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Abstract

We explore the direct and inverse problem of thermodynamics in the context of

rule-based modelling. The direct problem can be concisely stated as obtaining

a set of rewriting rules and their rates from the description of the energy

landscape such that their asymptotic behaviour when t→ ∞ coincide. To

tackle this problem, we describe an energy function as a finite set of connected

patterns P and an energy cost function ε which associates real values to each of

these energy patterns. We use a finite set of reversible graph rewriting rules G to

define the qualitative dynamics by showing which transformations are possible.

Given G and P , we construct a finite set of rules GP which i) has the same

qualitative transition system as G and ii) when equipped with rates according

to ε, defines a continuous-time Markov chain that has detailed balance with

respect to the invariant probability distribution determined by the energy

function. The construction relies on a technique for rule refinement described

in earlier work and allows us to represent thermodynamically consistent

models of biochemical interaction networks in a concise manner.

The inverse problem, on the other hand, is to i) check whether a rule-based

model has an energy function that describes its asymptotic behaviour and

if so ii) obtain the energy function from the graph rewriting rules and their

rates. Although this problem is known to be undecidable in the general case,

we find two suitable subsets of Kappa, our rule-based modelling framework

of choice, were this question can be answer positively and the form of their

energy functions described analytically.
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Lay Summary

Interacting particles in the physical world are often described mathematically

in terms of the rate at which they move, react or otherwise change some of their

parameters. Take as an example the equations of motion in classical mechanics.

Mathematicians in the 19th century established that an important subset of

such equations of motion could be derived from a characteristic function, later

called the energy function or Hamiltonian. The Hamiltonian approach has

proved very powerful and today it is used to describe all types of physical

systems, from quantum mechanics to general relativity. It has also been used

successfully in the description of chemical reaction systems during the last 50

years. In the present thesis we introduce a general framework to express the

dynamics of biomolecular interaction networks using energy functions. The

framework extends rule-based modelling — in particular the Kappa language

— to achieve an energy-based description by reformulating the Hamiltonian

approach in the context of graph transformation systems. Under the hood, we

convert the energy function into a set of Kappa rules. This conversion requires,

among a few other ingredients, a set of generator rules used as a seed to start

the process of rule refinement. The generated set of rules is thermodynamically

consistent with the energy function. It is then possible to mix the energy-based

and rule-based approaches by including the generated set of rules in a rule-

based model. It is also natural to wonder if a set of rules can be converted

back into an energy function. We investigate this question in two restricted

scenarios since the problem is known to be undecidable in the general setting.
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thank Paweł Sobociński and Ilias whose invaluable feedback and dedicated

reading of the first version of this manuscript catalysed the improvements that

gave life to this final version.

iv



Declaration

I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or professional

qualification except as specified.

(Ricardo Honorato-Zimmer)

v



Contents

1 Introduction 1

1.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Kappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The direct problem: From energy to rules 17

2.1 Minimal glueings . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Thermodynamic growth policy . . . . . . . . . . . . . . . . . . . 29

2.4 Rates and detailed balance . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Linear kinetic model . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Example: Triangles all the way down . . . . . . . . . . . . . . . 38

2.7 Example: Flagellum’s engine . . . . . . . . . . . . . . . . . . . . 43

2.8 Non-linear energy functions . . . . . . . . . . . . . . . . . . . . . 53

3 The inverse problem: From rules to energy 56

3.1 Cooperative assembly systems . . . . . . . . . . . . . . . . . . . 57

3.2 Flipping and binding . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 65

vi



Chapter 1

Introduction

1.1 Historical background

In the history of natural sciences, there has been two main approaches to

describe dynamical systems, which I call here kinetics and thermodynamics. The

first approach goes all the way back to Newton’s laws of motion (Newton,

1687). Loosely speaking, it describes a system by the positions and momenta

of each particle. A description of this type is as explicit and detailed as it

can get for the type of systems under consideration in classical mechanics, i.e.

the movement of point particles. In the case of a classical mechanical system

that has N particles, a state of the system is specified by a vector in R2·3·N.

In general, a kinetic description is the full description of the dynamics of the

system in terms of the velocities of its processes.

The thermodynamic approach, on the other hand, gives a description based

on an energy function. The energy function is defined on the states of the system

and assigns a real value to each state, its energy. That is, a state is described

by a single scalar regardless of how many particles it comprises. Naturally,

this approach endowed the description of a dynamical system in classical

mechanics with a remarkable conciseness, simplicity and elegance. It first

appeared in the work of Lagrange (1811) and Hamilton (1834), and has been

subsequently used as the basis for most of modern physics. Once in possession

of the energy function, the kinetic description (i.e. the equations of motion)

can be derived from it. However the converse is not true: in general a kinetic

description might not have an energy function from which it can be derived

(Santilli, 1978) because of non-conservative (dissipative) forces. Obtaining an

1



Chapter 1. Introduction 2

energy function from the equations of motion is referred to as the inverse

problem and it was first attended to by Helmholtz (1887). Both the direct and

the inverse problem are the interest of this thesis and we aim to answer these

questions in the context of biomolecular interaction networks.

Half a century after Hamilton’s work researchers like Maxwell, Boltzmann,

and Gibbs applied the ideas of classical mechanics to atoms in order to describe

physical properties of matter like pressure, the capacity to transfer heat, and

others. This body of work came to be known as statistical mechanics and was

used to explain Brownian motion by Einstein (1905), which after its exper-

imental verification (Perrin, 1908) settled the debate about the existence of

atoms. It tried to explain, however unsuccessfully, the second law of ther-

modynamics and thus how irreversible processes arise from reversible ones.

Perhaps it failed because the second law does not hold in general, e.g. in small

systems and short time scales (G. M. Wang et al., 2002). A theorem in dynam-

ical systems generalises the second law and can explain these results (Evans

and Searles, 2002). Here, however, we concern ourselves with equilibrium

thermodynamics and all processes considered are reversible.

Statistical mechanics had to be extended in order to explain the chemical

interactions and reactions that molecules undergo. It was greatly helped by

the axiomatisation of probability theory by Kolmogorov (1933) and the further

developments by Doob (1937) and Feller (1940), who, among others, established

the theoretical framework for continuous-time Markov chains (CTMCs). Below

you can find the definition of (time-homogeneous) CTMCs and q-matrices that

will be used here.

Definition 1. A (stable and conservative) q-matrix Q on an at most countable set

of states S is an S × S matrix with elements qij ∈R, i, j ∈ S such that 06 qij < ∞

when i 6= j and qii = −∑j 6=i qij > −∞.1

The q-matrix plays the role of the time derivative of the transition probabil-

ities at time 0 and induces the evolution of a probabilistic state according to

the Kolmogorov backward equation,

d
dt

P(t) = QP(t), P(0) = I (1.1)

where P(t) is the S × S matrix with elements pij(t) ∈R the probability that

we were in state i at time 0 and are in state j at time t. When the q-matrix is
1 If unstable qii can be −∞ and if non-conservative qii 6−∑j 6=i qij.
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stable and conservative there exists a unique minimal2 solution P(t) of Eq. 1.1

(Anderson, 1991). We shall work with this type of q-matrices and assume there

is a transition function P(t) whenever we have a q-matrix Q and vice versa.

Given a probability distribution ξ(0) on S (seen as a row vector) the state at

t = 0, the probability distribution ξ(t) after time t is given by ξ(t) = ξ(0)P(t).

We say the q-matrix is irreducible if every state is reachable regardless of the

initial state, i.e. pij(t) > 0 for all i, j ∈ S and some t> 0.

Definition 2 (CTMC). A continuous-time Markov chain is a tuple (S ,ξ(0), Q)

with S an at most countable set of states, ξ(0) a probability distribution on S
representing the initial state and Q the q-matrix of the Markov chain.

A few important properties of CTMCs for the present work are given below.

Definition 3 (detailed balance). A q-matrix Q on S is said to be time reversible

iff there is a probability distribution π on S such that

πiqij = πjqji (1.2)

for all i, j ∈ S . Then Q is said to have detailed balance with respect to π.

Detailed balance was first proposed, in a slightly stronger form that re-

quires every path going from i to j to have a reverse path with which it is

in equilibrium, by Wegscheider (1901) in the context of chemical kinetics. Its

validity for other physical systems was argued by Lewis (1925) and Tolman

(1925). Tolman called the generalised principle microscopic reversibility.

Definition 4. A probability distribution π on S is invariant for a q-matrix Q iff

πQ = 0, i.e.

−πiqii = πi ∑
j 6=i

qij = ∑
j 6=i

πjqji

That is to say, π is invariant whenever the action of Q on π does not change

π or equivalently when π is a fixpoint of Q.

Lemma 1. Suppose the q-matrix Q has detailed balance with respect to π. Then π is

invariant for Q.
2 If P′(t) is any non-negative solution of Eq. 1.1, then pij(t)6 p′ij(t) for all i, j ∈ S and t> 0.
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Proof. From Eq. 1.2 we obtain

∑
i∈S

πiqij = ∑
i∈S

πjqji = −πjqjj,

as ∑i∈S qji = −qjj for any fixed state j. �

Once an invariant probability distribution is reached by the Markov chain

it stays there forever. We would therefore like to know when an invariant

probability distribution is realised by the Markov chain.

Definition 5 (ergodicity). A q-matrix Q is ergodic when there is a probability

distribution π on S such that for all i, j ∈ S ,

lim
t→∞

Pij(t) = πj

This is equivalent to say that the Markov chain will converge to the probab-

ility distribution π regardless of the initial state ξ(0).

Lemma 2. Suppose the q-matrix Q is irreducible and has an invariant probability

distribution π. Then Q is ergodic and converges to π.

The proof for this lemma can be found in part 2 of theorem 1.6 in chapter 5

of Anderson’s book (1991, pages 160–161).

CTMCs have a strong kinetic flavour as they describe stochastic processes

in terms of probability flows happening at a certain rate. It is natural to wonder

then how the thermodynamic approach looks like in the stochastic world. It

turns out the energy function has a very clear interpretation in this setting,

namely, that of defining the probability πi that the system finds itself in state

i ∈ S as follows (McQuarrie, 2000, page 40).3

πi =
e−E(i)

∑j∈S e−E(j)
(1.3)

This is known as the Boltzmann distribution. Note that (i) when given the

probability distribution π the energy function is defined uniquely only up to

an additive constant;4 (ii) by convention the sign of the energy is inverted so

lower energies represent more favourable states; and (iii) in the case of detailed

balance, we obtain e E(j)−E(i) = qji/qij by combining Eq. 1.3 and Eq. 1.2.

3 We express the energy in units of 1/kBT to avoid writing this term explicitly.
4 In other words, if we change the energy of each state by adding a fixed constant we obtain

the same probability distribution π.
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How do we construct a CTMC from an energy function? The first formula-

tion to shed light on this problem was proposed by Metropolis et al. (1953).

The algorithm asks for an energy function and an a priori one-step transition

probability matrix A where each element aij (i, j ∈ S) denotes the probability

that we choose to jump to state j when we are at state i. Hence ∑j∈S aij = 1

for any fixed i and we write ai− for this probability distribution. The A matrix

is assumed to be symmetric, i.e. aij = aji for all i, j ∈ S , although this is not

strictly necessary and the algorithm has been later generalised to work under

a weaker assumption (aij = 0 iff aji = 0) by Hastings (1970).

Note that when addressing the direct problem for CTMCs by using the

Metropolis algorithm we require an extra ingredient — the A matrix — which

was not needed in classical mechanics. This is because in classical mechanics

there are implicit assumptions of continuity on S that supply this information.

The state space is R2·3 and, intuitively, an allowed transition in this continuous

space is a differential change in any direction, i.e. dx, dy, dz. On the other hand,

the method that will be presented in §2 does not ask for a priori transition

probabilities but only which reversible transitions are possible at all.

The construction gives a discrete-time Markov chain that converges to the

probability distribution π in Eq. 1.3. The algorithm works as follows. Given any

state i ∈ S we pick a neighbour state j at random according to the probability

distribution ai−. We evaluate the energy function at i and j to compute ∆E =

E(j)− E(i) and proceed with the transition with probability 1 if ∆E < 0 and

probability e−∆E if ∆E > 0. Otherwise we stay at state i. In both cases time (a

natural number) is increased by 1. We repeat for state j if the transition was

successful and i otherwise.

To see that π, as defined in Eq. 1.3, is the invariant probability distribution

of the discrete-time Markov chain we show that it has (the discrete-time version

of) detailed balance with respect to π. The probability pij of jumping from i to

j is a combination of the a priori probability aij and the probability of accepting

that transition, which depends on ∆E.

pij = aij min(1, e−∆E)

By taking the ratio of pij and pji we obtain

pij

pji
=

aij min(1, e E(i)−E(j))

aji min(1, e E(j)−E(i))
=

min(1, e E(i)−E(j))

min(1, e E(j)−E(i))
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since aij = aji by symmetry of A. Suppose E(i)− E(j) > 0 > E(j)− E(i), then

pij

pji
= e E(i)−E(j) =

e−E(j)

e−E(i)
=

πj

πi

It is easy to see that when E(j)− E(i) > 0 > E(i)− E(j) we obtain the same

equation. Hence the discrete-time Markov chain has detailed balance with

respect to π. Provided the a priori transition probability matrix A makes it

possible to reach any state from any other state, the Markov chain will converge

to π as t→∞.

The Metropolis-Hastings algorithm can be generalised to the continuous-

time case (Diaconis and Miclo, 2009). However, the algorithm require us to

either (i) compute the energy of all states to obtain the probabilities pij (or

transition rates qij in the continuous-time case), or (ii) do rejection sampling, as

outlined above. Option (i) can be very time-consuming when S is large or it’s

costly to evaluate the energy function. Option (ii) can be inefficient when the

rejection rate is high. For these reasons we explore an alternative method in

this thesis. We partition the state space in regions of equal energy and group

transitions according to these regions. This is made possible by assuming extra

structure on S (to be introduced in §1.2).

Let us go back to the stochastic modelling of chemical interactions men-

tioned above. The theory of CTMCs allows one to frame the dynamics of chem-

ical reaction systems. A stochastic approach to such systems was pioneered by

Delbrück (1940) and has been common practice for decades (McQuarrie, 1967).

The physical conditions under which this approach is plausibly valid has been

argued by Gillespie (1976).

Since the number of molecules of a species is a priori unbounded and thus

S might be infinite, one would like to have a way to express these systems in a

finite and simple form. A language that could do this was designed by Petri

(1962). This language, later called Petri nets, sees reactions as transformations

of multisets of chemical species.

Definition 6. A multiset M over a set X is a map from X to the naturals assigning

to each element x ∈ X the number of copies M(x) ∈N of that element in the multiset.

There is a natural partial order 6 on multisets over X. We say M6 N if for

each element x ∈ X, M(x)6 N(x). We write M(X) for the set of all multisets

over X.
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Definition 7. Given a set of species Σ, a reaction r is a pair (L, R) with L and R

multisets over Σ. We refer to L and R as the left- and right-hand side of r.

Definition 8. A Petri net is a pair (Σ,R) of sets of species Σ and reactions R.

A state of a Petri net is a multiset over Σ, usually called a marking. A

reaction can occur in a given state M only if its left-hand side L6M.

Definition 9. A match of the left-hand side L of a reaction on a state M is an injective

function from L to M that identifies each copy of species s in L with a copy of s in M.

We write [L; M] for the set of matches from L to M. From this definition we

have that the number of matches |[L; M]| from L to M is

|[L; M]| = ∏
s∈Σ

(
L(s)
M(s)

)
A reaction is said to be elementary iff its rate is proportional to the number

of matches of its left-hand side. This is known as the law of mass action in

chemistry. Here we consider only elementary reactions.

Petri nets can be given a stochastic interpretation in terms of a CTMC.

Given a Petri net (Σ,R), an initial marking M0 and a rate map k : R→ R>0

that assigns rates to reactions, we construct a CTMC (S ,ξ(0), Q) as follows.

S = M(Σ)

ξ(0)(x) =

1 if x = M0

0 if x 6= M0

qMN = ∑
r∈R

r=(L,R)

k(r) γMN(L, R)

with

γMN(L, R) =

{
|[L; M]| if M− L + R = N

0 otherwise

Danos and Oury (2013) have solved the direct and inverse problem for Petri

nets, that is, they have shown the conditions the set of reactions and rate

map have to fulfil for a Petri net to have an energy function and what is the

structure of said energy function.

Petri nets have limitations when we take into consideration what happens

inside molecules in a chemical reaction. The chemical transformation taking
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place amounts to a change in the way electrons are shared by atoms resulting in

a relocation of chemical bonds. In other words, (non-radioactive) reactions are

all about the binding and unbinding of atoms, how they establish connections

and break them. This is poorly captured by a conversion of species as it is

modelled by Petri nets. A consequence of this lack of a formal representation

for molecular bonds is that certain systems of chemical reactions cannot be

described in a finite way using Petri nets, e.g. unbounded polymerisation

(think of a molecular chain that can always attach new links).

Recently, a formal language to describe biochemical interactions using

rewriting rules, where molecules not just react but can also bind other mo-

lecules has been proposed by Danos and Laneve (2004). In the next section we

introduce this language, called Kappa. The language shall give us a formal

foundation from which we can address the direct and inverse problems men-

tioned above, namely, the problem of generating a set of rewriting rules from

an energy function and vice versa.

1.2 Kappa

Kappa represents interactions among proteins, nucleic acids and other bio-

molecules as connections in a biomolecular network. In these networks, nodes

stand for the biomolecules while connections represent transient molecular

bonds (e.g. non-covalent interactions like hydrogen bonds). This network is

constantly changing as molecules travel and interact with other molecules

in a cell, which is viewed as the constant destruction and creation of the

connections that make up the network.

Due to spatial constraints, molecules can physically interact with just so

many other molecules at once. Exactly how many will depend on multiple

factors like the size of the two interacting molecules and the region where they

come in contact. These regions, known in molecular biology by the names of

domains, motifs or binding sites, are simply called sites in Kappa. Any such

site can bind at most one other site at a time. These sites belong to the nodes of

the graph, which Kappa calls agents. In the same way a molecule is of a certain

species, agents can be of different types. These types also live in a network, a

static «network of possibilities» which informs us of the set of sites an agent

can have and the possible connections that sites can form.
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To make these ideas formal we use a simpler version of the category-

theoretical approach introduced by Danos, Harmer and Winskel (2013). We

first define the networks where types live and then use them as a basis to

construct the actual biomolecular networks. Graphs are used as a mathematical

model of networks and site graphs in particular for biomolecular interaction

networks.

Definition 10. A site graph G consists of a finite set of agents AG, a finite set of

sites SG, a map σG : SG → AG that assigns sites to agents and a symmetric edge

relation EG on SG.

The pair SG, EG form an undirected graph. Clearly, the definition of site

graphs does not impose a bound on the number of connections a site can have.

Indeed there is no restriction at all so far. This is the network where types live.

Sites not in the domain of EG are said to be free. One says G is realisable iff (i)

no site has an edge to itself and (ii) sites have at most one incident edge. Each

realisable site graph represents a (possibly partially specified5) state in which

our biomolecular network can be. However it contains no typing information.

We give a type to each agent and site in the graph by assigning to it an agent

and site in the type graph. More precisely, we use a map from a realisable site

graph to a site graph. Below we introduce such maps.

Definition 11. A homomorphism h : G → G′ of

site graphs is a pair of functions, hS : SG → SG′ and

hA : AG → AG′ , such that for all s, s′ ∈ SG we have

(i) hA(σG(s)) = σG′(hS(s)) and (ii) if s EG s′ then

hS(s) EG′ hS(s′).

SG SG′

AG AG′

hS

hA

σG σG′

Put simply, homomorphisms preserve site ownership and connections. The

diagram to the right is the corresponding commutative diagram in the category

Set of sets and total functions to condition (i) in the definition. We say the

homomorphism g : G→ C is a contact map over C iff (i) G is realisable and

(ii) whenever gS(s1) = gS(s2) and σG(s1) = σG(s2), then s1 = s2. Condition

(ii) means that every agent in G has at most one copy of each site of its

corresponding agent in C. We refer to C as the contact graph. Contact maps

act as the typing map mentioned above. In particular, C specifies the types of

5 Below you can find the definition of a fully specified state, which we call a mixture.
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agents that can exist in G, the sites that they may possess, and which of the

|SC|(|SC|+ 1)/2 possible edge types are actually valid.

Site graphs and homomorphisms form a category SG. The composition

of two homomorphisms h1 : G1→ G2 and h2 : G2→ G3 is a homomorphism

h : G1 → G3 with hS = h2,S ◦h1,S and hA = h2,A ◦h1,A. It is easy to see that

composition defined in this way is associative. The identity arrow 1G : G→ G

in SG is defined using the identity functions of the corresponding sets.

A homomorphism ψ : G→ G′ is an embedding iff (i) ψA and ψS are injective

and (ii) if s is free in G, so is ψS(s) in G′. Injectivity of ψA and ψS implies

G G′

C

ψ

g g′

that whenever ψ : G → G′ is an embedding and G′

is realisable then G is also realisable. An embedding

ψ : G→ G′ between realisable site graphs can be lifted

to a morphism between contact maps g : G→ C and

g′ : G′→ C iff the diagram on the right commutes in SG.

Contact maps over C and embeddings form a category rSGeC. Composition

and identity are defined in a similar manner to SG. We write [g; g′] for the

set of embeddings between g and g′ in rSGeC and refer to g as a pattern to be

matched in g′. We have a functor |·| from rSGeC to SG which forgets types.

In particular, if g : G→ C is a contact map, we write |g| for its domain G.

As an example, consider the site graph T for a triangle.

AT = {1,2,3} , ST = {l1,r1, l2,r2, l3,r3} ,

σT = {sa 7→ a | s ∈ {l,r} , a ∈ AT} ,

ET = {(r1, l2), (l2,r1), (r2, l3), (l3,r2), (r3, l1), (l1,r3)} 1 2

3
l1

r1 l2

r2

r3 l3

Let us use T as the contact graph for a contact map g : G→ T where

G = x
lx

rx y
ly

ry
z

lz

rz

AG = {x,y,z} σG = {sa 7→ a | s ∈ {l,r} , a ∈ AG}
SG =

{
lx,rx, ly,ry, lz,rz

}
EG =

{
(rx, ly), (ly,rx), (ry, lz), (lz,ry)

}
and

gA = {x 7→ 1,y 7→ 2,z 7→ 3}
gS =

{
sa 7→ sa′ | s ∈ {l,r} , a ∈ AG, a′ = gA(a)

}
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Sites lx and rz in G are free, which we denote graphically by a stub coming

out of the site. T and G are realisable since no site is bound to itself or bound

to more than one other site. Note however that the codomain of a contact map

(T in this case) does not have to be realisable in general.

To ease the definition of concrete contact maps, we colour agents according

to their type and annotate sites by their name in C. The contact map g : G→ T

above can then be defined more succinctly by the following drawing.

l
r

l
r

l
r

where we have assigned colours orange, blue and green to agent types 1, 2, 3

in C. We have written l and r for sites l1, l2, l3 and r1,r2,r3 as the subscript can

be deduced from the colour of the agent as well.

Whenever a contact map g : G→ C specifies all sites that its type C permits

for all its agents, that is, if for all a ∈ AG, gS(σ−1
G (a)) = σ−1

C (gA(a)), then we

say g is a mixture. We write M(C) for the set of all mixtures in rSGeC. In the

above example, g is a mixture. What other mixtures are there that have T as

contact graph? We can have chains of any length and closed cycles of length

some multiple of three like triangles, hexagons, etc. We can have any disjoint

sum of them as well.

Mixtures, being fully specified biomolecular networks with respect to the

type C, are a natural choice for the states of our dynamical system. We jump

from state to state by the applications of rules.

Definition 12. A rule r is a pair of contact maps rL : L→ C, rR : R→ C which

differ only in their edge structures, i.e. AL = AR, SL = SR, σL = σR, rL,A = rR,A
and rL,S = rR,S .

In the context of the contact graph T, we obtain a rule that binds agents of

type 1 with agents of type 2 as follows.

r
l

r
l

AL = AR = {u,v}
SL = SR = {ru, lv}
σL = σR = {ru 7→ u, lv 7→ v}

rL,A = rR,A = {u 7→ 1,v 7→ 2}
rL,S = rR,S = {ru 7→ r1, lv 7→ l2}

EL = ∅
ER = {(ru, lv), (lv,ru)}



Chapter 1. Introduction 12

Note that there is no site l in u and no site r in v. Hence rL and rR are not

mixtures as they are only partially specified. Intuitevely, this means that the

rule can be applied regardless of whether those sites are bound or free.

rL rR

m m(r,ψ)

ψ ψ? (1.4)

When a rule r is applied to an embedding

ψ : rL→ m it induces a rewrite of the mixture m

by modifying the edge structure of the image

of ψ from that of rL to that of rR. The result

of rewriting is a new mixture m(r,ψ) (or simply

m? when (r,ψ) is clear from the context) and an embedding ψ? : rR → m?,

where |m?| has the same agents and sites as |m|, i.e. A|m?| =A|m|, S|m?| = S|m|,
σ|m?| = σ|m|, m?

A = mA, m?
S = mS , and E|m?| = E|m|−ψS(E|rL|) +ψ?

S(E|rR|). Since

the set of agents and sites are equal, ψ? is given by ψ?
A = ψA and ψ?

S = ψS . The

inverse of r, defined as r† := (rR,rL) is also a valid rule. By applying r† to ψ?

we recover m and ψ.

Lemma 3. Let r = (rL,rR) be a rule, rL/rSGeC the coslice category under rL, and

rR/rSGeC the coslice category under rR. The categories rL/rSGeC and rR/rSGeC

are isomorphic.

Proof. We construct a functor F : rL/rSGeC→ rR/rSGeC by mapping an em-

bedding ψ : rL → m to the result of applying r to it, ψ? : rR → m(r,ψ). By

definition ψ?
A = ψA and ψ?

S = ψS . Hence, the mapping of embeddings induced

by F is injective: whenever the application of r to two embeddings ψ : rL→ m

and φ : rL→m′ results in φ? and ψ? with φ? = ψ?, then φ = ψ. By an analogous

argument, we construct a functor G : rR/rSGeC → rL/rSGeC using r† that

maps embeddings injectively in the reverse direction. Applying r followed by

r† to ψ results in ψ itself. Therefore GF = 1rL/rSGeC and FG = 1rR/rSGeC . �

Intuitively, this property characterises a reversible rule. Reversibility will be

important to obtain detailed balance as every rule r must be in balance with

its inverse r†.

Given a finite set of rules R over C, an initial mixture m0 and a rate map k

from R to R>0, we construct a CTMC (S ,ξ(0), Q) with S = M(C) and

ξ(0)(x) = δx,m0 (Kronecker delta)

qmn = ∑
r∈R

r=(rL,rR)

k(r)
∣∣∣{ψ ∈ [rL;m] | m(r,ψ) ' n

}∣∣∣ (1.5)
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The number of embeddings between any two contact maps x,y is finite. Hence,

qmm =−∑n 6=m qmn >−∞ for any fixed m ∈ S and Q is a well-defined q-matrix.

Here we use the law of mass action for the rate of rules, where the rate is

proportional to the number of embeddings of their left-hand sides. In fact, the

law of mass action simply amounts to say that rewrites induced by rule r are

independent processes, each one occurring at rate k(r). This is clear when we

derive the CTMC from a labelled transition system.

Definition 13. A labelled transition system L is a tuple (S ,Λ,→) with S a set

of states, Λ a set of labels, and→⊆ S ×Λ× S a set of transitions (x,α,y) between

states x,y ∈ S labelled by α ∈ Λ.

Given R, we define a labelled transition system LR on mixtures over

C where a transition from a mixture m is labelled by an event (r,ψ), as in

diagram 1.4, with r in R and ψ in [rL;m]. The CTMC can then be equivalently

constructed from LR by assigning rate k(r) to an event of the form (r,ψ). We

write Lk
R for the CTMC. Note that the (strongly) connected components of

LR are finite as agents cannot be destroyed nor created by rules and there can

only be one edge between two sites.

With all the ingredients on the table we can proceed now to formulate

more precisely the main question addressed in this thesis. In the context of

the dynamics of biomolecular networks, the direct problem is stated as, given

a contact graph C and an energy function on mixtures over C, how do we

generate a finite set of rules R with a corresponding rate map k :R→ R>0

such that the CTMC Lk
R has detailed balance with respect to the probability

distribution π as defined in Eq. 1.3? To add flexibility we ask as well for an

initial set of (rate-less) rules from which to derive the set with detailed balance.

We write G for the set of generator rules that is given as input. This set delimits

which moves are possible at all. The full method is presented in §2.

On the other hand, the inverse problem is stated as, given a contact graph

C, a set of rules R over C and a rate map k, does the CTMC Lk
R have detailed

balance? If so, how do we obtain its invariant probability distribution and

energy function? The former question has been proven to be undecidable by

Danos and Oury (2010) using an encoding of the Post correspondence problem

(Post, 1946) in Kappa. In §3 we address the inverse problem for restricted

versions of the Kappa language that are decidable.
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1.3 Related work

Ollivier, Shahrezaei and Swain (2010) have developed a language to describe

biomolecular interaction networks that have an energy function and a tool,

called the Allosteric Network Compiler (ANC), to generate chemical reaction

systems (i.e. Petri nets) from them. The biomolecular interaction networks

they introduce have ANC structures as nodes. These structures can contain

hierarchical components and interaction sites. The latter can be catalytic sites,

covalently modified sites or ligand-binding sites. Hierarchical components

on the other hand can contain any number of interaction sites and nested

hierarchical components. If a hierarchical component is marked as allosteric, it

transitions between two conformational states. The transition rates are modified

by the state of the sites and other components present in the same structure

according to parameters given for each of them. An additional parameter is

required for covalently modified and ligand-binding sites which determines

the change in the ratio between the two conformational states when a ligand is

bound or the site is modified.

The edges of the ANC network are connections between ligand-binding

sites or between a catalytic site and a covalently modified site. Rules can

be of two types, binding or enzymatic, and are only allowed to depend on

the conformational state of the two participants. Binding rules specify the

association and dissociation of two ligand-binding sites. Enzymatic rules follow

a Michaelis-Menten mechanism in which the enzymatic site reversibly binds

a covalently modified site first and then changes the state of the covalently

modified site as it unbinds it (with each step following the law of mass action).

Each type of rule is parameterised differently. The energy function is obtained

implicitly from all the parameters of the model. The language formalises

concepts that are familiar to molecular biologists and biochemists in a way that

reflects the apparent complexity of these interaction networks. However, the

language’s many concepts and classifications make it difficult to see the big

picture and obfuscate the energy function. Also it arbitrarily restricts the form

and size of the rules and the form of the energy function. The work presented

in §2 is a generalisation of ANC. In §3.2 we will show a language similar to

ANC for which the form of the energy function is uniquely determined from

the kinetic rate parameters.
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Another related development is that of biomolecular interaction databases.

During the last two decades databases like BindingDB (Chen, Liu and Gilson,

2001; Gilson et al., 2016), BIND (Bader et al., 2001), MINT (Licata et al., 2012;

Zanzoni et al., 2002), MatrixDB (Chautard et al., 2009) and BioLiP (Yang, Roy

and Zhang, 2013) have appeared with the aim to collect data pertinent to bio-

molecular interactions that have been described in the scientific literature. Of

particular interest to us is that they gather information about thermodynamic

and kinetic parameters like equilibrium and rate constants for these interac-

tions. The proliferation of molecular interaction databases have prompted the

creation of the International Molecular Exchange (IMEx) consortium (Orchard

et al., 2012) and a common data format, the Human Proteome Organization

Proteomics Standards Initiative Molecular Interactions (HUPO-PSI-MI) format

(Hermjakob et al., 2004; Kerrien et al., 2007). The latest version of this format,

which is used by all molecular interaction databases, provides a means to spe-

cify thermodynamic and kinetic parameters of an interaction. Also of interest

are databases specialised in the thermodynamic properties of reactions like the

Thermodynamics of Enzyme-Catalyzed Reactions Database at the National In-

stitute of Standards and Technology (NIST) (Goldberg, Tewari and Bhat, 2004)

and others (Li et al., 2011). Moreover, sometimes it is possible to predict these

thermodynamic constants and how they vary in different solutions (Flamholz

et al., 2012; Mavrovouniotis, 1991). Together all of these tools, databases and

algorithms provide a strong infrastructure that facilitates the construction of

thermodynamic models of biomolecular interaction networks.

Thermodynamic models have already been used successfully in many

areas of biology. For instance, in chemotaxis6 thermodynamic models have

been put forward to explain the positioning of the chemoreceptors on the

membrane (H. Wang, Wingreen and Mukhopadhyay, 2008), their cooperative

adaptation mechanisms to keep a high sensitivity for different ligands in

different environments (Lan et al., 2011), and the activity of the engine that

bacteria use to travel by turning the filaments of their flagellum (Bai et al.,

2010). By recreating the latter model we show in §2.7 how to use our method

to construct such thermodynamic models. Other examples include models in

metabolism (Cannon, 2014; Thomas et al., 2014), macromolecular assembly

6 Chemotaxis is the process by which a living organism moves away of certain molecules
like poisons and chases other molecules like food.
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(Saiz and Vilar, 2006), transcription regulation (Bintu et al., 2005) and more

(Kiselev, Marenduzzo and Goryachev, 2011).

Understanding the relationship between the kinetics and thermodynamics

of biomolecular interactions may help understand the relationship between

animate and inanimate matter. It has been argued by Pascal, Pross and Suth-

erland (2013), in an attempt to bridge the worlds of animate and inanimate

matter, that the former corresponds to the set of persisting molecular replicators.

A molecular replicator is a molecule or set of molecules that, usually in several

steps, can fulfil the following transformation,

R + F→ R + R + W

where R is the replicator, F is a molecule consumed by R to construct a second

R (mnemonically named F for food) and W (for waste) is what is left of F that

was not used for the replication. This transformation is known as autocatalysis.

Under unlimited resources a molecular replicator grows exponentially fast.

On the other hand, when F is exhausted the concentration of R will converge

to that dictated by the thermodynamic equilibrium. Persistent replicators

are those that manage to keep themselves in a far-from-equilibrium regime

and thus continue replicating to maintain its population. It is my belief that

this type of processes can be investigated by introducing additional rules

to the set of thermodynamically-consistent rules generated by our method.7

These sorts of modifications opens up a possible new line of work which

we might call far-from-equilibrium graph thermodynamics. The convergence

properties of thermodynamically-consistent sets of rules presented in §2.3

would not hold in a far-from-equilibrium regime but might nevertheless serve

as a reference for comparison. Moreover, the rates calculated for the rules

by the method would still be valid as these depend only on the chemical

properties of molecules in solution (reactants, products, solvent, etc). In §2.5

a framework is proposed to systematically assign rates to rules based on

some of these chemical considerations. It allows the exploration of kinetics

in a thermodynamically consistent way. Hence this framework might play an

important role in the study of far-from-equilibrium systems.

7 Note that when the additional irreversible rules do not intersect the reversible ones, one
still can get an extended notion of detailed balance by an analogous argument to that put
forward by Gorban, Mirkes and Yablonsky (2013).



Chapter 2

The direct problem

From energy to rules

In this chapter we show how to construct a set of reversible rules and their

forward and backward rate constants from an energy function. In the spirit of

rule-based modelling languages like Kappa where rules and observables are

defined in terms of patterns,1 we use a set of connected energy patterns P for

our energy function. We assign an energy cost ε(g) to each of them and build

the energy function as a linear combination of their number of ocurrences.

E(m) = ∑
g∈P

ε(g) |[g;m]| (2.1)

This is reminiscent of group contribution methods used to estimate the stand-

ard Gibbs free energy of formation of biomolecules (Mavrovouniotis, 1991).

As mentioned at the end of §1.2, we will derive the set of rules with detailed

balance from a set of generator rules G (without rates). We suppose that G
is closed under rule inversion, i.e. G = G†. Given a contact graph C, a simple

option would be to include every possible minimal rule in this set, that is,

include a creation and a destruction rule for each edge in the contact graph.

Each of these rules is minimal in the sense that it only asks for the presence

of the two participating agents and sites. The example rule in §1.2 (page 11)

where agents of type 1 and 2 bind regardless of the context is one such minimal

rule that can be derived from the contact graph T. We call this rule r+12.

r+12 := r
l

r
l (2.2)

1 Recall that a pattern is a contact map used to find subgraphs in states.

17
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This option is maximally permissive with respect to the contact graph.2 Even if

all transformations are possible, many of them may be unlikely due to having

a high energy. Still one might prefer to forbid certain transformations in some

scenarios. This is indeed the case in the example that will be presented in §2.7.

In our previous example (§1.2), we might want to favour the formation of

triangles over chains and other cycles. For this we give a negative energy cost

to the triangle t, i.e. ε(t) < 0. If t is the only energy pattern, then the energy of

a state m is E(m) = ε(t) |[t;m]|. In this model one might, for instance, wonder

how low the energy cost of t must be to have at least 90% of all agents in a

triangle at equilibrium at least 90% of the time.

We would like to find rules that have detailed balance with respect to this

energy function. Consider the rule r+12 and its inverse r−12, the unbinding of

agents 1 and 2. We first ask ourselves if this pair of rules could have detailed

balance for some assignment of kinetic rates. Suppose we assign kinetic rates k+

and k− to r+12 and r−12. Recall from §1.1 that e E(n)−E(m) = qnm/qmn for systems

with detailed balance. From Eq. 1.5

qmn = ∑
r∈G

r=(rL,rR)

k(r)
∣∣∣{ψ ∈ [rL;m] | m(r,ψ) = n

}∣∣∣
where m(r,ψ) is the outcome of rewriting m with event (r,ψ). At most one of

the two rules can bring us from state m to n, say it is r+12. By rule reversibility

(Lemma 3) r−12 brings us from n back to m and the number of matches of r−12

in n is equal to the number of matches of r+12 in m. Hence, e E(n)−E(m) = k+/k−.

In words, the change in energy produced by the rule application fixes the

ratio between the kinetic rates. As a consequence, each rule application should

produce the same energy change for there to be an assignment of kinetic rates

with detailed balance. Whenever a rule produces the same energy change

regardless of where it is applied we say that the rule has an unambiguous energy

balance or is P-balanced. More generally, we define P-balance as follows.

Definition 14. Given a contact graph C and a set P of contact maps over C, a rule

r is P-balanced if, for all mixtures m and embeddings ψ : rL → m, the number of

ocurrences of p ∈ P produced and consumed by r when applied to ψ is a fixed number

∆r p = |[p;m(r,ψ)]| − |[p;m]|. We refer to ∆r p as the balance of r with respect to p.

2 Intuitively, this is analogous to the case of classical mechanics where, a priori, movement
is not constrained along any coordinate.
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The following two rule applications show that r+12 is not P-balanced.

r
l

r
l

r
l

r
l

l
r

l
r

l
r

l
r

l
r

l
r

l

r l

r
r l

l

r l

r
r l

We see that, while the application on the left does not produce any change

in energy (∆E = 0), the one on the right creates a triangle and thus ∆E = ε(t).

We must then split r+12 into subrules that check the surroundings of the rule

application to make sure that, for instance, every application of such a subrule

creates one triangle or none at all. It is important that the partition of the rule

has certain properties. In particular, one would like that every match of the

rule can be mapped to exactly one match of one of the subrules. Prior work by

Murphy et al. (2010) has shown how one can obtain a partition of rules with

this property and will be presented, in a slightly modified version, in §2.2.

But before diving into rule partitioning, or rule refinement as we call it, it

would be good to have a more rigourous idea of when a rule is P-balanced or

not. In the examples shown above we see that our energy pattern, the triangle,

must be fully incorporated into the left- or the right-hand side of the rule to

be sure it produces or consumes it in every application. On the other hand, a

rule that is incompatible with our energy pattern will also be P-balanced by

making it impossible for the rule to match a triangle. This is true whenever

there is no glueing of the left-hand side of a rule with the energy pattern

where they overlap in a site that is modified by the rule. In the next section,

we introduce the concept of overlapping glueings of contact maps by means of

multi-sums, a concept related to local coproducts and relative pushouts.

2.1 Minimal glueings

The category SG has all pullbacks, constructed from those in Set, and they

indeed restrict to rSGeC.

Lemma 4. Given a cospan φ1 : g1→ h← g2 : φ2 in rSGeC there is a unique span

ψ1 : g1← p→ g2 : ψ2 (up to unique isomorphism) such that any span ω1 : g1← q→
g2 : ω2 that forms a commuting square ω1,ω2,φ1,φ2 factors uniquely through it.
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g1 g2

h

p

q
ω1 ω2

ψ1 ψ2

φ1 φ2

!

Proof. We construct contact map p : G→ C by taking the intersection of the

agents, sites and edges in the image of φ1,φ2 and restricting σ accordingly.

With some abuse of notation, we have

AG = φ1,A(A|g1|) ∩ φ2,A(A|g2|)

SG = φ1,S(S|g1|) ∩ φ2,S(S|g2|)

EG = φ1,S(E|g1|) ∩ φ2,S(E|g2|)

and σG = σ|h||SG . Functions pA, pS are the restriction of hA, hS to AG,SG, re-

spectively. Embeddings ψ1 and ψ2 map agents and sites in G to their pre-images

along φ1 and φ2; by construction, all agents and sites in G are guaranteed to

have such a pre-image. It is easy to see that (i) ψ1 and ψ2 are type-preserving

and thus embeddings in rSGeC; and that (ii) the square formed by ψ1,ψ2,φ1,φ2

commutes.

Consider any span ω1 : g1← q→ g2 : ω2 in rSGeC. If the square formed

by ω1, ω2,φ1,φ2 commutes, then q can have at most one copy of each agent

and site in the intersection of the images of φ1 and φ2 because φ1 ω1 and φ2 ω2

are injective. Hence, every agent and site in the image of ω1,ω2 has a unique

pre-image along ψ1,ψ2, respectively, with the same type. This fixes a pair of

functions ωA,ωS that map agents and sites in q to those in p injectively and

form an embedding ω in rSGeC. Since the pre-image along ψ1,ψ2 always

exists and is unique, any embedding ω′ : p→ q must be equal to ω whenever

φ1 ω′ = ω1 and φ2 ω′ = ω2. �

SG also has all pushouts and all sums, but these do not in general restrict

to rSGeC, just as pushouts and sums in Set do not restrict to the subcategory

of injective functions. However, rSGeC has multi-sums.

Lemma 5. For all pairs of contact maps over C, g1 : G1 → C and g2 : G2 → C,

there exists a finite family of cospans θi
1 : g1→ si ← g2 : θi

2, such that any cospan

φ1 : g1→ h← g2 : φ2 factors through exactly one of the family and does so uniquely.
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g1 si g2

h

θi
1 θi

2

φ1 φ2
!

Proof. Take subsets Ai of the cartesian product of A|g1| and A|g2| that have each

agent of g1 and g2 at most once ((a,b) ∈ Ai ∧ (a,b′) ∈ Ai⇒b = b′) and where

each pair (a,b) ∈ Ai has the same type, i.e. g1,A(a) = g2,A(b). To each Ai assign

all subsets Sij of S|g1| × S|g2| that are type-compatible and whose elements

belong to agents paired in Ai, that is, if (x,y) ∈ Sij then g1,S(x) = g2,S(y) and

(σ|g1|(x),σ|g2|(y)) ∈ Ai. Note how this fixes a mapping σij between elements

of Sij to elements of Ai defined by σij((x,y)) = (σ|g1|(x),σ|g2|(y)). For each Ai

keep only the set Sij that is a superset of all other sets Sik (k 6= j). There must

be one such maximal set because if any two pairs of sites (x1,y1), (x2,y2) are

type-preserving and belong to the same agents, then there will be one set

among the Sijs that has both and thus {Sij}j is a directed partial order for the

inclusion relation. Let Si be the maximal element of {Sij}j, which exists by

directedness and finiteness of this family, and σi the corresponding mapping to

Ai. Intuitively, the maximal set Si is the set of all sites that are defined in both

agents at the same time. Next we discard those pairs Ai,Si whose elements do

not agree on their edge structure; if (x,y) ∈ Si then either both sites must be

free or connected to sites (x′,y′) ∈ Si.

We construct a family of contact maps pi : Pi → C using APi = Ai as

its agents, SPi = Si as its sites, σPi = σi and EPi = {((x1,y1), (x2,y2)) ∈ Si ×
Si | x1E|g1|x2 ∧ y1E|g2|y2}. Functions pi,A, pi,S are defined straightforwardly.

Spans ψi
1 : g1← pi→ g2 : ψi

2 are then obtained by mapping agents (a,b) in pi

to a in g1 and b in g2 and similarly for sites. Multi-sums θi
1 : g1→ si← g2 : θi

2

are pushouts of such spans: they are obtained by adding to pi all the missing

agents, sites and edges from g1 and g2. Since all sites that are in g1 but not in

pi cannot be in g2 by maximality of Si, there can be no conflict when adding

sites or edges. The same argument holds for sites in g2 that are not in pi.

Note that the family Ai is finite and thus the family of multi-sums is finite

as well. Also, it is easy to see that the spans ψi
1,ψi

2 are pullbacks of θi
1,θi

2. Hence,

(isomorphism classes of) multi-sums are in a one-to-one correspondence with

(isomorphism classes of) pullbacks. This implies that there is only one multi-
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sum that factors any given cospan. �

The pairs θi
1,θi

2 enumerate all minimal ways in which one can glue g1 and

g2. Hence, we refer to them as minimal glueings. The notion of multi-sum

dates back to Diers (1978). They are very close to relative pushouts (Leifer and

Milner, 2000) and will be used in the same way, to minimise rewriting contexts.

Indeed, each minimal glueing i in the family of cospans θi
1,θi

2 accounts for one

minimal rewriting context.

To illustrate how this construction operates, consider the minimal glueings

of the following two contact maps over T with their respective pullbacks.

∅

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

l

r l

r
r l

I have implemented an online tool that computes minimal glueings available

at https://rhz.github.com/thesis/mg.html. Its source code can be found at

https://github.com/rhz/thesis/.

Using minimal glueings we can test whether a rule r is P-balanced, that

is, whether r consumes and produces the same number of instances of each

https://rhz.github.com/thesis/mg.html
https://github.com/rhz/thesis/
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energy pattern p when applied to any mixture m. In particular, for an r-event

ψ to consume an instance φ of p in a mixture m, φS and ψS must have images

which intersect on at least one site which is modified by r (e.g. by adding an

edge if it was free). This is the case iff the minimal glueing φ′,ψ′ of rL and p

p s rL

m

φ′ ψ′

φ ψ
(2.3)

that factors the cospan φ,ψ has the same

property. Likewise, for an r-event to produce

an instance of p, the associated minimal glue-

ing between p and rR must have a modified

intersection. We call such minimal glueings

relevant.

To illustrate the idea of relevant minimal glueings, let us consider a different

example. In this example, the contact graph is very simple: just one agent type

with two sites, l and r, that can bind each other. Imagine we have the following

reversible rule.

r
l

r
l

r
l

r
l

Take the chain of 3 agents as our energy pattern. The minimal glueings of the

left-hand side of the rule with the energy pattern are shown below. On the

left of each diagram is the energy pattern. The relevant minimal glueings are

marked with a light green background.

r l r l r l r l

r l r l r l r l

r l r l r l r l

r l r l

r l r l r l r l

r l r l r l

r l r l r l r l

r l r l r l

r l r l r l r l

r l r l r l r l

r l r l r l r l

r l r l r l r l
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r l r l r l r l

l

r l

r
r l

r l r l r l r l

l

r l

r
r l

r l r l r l r l

l r
l

r
lrl

r

An online tool to compute relevant minimal glueings can be found at

https://rhz.github.com/thesis/rmg.html.

Whenever ψ′ : rL→ s in diagram 2.3 is an iso, then the energy pattern p is

fully included in the left-hand side of rule r. This implies the rule contains all

the relevant context needed to make sure that an instance of p is consumed

by any r-event ψ : rL → m. We say that r is P-left-balanced iff, for all p ∈ P
and relevant minimal glueings θi

1 : p → si ← rL : θi
2, the right leg θi

2 is an

isomorphism. Symmetrically, one says that r is P-right-balanced iff r† is P-left-

balanced. Then r is P-balanced iff it is P-left- and P-right-balanced.

Lemma 6. Rule r is P-balanced if and only if r is P-left- and P-right-balanced.

Moreover, if r is P-balanced then, for any mixture m, embedding ψ : rL → m, and

energy pattern p ∈ P ,

∆r p = |[p;m(r,ψ)]| − |[p;m]| = |[p;rR]| − |[p;rL]|

Proof. Suppose there are two mixtures m, n and embeddings ψ : rL→ m, φ :

rL→ n such that, when r is applied to ψ and φ, it has a different balance with

respect to a pattern p ∈ P , i.e. |[p;m(r,ψ)]| − |[p;m]| 6= |[p;n(r,φ)]| − |[p;n]|. We

have

|[p;m]| = |{p→ m
ψ←− rL}| =

∣∣∣∣∣∣∣


p s rL

m ψ


∣∣∣∣∣∣∣

where p→ s← rL is the minimal glueing that factors the cospan p→ m
ψ←− rL.

A similar equality can be obtained for rR, m(r,ψ) and ψ?. The irrelevant minimal

https://rhz.github.com/thesis/rmg.html
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glueings on each side of the rule are in bijection: the rule does not destroy

nor create them. Hence, when taking the difference |[p;m(r,ψ)]| − |[p;m]| they

cancel each other out and we are left with a difference of relevant minimal

glueings on each side. Since s ' rL for each relevant minimal glueing on the

left then ∣∣∣∣∣∣∣


p s rL

m

'

ψ


∣∣∣∣∣∣∣ = |[p;rL]|

Again, a similar equality can be obtained for rR, m(r,ψ) and ψ?. Thus we

have proved that |[p;m(r,ψ)]| − |[p;m]| = |[p;rR]| − |[p;rL]| for any m and ψ,

contradicting our original assumption. �

2.2 Refinements

A rule is refined into another rule by adding context. For example, we can add

a common neighbour to the agents in r+12 to obtain a refinement.

l

r l

r
r l

l

r l

r
r l

(2.4)

This refinement happens to be P-balanced. Another refinement of r+12 could be

r
l

r r
l

r
(2.5)

Here we have added a free site to the blue node. This second refinement is

also P-balanced because the free r site on the blue node guarantees that (i)

the rule will never create a triangle and (ii) there is no embedding from the

left-hand side into a triangle and hence no triangle can be destroyed by the

action of the rule. The following refinement, however, is not P-balanced.

r
l

r
l

r
l

r
l

We add context to a rule r = (rL,rR) by applying the rule to an embedding

ψ : rL→ g. This operation is well-defined even if the codomain of the embed-

ding is not a mixture. The pair of contact maps (g, g(r,ψ)) is itself a valid rule

since they only differ in their edge structure. In this way, an extension of a rule

is determined uniquely by an embedding.
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Epis3 of rSGeC are good candidates for extensions. They are characterised

as follows: an embedding ψ : g→ h is an epi iff every connected component of

|h| contains at least one agent in the image of ψA. This ensures that no new

connected component is added to the rule while extending it. However, for

technical reasons that will become apparent in Th. 8, we use prefixes of epis

instead of epis to extend rules — an embedding ψ : g→ h is said to be a prefix

of φ : g→ h′ if there is some embedding θ : h→ h′ that makes the composition

of ψ and θ equal to φ (i.e. θ ψ = φ) and write ψ≤ φ for this. We refer to a prefix

g

h h′

ψ φ

θ

of an epi ψ : g→ h as an extension of g. In the category

of extensions of g, a morphism between objects

ψ : g→ h and φ : g→ h′ is an embedding θ : h→ h′

such that the triangle on the right commutes. If θ is

an iso we write ψ ∼=g φ.

One might wonder when the prefix of an epi is not itself an epi. The

following diagram illustrates such a situation, where ψ is a prefix of epi φ

but is not itself an epi since the connected component of the blue node in the

codomain of ψ is not in the image of ψA.

r
l

ψ φ

θ

Rule application preserves epis and in fact also prefixes of epis:

Lemma 7. Let r = (rL,rR) be a rule and ψ : rL→ g be an embedding with rL,rR, g

contact maps in rSGeC. The embedding ψ? : rR→ g? that results from applying r to

ψ is a prefix of an epi iff ψ is.

Proof. This amounts to proving that some embedding φ? ≥ ψ? is an epi if there

is an epi φ≥ ψ; the converse is true by symmetry of rules. For this it is enough

to consider the case where the rule adds or deletes exactly one edge since rules

that modify more than one edge at a time can be decomposed as sequences

of deletions and insertions of edges; given that each deletion and insertion

preserves the property, the sequence will preserve it as well.

3 Epi, mono and iso are short for epimorphism, monomorphism and isomorphism.
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The case of adding an edge is easy as the image of φ? has fewer connected

components to intersect than φ. The case where r deletes an edge can introduce

new connected components, however in this case both ends u,v of the deleted

edge must be in rL, so whether the deletion disconnects or not the codomain

of ψ, the components of φ?(u) and φ?(v) will have a pre-image, namely u and

v. �

It follows that the category of extensions of rL and rR are isomorphic. Hence,

any extension φ to a rule r can be mapped to an extension of its inverse rule r†.

A family of epis φi : g→ gi uniquely decomposes g, or is a refinement of g, if,

for all mixtures m and embeddings ψ : g→ m, there exists a unique i and ψ′

such that ψ = ψ′φi. This is the basic requirement for a reasonable notion of

rule refinement: it guarantees that the left-hand side g of a given rule splits

into a non-overlapping and exhaustive collection of more specific cases gi.

A method to easily construct such decompositions was proposed by Murphy

et al. (2010) which works by detailing which agents and sites should be added

to g. This «extension plan» is called growth policy. A growth policy Γ for contact

map g over C is a family of functions Γφ, indexed by all extensions φ : g→ h,

where Γφ maps u ∈ A|h| to a subset Γφ(u) of σ−1
C (hA(u)), i.e. each agent in |h|

is allocated a subset of the sites belonging to the agent type hA(u) it is mapped

to in the contact graph. An agent in |h| may cover some, or all, of these sites or

even completely extraneous sites:

(i) if for all u in A|h|, hS(σ−1
|h| (u)) ⊆ Γφ(u), we say that φ is immature;

(ii) if for all u the inclusion is an equality and φ is an epi, φ is mature;

(iii) otherwise φ is said to be overgrown.

The functions Γφ must satisfy, for all extensions φ and φ′ ≥ φ, the faithfulness

property, Γφ = Γφ′ ψA with ψ such that ψ φ = φ′; so a site requested by φ must

be requested by any further extension. Additionally, this property forces Γ to

eagerly ask for all sites that will be eventually requested at any given agent in

the codomain of φ. If φ is not overgrown then no φ′ ≤ φ is overgrown either.

Given a contact map g over C and a growth policy Γ for g, we define Γ(g)

by choosing one representative per ∼=g-isomorphism class of the set of all

extensions of g which are mature according to Γ.
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The following theorem guarantees that factorisations through Γ(g) are

unique when they exist, but not that they necessarily do exist. In section §2.3,

we will construct a specific growth policy for which the exhaustivity of the

decomposition can be proved by hand. As such, it fulfils our desired criteria of

providing an exhaustive collection of mutually exclusive subcases.

Theorem 8. Let g and m be contact maps over C and Γ a growth policy for g. If

an embedding ψ : g→ m can be decomposed in two ways as γ1φ1 and γ2φ2 with

φi : g→ hi in Γ(g) and γi : hi→ m, then φ1 = φ2 and γ1 = γ2.

g h1

h2

p

h

m

φ1

φ2

γ2

γ1

π1

π2

θ1

θ2

φ

(2.6)

Proof. Suppose that γ1φ1 = γ2φ2, where φ1 and φ2 are mature extensions of g

according to Γ and φ1 6= φ2. As shown in diagram 2.6, we have an inner square

formed by the pullback π1,π2, and the minimal glueing θ1,θ2 of h1, h2 that

factors γ1,γ2. Every connected component of m has a pre-image in h1 or h2,

and thus also in g, since φ1 and φ2 are epis as mature extensions. Because every

connected component of m has an image in h1 and h2, then every connected

component of m has a pre-image in both h1 and h2. Hence θ1 and θ2 are epis.

The nodes in the images of θ1 and θ2 might be the same or differ. When

they differ, some site z sitting on a node in the intersection of the images of

θ1,θ2 is connected to a node outside the image, since θ1,θ2 are epis. However,

z cannot be in the intersection of the images unless the site it is connected to

is also part of the intersection (Lemma 5). Therefore the nodes in the images

must be the same. In this case there has to be a site z that is not in the image

of one of them or θ1,θ2 are both isos. So there must be a pair u,z, consisting

of a node u in m with pre-images u1,u2 in h1, h2 and a site z of u, such that z

has no pre-image in exactly one of θ1,θ2. Say it is θ2. Since φ1 is not overgrown,

z ∈ Γφ1(u1) and, by faithfulness, z ∈ Γφ((u1,u2)), where (u1,u2) is the pullback

pre-image of u1 and u2. So again, by faithfulness, z ∈ Γφ2(u2) which contradicts
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our original assumption. Hence, θ1 and θ2 are isos. It follows that φ1 = φ2 as

there is only one representative per ∼=g-isomorphism class in Γ(g). Finally,

γ1 = γ2 because φ1 is an epi. �

Given a rule r and an extension φ : rL→ g, we write rφ for the refined rule

associated to φ, that is, rφ is the pair (g, g(r,φ)). Given Γ a growth policy for rL,

we write Γ(r) for the family of rules obtained by refining r according to Γ, that

is, Γ(r) is the family of rules rφ for φ ranging in Γ(rL). If φ is a P-balanced

extension of r, the refined rule rφ has a balance vector in ZP , written ∆φ, where,

for each p ∈ P , ∆φ(p) is the difference in the number of copies of p produced

and consumed by any rφ-event.

An example of growth policy is the ground policy which assigns all possible

sites to all agents. In this case, Γ(g) is simply the set, possibly infinite, of all epis

of g into mixtures, considered up to ∼=g. The ground refinement Γ(r) contains

all refinements of r along those epis. The refined rules therefore manipulate

mixtures directly. It is easy to see that the ground refinement of r+12 in our

example is infinite, since r+12 can trigger the extension of a chain of any length.

A similar argument is true for r−12. Note that ground refinements of a rule r

are trivially P-balanced but, in general, the set of refined rules is impractically

large or infinite as above. Instead, the growth policy that we introduce in the

next section will always be finite.

2.3 Thermodynamic growth policy

An extension φ of a rule r is P-balanced if it generates a refined rule rφ

that is P-balanced. To find such extensions it seems natural to use minimal

glueings: take as extensions the right leg θi
2 of each relevant minimal glueing

θi
1 : p→ si ← rL : θi

2 of p ∈ P and rL (or rR). For instance, the only relevant

minimal glueing of the right-hand side of r+12 and the triangle is

r
l

l

r l

r
r l

l

r l

r
r l

φ?

(2.7)
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If we use φ — the embedding corresponding to φ? on the left-hand side — as

an extension of r+12 we obtain rule 2.4. Now, having found the only extension

of r+12 that produces a triangle, we are left with the problem of finding the

extensions that cover the cases when r+12 can be applied without producing

a triangle. Otherwise the decomposition would not be exhaustive; this is in

general the case when using minimal glueings as extensions.

Whenever one of the participating agents in r+12 has a free site in addition

to the two free sites that are bound by the rule, the formation of a triangle is

excluded. In rule 2.5 we added a free r site to the blue node. The following

extesion of r+12 adds a free l site to the orange node.

l
r

l l
r

l (2.8)

Both extensions are minimally P-balanced because any prefix of them that

is P-balanced is isomorphic to them as an extension of rL. We call minimally

P-balanced extensions primes. Prime extensions are epis since erasing an

untouched connected component in the codomain preserves balance. However,

primes may overlap as shown by the following rule applications and therefore

do not define in general a valid refinement.

r
l

r r
l

r
l

r
l l

r
l

l
r

l
r

l
r

l
r

l
r

l
r

l
r

l
r

It is thus apparent that an energy-based rule refinement has to proceed

cautiously to be exhaustive and mutually exclusive. This is where our growth

policy technique comes in handy to define such refinements. It divides the

problem in a much simpler group of problems: each extension φ must declare

the set of sites that it requires to be mature and P-balanced. Minimal glueings

play a guiding role here. They tell us whether an extension has successfully

avoided or absorbed completely an energy pattern.

In our example, we extend our rule r+12 step by step to see this idea in

action. First take no extension at all or, more precisely, take the identity arrow

as an extension. On the left-hand side there is only one minimal glueing, the

disjoint union, which, as it is always the case, is irrelevant. On the right-hand

side instead we have two minimal glueings: the disjoint union and the triangle
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itself, as in diagram 2.7. The latter is indeed relevant and informs us of which

sites are missing in the extension, namely the l site on the orange node and

the r site on the blue node. So we ask for both and set Γ1rR
(u) = {l,r} for all

u ∈ A|rR|. Now let us add one of them as a free site and ask again which sites

each agent requires. This extension, call it φ1, has codomain the left-hand side

of rule 2.8. The codomain of the corresponding extension φ?
1 on the right-hand

side does not glue relevantly with the triangle anymore. However, 1 is a prefix

of φ1 and hence, due to faithfulness, Γφ1 should ask for the same sites that

Γ1 does, i.e. Γφ1(u) = Γ1(u) for all agents u in the image of 1. So here again

caution must be exercised. The solution is to remember which sites have been

asked for in the past and to keep asking for them in future extensions.

Given contact graph C and r in G we define our growth policy Γ for rL as

follows. Suppose φ : rL→ g is an extension of rL. We set Γφ to request a site z

in σ−1
C (gA(u)) at agent u in A|g| iff either

(i) u = φA(u0) and z = φS(z0) for some u0 in A|rL| and z0 in S|rL|; or

(ii) φ factorises as φ2 φ1, where φ1 : rL→ g1, and there is a relevant minimal

glueing γ : p→ s← g1 : θ, with p in P , and some u1 in A|g1| and a site z1

in σ−1
|s| (θA(u1)) such that u = φ2,A(u1) and z = sS(z1); or

p

s

rL

g1u1∈

g 3 u

φ1

γ θ φ2

φ

(2.9)

(iii) z = gS(z2) for some z2 in S|g| such that z2E|g|z3 and gS(z3) in Γφ(u).

In words, clause (i) ensures that all sites in rL are asked for while clause (ii)

adds sites z in SC corresponding to sites z1 in S|s| which appear by glueing

with p at some point between rL and g. Clause (iii), on the other hand, asks

for sites that are bound to sites that are requested by the growth policy so

that extensions that avoid minimal glueings are not overgrown. We refer to

the extension φ2 : g1→ g as a rewind of φ and say that the request of z at u

originates from u1. By rewinding extensions we can remember which sites

have been asked for in the past.
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Symmetrically, we define a growth policy Γ? for rR by applying the same

definition to the inverse rule r†. Finally, we define our growth policy ΓP as the

union of both growth policies, that is, ΓPφ (u) = Γφ(u) ∪ Γ?
φ?(u).

According to this growth policy, the extension φ?
1 of the right-hand side of

r+12 in our example is immature (despite being P-balanced) since the following

rewind asks for a site that is missing in its image.

l

r l

r
r l

l

r l

r
r l

r
l

r
l

l
r

l

1

γ θ φ?
1

φ?
1

So we must add an r site to the blue node. There are two possibilities when

the site is added: it can be free or it can be bound. In particular, the contact

graph C tells us that an r site on a blue node can only be bound to an l site on

a green node. We obtain then two new extensions, with codomains:

l
r

l
r

and l
r

l
r

l

The first extension cannot possibly ask for any more sites. However, the second

extension, call it φ?
2 , may ask for the r site on the green node. If this is the case

there must be a rewind of φ?
2 which contains a pre-image of the green node

and glues relevantly with the triangle.

l

r l

r
r l

l

r l

r
r l

r
l

r
l

r
l

l
r

l
r

l

φ?
2

Therefore φ?
2 is immature as well. We must reveal the r site on the green

node and so we obtain



Chapter 2. The direct problem: From energy to rules 33

l
r

l
r

l
r ,

l
r

l
r

l
r

l and l

r l

r
r l

Finally, all extensions are mature. Note that the second extension has an l

site on the rightmost orange node which would not be asked by the growth

policy if it were not for clause (iii). In the absence of clause (iii) we would

have moved from an immature extension to an overgrown extension in just

one step, leaving us in a strange situation by allowing the growth policy to

define an empty refinement. Next we prove that the growth policy that we

have introduced in this section is in general well-defined and well-behaved.

Theorem 9. The above ΓP is indeed a growth policy for rL and the induced refined

family of rules ΓP (r) is exhaustive, non-empty, P-balanced, and finite.

Proof. We take the same notations as in diagram 2.9.

Growth policy: Clearly, ΓPφ1
(u1) ⊆ ΓPφ (u) as every request for a site in g1

will propagate to g by definition. To prove the other direction, we need to

verify that the requests generated by rewinds do not depend on the choice

of factorisation as ΓP (φ)(u) must be a subset of ΓP (φ1)(u1) for every φ1. So,

without loss of generality, assume there are two factorisations of φ given by

φ2 φ1 = φ = ψ2 ψ1 and consider a site request in u originating from some u2 in

g2, as in the following diagram.

rL

(u1,u2) ∈ g0

g1u1 ∈ g2 3 u2

u ∈ g

φ1 ψ1

φ2 ψ2

Consider g0 the pull-back of the two rewinds (i.e. the lower cospan). Because

φ1,A(u1) = ψ1,A(u2) = u the pullback must contain a pre-image for u1 and u2,

say (u1,u2). The relevant minimal glueing of p and g2 that makes the site

request restricts to another minimal glueing of p and g0. This new minimal

glueing is still relevant as it contains the same overlap with the original rL. As

such, the same site request is made by the pre-image agent (u1,u2) in g0 which

then propagates to u1 in g1 as required.
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Exhaustive: Take any embedding ψ of rL into a mixture m. We can restrict the

codomain of ψ to be the connected closure n of the image of ψ in m, resulting

in an epi ψn : rL → n. Let us further restrict n by removing (i) all sites not

requested by the growth policy and (ii) all agents that have no sites requested

by the growth policy. The result, call it g, has the same number of connected

components as rL since ΓS only requests sites which appear by glueing and are

thus (perhaps indirectly) connected to the sites that are modified by the rule.

We thus obtain an epi φ : rL→ g which is mature with respect to ΓP since, by

construction, its image contains all sites requested by ΓP and no other foreign

site. It is easy to see that φ factorises ψ.

Non-empty: Clause (i) guarantees that we request at least the sites in r which

implies that 1 is not overgrown. Due to clause (iii) there is always an extension

whose image contains exactly all sites requested by ΓS and lies between an

immature and an overgrown extension according to ≤. This extension is an

epi because, as pointed out for exhaustivity, ΓS only requests sites connected

to those modified by the rule.

P-balanced: If φ ∈ ΓP (r) is not P-balanced then there must be some relevant

minimal glueing inducing a further site request. Hence, φ cannot be mature.

Finite: A request for a site a at some node in an extension φ : rL → g, or

φ? : rR→ g, originates from a relevant minimal glueing of some p in P with a

prefix φ1 of φ. Because this glueing is relevant, it must be that a is at a distance

from the image of rL in the codomain of φ1 which is at most δ(p), the diameter

of p (else p would not intersect the image of rL). The same bound holds in the

codomain of φ, as distances can only contract by further extension. Therefore

any site requested in g has a distance to the image φ(rL) which is bounded

by maxp∈P δ(p). If φ is not overgrown, this sets a bound on the diameter of g.

Hence there are finitely many mature extensions. �

Therefore, given G and P , we obtain a finite P-balanced rule set GP ,

which refines G exhaustively, by taking the disjoint sum of the refined rules

GP = ∑r∈G ΓP (r). To every refinement rφ corresponds an inverse refinement

r†
φ? . Hence, GP = G†

P is closed under inversion like G.

An online tool to compute thermodynamic refinements can be found at

https://rhz.github.com/thesis/energy.html.

https://rhz.github.com/thesis/energy.html
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2.4 Rates and detailed balance

To equip GP with rates we define a rate map k : GP → R>0. We use the real-

valued vector of energy costs ε introduced at the beginning of this chapter

(page 17) together with the balance vector ∆φ of a refined rule rφ in GP
(page 29) to constrain the ratio between the forward and the backward rate:

ln k(r†
φ?)− ln k(rφ) = ε · ∆φ (2.10)

The pair of rules r,r† is biassed in the forward direction if kr(φ) > kr†(φ?)

and Eq. 2.10 tells us that this happens when ε ·∆φ < 0, i.e. whenever the energy

decreases as we go in that direction. This is the usual convention for energy

functions.

We show that the set of refined rules GP with any such rate map has

detailed balance. To simplify notation, we write P(m) for the P-indexed vector

which maps p to [p;m]. Using vector notation, the energy E(m) of a state m (as

defined in Eq. 2.1) can then simply be written as ε · P(m). Moreover, we write

LG(m) for the finite strongly connected component of m in LG and recall the

definition of a probability distribution πm on LG(m) from Eq. 1.3, which after

substituting E(m) reads

πm(x) =
e−ε·P(x)

∑y∈LG (m) e−ε·P(y) (2.11)

We can now prove the main theorem of this chapter.

Theorem 10. Let G, P , GP , k, and πm be defined as above; then (i) LGP and LG are

isomorphic as symmetric labelled transition systems; and (ii) for any mixture m, the

time-homogeneous continuous-time Markov chain Lk
GP has detailed balance for, and

converges to, πm on LGP (m).

Proof. Both LG and LGP offer transitions from a mixture m: the former are

labelled by pairs (r,ψ) with r in G and ψ in [rL;m] while the latter by pairs

(rφ,γ) with rφ the refinement of r along a mature extension φ : rL→ g and γ in

[g;m]. Steps in the latter can be mapped to steps in the former by transforming

labels as follows: (rφ,γ) 7→ (r,γ φ). By Th. 9, each event (r,ψ) is factored by

exactly one event (rφ,γ) and thus this correspondence is a bijection, which

establishes the first claim.
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Since we have multiple rules in LGP , each of which can be applied in several

ways, there can be more than one transition from m to the same n — each

uniquely described by a (rφ,γ) label. Each such (rφ,γ) has an inverse (r†
φ? ,γ?)

and we have a bijection between them and thus between transitions from m to

n and those from n to m due to Lemmas 3 and 7.

Consider a pair t, t† of such corresponding events due to rφ and r†
φ? . Because

t is a transition from m to n and φ is P-balanced, we have P(n) = P(m) + ∆φ

and hence ε · ∆φ = ε · (P(n)−P(m)). So, by Eq. 2.10, the rates of t, t† are such

that:

k(t†) e−ε·P(n) = k(t) e−ε·P(m)

and by summing this equation over all pairs, we obtain detailed balance for

the probability local to the component LGP (m) = LGP (n), defined above as

πm = πn, since:

qnm e−ε·P(n) = qmn e−ε·P(m)

The convergence statement then follows from Lemma 2 applied to the finite

irreducible continuous-time Markov chain Lk
GP (m) that is obtained by cropping

all states not in LGP (m). �

Note that the subset of the state space which is reachable from m in LG ,

namely LG(m), is finite. Hence, the partition function Z(m) := ∑y∈LG (m) e−E(y)

which figures in the denominator of πm is also finite. In the presence of rules

which increase the number of agents, the components LG(m) can be infinite

and Z(m) may diverge. For mass action stochastic Petri nets (§1.1), convergence

is guaranteed if detailed balance holds, but it is not true in general for Kappa

(Danos and Oury, 2010, 2013).

Another point worth making is that the result holds symbolically regardless

of the energy costs ε. Therefore ε can be seen as a set of parameters. This is

an ideal support for machine learning techniques if one were contemplating

fitting a model to data.

2.5 Linear kinetic model

The theorem in the previous section holds for any rate map that agrees with

Eq. 2.10. In this section, we show how to obtain a concrete rate k(rφ) for each

refined rule rφ in GP . To simplify the task, we pick rates from a tractable subset
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of all possible choices by performing a log-affine expansion on the so-called

«thermodynamic drive» ∆E = ε · ∆φ. The expansion uses, for each generator

rule r in G, a constant cr ∈ R and a real-valued matrix Ar of dimension

|P| × |P|. Then we assign rates according to the following equality

ln k(rφ) = cr − Ar ε · ∆φ (2.12)

subject to the following constraints

cr = cr†

Ar + Ar† = I

with I the |P| × |P| identity matrix. We verify that k satisfies Eq. 2.10 by

substracting ln k(r†
φ?) and ln k(rφ), giving us

ln k(r†
φ?)− ln k(rφ) = (cr† − Ar† ε · ∆φ?)− (cr − Ar ε · ∆φ)

We have ∆φ? = −∆φ by reversibility of rules and so

ln k(r†
φ?)− ln k(rφ) = cr† − cr + Ar ε · ∆φ + Ar† ε · ∆φ

= (Ar + Ar†)ε · ∆φ

= I ε · ∆φ = ε · ∆φ

The kinetic model of Eq. 2.12 requires |P|2 × |G| + |G| parameters: one

Ar,pq for each generator rule r ∈ G and pair p,q ∈ P2, plus one cr for each

r ∈ G. In practice one needs even fewer parameters as only those energy

patterns that are relevant to a given generator rule r, i.e. those that have a

non-zero balance for at least one rule in ΓP (r), need to be considered when

building Ar. Typically, for larger models, this will be a far smaller number

than |P|. This relative parsimony is compounded by the fact that the number

of independent parameters will be often lower because the ∆φ family often

has low rank, meaning that, for a set of extensions φ, the balance vectors ∆φ

can be determined as a linear combination of a smaller basis set. By way of

comparison, if we were to assign kinetic rates to each refined rule, we would

need ∑r∈G |ΓP (r)| parameters.

We find two special cases for the kinetic model presented here that seem

appealing as a first choice for parameterisation. First, by setting cr = cr† = 0,

Ar = I and Ar† = 0, we get k(rφ) = e−ε·∆φ and k(r†
φ?) = 1. Whenever r† is
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the thermodynamically favoured direction (and we can always choose it so),

this choice amounts to being exponentially reluctant to climb up the energy

gradient. In this way, this choice can be thought of as continuous-time version

of the Metropolis algorithm introduced in §1.1.

The second special case, on the other hand, is completely symmetric and

can be obtained by fixing Ar = Ar† = I/2 and Cr = e cr :

k(rφ) = Cr e−ε·∆φ/2

k(r†
φ?) = Cr e ε·∆φ/2

(2.13)

Note the similarity of Eq. 2.13 to the Arrhenius equation.

k = A e−Ea

where Ea is the activation energy of the reaction (expressed in units of 1/kBT

as in Eq. 1.3) and A is a pre-exponential factor that defines the rate at which

the molecules involved in the reaction collide in the correct orientation for the

reaction to occur. Eq. 2.13 is a special case of the Arrhenius equation when

we equate A = Cr and Ea = ε · ∆φ/2. The first equality is therefore interpreted

as an assumption that the rate of molecules colliding in the right orientation

depends only on the molecular motifs present in the left-hand side of the

generator rule r (i.e. not on the context revealed by the refined rule). Albeit

an approximation, it might prove useful whenever the generator rules specify

enough context to determine, for instance, the accessibility of the reaction

centre. Another possible approach would be to compute A based on properties

of the refinement, e.g. how big the surrounding molecular complex is.

The second equality, Ea = ε ·∆φ/2, tells us that the energetic barrier between

the reactants and the products is determined only based on the energy patterns

that are destroyed and created by the refined rule and their energy cost. Since

the activation energy is allowed to depend on the context revealed by the

refined rule, this assumption imposes a softer constrain than the previous one.

2.6 Example: Triangles all the way down

In this section we will complete and conclude the example on the thermody-

namical control of the formation of triangles that we have used throughout this

chapter. Additionally we present the model in the format used by the Kappa
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simulator, KaSim version 4.0 (Boutillier et al., 2014), and run a few simulations

to get an idea of how the model behaves. We use the symmetric linear kinetic

model of Eq. 2.13 with cr = 0 to derive the rates and add three more energy

patterns (in addition to the triangle) to demonstrate how they interact in the

expansion of the rates. In particular, we add one energy pattern for each type

of edge, that is, for contact maps

r
l

, r
l and

r
l

.

The analysis on §2.3 unveiled five refinements for rule r+12 (Eq. 2.2) which

we enumerate below.
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The four subcases that do not create a triangle have ∆E = ε ·∆φ = ε(d12) where

d12 is the dimer of an agent of type 1 and an agent of type 2. Hence, their

rate under the symmetric linear kinetic model with cr = 0 would be e−ε(d12)/2.

On the other hand, the fourth refined rule creates a triangle and thus its

∆E = ε ·∆φ = ε(d12) + ε(t) where ε(t) is the energy cost of the triangle. Its rate

then is e−(ε(d12)+ε(t))/2. The inverse generator rule r−12 produces as refinements

the inverse of the five subrules enumerated above. The other generator rules

follow a similar pattern of refinement.

Now we present the KaSim model. The rules of the model have been

manually compressed to take advantage of KaSim’s extended syntax (e.g.

binding types). Note also that by using KaSim’s variables we can define the

rates parametrically, allowing us to easily try out different values for the energy

costs.

https://github.com/Kappa-Dev/KaSim
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1 # Agent declarations

2 %agent: A(l,r)

3 %agent: B(l,r)

4 %agent: C(l,r)

5

6 # Energy costs

7 %var: 't' -10

8 %var: 'ab' 1

9 %var: 'bc' 1

10 %var: 'ca' 1

11

12 # Observable

13 %obs: 'T' |A(l!1, r!2), B(l!2, r!3), C(l!3, r!1)|

14

15 # Rules

16 # A(r), B(l) -> A(r!1), B(l!1) refines into:

17 A(l,r), B(l,r) -> A(l,r!1), B(l!1,r) @ [exp] (-1/2 * 'ab')

18 A(l!r.C,r), B(l,r) -> A(l!r.C,r!1), B(l!1,r) @ [exp] (-1/2 * 'ab')

19 A(l,r), B(l,r!l.C) -> A(l,r!1), B(l!1,r!l.C) @ [exp] (-1/2 * 'ab')

20 A(l!1,r ), B(l ,r!3), C(l!3,r!1) -> \

21 A(l!1,r!2), B(l!2,r!3), C(l!3,r!1) @ [exp] (-1/2 * ('ab' + 't'))

22 C(r!1), A(l!1,r ), B(l ,r!3), C(l!3) -> \

23 C(r!1), A(l!1,r!2), B(l!2,r!3), C(l!3) @ [exp] (-1/2 * 'ab')

24

25 # A(r!1), B(l!1) -> A(r), B(l) refines into:

26 A(l,r!1), B(l!1,r) -> A(l,r), B(l,r) @ [exp] -(-1/2 * 'ab')

27 A(l!r.C,r!1), B(l!1,r) -> A(l!r.C,r), B(l,r) @ [exp] -(-1/2 * 'ab')

28 A(l,r!1), B(l!1,r!l.C) -> A(l,r), B(l,r!l.C) @ [exp] -(-1/2 * 'ab')

29 A(l!1,r!2), B(l!2,r!3), C(l!3,r!1) -> \

30 A(l!1,r ), B(l ,r!3), C(l!3,r!1) @ [exp] -(-1/2 * ('ab' + 't'))

31 C(r!1), A(l!1,r!2), B(l!2,r!3), C(l!3) -> \

32 C(r!1), A(l!1,r ), B(l ,r!3), C(l!3) @ [exp] -(-1/2 * 'ab')

33

34 # B(r), C(l) -> B(r!1), C(l!1) refines into:

35 B(l,r), C(l,r) -> B(l,r!1), C(l!1,r) @ [exp] (-1/2 * 'bc')

36 B(l!r.A,r), C(l,r) -> B(l!r.A,r!1), C(l!1,r) @ [exp] (-1/2 * 'bc')

37 B(l,r), C(l,r!l.A) -> B(l,r!1), C(l!1,r!l.A) @ [exp] (-1/2 * 'bc')

38 B(l!1,r ), C(l ,r!3), A(l!3,r!1) -> \

39 B(l!1,r!2), C(l!2,r!3), A(l!3,r!1) @ [exp] (-1/2 * ('bc' + 't'))

40 A(r!1), B(l!1,r ), C(l ,r!3), A(l!3) -> \

41 A(r!1), B(l!1,r!2), C(l!2,r!3), A(l!3) @ [exp] (-1/2 * 'bc')

42
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43 # B(r!1), C(l!1) -> B(r), C(l) refines into:

44 B(l,r!1), C(l!1,r) -> B(l,r), C(l,r) @ [exp] -(-1/2 * 'bc')

45 B(l!r.A,r!1), C(l!1,r) -> B(l!r.A,r), C(l,r) @ [exp] -(-1/2 * 'bc')

46 B(l,r!1), C(l!1,r!l.A) -> B(l,r), C(l,r!l.A) @ [exp] -(-1/2 * 'bc')

47 B(l!1,r!2), C(l!2,r!3), A(l!3,r!1) -> \

48 B(l!1,r ), C(l ,r!3), A(l!3,r!1) @ [exp] -(-1/2 * ('bc' + 't'))

49 A(r!1), B(l!1,r!2), C(l!2,r!3), A(l!3) -> \

50 A(r!1), B(l!1,r ), C(l ,r!3), A(l!3) @ [exp] -(-1/2 * 'bc')

51

52 # C(r), A(l) -> C(r!1), A(l!1) refines into:

53 C(l,r), A(l,r) -> C(l,r!1), A(l!1,r) @ [exp] (-1/2 * 'ca')

54 C(l!r.B,r), A(l,r) -> C(l!r.B,r!1), A(l!1,r) @ [exp] (-1/2 * 'ca')

55 C(l,r), A(l,r!l.B) -> C(l,r!1), A(l!1,r!l.B) @ [exp] (-1/2 * 'ca')

56 C(l!1,r ), A(l ,r!3), B(l!3,r!1) -> \

57 C(l!1,r!2), A(l!2,r!3), B(l!3,r!1) @ [exp] (-1/2 * ('ca' + 't'))

58 B(r!1), C(l!1,r ), A(l ,r!3), B(l!3) -> \

59 B(r!1), C(l!1,r!2), A(l!2,r!3), B(l!3) @ [exp] (-1/2 * 'ca')

60

61 # C(r!1), A(l!1) -> C(r), A(l) refines into:

62 C(l,r!1), A(l!1,r) -> C(l,r), A(l,r) @ [exp] -(-1/2 * 'ca')

63 C(l!r.B,r!1), A(l!1,r) -> C(l!r.B,r), A(l,r) @ [exp] -(-1/2 * 'ca')

64 C(l,r!1), A(l!1,r!l.B) -> C(l,r), A(l,r!l.B) @ [exp] -(-1/2 * 'ca')

65 C(l!1,r!2), A(l!2,r!3), B(l!3,r!1) -> \

66 C(l!1,r ), A(l ,r!3), B(l!3,r!1) @ [exp] -(-1/2 * ('ca' + 't'))

67 B(r!1), C(l!1,r!2), A(l!2,r!3), B(l!3) -> \

68 B(r!1), C(l!1,r ), A(l ,r!3), B(l!3) @ [exp] -(-1/2 * 'ca')

69

70 # Initial mixture

71 %init: 1000 (A(), B(), C())

The above KaSim model uses ε(d12) = ε(d23) = ε(d31) = 1 and ε(t) = −10.

Below we will change this values to see how the production of triangles is

affected by them. We have set the initial mixture to contain 1000 copies of each

type of agent. To run a simulation for 50 time units and take measurements

(i.e. count the number of triangles in the mixture) every 0.1 time units, we

issue the following command

$ KaSim t.ka -o t-10.tsv -d t-10 -l 50 -p 0.1

The input file is t.ka and the measurements are saved in the t-10.tsv in the

t-10 folder. The resulting plots are displayed in Fig. 2.1.
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Figure 2.1: Trajectories for the number of triangles when ε(t) varies. In the plot above

the energy cost of the dimers is 0 whereas in the plot below they are set to 1.
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First, we notice that the moderate energy penalty we impose on dimers in

the second plot does not change much the number of triangles at equilibrium.

It does, however, have an impact on the speed at which the triangles form.

This effect is perhaps counter-intuitive.

Second, notice that when ε(t) = −10 all agents are used to build triangles.

In contrast, when ε(t) = −5 less than 20% of the agents of each type are used.

In both cases the set of states with a globally minimum energy is the same,

namely those states that maximise the amount of triangles. So then why is

it that in the latter case there are so few triangles? The reason is entropic:

although the probability of being in a state with few triangles is small, there

are many such states and together they outweigh the probability of being in

the few states were the energy is minimal. By further decreasing the energy of

those few states we compensate for this mass effect, until at ε(t) = −10, order

wins, and the effect is not noticeable anymore.

2.7 Example: Flagellum’s engine

In this section we present another model. This model is inspired in a classical

object of study in molecular biology: the bacterial flagellar engine. The flagel-

lar engine can rotate clockwise or anti-clockwise at high angular velocities.

When it rotates clockwise the filaments of the flagellum move chaotically in

all directions, making the bacterium tumble and thus randomly change the

axis of its body and engine. When it rotates anti-clockwise the filaments of the

flagellum align and move synchronously, propulsing the bacterium in the dir-

ection the engine is pointing to. In the latter regime the bacterium thus swims

forward. When the bacterium detects that the levels of food are decreasing or

the amount of poisonous substances is increasing, it tumbles to change the

direction in which its swimming. In this way it implements a basic chemotactic

system.

A simple model of the switch between the two modes has been proposed

by Bai et al. (2010). In this model the engine is seen as a ring of n identical

components, called protomers or P for short, with two possible conformations,

0 and 1. Here we take n = 34 for simulations and diagrams but the analysis

does not depend on the specific value of n. A ring homogeneously in state 0 (1)

rotates (anti-)clockwise and induces tumbling (straight motion). Importantly,
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Figure 2.2: Ring of protomers with some Ys bound. Since only a few Ys are bound to

the ring, the majority of protomers is likely to be in state 0 (visually represented as grey

nodes) and a minority in state 1 (green).

neighbouring Ps on the ring prefer to have matching conformations. States of

the ring with many mismatches thus incur high penalties. A small diffusible

protein named CheY, which we call Y for short, binds P when it is activated.

When Y is binding P, P favours state 1. Conversely, in the absence of a Y

molecule binding P, P favours state 0. CheY, in turn, is activated by the system

of chemoreceptors in the presence of food and abscence of poisions.4 The

configuration of the chemoreceptor cluster and its activity have also been

modelled thermodynamically (Lan et al., 2011).

As each of the Ps can be in four states, a ring of size 34 has on the order of

1018 non-isomorphic configurations. This precludes a Petri net approach to the

dynamics where each state of the whole ring is considered as one chemical

species. We thus use the rule-based approach pioneered in Kappa that allows

us to specify events based only on a partial and local context around each

protomer and derive the set of rules by applying the method of §2.3.

4 Here we assume that every Y is an activated CheY.
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We define the contact graph of the model as

PP
a b

c

d

Y

where P has 4 sites a,b, c,d. The first two form the backbone of the ring while c

can bind Ys. Site d encodes the conformation state of P: we say P is in state 0

when site d is bound to an A agent and is in state 1 when bound to a B agent

(A and B agents are not displayed in the contact graph above). We will never

mention this site (nor A and B agents) explicitly but instead will colour the

agent of type P accordingly.5 Also, we will draw sites a,b, c always on the left,

right and top of P, respectively, and thus forgo annotating the name of the site.

The informal statements about the favoured states of P in the different

configurations discussed above are captured in the definition of the energy

patterns and associated energy costs. Note that the various patterns overlap.

Pε0 :=

Pε1 :=

P Pε00 :=

P Pε11 :=

P Pε10 :=

P Pε01 := P

Y
εY

0 :=
P

Y
εY

1 :=

We abuse notation by referring to both the pattern and its energy cost as εij.

The following constraints are imposed on the energy costs:

ε00,ε11 < ε10,ε01 (2.14)

ε0 < ε1 (2.15)

εY
0 > εY

1 (2.16)

These inequalities enact the considerations in the discussion above. The role of

Eq. 2.14 is to align the states of neighbours on the ring — essentially an Ising

term which spreads conformation. Eq. 2.15 makes 0 the favoured state, while

Eq. 2.16 inverts the situation in the presence of Y.
5 The naïve encoding where i) A and B have a free site that can bind site d of P, ii) whenever

P changes from state 0 to state 1 we detach an A from P and attach a B to it, and thus iii) we
have a pool of free As and Bs in the mixture, will have a problem with kinetics due to mass
action: when we attach a B to P we make it less likely for the next P to bind a B since there
are less Bs free in the mixture. To solve this issue every P is either bound to an A that is in
turn bound to a B or a B that is bound to an A. Whenever we want to change state we only
need to exchange the order of the A and B.
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Following §2.4 we associate to each ring configuration x the occurrence

vector P(x) and total energy ε · P(x). For example, a ring of size n uniformly

in state 0 with no bound Ys has total energy n(ε00 + ε0).

The next step is to define the set of generator rules G. The first pair of rules

that we include in this set are r+Y the binding of P and Y and its inverse r−Y .

P

Y

P

Y

An uncoloured P means it can bind a Y regardless of the state it is in. The nature

of the method presented in §2.3 allows us to refine each rule individually, so

we proceed to refine r+Y ,r−Y immediately. We first give the rationale for the

refinements informally. The pair of rules has an ambiguous energy balance

because applying the forward rule r+Y to a P in state 0 will create an εY
0 pattern

while applying it to a P in state 1 will create an εY
1 pattern. Hence, we cannot

assign rates to these rules that satisfy detailed balance — unless εY
0 = εY

1 , which

contradicts Eq. 2.16. To get P-balanced rules one needs to refine r+Y ,r−Y into

P

Y

P

Y

P

Y

P

Y
and

We call the refined rules r+Y0,r−Y0 and r+Y1,r−Y1. Each rule r+Yi (i ∈ {0,1}) specifies

enough of the context in which it applies to have a definite energy balance

∆E = εY
i . The second pair of rules in G flip the state of P:

P P

This pair of rules generates many more refinements as changing the state of

P will create and destroy matches ε00,ε11 and mismatches ε10,ε01 between

P and its neighbours in the ring. The refinements must then reveal a larger

context that includes at least the neighbourhood of P and therefore account

for all combinations of neighbours’ states. Since the state of the neighbours

is not changed when the rule is applied, we do not need to reveal the state

of the neighbours’ neighbours, which saves us from an infinite recursion of
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revelations.6 We must also know whether the P that is subject to the action of

the rule is bound to a Y as when it is patterns εY
0 and εY

1 would be consumed

and produced. Hence, the refinements of this second pair of rules are

P P P P P P
∆E = ε1 − ε0

+ ε11 − ε00

P P P P P P
∆E = ε1 − ε0

+ ε11 − ε00

P P P P P P
∆E = ε1 − ε0

+ ε01 + ε10 − 2ε00

P P P P P P
∆E = ε1 − ε0

+ 2ε11 − ε10 − ε01

P P P

Y

P P P

Y ∆E = ε1 − ε0

+ ε11 − ε00

+ εY
1 − εY

0

P P P

Y

P P P

Y ∆E = ε1 − ε0

+ ε11 − ε00

+ εY
1 − εY

0

P P P

Y

P P P

Y ∆E = ε1 − ε0

+ ε01 + ε10 − 2ε00

+ εY
1 − εY

0

P P P

Y

P P P

Y ∆E = ε1 − ε0

+ 2ε11 − ε10 − ε01

+ εY
1 − εY

0

6 Indeed Th. 9 guarantees that such infinite recursions never occur.
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Figure 2.3: The simulation steps up the amount of Y (green curve) at t = 100 and down

again at t = 200. This sends the vast majority of the ring into state 1 (orange curve) and

then back to state 0 (blue curve). The number of mismatches (purple curve) stays low

even during transitions. The parameters for the simulation are ε0 = ε00 = ε11 = −1,

ε1 = ε01 = ε10 = 1, εY
0 = 2 and εY

1 = −2.

In general, if we write i for the state of the left neighbour and j for that of

the right neighbour, we have that the energy balance for the first 4 refinements

is εi1 + ε1j− εi0− ε0j + ε1− ε0 and for the last 4 is εi1 + ε1j− εi0− ε0j + ε1− ε0 +

εY
1 − εY

0 . As there are 10 pairs of refined rules in total (2 + 8) and only 8 energy

patterns, there must be linear dependencies between the various balances.

Indeed, the family of vector balances has rank six given by basis vectors εY
1 ,

εY
0 , ε00, ε11, ε01 + ε10 and ε1 − ε0. This example portrays how thermodynamic

consistency (i.e. detailed balance) induces relationships between the rates of

the refined rules.

It is important to note that the refined rules shown above are those that

assume the Ps lie on a ring and the ring is fixed, i.e. it does not break. This is

true in our model as long as no rule able to form or break bonds between the Ps

is included in the generator rules and we make sure the initial mixture contains
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Figure 2.4: Snapshots of the ring configuration taken at times 50, 150, and 250. At 50

and 250 no Y is bound (because they have not been yet injected into the system or

already removed) and the ring is globally in state 0, up to tiny fluctuations. At time 150, it

is globally in state 1 as a consequence of the binding of Ys.

no open P-chains. The method of §2.3, which makes no such assumptions,

generates many more rules as it takes into account the cases where, for instance,

the P that changes state is an end of the chain of protomers.

The final step is to choose concrete rates for our refined rules. We do so

by using the symmetric linear kinetic model of Eq. 2.13. In Fig. 2.3 one can

see the result of a simulation when Y is stepped up and down again. The

model behaves as the one-dimensional cyclic Ising model where the role of the

magnetic field is played by Y. Fig. 2.4 shows the state of the simulation before,

during and after the injection of Ys. The simulations were run using KaSim

with the following model file.

1 # agent signatures

2 %agent: P(a,b,c,d~0~1)

3 %agent: Y(p)

4

5 # energy costs

6 %var: '0' -1

7 %var: '1' 1

8 %var: 'Y1' -2

9 %var: 'Y0' 2

10 %var: '00' -1

11 %var: '11' -1

12 %var: '01' 1

13 %var: '10' 1

14

https://github.com/Kappa-Dev/KaSim
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15 # 2 reversible binding rules

16 'bind 0' P(d~0,c), Y(p) -> P(d~0,c!1), Y(p!1) \

17 @ [exp] (-1/2 * 'Y0')

18 'unbind 0' P(d~0,c!1), Y(p!1) -> P(d~0,c), Y(p) \

19 @ [exp] ( 1/2 * 'Y0')

20

21 'bind 1' P(d~1,c), Y(p) -> P(d~1,c!1), Y(p!1) \

22 @ [exp] (-1/2 * 'Y1')

23 'unbind 1' P(d~1,c!1), Y(p!1) -> P(d~1,c), Y(p) \

24 @ [exp] ( 1/2 * 'Y1')

25

26 # 8 reversible flipping rules

27 'flip 000' P(d~0,b!1), P(a!1,d~0,b!2,c), P(a!2,d~0) -> \

28 P(d~0,b!1), P(a!1,d~1,b!2,c), P(a!2,d~0) \

29 @ [exp] (-1/2 * ('1' - '0' + '01' + '10' - 2 * '00'))

30 'flip 010' P(d~0,b!1), P(a!1,d~1,b!2,c), P(a!2,d~0) -> \

31 P(d~0,b!1), P(a!1,d~0,b!2,c), P(a!2,d~0) \

32 @ [exp] ( 1/2 * ('1' - '0' + '01' + '10' - 2 * '00'))

33

34 'flip 100' P(d~1,b!1), P(a!1,d~0,b!2,c), P(a!2,d~0) -> \

35 P(d~1,b!1), P(a!1,d~1,b!2,c), P(a!2,d~0) \

36 @ [exp] (-1/2 * ('1' - '0' + '11' - '00'))

37 'flip 110' P(d~1,b!1), P(a!1,d~1,b!2,c), P(a!2,d~0) -> \

38 P(d~1,b!1), P(a!1,d~0,b!2,c), P(a!2,d~0) \

39 @ [exp] ( 1/2 * ('1' - '0' + '11' - '00'))

40

41 'flip 001' P(d~0,b!1), P(a!1,d~0,b!2,c), P(a!2,d~1) -> \

42 P(d~0,b!1), P(a!1,d~1,b!2,c), P(a!2,d~1) \

43 @ [exp] (-1/2 * ('1' - '0' + '11' - '00'))

44 'flip 011' P(d~0,b!1), P(a!1,d~1,b!2,c), P(a!2,d~1) -> \

45 P(d~0,b!1), P(a!1,d~0,b!2,c), P(a!2,d~1) \

46 @ [exp] ( 1/2 * ('1' - '0' + '11' - '00'))

47

48 'flip 101' P(d~1,b!1), P(a!1,d~0,b!2,c), P(a!2,d~1) -> \

49 P(d~1,b!1), P(a!1,d~1,b!2,c), P(a!2,d~1) \

50 @ [exp] (-1/2 * ('1' - '0' + 2 * '11' - '10' - '01'))

51 'flip 111' P(d~1,b!1), P(a!1,d~1,b!2,c), P(a!2,d~1) -> \

52 P(d~1,b!1), P(a!1,d~0,b!2,c), P(a!2,d~1) \

53 @ [exp] ( 1/2 * ('1' - '0' + 2 * '11' - '10' - '01'))

54

55 'flip 000 Y' P(d~0,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~0) -> \

56 P(d~0,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~0) \
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57 @ [exp] (-1/2 * ('1' - '0' + '01' + '10' - 2 * '00' \

58 + 'Y1' - 'Y0'))

59 'flip 010 Y' P(d~0,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~0) -> \

60 P(d~0,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~0) \

61 @ [exp] ( 1/2 * ('1' - '0' + '01' + '10' - 2 * '00' \

62 + 'Y1' - 'Y0'))

63

64 'flip 100 Y' P(d~1,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~0) -> \

65 P(d~1,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~0) \

66 @ [exp] (-1/2 * ('1' - '0' + '11' - '00' \

67 + 'Y1' - 'Y0'))

68 'flip 110 Y' P(d~1,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~0) -> \

69 P(d~1,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~0) \

70 @ [exp] ( 1/2 * ('1' - '0' + '11' - '00' \

71 + 'Y1' - 'Y0'))

72

73 'flip 001 Y' P(d~0,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~1) -> \

74 P(d~0,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~1) \

75 @ [exp] (-1/2 * ('1' - '0' + '11' - '00' \

76 + 'Y1' - 'Y0'))

77 'flip 011 Y' P(d~0,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~1) -> \

78 P(d~0,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~1) \

79 @ [exp] ( 1/2 * ('1' - '0' + '11' - '00' \

80 + 'Y1' - 'Y0'))

81

82 'flip 101 Y' P(d~1,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~1) -> \

83 P(d~1,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~1) \

84 @ [exp] (-1/2 * ('1' - '0' + 2 * '11' - '10' - '01' \

85 + 'Y1' - 'Y0'))

86 'flip 111 Y' P(d~1,b!1), P(a!1,d~1,b!2,c!_), P(a!2,d~1) -> \

87 P(d~1,b!1), P(a!1,d~0,b!2,c!_), P(a!2,d~1) \

88 @ [exp] ( 1/2 * ('1' - '0' + 2 * '11' - '10' - '01' \

89 + 'Y1' - 'Y0'))

90

91 # P ring

92 %init: 1 (P(a!0 , b!1 ), P(a!1 , b!2 ), P(a!2 , b!3 ), \

93 P(a!3 , b!4 ), P(a!4 , b!5 ), P(a!5 , b!6 ), \

94 P(a!6 , b!7 ), P(a!7 , b!8 ), P(a!8 , b!9 ), \

95 P(a!9 , b!10), P(a!10, b!11), P(a!11, b!12), \

96 P(a!12, b!13), P(a!13, b!14), P(a!14, b!15), \

97 P(a!15, b!16), P(a!16, b!17), P(a!17, b!18), \

98 P(a!18, b!19), P(a!19, b!20), P(a!20, b!21), \
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99 P(a!21, b!22), P(a!22, b!23), P(a!23, b!24), \

100 P(a!24, b!25), P(a!25, b!26), P(a!26, b!27), \

101 P(a!27, b!28), P(a!28, b!29), P(a!29, b!30), \

102 P(a!30, b!31), P(a!31, b!32), P(a!32, b!33), P(a!33, b!0))

103

104 # observables

105 %obs: 'P01' |P(d~0,b!1), P(a!1,d~1)| # 'P10' = 'P01'

106 %obs: 'Y' |Y()|

107 %obs: 'P0' |P(d~0)|

108 %obs: 'P1' |P(d~1)|

109

110 # injection and removal of Ys

111 %var: 'nY' 34

112 %mod: [T] > 100 do $ADD 'nY' Y()

113 %mod: [T] > 200 do $DEL 'nY' Y()

114

115 # snapshots

116 %mod: [T] > 50 do $SNAPSHOT "t50"

117 %mod: [T] > 150 do $SNAPSHOT "t150"

118 %mod: [T] > 250 do $SNAPSHOT "t250"

Now we briefly show how the growth policy of §2.3 generates the re-

finements introduced informally above. First, consider the extensions of the

binding rule: only patterns εY
i can glue relevantly on it, so the corresponding

(unique) site request is for P to reveal its site c and its state (i.e. site d). This

gives us the two refinements presented earlier.

Regarding the more interesting extensions of the flipping rule we see that:

(i) Patterns εi glue relevantly but do not generate any site request.

(ii) Patterns εY
i asks P to reveal its site c, resulting in two possible extensions:

one in which P is bound to a Y and one in which it is free.

(iii) Patterns εij can be glued on both sides of P, inducing a request to reveal

sites a and b. This results in four possible extensions: a free or bound to

a P and the similarly for b.

(iv) Once a neighbour P has been revealed, patterns εij induce a further site

request, this time on the neighbour P, to reveal its state.
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2.8 Non-linear energy functions

At the beginning of this chapter, we made the key assumption in Eq. 2.1 that

the energy function is linear in the cost and number of occurrences of energy

patterns. Here we consider a more general situation in which the energy

function E is no longer asked to be linear. Instead we assume the much weaker

property that E can be factored as v ◦ P(_), where P(_) is the function that

counts the number of occurrences of energy patterns in some finite set P . That

is, the energy function is computed by an arbitrary function v on the number

of occurrences of energy patterns, not the graph itself. Schematically we have

rSGeC
P(_)−−−→ NP v−→ R, (2.17)

We can reconstruct Eq. 2.1 by using the linear function v(x) = ε · x. As an

example of a non-linear energy function, consider the contact graph

a b

and a pair of generator rules r+,r− that create/delete the unique edge type.

The successive application of these rules can form chains and cycles of arbitrary

length. Let us write c3 for a cycle of length 3 (a triangle) and t3 for an open

chain with 3 nodes. We define a quadratic energy function E(m) = | [c3;m] |2. In

terms of diagram 2.17, we factor E using P = {c3} and v(x) = x(c3)
2. Applying

r+ to t3 in a mixture m will create a new copy of c3 and give the following

energy balance:

∆E = (| [c3;m] |+ 1)2 − (| [c3;m] |)2 = 2| [c3;m] |+ 1 (2.18)

Note that the refinement r+φ of r+ that extends the left-hand side of r+ into t3 is

P-balanced. As we have seen at the end of §2.2, whenever a rule is P-balance

the P-vector ∆φ associated to r+φ — where each component ∆φ(p) is defined as

the difference | [p;n] | − | [p;m] | for an r+φ -transition from m to n — is the same

for all m,n. In the example ∆φ has only one component, ∆φ(c3) = 1. Despite

being P-balanced and having a constant ∆φ, Eq. 2.18 shows us that its ∆E is

not constant and so detailed balance forces the log-ratio of the backward and

forward rates of an edge creation, ln(k(r−φ?)/k(r+φ )), to depend on m. This is

unlike the case of linear energy functions examined before where the log-ratio

is independent of m.
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More generally, whenever the refined rule rφ is P-balanced one can visualise

the situation as follows.

m n

P(m) P(n)

R R

rφ

+∆φ

+∆E

P P

v v

In this setting, detailed balance amounts to asking for

Kr := ln
k(r†

φ?)

k(rφ)
= v(P(m) + ∆φ)− v(P(m)) (2.19)

If v happens to be linear then this is the usual condition Kr = v(∆φ). If v is not

linear, detailed balance does not seem very helpful as a priori one has to know

m to compute the right-hand side. However, since ∆φ only depends on rφ, we

see that Kr factors through P(_) just like E and thus does not depend on a

full knowledge of m, but only on P(m). In the example, Kr = 2| [c3; x] |+ 1 and

ψr(x) = 2 x(c3) + 1. This is good enough to define rates for rφ. For example, by

analogy with the linear kinetic model of §2.5, we can choose log-rates (seen as

real-valued functions on NP ) as follows:

ln k(rφ) = αr − βrwφ (2.20)

with wφ(x) = v(x + ∆φ)− v(x) and αr, βr real-valued functions on NP such

that αr† = αr and βr† + βr = 1. This assignment solves the constraint imposed

by Eq. 2.19 as wφ? + wφ = 0.

From the simulation point of view, this added generality requires two

things: (i) that rates can be made to depend explicitly on observables; (ii)

that the internal state of the simulation be extended to incorporate P(m).

Both possibilities are already generically available in the current version of

KaSim. A modification of the engine could obtain direct updates to P(m) as,

by assumption, applying rφ leads to a constant +∆φ update; and the same

holds for propagating these updates to the rates of the rules which depend

on them, e.g. as in Eq. 2.20. Thus, the complexity properties of the simulation

algorithm established by Danos, Feret et al. (2007) would be preserved.

https://github.com/Kappa-Dev/KaSim
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We have explained how we can deal with non-linear energy functions

that depend on local energy patterns. An interesting extension would be

to deal with non-local forms of energies expressing long-range interactions,

where the energy is a function of the graph itself. Non-local energy functions,

however, would generate many more refined rules, making the simulation of

such systems unfeasible unless the simulation algorithm is improved, e.g. by

partitioning rules according to energy balances for faster selection. Interesting

examples of non-local energy functions include electrostatic interactions like

shielded potentials (Kiselev, Marenduzzo and Goryachev, 2011).



Chapter 3

The inverse problem

From rules to energy

In this chapter we would like to explore restricted versions of Kappa for which

it is possible to infer the energy function from the rewriting rules and their

associated rates. Recall from the introduction that in Kappa itself this problem

is undecidable (Danos and Oury, 2010). One such restriction is when agents do

not have sites and thus cannot bind. This is Petri nets. We briefly present here

the result obtained by Danos and Oury (2013) and show the construction of the

energy function for simple and symmetric Petri nets with mass action semantics

(sisma Petri net for short).

Definition 15. A sisma Petri net is a Petri net on species Σ and reactions R for

which:

(i) (simple) there are no two reactions that have the same stoichiometry (net change

in species).

(ii) (symmetric) for each reaction r ∈ R, there is a reaction r† ∈ R that has the

reverse direction, i.e. the inputs of one are the outputs of the other.

(iii) (mass action) the jumping rate qxy,r of going from a state x to y by a reaction r is

proportional to the number of ocurrences of its left-hand side in x. In particular,

given a rate constant k(r) for reaction r, we have

qxy,r = k(r) ∏
A∈Σ

x(A)!
(x(A)− ∆r(A))!

where x(A) is the number of As in x and ∆r(A) is the net change of A in

reaction r.

56
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Note that simple implies no two distinct reactions can be applied to a state

x to obtain state y. A sisma Petri net has an energy function

E(x) = ∑
A∈Σ

ε(A)x(A) + ln
(
x(A)!

)
(3.1)

for some function ε : Σ→R such that, for all r ∈R,

∑
A∈Σ

∆r(A)ε(A) = ln(k(r?))− ln(k(r)).

If there is no such function ε, the Petri net does not have detailed balance

and an energy function. In the rest of the chapter we introduce two other

restrictions of Kappa and show how to construct their energy function.

3.1 Cooperative assembly systems

The first restriction is when rules can only create or destroy one edge at a time

and their rates can only depend on how many bound sites the endpoints of the

edge have. Therefore sites are treated as indistinguishable. In addition, agents

of the same type cannot bind. Danos, Koeppl and Wilson-Kanamori (2011)

have proposed these restrictions and a simple formalism incorporating them

to study the thermodynamics of polymer formation when there are two types

of monomers. Here we extend their result to any number of monomer types.

In the case of two monomers, rules are of the form

... ... ... ...

where the three grey dots on the sides of each graph are an ellipsis to mean

that monomers can be bound to an arbitrary number of monomers of the other

type as long as each site is bound only once and there is a finite number of sites

per monomer fixed by the monomer type. Hence, the rule schema represents a

family of rules indexed by the number of bound sites in the two monomers.

We formalise the ideas in the first paragraph as follows. Let T be the

set of monomer types and ν : T →N the map that assigns to each type the

number of sites a monomer of that type has, which we refer to as their valence.
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A monomer u has type τ(u) ∈ T and degree dx(u) ∈N in state x. We simply

write ν(u) for ν(τ(u)). The rate constant of a rule that binds a monomer of

type t ∈ T and degree i with a monomer of type t′ ∈ T and degree j is γ+
t,i,t′,j.

The rate constant of the reverse rule (unbinding) is γ−t,i,t′,j. The jumping rate

qxy from state x to y is then linearly determined by the number of ocurrences

of the left-hand side of the rule and the rate constant (mass action semantics).

We assume that any two agents can be bound only once.

The binding or unbinding of any two nodes u,v in x can only be carried out

by one rule, namely the one that operates on degrees dx(u),dx(v). The binding

rule has rate constant α(u,v) := γ+
τ(u),dx(u),τ(v),dx(v)

while the unbinding rate

constant is β(u,v) := γ−
τ(u),dx(u),τ(v),dx(v)

. When binding we are free to choose

one site among the ν(u)− dx(u) free sites of u and one among the ν(v)− dx(v)

free sites of v in order to apply the binding rule. On the other hand, when

unbinding we have only one choice, namely removing the only edge between

u and v. Hence, qxy is equal to α(u,v) (ν(u)− dx(u)) (ν(v)− dx(v)) when the

binding rule is applied to x to obtain y and to β(u,v) when unbinding.

The theorem below shows under which conditions the type of systems

presented in this section have an energy function.

Proposition 1. Let T be a finite set of monomer types and γ−t,i,t′,j,γ+
t,i,t′,j families of

real values indexed by types t, t′ ∈ T , 06 i < ν(t) and 06 j < ν(t′) as above. Given

a family Γt,i of non-zero real values the following two statements are equivalent

(i) The q-matrix Q as defined above by qxy has detailed balance with respect to the

probability distribution π determined by the energy function

E(x) = ∑
t∈T

∑
0<i6ν(t)

εt(i) x(ti)

where x(ti) is the number of nodes of type t with degree i in x and

εt(i) = ∑
06j<i

ln
Γt,j

ν(t)− j

(ii) For all t, t′ ∈ T , 06 i < ν(t) and 06 j < ν(t′) we have

γ−t,i,t′,j
γ+

t,i,t′,j
= Γt,i Γt′,j (3.2)
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Proof. (⇒): Recall the detailed balance condition from Def. 3 which says that

for all states x,y

πx qxy = πy qyx

By substituting πx and πy as in Eq. 1.3 we obtain

exp

−∑
t∈T

∑
0<i6ν(t)

εt(i) x(ti)

qxy = exp

−∑
t∈T

∑
0<i6ν(t)

εt(i)y(ti)

qyx

and by rearranging

∏
t∈T

∏
0<i6ν(t)

e εt(i) (y(ti)−x(ti)) =
qyx

qxy

When y is obtained from x by binding nodes u,v, the difference y(ti)− x(ti)

is equal to 0 for all pairs t, i except i) when t = τ(u), i = dx(u) or t = τ(v),

i = dx(v), then y(ti)− x(ti) = −1; and ii) when t = τ(u), i = dy(u) = dx(u) + 1

or t = τ(v), i = dy(v) = dx(v)+ 1, then y(ti)− x(ti) = 1. Let tu = τ(u), tv = τ(v),

du = dx(u) and dv = dx(v). It follows that the last equation can be rewritten as

exp [εtu(du + 1) + εtv(dv + 1)− εtu(du)− εtv(dv)] =
qyx

qxy

By substituting ε we get

∏06i<du+1
Γtu ,i

ν(u)−i ∏06i<dv+1
Γtv ,i

ν(v)−i

∏06i<du

Γtu ,i
ν(u)−i ∏06i<dv

Γtv ,i
ν(v)−i

=
qyx

qxy

Products on the left cancel out and yield, after substituting q on the right,

Γtu,du Γtv,dv

(ν(u)− du) (ν(v)− dv)
=

β(u,v)
α(u,v) (ν(u)− du) (ν(v)− dv)

which then simplifies to

Γtu,du Γtv,dv =
γ−tu,du,tv,dv

γ+
tu,du,tv,dv

This equality holds in general for nodes of any degree and type.

(⇐): We prove that, whenever (ii) holds, π verifies the detailed balance

condition. For all x,y such that qxy = 0 the equality πx qxy = πy qyx holds as

rules are reversible and (ii) dictates that a rate constant is zero if the reverse

rate constant is. When qxy > 0 then y can be obtained from x by binding or

unbinding some nodes u,v. By substituting t for τ(u), t′ for τ(v), i for dx(u)

and j for dx(v) in Eq. 3.2 we obtain the last equation in the first part of the proof.

We can replay the transformations backwards to obtain πx qxy = πy qyx when y

is obtained by binding. The case of unbinding follows a similar argument. �
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3.2 Flipping and binding

Now we look at systems whose nodes have sites that possess an internal state.

This internal state is used to decide when to bind other nodes or change

the internal state of other sites. For simplicity, internal states can take one of

only two possible values. Unlike cooperative assembly systems, here sites are

distinguishable as in Kappa. Hence, we extend contact maps g as defined in §1.2

with a map δg that assigns an internal state vector δg(u) in {0,1}σ−1
C (gA(u)) to

agents u in A|g|. The internal state vector is indexed by the sites of the agent

type gA(u) of u. We use these extended contact maps as graphs in this section.

A site’s internal state can be changed by rules we call flips. The rate at

which we flip a site may depend on the type of the site and the node it belongs

to, the internal state of sites on the same node and the type of the neighbours.

Note that it cannot depend on the internal states of the neighbours’ sites or

the nodes they are bound to. Graphically, flips are of the form

u
x

. . .
u

x

. . .

where the dotted lines denote an optional node or edge and site x changes

state from white to black. As usual, we write rL for the left-hand side contact

map of rule r and rR for that of the right-hand side, both contact maps over

some fixed contact graph C.

In a flip we have a complete view over the internal state of sites in u and

those of the neighbours, which we characterise as vectors indexed by site types

in I := σ−1
C (rL,A(u)). The rate constants of the forward and backward flip rules

are then parametrised by the agent type a := rL,A(u) = rR,A(u) of u in C, the

site type i := rL,S(x) = rR,S(x) of x, the internal state vector s ∈ {0,1}I of u,

and the binding state vector n ∈ ((AC ×SC)∪{?})I where ? is used to denote

a free site. We write λ+
a,i,s,n for the rate constant of the forward rule, λ−a,i,s,n for

that of the backward rule, and Λa,i,s,n = λ−a,i,s,n/λ+
a,i,s,n for their ratio.

The second type of rules we allow are binds. They are of the form

u
...

x v
...y u

...
x v

...y
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where the three grey dots are an ellipsis meaning that nodes u and v must

declare an internal state to all sites they have. The rate constant of the binding

and unbinding rules depends on the internal state of the sites on the participat-

ing nodes s and s′ as well as the type of the nodes a,b and the bound sites i, j.

We write Γa,i,s,b,j,s′ = γ−a,i,s,b,j,s′/γ+
a,i,s,b,j,s′ for the ratio between the backward

and forward rate constants of binds.

We refer to systems composed by flips and binds as flip-bind systems or

FB-systems for short. We will show how the energy function of an FB-system

looks like. But first, we prove two lemmas that show us how detailed balance

fixes the value of some ratios of rate constants, reducing so the number of free

parameters in the system. To simplify notation in the following lemmas, let

s + i be the vector s with site i flipped.

Lemma 11. Let C be a contact graph. For all agent types a ∈ AC, let I = σ−1
C (a),

and for all site types i ∈ I, internal state vectors s ∈ {0,1}I and binding state vectors

n ∈ ((AC × SC)∪{?})I , an FB-system with detailed balance verifies

Λa,i,s,n Λa,j,s+i,n = Λa,j,s,n Λa,i,s+j,n (3.3)

Proof. Pick a state x and a node u in x. We can find a square in the transition

graph with 4 flips starting from x: flip site i first then j and flip j first then i.

x xi

xj xij

λ+
a,i,s,n

λ−a,i,s,n

λ+
a,j,s,nλ−a,j,s,n λ+

a,j,s+i,nλ−a,j,s+i,n

λ+
a,i,s+j,n

λ−a,i,s+j,n

By detailed balance we have that the product of rates along a cycle must be

equal to 1. Hence, starting from x and going through the cycle in one direction

and the reverse we get

λ+
a,i,s,n λ+

a,j,s+i,n λ−a,i,s+j,n λ−a,j,s,n = λ+
a,j,s,n λ+

a,i,s+j,n λ−a,j,s+i,n λ−a,i,s,n

By rearranging we obtain Eq. 3.3. �
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When we consider all flips for a node with n sites, we find an n-hypercube

in the transition graph. This hypercube has 2n−1n edges where an edge cor-

responds to a pair of forward and backward flips. It follows that there are the

same number of Λ ratios. In addition, each face of the hypercube generates

an equation by Lemma 11 and there are 2n−3(n− 1)n faces in an n-hypercube.

This is a severe constraint on the number of parameters that can be freely set

in an FB-system with detailed balance.

A further constrain to the values of the rate constant ratios of flips and

bindings can be obtained and its proved in the following lemma. For this

lemma we will use a fixed total order <a on the sites of an agent type a in the

contact graph C.

Lemma 12. Let C be a contact graph. For all agent types a ∈AC, let I = σ−1
C (a), and

for all site types i ∈ I, binding state vectors n ∈ ((AC × SC)∪{?})I and internal

state vectors s ∈ {0,1}I , sj ∈ {0,1}σ−1
C (b) with j ∈ I and b the agent type in n(j), an

FB-system with detailed balance verifies

Λa,i,s,n

Λa,i,s,∅
= ∏

i′∈I
n(i′) 6=?

(b,j):=n(i′)

Γa,i′,s,b,j,si′

Γa,i′,s+i,b,j,si′
(3.4)

where ∅ a vector of free sites, i.e. ∅(i) = ? for all i ∈ I.

Proof. We construct a series of squares with 2 flips and 2 bindings each. Pick

a state x and a node u in x. Strip u of all its neighbours and call that state x0.

Choose a site i of u. The first square starts from x0, then i) flips site i and ii)

binds the smallest site i1 according to the order <xA(u) to site j of an agent of

type b that has internal vector state si1 , where (j,b) = n(i1). After performing

(i) then (ii) or (ii) then (i) we reach state x1.

x0

x̂0

x̂1

x1

γ+
a,i1,s,b,j,si1

γ−a,i1,s,b,j,si1

λ+
a,i,s,∅λ−a,i,s,∅ λ+

a,i,s,n1
λ−a,i,s,n1

γ+
a,i1,s+i,b,j,si1

γ−a,i1,s+i,b,j,si1

xn

x̂n

. . .

λ+
a,i,s,nn

λ−a,i,s,nn

. . .
xn+1

x̂n+1

γ+
a,in,s,b′,j′,sin

γ−a,in,s,b′,j′,sin

λ+
a,i,s,nn+1

λ−a,i,s,nn+1

γ+
a,in,s+i,b′,j′,sin

γ−a,in,s+i,b′,j′,sin

with n1(i) = ? for all i except i1, where n1(i1) = n(i1). In general, nn(i) is equal

to n(i) if i ≤xA(u) in and ? otherwise.
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By detailed balance we obtain the following relation for the first square

Λa,i,s,∅ Γa,i1,s+i,b,j,si1
= Γa,i1,s,b,j,si1

Λa,i,s,n1 (3.5)

We construct the nth square starting from xn by flipping site i and binding

site in to site j′ in an agent of type b′ as indicated by n(in). This neighbour has

an internal state vector sin . Again, by detailed balance we get

Λa,i,s,nn Γa,i,s+i,b′,j′,sin
= Γa,i,s,b′,j′,sin

Λa,i,s,nn+1 (3.6)

Eq. 3.5 can be rewritten as

Λa,i,s,n1

Λa,i,s,∅
=

Γa,i,s+i,b,j,si1

Γa,i,s,b,j,si1

Then we substitute Λa,i,s,n1 according to Eq. 3.6 and obtain

Λa,i,s,n2

Λa,i,s,∅
=

Γa,i,s+i,b,j,si1

Γa,i,s,b,j,si1

Γa,i,s+i,c,k,si2

Γa,i,s,c,k,si2

We repeat until we recover Eq. 3.4. �

Now we proceed to compute the energy function.

Proposition 2. Given an FB-system with detailed balance, its energy function is

E(x) = ∑
s∈S|x|

ln Λa,i,su(i),∅ + ∑
(s,t)∈E|x|

ln Γa,i,δx(u),b,j,δx(v) (3.7)

where u = σ|x|(s), v = σ|x|(t), a = xA(u), b = xA(v), i = xS(s), j = xS(t), and

sw : SC→ {0,1}I a family of functions indexed by w ∈ A|x|, with I = σ−1
C (xA(w)),

defined as

su(i)(j) =

δx(u)(j) if j <xA(u) i

0 otherwise

Proof. Let x0 be the state where all nodes are disconnected and the internal

state of their sites is set to 0. We set E(x0) = 0 and construct a canonical

path from x0 to x to assign an energy E(x) to a state x as the sum of the

energy contributions of each step along the path. The canonical path starts by

performing all flips first (in the order set by <a) and then all bindings. Using

E(y)− E(x) = ln q(y, x)− ln q(x,y) to compute the energy contribution of each

flip and bind, we obtain Eq. 3.7. �
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Finally, we would like to know when an FB-system has detailed balance.

Proposition 3. An FB-system has detailed balance if and only if Eq. 3.3 and 3.4 hold

for all states, nodes and sites in the system.

Proof. By Lemmas 11 and 12, the forward direction has been already proved.

The backward direction amounts to proving that the definition of Eq. 3.7 is

independent of the choice of path, i.e. that any alternative energy function E′

that uses a non-canonical path for its definition is equivalent to E as defined in

Prop. 2. In a non-canonical path we might have two types of non-canonical flips:

those that occur after a bind and those that happen in an order different to the

one specified by <a. The terms contributed by the latter can be transformed

into canonical ones using Eq. 3.3 and those contributed by the former using

Eq. 3.4. Non-canonical binds that occur before a flip can be transformed into

canonical binds by a similar argument. �
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