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Abstract 

The tundra biome has undergone dramatic vegetation shifts in recent decades, which 

have been partly attributed to climate warming. Shrub species in particular are 

expanding widely throughout the Pan-Arctic region, and are involved in complex 

vegetation-atmosphere interactions that have important implications for the global 

energy balance and carbon budget. However, projections of vegetation change and 

associated feedbacks are complicated by the high variability in the sensitivity of shrub 

growth to temperature among sites and species. A mechanistic understanding of the 

individual-to-regional controls of climate sensitivity is therefore needed to accurately 

predict future vegetation change at the biome scale. This thesis quantifies the 

influence of environmental and ecological factors, and especially of plant-plant 

interactions, on the growth response of Arctic shrub communities to climate change.  

Climate change in the Arctic has resulted in warmer, but also longer growing seasons 

in many locations due to earlier snowmelt. These two factors are often treated as one 

single control of plant growth, but with scarce records of green-up and senescence 

dates for the Arctic, few studies have measured the sensitivity of shrub growth to 

changes in growing season length. Using radial growth time series from over 300 

shrubs collected at four sites of contrasting climatic regimes and greening trajectories 

in Northern Canada, I measured the sensitivity of shrub growth to summer 

temperature and satellite-derived growing season length. I found that growing season 

length and summer temperature were decoupled within sites and had inconsistent 

effects on growth across the four sites. My findings indicate that longer and warmer 

growing seasons do not necessarily act as combined drivers of vegetation change 

across the biome. My research also demonstrated that growth at the root collar of 

shrubs is more climate sensitive than stem growth, possibly indicating differential 

internal resource allocation strategies, and highlighting the importance of 

standardised protocols when comparing dendroecological data across multiple sites.  

Individual and species traits are thought to play an important role in the response of 

tundra vegetation to climate change. Taller shrub species have been shown to be 

more climate-sensitive than dwarf shrubs, but whether this relationship holds at the 

individual level is unknown. I tested whether plant size, as a proxy for competitive 

ability, explained variation in the climate sensitivity of shrub growth using 1085 

individual size and growth-ring records from 16 species at 18 sites across the tundra 
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biome. I did not find evidence that taller shrubs were more climate sensitive, and found 

that height became a progressively poorer predictor of other growth dimensions at 

higher latitudes. This suggests that predictions of functional and structural change 

based on allometric equations from boreal or sub-Arctic populations may not be valid 

for the tundra biome as a whole.  

Plant-plant interactions are a strong driver of community dynamics. With increasing 

shrub densities in the circumpolar region, competition could have an increasingly 

important influence on shrub growth, potentially limiting climate-driven expansion. I 

found that competition with trees might slow down shrub expansion in the boreal forest 

biome, as the climate sensitivity of shrub growth was much lower in a boreal forest in 

southwest Yukon compared to shrubs growing in the alpine tundra in the same region. 

However, my findings did not indicate a strong control of shrub-shrub competition on 

growth. A canopy removal experiment did not reveal any difference in the growth rate 

of shrubs having experienced a decrease in aboveground competition compared to 

shrubs growing in intact shrub patches. Additionally, shrubs experiencing more 

competition were generally as climate sensitive as those with fewer or more distant 

neighbours, as I demonstrated through spatial analysis at four sites across the 

Canadian Arctic. However, their spatial arrangement, with positive size-distance 

relationships between pairs of neighbours, suggested that competition does play a 

role in the life history of these shrubs, especially at more productive sites. Finally, I 

found evidence of physical and chemical interference of ground vegetation on the 

germination of deciduous shrub seeds, indicating that interactions with other plant 

functional groups may control rates of shrub expansion. 

Shrub expansion at the plot to landscape scale has been heavily documented over 

multiple decades through several lines of evidence including long-term monitoring, 

remote sensing, and experimental studies. The increase in shrub biomass in the 

tundra has high certainty both in detection and in attribution to climate warming. 

However, my thesis highlights the complexity and variability of growth responses 

when using radial growth as an indicator of climate sensitivity. I detected this variability 

at multiple scales, from plant parts within an individual showing inconsistent climatic 

signals, to site-scale sensitivity responding to different facets of global change. I did 

not find strong or consistent influences of biotic and abiotic controls on the growth 

responses of tundra shrubs; however, these relationships may change over time as 

shrub densities continue to increase and exacerbate resource limitations. With 80% 
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of tundra biomass potentially located below ground, understanding whole-plant and 

community-level responses to climate will be critical to improve projections of tundra 

plant community responses to global change. Understanding the different drivers of 

primary and secondary growth will be key to using estimates of climate sensitivity 

derived from growth-ring records to project biomass change and associated 

feedbacks across the tundra biome. 
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Lay summary 

The tundra biome is the part of the world that extends beyond the treeline, and is 

characterised by a cold climate, short growing season, and low-statured vegetation. 

The Arctic region is currently warming at twice the rate of the rest of the planet, 

causing shifts in plant communities. Notably, shrub species are growing faster, taller, 

and colonising new environments. Shrub expansion has been documented 

throughout the tundra biome, but the rate of change and the magnitude of the 

response vary greatly among sites and species. It is crucial to understand the 

environmental and ecological factors that can either limit or promote climate-driven 

shrub expansion if we are to predict accurately future vegetation change and its 

repercussions on the carbon balance, landscape structure, wildlife, and people of the 

Arctic.  

This thesis aims to measure the climate sensitivity of shrub growth, i.e. how strongly 

annual growth in a plant is influenced by the temperatures or other growing conditions 

in that year. I then explain how sensitivity varies according to individual 

characteristics, environmental context, and competitive interactions with other shrubs. 

I used growth-ring measurements from some of the most common expanding tundra 

shrub species from four locations in Northern Canada to explore how Arctic shrub 

communities might change at sites with contrasting climatic conditions and 

environment types. I also used an experimental and a spatial approach to determine 

whether competition for resources may become a limitation to shrub expansion as 

plant densities increase in the circumpolar region. 

With changing climatic conditions and rapid warming in the Arctic, it is often assumed 

that Arctic summers are getting both longer and warmer. I found that my four sites 

exhibited contrasting rather than consistent temporal changes, and that these two 

possible drivers of plant growth (summer temperature and duration) are not 

necessarily coupled. Shrubs did not respond very strongly to either driver, except at 

one mountain site where growth was highly temperature-sensitive. My research also 

demonstrated that growth at the root collar of shrubs (i.e. the main “trunk” of the shrub) 

tracks variations in climate better than stem growth, indicating complex resource 

allocation strategies within plants and highlighting the importance of standardised 

protocols when attempting to synthesise data from multiple sites and observers.  
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Taller shrub species have been shown to be more climate-sensitive than dwarf 

shrubs. At the individual level, plant size could reflect competitive ability and make 

some shrubs better able to capitalise on a warming climate, but this relationship has 

never been quantified. I tested this hypothesis using 1085 individual size and growth-

ring records from 16 species at 18 sites across the tundra biome. I did not find 

evidence that taller shrubs were more climate sensitive, and found that height became 

a progressively poorer predictor of other growth dimensions at higher latitudes. This 

suggests that equations developed for boreal or sub-Arctic populations to predict 

biomass or other ecosystems processes from plant size may not be valid for the 

tundra biome as a whole.  

With marked increases in vegetation cover around the Arctic region, competition 

between plants could have a growing influence on shrub communities, potentially 

limiting climate-driven expansion. I found that shrubs growing in boreal forests may 

not benefit from warmer climate because of competition with trees; in contrast, shrubs 

growing in the alpine tundra were much more responsive to warmer temperature. I 

also detected competitive interactions in the relative size and position of shrubs in the 

landscape, especially at sites with denser vegetation. However, I did not find that 

competition between shrubs species exerted a strong control of shrub growth, or on 

their ability to respond to climate change. Finally, I found evidence that the ground 

vegetation could interfere physically and chemically with the germination of shrub 

seeds, suggesting that potential climate-driven expansion of shrub species beyond 

their current distribution limit might be slowed down by plant-plant interactions.  

This thesis highlights the great variability in the responses of shrub growth to climate 

at multiple scales, from plant parts within an individual showing inconsistent climatic 

signals, to site-scale sensitivity responding to different facets of global change. 

Competition did not determine the ability of shrubs to respond to warmer 

temperatures, but may become a more important constraint over time as shrub 

densities continue to increase and exacerbate resource limitations. With 80% of 

tundra biomass potentially located below ground, understanding whole-plant and 

community-level responses to climate will be critical to improve projections of tundra 

plant community responses to global change and associated feedbacks across the 

tundra biome.  
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Chapter 1 Introduction 

1.1 A greener Arctic: shrub expansion in the tundra  

The tundra biome, which comprises areas above the treeline and is characterised by 

an Arctic climate and flora, covers approximately 5% of the Earth’s land surface 

(Walker et al. 2005). Arctic regions are currently warming twice as fast as the rest of 

the planet, and warming is expected to accelerate by the end of the century (IPCC 

2013). The northern circumpolar region of the planet contains approximately 50% of 

the global belowground organic carbon store (Tarnocai et al. 2009; Hugelius et al. 

2013), and thus shifts in the structure and biophysical processes of tundra 

ecosystems are likely to have disproportionate consequences on the global carbon 

cycle and energy balance. Tundra vegetation is currently undergoing remarkably 

rapid and widespread directional change throughout the biome, with potential for 

many complex vegetation-atmosphere interactions. The most notable changes are an 

increase in woody shrubs (Myers-Smith et al. 2011, Elmendorf et al. 2012a), herbs, 

and graminoids (Elmendorf et al. 2012a; McManus et al. 2012), often associated with 

a decrease in bare ground (Elmendorf et al. 2012a, Myers-Smith et al. in press) and 

in cryptogam cover (Cornelissen et al. 2001; Fraser et al. 2014).  

Shrub species, which are the focus of this thesis, are the tallest plants in treeless 

tundra environments, and in many ways act as ecosystem engineers. Their tall stature 

interacts with the abiotic environment, intercepting snow in winter (Sturm et al. 2001; 

Bonfils et al. 2012) and affecting energy balance through interception of solar radiation 

(Sturm et al. 2005a; Juszak et al. 2014). These physical properties affect in turn 

seasonal soil thermal regime (Bonfils et al. 2012; Myers-Smith and Hik 2013; Paradis 

et al. 2016), with knock-on effects on permafrost (Blok et al. 2010; Loranty et al. 2016) 

and soil microbial activity and nutrient cycling (Sturm et al. 2005b; DeMarco et al. 

2011). They also provide habitat and food for wildlife (Rich et al. 2013; Boelman et al. 

2015; Christie et al. 2015). Therefore, shrub expansion, colloquially termed 

“shrubification”, will have complex and far-reaching impacts on the structure and 

functioning of tundra ecosystems, and likely affect regional to global climate and 

biogeochemical cycles. In recent decades, research priorities have involved the 

collection of evidence of shrub expansion from many taxa and locations, and the 

attribution of this expansion to global change drivers. 
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1.1.1 Observations of shrub expansion 

Shrub expansion may be defined as increases in canopy height, increases in shrub 

cover (from either accelerated growth of established individuals or recruitment of new 

individuals), and colonisation of new sites (Myers-Smith et al. 2011). Over the last 

half-century, these changes have been documented and quantified across the tundra 

biome (reviewed in Myers-Smith et al. 2011) using historical ecology and repeat 

photography (Tape et al. 2006, Callaghan et al. 2011; Danby et al. 2011; Vellend et 

al. 2013; Steinbauer et al. 2018), remote sensing (Blok et al. 2011a; McManus et al. 

2012; Guay et al. 2014; Ju and Masek 2016), demographic studies (Büntgen et al. 

2015; Angers-Blondin and Boudreau 2017; Myers-Smith et al. 2017) and ecological 

monitoring (Rundqvist et al. 2011; Elmendorf et al. 2012a; Hobbie et al. 2017; Myers-

Smith et al. in press). Overall, several lines of evidence point to a majority of shrub 

populations expanding rather than decreasing or remaining stable (Myers-Smith et al. 

2011), suggesting that tundra vegetation is responding directionally to changes in a 

common, regional-scale driver.  

1.1.2 Attribution of shrub expansion to warming 

Tundra vegetation is limited by cold temperatures, short growing seasons, and harsh 

environmental conditions (Bliss 1971; Aerts et al. 2006), and can therefore be 

expected to change if and when these limitations are lifted. In fact, pollen records 

show that tundra vegetation has frequently shifted in abundance and composition in 

the past, tracking climatic changes (Anderson and Brubaker 1994; Overpeck et al. 

1997). In the 1980’s and 1990’s, coordinated experiments such as the International 

Tundra Experiment (ITEX) were set up to identify the drivers of vegetation change 

(Walker et al. 2006; Elmendorf et al. 2012b). Experimental warming and fertilisation 

demonstrated that tundra shrubs are generally temperature- and nutrient-limited 

(Chapin et al. 1995; Dormann and Woodin 2002; Wahren et al. 2005; Walker et al. 

2006). Therefore, Arctic warming is very likely to be the main driver of shrub 

expansion, through direct effects of temperature on plant physiology and, perhaps 

more importantly, through indirect effects on biogeochemical cycling (Chapin 1983). 

The attribution of shrub expansion to warming in the Arctic is thought to be the 

ecological response to climate change in which we have the highest degree of 

confidence (IPCC 2014). 
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1.1.3 Dendroecology as a tool for quantifying and predicting shrub responses 
to a changing climate 

Some of the most conclusive evidence of shrubs responding to climate change comes 

from dendroecology, the study of annual growth increments in woody species. The 

development of dendrochronological techniques adapted to shrub species 

(Schweingruber and Poschlod 2005) opened the door to a new way of quantifying the 

climate sensitivity of tundra vegetation. Initial studies revealed strong, positive 

associations between warmer temperatures and increased annual growth of many 

shrub species (Johnstone and Henry, 1997; Bär et al., 2008; Forbes et al., 2010; Blok 

et al., 2011a; Jørgensen et al. 2015). But while there is no questioning that the tundra 

biome is undergoing large-scale, climate-driven increases in the abundance and 

growth of shrub species, a recent data synthesis using dendroecological data from 25 

shrub species at 37 alpine and Arctic tundra sites highlighted the important variability 

in the climate sensitivity of shrub growth (Myers-Smith et al. 2015a). The causes of 

this heterogeneity are not very well understood but likely to be a combination of plant 

traits, site characteristics, and ecological interactions, all acting at different scales. 

Understanding these mechanisms will be critical to improving projections of 

vegetation-atmosphere interactions at high latitudes and their effects on the global 

energy and carbon budget.  

1.2 Heterogeneity of shrub expansion 

Most current projections of Arctic vegetation change and associated feedbacks 

assume a consistent, strong, positive response of shrub species to climatic drivers, 

and primarily to summer temperature, across the whole tundra biome (Pearson et al. 

2013). However, these predictions could be greatly over-estimated if other factors 

constrained the climate response of shrubs. In a biome-scale analysis (Myers-Smith 

et al. 2015a), just under half (46%) of the populations had positive associations 

between climate and growth, with high variation in the magnitude of sensitivity across 

sites and species (Figure 1-1). Moreover, within populations, as few as 5% and as 

many as 97% of individuals had climate-sensitive growth. Therefore, the 

heterogeneity in the climate sensitivity of shrub growth appears to arise at multiple 

scales of biological organisation. Potential explanatory factors explaining this 

variability include local environmental context and plant-plant interactions. This 

section will cover the possible factors interfering with the climate response of shrubs 
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and highlight the key unknowns that currently preclude the development of more 

accurate predictions of vegetation trajectories in the tundra biome.  

 

 

Figure 1-1 Climate sensitivity of shrub growth to summer temperature is highly heterogeneous 
across the tundra biome. The size of the circles indicates the magnitude of the sensitivity 
measured from linear mixed-effects models (for more details, see Myers-Smith et al. 2015a). 
Figure prepared by Isla Myers-Smith.  

 

1.2.1 Intra-individual responses of plant organs 

Shrubs are woody plants with a multi-stemmed morphology and complex architecture. 

Overall, very little is known about internal resource allocation to growth modules within 

shrub plants. Branching patterns and resource allocation to different architectural 

components are partly genetically determined, and partly plastic responses to 

environmental conditions (Charles-Dominique et al. 2015). Moreover, Arctic shrub 

canopies can be vertically structured to maximise light interception at low solar angles 

(Paradis et al 2016; Magney et al. 2016). This plasticity in canopy organisation and 

resource allocation likely benefits the plant as whole, but as a result, different modules 

may be experiencing sub-optimal conditions. For instance, self-shading within a plant 

or shrub patch (Street et al. 2007; Fletcher et al. 2012) may lead to differential 

performance of stems. Thus, growth within a stem may not be representative of the 
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whole individual life history – especially considering localised effects of disturbances 

like herbivory. Furthermore, as shrubs get older, growth may cease in the oldest parts 

(Wilmking et al. 2012; Buchwal et al. 2013), and old stems die and get replaced. 

Clonal growth with stem dieback can mean that genetic individuals may persist over 

timescales from centuries to over a thousand years, but with live parts rarely 

exceeding 200 years old (de Witte et al. 2012). Stem demographics and resource 

allocation within shrubs may therefore have methodological implications for the 

quantification of climate sensitivity (Myers-Smith et al. 2015b) if different parts do not 

respond coherently to environmental drivers (Buchwal et al. 2013).  

1.2.2 Inter-individual differences in climate sensitivity  

At the site-to-regional scale, growth within plant communities is broadly controlled by 

abiotic variables, but fine-tuned by a range of factors including genetic differences 

between populations, site topography, ecological interactions, and disturbances, 

which this section will briefly review. If shrub growth is limited by these multiple drivers, 

it is perhaps not surprising to find high variability in the climate response of growth 

(Myers-Smith et al. 2015a). Understanding the relative importance of these controls 

on shrub growth are current research priorities to refine estimates of shrub expansion 

rates.  

Local topography, moisture and resource availability 

Tundra ecosystems are spatially heterogeneous, resulting in a mosaic of expanding 

and stable shrub patches (Tape et al. 2012). Shrub performance and expansion rates 

may be controlled by meso-scale topographic features such as aspect, slope, and 

elevation (Ropars and Boudreau 2012; Myers-Smith and Hik 2017; Lemay et al. 

2018). Disturbances from degrading permafrost may create additional landscape 

heterogeneity and open new sites to rapid colonisation and succession (Lantz et al. 

2010). Other abiotic factors such as soil temperature, moisture, chemistry, and 

nutrient content (Gough et al. 2000; Moulton and Gough 2011; Tape et al. 2012), as 

well as snow accumulation patterns (Wipf and Rixen 2010; Suding et al. 2015), can 

all influence growth and reproduction of shrub species. As these factors may vary 

over short (metre scale) distances at some tundra sites (Graae et al. 2018), 

microtopography could therefore drive individualistic responses in shrubs within a 

population.  
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Plant-plant interactions 

Vegetation can also mediate the abiotic factors mentioned above through feedbacks 

on soil temperature, wind exposure, nutrient cycling, etc., as well as having direct 

effects on plant performance. The presence of positive and negative plant-plant 

interactions could explain part of the variability in the climate sensitivity of tundra 

shrubs. On one hand, facilitative interactions can help plants to establish under sub-

optimal abiotic conditions (Choler et al. 2001; Batllori et al. 2009; Ballantyne and 

Pickering 2015) and therefore could promote faster expansion or range shifts of 

species. On the other hand, negative interactions, and especially competition, might 

induce growth limitations (Choler et al. 2001; Dormann et al. 2004; Pellissier et al. 

2010), thereby preventing plants from capitalising on longer or warmer growing 

seasons.  

Competitive interactions are often overlooked in dynamic global vegetation models. 

When they are incorporated, they are modelled a) between, not within, plant functional 

groups, and b) for areas below the boreal treeline only (Arora and Boer 2006). The 

shrub species that currently drive much of the shrub expansion patterns in the tundra 

biome are competitive plants with plastic growth and fast nutrient acquisition 

strategies (Bret-Harte et al. 2002; Myers-Smith et al. 2011; Elmendorf et al. 2012b; 

Morrissette-Boileau et al. 2018). As shrub cover increases in tundra ecosystems, 

competitive interactions between these tall deciduous shrubs are likely to intensify, 

and could eventually lead to a deceleration of shrub expansion if local resources 

become more limiting than temperature.  

Other processes  

Many other factors which are not the focus of this thesis are likely to play an important 

role in determining the climate sensitivity and future responses of tundra vegetation. 

Genetic differences among individuals and populations and their degree of plasticity 

to climate change have implications for the rate at which plants may adapt to climate 

change or migrate to new locations (Bjorkman et al. 2017; Graae et al. 2018). 

Herbivory and disturbances such as extreme climatic events can exert strong controls 

over plant dynamics resulting in community shifts different from predictions based 

solely on climate change (Olofsson et al. 2009; Aerts 2010; Speed et al. 2013; 

Kaarlejärvi and Olofsson 2014; Bokhorst et al. 2012a).  
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1.2.3 Biogeographic trends in sensitivity 

Identifying broad-scale patterns in the responses of plant growth to climate change in 

the Arctic is a current research priority that will allow more realistic estimates of future 

vegetation change in the tundra biome. Biome-wide syntheses have allowed to 

generalise a few key findings. First, vegetation responses to temperature seem 

stronger at sites that were already warmer to begin with (Elmendorf et al., 2012b), 

and at wetter versus drier sites (Myers-Smith et al. 2011; Elmendorf et al. 2012a; 

Ackerman et al. 2017). Furthermore, shrubs are more climate sensitive near their 

northern or upper distribution limit (Myers-Smith et al. 2015a). Species with taller 

maximum canopy height also tend to have greater sensitivity (Myers-Smith et al. 

2015a). Together, these findings suggest that the greater shifts in vegetation may 

initially occur at low to mid-latitudes of the tundra biome, where climatic conditions are 

not too severe and tall deciduous shrubs already dominate the landscape.  

1.3 Objectives and research questions 

The expansion of shrub species in the tundra biome is a well-documented response 

to climate change with compelling evidence (IPCC 2014). However, the heterogeneity 

of growth responses to warming complicates predictions of future vegetation change 

in the Arctic and its associated feedbacks. The objectives of this thesis are: 

1- to identify the climatic factors controlling the radial growth of tundra shrubs;  

2- to quantify the variation in the strength of these signals; 

3- to attribute this variation to morphological, ecological or biogeographic factors. 

Variation in the strength of the climate signal detected in growth rings may be caused 

by different factors acting on different scales, from morphological differences among 

parts of a plant to plot-level ecological constraints and all the way up to biogeographic 

patterns in sensitivity (Figure 1-2). I asked the following principal research questions: 

1- Do longer and warmer summers have additive effects on shrub growth?  

Arctic summers are getting longer and warmer (IPCC 2013). Growing season 

length and temperature are often referred to interchangeably as drivers of shrub 

growth, but few tests have quantified their relative importance in controlling shrub 

expansion. Given the heterogeneity in warming trends and snowmelt timing 

across the tundra biome (Ernakovitch et al. 2014), it is crucial to understand the 
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respective influence of rising temperatures versus longer growing seasons on 

current and future future vegetation change. Chapter 3 compared the sensitivity 

of radial growth to summer temperatures and growing season length, using 324 

shrubs from four sites across Northern Canada. I hypothesised that a greater part 

of variation in shrub growth would be explained by temperature than by growing 

season length.  

Because climate sensitivity measured from dendroecological data is obtained 

from different protocols in different studies (Myers-Smith et al. 2015a, b), it may 

not be directly comparable across sites and species given complex internal 

resource allocation patterns (Buchwal et al. 2013). I collaborated with colleagues 

from Université Laval to quantify the strength of intra-individual climatic signals 

within different plant parts (Ropars et al. 2017). We found that root collars in Betula 

glandulosa from different landscape types in Northern Québec had stronger 

climatic sensitivity than stems from the same individuals (Appendix I). These 

results informed the rest of my doctoral work and my sampling protocols.  

2- How does plant size influence the climate sensitivity of shrub growth? 

Plant height is an important structural trait that affects physical processes in tundra 

ecosystems. Shrub species with taller canopy heights appear to be more climate 

sensitive (Myers-Smith et al. 2015a), although whether this reflect wider functional 

group strategies or relate mechanistically to individual performance is unknown. 

Chapter 4 tested the influence of plant size on the climate sensitivity of 551 shrubs 

belonging to 15 species across 16 sites around the circumpolar region. I also 

tested the same question on a smaller (306 shrubs) but more homogenous and 

better-replicated dataset that I collected in Northern Canada. I hypothesised that 

taller plants would show a stronger climate signal than smaller shrubs because 

they are more competitive (thus less limited by local resource availability) and their 

canopies are less vulnerable to ground-level microclimatic effects. 

3 – How does the biotic context influence the climate sensitivity of shrub growth? 

Shrub expansion has been documented across the tundra biome (Myers-Smith et 

al. 2011; Naito and Cairns 2011; Elmendorf et al. 2012a), in boreal forests (Frost 

and Epstein 2014; Grabowski 2015) and in alpine environments (Danby et al. 

2011; Formica et al. 2014; Venn et al. 2014; Dial et al. 2016), but it is not clear 

whether the climate sensitivity varies across forest-tundra transitions where the 
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competitive environment differs. Chapter 5 explored local variations in the climate 

sensitivity of dominant tall shrub species from the Kluane region of the Yukon 

Territory in Canada. Shrub expansion has been documented in the area, both in 

boreal forests and in alpine environments, but it is not clear whether these 

vegetation trajectories will continue as shrub densities increase and competition 

with trees (boreal) and among shrubs (boreal and alpine) intensify. I compared 

growth rates and climate sensitivity of willow shrubs from the alpine and boreal 

zones to test the hypothesis that the growth and climate response of shrubs in 

boreal forests are suppressed by competition from trees. I also took advantage of 

a past canopy removal experiment to test how sensitive shrub growth was to 

competition with other shrubs in alpine communities. I hypothesised that a release 

from competition after canopy removal would trigger higher growth rates in 

neighbouring shrubs.   

4- Does competition influence the climate sensitivity of shrub growth, and do 
competition intensity and importance vary along an environmental severity gradient? 

Climate-driven shrub expansion in the tundra may not continue indefinitely if 

competition among shrubs intensifies to the point where resources become more 

limiting to growth than temperature. The relative importance of competition in 

driving plant community dynamics is thought to be more important in productive 

sites, and less so in sites with harsh environmental conditions (Bertness and 

Callaway 1994; Maestre et al. 2009). Therefore, shrub growth could be more 

limited by competition at lower latitudes of the tundra biome, with major 

implications for current Earth-System models which assume strong and uniform 

positive growth responses of shrubs to warming (Pearson et al. 2013). Chapter 6 

used a spatial approach to explicitly test the influence of the competitive 

environment on the radial growth and climate sensitivity of tundra shrubs. The 

location and contrasting environmental conditions of the four field sites across 

Northern Canada allows to place the results in a broader competition theory 

ecological framework. I hypothesised that: 

a. Individuals that experience more competition, from closer or larger 

neighbours, show decreased climate sensitivity of radial growth compared to 

shrubs growing in lower densities  
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b. According to the stress-gradient hypothesis, the two northern sites will show 

greater climate sensitivity overall than the two southern sites, where 

competition is expected to be more important.  

Finally, because plant-plant interactions in a changing Arctic will not only impact the 

growth of tundra shrubs, but will also likely play a role in controlling species distribution 

(Gilman et al. 2010; Hellmann et al. 2012; HilleRisLambers et al. 2013), Chapter 7 

(Angers-Blondin et al. 2018) tests whether the vegetation already in place may 

interfere with seed germination, a key aspect of shrub expansion in expected climate-

driven range shifts.  

 

 

 

Figure 1-2 Conceptual diagram of the key potential factors explaining the climate sensitivity 
of growth tested in this thesis 
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Chapter 2 Methodology 

The four main data chapters of this thesis rely on annual growth ring measurements 

to identify biotic and abiotic controls of shrub growth and quantify their climate 

sensitivity. I sampled shrub populations at four sites across Northern Canada, and 

these data are used in various subsets or in combination with other dendroecological 

data to answer the objectives of my thesis. To avoid undue repetition of site 

descriptions and sampling protocols, the main methods and detailed information on 

the dataset are presented here. Other data sources and detailed statistical analyses 

are presented where relevant in each chapter. 

2.1 The role of dendroecology in quantifying shrub sensitivity 
to environmental change 

Shrub dendroecology is now an established and growing field that greatly contributes 

to our understanding of tundra vegetation change (Chapter 1). The adaptation of 

traditional tree-ring techniques for plant species with secondary growth such as 

shrubs and perennial herbs (Schweingruber and Poschlod 2005) provides a powerful 

tool for ecological studies in extreme, treeless environments where long-term 

ecological records are scarce. Annually-resolved growth records in tundra shrubs 

have not only demonstrated their potential for climatic reconstructions (Rayback and 

Henry 2005; Schmidt et al. 2006; Bär et al. 2008; Hantemirov et al. 2011), but can 

also be useful in land-use (Rixen et al. 2004; Zverev et al. 2008), geomorphological 

(Owczarek 2010; Buras et al. 2012), and ecological (Schweingruber et al. 2013; 

Büntgen et al. 2015; Grabowski 2015; Morrissette-Boileau et al. 2018) studies. 

Nevertheless, the study of multi-stemmed plants with complex morphology and 

internal resource allocation strategies, combined with environmentally induced growth 

eccentricities and missing rings (Wilmking et al. 2012; Buchwal et al. 2013), poses 

technical challenges (Figure 2-1) and uncertainty in biological interpretation.  

Sampling strategies in dendroecology tend to follow a different philosophy than most 

other areas of ecology. Sampling is usually highly selective rather than random, and 

biased towards dominant individuals that are expected to be chiefly limited by a 

variable of interest, often climatic (Kuivinen and Lawson 1982; Liang and Eckstein 

2009; Hantemirov et al. 2011). For studies aimed at reconstructing past climate from 

shrub-ring records where a strong, consistent climatic signal is needed, selecting 

individuals more likely to be limited by regional climate rather than local-scale factors 
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is understandable and desirable (Pilcher and Gray 1982; Mäkinen and Vanninen 

1999). However, such selective sampling will inevitably lead to an inflated measure of 

climate sensitivity (Figure 2-2) and may lead to over-estimating future responses of 

tundra vegetation to warming (Pearson et al. 2013). Random, indiscriminate sampling 

incorporating ecological factors such as competition (Rollinson et al. 2016) are more 

likely to yield a representative estimate of population-level climate sensitivity. 

 

 

Figure 2-1 Anatomical complexity of root collars in tundra shrubs. Root collars often exhibit 
heavy lobing (A), and roots and stems grow so close together that it can be difficult to obtain 
a cross section that does not comprise multiple piths (B). Growth is often eccentric (C-D), with 
wedging rings that appear only one one side of the stem (E). 
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Recent efforts to standardise sampling, processing and analysis of shrub growth-ring 

data across sites and observers (Myers-Smith et al. 2015b) will facilitate biome-wide 

data syntheses and enable comparisons of the drivers of vegetation change in the 

tundra. However, there is currently still a great deal of variability in protocols, from site 

selection and sample design to the anatomical part of the shrub that is sampled. A 

project on which I collaborated during my PhD sought to quantify the strength of the 

climate signal within different parts (stem versus root collar) of the shrub Betula 

glandulosa (Appendix I; Ropars et al. 2017). We found that root collars show higher 

climate sensitivity than the largest stem, possibly because the root collar integrates 

growth from the whole plant, whereas stems can experience different growth rates 

depending on their respective aspect, presence of herbivory, or shading from other 

branches. Dendroecological sampling must therefore be conducted with all these 

physiological and ecological considerations in mind.  

 

 

Figure 2-2 Selective rather than random sampling may lead to inflated estimates of climate 
sensitivity for shrub populations. Here, if only individuals indicated with red arrows are 
sampled, the effects of site-specific ecological factors interfering with the climate response of 
many shrubs are not taken into account. 

 

2.2 Site description 

Sampling took place between June and August 2015 at four locations across Northern 

Canada (Figure 2-3). Qikiqtaruk-Herschel Island and Kluane in the Yukon Territory 
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are separated by ca. 1000 km along a north-south gradient; Salluit and Umiujaq in 

Northern Québec are separated by ca. 600 km.  

2.2.1 Kluane 

The Kluane region in southwest Yukon is characterised by boreal coniferous forest 

and mountainous terrain. Beyond the treeline, the vegetation shifts to tall shrub 

tundra, with the shrubline of canopy-forming species lying at around 1600-1700 

meters of elevation (Myers-Smith 2011). Summits harbour Arctic-alpine tundra 

vegetation. My sampling locations in Pika Valley (plots “P”) and on the Kluane Plateau 

(plots “K”) were characterised by alpine tall shrub tundra dominated by different willow 

species: Salix richardsonii Hook., Salix pulchra Cham., and Salix glauca L. Hook. The 

ground layer is composed of dwarf shrubs Dryas octopetala L. and Salix reticulata L., 

and of various graminoids, forbs, mosses and lichens (Myers-Smith and Hik, 2013). 

Given the high elevations of these sites, climatic conditions in the summer are 

relatively similar to those that prevail ca. 1000 km north on Qikiqtaruk, although 

Kluane is warmer in the winter and shoulder seasons (Figure 2-4).  

2.2.2 Qikiqtaruk-Herschel Island 

Qikiqtaruk-Herschel Island is a Yukon Territorial Park in the Beaufort Sea. The island 

measures around 100 km2. It experiences an Arctic climate and the vegetation is 

characterised by erect dwarf-shrub tundra (Walker et al. 2005). It is the driest and 

coldest of the four sites, except during the summer (Figure 2-4). The island is 

underlain by ice-rich permafrost that is degrading rapidly, with large retrogressive 

thaw slumps eroding as fast as 15 meters per year (Burn 2017). Different vegetation 

types exist on the island (Smith et al. 1989). My plots were characterised by the 

following vegetation types: 

o Herschel type: moist acidic tussock tundra, dominated by Eriophorum 

vaginatum 

o Komakuk type: dwarf shrub and forb tundra characterised by disturbance from 

freeze-thaw processes exposing bare ground; dominance of Dryas integrifolia 

Vahl. and Salix arctica Pall.; occasionally canopy-forming willows such as Salix 

glauca L.  

o Orca type: coastal floodplain dominated by canopy-forming willows such as 

Salix richardsonii Hook. 
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Figure 2-3 Map of the four field sites in Northern Canada (center panel) and location of the 
study plots (red dots) within sites (top and bottom panels).  
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2.2.3 Umiujaq 

Umiujaq is an Inuit settlement of Nunavik (Northern Québec) located at the Arctic 

treeline on the eastern coast of Hudson Bay. It experiences a sub-Arctic climate with 

summer temperatures above 10°C (Figure 2-4), and the vegetation consists of sparse 

spruce forests in the lowlands, coastal tundra near the shore, and tall shrub tundra 

(almost exclusively Betula glandulosa) encroaching on lichen plateaux on higher 

ground (Provencher-Nolet et al. 2014). The region is characterised by gently rolling 

hills (Caccianiga and Payette 2006) and underlain by the Canadian Precambrian 

Shield. It belongs to the discontinuous permafrost zone, with permafrost occurring 

primarily in the bedrock and under palsas (Allard and Séguin 1987). Northern Québec 

warmed strongly during the 1990’s (Bhiry et al. 2011), but warming trends have 

slowed down recently (see Chapter 3).  

2.2.4 Salluit 

Salluit is an Inuit settlement of Nunavik located on the Hudson strait. It lies over 

500 km beyond the Arctic treeline and is, in summer, the coldest of the four sites 

(Figure 2-4). The landscape is characterised by gently rolling hills. The vegetation 

consists mainly of herbaceous tundra with very scarce shrub cover, except along 

creeks and rivers where taller shrubs are found. Willows dominate the shrub layer, 

although the dwarf birch Betula glandulosa is also found. The area is underlain by 

continuous permafrost (Allard and Séguin 1987). Salluit is located on the margin of 

the Rivière-aux-Feuilles caribou herd summer range (Le Corre et al. 2016). Caribou 

densities are low around the hills near the village where my study plots are located, 

but herbivory is likely to be an important constraint to shrub expansion in this part of 

the biome (Morrissette-Boileau et al. 2018).  

2.3 Study species 

I sampled a total of seven tall shrub species across the four sites. All the species 

sampled in the Yukon Territory (Kluane and Qikiqtaruk-Herschel Island) were willows: 

Salix pulchra, Salix richardsonii, Salix niphoclada, Salix glauca, and Salix barrattiana. 

The first three species account for over 95% of my sampling effort in the Western 

Arctic. Canopy-forming tundra willows are deciduous shrubs characterised by fast 

growth rates (Bret-Harte et al. 2002) and produce small, wind-dispersed seeds in 

great quantities, which allow rapid colonisation of sites after disturbances (Brinkman 

1974; Forbes et al. 2001). 



17 
 

In Northern Québec, shrub expansion is mostly driven by Betula glandulosa, the dwarf 

birch (Ropars and Boudreau 2012). This was the only tall shrub species present in 

the plots in Umiujaq. At my other Nunavik site, Salluit, the tall shrub community mostly 

consists of willows, and Salix planifolia was the most common species (78% of 

sampling), with rarer occurrences of Salix glauca (13%) and of B. glandulosa (9%). 

Betula glandulosa can hybridise with the closely related and widespread Betula nana. 

Dwarf birch has high plasticity of growth (Bret-Harte et al. 2002) and forms mycorrhizal 

associations allowing carbon transfer among individuals (Deslippe et al. 2011).  

 

 

Figure 2-4 Quarterly climatic summaries for the four sites, obtained from CRU 3.24.01 gridded 
climate data. The density histograms represent the distribution of temperatures for the period 
1980-2017; the colour of the curve represents the corresponding mean precipitation sums for 
this quarter.  

 

2.4 Sampling 

At each of the four sites, I set up five to six square sampling plots ranging from 25 m2 

to 100 m2. The size of the plots was determined by shrub density, with a target number 

of ca. 30 shrubs per plot (median = 32, range = 19 – 54). To capture the landscape 

heterogeneity and avoid spatial autocorrelation, plots within a site were located at 
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least 300 meters apart, with a median distance to the closest neighbouring plot of 

1.9 km (range = 0.304 – 30.4 km).  

Within each plot, every canopy-forming shrub taller than 10 cm was identified to 

species level. I measured canopy height, canopy width along two perpendicular 

diameters, and the diameter of the largest stem. Shrubs on the edges of the plot were 

considered if more than half of the canopy was found inside the plot. 

I mapped the position of each individual within the plot using a laser rangefinder 

mounted on a tripod with an attached protractor (Figure 2-5). The tripod was 

systematically set up in one corner of the plot, with a horizontal plane parallel to the 

slope of the terrain. I chose plots with minimal spatial heterogeneity, i.e. avoiding deep 

depressions or tall hummocks of vegetation. By measuring the distance of each shrub 

(using the canopy centre) from the tripod and the angle from a reference point, I could 

calculate Cartesian coordinates for each shrub. To validate my mapping method, I 

compared distances between selected pairs of individuals that were measured in the 

field with distances calculated from my digital mapping. I found that the rangefinder 

mapping had an error margin of less than 10 cm, which is acceptable given the 

uncertainty in locating the exact center of a shrub canopy, and considering that the 

biotic interactions which are the focus of this thesis occur over several meters.  

2.5 Dendroecological methods 

2.5.1 Processing and measuring 

Every individual shrub within the study plots was sampled at the root collar, i.e. the 

oldest part of a shrub at the root-shoot interface. If the root collar was damaged or 

rotten, I also sampled the largest stem as close as possible to the root collar. Woody 

sections were air-dried and brought back to the laboratory, and processed according 

to standard dendroecological protocols for shrub species (Myers-Smith et al. 2015). 

This included softening the wood by soaking the samples in water for a few days, then 

cutting the samples into thin cross-sections (ca. 20 µm) with a sledge microtome 

(Reichart-Jung). The thin sections were mounted on glass slides and photographed 

under a microscope (Leica Application Suite image capture software) for further 

analysis. I measured growth rings along two to four radii on each sample using the 

ObjectJ plugin (https://sils.fnwi.uva.nl/bcb/objectj/index.html) for the ImageJ software 

(Schindelin et al. 2012). 
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Figure 2-5 Plots were mapped using a digital rangefinder mounted on a tripod and rotating 
around a protractor (A). The distance to the target (B) and the angle from a reference point 
allow to calculate coordinates for each shrub. Photographs on the right-hand side show 
representative plots for Kluane (C), Qikiqtaruk (D), Umiujaq (E) and Salluit (F). 

 

2.5.2 Data quality 

Ring-width measurements were restricted to the period 1990-2014. Most individuals 

were older than this, in which case the rings were counted but not measured to get 

an approximate age for each sample (Table 2-1). We did not extend the measurement 

period beyond 1990 for two reasons. First, most of the climatic or ecological variables 
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used in the different chapters either have short time series (e.g. land surface 

greenness satellite data), or represent a snapshot of the environment at the time of 

sampling (e.g. number of neighbours within a given radius), which becomes less 

relevant going further back in time. Second, the longer the time series, the higher the 

risk of introducing dating errors by missing a year. A time span of 25 years was 

therefore considered optimal to quantify relationships with environmental variables 

with enough statistical power and biological relevance while minimising measurement 

error. Additionally, for young individuals, I removed rings that represented the first five 

years of growth as young growth patterns are often irregular (Myers-Smith et al. 

2015a), and discarded individual time series that were shorter than five years.  

I calculated the correlation among radii within each sample (Table 2-1). General 

overall agreement was ca. 75% (Pearson’s correlation). Tundra shrubs experience 

harsh growing conditions that cause growth anomalies (Figure 2-1), which could 

explain why ca. 10% of the individuals in the dataset had low mean radii 

intercorrelation ( < 0.50). After verifying that these individuals did not have different 

climate sensitivity than the rest of the dataset, I did not eliminate them. For all 

subsequent analyses, radii were averaged so that each individual had a single 

corresponding time series.  

Individual time series were correlated to all other individuals with a plot. Average 

correlations showed variable agreement across plots and sites (Table 2-1). Visual or 

statistical crossdating (Myers-Smith et al. 2015b) are procedures that increase dating 

accuracy by ensuring that time series show a common signal, usually in response to 

regional climate. This is valid for studies seeking to use chronologies to reconstruct 

environmental drivers, when sampling is conducted to enhance the climatic signal 

(e.g. tall trees without competitors or deformities). To suit the aims of this thesis, I 

sampled the plots exhaustively rather than selectively to capture the demographics of 

the population and a wide variety of growth rates (Schweingruber et al. 2013; Büntgen 

et al. 2015). Therefore, I chose not to exclude individuals with lower correlations. The 

lack of agreement among individual growth patterns may be caused by biotic 

interactions and other local factors interfering with the climate response of growth 

(Mäkinen and Vanninen 1999), which are of particular interest to this thesis.  
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2.6 Climate data 

Arctic weather station data are often patchy, inconsistent, and not available for long 

periods. To ensure consistency in climate sensitivity analyses of shrub growth among 

my four different sites in Northern Canada, I used gridded climate data from the 

Climate Research Unit (CRU monthly temperatures, version TS 3.24.01, 0.5° 

resolution).  

Precipitation data from gridded datasets are not as reliable as temperature data, given 

that precipitation is more spatially heterogeneous and therefore more challenging to 

interpolate (Karger et al. 2017). Growth correlations to precipitation should thus be 

treated with caution. For most chapters, I preferred the use of temperature data only 

for climate-growth relationships, given the abundant evidence of summer temperature 

being the main control of shrub growth (Dormann and Woodin 2002; Walker et al. 

2006; Forbes et al., 2010; Myers-Smith et al. 2015a). Nevertheless, I explored 

correlations to other climatic variables such as precipitation when summer 

temperatures did not seem to exert a strong influence on growth (Chapter 3).  

Table 2-1 Summary of dendroecological sampling across four sites in Northern Canada. Mean 
radii intercorrelation within individuals (Radii R) and the range of pairwise individual 
correlations within plots (Plot R) are presented along with information on the sample size and 
population age and size structure. 

Site Plots 
n 

Shrubs 
n 

Radii R 
(mean ± SD) 

Plot R 
(min-max) 

Age (y) 
(mean ± SD) 

Canopy height (m) 
Median (max) 

Qikiqtaruk 3 70 0.76 ± 0.16 0.03 – 0.46  28 ± 15 0.20 (0.65) 

Kluane 3 73 0.76 ± 0.18 0.21 – 0.70  36 ± 12 0.32 (1.92) 

Umiujaq 5 91 0.82 ± 0.16 0.02 – 0.32 27 ± 11 0.18 (0.60)  

Salluit 3 90 0.66 ± 0.25 0.26 – 0.34 17 ± 8 0.18 (0.51) 

 

2.7 Statistical analysis 

Specific details of statistical analyses are described where appropriate in the data 

chapters. However, most sensitivity analyses in this thesis follow the same two-steps 

framework (Figure 2-6): first, (standardised) ring width is modelled as a function of a 

climatic variable (often summer temperature) through linear regression. The slope of 

this relationship then becomes a metric of climate sensitivity (Myers-Smith et al. 

2015a). Mixed-effects models are then used to explain the variation in climate 
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sensitivity as a function of ecological or environmental variables of interest while 

taking into account the hierarchical nature of the sampling (Harrison et al. 2018).  

 

 

Figure 2-6 General sensitivity analysis framework used throughout this thesis to explain 
variation in the climate sensitivity of shrub growth. 
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Chapter 3 A study in green: The non-synergetic 
effects of warming and increasing growing season 
length on shrub growth 

Abstract 

Climate change in the Arctic is causing not only warmer, but also often longer growing 

seasons due to earlier snowmelt. The respective effects of longer versus warmer 

growing seasons on vegetation change, and notably on the expansion of woody 

species, are not well quantified but often assumed to work in combination. Recent 

advances in remote sensing, with higher-resolution satellite imagery, allow to estimate 

the length of the growing season from greenness indices across the tundra biome, 

with time series just now long enough to test for correspondence between growing 

season length and vegetation dynamics. In this chapter, I measured the sensitivity of 

annual growth to summer temperature and growing season length in 324 tundra 

shrubs from four sites across Northern Canada for the period overlapping MODIS 6 

(Moderate Resolution Imaging Spectroradiometer) satellite observations (2000-

2014). I hypothesised that shrub growth would be positively influenced by both factors, 

but more strongly by temperature. I also hypothesised that individuals would be 

consistent in the direction and magnitude of their responses to both factors. Finally, I 

tested the hypothesis that temporal variations in surface greenness (NDVI, the 

Normalised Difference Vegetation Index) are tracked in the radial growth of tundra 

shrubs. I found that overall climate sensitivity was weak, and the relative importance 

of temperature versus growing season length was variable across sites. Individuals 

were not consistent in their response to both factors. Furthermore, variations in 

greenness were not mirrored in the radial growth of shrubs. The de-coupling of growth 

sensitivity to two major global change drivers, growing season length and 

temperature, could affect rates of shrub expansion in parts of the Arctic with 

contrasting climatic regimes.  

Author contributions 

I designed the study and analysis framework with input from Isla Myers-Smith. I 

carried out the data collection and all statistical analyses. Jakob Assmann kindly 

extracted MODIS data from the Google Earth Engine and made recommendations on 

key remote sensing and phenology literature. Isla Myers-Smith wrote the Phenex 

code for deriving growing season length from MODIS data. I am thankful to Santeri 
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Lehtonen, Joe Boyle, Haydn Thomas, Jakob Assmann, Clara Morrissette-Boileau, 

Marc-André Lemay and Marianne Caouette for assistance in the field.  
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3.1 Introduction 

3.1.1 Shrub expansion may be concurrently driven by several climatic factors 

Arctic summers are not only getting warmer, but also longer (Tucker et al. 2001; Piao 

et al. 2007; Ernakovitch et al. 2014; Park et al. 2016) at many sites around the 

circumpolar region. The currently ongoing biome-wide expansion of shrub species 

(Tape et al. 2006; Myers-Smith et al. 2011) has conclusively been attributed to Arctic 

warming through many lines of evidence (see Chapter 1). But while temperature is 

undoubtedly a major control of plant growth in cold environments (Chapin et al. 1995; 

Elmendorf et al. 2012b), it is difficult to tease apart the multiple environmental drivers 

that can be acting concurrently on woody encroachment in the tundra. A challenging 

question that remains to be answered is the extent to which the length of the growing 

season, rather than its temperature, plays a role in enhancing Arctic plant productivity. 

Phenology, i.e. the timing of life events, is especially sensitive to warming at higher 

latitudes (Root et al. 2003; Prevéy et al. 2017; Post et al. 2018). Northern plant 

communities have shown advanced green-up in the spring by ca. 1.7 to 4.7 days per 

decade (Zeng et al. 2001; Park et al. 2016). Snow manipulation experiments have 

revealed a strong control of snowmelt timing on plant development, growth, and 

reproductive success (Wipf and Rixen 2010; Cooper et al. 2011; Bjorkman et al. 

2015). However, the environmental cues that dictate plant green-up and senescence 

are not fully understood (Richardson et al. 2013; Rumpf et al. 2014; Khorsand Rosa 

et al. 2015). In a shrub expansion context, the timing and length of the 

photosynthetically active period may be of paramount importance for tundra carbon 

stocks (Piao et al. 2007). Deciduous shrubs have fast green-up rates, and a 10-day 

lengthening of the peak productivity period is projected to increase carbon uptake by 

up to 84% (Sweet et al. 2015); however, an extension of the snow-free period could 

amplify warming feedbacks in the Arctic (Chapin et al. 2005). 

3.1.2 The greening of the tundra 

Plant productivity can be quantified over large geographic areas through satellite 

products such as the Normalised Difference Vegetation Index (NDVI), an index of 

land surface greenness (Glenn et al. 2008). Despite the difficulty of linking coarse-

scale, remotely sensed data to plot-level vegetation measurements, NDVI data for the 

Arctic region seems to be a reliable predictor of plant biomass (Raynolds et al. 2012). 

Around the circumpolar region, since the 1980s, satellites have detected a greening 
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trend suggesting an increase in plant biomass and photosynthetic activity (Myneni et 

al. 1997; Jia et al. 2009; Eastman et al. 2013; Ju and Masek 2016; but see Bhatt et 

al. 2013; Phoenix and Bjerke 2016 for “browning” trends), especially at higher 

latitudes in shrub- or graminoid-tundra (Goetz et al. 2005; Verbyla 2008; McManus et 

al. 2012). 

Several regional studies have reported increases in NDVI concurrent with on-the-

ground vegetation change and shrub encroachment (Blok et al. 2011a; McManus et 

al. 2012; Ropars et al. 2015), suggesting that shrub expansion is directly responsible 

for satellite-derived increases in greenness. Moreover, positive correlations between 

maximum NDVI and shrub growth have been documented for regions of Siberia 

(Forbes et al. 2010; Blok et al. 2011a; Macias-Fauria et al. 2012) and North America 

(Blok et al. 2011a; Ropars et al. 2015; Weijers et al. 2018). Until recently, the coarse 

spatio-temporal resolution of satellite data precluded explicit, mechanistic attribution 

of greening to shrub growth rates and cover change. Recent advances have led to 

the development of higher-resolution (sub-km) NDVI time series. Only now, with 

nearly two decades of these finer-scale observations, can we attempt to quantitatively 

establish relationships between tundra plant growth and satellite-derived greenness 

and growing season length.  

3.1.3 Objectives and hypotheses 

Here, I used radial growth time-series from 324 tundra shrubs across four sites of 

contrasting growing season characteristics to compare the influence of growing 

season length and temperature on shrub growth, and to test whether large-scale 

temporal trends in tundra greenness are reflected in the interannual variability of 

secondary growth. My hypotheses were: 

1- Shrub growth is sensitive to both growing season length and temperature, but 

temperature better explains interannual variation in growth rings. I therefore expected 

to see stronger positive relationships between ring width and temperature.  

2- Individual shrubs are consistent in their sensitivity to growing season length and 

temperature. I predicted that shrubs with higher temperature sensitivity would show a 

correlated magnitude and direction of sensitivity to growing season length. 

3- Inter-annual variations in tundra greenness can be detected in the radial growth of 

shrubs. I expected to find a positive relationship between ring width and NDVI.  
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3.2 Methods 

3.2.1 Study sites and sampling 

I sampled canopy-forming, deciduous shrubs at four sites in northern Canada 

(Chapter 2). These sites vary in their climatic regime and in the magnitude and 

direction of recent warming and greening trends (Figure 3-1; Table S3-1). This 

present study uses 324 shrubs from three to five plots per site. Thin sections were 

obtained from the root collar, and growth rings were measured along two to four radii 

on each section (Chapter 2) for the period 2000 – 2014.  

 

Figure 3-1 Temporal trends in a) mean June-July-August temperature, b) mean growing 
season length derived from MODIS6 data, and c) maximum greenness at the four study sites. 
Longer temporal trends are presented for temperature but time series were constrained to the 
period common to all datasets (dashed window).  

 

3.2.2 Gridded datasets 

I obtained monthly gridded temperature data (0.5° resolution) from the Climate 

Research Unit (TS 3.24.01) for each site. An average summer temperature calculated 

from June-July-August temperatures was used as it best represents the growing 

season for all sites. Land surface greenness data (NDVI) was obtained from the 

MODIS 6 (MOD13Q1 V6 16 days) dataset for each grid cell (250 m resolution) in 

which a sampling plot was present were extracted using the Google Earth Engine 

(http://earthengine.google.com/). The pixel values corresponding to two coastal plots 

http://earthengine.google.com/
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(one on Qikiqtaruk, one in Umiujaq) were replaced with values from the nearest plot 

(Qikiqtaruk: 1.2 km; Umiujaq: 0.6 km) because the proximity to the ocean gave 

erroneous NDVI values. I used maximum (peak) NDVI as a measure of greenness or 

productivity. I derived growing season length from interpolated and smoothed curves 

obtained with the Phenex library in R. To achieve this, logistic curves are fitted through 

available NDVI data, and green-up and senescence dates are calculated as a 

threshold of relative peak greenness (Figure S3-1). I used a threshold of 5% of peak 

greenness: this metric does not necessarily represent the realised growing season, 

but may be indicative of the snow-free period, with or without earlier plant activity (Liu 

et al. 2016). Growing season length values presented here should therefore be 

interpreted as the potential duration in which photosynthetic activity might occur. I also 

present values for the more photosynthetically active period in which 50% of peak 

greenness is attained (Figure 3-2; Figure S3-2).  

3.2.3 Statistical analyses 

To measure the sensitivity of shrub growth to growing season length versus 

temperature (Hypothesis 1), I ran mixed-effect models for each site separately. I used 

ring width as the response variable, and mean June-July-August temperature and 

growing season length as fixed effects. To account for the hierarchical nature of the 

data, plot was specified as a random effect. Year was also added as a random effect 

to account for the fact that all individuals experience similar environmental conditions 

in a given year (Harrison et al. 2018). Species could not be incorporated as a random 

effect given that only one species was present at Umiujaq – however, species within 

a site had generally similar growth correlations to the environmental drivers used in 

this study (Figure S3-3). Analyses were constrained to the same time period, 2000-

2014, which is the maximum length for which all environmental variables and growth 

ring measurements overlap. 

The same model structure was used to test whether NDVI trends were reflected in 

radial growth (Hypothesis 3). To ensure that effect sizes of drivers with different units 

could be compared, all variables were mean-centered and variance-scaled: ring width 

at the individual level, growing season length and NDVI at the plot level, and 

temperature at the site level. 

To test Hypothesis 2, I calculated individual Spearman correlations between ring 

width and both growing season length and temperature. I then used linear regression 
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to test whether there was a significant association between these correlations. I chose 

Spearman correlations because they allow for non-linear relationships between 

variables; a test with Pearson correlations did not change the interpretation of the 

results. 

All analyses were conducted in R version 3.3.2.  

3.3 Results 

The four sites experience markedly different summer regimes in terms of mean 

temperature, growing season length, and peak season greenness. The eastern sites 

have longer growing seasons than the western sites, but Salluit is much colder than 

Umiujaq, and shows the least productive peak season (Figure 3-2). Moreover, 

interannual variations in growing season temperature and length are not strongly 

correlated, i.e. a warmer summer is not necessarily longer (median correlation for all 

plots = 0.03, standard deviation = 0.20, min-max = -0.43 – 0.33).  

 

Figure 3-2 Different summer temperature and growing season regimes at the four study sites 
across Northern Canada. The colour of the bar indicates mean NDVI values at the peak of the 
growing season. The longer growing season (wider ticks) represents the period during which 
NDVI values are above 5% of maximum NDVI; the shorter period (smaller ticks) is the more 
productive period during which NDVI values are at least 50% of peak NDVI. 

 

3.3.1 Heterogeneity in growth responses to growing season length and 
temperature 

Shrub growth responded heterogeneously to the two drivers across the four sites 

(Figure 3-3A). Temperature had the strongest influence on growth at Kluane, and 
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growing season length was the primary control on Qikiqtaruk. Shrub growth at 

Umiujaq was not explained by either variable, and growth at Salluit was slightly 

negatively associated with longer growing seasons (Table S3-2). Further exploration 

of climate-growth relationships for Salluit revealed a positive association with summer 

precipitation that was not present for the other sites (Figure 3-3B).  

 

Figure 3-3 Shrub growth was not consistently explained by either summer temperature or 
growing season length at the four sites (A). Effect sizes are standardised so are directly 
comparable (GSL = growing season length; JJA temp: mean June-July-August temperature). 
Error bars represent 95% confidence intervals. B) Density curves of individual correlations 
between annual growth and July precipitation. Salluit was the only site where shrubs had 
positive associations to summer precipitation. 

 

3.3.2 Inconsistency of shrub-level response 

Individual shrubs were not consistent in the magnitude and direction of their sensitivity 

to growing season length and temperature, especially in Kluane and Salluit (Figure 

3-4). The growth of shrubs that were strongly temperature-sensitive could be 

positively, negatively, or not at all correlated to growing season length, and vice-versa. 
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Figure 3-4 Individual shrubs do not have consistent growth correlations to growing season 
length and to summer temperature, especially at Kluane and Salluit. Pearson’s correlations 
were calculated for the period 2000-2014 between ring width and either June-July-August 
temperature or growing season length derived from MODIS NDVI data. 

 

3.3.3 Radial growth not related to greenness 

Inter-annual variations in peak tundra greenness (NDVI) were not tracked by the radial 

growth of shrubs (Figure 3-5). Only Qikiqtaruk showed weak positive correspondence 

between shrub growth and NDVI (Figure 3-5; Table S3-3).  

3.4 Discussion 

In this study, I found that there is not one consistent driver of shrub growth at four 

tundra sites in Northern Canada. Rather, the relative importance of growing season 

length versus temperature varied across sites, with low overall sensitivity of shrub 

growth. The alpine tundra site in Kluane exhibited the strongest temperature 

sensitivity, while other sites suggested different underpinning controls such as 

moisture limitation. Individuals responded inconsistently to the two drivers. 

Furthermore, I found variable and weak correspondence between annual growth and 

temporal variation in remotely sensed tundra greenness. These results demonstrate 

that the warming and lengthening of Arctic summers are not necessarily happening 

concurrently, nor acting synergistically on shrub growth, and that annual variations in 

shrub growth may only partly contribute to remotely sensed estimates of tundra 

productivity.  
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Figure 3-5 Interannual variations in NDVI are not reflected in the radial growth of tundra 
shrubs. The left panel shows the distribution of individual correlations between growth and 
NDVI (2000-2014). The right panel shows time series of average growth (coloured lines) and 
greenness (black lines) at each site. 

 

3.4.1 Heterogeneity across sites in response to growing season length and 
temperature 

Temperature sensitivity of growth  

The four sites exhibited markedly different sensitivity of shrub growth to growing 

season length and temperature, highlighting the importance of examining several 

aspects of global change. The low temperature sensitivity of shrub growth on 

Qikiqtaruk-Herschel Island and the high temperature sensitivity of shrubs in Kluane 

align with previous findings from independent datasets at these sites (Myers-Smith et 

al. 2015a) and generally high variability and low inter-site agreement of ring-width 

series across southwest Yukon for trees and shrubs (Brehaut and Danby 2018). The 

difference in climate sensitivity along this north-south gradient might be indicative of 

genetic differentiation between populations, with the northern population locally 

adapted to colder temperatures and less plastic with respect to growth responses 

(Bjorkman et al. 2017). The complete lack of temperature sensitivity at Umiujaq may 

indicate that temperature is not a strongly limiting factor: Umiujaq is the warmest site 
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in this study, with average summer temperatures above 10 °C. Salluit was the coldest 

site, and yet growth was not associated to warmer temperatures, and negatively 

associated to longer growing seasons. This seems indicative of a soil moisture deficit 

(Wilmking et al. 2004), with additional evidence from positive correlations to summer 

precipitations. Shifts in soil moisture regimes under a warming climate and increased 

water demand from denser vegetation may become a critical limitation on the 

productivity of northern ecosystems (Berner et al. 2013; Cahoon et al. 2016; 

Ackerman et al. 2017).   

Season length sensitivity of growth 

Qikiqtaruk was the only site where growing season length had a positive effect on 

growth. Qikiqtaruk has experienced advances in plant phenology, as evidenced from 

long-term monitoring of the common tundra species Dryas integrifolia, Eriophorum 

vaginatum and Salix arctica (Myers-Smith et al. in press). For S. arctica, leaf-out time 

has been advancing by ca. eight days per decade, with little change in the timing of 

senescence, resulting in a lengthening of the growing season by 12 days per decade 

for this shrub species. At the other sites, I did not find patterns of increased growth 

with longer potential growing seasons for tundra willows and Betula glandulosa, 

suggesting that a longer period of photosynthetic activity may not result in increased 

wood formation. Similarly, the dwarf shrub Cassiope tetragona showed phenological 

responses to snowmelt timing without associated changes in growth rates measured 

from shoot elongation (Johnstone 1995). Several other studies have shown that 

phenological advances may (Arft et al. 1999; Wipf 2010) or may not (Starr et al. 2000; 

Post et al. 2008; Wipf 2010; Khorsand Rosa et al 2015) result in a longer or more 

productive period of plant growth. In some tundra species, growth is periodic, stopping 

once a threshold has been attained (Starr et al. 2000; Rumpf et al. 2014). Moreover, 

the timing of plant life cycles responds to multiple environmental cues apart from 

temperature (Wahren et al 2005; Ernakovitch et al. 2014; Bjorkman et al. 2015), so 

that plants may not be able to capitalise on an early start to accumulate resources 

over a longer period if senescence is triggered deterministically (Parker et al. 2017).  

3.4.2 Inconsistency of shrub-level response 

I expected that shrubs with a greater sensitivity for one driver would also be sensitive 

to the other in a similar order of magnitude, according to individual plasticity in growth 

responses. However, I found that there was no correlation in the degree to which 
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shrub growth is associated to temperature and growing season length. The highly 

individualistic nature of shrub responses to climatic drivers may therefore explain the 

overall low site-level sensitivity, as different magnitudes and directions of effects may 

cancel each other out. This dichotomy has been observed in boreal forests of Alaska, 

where trees cluster as “positive responders” to spring temperature, suggesting a 

positive influence of earlier snowmelt and longer season, or “negative responders” to 

previous summer temperatures, indicative of drought stress (Wilmking et al. 2004). 

The proportion of trees in these categories was consistent across the landscape and 

unrelated to topographical features but seemingly dependent on stem density, with 

negatively responding trees more frequent in more productive sites (Wilmking et al. 

2004). This suggest that competition may affect the way tree- and shrub-tundra 

ecotones respond to a warming climate, and is of particular interest in the context of 

Chapter 5 and Chapter 6. 

3.4.3 Radial growth not related to greenness 

Contrarily to my hypothesis, annual shrub growth was decoupled from year-to-year 

variations in NDVI. This finding is surprising given that previous studies have found 

that tundra greenness was strongly associated with shrub biomass (reviewed in 

Epstein et al. 2013; also see Raynolds et al. 2012; Berner et al. 2018) and sometimes 

correlates with variation in annual growth over large geographic areas (Forbes et al. 

2010; Berner et al. 2013). However, my results align with recent findings of variable, 

non-directional trends in shrub growth across southwest Yukon, where one of my 

study sites belongs, despite increases in greenness since the 1990’s (Brehaut and 

Danby 2018). In Northern Québec, NDVI values were correlated to radial growth 

during a period of rapid warming and shrub expansion (Ropars et al. 2015). However, 

it appears that once the shrub cover is well established, interannual variation in NDVI 

values become decoupled from radial growth (Ropars et al. 2015) and can saturate 

or be influenced by other vegetation features than shrub dominance (Lemay et al. 

2018). Because primary and secondary growth do not necessarily correlate strongly 

(Chapter 4) or respond in a similar way to global change drivers (Bret-Harte et al. 

2002; Campioli et al. 2012a-b), radial growth and investments in the woody structure 

may not be the most likely growth response to be picked up by satellite sensors, which 

are more sensitive to leaf cover and biomass (Pettorelli et al. 2005; Raynolds et al. 

2006).  
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3.4.4 Limitations and future research 

This study used remote sensing products to derive growing season length at the study 

sites. MODIS NDVI is only one of several data products available to quantify 

vegetation change. NDVI trends derived from different satellite platforms do not 

always correspond (Guay et al. 2014), and some uncertainty exists as to what pixel 

greenness represents across different temporal and spatial scales (Frost et al. 2014; 

Raynolds and Walker 2016). Ground-based observations would allow a more direct, 

mechanistic test of sensitivity of plant growth, but few long-term phenological records 

encompassing both leaf emergence and senescence exist in the tundra biome 

(Prevéy et al. 2017). A challenge is to establish long-term monitoring of multiple 

aspects of vegetation and environmental change, a goal that we have been working 

towards on the Qikiqtaruk monitoring programme (Myers-Smith et al. in press).  

Growing season length measured from above-ground vegetation (either through 

surveying or remote sensing) may not be an accurate representation of the growing 

conditions experienced at the root collar, where the shrubs in this study were sampled. 

Growth patterns can differ among plant parts due to physiology or climatic gradients 

(Buchwal et al. 2013; Ropars et al. 2017 (Appendix I); Shetti et al. 2018). The below-

ground growing season for roots can be 50% longer than above-ground (Blume-Werry 

et al 2016), and therefore shrub growth at the root collar (root-shoot interface) might 

be more closely coupled to the duration of root activity than to leaf senescence. Root 

dynamics and whole-plant phenology are poorly understood and deserve more 

attention, given that below-ground biomass makes up to 80% of total tundra biomass 

(Iversen et al. 2015).  

3.5 Conclusion 

Growing season length and temperature are often assumed to be two sides of the 

same coin when it comes to controlling tundra vegetation. This study demonstrates 

that sites across Northern Canada experience a wide range of growing season 

conditions, and that plants do not respond predictably and consistently to longer and 

warmer summers. Changes in radial growth may only track greenness during active 

shrub expansion phases, as this study found no strong association between peak 

NDVI and growth-ring time series. Tundra plant phenology is more sensitive to 

temperature at higher latitudes of the tundra biome (Prevéy et al. 2017; Post et al. 

2018), but whether this will translate to increased plant growth rates and strong 
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greening in the northern portion of the biome is uncertain. Spatial heterogeneity in 

temperature and precipitation patterns, genetic differentiation along latitudinal 

gradients, and local factors like soil moisture and ecological interactions may interact 

to drive contrasting vegetation trajectories across the tundra biome.  
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Chapter 4 Size and Sensitivity: Plant size does 
not explain the heterogeneity in the climate 
sensitivity of shrub growth across the tundra biome 

Abstract 

Shrub species are expanding rapidly across the tundra biome, with great 

heterogeneity in the climate sensitivity of shrub growth both within and among sites. 

Species with taller maximum canopy heights tend to have higher climate sensitivity, 

but whether this represent a mechanistic relationship at the individual level remains 

to be tested. Additionally, plant size is an important structural trait, and understanding 

how primary and secondary growth scale with one another across the biome would 

allow for more accurate projections of changes in above-ground plant productivity. I 

used dendroecological and plant size measurements from a circumpolar dataset (551 

shrubs, 16 sites) and from a smaller but homogeneously sampled dataset (306 

shrubs, four sites) to test the hypothesis that taller plants have stronger climate-growth 

relationships due to better competitive ability and lower vulnerability to ground-level 

microclimate. I also explored relationships between canopy growth dimensions 

(height and diameter) and between measures of primary (canopy size) and secondary 

(radial growth) growth in relation to latitude and distance from treeline. I hypothesised 

that allometric relationships are less reliable at higher latitudes of the biome where 

growth is suppressed by severe environmental conditions. I found that canopy 

dimensions did not explain the climate sensitivity of shrub growth. The association 

between canopy height and diameter became weaker at higher latitudes. Primary and 

secondary growth were not strongly associated, hinting at different controls and 

responses to environmental drivers. Plant size, while being an important structural 

trait of tundra ecosystems, appears to be a poor predictor of the climate sensitivity 

and future growth responses of tundra shrubs.  

Author Contributions 

I designed the analysis framework for this study with Isla Myers-Smith. One dataset 

was assembled by myself; the Shrub Hub dataset was compiled by Isla Myers-Smith 

(http://shrubhub.biology.ualberta.ca/) and the following people have contributed data 

to this study: Isla Myers-Smith, David Hik, Noémie Boulanger-Lapointe, Esther 

Lévesque, Martin Hallinger, Martin Wilmking, Andrew Trant, Laura Siegwart Collier, 

Luise Hermanutz, James D. M. Speed, Trevor Lantz, Rasmus H. Jørgensen, and 

http://shrubhub.biology.ualberta.ca/
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Daan Blok. These contributors have also provided helpful comments on earlier 

versions of this manuscript. I presented a previous version of this analysis at the Perth 

III: Mountains of our Future Earth in 2015. 
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4.1 Introduction 

4.1.1 Widespread but heterogeneous responses of tundra vegetation to 
climate change 

The tundra biome is undergoing large-scale, widespread increases in the abundance 

and growth of woody shrubs (Tape et al. 2006; Myers-Smith et al. 2011; Naito and 

Cairns 2011; Elmendorf et al. 2012; Martin et al. 2017). Shrub expansion is expected 

to have major implications for the structure and functioning of Arctic ecosystems due 

to complex interacting effects of shrub canopies on soil temperature regime and 

permafrost (Anisimov and Reneva 2006; Blok et al. 2010; Bonfils et al. 2012; Paradis 

et al. 2016), snow accumulation patterns (Sturm et al. 2001; Myers-Smith and Hik 

2013; Busseau et al. 2017), nutrient cycling (Hobbie 1996; Buckeridge and Grogan 

2010; McLaren et al. 2017; Christiansen et al. 2018), and wildlife (Rich et al. 2013; 

Boelman et al. 2015; Christie et al. 2015; Zamin et al. 2017), with potential knock-on 

effects on regional-to-global biogeochemical cycles (Shaver et al. 2000; Callaghan et 

al. 2004; Sturm et al. 2005b; Lafleur and Humphreys 2018) and climate (Chapin et al. 

2005; Sturm et al. 2005a; Pearson et al. 2013).  

Climate warming has been identified as a major circumpolar driver of shrub expansion 

(Walker et al. 2006; Myers-Smith et al. 2011; Elmendorf et al. 2012b), but the climate 

sensitivity of shrub growth is highly heterogeneous across the tundra biome (Myers-

Smith et al. 2015a). This variability suggests that local-scale controls like topography 

(Tape et al. 2012; Ropars and Boudreau 2012), soil moisture (Walker et al. 2006; 

Ackerman et al. 2017), and herbivory (Olofsson et al. 2009; Speed et al. 2013; 

Morrissette-Boileau et al. 2018), as well as species functional traits and growth 

strategies (Bret-Harte et al. 2002; Heskel et al. 2013), can modify the response of 

shrub communities to regional-scale climate change. At the site level, Myers-Smith et 

al. (2015a) found that between 5% to 97% of individuals displayed climate-sensitive 

growth. It is therefore critical to identify what are the other constraints acting upon 

plant growth if we are to better predict vegetation change under warming.  

4.1.2 Plant size as a determinant of climate sensitivity 

The biome-scale observation that shrub species with a taller potential maximum 

canopy height have more climate-sensitive growth (Myers-Smith et al. 2015a) might 

lead to the assumption that larger shrubs are more climate-sensitive than smaller 

ones at the population scale (Ackerman et al. 2018). This assumption has not been 

tested for individual shrubs. As a functional group, deciduous canopy-forming shrubs 
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have been shown to be generally very responsive to warming (Walker et al. 2006; 

Elmendorf et al. 2012b). However, Myers-Smith’s et al. (2015a) observations relating 

to canopy height were based on species-level trait data of potential maximum size, 

not site-level measurements, and therefore do not test the mechanistic, ecological 

role of plant size on individual climate sensitivity. If present, this influence could 

contribute to explain the high variation in individual growth responses to temperature 

among shrubs within a site.  

Plant size could affect the climate sensitivity of shrubs within a population for two main 

reasons. First, plant competition studies suggest that compared to smaller 

conspecifics, bigger plants have higher growth rates due to their competitive 

advantage when it comes to resource acquisition (Weiner and Damgaard 2006; 

Coomes and Allen 2007). Reciprocally, monoculture field experiments (Purves and 

Law 2002) and forestry studies (Simard and Sachs 2004) reported that the growth of 

target plants was negatively affected by the size of nearby competitors. Competition 

for resources at the local scale may thus diminish the ability of plants to respond to 

regional-scale drivers like warming (Ettinger et al. 2011). However, it is unclear 

whether those relationships hold in extreme environments like the tundra, where 

facilitative interactions may obscure the presence or outweigh the importance of 

competition (Dormann and Brooker 2002). Second, the size of a plant has implications 

regarding the way it interacts with its physical environment. The growth of smaller 

shrubs is more likely to be controlled by microtopographical features (snow depth, 

temperature at ground level, etc.) compared to taller shrubs (Buras and Wilmking, 

2014). Taller plants experience more heat exchange with the free atmosphere, and 

therefore their growth is more strongly coupled with air temperature (Körner 2012).  

4.1.3 Understanding relationships between growth dimensions  

The scaling of metabolic or functional plant traits according to plant size is of 

relevance to shrub expansion ecology, because of its implications for the structure 

and functioning of individuals to whole ecosystems (Enquist 2002). The development 

of allometric equations has regained interest as a way of predicting biomass in high-

latitude ecosystems using simple measurements (Berner et al. 2015; Ackerman et al. 

2018), and conversely, of validating remotely sensed biomass estimates (Chen et al. 

2009). However, most of these equations were developed for the low to mid-latitudes 

of the tundra biome, and site-specific scalings of growth dimensions (Au and Tardif 

2007; Berner et al. 2015) may not be representative of the biome as a whole, 
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especially at higher latitudes where the abiotic environment severely limits growth 

(Arsenault and Payette 1992). Moreover, relationships between primary and 

secondary growth have received surprisingly little attention. Secondary growth, i.e. 

the thickening of stems by accumulation of woody biomass, plays a major role in the 

carbon balance of the tundra, contributing one third to half of above-ground net 

primary production for some species (Shaver 1986). It is therefore important to 

understand the linkages and potential trade-offs between dimensions relating to 

primary and secondary growth, especially considering that experiments have 

highlighted differential responses to global change drivers (Bret-Harte et al. 2002; 

Campioli et al. 2012a).  

4.1.4 Objectives and hypotheses 

Tall deciduous shrubs are one of the plant functional groups changing most rapidly 

over time (Myers-Smith et al. 2011; Elmendorf et al. 2012a). If attaining taller canopy 

heights does enhance the ability of individuals to respond to variations in climate, 

there might be a positive feedback leading to an acceleration of shrub expansion with 

warming. It is therefore critical to quantify the role of plant size in explaining the high 

individual variation in climate sensitivity of shrub growth in the tundra. Predicting 

climate sensitivity of growth from plant size and understanding how aboveground 

primary and secondary growth dimensions scale with one another across the biome 

would allow for more accurate projections of changes in future above-ground biomass 

and carbon storage in tundra ecosystems. I tested the following hypotheses using 

both a large, global-scale dataset of shrub growth comprising 551 individuals from 16 

sites and belonging to 14 species around the circumpolar region, and a smaller but 

more highly replicated and homogeneously sampled dataset of four sites in Northern 

Canada: 

1. Larger shrubs have more climate-sensitive growth. If variation in plant size within a 

population translates to smaller individuals being more resource-limited from size-

asymmetric competition, and taller individuals being more climate-limited through a 

tighter canopy-air temperature coupling, then radial growth should be more closely 

associated with summer temperature in larger and taller shrubs within a site and 

genus.  

2. The relationship between canopy dimensions is not consistent across the biome, 

given that vertical growth is more subjected to abiotic constraints than lateral growth. 
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I predicted that there would be a saturating relationship between canopy height and 

diameter, and this relationship would become weaker with increasingly severe 

environmental conditions. 

3. Radial growth scales positively and predictably with canopy area across sites. I 

predicted that mean annual ring width and total stem width would be larger for older 

individuals with taller and/or wider canopies. 

4.2 Methods 

4.2.1 Study sites and species 

I used a large collaborative dataset assembled by the Shrub Hub network 

(http://shrubhub.biology.ualberta.ca/). The dataset contains radial growth time series 

and associated size measurements for over 1800 shrubs from 37 species at 25 sites 

across the biome (for more detail, see Myers-Smith et al. 2015a). I filtered the dataset 

to keep only those sites and shrubs which had associated individual canopy height 

and/or diameter measurements, and kept only the genus-by-site combinations that 

had more than eight individual shrubs. One site (Kluane) was subsetted down to two 

subsites to obtain a balanced dataset, because the sample size was initially tenfold 

the average sample size of other sites. This left 551 shrubs from 14 species (four 

genera) distributed across 16 sites (Figure 4-1; Table 4-1A).  

 

Figure 4-1 Location of the 18 study sites across the circumpolar region. The colour of the 
circles represents the genus sampled. The four sites from a different dataset are indicated with 
diamonds.   
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I repeated the analyses on a different dataset of 306 shrubs belonging to seven 

species at four sites (Table 4-1B) where all samples were collected in 2015 (Chapter 

2). Two sites (Kluane and Qikiqtaruk, Yukon Territory) overlapped with ShrubHub 

locations. At each of these four sites, all canopy-forming shrubs within study plots 

ranging from 5 x 5 m to 10 x 10 m were cut at the root collar. I also measured the 

canopy height, canopy width along two perpendicular diameters, and the diameter of 

the largest stem of each shrub. Woody sections were cut in thin sections (20 µm) with 

a sledge microtome and photographed under the microscope for further analysis 

(Chapter 2; Myers-Smith et al. 2015b). Growth rings were measured along two to four 

radii on each sample for the period 1990-2014, and radii were averaged for each 

individual. 

4.2.2 Climate sensitivity 

I define climate sensitivity as the strength (slope) of the linear regression between 

radial growth and June-July temperature for a given shrub individual (Myers-Smith et 

al. 2015a). Mean June-July temperature was chosen as a climate variable because 

growing season temperature has consistently been identified as the strongest climatic 

driver of plant growth in the Arctic (Johnstone and Henry 1997; Bär et al. 2008; Blok 

et al. 2011b; Myers-Smith et al. 2015; Ackerman et al. 2018; Weijers et al. 2018), and 

this variable encompasses peak growing season for all sites in the study (some plants 

having already senesced in August at high-latitude sites). Sensitivity to other 

correlated growing season variables such as July or June-July-August temperature 

was similar (Table S4-1). Ring-width series were constrained to 25 years for all 

individuals to facilitate comparisons among sites. Ring-width measurements were 

mean-centred and variance-scaled at the individual level. I used absolute slope 

values for the analyses as this study focuses on the magnitude, not the direction of 

climate-growth relationships. The majority of sites exhibited positive or non-directional 

sensitivity to summer temperature (Figure 4-2). Monthly climate data for each site 

was obtained from the CRU 3.24.01 gridded dataset.  

4.2.3 Effect of plant size on climate sensitivity 

To test the hypothesis that larger plants are more climate-sensitive throughout the 

tundra biome, I ran mixed-effects models using climate sensitivity (slopes of individual 

climate-growth relationships) as the response variable, and plant height or canopy 

diameter as explanatory variables. For the Shrub Hub analysis, I used the genus-by-

site combination as a random effect (Myers-Smith et al. 2015a) to account for the 
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hierarchical nature of the data. I allowed random slopes and random intercepts to 

account for taxonomic differences in potential magnitude and direction of the 

relationship. I ran the two models (canopy height vs diameter) separately because not 

all size variables were measured at all sites.  

I used a similar model structure to repeat the analysis with my four field sites. There 

was only one genus present at each site except at Salluit, where 10 Betula individuals 

were sampled in addition to many Salix shrubs. Given the low Betula sample size and 

the similar climate sensitivity of Betula and Salix shrubs at this site (Figure 4-2), I 

used site rather than genus-by-site combination as a random effect. The rest of the 

model was specified as described above. All analyses were conducted in R v. 3.3.2. 

Mixed effects models were fitted with the package lme4. 

4.2.4 Allometric relationships 

To explore the potential or deriving canopy height, an important structural trait, from 

canopy area, I explored relationships between canopy height and diameter for all sites 

where both measurements were available (seven ShrubHub sites and my four sites). 

I present linear equations for each genus-by-site combination with a sample size of at 

least 15 individual shrubs. To investigate resource allocation to primary and 

secondary growth dimensions, I modelled the width of the largest stem and mean ring 

width as a function of either canopy height (11 + 4 sites) or diameter (11 + 4 sites). I 

then tested whether the goodness of fit of the genus-by-site relationships could be 

explained as a function of latitude using linear regression.  

Globally, there is a decrease in plant size with latitude (Moles et al. 2009). However, 

within the tundra biome, latitude is not the best indicator of environmental sensitivity 

due to transitions between continental versus oceanic climate. Therefore, I measured 

the distance between each site and the Arctic treeline using the Circumpolar Arctic 

Coastline and Treeline Map (http://www.arcticatlas.org/maps/themes/cp/cpcoast) and 

modelled maximum plant height within a site as a nonlinear negative asymptotic 

function (nls function from “stats” package in R) of the distance to treeline.  

For each genus-by-site combination, I correlated all growth dimensions to the 

minimum age of individuals, as provided by data contributors from growth-ring 

counting on the sampled disks. This is a minimum age as most samples were taken 

at the base of the largest stem rather than at the root collar.  

http://www.arcticatlas.org/maps/themes/cp/cpcoast
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4.3 Results 

The climate sensitivity of shrub growth was heterogeneous both within and among 

sites (Figure 4-2). A more detailed study of the among-site variability has been 

published (Myers-Smith et al. 2015a), but the within-site heterogeneity in individual 

response with respect to plant size has not been quantified before. 

 

 

Figure 4-2 Most sites across the tundra biome exhibit low and variable, but generally positive 
sensitivity of growth to summer (June-July) temperature. Curves represent the density of 
climate-growth relationship slopes for each genus-by-site combination, obtained by fitting 
linear models between radial growth and temperature for each individual (sample size 
indicated on each panel). 
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4.3.1 Plant size is not a predictor of climate sensitivity 

Neither shrub height nor canopy diameter explained variation in the climate sensitivity 

of radial growth consistently across the tundra biome. Random slopes for the different 

genus-by-site combinations did not show any consistent pattern linked to canopy 

height, with only two out of 13 genus-by-site combinations not overlapping zero, and 

the overall model estimate very close to zero (Figure 4-3A, Table S4-2). Canopy 

diameter had an overall slightly negative but very low effect size, and as many positive 

as negative random slopes. 

 

 

Figure 4-3 There is no overall effect of canopy diameter (left panels) or height (right panels) 
on the climate sensitivity of radial growth to June-July temperature for shrubs across the tundra 
biome. Dots are random slope estimates for each genus-by-site combination (top panels) or 
for each site (bottom panels). Error bars represent a 95% confidence interval. The solid line 
and shaded area represent the overall model effect size (slope estimate and 95% confidence 
interval). The site Salluit (bottom row) contains a small number (n = 10) of Betula shrubs in 
addition to Salix spp.  
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A more detailed exploration of four sites with homogenously collected and highly 

replicated data supported the biome-wide finding that plant size alone cannot explain 

the strength of the relationship between radial shrub growth and summer temperature 

(Figure 4-3B). Effect sizes for both canopy height and diameter were 

undistinguishable from zero (Table S4-2).  

4.3.2 Relationships between canopy dimensions  

Associations between canopy dimensions were also heterogeneous across the 

biome. Canopy diameter explained as little as 2 % and as much as 66 % (median: 

28 %) of the variation in canopy height (Table 4-2). The strength of these relationships 

did not vary randomly: sites at the southern edge of the biome showed stronger 

relationships between canopy dimensions than shrubs at northernmost sites (Figure 

4-4A), with latitude explaining 38% of the variation in the goodness of fit of allometric 

equations (n = 11; F1,10 = 6.0; p = 0.034). Across sites, there was a general decrease 

(n = 14; lrc = -7.54; p < 0.001) in maximum canopy height with increasing distance 

beyond the Arctic treeline (Figure 4-4B). Variation in canopy dimensions was not 

strongly related to plant age (Figure 4-5).  

Table 4-2 Model fits for linear allometric equations of shrub height (H) as a function of canopy 
width (W), using only sites with > 15 observations. The sites marked (SAB) are the four sites 
sampled for the new dataset.  
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Figure 4-4 A) Allometric relationships between canopy dimensions (height and diameter) lose 
explanatory power at higher latitudes. The size of the dot indicates the slope of the equation. 
B) Higher constraints on plant size in more stressful sites, as shown by a decrease in maximum 
canopy height with increasing distance beyond the Arctic treeline. (NB: The point with the 
lower height at the farthest distance represents the northernmost extent of woody shrubs, 
which do not grow taller than 10 cm, and was added to constrain the relationship.) 

 

Figure 4-5 Canopy dimensions (A, B) were not strongly correlated to plant age, but older 
individuals tended to have larger stems (C) and narrower growth rings (D). Correlations are 
Pearson’s coefficients for correlations between growth dimensions and minimum stem age 
within a site and genus. Filled circles indicate statistically significant correlations (p < 0.05).  
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Table 4-3 Summary of relationships between size variables linked to primary (canopy height, 
canopy diameter) and secondary (mean ring width, stem diameter) growth. For each 
combination of variables, the median goodness of fit is presented (minimum and maximum in 
brackets), along with the proportion of genus-by-site combinations (n) that had a statistically 
significant relationship (p < 0.05).  

 

4.3.3 Primary-secondary growth relationships 

Size dimensions linked to primary growth, i.e. canopy height and diameter, were only 

weakly to moderately linked to stem dimensions (Table 4-3). Stem diameter was 

better predicted than mean ring width by canopy size (similarly by height or diameter). 

Mean ring width and stem diameter were correlated at some but not all sites (median 

Pearson coefficient: 0.56; min – max: 0.16 – 0.87). The explanatory power of these 

relationships did not vary with latitude (R2 < 0.03 and p > 0.50 for relationships 

between stem width and canopy height or diameter), but age was a good predictor of 

stem diameter at the majority of the sites (Figure 4-5).  

4.4 Discussion 

In this study, I demonstrate that the climate sensitivity of tundra shrubs cannot be 

predicted by individual plant size. Climate-growth relationships were highly 

heterogeneous both within and across sites, and canopy height and diameter were 

poor predictors of individual variation in climate sensitivity. I obtained the same results 

using both a highly-replicated, rigorously homogenous dataset focusing on a small 

number of sites and species, and a more heterogeneous but very large dataset 

covering most of the circumpolar region and comprising tall shrub species that are 

involved in ongoing, biome-wide vegetation shifts. I found stronger correlations 

between canopy dimensions (height and diameter) within the southern part of the 

biome, but these relationships did not hold at higher latitudes where environmental 

controls on canopy height become more severe. Canopy dimensions were only 

moderately associated with stem size and were more dependent on plant age than 

environmental conditions. I conclude that plant size, while being an important 

determinant of tundra plant community structure across broad geographic gradients, 
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has limited use in predicting growth responses to climate change and future 

vegetation changes in the Arctic. 

4.4.1 Plant size does not influence the climate sensitivity of growth 

Taller maximum canopy heights have been linked to higher climate sensitivity in 

cross-species studies (Myers-Smith et al 2015a). This observation may reflect a 

functional group response where tall deciduous shrubs are generally more responsive 

to climate change than dwarf shrubs, especially if warming is coupled with increased 

nutrient availability (Chapin et al. 1995; Wahren et al. 2005; Walker et al. 2006; 

Epstein et al. 2013; but see Dormann and Woodin 2002; Zamin et al. 2014). According 

to plant strategy theory, tall, deciduous shrubs are usually on the fast end of the 

nutrient cycling and leaf economics spectrum and can respond to improved conditions 

quickly, while (evergreen) dwarf shrubs usually exhibit more conservative growth 

strategies (Westoby et al. 2002).  

My findings across different intensities and extents of sampling indicate that the 

assumed relationship between shrub size and climate sensitivity at the individual level 

is not as strong as previously assumed (Ackerman et al. 2018). These findings were 

also consistent across taxa of varying life-history strategies: most of the individuals 

sampled belonged to Salix and Betula genera, but the dataset also comprised 

nitrogen-fixing Alnus and coniferous Juniperus shrubs. I thus could not verify my 

hypotheses that size-asymmetric competition or microtopographic constraints limited 

the climate sensitivity of tundra plants at the site or biome scale. 

The apparent unimportance of microtopographic effects on the climate sensitivity of 

smaller plants is in line with a consistent regional climatic signal detected in the dwarf 

shrub Empetrum hermaphroditum in Norway across contrasting environment types 

(Bär et al. 2008). Size-asymmetric competition is most apparent in plants competing 

for light (Weiner 1990; Newton and Joliffe 1998; Falster and Westoby 2003), but it is 

unclear whether competition for belowground resources is also size-asymmetric 

(Weiner 1990). Considering that up to 80-90 % of tundra plant biomass is found 

belowground (Iversen et al. 2015), tundra shrubs are more likely to be limited by 

nutrient availability (Chapin et al. 1989; Dormann and Woodin 2002; Hobbie et al. 

2002) rather than by light (Chapin et al. 1995). Therefore, it is possible that the 

competitive ability of tundra shrubs is not strongly dependent on size. The 

heterogeneity of sampling methods in the larger dataset may have prevented the 
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detection of competitive interactions, as some protocols selectively sampled dominant 

or isolated plants, and I did not have access to plot-level shrub density. Spatially 

explicit, unbiased sampling will be required to quantify the impact of competition on 

shrub growth and climate sensitivity (Chapter 6).  

4.4.2 Relationships of canopy dimensions across an environmental severity 
gradient 

In agreement with theory and empirical observations (Moles et al. 2009), there was a 

decrease in maximum plant height with increasing distance from the Arctic treeline. 

The finding of weaker associations between the height of a shrub and its canopy 

diameter at higher latitudes is in line with our understanding of constraints on growth 

in tundra environments, where height is limited by harsh winter conditions to 

approximately the height of the snowpack (Arsenault and Payette 1992). The stronger 

allometric relationships at lower latitudes may also indicate that the lateral spread of 

plants is limited by space and competition in more densely populated tundra 

communities, and shrubs grow mainly vertically to escape light competition (Walker 

et al. 2006). On the contrary, at high Arctic sites with sparse shrub cover, plants 

experience stronger constraints on canopy height but have more room to spread 

laterally (van der Wal and Stien 2014). Finally, local adaptation to varying conditions 

across a species range (Bjorkman et al. 2017) could mean that vertical growth rates 

of shrub canopies in response to warmer conditions will not increase greatly at higher 

latitude sites. 

4.4.3 Heterogeneity in the strength of shrub primary and secondary growth 
relationships 

My results indicate substantial heterogeneity in the relationships between size 

dimensions across sites. I found that overall, only ca. 20% of the variation in stem 

width was explained by shrub canopy size. This may be indicative of trade-offs in 

resource allocation: taller shrubs need to maintain their vertical structure (Shaver 

1986). As a result, they may be investing more in secondary growth than in the 

elongation of stems that influence canopy dimensions, weakening correlations 

between total plant size and stem diameter. Previous studies have nevertheless found 

strong links between plant height and woody biomass (Paradis et al. 2016) or basal 

area (Berner et al. 2015), but at boreal and sub-Arctic sites where conditions are not 

representative of the tundra biome as whole.  
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Whereas canopy height decreased predictably with environmental severity and 

became less correlated with canopy diameter, relationships between stem and 

canopy dimensions did not follow a biome-wide pattern. Site-level growth associations 

are possibly controlled by factors like nutrient status, soil moisture (Ackerman et al. 

2018), microtopography and aspect (Au and Tardif 2007). My findings and other shrub 

allometry studies highlight the need to identify the physiological and environmental 

factors underpinning relationships of plant growth dimensions and, in the meantime, 

warn against using equations developed for one site to predict growth at another (Au 

et Tardif 2007), especially from boreal to tundra systems (Berner et al. 2015).  

4.5 Conclusion 

Plant height and lateral extent are plastic traits that readily respond to warming, as 

demonstrated both through long-term monitoring (Elmendorf et al. 2012a; Myers-

Smith et al. in press) and experimental studies (Walker et al. 2006; Hudson and Henry 

2010; Elmendorf et al. 2012b). Canopy structure affects many key ecosystem 

functions in tundra ecosystems through interactions with snow cover, solar radiation, 

and community diversity (Sturm et al. 2001; Thompson et al. 2004; Wookey et al. 

2009; Bonfils et al. 2012; Bråthen and Lortie 2016). Therefore, understanding how 

growth dimensions will respond to global change drivers is key to predicting future 

changes in biomass and associated feedbacks. 

Shrubs are expected to get taller with climate warming, but this may not translate in a 

predictable way to an acceleration in shrub growth across the tundra biome. My 

results highlight the complexity in mechanistically linking plant size to secondary 

growth and climate sensitivity. If size alone cannot explain inter-individual variations 

in climate sensitivity, more work is needed to test possible causes of this 

heterogeneity. Neighbour removal experiments (Chapter 5) and spatial analyses 

(Chapter 6) could provide a test of the hypothesis that competition among rapidly 

expanding shrubs will eventually limit their growth responses to climate.  

A pattern of shorter canopy heights under more severe abiotic conditions means that 

allometric relationships became weaker for more northern tundra sites, precluding the 

use of allometric equations developed for boreal or sub-Arctic populations. The 

inconsistent scaling of growth dimensions complicates the improvement of remotely 

sensed estimates of biomass, which would benefit from including estimates of canopy 

height (Chen et a. 2009). Emerging technologies such as structure-from-motion 
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photogrammetry (Cunliffe et al. 2016) may help to improve biomass estimates by 

providing finer-scale, 3D information on canopy structures.  

In conclusion, plant size does not appear to be a predictor of future vegetation 

trajectories in the tundra biome. However, it remains crucial to understand the 

environmental constraints and internal resource allocation strategies acting upon 

various growth dimensions, as well as their possible interactions and relative 

importance across the biome, as they will ultimately drive changes in canopy 

structure, with feedback on ecological processes. 
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Chapter 5 A tale of two biomes: different 
limitations to growth in boreal versus alpine shrubs  

Abstract 

Northern environments are warming rapidly, driving widespread changes in 

vegetation communities. In the boreal forest and alpine tundra of the Kluane region in 

southwest Yukon, shrub species are increasing in abundance. Shrubs tend to 

displace smaller and less competitive species, but the magnitude of shrub-shrub or 

tree-shrub interactions is not very well quantified. Competition between canopy-

forming shrubs in the tundra, and with trees in boreal forests, could potentially limit 

the growth and the climate sensitivity of shrubs, thereby slowing their expansion. I 

compared radial growth rates and the sensitivity of shrub growth to summer 

temperature between 40 shrubs from boreal forest plots and 101 shrubs from alpine 

plots. I hypothesised that competition from trees would reduce the climate sensitivity 

of shrub growth in the boreal forest compared to alpine tundra shrubs. I also took 

advantage of a past canopy removal experiment in the alpine tundra, predicting that 

shrubs that had experienced a decrease in surrounding aboveground shrub biomass 

would be released from competition and have wider annual growth rings post-

removal. I found that shrubs in the boreal forest had growth rings nearly twice as wide 

as shrubs in the alpine tundra, but also exhibited much lower climate sensitivity (by 

ca. 75%). Shrubs around the canopy removal plots had the same growth rates as 

shrubs in undisturbed dense patches. My findings indicate that competition among 

shrubs in the tundra may not be a strong control on growth compared to climate. On 

the contrary, the growth of shrubs in boreal forests may not be tracking variations in 

temperature because of competitive effects of trees. Future shrub expansion could 

therefore occur faster in alpine environments.  

Author contributions 

I designed the study with input from Isla Myers-Smith. The canopy removal 

experiment was initially set up by Isla Myers-Smith and David Hik (Myers-Smith and 

Hik 2013). I collected data at the alpine sites. I am thankful to Meagan Grabowski for 

collecting and sharing dendroecological data on boreal shrubs. I performed all 

statistical analyses.  
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5.1 Introduction 

5.1.1 Intensification of plant-plant interactions in northern ecosystems 

Recent warming in northern ecosystems has triggered an increase in plant 

productivity through direct and indirect impacts on growth rates and regeneration 

success (Chapin 1983; De Long et al. 2015; Chapter 1). On the ground, this translates 

to an increase in most plant functional types (Myers-Smith et al. 2011; Elmendorf et 

al. 2012a; McManus et al. 2012), and to some range expansion of tree (Kullman 2001; 

Harsch et al. 2009; Dufour Tremblay et al. 2012a; Tremblay et al. 2012; Danby and 

Hik 2007a) and shrub (Hallinger et al. 2010; Dial et al. 2016; Myers-Smith and Hik 

2017) species towards higher latitudes or elevations. There is however strong 

heterogeneity in the climate sensitivity of growth and the speed of climate responses 

across sites and species (Tape et al. 2012; Myers-Smith et al. 2015a). Higher 

vegetation density and woody encroachment in the tundra biome are likely to result 

in more frequent and intense plant-plant interactions like competition (Mekonnen et 

al. 2018), which could locally constrain the expected climate-driven expansion of 

shrubs in northern ecosystems. Measuring climate sensitivity across biotic gradients 

and testing the effects of competition with canopy removal experiments can allow us 

to quantify the influence of the competitive environment on shrub growth.  

Tall deciduous shrubs are particularly successful at increasing their canopy height 

(Walker et al. 2006; Hobbie et al. 2017), infilling their populations through growth and 

recruitment (Tape et al. 2006; Myers-Smith et al. 2011; Tremblay et al. 2012; Formica 

et al. 2014), and, occasionally, expanding their ranges (Hallinger et al. 2010; Dial et 

al. 2016; Myers-Smith and Hik 2017). This responsiveness of tall, deciduous shrubs 

to climate change (Myers-Smith et al. 2015) may arise in part from plasticity in growth 

(Bret-Harte et al. 2002, Campioli et al. 2012a-b) and fast nutrient uptake strategies 

(Chapin et al. 1995) Combined with their tall stature, these traits make shrubs fierce 

competitors that tend to displace less competitive organisms like lichens and mosses 

(Elmendorf et al. 2012b; Fraser et al. 2014). Shrublands are expected to increase by 

as much as 52% by 2100 (Pearson et al. 2013). While the increasing dominance of 

shrubs at the expense of other functional groups is relatively well documented, there 

is a comparatively poor understanding of whether competition among shrubs, or 

between shrubs and trees at the forest-tundra ecotone (but see Boudreau and 

Villeneuve-Simard 2012), is a current limiting factor that could interfere with the 

expected climate-driven expansion of shrub species. 
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5.1.2 Tree and shrub expansion in southwest Yukon 

The Kluane region in southwest Yukon (Chapter 2 Figure 2-3) lies within the boreal 

part of the Yukon Territory. The mountainous terrain results in sharp bioclimatic 

gradients with vegetation transitioning from boreal forests dominated by white spruce, 

Picea glauca Moench (Voss), to alpine tundra summits, with a transitional zone of tall 

shrub tundra gradually decreasing in density and canopy height. Upslope advances 

of treelines (Danby and Hik 2007a; Conway and Danby 2014) and shrublines (Danby 

and Hik 2007b; Myers-Smith and Hik 2017) have occurred in the region over the last 

century. These range shits are consistent with warming trends for southwest Yukon 

(Danby et al. 2011; Myers-Smith et al. 2017), but can be controlled by topographic 

features like aspect, slope and presence of permafrost (Danby and Hik 2007b). 

Current projections of vegetation trajectories assume high and uniform climate 

sensitivity of shrub species across the tundra biome (Pearson et al. 2013). This may 

result in an overestimation of shrub expansion if competitive interactions buffer 

climate-driven increases in growth (Dormann et al. 2004). The performance of shrub 

species may become density-dependent under increased competitive interactions 

from expanding trees and shrubs, with individuals surrounded by more neighbours 

competing for limited resources including light, nutrients and water. This plant-plant 

competition might be especially strong at the southern, more productive end of the 

biome (Bertness and Callaway 1994; Maestre et al. 2009; Pellissier et al. 2010). 

These potential interactions are largely unquantified but are critical for predicting the 

future extent and rates of shrub expansion across the tundra biome. 

5.1.3 Objectives and hypotheses 

To compare the regional climate sensitivity of shrubs across two biomes, I used 

dendroecological data from willow species (Salix spp.) coming from two boreal forest 

locations (Grabowski 2015) and two alpine shrub tundra sites in the Kluane region 

(Chapter 2). I hypothesised that the climate sensitivity of shrubs at the boreal site 

would be lower than at the alpine site, in accordance with the stress-gradient 

hypothesis. The stress-gradient hypothesis states that interactions between plants 

shift from negative to positive along a gradient of increasing environmental severity, 

so that the growth of plants is thought to be mainly temperature-limited in harsh 

environments, and competition-limited in productive environments (Bertness and 

Callaway 1994; Brooker and Callaghan 1998; Maestre et al. 2009). 
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To quantify competition among canopy-forming deciduous shrubs, I took advantage 

of a canopy removal experiment carried out in 2007-2009 in the alpine tundra of the 

Ruby Range mountains (Myers-Smith and Hik 2013). I hypothesised that annual 

radial growth would have increased in the post-removal period for shrubs on the 

margin of the removal plots, having experienced a release from competition compared 

to shrubs in undisturbed patches.  

 

5.2 Methods 

5.2.1 Study sites  

The boreal forest and alpine tundra sites were located within the Kluane region in 

southwest Yukon, Canada (Figure 5-1). The boreal sites consisted of forest 

dominated by white spruce (Picea glauca), with a canopy cover of ca. 45-60% 

(Grabowski 2015). Grey willow (Salix glauca), dwarf birch (Betula glandulosa) and 

soapberry (Sheperdia canadensis) are the main understory shrub species. The 

growth of the willow shrubs in this dataset was compared to the growth of shrubs that 

I sampled from alpine plots in the Ruby Range mountains and on the Kluane Plateau 

(see Chapter 2).  

The canopy removal experiment was conducted in the Ruby Range mountains 

(61.22°N, 138.28°W; Figure 5-1 Pika). The environment is an alpine tall shrub tundra 

dominated by the willows Salix richardsonii Hook., Salix pulchra Cham., and Salix 

glauca L. Hook. The ground layer is composed of dwarf shrubs Dryas octopetala L. 

and Salix reticulata L., and of various graminoids, forbs, mosses and lichens (Myers-

Smith and Hik, 2013). The tall shrubline lies at ca. 1600-1700 meters of elevation in 

the region (Myers-Smith 2011). 

5.2.2 Experimental design  

In 2007, six pairs of circular plots (six meters in diameter) were established at the 

study site to investigate the effects of shrub canopies on snow cover (Myers-Smith 

and Hik, 2013). Plots were established in shrub patches of the dominant species of 

willows (Myers-Smith and Hik, 2013). One plot in each pair had all aboveground 

vegetation clipped to the ground, and this treatment was repeated in 2008 and 2009 

to eliminate regrowth (Myers-Smith and Hik, 2013). The other plot in the pair was used 

as a control and left undisturbed.  
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Figure 5-1 Kluane region within southwest Yukon (left) and location of the two alpine (pink) 
and boreal (yellow) sampling plots within the Kluane region (right). The canopy removal 
experiment was set up at Pika.   

 

I revisited the plots in 2015. In a 1.5-metre margin around the experimental plots, I 

collected the main stem of up to ten willow shrubs per plot, and an equal number in 

the paired control plot. Because one of the control plots had very little shrub cover, 

two sets of plots were pooled together for analysis. As these plots were less than 

50 m apart, I do not expect markedly different growth between plots. Stems were cut 

at the base in sections of 3-5 cm and kept dry until processing.  

5.2.3 Dendroecological processing  

For the alpine sites (including the canopy removal experiment), I cut thin sections (ca. 

20 µm) from the stem samples using a sledge microtome, following standard 

dendrochronological procedures for shrub species (Myers-Smith et al., 2015b; 

Chapter 2). The thin sections were photographed under a microscope, and the growth 

rings were measured using the ObjectJ plug-in for ImageJ software as described in 

Chapter 2. For the canopy removal study, I restricted the measurements to the period 

1999-2014 to have pre- and post-removal periods of equal length, ensuring a 

balanced design. For the other alpine plots, ring width was measured for the period 

1990-2014. 

Shrubs at the boreal sites were sampled by Meagan Grabowski in 2014 in two 1km2-

plots, Silver and Sulphur. Within each plot, Salix glauca individuals were selected 
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randomly but were located at least 30 m apart (Silver: 16 shrubs, Sulphur: 24 shrubs). 

The largest stem was sampled and rings were counted and measured following the 

same procedures (see Grabowski 2015 for more details).  

5.2.4 Statistical analyses  

Climate sensitivity analysis 

For the comparison between alpine and boreal shrubs, individual growth series were 

restricted to a common period (1990-2013). Climate sensitivity was calculated as the 

slope of the linear regression between ring width and summer (June-July-August) 

temperature for each individual shrub. Climate data was extracted from the CRU 

gridded dataset (v. 3.24.01) for the Kluane Plateau area and standardised (mean-

centred and scaled) to retain only the interannual variability in climate rather than the 

actual values. Because temperature patterns are strongly autocorrelated over large 

spatial areas, these data are representative of the year-to-year broad fluctuations 

experienced by shrubs at all sites.    

Canopy removal experiment 

I compared mean annual growth for the pre- (1999-2006) and post- (2007-2014) 

removal period, in control and experimental plots. Because of the hierarchical 

sampling design (shrubs within plots within blocks), I used a linear mixed model with 

this nested random effect structure. I also added year as a crossed random effect to 

account for the fact that all individuals are experiencing year-to-year variations in the 

environment (Harrison et al. 2018). The fixed effects were treatment (control or 

removal) and period (pre- or post- removal), and I allowed an interaction between the 

two as I expected a change in growth rates in the post-removal period for the 

experimental, but not for the control treatment. All statistical analyses were carried 

out in R (v. 3.3.2) with the package lme4 for mixed model analyses.  

5.3 Results 

5.3.1 Climate sensitivity of shrub growth at boreal versus alpine sites 

Willow shrubs from the alpine sites (control shrubs from the canopy removal 

experiment and other plots in the Pika Valley and Kluane Plateau) had higher 

temperature sensitivity of growth compared to boreal willows (Figure 5-2). However, 

boreal shrubs had growth rings on average twice as large as alpine shrubs (Figure 

5-2). Statistical information is presented in Table S5-1 (Appendix IV).  
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Figure 5-2 Alpine willows have higher climate sensitivity (top left) but narrower growth rings 
bottom left) than their boreal counterparts (right-hand panels). Solid vertical lines indicate the 
median of observations; dotted lines in the top row represent a complete lack of climate 
sensitivity.  Sample size: Pika = 53; Plateau = 48; Silver = 16; Sulphur = 24. 

 

5.3.2 Canopy removal effects on growth 

In Pika Valley, radial growth varied inter-annually, but the shrubs in the experimental 

plots did not show any increases in growth after the removal of competitors (Figure 

5-3). Growth rates did not significantly differ between treatment and control shrubs, 

neither before nor after the onset of the experiment (Table 2-1).  

 

Table 5-1 Radial growth of tundra willows did not vary between treatments nor over time. The 
fixed effects did not explain any of the variance in growth (marginal R2 = 0.01), while the whole 
model (fixed and random effects) explained 63% of the variance (conditional R2), with most of 
the variance at the individual level. 
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Figure 5-3 Radial growth did not increase after the removal treatment (blue chronology) and 
growth was not different from control plots (yellow chronology). The shaded area indicates the 
duration of the removal experiment. 

 

5.4 Discussion 

In this study, I found that willow shrubs in a boreal forest of southwest Yukon had 

higher absolute growth rates but lower climate sensitivity than willows growing above 

the treeline in the alpine tundra. I also demonstrated that a manipulated decrease in 

shrub density, and therefore a potential reduction in competition intensity, did not 

affect rates of radial growth in tundra shrubs. My results suggest that above-ground 

competition is not a strong limitation to shrub growth at this alpine tundra location, and 

that the climate-driven expansion of tall shrub species could be expected to continue, 

with tundra shrubs reaching higher densities in tundra locations (Myers-Smith et al. 

2017). However, my results also suggest that shrub growth is less strongly controlled 

by climate under tree canopies in the boreal forest, and therefore the observed shrub 

expansion at lower elevations (Grabowski 2015) may be limited by competition. 

5.4.1  Low climate sensitivity of shrub growth in boreal forests 

Tall shrubs are responsive to increased summer temperatures, with evidence coming 

from warming experiments (Chapin et al. 1995; Henry and Molau 1997; Elmendorf et 

al. 2012b), long-term or repeat monitoring (Callaghan et al. 2011; Elmendorf et al. 

2012a; Hobbie et al. 2017), and dendroecology (Blok et al. 2011b; Myers-Smith et al. 

2015a; Ropars et al. 2015). As seen is this thesis (Chapter 3, Chapter 4) and 
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elsewhere (Myers-Smith et al. 2015a), the strength of this response is spatially 

heterogeneous across northern regions and may depend on individual resource 

allocation (Ropars et al. 2017; Appendix I) and genetic differences (Bjorkman et al. 

2017), as well as on local limiting ecological factors like herbivory (Olofsson et al. 

2009; Speed et al. 2013; Christie et al. 2015), topography (Danby et al. 2007; Ropars 

and Boudreau 2012; Tape et al. 2012), soil moisture (Myers-Smith et al. 2015a; 

Ackerman et al. 2017), and competition (Boudreau and Villeneuve-Simard 2012). 

In a boreal forest environment, shrubs are part of the understory and therefore 

experience reduced light availability because of interception from tree canopies. I 

found very weak climate sensitivity in boreal compared to alpine willows, which 

supports the idea that tree competition may restrict shrub expansion in the boreal 

biome (Grabowski 2015). While my data did not allow to test specifically for 

competitive effects of trees on shrubs, the growth of Salix glauca in the boreal forest 

was significantly but not strongly associated to canopy openness (p = 0.01, R2 = 0.03; 

see Grabowski 2015). Above-ground competition may therefore not be very intense 

in this system, but can still act as a limiting factor to shrub growth. For instance, in a 

canopy removal experiment at the forest-tundra ecotone in Northern Québec, the 

growth of understory shrubs increased and became more strongly correlated to 

temperature after tree clearing (Boudreau and Villeneuve-Simard 2012). Such a 

removal experiment at the boreal site in Kluane would allow for better comparison 

with the alpine site.  

Alternative and non-mutually exclusive explanations for lower climate sensitivity in the 

forest environment include potential moisture limitations (Berner et al. 2013) and 

different microclimatic conditions not detected by gridded temperature datasets. For 

instance, forests typically experience lower day-night variations in temperature than 

open areas (Chen et al. 1999). Correlations with local weather station data would 

allow to test for growth responses to micro-, rather than macro-climate.  

5.4.2 No evidence of competition among shrubs 

The removal of above-ground shrub biomass over a period of three years did not 

seem to enhance the growth of tundra shrubs around the cleared patches. Alpine 

shrubs in this study had strong temperature sensitivity, suggesting that climate is a 

more important control of growth than competition in this shrub tundra ecosystem, 

and likely the key driver of shrub expansion and range shifts in the area (Myers-Smith 
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et al. 2017). At current densities, shrub growth may not be strongly affected by 

competition with conspecifics, or at least, its impact is masked by the stronger 

limitation of temperature. Given the many constraints that may be acting at once upon 

plant growth, alternative growth limitations should not be dismissed (Rollinson et al. 

2016), especially as they may become important once the chief limitation is lifted. For 

instance, shrub growth may become increasingly controlled by soil moisture under 

warmer conditions (Berner et al. 2013; Ackerman et al. 2017). Similarly, an increasing 

demand on resources from climate-driven increases in vegetation could mean that 

competition will play a more important role in structuring tundra ecosystems in the 

future. 

It is also possible that the removal experiment, which was initially designed to 

investigate snow cover dynamics rather than competition, did not have the expected 

effect on the target individuals. The removal of above-ground vegetation would have 

increased light availability, but this is probably not the most strongly limiting factor for 

the dominant canopy-forming plants in a high-latitude system with long daylight hours 

(Chapin et al. 1989). In tundra ecosystems, up to 80% of the plant biomass is stored 

below ground (Iversen et al. 2015), and therefore it is likely that the majority of plant-

plant interactions occur where they are most difficult to detect. When we revisited the 

plots, six years after the removal experiment was discontinued, we had difficulty 

locating the removal plots because so much vegetation had resprouted from the 

clipped stems (Angers-Blondin and Myers-Smith, personal obs.). This means that the 

belowground parts were still probably highly active during the removal experiment, 

and therefore the intensity of competition might not have been decreased sufficiently 

to observe a measurable effect on target shrubs. 

Removal experiments in the tundra often reveal mixed effects on target plants that 

depend on species associations and interacting warming and fertilisation treatments 

(Shevtsova et al. 1997; Gerdol et al. 2000; Bret-Harte et al. 2004; Rixen and Mulder 

2009). These contrasting responses may arise from the environmental disturbance 

these experiments cause (Dormann and Brooker 2002) and the elimination of 

concurrent facilitative interactions in addition to the alleviation of competition 

(Dormann et al. 2004). Spatial point-pattern and nearest neighbour analyses are other 

ways to explore competitive interactions without disrupting the study system, although 

they offer correlative rather than mechanistic evidence (Dullinger et al. 2007; Pellissier 

et al. 2010; Kunstler et al. 2011; Lara-Romero et al. 2016). Relating measures of 
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shrub growth and performance explicitly to the competitive environment of tundra 

shrubs (Chapter 6) would be a complementary way to test for the influence of 

competition in driving community organisation and current and future vegetation 

responses to climate change. 

5.5 Conclusion 

My findings indicate that shrubs in the alpine tundra of the Kluane region are more 

climate- than competition-limited, leading to lower annual growth rates but higher 

climate sensitivity than shrubs growing in the boreal forest. In the boreal forest, abiotic 

conditions are not as severe, but competition with trees and potential microclimatic 

effects of the forest cover may lead to the observed decoupling of growth and summer 

temperature. It could therefore be predicted that shrub expansion will occur at a faster 

rate in shrub tundra environments where current shrub densities do not seem to exert 

strong competitive effects on the growth of canopy-forming shrubs. Despite the 

benefits of an experimental approach allowing to mechanistically test for competition 

among shrubs, this study only considered aboveground competition, which may not 

provide a full picture considering that biotic interactions are more likely to be 

happening below ground where most of tundra biomass is found. A spatially explicit 

approach is required to quantify the effects of crowding on whole-plant growth and to 

understand the potential of plant-plant competition to restrict the climate responses of 

shrub growth (Chapter 6). 
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Chapter 6 Midnight sun duels: Competition 
structures tundra shrub communities but does not 
reduce the climate sensitivity of growth 

Abstract 

Competition is a strong driver of plant community dynamics, but is thought to be less 

important at higher latitudes where severe abiotic conditions control plant growth. 

With increasing shrub densities in the tundra biome, it is possible that local resource 

limitations arising from competition may limit the expected climate-driven expansion 

of shrub species. The impact of shrub competition on the climate sensitivity of shrub 

growth has not yet been quantified in the tundra biome. Here, I used a spatially explicit 

approach to directly link the competitive environment of a shrub to its growth and 

ability to respond to climate change. Using four sites of contrasting climate regimes 

and productivity across Northern Canada, I found that in general, competition did not 

have consistently directional effects on shrub growth and climate sensitivity. However, 

increasingly positive size-distance relationships between pairs of neighbours at more 

productive sites suggested that competition may control some aspects of shrub 

community dynamics, especially at warmer, more vegetated sites. The varying 

direction and magnitude of plant-plant interactions across tundra sites could lead to 

contrasting future vegetation trajectories under warming.  

Author contributions 

I designed the study with input from Isla Myers-Smith and Stéphane Boudreau. I 

collected the data and carried out the statistical analyses with help from Isla Myers-

Smith. I am thankful to Santeri Lehtonen, Joe Boyle, Haydn Thomas, Jakob Assmann, 

Clara Morrissette-Boileau, Marc-André Lemay and Marianne Caouette for assistance 

in the field.  
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6.1 Introduction 

6.1.1 Overview 

The controls and limits to shrub expansion in tundra ecosystems need to be 

understood if we want to predict vegetation change and resulting feedbacks to the 

global climate. Plant competition is generally thought to be relatively unimportant in 

shaping community dynamics in northern environments, but the tundra biome 

comprises a strong gradient of plant productivity, and competitive interactions have 

yet to be measured across this gradient. Current dynamic vegetation models do not 

explicitly account for plant-plant interactions; however, if competition among rapidly 

increasing shrubs reduces their ability to respond to future warming, models might 

overestimate the extent and speed of shrub expansion.  Spatially explicit analyses of 

climate sensitivity taking into account plant density may help to test for competition-

driven buffering effects to shrub expansion.  

6.1.2 Intensity versus importance of competition: some definitions 

Competition is a major driver of plant community assembly and population dynamics, 

and can act as a limitation to growth, reproduction and survival of individual plants. 

Quantifying the magnitude of these effects and the degree to which they impact 

ecosystem processes and structure is a keystone of ecological theory (Whittaker 

1965; Grime 1977; Tilman 1987; Silvertown 2004). However, there are many ways to 

measure competition, leading to substantial debate and lack of clarity in the literature 

when the definitions of competition intensity versus relative importance are not 

defined rigorously (Grace 1995; Brooker et al. 2005). Before discussing competition 

in the tundra, I therefore define the terms used in this study.  

In this chapter, I follow the terminology of Welden and Slauson (1986), where the 

intensity of competition is the absolute decrease in growth (or survival, or other 

aspects of plant performance) experienced by a plant as a direct result of competition 

from another plant. The importance of competition is the relative impact it has on 

individual performance compared to the impact of other environmental stressors 

(Welden and Slauson 1986). These two measures are not necessarily correlated 

(Welden and Slauson 1986), so that plants could experience either a strong (high 

intensity) or a weak (low intensity) absolute decrease in growth in the presence of a 

competitor, and the presence of this competitor could either be the main factor 
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reducing growth in that plant (high importance), or one of many other factors that 

reduce growth (low importance). 

6.1.3 How much competition in the tundra? The stress-gradient hypothesis 

The importance and intensity of plant-plant competition vary across bioclimatic 

gradients: it is thought to be strongest in highly productive environments, but weaker 

in low-productivity ecosystems with harsh abiotic conditions, like the tundra (Campbell 

and Grime 1992; Maestre et al. 2009; but see Theodose and Bowman 1997; Pellissier 

et al. 2010). This is formalised by the stress-gradient hypothesis, which states that 

along a gradient of increasingly environmental severity, positive interactions 

(facilitation) become increasingly common while negative interactions like competition 

become less frequent (Bertness and Callaway 1994; Maestre et al. 2009). The stress-

gradient hypothesis has received some support over regional gradients in arctic-

alpine regions where established plants create a more favourable microclimate for 

growth (Choler et al. 2001) or provide physical protection that facilitate recruitment 

(Batllori et al. 2009).  

However, the prevalence of positive interactions does not mean that competition is 

absent from harsh environments. In fact, several studies have detected facilitative and 

competitive effects acting together in boreal, Arctic and alpine systems (Dormann and 

Brooker 2002; Klanderud and Totland 2005, Montgomery et al. 2010); a common 

example is when a plant facilitates the establishment of another but reduces its growth 

subsequently (Grau et al. 2012; Cranston and Hermanutz 2013). It has been 

suggested that for plants living in stressful environments with limited resources, even 

a slight pull on these resources by a competitor could have an intense effect on plant 

performance (Dormann et al. 2004). 

Furthermore, important gradients of productivity occur in tundra ecosystems: from 

barren polar semi-deserts to the dense, almost continuous tall shrub tundra at the 

southern edge of the biome, there is a hundred-fold increase in total phytomass 

(Raynolds et al. 2012). It is therefore possible that tundra vegetation is controlled to 

some degree by competition (Chapin et al. 1989; Pelissier et al. 2010), especially at 

the low- to mid-Arctic latitudes where tall shrubs are dominant and expanding rapidly 

(Elmendorf et al. 2012a; Myers-Smith et al. 2015a).  
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6.1.4 Competition as a regulator of shrub expansion?  

Canopy-forming deciduous shrubs can be fast-growing, opportunistic species when 

the resources are available, which explains why some of these species are increasing 

the most rapidly in tundra ecosystems (Bret-Harte et al. 2002; Walker et al. 2006; 

Myers-Smith et al. 2011; Elmendorf et al. 2012a). As shrub expansion continues, 

decreased light availability from shading and an increased belowground demand for 

nutrients and water could exacerbate competitive interactions and eventually limit the 

ability of shrubs to respond to improved climatic conditions. Trees growing in closed-

canopy forests were shown to be less sensitive to climate than trees growing at the 

treeline (Ettinger et al. 2011); however, it is unknown whether similar patterns can 

arise from shrub-shrub competitive interactions in the tundra.   

Syntheses of plot-based changes (Elmendorf et al., 2012a) and of dendroecological 

data (Myers-Smith et al. 2015) suggest that shrub species become more climate-

sensitive towards their northern or upslope range limit. This could be indicative of a 

shift from more important competition at lower latitudes and elevations towards higher 

importance of abiotic controls at colder sites, in accordance with the stress-gradient 

hypothesis (Bertness and Callaway 1994, Maestre et al. 2009). However, few studies 

have quantified the link between competitive environment and performance at the 

individual level in northern ecosystems (Doležal et al. 2006; Kunstler et al. 2011; 

Wang et al. 2016), and none in the tundra for rapidly expanding shrub species.  

6.1.5 Testing for competition 

Plant-plant interactions can be quantified using experiments such as neighbour 

removal (Chapter 5; Campbell et al. 1991; Shevtsova et al. 1997; Bret-Harte et al. 

2004; Rixen and Mulder 2009). They have the benefit of testing mechanistically for 

competition, although in tundra systems may also have unexpected effects on other 

biotic interactions and environmental conditions (Dormann and Brooker 2002). 

Alternatively, spatial analyses (Goulard et al. 1995; Perry et al. 2006) can be used to 

infer interactions between plants and their influence on performance (Kunstler et al. 

2011; Wang et al. 2016). For instance, density-dependent growth, resource 

acquisition and mortality within a population should result in a clear relationship 

between the spacing and the combined size of two neighbours (Pielou 1962; Briones 

et al. 1996). Possibly because of the assumption that competition is not an important 

control of plant growth at high latitudes with low plant densities and severe abiotic 

conditions (Grime 1977; Bertness and Callaway 1994), spatially explicit analyses are 
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rare in northern ecosystems (but see Doležal et al. 2006; Boudreau et al. 2010). 

Quantifying the degree to which competition may impact future shrub community 

dynamics in a warming and greening Arctic could be a critical step towards 

constraining Earth-system models to predict vegetation change more realistically 

(Miller and Smith 2012; Pearson et al. 2013).  

6.1.6 Research questions and hypotheses 

In this chapter, I examine the growth and the climate sensitivity of tundra shrubs in a 

spatially explicit context and across a range of sites of contrasting environmental 

severity to quantify the intensity and importance of competition among tall deciduous 

shrubs. My research questions were: Does competition affect the distribution, growth, 

and climate sensitivity of growth in tundra shrubs? And does the magnitude of 

competitive effects vary predictably across sites along a plant productivity gradient? I 

hypothesised that: 

1. Competition between tundra shrubs impacts their overall growth and 

performance. I predicted that pairs of shrubs that are closer together would have 

a smaller combined canopy area than two neighbours that are located further 

apart.  

2. Competitive interactions with neighbours reduce both the absolute growth and 

the climate sensitivity of growth. I predicted that shrubs with closer neighbours 

or a denser shrub cover within their neighbourhood would show lower growth 

rates (narrower growth rings) and weaker ring-width correlations to summer 

temperature compared to shrubs that are more isolated.  

3. The intensity and importance of competition increase along a productivity 

gradient according to the stress-gradient hypothesis. I predicted that the effect 

size (a measure of intensity) and goodness of fit (a measure of importance) of 

size-distance relationships and of crowding-radial growth relationships would 

be stronger in plots with denser shrub cover.  

6.2 Methods 

6.2.1 Study sites and species 

Tall deciduous shrub species were mapped and sampled in five to six square plots 

across four sites in Northern Canada (Chapter 2 Figure 2-3). Mapped representations 
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of the plots are presented in Appendix V (Figure S6-1). The spatial analysis uses all 

the shrubs within the plots (n = 755). Because not all wood samples were measured, 

the dendroecological analysis is restricted to 339 shrubs, but competition indices 

described below were still computed with the full spatial dataset (i.e. a shrub whose 

rings were not measured still counts as a neighbour for another measured shrub), so 

that the full competitive environment is represented for any given shrub.  

6.2.2 Size-distance relationships 

Within each plot, I calculated pairwise distances between all shrubs and retained the 

nearest neighbour (shortest distance) for each shrub. I computed their combined 

canopy area as the sum of two ellipses calculated from two perpendicular diameters, 

and regressed this total size against the distance between them. I used a linear mixed-

effects model with size as the response variable, distance as the fixed effect, and plot 

nested within site to account for the hierarchical sampling design. I allowed random 

slopes and intercepts at the plot level given the heterogeneity in the spatial structure 

and shrub cover across plots (Figure S6-1).  

6.2.3 Indices of competition 

The competitive environment of plants can be quantified through a wide suite of 

competition indices relating to the size, abundance, proximity and identity of nearby 

competitors (Weigelt and Joliffe 2003). I chose two indices that are easy to interpret, 

complement each other in the type of information they provide, and are not strongly 

autocorrelated. The first is the distance to the nearest neighbour, a frequent indicator 

of immediate competition (Pielou 1962; Perry et al. 2006). The second is the shrub 

cover within the “zone of influence”. The zone of influence of a shrub is defined as the 

area in which the plant interacts with its immediate environment to acquire light, water, 

and nutrients. Shrub cover within this zone will result in competition over shared 

resources and is therefore a measure of crowding, similar to indices derived from 

basal area in forestry studies (Green and Hawkins 2005; Doležal et al. 2006; Kunstler 

et al.  2011). Because the zone of influence depends on plant size, I computed a 

circular zone based on a custom diameter for each shrub, equal to four times the 

canopy diameter. Given that up to 80% of tundra biomass is found below ground 

(Iversen et al. 2015) and that shrub root networks can extend laterally for several 

metres beyond the canopy range (Figure 6-1), this arbitrary range for interactions is 

probably conservative.  
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Figure 6-1 Shrub roots can run for several meters under the soil surface: here, they extend 
for more than 5 m beyond the ca. 1-m diameter of this shrub canopy. Location: Pika Valley, 
Kluane, Yukon Territory. 

 

6.2.4 Growth and climate sensitivity 

I calculated the average raw ring width for each individual shrub as a measure of 

growth. I measured the climate sensitivity of individual shrubs as the slope of the linear 

regression between standardised growth-ring measurements (restricted to the period 

1990-2014; see Chapter 2 for details on dendroecological methods) and summer 

(June-July-August) temperature, obtained from CRU 3.24.01 gridded dataset. Young 

individuals with fewer than eight years measured were excluded (n = 23, or 7%).  

I used indices of growth and of climate sensitivity as the response variables in mixed-

effects models to test my hypothesis that more competition reduces the growth 

(smaller rings) and the climate sensitivity of growth (weaker climate-growth slope). 

The fixed effects, i.e., the distance to the nearest neighbour and the shrub cover within 

the zone of influence, were centred and scaled. I used plot nested within site as 

random effects. The growth model included random slopes and an intercept for each 

plot. In the sensitivity model, I used random intercepts only because the added 

complexity of using random slopes led to model convergence issues.  

6.2.5 Intensity and importance of competition along a productivity gradient 

Given that the intensity of competition is the absolute effect of competition on plant 

performance (Welden and Slauson 1986), it can be quantified as the slope (effect 

size) of a competition-growth relationship such as a size-distance relationship 
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(Briones et al. 1996). Similarly, because the importance of competition is relative to 

all the other factors that may influence performance (climate, herbivory, pathogens, 

etc.), the goodness of fit of a competition-growth relationship is indicative of the part 

competition plays in explaining the variation in performance; the lower the fit, the least 

important competition is relative to other factors (Welden et al. 1988; Briones et al. 

1996). I chose to use these indices to test the stress-gradient hypothesis because 

they are intuitive to interpret, easy to obtain from linear regressions, and commonly 

accepted and understood in the competition literature (Weigelt and Joliffe 2003).  

To test whether the stress-gradient hypothesis holds across the four study sites of 

contrasting climatic regimes (Chapter 2, Chapter 3), I calculated a measure of plot 

productivity: the total shrub cover within each plot, obtained by summing the canopy 

area of all mapped shrubs. Because study plots varied in size, shrub density is 

reported in square metres of shrub cover per hectare. I then used a linear regression 

to determine whether the intensity (slope) or importance (coefficient of determination) 

of competitive relationships could be explained as a function of productivity. I used 

the outputs of the size-distance relationships and of the growth-crowding relationships 

as response variables. All analyses were run in R 3.3.2. Mixed-effects models were 

run with the package lme4. 

6.3 Results 

6.3.1 Size-distance relationships 

Size-distance relationships were variable across plots but generally positive, with an 

overall positive slope (Figure 6-2; Table 6-1). Pairs of closest neighbours tended to 

reach larger cumulative sizes when they were further apart, and to be smaller when 

they were closer together.  

6.3.2 Effect of competition on growth and climate sensitivity 

The distance to the nearest neighbour and the shrub cover within the zone of influence 

of a given shrub are two useful indices of competition that are not highly 

autocorrelated (Pearson’s R = 0.15). However, the mean ring width of shrubs was not 

strongly associated to either measure of competition, with very high heterogeneity in 

plot-level responses (Figure 6-3). The two competition indices did not explain 

variation in annual growth (Table 6-2). 
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Figure 6-2 Pairs of nearest neighbours have higher cumulative canopy area when they are 
more distant to each other. The bold black lines indicate the slope of the overall mixed-effects 
model (shaded area: 95% confidence interval). The coloured lines are the plot-level predictions 
obtained from random slopes and intercepts in the model. 

 

Climate sensitivity was similarly heterogeneous and was not explained by the 

competition indices (Figure 6-3). Some plots in Kluane seemed to follow the expected 

relationship of higher growth and climate sensitivity with less crowding, while most 

plots in Umiujaq showed the reverse trend (Figure 6-3).  

Table 6-1 Weak positive relationship between the combined canopy area of two shrub 
neighbours and the distance between them. The values are estimates from mixed-effects 
models using plot within site as nested random effects. 
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Figure 6-3 Mean annual growth rates (A-B) and climate sensitivity of growth (C-D) of tundra 
shrubs were not explained by two competition indices in most plots. Coloured lines are plot-
level relationships; the bold line and shaded area represent the overall model slope and 95% 
confidence interval. 

 

 

6.3.3 Stress-gradient hypothesis 

The intensity, but not the importance of competition, as measured from the size-

distance relationships of the 23 shrub plots across Northern Canada, varied as a 

function of shrub cover: more productive plots showed more intense competition 

(Figure 6-4). However, the relationships between competition and radial growth did 

not follow the same expected pattern (Figure S6-2).  

6.4 Discussion 

In this study, I found that the spatial distribution of tundra shrubs at four sites across 

Northern Canada is overall indicative of competitive interactions. The intensity (but 

not the importance) of these competitive interactions varied across a productivity 

gradient, in line with the stress-gradient hypothesis. However, my findings suggest 

that competition is not acting strongly on radial growth, as shrubs showed highly 

heterogeneous responses of growth rates and climate sensitivity to crowding indices 
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within plots. The variability in the magnitude and direction of these relationships was 

not explained by the productivity gradient. Overall, this study highlights a discrepancy 

between the responses of radial growth and general performance of tundra shrubs to 

competition. Current rates of radial growth may not be representative of the whole life-

history of a shrub, and effects of competition may be felt at earlier stages such as 

establishment. Combined experimental tests of the effects of warming and 

competition on shrub growth, reproduction and survival will be necessary to identify 

potential vegetation density thresholds at which competition between shrubs may 

become more limiting to their growth than temperature.  

6.4.1 Spatial patterns of tundra shrubs  

I found that shrubs that grew closer together tended to have smaller canopy sizes, a 

pattern likely arising from density-dependent growth and usually associated to 

competition (Pielou 1962; Briones et al. 1996). Few comparable studies exist for high-

latitude plant communities, and therefore my results provide a new line of evidence 

that competition may have a structuring role in plant communities even in 

environments where abiotic controls are thought to prevail (Billings 1987; Bertness 

and Callaway 1994). This finding adds to evidence from correlative (Pellissier et al. 

2010) and experimental (Choler et al. 2001; Bret-Harte et al. 2004) studies that have 

reported competitive effects among tundra plants.   

 

 

Figure 6-4 Competition intensity (A), measured as the slope of size-distance relationships 
within plots, increases along a productivity gradient, measured as shrub density within plots 
(n = 22). Competition importance (B), measured as the goodness of fit of the same 
relationship, does not show any pattern related to shrub cover. 
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Table 6-2 Effects of crowding indices on the growth and climate sensitivity of tundra shrubs at 
four sites across Northern Canada, as assessed through linear mixed-effects models. 
Competition does not have an overall directional effect on either growth or sensitivity.  

 

It is of particular interest that in the current study, size-distance relationships 

suggested competitive effects between shrubs, while their growth and climate 

sensitivity seemed largely unaffected.  Primary and secondary growth are not always 

strongly coupled in tundra shrubs (Chapter 4; Bret-Harte et al. 2002; Campioli et al. 

2012a-b), and plant-plant interactions may act differently upon these growth 

dimensions, or else affect only certain life stages (Callaway and Walker 1997). 

Therefore, it is possible that competitive interactions were detected for some aspects 

of plant performance without necessarily being reflected in contemporary growth 

rates. In that respect, spatial patterns of plant populations may be more broadly 

encompassing of whole plant life histories, increasing the detection of past and current 

competitive interactions.  

6.4.2 Neighbour interactions effects on growth and climate sensitivity 

The high inter-individual variability in the climate sensitivity of shrub growth 

highlighted earlier in this thesis (Chapter 3, Chapter 4) was not explained by the 

competitive environment of these shrubs for most plots, nor were absolute individual 
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growth rates. However, a few directional trends suggest that plant-plant interactions 

may play a role in controlling shrub growth under some site- and species-specific 

circumstances.  

Two out of three plots in Kluane showed the expected trend of higher growth with 

more distant neighbours. This alpine tundra site is also the most climate sensitive 

(Chapter 3) and has the widest range of plant sizes (Chapter 2 Table 2-1). It is 

possible that competitive interactions are more easily detected over such a range: 

more competition studies across a steeper gradient of shrub cover would help to 

quantify the density threshold at which competition becomes important.  

Shrubs at Umiujaq tended to show the reverse associations, i.e. higher growth rates 

at higher shrub densities or with closer neighbours. Umiujaq is the only site in this 

study dominated by the dwarf birch, Betula glandulosa, rather than by willows. Dwarf 

birch forms mycorrhizal associations which enables carbon transfer within conspecific 

shrubs (Deslippe and Simard 2011). In this case, proximity can be an asset, with 

closer shrubs benefitting from shared resources. More work is needed to confirm this 

facilitative mechanism, but the ability to transfer resources within shrubs at a site may 

explain the high plasticity (Bret-Harte et al. 2002) and near mono-dominance 

(Deslippe and Simard 2011) of Betula glandulosa in Northern Québec (Tremblay et 

al. 2012) and other tundra locations (Tape et al. 2006; Cahoon et al. 2016).  

In this study, I tested whether competition had a predictable and consistent effect on 

shrub growth across Northern Canada. Given the heterogeneity of plot-level 

responses within a site, further studies should examine competitive relationships in 

combination with landscape heterogeneity (soil moisture, nutrient availability, etc.) to 

unpick the causes for divergent plant-plant interactions at regional scales.  

6.4.3 Stress-gradient hypothesis and competition in a shrubbier biome 

In this study, I found that the importance of competition, measured as the effect size 

of size-distance relationships (Briones et al. 1996), increased along a productivity 

gradient. These findings are in line with predictions from the stress-gradient 

hypothesis (Bertness and Callaway 1994; Brooker and Callaghan 1998) and align 

with some empirical observations along tundra ecotones (Choler et al. 2001; Pellissier 

et al. 2010; Michalet et al. 2014). If competition is a control of community dynamics at 

the most productive tundra sites, shrub expansion may be regulated through a 

negative feedback and be slower than expected: it is therefore critical to consider 
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plant competition in vegetation models (Brooker et al. 2007; HilleRisLambers 2013; 

Welk et al. 2014). 

Future rates of shrub expansion will likely be determined by the balance between 

increasing intensity of competition and the acceleration of biogeochemical cycles. 

Warming enhances plant growth, but also enhances nutrient availability, by promoting 

microbial activity and nitrogen mineralisation (Aerts et al. 2006; Wookey et al. 2009). 

Higher shrub densities may introduce “priming” effects on the soil through positive 

feedbacks to these processes (Hartley et al. 2012). All in all, if resource availability 

increases in proportion to increasing shrub expansion, tundra ecosystems might 

reach a new equilibrium with faster turnover under higher shrub densities. If and when 

resource levels fail to keep pace with shrub encroachment, then competition may 

become a constraint to vegetation change.  

6.4.4 Conclusion 

Plant competition in the tundra biome, although traditionally considered negligible, 

may play an increasingly important role under Arctic warming and the observed 

widespread increases in vegetation cover. This study found evidence for a structuring 

effect of competition on spatial patterns of tundra shrubs, and this effect was stronger 

at more productive sites. Competitive interactions likely structure community 

interactions in tundra ecosystems; yet, radial growth and climate sensitivity do not 

seem to be strongly controlled by plant competition. Therefore, we cannot use these 

growth indices alone to understand how plant-plant competition might influence rates 

of future vegetation change in the tundra. Studying competitive interactions across a 

wider range of shrub densities and monitoring more aspects of plant performance 

would improve our knowledge of the role of competition in shaping tundra 

ecosystems. Conversely, facilitative interactions such as mycorrhizal networks 

deserve more attention. The balance between positive and negative plant-plant 

interactions may play a strong role in determining community composition and 

dominance under climate warming.  
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Chapter 7 Plant-plant interactions could limit 
recruitment and range expansion of tall shrubs into 
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Chapter 8 Discussion 

8.1 Summary of main findings 

The aims of this thesis were to quantify the variation in the climate sensitivity of shrub 

growth, and to attribute this variation to environmental and ecological factors. My 

findings reveal the complexity and heterogeneity of shrub growth responses to climate 

change at sites across the Canadian Arctic. This thesis both proposes mechanistic 

relationships and raises further questions about which factors best explain the high 

variability in the climate sensitivity of shrub growth across a range of spatial and 

biological scales. My main findings were: 

1. Temperature versus growing season length differ as controls of shrub growth 

across sites with contrasting climate regimes and greening trajectories. The 

sensitivity of shrub growth to these drivers is often low and decoupled within 

individuals (Chapter 3). Tundra plant communities may therefore follow divergent 

trajectories depending on the main bioclimatic controls prevailing at each site and 

how they change over time.  

2. Radial growth data collected at the root collar of tundra shrubs shows greater 

climate sensitivity than above-ground stem growth (Appendix I). This has 

implications for future sampling protocols to facilitate comparisons among studies.   

3. Plant size does not explain the high inter-individual variability in climate sensitivity 

among tundra shrubs, challenging the assumption that taller shrubs are more 

responsive to warming. Allometric relationships between canopy height and 

diameter are stronger around the southern edge of the tundra biome but lose 

explanatory power at higher latitudes (Chapter 4). Allometric equations developed 

from boreal or low-Arctic shrubs should therefore not be used to predict changes 

in biomass and canopy structure across the whole biome.  

4. Shrubs in boreal forests experience higher growth rates, but are less sensitive to 

summer temperatures compared to alpine shrubs (Chapter 5). The expansion of 

shrub species will likely be much slower in boreal ecosystems than in alpine or 

Arctic tundra because of competition with tree species.  

5. Radial growth of alpine tundra shrubs was not influenced by a decrease in 

aboveground competition when compared to intact shrub patches (Chapter 5). 
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6. Shrubs with nearer or larger neighbours do not differ systematically in their growth 

rates or climate sensitivity compared to more isolated shrubs (Chapter 6). 

Together with the previous finding, this suggests that shrub expansion in tundra 

ecosystems is not currently strongly limited by competition among canopy-forming 

shrubs.   

7. Spatial patterns of shrub distribution reveal a more important structuring effect of 

competition at more productive sites (Chapter 6). The absence of a direct effect of 

competition on the climate sensitivity of shrub growth does not mean that 

competition is absent from tundra ecosystems.  

8. Plant-plant interactions beyond competition can limit the germination of canopy-

forming willow species, including potential allelopathic effects of evergreen dwarf 

shrubs (Chapter 7). This may restrict or slow down climate-driven range shifts of 

tall shrubs into dwarf-shrub tundra.  

 

These findings demonstrate the importance and interplay of physiological, ecological 

and environmental factors in determining the climate sensitivity of shrub growth 

(Figure 8-1). The strongest patterns were found at the intra-individual scale, where 

the root collar of shrubs displays a stronger climatic signal than stems (Appendix I), 

and at the regional scale, where shrubs beyond the treeline are far more sensitive to 

temperature than boreal shrubs (Chapter 5). My methodological approach, using 

indiscriminate sampling, highlighted the great variability in individual climate 

sensitivity within plots. This heterogeneity in growth responses was not conclusively 

linked to plant size or competitive environment. Shrub life histories and individual 

determinants of growth responses will need to be better understood if we are to 

estimate population-level climate sensitivity more accurately. 

In the following section, I discuss the contributions of this thesis in the wider ecological 

context of vegetation change in a warming Arctic. I then highlight challenges in 

measuring and attributing the climate sensitivity of shrub growth to ecological factors, 

make recommendations for dendroecological practices, and highlight some research 

priorities to improve future projections of vegetation change in the tundra biome.  
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Figure 8-1 Main findings of this thesis in the context of the initial framework for investigating 
determinants of the variation in shrub responses to climate change. 

 

8.2 Synthesis 

8.2.1 Longer, warmer, greener?  

My finding that shrub growth at different sites across Northern Canada responds to 

growing season length and temperature in variable, and sometimes opposite ways 

(Chapter 3) demonstrates the need for caution when making assumptions about 

future growth responses under warming. The western Arctic sites were more sensitive 

to longer (Qikiqtaruk) and warmer (Kluane) growing seasons than the eastern sites. 

Site-specific characteristics like soil moisture (Berner et al. 2013; Ackerman et al. 

2011), genetic differences and local adaptation in populations (Bjorkman et al. 2017), 

and the traits of the dominant vegetation may all dictate to some degree how 

vegetation will respond to new conditions. 
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8.2.2 Bigger is not better 

Chapter 4 demonstrated that the broad pattern of greater climate sensitivity for 

species with taller maximum canopy heights (Myers-Smith et al. 2015a) does not hold 

at the individual level, and cannot explain the different responses of shrubs to 

temperature within a site, despite previous assumptions (Ackerman et al. 2018). This 

highlights the need to identify at which scale ecological and environmental factors 

operate if we want to accurately predict biome-wide changes in the tundra biome while 

accounting for site- and species-specific responses.   

Allometric equations are empirical relationships between plant dimensions that allow 

estimations of biomass or other ecological processes at the site level. These 

relationships are often site- and species-specific (Au et Tardif 2007; Berner et al. 

2015), and Chapter 4 suggests that they become weak and unreliable at high 

latitudes of the tundra biome. This is further complicated by the fact that various 

growth dimensions, such as primary and secondary growth, do not necessarily 

respond in the same way to global change drivers (Bret-Harte et al. 2002), and, 

perhaps as a result, do not scale predictably with one another (Chapter 4). The 

secondary growth of woody shrubs contributes considerably to tundra primary 

production (Shaver 1986) and, given the longevity of Arctic shrub species (typically 

50 – 200 years), has important implications for carbon balance at high latitudes. 

Understanding the ecological controls of primary and secondary growth and potential 

trade-offs between them will be key to modelling future tundra carbon balance and 

productivity.  

8.2.3 Competition with trees, but not with shrubs, reduces the climate 
sensitivity of shrub growth 

Shrub expansion is occurring throughout the circumpolar region, including boreal, 

alpine and Arctic environments (Danby et al. 2011; Myers-Smith et al. 2011; Naito 

and Cairns 2011; Elmendorf et al. 2012a; Formica et al. 2014; Frost and Epstein 2014; 

Grabowski 2015; Dial et al. 2016). Chapter 5 demonstrated that shrubs growing in 

boreal forests of the Yukon Territory have higher absolute growth rates but a climate 

sensitivity three times lower than shrubs growing on adjacent mountain slopes. 

Climate-driven shrub expansion may therefore occur at a slower pace in the boreal 

biome due to competitive interactions with trees.  
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In the tundra, where tall deciduous shrubs are the canopy-forming species, 

competition did not seem to have a strong effect on climate sensitivity. However, my 

findings did indicate an effect of competition on overall performance – as measured 

by size-distance relationships (Pielou 1962, Briones et al. 1996) – which was stronger 

in more productive environments. This discrepancy between overall plant size and 

growth-ring data highlights once more the necessity of better understanding how 

primary and secondary growth scale with one another (Figure 8-1; Bret-Harte et al. 

2002).  

With continued shrub expansion across the tundra biome, competition – and other 

types of plant-plant interactions – might be amplified in the future, especially in the 

mid-latitudes of the Arctic where tall shrubs are most sensitive to warming (Myers-

Smith et al. 2015a). A combination of correlative and experimental tests for a range 

of plant-plant interactions across environment types and species would be a useful 

step towards explain population-level variations in climate sensitivity and predicting 

future community structure under novel conditions. 

 

Figure 8-2 Heterogeneity of the climate sensitivity of shrub growth (a) when measured from 
different plant parts (Appendix I); (b) compared to other temporal trends of vegetation change 
at a long-term monitoring field site (Myers-Smith et al. in press); (c) among individuals (spread 
of the distributions) within sites and among sites (different density curves; Chapter 3).  
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8.3 Reconciling different indicators of vegetation change: 

challenges and limitations 

This thesis, like the wider literature, relies predominantly on plot-scale data from a 

number of sites to make predictions about pan-Arctic environmental change. Various 

lines of evidence, accumulating over time and space, provide valuable insights into 

how tundra ecosystems have changed in the last half-century (Chapter 1). However, 

measures of vegetation change all have their respective spatio-temporal limitations, 

and reflect different underlying processes that do not necessarily align with each other 

(Figure 8-2).  

8.3.1 Spatial limitations 

The dendroecological data at the heart of this thesis were collected within small plots 

at four sites representing different growing conditions in the tundra biome. They 

highlighted the strong variability of growth trajectories among individuals of a same 

population, an important consideration for future sampling methods. But the strong 

differences in average climate sensitivity across sites also point at the need of 

understanding controls of climate sensitivity across large geographic areas, which in 

the case of dendrochronological data may be difficult to achieve given the time-

consuming nature of sample processing and data acquisition.  

Remote sensing products, such as the NDVI data used in Chapter 3, have gained in 

popularity as they capture vegetation patterns over large areas, but linking these to 

specific site-level changes in the tundra remains a challenge (Raynolds et al. 2013; 

Frost et al. 2014). The rise of new technologies such as drones now allows to capture 

imagery at the landscape scale, which may in time help to resolve inconsistencies 

between plot-scale observations and pixel values covering hundreds or thousands of 

square meters (Anderson and Gaston 2013; Assmann et al. 2018).  

8.3.2 Temporal limitations 

Most vegetation change observations or experiments at the plot scale are only made 

over a short period of time, long-term protocols being rarer and confined to a few well-

established research stations (e.g. Hobbie et al. 2017; Myers-Smith et al. in press). 

Dendroecology is a useful source of historical data, as woody plants may record 

decades or even centuries of environmental conditions in their growth rings, with an 

annual resolution. The drawback of this remarkable feature is that growth series need 
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to be rigorously cross-dated, i.e. years of growth need to be assigned to calendar 

years with high certainty, for any analysis to be valid. This is a time-consuming 

process, complicated by the low and irregular growth of tundra shrubs (Chapter 2). 

This therefore creates a very strong data quality versus quantity dilemma: it is nearly 

impossible logistically to collect dendroecological data with enough replication to 

cover large geographic areas, all the while conducting rigorous cross-dating on the 

resulting series.  

Additionally, there is also an important seasonal bias in our understanding of 

vegetation change, which relies mostly on measures made in the summer season 

when field sites are easily accessible. However, a growing number of studies point to 

the importance of winter (Bokhorst et al. 2012b) and shoulder seasons (Ernakovitch 

et al. 2014; Gallinat et al. 2015) in driving patterns of vegetation change and 

associated feedbacks, as well as the existence of “teleconnections” between 

seemingly remote elements of the Arctic system such as sea ice and terrestrial 

production (Macias-Fauria et al. 2012).  

8.3.3 Representation of biological processes 

The results of Chapter 3 challenged the assumption that higher growth rates in tundra 

shrubs are associated to landscape-scale greenness. The mismatch between annual 

NDVI and growth ring measurements both points to a potential caveat of using 

dendroecology as a measure of productivity, and reinforces the need to bridge the 

gap between satellite-acquired data and ground-based observations. Even recent 

remote sensing advances, which allow sub-kilometre estimates of vegetation 

trajectories, do not necessarily match on-the-ground variations in shrub growth as 

they are sensitive to non-vegetation related factors such as soil moisture (Raynolds 

and Walker 2016). On the other hand, once shrub canopies are in place, radial growth 

is not necessarily representative of canopy growth and leaf production (Ropars et al. 

2015). This thesis and related work (Appendix I; Myers-Smith et al. in press) show 

that dendroecological data are sensitive to sampling methods and do not necessarily 

vary concurrently with other facets of vegetation change (Figure 8-2). This does not 

mean that either dendroecological or remote sensing observations are “wrong”, but 

highlights a critical gap in our mechanistic understanding of how physiological effects 

of temperature on shrub growth translate and scale up to landscape-level changes in 

vegetation cover.  
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8.4 Recommendations and future research priorities 

8.4.1 Shifting practices in dendroecology 

Dendroecology is a powerful tool for measuring growth responses to a variety of 

environmental and ecological factors (Schweingruber et al. 2013; Büntgen et al. 2015; 

Grabowski 2015; Myers-Smith et al. 2015a, Morrissette-Boileau et al. 2018) and has 

provided some of the most convincing evidence base for shrub expansion in the 

tundra (IPCC 2014). However, as established above, there is an increasing realisation 

that annual wood formation does not necessarily correlate to growth dimensions 

(Chapter 4; Myers-Smith et al. in press) or remotely sensed observations of 

vegetation (Chapter 3, Ropars et al. 2015). The development of high-quality, well-

replicated chronologies is further complicated by the complex morphology of shrub 

growth (Appendix I; Ropars et al. 2017; Shetti et al. 2018) and the strong landscape 

heterogeneity across tundra environments, and therefore care is needed when 

collecting and interpreting dendroecological data.  

Sampling populations indiscriminately, rather than selecting isolated individuals, 

unsurprisingly yields low inter-individual agreement in growth patterns within a site 

(Chapter 2) compared to traditional dendrochronological methods seeking to 

maximise the signal-to-noise ratio (Pilcher and Gray 1982). This heterogeneity in 

growth patterns testifies to the varied life histories of plants within a site and, arguably, 

better represents the potential of a population to respond to climate change in the 

presence of multiple other constraints (Avanzi et al. 2019). Dendroecological 

sampling should always be designed with clear research questions in mind; for 

predicting climate-driven shrub expansion, selective sampling might lead to 

overestimations. Given that whole-plot or random sampling introduce much variability 

in the magnitude and direction of climate-growth relationships measured at a site 

(Figure 8-1), clustering approaches separating “positive responders” and “negative 

responders” before modelling climate sensitivity as a function of environmental or 

ecological factors may provide a fuller picture of the different mechanisms controlling 

shrub responses to climate (Wilmking et al. 2004).  

A new, promising approach to understanding population dynamics under a changing 

climate is to forego cross-dating entirely, and instead use data aggregation 

techniques to look at responses over coarser time periods. This approach is of course 

ill-suited to studies requiring precise annual resolution (e.g. climatic reconstructions), 
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but can be justified and beneficial for ecological studies (Büntgen 2019). First, 

dispensing with cross-dating (while still conducting careful ring-counting) allows to 

develop a much greater number of time series, enabling higher spatial replication at 

a lower processing time and cost (Büntgen et al. 2015, Myers-Smith et al. 2015b). 

Second, many biological responses to climate change, such as range shifts or 

increases in reproductive success, exhibit time lags or occur over several years 

(Danby and Hik 2007b; Ash et al. 2016). To measure the climate sensitivity of these 

processes, it may appropriate, and even desirable, to bin observations into classes of 

a few years up to a decade. The use of low-pass filters has successfully allowed the 

reconstruction of population dynamics and recruitment pulses at decadal scales in 

relation to periods of warming (Büntgen et al. 2015, 2018).  

In short, research questions and the processes they are concerned with should 

always govern dendroecological sampling. Relaxing some of the traditional principles 

for series development (i.e. not only sampling isolated, “ideal” specimens, and not 

applying cross-dating techniques over large numbers of difficult samples) may 

overcome some of the limitations currently associated with dendroecology and lead 

to new advances in the field. 

8.4.2 Plant-plant interactions in a warming tundra 

This thesis examined mainly the effect of competition within one plant functional type 

(Chapter 5; Chapter 6), and the potential physical and chemical interference of 

ground vegetation with shrub germination (Chapter 7). There are many more biotic 

interactions at play within tundra ecosystems, and the balance between positive and 

negative interactions is difficult to quantify. Species interactions have the power to 

either constrain or promote climate-driven vegetation change (Gilman et al. 2010; 

Hellmann et al. 2012; HilleRisLambers et al. 2013), and in turn will be affected by the 

consequences of warming on biotic and abiotic conditions, including changes in 

nutrient availability and new species invading the community (Heegaard and Vandvik 

2004; Klanderud 2005; Tylianakis et al. 2008). Given the capacity of biotic interactions 

to shape ecosystem structure and processes beyond what can be solely expected 

from climate (Brooker et al. 2007; Hellmann et al. 2012; Mod et al. 2014), it is crucial 

to understand the underlying mechanisms, not only in isolation, but considering their 

interactions with a changing environment. 



104 
 

Research on negative interactions such as allelopathy (Nilsson 1994, Dufour 

Tremblay et al. 2012b; Angers-Blondin et al. 2018) and on positive interactions such 

as mycorrhizal associations (Deslippe et al. 2011; Hewitt et al. 2016) has revealed 

highly species-specific associations. A better quantification of the extent and 

importance of these processes for whole-community dynamics would involve 

distributed experiments across a range of species and environmental types. Some of 

these less-documented interactions involve soil chemistry, microbial communities and 

below-ground root networks, all of which can be challenging to measure. Yet, the 

below-ground component of plant-plant interactions is critical to understanding 

community structure and processes (Montgomery et al. 2010). This introduces the 

last, and perhaps the most important research priority to improve our understanding 

of vegetation responses to climate change.  

8.4.3 Towards a whole-plant perspective of vegetation change 

With up to 80% of tundra biomass located below-ground (Iversen et al. 2015), 

identifying and quantifying the drivers of below-ground growth is crucial to predicting 

carbon stocks and vegetation climate feedbacks (Norby and Jackson 2000; Smithwick 

et al. 2014). Determinants of above- and below-ground growth can be decoupled and 

asynchronous: for instance, the growing seasons for roots in Arctic soils can be 50% 

longer than the above-ground growing season (Blume-Werry et al. 2016). Therefore, 

to quantify whole-plant growth responses to climate, dendroecological studies should 

aim to collect data at the root collar when possible (Appendix I; Ropars et al. 2017), 

as root collar growth integrates signals from stems and roots. Understanding resource 

allocations to above- versus below-ground components and to primary versus 

secondary growth (Chapter 4) would be a first step towards predicting biomass 

changes in response to warming. However, dedicated rhizotron experiments would 

provide a better mechanistic test of the effects of global change drivers on root 

productivity (Norby and Jackson 2000; Blume-Werry et al. 2016). Below-ground 

dynamics are all the more important in the context of rapidly thawing permafrost 

across the tundra biome (Anisimov and Reneva 2006; Burn and Zhang 2009; Schuur 

et al. 2015), which may release an hitherto untapped nutrient supply promoting further 

shrub expansion (Keuper et al. 2012). 
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8.5 Conclusion 

With projected warming of up to 11°C by 2100 (IPCC 2013), Arctic ecosystems are 

being rapidly pushed beyond the conditions they have experienced for the last two 

millennia (Kaufman et al. 2009). Widespread vegetation changes such as shrub 

expansion (Myers-Smith et al. 2011) testify to the plasticity and adaptability of plants 

to respond to a warming climate (Franks et al. 2014). However, future rates and 

magnitude of change will depend on the potential for adaptation and rapid evolution 

(Davis and Shaw 2001), species’ capacity to track their climatic optimum (Brooker et 

al. 2007; Chen et al. 2011), and the balance and outcomes of biotic interactions, which 

can either accelerate or impede climate-driven vegetation shifts (Hellmann et al. 2012; 

HilleRisLambers et al. 2013; Tylianakis et al. 2008). My thesis explored the variation 

in the climate sensitivity of tundra shrubs at multiple scales to understand how some 

of these factors interact with climate to generate shifts in Arctic vegetation.   

This thesis has demonstrated that the growth of tundra shrubs is under the control of 

different and not necessarily synchronised global change drivers (Chapter 3), and that 

the sensitivity of shrub growth to these drivers is highly heterogeneous not only among 

sites (Chapters 3-4) but also, significantly, within populations. In this set of studies, 

neither plant traits such as height (Chapter 4) nor competitive interactions with 

neighbours (Chapters 5-6) explained to a great extent the climate sensitivity of 

individual shrubs within a site. This does not mean that these factors are not important 

in shaping other aspects of plant community structure and dynamics (Dormann et al. 

2004; Gilman et al. 2010; Bonfils et al. 2012; Bråthen and Lortie 2016), or will not play 

a more preponderant role in the future. With increasing vegetation cover around the 

circumpolar region under a warming climate, the potential for competition and other 

plant-plant interactions to dictate patterns of community assembly will also increase: 

this may especially be the case at the lower to mid-latitudes of the tundra biome where 

tall deciduous shrubs dominate (Myers-Smith et al. 2015a). Experimental tests of a 

portfolio of biotic interactions across bioclimatic gradients would be helpful in 

assessing to which degree interactions like mycorrhizal associations, allelopathic 

effects (Chapter 7), facilitation, and competition are likely to promote or limit the 

persistence and dominance of species under changing conditions.  

In addition to the substantial inter-individual heterogeneity in the climate sensitivity of 

tundra shrubs, even different parts of a single plant may have different growth 
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responses to climatic factors (Appendix I; Ropars et al. 2017; Shetti et al. 2018). 

These contrasting responses hint at complex resource allocation strategies and 

emphasise the need for standardised dendroecological protocols when comparing 

climate responses from multiple sites. Crucially, a better understanding of resource 

allocation to above- and below-ground biomass and to primary and secondary growth 

is needed to better quantify climate sensitivity. These components are controlled by 

different climate drivers (Blume-Werry et al. 2016) and feed back to ecosystem 

processes in many complex ways (Wookey et al. 2009; De Marco et al. 2014). 

Therefore, a whole-plant perspective will be necessary to predict the fate of Arctic 

carbon stocks (Parker et al. 2015) and potential feedbacks of vegetation to global 

climate and to biogeochemical cycles (Chapin et al. 2005; Sturm et al. 2005a-b).  

The titles of my four main results chapters were inspired by works of literature. Like 

the characters in these novels, tundra shrubs are full of life, with varied life histories 

and distinct, sometimes temperamental personalities. The shrubs in this thesis bear 

witness to a half-century of rapid changes at the top of the world. Without words, but 

with their combined growth rings representing 13 078 shrub-years of life in the tundra, 

they tell a story of complex vegetation responses and uncertain future for Arctic 

ecosystems. 
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Appendix I 

Different parts, different stories: climate sensitivity of 

growth is stronger in root collars vs stems in tundra 

shrubs 
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Appendix II – Supplementary material for Chapter 3 
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Table S3-2 The growth of tundra shrubs was best explained by summer temperature at 
Kluane, and by growing season length at Qikiqtaruk and Salluit. Slope estimates for 
standardised variables are presented with their standard error (SE) or standard deviation (SD). 
Coefficients are bolded when the confidence interval does not overlap zero. ΔAICnull is the 
difference between the Aikaike’s Information Criterion for the model compared to a null model 
with the same random effect structure.  

 

 

 

Table S3-3 The growth of tundra shrubs was not associated with peak greenness at any of 
the sites. Slope estimates are presented with their standard error (SE) or standard deviation 
(SD). ΔAICnull is the difference between the Aikaike’s Information Criterion for the model 
compared to a null model with the same random effect structure – none of the models reached 
the threshold of two AIC points to be considered a better model. 
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Figure S3-1 Example of the calculation of growing season length with smoothed interpolated 

curves from the Phenex library in R. Available MODIS6 NDVI data in a given year (each 

coloured curve represents a year) for each plot are plotted and a smoothing function is applied. 

Winter days are given a zero value. The highest y-value of this function is the peak greenness 

from which threshold values are calculated. Chapter 3 uses a 5% threshold value to calculate 

growing season length (blue line on top left panel) to capture the snow-free period. Other 

studies use a threshold of 50% to represent the photosynthetically active period (green line).  
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Figure S3-2 Temporal trends in the timing of plant green-up (green) and senescence (yellow) 

for each plot. (H plots: Qikiqtaruk / K and P plots: Kluane / U plots: Umiujaq / S plots: Salluit) 

as identified from smoothed interpolated curves of MODIS6 NDVI data (see Figure S3-1).  
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Figure S3-3 Correlations between ring width and the variables used in this study (GSL: 

growing season length; NDVI: peak greenness; tSummer: mean June-July-August 

temperature), broken down by species. Sensitivity is generally similar among species within a 

site.  

SRI: Salix richardsonii 
SPU: Salix pulchra 
SGL: Salix glauca 
SNI: Salix niphoclada 
SPL: Salix planifolia 
BGL: Betula glandulosa 
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Appendix III – Supplementary material for Chapter 4 

 

Table S4-1 The sensitivity of shrub growth to July, June-July or June-July-August 

temperatures was similar in terms of effect sizes. I chose to use June-July temperature in the 

main analysis because it has the lowest AIC score and represents best the overall growing 

season across all sites, given that plants senesce in early August at the higher latitude sites.  
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Table S4-2 The sensitivity of shrub growth to June-July temperature could not be explain as 
a function of either individual shrub height or canopy diameter. The outputs are from mixed-
effects model for A) the Shrub Hub dataset and B) the dataset collected for this thesis. See 
main text for details on model structure.  
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Appendix IV – Supplementary material for Chapter 5 

 

Table S5-1 Differences in A) mean annual growth and B) climate sensitivity of growth between 

boreal and alpine shrubs (n = 40, 101) in the Kluane region. Estimates are from hierarchical 

mixed-effects models with sampling plot as a random effect. Indicators of goodness of fit are 

provided in the form of marginal R2 (R2
m) assessing the explanatory power of fixed effects 

only, and of conditional R2 (R2
c) assessing the fit of the full model.  
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Appendix V– Supplementary material for Chapter 6 

 

 

 

Figure S6-1 Representation of the mapped plots at A) Qikiqtaruk, B) Kluane, C) Umiujaq and 

D) Salluit, showing the position and species identity of the individuals, with the diameter of the 

circles representing the largest canopy diameter. See Chapter 2 for details on mapping. 

(Continued on following pages) 

  



164 
 

 

 

Figure S6-1 (continued) 
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Figure S6-1 (continued) 
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Figure S6-1 (continued) 
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Figure S6-2 Neither the intensity (A-B) nor the importance (C-D) of competitive effects on 

shrub radial growth (A-C) or sensitivity of growth to summer temperature (B-D) varied 

according to shrub density within a plot. Within a plot, intensity was defined as the slope of the 

linear regression between individual growth variables and the distance to the nearest 

neighbour; importance was defined as the coefficient of determination of these linear 

regressions (Welden and Slauson 1986).  
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