show evidence of genetic drift and 

bottlenecks due to fragmentation (Zhan et al. 2011; González-Astorga et al. 2003). 

In summary, cycad population genetic level studies show cycads have a range from 

high to low levels of interspecific genetic diversity (Calonje et al. 2013). Many 

species show high levels of intrapopulational differentiation, indicating a lack of 

gene flow and fragmentation (Long-Qian et al. 2004; Keppel et al. 2002;). Cycad 

populations are often biogeographically disjunct, and in many cases, species are 

often rare throughout their range, with small effective population sizes (Donaldson, 

2003). The small, disjunct populations are often geographically isolated (Cibrián-

Jaramillo et al. 2010), and this explains how gene flow between the population is 

greatly reduced and could account for the high levels of interpopulational variation 

(Cibrián-Jaramillo et al., 2010). However, in those species such as Cycas 

debaoensis and C. panzhihuaensis from China, levels of interpopulational variation 

are lower, which indicates high gene flow between the populations, resulting in 

reduced genetic differentiation between populations due to mixing (Huang et al. 

2004; Yang & Meerow 1996). Although populations have medium to high levels of 

heterozygosity, many species show increased evidence of inbreeding (Meerow et 

al. 2012; Long- Qian et al. 2004). 

 

In general, cycad populations also show a higher number of polymorphic loci in 

adult plants, than in seedlings and juveniles due to bottlenecks (Da Silva et al. 

2012; Octavio-Aguilar et al. 2009). The long generation times of cycads, with some 

species taking up to 60 years to reach reproductive maturity (Da Silva et al., 2012), 

and the dioecious nature of cycads means that populations are often very slow to 

regenerate. Some species of cycads also have very low seed viability, which further 



14  

reduces the regeneration time of populations (Vovides et al. 1997). Fragmentation 

of ranges will also greatly affect smaller populations that generally have higher 

levels of inbreeding and evidence of genetic bottlenecks. Cycads are also poor 

seed dispersers, with recent research indicating that the seeds of many species are 

rarely dispersed more than 5 m from the maternal parent (Hall & Walter 2014). Low 

levels of genetic diversity can be detrimental to the long-term survival of a species, 

as it impairs its adaptability (Da Silva, et al., 2012). Due to the threats posed on 

cycad populations - now and in the future - there is a definite risk of isolation 

between populations. Although this leads to an increase in population differentiation 

and increased divergence, it can lead to increasing levels of inbreeding within 

populations (James et al. 2018). This could increase the number of deleterious 

allies in population and, therefore, reduce the future genetic of a species (Pekkala 

et al. 2014). 

 
1.4 Restriction Site Associated DNA Sequencing 

 
The advantage of restriction site associated DNA sequencing (RADseq) is that the 

technique sequences a reduced representation of the genome but maintains a deep 

enough level of sequence coverage near a specific type of restriction site. This is 

especially useful for organisms with large genomes such as cycads, whereby the 

large genomes traditionally make the prospect of sequencing the genome 

intractable and expensive (Zonneveld 2012). RADseq is suitable for organisms with 

large genomes, as it has been used as an exploratory approach on Thuja 

(Cupressaceae) to generate microsats (Hou et al. 2018) and is, therefore, suitable 

for cycads. RADseq is one of a new suite of techniques that allow small stretches of 

the genome to be used for population genotyping by identifying potentially 

thousands of polymorphisms to be sequenced quickly and cost-effectively (Peterson 

et al., 2012). These recovered polymorphisms include both neutral and non-neutral 

markers which are subject to the full evolutionary history of a taxon, including 

natural selection, mutation, and variation in drift (Narum et al., 2013). 

 
RADseq offers major advantages for the future of population genetics. It does not 

require a reference genome and is thus an ideal candidate for use on non-model 

organisms (Andrews et al. 2014). RADseq is different from many other methods of 

genomic sequencing techniques that use DNA fragments to construct a DNA 

sequence library by using a restriction enzyme. Enzyme digestion can result in 

non-random cleavage, where most of the same regions will be sampled across 

different individuals (Arnold et al. 2013). 
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The applications of RADseq in biology 
 

RADseq in conservation genetics. RADseq has been used in conservation 

genetics with great success for organisms with large or small genomes (Hou et al. 

2018). Some of the earliest studies employing RADseq aimed to develop and 

identify large numbers of genome-wide SNPs and SSR markers for population 

genomic analysis in Solanum melongena L. (Barchi et al. 2011) and Cynara 

cardunculus L. var. scolymus (Scaglione et al. 2012). Markers developed from 

RADseq, were used to understand population differentiation and to separate gene 

pools in populations that can differ in heterozygosity and geography (McCartney- 

Melstad et al. 2017; Paun et al. 2015; Xu et al. 2012). Additionally, RADseq has 

been used to understand species introgression in natural populations, and 

recognise species-specific alleles, which can contribute to the identification of new 

species (Guo et al. 2014; Wang et al. 2013). 

 
One of the most effective ways RADseq has been used for conservation genetics is 

to identify genetic differences in populations that correlate with climatic zones where 

genetic interchange has become reduced (Lexer et al. 2014). Not only can RADseq 

be used to understand genetic differences between species different climatic zones, 

it can also be used to determine genetic differentiation of species within the same 

climatic environment (Cromie et al. 2013). RADseq was used to deduce the genetic 

difference between species of Quercus L., and was able to recover genes that were 

responsible for drought tolerance in some populations (Oney-Birol et al. 

2018). The method can be used to assign individuals of unknown provenance to 

their original geographic location (Eaton 2014). Significant genetic differences 

between geographic regions can lead to allopatric speciation. This was 

demonstrated with the diamondback rattlesnake (Crotalus atrox Baird & Girard, 

1853), where the species showed significant genetic differentiation between 

geographic regions that indicated speciation (Schield et al. 2015). 
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RADseq in phylogenetics. The use of RADseq is an effective method to generate 

data for reconstructing phylogenetic relationships among closely related species, 

including younger groups and clades (Rubin et al. 2012). RADseq shows great utility 

for phylogenetics in correcting confounding effects of sequencing errors, 

heterozygosity and low genomic coverage (Cariou et al. 2013). Resolving the 

phylogenetic relationships among recently derived taxa is generally considered to be 

problematic (Nagalingum et al. 2011). This has been the case for temperate 

bamboo species, which showed poor resolution and support when using standard 

approaches, including a complete chloroplast genome phylogeny (Wang et al. 

2013). However, the use of RADseq yielded robust phylogenetic inferences of the 

group, resolving the relationship among the species (Wang et al. 2013). RADseq 

was able to generate data that could fully resolve the relationship among 18 species 

of ground beetle, whereas Sanger sequencing failed (Cruaud et al. 2014). A concern 

with RADseq data and phylogenetics is the presence of missing data (Eaton et al. 

2016), but recent studies have shown that even with 90% missing data full 

phylogenetic support can be obtained (Tripp et al. 2017). 

 

Problems associated with RADseq. RADseq has many benefits, but it does have 

downsides. Currently there is no standard protocol for RADseq which includes a 

series of methods including; RAD, ddRAD, GBS, MSG and ezRAD (Puritz et al. 

2014). This can make selecting the correct protocol challenging and can lead to an 

incorrect approach being used to answer the biological questions (Davey & Blaxter 

2010). The use of RADseq can lead to problems detecting loci involved in local 

adaptation and divergence among wild populations, as a large proportion of the 

genome can be missed, leading linkage disequilibrium and under or over 

estimation genetic diversity (Lowry et al. 2016).  

 

RADseq has been known to bias genetic estimation due to allele dropout, because 

if a polymorphism occurs at a restriction site, a heterozygous genotype could be 

mistaken for a homozygous genotype (Cariou et al. 2013). Additionally, the choice 

of RADseq protocol has the potential to further bias results which is the case 

between single digest (RAD = using a single restriction enzyme) and double digest 

(ddRAD using two restriction enzymes) methods, which can result in significant 

differences in the observed heterozygosity and allele frequencies between 

(Flanagan & Jones 2018).  
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Finally, and perhaps most important factors is downstream bioinformatic 

processing as different de novo assembly approaches can results in significant 

differences in population generic statistics, leading to inconsistencies between 

assembly methods (Shafer et al. 2016). Some software packages very effective 

manage RADseq data and can help reduce the biases introduced from sequencing 

and/or assembly (Eaton 2014). However, although transcriptome sequencing and 

exome capture could be considered better approaches for reduced genome 

sequencing (Lowry et al. 2016), these are not viable approaches for capturing 

genetic diversity of organisms with large and complex genomes. RADseq remains 

the best and most cost effective approach to full genome SNP capture (Catchen et 

al. 2017). 

 

1.5 Unresolved questions in conservation genetics 
 

Conservation genetics raises a number of major questions that, so far, have yet to 

be resolved. Conservation genetics studies have not been able to unambiguously 

resolve how fitness-related functional genetic variation can affect a population (e.g. 

what is the correlation between population size and the level of non-neutral genetic 

variation (Groom et al. 2006)). Many conservation genetics studies have used near-

neutral markers, which can be highly conserved and lack important genetic 

variation, providing an inaccurate picture about the genetic structure of a population 

(Lesica & Allendorf 1995). Population based studies use a small number of a loci to 

understand the genetic variation in a population and could be missing important 

genetic information. Using a genome-wide approach to understand population 

dynamics could reveal novel amounts of variation within species (Narum et al., 

2013). Consequently, this is the approach taken in this research project. 

 
Recently, great progress has been made in conservation genetics by predicting and 

explaining natural genetic variation in populations (Schield et al. 2015). However, it 

is still unknown what the underlying mechanisms are that connect dynamics of a 

population with adaptation and fitness (Frankham 1995). Inbreeding depression is a 

central problem in most conservation genetic research studies, as it often has 

unknown genomic causes and detrimental effects (Hedrick & Kalinowski 2000). In 

order to be able to make accurate predictions of the problems involved with small 

populations, it is important to understand the genomic causes and effects of 

inbreeding depression (Charlesworth & Willis 2009). It is important, therefore, to 

investigate the number of genes or genomic pathways that are involved in the 

process of inbreeding depression.  
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A question that has been yet to be explored in cycads is the impact of hybridisation 

on the diversity of wild populations. Although cycads are thought to readily hybridise 

in the wild (van der Bank et al. 2001), the effects of this have never been published 

and it is unknown if these are true hybrids or different morphotypes (Chamberlain 

1926). The effects of introgression in plants such as cycads is important, for it 

promotes genetic mixing and dilution; the deleterious effects of which are further 

exacerbated in taxa with small effective population sizes (Ellstrand et al. 1990). 
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1.6 Aims and Objectives 
 

Project overview and aims. This thesis reports the findings of my research into the 

evolution and genetic diversity of wild Cycas populations in the Northern Territory, 

Australia. The findings also represent case studies that can be more widely applied 

to the Cycadales as a whole. The thesis report is divided results into three chapters, 

designed as individual research papers and formatted as such. 

 

Chapter 2. This chapter addresses the challenges presented by cycads in which we 

test our RADseq approach across all cycad genera as proof of concept for 

population and conservation genetics. Our goal is to demonstrate the effectiveness 

of RADseq across large and complex genomes, and to allow others to follow this 

protocol. Specifically, this chapter aims to: (1) demonstrate that RADseq can be 

successfully applied to organisms with large, repetitive genomes, such as cycads; 

(2) generate a sufficient number of loci by using de novo assembly for phylogenetic 

and population genetic analyses; (3) develop an effective method that can be used 

for genome skimming. 

 
Chapter 3. The geographically widespread species, C. calcicola is the subject of 

this chapter. The chapter explores two areas. Firstly, we investigate the genetic 

differentiation among and within populations of C. calcicola - in particular within the 

Litchfield and Katherine regions, where the majority of the populations are found. 

Secondly, we determine if the ex-situ botanic garden collections of this species are 

sufficiently representative of the genetic diversity in the wild populations. 

 
Chapter 4. This chapter aims to understand the population genetics of two closely 

related species, Cycas armstrongii and C. maconochiei subsp. maconochiei, with 

parapatric distributions. We also test the validity of a population of putative hybrids 

between C. armstrongii and C. maconochiei subsp. maconochiei (Hill 1996), based 

on their morphological intermediate characters. Specifically, we investigate 

whether the putative hybrids are a new, cryptic species, a morphological variant of 

one of the species, or a valid hybrid between the two species. Based upon our 

findings, we provide insights into the formation of conservation assessments for 

three taxa, and we provide informed guidance on how to target future collections to 

safeguard wild populations. 
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Chapter 5. Concludes, compares and contrasts the findings from the preceding 

three chapters, and illustrates how the genetic diversity of three cycad species 

can be efficiently determined by using RAD seq techniques. We then provide an 

informed basis for the generation and implementation of species-specific 

conservation management plans that will ensure the long-term survival of the 

study species. 

 
Overall objectives 

 
• Explore new approaches to the conservation genomics of cycads 

(Chapter 2) 

• Develop protocols effective for genome skimming and genome-wide marker 

discovery for others to apply to cycads and organisms with large and 

complex genomes (Chapter 2) 

• Gain insights into the genetic diversity of C. calcicola and find how the 

disjunction in its range affects this (Chapter 3) 

• Understand the diversity and differentiation between C. armstrongii and 

C. maconochiei subsp. maconochiei (Chapter 4) 

• Determine the hybrid status of C. armstrongii x maconochiei (Chapter 4) 

• Determine if ex-situ botanic garden collections represent the genetic 

diversity for the chosen species of their wild populations (Chapters 3 and 

4) 

• Understand the effects of geography on the genetic diversity of Cycas in 

Northern Territory (CH?) 
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Chapter 2 - RADseq as a valuable tool for plants with large 

genomes—a case study in cycads 

 
Full genome sequencing of organisms with large and complex genomes is intractable 

and not cost-effective under most research budgets. Cycads (Cycadales) represent 

one of the oldest lineages of extant seed plants and, partly due to their age, have 

incredibly large genomes up to ~60Gbp. Restriction site associated DNA sequencing 

(RADseq) offers an approach to find genome-wide informative markers, and has 

proven to be effective with both model and non-model organisms. We tested the 

application of RADseq using ezRAD across all ten genera of the Cycadales including 

an example dataset of Cycas calcicola representing 72 samples from natural 

populations. Using previously available plastid and mitochondrial genomes as 

references, reads were mapped recovering plastid and mitochondrial genome 

regions and nuclear markers for all of the genera. De novo assembly generated up to 

138,407 high-depth clusters and up to 1,705 phylogenetically informative loci for the 

genera, and 4,421 loci for the example assembly of C. calcicola. The number of loci 

recovered by de novo assembly were lower than previous RADseq studies, yet still 

sufficient for downstream analysis. The number of markers could be increased by 

relaxing our assembly parameters, especially for the C. calcicola dataset. Our results 

demonstrate the successful application of RADseq across the Cycadales to generate 

a large number of markers for all genomic compartments, despite the large number 

of plastids present in a typical plant cell. Our modified protocol was adapted to be 

applied to cycads and other organisms with large genomes to yield many informative 

genome-wide markers.  
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2.1 Introduction 
 

The size of an organism’s genome greatly affects the cost of sequencing its genome, 

which in turn affects the number of organisms for which genomic data are available 

(Andrews et al. 2016). Large genomes are caused by numerous factors such as 

tandem repeats, pseudogenes, paralogs, polyploidy or a combination of these factors 

(Guan et al. 2016). Plant genome sizes are highly plastic (Pellicer et al. 2018), 

ranging from 13.2 Megabase pairs (Mbp) in the genome of Ostreococcus 

lucimarinus, to over 149 Gigabase pairs (Gbp) in the octoploid Paris japonica 

(Pellicer et al. 2010). As a result of whole genome duplication, gymnosperm 

genomes are generally larger than those of many angiosperms, ranging from ~8 Gbp 

in Microstrobus to ~72 Gbp in Pinus and Ceratozamia (Roodt et al. 2017; Zonneveld 

and Lindstrom 2016; Scott et al. 2016; Zonneveld 2012). Typically, as a result of 

polyploidy, the large genome size is generally caused by an inefficiency of 

gymnosperms to eliminate the amplification of repeats in the genome (Pellicer et al. 

2018).  

 

Next generation sequencing (NGS) permits sequencing large stretches of a genome 

to produce DNA sequence data in the Gbp range at relatively low cost. Full genome 

sequencing may be the best approach for finding informative markers that assist 

investigating the evolutionary history of a species (Andrews et al., 2016). However, 

large and complex genomes present problems of cost for existing NGS approaches 

(Alexeyenko et al., 2014). Further issues include generating enough repeat reads to 

account for over-representation of highly repeated elements in the genome (Catchen 

et al. 2017). Additionally, de novo assembly of larger genomes becomes problematic 

because of repeated elements, making effective repeatability of an assembly difficult 

(Meyers et al. 2004). 

 

Restriction-site associated DNA sequencing (RADseq), uses restriction enzymes to 

reduce the proportion of the genome sequenced by cutting DNA into smaller 

fragments, and a subset of these fragments (typically between 200-600 bp) is then 

selected for sequencing (Davey and Blaxter, 2010). Thus, RADseq allows the 

sequencing of a reduced representation of the genome yet still at a deep level of 

sequence coverage, especially near specific restriction sites. Only a portion of the 

genome is sequenced (Andrews et al. 2016). Compared to many NGS methods such 

as shotgun and whole genome sequencing, RADseq is considered quick and 

economical under most research budgets (Peterson et al., 2012; Toonen et al., 
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2013). RADseq has offered new avenues for phylogenetics and population genomics 

(Table 1) because it does not require the use of a reference genome (Andrews and 

Luikart, 2014), and has proven to be very effective for population genotyping by 

identifying thousands of polymorphisms (Mastretta-Yanes, et al., 2015). These 

polymorphisms include both neutral and non-neutral markers that potentially reflect a 

large portion of a taxon’s genome involved in natural selection and mutation (Narum 

et al., 2013). RADseq has been applied in population genetics across a range of 

model plants, such as Oryza and Carex, as well as non-model plants including 

Senecio, Betula, Sisymbrium, Mimulus, Passiflora, Psychotria and Mangifera 

(Warschefsky and von Wettberg 2019; Nazareno et al. 2018; Massatti et al. 2016; 

Twyford and Friedman, 2015; Guo et al., 2014; Wang et al., 2013; Roda et al. 2013, 

Vandepitte et al., 2013). It has been used, to a lesser extent, in plant phylogenetics 

for Pedicularis, Diospyros, Quercus, Viburnum, and Diuris (Ahrens et al. 2017; Eaton 

et al. 2016; Eaton et al. 2015; Paun et al. 2015 and Eaton; Ree 2013).  

 

Table 1 Estimated genome sizes of taxa examined in earlier RADseq studies. Gbp= number of 

billion base pairs and estimation of plant genome size obtained from Plant DNA C-values Database 

(http://data.kew.org/cvalues/) 
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Currently published fully-sequenced plastome and mitochondrial genomes for cycads 

are few, yet this number already appears to provide sufficient evidence to invest in 

alternative sequencing methods of genomic DNA, such as that of RADseq. Of the ten 

genera of cycad, eight – Ceratozamia, Cycas, Dioon, Encephalartos, Macrozamia, 

Lepidozamia, Stangeria, and Zamia – have documented plastomes (Wu and Chaw 

2015 and Wu et al. 2007). Yet a comparison of high GC-biased substitutions, gene 

conversion, and low sequence variability between both theirs and other published 

gymnosperm plastomes (e.g. Pinus thunbergii, Abies koreana and Araucaria spp.) 

indicates that the plastid is not an optimal source of variable markers that are useful 

for population genetics or phylogenetic studies (Yang et al. 2016; Zhou et al. 2016; 

Ruhsam et al. 2015; Yi et al. 2015; Jansen et al. 2011; Wu et al. 2007; Tsudzuki et 

al. 1992). The only full cycad mitochondrial genome that has been sequenced is that 

of Cycas species (Wu et al. 2007). Compared to published mitochondrial genomes of 

the closest allies of cycads (Ginkgo biloba and Welwitschia mirabilis), only a few 

unique and polymorphic sites were found (Guo et al., 2016), which supports the 

notion that this genomic compartment is as uninformative as the plastome. 

 

In order to test the effectiveness of RADseq for taxa with large genomes, we used a 

RADseq technique across a cohort of samples representing ten cycad genera. We 

chose cycads because they have particularly large genomes, ranging from ~25–30 

Gbp in Cycas L. to ~72 Gbp in Ceratozamia (Zonneveld, 2012), which appears to be 

the result of many tandem repeats, pseudogenes, paralogs, and possibly whole 

genome duplication (Roodt et al., 2017). In addition to having generally larger 

genomes, we also chose cycads because there is need for better methods to find 

more data-rich sequences for systematic and population genomic studies. Therefore, 

forming part of our larger conservation genomics study targeting cycads, we 

developed a RADseq protocol that is based on a modification of the ezRAD protocol 

(Toonen et al., 2013). ezRAD differs from other RADseq approaches as it uses a 

commercially available library preparation kit and does not require specific restriction 

enzymes to ligate adapters to cut sites (Andrews et al., 2016). Another advantage of 

ezRAD when compared to other RADseq protocols is that it requires lower initial 

setup preparation and costs (Andrews et al., 2014). 
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The aim of the larger project is to understand the evolution and genetic diversity of 

wild Cycas populations. As a proof of concept, we tested our RADseq approach 

across all cycad genera. This study aimed to: (1) demonstrate that RADseq can be 

successfully applied to organisms with large, repetitive genomes, such as cycads, (2) 

generate a sufficient number of loci using de novo assembly for phylogenetic and 

population genetic analyses, and (3) develop an effective method that can be used 

for genome skimming.  

 

2.2 Materials and methods 
 

Sampling strategy. Freshly collected silica-dried leaf material was sampled for all 

ten genera representing 13 species of Cycadales, from Cycadaceae and Zamiaceae 

(Table 2). Cycadaceae leaf samples were taken from Cycas taitungensis at the living 

collection of the Royal Botanic Garden and Domain Trust, NSW Australia (RBGS), 

and samples of C. armstrongii, C. maconochiei, and C. calcicola were collected from 

wild plants in the Northern Territory, Australia. For Zamiaceae, Bowenia spectablis, 

Ceratozamia kuesteriana, Dioon mejiae, Encephalartos lebomboensis, Lepidozamia 

peroffskyana, Macrozamia johnsonii, Microcycas calocoma, Stangeria eriopus, and 

Zamia integrifolia samples were collected from the living collection of the RBGS 

(Table 2).  
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To test the utility of RADseq at population level, samples were collected from 60 

individuals of Cycas calcicola from natural populations in the Northern Territory, 

Australia (Appendix I). The samples included three populations from the Litchfield 

National Park and three populations in the Katherine region — each population 

consisted of ten individuals of varying ages. A further 13 samples were sourced from 

cultivated ex-situ collections of George Brown Darwin Botanic Garden (Darwin, 

Northern Territory, Australia) and Montgomery Botanical Center (Miami, Florida, 

USA). 

 

DNA extraction and quantification. Approximately 0.05 g of silica-dried leaf 

samples were ground to a fine powder using a TissueLyser (Qiagen Inc., Venlo, the 

Netherlands). When present in large amounts, trichomes were removed to improve 

extraction quality (specifically in Cycas calcicola). High molecular weight genomic 

DNA was extracted using a DNeasy Plant DNA Extraction Mini Kit (3.0 BR DNA 

assay; Qiagen, Hilden, Germany). Genomic DNA was inspected using a 2% agarose 

gel to check for the presence of DNA and impurities. A Qubit fluorometer (3.0 BR 

DNA assay; Invitrogen, Life Technologies, Carlsbad, CA, USA) was then used to 

determine the quantity (µg/mL) of the extracted DNA for each sample. The target 

concentration for samples was (+=) 17 µg/mL; samples that yielded less then this 

amount was either re-extracted or concentrated using a 1:1 ratio of Agencourt 

Table 2 Samples of cycad genera obtained for RADseq. Samples obtained from the Royal Botanic 

Gardens and Domain Trust, Sydney and wild populations in the Northern Territory Australia. Collection 

No. = individual date assigned number per sample, RBGS Acc No. = Royal Botanic Gardens and Domain 

Trust living collection data base accession number, Wild/Cul. = of the origin of the samples and if they 

were collection from the wild or from the RBGS collections and NCBI Acc. = NCBI Sequence Read 

Achieve, BioSample accession number (BioProject accession: PRJNA526348). 
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AMPure XP magnetic purification beads to sample volume (Beckman Coulter, Inc) by 

combining multiple extractions (For more detailed laboratory methods, please see 

supplementary data Appendix II). 

 

DNA normalization and double digest reaction. First, genomic DNA was 

normalized to a concentration of 500 ng in 42 µL total volume (0.01 µg/mL) using a 

QIAgility liquid handling robot (Qiagen Inc., Venlo, the Netherlands). Second, using 

the QIAgility, 5 µL of NEB 10x CutSmart buffer and 1 µL of Bovine Serum Albumin 

(BSA; to help stabilize the enzyme digestion) was added to each well and mixed 

briefly for five seconds using a plate mixer (although these steps were performed 

using a liquid handling robot, they can be performed manually). This mix was stored 

at 4°C for a minimum of 5 hours—our tests showed that this helps to reduce the 

effect of DNA methylation, improving the cutting action of the restriction enzymes. 

Next, double digest reactions were set up using 1 µL of each EcoR1-HF and Mse1 

restriction enzymes, mixed by pipetting manually. Reactions were run in a 

thermocycler for 3 hrs at 37°C with a final 20 min deactivation step at 65°C. Using 

2% agarose gel, samples were checked for a smear to indicate the quality of 

digestion. Lastly, double digest reactions were cleaned using 1.8:1.0 ratio of AMPure 

XP beads to sample (90 µL of AMPure XP beads to 50 µL of digested DNA) and 

quantified using a Qubit high sensitivity kit (3.0 HS DNA assay; Invitrogen, Life 

Technologies, Carlsbad, CA, USA). 

 

Library preparation. RADseq libraries were prepared following the ezRAD protocol 

(Toonen et al. 2013) in which we tested two different Illumina (Illumina Inc., CA, 

USA) library preparation kits: firstly, an Illumina TruSeq PCR-Free high throughput 

dual index kit and secondly, an Illumina TruSeq nano high throughput dual index kit 

(PCR-based, FC-121-4003). Our initial aim was to use the PCR-Free kit to help 

reduce the probability of PCR amplification bias. However, after multiple attempts the 

PCR-Free kit resulted in poor final yields when quantified using qPCR, and after 

multiple troubleshooting steps, it was deemed unfit for our target group (cycads). 

However, the Illumina TruSeq nano kit proved to be effective when the input of 

genomic DNA was increased by 5x the recommended input, i.e., from 100ng to 

500ng, due to the amount of DNA which is lost during clean-up and size selection. 

We followed the ezRAD protocol v3 using half of the recommended volumes of an 

Illumina TruSeq kit to save costs (Toonen et al. 2013).  
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Several quality control checks were carried out during library preparation on a select 

number of samples (16-24 samples) using a high performance LabChip and a Qubit 

fluorometer; more specifically, DNA size and quantity (µg/mL) were checked after 

digestion and after size selection. During the final step of library preparation, we 

modified the ezRAD protocol in the final bead clean, using a 0.8:1 ratio of AMPure 

XP beads to sample for the removal of excess adapters observed using a LabChip. 

Final Illumina libraries were validated using a LabChip, cleaned using a 0.9:1 ratio of 

AMPure XP beads to sample, and quantified using a Qubit high sensitivity kit (3.0 HS 

DNA assay; Invitrogen, Life Technologies, Carlsbad, CA, USA). Final libraries were 

normalized to 10 nM and pooled for sequencing. For more detailed laboratory 

methods, please see supplementary data (Appendix 1). 

 

Sequencing. We aimed to capture around 1 gigabyte (Gb) of sequence data per 

sample (in a run of 95 libraries) to account for overrepresentation of the plastid 

genome, and to capture as much of the nuclear genome as possible. Genomic 

sequencing was carried out using an Illumina NextSeq 500 with 150 bp paired-end 

high throughput (HT) on a single flow cell. The NextSeq 500 HT run can capture up 

to 120Gb of sequencing data, thereby allowing for our sequencing target of one Gb 

per sample. The sequencing run was also spiked with 20% PhiX sequencing control 

V3 (Illumina) to account for low sequence diversity caused by the identical enzymatic 

digestion cut sites in the ezRAD protocol. 

 

Bioinformatics 
Quality control and filtering of sequence reads. The NextSeq 500 generated four 

fastq files for forward and reverse reads (eight files per sample). The four forward 

fastq files were concatenated into a single forward fastq file and similarly a single 

reverse file was created, as required for the downstream RADseq assembly. The 

concatenated forward and reverse fastq files were screened for quality using 

PRINSEQ v0.20.4 (Schmieder and Edwards 2011). PRINSEQ allowed the detection 

of falloff in read quality for a range of samples from each population. The reads were 

trimmed using Trimmomatic 0.36 (Bolger et al. 2014) using the following settings: 1) 

the Illumina clip function was used to remove adapters, 2) the first six bases were 

cropped from the start of all paired-end reads, 3) all reads were cropped to 120 bp in 

length due to lower quality ends (observed using PRINSEQ), and a sliding window 

was also used to delete bases with a PhredQ score less than 20 with a sliding 

window of four, and 4) all reads less than 50 bp were discarded, and only paired 

reads were retained to improve merging of reads during clustering. 



 

29  

Assembly of RADseq data for cycad genera. De novo assembly of the paired-end 

reads was performed using ipyrad 0.5.13 (Eaton and Overcast, in prep) on a high-

performance cluster based at the Royal Botanic Garden Edinburgh using seven 

nodes, each with 12 cores and 128 GB of RAM, totalling 84 cores and 896 GB of 

RAM, running for 21 days. In ipyrad all parameters were set to default, except for the 

following: data type was set to ‘pairgbs’ (most closely matches ezRAD), bases with a 

PhredQ score less than 30 were converted to 'N’ and reads with 15 or more uncalled 

bases were discarded. Reads were further filtered for adapter sequences, trimmed, 

and reads were discarded if they were less than 40 bp in length. The maximum 

number of uncalled bases in consensus sequences was set to ten for forward and 

reserve reads. The maximum heterozygotes in consensus sequences was set at 

eight for both forward and reverse sequences, and the minimum number of samples 

per locus for output files was set to 4.  

 

Data assembly followed the general ipyrad workflow. Reads were more stringently 

filtered for presence of adapters (after initial trimming and filtering earlier in 

Trimmomatic). Next, clusters were identified within samples and consensus base 

calls were made. Finally, loci were aligned across all of the samples (four species of 

Cycas, and one species each of the nine other cycad genera) and output files were 

generated, after applying filters as specified in our parameter settings. These settings 

also included the minimum samples per locus- for example, a generated site is 

discarded unless it meets the requirement that it is present in a minimum number of 

samples. The data is archived to allow reproducibility of the assembly (data available 

through NCBI Sequence Read Archive BioProject accession: PRJNA526348, Table 

2). 

 

Assembly from population data of Cycas calcicola. To further demonstrate the 

utility of our protocol, we carried out de novo assembly for 72 individuals of C. 

calcicola (one sample failed during sequencing). The minimum number of samples 

per locus was set to 43 (as opposed to 4 for the genus level assembly, above), so 

that each site would be present across a minimum of ~ 60% of samples, to reduce 

missing data.  
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Mapping of reads to published references. Large cycad genomes (25 – 60 Gbp), 

present potential problems with overrepresentation of repetitive regions, and for this 

reason it is important to test the genomic sources and distribution of RADseq reads. 

To test for overrepresentation reads were mapped against the published reference 

plastomes and the single mitochondrial genome (Wu and Chaw 2015 and Wu et al. 

2007) (Tables 3 and 4). The reference plastid and mitochondrial genomes were 

downloaded from NCBI GenBank and the filtered paired end reads were mapped to 

these references using CLC Genomics Workbench 11.0 (CLC Genomics, 2019; 

Qiagen Inc., Venlo, the Netherlands) default parameters: for read alignment 

mismatch costs = 2, intersection and deletion cost = 3, length fraction= 0.5, similarity 

fraction = 0.8 and auto detection of paired distances was allowed. 

 

Phylogenetic analysis of Cycas calcicola populations. The resulting RADseq 

data provides the first opportunity to investigate the infraspecific relationships 

between natural populations of C. calcicola. Furthermore, this approach can be used 

to help demonstrate the effectiveness of RADseq in differentiating natural 

populations. Phylogenetic reconstruction of C. calcicola’s populations was completed 

using SVDquartet plug-in for PAUP* version 4.0a158 (Swofford 2002) because of its 

robust approach to analysing short gene sequences from RADseq data (Mirarab et al 

2015; Liu and Yu 2010). Phylogenetic trees were estimated from the concatenated 

gene sequence alignments using SVDquartets analysis. Settings included exhaustive 

quartet sampling, 100,000 bootstrap replicates, and the multispecies coalescent tree 

model. We examined results of all analyses using at least three independent runs for 

multi-species coalescent analysis by allocating samples to their respective 

populations. The three separate populations are at Litchfield National Park (including 

Tolmer Falls sites), Daly River, Katherine CDU, and Spirit Hills. 
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2.3 Results 
 
Number and quality of reads. Sequencing on the Illumina NextSeq 500 platform 

generated approximately 1.9 to 6.7 million 150 bp paired-end reads per sample 

(Tables 3, 4 and 5). The number of reads generated varied, with the fewest for 

Stangeria eriopus, and the greatest for Macrozamia johnsonii. For Cycas (target 

genus), the number of reads generated showed less variation (1.9 to 2.5 million) and 

was lowest in C. taitungensis and greatest in C. maconochiei.  The PhredQ Score 

distribution of the sequencing run measured 75.2% at Q30 or greater, which passed 

the Illumina sequencing filter. Quality control of reads (measured as PhredQ score in 

FastQC 0.11.5) indicated that forward reads were of a higher quality with a drop-off 

after 135 bp, whereas reverse reads were lower quality due to drop-off after 120 bp. 

Due to this quality drop off, forward and reserve reads were filtered and trimmed to 

120 bp. 
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Table 3 Results of mapping RADseq reads against reference plastomes. RADseq reads from seven cycad genera and four Cycas species were mapped against the 
plastome of the most closely related, available species. PE=paired end; Gbp= number billion base pairs; Reference GenBank Acc. No.= the reference number of a user 
submitted to the NCBI GenkBank online database https://www.ncbi.nlm.nih.gov/genbank/. % of reads mapped to reference= indicates the percentage of reads mapped against 
the total number of reads; Average read depth = the average number of reads forming a cluster on the mapped reference, Max. read depth = the maximum depth of reads 
assembled into clusters, Length of consensus = the length of consensus formed from the mapped reads and Reference covered = percentage of the reference plastome covered 
from the reads mapped. 
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Table 4 RADseq data for Cycas spp., mapped to a reference mitochondrial genome of Cycas 
taitungensis. PE=paired end; Gbp= number billion base pairs; Reference GenBank Acc. Cycas 

taitungensis reference sequence (AP009381) was the downloaded from the NCBI GenkBank online 

database https://www.ncbi.nlm.nih.gov/genbank/. % of reads mapped to reference= indicates the 

percentage of reads mapped against the total number of reads; Average read depth = the average 

number of reads forming a cluster on the mapped reference, Max. read depth = the maximum depth of 

reads assembled into clusters, Length of consensus = the length of consensus formed from the mapped 

reads and Reference covered = percentage of the reference mitochondrial genome covered from the 

reads mapped. 

 

 

Table 5 Outputs from de-novo assembly of RADseq data. QC=quality control of reads; Gbp= 

number billion base pairs; Total paired reads merged= number of paired end reads merged to form a 

consensus read; No. clusters= number of matching reads greater than one forming a cluster; No. 

clusters hi-depth= number of clusters with 6 or more reads used for majority rule base calling, No. of loci 

= the total number of loci removed per sample. Genome sizes estimations obtained from Zonneveld 

(2012). 
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Mapping of reads to published references. RADseq reads were mapped against 

published reference mitochondrial and chloroplast (plastid) genomes. Plastomes 

ranged in size from 161,815 to 166,431 bp (Table 3). The number of reads mapped 

to the plastomes varied from 16,292 reads (0.80% of total reads) for Encephalartos 

lebomboensis to Encephalartos lehmannii and 221,486 reads (5.82% total number 

of reads) for M. johnsonii to M. mountperriensis (Table 6). The average read depth 

(Table 3) also varied between the samples and ranged from 10.74 in E. 

lebomboensis to 131.32 in C. armstrongii and demonstrated that no clusters were 

over-represented. Although the percentage of RADseq reads mapped varied, in all 

species 89% or greater of the reference was covered and was lowest in 

Ceratozamia kuesteriana (89%) and greatest in S. eriopus and C. armstrongii 

(97%). 

Table 6 Filtering of loci during de-novo assembly of Cycas calcicola natural populations. 
RADseq reads representing six natural populations (60 samples) and 12 samples representing ex-situ 

conservation collections. The final step of de-novo assembly the loci which are generated using are 

passed though numerus filters; Removing duplicates= removed duplicate loci of which are identical, 

Max indels per locus= remove loci in clusters that reach the threshold for the maximum number of 

indels per locus to help reduce missing data, Max SNPs per locus= filter based on the maximum 

number of SNPs per locus to remove clusters with an excess number of loci which could indicate 

errors in data, Max shared heterozygotes per locus= by the maximum number of hetrozygotes per 

locus to filter out an excess heterozygous loci and Min samples per locus= The minimum number of 

samples per locus was set at 43 indicating that each locus was shard across a minimum of ~60% of 

the samples. 

 

 

Reads for Cycas spp. were mapped to the mitochondrial genome of C. taitungensis 

which was 414,903 bp (Table 4). The number of reads mapped ranged from 14,672 

(0.61% total number of reads) in C. calcicola to 26,616 (1.34% total number of 

reads) in C. taitungensis. The number of reads covering the reference mitochondrial 

genome only varied somewhat between species and was lowest in C. calcicola and 

C. taitungensis (62%) and highest in C. armstrongii (68%). 
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De novo assembly of RADseq data. Initial filtering and trimming of the raw 

Illumina reads were carried out using TRIMMOMATIC. Approximately 65–75% of 

paired reads were retained (singletons were removed), each with a minimum 

PhredQ score of 20 (Table 5). The sample which yielded the lowest number of 

reads after filtering was C. taitungensis. During filtering approximately 1 million 

reads were discarded for each sample and 3 million reads were removed for 

Macrozamia johnsonii. However, M. johnsonii remained the taxon with the greatest 

number of reads overall (Table 5). The number of clusters obtained from de novo 

assembly ranged from 1.0 to 3.3 million per sample. The number of high-depth 

clusters (containing six or more reads) ranged from 32,000 in S. eriopus to 38,000 

in M. johnsonii (Table 5). This lower number of high-depth clusters vs initial clusters 

indicates that there were a high number of clusters with less than six reads, which 

were discarded due to a higher likelihood of a base being miscalled. The number of 

recovered loci varied greatly among genera (Table 5), ranging from 1,641 in C. 

calcicola to 1,705 in C. taitungensis C.F. Shen, K.D. Hill, C.H. Tsou & C.J. Chen within 

Cycas. A lower number of loci were recovered for Zamiaceae when compared to 

Cycadaceae with 125 loci being obtained for Microcycas calocoma and 362 for M. 

johnsonii (Table 5).  

 

Example assembly of Cycas calcicola. The assembly of 72 samples from natural 

populations of C. calcicola (Table 6), generated 1.7 to 4.7 million reads during 

sequencing, and most reads passed the ipyrad filter (after trimming). The total 

number of clusters generated during clustering ranged from 1.3 to 3 million, and the 

number of high-depth clusters range from 22 to 78 thousand. Overall the assembly 

generated over three million informative SNPs across the 72 samples, and after 

final filtering, 4,421 loci were recovered for a minimum of 43 samples per locus 

(each locus was present for ~60% of samples).   

 

Phylogenetic analysis of Cycas calcicola. The unrooted tree (Figure 5) recovered 

seven well-supported populations/groups. Spirit Hills, Daly River, Litchfield National 

Park (NP) and Litchfield Tolmer populations received 100% bootstrap support (BS). 

Katherine Charles Darwin University site (Katherine CDU) recieved 99.3% BS and 

Katherine population and cultivated samples from Katherine TT (Katherine TT CUL) 

each recived 90.6% BS. Populations from Katherine and Litchfield national park 

(NP) were recovered as two separate clades (99.3 and 100%, respectively). Total 

weight of incompatible quartets was 16.5780 (47.409%), and total weight of 

compatible quartets was 18.3897 (52.591%). 
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Figure 5 Unrooted tree network tree of C. calcicola wild populations in Northern 
Territory, Australia. The unrooted tree shows seven well-supported populations. 

Spirit Hills, Daly River, Litchfield National Park (NP) and Litchfield Tolmer populations 

received 100% bootstrap support (BS). Katherine Charles Darwin University site 

(Katherine CDU) with 99.3% BS and both Katherine, Katherine TT Katherine TT CUL 

(cultivated) provided 90.6% BS. Populations from Katherine and Litchfield national 

park (NP) were recovered as two separate clades (99.5% and 100%). 
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2.4 Discussion 
 

Here we have presented an optimised RADseq protocol used to gain insights into 

the genetic diversity of cycads. Our results demonstrate that RADseq can 

successfully be applied across all ten genera of the Cycadales, with sufficient data 

generated to use this approach for conservation genomics, phylogenetics, and other 

potential applications.  

 

Assembly of RADseq data. Data was mapped against the reference plastomes 

and a mitochondrial genome, and showed that less than 8.01% of the total number 

of reads were mapped. This indicates that neither the plastome or mitochondrial 

genome were overrepresented in our data, and is confirmed by the average and 

maximum read depth (Tables 3 & 4). Additionally, large portions of the reference 

genomes covered up to 97% of the plastome and 69% of the reference 

mitochondrial genome. These results are expected with RADseq data as reads will 

rarely cover the entire reference because of the use of restriction enzymes (Liu and 

Hansen 2017). These results indicate that our RADseq protocol is also effective at 

recovering large portions of the plastome and mitochondrial genome, without 

reducing the effectiveness and reliability of RADseq for population genetics or 

phylogenetic inference (Fitz-Gibbon et al. 2017). 

 

De-novo assembly in ipyrad recovered between 125 (Macrozamia) to 1,705 (Cycas) 

informative loci. This is the result of several factors: the number of high-depth 

clusters generated, the number of genetically similar samples included in the 

assembly, and the degree of genetic similarity between species and genera (Table 

5). A greater number of Cycas species were included in the assembly, which are 

closer genetically (Nagalingum et al. 2011), and is the reason why a greater number 

of loci were retained for Cycas, as with the Cycas calcicola example dataset (Table 

6). Conversely, fewer loci were recovered for Zamiaceae because of greater genetic 

distances between genera, and only a single representative species of each genus 

was included in the assembly. If more samples were included from each genus of 

Zamiaceae, the resulting number of loci could be greater. Despite the genetic 

distance among the genera, there was a sufficient number of shared loci recovered 

between the Zamiaceae and Cycadaceae genera. These results mirror what was 

found in Myricaceae (Liu et al. 2015) and Diapensiaceae (Hou et al. 2015), as they 

also found a significant drop in loci recovered in more distantly related taxa, 

indicating that genetic differences between families would be considerable.  

The example assembly of Cycas calcicola showed a similar result in clustering to 
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that found in the generic dataset by having far fewer high-depth clusters than 

clusters overall. The assembly generated 4,421 markers across 72 samples using a 

strict minimum number of samples per locus (to reduce missing data), which 

required that each locus was present in at least 43 samples (~60%). If the minimum 

samples per locus was reduced to the default of four, this would further increase the 

number of loci generated, but also the amount of missing data. This demonstrates 

that with a good number of samples and a high level of generic similarity, an 

assembly can generate a suitable number of loci even with very large genomes. 

This approach also provided sufficient data for coalescent-based analysis, since our 

results recieved high support (>90% BS) for closely related populations of C. 

calcicola.  

 

Sequencing depth and large genomes. Sequencing resulted in 2.7 to 9.8 million 

paired-end-reads per sample. Although reads needed to be filtered and trimmed, 

the sequencing quality was high. We aimed to obtain 1 GB per sample to account 

for the large genome size (25-63 Gbp; Zonneveld 2012) and overrepresentation of 

the plastome (Wu and Chaw 2015). The amount of data (uncompressed) ranged 

from 1.2 GB for Stangeria eriopus to 3.9 GB in Macrozamia johnsonii, thereby 

meeting our goal.  

 

One of the main considerations in assembling RADseq data is the clustering of 

reads for calling consensus sequences and SNPs, as this requires numerous repeat 

reads to be aligned (Eaton 2014). In the third step of assembly in ipyrad, if two or 

more reads align, they form a cluster. Subsequently, these clusters are further 

assessed, and six or more reads (depending on minimum depth clustering depth 

set) are required for a cluster and its constituent SNPs to be considered reliable—

these are termed high-depth clusters (Eaton 2014). However, in larger genomes, it 

is less likely that there will be a sufficient number of repeat reads in the sequence 

data to generate enough high-depth clusters (except for repetitive regions) (Karam 

et al. 2015). In our study, we found 1 to 3.3 million clusters in the first clustering 

step, and 32,000 to 138,000 clusters after selecting only high-depth clusters. This 

indicates that there were many clusters with fewer than six reads. The number of 

high-depth clusters, while relatively small compared to the initial number, is 

nonetheless sufficient for downstream phylogenetic and population genetic 

purposes, especially given that previous work has used significantly fewer markers 

(Griffith et al. 2015; Salas-Leiva et al. 2014; Meerow et al. 2012; Nagalingum et al. 

2011; Cibrián-Jaramillo et al. 2010). 
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Thus far, RADseq has been used in phylogenetics and population genetics for a few 

plant groups with varying genome sizes (Table 1). The taxa with the smallest 

genomes (<1 Gbp) were Carex spp., Sisymbrium austriacum, and Mimulus spp., 

whereas those with the largest genomes include Diospyros species (2.40-5.76 

Gbp), Senecio lautus (4.90 Gbp), and Pedicularis species (5.68 Gbp). In our study, 

RADseq was applied to genomes that are 25 to 63 Gbp - i.e. approximately 4 to 11 

times larger than all previous studies. Therefore, we have demonstrated that 

RADseq can successfully be applied to groups of plants with larger genomes and 

holds a promise for future applications of RADseq to other plant groups, especially 

non-flowering plants with large genomes such as ferns and gymnosperms. 

 

Conclusions. We have demonstrated that RADseq can be applied to organisms 

with large genomes, such as cycads. This protocol uses high throughput 

sequencing to recover informative genome-wide markers. RADseq also offers the 

ability to multiplex and sequence many individuals simultaneously, at relatively low 

cost. These markers have the potential to be used for population level and for 

phylogenetic studies, ultimately helping to resolve the relationships among cycads, 

obtain a better insight into the genetic diversity among the Cycadales species, and 

to assist in developing informed conservation management plans for cycads and 

other groups in the future.  
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Chapter 3 - Conservation Concerns: Low Genetic Diversity 

in the Australian cycad, Cycas calcicola and the Absence 

of Key Genotypes in Botanic Gardens 

 
The risk of extinction for many species is increasing, with cycads having the highest 

risk of extinction among all plants (Nagalingum et al. 2011). As many species 

become rarer, their conservation is ever more important. Understanding genetic 

diversity is fundamental for conserving species. Here we obtained insights into the 

genetic diversity of Cycas calcicola L. (Cycadaceae, Cycadales), a species of 

conservation concern and endemic to the Northern Territory, Australia. Genetic 

material was collected from wild populations in the Litchfield National Park and the 

Katherine regions, representing six populations and comprising 60 samples. Botanic 

garden collections play a vital role in conservation as they offer a repository for the 

genetic diversity of wild populations, so we also included 12 samples from ex-situ 

collections. These represented the Spirit Hills Conservation Reserve and Daly River 

regions. We used next generation sequencing in the form of RADseq following an 

established ezRAD method modified for cycads. De-novo assembly using ipyrad 

recovered 2271 informative genome-wide markers. Population genetic statistics 

revealed very low levels of gene diversity (HE = 0.023 to 0.116), evidence of 

inbreeding, and a significant departure from the Hardy-Weinberg equilibrium (Mean 

FIS = 0.491). The populations also showed some differentiation among regions and 

populations (6%) and little genetic distance between populations (FST = ≤ 0.248). 

Population structure and discriminate analysis confirmed that geographic isolation 

correlates with genetic differentiation between populations in the Katherine and 

Litchfield regions. Overall, low levels of genetic diversity and high levels of 

inbreeding will have a significant impact on the adaptability of the species. We found 

that the ex-situ collections did not represent the genetic diversity of the natural 

populations, as the Litchfield National Park populations were unrepresented. We 

recommend that, despite a lack of genetic differentiation between the two regions, 

populations of C. calcicola should be conserved as separate management units so 

as to adequately conserve what diversity remains.  
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3.1 Introduction 
 

The risk of extinction in plant species is increasing worldwide due to habitat 

fragmentation, climate change, land clearance and, in some cases, over-collection 

from natural populations (Newbold et al. 2016). The introduction of invasive species 

adds further pressure to wild populations by sometimes outcompeting native 

species (Vilà et al. 2011). Because of these pressures imposed upon natural 

populations, their conservation is becoming ever more important to help preserve 

biodiversity (Hefley et al. 2016). Cycads have the highest risk of extinction of any 

group of seed plants, so their conservation is of paramount importance (Donaldson 

2003). 

 

Cycads represent the oldest group of extant seed plants (Nagalingum et al. 2011). 

They consist of 351 accepted species in 10 genera from two families: Zamiaceae 

and Cycadaceae (Calonje et al. 2019). Cycadaceae is monotypic with the sole 

genus Cycas L. Cycas is the largest genus of Cycadales, consisting of 117 extant 

species. The genus has a pantropical distribution and is found in Madagascar, 

throughout Asia, the Pacific Islands and Australia. Australia represents a 

biodiversity hotspot for cycads, where Cycas is represented by 38 of the 117 known 

species. The Australian species are distributed throughout Northern Australia 

including; Western Australia (three species), Northern Territory (16 species) and 

Queensland (19 species).  

 

Most parts of cycads are poisonous to livestock, including the leaves, sap, and 

seeds (Norstog & Nicholls 1997). This toxicity has often caused them to be cleared 

from arable land in order to limit accidental poisoning (Hall & Walter 2014; Hall & 

McGavin 1968). Cycads are also highly prized in horticulture, with some species 

being sold for thousands of US dollars (Donaldson 2003). The ornamental appeal of 

cycads has generated a great demand, causing over-collection and illegal removal 

from wild populations (Torgersen 2017; Pérez-Farrera et al. 2006). These factors 

cause breaks within and between populations leading to fragmentation. 

Fragmentation can prevent gene flow and further exacerbate isolation, leading to 

high genetic differentiation between populations, with a risk of increased inbreeding 

within the fragments (Young et al. 1996). 
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The increasing range and intensity of threat means that the in-situ conservation of 

many plant taxa is becoming increasingly urgent (Whitlock et al. 2016). As a result, 

many botanic gardens have made it their mission to play a critical role in the 

conservation of species (Nikitsky Botanical Gardens  2017). The living ex-situ plant 

collections of botanic gardens can harbour a significant amount of genetic diversity, 

representing that of natural in-situ populations (Cibrian-Jaramillo et al. 2013; 

Dosmann 2006). Thus, these ex-situ collections can be used to conserve genetic 

diversity of wild populations (Fant et al. 2016).  

 

It is critical to consider targeted collection of genetic material from natural 

populations for conservation purposes (Griffith et al. 2015). With careful 

management, botanic gardens can successfully be used to conserve wild 

populations (Griffith et al. 2014). Genetic diversity representing natural populations 

can be introduced into ex-situ conservation collections, and in some cases, has the 

potential to help replenish the genetic reserves of depleted natural populations 

(Volis 2017). Seed banks are considered to be a cost-effective method by which to 

store the seeds of most plant species almost indefinitely (Hamilton 1994), and have 

the capability of maintaining genetic diversity of species. Seed banks are not, 

however, an option for plants such as cycads the seeds of within have a very short 

period of viability (<1 year) under conventional storage regimes (Calonje et al. 2011; 

Nadarajan et al. 2018; Mondoni et al. 2011). The only way to conserve cycads ex-

situ is through living plants, but to do this effectively we need to understand the 

genetic diversity of the populations (Hurka 1994). 

 

Conservation genetics provides a framework to guide both conservation and 

restoration to minimise the risk of extinction imposed upon species like cycads 

(Kramer & Havens 2009; Frankham et al. 2004). The long-term aim of conservation 

genetics is to understand the genetic variation in wild populations, and to determine 

if populations contain enough variation for future adaptation, expansion and 

reestablishment (Paz-Vinas et al. 2018; Yoder et al. 2018; Hedrick & Miller 1992). 

Many in-situ conservation plans have been informed by measuring genetic factors 

that affect the overall dynamics of populations, such as decreases in population 

size, past bottlenecks and sex-specific gene flow (Zhang et al. 2018; Ahrens et al. 

2017). Conservation genetics has also been used to identify populations with high 

levels of genetic diversity, and to help select which of these populations should be 

prioritised for conservation (Hou et al. 2018; Rodríguez-Rodríguez et al. 2018; Drury 

et al. 2017).  
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However, despite the effectiveness of in-situ conservation is not optimal for all plant 

groups (Fay 2018), and many conservation genetic studies on cycads have focused 

on species already at high risk of extinction, biasing results (Swart et al. 2018; Feng 

et al. 2014; Da Silva et al. 2012; Pinares et al. 2009; Long-Qian & Xun 2006). This 

is the case for many cycads with populations that are already showing declines in 

genetic diversity (Cabrera-Toledo et al. 2012; Da Silva et al. 2012; Octavio-Aguilar 

et al. 2009; González-Astorga et al. 2008; Shuguang et al. 2006). The results of 

these studies showed that cycads exist in small and fragmented populations, 

especially in Africa (Da Silva et al. 2012; Ekué et al. 2008) and Central America 

(Cabrera-Toledo et al. 2010). This fragmentation is reflected in the genetic diversity 

where populations show evidence of drift resulting in a loss of alleles (Zhan et al. 

2011; González-Astorga et al. 2008).  

 

Geographic isolation often results in high genetic differentiation between 

populations (Long-Qian et al. 2004; Keppel et al. 2002). Populations connected by 

gene flow usually have greater gene diversity but overall lower genetic 

differentiation. This is because the populations are less genetically differentiated 

and, therefore, similar genetically (Huang et al. 2004; Yang & Meerow 1996). Over-

collection and land clearance reduces the effective population size, increases 

homozygosity of a population due to inbreeding, and slowly reduces the overall 

genetic diversity of the species (Meerow et al. 2012; Long-Qian et al. 2004). 

However, genetic diversity in cycads is not always correlated with the size of the 

populations, as smaller and isolated populations can contain high levels of genetic 

diversity, despite population retraction (Gong et al. 2015). This is likely due to 

historic gene flow caused by the slow reproductive times in cycads, and is often 

correlated with low variation between populations (James et al. 2018; Cibrián-

Jaramillo et al. 2010; González-Astorga et al. 2008).  
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Australian populations of Cycas are often large and less disturbed (Liddle 2009) 

compared to those of other countries. Of the 38 species of Cycas in Australia, only 

one study into the conservation genetics of an Australian Cycas  has been 

conducted (James et al. 2018). This makes Australia a prime location in which to 

further develop an understanding the population genetics, and evolutionary 

processes and patterns of cycads. 

 

Cycas calcicola for many is considered an iconic Australian cycad (Figure 6). The 

species occurs near or on limestone in light bush or rocky outcrops, in large but 

disjunct populations in the Litchfield National Park, Daly River, and Katherine 

regions of the Northern Territory (Figure 7) (Jones 2002; Hill 1996). A disjunct 

population of C. calcicola also occurs within the Spirit Hills conservation site (Hill 

1996). Cycas calcicola has an arborescent caudex ≤ 5 m in height, and is easily 

distinguished from other Australian Cycas by its glossy dark green leaflets having 

recurved margins that are covered in silvery-grey hairs (Hill 1996). Cycas calcicola 

is insect pollinated (Kono & Tobe 2007), and although the pollinator of C. calcicola 

has not been recorded, the species is said to have no pollinator specificity (Liddle 

2009). Some C. calcicola populations occur in close proximity to Cycas armstrongii 

Miq., which is known to be pollinated by two species of beetle in the Tenebrionidae 

(Ornduff 1992). Although C. calcicola is not known to hybridize with C. armstrongii it 

is likely that the species share pollinators (Liddle 2009). Seed dispersal for Cycas 

growing in the Northern Territory is rarely greater than 300 cm from a mother plant, 

and greater dispersal distances have not been recorded (Watkinson & Powell 

1997).  
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Figure 6 Cycas calcicola populations growing in the wild in the Katherine region and Litchfield 
National Park. (A) Part of a large population of C. calcicola growing on sandstone in the Litchfield 

National Park, Northern Territory. (B) Small group C. calcicola growing on limestone in the Katherine 

region. 
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Figure 7 Distribution of samples of C. calcicola in Northern Territory. Map of northern region in 

the Northern Territory, Australia showing sampling sites of wild (Litchfield and Katherine) and ex-situ 

conservation collections, representing the entire range of the species (Spirit Hills and Daly River).  

 

Cycas calcicola populations are largely undisturbed, yet there is some evidence of 

recent population contraction due to increased burning, habitat reduction and 

clearing for farmland or roads (Liddle 2009). The most recent IUCN Red List 

conservation assessment for C. calcicola considered the species as Least Concern 

(IUCN 2019). The assessment noted that there are significant disjunctions between 

populations, and that there is evidence of a decline in the number of individuals in 

the Katherine region due to over-collection and habitat loss (Liddle 2009). 

 

Here we investigated the genetic diversity of Cycas calcicola growing in Australia 

using genetic material collected from natural populations and from ex-situ 

collections of botanic gardens. To do this we used next generation sequencing in 

the form of RADseq, which allowed us to find informative markers throughout the 

genome of C. calcicola. The retrieved markers were either neutral or non-neutral, 

and subject to the full evolutionary history of the species (Andrews et al. 2016). The 

genetic data were used in two areas: firstly, to investigate the genetic diversity 

within and between populations of the Litchfield and Katherine regions, where the 

majority of the populations are found; secondly, to determine if the ex-situ 

collections adequately represent the genetic diversity of the wild populations.  
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3.2 Materials and methods 
 

Sampling strategy. Silica-dried leaflets of Cycas calcicola were collected from wild 

populations within Litchfield National Park and the Katherine region in the Northern 

Territory, Australia (Table 7). Populations were selected based on herbarium 

specimens and The Australasian Virtual Herbarium (AVH; https://avh.chah.org.au, 

accessed 12
th
 January 2015). A total of 60 individuals were sampled from six 

populations: three populations from Litchfield National Park and three from the 

Katherine region (Figure 7). For each population, ten individuals were sampled from 

plants of varying ages (juvenile to mature) and bearing microsporangiate or 

megasporangiate strobili, In addition, a further 12 samples were obtained from 

cultivated ex-situ collections: George Brown Darwin Botanic Garden (Darwin, 

Northern Territory, Australia) and Montgomery Botanical Center (Miami, Florida, 

USA). The ex-situ conservation material came from plants of known wild origin and 

represented the Katherine, Daly River, and Spirit Hills populations. In addition to the 

tissue sampling, we also gathered basic population demographics, which were 

recorded for each population (Table 7).  

 

Table 7 Population demographics for Cycas calcicola populations in Northern Territory. 
Litchfield 1 and 2 = Litchfield National Park, Litchfield-Tolmer = Tolmer Falls in the Litchfield National 

Park, Katherine-TT = Katherine population off the Stuart Highway near old used train tracks, Katherine-

CDU 1 and 2 = Charles Darwin University campus in Katherine. Katherine-CUL = cultivated samples 

from botanic garden wild collected from Katherine region. Samples per population = number of 

individual herbarium vouchers and DNA samples collected at each population, Height of caudex (cm) = 

height of caudex of each plant vouchered, No. seedlings = number of seedlings observed with caudex 

height < 2 cm, No. immature = number of immature observed with caudex height ≥ 2cm , No. large 

plants = number of nature plants observed able to bear strobili with caudex height ≥ 50 cm and No. 

male (♂) or No. female (♀) = number of plants bearing either microsporangiate or megasporangiate 

strobili. 
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DNA extraction and quantification. Approximately 0.05 g of silica-dried leaflets 

were ground to a fine powder using a TissueLyser (Qiagen, Hilden, Germany). 

When present in large amounts, trichomes were removed using a wire brush to 

improve extraction yield (common with C. calcicola). High molecular weight genomic 

DNA was extracted using a DNeasy Plant DNA Extraction Mini Kit (Qiagen, Hilden, 

Germany). Genomic DNA was inspected using a 2% agarose gel to check for the 

presence of DNA and impurities. DNA extractions were quantified using an 

Invitrogen Qubit broad range (3.0 BR DNA assay; Invitrogen, Life Technologies, 

Carlsbad, CA, USA) fluorometer with a target concentration of 17 µg/mL; any 

sample that yielded less than 17 µg/mL was either re-extracted or concentrated 

using a 1:1 ratio of Agencourt AMPure XP sample purification beads (Beckman 

Coulter, Inc.) by combining multiple extractions. 

 

DNA normalisation and restriction digest reaction. For a full protocol, see 

Clugston et al. (2019). First, genomic DNA was normalised to a concentration of 

500 ng in 42 µL total volume (0.01 µg/mL). Second, 5 µL of NEB 10x CutSmart 

buffer (New England Biolabs, Ipswich, MA) and 1 µL of Bovine Serum Albumin 

(BSA) was added to each well. Samples were then held at 4°C for a minimum of five 

hours before adding restriction enzymes—the five hours of incubation helped the 

cutting action of the restriction enzymes. Next, double digest reactions were carried 

out using 1 µL each of the restriction enzymes EcoR1-HF and Mse1. Reactions 

were then placed into a thermocycler for three hours at 37°C with a final 20-minute 

enzyme deactivation step at 65°C. The reactions were then checked on 2% agarose 

gel for quality of digestion. Last, reactions were cleaned using 1.8:1 ratio of AMPure 

XP beads to sample (90 µL of AMPure XP beads to 50 µL of digested DNA) and 

quantified using a Qubit high sensitivity kit. 

 

Library preparation. Libraries were prepared using an Illumina TruSeq nano high-

throughput dual index library preparation kit (Illumina Inc., CA, USA). We followed a 

modified version of the ezRAD v3 (Toonen et al. 2013), using half of the 

recommended volumes of the kit to save costs (Clugston et al. 2019). Following the 

methods by Clugston et al. (2019) the final steps of library preparation, were 

modified from ezRAD protocol, by using a final bead clean, using a 0.8:1 ratio of 

AMPure XP beads to remove adapter dimer. Final Illumina libraries were validated 

using a LabChip, cleaned using a 0.9:1 ratio of AMPure XP beads and quantified 

using a Qubit high sensitivity kit. Final libraries were then normalised to 10 nM 

concentration and pooled for sequencing. 
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Sequencing. We aimed to capture around 1GB of sequence data per sample (in a 

run of 95 libraries) to: ensure adequate coverage of the large genome of C. 

calcicola, account for overrepresentation of the plastid genome, and capture as 

much of the nuclear genome as possible. Genomic sequencing was carried out at 

using an Illumina NextSeq 500 150 bp paired-end high throughput (HT) on a single 

flow cell. The sequencing run was spiked with 20% PhiX sequencing control V3 to 

account for low diversity after using enzymatic digestion in the ezRAD protocol. 

 

Bioinformatics  
 

Quality control and filtering of sequence reads. The NextSeq 500 generated 

eight raw fastq files for each sample: four forward files and four reverse files. The 

four forward files were combined into a single file and similarly for the reverse files 

for downstream analysis. Illumina reads were assessed for quality using FastQC 

0.11.4 (Andrews et al. 2014). Then using Trimmomatic 0.36 (Bolger et al. 2014), 

reads were filtered for quality to remove Illumina adapter sequences and the first six 

base pairs of reads (cut sites) due to quality drop-off and cropped reads to 120 bp in 

length (reads dropped in quality after 120 bp). A sliding window was used to delete 

bases with a PhredQ score less than 20, and all reads less than 50 bp were 

discarded.  

 

Assembly of RADseq data. De novo assembly of the paired-end reads was 

performed using ipyrad 0.7.18 (Eaton 2017) using a high-performance online 

instance with Amazon Web Service though the California Academy of Sciences. In 

ipyrad all parameters were set to default, except “data type” was set to ‘pairgbs’ 

(most closely matches ezRAD), bases with a ‘PhredQ score’ less than 30 were 

converted to 'N’ and reads with 15 uncalled bases were discarded. Reads were 

further filtered for adapter sequences, adapters were trimmed, and reads were 

discarded if they were less than 40 bp after trimming.  
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The ‘maximum number of uncalled bases in consensus sequences’ was set to 10 in 

both forward and reserve reads. The setting for ‘maximum shared heterozygotes 

per locus’ was left as 0.5 (default) to reduce the effects of paralogs. The ‘maximum 

heterozygotes in consensus sequences’ was set at eight for both forward and 

reverse sequences, and the “minimum number of samples per locus” was set to 43, 

so each SNP would be present across a minimum of 60% of samples. The high 

minimum samples per locus helps to reduce the amount of missing data, and 

reduces anomalies that may occur in population level analysis to ensure effective 

population genotyping (Shafer et al. 2016). 

 

Population genetic analysis. Before comparative statistics could be calculated, 

samples and populations were assigned to groups referred to as “stratifications” 

(Table 7). These stratifications were defined as: region (Table 1), sub-region and 

population (Table 1). ‘Region’ was defined as the broad geographic area from which 

the samples were collected; Litchfield, Katherine, Daly River and Spirit Hills 

Conservation Reserve (Spirit Hills). ‘Sub-region’ defined populations grouped into 

their locality; Litchfield National Park (Litchfield NP), Litchfield National Park Tolmer 

Falls (Litchfield NP Tolmer), Katherine near train tracks along Stuart Highway 

(Katherine TT), Katherine Charles Darwin University (Katherine CDU), Katherine 

cultivated (Katherine CUL), Daly River and Spirit Hills. ‘Population’ defined the 

collected locality for each population following the designation provided in 

‘subregion (Table 1). Stratifications consisted of nine populations from four regions. 

These stratifications were used to define groups for further downstream statistical 

analysis.  

 

Descriptive statistics—number of individuals in each population (N), effective 

number of alleles (Na), the effective number of alleles per locus (Ne), observed 

heterozygosity (Ho), expected heterozygosity (He), unbiased expected 

heterozygosity (uHe), and fixation index (F)—were generated using GenALEx 6.5 

(Peakall & Smouse 2012). To test genetic variation among populations and among 

individuals within a population or region we used an analysis of molecular variance 

(AMOVA); genetic distance based pairwise FST was calculated in GenAlEx using 

9999 permutations of the dataset, with the ‘Codom-Allelic’ option selected.  
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STRUCTURE v.2.3.4 (Pritchard et al., 2000) was used to determine the structure of 

the populations of C. calcicola and the degree of admixture in the 72 individuals 

among 8 populations. STRUCTURE uses a Bayesian algorithm to infer the optimum 

number of distinct genetic groups K (clusters) by minimizing deviations from Hardy–

Weinberg and linkage equilibrium within each cluster. The analyses were carried out 

for K = 1–5 using 100,000 MCMC iterations after a burnin of 20,000 steps and were 

repeated 10 times for each K, with the ‘Separate Alpha for each Population’ option 

selected.  

 

To visualise the genetic relationships between populations, a discriminant analysis 

of principal components (DAPC) was carried out using Adegenet 2.1.0 (Jombart & 

Ahmed 2011) in R (R Core Team, 2019). The optimal number of clusters in the data 

and the number of principal components (PCAs) to be retained for discriminate 

analysis were determined using the “find.clusters” command in combination with the 

optimal A-score. A DAPC scatter plot was used to depict the relationship and 

connectivity of populations. 
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3.3 Results 
 

Sequencing and de-novo assembly. After filtering raw sequence data, the number 

of reads that remained per sample ranged from 1,296,034 to 4,650,176. De-novo 

assembly generated 1,296,034 to 3,037,283 sequence clusters with 22,806 to 

78,631 clusters containing six or more reads (referred to as a high depth cluster). 

The final output from ipyrad generated 2,271 SNPs recovered from 231 unique loci, 

across a minimum of 36 samples per locus (each locus was present for at least 50% 

of all individuals). 

 

Population genetic statistics. Population genetic analysis was used to determine 

the genetic diversity of the species and its populations (Table 8). Gene diversity (HE) 

of the populations ranged from 0.023 (± 0.004) in Spirit Hills to 0.116 (± 0.004) in 

Litchfield NP1, with a mean of 0.080 (± 0.001). The observed heterozygosity (HO) 

ranged from 0.028 (± 0.003) in Spirit Hills and Daly River to 0.059 (± 0.004) in 

Litchfield NP1, with a mean of 0.039 (± 0.001). The differences between the 

observed and expected heterozygosity indicated that the populations were not in 

Hardy-Weinberg equilibrium (HWE). The inbreeding coefficient (FIS, Table 8) ranged 

from -0.244 (-0.278 – -0.210, 95% CI) in Spirit Hills to 0.605 (0.583 – 0.591, 95% CI) 

in Katherine CDU1 populations. The average FIS across all populations was 0.491 

(0.500 – 0.482, 95% CI) indicating they were more related than would be expected 

under HWE.  
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Table 8 Summary of population genetic statistics for all populations of Cycas calcicola. Mean 

and standard error (SE) of frequency-based population genetic statistics for populations of Cycas 
calcicola, generated using GenALEx 6.5. Number of individuals in each population (N), number of 

alleles (NA), the effective number of alleles (NE), heterozygosity observed (HO), heterozygosity 

expected (HE), unbiased expected heterozygosity (uHe), and Fixation index (FIS). Calculation of the 

fixation 95% confidence interval (mean±1.96*SE) lower (-95%CI) and upper limits (+95%CI). 

 

 

Genetic structure and population differentiation. The AMOVA results (Table 9) 

showed the same level of differentiation at the regional (6%) and population level 

(6%), with the majority of genetic variation contained within populations (89%). 

Despite the relatively large geographic distance between the Litchfield and 

Katherine regions (~250 km between regions) (Figure 7), genetic differentiation is 

low. Pairwise FST values (Table 10) indicated low to medium levels of genetic 

distance between most populations, indicating high levels of gene flow. FST values 

ranged from 0.048 between Litchfield NP1 and Litchfield NP2 to 0.248 between 

Daly River and Spirit Hills. There is also evidence of higher levels of genetic 

differentiation between populations occurring in the Katherine and Litchfield regions 

which ranged from 0.082 between Katherine CDU1 and Litchfield NP2 to 0.115 

between Katherine CUL and Litchfield NP2, supporting greater geographic distance 

between regions (Figure 7). The populations with the greatest degree of genetic 
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differentiation from all other populations were Daly River (FST = 0.105 - 0.175) and 

Spirit Hills (FST = 0.177 - 0.248) (Figure 7).  

 

 

Table 10 Pairwise distance based FST matrix of Cycas calcicola populations. Genetic distance 

based pairwise FST matrix from AMOVA analysis generated using GenALEx 6.5 for Cycas calcicola 

populations. Values greater ≥ 0.20 are highlighted in bold. 

 

 

  

Table 9 Analysis of molecular variance for Cycas calcicola populations. Results for Analysis of 

Molecular Variance (AMOVA) for populations of Cycas calcicola. Df = Degree of Freedom, Among 

populations = genetic variation among the populations within the region and Within populations = 

degree of genetic variation within the populations in a region. 
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Population structure analysis. Population structure analysis found the most likely 

number of genetic groups to be K=2 (Figure 8). The structure plot shows genetic 

differentiation between populations in the Litchfield and Katherine region, with some 

admixture. Spirit Hills and Daly River show populations have a closer genetic 

relationship Litchfield than the Katherine region, with significant admixture. Overall 

there was less admixture in the Katherine populations than Litchfield, Spirit Hills and 

Daly River. 

  

Figure 8 Population structure plot for Cycas calcicola populations. Population structure plot 

represents 72 samples from eight populations of C. calcicola. The most likely number of genetic 

groups for the species was K=2 indicating two clusters within the data.  
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Discriminant analysis of principal components. For the discriminant analysis of 

principal component (DAPC) (Figure 9), 14 principal components were retained for 

the PCA, which comprised three genetic groups (K = 3) with a proportion of 

conserved variance = 0.391. These results indicate a close genetic relationship 

exists among populations in the Katherine and Litchfield region. However, there is 

evidence genetic differentiation between the Litchfield and Katherine regions. 

Additionally. The results show that populations occurring in Spirit Hills and Daly 

River are genetically closer to populations of the Litchfield region. 

 

  

Figure 9 DAPC graph of Cycas calcicola populations. Discriminate analysis of principal 

component shows all seven populations of C. calcicola, representing both the Litchfield and 

Katherine regions, in the Northern Territory, Australia. DAPC is a summary of 14 PCs with 

three discriminate functions (K = 3) and a proportion of conserved variance of 0.391. 
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3.4 Discussion 
 

Genomic data can play an important role in aiding our understanding of the genetic 

diversity of species by identifying factors that may affect the genetic fitness and 

evolutionary potential of populations (Young et al. 1996; Frankham 2003). The aim 

of this study was to investigate the genetic diversity of Cycas calcicola using 

genomic data, and to assess if ex-situ collections represent the genetic diversity of 

wild populations. The results of this study indicate low levels of genetic diversity in 

C. calcicola (HE =0.080 ± 0.001, Ho = 0.039 ± 0.001), and high levels of inbreeding 

(FIS = 0.491 ± 0.004). This inbreeding is likely to be an effect of small population 

size and small number of individuals participating in reproductive events (Lönn & 

Prentice 2002; Frankham 2003; Szczecińska et al. 2016). The effects of inbreeding 

will have a direct impact on the genetic fitness of the populations, as it will increase 

in the expression of deleterious recessive alleles and can significantly increase the 

risk of extinction (Wright et al. 2007).  

 

Genetic diversity. Estimating allelic diversity and heterozygosity allows us to gain 

an insight into the genetic health of populations (Hughes 2008). These factors can 

be used to determine the stresses on a population and its adaptive potential to ever 

changing environmental conditions (Pauls 2013). The few studies on genetic 

diversity of Australian cycads have focused on mostly Macrozamia Miq. and found 

low genetic diversity and poor population differentiation (Sharma et al. 2004; 

Sharma et al. 1999; Sharma et al. 1998). Although the populations of C. calcicola 

show evidence of a reduction in population size, the populations are still considered 

to be large and in good health (Liddle 2009).  

 

The low levels of genetic diversity in C. calcicola are likely indicative of numerous 

factors including small population sizes, habitat fragmentation and poor seed 

dispersal leading to isolation and fragmentation of populations, as found in other 

species of cycads (Cibrián-Jaramillo et al. 2010; Octavio-Aguilar et al. 2009; Keppel 

et al. 2008; Keppel et al. 2002; Vovides 1990). High levels of inbreeding in many 

populations will play a role in limiting the allelic diversity of the populations and 

although cycads favour outbreeding, only a few individuals in a population will 

usually participate in a given reproductive event (Terry et al. 2012; Suinyuy et al. 

2009; Vovides et al. 1997). In populations which are small and fragmented, this can 

contribute to higher levels of inbreeding and would have a dramatic impact on the 

genetic fitness and adaptive potential in populations of C. calcicola (Charlesworth 

2003). 
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Low levels of genetic diversity of cycads in Australia are not restricted to C. 

calcicola. Sharma et al. (2004) found that in the Macrozamia plurinervia 

(L.A.S.Johnson) D.L. Jones complex there was little genetic diversity within 

populations, poor differentiation between species and inbreeding. Their results 

indicated that an evident lack of heterozygotes in populations, which would impact 

the genetic fitness and future ability of populations and species. Low genetic 

diversity in cycads is not only restricted to Australia. Keppel et al. (2008) found a 

similar pattern in Cycas seemannii A.Br. and Cycas simplicipinna (Smitinand) 

K.D.Hill where the populations of each species had similar genetic diversity to that 

of C. calcicola (Feng et al. 2014). However, for other groups on conifers including 

Pinus L. and Picea Mill. high density and genomewide SNPs markers showed much 

higher levels of expected and observed heterozygosity then found in C. calcicola (≥ 

HE 0.24 – HO 0.25) (De La Torre et al. 2019; Plomion et al. 2016; Chen et al. 2013; 

Namround et al, 2008). Which shows that conifers in generally show much higher 

levels of genetic diversity to cycads growing in Australia. These indicate that low 

genetic diversity and inbreeding is a trend in cycad populations and not 

gymnosperms, which is perhaps an effect of population fragmentation resulting in a 

loss of genetic fitness in their often small and isolated populations (Octavio-Aguilar 

et al. 2009; Keppel et al. 2008; Hall et al. 1996). 

 

Genetic differentiation. Understanding genetic differentiation between populations 

and species is important in measuring and understanding gene flow between 

populations, regions and species (Manel et al. 2003). Low levels of population 

differentiation among populations in most cases is indicative of recent gene flow 

(Storfer 1999; Slatkin 1981). Many cycad populations have high levels of genetic 

differentiation, and is perhaps due to population fragmentation (Calonje 2013; 

Meerow et al. 2012; Meerow & Nakamura 2007). In C. calcicola although 

populations and regions showed an equal amount of genetic distance (AMOVA = 

6%, Table 9), with the majority of the variation being at the population level. There 

was still twice as much differentiation between regions than between populations 

within regions (Table 10). For Cycas calcicola populations are also geographically 

disjunct (Figure 7), especially those of the Litchfield and Katherine regions, with 

nearest populations of each region being separated by ~250 km. This is generally 

what would be expected, as in many plant groups geographic disjunction of 

populations is correlated with high levels of genetic differentiation (Muriira et al. 

2018; Yang et al. 2016).  
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This is further supported by population structure (Figure 8), and discriminate 

analysis (DAPC, Figure 9), which shows evidence of genetic differentiation among 

population in the Litchfield and Katherine regions. Although, estimates of pairwise 

genetic distance confirmed low levels of genetic distance among populations (FST = 

0.082 to 0.115, Tables 9 and 10), which is usually correlated with high rates of gene 

flow in plants (Sork 1999). These results indicate that although there is evidence of 

gene flow between populations within regions (Tables 9 and 10), the geographic 

distance backed up by difference by genetic structure and differentiation (Table 10, 

Figure 8 and 9).  

 

Similar patterns have been recorded for both Antirrhinum majus L. and Euterpe 

edulis Mart., where both species showed gene flow between populations despite 

significant geographic isolation between populations (Pujol et al. 2017; da Silva 

Carvalho et al. 2015). These results show that the geographic disjunction between 

regions and among some populations could be very recent and one of the reasons 

why there is still evidence of gene flow between populations (Table 10). Additionally, 

due to the poor dispersal mechanism in cycads, in which pollinators of many cycads 

rarely travel great distances even between close populations (~100 km), thereby 

reducing the likelihood of pollination over distances of ≥ 100 km (Norstog & Fawcett 

1989). Due to these reasons it is unlikely that there is current migration among 

populations between regions, caused by geographic distance, and the long 

generation time in cycads, indicates that this geographic disjunction could be a 

recent occurrence (Segar et al. 2017; Sampson et al. 2016; Cibrián-Jaramillo et al. 

2010).  

 

The effects and implications of low genetic diversity and differentiation. 

Documenting genetic diversity in populations underpins the resilience of species to 

adapt and evolve in changing environments (Furlan et al. 2012). Isolation of small 

populations reduces the adaptive potential of a species and can result in lower 

genetic diversity, with increased the risk inbreeding (Finlay et al. 2017). Although 

Cycas calcicola is considered a species of least concern according the IUCN Red 

List of Threatened Species (IUCN 2019), the genetic evidence presented by this 

study suggests there has been significant reductions in the size of its populations. A 

relative reduction in population size can result in bottlenecks, genetic drift and 

reduction in genetic fitness (Oakley et al. 2019), which can lead to a loss of 

evolutionary potential in a population and, thus, increase the risk of extinction 

(Ellstrand 1993; Reed et al. 2013; de Vere et al. 2009; Kramer & Havens 2009).  
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For C. calcicola the populations show low levels of allelic diversity and high levels of 

inbreeding. The low levels of genetic diversity is likely the result of multiple factors 

including habitat fragmentation, low survival, and slow growth rates in seedlings and 

juvenile plants (Aguilar et al. 2019). This low genetic diversity within and 

differentiation between populations are likely the result of small population sizes and 

fragmentation caused by habitat loss (Fischer et al. 2003). Additionally, as only a 

small number of mature individuals participate in a given reproductive event (Clark 

& Clark 1987), biased sex ratios will affect the genetic diversity in populations 

(Rosche et al. 2018). Biased sex ratios combined with low rates of seed dispersal 

could indicate that a seedling is more likely to establish near a maternal plant. If a 

seedling bears a strobili, then there is a higher chance of back-crossing, increasing 

the risk of inbreeding (Furlan et al. 2012). The low levels of allelic diversity in 

populations could also be historic and the results of recent extinction events (Crisp 

& Cook 2011), continuous population retraction, a slow reproductive rate, and small 

population sizes which are all likely to be contributing factors, which are indicative of 

low genetic fitness of the population, resulting in poor future survivability of C. 

calcicola (Charlesworth 2003). 

 

Do ex-situ collections represent wild diversity? The importance of ex-situ 

collections – often held by botanic gardens - for the conservation of plant species is 

critical, as they represent a safety net to conserve the genetic diversity of natural 

populations (Fant et al. 2016). One aim of this research was to establish if ex-situ 

conservation collections currently contain the genetic diversity of the natural 

populations for C. calcicola. This study found that populations from the Litchfield 

National Park are not represented in ex-situ botanic garden collections, and so a 

unique component of the genetic diversity of C. calcicola is not currently being 

preserved. Although there is little genetic differentiation between the Litchfield and 

Katherine regions (Figure 8 and Table 9), there is evidence of genetic differentiation 

among populations in the regions (Table 10). The increasing rarity of cycads in the 

wild is caused by a combination of habitat fragmentation, over-collection and climate 

change, making it increasingly important to safeguard natural populations (Kramer & 

Havens 2009). Ultimately, the only way to safeguard the survival of species is to 

preserve their genetic diversity in the well-curated living collections of botanic 

gardens (Griffith et al. 2015).  
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The future of C. calcicola wild populations. Although C. calcicola shows little 

genetic differentiation between populations, there is greater genetic differences 

between the Lichfield and Katherine regions, likely caused by small population sizes 

and geographical isolation (Plenk et al. 2019). This close genetic relationship 

between many geographically disjunct populations (Table 10) can be explained by 

recent population contractions caused by changes in climate and/or habitat 

destruction (Salas-Leiva et al. 2017; Feng et al. 2016). A scenario of widespread 

climate-induced fragmentation might well be exacerbated by the slow generation 

time of cycads (Roodt et al. 2017; Dehgan & Yuen 1986). Small population sizes 

would not provide enough genetic diversity for polymorphisms to differentiate 

amongst regions or populations (Lowe 2008). With low evolutionary rates and slow 

generation times, it is unlikely that gene flow would reoccur because of limited 

pollination and dispersal mechanisms in C. calcicola (Edwards et al. 2017). This 

situation is concerning and raises questions about the future and conservation of 

the species.  

 

The low genetic diversity and high levels of inbreeding in C. calcicola have 

implications for its conservation (Coates et al. 2018). Low genetic diversity and 

inbreeding means that the genetic fitness of the species is likely to be affected, 

thereby hindering its potential recovery and/or expansion (Amos & Balmford 2001; 

Ellstrand 1993). The best approach to conserve C. calcicola is to target seed 

collection for future ex-situ collections. Seeds should be collected from multiple 

individuals and populations to enhance the representation of the genetic diversity of 

C. calcicola in cultivation, which would be used to safeguard in-situ populations 

(Amos & Balmford 2001; Ellstrand et al. 1990). Although there is little genetic 

differentiation between the regions of C. calcicola, we would still recommend that 

each population should be regarded as a separate conservation management unit, 

and that germplasms from each should be conserved to represent the genetic 

diversity of wild populations. This, in turn, would facilitate reintroduction from ex-situ 

collections back into the wild if needed (Cohen et al. 1991). 

 

Considerations for further research. Tissue samples covering the known 

geographic range of C. calcicola (Hill 1996) were obtained from wild populations of 

Litchfield National Park and Katherine regions (Table 7), and from ex-situ collections 

representing Spirit Hills Conservation Reserve and the Daly River region. To 

capture the genetic diversity of the species and its populations we collected 10 

samples from each wild population, with additional samples from ex-situ botanic 

garden collections (Table 7). However, fewer samples were obtained for Spirit Hills 
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and Daly River which were represented by two and four samples respectively (Table 

7). Although RADseq can adequately capture the genetic diversity of populations 

with ~5 individuals (Nazareno et al. 2017), further samples from Spirit Hills 

Conservation Reserve and the Daly River might provide a deeper understanding of 

the genetic diversity of these populations.  

 

For botanic gardens to successfully represent the diversity of C. calcicola, 

populations from the Litchfield National Park need to be in cultivated. Additionally 

greater genotyping efforts would allow for a better estimation of the optimal number 

of individuals required to conserve the genetic diversity of C. calcicola in cultivation 

(Griffith et al. 2015). Populations in ex-situ collections have the added benefit of 

being more accessible for scientific and horticultural research, and would aid in the 

study of physiological and reproductive factors that may have contributed to the 

rarity of the species in the wild (Chen et al. 2012).  

 

Conclusions 
 

This study represents the first application of conservation genetics studies using 

RADseq on cycads and has provided important insights into the genetic history and 

diversity of Cycas calcicola in Australia. By using genetic samples from in-situ wild 

populations and ex-situ botanic garden collections we were able to in generate 

thousands of genome-wide informative markers. Our results recorded very low 

levels of genetic diversity and low genetic differentiation among populations of the 

species, which has led to inbreeding. These results are indicative of isolation and 

fragmentation of the population which may result in a loss of genetic fitness and 

have a significant impediment for the future adaptability of the species. These 

results are pertinent in the formulation and implementation of conservation 

strategies for this rare species. However, our results support genetic differentiation 

between the Litchfield and Katherine regions, where the majority of the populations 

are found, with correlates with significant geographic disjunction between the 

regions. The absence of ex-situ collections from populations of the Litchfield 

National Park is of concern, and we recommend that priority be given to the 

acquisition of genetically representative material from this region, to aid in the future 

conservation of the species.  
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Chapter 4 - Next-generation population genetics in 

Australian Cycas sheds light on the origins of C. 

armstrongii and C. maconochiei subsp. maconochiei. 

 
Cycads are at the highest risk of extinction of all seed plants. Isolation and 

fragmentation of natural populations are the foremost drivers of species extinction in 

this order. Here we present insights into the genetic diversity of two taxa of Cycas 

endemic to the Northern Territory, Australia: Cycas armstrongii and C. maconochiei 

ssp. maconochiei. Genetic material of each species was collected from 26 wild 

populations (237 samples) throughout their geographic range. Ten morphologically 

intermediate individuals from a single putative hybrid population (C. armstrongii x 

maconochiei) were also collected. We used next-generation sequencing in the form 

of restriction site associated DNA sequencing, following the established ezRAD 

method, modified for cycads. De-novo assembly using ipyrad generated 868 to 

3043 informative genome-wide single nucleotide polymorphic markers with 50% 

minimum samples per locus. Population genetic statistics showed exceptionally low 

levels of heterozygosity in Cycas armstrongii (HE = 0.009 to 0.033, HO = 0.005 to 

0.057) and in C. maconochiei ssp. maconochiei (HO = ≤ 0.049), low inbreeding was 

found in C. armstrongii (FIS = 0.007 to 0.040) and in C. maconochiei ssp. 

maconochiei populations show low to moderate levels of inbreeding (FIS = 0.037 to 

0.243). AMOVA revealed that both taxa had very low levels of differentiation 

between populations (6 - 14%) and only 6% differentiation between taxa. The 

distance-based pairwise FST matrix recovered very low to high levels of genetic 

distance between populations of C. armstrongii (0 to 23.4%) and of C. maconochiei 

ssp. maconochiei (4.1% to 9.8%), implying gene flow between populations of both 

taxa. Discriminant analysis of principal components indicated a lack of spatial 

differentiation between individuals and taxa. Despite the morphological and 

geographic differences between the taxa, there was little genetic differentiation 

between C. armstrongii and C. maconochiei ssp. maconochiei, thereby casting 

doubt on the taxonomic validity of separating C. armstrongii from C. maconochiei 

ssp. maconochiei. Furthermore, the lack of interspecific genetic variation provides 

no evidence of interspecific hybridisation.  
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4.1 Introduction 
 

Australia is one of the world’s key areas of floristic diversity (Sloan et al. 2014), with 

approximately 92% of vascular plant species being endemic (Chapman 2009).  

Worldwide, an increasing number of plant species are under threat of extinction 

from habitat loss and/or fragmentation (Sax et al. 2002). The effects of recent, 

human-mediated climate change has also caused significant shifts in both the 

distribution and abundances of many species, including those in Australia (Spooner 

et al. 2018; Thomas et al. 2004). Thus, the development of a range of effective 

conservation interventions are critical for the long-term management of threatened 

and at-risk species (Scheele et al. 2018; Hefley et al. 2016). In order to accomplish 

appropriate conservation management plans for plant species, it is imperative to 

understand aspects of genetic diversity and population demographics (Harrisson et 

al. 2014; Hedrick & Miller 1992). Population genetics has been used to identify and 

prioritise populations for conservation that have high levels of genetic diversity (Hou 

et al. 2018; Rodríguez-Rodríguez et al. 2018; Drury et al. 2017). By conserving 

populations with the highest genetic diversity, species will have the maximum 

potential for genetic resilience through the adaptability of their populations (Kramer 

& Havens 2009; Frankham et al. 2004).  

 

Cycads are of global conservation significance, and their populations are threatened 

by over-collection, habitat loss, and population fragmentation (Donaldson 2003). 

The situation is further exacerbated by the slow rate of reproduction of many cycads 

(Raimondo & Donaldson 2003). Population isolation is a factor that drives 

speciation, but in plants such as cycads it is not always advantageous (Rieseberg 

2007). The effects of population isolation in cycads often results in genetic drift and 

bottlenecks (Zhan et al. 2011; González-Astorga, et al. 2008). The western Pacific 

species, Cycas balansae Warb. and Cycas seemannii A.Br., show high levels of 

inter-population genetic variation, but low levels of genetic variation within 

populations. These results imply that reduced gene flow has led to greater genetic 

differences between populations and inbreeding within the populations (Long-Qian 

et al. 2004; Keppel et al. 2002). Genetic isolation and inbreeding can also be 

associated with small population sizes which can lead to a reduction in the genetic 

fitness of a population (Ellstrand 1993). However, genetic diversity in cycads is not 

always correlated with population size as populations can have a higher level of 

historic gene flow, but with little variation between geographic regions (James et al. 

2018, Cibrián-Jaramillo et al. 2010; González-Astorga, et al. 2008).  
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Geographic proximity of populations of different species can lead to interspecific 

hybridisation and outbreeding depression (Alix et al. 2017). Interspecific hybrids 

among cycads are often morphologically and geographically intermediate between 

the putative parent species (Chiang et al. 2013). Hybridisation occurs more readily 

when there are small genetic differences between species (Neri et al. 2018). 

The effects of introgression are important in the study of plants such as cycads as it 

causes genetic mixing which is especially problematic in rare species with small 

effective population sizes, as it dilutes the genetic identity of a species (Ellstrand et 

al. 1990). However, interspecific hybridisation can also have its benefits as it can 

introduce new genetic material into populations by incorporating advantageous 

alleles, for example by introducing resistance to pathogens (Siemens 2012). 

 

The use of molecular genetics allows the identification of interspecific hybrids, and 

can quantify the degree to which the putative parent species are genetically related 

(Schmutzer et al. 2015).The effects of hybridisation on the genetic diversity of wild 

populations of cycads has yet to be explored (van der Bank et al. 2001). It is, 

therefore, currently unknown if any formally recognised hybrids between cycad 

species are biologically valid, or if they are merely intermediate morphotypes of a 

single morphologically variable species (Chamberlain 1926).  

 

Cycas L. (Cycadaceae) is the largest genus of Cycadales consisting of 117 extant 

species. The genus has a pantropical distribution, and ranges from coastal Africa to 

Australia. Australia has around 33% of the world’s cycad species with all of species 

being endemic to Australia (Calonje et al. 2019). Cycas species are found in 

Western Australia (3 species), Northern Territory (16 species) and Queensland (19 

species). Despite the species richness of Cycas in Australia, little is known of their 

population genetics with only Cycas megacarpa K.D.Hill being studied in any detail 

(James et al. 2018).  

 

Many population genetics studies of plants have been focused on species thought 

to be at the greatest risk of extinction (Heywood & Iriondo 2003; Young et al. 1996). 

This is also the case for cycads, where populations have already experienced 

bottlenecks and reduced genetic diversity (Cabrera-Toledo et al. 2012; Da Silva et 

al. 2012; Octavio-Aguilar et al. 2009; González-Astorga, Vovides, et al. 2008; 

Shuguang et al. 2006). To understand genetic relationships of plants at risk, it is 

also important to focus on species that are not as threatened as this will better help 

to contextualize genetic diversity and distinctness of species as well as uncovering 

instances of introgression (Rodríguez-Quilón et al. 2016).  
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Cycas populations in the Northern Territory are relatively easily accessible, and 

many species grow abundantly throughout their distribution (Dixon 2004). Cycas 

armstrongii Miq. and C. maconochiei ssp. maconochiei K.D.Hill (Figure 10, 11 and 

12,) are two of the most common species in the Northern Territory. Their 

populations are often relatively large (Watkinson & Powell 1997), but are potentially 

under threat by frequent anthropogenic burning, land clearing for agriculture, and 

competition from invasive species. Populations of both taxa are considered to be 

healthy, and show evidence of continuous recruitment (Liddle 2009). Under the 

Interim Biogeographic Regionalisation for Australia (IBRA7) from Australia's 

Strategy for the National Reserve System (Australian Government 2000), both taxa 

occur in biogeographic subregions Darwin Coastal (DAC01), Pine Creek (PCK01), 

Daly Basin (DAB01), Cobourg (TIW01) and Tiwi (TIW02).  

Figure 10 Map of samples collected for Cycas armstrongii and C. maconochiei ssp. 
maconochiei. Map of Northern Territory, Australia. Showing range of sample collection from C. 
armstrongii (Tiwi Islands, Garig Gunak Barlu National Park, Darwin Coastal Region and Litchfield 

National Park (Pine Creek)), C. maconochiei ssp. maconochiei (Cox Peninsula to Dundee Beach, 

representing most populations expect most southern), representing most populations expect most 

southern and a hybrid population C. armstrongii x maconochiei.  
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Figure 11 Cycas armstrongii populations growing in the Darwin Coastal and Pine Creek region, 
Northern Territory Australia. (A) Small population growing along the Stuart Highway, in the Darwin 

Region, Northern Territory Australia. (B) Medium sized population consisting of mostly mature specimens 

growing near the Litchfield National Park. 
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Figure 12 Cycas maconochiei ssp. maconochiei growing in the Cox Peninsula Northern Territory 
Australia. (A) Large population of C. maconochiei ssp. maconochiei (B) Large mature female specimen 

bearing seeds on megasporophylls. 
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Cycas armstrongii Miq. (Figure 10 and 11) is considered to be one of the most 

abundant cycad species in the Darwin Coastal and Pine Creek sub-regions, growing 

in dense populations in open savannah or semi-closed Eucalyptus forests, with 

scattered populations on the Tiwi Islands (TIW01) and Cobourg Peninsula (TIW02) 

subregions (Liddle 2009; Watkinson & Powell 1997; Hill 1996). Cycas maconochiei 

ssp. maconochiei (Figure 12), like C. armstrongii, occurs in large and disjunct 

populations north-west of Darwin and in the greater Darwin Coastal Region. In 

addition, fragmented populations matching the morphological characteristics of both 

taxa occur on the Tiwi Islands (Liddle 2009). Cycas armstrongii and C. maconochiei 

share many morphological characteristics although C. maconochiei may be 

differentiated from C. armstrongii based on the former’s darker green leaves, 

distinctive recurved leaflet margins, and the lack of a terminal point on the 

cataphylls (Hill 1996). 

 

Cycas armstrongii and Cycas maconochiei subsp. maconochiei are thought to be 

part of a species complex (sensu Hill 1996) comprising: Cycas armstrongii Miq., C. 

canalis K.D.Hill, C. conferta Chirgwin ex Chirgwin & Wigston, Cycas maconochiei 

subsp. maconochiei Chirgwin & K.D.Hill and Cycas maconochiei ssp. viridis 

K.D.Hill. Species within the complex are considered to hybridise freely (Hill 1996). 

Only C. armstrongii and C. maconochiei ssp. maconochiei have a continuous 

distribution through the Darwin Coastal and Pine Creek sub-regions where a single 

population of the putative interspecific hybrid C. armstrongii x maconochiei  also 

occurs (Figure 10) (Liddle 2009; Hill 1996). The continuous distribution of C. 

armstrongii, C. maconochiei ssp. maconochiei, and the sympatric putative hybrid, 

presents an opportunity to study the effects of interspecific hybridisation between 

two closely related species (Hill et al. 2014).  
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Cycas armstrongii is known to be pollinated by two species of beetle in the family 

Tenebrionidae and to a lesser extent by wind pollination (Ornduff 1992;Hall & Walter 

2018). Cycas maconochiei is thought to be insect pollinated (Kono & Tobe 2007), 

but the pollinator has yet to be identified (Liddle 2009). Based on their parapatric 

distribution and the putative presence of hybrids, it is possible that C. maconochiei 

and C. armstrongii share a pollinator. Seed dispersal in C. armstrongii is considered 

to be less than 1 m from the female plant (Watkinson & Powell 1997). Whilst the 

contemporary dispersers of Australian cycad seeds are known to be small rodents 

and marsupials, it is thought that the primary seed dispersers were most likely 

unknown members of the now extinct Australian Pleistocene megafauna (Hall & 

Walter 2013).  

 

Here we aim to better understand the genetic diversity of Cycas armstrongii and C. 

maconochiei ssp. maconochiei by analysing genetic material collected from 

populations throughout the Northern Territory. We use next generation sequencing 

(NGS) in the form of restriction-site associated DNA sequencing (RADseq), which 

allowed us to find hundreds to thousands of markers throughout the genome, which 

are subjected to the full evolutionary history of the species (Andrews et al. 2016). 

The data will be used to determine the genetic history and diversity of natural 

populations of C. armstrongii and C. maconochiei, and to inform the conservation 

management of the taxa, to aid in species conservation. The results will provide 

new insights into the geographic and genetic relationship between the two species, 

and will allow us to examine the occurrence of the interspecific hybridisation 

proposed by Hill (1996).  

  



 

71  

4.2 Materials and methods 
 

Sample preparation 
 

Sampling strategy. Populations were selected based on previously published 

records by Liddle (2009), Dixon (2004) Hill (1994), herbarium specimens held by 

The New South Wales National Herbarium (NSW),  Northern Territory Herbarium 

(DNA), and The Australasian Virtual Herbarium (AVH) ( https://avh.chah.org.au, 

accessed 12
th
 January 2015). Silica gel dried leaflets were collected from up to 40 

individuals (Average =12) from 21 wild populations (Table 11, Figure 10) for two 

species: Cycas armstrongii and Cycas maconochiei ssp. maconochiei, and a 

population of suspected hybrid individuals (= Cycas armstrongii x maconochiei). The 

sampled populations represent the following biogeographic subregions as defined 

by the Interim Biogeographic Regionalisation for Australia (IBRA7; Australian 

Government 2000): Darwin Costal (DAC01), Pine Creek (PCK01) and Tiwi (TIW01) 

and  Cobourg (TIW02). A population of C. maconochiei from the Daly Basin (IBRA 

subregion DOB01) was not sampled.  
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Table 11 Summary of samples collected from natural populations of Cycas armstrongii, C. 
maconochiei ssp. maconochiei and C. armstrongii x maconochiei in Northern Territory, 
Australia. Table defines the sampling stratification used for discriminate analysis and AMOVA. 

Species = The taxonomic identification assigned during collection; Region and Sub-Region are defined 

as the regions and sub-regions for the Interim Biogeographic Regionalisation for Australia (IBRA7) 

from Australia's Strategy for the National Reserve System 

(http://www.environment.gov.au/land/nrs/science/ibra). Locality = name of providence by which groups 

of populations are referred to in the text; Population = individual populations where collections were 

carried out and No. samples = the total number of samples collected from each population. 

 

 

DNA extraction and quantification. Approximately 0.05 g of silica-dried leaflets 

were ground to a fine powder using a TissueLyser (Qiagen, Hilden, Germany). High 

molecular weight genomic DNA was extracted using a DNeasy Plant DNA 

Extraction Mini Kit (Qiagen, Hilden, Germany) following a modified protocol (see 

Chapter 2). Genomic DNA was inspected using a 2% agarose gel to check for the 

presence of DNA and impurities. DNA extractions were quantified using an 

Invitrogen Qubit (3.0 BR DNA assay; Invitrogen, Life Technologies, Carlsbad, CA, 

USA) fluorometer with a target concentration of 17 µg/mL. Any samples that yielded 
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less than this amount was either re-extracted or concentrated using a 1:1 ratio of 

Agencourt AMPure XP sample purification beads (Beckman Coulter, Inc.) by 

combining multiple extractions. 

 

DNA normalization and restriction digest reaction. Genomic DNA was 

normalised to a concentration of 500 ng in 42 µL total volume (0.01 µg/mL), then 5 

µL of NEB 10x CutSmart buffer (New England Biolabs, Ipswich, MA) and 1 µL of 

Bovine Serum Albumin (BSA) was added to each well. Samples were held at 4°C 

for a minimum of five hours before adding restriction enzymes (the five hours helps 

the cutting action of the restriction enzymes). Double digest reactions were carried 

out using 1 µL each of the restriction enzymes EcoR1-HF and Mse1. Reactions 

were placed into a thermocycler for three hours at 37°C with a final 20-minute 

enzyme deactivation step at 65°C. Samples were checked on 2% agarose gel for 

quality of digestion. The double digest reactions were cleaned using 1.8:1 ratio of 

AMPure XP beads to sample (90 µL of AMPure XP beads to 50 µL of digested 

DNA) and quantified using a Qubit high sensitivity kit. 

 

Library preparation. Libraries were prepared using an Illumina TruSeq nano high 

throughput dual index library preparation kit (Illumina Inc., CA, USA). We followed a 

modified version ezRAD v3 (Toonen et al. 2013) protocol using half of the 

recommended volumes (Clugston et al. 2019). During the final step of library 

preparation, we modified the ezRAD v3 protocol for the final bead clean using a 

0.8x ratio of AMPure XP beads to remove adapter dimers, present in the samples 

after ligation. Final Illumina libraries were validated using a LabChip, cleaned using 

a 0.9:1 ratio of AMPure XP beads and quantified using a QuBit high sensitivity kit. 

Final libraries were then normalized to 10 nM concentration and pooled for 

sequencing. 

 

Sequencing. We aimed to capture a minimum of 1 GB of sequence data per 

sample (in three sequencing runs of 238 libraries), to ensure adequate coverage of 

the large genomes, and to help account for overrepresentation of the plastid 

genome, by capturing as much of the nuclear genome as possible. Genomic 

sequencing was carried out using an Illumina NextSeq 500 150bp paired-end high 

throughput (HT) on a single flow cell (x2 runs) and an Illumina HiSeq 400 150bp 

paired-end single lane. Each sequencing run was spiked with 10% PhiX sequencing 

control V3 to account for low diversity after using enzymatic digestion in the ezRAD 

protocol, modified by Clugston et al. (2019). 
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Bioinformatics  
 

Quality control and filtering of sequence reads. The Illumina NextSeq 500 

sequencer generated eight fastq files (four forward and four reverse) which were 

combined into a single file (one forward and one reserve) using a Unix bash script 

for compatibility with downstream processing. This was not the case for the Illumina 

HiSeq 4000 sequencer as only single forward and single reverse reads were 

generated. Using FastQC 0.11.4 (Andrews et al. 2014), reads were filtered to detect 

falloff in read quality and then trimmed using Trimmomatic 0.36 (Bolger et al. 2014). 

To remove Illumina adapter sequences, we removed the first 6 base pairs of reads 

(cut sites) due to quality drop-off and cropped reads to 120 bp in length (due to 

lower quality after 120 bp). A sliding window was used to delete bases with a 

PhredQ score less than 20, and all reads less than 50 bp were discarded.  

 

Assembly of RADseq data. De novo assembly of the paired-end reads was 

performed using ipyrad 0.7.24 (Eaton and Overcast, in prep) on a high-performance 

online instance with Amazon Web Service (AWS) though the California Academy of 

Sciences (California, USA). All parameters were set to default in ipyrad except for 

data type, which was set to ‘pairgbs’ (most closely matches ezRAD). Bases with a 

‘PhredQ score’ of less than 30 were converted to ‘N’, and reads with 15 or more 

uncalled bases were discarded. Reads were further filtered for adapter sequences 

and trimmed. Reads were discarded if they were less than 40 bp after trimming. The 

‘maximum number of uncalled bases in consensus sequences’ was set to 10 in both 

forward and reserve reads. The setting for ‘maximum shared heterozygotes per 

locus was left as 0.5’ (default) to reduce the effects of paralogs. The ‘maximum 

heterozygotes in consensus sequences’ was set to 8 for both forward and reverse 

sequences and the ‘minimum number of samples per locus’ was set to 119, so each 

SNP would be present across a minimum of 50% of samples. The high ‘minimum 

samples per locus’ helps to reduce the amount of missing data and helps prevent 

anomalies which may occur in population level analysis and to ensure effective 

population genotyping (Shafer et al. 2016). These settings were used for a 

combined assembly including C. armstrongii, C. maconochiei and C. armstrongii x 

maconochiei as well as two separate assemblies for C. armstrongii and C. 

maconochiei.  
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Population genetic analysis. For comparative statistics, samples were assigned to 

a stratification group (Table 11) depending on the aim of the analysis, namely: 

Taxon, IBRA region, IBRA subregion, locality and population. Descriptive statistics - 

Number of individuals in each population (N), effective number of alleles (NA), the 

effective number of alleles per locus (NE), heterozygosity observed (HO), 

heterozygosity expected (He), unbiased expected heterozygosity (uHe), and the 

fixation index (FIS) were generated using GenALEx 6.5 (Peakall & Smouse 2012). 

To test genetic variation among populations and among individuals within a 

population or region we used an analysis of molecular variance (AMOVA); genetic 

distance based pairwise FST was calculated in GenAlEx using 9999 permutations of 

the dataset, with the ‘Codom-Allelic’ option selected. However, for Cycas 

armstrongii pairwise FST was determined using diveRsity 1.9.90 (Keenan et al. 2013) 

in R 3.8.10 (R core development team), using the pairwise bootstrap function for 

100 bootstraps.  

 

To understand population structure in Cycas armstrongii and Cycas maconochiei 

ssp. maconochiei including the hybrid population, STRUCTURE v.2.3.4 (Pritchard et 

al., 2000) was used to determine admixture among populations and between 

species for Cycas armstrongii in 150 individuals among 17 populations, for Cycas 

maconochiei ssp. maconochiei 76 individuals among 8 populations. Finally, a 

combined data containing 236 individuals among all taxa including the hybrid 

populations were tested. STRUCTURE uses Bayesian algorithms to infer the 

optimum number of distinct genetic groups K (clusters) by minimizing deviations 

from Hardy–Weinberg and linkage equilibrium within each cluster. The analyses 

were carried out for K = 1–5 using 100,000 MCMC iterations after a burnin of 20,000 

steps and were repeated 10 times for each K, with the ‘Separate Alpha for each 

Population’ option selected.  

 

To visualise the genetic relationships between populations, a discriminant analysis 

of principal component (DAPC) was carried out using Adegenet 2.1.0  in R (Jombart 

& Ahmed 2011). The optimal number of clusters in the data and number of PCAs to 

be retained for discriminate analysis was determined using the “find.clusters” 

command in combination with the optimal A-score. The genetic assignment of 

populations was tested to predict if individuals belonged to the inferred groups in the 

set stratifications. These results were graphically displayed showing prior group 

membership for all individuals with group probabilities. The results were visualised 

with a DAPC scatter plot in order to understand relationships and connectivity of 

populations. 
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4.3 Results 
 

Sequencing and de-novo assembly. After filtering raw sequence data, the number 

of reads for each sample that passed all filters ranged from 1,055,323 to 

16,253,580. De-novo assembly of the reads generated sequence clusters from 

840,412 to 6,362,790 with 12,241 to 4,677,090 clusters being high-depth containing 

six or more reads. This resulted in a sequence read consensus of 8,383 to 

4,035,099. The final output resulted in 1151 SNPs recovered from 108 unique loci 

for both species and the putative hybrid population combined. Cycas armstrongii 

had 868 SNPs recovered from 91 unique loci, and 3043 SNPs were recovered for 

C. maconochiei from 315 unique loci. 

 

Population genetic statistics. The results from population genetic analysis were 

used to determine the genetic diversity of the taxa and their populations (Table 11). 

Cycas armstrongii (Table 12) showed an expected heterozygosity (HE) that ranged 

from 0.009 (± 0.002) for the Bathurst Island population to 0.033 (± 0.003) for the 

Litchfield Park Road 1 population, with a mean of 0.020 (± 0.001). The observed 

heterozygosity (HO) ranged from 0.005 (± 0.002) in Bathurst island population to 

0.057 (± 0.005) in Milikapiti 1 population, with a mean of 0.036 (± 0.001). The mean 

HE (0.020 ± 0.001) and HO (0.036 ± 0.001) indicates that the populations were within 

the Hardy-Weinberg equilibrium (HWE). The inbreeding coefficient (FIS) ranged from 

0.007 (-0.619 to -0.669 95%CI) in the Bathurst island to 0.040 (0.081 to 0.051 

95%CI) in Milikapiti 1 population with a mean of 0.024 (0.021 to 0.014 95%CI). 

These results indicate that individuals in the Bathurst island population are less 

related than would be expected under HWE and Cox Peninsula population is more 

related than would be expected under the HWE. The populations of C. armstrongii 

that were within the HWE (Table 12) were Cox Pen 3 at 0.025 (0.021 to -0.004 

95%CI), Cox Pen 1 at 0.017, Litchfield Park Road 2 at 0.028 (0.005 to -0.021 

95%CI) and Lichfield NP 1 at 0.018 (0.008 to -0.021 95%CI). The mean FIS for 

Cycas armstrongii was 0.024 (0.021 to 0.014 95%CI) indicating that although some 

populations are within the HWE the majority deviate significantly. 
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Table 12 Summary of population genetic statistics for populations of Cycas armstrongii. Mean 

and standard error (SE) of frequency-based population genetic statistics for populations of C. 
armstrongii within the defined IBRA7 regions, generated using GenALEx 6.5. Effective number of 

individuals in each population (N), effective number of alleles (NA), the effective number of alleles (NE), 

heterozygosity observed (HO), heterozygosity expected (HE), unbiased expected heterozygosity (uHe), 

and Fixation index (FIS). Calculation of the fixation 95% confidence interval (mean±1.96*SE) lower (-

95%CI) and upper limits (+95%CI). 
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Table 13 Summary of population genetic statistics for populations of Cycas maconochiei ssp. 
maconochiei and C. armstrongii x maconochiei. Mean and standard error (SE) of frequency-based 

population genetic statistics for populations of C. maconochiei ssp. maconochiei and C. armstrongii x 

maconochiei, generated using GenALEx 6.5 in the Darwin Costal Region (DAC01). Number of 

individuals in each population (N), effective number of alleles (NA), the effective number of alleles (NE), 

heterozygosity observed (HO), heterozygosity expected (HE), unbiased expected heterozygosity (uHe), 

and Fixation index (FIS). Calculation of the fixation 95% confidence interval (mean±1.96*SE) lower (-

95%CI) and upper limits (+95%CI). Cycas armstrongii x maconochiei = Leviathan Creek. Calculation of 

the fixation 95% confidence interval (mean±1.96*SE) lower (-95%CI) and upper limits (+95%CI). 
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Cycas maconochiei (Table 13) had a HE that ranged from 0.043 (± 0.002) in the Cox 

peninsula population 3 to 0.059 (± 0.002) in the Dundee Beach 1 population, with a 

mean of 0.053 (± 0.001). The HO ranged from 0.033 (± 0.002) in the Dundee Forest 

population to 0.049 (± 0.002) in the Bynoe 1 population, with a mean of 0.040 (± 

0.001). The mean HE (0.053 ± 0.001) and Ho (0.040 ± 0.001) indicate that all 

populations of C. maconochiei fall outside of the HWE. The inbreeding coefficient 

(FIS) ranged from 0.037 (0.021 - 0.053 95%CI) in the Bynoe 1 population to 0.243 

(0.225 to 0.262 95%CI) in the Bynoe 2 population. The mean FIS value was 0.154 

(0.148 to 0.161 95%CI) indicating that individuals within population of C. 

maconochiei are more related than would be expected under a model of random 

mating. Cycas armstrongii x maconochiei (Leviathan Creek) (Table 13) had an 

expected heterozygosity (HE) of 0.020 (± 0.002) and a HO of 0.018 (± 0.002). The FIS 

was 0.001 (-0.018 to 0.021 95%CI) indicating that random mating is occurring in the 

population. 

 

Genetic structure and population differentiation. Analysis of Molecular Variance 

(AMOVA, Table 14) showed that there was 6% genetic variation between C. 

armstrongii and C. maconochiei There was 14% variation among all populations, 

with the majority of variation (80%) contained within populations. Cycas armstrongii 

had 3% genetic variation among IBRA subregions, 13% genetic variation between 

its populations, and with the majority of the genetic variation being within 

populations (84%). Cycas maconochiei had no genetic variation between regions, 

6% genetic variation between populations, with most genetic variation being within 

populations (94%). 
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The distance based (AMOVA) pairwise fixation index (FST) were calculated for C. 

armstrongii and C. maconochiei ssp. maconochiei separately. The genetic distance 

between populations of C. armstrongii (Table 15) ranged from 0 (0%) in multiple 

populations especially populations within the Tiwi Corbourg regions to 0.234 

(23.4%) between the Cobourg and Cox Pen 3 population. The pairwise fixation 

index (FST) showed genetic distance between IBRA7 sub regions (Table 16) ranged 

from 0.009 (0.099%) between Darwin Costal and Pine Creek to 0.127 (12.7%) 

between Cobourg to Pine Creek. These results indicated that populations occurring 

within Tiwi (TIW) showed evidence of a greater genetic distance from the Darwin 

Costal and Pine Creek regions (DAC/PCK), which agree somewhat with geography 

(Figure 1). The genetic distance between populations of C. maconochiei ssp. 

maconochiei (Table 17) ranged from 0.041 (4.1%) between the Dundee Forest and 

the Cox Pen 1 populations to 0.098 (9.8%) between Dundee Beach 1 and Bynoe 1 

populations. Overall, no populations of C. maconochiei ssp. maconochiei had 

greater than 10% genetic distance. 

  

Table 14 Analysis of molecular variance for Cycas armstrongii and C. maconochiei ssp. 
maconochiei. Results for Analysis of Molecular Variance (AMOVA) for populations of C. armstrongii and C. 
maconochiei ssp. maconochiei. Df = Degree of Freedom, among populations = genetic variation among the 

populations within the localities and within populations = degree of genetic variation within the populations in 

a region. 
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Table 15 Pairwise FST matrix of Cycas armstrongii populations. Genetic distance based pairwise 

FST matrix from AMOVA analysis generated using diveRsity 1.9.90 for Cycas armstrongii populations 

within the defined Interim Biogeographic Regionalisation for Australia (IBRA7). Values greater ≥ 0.20 

are highlighted in bold. 

 
 

 
 

Table 17 Pairwise FST matrix of Cycas maconochiei ssp. maconochiei populations. Genetic 

distance based pairwise FST matrix from AMOVA analysis generated using GenALEx 6.5 for Cycas 
maconochiei ssp. maconochiei populations in the Darwin Costal Region (DAC01).  

 
 

 

 

Table 16 Pairwise FST matrix between Cycas armstrongii regions. Genetic distance based pairwise 

FST matrix from AMOVA analysis generated using GenALEx 6.5 to show genetic distance between sub-

regions for the Interim Biogeographic Regionalisation for Australia (IBRA7) of Cycas armstrongii. 
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Population structure analysis. Population structure results for Cycas armstrongii 

show no defined population structure between regions and populations (Figure 13).  

Cycas maconochiei ssp. maconochiei population structure analysis (Figure 14) 

showed the same results for Cycas armstrongii containing only a single genetic 

group of K = 1. The structure plot combining C. armstrongii, C. maconochiei ssp. 

maconochiei and C. armstrongii x maconochiei (Figure 15), showed only a single 

genetic group (K = 1), with no differentiation between populations, or between taxa. 

 
Figure 13 Population structure plot for Cycas armstrongii populations. Population structure plot 

represents 150 samples from 12 populations in 3 defined regions representing the Interim 

Biogeographic Regionalisation for Australia (IBRA7). The highest model value indicated K=1 a single 

genetic within the data. 
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Figure 14 Population structure plot for Cycas maconochiei ssp. maconochiei populations. 
Population structure plot represents 77 samples from 8 populations in the IBRA7 defined Darwin 

Costal Region The highest model value K=1 indicating a single genetic group in the data. 

Figure 15 Population structure plot for Cycas armstrongii, C. maconochiei ssp. maconochiei 
and Cycas armstrongii x maconochiei. Population structure plot represents 247 samples from 22 

populations in 3 regions from the defined Interim Biogeographic Regionalisation for Australia (IBRA7). 

The highest model value K=1 indicating a single genetic group in the data. 

 

Discriminant analysis of principal components. The discriminant analysis of 

principal components (DAPC) was split into four analyses. The DAPC for Cycas 

armstrongii (Figure 16) was examined for IBRA subregions throughout the Darwin 

coastal (DAC), Pine Creek (PCK), and Tiwi Coburg (TIW) IBRA regions. The DAPC 

was a summary of 62 PCs from the PCA, with three genetic groups (K = 3) and a 

proportion of conserved variance of 0.618. Figure 16 shows little differentiation 

between Darwin Coastal and Pine Creek regions, indicating a close genetic 

connection. However, Tiwi (TIW02) and Coburg subregions (TIW01) show a higher 

level of genetic differentiation between both subregions and the Darwin coastal 

(DAC)/Pine Creek (PCK) regions.  
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The DAPC for Cycas maconochiei ssp. maconochiei (Figure 17) was representative 

of populations occurring in the Darwin coast (DAC) IBRA region, and was a 

summary of 31 PCs for the PCAs with two discriminant functions (K = 2) and a 

proportion of conserved variance of 0.619. However, the DAPC of C. maconochiei 

shows little differentiation between populations, indicating low levels of genetic 

distance among population, and potential gene flow. The DAPC of C. armstrongii, 

C. maconochiei ssp. maconochiei, and C. armstrongii x maconochiei (Figure 18) 

was a summary of 33 PC’s from the PCA with two discriminant functions (K = 2), 

and a proportion of conserved variance of 0.526 (Figure 18). Figure 18 shows very 

low levels of differentiation between all taxa and provides little evidence to support 

hybridisation. 

 

  

Figure 16 DAPC graph of Cycas armstrongii populations represented as IBRA 
subregions. Discriminate analysis of principal component (DAPC) showing genetic 

differentiation between Cycas armstrongii populations throughout the Darwin Costal, Pine 

Creek, and Tiwi Cobourg IBRA subregions in the Northern Territory Australia. DAPC is a 

summary of 62 PC’s for the PCA’s with three discriminant functions (K = 3) and a 

proportion of conserved variance of 0.618. 
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Figure 17 DAPC graph of Cycas maconochiei ssp. maconochiei grouped into 
populations. Discriminate analysis of principal component shows genetic differentiation 

between populations C. maconochiei ssp. maconochiei. The plot represents populations 

occurring the Darwin Costal Region, in the Northern Territory Australia. DAPC   is a summary 

of 31 PC’s for the PCA’s with two discriminant functions (K = 2) and a proportion of conserved 

variance of 0.619. 

Figure 18 DAPC graph of Cycas armstrongii, C. maconochiei ssp. maconochiei and 
Cycas armstrongii x maconochiei population group by taxon. Discriminate analysis of 

principal component shows genetic differentiation between two species Cycas armstrongii and 

C. maconochiei ssp. maconochiei and a single hybrid population C. armstrongii x maconochiei. 
The plot represents all populations throughout the Darwin and greater region, in the Northern 

Territory Australia. DAPC is a summary of 33 PC’s for the PCA’s with two discriminant functions 

and a proportion of conserved variance of 0.526. 
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4.4 Discussion 
 

This study aimed to obtain a better understanding of the genetic diversity within and 

between two geographically widespread cycad species with relatively large 

populations (Liddle 2009): Cycas armstrongii and Cycas maconochiei ssp. 

maconochiei. By using next generation sequencing (NGS) in the form of RADseq, 

we were able to generate 868 to 3043 genome-wide SNPs, which were likely 

subjected to the full evolutionary history of our study taxa (Andrews et al. 2016). In 

addition, we tested the validity of the formally recognised interspecific hybrid, Cycas 

armstrongii x maconochiei (Hill 1996). 

 

Population genetic diversity. Measuring genetic diversity of populations is vital in 

understanding the life history of a species and detecting its ability to adapt to future 

challenges, whether this be through biotic or abiotic factors (Brown et al. 1983). 

Populations of Cycas armstrongii show very low levels of heterozygosity (Table 12, 

HE =  0.033, HO =  0.057), and little evidence of inbreeding in populations (FIS = 

0.007 to 0.040). Similar results were also recorded for Cycas maconochiei ssp. 

maconochiei, where the populations showed a relatively low observed 

heterozygosity (Table 13, HE =  0.059, HO =  0.049). However, the populations of C. 

maconochiei ssp. maconochiei also showed higher levels of inbreeding (FIS = 0.037 

to 0.243) when compared to C armstrongii, and are therefore more likely to express 

deleterious alleles (Kimura & King 1979). The single population of Cycas 

armstrongii x maconochiei (represented by 10 individuals from the Leviathan Creek 

population), also very low levels of observed heterozygosity and no evidence of 

inbreeding, which is in contrast with the other two taxa. Overall, these results 

suggest low levels of genetic diversity in all studied taxa. 

 

The low levels of genetic diversity found in C. armstrongii and C. maconochiei ssp. 

maconochiei will have an impact on the genetic fitness of the populations, and could 

result in a reduction of individual fitness (Toczydlowski & Waller 2019). Markert et 

al. (2010) found this was the case in crustaceans where very low genetic diversity 

reduced the genetic fitness of a population and, under progressive conditions, 

reduced their adaptive performance which increased the risk of extinction. However, 

in small populations - like those of many cycads - inbreeding is often unavoidable, 

and can cause an increase in the accumulation of deleterious mutations (Wright et 

al. 2007; Donaldson 2003; Whitlock 2000). Deleterious mutations often correlate 

with low allelic genetic diversity, which can have an impact on the future adaptability 

of the populations (Szczecińska et al. 2016). Our results for C. armstrongii and C. 
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maconochiei ssp. maconochiei are similar to those found in Cycas calcicola 

(chapter 3), where the small, isolated populations had equally low levels of genetic 

diversity, however Cycas calcicola populations showed much higher levels of 

inbreeding. This could be an indicator for lower levels of inbreeding but not 

necessarily greater gene diversity for species with more widespread populations 

(e.g. C. armstrongii; Liddle 2009, Hill 1994). This is because larger and more 

diverse populations are considered to be less prone to the effects of inbreeding than 

small populations (Ellstrand 1993). Therefore, this could provide evidence that 

cycads with large populations might well be as threatened as cycads with small 

populations (Keppel 2002). 

 

Population genetic studies of other Australian cycads have mostly concentrated on 

Macrozamia Miq. with a single study into Cycas (James et al. 2018), which showed 

similar results to our own indicating low levels of allelic diversity within populations 

(Sharma et al. 2004; Sharma et al. 1999; Sharma et al. 1998). However, low levels 

of genetic diversity is not restricted to cycad species in Australia as this is also the 

case for species of Cycas in the Indo-Malaya, and Palearctic (Long-Qian & Xun 

2006; Xiao et al. 2005; Huang et al. 2004; Keppel et al. 2002). This indicates that 

low levels of genetic diversity characterising cycads, appears to be at odds with that 

of other plants with a dioecious life history (obligate out-crossing) (Norstog & 

Nicholls 1997), which by adaptation helps prevent the effects of inbreeding and self-

pollination (Barrett 2002).  

 

However, unlike many dioecious plant species, not all reproductive individuals of a 

population of cycad participate in a given reproductive event (Schmoldt et al. 1975; 

Ornduff 1991). Male cycad plants typically produce strobili more frequently than 

females because of the greater energy requirements and the longer development 

time of the megasporangiate strobili, longer fertilisation process and subsequent 

seed maturation (Terry et al. 2012; Suinyuy et al. 2009; Vovides et al. 1997). In 

addition, the poor dispersal system in cycads could make them more prone to 

inbreeding (Hall et al 2013), because any plant bearing female strobili is likely to be 

in close proximity to a related male (half or a full sibling) (Vovides et al. 1997). In 

Cycas although a single arrangement of megasporophylls on a ‘female’ plant may 

bear hundreds of ovules that might only be fertilised by a single ‘male’ plant (with 

the ability to be pollinated by many). This is not only because relatively few males 

are producing pollen (Norstog et al. 1986), but also because cycad pollen is poorly 

dispersed by wind and does not travel far, therefore there is a high likelihood of 

subsequent crosses between closely related individuals (Kono & Tobe 2007; Keppel 
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2001).  

The insights gained into the genetic diversity of Cycas armstrongii and C. 

maconochiei ssp. maconochiei raises questions as to the causes of low genetic 

diversity within populations. There is most likely not a single answer to this question, 

as it could be due to a number of factors such as population size, isolation, absence 

of a primary seed dispersal agent (Ornduff 1990). Additionally, the slow generation 

times in many cycads species (Griffith et al. 2014), leads to low rates of mutation 

and substitution, reducing the short term adaptive potential of a population 

(Ellstrand 1993). Gymnosperms in general (including cycads) have been subjected 

to high extinction rates and recent post-Eocene radiations (Nagalingum et al. 2011), 

which might also account for the low genetic diversity of many extant lineages when 

compared to angiosperms (Crisp & Cook 2011). 

 

Differences within and between populations. Geographic isolation of both 

species and natural populations is a major limiting factor in gene flow, therefore it 

contribute to genetic differentiation of species (Séré et al. 2017). Understanding the 

genetic differences between populations allows us to gain insights into the extent of 

gene flow and to predict which populations are more or less genetically distant from 

each other (Rousset 1997; Nei & Roychoudhury 1974). For C. armstrongii and C. 

maconochiei ssp. maconochiei understanding the genetic distances is important as 

it provides insight into not only the genetic differentiation between populations but 

also between taxa.  

 

For C. armstrongii there was more genetic variation between populations (Table 14, 

13%) then regions (3%). This suggest low levels of genetic differentiation between 

populations, indicating gene flow and admixture between both populations and 

regions (Figure 13). Pairwise genetic distance (FST, Table 15 and 16) are low to high 

between most populations and regions. However, populations occurring in the Tiwi 

Cobourg region showed much greater levels of genetic distance between regions 

(FST = 0.078 to 0.127) from the Darwin Coastal and Pine Creek regions, indicating 

evidence of genetic differentiation between Darwin Coastal/Pine Creek and Tiwi 

Cobourg regions, correlating with geography (Hill 1996; Liddle 2009). These results 

indicate genetic partitioning within the defined IBRA7 regions, confirming the 

Cobourg and Tiwi subregions being with the same region, when compared to 

Darwin Coastal and Pine Creek. This genetic partitioning is also somewhat shown in 

the discriminate analysis of principal component (DAPC, Figure 16), where the Tiwi 

Cobourg populations show some differentiation from the Darwin Coastal/Pine Creek 

populations.  
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The levels of genetic differentiation between populations of Cycas maconochiei ssp. 

maconochiei were similar to that of C. armstrongii, with low levels of genetic 

differentiation among populations (AMOVA = 6%), indicating that the majority of the 

genetic variation is within populations and suggests gene flow between populations, 

further confirmed by pairwise genetic distance (FST = 0.041 to 0.098, Table 17).  

 

The effects of geographic isolation (as found in our taxa) and genetic drift are known 

to cause geographical differentiation between populations (Proćków et al. 2017). 

Populations occurring in close geographic proximity should have greater levels of 

gene flow (lower FST values) than between those that are more geographically 

distant (Hellberg 1994). Therefore, it is logical that gene flow would decrease with 

increased geographic distance, yet this is not always the case. Apart from some 

populations of C. armstrongii (mainly between DAC/PCK and TIW), most 

populations of C. armstrongii and C. maconochiei ssp. maconochiei showed low 

levels of genetic distance, indicating gene flow leading to lower differentiation 

between populations.  

 

Even low levels of gene flow between populations can be beneficial in counteracting 

the negative effects of mutation isolation and genetic drift. The rates of gene flow in 

plants can vary significantly, and can act as a major driving force in the process of 

speciation and evolution (Ellstrand 2014). Tremblay & Ackerman (2001) found that 

in Lepanthes Sw., gene flow was restricted to less than one migrant per generation 

between populations, which is indictive of high genetic differentiation between 

populations. Restricted gene flow is known to increase population differentiation and 

have significant impact on the genetic fitness of a population (Newman & Tallmon 

2001). The low levels of genetic divergence in most of C. armstrongii and C. 

maconochiei ssp. maconochiei populations are indicative of recent gene flow and 

not ancestral, which suggests a very recent disjunction between populations (Latta 

and Mitton 1999, Beerli 2004). 

 

Geographic distribution of the taxa. Contemporary long distance dispersal with 

establishment is uncommon in most cycad species (Ingham et al. 2013). Members 

of the Cycas rumphii complex are known for their long-distance dispersal by water. 

This method of dispersal is facilitated by the presence of a spongy layer in the 

sclerotesta of seeds aiding their buoyancy and survival in salt water (Nadarajan et 

al. 2018). It is thought that hydrochory has accounted for their wide distribution in 

the Western Pacific (Hill 1994). The majority of Cycas do not have a similarly 

modified sclerotesta, and so rely entirely on zoochory and/or abiotic means of seed 
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dispersal (Keppel 2002). 

 

The presence of genetically relatively distinct populations of C. armstrongii on the 

Tiwi Islands requires an explanation. Given that members of the now extinct 

megafauna (e.g. Genyornis) have been invoked as biotic vectors of Australian 

cycad seeds (Hall & Walter 2013; Ingham et al. 2013), the presence of Cycas on the 

Tiwi Islands would have required some means by which herds of large herbivores 

could move easily between the mainland and the islands. Two possible connections 

with the mainland might have existed, one linking the Tiwi Islands with the Darwin 

Coastal subregion via the Vernon island; and the other between the Tiwi Islands 

(TIW02) and the Cobourg Peninsula (TIW01). Although there is no dated geological 

evidence to support a terrestrial connection between the Tiwi Islands (TIW) and the 

mainland (DAC and PCK), it would seem reasonable that mainland source 

populations should be more genetically similar to Tiwi Island populations. The close 

genetic relationship between populations of C. armstrongii in the Tiwi Islands and 

Cobourg Peninsula, combined with evidence of a closer genetic relationship 

between Tiwi and Cobourg sub-regions (Table 16) could help support evidence of 

land bridge from the Tiwi Islands to the Cobourg Peninsula and Darwin Coastal 

(DAC01) and Pine Creek (PCK01) subregions.  

 

One explanation is that fragmentation between populations is a recent event and 

one which hasn’t yet left a genetic fingerprint, due to the long generation time in 

cycads, which could partially explain the results of this research (Liu et al. 2018). 

Although the seeds of all cycads are toxic to humans, the seeds can be prepared for 

consumption by leaching out the toxins (Beck 1992). This is documented in C. 

armstrongii where the seeds have been known to have been consumed by 

indigenous communities in the Darwin region (Beck 1992), and is also likely the 

case for C. maconochiei ssp. maconochiei. Unprocessed seeds of both taxa might 

have been transported by humans as a food source between mainland Australia 

(DCA01, PCK01 and TIW01) and the Tiwi Islands during a period of around 60 

thousand years (Beaton 2014). This is the case for other plant groups where the 

movement of seeds and fruit by indigenous people had a significant impact on the 

surrounding plant communities (Hynes & Chase 1982). This might also explain the 

distribution of C. armstrongii and C. maconochiei ssp. maconochiei and why the 

disjunct populations still show low levels genetic differentiation caused by mixing. 
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Differences between taxa and the hybrid population. Understanding genetic 

differences between populations is important when determining species boundaries 

(Sousa & Hey 2013). We detected little genetic differentiation between our study 

taxa, which collates with morphological intermediates between many populations of 

both C. armstrongii from C. maconochiei ssp. maconochiei (I Cowie 2018, personal 

communication). Most of the detected genetic variation for each taxon was within 

populations, and not between them. We saw no evidence for maintaining the formal 

segregation of C. armstrongii from C. maconochiei ssp. maconochiei. Hybridisation 

is thought to be widespread in cycads (Calonje et al. 2011; Chamberlain 1926) 

based on the occurrence of morphologically intermediate individuals expressing 

synapomorphies of two parent species. The close genetic similarity and relatively 

recent origin of many cycad species (Nagalingum et al. 2011) means that they could 

rely on demographic isolation, rather than genetic isolation, for the maintenance of 

species integrity (Chiang et al. 2013). In the case of the morphological intermediate 

(C. armstrongii x maconochiei), hybridisation was not supported by genetic 

evidence due to no genetic structure between populations and species, and the lack 

of genetic differentiation between the assumed parental taxa.  

 

Conservation implications. Infraspecific geographic disjunctions are common in 

many plant species (McHenry & Barrington 2014). Geographic separation often 

correlates with high levels of genetic differentiation and interpopulational variation 

caused by reduced gene flow across the disjunction (Feng et al. 2014; Keppel et al. 

2002; Keppel 2002). Species that are slow to reproduce and occur only in small, 

isolated populations (Swart et al. 2018; Niissalo et al. 2017; Szczecińska et al. 

2016; Ellstrand 1993) are prone to lower levels of genetic diversity, because they 

have a higher potential for reduced population fitness (Toczydlowski & Waller 2019; 

Markert et al. 2010; Calonje et al. 2013). Although C. armstrongii and C. 

maconochiei ssp. maconochiei are geographically widespread and have relatively 

large populations (Liddle 2009), they have very low levels of genetic diversity and 

generally low population differentiation. There also seems to be a trend in both 

plants and cycads caused by isolation where once a population drops to a critical 

size, there is a loss of genetic diversity which will eventually become reduced to the 

point where allelic diversity is permanently lost (Schwartz 2003).  
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The increased aridification combined with shorter/longer wet seasons in Northern 

Australia could mean few species are able to survive in their environmental niches, 

affecting pollinators and seed dispersers (if any) (Glenny et al. 2018). A wetter or 

drier climate could also have an impact on populations by reducing the number of 

seedlings that survive yearly (Preece et al. 2007), caused by an increased 

frequency of bush fires which could be exacerbated by poor dispersal in cycads, 

although their response to increased fires is unknown (Setterfield 2002). This would 

further be impaired by the low-genetic representation of C. armstrongii and C. 

maconochiei spp. maconochiei in ex-situ conservation collections, as they cannot 

currently be used for reintroduction programs (Parlato & Armstrong 2018; Griffith et 

al. 2015). Currently the IUCN red list lists C. armstrongii as vulnerable and C. 

maconochiei ssp. maconochiei as least concern (IUCN 2016), indicating that neither 

taxon is (currently) of conservation concern in Australia (DEWHA 2019).  

 

From a conservation management perspective, the wide distribution of the taxa 

could make the in-situ management of individual populations logistically problematic 

unless they were conserved as larger units e.g. localities (James et al. 2018). But 

the importance of ex-situ botanic garden collections for conservation of plant 

species is imperative (Nikitsky Botanical Gardens 2017), because they have the 

potential to retain up to 90% of the genetic diversity for a species, they are the ideal 

place to conserve the genetic diversity of cycads to counteract the problem of 

inherent long term storage problems of cycad seeds (Griffith et al. 2015). Although, 

there is no genetic differentiation between populations formally recognised as C. 

armstrongii and C. maconochiei ssp. maconochiei there is still morphological 

differences between populations considered to be C. maconochiei ssp. maconochiei 

when compared to C. armstrongii. But although there is no genetic fingerprint 

between taxa, different morphotypes still need to be represented in ex-situ botanic 

gardens. However, populations recognised as C. armstrongii and C. maconochiei 

ssp. maconochiei are mostly absent from many ex-situ conservation collections 

(BG-Base online search, accessed 19 October 2019), which, indicates that there 

needs to be a focus on future seed collection to conserve different morphotypes of 

taxa, to incorporate into botanic gardens. This would then allow botanic gardens to 

act as a reserve for genetic diversity of wild populations and reduce extinction risk of 

wild populations  
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Considerations for further research. This research represents the first 

comprehensive examination of the genetic diversity of C. armstrongii and C. 

maconochiei ssp. maconochiei. The evidence provided by this study showed the 

efficiency of RADseq as a technique and sample sizes required for obtaining 

genomic level data from cycads. This is important as is can allow us to formally 

recognise species of conservation value. This technique is cost-effective and 

causes minimal harm to populations (Clugston et al. 2019). For further research into 

C. armstrongii and C. maconochiei ssp. maconochiei it is important to understand 

the genetic relationship of the other subspecies of C. maconochiei (C. maconochiei 

ssp. lanata) senu Dixon (2004) and other allied taxa including C. canalis and C. 

conferta that are considered to freely hybridise with C. armstrongii in the wild (Dixon 

2004; Hill 1996).  

 

Because of the genetic similarity between C. armstrongii and C. maconochiei ssp. 

maconochiei, a next step would be to gain further insights into genetic differentiation 

in the rest of the complex. Do Cycas canalis and C. conferta also show similarly low 

levels of genetic differentiation found in C. armstrongii and C. maconochiei ssp. 

Maconochiei? If this is the case, then it could indicate that although there is 

morphological differentiation between species in the complex there could be fewer 

species than suspected (Liddle 2009). By obtaining further insights into the genetic 

diversity of the complex, we will better understand genetic diversity of the genus 

Cycas in Australia. This will allow us to determine if other species of Cycas show 

equally low levels of genetic diversity found in our study taxa and provide more 

explanations to why.  

 

As a result of the number of markers and the number of samples that were 

sequenced during this project we were able to successfully represent the genetic 

diversity of populations using seven or more samples per population (Nazareno et 

al. 2017). However, further genotyping of a greater number of populations for both 

C. armstrongii and C. maconochiei ssp. maconochiei may help to gain further 

insights into their genetic diversity, although it is unlikely to show differences 

between the species.  
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Conclusions  
 
Cycas armstrongii and C. maconochiei spp. maconochiei represent two taxa with a 

wide geographic distribution and in many cases large populations (Liddle 2009; Hill 

1996), yet the populations of the taxa have low levels of allelic diversity, with some 

populations showing significantly higher levels of inbreeding (higher inbreeding in C. 

maconochiei spp. maconochiei), indicating historic isolation and population 

fragmentation are affecting the genetic fitness in both species. Although there is 

geographic differentiation between population and species, the evidence presented 

here finds not only low levels of genetic differentiation between populations but also 

between regions and taxa. The results indicate that although there are 

morphological (sensu Hill 1994) and geographic differences between C. armstrongii 

and C. maconochiei ssp. maconochiei, and a supposed recognisable interspecific 

hybrid population, our results show the opposite. The molecular data suggests that 

it is likely that C. armstrongii and C. maconochiei ssp. maconochiei should be 

recognised as a single morphologically diverse species with a wide distribution 

across the northern range of Northern Territory. We conclude that the contemporary 

populations represent relictual populations derived from much larger ancestral 

populations (Laidlaw & Forster 2012), and the lack of genetic differentiation between 

C. armstrongii and C. maconochiei ssp. maconochiei also means that there is no 

molecular support for the formal recognition of C. armstrongii x maconochiei.  
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Chapter 5 - Conclusion 

 
This study presents a case for exploring new techniques and developing new 

approaches to be applied to the population genetics of cycads. By using RADseq 

we have provided important insights into the genetic history and diversity of the 

genus Cycas in Australia. RADseq offers the ability to multiplex and sequence many 

individuals simultaneously, at relatively low cost. Using RADseq we were able to 

recover up to 3043 genome wide SNPs for at least 50% of the samples per locus. 

While this study focused on selected Australian taxa, the techniques are applicable 

to all cycad species. The markers generated have the potential to be effective for 

both population level and phylogenetic studies (Catchen et al. 2017; Tripp et al. 

2017; McKinney et al. 2016; Davey & Blaxter 2010). Here we have demonstrated 

that RADseq can be applied to organisms with large genomes such as cycads, and 

we have developed a protocol for others to follow. Ultimately, the methodology 

presented here will help to resolve the relationships among cycads and to help gain 

deeper insights into the genetic diversity among Cycadales species. This data and 

relevant techniques are directly applicable when developing informed conservation 

management plans for cycads and other groups of seed plants. 

 

The research presented here focused on three taxa - Cycas armstrongii, C. calcicola 

and C. maconochiei ssp. maconochiei and a single suspected hybrid population 

Cycas armstrongii x maconochiei. In C. calcicola the populations are small and 

geographically disjunct but have a wide distribution with low levels of genetic diversity 

and low differentiation between populations. However, despite the low levels of 

differentiation between populations, there was evidence of genetic differences 

between the Lichfield and Katherine regions which correlates with geographic 

distances. This indicates that the spatial arrangement of C. calcicola populations may 

be recent. We found high inbreeding in some populations, which could result in lower 

adaptive potential of the species. This, in turn, raised concerns for the conservation of 

species in the face of rapid global climate change and anthropogenic threats to 

habitats. 

 

  



 

96  

In order to mitigate the conservation concerns, we determined if ex-situ conservation 

collections in botanic gardens represented the genetic diversity of the wild 

populations. Our results found that populations of C. calcicola from the Litchfield 

National Park were currently not represented in well managed and curated ex-situ 

collections, yet they do occur in National Parks and are afforded some degree of 

protection. Regardless of the current levels of protection for some populations this 

species, we were able to identify that a considerable amount of genetic diversity of 

the species is not represented in ex-situ collections. As a result of these factors the 

best approach towards conserving C. calcicola is to conserve each population in the 

Litchfield National Park and Katherine regions as separate conservation management 

units.  

 

Advocating representative ex-situ collection of cycads for the purpose of conservation 

presents a series of problems that our approach to population genetics might assist 

with. In particular, our techniques provide insights into what type of material, and how 

much of it, should be collected in order to represent the optimal genetic diversity of a 

taxon. The simplest solution would be to collect seed from wild populations, yet while 

seed production by most cycads is relatively high (~160 viable seeds from a single 

female strobilus), the number of seeds produced in each season is limited by the 

number of females and males simultaneously coning in a reproductive event 

(Ballardie et al. 1986). Seed recruitment in populations of Australian cycads can also 

be significantly reduced by increased burning frequencies (Hall et al. 2013; Liddle 

2009; Ornduff 1991). We have also shown that interpopulational seed dispersal (i.e. 

migration) in Australia cycads is rare. Thus, the targeted removal of seeds for ex-situ 

conservation from small populations with low genetic diversity could place further 

stress upon the long-term survival of some Australian Cycas species (Andersen 

1989).  

 

Populations of Cycas armstrongii and C. maconochiei ssp. maconochiei had very low 

levels of allelic diversity and differentiation across the populations with some 

evidence of inbreeding. Furthermore, low levels of genetic differentiation between the 

two taxa were observed. These results indicated that C. armstrongii and C. 

maconochiei ssp. maconochiei might represent a single, morphologically diverse 

species with a wide distribution across the lower latitudes of Northern Territory. By 

extension, our results did not recover any support for the formal recognition of the 

interspecific hybrid, Cycas armstrongii x maconochiei. Thus, we conclusively 

demonstrated that RADseq protocols are sensitive enough to enable similar species 

relationship (and putative hybrids) to be assessed independently of morphological 
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hypotheses, using genomewide markers (Clugston et al. 2019). However, although 

studies like our own which used next generation sequencing on cycads have 

provided a significantly greater number of markers, the resulting genetic statistics 

have found no greater diversity in cycads in Australia, likely due to historic factors 

(Sharma et al. 2004; Sharma et al. 1999). Of course, this does not mean that 

techniques such as RADseq are ineffective on groups like cycads – in fact they are 

the best option available and have the most potential for uncovering the evolutionary 

history of the group (Clugston et al. 2019). 

 

The genetic patterns within and between C. armstrongii and C. maconochiei ssp. 

maconochiei, as revealed by our use of RADseq techniques, provided us with an 

opportunity to investigate the process that had led to the current genetic architecture 

and the spatial arrangement of populations. We concluded that the contemporary 

populations represent relictual populations derived from much larger ancestral 

populations (Laidlaw & Forster 2012). The fragmentary distribution of contemporary 

cycads in the Northern Territory of Australia and range retraction could also be a 

result of the extension of their primary, megafaunal seed dispersal (Hall and Walter 

2013). The demise of seed vectors would mean that geographic range extension, and 

migration between populations, would be significantly curtailed. In turn, the resultant 

small population sizes and restricted geographic distribution, combined with slow 

rates of reproduction, could explain the reduction in allelic diversity found in C. 

armstrongii, C. calcicola, and C. maconochiei ssp. maconochiei.  

 

It is conceivable that species of Cycas in the Northern territory of Australia could have 

diversified recently and rapidly (Crisp & Cook 2011; Nagalingum et al. 2011). In 

particular, the evidence presented by Crisp & Cook (2011) shows that not only 

cycads have been subjected to multiple extinction and radiation events but also other 

members of the gymnosperms, which could have accounted for the low levels of 

genetic diversity in many species, given selective pressures acting on cycad 

populations (Donaldson 2003). In the case of cycads growing in the Northern 

Territory of Australia as studied here, warmer, drier periods are likely to cause a 

range restrictions, whereas cooler drier periods with reduced sea level (e.g. glacial 

maxima) offer greatly increased habitat areas, with dispersal across land bridges 

(Preece et al. 2007), allowing periodic mixing of populations (Erwin 2009). 
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Rapid divergence of closely related plant lineages does not always keep pace with 

the evolution of breeding barriers, due to a range of biotic and abiotic factors such 

as pollinators and habitats (Rieseberg and Willis 2007). Additionally, factors such as 

changes in cone production times and self-fertilisation as a result of mutation can 

have a significant effect of the genetic variance of population (Macnair 1989). In 

such cases, demographic barriers serve as isolating mechanisms between closely 

related taxa. When the demographic barriers are relaxed (Widmer et al. 2009), 

populations of otherwise segregated lineages become parapatric or sympatric, 

thereby increasing the likelihood for gene flow between the closely related lineages. 

Because the effects of habitat fragmentation isolates populations and reduces 

population size, which can cause genetic erosion and inbreeding, which affects the 

reproductive potential of a population (Honnay 2002). Although even minor levels of 

gene flow among populations can help spread advantageous alleles, and can 

counteract the effects of genetic erosion (Morjan and Rieseberg 2004). Yet for our 

study taxa although the low interpopulational differentiation, which indicates 

significant geneflow between populations which are geographically. This means that 

the isolation is perhaps due to recent fragmentation and exacerbated by poor seed 

dispersal, which has not left a genetic fingerprint, perhaps due to anthropogenic 

causes (Leblois et al. 2006). These results demonstrate importance in 

understanding the demographic history of species with both small and large 

populations and is a key factor in determining the extinction potential of a species 

(Oostermeijer et al. 2003).  

 

If the reproductive barriers are not fixed in plants such as cycads, then closely related 

lineages (species) can hybridise to produce seemingly novel morphological 

intermediates (Baack et al. 2015). Cycads display this phenomenon repeatedly, 

which is not consistent with the traditional view of cycads as a slow evolving and 

ancient group of organisms. The results presented by this study presents evidence 

from other cycads species with low levels of genetic diversity that may be threatened 

by extinction. In particular, populations of C. calcicola are likely to become more 

isolated and show lower levels of genetic diversity. This does not look favourable for 

the genetic fitness of populations and could have a direct effect on the future 

adaption of species (Mankga & Yessoufou 2017). However, both C. armstrongii and 

C. maconochiei ssp. maconochiei showed similar patterns found in C. calcicola 

despite having larger populations, indicating a trend for lower genetic diversity of 

cycads in Australia. 
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Our work demonstrates despite the rapid and recent diversification of cycads 

(Nagalingum et al. 2011), RADseq provides a valuable approach to understand the 

genetic diversity of taxa with large genomes, and used to aid in the conservation of 

species (Leitch & Leitch 2013) and for investigating similar cases across the cycads 

despite their very large and complex genomes. As for the future of cycad 

conservation and survival of the species, well-informed botanic gardens with 

excellent genetic representation in well-curated collections will play a fundamental 

role when combined with well-informed conservation management plans in 

conserving genetic diversity of the species (Griffith et al. 2015). Ultimately, this study 

presents an excellent case for the application of RADseq not only in cycads, but 

also for other organisms with large and complex genomes (Clugston et al. 2019). 
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Appendix I. Table of wild collected Cycas calcicola samples for RADseq.  
 
72 samples wild collection from population between the Lichfield and Katherine region of the 

Northern Territory, Australia. Sample ID = assigned dates associated collection number, 

Region = Samples collection from Lichfield or Katherine region, Popualtion = individual 

population samples were collection from (CUL = cultivated origin), Cul vs Wild = if the 

samples were obtained directly from wild population. DBG = George Brown Darwin Botanic 

Gardens, Northern Territory, Australia and MBC = Montgomery Botanical Center, Flora, 

USA.  

 

Sample ID Region Populations Cul vs wild 

Ccal-15-17-1 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-10 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-2 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-3 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-4 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-5 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-6 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-7 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-8 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-17-9 Litchfield Litchfield NP 1 Litchfield NP 1 

Ccal-15-18-10 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-1 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-2 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-3 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-4 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-5 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-6 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-7 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-8 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-18-9 Litchfield Litchfield NP 2 Litchfield NP 2 

Ccal-15-19-10 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-1 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-2 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-3 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-4 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-5 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-6 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-7 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-8 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 

Ccal-15-19-9 Litchfield Litchfield NP - Tolmer Litchfield NP - Tolmer 
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Ccal-15-32 Daly River Daly River DBG 

Ccal-15-34 Daly River Daly River DBG 

Ccal-15-38 Daly River Daly River DBG 

Ccal-15-29 Daly River Daly River DBG 

Ccal-15-30 Spirit Hills Spirit Hills DBG 

Ccal-15-31 Spirit Hills Spirit Hills DBG 

Ccal-15-21-10 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-1 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-2 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-3 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-4 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-5 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-6 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-7 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-8 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-21-9 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-22-10 Katherine Katherine-TT 1 Katherine-TT 1 

Ccal-15-22-1 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-2 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-3 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-4 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-5 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-6 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-7 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-8 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-22-9 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-23-10 Katherine Katherine-CDU 1 Katherine-CDU 1 

Ccal-15-23-1 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-23-2 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-23-3 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-23-4 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-23-5 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-23-6 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-23-8 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-23-9 Katherine Katherine-CDU 2 Katherine-CDU 2 

Ccal-15-25 Katherine Katherine-CUL-MBC MBC 

Ccal-15-26 Katherine Katherine-CUL-MBC MBC 

Ccal-15-28 Katherine Katherine-CUL-MBC MBC 

Ccal-15-33 Katherine Katherine-CUL-DBG DBG 

Ccal-15-35 Katherine Katherine-CUL-DBG DBG 

Ccal-15-36 Katherine Katherine-CUL-DBG DBG 

Ccal-15-37 Katherine Katherine-CUL-DBG DBG 
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Appendix II. Detailed RADseq protocol to support “RADseq as a 
valuable tool in plants with large genomes—a case study in cycads” 
 

Preface of protocol  

Here we present a RADseq protocol, which we have adapted to the cycads. This 

approach has been modified from the ezRAD protocol v3.0 (Toonen et al. 2013) 

developed at the ToBo Lab at the University of Hawaii at Manoa. This protocol has 

been tested across all 10 genera of the Cycadales including: Bowenia, Ceratozamia, 

Cycas, Dioon, Encephalartos, Lepidozamia, Macrozamia, Microcycas, Stangeria and 

Zamia. Our modifications are indicated by *. For more detailed instructions and the 

full protocol, consult the most recent version of the ezRAD ToBo Lab protocol. 

1. Genomic DNA extraction and Quantification  

Genomic DNA was obtained from 0.05 g of silica-dried leaf material. Extractions can 

be carried out using a Qiagen DNeasy plant kit, following the standard protocol 

(Qiagen document HB-1166-003-1095837) with modifications as follows:  

1. *Once buffer P3 is added, samples should be left at -20°C for a minimum of 

20 minutes or overnight. 

 

2. *Add 55 μL of AE buffer during final elution step and repeated as per Qiagen 

protocol, to obtain a higher concentration of DNA in the final 110 μL elution.  

 

Following extraction, samples should be tested for the presence of impurities using 

2% agarose gel (Tip: a smear indicates impurities and small fragments of DNA). 

Samples which show a significant smear should be cleaned using AMPure XP beads 

prior to quantification (see section 3). Finally, each sample should be quantified using 

a Qubit (3.0 BR DNA assay; Invitrogen, Life Technologies, Carlsbad, CA, USA), and 

samples with a concentration lower than 15 µg/mL should be either re-extracted or 

concentrated using AMPure XP beads (see below).  

 

2. Concentration of genomic DNA using AMPure XP beads 

 

Samples which do not meet the minimum concentration of 15 µg/mL can be 

concentrated using AMPure XP beads. However, it is recommended that samples 

are firstly re-extracted. The method for DNA concentration is described below:   
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1. Add 1:1 ratio of AMPure XP beads to sample, e.g. for 100 μL sample, add 

100 μL beads. 

2. Mix well by pipetting until beads and sample appear homogeneous in 

colour, then incubate at room temperature for 5 minutes. 

3. Place plate on magnet for 5 minutes or until liquid is clear. 

4. Remove and discard supernatant. 

5. Add desired amount of Illumina resuspension buffer (10 mM TRIS), e.g. 

for 100 μL of starting sample, add 65 μL resuspension buffer to 

concentrate sample. 

6. Remove plate from magnet, mix sample until beads and sample appear 

homogeneous in colour (Tip: make sure all beads are fully 

suspended), and incubate at room temperature for 5 minutes.   

7. Place plate back on magnet, stand for 5 minutes or until liquid is clear. 

8. Transfer 60 μL of sample to a new low-binding tube and use the 

remaining 5 μL to quantify the DNA using a Qubit.    

 

3. Restriction digest and sample standardisation 

Double or single digest reactions should be carried out using either a single 

restriction enzyme (RE) or a combination of two REs to digest the genomic DNA at 

cut sites, e.g. ACTG (EcoR1-HF) or AAT (Mse1) (Tip: This protocol does not use 

adapters that require specific enzymatic cut sites, so any restriction enzyme/s 

can be used). 

 

The restriction digest reactions should be set up using the following 

modifications to the standard NEB protocol:  

 

1. *Genomic DNA should be normalised to 500 ng using laboratory grade dH2O 

in 42 µL volume (43 µL if a single enzyme is used) within a 96 well plate using 

a liquid handing robot (Qiagen QiaGility, Qiagen Inc., Venlo, the Netherlands) 

(Tip: this step can also be performed manually). 

 

2. Add 5 µL of 10x NEB CutSmart buffer and 1 µL of BSA to each well and mix 

thoroughly. The mixture should then be placed laboratory grade refrigerator 

for a minimum of *5 hours (Tip: the mixture can be left to refrigerate 

overnight). 
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3. 1 µL of each RE should be added into each tube and mixed thoroughly by 

pipetting. The plate should be placed into a thermocycler for *3 x 1-hour 

cycles at 37° C, followed by a 20 minute enzyme deactivation stage at 65°C. 

 

4. Double digest clean-up 

Digested samples should be cleaned using Agencourt AMPure XP beads (Bechman 

Coulter). For a more detailed protocol follow the most recently updated Illumina 

TruSeq protocol with modifications suggested by Toonen et al. (2013). A summary is 

as follows:  

 

1. Add 90 µL of AMPure XP beads to 50 µL of sample (calculated at 1:1.8 ratio) 

and follow the standard Illumina clean up protocol. Elute into 36 µL Illumina 

resuspension buffer (10 mM TRIS).  

 

2. Transfer 30 µL of supernatant to a new plate. 

 

3. 2 µL of remaining supernatant can be used to re-quantify samples using 

Qubit to check for DNA recovery (Tip: between 60-80% of digested 

genomic DNA should be retained). 

 

4. Use the remaining supernatant 3 µL to visualise samples on a LabChip, 

Bioanalyzer or agarose gel checking for digestion of genomic DNA and 

fragment distribution. 

 

5. Library preparation 

Library preparation should be carried out using an Illumina TruSeq nano kit (Illumina 

Inc., CA, USA) or equivalent. Below are our modifications to the ezRAD v.3 protocol 

(Toonen et al., 2013) tested using 1/2 of the recommended volumes, of library 

preparation kits to save costs.  
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Modifications to the ezRAD protocol are as follows: 

 

1. After PCR, carry out a standard bead clean instead using 1:0.8 ratio Ampure 

XP beads. This is a size selection step that removes fragments below 200 bp 

(Tip: this is designed to reduce adapter dimer).  

 

2. Final libraries should be validated using a LabChip or bioanalyzer. 

 

3. *If adapter dimer is still present in final libraries, carry out another bead clean 

using 1:0.9 ratio Ampure XP beads (this is common with ezRAD).  

 

4. Quantify each sample in the final library using a Qubit high sensitivity kit (3.0 

HR DNA assay; Invitrogen, Life Technologies, Carlsbad, CA, USA). 

 

5. Once libraries are validated and quantified they should be normalized to 10 

nM. 5 µL of each library should be pooled (multiplexed) (Tip: the 

concentration can be lowered to 5 nM where samples are lower quality).  

 

6. Quantify the pooled (multiplexed) final library using a Qubit high sensitivity kit 

(prior to? sequencing). 

 

7. *Visualise the final pooled libraries using a LabChip or bioanalyzer to check 

for presence of adapter dimer and to analyse final fragment size. If adapter 

dimer is present, carry out another 1:0.9 bead clean on the final pool and re-

quantify. 

 

8. Libraries should then be sequenced using an Illumina HiSeq or NextSeq 

sequencer using high throughput 150 dual index paired read. Aim for 1 Gb 

sequencing depth per sample for large genomes. 

 

Tip: Sequencing should be spiked with 20% PhiX to help with low diversity 

associated with RADseq runs (due to the identical enzyme cut sites). However, on 

newer sequencing platforms e.g. HiSeq 4000 this can be reduced to 10%.  
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