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Abstract
Increasing legislative and societal pressures are forcing manufacturers to become
environmentally-conscious and take responsibility for the fate of their goods after they
have been used by consumers. As a result, some manufacturers operate hybrid sys-
tems which produce new goods and recover used goods. Product recovery describes
the process by which used products are returned to their manufacturers or sent to a
specialised facility for recovery, before being sold on the original or a secondary market.
The quality of the returned goods is a significant issue in product recovery systems as
it can affect both the type of recovery and costs associated with it. Quality in product
recovery systems has not been adequately studied, with many authors either ignor-
ing the possibility of receiving lower quality returns, or assuming they are disposed of
rather than recovered. However, such assumptions ignore the possibility that the firm
might be able to salvage value from lower quality returns by using them for parts or
materials.

This thesis presents four models that investigate the importance of considering the
quality of returns in the management of inventory in a product recovery system, by
examining the cost-effectiveness of recovering both high quality and low quality returns.

The first model is a deterministic lot-sizing model of a product recovery system. It
was found that performing both high and low quality recovery reduced the sensitivity
of the optimal cost to operational restrictions on the choice of decision variables.

The second model is a discrete-time, periodic-review model formulated as a Markov
decision process (MDP) and introduces uncertainty in demand, returns, and the quality
of the returns. It was found that performing both types of recovery can lead to cost
savings and better customer service for firms through an increased fill rate.

The third model addresses those industries where produced and recovered goods
cannot be sold on the same market due to customers’ perceptions and environmental
legalisation. Using an MDP formulation, the model examines a product recovery system
in which produced and recovered goods are sold on separate markets. The profitability
of offering two-way substitution between these markets was investigated. It was found
that offering substitution can allow firms to increase both their profits and fill rates.

The fourth model examines the issue of separate markets and substitution in the
continuous time domain using a semi-Markov decision process. The continuous nature
of the model allows more detailed examination of the substitution decision. It was
found that offering substitution can allow firms to increase their profit and in some
cases also increase their fill rate. In some cases, production is performed less frequently
when downward substitution can be offered, and recovery is performed less often when
upward substitution can be offered.

The findings of this thesis could be used to help a firm that is currently recover-
ing high quality returns assess the cost-effectiveness of also recovering lower quality
returns. Recovering low-quality items, rather than disposing of them, may allow a firm
to increase the amount it recycles. The findings highlight the importance of consider-
ing the quality of returns when managing a product recovery system as they show that
economic gains can be achieved by reusing rather than refusing low quality returns.
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Chapter 1

Introduction

These days the news is frequently filled with stories about global warming, pollution,

and how we, as a society, are not doing enough to prevent or slow it. As a result of

increasing governmental and societal pressures, companies and consumers alike have

been encouraged to reduce, reuse and recycle in an effort to reduce the amount of

waste that is sent to landfills. This has lead to dramatic increases in recycling in

England with household recycling increasing from 11% to 40% between 2001 and 2011,

and commercial and industrial recycling increasing from 42% to 52% between 2002/3

and 2009 (DEFRA, 2011c). Whilst these increases are impressive, further increases in

recycling and further reductions in waste-generation are necessary in order to achieve

the zero-waste economy, to which the current UK Government says it is committed to

achieving (DEFRA, 2011a). One way in which further waste-reduction and recycling

can be achieved is product recovery.

Product recovery describes the process by which used products are returned to

their producer or are sent to a specialised facility, in order to undergo recovery. The

recovered products are then sold either to the same market as their newly produced

equivalents or to a separate, secondary market. For some used goods, if they do not

undergo product recovery then they will be sent to a landfill. Whilst recycling and reuse

are not new phenomena (e.g. reuse during wartime rationing), there seems to have been

a recent resurgence in these activities. As an example of this resurgence, consider the

many computer manufacturers and distributors that are now actively promoting their
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refurbishment facilities both to existing consumers (who may return used goods) and

to new consumers (who may buy refurbished goods) (Apple, 2011; PCWorld, 2011;

Fujitsu, 2011). An increase in product recovery, recycling and reuse in practice, has

also led to an increase in related literature.

Three main arguments are cited in the literature as an explanation for the increase

in and importance of product recovery: legislative, environmental, economic (Heisig

and Fleischmann, 2001).

Legislative. Legislation requiring manufacturers in certain industries to take

responsibility for the fate of their products has been introduced in many countries,

with the aim of decreasing the quantity of harmful substances ending up in landfills. In

particular, the European Commission has issued directives relating to waste electronic

and electrical equipment (WEEE), end-of-life vehicles (ELV) and batteries, which

regulate what happens to these types of products after they have been used by

consumers (Environment Agency, 2011a). In the UK, producers of WEEE must sign-

up to an approved take-back scheme, such as those offered by Valpak, REPIC and

ECONO-WEEE (Environment Agency, 2011c) to ensure that their goods are recovered

by an Approved Authorised Treatment Facility(AATF) (Environment Agency, 2011b).

Whilst many firms appoint a specialised firm as their AATF, there are several well-

known manufacturers who are themselves Approved Authorised Treatment Facilities,

notably Fujitsu and Black & Decker. In addition to these European Commission

directives, other measures, such as environment taxes and landfill bans on certain

materials, may be extended in the UK to encourage recycling and waste-reduction

(DEFRA, 2011a).

Environmental. Concern for the environment and the desire to be “environmen-

tally friendly” have also led to an increase in product recovery. With increased publicity

about issues such as global warming and pollution, consumers and manufacturers are

becoming increasingly aware of the environmental impact of their actions. Consumers

are being encouraged to make purchasing decisions based on environmental motivations

(Recycle Now, 2011). However despite a growing trend in consumers’desire to be

“green” there is still a stigma associated with “recycled goods” and view that they are
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inferior to new goods. The UK Government is aware of this and is striving to change

people’s perceptions of recycled goods by developing of End-of-Waste protocols, which

will ensure that recovered goods meet a specified quality standard and will regulate how

products with a “waste” component need to be identified (DEFRA, 2011a). Firms too

are striving to be “green”. Through corporate social responsibility, firms are developing

“green” strategies for sustainable manufacturing and in some cases are using these to

differentiate themselves from their competitors (e.g. Tesco, Sainsburys and Marks and

Spencer). The “green” image associated with product recovery provides an incentive

for firms to participate in product recovery and recycling schemes.

Economic. For some firms there is also an economic incentive to participate in

product recovery and recycling. In some industries, significant cost-savings can be

achieved by reusing, recycling or repairing used products or materials or by using

renewable energy. However it is important that an increase in product recovery and

other forms sustainable production does not harm or prevent economic growth. The

need to “decouple” waste production and economic growth has been recognised as

a necessary step on the path towards environmental sustainability (DEFRA, 2011a,

67). Environment Secretary Caroline Spelman, in reference to plans for the zero-waste

economy, was recently reported as mentioning the importance of being able to “unlock

the real value in the goods that people no longer want” (DEFRA, 2011b). The same

applies to recovery. Recovery is about finding new and creative ways to salvage value

contained in all parts of a used product, regardless of the condition that it is in.

Increased levels of interest in product recovery from governmental, societal and

industrial spheres have also led to an increase in the product recovery literature. Ilgin

and Gupta (2010) report that environmentally conscious manufacturing has seen “a

surge in research activity” since 1999. One reason for this is that the management of a

product recovery system is more complex than that of a regular production system, due

to uncertainties relating to the timing, quantity and quality of returns (Fleischmann

et al., 2002). Due to these uncertainties, production is often favoured over recovery,

despite it generally being the more expensive option (Heisig and Fleischmann, 2001)

The aim of this thesis is to investigate how further waste reduction can be achieved

through the use of product recovery by addressing the issue of the quality of the returns.
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More specifically, we aim to investigate how the quality of returns could be taken into

account in order to effectively use available resources. We compare the profitability of

including a separate recovery channel for low quality returns and compare this with

the alternative – the disposal of all low quality returns. In order to investigate this

issue we begin by reviewing the relevant literature and methodology in Chapters 2 and

3 respectively, and then propose four models in Chapters 4–7. The modelling results

will be discussed within each chapter and then conclusions will be drawn in Chapter 8.

The four models proposed in this thesis will address this issue of the profitability of

low quality recovery, but will also fill gaps in their respective streams of literature. In

Chapter 4, we begin our investigation with a deterministic lot-sizing model of a product

recovery system. Uncertain demand, and uncertainty regarding the quality, quantity

and timing of returns add challenges to the operation of a product recovery system,

therefore we begin by assuming that all these values are known and constant. The model

allows the quality of each return to determine which type of recovery is performed. The

ability of the producer to only take-back high quality items is also incorporated. In

Chapter 5, the second model extends the first by introducing uncertainty in the demand,

returns and quality of the returns. A discrete time periodic review model is used, rather

than a continuous time model, because it allows us to investigate the structure of the

optimal policy. In both of these models it is assumed that recovered goods are “as good

as new”. In some cases this is a justified assumption, however in some industries even

goods which may be functionally “as good as new” are not perceived by the consumer

to be the same as a new item. This limitation is addressed in the third and fourth

models by the introduction of separate markets for new and recovered goods.

In Chapter 6, the third model is presented. It is a discrete time periodic review

model of a product recovery system with separate markets for newly produced and

recovered goods. It is assumed that the produced and recovered goods have a similar

functionality, therefore if there is insufficient inventory to meet demand for one of the

goods, the firm may offer a substitute. The substitution is offered on a two-way basis

and it is assumed that a consumer may accept or reject the substitution. In this discrete

time model, demand, returns and substitution occur in batches each period. The

“batched” framework may be appropriate for modelling demand and returns, however

it does not allow substitution to be modelled in much detail. Therefore, the fourth and
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final model of this thesis examines a continuous time continuous review model. As in

the discrete time model, this model has separate markets for new and recovered goods,

however the continuous nature of the model means that leadtimes are also introduced.

In this thesis we find that performing both high and low quality recovery: reduces

the sensitivity of the optimal cost to operational restrictions on the choice of decision

variables; results in cost savings; and allows better customer service through increased

fill rates. We also find that offering substitution between the markets for newly

produced and recovered goods allows firms to increase both their profits and fill rates.

The findings of this thesis could be used to help a firm assess the cost-effectiveness of

recovering lower quality returns, in addition to high quality returns. Recovering low-

quality items rather than disposing of them, may allow a firm to increase the amount it

recycles. These findings highlight the importance of considering the quality of returns

when managing a product recovery system as they show that economic gains can be

achieved by reusing rather than refusing low quality returns.
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Chapter 2

Literature Review

2.1 Introduction

Product recovery is performed in a large number of industries, from military to telecom-

munications and is becoming increasingly important due to economic, legislative and

environmental pressures. From an operational perspective, product recovery systems

pose additional operational challenges, compared with production or manufacturing

systems, due to the increased uncertainty caused by the quality, quantity and timing

of returns (Ilgin and Gupta, 2010). The quality of returns is widely acknowledged as

being important, however comparatively little research has investigated this issue. In

this chapter a review of the relevant product-recovery literature is presented, with a

particular focus on the modelling of the quality of returns.

The quality of the returns is a significant issue in the operation of product recovery

systems as it can affect the type of recovery which can be performed and the costs

associated with that recovery (Fleischmann et al., 1997). Quality has been considered

in a number of different ways. However, there are a number of limitations within the

existing literature. These limitations will be discussed where relevant throughout this

chapter and will be then summarised at the end of this chapter.

Before examining product recovery in more detail, it is important to understand

where it fits within both an industrial and an academic context. This is important
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for ‘putting product recovery on the map’, so to speak. This background information

will be discussed in Section 2.2. The remainder of this chapter will more or less follow

the structure of this thesis. The first two models presented in this thesis assume that

used goods are returned to their producer and are recovered to be “as good as new”

and thus can be sold on the same market as newly produced goods. Therefore we

begin, in Section 2.3, by reviewing literature relating to models which are produced

and recovered by the same firm and are then sold on the same market. The “as good

as new” assumption is relaxed in the third and fourth models presented in this thesis

by allowing recovered and newly produced goods to be sold on separate markets, but

also to be substitutes for each other. The literature relating to this type of system

is discussed in Section 2.4. Some goods are recovered by specialised recovery firms,

i.e., firms which recover used goods but do not produce new goods. Whilst none of

the models in this thesis make this assumption, some of the literature in this field is

relevant because of the way in which it addresses the issue of the quality of returns.

Specialised recovery firms will be discussed in Section 2.4.3. The gaps in the literature

that will be addressed by this thesis are summarised in Section 2.5.

2.2 Putting Product Recovery on the Map

2.2.1 Product Recovery in Industry

Product recovery describes the process by which used products are returned to their

producer or are sent to a specialised facility, in order to undergo recovery. Organisations

which perform production and recovery are sometimes referred to as original equipment

manufacturers (OEM) or hybrid manufacturing / remanufacturing systems (Aras et al.,

2004). Thierry et al. (1995) describe five types of recovery: repair, refurbishing,

remanufacturing, cannibalisation and recycling. According to this definition, repair,

refurbishing and remanufacturing involve reusing most of the existing product, whereas

cannibalisation and recycling involve reusing only selected parts or materials from the

existing product. Depending on the type of recovery that is performed, the returned

product may be: used as is; recovered and used along with newly produced goods to

satisfy consumer demand; used to satisfy demand in a secondary market; disassembled

and used for parts or materials; or some combination of the above. However, since
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these classifications of the types of recovery do not appear to be standardised across

the literature, in this thesis we use the term recovery to mean any activity which

involves the reuse of part or all of a used product, thus recovery could include repair,

refurbishing, remanufacturing, recycling or cannibalisation.

Product recovery is performed in a variety of contexts and for a variety of reasons,

e.g, the buy-back of used goods from the consumer (Dobos and Richter, 2004), goods

returned due to a warranty claim (Khawam et al., 2007), collection from consumer (Oh

and Hwang, 2006), consumer return and legislative reasons (DeCroix and Zipkin, 2005).

The reason for the return can influence the type of recovery that can be performed. A

large number of industries and applications have used product recovery, for example

military equipment (Schrady, 1967), single-use cameras (Toktay et al., 2000), leased

office equipment (Aras et al., 2006), leased products (Inderfurth, 1997), Hitachi

(Khawam et al., 2007), cargo hoists (Mahadevan et al., 2003), toner cartridges and

personal computers DeCroix (2006), automotive industry, telecom industry, and steep

scrap in China (Aras et al., 2006), reuseable packaging, electronics, car parts (Heisig

and Fleischmann, 2001). However, a comprehensive review of applications of product

recovery is necessary to bring the literature up-to-date with current technologies and

trends.

From an operational perspective, product recovery systems are more complex than

regular production systems. One reason for this is the increased uncertainty caused

by the quality, quantity and timing of returns (Ilgin and Gupta, 2010). In a product

recovery system there are additional factors that need to be considered, for instance,

additional inventories to manage, two options for replenishing inventory (Fleischmann

et al., 1997), salvage value of returns, quality requirements and sorting of returns

(Ilgin and Gupta, 2010). The quality of returns, in particular, is an issue that is

discussed widely in the literature as affecting industry practice because it can affect

the type of recovery which can be performed and the costs associated with that recovery

(Fleischmann et al., 1997).

These issues pose challenges for the product recovery industry. These challenges,

together with the legislative changes, economic climate and growth in awareness about

environmental issues, have contributed to the increased attention on product recovery

in society, as well as in the literature. However, it is interesting to note that despite
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this recent attention in the literature, product recovery and reuse is not a new field; it

has been studied in the literature for over 40 years, for instance Schrady (1967). The

development of product recovery in the literature is discussed further in the following

section.

2.2.2 Product Recovery in the Literature

Product recovery was first discussed in the literature at least 40 years ago (Schrady,

1967). Much of the early research in this area dealt with repairable inventory systems

in a military context. Between 1960s and the mid-1990s there was not a great deal of

research in the field of product recovery, however since the mid-1990s there has been a

significant increase in the amount of research being conducted. This increase in research

has encouraged numerous authors to publish reviews addressing product recovery and

related subjects, (Fleischmann et al., 1997; Guide and Van Wassenhove, 2009; Pokharel

and Mutha, 2009; Rubio et al., 2008; Ilgin and Gupta, 2010). There have also been

numerous special issues dedicated to product recovery and related disciplines (Ferrer

and Swaminathan, 2010). A list of some recent special issues is provided by Pokharel

and Mutha (2009).

In the literature, product recovery falls under a number of broader fields, including

reverse logistics, environmentally conscious manufacturing and inventory control. Man-

aging inventory within reverse logistics and environmentally conscious manufacturing

is closely related to the management of inventory in traditional forward-flow logistics

situations as well as in repair, spare parts, production planning, disassembly and rework

systems. These areas can give insight into aspects of modelling product recovery

systems. The focus of this thesis is modelling the inventory of product recovery systems,

therefore in this review we focus on issues relevant to inventory management models

rather than to production planning or assembly system models.

Reverse logistics relates to the return of used products from the consumer to

producer (Fleischmann et al., 1997). It involves all aspects of the return process,

including the transportation of the returns from the customer to the producer, the

storage of returns, and the type of recovery performed. Fleischmann et al. (1997)
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classify the field into three subfields: distribution planning, inventory control and

production planning.

In a recent review of environmentally conscious manufacturing and product

recovery, Ilgin and Gupta (2010) classify the issues relating to product recovery as being

“product design, reverse and close-loop supply chains, remanufacturing, disassembly”.

Under this structure, the management of inventory in product recovery system falls

under the “remanufacturing” category. Some research has focussed on designing

products so that they can be easily disassembled and recovered. The length of a

product’s life cycle is also an important issue (Kiesmüller and van der Laan, 2001;

Angelus and Porteus, 2002).

Repairable inventory systems are closely related to product recovery systems.

Repairable inventory models usually involve determining the number of spare parts to

hold in stock, taking into account the ones which can be repaired. The failure of an item

triggers demand for a replacement item and it also triggers the return of the failed item

for repair. Thus, demand and returns are directly related and occur on a one for one

basis. In contrast, in product recovery models demand and returns are usually assumed

to be independent, and production and recovery occur in batches or lots, and decisions

are made regarding their size and frequency (Inderfurth, 1997). Early papers dealing

with the stocking of repairable inventory include (Phelps, 1962; Allen and D’Esopo,

1968; Simpson, 1978), many of which were motivated by the stocking of repairable

spare parts by the military (Mabini et al., 1992), became the basis of product recovery

research. However, these papers have also developed into a separate stream of research

relating to repairable inventory. More recent papers in the field of repairable inventory

include Wong et al. (2005a,b), who study single item repairable inventory models, and

Wong et al. (2006), who discuss a two location multi-item repairable inventory system.

Production inventory and rework are also related to product recovery. In production

inventory systems the items needing repair are defects from the production process,

rather than used goods from consumers. This distinction is important as it has

implications for the arrival rate of returns (defects are likely to arrive individually,

whereas returns may arrive in batches) and the nature of the final product (reworked

items are likely to be indistinguishable to the consumer, whereas recovered items may

not be). Some other papers which consider the remanufacturing of defective units
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include (Buscher and Lindner, 2007; Chiu and Chiu, 2005, 2006a,b; Chiu et al., 2006,

2007a,b; Chiu, 2008; Sarker et al., 2008; Liu et al., 2009). The deterioration of products

whilst waiting to be repaired has also been studied (Inderfurth et al., 2005, 2006).

Now that product recovery has be contextualised in terms of its place in industry

and in the wider literature, we will focus on the literature which specifically addresses

product recovery models in either a single market, or separate markets environment.

2.2.3 Examples of Current Practice

In this section examples of current product recovery practice will be discussed. The

companies discussed below are by no means an exhaustive list, but are provided to give

a flavour of the types of product recovery being performed across different industries.

The examples discussed in this section motivate the models proposed in Chapters 4–7,

therefore where appropriate, we will refer back to this section throughout this thesis.

Cartridge Recycling

The printer and photocopier company, Canon, is involved in recycling used toner

cartridges. In particular, they reuse the charging roller, sleeve and magnetic roller

(Canon, 2012h) (further details regarding the design of cartridges is available on

Canon’s website (Canon, 2012g)) Once the cartridges have been returned to Canon,

they are sorted and then undergo either cannibalization or recycling. The cartridges

that are selected for cannibalization undergo a crushing and selection processes in which

materials are separated into aluminium, ferrous metals, mixed plastics and residue.

These materials are then used in manufacture of other products (Canon, 2012a,g).

The cartridges which are selected for recycling are disassembled and cleaned, before

undergoing a quality inspection. These “recycled” cartridges are sold as new. Canon

includes a label on all toner cartridges stating that they may contain “reconditioned

and remoulded parts” (Canon, 2012h).
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Printer Remanufacturing

Canon is also involved in remanufacturing of black and white multifunctional printers.

End-of-lease products are returned to Canon’s factory in Germany and are brought

up to an “as good as new” or “better than new” condition (Canon, 2012c). Returned

printers are “stripped down to the frame and thoroughly cleaned before being rebuilt”

(Canon, 2012d). After undergoing this process, printers are made available for sale or

lease. By remanufacturing used printers, Canon is able to re-use up to 91% of the parts

(by weight) which yields economic and environmental benefits (Canon, 2012d).

Canon distinguishes between remanufacturing and refurbishment. As mentioned

above, remanufacturing returns products to an “as good as new” condition. Refurbish-

ment on the other hand, is a less intensive process (Canon, 2012e) that returns products

to a “suitable standard for resale/lease” (Canon, 2012b). It may include “replacing or

cleaning worn parts” (Canon, 2012e). While remanufacturing is carried out at the

company’s plant in Germany, refurbishment is typically performed by a local branch,

i.e. printers used in the UK will be refurbished in the UK and then resold/leased in

the UK.

Materials Recycling

A number of organisations are also involved in materials recycling. For example, in

addition to the cartridge and print product recovery processes mentioned above, Canon

is also involved in materials recycling. Waste materials generated by products and

processes are re-used in the manufacture of new products (Canon, 2012f). In particular,

they produce a range of calculators made from materials recycled from the production

of camera lenses (Canon, 2012f).

The drinks manufacturer, Diageo, is also involved in materials recycling. They

prefer to melt down used glass if possible, rather than produce new glass as it is more

energy efficient (Diageo, 2011a). In Africa, they have implemented a scheme in which

bottles are returned and then reused, after a thorough cleaning, on average 12-15 times

(Diageo, 2011b).
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Wooden Pallets

Pallet companies, such as Pallet World, make and sell new pallets to industry. Many of

these companies also offer a buy-back service for used pallets. Used pallets are repaired,

inspected to ensure they are “as good as new”, and are then sold at a discounted price

(PalletWorld, 2012). Pallet World states that saving of up to 40% can be achieved by

buying used or repaired pallets rather than new ones (PalletWorld, 2012).

Whisky Barrels

Scotch whisky barrels are made out of American Oak and typically begin their life as a

barrel for some other type of alcohol beverage (e.g. bourbon, sherry, wine etc). After

being used for these other types of alcohol, the barrels may need to undergo some repairs

(to the wooden slat or metal hoops) before being filled with whisky. Some barrels may

require minor repairs, whereas others may have sustained so much damage they may be

disassembled and used for parts. Cooperage’s such as the Speyside Cooperage, perform

these repairs (SpeysideCooperage, 2012b). As long as the barrels have been used for

another form of alcohol, they can be reused as a whisky barrel repeatedly for up to 50

years (SpeysideCooperage, 2012a).

Refurbished Electronic Equipment

Many leading computer, satellite navigation and mobile phone manufacturers also

offer consumers the choice of buying a refurbished product rather than a new one.

Refurbished products typically have the same functionality as new products, but

are sold for a discounted price. In some (but not all) cases, the products may

have a cosmetic defect, however customers are assured that this does not affect the

functionality and operation of the product/ Substantial quality testing is performed

on refurbished items to ensure this. Examples of manufacturers who sell refurbished

products include Apple (2011), Dell (2012), TomTom (2011) and Fujitsu (2011). In

some cases, the sale of the refurbished product is performed by retailers rather than

the original manufacturers, e.g. PC World stocks a range of new and refurbished

computers. The nature of online shopping means that retailers could easily sell both
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new and recovered products, and, while they may be targeting different markets with

each of these products, consumers can often see both, side-by-side on their computer

screens.

Some companies, such as CCL North, provide specialised recycling and refur-

bishment services for electronic equipment such as computers, televisions and LCD

monitors (CCLNorth, 2011b). Their computer recycling operations involve an initial

visual inspection which, in addition to locating identifiable markers (e.g. asset tags),

is also used to determine if the product could be resold. For example, computers

which the beige casing popular in the 1990s have limited resale potential, compared

with more modern casings. Even if a computer is not resaleable, it can be separated

into different types of materials (e.g. plastics, ferrous metals) for further recycling

(CCLNorth, 2011a).

Substitutable Products

In some industries, if a customer has requested a product that is no longer available,

then they may be offered a substitute. For example, if you order groceries online

and your chosen product is unavailable, then you may be offered a substitute (Asda,

2012). Policies regarding whether you pay for what you order or what you receive differ

between different companies, for example, Asda states that “you’ll always pay for the

lowest priced product”. Similarly, if you hire a rental car and your chosen model is

unavailable, you may be offered an upgrade.

2.3 Single Market for Produced and Recovery Goods

In this section the literature relating to product recovery systems which produce (or

procure) new goods and recover used goods and then sell them on the same market. It

is assumed that recovered goods are “as good as new” goods. Figure 2.1 presents an

example of a product recovery model in which items are supplied to the consumer from

a store of serviceable inventory. After the consumer has finished with the items, some

are returned and then stored while they await recovery. Recovered items are considered
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to be “as good as new” so are used to replenish serviceable inventory. Production is

performed to ensure that there is sufficient serviceable inventory to meet demand. The

majority of research in the field of product recovery studies this type of system.

The literature in this section is separated into three main sections based on the

modelling assumptions applied to demand and returns. Section 2.3.1 discusses models

which assume that demand and returns are deterministic. Models assuming stochastic

demand and returns are then discussed, with discrete-time, periodic-review models

being discussed in Section 2.3.2 and continuous-time, continuous-review models being

discussed in Section 2.3.3.

Production Inventory
Serviceable

Consumer

Returned
InventoryRecovery

Figure 2.1: Structure of a simple product recovery model

2.3.1 Deterministic Models

Deterministic product recovery models can be broadly classified as being either static

or dynamic. Dynamic models allow the problem parameters, such as the demand

and return rate, to vary over time. Static models, on the other hand, do not include

variation over time. In this review the focus is on static models. The motivation for

this is that in this thesis, we want to begin by studying a very simple product recovery

system in which demand returns are known and constant. To do this we will use a

static, deterministic model. The second and subsequent models in this thesis will relax

this assumption and allow for uncertain demand. Because of this we do not study, and

thus do not review, deterministic dynamic product recovery models.

Static deterministic product recovery models typically have an economic order

quantity (EOQ) structure and are concerned with determining the optimal lot size
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and the optimal number of lots per cycle. The main issues that are discussed in the

literature are how to obtain values of the decision variables and whether or not to

include a disposal option for returns. With regards to quality, as will be highlighted in

this section, most research assumes that either all returns are recoverable or that low

quality returns are disposed.

Most static deterministic product recovery literature stems from Schrady (1967),

who uses an EOQ model to study a repairable inventory system, in which items are

procured from an external source or are repaired. The procurement and repair rates

are assumed to be infinite, which though may not be realistic, simplifies the derivation

of the closed form expressions for optimal lot sizes of production and repair. This

assumption was partially relaxed by Nahmias and Rivera (1979) who extend the model

to incorporate a finite repair rate, with an infinite procurement rate. Both of these

papers consider a single-item system with one production lot and multiple repair lots

per cycle. This was extended by Mabini et al. (1992) to incorporate a multi-item

system in which the recovery facility is shared by the items, however complexity of

the resulting model meant that numerical methods were used. Additional details of

the early research in this area can be found in a review by Fleischmann et al. (1997).

In what follows we focus on more recent research, falling into two categories: recovery

models and waste disposal models. Recovery models follow the typical product recovery

structure discussed above, whereas waste disposal models include the waste disposal

rate of returns as a decision variable. After these two streams have been discussed a

brief discussion of other related literature is presented.

Recovery Models

Teunter (2001) extends the early work mentioned above by providing simple formulae

for the cost-minimising lot sizes and number of lots per cycle for two policies: one

production lot and multiple recovery lots, or one recovery lot and multiple production

lots. Restricting the number of lots to one, for either production or recovery, greatly

simplifies the derivation of the optimal lot sizes. However the motivation for doing

this is not solely simplification, as Teunter (2001) also gives a proof which shows that

the optimal number of lots for production and recovery can never both be even. It
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was also assumed that the both the lot sizes and the number of lots per cycle could

take continuous, rather than discrete values. This assumption is addressed by Teunter

(2004), who also extends his own previous paper by allowing both the production

and recovery rates to be finite or infinite (rather than just the recovery rate). Cost-

minimising lot sizes are given and then an approximation method is used at the

final stage to obtain integer values for the optimal number of lots. However, this

approximation method proposed is just that, an approximation. An exact approach for

obtaining an integer number of production and recovery lots, using upper and lower

bounds, was proposed by Konstantaras and Papachristos (2008b). In all of these papers,

the quality of returns is either not mentioned, or it is assumed either that all goods

returned are of sufficient quality to be recovered, or that any returns of ‘low’ quality are

discarded. In Chapter 4, we propose a model that addresses this limitation and extends

Teunter (2004); we apply the approach of Konstantaras and Papachristos (2008b) to

our model.

A number of variations of this problem have been considered. For example

Konstantaras and Papachristos (2006) allow backorders and Konstantaras and Skouri

(2010) allow the number of lots per cycle to be variable and allow shortages of

serviceable inventory to occur. The sequencing of the production and recovery lots

within a cycle is studied by Choi et al. (2007) and Feng and Viswanathan (2011), of

whom the latter also allows multiple production lots and multiple recovery lots. In

Chapter 4, we also allow multiple production lots and multiple recovery lots.

Koh et al. (2002) study the relationship between the demand, production and

recovery rates and propose a search procedure to obtain integer values for the optimal

number of lots per cycle. They also include an additional decision variable which

specifies the inventory level at which recovery should begin. Konstantaras and

Papachristos (2008a) propose an alternative methodology for determining the optimal

values of the decision variables by using upper and lower bounds (following an approach

similar to Konstantaras and Papachristos (2008b)). Recently, Konstantaras et al.

(2010) extended Koh et al. (2002) by introducing a secondary market to deal with

items which are not of high enough quality level to be sold alongside newly produced

items. These papers also assumed that all goods returned have sufficient quality to

be recovered.
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Waste Disposal Models

A second stream of literature that developed from Schrady (1967) focuses on the waste-

disposal aspect of a product recovery system. This stream differs from Schrady (1967) in

the way that returns are managed. Rather than assuming that all returns are recovered,

the numbers of goods which are returned and recovered is managed either by the waste

disposal rate or the buy-back rate. Much of the research in this stream has been carried

out by either Richter, or both Dobos and Richter. The initial papers in this stream

assume that returns arrive in batches, rather than at a constant rate (Richter, 1996a,b).

The integer requirement for the number of lots per cycle is discussed briefly in these

papers but no solution methodology is proposed. The integer requirement is addressed

in more detail by Richter and Dobos (1999) and Dobos and Richter (2000). Jaber and

El Saadany (2009) extend Richter (1996a,b) by assuming that recovered goods are not

as good as new. This paper will be discussed further in Section 2.4 when models with

separate markets for produced and recovered goods are reviewed.

Dobos and Richter (2004) consider a related model in which the number of

production and recovery lots are both greater than one. The decision variables are

the ‘use’ rate and the buyback rate of returns, as well as the number of production

and recovery lots, the size of the production and recovery lots, and the length of

the production and recovery intervals. This model is extended by El Saadany and

Jaber (2010) who use the price paid for returns to control the quality and quantity of

returns. As in the recovery models stream, the number of lots is also discussed: they

consider policies with either one production and recovery lot, or multiple production

and recovery lots.

Dobos and Richter (2006) consider a similar inventory model, which addresses the

quality of the used items either by only buying back items of a satisfactory quality,

or by buying back all items which are available and then performing a quality check.

This essentially examines the decision about out-sourcing quality control. El Saadany

and Jaber (2008) extend this stream of research by using switching costs instead of

setup costs. While there are some papers in this stream which address the issue of the

quality of returns, it is still assumed that any goods which are of insufficient quality

are discarded. The possibility of salvaging value from these ‘low quality’ returns is not

discussed.
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Other Static Deterministic Models

Most research discussed thus far assumes that recovery is used to make a returned

item ‘as good as new’ and thus to replenish the serviceable inventory, however other

assumptions regarding the nature of the recovery process have also been studied. For

example, Oh and Hwang (2006) study a product recovery model in which recovery is

used to salvage raw materials or components from returned items (which are then

used in the production process) rather than to replenish the serviceable inventory

directly. A stochastic version of this model is studied by Mukhopadhyay and Ma

(2009). Following an EOQ structure, Oh and Hwang (2006) present the optimal lot

sizes for production and for orders of raw materials. The model presented in Chapter

4 will combine this type of ‘components’ recovery, with the ‘as-good-as-new’ recovery

to provide two channels for recovery.

Disassembly and the sorting of returns have also been investigated. El Saadany and

Jaber (2010) study a system in which returns are disassembled into “subassemblies”

and then recovered to create items which are “as good as new”. The decision variables

are the ordering and recovery decisions for each subassembly.

Some product recovery models incorporate multiple items, for example Mandal and

Roy (2006); Tang and Teunter (2006); Çorbacioğlu and van der Laan (2007); Teunter

et al. (2008). Teunter et al. (2009) develop heuristics for a multi-item system which

performs production and recovery by extending Tang and Teunter (2006). Çorbacioğlu

and van der Laan (2007) investigate methods for setting the holding cost in a two item

system in which returns can be used in two different recovery processes, one for each

type of item. The type of recovery performed depends on quality of returns. However,

their model assumes that the inventory of both types of goods can be replenished by

production, as well as by recovery. Whilst the differentiation between the two products

may be based on quality, it appears that this distinction is only used to differentiate

between the two product types, and not between the type of recovery that can be

performed.

Summary

Much of the deterministic product recovery literature assumes that all returns have

sufficient quality for recovery or use a disposal option to eliminate low quality returns.
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However some papers deal with the quality of returns more explicitly. El Saadany and

Jaber (2010) use the price paid for the returns to control the quality of the returned

goods. Dobos and Richter (2006) incorporate the quality of returns into their model

by allowing the firm to choose either to buy back returns regardless of quality and then

dispose of low quality items, or to only buy back high quality returns. These papers

do not consider the possibility that the low-quality items may have some salvageable

value. We address this limitation in this thesis. We also investigate whether or not

performing low quality recovery (in addition to high quality recovery) is profitable.

2.3.2 Stochastic Discrete Time Models

Periodic review, discrete time, stochastic product recovery models allow demand and

returns to be observed and decisions to be made on a periodic basis. Typically periodic

models are studied over a discrete time horizon. The nature of the periodic review

models mean that finding the structure of the optimal policy is sometimes possible,

therefore much of the research has focussed on doing this (DeCroix, 2006; van der Laan

and Teunter, 2006). However, a substantial body of literature has also investigated

finding the optimal parameter values for various policy structures. Continuous time

models, on the other hand, typically assume that the policy structure is fixed, and

therefore focus on obtaining the policy parameter values (DeCroix, 2006). One reason

for this is that it is easier to obtain an optimal policy structure for periodic review

problems, than for continuous review (Inderfurth, 1997).

The literature in this section will be structured around these two main themes:

finding the optimal policy structure, and finding the optimal parameter values. A

three parameter policy, which specifies when to produce, recover and dispose of returns,

has been discussed in the literature since at least Phelps (1962). However in today’s

environmentally conscious society, legislation may mean that disposal is not an option,

i.e. firms must recover, in some form, everything that is returned to them. Much of

the early research in this field had developed from an early paper by Simpson (1978),

and a more recent paper by Inderfurth (1997).
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Optimal Policy Structure

Proving the optimality of a particular policy structure has been the focus of one stream

of research in this area. Early papers which examined the structure of the optimal

policy did so in the context of managing inventories of repairable spare parts. For

example, Phelps (1962) applies a three parameter (purchase, repair, dispose) policy in

which unmet demand is lost, which Veinott (1966) extends by removing the disposal

option and allowing unmet demand to be back-ordered, rather than lost (Simpson,

1978). A related problem was considered by Allen and D’Esopo (1968), who model the

replenishment of serviceable inventory due to the repair of returns as a random variable

(Simpson, 1978).

The first key paper in this stream is by Simpson (1978), who studied a product

recovery model in which the stochastic demand is met by serviceable inventory. The

serviceable inventory is replenished by the procurement of new goods and the repair

of returned goods. Each period a decision is made about how many items to procure,

how many items to repair and how many returned items to discard. There is no lead

time for recovery or procurement and it is assumed that all returned inventory are able

to be repaired. Unit costs are incurred for procurement and for repair, however there

is no cost for disposing of excess returns and no fixed costs. While this assumption

may have been realistic in 1978, with today’s environmental legislation is unlikely that

firms would be able to dispose of returns (or anything else for that matter) without

incurring a cost. The key result from this paper is the proof of the optimality of a

three parameter (recover-up-to, procure-up-to, dispose-down-to) policy for this finite

horizon, periodic review problem.

Inderfurth (1997) extended the work of Simpson (1978) by including fixed, identical

lead times for procurement and recovery. Variable costs, including a disposal cost are

included, however fixed setup costs are not. This is one of the first periodic-review

papers which positions itself as a product recovery or remanufacturing model, rather

than as a repairable or spare parts inventory model. According to Inderfurth (1997),

no research directly extended the work of Simpson (1978), until his own paper. He also

states that, with the exception of one of his own working papers, the inclusion of lead

times into a periodic review, product recovery model had not been previously considered
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in the literature. Inderfurth (1997) uses a dynamic programming formulation to prove

the optimality of a three parameter (recover-up-to, procure-up-to, disposal-down-to)

policy for a finite horizon, periodic review, stochastic product recovery system with

identical lead times for procurement and recovery. This policy takes into account the

combined level of serviceable and returned inventory. Demand and returns are modelled

by continuous random variables and it is assumed that all returns are of sufficient quality

to be recovered. Inderfurth (1997) mentions that, as for cash-balancing models, if setup

costs are included in the model, a simple optimal policy will not exist. Three different

lead time scenarios are considered for recovery and procurement: equal, recovery greater

than procurement, and procurement greater than recovery. In all cases the lead times

are fixed and known. Inderfurth (1997) finds that, as long as the difference between

the lead times is no greater than one period, the structure of the optimal policy can be

shown.

The relationship between the lead time for production and recovery is investigated

further by Inderfurth and van der Laan (2001), who study the three lead time cases

mentioned above using both periodic review and continuous review models. The

periodic review model is used to investigate the structure of the optimal policy and

they found that the structure tends to be complex if the production and recovery lead

times differ.

A number of papers have studied product recovery systems by treating returns as

“negative demands” and thus decomposing the inventory position so that the system

is transformed into a model without returns. A traditional (s, S) (if inventory is less

than s, order-up-to S) policy can then be applied to the system. Fleischmann and Kuik

(2003) study such a system and prove the average cost optimality of a (s, S) policy.

Fleischmann et al. (2003) adapt the findings of Fleischmann and Kuik (2003) and

apply them to IBM’s spare-parts system. Whilst their model does take into account

alternative channels for recovery (a feature that we also include in all four of our

models), the complexity of this real-life system means that analytical results are not

available and thus that simulation must be used. The nature of the model may also

be specific to the spare-parts system at IBM, and thus may not be applicable to other

organisations.

Nakashima et al. (2002) study a product recovery model using a discrete time
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Markov Chain. In their model there are two types of inventory: inventory in stock

with the company and inventory with the consumer. The number of used goods which

are returned to the firm each period depends on the number of goods in the “consumer

inventory” and a known return rate. Each period used goods are also “disposed”

directly from the consumers’ inventory. The return and disposal rates which minimise

the expected average cost per period are calculated exactly. This paper was extended

by Nakashima et al. (2004) who consider a Markov decision process model. Like the

earlier paper, the system is modelled in terms of two inventories: one for goods in-

stock and one for goods with the consumer. The state space of the problem is the two

inventories and the action chosen at each period is the number items to be produced.

The optimal production policy for each state in the state space is presented. Neither

of these papers consider the quality of the returns.

The inclusion of a disposal option in the policy has been an issue of contention in

the literature. In many product recovery systems unwanted returns can be disposed of

at each decision epoch (Inderfurth, 1997; Simpson, 1978), however some research has

questioned the necessity of including this option. In considering this issue across a

wide variety of scenarios, Teunter and Vlachos (2002) found that disposing of returns

is only beneficial under certain conditions, namely, if there is a low demand rate, a high

return rate, and the profitability of recovery is low. This result is one of the reasons why

we do not explicitly include a disposal option in the models proposed in this thesis.

Policy Parameter Values

A related stream of research has investigated methods for finding parameter values in

specified policies; in some cases optimal parameter for a given policy are sought, and

in other cases heuristic methods are used.

Optimal parameter values for specific policies have been studied by Kiesmüller and

van der Laan (2001); Kiesmüller and Scherer (2003); Wang et al. (2011). Kiesmüller

and van der Laan (2001) find optimal parameter values for a two-parameter order-

up-to level policy, which specifies the amount of inventory in stock at the start of

the planning horizon, and the order-up-to level for orders placed at the start of each

period. This paper differs from many other papers in this field of research as it assumes
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that there is a dependence between demand and returns. An uncertain proportion of

goods are returned to the system, and of these returns, a stochastic proportion have

sufficient quality to be recovered. The remainder are disposed. Kiesmüller and Scherer

(2003) compute the optimal parameter values for the three parameter policy studied by

Simpson (1978); Inderfurth (1997). They also present two approximation methods for

computing the parameter values, which provide solutions more quickly. Wang et al.

(2011) derive optimal parameter values for a two-parameter policy, which specifies the

order size for production and the proportion of returns which should be recovered. In

their model returns which are not recovered are disposed.

Another stream of research has focussed on using heuristic methods to find

“good” parameter values for specified policies. This is particularly the case for more

complicated models for which simple policies do not exist. Even the inclusion of

fixed costs into an otherwise simple product recovery model can make it unlikely that

the optimal policy will have a simple structure (Inderfurth, 1997). In Chapter 5 we

investigate the structure of the optimal policy, but do not search for a simply-structured

optimal policy. Instead, we use the insights gained about the optimal structure to

develop simple characterisations and test their performance compared with the optimal

policy.

Kiesmüller (2003) investigates a heuristic two-parameter (produce-up-to, recover-

up-to) policy, in which two different definitions of the inventory positions are used in

determining each of the actions in each period. Mahadevan et al. (2003) propose

“push” policies for a periodic review product recovery system, which specify the review

frequency and the order-up-to level. Using simulation they find the optimal order up

to level for a fixed review period. Heuristics are developed to find the order-up-to level,

and upper and lower bounds are calculated. The performance of the heuristics is tested

using the results from the simulation. All returns are recoverable (hence no disposal).

Khawam et al. (2007) analyses a periodic review stochastic warranty inventory system

in which products are returned because of a warranty claim. Heuristics are proposed

to find ‘near optimal’ policies. The quality is considered, in that not all returns

can be recovered, however no alternative recovery option is available for low quality

items. Ahiska and King (2010) use Markov decision processes and presents a simple

characterisation of the optimal policy for the models by Inderfurth (1997) and Simpson
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(1978). Their model includes fixed costs (unlike Inderfurth (1997)) and non-equal lead

times. The policies they present are not optimal, but are simple and thus could be

easily implemented. This paper highlights an important issue – even if an optimal

policy can be found, it may be too complicated to implement in practice. This further

motivates our search for “good”, but simple heuristic policies in Chapter 5.

Other Stochastic Discrete Time Models

Another stream of the literature has examined multi-echelon inventory systems with

returns. Much of the work in this area stems from Clark and Scarf (1960), who consider

multi-echelon inventory systems without returns. The models in this stream typically

to follow an “assembly system” structure, with a number of stages, in which returns

may arrive at any stage. Some key papers in this stream include DeCroix and Zipkin

(2005), DeCroix et al. (2005) and DeCroix (2006). Further details are not included

here as, whilst this stream is related to the broader area of product recovery, they are

not related to the models in this thesis.

Francas and Minner (2009) consider the network configuration of a one-period,

multi-item, stochastic product recovery system. They investigate the efficiency of

conducting production and recovery in common plants, compared with in separate

plants. They also consider two cases: both products are sold on the same market, and

products are sold on separate markets. They found the factors which contribute to

the optimal network configuration include the network size, the costs, and the market

structure. Throughout this thesis it is assumed that production and recovery require

the use of some shared facility, i.e. a common plant.

Several approaches have been used to deal with the uncertainty of the returns.

de Brito and van der Laan (2009) present four methods that could be used for

forecasting the returns in future periods and find that the methods requiring more

information do not necessarily lead to lower costs. Robust optimisation is used by Wei

et al. (2010) to deal with the uncertainty of returns.
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Summary

Much of the stochastic periodic-review literature has focussed on either finding the

policy structure or the parameter values for a given policy structure. Some literature

has focused on proving the optimality of the structure and/or parameter values, but

the complexity of the models means that this is not always possible and thus heuristic

methods must be used. In general, very little attention is paid to the quality of the

returns. As was the case for the deterministic literature, it is assumed either that all

returns can be recovered, or that “low quality” returns are discarded. This is somewhat

surprising since it should be easier to model uncertain quality in stochastic models,

compared with deterministic ones.

2.3.3 Stochastic Continuous Time Models

Another stream of research has examined continuous-time stochastic product recovery

models, in which demand and returns are observed and decisions are made at any

point across a continuous time horizon. In general, continuous time models assume

a particular policy structure and focus on obtaining a cost function and the policy

parameters. Finding the optimal policy structure is usually not possible for continuous

time models. Much of the research in this area stems from the early papers by Heyman

(1977) and Muckstadt and Isaac (1981). The key issues in this field of literature are

the inclusion of an option for the disposal of returns, the definition of the inventory

position, and the inclusion of leadtimes for production and recovery. Approaches for

dealing with uncertain quality of returns and yield from recovery are also discussed by

a number of authors.

In this thesis we study a continuous time model with separate markets (Chapter 7),

however insights from this body of literature, particularly with respect to the quality

of returns, are also useful for the single market discrete-time model (Chapter 5) and

the separate markets discrete-time model (Chapter 6).

Policy Structures and Parameter Values

A large body of literature has focussed on finding parameter values for specific policy

structures. Assuming a given policy structure (rather than trying to find an optimal
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one) allows more complicated features to be included in the models. Heyman (1977) was

one of the first to consider a continuous time product recovery system with procurement

and repair. Using a single server queue, Heyman (1977) finds an optimal policy

which specifies the inventory levels for which disposal should be carried out, under the

assumption that returns and demand are governed by Poisson processes. Returns could

be either disposed of or repaired, however the number of returns accepted is limited

by the capacity of the queue (Fleischmann et al., 2002). No fixed costs are incurred

(Ilgin and Gupta, 2010). This model was extended by Muckstadt and Isaac (1981) by

the inclusion of fixed costs and lead times, however the disposal of returns was not

permitted (Ilgin and Gupta, 2010) and costs were not included for holding returned

inventory (van der Laan et al., 1999a). A numerical procedure was used for determining

the parameter values at each echelon under a (s,Q) policy structure (van der Laan et al.,

1996b). The paper was extended by van der Laan et al. (1996a,b). The latter includes

a disposal option and presents then tests two approximation methods for computing

the parameter values of a (s,Q) policy. The former considers a more complex four

parameter (sp, Qp, sd, N) policy which specifies a procurement policy (if the inventory

position is sp or less, then an order of size Qp is placed), and a disposal policy (if the

inventory position is sd or the number of returns in the system is N , then returns are

disposed of when they arrive).

Push and pull policies for a continuous time product recovery system, with nonzero

lead times are studied by van der Laan and Salomon (1997). Under a push strategy the

returns are recovered as soon as possible, i.e. they are “pushed” through the system,

and under a pull strategy the returns are only recovered when they are needed in order

to satisfy demand. Exact expressions for the cost functions of these polices are provided

and numerical experiments are used to show the advantage of incorporating “planned”

disposal into the production planning system. van der Laan et al. (1999a) also examine

push and pull strategies for managing production and recovery operations, however

they focus on the impact of the length and variability of the lead-times of production

and recovery. Their model does not include a disposal option for returns.

The managerial implications for firms which perform production and recovery and

the added complexity that this presents (compared with performing just production)

are discussed by van der Laan et al. (1999b). Inderfurth and van der Laan (2001)
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extend the work above and the discrete-time literature (discussed in Section 2.3.2) by

examining the effect of the relationship between production and recovery lead times.

They found that the structure of the optimal policies are complex if the production

and recovery lead times differ, and in particular, that differing lead times mean that

traditional definitions of the inventory position may not be appropriate.

Three policy structures and heuristics for obtaining the policy parameter values are

studied by van der Laan and Teunter (2006). The first policy is a “push” policy which is

defined as follows: if returns reach Qr then recovery Qr and if serviceable inventory falls

to sm, then produce Qm. The second policy is a simple “pull” policy which is defined as

follows: replenish if serviceable inventory falls to s by performing recovery if there are

sufficient returns in stock Qr, otherwise by production Qm. The third is a more general

“pull”policy which is defined as follows: if serviceable inventory drops to sr and there

sufficient returns in stock then recover Qr, otherwise if serviceable inventory drops to

sm < sr produce Qm. They use lot-sizing formulae from the equivalent deterministic

models as the basis for their policy parameter estimates. We also follow this approach

for obtaining parameter values for some of the heuristics presented in Chapter 5.

Zanoni et al. (2006) use simulation to compare the performance of three policy

structures under different leadtime relationships. They consider some variations of

the pull policy, including a dual sourcing policy which obtains part of the required

replenishment batch from recovery and the remainder from production. The effect of

leadtime on the performance of the system is also discussed by Zhou et al. (2006), who

study a product recovery system which uses a Kanban policy.

Modelling Returns as “Negative” Demands

Another stream of literature has modelled product continuous time, stochastic product

recovery systems by treating returns as “negative demands”. In general these papers

tend to have a simpler structure.

One such paper is by Fleischmann et al. (2002), who study a model in which returns

are recovered instantaneously and in which there are independent Poisson demand and

returns. The model is converted into a traditional inventory model by treating returns
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as ‘negative demands’ and by modelling the change in inventory with a continuous

time Markov process. One simplification of this model is that it is assumed that

returns undergo “instant” recovery so enter into serviceable inventory immediately

after they arrive back into the system. All returns are recovered and there is no

disposal. It is shown that the traditional (s,Q) policy remains optimal for the objective

of minimising long-run expected average costs and a procedure for determining the

optimal policy parameter values is presented. This is an important result because,

though the model is quite simple, the optimal policy structure and optimal parameter

values are determined.

Other Continuous-Time Stochastic Literature

Toktay et al. (2000) apply a queueing model to Kodak’s single-use camera remanufac-

turing system. Some parts of the queueing network are assumed to be “unobservable”

in order to model the uncertainty associated with when the item is with the consumer.

Toktay et al. (2000) assess the effect of the un-observability of different aspects of the

queueing network, and use this to determine the “value of information”. This is an

important issue and perhaps even more so now than in 2000, since stricter record-

keeping requirements mean information may be available, but accessing it may incur

some costs. Thus knowing the value of information is key for organisations.

A queueing model is also studied by Behret and Korugan (2009). In their model the

returns are classified according to three different quality levels. The system has three

separate stations for processing returns, with each station specialising in a particular

classification of quality. All stations can remanufacture all quality levels, but processing

time is quickest if done by a specialist station. Mitra (2009) study a stochastic two-

echelon product recovery system. The production and recovery are performed by a

depot which supplies the distributor, who in turn, supplies the consumer.

Many of the papers discussed above assumed that the demands and returns are

governed by Poisson processes. de Brito and Dekker (2003) propose some frameworks

in order to test this assumption using three different sets of data.

Souza and Ketzenberg (2002) study a ‘make-to-order’ product recovery model in

which the objective is to maximize the long-run average profits, subject to service
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level constraints. In their model new products and recovered products undergo specific

stages of production, but they also undergo a common stage of the production process.

The returns that enter the recovery process do not all have sufficient quality to be

recovered, thus some are disposed. Under production capacity restrictions, even if

production is more profitable than recovery, it is still optimal to perform some recovery

as this helps to satisfy the service level constraints. We find a similar result in this

thesis – performing additional (low quality) recovery can improve the service level of a

policy.

Aras et al. (2004) consider a continuous-time Markov chain model in which returns

are categorised on arrival as being high or low quality. Recovery occurs in a batch of low

quality items or a batch of high quality items, with the lead time of recovery dependent

on the quality level of the batch. Production is also required to meet demand, however

since the focus of this paper is on the recovery process and quality-categorisation, the

production part of the process is not modelled. This is a signification limitation of

this paper, as it is often the interaction between production and recovery that causes

modelling complications. However despite this, a key result from this paper is that

they demonstrate that cost savings are possible by categorising returns based on their

quality. This provides further motivation for the models proposed in this thesis. The

assumption that the quality can be determined on arrival may not be valid in some cases.

For example, it may be the case that the quality of the return can not be determined

until the recovery process has begun. We address this limitation by assuming that the

quality of returns is determined during recovery.

Aras et al. (2006) also assume that the recovery lead time and cost depend on the

quality of returns. There is a stocking point for raw materials, which are needed for

production – the models in this thesis also follow this assumption and stock components.

A three parameter pull policy which specifies the trigger level for ordering components,

the trigger level for recovery and the returns’ disposal level (if returns are greater than

this level they are disposed). Disposal does not depend on the quality of the returns.

It was found that when there is no coordination between recovery and production, it

is cost effective to give priority to production if the return rate is below a certain level.

However if there is coordination between the decision making, then there is not much

difference between the prioritisation strategies.
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The quality of returns has also been modelled by assuming that the yield of recovery

is uncertain. Bayindir et al. (2006) study a product recovery model in which the

success of the recovery process is uncertain and items which cannot be recovered are

lost from the system. Mukhopadhyay and Ma (2009) study a model in which returns

are recovered to obtain parts which then used in production. The yield rate of recovery

is not perfect, so new components must also be bought.

Takahashi et al. (2007) discuss a remanufacturing system in which returns can be

decomposed into parts, materials (or both), or are disposed of. Materials are used to

make parts, and then parts are used to make serviceable goods. The flow of parts and

materials from the decomposition process is stochastic, however no context is given

for why there are different yields from different products. For instance, the quality of

returns could explain the different types of recovery, however this is not mentioned in

the paper.

Summary

The literature studying continuous-time models has either studied a simple model and

then focused on finding the optimal policy, or studied more complicated models and

used heuristic policies and simulation. The policy structures and methods for obtaining

parameter values discussed above will be used to inform our development of policies in

Chapter 5. More attention has been paid to the quality of the returns in this body of

literature, compared with the discrete-time literature and a number of methods have

been proposed for dealing with the quality of returns. Aras et al. (2004) classify returns

as being high or low quality on arrival and find that doing so leads to cost-savings. The

quality of returns has also been modelled by assuming that the yield of recovery is

uncertain (Bayindir et al., 2006; Mukhopadhyay and Ma, 2009). Behret and Korugan

(2009) classified returns according to three different quality levels. The system has

three separate stations for processing returns which have different quality-dependent

recovery lead-times. Takahashi et al. (2007) discuss a recovery system with multiple

recovery channels, but they do not relate this to the quality of returns.
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2.4 Separate Markets for Produced and Recovered Goods

The second key body of literature that is reviewed here relates to product recovery

models in which produced and recovered goods are sold on separate markets. This

literature relates to the models proposed in Chapters 6 and 7. Produced and recovered

goods need to be sold on separate markets when recovered goods are not “as-good-as-

new” ones. In some cases this assumption is valid, however this is not always the case.

Particularly in the consumer goods industry, a consumer may not feel that a recovered

good really is the same as a new one, even if it is functionally identical. Further, as

discussed by Korugan and Gupta (2001), in some cases legislation prevents recovered

goods being sold as new. In such cases, newly produced items and recovered items

are sold in separate markets. The market for recovered items may be in developing

countries or it may be a secondary market. Research in this area has considered factors

such as network design, market structure, and substitution and pricing policies.

The management of inventory in production systems which sell to multiple markets

has been widely discussed in the multi-item inventory literature, e.g. Federgruen et al.

(1984). However in this review we focus on models which study separate markets within

a product recovery context, i.e., in which used goods are recovered and then sold. We

also discuss models of specialised recovery facilities, as in general, these papers assume

that recovered goods are not as good as new. In cases where both goods are sold by the

same firm, customers may accept the other type of good as a substitute, in the event of

a stock out. In this section we first give a brief introduction to product substitution and

then review the literature relating to product recovery models in which newly produced

and recovered goods are sold on separate markets, before discussing specialised recovery

models.

2.4.1 Substitution in Inventory Models

Substitution between goods has been studied in the context of product recovery, but

also in the context of “regular” inventory models. For example, substitution between

goods has been discussed in with respect to perishable goods (Deniz et al., 2004) and

superior vs inferior semi-conductors (Hsu and Bassok, 1999). Substitution can be used,

in the event of a stock out, in order to avoid shortage costs.
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A key distinction with regards to substitution is consumer-driven versus firm-driven

substitution (Hopp and Xu, 2008). Consumer-driven substitution is usually studied in

the context of product assortment problems, in which the retailer chooses to stock at

range of products in the hope that if the consumer is faced with a stock-out of their

first-choice product, they may choose to buy an alternative product instead (Smith and

Agrawal, 2000). The substitution decision in this case is made by the consumer, thus

they must pay the full-cost of the product they purchase, even if it is more expensive

than their first-choice product. Under firm-driven substitution the decision to offer

substitution is made by the firm, therefore if there is a difference in the price of the

two goods, the firm will cover the costs associated with this, e.g. by offering a discount

and allowing customer to pay the price of the cheaper good. The consumer may still

decide to accept or reject the substitution, however in initial decision is made by the

firm. This type of substitution can be offered by the firm as a way of avoiding a lost

sale. In this thesis we study firm-drive substitution.

Furthermore, there are two types of substitution that we distinguish between:

downward substitution and upward substitution. Following Hsu and Bassok (1999),

we define downward substitution as when a superior product is used to satisfy demand

for an inferior product, and upward substitution as when an inferior products is used

to satisfy demand for a superior product. This terminology is also used by Inderfurth

(2004) and Robotis et al. (2005). In the context of the product recovery models,

downward substitution occurs when there is a shortage of recovered products and

upward substitution occurs when there is a shortage of produced goods. If both upward

and downward substitution are permitted then this is sometimes referred to as two-way

substitution.

2.4.2 Production and Recovery

Produced and recovered goods are sold on separate markets when recovered goods are

considered to be “as-good-as-new”. Many of the papers considering product recovery

and separate markets study the problem over a single period. The key paper studying

product recovery models with separate markets is by Inderfurth (2004). Many of these

papers assume that all substitutions (if offered) are accepted. Bayindir et al. (2007) and
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Kaya (2010) consider a partial acceptance, but these acceptance rates are deterministic

and known.

Korugan and Gupta (2001) study a continuous-time product recovery system in

which demand can be met by newly produced goods or by recovered goods. Either

type of good can be used to meet the demand, however recovered goods are viewed as

inferior so are sold for a lower price. While this paper does address the issue of separate

prices for newly produced and recovered goods, it assumes that the customers are happy

to receive either item, so strictly speaking, does not consider separate markets. They

found that the decision about whether to use a new or recovered good to satisfy demand

is governed by a switching function. They use Markov decision processes to obtain the

optimal function and compare this to a number of heuristic functions.

Inderfurth (2004) studies a single period system in which produced and recovered

items are sold on separate markets. Downward substitution may be offered in the event

of a stock-out of recovered goods. Doing so prevents a shortage cost, however will result

in a lower profit contribution as the produced good would be sold for the price of a

recovered one. This paper has non-zero lead times for manufacturing and recovery, but

no set up costs. They found that offering substitution leads to lower levels of recovered

inventory. This is a key paper in the area of product recovery models with separate

markets and substitution, and much of the recent research extends it. However, the

quality of the returns and the possibility of upward substitution are not considered in

this paper.

Li et al. (2006) study a dynamic deterministic multi-item product recovery model

in which the firm must decide how much of each product to produce and recover each

period, in order to minimise the total cost. The items stocked vary in quality. If

there is insufficient stock to meet demand a downward substitution may be offered;

substitution is always accepted by the customer. Li et al. (2007) study a similar

problem, but over a two-period time horizon and allow emergency procurement orders.

Bayindir et al. (2007) study a single-period stochastic production system with

production and recovery, in which downward substitution is offered. A model allowing

two-way substitution is also presented, however they mostly address the one-way

substitution case. The proportion of customers who accept a substitution is known
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and constant. A finite production capacity is included in the model; production and

recovery ‘compete’ for this finite resource. The profitability of recovery is examined.

Jaber and El Saadany (2009) study a separate-markets deterministic model.

Production and recovery can not occur at the same time and new and recovered goods

can not both be held in stock at the same time. This means that during production,

there are no recovered goods in stock, and thus all recovered sales are lost. Similarly,

sales of produced goods are lost during periods of recovery. This paper also considers the

case in which some unmet demand can be satisfied by substitution and briefly examines

the relationship between acceptance of substitution and the level of compensation paid

to the consumer.

Piñeyro and Viera (2010) study an extension of the economic lot sizing problem,

which includes recovery and one-way substitution. The firm must decide how much

to produce, recover and dispose of each period, in order to minimize costs, subject

to demand constraints. They demonstrate that this deterministic dynamic problem

is NP-hard and propose a tabu-search heuristic for obtaining a solution. There are

separate markets for new and recovered goods, however in the event of a stock-out of

recovered goods, a new good can be offered as a substitute. All customers who are

offered a substitution will accept it.

Kaya (2010) studies a system produces goods from new materials, as well as recovers

returned goods. In this model, an incentive is paid to the consumer in exchange for

the returned goods with the level of the incentive affecting the quality of the returns.

Three models are proposed: recovery only, single market for produced and recovered

goods, and separate markets for produced and recovered goods. In this final model,

there is some two-way substitution between produced and recovered goods if a stock

out occurs. A known proportion of customers offered a substitution will accept it. This

is one of the few product recovery models which considers two-way substitution.

Aras et al. (2011) study a profit maximising, finite horizon, periodic review system

in which new products are leased, and then returned to the system, recovered and then

sold. Recovered products cannot be leased and cannot be recovered more than once.

There is no substitution between goods in the event of a stock out.
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Francas and Minner (2009) study the network configuration of a multi-item

stochastic product recovery system over a single time-period. They consider two market

structure cases: when recovered goods can be sold as new (on the same market), and

when they can be sold on a secondary market. When the goods are sold on the same

market, new and recovered goods are considered to be perfect substitutes for others.

When they are sold on separate markets there is no substitution between the two

markets. Decisions are made about the capacity to be installed at each plant and the

production decisions.

Debo et al. (2005) study the market segmentation for a product recovery firm which

sells new and recovered goods on separate markets. The degree of recovery performed

is a decision variable which determines the price for which the recovered good can be

sold. The customers all have a different willingness to pay, thus different pricing

strategies may influence the number of consumers wanting to buy each of the products.

Both monopolistic and competitive market structures are considered.

Heese et al. (2005) use a duopoly game-theory model to analyse a manufacturing

firm which is considering taking back products after use and recovering them. New

and recovered goods are sold to separate markets. They analyse the conditions under

which it is optimal for the producer to offer recovery and what effect this will have on

the customers. In a related paper, Ferrer and Swaminathan (2010) use a game-theory

approach to investigate pricing and production decisions in a monopolistic product

recovery system. In the first period, only production occurs but in the second and

subsequent periods both production and recovery may occur. The number of goods

produced will affect the number of returns available for recovery in subsequent periods,

thus the firm has to determine the prices for new and recovered goods, and also decide

how many items to recover.

Summary

A range of issues have been studied in the context of separate markets for produced

and recovered items. However across this body of research, the majority consider only

downward substitution. This is a limitation of the existing literature as there may be

some cases where a consumer would rather have a recovered good at a cheaper price,
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than nothing at all. Furthermore, the quality of returns is not addressed in this body

of literature.

2.4.3 Specialised Recovery

Another stream of the literature has focused on specialised recovery firms, that is, firms

which only recover used goods, rather than produce new items as well. The increase

in product recovery in recent years has created demand for specialised recovery (or

remanufacturing) firms, which has in turn, motivated research into such models. In

general, the goods which are recovered by these firms are not assumed to be ‘as good

as new’, thus are not sold on the same markets as newly produced ones. There is quite

a large of body of literature which studies these specialised models, therefore in this

section we mainly focus on the papers which incorporate the quality of returns into

their models.

Inderfurth et al. (2001) study a periodic review, stochastic remanufacturing system,

in which excess returns can be disposed off. Returns can be used to make multiple

different types of products; each product is sold on a separate market. It addresses

the problem of how the returned goods should be allocated to the different reuse options.

This is paper relevant to this thesis as we too consider multiple reuse options.

Souza et al. (2002) study a capacitated remanufacturing system in which returns

are graded based on three different conditions, i.e. each quality is treated as a different

class in the queueing network. Processing stations specialise in dealing with one of

the three grades of product. They can process other grades, however this costs more

and takes longer. The system is analysed using queueing theory to investigate the

constraints on the service level. Guide et al. (2008) also use a queueing system study

a remanufacturing system, however their model focuses on a product with a short life

cycle. The operational decision is whether to recovery the used product, or whether to

sell it as is for a salvage price. Recovery will allow the item to be sold at a price higher

than the salvage value, however the longer the lead-time associated with performing

the manufacturing, the lower the sale price for the remanufactured good. The lead-time

for recovery depends on the congestion at the facility. They found that if the recovery
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system is congested and the price decrease associated with the recovered good is steep,

then profit can be increased by selling returns as-is.

Robotis et al. (2005) consider a dedicated remanufacturing system which receives

returns from two suppliers, one of which provides high quality returns, the other of

which provides low quality returns. Within each of these classes of returns, the returns

vary in quality. Some are of sufficiently high quality to be sold on to their respective

markets as is. Other returns require remanufacturing before they can be sold, otherwise

they will be disposed of. The firm must decide whether to remanufacture or to dispose

of returns that do not meet the required quality standard for each of the two classes of

products. Downward substitution is available in the case that there is a stock out of

the low quality goods. The problem is studied over a single period time horizon. They

found that performing remanufacturing on the returns, rather than selling them as is,

can allow the firm to achieve greater profits. Further, if remanufacturing is to be used,

then the firm does not need to purchase as many used goods, since after remanufacturing

the goods will meet the consumers required standard of quality. We find a similar result

in this thesis - being able to offer substitution influences the decisions to replenish the

inventories of produced and recovered goods.

Tang et al. (2007) study a make-to-order remanufacturing system in which returns

have mixed quality. Returns with sufficient quality can be used in the assembly

(remanufacturing) process and be combined with newly purchased components in order

to meet a demand. Low quality components are disposed of, and an order is placed

for a comparable component to be used in the assembly process. It was found that a

newsboy problem could be used to obtain a solution.

Tagaras and Zikopoulos (2008) study an infinite horizon, multi-location remanu-

facturing problem in which there is a central remanufacturing facility and multiple

collection sites. Three control policies are considered: no sorting of returns, sorting

centrally, sorting at the collection sites. However, the sorting process can be inaccurate.

The paper investigates the conditions under which it is optimal to perform each of the

three sorting strategies and derives expressions specifying under what conditions each

should be performed. Zikopoulos and Tagaras (2008) study a similar problem, in which

sorting procedures are carried out at a single collection centre, and provide analytical

expressions for the value of sorting. A single-period variation of this problem was
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considered by Zikopoulos and Tagaras (2007). The decision variables are the amount

to collect from each site and the amount to remanufacture, in order to maximize profit.

Gou et al. (2008) also study a product recovery model, in which returns are collected

at various locations before being returned to a central recovery facility. This paper

provides optimal batch sizes for shipments from the collection points to the recovery

facility, and for the recovery of returns.

The issue of sorting, or grading returns based on quality was also considered by

Ferguson et al. (2009). They consider the quality of returns in a firm which leases

new goods and sells remanufactured goods to separate markets. In their finite horizon,

periodic model they focus on the remanufacturing aspect of the operations and do not

explicitly model the leasing aspect, thus the model can be considered a ‘recovery-only’

model. The decisions each period are the numbers of each quality level to remanufacture

and to salvage, in order to maximize total expected profit. Returns are classified

by multiple quality levels, with some returns being scrapped (and used for parts or

materials) and the remainder enter the remanufacturing process. Returns which do

not enter the remanufacturing process, i.e., the ones which are sold for a salvage value,

leave the system. It was found that by sorting the returns, profits could be increased.

Denizel et al. (2010) study a periodic review, capacitated recovery system in which

returns have differing qualities and lower quality items require more recovery effort.

Demand and returns are deterministic, but the quality of the returns is stochastic so a

stochastic programme formulation is used to specify the decision to be taken at each

period. The decision variables are the number of returns to “grade”, the number of

returns to recovery at each level, and the amount of each type of inventory to keep in

stock for future periods. They found that they relationship between the quality of the

return and the cost of recovery has a significant impact on the firm’s profit. The cost of

sorting items and the salvage value of un-remanufactured returns also had an impact.

Kaya (2010) studies a production system which remanufactures returned goods.

They consider three variations of this model: remanufacturing only, production and

remanufacturing with a single market, production and remanufacturing with separate

markets. Since this paper also considers production, it is discussed in Section 2.4.2.

Teunter and Flapper (2011) study a one-period, specialised recovery system in which

the returns can be classified into multiple quality classes, where the cost of performing
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recovery is higher for items of lower quality. Models with deterministic and stochastic

demand are presented. Although this paper uses the quality of returns determine

the cost of recovery, it does not model the type of recovery that can be performed.

This could be an oversimplification since it could be possible that returns of different

quality levels not only have a different recovery cost, but also have to undergo different

processes.

Summary

In general, more attention has been paid to the quality of returns in the specialised

recovery systems, than in systems which also perform production. Teunter and Flapper

(2011) was one that did consider the quality of returns, however they assumed it was

only the cost recovery that was affected by the quality. As mentioned earlier this

simplification may not be relevant in all situations. We address this issue in all models

in this thesis by providing two channels for recovery, each with a different cost, but

also a different process.

2.5 Literature Summary and Gaps

Product recovery is performed in a large number of industries, from military to

telecommunications and is becoming increasingly important due to economic, legislative

and environmental pressures. In recent years, the amount of research on product

recovery management has increased dramatically. Product recovery systems pose

additional operational challenges due to the increased uncertainty caused by the quality,

quantity and timing of returns (Ilgin and Gupta, 2010). The quality of returns is

widely acknowledged as being important, however comparatively little research has

investigated this issue. In this section a brief summary of the literature reviewed in

this chapter is provided and then an overview of the literature gaps addressed by this

thesis is presented.
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2.5.1 Literature Summary

Single Market for Produced and Recovered Goods

Production and recovery research can be classified as being deterministic, discrete-time

stochastic, and continuous-time stochastic models.

Deterministic product recovery models typically have a EOQ structure and are

concerned with determining the optimal lot size and the optimal number of lots per

cycle. The main issues that are discussed are whether or not to include a disposal option

for returns and obtaining values of the decision variables. With regards to quality, most

research assumes that either all returns are recoverable or that low quality returns are

disposed.

Discrete-time, periodic-review stochastic product recovery models allow demand

and returns to be observed and decisions to be made on a periodic basis. Typically

periodic models are studied over a discrete time horizon. The nature of the periodic

review models mean that finding the structure of the optimal policy is sometimes

possible, therefore much of the research has focussed on doing this. However, a

substantial body of literature has also investigated finding the optimal parameter values

for a variety of policy structures. A three parameter policy, which specifies when to

produce, recover and dispose of returns, is and has been popular in the literature since

it was introduced by Phelps (1962). However, in today’s environmentally conscious

society, legislation may mean that disposal is not an option, i.e. firms must recover, in

some form, everything that is returned to them.

Continuous-time, continuous-review stochastic product recovery models allow

demand and returns to be observed and decisions to be made at any point across

a continuous time horizon. In general, continuous review models assume a particular

policy structure and focus on obtaining a cost function and the policy parameters.

Finding the optimal policy structure is often not possible for continuous time models.

The key issues in this field of literature are the inclusion of a disposal option for returns,

the definition of the inventory position, and the nature of the leadtimes for production

and recovery. Approaches for dealing with uncertain quality of returns and yield from

recovery have also been discussed by a number of authors.
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Separate Markets for Produced and Recovered Goods

Another stream of literature dealing with product recovery management examines

systems in which recovered goods are not sold on the same market as newly produced

ones. Even when recovered goods are functionally “as good as new”, customers

may not perceive them to be so, and indeed in some countries, legislation prevents

recovered goods being sold “as new”. Key issues in this stream of literature include

substitution, network configuration and market structure. Most of the papers which

include substitution only consider one-way downward substitution, although some do

consider two-way substitution. Downward substitution assumes that a high value

(newly produced) item is used to satisfy demand for a lower value (recovered) item,

rather than the reverse. This is a limitation of the literature as there may be cases

where a customer would also be willing to receive a lower-value recovered item, rather

than no item at all.

Some literature has considered specialised recovery systems, i.e., systems which

only perform recovery, i.e., do not perform production or procurement of new goods.

Some papers study consider multiple reuse options and investigate how returns should

be allocated between them. Issues discussed in the literature include the network

structure, the quality of returns and the sorting of returns. Of all of the product

recovery literature, it is this area which discusses the quality of returns in most detail.

Quality of Returns

The quality of the returns is a significant issue in the operation of product recovery

systems as it can affect the type of recovery which can be performed and the associated

costs (Fleischmann et al., 1997). A summary of the key literature relating to the

quality of returns is presented in Table 2.1. As shown in this table, quality has been

considered in a number of different ways. Some papers assume that only goods which

have sufficient quality are returned to the firm, others assume the firm can choose either

to either buy back returns regardless of quality and then dispose of low quality items,

or to only buy back high quality returns. A few papers address the issue of quality

by introducing a sorting option for returns, for instance Ferguson et al. (2009) found
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that by sorting returns based on their quality, profits could be increased. The quality

of returns has been modelled by introducing quality dependent costs and leadtimes for

recovery (Aras et al., 2004, 2006). Controlling timing and quality of returns through

buyback strategies has also been studied (Aras et al., 2006). Some of these papers

assume returns which are disposed of are sold for scrap or used for parts/materials

(Ferguson et al., 2009), however few actually include this in their models.

There are a number of limitations within the existing literature. Assuming that

only high quality returns are returned is naive, and as suggested by various ‘sorting’

studies, can lead to underestimated costs. Further, assuming that low quality returns

are disposed ignores the possibility that the firm may be able to salvage value from

these returns, either by using them for parts or materials. If these parts can be used in

the production of new items, then this could reduce the need for the purchase of new

materials and thereby reducing the cost of producing new items, and thus helping to

protect the environment.

Under current environmental recycling targets, firms are encouraged to recycle as

much as possible, and can be penalised for items which they do not recover. Including

a low quality recovery option could allow them to increase their recycling percentage

and avoid such penalty costs. The profitability of performing low quality recovery is

likely to be affected by the costs associated with production and recovery, but will also

be affected by the penalty costs associated with not recycling.

2.5.2 Literature Gaps Addressed by this Thesis

Context

This thesis addresses the issue of the quality of the returns, by assuming that returns

may be either high quality or low quality and that the quality of the returns determines

the type of recovery that can be performed. High quality returns can be recovered (e.g.

repair, refurbishing and remanufacturing) to become serviceable goods. Low quality

returns can be recovered (e.g. cannibalisation and recycling) and used as components

in the production of new items.
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Table 2.1: Summary of papers in product recovery literature studying the quality of returns

Authors Year Type Stream Method for dealing with quality

Dobos and Richter 2006 Deterministic Production/recycling Low quality items are disposed

Çorbacioğlu and van der Laan 2007 Deterministic Recovery All returns are recovered in one of the two
streams. No disposal

El Saadany and Jaber 2008 Deterministic Waste disposal Returns are recovered or disposed

El Saadany and Jaber 2010 Deterministic Waste disposal All returns entering recovery are useable. Items
which are not are not accepted/disposed.

Rubio and Corominas 2008 Deterministic Recovery Returns are recovered or disposed

Koh et al. 2002 Deterministic Recovery All returns are recoverable, items are scrapped
from consumer

Dobos and Richter 2004 Deterministic Production/recycling Returns are recovered or disposed

Simpson 1978 Stochastic Periodic Optimal Policy Structure All returns can be repaired.

Khawam et al. 2007 Stochastic Periodic Heuristic Parameter Values not all returns can be remanufactured

Wang et al. 2010 Stochastic Periodic Parameter Values Returns which are not recovered are disposed of

Fleischmann et al. 2002 Continuous Negative Demands All returns are recovered.

Aras et al. 2004 Continuous Yield Lead time and cost of recovery is quality
dependent

Aras et al. 2006 Continuous Yield Quality is modelled by a uniform distribution

Souza and Ketzenberg 2002 Continuous Yield Returns are recovered or disposed depending
on quality

Tang et al. 2007 Recovery Only Recovery Only Low quality components are disposed of, and
an order is placed for a comparable component
to be used in the assembly process.
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Throughout this thesis we compare the profitability of including low quality recovery

to the alternative of disposing of all low quality returns. The analyses that are

conducted investigate whether or not it is possible for a firm to improve its performance

by incorporating a low quality recovery option within their existing production recovery

system. This thesis differs from the more complicated assembly system models which

study use of parts, disassembly and assembly in a more detailed fashion, as the objective

is not to study the production planning aspect, as it is in these studies. Rather we

want to investigate whether or not it is profitable to incorporate this extra ‘channel’ of

recovery into the model, under a inventory management context.

The results obtained in this thesis could be used to help a firm make a planning

decision, using an inventory management framework, regarding the profitability of

adding the additional type of recovery. Firms could compare the difference in costs

to any one-off costs associated with the installation of the new recovery type.

Mathematical Models

In order to investigate the profitability of including a low quality recovery option into

a product recovery model, we propose four models. These models will address this

question, but will also fill gaps in their respective streams of literature.

Uncertain demand, and uncertainty regarding the quality, quantity and timing of

returns add challenges to the operation of a product recovery system. Therefore in this

research we begin our investigation with a deterministic lot-sizing model of a product

recovery system. This model extends the deterministic product recovery literature

(Section 2.3.1) by combining the models of Teunter (2004) and Oh and Hwang (2006).

It allows the quality of each return to determine what type of recovery is performed.

The ability of the producer to only take back high quality items, which was considered

in Dobos and Richter (2006), is also incorporated into the current model.

The second model extends the first by introducing uncertainty in the demand,

returns and quality of the returns. A discrete time periodic review model is used,

rather than a continuous review model, because it allows us to more easily investigate

the structure of the optimal policy. This model is positioned in the literature alongside
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the models of Inderfurth (1997) and Ahiska and King (2010). However it differs from

these models as it includes the low quality recovery option.

The first two models of this thesis assume that recovered goods are “as good as

new”. In some cases this is a justified assumption, however in some industries even

goods which may be functionally “as good as new” are not perceived by the consumer

to be the same as a new item. This limitation is addressed in the third and fourth

models by the introduction separate markets for new and recovered goods.

The third model is a discrete time periodic review model of a product recovery

system with separate markets for new and recovered goods and batched arrivals of

demand and returns. It is assumed that newly produced and recovered goods have a

similar functionality, therefore if there is insufficient inventory to meet demand for one

of the goods, the firm may offer the other as a substitute. Four substitution strategies

are investigated: no substitution, downward, upward and two-way substitution. It is

assumed that consumer may accept or reject the substitution. This model extends the

‘separate markets’ literature by allowing two-way substitution and an infinite horizon

model, in particular Inderfurth (2004) and Kaya (2010). Piñeyro and Viera (2010)

study a deterministic which has a similar modelling structure, but to the best of our

knowledge this type of model has not been studied in a stochastic environment.

In this discrete time model, demand, returns and substitution occur in batches

each period. This framework may be appropriate for modelling demand and returns,

however it does not allow substitution to be modelled in much detail. Therefore, the

fourth and final model of this thesis examines a continuous time continuous review

model. As in the discrete time model, this model has separate markets for new and

recovered goods, however the continuous nature of the model means that leadtimes are

also introduced. This model extends the literature, in particular, Inderfurth (2004),

Piñeyro and Viera (2010), and Kaya (2010).
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Chapter 3

Methodology

A variety of solution methodologies have been used to study product recovery systems.

The type of methodology which used depends on the structure of the problem under

study, as some methodologies are more appropriate for certain types of problems.

Methods which have been used to study product recovery systems include: simulation

(Zanoni et al., 2006), queuing theory (Toktay et al., 2000; Souza et al., 2002), dynamic

programming (DeCroix, 2006), Markov decision processes (Fleischmann and Kuik,

2003; Ahiska and King, 2010), Markov chains (Kiesmüller and van der Laan, 2001;

Nakashima et al., 2002) mixed-integer non-linear programming (Ah kioon et al., 2009),

lot-sizing models (Teunter, 2001, 2004) and heuristics (DeCroix and Zipkin, 2005).

Three main methodologies are used in this thesis: lot-sizing models (Chapter 4), Markov

decision processes (Chapters 5 and 6) and semi-Markov decision processes (Chapter 7).

Simulation is also used in Chapters 5–7.

In this chapter a review is presented of key theory and methodological approaches

used in this thesis. In this thesis we are particularly interested in the management

of inventory in product recovery systems, therefore in Section 3.1 inventory models

are discussed. This section will also discuss lot-sizing models. In Section 3.2 a review

of Markov and semi-Markov decision processes, the value iteration algorithm and the

implementation method used in this thesis is presented.
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3.1 Inventory Models

The effective management of inventory is an issue which faces many organisations,

and as a result it has become a widely-studied field within Operational Research and

Management Science. In managing inventory systems a key concept relates to how

much inventory is in stock. In inventory models there are two ways of quantifying

stock: inventory level and inventory position. The inventory level refers the amount of

inventory that is currently in stock whereas the inventory position refers the amount of

inventory that is in stock, but also takes into account any outstanding orders (Axsäter,

2006). Inventory models typically aim to manage the stock levels in an inventory

system in order to minimise the associated costs. They do this by answering two main

questions: how much should be ordered, and how often should an order be placed

Winston (2004).

There are two main trade-offs associated with inventory management (Beyer et al.,

2010). The first being the trade-off between setup costs and holding costs (large

infrequent orders vs small frequent orders), and the second being the trade-off between

holding costs and shortage costs (high inventory costs, lower risk of shortages, vs low

inventory holding costs, higher risk of shortages).

The costs associated with inventory systems typically include setup costs, unit

ordering costs, holding costs and shortage costs. Setup costs are costs which do

not depend on the size of an order and could include the cost of issuing an invoice,

fixed overhead costs, or transportation costs (Axsäter, 2006). Unit-order costs are

the variable costs which are incurred for each unit that is ordered or produced and

could include labour costs, materials costs or overhead costs (Winston, 2004). Holding

costs are the costs associated with storing inventory and not only includes the cost

of physically storing inventory, but can also include the associated insurance costs,

taxes, risk of theft, obsolescence or damage (Axsäter, 2006; Winston, 2004; Silver et al.,

1998). The cost of holding inventory is related to the opportunity cost of having capital

tied up in inventory, rather than some other investment, thus it is sometimes linked

to the current interest rates, however this is not usually a direct relationship due to

the potential risks of alternative investment opportunities (Axsäter, 2006). Finally,

shortage costs are the costs associated with not being able to meet demand. Typically
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demand which cannot be met is either back-ordered and delivered at a later time, or is

lost. Costs may be incurred for having back-ordered stock (perhaps an urgent delivery

is required). If a sale is lost then this may result in lost goodwill, as customers may be

disappointed at having not received the good they had wanted. However, these costs

can often be very difficult to quantify (Axsäter, 2006)

The type of ordering policy that should be used depends on the nature of the

product. For example, highly customised products are generally manufactured under a

“make-to-order” policy, whereas a “make-to-stock” policy would be more appropriate

for generic products (Slack et al., 2004). Another important distinction is whether

the system operates as a “push” or “pull” strategy. Under a push strategy goods are

produced as soon as possible, i.e. they are “pushed” through the system and then

stored, whereas under a pull strategy goods are only produced when they are needed

in order to satisfy demand (or needed for the next stage of the production process).

Inventory is less likely to accumulate under a pull strategy (Slack et al., 2004). Many of

the policies discussed henceforth assume that goods are produced in a “made-to-stock”

environment.

3.1.1 Deterministic Inventory Models

A well-known deterministic inventory model is the Economic Order Quantity (EOQ)

model. The following description is adapted from that given by Winston (2004).

The basic economic order quantity Q∗ is the total-cost-minimising order size, under

assumptions of repeated (rather than one-off) ordering, constant deterministic demand

of D items per year, zero lead time, no shortages, setup costs of k per order and holding

costs of h per unit per year, and is given by:

Q∗ =

√

2kD

h

The period of time from the moment an order arrives, to the moment in time before

the next order arrives is often called a cycle. The EOQ is quite robust, so if the order

size deviates slightly from the optimal quantity, then this will only result in a small

increase in the total cost.

A number of variations of this basic model are possible. For example, if there is a

nonzero lead time, then the optimal order quantity remains the same, but the order
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must be placed earlier, in order to allow sufficient time for the order to arrive. This order

time is determined by the reorder point. If the lead time demand is less than the EOQ,

then the reorder point is equal to the lead time demand. If the lead time demand exceeds

the EOQ, then the reorder point is given by the remainder when lead time demand

is divided by the EOQ (Winston, 2004, page 855). The EOQ can also be modified to

take into account quanity discounts and back orders. For example, if a maximum of

M items can be backordered, at a cost of s per unit per year, then the optimal order

quantity is Q∗ = EOQ
√

h+s
s

and the optimal shortage is M∗ = EOQ
√

s
h+s

.

In a production setting, items may be produced at a continual rate r, rather than

all arriving instantly as may be the case with an order from an external supplier. In

this situation, items are demanded whilst items are being produced, so the EOQ is no

longer the optimal order quantity; rather the optimal number of goods which should

be produced in a batch is Q∗ = EOQ
√

r
r−D

This quantity is sometimes called the

economic production quantity (EPQ) or the economic manufacturing quantity (EMQ)

(Chiu, 2008; Darwish, 2008). As r = ∞ the EPQ approaches the EOQ.

3.1.2 Stochastic Inventory Models

In some situations demand may be uncertain or irregular, in which case a stochastic

inventory model may be appropriate for studying the management of inventory. The

inventory system may be studied using a single-period decision model in which the

decision about how much to order is made only once, or it may be studied over multiple

time periods.

The well-known newsvendor problem is an example of a single-period decision

model. The following description of the news vendor problem is adapted from Winston

(2004). The newsvendor problem studies the situation in which the ‘news vendor’ must

decide how many newspapers to order, q. After this decision has been made, demand

d is observed with probability p(d) and then a cost c(d, q) is incurred. There are costs

associated with ordering too many co, or too few papers cu. The optimal order quantity

is the smallest q∗ which satisfies P (D ≤ q∗) ≥ cu
co+cu

. If the demand D is a continuous

random variable, then this inequality can be solved to obtain q∗.
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There are several inventory models in which decisions are made repeatedly. One

such model adapts the EOQ to take into account uncertain demand. There are two

cases which need to be considered: back-orders and lost sales. In each case, the optimal

batch size Q∗ and the re-order point r∗ are sought. Let demandD be a random variable,

with mean E(D), the demand during the lead time be a random variable X and let

cb denote the per item shortage cost. In the back-ordered case, the optimal order

quantity is Q∗ =

√

(

2KE(D)
h

)

and the re-order point is given by P (X ≥ r∗) = hQ∗

cbE(D) .

If hQ∗

cbE(D) > 1 or hQ∗

cbE(D) < 0 then the re-order point should be set “at the smallest

acceptable level” (Winston, 2004). For the lost sales case the optimal order quantity

Q∗ is the same as under the back-ordered case and the re-order point is given by

P (X ≥ r∗) = hQ∗

hQ∗+clE(D) , where cl is the per unit lost sales cost.

There are two common types of policies that can be applied to a stochastic

continuous review inventory model: (r, q) and (s, S) policies. The (r, q) policy,

sometimes called a two-bin policy, involves placing an order of size q if the inventory

level falls to the reorder point r. If more than one item may be demanded at any point

in time, then the (r, q) policy may not be appropriate, however the (s, S) policy could

be used in such situations. Under this policy, if there is a zero lead time then an order,

which replenishes inventory up to a level of S, is placed whenever the inventory level is

less than or equal to s. This type of policy is sometimes referred to as an ‘order-up-to’

or ‘base-stock’ policy (Axsäter, 2006). As discussed by Silver et al. (1998), computing

optimal values for s and S can be difficult. One approximation for these parameter

values involves setting s = r and S = r + q (Winston, 2004).

In the examples discussed hitherto, the parameter values have been selected in order

to minimise the total cost, however in some situations it may be difficult to quantify

the cost of not meeting demand (and either incurring a back-order or lost sale). If

a desired level of service is required, then the ordering policy can be determined by

calculating the re-order point r required to achieve a specified level of service, rather

than the re-order point which minimises costs. A variety of methods can be used

to measure service. Two common measures include the “expected fraction ... of all

demand that is met on time” or the “expected number of cycles per year during which

a shortage occurs” (Winston, 2004, page 898). These measures are related to the fill

rate, which is the “fraction of customer demand that is met” (Silver et al., 1998, page
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245). For simpler models it is possible to calculate decision rules based on achieving

specified measures of service (see Silver et al. (1998) for further details), however for

more complicated models this is not always possible. Rather than using the fill rate to

determine a policy, it could also be used as a measure of the performance of a policy.

For a given policy, the fill rate (and other service measures) can be calculated using

simulation.

Another well-known policy is the (R,S) periodic review policy. Under this policy,

the inventory level is reviewed periodically, every R time units, and an order is placed

which brings the inventory position up to S. If there is no back-ordering, i.e. all

demand not met is lost, then for a given R, the S which minimises costs is given by

P (DL+R ≥ S) = Rh
Rh+cl

where DL+R is the demand during the time interval L+R. The

time between reviews R sometimes equals EOQ/E(D) =

√

2(K+J)E(D)
h

/E(D), where

J is the cost of reviewing the inventory level (Winston, 2004).

The management of inventory, in both deterministic and stochastic settings, can also

be studied using dynamic programming. In general, the dynamic programming is used

for periodic review models in which the planning horizon is divided into set periods.

The inventory level is reviewed once each period (at the beginning or end) and then an

order is placed. If demand is known but can differ between periods (as in dynamic

lot-sizing problems) then a traditional dynamic programming formulation becomes

computationally burdensome, however the Wagner-Whitin Algorithm or Silver-Meal

Heuristic can be used (Winston, 2004). If demand is uncertain, then a Markov decision

process may be appropriate for studying the problem. Markov decision processes will

be discussed in more detail in Section 3.2

3.1.3 Representing Inventory Policies

An inventory policy can be specified through a decision rule which details the condition

under which certain actions are chosen. For instance if the ordering cost is less than

the sum of the return and holding costs, then order x items (Archibald et al., 2007).

For some problems, an inventory policy can be represented graphically by representing

the state space (e.g. inventory levels) on a graph and then indicating for which regions

certain actions should be performed. Simpson (1978) used graphs, with serviceable
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inventory on one axis and repairable inventory on the other axis, to show the structure

of the optimal policy, i.e., at certain inventory levels particular actions are optimal.

This idea will be used to represent the optimal policies obtain in Chapter 5.

3.2 Markov Decision Processes

A Markov decision process (MDP) is a stochastic process in which the progression of

the process can be influenced by the actions of a decision maker. Markov processes are

named as such due to their Markovian property : the future depends only on the present

and not on the past. More specifically, the present state and decision depend not on the

past history of states and decisions (Puterman, 1994). A Markov decision process can

be described by the following: decision epochs, states, actions, rewards/costs, transition

probabilities (Puterman, 1994). At each decision epoch, the state is observed by the

decision maker, who then chooses an action. There is a cost or reward associated

with the chosen action. The system will then move to the next state according to the

associated transition probabilities.

A policy is another important concept in the study of Markov decision processes.

Policies specify that decisions that should be taken in certain situations. Policies can be

Markovian or history dependent, and deterministic or randomised, furthermore policies

can be stationary or time-dependent. Stationary deterministic policies are the most

specific type of policy and are therefore sometimes referred to as being pure (Puterman,

1994). Despite the many types of policies, in many cases there is exists a pure and

stationary policy. Such policies can be described as “an assignment of an action to

each state” (Archibald et al., 1993), in order words, they specify which action should

be performed in each and every state. There is a cost or reward associated with a given

policy, thus it is desirable to find a policy which either minimises the cost or maximises

the reward. Often research which applies a Markov decision process model tries to find

an associated optimal policy. However, as discussed by Ansell et al. (1998b) in the

context of maintenance policies, policies obtained from Operational Research models,

such as Markov decision models, may be seen as too complex to implement in practice,

or conversely such models may be seen as too simple to represent real systems. In spite
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of this, optimal policies can still give insight into real-life applications and be interesting

from a theoretical point of view.

There are several variations of Markov decision processes. When the decision epochs

occur at regular, known times then discrete-time Markov decision process may be

appropriate, whereas, when the decision epochs occur randomly, then a continuous

time semi-Markov decision process may be appropriate (Tijms, 1994). Structuring

discrete-time decision models as Markov decision models makes it possible to prove the

nature of optimal policy (Ansell et al., 1998b) – this is one advantage of using Markov

decision processes. The time-horizon over which a Markov decision process is studied

can also vary and be finite or infinite horizon.

Markov decision processes fall into the category of decision models. It is generally

Bellman (1957) and Howard (1960) who are credited with initiating modern research

into Markov decision processes (Puterman, 1994). Since then Markov decision

processes have been used to model a range of applications including ecological systems

(Williams, 2009), profitability of credit cards (So and Thomas, 2011), inventory and

production (Archibald et al., 2002; Thomas et al., 2003), repair and maintenance

problems (Kim and Thomas, 2006; Ansell et al., 1998a), water industry (Ansell et al.,

2004) and product recovery systems (Nakashima et al., 2004). Other applications

include finance, queues, sports (White, 1993). Though it is now slightly out-of-date,

the review of applications discussed by White (1993) gives a good indication of the

scope of Markov Decision processes.

A common limitation of Markov decision processes is that for problems with a

large state space, solution methodologies are computationally infeasible. In these cases

heuristics may be used. In the context of inventory systems, heuristics have been

proposed for a variety of problems, e.g. transshipments (Archibald et al., 2009).

In this thesis Markov decision processes will be used to model inventory decisions

which, according to Puterman (1994), were one of their first applications. In its simplest

form, a MDP representing an inventory system can be described as follows: the decision

maker observes the inventory level (state), decides whether or not to place an order

(action), and then demand is observed according to a certain probability (transition
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probability) and the inventory level is adjusted accordingly. Costs may be incurred as

a result of the action or transition.

Two types of Markov decision processes will be used in this thesis to study the

management of inventory in product recovery systems. In Chapters 5 and 6 discrete-

time, infinite horizon Markov decision processes will be proposed, and in Chapter 7

a continuous-time, infinite horizon semi-Markov decision process will be proposed. In

Chapter 5 the objective is to minimise the long run average cost and in Chapters 6 and

7 the objective is to maximise the long run average reward.

The remainder of this section is structured as follows. The elements of a Markov

decision process are presented in Section 3.2.1 and then algorithms which can be

used to solve MDPs are discussed in Section 3.2.2. Particular attention is paid to

the value iteration algorithm, as it is the algorithm implemented in this thesis. The

implementation of the value iteration algorithm is then discussed in Section 3.2.3.

Finally, in Section 3.2.4 some theory relating to semi-Markov decision processes is

presented.

3.2.1 Elements of a Discrete-Time MDP

In this section the elements of a discrete-time, infinite horizon Markov decision process

under an average cost criterion are presented. The notation used in this section is

adapted from Puterman (1994) and Tijms (1994) and will be used throughout this

thesis.

Decision Epochs. Let T denote the set of decision epochs. In this thesis all Markov

decision models are studied over an infinite time horizon, therefore

T = {1, 2, . . . ,∞} = [0,∞)

that is, T is an infinite, discrete set of the nonnegative real line. Each t ∈ T is referred

to as a period. Decisions are made at the start of each period t.
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States. Let I denote the set of all possible states. In this thesis, each state i ∈ I

represents a vector of state variables. For example in Chapter 5, there are three state

variables: serviceable inventory, returned inventory and component inventory. Letting

these three state variables be denoted by is, ir and ic respectively, a state i can be

defined as i := (is, ir, ic). The set of all states I is assumed to be finite.

Actions. For each state i ∈ I there is a set of actions A(i) that can be chosen by

the decision maker when the system is in state i. Across all states the set of all possible

actions A is defined as A =
⋃

i∈I

A(i). The set of all actions A is assumed to be finite.

Transition Probabilities. Suppose the system is in state i and action a ∈ A(i) is

chosen. The system will move to the next state j ∈ I with a probability pi,j(a), where

∑

j∈I

pi,j(a) = 1.

Costs. There is a cost c(i, a) associated with the system being in state i and action

a ∈ A(i) being chosen. If the cost incurred depends on the transition to the next state

j, then it may be denoted by c(i, a, j). Using this notation, the expected cost incurred

between the current and next decision epoch is then:

c(i, a) =
∑

j∈S

c(i, a, j)pi,j(a).

Policies. A policy is used to describe a particular set of actions that may be applied

to the Markov decision model. Often a policy is sought which satisfies some objective,

such as minimising the long run average cost. Other objectives include maximization

of expected total reward, discounted expected total cost, or average reward (Puterman,

1994). In an infinite horizon problem, the total reward criterion may result in an infinite

value, thus the average reward criterion may be more appropriate. In this thesis we will

be concerned with finding a stationary policy, i.e., one which does not depend on time.

A decision rule d(i) specifies the action that should be chosen whenever the system is

in state i. A policy π is a set of decision rules for all states i ∈ I, and thus a policy π

is a mapping from the state space I to the action space A.
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For a given policy π we are interested in the “value” of the policy, or in the context

of this thesis, the long-run average cost or reward of the policy. Let Vn(i, π) denote

the “total expected costs over the first n decision epochs when the initial state is i and

policy” π is implemented (Tijms, 1994). Then

Vn(i, π) =
n−1
∑

t=0

∑

j∈I

p
(t)
i,j (π) c(j, πj)

where p
(0)
i,j (π) = 1 for j = i, and p

(0)
i,j (π) = 0 for j 6= i, and where p

(n)
i,j (π) are

the n-step transition probabilities associated with the Markov chain {Xn} such that

p
(n)
i,j (π) = P{Xn = j|X0 = i} for i, j ∈ I and n = 1, 2, . . .. The average cost function

gi(π) is

gi(π) = lim
n→∞

1

n
Vn(i, π), i ∈ I

If it is assumed that the Markov chain corresponding to policy π has “no two disjoint

sets”, then the “long-run average expected cost per time unit is independent of the

initial state i”, and then “in the unichain case”

gi(π) = g(π), i ∈ I

At this point is it also worth mentioning the weak unichain assumption which states

that “for each average cost optimal stationary policy the associated Markov chain {Xn}
has no two disjoint closed sets” (Tijms, 1994). These assumptions will be discussed

further in Section 3.2.2.

3.2.2 Value Iteration Algorithm

Solving a Markov decision process involves finding a policy π which satisfies the

objective, which in the case of this thesis means finding a policy that either minimises

the long-run average cost or maximises the long-run average reward. There are several

algorithms which can be used to solve Markov decision processes, namely the value

iteration, policy iteration and linear programming algorithms. However both the policy

iteration and linear programming algorithms involve solving a large system of linear

equations, corresponding to the size of the state space (Tijms, 1994). The value

iteration algorithm, on the other hand, uses a recursive approach. Therefore, for most

problems, including the ones studied in this thesis, the value iteration algorithm is the

only practical solution methodology.

59



The description of the value iteration algorithm presented below follows the

structure used by Tijms (1994), with some notation adapted from Puterman (1994).

Step 0 Initialise.

• Choose a sufficiently small stopping condition ǫ > 0

• Set V0(i) with 0 ≤ V0(i) ≤ mina c(i, a) for all i ∈ I.

• Set n := 1

Step 1 For all states i ∈ I, compute Vn(i)

Vn(i) = min
a∈A(i)

{

c(i, a) +
∑

j∈I

pi,j(a)Vn−1(j)

}

and determine the stationary policy πn(i) for all i ∈ I, where

πn(i) = arg min
a∈A(i)

{

c(i, a) +
∑

j∈I

pi,j(a)Vn−1(j)

}

Step 2 Compute the bounds

mn = min
j∈I

{Vn(j) − Vn−1(j)} and Mn = max
j∈I

{Vn(j)− Vn−1(j)}

Step 3 Stop the algorithm with policy πn if:

0 ≤ Mn −mn ≤ ǫ

Otherwise, set n := n+ 1 and return to Step 1.

If the weak unichain assumption, stated at the end of Section 3.2.1, is met and the

Markov chain associated with each average cost optimal stationary policy is aperiodic,

then the value iteration algorithm will converge and

g∗ = lim
n→∞

Mn = lim
n→∞

mn

is the minimum long-run average cost (Tijms, 1994). Some adjustments can be made

to overcome the aperiodic requirement, see Tijms (1994, page 209) for further details.

For some parameter values and some problem types it is possible that there may be

two or more disjoint closed sets, which would mean that the value iteration algorithm

may not converge. We find that this is the case for some of the randomly generated

problem scenarios used in Chapter 5.
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3.2.3 Implementing the Value Iteration Algorithm

In this section we discuss the way in which the value iteration algorithm is implemented

for this thesis.

Computational Requirements

The value iteration algorithm was presented in Section 3.2.2 however whilst this does

contain the steps of the algorithm it does not represent how it is implement in java.

For example, to calculate

Vn(i) = min
a∈A(i)

{

c(i, a) +
∑

j∈I

pi,j(a)Vn−1(j)

}

for all i ∈ I, it is necessary to “loop” around all states i ∈ I, all actions a ∈ A(i) and

then again around all states j ∈ I. This sequence of loops must be performed at every

iteration of the algorithm, until it converges. If the cost c(i, a) is an expected cost, then

some looping may be required to calculate this cost. Furthermore, depending on the

problem, further loops may be required in order to obtain the transition probability

pi,j(a). For example, using the problem discussed in Chapter 5, there are three random

variables that affect the transition to the next state: demand, returns and the quality

of returns. There are multiple ways that these variables could combine in order to reach

a given state: for example if there are 2 high quality returns and a demand for 3 items,

then the serviceable inventory level will increase by 2 and decrease by 3, resulting in an

overall change in the inventory level of −1. Other combinations of demand and quality

of returns could also result in an overall change of −1. Therefore for this problem,

one way to obtain the probability pi,j(a), is to loop around all states j, all values of

demand, all values of returns, all values of quality of returns and determine if each

combination of the random variables could result in state j, and then keep track of the

total probability of moving from state i to state j, given action a. If these probabilities

are not stored, then this looping to find pi,j(a) would need to be performed for each

iteration of the algorithm.

It is clear that this repeated looping and recalculation would quickly become

computationally inefficient and burdensome as the number of states increases. During
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initial attempts at running this type of implementation of the value iteration algorithm

it was found that the computational time was prohibitively long for all but the most

trivial problems. In order to overcome this, two methods were used to reduce the

computation time: precalculation and storage of values in an array structure and

definition of the mid-state. These two methods will be discussed in turn.

The nature of the value iteration algorithm and of Markov decision processes means

that there is a lot of repeated calculations performed during each iteration. For example

the transition probabilities pi,j(a) are used in every iteration of the algorithm, and

furthermore, many of these transition probabilities are zero. For larger problems it was

found that storing some of this information in a series of arrays was computationally

more efficient than calculating it repeatedly. One reason for this is that by storing

only those with a non-zero transition probability, the number of states which need to

be looped around was much lower. Therefore we implemented an array structure to

store the transitions with non-zero transition probabilities associated with given states

i and j and action a. Some additional information, such as the number of transition

probabilities and the associated costs, was also stored.

A second method was also used to reduce the computational time. Using the

notation from above, suppose the system is in state i, action a is chosen and the

system moves to state j with probability pi,j(a). If the transition probability depends

on multiple random variables, then it is possible that some of these random variables

may depend on the action a, and some may not.

Let the mid-state m represent the state of the system after the action has been

chosen and the state variables have been updated accordingly. The probability of

moving from state i to mid-state m depends on the initial state i, the action a and

any uncertainty associated with the action (in Chapter 5 the quality of returns). Let

this probability be denoted by pi,m(a). The probability of moving from mid-state m

to state j in the next period depends on the mid-state m, and on any uncertainty

not associated with the action (in Chapter 5 the demand and the returns). Let this

probability be denoted by pm,j. Since the probability of moving from the mid-state to

the next state does not depend on the action selected, the calculation of these transition

probabilities and any associated costs could be calculated outside of the “action loop”

in the algorithm. These values could then be calculated in advance, stored and then
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looked up during the value iteration algorithm. If the mid-state and array structure

are used, then the value iteration algorithm could be described as follows.

Step 0 Initialise.

• Choose a sufficiently small stopping condition ǫ > 0

• Set V0(i) with 0 ≤ V0(i) ≤ mina c(i, a) for all i ∈ I.

• Set n := 1

• For i, j,m ∈ I and a ∈ A(i), calculate pi,m(a) and pm,j, and:

if pi,m(a) > 0 then store i,m and a in set I1

if pm,j(a) > 0 then store m and j in set I2

Step 1 For all states m ∈ I, compute W (m)

W (m) =
∑

j∈I2

pm,jVn−1(j)

Step 2 For all states i ∈ I, compute Vn(i):

Vn(i) = min
a∈A(i)

{

c(i, a) +
∑

m∈I1

pi,m(a)W (m)

}

and determine the stationary policy πn(i) for all i ∈ I, where

πn(i) = arg min
a∈A(i)

{

c(i, a) +
∑

m∈I1

pi,m(a)W (m)

}

Step 3 Compute the bounds

mn = min
j∈I

{Vn(j)− Vn−1(j)} and Mn = max
j∈I

{Vn(j) − Vn−1(j)}

Step 4 Stop the algorithm with policy πn if:

0 ≤ Mn −mn ≤ ǫ

Otherwise, set n := n+ 1 and return to Step 1.

Note that the nature of the problem means that the sets I1 and I2 are substantially

smaller than I, and this significantly reduces the “looping” The effectiveness of using

the mid-state and the array structure to store the calculations was compared to the
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‘naive’ approach of repeatedly calculating values at every iteration, for a variety of

problem sizes of the stochastic product recovery model in Chapter 5. One of the primary

determinants of the size of the problem is the state space, therefore the problem size was

determined by varying the upper inventory capacities. (The action space and transition

matrix also affect the size of the problem, but these are not considered here.) Table 3.1

shows the time required to obtain an optimal policy using arrays and using loops, for

seven stochastic product recovery models with the following upper inventory capacities:

{2, 5, 10, 15, 20, 25, 30}. The time stated for the arrays method includes the time taken

to make the arrays and complete the value iteration algorithm. It was found that a

computational saving of over 9 hours was attainable by using the array structure rather

than repeated looping.

Inventory
Capacity

Array-based approach Naive, loop-based approach

2 00:00:00 00:00:01
5 00:00:01 00:00:05
10 00:00:05 00:02:25
15 00:00:30 00:14:03
20 00:02:15 01:03:09
25 00:08:29 03:41:40
30 00:28:42 10:13:11

Table 3.1: Comparison between computational time (in hh:mm:ss format) required for
the value iteration algorithm with and without arrays for stochastic product recovery
problems

Code Structure

The code design exploited the coding structures available in java (such as objects,

classes and packages) and this allowed parts of the code to be used for multiple

problems. This was done for practical reasons, but also to enable thorough error-

checking to be performed. For example the value iteration code was contained in an

independent file which meant that it could not only be used for the models in Chapters

5, 6 and 7 of this thesis, but also that it could also be used for MDP examples from

Tijms (1994) and Puterman (1994). This was one method used to check the accuracy of

the code. Further details about the measures taken to validate the code are described

below.

64



Validation of Code

A variety of error-checking procedures were implemented within the java code. For

instance, if a set of probabilities which are meant to sum to one, do not sum to one, or

if insufficient parameters are entered, then an error message will be displayed and the

run will be terminated.

Two versions of the value iteration code were developed, one which used the

array structure and another which used repeated looping. During the initial code

development, the value iteration algorithm was developed by using a number of

examples from textbooks, including Example 3.1.1 from Tijms (1994, page 195) and

Example 8.5.3 Puterman (1994, page 366). At the end of the code development process,

these examples were once again used to test the code. In all cases, the policies obtained

by both versions of the value iteration code were the same as those published in the

textbooks. The cost/reward associated with the policies were not always provided in

the textbooks, but where they were, they too were the same as what we obtained.

3.2.4 Semi-Markov Decision Processes

The structure of a semi-Markov decision process (SMDP) is similar to that of a Markov

decision process (MDP), in that it too can be characterised by its decision epochs,

states, actions, costs and transition probabilities. However a SMDP differs from a

MDP because the time between decision epochs is uncertain, rather than being identical

(Tijms, 1994). As discussed in Section 3.2.1, let I denote the state space, such that

for any state i, i ∈ I an action a ∈ A(i) can be chosen, which will result in an expected

cost c(i, a) and transition probability pi,j(a). If the process is currently in state i and

action a is chosen, then let the expected time to the next event be denoted by τi(a).

A semi-Markov decision process can be solved by converting the process to a discrete

time model. This effectively means that the continuous time is split into a series of very

small periods of length τ . The length of time τ is chosen such that the probability that

more than one event could occur during that period is very small. The following

description of the data transformation required to convert a semi-Markov decision
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process to a discrete-time model is adapted from Tijms (1994, page 222). Firstly,

a value for τ must be selected, such that:

0 < τ ≤ min
i,a

τi(a)

Secondly, the following transformations must be made:

I = I

A(i) = A(i) i ∈ I

c(i, a) = c(i,a)
τi(a)

i ∈ I and a ∈ A(i)

pi,j(a) =











pi,j(a)
τ

τi(a)
if i 6= j, i ∈ I and a ∈ A(i)

pi,j(a)
τ

τi(a)
+
(

1− τ
τi(a)

)

if i = j, i ∈ I and a ∈ A(i)

After making these adjustments to the expected costs and probabilities, the value

iteration algorithm and implementation discussed in Section 3.2.2 can be used to solve

the semi-Markov decision process. For the semi-Markov decision process, the value

function calculated within the value iteration algorithm is:

Vn(i) = min
a∈A(i)

{

c(i, a) +
∑

j∈I

pi,j(a)Vn−1(j)

}

which, when the adjustments described above are taken into account, can be written

as:

Vn(i) = min
a∈A(i)

{

c(i, a)

τi(a)
+

τ

τi(a)

∑

j∈I

pi,j(a)Vn−1(j) +

(

1− τ

τi(a)

)

Vn−1(i)

}

.
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Chapter 4

Deterministic Lot-Sizing Product

Recovery Model with a Single

Market

4.1 Introduction

Product recovery describes the process by which used products are returned to their

manufacturers or sent to a specialised facility for recovery, before being sold on the

original or a secondary market. This chapter studies a product recovery system which

in which returned products are recovered by the original manufacturer and are then

sold on the original market. Thus in this chapter there is a single market for newly

produced and recovered goods. A deterministic product recovery model using a EOQ-

based lot-sizing framework is used to study this system.

This chapter addresses one of the gaps identified in the literature by differentiating

between high quality and low quality returns and by providing two separate quality-

dependent channels for the recovery of returned goods. Previous models either do not

differentiate between high quality and low quality goods and thus provide one channel

for recovery, or if they do differentiate then dispose of low quality goods and recover

only the high quality ones. The current model combines the types of recovery used

by Oh and Hwang (2006) and in traditional product recovery models, such as Schrady
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(1967) and Teunter (2004). The producer may choose to take back all returns, or only

those of a high quality, as in Dobos and Richter (2006).

This chapter begins in Section 4.2 with a description of the product recovery system

being investigated. A model is proposed for analysing this system in Section 4.3.

The inventory levels across a cycle are discussed and then the cost function is derived

in Sections 4.4 and 4.5 respectively. The minimisation of the total cost function is

not trivial as the resulting function is a non-differentiable function in one continuous

variable and three integer variables. This will be discussed in Section 4.6. Properties

of the model are investigated in Section 4.7 and finally a discussion of the results is

presented in Section 4.8.

4.2 Problem Description

Suppose there is a firm which has the primary function of producing new goods. This

firm accepts goods back after they have been used and, if they are above the required

quality threshold, recovers them to the same quality standard as newly produced goods,

before selling them as new. The decision to incorporate recovery into their business

is threefold: to improve their ‘green’ image by taking back used products; to reduce

their costs by reusing used goods and materials; and to comply with environmental

legislation requiring the take-back of goods.

Produced and recovered items are both considered to be ‘serviceable’ and are viewed

as identical by the consumer so are sold on the same market. For returns which are

below the quality threshold for recovery, the firm has a choice: to dispose of them or to

use them as components in the production of newly produced items. If an insufficient

number of components are obtained from the recovery of low quality returns then

additional components are bought from an external supplier.

The firm is a cost-minimising firm. Fixed and unit costs are incurred for production,

recovery and buying components. Costs are also incurred for holding inventory and for

lost sales. Demand for serviceable items, returns and the quality of returns are known

with certainty. The firm must determine a production plan that specifies how much
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and how often to produce, recover and buy. The firm is also interested in the cost-

effectiveness of the low-quality recovery channel.

This system could describe Canon’s remanufacturing processes for cartridges and

printers, which were discussed in Section 2.2.3. Used printers and cartridges are

returned to Canon to undergo remanufacturing before being sold as new. In both

cases, returns which cannot be returned to this “as new” condition may be used as

parts or materials in the production process. Rigorous quality standards allow Canon

to sell these remanufactured products as new. This system could also describe the

situation faced by a Cooperage with respect to whisky barrels. whisky barrels are used

and then returned for repair. Some barrels will require only minor repairs, whereas

some may require more substantial repairs or may only used for parts.

4.3 Model Description and Assumptions

The model, modelling assumptions and the relationship between the current model and

the existing models in the literature are discussed in this section.

4.3.1 Relationship with Existing Literature

The current model extends the literature by using quality to differentiate between

returns and by providing two channels for recovery. The relevant literature was

discussed in the literature review, therefore only the specific articles which are directly

extended are discussed here, namely, Teunter (2004) and Oh and Hwang (2006). The

structure of these two models is shown in Figures 4.1a and Oh and Hwang (2006)

respectively. Teunter (2004) assumes that all returns are of sufficient quality to be

recovered to be ‘as good as new’, and that the purchase of inputs for production

happens outwith the model. Oh and Hwang (2006), on the other hand, does consider

the purchase of inputs, however it assumes that returns are recovered to make these

inputs, rather than to make completed goods. The types of recovery from each of these

two papers are combined in the model proposed in this Chapter. Consequently, the

model proposed in this chapter has two channels for recovery: recovery to become ‘as
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good as new’ and recovery to become input components. Figure 4.2 presents the model

used to study the product recovery system in this chapter. The notation used in this

model is summarised in Table 4.1. The modelling approach presented below follows

the structure used by Teunter (2004).

Returned

Consumer

Serviceable
InventoryProduction

Recovery Inventory

(a) Product recovery model studied by Teunter (2004)

Production Inventory
Serviceable

Consumer

Order
Components

Returned
Inventory

(b) Product recovery model studied by Oh and Hwang (2006)

Figure 4.1: Two product recovery models in the literature which are combined to form

the current model

4.3.2 Model Parameters

In this model, consumer demand occurs constantly at a rate of d and is met by the stock

of serviceable inventory. Serviceable inventory is replenished by either the production

of new products or the recovery of high quality returned products. Production and
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Table 4.1: Nomenclature used in this chapter

Symbol Description Conditions
Parameters
d demand rate d > 0, αr ≥ d

f return fraction 0 < f < 1
f = βHζH + βLζL

fd return rate fd > 0
r recovery rate r > 0, r > d

p production rate p > 0, p > d

b arrival rate of orders b = ∞

βH proportion of returns of high quality 0 < βH < 1
0 < βH + βL < 1

βL proportion of returns of low quality 0 < βL < 1
0 < βH + βL < 1

α proportion of returns of high quality 0 ≤ α ≤ 1
α = βH

βH+βL

Cost Parameters
kp, kr, kb set up cost per production lot, recov-

ery lot and ordering lot
kp, kr > 0, kb ≥ 0

hs, hr, hc holding cost per item per time unit for
serviceable inventory, returned inven-
tory and component inventory

hs, hr > 0, hc ≥ 0

cp, ch, cl unit processing cost for production,
recovery of high quality items and
recovery of low quality items

cp, ch, cl ≥ 0

cr, cb, cd unit processing cost for collecting re-
turned products, ordering new com-
ponents and disposing on unrecovered
returns

cr, cb, cd ≥ 0

Variables
T cycle length

Np, Nr, Nb number of production, recovery and
ordering lots

Np, Nr, Nb ∈ Z
+

Qp, Qr, Qb size of a production, recovery and
ordering lot

Qp, Qr, Qb ∈ R
+

Strategic Variables
ζH decision to recover high quality returns

(unless stated assume ζH = 1)
ζH + ζL ≥ 1

ζH =

{

1 high quality recovery

0 no high quality recovery

ζL decision to recover low quality returns ζH + ζL ≥ 1

ζL =

{

1 low quality recovery

0 no low quality recovery
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p
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(1− f )d

fd

Figure 4.2: Product recovery model studied in this chapter

recovery occur in batches of a fixed size. It is assumed that they are performed on

the same facility, so can not happen simultaneously. This is inline with assumptions

made in the literature. Production, which occurs at rate p, uses raw materials from

the component inventory to produce new products, thus during production, component

inventory decreases at a rate of p and serviceable inventory increases at a rate of p.

Following the literature, e.g., Dobos and Richter (2006), Teunter (2004), we assume

that the production rate is greater than the demand rate p > d.

After serviceable goods have been used by the consumer, some are returned to

the manufacturer for recovery. The recovery process has two channels, one which

results in serviceable goods and one which results in components. It is assumed that

with enough effort and expenditure, all returns could be recovered up to the same

serviceable standard as newly produced goods. However it is also assumed that the

firm has set a threshold which determines the quality level of returns for which it is

considered worthwhile to recover to this serviceable standard. In the remainder of this

chapter, returns which are above this quality threshold are referred to as ‘high quality

returns’. High quality returns undergo ‘high quality recovery’ which brings them up

to a serviceable standard and are then sold alongside newly produced goods. Returns

which fall below the quality threshold are termed ‘low quality returns’ and undergo

‘low quality recovery’ in order salvage components which can be used in production.

The proportion of used goods which are high quality (i.e. above the quality

threshold) is βH and the proportion of used goods which are low quality is βL. The

remaining proportion of used goods 1 − βH − βL are not returned, thus are lost from
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the system. It is assumed that there is always the need for production and recovery,

therefore 0 < βH + βL < 1.

It is assumed that the firm makes a strategic-level decision (outwith the model)

about whether to recover low quality returns or dispose of them. Let ζH represent the

firm’s decision regarding the recovery of high quality items and ζL represent the firm’s

decision regarding the recovery of low quality items, where

ζH =











1 if high quality items are recovered

0 if high quality items are not recovered.

ζL =











1 if low quality items are recovered

0 if low quality items are not recovered.

Since recovery must occur, then the following condition must be satisfied:

ζH + ζL ≥ 1

The main purpose of this model is to investigate the cost-effectiveness of recovering low

quality items in addition to high quality items, therefore unless otherwise stated, it is

assumed that high quality items are always recovered (ζH = 1). The proportion of

products demanded which are returned to the system is f , where:

f = βHζH + βLζL.

Returns arrive back in the system constantly at a rate of:

fd = (βHζH + βLζL)d

The definitions of βH , βL mean that 0 < f < 1. All items which are returned to the

system are recovered, thus if low quality recovery is not performed, then low quality

items will not be returned. If the proportion of the returns that are high quality (i.e.

above the quality threshold) is denoted by α, 0 ≤ α ≤ 1, then:

α =
βHζH

(βHζH + βLζ)
.

During recovery, high quality returns are recovered in order to replenish serviceable

inventory. The remaining proportion of returns are low quality so undergo low-quality

recovery in order to salvage components. These salvaged components are stored in

component inventory before being used in the production of new products.
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As mentioned above, the firm may choose to accept the return of high quality items,

or both low and high quality items. If only high quality items are returned (ζH = 1,

ζL = 0), then f = βH and α = 1. If the recovery of low quality returns is not permitted

(ζL = 0) then the current model has a similar structure to existing models in the

literature, such as Dobos and Richter (2004) and Teunter (2004). Though the case of

low-quality only recovery is not explicitly considered here, it is worth mentioning that

if the recovery of high quality items is not permitted (ζH = 0) then the current model

has a similar structure to the model in Oh and Hwang (2006).

While recovery is being performed, returned inventory is recovered at a rate of r,

with serviceable inventory being replenished at a rate of αr and component inventory

being replenished at a rate of (1 − α)r. In literature it is assumed that the demand

rate is less that the rate at which serviceable inventory is replenished during recovery,

this assumption is made here as well, thus d < αr (Teunter, 2004; Dobos and Richter,

2006). Note that if there is no high quality recovery (ζH = 0), then αr = 0 and this

condition does not hold, since the demand rate must be positive. However, since we

assume that there is always high quality recovery βH = 1, then throughout this Chapter

it is assumed that d < αr.

Components are required for the production of new products and can be bought

from an external supplier or obtained from low quality recovery. If there are no low

quality returns (i.e., ζL = 0) then all components required for production must be

bought. It is assumed that orders placed to buy components have a lead time of zero,

thus arrive immediately after the order has been placed. Since it is assumed that the

lead time for buying components is zero, orders only need to be placed the component

inventory reaches zero; this will only happen during production. Component inventory

decreases constantly during production at a rate of p. During recovery, if low quality

recovery is performed, then the component inventory will increase at a rate of (1−α)r.

Referring to Figure 4.2, note that the rates relating to demand d, fd and (1− f)d

are constant, whereas the rate p applies only during production, the rates r, αr, (1−α)r

apply only during recovery, and the rate b applies only during ordering.
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4.3.3 Model Variables

In this chapter, the product recovery model is studied over a period of time called a

cycle. A cycle has a length of T time units and consists of a sequence of Np production

lots of size Qp, followed by a sequence of Nr recovery lots of size Qr. A lot is the term

used to describe a batch or order of a fixed size. A cycle is defined in such a way that

one cycle can be followed by another identical cycle, therefore the level of each type

of inventory must be the same at the beginning and end of a cycle. For serviceable

inventory we assume that this level is zero and for returned and component inventories

we assume that this level is nonnegative. The inventory levels will be discussed and

presented graphically in the next Section 4.4.

A cycle begins with a production lot. Subsequent production lots begin when

serviceable inventory reaches zero. After Np production lots have occurred, and

serviceable inventory reaches zero, the first recovery lot begins. Subsequent recovery

lots begin when serviceable inventory reaches zero. Components only need to be bought

during production and when component inventory reaches zero. During the sequence

of production lots, components are bought in Nb lots, each of size Qb.

There are no backorders or lost sales in this model, therefore during a cycle the

total number of products demanded must equal the number of products produced plus

the number of high quality returned products which are recovered, hence:

dT = QpNp + αQrNr (4.1)

Once used goods have been returned to the system they cannot be discarded.

This assumption, of not allowing the disposal of returns, is consistent with current

governmental legislation discouraging disposal to landfills. It is also consistent with the

work of Teunter and Vlachos (2002), who found that including a disposal option was

only profitable under certain conditions. Therefore during a cycle, the total number of

products returned must equal the total number of products recovered, hence:

QrNr = fdT (4.2)

The components used in production are sourced either by buying new components, or

by recovering low quality returns. It is assumed that components cannot be backordered
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and that the number of components in stock at the beginning and the end of a cycle must

be the same. One component is required for each good that is produced. Therefore,

the total number of goods produced during a cycle, and thus the total number of

components used, must equal the number bought plus the number obtained from the

recovery of low quality returns, hence:

QpNp = QbNb + (1− α)QrNr (4.3)

These equalities can be used to express the total number of items produced during

a cycle QpNp, in terms of the total number of items recovered QrNr and the total

number of components bought QbNb. Using these equations Qr can be defined in terms

of Qp, Np, Nr, and similarly Qb can be defined in terms of Qp, Np, Nb. After performing

some algebraic manipulations (the details of which can be found in Appendix A.1.1),

the following result is obtained:

QpNp =
QrNr(1− αf)

f
=

QbNb(1− αf)

(1− f)
(4.4)

In a similar fashion the cycle length T can be defined in terms of Qp and Np,

in terms of Qr and Nr or in terms of Qb and Nb. After performing some algebraic

manipulations, the following result is obtained:

T =
QpNp

d(1− αf)
=

QrNr

fd
=

QbNb

d(1 − f)
(4.5)

There are seven variables in this model: the lot sizes and the number of lots for

production Qp, Np, recovery Qr, Nr, and buying components Qb, Nb, respectively, and

the cycle length T . However as shown by equations (4.4) and (4.5), these variables are

not all independent of each other. In this model the production lot size Qp and the

number of lots per cycle for production, recovery and buying components (Np, Nr, Nb)

are selected as decision variables. The reason for selecting these variables to be the

decision variables is twofold. Firstly, production is deemed to be the primary function

of the firm, thus specifying the values of the variables in terms of the production lot

size and the number of lots is most logical. Secondly, within the literature the lot size

and the numbers of lots per cycle are often used as the decision variables.

In practice both the lot sizes and the numbers of lots should be positive integers.

However, as in the previous literature, this restriction is only applied to the numbers of
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lots per cycle (Teunter, 2004). It is assumed that the lot sizes will be sufficiently

large that rounding the values to the nearest integer will not greatly affect the

model. However, the numbers of each type of lot, on the other hand, are likely to

be comparatively small and therefore rounding the values to the nearest integer could

have a significant effect on the total cost. Therefore, in this model it is assumed that

Qp, Qr, Qb, T are positive real numbers and that Np, Nr, Nb are positive integers.

The nomenclature used in this model is summarised in Table 4.1 on page 71.

4.4 Inventory Levels Across a Cycle

Knowing the levels of the serviceable, returned and component inventories at different

points in time across a cycle is important for two reasons. Firstly, the inventory levels

are important for ensuring that there is sufficient stock to meet demand and secondly,

because these levels determine the holding cost. In this section two cases are considered.

Under the first case it is assumed that there is one of each type of lot per cycle, i.e.

Np = Nr = Nb = 1. Restricting the number of each type of lot to one, simplifies the

model significantly. The second case relaxes this assumption and allows there to be at

least one of each type of lot per cycle, i.e. Np, Nr, Nb ≥ 1. These two cases will be

considered in Sections 4.4.1 and 4.4.2 respectively.

The area under the inventory level graphs, discussed in Section 4.4.2, is also

important because it represents the amount of inventory that is held and how long

it is held for, and will be used in the calculation of the holding costs in Section 4.5.

4.4.1 Case 1: Np = Nr = Nb = 1

The levels of the serviceable, returned and component inventories across a cycle are

shown in Figure 4.3 for a cycle with one production lot Np = 1, one recovery lot

Nr = 1 and one buying lot Nb = 1. The rates at which the inventory levels change are

also shown in this Figure.
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Production Recovery

Time

Time
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Serviceable
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Returned
Inventory

Inventory

0
Qr(1− α)/p

Qr(1− α)(1− α)r

−p

0 Qp/d +Qr/r

Qrf (α− d/r)
fd

fd− r

fd

Qp/d + αQr/dQp/d +Qr/rQp/dQp/p

Qr(α− d/r)−dαr − d

0

−dp− d

Qrf (α− d/r)

Qr(1− α)

Qp(1− d/p)

Qr(1− fd/r)

Qb

Qp/d

Qp/d

−p

Qp/d + αQr/d

Qp/d + αQr/dQp/d +Qr/rQp/p

Figure 4.3: Inventory levels under a policy with Np = Nr = Nb = 1

Serviceable Inventory

At the start of a cycle, the level of serviceable inventory is zero therefore a production

lot begins immediately. During the production lot, which lasts for Qp/p time units,

the serviceable inventory level increases at a rate of (p − d). At the completion of

the production lot there are Qp(1 − d/p) units of serviceable inventory. The level of

serviceable inventory then decreases according to the demand rate d until the inventory

level reaches zero (Qp(1/d − 1/p) time units later), at which point recovery begins.

During recovery, which lasts for Qr/r time units, the serviceable inventory level

increases at a rate of (αr−d). At the completion of the recovery lot there are Qr(α−d/r)

units of serviceable inventory. The inventory level then decreases at a rate of d for

Qr(α/d − 1/r) time units until the inventory level reaches zero, at which point the

cycle ends.
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Returned Inventory

At the start of a cycle the level of returned inventory is Qrf(α − d/r). This level is

equal to the number of products returned during the Qr(α/d−1/r) time units between

the end of the recovery lot and the end of the cycle. At the beginning of a cycle the

returned inventory increases at a rate of fd for Qp/d time units, reaching a level of

Qr(1 − fd/r). When recovery begins, the returned inventory begins to decrease at a

rate of (fd− r). Recall that equation (4.2) requires that the number of items recovered

during a cycle must equal the number of items returned during a cycle. Therefore,

the returned inventory will reach zero at the completion of the recovery lot. At the

completion of recovery, the level of returned inventory increases again at a rate of fd

and reaches a level of Qrf(α− d/r) by the end of the cycle.

Component Inventory

At the start of a cycle the level of component inventory is Qr(1−α). This level is equal

to the number low quality returns recovered during a cycle. The components which are

in stock at the beginning of the cycle are used up before new components are bought.

Each cycle begins with a production lot, therefore the level of component inventory

initially decreases according to the production rate p, reaching zero at time Qr(1 −
α)/p. At this point, Qb components are bought and arrive instantly. The number of

components required during a cycle, as defined in equation (4.3), is exactly equal to the

number of components bought plus the number attained from low quality recovery. All

components bought will be consumed during production, thus the component inventory

will reach zero at the end of production. During recovery the level of component

inventory increases at a rate of (1−α)r up to a level of Qr(1−α), at which it remains

until the end of the cycle. Note that if there is no low quality recovery (ζL = 0),

then α = 1 and so components must be bought at the start of the cycle, i.e. at time

Qr(1− 1)/p = 0.

4.4.2 Case 2: Np, Nr, Nb ≥ 1

In this section we discuss the levels of the serviceable, returned and component

inventories across a cycle with more than one of each type of lot. The shape of the
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inventory level graphs for this general case, in particular the component inventory level,

depend on the numbers of each type of lot and some parameter values. An example

of the inventory levels for a system with Np = 4 production lots, Nr = 3 recovery lots

and Nb = 2 ordering lots per cycle is shown in Figure 4.4.

In this section the shape of and area under the inventory level graphs will be

discussed. As mentioned above, the area under the graphs is important because it

will be used in the calculation of the holding costs, in Section 4.5. Further details of

the formulae presented in this section are available in Appendix A.2.

Production Recovery

QpNp/d + αQrNr/d0

−p

−p

(1− α)r

Qb

Qp(1− d/p)

p− d

−d

0

αr − d
−d

Qr(α− d/r)

Qp/d

Time

Qr(1− fd/r)

Qrf (α− d/r)

0

fd
fd− r

fd

Qrf (α− d/r)

QrNr(1− α)

QpNp/d

QpNp/d

QpNp/d

Serviceable
Inventory

Component

Time

Time

Inventory
Returned

Inventory

QrNr(1− α)

QpNp/d + αQrNr/d

QpNp/d + αQrNr/d

Figure 4.4: An example of the inventory levels under a policy with Np = 4, Nr =

3, Nb = 3
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Serviceable Inventory

Time

Inventory
Serviceable

Qp(1− d/p)

Qr(α− d/r)

A2A2A2A2
A1A1

0

αQr/dQp/d

Figure 4.5: Serviceable inventory levels under a policy with Np = 2 production lots,

Nr = 4 recovery lots

Figure 4.5 shows the levels of serviceable inventory across a cycle with Np = 2

production lots and Nr = 4 recovery lots. The number of buying lots Nb, is not

mentioned here as it does not affect the shape of the serviceable inventory graph. The

area under the graph is made up of Np triangles A1 and Nr triangles A2, where:

Area of A1 = Qp(1− d/p)(Qp/d)(1/2)

Area of A2 = Qr(α− d/r)(αQr/d)(1/2)

The total area under of the graph is:

As = NpA1 +NrA2 =
Q2

pNp

2

(

1

d
− 1

p

)

+
Q2

rNrα

2

(

α

d
− 1

r

)

(4.6)

Using equations (4.4) and (4.5) and performing some simple algebra, the details of

which can be found in Appendix A.2, the total area under the graph can be written in

terms of Qp and T :

As =
TQp

2

(

(1− αf)

(

1− d

p

)

+
Npαf

2

Nr(1− αf)

(

α− d

r

))

(4.7)

Returned Inventory

The level of returned inventory across a cycle with Nr = 4 recovery lots is presented in

Figure 4.6. The number of production lots Np and the number of ordering lots Nb are

not mentioned here as they do not affect the shape of the returned inventory graph.
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Figure 4.6: Returned inventory levels under a policy with Nr = 4 recovery lots

Following Choi et al. (2007), the area under the graph can be calculated by splitting it

into a series of shapes.

The area under the graph consists of a trapezium A3, Nr triangles A4, Nr triangles

A5 and the rectangles Ai
6 for i = 1, . . . Nr. The area of the triangles A3, A4, A5 are

obvious from the graph. The height of rectangles is not quite as obvious. The height of

rectangle Ai
6 is the initial inventory plus the amount returned during production, less

the amount recovered during i recovery lots plus the amount returned during (i − 1)

recovery lots. Let A6 denote the sum of the rectangles Ai
6 for i = 1, . . . , Nr. Note that

the height of the N th
r rectangle is 0, however the sum over Nr is still used as this aids

the algebraic manipulations. The areas are defined as follows:

Area of A3 = (QpNp/d)[Qrf(α− d/r) +QpNpf +Qrf(α− d/r)](1/2)

Area of A4 = (Qr(r − fd)/r)(Qr/r)(1/2)

Area of A5 = fdQr(α/d− 1/r)Qr(α/d − 1/r)(1/2)

Area of Ai
6 = (αQr/d)[QpNpf+Qrf(α−d/r)+(i−1)Qrf(α−d/r)−i(r−fd)Qr/r]

Area of A6 =
∑Nr

i=1 A
i
6

The total area under of the graph of the returned inventory is:

Ar = A3 +NrA4 +NrA5 +A6 (4.8)

Using equations (4.4) and (4.5) the total area under the graph Ar can be represented

in terms of Qp and T . After some algebraic manipulations, the details of which can be
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found in Appendix A.2, the area under the graph can be expressed as follows:

Ar =
TQpNpf

2

2(1− αf)

(

1

Nr

(

α− d

r

)

+
1

f
− α

)

(4.9)

Component Inventory

The shape of the component inventory level graph during production depends on the

relationship between Np, Nb and some of the parameters. In particular, for a cycle

with Np, Nb ≥ 1, the shape of the graph depends on when components are bought, in

relation to the production lots and how much inventory is still in stock when each of

the production lots end.

Figure 4.7 shows four examples of the component inventory level graphs. Figure

4.7a shows the component inventory level for a system with Np = 5 and Nb = 1. After

each production lot there is a period when the serviceable inventory that has just been

produced is used up. During this time there is no change in the component inventory

level, i.e., the graph is horizontal. Compare the shape of this graph to the other graphs

in Figure 4.7. Figure 4.7b shows the component inventory level for a system with

Np = 4 and Nb = 4. Figure 4.7c shows the component inventory level for a system with

Np = 1 and Nb = 4. Figure 4.7d shows the component inventory level for a system

with Np = 4 and Nb = 6. The shape of the inventory levels is important because it

determines the inventory levels across a cycle, and thus the holding costs incurred.

In order to analyse the level of component inventory across a cycle, the cycle will

be split into three parts: during the production lots, between the production lots and

during recovery. During the first QpNp/d time units of a cycle, there are times when

production is being performed, and times when the goods that have been produced are

being used up. The times during which production is being performed and serviceable

inventory is increasing at a rate of (p − d) and component inventory is decreasing at

a rate of p, are referred to as being during production lots. The times during the first

QpNp/d time units of a cycle when production is not being performed and serviceable

inventory is decreasing at a rate of d and component inventory is constant, are referred

to as being between production lots.
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Figure 4.7: Component inventory levels under policies with a variety of values for Np

and Nb

84



The remaining part of the cycle, from time QpNp/d until the end of the cycle will be

referred to as being during recovery. Figure 4.8 shows the component inventory levels

across a cycle with Np = 4 production lots, Nr = 5 recovery lots and Nb = 6 buying

lots. The analyses which follow will refer to this figure, however they are applicable to

the general case of any number of production and buying lots.
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(b) Rearranged parts of the component inventory level over a cycle

Figure 4.8: Component inventory levels under a policy with Np = 4, Nr = 5 and Nb = 6

During Production Lots. At the beginning of the cycle, the components from

low quality recovery are used in production. These components are represented by

the triangle A9. After these components have been used, new components are bought.

If low quality recovery is not performed (ζL = 0) then all returns recovered are high

quality (α = 1) and thus the area of triangle A9 is zero and new components are bought

immediately (at time 0).

Components are bought in lots of size Qb. While production is being performed,

these components are used at a rate of p. For the system in Figure 4.8, the first three
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production lots end while the component inventory is greater than zero. During the

period between the production lots, the component inventory level does not change,

(represented by the rectangles Ai
11). When the next production lot starts, the inventory

begins decreasing at a rate of p again. Ignoring for a moment, the period between

production lots, the time taken to use up the components from one buying lot is

Qb/p. Therefore the area which corresponds to the inventory from one order can

be represented by a triangle of height Qb and width Qb/p. For this system, however,

these triangles have been split by some rectangular sections Ai
11. To help show this

relationship, we have rearranged the pieces in Figure 4.8a to create the graph in Figure

4.8b. Therefore, the area under the graph during the production lots consists of triangle

A9 and Nb triangles A10, as shown in these graphs:

Area of A9 = NrQr(1− α)NrQr(1− α)/p(1/2)

Area of A10 = QbQb/p(1/2)

The total area under the graph during production Adp
c is:

Adp
c = A9 +NbA10

=
N2

rQ
2
r (1− α)2

2p
+

NbQ
2
b

2p

Using equations (4.4) and (4.5) it can be shown that the total area under the graph

during production is:

Adp
c = TQpNp

d

2p(1− αf)

(

f2 (1− α)2 +
(1− f)2

Nb

)

(4.10)

Between Production Lots. The period of time between production lots is repre-

sented in Figure 4.8a by the rectangles Ai
11, i = 1, . . . , Nb. The width of these rectangles

is Qp(1/d−1/p). The height of rectangle i is the inventory level at the end of production

lot i, which we denote by γi. Note that the model conditions ensure that γNp = 0 (see

equation (4.3)). The number of components needed for i production lots is Qpi; of

these QrNr(1 − α) are supplied from low quality recovery. This means that by the

end of the ith production lot, at least Qpi−QrNr(1− α) components must have been

bought. Since components are bought in lots of Qb, the number of lots required to buy
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the required number of components can be found by dividing the required number of

components by the lot size Qb and rounding up to the nearest integer, that is:
⌈

iQp −QrNr(1− α)

Qb

⌉

where the operator ⌈x
y
⌉ rounds the ratio x

y
up to the nearest non-negative integer. Using

equations (4.4) and (4.5), this expression can be written in terms of the numbers of

production and buying lots Np and Nb. Let M(i,Np, Nb) denote the number of buying

lots to have occurred by the end of production lot i.

M(i,Np, Nb) =

⌈

iNb(1− αf)

(1− f)Np
− Nbf(1− α)

(1− f)

⌉

(4.11)

If there is only one production lot Np = 1, then all Nb buying lots must have occurred

by the end of the first production lot, thus M(1, 1, Nb) = Nb If there is only one

buying lot Nb = 1, and that buying lot occurs during the first production lot (i.e.

QrNr(1−α) < Qp), then M(i,Np, 1) = 1 for (1 ≤ i ≤ Np). This function M(i,Np, Nb)

can be used to define the component inventory level at the end of production lot i.

The component inventory level at the end of production lot i is equal to the number of

components from low quality recovery plus the number of components ordered by the

end of production lot i, less the number of goods produced by the end of production

lot i. Let the component inventory level at the end of production lot i be denoted by

γi, where:

γi = QrNr(1− α) +M(i,Np, Nb)Qb − iQp (4.12)

As shown in Figures 4.8a and 4.8b, the area of rectangle Ai
11 is:

Area of Ai
11 = Qp(1/d−1/p)γi = Qp(1/d−1/p)[QrNr(1−α)+M(i,Np, Nb)Qb−iQp]

Using equations (4.4) and (4.5) it can be shown that the total area under the graph

between production in terms of Qp and T is:

Abp
c =

Np
∑

i=1

Ai
11

= TQpNp
p− d

p



f(1− α) +
(1− f)

NbNp

Np
∑

i=1

M(i,Np, Nb)−
(1− αf)

2
− (1− αf)

2Np





(4.13)

Note that if Np = 1, then this area Abp
c reduces to zero.
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During Recovery Lots. Referring again to Figure 4.8a, it can be seen that during

recovery, the area under the graph is made up of rectangles Ai
7, for i = 1, . . . , Nr, and

Nr triangles A8, where:

Area of Ai
7 = Qr(1− α)[Qr(α/d − 1/r) + (i− 1)Qrα/d]

Area of A7 =

Nr
∑

i=1

Ai
7 = Qr(1− α)

Nr
∑

i=1

[Qrα/d−Qr/r + iQrα/d −Qrα/d]

Area of A8 = Qr(1− α)(Qr/r)(1/2)

Using equations (4.4) and (4.5), it can be shown that the total area under the component

inventory level graph during and between recovery lots, in terms of Qp and T is:

Adr
c = A7 +NrA8 = TQpNp

f2(1− α)

2(1− αf)

(

1

Nr

(

α− d

r

)

+ α

)

(4.14)

Across a cycle. The total area under the component inventory level graph can be

expressed in terms of Qp and T can be obtained by combining equations (4.10), (4.13)

and (4.14). Further simplification of some parts of Ac is not performed at this stage as

it will be helpful in the coming sections to be able to identify the origin of the negative

terms in this expression.

Ac = TQp

(

Np

[(

1− d

p

)(

f(1− α)− (1− αf)

2

)]

+
1

Nb





(p− d)(1 − f)

p

Np
∑

i=1

M(i,Np, Nb)





− (1− αf)(p − d)

2p
+Np

[

f2(1− α)

2(1 − αf)

(

d (1− α)

p
+ α

)]

+
Np

Nb

[

d(1 − f)2

2p(1− αf)

]

+
Np

Nr

[

f2(1− α)(αr − d)

2r(1− αf)

]

)

(4.15)

4.5 Cost Function

Fixed, unit and holding costs are incurred in this model. A summary of the cost

parameters included in the model are presented in Table 4.1 (page 71). In this section

the total cost function per time unit is derived (Section 4.5.1) and then the derivation

is verified (Section 4.5.2).
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4.5.1 Derivation of the Total Cost Function

In this section the fixed, unit and holding costs incurred in this model are discussed

and the total cost per time unit is derived.

Setup Costs

Setup costs of kp, kr, and kb are incurred for each production, recovery and buying lot

respectively. The setup costs for production kp and recovery kr must be positive, and

for buying components kb must be nonnegative. The different requirements for kb allow

comparisons to be made with previous models in the literature which do not include

the buying of components. The total setup costs per cycle are kpNp+ krNr + kbNb and

using equation (4.5) the total setup costs per time unit are

CK(Qp, Np, Nr, Nb) =
d(1 − αf)

QpNp

(

kpNp + krNr + kbNb

)

(4.16)

Unit Processing Costs

Processing costs are incurred for each product which is produced or recovered. The

nonnegative per item processing costs for producing new products is cp, for recovering

high quality returns is ch and for recovering low quality returns is cl. The purchase

of new components incurs a nonnegative per item cost of cb and the return of used

products incurs a nonnegative per item cost of cr. Any returns which are not recovered

incur a per unit disposal cost of cd. This disposal cost could be the actual cost of

disposing of the item, or it could represent the cost of “taking responsibility” for what

happens to the goods that they have produced, for example a penalty fee imposed by

the government. The total processing costs per cycle are cpQpNp + crαQrNr + cl(1 −
α)QrNr + crQrNr + cbQbNb + cd(QpNp + αQrNr)(1− f) and using equation (4.5) the

total processing costs per time unit are:

CP = cp(1− αf)d+ chαfd+ cl(1− α)fd+ crfd+ cbd(1− f) + cd(1− f)d (4.17)

Note that, when expressed per time unit, this cost is independent of the variables.
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Holding Costs

Holding costs are incurred for each type of inventory on a per item, per time-unit basis.

The holding costs can be calculated using the average inventory levels across a cycle.

The average inventory level is equal to the area under the inventory level graphs which

were calculated in Section 4.4. The per item, per time unit holding costs for serviceable

inventory hs and returned inventory hr must be positive, and for component inventory

hc must be nonnegative. As was the case for the setup costs, the different requirements

for hc allow comparisons to be made with previous models in the literature.

Serviceable Inventory. The area under the serviceable inventory graph As is

specified by equation (4.7). Using this area, the cost per time unit of holding serviceable

inventory is:

Hs = hs
As

T
=

hsQp

2

(

(1− αf)

(

1− d

p

)

+
Npαf

2

Nr(1− αf)

(

α− d

r

))

(4.18)

Returned Inventory. The area under the returned inventory graph Ar is specified

by equation (4.9). Using this area, the cost per time unit of holding returned inventory

is:

Hr = hr
Ar

T
=

hrQpNpf
2

2(1 − αf)

(

1

Nr

(

α− d

r

)

+
1

f
− α

)

(4.19)

Component Inventory. The area under the component inventory graph Ac is

specified by equation (4.15). Recall that M(i,Np, Nb) is the number of buying lots that

will have occurred by the end of production lot i. Using the area Ac and this function

M(i,Np, Nb) the cost per time unit of holding component inventory is:

Hc = hc
Ac

T

= hcQp

(

Np

[(

1− d

p

)(

f(1− α)− (1− αf)

2

)]

+
1

Nb





(p− d)(1 − f)

p

Np
∑

i=1

M(i,Np, Nb)





− (1− αf)(p− d)

2p
+Np

[

f2(1− α)

2(1− αf)

(

d (1− α)

p
+ α

)]

+
Np

Nb

[

d(1− f)2

2p(1− αf)

]

+
Np

Nr

[

f2(1− α)(αr − d)

2r(1− αf)

]

)

(4.20)
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Total Cost

The total cost per time unit is the sum of equations (4.16), (4.17), (4.18), (4.19)

and (4.20). The algebraic manipulations required to attain the total cost function

in equation (4.21) are presented in available in Appendix A.3.1. The total cost per

time unit is:

TC = crfd+ cbd(1− f) + cp(1− αf)d+ chαfd+ cl(1− α)fd+ cd(1− f)d

+
d(1− αf)

QpNp
(kpNp + krNr + kbNb) +Qp

(

hs(1− αf)(p− d)

2p

+Np

[

hrf

2
+

hcf
2(1− α)

2(1− αf)

(

d (1− α)

p
+ α

)]

+
Np

Nr

[

f2(αr − d)

2r(1− αf)
(hsα+ hr + hc(1− α))

]

+
Np

Nb

[

hcd(1− f)2

2p(1− αf)

]

+Np

[

hc

(

1− d

p

)(

f(1− α)− (1− αf)

2

)]

+
1

Nb

[hc(p− d)(1 − f)

p

Np
∑

i=1

M(i,Np, Nb)
]

− hc(1− αf)(p − d)

2p

)

(4.21)

The total cost function is a function of the four decision variables Qp, Np, Nr, Nb.

Following Konstantaras and Papachristos (2008b), the total cost function is rewritten

by grouping constant terms together in order to more clearly see the relationship

between the decision variables. Let:

CP = cp(1− αf)d+ chαfd+ cl(1− α)fd+ crfd+ cbd(1− f) + cd(1− f)d

K̄(Np, Nr, Nb) =
d(1− αf)

Np
(kpNp + krNr + kbNb)

V =
hs(1− αf)(p− d)

2p

W =
hrf

2
+

hcf
2(1− α)

2(1 − αf)

(

d (1− α)

p
+ α

)

X =
f2(αr − d)

2r(1− αf)
(hsα+ hr + hc(1− α))

Y =
hcd(1− f)2

2p(1− αf)
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Z1 =
hc(1− αf)(p− d)

2p

Z2 = hc

(

1− d

p

)(

f(1− α)− (1− αf)

2

)

Z3 =
hc(p− d)(1 − f)

p

M(i,Np, Nb) =

⌈

iNb(1− αf)

(1− f)Np

− Nbf(1− α)

(1− f)

⌉

The total cost can now be rewritten as:

TC(Qp, Np, Nr, Nb) = CP +
K̄(Np, Nr, Nb)

Qp
+Qp

(

V +NpW +
Np

Nr
X

+
Np

Nb

Y − Z1 +NpZ2 +
1

Nb

Z3

Np
∑

i=1

M(i,Np, Nb)

)
(4.22)

Before proceeding to the next section the sign of the functions CP , K̄(Np, Nr, Nb), V ,

W , X, Y , Z1, Z2, Z3 will be discussed. First, recall from Section 4.3 the following

requirements for the model parameters:

α 0 ≤ α ≤ 1, 0 ≤ (1− α) ≤ 1

f 0 < f < 1, 0 < (1− f) < 1

αf 0 ≤ αf < 1, 0 < (1− αf) ≤ 1

p, d p, d > 0, p > d

αr − d αr ≤ d

cp, ch, cl, cd, cr, cb cp, ch, cl, cd, cr, cb ≥ 0

kp, kr, kb kp, kr > 0, kb ≥ 0

hs, hr, hc hs, hr > 0, hc ≥ 0

Np, Nr, Nb Np, Nr, Nb > 0
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These conditions mean that:

CP ≥ 0

K̄(Np, Nr, Nb) > 0

V > 0

W > 0

X > 0

Y ≥ 0

Z1 ≥ 0

Z2











≥ 0 if 2f − αf − 1 ≥ 0

< 0 if 2f − αf − 1 < 0

Z3 ≥ 0

It is not possible to determine the sign of Z2 without knowing the values of the

parameters α and f . However, observe that −Z1 + NpZ2 +
1
Nb

Z3
∑Np

i=1M(i,Np, Nb)

is the cost per time unit of holding components between production lots. This

function is derived directly from the area under the component inventory graph (see

equation (4.13)). Since this area can never be negative, it can be concluded that

−Z1 +NpZ2 +
1
Nb

Z3
∑Np

i=1 M(i,Np, Nb) ≥ 0.

4.5.2 Validation of the Cost Function

The cost function calculated in the previous section and the areas under the inventory

level graph derived in Section 4.4.2 have rather complicated formulae, and thus their

derivations could be a potential source of algebraic errors. All of the algebraic

manipulations were initially performed and checked numerous times by hand and then

later verified by comparing the simplified formula to the unsimplified formula containing

the areas under the graph, using two methods: MATLAB (R2009a) Symbolic Math

package, and comparisons with the cost formulations by Teunter (2004).

The MATLAB (R2009a) Symbolic Math package allows formulae to be compared,

without having to specify numeric values. It also performs simplification, expansion

and factorisation of symbolic functions. Similar functionality is provided by software

such as Maple. The simplified and unsimplified formulae were entered into Matlab for

the individual components of the cost function. This allowed checks to be performed on
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individual parts, as well as, on the complete function. For all parts of the cost function

and the entire cost function, the simplified version and the unsimplified version were

found to be equivalent.

In addition to checking the symbolic representations of the formula, checks were also

implemented in java, which was programming language used primarily in this research.

The java class which calculates the total cost has two methods for calculating the cost,

one which uses the simplified formula, and one which uses the unsimplified formula.

Whenever the total cost is calculated, both methods are used, and then compared. If

the java program found a difference between the costs calculated, then it would return

an error message. This was tested extensively in the code development stage, and

remained in place for all numerical experiments that were performed using this code.

The current model is an extension of the model described in Teunter (2004). These

models have the same structure if only high quality items are recovered (ζH = 1,

ζL = 0). These choices for ζH and ζL mean that the quality parameter α = 1.

Teunter (2004) does not include unit processing costs or costs for holding components

(cr, cb, cp, cr, cd, hc, kb). It is possible to show that with these cost parameters set to

zero, the total cost in the current model is equivalent to equations (1) and (7) in

Teunter’s paper. Further details of this can be found in Appendix A.3.2 on page 369.

This further validates the total cost formula. However obviously, since the current

model uses non-zero values for these costs, some parts of the cost function can not be

validated using this method.

4.6 Minimisation of the Total Cost Function

The total cost equation (4.21) is a function of four unknown, independent variables:

Qp, Np, Nr, Nb. If each of these decision variables is assigned a value, then collectively

that set of values is referred to as policy. We want to find a policy that will minimise

the total cost function. In this section we seek the optimal policy for a given sequence

of Np product lots followed by Nr recovery lots. Any optimal policies found are only

optimal within this class of policies. If the sequencing of the production and recovery

lots was unrestricted, then the policies may no longer be optimal. However, the final
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three of these variables are required to be positive integers. This means that finding a

policy that minimises the total cost is not a trivial task. The term
∑

iM(i,Np, Nb) in

the total cost function also complicates this problem, because it is not differentiable.

The structure of this problem means that it can be formulated as a Mixed

Integer Nonlinear Program (MINLP). The MINLP formulation is presented in Section

4.6.1. However, the small number of integer variables and preliminary numerical

experiments suggest that MINLP methods may be unnecessarily computationally

intensive. Therefore, alternative methods for determining an optimal solution are

investigated.

In the literature, product recovery models (with one recovery channel) are often

solved for the cases of Np = 1 or Nr = 1 (Koh et al., 2002; Teunter, 2004). Not

only does this assumption reduce the complexity of the problem (i.e. by having one

rather than two integer variables), but it was shown by Teunter (2001) that for an

even Np and Nr, TC(Qp, Np/2, Nr/2) < TC(Qp, Np, Nr). Following Teunter (2001)

it may be possible to prove that TC(Qp, Np/2, Nr/2, Nb) < TC(Qp, Np, Nr, Nb), or

even that TC(Qp, Np/2, Nr/2, Nb/2) < TC(Qp, Np, Nr, Nb). However, initial attempts

found that this made non-trivial by the function M(i,Np, Nb).

Therefore, three cases are considered in this section. First the case in which Np =

Nr = Nb = 1 is considered in Section 4.6.2. This is the simplest case as it completely

removes the integer requirement and the non-differentiable term becomes a constant.

Then the case of Np = 1, and Nr, Nb ≥ 1 is considered in Section 4.6.3. When Np = 1

the non-differentiable term is reduced to a constant (Nb), therefore the problem is

simplified dramatically. Finally the most general case with Np, Nr, Nb ≥ 1 is considered

in Section 4.6.4.

4.6.1 Mixed Integer Non Linear Programming Formulation

The product recovery model proposed in this chapter can be formulated as a Mixed

Integer Nonlinear Program (MINLP). According to Floudas (1995), the general form
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of this type of problem is:

min
x,y

f(x, y)

subject to h(x, y) = 0

g(x, y) ≤ 0

x ∈ X ⊆ R
n

y ∈ Y integer

“where x is a vector of n continuous variables, y is a vector of integer variables, h(x, y) =

0 are m equality constraints, g(x, y) ≤ 0 are p inequality constraints, and f(x, y) is the

objective function” (Floudas, 1995, page 4). For the current problem, the formulation

is:

min
Qp,Np,Nr,Nb

TC(Qp, Np, Nr, Nb)

subject to −Np + 1 ≤ 0

−Nr + 1 ≤ 0

−Nb + 1 ≤ 0

Qp ⊆ R
n

Np, Nr, Nb integer

As mentioned above, while this product recovery model can be formulated as an MINLP,

it will not be solved in this way.

4.6.2 Case 1: Np = Nr = Nb = 1

In this section the case in which there is one of each type of lot (Np = Nr = Nb = 1) is

considered. This restriction on the number of lots dramatically simplifies the problem

as it reduces the problem to an unconstrained minimization problem in one variable,

Qp, which can be solved using differentiation. When Np = Nr = Nb = 1, the total cost

function is:

TC(Qp, 1, 1, 1) = CP+
d(1− αf)(kp + kr + kb)

Qp
+Qp (V +W +X + Y − Z1 + Z2 + Z3)

Differentiating with respect to Qp, setting this derivative equal to zero, and then solving

for Qp gives:

Qp =

√

d(1− αf)(kp + kr + kb)

V +W +X + Y − Z1 + Z2 + Z3
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The quantity under the square root sign is positive since d, (1−αf), (kp+ kr+ kb) and

(W +V +X +Y ) must be greater than 0 and (−Z1+Z2+Z3) must be at least 0. The

second derivative with respect to Qp is:

d2TC(Qp, 1, 1, 1)

dQ2
p

=
d(1 − αf)(kp + kr + kb)

Q3
p

> 0

Across the range of feasible values for Qp, (i.e. Qp > 0), this second derivative is

always positive. This means that the stationary point found by the first derivative

is a minimum. Therefore the production lot size that minimizes the total cost, when

Np = Nr = Nb = 1 is:

Q∗

p(1, 1, 1) =

√

d(1− αf)(kp + kr + kb)

V +W +X + Y − Z1 + Z2 + Z3
(4.23)

This results in a total cost of:

TC(Q∗

p, 1, 1, 1) = CP + 2
√

d(1− αf)(kp + kr + kb)(V +W +X + Y − Z1 + Z2 + Z3)

(4.24)

4.6.3 Case 2: Np = 1, Nr, Nb ≥ 1

In this section the restriction on the number of production lots is retained Np = 1,

however the restriction on the number of recovery and buying lots is relaxed to allow

Nr and Nb to take integer values greater than or equal to one. The restriction on

Np = 1 means that the function
∑

iM(i,Np, Nb) becomes a constant and thus that the

total cost function is differentiable. Despite being able to differentiate this function,

the optimization of the function is still a reasonable complicated problem to solve, as

it requires the minimization of a nonlinear function in one continuous variable and two

integer variables.

In this section the convexity of the continuous relaxation of the total cost function

is investigated. Though the convexity (or non-convexity) of the continuous relaxation

does not, on its own, indicate that the same holds for the original integer function, it

does give some insight into the nature of the function.
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Convexity of the Continuous Relaxation

When Np = 1, the total cost function simplifies to:

TC(Qp, 1, Nr, Nb) = CP +
d(1 − αf)(kp +Nrkr +Nbkb)

Qp

+Qp

(

V +W +
1

Nr
X +

1

Nb

Y − Z1 + Z2 + Z3

)

Let Ñr, Ñb denote the continuous relaxation of the variables Nr and Nb respectively. In

this section the first and second partial derivatives with respect to Qp, Ñr, Ñb will be

calculated and the Hessian matrix will be constructed. Using the Hessian matrix, the

convexity of the continuous relaxation of this problem will be shown (Winston, 1987).

The Hessian matrix of a function f(x) is:

H(xi,j) =
∂2f

∂xi∂xj

For this problem the Hessian matrix has the following form:

H(Qp, Ñr, Ñb) =



















∂2TC
∂Q2

p

∂2TC

∂Qp∂Ñr

∂2TC

∂Qp∂Ñb

∂2TC

∂Ñr∂Qp

∂2TC

∂Ñr
2

∂2TC

∂Ñr∂Ñb

∂2TC

∂Ñb∂Qp

∂2TC

∂Ñb∂Ñr

∂2TC

∂Ñb
2



















where TC represents the total cost function TC(Qp, 1, Ñr, Ñb).

H(Qp, Ñr, Ñb) =



















2d(1−αf)(kp+Ñrkr+Ñbkb)
Q3

p
−d(1−αf)kr

Q2
p

− X

Ñ2
r

−d(1−αf)kb
Q2

p
− Y

Ñ2
b

−d(1−αf)kr
Q2

p
− X

Ñr
2

2QpX

Ñ3
r

0

−d(1−αf)kb
Q2

p
− Y

Ñb
2 0

2QpY

Ñ3
b



















In order to show that the function TC(Qp, 1, Ñr, Ñb) is convex in Qp, Ñr and Ñb, it is

must be shown that the first, second and third principle minors of H(Qp, Ñr, Ñb) are

nonnegative (Winston, 1987). To calculate the principle minors, the determinants of

several matrices will need to be calculated. In general, the determinant of an m ×m

matrix, A is:

det(A) = (−1)i+1ai,1(detAi,1) + (−1)i+2ai,2(detAi,2) + · · · + (−1)i+mai,m(detAi,m)

for any i = 1, . . . ,m, where detAi,j is the determinant of the matrix obtained by deleting

the ith and jth column (Winston, 1987).
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All of the first principle minors are nonnegative. However for the second and third

principle minors, it is not possible to determine the sign of the functions without further

information about the relationship between the parameters. Since it is not possible to

determine if the principle minors of the Hessian matrix are nonnegative, it is not possible

to determine if the continuous relaxation of this mixed integer optimization problem is

convex.

However, since ∂2TC
∂Q2

p
> 0 it is possible to determine that for a fixed Ñr and Ñb, the

cost function is convex in Qp, and thus that the cost minimizing production lot size is:

Q∗

p =

√

√

√

√

d(1− αf)(kp + Ñrkr + Ñbkb)
(

V +W + 1
Ñr

X + 1
Ñb

Y − Z1 + Z2 + Z3

) (4.25)

and the total cost is:

TC(Q∗

p, 1, Nr, Nb) = CP+2

√

d(1− αf)(kp + Ñrkr + Ñbkb)
(

V +W +
X

Ñr

+
Y

Ñb

− Z1 + Z2 + Z3

)

(4.26)

A method will now be proposed for solving this problem.

Upper and Lower Bounds

In this section we develop bounds for determining Nr and Nb when Np = 1. This

method extends Konstantaras and Papachristos (2008b), who applied this method to

Teunter’s 2004 model, to find Nr when Np = 1 and Np when Nr = 1. The minimum

total cost for the system can be determined by finding integer values of Nr, Nb which

minimise the total cost specified by equation (4.26).

Bounds for Nr. Following Konstantaras and Papachristos (2008b) it will be shown

that for a fixed Nb, the optimal number of recovery lots N∗

r can be obtained by

constructing an upper and lower bounds. Let us define a difference function, for values

of Nr ≥ 2:

∆TC(Q∗

p, Nr) = TC(Q∗

p, 1, Nr, Nb)− TC(Q∗

p, 1, Nr − 1, Nb)
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after substituting equation (4.26) this function becomes:

∆TC(Q∗

p, Nr) =

(

CP + 2
√

d(1− αf)(kp + krNr + kbNb) ×
√

(

V +W +
X

Nr
+

Y

Nb

− Z1 + Z2 + Z3

)

)

−
(

CP + 2
√

d(1− αf)(kp + kr(Nr − 1) + kbNb) ×
√

(

V +W +
X

(Nr − 1)
+

Y

Nb

− Z1 + Z2 + Z3

)

)

To aid with the simplification, let following temporary variables be defined:

c1 = kp + kbNb

c2 = kr

c3 = V +W +
Y

Nb

− Z1 + Z2 + Z3

c4 = X

Note that c1, c2, c3, c4 > 0. Using this notation the total cost is:

TC(Q∗

p, 1, Nr , Nb) = CP + 2

√

d(1− αf)
(

c1 + c2Nr

)(

c3 +
c4
Nr

)

and the difference function is:

∆TC(Q∗

p, Nr) =
2 d(1−αf)

Np

(

c2c3 − c1c4
Nr(Nr−1)

)

√

d(1−αf)
Np

(

c1 + c2Nr

)(

c3 +
c4
Nr

)

+

√

d(1−αf)
Np

(

c1 + c2(Nr − 1)
)(

c3 +
c4

(Nr−1)

)

(4.27)

Let N∗

r be the number of recovery lots required to minimise the total cost. If

∆TC(Q∗

p, Nr) ≥ 0, then this suggests that Nr ≥ N∗

r , since the total cost function

is convex. Whereas, if ∆TC(Q∗

p, Nr) < 0 , then this suggests that Nr < N∗

r . The

difference function ∆TC(Q∗

p, Nr) ≥ 0 will have the same sign as
(

c2c3 − c1c4
Nr(Nr−1)

)

,

since as all other terms are positive. The sign of the difference function will be used

to determine whether N∗

r = 1 or N∗

r > 1, and if the latter, then it will also be used to

create bounds on N∗

r . The conditions required for each case will be stated.

Case i: N∗

r = 1. Suppose that Nr = 2, then if ∆TC(Q∗

p, 2) ≥ 0, is must be

the case that N∗

r = 1, due to the convexity of the cost function and the requirement

that Nr > 0. As mentioned above, if ∆TC(Q∗

p, 2) ≥ 0, then c2c3 − c1c4
2 ≥ 0 and vice
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versa, since this term determines the sign of the difference function. This term can be

rewritten as c1c4
c2c3

≤ 2 to provide the following condition:

N∗

r = 1 if
c1c4
c2c3

≤ 2 or equivalently, if
(kp + kbNb)X

kr(V +W + Y
Nb

− Z1 + Z2 + Z3)
≤ 2

Case ii: N∗

r > 1. The condition required for Case i, implies that:

N∗

r > 1 if
c1c4
c2c3

> 2 or equivalently, if
(kp + kbNb)X

kr(V +W + Y
Nb

− Z1 + Z2 + Z3)
> 2

Since the total cost function is convex, if c1c4
c2c3

> 2, then for the optimal number of

recovery lots N∗

r , the following double inequality will be met:

∆TC(Q∗

p, N
∗

r ) < 0 ≤ ∆TC(Q∗

p, N
∗

r + 1)

The sign of the difference function can be used to find N∗

r . Substituting the difference

function from equation (4.27), and performing some algebraic manipulations gives:

N∗

r (N
∗

r − 1) <
c1c4
c2c3

≤ N∗

r (N
∗

r + 1)

Solving each part of this double inequality separately for N∗

r (using the quadratic

formula and choosing the appropriate root in each case) and then rewriting the results

as a double inequality gives:

1

2

(

− 1 +

√

1 + 4
c1c4
c2c3

)

≤ N∗

r <
1

2

(

1 +

√

1 + 4
c1c4
c2c3

)

Substituting the expressions for c1, c2, c3, c4 into these expressions, gives:

1

2

(

− 1 +

√

1 + 4
(kpNp + kbNb)NpX

kr(V +NpW +
Np

Nb
Y + Z(Np, Nb))

)

≤ N∗

r <

1

2

(

1 +

√

1 + 4
(kpNp + kbNb)NpX

kr(V +NpW +
Np

Nb
Y + Z(Np, Nb))

)

(4.28)

Therefore if
(kp+kbNb)X

kr(V+W+ Y
Nb

−Z1+Z2+Z3)
> 2 then, for a fixed Nb, the optimal number of

recovery lots N∗

r can be obtained by solving the double inequality give by equation

(4.28).

Bounds for N∗

b Following Konstantaras and Papachristos (2008b) it will be shown

that for Np = 1 and a fixed Nr, upper and lower bounds on the optimal number of
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buying lots N∗

b can be constructed. Let us define a difference function, for values of

Nb ≥ 2:

∆TC(Q∗

p, Nb) = TC(Q∗

p, 1, Nr, Nb)− TC(Q∗

p, 1, Nr, Nb − 1)

after substituting equation (4.26) this becomes:

∆TC(Q∗

p, Nb) =

(

CP + 2
√

d(1− αf)(kp +Nrkr +Nbkb)×
√

(

V +W +
X

Nr

+
Y

Nb

− Z1 + Z2 + Z3

)

)

−
(

CP + 2
√

d(1− αf)(kp +Nrkr + (Nb − 1)kb)×
√

(

V +W +
X

Nr
+

Y

Nb − 1
− Z1 + Z2 + Z3

)

)

To aid with the analysis, let the following temporary variables be defined:

c5 = kp + krNr

c6 = kb

c7 = V +W +
1

Nr
X

c8 = Y

Note that c5, c6, c7, c8 > 0. Using a similar procedure to the N∗

r case, there are two

cases that need to be considered.

Case i: N∗

b = 1. Following the same logic as for the N∗

r case, the following

condition is obtained:

N∗

b = 1 if
c5c8
c6c7

≤ 2 or alternatively, if
(kp + krNr)Y

kb(V +W + X
Nr

)
≤ 2

Case ii: N∗

b > 1. The condition required for Case i implies that:

N∗

b > 1 if
c5c8
c6c7

> 2 or alteratively, if
(kp + krNr)Y

kb(V +W + X
Nr

)
> 2

Since the total cost function is convex, if c5c8
c6c7

> 2, then for the optimal number of

buying lots N∗

b , the following double inequality will be met:

∆TC(Q∗

p, N
∗

b ) < 0 ≤ ∆TC(Q∗

p, N
∗

b + 1)
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The sign of the difference function can be used to find N∗

b . Substituting the difference

function from equation (4.27), and performing some algebraic manipulations gives:

N∗

b (N
∗

b − 1) <
c5c8
c6c7

≤ N∗

b (N
∗

b + 1)

Solving each part of this double inequality separately for N∗

b (using the quadratic

formula and choosing the appropriate root in each case) and then rewriting the results

as a double inequality gives:

1

2

(

− 1 +

√

1 + 4
c5c8
c6c7

)

≤ N∗

b <
1

2

(

1 +

√

1 + 4
c5c8
c6c7

)

Substituting back c5, c6, c7, c8 into these expressions, gives:

1

2

(

− 1 +

√

1 + 4
(kp + krNr)Y

kb(V +W + X
Nr

)

)

≤ N∗

b <
1

2

(

1 +

√

1 + 4
(kp + krNr)Y

kb(V +W + X
Nr

)

)

(4.29)

Therefore if
(kp+krNr)Y

kb(V +W+ X
Nr

)
> 2 then, for a fixed Nr, upper and lower bounds on the

optimal number of buying lots N∗

b can be obtained by solving the double inequality in

equation (4.29).

Combining bounds for N∗

r and N∗

b for a policy with Np = 1. Assuming that

c1c4
c2c3

> 2, then for Np = 1 and for a fixed Nb, the upper and lower bounds on the

optimal number of recovery lots N∗

r , as given by equation (4.28) are:

N∗

r ≥ 1

2

(

− 1 +

√

1 + 4
(kp + kbNb)X

kr
(

V +W + Y
Nb

)

)

(4.30)

N∗

r <
1

2

(

1 +

√

1 + 4
(kp + kbNb)X

kr
(

V +W + Y
Nb

)

)

(4.31)

Assuming that c5c8
c6c7

> 2, then for a Np = 1 and a fixed Nr, the upper and lower bounds

on the optimal number of buying lots N∗

b , as given by equation (4.29) are:

N∗

b ≥ 1

2

(

− 1 +

√

1 + 4
(kp + krNr)Y

kb
(

V +W + X
Nr

)

)

(4.32)

N∗

b <
1

2

(

1 +

√

1 + 4
(kp + krNr)Y

kb
(

V +W + X
Nr

)

)

(4.33)

Solving the equations (4.30), (4.31), (4.32) and (4.33) simultaneously to obtain values

of N∗

r and N∗

b gives a convex region and allows the search area for N∗

r and N∗

b to be

dramatically reduced. In our numerical experiments, these bounds provide a region

containing only one integer point, thus providing a unique optimal solution to the

minimization problem. However, future investigations are required to determine if this

result holds in general. This is an area for future research.
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4.6.4 Case 3: Np, Nr, Nb ≥ 1

In this section the restrictions on the numbers of lots are relaxed to allow Np, Nr, Nb

to take any positive integer values. This case is the most general case that we consider.

Finding the values of Np, Nr, Nb and Qp which minimize the total cost function requires

the minimization of a non-differentiable, nonlinear function with three integer variables.

The structure of the total cost function means that for a fixed Np, the function is

differentiable in Qp. We begin by showing that the total cost function is convex in Qp

for a fixed Np, Nr and Nb. Then we propose a search algorithm which can be used for

finding the values of Qp, Np, Nr, and Nb that minimize the total cost function.

Convexity in Qp

It will be shown that for a fixed Np, Nr, Nb, the total cost function is convex in Qp.

(Further details are presented in Appendix A.4.2.) Convexity of a function can be

determined by showing that the second derivative of that function is greater than or

equal to zero (Winston, 1987). The first derivative of the total cost function, with

respect to Qp for a fixed Np, Nr, Nb is:

dTC(Qp, Np, Nr, Nb)

dQp
= −K̄(Np, Nr, Nb)

Q2
p

+

(

V +NpW +
Np

Nr
X +

Np

Nb

Y

−Z1 +NpZ2 +
1

Nb

Z3

Np
∑

i=1

M(i,Np, Nb)

)

(4.34)

The second derivative of the total cost function, with respect toQp for a fixedNp, Nr, Nb

is:

d2TC(Qp, Np, Nr, Nb)

dQ2
p

=
K̄(Np, Nr, Nb)

Q3
p

> 0

Across the range of feasible values for Qp, (i.e. Qp > 0), this second derivative is

always positive. This means that the total cost function is convex with respect to Qp

and therefore that the stationary point found by the first derivative is a minimum. By

setting the first derivative (equation (4.34)) equal to zero, and solving for Qp, the value

of Qp which minimises the total cost can be found. The resultant equation contains
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a square root term, it is necessary to prove that the term under the square root is

not negative. Indeed it is not negative since K̄(Np, Nr, Nb) > 0 and W,V,X > 0 and

Y, (−Z1 +NpZ2 +
1
Nb

Z3
∑Np

i=1M(i,Np, Nb)) ≥ 0. Thus, since the total cost function is

convex in Qp the minimum total cost is reached at:

Q∗

p(Np, Nr, Nb) =

√

√

√

√

K̄(Np, Nr, Nb)

V +NpW +
Np

Nr
X +

Np

Nb
Y − Z1 +NpZ2 +

1
Nb

Z3
∑Np

i=1M(i,Np, Nb)

which gives the corresponding total cost:

TC(Q∗

p, Np, Nr, Nb) = CP + 2

√

K̄
(

Np, Nr, Nb

)

×
√

√

√

√

(

V +NpW +
Np

Nr
X +

Np

Nb

Y − Z1 +NpZ2 +
1

Nb

Z3

Np
∑

i=1

M(i,Np, Nb)
)

(4.35)

The minimum total cost for the system can be determined by finding integer values of

Np, Nr, Nb which minimise equation (4.35).

Search Algorithm

In this section a basic search algorithm for determining the optimal values for Np, Nr

andNb is proposed. More sophisticated algorithms could be designed using assumptions

of convexity. Initial computational experiments and results in the literature (e.g.

(Teunter, 2001, 2004; Konstantaras and Papachristos, 2008b) suggested that the

optimal value of at least one of Np and Nr is likely to be equal to 1. This means that

the search area is likely to be relatively small, and therefore that the computational

savings available by developing a more sophisticated search algorithm are likely to be

minimal.
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Initialise:

Set TCMIN = ∞ and NMIN
p = NMIN

r = NMIN
b = ∞

Choose suitably large NU
p = NU

r = NU
b

For Np = 1 to NU
p

For Nr = 1 to NU
r

For Nb = 1 to NU
b

Calculate total cost TC(Q∗

p, Np, Nr, Nb) using equation (4.35)

If TC(Q∗

p, Np, Nr, Nb) < TCMIN

Set TCMIN = TC(Q∗

p, Np, Nr, Nb)

Set NMIN
p = Np, N

MIN
r = Nr, N

MIN
b = Nb

STOP when Np = NU
p , Nr = NU

r , Nb = NU
b

If NMIN
p = NU

p , NMIN
r = NU

r , or NMIN
b = NU

b

Increase the relevant upper bounds (NU
p , NU

r or NU
b )

and repeat algorithm.

4.7 Properties of the Model

The properties of the product recovery model are explored in this section. Two main

properties are investigated. Firstly, we investigate the effect on the optimal policy of

the restricting the lot sizes. The reader is reminded that the optimal policy sought, is

optimal within a class of policies with Np production lots, followed by Nr recovery lots;

it may not be optimal across all classes of policies. Recall that there are two recovery

strategies: high quality recovery only (ζH = 1, ζL = 0) and high and low quality

recovery (ζH = 1, ζL = 1). The second property that we investigate relates to these

recovery strategies. We investigate the effect of the strategies on the optimal policy

and the conditions under which each recovery strategy is optimal. These questions will

be addressed in Sections 4.7.2 and 4.7.3 respectively. In investigating these properties

a combination of analytical and numerical results are presented. The datasets used to

obtain the numerical results are discussed in Section 4.7.1.
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4.7.1 Datasets

In order to investigate the properties of the model a primary problem set is constructed.

This problem set has been derived from dataset used by Konstantaras and Papachristos

(2008b), however some additional parameters have been added in order to account for

the two recovery channels and the component inventory. The relationships used to

determine the values of these new parameters are discussed first, and then construction

of the primary problem set is discussed. In addition to the primary problem set, two

additional datasets are constructed.

Relationship between Cost Parameters

It is assumed that the cost of a newly produced serviceable item is greater than

cost of high-quality recovered serviceable item, and greater than cost of a serviceable

item produced with recovered components. These conditions are represented with the

following inequalities:

cp + cb > cp + cr + cl

cp + cb > cr + ch

The cost of carrying a unit of inventory for a year can be approximated by the

variable per unit cost of inventory, multiplied by some annual holding charge (Silver

et al., 1998, page 45). Following this formulation, it is assumed that the variable cost

associated with serviceable inventory is cp, with returned inventory is cr, and with

component inventory is cb. Let γh denote the annual, per unit holding charge. Using

this formulation, the costs of holding serviceable, returned and component inventory

respectively are:

hs = γhcp

hr = γhcr

hc = γhcb

The rate γh is often based on the opportunity cost of using the money tied up in

inventory in other ways (Silver et al., 1998, page 46).
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In this model, high quality returns are required to undergo some recovery which

transforms them into serviceable items. It is assumed that this process is similar to,

but not as involved as, production. Because of this relationship, we relate the cost of

high quality recovery to the cost of production through the multiplier γp.

ch = γpcp

Similarly, the use of low quality returns is assumed to be an alternative to buying

components, therefore we relate the cost of low quality recovery to the cost of buying

components through the multiplier γb.

cl = γbcb

The cost of disposing of returns that are not recovered could have numerous

interpretations which are likely to depend on the type of good involved. For instance,

the cost of disposing of a hazardous good, would be more than the cost of disposing of

a non-hazardous good. The cost of disposal could also be related to the value of the

good, e.g. the cost of manufacturing the good. We relate the disposal cost to the cost

of producing a serviceable good with a new component, through the multiplier γd.

cd = γd(cp + cb)

Primary Problem Set

The parameter values for the primary problem set are presented in Table 4.2. These

problems are denoted by D followed by the problem number.

For the first base problem, which we denote by D00, the values of d, p, r, kp, kr, hs, hr

are exactly the same as those in the first example in Konstantaras and Papachristos

(2008b). These parameter values are also used by Teunter (2004). The parameter

f in their paper is equivalent to the parameter βH in the current model, thus their

values for f are used here as values for βH . The values of the additional parameters

(βL, kb, hc, cp, ch, cl, cb, cr, cd) are set to zero. Under the appropriate policy restrictions

(e.g. 1 production lot and Nr recovery lots, or Np production lots and 1 recovery

lot), the optimal value for Qp, the total cost and the lot sizes for D00 in the current
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model, are the same as those reported by Konstantaras and Papachristos (2008b). This

problem instance was kept in the data set to assist with the continual model validation.

The next 13 base problems, denoted D01 to D13, use the same values as

Konstantaras and Papachristos (2008b) for the parameters d, p, r, kp, kr, hs, hr. As for

problem D00, βH in the current model is set equal to their value for f . The values for

βL were chosen in order to represent a variety of high-low quality relationships across

the problem set. The values for hc and kb were specified in the same way. The values

for the remaining parameters (cp, ch, cl, cb, cr, cd) were determined by the relationships

discussed above and the following multipliers:

γh = 0.1

γp = 0.5

γb = 0.3

γd = 0.05

The final seven base problems, denoted D14 to D20, were not used by Konstantaras

and Papachristos (2008b). For these problems the values for d, p, r, kp, kr, kb, hs, hr, hc, βH , βL,

were selected in order to give a wider variety of cost scenarios. In particular, these

additional problems explore the situation of having r > p and βL > βH . The values for

the remaining parameters (cp, ch, cl, cb, cr, cd) were determined as for problems D01 to

D13.

Additional Problem Sets

Two additional problem sets were constructed using the primary problem set D. These

are named E and F . Problem set E is essentially the same as problem set D except that

all of the processing unit costs are set to zero, i.e., {cp = ch = cl = cr = cb = cd = 0}.
Problem set F was constructed from problem set D by varying one of the following

parameters

{d, r, p, kp, kr, kb, hs, hr, hc}
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Problem ID D00 D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
Proportions and Rates

High quality returns βH 0.8 0.8 0.2 0.3 0.3 0.5 0.7 0.8 0.8 0.2 0.5 0.5 0.5 0.5 0.8 0.4 0.1 0.3 0.2 0.2 0.5
Low quality returns βL 0 0.1 0.25 0.1 0.25 0.4 0.2 0.05 0.15 0.35 0.3 0.05 0.05 0.001 0.15 0.4 0.1 0.6 0.1 0.75 0.1
Demand d 1000 1000 1000 500 500 800 1000 20 20 20 800 50 50 59 1000 1000 250 750 10 20 100
Production p 5000 5000 4000 1000 2000 2400 3000 50 100 80 2300 70 70 70 5000 4000 1000 3000 100 80 2300
Recovery r 3000 3000 2500 700 1000 1500 2000 35 50 60 1500 60 60 60 3000 2500 1500 2500 20 160 2300

Set up Costs
Production kp 20 20 10 10 20 20 20 30 30 50 28 12 12 120 20 100 1000 400 30 50 28
Recovery kr 5 5 5 10 12 8 20 20 25 30 8 2 2 10 5 50 1000 400 5 10 8
Buying kb 0 10 2 10 15 12 10 10 5 15 4 6 4 5 10 20 1000 200 15 50 4

Unit Costs
Production cp 0 100 60 80 120 150 100 60 70 200 170 20 70 70 100 60 100 100 70 200 150
High quality recovery ch 0 50 30 40 60 75 50 30 35 100 85 10 35 35 50 30 50 50 35 100 75
Low quality recovery cl 0 3 5 8 12 7 4 6 3 5 20 5 5 10 3 5 10 4 3 5 5
Buying cb 0 30 50 80 120 70 40 60 30 50 200 50 50 100 30 50 100 40 30 50 50
Acquiring returns cr 0 20 40 50 100 40 20 50 20 40 160 10 30 30 20 40 10 20 20 40 20
Disposal cd 0 6.5 5.5 8 12 11 7 6 5 12.5 18.5 3.5 6 8.5 6.5 5.5 10 7 5 12.5 10

Holding Costs
Serviceable hs 10 10 6 8 12 15 10 6 7 20 17 2 7 7 10 6 10 10 7 20 15
Returns hr 2 2 4 5 10 4 2 5 2 4 16 1 3 3 2 4 1 2 2 4 2
Components hc 0 3 5 8 12 7 4 6 3 5 20 5 5 10 3 5 10 4 3 5 5

Table 4.2: Parameters used in the primary problem set
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using the multipliers

{0, 0.1, 0.5, 0.9, 1.1, 1.5, 2.0, 5.0, 10.0}

while holding all other parameters constant. Applying this method results in 9 × 9

problems created for each problem in problem set D. A total of 1701 problems were

constructed in this way, however not all of the new problems were deemed to be feasible,

e.g. some of the created problems had a demand rate equal to zero (d = 0). The

following conditions were used to determine the feasibility of a problem:

0 < βH + βL < 1 0 < α < 1

0 < f < 1 αr < d

p ≤ d p > 0

d > 0 r > 0

kp > 0 kr > 0

Any problems which did not meet all of these conditions were deleted. In addition to

the problems deemed infeasible due to these conditions, there were also some problems

which were found to be infeasible in the solution process as the optimal values for Np,

Nr or Nb appeared to tend to infinity. These problems were also excluded from the

data set. After these infeasible problems had been excluded, there were 1457 problems

in problem set F .

4.7.2 Analysis of Lot Size Restrictions

In this section the effect of restricting the numbers of each type of lot is investigated.

In the literature, research has focussed on searching for optimal policies within classes

of policies with either 1 production lot and Nr recovery lots, or Np production lots and

1 recovery lot (Teunter, 2001, 2004; Konstantaras and Papachristos, 2008b). Teunter

(2001) shows that there is always a near-optimal policy within these classes by proving

that for a fixed Qp and Qr, the “average total cost rate” of a policy with
Np

2 production

lots and Nr

2 recovery lots is always less than the “average total cost rate” of a policy

with Np production lots and Nr recovery lots, when Np and Nr are even numbers.

Restricting the class of policies also simplifies the optimisation.
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However, as mentioned by numerous authors including Teunter (2004), despite this

proof, the optimal policy is not guaranteed to lie within these classes of policies. For

some problems, the optimal policy may require the number of lots to be greater than

one, and at least one of them to be not even. In the current model, it is also possible

that with the addition of the component inventory and the buying of components,

this result may no longer hold. Therefore it is interesting to investigate the effect of

placing restrictions on the class of policies. To explore this further, the optimal policy

will be examined under the following four policy restrictions: (Np, Nr, Nb), (1, Nr, Nb),

(Np, 1, Nb), (1, 1, 1). These four policy classes will also be compared under the two

recovery strategies: high-quality recovery only and high and low quality recovery.

Tables 4.3 and 4.4 show the optimal policy for problem set D under each of the

four policy restrictions for problems with (ζL = 1) and without (ζL = 0) low quality

recovery respectively. These tables are presented to give some examples of optimal

solution policies. However, as shown in Section 4.6, the optimal solution functions for

Qp, Np, Nr and Nb depend not on the unit costs, but only on the holding costs and

set up costs. The unit costs inflate the total cost and can make it more difficult to

observe the differences caused by the policy restrictions. Therefore, in order to analyse

the structure of these policies and their effect on the optimal solution, problem set E

(with no acquisition or processing costs) is used.

Tables 4.5 and 4.6 show the optimal policy for problem set E under each of the four

policy restrictions for problems with (ζL = 1) and without (ζL = 0) low quality recovery

respectively. These tables are presented to give some examples of optimal solution

policies. Examining Table 4.5, observe that for many of the problems it is optimal to

produce, recover or buy components only per cycle, even under the unrestricted policy

(Np, Nr, Nb). Of the 21 base problems, Np > 1 in no problems, Nr > 1 in 8 problems,

and Nb > 1 in 2 problems. Overall, for 10 out of 21 problems is it optimal to deviate

from the (1, 1, 1) policy. In all cases the optimal policy is contained within one of

the policy classes (Np, 1, Nb) or (1, Nr, Nb). This means in these problems, it is never

optimal for both Nr and Np to be greater than one.

Table 4.6, which contains the optimal policy for the high-quality only recovery

strategy, tells a similar story. In these problems, is never it optimal for both Nr and Np

to be greater than one. However there are more cases which deviate from the (1, 1, 1)
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Table 4.3: Optimal lot sizes and numbers of lots for Problem Set D under various policy
restrictions for the both high and low quality recovery strategy (ζL = 1)

Np, Nr, Nb 1, Nr, Nb

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC
D00 1 6 1 51.75 34.50 51.75 386.44 1 6 1 51.75 34.50 51.75 386.44
D01 1 6 1 52.02 39.02 26.01 82411.35 1 6 1 52.02 39.02 26.01 82411.35
D02 1 1 1 65.25 36.70 44.86 104191.87 1 1 1 65.25 36.70 44.86 104191.87
D03 1 1 1 53.40 30.52 45.77 71193.23 1 1 1 53.40 30.52 45.77 71193.23
D04 1 1 1 47.38 37.23 30.46 110394.34 1 1 1 47.38 37.23 30.46 110394.34
D05 1 1 1 50.10 90.18 10.02 128158.73 1 1 1 50.10 90.18 10.02 128158.73
D06 1 2 1 65.17 97.76 21.72 89144.46 1 2 1 65.17 97.76 21.72 89144.46
D07 1 2 1 6.81 14.46 5.10 1868.03 1 2 1 6.81 14.46 5.10 1868.03
D08 1 2 1 7.17 17.02 1.79 1358.89 1 2 1 7.17 17.02 1.79 1358.89
D09 1 1 1 14.09 9.69 7.93 4853.24 1 1 1 14.09 9.69 7.93 4853.24
D10 1 1 1 32.58 52.12 13.03 245142.34 1 1 1 32.58 52.12 13.03 245142.34
D11 1 1 2 25.64 28.21 11.54 2291.94 1 1 2 25.64 28.21 11.54 2291.94
D12 1 1 1 13.67 15.04 12.31 4788.32 1 1 1 13.67 15.04 12.31 4788.32
D13 1 1 7 59.65 59.77 8.50 7342.42 1 1 7 59.65 59.77 8.50 7342.42
D14 1 5 1 46.04 43.74 11.51 81752.81 1 5 1 46.04 43.74 11.51 81752.81
D15 1 1 1 153.45 204.60 51.15 94429.41 1 1 1 153.45 204.60 51.15 94429.41
D16 2 1 2 330.79 147.02 294.03 49900.98 1 1 1 386.66 85.93 343.70 49991.42
D17 1 1 1 343.18 441.23 49.03 85634.66 1 1 1 343.18 441.23 49.03 85634.66
D18 1 1 1 11.50 4.31 10.06 1007.55 1 1 1 11.50 4.31 10.06 1007.55
D19 1 1 1 13.69 16.25 0.86 4754.70 1 1 1 13.69 16.25 0.86 4754.70
D20 1 2 1 18.99 11.40 15.19 15152.74 1 2 1 18.99 11.40 15.19 15152.74

Np, 1, Nb 1, 1, 1

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC
D00 1 1 1 18.63 74.54 18.63 536.66 1 1 1 18.63 74.54 18.63 536.66
D01 1 1 1 21.63 97.36 10.82 82597.10 1 1 1 21.63 97.36 10.82 82597.10
D02 1 1 1 65.25 36.70 44.86 104191.87 1 1 1 65.25 36.70 44.86 104191.87
D03 1 1 1 53.40 30.52 45.77 71193.23 1 1 1 53.40 30.52 45.77 71193.23
D04 1 1 1 47.38 37.23 30.46 110394.34 1 1 1 47.38 37.23 30.46 110394.34
D05 1 1 1 50.10 90.18 10.02 128158.73 1 1 1 50.10 90.18 10.02 128158.73
D06 1 1 1 46.48 139.43 15.49 89145.50 1 1 1 46.48 139.43 15.49 89145.50
D07 1 1 1 4.76 20.24 3.57 1874.79 1 1 1 4.76 20.24 3.57 1874.79
D08 1 1 1 4.72 22.40 1.18 1365.80 1 1 1 4.72 22.40 1.18 1365.80
D09 1 1 1 14.09 9.69 7.93 4853.24 1 1 1 14.09 9.69 7.93 4853.24
D10 1 1 1 32.58 52.12 13.03 245142.34 1 1 1 32.58 52.12 13.03 245142.34
D11 1 1 2 25.64 28.21 11.54 2291.94 1 1 1 19.25 21.17 17.32 2293.21
D12 1 1 1 13.67 15.04 12.31 4788.32 1 1 1 13.67 15.04 12.31 4788.32
D13 1 1 7 59.65 59.77 8.50 7342.42 1 1 1 35.46 35.53 35.39 7403.82
D14 1 1 1 21.46 101.96 5.37 81927.25 1 1 1 21.46 101.96 5.37 81927.25
D15 1 1 1 153.45 204.60 51.15 94429.41 1 1 1 153.45 204.60 51.15 94429.41
D16 2 1 2 330.79 147.02 294.03 49900.98 1 1 1 386.66 85.93 343.70 49991.42
D17 1 1 1 343.18 441.23 49.03 85634.66 1 1 1 343.18 441.23 49.03 85634.66
D18 1 1 1 11.50 4.31 10.06 1007.55 1 1 1 11.50 4.31 10.06 1007.55
D19 1 1 1 13.69 16.25 0.86 4754.70 1 1 1 13.69 16.25 0.86 4754.70
D20 1 1 1 15.05 18.06 12.04 15165.84 1 1 1 15.05 18.06 12.04 15165.84
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Table 4.4: Optimal lot sizes and numbers of lots for Problem Set D under various policy
restrictions for the high quality only recovery strategy (ζL = 0)

Np, Nr, Nb 1, Nr, Nb

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC
D00 1 6 1 51.75 34.50 51.75 386.44 1 6 1 51.75 34.50 51.75 386.44
D01 1 7 1 61.04 34.88 61.04 83725.92 1 7 1 61.04 34.88 61.04 83725.92
D02 1 1 1 69.08 17.27 69.08 106793.75 1 1 1 69.08 17.27 69.08 106793.75
D03 1 1 1 52.64 22.56 52.64 72698.91 1 1 1 52.64 22.56 52.64 72698.91
D04 1 1 1 50.67 21.72 50.67 112849.30 1 1 1 50.67 21.72 50.67 112849.30
D05 1 2 1 60.81 30.41 60.81 139031.44 1 2 1 60.81 30.41 60.81 139031.44
D06 1 2 1 69.48 81.06 69.48 93704.48 1 2 1 69.48 81.06 69.48 93704.48
D07 1 2 1 7.09 14.17 7.09 1874.31 1 2 1 7.09 14.17 7.09 1874.31
D08 1 3 1 10.12 13.49 10.12 1386.99 1 3 1 10.12 13.49 10.12 1386.99
D09 2 1 2 12.57 6.29 12.57 4963.65 1 1 1 14.43 3.61 14.43 4970.68
D10 1 1 1 35.98 35.98 35.98 254289.44 1 1 1 35.98 35.98 35.98 254289.44
D11 1 1 2 25.96 25.96 12.98 2387.57 1 1 2 25.96 25.96 12.98 2387.57
D12 1 2 2 17.75 8.87 8.87 4842.61 1 2 2 17.75 8.87 8.87 4842.61
D13 1 1 7 59.66 59.66 8.52 7346.43 1 1 7 59.66 59.66 8.52 7346.43
D14 1 7 1 61.04 34.88 61.04 83725.92 1 7 1 61.04 34.88 61.04 83725.92
D15 1 1 1 175.15 116.77 175.15 98464.73 1 1 1 175.15 116.77 175.15 98464.73
D16 5 1 5 314.50 174.72 314.50 51897.88 1 1 1 383.03 42.56 383.03 52274.56
D17 2 1 2 300.38 257.46 300.38 95721.50 1 1 1 370.96 158.98 370.96 95755.46
D18 1 1 1 11.64 2.91 11.64 1018.73 1 1 1 11.64 2.91 11.64 1018.73
D19 1 1 1 15.40 3.85 15.40 4988.63 1 1 1 15.40 3.85 15.40 4988.63
D20 1 2 1 19.72 9.86 19.72 15493.45 1 2 1 19.72 9.86 19.72 15493.45

Np, 1, Nb 1, 1, 1

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC
D00 1 1 1 18.63 74.54 18.63 536.66 1 1 1 18.63 74.54 18.63 536.66
D01 1 1 1 22.00 88.01 22.00 83936.30 1 1 1 22.00 88.01 22.00 83936.30
D02 1 1 1 69.08 17.27 69.08 106793.75 1 1 1 69.08 17.27 69.08 106793.75
D03 1 1 1 52.64 22.56 52.64 72698.91 1 1 1 52.64 22.56 52.64 72698.91
D04 1 1 1 50.67 21.72 50.67 112849.30 1 1 1 50.67 21.72 50.67 112849.30
D05 1 1 1 50.40 50.40 50.40 139034.98 1 1 1 50.40 50.40 50.40 139034.98
D06 1 1 1 46.97 109.59 46.97 93738.75 1 1 1 46.97 109.59 46.97 93738.75
D07 1 1 1 4.86 19.46 4.86 1882.68 1 1 1 4.86 19.46 4.86 1882.68
D08 1 1 1 4.88 19.54 4.88 1398.27 1 1 1 4.88 19.54 4.88 1398.27
D09 2 1 2 12.57 6.29 12.57 4963.65 1 1 1 14.43 3.61 14.43 4970.68
D10 1 1 1 35.98 35.98 35.98 254289.44 1 1 1 35.98 35.98 35.98 254289.44
D11 1 1 2 25.96 25.96 12.98 2387.57 1 1 1 18.83 18.83 18.83 2390.62
D12 1 1 1 13.26 13.26 13.26 4842.88 1 1 1 13.26 13.26 13.26 4842.88
D13 1 1 7 59.66 59.66 8.52 7346.43 1 1 1 35.42 35.42 35.42 7408.10
D14 1 1 1 22.00 88.01 22.00 83936.30 1 1 1 22.00 88.01 22.00 83936.30
D15 1 1 1 175.15 116.77 175.15 98464.73 1 1 1 175.15 116.77 175.15 98464.73
D16 5 1 5 314.50 174.72 314.50 51897.88 1 1 1 383.03 42.56 383.03 52274.56
D17 2 1 2 300.38 257.46 300.38 95721.50 1 1 1 370.96 158.98 370.96 95755.46
D18 1 1 1 11.64 2.91 11.64 1018.73 1 1 1 11.64 2.91 11.64 1018.73
D19 1 1 1 15.40 3.85 15.40 4988.63 1 1 1 15.40 3.85 15.40 4988.63
D20 1 1 1 15.61 15.61 15.61 15506.23 1 1 1 15.61 15.61 15.61 15506.23
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Table 4.5: Optimal lot sizes and numbers of lots for Problem Set E under various policy
restrictions for the both high and low quality recovery strategy (ζL = 1)

Np, Nr, Nb 1, Nr, Nb

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC

E00 1 6 1 51.755 34.503 51.755 386.437 1 6 1 51.755 34.503 51.755 386.437
E01 1 7 1 61.045 34.883 61.045 425.918 1 7 1 61.045 34.883 61.045 425.918
E02 1 1 1 67.898 16.975 67.898 400.600 1 1 1 67.898 16.975 67.898 400.600
E03 1 1 1 52.644 22.562 52.644 398.909 1 1 1 52.644 22.562 52.644 398.909
E04 1 1 1 51.377 22.019 51.377 640.371 1 1 1 51.377 22.019 51.377 640.371
E05 1 2 1 60.813 30.407 60.813 631.443 1 2 1 60.813 30.407 60.813 631.443
E06 1 2 1 69.481 81.061 69.481 604.483 1 2 1 69.481 81.061 69.481 604.483
E07 1 2 1 7.087 14.174 7.087 90.307 1 2 1 7.087 14.174 7.087 90.307
E08 1 3 1 10.116 13.488 10.116 86.994 1 3 1 10.116 13.488 10.116 86.994
E09 2 1 2 12.571 6.285 12.571 203.647 1 1 1 14.430 3.608 14.430 210.675
E10 1 1 1 35.978 35.978 35.978 889.436 1 1 1 35.978 35.978 35.978 889.436
E11 1 1 2 25.963 25.963 12.982 50.071 1 1 2 25.963 25.963 12.982 50.071
E12 1 2 2 17.748 8.874 8.874 67.612 1 2 2 17.748 8.874 8.874 67.612
E13 1 1 7 59.657 59.657 8.522 163.184 1 1 7 59.657 59.657 8.522 163.184
E14 1 2 1 74.023 37.012 74.023 540.370 1 2 1 74.023 37.012 74.023 540.370
E15 1 1 1 175.148 116.765 175.148 1164.732 1 1 1 175.148 116.765 175.148 1164.732
E16 2 1 2 313.209 69.602 313.209 2945.321 1 1 1 320.463 35.607 320.463 2948.856
E17 1 2 1 305.717 229.288 305.717 2747.635 1 2 1 305.717 229.288 305.717 2747.635
E18 1 1 1 11.640 2.910 11.640 68.731 1 1 1 11.640 2.910 11.640 68.731
E19 1 1 1 15.396 3.849 15.396 228.631 1 1 1 15.396 3.849 15.396 228.631
E20 1 2 1 20.298 10.149 20.298 236.474 1 2 1 20.298 10.149 20.298 236.474

Np, 1, Nb 1, 1, 1

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC

E00 1 1 1 18.634 74.536 18.634 536.656 1 1 1 18.634 74.536 18.634 536.656
E01 1 1 1 22.002 88.009 22.002 636.302 1 1 1 22.002 88.009 22.002 636.302
E02 1 1 1 67.898 16.975 67.898 400.600 1 1 1 67.898 16.975 67.898 400.600
E03 1 1 1 52.644 22.562 52.644 398.909 1 1 1 52.644 22.562 52.644 398.909
E04 1 1 1 51.377 22.019 51.377 640.371 1 1 1 51.377 22.019 51.377 640.371
E05 1 1 1 50.395 50.395 50.395 634.980 1 1 1 50.395 50.395 50.395 634.980
E06 1 1 1 46.967 109.589 46.967 638.749 1 1 1 46.967 109.589 46.967 638.749
E07 1 1 1 4.864 19.457 4.864 98.677 1 1 1 4.864 19.457 4.864 98.677
E08 1 1 1 4.884 19.537 4.884 98.273 1 1 1 4.884 19.537 4.884 98.273
E09 2 1 2 12.571 6.285 12.571 203.647 1 1 1 14.430 3.608 14.430 210.675
E10 1 1 1 35.978 35.978 35.978 889.436 1 1 1 35.978 35.978 35.978 889.436
E11 1 1 2 25.963 25.963 12.982 50.071 1 1 1 18.826 18.826 18.826 53.117
E12 1 1 1 13.260 13.260 13.260 67.876 1 1 1 13.260 13.260 13.260 67.876
E13 1 1 7 59.657 59.657 8.522 163.184 1 1 1 35.423 35.423 35.423 224.853
E14 1 1 1 61.347 61.347 61.347 570.526 1 1 1 61.347 61.347 61.347 570.526
E15 1 1 1 175.148 116.765 175.148 1164.732 1 1 1 175.148 116.765 175.148 1164.732
E16 2 1 2 313.209 69.602 313.209 2945.321 1 1 1 320.463 35.607 320.463 2948.856
E17 1 1 1 211.801 317.702 211.801 2832.843 1 1 1 211.801 317.702 211.801 2832.843
E18 1 1 1 11.640 2.910 11.640 68.731 1 1 1 11.640 2.910 11.640 68.731
E19 1 1 1 15.396 3.849 15.396 228.631 1 1 1 15.396 3.849 15.396 228.631
E20 1 1 1 16.303 16.303 16.303 245.357 1 1 1 16.303 16.303 16.303 245.357
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Table 4.6: Optimal lot sizes and numbers of lots for Problem Set E under various policy
restrictions for the high quality only recovery strategy (ζL = 0)

Np, Nr, Nb 1, Nr, Nb

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC

E00 1 6 1 51.755 34.503 51.755 386.437 1 6 1 51.755 34.503 51.755 386.437
E01 1 6 1 52.022 39.016 26.011 461.346 1 6 1 52.022 39.016 26.011 461.346
E02 1 1 1 64.334 36.188 44.230 422.794 1 1 1 64.334 36.188 44.230 422.794
E03 1 1 1 53.404 30.517 45.775 393.228 1 1 1 53.404 30.517 45.775 393.228
E04 1 1 1 48.080 37.777 30.909 684.279 1 1 1 48.080 37.777 30.909 684.279
E05 1 1 1 50.099 90.179 10.020 638.732 1 1 1 50.099 90.179 10.020 638.732
E06 1 2 1 65.171 97.756 21.724 644.464 1 2 1 65.171 97.756 21.724 644.464
E07 1 2 1 6.806 14.463 5.105 94.035 1 2 1 6.806 14.463 5.105 94.035
E08 1 2 1 7.166 17.019 1.792 94.894 1 2 1 7.166 17.019 1.792 94.894
E09 1 1 1 14.091 9.687 7.926 215.744 1 1 1 14.091 9.687 7.926 215.744
E10 1 1 1 32.575 52.120 13.030 982.343 1 1 1 32.575 52.120 13.030 982.343
E11 1 1 2 25.644 28.209 11.540 50.693 1 1 2 25.644 28.209 11.540 50.693
E12 1 1 1 13.673 15.040 12.306 65.824 1 1 1 13.673 15.040 12.306 65.824
E13 1 1 7 59.646 59.766 8.504 163.212 1 1 7 59.646 59.766 8.504 163.212
E14 1 2 1 71.445 46.439 50.011 559.875 1 2 1 71.445 46.439 50.011 559.875
E15 1 1 1 155.435 194.293 64.764 1312.450 1 1 1 155.435 194.293 64.764 1312.450
E16 1 1 1 323.505 71.890 287.560 2921.130 1 1 1 323.505 71.890 287.560 2921.130
E17 1 2 1 292.467 255.909 219.350 2872.118 1 2 1 292.467 255.909 219.350 2872.118
E18 1 1 1 11.503 4.314 10.065 69.549 1 1 1 11.503 4.314 10.065 69.549
E19 1 1 1 13.686 16.252 0.855 257.202 1 1 1 13.686 16.252 0.855 257.202
E20 1 2 1 19.670 11.802 15.736 244.026 1 2 1 19.670 11.802 15.736 244.026

Np, 1, Nb 1, 1, 1

Problem NpNrNb Qp Qr Qb TC NpNrNb Qp Qr Qb TC

E00 1 1 1 18.634 74.536 18.634 536.656 1 1 1 18.634 74.536 18.634 536.656
E01 1 1 1 21.635 97.357 10.818 647.101 1 1 1 21.635 97.357 10.818 647.101
E02 1 1 1 64.334 36.188 44.230 422.794 1 1 1 64.334 36.188 44.230 422.794
E03 1 1 1 53.404 30.517 45.775 393.228 1 1 1 53.404 30.517 45.775 393.228
E04 1 1 1 48.080 37.777 30.909 684.279 1 1 1 48.080 37.777 30.909 684.279
E05 1 1 1 50.099 90.179 10.020 638.732 1 1 1 50.099 90.179 10.020 638.732
E06 1 1 1 46.476 139.427 15.492 645.497 1 1 1 46.476 139.427 15.492 645.497
E07 1 1 1 4.763 20.241 3.572 100.788 1 1 1 4.763 20.241 3.572 100.788
E08 1 1 1 4.715 22.397 1.179 101.800 1 1 1 4.715 22.397 1.179 101.800
E09 1 1 1 14.091 9.687 7.926 215.744 1 1 1 14.091 9.687 7.926 215.744
E10 1 1 1 32.575 52.120 13.030 982.343 1 1 1 32.575 52.120 13.030 982.343
E11 1 1 2 25.644 28.209 11.540 50.693 1 1 1 19.245 21.170 17.321 51.962
E12 1 1 1 13.673 15.040 12.306 65.824 1 1 1 13.673 15.040 12.306 65.824
E13 1 1 7 59.646 59.766 8.504 163.212 1 1 1 35.461 35.532 35.390 224.614
E14 1 1 1 59.918 77.893 41.942 584.136 1 1 1 59.918 77.893 41.942 584.136
E15 1 1 1 155.435 194.293 64.764 1312.450 1 1 1 155.435 194.293 64.764 1312.450
E16 1 1 1 323.505 71.890 287.560 2921.130 1 1 1 323.505 71.890 287.560 2921.130
E17 1 1 1 204.191 357.334 153.143 2938.431 1 1 1 204.191 357.334 153.143 2938.431
E18 1 1 1 11.503 4.314 10.065 69.549 1 1 1 11.503 4.314 10.065 69.549
E19 1 1 1 13.686 16.252 0.855 257.202 1 1 1 13.686 16.252 0.855 257.202
E20 1 1 1 15.860 19.032 12.688 252.206 1 1 1 15.860 19.032 12.688 252.206
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policy, 14 out of 21 cases. Of the 21 base problems, Np > 1 in 2 problems, Nr > 1 in

10 problems, and Nb > 1 in 5 problems.

Relative Cost Error. As shown in these tables, the difference in the total cost under

the unrestricted policy (Np, Nr, Nb) and the other policies varies. This is shown more

clearly in Table 4.7. This table shows the relative cost errors of the restricted policies

compared with the unrestricted policies for problem sets D and E. For each of the

restricted policies, the relative cost error is calculated as follows:

RCE =
restricted − unrestricted

unrestricted
× 100%

As shown in Table 4.7 RCEs vary depending on the structure of the unrestricted optimal

policy. For some problems the RCE is zero, meaning that the optimal unrestricted

policy is contained within that class, but for other problems the RCE is quite large. In

general the RCE is lower for problem set D than problem set E. This is a reflection

of the larger total costs associated with problem set D, which includes the processing

unit costs.

Further Analysis. Problem set F was used to carry out further analysis on the effect

of policy restrictions. This problem set was created by varying the values of individual

parameters in problem set E and it contains 1457 problems. The unit processing costs

are set to zero, as for problem set E. Across this larger dataset similar results were

found. Of the 1457 problems in problem set F , there were 718 which had optimal

policies contained within the (1, 1, 1) policy class when ζL = 1, and 403 which had

optimal policies contained in this class when ζL = 0.

The relative cost errors are summarised in Table 4.8. As shown in this table,

restricting the number of lots per cycle had a greater impact on the relative cost error

when only high-quality recovery is performed.

4.7.3 Analysis of Recovery Strategy

In this section the conditions determining the optimality of the recovery strategies are

investigated. This analysis could help firms to decide under what conditions it is optimal
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Table 4.7: Relative cost error (RCE) compared with the unrestricted (Np, Nr, Nb) policy
for both recovery strategies

(a) Problem Set D

High and low quality recovery High quality recovery only
Problem 1, Nr, Nb Np, 1, Nb 1, 1, 1 1, Nr, Nb Np, 1, Nb 1, 1, 1
D00 0 38.873 38.873 0 38.873 38.873
D01 0 0.225 0.225 0 0.251 0.251
D02 0 0 0 0 0 0
D03 0 0 0 0 0 0
D04 0 0 0 0 0 0
D05 0 0 0 0 0.003 0.003
D06 0 0.001 0.001 0 0.037 0.037
D07 0 0.362 0.362 0 0.447 0.447
D08 0 0.508 0.508 0 0.813 0.813
D09 0 0 0 0.142 0 0.142
D10 0 0 0 0 0 0
D11 0 0 0.055 0 0 0.128
D12 0 0 0 0 0.005 0.005
D13 0 0 0.836 0 0 0.839
D14 0 0.213 0.213 0 0.251 0.251
D15 0 0 0 0 0 0
D16 0.181 0 0.181 0.726 0 0.726
D17 0 0 0 0.035 0 0.035
D18 0 0 0 0 0 0
D19 0 0 0 0 0 0
D20 0 0.086 0.086 0 0.082 0.082

(b) Problem Set E

High and low quality recovery High quality recovery only
Problem 1, Nr, Nb Np, 1, Nb 1, 1, 1 1, Nr, Nb Np, 1, Nb 1, 1, 1
E00 0 38.873 38.873 0 38.873 38.873
E01 0 40.264 40.264 0 49.396 49.396
E02 0 0 0 0 0 0
E03 0 0 0 0 0 0
E04 0 0 0 0 0 0
E05 0 0 0 0 0.560 0.560
E06 0 0.160 0.160 0 5.669 5.669
E07 0 7.182 7.182 0 9.268 9.268
E08 0 7.277 7.277 0 12.965 12.965
E09 0 0 0 3.451 0 3.451
E10 0 0 0 0 0 0
E11 0 0 2.502 0 0 6.083
E12 0 0 0 0 0.390 0.390
E13 0 0 37.621 0 0 37.791
E14 0 4.333 4.333 0 5.581 5.581
E15 0 0 0 0 0 0
E16 0 0 0 0.120 0 0.120
E17 0 2.309 2.309 0 3.101 3.101
E18 0 0 0 0 0 0
E19 0 0 0 0 0 0
E20 0 3.352 3.352 0 3.756 3.756
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ζL = 1 ζL = 0
1, Nr, Nb Np, 1, Nb 1, 1, 1 1, Nr, Nb Np, 1, Nb 1, 1, 1

min 0 0 0 0 0 0
max 27.184 109.869 145.182 43.192 119.049 148.035
mean 0.264 5.764 7.834 0.579 7.187 9.947
sd 1.745 13.214 15.375 2.548 14.899 16.658
number of policies with
(1, 1, 1)

772 1261 1457 578 1060 1457

number with optimal
policies of (1, 1, 1)

718 718 718 403 403 403

Table 4.8: Summary of the relative cost errors (RCE) compared with the unrestricted
(Np, Nr, Nb) policy for both recovery strategies, n = 1457 problems

to perform both high quality recovery and low quality recovery. Firstly some general

properties of the total cost function are discussed, and then two main properties are

investigated: the effect of the disposal cost cd and the effect of the quality of the returns.

In this section we focus on the case with one of each type of lot, (Np = Nr = Nb = 1).

Recall from Section 4.6.2 that when there is one of each type of lot, the optimization

problem is reduced to minimizing with respect to Qp. The cost-minimising production

lot size is:

Q∗

p(1, 1, 1) =

√

d(1− αf)(kp + kr + kb)

V +W +X + Y − Z1 + Z2 + Z3

which results in a total cost of:

TC(Q∗

p, 1, 1, 1) = CP + 2
√

d(1− αf)(kp + kr + kb)(V +W +X + Y − Z1 + Z2 + Z3)

or replacing the substitutions of CP , V,W,X, Y, Z1, Z2, Z3:

TC(Q∗

p, 1, 1, 1) = crfd+ cbd(1− f) + cp(1− αf)d+ chαfd+ cl(1− α)fd+ cd(1− f)d

+ 2
√

d(1 − αf)(kp + kr + kb)×
(

hs(1− αf)(p− d)

2p
+

hrf

2

+
hcf

2(1− α)

2(1 − αf)

(

d (1− α)

p
+ α

)

+
f2(αr − d)

2r(1− αf)
(hsα+ hr + hc(1− α))

+
hcd(1− f)2

2p(1− αf)
− hc(1− αf)(p − d)

2p

+ hc

(

1− d

p

)(

f(1− α)− (1− αf)

2

)

+
hc(p− d)(1 − f)

p

)0.5
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From this function it is obvious that the optimal total cost increases with cr, cb, cp,

ch, cl, cd. The term which is derived from (V +W +X + Y − Z1 + Z2 + Z3) is always

positive, as is d(1−αf), therefore the optimal total cost also increases with kp, kr and

kb. The optimal production lot size Q∗

p is increasing in the set up costs kp, kr and kb.

Since the holding costs are represented by the term (V +W +X + Y −Z1 + Z2 + Z3)

in the denominator, the optimal production lot size Q∗

p decreases as the holding costs

hs, hr and hc increase.

Disposal Cost

The term cd denotes the cost of disposing of any returns which are not recovered.

This cost could represent a production tax incurred by producers that do not take

responsibility for the fate of their goods after the customer has used them. Under

a high quality recovery strategy, this cost is incurred for more items, compared with

under a both high and low quality recovery strategy. Thus, as this disposal cost cd

increases, it may become worthwhile to perform both low and high quality recovery.

Let TC0(Q
∗

p, 1, 1, 1) and Q∗

p0 denote the optimal total cost and production lot size

under a high-quality only recovery strategy (ζL = 0); and let TC1(Q
∗

p, 1, 1, 1) and Q∗

p1

denote the optimal total cost and production lot size when both high and low quality

returns are covered (ζL = 1). Let CP0 and CP1 denote the values of CP under recovery

strategies with ζL = 0 and ζL = 1 respectively. Let the similar notation apply to

the other expressions V,W,X, Y, Z1, Z2, Z3. Then under a high-quality only recovery

strategy (ζL = 0), the optimal total cost can be written as:

TC0(Q
∗

p0, 1, 1, 1) = CP0 + 2
√

d(1− βH)(kp + kr + kb)×
√

(V0 +W0 +X0 + Y0 − Z10 + Z20 + Z30)

and under a both high and low quality recovery strategy (ζL = 1), the optimal total

cost can be written as:

TC1(Q
∗

p1, 1, 1, 1) = CP1 + 2
√

d(1− βH)(kp + kr + kb)×
√

(V1 +W1 +X1 + Y1 − Z11 + Z21 + Z31)

It is profitable to perform low quality recovery when:

TC1(Q
∗

p1, 1, 1, 1) < TC0(Q
∗

p0, 1, 1, 1) (4.36)
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Using this relationship, it is possible to calculate the values of the disposal cost cd, for

which is it profitable to perform low quality recovery, given all other parameters remain

unchanged.

Using the full expressions for CP0 and CP1 gives:

CP0 = cp(1− βH)d+ chβHd+ cl(0)βHd+ crβHd+ cbd(1 − βH) + cd(1− βH)d

CP1 = cp(1− βH)d+ chβHd+ clβLd+ cr(βH + βL)d+

cbd(1− (βH + βL)) + cd(1− (βH + βL))d

Substituting these expressions into equation (4.36), and performing some simple algebra

to solve for the disposal cost cd yields the following result (further details available in

Appendix A.5.1):

c∗d >
1

βLd

(

clβLd+ crβLd− cbdβL

+ 2
√

d(1− βH)(kp + kr + kb)(V1 +W1 +X1 + Y1 − Z11 + Z21 + Z31)

− 2
√

d(1− βH)(kp + kr + kb)(V0 +W0 +X0 + Y0 − Z10 + Z20 + Z30)

)

(4.37)

Thus if all cost parameters remain unchanged, then it will be profitable to perform low

quality recovery if the disposal cost satisfies the condition given by equation (4.37). It

may be possible to simplify this expression further, how we do not do this here due to

the complicated nature of the function. Similar expressions are possible for the other

unit cost parameters.

The use of this condition is applied to two problems from problem set E as an

example. For problems E07 and E19, the values of cd above which it becomes

profitable to perform low quality recovery are 2.1108 and 1.9047 respectively. The

relationship between the total cost and the value of the disposal cost is demonstrated

for these two problems in Figures 4.9a and 4.9b respectively.

Quality of Returns

The quality of returns is likely to affect the performance of the system, and in particular,

will influence the optimality of each recovery strategy. The restricted case of (1, 1, 1)

will be considered here in order to simplify the search for the optimal policy.
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Figure 4.9: Values of the disposal cost cd for which it is profitable to do low quality

recovery

0 0.5 1 1.5 2 2.5
105

110

115

120

125

130

135

140

145

150
 ζ

L
=0

c
d

T
C

(Q
p* , 1

, 1
, 1

)

 

 

 β
L
=0.1

 β
L
=0.2

 β
L
=0.3

 β
L
=0.4

 β
L
=0.5

 β
L
=0.6

 β
L
=0.7

ζ
L
=0

ζ
L
=1

(a) βH = 0.2

0 0.5 1 1.5 2 2.5
95

100

105

110

115

120

125

130  ζ
L
=0

c
d

T
C

(Q
p* , 1

, 1
, 1

)

 

 

 β
L
=0.1

 β
L
=0.2

 β
L
=0.3

 β
L
=0.4

 β
L
=0.5

ζ
L
=0

ζ
L
=1

(b) βH = 0.4

0 0.5 1 1.5 2 2.5
95

100

105

110

115

120

 ζ
L
=0

c
d

T
C

(Q
p* , 1

, 1
, 1

)

 

 

 β
L
=0.1

 β
L
=0.2

 β
L
=0.3

ζ
L
=0

ζ
L
=1

(c) βH = 0.6

0 0.5 1 1.5 2 2.5
98

100

102

104

106

108

110

 ζ
L
=0

c
d

T
C

(Q
p* , 1

, 1
, 1

)

 

 

 β
L
=0.1

ζ
L
=0

ζ
L
=1

(d) βH = 0.8

Figure 4.10: Optimal total cost across a range of disposal cost cd for a variety of values

of βL under a policy with Np = Nr = Nb = 1 for problem E07.
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Recall that the proportion of returns that are high quality is denoted by βH and

the proportion of returns that are low quality is denoted by βL. Figure 4.10 shows the

effect on the total cost for a variety of values of βH and βL, across a range disposal costs

for Problem E07. These graphs show that as the proportion of high quality returns βH

increases, the disposal cost has to be much higher in order for low quality recovery to

be profitable. This effectively means that if there is a high proportion of high quality

returns, the firm is not concerned about the low quality returns, unless the penalty

cost associated with disposing of them is quite high. However for a fixed proportion of

high quality returns βH , the disposal cost for which low quality recovery is profitable

decreases in βL. These observations refer only to problem E07 displayed in Figure

4.10. Further investigations are required to determine if this relationship exists for all

problems under a (1, 1, 1) policy restriction, or a Np, Nr, Nb ≥ 1 policy.

4.8 Discussion

This chapter presents a product recovery model which uses the quality of returns to

determine the type of recovery that is performed. High quality returns undergo high

quality recovery, which is used to replenish the serviceable inventory; low quality returns

undergo low quality recovery, which is used to replenish the component inventory.

Components are required for the production of new products and can be bought, as

well as salvaged from the low quality returns. The firm is interested in the strategic

recovery decision of whether to recover both high quality and low quality returns, or

only high quality returns.

An EOQ lot sizing model is used to study this problem. The total cost per time

unit was derived in terms of the production lot size Qp, and the number of production,

recovery and buying lots per cycle Np, Nr, Nb. The total cost function is a function in

both integer and continuous variables and therefore the minimisation of this function is

not trivial. In fact, the problem can be presented as a mixed integer non linear program

(MINLP). The integer variables correspond to the number of lots per cycle, Np, Nr, Nb,

therefore we first consider the case in which Np = Nr = Nb = 1. This is generalised

to allow one production lot Np = 1 and multiple recovery and buying lots Nr, Nb ≥ 1.
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Finally it is generalised further to allow multiple production, recovery and buying lots

Np, Nr, Nb ≥ 1.

For the case of Np = Nr = Nb = 1 the total cost function is convex in Qp and

closed form solution is derived for optimal lot size for production Q∗

p. For the case of

Np = 1 and Nr, Nb ≥ 1, if Nr and Nb are fixed, then the total cost function is convex in

Qp. Following Konstantaras and Papachristos (2008b) a method was presented which

allowed bounds to be developed to find values for Nr and Nb.

For the general case which allows multiple production, recovery and ordering lots

per cycle, the convexity of the total cost function with respect to Qp is proved, for a

fixed Np, Nr, Nb. An expression is provided for the optimal production lot size Qp, for

a fixed Np, Nr, Nb and a search algorithm is presented to determine the optimal values

of Np, Nr, Nb.

The effect of restricting the number of lots per cycle is investigated by calculating

the optimal policy under four policy scenarios, for both recovery strategies: high quality

recovery only and both high and low quality recovery. It was found that restricting

the number of lots per cycle resulted in a greater increase in the total cost when only

high quality recovery was performed. This suggests that performing both high and

low quality recovery reduces the sensitivity of the optimal solution to variations in the

number of lots per cycle. This may be due to the fact that performing both types

of recovery allows cost savings to be achieved, and these can counteract any increases

resulting from a policy with a sub-optimal number of lots per cycle.

From a strategic planning point of view, it is interesting to investigate the conditions

under which it is optimal to perform low quality recovery. It was found that if the

disposal cost is greater than a certain level, say c∗d, it will be optimal to perform both

high and low quality recovery, otherwise only high quality recovery should be performed.

For the Np = Nr = Nb = 1 case, an expression was presented which allows this level c∗d

to be calculated. The effect of the quality of returns was investigated using numerical

experiments. For the problems tested, it was found that if there is a high proportion of

high quality returns, the firm should not be concerned about recovering the low quality

returns, unless the penalty cost associated with disposing of them is quite high.
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There are many possibilities for future research. Firstly, further results relating

to the general case of multiple production, recovery and ordering lots per cycle may

be possible, either theoretically or numerically. Secondly, the effect of rounding the

lot size variables Qp, Qr, Qb to the nearest integer could also be addressed. There are

also several extensions to the model which could be studied, for example, it is possible

that with enough expenditure all returns could be recovered into serviceable inventory.

Therefore the model could be extended to allow the proportion of high quality returns to

be a decision variable. A further extension could allow the arrival rate of a components

order to be finite, i.e., the components would arrive gradually, rather than as a single

batch.

The model in this chapter allows the profitability of having quality dependent

recovery channels to be assessed in a deterministic context, however in reality, product

recovery firms may not be operating in such a predictable world. Whilst it can be argued

that in some manufacturing environments, contractual obligations remove much of the

uncertainty around the rate of demand and returns, this does not apply to all firms.

For many firms there are uncertainties associated with the quality, quantity and timing

of returns, not to mention with the arrival of demand. This limitation will be addressed

in Chapter 5 where a stochastic product recovery model is proposed.
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Chapter 5

Discrete-Time Stochastic

Product Recovery Model with a

Single Market

5.1 Introduction

Product recovery systems operate in an uncertain environment. The demand for and

return of goods can be uncertain, in terms of quantity and timing. The quality of

returns can also be uncertain. These uncertainties add operational complications for

firms in this industry.

This chapter presents a stochastic product recovery model in which goods no longer

required by the consumer are returned to their producer for recovery. The returns have

varying quality. If returns are of sufficiently high quality then they can be recovered to

be ‘as good as new’, otherwise the components can be salvaged and used as inputs in

the production of new goods. In this model demand, returns and the quality of returns

are uncertain. This model extends the deterministic product recovery model presented

in Chapter 4 by allowing the demand, returns and quality of returns to be stochastic.

The introduction of uncertainty into the model addresses one of the limitations of the

deterministic model in Chapter 4.
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A discrete time Markov decision process is used to model this stochastic product

recovery system. In each time period, the inventory levels are observed and decisions are

made regarding production, recovery and buying components. A periodic discrete-time

model is chosen to model this problem, rather than a continuous model because one of

the aims of this research is to examine the structure of the optimal policy. As discussed

by Inderfurth (1997) periodic models are generally used when the policy structure is

to be analysed.

This chapter is structured as follows. The problem description is presented in

Section 5.2. In Section 5.3, a model for analysing this problem is proposed and following

from that a Markov decision process formulation is presented in Section 5.4. The

implementation and validation of the Markov decision process model is discussed in

Section 5.5. Properties of the optimal policy are discussed in Section 5.6 and some

heuristic policies are proposed and tested in Section 5.7. The results of the chapter are

discussed in Section 5.8.

5.2 Problem Description

Suppose there is a firm which has a primary function of producing new goods. This firm

accepts these goods back after they have been used and, if they are above the required

quality threshold, recovers them to the same quality standard as newly produced

goods and then sells them. Produced and recovered items are both considered to be

‘serviceable’ and are viewed as identical by the consumer so are sold on the same market.

For returns which are below the quality threshold for recovery, the firm has a choice:

to dispose of them or to use them as components in the production of newly produced

items. If insufficient components are obtained from the recovery of low quality returns

then additional components are bought. High-quality recovered goods are considered

to be “as good as new”.

The firm is a cost-minimising firm. Fixed and unit costs are incurred for production,

recovery and buying components. Costs are also incurred for holding inventory and

for lost sales. Demand for serviceable items, returns and the quality of returns are

uncertain. The firm must determine a production plan that specifies how much and how

128



often to produce, recover and buy. The firm is also interested in the cost-effectiveness

of recovering low quality returns.

As in Chapter 4, this system could describe Canon’s remanufacturing processes

for cartridges and printers, which were discussed in Section 2.2.3. Used printers and

cartridges are returned to Canon to undergo remanufacturing before being sold as new.

In both cases, returns which cannot be returned to this “as new” condition may be

used as parts or materials in the production process. Rigorous quality standards allow

Canon to sell these remanufactured products as new. This system could also describe

the situation faced by a Cooperage with respect to whisky barrels. whisky barrels are

used and then returned for repair. Some barrels will require only minor repairs, whereas

some may require more substantial repairs or may only used for parts. In Chapter 4, it

was assumed that there were no uncertainties, however it is likely that these companies

will face uncertainties in demand and in the quantity and quality of returns.

5.3 Model Description and Assumptions

Figure 5.1 presents the product recovery system being modelled in this chapter. As

shown in this diagram, consumer demand is met by the stock of serviceable goods. The

model and the modelling assumptions will be discussed in this section.

Components

Consumer

Serviceable
Inventory

Buy

Production

Components
Recovery Inventory

Returned
Inventory

Figure 5.1: A product recovery system with dual-recovery channels

Inventory Levels. In this model there are three types of inventory: serviceable in-

ventory (produced and recovered goods), returned inventory and component inventory.
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It is assumed that there is a finite capacity available for storing each of the inventories.

If this capacity is reached then a disposal cost may be incurred for each item which

exceeds the maximum capacity. It is assumed that there is no backordering, therefore

if there is insufficient inventory to meet demand, then the sale will be lost. Inventory

levels must always be nonnegative.

Periodic Decision Making. In this model it is assumed that operational decisions

are made periodically at set decision epochs. Nowadays many firms have the technology

to monitor stock levels continuously, however despite this, many still only review this

information and take action periodically, e.g. daily or weekly (Silver et al., 1998). It is

assumed that the length of time between two subsequent decision epochs is one time

unit.

At each decision epoch the inventory levels are reviewed and then a decision is

made regarding, how much to produce and recover, and how many components to buy.

The lead times for production, recovery and buying components are zero, therefore

inventory levels are updated immediately to reflect the decision made. Demand and

returns are then observed and the inventory levels are updated accordingly. This system

is being studied over an infinite time horizon, which implies that the decisions regarding

production, recovery and buying will not depend on time.

Production, Recovery and Buying. It is assumed that production and recovery

require some shared facility, thus cannot both be selected at a given decision epoch.

It is also assumed that components will only be bought at decision epochs at which

production is also selected. This does not place any limitations on the model because

it would be suboptimal to buy components in the same period as recovery, since any

items bought would incur a holding cost until they were used. As mentioned above,

the lead time for production, recovery and buying components is zero. At each decision

epoch the amount that is produced or recovered and the number of components that

are bought is non-negative and constrained by a finite upper limit. It is assumed that

one component is required in the production of each new good.

The recovery process has two channels, one which results in serviceable goods and

one which results in components. It is assumed that with enough effort and expenditure,
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all returns could be recovered up to the same serviceable standard as newly produced

goods. However it is also assumed that the firm has set a threshold which determines

the quality level of returns for which it is considered worthwhile to recover up to this

serviceable standard. In the remainder of this chapter, returns which are above this

quality threshold are referred to as ‘high quality returns’. High quality returns undergo

‘high quality recovery’ which brings them up to a serviceable standard and are then

sold alongside newly produced goods. Returns which fall below the quality threshold

are termed ‘low quality returns’ and undergo ‘low quality recovery’ in order salvage

components which can be used in production. It is assumed that the firm makes

a strategic-level decision (outwith the model) about whether to recover low quality

returns or to dispose of them. It is assumed that determining the quality of the returns

requires some diagnostic testing which is performed as part of the recovery process. The

quality of the returns and is modelled by a known probability distribution. If there is

insufficient capacity in the serviceable inventory, then high quality returns will undergo

low quality recovery and be used for components. Any recovered items which can not

fit into either the serviceable inventory or the component inventory are discarded.

As mentioned above there is a finite capacity available for storing each of the

inventories. It is assumed that decisions will never be made which could cause the

inventories to exceed these maximum capacities with certainty. For instance, the

amount produced must be less than or equal to the available capacity in serviceable

inventory. Since the number of high quality returns resulting from a recovery lot is

uncertain, the size of the recovery lot may exceed the available capacity of serviceable

inventory.

Probabilistic Demand and Returns. It is assumed that the numbers of demand

and returns observed each period are governed by known probability distributions and

that these distributions are independent. It is assumed that the distributions governing

the demand, returns and quality of returns is time-invariant, i.e., do not depend on time.

This assumption is realistic for products which are established and are not seasonal and

implies that the decisions regarding production, recovery and buying components will

not depend on time, i.e. they will be stationary.
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Costs. The costs incurred during a given time period depend on the initial inventory

levels, the production, recovery and buying decisions, the quality of the returns,

and the number of goods demanded and returned. The following types of costs are

incurred: holding costs, setup costs, processing costs, lost sales costs, disposal costs.

The objective of the firm is to minimise its long run average costs.

Setup costs are incurred each time a production, recovery or buying order is placed.

This is a fixed cost which does not depend on the size of the order. It is assumed

that a ‘period’ is a self-contained operational time, so that if an activity occurs, then

a setup cost is incurred regardless of whether the activity was performed last period.

Processing costs are incurred on a per unit basis for production, recovery and buying

components. The cost of high-quality recovery is higher than for low quality recovery.

Any inventory that is left in stock at the end of a period incurs a per unit holding cost.

If the demand exceeds the serviceable inventory, then a per unit lost sales cost

is incurred. If the number of goods which undergo low quality recovery exceeds the

available capacity in the component inventory, then a disposal cost is incurred. A

disposal cost may also be incurred if returns exceed available capacity in returned

inventory. These disposal, or penalty, costs may be positive or negative and may be

different from each other. A negative disposal cost could represent a salvage value.

5.4 Markov Decision Process Formulation

The model described in the previous section is a discrete time stochastic decision

problem, and the inventory levels in the next time period depend only on the inventory

levels, the action taken and the demand and returns observed in the current time

period. For these reasons an infinite-horizon Markov decision process is used to model

this problem (Tijms, 1994). An overview of Markov decision processes is presented in

Section 3.2. A Markov decision process formulation of this problem is presented in

this section. A Markov decision process (MDP) is characterised by its decision epochs,

states, actions, costs and transition probabilities. A summary of the notation used in

this section is presented in Table 5.1.
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Table 5.1: Summary of notation used in the MDP formulation of the product recovery
model

State Space
is, ir, ic Level of serviceable, returned and component inventories in state i
Is, Ir, Ic State space for serviceable, returned and component inventories
Ws,Wr,Wc Upper capacity limit on state space for serviceable, returned and

component inventories

Action Space
ap, ar, ab Number of items produced, recovered and bought for action a(i)
Ap, Ar, Ab Action spaces for production, recovery and buying
Lp, Lr, Lb Lower limit on action spaces for production, recovery and buying
Up, Ur, Ub Upper limit on action spaces for production, recovery and buying

Distributions
Xd Number of items demanded known distribution
Xr Number of items returned known distribution
Xq Number of high quality items in recovery batch ar known

distribution
α Mean proportion of high quality items in recovery 0 < α < 1
λd Mean demand
λr Mean returns

Costs
kp, kr, kb Set up cost per production lot, recovery lot and buying lot kp, kr >

0, kb ≥ 0
hs, hr, hc Holding cost per item per time unit for serviceable inventory,

returned inventory and component inventory hs, hr > 0, hc ≥ 0
cp, ch, cl Unit processing cost for production, recovery of high quality items

and recovery of low quality items cp, ch, cl ≥ 0
cr, cb, cd Unit acquisition cost for collecting returned products, buying new

components and disposing on unrecovered returns cr, cb, cd ≥ 0
ls, lr Unit penalty cost for lost sales and “lost” returns lr, lr ≥ 0

5.4.1 Decision Epochs

Decision epochs occur at the beginning of each time period. At each decision epoch the

state of the system is observed and then an action is chosen. The system then moves

to the next state according to the transition probabilities. The time between decision

epochs is one time unit.
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5.4.2 States

The state of the system at a given time is determined by the levels of the serviceable,

returned and component inventories. Let:

is = level of serviceable inventory, is ∈ Is = {0, 1, . . . ,Ws}

ir = level of returned inventory, ir ∈ Ir = {0, 1, . . . ,Wr}

ic = level of component inventory, ic ∈ Ic = {0, 1, . . . ,Wc}

where Ws,Wr,Wc are finite upper limits of inventory capacity and Is, Ir, Ic are the sets

of all possible inventory levels. Let i denote the state of the system at the beginning

of a given time period, then:

i = (is, ir, ic), i ∈ I = {(is, ir, ic) : is ∈ Is, ir ∈ Ir, ic ∈ Ic}

All state variables have finite upper limits of capacity, therefore the MDP can be

described as having a finite state space.

5.4.3 Actions

At each decision epoch, the firm must decide how much to produce, how much to

recover and how many components to buy. The number of items produced, recovered

and bought are denoted by ap, ar and ab. For a given state i, the values of these

variables are chosen from sets of allowable actions: Ap(i), Ar(i), Ab(i), for production,

recovery and buying, respectively.

The minimum values that each of these actions can take are denoted by Lp, Lr, Lb

for production, recovery and buying, respectively. Similarly, the maximum values that

each action can take are denoted by Up, Ur, Ub for production, recovery and buying,

respectively. The upper and lower limits are nonnegative and finite. Using these upper

and lower limits, a set of allowable actions can be defined for each action:

ap ∈ Ap(i) ⊆ {0, Lp, . . . ,×min{Ws − is, Up}}

ar ∈ Ar(i) ⊆











{0} if ap > 0

{0, Lr, . . . ,min{ir, Ur}} if ap = 0

ab ∈ Ab(i) ⊆











{0} if ap = 0

{min{max{ap − ic, 0}, Lb}, . . . ,max{Wc − ic, Ub}} if ap > 0
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The restriction on the upper limit of Ap(i) follows from the assumption that

production will not result in the capacity of the serviceable inventory being exceeded.

Therefore the amount of production must be less than the available capacity in

serviceable inventory Ws − is, and than the upper limit on production Up.

Recovery can only be performed if production is not performed (ap = 0). If recovery

can be performed, then the amount recovered must not exceed the number of returns

in stock ir or the upper limit on recovery Ur.

Components are only ordered when production is performed (as discussed in Section

5.3), therefore if production is not performed (ap = 0) the number of components

bought must equal 0. If production is performed, then there must be sufficient

components for the entire production order. The lower limit on buying components

max{ap − ic, 0} ensures that this is the case. The number of components which can be

bought is restricted by the capacity available in the component inventory Wc − ic and

by the upper limit on buying Ub.

For a given state i, an action a(i) is chosen from the set of allowable actions A(i),

which is defined as:

a(i) ∈ A(i) = {(ap, ar, ab) : ap ∈ Ap(i), ar ∈ Ar(i), ab ∈ Ab(i)}.

5.4.4 Transition Probabilities

The transition from the current state to the next state depends on the action that is

chosen, the quality of the returns recovered during the period, the number of goods

which are returned, and the number of goods that are demanded.

Random Variables

The transition probabilities are determined by random variables Xd, Xr and Xq,

representing the demand, the returns and the quality of the returns, respectively.

The random variable Xq represents the number of high quality returns and is

governed by a probability distribution which depends the number of returns being
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recovered in that period (ar) and the mean proportion of high quality returns (α). The

random variable Xd represents the number of items demanded during a given period

and the random variable Xr represents the number of items returned during a given

period. It is assumed that these three random variables are independent of each other

and that their distributions are known. Following the convention in probability, an

observation of a random variable is denoted by the lower case equivalent, for instance,

xd is an observation of the random variable Xd.

System Dynamics

The system dynamics associated with this model are as follows. Suppose the system

is in state i = (is, ir, ic) at the start of the period and action a(i) = (ap, ar, ac) is

chosen. In this model it is assumed that the state is updated to reflect the action

before the demands and returns are observed. This is follows from the assumption

that production, recovery and buying have a lead time of zero. However, alternative

transitions are possible, for instance demand could be observed (and need to be met)

before the replenishment orders have been completed.

The state transitions will be described according to three possible actions: produc-

tion (including buying components), recovery, and neither (no replenishment).

Production. If production is chosen then the serviceable inventory is increased

by the size of the production order ap and decreased by the size of demand xd. The

inventory level is + ap will never exceed the capacity of serviceable inventory due to

the assumptions made about the action set Ap(i). If demand exceeds is + ap then the

new inventory level will be zero. The new serviceable inventory level will be:

max{(is + ap − xd), 0}

If production is performed, the returned inventory is affected only by the incoming

returns, so the new level of returned inventory is ir+xr. If ir+xr exceeds the maximum

capacity for returned inventory Wr then the new inventory level is Wr and ir+xr−Wr

returns are discarded. The new returned inventory level will be:

min{(ir + xr),Wr}
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The component inventory is increased by the size of the order ab, and then decreased by

the size of the production lot ap. Following from the assumptions regarding availability

of components and the definition of Ab(i), the number of components ordered ab ensures

that the component inventory remains nonnegative. The new component inventory level

will be:

min{(ic + ab − ap),Wc}

Recovery. If recovery is chosen then the changes to the inventory levels depend

on the quality of the returns observed during recovery. If ar returns are recovered,

then the number of high quality returns is xq, where xq ≤ ar. However the number of

returns which actually undergo high quality recovery is restricted by the capacity of the

serviceable inventory. Let the number of returns that undergo high quality recovery be

denoted by ah(xq), where:

ah(xq) = min{(Ws − is), xq}

This definition ensures that the capacity of serviceable inventory will not be exceeded.

If the number of high quality returns is greater than the available capacity, then the

excess high quality returns will undergo low quality recovery. Let the number of returns

that undergo low quality recovery be denoted by al(xq), where:

al(xq) = min{ar − ah(xq),Wc − ic}

Let the number of returns that are discarded be denoted by ad(xq), where:

ad(xq) = max{ar − ah(xq)− al(xq), 0}

The serviceable inventory is increased by the number of returns undergoing high quality

recovery ah(xq) and decreased by the size of demand xd. Therefore the new serviceable

inventory level will be:

max{(is + ah(xq)− xd), 0}

The returned inventory will be decreased by the size of the recovery lot ar and increased

by the number of returns xr, subject to the capacity limit Wr. The new returned

inventory level will be:

min{(ir − ar + xr),Wr}
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The component inventory will be increased by the number of low quality returns for

which there is sufficient capacity to hold. The new component inventory will be:

min{(ic + (a− (min{(Ws − is), xq}))),Wc}

No Replenishment. If neither replenishment action is chosen (i.e. ar = ap = 0)

then the new serviceable inventory will be:

max{(is − xd), 0}

The new returned inventory will be:

min{(ir + xr),Wr}

Since components are only bought when production occurs, the component inventory

will be unchanged and will remain at ic.

Next State. Combining these equations, the next state j = (js, jr, jc) can be related

to state i = (is, ir, ic) and action a = (ap, ar, ab) as follows:

js = max
{(

is + ap + ah(xq)− xd

)

, 0
}

jr = min
{(

ir − ar + xr

)

,Wr

}

(5.1)

jc = min
{(

ic + ab − ap + al(xq)
)

,Wc

}

5.4.5 Costs

In this model the following costs are incurred: holding costs, setup costs, processing

costs, lost sales costs and disposal costs. The costs incurred in a given period depend

on the current state, the action chosen, and the demand and returns and quality of

returns observed.
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Setup costs. Setup costs are incurred each time production and recovery are

performed or components are bought. The costs for these actions are kp, kr, and kb,

respectively. Indicator functions can be used to define specify when each cost should

be incurred. For instance min{1, ap} will equal 1 if production occurs and will equal

0 otherwise. It is assumed that the setup costs for production kp and recovery kr are

positive, and that the setup cost for buying components kb is non-negative. The slightly

relaxed restriction for kb follows from the assumptions made in Chapter 4 which allowed

comparisons to made with existing literature. This assumption is retained here.

The setup costs depend on the current state i and the action a(i) that is chosen in

that state. Let the function CK(i, a(i)) denote the setup cost function: CK(i, a(i)) =

kpmin{1, ap}+kr min{1, ar}+kb min{1, ab}. Since this function does not depend on any

random variables, the expected value of the setup cost function is equal to CK(i, a(i)),

that is:

E[CK(i, a(i))] = CK(i, a(i)) = kpmin{1, ap}+ kr min{1, ar}+ kb min{1, ab} (5.2)

Processing costs. Processing costs are incurred on a per unit basis for production

cp, acquisition of returns cr, buying components cb, recovery of high quality returns ch,

recovery of low quality returns cl, and disposal of excess low quality returns cd. For a

given state i, action a(i) and number of observed high quality returns xq, the actual

processing costs CP (i, a(i), xq) are:

CP (i, a(i), xq) = cpap + crar + cbab + chah(xq) + clal(xq) + cdad(xq)

The expected processing costs are:

E[CP (i, a(i))] = cpap + crar + cbab + chE[ah(Xq)] + clE[al(Xq)] + cdE[ad(Xq)] (5.3)

Holding Costs. Holding costs are incurred for any stock which is carried between

periods. The per period, per unit holdings costs are hs, hr and hc for serviceable,

returned and component inventories, respectively. The holding cost is charged based

on the inventory which has been carried since the previous period, so it therefore

calculated based on the inventory levels at the beginning of the period i = (is, ir, ic).

Alternative methods could be used for calculating the cost of holding inventory. If the
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system is in state i = (is, ir, ic) at the beginning of a period, then the holding costs

incurred for that period are:

CH(i) = hsis + hrir + hcic

Since the inventory levels are known with certainty at the beginning of a period, the

expected holding cost is:

E[CH(i)] = CH(i) = hsis + hrir + hcic (5.4)

Lost Sales & Disposal Costs. If demand exceeds serviceable inventory, then a

per unit lost sales cost of ls is incurred. If the number of returns exceeds the available

capacity of the returned inventory, a per unit disposal cost of lr is incurred. A disposal

cost is also incurred for the disposal of recovered goods which cannot be stored, however

this has already been accounted for in the processing cost function CP (i, a(i), xq).

Suppose that the system is in state i, action a(i) is chosen and there are xq high

quality returns (if ar = 0 then xq = 0), xd units demanded and xr units returned. The

amount of unsatisfied demand is:

max
{

xd − (is + ap + ah(xq)), 0
}

and the number of returns which exceed the capacity is:

max
{

xr − (Wr − ir + ar), 0
}

Therefore the lost sales and disposal cost is:

CL(i, a(i), xq , xd, xr) = ls

(

max
{

xd − (is + ap + ah(xq)), 0
})

+ lr

(

max
{

xr − (Wr − ir + ar), 0
})

and the expected lost sales and disposal cost is:

E[CL(i, a(i))] = ls

(

max
{

E[Xd]− (is + ap + E[ah(Xq)]), 0
})

+ lr

(

max
{

E[Xr]− (Wr − ir + ar), 0
})
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Total costs. The total costs incurred during for one period, for a given state i,

action a(i), and observed quality xq, demand xd and returns xr is:

C(i, a(i), xq , xd, xr) = CK(i, a(i))+CP (i, a(i), xq)+CH(i)+CL(i, a(i), xq , xd, xr) (5.5)

and correspondingly the expected total costs for one period is:

E[C(i, a(i))] = E[CK(i, a(i))] + E[CP (i, a(i))] + E[CH(i)] + E[CL(i, a(i))] (5.6)

5.5 Model Implementation and Validation

In order to explore the properties of the product recovery system under study, the

Markov decision problem described in the previous section was implemented in java.

Further details about the implementation of the model are discussed in the Methodology

chapter in Section 3.2.3 and in Appendix B in Section B.1.1.

In addition to thorough error-checking and inspection of the output during the code

development process, two forms of verification were used to validate the problem specific

files. The calculation of the expected average rewards was checked using an Excel

spreadsheet and the system was simulated using the optimal policy and the simulated

cost was compared with the actual cost, as calculated by the MDP. To conduct these

tests a set of test problems was constructed. For all test problems, the results of the

tests were as expected. Further details regarding the validation of the java code can be

found in Appendix B.

5.6 Properties of the Optimal Policy

The properties of the optimal policy are explored in this section. Three main properties

are investigated in the chapter. Firstly, we investigate the performance of the optimal

policy. Two performance measures are used: the long run average cost and the fill rate

(a measure of service). Secondly, we investigate the structure of the optimal policy by

examining the actions that are chosen in different states. Insights from the investigation

into the structure of the optimal policy will be used in Section 5.7 to create heuristic

policies. Throughout this section we investigate the effect of the recovery strategy on

the performance and structure of the optimal policy.
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5.6.1 Datasets

A dataset has been constructed in order to investigate the optimal policy across a

range of scenarios. The parameters for this dataset are derived from the dataset

used in Chapters 4, some of which were themselves derived from the dataset used

by Konstantaras and Papachristos (2008b). This section explains how the current

dataset extends those used to investigate the deterministic product recovery model in

Chapter 4. Since the model in Chapter 4 is deterministic and the current model is

stochastic, some modifications need to be made to the parameters used in the dataset.

For instance, the lost sales cost ls needs to be added and the constant demand, return

and quality rates need to be converted to distributions.

State Variables

Each of the three state variables are constrained by an upper limit, as discussed in

Section 5.3. The upper limits on the inventories are set to Ws = Wr = Wc = 30 and

the lower limits are set to 0, therefore the state space for each of the inventories is

limited to the values from zero to 30.

Is = {0, 1, . . . , 30} Serviceable Inventory

Ir = {0, 1, . . . , 30} Returned Inventory

Ic = {0, 1, . . . , 30} Component Inventory

Random Variables

Demands The Poisson distribution is selected to model demand and returns. The

Poisson distribution is appropriate for modelling demand and returns because it is a

discrete distribution, and gives the probability of a number of events (or arrival of

demand) occurring within a fixed time interval (Ross, 1996). This fixed interval fits

well with the notion of a ‘period’ which is used in this model. In addition, the Poisson

distribution has the advantage of being able to be specified by only one parameter, the

rate of arrivals.
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For modelling purposes, it is desirable for the distributions to ‘fit’ almost completely

within the state space, as this helps to minimise the effect of the limited the state

space on the optimal policy. One way of doing this is to ensure that the probability

that demand exceeds the upper limit for serviceable inventory Ws is very small. If the

random variable governing demand Xd is governed by a Poisson distribution with mean

λd = 13, then the probability that the demand will be greater than the upper limit on

serviceable inventory Ws = 30 is very small, P (Xd > 30) < 1× 10−4. This probability

is sufficiently small, therefore an upper limit of 13 is placed on the parameter λd.

In the deterministic model it is assumed that there are no lost sales, therefore

the production and recovery rates needed to be sufficiently large to prevent this from

happening. More specifically, the production and recovery rates were required to be

greater than the demand rate. The relationship between the demand rate and the

production and recovery rates is significant and can used to model different types of

products. For instance a demand rate of 100 and a production rate of 120 could be

used to model demand for a fast moving item, whereas a model with the same demand

rate, but a production rate of 1000 could be used to model a slow moving item. Thus,

the size of the demand rate, relative to the production rate is particularly important.

In order to obtain values of λd for each problem in the dataset, the ratio of the

demand rate over the production rate (from Chapter 4) was used. For all problems,

this ratio gives values between 0 and 1, with more values being skewed towards 0. In

order to study a wider range of demand rates, a cube-root transformation is used to

spread the values more evenly between 0 and 1. These values are then multiplied by

the upper limit for the demand parameter (i.e. 13) in order to distribute them between

0 and 13. These values were then rounded up to the nearest integer, this was done

primarily for convenience. In summary, in order to obtain the mean demand λd for

each problem in the dataset the following transformation is used:

λd =

⌈

3

√

dd
pd

× 13

⌉

where pd and dd are the production and demand rates from the deterministic dataset

studied in Chapter 4, and the function ⌈x⌉ rounds x up to the nearest integer.

Returns. In the literature, it is commonly assumed that returns are related to

demand, but that across time periods, the specific quantities observed are independent.
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Furthermore, in this model it is assumed that the goods being returned were previously

produced by and then bought from the firm. Therefore in this dataset it is assumed

that the mean demand rate λd is related to the mean return rate λr, but that the

random variables are independent. In the deterministic model a fixed proportion f

of goods demanded is returned and, if the system recovers both high quality and low

quality returns, then f is the sum of the high quality proportion β1 and low quality

proportion β2. In this chapter, let:

γ = β1 + β2

and then let the mean returns be:

λr = ⌊γλd⌋

where the function ⌊x⌋ rounds x down to the nearest integer. It is assumed that the

returns may be high quality or low quality, and that the quality of any one item is

independent of the quality of any other item, therefore the binomial distribution is

appropriate to model the quality of the returns. The number of trials used in the

specification of the distribution is the number of goods being recovered ar in a given

period, and the probability that a return is high quality is given by the parameter β1,

thus:

Xq ∼ Bin(ar, β1)

Costs

In the deterministic model the cost of cd was equivalent to a penalty fee or surcharge

incurred for all goods which were produced and demanded, but not recovered. However

in this model, the demand and returns are uncertain and the number of returns which

could have been recovered in a given period is unknown, therefore the cost of disposal

cd cannot be charged in the same way. In order to model this scenario in the current

model, it is assumed that the cost of production includes a fee for the eventual disposal

of that good but that this fee would be reimbursed if the product is later returned

to the firm and recovered. This fee could be likened to a “tax”, which is charged on

production. This is incorporated into the model by adding a disposal fee to the cost of

production, and subtracting the disposal fee from the cost of acquiring returns. If the
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good is returned and not recovered (due to capacity restrictions), then the fee is not

reimbursed. Let cdr and cdp denote the returns acquisition and production costs for the

deterministic model in Chapter 4, then the costs of acquiring returns and producing

goods in this model are defined as:

cr = cdr − cd

cp = cdp + cd

where cd are the disposal costs from Chapter 4. These changes were not specified in the

model description in order to retain the generalisability of the model description with

regard to alternative disposal scenarios. The values of cp and cr are altered accordingly

based on this new relationship with the disposal cost.

All other cost parameters retain their values from Chapter 4, but in addition, two

new cost parameters are introduced. A lost sales cost ls is incurred for demand which

is not met and a lost returns cost lr is incurred for returns which cannot be accepted

due to insufficient capacity. These costs are specified as follows. The lost sales cost

is associated with a finished product, therefore this cost is derived from the cost of

acquiring a new component and cost of production required to turn it into a serviceable

good, that is:

ls = γs(cb + cp)

In reality if the cost of production was prohibitively high, then it may not be profitable

to continue operating. The firm would face a “continue” or “close” decision. However,

in this model we assume that the firm is profitable and that the cost of producing a

new item is less than the lost sales cost, therefore γs is set at 1.1.

A “lost” returns cost lr is also incurred for returns which are returned, but can

not be received due to insufficient capacity in the returns inventory. Since the current

model already ‘penalises’ firms by withholding the disposal fee reimbursement for not

recovering goods, this cost is set to zero lr = 0.

Using these relationships a set of problems were constructed. The parameters for

these problems are presented in Table 5.2. These problems are denoted by the prefix

G, followed by the problem number 00 to 20. The transformations used above are not

designed to make the current model directly comparable to the deterministic model

from Chapter 4, but rather they are designed to provide a range of similar scenarios

with which to test the model.
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G00 G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

Distributions
Mean demand λd 8 8 9 11 9 10 10 10 8 9 10 12 12 13 8 9 9 9 7 9 5
Mean returns λr 6 7 4 4 4 9 9 8 7 4 8 6 6 6 5 6 1 6 2 8 3
High quality α 0.8 0.8 0.2 0.3 0.3 0.5 0.7 0.8 0.8 0.2 0.5 0.5 0.5 0.5 0.5 0.4 0.1 0.6 0.2 0.2 0.5

Setup costs
production kp 20 20 10 10 20 20 20 30 30 50 28 12 12 120 20 100 1000 400 30 50 28
recovery kr 5 5 5 10 12 8 20 20 25 30 8 2 2 10 5 50 100 400 5 10 8
buying kb 0 10 2 10 15 12 10 10 5 15 4 6 4 5 10 20 1000 200 15 50 4

Processing costs
production cp 0 106.5 66 88 131 161 107 66 75 212.5 188.5 23.5 76 78.5 106.5 65.5 110 107 75 212.5 160
returns cr 0 13.5 34 42 89 29 13 44 15 27.5 141.5 6.5 24 21.5 13.5 34.5 0 13 15 27.5 10
buying cb 0 30 60 80 100 70 40 60 30 50 200 50 50 100 30 50 100 40 30 50 50
high quality recovery ch 0 50 30 40 60 75 50 30 35 100 85 10 35 35 50 30 50 50 35 100 75
low quality recovery cl 0 9 18 24 30 21 12 18 9 15 60 15 15 30 9 15 30 12 9 15 15
disposal cd 0 6.5 6 8 11 11 7 6 5 12.5 18.5 3.5 6 8.5 6.5 5.5 10 7 5 12.5 10

Holding costs
serviceable inventory hs 10 10 6 8 12 15 10 6 7 20 17 2 7 7 10 6 10 10 7 20 15
returned inventory hr 2 2 4 5 10 4 2 5 2 4 16 1 3 3 2 4 1 2 2 4 2
component inventory hc 0 3 6 8 10 7 4 6 3 5 20 5 5 10 3 5 10 4 3 5 5

Penalty costs
Lost sales ls 0 143 132 176 242 242 154 132 110 275 407 77 132 187 143 121 220 154 110 275 220

lr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.2: Parameters for problem set G
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5.6.2 Analysis of Performance

Costs

There is substantial variation between the long run average costs for each of the 21

problems. There is also variation between the two recovery strategies. When both high

and low quality returns can be recovered, there is an additional source for obtaining

serviceable goods and components. Due to the assumptions about the cost parameters,

this additional source is also a cheaper source. It would therefore be expected that the

long run average cost associated with a high-quality-only recovery strategy would be

higher than with one in which both high and low quality returns could be recovered.

Figure 5.2 compares the average cost for the two recovery strategies. As expected, the

cost is higher under the high quality only recovery strategy. However, notice that for

some problems the difference between the cost in the two strategies is not very large.

The data for this Figure is presented in Tables 5.3 and 5.4. Further summary data

relating to the simulation is presented in Appendix B, in Tables B.4 and B.5.

Fill rates

The fill rate measures the proportion of demand which is met by current stock and it

can be used to assess the performance of a policy (Silver et al., 1998). The fill rate is:

fill rate =
number of met sales

number of items demanded

The average fill rate can be determined using a simulation by calculating the fill rate

each period and then by averaging this across the length of the simulation. A low

fill rate indicates that there are high number of lost sales (and potentially a lot of

dissatisfied customers!).

The fill rates under each of two recovery strategies for problem set G are shown in

Figure 5.3, and Tables 5.3 and 5.4. In general, performing both high and low quality

recovery leads to a higher fill rate. This implies that there are fewer lost sales and thus

the firm offers a better level of service when it recovers both types of returns. When

only high quality recovery is performed, 15 out of 21 have a fill rate above 60%. When
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Figure 5.2: Average cost of the optimal policy calculated for two quality strategies
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Figure 5.3: Fill rates under the optimal policy calculated for two quality strategies for

a simulation of T = 1, 000, 000
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Table 5.3: Summary of the performance of problem set G for a high quality only
recovery strategy (ζL = 0)

Simulation
Problem Optimal Cost Cost Fillrate
G00 21.841 21.846 0.6560
G01 755.204 755.235 0.7551
G02 1268.827 1268.832 0.7222
G03 1966.127 1965.960 0.7810
G04 2384.084 2384.078 0.6394
G05 2019.588 2019.461 0.6984
G06 1062.778 1062.727 0.7830
G07 1092.527 1092.534 0.7150
G08 617.019 617.032 0.7455
G09 2511.420 2511.438 0.6749
G10 4114.595 4114.478 0.6828
G11 770.370 770.294 0.8891
G12 1461.006 1460.908 0.7987
G13 2157.194 2157.338 0.2514
G14 1009.246 1009.116 0.6521
G15 1158.008 1157.836 0.2944
G16 1986.169 1986.273 0.0127
G17 1248.180 1248.236 0.4096
G18 785.778 785.746 0.0694
G19 2537.085 2537.080 0.2027
G20 941.318 941.201 0.6347

Table 5.4: Summary of the performance of problem set G for a both high and low
quality recovery strategy (ζL = 1)

Simulation
Problem Optimal Cost Cost Fillrate
G00 21.841 21.846 0.6560
G01 744.535 744.603 0.9055
G02 1134.757 1134.831 0.7530
G03 1809.169 1809.103 0.7833
G04 2187.034 2187.175 0.7174
G05 1823.303 1823.636 0.9154
G06 1007.910 1007.955 0.9201
G07 1045.545 1045.611 0.8708
G08 603.650 603.758 0.9079
G09 2372.582 2372.529 0.6712
G10 3604.191 3604.281 0.8785
G11 670.333 670.331 0.8914
G12 1353.736 1353.759 0.8126
G13 1965.953 1966.034 0.7986
G14 949.508 949.536 0.7433
G15 1055.832 1055.934 0.7005
G16 1961.925 1962.026 0.1140
G17 1251.555 1251.722 0.6747
G18 752.569 752.568 0.3177
G19 2310.692 2310.980 0.8882
G20 885.380 885.369 0.7372
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both high quality and low quality recovery is performed 19 out of 21 have a fill rate of

above 60%. For some problems, the recovery strategy does not appear to significantly

affect the fill rate (e.g. G03, G11, G12).

Notice that some problems have a very low fill rate. Problem G16, in particular, has

a very low fill rate. One reason for this could be that problem G16 has very high setup

costs for production and buying components, compared with the other costs. This

would serve to ‘discourage’ production and buying. The impact of this will be explored

further when the structure of the optimal policy is investigated in Section 5.6.3.

Tables 5.5a and 5.5b show a summary of the inventory levels over the simulation

for each recovery strategy. As shown in this table, under a high-quality-only strategy

components are not held and the average levels of serviceable and returned inventory

tend to be lower.

5.6.3 Analysis of Actions

In this section the structure of the optimal policy is analysed in order to investigate the

relationship between the three replenishment actions (production, recovery, buying).

Three main questions will be examined in this section. Firstly, across all states, what

is the frequency with which each replenishment action chosen, and secondly what is the

size of these actions. Finally, in which states are replenishment actions selected, i.e.

what inventory levels ‘trigger’ certain actions. Comparisons will be drawn between the

two recovery strategies.

Action Size and Frequency

In this model there are a total of 313 = 29791 states. This means that production,

recovery and buying could each be chosen in a maximum of 29791 states. As well as

choosing whether or not to replenish, a decision must also be made about the size of

the replenishment order. The frequency with which each action is selected is presented

for each of the recovery strategies in Figure 5.4. The data for these graphs is available

in Appendix B, Tables B.6 and B.7. As shown in this Figure, the number of states in

which each action is performed vary substantially across the 21 problems.
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Table 5.5: Summary of inventory levels during the simulation

(a) High quality recovery

Serviceable Inventory Returned Inventory Component Inventory
Problem mean min max mode mean min max mode mean min max mode
G00 0.402 0 11 0 6.453 0 30 6 0 0 0 0
G01 0.754 0 12 0 7.989 0 30 7 0 0 0 0
G02 1.306 0 12 0 5.832 0 21 4 0 0 0 0
G03 1.509 0 13 0 6.374 0 25 5 0 0 0 0
G04 1.067 0 14 0 5.076 0 20 4 0 0 0 0
G05 0.538 0 16 0 10.359 0 30 9 0 0 0 0
G06 0.774 0 14 0 10.445 0 30 9 0 0 0 0
G07 0.738 0 24 0 8.126 0 30 8 0 0 0 0
G08 1.058 0 14 0 8.048 0 30 7 0 0 0 0
G09 0.685 0 10 0 6.334 0 21 5 0 0 0 0
G10 0.763 0 19 0 9.065 0 30 8 0 0 0 0
G11 2.833 0 21 0 8.725 0 29 6 0 0 0 0
G12 1.127 0 18 0 8.789 0 28 6 0 0 0 0
G13 0.006 0 8 0 6.328 0 25 6 0 0 0 0
G14 0.482 0 11 0 5.984 0 26 5 0 0 0 0
G15 0.099 0 12 0 8.789 0 27 6 0 0 0 0
G16 0.000 0 4 0 7.270 0 20 5 0 0 0 0
G17 1.873 0 24 0 16.075 0 30 6 0 0 0 0
G18 0.001 0 3 0 2.239 0 13 2 0 0 0 0
G19 0.006 0 7 0 8.024 0 26 7 0 0 0 0
G20 0.389 0 8 0 3.728 0 21 3 0 0 0 0

(b) Both high and low quality recovery

Serviceable Inventory Returned Inventory Component Inventory
Problem mean min max mode mean min max mode mean min max mode
G00 0.402 0 11 0 6.453 0 30 6 30.000 0 30 30
G01 2.142 0 14 0 12.040 0 30 8 3.147 0 16 0
G02 1.394 0 18 0 6.184 0 23 5 3.203 0 21 0
G03 1.431 0 16 0 6.593 0 25 5 2.801 0 20 0
G04 0.968 0 17 0 6.034 0 23 5 2.835 0 19 0
G05 2.797 0 20 0 15.712 0 30 10 4.908 0 29 0
G06 2.781 0 19 0 15.368 0 30 10 3.979 0 24 0
G07 2.432 0 29 0 10.153 0 30 8 2.820 0 20 0
G08 2.522 0 17 0 11.627 0 30 7 2.674 0 16 0
G09 0.677 0 12 0 6.599 0 24 5 3.249 0 21 0
G10 2.411 0 27 0 11.866 0 30 8 4.155 0 24 0
G11 2.489 0 20 0 9.394 0 30 6 3.004 0 22 0
G12 1.125 0 18 0 9.232 0 30 6 3.021 0 20 0
G13 2.223 0 19 0 10.039 0 30 6 3.070 0 25 0
G14 0.649 0 14 0 7.374 0 30 5 2.849 0 19 0
G15 1.465 0 26 0 11.236 0 30 6 3.850 0 28 0
G16 0.953 0 29 0 14.774 0 30 27 0.896 0 30 0
G17 3.547 0 29 0 15.994 0 30 30 6.770 0 30 0
G18 0.194 0 12 0 4.055 0 16 3 1.685 0 14 0
G19 2.970 0 18 0 14.569 0 30 8 8.197 0 30 0
G20 0.643 0 10 0 4.873 0 30 4 1.696 0 12 0

Figure 5.4a displays the frequency with which production is performed and shows

that, in general, production is performed more frequently when both high and low

quality returns are recovered. This could be because under this strategy, there are

more components in the system (from low quality recovery), thus the costs associated

with production are lower. Indeed under a high-quality recovery strategy, components

are not held in stock at all and are only bought when needed for production (see Tables

B.10 and B.11).
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Figure 5.4b displays the frequency with which recovery is performed. Recovery

is, in general, performed more frequently when a high-quality recovery strategy is

implemented. Figure 5.4c displays the frequency with which components are bought.

Components are bought, in general, more frequently when a high-quality recovery

strategy is implemented. This is expected since under a high and low quality recovery

strategy, components can also be obtained from recovery. However, for many problems

there is not much difference between the two strategies.

It is interesting to note that problem G00 never produces and that several problems

never buy components (e.g. G00, G16, G17). Problem G00 has no unit processing costs

and no lost sales costs. It was included in the dataset to allow for comparisons with

previous literature relating to the deterministic model. The nature of the relationship

between the costs is complicated so it is difficult to identify a single cause of this

phenomenon, however the problems which never order components seem to have

comparatively higher setup costs for buying components and for holding components.

Both of these things would serve to ‘discourage’ the buying of components.

The size of the replenishment actions is also of interest. In this model, the numbers

of goods which are produced, recovered or bought in any given period are also decision

variables. Figure 5.5 shows the size of the production, recovery and buying lot sizes

for problem G01. For all actions, the most common ‘lot size’ is 0, indicating that

the action is not performed. When these states are included in the graph, the scale

of the resultant graph makes it is difficult to observe patterns in the lot sizes when

the actions are performed. Therefore, to allow the lot sizes to be examined in more

detail, the states in each action is not performed (i.e., when the lot size is 0) are not

included in this graph. First examining Figure 5.5a, which shows the lots sizes when

high and low quality recovery can be performed when production is performed, the

production quantity ap is mostly distributed between 3 and 13. Compare this to the

equivalent graph in Figure 5.5b (for high quality only recovery strategy), which has

a similar but more dispersed shape. Similar trends can be observed for recovery and

buying components.

Figures 5.6 attempts to summarise the production lot sizes for all problems. For

some problems the lot sizes fall within a narrow range (e.g. G14, G20), but some (e.g.

G02) range across all possible lot sizes (0 to 30). Though there are some differences
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Figure 5.4: Number of states with positive replenishment quantities for both recovery

strategies, out of a total of 313 = 29791 states
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(b) High quality only

Figure 5.5: Optimal size of the replenishment lots for problem G01 under the two

recovery strategies (excluding cases with ap = 0 or ar = 0)

between the two recovery strategies, there are no obvious trends. The wide range of lot

sizes suggests that an ‘order-up-to’ structured policy may be more appropriate than one

with a fixed lot size. Figures 5.7 and 5.8 show the equivalent information for recovery

and buying components. Once again, there is substantial variation between problems.

Though not easy to identify from these graphs, the analysis found that under a high

and low quality recovery strategy the range of lot sizes for recovery is smaller when

there is a higher proportion of high quality returns α. This suggests that the proportion

of high quality returns may influence the size of the recovery lot. A summary of the

data displayed in these figures is available in Appendix B in Tables B.6 and B.7.

Trigger-States and Action

The inventory levels are taken into account when the action is selected at the beginning

of each period, therefore it is interesting to investigate which inventory levels ‘trigger’

certain actions and whether or not these levels are affected by the recovery strategy.
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Figure 5.6: Graphs showing the size of the production lots for both recovery strategies
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Figure 5.7: Graphs showing the size of the recovery lots for both recovery strategies
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Figure 5.8: Graphs showing the size of the buying lots for both recovery strategies

155



The trigger states are introduced using histograms and then two types of analysis

are performed. First the inventory levels which trigger each action will be examined

using box plots. However, it is likely that the actions will not be affected by the level

of a single type inventory, but rather by the relationship between the levels of all three

types of inventory. These relationships will be examined using, what we term, action

plots.

There are two inventory levels which are particularly of interest in the case of

production. It is interesting to examine the level of serviceable inventory (is) when

production is selected and the level of serviceable inventory (is + ap) after production

has been performed. For both these quantities we are only interested in the states

for which the optimal action is to produce. In the case of recovery it is interesting to

examine the level of returns in stock (ir) when recovery is performed, and the level of

serviceable inventory (is) when recovery is performed. For both these quantities we are

only interested in the states for which the optimal action is to perform recovery. When

components are bought it is interesting to examine the level of components in stock ic

and the level of serviceable inventory is. It would be expected that components are

bought when the components inventory is low, and if components are primarily bought

when production occurs, then it would be expected that the serviceable inventory would

also be low.

Histograms. Figures 5.9a and 5.10a show the states in which each action is

performed under each recovery strategy for problem G01. First examine Figure 5.9a.

This figure shows the serviceable inventory level is and the initial state plus the action

is + ap for serviceable inventory when production is chosen (ap > 0) for problem G01

under a high-quality recovery strategy. Production is performed if serviceable inventory

is less than approximately 8 and most commonly results in a new inventory level of

between 9 and 13. This suggests that for this problem the ‘trigger’ level could be 8 and

the ‘produce-up-to’ level could be 11. Figure 5.10a presents the same information, but

for the high and low quality recovery strategy. This figure has a similar shape as under

a high-quality only recovery strategy. Under this strategy it appears that the trigger

or produce-up-to levels are slightly higher at 10 and 12 respectively.

Figures 5.9b and Figure 5.10b show level of returned inventory ir and the level of

serviceable inventory is when recovery is performed, under the two recovery strategies.
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For this problem, recovery is performed across almost all levels of returned inventory.

Notice that under the high-quality only recovery strategy, recovery is performed most

frequently when returned inventory is high. This is expected. For both recovery

strategies, recovery is performed if the level of serviceable inventory is less than

approximately 10.

Figures 5.9c and Figure 5.10c show level of component inventory ic and the level

of serviceable inventory is when components are bought, under the two recovery

strategies. For this problem, components are bought if the component inventory and

the serviceable inventory are less than approximately 3.

Box Plots In order to summarise the trigger levels for all problems a series of box

plots were created. Note that since production is not performed and components are

not bought in all problems, the number of problems represented in each plot differs.

Data summarising some of the values in the box plots examined in this section are

available in Appendix B in Tables B.8, B.9, B.10 and B.11 .

Figure 5.11 shows the level of serviceable inventory when production is chosen, for

each of the recovery strategies. In general there appears to be little difference in the

‘trigger’ levels for production under each recovery strategy. Figure 5.12 shows the level

of serviceable inventory after production has been performed for each of the recovery

strategies. Though not easy to identify from these graphs, it was found that there was

a moderate positive relationship between the the level of serviceable inventory after

production (is + ap) and the average demand λd. This is not unexpected. Figure

5.13 shows the level of component inventory when components are bought. For all

three graphs, there does not appear to be much difference between the two recovery

strategies.

The inventory levels which trigger recovery will now be examined. The level of

returned inventory when recovery is performed is of interest. Figure 5.14 shows this

information for each of the recovery strategies. There are no obvious differences between

the two recovery strategies in the level of returned inventory triggering recovery.

Figure 5.15 shows the level of serviceable inventory when recovery is chosen under

each of the recovery strategies. It could be expected that recovery would be performed
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(a) Distribution of states when production is selected

0 10 20 30
0

100

200

300

400

500

600

700

800

900

i
r
 when a

r
>0

nu
m

be
r 

of
 s

ta
te

s

0 10 20 30
0

100

200

300

400

500

600

700

800

900

i
s
  when a

r
>0

nu
m

be
r 

of
 s

ta
te

s

(b) Distribution of states when recovery is selected
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(c) Distribution of states when components are bought

Figure 5.9: Histograms of showing states associated with positive replenishment actions

under the optimal policy for test problem G01 under a high quality only recovery

strategy
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(c) Distribution of states when components are bought

Figure 5.10: Histograms of showing states associated with positive replenishment

actions under the optimal policy for test problem G01 under a high and low quality

recovery strategy
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(b) Both high and low quality recovery

Figure 5.11: Graphs showing the level of serviceable inventory (trigger level) when

production is performed (is), for two recovery strategies
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(b) Both high and low quality recovery

Figure 5.12: Graphs showing the level of serviceable inventory (trigger level) after

production is performed (is + ap), for two recovery strategies
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(b) Both high and low quality recovery

Figure 5.13: Graphs showing the level of component inventory (trigger level) when

components are bought
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(b) Both high and low quality recovery

Figure 5.14: Graphs showing the level of returned inventory (trigger level) when

recovery is performed
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(b) Both high and low quality recovery

Figure 5.15: Graphs showing the level of serviceable inventory (trigger level) when

recovery is performed, for two recovery strategies .
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(b) Both high and low quality recovery

Figure 5.16: Graphs showing the level of component inventory (trigger level) when

recovery is performed and serviceable inventory is at least than 28.
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more often and for a wider range of inventory levels when there is a possibility of

replenishing both the serviceable and component inventories (under a high and low

quality recovery strategy), however this does not appear to be the case. The level

of recovered inventory which triggers recovery is slightly higher and more variable for

the high quality recovery strategy. Interestingly under both strategies, recovery is

sometimes performed when serviceable inventory is near capacity. In these situations

it seems unlikely that recovery is being performed in order to replenish the serviceable

inventory. In order to investigate why recovery is performed in these situations two more

box plots are created. In these box plots only the cases in which recovery is performed

(ar > 0) when serviceable inventory is near capacity (is ≥ 28) are considered.

When both high and low quality returns can be recovered, recovery can also

replenish the component inventory. If there is insufficient capacity in the serviceable

inventory, then high quality returns will undergo low quality recovery and replenish the

component inventory instead. Therefore if the serviceable inventory is high, recovery

could be performed in order to replenish the stock of components. Figure 5.16 shows

the level of component inventory when recovery is performed and the level of serviceable

inventory is high. With the exception of problem G12, recovery is performed across

a range levels of component inventory (from 0 to 30). This suggests that in these

situations, replenishment of the component inventory may not always be the motivation

for performing recovery.

Figure 5.17 shows the level of returned inventory when the serviceable inventory is

near capacity and recovery is performed. For some problems the returned inventory

is high, which suggests one reason for performing recovery is to use the returns.

However under a high-quality recovery strategy there are some problems for which

returned inventory is low (e.g. G02, G03, G04, G10). These problems seem to have

comparatively higher holding cost hr for returned inventory. This is consistent with

the assumption of performing recovery in order to deplete the returned inventory.

In summary, there is evidence to suggest an ‘produce-up-to’ structured policy could

be appropriate. The ‘produce-up-level’ seems to be positively associated with the

demand rate. Recovery is performed over a wider range of states under a high-quality

only recovery strategy. For problems with a particularly high holding cost for returns,

162



0

5

10

15

20

25

30

0 2 3 4 5 10 11 12 13
Problem

R
et

ur
ne

d 
In

ve
nt

or
y 

Le
ve

l

(a) High quality recovery only

0

5

10

15

20

25

30

0 11 12 13
Problem

R
et

ur
ne

d 
In

ve
nt

or
y 

Le
ve

l

(b) Both high and low quality recovery

Figure 5.17: Graphs showing the level of returned inventory (trigger level) when

recovery is performed and serviceable inventory is at least than 28

recovery is sometimes performed when the serviceable and component inventories are

near capacity, in order to dispose of returns.

Action plots. In order to examine the relationship between the three inventories

and the action chosen for a given problem we construct what we call ‘action plots’. An

action plot is a plot of two inventory levels (e.g. serviceable inventory and returned

inventory), and shows what action is taken for each combination of inventory level. A

similar type of graph was used by Simpson (1978) to show which actions should be

performed for different regions of the state space. These plots allow for the general

structure of a policy, or lack thereof, to be observed at a glance. Insights into the

structure of the optimal policy gained from these graphs, and the box plots above, will

be used in the development of heuristic policies in Section 5.7. Ideally a well-performing

heuristic policy with a simple structure is sought. In this section we focus on the optimal

policy under recovery strategy which recovers high and low quality returns.

In these plots the symbol displayed at a given point on the graph represents the

action that should be taken at the given inventory level:

© a circle is displayed when the action is to recover

+ a plus is displayed when the action is to produce

� a square is displayed when the action is to produce and order components.
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△ a triangle is displayed for states in which the action is to do nothing

Figure 5.18 shows the structure of a heuristic policy in which serviceable inventory is

replenished if it less than 10 and the production or recovery lot size is 10 − is.
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Figure 5.18: Action plot for a heuristic policy

In this plot, the serviceable inventory level is on the x-axis and the returned

inventory is on the y-axis, thus, for a given level of serviceable and returned inventory,

a symbol is used to represent the action that is chosen in that state. The type of

replenishment is determined by the level of returned inventory. If there is “sufficient”

returned inventory (ir ≥ 12), then recovery is performed, otherwise production is

performed. This relationship between production and recovery is shown on the action

plot by the rectangle in the lower left corner. If the serviceable inventory is 10 or

more, then nothing is performed. This plot shows the action, assuming that there

are 4 components in stock, so components must be bought if the production lot size

10− is > 4.

From the analysis conducted in the previous sections, it seems that the levels of

serviceable inventory and returned inventory are the main drivers which determine the

optimal action. Therefore action plots were created in order to examine the relationship

between serviceable and returned inventory for the optimal policy.

Figure 5.19a presents the optimal policy for problem G04, when there are no

components in stock (ic = 0). As shown in this figure, if there are no components in

164



stock and there are more than approximately 12 units of serviceable inventory in stock,

then the optimal action is to do nothing (triangles). For low levels of serviceable and

returned inventory the optimal action is to produce and buy components (squares).

For low numbers of serviceable inventory and high numbers of returns, the optimal

action is to do recovery (circles). This action plot shows the actions for only one level

of component inventory.

In order to represent the component inventory, it is possible to create 31 graphs,

one for each inventory level. Whilst this may be useful, it detracts from the original

purpose of the action plots, which was to be able to visualise the policy at a glance.

Therefore, in order to represent the components inventory, we will overlay all of the

components inventory levels onto one graph. The symbols used to represent the actions

have been chosen so that no symbol can be hidden by another. Figure 5.19b shows the

overlayed action plot for G04. If there are less than approximately 15 serviceable items

and at least 2 returned items in stock, then depending on the number of components

it is sometimes optimal to recover, produce, or do nothing.

Notice that this figure could be roughly divided into segments as shown by the

thick black lines in Figure 5.19b. The small triangle in the bottom left represents only

producing (and buying). The area above it represents recovery or production, and the

area to the right of the vertical black line represents doing nothing.

Figures 5.20, 5.21 and 5.22 show the optimal policy actions for G12 and G16 in

terms of different pairs of inventories. Observe that in general this action plots appear

to have a more complicated structure than that of the action plot for G04, however there

are still some similarities. For instance, in Figure 5.20 the bottom left corner in both

plots indicates that for low levels of serviceable and returned inventory, production (and

buying components) is performed. For high levels of serviceable inventory, no action

is taken, and on the middle and upper left of the graph, recovery and production

are performed. In Figure 5.20a notice that for problem G12 recovery is sometimes

performed when the level of returned and serviceable inventory is high. For G16 notice

that in the action plot for all values of serviceable and returned inventory, there is

at least one level of components inventory for which it is optimal to do nothing, i.e.,

depending on the level of components, even if is = 0, it may be optimal to do nothing.
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(a) Action plot for G04 with ic = 0
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(b) Action plot for G04 for ic = {0, . . . , 30}

Figure 5.19: Action plot for G04 with ic = 0 and ic = {0, . . . , 30}

Presenting the action plots for all problems is impractical, therefore although all

plots were examined, only a selection are presented here. Inspection of the action

plots for all of problem set G revealed that many of the plots exhibit the ‘triangular’

pattern shown in Figures 5.19b, 5.20a and 5.20b. This pattern could be simplified to

the structure shown in Figure 5.23.

The policy structure shown in Figure 5.23 could be described as follows: if the

serviceable inventory level is below some level ss, then produce or recover (Ss − is),

depending on the number of returns and components in stock; otherwise, do nothing.
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(a) Action plot for G12
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(b) Action plot for G16

Figure 5.20: Serviceable vs Returned for all components for ic = {0, . . . , 30}

0 5 10 15 20 25 30
0

5

10

15

20

25

30

serviceable inventory

co
m

po
ne

nt
 in

ve
nt

or
y

 

 
nothing
produce and buy
produce
recover

(a) Action plot for G12
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(b) Action plot for G16

Figure 5.21: Serviceable vs Components for all returns for ir = {0, . . . , 30}
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(a) Action plot for G12
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(b) Action plot for G16

Figure 5.22: Returned vs Components for all serviceable for is = {0, . . . , 30}
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Note producing Ss − is is the equivalent of producing up to Ss, however for recovery,

since the quality of is uncertain, the ‘recover-up-to’ level will also be uncertain. The

triangle in the lower left of the graph suggests that recovery is not performed if there

are only a few returns in stock. Therefore, if there are ‘sufficient’ returns in stock,

perform recovery, otherwise perform production. Figure 5.23 shows the action plot for

this heuristic policy for the values of ss = Ss = 8. Compare this figure to the action

plot for the optimal policy of G04 (Figure 5.19b) and observe the similarities in the

structure of the graphs.
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Figure 5.23: Action plot showing a ‘triangular’ heuristic policy

Insights into Policy Structure

The following insights have been gained from the analysis into the structure of the

optimal policy.

The action plots for the base problems suggests that the optimal policy does not

have a simple structure, therefore we will not try to find or prove the optimality of

a fixed structure. Since the structure of the optimal policy is complex, it would be

difficult to implement in practice. Therefore using some of the observations relating to

when actions are performed in Section 5.7, we will develop some heuristics which do

have a simple structure.

The ‘produce-up-to’ level seems to be related to the demand rate λd. The mean

proportion of high quality returns α seems to affect the size of the recovery lots ar.
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High setup costs for buying components and high holding costs for components seem

to ‘discourage’ buying components - and in some cases eliminate it completely.

5.7 Heuristic Policies

The analysis in Section 5.6 has demonstrated that the optimal policy for this model

has a complicated structure. From a managerial point of view, the optimal policy is

too complicated to implement in practice. Ideally a policy with a simple structure and

near-optimal performance should be implemented. The aim of this section is to find

such a policy. Insights gained about the structure of the optimal policy will be used in

the development of the heuristic policies.

In the literature a number of policies structures have been used to study this type

of system. For example van der Laan and Salomon (1997) study a push-pull policy and

Kiesmüller (2009) discuss a ‘can order’ policy. Inderfurth (1997) mentions that if setup

costs are included in the model, a simple optimal policy will not exist. This could be

one reason for complicated policy structure observed in this chapter.

In Sections 5.7.1 and 5.7.2 two policy structures are proposed and tested on problem

set G. Both policies extend a simple periodic review, order-up-to (R, s, S) policy (Silver

et al., 1998, page 246). In the development of the heuristic policies, the policy structure

and the parameter selection need to be considered. Note that problem G00 is excluded

from the analysis as this problem does not have any unit costs. The type of policy that

is appropriate for a problem with no unit costs is likely to be different to that which is

appropriate for a problem with unit costs; thus trying to find a heuristic which performs

well across both situations could detract from the purpose of this section. Similarly it

is unlikely that the same heuristic policy will perform well on both recovery strategies.

Therefore in this section we focus on systems which perform both high and low quality

recovery, as this is the part of the model which extends the existing literature.

The proposed policies will be tested more extensively (on a set of randomly

generated problems) in Section 5.7.3. The performance of the heuristic policies are

compared to the optimal policy by calculating the ‘relative cost error’ (RCE):

RCE =
heuristic cost− optimal cost

optimal cost
× 100%

169



5.7.1 Policy P1: Periodic Review Order-up-to Policy

Policy Structure

Insights from the analysis of the optimal policy suggest that an ‘order-up-to’ structured

policy may be appropriate for this problem. Therefore the first policy that is proposed

is a simple periodic review order-up-to policy with two parameters. The structure of

this policy is based on the traditional periodic review (s, S) ‘order-up-to’ policy (see

Section 3.1 for a discussion of common inventory policies).

The structure of this policy is as follows. If the serviceable inventory level is less

than some trigger level s, then inventory must be replenished up to a target level of S

by either production or recovery. Ideally the serviceable inventory will be replenished

by S − is. Recovery will be performed if there are sufficient returned items in stock to

meet the target, otherwise production will be performed. Components will be bought

if required in order to complete a production order.

If production is performed, then the production lot will be ap = S − is. However,

since the quality of the returns is not known until recovery has begun, it is not known

how many of the items recovered will be added to serviceable inventory. For this policy

it is assumed that if ir ≥ (S− is), then recovery will be performed and the recovery lot

will be ar = S − is.

The policy can be described formally as follows:

If is < s

If ir ≥ (S − is)

recover ar = S − is

Else

produce ap = S − is

order ac = max{0, S − is − ic}
Else

Do Nothing

An obvious limitation of this policy is that it does not take into account the

uncertainty in the recovery yield. However at this point we choose to retain the simple

structure of the policy; this limitation will be addressed by the second policy.

170



Parameter Selection

This policy has two parameters, the trigger level s and target level S. For the problems

in set G, the trigger level s can take values s = {1, . . . , 30} and the target level S can

take values S = {s, . . . , 30}. This creates 465 possible parameter combinations for each

problem. The first question that needs to be investigated is how well does the best

performing combination of s and S perform compared with the optimal policy. Once

this has been determined it can be used to gauge the performance of any heuristic

parameter selection rules.

In order to investigate this question, the long run average cost was calculated

for the 465 possible parameter combinations. The performance of these parameter

combinations was compared to the optimal policy by calculating the ‘relative cost

error’ (RCE).

Table 5.6 shows the RCE for the best and worst performing policies and the

corresponding parameter values for s and S. The parameter combinations that perform

the best will be referred to by s∗ and S∗. Observe that for 17 of the 20 problems

there is a P1 policy which results in a relative cost error of less than 4%, and for

19 of the problems there is a policy which has a relative cost error of less than 10%.

Problem G16 has a much higher relative cost error (22.605%) than the other problems,

however this problem has features that makes it quite different from the rest of the

problems. In particular, problem G16 has very high setup costs for production and

buying components, very low returns and quality of returns and the optimal policy

never buys components. The action plot for this problem shows that the optimal

policy appears to avoid ordering components, and instead uses ones which have been

recovered.

In order to investigate how the cost of the heuristic policy P1 changes for different

values of s and S, image plots were constructed using the MATLAB function image().

These plots show the values of s and S on the vertical and horizontal axes respectively,

and display the relative cost error of the policy using the colour gradient. Figure 5.24

shows the figure for problems G01, G09, G16 and G20. The plots for all of the problems

in set G were examined, however these four problems were selected in order to illustrate
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Best Combination Worst Combination
Problem s S RCE s S RCE

G01 9 11 2.926 1 1 66.468
G02 11 12 1.577 2 3 36.113
G03 10 12 0.938 2 3 29.996
G04 10 11 1.675 2 3 32.927
G05 12 18 4.669 1 1 48.577
G06 11 15 3.585 1 1 66.910
G07 10 13 3.417 1 1 56.244
G08 7 12 3.509 1 1 67.482
G09 8 10 0.910 1 2 17.146
G10 13 17 4.890 1 1 42.827
G11 13 16 0.985 1 1 61.225
G12 13 14 1.080 1 1 33.297
G13 10 15 0.943 1 1 41.445
G14 8 10 1.513 1 1 33.674
G15 5 16 3.513 3 4 33.831
G16 1 1 22.345 29 30 89.180
G17 1 18 7.658 1 1 53.359
G18 1 7 1.416 1 1 23.376
G19 14 19 4.256 5 6 19.762
G20 4 7 1.596 1 1 42.379

Table 5.6: Best and worst performing parameter combinations for policy P1 for problem
set G

some common features across all problems. Note that the RCE represented by a given

colour gradient differs across the problems.

The first feature of these graphs that is worth mentioning is that for all problems

there are a range of parameters which have an RCE which is similar to the RCE

associated with the ‘best’ parameter combination. However, there are some problems

which perform very poorly. In general it appears that the RCE is not very sensitive

to small changes in the parameter values, however for some problems, the RCE can be

very sensitive to larger changes in the parameter values.

Using the insights gained from the image plots in Figure 5.24 and the analysis

in Section 5.6.3, four methods for selecting parameter combinations for policy P1 are

proposed. These methods will be denoted by P1A, P1B , P1C and P1D; the parameters

associated with each policy will also have the corresponding letter as a subscript (A,

B, C, or D). However it is worth bearing in mind that the best performance that can

be obtained by a policy of this structure are the shown in Table 5.6. These methods

will be tested problem set G and then on a larger dataset in Section 5.7.3.
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Figure 5.24: Relative cost error of a P1 policy for all parameters combinations (s, S)

for selected problems from set G (s on the vertical axis and S on the horizontal axis).

Analysis of the optimal policy in Section 5.6.3 suggested that the ‘order-up-to’ level

for production may be related to the mean demand λd. Therefore the first method for

choosing the parameter values is based purely on the demand rates for each problem,

such that:

sA = λd

SA = λd

However, while the analysis of the optimal policy did show a relationship between

demand and the action sizes, other factors, such as the quality of the returns, also

seemed to influence the structure of the optimal policy. In general the parameters

which perform the best are greater than the expected value of demand λd. The second
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method adds an additional “boost” to the target level parameter S by taking into

account the fact that not all of the returns recovered are likely to have sufficient quality

to undergo high quality recovery and thus to replenish serviceable inventory. A “boost”

factor of 0.1/α was used. This ratio results in a larger increase for problems with a

lower proportion of high quality returns (i.e. small α). It appears that for problems

for which the demand rate λd and the best performing parameters (s∗, S∗) were of a

similar magnitude, the target parameter S∗ was only slightly greater than the demand

rate. Therefore, a numerator of 0.1 was used to allow a slight increase in the target

level. Thus the second method used to choose the policy parameter values is:

sB = λd

SB = λd

(

1 +
0.1

α

)

The relationship between the setup costs and holding costs are also likely to affect

the choice of the optimal action. The well-known EOQ formula uses the ratio of

setup costs over holding costs
√

2×setup costs ×demand
holding costs to determine the optimal order

size in a deterministic model (Silver et al., 1998). This ratio represents the tradeoff

associated with placing frequent orders rather than holding stock. The third method

for determining the parameter values takes this tradeoff into account.

In this method the trigger level sC and target level SC are chosen so that the

resultant order quantity SC − sC is approximately equal to an adjusted version of the

economic order quantity (EOQ). The formula is adjusted according to costs associated

with the production, thus the setup costs associated with production and buying

components are included in the numerator. The sum of all three holding costs is

used in the denominator of the adjusted EOQ formula to take into account the cost of

holding all inventories. Thus the third method used to choose the policy parameter

values is:

sC = max

{

1,

⌈

S3 −
√

2λd

kp + kb
(hs + hr + hc)

⌉}

SC = min

{

30,

⌈

λd +

√

2λd

kp + kb
(hs + hr + hc)

⌉}
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The relationship between the lost sales cost may also affect the choice of the optimal

action. If the cost of losing a sale is very high, then a firm will try to avoid this

by ensuring that there is sufficient inventory in stock. Using an EOQ-based formula

again, a fourth method for determining the values of the parameters is developed. This

method takes the cost of production and ordering into account as well as the lost sales

and holding costs.

sD = max

{

1,

⌈

S4 −
√

2λd

kp + kb
(hs + hr + hc)

⌉}

SD = min

{

30,

⌈

λd(1 +
0.1

α
+ 2(

cp + cb
λd(ls − hs − hc)

))

⌉}

These methods were tested using problem set G. Table 5.7 shows the resultant

policies and the relative cost errors (compared with the optimal policy) for problem

set G. The column headed P1A shows the policy given by parameters sA and SA, and

likewise for P1B , P1C , and P1D. The policy P1∗ shows the parameters and RCE of

P1 policy with the best performing parameter combination. Of the four parameter

selection methods, method P1A, which was based purely on the demand parameter λd

performs the worst of the four methods. Policy P1C performs the best, with policy

P1D a close second.

5.7.2 Policy P2: Periodic Review Order-up-to Policy with Yield

Adjustment

Policy Structure

Policies P1B and P1D take into account the uncertain recovery yield by adjusting the

target level S. However, as well as increasing the target level for recovery, this also

increases the target for production. An alternative method of adjusting for an uncertain

recovery yield is now proposed.

In Policy P1, recovery was chosen if ir ≥ S−is. In this policy, the number of returns

required in order perform recovery and the recovery lot size are adjusted to account

175



P1A P1B P1C P1D P1∗ Optimal Policy

Problem sA SA Cost RCE sB SB Cost RCE sC SC Cost RCE sD SD Cost RCE s∗ S∗ Cost RCE Cost

G01 8 8 841.508 13.025 8 9 804.105 8.001 5 10 781.188 4.923 9 14 777.997 4.494 9 11 766.323 2.926 744.535
G02 9 9 1165.511 2.710 9 14 1155.567 1.834 12 15 1157.725 2.024 10 13 1153.532 1.655 11 12 1152.650 1.577 1134.757
G03 11 11 1827.235 0.999 11 15 1830.434 1.175 12 16 1833.554 1.348 12 16 1833.554 1.348 10 12 1826.141 0.938 1809.169
G04 9 9 2230.030 1.966 9 13 2231.105 2.015 9 13 2231.105 2.015 10 14 2236.832 2.277 10 11 2223.659 1.675 2187.034
G05 10 10 2200.504 20.688 10 12 2076.404 13.881 9 13 2026.063 11.120 11 15 1948.248 6.853 12 18 1908.425 4.669 1823.303
G06 10 10 1169.477 16.030 10 12 1094.574 8.598 6 12 1096.942 8.833 11 17 1048.271 4.004 11 15 1044.045 3.585 1007.910
G07 10 10 1172.859 12.177 10 12 1087.788 4.040 7 13 1082.766 3.560 11 17 1093.943 4.629 10 13 1081.269 3.417 1045.545
G08 8 8 704.759 16.750 8 9 667.752 10.619 4 10 650.325 7.732 9 15 635.323 5.247 7 12 624.833 3.509 603.650
G09 9 9 2399.821 1.148 9 14 2413.244 1.714 8 14 2412.359 1.677 10 16 2433.478 2.567 8 10 2394.164 0.910 2372.582
G10 10 10 4455.457 23.619 10 12 4115.351 14.182 10 13 3974.476 10.274 11 14 3875.396 7.525 13 17 3780.422 4.890 3604.191
G11 12 12 683.667 1.989 12 15 677.313 1.041 8 15 677.544 1.076 13 20 679.294 1.337 13 16 676.938 0.985 670.333
G12 12 12 1371.381 1.303 12 15 1369.349 1.153 10 15 1369.388 1.156 13 18 1378.014 1.793 13 14 1368.361 1.080 1353.736
G13 13 13 1988.182 1.131 13 16 1984.644 0.951 4 16 1987.536 1.098 14 26 2023.971 2.951 10 15 1984.497 0.943 1965.953
G14 8 8 990.867 4.356 8 10 963.870 1.513 5 10 964.585 1.588 9 14 979.790 3.189 8 10 963.870 1.513 949.508
G15 9 9 1199.991 13.654 9 12 1102.433 4.414 1 13 1131.726 7.188 9 21 1107.860 4.928 5 16 1092.919 3.513 1055.832
G16 9 9 3532.363 80.046 9 18 3143.350 60.218 1 28 2490.120 26.922 1 30 2470.942 25.945 1 1 2400.309 22.345 1961.925
G17 9 9 1504.347 20.198 9 11 1502.215 20.028 1 14 1371.300 9.568 5 30 1404.311 12.205 1 18 1347.401 7.658 1251.555
G18 7 7 764.635 1.603 7 11 774.169 2.870 5 12 773.918 2.837 8 15 788.376 4.758 1 7 763.228 1.416 752.569
G19 9 9 2662.195 15.212 9 14 2473.339 7.039 8 15 2455.652 6.273 10 17 2421.265 4.785 14 19 2409.042 4.256 2310.692
G20 5 5 945.512 6.792 5 6 903.329 2.027 4 7 899.510 1.596 6 9 912.704 3.086 4 7 899.510 1.596 885.380

Min 0.999 0.951 1.076 1.337 0.910
Max 80.046 60.218 26.922 25.945 22.345
Mean 12.770 8.366 5.640 5.279 3.670
Median 9.484 3.455 3.198 4.249 2.301
Std Dev 17.177 13.014 5.936 5.353 4.620

Table 5.7: Performance of heuristic policy parameter selection methods for problem set G

17
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for the fact that some returns may be low quality. The rationale for making this type

of adjusted comes from insights gained during the analysis of the optimal policy in

Section 5.6.3. Let y denote the ‘yield factor’ of recovery, and suppose that recovery is

performed if ir ≥ (S−is)/y and that the recovery lot size is ar = (S−is)/y. If the yield

factor y = 1, then the policy is the same as P1. If y < 1, then the number of returns

recovered will be greater than the number required to meet the target S − is, and if

y > 1, then the number of returns recovered will be less than the number required.

This policy can be described as follows:

If is < s

If ir ≥ (S − is)/y

recover ar = (S − is)/y

Else

produce ap = S − is

order ac = max{0, S − is − ic}
Else

Do Nothing

Parameter Selection

For this policy it is infeasible to completely enumerate across all possible values of the

parameters s, S and y, therefore we need to use a different approach for selecting

the parameters. Initial investigations suggested that if y is significantly different

from 1, then the resultant policies performed dramatically worse than policies with

no adjustment for the recovery yield. For instance, if y = 0.5 then twice as many

returns are required in order to perform recovery. For some values of s and S, this

means recovery is performed very infrequently, or never, as the returned inventory does

not often reach the required level. Conversely, if y is higher, then recovery may be

selected very frequently, meaning that production is rarely performed. Therefore, in

this study we focus on values of y which are near to 1, y = {0.9, 1.0, 1.1, 1.2}. Note

that if y = 1.0 then the policy is equivalent to policy P1.

The aim of the investigation in this section is to determine whether or not adjusting

the policy for the recovery yield can improve the policies P1A—P1D, proposed in
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Section 5.7.1. Therefore four variants of policy P2 are created, by selected the

parameters as outlined by the four methods for policy P1. These four variants are

denoted by P2A, P2B , P2C and P2D. For each of these policies, four values of y are

applied. This creates a total of 16 policies.

Table 5.8 presents a summary of the performance of the P2 policies. (The

parameters, costs and RCEs associated with each of these policies is available in

Appendix B in Tables B.12–B.15.) Observe that P2C has the lowest mean across

all values of y, however the lowest median alternates between P2B and P2D. The

policy with the highest maximum performance is P2D. For policies P2A and P2B the

mean and median increase with y. For P2D the mean and median decrease with y.

Policy P2C attains its lowest mean at y = 1.0 and the lowest median at y = 0.9. For

P2∗, the parameters attained by complete enumeration of s and S, the lowest mean is

attained at y = 1.0, and the lowest median at y = 0.9. For all the parameter selection

methods A − D, the highest variability occurred for y = 0.9 and for P2∗ the highest

variability occurred for y = 1.2.

Allowing flexibility in the yield adjustment y allows improvement in the RCE,

however the size of y associated with the improvement, depends on the parameter

selection method. Interestingly, it appears that allowing the yield adjustment affects

the optimality of the P2∗ parameters. When P2∗ is used to determine the value of the

parameters s and S, the median RCE is lowest for all values of y, but the mean is not.

5.7.3 Performance of Policies

In this section the policies proposed in previous sections are tested on a large set of

randomly generated problems. In order to generate a set of test problems the following

method is used:

1. Generate 14 uniform random variables Uj ∼ Uniform(0, 1), 1 ≤ j ≤ 14 and

calculate the parameters as follows:
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y P2A P2B P2C P2D P2∗

0.9 min 0.844 0.896 0.929 1.505 0.791
0.9 max 82.909 110.796 106.866 305.764 62.445
0.9 mean 13.806 12.164 9.702 20.427 7.291
0.9 median 5.101 3.209 3.375 4.576 2.780
0.9 std dev 23.508 26.135 23.060 65.782 15.215

1 min 0.999 0.951 1.076 1.337 0.910
1 max 80.046 90.371 89.317 271.661 61.812
1 mean 15.374 12.271 9.625 17.964 6.439
1 median 12.177 4.040 3.560 4.494 2.926
1 std dev 20.916 22.127 19.200 58.375 13.503

1.1 min 1.029 0.909 1.083 1.263 0.910
1.1 max 80.046 90.371 89.317 261.704 61.812
1.1 mean 15.422 12.744 10.091 17.551 6.567
1.1 median 12.177 5.035 3.942 4.219 3.342
1.1 std dev 20.883 22.092 19.208 56.204 13.480

1.2 min 1.126 0.905 1.126 1.243 0.970
1.2 max 79.325 73.845 74.061 235.979 125.507
1.2 mean 17.766 13.427 10.479 16.488 10.083
1.2 median 17.287 6.861 5.503 4.049 3.760
1.2 std dev 20.365 19.183 16.131 50.608 26.856

Table 5.8: Performance of P2 policy

Distributions
mean demand λd ⌈13 ∗

√
U1⌉

mean returns λr ⌈γλd⌉
returns ratio γ U2

high quality α U3

Setup costs
maximum setup cost Mk 100
production kp U4Mk

recovery kr U5Mk

buying kb U6Mk

Cost ratios
maximum processing cost ratio Mh 0.3
maximum disposal ratio Md 0.3

holding cost ratio γh U7Mh

production ratio γp U8

buying ratio γb U9

disposal ratio γd U10Md
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Processing costs
production cp hs/γh
returns cr hr/γh
buying cb hc/γh
high quality recovery ch γpcp
low quality recovery cl γbcb
disposal cd γd(cp + cb)

Holding costs
maximum holding costs Mhh 100
serviceable inventory hs U11Mhh

returned inventory hr U12Mhh

component inventory hc U13Mhh

Penalty costs
maximum lost sales ratio Ml 0.3
lost sales ratio γl U14Ml

lost sales ls (cp + cb − cd)(1 + γl)

2. If the following conditions are met, then accept the scenario.

hs > hr

hs > hc

cp+ cb > cp + cr + cl

cp+ cb > cr + ch

3. Continue generating scenarios until the required number have been accepted.

This method was used to generate a set of 250 problems. These policies were used

to test policy P2A, P2B , P2C and P2D for four values of y = 0.9, 1.0, 1.1, 1.2. Recall

that policy P2 with y = 1.0 is equivalent to policy P1.

Since the problem parameters have been randomly generated it is possible that some

combinations of parameters may result in a MDP for which the value iteration algorithm

will not converge (see 3.2.2 for further details). Since there are a large number of

problems to calculate, we do not want to waste time on problems which are not going to

converge. After some initial experiments, it was determined that most problems which

are going to converge should have done so by 1000 iterations. Therefore if a problem has

not converged by 1000 iterations, the algorithm was terminated. For some problems it

is possible that a few more iterations would have yielded the optimal solution, however,
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it is also possible that the problem scenario may have never converged. For this reason,

some of the policies were tested on have fewer than 250 problems.

Table 5.9 presents a summary of the performance of the policies on this set of

randomly generated problems and shows the number of policies for which an optimal

policy was found. In general, the policies do not perform as well on these problems as

they did on problem set G. However, all policies have a median relative cost error of

less than 13%. Overall, the policies with y = 0.9 perform the best.

y P2-A P2-B P2-C P2-D

0.9 min 0.077 0.020 0.021 0.101
0.9 max 139.017 110.092 140.301 66.713
0.9 mean 16.126 12.698 12.969 12.916
0.9 median 9.494 8.815 8.794 9.748
0.9 var 363.831 177.963 202.144 128.787
0.9 n 240 240 240 240

1 min 0.068 0.035 0.035 0.080
1 max 157.897 136.340 145.055 75.505
1 mean 19.931 14.136 13.947 13.724
1 median 11.929 9.436 9.441 10.053
1 var 611.644 247.230 231.651 154.550
1 n 237 237 237 237

1.1 min 0.059 0.050 0.051 0.079
1.1 max 157.897 136.340 145.055 75.505
1.1 mean 20.476 14.549 14.322 14.017
1.1 median 11.929 9.766 10.097 10.485
1.1 var 620.603 251.683 234.921 160.105
1.1 n 237 237 237 237

1.2 min 0.056 0.096 0.097 0.079
1.2 max 157.897 136.340 145.055 85.776
1.2 mean 22.815 16.186 15.645 14.898
1.2 median 12.863 10.793 11.561 10.433
1.2 var 709.490 305.789 270.563 192.692
1.2 n 238 238 238 238

Table 5.9: Performance of the P2 policies on a randomly generated dataset

5.8 Discussion

This chapter extends the deterministic model from Chapter 4 by allowing demand,

returns, and the quality of the returns to be uncertain. A Markov decision process

formulation of this problem is presented and is implemented in java. Datasets derived
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from Konstantaras and Papachristos (2008b) and Chapter 4 are used to investigate

some properties of the model, and the benefit of performing both high and low quality

recovery. It was found that, in general, when both types of recovery are performed, the

fill rate is higher and the average cost is lower, than when only high quality recovery

is performed.

The structure of the optimal policy was investigated and it was found to be very

complicated and complex, which would make it difficult to implement in practice.

Insights from the structure of the policy were used to construct some simple heuristic

policies. While the performance of the heuristics varied from problem to problem, on a

large randomly generated problem set, one of the heuristics achieved an average cost of

within 13% of the optimal cost. However, a limitation of using heuristic policies is that

while they perform well on some, or even most problems, they may not perform well

on all problems. On some of the problems tested, even some of the better performing

heuristics, performed very poorly (eg relative cost error of over 100%).

From a managerial point of view, the results of this chapter are useful as they suggest

that performing both types of recovery can not only lead to cost savings, but can also

allow better customer service, through increased fill rates. These results support those

obtained in the deterministic model in the previous chapter.

The complicated and complex structure of the optimal policy mean that further

analysis could be performed to investigate this structure. Alternative policy structures

and parameter selection methods could be investigated. For instance, a two-stage

policy could be implemented, which first finds a ‘produce-up-to’ level and then for this

parameter finds the best performing ‘recover-up-to’ level. Additional policies could

allow the component inventory level to trigger production, although this would mean

increasing the number of parameters in the heuristic policies.

In this model it was assumed that the distributions of returns and demands were

independent and known. In some industries, this may not be a realistic assumption.

Further research could investigate the effect of relaxing this assumption. It was assumed

that the quality of returns could not be determined until the recovery process had

begun. In some industries it may be possible to ‘pre-sort’ returns. This could be

an interesting extension to the current model. Alternative methods for dealing with
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recovered goods which do not fit into the serviceable or component inventories could

also be investigated.

One limitation of the current model is that it assumes that the customer perceives

newly produced and recovered goods as identical. In some industries this may be the

case, however in other industries, they may not be viewed as the same, and it may

even be illegal for them to be sold as the same. In the next chapter this limitation is

addressed by introducing separate markets for newly produced and recovery goods.
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Chapter 6

Discrete-Time Stochastic

Product Recovery Model with

Separate Markets

6.1 Introduction

In some industries newly produced goods and recovered goods are not identical. Even

when recovered goods are functionally “as good as new”, customers may not perceive

them to be so, and indeed in some countries, legislation prevents recovered goods being

sold “as new”. However, when the functionality of the two types of goods remains the

same or similar, some consumers may be willing to substitute one good for the other, if

their preferred good is out of stock. This chapter discusses a product recovery system

in which newly produced goods and recovered goods are sold on separate markets but

can act substitutes for each other.

This model extends the stochastic model in Chapter 5 by introducing separate

markets and substitution. It also extends the ‘separate markets’ literature (Inderfurth,

2004; Kaya, 2010) by allowing two-way substitution (rather than one-way substitution)

and by considering an infinite horizon model. Piñeyro and Viera (2010) study a

deterministic model which has a similar modelling structure to the one considered in
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this chapter, but to the best of our knowledge this type of model has not been studied

in a stochastic environment.

This chapter is structured as follows. In Section 6.2 the problem under study is

described and then in Section 6.3 the model description and assumptions are presented.

A Markov decision process formulation of this model is presented in Section 6.4 and

the implementation of the model is discussed in Section 6.5. Properties of the optimal

policy are explored in Section 6.6, including the effect of performing both high and low

quality recovery. The results, limitations and areas for further research are discussed

in Section 6.7.

6.2 Problem Description

Suppose there is a manufacturer which has a primary function of producing new goods.

This manufacturer accepts these goods back after they have been used and, if they are

of sufficient quality, recovers them and sells them to a secondary market. For returns

which are below the quality threshold for recovery, the firm has a choice: to dispose

of them or to use them as components in the production of newly produced items.

If insufficient components are obtained from the recovery of low quality returns then

additional components are bought. Produced and recovered items are viewed by the

consumer as different so are sold on separate markets, however they are functionally

similar so can act as substitutes. The firm may choose to offer substitution between

these two types of goods if one of them sells out.

The firm is a profit-maximising firm which receives revenue for the sale of produced

and recovered goods. Costs are incurred for holding inventory and for lost sales. Fixed

and unit costs are incurred for production, recovery and buying components. Demand

for produced items, demand for recovered items, returns and the quality of returns are

uncertain.

The firm must determine a production plan that specifies how much and how often

to produce, recover and buy. It must also determine a substitution policy which specifies

if and when substitution will be offered to customers. If substitution is offered to, and

then accepted by, a customer, then they will pay the price of the cheaper recovered item,
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regardless of the good they receive. Offering a substitution means that the firm will

not incur a lost sales cost for that item, however there may be indirect costs associated

with performing a substitution. For example, if a produced good is offered in place of

a recovered good, then the firm will miss out on the revenue they would have received

had they sold it for the full price. The firm may also incur a cost for “lost goodwill”

for not being able to supply what the customer demanded, or an administration charge

for offering a substitution rather than providing the product originally demanded.

This system could describe the refurbishment of electronic equipment, such as

copiers (Canon, 2012e), computers (Apple, 2011; Dell, 2012) and satellite navigation

systems (TomTom, 2011). Wooden pallets (PalletWorld, 2012) are another example

of new and used products being sold side-by-side. In all of these cases, used products

are brought up to a “suitable” standard before being resold or leased. They have the

same functionality as a newly produced item, but are not recovered up to an “as new”

standard so cannot be sold as such. Because the newly produced and recovered goods

are functionally similar, they could act as substitutes. Substitution policies vary from

industry to industry, and from company to company, and may also vary at different

times of the year (e.g. peak seasons). However in all cases, the company could choose to

offer these substitutions, if they were faced with a stock out of the customer’s preferred

good.

6.3 Model Description and Assumptions

A diagram of the product recovery system being modelled is presented in Figure 6.1.

As shown in this diagram there are two consumer markets: the first demands newly

produced goods and the second demands recovered goods. Substitution between the

two markets is represented on the diagram by the dashed line. In this section the model

will be described and the modelling assumptions will be discussed.

Periodic Decision Making. In this model it is assumed that operational decisions

are made periodically. Firms which have the technological capabilities to monitor stock

levels continuously, may still only review this information and take action periodically,
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Figure 6.1: Product Recovery Model with Separate Markets and Substitution

e.g. daily or weekly (Silver et al., 1998). In this model, the inventory levels are observed

at the start of each time period and then a decision is made regarding how much to

produce or recover and how many components to buy. The lead times for production,

recovery and buying are zero, therefore inventory levels are updated immediately to

reflect the decision made. The rationale behind this is as follows. Suppose that the

inventory levels are reviewed at the end of each day and then a production, recovery

or buying order is placed. This order is completed or received before the firm opens

for business in the morning, meaning that inventory levels will be updated before any

customers arrive to demand goods.

After an action has been selected and inventory levels have been updated accord-

ingly, the demands and returns are observed. The inventory levels cannot exceed the

maximum limits at any point. Continuing the scenario above, if a production order is

completed before the firm opens for business, then the inventory level must not exceed

the maximum limit at any point during the night.

Production, Recovery and Buying. It is assumed that production and recovery

require some shared facility so can not both happen in the same period. It is also

assumed that within a given period, the amount that is produced or recovered and

the number of components that are bought is non-negative and constrained by a finite

upper limit. This system is being studied over an infinite time horizon, which implies

that the decisions regarding production, recovery and buying will not depend on time.
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With enough effort and expenditure, all returns could be recovered to a functional

standard, similar to that of newly produced goods. However, it is assumed that

the firm has a threshold which determines the quality level of returns for which it

is considered worthwhile to recover to this functional standard. In the remainder of

this chapter, returns which are above this quality threshold are referred to as ‘high

quality returns’. High quality returns undergo ‘high quality recovery’ and are then

sold on a secondary market. Returns which fall below the quality threshold are termed

‘low quality returns’ and can undergo ‘low quality recovery’, in order to be used as

components. It is assumed that the firm makes a strategic-level decision (outwith the

model) about whether to recover low quality returns or to dispose of them. The quality

of the returns is determined during recovery and is modelled by a known probability

distribution.

If there is insufficient capacity in the recovered inventory, then high quality returns

undergo low quality recovery and are used as components. Any recovered items which

can not fit into either the recovered inventory or the component inventory are discarded.

It is assumed that there is a finite capacity available for storing each of the

inventories. If this capacity is reached then a disposal cost may be incurred for each

item which exceeds the inventory level. It is assumed that decisions will never be made

which could cause the inventories to exceed the maximum capacities with certainty.

For instance, the amount produced must be less than or equal to the available capacity

in produced inventory. Since the number of high quality returns resulting from a

recovery lot is uncertain, the size of the recovery lot may exceed the available capacity

of recovered inventory.

Probabilistic Demand, Returns and Substitution. It is assumed that the size

of demand for each market and the number of returns in each period are governed

by known probability distributions. It is assumed that these three distributions are

independent from each other and are time-invariant. It is assumed that there is no

back ordering, however if there is insufficient inventory to meet demand, substitution

of an alternative good may be offered, otherwise the sale will be lost. Inventory levels

must always be non-negative.
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The firm makes a strategic level decision about whether or not substitution should

be offered in the event of a stock out of one or both types of goods. If the firm decides,

at a strategic level to allow substitution then at an operational level, they need to decide

when to offer substitution. The substitution is offered from a manufacturer’s point of

view rather than from a consumer-selection perspective. This means that substitution

is offered by the firm as a way of avoiding a lost sale, rather than being chosen by the

consumer when faced with a stock out of their preferred good. Because of this, the

substitute good is offered to the consumer for the price of the lower-priced good (the

recovered good).

If, after demand has been observed, there is a shortage of newly produced goods

and a surplus of recovered goods, then the firm may choose to offer a recovered good

in place of a produced good, i.e. a upward substitution. A customer may be willing

to accept a upward substitution, as this allows them to purchase a product with the

same functionality, for a lower price than they originally planned. On the other hand, if,

after demand has been observed, there is a shortage of recovered goods and a surplus of

produced goods, then the firm may choose to offer produced goods in place of recovered

goods, i.e., a downward substitution.

It is assumed that customers can choose whether or not to accept the substitution.

The proportions of customers from each market who accept the substitution are

modelled by random variables with known distributions. The distributions governing

the acceptance of substitution may be different for each type of substitution. For

instance, it is possible that a consumer may be more willing to accept a newly produced

good (downward substitution), than a recovered good (upward substitution).

Costs and Revenues. It is assumed that the objective of the firm is to maximise

its long-run average reward. Each period, the reward is given by the revenues less costs.

Revenue is received for the sale of produced and recovered goods. It is assumed that

the price of a recovered good is always less than that of a produced good.

The costs incurred during a given time period depend on the initial inventory levels,

the amount of production, recovery and buying performed, the quality of the returns,

and the size of the demands and returns. The following types of costs are incurred:
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holding costs, setup costs, processing costs, lost sales costs, disposal costs. It is assumed

that the cost function is a linear function in the inventory levels.

Setup costs are incurred each time production, recovery or buying occurs. This is

a fixed cost, and does not depend on the size of the action; it is incurred regardless of

whether the activity was performed in the last period. Processing costs are incurred on

a per unit basis for production, recovery and buying. Any inventory that is left in stock

at the end of a period incurs a per unit, per time-unit holding cost. If demand exceeds

the available inventory and a substitution is not offered, or offered but not accepted,

then a per unit lost sales cost is incurred. If a substitution is offered and accepted

then the firm receives revenue equal to the sale price of a recovered good. If returns

exceed available capacity in returned inventory, then a disposal cost is incurred. This

disposal cost may be positive or negative, representing the disposal cost or the salvage

value.

6.4 Markov Decision Process Formulation

An infinite horizon Markov decision process is used to model this product recovery

problem. A Markov decision process (MDP) is appropriate for studying this type

of problem because the inventory levels in the next period depend only on the

current inventory levels, the selected action (production/recovery/buying) and the

uncertainty observed (demand, returns, substitution acceptance). An infinite horizon

model is appropriate because it is assumed that demand and returns are time-

invariant (Tijms, 1994). An overview of MDP theory was presented in Section 3.2.

A MDP is characterised by its decision epochs, states, actions, rewards and transition

probabilities. The MDP formulation of this product recovery model is presented in this

section. A summary of the notation used in this section is presented in Table 6.1 on

page 203.

6.4.1 Decision Epochs

At each decision epoch the state of the system is observed and then an action is chosen.

The system then moves to the next state with a transition probability, which depends
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on the initial state observed and the action chosen. It is assumed that decision epochs

occur at the beginning of each time period.

6.4.2 States

The state of the system is specified by the levels of the produced, recovered, returned

and component inventories. Let:

i1 = inventory level of produced inventory, i1 ∈ I1 = {0, 1, . . . ,W1}
i2 = inventory level of recovered inventory, i2 ∈ I2 = {0, 1, . . . ,W2}
ir = inventory level of returned inventory, ir ∈ Ir = {0, 1, . . . ,Wr}
ic = inventory level of component inventory, ic ∈ Ic = {0, 1, . . . ,Wc}

where W1,W2,Wr,Wc are finite upper limits of inventory capacity and I1, I2, Ir, Ic are

the sets of all possible inventory levels. Since all state variables have finite upper limits

of capacity, the MDP has a finite state space. Letting i denote the state of the system

at the beginning of a given time period, then:

i ∈ I = {(i1, i2, ir, ic) : i1 ∈ I1, i2 ∈ I2, ir ∈ Ir, ic ∈ Ic}

6.4.3 Actions

At each decision epoch the firm must decide how much to produce, how much to recover,

how many components to buy, and what substitution policy should used. The actions

can be separated into replenishment actions (production, recovery and buying) and

substitution actions (upward and downward).

Replenishment Actions

Three replenishment decisions must be made at each decision epoch: how much to

produce, how much to recover and how many components to buy. The values of these

actions are denoted by ap, ar and ab and for a given state i are chosen from sets of

allowable actions: Ap(i), Ar(i), Ab(i) for production, recovery and buying, respectively.
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A firm may not want to perform production (and incur setup costs) for a small

number of items. Thus in practice, a firm may implement an operational ‘minimum

batch size’ policy which specifies the minimum amount which should be produced, if

production is to be performed. Similarly, for the recovery of returns and buying of

components. To model this operational requirement, lower limits are placed on the size

of the action variables. Let Lp, Lr, Lb denote the lower limit or ‘minimum batch size’

for production, recovering and buying respectively. If the firm did not wish to impose

a ‘minimum batch size policy’ then these lower limits would be set to one.

The firm may be also restricted in the amount that is produced by the maximum

capacity of their equipment or by other operational restrictions. To model these

restrictions upper limits are placed on the size of the action variables. Let Up, Ur, Ub

denote upper limits for production, recovery, and buying respectively.

Using these upper and lower limits a set of allowable actions, i.e. the action space,

can be defined for each type of action, for a given state i.

ap ∈ Ap(i) ⊆ {0, Lp, . . . ,min{W1 − i1, Up}}

ar ∈ Ar(i) ⊆











{0} if ap > 0

{0, Lr, . . . ,min{ir, Ur}} if ap = 0

ab ∈ Ab(i) ⊆











{0} if ap = 0

{min{max{ap − ic, 0}, Lb}, . . . , Ub} if ap > 0

The restriction on the upper limit of the production action set Ap(i) follows from the

assumption that production will not result in the maximum capacity of the produced

inventory being exceeded. The amount produced must not be greater than the available

capacity in produced inventory W1− i1, or the upper limit on production Up. Recovery

can only occur if production does not, i.e., if ap = 0. The amount recovered must not

exceed the number of returns in stock ir, or the upper limit on recovery Ur. Components

are only bought if production is performed. The minimum restriction on the number

of components bought ensures that there are sufficient components for the current

production order.
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Substitution Actions

Decisions about substitution are made at a strategic level and at an operational level.

At a strategic level the firm determines whether or not substitution will be permitted

ever, and at an operational level the firm decides whether or not to offer substitution in

the current time-period. The strategic decisions, which are made outwith the model, are

denoted by χ1 and χ2, which represent upward and downward substitution respectively.

If the firm allows upward substitution, then χ1 = 1, otherwise χ1 = 0. Similarly, if the

firm allows downward substitution, then χ2 = 1, otherwise χ2 = 0. This is summarised

below:

Notation Type of substitution Description

χ1 upward Shortage of produced goods, substitute

with a recovered good

χ2 downward Shortage of recovered goods, substitute

with a produced good

If the firm permits substitution at a strategic level, then at each decision epoch the

firm must make an operational decision about offering substitution during the coming

period, if there is a shortage. In making this operational decision, the current inventory

levels and replenishment actions are taken into account. The decision about offering

substitution is made at the start of the period, before demand has been observed. This

is obviously not an ideal way to represent the process of substitution, however, the

periodic nature of the MDP means that all decisions must be made at the start of the

period. A continuous time model would allow a more detailed treatment of substitution.

However, the current periodic model is still useful as it provides a simple representation

of the substitution process.

The sets of allowable substitution actions depend on the strategic variables χ1 and

χ2. Let a1 denote the upward substitution decision and let a2 denote the downward

substitution decision made in a given period, where

a1 =











1 if upward substitution is offered

0 otherwise

a2 =











1 if downward substitution is offered

0 otherwise
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Let A1 denote the set of allowable upward substitution actions and let A2 denote the

set of allowable downward substitution actions, where:

a1 ∈ A1 = {0, χ1}

a2 ∈ A2 = {0, χ2}

For a given state i, an action a(i) is chosen from the set of allowable actions, denoted

by A(i), which can be defined as:

a(i) ∈ A(i) = {(ap, ar, ab, a1, a2) : ap ∈ Ap(i), ar ∈ Ar(i), ab ∈ Ab(i),

a1 ∈ A1, a2 ∈ A2}.
(6.1)

6.4.4 Transition Probabilities

The transition from the current state to the next state depends on the action that is

chosen, the quality of the returns recovered during the period, the number of goods

which are returned, the number of goods that are demanded from each market, and, if

offered, the acceptance of substitution.

Random Variables

There are six random variables which will be used to specify the transition probabilities:

Xq, Xd1, Xd2, Xr, X1, X2. The random variable Xq represents the number of high

quality returns and is governed by a probability distribution which depends on the

number of returns being recovered (ar) in that period. The random variable Xd1

represents the demand for produced items, and the random variable Xd2 represents

the demand for recovered items during a period. The random variable Xr represents

the number of items returned during a period. The random variable X1 represents

the number of customers whose demand for a produced good is unsatisfied and who

would accept a recovered good in its place. This random variable is governed by

a probability distribution which depends on the amount of unsatisfied demand for

produced goods. The random variable X2 represents the number of customers whose

demand for recovered goods is unsatisfied and who would accept a produced good in its

place. This random variable is governed by a probability distribution which depends on
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the amount of unsatisfied demand for recovered goods. The random variables Xq, Xd1,

Xd2, Xr are independent of each other and have known distributions. The variables

X1 and X2 are dependent on the demand observed during the period. Following the

convention in probability, an observation of a random variable is denoted by the lower

case equivalent, for instance, xr is an observation of the random variable Xr.

System Dynamics

The system dynamics associated with this model are as follows. Suppose the system is

in state i = (i1, i2, ir, ic) at the start of the period and action a(i) = (ap, ar, ab, a1, a2)

is chosen. The lead time for production, recovery and buying is zero, therefore the

inventory levels are updated immediately after the action decision is made. After

the state is updated for the action, the demands and returns are observed. The

inventory transitions are presented in two stages, beginning with the replenishment

actions, demand and returns, and then examining the effect of substitution.

Replenishment, Demands and Returns. The produced inventory is increased by

the size of production ap and decreased by the size of demand xd1. The inventory level

(i1+ap) will never exceed the capacity of serviceable inventory due to the assumptions

made about the upper limit of the action set Ap(i). If demand for produced items

exceeds (i1+ap), then the produced inventory level will be zero. This gives a produced

inventory level of:

max{i1 + ap − xd1, 0} (6.2)

The recovered inventory is increased by the number of high quality returns that are

recovered and decreased by the size of demand xd2. If the available capacity in the

recovered inventory is insufficient to hold the number of high quality returns, then

some of the high quality returns will be recovered to be components. Recall that ζL

represents the low quality recovery strategy. If low quality recovery is permitted then

ζL = 1, otherwise ζL = 0. In this model, high quality recovery is always permitted so

ζH is not included in this formulation. Let the number of returns that undergo high

quality recovery be denoted by ah(xq), where:

ah(xq) = min{W2 − i2, xq}
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let the number of returns that undergo low quality recovered be denoted by al(xq),

where:

al(xq) = ζLmin{Wc − ic, ar − ah(xq)}

and let the number of returns that are discarded be denoted by ad(xq), where:

ad(xq) = {ar − ah(xq)− al(xq), 0}

Using this notation, the updated level of recovered inventory is:

max{i2 + ah(xq)− xd2, 0} (6.3)

The returned inventory will decrease by the size of the recovery lot ar and increase by

the number of returns xr received, subject to the capacity limit for returned inventory

Wr. Recall that the effect of the action is realised (and inventory levels updated) before

the returns are observed. The updated returned inventory level will be:

min{ir − ar + xr,Wr} (6.4)

The component inventory will increase by the number of components bought ab,

decrease by the production size ap and increase by the size of low quality recovery

al(xq). The new component inventory level will be:

ic + ab − ap + al(xq) (6.5)

Substitution. The effect of substitution is now examined. Let u1 and u2 denote

the amount of unsatisfied demand for produced and recovered items, respectively. Let

n1 denote the number of recovered goods offered for substitution, in the event of a

shortage of produced goods; and let n2 denote the number of produced goods offered

for substitution, in the event of a shortage of recovered goods. Let s1 denote the number

of recovered goods which are accepted in place of produced goods; and let s2 denote the

number of produced goods which are accepted in place of the recovered goods. These

quantities will now be defined. The amount of unsatisfied demand for produced items

is

u1 = max{0, xd1 − (i1 + ap)}.

The amount of unsatisfied demand for recovered items is

u2 = max{0, xd2 − i2 − ah(xq)}.
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Taking into account the substitution decision a1, the amount of recovered inventory

available after demand for recovered goods has been met (equation 6.3), and the amount

of unsatisfied demand, then the number of recovered goods offered for substitution is:

n1 = a1 ×min{u1,max{0, i2 + ah(xq)− xd2}}

Taking into account the substitution decision a2, the amount of produced inventory

available after demand for produced goods has been met (equation 6.2), and the amount

of unsatisfied demand, then the number of produced goods offered for substitution is:

n2 = a2 ×min{u2,max{0, i1 + ap − xd1}}

The number of customers with unsatisfied demand for produced goods, who would

accept a substitution if offered is given by the random variable X1. The variable X1

has a general distribution with a known density. The number of recovered goods which

are substituted for produced goods is:

s1 = min{n1, x1}

Therefore from s1 and equation (6.3) the updated recovered inventory level is:

max{i2 + ah(xq)− xd2, 0} − s1 (6.6)

Similarly, the number of customers who demanded recovered goods with unsatisfied

demand, who would accept a substitution if offered, is given by the random variable

X2. The variable X2 has a general distribution with a known density. The number of

produced serviceable goods which are substituted for recovered serviceable goods is:

s2 = min{n2, x2}

Therefore, from s2 and the equation (6.2), the updated produced inventory level is:

max{i1 + ap − xd1, 0} − s2 (6.7)

Next State. From equations (6.4) (6.5), (6.6) and (6.7), the next state j =

(j1, j2, jr, jc) can be related to state i = (i1, i2, ir, ic) as follows:

j1 = max
{

i1 + ap − xd1 − s2, 0
}

j2 = max
{

i2 + ah(xq)− xd2 − s1, 0
}

jr = min
{

ir − ar + xr,Wr

}

jc = ic + ab − ap + al(xq) (6.8)
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The probability that the system moves to state j in the next time period, given that it

is currently in state i, depends on the joint probability function of the random variables

Xq, Xd1, Xd2, Xr, X1 and X2.

6.4.5 Costs and Revenues

The objective of this Markov decision process is to maximise the long run average

reward. The ‘reward’ received during a period is equal to the revenues less the costs,

and the reward thereafter. In this model revenues are received for the sale of produced

and recovered goods, and the following costs are incurred: holding costs, setup costs,

processing costs, lost sales costs, substitution costs and disposal costs. The costs

incurred in a given period depend on the current state, the action chosen, and the

demand, returns, quality and substitutions that are observed. The revenues and costs

will now be described in more detail.

Revenues. Sales revenues are received for the sale of produced and recovered goods.

The sale of a produced good yields a revenue of p1 and the sale of a recovered good

yields a revenue of p2. If a substitution occurs, then revenue equal to the price of

the cheapest good is received p2. For a given state i, action a(i), observed quality xq,

demands xd1, xd2 and substitutions x1, x2, the revenue that is received is:

RS(i, a(i)) = p1

(

min{xd1, (i1 + ap)}
)

+ p2

(

min{xd2, i2 + ah(xq)}+ s1 + s2

)

Recall that s1 and s2 are the number of substitutions accepted by customers for

produced and recovered goods respectively. The expected revenue is:

E[RS(i, a(i),Xq ,Xd1,Xd2,X1,X2] = p1

(

min{Xd1, i1 + ap}
)

+ p2

(

min{Xd2, i2 + ah(Xq)}+ s1 + s2

)
(6.9)

Setup costs. Setup costs are incurred each time production, recovery and buying

are initiated. These costs are denoted by kp, kr and kb respectively. The following
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indicator variables specify when a particular action is performed and hence when a

setup cost should be incurred.

δp =











1 if ap > 0 (production)

0 otherwise

δr =











1 if ar > 0 (recovery)

0 otherwise

δb =











1 if ab > 0 (buying)

0 otherwise

Let the function CK(i, a(i)) denote the setup cost function. This function does not

depend on any random variables, therefore the expected value of the setup cost function

is equal to CK(i, a(i)), that is:

E[CK(i, a(i))] = CK(i, a(i)) = kpδp + krδr + kbδb (6.10)

Processing costs. Processing costs are incurred for production cp, recovery of all

returns cr, recovery of high quality returns ch, recovery of low quality returns cl, and

disposal of excess returns cd. These costs occur on a per unit basis. For a given state

i, action a(i), observed number of high quality returns xq, the actual processing costs

CP (i, a(i), xq) are:

CP (i, a(i), xq) = cpap + crar + chah(xq) + clal(xq) + cdad(xq)

The expected processing costs are:

E[CP (i, a(i))] = cpap + crar + chE[ah(Xq)] + clE[al(Xq)] + cdE[ad(Xq)] (6.11)

Holding Costs. Holding costs are incurred for any goods that are in stock at the

end of a period and are carried between periods. Each period, per unit holding costs

of h1, h2, hr and hc are incurred for produced, recovered, returned and component

inventories, respectively. The holding cost is calculated using the inventory levels at

the beginning of each period. Since an infinite horizon MDP with an average reward

criterion is used to model this problem, calculating the cost based on the inventory levels
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at the beginning or end of a period are equivalent. Alternative methods for calculating

the holding cost could be used. Let CH(i) denote the holding costs incurred if the

system is in state i = (i1, i2, ir, ic) at the beginning of a period. Since the inventory

levels are known with certainty at the beginning of a period, the expected holding cost

is:

E[CH(i)] = CH(i) = h1i1 + h2i2 + hrir + hcic (6.12)

Lost Sales & Substitution. Demand which is not met by inventory or by

substitution incurs a lost sales cost. The per unit lost sales cost for produced goods is

l1 and for recovered goods is l2. If the system is in state i, action a(i) is chosen, there

are xq high quality returns (if ar = 0 then xq = 0), xd1 produced goods are demanded,

xd2 recovered goods are demanded and xr units returned, x1 customers would accept

upward substitution, and x2 customers would accept downward substitution, then the

lost sales, substitution and disposal costs will be:

CL(i, a(i), xq , xd1, xd2, x1, x2) = l1

(

max
{

xd1 − (i1 + ap)− s1(x1), 0
})

+ l2

(

max
{

xd2 − (i2 + ah(xq))− s2(x2), 0
})

and the expected lost sales costs are:

E[CL(i, a(i),Xq ,Xd1,Xd2,X1,X2)] = l1

(

max
{

E[Xd1]− (i1 + ap)− E[s(X1)], 0
})

+ l2

(

max
{

E[Xd2]− (i2 + E[ah(Xq)])− E[s2(X2)], 0
})

Disposal Costs. If the number of returns exceeds the available capacity of the

returns inventory, then a per unit disposal cost of lr is incurred. For a given state,

action and number of returns, the disposal costs:

CD(i, a(i), xr) = lr

(

max
{

xr − (Wr − ir + ar), 0
})

The expected disposal costs are:

E[CD(i, a(i),Xr)] = lr

(

max
{

E[Xr]− (Wr − ir + ar), 0
})
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Total costs. The total cost incurred during for one period, for a given state i, action

a(i), observed quality xq, demands xd1, xd2, returns xr and substitutions x1, x2 is:

C(i, a(i), xq , xd1, xd2, xr, x1, x2) = CK(i, a(i)) + CP (i, a(i), xq) + CH(i)

+ CL(i, a(i), xq , xd1, xd2, x1, x2) + CD(i, a(i), xr)

(6.13)

and correspondingly, the expected total costs for one period is:

E[C(i, a(i),Xq ,Xd1,Xd2,Xr,X1,X2)] = CK(i, a(i)) + E[CP (i, a(i))] + CH(i)

+ E[CL(i, a(i),Xq ,Xd1,Xd2,X1,X2)]

+ E[CD(i, a(i),Xr)]

(6.14)

Total reward. The total rewards received during one period, depends on the state i,

action a(i), and observed quality Xq, demands Xd1,Xd2, returns Xr and substitutions

X1,X2 is:

E[R(i, a(i),Xq ,Xd1,Xd2,Xr,X1,X2)] = E[RS(Xq,Xd1,Xd2,X1,X2]

−
(

CK(i, a(i)) + E[CP (i, a(i))] + CH(i)

+ E[CL(i, a(i),Xq ,Xd1,Xd2,X1,X2)]

+ E[CD(i, a(i),Xr)]
)

(6.15)

6.5 Model Implementation and Validation

The Markov decision problem described in the previous section was implemented in

java in order to explore the properties of the model. Several algorithms can be used

to find the optimal policy, however, as discussed in Section 3.2, the dimensionality of

the problem under study means that the value iteration algorithm is the only practical

option.

6.5.1 Dimensionality

This Markov decision problem has four state variables and five action variables. This

makes the problem exponentially larger than the model in the previous chapter.
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Table 6.1: Summary of notation used in MDP formulation

State Variables Unit costs
i1 produced inventory cp production
i2 recovered inventory cr recovery
ir returns c1 upward substitution
ic components c2 downward substitution

cb buying components
State Space Capacities ch high quality recovery
W1 new inventory cl low quality recovery
W2 recovered inventory cd disposal from recovery
Wr returns ca acquisition of returns
Wc components

Revenues
Action Variables p1 produced inventory
ap production p2 recovered inventory
ar recovery
ab buying of components Setup Costs
a1 upward substitution kp production
a2 downward substitution kr recovery
ah(xq) high quality recovery kb ordering components
al(xq) low quality recovery δp indicator production
ad(xq) disposed recovery δr indicator recovery

δb indicator buying
Action Quantities (see section 6.5)
Qp production lot size Holding Costs
Qr recovery lot size h1 returns

h2 produced inventory
Action Space Capacities hr recovered inventory
Up, Ur, Ub, upper limit on production, recovery, ordering hc components
Lp, Lr, Lb, lower limit on production, recovery, ordering
χ1 upward substitution strategy Lost Sales Costs
χ2 downward substitution strategy lr excess returns

l1 lost sales of produced goods
Random Variables l2 lost sales of recovered goods
Xd1 demand for new goods
Xd2 demand for recovered goods
Xr returns Substitution quantities
Xq quality of returns u1, u2 unmet demand
X1 downward substitution acceptance n1, n2 goods available for substitution
X2 upward substitution acceptance s1(x1), s2(x2) number of substitutions made
α quality parameter
α1 upward substitution acceptance parameter
α2 downward substitution acceptance parameter
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Initial numerical experiments showed that dimensionality of the problem makes it

computationally impractical to consider problems with upper capacity levels of about

5. This obviously places significant limitations on the numerical experiments that

can be performed with this model. Alternative solution methods and heuristics could

be investigated, however it would still be difficult to assess the performance of such

methods. Instead, we propose a number of simplifications which allow the action

space to be reduced and thus allow slightly larger problems to be investigated. These

simplifications are as follows:

• Components are ordered only when they are needed for production. This means

that the action variable ab can be calculated and therefore does not need to be

stored. In each period:

ab = max{0, ap − ic}.

• Production and recovery occur in fixed batch sizes of Qp and Qr respectively are

used. It is assumed that these batches sizes are smaller than their respective

upper limits for production Up and recovery Ur. The action space for production

becomes:

ap ∈ Ap = {0,min{W1 − i1, Qp}}

The action space for recovery becomes:

ar ∈ Ar =











{0} if ap > 0 or ir < Qr

{0, Qr} if ap = 0

Recovery can only be performed if there are sufficient returns in stock, i.e., ir ≥
Qr. This means that the decision within each period is restricted to whether or

not to produce or recover, rather than how much to produce or recover.

Despite these adjustments, the dimensionality of this model is still an issue. For

a given state i = (i1, i2, ir, ic) and action a = (ap, ar, ab, a1, a2), the number of non-

zero transitions is determined by the parameter values of the problem. Suppose the

maximum inventory level was 10, (i1 = i2 = ir = ic = 10), the number of returns

each period was 10 or less (with probability 0.999) and the batch size for returns

was Qr = 10 (meaning Xq ∼ Bin(Qr, α)). Furthermore, suppose that demand for

produced and recovered goods could vary between 1 and 10. The number of each
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type of good offered for substitution could also vary, therefore, between 1 and 10. In

a given period all of the following events could occur: returns, production, recovery,

demand for produced and recovered goods, and substitution of produced and recovered

goods. Therefore, the maximum number of possible transitions is: num returns ×
num produced × num recovered × num demand produced × num demand recovered ×
num substitution produced × num substitution recovered = 10 × 1 × 105 = 106. Of

course many of these transitions may lead to the same state j, but they could be

reached through many differing combinations of the number of returns, high quality

returns, demand and substitution. Because of this, the numerical experiments in this

chapter will be limited to a maximum inventory level of 10.

6.5.2 Validation of the Code

Much of the programming code used in this chapter was discussed in Chapter 3

and was used Chapter 5, therefore this section refers only to the problem-specific

code. In addition to thorough error-checking and inspection of output during the

code development process, two forms of verification were used to validate the problem

specific files. The calculation of the expected average rewards was checked using an

Excel spreadsheet and using simulation. To conduct these tests a set of six example

test problems was constructed. For all six problems, the results of the tests were as

expected. Further details regarding the validation of the java code can be found in

Appendix C.1.2.

6.6 Properties of the Optimal Policy

The properties of the optimal policy are explored in this section. Three main properties

are investigated in the chapter. Firstly, we investigate the performance of the optimal

policy under different substitution strategies. Two performance measures are used: the

long run average reward and the fill rate (a measure of service). Secondly, we investigate

the structure of the optimal policy by examining the actions that are chosen in different

states. Finally, we investigate the effect of the recovery strategy on the performance

and structure of the optimal policy.
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As discussed in Section 6.5.1, to manage the dimensionality of the problem, the

class of policies which are being considered has been restricted by introducing the fixed

lot sizes Qp and Qr and by fixing the decision about buying components. The optimal

policy within this class of policies is sought. This policy may not be optimal if the

restrictions on the lot sizes and component buying decisions were omitted.

6.6.1 Datasets

Three datasets have been constructed in order to investigate the optimal policy across

a range of scenarios. The parameters for these datasets are derived from the datasets

used in Chapters 4 and 5, some of which were themselves derived from the dataset

used by Konstantaras and Papachristos (2008b). This section explains how the current

dataset extends those used to investigate the cost-minimising single-market stochastic

product recovery model in Chapter 5 (Table 5.2, 146). Some additional parameters have

been added to account for the additional inventory type, additional demand type and

substitution. The model in this chapter uses the objective of maximising reward rather

than minimising cost, thus price parameters also need to be included. The selection of

these new parameters values is discussed in this section. Note that the first problem

in the datasets in Chapters 4 and 5 (labelled 00) has been removed from the dataset

as it did not contain any unit costs. It was included in the earlier models to enable

comparisons to be drawn between models in the literature and the models proposed

by this thesis. However, since the model in this chapter has a very different structure

(e.g. two markets), such comparisons are not made here. The parameter values for the

datasets used in the section are presented in Table 6.2.

State Variables

For computational reasons the state space for each of the four state variables must be

constrained by an upper limit. Due to the dimensionality of the problem, the state
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space for each of the inventories is limited to the values from 0 to 10, thus:

I1 = {0, 1, . . . , 10}

I2 = {0, 1, . . . , 10}

Ir = {0, 1, . . . , 10}

Ic = {0, 1, . . . , 10}

Random Variables

The Poisson distribution is used to model demand and returns. The rates of the three

Poisson random variables are chosen to be integers for convenience. Since the state

space has been decreased, the demand and returns parameters need to be adjusted

accordingly. Ideally, the capacity of the inventories should not affect the policy. The

effect of the inventory capacity can be lessened by ensuring that the probability that

demand exceeds the upper capacity is very small. If the random variable governing

demand Xd1 is governed by a Poisson distribution with mean λd1 = 3, then P (Xd1 >

10) < 0.001. This probability is sufficiently small, therefore an upper limit of 3 is

placed on the parameter λd. Let pd and dd denote the production and demand rates

from deterministic model in Chapter 4. The ratio of dd to pd results in values between

0 and 1 since the demand rate in the deterministic model is always less than the

production rate. In order to spread the values between 0 and the upper limit 3, with

a heavier weighting towards the upper end of the range, the square root of the ratio is

taken. In summary, in order to obtain the mean demand λd1 for each problem in the

base dataset the following transformation is used:

λd1 =

⌈
√

dd
pd

× 3

⌉

where the function ⌈x⌉ rounds x up to the nearest integer.

In this model an additional demand variable is included. In order to model a variety

of relationships between the demand for the two products, the demand rate λd2 was

determined by randomly generating discrete values within the range of 1 to 3. This

creates some scenarios with λd1 > λd2, λd1 = λd2 and λd1 < λd2.
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In Chapter 4, the parameters β1 and β2 specify the proportion of returns which

are high quality and low quality respectively. These values, along with the demand for

produced goods, are used to obtain the mean returns in the current model. Let:

γ = β1 + β2

and then let the mean returns be given by:

λr = max{1, ⌊γλd1⌋}

where the function ⌊x⌋ rounds x down to the nearest integer. Since maximum demand

level is much lower than in Chapter 5, an additional restriction is added to ensure that

the number of returns is at least 1.

Revenues and Costs

In order to model a range of scenarios where some products have small and some have

large price mark-ups, the relationship

pd1 = (cp + cb)(1 + U)

is used to obtain the sale price of the produced serviceable goods, where U is a uniform

(0, 1) random variable. As mentioned in the problem description (§6.2), while the two

goods are sold in separate markets, they are also assumed to have the same functionality

and purpose. Consumers are likely to compare the prices of the two when making a

purchase. Therefore, we relate the price of the recovered good to the price of the

produced good, rather than to the cost of recovering a returned good. In practice the

nature of the relationship between price of produced and recovered goods depends on

the type of product and the associated consumer preferences. Therefore, in order to

model a variety of price relationships we multiply the price of a produced good by a

factor of between 0.5 and 1.0, such that:

pd2 = pd1U

where U is a uniform (0.5, 1.0) random variable.

The values for the holding cost of recovered inventory h2 were selected in order to

provide a range of values. The values for the other holding costs are the same as in

208



Chapter 5. The lost sales cost for unsatisfied demand for produced goods l1 is related

to the production cost of a produced item by the multiplier γh:

l1 = γh(cp + cb − cd)

and the lost sales cost for unsatisfied demand for recovered goods l2 is related to the

cost of a high quality recovery by the multiplier γh:

l1 = γh(cr + ch − cd)

For this investigation the multiplier γh = 0.1 is used to specify the lost sales cost. The

lost sales costs are much lower than those used in Chapter 5. This is because in the

previous model, the lost sales cost also represented part of the lost revenue from not

meeting demand, however in this model revenue is included separately in the model

through the price parameters. As discussed by Silver et al. (1998), the cost of losing a

sale is hard to quantify, therefore the quantities used here serve to provide some form

of disincentive against not meeting demand.

The setup cost for buying components is set to zero (kb = 0) since a restriction was

placed on this decision. Recall that a disposal cost cd is applied to all goods which are

not recovered. Since this is an open-loop system and goods are not monitored after

they have been sold, the disposal cost is added as a surcharge to all goods which are

produced and is then deducted from the recovery costs of goods which are recovered.

Goods which are produced but not recovered will not have the fee reimbursed, thus are

subject to a disposal charge.

The values for all other costs are the same as in Chapter 5.

Lot Sizes

The lot sizes for production Qp and recovery Qr are derived from the respective demand

rates plus yp or yr standard deviations, respectively.

Qp = ⌈λd1 + yp
√

λd1⌉

Qr = ⌈λd2 + yr
√

λd2⌉
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where the function ⌈x⌉ rounds x up to the nearest integer. Three variations of the

dataset are constructed by varying the number of standard deviations added to the

demand rates. These datasets are labelled B, C and D:

Problem Set yp yr
A − − (Test Problems)
B 1 1
C 2 1
D 1 2

Substitution Strategies

For problem sets B, C andD four substitution strategies are considered: no substitution

(χ1 = 0, χ2 = 0), only downward substitution (χ1 = 0, χ2 = 1), only upward

substitution (χ1 = 1, χ2 = 0), two-way substitution (χ1 = 1, χ2 = 1).

Notation Type of substitution Description

χ1 upward Shortage of produced goods, substitute
with a recovered good

χ2 downward Shortage of recovered goods, substitute
with a produced good

The proportion of customers for produced and recovered goods who would accept a

substitution, if it was offered to them, is modelled by a Binomial distribution with the

parameters α1 and α2 respectively.

The parameters for the problem sets are presented in Table 6.2.

6.6.2 Analysis of Performance

In this section we analyse the performance of the optimal policy by examining the

average rewards and fill rate under different substitution strategies. Four substitution

strategies are investigated: no substitution (χ1 = 0, χ2 = 0), upward substitution

(χ1 = 1, χ2 = 0), downward substitution (χ1 = 0, χ2 = 1), two-way substitution

(χ1 = 1, χ2 = 1). These substitution strategies do not force the systems to perform

substitution in the case of a shortage, rather they allow substitution to be an option

(i.e. an allowable action in the action space).
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Table 6.2: Parameter values for the problem sets

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Distributions
α 0.8 0.2 0.3 0.3 0.5 0.7 0.8 0.8 0.2 0.5 0.5 0.5 0.5 0.5 0.4 0.1 0.6 0.2 0.2 0.5
α1 0.68 0.65 0.57 1 1 0.55 0.5 0.4 0.75 0.94 0.92 0.8 0.63 0.93 0.5 0.52 0.86 0.65 0.98 0.56
α2 0.44 0.75 0.9 0.62 0.81 0.53 0.5 0.72 0.74 0.87 0.87 0.76 0.93 0.92 0.7 0.48 0.48 0.56 0.89 0.67
λd1 2 2 3 2 2 2 2 2 2 2 3 3 3 2 2 2 2 1 2 1
λd2 3 1 3 3 3 1 3 2 1 2 2 1 2 2 2 3 3 1 1 1
λr 2 1 1 1 2 2 2 2 1 2 2 2 2 1 2 1 1 1 2 1
Unit Costs
cp 106.5 66 88 131 161 107 66 75 212.5 188.5 23.5 76 78.5 106.5 65.5 110 107 75 212.5 160
cr 13.5 34 42 89 29 13 44 15 27.5 141.5 6.5 24 21.5 13.5 34.5 0 13 15 27.5 10
cb 30 60 80 100 70 40 60 30 50 200 50 50 100 30 50 100 40 30 50 50
ch 50 30 40 60 75 50 30 35 100 85 10 35 35 50 30 50 50 35 100 75
cl 9 18 24 30 21 12 18 9 15 60 15 15 30 9 15 30 12 9 15 15
cd 6.5 6 8 11 11 7 6 5 12.5 18.5 3.5 6 8.5 6.5 5.5 10 7 5 12.5 10
ca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Revenues
pd1 209 169 269 316 434 269 242 112 378 563 146 214 277 231 186 330 212 140 263 279
pd2 147 133 202 161 391 253 202 84 361 529 83 119 259 221 111 236 113 115 150 162

Set up Costs
kp 20 10 10 20 20 20 30 30 50 28 12 12 120 20 100 1000 400 30 50 28
kr 5 5 10 12 8 20 20 25 30 8 2 2 10 5 50 100 400 5 10 8
kb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding Costs
hr 2 4 5 10 4 2 5 2 4 16 1 3 3 2 4 1 2 2 4 2
hs1 10 6 8 12 15 10 6 7 20 17 2 7 7 10 6 10 10 7 20 15
hs2 8 6 8 11 10 2 4 4 10 15 2 5 5 10 5 7 8 4 12 10
hc 3 6 8 10 7 4 6 3 5 20 5 5 10 3 5 10 4 3 5 5

Penalty Costs
lr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ls1 13 12 16 22 22 14 12 10 25 37 7 12 17 13 11 20 14 10 25 20
ls2 5.7 5.8 7.4 13.8 9.3 5.6 6.8 4.5 11.5 20.8 1.3 5.3 4.8 5.7 5.9 4 5.6 4.5 11.5 7.5
Order Sizes for B

Qp 4 4 5 4 4 4 4 4 4 4 5 5 5 4 4 4 4 2 4 2
Qr 5 2 5 5 5 2 5 4 2 4 4 2 4 4 4 5 5 2 2 2

Order Sizes for C

Qp 5 5 7 5 5 5 5 5 5 5 7 7 7 5 5 5 5 3 5 3
Qr 5 2 5 5 5 2 5 4 2 4 4 2 4 4 4 5 5 2 2 2

Order Sizes for D

Qp 4 4 5 4 4 4 4 4 4 4 5 5 5 4 4 4 4 2 4 2
Qr 7 3 7 7 7 3 7 5 3 5 5 3 5 5 5 7 7 3 3 3
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Average Reward

The average reward of the optimal policy varies across the three problem sets, with

some being negative and some being positive. There is some variation between the

substitution strategies. The average reward should be greatest when the two-way

substitution strategy is used as it allows the widest range of policy actions. Under

this strategy, substitution can and will be selected if it leads to the greatest immediate

and future reward, whereas under the other substitution strategies the selection of

substitution is limited to those permitted by the strategy. The average reward under

each of the substitution strategies is presented for the three problem sets in Figure 6.2

and Table 6.3. As shown by Figure 6.2 the optimal reward is indeed highest under a

two-way substitution strategy, however for some problems the highest reward is also

attained by other substitution strategies.

The question of interest is what additional revenue can be attained by introducing

each of the substitution strategies. To investigate this, the relative increase in the

reward which is attainable by allowing each type of the substitution is compared with

not offering substitution. We refer to the attainable increase in reward as the relative

reward increase (RRI). It is calculated as follows:

RRI =
Reward(substitution)− Reward(no substitution)

|Reward(no substitution)| × 100%

Since the long run average reward for some problems is negative, absolute value of the

denominator needs to be taken. Note that the numerator will always be positive since

the no-substitution strategy is the least flexible and thus has the lowest reward of all

the substitution strategies. Figure 6.3 shows the relative reward increase attainable

by offering substitution for problem sets B, C and D between problems. There is

substantial variation in the percentage increase in the average reward attainable by

offering substitution. For example, compare problems B16 and B18: for problem

B16 offering any type of substitution has no effect on the average reward, whereas for

problem B18 offering two-way substitution allows an increase in the average reward of

almost 250% compared with not offering substitution. However it is important to note

that while problem 18 has a large percentage increase, the magnitude of the average

reward for this problem is much smaller than others. It is for this reason that there

212



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−100

0

100

200

300

400

500

600

700

800

Problem

A
ve

ra
ge

 R
ew

ar
d

 

 

none
down
up
twoway

(a) Problems B
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(b) Problems C
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(c) Problems D

Figure 6.2: Average reward of the optimal policy calculated for all substitution

strategies
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Table 6.3: Average reward of the optimal policy calculated for all substitution strategies

(a) Problems B

Substitution Strategy
Problem None Down Up Two-way
B01 205.6327 210.2666 206.6815 211.5259
B02 48.3231 50.1524 48.5907 50.4485
B03 258.0036 307.3568 258.0614 307.4512
B04 26.8350 26.8357 27.0030 27.0037
B05 578.1734 677.2367 578.6693 678.8897
B06 304.3658 311.9690 305.6469 313.7147
B07 341.2694 372.4779 341.5530 373.1980
B08 7.5144 7.5144 12.5345 12.5345
B09 147.2555 188.1642 147.7200 188.9560
B10 405.9674 453.4720 409.0333 462.6609
B11 258.7914 258.8317 258.9553 258.9960
B12 217.1785 217.1785 217.6327 217.6326
B13 363.8085 369.5037 365.8406 372.3621
B14 206.1956 295.4561 206.5465 296.6445
B15 40.8607 40.9289 41.0838 41.1527
B16 -61.9998 -61.9998 -61.9998 -61.9998
B17 -64.8000 -64.8000 -64.8000 -64.8000
B18 1.7273 5.5958 1.9205 5.8693
B19 -101.4996 -101.4995 -99.2472 -99.2472
B20 49.2246 49.2608 50.8572 50.8957

(b) Problems C

Substitution Strategy
Problem None Down Up Two-way
C01 206.9075 214.0137 207.7569 215.1768
C02 51.8501 56.2357 52.0333 56.4732
C03 256.5295 349.8017 256.5694 349.8866
C04 25.0915 25.0929 25.2221 25.2236
C05 581.6032 770.8180 582.0237 772.2306
C06 322.6048 328.3139 325.2434 331.8559
C07 346.2847 392.0980 346.4794 392.6603
C08 7.4771 7.4771 12.0837 12.0837
C09 151.1969 201.0447 151.6063 202.0693
C10 420.2436 512.3212 422.1603 518.6298
C11 275.6066 278.5170 275.7658 278.7292
C12 223.8000 223.8049 224.5272 224.5308
C13 407.5082 447.7006 408.1591 449.4213
C14 205.4133 315.6043 205.7440 316.5529
C15 50.7999 51.0689 50.9821 51.2546
C16 -61.9997 -61.9997 -61.9997 -61.9997
C17 -64.7993 -64.7994 -64.7993 -64.7994
C18 5.5319 12.6591 5.6659 12.8663
C19 -101.4995 -101.4996 -101.4995 -101.4995
C20 52.0044 52.0992 53.2187 53.3244

(c) Problems D

Substitution Strategy
Problem None Down Up Two-way
D01 202.1310 208.5794 203.4187 210.4709
D02 55.5843 61.2820 55.7953 61.5641
D03 253.6085 315.0881 253.6851 315.3195
D04 16.3997 16.4004 16.6168 16.6174
D05 576.7720 742.0547 577.5139 746.7642
D06 346.8426 347.6707 356.4312 357.5609
D07 340.3184 383.8900 340.6323 384.8664
D08 8.8406 8.8406 13.8216 13.8217
D09 159.0702 208.5078 159.5312 209.6617
D10 421.1900 504.6739 423.8750 514.6616
D11 269.2529 269.6960 269.5027 269.9624
D12 230.0933 230.0933 231.3473 231.3472
D13 386.4091 403.8067 387.8284 406.7766
D14 205.2108 300.8379 205.6899 302.5392
D15 47.5189 47.6618 47.7982 47.9296
D16 -61.9999 -61.9999 -61.9999 -61.9999
D17 -64.8000 -64.8000 -64.8000 -64.8000
D18 3.7045 9.2276 3.8825 9.4810
D19 -95.9167 -95.9167 -92.3012 -92.3012
D20 52.2228 52.2937 53.7832 53.8551
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appears to be no difference between the substitution strategies for problem 18 in Figure

6.2.

It is expected that the greatest increase in the average reward would be attained by

offering two-way substitution, compared with offering only downward or only upward

substitution. This is confirmed by Figure 6.3. However, interestingly for most problems,

the increase attainable is similar for the downward and two-way substitution strategies.

This suggests that it is downward, rather than upward substitution that accounts for

the increase attainable under a two-way substitution strategy. The main exception to

this trend is problem 08, in which it appears that upward substitution accounts for the

increase in the average reward attainable under a two-way substitution strategy.

In general, the greatest increase in reward is attained by offering substitution

strategy which includes downward substitution. Under downward substitution,

produced goods are used to meet demand if there is a shortage of recovered goods.

It is possible that downward substitution allows the manufacturer to mitigate the risks

associated with the greater uncertainty in supply of the recovered goods, caused by the

uncertainty in the arrival and quality of the returns.

Fill Rates

The fill rate is a measure of service which is determined by calculating the proportion of

demand met by current stock (Silver et al., 1998). A low fill rate indicates that there

has been a large number of lost sales, which could lead to higher levels of customer

dissatisfaction. For each type of inventory that is demanded, the fill rate is:

fill rate =
number of met sales

number of items demanded

The average fill rate can be calculated using a simulation, by calculating the fill rate

each period and then by averaging this across the length of the simulation. In situations

where substitution is permitted, the ‘number of met sales’ could include or exclude the

sales met by substitution, thus two versions of the fill rate can be calculated. It is

interesting to compare the fill rates including and excluding substitution as it allows

another way of measuring the effect of substitution. Let the substitution-inclusive fill

rate refer to the fill rate calculation which includes sales met by substitution, and let
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(b) Problems C
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(c) Problems D

Figure 6.3: Relative reward increase attainable under each of the substitution strategies,

compared with not offering substitution
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the substitution-exclusive fill rate refer to the fill rate calculation which excludes such

sales. Similar approaches, for differentiating between demand met by substitution and

demand met by current stock, were taken by Smith and Agrawal (2000) who considered

substitutions in the context of a product assortment problem, and by Axsäter (2003)

who considered them in the context of transshipments.

In this section two questions are investigated: firstly, how does the fill rate vary

across the four substitution strategies, and secondly, how much demand is met by

substitution under a two way substitution strategy. In order to study these questions,

the fill rates were calculated from a simulation over T = 1, 000, 000 time units.

Effect of Substitution Strategy on Fill Rate. In order to consider the first

question, graphs were constructed to compare the substitution-inclusive fill rate for

produced and recovered inventory under the four substitution strategies. These graphs

are presented in Figures 6.4, 6.5 and 6.6 for problem sets B, C, and D respectively.

In each figure, graph (a) presents the fill rate of produced inventory and graph (b)

presents the fill rate of recovered inventory. The data for these graphs is included in

Appendix C in Tables C.4–C.6.

There is substantial amount of variation in the fill rates between the problems

and, in general, the fill rates are greater for produced inventory, rather than recovered

inventory. There is greater variability in the fill rates between the problems for the

recovered inventory, than for the produced inventory. The substitution-inclusive fill

rates for both types of inventory vary slightly across problem sets B, C and D, however

for most problems are similar.

For produced inventory, the substitution-inclusive fill rates are generally similar

across all substitution strategies. However, where there is a difference (e.g. B09 ) the

downward or two-way substitution strategies tend to result in a lower fill rate. This

may be due to the fact that under the downward or two-way substitution strategies

produced goods can be used to meet the demand for recovered goods. In the long run,

this potentially results in there being less produced inventory available to meet demand

for produced goods.
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 6.4: Fill rates for problem set B for all substitution strategies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

Problem

S
ub

st
itu

tio
n−

In
cl

us
iv

e 
F

ill
 r

at
e 

i 1

 

 

none
down
up
twoway

(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 6.5: Fill rates for problem set C for all substitution strategies
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 6.6: Fill rates for problem set D for all substitution strategies

218



For recovered inventory, the substitution-inclusive fill rates vary significantly

between the substitution strategies. In general, downward or two-way substitution

strategies result in a higher fill rate. This is expected since the downward or two-way

substitution strategies allow for substitution in the event of a shortage of recovered

goods. This suggests that downward substitution helps to mitigate the uncertainty

surrounding the arrival and quality of returns, and thus the replenishment of the

recovered inventory.

Substitution Inclusive and Exclusive Fill Rate. The second question will now

be considered. The replenishment and substitution policies may change under different

substitution strategies, therefore while it is useful to compare the substitution-inclusive

fill rates across substitution strategies, it does not give much information about how

much demand is actually met by substitution. In order to examine how much demand is

met by substitution, the substitution-inclusive and substitution-exclusive fill rates are

examined in more detail. In this section, the performance of the model is considered

under the two-way substitution strategy only (χ1 = χ2 = 1).

Figures 6.7, 6.8 and 6.9 show the fill rates including and excluding substitution

for problems B, C and D respectively. In general the fill rates (both including

and excluding substitution) are greater for produced inventory rather than recovered

inventory. The tables showing the data for these graphs are presented in Appendix C

in Tables C.4, C.5 and C.6.

In summary, offering substitution has a greater effect on the fill rate of recovered

inventory than produced inventory. This may be related to the greater levels of

uncertainty surrounding the quality, quantity and timing of returns. The uncertainty in

returns means that managing the levels of recovered inventory is difficult, and offering

downward substitution may allow the firm to somewhat mitigate these risks.

In order to further investigate when substitution is offered, and when the replenish-

ment actions are performed we analyse the optimal policy actions in the next section.
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(b) Recovered Inventory i2

Figure 6.7: Fill rates for problem set B under a two-way substitution strategy
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Figure 6.8: Fill rates for problem set C under a two-way substitution strategy
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Figure 6.9: Fill rates for problem set D under a two-way substitution strategy

220



6.6.3 Analysis of Actions

The structure of the optimal policy is of interest as it can be used to investigate the

relationship between replenishment actions (production and recovery) and substitution

actions (upward and downward). Two main questions will be examined in this chapter.

Firstly, across all states, with what frequency are replenishment and substitution actions

chosen and how is this affected by the substitution strategy. Secondly, in which states

are replenishment and substitution actions selected, i.e. what inventory levels ‘trigger’

certain actions.

Action Size and Frequency

Replenishment Actions. The size of production and recovery lots are determined

by the parameters Qp and Qr, therefore in this section we focus on the frequency with

which the replenishment actions occur, rather than the size of the actions. In this

model there is a total of 14641 states. Table 6.4 summarises the number of states in

which each replenishment action is chosen under a two-way substitution strategy. (The

other substitution strategies will be examined in the following section.) Figure 6.10

summarises this information graphically. Observe that for problems B16, B17, C17

and D17 it is never optimal to recover. This is likely to have a significant impact on

the substitution policy for these problems, as demand for recovered goods has to be

met by the substitution of produced goods, otherwise the sale will be lost. For problem

16 the comparatively low lost sales cost for recovered goods, and for problem 17 the

high setup costs, may discourage recovery.

Comparisons can also be drawn between the problem sets. Problem set C has a

greater production size Qp than problem sets B and D. When the production size is

larger (i.e. problem set C), the number of states in which production is performed is

lower compared with when the production size is smaller (i.e. problem sets B,D). A

similar result is observed for recovery. When the size of the recovery lot Qr is larger

(i.e. problem set D) the number of states in which it is optimal to recover is lower than

when Qr is smaller (i.e. problem sets B,C).
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Table 6.4: Number of states in which replenishment is chosen under a two-way
substitution strategy, out of a total of 114 = 14641 states.

B C D

Problem ap ar Problem ap ar Problem ap ar
B01 4266 3087 C01 3614 2936 D01 4125 1822
B02 7253 6190 C02 5971 6902 D02 7433 2997
B03 10156 3039 C03 8980 2602 D03 10787 1392
B04 6148 2059 C04 5339 2359 D04 5952 733
B05 9635 3761 C05 7991 3863 D05 9299 2401
B06 5460 7984 C06 4515 8185 D06 4165 6692
B07 8683 3667 C07 7391 3460 D07 8288 2083
B08 1836 2729 C08 1525 2760 D08 1790 2085
B09 2690 9073 C09 2244 8958 D09 2616 4922
B10 9314 4089 C10 7933 4424 D10 9117 2843
B11 10141 3755 C11 9096 4119 D11 10496 2921
B12 7705 5746 C12 6509 6427 D12 7816 4836
B13 7931 4919 C13 6371 5051 D13 8021 3825
B14 4040 4125 C14 2418 2686 D14 3771 2399
B15 6544 1994 C15 5510 2075 D15 6153 1128
B16 6380 0 C16 3558 902 D16 6031 217
B17 1034 0 C17 902 0 D17 1034 0
B18 2424 5536 C18 1990 4606 D18 2367 2216
B19 423 1389 C19 313 1586 D19 528 855
B20 2124 1942 C20 1766 1459 D20 2092 778
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Figure 6.10: Number of states with positive replenishment quantities for three problem

sets under a two-way substitution strategy, out of a total of 114 = 14641 states.

Frequency of Replenishment Under Substitution Strategies Offering substi-

tution may influence whether or not production and recovery are chosen. For instance,

it may be the case that it is better to not produce, and to allow substitution to cover

any shortages. Figure 6.11 compares the number of states in which production and

recovery are chosen under the four substitution strategies: no substitution, downward
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substitution, upward substitution, two-way substitution. The data for these graphs is

available in Appendix C in Table C.7. These graphs show that for some problems (e.g.

B03, B05, B07) the number of states which offer production is larger when downward

or two-way substitution is permitted, which suggests that additional production is

performed in order to meet the shortage of recovered goods. However this trend does

not hold across all problems.

For some problems (e.g. C9, C12) upward or two-way substitution leads to an

increase in the number of states in which recovery is performed. This suggests that

recovered goods may be used to meet the shortage of produced goods. However this is

not the case across all problems. For instance, for problems B3, B14, B18 downward

or two-way substitution leads to an increase in the number of states which perform

recovery.

These graphs illustrate the complicated relationship between replenishment, substi-

tution and the problem parameters. In some cases performing substitution leads to a

less frequent replenishment, but in other cases in leads to more frequent replenishment.

They also highlight that substitution can dramatically affect the optimal frequency

with which production and recovery should be performed. It is important to bear this

in mind when designing a substitution policy.

Substitution Actions. Figure 6.12 shows the number of states in which each of the

substitution actions can be offered under each of the relevant substitution strategies.

Upward substitution can only be chosen under a upward or two-way substitution

strategy, therefore the number of states selecting upward substitution is only considered

under these two strategies. Similarly, downward substitution can only be chosen under

a downward or two-way substitution strategy, therefore the number of states selecting

downward substitution is only considered under these two strategies. The data for

these graphs is available in Appendix C in Table C.9.

These graphs show that under the strategies which allow upward substitution, it

is optimal to offer upward substitution in almost all of the 14641 states for all of the

problems. The firm does not have much to lose by offering upward substitution as they

receive the price of the good that they provide. The number of states in which upward
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(a) Production for Problem Set B
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(b) Recovery for Problem Set B
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(c) Production for Problem Set C
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(d) Recovery for Problem Set C
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(e) Production for Problem Set D
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(f) Recovery for Problem Set D

Figure 6.11: Graphs showing the number of states in which replenishment is chosen

under the substitution strategies
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substitution is offered remains reasonably constant across all problems and in the three

datasets.

The number of states in which downward substitution, on the other hand, is offered

varies considerably across the 20 problems. There is also more variation between the

individual problems. This increased variability in downward substitution could be

attributed to the firm not wanting to sell a produced good for a lower price. Notice

that for the problems which never recover (B16, B17, C17, D17), it is never optimal

to offer downward substitution.

Within each graph in Figure 6.12, notice the similarity between number of states

selecting substitution under the two substitution strategies. Consider Figure 6.12a,

for example, this graph shows the number of states in which upward substitution can

be offered under two substitution strategies. Under the upward substitution strategy

only upward substitution can be offered, whereas under the two-way substitution

strategy both upward and downward substitution can be offered. For all problems,

the number of states is similar across the two substitutions strategies. This suggests

that offering downward substitution does not affect the number of states in which

upward substitution is offered. This is also observed in the other graphs in Figure 6.12.

This suggests that offering one type of substitution does not affect whether or not the

other type of substitution is offered.

Trigger-States and Action

Replenishment Actions. The inventory levels are taken into account when the

action is selected at the beginning of each period, therefore it is interesting to investigate

which inventory levels ‘trigger’ certain actions. In the case of production, there are two

inventory levels which are of particular interest: the level of produced inventory when

production is selected (i1) and the level of produced inventory after production has

been performed (i1+ap). For both these quantities we are only interested in the states

for which the optimal action is to produce. These states can be identified as they have

a positive value for their production action, i.e., ap > 0.

In the case of recovery it is interesting to examine the level of returns (ir), and the

level of recovered inventory (i2) when recovery is performed. For both these quantities
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(a) Upward substitution for Problem Set B
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(b) Downward substitution for Problem Set B
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(c) Upward substitution for Problem Set C
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(d) Downward substitution for Problem Set C
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(e) Upward substitution for Problem Set D
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(f) Downward substitution for Problem Set D

Figure 6.12: Graphs showing the number of states in which substitution is chosen under

the substitution strategies

226



we are only interested in the states for which the optimal action is to perform recovery.

These states can be identified as they have a positive value for their recovery action,

i.e., ar > 0.

Before considering all problems, we consider problem B01 as an example. Figure

6.13a shows the produced inventory level (i1) and the initial state plus the action

(i1 + ap) for produced inventory when production is chosen (ap > 0) for problem

B01, under a two-way substitution policy. Notice that production is performed if the

produced inventory level is less than 6, and that after production has been performed

the inventory level is at least 4. This minimum ‘produce-up-to’ level corresponds to

the production batch size Qp. These graphs could be used to obtain parameters for

a ‘produce-up-to’ structured policy. Figure 6.13b shows the initial state of recovered

inventory i2 and the initial state of the returned inventory ir, when recovery is chosen

(ar > 0). Notice that recovery is performed if the recovered inventory level is less than

8 and the returned inventory inventory level is at least 5. As expected, the minimum

returned inventory level is at least as large as the recovery batch size Qr.

In order to summarise the trigger levels for all problems, a series of boxplots

were created. (It is impractical to include the individual graphs for all problems and

substitution strategies as this would mean including about 1000 graphs!) For simplicity

only the two-way substitution strategy is included here. Figure 6.14 shows the level of

produced inventory when production is chosen, for problem sets B, C and D, under

a two-way substitution strategy. The graphs for the other substitutions strategies are

presented in Appendix C. As shown by Figure 6.14, the range of inventory levels for

which production is performed varies from 0 to 9 depending on the problem. The

boxplots appear to be skewed towards zero, this suggests a ‘produce-up-to’ policy may

be appropriate. In general, it appears that the trigger levels of produced inventory for

production are slightly lower for problem set C. This is expected since the lot size for

production Qp is greater for problem set C, than for B and D.

Figure 6.15 shows the level of recovery inventory when recovered is chosen for

problem sets B, C and D, under a two-way substitution strategy. As shown by these

graphs, the range of inventory levels for which recovery is performed varies from 0 to

10 depending on the problem. The boxplots appear to be somewhat skewed towards

zero, however interestingly for some problems recovery is performed when i2 = 10,
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(b) Distribution of states when recovery is selected

Figure 6.13: Histograms of showing states associated with positive replenishment

actions under the optimal policy for test problem B01

i.e., when there is no space in the recovered inventory. In Chapter 5, some problems

appeared to perform recovery when the serviceable and component inventories were

almost at capacity, thus forcing the returns to be disposed. If this were the case,

it would be expected that recovery is performed when the recovered inventory is at

capacity (i2 = 10), the component inventory would also be near capacity. However as

shown by Figure 6.16 this is not the case. For many of the cases it appears that the

component inventory levels are quite low. This suggests that recovery maybe performed,

in these cases, in order to replenish the component inventory.

Considering Figure 6.15 again, observe that the trigger levels for recovery seem to

be lower for problem set D. This is expected since problem set D has a greater recovery

lot size Qr. In problem set D there are fewer problems which perform recovery when

recovered inventory is at maximum capacity, as shown by Figure 6.16c.
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(b) Problem Set C
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(c) Problem Set D

Figure 6.14: Graphs showing the level of produced inventory (trigger level) when

production is performed under a two-way substitution policy
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 6.15: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed under a two-way substitution policy
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(a) Problem Set B
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(c) Problem Set D

Figure 6.16: Graphs showing the level of component inventory when recovery is

performed and recovered inventory is at maximum capacity (i2 = 10) under a two-

way substitution policy
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The level of returned inventory when recovery is performed is also of interest. The

size of the recovery lot Qr places a minimum bound on this level, as there must be at

least Qr returns in stock to be able to perform recovery. This is shown by minimum

values in the boxplots in Figure 6.17. These boxplots are skewed towards the upper

inventory limit of 10, which suggests that recovery is more frequently performed for

large inventory levels. The trigger levels of returned inventory for recovery seem to be

higher for problem set D. This is expected since problem set D has a greater recovery

lot size Qr and thus requires more returns to be in stock in order to perform recovery.

Substitution Actions. The levels of produced and recovered inventory will affect

whether or not substitution is offered. It would be expected that substitution would

be offered more often for higher inventory levels.

If there is a shortage of recovered goods then the level of produced inventory is

important when considering whether or not a downward substitution should be offered.

Production orders arrive before demand is observed and this newly arrived inventory

can be used to satisfy demand within that period. The size of the production order is

known with certainty, therefore the level of produced inventory that is of interest is the

one after production has occurred, but before demand has been observed, i.e. i1 + ap.

If the substitution action is selected, demand for produced inventory is always satisfied

first, and if there are any produced goods left in stock and if there is a shortage of

recovered goods, then a downward substitution is offered.

If there is a shortage of produced goods then the level of recovered inventory is

important when considering whether or not an upward substitution should be offered.

Since the yield of the recovery lot is not known with certainty, we examine the upward

substitution behaviour for the recovered inventory level at the start of the period i2 and

also the recovered inventory level i2 when recovery has been performed, i.e. ar > 0. If

the substitution action is selected, demand for recovered inventory is always satisfied

first, and if there are any recovered goods left in stock and if there is a shortage of

produced goods, then an upward substitution is offered.

Figure 6.18 shows the inventory levels and the substitution decision for problem B01

under a two-way substitution strategy. These stacked bar charts show the number of
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(c) Problem Set D

Figure 6.17: Graphs showing the level of returned inventory (trigger level) when

recovery is performed under a two-way substitution policy.
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states in which substitution is offered. The black part of the bars indicate the number

of states in which substitution is not offered and the white part of the bars indicate the

number of states in which substitution is offered. The first graph shows that downward

substitution is always offered, if the level of produced inventory after ordering is 7 or

more. It is sometimes offered if the inventory level is between 1 and 6.
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Figure 6.18: Histograms of the replenishment actions under the optimal policy for test

problem B01

The second graph in Figure 6.18 shows that upward substitution is always offered

if the inventory level of recovered inventory is 1 or more. If the inventory level is 0

then substitution is offered in approximately 600 states. It would be expected that

recovery has been performed in these 600 states, otherwise there would be no recovered

inventory to offer as a substitute. This is supported by the third graph which shows

that when there is no recovered inventory, recovery is performed in approximately 600

states. The third graph also shows that if recovery is performed, upward substitution

can always be offered.

In order to summarise this information for all problems, a series of boxplots were

created showing the inventory levels for which substitution was offered. Figure 6.19

shows the produced inventory levels after production has been completed, for the states

in which downward substitution can be offered. As shown by these graphs the range of

states over which substitution can be offered varies between the problems. However, as

expected, the box plots do seem to be skewed towards 10 which is the upper limit of the

produced inventory. The wide range of states in which substitution can be offered may

be due to the fact that offering downward substitution does not carry much risk, since

more goods can be produced before the next demand for produced goods. However

under downward substitution, newly produced goods are sold for the (lower) price of
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recovered goods. Note, the number of states in which downward substitution is selected

differs between problems, thus the number of states represented by each boxplot differs

between problems. The number of states in which substitution is selected is presented

in Appendix C (Table C.9).

Figure 6.20 shows the recovered inventory levels when upward substitution is

selected. Since the increase to recovered inventory at the completion of recovery is

uncertain, this post-recovery inventory level can not be represented on the graph.

However, as shown on this graph, substitution can be offered across a range of all

levels of recovered inventory. The exception is problems B16, B17, C17 and D17 in

which it is never optimal to recover. This is inline with Figure 6.12 which shows that

upward substitution is offered in almost all states.

One reason for the optimality of upward substitution over most inventory levels

could be because upward substitution involves selling a recovered good for its actual

price, unlike downward substitution where a produced good is sold for a lower price.

There is no cost-disincentive for upward substitution. There is little difference between

the problem sets B, C and D. Note, the number of states in which upward substitution

can be offered differs between problems, thus the number of states represented by each

boxplot differs between problems. The number of states in which substitution is selected

is presented in Appendix C (Table C.8).

6.6.4 Analysis of Recovery Strategy

In this section two recovery strategies are compared: high quality returns only; and

both low and high quality returns. In this section the focus is on the effect of the quality

of returns, rather than the effect of substitution, therefore only a two-way substitution

strategy is considered. The effect of the quality of returns is assessed with respect to

four performance and policy features: the long run average reward, the fill rates, the

frequency of replenishment and substitution, and states ‘triggering’ replenishment and

substitution.
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(c) Problem Set D

Figure 6.19: Graphs showing the levels of produced inventory after production has been

completed (i1 + ap) in which downward substitution can be offered, under a two-way

substitution strategy
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(c) Problem Set D

Figure 6.20: Graphs showing the levels of recovered inventory (i2) in which upward

substitution can be offered, under a two-way substitution strategy.
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Average Reward

Figure 6.21 shows the long run average reward of the optimal policy calculated for the

two quality strategies under a two-way substitution strategy. As expected the reward

is higher when both high and low quality returns are recovered. However for some

problems, the inclusion of low quality recovery does not lead to a noticeable increase

in the average reward. The data used to construct these tables is presented Table 6.5.

Table 6.5: Average reward of the optimal policy calculated for two quality strategies
under a two-way substitution strategy

B C D
Problem Only High Low and High Only High Low and High Only High Low and High

01 202.1436 211.5259 205.9395 215.1768 210.4709 201.0826
02 25.6128 50.4485 25.5920 56.4732 61.5641 29.3206
03 281.3080 307.4512 312.8492 349.8866 315.3195 283.0035
04 -19.5735 27.0037 -20.4996 25.2236 16.6174 -20.1899
05 634.9699 678.8897 732.0661 772.2306 746.7642 695.2219
06 305.1127 313.7147 321.4910 331.8559 357.5609 342.9260
07 356.9213 373.1980 376.6520 392.6603 384.8664 368.4949
08 4.8093 12.5345 4.6477 12.0837 13.8217 5.8746
09 163.3835 188.9560 171.2241 202.0693 209.6617 177.9897
10 355.6379 462.6609 403.6609 518.6298 514.6616 383.9189
11 233.1060 258.9960 248.1966 278.7292 269.9624 240.1156
12 203.0774 217.6326 205.2325 224.5308 231.3472 209.7540
13 308.6027 372.3621 391.4959 449.4213 406.7766 340.0356
14 285.4041 296.6445 304.8582 316.5529 302.5392 290.6119
15 19.3797 41.1527 26.8810 51.2546 47.9296 19.3798
16 -61.9998 -61.9998 -61.9998 -61.9997 -61.9999 -60.2547
17 -64.8000 -64.8000 -64.7994 -64.7994 -64.8000 -64.8000
18 -7.8049 5.8693 -2.0649 12.8663 9.4810 -5.2455
19 -101.4998 -99.2472 -101.4997 -101.4995 -92.3012 -101.4998
20 35.2583 50.8957 38.3115 53.3244 53.8551 37.8018

Fill Rates

As discussed in Section 6.6.2, a low fill rate indicates that there has been a large number

of lost sales, which could lead to higher levels of customer dissatisfaction. The average

fill rate can be calculated using a simulation, by calculating the fill rate each period

and then averaging this across the length of the simulation. For each type of inventory

that is demanded, the fill rate is:

fill rate =
number of met sales

number of items demanded
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(c) Problem Set D

Figure 6.21: Average reward of the optimal policy calculated for two quality strategies

under a two-way substitution strategy
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As in Section 6.6.2, let the substitution-inclusive fill rate refer to the fill rate calculation

which includes sales met by substitution, and let the substitution-exclusive fill rate refer

to the fill rate calculation which excludes such sales.

In this section the following question is investigated: how does the fill rate vary

between the two quality strategies. In order to study this questions, the fill rates were

calculated from a simulation over T = 1, 000, 000 time units.

Effect of Recovery Strategy on Fill Rate. In order to consider this question,

graphs were constructed to compare the substitution-inclusive fill rate for produced and

recovered inventory under the four substitution strategies. These graphs are presented

in Figures 6.22, 6.23 and 6.24 for problem sets B, C, and D respectively. The data for

these figures is presented in Appendix C in Tables C.10 and C.11.

As in Section 6.6.2, there is substantial amount of variation in the fill rates between

the problems and in general the fill rates are greater for produced inventory rather

than recovered inventory. For the recovered inventory there is greater variability in

the fill rates between the problems, than for the produced inventory. The substitution-

inclusive fill rates for both types of inventory vary somewhat across problem sets B, C

and D, however for most problems are similar.

In general, the fill rate for produced inventory is greater than the fill rate for

recovered inventory and the fill rates are similar for the two recovery strategies. However

for some problems performing both types of recovery leads to a higher fill rate, and

for other problems a lower fill rate. This highlights the complexity of the relationship

between the substitution and recovery strategies.

Action Size and Frequency

Replenishment Actions. The size of production and recovery lots are determined

by the parameters Qp and Qr, therefore as in Section 6.6.3, in this section we focus

on the frequency with which the replenishment actions occur, rather than the size of

the actions. Table 6.6 summarises the number of states for which each replenishment

action is chosen under a two-way substitution, high-quality only recovery strategy.
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 6.22: Fill rates for problem set B for both quality strategies
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 6.23: Fill rates for problem set C for both quality strategies
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 6.24: Fill rates for problem set D for both quality strategies
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The equivalent data for both high and low quality recovery was presented in Table 6.4.

Figure 6.25 summarises this information graphically. In this model there is a total of

14641 states. All of the problems for which it was not optimal to perform recovery under

a high and low quality recovery strategy, it is also not optimal to perform recovery under

a high-quality-only recovery strategy. Furthermore there are six additional problems

for which it is not optimal to perform recovery under a high-quality-only recovery

strategy. This suggests that for these additional six problems, it is the recovery of

low quality items which makes recovery cost-efficient. However interestingly, for some

problems (e.g. D02, D09 and D18) performing only high-quality recovery increases the

frequency with which recovery is performed.

Table 6.6: Number of states in which replenishment is chosen under a two-way
substitution, high-quality only strategy, out of a total of 114 = 14641 states

B C D

Problem ap ar Problem ap ar Problem ap ar
B01 4206 3131 C01 3601 3014 D01 4076 1838
B02 6927 4785 C02 5598 7668 D02 6171 6421
B03 9903 3131 C03 8429 3473 D03 10091 1996
B04 5445 4016 C04 5278 4077 D04 5358 72
B05 9156 4169 C05 7356 4066 D05 8719 2820
B06 5308 7777 C06 4468 7702 D06 4055 6355
B07 8540 3737 C07 7341 3474 D07 8208 2092
B08 1747 2992 C08 1521 2961 D08 1688 2371
B09 2516 9151 C09 2129 9714 D09 2407 7874
B10 9092 4070 C10 7835 4283 D10 8676 3404
B11 10242 3447 C11 9158 3837 D11 10475 2717
B12 7107 4419 C12 6610 4425 D12 7133 3426
B13 8533 4197 C13 6401 4695 D13 8225 3541
B14 3510 4796 C14 2173 3376 D14 3190 3156
B15 5676 0 C15 5126 0 D15 5676 46
B16 6380 0 C16 4961 0 D16 5972 2045
B17 1034 0 C17 902 0 D17 1034 0
B18 1974 10028 C18 1713 10047 D18 1849 8161
B19 330 0 C19 297 0 D19 330 0
B20 1991 2893 C20 1597 2352 D20 1958 1396

Referring to the parameters in Table 6.2, appears that the largest differences in

the frequency of recovery are observed for problems for which mean proportion of high

quality items α is less that approximately 0.5. This suggests that the effect of the

recovery strategy is more dramatic when there is a high proportion low quality returns.

This is not unexpected, since the effect of performing low quality recovery as well as

high quality recovery is likely to have more impact when the number of low quality
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returns is greater. However interestingly, performing low quality recovery in addition

to high quality recovery results in more frequent recovery for some problems (e.g. B02,

B12), less frequent recovery for some problems (e.g. B04, B18, C04, C18, D02, D18),

and does not affect the recovery frequency of some problems (e.g. B06−B10).

There appears to be some variation between the problem sets. Consider problem

02: compared with high-quality only recovery, under a high and low quality recovery

strategy B02 has more frequent recovery, C02 similar recovery levels, and D02 has less

frequent recovery. This is interesting as it shows that the order size and the recovery

strategy interact to effect the frequency with which recovery is performed.

Substitution Actions. Figure 6.26 shows the number of states in which each

of the substitution actions is chosen for all problems sets under the two recovery

strategies. The number of states in which substitution is selected is presented in Table

6.7. As shown in these graphs, for both recovery strategies it is optimal to offer upward

substitution in almost all of the 14641 states across all problems. The firm does not

have much to lose by offering upward substitution as they receive the price of the good

that they provide, and it appears that this is not affected by the recovery strategy.

The number of states in which downward substitution is offered varies considerably

across the 20 problems. Compared with a high-quality only recovery strategy, the

number of states in which downward substitution is offered under a low and high

quality recovery strategy is higher for some problems (e.g. 04 and 08) and lower for

some problems (e.g. B02, B03, B12, C12, D3). However, for most problems, there is

little variation between the two recovery strategies.

Trigger-States and Action

Replenishment Actions. The inventory levels are taken into account when the

action is selected at the beginning of each period, therefore it is interesting to investigate

which inventory levels ‘trigger’ certain actions and whether or not these levels are

affected by the recovery strategy. As in Section 6.6.3 there are two inventory levels

which are particularly of interest in the case of production. It is interesting to examine
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(a) Production ap for Problem Set B
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(b) Recovery ar for Problem Set B
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(c) Production ap for Problem Set C
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(d) Recovery ar for Problem Set C
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(e) Production ap for Problem Set D
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(f) Recovery ar for Problem Set D

Figure 6.25: Number of states with positive replenishment quantities under a two-way

substitution strategy for each recovery strategy, out of a total of 114 = 14641 states
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(a) Upward substitution for Problem Set B
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(b) Downward substitution for Problem Set B
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(c) Upward substitution for Problem Set C
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(d) Downward substitution for Problem Set C
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(e) Upward substitution for Problem Set D
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(f) Downward substitution for Problem Set D

Figure 6.26: Graphs showing the number of states in which substitution is chosen under

the recovery strategies
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Table 6.7: Number of states in which substitution can be offered under a two-way
substitution, high-quality only strategy, out of a total of 114 = 14641 states

B C D

Problem as1 as2 Problem as1 as2 Problem as1 as2
B01 13948 12287 C01 13932 13589 D01 13757 13604
B02 13763 14638 C02 13984 13733 D02 13917 13907
B03 13628 14641 C03 13708 14641 D03 13561 14641
B04 13825 1150 C04 13825 1131 D04 13382 1578
B05 13827 14641 C05 13753 14641 D05 13760 14595
B06 14084 14641 C06 14101 14641 D06 14110 14641
B07 13946 13359 C07 13881 14641 D07 13767 14591
B08 14128 4193 C08 14125 4292 D08 14026 4478
B09 14073 14609 C09 14099 14558 D09 14007 14596
B10 13747 14601 C10 13789 14582 D10 13769 14576
B11 13708 4978 C11 13788 11409 D11 13664 6915
B12 13916 5793 C12 13965 7879 D12 13865 3702
B13 13799 12355 C13 13841 14641 D13 13775 13242
B14 13917 14547 C14 13826 14241 D14 13852 14487
B15 13310 3586 C15 13310 5467 D15 13356 3590
B16 13310 0 C16 13310 0 D16 13662 0
B17 13310 0 C17 13310 0 D17 13310 0
B18 14239 13088 C18 14231 14054 D18 14148 13727
B19 13310 0 C19 13310 0 D19 13310 0
B20 14217 7329 C20 14222 8330 D20 14063 8050

a.) the level of produced inventory (i1) when production is selected and b.) the level

of produced inventory (i1 + ap) after production has been performed. For both these

quantities we are only interested in the states for which the optimal action is to produce.

These states can be identified as they have a positive value for their production action,

i.e., ap > 0.

In the case of recovery it is interesting to examine the level of returns in stock (ir)

when recovery is performed, and the level of recovered inventory (i2) when recovery is

performed. For both these quantities we are only interested in the states for which the

optimal action is to perform recovery, i.e. when ar > 0.

In order to summarise the trigger levels for all problems a series of boxplots were

created. Figure 6.27 shows the level of produced inventory when production is chosen

for problem sets B, C and D, under a two-way substitution strategy for each of the

recovery strategies. In general there appears to be little difference between the ‘trigger’

levels for production.
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(b) Problem Set B – High quality recovery only
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(c) Problem Set C– Both high and low quality

recovery
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery
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(f) Problem Set D– High quality recovery only

Figure 6.27: Graphs showing the level of produced inventory (trigger level) when

production is performed under a two-way substitution policy for two recovery strategies.
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Figure 6.28 shows the level of recovered inventory when recovery is chosen for

problem sets B, C and D, under a two-way substitution strategy for the two recovery

strategies. In general the level of recovered inventory which triggers recovery is lower

for the high quality recovery strategy. There are certainly fewer problems for which

is it optimal to recovery when recovered inventory is at its capacity i2 = 10, under a

high-quality only recovery strategy. This is expected because when both high and low

quality returns are recovered, if the recovered inventory is at capacity, then returns can

be recovered to be components. Under a high-quality recovery strategy on the other

hand, if the recovered inventory is at capacity, then returns are discarded.

The level of returned inventory when recovery is performed is also of interest. The

size of the recovery lot Qr places a minimum bound on this level, as there must be at

least Qr returns in stock to be able to perform recovery. This is shown by minimum

values in the box plots in Figure 6.29. Note that since recovery is not performed in

all problems, the number of problems represented in each plot differs. There are no

obvious differences between the two recovery strategies in the level of returned inventory

triggering recovery, except that as noted above, there are fewer problems which perform

recovery under a high quality recovery strategy.

Substitution Actions. The inventory levels of produced and recovered goods will

affect whether or not substitution is offered. It would be expected that substitution

would be offered more often for higher inventory levels.

If there is a shortage of recovered goods then the level of produced inventory is

important in considering whether or not a substitution would be offered if needed. As

in Section 6.6.3, the produced inventory after production occurred, but before demand

has been observed is i1 + ap is used to examine when downward substitution is offered.

In order to summarise this information for all problems a series of box plots were

created showing the inventory levels for which substitution was offered. Figure 6.30

shows the produced inventory levels after production has been completed, for the states

in which downward substitution can be offered. As shown by these graphs the range

over which substitution is able to be offered varies between the problems, however there

appears to be little variation between the two substitution strategies.
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(b) Problem Set B – High quality recovery only

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20
Problem

R
ec

ov
er

ed
 In

ve
nt

or
y 

Le
ve

l

(c) Problem Set C– Both high and low quality
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery
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(f) Problem Set D– High quality recovery only

Figure 6.28: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed under a two-way substitution policy
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(b) Problem Set B – High quality recovery only
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery
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(f) Problem Set D– High quality recovery only

Figure 6.29: Graphs showing the level of returned inventory (trigger level) when

recovery is performed under a two-way substitution policy

250



0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 20
Problem

P
ro

du
ce

d 
In

ve
nt

or
y 

Le
ve

l A
fte

r 
P

ro
du

ct
io

n

(a) Problem Set B – Both high and low quality

recovery

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 20
Problem

P
ro

du
ce

d 
In

ve
nt

or
y 

Le
ve

l A
fte

r 
P

ro
du

ct
io

n

(b) Problem Set B – High quality recovery only
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(d) Problem Set C– High quality recovery only
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(f) Problem Set D– High quality recovery only

Figure 6.30: Graphs showing the levels of produced inventory after production has been

completed (i1 + ap) in which substitution can be offered, under a two-way substitution

strategy
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Figure 6.31 shows the recovered inventory levels when upward substitution is

selected. There appears to be little variation between the two recovery strategies.

6.7 Discussion

This chapter has presented a discrete-time product recovery model with separate

markets and substitution.

In this model, if there is a shortage of recovered goods, then the firm may offer

a downward substitution. In downward substitution, the firm offers the customer a

produced good for a reduced price and may also incur an opportunity cost associated

with no longer being able to sell the produced good for the full price. However the

firm does receive some revenue, rather than none at all, as would have been the case

if the sale had been lost. If there is a shortage of produced goods, then the firm may

offer an upward substitution. In the case of upward substitution, the firm offers the

customer a recovered good and charges the price of the lower item, thereby missing out

on the revenue it would have received had it had produced goods in stock and been able

to meet the demand with produced goods. However, if the substitution is accepted,

then the good that is does sell is sold for its full value. For both types of substitution,

if a substitution is not offered (or offered and not accepted), then a lost sales cost is

incurred, no revenue is received and holding costs are incurred. The firm must weigh

up these costs and benefits when deciding to offer substitution or not.

The analyses in the section have shown that for some problems offering substitution

can allow firms to increase their profits and increase the proportion of met sales (fill

rates). However the magnitude of the increase depends heavily on the parameters

associated with a given problem. Offering substitution has a greater effect on the fill

rate of recovered inventory than that of produced inventory. This may be because

offering downward substitution allows the firm to mitigate the risks associated with

the uncertainty of the quality, quantity and timing of returns.

The frequency and occurrence of replenishment was also examined. It was found

that in some cases performing substitution leads to a less frequent replenishment, but

in other cases it leads to more frequent replenishment. This analysis highlights the
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(a) Problem Set B – Both high and low quality
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(b) Problem Set B – High quality recovery only

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem

R
ec

ov
er

ed
 In

ve
nt

or
y 

Le
ve

l

(c) Problem Set C– Both high and low quality
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem

R
ec

ov
er

ed
 In

ve
nt

or
y 

Le
ve

l

(f) Problem Set D– High quality recovery only

Figure 6.31: Graphs showing the levels of recovered inventory (i2) in which substitution

can be offered, under a two-way substitution strategy
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complicated relationship between substitution and replenishment, and the fact that

substitution can affect the frequency with which production and recovery should be

performed. It is important for managers to be aware of the impact of this when

designing a substitution and replenishment policy.

In reality, offering a substitution carries the risk associated with offering a good as a

substitute and then not being to offer that good in the future when demand for it arrives.

However, the nature of this model means that inventory replenishment happens at the

beginning of each period, subject to the shared resource constraint. Thus, offering a

substitution does not carry the same trade off as in other substitution problems where

there may not be an opportunity to replenish the stock before the next demand occurs.

However, there is still some uncertainty surrounding the size and timing of the next

replenishment due to the shared resource constraint (only one of production or recovery

can be performed each period) and due to the quality uncertainty. For the most part,

the tradeoff to be considered when choosing to offer a substitution is the difference

between no revenue, a holding cost, a lost sales cost, and some revenue, no holding

cost, no lost sales cost, the lost opportunity to sell the good for a higher price at a later

date.

The risk associated with downward and upward substitution differs. There is a lead

time of zero in this model, which means that if required, the inventory of produced

goods can always be replenished at the start of the next period. However, the inventory

of recovered goods can only be replenished if there are sufficient returns in stock,

and furthermore, the size of the replenishment is uncertain due to the quality of the

returns. This means that offering upward substitution could be viewed as more risky

than downward substitution. On the other hand, upward substitution sells a good for

its actual price, whereas downward substitution sells a produced good for the price of

a recovered one. However there may be risks associated with upward substitution that

are not modelled here, but which may affect the substitution decision. For example if

customers purchase these goods repeatedly, then by introducing a “produced” customer

to a “recovered” good, the firm may encourage the “produced” customer to switch to

the cheaper “recovered” good for future purchases. This would add an additional risk

to upward substitution.

The effect of the recovery strategy was also examined. As expected the reward is

254



at least as high when both high and low quality returns are recovered, compared with

when only high quality returns are recovered. The fill rates for produced inventory and

recovered inventory are similar for the two recovery strategies.

Under a high-quality-only recovery strategy there are more problems for which it

is not optimal to ever perform recovery. This suggests that for these problems, it is

the recovery of low quality items which makes recovery cost-effective. The recovery

strategy has a greatest effect on the frequency of replenishment when there is a high

proportion of low quality returns. This is not unexpected, since the effect of performing

low quality recovery as well as high quality recovery is likely to have more impact when

the number of low quality returns is greater. The recovery strategy does not have a

noticeable impact on the frequency with which substitution is offered. There appears

to be little difference between the ‘trigger’ levels for production under the two recovery

strategies. However, in general the level of recovered inventory which triggers recovery

is lower for the high quality recovery strategy.

A major limitation of the model presented in this section is that the dimensionality

of the problem means that the state space used in the computational experiments is

limited to a maximum of 10. While this still does allow us to investigate some properties

of the model, the applicability of such properties for larger, more realistic problems is

uncertain.

The problem of offering substitution between produced and recovered goods is

similar to the transshipment problem in a multi-location inventory system and to a

substitution problem in a multi-item inventory system. However, it differs from these

types of problems because of the returns element and the uncertainty surrounding the

yield of the recovery process. It is possible that heuristics from this field could be

applied to this model, thereby allowing problems with a larger and more realistic state

space to be studied.

Another imitation of the discrete time model presented here is that decisions about

substitution are made in ‘bulk’ and after all demand for the period has been observed.

While discrete modelling may be appropriate for production and recovery decisions,

which may only happen periodically (e.g. daily), in reality the decisions regarding

substitution are likely to happen continuously throughout a day, as and when demand
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arrives. Modelling the problem using a continuous time framework would allow a finer-

grained treatment of substitution and would allow substitution to be addressed as and

when each demand instance arrives. This limitation will be addressed in Chapter 7 by

extending the model to the continuous time domain.
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Chapter 7

Continuous-Time Stochastic

Product Recovery Model with

Separate Markets

7.1 Introduction

Consumers usually differentiate between newly produced and recovered used goods.

Even when recovered goods are functionally “as good as new”, customers’ perceptions,

and indeed in some countries, legislation prevent recovered goods being sold “as new”.

However, when the functionality of the two types of goods remains the same or similar,

some consumers may be willing to substitute one good for the other, if their preferred

good is out of stock.

This chapter discusses a product recovery system in which newly produced goods

and recovered goods are sold on separate markets, but can act substitutes for each

other. It extends Chapter 5 by introducing separate markets and substitution and

extends Chapter 6 by incorporating a continuous time element into the problem. The

continuous time domain allows greater flexibility in modelling the substitution aspect

of the problem, compared with the discrete time domain used in Chapter 6. A semi-

Markov decision process (SMDP) is used to model this problem.
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This chapter also extends the ‘separate markets’ literature (Inderfurth, 2004; Kaya,

2010) by allowing two-way substitution rather than one-way substitution, and by

considering an infinite horizon model. A deterministic model with a similar modelling

structure to the one considered in this chapter was studied by Piñeyro and Viera (2010),

but to the best of our knowledge this type of model has not been studied in a stochastic

environment.

This chapter is structured as follows. The problem description and modelling

assumptions are presented in Sections 7.2 and 7.3 respectively. The formulation of

the problem as an SMDP is presented in Section 7.4 and the implementation and

validation of the model are discussed in Section 7.5. Properties of the optimal policy

are explored in Section 7.6; in particular, the performance and structure of the optimal

policy are analysed under different substitution and recovery strategies. In Section 7.7

the results, limitations and directions for future research are discussed.

7.2 Problem Description

In this chapter a new modelling approach is applied to the problem that was considered

in Chapter 6. Since the underlying problem in this chapter and Chapter 6 is the same,

the problem description is also the same.

Suppose there is a firm which has a primary function of producing new goods. The

firm accepts these goods back after they have been used and, if they are of sufficient

quality, recovers them and sells them to a secondary market. For returns which are

below the quality threshold for recovery, the firm has a choice: to dispose of them or to

use them as components in the production of newly produced items. If insufficient

components are obtained from the recovery of low quality returns then additional

components are bought. Produced and recovered items are viewed by the consumer as

different so are sold on separate markets, however they are functionally similar so can

act as substitutes. The firm may choose to offer substitution between these two types

of goods if one of them sells out.

The firm is a profit-maximising firm which receives revenue for the sale of produced

and recovered goods. Costs are incurred for holding inventory and for lost sales. Fixed
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and unit costs are incurred for production, recovery and buying components. Demand

for produced items, demand for recovered items, returns and the quality of returns are

uncertain.

The firm must determine a production plan that specifies how much and how often

to produce, recover and buy. It must also determine a substitution policy which specifies

if and when substitution will be offered to customers. If substitution is offered to and

then accepted by a customer, then they will pay the price of the cheaper recovered item,

regardless of the good they receive. Offering a substitution means that the firm will

not incur a lost sales cost for that item, however there may be indirect costs associated

with performing a substitution. For example if a produced good is offered in place of

a recovered good, then the firm will miss out on the revenue they would have received

had they sold it for the full price. The firm may also incur an administration charge for

offering a substitute rather than the product originally demanded, or a cost for “lost

goodwill” for not being able to supply what the customer demanded.

As discussed in Chapter 6, this system could describe the refurbishment of electronic

equipment, such as copiers (Canon, 2012e), computers (Apple, 2011; Dell, 2012) and

satellite navigation systems (TomTom, 2011). Wooden pallets (PalletWorld, 2012) are

another example of new and used products being sold side-by-side. In all of these cases,

used products are brought up to a “suitable” standard before being resold or leased.

They have the same functionality as a newly produced item, but are not recovered up

to an “as new” standard so cannot be sold as such. Because the newly produced and

recovered goods are functionally similar, they could act as substitutes. Substitution

policies vary from industry to industry, and from company to company, and may also

vary at different times of the year (e.g. peak seasons). However in all cases, the

company could choose to offer these substitutions, if they were faced with a stock out

of the customer’s preferred good.

7.3 Model Description and Assumptions

Figure 7.1 presents the product recovery system being modelled in this chapter. As

shown in this diagram, there are two consumer markets: the first demands newly
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produced goods and the second demands recovered goods. Substitution between the

two markets is represented on the diagram by the dashed line. The model and the

modelling assumptions will be discussed in this section.

Returned
Recovery

Recovered
Inventory

 Recovered Goods
Market for

Produced Goods
Market for

Component
Inventory Production Inventory

Produced

Inventory

Figure 7.1: Product Recovery Model with Separate Markets and Substitution

Inventory Levels. There are four types of inventory in this model: produced goods,

recovered goods, returns and components. It is assumed that there is a finite capacity

available for storing each of the inventories. If this capacity is reached then a disposal

cost may be incurred for each item which is in excess of the inventory capacity. If there

are insufficient items in stock to meet demand, an alternative good may be offered as a

substitute, otherwise the sale will be lost. It is assumed that there is no backordering

and that the inventory levels must always be nonnegative.

Continuous Decision Making. This problem is modelled in continuous time and

inventory levels are reviewed continually. Decisions regarding inventory replenishment

and substitution are made after the following situations: demand occurs, returns arrive,

or a replenishment order is completed. The points in time when decisions are made are

called “decision epochs”. At each decision epoch the current inventory levels and status

of outstanding orders are examined, and two types of decisions are made: replenishment

(production and recovery) and substitution. The time between decision epochs varies

and will depend on the inventory levels, order status and the decision that is made.
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Production, Recovery and Buying. At each decision epoch a decision is made

about whether to replenish the produced inventory or the recovered inventory. It is

assumed that production and recovery require a shared resource at the beginning of

the process, therefore cannot both be selected at the same decision epoch. The amount

of time required by this shared resource is minimal, so does not restrict the selection of

a replenishment action at the next decision epoch. Replenishment orders which have

been placed, but have not yet arrived are said to be “outstanding”. Only one of each

type of order may be outstanding at any time. Production and recovery have stochastic

lead times, governed by separate stochastic processes with known rates. It is assumed

that the inventory levels are updated to reflect the increase in produced or recovered

inventory at the end of the process, e.g. produced goods “enter” the produced inventory

when the entire production order has been completed.

The size of each production and recovery lot is non-negative and constrained by

a finite upper limit. The yield from a production order is certain, but the yield

from a recovery order, on the other hand, depends on the quality of returns used

in recovery. With sufficient effort and expenditure, all returns could be recovered to

have the functionality of newly produced goods. It is assumed, however that there is

a quality threshold that determines which returns are worthwhile recovering up to this

functional standard. For the remainder of this chapter, returns which are above this

quality threshold are referred to as ‘high quality returns’. High quality returns undergo

‘high quality recovery’, which brings them up to the same functional standard as newly

produced goods, and are then sold on a secondary market. Returns which fall below the

quality threshold are termed ‘low quality returns’. It is assumed that the firm makes

a strategic-level decision (outwith the model) about whether to recover low quality

returns or to dispose of them. If low quality returns are to be recovered, then they

undergo ‘low quality recovery’ and are used as components. The quality of the returns

is determined during recovery and is modelled by a known probability distribution. The

firm can set the quality threshold by specifying the relevant parameters of the quality

distribution.

It is assumed that replenishment decisions will not cause the upper inventory level

capacities to be exceeded with certainty. For instance, the amount produced must

be less than or equal to the available capacity in produced inventory. However, since

261



the quality returns is uncertain the size of the recovery order can exceed the available

capacity of recovered inventory.

Components are required for production. They may be bought from an external

supplier or sourced from low quality recovery. It is assumed that components are

purchased as they are needed and arrive immediately, therefore the lead time for

buying components is zero. The number of components that will need to be bought

for a particular production order is uncertain as the components inventory may be

replenished through low quality recovery while the production order is in progress.

Therefore, the number of components that are bought for a production order is

calculated at the end of the production process. Effectively this means that if

components are required for production, then they are “bought” at the end of the

production process. This is in line with the assumption above, which states that

inventory levels are updated at the end of the process.

The model could be easily adapted for alternative modelling assumptions. For

example, components could be bought at the beginning of the production process and

then held in stock until the completion of a production lot. However, this approach

may result in an over-ordering of components. Another alternative approach would be

to allow production to occur, only if there were sufficient components in stock at the

beginning of the order, however this may be overly strict and discourage production.

Probabilistic Demand, Returns and Substitution. The arrival of demand for

produced goods, demand for recovered goods and returns are assumed to be uncertain

and are modelled by stochastic processes with a known intensities. It is assumed that

one customer arrives at a time, and each customer demands only one item, whether

it be a produced or recovered one. It is assumed that the returns are collected from

multiple locations before being returned to the firm in a batch, therefore the arrival of

returns is unlikely to be related to the demand for a produced item. For this reason it is

assumed that the stochastic processes governing returns and demands are independent

of each other and that they are time-homogeneous.

The size of each batch of returns is uncertain, however, it is assumed that the

firm has information about the availability returns which allows them to know the
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distribution of the batch sizes. Therefore the batch size of returns is modelled by a

random variable with a known distribution. There is a high degree of uncertainty

surrounding the return of used goods, and in some cases there may be a problem with

the delivery of an entire batch of returns. To model these cases could be a non-zero

probability that the batch size is 0.

Decisions about substitution are made at both strategic and operational levels. At a

strategic level the firm determines whether or not substitution will be permitted ever,

and at an operational level the firm decided whether or not to offer substitution in

the current time period. If substitution is permitted at a strategic level, and if there

are insufficient items in stock to meet demand, then a substitution may be offered to

the customer. Upward substitution is offered when there is a shortage of produced

goods and results in the customer being offered a functionally similar recovered good.

Downward substitution is offered when there is a shortage of recovered serviceable

goods and results in the customer being offered a produced good. Customers who are

offered a substitution may choose to accept or reject it. The probability that a customer

accepts the substitution is governed by random variable with a known distribution and

depends on the type of substitution (upward or downward) offered.

Costs and Revenues. It is assumed that the objective of the firm is to maximise

its long run average reward, where the reward is the revenue less the costs.

The following costs are incurred: holding costs, setup costs, processing costs, lost

sales costs, disposal costs. It is assumed that the cost function is a linear function in

the inventory levels. Inventory that is in stock between decision epochs incurs a per

unit, per time unit holding cost. Setup costs are incurred each time a production or

recovery order is placed. This is a fixed cost and does not depend on the size of the

order. Processing costs are incurred for production and recovery, on a per unit basis.

If demand exceeds the available inventory and a substitution is not offered, or offered

and not accepted, then a lost sales cost is incurred. A disposal cost is incurred for

any returns which do not fit into the returned inventory. This disposal cost may be

negative representing a salvage value, or positive representing a cost.

Revenues are received for the sale of produced and recovered goods. It is assumed

that the sale price of a recovered good is less than that of a produced good. If a
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substitution is offered and accepted then revenue equal to the price of the recovered

good is received.

The costs incurred and revenues received by the firm between the current and next

decision epoch depend three factors: the current inventory levels, the time to the next

decision epoch, and the reason for the next decision epoch.

7.4 Semi-Markov Decision Process Formulation

The problem studied in this chapter is a continuous time decision problem and can be

modelled by a semi-Markov decision process (SMDP). The structure of a semi-Markov

decision process is similar to that of a Markov decision process (MDP), as discussed in

Section 3.2.4. A semi-Markov decision process is characterised by its decision epochs,

states, actions, costs and transition probabilities. These elements will be described in

the following sections. The notation used in the coming sections is summarised in Table

7.1 (page 277).

7.4.1 Decision Epochs

A decision epoch is a point in time when a decision is made. In this model decision

epochs can be triggered by one of five possible events: arrival of a production order,

arrival of a recovery order, demand for produced goods, demand for recovered goods,

or arrival of returns batch. Once the state has been updated to reflect this event, the

state of the system is examined and a decision is made about what action to perform.

The state of the system does not change between decision epochs.

7.4.2 States

The state of the system is characterised by six state variables: returned inventory level

ir, produced inventory level i1, recovered inventory level i2, component inventory ic,
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outstanding production order indicator iop, and outstanding recovery order indicator

ior. The inventory state variables are defined as follows:

ir = level of returned inventory, ir ∈ Ir = {0, 1, . . . ,Wr}

i1 = level of produced inventory, i1 ∈ I1 = {0, 1, . . . ,W1}

i2 = level of recovered inventory, i2 ∈ I2 = {0, 1, . . . ,W2}

ic = level of component inventory, ic ∈ Ic = {0, 1, . . . ,Wc}

where Wr,W1,W2,Wc are finite upper limits of inventory capacity and Ir, I1, I2, Ic are

the sets of all possible inventory levels.

The state of the system also indicates whether or not there are any outstanding

production or recovery orders. The outstanding order variables are equal to zero if no

order has been placed, and are equal to the size of the outstanding order if an order

has been placed and the firm is still awaiting its arrival. The maximum order sizes for

production and recovery are denoted by Up and Ur respectively. The outstanding order

state variables are defined as follows:

iop ∈ Iop ⊆ {0, . . . , Up}

ior ∈ Ior ⊆ {0, . . . , Ur}

Let i denote the state of the system at a given point in time. The state space can then

be defined as:

i ∈ I = {(ir , i1, i2, ic, iop, ior) : i1 ∈ I1, i2 ∈ I2, ir ∈ Ir, ic ∈ Ic, iop ∈ Iop, ior ∈ Ior}

All state variables have finite upper and lower limits of capacity, therefore the SMDP

has a finite state space.

7.4.3 Actions

At each decision epoch the firm must make decisions regarding replenishment (how

much to produce or recover), and substitution (what substitution policy should be

used until the next decision epoch).

265



Replenishment Actions. The firm makes replenishment decisions at a strategic

and at an operational level. At a strategic level the firm must decide whether to recover

low quality returns or to dispose of them. Let ζL denote the firms low-quality recovery

strategy, such that:

ζL =











1 if low quality recovery is performed

0 otherwise

This decision is made outwith the model. It is assumed that high quality recovery will

always be performed, therefore ζH = 1.

At an operational level the firm must decide whether to produce, recover or neither

for a given state. Production can only be performed if there is not already an

outstanding production order. Similarly, recovery can only be performed if there is

not already an outstanding recovery order. Furthermore, at each decision epoch the

firm must choose to either produce or recover. As discussed in Section 7.3, it is assumed

that a shared resource is required during the setup phase of both replenishment actions,

meaning that production and recovery cannot both be selected at the same decision

epoch. This setup phase is not long enough to prevent the other type of order from

being placed at the next decision epoch.

The size of the production and recovery orders are referred to as the action quantities

for production and recovery, and are denoted by ap and ar respectively. These quantities

are constrained by nonnegative finite lower and upper limits. The lower limits are

denoted by Lp, Lr and the upper limits are denoted by Up, Ur, for production and

recovery respectively. Using these upper and lower limits a set of allowable actions can

be defined for each type of action, for a given state i. These sets are denoted by Ap(i)

for production and Ar(i) for recovery, where:

ap ∈ Ap(i) ⊆











{0, Lp, . . . ,min{W1 − i1, Up}} if iop = 0 and ar = 0

{0} otherwise

ar ∈ Ar(i) ⊆











{0, Lr, . . . ,min{ir, Ur}} if ior = 0 and ap = 0

{0} otherwise
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The upper limit on the production set Ap(i) is required to ensure that the produced

inventory capacity W1 and that the upper limit on production Up will not be exceeded.

The upper limit on the recovery set Ar(i) is required to ensure that the amount

recovered does not exceed the number of returns in stock ir, or the upper limit on

recovery Ur. Note that 0 is always part of these sets as the decision may be to not

perform the replenishment action.

Substitution Actions. Decisions regarding substitution are made both at strategic

and operational levels, as discussed above. The firm makes a strategic decision outwith

the model about whether or not they will offer substitution ever. The variables χ1

and χ2 are used to represent the firm’s strategic decisions about offering upward

and downward substitution respectively. If the firm allows upward substitution, i.e.

substitution due to a shortage of produced goods, then χ1 = 1. If upward substitution

is not allowed then χ1 = 0. Similarly, if the firm allows downward substitution, i.e.

substitution due to a shortage of recovered goods, then χ2 = 1, otherwise χ2 = 0.

In addition to the strategic level decisions regarding substitution, the firm makes an

operational decision about whether or not to offer substitution in a particular situation.

This operational substitution decision depends on the current inventory levels. The

customers, who each demand one item, can choose to accept or reject a substitution if

it is offered to them.

Let a1 denote the upward substitution action and a2 denote the downward

substitution action chosen at a particular decision epoch, where

ak =











1 if substitution is offered

0 otherwise

for k = 1, 2

Since it is assumed that each customer demands only one item, the variables a1, a2

also denote the number of goods offered for substitution (either 1 or 0). The sets

of allowable substitution actions depend on the strategic variables (χ1, χ2), and the

current inventory levels. For any state i, let A1(i) denote the set of allowable upward

substitution actions and let A2(i) denote the set of allowable downward substitution
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actions. For a given state i,

a1 ∈ A1(i) =











{0, χ1} if i1 = 0 and i2 > 0

{0} otherwise

a2 ∈ A2(i) =











{0, χ2} if i2 = 0 and i1 > 0

{0} otherwise

The set of allowable actions for a given state i is denoted by A(i) and can be defined

as:

a ∈ A(i) = {(ap, ar, a1, a2) : ap ∈ Ap(i), ar ∈ Ar(i), a1 ∈ A1(i), a2 ∈ A2(i)}.

7.4.4 Transition Probabilities

If the system is in state i and action a has been chosen, then the probability that

the system will be in state j at the next decision epoch is denoted by the transition

probability pi,j(a). There are five events which could trigger the occurrence of a decision

epoch: arrival of returns, demand for produced goods, demand for recovered goods,

arrival of a production order and arrival of a recovery order. It is assumed that all five

events have exponential inter-arrival times. The arrival of the events are modelled by

independent Poisson processes with rates λr, λd1, λd2, λp and λrec respectively. Since

returns arrive in batches, a compound Poisson process is used to model the arrival of

returns. The size of the batch is governed by the random variable Xr with a known

distribution and mean µr. It is assumed that the arrival of a batch of returns and the

size of the batch are independent.

The next event may be the arrival of a production order, if there is currently an

outstanding production order (iop > 0) or if the action chosen is to produce (ap > 0).

If, on the other hand, there is not an outstanding production order (iop = 0) and

production is not chosen (ap = 0), then the probability that the next event is the

arrival of a production order is zero. Similar statements can be made regarding the

arrival of a recovery order. Using this logic, the following function is defined:

λ(iop, ior, a) = λr+λd1+λd2+min{max{iop, ap}, 1}λp+min{max{ior, ar}, 1}λrec (7.1)
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Using this function, the expected time until the next decision epoch, denoted by τi(a),

can be defined as:

τi(a) =
1

λ(iop, ior, a)
(7.2)

The transition probabilities described in this section are summarised in Table 7.2. In

this section the convention of describing an instance of a random variable X by the

lower case equivalent x is used. The transitions associated with each the five events are

now described.

Returns. If the next event is the arrival of a batch of returns of size xr, then the

returned inventory will be updated to reflect the size of the batch, therefore the next

state will be:

j = (min{ir + r,Wr}, i1, i2, ic, max{iop, ap}, max{ior, ar}) .

The arrival of the returns is governed by a compound Poisson process, therefore the

probability of the next event being the arrival of returns is given by the exponential

probability λr

λ(iop,ior,a)
. The probability of the batch being of size xr is given by the

probability P (Xr = xr). Since the arrival of the event and the size of the batch are

assumed to be independent, the probability of moving from state i to state j with

action a is:
λrP (Xr = xr)

λ(iop, ior, a)

Demand for Produced Inventory. Customers arrive to demand a produced good

according to a Poisson process with rate λd1, therefore the probability that the next

event is a demand for a produced good is given by λd1
λ(iop, ior, a)

. After the occurrence

of a demand for produced goods, the next state depends on the current state, the

replenishment actions and the upward substitution action a1. Two cases need to be

considered: upward substitution is not offered or not required (a1 = 0) and upward

substitution is required and is offered (a1 = 1).

1. If a1 = 0, then either there is sufficient stock to meet demand or upward

substitution is not offered. The next state will be:

j = (ir, max{0, i1 − 1}, i2, ic, max{iop, ap}, max{ior, ar})
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2. If a1 = 1, then there is insufficient stock to meet demand and upward substitution

is offered. The next state depends on whether or not the consumer accepts the

upward substitution. Customers will accept an upward substitution with a fixed

probability of α1. Let the random variable Y1 equal 1 if upward substitution is

accepted and 0 otherwise, where P (Y1 = 1) = α1.

(a) If the consumer rejects the upward substitution then the next state is:

j = (ir, 0, i2, ic, max{iop, ap}, max{ior, ar})

and this occurs with probability:

(1− α1)λd1

λ(iop, ior, a)
.

(b) If the consumer accepts the upward substitution then the next state is:

j = (ir, 0, i2 − 1, ic, max{iop, ap}, max{ior, ar})

and this occurs with probability:

α1 λd1

λ(iop, ior, a)
.

Demand for Recovered Inventory. Customers arrive to demand a recovered

good according to a Poisson process with rate λd2, therefore the probability that the

next event is a demand is λd2
λ(iop,iop,a)

. After the occurrence of a demand for recovered

goods, the next state depends on the current state, the replenishment decision and the

downward substitution action a2. Two cases are considered: downward substitution is

not offered or not required (a2 = 0) and downward substitution is required and offered

(a2 = 1).

1. If a2 = 0, then either there is sufficient stock to meet demand, or a downward

substitution is not offered. The next state will be:

j = (ir, i1,max{0, i2 − 1}, ic,max{iop, ap},max{ior, ar})

2. If a2 = 1, then there is insufficient stock to meet demand and downward

substitution is offered. The next state depends on whether or not the consumer

accepts the offered downward substitution. Customers will accept a downward

substitution with a fixed probability of α2. Let the random variable Y2 equal 1 if

downward substitution is accepted and 0 otherwise.
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(a) If the consumer rejects the downward substitution then the next state is:

j = (ir, i1, 0, ic, max{iop, ap}, max{ior, ar})

and this occurs with probability

(1− α2)λd2

λ(iop, ior, a)

(b) If the consumer accepts the downward substitution then the next state is:

j = (ir, i1 − 1, 0, ic, max{iop, ap}, max{ior, ar})

and this occurs with probability

α2λd2

λ(iop, ior, a)

Production. If there is an outstanding production order (iop > 0) or production

is selected at the current state (ap > 0), then the next event may be the arrival of a

production order with probability
λp

λ(iop,ior,a)
. The size of the order will be max{iop, ap}.

As mentioned in Section 7.3, the number of components required is for a production

order is calculated when that order arrives. If a production order arrives, the number

of components that will be bought is:

ab = max{0,max{iop, ap} − ic}

and the components inventory will be increased by the size of this order and decreased

by the size of the production lot, i.e. ic + ab − max{iop, ap}. If the next event is the

arrival of a production order then the next state will be:

j = (ir, i1 +max{iop, ap}, i2, ic + ab −max{iop, ap}, 0, max{ior, ar})

Recovery. If there is an outstanding recovery order (ior = 1) or the action chosen

at the current state is recovery (ar > 0), then the next event may be the arrival of a

recovery order, with probability λrec

λ(iop,ior,a)
. If the next event is the arrival of a recovery

order then the next state will depend on the quality of the returns in the recovery

order. The number of high quality returns is modelled by a Binomial random variable

Xq, where Xq ∼ Bin(α, ar). Recall that ζL represents the low quality recovery strategy.
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If low quality recovery is permitted then ζL = 1, and if it is not permitted then ζL = 0.

It is assumed that high quality recovery is always performed therefore ζH is not included

in this formulation. Suppose there are xq high quality returns in the recovery order

then:

ah(xq) = max{W2 − i2, xq} amount of high quality recovery

al(xq) = ζLmin{Wc − ic, ar − ah(xq)} amount of low quality recovery

ad(xq) = ar − ah(xq)− al(xq) amount of disposal

If the next event is an arrival of a recovery order then the next state will be:

j = (ir, i1, i2 + ah(xq), ic + al(xq),max{iop,min{1, ap}}, 0)

The probability of this occurring is:

λrec

λ(iop, ior, a)

(

ar
xq

)

αxq(1− α)ar−xq

These transitions are summarised in Table 7.2.

7.4.5 Costs and Revenues

The objective of this semi-Markov decision process is to maximise the long run average

reward. The ‘reward’ is equal to the revenues less the costs. In this model revenues

are received for the sale of produced and recovered goods, and the following costs are

incurred: holding costs, setup costs, processing costs, lost sales costs, substitution costs,

disposal costs. The reward evaluated at each decision epoch is the expected reward that

will be received until the next decision epoch.

Costs and revenues could be related to a specific state and action or to an event. The

holding and setup costs are incurred at every decision epoch and depend on the current

state and the action chosen. On the other hand, the revenues and the processing,

lost sales, substitution and disposal costs depend on the type of event that occurs at a

particular decision epoch, as well as the current state and the action chosen. Therefore,

in what follows, the costs are classified as being related to a specific state and action

or to a specific event.
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State and Action Costs

The following costs are associated with a specific state and action.

Holding Costs. If the system is state i, then the cost of holding stock per time

unit is hrir + h1i1 + h2i2 + hcic. The expected time to until the next decision is

τi(a) =
1

λ(iop,ior,a)
time units, therefore the expected cost of holding inventory until the

next decision epoch is:

E[Rh(i, a)] = −(hrir + h1i1 + h2i2 + hcic)τi(a)

Setup costs. Setup costs are incurred each time production or recovery occurs.

These costs are denoted by kp and kr, respectively. Components are bought on an “as-

needed” basis, therefore there is no setup cost for ordering components. The following

indicator variables δp, δr are defined in order to specify when a particular action is

performed and hence when a setup cost should be incurred:

δp =











1 if ap > 0 (production)

0 otherwise

δr =











1 if ar > 0 (recovery)

0 otherwise

The setup costs incurred are kpδp + krδr. The expected setup costs incurred until the

next decision epoch is:

E[Rk(i, a)] = −(kpδp + krδr) (7.3)

Event Costs

The following costs and revenues are associated with the occurrence of a particular

event.
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Returns. If the next event is the arrival of a batch of returns, then returns will be

added to the returns inventory. A cost of ca is incurred for acquiring the returns and a

cost of lr is incurred for disposing of any returns which do not fit within the returned

inventory. If the system is in state i and xr returns are received, then the cost incurred

is lr max{0, (xr −Wr + ir)}+ caxr, therefore the expected cost incurred until the next

decision epoch is:

E[Rr(i,Xr)] = −lr max{0, (E[Xr ]−Wr + ir)}+ caE[Xr] (7.4)

Demand for Produced Inventory. If the next event is the arrival of demand for

a produced good, the revenue received and costs incurred depend on the current state

and whether or not demand is met by produced inventory or by an upward substitution,

or is lost. Using the same structure as for the transition probabilities, two main cases

are considered: upward substitution is not required or not offered (a1 = 0), and upward

substitution is required and offered (a1 = 1).

1. If a1 = 0, then either (a) there is sufficient stock to meet demand or (b) upward

substitution is not offered. Under this case there are two subcases which could

occur, depending on the inventory level i1.

(a) There is sufficient produced inventory in stock (i1 > 0) and a revenue of p1

is received.

(b) There is insufficient produced inventory in stock (i1 = 0) and upward

substitution is not offered (a1 = 0), meaning that the sale is lost and a

lost sales cost of l1 is incurred.

2. If a1 = 1 then there is insufficient stock to meet demand and upward substitution

is offered. Under this case there are two sub-cases which could occur depending

on whether the substitution is (a) accepted or (b) not accepted.

(a) The consumer rejects the upward substitution (y1 = 0) and a lost sales cost

of l1 is incurred.

(b) The consumer accepts the upward substitution (y1 = 1) and a revenue of a

recovered good p2 is received.
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Indicator functions can be defined to specify when these cases, and thus when each of

these costs and revenues should be included in the reward function. The derivation

of these functions is provided in Appendix D.1.1. Combining these indicator functions

gives the following expression for the expected reward received in the event of demand

for a produced good:

E[Rd1(i, a, Y1)] = p1min{i1, 1}+p2min{E[Y1], a1}− l1(max{0, 1−i1}−min{E[Y1], a1})
(7.5)

Demand for Recovered Inventory. If the next event is the arrival of demand for a

recovered good, then the revenue received or cost incurred depends on the current state

and whether or not demand is met by recovered inventory or a downward substitution,

or is lost. Using the same structure as for the transition probabilities, two main cases

are considered: downward substitution is not required or not offered (a2 = 0) and

downward substitution is required and offered (a2 = 1).

1. If a2 = 0, then either (a) there is sufficient stock to meet demand or (b) downward

substitution is not offered, thus there are two sub-cases which could occur,

depending on the recovered inventory level i2.

(a) There is sufficient recovered inventory in stock (i2 > 0) and a revenue of p2

is received.

(b) There is insufficient recovered inventory in stock (i2 = 0) and downward

substitution is not offered (a2 = 0), meaning that the sale is lost and a lost

sales cost of l2 is incurred.

2. If a2 = 1 then there is insufficient stock to meet demand and downward

substitution is offered, thus there are two sub-cases which could occur which

depend on whether substitution is (a) accepted or (b) not accepted.

(a) The consumer rejects the downward substitution (y2 = 0) and a lost sales

cost of l2 is incurred.

(b) The consumer accepts the downward substitution (y2 = 1) and a revenue of

a recovered good p2 is received. (The customer is charged for the cheaper of

the two goods, i.e. the recovered good).
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Indicator functions can be defined which specify when each of these costs and revenues

should be included in the reward function. The derivation of these functions is provided

in Appendix D.1.1. Combining these indicator functions gives the following expression

for the reward received in the event of demand for a recovered good:

E[Rd2(i, a, Y2)] = p2 min{i2, 1}+p2min{E[Y2], a2}− l2(max{0, 1−i2}−min{E[Y2], a2})
(7.6)

Production. If the next event is the arrival of a production order then costs are

incurred for performing production and for purchasing components. The size of a

production order is max{iop, ap}, therefore the number of components that need to be

bought is: ab = max{0,max{iop, ap} − ic}. Costs are incurred on a per unit basis for

each good that is produced and bought. If the next event is the arrival of a production,

then the cost incurred is: max{iop, ap}cp + abcb. and therefore the expected reward is:

E[Rp(i, a)] = −(max{iop, ap}cp + abcb) (7.7)

Recovery. If the next event is the arrival of a recovery order, then costs are incurred

for the processing of the recovery lot, the high quality recovery, the low quality recovery,

and the disposal of items which are not recovered. If there are xq high quality returns

then the cost incurred is: Qrcr+ah(xq)ch+al(xq)cl+ad(xq)cd. Therefore the expected

reward is:

E[Rrec(i, a,Xq)] = − (Qrcr + E[ah(Xq)]ch + E[al(Xq)]cl + E[ad(Xq)]cd) (7.8)

Total rewards

The expected total reward, for a given state i and action a, is:

E[R(i, a)] = Rh(i, a) +Rk(i, a) +
λr

λ(iop, iop, a)
E[Rr(i,Xr)]+

λd1

λ(iop, iop, a)
E[Rd1(i, a, Y1)] +

λd2

λ(iop, iop, a)
E[Rd2(i, a, Y2)]+

λp

λ(iop, iop, a)
Rp(i, a) +

λrec

λ(iop, iop, a)
E[Rrec(i, a,Xq)]

(7.9)
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Table 7.1: Summary of notation used in the SMDP formulation

State Variables Setup Costs
i1 produced inventory kp production
i2 recovered inventory kr recovery
ir returns δp production indicator
ic components δr recovery indicator
iop outstanding production order
ior outstanding recovery order Holding Costs

h1 produced
Inventory State Space Capacities h2 recovered
W1 produced inventory hr returns
W2 recovered inventory hc components
Wr returns
Wc components Unit costs

cp production
Action Variables cr recovery
ap production cb buying components
ar recovery ch high quality recovery
ab buying of Components cl low quality recovery
a1 downward substitution cd disposal from recovery
a2 upward substitution ca acquisition of returns
ah(xq) high quality recovery
al(xq) low quality recovery Revenues
ad(xq) disposal from recovery pd1 revenue from produced goods

pd2 revenue from recovered goods
Action Quantities
Qp production lot size Lost Sales Costs
Qr recovery lot size lr excess returns

l1 lost sales of produced goods
Action Space Capacities l2 lost sales of recovered
Up, Ur, Ub, upper limit on production, recovery, ordering
Lp, Lr, Lb, lower limit on production, recovery, ordering Arrival Rates

λr Arrival of returns
Random Variables and Distribution Parameters λd1 demand for new goods
Xr size of returns batch λd2 demand for recovered goods
Xq quality of returns λp arrival of production lot
Y1 upward substitution acceptance λrec arrival of recovery lot
Y2 downward substitution acceptance
α1 upward substitution acceptance parameter Strategic Variables
α2 downward substitution acceptance parameter ζL low quality recovery strategy
α quality parameter ζH high quality recovery strategy

χ1 upward substitution strategy
χ2 downward substitution strategy
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Table 7.2: Summary of transition probabilities, costs and functions in the SMDP formulation

Event type Case Next State Probability Costs

Returns (min{ir + r, Ur}, i1, i2, ic, jop, jor)
λr

λ(iop, iop, a)
P (Xr = xr) −lr max{0, (xr − Ur + ir)

Demand 1 a1 = 0 (ir,max{0, i1 − 1}, i2, ic, jop, jor)
λd1

λ(iop, iop, a)
p1 min{i1, 1}

(Produced) a1 = 1, y1 = 0 (ir, 0, i2, ic, jop, jor)
λd1

λ(iop, iop, a)
(1− α1) −l1(max{0, 1− i1} −min{y1, a1})

a1 = 1, y1 = 1 (ir, 0, i2 − 1, ic, jop, jor)
λd1

λ(iop, iop, a)
α1 p2 min{y1, a1}

Demand 2 a2 = 0 (ir, i1,max{0, i2 − 1}, ic, jop, jor)
λd2

λ(iop, iop, a)
p2 min{i2, 1}

(Recovered) a2 = 1, y2 = 0 (ir, i1, 0, ic, jop, jor)
λd2

λ(iop, iop, a)
(1− α2) −l2(max{0, 1− i2} −min{y2, a2})

a2 = 1, y2 = 1 (ir, i1 − 1, 0, ic, jop, jor)
λd2

λ(iop, iop, a)
α2 p2 min{y2, a2}

Production (ir, i1 +max{iop, ap}, i2, ic + ab −max{iop, ap}, 0, jor)
λp

λ(iop, ior, a)
−(max{iop, ap}cp + abcb)

Recovery (ir, i1, i2 + ah(xq), ic + al(xq),max{iop,min{1, ap}}, 0)
λrec

λ(iop, ior, a)
P (Xq = xq) − (Qrcr + ah(xq)ch + al(xq) + ad(xq))
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7.5 Model Implementation and Validation

In this section the implementation and validation of the semi-Markov decision process

is discussed.

7.5.1 Continuous Time to Discrete Time

A semi-Markov decision process can be solved by converting the process to a discrete

time model. Further details are provided in Section 3.2.4. If the system is in state

i at time t, then the probability that the system is in state j at time t + τ is the

probability that one of the five events will occur during the next τ time units. In this

implementation, the length of time τ is:

τ =
1

λr + λd1 + λd2 + λp + λrec

The expected time to the next event is denoted by τi(a) and was specified in equation

(7.2). In the discrete adaptation of the continuous time model, the probability of

moving to state j given that the system is currently in state i, and action a has been

chosen, is denoted by pi,j(a) where:

pi,j(a) =











pi,j
τ

τi(a)
if i 6= j

pi,j
τ

τi(a)
+
(

1− τ
τi(a)

)

if i = j

The reward associated with a transition from i to j, given action a, is the expected

reward received from the current time until the next event. To obtain the expected

reward per time unit, this reward needs to be divided by τi(a), and then to get the

reward per period, it needs to be multiplied by τ . The reward in the discrete adaptation

of the continuous time model is denoted by R(i, a), where:

R(i, a) =
τ

τi(a)
R(i, a)

After making these adjustments to the expected rewards and probabilities, the value

iteration algorithm can be used to solve the continuous time problem.
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7.5.2 Dimensionality

This semi-Markov decision problem has six state variables and four action variables.

This makes the state space and action space of this problem exponentially larger than

those in the Chapters 5 and 6.

However, the structure of this continuous time model means that the dimensionality

is not as burdensome at in the previous chapter. In this model, each decision epoch is

associated with a specific event, thus only one of production, recovery, returns, demand

for produced goods, demand for recovered goods, can occur at each decision epoch.

Furthermore, in this model customers arrive one at a time, and only demand a single

good. Because only one event can occur at each decision epoch, the maximum number

of transitions is equal to the sum of the maximum number of outcomes for each event.

In Chapter 6, any and all of these events could occur during each period and multiple

customers could arrive during a period. The continuous time structure used in the

current chapter leads to a substantial reduction in the number of non-zero transitions

for a given state i and action a, compared with Chapter 6. For instance, suppose that

the maximum inventory level was 10 (i1 = i2 = ir = ic = 10), the number of returns

each period was 10 or less (with probability 0.999) and the batch size for returns was

Qr = 10 (meaning Xq ∼ Bin(Qr, α)). At most, one good will be demanded at each

decision epoch. If a substitution is offered, there are two alternatives - it is accepted or

rejected by the customer. Therefore, at a given decision epoch, the number of possible

transitions would be no more than: num returns+num produced+num recovered+

num demand/substitution produced+num demand/substitution recovered = 10+ 1+

10 + 2 + 2 = 25. Compare this to 106, the number of possible transitions calculated

in Section 6.5.1. For this reason, we are able to use a higher maximum inventory level

than in Chapter 6.

Despite the fact that the number of possible transitions is substantially lower than

in the previous Chapter, the larger state space means that the dimensionality of the

model is still an issue. Initial numerical experiments suggested that dimensionality

of the problem makes it computationally impractical to consider problems with upper

inventory capacity levels of more than approximately 20 – 25; the computational time

associated with solving one problem with upper capacity levels of 25 can range between
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1 to 5 hours. This obviously places significant limitations on the numerical experiments

that can be performed with this model. To aid with the computational investigations

a simplification is proposed in order to reduce the computational burden per problem

and thus allow a larger number of problem instances to be studied. This simplification,

similar to previous chapters, involves the introduction of fixed order sizes of Qp for

production and of Qr for recovery. The action space for production then becomes:

ap ∈ Ap(i) = {0,min{W1 − i1, Qp}}

and for recovery becomes:

ar ∈ Ar(i) =











{0, Qr} if ir ≥ Qr

{0} if ir < Qr

Recall that the components buying decisions has already been simplified. This means

that at each decision epoch, the decision is restricted to whether or not to produce or

recover, rather than how much to produce or recover.

7.5.3 Implementation of the Model

The semi-Markov decision process described in the previous sections can be solved as

a discrete time Markov decision process, by making the adjustments described Section

7.5.1. Some of the java code used in Chapters 5 and 6 can also be used for the model

in this chapter.

7.5.4 Validation of the Code

Much of the code used for implementing this model has been used and validated in

previous chapters, therefore in this section we focus on the validation of the code

created specifically for this model. In addition to thorough checks during the code

development process, an Excel spreadsheet was developed to calculate the expected

reward for a given state and action. To conduct these tests, a set of six test problems

was developed. For a random selection of 30 states, the costs calculated by the java

programme and those calculated by the Excel spreadsheet were checked for the optimal
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policy action and a heuristic policy and were found to be the same. Further details of

this are provided in Appendix D.2.2.

The code can also be validated by comparing the reward from the value iteration

algorithm and the reward obtained from a simulation of the problem. Two versions of

the simulation code were developed for this model: a discrete time simulation and a

continuous time simulation. In order to validate both versions of the simulation code,

repeated simulations were performed and the long run average reward was recorded.

Over a large number of trials, repeated sampling from the distribution of the long

run average reward should yield an approximately normally distributed curve, centred

around the actual optimal reward, as calculated by the value iteration algorithm. The

set of six test problems used above were also used here. It was found that all test

problems performed as expected. Further details are provided in Appendix D.

7.6 Properties of the Optimal Policies

The properties of the optimal policy are explored in this section. Three main properties

will be investigated. Firstly, we investigate the performance of the optimal policy under

different substitution strategies. Two performance measures are used: the long run

average reward and the fill rate (a measure of service). Secondly, we investigate the

structure of the optimal policy by examining the actions that are chosen in different

states. Finally, we investigate the effect of the recovery strategy on the performance

and structure of the optimal policy.

The class of policies being considered has been restricted by introducing the fixed

lot sizes Qp and Qr and by fixing the decision about buying components, as discussed

in Section 7.5.2. The optimal policy within this class of policies is sought. This policy

may not be optimal if these restrictions were not imposed.

This section is structured as follows. The datasets used to explore the properties

of the optimal policy are described in Section 7.6.1 and the performance, actions,

and recovery of the optimal policy are investigated in Sections 7.6.2, 7.6.3 and 7.6.4,

respectively.
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7.6.1 Datasets

A set of problems has been constructed to investigate the properties of the optimal

policy. The parameters values for these problems are derived from the datasets used in

Chapters 4, 5 and 6, some of which were themselves derived from the dataset used by

Konstantaras and Papachristos (2008b). This section explains how the dataset used in

this chapter extends the ones used in previous chapters. Some additional parameters

have been added to account for the additional state variables and random variables.

Note that the first problem in the datasets in Chapters 4 and 5 (labelled 00) is not

used in this chapter as it does not contain any unit costs. It was included in the

earlier models to enable comparisons to be drawn between models in the literature

and the models proposed by this thesis. However, since the model in this chapter has

a different structure (e.g. two markets), such comparisons are not made here. The

parameter values for the datasets used in this chapter are presented in Table 7.3.

State Variables

The state space for each of the inventories is limited to the discrete values from 0

to 20. The upper limit was selected due to the dimensionality and computational

requirements associated with this problem. The state space for each of the inventory

variables is defined as follows:

I1 = {0, 1, . . . , 20} produced inventory

I2 = {0, 1, . . . , 20} recovered inventory

Ir = {0, 1, . . . , 20} returned inventory

Ic = {0, 1, . . . , 20} component inventory

The outstanding order variables indicate the number of goods that have been ordered

(through production or recovery), but have not yet arrived. The state space for the

outstanding order variables is:

Iop ⊆ {0, . . . , 20} outstanding production

Ior ⊆ {0, . . . , 20} outstanding recovery
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Table 7.3: Datasets used in the analysis of the optimal policy

Problem ID 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Arrival Rates
λr 5 3 3 3 6 6 6 6 3 6 5 5 5 4 5 1 4 2 6 2
λd1 6 6 8 6 7 7 7 6 6 7 9 9 9 6 6 6 6 5 6 4
λd2 5 1 8 5 6 2 7 4 1 4 6 2 5 2 4 6 5 2 2 2
λp 30 24 16 24 21 21 18 30 24 21 13 13 11 30 24 24 24 50 24 80
λrec 18 15 12 12 14 14 13 15 18 14 11 11 10 18 15 36 32 10 48 20

Distributions
Returns Size U(2,7) U(0,5) U(0,5) U(0,5) U(3,8) U(3,8) U(3,8) U(3,8) U(0,5) U(3,8) U(2,7) U(2,7) U(2,7) U(1,6) U(2,7) U(1,1) U(1,6) U(2,2) U(3,8) U(2,2)
α 0.8 0.2 0.3 0.3 0.5 0.7 0.8 0.8 0.2 0.5 0.5 0.5 0.5 0.5 0.4 0.1 0.6 0.2 0.2 0.5
α1 0.68 0.65 0.57 1 1 0.55 0.5 0.4 0.75 0.94 0.92 0.8 0.63 0.93 0.5 0.52 0.86 0.65 0.98 0.56
α2 0.44 0.75 0.9 0.62 0.81 0.53 0.5 0.72 0.74 0.87 0.87 0.76 0.93 0.92 0.7 0.48 0.48 0.56 0.89 0.67

Unit Costs
cp 106.5 66 88 131 161 107 66 75 212.5 188.5 23.5 76 78.5 106.5 65.5 110 107 75 212.5 160
cr 13.5 34 42 89 29 13 44 15 27.5 141.5 6.5 24 21.5 13.5 34.5 0 13 15 27.5 10
cb 30 60 80 100 70 40 60 30 50 200 50 50 100 30 50 100 40 30 50 50
ch 50 30 40 60 75 50 30 35 100 85 10 35 35 50 30 50 50 35 100 75
cl 9 18 24 30 21 12 18 9 15 60 15 15 30 9 15 30 12 9 15 15
cd 6.5 6 8 11 11 7 6 5 12.5 18.5 3.5 6 8.5 6.5 5.5 10 7 5 12.5 10

Revenues
pd1 209 169 269 316 434 269 242 112 378 563 146 214 277 231 186 330 212 140 263 279
pd2 147 133 202 161 391 253 202 84 361 529 83 119 259 221 111 236 113 115 150 162

Set up Costs
kp 20 10 10 20 20 20 30 30 50 28 12 12 120 20 100 1000 400 30 50 28
kr 5 5 10 12 8 20 20 25 30 8 2 2 10 5 50 100 400 5 10 8
kb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding Costs
hr 2 4 5 10 4 2 5 2 4 16 1 3 3 2 4 1 2 2 4 2
hs1 10 6 8 12 15 10 6 7 20 17 2 7 7 10 6 10 10 7 20 15
hs2 8 6 8 11 10 2 4 4 10 15 2 5 5 10 5 7 8 4 12 10
hc 3 6 8 10 7 4 6 3 5 20 5 5 10 3 5 10 4 3 5 5

Penalty Costs
lr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ls1 13 12 16 22 22 14 12 10 25 37 7 12 17 13 11 20 14 10 25 20
ls2 5.7 5.8 7.4 13.8 9.3 5.6 6.8 4.5 11.5 20.8 1.3 5.3 4.8 5.7 5.9 4 5.6 4.5 11.5 7.5

Order Sizes B

Qp 9 9 11 9 10 10 10 9 9 10 12 12 12 9 9 9 9 8 9 6
Qr 8 2 11 8 9 4 10 6 2 6 9 4 8 4 6 9 8 4 4 4
Order Sizes C

Qp 11 11 14 11 13 13 13 11 11 13 15 15 15 11 11 11 11 10 11 8
Qr 8 2 11 8 9 4 10 6 2 6 9 4 8 4 6 9 8 4 4 4
Order Sizes D

Qp 9 9 11 9 10 10 10 9 9 10 12 12 12 9 9 9 9 8 9 6
Qr 10 3 14 10 11 5 13 8 3 8 11 5 10 5 8 11 10 5 5 5
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Random Variables

There are five types of event which could occur or “arrive”: returns, demand for

produced goods, demand for recovered goods, production lots and recovery lots. All

five are governed by independent Poisson processes. If the rate of a Poisson process is λ

then the expected number of events to occur in t time units is λt, and the expected time

between events is 1/λ (Ross, 1996). Following the convention in stochastic processes,

let N(t) denote the number of events to have occurred by time t, then N(t) is a Poisson

distributed random variable with mean λt.

Demand. The arrival of demand for produced and recovered goods are governed

by Poisson processes with rates of λd1 and λd2, respectively. At each demand instance

one good is demanded. The rates of these Poisson processes are chosen to be integers

for convenience.

In Chapters 5 and 6 the demands were governed by Poisson distributions, where the

rates indicated the expected number events to be demanded in one time period. Since

one good is demanded at each demand instance, if it is assumed that each time period

has a length of one time unit (as was the case in Chapters 5 and 6), then the rates

from these previous chapters have a similar meaning to the rates used in this chapter,

i.e., the rates λd1 and λd2 specify the expected number of events to occur within 1 time

unit.

To retain some comparability between the previous models and the current model,

the expected demands used in this chapter are derived from the demand and production

rates in Chapter 4, as they have been Chapters 5 and 6. Ideally, the capacity of the

inventories should not affect the policy, therefore the maximum state space is also

taken into account when selecting the rates. In Chapters 5 and 6 this was done by

ensuring that the probability that demand exceeds this upper capacity is very low.

In this chapter, since only one item is demanded at each demand instance, ensuring

that expected demand per time unit does not often exceed the maximum inventory

capacity has a different effect compared with previous models. However to retain some

consistency, the same method is used in this chapter. Suppose λd1 = 11, then the

probability that the number of goods demanded during one time unit will exceed the
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maximum inventory capacity of 20 is very small (P (Nd1(t) > 20) < 1 × 10−4). This

probability is sufficiently small, therefore an upper limit of 11 is placed on the parameter

λd1.

Let pd and dd denote the production and demand rates from the deterministic model

in Chapter 4. The ratio of pd and dd is used to determine the demand parameter for

produced goods. However, a transformation needs to be applied to this ratio in order

to scale it to the state space of the model, and to provide a range of values spread

across the state space. In summary, in order to obtain the values for λd1 (i.e. number

of demand events per one time unit) for each problem in the dataset the following

transformation is used:

λd1 =

⌈

3

√

dd
pp

× 11

⌉

where the function ⌈x⌉ rounds x up to the nearest integer. Parameters are rounded to

integer values for convenience.

In order to model a variety of relationships between the demand for produced and

recovered goods, the demand rate λd2 was determined by randomly generating values

within the range of 1 to 11 and rounding to the nearest integer. This creates some

scenarios with λd1 > λd2, some with λd1 = λd2, and some with λd1 < λd2.

Returns. The arrival of returns is governed by a compound Poisson process and

the size of each batch of returns is modelled by the uniform distribution. The uniform

distribution is used in order to model the situation in which the size of a returns batch

is known to fall within a certain range. For most problems the variance of the uniform

distribution was chosen such that b − a = 5, except in cases where the mean is less

than 3. In those cases the distributions were selected such that a = b = µr, this

could correspond to a supply contract in which the batch size is known with certainty.

In some of the problems, the lower limit is equal to 0. This represents a non-zero

probability that there may be a problem with the arrival of a batch. This models

additional uncertainty associated with receiving returns. The arrival rate and batch

sizes are chosen to model the situation in which returns arrive in (relatively) small

batches, but arrive often.
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Production and Recovery. The arrival rates of production and recovery orders

are derived from the production and recovery rates in the dataset from Chapter 4.

However since the demand rate has been transformed from the values used in Chapter

4, a transformation also needs to be applied here in order to maintain the relationship

between the demand, production and recovery rates. Let dd, pd, rd denote the demand,

production and recovery rates used in the deterministic model in Chapter 4. Then the

arrival rate of the production order for this model is given by:

λp =
⌊λd1pd

dd

⌋

and the arrival rate of the recovery order for this model is given by:

λrec =
⌊λd1rd

dd

⌋

where the function ⌊x⌋ rounds the value x down to the nearest integer.

Revenues and Costs

The revenues and costs used in this chapter are the same as those used Chapter 6.

Lot Sizes

Using the same method as in Chapter 6, the lot sizes for production Qp and recovery

Qr are derived from the respective demand rates plus yp or yr standard deviations

respectively, such that:

Qp = ⌈λd1 + yp
√

λd1⌉, Qr = ⌈λd2 + yr
√

λd2⌉

where ⌈x⌉ rounds x up to the nearest integer. Three variations of the dataset are

constructed by varying the number of standard deviations added to the demand rates.

These datasets are labelled B, C and D such that:

Problem Set yp yr
A − − Test Problems
B 1 1
C 2 1
D 1 2
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Substitution Strategies

Four substitution strategies are considered: no substitution (χ1 = 0, χ2 = 0), only

downward substitution (χ1 = 0, χ2 = 1), only upward substitution (χ1 = 1, χ2 = 0),

two-way substitution (χ1 = 1, χ2 = 1).

Notation Type of substitution Description

χ1 upward Shortage of produced goods,
substitute with a recovered good

χ2 downward Shortage of recovered goods,
substitute with a produced good

The proportion of customers for produced and recovered goods who would accept a

substitution, if it was offered to them, is modelled by a Binomial distribution with the

parameters α1 and α2 respectively.

The parameters of the base problems are presented in Table 7.3. Many of these

parameters are the same as the ones used in Chapter 6.

7.6.2 Analysis of Performance

In this section the performance of the optimal policy is analysed by examining the

average reward and fill rates under the four substitution strategies: no substitution

(χ1 = 0, χ2 = 0), upward substitution (χ1 = 1, χ2 = 0), downward substitution (χ1 =

0, χ2 = 1), two-way substitution (χ1 = 1, χ2 = 1). Upward substitution relates to the

shortage of produced goods and downward relates to the shortage of recovered goods.

These substitution strategies do not force the system to perform substitution in the

case of a shortage, rather they allow substitution to be an option (i.e. an allowable

action in the action space).

Simulation is used to calculate the fill rates of the optimal policy. Either of the

discrete-time or continuous-time simulations could have been used, however the discrete

time simulation was used, as it more closely aligned to the discretization of the Markov

decision process implementation.

288



Rewards

The value of the average reward varies across the problems. There is variation between

problems in the three sets and across the four substitution strategies. Some problems

have a negative average reward, which suggests that some problems are not financially

viable. The average rewards for the three problems sets, under the four substitution

strategies are presented in Figure 7.2 and Table 7.4.

The reward associated with the two-way substitution strategy should be the highest

as it offers the greatest freedom in choosing the policy actions. As shown by Figure 7.2

and Table 7.4 this indeed is the case; the optimal reward is highest under a two-way

substitution strategy, however for some problems the highest reward is also attained

by other substitution strategies.

The question of interest here is what additional reward can be achieved by

allowing substitution. To investigate this question the relative reward increase (RRI)

attainable by allowing each of the substitution strategies is compared with not allowing

substitution. The relative reward increase is calculated as follows:

RRI =
Reward(no substitution)− Reward(other substitution)

Reward(no substitution)
× 100%

Figure 7.3 shows the relative reward increase for problem sets B, C and D.

Comparing the three graphs, it is apparent that the savings available for each

problem are similar across the three data sets, however vary considerably between the

20 problems. The RRI attainable by allowing substitution varies from 0 (no benefit from

substitution) to approximately 60% (substantial benefit from substitution). For some

problems (e.g. 08) the increase in reward available by allowing upward substitution is

greater than for downward substitution, however for some problems (e.g. 03) the reverse

can be observed. This variation suggests that the benefits available from allowing

substitution depends heavily on the problem parameters. In general, the greatest

increase in reward is attained by allowing a substitution strategy which includes upward

substitution. Under a upward substitution recovered goods are used to meet demand

if there is a shortage of produced goods. There is little risk associated with upward

substitution as recovered goods are sold for their regular price.
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(c) Problems D

Figure 7.2: Average reward of the optimal policy for all substitution strategies
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Table 7.4: Average reward of the optimal policy for all substitution strategies

(a) Problems B

Substitution Strategy
Problem None Down Up Two-way
B01 705.3792 705.6431 713.4715 713.7553
B02 213.0802 214.8265 233.5067 236.0227
B03 953.1586 1172.9329 953.2487 1173.3080
B04 183.0032 183.0032 183.5772 183.5772
B05 2942.3782 2951.2749 3027.9538 3038.9410
B06 1118.5293 1118.5293 1129.6040 1129.6040
B07 1494.1489 1495.6817 1497.8446 1499.3618
B08 50.0060 50.0060 79.9090 79.9090
B09 623.2927 630.2194 661.5581 672.6597
B10 1868.2836 1875.0448 2059.0831 2068.4609
B11 1197.1239 1197.4120 1200.6414 1200.9714
B12 780.8096 780.8191 787.9061 787.9194
B13 1970.5853 1970.7320 2017.3735 2020.4322
B14 747.8507 751.3398 886.1845 890.8854
B15 305.4939 308.1406 306.2887 308.9396
B16 41.0997 41.0997 41.2261 41.2261
B17 1.0815 1.0815 1.0814 1.0814
B18 166.0895 175.0832 166.3100 175.4455
B19 -187.2994 -187.2987 -168.5815 -168.5815
B20 328.8674 328.8674 331.1385 331.1385

(b) Problems C

Substitution Strategy
Problem None Down Up Two-way
C01 698.7423 699.0217 705.6471 705.9478
C02 207.7474 209.4980 227.7293 230.3007
C03 937.8397 1161.7678 937.9336 1162.1803
C04 173.4298 173.4298 174.1442 174.1442
C05 2921.9751 2930.7146 3007.9105 3019.1330
C06 1108.6435 1108.6435 1120.0610 1120.0609
C07 1489.1721 1490.7274 1492.9538 1494.4392
C08 46.4153 46.4153 76.9781 76.9781
C09 610.7875 617.9158 648.1387 659.4672
C10 1843.2418 1849.7324 2033.3397 2043.9817
C11 1188.2421 1188.5112 1192.9287 1193.2640
C12 772.7961 772.8147 779.5477 779.5721
C13 1969.0867 1969.2407 2015.4702 2018.2048
C14 740.0975 743.7213 879.4855 884.4565
C15 311.4163 314.5791 312.2569 315.4457
C16 150.0331 150.0331 150.0708 150.0708
C17 39.4667 39.4667 39.4667 39.4667
C18 161.9989 171.6935 162.2076 172.0579
C19 -199.8629 -199.8629 -179.7160 -179.7160
C20 318.0211 318.0211 320.1212 320.1212

(c) Problems D

Substitution Strategy
Problem None Down Up Two-way
D01 701.0779 701.2895 709.2029 709.4329
D02 217.5816 219.2315 239.5535 242.0744
D03 946.0521 1164.4283 946.1486 1164.7638
D04 180.4413 180.4413 180.9843 180.9843
D05 2937.2535 2947.3478 3019.9809 3032.5782
D06 1127.3137 1127.3137 1138.8094 1138.8094
D07 1495.7627 1497.1643 1499.4542 1500.9091
D08 52.6219 52.6219 85.5068 85.5068
D09 646.9946 653.3268 693.4792 704.2378
D10 1869.0423 1875.9195 2056.7591 2066.4963
D11 1193.3866 1193.7250 1197.0492 1197.4479
D12 780.7896 780.8060 787.9121 787.9270
D13 1974.6202 1974.8150 2020.0231 2022.3762
D14 746.9873 751.0783 886.5235 891.1434
D15 322.4409 325.7021 323.3985 326.7173
D16 40.7580 40.7580 40.8775 40.8775
D17 1.0815 1.0815 1.0814 1.0814
D18 164.9608 173.8717 165.1927 174.2624
D19 -183.4333 -183.4331 -165.7716 -165.7716
D20 327.4696 327.4696 329.5992 329.5992
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(c) Problems D

Figure 7.3: Relative reward increase for all substitution strategies
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Table 7.5: Summary of inventory levels during the simulation under a two-way
substitution strategy

(a) Problems B

Produced Inventory Recovered Inventory Returned Inventory Component Inventory
Problem mean min max mode mean min max mode mean min max mode mean min max mode
B01 4.891 0 9 2 4.533 0 9 2 17.974 0 20 20 1.083 0 15 0
B02 5.356 0 19 0 2.547 0 11 1 9.905 0 20 20 1.819 0 15 0
B03 8.405 0 20 7 0.739 0 13 0 6.504 0 20 9 1.795 0 20 0
B04 5.888 0 11 8 1.016 0 15 0 8.079 0 20 20 2.883 0 18 0
B05 5.032 0 12 0 5.352 0 17 4 16.048 0 20 20 5.528 0 20 0
B06 5.822 0 11 4 18.635 0 20 20 17.812 0 20 20 2.040 0 12 0
B07 6.202 0 17 4 6.664 0 16 7 17.649 0 20 20 0.937 0 13 0
B08 1.409 0 9 0 3.995 0 10 4 18.513 0 20 20 2.356 0 12 0
B09 4.599 0 10 8 1.992 0 7 1 9.749 0 20 20 3.326 0 20 0
B10 4.542 0 19 0 5.132 0 18 4 16.892 0 20 20 1.994 0 19 0
B11 10.780 0 20 10 14.046 0 20 16 12.735 0 20 20 3.607 0 20 0
B12 7.037 0 16 6 2.993 0 7 3 18.877 0 20 20 1.094 0 20 0
B13 5.351 0 20 0 8.964 0 20 9 13.917 0 20 20 3.134 0 20 0
B14 3.221 0 10 0 2.537 0 7 2 15.598 0 20 20 4.051 0 20 0
B15 6.034 0 12 3 3.406 0 15 2 16.658 0 20 20 2.175 0 16 0
B16 4.848 0 9 5 0.024 0 5 0 4.863 0 16 8 0.036 0 9 0
B17 4.859 0 9 7 0 0 0 0 19.999 0 20 20 0 0 0 0
B18 4.410 0 9 3 0.716 0 12 0 2.616 0 20 2 2.238 0 12 0
B19 4.321 0 9 0 0.449 0 5 0 18.503 0 20 20 1.164 0 11 0
B20 3.427 0 6 2 2.054 0 6 2 9.360 0 20 2 1.164 0 16 0

(b) Problems C

Produced Inventory Recovered Inventory Returned Inventory Component Inventory
Problem mean min max mode mean min max mode mean min max mode mean min max mode
C01 5.885 0 12 3 4.524 0 9 2 17.989 0 20 20 1.264 0 15 0
C02 6.124 0 20 0 2.595 0 12 1 9.892 0 20 20 2.112 0 18 0
C03 9.503 0 20 7 0.752 0 13 0 6.752 0 20 9 2.255 0 20 0
C04 6.705 0 13 7 1.005 0 14 0 8.607 0 20 20 2.509 0 18 0
C05 6.202 0 15 0 5.357 0 17 4 15.992 0 20 20 6.067 0 20 0
C06 6.654 0 13 6 18.205 0 20 20 17.599 0 20 20 2.638 0 15 0
C07 7.624 0 20 3 6.888 0 17 7 17.641 0 20 20 1.183 0 15 0
C08 1.736 0 11 0 4.031 0 11 4 18.490 0 20 20 2.739 0 14 0
C09 5.483 0 12 0 1.940 0 7 1 9.653 0 20 20 3.590 0 20 0
C10 5.602 0 20 0 5.283 0 20 4 16.773 0 20 20 2.414 0 19 0
C11 10.631 0 20 14 14.081 0 20 17 13.044 0 20 20 4.800 0 20 0
C12 8.417 0 19 10 2.927 0 7 3 18.856 0 20 20 1.308 0 20 0
C13 6.645 0 20 0 10.071 0 20 8 13.854 0 20 20 3.858 0 20 0
C14 3.855 0 12 0 2.635 0 7 2 15.357 0 20 20 4.376 0 20 0
C15 6.903 0 13 3 3.585 0 14 2 16.483 0 20 20 2.303 0 19 0
C16 6.015 0 12 9 0.023 0 4 0 4.868 0 17 8 0.037 0 9 0
C17 5.863 0 11 3 0 0 0 0 19.999 0 20 20 0 0 0 0
C18 5.407 0 10 2 0.704 0 12 0 2.982 0 20 2 2.427 0 13 0
C19 5.120 0 11 0 0.399 0 5 0 18.428 0 20 20 1.255 0 13 0
C20 4.381 0 8 4 2.047 0 7 2 9.016 0 20 2 1.355 0 20 0

(c) Problems D

Produced Inventory Recovered Inventory Returned Inventory Component Inventory
Problem mean min max mode mean min max mode mean min max mode mean min max mode
D01 4.881 0 9 1 5.328 0 11 3 17.734 0 20 20 1.084 0 16 0
D02 5.287 0 19 9 2.534 0 12 1 9.972 0 20 20 1.677 0 19 0
D03 8.824 0 20 11 0.860 0 14 0 7.657 0 20 6 1.549 0 20 0
D04 5.849 0 11 8 1.089 0 13 0 9.353 0 20 20 2.187 0 18 0
D05 5.016 0 13 0 5.619 0 18 5 16.087 0 20 20 5.972 0 20 0
D06 5.789 0 11 2 18.530 0 20 20 17.695 0 20 20 2.124 0 13 0
D07 6.226 0 19 9 7.710 0 18 7 17.387 0 20 20 0.965 0 14 0
D08 1.376 0 9 0 4.582 0 10 4 18.376 0 20 20 2.432 0 12 0
D09 4.609 0 10 9 2.000 0 8 1 9.652 0 20 20 3.309 0 20 0
D10 4.520 0 20 0 5.318 0 17 4 16.819 0 20 20 2.186 0 20 0
D11 10.895 0 20 11 14.089 0 20 18 12.858 0 20 20 4.128 0 20 0
D12 7.011 0 18 12 3.029 0 8 3 18.801 0 20 20 0.907 0 19 0
D13 5.592 0 20 0 10.716 0 20 9 13.370 0 20 20 2.840 0 20 0
D14 3.239 0 10 0 2.629 0 8 2 15.363 0 20 20 4.060 0 20 0
D15 6.027 0 12 5 3.786 0 15 3 16.425 0 20 20 2.255 0 16 0
D16 4.855 0 9 7 0.024 0 5 0 5.887 0 17 10 0.176 0 11 0
D17 4.859 0 9 7 0 0 0 0 19.999 0 20 20 0 0 0 0
D18 4.402 0 9 2 0.743 0 12 0 3.716 0 20 4 2.150 0 12 0
D19 4.395 0 9 0 0.540 0 5 0 18.454 0 20 20 1.303 0 12 0
D20 3.443 0 6 2 2.261 0 7 2 9.660 0 20 20 1.212 0 17 0
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Fill Rates

The fill rate measures the proportion of demand which is met by current stock; it can

be used to assess the performance of a policy. For each type of good the fill rate is:

fill rate =
number of met sales

number of items demanded

The average fill rate can be calculated by using a simulation to determine the fill rate

each period and then by averaging this across the length of the simulation. As discussed

in Chapter 6, in situations where substitution is permitted the ‘number of met sales’

could include or exclude the sales met by substitution. Thus two versions of the fill rate

can be calculated. Let the substitution-inclusive fill rate refer to the fill rate calculation

which includes sales met by substitution, and let the substitution-exclusive fill rate refer

to the fill rate calculation which excludes such sales.

In this section two questions are investigated: firstly, for a given substitution

strategy how much demand is met by substitution, and secondly, how does the fill

rate vary across the four substitution strategies. In order to study these questions, the

fill rates were calculated from a simulation over T = τ × 1000000 time units. Table 7.5

summarises the inventory levels reached during the simulation.

The substitution-inclusive and exclusive fill rates for the produced and recovered

inventories are available for problem sets B, C and D in Appendix D in Tables D.5,

D.6 and D.7 for all substitution strategies.

Substitution Inclusive and Exclusive Fill Rate. In order to investigate how

much demand is met by substitution, the substitution-inclusive and substitution-

exclusive fill rates are examined. In this initial analysis of the fill rates, only the

two-way substitution strategy is examined. Figures 7.4, 7.5 and 7.6 show the fill rates

under the two-way substitution strategy for problem sets B, C and D respectively. The

graphs for the other substitution strategies are available in Appendix D.

The fill rate is higher when demand met by substitution is included the fill rate, as

expected. For some problems substitution leads to little increase in the fill rate when

demand met by substitution is included, indicating that most demand is met by the
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Figure 7.4: Fill rates for problem set B under a two-way substitution strategy
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(b) Recovered Inventory i2

Figure 7.5: Fill rates for problem set C under a two-way substitution strategy
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Figure 7.6: Fill rates for problem set D under a two-way substitution strategy
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demanded good rather than by substitution. However, for some problems the increase

is very large indicating a large amount of demand satisfied by substitution. For example

consider problem B03, the fill rate for recovered inventory more than triples when sales

met by substitution are included in the fill rate. This means that for this problem a

large proportion of demand for recovered items is met by produced items.

Notice that for recovered inventory, the fill rates including and excluding substi-

tution for problems 16 and 17 (across all problems sets) are close or equal to zero.

This means that most demand for recovered goods is lost. This suggests that for these

problems the average level of recovered inventory across the simulation is very low and

that substitution is not offered. The average inventory levels during simulation, shown

in Table 7.5, confirm that this is indeed the case. Problem 17 has a mean recovered

inventory level of 0 across the three problem sets.

Though the models in Chapter 6 and this chapter are not directly comparably, we

make the following observation. It appears that in the current model, substitution has

a greater influence on the fill rates, especially for produced inventory, than it does for

the model in Chapter 6 (c.f. Figure 6.7, page 220).

Effect of Substitution Strategy on Fill Rate. The fill rates including

substitution for each of the substitution strategies are displayed for each of the problem

sets in Figures 7.7, 7.8 and 7.9. In general, the fill rates are similar across all three

datasets. This suggests that changes in the order sizes for production Qp and recovery

Qr do not significantly affect the fill rates.

There is some difference in the fill rates across the four substitution strategies,

however for most problems the fill rates are similar. It could be expected that the

produced inventory fill rate is higher when substitution in the event of a shortage of

produced inventory is permitted. However, for some problems (e.g. B08) this appears

not to be the case. The fill rate for this problem is lower when upward substitution is

permitted (upward and two-way strategies). For problem B08 this may be related to

the low acceptance rate of upward substitution for this problem α1 = 0.4, however

it may also be related to the replenishment policy under the various substitution

strategies. The relationship between substitution strategies and the replenishment

policy is investigated in Section 7.6.3.
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 7.7: Fill rates for problem set B for all substitution strategies
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 7.8: Fill rates for problem set C for all substitution strategies
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure 7.9: Fill rates for problem set D for all substitution strategies
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In general the fill rates appear to be higher for produced inventory than for recovered

inventory. The fill rates for recovered inventory were, on the whole, more variable across

the substitution strategies, than those for produced inventory. In general, it appears

that downward substitution (downward and two-way strategies) lead to higher fill rates

for recovered inventory. This is expected since downward substitution is offered when

there is a shortage of recovered goods. It is possible that the uncertainty surrounding

the supply of recovered goods, means that downward substitution is offered more than

upward substitution. This could also contribute to the difference in fill rates under the

four substitution strategies.

In order to further investigate when substitution is offered and when the replenish-

ment actions are performed, we analyse the optimal policy actions in the next section.

7.6.3 Analysis of Actions

In this section the structure of the optimal policy is analysed in order to investigate the

relationship between replenishment actions (production and recovery) and substitution

actions (upward and downward). Two main questions will be examined in this section.

Firstly, across all states, with what frequency are replenishment and substitution actions

chosen and how is this affected by the substitution strategy. Secondly, in which states

are replenishment and substitution actions selected, i.e. what inventory levels ‘trigger’

certain actions. Comparisons will be drawn between the three datasets and the four

substitution strategies.

Action Size and Frequency

Replenishment Actions. In this model, production can be chosen as long as

there is not already a production order outstanding. This means that production could

be chosen in a maximum of 214 × 1 × 2 = 388, 962 states. Recovery can be chosen

as long as there is not already a recovery order outstanding and there are at least

Qr returns in stock. This means that recovery could be chosen in a maximum of

213 × (Wr −Qr + 1)× 2× 1 states. The size of the production and recovery actions is

determined by the parameters Qp and Qr respectively. The action size for production
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takes values of 0 or Qp and for recovery takes values 0 or Qr. In this initial examination

of the action frequency we focus on the two-way substitution strategy only. Table 7.6

and Figure 7.10 show the number of states in which each replenishment action is chosen

under a two way substitution strategy. The data for the other substitution strategies

is presented in Appendix D, in Tables D.8, D.9 and D.10.
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(b) Recovery ar

Figure 7.10: Number of states with positive replenishment quantities for three problem

sets, under a two-way substitution strategy
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(b) Recovery ar

Figure 7.11: Proportion of possible states with positive replenishment quantities for

three problem sets, under a two-way substitution strategy

Recall that Problem set C has a greater production size Qp than problem sets B

and D and that Problem set D has a greater recovery size Qr than problem sets B

and C. Referring to Figure 7.10 observe that when the production size is higher (C),

the number of states in which production is performed is, in general, lower than when

the production size is lower (B,D). A similar result is observed for recovery, although

there is more variation across all three problems sets. When the size of the recovery lot

Qr is larger (D) the number of states for which it is optimal to recover is lower than
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Table 7.6: Number of states in which replenishment is chosen under a two-way
substitution strategy

B C D

Problem ap ar Problem ap ar Problem ap ar

B01 16187 25560 C01 14316 26067 D01 18333 21189
B02 126923 14961 C02 88805 17592 D02 126727 11480
B03 102950 54345 C03 63006 66028 D03 110394 35639
B04 59596 4466 C04 50794 4331 D04 66785 2363
B05 7242 47174 C05 4688 58335 D05 6853 37631
B06 24413 48818 C06 15225 54771 D06 22883 45963
B07 119131 34566 C07 73435 37319 D07 120232 22438
B08 12378 26938 C08 11363 28528 D08 13153 20624
B09 4079 17451 C09 3241 20270 D09 4037 17341
B10 108695 23067 C10 58715 30873 D10 109182 17718
B11 76423 95796 C11 37912 112947 D11 77909 79672
B12 48724 35315 C12 38018 39276 D12 49608 29736
B13 73772 81840 C13 34351 101585 D13 74617 64958
B14 1422 16245 C14 1046 19097 D14 1456 14504
B15 54197 13305 C15 47131 16516 D15 58276 10789
B16 131510 6440 C16 94574 10126 D16 131430 4070
B17 18081 0 C17 18144 0 D17 20580 0
B18 15434 8493 C18 13027 10467 D18 14828 13074
B19 1787 8744 C19 1516 9733 D19 2000 7856
B20 11209 19514 C20 9613 21035 D20 12007 18702

when Qr is lower (B,C). However, unlike the production case, the number of states

in which recovery is performed differs between B and C for most problems, despite

the fact that the recovery size is the same. Recovery is performed in a larger number

of states in problem set C than B. This suggests that the production lot size (which

differs between B and C) may affect the frequency of recovery.

However, these graphs could be slightly misleading as the number of states in which

recovery could be performed differs for each problem. In order to take this into account,

the proportion of possible states in which recovery is performed is examined. This

proportion is calculated as the number of states performing recovery out of the states

in which it is possible to perform recovery. Figure 7.11 shows these proportions for

production and recovery. The data for these graphs is available in Appendix D, Table

D.12. Referring to Figure 7.11, observe that Figure 7.11a, which shows the proportion

of states in which production is selected, has the same shape as Figure 7.10 - this is

expected as the number of states in which production can be chosen is the same across

all problems. Figure 7.11b shows the proportion of states in which it is optimal to

perform recovery. When the number of states in which recovery can be performed is

taken into account, the frequency of recovery appears similar for problem sets B and

D. Furthermore, when Qp is larger (problem set C), recovery is performed more often.
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This could be due to the fact that production is performed less frequently for problem

set C (as observed in Figure 7.10 ), therefore there are more states in which recovery

could be performed. Recall that production and recovery cannot both be performed

at the same decision epoch. This highlights the complicated nature of the relationship

between production and recovery under the optimal policy.

Note that for problems B17, C17 and D17 it is never optimal to recover. This

could be due to values of some of the parameters used in these problems (see Table

7.3). Firstly, the setup cost of recovery in problem 17 is the same as the setup cost

of production, making recovery relatively more expensive than in the other problems.

Secondly, the sale price of a recovered item is about half the price of a produced item and

thirdly, the holding cost of recovered items is quite high compared to that of produced

items. The combination of these factors make recovery less desirable compared with

production. As observed in Section 7.6.2, the recovered-inventory fill rate is zero for

problem 17. This lack of recovery is the likely cause. The states which trigger certain

replenishment or substitution actions will be examined later in this section.

Frequency of Production and Recovery Under Substitution Strategies.

Thus far, the frequency of replenishment has been considered for the two-way

substitution strategy only. However, the ability to offer substitution may influence

whether or not production and recovery are chosen. For instance, it may be the case

that in some situations it is better to not produce and to allow upward substitution of

recovered goods to cover any shortages.

Figure 7.12 shows the numbers of states in which production and recovery are chosen

under the four substitution strategies for datasets B, C and D. The number of states in

which recovery can be performed is not affected by the substitution strategy, therefore

the number, rather than proportion, of states is used in these Figures. The data for

these graphs is available in Appendix D, Tables D.8, D.9 and D.10.

Upward substitution is offered in the event of a shortage of produced goods. When

upward substitution can be offered (under the upward and two-way strategies), in

general, the number of states in which production is performed is lower, than when

upward substitution cannot be offered. This trend is observed across datasets B, C,
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(a) Production for Problem Set B
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(b) Recovery for Problem Set B
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(c) Production for Problem Set C
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(d) Recovery for Problem Set C
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(e) Production for Problem Set D
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(f) Recovery for Problem Set D

Figure 7.12: The number of states in which replenishment is chosen under the

substitution strategies
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and D. This suggests that, when substitution is available, the firm produces less as it

is willing to let some demand for produced goods be met by recovered goods.

Recall that in the analysis of the policy performance (§7.6.2) it was observed that

the fill rate for problem 08 was lower when upward substitution could be offered (under

the upward and two-way strategies). Examining Figure 7.12, notice that for problem

08, the number of states in which production is performed is lower for the upward and

two-way strategies. This suggests that one reason for the lower fill rate could be that

when substitution is offered, production can be performed less frequently.

Downward substitution is offered in the event of a shortage of recovered goods.

When downward substitution can be offered (under the downward and two-way

strategies) then the number of states performing recovery is lower, in general, than

when substitution cannot be offered. However, this trend does not seem to hold across

all problems.

Substitution Actions. Upward substitution can only be offered when i1 = 0 and

i2 > 0, and downward substitution can only be offered when i2 = 0 and i1 > 0.

Therefore, each type of substitution can be offered in a maximum of 1× 20× 212 × 4 =

35280 states. In the following analysis we focus on the two-way substitution strategy

because under the other three strategies, one or both of the substitution actions will

always take a value of 0. Table 7.7 shows the number of states for which it is optimal

to offer each type of substitution under a two-way substitution strategy. Data for the

other substitution strategies is available in Appendix D, in Tables D.13, D.14 and D.15.

Figure 7.13 shows the number of states for which it is optimal to offer each type

of substitution, under a two-way substitution strategy. Observe that it is optimal to

offer upward substitution in all of the possible 35280 states. For downward substitution

on the other hand, there are some problems which always offer substitution, and some

which sometimes offer substitution. Across the 20 base problems the number of states

offering downward substitution is quite variable, however for specific problems, there

is not much difference between the data sets B, C and D. This suggests that for these

problems the order size for production and recovery does not have a major influence

on the substitution policy.
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Table 7.7: Number of states in which substitution is offered for a two-way substitution
strategy, out of a possible 35280 states

B C D

Problem as1 as2 Problem as1 as2 Problem as1 as2
B01 35280 35246 C01 35280 35124 D01 35280 35184
B02 35280 34961 C02 35280 34812 D02 35280 35028
B03 35280 35280 C03 35280 35280 D03 35280 35280
B04 35280 9366 C04 35280 10737 D04 35280 9531
B05 35280 35280 C05 35280 35280 D05 35280 35280
B06 35280 35280 C06 35280 35280 D06 35280 35280
B07 35280 35280 C07 35280 35280 D07 35280 35280
B08 35280 21623 C08 35280 22489 D08 35280 22220
B09 35280 35280 C09 35280 35280 D09 35280 35280
B10 35280 35280 C10 35280 35278 D10 35280 35280
B11 35280 33563 C11 35280 33325 D11 35280 33546
B12 35280 29526 C12 35280 29014 D12 35280 29553
B13 35280 35280 C13 35280 35280 D13 35280 35280
B14 35280 35280 C14 35280 35280 D14 35280 35280
B15 35280 32709 C15 35280 32561 D15 35280 32838
B16 35280 8043 C16 35280 9951 D16 35280 8085
B17 35280 7938 C17 35280 9702 D17 35280 7938
B18 35280 35162 C18 35280 35074 D18 35280 35124
B19 35280 7938 C19 35280 9702 D19 35280 7938
B20 35280 24951 C20 35280 24683 D20 35280 24959
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(a) Upward substitution a1
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(b) Downward substitution a2

Figure 7.13: Number of states which offer substitution for three problem sets under a

two-way substitution strategy

Interestingly, for problem 16 and 17 it is optimal to offer downward substitution

in approximately a quarter of possible states. Given the low fill rates, it is surprising

that this figure is so high. One might have expected that it was never optimal to offer

substitution. However it is possible that during the course of the simulation the system
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rarely moves to the states in which it is optimal to offer substitution.

Trigger-States and Action

In this section the relationships between the states and selected actions are investigated.

Throughout this section it is assumed that the two-way substitution strategy is used.

Replenishment Actions. The inventory levels are taken into account when the

action is selected, therefore it is interesting to investigate which inventory levels ‘trigger’

certain actions. In the case of production, the level of produced inventory (i1) when

production is selected is of particular interest. The states in which production is selected

as the optimal action can be identified as they have a positive value for their production

action, i.e., ap > 0. In the case of recovery it is interesting to examine the level of returns

in stock (ir) when recovery is performed, and the level of recovered inventory (i2) when

recovery is performed. For both these inventories we are only interested in the states

for which the optimal action is to perform recovery. These states can be identified as

they has a positive value for their recovery action, i.e., ar > 0. These states will be

referred to as “trigger states”.

The trigger states for problem B01 are discussed as an example, and then the

trigger levels for all problems will be examined using boxplots. Figure 7.14a shows the

frequency with which the production was performed for different levels of produced

inventory. Notice that production is most commonly performed if the produced

inventory level is 0, however it is performed in some states if the inventory is less than

6. These graphs could be used to obtain parameters for an ‘order-up-to’ structured

policy.

Figures 7.14b and 7.14c show the initial state of recovered inventory i2 and the

initial state of the returned inventory ir when recovery is chosen (ar > 0). Notice

that recovery is performed if the recovered inventory level is 1 or less, but also when

recovered inventory is 18 or more. The purpose of recovery is primarily to replenish the

recovered and component inventories. When recovery is performed at these high levels

of i2, the intention cannot be to replenish the recovered inventory, instead it may be
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to replenish the components inventory. However since recovered goods which do not fit

into the recovered or component inventories are discarded, recovery performed at high

levels of recovered inventory could done in order to dispose of excess returns.

Figures 7.15a and 7.15b show the levels of the returned and component inventories

when there are high levels of recovered inventory and recovery is performed for problem

B01. If recovery is being performed in order to dispose of returns, then it would be

expected that if recovered inventory is near capacity (i2 = 19 or i2 = 20), the component

inventory level would also be near capacity. However, as shown by these Figures, while

recovery is performed for high levels of returned inventory, the component inventory is

comparatively low. In fact, the maximum component inventory level for which recovery

is performed is 12, which is equivalent to the required inventory capacity needed if the

entire recovery batch were to enter the component inventory (Uc − Qr = 20 − 8).

This suggests that for this problem, recovery is performed at high levels of recovered

inventory in order to replenish the component inventory, not to dispose of returns.

Figure 7.16 shows the level of produced inventory when production is selected (i.e.

the level of produced inventory which triggers production), under two-way and no

substitution strategies. This Figure summarises the information in Figure 7.14a for all

problems. First consider the trigger states under the two-way substitution strategy.

Notice that for about half of the problems, production is most commonly performed

when produced inventory is equal to zero (i1 = 0) and is occasionally performed

at higher inventory levels. For the remainder of the problems the trigger state is

distributed over a range of states, approximately between 0–12. It could be possible

that the problems with the more distributed trigger states have a higher relative lost

sales cost and sale price, than the problems with trigger states of i1 = 0.

For the problems which mostly order when the inventory level is 0, this suggests that

the firm should wait until the inventory has run out before placing an order. With this

in mind, compare the trigger levels under the two-way and no substitution strategies.

The trigger levels are higher when substitution is not possible. This suggests that the

optimal policy is willing to wait until inventory reaches zero, because substitution can

be used to meet demand which arrives during the production lead time. This is not

possible under the no-substitution strategy, therefore the order must be placed sooner.
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(c) Returns Inventory ir when ar >

0

Figure 7.14: Histograms showing trigger states associated with positive replenishment

actions under the optimal policy for problem B01 for a two way substitution policy
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0 and i2 ≥ 18
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Figure 7.15: Histograms showing trigger states associated with recovery when the level

of recovered inventory is high, under the optimal policy for problem B01 for a two way

substitution policy
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Recall that problem set C has a greater production order size Qp than B and D.

Trigger levels are, in general, lower for problems set C, than for B and D. This suggests

that because the order sizes are larger, the optimal policy waits until the inventory levels

are lower before placing an order.

The states which trigger recovery will now be considered. Figures 7.17 and 7.18 show

the level of recovered and returned inventory respectively, when recovery is performed,

under a two-way recovery strategy. First observe that because recovery is not performed

in problem 17, there is no box on the graph for this problem.

Considering first Figure 7.17, notice that the box plots are skewed towards 20,

indicating that recovery is performed more often for higher levels of returned inventory.

There must be at least Qr returns in stock in order to perform recovery – the lower

limit of these box plots reflects this.

Now consider Figure 7.18. This figure shows that the levels of recovered inventory

which trigger recovery are distributed across a wide range of states, but are skewed

towards zero, indicating that recovery is performed more often when the level of

recovered inventory is low. However, for some problems recovery is performed when

recovered inventory is very high. This suggests that the objective of performing recovery

in these situations is not to replenish the recovered inventory.

Recovery could be performed in order to replenish the component inventory or to

dispose of excess returns. Figure 7.19 shows the level of component inventory when

recovery is performed and the level of recovered inventory is high. Figure 7.20 shows

the level of returned inventory when recovery is performed and the level of recovered

inventory is high. These figures shows that the component inventory level is not near

capacity, and that the returned inventory is distributed across a range of states, which

indicates that recovery is performed in order replenish the component inventory rather

than dispose of returns.

Substitution Actions. The substitution actions can take values of 0 or 1 where for

a given state, a value 1 indicates that substitution should be offered and a value of 0

indicates that substitution should not be offered. In this section we investigate in which

states substitution is offered, bearing in mind that substitution can only be offered in
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(a) Problem Set B - two-way substitution
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(b) Problem Set B - no substitution
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(c) Problem Set C - two-way substitution
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(d) Problem Set C - no substitution
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(e) Problem Set D - two-way substitution
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(f) Problem Set D - no substitution

Figure 7.16: Graphs showing the level of produced inventory (trigger level) when

production is performed under a two-way and no substitution policies.
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 7.17: Graphs showing the level of returned inventory (trigger level) when

recovery is performed under a two-way substitution policy
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 7.18: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed under a two-way substitution policy
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 7.19: Graphs showing the level of component inventory when recovery is

performed and recovered inventory is at near maximum capacity (i2 > 18) under a

two-way substitution policy
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 7.20: Graphs showing the level of returned inventory when recovery is performed

and recovered inventory is at near maximum capacity (i2 > 18) under a two-way

substitution policy.

313



0 5 10 15 20
0

500

1000

1500

2000

2500

i
1
 for i

2
=0

fr
eq

ue
nc

y

 

 
a

2
=0

a
2
=1

0 5 10 15 20
0

500

1000

1500

2000

2500

i
2
 for i

1
=0

fr
eq

ue
nc

y

 

 
a

1
=0

a
1
=1

Figure 7.21: Histogram showing states in which substitution is offered for problem B01

under a two-way substitution strategy

some states. Upward substitution can only be offered if the produced inventory level

is zero (i1 = 0) and the recovered inventory level is greater than zero (i2 > 0). These

restrictions on the inventory levels mean that for each level of recovered inventory, there

are a total of 1×1×212×4 = 1764 states in which upward substitution could be offered.

Correspondingly, downward substitution can only be offered if the recovered inventory

is zero (i2 = 0) and the produced inventory level is greater than zero (i1 > 0). For

each level of produced inventory there are a total of 1764 states in which downward

substitution could be offered.

Figure 7.21 shows the inventory levels and the substitution decision for problem

B01. Notice that for this problem upward substitution is offered whenever recovered

inventory is greater than 0. Downward substitution is always offered if the produced

inventory level is greater than 1 and sometimes offered if the inventory is equal to 1.

Figure 7.22 summarises the level of produced inventory in stock when downward

substitution is offered. Notice that for many of the problems it is optimal to offer

downward substitution in states where the produced inventory is greater than one.

However, for problems 4, 8, 12, 15, 16, 17, 19 the level of produced inventory must be

greater than one in order to offer substitution. The produced inventory level for which

downward substitution is offered is lower for dataset C, than for B andD. This suggests

that an increased production size (as in C) allows a more flexible substitution policy.

314



Recall that problem 17 had a fill rate of 0 for recovered inventory, despite it

being optimal to offer downward substitution in approximately a quarter of possible

states. Referring to Figure 7.22, notice that it is not optimal to offer substitution

if the produced inventory level is less than 12 for problems B17 and D17, and less

than 10 for problem C17. Referring to Table 7.5, notice that the maximum level of

produced inventory over the length of the simulation 9 for problems B17 and D17, and

11 for problem C17. This suggests that for this problem, the system never (or very

rarely) has sufficient produced inventory in stock for it to be optimal to offer downward

substitution. This helps to explain why the recovered inventory fill rate for problem 17

is zero.

Figure 7.23 shows the level of recovered inventory when upward substitution can be

offered. Observe that upward substitution can be offered for all states. This is in line

with the frequency analysis which showed that substitution is offered in all allowable

states. The is no cost-disincentive in offering upward substitution, since the recovered

goods are sold for the same price, regardless of whether they are sold as a substitution

or as a regular sale.

7.6.4 Analysis of Recovery Strategy

In this section we compare the performance of the system under two recovery quality

strategies: recovery of high quality returns only and recovery of both high and low

quality returns. In this section the focus is on the effect of the quality of returns,

rather than the effect of substitution, therefore only a two-way substitution strategy is

considered. The effect of the quality of returns is assessed with respect to performance

(the long run average reward, the fill rates) and the policy structure (the frequency of

replenishment and substitution, and states ‘triggering’ replenishment and substitution).

Average Reward

Figure 7.24 shows the long run average reward of the optimal policy calculated for the

two quality strategies under a two-way substitution strategy. As expected the reward

is higher when both high and low quality returns are recovered. However for some

problems, the inclusion of low quality recovery does not lead to a noticeable increase in

the average reward. The data used to construct these Figures is presented Table 7.8.
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 7.22: Graphs showing the levels of produced inventory for which downward

substitution can be offered, under a two-way substitution strategy
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 7.23: Graphs showing the levels of recovered inventory for which upward

substitution can be offered, under a two-way substitution strategy
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(a) Problem Set B
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(b) Problem Set C
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(c) Problem Set D

Figure 7.24: Average reward of the optimal policy calculated for two quality strategies

under a two-way substitution strategy
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Table 7.8: Average reward of the optimal policy calculated for two quality strategies
under a two-way substitution strategy

B C D
Problem Only High Low and High Only High Low and High Only High Low and High

01 682.3279 713.7553 675.2347 705.9478 677.9475 709.4329
02 137.5913 236.0227 133.3471 230.3007 137.5913 242.0744
03 860.8656 1173.3080 853.6164 1162.1803 856.3637 1164.7638
04 154.9781 183.5772 146.0045 174.1442 154.9781 180.9843
05 2972.9250 3038.9410 2964.3916 3019.1330 2967.1857 3032.5782
06 1081.6905 1129.6040 1071.4471 1120.0609 1084.3413 1138.8094
07 1422.6796 1499.3618 1419.5938 1494.4392 1424.2572 1500.9091
08 60.1156 79.9090 60.1156 76.9781 66.5772 85.5068
09 524.5998 672.6597 513.0015 659.4672 524.5998 704.2378
10 1324.6929 2068.4609 1306.6230 2043.9817 1324.5207 2066.4963
11 931.4246 1200.9714 930.6251 1193.2640 930.6130 1197.4479
12 709.6151 787.9194 702.0750 779.5721 709.6124 787.9270
13 1632.1267 2020.4322 1631.6483 2018.2048 1632.6060 2022.3762
14 885.7947 890.8854 880.6552 884.4565 886.8221 891.1434
15 215.7922 308.9396 222.2733 315.4457 215.7922 326.7173
16 -29.2792 41.2261 80.0500 150.0708 -28.2704 40.8775
17 1.0814 1.0814 39.4667 39.4667 1.0814 1.0814
18 0.0000 175.4455 0.0000 172.0579 100.3376 174.2624
19 -233.8644 -168.5815 -247.3999 -179.7160 -233.8644 -165.7716
20 258.7136 331.1385 248.7530 320.1212 257.7139 329.5992

Fill Rates

Effect of Recovery Strategy on Fill Rates. The fill rates under the two recovery

strategies are compared in Figure 7.25. The data for these graphs is presented in

Appendix D, in Tables D.16 and D.17.

The fill rates appear to be similar across the three problem sets B, C and D. In

general the fill rates are higher under the recovery strategy in which both high and low

quality returns are recovered, however this is not the case for all problems (e.g. problem

B02). For produced inventory, several problems has a substantially lower fill rate under

a high-quality only recovery strategy (e.g. B08, B18). For recovered inventory, under

a high-quality only recovery strategy there are more problems which have a zero fill

rate for recovered inventory. This suggests that for these problems, it may become

unprofitable to sell recovered goods when low quality recovery is not performed. This

will be investigated further when the policy structure is examined.
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(a) Problems B - Produced Inventory i1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

Problem

S
ub

st
itu

tio
n−

In
cl

us
iv

e 
F

ill
 r

at
e 

i 2

 

 

both
high

(b) Problems B - Recovered Inventory i2
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(c) Problems C - Produced Inventory i1
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(d) Problems C - Recovered Inventory i2
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(e) Problems D - Produced Inventory i1
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(f) Problems D - Recovered Inventory i2

Figure 7.25: Substitution-inclusive fill rates for all problems sets for both quality

strategies
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Action Size and Frequency

Replenishment Actions. Table 7.10 and Figure 7.26 shows the number of states

in which replenishment is selected for each of the recovery strategies, under a two-way

substitution strategy. The recovery strategy does not affect the maximum number of

states in which each action could be chosen. Therefore within each graph, the number

of states in which each action can be selected is the same. (See Table D.11 for the

maximum number of states in which replenishment could be selected.) In general,

production is performed more under the high-quality recovery strategy than under the

both high and low recovery strategy. There are some problems for which it is optimal

to never produce, or to produce very rarely (B18, C18). Recovery, on the other hand

in general, is performed less frequently under a high-quality recovery strategy. The

exception to this is problems (B16,C16, D16, D18). There are more problems which

choose to recover infrequently (or not at all) under the high-quality only recovery

strategy.

Substitution Actions. Table 7.11 and Figure 7.27 show the number of states in

which substitution is offered for both recovery strategies, under a two-way substitution

strategy.

With the exception of problems B18 and C18, there is no difference in the number

of states for which upward substitution is offered under each of the recovery strategies.

Similarly, with the exception of problems B18 and C18, there is very little difference

in the number of states for which downward substitution is offered under each of the

recovery strategies. For problems B18 and C18 it is not optimal to perform either type

of substitution under the high-quality only recovery strategy. As observed above it is

not optimal to produce or recovery for this problem, and as such the inventory levels

of produced and recovered inventory remain at zero through out the simulation (see

Table 7.9).

Trigger-states and Actions

In this section we compare when replenishment and substitution performed under each

of the recovery strategies.
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(a) Production ap for Problem Set B
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(b) Recovery ar for Problem Set B
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(c) Production ap for Problem Set C
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(d) Recovery ar for Problem Set C
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(e) Production ap for Problem Set D
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(f) Recovery ar for Problem Set D

Figure 7.26: Number of states with positive replenishment quantities under a two-way

substitution strategy for both quality strategies.
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(a) Upward substitution for Problem Set B
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(b) Downward substitution for Problem Set B
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(c) Upward substitution for Problem Set C
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(d) Downward substitution for Problem Set C
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(e) Upward substitution for Problem Set D
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(f) Downward substitution for Problem Set D

Figure 7.27: Graphs showing the number of states in which substitution is chosen under

the recovery strategies
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Replenishment Actions. Figure 7.28 shows the levels of produced inventory

which trigger production. Notice that the trigger levels are lower under a high

quality only recovery strategy. This could be because under a high-quality only

strategy, components are bought when needed and are not stored (and thus the level

of components is zero), therefore production is performed purely to replenish stock,

rather than use up stored components (see Table 7.9 ).

Figure 7.29 shows the level of recovered inventory when recovery is performed.

Notice that fewer problems perform recovery under a high-quality only recovery

strategy, compared with under the both high and low recovery strategy. Under the

high-quality strategy no problems perform recovery when recovered inventory is at

capacity. This suggests that under the both high and low recovery strategy, recovery

is performed in order to replenish the components inventory rather than the recovered

inventory.

Figure 7.30 shows the level of returned inventory when recovery is performed. Apart

of the fact that fewer problems perform recovery under the high-quality strategy, the

graphs appear similar. Thus, the level of returns for which recovery is performed is not

affected by the recovery strategy.

Substitution Actions. Figures 7.31 show the levels of produced inventory for

which substitution is offered. There does not appear to be any difference between the

two recovery strategies. This is perhaps to be expected since the number of states and

costs are the same under both recovery strategies.

7.7 Discussion

This chapter has presented a continuous time product recovery model with separate

markets and substitution.

In this model, if there is a shortage of recovered goods then the firm may offer the

customer a produced good instead (downward substitution), and if there is a shortage of

produced goods then the firm may offer the customer a recovered good instead (upward
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(b) Problem Set B – High quality recovery only
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery
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(f) Problem Set D– High quality recovery only

Figure 7.28: Graphs showing the level of produced inventory (trigger level) when

production is performed under a two-way substitution policy for two recovery strategies.
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(b) Problem Set B – High quality recovery only
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(c) Problem Set C– Both high and low quality

recovery
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery
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(f) Problem Set D– High quality recovery only

Figure 7.29: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed under a two-way substitution policy.
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(b) Problem Set B – High quality recovery only
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery

0

2

4

6

8

10

12

14

16

18

20

1 3 5 6 7 8 9 10 11 12 13 14 16 18 20
Problem

R
et

ur
ne

d 
In

ve
nt

or
y 

Le
ve

l

(f) Problem Set D– High quality recovery only

Figure 7.30: Graphs showing the level of returned inventory (trigger level) when

recovery is performed under a two-way substitution policy.
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(b) Problem Set B – High quality recovery only
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(d) Problem Set C– High quality recovery only
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(e) Problem Set D– Both high and low quality

recovery
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(f) Problem Set D– High quality recovery only

Figure 7.31: Graphs showing the levels of produced inventory for which substitution

can be offered, under a two-way substitution strategy.
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substitution). The rationale for offering substitution is that doing so allows the firm

to potentially gain some revenue, rather than losing the sale and also some goodwill.

The customer can choose to accept or reject the offered substitution, therefore offering

substitution does not remove all uncertainty. In downward substitution, the firm offers

a produced good for a reduced price and may also incur an opportunity cost associated

with no longer being able to sell the produced good for the full price. In the case of

upward substitution, the firm charges the price of the lower item so it misses out on

the revenue it would have received had it been able to meet the demand with produced

goods.
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Table 7.9: Summary of inventory levels during the simulation under a two-way
substitution strategy and a high quality recovery strategy

(a) Problems B

Produced Inventory Recovered Inventory Returned Inventory Component Inventory
Problemmean min max mode mean min max mode mean min max mode mean min max mode
B01 4.889 0 9 1 4.534 0 9 2 17.979 0 20 20 0 0 0 0
B02 5.744 0 10 5 0 0 0 0 19.999 0 20 20 0 0 0 0
B03 7.880 0 14 8 0.775 0 14 0 5.659 0 20 10 0 0 0 0
B04 5.770 0 10 6 0 0 0 0 19.999 0 20 20 0 0 0 0
B05 0.593 0 11 0 10.736 0 20 12 11.446 0 20 20 0 0 0 0
B06 5.317 0 10 1 3.373 0 6 3 19.455 0 20 20 0 0 0 0
B07 6.155 0 12 4 6.228 0 14 5 17.690 0 20 20 0 0 0 0
B08 0 0 0 0 3.757 0 8 3 18.315 0 20 20 0 0 0 0
B09 5.740 0 10 2 0 0 0 0 19.999 0 20 20 0 0 0 0
B10 5.403 0 11 10 2.593 0 8 2 18.107 0 20 20 0 0 0 0
B11 7.887 0 16 4 5.868 0 13 5 14.647 0 20 20 0 0 0 0
B12 7.852 0 14 12 2.267 0 5 2 18.927 0 20 20 0 0 0 0
B13 1.299 0 15 0 11.048 0 20 14 9.129 0 20 20 0 0 0 0
B14 1.104 0 9 0 4.157 0 10 4 10.046 0 20 16 0 0 0 0
B15 5.778 0 10 9 0 0 0 0 20.000 0 20 20 0 0 0 0
B16 4.868 0 9 7 0.023 0 5 0 4.021 0 11 4 0 0 0 0
B17 4.859 0 9 7 0 0 0 0 19.999 0 20 20 0 0 0 0
B18 0 0 0 0 0 0 0 0 19.998 0 20 20 0 0 0 0
B19 4.859 0 9 3 0 0 0 0 20.000 0 20 20 0 0 0 0
B20 3.467 0 6 2 1.543 0 4 1 10.237 0 20 2 0 0 0 0

(b) Problems C

Produced Inventory Recovered Inventory Returned Inventory Component Inventory
Problemmean min max mode mean min max mode mean min max mode mean min max mode
C01 5.888 0 11 3 4.529 0 9 3 17.996 0 20 20 0 0 0 0
C02 6.738 0 12 8 0 0 0 0 19.999 0 20 20 0 0 0 0
C03 9.324 0 17 12 0.768 0 13 0 5.642 0 20 8 0 0 0 0
C04 6.762 0 12 10 0 0 0 0 19.999 0 20 20 0 0 0 0
C05 0.753 0 14 0 10.880 0 20 12 11.304 0 20 20 0 0 0 0
C06 6.828 0 13 13 3.292 0 6 3 19.466 0 20 20 0 0 0 0
C07 7.664 0 15 10 6.229 0 14 5 17.680 0 20 20 0 0 0 0
C08 0 0 0 0 3.757 0 8 3 18.315 0 20 20 0 0 0 0
C09 5.846 0 11 3 0 0 0 0 19.999 0 20 20 0 0 0 0
C10 6.817 0 14 1 2.545 0 8 2 18.131 0 20 20 0 0 0 0
C11 9.388 0 19 14 5.824 0 14 5 14.650 0 20 20 0 0 0 0
C12 9.221 0 17 5 2.205 0 5 2 18.926 0 20 20 0 0 0 0
C13 1.664 0 18 0 10.981 0 20 14 9.202 0 20 20 0 0 0 0
C14 1.333 0 11 0 4.419 0 11 4 10.395 0 20 16 0 0 0 0
C15 6.771 0 12 10 0 0 0 0 20.000 0 20 20 0 0 0 0
C16 5.876 0 11 9 0.023 0 5 0 4.021 0 11 4 0 0 0 0
C17 5.863 0 11 3 0 0 0 0 19.999 0 20 20 0 0 0 0
C18 0 0 0 0 0 0 0 0 19.998 0 20 20 0 0 0 0
C19 5.862 0 11 4 0 0 0 0 20.000 0 20 20 0 0 0 0
C20 4.465 0 8 5 1.548 0 4 1 10.284 0 20 20 0 0 0 0

(c) Problems D

Produced Inventory Recovered Inventory Returned Inventory Component Inventory
Problemmean min max mode mean min max mode mean min max mode mean min max mode
D01 4.882 0 9 1 5.326 0 11 3 17.732 0 20 20 0 0 0 0
D02 5.744 0 10 5 0 0 0 0 19.999 0 20 20 0 0 0 0
D03 8.091 0 14 11 0 0 0 0 19.999 0 20 20 0 0 0 0
D04 5.770 0 10 6 0 0 0 0 19.999 0 20 20 0 0 0 0
D05 0.646 0 11 0 11.036 0 20 12 11.622 0 20 20 0 0 0 0
D06 5.318 0 10 1 3.295 0 7 3 19.431 0 20 20 0 0 0 0
D07 6.143 0 12 3 7.308 0 16 6 17.394 0 20 20 0 0 0 0
D08 0 0 0 0 4.455 0 10 4 18.142 0 20 20 0 0 0 0
D09 5.740 0 10 2 0.000 0 1 0 19.997 0 20 20 0 0 0 0
D10 5.376 0 11 10 3.037 0 10 2 17.925 0 20 20 0 0 0 0
D11 7.909 0 16 7 6.639 0 15 5 14.683 0 20 20 0 0 0 0
D12 7.845 0 14 3 2.150 0 6 2 18.854 0 20 20 0 0 0 0
D13 1.380 0 15 0 10.939 0 20 13 9.548 0 20 20 0 0 0 0
D14 1.144 0 9 0 4.410 0 11 4 10.130 0 20 15 0 0 0 0
D15 5.778 0 10 9 0 0 0 0 20.000 0 20 20 0 0 0 0
D16 4.868 0 9 7 0.024 0 6 0 5.052 0 13 10 0 0 0 0
D17 4.859 0 9 7 0 0 0 0 19.999 0 20 20 0 0 0 0
D18 4.443 0 8 7 0.793 0 10 0 2.398 0 16 4 0 0 0 0
D19 4.859 0 9 3 0 0 0 0 20.000 0 20 20 0 0 0 0
D20 3.467 0 6 2 1.759 0 5 1 10.395 0 20 20 0 0 0 0
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Table 7.10: Number of states in which replenishment is chosen under a two-way
substitution, high-quality only strategy.

B C D

Problem ap ar Problem ap ar Problem ap ar
B01 16918 22527 C01 15910 22541 D01 16930 19074
B02 135639 0 C02 98259 0 D02 135282 0
B03 118636 15488 C03 80127 15289 D03 120116 346
B04 43596 0 C04 37569 0 D04 43239 0
B05 4529 30496 C05 3596 31372 D05 4625 25110
B06 24068 36880 C06 19128 37321 D06 23278 32139
B07 125420 35055 C07 82813 35104 D07 127012 23040
B08 13365 25445 C08 12904 25357 D08 13115 21024
B09 10164 0 C09 9303 0 D09 9910 1055
B10 119886 9623 C10 72086 9512 D10 118702 7081
B11 139952 44589 C11 95656 46013 D11 140515 38640
B12 62047 21007 C12 55177 19871 D12 61925 17913
B13 99966 49612 C13 61615 49501 D13 99878 40780
B14 644 14386 C14 482 13884 D14 636 13254
B15 48426 0 C15 46284 0 D15 48405 0
B16 114226 162661 C16 88088 161194 D16 117798 135610
B17 14658 0 C17 16275 0 D17 14091 0
B18 0 0 C18 0 0 D18 17532 88945
B19 777 0 C19 630 0 D19 714 0
B20 15795 14306 C20 14848 14252 D20 15785 13451
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Table 7.11: Number of states in which substitution is offered under a two-way
substitution.

B C D

Problem as1 as2 Problem as1 as2 Problem as1 as2
B01 35280 35280 C01 35280 35124 D01 35280 35280
B02 35280 35280 C02 35280 34812 D02 35280 35280
B03 35280 35280 C03 35280 35280 D03 35280 35280
B04 35280 8064 C04 35280 10737 D04 35280 8064
B05 35280 35280 C05 35280 35280 D05 35280 35280
B06 35280 35280 C06 35280 35280 D06 35280 35280
B07 35280 35280 C07 35280 35280 D07 35280 35280
B08 35280 18396 C08 35280 22489 D08 35280 19572
B09 35280 35280 C09 35280 35280 D09 35280 35280
B10 35280 35280 C10 35280 35278 D10 35280 35280
B11 35280 33202 C11 35280 33325 D11 35280 33128
B12 35280 27688 C12 35280 29014 D12 35280 27713
B13 35280 35280 C13 35280 35280 D13 35280 35280
B14 35280 35280 C14 35280 35280 D14 35280 35280
B15 35280 24822 C15 35280 32561 D15 35280 24822
B16 35280 7938 C16 35280 9951 D16 35280 7938
B17 35280 7938 C17 35280 9702 D17 35280 7938
B18 0 0 C18 35280 35074 D18 35280 35280
B19 35280 7938 C19 35280 9702 D19 35280 7938
B20 35280 18518 C20 35280 24683 D20 35280 18515
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The uncertainty associated with the supply of the recovered inventory, in terms

of quality, quantity and timing, means that planning and ensuring that there is

sufficient inventory in stock is much harder. Offering downward substitution allows

the firm to somewhat mitigate these risks. In this model, there is also uncertainty

associated with the lead time of the production and recovery orders. On the one hand,

offering substitution allows the firm to mitigate the risks associated with the arrival of

replenishment orders, however on the other hand, offering substitution carries the risk

that the inventory (of the offered good) may run out before the next replenishment

arrives. The firm must weigh up these costs and benefits when deciding to offer

substitution.

The analysis conducted in this chapter has shown that allowing both upward and

downward substitution can enable firms to receive an increased average reward. In

general, the greatest increase in reward is attained by allowing a substitution strategy

which includes upward substitution. In this model, there is little risk associated with

upward substitution as recovered goods are sold for their regular price.

When sales met by substitution are included in the fill rate the fill rate is higher,

however the magnitude of the increase depends on the amount of substitution performed

and on the associated costs and revenues. The fill rates appear, in general, to be

higher and more stable for different problems for produced inventory than for recovered

inventory. The uncertainty surrounding the supply of recovered goods could be one

reason for this.

Four substitution strategies were investigated. The substitution strategies which

permit downward substitution (downward and two-way strategies) led to higher

substitution-inclusive fill rates for recovered inventory. This is expected since downward

substitution is offered when there is a shortage of recovered goods. A comparison

between substitution strategies reveals that allowing substitution, in general, leads to

increased fill rates. However, in some cases the substitution-inclusive fill rate is actually

lower when substitution is allowed. The reason for this is that the SMDP is maximizing

the reward, not the fill rate. However it does highlight the complicated nature of the

relationship between the substitution and replenishment decisions in this model. Future

research could investigate how the policy changes if the objective is to maximize the

fill rate, rather than to maximize the long run average reward.
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Production was performed less frequently when the size of the production order was

larger. A similar trend was found for recovery in some cases. Offering substitution can

change the optimal replenishment plan. For some problems, production is performed

less frequently when upward substitution can be offered, and recovery is performed less

frequently when downward substitution can be offered.

In general, the number of states in which production is performed is lower when

upward substitution cannot be offered. This suggests that, when substitution is

available the firm produces less as it is willing to let some demand for produced goods

be met by recovered goods. When downward substitution can be offered (under the

downward and two-way strategies) then the number of states performing recovery is

lower, in general, than when substitution cannot be offered. However, this trend does

not seem to hold across all problems.

The use of the shared resource in the initial stages of production and recovery means

that there is a complicated relationship between the size of the replenishment orders

and the frequency of replenishment. For instance, when the production size is larger,

recovery is performed more often. This could be because larger production sizes result

in production being performed less frequently, meaning that there are more states in

which recovery could be performed.

In some problems, it was observed that it was never optimal to recover. Factors

such as the setup cost of recovery, the sale price and holding cost of recovered items

compared with the equivalent production-related costs contribute to making recovery

less desirable than production.

In this analysis it was always optimal to offer upward substitution and sometimes

optimal to offer downward substitution. The frequency with which substitution is

offered does not seems to be affected by the replenishment order sizes. When

substitution is available, the optimal policy waits until the levels of produced inventory

(trigger levels) are lower before placing a production order. Increased order sizes for

production also lead to lower trigger levels for production. There is no cost-disincentive

in offering upward substitution, since the recovered goods are sold for the same price,

regardless of whether they are sold as a substitution or as a regular sale.
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Recovery is performed more often when the level of returned inventory is high.

In general recovery is triggered by low levels of recovered inventory, however in some

cases recovery is performed when recovered inventory is very high. In these cases the

objective of performing recovery is not to replenish the recovered inventory, but rather

to replenish the component inventory.

As expected, the long run average reward is higher when both high and low quality

returns are recovered. In general, the fill rates are higher when both high and low

quality returns are recovered. Under a high-quality only recovery strategy there are

more problems which have a zero fill rate for recovered inventory, compared with a

high-and-low quality recovery strategy.

In general, production is performed more under the high-quality recovery strategy

than under the both high and low recovery strategy. Recovery, on the other hand is, in

general, performed less frequently under a high-quality recovery strategy. This suggests

that for these problems, it may become unprofitable to sell recovered goods when low

quality recovery is not performed. There is little difference in the optimal substitution

under the two recovery strategies.

The analysis conducted here is limited by the number of problems considered. The

computational time required to obtain the optimal policy for each problems restricted

the number of problems that could be investigated.

It was assumed that production and recovery require a shared resource at the

beginning of the process, meaning that production and recovery could not be chosen

at the same time. Some of the results suggested that if it was not for this requirement,

recovery may be chosen more often. Future research could relax this assumption and

investigate the effect of this and other operational restrictions.

In this analysis upward substitution was always offered if there was a stock out of

produced inventory, providing that there was at least one unit of recovered inventory in

stock. Under upward substitution the firm receives the same revenue for the recovered

good as it would have if it had sold the good to a consumer originally demanding a

recovered good. There is no disincentive for offering upward substitution. However,

if the goods in question were purchased repeatedly, then offering a substitution to a
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“produced” customer could encourage them to switch to the recovered product for

their next purchase. The recovered product is cheaper, thus there may be some costs

associated with losing “produced” customers to the recovered market. Future research

could investigate this by modelling demand using dynamic functions which change if

customers are introduced to an alternative product.

The model in this chapter extended the model in Chapter 6 by incorporating the

continuous time element into the problem. This allows the substitution aspect of the

problem to be studied in more detail by taking into account the risk of uncertain

replenishment lead time. The continuous nature of this model means that production

and recovery decisions are monitored continuously. However, in reality these decisions

may only be acted on periodically, e.g. once per day or once per week. Future research

could investigate a hybrid model with periodic decision making for production and

recovery and continuous arrivals of demand and decision making for substitution.

As mentioned in Chapter 6, there are some similarities between offering substitution

between produced and recovered goods, transhippments in a multi-location inventory

system and substitution in a multi-item inventory system. Future research could

investigate whether insights may be gained from multi-item inventory substitution and

multi-location transshipment problems, in particular with regards to the dimensionality

and computational requirements of the current model.

This research has highlighted some properties of product recovery with substitution

that could be useful to firms who are currently in or who are considering entering this

industry. Future research could investigate simple, yet effective, policies for use by

managers in charge of such systems.
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Chapter 8

Conclusion

This thesis investigates the importance of considering the quality of returns in the

management of inventory in a product recovery system, by examining the cost-

effectiveness of recovering both high quality and low quality returns. Quality in product

recovery systems has not been sufficiently studied, with many authors either ignoring

the possibility of receiving lower quality returns, or assuming they are disposed of rather

than recovered. However, such assumptions ignore the possibility that the firm might

be able to salvage value from lower quality returns by using them for parts or materials.

These assumptions also ignore the impact of governmental and societal pressures on

producers to reduce waste by recycling as much as possible.

The four models presented in this thesis were used to investigate the cost-

effectiveness of performing low quality recovery, but also fill gaps in their respective

streams of literature. The main findings, obtained through the analysis of these four

models, relate to the following strategic issues: the cost-effectiveness of low quality

recovery and the profitability of substitution between newly produced and recovered

goods. With regard to the cost-effectiveness of low quality recovery, it was found

that performing both high and low quality recovery resulted in cost savings; reduced

the sensitivity of the optimal cost to operational restrictions on the choice of decision

variables; and allowed better customer service through increased fill rates. The nature

of the cost savings is problem dependent. The findings of this thesis could be used

therefore to help a firm assess the cost-effectiveness of recovering low quality returns,

in addition to high quality returns.
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Offering substitution between produced and recovered goods ameliorates the

uncertainty associated with quality, quantity, and timing of returns. This uncertainty

makes it difficult to ensure that there is sufficient stock to meet demand, however by

offering substitution the firm is able to mitigate this and therefore gain some revenue

rather than losing sales and goodwill. However, there are some trade-offs associated

with substitution. In offering downward (upward) substitution, the firm faces the risk

that the produced (recovered) inventory may also run out before the next replenishment

arrives. However, these risks are not symmetric. With regard to downward substitution,

the firm must therefore consider the following trade-off: not offering substitution and

losing sales of recovered goods; or offering substitution, selling produced goods for a

lower price and potentially losing future sales of produced goods. Upward substitution,

on the other hand, involves a trade-off only with respect to potential for future lost

sales, not with respect to the revenue received. This is because recovered goods are

sold for the same price regardless of whether they are sold to “recovered” customers, or

as substitutes to “produced” customers. Notwithstanding these trade-offs, the findings

of this thesis show that substitution between the markets for newly produced and

recovered goods allows firms to increase both their profits and fill rates. The findings

also highlight the need for an integrated decision-making process as the substitution

policy can affect the frequency with which replenishment orders are placed.

The two types of substitution may have different affects in the long and short term.

For instance, upward substitution has a short-term benefit of receiving the full price for

the good that is sold. However in the longer-term, there may a be risk that “produced”

customers who are offered a recovered good as a substitute, may choose to switch

to recovered goods for future purchases. The opposite affect could be observed for

downward substitution. In the short-term, the firm may lose some revenue by selling

a “produced” good for a reduced price, however, “recovered” customers will generally

feel positive about the experience of being offered this type of substitution, so in the

long-term may be more loyal to the firm in the future.

While we have shown that there is potential for improvement in managing

uncertainty in product recovery systems by performing low quality recovery, and by

offering substitution between produced and recovered goods, there are some limitations

in our approach. One limitation of this research is that the models presented here do
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not relate to a specific company or industry, and because of this many assumptions had

to be made regarding the nature of the model. Despite the fact that these assumptions

were based on research conducted using a range of sources (literature, industry, media

and a personal visit to a recycling company), there is still a risk that the assumptions

may not be broadly applicable. However, on the other hand, not working with a specific

company or industry has allowed us to develop more general models, which may have

a wider range of applications.

Another risk associated with not working with a specific company or industry is that

the current prevalence of hybrid product recovery firms and thus practical relevance of

this thesis, is uncertain. While the research conducted for this thesis does suggest that

there are some companies who currently perform both production and recovery, many

of the examples of hybrid product recovery cited in the literature are now several years

old. The product recovery industry has grown substantially in the past decade, and

with more stringent legislation it is possible that it is now a trend towards recovery

being performed by specialist firms, rather than by the original producers. A current

review of product recovery industry is required to provide more details on this point.

Another limitation of this thesis was caused by the aptly-named “curse of

dimensionality”. The dimensionality associated with the three Markov decision process

models (Chapters 5–7) meant that the capacity of each of the inventories had to

be restricted to unrealistically low levels. Larger, more realistic problems could not

be solved in any reasonable time using the computing power currently available.

Alternative solution methodologies, such as heuristics, would need to be considered

in order to solve problems of realistic size. The application of heuristic methods to the

models in this thesis is one area for future work.

The limitations of this thesis have highlighted avenues for future research. For

instance directions for future research are could be found by altering some of the

modelling assumptions. Assumptions which could be altered include the independence

of demands and returns; the nature of the recovery process (sorting of returns within

recovery and the use of shared resource in production and recovery); ways for dealing

with recovered goods which do not fit into the serviceable or component inventories;

multiple quality classes; and multi-objective models which jointly maximise profit and

recovery rates.
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The relationship between substitution policies and future demand is also an area for

future research. Assuming that customers purchase goods repeatedly, then it is possible

that if “produced” customers are introduced to recovered goods through a substitution,

their demand preferences may change for future purchases. If this were a possibility

then the firm could end up losing revenue in the long-run, since recovered goods are sold

for less than newly produced goods. It would therefore also present an additional risk

associated with upward substitution. This problem could be investigated with a finite

horizon model and a dynamic demand function. However this would require further

analysis of consumer behaviour. For example Ansell et al. (2007) discuss cross-selling

opportunities and highlight that customer behaviour may differ for different types of

customers and in particular, mention that excessive cross selling can damage the future

relationship with the client. The same could apply in our model – some customers may

be offended at being offered a substitute.

This thesis has demonstrated the importance of considering the quality of returns

when managing a product recovery system and of understanding the trade-offs

associated with substitution between produced and recovered goods. Moreover, it has

highlighted numerous avenues for future research in topics relating to product recovery.

Product recovery can enable businesses to reduce the amount of waste sent to landfills,

which is a key issue in the context of increasing governmental and societal pressures to

achieve a zero-waste economy. This thesis sheds light on how this could be achieved by

examining how businesses can reuse and salvage value from what would otherwise be

refuse.
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Appendix A

Appendix for Deterministic

Lot-Sizing Model with a Single

Market

Introduction

This section presents additional information related to the first model in this thesis –

the deterministic product recovery model, which was presented in Chapter 4.

A.1 Model Description

A.1.1 Model Variables

This section relates to Section 4.3.3 and provides further details about the derivation

of the model conditions contained in equations (4.4) and (4.5). The derivations are

presented through equations (A.4), (A.5), (A.6) and (A.8). Recall that this product

recovery model is studied over a period of time called a cycle. A cycle is of length T

and consists of a sequence of Np production lots of size Qp, followed by a sequence of
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Nr recovery lots of size Qr. The model conditions in equations (4.1), (4.2) and (4.3)

are restated here for convenience in equations (A.1), (A.2) and (A.3) respectively:

dT = QpNp + αQrNr (A.1)

QrNr = fdT (A.2)

QpNp = QbNb + (1− α)QrNr (A.3)

Equations (A.1), (A.2) and (A.3) can be used to express the total number of

products produced, QpNp, in terms of the total number of products recovered, QrNr,

and the total number of components bought, QbNb. Using equations (A.1) and (A.2),

Qr can be defined in terms of Qp, Np, Nr. Beginning with equation (A.1), substituting

equation (A.2) and carrying out some simple algebraic manipulation produces the

following result:

dT = QpNp + αQrNr

QpNp = dT − αQrNr

QpNp = d
QrNr

fd
− αQrNr

QpNp =
QrNr

f
− αQrNr

QpNp = QrNr

( 1

f
− α

)

QpNp = QrNr
(1− αf)

f

Qr =
QpNp

Nr

f

(1− αf)
(A.4)

Similarly, using equations (A.3) and (A.4), Qb can be defined as follows:

QpNp = (1− α)QrNr +QbNb

QpNp = (1− α)QpNp
f

(1− αf)
+QbNb

QbNb = QpNp

(

1− f(1− α)

(1− αf)

)

QbNb = QpNp

(1− αf − f + αf

(1− αf)

)

QbNb = QpNp

( (1− f)

(1− αf)

)

Qb = Qp
Np

Nb

1− f

1− αf
(A.5)
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In a similar fashion the cycle length, T , can be defined in terms of Qp, Np. Once again

using equations (A.1) and (A.2) the following result is obtained:

dT = QpNp + αQrNr

dT = QpNp + αfdT

dT − αfdT = QpNp

dT (1− αf) = QpNp

T =
QpNp

d(1 − αf)
(A.6)

The cycle length T can also be expressed in terms of Qr and in terms of Qb. From

equation (A.2)

T =
QrNr

fd
(A.7)

and from equations (A.3), (A.6) and (A.7)

T =
QpNp

d(1 − αf)

T =
QbNb(1− αf)

(1− f)

1

d(1− αf)

T =
QbNb

d(1 − f)
(A.8)

Thus in summary, as presented in equations (4.4) and (4.5):

QpNp =
QrNr(1− αf)

f
=

QbNb(1− αf)

(1− f)
(A.9)

T =
QpNp

d(1 − αf)
=

QrNr

fd
=

QbNb

d(1− f)
(A.10)

A.2 Inventory Levels Across a Cycle

This section presents additional information to support Section 4.4.2, in particular

it provides further details about the derivation of the area under the graphs. Some

information presented in Section 4.4.2 is repeated here for clarity.

A.2.1 Case 2: Np, Nr, Nb ≥ 1

Serviceable Inventory

Figure A.1 shows a graph of the serviceable inventory level across a cycle with Np = 2

production lots and Nr = 4 recovery lots. The number of ordering lots, Nb, is not
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Serviceable

Qp(1− d/p)

Qr(α− d/r)
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A1A1

0

αQr/dQp/d

Figure A.1: Serviceable inventory levels for a system with Np = 2, Nr = 4.

stated here as it does not affect the shape of the serviceable inventory graph. The area

under the graph is made up of Np triangles A1 and Nr triangles A2, where:

Area of A1 = Qp(1− d/p)(Qp/d)(1/2)

Area of A2 = Qr(α− d/r)(αQr/d)(1/2)

The total area under of the graph is:

As = NpA1 +NrA2

= NpQp(1− d/p)(Qp/d)(1/2) +NrQr(α− d/r)(αQr/d)(1/2)

=
Q2

pNp

2

(

1

d
− 1

p

)

+
Q2

rNrα

2

(

α

d
− 1

r

)

(A.11)

From equations (A.4) and (A.10) we know that:

Qr =
QpNpf

Nr(1− αf)
and quad T =

QpNp

d(1 − αf)

Using these equations, it can be shown that the total area under the graph in terms of

Qp and T is:

As =
Q2

pNp

2

(

1

d
− 1

p

)

+
Q2

rNrα

2

(

α

d
− 1

r

)

=
Q2

pNp

2

(

1

d
− 1

p

)

+

(

QpNpf

Nr(1− αf)

)2 Nrα

2

(

α

d
− 1

r

)

=
Q2

pNp

2

(

1

d
− 1

p

)

+
Q2

pN
2
pαf

2

2Nr(1− αf)2

(

α

d
− 1

r

)

=
Q2

pNp

2

d(1− αf)

d(1− αf)

((

1

d
− 1

p

)

+
Npαf

2

Nr(1− αf)2

(

α

d
− 1

r

))

=
TQpd(1− αf)

2

((

1

d
− 1

p

)

+
Npαf

2

Nr(1− αf)2

(

α

d
− 1

r

))

=
TQp

2

(

(1− αf)

(

1− d

p

)

+
Npαf

2

Nr(1− αf)

(

α− d

r

))

(A.12)
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Returned Inventory

Time

Returned Inventory

0
QpNp/d

QpNpf + 2Qrf (α− d/r)

QpNpf +Qrf (α− d/r)
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3
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Qrf (α− d/r)
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Figure A.2: Returned inventory levels under a policy with Nr = 4 recovery lots.

Figure A.2 shows the returned inventory levels across a cycle with Nr = 4 recovery

lots. The number of production lots Np and the number of ordering lots Nb are not

stated here as they do affect the shape of the returned inventory graph. The area under

the graph consists of trapezium A3, Nr triangles A4, Nr triangles A5 and the rectangles

Ai
6 for i = 1, . . . Nr. The area of the triangles A3, A4, A5 are obvious from the graph.

The height of rectangles is not quite as obvious. The height of rectangle Ai
6 is the initial

inventory plus amount returned during production less the amount recovered during i

recovery lots plus the amount returned during i−1 recovery lots. The areas are defined

as follows:

Area of A3 = (QpNp/d)[Qrf(α− d/r) +QpNpf +Qrf(α− d/r)](1/2)

Area of A4 = (Qr(r − fd)/r)(Qr/r)(1/2)

Area of A5 = fdQr(α/d − 1/r)Qr(α/d − 1/r)(1/2)

Area of Ai
6 = (αQr/d)[QpNpf+Qrf(α−d/r)+(i−1)Qrf(α−d/r)−i(r−fd)Qr/r]

Area of A6 =
Qrα

d

Nr
∑

i=1

[QpNpf + iQrf(α− d/r)− iQr(r − fd)/r]

=
Qrα

d

(

QpNpNrf +

Nr
∑

i=1

iQr (f(α− d/r)− (r − fd)/r)

)

=
Qrα

d

(

QpNpNrf +Qr (f(α− d/r)− (r − fd)/r)

Nr
∑

i=1

i

)

=
Qrα

d

(

QpNpNrf +Qr (f(α− d/r)− (r − fd)/r)
Nr(Nr + 1)

2

)
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The total area under of the graph of the returned inventory is:

Ar = A3 +NrA4 +NrA5 +A6

=
QpNp

2d

(

2Qrf

(

α− d

r

)

+QpNpf

)

+
Q2

rNr(r − fd)

2r2
+

Q2
rNrfd

2

(

α

d
− 1

r

)2

+
Qrα

d

(

QpNpNrf +Qr

(

f

(

α− d

r

)

− (r − fd)

r

)

Nr(Nr + 1)

2

)

(A.13)

The total area under the graph Ar can be represented in terms of Qp and T . In order

retain clarity each of the areas A3, A4, A5 and A6 will be algebraically manipulated

separately.
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NpQp

2d

(

2Qrf
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r
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rfd
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d
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A6 =
QrNrα

d

(

QpNpf +
Qr(Nr + 1)

2

(

f

(

α− d

r

)

− (r − fd)

r
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=
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=
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)

=
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)

=
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=
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=
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Combining these expressions gives:
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=
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+

d(r − fd)

Nrr2
+
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=
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(
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(
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)
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+
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TQpNpf

2

2(1− αf)

(
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r
+

2αfd

r
+

d

r
− fd2
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+

fd2α2
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− 2fd2α
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+

fd2
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− α+ α2f

)

+
1

f
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)

=
TQpNpf

2

2(1− αf)

(

1

Nr

(

α− d

r

)

+
1

f
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(A.14)

Components Inventory

The shape of the component inventory level graph during production depends on the

relationship between Np, Nb and some of the parameters.
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Figure A.3: Components inventory levels under a policy with Np = 4, Nr = 5 and

Nb = 6

In order to analyse the shape of the components inventory level graph, the cycle

will be considered in three parts: during the production lots, between the production

lots and during recovery.

During Production Lots. The area under the graph during the production lots

consists of triangle A9, Nb triangles A10. As shown in these graphs,

Area of A9 = NrQr(1− α)NrQr(1− α)/p(1/2)

Area of A10 = QbQb/p(1/2)

The total area under the graph during production Adp
c is:

Adp
c = A9 +NbA10

=
N2

rQ
2
r (1− α)2

2p
+

NbQ
2
b

2p
(A.15)
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Using equations (A.9) and (A.10) it can be shown that the total area under the graph

during production in terms of Qp and T is:

Adp
c =

N2
rQ

2
r (1− α)2

2p
+

NbQ
2
b

2p

=
Q2

pN
2
p f

2

(1− αf)2
(1− α)2

2p
+

Q2
pN

2
p (1− f)2

N2
b (1− αf)2

Nb

2p

=
Q2

pN
2
p

(1− αf)2
d

2pd

(

f2 (1− α)2 +
(1− f)2

Nb

)

= TQpNp
d

2p(1− αf)

(

f2 (1− α)2 +
(1− f)2

Nb

)

(A.16)

Between Production Lots. The period of time between production lots is rep-

resented in Figure A.3a by the rectangles Ai
11, i = 1, . . . , Nb. The width of these

rectangles is Qp(1/d− 1/p). The height of rectangle i is the inventory level at the end

of production lot i, which we denote by γi. Note that the model conditions ensure that

γNp = 0 (see equation (A.3)). Let M(i,Np, Nb) denote the number of buying lots to

have occurred by the end of production lot i.

M(i,Np, Nb) =

⌈

iNb(1− αf)

(1− f)Np
− Nbf(1− α)

(1− f)

⌉

(A.17)

Let the component inventory level at the end of production lot i be denoted by γi,

where:

γi = QrNr(1− α) +M(i,Np, Nb)Qb − iQp (A.18)

As shown in Figures A.3 and A.3b, the area of rectangle Ai
11 is:

Area of Ai
11 = Qp(1/d− 1/p)γi = Qp(1/d− 1/p)[QrNr(1−α)+M(i,Np, Nb)Qb−

iQp]

The total area under the graph between production lots is:

Abp
c = A11 =

Np
∑

i=1

Ai
11

= Qp

(

1

d
− 1

p

) Np
∑

i=1

(QrNr(1 − α) +M(i, Np, Nb)Qb − iQp)

= Qp

(

1

d
− 1

p

)



NpQrNr(1− α) +Qb

Np
∑

i=1

M(i, Np, Nb)−Qp

Np(Np + 1)

2



 (A.19)
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Using equations (A.9) and (A.10) it can be shown that the total area under the graph

between production in terms of Qp and T is:

Abp
c = Qp

(

1

d
− 1

p

)





QpNpf

(1− αf)
Np(1− α) +

QpNp(1− f)

Nb(1− αf)

Np
∑

i=1

M(i,Np, Nb)−Qp
Np(Np + 1)

2





=
Q2

pN
2
p

(1− αf)

d

d

(

1

d
− 1

p

)



f(1− α) +
(1− f)

NbNp

Np
∑

i=1

M(i,Np, Nb)−
(Np + 1)(1 − αf)

2Np





= TQpNp
p− d

p



f(1− α) +
(1− f)

NbNp

Np
∑

i=1

M(i,Np, Nb)−
(1− αf)

2
− (1− αf)

2Np





(A.20)

Note that if Np = 1, then this area Abp
c reduces to zero.

During Recovery Lots. During recovery the area under the graph is made up of

rectangles Ai
7, for i = 1, . . . , Nr, and Nr triangles A8 where:

Area of Ai
7 = Qr(1− α)[Qr(α/d − 1/r) + (i− 1)Qrα/d]

Area of A7 =
∑Nr

i=1 A
i
7 = Qr(1− α)

∑Nr

i=1[Qrα/d−Qr/r + iQrα/d −Qrα/d]

Area of A8 = Qr(1− α)(Qr/r)(1/2)

The total area under the graph during and between recovery lots is:

Adr
c = A7 +NrA8

= Qr(1− α)

Nr
∑

i=1

(

Qrα

d
− Qr

r
+

iQrα

d
− Qrα

d

)

+
NrQ

2
r(1− α)

2r

= Q2
rNr

(

(1− α)

(

−1

r
+

α

Nrd

Nr
∑

i=1

i

)

+
(1− α)

2r

)

= Q2
rNr

(

−(1− α)

r
+

α(1 − α)

Nrd

Nr(Nr + 1)

2
+

(1− α)

2r

)

= Q2
rNr

(

(1− α)

(

− 2

2r
+

1

2r

)

+
α(1 − α)(Nr + 1)

2d

)

= Q2
rNr(1− α)

(

− 1

2r
+

α(Nr + 1)

2d

)
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Using equations (A.9) and (A.10) it can be shown that the total area under the graph

during and between recovery lots, in terms of Qp and T is:

Adr
c = A7 +NrA8

= Q2
rNr(1 − α)

(

− 1

2r
+

α(Nr + 1)

2d

)

=
Q2

pN
2
p f

2

N2
r (1− αf)2

Nr(1− α)
d

d

(

− 1

2r
+

α(Nr + 1)

2d

)

=
TQpNp

(1− αf)

f2(1− α)

2Nr

(

−d

r
+ α(Nr + 1)

)

= TQpNp
f2(1− α)

2(1 − αf)

(

− d

Nrr
+

αNr

Nr
+

α

Nr

)

= TQpNp
f2(1− α)

2(1 − αf)

(

1

Nr

(

α− d

r

)

+ α

)

(A.21)

Across a cycle. Using equations (A.16), (A.20) and (A.21) the total area under the

components inventory level graph can be expressed in terms of Qp and T . Further

simplification of some parts of Ac is not performed at this stage as it will be necessary

in the coming sections to be able to identify the origin of the negative terms in this

expression. The simplified version of this expression is presented in equation (A.22).

The derivation of this expression is presented on the coming pages. For notation

convenience, the expression M(i,Np, Nb) is replaced with mi on the coming pages.

Ac = TQp

(

Np

[(

1− d

p

)(

f(1− α)− (1− αf)

2

)]

+
1

Nb





(p− d)(1 − f)

p
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[
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p
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]
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Np
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[
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]

)

(A.22)
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Ac = A
dp
c + A

dr
c + A
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c
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+
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A.3 Cost Function

A.3.1 Derivation of the Total Cost Function

Total Cost

The total cost per time unit is the sum of equations (4.17), (4.16), (4.18), (4.19) and

(4.20). Some algebraic manipulations on the sum of these equations are performed on

the following pages. Equation (A.23) presents a simplified version of the total cost per

time unit; the derivation of this expression is shown on the coming pages.

The total cost per time unit is:

TC = crfd+ cbd(1− f) + cp(1− αf)d+ chαfd+ cl(1− α)fd+ cd(1− f)d+
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+
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)
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TC = CP +K +Hs +Hr +Hc

[TC] = crfd+ cbd(1− f) + cp(1− αf)d+ chαfd+ cl(1− α)fd+ cd(1− f)d+
d(1− αf)
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(
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Npαf

2

Nr(1− αf)

(

α−
d

r

))

+
hrQpNpf

2

2(1− αf)

(

1

Nr

(

α−
d

r

)

+
1

f
− α

)

+ hcQp

(

Np

[(

1−
d

p

)(

f(1− α) −
(1− αf)

2

)]

+
1

Nb





(p− d)(1− f)

p

Np
∑

i=1

M(i, Np, Nb)



−
(1− αf)(p− d)

2p

+Np

[

f2(1− α)

2(1− αf)

(

d (1− α)

p
+ α

)]

+
Np

Nb

[

d(1− f)2

2p(1− αf)

]

+
Np

Nr

[

f2(1− α)(αr − d)

2r(1− αf)

]

)

[TC] = crfd+ cbd(1− f) + cp(1− αf)d+ chαfd+ cl(1− α)fd+ cd(1− f)d+
d(1− αf)

QpNp

(kpNp + krNr + kbNb)+

Qp

(

hs

2
(1− αf)

(

1−
d

p

)

+
Np

Nr

[

hsαf
2(αr − d)

2r(1− αf)

]

+
Np

Nr

[

hrf
2(αr − d)

2r(1− αf)

]

+Np

[

hrf
2(1− αf)

2f(1 − αf)

]

+Np

[

hc

(

1−
d

p

)(

f(1− α)−
(1− αf)

2

)]

+
1

Nb





hc(p− d)(1− f)

p

Np
∑

i=1

M(i,Np, Nb)



−
hc(1− αf)(p− d)

2p
+Np

[

hcf
2(1− α)

2(1− αf)

(

d (1− α)

p
+ α

)]

+
Np

Nb

[

hcd(1− f)2

2p(1− αf)

]

+
Np

Nr

[

hcf
2(1− α)(αr − d)

2r(1− αf)

]

)

[TC] = crfd+ cbd(1− f) + cp(1− αf)d+ chαfd+ cl(1− α)fd+ cd(1− f)d+
d(1− αf)

QpNp

(kpNp + krNr + kbNb)+

Qp

(

hs

2
(1− αf)

(

1−
d

p

)

+Np

[

hrf

2
+

hcf
2(1− α)

2(1− αf)

(

d (1− α)

p
+ α

)]

+
Np

Nr

[

hsf
2α(αr − d)

2r(1− αf)
+

hrf
2(αr − d)

2r(1− αf)
+

hcf
2(1− α)(αr − d)

2r(1− αf)

]

+
Np

Nb

[

hcd(1− f)2

2p(1− αf)

]

+Np

[

hc

(

1−
d

p

)(

f(1− α)−
(1− αf)

2

)]

+
1

Nb





hc(p− d)(1− f)

p

Np
∑

i=1

M(i, Np, Nb)



−
hc(1− αf)(p− d)

2p

)

[TC] = crfd+ cbd(1− f) + cp(1− αf)d+ chαfd+ cl(1− α)fd+ cd(1− f)d+
d(1− αf)

QpNp

(kpNp + krNr + kbNb)+

Qp

(

hs(1− αf)(p− d)

2p
+Np

[

hrf

2
+

hcf
2(1− α)

2(1− αf)

(

d (1− α)

p
+ α

)]

+
Np

Nr

[

f2(αr − d)

2r(1− αf)
(hsα+ hr + hc(1− α))

]

+
Np

Nb

[

hcd(1− f)2

2p(1− αf)

]

+Np

[

hc

(

1−
d

p

)(

f(1− α)−
(1− αf)

2

)]

+
1

Nb





hc(p− d)(1− f)

p

Np
∑

i=1

M(i, Np, Nb)



−
hc(1− αf)(p− d)

2p

)
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A.3.2 Validation of the Cost Function

In this section, further details about the comparison of the total cost function with

Teunter (2004) are discussed.

Comparison to Teunter (2004)

The current model is an extension of the model described in Teunter (2004). These

models have the same structure if only high quality items are recovered, (zetaH = 1,

ζL = 0). These choices for ζH and ζL mean that the quality parameter α = 1. This

parameter is not replaced until the end of the simplification below, in order to retain

comparability with the current mode. Teunter (2004) does not processing costs or

costs for holding components (cr, cb, cp, cr, cd, hc, kb). We will show that with these cost

parameters set to zero, the total cost in the current model is equivalent to the equations

(1) and (7) in Teunter (2004). Equation (1) is the total cost under a policy with Np = 1

production lots and Nr recovery lots and equation (7) is the total cost under a policy

with Np production lots and Nr = 1 recovery lots. This further validates the part of

the total cost formula. However, obviously, since the current model uses nonzero costs

for these costs, some parts of the cost function can not be validated using this method.

The effect of taking the total cost function in equation (A.23) and setting these cost

parameters to zero is now presented.
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TC = crfd + cbd(1− f) + cp(1− αf)d+ chαfd + cl(1− α)fd + cd(1− f)d+
d(1− αf)

QpNp

(kpNp + krNr + kbNb) +Qp

(

hs(1− αf)(p− d)

2p
+

Np

[

hrf

2
+

hcf
2(1− α)

2(1− αf)

(

d (1− α)

p
+ α

)]

+
Np

Nr

[

f2(αr − d)

2r(1− αf)
(hsα+ hr + hc(1− α))

]

+
Np

Nb

[

hcd(1− f)2

2p(1− αf)

]

+Np

[

hc

(

1−
d

p

)(

f(1− α)−
(1− αf)

2

)]

+
1

Nb





hc(p− d)(1− f)

p

Np
∑

i=1

M(i, Np, Nb)



−
hc(1− αf)(p− d)

2p

)

=
d(1− αf)

QpNp

(kpNp + krNr) +
hsQp

2

[

(1− αf)

(

1−
d

p

)

+
Np

Nr

αf2

(1− αf)

(

α−
d

r

)]

+
hrQpNpf

2Nr(1− αf)

[

Nr −
fd

r
− αf(Nr − 1)

]

=
d(1− αf)

QpNp

kpNp +
d(1− αf)

QpNp

krNr +
hs

2

[

Qp(1− αf)

(

1−
d

p

)

+
QpNp

Nr

αf2

(1− αf)

(

α−
d

r

)]

+
hrf

2

Qr

f

[

Nr −
fd

r
− αf(Nr − 1)

]

=
kpd(1− αf)

Qp

+
krfd(1− αf)

QrNr(1− αf)
Nr +

hs

2

[

Qp(1− αf)

(

1−
d

p

)

+
QrNr(1− αf)

fNr

αf2

(1− αf)

(

α−
d

r

)]

+
hrf

2

[

Qr

f
Nr −

Qr

f

fd

r
−

Qr

f
αf(Nr − 1)

]

=
kpd(1− αf)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− αf)

(

1−
d

p

)

+Qrαf

(

α−
d

r

)]

+
hrf

2

[

QrNr

f
−

Qrd

r
−QrNrα+Qrα

]

=
kpd(1− αf)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− αf)

(

1−
d

p

)

+Qrαf

(

α−
d

r

)]

+
hrf

2

[

QrNr

( 1

f
− α

)

+Qr

(

α−
d

r

)

]

=
kpd(1− αf)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− αf)

(

1−
d

p

)

+Qrαf

(

α−
d

r

)]

+
hrf

2

[

QrNr

( (1− αf)

f

)

+Qr

(

α−
d

r

)

]

=
kpd(1− αf)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− αf)

(

1−
d

p

)

+Qrαf

(

α−
d

r

)]

+
hrf

2

[

QpNp +Qr

(

α−
d

r

)

]
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Now setting α = 1 and Np = 1 gives:

TC =
kpd(1 − f)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− f)

(

1− d

p

)

+Qrf

(

1− d

r

)]

+
hrf

2

[

Qp +Qr

(

1− d

r

)

]

which is equivalent to equation (1) from Teunter (2004). Alternatively, setting α = 1

and Nr = 1:

=
kpd(1 − f)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− f)

(

1− d

p

)

+Qrf

(

1− d

r

)]

+
hrf

2

[

Qr(1 − f)

f
+Qr

(

α− d

r

)

]

=
kpd(1 − f)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− f)

(

1− d

p

)

+Qr

(

1− d

r

)]

+
hrf

2

[

Qr

(

1− f + f − df

r

)

]

=
kpd(1 − f)

Qp

+
krfd

Qr

+
hs

2

[

Qp(1− f)

(

1− d

p

)

+Qr

(

1− d

r

)]

+
hrf

2

[

Qr

(

1− df

r

)

]

which is equivalent to equation (7) from Teunter (2004). These results further validate

the cost function of the current model.

A.4 Minimisation of the Total Cost Function

The section contains information to support Section 4.6. Details relating to the case

where Np = 1, and Nr, Nb ≥ 1 are presented in Section A.4.1. The most general case

with Np, Nr, Nb ≥ 1 is considered in Section A.4.2.

A.4.1 Case 2: Np = 1, Nr, Nb ≥ 1

Convexity of the Continuous Relaxation

When Np = 1, the total cost function simplifies to:

TC(Qp, 1, Nr , Nb) = CP +
d(1− αf)(kp +Nrkr +Nbkb)

Qp

+Qp

(

V +W +
1

Nr
X +

1

Nb

Y − Z1 + Z2 + Z3

)
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Let Ñr, Ñb denote the continuous relaxation of the variables Nr and Nb respectively.

In this section the first and second partial derivatives with respect to Qp, Ñr, Ñb will

be calculated and the Hessian matrix will be constructed. The partial derivatives of

the total cost function are presented below:

∂TC(Qp, 1, Ñr, Ñb)

∂Qp
= −d(1− αf)(kp + Ñrkr + Ñbkb)

Q2
p

+

(

V +W +
1

Ñr

X +
1

Ñb

Y − Z1 + Z2 + Z3

)

∂TC(Qp, 1, Ñr, Ñb)

∂Ñr

=
d(1 − αf)kr

Qp
− Qp

N2
r

X

∂TC(Qp, 1, Ñr, Ñb)

∂Ñb

=
d(1 − αf)kb

Qp
− Qp

N2
b

Y

∂2TC(Qp, 1, Ñr, Ñb)

∂Q2
p

=
2d(1 − αf)(kp + Ñrkr + Ñbkb)

Q3
p

∂2TC(Qp, 1, Ñr, Ñb)

∂Qp∂Ñr

= −d(1− αf)kr
Q2

p

− X

Ñ2
r

∂2TC(Qp, 1, Ñr, Ñb)

∂Qp∂Ñb

= −d(1− αf)kb
Q2

p

− Y

Ñ2
b

∂2TC(Qp, 1, Ñr, Ñb)

∂Ñr∂Qp

= −d(1− αf)kr
Q2

p

− X

N2
r

∂2TC(Qp, 1, Ñr, Ñb)

∂Ñr
2 =

2QpX

Ñr
3

∂2TC(Qp, 1, Ñr, Ñb)

∂Ñr∂Ñb

= 0

∂2TC(Qp, 1, Ñr, Ñb)

∂Ñb∂Qp

= −d(1− αf)kb
Q2

p

− Y

Ñb
2

∂2TC(Qp, 1, Ñr, Ñb)

∂Ñb∂Ñr

= 0

∂2TC(Qp, 1, Ñr, Ñb)

∂Ñb
2 =

2QpY

Ñb
3
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Using the Hessian matrix, the convexity of the continuous relaxation of this problem

will be shown (Winston, 1987). The Hessian matrix of a function f(x) is:

H(xi,j) =
∂2f

∂xi∂xj

For this problem the Hessian matrix has the following form:

H(Qp, Ñr, Ñb) =



















∂2TC
∂Q2

p

∂2TC

∂Qp∂Ñr

∂2TC

∂Qp∂Ñb

∂2TC

∂Ñr∂Qp

∂2TC

∂Ñr
2

∂2TC

∂Ñr∂Ñb

∂2TC

∂Ñb∂Qp

∂2TC

∂Ñb∂Ñr

∂2TC

∂Ñb
2



















where TC represents the total cost function TC(Qp, 1, Ñr, Ñb).

H(Qp, Ñr, Ñb) =



















2d(1−αf)(kp+Ñrkr+Ñbkb)
Q3

p
−d(1−αf)kr

Q2
p

− X

Ñ2
r

−d(1−αf)kb
Q2

p
− Y

Ñ2
b

−d(1−αf)kr
Q2

p
− X

Ñr
2

2QpX

Ñ3
r

0

−d(1−αf)kb
Q2

p
− Y

Ñb
2 0

2QpY

Ñ3
b



















In order to show that the function TC(Qp, 1, Ñr , Ñb) is convex in Qp, Ñr and Ñb, it is

must be shown that the first, second and third principle minors of H(Qp, Ñr, Ñb) are

nonnegative (Winston, 1987). To calculate the principle minors, the determinants of

several matrices will need to be calculated. In general, the determinant of an m ×m

matrix, A is:

det(A) = (−1)i+1ai,1(detAi,1) + (−1)i+2ai,2(detAi,2) + · · ·+ (−1)i+mai,m(detAi,m)

(A.23)

for any i = 1, . . . ,m, where detAi,j is the determinant of the matrix obtained by deleting

the ith and jth column (Winston, 1987).

For a 2×2 matrix
(

a b
c d

)

, equation (A.23) is equivalent to using the following formula

to calculate the determinant: ad− bc. Similarly, for a 3 × 3 matrix

(

a b c
d e f
g h i

)

equation

(A.23) is equivalent to: aei− afh− bdi+ bfg + cdh − cge.

The first principle minors are the elements on the main diagonal,

2d(1 − αf)(kp + Ñrkr + Ñbkb)

Q3
p

,
2QpX

Ñ3
r

, and
2QpY

Ñ3
b
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Since d, (1 − αf), kp, kr, Qp, Ñr, Ñb, X and Y are all greater than zero, and kb is

greater than or equal to 0, all first principle minors are nonnegative.

The second principle minors in a 3× 3 matrix are obtained by deleting the ith row

and ith column and calculating the determinant of the remaining 2×2 matrix. Deleting

the 1st row and column leaves:

H(Qp, Ñr, Ñb) =























2QpX

Ñ3
r

0

0
2QpY

Ñ3
b























therefore the determinant is:

2QpX

Ñr
3

2QpY

Ñb
3 −

(

0

)(

0

)

=
4Q2

pXY

Ñr
3
Ñb

3 > 0

Deleting the 2nd row and column leaves:

H(Qp, Ñr, Ñb) =

























2d(1−αf)(kp+Ñrkr+Ñbkb)
Q3

p
−d(1−αf)kb

Q2
p

− Y

Ñ2
b

−d(1−αf)kb
Q2

p
− Y

Ñb
2

2QpY

Ñ3
b

























and therefore the determinant is:

2d(1− αf)(kp + Ñrkr + Ñbkb)

Q3
p

2QpY

Ñb
3 −

(

−d(1− αf)kb
Q2

p

− Y

Ñb
2

)(

−d(1− αf)kb
Q2

p

− Y

Ñb
2

)

It is not immediately obvious whether this function is non-negative. As this function

is quite complicated, Maple 14 was used to investigate its sign. The expression Y was

replaced with its actual expression and appropriate sign restrictions for the parameters

were included. However, it was found that it is not possible to determine the sign of this

function without further information about the relationship between the parameters.

This means that the continuous relaxation of the total cost function may not always

be convex. Nevertheless, we shall continue the procedure for determining convexity.
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Deleting the 3rd row and column leaves:

H(Qp, Ñr, Ñb) =



















2d(1−αf)(kp+Ñrkr+Ñbkb)
Q3

p
−d(1−αf)kr

Q2
p

− X

Ñ2
r

−d(1−αf)kr
Q2

p
− X

Ñr
2

2QpX

Ñ3
r



















and therefore the determinant is:

2d(1 − αf)(kp + Ñrkr + Ñbkb)

Q3
p

2QpX

Ñr
3 −

(

−d(1− αf)kr
Q2

p

− X

Ñr
2

)(

−d(1− αf)kr
Q2

p

− X

Ñr
2

)

As was the case above, the sign of this determinant is not immediately obvious. Using

Maple 14 once again, the same result was found: without further information about

the relationships between the variables it is not possible to determine the sign of the

function.

The third principle minor of a 3× 3 matrix is the determinant of the matrix.

detH(Qp, Ñr, Ñb) =
2d(1 − αf)(kp + Ñrkr + Ñbkb)

Q3
p

2QpX

Ñr
3

2QpY

Ñb
3

−
(

2d(1 − αf)(kp + Ñrkr + Ñbkb)

Q3
p

)(

0

)(

0

)

−
(−d(1− αf)kr

Q2
p

− X

N2
r

)

(

−d(1− αf)kr
Q2

p

− X

Ñr
2

)(

2QpY

Ñb
3

)

+

(−d(1− αf)kr
Q2

p

− X

Ñr
2

)(

0

)(

− d(1− αf)kb
Q2

p

− Y

Ñb
2

)

+

(−d(1− αf)kb
Q2

p

− Y

Ñb
2

)

(

−d(1− αf)kr
Q2

p

− X

Ñr
2

)

(

0

)

−
(−d(1− αf)kb

Q2
p

− Y

Ñb
2

)

(

−d(1− αf)kb
Q2

p

− Y

Ñb
2

)(

2QpX

Ñr
3

)

=
2d(1 − αf)(kp + Ñrkr + Ñbkb)

Qp

4XY

Ñr
3
Ñb

3

−
(−d(1− αf)kr

Q2
p

− X

Ñr
2

)2
(

2QpY

Ñb
3

)

−
(−d(1− αf)kb

Q2
p

− Y

Ñb
2

)2
(

2QpX

Ñr
3

)

As for the second principle minors, the it is not possible to determine the sign of this

determinant without more information about the relationship between the parameters.

Since it is not possible to determine if the principle minors of the Hessian matrix are

nonnegative, it is not possible to determine if the continuous relaxation of this mixed

integer optimization problem is convex.
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A.4.2 Case 3: Np, Nr, Nb ≥ 1

Convexity in Qp

For fixed Np, Nr, Nb, ζ, the total cost function is convex in Qp. The first derivative of

the total cost function, with respect to Qp, given a fixed Np, Nr, Nb is:

dTC(Qp, Np, Nr, Nb)

dQp

= −K̄(Np, Nr, Nb)

Q2
p

+

(

V +NpW +
Np

Nr

X +
Np

Nb

Y

−Z1 +NpZ2 +
1

Nb

Z3

Np
∑

i=1

M(i,Np, Nb)

)
(A.24)

The second derivative of the total cost function, with respect to Qp, given a fixed

Np, Nr, Nb is:

d2TC(Qp, Np, Nr, Nb)

dQ2
p

=
K̄(Np, Nr, Nb)

Q3
p

> 0

Across the range of feasible values for Qp, (i.e. Qp > 0) this second derivative is

always positive. This means that the total cost function is convex with respect to Qp

and therefore that the stationary point found by the first derivative is minimum. By

setting the first derivative (equation (A.24)) equal to zero, and solving for Qp, the value

of Qp which minimises the total cost can be found:

0 = −K̄(Np, Nr, Nb)

Q2
p

+

(

V +NpW +
Np

Nr
X +

Np

Nb

Y

−Z1 +NpZ2 +
1

Nb

Z3

Np
∑

i=1

M(i,Np, Nb)

)

K̄(Np, Nr, Nb)

Q2
p

=



V +NpW +
Np

Nr
X +

Np

Nb

Y − Z1 +NpZ2 +
1

Nb

Z3

Np
∑

i=1

M(i,Np, Nb)





Q2
p =

K̄(Np, Nr, Nb)
(

V +NpW +
Np

Nr
X +

Np

Nb
Y − Z1 +NpZ2 +

1
Nb

Z3
∑Np

i=1M(i,Np, Nb)
)

Qp =

√

√

√

√

K̄(Np, Nr, Nb)
(

V +NpW +
Np

Nr
X +

Np

Nb
Y − Z1 +NpZ2 +

1
Nb

Z3
∑Np

i=1M(i,Np, Nb)
)

Since this equation contains a square root term, it is necessary to prove that the term

being square rooted is not negative. This condition holds since K̄(Np, Nr, Nb) > 0 and
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W,V,X > 0 and Y, (−Z1 +NpZ2 +
1
Nb

Z3
∑Np

i=1 M(i,Np, Nb)) ≥ 0. Since the total cost

function is convex in Qp the minimum total cost is reached at

Q∗

p(Np, Nr, Nb) =

√

√

√

√

K̄(Np, Nr, Nb)

V +NpW +
Np

Nr
X +

Np

Nb
Y − Z1 +NpZ2 +

1
Nb

Z3
∑Np

i=1M(i,Np, Nb)

which gives the corresponding total cost

TC(Q∗

p, Np, Nr, Nb) = CP + 2

√

K̄
(

Np, Nr, Nb

)

×
√

√

√

√

(

V +NpW +
Np

Nr

X +
Np

Nb

Y − Z1 +NpZ2 +
1

Nb

Z3

Np
∑

i=1

M(i, Np, Nb)
)

The minimum total cost for the system can be determined by finding integer values of

Np, Nr, Nb which minimise equation (A.25).

A.5 Properties of the Model

A.5.1 Analysis of Recovery Strategy

In this Section the conditions under which each of the recovery strategies is optimal is

analysed. This analysis could help firms to decide under what conditions it is optimal

to perform high quality recovery and low quality recovery. Before conducting some

numerical investigations, some theoretical results are provided for the case with one of

each type of lot, i.e. Np = Nr = Nb = 1.

Disposal Cost

Let TC0(Q
∗

p, 1, 1, 1) and Q∗

p0 denote the optimal total cost and production lot size

under a high-quality only recovery strategy (ζL = 0); and let TC1(Q
∗

p, 1, 1, 1) and Q∗

p1

denote the optimal total cost and production lot size when both high and low quality

returns are covered (ζL = 1). Let CP0 and CP1 denote the values of CP under recovery

strategies with ζL = 0 and ζL = 1 respectively. Let the similar notation apply to

the other expressions V,W,X, Y, Z1, Z2, Z3. Then under a high-quality only recovery

strategy (ζL = 0), the optimal total cost can be written as:

TC0(Q
∗

p0, 1, 1, 1) = CP0 + 2
√

d(1 − βH)(kp + kr + kb)×
√

(V0 +W0 +X0 + Y0 − Z10 + Z20 + Z30)
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and under a both high and low quality recovery strategy (ζL = 1), the optimal total

cost can be written as:

TC1(Q
∗

p1, 1, 1, 1) = CP1 + 2
√

d(1− βH)(kp + kr + kb)×
√

(V1 +W1 +X1 + Y1 − Z11 + Z21 + Z31)

It is profitable to perform low quality recovery when:

TC1(Q
∗

p1, 1, 1, 1) < TC0(Q
∗

p0, 1, 1, 1) (A.25)

Using this relationship, it is possible to calculate the values of the disposal cost cd, for

which is it profitable to perform low quality recovery, given all other parameters remain

unchanged.

Using the full expressions for CP0 and CP1 gives:

CP0 = cp(1− βH)d+ chβHd+ cl(0)βHd+ crβHd+ cbd(1− βH) + cd(1− βH)d

CP1 = cp(1− βH)d+ chβHd+ clβLd+ cr(βH + βL)d+

cbd(1 − (βH + βL)) + cd(1− (βH + βL))d

Substituting these expressions into equation (A.25), and performing some simple

algebra to solve for the disposal cost cd yields the expression given by equation (4.37)

in Chapter 4. The details of the derivation of this expression are presented below.

For the disposal cost, it is profitable to do low quality recovery if the following
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condition is meet:

TC1(Q
∗

p1, 1, 1, 1) < TC0(Q
∗

p0, 1, 1, 1)

0 > TC1(Q
∗

p1, 1, 1, 1)− TC0(Q
∗

p0, 1, 1, 1)

0 > cp(1− βH)d+ chβHd+ cl

(

1− βH

(βH + βL)

)

(βH + βL)d+ cr(βH + βL)d+

cbd(1 − (βH + βL)) + cd(1− (βH + βL))d

+ 2
√

d(1 − βH)(kp + kr + kb)(V1 +W1 +X1 + Y1 − Z11 + Z21 + Z31)

−
(

cp(1− βH)d+ chβHd+ cl(0)βHd+ crβHd+ cbd(1− βH) + cd(1− βH)d

+ 2
√

d(1 − βH)(kp + kr + kb)(V0 +W0 +X0 + Y0 − Z10 + Z20 + Z30)

)

0 > clβLd+ crβLd− cbdβL − cdβLd

+ 2
√

d(1 − βH)(kp + kr + kb)(V1 +W1 +X1 + Y1 − Z11 + Z21 + Z31)

− 2
√

d(1 − βH)(kp + kr + kb)(V0 +W0 +X0 + Y0 − Z10 + Z20 + Z30)

cd >
1

βLd

(

clβLd+ crβLd− cbdβL

+ 2
√

d(1 − βH)(kp + kr + kb)(V1 +W1 +X1 + Y1 − Z11 + Z21 + Z31)

− 2
√

d(1 − βH)(kp + kr + kb)(V0 +W0 +X0 + Y0 − Z10 + Z20 + Z30)

)
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Appendix B

Appendix for Stochastic Model

with a Single Market

Introduction

This section presents additional information related to the second model in this thesis

– the stochastic product recovery model, which was presented in Chapter 5.

B.1 Model Implementation and Validation

In this section information to support Section 5.5 is presented. Details relating to the

implementation of the MDP in java are discussed in Section B.1.1 and in Section B.1.2

the validation of the programming code used is discussed.

B.1.1 Implementation of the MDP and Mid-State

The MDP described in Section 5.4 has three state variables. If the upper capacity was

set to 30 for each inventory, then there would be a total of 313 = 29791 states. For each

of these states there are numerous actions which could be chosen, and for each action

numerous transitions could occur. Thus the problem we are studying is very large and
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indeed does suffer from the curse of dimensionality. Several algorithms could be used to

find the optimal policy, as discussed in Section 3.2. However due to the dimensionality

of the problem under study, the value iteration algorithm is the only practical option

here. Other algorithms, such as the policy iteration and linear programming, require

solving a large set of linear equations (Tijms, 1994, page 182).

However as shown in the Methodology Chapter (Section 3.2), even the value

iteration algorithm can be extremely computationally intensive for larger problems.

Therefore in order to implement the model in Chapter 5, we use the concept of the mid-

state that was described in 3.2, which allows us to calculate some values in advance and

store them, rather than calculating them for every iteration of the algorithm. Referring

to MDP formulation in Section 5.4, it can be observed that the effect of demand and

returns on the next state does not depend on the decisions taken during the period.

This means that it is possible to separate the transitions associated with demand and

returns from the transitions associated with the action. This has the effect of reducing

the number of transitions which need to occur within the action loop in the value

iteration algorithm. The definition of the mid-state m for the model in Chapter 5 will

now be presented.

Let the mid-state m = (ms,mr,mc) denote the value of the state variables after

the action has been chosen and the state has been updated accordingly (but before

demand and returns have been observed). The mid-state m is related to the state at

the beginning of the period i = (is, ir, ic) in the following way:

ms = (is + apδ + ah(xq)(1− δ))

mr = (ir − ar(1− δ))

mc = min{(ic − apδ + abδ + al(xq)(1− δ)),Wc}

and the mid-state m is related to the state at the beginning of the next period j =

(js, jr, jc) in the following way:

js = max{ms − xd, 0}

jr = min{mr + xr,Wr}

jc = mc
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The probability of moving from state i to mid-state m depends on the initial state i,

the action a(i) and the quality variable xq. The probabilistic part of the transition is

only applicable when recovery occurs. If recovery does not occur then the mid-state

will be known with certainty.

The probability of moving from mid-state m to state j in the next period depends

on the mid-state m, the demand xd and the returns xr. Observe that the probability

of moving from the mid-state to the next state does not depend on the action selected.

This means that these transition probabilities could be calculated in advance, outside

of the action loop. The introduction of the mid-state means that some calculations

could be performed in advance and stored. Then, during the value iteration algorithm,

the values need to be looked up, rather than calculated. Furthermore, since the values

are calculated in the advance, the non-zero probability can be identified and thus only

these probabilities are looked up during the algorithm. This significantly reduces the

computational time required to perform the value iteration algorithm.

B.1.2 Validation of Code

In addition to thorough error-checking and inspection of output during the code

development process, two forms of verification were used to validate the problem

specific files. The calculation of the expected average costs was checked using an Excel

spreadsheet and the system was simulated using the optimal policy and the simulated

cost was compared with the actual cost, as calculated by the MDP.

To conduct these tests a set of five example problems are used. The parameters for

these problems are shown in Table B.1. These five test problems were chosen because

they represent a range of different scenarios. One of the test problems uses the uniform

distribution to model demand and returns, the other four use the Poisson distribution.

All five test problems allow the recovery of high and low quality returns. The quality

parameter α varies to represent there being a high probability of the returns being low

quality, mixed quality, or high quality. Note that test problem E03 represents the case

of having all high quality returns.

In order to test the calculation of the costs within the java code, an Excel

spreadsheet was constructed to calculate the expected costs independently from the

383



Table B.1: Test problems used in the validation of the code

E01 E02 E03 E04 E05

State Space
serviceable inventory Us 20 20 20 20 20
returned inventory Ur 20 20 20 20 20
component inventory Uc 20 20 20 20 20

Distributions
demand Xd Pois(8) Pois(8) Pois(8) Pois(8) Uni(0, 16)
returns Xr Pois(6) Pois(6) Pois(6) Pois(6) Uni(0, 12)
quality Xq Bin(a, α) Bin(a, α) Bin(a, α) Bin(a, α) Bin(a, α)
recovery strategy ζL 1 1 1 1 1
mean quality α 0.6 0.6 1 0.2 0.6

Setup costs
production kp 4 1 1 20 20
recovery kr 2 1 1 10 10
buying kc 3 1 1 20 10

Processing costs
production cb 0 0 1 10 5
returns cp 0 0 1 2 10
buying cr 0 0 1 0.1 1
high quality recovery ch 0 0 2 1 5
low quality recovery cl 0 0 0.5 3 2
disposal cd 0 0 1 1 1

Holding costs
serviceable inventory hs 2 1 1 4 5
returned inventory hr 0.1 1 1 1 1
component inventory hc 1 1 1 3 1

Penalty costs
Lost sales ls 10 10 10 100 10
Lost returns lr 0 1 1 1 1

calculations used in the java programme. For a given state the expected cost associated

with the optimal policy action and a heuristic policy action were calculated in Excel,

by completely enumerating across possible values of the random variables Xq, Xd, Xr.

The heuristic policy requires that if serviceable inventory is is greater than or equal to

S = 10, then do nothing. If is is below S and returned inventory ir is greater than

S − is, then recover min{ir, S − is}, otherwise produce S − is and order components if

required to complete production. Note that since the quality of the returns is uncertain,

if recovery is chosen, the new serviceable inventory level could be less than S.

Table B.2 shows the long run average cost associated with the optimal and heuristic

policies for all five test problems. Since the optimal policy minimises the long run

average cost, the costs associated with the optimal policy should be lower than the

heuristic policy. The results in this table confirm that this is indeed the case. Note

also that the heuristic policy performs particularly poorly for problem E04. It is

likely that this is caused by the large cost incurred for lost sales. Calculation of

the difference between the heuristic and optimal policies was performed during the
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numerical experiments detailed later in this chapter as well. If a heuristic policy

returned a cost which was less than that of the optimal policy, an error message was

displayed and the run was terminated.

Test Problem Optimal Policy Heuristic Policy

E01 17.3326 30.0075
E02 20.0219 36.9989
E03 37.2657 40.4818
E04 133.2897 451.7227
E05 106.0037 121.0157

Table B.2: Test problems cost of optimal policy and heuristic policy

The sheer number of states and actions in the problem make it impractical to

compare the costs for every state, therefore a selection of 30 states for the first four

test problems were used. The fifth test problem was not used as in this problem the

uniform distribution is used to govern returns and demand, rather than the Poisson

distribution as in the first four problems. The repeated probabilities in the uniform

distribution means that it is not as effective at highlighting problems with the code. Ten

states were chosen because they provide a range of states, including some which have

inventory levels equal to the minimum or maximum capacity levels. The remaining 20

states were selected randomly using the Excel function rand().

The states and actions for the optimal and heuristic policy are shown in Table B.3.

The states marked with an asterisk ∗ were part of the set of 10 states which were

selected. For each of the 30 states, the costs calculated by the java programme and

those calculated by the Excel spreadsheet were checked for the optimal policy action

and for a heuristic policy action. Note that the heuristic policy actions are the same

for all of the problems because the heuristic rule speficied is not affected by any of the

problem parameters. For all states and actions that were examined, the costs calculated

by the java code were the same as the costs calculated by the excel spreadsheet. This

provides evidence that the methods used to calculate the costs in the java code are

correct.

Simulation can also be used to calculate the average cost of a policy and hence

can be used to validate the calculation of the average total cost in the value iteration

algorithm.
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Table B.3: Selection of states for which the costs were calculated using an Excel spreadsheet

E01 E02 E03 E04
State Values Optimal Action Optimal Action Optimal Action Optimal Action Heuristic Policy Action

State is ir ic ap ar ab ap ar ab ap ar ab aap ar ab ap ar ab
1* 0 0 0 0 11 0 11 13 0 13 12 0 12 19 0 19 10 0 10
2* 5 0 0 5 11 0 6 13 0 8 12 0 7 19 0 14 10 0 5
3 303 0 14 9 9 0 0 10 0 1 0 14 0 17 0 8 0 10 0
4 383 0 18 5 11 0 6 0 18 0 0 18 0 17 0 12 0 10 0
5* 396 0 18 18 12 0 0 18 0 0 18 0 0 18 0 0 0 10 0
6* 399 0 19 0 0 19 0 0 19 0 0 19 0 17 0 17 0 10 0
7 1054 2 8 4 9 0 5 10 0 6 0 8 0 16 0 12 0 8 0
8 1097 2 10 5 9 0 4 9 0 4 0 10 0 15 0 10 0 8 0
9 1116 2 11 3 9 0 6 0 11 0 0 11 0 15 0 12 0 8 0

10 1120 2 11 7 7 0 0 9 0 2 0 11 0 15 0 8 0 8 0
11 1211 2 15 14 14 0 0 14 0 0 14 0 0 14 0 0 0 8 0
12 2541 5 16 0 0 11 0 0 16 0 0 15 0 12 0 12 0 5 0
13 3049 6 19 4 4 0 0 4 0 0 4 0 0 0 19 0 0 4 0
14 3618 8 4 6 6 0 0 6 0 0 6 0 0 6 0 0 0 2 0
15* 3906 8 18 0 0 4 0 0 18 0 0 0 0 0 18 0 0 2 0
16 4609 10 9 10 0 0 0 10 0 0 10 0 0 10 0 0 0 0 0
17* 4630 10 10 10 0 0 0 10 0 0 10 0 0 10 0 0 0 0 0
18 4661 10 11 20 0 0 0 0 11 0 10 0 0 7 0 0 0 0 0
19 4903 11 2 10 0 0 0 9 0 0 9 0 0 9 0 0 0 0 0
20 5283 11 20 12 0 0 0 9 0 0 9 0 0 9 0 0 0 0 0
21* 5292 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 5552 12 12 8 0 0 0 8 0 0 8 0 0 8 0 0 0 0 0
23 5798 13 3 2 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0
24* 6237 14 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
25* 7152 16 4 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 7562 17 3 2 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0
27 7643 17 6 20 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0
28 8874 20 2 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 9075 20 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30* 9260 20 20 20 0 20 0 0 20 0 0 20 0 0 20 0 0 0 0
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As part of the development of this code, the initial state, the action, the random

variables, mid-state and next state were printed and were inspected and compared

with the equivalent manual calculations. In addition to this, the distributions of

the three random variables Xq, Xd, Xr were investigated. Across a simulation of

T = 49999 time units, the observed values of the random variables were stored, and

then compared with their specified distributions. For the five test problems in Table

B.1, a graphical comparison between the simulated distribution and the theoretical

distribution suggested that the simulated distributions were governed by the specified

distributions.

Figure B.1 shows a histogram of the simulated costs for the test problems across the

1000 runs of the simulation code. The mean and standard deviation of the simulated

values are also shown on the graphs. For all test problems the value-iteration cost and

the mean simulated cost were approximately the same, and as shown by these graphs,

the values produced for the ‘average total cost’ appear to be normally distributed and

centred around the cost from the value iteration algorithm. This provide further

evidence to support the accuracy of the stochastic product recovery code and also the

simulation code. This offers further validation of java code.

387



17.3 17.31 17.32 17.33 17.34 17.35 17.36
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

sim−mean=17.3302
sim−sd=0.0091078
value−iter=17.3326

R
el

at
iv

e 
F

re
qu

en
cy

Cost

 

 

n=1000 Simulated Values
Actual Cost

(a) E01

19.98 19.99 20 20.01 20.02 20.03 20.04 20.05
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

sim−mean=20.0193
sim−sd=0.0099048
value−iter=20.0219

R
el

at
iv

e 
F

re
qu

en
cy

Cost

 

 

n=1000 Simulated Values
Actual Cost

(b) E02

37.22 37.23 37.24 37.25 37.26 37.27 37.28 37.29 37.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

sim−mean=37.2616
sim−sd=0.011578

value−iter=37.2657

R
el

at
iv

e 
F

re
qu

en
cy

Cost

 

 

n=1000 Simulated Values
Actual Cost

(c) E03

133.05 133.1 133.15 133.2 133.25 133.3 133.35 133.4 133.45 133.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

sim−mean=133.289
sim−sd=0.061468

value−iter=133.2897

R
el

at
iv

e 
F

re
qu

en
cy

Cost

 

 

n=1000 Simulated Values
Actual Cost

(d) E04

105.85 105.9 105.95 106 106.05 106.1 106.15 106.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

sim−mean=105.9985
sim−sd=0.048726

value−iter=106.0037

R
el

at
iv

e 
F

re
qu

en
cy

Cost

 

 

n=1000 Simulated Values
Actual Cost

(e) E05

Figure B.1: Histogram of average total cost from 1000 simulations for test problems
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B.2 Properties of the Optimal Policy

In this section information to support the analysis of the optimal policy in Section 5.6

is presented.

B.2.1 Analysis of Performance

This section relates to Section 5.6.2 and provides additional information about the

performance of the optimal policy in terms of the average cost and the fill rate, under

the two recovery strategies.

Tables B.4 and B.5 contain some additional information relating to the simulation

of the optimal policy over T = 1, 000, 000 time units. The mean observed demand

and returns are also shown in the Tables; these values are equal to λd and λr to 3

decimal places. The same seed was used in all runs. As expected the average amount

recovered per period is at least as high when both high quality and low quality recovery

is performed.

Table B.4: Summary of the performance and simulation data for problem set G under
a high only quality recovery strategy (ζL = 0)

ζ = 0 Simulation over T = 1000000
Problem Optimal Cost x̄d x̄r Fill rate % āh āl ād Mean recovery
G00 21.841 8.000 6.000 65.599 4.800 0 1.200 4.800
G01 755.204 8.000 7.000 75.508 5.600 0 1.400 5.600
G02 1268.827 9.000 4.000 72.220 0.800 0 3.200 0.800
G03 1966.127 11.000 4.000 78.102 1.201 0 2.799 1.201
G04 2384.084 9.000 4.000 63.938 1.200 0 2.800 1.200
G05 2019.588 10.000 9.001 69.843 4.501 0 4.500 4.501
G06 1062.778 10.000 9.001 78.302 6.300 0 2.700 6.300
G07 1092.527 10.000 8.000 71.496 6.400 0 1.600 6.400
G08 617.019 8.000 7.000 74.545 5.599 0 1.400 5.599
G09 2511.420 9.000 4.000 67.494 0.800 0 3.200 0.800
G10 4114.595 10.000 8.000 68.279 4.000 0 4.000 4.000
G11 770.370 12.000 6.000 88.911 3.001 0 2.999 3.001
G12 1461.006 12.000 6.000 79.866 3.001 0 3.000 3.001
G13 2157.194 13.000 6.000 25.138 3.000 0 3.001 3.000
G14 1009.246 8.000 5.000 65.206 2.501 0 2.499 2.501
G15 1158.008 9.000 6.000 29.441 2.402 0 3.598 2.402
G16 1986.169 9.000 1.000 1.275 0.100 0 0.900 0.100
G17 1248.180 9.000 6.000 40.963 3.573 0 2.382 3.573
G18 785.778 7.000 2.000 6.936 0.400 0 1.600 0.400
G19 2537.085 9.000 8.000 20.265 1.600 0 6.400 1.600
G20 941.318 5.000 3.000 63.473 1.501 0 1.499 1.501
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Table B.5: Summary of the performance and simulation data for problem set G under
a both high and low quality recovery strategy (ζL = 1)

ζ = 1 Simulation over T = 1000000
Problem Optimal Cost x̄d x̄r Fill rate % āh āl ād Mean recovery
G00 21.841 8.000 6.000 65.599 4.800 0.000 1.200 4.800
G01 744.535 8.000 7.000 90.549 5.572 1.393 0 6.965
G02 1134.757 9.000 4.000 75.297 0.800 3.201 0 4.000
G03 1809.169 11.000 4.000 78.325 1.200 2.800 0 4.000
G04 2187.034 9.000 4.000 71.738 1.199 2.801 0 4.000
G05 1823.303 10.000 9.001 91.535 4.431 4.434 0 8.865
G06 1007.910 10.000 9.001 92.013 6.233 2.671 0 8.904
G07 1045.545 10.000 8.000 87.077 6.396 1.599 0 7.995
G08 603.650 8.000 7.000 90.792 5.570 1.393 0 6.962
G09 2372.582 9.000 4.000 67.117 0.801 3.199 0 4.000
G10 3604.191 10.000 8.000 87.852 3.993 3.993 0 7.986
G11 670.333 12.000 6.000 89.135 3.000 3.001 0 6.000
G12 1353.736 12.000 6.000 81.263 2.999 3.001 0 6.000
G13 1965.953 13.000 6.000 79.865 3.000 3.000 0 6.000
G14 949.508 8.000 5.000 74.326 2.499 2.501 0 5.000
G15 1055.832 9.000 6.000 70.055 2.398 3.601 0 5.999
G16 1961.925 9.000 1.000 11.402 0.099 0.896 0 0.995
G17 1251.555 9.000 6.000 67.467 3.548 2.368 0.001 5.916
G18 752.569 7.000 2.000 31.769 0.399 1.601 0 2.000
G19 2310.692 9.000 8.000 88.817 1.554 6.222 0.000 7.777
G20 885.380 5.000 3.000 73.719 1.500 1.500 0 3.000

B.2.2 Analysis of Actions

This section relates to Section 5.6.3 and provides additional information about the

structure of the optimal policy under the two recovery strategies.

Action Size and Frequency

Tables B.6 and B.7 summarise the size of the production, recovery and buying lots. In

these tables n refers to the number of states in which the action is chosen. A ‘-’ in the

table indicates that there were no observations so the statistic could not be calculated.

For these problems there are (31× 31× 31) = 29791 states .

Trigger-States and Action

Tables B.8 and B.9 show the value of the inventory levels when production and recovery

were chosen. Tables B.10 and B.11 summarise the mid-states after each of the actions
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Table B.6: Summary of the optimal policy action quantities for problem set G under a high only quality recovery strategy (ζL = 0)

ζL = 0 Proportion of states ap for ap > 0 ar for ar > 0 ab for ab > 0
Num. states ap = ar = ab = 0 Num. states mean median min max Num. states mean median min max Num. states mean median min max

G00 29791 0.632 0 - - - - 10974 11.921 9 1 30 0 - - - -
G01 29791 0.655 3946 7.202 7 1 15 6336 6.869 6 1 15 38 4.316 4 3 7
G02 29791 0.154 7378 15.486 15 1 30 17816 14.785 15 1 30 414 4.896 4 2 11
G03 29791 0.171 8149 15.048 15 1 30 16534 16.170 16 1 30 447 7.065 7 4 13
G04 29791 0.197 4207 13.842 14 1 30 19712 14.100 14 1 30 158 6.601 6 4 11
G05 29791 0.497 4089 8.529 9 1 17 10901 11.559 10 1 30 251 5.394 5 3 10
G06 29791 0.568 5520 7.717 8 1 17 7357 10.283 9 3 21 168 5.321 5 3 9
G07 29791 0.492 12547 14.501 15 1 30 2589 19.500 21 3 30 146 5.527 5 3 10
G08 29791 0.721 5763 9.247 9 1 19 2563 10.319 10 4 17 60 3.583 3 2 6
G09 29791 0.678 2159 8.793 9 4 13 7439 18.404 19 3 30 134 5.552 5 3 9
G10 29791 0.202 16063 13.734 13 1 30 7721 13.861 14 1 30 505 4.891 4 1 12
G11 29791 0.093 19401 12.699 12 1 30 7610 13.796 14 1 30 851 9.246 9 5 17
G12 29791 0.372 5567 11.834 12 2 25 13155 13.329 12 1 30 566 6.235 6 2 13
G13 29791 0.327 10111 15.673 15 4 30 9947 12.508 11 1 30 999 7.784 7 3 19
G14 29791 0.657 1716 7.553 8 2 13 8514 9.333 8 1 23 62 5.177 5 3 8
G15 29791 0.677 5957 15.249 16 2 30 3676 18.522 18 4 30 70 8.214 8 6 11
G16 29791 0.502 14375 10.693 9 1 30 465 23.630 24 12 30 0 - - - -
G17 29791 0.816 3926 12.973 12 1 30 1556 26.965 28 13 30 0 - - - -
G18 29791 0.275 1574 10.071 10 2 16 20024 16.593 16 2 30 11 6.364 6 6 7
G19 29791 0.667 3166 8.349 9 1 15 6759 15.381 15 2 30 31 7.097 7 6 8
G20 29791 0.797 3167 5.650 6 2 10 2883 5.940 5 2 15 27 3.000 3 2 5
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Table B.7: Summary of the optimal policy action quantities for problem set G under a both high and low quality recovery strategy (ζL = 1)

ζL = 1 Proportion of states ap for ap > 0 ar for ar > 0 ab for ab > 0
Num. states ap = ar = ab = 0 Num. states mean median min max Num. states mean median min max Num. states mean median min max

G00 29791 0.632 0 - - - - 10974 11.921 9 1 30 0 - - - -
G01 29791 0.678 5917 7.650 8 1 14 3671 7.006 6 1 16 22 4.045 4 3 7
G02 29791 0.452 14298 14.364 14 1 30 2038 15.245 15 1 30 383 4.914 4 2 11
G03 29791 0.405 15345 14.434 14 1 30 2371 16.080 16 1 30 448 6.946 7 3 13
G04 29791 0.590 8860 12.330 12 1 26 3340 14.027 13 1 30 145 6.324 6 3 11
G05 29791 0.595 9339 8.390 8 1 18 2738 14.135 15 1 30 175 5.343 5 2 10
G06 29791 0.623 7826 8.332 8 1 17 3420 12.361 12 2 23 104 5.115 5 3 9
G07 29791 0.526 12038 15.817 16 2 30 2074 17.186 17 3 30 102 5.588 5 3 10
G08 29791 0.717 7092 9.625 9 2 21 1340 10.880 11 3 18 30 3.633 3.5 2 6
G09 29791 0.748 5313 7.836 8 3 14 2196 15.049 14 3 30 118 5.703 5 3 9
G10 29791 0.281 19522 13.387 13 1 30 1895 16.619 17 1 30 370 4.662 4 1 11
G11 29791 0.110 20125 12.699 12 2 30 6398 12.375 13 1 30 766 8.785 8 4 16
G12 29791 0.444 9716 11.810 12 2 26 6835 9.640 8 1 28 524 6.284 6 2 13
G13 29791 0.372 9836 17.332 17 6 30 8860 11.465 10 1 30 719 8.570 8 3 20
G14 29791 0.711 4257 7.456 7 3 12 4367 9.552 8 1 24 49 5.367 5 3 8
G15 29791 0.723 6213 19.000 19 5 30 2050 19.290 19 7 30 0 - - - -
G16 29791 0.748 2499 21.138 23 4 30 4997 12.798 12 3 30 0 - - - -
G17 29791 0.883 1957 20.946 22 9 30 1519 26.269 27 17 30 0 - - - -
G18 29791 0.785 4633 10.359 10 3 17 1786 9.283 8 1 26 1 6.000 6 6 6
G19 29791 0.681 6468 8.271 8 2 18 3022 11.498 10 1 30 11 7.455 7 7 8
G20 29791 0.818 4073 5.643 6 2 10 1347 7.522 7 2 18 18 3.000 3 2 5
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have occurred. This mid-state serviceable inventory level might be useful in determining

a ‘produce-up-to’ level in a heuristic policy. The level of components inventory after

ordering has occurred and production has taken place, (i.e. at the end of the period), is

also of interest. The components in stock at the end of a period indicate the willingness

to hold components. Observe that the mid-state of the components inventory is always

zero. This suggests that components are only ordered when needed and are used up

during production.

B.3 Heuristic Policies

B.3.1 Policy P2: Periodic Review Order-up-to Policy with Yield

Adjustment

This section contains the parameter values, costs and relative cost error associated with

the P2 policies. This information is presented in Tables B.12–B.15.
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Table B.8: Summary of the optimal policy initial states for problem set G under a high only quality recovery strategy (ζL = 0) (n= Number
of states)

ζ = 0 is for ap > 0 is for ar > 0 ir for ar > 0 ic for ab > 0
n mean median min max n mean median min max n mean median min max n mean median min max

G00 0 - - - - 10974 13.853 6 0 30 10974 16.802 17 1 30 0 - - - -
G01 3946 3.554 3 0 15 6336 5.935 6 0 16 6336 20.481 22 1 30 38 1.658 2 0 3
G02 7378 6.774 5 0 28 17816 15.683 16 0 28 17816 15.328 16 1 30 414 4.196 4 0 9
G03 8149 7.359 5 0 28 16534 15.153 15 0 28 16534 17.172 18 1 30 447 4.004 4 0 9
G04 4207 4.723 4 0 26 19712 14.470 14 0 28 19712 14.882 15 1 30 158 2.797 3 0 6
G05 4089 3.960 4 0 12 10901 10.152 9 0 28 10901 21.867 23 1 30 251 2.717 3 0 7
G06 5520 4.803 5 0 12 7357 8.809 8 0 26 7357 24.207 25 4 30 168 2.315 2 0 6
G07 12547 8.359 8 0 28 2589 4.888 4 0 14 2589 20.207 21 3 30 146 2.541 2 0 6
G08 5763 3.860 4 0 8 2563 4.010 4 0 12 2563 22.918 24 4 30 60 2.000 2 1 4
G09 2159 1.703 1 0 6 7439 5.641 6 0 12 7439 18.404 19 3 30 134 2.881 3 0 6
G10 16063 11.309 11 0 29 7721 13.729 14 0 29 7721 14.374 14 1 30 505 3.958 4 0 10
G11 19401 12.602 12 0 29 7610 16.551 18 0 29 7610 24.676 26 1 30 851 4.343 4 0 10
G12 5567 5.059 4 0 18 13155 12.062 12 0 29 13155 20.684 23 1 30 566 4.366 4 0 10
G13 10111 8.082 7 0 26 9947 14.386 14 0 29 9947 23.196 25 2 30 999 7.135 7 1 15
G14 1716 2.004 2 0 7 8514 6.944 6 0 27 8514 20.897 23 1 30 62 2.065 2 0 4
G15 5957 4.038 4 0 12 3676 6.409 6 0 18 3676 18.522 18 4 30 70 2.157 2 1 4
G16 14375 9.687 8 0 29 465 3.852 4 0 9 465 23.630 24 12 30 0 - - - -
G17 3926 2.416 2 0 8 1556 3.246 3 0 10 1556 26.970 28 13 30 0 - - - -
G18 1574 1.424 1 0 5 20024 12.705 12 0 27 20024 16.804 17 2 30 11 1.545 2 1 2
G19 3166 2.099 2 0 8 6759 6.271 6 0 13 6759 15.381 15 2 30 31 1.516 1 1 3
G20 3167 1.716 2 0 5 2883 5.627 5 0 22 2883 25.068 28 2 30 27 1.667 2 0 3
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Table B.9: Summary of the optimal policy initial states for problem set G under a both high and low quality recovery strategy (ζL = 1) (n=
Number of states)

ζ = 1 is for ap > 0 is for ar > 0 ir for ar > 0 ic for ab > 0
n mean median min max n mean median min max n mean median min max n mean median min max

G00 0 - - - - 10974 13.85310734 6 0 30 10974 16.802 17 1 30 0 - - - -
G01 5917 4.002 4 0 9 3671 5.338872242 6 0 10 3671 16.756 17 1 30 22 1.773 2 0 3
G02 14298 8.830 8 0 27 2038 6.448478901 6 0 15 2038 17.138 17 1 30 383 4.063 4 0 9
G03 15345 9.371 9 0 27 2371 7.28553353 7 0 23 2371 19.417 20 1 30 448 3.982 4 0 9
G04 8860 5.296 5 0 15 3340 7.755988024 8 0 16 3340 14.190 14 1 30 145 2.786 3 0 6
G05 9339 5.762 6 0 13 2738 6.058802045 6 0 14 2738 17.938 19 1 30 175 2.343 2 0 6
G06 7826 5.512 6 0 12 3420 5.147368421 5 0 12 3420 20.815 22 2 30 104 2.077 2 0 5
G07 12038 7.660 8 0 22 2074 4.175024108 4 0 11 2074 18.094 18 3 30 102 2.598 2.5 0 6
G08 7092 4.128 4 0 9 1340 2.946268657 3 0 9 1340 18.049 18 3 30 30 2.133 2 1 4
G09 5313 2.916 3 0 7 2196 5.154371585 6 0 11 2196 18.867 19 3 30 118 2.746 3 0 6
G10 19522 11.383 11 0 29 1895 5.615831135 5 0 17 1895 16.779 17 1 30 370 3.541 3 0 9
G11 20125 12.929 13 0 28 6398 15.5140669 16 0 30 6398 25.278 27 1 30 766 4.223 4 0 10
G12 9716 6.236 6 0 20 6835 12.49144111 13 0 29 6835 22.906 25 1 30 524 4.260 4 0 10
G13 9836 7.878 7 0 24 8860 13.87968397 14 0 30 8860 23.605 25 2 30 719 7.613 8 1 16
G14 4257 2.867 3 0 7 4367 5.541103733 6 0 17 4367 21.882 24 1 30 49 1.939 2 0 4
G15 6213 4.450 4 0 11 2050 3.592195122 3 0 9 2050 19.331 19 7 30 0 - - - -
G16 2499 3.383 3 0 15 4997 5.048028817 5 0 14 4997 16.120 15 3 30 0 - - - -
G17 1957 2.058 2 0 5 1519 2.354180382 2 0 8 1519 26.269 27 17 30 0 - - - -
G18 4633 2.473 2 0 6 1786 4.660134378 5 0 10 1786 17.593 18 1 30 1 2.000 2 2 2
G19 6468 3.624 4 0 10 3022 7.11780278 8 0 15 3022 14.546 14 1 30 11 1.545 2 1 2
G20 4073 2.161 2 0 5 1347 3.317743133 3 0 12 1347 22.625 25 2 30 18 1.611 2 0 3
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Table B.10: Summary of the optimal policy mid-states for problem set G under a high only quality recovery strategy (ζL = 0) (n= Number
of states)

ζ = 0 is + ap for ap > 0 ir − ar for ar > 0 ic + ab for ab > 0 ic + ab − ap for ab > 0, ap > 0
n mean median min max n mean median min max n mean median min max n mean median min max

G00 0 - - - - 10974 4.881 0 0 21 0 - - - - 0 - - - -
G01 3946 10.756 11 4 16 6336 13.612 14 0 28 38 5.974 6 4 7 38 0 0 0 0
G02 7378 22.260 24 8 30 17816 0.543 0 0 18 414 9.092 9 4 11 414 0 0 0 0
G03 8149 22.407 24 8 30 16534 1.001 0 0 17 447 11.069 11 5 13 447 0 0 0 0
G04 4207 18.565 19 6 30 19712 0.783 0 0 17 158 9.399 10 5 11 158 0 0 0 0
G05 4089 12.489 13 6 17 10901 10.308 11 0 28 251 8.112 8 4 10 251 0 0 0 0
G06 5520 12.519 13 6 17 7357 13.924 16 0 26 168 7.637 8 4 9 168 0 0 0 0
G07 12547 22.860 24 5 30 2589 0.708 0 0 13 146 8.068 8 5 10 146 0 0 0 0
G08 5763 13.107 13 4 19 2563 12.599 13 0 25 60 5.583 6 3 7 60 0 0 0 0
G09 2159 10.497 11 6 13 7439 0.000 0 0 0 134 8.433 9 7 9 134 0 0 0 0
G10 16063 25.043 28 9 30 7721 0.514 0 0 13 505 8.850 9 3 12 505 0 0 0 0
G11 19401 25.301 29 9 30 7610 10.880 12 0 28 851 13.589 14 8 17 851 0 0 0 0
G12 5567 16.893 17 9 25 13155 7.355 1 0 29 566 10.601 11 4 13 566 0 0 0 0
G13 10111 23.755 25 12 30 9947 10.688 12 0 29 999 14.919 15 9 20 999 0 0 0 0
G14 1716 9.557 10 5 13 8514 11.564 11 0 27 62 7.242 7 6 8 62 0 0 0 0
G15 5957 19.288 20 4 30 3676 0.000 0 0 0 70 10.371 10 9 12 70 0 0 0 0
G16 14375 20.381 22 1 30 465 0.000 0 0 0 0 - - - - 0 - - - -
G17 3926 15.389 14 1 30 1556 0.006 0 0 1 0 - - - - 0 - - - -
G18 1574 11.495 12 3 16 20024 0.211 0 0 13 11 7.909 8 7 8 11 0 0 0 0
G19 3166 10.447 11 3 15 6759 0.000 0 0 0 31 8.613 9 7 9 31 0 0 0 0
G20 3167 7.366 8 3 10 2883 19.128 20 0 27 27 4.667 5 4 5 27 0 0 0 0
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Table B.11: Summary of the optimal policy mid-states for problem set G under a both high and low quality recovery strategy (ζL = 1), (n=
Number of states)

ζ = 1 is + ap for ap > 0 ir − ar for ar > 0 ic + ab for ab > 0 ic + ab − ap for ab > 0, ap > 0
n mean median min max n mean median min max n mean median min max n mean median min max

G00 0 - - - - 10974 4.881 0 0 21 0 - - - - 0 - - - -
G01 5917 11.651 12 4 14 3671 9.750 9 0 28 22 5.818 6 4 7 22 0 0 0 0
G02 14298 23.194 25 7 30 2038 1.893 0 0 15 383 8.977 9 4 11 383 0 0 0 0
G03 15345 23.805 25 8 30 2371 3.337 0 0 26 448 10.929 11 5 13 448 0 0 0 0
G04 8860 17.626 17 6 26 3340 0.163 0 0 11 145 9.110 9 5 11 145 0 0 0 0
G05 9339 14.152 15 6 18 2738 3.803 0 0 28 175 7.686 8 4 10 175 0 0 0 0
G06 7826 13.844 14 5 17 3420 8.454 8 0 26 104 7.192 7 4 9 104 0 0 0 0
G07 12038 23.476 25 5 30 2074 0.907 0 0 26 102 8.186 8 5 10 102 0 0 0 0
G08 7092 13.753 13 4 21 1340 7.169 7 0 25 30 5.767 6 4 7 30 0 0 0 0
G09 5313 10.753 11 6 14 2196 3.817 0 0 24 118 8.449 9 7 9 118 0 0 0 0
G10 19522 24.771 27 7 30 1895 0.160 0 0 8 370 8.203 8 3 11 370 0 0 0 0
G11 20125 25.628 30 8 30 6398 12.903 14 0 29 766 13.008 13 8 16 766 0 0 0 0
G12 9716 18.046 17 9 26 6835 13.267 15 0 29 524 10.544 11 4 13 524 0 0 0 0
G13 9836 25.211 27 11 30 8860 12.140 15 0 29 719 16.184 16 11 21 719 0 0 0 0
G14 4257 10.322 10 4 12 4367 12.330 12 0 27 49 7.306 7 6 8 49 0 0 0 0
G15 6213 23.450 24 5 30 2050 0.041 0 0 3 0 - - - - 0 - - - -
G16 2499 24.520 26 4 30 4997 3.322 0 0 27 0 - - - - 0 - - - -
G17 1957 23.004 24 9 30 1519 0.000 0 0 0 0 - - - - 0 - - - -
G18 4633 12.832 13 3 17 1786 8.310 7 0 26 1 8.000 8 8 8 1 0 0 0 0
G19 6468 11.895 12 3 18 3022 3.048 0 0 28 11 9.000 9 9 9 11 0 0 0 0
G20 4073 7.804 8 3 10 1347 15.103 16 0 28 18 4.611 5 4 5 18 0 0 0 0
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Table B.12: Performance of heuristic policy P2 with yield adjustment y = 0.9 for problem set G

P2A P2B P2C P2D P1∗ Optimal Policy

Problem sA SA Cost RCE sB SB Cost RCE sC SC Cost RCE sD SD Cost RCE s∗ S∗ Cost RCE Cost

G01 8 8 807.632 8.475 8 9 778.077 4.505 5 10 769.665 3.375 9 14 785.387 5.487 9 11 765.230 2.780 744.535
G02 9 9 1157.137 1.972 9 14 1156.878 1.949 12 15 1159.543 2.184 10 13 1154.348 1.726 11 12 1152.772 1.588 1134.757
G03 11 11 1826.775 0.973 11 15 1832.903 1.312 12 16 1836.594 1.516 12 16 1836.594 1.516 10 12 1826.761 0.972 1809.169
G04 9 9 2223.605 1.672 9 13 2236.251 2.250 9 13 2236.251 2.250 10 14 2242.693 2.545 10 11 2226.566 1.808 2187.034
G05 10 10 2100.795 15.219 10 12 2000.556 9.722 9 13 1959.398 7.464 11 15 1908.937 4.697 12 18 1904.755 4.467 1823.303
G06 10 10 1112.973 10.424 10 12 1055.960 4.767 6 12 1060.288 5.197 11 17 1054.029 4.576 11 15 1041.369 3.320 1007.910
G07 10 10 1098.875 5.101 10 12 1078.708 3.172 7 13 1081.792 3.467 11 17 1099.042 5.117 10 13 1079.989 3.294 1045.545
G08 8 8 671.311 11.209 8 9 640.928 6.176 4 10 637.093 5.540 9 15 639.482 5.936 7 12 625.658 3.646 603.650
G09 9 9 2392.612 0.844 9 14 2417.186 1.880 8 14 2415.978 1.829 10 16 2439.760 2.831 8 10 2391.347 0.791 2372.582
G10 10 10 4217.294 17.011 10 12 3919.344 8.744 10 13 3832.888 6.345 11 14 3787.875 5.096 13 17 3767.960 4.544 3604.191
G11 12 12 679.317 1.340 12 15 676.337 0.896 8 15 676.562 0.929 13 20 680.422 1.505 13 16 676.471 0.916 670.333
G12 12 12 1367.455 1.013 12 15 1369.768 1.184 10 15 1369.806 1.187 13 18 1380.788 1.998 13 14 1367.798 1.039 1353.736
G13 13 13 1987.866 1.115 13 16 1987.824 1.113 4 16 1990.333 1.240 14 26 2039.919 3.762 10 15 1986.755 1.058 1965.953
G14 8 8 970.620 2.223 8 10 962.713 1.391 5 10 962.889 1.409 9 14 984.552 3.691 8 10 962.713 1.391 949.508
G15 9 9 1164.166 10.260 9 12 1095.836 3.789 1 13 1115.625 5.663 9 21 1113.470 5.459 5 16 1094.171 3.631 1055.832
G16 9 9 3561.595 81.536 9 18 3158.271 60.978 1 28 2535.058 29.213 1 30 2567.675 30.875 1 1 2760.976 40.728 1961.925
G17 9 9 1493.895 19.363 9 11 1513.127 20.900 1 14 1357.948 8.501 5 30 1548.677 23.740 1 18 1347.233 7.645 1251.555
G18 7 7 765.849 1.765 7 11 776.722 3.209 5 12 776.012 3.115 8 15 791.273 5.143 1 7 763.466 1.448 752.569
G19 9 9 2615.591 13.195 9 14 2434.980 5.379 8 15 2422.726 4.848 10 17 2400.934 3.905 14 19 2403.187 4.003 2310.692
G20 5 5 905.807 2.307 5 6 897.239 1.339 4 7 899.616 1.608 6 9 917.190 3.593 4 7 899.616 1.608 885.380

Min 0.844 0.896 0.929 1.505 0.791
Max 81.536 60.978 29.213 30.875 40.728
Mean 10.351 7.233 4.844 6.160 4.534
Median 3.704 3.191 3.245 4.241 2.294
Std Dev 17.376 13.126 6.011 7.269 8.473
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Table B.13: Performance of heuristic policy P2 with yield adjustment y = 1.0 for problem set G

P1A P1B P1C P1D P1∗ Optimal Policy

Problem sA SA Cost RCE sB SB Cost RCE sC SC Cost RCE sD SD Cost RCE s∗ S∗ Cost RCE Cost

G01 8 8 841.508 13.025 8 9 804.105 8.001 5 10 781.188 4.923 9 14 777.997 4.494 9 11 766.323 2.926 744.535
G02 9 9 1165.511 2.710 9 14 1155.567 1.834 12 15 1157.725 2.024 10 13 1153.532 1.655 11 12 1152.650 1.577 1134.757
G03 11 11 1827.235 0.999 11 15 1830.434 1.175 12 16 1833.554 1.348 12 16 1833.554 1.348 10 12 1826.141 0.938 1809.169
G04 9 9 2230.030 1.966 9 13 2231.105 2.015 9 13 2231.105 2.015 10 14 2236.832 2.277 10 11 2223.659 1.675 2187.034
G05 10 10 2200.504 20.688 10 12 2076.404 13.881 9 13 2026.063 11.120 11 15 1948.248 6.853 12 18 1908.425 4.669 1823.303
G06 10 10 1169.477 16.030 10 12 1094.574 8.598 6 12 1096.942 8.833 11 17 1048.271 4.004 11 15 1044.045 3.585 1007.910
G07 10 10 1172.859 12.177 10 12 1087.788 4.040 7 13 1082.766 3.560 11 17 1093.943 4.629 10 13 1081.269 3.417 1045.545
G08 8 8 704.759 16.750 8 9 667.752 10.619 4 10 650.325 7.732 9 15 635.323 5.247 7 12 624.833 3.509 603.650
G09 9 9 2399.821 1.148 9 14 2413.244 1.714 8 14 2412.359 1.677 10 16 2433.478 2.567 8 10 2394.164 0.910 2372.582
G10 10 10 4455.457 23.619 10 12 4115.351 14.182 10 13 3974.476 10.274 11 14 3875.396 7.525 13 17 3780.422 4.890 3604.191
G11 12 12 683.667 1.989 12 15 677.313 1.041 8 15 677.544 1.076 13 20 679.294 1.337 13 16 676.938 0.985 670.333
G12 12 12 1371.381 1.303 12 15 1369.349 1.153 10 15 1369.388 1.156 13 18 1378.014 1.793 13 14 1368.361 1.080 1353.736
G13 13 13 1988.182 1.131 13 16 1984.644 0.951 4 16 1987.536 1.098 14 26 2023.971 2.951 10 15 1984.497 0.943 1965.953
G14 8 8 990.867 4.356 8 10 963.870 1.513 5 10 964.585 1.588 9 14 979.790 3.189 8 10 963.870 1.513 949.508
G15 9 9 1199.991 13.654 9 12 1102.433 4.414 1 13 1131.726 7.188 9 21 1107.860 4.928 5 16 1092.919 3.513 1055.832
G16 9 9 3532.363 80.046 9 18 3143.350 60.218 1 28 2490.120 26.922 1 30 2470.942 25.945 1 1 2400.309 22.345 1961.925
G17 9 9 1504.347 20.198 9 11 1502.215 20.028 1 14 1371.300 9.568 5 30 1404.311 12.205 1 18 1347.401 7.658 1251.555
G18 7 7 764.635 1.603 7 11 774.169 2.870 5 12 773.918 2.837 8 15 788.376 4.758 1 7 763.228 1.416 752.569
G19 9 9 2662.195 15.212 9 14 2473.339 7.039 8 15 2455.652 6.273 10 17 2421.265 4.785 14 19 2409.042 4.256 2310.692
G20 5 5 945.512 6.792 5 6 903.329 2.027 4 7 899.510 1.596 6 9 912.704 3.086 4 7 899.510 1.596 885.380

Min 0.999 0.951 1.076 1.337 0.910
Max 80.046 60.218 26.922 25.945 22.345
Mean 12.770 8.366 5.640 5.279 3.670
Median 9.484 3.455 3.198 4.249 2.301
Std Dev 17.177 13.014 5.936 5.353 4.620
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Table B.14: Performance of heuristic policy P2 with yield adjustment y = 1.1 for problem set G

P2A P2B P2C P2D P1∗ Optimal Policy

Problem sA SA Cost RCE sB SB Cost RCE sC SC Cost RCE sD SD Cost RCE s∗ S∗ Cost RCE Cost

G01 8 8 841.508 13.025 8 9 804.105 8.001 5 10 781.188 4.923 9 14 775.947 4.219 9 11 769.415 3.342 744.535
G02 9 9 1165.511 2.710 9 14 1154.617 1.750 12 15 1156.561 1.922 10 13 1152.717 1.583 11 12 1152.267 1.543 1134.757
G03 11 11 1827.794 1.029 11 15 1829.078 1.100 12 16 1832.022 1.263 12 16 1832.022 1.263 10 12 1825.727 0.915 1809.169
G04 9 9 2230.030 1.966 9 13 2228.187 1.882 9 13 2228.187 1.882 10 14 2233.651 2.132 10 11 2222.331 1.614 2187.034
G05 10 10 2200.504 20.688 10 12 2121.628 16.362 9 13 2064.495 13.228 11 15 1974.690 8.303 12 18 1915.400 5.051 1823.303
G06 10 10 1169.477 16.030 10 12 1119.149 11.037 6 12 1121.146 11.235 11 17 1047.474 3.925 11 15 1050.100 4.186 1007.910
G07 10 10 1172.859 12.177 10 12 1099.977 5.206 7 13 1086.761 3.942 11 17 1091.703 4.415 10 13 1084.828 3.757 1045.545
G08 8 8 704.759 16.750 8 9 667.752 10.619 4 10 650.325 7.732 9 15 633.739 4.985 7 12 625.781 3.666 603.650
G09 9 9 2399.821 1.148 9 14 2412.011 1.662 8 14 2411.217 1.628 10 16 2431.608 2.488 8 10 2394.164 0.910 2372.582
G10 10 10 4455.457 23.619 10 12 4225.680 17.244 10 13 4066.171 12.818 11 14 3940.634 9.335 13 17 3792.957 5.237 3604.191
G11 12 12 687.728 2.595 12 15 678.123 1.162 8 15 678.417 1.206 13 20 679.067 1.303 13 16 677.445 1.061 670.333
G12 12 12 1375.266 1.590 12 15 1369.498 1.164 10 15 1369.548 1.168 13 18 1377.048 1.722 13 14 1369.106 1.135 1353.736
G13 13 13 1990.040 1.225 13 16 1983.817 0.909 4 16 1987.246 1.083 14 26 2016.754 2.584 10 15 1984.191 0.928 1965.953
G14 8 8 990.867 4.356 8 10 963.870 1.513 5 10 964.585 1.588 9 14 978.597 3.064 8 10 963.870 1.513 949.508
G15 9 9 1199.991 13.654 9 12 1108.988 5.035 1 13 1145.200 8.464 9 21 1105.914 4.743 5 16 1093.603 3.577 1055.832
G16 9 9 3532.363 80.046 9 18 3140.071 60.051 1 28 2488.323 26.831 1 30 2467.641 25.777 1 1 2400.309 22.345 1961.925
G17 9 9 1504.347 20.198 9 11 1499.286 19.794 1 14 1380.242 10.282 5 30 1401.298 11.965 1 18 1349.275 7.808 1251.555
G18 7 7 764.635 1.603 7 11 774.067 2.857 5 12 773.449 2.774 8 15 787.732 4.672 1 7 763.228 1.416 752.569
G19 9 9 2662.195 15.212 9 14 2492.809 7.881 8 15 2473.199 7.033 10 17 2433.436 5.312 14 19 2414.325 4.485 2310.692
G20 5 5 945.512 6.792 5 6 903.329 2.027 4 7 899.510 1.596 6 9 912.704 3.086 4 7 899.510 1.596 885.380

Min 1.029 0.909 1.083 1.263 0.910
Max 80.046 60.051 26.831 25.777 22.345
Mean 12.821 8.863 6.130 5.344 3.804
Median 9.484 3.946 3.358 4.072 2.478
Std Dev 17.145 13.103 6.279 5.421 4.635
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Table B.15: Performance of heuristic policy P2 with yield adjustment y = 1.2 for problem set G

P2A P2B P2C P2D P1∗ Optimal Policy

Problem sA SA Cost RCE sB SB Cost RCE sC SC Cost RCE sD SD Cost RCE s∗ S∗ Cost RCE Cost

G01 8 8 890.046 19.544 8 9 838.412 12.609 5 10 803.930 7.978 9 14 772.373 3.739 9 11 776.446 4.286 744.535
G02 9 9 1181.252 4.097 9 14 1155.188 1.801 12 15 1156.673 1.931 10 13 1153.815 1.679 11 12 1154.507 1.740 1134.757
G03 11 11 1829.547 1.126 11 15 1829.048 1.099 12 16 1831.657 1.243 12 16 1831.657 1.243 10 12 1827.662 1.022 1809.169
G04 9 9 2244.008 2.605 9 13 2227.764 1.862 9 13 2227.764 1.862 10 14 2232.533 2.080 10 11 2224.954 1.734 2187.034
G05 10 10 2281.304 25.119 10 12 2187.218 19.959 9 13 2118.249 16.176 11 15 2012.925 10.400 12 18 1936.382 6.202 1823.303
G06 10 10 1221.107 21.152 10 12 1157.362 14.828 6 12 1158.517 14.942 11 17 1048.721 4.049 11 15 1063.595 5.525 1007.910
G07 10 10 1251.720 19.719 10 12 1141.369 9.165 7 13 1103.083 5.503 11 17 1090.266 4.277 10 13 1100.827 5.287 1045.545
G08 8 8 748.773 24.041 8 9 701.706 16.244 4 10 672.195 11.355 9 15 631.601 4.630 7 12 632.088 4.711 603.650
G09 9 9 2413.323 1.717 9 14 2410.636 1.604 8 14 2410.038 1.579 10 16 2428.576 2.360 8 10 2399.342 1.128 2372.582
G10 10 10 4639.105 28.714 10 12 4386.778 21.713 10 13 4206.783 16.719 11 14 4053.000 12.452 13 17 3821.391 6.026 3604.191
G11 12 12 697.381 4.035 12 15 679.834 1.417 8 15 680.185 1.470 13 20 678.962 1.287 13 16 678.588 1.231 670.333
G12 12 12 1385.358 2.336 12 15 1370.813 1.261 10 15 1370.877 1.266 13 18 1376.036 1.647 13 14 1371.593 1.319 1353.736
G13 13 13 1995.650 1.511 13 16 1983.753 0.905 4 16 1988.083 1.126 14 26 2010.220 2.252 10 15 1985.032 0.970 1965.953
G14 8 8 1022.773 7.716 8 10 968.794 2.031 5 10 970.256 2.185 9 14 976.235 2.815 8 10 968.794 2.031 949.508
G15 9 9 1238.352 17.287 9 12 1128.276 6.861 1 13 1163.190 10.168 9 21 1102.590 4.428 5 16 1095.536 3.760 1055.832
G16 9 9 3518.231 79.325 9 18 3129.142 59.493 1 28 2485.437 26.684 1 30 2462.935 25.537 1 1 2400.309 22.345 1961.925
G17 9 9 1539.131 22.977 9 11 1497.204 19.627 1 14 1391.371 11.171 5 30 1402.164 12.034 1 18 1357.674 8.479 1251.555
G18 7 7 763.917 1.508 7 11 772.387 2.633 5 12 771.875 2.565 8 15 785.637 4.394 1 7 762.799 1.359 752.569
G19 9 9 2725.806 17.965 9 14 2522.501 9.166 8 15 2498.461 8.126 10 17 2451.595 6.098 14 19 2428.969 5.119 2310.692
G20 5 5 945.512 6.792 5 6 919.408 3.843 4 7 902.666 1.952 6 9 910.691 2.859 4 7 902.666 1.952 885.380

Min 1.126 0.905 1.126 1.243 0.970
Max 79.325 59.493 26.684 25.537 22.345
Mean 15.464 10.406 7.300 5.513 4.311
Median 12.501 5.352 4.034 3.894 2.896
Std Dev 17.422 13.280 6.925 5.649 4.669
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Appendix C

Appendix for Discrete-Time with

Separate Markets

Introduction

This section presents additional information related to the third model in this thesis

– the discrete-time stochastic product recovery model with separate markets and

substitution.

C.1 Model Implementation and Validation

The implementation of the model and validation of the java programming code are

described in this section. Some of the java code was used in Chapter 5 and described

in Section 3.2.3 therefore only the code which is specific to this model is described and

validated here.

C.1.1 Implementation of the Stochastic Product Recovery Model

As in Chapter 5 the mid-state is used to reduce the computational burden of the

problem. The introduction of the mid-state means that some calculations can be
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performed in advance and stored, so that during the value iteration algorithm the values

need to be looked up, rather than calculated. However in this model, the substitution

action needs to be taken into account when addressing the effect of demand, therefore

the mid-state does not offer the same computational savings for this model, compared

with the second model (Chapter 5).

Definition of the Mid State. Let m = (m1,m2,mr,mc) denote the value of the

state variables after the action has been chosen, and demand and substitutions have

been observed. Recall that s1 is the number of recovered goods used to meet demand

of produced goods, and s2 is the number of produced goods used to meet demand of

recovered goods. The mid-state m is then related to the state at the beginning of the

period i in the following way:

m1 = max{
(

i1 + ap − xd1 − s2(xd2)
)

, 0}

m2 = max{
(

i2 + ah(xq)− xd2 − s1(xd1)
)

, 0}

mr = ir − ar

mc(ic + ab − ap + al(xq))

The expected reward associated with the transition from the initial state to the mid-

state is:

E[Ri,m(i, a(i),Xq ,Xd1,Xd2,Xr,X1,X2)] = E[S(Xq ,Xd1,Xd2,X1,X2]

−
(

E[K(i, a(i))] + E[P (i, a(i))] + E[H(i)]

+ E[L(i, a(i),Xq ,Xd1,Xd2,X1,X2)]
)

(C.1)

The mid-state is related to the state at the beginning of the the next period j in the

following way:

j1 = m1

j2 = m2

jr = min{mr + xr,Wr}

jc = mc

The expected reward associated with the transition from the mid-state to the next-state

is:

E[Rm,j(Xr)] = lr max
{

E[Xr]− (Wr −mr), 0
}

(C.2)
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The probability of moving from state i to mid-state m depends on the initial state

i, the action a(i), the quality variable Xq, the demand variables Xd1, Xd2 and the

substitution variables X1,X2. The probability of moving from mid-state m to state j

in the next period depends on the mid-state m and the returns variable Xr.

C.1.2 Validation of the Code

The code structure used for this model is the same as in Chapter 5 and was described

in Section 3.2.3.

In addition to thorough error-checking and inspection of output during the code

development process, two forms of verification were used to validate the problem specific

files. The calculation of the expected average rewards was checked using an Excel

spreadsheet and the system was simulated using the optimal policy and the simulated

reward was compared with the actual reward, as calculated by the MDP.

To conduct these tests a set of six example test problems were constructed. The

parameters of these problems are shown in Table C.1. These test problems were chosen

because they represent a range of different scenarios. The test problems are labelled

A01–A06. The uniform distribution is used to model returns for problem A05 and

demand and returns for problem A06. For the other problems demand and returns

are modelled by the Poisson distribution. The quality of returns and the acceptance

of upward and downward substitutions are modelled by the Binomial distribution with

parameters α,α1, α2, respectively. These test problems have a limited upper capacity

on each inventory level of W1 = W2 = Wr = Wc = 5. This level is lower than the one

used in the previous chapter due to the increased state and action spaces and hence

increased computational time of the current model.

Several variations of these test problems were created. All four substitution

strategies were considered under a low and high quality recovery strategy. The high-

quality recovery strategy was investigated under a two-way substitution strategy only.

All problems were studied under the optimal policy and a heuristic policy. This created

a test set of 60 problems. A heuristic policy was included to ensure that the code was

not always choosing the action with the highest reward. The heuristic policy used the

following decision rule:
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If W1 − i1 > Qp then produce Qp

else if ir > Qr then recover Qr.

Always offer substitution is the strategy allows.

Table C.1: Test Problems used in Model Validation

A01 A02 A03 A04 A05 A06

Distributions
α 0.9 0.6 1 0.5 0.2 0.6
α1 0.8 0.2 0.5 1 0.8 0.5
α2 0.3 0.8 0.5 1 0.8 0.5
λ1 1 1 1 1 1 U(0,5)
λ2 1 1 1 1 1 U(0,5)
λr 2 2 2 2 U(2,6) U(0,4)

Costs and Revenues
cp 4 4 15 15 5 10
cr 1 2 5 5 1 1
c1 0 0 0 0 0 0
c2 0 0 0 0 0 0
cb 3 3 5 1 10 2
ch 2 3 1 1 1 1
cl 1 1 3 3 5 3
cd 1.1 1.1 2 2 2 1
ca 0 0 0 0 0 0
pr 0 0 0 0 0 0
p1 21 21 60 48 45 36
p2 13 9 55 16 34 10
kp 3 2 10 2 5 1
kr 1 1 5 1 3 1
kb 0 0 0 0 0 0
h1 1 0.1 1 1 1 3
h2 3 2 5 2 4 5
hr 2 1 2 1 4 4
hc 1 1 0 1 1 2
lr 0.1 0.1 0.1 0.1 0.1 0.1
l1 0.7 0.7 2 1.6 1.5 1.2
l2 0.3 0.5 0.6 0.6 0.2 0.2

Order Size
Qp 4 3 4 4 4 4
Qr 4 3 4 4 4 4

Reward Calculations. In order to test the calculation of the costs and rewards

within the java code an Excel spreadsheet was constructed to calculate the expected

rewards for a given state and action independently of the calculations used in the java
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code. The expected reward associated with a given state and action (equation 6.15) was

calculated, by completely enumerating across possible values of the random variables

Xq, Xd1, Xd2, Xr, X1, X2. The result of this equation should be the same when

calculated using Excel and when calculated using the java code.

The java code creates a .csv file containing the policy and rewards associated with

each state, so these values are easily attainable.

The number of states and actions in this problem make it infeasible to manually

compare the rewards for every state using the Excel spreadsheet, therefore for the test

problems the rewards associated with 30 states were checked. These states are listed in

Table C.2. The first and last states were chosen because they have inventory levels equal

to the minimum or maximum capacity levels. The remaining 28 states were selected

randomly using the Excel function rand(). For each of the 30 states, the rewards

calculated by the java programme and those calculated by the Excel spreadsheet were

checked for the optimal policy action and for a heuristic policy action, under the four

substitution strategies. They were also checked for the high-quality recovery, under

a two-way substitution strategy. For all 60 test problems and all states tested, the

rewards calculated by the java code were the same as those calculated by the Excel

spreadsheet.

Optimal Policies. The optimal and heuristic policy actions for all the test problems

were also examined. Histograms showing the frequency of the size of each action

variable were examined for all test problems. The histograms for problem A01 are

presented in Figure C.1 and are discussed here as an example.

Figure C.1a shows that the maximum value for the production action ap is 4, which

corresponds to Qp, the maximum lot size for production (see Table C.1). The action

size can be distributed across the values 0 to 4, although for this problem it only takes

values 0 and 4. The size of a recovery lot can take two values 0 and Qr and this is

represented by the histogram of ar.

Figure C.1b shows that substitution variables take two values: 0 (do not offer

substitution) or 1 (offer substitution). For this problem, substitution is offered in
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Table C.2: Selection of states for which the rewards were calculated using an Excel
spreadsheet

State ir is1 is2 ic
0 0 0 0 0

20 0 0 3 2
52 0 1 2 4
64 0 1 4 4
85 0 2 2 1
253 1 1 0 1
292 1 2 0 4
324 1 3 0 0
371 1 4 1 5
434 2 0 0 2
577 2 4 0 1
623 2 5 1 5
678 3 0 5 0
689 3 1 0 5
722 3 2 0 2
739 3 2 3 1
746 3 2 4 2
762 3 3 1 0
789 3 3 5 3
892 4 0 4 4
961 4 2 4 1
991 4 3 3 1

1000 4 3 4 4
1002 4 3 5 0
1016 4 4 1 2
1033 4 4 4 1
1095 5 0 2 3
1112 5 0 5 2
1235 5 4 1 5
1295 5 5 5 5

most states. Upward substitution (a1) is offered slightly less frequently than downward

substitution (a2).

Figure C.1c and C.1d show the inventory levels when recovery and production,

respectively, are chosen. Figure C.1e show the inventory levels when each type of

substitution is chosen.

Figure C.2 shows the equivalent graphs but for the heuristic policy. These

histograms are typical of the ones for the other 60 test problems. All graphs showed

the expected results.
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(e) Inventory levels when substitution is performed

Figure C.1: Histograms showing the frequency of action sizes for the optimal policy for

test problem A01 under a two-way substitution strategy
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(e) Inventory levels when substitution is performed

Figure C.2: Histograms showing the frequency of action sizes for the heuristic policy

for test problem A01 under a two-way substitution strategy
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Simulation Code. Simulation can also be used to calculate the average reward

of a policy and hence can be used to validate the calculation of the average total

reward in the value iteration file. Across a large number of simulations, the distribution

of the rewards should be centred around the actual average total reward obtained

from the value iteration algorithm. For each of the test problems, 1000 runs of T =

1, 000, 000 time units were completed. The long run average reward was calculated

for each simulation and the distribution of these rewards obtained over the 1000 runs

was examined using histograms. The histograms were calculated for the optimal policy

for the 30 variations of the test problems. This histograms for the 30 problems were

examined and appeared to be approximately normally distributed and centred around

the reward from the value iteration algorithm. As an example, the histograms of

simulated costs for test problem A01–A05 under a two-way substitution strategy with

high and low quality recovery is shown in Figure C.3. The mean and standard deviation

of the simulated values are printed on the graph. This provides further evidence to

support the accuracy of the stochastic product recovery code and also the simulation

code.

Table C.3 contains the value iteration reward and simulation statistics relating to the

test problems under a two-way substitution strategy with high and low quality recovery,

under a optimal and heuristic policy. The values in these tables were calculated using

a single simulation over T = 1, 000, 000 time units. As shown in these tables, the mean

values for produced demand, recovered demand, returns and the fill rates are close

to the parameter values for all problems. The simulated and optimal profits are also

similar for all test problems.

C.2 Properties of the Optimal Policy

In this section information to support the analysis of the optimal policy in Section 6.6

is presented.

C.2.1 Analysis of Performance

This section relates to Section 6.6.2 and provides additional information about the

fill rate of the optimal policy, under the four substitution strategies: no substitution
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Figure C.3: Histogram of average total reward from 1000 simulations for test problem

under a two-way substitution strategy with high and low quality recovery.
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Table C.3: Policy and Simulation Results for Test Problems under a two-way
substitution strategy with high and low quality recovery

(a) Optimal Policy

χ1 = 1,
χ2 = 1

Simulation over T = 1, 000, 000

Problem
Optimal
Profit

Simulation
Profit

x̄d1 x̄d2 x̄r
Fill

rate i1

Fill rate i1
including
substitu-

tion

Fill
rate i2

Fill rate i2
including
substitu-

tion
A01 8.0804 8.0607 0.9988 0.9994 1.9994 0.8345 0.9521 0.9316 0.9478
A02 9.8519 9.8562 1.0001 0.9993 1.9998 0.9857 0.9871 0.5983 0.8792
A03 62.9458 63.0551 1.0007 1.0020 1.9985 0.9317 0.9637 0.9762 0.9863
A04 21.5445 21.4869 0.9982 0.9999 1.9994 0.9929 0.9967 0.6923 0.9801
A05 32.8048 32.8246 0.9999 0.9999 3.9980 0.9811 0.9868 0.5860 0.8810
A06 36.0285 36.0667 2.5019 2.4986 1.9978 0.9716 0.9752 0.4115 0.4638

(b) Heuristic Policy

χ1 = 1,
χ2 = 1

Simulation over T = 1, 000, 000

Problem
Heuristic
Policy
Profit

Simulation
Profit

x̄d1 x̄d2 x̄r
Fill

rate i1

Fill rate i1
including
substitu-

tion

Fill
rate i2

Fill rate i2
including
substitu-

tion
A01 3.6565 3.6495 1.0000 0.9995 1.9993 0.9911 0.9974 0.9554 0.9675
A02 6.0577 6.0352 1.0000 0.9984 1.9984 0.9978 0.9981 0.8643 0.9667
A03 56.8159 56.8230 0.9998 1.0001 2.0003 0.9911 0.9951 0.9628 0.9798
A04 19.2974 19.2958 0.9995 1.0005 1.9991 0.9911 0.9969 0.8239 0.9826
A05 30.4580 30.5071 1.0000 1.0011 4.0000 0.9913 0.9940 0.6835 0.9089
A06 34.3514 34.3680 2.5000 2.5000 2.0012 0.9333 0.9408 0.3912 0.5486

(χ1 = 0, χ2 = 0), upward substitution (χ1 = 1, χ2 = 0), downward substitution (χ1 =

0, χ2 = 1), two-way substitution (χ1 = 1, χ2 = 1).

Fill Rates

Substitution Inclusive and Exclusive Fill Rate. Tables C.4, C.5 and C.6 show

the fill rates including and excluding substitution for problems B, C andD respectively.

They provide the data used for the graphs in Figures 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9.

413



Table C.4: Summary of the optimal policy fill rates for substitution strategies for
problem set B

(a) Produced inventory i1

Fill rate i1 excluding substitution Fill rate i1 including substitution

Problem None Down Up Two-way Problem None Down Up Two-way

B01 0.9635 0.9592 0.9566 0.9540 B01 0.9635 0.9592 0.9718 0.9708
B02 0.9494 0.9452 0.9481 0.9435 B02 0.9494 0.9452 0.9525 0.9485
B03 0.9868 0.9792 0.9842 0.9791 B03 0.9868 0.9792 0.9848 0.9799
B04 0.9694 0.9694 0.9693 0.9693 B04 0.9694 0.9694 0.9717 0.9717
B05 0.9811 0.9361 0.9809 0.9327 B05 0.9811 0.9361 0.9857 0.9502
B06 0.9716 0.9851 0.9599 0.9745 B06 0.9716 0.9851 0.9735 0.9846
B07 0.9798 0.9539 0.9793 0.9502 B07 0.9798 0.9539 0.9851 0.9639
B08 0.7755 0.7755 0.6568 0.6568 B08 0.7755 0.7755 0.7498 0.7498
B09 0.9621 0.9800 0.9619 0.9777 B09 0.9621 0.9800 0.9654 0.9801
B10 0.9468 0.8327 0.9391 0.7821 B10 0.9468 0.8327 0.9616 0.8519
B11 0.9892 0.9891 0.9890 0.9889 B11 0.9892 0.9891 0.9919 0.9919
B12 0.9850 0.9850 0.9848 0.9848 B12 0.9850 0.9850 0.9885 0.9885
B13 0.8823 0.8312 0.8737 0.8150 B13 0.8823 0.8312 0.8994 0.8521
B14 0.9823 0.9811 0.9764 0.9695 B14 0.9823 0.9811 0.9810 0.9781
B15 0.9690 0.9687 0.9669 0.9682 B15 0.9690 0.9687 0.9713 0.9725
B16 0.1347 0.1347 0.1347 0.1347 B16 0.1347 0.1347 0.1347 0.1347
B17 0.1347 0.1347 0.1347 0.1347 B17 0.1347 0.1347 0.1347 0.1347
B18 0.9192 0.8862 0.9179 0.8809 B18 0.9192 0.8862 0.9255 0.8920
B19 0.1347 0.1347 0.6019 0.6019 B19 0.1347 0.1347 0.6397 0.6397
B20 0.9386 0.9382 0.9255 0.9252 B20 0.9386 0.9382 0.9427 0.9424

(b) Recovered inventory i2

Fill rate i2 excluding substitution Fill rate i2 including substitution

Problem None Down Up Two-way Problem None Down Up Two-way

B01 0.5903 0.5900 0.5745 0.5724 B01 0.5903 0.6890 0.5745 0.6740
B02 0.5117 0.5116 0.5011 0.5000 B02 0.5117 0.6201 0.5011 0.6083
B03 0.1656 0.1644 0.1645 0.1628 B03 0.1656 0.5319 0.1645 0.5308
B04 0.1659 0.1659 0.1627 0.1627 B04 0.1659 0.1659 0.1627 0.1627
B05 0.4073 0.3993 0.4002 0.3785 B05 0.4073 0.6228 0.4002 0.6072
B06 0.8648 0.8175 0.8394 0.7955 B06 0.8648 0.9025 0.8394 0.8901
B07 0.5934 0.5947 0.5862 0.5803 B07 0.5934 0.7413 0.5862 0.7303
B08 0.8344 0.8344 0.7659 0.7659 B08 0.8344 0.8344 0.7659 0.7659
B09 0.5102 0.4843 0.5001 0.4777 B09 0.5102 0.7988 0.5001 0.7926
B10 0.6089 0.6097 0.5792 0.5396 B10 0.6089 0.8126 0.5792 0.7971
B11 0.5318 0.5311 0.5228 0.5220 B11 0.5318 0.5360 0.5228 0.5270
B12 0.6643 0.6643 0.6492 0.6492 B12 0.6643 0.6643 0.6492 0.6492
B13 0.6058 0.6109 0.5668 0.5575 B13 0.6058 0.6974 0.5668 0.6557
B14 0.3838 0.3645 0.3742 0.3609 B14 0.3838 0.8421 0.3742 0.8348
B15 0.5121 0.5124 0.5045 0.5045 B15 0.5121 0.5158 0.5045 0.5079
B16 0.0495 0.0495 0.0495 0.0495 B16 0.0495 0.0495 0.0495 0.0495
B17 0.0495 0.0495 0.0495 0.0495 B17 0.0495 0.0495 0.0495 0.0495
B18 0.5092 0.5117 0.4994 0.4984 B18 0.5092 0.6300 0.4994 0.6198
B19 0.3675 0.3675 0.4780 0.4780 B19 0.3675 0.3675 0.4780 0.4780
B20 0.7111 0.7110 0.6894 0.6893 B20 0.7111 0.7126 0.6894 0.6910
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Table C.5: Summary of the optimal policy fill rates for substitution strategies for
problem set C

(a) Produced inventory i1

Fill rate i1 excluding substitution Fill rate i1 including substitution

Problem None Down Up Two-way Problem None Down Up Two-way

C01 0.9725 0.9704 0.9705 0.9638 C01 0.9725 0.9704 0.9808 0.9773
C02 0.9720 0.9673 0.9715 0.9662 C02 0.9720 0.9673 0.9741 0.9693
C03 0.9886 0.9949 0.9886 0.9949 C03 0.9886 0.9949 0.9890 0.9952
C04 0.9768 0.9768 0.9768 0.9768 C04 0.9768 0.9768 0.9786 0.9786
C05 0.9848 0.9805 0.9840 0.9784 C05 0.9848 0.9805 0.9880 0.9846
C06 0.9803 0.9878 0.9649 0.9716 C06 0.9803 0.9878 0.9793 0.9844
C07 0.9883 0.9849 0.9881 0.9835 C07 0.9883 0.9849 0.9915 0.9883
C08 0.8120 0.8120 0.6839 0.6839 C08 0.8120 0.8120 0.7710 0.7710
C09 0.9670 0.9776 0.9669 0.9754 C09 0.9670 0.9776 0.9700 0.9784
C10 0.9756 0.9569 0.9731 0.9086 C10 0.9756 0.9569 0.9836 0.9427
C11 0.9932 0.9912 0.9930 0.9909 C11 0.9932 0.9912 0.9956 0.9942
C12 0.9889 0.9889 0.9880 0.9881 C12 0.9889 0.9889 0.9925 0.9925
C13 0.9789 0.9694 0.9778 0.9630 C13 0.9789 0.9694 0.9832 0.9716
C14 0.9822 0.9935 0.9816 0.9920 C14 0.9822 0.9935 0.9852 0.9950
C15 0.9782 0.9778 0.9780 0.9777 C15 0.9782 0.9778 0.9811 0.9809
C16 0.1347 0.1347 0.1347 0.1347 C16 0.1347 0.1347 0.1347 0.1347
C17 0.1347 0.1347 0.1347 0.1347 C17 0.1347 0.1347 0.1347 0.1347
C18 0.9521 0.9458 0.9516 0.9383 C18 0.9521 0.9458 0.9564 0.9447
C19 0.1347 0.1347 0.1347 0.1347 C19 0.1347 0.1347 0.1347 0.1347
C20 0.9608 0.9604 0.9587 0.9581 C20 0.9608 0.9604 0.9683 0.9678

(b) Recovered inventory i2

Fill rate i2 excluding substitution Fill rate i2 including substitution

Problem None Down Up Two-way Problem None Down Up Two-way

C01 0.5920 0.5906 0.5785 0.5748 C01 0.5920 0.7276 0.5785 0.7196
C02 0.5144 0.5134 0.5073 0.5051 C02 0.5144 0.7280 0.5073 0.7226
C03 0.1657 0.1607 0.1648 0.1600 C03 0.1657 0.8525 0.1648 0.8523
C04 0.1658 0.1658 0.1633 0.1633 C04 0.1658 0.1659 0.1633 0.1634
C05 0.4103 0.3549 0.4043 0.3463 C05 0.4103 0.7886 0.4043 0.7836
C06 0.9245 0.9028 0.9022 0.8803 C06 0.9245 0.9504 0.9022 0.9384
C07 0.5939 0.5911 0.5890 0.5846 C07 0.5939 0.7814 0.5890 0.7772
C08 0.8344 0.8344 0.7715 0.7715 C08 0.8344 0.8344 0.7715 0.7715
C09 0.5142 0.5082 0.5055 0.4995 C09 0.5142 0.8151 0.5055 0.8085
C10 0.6126 0.5742 0.5945 0.5530 C10 0.6126 0.8938 0.5945 0.8794
C11 0.6053 0.5992 0.5978 0.5897 C11 0.6053 0.7586 0.5978 0.7509
C12 0.7682 0.7673 0.7523 0.7518 C12 0.7682 0.7725 0.7523 0.7554
C13 0.6086 0.5686 0.5960 0.5501 C13 0.6086 0.9234 0.5960 0.9174
C14 0.3844 0.3786 0.3768 0.3717 C14 0.3844 0.9067 0.3768 0.9044
C15 0.5243 0.5251 0.5182 0.5189 C15 0.5243 0.5367 0.5182 0.5308
C16 0.0495 0.0495 0.0495 0.0495 C16 0.0495 0.0495 0.0495 0.0495
C17 0.0495 0.0495 0.0495 0.0495 C17 0.0495 0.0495 0.0495 0.0495
C18 0.5121 0.5139 0.5053 0.5052 C18 0.5121 0.7133 0.5053 0.7061
C19 0.3675 0.3675 0.3675 0.3675 C19 0.3675 0.3675 0.3675 0.3675
C20 0.7147 0.7145 0.6993 0.6990 C20 0.7147 0.7187 0.6993 0.7035
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Table C.6: Summary of the optimal policy fill rates for substitution strategies for
problem set D

(a) Produced inventory i1

Fill rate i1 excluding substitution Fill rate i1 including substitution

Problem None Down Up Two-way Problem None Down Up Two-way

D01 0.9666 0.9620 0.9616 0.9541 D01 0.9666 0.9620 0.9787 0.9763
D02 0.9717 0.9700 0.9714 0.9693 D02 0.9717 0.9700 0.9743 0.9726
D03 0.9858 0.9735 0.9858 0.9734 D03 0.9858 0.9735 0.9865 0.9753
D04 0.9742 0.9742 0.9742 0.9742 D04 0.9742 0.9742 0.9772 0.9772
D05 0.9797 0.9056 0.9796 0.8887 D05 0.9797 0.9056 0.9872 0.9334
D06 0.9788 0.9819 0.9264 0.9249 D06 0.9788 0.9819 0.9629 0.9619
D07 0.9853 0.9739 0.9848 0.9721 D07 0.9853 0.9739 0.9903 0.9825
D08 0.8011 0.8011 0.6852 0.6852 D08 0.8011 0.8011 0.7770 0.7770
D09 0.9706 0.9768 0.9701 0.9760 D09 0.9706 0.9768 0.9735 0.9793
D10 0.9664 0.8921 0.9618 0.8657 D10 0.9664 0.8921 0.9781 0.9201
D11 0.9876 0.9868 0.9872 0.9861 D11 0.9876 0.9868 0.9918 0.9910
D12 0.9860 0.9860 0.9835 0.9835 D12 0.9860 0.9860 0.9905 0.9905
D13 0.9462 0.8885 0.9441 0.8771 D13 0.9462 0.8885 0.9585 0.9072
D14 0.9779 0.9807 0.9776 0.9723 D14 0.9779 0.9807 0.9827 0.9819
D15 0.9700 0.9725 0.9658 0.9656 D15 0.9700 0.9725 0.9712 0.9710
D16 0.1347 0.1347 0.1347 0.1347 D16 0.1347 0.1347 0.1347 0.1347
D17 0.1347 0.1347 0.1347 0.1347 D17 0.1347 0.1347 0.1347 0.1347
D18 0.9403 0.9237 0.9397 0.9205 D18 0.9403 0.9237 0.9463 0.9294
D19 0.7620 0.7620 0.7394 0.7394 D19 0.7620 0.7620 0.7798 0.7798
D20 0.9553 0.9550 0.9443 0.9439 D20 0.9553 0.9550 0.9584 0.9581

(b) Recovered inventory i2

Fill rate i2 excluding substitution Fill rate i2 including substitution

Problem None Down Up Two-way Problem None Down Up Two-way

D01 0.5770 0.5779 0.5595 0.5554 D01 0.5770 0.7146 0.5595 0.6961
D02 0.5129 0.5131 0.5051 0.5045 D02 0.5129 0.7592 0.5051 0.7536
D03 0.1608 0.1601 0.1592 0.1568 D03 0.1608 0.6273 0.1592 0.6251
D04 0.1612 0.1612 0.1572 0.1572 D04 0.1612 0.1612 0.1572 0.1572
D05 0.3967 0.3975 0.3867 0.3608 D05 0.3967 0.7624 0.3867 0.7428
D06 0.9823 0.9726 0.9668 0.9598 D06 0.9823 0.9847 0.9668 0.9762
D07 0.5803 0.5812 0.5738 0.5710 D07 0.5803 0.7717 0.5738 0.7645
D08 0.8255 0.8255 0.7588 0.7588 D08 0.8255 0.8255 0.7588 0.7588
D09 0.5128 0.5091 0.5033 0.4995 D09 0.5128 0.8071 0.5033 0.8028
D10 0.6068 0.6080 0.5827 0.5482 D10 0.6068 0.8800 0.5827 0.8554
D11 0.5785 0.5761 0.5661 0.5617 D11 0.5785 0.6110 0.5661 0.6085
D12 0.7876 0.7876 0.7648 0.7648 D12 0.7876 0.7876 0.7648 0.7648
D13 0.6050 0.6070 0.5783 0.5585 D13 0.6050 0.7887 0.5783 0.7576
D14 0.3782 0.3734 0.3678 0.3619 D14 0.3782 0.8640 0.3678 0.8566
D15 0.5157 0.5174 0.5071 0.5078 D15 0.5157 0.5247 0.5071 0.5140
D16 0.0495 0.0495 0.0495 0.0495 D16 0.0495 0.0495 0.0495 0.0495
D17 0.0495 0.0495 0.0495 0.0495 D17 0.0495 0.0495 0.0495 0.0495
D18 0.5072 0.5128 0.4983 0.5013 D18 0.5072 0.6821 0.4983 0.6745
D19 0.5804 0.5804 0.5153 0.5153 D19 0.5804 0.5804 0.5153 0.5153
D20 0.7106 0.7103 0.6898 0.6897 D20 0.7106 0.7137 0.6898 0.6928
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C.2.2 Analysis of Actions

This section relates to Section 6.6.3 and provides additional information about when

and how often the replenishment (production and recovery) and substitution actions

are chosen.

Action Size and Frequency

Replenishment Actions. The size of the replenishment actions is determined by

the parameters Qp and Qr respectively. This means that some features of the graph

are not particular interesting, for instance a graph of the sizes of the recovery action ar

can take only values of 0 or Qr. However, it is still useful to examine these graphs as

they allow us to check that the model is performing in the expected way. The graphs

for problems B01, C12 and D16 are presented in Figures C.4, C.5 and C.6 respectively

to illustrate some common properties of the graphs. For problem B01 and D16 the

production the action size ap takes values of 0 and Qp. For problem C12 the production

action size ap takes values between 0 and 7. The action size for recovery takes only two

values 0 or Qr for all problems.

Frequency of Replenishment Under Substitution Strategies Offering substi-

tution may influence whether or not production and recovery are chosen. For instance,

it may be the case that it is better to not produce, and to allow substitution to

cover any shortages. In Chapter 6, Figure 6.11 compared the number of states in

which production and recovery are chosen under the four substitution strategies: no

substitution, downward substitution, upward substitution, two-way substitution. The

data from which these graphs were constructed is presented in Table C.7.

Substitution Actions The substitution actions take value of 0 or 1. However, for

some of the substitution strategies, the one or both of the substitution actions must take

values of 0. The graphs for problems B01, C12 and D16 are presented in Figures C.7,

C.8 and C.9 respectively to illustrate some common properties of the graphs. These

graphs were summarised for all problems in Chapter 6 in Figure 6.12.

417



0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

a
p

nu
m

be
r 

of
 s

ta
te

s

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

a
r

nu
m

be
r 

of
 s

ta
te

s

Figure C.4: Histograms of the replenishment actions under the optimal policy for test

problem B01 under a two-way substitution strategy
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Figure C.5: Histograms of the replenishment actions under the optimal policy for test

problem C12 under a downward substitution strategy
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Figure C.6: Histograms of the replenishment actions under the optimal policy for test

problem D16 under a two-way substitution strategy
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Table C.7: Replenishment actions under optimal policy for substitution strategies for
problem sets

(a) Problems B

None Down Up Two-way
Problem ap ar ap ar ap ar ap ar
B01 4315 3034 4619 2963 3995 3131 4266 3087
B02 7529 5787 7738 5802 7071 6160 7253 6190
B03 9379 1859 10228 2995 9299 1872 10156 3039
B04 6153 2004 6361 2014 5939 2060 6148 2059
B05 5664 3773 9838 3572 5502 3845 9635 3761
B06 6032 7638 6022 7447 5636 8021 5460 7984
B07 7696 3554 8824 3572 7623 3603 8683 3667
B08 2486 2690 2487 2624 1834 2837 1836 2729
B09 3709 8176 3842 8221 3106 8594 2690 9073
B10 8776 3990 9733 3826 8413 4218 9314 4089
B11 10177 3688 10205 3693 10112 3748 10141 3755
B12 7990 5370 7996 5364 7699 5749 7705 5746
B13 8123 4471 8292 4634 7801 4716 7931 4919
B14 4227 2461 5690 3291 3910 2551 4040 4125
B15 6419 1882 6653 1963 6300 1908 6544 1994
B16 6655 0 6655 0 6380 0 6380 0
B17 2057 0 2057 0 1034 0 1034 0
B18 2711 3797 2790 5375 2395 3799 2424 5536
B19 1500 1099 1500 1099 423 1389 423 1389
B20 2533 2357 2563 1909 2085 2437 2124 1942

(b) Problems C

None Down Up Two-way
Problem ap ar ap ar ap ar ap ar

C01 3837 2969 4014 2845 3485 3078 3614 2936
C02 6371 6241 6537 6480 5864 6595 5971 6902
C03 8553 1968 9199 2505 8445 2003 8980 2602
C04 5499 2283 5610 2301 5229 2345 5339 2359
C05 4832 3773 8367 3611 4670 3834 7991 3863
C06 5208 7786 5204 7576 4695 8246 4515 8185
C07 6801 3521 7586 3363 6723 3561 7391 3460
C08 2169 2692 2169 2632 1523 2867 1525 2760
C09 3451 7745 3562 8051 2765 8191 2244 8958
C10 7521 4352 8698 3995 7176 4532 7933 4424
C11 9157 3904 9172 4066 9074 3963 9096 4119
C12 7219 5522 7228 5515 6501 6434 6509 6427
C13 6492 4568 6835 4735 6266 4695 6371 5051
C14 3948 2420 4589 1937 3512 2546 2418 2686
C15 5496 1992 5676 2055 5325 2025 5510 2075
C16 3857 897 3857 897 3558 902 3558 902
C17 1815 0 1815 0 902 0 902 0
C18 2094 3928 2224 4522 1962 3936 1990 4606
C19 1138 1061 1138 1061 313 1586 313 1586
C20 2333 2051 2350 1453 1762 2106 1766 1459

(c) Problems D

None Down Up Two-way
Problem ap ar ap ar ap ar ap ar
D01 4238 1863 4498 1760 3918 1928 4125 1822
D02 7645 2672 7898 2819 7220 2839 7433 2997
D03 9340 931 10865 1365 9264 947 10787 1392
D04 6105 705 6201 719 5857 720 5952 733
D05 5399 2449 9611 2231 5226 2508 9299 2401
D06 5240 6037 5337 5906 4139 6738 4165 6692
D07 7687 2044 8449 2032 7601 2077 8288 2083
D08 2445 2107 2445 2010 1789 2224 1790 2085
D09 3677 4333 3807 4385 3124 4488 2616 4922
D10 8232 3254 9720 2677 7898 3409 9117 2843
D11 10495 2858 10560 2876 10424 2909 10496 2921
D12 8237 4176 8246 4173 7806 4840 7816 4836
D13 7978 3504 8366 3606 7717 3634 8021 3825
D14 4209 1983 5524 1870 3895 2059 3771 2399
D15 5986 1052 6283 1111 5859 1066 6153 1128
D16 6329 210 6329 210 6031 217 6031 217
D17 2057 0 2057 0 1034 0 1034 0
D18 2649 2277 2647 2182 2311 2310 2367 2216
D19 1616 854 1616 854 528 855 528 855
D20 2495 1309 2542 813 2065 1302 2092 778
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Table C.9 shows the number of states in which substitution is chosen under each

of the substitution strategies. This data counts the number of states for which a1 = 1

and a2 = 1. It does not count the number of times substitution is actually offered -

this is only possible to examine using simulation. This information is summarised for

the two-way substitution strategy in Table C.8

Trigger-States and Action

Replenishment Actions The model takes the inventory levels into account when

selecting the optimal action, therefore it is interesting to investigate which inventory

levels ‘trigger’ certain actions. Many of the problems seem to exhibit an ’order-up-

to’ policy structure for production and recovery. Figures C.10a and C.10b show this

structure for problem B01. Figure C.10a shows the initial state i1 and the initial state

plus the action i1 + ap for produced inventory when production is chosen (ap > 0).

Notice that production is performed if the produced inventory level is less than 5 and

that after production has been performed the inventory level is at least 4. (Actually

production is performed at i1 = 6, however the number of states in which this occurs

is too small to appear of this graph.) This minimum ’produce-up-to’ level corresponds

to the production batch size Qp. These graphs could be used to obtain parameters for

an ’order-up-to’ structured policy.

Figure C.10b shows the initial state of recovered inventory i2 and the initial state

of the returned inventory ir when recovery is chosen (ar > 0). Notice that recovery

is performed if the recovered inventory level is less than 7 and the returned inventory

inventory level is at least 4. This minimum returned inventory level corresponds to

the recovery batch size Qr. The graphs are also presented for problem C12 under

a downward substitution strategy and D16 under a two-way substitution strategy in

Figures C.11a and C.12a respectively.

The trigger states for replenishment all substitution strategies are shown in Figures

C.13, C.14 and C.15 for problem set B, in Figures C.16, C.17 and C.18 for problem set

C and in Figures C.19, C.20 and C.21 for problem set D.
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Figure C.7: Histograms of the substitution actions under the optimal policy for test

problem B01 under a two-way substitution strategy
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Figure C.8: Histograms of the substitution actions under the optimal policy for test

problem C12 under a downward substitution strategy
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Figure C.9: Histograms of the substitution actions under the optimal policy for test

problem D16 under a two-way substitution strategy
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Figure C.10: Histograms of showing states associated with positive replenishment

actions under the optimal policy for test problem B01
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Figure C.11: Histograms of showing states associated with positive replenishment

actions under the optimal policy for test problem C12 under a downward substitutions

strategy
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Figure C.12: Histograms of showing states associated with positive replenishment

actions under the optimal policy for test problem D16 under a two-way substitutions

strategy
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Figure C.13: Graphs showing the level of produced inventory (trigger level) when

production is performed for problem set B.
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Figure C.14: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed for problem set B.
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Figure C.15: Graphs showing the level of returned inventory (trigger level) when

recovery is performed for problem set B.
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Figure C.16: Graphs showing the level of produced inventory (trigger level) when

production is performed for problem set C.
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Figure C.17: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed for problem set C.
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Figure C.18: Graphs showing the level of returned inventory (trigger level) when

recovery is performed for problem set C.
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Figure C.19: Graphs showing the level of produced inventory (trigger level) when

production is performed for problem set D.
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Figure C.20: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed for problem set D.
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Figure C.21: Graphs showing the level of returned inventory (trigger level) when

recovery is performed for problem set D.

Substitution Actions. The levels of produced inventory after production has been

completed (i1 + ap) in which substitution is selected, under all substitution strategies

presented in Figures C.22, C.24 and C.26. The levels of recovered inventory (i2) in

which substitution is selected, under all substitution strategies are presented in Figures

C.23, C.25 and C.27. These figures correspond to Figures 6.19 and 6.20 in Chapter 6,

which present only the two-way substitution strategies.
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(d) Two-way substitution

Figure C.22: Graphs showing the level of produced inventory (trigger level) when

downward substitution is selected for problem set B.
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Figure C.23: Graphs showing the level of recovered inventory (trigger level) when

upward substitution is selected for problem set B.
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(d) Two-way substitution

Figure C.24: Graphs showing the level of produced inventory (trigger level) when

downward substitution is selected for problem set C.
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Figure C.25: Graphs showing the level of recovered inventory (trigger level) when

upward substitution is selected for problem set C.
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(d) Two-way substitution

Figure C.26: Graphs showing the level of produced inventory (trigger level) when

downward substitution is selected for problem set D.
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Figure C.27: Graphs showing the level of recovered inventory (trigger level) when

upward substitution is selected for problem set D.
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Table C.8: Number of states selecting substitution actions under two-way substitution
(total number of states = 114 = 14641 )

B C D

Problem as1 as2 Problem as1 as2 Problem as1 as2
B01 13933 12563 C01 13910 13694 D01 13754 13671
B02 13860 11797 C02 13940 13502 D02 13719 13800
B03 13681 12398 C03 13644 14641 D03 13529 13421
B04 13628 4944 C04 13664 4887 D04 13447 4179
B05 13787 14238 C05 13749 14641 D05 13676 14579
B06 14068 14641 C06 14096 14641 D06 14113 14641
B07 13923 13538 C07 13862 14641 D07 13752 14594
B08 14115 5641 C08 14117 5709 D08 14012 6105
B09 14077 14549 C09 14096 14497 D09 13909 14549
B10 13772 14345 C10 13807 14464 D10 13700 14475
B11 13711 4597 C11 13776 10632 D11 13658 6604
B12 13902 3869 C12 13967 5735 D12 13852 3327
B13 13848 11908 C13 13845 14639 D13 13778 13482
B14 13875 14522 C14 13736 14246 D14 13741 14483
B15 13690 6770 C15 13702 8249 D15 13566 7560
B16 13310 0 C16 13419 0 D16 13348 0
B17 13310 0 C17 13310 0 D17 13310 0
B18 13998 14243 C18 13942 14317 D18 13668 14433
B19 13578 0 C19 13620 0 D19 13499 0
B20 13962 11242 C20 13888 11652 D20 13711 11708
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Table C.9: Number of states in which the substitution actions are selected under the
optimal policy for each substitution strategy (total number of states = 114 = 14641)

(a) Problems B

None Down Up Two-way
Problem as1 as2 as1 as2 as1 as2 as1 as2
B01 0 0 0 12359 13936 0 13933 12563
B02 0 0 0 11735 13883 0 13860 11797
B03 0 0 0 12376 13601 0 13681 12398
B04 0 0 0 4934 13627 0 13628 4944
B05 0 0 0 14215 13866 0 13787 14238
B06 0 0 0 14641 14128 0 14068 14641
B07 0 0 0 13354 13896 0 13923 13538
B08 0 0 0 4599 14115 0 14115 5641
B09 0 0 0 14641 14139 0 14077 14549
B10 0 0 0 14193 13887 0 13772 14345
B11 0 0 0 4583 13710 0 13711 4597
B12 0 0 0 3844 13903 0 13902 3869
B13 0 0 0 11400 13831 0 13848 11908
B14 0 0 0 14641 13955 0 13875 14522
B15 0 0 0 6711 13668 0 13690 6770
B16 0 0 0 0 13310 0 13310 0
B17 0 0 0 0 13310 0 13310 0
B18 0 0 0 14259 13845 0 13998 14243
B19 0 0 0 0 13578 0 13578 0
B20 0 0 0 10904 14238 0 13962 11242

(b) Problems C

None Down Up Two-way
Problem as1 as2 as1 as2 as1 as2 as1 as2

C01 0 0 0 13717 13933 0 13910 13694
C02 0 0 0 13312 13953 0 13940 13502
C03 0 0 0 14641 13612 0 13644 14641
C04 0 0 0 4872 13653 0 13664 4887
C05 0 0 0 14641 13872 0 13749 14641
C06 0 0 0 14641 14141 0 14096 14641
C07 0 0 0 14641 13879 0 13862 14641
C08 0 0 0 4679 14117 0 14117 5709
C09 0 0 0 14641 14151 0 14096 14497
C10 0 0 0 14640 13916 0 13807 14464
C11 0 0 0 10573 13760 0 13776 10632
C12 0 0 0 5535 13968 0 13967 5735
C13 0 0 0 14641 13869 0 13845 14639
C14 0 0 0 14641 13968 0 13736 14246
C15 0 0 0 8208 13688 0 13702 8249
C16 0 0 0 0 13419 0 13419 0
C17 0 0 0 0 13310 0 13310 0
C18 0 0 0 14456 13868 0 13942 14317
C19 0 0 0 0 13620 0 13620 0
C20 0 0 0 11390 14242 0 13888 11652

(c) Problems D

None Down Up Two-way
Problem as1 as2 as1 as2 as1 as2 as1 as2
D01 0 0 0 13586 13744 0 13754 13671
D02 0 0 0 13649 13718 0 13719 13800
D03 0 0 0 13404 13476 0 13529 13421
D04 0 0 0 4166 13443 0 13447 4179
D05 0 0 0 14622 13708 0 13676 14579
D06 0 0 0 14641 14135 0 14113 14641
D07 0 0 0 14613 13729 0 13752 14594
D08 0 0 0 5048 14012 0 14012 6105
D09 0 0 0 14641 14045 0 13909 14549
D10 0 0 0 14599 13849 0 13700 14475
D11 0 0 0 6560 13657 0 13658 6604
D12 0 0 0 3291 13853 0 13852 3327
D13 0 0 0 13132 13774 0 13778 13482
D14 0 0 0 14641 13868 0 13741 14483
D15 0 0 0 7517 13545 0 13566 7560
D16 0 0 0 0 13348 0 13348 0
D17 0 0 0 0 13310 0 13310 0
D18 0 0 0 14360 13662 0 13668 14433
D19 0 0 0 0 13499 0 13499 0
D20 0 0 0 11646 14120 0 13711 11708
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C.2.3 Analysis of Recovery Strategy

Fill Rates

Substitution Inclusive and Exclusive Fill Rates It is interesting to examine

the effect that substitution has on the fill rates under the two quality strategies.

Figures C.28, C.29 and C.30 show the fill rates including and excluding sales met

from substitution for problem sets B, C and D respectively. These figures show that

in general, substitution has a greater affect on the fill rate of recovered inventory

than produced inventory, however there is also substantial variation between problems.

There are some small differences in the fill rates between the quality strategies, however

in general, the substitution inclusive and exclusive fill rates are similar under both

quality strategies.

Tables C.10 and C.11 provide the data used for the graphs in Figures C.28, C.29

and C.30. They show the fill rates including and excluding substitution for problems

B, C and D respectively.
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Figure C.28: Fill rates for problem set B under a two-way substitution strategy for

both quality strategies
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Figure C.29: Fill rates for problem set C under a two-way substitution strategy for

both quality strategies
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Figure C.30: Fill rates for problem set D under a two-way substitution strategy for

both quality strategies
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Table C.10: Summary of the optimal policy produced-inventory-fill-rates under a two-
way substitution strategies under both quality strategies

(a) Problem set B

Fill rate i1 excluding substitution Fill rate i1 including substitution
Problem Only High Low and High Only High Low and High
B01 0.9566 0.9540 0.9725 0.9708
B02 0.9860 0.9435 0.9860 0.9485
B03 0.9902 0.9791 0.9902 0.9799
B04 0.9809 0.9693 0.9821 0.9717
B05 0.9643 0.9327 0.9734 0.9502
B06 0.9766 0.9745 0.9858 0.9846
B07 0.9479 0.9502 0.9619 0.9639
B08 0.6049 0.6568 0.7119 0.7498
B09 0.9833 0.9777 0.9853 0.9801
B10 0.9764 0.7821 0.9871 0.8519
B11 0.9942 0.9889 0.9957 0.9919
B12 0.9846 0.9848 0.9883 0.9885
B13 0.8946 0.8150 0.9163 0.8521
B14 0.9784 0.9695 0.9847 0.9781
B15 0.9849 0.9682 0.9849 0.9725
B16 0.1347 0.1347 0.1347 0.1347
B17 0.1347 0.1347 0.1347 0.1347
B18 0.8814 0.8809 0.8926 0.8920
B19 0.1347 0.6019 0.1347 0.6397
B20 0.9399 0.9252 0.9534 0.9424

(b) Problem set C

Fill rate i1 excluding substitution Fill rate i1 including substitution
Problem Only High Low and High Only High Low and High
C01 0.9663 0.9638 0.9788 0.9773
C02 0.9732 0.9662 0.9755 0.9693
C03 0.9953 0.9949 0.9955 0.9952
C04 0.9825 0.9768 0.9836 0.9786
C05 0.9913 0.9784 0.9941 0.9846
C06 0.9724 0.9716 0.9850 0.9844
C07 0.9833 0.9835 0.9882 0.9883
C08 0.6244 0.6839 0.7276 0.7710
C09 0.9771 0.9754 0.9799 0.9784
C10 0.9740 0.9086 0.9880 0.9427
C11 0.9910 0.9909 0.9943 0.9942
C12 0.9887 0.9881 0.9926 0.9925
C13 0.9822 0.9630 0.9870 0.9716
C14 0.9924 0.9920 0.9953 0.9950
C15 0.9878 0.9777 0.9878 0.9809
C16 0.1347 0.1347 0.1347 0.1347
C17 0.1347 0.1347 0.1347 0.1347
C18 0.9607 0.9383 0.9648 0.9447
C19 0.1347 0.1347 0.1347 0.1347
C20 0.9477 0.9581 0.9585 0.9678

(c) Problem set D

Fill rate i1 excluding substitution Fill rate i1 including substitution
Problem Only High Low and High Only High Low and High
D01 0.9537 0.9541 0.9760 0.9763
D02 0.9759 0.9693 0.9785 0.9726
D03 0.9883 0.9734 0.9885 0.9753
D04 0.9849 0.9742 0.9849 0.9772
D05 0.8978 0.8887 0.9389 0.9334
D06 0.9505 0.9249 0.9748 0.9619
D07 0.9716 0.9721 0.9822 0.9825
D08 0.6198 0.6852 0.7298 0.7770
D09 0.9820 0.9760 0.9848 0.9793
D10 0.8797 0.8657 0.9295 0.9201
D11 0.9913 0.9861 0.9942 0.9910
D12 0.9846 0.9835 0.9908 0.9905
D13 0.8895 0.8771 0.9172 0.9072
D14 0.9782 0.9723 0.9858 0.9819
D15 0.9849 0.9656 0.9849 0.9710
D16 0.1347 0.1347 0.1370 0.1347
D17 0.1347 0.1347 0.1347 0.1347
D18 0.9429 0.9205 0.9497 0.9294
D19 0.1347 0.7394 0.1347 0.7798
D20 0.9473 0.9439 0.9614 0.9581
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Table C.11: Summary of the optimal policy recovered-inventory-fill-rates under a two-
way substitution strategies under both quality strategies

(a) Problem set B

Fill rate i2 excluding substitution Fill rate i2 including substitution
Problem Only High Low and High Only High Low and High
B01 0.5715 0.5724 0.6719 0.6740
B02 0.3675 0.5000 0.7606 0.6083
B03 0.0684 0.1628 0.7090 0.5308
B04 0.1616 0.1627 0.1616 0.1627
B05 0.2619 0.3785 0.6639 0.6072
B06 0.7963 0.7955 0.8907 0.8901
B07 0.5799 0.5803 0.7340 0.7303
B08 0.7561 0.7659 0.7561 0.7659
B09 0.4753 0.4777 0.8011 0.7926
B10 0.3668 0.5396 0.8309 0.7971
B11 0.5158 0.5220 0.5287 0.5270
B12 0.6486 0.6492 0.6486 0.6492
B13 0.5366 0.5575 0.6231 0.6557
B14 0.3518 0.3609 0.8365 0.8348
B15 0.1351 0.5045 0.1351 0.5079
B16 0.0495 0.0495 0.0495 0.0495
B17 0.0495 0.0495 0.0495 0.0495
B18 0.5012 0.4984 0.5602 0.6198
B19 0.3675 0.4780 0.3675 0.4780
B20 0.6867 0.6893 0.6867 0.6910

(b) Problem set C

Fill rate i2 excluding substitution Fill rate i2 including substitution
Problem Only High Low and High Only High Low and High
C01 0.5743 0.5748 0.7184 0.7196
C02 0.4979 0.5051 0.7211 0.7226
C03 0.1580 0.1600 0.8529 0.8523
C04 0.1636 0.1633 0.1636 0.1634
C05 0.3172 0.3463 0.7941 0.7836
C06 0.8798 0.8803 0.9384 0.9384
C07 0.5845 0.5846 0.7769 0.7772
C08 0.7596 0.7715 0.7596 0.7715
C09 0.4994 0.4995 0.8102 0.8085
C10 0.5149 0.5530 0.8935 0.8794
C11 0.5840 0.5897 0.7761 0.7509
C12 0.7441 0.7518 0.7684 0.7554
C13 0.5316 0.5501 0.9303 0.9174
C14 0.3705 0.3717 0.9043 0.9044
C15 0.1351 0.5189 0.1351 0.5308
C16 0.0495 0.0495 0.0495 0.0495
C17 0.0495 0.0495 0.0495 0.0495
C18 0.5069 0.5052 0.6703 0.7061
C19 0.3675 0.3675 0.3675 0.3675
C20 0.6961 0.6990 0.6961 0.7035

(c) Problem set D

Fill rate i2 excluding substitution Fill rate i2 including substitution
Problem Only High Low and High Only High Low and High
D01 0.5553 0.5554 0.6950 0.6961
D02 0.5041 0.5045 0.7551 0.7536
D03 0.0936 0.1568 0.7001 0.6251
D04 0.0495 0.1572 0.0495 0.1572
D05 0.3613 0.3608 0.7400 0.7428
D06 0.9536 0.9598 0.9735 0.9762
D07 0.5708 0.5710 0.7642 0.7645
D08 0.7459 0.7588 0.7459 0.7588
D09 0.4984 0.4995 0.8107 0.8028
D10 0.5314 0.5482 0.8544 0.8554
D11 0.5558 0.5617 0.6086 0.6085
D12 0.7585 0.7648 0.7585 0.7648
D13 0.5573 0.5585 0.7484 0.7576
D14 0.3591 0.3619 0.8549 0.8566
D15 0.1351 0.5078 0.1351 0.5140
D16 0.0882 0.0495 0.0882 0.0495
D17 0.0495 0.0495 0.0495 0.0495
D18 0.5024 0.5013 0.6403 0.6745
D19 0.3675 0.5153 0.3675 0.5153
D20 0.6851 0.6897 0.6851 0.6928
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Appendix D

Appendix for Continuous-Time

Model with Separate Markets

Introduction

This section presents additional information related to the fourth model in this thesis

– the continuous-time stochastic product recovery model with separate markets and

substitution.

D.1 Semi-Markov Decision Process Formulation

D.1.1 Costs and Revenues

This section provides additional details to support Section 7.4.5.

Event Costs

Demand for Produced Inventory. If the next event is the arrival of demand for

a produced good the revenues received and costs incurred depend on the current state

and whether or not demand is met by produced inventory or by an upward substitution,

or is lost.
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1. If a1 = 0, then either (a) there is sufficient stock to meet demand or (b) upward

substitution is not offered. Under this case there are two sub-cases which could

occur, depending on the inventory level i1.

(a) There is sufficient produced inventory in stock i1 > 0 and a revenue of p1 is

received.

(b) There is insufficient produced inventory in stock i1 = 0 and upward

substitution is not offered a1 = 0, meaning that the sale is lost and a lost

sales cost of l1 is incurred.

2. If a1 = 1 then there is insufficient stock to meet demand and upward substitution

is offered. Under this case there are two sub-cases which could occur depending

on whether the substitution is (a) accepted or (b) not accepted.

(a) The consumer rejects the upward substitution (y1 = 0) and a lost sales cost

of l1 is incurred.

(b) The consumer accepts the upward substitution (y1 = 1) and a revenue of a

recovered good p2 is received.

Indicator functions can be defined which specify when each of these costs and

revenues should be included in the reward function. These are summarised and

explained below.

The function min{i1, 1} will be equal to 1 when demand is met by produced

inventory and revenue of p1 is received, and 0 otherwise.

Recall that Y1 is the random variable representing the acceptance of upward

substitution. If substitution is offered and accepted, then min{y1, a1} will be 1 and

0 otherwise. If the produced inventory is greater than zero i1 > 0 then both y1 and a1

are equal to zero, making min{y1, a1} = 0.

If i1 > 0, then max{0, 1 − i1} will be 0 and a substitution is not required (and not

offered). Therefore max{0, 1 − i1} − min{y1, a1} = 0 − 0 = 0. Thus if substitution

is not required then max{0, 1 − i1} − min{y1, a1} = 0. If i1 = 0 then max{0, 1 − i1}
will be 1 and a substitution is required. If substitution is offered and accepted, then
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max{0, 1− i1} −min{y1, a1} = 1− 1 = 0. If substitution is not offered, then a1 = 0 so

max{0, 1 − i1} −min{y1, a1} = 1 − 0 = 1. If substitution is offered and not accepted,

then y1 = 0 and a1 = 1 so max{0, 1− i1}−min{y1, a1} = 1−0 = 1. This is summarised

in the following table:

Case Cost i1 a1 y1 max{0, 1− i1} min{i1, 1} min{y1, a1} max{0, 1− i1} −min{y1, a1}
1a p1 > 0 0 0 0 1 0 0

1b l1 0 0 0 1 0 0 1

2a l1 0 1 0 1 0 0 1

2b p2 0 1 1 1 0 1 0

Combining these expressions gives the following expression for the expected reward

received in the event of demand for a produced good:

E[Rd1(i, a, Y1)] = p1min{i1, 1}+p2min{E[Y1], a1}− l1(max{0, 1−i1}−min{E[Y1], a1})
(D.1)

Demand for Recovered Inventory. If the next event is the arrival of demand for

a recovered good the revenue received or cost incurred depends on the current state

and whether or not demand is met by recovered inventory or a downward substitution,

or is lost.

1. If a2 = 0, then either (a) there is sufficient stock to meet demand or (b) downward

substitution is not offered. Under this case there are two sub-cases which could

occur, depending on the recovered inventory level i2.

(a) There is sufficient recovered inventory in stock i2 > 0 and a revenue of p2 is

received.

(b) There is insufficient recovered inventory in stock i2 = 0 and downward

substitution is not offered a2 = 0, meaning that the sale is lost and a lost

sales cost of l2 is incurred.

2. If a2 = 1 then there is insufficient stock to meet demand and downward

substitution is offered. Under this case there are two sub-cases which could occur

which depend on whether substitution is (a) accepted or (b) not accepted.
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(a) The consumer rejects the downward substitution (y2 = 0) and a lost sales

cost of l2 is incurred.

(b) The consumer accepts the downward substitution (y2 = 1) and a revenue of

a recovered good p2 is received. (The customer is charged for the cheaper of

the two goods, i.e. the recovered good).

Indicator functions can be defined which specify when each of these costs and revenues

should be included in the reward function.

The function min{i2, 1} will be equal to 1 when demand is met by recovered

inventory and revenue of p2 is received, and 0 otherwise.

Recall that Y2 is the random variable representing the acceptance of downward

substitution. If substitution is offered and accepted, then min{y2, a2} will be 1 and 0

otherwise. If the recovered inventory is greater than zero i2 > 0 then both y2 and a2

are equal to zero, making min{y2, a2} = 0.

If i2 > 0 then max{0, 1 − i2} will be 0 and a substitution is not required (and not

offered). Therefore max{0, 1 − i2} − min{y2, a2} = 0 − 0 = 0. Thus if substitution

is not required then max{0, 1 − i2} − min{y2, a2} = 0. If i2 = 0 then max{0, 1 − i2}
will be 1 and a substitution is required. If substitution is offered and accepted, then

max{0, 1− i2} −min{y2, a2} = 1− 1 = 0. If substitution is not offered, then a2 = 0 so

max{0, 1 − i2} −min{y2, a2} = 1 − 0 = 1. If substitution is offered and not accepted,

then y2 = 0 and a2 = 1 so max{0, 1− i2}−min{y2, a2} = 1−0 = 1. This is summarised

in the following table:

Case Cost i2 a2 y2 max{0, 1− i2} min{i2, 1} min{y2, a2} max{0, 1− i2} −min{y2, a2}
1a p2 > 0 0 0 0 1 0 0

1b l2 0 0 0 1 0 0 1

2a l2 0 1 0 1 0 0 1

2b p1 0 1 1 1 0 1 0

Combining these expressions gives the following expression for the reward received in

the event of demand for a recovered good:

E[Rd2(i, a, Y2)] = p2 min{i2, 1}+p2min{E[Y2], a2}− l2(max{0, 1−i2}−min{E[Y2], a2})
(D.2)
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D.2 Model Implementation and Validation

D.2.1 Implementation of the Stochastic Product Recovery Model

This section relates to Section 7.5.3. Further details about semi-Markov decision

processes were provided in the Methodology chapter (in Section 3.2). As in the previous

chapters, several forms of validation are used in order to check the accuracy of the code.

These are discussed in the following sections.

In the previous models the mid-state has been used to reduce the computational

burden of the transitions between states. In this model, however, all parts of the

transition from the current state i to the next state depend on the action chosen,

therefore the mid-state does not offer any computational savings in this model.

D.2.2 Validation of the Code

In addition to thorough error-checking and inspection of output during the code

development process, two forms of verification were used to validate the problem specific

files. The calculation of the expected average rewards was checked using an Excel

spreadsheet and by simulation for the optimal and a heuristic policy.

To conduct these tests, a set of six test problems was developed. The parameters for

these problems are shown in Table D.1. These six test problems were chosen because

they represent a range of different scenarios. The test problems are labelled A01–A06.

The test problems have a limited upper capacity on each inventory level of 5. In all six

problems Poisson processes are used to model the arrival of the events: returns, demand

for produced goods, demand for recovered goods, production, recovery. The number of

returns received is governed by the Poisson distribution in problems A01–A04 and the

Uniform distribution in problems A05 and A06. The size of the demand for produced

and recovered goods is always 1.

All six test problems allow the recovery of high and low quality returns, and allow

upward and downward substitution. The quality of returns and the acceptance of

substitution are modelled by the Binomial distribution. The quality parameter α varies

to represent there being a low or high probability of receiving high quality returns. The

acceptance parameters α1 and α2 represent the probability of acceptance of upward and

downward substitution respectively.
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Table D.1: Parameters used in the test problems used in model validation

Problem ID A01 A02 A03 A04 A05 A06
Arrival Rates
λr 1 2 1 8 1 1
λd1 8 10 10 8 1 3
λd2 6 5 10 8 1 3
λp 1 1 0.2 3 1 100
λrec 1 0.5 0.4 2 1 100

Distributions
Xr Pois(2) Pois(2) Pois(2) Pois(2) U(2,6) U(0,4)
α 0.9 0.6 1 0.5 0.2 0.6
α1 0.8 0.2 0.5 1 0.8 0.5
α2 0.3 0.8 0.5 1 0.8 0.5

Unit Costs
cp 4 4 15 15 5 10
cr 1 2 5 5 1 1
cb 3 3 5 1 10 2
ch 2 3 1 1 1 1
cl 1 1 3 3 5 3
cd 1.1 1.1 2 2 2 1
Revenues
pr 0 0 0 0 0 0
pd1 21 21 60 48 45 36
pd2 13 9 55 16 34 10

Setup Costs
kp 3 2 10 2 5 1
kr 1 1 5 1 3 1
kb 0 0 0 0 0 0

Holding Costs
hr 1 0.1 1 1 1 3
hs1 3 2 5 2 4 5
hs2 2 1 2 1 4 4
hc 1 1 0 1 1 2

Penalty Costs
lr 0.1 0.1 0.1 0.1 0.1 0.1
ls1 0.7 0.7 2 1.6 1.5 1.2
ls2 0.3 0.5 0.6 0.6 0.2 0.2

Order Sizes A
Qp 4 3 4 4 4 4
Qr 4 3 4 4 4 4

Strategic Variables
χ1 1 1 1 1 1 1
χ2 1 1 1 1 1 1
ζ 1 1 1 1 1 1
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Reward Calculations. In order to test the calculation of the costs and rewards

within the java code, an Excel spreadsheet was constructed to calculate the expected

rewards independently of the calculations used in the java code. The expected reward

associated with a given state and action (as defined by equation (7.9)) was calculated

by completely enumerating across possible transitions for a given state, i.e., all possible

events and size of events. The result of this equation should be the same when calculated

using Excel and when calculated using the java code. The expected reward associated

with the optimal action for each state is printed in the optimal policy file.

The number of states and actions in the problem makes it infeasible to manually

compare the rewards for every state. Therefore, for the six test problems the rewards

associated with 30 states were checked. The first and last states (marked with a ∗) were

chosen because they have inventory levels equal to the minimum or maximum capacity

levels. The remaining 28 states were selected randomly using the Excel function rand().

The 30 states are displayed in Table D.2.

For each of the 30 states, the rewards calculated by the java programme and those

calculated by the Excel spreadsheet were checked for the optimal policy action and for

a heuristic policy action. A heuristic policy was included to ensure that the code was

not always choosing the action with the highest reward. The heuristic policy used the

following decision rule:

If i1 ≤ sp and iop = 0 then produce Qp

Else if i2 ≤ sr and ior = 0 and ir > Qr then recover Qr.

If i1 = 0 and i2 ≥ ss2 and χ1 = 1 and iop = 1 then offer upward substitution.

If i2 = 0 and i1 ≥ ss1 and χ2 = 1 and ior = 1 then offer downward substitution.

For this validation, the sp = sr = 4 and ss1 = ss2 = 1. For all six problems, the

rewards calculated by the java code were the same as the rewards calculated by the

excel spreadsheet for all states.

445



Table D.2: Selection of states for which the costs were calculated using an Excel
spreadsheet

State Values
State ir is1 is2 ic iop ior

1* 0 0 0 0 0 0 0
2 58 0 0 2 2 1 0
3 84 0 0 3 3 0 0
4 269 0 1 5 1 0 1
5 479 0 3 1 5 1 1
6 482 0 3 2 0 1 0
7 516 0 3 3 3 0 0
8 756 0 5 1 3 0 0
9 794 0 5 3 0 1 0
10 1151 1 1 5 5 1 1
11 1340 1 3 1 5 0 0
12 1399 1 3 4 1 1 1
13 1453 1 4 0 3 0 1
14 1758 2 0 1 1 1 0
15 2271 2 3 4 3 1 1
16 2357 2 4 2 1 0 1
17 2375 2 4 2 5 1 1
18 2552 2 5 4 2 0 0
19 3249 3 4 3 2 0 1
20 3734 4 1 5 3 1 0
21 4055 4 4 0 5 1 1
22 4185 4 5 0 2 0 1
23 4572 5 1 4 3 0 0
24 4728 5 2 5 0 0 0
25 4769 5 3 0 4 0 1
26 4810 5 3 2 2 1 0
27 4914 5 4 0 4 1 0
28 4949 5 4 2 1 0 1
29 5041 5 5 0 0 0 1
30* 5183 5 5 5 5 1 1
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Optimal Policies. The optimal and heuristic policy actions for all the test problems

were also examined. Histograms showing the frequency of the size of each action

variable were examined for all test problems. The histograms for problem A01 are

presented in Figure D.1 and are discussed here as an example.

Figure D.1a shows that the action ap can take two values 0 and Qp. For recovery,

the action ar can take two values 0 and Qr and this is represented by the histogram

of ar. Figure D.1b shows that the substitution variables can take two values 0 (do not

offer substitution) or 1 (offer substitution). For this problem, both upward substitution

(a1) and downward substitution (a2) are offered in some states.

Figure D.2 show the inventory levels when production and recovery are chosen.

Figure D.2a shows that production is selected when the produced inventory level is 3

or less. Recovery is performed when the recovered inventory level is less than 3 and

when the returned inventory level is 4 or more, as shown in Figures D.2b and D.2c

respectively.

Figure D.3 show the inventory levels when each type of substitution is chosen.

Downward substitution should only be offered when i2 = 0 and i1 > 0 and upward

substitution can only be offered when i1 = 0 and i2 > 0. As expected downward

substitution is only offered when i2 = 0 and i1 > 0 and upward substitution is only

offered when i1 = 0 and i2 > 0. For this problem, downward substitution is only offered

in some states when if i1 = 5 and upward substitution is offered whenever i2 > 0.

These histograms are typical of the ones for the other test problems. All graphs

were examined and showed the expected results. This gives further validation to the

accuracy of the code.

Simulation Code

Simulation can also be used to calculate the average reward of a policy and hence can

be used to validate the calculation of the average total reward in the value iteration

file. Two simulation codes were developed for this model: a discrete time simulation

and a continuous time simulation. Repeated simulations were performed using both
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(b) Substitution

Figure D.1: Action quantities for production and recovery for test problem A01
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Figure D.2: Trigger states for production and recovery for test problem A01
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Figure D.3: States in which substitution is performed for test problem A01
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codes and the long run average reward was recorded. Over a large number of trials,

repeated sampling from the distribution of the long run average reward should yield an

approximately normally distributed curve, centred around the actual optimal reward

calculated by the value iteration algorithm. For each test problem 1000 simulations

were performed.

The discrete time simulation code models the problem by using a structure similar

to the discretization of the SMDP, in which each period has a length τ . The length of

each period τ corresponds to the value used in the conversion of the SMDP to a discrete

problem. The value of τ for each problem is presented in Table D.4. The probability of

an event happening in each period is given by the probabilities pi,j(a) ( see Table 7.2).

The discrete simulation the simulations had a length of T = 1000000 periods, which

corresponds to τ × 1000000 time units.

The continuous time simulation code models a continuous time version of the

problem in which the time to the next event is determined by generating a exponential

random variable for each event and selecting the one with the earliest arrival time. The

continuous simulation had a length of T = 10000 time units.

Histograms showing the distribution of the simulation costs were constructed from

the discrete and continuous simulations for each of the test problems. The histograms

for the first test problem A01 are presented in Figure D.4 as an example. The

histograms were visually inspected and all appeared to be approximately normally

distributed with the data centred around the value iteration reward value, which is

also shown on the graphs.

A summary of the optimal policy reward and simulation results for the test problems

are presented in Tables D.3 and D.4. Tables D.3a and D.3b show the optimal

policy reward and the fill rates calculated by a discrete and continuous simulation

respectively. For both types of simulation, the simulation costs are approximately

equal to the optimal policy reward from the value iteration algorithm. The fill rates

vary considerably across the six test problems and between the two types of inventory.

It was not optimal to perform downward substitution in problems A01–A04.

The average values of the random variables across the simulations are presented in

Table D.4. These can be compared to the parameters of the problems in Table D.1.
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(b) Continuous Time Simulation

Figure D.4: Histogram of average total reward from 1000 simulations for problem A01.

The values for the x̄d1, x̄d2, x̄r are the mean number of arrivals per time unit. The

similarity between these values further validates the programming code.

D.3 Properties of the Optimal Policy

This section contains Figures and Tables to support the analysis in Section 7.6.

D.3.1 Analysis of Performance

This section relates to Section 7.6.2 and provides additional information about the

performance of the optimal policy in terms of the average reward and the fill rate, under

the four substitution strategies: no substitution (χ1 = 0, χ2 = 0), upward substitution

(χ1 = 1, χ2 = 0), downward substitution (χ1 = 0, χ2 = 1), two-way substitution

(χ1 = 1, χ2 = 1). Upward substitution relates to the shortage of produced goods and

downward relates to the shortage of recovered goods.

Rewards

In Section 7.6.2 the relative reward increase associated with choosing substitution,

compared with no substitution was presented in Chapter 7, in Figure 7.3. Figures D.5
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Table D.3: Performance of optimal policy for test problems

(a) Discrete Time Simulation

Discrete Time Simulation over T = τ × 1, 000, 000
Problem Optimal

Profit
τ Simulation

Profit
Fill rate

i1

Fill rate i1
including

substitution

Fill rate
i2

Fill rate i2
including

substitution
A01 39.8028 0.0588 39.9178 0.3820 0.4347 0.1228 0.1228
A02 29.0319 0.0541 29.0825 0.2795 0.2942 0.1071 0.1071
A03 42.1640 0.0463 42.1436 0.0771 0.1044 0.0603 0.0603
A04 164.9202 0.0345 164.8589 0.7255 0.7819 0.2679 0.2679
A05 25.8380 0.2000 25.7434 0.8037 0.8353 0.2788 0.7305
A06 56.0325 0.0048 55.7303 0.9922 0.9935 0.3484 0.4136

(b) Continuous Time Simulation

Continuous Time Simulation over T = 10000 time units
Problem Optimal

Profit
τ Simulation

Profit
Fill rate

i1

Fill rate i1
including

substitution

Fill rate
i2

Fill rate i2
including

substitution
A01 39.8028 0.0588 38.9342 0.3708 0.4232 0.1214 0.1214
A02 29.0319 0.0541 28.5734 0.2751 0.2896 0.1075 0.1075
A03 42.1640 0.0463 41.5402 0.0754 0.1017 0.0610 0.0610
A04 164.9202 0.0345 164.5277 0.7225 0.7796 0.2691 0.2691
A05 25.8380 0.2000 25.8591 0.7997 0.8350 0.2833 0.7359
A06 56.0325 0.0048 56.7560 0.9908 0.9926 0.3515 0.4153

show the relative reward decrease associated with not choosing two-way substitution.

The relative reward decrease (RRD) is calculated as follows:

RRD =
Reward(two-way substitution)− Reward(other substitution)

Reward(two-way substitution)
× 100%

Fill rates

Tables D.5, D.6 and D.7 show the substitution inclusive and exclusive fill rates for

produced and recovered goods, for problem sets B, C and D respectively. These fill

rates were calculated from a simulation over T = τ × 1000000 time units.

Notice that under the strategies allowing upward substitution (upward and two-

way), the fill rates for produced goods (i1) including and excluding substitution are

the same. This is expected as no substitution is offered for produced goods under

this strategy. Similar observations can be made regarding the fill rates for recovered

goods (i2) when a strategy allowing downward substitution is applied (downward and

two-way).

451



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50

Problem

R
el

at
iv

e 
R

ew
ar

d 
In

cr
ea

se

 

 

none
down
up

(a) Problems B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50

Problem

R
el

at
iv

e 
R

ew
ar

d 
In

cr
ea

se

 

 

none
down
up
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(c) Problems D

Figure D.5: Relative reward increase for substitution strategies, compared with two-

way substitution
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Table D.4: Average value of random variables in simulation of the test problems

(a) Discrete Time Simulation

Discrete Time Simulation over T = τ × 1, 000, 000
Problem x̄d1 x̄d2 x̄r x̄r size x̄q x̄s1 x̄s2

A01 7.9929 5.9988 1.0032 1.9973 0.9006 0.7957 0.0000
A02 9.9975 4.9992 1.9998 1.9967 0.5959 0.1988 0.0000
A03 9.9938 9.9992 1.0030 1.9931 1.0000 0.5020 0.0000
A04 7.9923 8.0043 8.0052 2.0000 0.5010 1.0000 0.0000
A05 0.9955 1.0023 1.0020 4.0000 0.2002 0.8015 0.7988
A06 2.9825 3.0106 1.0149 1.9984 0.5953 0.5263 0.5080

(b) Continuous Time Simulation

Continuous Time Simulation over T = 10000 time units
Problem x̄d1 x̄d2 x̄r x̄r size x̄q x̄s1 x̄s2

A01 8.0419 6.0342 1.0141 2.0119 0.8986 0.7969 0.0000
A02 10.0279 5.0460 2.0167 2.0082 0.6014 0.1944 0.0000
A03 10.0267 10.0724 1.0130 2.0359 1.0000 0.4969 0.0000
A04 8.0083 8.0039 8.0353 2.0019 0.4996 1.0000 0.0000
A05 1.0036 1.0001 1.0152 4.0097 0.2004 0.8101 0.8001
A06 3.0359 3.0068 1.0158 2.0209 0.5959 0.5340 0.5088

Figures 7.4, 7.5 and 7.6 show the substitution inclusive and exclusive fill rates for

the two-way substitution strategy. Graphs for the other substitution strategies are

shown below in Figures D.6, D.9 and D.12.
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(b) Recovered Inventory i2

Figure D.6: Fill rates for problem set B under a no substitution strategy
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(a) Produced Inventory i1
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(b) Recovered Inventory i2

Figure D.7: Fill rates for problem set C under a no substitution strategy
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(b) Recovered Inventory i2

Figure D.8: Fill rates for problem set D under a no substitution strategy
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Table D.5: Summary of the optimal policy fill rates for substitution strategies for
problem set B

(a) Produced inventory i1

Fill rate iis1 excluding substitution Fill rate iis1 including substitution
Problem None Down Up Two-way Problem None Down Up Two-way
B01 0.9880 0.9887 0.9788 0.9783 B01 0.9880 0.9887 0.9929 0.9928
B02 0.9921 0.9919 0.9020 0.8961 B02 0.9921 0.9919 0.9625 0.9600
B03 0.9935 0.9917 0.9937 0.9912 B03 0.9935 0.9917 0.9944 0.9922
B04 0.9878 0.9878 0.9874 0.9874 B04 0.9878 0.9878 0.9929 0.9929
B05 0.9941 0.9940 0.8897 0.8874 B05 0.9941 0.9940 0.9991 0.9989
B06 0.9936 0.9936 0.9631 0.9631 B06 0.9936 0.9936 0.9832 0.9832
B07 0.9951 0.9956 0.9889 0.9882 B07 0.9951 0.9956 0.9944 0.9938
B08 0.9766 0.9766 0.2820 0.2820 B08 0.9766 0.9766 0.5635 0.5635
B09 0.9856 0.9851 0.9155 0.9038 B09 0.9856 0.9851 0.9769 0.9729
B10 0.9931 0.9920 0.7798 0.7703 B10 0.9931 0.9920 0.9836 0.9819
B11 0.9969 0.9965 0.9869 0.9869 B11 0.9969 0.9965 0.9989 0.9990
B12 0.9906 0.9905 0.9789 0.9786 B12 0.9906 0.9905 0.9952 0.9951
B13 0.9929 0.9927 0.7681 0.7496 B13 0.9929 0.9927 0.9132 0.9058
B14 0.9964 0.9959 0.6534 0.6454 B14 0.9964 0.9959 0.9734 0.9726
B15 0.9901 0.9907 0.9880 0.9872 B15 0.9901 0.9907 0.9934 0.9929
B16 0.9700 0.9700 0.9700 0.9700 B16 0.9700 0.9700 0.9713 0.9713
B17 0.9725 0.9725 0.9725 0.9725 B17 0.9725 0.9725 0.9725 0.9725
B18 0.9858 0.9862 0.9844 0.9840 B18 0.9858 0.9862 0.9884 0.9884
B19 0.9525 0.9525 0.8643 0.8643 B19 0.9525 0.9525 0.9690 0.9690
B20 0.9910 0.9910 0.9803 0.9803 B20 0.9910 0.9910 0.9900 0.9900

(b) Recovered inventory i2

Fill rate iis2 excluding substitution Fill rate iis2 including substitution
Problem None Down Up Two-way Problem None Down Up Two-way
B01 0.9894 0.9895 0.9894 0.9893 B01 0.9894 0.9942 0.9894 0.9937
B02 0.9116 0.9124 0.8783 0.8638 B02 0.9116 0.9769 0.8783 0.9609
B03 0.2810 0.2810 0.2803 0.2806 B03 0.2810 0.9222 0.2803 0.9217
B04 0.3875 0.3875 0.3842 0.3842 B04 0.3875 0.3875 0.3842 0.3842
B05 0.9932 0.9858 0.9923 0.9823 B05 0.9932 0.9970 0.9923 0.9957
B06 1.0000 1.0000 1.0000 1.0000 B06 1.0000 1.0000 1.0000 1.0000
B07 0.9951 0.9944 0.9953 0.9939 B07 0.9951 0.9972 0.9953 0.9970
B08 0.9883 0.9883 0.9812 0.9812 B08 0.9883 0.9883 0.9812 0.9812
B09 0.9286 0.8973 0.8898 0.8402 B09 0.9286 0.9707 0.8898 0.9552
B10 0.9909 0.9850 0.9902 0.9747 B10 0.9909 0.9979 0.9902 0.9926
B11 0.9983 0.9977 0.9975 0.9969 B11 0.9983 0.9996 0.9975 0.9993
B12 0.9891 0.9890 0.9887 0.9884 B12 0.9891 0.9915 0.9887 0.9921
B13 0.9998 0.9997 0.9934 0.9898 B13 0.9998 1.0000 0.9934 0.9976
B14 0.9926 0.9617 0.9848 0.9609 B14 0.9926 0.9969 0.9848 0.9931
B15 0.8489 0.8819 0.8439 0.8819 B15 0.8489 0.9526 0.8439 0.9537
B16 0.0175 0.0175 0.0161 0.0161 B16 0.0175 0.0175 0.0161 0.0161
B17 0.0000 0.0000 0.0000 0.0000 B17 0.0000 0.0000 0.0000 0.0000
B18 0.4113 0.4088 0.4023 0.3956 B18 0.4113 0.7329 0.4023 0.7288
B19 0.6163 0.6163 0.3082 0.3082 B19 0.6163 0.6163 0.3082 0.3082
B20 0.8987 0.8987 0.8953 0.8953 B20 0.8987 0.8987 0.8953 0.8953
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Table D.6: Summary of the optimal policy fill rates for substitution strategies for
problem set C

(a) Produced inventory i1

Fill rate iis1 excluding substitution Fill rate iis1 including substitution
Problem None Down Up Two-way Problem None Down Up Two-way
C01 0.9827 0.9826 0.9824 0.9816 C01 0.9827 0.9826 0.9942 0.9938
C02 0.9918 0.9931 0.9018 0.8981 C02 0.9918 0.9931 0.9625 0.9610
C03 0.9929 0.9921 0.9930 0.9917 C03 0.9929 0.9921 0.9939 0.9928
C04 0.9867 0.9867 0.9864 0.9864 C04 0.9867 0.9867 0.9928 0.9928
C05 0.9940 0.9940 0.8864 0.8862 C05 0.9940 0.9940 0.9990 0.9989
C06 0.9914 0.9914 0.9486 0.9486 C06 0.9914 0.9914 0.9764 0.9764
C07 0.9951 0.9951 0.9900 0.9896 C07 0.9951 0.9951 0.9948 0.9947
C08 0.9802 0.9802 0.2908 0.2908 C08 0.9802 0.9802 0.5673 0.5673
C09 0.9853 0.9853 0.9165 0.9054 C09 0.9853 0.9853 0.9771 0.9737
C10 0.9934 0.9932 0.7812 0.7668 C10 0.9934 0.9932 0.9844 0.9819
C11 0.9958 0.9954 0.9843 0.9828 C11 0.9958 0.9954 0.9987 0.9986
C12 0.9912 0.9914 0.9804 0.9804 C12 0.9912 0.9914 0.9956 0.9955
C13 0.9916 0.9914 0.8095 0.7858 C13 0.9916 0.9914 0.9285 0.9200
C14 0.9919 0.9944 0.6509 0.6455 C14 0.9919 0.9944 0.9726 0.9717
C15 0.9901 0.9907 0.9869 0.9870 C15 0.9901 0.9907 0.9933 0.9929
C16 0.9810 0.9810 0.9810 0.9810 C16 0.9810 0.9810 0.9814 0.9814
C17 0.9776 0.9776 0.9776 0.9776 C17 0.9776 0.9776 0.9776 0.9776
C18 0.9862 0.9884 0.9857 0.9865 C18 0.9862 0.9884 0.9899 0.9904
C19 0.9002 0.9002 0.8544 0.8544 C19 0.9002 0.9002 0.9670 0.9670
C20 0.9911 0.9911 0.9747 0.9747 C20 0.9911 0.9911 0.9879 0.9879

(b) Recovered inventory i2

Fill rate iis2 excluding substitution Fill rate iis2 including substitution
Problem None Down Up Two-way Problem None Down Up Two-way
C01 0.9897 0.9897 0.9896 0.9892 C01 0.9897 0.9942 0.9896 0.9932
C02 0.9121 0.9091 0.8726 0.8645 C02 0.9121 0.9753 0.8726 0.9633
C03 0.2823 0.2821 0.2812 0.2827 C03 0.2823 0.9230 0.2812 0.9227
C04 0.3826 0.3826 0.3747 0.3747 C04 0.3826 0.3826 0.3747 0.3747
C05 0.9930 0.9857 0.9922 0.9823 C05 0.9930 0.9974 0.9922 0.9957
C06 1.0000 1.0000 1.0000 1.0000 C06 1.0000 1.0000 1.0000 1.0000
C07 0.9951 0.9944 0.9949 0.9942 C07 0.9951 0.9971 0.9949 0.9970
C08 0.9884 0.9884 0.9814 0.9814 C08 0.9884 0.9884 0.9814 0.9814
C09 0.9167 0.9021 0.8897 0.8385 C09 0.9167 0.9727 0.8897 0.9551
C10 0.9911 0.9838 0.9916 0.9707 C10 0.9911 0.9979 0.9916 0.9926
C11 0.9982 0.9976 0.9977 0.9968 C11 0.9982 0.9996 0.9977 0.9993
C12 0.9867 0.9864 0.9858 0.9855 C12 0.9867 0.9905 0.9858 0.9904
C13 0.9995 0.9995 0.9949 0.9916 C13 0.9995 1.0000 0.9949 0.9984
C14 0.9929 0.9613 0.9846 0.9642 C14 0.9929 0.9965 0.9846 0.9941
C15 0.8508 0.8835 0.8504 0.8833 C15 0.8508 0.9556 0.8504 0.9565
C16 0.0163 0.0163 0.0159 0.0159 C16 0.0163 0.0163 0.0159 0.0159
C17 0.0000 0.0000 0.0000 0.0000 C17 0.0000 0.0000 0.0000 0.0000
C18 0.4109 0.4082 0.3967 0.3902 C18 0.4109 0.7340 0.3967 0.7233
C19 0.5940 0.5940 0.2825 0.2825 C19 0.5940 0.5940 0.2825 0.2825
C20 0.9039 0.9039 0.8911 0.8911 C20 0.9039 0.9039 0.8911 0.8911
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Table D.7: Summary of the optimal policy fill rates for substitution strategies for
problem set D

(a) Produced inventory i1

Fill rate iis1 excluding substitution Fill rate iis1 including substitution
Problem None Down Up Two-way Problem None Down Up Two-way
D01 0.9883 0.9892 0.9788 0.9789 D01 0.9883 0.9892 0.9928 0.9929
D02 0.9902 0.9914 0.9066 0.9011 D02 0.9902 0.9914 0.9651 0.9623
D03 0.9923 0.9913 0.9920 0.9912 D03 0.9923 0.9913 0.9930 0.9921
D04 0.9888 0.9888 0.9877 0.9877 D04 0.9888 0.9888 0.9929 0.9929
D05 0.9942 0.9941 0.8922 0.8884 D05 0.9942 0.9941 0.9993 0.9988
D06 0.9945 0.9945 0.9621 0.9621 D06 0.9945 0.9945 0.9828 0.9828
D07 0.9956 0.9958 0.9888 0.9889 D07 0.9956 0.9958 0.9943 0.9941
D08 0.9772 0.9772 0.2773 0.2773 D08 0.9772 0.9772 0.5608 0.5608
D09 0.9861 0.9865 0.9158 0.9055 D09 0.9861 0.9865 0.9772 0.9731
D10 0.9927 0.9927 0.7825 0.7709 D10 0.9927 0.9927 0.9841 0.9826
D11 0.9966 0.9969 0.9865 0.9854 D11 0.9966 0.9969 0.9989 0.9988
D12 0.9908 0.9908 0.9773 0.9774 D12 0.9908 0.9908 0.9949 0.9949
D13 0.9917 0.9921 0.8063 0.7874 D13 0.9917 0.9921 0.9273 0.9201
D14 0.9964 0.9948 0.6515 0.6463 D14 0.9964 0.9948 0.9726 0.9714
D15 0.9908 0.9906 0.9878 0.9858 D15 0.9908 0.9906 0.9935 0.9928
D16 0.9709 0.9709 0.9709 0.9709 D16 0.9709 0.9709 0.9723 0.9723
D17 0.9725 0.9725 0.9725 0.9725 D17 0.9725 0.9725 0.9725 0.9725
D18 0.9840 0.9850 0.9835 0.9837 D18 0.9840 0.9850 0.9875 0.9882
D19 0.9483 0.9483 0.8805 0.8805 D19 0.9483 0.9483 0.9733 0.9733
D20 0.9900 0.9900 0.9815 0.9815 D20 0.9900 0.9900 0.9907 0.9907

(b) Recovered inventory i2

Fill rate iis2 excluding substitution Fill rate iis2 including substitution
Problem None Down Up Two-way Problem None Down Up Two-way
D01 0.9924 0.9924 0.9922 0.9920 D01 0.9924 0.9956 0.9922 0.9950
D02 0.9144 0.9145 0.8751 0.8656 D02 0.9144 0.9759 0.8751 0.9640
D03 0.2811 0.2816 0.2808 0.2812 D03 0.2811 0.9220 0.2808 0.9218
D04 0.3753 0.3753 0.3669 0.3669 D04 0.3753 0.3753 0.3669 0.3669
D05 0.9927 0.9850 0.9913 0.9825 D05 0.9927 0.9972 0.9913 0.9958
D06 1.0000 1.0000 1.0000 1.0000 D06 1.0000 1.0000 1.0000 1.0000
D07 0.9950 0.9951 0.9950 0.9952 D07 0.9950 0.9977 0.9950 0.9978
D08 0.9907 0.9907 0.9821 0.9821 D08 0.9907 0.9907 0.9821 0.9821
D09 0.9297 0.9165 0.8963 0.8410 D09 0.9297 0.9769 0.8963 0.9554
D10 0.9919 0.9793 0.9918 0.9755 D10 0.9919 0.9971 0.9918 0.9935
D11 0.9978 0.9972 0.9969 0.9964 D11 0.9978 0.9996 0.9969 0.9994
D12 0.9728 0.9727 0.9809 0.9811 D12 0.9728 0.9770 0.9809 0.9849
D13 0.9996 0.9993 0.9947 0.9922 D13 0.9996 1.0000 0.9947 0.9981
D14 0.9809 0.9663 0.9788 0.9651 D14 0.9809 0.9966 0.9788 0.9928
D15 0.8604 0.8911 0.8564 0.8917 D15 0.8604 0.9605 0.8564 0.9609
D16 0.0173 0.0173 0.0159 0.0159 D16 0.0173 0.0173 0.0159 0.0159
D17 0.0000 0.0000 0.0000 0.0000 D17 0.0000 0.0000 0.0000 0.0000
D18 0.4059 0.4100 0.3990 0.3968 D18 0.4059 0.7312 0.3990 0.7274
D19 0.5891 0.5891 0.3543 0.3543 D19 0.5891 0.5891 0.3543 0.3543
D20 0.8981 0.8981 0.8964 0.8964 D20 0.8981 0.8981 0.8964 0.8964
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Figure D.9: Fill rates for problem set B under a downward substitution strategy
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(b) Recovered Inventory i2

Figure D.10: Fill rates for problem set C under a downward substitution strategy
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(b) Recovered Inventory i2

Figure D.11: Fill rates for problem set D under a downward substitution strategy
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(b) Recovered Inventory i2

Figure D.12: Fill rates for problem set B under a upward substitution strategy
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Figure D.13: Fill rates for problem set C under a upward substitution strategy
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Figure D.14: Fill rates for problem set D under a upward substitution strategy
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D.3.2 Analysis of Actions

Action size and frequency

Replenishment Actions. Figure D.15 shows the size of the production and

recovery actions for problem B01. The production variable ap can take values of 0

and Qp and the recovery variable can take values of 0 and Qr. The fixed lot sizes mean

that some features of the graph are not particularly interesting, however it is still useful

to examine these graphs as they allow us to check that the model is performing in the

expected way. Figures D.16 and D.17 show the size of the production and recovery

actions for problems C17 and D18 respectively.

Tables D.8, D.9 and D.10 summarise the number of states for which each

replenishment action is chosen and for each substitution strategy for datasets B, C

and D respectively. The number of states in which each action can be performed

in shown in Table D.11. Table D.12 shows the proportion of these states in which

replenishment is performed, taking into account the number of states in which each

action can be performed. The data in these Tables relate to Figures 7.10 and 7.12.

Substitution Actions. The substitution actions a1 and a2 can each take values

of 0 or 1. Figure D.18 the frequency with which each substitution actions is chosen

for problem B01. Figure D.19 shows this frequency for problem C17 and Figure D.20

shows this frequency for problemD18. Tables D.13, D.14 and D.15 show the number of

states in which each substitution action is chosen for each of the substitution strategies.

These Tables relate to Figures 7.13.

Trigger-states and actions

Replenishment. Figures D.21, D.22 and D.23 show the states in which replenish-

ment is selected for problems B01, C17 and D18. These graphs relate to Figures

7.16, 7.18 and 7.17, which summarise the states in which replenishment is chosen using

boxplots. In Chapter 7, the boxplots were presented for two-way and no substitution

strategies. The boxplots for all substitution strategies are presented for Problem set B

in Figures D.24, D.25 and D.26, Problem set C in Figures D.27, D.28 and D.29, and

Problem set D in Figures D.30, D.31 and D.32.
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Figure D.15: Histograms showing the size of the replenishment actions under the

optimal policy for test problem B01 under a two-way substitution strategy
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Figure D.16: Histograms showing the size of the replenishment actions under the

optimal policy for test problem C17 under a two-way substitution strategy
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Figure D.17: Histograms showing the size of the replenishment actions under the

optimal policy for test problem D18 under a two-way substitution strategy
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Table D.8: Number of states in which each replenishment action is chosen for each
substitution strategy for dataset B

None Down Up Two-way
Problem ap ar ap ar ap ar ap ar
B01 33360 26278 33504 25657 16093 26304 16187 25560
B02 137313 20307 137712 18129 126796 17794 126923 14961
B03 102212 57941 105931 54091 101201 57946 102950 54345
B04 63300 4426 63300 4426 59596 4466 59596 4466
B05 42833 53241 44589 41678 7752 61398 7242 47174
B06 44053 52628 44261 50889 24229 50611 24413 48818
B07 124451 38064 125437 33973 118073 38695 119131 34566
B08 19234 26176 19234 25592 12378 28341 12378 26938
B09 31765 25706 31948 15824 5103 32122 4079 17451
B10 121397 35450 123268 22194 96602 46908 108695 23067
B11 83289 105674 84818 97598 74698 104390 76423 95796
B12 75194 36374 75199 35040 48711 36823 48724 35315
B13 82586 109096 83766 101239 72226 93247 73772 81840
B14 33787 30772 33970 19045 1838 36150 1422 16245
B15 52541 15607 56091 13353 50646 15542 54197 13305
B16 132503 6519 132503 6510 131510 6449 131510 6440
B17 24780 0 24780 0 18081 0 18081 0
B18 18016 14980 19200 11264 14961 13214 15434 8493
B19 14514 11176 14514 11169 1787 8821 1787 8744
B20 18665 25337 18665 23892 11209 21095 11209 19514

Table D.9: Number of states in which each replenishment action is chosen for each
substitution strategy for dataset C

None Down Up Two-way
Problem ap ar ap ar ap ar ap ar
C01 29691 26786 29908 25754 14239 27058 14316 26067
C02 100829 23714 101232 21179 88682 20879 88805 17592
C03 60902 71689 66708 65990 58816 71628 63006 66028
C04 55422 4299 55422 4299 50794 4331 50794 4331
C05 37526 59892 39083 49371 4939 71164 4688 58335
C06 33641 57534 33881 55545 15036 56682 15225 54771
C07 80086 40772 80939 36746 72576 41444 73435 37319
C08 17114 26794 17113 26343 11363 29734 11363 28528
C09 28529 27939 28730 18200 3979 35113 3241 20270
C10 75400 40078 76436 27999 55964 53490 58715 30873
C11 46794 122390 47354 115994 37482 120037 37912 112947
C12 59415 40223 59491 39063 38003 40564 38018 39276
C13 45743 129114 46392 122845 33805 111167 34351 101585
C14 32166 31133 32412 20430 1371 38378 1046 19097
C15 48568 19905 50259 16677 45582 19887 47131 16516
C16 95237 10611 95237 10611 94574 10126 94574 10126
C17 21462 0 21462 0 18144 0 18144 0
C18 15003 18229 16215 13498 12814 16274 13027 10467
C19 13323 14282 13323 14282 1516 9838 1516 9733
C20 15965 27282 15965 26123 9613 22358 9613 21035
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Table D.10: Number of states in which each replenishment action is chosen for each
substitution strategy for dataset D

None Down Up Two-way
Problem ap ar ap ar ap ar ap ar
D01 35006 21678 35254 21198 18215 21562 18333 21189
D02 137021 17684 137426 15760 126675 13954 126727 11480
D03 106539 38401 113142 35499 105008 38390 110394 35639
D04 69966 2314 69966 2314 66785 2363 66785 2363
D05 44011 44036 46330 33730 7494 50225 6853 37631
D06 42191 49961 42404 48419 22777 47291 22883 45963
D07 125724 24960 126489 21998 119396 25381 120232 22438
D08 19875 21482 19875 20714 13153 22591 13153 20624
D09 31986 24041 32231 15354 4909 31909 4037 17341
D10 122090 28618 123595 16893 95943 38438 109182 17718
D11 85072 88232 86510 81146 76127 87124 77909 79672
D12 75057 30715 75081 29476 49588 31065 49608 29736
D13 84358 87927 85427 80629 73182 75385 74617 64958
D14 34087 26962 34228 17339 1761 27461 1456 14504
D15 55320 12821 60757 10807 52812 12847 58276 10789
D16 132227 4118 132227 4091 131430 4097 131430 4070
D17 27174 0 27174 0 20580 0 20580 0
D18 16018 23626 17632 17041 13882 20758 14828 13074
D19 15252 9883 15252 9806 2000 7912 2000 7856
D20 18195 23786 18196 22561 12005 20028 12007 18702
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Figure D.18: Histograms of the substitution actions under the optimal policy for test

problem B01
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Figure D.19: Histograms of the substitution actions under the optimal policy for test

problem C17 under a downward substitution strategy
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Figure D.20: Histograms of the substitution actions under the optimal policy for test

problem D18 under an upward substitution strategy
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Table D.11: Number of states in which replenishment can be chosen under a two-way
substitution strategy

B C D
Problem ap ar Problem ap ar Problem ap ar
B01 388962 240786 C01 388962 240786 D01 388962 203742
B02 388962 351918 C02 388962 351918 D02 388962 333396
B03 388962 185220 C03 388962 185220 D03 388962 129654
B04 388962 240786 C04 388962 240786 D04 388962 203742
B05 388962 222264 C05 388962 222264 D05 388962 185220
B06 388962 314874 C06 388962 314874 D06 388962 296352
B07 388962 203742 C07 388962 203742 D07 388962 148176
B08 388962 277830 C08 388962 277830 D08 388962 240786
B09 388962 351918 C09 388962 351918 D09 388962 333396
B10 388962 277830 C10 388962 277830 D10 388962 240786
B11 388962 222264 C11 388962 222264 D11 388962 185220
B12 388962 314874 C12 388962 314874 D12 388962 296352
B13 388962 240786 C13 388962 240786 D13 388962 203742
B14 388962 314874 C14 388962 314874 D14 388962 296352
B15 388962 277830 C15 388962 277830 D15 388962 240786
B16 388962 222264 C16 388962 222264 D16 388962 185220
B17 388962 388962 C17 388962 388962 D17 388962 388962
B18 388962 314874 C18 388962 314874 D18 388962 296352
B19 388962 314874 C19 388962 314874 D19 388962 296352
B20 388962 314874 C20 388962 314874 D20 388962 296352

Table D.12: Proportion of states in which replenishment is chosen under a two-way
substitution strategy

B C D
Problem ap ar Problem ap ar Problem ap ar
B01 0.0416 0.1062 C01 0.0368 0.1083 D01 0.0471 0.1040
B02 0.3263 0.0425 C02 0.2283 0.0500 D02 0.3258 0.0344
B03 0.2647 0.2934 C03 0.1620 0.3565 D03 0.2838 0.2749
B04 0.1532 0.0185 C04 0.1306 0.0180 D04 0.1717 0.0116
B05 0.0186 0.2122 C05 0.0121 0.2625 D05 0.0176 0.2032
B06 0.0628 0.1550 C06 0.0391 0.1739 D06 0.0588 0.1551
B07 0.3063 0.1697 C07 0.1888 0.1832 D07 0.3091 0.1514
B08 0.0318 0.0970 C08 0.0292 0.1027 D08 0.0338 0.0857
B09 0.0105 0.0496 C09 0.0083 0.0576 D09 0.0104 0.0520
B10 0.2794 0.0830 C10 0.1510 0.1111 D10 0.2807 0.0736
B11 0.1965 0.4310 C11 0.0975 0.5082 D11 0.2003 0.4301
B12 0.1253 0.1122 C12 0.0977 0.1247 D12 0.1275 0.1003
B13 0.1897 0.3399 C13 0.0883 0.4219 D13 0.1918 0.3188
B14 0.0037 0.0516 C14 0.0027 0.0606 D14 0.0037 0.0489
B15 0.1393 0.0479 C15 0.1212 0.0594 D15 0.1498 0.0448
B16 0.3381 0.0290 C16 0.2431 0.0456 D16 0.3379 0.0220
B17 0.0465 0.0000 C17 0.0466 0.0000 D17 0.0529 0.0000
B18 0.0397 0.0270 C18 0.0335 0.0332 D18 0.0381 0.0441
B19 0.0046 0.0278 C19 0.0039 0.0309 D19 0.0051 0.0265
B20 0.0288 0.0620 C20 0.0247 0.0668 D20 0.0309 0.0631
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Table D.13: Number of states in which each substitution action is chosen for each
substitution strategy for dataset B

None Down Up Two-way
Problem as1 as2 as1 as2 as1 as2 as1 as2
B01 0 0 0 35280 35280 0 35280 35246
B02 0 0 0 34932 35280 0 35280 34961
B03 0 0 0 35280 35280 0 35280 35280
B04 0 0 0 9356 35280 0 35280 9366
B05 0 0 0 35280 35280 0 35280 35280
B06 0 0 0 35280 35280 0 35280 35280
B07 0 0 0 35280 35280 0 35280 35280
B08 0 0 0 13468 35280 0 35280 21623
B09 0 0 0 35280 35280 0 35280 35280
B10 0 0 0 35280 35280 0 35280 35280
B11 0 0 0 33168 35280 0 35280 33563
B12 0 0 0 28370 35280 0 35280 29526
B13 0 0 0 35280 35280 0 35280 35280
B14 0 0 0 35280 35280 0 35280 35280
B15 0 0 0 32669 35280 0 35280 32709
B16 0 0 0 8043 35280 0 35280 8043
B17 0 0 0 7938 35280 0 35280 7938
B18 0 0 0 35163 35280 0 35280 35162
B19 0 0 0 7938 35280 0 35280 7938
B20 0 0 0 24748 35280 0 35280 24951

Table D.14: Number of states in which each substitution action is chosen for each
substitution strategy for dataset C

None Down Up Two-way
Problem as1 as2 as1 as2 as1 as2 as1 as2
C01 0 0 0 35280 35280 0 35280 35124
C02 0 0 0 34764 35280 0 35280 34812
C03 0 0 0 35280 35280 0 35280 35280
C04 0 0 0 10689 35280 0 35280 10737
C05 0 0 0 35280 35280 0 35280 35280
C06 0 0 0 35280 35280 0 35280 35280
C07 0 0 0 35280 35280 0 35280 35280
C08 0 0 0 14183 35280 0 35280 22489
C09 0 0 0 35280 35280 0 35280 35280
C10 0 0 0 35280 35280 0 35280 35278
C11 0 0 0 32980 35280 0 35280 33325
C12 0 0 0 27724 35280 0 35280 29014
C13 0 0 0 35280 35280 0 35280 35280
C14 0 0 0 35280 35280 0 35280 35280
C15 0 0 0 32508 35280 0 35280 32561
C16 0 0 0 9951 35280 0 35280 9951
C17 0 0 0 9702 35280 0 35280 9702
C18 0 0 0 35059 35280 0 35280 35074
C19 0 0 0 9702 35280 0 35280 9702
C20 0 0 0 24489 35280 0 35280 24683
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Table D.15: Number of states in which each substitution action is chosen for each
substitution strategy for dataset D

None Down Up Two-way
Problem as1 as2 as1 as2 as1 as2 as1 as2
D01 0 0 0 35280 35280 0 35280 35184
D02 0 0 0 34951 35280 0 35280 35028
D03 0 0 0 35280 35280 0 35280 35280
D04 0 0 0 9539 35280 0 35280 9531
D05 0 0 0 35280 35280 0 35280 35280
D06 0 0 0 35280 35280 0 35280 35280
D07 0 0 0 35280 35280 0 35280 35280
D08 0 0 0 13482 35280 0 35280 22220
D09 0 0 0 35280 35280 0 35280 35280
D10 0 0 0 35280 35280 0 35280 35280
D11 0 0 0 33214 35280 0 35280 33546
D12 0 0 0 28486 35280 0 35280 29553
D13 0 0 0 35280 35280 0 35280 35280
D14 0 0 0 35280 35280 0 35280 35280
D15 0 0 0 32807 35280 0 35280 32838
D16 0 0 0 8085 35280 0 35280 8085
D17 0 0 0 7938 35280 0 35280 7938
D18 0 0 0 35122 35280 0 35280 35124
D19 0 0 0 7938 35280 0 35280 7938
D20 0 0 0 24795 35280 0 35280 24959
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Figure D.21: Histograms showing states associated with positive replenishment actions

under the optimal policy for test problem B01 under a two-way substitutions strategy
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Figure D.22: Histograms showing states associated with positive replenishment actions

under the optimal policy for test problem C17 under a downward substitution strategy
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Figure D.23: Histograms showing states associated with positive replenishment actions

under the optimal policy for test problem D18 under an upward substitution strategy
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(d) Two-way substitution

Figure D.24: Graphs showing the level of produced inventory (trigger level) when

production is performed for problem set B.
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Figure D.25: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed for problem set B.
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Figure D.26: Graphs showing the level of returned inventory (trigger level) when

recovery is performed for problem set B.
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Figure D.27: Graphs showing the level of produced inventory (trigger level) when

production is performed for problem set C.
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Figure D.28: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed for problem set C.
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Figure D.29: Graphs showing the level of returned inventory (trigger level) when

recovery is performed for problem set C.
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Figure D.30: Graphs showing the level of produced inventory (trigger level) when

production is performed for problem set D.
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Figure D.31: Graphs showing the level of recovered inventory (trigger level) when

recovery is performed for problem set D.
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Figure D.32: Graphs showing the level of returned inventory (trigger level) when

recovery is performed for problem set D.
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D.3.3 Analysis of Recovery Strategy

In this section additional figures and tables relating to Section 7.6.4, the analysis of the

recovery strategy, are presented.

Fill Rates

Effect of Recovery Strategy on Fill Rates. Figures D.33, D.34 and D.35

show the substitution inclusive and exclusive fill rates for the two recovery strategies

for problems B, C and D respectively. Tables D.16 and D.17 show the substitution

inclusive and exclusive fill rates for produced and recovered inventory respectively.
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Figure D.33: Fill rates for problem set B under a two-way substitution strategy for

both quality strategies
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Figure D.34: Fill rates for problem set C under a two-way substitution strategy for

both quality strategies
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Figure D.35: Fill rates for problem set D under a two-way substitution strategy for

both quality strategies
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Table D.16: Summary of the optimal policy produced inventory fill rates under a two-
way substitution strategies under both quality strategies

(a) Problem set B

Fill rate i1 excluding substitution Fill rate i1 including substitution
Problem Only High Low and High Only High Low and High
B01 0.9783 0.9783 0.9928 0.9928
B02 0.9930 0.8961 0.9930 0.9600
B03 0.9910 0.9912 0.9920 0.9922
B04 0.9944 0.9874 0.9944 0.9929
B05 0.1111 0.8874 0.9976 0.9989
B06 0.9688 0.9631 0.9860 0.9832
B07 0.9894 0.9882 0.9945 0.9938
B08 0.0000 0.2820 0.3896 0.5635
B09 0.9928 0.9038 0.9928 0.9729
B10 0.9690 0.7703 0.9970 0.9819
B11 0.9903 0.9869 0.9991 0.9990
B12 0.9908 0.9786 0.9978 0.9951
B13 0.1990 0.7496 0.7021 0.9058
B14 0.2269 0.6454 0.9384 0.9726
B15 0.9946 0.9872 0.9946 0.9929
B16 0.9729 0.9700 0.9730 0.9713
B17 0.9725 0.9725 0.9725 0.9725
B18 0.0000 0.9840 0.0000 0.9884
B19 0.9730 0.8643 0.9730 0.9690
B20 0.9923 0.9803 0.9958 0.9900

(b) Problem set C

Fill rate i1 excluding substitution Fill rate i1 including substitution
Problem Only High Low and High Only High Low and High
C01 0.9818 0.9816 0.9936 0.9938
C02 0.9947 0.8981 0.9947 0.9610
C03 0.9922 0.9917 0.9933 0.9928
C04 0.9953 0.9864 0.9953 0.9928
C05 0.1124 0.8862 0.9968 0.9989
C06 0.9749 0.9486 0.9884 0.9764
C07 0.9914 0.9896 0.9957 0.9947
C08 0.0000 0.2908 0.3896 0.5673
C09 0.9751 0.9054 0.9751 0.9737
C10 0.9740 0.7668 0.9969 0.9819
C11 0.9925 0.9828 0.9993 0.9986
C12 0.9912 0.9804 0.9978 0.9955
C13 0.2082 0.7858 0.7056 0.9200
C14 0.2288 0.6455 0.9392 0.9717
C15 0.9953 0.9870 0.9953 0.9929
C16 0.9779 0.9810 0.9780 0.9814
C17 0.9776 0.9776 0.9776 0.9776
C18 0.0000 0.9865 0.0000 0.9904
C19 0.9779 0.8544 0.9779 0.9670
C20 0.9937 0.9747 0.9968 0.9879

(c) Problem set D

Fill rate i1 excluding substitution Fill rate i1 including substitution
Problem Only High Low and High Only High Low and High
D01 0.9789 0.9789 0.9929 0.9929
D02 0.9930 0.9011 0.9930 0.9623
D03 0.9906 0.9912 0.9906 0.9921
D04 0.9944 0.9877 0.9944 0.9929
D05 0.1216 0.8884 0.9974 0.9988
D06 0.9688 0.9621 0.9857 0.9828
D07 0.9891 0.9889 0.9945 0.9941
D08 0.0000 0.2773 0.3906 0.5608
D09 0.9929 0.9055 0.9929 0.9731
D10 0.9693 0.7709 0.9972 0.9826
D11 0.9908 0.9854 0.9992 0.9988
D12 0.9908 0.9774 0.9973 0.9949
D13 0.2106 0.7874 0.7069 0.9201
D14 0.2318 0.6463 0.9405 0.9714
D15 0.9946 0.9858 0.9946 0.9928
D16 0.9729 0.9709 0.9732 0.9723
D17 0.9725 0.9725 0.9725 0.9725
D18 0.9858 0.9837 0.9892 0.9882
D19 0.9730 0.8805 0.9730 0.9733
D20 0.9923 0.9815 0.9959 0.9907
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Table D.17: Summary of the optimal policy recovered inventory fill rates under a two-
way substitution strategies under both quality strategies

(a) Problem set B

Fill rate i2 excluding substitution Fill rate i2 including substitution
Problem Only High Low and High Only High Low and High
B01 0.9895 0.9893 0.9939 0.9937
B02 0.0000 0.8638 0.7446 0.9609
B03 0.2815 0.2806 0.9220 0.9217
B04 0.0000 0.3842 0.0000 0.3842
B05 0.9824 0.9823 0.9948 0.9957
B06 0.9958 1.0000 0.9980 1.0000
B07 0.9924 0.9939 0.9963 0.9970
B08 0.9767 0.9812 0.9767 0.9812
B09 0.0000 0.8402 0.7272 0.9552
B10 0.9462 0.9747 0.9921 0.9926
B11 0.9852 0.9969 0.9977 0.9993
B12 0.9654 0.9884 0.9676 0.9921
B13 0.9818 0.9898 0.9973 0.9976
B14 0.9344 0.9609 0.9871 0.9931
B15 0.0000 0.8819 0.0000 0.9537
B16 0.0160 0.0161 0.0160 0.0161
B17 0.0000 0.0000 0.0000 0.0000
B18 0.0000 0.3956 0.0000 0.7288
B19 0.0000 0.3082 0.0000 0.3082
B20 0.8792 0.8953 0.8792 0.8953

(b) Problem set C

Fill rate i2 excluding substitution Fill rate i2 including substitution
Problem Only High Low and High Only High Low and High
C01 0.9892 0.9892 0.9939 0.9932
C02 0.0000 0.8645 0.7453 0.9633
C03 0.2818 0.2827 0.9227 0.9227
C04 0.0000 0.3747 0.0000 0.3747
C05 0.9803 0.9823 0.9934 0.9957
C06 0.9957 1.0000 0.9979 1.0000
C07 0.9929 0.9942 0.9964 0.9970
C08 0.9767 0.9814 0.9767 0.9814
C09 0.0000 0.8385 0.7147 0.9551
C10 0.9429 0.9707 0.9916 0.9926
C11 0.9845 0.9968 0.9977 0.9993
C12 0.9608 0.9855 0.9650 0.9904
C13 0.9809 0.9916 0.9971 0.9984
C14 0.9358 0.9642 0.9866 0.9941
C15 0.0000 0.8833 0.0000 0.9565
C16 0.0160 0.0159 0.0160 0.0159
C17 0.0000 0.0000 0.0000 0.0000
C18 0.0000 0.3902 0.0000 0.7233
C19 0.0000 0.2825 0.0000 0.2825
C20 0.8814 0.8911 0.8814 0.8911

(c) Problem set D

Fill rate i2 excluding substitution Fill rate i2 including substitution
Problem Only High Low and High Only High Low and High
D01 0.9921 0.9920 0.9955 0.9950
D02 0.0000 0.8656 0.7446 0.9640
D03 0.0000 0.2812 0.8918 0.9218
D04 0.0000 0.3669 0.0000 0.3669
D05 0.9801 0.9825 0.9943 0.9958
D06 0.9946 1.0000 0.9971 1.0000
D07 0.9930 0.9952 0.9967 0.9978
D08 0.9798 0.9821 0.9798 0.9821
D09 0.0002 0.8410 0.7273 0.9554
D10 0.9540 0.9755 0.9932 0.9935
D11 0.9866 0.9964 0.9980 0.9994
D12 0.9479 0.9811 0.9521 0.9849
D13 0.9802 0.9922 0.9971 0.9981
D14 0.9355 0.9651 0.9887 0.9928
D15 0.0000 0.8917 0.0000 0.9609
D16 0.0163 0.0159 0.0163 0.0159
D17 0.0000 0.0000 0.0000 0.0000
D18 0.4005 0.3968 0.7290 0.7274
D19 0.0000 0.3543 0.0000 0.3543
D20 0.8826 0.8964 0.8826 0.8964

477


	PhD coversheet April 2012.pdf
	SarahEMarshall_2012_phdthesis
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Introduction
	Putting Product Recovery on the Map
	Product Recovery in Industry
	Product Recovery in the Literature
	Examples of Current Practice

	Single Market for Produced and Recovery Goods
	Deterministic Models
	Stochastic Discrete Time Models
	Stochastic Continuous Time Models

	Separate Markets for Produced and Recovered Goods
	Substitution in Inventory Models
	Production and Recovery
	Specialised Recovery

	Literature Summary and Gaps
	Literature Summary
	Literature Gaps Addressed by this Thesis


	Methodology
	Inventory Models
	Deterministic Inventory Models
	Stochastic Inventory Models
	Representing Inventory Policies

	Markov Decision Processes
	Elements of a Discrete-Time MDP
	Value Iteration Algorithm
	Implementing the Value Iteration Algorithm
	Semi-Markov Decision Processes


	Deterministic Lot-Sizing Model with a Single Market
	Introduction
	Problem Description
	Model Description and Assumptions
	Relationship with Existing Literature
	Model Parameters
	Model Variables

	Inventory Levels Across a Cycle
	Case 1: Np=Nr=Nb=1
	Case 2: Np, Nr, Nb 1

	Cost Function
	Derivation of the Total Cost Function
	Validation of the Cost Function

	Minimisation of the Total Cost Function
	Mixed Integer Non Linear Programming Formulation
	Case 1: Np=Nr=Nb=1
	Case 2: Np =1, Nr,Nb 1
	Case 3: Np,Nr,Nb 1

	Properties of the Model
	Datasets
	Analysis of Lot Size Restrictions
	Analysis of Recovery Strategy

	Discussion

	Discrete-Time Stochastic Model with a Single Market
	Introduction
	Problem Description
	Model Description and Assumptions
	Markov Decision Process Formulation
	Decision Epochs
	States
	Actions
	Transition Probabilities
	Costs

	Model Implementation and Validation
	Properties of the Optimal Policy
	Datasets
	Analysis of Performance
	Analysis of Actions

	Heuristic Policies
	Policy P1: Order-up-to Policy
	Policy P2: Order-up-to Policy with Yield Adjustment
	Performance of Policies

	Discussion

	Discrete-Time Stochastic Model with Separate Markets
	Introduction
	Problem Description
	Model Description and Assumptions
	Markov Decision Process Formulation
	Decision Epochs
	States
	Actions
	Transition Probabilities
	Costs and Revenues

	Model Implementation and Validation
	Dimensionality
	Validation of the Code

	Properties of the Optimal Policy
	Datasets
	Analysis of Performance
	Analysis of Actions
	Analysis of Recovery Strategy

	Discussion

	Continuous-Time Stochastic Model with Separate Markets
	Introduction
	Problem Description
	Model Description and Assumptions
	Semi-Markov Decision Process Formulation
	Decision Epochs
	States
	Actions
	Transition Probabilities
	Costs and Revenues

	Model Implementation and Validation
	Continuous Time to Discrete Time
	Dimensionality
	Implementation of the Model
	Validation of the Code

	Properties of the Optimal Policies
	Datasets
	Analysis of Performance
	Analysis of Actions
	Analysis of Recovery Strategy

	Discussion

	Conclusion
	Bibliography
	Appendix for Deterministic Lot-Sizing Model with a Single Market
	Model Description
	Model Variables

	Inventory Levels Across a Cycle
	Case 2: Np, Nr, Nb 1

	Cost Function
	Derivation of the Total Cost Function
	Validation of the Cost Function

	Minimisation of the Total Cost Function
	Case 2: Np=1, Nr,Nb 1
	Case 3: Np,Nr,Nb 1

	Properties of the Model
	Analysis of Recovery Strategy


	Appendix for Stochastic Model with a Single Market
	Model Implementation and Validation
	Implementation of the MDP and Mid-State
	Validation of Code

	Properties of the Optimal Policy
	Analysis of Performance
	Analysis of Actions

	Heuristic Policies
	Policy P2: Periodic Review Order-up-to Policy with Yield Adjustment


	Appendix for Discrete-Time with Separate Markets
	Model Implementation and Validation
	Implementation of the Stochastic Product Recovery Model
	Validation of the Code

	Properties of the Optimal Policy
	Analysis of Performance
	Analysis of Actions
	Analysis of Recovery Strategy


	Appendix for Continuous-Time Model with Separate Markets
	Semi-Markov Decision Process Formulation
	Costs and Revenues

	Model Implementation and Validation
	Implementation of the Stochastic Product Recovery Model
	Validation of the Code

	Properties of the Optimal Policy
	Analysis of Performance
	Analysis of Actions
	Analysis of Recovery Strategy




