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Abstract 

Impinging jets are used in a number of cooling and drying systems generally 

because the thin boundary layer near the centre of impingement provides a high 

local heat transfer coefficient. Industrial uses of impinging jets include the temper-

ing of glass, drying of paper and textiles, and the cooling of metal sheets, turbine 

blades and electronic components. 

In this thesis the impact of fluid jets on various objects is analysed. For a jet 

incident on a porous wall at which normal fluid speed is specified, it is found that 

the problem of determining the free surface of the jet is governed by a system of 

nonlinear integral equations relating the flow angles on the boundary, on the free 

surface and on the porous wall. With constant normal speed at the porous wall, 

the system reduces to an integral equation for the flow angle. We also show how 

this formulation may be extended to include the action of gravity. 

A nonlinear two-dimensional free surface problem of an ideal jet impinging on 

an uneven wall is studied using complex variable and transform techniques. A rela-

tion between the flow angle on the free surface and the wall angle is first obtained. 

Then, by using a Hubert transform and the generalised Schwartz-Christoffel trans-

formation technique, a system of nonlinear integro-differential equations for the 

flow angle and the wall angle is formulated. For the case in which the wall ge-

ometry is symmetric, a compatibility condition for the system is automatically 

satisfied. Some numerical solutions are presented, showing the shape of the free 

surface corresponding to a number of different wall shapes. For the case in which 

the wall geometry is asymmetric, a pair of conditions which determine the posi-

tion of the stagnation point are revealed, using the integral form of the momentum 

equation. Thus the shapes of the free surface of the jet impinging on a few asym- 
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metric uneven walls are shown. The stagnation point is located for each of the 

different cases. 

A flow passing through a porous film and then impinging on a flat solid bound-

ary is analysed. Since the pressure field and fluid velocity are discontinuous along 

the film, the flow region is divided into two parts. At the film, by analogy with 

Darcy's law, the pressure difference is taken to be proportional to the flow rate. 

The free surface problem for this transpiration flow is formulated as a system of 

three coupled integral equations using a boundary integral method. As the sys-

tem is solved numerically, the normal speeds at the film and the shapes of the free 

surface for different permeability coefficients are presented. 
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Chapter 1 

Introduction 

The fluid motions considered in this thesis have in common the presence of a sur-

face separating two fluids of different densities. As one fluid is air, with negligible 

density so that pressure changes are small, the interface may be idealized as a 

free surface. In addition the flows also have in common the presence of an uneven 

rigid surface as part of the boundary of the whole flow region. In all cases, the 

steady two-dimensional flow of an incompressible, inviscid and irrotational fluid is 

treated. 

Free surface flows over some kinds of obstacles have been studied for at least a 

century. Early work in this area was characterised by the use of a linearized free 

surface condition and perturbation procedures such as the infinitesimal wave ap-

proximation and the shallow water approximation. A review of the two methods 

is due to Wehausen and Laitone [1960]. In 1886, Kelvin considered the stationary 

wave pattern caused by finite elevations or depressions in the bed of a stream and 

also developed expressions for the hydrodynamic forces acting on these obstacles. 

For the case of free surface flows past curved barriers, the calculation was first 

performed by Brodetsky[1923], who developed a method of trigonometric inter-

polation to successfully treat the plane infinite flow past circular and elliptical 

arcs, later extended by Birkhoff and Zarantonello[1957]. Later this method, corn- 
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bined with finite Hubert transforms, was modified by Olmstead and Raynor[1964] 

to consider depressions in a liquid surface due to an impinging two-dimensional 

potential jet. In this work, the authors treated the interface as an obstacle of 

unknown shape along which some boundary condition holds. All the above-cited 

work was based upon the adaptation of the classical hodograph method to flow 

around a body with a curved boundary. A direct formulation of this problem as 

a nonlinear integro-differential equation for the angle made by the fluid velocity 

vector was derived by Villat[1911] and also by Nekrasov[1922] to prove both ex-

istence and uniqueness of flows around a small circular arc. Nekrasov also found 

approximate solutions to the equations. For the case of the free surface flow of a 

stream obstructed by a bump or even an arbitrary bed topography, many types of 

such problem have been analysed using approximate nonlinear theories of similar 

accuracy to the cnoidal theory of Benjamin and Lighthill[1954]. Amongst these 

are a sluice gate projecting into the free surface [Benjamin, 1956], and the effects 

of arbitrary bumps on the bottom of a stream[Gerber, 1955]. The general theory 

of the shallow water approximation for problems of interface waves and surface 

waves in a fluid bounded by a rigid bottom surface was given in Wehausen and 

Laitone [1960]. 

The increasing availability of high speed digital computers, combined with the 

advanced state of the general theory, in both the obstructed free surface problem 

(in which a stream is obstructed by some bumps on the stream bed) and the 

problem of a jet flowing steadily over an arbitrarily curved wall, has fostered the 

development of numerical methods. 

Stokes[1880] first introduced the velocity potential 0, and stream function /' 

as independent variables so as to generate series expansions for the position (x,y) 

of the free surface of a steady wave. Many authors have successfully used this 

method. Schwartz[1974] extended Stokes' infinitesimal wave expansion, using a 
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computer to evaluate the coefficients. The radius of convergence of the series was 

extended by the use of Pad6 approximants so improving the estimates of the high-

est wave. A similar method was used by Longuet-Higgins[1975] to consider large 

amplitude waves in deep water, and by Cokelet[1977] for all steady, irrotational 

waves in water of any uniform depth. Another approach used by Long[1956] was 

extended by Byatt- Smith [1970] to obtain the vertical independent variable y of 

the free surface in terms of the velocity potential 0 along the free surface 1' = 0. 
and to give an exact integral equation for the elevation of the free surface using 

a generalized Hubert transform. The equation can apply to all waves, including 

solitary waves and waves of maximum height. Forbes[1981] studied free-surface 

flows over a semi-elliptical bump obstruction. The problem was formulated in-

versely, by allowing the velocity potential and stream function to be independent 

variables. The physical region was conformally mapped to a plane in which the 

bottom streamline becomes a straight line, so that it was only necessary to set 

numerical grid points directly at the free surface. Then the profiles of curved free-

surface profiles were calculated. The author predicted that the nonlinear drag 

vanishes for some ellipse lengths. A similar analysis of an obstructed free surface 

flow in which the exact free surface condition was retained is given by Forbes 

and Schwartz[1982], who considered flow over a semi-circular bump in the bed 

of a stream of finite depth. In their work, a Joukowski transformation was used 

to remove the stagnation point at the front of the obstruction and an integro-

differential equation for the transformed free surface elevation was obtained using 

a (, &)-coordinate system. The free-surface height in the physical plane together 

with other quantities of interest, for instance, the drag force on the semicircle, 

were then calculated from the solution to the integro-differential equations. 

The conformal mapping methods applied in free surface flow problems usually 

employ transformations on to some appropriate region of the complex potential 

plane, typically simple polygons or strips. In order to map them to even simpler 
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shapes such as a half-plane or unit disk, the transformations are given through the 

Schwartz- Christoffel formula. However, in some cases the relevant regions of the 

complex potential planes are complicated, so more elaborate mapping techniques 

are needed to treat the problem. Some generalisations of the Schwartz- Christoffel 

formula were demonstrated in Woods' work [1958,1961], where applications to in-

compressible fluid motion were given. Dobroval[1969] derived a nonlinear singular 

integral equation for the water wedge entry problem using a generalisation of the 

Schwartz-Christoffel formula in an implicit way. Bloor[1978] has successfully used 

one of the generalisations to solve the problem of capillary-gravity surface waves. 

The physical flow region, rather than the complex potential plane, was directly 

mapped into a half-plane. An exact nonlinear integro-differential equation for the 

free surface angle was then obtained. Some known results such as the linearized so-

lution and the Stokes solution were recovered by expanding the integro- differential 

equation in terms of the amplitude, and numerical solutions for large amplitude 

waves were computed. 

King and Bloor[1987] used a similar transformation technique to examine the 

problem of steady free surface flow of an ideal fluid over a semi-infinite step in 

the bed. A nonlinear integro-differential equation for the slope of the free sur-

face was obtained. The authors found that the solutions to this equation have a 

number of different characteristics depending on the step height and the upstream 

Froude number. Linearized solutions, based upon small step height were given. 

Numerical nonlinear solutions to the integro- differential equation were obtained 

and comparison of the accuracy of the numerical solutions with an asymptotically 

exact hydraulic theory was made. The free surface flow of a stream, obstructed by 

a semi-elliptical bump was considered by Forbes [1981], and obstructed by a trian-

gular bump by Boutrous and El-Malek[1987]. A more general problem of steady 

free surface flow involving gravity and arbitrary bottom topography was examined 

by Gerber[1955]. The formulation of this problem involved coupled integral and 
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integro-differential equations for the four variables: flow speed on the free surface 

and at the bottom, the angle of the free surface, and the arclength along the bot-

tom, using the classical hodograph method. The existence and uniqueness of the 

solution to these equations was shown. The same problem was also considered 

by Naghdi and Vonsarnpigoon[1986], who formulated the problem as a nonlinear 

ordinary differential equation for the wave height using an approximate theory; a 

director theory for a constrained fluid sheet. The bed topography was assumed 

to be compact and the flow region was divided into three parts; the upstream 

region I with a level bottom , the region II bound by the obstacle region II and 

a downstream region III. The equation for the downstream region was integrated 

up to an undetermined constant. 

King and Bloor[1988] studied the same problem, using a more versatile method, 

again based upon a generalization of the Schwartz-Christoffel formula, to formulate 

this obstructed flow. A pair of coupled integral and integro-differential equations 

holding on the free surface and the bottom topography were derived. The linear 

theory developed was compared with that obtained by Lamb[1932] and the lin-

ear solution is found to be as accurate as that given by Lamb. Some numerical 

solutions of such flows for a variety of bottom topographies were shown. Their 

computations showed that the effects of nonlinearity on the problem are very de-

pendent upon the form of the bottom topography. Later, another problem of 

computing a free streamline with condition of constant speed, the steady flow of 

a jet of ideal fluid against an arbitrary curved wall, was also investigated by King 

and Bloor[1990] using a similar technique. Moreover, Tuck[1987] studied the flow 

of a stream of water falling under gravity from a simple slit orifice in a vertical 

wall. He used a conformal mapping method and a Cauchy principal-value sin-

gular integral to write the logarithmic flow speed and y-coordinate in terms of 

the tangential angle of the free-surface in a reference half-plane. Thus the whole 

problem was reduced to a nonlinear integral equation. It was shown that the flow 
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exists only for Froude number exceeding 0.496 at which the limiting flow has a 

stagnation point at the upper edge of the orifice. This formulation is equivalent 

to that of King and Bloor[1988] which used the Schwartz- Christoffel formula. 

Although we have mainly surveyed above the obstructed free-surface flows 

with bottom topography, there are other obstructed free-surface problems such 

as weir flow, flow over a submerged body, flows over sluice and waterfalls, flows 

due to a submerged source and sink, among other free-surface problems. Vanden-

Broeck and Keller[1989] considered the steady motions of a flat surfboard driven 

by a solitary wave. The complex potential plane was conformally mapped into the 

interior of the unit circle in the f-plane. Thus the logarithm of the complex velocity 

was expanded inside the circle. The solutions for the flow past a horizontal and an 

inclined flat surfboard without a spray or splash were constructed numerically. The 

problem was further investigated by Vanden-Broeck and Dias[1991} to consider the 

gravitational free-surface flow past a submerged inclined flat plate. Here x and 

were chosen as the independent variables. The flow region is then a strip of height 

h in the x- plane. The components of velocity,  u and v were given in terms of 

derivatives of e& with respect to x and y. A finite difference scheme was used 

to calculate the solutions for the inclined plate placed in the fluid and numerical 

results were presented. The problem for the flow past a horizontal plate and for 

flow past a semi-infinite plate were also investigated where, in the former case, they 

found that, as the plate is gradually moved upward from the bottom toward the 

free surface at a constant Froude number, the maximum height of the free surface 

first increases, then reaches a maximum and finally decreases. Another interesting 

classic obstructed free-surface flow of a fluid, that induced by a submerged source 

or sink with gravity acting as the restoring force has been examined by many 

authors. 



In addition to the above extensively-studied problems of fluid flow over topog-

raphy, the free surface problems of jet impact are interesting problems. 

Jet impingement is much applied in many cooling and drying system in indus-

trial process. Many applications in industry require localized heating or cooling. 

An effective way to accomplish this is through the use of impinging gas jets or 

liquid jets. Industrial uses of impinging jets include the tempering of glass, drying 

of paper and textiles, and the cooling of metal sheets, turbine blades and elec-

tronic components. When a flow passes through a wall, we say the fluid transpires 

through the surface. In transpiration cooling a relatively cold fluid enters through 

a porous wall. This flow could be used to cool a wall over which hot combustion 

gases flow. In heat transfer, jet impingements are used because the thin boundary 

layer near the centre of the impingement has high local heat transfer coefficient. 

After the points of maximum temperature are located, the jets are directed to-

wards them, to maximise the heat transfer. 

The mathematical problem is the first stage of idealization of the complicated 

fluid motion. The classic problems in this field can be found in Birkhoff and 

Zarantonello[1957]. General methods for formulating the problems of jets imping-

ing on various objects were developed. Olmstead and Raynor[1965] studied the 

depression due to a jet impinging on a fluid surface, in order to describe the ex-

perimentally observed appearance of lips on the liquid surface. They assumed 

potential flow of a two dimensional gas jet impinging symmetrically on an infinite 

liquid surface. They used Birkhoff and Zarantonello's method to formulate this 

problem. 

However, mathematical modelling of a jet impinging unsymmetrically on a 

object is not much studied. In many cases the location of the point where the jet 

splits into two parts around the object is unknown beforehand. 

In the manufacture of 'glassy' metals, a jet of molten metal is aimed onto a 
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moving wheel or substrate where it is solidified extremely rapidly. Even when 

the viscous and thermal effects are neglected, the remaining outer inviscid flow 

problem results in a difficult free-surface problem. After taking the fluid as incom-

pressible and inviscid and the fluid motion as irrotational and steady, Jenkins & 

Barton [1989] gave an analysis of the impact of a jet on a porous wall at which the 

normal velocity is prescribed. By using fixed-domain methods the computation 

of the shape of the inviscid jet was developed. Numerical results were presented. 

In seeking a simpler computation method, King [1990], using an extension of the 

classical hodograph method, reduced the problem of finding the free surface of a 

jet incident on a porous wall to a first order ordinary differential equation. The 

solution of this equation also provided independent confirmation of the result of 

Jenkins and Barton. This method, however, is restricted to the case in which 

the normal speed through the wetted portion of the wall is constant. In the case 

that the normal speed is not constant, finding a transformation which maps the 

hodograph plane to an upper half plane will be difficult. Moreover, whenever the 

specified normal speed is changed, a new transformation has to be determined. 

In this thesis we investigate the free surface problems of jets impinging on 

uneven walls, of jet impact on a porous wall with specified distribution of normal 

speed and of a jet passing through a porous film. The remainder of this thesis 

is organized as follows. In Chapter 2, some fundmental aspects of fluid dynamics 

and a few methods used in studying the interaction of a fluid with obstacles are 

given, including the generalized Schwartz- Christoffel formula. The solution of an 

integral equation which will appear in the Chapter 4 is also found. We then use 

capillary-gravity waves as an example, in the last section of Chapter 2, to illus-

trate that in some cases, a simple conformal mapping, rather than a complicated 

transformation, can be employed to formulate the problem. In Chapter 3, the free 

surface problem of a jet incident on a porous wall is studied. A system of integral 

equations is derived to formulate this problem by use of the Cauchy formula. In 



the case of constant normal speed, the system reduces to a single nonlinear in-

tegral equation. The asymptotic behaviour of the free surface is analyzed and a 

numerical method is used to determine the shape of the jet. The formulation is 

also extended to include the effect of gravity. In Chapter 4, a jet impinging on a 

rough wall is considered. Using the generalized Schwartz- Christoffel formula, we 

map the physical plane onto an upper half plane. Based on the method for solution 

of an integral equation given in Chapter 2, a class of analytic solutions is found. 

The classic result is revisited, which forms a check on the numerical method. For 

some wall shapes, numerical results are presented. In Chapter 5, we further con-

sider a jet impinging on an asymmetric wall surface. The condition determining 

the position of the stagnation point is found using the momentum equation in an 

integral form. A numerical method is developed. Chapter 6 contains the math-

ematical model of a jet passing through a porous film where the fluid pressure 

and velocity have a jump across the film. An analogue of Darcy's law applies to 

the film. Using the Cauchy integral formula, we formulate the problem through 

a system of integral equations. The singularities in this model are analysed and 

a few numerical solutions to the system corresponding to different parameters are 

presented. The conclusions and some remarks are given in Chapter 7. 



Chapter 2 

Mathematical Formulations 

2.1 Overview 

This chapter is mainly concerned with several typical mathematical treatments 

which reveal general formulations of obstructed free surface flows. The model 

equations for incompressible inviscid flow are briefly summarized. The momen-

tum equation in integral form is provided. Some generalizations of the Schwartz-

Christoffel formula are derived. By transforming variables, an integral equation is 

solved. All techniques developed in this chapter will be applied in some problems 

considered in later chapters. 

2.2 The Governing Equations 

To represent the velocity vector field, we adopt the usual bold type-face, thus 

u=(u, v, w) with magnitude q. The divergence of u is defined as the resulting rate 

of change of volume per unit volume 

Ou Ov Ow 
divu=Vu=—+—+— 	 (2.1) 

Ox1  Ox2  Ox3  

Supposing that we have an incompressible Newtonian fluid of constant density p 

and constant kinematic viscosity ii, its motion is governed by the Navier-Stokes 
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equations 

Ou 1 
= -- 

p 
 Vp+vV2u+F, 	 (2.2) 

V•u = 0 	 (2.3) 

where p represents pressure and may be a function of position within the fluid, 

F denotes the vector resultant of the volume forces per unit mass of fluid and 

V2  denotes the Laplace operator O2/Ox+O2/Ox+O2/Ox. If the fluid is further 

assumed to be inviscid, i.e., it = 0, the second term in the right hand side of (2.2) 

can be neglected. Then we have the Euler equations 

OU 
+ (u V)u = _!Vp + F, 	 (2.4) 

WT 	 P 
V•u = 0. 	 (2.5) 

If the only volume force per unit mass acting on the fluid is gravitational, then, 

F, being conservative, can be written as the gradient of a potential: F = —Vf. 

Using the vector identity 

(u. V)u = (V A u) A u + V( q2), 	 (2.6) 

where q2  = u12, the momentum equation can be cast into the form 

au +(VAu)Au=_V(+.q2+f). 	 (2.7) 

Since inviscid fluids allow irrotational motion, with u = VD for some velocity 

potential (x, t), equation (2.7) yields for these motions 

	

V (O't  + P 1 2 + f) = 0 	 (2.8) 

where q = iVi. This may be integrated, without loss of generality, to give 

P 1 

	

- + - + —iV 2  + I = 0, 	 (2.9) 
ôt p 2 

the unsteady equivalent of Bernoulli's equation. 
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For. steady, two-dimensional motions, the formulation is further simplified by 

taking 4P = (x), which through (2.5) satisfies Laplace's equation 

= 0. 	 (2.10) 

Moreover, a stream function W exists defined by 

	

OT 	ow 
U = -, v = ---. 	 (2.11) 

	

ox2 	ox1 

Since 'P is the harmonic conjugate to 4 = (x1, x2), the complex potential W = 

P + iW is an analytic function of the complex variable Z = x1 + ix2. 

In this case the momentum equation (2.4) is reduced to Bernoulli's equation 

+ 	+ f = constant. 	 (2.12) 
P2 

If the flow has a free streamline x2 = Y3(xi) at which surface tension is neglected, 

the pressure p there equals the constant air pressure P0. 

We shall largely be concerned with flows having a free streamline at which 

the fluid pressure p equals the uniform air pressure po. If gravitational effects 

are included, the x2 axis is taken as vertically upward, so that f = 9x2. Then, 

Bernoulli's equation becomes 

+IVD12 +gx2 = + 
1 

U +gH 	 (2.13) 
p 2 	 p2 

where U is the speed on the free streamline at a point where x 2 = H. In particular, 

at the free surface Ii = To (say) Bernoulli's equation becomes 

(u2 
_ I V,1~ 12) ivi2) = 9(x2 - H). 	 (2.14) 

A non-dimensionalization based on typical length H and typical speed U may be 

introduced by 

x1 +ix2 	 +iW 
z=x+iy= 	,w=q+ib= 	 (2.15) 

	

H 	 UH 
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Bernoulli's equation on the free surface is written as 

2  M2  + Y8 = F +1 	 (2.16) 

where F = is the Froude number. The case when gravity is neglected cor-

responds to infinite Froude number, so that the fluid speed along the free surface 

has the constant value IV012=  1. 

When the influence of surface tension is considered, there is a pressure differ-

ence across the surface, proportional to the surface tension force T and inversely 

proportional to the radius of curvature R of the surface 1 with R chosen as positive 

when the surface is concave towards the fluid. Thus the fluid pressure p on the 

surface is related to the uniform air pressure po  by 

T 
P= PO +. 	 (2.17) 

In this case, Bernoulli's equation at the surface becomes 

- 	+ lVqI2 - U2 = 9(x2  - H) = 0. 	 (2.18) 

In dimensionless form with r = R/H, this becomes 

F2  
- 1) = 1 - Ys - -' 	 (2.19) 

r 

where i = T/pgH2. After division by F2/2, the above equation can be written 

further as 

IV02-1= i('Y8) 
T 
-, 	 (2.20) 
r 

where t = 2T/pU2H. This form is appropriate for treatment of capillary-gravity 

waves. Alternatively, if gravity can be neglected the appropriate form is 

- 1 + Tr-' = 0. 	 (2.21) 

In 1957, Crapper found an exact expression for pure capillary periodic waves 

on deep water. The velocity potential 0 and stream function & were taken to 
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be the independent variables in his formulation of an analytic solution. Later, 

Kinnersley[1976] extended this exact solution to capillary waves on fluid of uniform 

finite depth. 

2.3 The Momentum Equation in Integral Form 

The differential form of the momentum equation (2.4) is largely used in considering 

obstructed free surface flow, but in some important cases, an integral relation 

specifying the momentum balance for a certain region of fluid leads directly to the 

required information. We have 

f-dV= —Jpuu.ndA+JFpdV+ fcyndA(2.22) 
Ot V  

where n is a unit vector directed out of the volume v, cr = (cr23 ) is the stress tensor 

and the two volume integrals are taken over the volume bounded by s which is 

referred to as the control surface. 

If the body force per unit mass is a conservative field, pF can be written as 

the gradient of a scalar quantity 

	

pF = —V(pf). 	 (2.23) 

Then the contribution from the volume force can be put in the form of a surface 

integral. Thus we obtain 

I 	= - J puu . ndA + J(-pfn + a . n)dA. 	(2.24) 
Jv 

 
at 	 8 

In the important case of steady motion the remaining volume integral, on the 

left-hand side of (2.21) is zero. Thus the above equation can be reduced to 

jpuu. ndA = j(_pfn + cr. n)dA 	 (2.25) 
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which states that the convective flux of momentum out of the region bounded by 

A is equal to the sum of the resultant contact force exerted at the boundary by 

the surrounding matter and the resultant force at the boundary arising from the 

stress system which is equivalent to the body force. The boundary surface A may 

be chosen freely in particular flow fields. This integral form of the momentum 

equation may be specialized for an incompressible inviscid fluid in steady motion 

under gravity as 

j puu - ndA = j(pg.x—p)ndA. 	 (2.26) 

In order to show explicitly that gravity may be ignored when components of the 

momentum flux and resultant force in a horizontal plane are under consideration, 

the first term containing g may be transformed to a volume integral, then giving 

J. puu ndA = pgV - j pndA. 	 (2.27) 

However this equation is the vectorial form of momentum equation. The momen-

turn equation in integral form, in more general case, is one projected on a special 

axis ,says, 1= (11, 12,13)  with I TJ = 1. 

Let velocities in the direction of I be denoted by ii = u - L Similar to (2.22), 

we have 

Dpi' drf= JF . lpdr + J >.1
axi 

ldr 	 (2.28) 

The right hand side of (2.28) can be written 

rDpü 	 (ôü 
J

—-dr 

	

	 dr Dt 	 at 
/ Ou 

= j - —u+pu.Vu )dr 
at 

(apii  = j--+uV.u+u.Vii )dT 
at 

= j
/ ôü 

+ pV üu d) r. 	 (2.29) 
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Consideration of the balance of momentum for the fluid contained within a 

fixed surface S is more convenient in use. Therefore substituting (2.29) into (2.28) 

and using the divergence theorem yields 

f .1±dr  = - J püun3dS + J F - Ipdr + / E.1l1cr1 ndS 	(2.30) 
Jv 

 at 	 v 	 v 

If the body force F is due to gravity, the stress is an isotropic pressure cjj = —Pö2  

and the speed of uniform oncoming flow is assumed to be sufficiently large, the 

effect of gravity is negligible. Thus, in steady motion, we obtain 

pj(u. i)u . ndS = - jp(i. n)dS 	 (2.31) 

Equation (2.31) is the integral form of momentum equation in the direction rfor an 

incompressible inviscid fluid in steady motion. An application of the momentum 

will be made in Chapter 5 concerning an ideal jet of liquid impinging on an uneven 

wall. 

2.4 Conformal Mapping, Integral-Equation and 

Hodograph Methods 

A few typical methods applied in obstructed free-surface flows are introduced in 

this section. 

2.4.1 Transformation of a boundary into an infinite straight 

line 

Directly mapping the region occupied by the fluid into a somewhat simpler re-

gion, the lower-half of the (-plane say, can reduce the problem of some obstructed 

free-surface flows to finding a complex potential satisfying the appropriate bound-

ary conditions. The steady two-dimensional free-surface flow of an ideal fluid 
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over arbitrary bottom topography is used to illustrate the transformation. The 

transformation, given by King and Bloor[1989], can be written as 

dz 	—1 
xp H  +°° 0(t) dt' 

dC 	 L - = - e (2.32) 

where 0(t) is the angle made by the tangent to the free surface or bottom with the 

x-axis at the point which corresponds to C = + iO. The point C = 0 corresponds 

to the downstream flow at infinity. As C approaches the real axis, the limiting 

form of (2.32) is written as 

dz - —1 	

1-7 

1 	0(t)

}
(2.33) exp_f 	dt - 	

- 	
+ i0() 

where the integral sign with an asterisk denotes the Cauchy principal value. The 

complex potential in the (-plane can be treated as a sink at the origin of strength 

1/7r, so that 

W(C) = _!log(. 	 (2.34) 

Therefore the complex velocity can be given as 

ie 	dW 	(1 	0o 0(t) dt 
	(2.35) u — zv=qe =—=exp— I dz 	1j_ C—t I 

where 8 is the angle made by the fluid velocity vector at the point corresponding 

to C. As  C approaches to the real axis the limiting form of (2.35) is 

i +°° 0(t) 
qe 0  = expt - I 	dt - z0()} 	 (2.36) 

7rJ_o0 	—t 

that is 

= 	- 	—dt 0=0. 	 (2.37) q 	
exp{ 1 +°° O(t)

7 L (t) I 
Equations (2.33) and (2.37) can be used in the derivative of the free-surface 

Bernoulli condition, which is 

F 2  q dq + 	- 0 	 (2.38) 
d - 
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Equation (2.38) is a nonlinear integro-differential equation for 0(e).  To solve 

a coupled set consisting of (2.38) and tan 8 = f'(x), a numerical scheme has been 

developed and applied by King and Bloor to the solution of a variety of obstructed 

free-surface flows. 

The transformation of the region occupied by fluid in the complex potential 

plane, rather than the region of the physical plane, to an upper (or lower)-half 

plane is another technique used in considering obstructed free-surface flows. 

In many cases, the flow region in the complex potential plane is a simple shape, 

such as that considered in the above example, which is the strip —1 < & < 0. It 

then can be mapped into an upper-half plane by a standard conformal mapping. 

This idea will be fully developed in the next Chapter. Tuck[1986] considered a 

flow in which a stream of water emerging from a simple slit orifice in a vertical 

wall then falling under gravity. The flow region then corresponds to the strip 

—1 < & < 0 in the w-plane, which is mapped to the lower-half (-plane by 

(2.39) 

After introducing the logarithmic hodograph 

dw 
=r—zO, 	 (2.40) 

TZ 

where q = cT is the flow speed and 0 the flow direction, the variable 

x=cl+ log C+i 
7r 	

(2.41) 

is defined. Since this vanishes at infinity in the lower-half C-plane, the Hubert 

transform was used to give, for real C 
1 	'00*x(C)dC  
7ri f-00  x(C) = -C - C 

' 	 (2.42) 

After some manipulations, this yields the demanded relationship, namely 

1N* 

r(C) = _ j loglCo _Cl ..log N _+_1 
0  C-C' 	

(2.43) 



where and N  correspond to the two points at the edges of the orifice. 

The y-coordinate is needed for use in the Bernoulli condition. Integrating 

(2.40) gives 

Z 
= J e°dw 
	

(2.44) 

which is written, in terms of , as 

Z(C) = 
	e+tO _d 	

(2.45) Ito 	(—ire)' 

where the top edge C = o is chosen as the origin in the z-plane. Thus, taking the 

real part of (2.45) yields 

(C) =C e' sin O() _
d 	

(2.46) Ito, (-7r 

This then reduces the whole problem to a nonlinear integral equation for 0 = 

<' <eN. 

However, the flow region in the complex potential plane is not always so simple. 

The boundary of the flow region in the complex potential plane may include an 

unknown portion of curve such as in the problem of the impact of an ideal jet on 

a porous wall. Since the complex potential is unknown along the wetted portion 

of the porous wall, the problem seems to be difficult by the classical hodograph 

method. Based on the Baiocchi transformation, a numerical scheme was developed 

by Jenkins and Barton[1989]. King[1990] used a conformal mapping approach, an 

extension of the classical hodograph method to reduce the problem to a first order 

differential equation. In King's formulation, the region occupied by the flow in 

the complex potential plane is a semi-infinite strip bounded by two parallel lines 

and an unknown curve. The fact that this curve is undetermined arises because 

neither speed nor stream function is knowen on the porous wall. In this case, 

again, a generalization of the Schwartz- Christoffel formula is used to transform 

the w-plane into the upper-half of the (-plane. The fluid velocity along the wet 
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(a) 	Physical plane of ajet flow from a alot. 	 (b) i-plane 

Figure 2-1: The physical-plane of a jet flow from a slot and a reference i-plane. 

portion of the porous wall, together with the mapping between the hodograph 

plane and upper-half of the C-plane then can be obtained. That the fluid velocity 

is not assumed to be constant at the porous wall makes for difficulty in finding 

the transformation between the region occupied by the fluid in the dw/dz-plane 

and in the C-plane. 

2.4.2 Conformal mapping of a boundary into a circle 

In the previous section we have introduced the conformal mapping technique by 

which some problems of obstructed free surface flows were formulated. In this 

section, we adopt the Birkhoff and Zarantonello method, an analogue of that of 

Levi-Civita [1907], for finding ideal steady plane flows in a gravity field, bounded 

by a free streamline and by polygonal fixed boundaries to illustrate how the con-

formal mapping of a boundary into a semicircle is used. We take the formulation 

of the symmetric jet from a slot as an example, for brevity. The flow considered 

can be mapped conformally and symmetrically onto the unit semicircle 

F: Itl < 1,a{t} > 0 
	

(2.47) 

in a reference i-plane. The fixed walls are mapped into the real diameter and 

the free streamlines onto the circumference I = eia of F, as indicated in Fig. 2-

1. In order to determine the complex potential W, the conformal transformation 
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T = —(t + t 1)/2 is used to map 1' on to the upper half-plane so that 

W=ClnT, dW C 
	

(2.48) 

for some scale factor C. 

Since C = dW/dz, we have z = f C 1dW. To determine the flow, we need to 

find C(t). The flow is assumed to be stagnant at I, hence C vanishes at t = 0. C is 

also real on the real diameter. From the Reflection Principle, C can be extended 

to a function analytic in the unit circle Itl < 1. Since C is imaginary when t is 

imaginary, we have 

	

C = a1t + a3 t3 + a05  +•• 	on JtJ < 1. 	(2.49) 

C(t) is analytic on the unit circle t = e C,  except at the separation point t = ±1, 

where C = ±1, and at t = ±i where C = ±oo. From the Bernoulli condition 

1C12 = 2gy, we have 

C .s (2igz), 	asymptotically, near J at infinity, 	(2.50) 

hence 
22 

W 	1(2igz)ldz 
= (8g)(iz) 

3 	
(2.51) 

Substituting T = -(t + t 1)/2 into the first equation in (2.48), we find 

W = C1nT = Cln[—(t+ t1)/2] { ln(1 + 
it), near J 

(2.52) 
ln(1 - it), near 

Thus near J, we obtain 

1 	1 	 1 

(2igz) '- W '- [ln(1 + it)]. 	 (2.53) 

Consequently, for 0 <C <0.5, the function 

	

C(t) 	 (2.54) 
t[lnC(1 + 
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is bounded away from zero and infinity throughout Iti < 1. We can then write 

1 

C = t [In C(1 + it)] e 	. 	 (2.55) 

Since 11(t) is bounded and continuous in Itl :5 1, and analytic in the interior, 

we can have 

11(t) = a0  + a1t1  + a2t2  +.... 	 (2.56) 

In this symmetric case of C we further obtain 

11(t) = a0  + a2 t2 + a4 t4 +.... 	 (2.57) 

where the coefficients a21  are to be determined. Substituting (2.57) back into the 

Bernoulli condition on the free surface then gives rise to an integral equation. The 

integral equation is solved numerically by truncation of the expanded series for 

11(t). Recently Vanden-Broeck and Keller[1987] used a very similar technique to 

construct the problem of of weir flow. 

2.5 Transformations and Integral Equations 

In this section, some generalizations of the Schwartz-Christoffel Formula which 

transform special regions into an upper-half plane are given. The application of 

these transformations to the obstructed free surface problem will be presented in 

the following chapters. 

2.5.1 Generalizations of the Schwartz- Christoffel formula 

A mapping is sought to transform the singly-connected region bounded by the 

contour ABCDEF shown in Fig. 2-2 on to the upper-half of the (-plane, in 

such a way that ABCDEF maps on to the real axis r = 0, —oo < < 00. 
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Figure 2-2: The physical-plane of a jet impinging on an asymmetric wall 

The contour is assumed to have a continuously turning tangent except at a finite 

number of points, where simple discontinuities in the slope a of the contour may 

exist. The generalization of the Schwartz- Christoffel formula, in the form given 

by Woods[1961], is used for this purpose. It is written as 

dz t 1 +00 
= K exp j,--.- L00 

log(( - t)a'(t)dt}. 	 (2.58) 

The relation between the slope a of the contour and the flow angle 0 made 

with the real axis is 

I a(t) 

I 	w 
0(t) 	

a(t)— 
= 

I a(t) 

a(t) - 

—oo<t<-1 

—1<t<a 

a < t < 1 

1<t<oo 

(2.59) 

where a corresponds to the stagnation point in the physical region, at which the 

flow angle has discontinuity ir. The integration in equation (2.58) can be split into 
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five parts as 

	

r+oo 	 p—i—€ f—l+6 rl-6 ,1+c ,+oo 

J log(( - t)da(t) 
= J 	+ J 	+ J 	+ J + J log(( - t)da(t) 

-00 	 -00 	12 	1+2 	1—c 	1-4-6 

(2.60) 

and the integration taken with respect to 0 instead of a using the relation (2.59), 

where appropriate. Then, using integration by parts: 

i) 
1—c j12 

log(( - t)da(t) 
= f log(( - t)dO(t) 

00 
—1-6 9(t) 

= 0(t)109((_t)I:+ 	— dt 
 Ci 

—1—c 9(t) dt 
	(2.61) = _.log((+1+6)+J 

1
—1-2 

	

-1+6 
log(( - t)da(t) = ir log(( + 1) + 0(f) 	 (2.62) 

	

1-2 	 1—c 
log(( - t)da(t) = a(t)log(( - t)I 	+ I 	

a(t) di 
~  

	

J-1+e 	 J-1+2 C - 

ir 	C - 1. + 6 
f

a ((t) 1—c 0(t)
—log 	- + 	- dt+ I 	dt 
2 	+1 	i-i-cC t Ja Ct 
ir C - 1 + 	pa 0(t) + ir 	1-6 0(t) 

	

= lo 1+J 
C 

dt+f 	dt 
—t 	Ja 

1-6 9(t) 
1 = 

	

	 + 	 dt +log C—a 
J—i+cCt 

(2 
-(1 - )2 

	

log 	
1—c 

+ 1 	
0(t) di 
	 (2.63) - 	

(C — a)2 	J—i+c(—t 

iv) 

k
1+6 

	

... 
log(C - t)da(t) = irlog(C - 1) + 0(€), 	 (2.64) 

V) 

+00 	 +00 

11+6 

 
log(( - t)da(t) 

= 11+6 
log(( - t)dO(t) 

P+00 
- -- log(( - 1+€) + 	

0(t) 

	

2 	 i 
dt. 	(2.65) 
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Substituting these equations into (2.57) yields 

r-4-00 	 T-1—e 0(t) 
J 

	

log(( - i)da(t) = —..log(C + 1 + e) + J 	- 1dt + 7r log(( + 1) 

	

C2 	
)2 	1-6 0(1) dt +1 

+_ log (C—a)2 
?+00 OM 1dt+O(€). 

J1+6 

(2.66) 

Then, letting e - 0 gives the required relation 

+00 	 2_1 I log(( - t)dc(t) = rlog 	+ f
+00 0 (t) 

di. 	(2.67) 
C —  a .i—oo C-i 

Inserting (2.64) into (2.55) gives 

dz 
dC Kexp = 	_! 	C2 - 1 	+00 0(t) dtI 

	

{ 	
[ir log 	+ C — a f oo C -t f 

= 	C - a 	{i f 

	

+oo 0(1) di 
	 (2.68) 

	

KC21 eXP 	ir00 C - i J 

As ICI - oo, we have 

C—a 	1 +00 0(1) 	1 
-- 	dt" " C2_l exP{ f00 	

(2.69) 
  j 

This allows the constant K to be determined so that the width of the incoming 

flow has the assumed value 2: integrating (2.67) along a large semi-circle using 

(2.68) then yields K = —2/7r. Thus we obtain 

	

dz2 C—a 	1 +00 0(t) 
exp 	-- I 	dt j  . 	 (2.70) 

	

d( - irC2-1 	'7r-00 C -t 

In the above, the upstream flow is assumed parallel to the physical x-axis. If 

instead it is inclined at an angle yo  to the x-axis, we similarly obtain 

dz - 	fo 
2e°C - a ex s— 1 1 f00 0(1) dt 

	 (2.71) 
dC 	ir C2 -1 	iro C1 
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2.5.2 An integral equation and its solution 

In this subsection, we discuss an integral equation and find its analytic solution. 

This result will be used in Chapter 4 in formulating a free surface problem of a 

jet impinging on certain objects. 

To solve 

1 Jl*  0(t) 	1
dt + - 

ro* 0(t) dt = F(), F() E L2[—oo, -1] U [1, oo], (2.72) 
ir -00 	 ir 1 

we make the change of variables t = r 1, s = 	in (2.71) and obtain 

F(s 
1) 	

- 	 dr+ — 
11*

dr 
-=1 JO* s0(r)r' 	1 	s9(r1)r

ir -1 	r—s 	ir 	r — s 
1 "' 

	

= s— I 	dr, 	0 < s < 1. 	(2.73) 
irJ-i r — s 

Let g(s) = sF(s), g(s) e L2[-1, 11. Then equation (2.72) reduces to the 

so-called aerofoil equation 

11* 
g(s) = - f q(r) dr , 

	0 < iI < 1, 	(2.74) 
ir 	1 S - T 

which here relates g(s) defined above in terms of the flow angle on the wall to 

r0(r). The integral equation (2.73) may be inverted using the formula 

(see Hochstadt [1973] p.165) as 

c1 11* \/ i - r2  g(r) dr, 
	 (2.75) 

ir -1 1—s2 s--r 

where c is a constant to be determined later. Moreover, there is an alternative 

representation 

I 
1 	1*  1 / - 2 g(r) dr 
	 (2.76) 

irf-i 1—r2 s—r 

valid subject to the compatibility condition 

fl g(s) 
ds = 0. 	 (2.77) 
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Reinterpreting (2.74) in terms of the free streamline angle 0(3_i) = s0(s) gives 

_2 = c - f y'l - r2 
g(r) dr. 
	 (2.78) 

J—i 	s  

Since 0 remains finite as s -) ±1, we obtain the two expressions 

C 
= j Vi - r2 J7(Y) di' = 	y'l __r2 ') d. 	(2.79) 

Thus we find that 

o = I -V -1 - r2 	+ 	g(r)dr = 2 , 	
g(r) dr. 
	(2.80) 

	

( 1 	1 
 ) 	

P1 

	

J—i 	T—_ r 1—+ r 	 J—i /1 __ r2 

The constant c is determined using (2.79) as 

1 rl _______ 

	

1 	' 
g 	

1' ____ 
C= = - I v'l - r2 	

1 
- 	(r)dr = - f 2rg(r) 

 di'. 	(2.81) 

	

2J_1 	1—r 1+rJ 	2J-i/1—r2  

Consequently, condition (2.76) is satisfied for all cases. Equation (2.77) may be 

rewritten in terms of 0(i) (Ill > 1) as 

	

0(1) ± 1 t2 - 1 ( —1a 	00* 	1 	F() 
- 	 u_00 -Á ) 	 _' 	

ItI>1, 	(2.82) 

where the positive sign applies for 1> 1 and the negative sign for I < —1. 

2.6 	Capillary-Gravity Waves of Finite Amplitude 

In this section, we intend to use simple complex variable transformation tech-

niques, rather than the generalized Schwartz- Christoffel formula, to study the 

mathematical formulation of the steady, two-dimensional, free surface flow of a 

stream which is obstructed by an arbitrarily curved bed topography. 

2.6.1 Formulation 

Two dimensional steady capillary-gravity waves of finite amplitude are investi-

gated, on a flowing stream of water of finite depth over an uneven bed. The waves 
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- • -•are subject to the effects of gravity, surface tension and a corrugated bottom. The 

progiessive gravity waves are in an irrotational incompressible inviscid fluid with 

surface tension acting at the free surface. 

The X-axis is horizontal, Y-axis vertically upwards. A potential function 

(X, Y) and a stream function W(X, Y) are introduced. We assume that the 

stream function iI1(X, Y) takes the values Q on the free surface and 0 on the bot-

tom respectively. Let C denote the fluid speed upstream where the flow is uniform 

with undisturbed depth H. Then we have HC = Q and 

W—+CY, 	X —+ —oo. 	 (2.83) 

Within the fluid the velocity potential 4D and stream function are conjugate har-

monic functions. We introduce the dimensionless variables 

X 	y 	4D 	T 
x= iI, Y=, 	 &= 	 (2.84) 

In terms of complex variables, the standard formulation is 

w=q+iib, 	z=x+iy, 
dw 	 iO 
dz 

= u—iv= q 	r =lnq 	 (2.85) 

where w is the complex potential, u and v are velocity components, and q and 0 

the speed and direction of the flow. The shape of the bottom 'I' = 0 is specified 

by y = f(x), and of the free surface 'I' = 1 by y = s(x). Bernoulli's equation is 

Lq2 + 	+ y = constant 
2 	pg 

(2.86) 

where F is the Froude number with F2  = C2/gH and p the pressure. In particular, 

on the free surface, the effects of surface tension T and constant air pressure Po, 

give the pressure as 

P = Po + ,cT, 
	 (2.87) 



so that equation (2.86) becomes 

F 2 	T 
—q + 	+y=constant, 	XF=1 	 (2.88) 
2 pgH 

where ic is the curvature of the free streamline: 

d9 qdO 
'C 

= 	
= 
j. 	

(2.89) 

Replacing (2.89) into (2.88), we obtain 

F2 2 	T qdO 
+ pgH2 	+ y = constant, 	'I' = 1. 	(2.90) 

The kinematic conditions are 

OV  = f' ( x)q, 	'I' = 0; 	O y  = .s'(x)ç&,, 	'I' = 1 	(2.91) 

on the rigid boundary and the free surface respectively. Corresponding to the flow 

region in the physical plane, we have the strip 0 < 1' :5 1, —oo < ç :5 oo in the 

complex potential plane. We transform the strip to the upper half plane using the 

conformal mapping 

C = 	+ i7i = eirw 
 , 	 e cos 7r', 	77 = eirq5 sin ir. 	(2.92) 

We introduce w = r - iO, which is an analytic function defined in the upper half 

plane C = + ii1(77 > 0). Thus, by the Hilbert transform, we have 

1roo*9 

° 
r(,0) = 
	j_ 	tit, 	

(2 .93) 

1 oo*r(t 
O(,0)=_j 	

'12dt. 	
(2.94) 

ir 

After substituting (2.92) into (2.93) and (2.94), we have r and 0 defined on the 

w-plane. In particular, we let 

0(—e,0)=(), ID=0; 	(2.95) 

7-(e,0) = (0), 	0(e,0) = (4), 	'1 = 1 	(2.96) 
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on the free surface and the rigid bed respectively, where and correspond to 

the free surface, T and 0 to the rigid bed. After using (2.95) to replace by ç in 

(2.93), we obtain 

- 	
1 {j

o* 9(t, O) dt + 
	0(t' o)  dtl 

—co t + e 	t + e 	j 

= _! 
[J_oo* 

0(e370) (_ireds) irLoo _e1r8+e 

+ 
J00 	

9(e1'TO) (ire lrrd)d] 
—00 eltr + e1 

iin 
00* 	s) 	 00 	 (r) = --u ds+irJ 	drl 

W f J—oo —1 + e&') 	+ e&) J 

{f

00 i(s)  ds'. 	(2.97) = - 	
ooe 	

d8+  el(—s) - 1 	oo e(8) + 1 J 

Similarly, we have 

'Oo 	O(s) 	00* 	a(s) 
= 	1 + e() da - 1-00 1 - e() ds. 

	(2.98) 
J —00 

Defining T/pgH2  = To, then the derivative of (2.90) with respect to 0 gives 

	

F2qq' + To(qO')' + q 1  sin 0 = 0, 	1' = 1, —00 < 4 < 00 	(2.99) 

where a prime denotes d/dq. Substituting q = 	and 0 = O into (2.99) yields 

F 2e r 	 = 0, 	0 = 17  —00< 0 <00. 	(2.100) 

On the fluid bed, y = f  we have 

tang = tan  = f'(x). 	 (2.101) 

Since 
—1 	ay 

cos 0,q-1 - 'sinO, 	 (2.102) 
00 	 00 

we have on the streamline b = 0 

= '(0) = q' cos # = e cos . 	 (2.103) 
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Equations (2.97), (2.98), (2.100) and (2.101), combined with (2.103), describe 

a free surface problem for flow over an uneven bottom. For the case 0 = 0, i.e. 

for flow over a flat horizontal bottom, the problem was discussed by Bloor[1978], 

who used the transformation which maps the physical plane to a lower half plane 

to obtain an exact nonlinear integro-differential equation for the flow angle of the 

free surface. A generalized Schwartz-Christoffel formula was applied in his study 

to specify the problem. In this study, rather than mapping the region occupied 

by the fluid, we transform the complex potential plane into an upper half plane in 

an explicit form. In the next subsection we present some results concerning some 

special cases of uneven bottoms. 

2.6.2 Flow over a ramp 

In this subsection, we discuss a special case: flow over a bottom with a step. Let 

= a on 0 < 0 < b, with 0 = 0 otherwise on 'I' = 0. Then (2.97) becomes 

fOO* 

- 	
a(s) 	a 1 + ds --In - oo &'(—) - 1 	ir 	1 + 	

(2.104) 

To determine the constant b, we need another condition which follows from (2.102) 

as 

= sin  
o 

b 

f eTdcb = b sin aj e_Tt)dt 	(2.105) 
J 	 0 

where € is the height of the step. Then (q5) is given by 

b(s) 	
ds - in 

elrb - 
0. e"() — 1 	 - 1 	

(2.106) 

In this case we only need to solve the nonlinear equations (2.100) and (2.103), 

combined with (2.105). In order to provide a basis for a numerical scheme for 

solving the nonlinear equations, as first approximation, we consider the linearized 

equation of (2.100). 
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Linearized equation 

If the step height and ramp angle a are assumed to be small, then b = S and the 

flow angle is small so that (2.100) can be linearized to become 

F2 ' + T00" + = 0, 	1' = 1, —oo < 0 < 00. 	 (2.107) 

The derivative ' can be approximated to give 

d'i - dr1 	________ — 	+ a(1 + e?4)2' 	 (2.108) 

where 

= 
- f 

00* ~ 
00 

(s)P(ct - s)ds 	 (2.109) 

and P() = 1/(e - 1). 

Substituting (2.108) into (2.107) gives 

	

F2 	+ T00" 2 
- 	 +0=—F a (2.110) (1 + e1)2' 

which may be solved using Fourier transforms and the convolution theorem. 

If we let f(k) = F{f(çb)} denote the Fourier transform off, then using F{7- } = 

we obtain 

e1 	\• ikF2 	16 A (21r)F{(k)}P(k) + T0F{ö"} + F{ö(k)} = —F2airSF 
{ ((1 + e1 )2) 

(2.111) 

Since 

F{O"} = —1c2F{(k)}, P(k) = 	
z 

(27r)12 tanhk' 

F 
1(1+e)2)} = (2)sinhk' 	

(2.112) 

it follows that (2.111) becomes 

F2 	 F2cu5k 

(tanh 
1c + T0k2 - i(2.113) 

	

k 	
) F{ö(k)} = 

- (2r)27r sinh k 
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In the case that k satisfies F2k+ (T0k2  —1) tanh k = 0, equation (2.113) is singular 

and we have to consider solution to 

F2 	+ T0 " + = 0. 	 (2.114) 
dO 

This was solved by Bloor [1978] using 

f
00* 	6ikx 	 ie ikr 

oo  er() - 1dx = tanh k' 	
(2.115) 

to give general sinusoidal waves of wavenumber k 

O=Acosks+Bsink3 	 (2.116) 

where A and B are arbitrary constants. If F 
2  k + (T0k2  - 1) tanh k 96 0, equation 

(2.113) reduces to 

F{Ô} = 
- 	 F2cz6k 

(2ir)4ir 	-i cosh k(F2k (Tok2  - 1) tanh ) 	
(2.117) 

which is then solved using the inverse Fourier transform as 

0   = -1'. F2cr.5ke_*dk 

27r2  cosh k(F2k + (T0k 2  - 1) tanh k) 	
(2.118) 

The closed form evaluation of (2.118) generally cannot be obtained. By using the 

residue theorem and suitably choosing the contour the integral may be evaluated 

as an infinite series which is fully discussed by Lamb [1932] and King & Bloor 

[1987]. The pure complex roots of F 2  k + (T0k2  - 1) tanh k) can be determinded. 

Figure 2-3 shows the graph of D(k) = F21c - (T0k2  + 1)tank) when F = 1.25 

and To  = 0.85. All the cusps indicate that D(k) is ±oo at ±(2n + 1)7r/2 where 

n = 0, 1,2,.... 

In this Chapter, we have recalled the basic theory of fluid dynamics, the gov-

erning equations of free surface problem. We have also introduced some known 

techniques being used to deal with obstructed free surface problems. We have also 

presented some results. The integral form of the momentum equation will be used 
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Figure 2-3: D(k) = F 2  k - (T0k2  + 1) tan k with F = 1.25 and To = 0.85. 

in Chapter 5 for a jet impinging on an uneven wall. The transformation (2.68) 

will be used in Chapter 4 and the solution of an integral equation, in the form 

(2.82), will also be applied in Chapter 4. 
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Chapter 3 

Nonlinear Free Surface Shapes of 

a Jet Incident on a Porous Wall 

3.1 Introduction 

The problem of determining the free streamline of a jet of ideal fluid incident on 

a porous wall was considered in the recent papers of Jenkins and Barton [1989] 

and King [1990]. Using Bernoulli's law, Jenkins and Barton gave the velocity 

potential on the free boundary so that an expanded velocity potential was defined 

on a wider region. Based on the Baiocchi transformation method, the problem 

was transformed into a fixed-domain problem, then a numerical computation of 

the various shapes of the free surfaces was provided and the pressure field was also 

given numerically. King extended the classical hodograph method and obtained 

an expression for the tangential angle along the curved portion in the complex 

potential plane in an explicit form. Then he reduced the problem to a first order 

differential equation, which was solved numerically. In both cases in computing 

the shapes of the jet the boundary condition assumed on the wetted portion of 

the wall was that the normal velocity of the fluid was constant. In this case, 



King presented a concise numerical approach. However, although the particular 

boundary condition is not essential to his method, a non-constant normal velocity 

at the wall would introduce the difficulty of finding a conformal mapping which 

transforms the domain of the hodograph plane corresponding to the flow region 

into an upper half plane. As the wall velocity changes, a new conformal mapping 

has to be found. With the aim of studying the free surface problem when the 

normal velocity of fluid on the wall is not constant and the desire to give a compact 

numerical method applied to all the cases considered, in this chapter we use a 

boundary integral method and obtain a system of nonlinear integral equations 

relating the flow angle on the free surface and on the porous wall. When the 

normal velocity along the porous wall is constant, the problem reduces to solving 

a single nonlinear integral equation, so providing a computation of the shape of 

the free surface, alternative to those of King and of Jenkins and Barton. Moreover, 

as the flow angle on the wall is found, the velocity of the jet at the porous wall 

can be analysed, and then the force exerted on the porous wail by the fluid jet 

is given. In the last section, we extend this formulation to consider the effect of 

gravity. The method developed in this chapter can be treated as a complement 

to King's work and as a further confirmation that conformal mapping techniques 

can well describe a problem of a jet incident on a porous wall. 

3.2 Mathematical Formulation 

The physical problem here modelled is shown in Figure 3-1. A two-dimensional 

steady jet of inviscid fluid incident upon a porous wall, inclined at angle 'y  to 

the upstream flow. The fluid occupies the region Q. Cartesian coordinates (x, y) 

are introduced, as shown in Figure 3-1. In terms of the velocity potential 0, the 

stream function ik and the complex potential w = 0 + io which is an analytic 
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A 

IE 

Figure 3-1: The physical-plane of a jet impinging on a porous wall 

function of z, the complex velocity is given by 

dw X =T 	qe =u — zv. 	 (3.1) 

Here q is the fluid speed, 0 is the flow angle relative to the x-axis and u, v are 

the velocity components in the x and y directions. 

The stream function 0 is harmonic within the flow satisfying Laplace's equation 

= o, 	z E 11 	 (3.2) 

with the boundary conditions 

dw 
---p1 as x — —oo, —1< &1 	 (3.3) 
dz 

Re(TZ

dw 
e 	= G(,) on x = ytan'y, a < y ~ b 	(3.4) 

I dw I 
on — ooxytarvy, 	=±1. 	 (3.5) 

The function G(y) specifies the normal component of velocity on wetted portions of 

the wall, and y = a, b are to be found as positions where the bounding streamlines 
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Figure 3-2: The images of A,B,C and D in the reference (' = + ii-plane 

meet the wall, so that 

1'(a tan 'y,a) = —1, 	(btan7,b) = 1. 	 (3.6) 

The mass conservation law then gives 

b 

sec 7j G(y)dy=2. 	 (3.7) 

We introduce a conformal mapping of the flow region onto the upper half of 

the C = + ir, plane. The mapping is given by a generalized Schwarz- Christoffel 

formula, i.e, 

= Kexp{_!J log(( - t)dp(t)} 	 (3.8) 

where K is a constant to be determined later and p(t) is the angle of inclination 

of the tangent to the boundary of fl at points which map onto = t on the real 

axis of the C-plane. Since ' = ±1 are streamlines and the wall is plane, the angle 

p satisfies 

p=O 	on t<-1 

IL = 17 r - 	on 	Itl < i 	. 	 (3.9) 

p=O+7r on t>1 

Since the angle p(t) has jumps at points —1 and 1 along the c-axis of the 

(-plane, the integration is divided into five parts as 

1100 

j

-1— 

1
-1+c 

+J
1—  
 +J 1--c  

f oo
1og(—t)dp(t) (3.10)log(C—t)dp(t) 

= 	 1 	 1 0000 	 1- 
 

which are evaluated as follows: 

—1—c -1—c 

L00 
log(( - t)dp(t) = —a log(( + 1 + €) + 	tdt 	(3.11) 



' 
/ log(( - t)du(t) 

= 
7 -' 

+ a) log(( + 1) + 0(f) 	(3.12) 

	

urn] 	log(( - t)d1z(t) = 0 	 (3.13) 
6+O 

	

r1+ 	 fir 
log(( - t)d,u(t) = 	+ 8 +) log(( - 1) + 0(f) 	(3.14) 

I
co 

log(C - t)d(t) = —/31og(C -1 - ) + fl+e - 
irdt. 	(3.15) 

J1+f 	C - t 

After letting c —. 0 in the equations and using (3.9), equation (3.8) is then con-

verted to 

dz ( 1rf 
= KexP__I( r __7)log((+1)+(+7)log((_1) 

I.. 7r  

	

-1 	 1' +1 	9 dt+J
00 9 

dtI 
J-00C—t 	1 

= K (c2  _ 1 	(C - 1 	1 [f 

	

l 0 	00 

	

exp 	— — 	- dt+ I C_tdt]}. 

	

t 	J1 C+1, 	ir ooC 

(3.16) 

After determining the constant K by the condition at infinity where the upstream 

flow width is 2, we obtain 

	

dz = 2(C2 - 1)-i (C - 1)_i 
	(— 

-1 9(t) 	00 0(t) 
dC 	 C+1 	\ irL-00C — t 	C—t 1) exp (--IJ 	dt+ 	dt , 

(3.17) 

where 9(t) is the flow angle on the free surface while t is a parameter along the 

real c-axis, and C = —1, C = 1 correspond to z = iasec7e, z = ibsec7e, 

respectively. 

Since in x is an analytic function of C in 77 > 0, then on 77 = 0, in q and 0 are 

related through Hubert transformation as 

/ 1 00* 9(t) 
f q() = exp I -- dt 	 (3.18) 

\ 	oo t— 	) 
<+00, 

1 [* lnq(t) 
0(e) 

= - dt 	 (3.19) t e  



where the * above the integral indicates a principal-value integral. 

After using the boundary conditions (3.5), (3.18) and (3.19) then reduce to 

1E
-°dt=0, for II>l, 	(3.20) 

1 	t1Inq  Lt)O()= _j 	dt 	for I<+OO. 	 (3.21) 

3.3 The Boundary Equations 

Let O = O() (II < 1) denote the flow angle at the porous wall, so that from 

(3.4) we have 

q cos (O + y) = G(y). 	 (3.22) 

Hence, for I C I < 1, we have In  = lnG(y) - ln cos (9 + y), which may be inserted 

into (3.21) to give 

	

= 111* lnG(y) - lncos(O + 
dt, for 	< 1. 	(3.23) 

	

r.-i 	t — 

Also, since q(t) = 1 for Iti > 1, equation (3.19) gives 

O()= 
1 
 f 

1 lnG(y) - lncos(O + 
dt, for 	> 1. 	(3.24) 

— ir 

In order to use the above equations to find O(), it is necessary to relate y to 

for 	( <1. By letting( - in (3.17) for (I <1, we obtain 

dz 	. _2 	-- 
W 

	

-10o 0(t)

} 
 (12) 	

+ 	
exp_ —(f +J 	di , d 	 I lr\J-00 1 

(3.25) 
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Since z = (tan + i)y = iye 1"sec'y on the wetted wall, we have the relation 

between y and 6 as 

dy = 2 COS (
1 -6 

- 2)4 	)exp{_ (L: +J°°) 9@)dt}, 	<1. 

(3.26) 

Consequently, determination of the flow reduces to solving the system (3.23), 

(3.24) and (3.26). An iterative method is given later. Since formula (3.24) the 

flow angle at the free surface also involves G(y) the problem is complicated. We 

need an explicit relation between the flow angle at the wall and on the free surface. 

This is provided by inverting equation (3.20) as 

0(t) = 	
\/t 	1 I-A* - jCO*) 

V'2 1 	
d, 	> 1, 	(3.27)

7r 	t 

where the positive sign applies for t> 1 and the negative sign for t < —1, while 

F() = ! j 	tdt, 	1 < 	oo. 	(3.28) 

This allows (3.26) to be integrated as 

y() = 
b-11

2COS7( 	2)-1 	)ex{_ 
j_-.+J100) 

0@)}, 

(3.29) 

with 0(t) related to 0(t) through (3.27) and (3.28). Substitution into G(y) in 

(3.23) then forms an integral equation for 0. An alternative way to solve this 

problem is to consider (3.18), in the form 

1 1 0(t) 	 1 	-1 	0(t) 
()exP{__j 	 dt} =exp{_ (LJ ) 	dt} 	<±00. 

(3.30) 

Substituting this into (3.29) yields 

y() = b_f 2 COS .7(1 ~ 2)- i

( 	) _exp{_J 	 <1. 

(3.31) 
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Then evaluating y in (3.22) using (3.31) yields 

q() cos(9(e)+7) 

= G
(

b- it 2cos 	I 1—e\ _7exP{_j 9W(t)dt}d) 

(3.32) 

Thus we consider (3.21) (for O() = 9(), 	< 1) and (3.32) to obtain a pair of 

integral equations. 

However, this problem simplifies if the normal velocity on the wetted portion 

of the porous wall is a constant, G(y) = cos a, where a is the flow angle to the 

x-axis at points where the fluid on the free surface meets the wall. Equation (3.23) 

then reduces to the integral equation 

1 
 J

1* in cos a - 1ncos(O(t) + 
"dt, for 	I < 1 	(3.33) 

-1 

where as t - ±1, cos(9(t) + -y) - cos a. Alternatively, equation (3.33) may be 

expressed as 

+ 	
1-I*Incos(O,,,(t)+-y)dt 

= --1ncosaln 	, for II <1. (3.34) 

Once this has been solved, the flow angles on the upper and lower free boundaries 

are found by solving (3.24) as 

= .- 1Incosaln 	E _J100 	dt}, for 	>1. (3.35) 

Then by integrating (3.24) we may obtain the the shape of the free surfaces. We 

should note that equations (3.21) and (3.22) indicate an alternative way to of 

solving this problem. 

Letting C - on 	> 1 and then examining the singularity along the axis 

in (3.17) gives 

- 	2( - 1) 	f_— i 	/ 1 1 -1* 0(t) 	* 0(1) T =-- 
\+1j \ L- 	 1 —t exp( -- iJ 	dt+J 	dt—zir0()

1) 
(3.36) 

42 



Expressing equation (3.20) in an alternative form yields 

O(t

____ 	

1 [00*  0(t) dt i-i 	
)dt+ 

-00 t - 	71 t - 	= -; 	
dt, for 	> 1. 	(3.37) 

Substituting (3.37) into (3.36) yields an equation for determining the free stream-

line in the form 

dz 	2(2 - i) 	
f _1 

 = - 	
+ 	

exp (_! [1' '° dt - i7r0()]) 	> 1. 
7r 	t 

(3.38) 

Taking the real and imaginary parts of (3.38) and integrating each leads, for r > 1, 

to 

x(r) 
= 	fr2(32 _l)_12-  080(5) s—i 	(_!j' Ow()de')d3  

(S+1) exp\ 

(3.39) 
.1 rr2(32_i)_SjflO(3) 

(S+1) 

s—1 
Y+(r) = b— I exp ---f'0w()d d.s, 

iria — s / 
(3.40) 

where the ' + ' above x and y indicates the upper free surface. Similarly, for 

r < —1, we obtain 

r 2(s2 _i)_ COS  0(s) f-1 
) -a

1exp 	!110()d d.sx(r) = 
	 s+i 	 W -ic — s I 

(3.41) 
_1 2(s2 _i)4 sin O(s) /s-1\  

y(r) = a— I 	 exp(_! fi 0w()dd3ir 	\s-I-1J 	ir —s ) 
(3.42) 

where the ' - ' above x and y indicates the lower free surface. The asymptotic 

behaviour of 0(e) as - ±00 can be derived from (3.23) as 

11 
0(e) 	----J (In G(y)—lncos(0+-,')dt 

—1 

11 
- 	 lnqdt - --- 

Co
, 	 (3.43) 
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where 
j.1 

CO= I lnqdt. 
J-1 

(3.44) 

Consequently, as —+ ±00, the flow angle at the free surface tends to 0 like 

Also, the behaviour of the integrands in (3.39) and (3.40) as -+ oo are 

2(32 _1).4 Cos  o(s) 	
(_!j' Ow()de'\ 	2 

(e+i) exp —4 - 	(3.45) 

2(32 _ 
1) -1  sin 0(s) R - 1 	1 1 

Ow(i)d 	2c0 
e+i, 	( irJi—s ) 

exp -- 	 —+ ------. (3.46) 

Thus if r is very large in (3.32) and (3.33) we may obtain 

x(r) ' -
frO2(s2_1) Cos O(s)  (_1 

fr r 
0  Ts 

= _ [fro(s2 coso(3) 1) 

 

+ log -ro -]. 

Similarly, we have 

_f exp i 
/ _ 1 1 

0w()d ds 
ir  

exp i 
/ — 
	I 
1 1 

oW(e)d ds — 
' 	irJ-  i —s ) 

(3.47) 

_2 
2 [fo  2 	) 4 cosO(s) 	

—i\
b__ 	(s —1 

ir 	 +i) 

ir (—r ro) 

exp I -- I W(e)d  ds 

(3.48) 

From these approximations we can see that as r —* 00, 	—p 	and 

—+ constant. Similar conclusions apply for x and y. 

The pressure along the porous wall is given by Bernoulli's equation in the form 

q2 	1 
P+1Poo+ (3.49) 

where p  represents the pressure within the jet where it is in uniform flow fax 

away from the wall. The force exerted on the porous wall by the fluid jet is 

R 
 = j

b 
pndy 	 (3.50) 
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where n is an outward normal to fl. Substituting p, given by (3.49), into (3.50) 

gives 

j

b 

L

I
R 	I00+_ç]n dy 	 (3.51) 

Changing the variable y to in (3.40) and using G(y) = q cos 0, gives 

R 
r 	1 	G(y)2 	

1 /1' 	[PQO+2  2 cos2(6 + 	
np()d 	 (3.52) . i  

where p()  is defined in the form 

-i ( 	 00 0(s) 

	

.e2) 2exp__(J 
+J ') 	dsj , J<1. (3.53) \- 	1 /—S l  

3.4 The Numerical Scheme 

3.4.1 Symmetric problem 

g(y) =constant 

In the symmetric case, with G(y) =constant, equation (3.33) was simplified as 

2t 1 1 —t 
0(t)+— f 	 0<t<1. 	(3.54) 

IrJO 

The integration range (0, 1) was discretized on a mesh 

(3.55) 

The integration, at t = , has a singularity, so the interval (0, 1) had to be 

divided into three subdomains 	[i-1, i+1] and 	1). The Trapezoidal 

rule was applied on (0, j] and 	1) respectively. For 	'i1], the integral 

was treated using 

t.i+i log cos ti+1 log cos 0(e) — log cos °() 
d J_ 	2 	 — 

+ 	
's+i log cos °() d 	 (3.56) 1 2 — 
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Figure 3-3: The flow angles along the porous wall 
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Y 

X 

Figure 3-4: The shape of the free surface with constant normal speed U = 0.5 

along porous wall where the broken line (-.• .-) is a polygonal approximation to 

the curve of King [1990], the triangular markers (is) are taken from Jenkins and 

Barton's [1989] and the result of present computation is shown by solid line (-) 
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Figure 3-5: The three computed shapes of the free surfaces for the different 

constant normal speeds U = 0.625, 0.769 and 0.87 are shown respectively by the 

curves from the top to the bottom(Note the differing scales on the two axes). 



The first integral of the right side of (3.56) was evaluated using Taylor series. 

With step length h, one obtains 

log cos 	-log cos O() 
- 

1 
= 	+ 

[01  tan O + (01  tan 0)Fe 
2 	dE + 0(h3) 

e+ + 	 _______ +\ = 9 tan O log + 
	+ (O tan Ow)' (2(e - 	- j loge + 

	) + 
0(h3) 

(3.57) 

The second integration was evaluated 

4
t+i log cos 
_ 	e2  - 	

d 

Then we have 

1 (_1 - 1 ' log cos 
= 	 e—e 
- 	- log cos O(et) log 'i+1 + 'i 	 (3.58) 
- 	2e 

+ 2h ( log cos 	
+ N 

log cos 	\ 
L...i 	2 	2 ir 	- 	 - e ) 

log cos OW,j'\ 	'i+1 +  _________ 	________ + (o', tan 	
- 	2 	

) log + 
	

+ (9 tan O,)'  (2h - j log i+1 + 
 + 6-1 

= log cos alog 1 	' 	i = 1,. . , N 

where Ow,j = °(e) and 	= 	Equation (3.59) is a system of N nonlinear 

equations with N unknown variables, which is solved using NAG library C05NBF. 

As the flow angle on the wall O,,,j,  i = 1,.• , N is found, the flow angle on the 

free surface can be calculated from equation (3.35) 

z S O(Si)log cos Q log 	+2h N 
s + 1 	1=1 
	log cos 	> 1. 

(3.60) 

(3.59) 
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If we change the variable using (32 — 1) = 1 and dl = (32 
- 1)4sds, then we 

obtain an alternative formula for the computation of flow angle on the free surface 

O( (1 +l) ) ! [los cos a log ((1 + 
l 	+1)2 

+ 2>2 	log cos e], i > 0. 

(3.61) 

Then using the same transformation, we can avoid the singularity in the equations 

which now became 

2 f1 cosO((1 + l2))
x~(s) = x~((1 + l2))

12 

= ir 	(1 + 12).21
F(l)dl 	(3.62) 

where 

Y+(S) 
= y

+((l + 12)) = 	2 1 Sin 0((1 + l2))F(l)dl 	(3.63) sec a — —  
(1+l2) 

fi
f j 

1 	O() F(l)=exp — 	 1 d . 	 (3.64) 
/  

In Figure 3-4, we present the comparison of our result with previous results ob-

tained by different techniques in the case that the normal speed across the wetted 

wall is constant. The broken line (— •—) is a polygonal approximation to the 

curve of King [1990] and the triangular markers is taken from Jenkins and Barton 

[1989]. The solid line is my result. The agreement of mine with others is very 

good, as shown in Figure 3-4. 

G(y) specified 

In the case that G(i) is not a constant and that y = 0 equations (3.21) and (3.32) 

complete the problem. Substituting (3.21) into (3.32) to replace O(t) for j < 1 

yields a single integral equation for q(): 

1 1* 
q( 	

ln(t) ) 
) cos(_f 

t_ 

2 	
{i 1 	[1* In 	di 	) 

(1 ds = 	G (b —! — — 	
1 
q() 

exp — L1 {J_ 	—1 

_____ 	

(3.65) 
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Figure 3-6: 	The computed free surface shape for normal speed 

G(y)=1+3(1—a) where a=1.2. 
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Figure 3-7: The free surface shape for normal speed G(y) = 1+3(1— a) where 

a = 1.3. 
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After this equation is solved numerically, the flow angle along the porous wall can 

be found from (3.21) and y can be determinded from equation (3.31). Thus in 

this symmetric case the flow angle along the free surace can be found from (3.24), 

then the shape of the free surface is obtained from equations (3.39) and (3.40). 

Some numerical results, corresponding to different normal speeds on the porous 

wall, are presented, shown in Fig. 3-6, 3-7, 3-8 and 3-9. 

Alternatively, an iterative scheme can be developed. Equation (3.23) thus 

becomes 

f—
InG(y_i) 

- ln cos O1()d 	for (tJ < 1 (3.66) 

while, for It l > 1, from equation (3.24) we obtain 
1 1 In 1nG(y_i)—ln cos r(e) 

d, 	for 	IsI > 1. (3.67) 

Equation (3.29) gives 

2 
'

—o 1100) 
(1 	 '(s)da d, 	<1yn() = y(—l) + 

- / 	- ) ex
ir 	 T

p 
-- 	 + 
	 . 

,—i 	 ( 	\J  
(3.68) 

At both ends of the wetted part of porous wall, G(y) must satisfy the boundary 

condition 

cos 9(±1) = G(1,(±1)), 	y(±l) = ±h 	 (3.69) 

The average normal velocity G(y)), which satisfies G(y)h = 1, from equation 

(3.7), can be taken as a first approximation to G(y). We can then, using the same 

technique, get the first approximation 91(e), and the first approximation of y'(). 

In the computation of the integrals in equations (3.66) and (3.67), in addition 

to the integrals of equations (3.59) and (3.61), both integrals in the right hand 

side of (3.66) and (3.67) were evaluated. In particular, the integral in (3.66) with 

singularities must be computed. Thus we have 

+ 	
(i_i log cos 	

+ •~ 

locos 
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Figure 3-8: The free surface shape for normal speed G(y) = 1+3(1 - a)22- where 

a = 1.4. 
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Figure 3-9: The free surface shape for normal speed G(y) = 1 + 3(1 - a) where 

a = 1.04. 
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+ (O"itanm - log cos O\ log el-fl + + (O,'1 tan9 1)' (2h - 	Ci+l + 
W'slog ) 3l +  

N 
= h 

( 	

log G(y,,) 
+ 	

log G(y 3) 

i=-N 	- 	 . 	
, + 2(log G(y,1)),dy\ 

(3.70) 

where 	= O(e,), O = 0W' (4i) and the Fin (log G(y,))' represents differentia- 

tion with respect to y. Equation (3.67) was discretized in the form of 

[i

i=N ln G(y_1,1) 
+2 	

28j 
log cos 	 s > 1. (3.71) 

=- 	- S 	i=1 

where ii is step length, and y,,, = y.....1(Cj) can be calculated from equation 

(3.68). 

3.5 	The Effects of Gravity 

A question that will be addressed on the above method is whether it can be 

extended to apply to similar problem including the effect of gravity. The physical 

problem which concerns us is a nozzle directed perpendicularly to a wall. The fluid 

jet comes out of the nozzle with uniform speed U. The physical region is shown 

in Fig 3-10. Although the problem is altered and the effect of gravity acting on 

the free surface is considered, the above analysis is still available. After assuming 

that the air pressure along the free surface is 0, Bernoulli's law that states 

F 2 	F2  ± 
2 	 (3.72) 

on the free surface where F is the Froude number, the ± signs denote the upper 

and lower free surfaces and Yo±  = ±1. On the porous wall we still have 

q cos O = G(y) 	 (3.73) 
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[i 

D 

z-X 

Figure 3-10: A sketch of the physical-plane of a jet impinging on a porous wall 

with effect of gravity 

TI 

D 	 C 	 B 	 A 

i igure 3-11: The images of A,B,C and D in the reference C = + u7-plane 
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If we assume that the nozzle extends to infinity, the transformation from the 

physical plane to the upper half plane is still available. However, the equations 

(3.18) and (3.19) change slightly to 

/ 1 	N 0(t) 

	

q(4) = exp(__J
1 	

dt
) 

(3.74) 

<+00, 

	

1f N* lnq(t)dt 	
(3.75) = 	7- 7  

where & and N  correspond to the points showed in Fig 3-11. We have 

9()= 
1 --1 1 	

dt+H(e), for II<+oo, 	(3.76) ir .'—i 

where 

H() = -- 
 I 

	

log 	
. d + J 

log d1. 	 (3.77) 

	

2i_oot— 	1 t 	j 

Similarly to equation (3.24), equation (3.76) reduces to 

0()= 
1 	l*lnG(Y)_lncos(Ow+7)dt+H() 	for 	I <+00. (3.78) _ 71-1r J —1 

Based on this equation, a numerical iterative scheme, similar to the one developed 

in section 3.4.1, can also be obtained. However, it is rather complicated and 

consumes a lot of computing time. 

For the purpose of seeking a more concise computing scheme, we consider the 

coupled equations (3.72) and (3.73), associated with (3.19), (3.30), (3.26) and its 

analogue 

—i 	I' 1 —1 oo\ 

d 	—1) 2expl_( \J-00 ] + 31 ) ° 2tdt} sin 0 	>1 	(3.79) 

	

lr 	1 

which yields two expressions: For the upper free surface where y(eN) = 1 

y() = y(&z)— 	
jeN(2_1)_ 

exp 
{ (j + 1°° ) ; ) d} sin 0d, > 1, 

(3.80) 



while for the lower free surface where y(i) = —1 

2' 	 ( 
y()=y('i)--  I 	(2 	1)exp 

I 

1 / 	—1 
(j 

ir\—oo 

' 

Jl

°°

J 
+ it 

0(t) dtJ' 
 

—t 
sin Ode,  I'I>1. 

(3.81) 

Using (3.75) in (3.80) and (3.81) gives 

y() = 1— !.j(2 - 1)_ q_1 exp{!J 0(t)dt} sin  9d, II > 1, (3.82) 

and 

= —1— !j 1(2 - 1)_q_1exp{!J1 
e0 tdt}sin0d, 	J >1. (3.83) 

Substituting (3.82) and (3.83) into (3.72) and (3.73) yields equations for q and 0. 

Then we apply (3.75) and obtain an equation for q. However the two parameters 

i and 6N are determined using 

x(eN) = — X, 	x(1) = 0; 	 (3.84) 

= —X, 	x(-1) = 0, 	 (3.85) 

Although we have not got any further numerical results for this extended formu-

lation for a jet impacting on a porous wall including effects of gravity, it is ready 

for further exploration without any extra technique involved. 
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Chapter 4 

An Ideal Fluid Jet Impinging on 

an Uneven Wall 

4.1 Introduction 

The problem of determining the free surface of a jet of two dimensional ideal 

fluid impinging on an uneven wall is considered. The classical problem of free 

streamline flow of an ideal fluid has been studied by many authors. Early work in 

this area is characterised by the use of the hodograph method and the Schwarz-

Christoffel formula, which can deal with flows which have a polygon boundary 

geometry or whose hodograph plane is a polygon of simple shape. Surveys of the 

hodograph method applied to jet theory can be found in Birkhoff and Zarantonello 

[1957], Gurevich [1965] and Woods [1961]. The requirement of polygonal geometry 

shape limits the application of the method in practical problems. Woods [1961] 

gave some generalizations of the Schwarz- Christoffelformula which can be used 

to transform a half plane into a domain with boundary which combines a polygon 

and a smooth curve. By using the generalized formula, Dobroval [1969] derived 

a nonlinear singular integral equation for the water wedge entry problem, Bloor 



[1978] obtained an integro-differential equation for studying the problem of large 

amplitude periodic water waves and, more recently, King and Bloor considered 

various flow problems such as free surface flows over a step [1987], free surface 

flows over an arbitrary bed topography, and the cusped free surface flows due to a 

submerged source [1990]. A general feature of their work in the cited papers is that 

the complex potential must be determined in the reference (-plane corresponding 

to the fluid domain. Some numerical solutions describing an ideal jet issuing from 

polygonal containers and free streamline problems can be found in the work of 

Dias, Ekrat and Trefethen [1987]. Fluid, under gravity, emerging from a two-

dimensional nozzle at an angle is considered in the work of Dias and Vanden-

Broeck [1990]. In the case of a jet of ideal fluid with other boundary conditions, 

Jenkins & Barton [1989], based on the Baiocchi transformation, gave a numerical 

treatment of the impact of a jet on a porous wall. King [1990] extended the 

classical hodograph method and reduced this problem to a first order differential 

equation. 

A two-dimensional ideal jet impinging on an uneven wall is studied in this 

chapter. Motivation comes from the need to study an ideal jet impinging on 

hemispherical cups and to better understand the symmetric jet impinging on an 

uneven wall. After use of the Hilbert transform, the condition of constant speed 

on the free streamlines results in a relation between the flow angle on the free 

surface and the wall angle, when expressed in terms of the coordinate along the 

real axis of an appropriate reference plane. Then, by combining this with applica-

tion of the generalized Schwarz- Christoffel transformation technique, a system of 

nonlinear integro-differential equations for the flow angles and the wall angles is 

formulated. For the case in which the wall geometry is symmetric, a compatibil-

ity condition for the system is automatically satisfied. Some numerical solutions 

to the resulting nonlinear system are presented, showing the shapes of the free 

surface corresponding to a number of different wall shapes. 
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Figure 4-1: The free streamlines AB and CD bounding the jet impinging 

on an uneven wall 

4.2 Mathematical Formulation 

The two-dimensional steady irrotational flow of an incompressible inviscid fluid 

impinging upon an uneven wall is considered(see Fig.4.2). Cartesian coordinates 

are introduced with the X-axis along the centre line of the approaching jet. The 

complex variable Z = X + iY is introduced. 

Far away from the wall, the incident flow is required to be a uniform stream 

with constant speed U and thickness 2H. Far away from the stagnation point 

upward and downward along the wall, the flow is also a uniform stream and 

thicknesses there are H1  and H2  respectively. By the conservation of mass, we 
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have H1  + "2 = 2H. A velocity potential denoted by and a stream function 

denoted by 'P are defined such that the complex potential 

W='1+iW 
	

(4.1) 

is analytic in the domain occupied by the fluid. Bernoulli's equation is applied to 

both free surfaces on which pressure is constant, so that the fluid speed q takes 

the constant value U there. Meanwhile the stream function IF is chosen to have 

the value UH on the upper free surface, —UH on the lower free surface, and takes 

the value IF = To  on the dividing streamline and the wall. For symmetric flows 

TO  = 0. The complex velocity is defined as 

V = u - iv = qe'9 	 (4.2) 

where U is the angle between the flow direction and the X-axis. The relation 

between the complex potential and the complex velocity is given by 

This problem is now non-dimensionalized using the substitutions 

X + iY 	. 	+ i'P 	q&20 V 
H' 	UH , v= 	

=j 	
(4.4) 

and then writing H1  = Hh1 , H2 = Hh2, so that h1  + h2 = 2, where 'b = ±1 on 

the upper and lower free surfaces, respectively. 

We introduce the function w as follows 

w=logv= log -—iO. 	 (4.5) 
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Figure 4-2: The images of A,B,C and D in the reference (-plane 

4.3 Flow Angles 

We seek a mapping of the flow region in the z-plane onto the upper half of a 

transform plane C = + i71 and then seek w as a function of C there (see Figure 

4-2). 

Since w is an analytic function of C, the values of q and 0 on the axis 77 = 0 are 

related as Hilbert transforms, so giving 

(1 oo*0 ex{_J OM (4.6) 

where f* denotes a principal value integral. Since q = U on the free surface, this 

gives 
1 	0 
_j tdt= 0, 	1 <fl<oo. 	 (4.7) 

The above equation (4.7) can be written as 

dt+—[ 	dt 
1 
 f_i. 

0(t) 	1 	0(t) 	1 1 

;)d = 0, 	1 < 	oo. (4.8) 
_ 	 7Jl 	

-t +- / 
7J-i 

We now define the function F() by 

1 1  0(t) 
F()=—fdt, 

so that equation (4.7) becomes 

	

1 
 j-1 

0(t) 	10(t) 
dt + — 	dt = —F(), I 

	

00 e -t 	IiJi 	-t 

1 < 	1< oo, 	(4.9) 

1 < 	oo. 	(4.10) 
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Making the change of variables t = 	.s = 	in (4.10) gives 

F(s-1) = 110* s0(r)r' dr+ 1 1*  s9(r)r' dr 
-7r 

f 
7 -j 	r - a 	ir 

— 
	r - S 

1 
Ll 

-s 

	

= s_ 	dr, 	0< IsI < 1. 	(4.11) 

	

7r 	r — s 

Similarly, substituting for in (4.9) gives 

	

F() = F(s') = s 1 
1 
 0(t) dt = sg(s), 	0 < II < 1, 	(4.12) — 1-1 	irl—st 

where we have defined 

1I 
1 0(t) 

g(s) = - 	dt 	0 < Is! < 1. 	(4.13) i1—st 

Combining (4.11) and (4.12) then yields the so-called aerofoil equation 

g(s) =1 
'1  q(r) dr, 
	0 < IsI < 1, 	(4.14) - I irJ- i s — r 

which here relates g(s) defined by (4.13) in terms of the flow angle on the wall 

to (r) 	r0(r). In order to invert the integral equation (4.14), we first 

show in Appendix A that g(s) defined by (4.13) is square integrable. Then (see 

Hochstadt [1973]) one obtains 

C 	1 fl* I1_ r2 
(s) = \/1 - - i_ v - 2 	dr, 	 (4.15) 

	

S 2 	7r s — r 

where c is a constant to be determined later. Moreover, there is an alternative 

representation 	 ______ 

	

1 	1* I1_ s2
' 
 (r) 

J-" V1_r2._r' 	
(4.16) 

valid subject to the compatibility condition 

f1 	
g(s) ds = 

/i - 	
0. 	 (4.17) 

f-i 	s2  

Reinterpreting (4.15) in terms of the free streamline angle 0(s_1) = so(s) gives 

--S 2 
_______ 	1* _______ -1 i -1 

5 Os )V'1_s2=c_ 	y1_29(r)dr. 	 (4.18) f 1 	S - r 
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Since 0 remains finite as s -i ±1, we obtain the two expressions 

- r2 
g(r) 

dr = - 
fl 

017-_ r2 
g(r) 

dr. 	(4.19) 
.i—i 	 1—r 	J—i 	1+r 

Thus we find that 

1 ________ 1 	1 \ 	 '1 o = I 	r2 ( 	+ 	) g(r)dr = 2 ' 	
g(r) dr. 
	(4.20) J-i 	U—r 1+ri 	.'-i/1— r2 

Consequently, condition (4.17) is satisfied for all wall shapes. Equation (4.18) 

may be rewritten in terms of 0(t) (t> 1) as (see Appendix B) 

0(t) = ±!1't2 —1 °o 	1 	F()d 	ItI> 1, 	(4.21) 
(E., -Á ) 2 _1e_t 

where the positive sign applies for t> 1 and the negative sign for t < —1. Equation 

(4.21), combined with (4.9), gives a linear relation between the flow angle on the 

free surface and on the wall in a closed form, but specified in terms of the parameter 

on the real axis of the (-plane. 

4.4 Governing Equation 

The geometry of the flow region together with the free surface and curved wall 

boundary is shown in Figure 4.2. The transformation of the flow region to the 

upper half of the (-plane is given by the generalized Schwarz-Christoffel formula 

	

dz - 2 (- a (J f°° 
0(t) dt) 
	+ i, 	 ~ 0, 	(4.22) 

_00( 

where 0(t) is the flow angle on either the free surface or the wall, the real value a 

defines the image in the (-plane of the stagnation point of the flow. The transfor-

mation outlined here for mapping a simply-connected domain D of general shape 

on to the upper half-plane, which plays the role of a reference or canonical domain, 
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is obtained from a generalization (see Woods [1961]) of the Schwarz- Christoffel 

mapping formula with adjustment to allow for the sense of the tangent direction 

along the boundary. 

If the equation for the wall is x = ,c(y), then 

7r 
0 = 	- tan' ic'(y) 	 (4.23) 

is the angle between the tangent to the wall and the x-axis. In equation (4.22), 

letting 71 - 0, one obtains 

dz2-a 	1 1 00* 9 

I 	dt + i0()). 	(4.24) 
d 	ir -J 	ir —oo 

Then, integrating the imaginary part of this equation gives 

y(t)=y(a)+ 21t _ 
	1 00*0( u) \ - I 	
a 	

-- 	du1 sin 0()ci, 	It 1<1. 
Ja le2exP(  

(4.25) 

Inserting this into (4.23) relates 0 to the parameter t by 

—1 -tan 	cIy(a)+- 
1 	2 

I irj 
_____ 	1 	00* 

-- i 	2exp( 
0(u) 	" 

I 
du1sin0()d 

. 	) 
a<t<1, (4.26) 

0(t) = - 	-tan-' ic'(y(a) + 
. la  a

exp 
 
iI2(;L00_u 

1 	00* 0(u) du " 
I 
) 	n si 

) 
-1 <t < a, (4.27) 

since the flow angle 0(t) is related to the wall angle O(t) by 

f 	0(t) = 9(t), 	a < t < 1, 
(4.28) 

0(t) = 0(t) - , -i <t <a.  

Equations (4.9), (4.21), (4.26) and (4.27) form a system of nonlinear integro-

differential equations for this problem. If this system is solved for 0(t), ItI < 1, 
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then F(), j > 1, is given by (4.9) and 0(t) for It l > 1 is obtained from equation 

(4.21). The mapping from the a-plane to the physical plane is given by (4.22). 

The shape of the free surface is determined by (4.24), which, in view of condition 

(4.7), reduces to 

dz 	2—a 
- 	exp(i0()), 	1 < ICI <cc. 	(4.29) 

It is unlikely that this system of equations can be solved analytically except 

for special cases of ,c(y). In the following section we will discuss them. 

4.5 Special Cases 

4.5.1 Classic wall shapes 

Whenever 9(t) satisfies 0(—t) = 0(t) -7r, 0 <t < 1, the function F(c) defined 

in equation (4.9) can be reduced to 

F() = 	
j 	

2dt + log 	
1' 	

1 < 	cc, 	(4.30) 

which in the simpler case 0(t) = a, 0 <t < 1, gives 

F(C) 	log 	 1) log
(-7r 	 a 

1<Ifl<00. 	(4.31) 

This corresponds to a jet impinging on an inclined wall at angle a. 

In the symmetric case for which 0(t) satisfies with 9(t) = —0(—t), 0 < t < 1, 

the function #c(y) is odd while F() is even, so it is sufficient to consider only the 

upper half t> 1 of the free surface. Then equation (4.9) can be written as 

F() = !. fo 
1 	O(t)2dt, 	 1 < 	1< 00, 	(4.32) 

ir 	— t 

which, for the simplest case 0(i) = a, 0 <t < 1, describing an ideal jet impinging 

symmetrically on an infinite wedge having angle 2a, yields 

F() = log2 	
• 	

(4.33) 



A special example of both i) and ii) is 0(t) = a = 7r/2, 0 < t < 1, which 

corresponds to an ideal jet impinging normally on a infinite wall. This gives 

1 	e2 F() = log 2 
- 

(4.34) 

In all the above cases leading to (4.31), (4.33) and (4.34), we need not solve the 

system of integral equations. As the flow angle on the wall is known and F() is 

given explicitly, the flow angle on the free streamline is determined directly from 

(4.21) and then the free streamline shape is computed from (4.29). 

More generally, for symmetric flows leading to (4.32) it is natural to choose 

y(a) = 0, while 0(t) = 0(t) on 0 <t < 1. Then, equation (4.26) becomes 

tan-' ,'(!. ft 	2P() sin 9(e)d  1 
0<t<11 	 (4.35) 

where P() is defined as 

P() = exp 
(- 2 f 00* uO(u) \ 

- 2du) 	0 < <t. 	(4.36) 
7r 

0 

Taking the real part and the imaginary part of equation (4.29) gives 

1~0,
x(C) = x(Co) -- cos0()d, 	 (4.37) 

= y(Co)+ 
110 C 

— 1 sin 0(C)dC 	 (4.38) 
7r 

, 

for 	> 1, which describe the shape of the streamline forming the upper portion 

of the free surface. 

For numerical computation, it is preferable to rewrite (4.21) as (see Appendix 

1 

0(t) = 	
oo* F(C) 	2CdC 	 > 17 	(4.39) 

ir 1 (t2_C2)(C2_1)' 

and to apply the transformations 

t 2 - 1 = e2', 	2 - 1 = e 2 	 (4.40) 
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where —oo < u, v < 00 for 1 <i, < 00. Then, equation (5.39) is reduced to 

0{(l+e2u) 
1  
2} 	eu  

oo* 	2 
= 7J00 

e2u_e2t'F[(1+e2v)2]ehldt) 

100*2F[( 	

1' 
1 +e2t?)I 

dv = 	

1-00 euv - 
1 

1 I 
oo*F[(1+e2v)2]dv

—oo<u<oo, (4.41) 
inco 	sinh(u — v) ' 

while equations (4.37) and (4.38) become 

X(U) = x(uo)— !J'  Cos o((i +e2u)) du, 	(4.42) 
T 

Y(U) = y(uo) + !
J1S sin  ((1 + e2ts)) du. 	(4.43) 

in 

In the following subsection we use the above formulae to find an analytic solution 

for a special case. The agreement of this result with an existing result confirms 

the mathematical formulation of this Chapter. 

4.5.2 A limit case of problem 

In this section we derive the analytic solution for a jet impinging normally on a fiat 

wall so as to provide a check for the numerical solution of the strategies outlined 

above. 

The function F() of (4.34) is obtained after applying transformation (4.40) 

as 

________ 	 _________ 	 —2v 1 	1 	1 + e2 	
g(1 + e ). 	(4.44) log 	= lo F() = log 

2 - 1 = 	e2' 	2 

Substituting (4.44) into (4.41) yields 
1 

B [(1 -+-e2 )] = 1 
[00* log (i + e_2v) dv 

—00 < U <00. 	(4.45) 
in J-oo 	sinh(u - v) 

To evaluate the improper integral (4.45), we examine 

log(1 + _ 2z) 	 (4.46) 
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Figure 4-3: The path of integration of c 

which is a multivalued function along some lines such as z = x + i, x < 0 with 

log(1 - e_ 2z), 	x > 0 
log(1 + e_2(1)) 

= { 1 , x < O,y = 

(4.47) 

og(e 2x - 1) - i 

log(&2x - 1) + ir, x <0, y = 

where "+" and " —" indicate values above the line and below the line respectively. 

We consider 
1 1og (1 --e_2z)dz  

sinh' 	
, 	—oo<u<oo, 	(4.48) 7r 

c 	

— Z) 

where the path of integration c is chosen as shown in Figure 4.5.2 

Cl , —R<z<u— 

c2, 	z=u+ce ia ,O<a<ir 

C3 u+<z<R 

c= 
C4 z=R+ia,0<cx< 	

(4.49) 
C5, z=x+i,c<x<R 

c61  z=i+e,0>a>—ir 

C7 z=x+i 2 ,—R<x<—f 

cs, z=—R+icx,O<a< 

The integration can be split into eight parts as 

1 r log (i + e_2) dz 

inc 	sinh(u — z) 	
(4.50) 

— 1 

 

If +1 + +J + i +J +1 +1 log (1+ 2z)dz  

2ir 	c2 	C4 	 c8 	sinh (u - z) f 
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which are calculated individually as 

log (i + e_2z) dz 	u-f log (i + e_21 dx 

= f (4.51) 
= sinh (u - z) 	-R 	sinh (u - x) 

= 	L
log (i + e_2z) dz 	o log (i + e_2(b0)) 

ice da 
= L sinh (u - z) 	 sinh (•) 

iirlog(1 + e 2') 	as e —+ 0 (4.52) 
log (i + e_2) dx 

LR = 	sinh (u — x) 
(4.53) 

R+iM log (i + e_2z) dz 
14 

= 	 —O asR —oo 
fR 	sinh(u — z) (4.54)  

log (i + e_2(1f)) dx 
15 

= 	JR sinh (u—(x+i)) 

C log (i — e_2x) dxR 1  log (i — e_2x) dx 7 2  
= JR 

(4.55) = —icosh(u — x) 	 cosh(u — x) 

'6 
log (i + e_2z) dz 	o log (i + e_2+')' 
________________ 	 " a 

= L 	= J- sinh (u — z) 	sinh (u — i 	— feict 

= 	O (clog e)—.O 	ase — O (4.56) 

17 
-R log (e_22 — i) — ir 

dx = J_ —icosh(u — x) 

_Rlog(e_1) 	-R 
= 	

f 	
dx+ I 	dx (4.57) cosh (u — x) 	.i- 	cosh (u — x) 

R 	log (i + e_2
'8

= 1 dz —p 0 	as R -+ oo. f--R+Lsinh(u — z)  
(4.58) 

The residue of the integral (4.48) is zero, i.e., 

= 1 	!log (i + e_2 I dz 

	

= 0 	 (4.59) 
7r Ir 	sinh(u — z) 

giving 

u-c 	
+1 

log (i + e_2z) dx 	o log (i + 

	

___________ 	 ) ice'ada 1 = J_ 	sinh (u — x) 	 sinh (—ee) 

+J
R log I+ 	dx 	R+i log (i + €_2z) dz 

U+C  sinh (u — x) + IR 	sinh (u — z) 
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+0(6 loge) - 	
R log (i. - e_2x) dx 	—R log (e_2 - dx 

f" 	
+i 

cosh(u — x) 	- 	cosh(u — x) 
j—R 

	sinh(u—z) 
R log (i + e_2z) 

+ cosh 	f--R+m( 	
dx+ dz = 0. 	(4.60) - 

Letting 6 - 0 and R -+ oo and taking real parts of (4.51) yields 

log (i + I
( 
 _ J_' 

	

___ 
 o sinh 	dx + 	 dx = 0.- 	u—x) 	cosh — x) 	 (4.61) 

We then obtain 

log (i + e_2) 	
100 	

1 dx = dx 
£00 sinh(u — x) 	o cosh(u — x) 

R 2de' 	e1 dv =,rlimf 	=2irf R—oo .io 1 + e2(u+x) 	Jeu 	+ v2  

= 2ir urn (tan-1 eR-4u — tan' es') = 27r— tan' e'. 	(4.62) R—+oo 	 I 

Therefore equations(4.45) and (4.62) give 

0 ((1 + e21z)) = - tan 1  c" 	 (4.63) 

We can see that 

I

0((1+ e2  )—o(i)=, as —1, u — —oo, 	
(4) 

1. 0 ((1 + e2u)) -+ O(oo) = 0, as -4 00, U -4 00 

which satisfies the asymptotic conditions at infinity. 

The shape of the free surface is checked using (4.42) and (4.43) 

2" 
X(U) = x(uo) — — J Cos O((1+ e2 )2)du  

lru0  
2 f 

U
cos 

( 
-tan1 u) du 

7r oo 

= —1 - 2 
f 

U 

 sin tan' e' du 
ir00 	 / 

Jtan 
tan-1  e' 	sin t 	

dt 
tcos2 t 

= 	— 	
tan e L it — 	2 	(7 	t " i tan-1  eU 

J 	
---1--log tan —+—) 

ir o 	cost 	 4 2 
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2 = —1--logtan(_+ 
1ir 	tan-1  cu 

) it 2 

2 1ir = 	_1+_ log cot (_+ 
tan'e' 

) it 2 

2"it = —1+—  log tan (-- 
tan-1  e"  

) 	 (4.65) T 2 

2 
Y(U) 	= 	Y(U1) - - it 

sin 	((l + e2t)) du 
ju 

2 	'U 
sin O((1+ e2 ))du  = 1—_f 

it 	+00 

2 	ru = 1 - - I 
it 

cos (tan-' e') du 

= 	1 
- 2jtan 1  eu 	cos t 

tan tcos2tdt it 
tan1 	dt 	-

1— 	logtan 
2 	t 	' Cu = 	1 

- 2 

14C sint 	it 	2 

1 - 	log tan 
tan-1eu 

(4.66) 
T 2 

Treating the (x, y) coordinates as the functions of 0, using (4.63) in (4.65) and 

(4.66), yields 

X(0) = —1+ log tan 
0 
, 	 (4.67) 

7r 	2 

Y (0) = 1— log tan
ir o\ 

- ). 	
(4.68) 

These are exactly the form of parametric representation of the shapes given by 

Mime-Thomson [1968] for a jet impinging normally on a flat plate. This special 

case of the problems being considered forms a check on the numerical solution 

procedure given in a later section. In the case that an ideal jet impinges on an 

infinite wedge with angle 2Q, we also have 

0((1+ e2t)=(i_tan_1  e"). 	(4.69) 

Therefore if the values x(uo) and y(ui) are specified, the analytic solution can also 

be found by procedures similar to those leading to (4.67) and (4.68). 
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Moreover, for the case of a jet impinging on an inclined wall at angle cx, the 

parameter a can be given as 

a = sin a. 	 (4.70) 

The equation (4.21), combined with (4.31)and (4.70), gives the flow angle on 

the free surface in an integral form, which is 

	

0(t) = ±! 	- 1 (1--. 
1* 	too*\ 	1 
 i ) / 2  1 	

d 

(00*  

	

ir 	t 	Ji 	
/-1 (F(C) + F(_)\

) 
 d 

t+ 

= ±! /2-1 
00* 	 / log7r 	t-I +(

- i)log  

	

T 	A /2_1 ( 

_+(? -1) log 
(4.71) 

where the positive sign applies for t > 1 and the negative sign for t < —1, corre-

sponding to the upper free surface and the lower free surface respectively. 

4.6 Numerical Solutions 

Numerical solutions to the nonlinear problem are given in this section, only in 

the symmetric case. The integral in (4.32) is discretized by the trapezoidal rule, 

having step length 6, with error 0(82),  where the mesh points are introduced as 

tj—k8, Ok=0(kS), 4 j >1, k=0,1,..,N, 	(4.72) 

with N8 = 11  so giving 

26  N 	kOk 

k=O 	- 	
j > 15 	(4.73) 

where wk are chosen as the weights appropriate to the trapezoidal rule. The 

integral in (4.41) is complicated by the singularities at the point u3  = vj and by 
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the infinite range of integration in the integral. The infinite range is accommodated 

by considering, for u in some interval —1 < u <rn, the division of (4.41) as 

0[(1+e] 
= e2(fB l F[( 	

V)
2 2
1]0 	f —1 F [(1 	edv 

	

+ j
00 

_V F[(1+ ]dv), 	
—l<u<m, 	(4.74) 

with A and B, for instance, as 3m and 31, respectively. For 2 = eV + 1, v> 2M, 

the function F() has behaviour 

where 

F()
2 1 to(t) 

dt 
=T fo 2 t2 

21 

= ; j tow [1+ 
+...] 

dt 

= cc2 + 0(ç4) 	 (4.75) 

C = 
2 
- I to(t)dt. 	 (4.76) ir Jo

' 

Substituting equation (4.75) into the last integral in equation (4.74) gives 

	

00 	e2dv 1 
F[(1 +eledv cj IA &4 etl 	i 	 (eu_ev)(1+ev) _  

fA 

0O 11 	1 \
+ 	edv 

C 1+eti 1+e'-' e'eY) 
I' 

1+e2 4 
1 + eu 

~ C 	e 2 	 (4.77) 

A similar treatment applied to the first integrals in (4.74) gives 
B 

	

1

,-B 
1FI(1+ '1 	i (2+e) 

-00 Ch - &. 	

t) edv ~ 	i + et 	
(4.78) 

Thus, it is readily shown that the sum of the first and the last integrals in (4.74) 

has bound 

JA 

00 	1 	 l 
e(j_B 1 

F 	 F 
-00 CU - 	

[(1 + ej edv + 
	Cu - 

	[ (1 + ev) 
j 

V 
) 

B 

	

e2
14 	 14 

2 B\ +e A 2 
-

(C l 

	

e+C
+e 

i+eu 	1+eu 
2C(e -A _B 

	

- e 2 + e 	, 	 (4.79) 
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so giving 

[(1+J
- 	JA 	

1 F [(1 + e'J edv +0 (e-A
o + e). (4.80) 

- 	Beev  

Then, we truncate the infinite range to [—B, A] which is then divided into three 

subranges [—B, ui_i], [u_1 , u,,] and [u 1 , A]. The integrand in (4.80) is regular 

and can be dealt with by the trapezoidal rule, except in [U,_i, uj+i] where it is 

approximated by using the Taylor expansion around the point u3 . This yields 

e(u,) 	O[(1+e'1)] . 	( 	
WA FI(1+e 2)} eiL 

\1j+1 	- e 

	

i—i W1z 	
Vj] 

!i 
+ : 	FI(1+e) e2 

1=—B e' - gVs I 

(_A +Iog 1+e) F [(1 u)] 

1+e 1  

(4.81) 

where A is the step length, u j  = jA for j = —L, ..., M with —LL = —1, MA = m 

and W1  are the weights appropriate to the trapezoidal rule used for (4.80). The 

function F is the derivative of F, and can be calculated from (4.32). The integral 

in equation (4.35) can also be dealt with by the same trapezoidal rule as used in 

(4.32) so giving 

—1 	 r, 
Ok=jtan l.(_28 _ 21Pn sin(On)) k0,1,...,N 	(4.82) 

where Ok  and 01  are defined in (4.81), Tn  = n5, for n = 0, 1, ..., k. The quantities 

P, are the discretized forms of the function P(), with the singularities at points 

= t, 0 <t < 1, treated by the same method as used in dealing with the integral 

in (4.80). This gives 

M 

	

Pn P(rn)expL it5 > 	
ikOk  

ir 	k=n - - 
On  + 

j=—N1 j 	
k 
1) 

(4.83) 
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where r, = n6 and Ok  is given in (4.81). Moreover 0' is the first derivative of 0 and 

can be calculated by a central difference approximation with error 0(62)  while 0 

is given by (4.81). Equations (4.42) and (4.43), discretized by a trapezoidal rule, 

give 

= x(1) - 	Cos 0(u1), 	 (4.84) 

WO = y(oo) + - sin 0(u1) 	 (4.85) 

for i = —L, ..., M. Thus we obtain N + 1 nonlinear algebraic equations for N + 1 

unknowns from (4.82), combined with equations (4.80), (4.81) and (4.82). This 

system of equations was solved by using a hybrid Powell method from the NAG 

library. Equations (4.84) and (4.85) were computed to find the free streamline. In 

Figure 4-4, we give a comparison with the analytic solution in the case of a jet 

impinging normally on a flat wall. The free surface shape plotted as a dotted line 

obtained by using (4.35), (4.41), (4.43) and (4.44) shows good agreement with 

the analytic result [Mime-Thomson, 1968] shown here by the solid line. In the 

case of an uneven wall, we chose functions x = e"2 , x = —e'2  and s = —sech 

y. The step lengths chosen were 6 = 0.05, L = 0.04 and the computations were 

performed with L = 100, M = 250, A = 3M and B = 3L in each case. The 

resulting free-streamline profiles are shown in Figures 4-5, 4-6 and 4-7. 

4.7 Conclusions 

In this study, we have investigated the free streamline problem for a jet impinging 

on various walls. A relation between the flow angle on the free surface and the 

flow angle on the wall is given. In some special cases, this may be reduced to a 

simple integral expression. Based on the relation (4.21), a system of equations 

is formulated which allows for very general boundary shapes. In the special case 



-8 	-7 	-6 	-5 	-4 	-3 	-2 	-1 	0 

Figure 4-4: One half of a symmetric jet impinging normally on a flat wall x = 0 

where ( ... ) line represents the analytic result and the (-) line represents the 

numerical solution. 
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4 	-5 	 -3 	-2 	-1 	0 	1 

Figure 4-5: A jet of upstream thickness 2 impinging symmetrically on an uneven 

wall given by x = e' 

of a jet impinging normally on a plane wall, the analytic solution, a standard 

analytic formula Milne-Thomson[1968], was rederived. Its utility is tested by 

comparing numerical computation for a jet impinging normally on a plane wall 

with those from a standard analytic formula, showing good numerical agreement. 

Calculations for symmetric jets hitting specific curved walls are shown. Further 

work to be undertaken will deal with walls in the form of blunted wedges and for 

boundary conditions corresponding to porous walls. The formulation allows more 

freedom than that used by King [1990], since it does not use special properties of 

the hodograph plane. 
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-6 	-5 	-4 	-3 	-2 	-1 

-6 	-5 	-4 	-3 	-2 	-1 	0 	1 

Figure 4-6: Flow impinging on symmetrically an uneven wall given by x = —e'2 

0 



-6 	-5 	-4 	-3 	-2 	-1 	0 	1 

y 

-6 	-5 	-4 	-3 	-2 	-1 	0 	1 

Figure 4-7: Flow impinging symmetrically on an uneven wall given by 

x = —sechy 



Chapter 5 

The Impact of a Jet Incident on 

an Asymmetric Uneven Wall 

5.1 Introduction 

In this, chapter we consider further an ideal jet impinging on an uneven wall in 

an asymmetric case. The unknown position of the stagnation point introduces 

much difficulty for computing the free surface shapes. Using the integral form of 

the momentum equation, we obtain an integral relation between a point in the 

(—plane, which corresponds to the position of the stagnation point in the physical 

plane, and the flow speed and shape of the wall. The z-plane, the physical plane 

(see Fig. 5-1), is redefined by 

ir(X+iY) 
z=x+iy= 

	

	 (5.1) 
H 

where H is the width of the incoming jet at X = —oo. The complex potential 

plane, the w-plane (see Fig. 5-2), is considered as 

(5.2) 



We re-examine the following equation 

1 oo*Ot 
q() =exp{_Jdt

l 
(5.3) 

which is obtained by the use of 

—iO V= 	
W 

= qe , w = log v = log q - zO, 	 (5.4) TZ 
where log q has a singularity at a stagnation point. As assumed in the last chapter, 

only one stagnation point exists in the flow region. In the reference (-plane (see 

Fig.5-3), the stagnation point is taken as C = a. As C - a, we have 

	

v(C — a), 
	 (5.5) 

where we assume that the fluid angles of two outgoing streams at the stagnation 

point differ by ir. In the more general case we should have v '-i  (C - a) ir  where 

th is the angle difference(see Birkhoff & Zarantonello [1957]). Let 

dw= (C - a)Q(C), 	 (5.6) 
dz 

where Q() 54 0 for all C = + i7j, 17 > 0. Then for the function 

log  = log I(( - a) Q(C)I 	 (5.7) 

the singularity term is 
'3'  

	

—log((—a), 	 (5.8) 

so that log q is readily shown to belong to L2 [-00,  ao]. Therefore we obtain, from 

the reciprocity theorem (see Tricomi [1957] or Hochstadt [1973]), the reciprocity 

formula associated with (5.3) 

O() = 
	 (5.9) 

By application of the Bernoulli condition, we have log q = 0 on 77 = 0, 	> 1 so 

that equation (5.9) can be reduced to 

1 jl*log 	
<oo 	 (5.10) 

'jr —1 

where the integral is a Cauchy principal value on II < 1. 



A 

H 

F 

E 

Figure 5-1: The physical-plane of a jet impinging on an asymmetric wall 

5.2 Mathematical Analysis of the Problem 

The transformation which maps the upper half (-plane to the complex potential 

plane is given as 

w(() 	1+a log 	- 
	
log (  1+( 1—a—i 

2 	1+a 	2 	
(5.11) 

with 

a = 1 - 2H1/H. 	 (5.12) 

However, the parameters a and H1  are unknown and another condition is 

needed to determine them. This is provided by an integral form of the momentum 



A 	 B 

C 
v=lcn J , 	 D 

F0 	 B 

Figure 5-2: The w-plane of a jet impinging on an asymmetric wall 

'I 

I 	 II  
a 

ED 	 BC 	 A 

Figure 5-3: The C = + ii1 plane 

equation in a chosen direction 1. In an incompressible inviscid fluid the stress is 

ojj = —pbij and when gravitational effects are neglected in comparison with the 

momentum of the incoming jets, the integral form of the momentum equation for 

steady motion around any closed curve r, from (2.31), is as follows 

pJ(u.?)ti.nds= _fpljnds 	 (5.13) 

where il is the outeward normal on the closed curve r, and the integration is taken 

along the control surface. 

For the jet impinging on the asymmetric uneven wall, a control surface is taken to 

correspond to the curve r as shown in Fig. 5-1, consisting of the free surface, the 

solid boundary and lines at right angles to the flow directions at infinity. Taking 

Ox parallel to the incoming stream, so that the two outgoing streams are inclined 

at angles a and y,  respectively, to the Oy axis, the choice of las an arbitrary unit 



vector 1= (sinj3, cos/3) then gives 

pU2(-.-H sin  /3+Hicos(/3_cx)_H2cos(.y_/3))=_Jp 
.i ds_JPo  il.i ds 

(5.14) 

where ,t is the wetted portion of the wall COD, i includes the surfaces DE, EF, 

FA, AB and BC on which the pressure has the uniform value P0. Since r = + 

is a closed surface, we obtain 

il.T ds=O  

which results in 

tPo il.ids=_JPO  il.i4 ds. 	 (5.16) 

Inserting equation (5.16) into (5.14) and then non-dimensionalizing it gives 

j(P
—sinf3+hicos(/3—cr)—h2 cos(7—/3)= _ 

1
_po)n.ld 	(5.17) 

where the transformations are 

P 	Po  
P U2PoU, 

- irs 	H1 	H2  s=-j  h1 =-, h2 =--. 

The mass conservation law implies that 

1 = h1  + h2, 	 (5.18) 

which, together with (5.12), gives 

1—a 	1+a 
2' 

 h2= 2 
	

(5.19) 

The Bernoulli condition along the wall gives 

II<1. 	 (5.20) 
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If the wall is given by x = k(y), we have 

1 	= 	(11,12) = (sin 0, cos,8) 	 (5.21) 

(ni,n2)= 
((1+ F2) ' 	(l+kl2)) 	

(5.22) 

d§ = (1+k12)dy. 	 (5.23) 

Substituting all the equations from (5.19) to (5.23) into (5.17) yields 

—(sin/3 + cos(7—/3)) + 1— a (cos(/3—a) +cos(7—/9)) 

= ! f (1 - q2)(sin/3 - k'cos/3)dy 	 (5.24) 

which should hold for all /3. 

The above equation (5.24) actually implies that 

2_(1_a)sina+(1+a)siny=!J(1_q2)dy, 	(5.25) 

—(1+a) cos 'y+(l — a)cosa= f(l —q2)k'dy. 	(5.26) 

In the special case a = = 0, these yield 

2 = 	1(1 - q2)dy, 	 (5.27) 

	

2a = _![(1 - q2)k'dy. 	 (5.28) 
7rJ 

The relation between the flow angle and the slope of the tangent is 

O() 
- { - tan k'(y), a 	<1 	

(5.29) - 	
- - tan k'(y), —1 < < a 

The integral equation (5.10) for 	< 1 can be inverted using the finite Hubert 

transform, and then written in terms of O() given in (5.29). We obtain 

1 f_1 
t2\ 9(i) 	c logq=—_ 	(1_2)  1d(12)l II< 1. 	5.30 



The constant c is obtained by multiplying by /1 - 2 and letting - 1 in 

this equation, so that 

(1 - t2)!, di. 	 (5.31) 

Substituting this expression into equation (5.30) and writing into an alternative 

form gives 

11 	 1 q = exp 
{__ 

3L 
	2) ( 1 - - 	

1) 9(t)dt} 	<1 	(5.32) 

which reduces to 

q=exp{/1jLi \/°dt} 
	<1. 	(5.33) 

The variable y is specified using equation (5.24) as 

dy  = _!dC sinO(), 	ICI <oo. 	 (5.34) 

This may be integrated as 

° 	_1  y() 
= -. - f 2j(q(t)) sin  O(t)dt, 	II < 1 	(5.35) 

showing how y is related to 9 and q. 

The problem now is governed by a system of equations (5.10), (5.28), (5.29) 

and (5.35). When the system of equations is solved, we obtain O(), 	< 1 and 

the parameter a. Equation (6.10) gives the flow angles both on the wall and on 

the free-surface. Therefore we consider (5.29) and have 

exp(i9()), 	> 1. 	 (5.36) 
d 	e2 —i 

Taking the real and imaginary parts of (5.36) and integrating gives 

x() = X(G) - 	
I - a 

cosO(t)dI, [ >1 	(5.37) 
7r 0 t2 -1 

It 1' i—a 
Y v)= 	- 	sin O(t)di, 	> 1 	(5.38) 

2 7r 

where x( 0) is assumed to be given. This equation then gives the shape of the 

free-surface. 



5.3 The Singularities in the Problem 

The integral equation (5.10) is singular whenever 	:5 1. Also, the integrand is 

singular at the stagnation point = a, where log q has order 

O(log( - a)). 	 (5.39) 

Additionally, equation (5.33) has singularities at C = ±1, since the flow tends to 

uniform flow with q = 1 in both the downstream branches. The special case of 

flow impinging on an inclined plane is studied in the following section, to motivate 

approximations near the singular points. The integrand in equation (6.34) has 

order 

O(( - a)(q()) 1). 	 (5.40) 

When e - a, we have 

q() " (ea)r 	 (5.41) 

- a)(q()) 1  e's ( - a)1_. 	 (5.42) 

At 	= ±1, the integrand also has singularities. 

5.4 The Special Case of an Inclined Plane Wall 

In the case of a jet impinging on an inclined flat wall with x = k(y) = y tan c, 

then the choice 3 = a = 'y in (5.24) gives 

(1+a)(sina+1)+(1—a)(sjna-1)=0 	(5.43) 

which reduces to a = - sin a. 
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Equation (5.29) can be written as 

E - a, - sin a < < 1 
- 

—i —a, — l<E< —sina 	
(5.44) 

After determining c in (5.30) from (5.31), we obtain 

I i 

[,— sin a 1 q = exp -_j2 Z:

(_J 

1 1 (1_t2 r a 
Li_2) sina 	

Idt 	Cos 
a 

] 	I<1. 	(5.45) 

The first integral in (5.45) is evaluated as 

+a 	_sina(1...t2) 
dt 

- 	+a j_a  sin2u 
du 

- 	(1_2) 
1  o 	—cosu- 

- +a ijacos2 u_e2 _(1_e2 ) _  
- (1 	

du _62)2 2) Jo 	cos U +  

ir  +a 
foa 

cosu—e— 	du 
2) 	[ 	cosu+

ir 
 

(1 
2) J_a du \ 

- 	(1_2) 
(Cosa_(_a) - 
	0 	Cos u+) (5.46) 

Since we can determine the final integral as 

—Cl du 	 1 
JO 	 1E a (5.47) 

where 
1 

r= 	 (5.48) 

we may substitute it into (5.46), to obtain 

fir " 	 2 1 l I1+rtan(—)I'\ 
1 	

(1_2)* 
(cosa ) 	)lo 1(  Ir 

(5.49) 
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Similarly the second integral is obtained as 

_ 	
C2)-2' (— Cos a 

— C 	+ a 
 '7T 	\ 	 1 	I1+rtan(—)I\ 

I2= (12
log 

c 

(5.50) 

which may be combined with (5.49) to give 

= 	I—  I 	if_ir Cos a 
1(l2)l F(r)] 

- cosc 
(1 - 	

- F(r).  

where 
Ii +rtan( - 22) 

(5.52) F(r)=1og1
1(it  

)1. 

Substituting (5.52) into (5.45) gives 

cos c 
q() = exP{I_(1_2 21 )} 

= exp{.—F(r)} =exP{_F ( :)} 

—rtan( - 
- 	1+rtan(f 7r  .—) 

1 - 	(1+e)2 — (1 — )tan( 4 	2.—)I 	 (553) - 
We can see that as —p ±1 then q —f 1 while at C = - sin c, then q = 0. By 

setting = sin a for —7r/2 <a <7r/2, we obtain 

1 —tan( - )tan( -22 ) 
q()=q(sina) = 
	______________ 

(5.54) cos —:r-- 

Then 9(e) can be found from (5.10) so that the shape of the free surface can be 

obtained using (6.37) and (6.38). Moreover this special case provides the starting 

point for numerical solution of cases with nonplanar walls. 
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5.5 The Numerical Scheme 

The integration within equation (5.32) is written as 

"1 —_t2'\ 	1 1 
L1 

1 

) 9(t)dt 
2  1_) —_ t 	t 	1 

1 

- 	2)—cs  

+ ja+e2 	1 _j2\
9(t)dt1 

1 
1* 	(1_t2 \ 	11 

+ I - 2) Jae2 	1 + 
1 

_1)o(t)dt J1 +J2 +J3, 	II <1.(5.55) 

At 	= a, the flow angle 9 has a jump, so that 

9(t) 
/30 	, { 

(5.56) 
a — fl< .e<a 

The first term in J2  can be approximated using (5.56) as 

L
a-- 

	

	i - t2 \ 9(t) 
(1_2) 	dt 

(1 -t2) 	 a-f-2 (1 -t2) 
 dt 2) 	o-70 fa—el 	

dt+o I j 

1 
[/30(sinu2  - sinui) + ir(sinui - sinuo) + (/3o(u2  - ui) + ir(ui  - uo))] = (1_e2) 

	

(00,Og  I1+rtan!z 	I1+rtanI 
1 

Ii — rtan 	
0 	I1—r tan! I 

1 1+r tan 	' 	11--rtan 1 ' 
7rlo 	2I 

log 1 - r tan - - 	g 1 - r tan 0.  P 	 (5.57) 
2 i/ 

where 

cos u0  = a, 	cos u1  = a - 
1 

r 
G 

+\

_c) 

COS u2=a+62 	(5.58) 

(5.59) 

Equation (5.57) shows that as -4a, 

(i+\ 	(1+a\
)  i —a 

=cot u0, (5.60) 
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giving J2  -) —oo. Therefore q() -p 0,, which is consistent with q(a) = 0. 

Singularities of (5.55) at C = ±1 can be treated in a similar way. The vari-

ables in the two integrals are changed, for convenience of computation, using two 

different transformations. In J1, let 

(1+a)ui=1+t, dt=(1+a)dui 	 (5.61) 

and in J3, let 

(1 - a)u2  = t - a, dt = (1 - a)du2. 	 (5.62) 

Then as el -+ 0 and C2 -+ 0, the other two integrals in equation (5.55) are changed 

to 

(1 + a)ui  O((l + a)ui  - 1)) (1 
+a)dui  lim(Ji+J3) 

= V1+ fo 2 -1+a)ui(1+a)ui-1— 

J1+a+(1—a)u2 0((1a)u2+a))(1_a)du2 
° N (1—a)(1—u2) (1—a)u2+a—e 

	

161 < 1. 	(5.63) 

Since u1  and u2  are dummy variables, using u to replace them in (5.63) gives 

1 	I 	(1+a)u 	01  (U) 
lim(Ji+J3)= Vl+2_l+au(l+a)u_l_e(1+du 

Ii—. 1  I1+a-I-(1--a)u 	02(u) 

+ 	(1 —a)(1 —u) (1 _a)u+a_1 —a)du, 

	

iei < 1 	(5.64) 

where 
{ 9(u)= 0((1+a)u-1) 

(5.65) 
92(u)= 0((1—a)u+a)  

We can see that the integral over (-1, 1) is treated numerically using a colloca-

tion method. The interval [-1, 11 is divided into [-1, a) and (a, 1] for which two 

different discretizations are introduced as 

J t=(1+a)ih j -1, 	i=O,•••,M, Mh1 =1 on[-1,a) 

t=a+(i—M)h2(1—a), i=M+1,•••,N, (N—M)h2 =1 on(a,1]. 
(5.66) 
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This scheme applied to (5.64) then gives an approximation to (5.33) which ex-

presses the flow speed along the wall as a function of flow angle 0 in a discrete 

form. In the following method, all the integrals over (-1, 1) will be treated using 

this scheme. 

To seek the discrete form of (5.35) which is expressed in term of q and 0(e), 

we first consider the discrete form of equation (5.10) for II > 1 

1 il log q  

	

0(e) = 	_-dt  

	

N 	log q(i)l ! [hl(1+a) 

i=1 

 10t +h2(1—a) 	 j. (5.67) 
L 	e—  t 	 i=M+1 

The integral in equation (5.35) is divided into three parts 

a. 	 1+6 t - a y() = --- 	 sin O 

	

2 	 2 	1 	
(t)dt + 1_—I_c 	

(q (t)) sin 0(t)dt 
t2  - 1 

t  a 	f
((t))- sin0(t)dt], 	<1 	 (5.68) t2 — I  

where q = 1 has been used in the first integrand. 

Since, as —+ —1, 

q-1, 	 (5.69) 

the second integration is approximated by 

,-1+c t -a 
i—i_a t2 

 - 1 sin'ydt = 1 - a sin'ylog i;i :• 
	

(5.70) 

The other two integrals are evaluated in different ways. The first integral is further 

divided into 

a 	 f16 	 —1-6 1 
1-00 j2 — 1 sin 

0(t)dt 
= J 	2 — sin 0(t)dt + a f 	sin 0(t)dt. 

1 	 J-00 

(5.71) 

Using the transformations 

1og( 2 	log 	= 
	 (5.72) 
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in the integrals respectively gives 

it—a 	 1 
J_ 2

j-2- sin O(t)dt = 
2 00 	

sinO (—(1 + e1)) d1 

1 	\ a flog(2+2) 	+ e 
sin  ( - 

e2) 
4 2 	(5.73) 

where 0 is evaluated using (5.67). For the third integral in (5.68), the scheme 

(5.66) is employed. In the case <a, we obtain = , j = 1,... , M 

J_1+lE 

t_a 	 — (q(t)) 1  sinO(t)dt = h1(1 +a) 	a 
__(q(j)) 1  sino(E,). 	(5.74) —1 

In the case that > a, = j, j = M + 1, ... , N, the integral is also split into two 

parts as 

' 	t — a 
J_1+e t 2 

 - 1 (q(t)) 1  sin 0(t)dt = 

+ 

h1(1 + a) 	- (q())' sin 0(t) 
.1 

h2(1 -  a) E - 
M+1 " 

(5.75) 

The equation (5.24) is discretized as 

where 

(—(sin ,6 + cos(y - i3)) + 1 - a (cos(f9 - a) + cos (-I 

= 	[i i i + a)(1 - q)  (sin /3 - K'(y1) cos /3)P1  

+h2(1 - a) E (1 - q)(sin /3 - K'(y1) cos /3)P, , 	(5.76) 
i=M+1 

Yi = y(j), 	P, = 	(q(j)) 1  sin 0(et). 	 (5.77) 

The discretized forms of (5.25) and (5.26) are obtained by simply letting ,@ = 11  

and /9 = 0. We then have 

	

ir 	
lr  
1 fj sin 6()jt 	

1C31 < 1 	 (5.78) 

	

q(i2 	oo 	)  



for j = 1,2,. , N - 1. Then substituting these into (5.29) yields 

I - 	-tan k'(y(1)), j = 1,... , M 	
(5.79) 

'ri — tan 1 k'(y()), j=M+1,••,N-1. 

These equations and (5.76) constitute N algebraic equations containing N un- 

knowns O(),• , 0(Av-1) and the parameter a. The profile of the free surface is 

obtained from equations (5.37) and (5.38). 

5.6 Results 

The method is tested by considering a small number of different types of wall 

shapes. For instance, x(y) = —ce_' 2  and x(i) = c/(e' + e") where c and 

b can be chosen. In the case that b is zero,the wall shapes become symmetrical 

about the x-axis. We found that when (c( < 1, the results agree very well with the 

results obtained using the method developed in Chapter 4 for the symmetric wall 

shapes. We found that as b increases slightly, the width of the jet going upward 

is slightly larger than the width of the jet going downward. 
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Figure 5-6: The wall function is x(y) = —0.5sech(y - 0.2). 
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Chapter 6 

Free Surface Shape of a Jet 

Passing Through a Porous Film 

6.1 Introduction 

The problem of determining the free surface of a two dimensional jet of ideal fluid 

passing through a porous film then impinging on a wall is considered. When a 

flow occurs through a barrier we say the fluid transpires through the surface. 

For the impact of an ideal jet on a porous wall, Jenkins and Barton [1989] 

investigated numerically the free surface shapes of the jet when the velocity is 

prescribed. The fixed domain method is used to formulate this physical problem. 

Since the boundary condition of this problem is complicated, they argued that the 

classical hodograph technique failed to work. King [1990] examined the same prob-

lem but with constant normal velocity across the wetted part of the porous wall 

by using the extended hodograph technique. This different approach stimulates 

our work Chapter 3 to give a further effective extension. This chapter concerns 

the free surface problem of a jet passing through a porous film and then incident 

on the flat wall. The physical condition across the porous film of the fluid is in 

analogy to the Darcy's law. The pressure difference is taken as proportional to the 

normal velocity, which is unknown prior to solving the problem. The velocity also 

is discontinuous across the film, i.e. the velocity has a jump. Thus the complex 
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potential plane is divided into two separate parts. Also the hodograph plane is 

diffcult to map onto a simple reference plane. Our transformation technique does 

not work very well in this case due to the discontinuity of the pressure and flow 

velocity. It seems to us that developing the numerical scheme of the formulation 

of this problem using the generalized Schwartz-Christoffel formula is difficult. In 

this chapter we use the Cauchy integral formula to deal with this problem. The 

rest of this chapter is organized as follows. In section 6.2, we formulate this prob-

lem using one of the boundary integral methods. Then section 6.3 analyzes the 

singularities in this problem, while section 6.4 gives the numerical scheme and 

presents some numerical results. 

6.2 	Mathematical Formulation of the Problem 

The two dimensional steady flow of an incompressible inviscid fluid passing through 

a porous film then impinging upon a flat wall is considered(see Fig. 6-1). The flow 

is assumed irrotational on both sides of the film. A Cartesian coordinate system 

with the X-axis along the flat wall and the Y-axis into the fluid is introduced. The 

flow is symmetric about the Y-axis. Far away from the wall and along the Y-axis, 

the flow is required to be a uniform stream with uniform speed U1  and thickness 

2h1, while fax away from the porous film along the X-axis, the two outgoing flows 

are uniform with speeds U2  and —U2  and thickness h2. A velocity potential and 

a stream function 111 are defined such that the complex potential 

W=+iW 
	

(6.1) 

is analytic in the domain occupied by the fluid. Because the flow is divided, by 

the porous film, into two parts, it is convenient to label the two regions. Let D1  

denote the region upstream of the porous film, with D2  = D21  U D22  the region 
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downstream of the porous film. We have 

W=W=cb j  +iW, 	ZX+iYED 	(6.2) 

and the complex velocity is defined as 

dW 
dZ = V = x + iWx =Qe-' (6.3) 

V=V=L, 	Z — X+iYED, 	(6.4) 

where 0 is the angle between the flow direction and the x-axis while Q is the flow 

speed. 

Since Bernoulli's equation holds in both D1  and D2, the flow speed Q has 

the constant values U1  and LI2  along the free surface in D1  and D 2, respectively 

with a jump occurring at the porous film. The stream function 'P equals 0 on 

the dividing streamline along X = 0 and Y = 0 and takes the constant values 

'P = ±U1h1  = ±U2h2  on the free surfaces in X > 0 and X < 0, respectively. 

Along the porous film, the mass conservation law implies the continuity of the 

stream function, so that 

[W]= 1P1—W 2 =0, Z=X+iH and XE(—L,L) 	(6.5) 

where H is the distance of the porous film from the wall V = 0. The normal 

component of velocity towards the wall is 

WX = 'P1X = W2X, Z=X+iH and Xe(—L,L). 	(6.6) 

It is assumed that the pressure drop is proportional to Tx, so giving 

Pi — P2K'Px , 	 (6.7) 

where P is pressure in the region Di and the constant K is the impermeability of 

the porous film. 
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A 	 n 

D1  

D21 	 D22  
-U 	 'VA-S. U 

Y 

F 	 0 	 0 

Figure 6-1: The non-dimensional physical-plane for a jet impinging on a porous 

film 

Non-dimensionalization is performed using the substitutions 

X+iY 	W W'(Z) 2P 
 1 W=h, 7u 	

w(z)= 
(6.8) Q 	H 	U2  h 	2K 

q=-) h=T, 	 k= 

The dimensionless physical plane is shown in Fig. 6-1. The dimensionless govern-

ing equation and boundary conditions therefore are 

zED1 UD2  

S —p ±00 

Vq5— (0,1) 7  y —+00  

P1 - P2 	 = 

pi+q=1, 	zED I , 

p2 +q=U2, 	zED2  

z=x+ih,IxI:5 ±1 	(6.12) 

(6.13) 

where p1(i = 1,2) is the non-dimensional pressure in domain D2 (i = 1,2) and 

qj(i = 1,2) is the non-dimensional speed in domain D(i = 1,2) respectively. 
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We introduce three analytic functions as 

dw1  
Vi = 	- z, z E D1  = {zlz = x + iy, y> h}; 	(6.14) 

d 

	

v2 =
w2  

—+U, zED2i_—{zz=x+iy, x<0, y<h}; 	(6.15) dz 
d 

	

v3 =
w2  

--U, zED22 ={zlz=x+iy, x>0, y<h}. 	(6.16) dz 

Along the free surfaces we also have 

	

dq51 	
= U 	 (6.17) 

	

ds 	ds 

where s is arclength. Integrating the above equations (6.17) and setting = s = 0 

at the porous film y = h gives 

= 5, 02 = Us 	 (6.18) 

along the free surface in the regions D1  and D2. Since, along any streamline, 

dz 	j — =e 
ds 

(6.19) 

we may integrate with respect to distance along both portions DC and CH of the 

free streamline to obtain 

PS 

X(S) = I cosO(i)dt —1, y(s) = Jo 
/. sin 8(t)dt + h. 	(6.20) 

Jo  

Applying Cauchy's theorem to v1, v2  and v3  respectively in D1 , D21  and D22  gives 

the relations between the velocity on the free surface and on the film. We will 

treat them as follows. 

First, we have 

vidz 	
= 0 	 (6.21) 

J11  z -  (x + zh) 

where the closed curve 11  is ABCdCDA shown in Fig.6-2. Let zj = x2  + 

(j = 1, 2,3,4) denote z on 	J1Y and DA respectively. 
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C 
y=h 

z=x+ih 

Figure 6-2: The integral route 11  

The integral around the semi-circle Cd = {zdlzd - (x + ih) = €e ®, 0 < 0 <ir}, 

as € - ü, gives 

Jcd 	

v1dzj 	
-JO  v

jie"d0 

 zd - (x + ih) - 	ce'8 	
—iirvi(x + ih). 	(6.22) 

The integral on DA, as 1z41 —4 oo, has 

fDA
-0.  

z4  - (x + ih) 	
(6.23) 

Thus, equation (6.21) reduces to 

fc 
v1dz1 	r* vd 	 v1dz3  x 2  

	

ivi(x+ ih) = 
LB Zl —(x+ih) 	x + D z3—(x+ih)' (6.24) 

where, thereafter, the sign f* represents the Cauchy principal value. 

Since along any streamline 0 is constant, the variable z can be treated as a 

function of the velocity potential 0 or equivalently, from equation (6.18), as a 

function of the arclength s. Because 4 and CD are symmetric about the y-axis, 

we obtain 

	

XI(S) = — x3(s) X(S), 	yi(s) = y3(s) 	y(s),

} 	

(6.25) 
Oi(s) = —7 -  03(8) 0(s) 
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where xi(0) = —X3(0) = 1 and yi(0) = y(0) = h. Based on the above discussion, 

equation (6.24) reduces to 

iirvi(x+ih) 
- 
f 0 	(&° — i)e 	

+ 
°ds 	l v1dx2 	[oo 	(e0 + i)& 19ds 

- 	oo x(s) + iy(s) — (x + ih) + T1 x2 — x Jo 	—x(s) + iy(s) - (x + ih) 
10  1 — ieO 	 1 + —° 

= J_oo x(s
jdX2) + 

iy(s) — (x + ih) + x(s) — iy(s) + (x + ih) 
ds 

	

+J' :: 	(6.26) 

Taking the imaginary part of the above equation (6.26) gives 

Oix
1!1*  

	

= — I 	
' 

dx2  + Fi(x, h) 	 (6.27) 
irJ-i x2 —x 

where 

1 	1 0 	 1 — 	 1 + ie 9  

	

F, (x, h) = 	
() + iy(s) — (x + ih) + x(s) — iy(s) + (x + ih) 

ds 

	

1 	l — x 
--log 
ir l+x 

	

— 	1f0 	(x(s)—x) cos 9(s)+(y(s) — h)(1 + sin  9(s)) 
— ir J_oo 	 (x(s) — x)2  + (y(s) — h)2  

+ (x(s)+x) cos O(s)--(y(s) — h)(1+ sin O(s)) 
ds— - - lo 

lx 

(x(s)+x)2 +(y(s) — h)2  
(6.28) 

and 9 denotes the imaginary part. 

The significance of equation (6.27) is that it gives a relation between 01., and 

Oix  along the porous film. 

To seek a similar relation below the porous film, we consider, without loss 

generality, x <0 along the porous film and obtain 

v2dz 

fI2 z—(x+ih) =0, 
	 (6.29) 

v 3dz 

fI3 z — (x + ih) 0 
	 (6.30) 



U 

B_D21 D_  

. 	 22 	
•x-•_ U 

y 

F 	 0 	
=0 	

0 

Figure 6-3: The paths of integration 12 and 13  

where the closed path of integration 12 is BEFOIJB and the 13  is CIOGHC. 

Both these curves are shown in Fig. 6-3. 

From equation (6.29), we obtain 

v2dz 	 v2dz 	r 	v2dz 
IBEZ_(X+ih) + JEFZ_(X+ih) + JFOz_(x+ih) 

v2dz + 
	

v2dz + f 
1 Z - (x + ih) 

f 

	

JB z - (x + ih) = 
0. 	(6.31) 

On 	as Izi - oo, the integral has the behaviour 

j 	
v2dz 

EFZ— (X+ih) 
0. 

The integral along the porous film has 

fIjB 	
v2dz 	

4 	
v2dz

Z—(X+ih) 	f_i z_(x+ih)_2 

as the radius of the semi-circle tends to 0. 

After setting v2  = —q(x) + U on the flat wall TV and using equation (6.19) 

along BE, we obtain 

(e °  + 1)Ue°ds 	0* v2dx2 
zv2(x+ ih) 

=j xi(s)+iyi(s)—(x+ih) fI x 2 —x 

+f_00.t_(X+ih)d"+ j0 

0 	—q() + U 	h v2(iy)idy 

	

iy—(x+ih) 	
(6.32) 

Similarly, equation (6.30) reduces to 

(e1° - 1)UeiGds   

- Jo

00 

 x3(s) + iy3(s) - (x + ih) + ft  
v3dx2 + 

X2-X 
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1T3 

a 	 b 

Figure 6-4: The paths of integration around the points z = 0 and z = ih 

+ 	
q() - U d -fh v3(iy)idy 

-0 	(6.33) Jo -(x+ih) 	i-(x+ih) 

Because of symmetry, we have the same argument as we had in obtaining 

equation (6.26) along the free surfaces on the upper stream region. Moreover, we 

also have v2(i!,) - v3(iy) = 2U along the central line OL 

Thus, equations (6.32) and (6.33) give 

0O 	(e °  + 1)Ue'°ds (e_ °  iv2(x + ih) 	= 	J0 
- 1)Uet03ds 100 

xi(s) + iy1(s) - (x + ih) x3(3) + iy3(s) - (x + ih) 
O 	2fr2 

 +
0  v3dx2  +Ih  

-f I 

2Uidy 
 x2 - x 	ji x2  - x  iy - (x + ih) 

0 	-q() + U 	foo 
 . 	d 	-- +
J-00 

q() - U 
 d 

(X + -(x+ih) 

I 	(e °  + l)Ue°  
= 101Lx(s)+iy(s)—(x+ih) 

i (e 	+ 1)Uej 	I ds +()i()+(+ih)J 

- 	)dx2 
+ u log 	

2 

- 1 + 2U log 11* (c2 + ib2 	

E()_
] 

x 2-x 
x 	 x+ih 

+ 	
0 	-q()+U __ 	

fo 
q()-Ud+ 	d. 	(6.34) 
-(x+ih) 

The approach to the expression (6.34) is slightly altered when x = 0 as indicated 

in Fig. 6-4(a). Taking the imaginary part of (6.34) gives 

where 

11* 
2z 	f 	dx2 +F2(x,h) ir 	i x 2  - x (6.35) 

F2(x,h) = 191 [00 	1+ete 

Who 	1x(s) + i11(s) - (x + ih) 
+ 

1+etO. 
__1Uds+ 

x(s)-iy(s)+(x+ah)j 
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Figure 6-5: The path of integration 

0 
+ f 	—q()+U _ - 

+ 
00 

q()—U d±+2Ulog X  

	

oo(x+ih)
dx 

 Jo —(x+ih) 	x+ihU 

1 P00 [(x(s) —x)sin0(s) —(y(s) - h)(1 +cos0(s)) 

	

= 	Jo 	(x(s) _x)2+ (y(s)—h)2 
(x (s) + x) sin 0 (s) — (y (s) - h)(1 + cos 0(s))] Uds 

(x(s) + x)2 + (y(s) - h)2  

{j°° 2 - 
(x+ ih)2 (q() - U)d + 2U log 

x + ih} - 

1 fo 
oo 

 [(x(s) 

- x) sin  0(s) - (y(s) - h)(1 + cos  0(s)) 

	

= 
	(x(s) - x)2 + (y(s) - h)2  

- (x (s) + x) sin 0(s) - (y (s) - h)(1 + cos 0(s))] Uds 
(x(s) + x)2 + (y(s) - h)2  

00 	 4hx 
(2 - x2  + h2)2 

 + (2hx)2 (q() - U)d - 2U tan-' + U. 
O .

(6.36) 

The other three equations for 0(x(s), y(s)) = 0(s) and q(x) are needed to 

complete this formulation. Similarly to equations (6.26) and (6.34), we obtain 

respectively 

iO(a) 

	

zir(e 	- i) 

	

0* 	 1 - ietO(81) 	
dsi+ 1 
	v1dx1 J = 1_co x(s1 ) + iy(si) - (x(s) + zy(s)) 	-, Li + ih - (x(s) + iy(s)) 

	

0 	 1 + 
- 

	

f00 —x(s1 ) + iy(s1) - (x(s) + .H) d2 	
s <0, 	(6.37) 
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Figure 6-6: The path of integration 

10( i7rU( C 3) +1) 

[X(SO 

+1 + e10(s1) 	1 Uds1 Jo 	+ 	-(x(s)+ iy(s)) + x(s1) - iy(si) + x(s) + iy(s))j 

+J 
 00 	2 	 I 

- (x(s) + .
)2 (q(x) - U)d - 

fl X2+ ih - (x(s) + 
+Ulog((x(s) + iy(s) - ih)2 - 12) - 2U log (—(x(s) + iy(s)), s > 0 

(6.38) 

where the path of integration involving the semi-circle on T(see Fig. 6-5) is 

slightly different from the previous one (see Fig. 6-3) with the semi-circle on IB, 

and 

—iir(q(x) - U) 

+ 	+ 
=J x(si . 	 .— + 	 Uds1  

00 

 [_1 

	 1.e'9' 

o 	)+ zy(si) —  x x(si)iy(si)+x] 

I oo* 	2 	 2x + /-2x dx2  
+ x 

+U log((x - ih)2 - 12), x <0 	 (6.39) 

where the path of integration has a similar explanation to that above(see Fig. 

6-6). 

The imaginary parts of equations (6.37), (6.38) and (6.39) are respectively 

- [0* 
7r cos u s1 	

(x(s) - x(si)) cos  O(si ) + (y(s) - y(si))(l + sinO(si)) , - 
J-00 	 (x(s) - x(si))2  + (y(s) - y(s))2  
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+ 	10 (x(s) + x(si)) cos O(si ) — (y(s) — y(si))(1 + sinO(sl))d 
WS) + x(s1)) 2  + (y(s) — y(si))2  

+1' 	
— 	— 	— 	s <0, 	(6.40) 

i—i 	(xi  — x(s))2  + (h — y(s))2  

00* 

	

ir Cos O(s) 
= j 	

PsinO(sl)(x(s) —x(s1))+ (1 + cos O(si))(y(s)—y(si)) 
(x(s) — x(s1))2  + (y(s) — 

sin O(si )(x(s) + x(s1 )) — (1 + cosO(si ))(y(s) — y(s1))] 
ds1 

— 	(x(s) + x(sj))2 + (y(s) — 
P00 

+ 	i 	
4(s)y(s)(q(±) — U) 	d± 

II— 

	

Jo 	(±2 — (x2(s) — y2(s)))2  + 4x2(s)y2(S) U 
 &2,(x2 — X(S))  — 2(h — y(s)) dx2  

-i 	(X2 — x(s))2  + (h — y(s))2  

++ tan 
_1y(s)—h 

2tan > 0 (6.41) 
T( s)— l 	x(s)+l 

—-- 

and 

x s 00 [sin O( )( — x(si)) + (1 + cosO(si))i(si) 
(q(x) — U) 

= J(x — x(si))2  + y2(Si) 

+ sin O(si )(x(si) — x) — (1 + cosO(si))y(si)] 
Uds1 

(x + x(s1))2  + y2(s) 

1-12,(x2 — x)— 2 h 
+ 	(x2  — x)2  + h2 dx2 

+ U Itan-, +tan 
h 	1 h } 

	
(6.42) 

x—1 	x+l 

We can see that as x —+ oo, the left-hand side of (6.42) tends to 0, then q(x) —* U. 

The physical condition (6.12) and Bernoulli's condition (6.13) imply that 

and 

2 	2 	02' pi—p2=1—U &1x 2z), 

iLl2 	2 	2 — —(q 1 -42 ,)=k, 

for z=x+ih, Ixkl 	(6.43) 

for z=x+ih, IxI<l. 	(6.44) 

Substituting (6.27) and (6.35) into the above equation (6.44) gives 
2 

1 1* 	

F1(x,h) 2  ) 	

1 ' (_ 	dx2 + 	— -- 
	

02 'T  dx2 +F2(xh)) 
(7rL12_ 

= 1 — U2  — k 

	

	 (6.45) 
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q=1 

\c 
a 

porous film 

\!3 

q=U 

Figure 6-7: The flow angles at film 

which reduces further to 

(!j' 2 dx2  +Fi(xh)_F2(xh)) •(Fi(x,h)+F2(x,h)) 

= 1 - U2  - k1'. 	 (6.46) 

The width of the wetted portion of the fluid jet across the porous film is 

unknown. However, the Mass Conservation Law implies that, along the porous 

film, 

	

J b(x)dx = 2. 	 (6.47) 

Thus the free surface problem for a fluid jet passing through the film and then 

impinging on the wall is governed by equations (6.40), (6.41), (6.42), (6.46) and 

(6.47), together with (6.28) and (6.36). 

The parameter U is determined as part of the solutions to the system of equa-

tions in which the height of the film h and the impermeability constant k are 

specified. When the fluid passes through the porous film, the fluid angle along the 

free surface also has a jump. Let a denote the fluid angle along the free surface at 

the film in the upstream region, /3 the fluid angle at the film in the downstream 

region shown in Fig. 6-7. The continuity of normal velocity gives 

	

sina = Usin/3 
	

(6.48) 
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from which a and /3 may be found as 

h) - i(1, h) = cos a, as 
2 (r, h) 	02.(1, h) 

= —tan 8, as 
(x, h) 

We also have from U = Idw/dzl on CH, the formula 

u2  = cb(l, h) + 	h). 

	

S —4 1, 	(6.49) 

	

— 1. 	(6.50) 

(6.51) 

6.3 The Singularities in the Integrals 

There exist a few singularities in taking the integrals around corners as well as in 

the Cauchy principal value integral. We first consider, from equation (6.27), 

ff 

+ 
Io = 	dx2  

X2X 

L-6 	 x- 	- S &,(x22 - S 
) - '(x) 	 x+ dx2  

= 	 dx2+(x)J 

= &(x + 6) - t/,2 (x - 6) + 0(c 3) 	 (6.52) 

where the integrand is expanded using Taylor series up to 0(f 2). This technique 

can also apply to (6.35) and we do not repeat the similar analysis. 

In equation (6.27), the integral near x = —1 is 
1+ho dx2 '° 	 1+h0 0(x2) - ' 0 	0.(—I)) I 

	

- (1)d52 = 
	

dx2  + - (-1) 	 2 + 
0 —i+h 	 1+ho d 

= J 	b(—l)(ho - 6) + /(—l) 	2 
 + 0(hg) 

j_-1+ 52+1 

	

= 	(—1 + h) - (— 1 +6) + (—l) Jho 
du  
 . 
	(6.53) 

€ U 

At the same point, Fi(x, h) in (6.28) also has a singularity. We consider 

1 f ° (x(s) — x)cos9(s) + (y(s) — h)(1 + sinO(s)) 

	

hi 	(x(s) — x)2 + (y(s) — h)2 	
d 

 

0 Cos O(s) + Y(s
;  h(1 

+ sin OW) ds J 1  
= 	

ir —h, 	(x(s)_ x)2 + 
((—ys)h)2 	

(6.54) 
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The integrand may be approximated by a using Taylor series up to second order 

as 

X(S) - (- 1) x 
S 	

"(—l) 

	

(-1) + 	2 s + 0(13 1 2 ), 	(6.55) 

y(s) - h 	 + 0(13 1 2 ). 	(6.56) 
S 

Substituting (6.55) and (6.56) into (6.54), we have 
'I 

1 
f 

O 
 (X,(—I)+ 

 2 	
cos0(s) + 

(

X"(—I) 	

0  

'(_l) + 	1 + sin 0(s)) + 0(13 1 2 ) 
C 

'1 = 
	h 	 "(-1)  

	

(x'(—l))2  + 2x(_l)X 2 
	+ (y'(—l))2  + 2y'(-1) 2 s + 0(18 1 2 ) 

1 	o 	cos0(0)cos0(s) + sin0(0)sin0(s) + sin0(0) + 	
2 —1) 

S + 0(1512) ds 
=-7r f hi 	 1+0((s12) 

= 	- 	J_ (Coso(o)co5O(3) - Cos 0(0) + Sifl0(0)" () - sin 0(0) + 1 + sin 0(0)) ds 

lI( 1\ 

—hi + 0(18 1 2 ). 
2 	 (6.5 

The singular term in this integral is due to the integrand 1/s and after using 

Taylor series on the other terms, this integral reduces further to 

	

I = -- 	 ds— 

	

7r 	hi 	.9 	 2 

	

1 	6 	1 + sin 0(6) 	Yh'(_l ) hl) +0(1812 )  

= 	(1 + sin O(f)) I 
h, + (—h1) - 	+ 0(13 1 2 ) 

ds 	2 
1 1

log 	+sin9( ) 
h1  I 	 h1 ds 	y'(—hi) - = —(—I 	J —+ 	 )+o1h1 1 2 . 

ir 	u 0 	s 	2 
(6.58) 

The last term in (6.28) as x — —1 cancels with — log u as u — 0 in this equation. 

Since sin 0(6) - —&(—l) as c — 0, the singularity of the second term in this 

equation cancels the last term in (6.53). Thus we show that the singularity at the 

corner in (6.27) is approximated by 

b(—1 + h) — ?/ia (l) + (— l) log h0  + log h1  

+ sin 0(0) log h1  + 
y( 	- 	 (6.59) 

2 
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Applying similar analysis to the singularity in (6.35) gives 

1 	h2 
 X(5) - 

x sin 0(s) - 
y(s) - h(1 + Cos 

0(s)) ds 

	

'2 = 	S 	 S 
in0 	(x(s)_x'2 (Y(s)_h)2 	7 

S5 

	

= 	(0'(0)h2  - y'(0) (log h2  - 109 E) - "(0)) + O(1h212), (6.60) in 

where the term with loge cancels with the same term shown in (6.53). Using a 

similar method on the Cauchy principal value integral in (6.40) yields 

X(S) - X(Si)  
cos 0(s) + y(s) - Y(31)(1 + sin 0(s)) ds1  

	

13 
= 	S - Si 
	 S -Sl  

(x(s)_x(si)2+ 
(Y(S)_(si )) 2 	ssi  

—i I 	s—Si 

	

= 	y"(s)2 + Q(2) 	 (6.61) 

All the above analysis may be used in the following section in computing. 

6.4 Numerical Method and Results 

We first make a guess of the shape of the free surface, for instance, we could take 

the shape of the free surface of a jet impinging on a wall as a start. The equation 

(6.46) is solved to obtain the normal speed along the porous film 

(6.62) 

We substitute these into equations (6.40) and (6.41). Solving these equations 

yields 

01,11  01,21 	, 01,Ni 

02,11 02,2,' . , 02,N2 	 (6.63) 

for the upper and lower free surfaces. We obtain the shapes of the free surface 

using (6.20) and we therefore have (6.28) and (6.36). We then substitute these into 
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(6.44) to solve this equation again to get a new normal speed along the porous 

film. Thus we complete the first iteration. The discretized forms of equations 

(6.20) are 

ii 
x(s) =Lw Cos  O1 -1, y(Si) =t1lj sin O+h 	(6.64) 

where A is the step length, wj  and Qj  are the weights. 

The integral domains along the free surface are truncated using (SN1 , 0) for (—oo, 0) 

and (O, 3N2 ) for (0, oo). The integral on [-1,1] is transformed using x = i .1 where 

E [-1,1]. 

The mesh points are respectively 

=(i-1)z, i-1,•••,K, 

	

on the porous film, 	(6.65) 

sij= —(j-1), j = 1,•..,N, —(Ni  — I)A = 

	

on the upper free surface, 	(6.66) 

82(j-1) 2, j=1,•••,N2, (N2-1)=sN2 , 

	

on the lower free surface, 	(6.67) 

=(i-1)z. 3 , i=1,•••,N3 , (N3 -1)A= N3, 

	

on the flat wall y = 0. 	(6.68) 

The discretized form of equation (6.46) is 

(1 1  2L
K 
 2fL 

- 
+ 	

2d 
 ) + F1  (l, h) - F2 Pill h)) 1 Jei_1 	3: - 3:. 

(F1(1, h) + F2  (1l, h)) = 1 - U2  - k)' 1, 

K 	(6.69) 

where the discretized functions F1(1, h) and F2( 1l, h) can be obtained using 

(6.28) and (6.36). The integral term is treated using (6.52) in section 6.3. 
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The discretized form of equation (6.40) is 

ir cos 0(si,) = 

(x(si ) - x(s11)) cos 0(s) + (y(s13) - y(si ))(l + sin Oi) 

i=1 	 (x(s1) - x(s1))2  + (y(3ij) - y(Sii))2  

N1 Wi 
(x(s1) - x(s1)) cos O(s) + (y(Sij) - y(s,))(l + sin 0(s1 )) 

3+1 	(x(si ) - x(s1 ))2  + (y(Sij) - y(sii))2  

+i 

N1 

 Wi 
(x(si ) + x(si j) cos 0(s) - (y(si3) - y(s1 ))(1 + sin 0(s1 )) 

L 
i=1 	 (x(s13 ) + x(s1 ))2  + (y(s13) - 
K 	 - x,(s)) - 1 1(h - yj(S)) 

	

+Oi 	
(l—x(s))2+(h—y(s))2 1=1 

- 1(h -())1 + 
4-1 

3+1*G1(slj,$)d
(l + x3 (s))2  + (h -yj(S))2 j 	s - S 

(6.70) 

where 	= 0x(l,y), 1,ix = I'(l,y) and 

x(s13) - x(s) 
cos 0(s) + y(Sij) - Y(3)(1 + sin 0(s)) 

Gi(s11,$) - 	Sii - S 	 2 	
S1 - 8 	

2 	 (6.71) 
- 	(x(sii) - 

X(S)) + (Y(Slj) - Y(S))  

81iS 

The integral term in (6.70) is treated using (6.61) in section 6.3. 

The discretized form of equation (6.41) is 

ir cos 0(s23) = 
1-1 	(x(s23) - x(s21)) sin 0(s2) + (y(s2,) - y(s2 ))(1 + cos 0) 

i=1 	 (x(s22 ) - x(s21))2  + (Y(82i) - 
N2 	(x(Si) - x(s21)) sin 0(521) - (y(s23) - !I(s21))(1 + cos 0(321)) 

+L2 
2+1 	 (x(s23) - x(s21))2  + (Y(82,) - Y(821))2  
N2 	(x (s) + x(s2 )) sin 0(s2) - (Y(52j) - y(821))(1 + cos 0(s2S)) —L2 	w1 	

(x(82i) + x(s2 ))2  + (y(82j) - i=1 

1x(s2J )y(s2 )(q(21) - U) 
U 	( 	- x2(s2i) + y2(s2)))2  + 4x2 (s2 )y2(s23) 
K 	

1'021(x1l - X(s)) - 21(h - Y(823)) 
L 	(l - x(32i))2  + (h - Y(S2j))2 1=1 

119 



021(x1+ x(523)) - 2 1(h - 

	J 
+1

82(j+1)* G2(s2 ,$) 
  

	

ds
(5d + x(s23))2  + (h - y(s23))2 	2(j_1) 

 
S2j - S 

+ tan y(s23) - 
h + tan' 

y(s23) - 
h - 2 tan y(s2,) 

	

x(s2 ) - 1 	x(s2J ) + 1 	x(s23) 

(6.72) 

where 

- x(s2 ) - x(s) 
sin 0(s) + Y(S2j) - y(s) (1 + cos 0(s)) - G2(s2,$) 	2j - S 	 2j - 8 	 (6.73) 

- 
(x(s2i) - x(s) 2j - S) + (Y(S2j) - y(s)) 2  

2j - S 

and q(j) can be obtained from 

N2 

- U) = 	2 	
[sin 0(82)(1 - x(s2 )) + (1 + 

j=1 	 (i - x(s2 ))2  + y2(82j) 

+ sin 0(s2)(x(s2) - 	- (1 + cos O(52j))y(82j) I u 
( 	+ x(s23))2  + Y 2(S2j) 

K 
+ >: Al 

02(Xkl - 	- 02 h 02a (Xkl + j) - qhl 

	

k=i 	L (xl - .)2 + h2 	- (xkl + .)2  + h2 j 

+ U{tan-1 

h 	-1 i_l + tan 	
h 
 +}• 	

(6.74) 

For the case that the parameter h = 4.8, we chose N1  = 20 and N2  = 40 and 

K = 10. We also selected different impermeability constants with k = 0.11 and 

k = 0.20. The results are shown in Figure 6-8. In Figure 6-9, we can see clearly 

that immediately before jets pass through the film, the computed shapes of the 

free surface become swollen and then after the jets pass through the film, the 

shapes of the free surface become slightly contracted. For h = 5.8 and k = 0.11, 

Figure 6-12 also shows that the width of the jet becomes slightly large around 

the film. We also compute the jet passing through the film at height h = 5.8 and 

k = 0.18, shown in Figure 6-13. A comparison of these two jets for h = 5.8, with 

Ic = 0.11 and k = 0.18 is shown in Figure 6-14. 
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Figure 6-8: The physical-plane of a jet passing through a porous film at height 

h = 4.8 and then impinging on a flat wall where the outside lines correspond to 

impermeability constant k = 0.2, the inside lines correspond to Ic = 0 and the 

lines between them correspond to Ic = 0.11. 
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Figure 6-9: The physical-plane of Figure 6-8 is in the different scale. 
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Figure 6-10: The part around film of the Figure 6-8. 
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Figure 6-11: The right part of Figure 6-8. 
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61 

Figure 6-12: A jet passing through a porous film at height h = 5.8 and then 

impinging on a flat wall with impermeability constant k = 0.11. 
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Figure 6-13: A jet passing through a porous film at height h = 5.8 and then 

impinging on a flat wall with impermeability constant k = 0.18. 
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Figure 6-14: Two jets passing through a porous film (h = 5.8) and then im-

pinging on a flat wall with k = 0.18 (-) and k = 0.11 ( ... ). 
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Chapter 7 

Conclusions and Remarks 

This study is mainly concerned with the free surface problem of a jet impinging 

on various objects. When the problems of jet impact on a porous wall with pre-

scribed normal speed, of an ideal jet incident on an uneven wall and of a fluid jet 

passing through a porous film were considered, we could try to use classical hodo-

graph methods by which many free surface problems in fluid mechanics have been 

previously solved. However, since the boundary conditions are complicated, the 

relevent hodograph planes no longer have simple geometric shapes. The mapping 

which transforms the hodograph planes onto a reference plane becomes difficult, 

if not impossible, to find. The generalized Schwartz-Christoffel formula, given by 

Woods in 1955, has been extensively used by King and Bloor recently. This tech-

nique, however, can be applied in many free surface problems with complicated 

boundary conditions. We used such transformations in the formulation of a jet 

incident on a porous wall through which the normal flow velocity is prescribed and 

of a jet flow impinging on an uneven wall. In the former case, we extended King's 

method to the case when the jet flow on the wetted part of wall has non-constant 

normal velocity. The problem is formulated by a system of integral equations. In 

the case of constant normal velocity, the problem reduces to a single nonlinear in-

tegral equation. A numerical scheme is provided. For a few different non-constant 



normal velocities, the free surface shapes were computed, showing that our method 

is plausible and practicable. The formulation has also been developed to consider 

the effect of gravity, which indicates an alternative computation method other 

than the fixed domain method. In the case of a jet impinging on an uneven wall, 

the transformation technique and boundary integral method are used to formu-

late the problem. We first employed a solution of an integral equation to obtain 

some analytic results, among which a jet impinging on a flat wall is revisited. In 

the symmetric case the problem is formulated by a system of integro-differential 

equations. 

When the wall is asymmetric, to determine the position of the stagnation 

point, an integral form of the momentum equation is used to give a condition 

which shows how the wall shape affects the location of the stagnation point. This 

is a necessary ingredient of the formulation and of the computation. 

Steady two-dimensional free surface jet flow passing through the porous film 

has also been investigated analytically and numerically. The Cauchy boundary 

integral technique used to reduce the physical problem to a system of integral 

equations, can also be used to deal with any polygonal or curved boundary. The 

numerical solutions show that, as the impermeability increases, the width of the 

blocked upper flow around the film grows wider. The flow immediately behind the 

porous film tends to contract, which indicates the average normal velocity is grow-

ing there. The boundary integral method used to formulate the physical problem 

may be applied to other free surface problems of obstructed fluid flow. Because of 

the discontinuity of the flow velocity and pressure, the complex potential plane and 

hodograph plane are divided into two parts, therefore the hodograph method fails 

to attack this problem. Although the generalized Schwartz-Christoffel formula can 

apply to it, the formulation leads to a difficult numerical problem. 
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Appendix A 

The flow angle 0(t) on the wall satisfies 0(t)I <ir so that from (4.13) one obtains 

g(x)<- I 	dt=G(x)=---log 	
x . 
	(Al) irf-il-xt 	 x l+x 

To show that g(x) is square integrable, we let Gi (x) = x 1  log(l - x), and then 

show that G, (x) is square integrable on [-1, 1]. G, (x) has singularities at x = 0, 1, 

but 

j" jGj(x)j'dx  =J  -(1og(1- x))2dx 

L = 	—(log(l - x))2dx + / 	(log(' — X ))2  2 	 dx, (A2) 
J-1 X 

where c is an arbitrary constant in (0, 1). The integrand in the second integral of 

(A2) is bounded, while the first integral may be rearranged as 

1' 1 
It = 	

-(log(1-x))2dx 

1 - c 1 (1 - x)(log(1 - X))2 
2 d 

= 	c2  [(log(1 - c))2] -2 Ic  

-21 
1 log (1—x)) 

dx, 	 (A3) 

where the last integral in (A3) is 

1 1 	 1 
	Ac 

	

1 	—1 
dx 1 —ln(1—x)dx = K—X—+1 -  Jc x2  

	
11(x -1) 

S 

= 0 C_11(1) 	1 d 

C_l1(1  
—c)+lnc 

C 

= !ln(l_c)+ln(C) 	 (A4) 
C 

The integrands in (A3) are bounded functions on [c, 1]. Consequently the integral 

I is bounded so showing that Gi(x) is square integrable. Similarly, Gi(—x) is 

square integrable so that G(x) = —[GI(x) + Gi(—x)] is square integrable. 
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Appendix B 

Since equations (4.15) and (4.16) are equivalent, we treat only equation (4.16). 

Substituting (4.11) into (4.16) and interpreting q  in term of 0 through 0(s 1) = 

so(s) gives 

21 )= -- L100 k, (tCOW 	 2 - i)2 

—oo*f 2 1 

L1 	(t 2  - 1)2)t ( dt]. 
	

(B 1) 

For > 1, equation(B1) becomes 

OW = _! 
IfF (t2_1)) 

9(r1)d 	
2  —1 \ 	9(ri) dt] - f--.  (t2_1)) 

- 	11* /p— 2 	1f
oo*) 

 (t2_1) 
1 	i F(t 	>i. 	(B2) 

In the latter equality of (B2), equation (12) is used to replace g(f 1) by tF(i). For 

e < —1, similarly one obtains 
* (f-1 00* 	1

00 -Á 	) 
<-1. 	(B3) (2 - 1)2't'dt, 

In the symmetric case, equation (B2) can be written as 

- 	00* 	1 	/1 	
1 t) tF(t)dt - 	A 	(t2 _1) _12_t+ 

- 1) 	P00* ( 2 	
I 

Ji 
1 	2t 	

F(t)dt 
ir 	(j2 _1) 2 _t 2  

- 	!(e2-1) 	00* - 
A 

1 
—1 	(t2_1) 2_j2 

I 

1 /+i\ 	00* = 
fl —1) 

1 	I't_1+t+1')F(t)dt 
(j2_1) 

1 f+i 2 	00*[(t —1' 	F(t) 	i+1 	F(t)ldt 
(-) +1 	 +i 
1<<oo. 	(134) 
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