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PART I 	 1. 

The motivation for developing an analytic theory of partial 

differential equations lies in the classical results concerning the 

analyticity of solutions to elliptic and parabolic equations with. 

analytic coefficients (c.f. [46]). This basic motivation is further ,  

strengthened by such properties of solutions to elliptic and para-

bolic equations as maximum principles and Phragmn-Lindelf theorems 

(f55]). The analytic theory of partial differential equations seeks 

to more fully develop ,  this close parallel between the behaviour of 

solutions to partial differential equations and the behaviour of 

analytic functions of a complex variable and to apply these results 

to solve boundary value, initial-boundary value, and inverse problems 

arising in various areas of mathematical physics. There have been 

two main directions in this development. The first of these is the 

theory of integral operators as developed by Bergman ([44]), Vekua 

(E36J), Gilbert (49i, r50J) and Colton ([1], [2]), and the second 

direction is the area of generalized analytic function theory as 

created by Bers (45]), Vekua ([57]), and Haack (1511). Roughly 

speaking, the theory of integral operators treats the case of partial 

differential equations with analytic coefficients, and the theory of 

generalized analytic functions extends this theory to the case of 

non-analytic coefficients. By imposing the stronger assumption of 

analyticity on the coefficients it is of course possible to develop 

a more complete theory, and for this reason the description. 

"integral operator methods in partial differential equations" and 

"function theoretic methods in partial differential equations" are 

often used interchangeably. The basic idea of the theory of integral 
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operators is to construct an integral operator which maps analytic 

functions onto solutions of partial differential equations with 

analytic coefficients, and to use this relationship to develop an 

analytic theory for the class of equations under investigation. It 

is, of course, of paramount importance that the mapping between 

analytic functions and solutions of the partial differential equation 

be one to one and onto, since otherwise it is not possible to obtain 

results concerning solutions in general, but only for certain (usually 

rather artificially defined) subclasses of solutions. 

The theory of integral operators for elliptic partial differ-

ential equations in two independent variables was created by Bergman 

([44])and Vekua([56]) in the late 1930's and early 1940's. Their 

main contribution was to construct an integral operator mapping 

analytic functions of a single complex variable onto real valued 

solutions of the elliptic equation 

+ uyy  + a(x,y) u + b(x,y) u + c(x,y) u = 0 	(1) 

where the coefficients in (1) are analytic in some polydisc in the 

space of two complex variables. Vekua's operator is of the form 

	

u(x,y) = Re [11(z) (z) +U(z,t) (t)dt1 	 (2) 
0 	 fo 

where z = x + iy, (z) is an arbitrary analytic function, and the 

kernels H(z) and H(z,t) can be expressed in terms of Vekua's complex 

Riemann function. Bergman's operator is of the form 

(1 
u(x,y) = Re 	E(z,z,t) f(z(lt2)) dt 
	

(3) 

where f(z) is any analytic function and E(z,z,t) is the Bergman 

generating function. Both Bergman and Vekua used the above integral 



3 . 

operators to give constructive methods for solving boundary value 

problems associated with equation (1) defined in a bounded simply 

connected domain. Bergman accomplished this by using his operator 

- 	to construct a complete family of solutions, orthonomalized this set, 

and then represented the solution of the given boundary value problem 

by means of a generalized Fourier series. Vekua, on the other hand, 

represented the analytic function 	z) by means of Cauchy integral 

with unknown density j.i(t), substituted this into his representation 

(2), interchanged orders of integration, and, after applying the 

given boundary conditions, arived at an invertible singular integral 

equation for the unknown density p(t). 

The initial work of Bergman and Vekua was continued by R. P. 

Gilbert, beginning with a series of papers appearing in the early 

1960's. Gilbert's first main contribution was the discovery and use 

of his "envelope method" in conjunction with the theory of integral 

operators to investigate the analytic behaviour of solutions to 

Laplace's equation in three and four variables and certain classes of 

singular elliptic equations in two independent variables ([491). 

His second main contribution was his development (along with other 

mathematicians) of a function theoretic approach to partial differential 

equations with variable coefficients in more than two independent 

variables. Of particular note here is his "method of ascent" which 

maps solutions h() of the n dimensional Laplace equation onto 

solutions of 

L u + B(r2 ) U = 0 	 (4) n 

by means of the transformation 

1 
u() = h() + f 

0fll 
G(r,l-a 2 ) h(xc 2 )dc, 	 (5) 
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where G(r,T) denotes Gilbert's "G-function" and B(r2) need only be 

continuously differentiable. For a full discussion of Gilbert's work 

in this area s  in particular for applications to the solution of 

boundary value problems, the reader is referred to [50]. 

My main contribution to the area of function theoretic methods 

in partial differential equations was to develop an integral operator 

approach for the study of pseudoparabolic and parabolic equations. 

Of particular concern has been the application of. this approach to 

the solution of initial-boundary value problems, inverse problems, 

and the unique continuation of solutions. Since a full description 

of this work can be found in my monographs ([i], [21) only a brief 

outline shall now be given. The simplest example of a pseudoparabolic 

equation is 

u xxt 	t 	xx 
+yu +ru =0 	 (6) 

where y and n are constants. By means of the Riemann function for 

pseudoparabolic equations v(F,t;x,t) ([l'l) the solution of (6) 

satisfying 

u(o,t) = f(t) 

u(o,t) = g(t) 

u(x,o) = h(x) (7) 

can be expressed in the form 

fx 
u'(x,t) = h(x) - n 

	
h'()v (,o;x,t)d 

0 

+ ft [g'(t)v(o,r;x,t) - f'(t) v 	(o,T;x,t) 

+ n g(t) v (O,t;x,t) + rf'(t)v(o,T,x,t)] d r. 	(8) 
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If y < o the solution of the first initial-boundary value problem for 

(6) in a rectangle can now be obtained by using (8) to derive a 

Volterra integral equation of the second kind for the unknown initial 

data g(t). Such results can be extended to equations with variable 

coefficients and to equations in more than two independent variables 

([28], [29],  [30]). Turning now to parabolic equations one first 

writes the general linear second order parabolic equation in one 

space variable in the form 

u xx + q(x,t)u = Ut. 	 (9) 

If h(x,t) denotes a solution of the heat equation 

xx 	t 

then I have shown that every solution of (9) can be expressed as 

x 
u(x,t) = h(x,t) + 
	

E(s,x,t) h(s,t)ds 	 (11) f-x 
for some h(x,t), where E(s,x,t) is a known function depending only 

on q(x,t)([2). The operator (11) can now be used to obtain reflection 

principles for parabolic equations with variable coefficints and, 

through the use of this reflection principle, to construct approx-

imate solutions to initial-boundary value problems for parabolic 

equations defined in domains with moving boundaries ([2]). These 

results can be extended to the •case of parabolic equations in more 

than one space variable ([2], [37]), and provide the analogue for 

parabolic equations of the work of Bergman and Vekua for elliptic 

equations. 

In closing I should like to emphasize that I have only rather 

quickly highlighted the main developments in the area of function 

theoretic methods in partial differential equations and have not 
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discussed the many other contributions the above mathematicians have 

made, in particular Gilbert's and my work on improperly posed initial-

value problems (1491, [50], [1], [2]), my work on elliptic equations 

in three independent variables and its application to the solution of 

boundary value problems arising in scattering theory ([1], [2]), 

Bergman's use of integral operators in fluid dynamics ([53]), etc. 

Furthermore, the contributions of many other researchers have not been 

mentioned, notably Henrici (r52J ' , Garabedian (L471, [48]) and Lewy 

([54]). The reason for these omissions is that it is impossible in 

the space of a few pages to discuss the entire area of function theo-

retic methods in partial differential equations,, and I have instead 

tried, albeit in a rather subjective manner, to highlight the main 

developments in the theory for the benefit of the reader who is not 

necessarily an expert in this rapidly growing and diverse area of 

mathematics. 
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PART II: SYNOPSIS 

As mentioned in Part I, my main submission is my monographs Lu 
and [2] (numbers refer to references in Part I). The first of these 

monographs represents a general survey of the area of function theo-

retic methods in partial differential equations, with particular 

emphasis on improperly posed initial value problems and the analytic 

continuation of solutions to partial differential equations. Con-

tained here is a description of some of my work on improperly posed 

initial value problems, integral operators for elliptic equations in 

three independent variables, pseudonarabolic equations, and inverse 

problems in scattering theory. In addition a survey is given of some 

of the work of Bergman, Vekua, Gilbert, Garabedian and Lewy. The 

second monograph is designed as a companion volume to the first set, 

with particular emphasis on the use of integral operators in the 

solution of boundary and initial-boundary value problems. Included 

here is a more complete discussion of the work of Bergman and Vekua, 

by work on parabolic equations (including a discussion of the inverse 

Stef an problem) and Gilbert's and my work on the "method of ascent", 

in particular my study of integral operators and their application 

to scattering theory (a more up to date survey can be found in 43J). 

IF 
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Introduction 

The subject matter of these lectures can conveniently be intro-

luced by quoting a paragraph from Methods of Mathematical 

Physics, Vol. II by Courant and Hubert: "The stipulation 

about existence, uniqueness, and stability of solutions domi-

nate classical mathematical physics. They are deeply inherent 

in the ideal of a unique, complete and stable determination of 

physical events by appropriate conditions at the boundaries, 

at infinity, at time t = 0, or in the past. Laplace's vision 

of the possibility of calculating the whole future of the physi-

cal world from complete data of the present state is an extreme 

expression of this attitude. However, this rational ideal of 

causal-mathematical determination was gradually eroded by con-

frontation with physical reality. Nonlinear phenomena, quantum 

theory, and the advent of powerful numerical methods have shown 

that 'properly posed' problems are by far not the only ones 

which appropriately reflect real phenomena. So far, unfortuna-

tely, little mathematical progress has been made in the import-

ant task of solving or even identifying and formulating such 

problems which are not proper ly  posed' but still are important 

and motivated by realistic situations". In one sense these 

notes are an introduction to the use of function theoretic 

methods in the investigation of one important class of physic-

ally motivated "improperly posed" problems, that is improperly 

posed initial value problems. However, such a study extends 

far beyond the immediate physical situation in which these 

problems arise. The following example serves as an illustration: 

the uniqueness of a solution to the "improperly posed" elliptic 

Cauchy problem is equivalent to the Runge approximation 

property. In order to exploit such a property one is led to 
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construct an integral operator which maps analytic functions 

onto solutions of the elliptic equation under investigation, 

thus giving a practical method of constructing both a complete 

family of solutions and analytic approximations to the ellipti 

Cauchy problem. However in order to construct this integral 

operator it is necessary (in the case of three independent var 

ables) to again examine an "improperly posed" problem, this 

time an exterior characteristic initial value problem for a 

hyperbolic equation. Having now constructed the desired inte-

gral operator it can in turn be used not only to construct a 

complete family of solutions but also to analytically continue 

solutions of the elliptic equation from a knowledge of the 

domain of regularity of their Cauchy or (complex) Goursat data 

along prescribed analytic surfaces. Proceeding in this manner 

and considering selected "improperly posed" initial value prob 

lems it is possible to systematically develop an analytic theo 

of partial differential equations based on the analytic theory 

of functions of a complex variable, and in a broad sense it is 

to this general theory that these notes are devoted. 

We now briefly outline the content of the lectures. Chapte 

one consists of statements of basic results on the existence, 

uniqueness, and regularity of solutions to initial and boundar 

value problems in partial differential equations which will be 

needed in future chapters. In Chapter two we consider 

"improperly posed" initial value problems, give examples of 

their appearance in physics, and obtain results on the analyti 

continuation of solutions to elliptic and parabolic equations. 

In particular, the result mentioned above on the equivalence 

of the uniqueness to the elliptic Cauchy problem and the Runge 

approximation property is proved. In Chapter three we constru 

integral operators which map analytic functions of one and 

several complex variables onto real valued solutions of ellip-

tic equations in two and three independent variables. Since 

this particular topic has been the subject matter of three 

different books ([i], [21], 1391), we concentrate on newer 

results, in particular integral operators for elliptic equatioi 
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in three independent variables. Nevertheless for the sake of 

completeness we construct (in section 8) Bergmans integral 

operators for elliptic equations in two independent variables 

and derive (in section 11) Vekua's representation of solutions 

to this class of equation. Chapter four is concerned with the 

use of integral operators in the analytic continuation of solu-

tions to elliptic equations. Lewy's reflection principle and 

Gilbert's envelope method are derived and as an example of 

their use are applied to the problem of analytically continuing 

slutions of the axially symmetric Laplace and Helmholtz equa-

tions. Included in this chapter is a discussion of radiation 

conditions and asymptotic expansions of solutions to the axially 

symmetric Helmholtz equation. In Chapter five we introduce a 

class of third order equations which have been the object of 

recent study in various areas of fluid dynamics and derive the 

basic analytic properties of solutions to such equations. It 

is shown that in terms of their analytic behaviour the solutions 

of the third order equations considered here occupy a position 

somewhere in between that of parabolic and elliptic equations. 

"Improperly posed" problems associated with these equations can 

be found in [5]. 

None of the material presented in the last four chapters of 

these notes has appeared in previous research monographs on 

the subject, except for section 4 (which can be found in 

Chapter 16 of 120]), section 8 (which is taken from [2] and 

can also be found in [1] and [21]) and section 12 (which is 

taken from 121]). This fact is reflected in the bibliography, 

where only those results which are directly referred to or 

used in these notes are referenced. For other work in this 

area the reader is directed to the bibliographies contained 

in the books by Bergman ([1]), Garabedian ([20]),  Gilbert (1211), 

and Vekua ([39]). 

The following course of lectures was given in the spring 

semester of 1971 at Indiana University and again in the fall of 

that year at the University of Glasgow where the author was 

a visiting research fellow participating in the North British 

3 



Symposium on Partial Differential Equations and Their Applica-

tions. Gratitude is expressed to the Science Research Counci] 

the National Science Foundation, and the Air Force Office of 

Scientific Research for their financial support, and to 

Professor Ian Sneddon and the University of Glasgow for their 

hospitality during the academic year 1971-1972 when the first 

draft of these notes was typed and circulated. 

Notes Since the time these notes were written a considerable 

amount of new research has been completed in areas closely 

related to the subject matter of these lectures. For some 

of these new results the reader is referred to 

R.P.Gilbert, Constructive Methods for Elliptic Partial 

Differential Equations, Springer Verlag Lecture Notes Series 

Berlin, 1974. 
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I Preliminary results 
Preliminaries 

Let x = (x 1 ,.. •,xn) 	= (,.. .,) and let u(x) satisfy the 

equation 

Lfu] = il 

	
2 + 	b.(x) 	

+ c(x)u = 0 
3   

where b.(x), i = 1,..., n, and c(x) are analytic functions of 

their independent variables in a domain D. 

1. Fundamental Solutions and Analyticity 

A fundamental solution S = S(x;) is a solution of the equation 

LIS] = 5(x - 

where 6 denotes the Dirac delta function. 	S has the form 

U(x; ) 

	

= 	 2 	
+ 1J(x;) logr + w(x;); n > 2 

r 

S = A(x11 x2 ; 1 , 2 ) log 	+ B(x1 ,x 2 , 1 , 2 ); n = 2 	(1.2) 

where r = x - E. For n odd V 	0, L[W] = 0. In (1.2) set 

z - 	+ ix2 , z = x - 	= l + 	C 	i - 
iE 2 . 

Then 

	

L[A] = 	+er— + 	+ 	A 	0 	 (1.3) 
3z 

where a' = ±(bi+ib2), 	= ± (bi_ ib2 ),  y =c, and 

[f + ( z , c*)] A( z ,ç*;,*) = 0 	 (1.4) 
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k * + 	(c, z *) 	A(c,z*;c,c*) = 0 	 (1.5) 

(1.6) 

A(z,z*,C,C*) is the Riemann function for L[A] = 0 (See Exercise 

3.1 of these notes, [20], [21], [241, [39]). Now let D be a 

simply connected domain with smooth boundary 3D. Then 

a 
U(X) = - J 	B [u(), SM(;x)] 	 (1.7) 

n 

B[u,v] = 1 (-1) '  b.uv + v—  — u—  a 1 dx,...,dx.,.. . ,dx 	.8) L 1 	 x.j 

	

1 	 1 i1 

where SM  is fundamental solution of the adjoint equation 

MIu] = 0. Since for x 	S
M  is an analytic function of x 

and 	for x, E D (for n = 2 S is an analytic function of 
z, z, c ç* for z, CED, z*, 	*ED*, where D* = (z*j*EDfl, 

provided the coefficients of L have the same property, 
we have 

Theorem A ([201): If b.(x), c(x) are analytic functions of 
2 

X 1 ... ,X in D and u(x)EC (D), then u(x) is an analytic 

function of x
1 	,x in D. n 

	

Theorem B ([39]): Let n= 2. 	If oz,z*), 	 y ( z ,*) 

are analytic in B X D* and u(x1 ,x 2 )EC 2 (D), then 

Z I- U(z,z*) = u(--l", -----) is analytic in D x D*. 

2. Existence and Uniqueness of Solutions to the Dirichlet and 

Cauchy Problems. 

r. r  
Let f, gE L 2 (D). (f,g) = JJ fg. 

0 

Definition: u is a weak solution of Lu = f if (M4,u)  

for every 4EC(D). 



Theorem C ([3]): Let f(x) be analytic in D. Then if u is a 

weak solution of Lu = f, u is analytic in D. 

Theorem D ([3]): Let 4€ C°(D). Then the boundary value 
problem 

Lu = f in D 

u=4on bD 	 (2.1) 

where f EL 2 (D), has a (weak) solution if and only if 

SS Dñ = SD 	 (2.2) 

for all solutions w of 

Mw = 0 in D 

w = 0 	on 6D. 	 (2.3) 

The set of solutions of (2.3) is finite dimensional. 

Corollary ([3]): The orthogonal complement on 6D of the space 

of all boundary values of all solutions of Lu = 0 is the finite 

dimensional space spanned by 	w a solution of (2.3). bV 

Theorem E ([2 0 ]): Let L[u] = 0, u EC2(D)flC0(D),,  c(x) < 0. 

Then u(x) achieves lts maximum and minimum on D. 

:t.(:1:::;);,: 	
::n 	

:,, 	. 

Theorem F ([28]): Consider 

Du = 	 aDu + f 
	

(2.4) 

IckIl 

where f, a are analytic functions of z = 	 in a 

neighbourhood of the origin 	in C and prescribe 



D 	(u-+) = 0 when z. = 0 if 0 	k < 	j = l,...,n, (2. 

where+ is analytic in a neighbourhood of the origin. Let A 

be the set of multi-indices in the sum on the right hand side 

of (2.4) such that a 4 0, and assume that 0 does not belong01  
to the convex hull of A considered as a subset of Rn. Then 

there exists a unique analytic solution of (2.4), (2.5) analy- 

tic in a neighbourhood C) of the origin. u depends continuousi 

on the initial data D' + in Q'fl(z. = 0) where QC) 	and the 

size of C)' depends only on 

Iak 
	a a l.  

Remark: It follows from the results of J. Persson, J. Perason, 

Linear Goursat problems for entire functions when the coeffici-

ents are variable, Ann.Scoula Norm. Sup. Pisa (3) 23 (1969), 
87-98, that if a are constant and 4 is entire then u is also 
entire. 



II Improperly posed initial value problems 

3. Cauchy's Problem in Two Independent Variables 

The elliptic Cauchy problem is of interest for the following 

reasons: 

analytic continuation 

L&= 0 	 ,3k 
- 

, D 	

"IIIIIIIIIIIIIIII 
figure 3.1 

What is the domainof regularity of u in terms of the domain 

of regularity of 4, $ and the coefficients of L? 

Theorem F does not answer this question. 

inverse boundaryyue problems 

Consider the flow of an incompressible, irrotational fluid 

about a curved plate B such that behind B there is a "dead 

water" region 0. 

= OSaflt 0 

-Iree s1recLm!'s1e 

B 

figure 3.2 

Let r be the stream function. Along the free streamline =O. 

Since the pressure is the same on both sides of the stream-

line, we have by Bernoulli's equation that - 	constant on 

the streamline. The inverse problem is t o find the shape of B 

given the Cauchy data on the streamline. Analogous problems 

9 



arise in semilinear and quasilinear equations (see [23]). 

3. boundary value problems with incomplete data: 

Suppose we have a clamped membrane vibrating with the 

frequency w and the slope of deflection is measured on a 

portion of the boundary. 

figure 3.3 

Then we have the following Cauchy problem: 

2 
+ 	u = 0 

U = 0 on > 

bu 
- = f on E av 

where c = velocity of sound. For a discussion on problems 

of this type and their solution see [34]. 

In (2) and (3) the problem is to construct an approximation 

to the elliptic Cauchy problem, including error estimates. 

The following example shows why difficulties arise when an 

attempt is made to do this. 

Example 3.1 (Hadamard). Let u(x,y) satisfy the equation 

0 
	

(3.1) 

and the Cauchy data 

u(x,0) = 0 	Uy 	
n 

(XO) 	1 = - sinnx. 	 (3.2) 

Then 

u(x,y) = 
2 sinnxsinhny. 

n (3.3) 
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is the unique solution to (3.1), (3.2). However as n -. 	the 

Cauchy data tends to zero but the solution does not tend to 

the corre sponding zero solution, i.e. Cauchy' s problem for 

elliptic equations does not depend continuously on the initial 

data. 

We now consider t he following elliptic Cauchy problem: 

u xx 	yy 
+ u 	g(x,,uuuy ) 	 ( 3.4) 

u(x,y) = 4(x + iy), x + iy E C 

u(x,) = Q(x + iy), x + iy E C 	 (3.5) av 

where C is a givenanalytic arc. (Regularity conditions on g, 

4, Q will be prescribed shortly). By the use of a conformal 

mapping we can assume without loss of generality, that C is a 

segment of the x-axis containing the origin, i.e. y = 0 in 

(3.5). Setting 

z = x + iy 

(3.6) 
x - iy 

(3.4), (3.5) becomes 

Uzz* = f(z,z * ,U,U,U 5 *) 

where 

+ z* 	Z_Z*) = U( z , z *), 
2 	' 	2i 

and 	U( z , z *) = 4(z) on z 	z 

tJ( z , z *) - aU( z , z *) 	- - iQ(z) on 	z = z. 	
(3.) 

Assume i) f(z, z *, 1,213 ) is holomorphic in G x G*  x B 3  

where G* = [ zjz € GI and B 3  is a ball containing 

the origin in 1'2'3 space. 
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G is a disk containing the origin, in particular 

G = G*. 

(z), 0(z) are holomorphic for all zEG. 

Now let 	s(z,z*) = U * (z,z*). 	Then 

U(z, z *) = $f5( 	*)d*d + 	4()d + 
0 	 0 

(3.9) 

U 5 (z,z*) = SZ s( 	* 

	

y)d+ 4(z) 	 (3.10) 
0 

U * ( z,z*) =J 0s(,z*)d+( z * 	 (3.11) 

where 	4(z) = U(z,0), 11(*) = U(0,z*). 

The initial conditions (3.8) become 

I 	s (, *)d*d 	+ 	± J $(*)d* + u(0,0) 	(z), 
0 	 0 

or differentiating with respect to z 

	

+ $s(,z)d 	+ 4(z) + 	( z) = 	(z) 	(3.12) 

and 

	

+ 4(z) - $ 5 s(,z)d 	- 	(z) = -jO(s). 	(3.13) 

Equations (3.12), (3.13) imply that 

z 
4(z) = 	'( z) - iQ(z)] - J s(z,*)d* 	 (3.14) 

0 

z 
(z) = 	1(z) + iQ(z)] -5 s(,z)d. 	 (3.15) 

0 

Hence, defining the operators B, i = 1,20, by the right hand 
side of (3.9), (3.10), (3.11) respectively, where '(z), 	(z) 
are defined by (3.14), and (3.15) (note that U(0,0) = 
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leads to the problem of finding s(z,z*) satisfying 

s(z, z*) = f(z, z*, B1[s(z, *)], B2[s(z, z *)], B3[s(z,  z*)]  ). 

Let HB be the Banach space of functions of two complex vari-

ables which are holomorphic and bounded in G X G* with norm 

II sfl= sup te 	 Is(z,z*)Ii 	 (3.17) 

(z, z*)EGxG* 

where A > 0 is a fixed constant. 

Theorem 3.1 ([6]): The operator T defined by 

Ts = f(z,z, B 1 s, B2 s, B 3 s) 

maps a closed ball of HB into itself and is a contraction 

mapping. 

Proof: Since f is holomorphic in a compact subset of the space 

of five complex variables, by Schwarzs lemma (c.f.[2 1 ]) 

a Lipschitz condition holds there with respect to the last 

three arguments, i.e. 

- f(z,z*,,,)l 

(3.18) 

c[I- 	+ k2-2I + k 3 _ O h) 
3' 

where C 0  is a positive constant. Hence for s 1 ,s 2 EHB and G 

sufficiently small 

II Ts1_Ts2fl< c 0 t IIB1s1-B1 S2 JJX+ IjB2s1-2s2 ii 
(3.19) 

+ J I B3s1-B3s2 1j). 

From estimates of the form 
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IzI 
J s (, z *)d 	< f 	Us li k e 	 Idl o 	I  —J o  

1 	xlzl+xIz*Hi 	 (3.20) 
- 	e 	 us lix 

i.e. 

f ,)d 	lix 	
Is ttx 

0 
(3.21) 

we have 
N. 

liB5 1 s 2  11 x - 	3 	11s1-s2  'x 	= 1,20 	 (3.22) 

where N i are positive constants independent of X. Hence 

there exists a positive constant M such that 

11Ts1-Ts2 1111 	i15152 111 	 (3.23) 

and for every sERB 

UT5 II,, . 	Is li X + liT o  li x  

!ls ll 	+ 	
(3.24) 

where M0  is a positive constant. Hence for us 11x < M and 
X sufficiently large, JITs 11 < MO  i.e. T takes a closed 

ball in HB into itself. Equation (3.23) shows that for X 

sufficiently large T is •a contraction mapping. 

Corollary (F 6 ]): There exists a stable iterative procedure for 
solving the semilinear elliptic Cauchy problem in two 

independent variables. When (3.4) is linear global solu-

tions are obtained; if the Cauchy data is analytic in G 

and the coefficients are analytic functions of z and z* 

in G x G*,  then the solution is an analytic function of 

z and z' in G x G*. 
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Exerise 3.1. Use the above method of exponential majoriza-

tion to construct the complex Riemann function (see Section 1). 

Compare to 2 0 ], pp. 139-141, and [391. 

Remark: For related results see 12 0 ], pp. 625-631 and 1241. 

4. Cauchy's Problem for Quasilinear Systems. 

Consider a quasilinear system of in partial differential equa-

tions of order one in n + 1 independent variables x,.. . 

-> A. - 	+ B 	 (4.1) 
bt 	

j=l 

where 

uu(x,t) 

u 
in 

and A. = A.(x,t,u), j = 1,... ,n are in X in matrices which are 

analytic functions of x = (x,... ,x), t and u, and B = B(x,t,u) 

is a column vector of analytic function of x,t and u. (Any 

system of partial differential equations can be written as 

(4.1) if t = 0 is not characteristic: c.f. [20], pp.  6-12). 

Pose the Cauchy problem for (4.1) by prescribing the initial 

condition 	 - 

u(x,O) = f(x) 	 (4.2) 

where f(x) is analytic. By the Cauchy-Kowalewski Theorem 

(c.f. [2 0 ]) there exists locally an analytic solution u of 

(4.1), (4.2). 

Now keep t real and replace x by z = x + 	 are 

real). Then 

- 1 tu 	 (4.3) 
âz. - 2 	x. - ' by. 

3 
 ) 

3 	3  

where U(z,z,t) = u(x ) t), z = (z 1 ,... ,z), 	= ( h,... 
15 



Furthermore, since U is an analytic function of z., j 	1, 

...,n, the n Cauchy-Riemann equations are satisfied: 

au 	1/Bu au  = 	+ i -s-- , = 0. 	 (4.i 
3 	 3 	3 

Equations (4.1), (4.2) become 

n 

Si= LA. -s--- + B 	 (4. 
j=l 

U(z,0) = f(z). 	 (4. 

Let A be the transpose of the complex conjugate of A. Multi-

plying (4.4) by A and adding it to (4.5) gives (see 120]) 

n 	 n 

'A BU 
at 	L 

j=l 	 j=l 

or by (4.3) and (4.4) 

n 	* 
au 	A I 

.+A. au +  
at 	2 	Bx 

j=l 

A. - 	+ B 
3 Bz. 

3 

n A.-A. 
• 	--au  	+ B.  2i 	By. 

j=l 	 I 
(4. 

Recall that a system of the form (4.1) is symmetric hyper- 

bolic if and only if the A. are symmetric, i.e. for arbitrary 

but; fixed X the roots X of the polynomial 

det 	ZX.A. - xi 	= 0 
	

(4.8 

are real since they are the eigenvalues of a symmetric matrix. 

A characteristic of the system (4.1) is any level surface 

(x,t) = constant where t (x,t) satisfies 

n 

det Y x A-  4t 	= 0 	 (4.9 
j=l 
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Since the coefficients of (4.7) are Hermitian matrices, the 

system (4.7) can be written as a symmetric hyperbolic system 

of 2m real equations in 2n + 1 real independent variables, 

independent of the type of the system (4.1). Such problems 

are well posed (c.f. [20] pp.  434-448). 

The characteristic surfaces of (4.7) are real manifolds of 

dimension 2n and define the domain of dependence in the initial 

hyperplane t = 0 where data must be known if the value of the 

solution at a given point is to be determined ([201, pp. 614- 

621). 

Jorna L n 

c1epeV7tC 

rJ i C 

rioid 

figure 4.1 

5. Uniqueness of So1utipps to Cauchy s Problem and the Runge 

Approximation Property 

Let L be a second order elliptic operator with analytic coef-

ficients and Laplacian as its principal part. Let M be the 

adjoint operator. 

Definition 5.1: Solutions of an equation Lu = 0 are said to 

have the Runge approximation property if, whenever D 1  and 

are two bounded simply connected domains, D 1  a subset of D 2 , 

any solution in D 1  can be approximated uniformly in compact 

subsets of D 1  by a sequence of solutions which can be extended 

as solutions to D2 . 

Theorem 5.1 ([301, [321): Solutions of Lu = 0 have the 

Runge approximation property if and only if solutions of 

Mu = 0 are uniquely determined throughout their djmain of 

existence by their Cauchy data along any smooth hypersurface. 
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Remarks: From a result of Friedrichs ([18]) the L 2  norm of 

a solution u over a domain bounds the maximum norm of u over 

any compact subset of this domain. Hence in order to show 

that a solution over D 1  can be approximated uniformly over 

any compact subset by solutions in D 	 it is sufficient to21 
show that it can be approximated in the L 2  sense over any 
subdomain whose closure lies in D 1 . Let D be such a subdomain; 
denote by S 1  the restriction of solutions in D to D 0 , by S 2  
the restriction of solutions in D to D 0 . S 2  is a subspace of 
S 1  (our aim in the first part of the theorem is to show that 

it is a dense subspace in the L 2  topology). By a classical 
criterion, S2  is dense in S 1  if and only if every function 
in L2  over D0  orthogonal to S is also orthogonal to S 1 . 
Finally we write Green's formula in the form 

C 
J uM Iw - wLu = I u- Bw  -- - w—  + CUW  

D 	 °'J 

where c is some function of. the coefficients of L(see equation 
(1.8)). 

Proof of Theorem: (uniqueness of solution to Cauchy problem 

implies Runge approximation property): Let v 0 EL2 (D 0 ), v 0 ......S 2 . 
We will show v 0 ...L S 1 . Let w0  be a solution of 

r 
v 0 in D 0  

Mw0  = 

L 
 in D2 - 

w0 	= 0 on C 2  = 6D 2 . 

(5.2) 

By Theorem D, w 
0  exists since v0...LS 2 	 2 	0 . Let uES , w = w in 
 2WO

Since v 0 ...LS 2  this shows that 	is orthogonal to 

the boundary values of functions in S 2 . By the corollary to 

Theorem D, --- = -- , where w satisfies the homogeneous equa-

tion Mw = 0 in D 2. w = 0 on C 2
3 which implies by Theorem D 

that (5.2) has a solution w0  such that .......Q = 0 on 0 2 (.g.w -w0  

satisfies this). By the uniqueness of the solution to the 
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Cauchy problem this implies that w 0  = 0 in D - D0 . 

Now applying (5.1) to w = w0  and uES 1  over a domain D such 

that 	D 	D0, we conclude that v 0IS 1 . 

(Runge approximation property implies uniqueness of the 

solution to the Cauchy problem): Let w0  be a solution of 

Mw0  = 0 with zero Cauchy data on a piece of a surface C. 

We will show w0 = 0 wherever it is defined. First we 

assume that C is a closed surface and w 0  is defined in a 

boundary strip of the domain D bounded by C (see figure 

5.1). 

oe4ne-J heie 

figure 5.1 

Since uniqueness is a local problem, without loss of general-

ity choose D so small that L and M are positive definite over 

D i.e. Lu = 0 or Mu = 0 in D 0C D, u = 0 on C, has only the 

trivial solution for any subdomain D 0 . 

First we extend w0  to the whole interior of C (not necessar-

ily as a solution of Mw 0  = 0 but such that Mw 0 EL 2  (D)). Equa-

tion (5.1) with W = w and u a solution of Lu = 0 shows that 

Mw0 Lu for every such u. By the Runge approximation property 

this implies that Mw 0  is orthogonal to any solution of Lu = 0 

in a domain D C D which contains the support of v 0  = Mw0 . 

Let C be the (smooth) boundary of D. 

Now define 	as the solution of 

= 0 	in D 

on 
(5.3) 

exists by Theorem D and the fact that L is positive definite. 

In (5.1) set w = w0 - 	
and let u be any solution of Lu = 0 
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over D to get 

Ii r  u Mw = j u 

D 	 C 

(5.4) 

Since Mw0Iu, the left-hand side of (5.4) equals zero. Since 

the boundary values of u on C are arbitrary, we conclude 
(w-w0 ) 

= 0 on C. Now define w 1  by 

r w0 in D - D 

W i  - 	 - 

in D 
(5.5) 

Note that w 1  satisfies Mw, = 0 in both domains and has con-

tinuous first derivatives across C. 

Exercise 5.1. Show that w 1  is a weak solution of Mw 1  = 0 and 

hence a strong (or genuine) solution. 

Exercise 5.1 shows that w 1  is an extension of w 0  to the whole 

interior of C as a solution of Mw 1 	0. Since M is positive 

definite over D and w 1  = 0 on C,w 1 	0 in D which implies - 

w0  = 0 in D - D. Since the only restriction on D was that C 

should be contained in the boundary strip in which w 0  was 
originally defined, we conclude that w 0  = 0 in the whole 
boundary strip. 

We now remove the restriction that C be a closed surface. 

Let F be a sufficiently small piece of a surface. (F = AB 

in figure 5.2 below). 

C 

	 C 
figure 5.2 
	

figure 5.3 
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Let w0  be a solution of Mw0  = 0 in ABB'A' of figure 5.1 which 

has zero Cauchy data on F. Let C be the boundary of the whole 

rectangle in figure 5.2. Define w0  = 0 outside ABB'A' and con-

sider w0  in the boundary strip consisting of those points 

inside C which lie outside the octagon AA'B'BGFIKL offigure 

5.3. Since we have already shown that solutions with zero 

Cauchy data on a closed surface are identically zero, w 0  = 0 

in ABB'A' and the proof is complete . 	(Note that w 0  has con- 

tinuous first derivatives across AB which implies that w 0  is a 

weak solution of Mw 0  = 0 and hence w0  is a strong solution of 

Mw0  = 0 in the region under consideration). 

Exercise 5.2. Let L[u] = 0 be 

equation with analytic coeffic 

principal part. Suppose u has 

hypersurface P. Show that u 

and conclude that solutions of 

Approximation. Property. 

a ii 

Lents 

zero 

0 in 

L[u] 

ie a r 

and 

Cau 

its 

=0 

second order elliptic 

Laplacian as its 

hy data on a smooth 

domain of definition 

have the Runge 

6. The Non-Characteristic Cauchy Problem for Parabolic 

Equations. 	 - 

The Stefan problem for the heat equation is defined as follows: 

Find u(x,t) and s(t) satisfying 

u xx -u t 	0, 	
0<x<s(t) , 	0 < t 

u(s(t),t)= 0 , u x 
 (s(t),t) = -(t), 	0 < t 

u(x,0) = +(x) .2:  0, O< x < s(0) = b 

with either u(0,t) > 0 or u(0,t) < 0 also given. u may be 

thought of as the temperature distribution in the water com-

ponent of aone-dimensional ice and water system. The free 

boundary s(t) represents the interface between the ice and 

water. The initial temperature 4 and interface position b 

are given, along with either the temperature u or its 

gradient u x 
 at x = 0. 
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Conversely, we can also consider the inverse Stefan problem, 

i.e. assume x = s(t) is known and find u, i.e. how must one 

heat the water in order to melt the ice along a prescribed 

curve? This is a non-characteristic Cauchy problem for the 

heat equation. The following example shows that this problem 

is "improperly posed". 

Example 6.1 ([351): 
Let 

u(x,t) = 	[enx sin(2n 2 t+nx) + -nx  

u(x,t) satisfies the heat equation and Cauchy data 

u(O,t) 	2 - 	sin 2n2 t, u (O,t) = 0. nx n 

un(0,t) and its derivatives up to order k - 1 tend to zero 

as n -. 	while for I x I > 5 > 0 u 11 (x,t) assumes arbitrarily 

large values as n -. , i.e. the inverse Stefan problem is 

improperly posed. Now consider the Cauchy problem 

	

u xx 	x + a(x)u + b(x)u - c(x)ut = F(x,t) 	 (6.1 

u(s(t),t) = f(t) 

u 
x
(s(t),t)= g(t) 
	 (6.2 

where a, b, c, F and s are analytic in a sufficiently large 

neighbourhood of the origin and x = s(t) is non-characteristic. 

We will first construct a fundamental solution S to equation 

(6.1) which has an essential singularity at t = T (as opposed 

to the usual multi-valued fundamental solution) and use this to 

solve (6.1), (6.2). The results which follow are due to 

Hill ([26]). 

Example 6.2. When [u] 	u xx - ut = 0 the fundamental solution 

S that we will construct is defined by 

F(x- ) E 	
(x)2 

S(,t;,T) - 
- 2(T-t) 	- 4(T-t) 
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wh e r e 
CO 

n 
E(z) = / 	

Z 

n0 	
r(n-i-3/2) 

as opposed to the usual fundamental solution 

1  
w(x,t;,T) = 	- exp 	( -x) 	' I .  

2 _(T-t) 	
4T- 

The fundamental solution S(x,t;,T) of equation (6.1) is a 

solution of the adjoint equation 

7fl, {v] 	- (av) + by + cvt 

M{v] + cv = 0 

with initial conditions 

(6.3) 

0, 	S(,t;,r) = -1 t-T 	 (6.4) 

Let 

S(x,t;,T) = 	S(x,) 	.1 	 (6.5) 

=0 	
(t-T)j+1 

j  

Equations (6.3) and  (6.4) imply that 

s 0 (,) = 0, 	s0 (,) = -1 

(6.6) 
=S, 	 0, 	j = 1,2,... 

i x 

Inserting (6.5) into (6.3) gives 

M[S0] 	 ________ 
flL{s] = 	( t-T) 	+ 	[M[S 

j =1 	
3 
.] - cS 	) 

	

j1 	(t-T) 

which implies that 

M1S0J = 0 
(6.7) 

M[S.] = cS. 1 , j = 1,2,... 
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Equations (6.6) and (6.7) determine the S i 's uniquely. We 

must now show that (6.5) converges. By Duhamel's principle 

S(x) = jR(x,)c()S 	l (,)d 	; i = 1,2,... 	(6.8 

where MIR] = 0 

R(1i,1i) = o 	R 
x 

(11,11) = 1. 

On any  compact interval 	, Iii!, Jxj < h from the analytic 

theory of ordinary differential equations there exist constant 

MQ ,K,C such that 

< M0 , 	IS o (x,)l < M0x - 

t,T1 ) I <K, 	IR(x,Ti)J 	<K fx - Tj 

Ic(1DI . 	C. 

From the observation that 

fI x- 	
1_12j-1 	

d 	
j12j+1 

(2j-1) 	 (2j+1) 7  

we have by induction on (6.8) that 

• 
is 

 
MM  x- 

2 +1 

3 	
0 	

(2j+1) 
(6.9; 

• 

IS(x,)l< MQM3 	
X- 

2j 

(2j). 

where M = KC. Equation (6.9) implies that the series (6.5) con-

verges absolutely and uniformly and can be differentiated 

termwi se. 

Now consider the identity 

$ I [v[u] - ulfl[v])dxdt 	
(6.10) 

= r [(vu 
X 	 X 
- uv + auv)dt + cuvdx) 
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where D is some two dimensional chain in the region of analy-

ticity of the integrand and aD is its one dimensional boundary. 

In equation (6.10) let v = S, u be a solution of 1u] = F, 

and let D be the lateral surface of a cylinder that wraps 

around t = i and has y o  and y  as its two rims, where y o  is a 

loop about t = T in the plane x = 	and y  is some other loop 

about t = 'r (see figure 6.1 below). 

FA- 

figure 6.1 

Because of (6.4)  we have 

1(Su - uS + auS)dt + cuSdx) = 	,t)dt 
i_v0 	X 	X 

= 2TTi u(,t) 

and hence (6.10) becomes 

U(,T) = 	 ( Su - uS + auS)dt ± cuSdx + 2n1 _ v 	x 	x 	 2ni D  
j JSFdxdt 

Placing the cycle _v on the two dimensional manifold x = s(t) 
(t complex) where the Cauchy data (6.2) is prescribed gives 

s(t) 
u(,T) = 	J(Suxx  - uS + auS + cuS + 	SFdxdt, 

2111  

(6.11) 

the desired solution of the Cauchy problem (6.1), (6.2). 
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Suppose now F a  0 and s(t) = constant = x 0 . Then (6.11) 

becomes 

u(,T) = Res Su - uS + auS + cuS} 
ix 	x t= 1• 

co 

v-- = 	 [S.(x0,)u(x0,i-) 	 (6.a 

j=o 

+ [a(x0 )S.(x0 ,) - S. 
3X (x0  ,)]u(x0 ,T)). 

Suppose the Cauchy data, as a function of T is analytic for 

TI < p. Then by Cauchy's inequality there exists a constant 

A such that 

l ba 
	u(x,r) 	2-  A - 

2 
(6.1 

I-. u 
x 
 (x,r) <A1 

-'3 
OT 	 - p 3  

The estimates (6.9) and (6.13) imply that the series (6.12) 

is dominated (up to multiplication by a constant) by 

co 	 2 
— 1 MIx0 — I

2 
 .1 	Mjx0  

} 	exp 	 (6.1 

j= 0  
which implies the following theorem: 

Theorem 6.1 ({26]): 

entire functions of 

which is a real ana 

2  + t2 < p 2  x 	 . Then 

function of x and t 

Assume the coefficients 

x and let u be a solutio 

Lytic function of x and t 

u can be continued as an 

into the strip - p < t < 

of [u] = 0 ar 

ri of Eu] = 0 

in the circle 

analytic 

p, - 	< x < co 

Remarks: For related results for parabolic equations in two 

space variables see [ 27 ]. 

7. Improperly Posed Initial—Value Problems for Hyperbolic 

Equations. 

Consider the equation 

26 



l:fre ,tfoce 

p1re5c'r&?d 

e re 

u x 1 X 1 	X2 X2 	X 3X 3  = u 	+ u 	+ q(x1,x2,x3)u - f(x 1 ,x2 ,x 3 ) 	(7.1) 

Lfld assume q and f are entire functions of their independent 

complex) variables. The Cauchy problem along a space-like 

surface is well posed: 

,L. 
•!;ke 5A.r-1ce: 

, presc..'r;bEI 

a 

figure 7.1 

However the Cauchyproblem along a tme-like surface is 

improperly posed (c.f. [20], p. 176): 

figure 7.2 

Note that the distinction between time-like and space-like sur-

facesis not important in one space dimension. 
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Example 7.1: 

U =sin hnx2  sin nx3  

is a solution of 

U=U 	+u 
X 1 X 1 	X2 X2 	3 X 3  

sati sfying 

u(x 1 ,O,x3 ) 	0 u 	(x ,O,x3 ) = 1 sin nx 3 . 

	

x2 	1 	 n 

As n 	the initial data tends to zero but the solution does 

not, i.e. the Cauchy problem for hyperbolic equations along a 

time-like surface is improperly 'posed. 

Example 7.2: Suppce we have a clamped, vibrating membrane 

and the slope of the deflection is measured on portion E of 

the boundary. 

figure 7.3 

We ask the following question: What must the initial displace-

ment and velocity be to produce a prescribed slope of deflec-

tion (as a function of time) on E? This leads us to ask for 

a solution of the time-like Cauchy problem. 

1 

c ' 1 x X 	 X2X2 +u x 
3  x 

 3 1 

U = 0 on E 

au  
-s; = g on 

'C a  
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(where c = velocity of sound) and to then evaluate u and -- bX 

at x 1  = 0. Suppose the plane x 2  = 0 in figure 7.2 is bent 

450 on each side of the x 3  axis to form two intersecting planes 

tangent to a genertor of each nape of the characteristic cone. 

The exterior characteristic initial value problem for equation 

(7.1) is to find a solution u of (7.1) in the quarter space 

bounded by these intersecting planes such that u assumes pres-

cribed values on each of the two planes. This problem is also 

improperly posed (171). 

Example 7.3 ({ 1 7]): Suppose u is a solution of the three dimen-

sional wave equation in spherical coordinates 

2 
2u2 	b 2u 	2 u 	1 	. 	u 	1 

= V u = —i  + - - + 2 	
- 

	

- 	' 	

r r 	r r 	r sine e 	e 	
2 	2 sin 9 

(7.2) 

that is defined in r > a > 0 and vanishes for t < r. (This 

represents an outgoing wave produced by sources in r < a). It 

can be shown that if t - r = T is bounded then 

urn [ru(r, 0, 4>, r + r)3 = f(e, 4', i) 

exists i.e. ru#f(9, 4'1 t - r) for large r. The inverse prob-

lem 	given the "radiation field" f, to determine, u. Set 

ru 	v 

t - r 	1• 

t + r 	- 

Then (7.2) becomes 

+ 	1 	r 1 	
6 Csin e ) + 	1 	2v } = 0 (7.3) 

bTbCF (1-c - ) 2 	e 	- 	sin2 0 

and the data for the inverse problem is 

29 



v
T 	

=0 O<cy< 
0 	

— ' 	- —2a 

vi= 0 
	 (7.4 

f(e, $, 0) = 0. 

Equations (73) and (.7.4) constitute an exterior characterist 

initial value problem. 

We will need the following definition: 

Definition 7.1 	A. function g(x 1 ,x2 ) of two real variables x 1  

and x2  will be said to be partially analytic with respect to 

x 1  for x 1 = a in the interval a < x2  provided it can be 

represented by a series of the form 

g(x 1 ,x2 ) = b0 (x2 ) + b 1 (x2 )(x 1 - a), + b 2 (x2 )(x 1  - a) 2-,- 

(7.s 

whose coefficients are continuous functions of x2  in the inter 

val a < x2  < P and provided that the series (7.5) converges 

absolutely and uniformly for a < x 2 	, x - al 	y. The 

region a < x2 	, x - aj < ' is known as the region of 

partial analyticity. The extension to more variables is evider 

First consider the time-like Cauchy problem. Let 

x = x3  - 

y 	x 1  + 	
(7.6 

z = x2 . 

Then (7.1) becomes 

L[u] 	uzz  + 4u1  + Q(x,y,z)u = F(x,y,z) 	 (7,7 

where F(x,y,z) = f(x 1 ,x 2 ,x3 ),Q(x,y,z) = q(x 1 ,x2 ,x 3 ). Let u 

and v be "well behaved" functions to be prescribed shortly and 

integrate the identity 
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vL[u] - uL[vJ = (2vu - 2v u) + (2vu - 2v u) 
y 	y x 	x 	x y 

+ (vu - 
S 	 Z 

uv )
Z 	

(7.8) 

over the torus D X 0 where U = 0 (C): Iz - ci = 6 > 0 is a 

circle in the complex z plane and D = D(C) c iR2 (jR2  is the 

Euclidean plane) is as in figure (7.4) below. 

figure 7.4 

= c3 (c) is on the complex extension with respect to C of 

the intersection of the plane z = C with the smooth convex 

initial surface on which the Cauchy data is prescribed. It 

is assumed that the normal to this surface is never parallel 

to the z-axis and that the initial surface is partially 

analytic with respect to z. Note that in the special case 

when C is independent of C the cylinder C is time-like in 
Euclidean three space]R , but the cylinder C in figure (7.5) 

below is space like. 

figure 7.5 
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Integrating (7.8) over D x 0 gives 

$jj(vL fu] - uL rv])dxdydz 
DxQ 

+ $f2v(A,z)u(A,z) + 2v(B,z)u(B,z) + 4v(P,z)u(P,z)]dz 

	

+ 4 	uvdydz - 4 	uvdxdz 	 - 

	

c xo 	 C 2 x0 

+ 2 5 5 F(uv - vu )dydz - (uv - vu )dxdz] = 0 

C 3 x0 

(Note that dxdy = 0 on 6D x 0). In equation (7.9)v(A,z)=v(x,y 
where A = (x,y), etc.. 	Not.,, let 

u be a C 2  solution of Lru] = F such that u and its den 

vatives of order less than or equal to two are partiall 

analytic with respect to z in some neighbourhood of a 

smooth (time-like) convex surface, where C 3  = C3(C) 

lies on the complex extension of the intersection of 

this surface with the plane z = C. 

v be a fundamental solution of L!u] = 0 such that 

v 
y 	 1 
=0 	onC xQ 	 (7.10 

	

v 	0 	on C 2  X 0 	 (7.11 x 

and at the point (P,z) = (, fl,z) 

	

v(P,z) = 	1 	+ analytic function of (z-ç) 	(7.12 
8 iii (z - 

\ 

We must now construct v. A fundamental solution S of L[v] = 0 

is of the (normalized) form 

CD 

	

s = 	1 + 	UR2L1 + w 	 (7.13 

	

8uiR. 	
-1 
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ihere R = J(z)2 + (x-)(y-1). TheUe5U(x,y,z; 	,11,c) can 

e computed recursively and are entire functions of their 

independent variables (since Q is - c.f. 120]). W is a regular 

3olution of Lw] = 0. Let W satisfy the boundary conditions 

CO 

w = - 	
on x = 	 (7.14) 

CO 

w = - 	 Uz - c 21 on y = 	 (7.15) 

14 exists from Theorem F and is entire since Q is. Then S def-

ined by (7.13) satisfies equations (7.10)-(7.12) and we can set 

v = S in (7.9) provided Iz - 	 I2 > 
	J (x- ~ )(y-11)1 i.e. z lies out- 

side the cut in the complex z plane along a line parallel to 

the imaginary axis between C ± i .J(x-)(y-11.) 

Note that in view of equations (7.10)-(7.12) W can actually 

be chosen in a variety of different ways, e.g. when 

q = constant = X a possible choice for v = S is 

= cos AR 

8rriR 

From (7.12) we have 

4 j' v(P,z)u(P,z)dz =  

and hence (7.9) becomes (setting v = S) 

(7.16) 

(7.17) 

-2 ' 	rS(A,z;,T,c)u(A,z) + S(B,z;,11,c)u(B,z)]dz 
J Q ( ç ) 

+2f 	u(x,y,z)S(x,y, 

c 3 (C)xQ() 

-21 j' 	Iu(x,y, Z)S(X,Y, z; , 11, ç)-S(x,y, z; , fl, C)uy (x 	z)]dydz 

C (C)xc(C) 
(7.18) 

Jj S(x,y,z;,,)F(x,y,z)dxdYdz. 

D(C)XC)(C) 
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Equation (7.18) gives the solution of the time-like Cauchy 

problem along a smooth convex surface. 

Note that 

Partial analyticity of the Cauchy data and its deriva-

tives of order less than or equal to two along y = y(x) 

implies that u and its derivative of order less than or 

equal to two are partially analytic in D X 0. 

Recall that S is an analytic function of z outside the 

cut between ç ± iJ(x- )(y -11). Let G(x,y) be an arbitrar-

ily small neighbourhood of this cut. Then (by deforming 

Q) equation (7.18) shows that at the point (,ii,) u 

depends continuously on its Cauchy data in 0 3  x G, where 

G 	G(x,y) for all points (x,y)EC 3 . 

By deforming the curve C 3  onto the characteristics C 4  = AT, 

0 5  = TB (see figure 7.6 below), and integrating by parts to 

eliminate the partial derivatives of u along these characteris-

tics, we arrive at the solution ofthe exterior characteristic 

initial-value problem ([7]): 

A 	C 2  

C4 	 C, 

 C S  - 

figure 7.6 
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- 21 rs(A, z;, 11, C)u(A, z) + S(B,z; , 11,C)u(B,z) 

- S(T, z; , 11, C)u(T, z) ]dz 

-f Is ( x ,y, z ;,1,)u(x,y,z)dydz 

	

..1J 	Y 
C xQ 

	

4 	 (7.19) 

+4 (' s(x,y,z;,Tj,ç)u(x,y,z)dxdz 
C 5 xc) 

-s I $S(x,y, z; , T, C)F(x,y, 

D xQ 

Note that the regions of integration are now independent of ç. 

Remark: Similar integral representations can be obtained for 

the Cauchy and Goursat problems for the elliptic equation 

u 	+u 	+ 

	

X2X2 	
u 	+q(x1 ,x2 ,x 3 )u = f(x 1 ,x2 ,x 3 ) (7.20) 

with data along a convex analytic surface. To see this set 

X = 

z = x2  + ix3  

z* = x2  - ix3 . 

Then (7.24 becomes 

Uç + 4Uzz* + Q(X,Z,Z*)U = F(X,Z,Z*) 

which is of the same form as (7.7). Repeating the previous 

analysis now leads to the representations (7.18) and (7.19) 

(with z replaced by X, x replaced by Z, and y replaced by Z*). 

for the solution of the Cauchy and complex Goursat problem 

respectively. 
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III Integral operators for effiptic equations 
8. Integral Operators in Two Independent Variables 

In one sense the integral representations obtained in sections 

6 and 7 can be viewed as integral operators for parabolic and 

hyperbolic equations. Here we obtain integral operators for 

elliptic equations such that the kernel of the operator is an 

entire function of its independent variables. 

Consider the self-adjoint equation (see, however, the remark 

at the end of this section). 

- q(x,y)u = 0 	 (8.1) 

Where u(x,y)EC 2 (D), D is simply connected with C 2 boundary bD, 

q(x,y) is a real valued (for x, y real) entire function of the 

(complex) variables x,y, (with minor modifications we could 

have considered q to be analytic only in some polycylinder). 

We want to generalize the following example: 

Example 8.1: Suppose Au = 0 in D. Then u = Re f(z) where f(z) 

is analytic. But by Runge?s  theorem [z '1 ) is a complete family 

of analytic functions in D. Hence [Re z) = [r 1 ' cos n e) and 

(Im z " ) = (ro sin n e) together form a complete family of solu-

tions for Lu = 0 in D. To approximate solutions of tu = 0 
N 

in D, u = f on bD, set u 
N = 2 a r 

n  cos ne + b r n sin ne and 
i 

a 0 

minimise 	- 	on 6D. By Theorem E this minimizes IUN_ vi 
in D. A complete family of solutions can also be used to 

approximate solutions to Cauchy's problem: 

I' Example 8.2: Suppose 	+ q'xiu = 0 in D and u = f,-- = g 

on E C aD. Then if Jul < 2M in D then there exist constants 
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C 1  = C 1 (M), C 2  = C 2 (M) such that 

2/8 < c r uI2ds + C 2  J max lul 	- 1 
xED 

where. 0 < 6 < 1. 	(c.f. f34]). 

Let 	be a complete family of solutions to A 
n u 

+ q (x)u =0 

UN = kl 

To approximate u (under the assumption Jul < M in D) use the 

Rayleigh Ritz procedure to minimize 

C 	' (f_uN)2ds + 2 ç(g - 
	N2 ds 

1 	
LE 

subject to the constraint IUNI < M in D. 

Now let 

z = x + iy 	
(8.2) 

z *= x - iy 

be a mapping of C 2  -. C 2  (C 2  denotes the space of two complex 

variables). Equation (8.1) becomes 

L(tJ) = - 	+ Q( z , z *) IJ = 0 	 (8.3) 
z 

where Q( z ,z*) = 	
Z+Z 	zz'\ 

4q2 	r) 
( z + z * z_z*\ 

0 ( z , z *) = 	2 ' Ti 	' 

(8.4) 

Theorem 8.1 (t21): Let E( z ,z*,t) be an analytic function of 

t, z , z * for Itt < 1 and z, z * in some neighbourhood of the 

origin which satisfies the partial differential equation 

-(1 - t 2 )E*t + 	E 	- 2tzL(E) 	0 	 (8.5) 

E 
and is such that z*/zt is continuous at z = 0, t = 0. Then 
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if f(z) is an analytic function of z in a neighbourhood of 

z = 0, 

U(z,z*) = P[f) = J 	E(z,z*,t)f((l_t2)) dt 2  
(1_tZ) 	(8.6 

-1 

will be a solution of (8.3) in a sufficiently small neighbour-

hood of z = 0, z = 0. 

Proof: 

= f(E 	f((l-t2) + E 	
l2 

zz*
_t -1 

But f = - f(l_t 2  z 	 )/ 2zt which implies that 

Uzz * = 	 _ E5(l_t2)(2zt)f) dt 

Integrating the second term by parts gives 

•1 	 E 

= 	
E 	_dt - 
	_ 	2

zz* l-t 2 	2zt 	
f(l-t )) 

/) t=_i 

	

(Jit2) 	1(E 	E 
fdt - 	 / ZZ 	 S 

-1 	2zt / 
	

- 	 2zt ) 
	

f(;(1_t2) dt. 

Equations (8.3), (8.5) now imply the theorem. 

Theorem 8.2 (121): There exists a function E(z, z *,t) satis-
fying all the conditions of Theorem 8.1 and also 

E(0,z*,t.) = E(z,0,t) = 1. 	 (8.7) 

If q(x,y) is entire then E(z,z*,t) is an entire function of 
z and z * 

Proof: Let 

z * 
E(z, z*,t) = 1 + 	t 2n n r z 	P (2n) (z, z*)dz*. 	 (8.8) 

0 n1 

Substitute (8.8) into (8.5) and compare powers of t. 
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This yields 

	

= -2 Q(z,z*) 	 (8.9) 
* 

	

(2 n+l)P( 2 fl+2 )( z , z *) = _2(P 	 z *) JPZ ( 2 + Q( z, (2 ( z , z *)d S *); 

n = 1,2,... 

Thus the P (2n) are uniquely determined. We must now show (8.8) 

converges. 

1 

Definition 8.1: Let S = 	a zm  z  n , S = 	z z 
n 

	

mn 	 inn 
in 

m,n0 	 m,n0 

where a 	 > 0. Then we say the series S dominates the series 
inn - 

S if k I < g 	(m,n = 0,1,...), and write S << S. Note that if 
mfl - inn 

S << S then 

1) -s;:• << 
bs  

 bz 

J S(z,z*)dz* << J 	S(z,z*)dz* 0 	 0 

S << 	, 	> 0. 
00 

1-az 	- 

Since Q(z,z*) is entire we have Q(z,z*) = 	a 
mn zinz 	converges 

m, n0 

uniformly and absolutely for Izi < r, Iz*I < r for every r > 0. 

Hence there exists an M > 0 such that Is mn m n r r I < M 

(m,n = 0, 1; 2,...), i.e. 

Q(z,z*) << M1 - 
	) Ei - 	a Q(z,z*). 	(8.10) 

-( 2n) Now define P 	( z ,z*) (n = 1, 2, ...) by 

= 2 Q( z ,z*) 

(2n+2) 
(2n + i)P 	(z,z*) = 2 	z(2z*) 	

- 	+ 

-1 
+ Q(z,z*) 

Iz*2(z,z*) 
 (i - 
	

dz* + 
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(2n) rMn 	(1 - Z)_fl_1(1 - .)_n_1), (n  r 	 r 
(8. n: 

where 

(2) = 2M 

	

______ 	 (8.12) ____ (2m+2) 	(2n)' 2n 1 	2Mr c 	= 	
+ n(2n+1))' (n1,2,...) 

(2n) 

	

Note that the P 	are uniquely determined and p (2n) << (2n) 

Exercise 8.1: Show that 

z 	
(n = 1,2 

... 

(2n) 	 (2n)' 	z)fl(i 	-n 
P 	(z,z*) = c 	- 	

- 	, 	 ) 

where for each E > 0 

n (2n)  c 	<N 	
r 	, (n = 1,2,...) for some N = N(E) ) 

Exercise 8.1 implies that 

(2n) << 	N(l + E)' 	
, (n = 1, 2, 

...)  - z)n(1 - Z * )fl  
r 	r 

Hence 

z*  CO 

1 + NJ 	 z ° (i + E)n 	dz* 	 (8.14) 0 	n(1 - z)n (1  n1 r 	 - Z* \ fl 

r 	r 

	

is a dominant for (8.8) with I t 	1. Since E is arbitrary 
(8.14) will converge uniformly and absolutely provided that 

z 	 I. 
.fl < 1. 	 (8.15) 

- 'zI)(l - IZ*I) 

Since Q is entire, r can be arbitrarily large which implies 

that the series (8.8) converges to an entire function of z and 
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z for I  t I < 1. 	Q.E.D. 

Since q(x,y) is real valued for x,y real, Re P 2 [f) is a 

solution of A 2u - q(x,y)u = 0. For x, y real we have 

lii  
(i 	t2n dt 
	+ 

Re P 2 [f) = 	E(z, 	,t)f( 	

- (8.16) 

+ 	(,z,t) 	Fl_t2)) dt 
2] 

where ?(z) = f(s), 	(z,,t) = E(z, z,t). Now extend x and y 

into the complex plane, i.e. set z = z in (8.16). From (8.7) 

we have 

Re P2 [fI 	= 	(0) + 
	

f( 	(i-ta)) 	2j (8.17) 

z=O 	
-1 

Now let u(x,y) be a real valued C 2  solution of A 2u - q(x,y)u = 0 

in D. Then we can (locally) expandU(z,z*) = u(5* ,zz*) as 

m 
mn 

CO 

a 	z 	z * 	 (8.18) 

m,n0 

SinceU(z,z*) is real valued for x, y real, a 	= a 

	

mn 	nm 

Exercise 8.2: Show from equation (8.3) and the fact that 

= a 	thatU(z,z*) is uniquely determined byU(z,O).nm  
Exercise 8.2 shows that if we choose f(z) in equation (8.17) 

such that Re P 2 [f) 	 LT(z,0), then we have 

= 0 

u(x,y) = Re 
	

(8.19) 

i.e. every real valued C 2  solution of 
A  2u - qI/  x,y.Iu = 0 can be 

expressed in the form of equation (8.19) for some analytic 

function f(z). 

Theorem 8.3 (21): The functions [Re P[z n )) 	and 2  n= 0 
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tIm P2tzflfl0tOgether form a complete family of solutions 

for A 2u - q(x,y)u = 0 in any simply connected domain D. 

Proof; The proof follows from (8.19) Theorem B, and Runge's 

Theorem for analytic functions of a single complex variable. 

Remark: A similar analysis (c.f.. ii])  as in this section yields 
integral operators for the equation 

+ a(x,y)u + b(XY)Uy  + c(x,y)u = 0 	 (8.20) 

Alternatively, integral operators for equation (8.20) can be 

obtained via the Riemann function, c.f. Section l,exercise 3.1 

and equation (11..7). Equation (11.7) defines an operator mapp-

ing ordered pairs of analytic functions onto complex valued 

solutions of equation (8.20). Taking the real parts of both 

sides of equation (11.7) yields an operator mapping a single 

analytic function onto real valued solutions of equation (8.20) 

(c.f. 	391). 

9. Integral Operators for Self Adjoint Equations in Three 

Independent Variables 

Consider the partial differential equation 

- q(x,y,z)u = 0 
	

(9.1) 

where q(x,y,z) is a real valued (for x, y, z real) entire func-

tion of the (complex) variables x, y, z. 

Theorem 9.1 (181): 

Let 

x = 

Z 	= 1 (y + iz) 
	

(9.2) 

Z 	= 1
(- y + z) 
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and let u(x,y,z) be a real valued C 
2 solution of (9.1) in a 

neighbourhood of the origin. Thentl(X,Z,Z*) = u(x,y,z) is an 

analytic function of X, Z, Z in some neighbourhood of the 

origin in C 3  and is uniquely determined by the function 

F(X,Z*) = U(x,o,z*). 

Proof: u(x,y,z)EC 2  implies thattJ(X,Z,Z*) is analytic. Hence 

locally 

Ux,Z,Z*) = 	amnt 	
(9.3) 

u:x,o,z*) = 	a 	 (9.4) 
mo 

U(X,Z,0) 	= o 

u(x,y,z) real valued implies that for x, y, z real 

TJ(x,zz*\ / = TJ(x,z,Z*) 	 (9.5) 

and hence for x, y, z real 

a 	
1L n*m = L a 	X(- Z*)n(_Z)m , 	 ( 9.6) 

mnL 	 mnt 

i.e. 

n+m 
amn , = - 1 	anmL . 
	 9.7 

Equations (9.7) and (9.4) impiy  thatTJ(X,Z,O) is uniquely 

determined from U(x,O,z*). But in X, Z, Z coordinates (9.1) 

becomes 

- 	
- Q(X,Z,Z*5_T 0 	 (9.8) 

(where for x,y, z real Q(X,Z,.Z*) = q(x,y,z)). Hence from 

Theorem F (see also section 7)tJ(X,Z,Z*) is uniquely determined 

from tJ(x,z,o) and Tf(X,O,Z*) i.e. from tJ(X,O,Z*) alone. 

Now define 

= 2CZ 	 (9.9) 
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= X + 2Z 

	

X + 2 1 Z 
	 (9.9) 

= 2(2 + § 3 ) = x + CZ + 	 (9.10 

where 

1 - E < 	< 1 + E, 0 < E < 

Theorem 9.2 ([8fl: Let D be a neighbourhood of the origin 

in the p plane, B = ( C : 1 - E < JCJ < 1 + E), G a neighbourho 
of the origin in the tiI§Vt 3 

 space, and T = [t : ItI 	1). 

Let f(,ç) be an analytic function of two complex variables in 

D x B and let E*(1,2,3,d,t) 	E(X,Z,Z * ,C,t) bea regular 

solution in G X B X T of the partial differential equation 

	

t(4E 1;  + 2E 2  - E2  - E3  + Q*E*)  + (1_t2 )E* - 	= 0 it 	t 1 

(9.1l 

where 

Wy  

	

Q*( 1 , 2 , 3 ,d) 	Q(X,Z,Z*) and E - 
1 -.  

i 

Then 

U(x,z,z*) = P 3 (f) = 

+1 

JJ 	E(X,Z,Z*,d,t)f((1_t2),d)_dt 2 dl  

	

ici=i -1 	 /l-t 	C 
(9.12) 

is a (complex valued) solution of (9.1) which is regular in a 

neighbourhood of the origin in X, Z, Z space. 

Proof: The Jacobian of the transformation (9.9) is -4 which 
implies that J(X,Z,z*) = P 3 tf) is regular in a neighbourhood c 

the origin. Differentiating and integrating by parts in (9.12) 

(using - 	
= 	- 	where w 	(lt2 )) leads to 
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- 	+ QU 

1 	' 	 f(I.L(l-t2).C) r 

- 2rri 	
pit(4E1; + 2E2 - 9+ Q*E3I-E2') 

IC 1=1_i 

+ (1-t2)E * - • E* ' 
	dt 	dC  

. 

it 	t iJ J12 ç 

which implies the theorem. 

Theorem 9.3({81): Let D 
r = 	i 	2' 3 )+ 	 r, I = 1,20) 

where r is an arbitrary positive number, and B2€ = [ C :IC_C 0 1<2 E), 
0 < € < 4, where  C 0  is arbitrary with CI = 1. Then for every 

n, n = 0, 1, 2, ... there exists a unique function 
(n) 	 - 	- 

i' 2' F
3  ç) regular In D r 	2E 

x B 	and satisfying 

P1 	
[ 

- 2n+1 	P22  4  p 33  - 4p13 - 	2P23 1 - Q*p )] (n+1) - 	1 	(n) 	(n) 	(n) 	(n' 

2' 	
(n+l) 

	

1, p 	(0, 	2' 	ç) 
= 0; 

n= 0,1,2,... 	 (9.13) 

(n) 	bp (n) 
where p1 Furthermore the function 

CO 
= 

V E*(1, 	
2' 	3' c,t) = 1 + Lt, 

2n n (n) 
p 	i'2'3' 	(9.14) 

n= 1 

is a solution of (9.11) which is regular in GR X B x T where R 

is an arbitrary positive number and 

GR = 	i'2'3 ) + • 1 < R, I 
= 1,2,31 

- 

1 B 	: 1 - E < 	< 1 + E), 0 < E < 

T = (t 	Iti < i). 

The function defined in (9.14) satisfies 

	

E* (0, 	2 §3 C, t) = 1 	 (9.15) 
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Proof: p 1 	 = _ J 	Q*(1t,2 	 is uniquely 

determined and is regular in Dr  x B2€.  By induction all the 
(n) are uniquely determined. Substituting (9.14) into (9.11) 

shows that E*  formally satisfies (9.11). We must now show the 

series converges uniformly in GR  x B x T. Since B is compact 

there exists C
i I 

ç. 	1 1 
 j = 1, .. . ,N such that B is covered 

by  u N. where N = 	
- 	2 	Hence it is sufficient 

j=l 

to show that the series converges in G x N x T. Since Q  is 

entire, in D 
r 	2€ 

x B 	we have 

-1 

C(l_) (
1_  	2 ) 

for some C > 0 where "<<" means "is dominated by". 

Exercise 9.1: Show by induction that in Li X B 

	

r 	2€ 

-(2n-l) 	(2n1) 
(n) p 1 	<< M(8 + o)(2nlrl(l - i) 	(1 - 

-(2n-1) 
1 	!.. 
( 	r) 	(1 	- 	

r -n 

- 2€ )  

where M and 6 are positive constants independent of n. 

Exercise 9.1 implies that 

(n) 	 i_2_ 	2 -(2n-1) 
<< M(8 + 6)(2n)(2n-l) 1 (l-

-) 

-(2n-1) 	
-n -n+l 0

2€) 	r 

and hence in D x N. x T we have 
r 

( n ) 	 ____ 
p 	'23'' M8 + 6)(2n)(2n_l)2Cl - 

k11 -2n 

1  

-n+l 
(1 
	

r 
2 
 ) 	l- r) 
	

(1 	2€)r 
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Now consider It 2n n (n) 
	 in D 	X N. X T

cvr 	 j 
where 

D 	= •1 '2'3 	
: 	. 	< 	; c > 1, i = 1,2,3) 

oir 

In 	x •fi. X T we have 
cyr 	J 

kI 	cy-1 
1- 	> —,i=1,2,3 r - 

Ic_cu 1 - 	2€ 

Ii1 = 2k 2  + 3 I . Oe 

ItLi 

which implies 

2n n (n) 
It 	L 

14 ct 5(5)(cy)_6)fl 

and hence for o' sufficiently large the series (9.14) converges 

absolutely and uniformly in Dcyr  x 	X T. Setting r = 

shows that E* is regular in G X N X T and hence is regular 

in GR x B x T. 

Exercise 9.2: Show that if Q(X,Z,Z*) = X = constant, then 

E(X,Z,Z*,c,t) = cos .14X(CXZ + C2Z2+ zz*) t. 

Exercise 9.3: Show that E(X,Z,Z*,C,t) is an entire function of 

its five independent complex variables if Q(X,Z,Z*) is entire. 

Theorem 9.4 (f8]): Let u(x,y,z) (17(X,Z,Zv)) be a real valued 

C 2  solution of (9.1) in some neighbourhood of the origin in JR 3 . 

Then there exists an analytic function of two complex variables 

f(,c) which is regular for ICI < 1 + E,E > 0, and p  in some 

neighbourhood of the origin such that locally u(x,y,z)Re P 3 [f). 
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In particular 

f(ii.,ç) =- 	g(.(lt2),C) dt 

where 

g(,C) 	2 	PJU(t, 0, (l-t)c)dt - U(,o,o) 

and y  is a rectifiable are joining the points t = -1 and t = +1 

and not passing through the origin. 

Proof: u(x,y,z)EC 2  implies that u(x,y,z) is analytic and 

q(x,y,z) real implies that Re P 3 (f) (where x,y,z are real) is 

a real valued solution of (9.1) for every analytic function 

f(,ç). Now suppose locally that 

CO 	n 

a nm 
 P çIfl 

n0 m=O 

f(,C) 	- 	J g((l-t 2 ),C) 	 (9.17 
V 	 t 

CO 	 n 
 a 	r(n+l) 	nm - 	

.nmF(n+--)F(*) 
n0 m=0 

CO 

Q(X,Z,Z*) = 	bnQXZnZ*m. 

Exercise 9.4: Show that 

g(,C) 	f((l - t2),C) 	
dt 

2  

Define 
CO 

Q(x,z,z*)= 	bm 	1n*m 

,m,n=O 
 

- 	 - F(n+l) 	n m = t L anm 	F(n-)rç) 	C 
n0 m=0 
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Let 	(x,z,z*,ç,t) be the generating function corresponding 

to the equationU 	1S 	- QtJ= 0. Then for x,y,z real 

Re P 3 [f) = 1 j 	$ E(X,Z,Z*,c,t)f((l_t2),C)_dt 

1 	 -- 
+ 

2- jf 	(x,_z*,_z,C,t)f(p,(l_t 2 ),C)_dt  

(9.19) 

where p = X - 

determined by U(x 
from the integral 

U(x,o,z*) = 

-( 1 z. From Theorem 9.11T(X,Z,Z*) is uniquely 

,0,Z*) and hence we try and determine f(p,1) 

equation 

.i f(p1(1-t2),) 	
2 4TTi

IcI=l 	 ./l-t 	c 

(9.20) 

+ -1-f 	 2),C)_dt L 

41 IcI=1 	 .Jt2 

where p, = x +C 	 z, 2 =X - Z*. But 

CO 

2n n * 	 t) = 1 + 	t 

(9.21) 
n= 1 

(1) where p 	= - 'J o  

— (n+1) 	1 — (n) — (n) 	— (n) 	— (n) 
p 1 	_2n+lhl)22 	+ p33 	- 4p 13 	- 2p23 	- 

—( n+l) p 	 = 0; n = 0, 1, 2, ... 	 (9.22) 

Equations (9.9), (9.22) imply that 

p 	2 	 'F (i) 	r(X + 2CZ - 2T, 	, 	(2cz* -2çZ + 2 C))d =  
0 
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i.e. 	is an entire function of X, Z, Z*  and C , and vanishe 
for 	= 0. A similar calculation using (9.22) shows that the 

same can be said for p 	n = 1, 2, 

Substituting (9.21) into (9.20) and integrating termwise 

(this is possible due to the absolute and uniform convergence 

of the series (9.21)) gives 

i.T(x,o,z*) = 	

1 

ISSl f(L1(1-t2) 	
dt ,C) 
JTt2 

dt 
4 i n J 

+ -J.-:-1 11=J l 	2(l-t2),c) 42 
(9.23) 

1' 
ç) dC  

= zrJ 	g(p 1 , 	•- 

	

IIl 	C 

+ 1 	(ç) dI 
4TTiJ 

	

IcI=' 	C 

where 

	

;;ç; 	C tm  

n0 m0 

We will now show that (9.16) gives the solution of (9.23). 

Let 
CO 

t.T(x,o,z*) =c 
Lnm 

n0 m=0 
(9.24) 

Since u(x,y,z) is real valued we have that c 0 , n = 0,1,2,... 
are all real. Equating coefficients of X z*m in (9.23) gives 

2nm.1  c nm = (n + m)j an+mm 	n > 0, m > 0 

(9.25) 

2c 	=a 	+a no 	no 	no 

Without loss of generality assume that a 0  n = 0,1,2,... 

50 



re real. 	Equations (9.24), (9.25) imply that 

' \' F(n+m+l) U(x,O,z*) 	 L r(n+1)r(m+1) n+m,m 
m0 n0 

+): 	'I n 
- 	C A  

no 
n= 0 

= 1 	' 	t'(n+l) 	 n-rn m 
a X 	Z* 

2 L 	r(n-in+l)r'(m+l) nm 
m0 nm 

+A  
1 	 n 	 (9.26) 
- 	C  

no 
n= 0 

	

CO 	n 
- 1 	 r(n-I-l) 	 n-rn 
- 	L r(n-m+l)r'(m-i-l) a nrn  X 
	Z 

n0 m=O 
CO 

+ 	 n 
- 	C X. no 

n 0 

rom the definition of the Beta function B(x,y) 

F(x)F() 
B(x,y) 	f1 tx_l(l_t)Y 	dt - 

- 	
y 

 F(c4- y) 
0 

have 
00 n  a 

f u(tx,o,(l_t)z*)dt = 1 V nm 
0 £ t n+1 

n0 m0 

OD 

C -  

	

+ 1 	 _12 V 	.Q. n 
2 L n+l 
n= 0 

t [ 	
U(t,o,(l-t))dtJ = 

n 	 CO 

amCm 1 ' 	n 

	

+ 	IC 	.L 
2 L no 

	

n0 mO 	 n0 

= 	g(I.L,) + 	U(po,o) 
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which implies the theorem. 

Theorem 9.5 ([8]) 	Let G be a bounded, simply connected domain 

in JR 3 , and define 

u 2n, m (x,y,z) = Re P 3 (i.L
nm 

 ); 0 < n < , m=O,l,... n. 

(9.27) 

u2+i(x,Y,z) = Im p3(pçm); o < n < , m=O, 1,. ..,n. 

Then the set [U) is a complete family of solutions for equa-

tion (9.1) in the space of real valued C 2  solutions of (9.1) 

defined in G. 

Proof: Let u(x,y,z)EC 2  be a solution of (9.1) in G and let 

C G. By the Runge a pproximation property for every E > 0 

there exists a solution u 1 (x,y,z) of (9.1) which is regular in 

a sphere S, S DG, such that 

max 	lu - u 1 I < 	 ( 9.28) 
(x,y, z)E 1  

From section 4 we can conclude that the Cauchy data for u 1  must 

be regular in some convex region B in C 2  and u 1  depends con-

tinuously on this data in S. Since convex domains are Runge 

domains of the first kind ([191 p.229), on compact subsets of 

B we can approximate the Cauchy data for u 1  by polynomials and 

construct a (real valued) solution u2  of (9.1) with polynomial 

Cauchy data. By Theorem F u 2 (x,y,z) is an entire function of 

its independent (complex) variables. Furthermore there exists 

a domain G 2 , G C:d C S, such that 

max - 1u 1  - u2 1 < 	. 	 ( 9.29) 
(x,y, z)EG2  

The fact that u 2  is entire implies thatTJ2 (X,Z,Z*) (u 2 (x,y,z) 

for x,y,z real) is an entire function of X, Z,Z*, which implies 

that U2 (x,o,z*) is regular in [lxi < R) x [Iz*I < R) for R 

arbitrarily large. Since product domains are Runge domains of 

the first kind (119], p.49), we can approximate1J 2 (x,o,z*) 
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by a polynomial in [xj 	R) x 	< R) and use Theorems 

9.1 and F to construct a (real valued) entire solution u 3 (x,y,z) 

of equation (9.1) (with polynomial Goursat data in the X, Z, Z 

variables) such that 

max -  1u2  - u 3 1 < 
	

(9.30) 

(x,y, z)EG2  

Theorem 9.4 implies that there exists a polynomial hN(,C)  such 

that u 3 (x,y,z) = Re P3 [hN).  Equations (9.28) - (9.30) now 

imply that 

max 	Ju - Re P3 [hNfl < E 

(x,y, z)E 1  

and the theorem follows. 

Example 9.1: When q a 0 we have 

____ 	 .m im rn m (cose)Re(i e 	) u2nm(x,Y,z) = (n+m) 	n 

u2n+im(x,Y,z) = 	
r11 m (cose)Im(ime3m) 

where r, e, 	are spherical coordinates and P denote the 

associated Legendre polynomials. 

Remarks: The results in this section first appeared in [8] and 

[9]. Prior to this paper partial results in this direction had 

been obtained by Bergman [1], Tjong  [38]  and Gilbert and Lo 

[23]. For the extension of the results in this section to 

elliptic equations in four independent variables see 1101. 
For recent results in this area see the book by Gilbert referred 

to in the introduction and the Indiana University Ph.D. thesis 

of D. Kukral and M. Stecher. 

10. Integral Operators for Non Self Adjoint Equations in Three 

Independent Variables. 

The result just presented for equation (9.1) can also be obtain-

ed for the more general equation 
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3 u + a(x,y,z)u+ b(xz)u+ c(x,y,z)u+ d(x,y,z)u= 0 

(10.1) 

where a, b, c, d are real valued entire functions of the (com-

plex variables) x, y, z(see [91). In complex form (10.1) bec-
ome s 

tTxx 	zz* A(X,Z,Z*)tjx  + B(X,Z,Z * )TJz  + C(X,z,z*)Uz*+ 

+ D(X,Z,Z*)V 0 
	

(10.2) 

where A = a, B = (b + ic), C = (-b + ic), D = d. Substitutin 

-ic(x,z' ,z*)dzt 
V(X,z,Z*) =U(X,Z,Z*)e 	0 	 (10.3) 

yields the following equation satisfied by V(X,Z,Z*): 

- 	+ A(x,z,z*)vx  + B(x,z,z * ) v z+ D(x,z,z*)v = 0 
(10.4) 

where A, B, D can be expressed in terms of A, B, C. An inte-

gral operator mapping analytic functions f(i.,C) onto solutions 

V(x,z,z*) of (10.4) is given by 

v(x,z,z*) 	C 	ff1 

1 " 

= --J 	j 
E(X,Z,Z*,,t)f(j.(l_t2),ç) dt 	dC  

2ni

(10.5) 

where in the 1'213 variables E* = E satisfies 

E* - D*E*) + ( 1_t 2 )E pt(4E3 + 2E 3  - n22 - it  

1 	
[(E + E)pt + (1_t2)E* - 2t 	- 	(10.6) t  

- B*ç f(2E + 2E)pt + (1-t 2 )E - 	E*] = 0 

where A*, B*, D* are A, B, D in the 	, I = 1, 2, 3, variables. 
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It can be shown as in Theorem 9.3 that 

CO 

= 	t2n n p(fl) 	(10.7) 

is a regular solution of equation (10.6) in GR  x B x T, where 

the p 	 are given recursively by 

(n+l) - 1 —(A* + B*C) 	
(n) (n+l) 	:I 	

+ p (n) - 4p (n) 

- 2(n) + (* + 2*C) (n)  + 	(n) + 2*C p (n) 	(n)3 

1S1A* + 
p (1) (,,

3)
c) = e 2  0 

(n+1) 
p 	(0 1 F 2 ,F 3 ,ç) = 0; n = 1, 2, ... 	 (10.8) 

(In the present case it is not possible to have 

as in Theorem 9.3 since in this case equation (10.6) cannot be 

satisfied due to the appearance of the term 4 E*(A* + B*C)). 

Proceeding now as in Theorem 9.4 we can show that every real 

valued solution of equation (10.3) can be represented locally 

in the form 

Ux,z,z*) = tJo,o,o)U0 (x,z,z*) + Re 	 (10.9) 

where 
1. 

1 	[+lj c(x,z1,z*)dZtE(vzz*t) X 3 if) = • T 	 0 
IC 1=1 

f(p.(1-t2),C) 	
dt 
	

(io.io) 

tJ0 (x,z,z*) is the unique solution of equation (10.2) satisfying 

t50 (x,0,Z*) =U0(X,Z,0) = 1 (which can be constructed by itera-

tion - see Theorem F and t281 ) and f(,ç) is constructed from 

the formulas 
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= 	I 	2),) (l-t2) dt 
t4  

n+i 

g(t,C) 
nm 

 = 
n0 m=0 

where 

2nin 
a  n+m-1,m=  (n+m)j nni  - 

n-i 
c-i 	nJ 
L (n+m)k 1 8kmn-k)o  

k= 0 

(10.11 1,  

Ij(x,o,z*) - U(o,o,o) = 

n0 m0 
n+m+ 0 

5km( 	

e10 	(x,z',o)dz' 

Remark: It was in order to achieve this inversion formula 

that equation (10.2) was reduced to the form of equation (10.4 

Following the analysis of Theorem 9.5 it can now be shown 

([9]) that the set 

u 0 (x,y,z) = 1J0 (X,z,z*) 

U 	= 
2n,m 	

Re C 3  (C m ) ;  0 < n < w, in = 0,1, ..., n+l 

(10.12 

u2fl+l,= Im c[ncm} 0 • n < 	in = 0,1, ..., n+1 

is a complete family of solutions for equation (10.1). 
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IV Analytic continuation 

11. Lewyts  Reflection Principle and Vekua's Integral 

Operators. 

Let u satisfy the partial differential equation 

u 
xx 	yy 

+ u 	+ a(x,y)u + b(xY)u + c(x,y)u = 0 	(11.1) 

— 

where u(x,y)EC 
2  (D)flC 1  (D), D being a simply connected domain 

of the x,y plane whose boundary contains a segment a of the 

x-axis with the origin as the interior point and such that D 

contains the portion y < 0 of a neighbourhood of each point of 

a. 

DC 

figure 11.1 

In complex form (11.1) becomes (c.f. section 1) 

u 
L[u]= 	*+ A(z,z*)+ B(z,z*)f2i+ C(z,z*)t.7 	0. (11.2) 

Assume A, B, C are regular for z, z * in D U a U D*  x D U a U D*. 
Now let R(z,z*,C,*) be the Riemann function of the adjoint 

equation (see Section 1 and Exercise 3.1) 

(Av) 	(Bv) 
M[v] = + Cv = 0. 	 (11.3) 

We have the identity for analytic functionstj(z,z*), v( z , z *), 
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vL[V] - U14{v] = (vt) zz- (U!v 	- Avi) - 

(ii • 
- (UFv - Bv]). 

Setting v = R, lettingt.Tbe a solution of LfU] = 0 and usir 

Green's theorem over a plane region S in C 2  bounded by a smoot 

curve S gives 

o =
J 
 (UR) dz - cUR - BR)dz + ft1(R 	- AR)dz* (11. 

S 	 '_S 	 S 

Letting S be the triangle with corners (c,), (ç,ç*) and (ç*,C 

gives (setting, at the end, ç = z, ç' = z *) 

U(z, z *) = tf(*, z*)R(*, z *, z, z *) 

+ 1U(t,)(R(t,T,z,z*) - A(t,t)R)dt 
(ll. 

+ Jd t - U(Rt - BR)]dt 

where d is the diagonal from (*,*) to (z,) and use has beer 

made of the boundary conditions satisfied by R. Similarly, 

letting S be the quadrilateral (0,0), (,O), (ç,?), (0,c), we 

have 

TJ(z,) = -IJ(O,0)R(0,0, z,)+U(z,O)R(z,O,z,) 

+U(0,)R(0,, z,) 

z 
- fu(t,o)(Rt(t,o,z,z) - B(t,O)R)dt 

$zU(Ot)(R_(oTz) - A(O,)R)d. 

(Equation (11.7) is Vekua's operator (1391) mapping analytic 

functions onto solutions of equation (11.1)). 

Now suppose on a we have 

u(x,0) = U(x,x) = 6(x) 	 (ii. 
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iere 8(z) is regular for z in D U a U DC. In equation (11.7) 

ttJ(z,O) = f(z), tJ(O,z) = g(z), and obtain for z on a 

8(z) = -6(0)R(0 1 0, z, z) + f( z)R(z,O, z, z) + g( z)R(O, z, z, z) 

- r f(t)(R(t,O,z,z) - B(t,O)R)dt 

- Jg(t)(R(O,t,z,z) - B(O,t)R)dt 
o 

ote that the boundary conditions satisfied by R imply that 

(z,O,z,z) and R(O,z,z,z) do not vanish for z in D U a U DC. 

rom equation (11.6) (setting z * = 0) we see that f(z) is known 

or z in D U a in terms of the given solution u(x,y) =tl(z,) 

nd(setting z = 0) so in g(z) for z in DC  U a. 

Now for z in D U a (11.9) is a Volterra integral equation 	- 

or g(z) since f(s) and 6(z) are known in ID U a. Since the 

ernel and terms not involving g(z) are analytic in D, con-

mucus in D U a, so must the solution g(z). But g(z) is already 

nown to be analytic in DC and continuous in DC  U a, which 

mplies that the above construction of g(z) furnishes the 

,nalytic continuation of g(z) into D U a U DC  (see [37], p.157). 

Similarly f(s) can be continued into D U a U DC. Equation 

11.7) now gives'U(z,) for arbitrary z in D U a U DC i.e. 

j(z,) has been extended 	z in D U a U DC. 

heorem 11.1 (t311): Let u(x,y) =U(z,)EC 2 (D)flC 1 (D)satisfy 

7] = 0 in ID and suppose 8(z) = tJ(z,z) is regular in 

U a U DC. Then u(x,y) can be analytically continued into, all 

f D U a U DC  where  DC is the mirror image of D reflected across 

L2. The Envelope Method and Analytic Continuation 

4e have already seen one method of analytic continuation, that 

Ls in sections 3 and 4 where regularity of Cauchy data deter-

nines regularity of solution. The following theorem shows how 

LnVegral operators can also be used for this purpose. 
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Theorem 12.1. 	(The Envelope Method 1211): Let 

F(z) 	F(z 1 ,z 2 ,... ,z) be defined by the integral representa- 
tion 

F(z) = 
	

K(z;)d 	 (12.1 

where K(z;) is a holomorphic function of (n+l) complex vari-

ables for (z;ç) contained in, save for certain singularities 
n±1 indicated below, C 	. Furthermore, let the integration path 

be a closed rectifiable contour, and let all of the singula 

points of K(z;) be contained on the atialytic set 

= [zIS(z,C) = O;CEC 1 ). 	Then F(z) is regular for all point 

z 	 n 

where 

= 	i 	
S(z,() 	

= 0; çEC 1 ) 	 (12.2 

Proof: Let F(z) be regular at z = z 0  and hence in a neighbou 
hood N(z ° ) of z 0 . Now analytically continue F(z) along a pat 

with one endpoint in N(z ° ). This can be done as long as no 

point of y corresponds to a singularity of the integrand on 

Even when this happens we can keep on continuing F(z) along y 

by deforrning the path of integration to avoid the singularity 

= oz) threatening to cross it. In particular suppose we 

have continued F(z) along y to a point z = z 1  and at that poii 

there exists a singularity C = o' on . Suppose however S(z 1 , 
has a simple zero at C = o', i.e. in a sufficiently small neigi 
bourhood N(u) = [ Cl I - 	< €3 we have 

S(z 1  ; 
S(z 1 ,ç) 	(c - a) 

	01) 

 ac 

S(z ,) 
where 	 0. Then we can deform 	about the point 

=a by letting it follow a portion of the circle 	- o'I 
which implies that F(z) is regular at z 1 . Q.E.D. 

We 



Corollary 12.1 (Hadamard): Let n = 1 and suppose f(z) is 

singular at a'1, C1
2' 

••• and g(z) is singular at 

Then 

F(z) = _
i_f f () g (Z/ )dC/ 	 (12.3) 

C 	C 

is regular for z :4 am 0 , m,n = 1, 2, 

Proof: Without loss of generality suppose that a' and 0 are 

the only finite singularities of f(z) and g(z) respectively. 

Then 

S(z,C) = (C - m)(z - 

and 

S(z,C) - -z-2C+a 
bc  n 	mn 

= 
setting S(z,C) 	S(z,() = 0 and eliminating 

gives (z - m fl )2 = 0, which implies the corollary. 

Remark 1: If & is not a closed contour but an open contour 

between two fixed points C 1  and  C 2  then we cannot deform 

away from these points, and hence F(z) may be singular on the 

set 

= [zIS(z,C) = 0; 	C = C 1  and  C = C 2 . 	 (12.4) 

Such singularities are called endpoint-pinch singularities. 

In summary the possible singularities are those points which 

we are unable to list as regular points by the Hadamard method 

or envelope method (taking into account possible endpoint-

pinch singularities). 

Remark 2: For extensions of Theorem 12.1 and Corollary 12.1 

to multiple integrals see Chapter 1 of r21].  Theorem 12.1 

is often mistakenly credited to Landau,Bjorken and/or 

Polkinghorne and Screaton. It was actually first proved by 

R.P. Gilbert in his 1958 thesis. For a historical discussion 

of the origins of Theorem 12.1 see the introduction in p21]. 
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The envelope method can be applied whenever an integral 

representation of the solution is available, e.g. the represel 

tation derived in sections 6-10. Here we apply Theorem 12.1 

to the axially symmetric potential equation, i.e. the equatioi 

+ 	- 	= 0 	 (12.5: 
r 6r 

where (r.z.1)  are cylindrical coordinates •and u is assumed to 

be independent of d1. 

Exercise 12.1: Show that if u(z,r) is an analytic solution of 

(12.5) in some neighbourhood of the origin, then u(z,r) is an 

even function of r and is uniquely determined by, u(z,0) = f(z 

Exercise 12.2: Using Theorem 9.2 show that for every analyti 

function f(z) 

u(z,r) = Aff)
- r 
 Jf( a ) 	 (12.6) 

where 

= Cc I C = e 	•o < + < 2u 	 (12.7) 

	

a = z + i- (c + c 1 ) 
	

(12.8) 

defines a regular solution of (12.5) in some neighbourhood of 

the origin such that u(z,,0) = f(z). 

Theorem 12.2: If the only finite singularities of fa.). are at 

a = a then the only possible singularities of 

	

u(z,r) = tJ(ii,T)('fl = z+ir, 	= z-ir) on its first Riemann she€ 

are at fl = cy and 	-= a. 

Proof: We represent u(z,r) by the operator A and apply the 

enevelope method.. "Envelope" singularities: 

= [(z,r) I S(z,r;c) = (z - o')'C + 	
( 2 + 1) = 0) 
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[(z,r) 	 - S(z.r;C) - (z - 	+ jrC = 03. ac=   

liminating 	gives 

= 	' 0 fl4 1  = [(z,r 

= [11 

ihere 11 = z + ir. 

'Hadamard" singularities: 

I (z - c) 2 + r 2 = 0) 

CO( 11 - 	= 0), 

[C = 0) = ((z,r) Ir 	0). 

But it can easily be verified by termwise integration in 

quation 12.6 that A(f) is regular about origin if f(a) is. But 

(12.5) is invariant under translations along z axis and hence 

.[f) is regular at points on the z axis provided they corres-

pond to regular points of f(a). 

'emarks: Theorem 12.2 has a long history: F151, [25], [22] 

nd [ii]. For further applications of Theorem 12.1 to the 

inalytic continuation of solutions of partial differential 

quations see [21]. 

L3. The Axially Symmetric Helmholtz Equation 

Consider 

3u + u = 0 

defined in the exterior of a bounded domain. Assume that in 

cylindrical coordinates (r,z,4) u is independent of 	. Then 

(13.1) becomes 

L[u]u 	+u 	+u +u=0. zz 	rr 	r r 
(13.2) 

Now let D be a bounded, simply connected domain in the (r,z) 

plane which is symmetric with respect to the axis r = 0 and has 

smooth boundary D. Let f(r,z) be a continuous function defined 



on aD = D fl [(r,z) Ir > 0) - 

ul 	=f 
	

(13. 

Example 13.1: Sin R (where z = Rcose, r = R sin e) is a 
solution of (13.2) which vanishes on the circle R'= ri, i.e. 

uniqueness does, not in general hold for the boundary value 

problem (13.2), (13.3). 

Theorem 13.1 (1401): There is at most one solution of (13.2) 

(13.3) which is regular in theexterior of D and satisfies 

1u limR -- iU)= 0 

uniformly for e E [0,i-r]. 

(13.1 

Remark 1: (13.4) is known as the Sommerfeld radiation con-

dition. 

Remark 2: It is easily shown (c.f.Exereise '12.1) that the 

regularity of u in the exterior of D implies that u i's an 

even function of r. 

Proof of Theorem: On the circle of radius R (where the radiu$ 

of D is less than R) expand u in a Legendre series 

rO 

u(R,e) = 	a n  (R)P (cose); R > R0 	 (13.5 L 
n= 0 

where 
TT 

a(R) = f u(R,e)P(cose) sin 8 de. 	 (13.6 

From (13.2) and (13.6) it can be verified that 

1 

a(R) 	a R 2 H ( '? (R) + b R_2H(2? (R) 	 (13.7 n 	n± 	 n 	n+-- 

where 	denotes the Hankel function of the 1th kind. 
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But (c.f. p16]) 

H1 e (R) - JTR2 ICR --+ o(_3'2); R -  

(13.8) 

H( 2 ) (R) = /Ie_1 	- 	- -ir) +  o( 3 /2);  R 	co 
,JuR 

.ihich implies (by the Sommerfeld radiation condition) that 

bn = 0. Hence 

u(R,B) = R 2 	aH? (R)Pn(cose); R > R0 . 	(13.9) 

Now assume u = 0 on bD and apply Green's formula in region B 

below to u and U: 

V. 

z 

figure 13.1 

r - J f!) c s 	r(uM() - uM(u))dV 	(13.10) 
B'\ 

where M(u) = u 	+ urr + 	u, the axially symmetric harmonic 

equation. 	But (13.10) implies (since L(u) = L(u) = 0) that 

u —u 
(u 	- u -g) sin dB = 0. 	 (13.11) 

From the relations (see [16]) 
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urn (R' 

n+21 

 . "2 	H(1 	() - n+.- 	 TI (u3.1 

max 	Jip 	(cose)J . 	1 
eE[o,n] 

it is seen that the series (13.9) can 

wise. Furthermore from Abel's formula 

(using equation (13.8) to evaluate the 

H (i) 	d 	H(2)( ) 	H(2), 	d 1  R, dR 
	 - 	 dR. 

be differentiated term-

for the Wronskian we h 

constant - 
IT 

H (1 ?  (R) = 	(13.13 n+ 	1TR 

Since H 
n+--  
( 1  = H(2 

n+-- , substitution of (13.9) into (13.11) and 

making use of the orthogonality property of the P (cose), giv 

TI 	 - 

0  = $ R2( u 	- u 	 4i E Ia j2 	
(13.14 

0 	
u- 	- u -) sine e = - 	

n 

Hence a n 	0 for every n, which implies that u 	0. 

Theorem 13.2 (129]j40]): Let u(R,e) be a regular. solution of 

(13.2) for R > C satisfying the Sommerfeld radiation conditior 

Then u (R,e) has the representation 

00 	

G (cose) 
u(R,O) = R2H1(1) 	

F 	O 	

+R 

	

(R) 	
(5) 	

2H(1)(R) 	n 
3/ 	L 	R" n=0 	 2 	n0 

(13.15) 

where the series converge uniformly and absolutely for 
R > C '  > C, e€ 10,u]. 	F0  (cose) and G0 (cose) determine u(R,e) 
uniquely. 

Proof: If the recursion formula 

H 0  (R) + H 	(R) = v-1 	v+1 	R 

is used repeatedly one gets 

(13. 16) 



(R) = H1) (R) R 1 (R) - H 1(R) R 	31 (R) (13.17) 
2 	 - 	n-i, 	2 

here F. n, v (F.) are Lommel polynomials defined as 

[n/2] 

F. 	(z) - 
	_l)n(n_k).1t(v+n_k) 	

(13.18) 
tz 

n,v 	- 	k (n-2k)f(+k) 	

)_n+2k  

k= 0 

onsider now the series (z = R, 	= cosO) 

E(z,) = 	a R 	1 (z)F() n n, -- 
n= 0 

(13.19) 

Q(z,) = 	a n n-i 
F. 	3/ (z)P() 

n= 0 

rhich result when (13.17) is substituted into the series rep-

esentation (13.9) of u(R,e). Now set z = C'e' °  0 < a < 211. 

le can rewrite E(z,) as 

i 	(C' i 	H(C') 
- . aP() r(n+*)\_e j 	n± 

F. 
1 n, -- 

n0 	 i 	'.C' io#\ ' (i)(C,) 
2 	n +-21 (13.20) 

From [16],  p.35 we have 

(z/2)R1(z) = 

	)  11 rn 	 n,v J1(z). 	 (13.21) 

n-. 

Now note that (c.f. equation (13.12)) 

CO 

aH1J. (c')P() 	 (13.22) 

n 0 
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is absolutely and uniformly conver 

(13.12), (13.20) and (13.21) imply 

and absolutely convergent for Izi 
series defining E(z,) is a series 

converges uniformly and absolutely 

and hence is analytic for l/j < 
result holds for Q(z,). Hence 

gent for E[-i,+i]. Equation 

that E(z,) is uniformly 

C', 	E[-.1, +11. 	But the 

of polynomials in 1/ which 

on the circle Il/SI = 1 /c, 
E1-1, +1]. A similar 

u(R,e) = R 2 H 1 	(R)E(, cose) + RH(R)Q(, cose) 
2 

(l3.23 

where E and Q are analytic functions of T and are regular in 
1 the interior of the circle 1 	1 -, in the complex 	plane. 

Equation (13.15) follows from this statement. If F0  and G0  

are known, F 
n 
 and G can be computed recursively by substitutir 

into equation (13.2). It is easily verified that 

CO 

F0(cos$) = Ia2 	(_1)fl P2(cose) 

(13.24) 
G0(cosO) 	

a2 )P2fb5e no   

Corollary (129], 140]):  Let u(R,e) be a solution of (13.2) for 
R > 
	eE[o,u] satisfying the Sommerfeld radiation condition. 

Then 

-'B. lim e 	Ru(R,B) = f(cose) = -G0 (cose) -iF0 (cose) 
R 

exists uniformly for eEio,rT]. If u(B.,e) has the expansion (for 

R > B.0 , eEro,n]) 

u(R,e) = 
	Raifl+l H(R)P(cose) 	 (13.25) 

then 	 00 

f(cosO) = )aP(cosO) 	 (13.26) 
n= 0 



Proof: The corollary follows from equations(13.8), (13.15) 

and (13.24). 

We now consider the inverse scattering problem associated 

with equation (13.2), i.e. given the radiation pattern f(cose), 

to determine u(R,e) and its domain of regularity. In particu- 

lar we want to analytically continue u(R,8), from its initial 

domain of definition in a neighbourhood of infinity. 

14. Analytic Continuation of Solutions to the Axially 

Symmetric Helmholtz Equation 

Let u be a regular solution of 

u 	+u 	+1i +u=O 
rr 	r r 

(14.1) 

in the exterior of a bounded domain D, and suppose 

	

urn R(- 	- iu) = 0; R = j2 + 2 
	 (14.2) 

From section 13 we have 

iR 
e 

t'-• 	R 	
f(cose); R -. 	. 	 (14.3) 

where f(cos8) is known as the radiation pattern of u. 

Theorem 14.1 (t331 ): A necessary and sufficient condition for 

a function f(cose) to be a radiation pattern is that there 

exists an (axially symmetric) harmonic function h(z,r) = h(R,e) 

which is regular in the entire space such that h(1,e) = f(cose) 

and furthermore has the property that 

IT- - 

Ih(R,) 1 2  sin8 dO 	 (14.4) 
I) 

0 

is an entire function of R of order one and finite type C. 

When this condition holds there exists a unique function 

u(z,r) = u(R,O) which satisfies the Sommerfeld radiation con- 

dition (14.2) and is a regular solution of the (axially symmet-

ric) Relmholtz equation for R > C such that 



u(R,e) - iR  —f(cose) + 0 R -. . 	 (14.5) 

Proof: Suppose f(cose) is a radiation pattern. Then 
CO 

f(cosO) = 	aP(cose) 	 (14.6) 

where the series 

00 

i+l) H U (c ' ) P(cose) 	 (14.7) 
nO  

converges absolutely and uniformly for C' > C for some C > 0. 

From equation (13.12) this implies that 

Ia (F(n + 1 )( 2 /C,)fl  
n 	 ('4.8) 

is bounded, i.e. (using Stirling's formula) 

lim nial 	- 2 eC'.  
II -• 

But h(R,e) = 	a RP (cose) and (14.9) implies that 

n= 0 

0

11 
2 jh(R,O) 	sinede = 	, I a n I2R2n  is an entire function of 

n 0 

order 1 and exponential type C. 

CD 

P 
TI 	

2 	2n i Suppose j Ih(R,O) 12 sinede 
= L — 1 Ia 2R 	s an entire 

0 	
n=0 

function of order 1 and exponential type C. Then from equations 

(14.8) and (14.9) the series (14.7) converges for each C' > C. 

From equation (13.12), the series 

	

a n+lH(l 	(R)P(cose) 	(14.10) L n 
n0 
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can be differentiated termwise and defines a solution of 

(14. 1 ) for R > C which satisfies the Sommerfeld radiation 

condition. From the corollary to Theorem 13.2 u(r,e) has 

f(cos 8) as its radiation pattern. 

We now want to analytically continue fi(R,8) pastthe circle 

R=C. From section 12 h(z,r) is uniquely determined by the 

function 
CO 	 +1 	1-z 2 

h(z,O) = 	a n = 	 2 
' 

n0 	
-1 	(1-2z+z )  

Equation (14.9) implies that h(z,O) is an entire function of 

order 1 and type C12• Let f(z) be the Borel transform of 

h(2iz,O), i.e. cD  

f(z) = 	 2n 	
-n-1 	 (14.11) 

no   

Before we can state our first lemma we will need to introduce 

the concept of the indicator diagram of an entire function of 

exponential type. Suppose g(z) is an entire function of 

exponential type. Then the indicator function of g(z) is 

defined as 

k(0) = urn R 1  log 	
iO

g(Re )j. 
R—co 

 can be shown that k(8) is the supporting function of a 

convex set, called the indicator diagram of g(z). 

figure 14.1 
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Lemma 14.1 (Polya): f(z) is regular in the exterior of the cc 

jugate indicator diagramof h(2iz,O). 

Proof: 141, p.75. 

Remark: 	is a closed convex set contained in Izi < C. 

Now define 
a, 

.n+l (1) 	-n-1 
g(z) = C' 2 T 	a 	H 	(C 2 	1 

n 	n+ 1 	'),) 	 (14.1 
n= 0 

where C' > C. 

Lemma 14.2 (112]): g(z) is regular in the exterior of. 

Proof: From Lemma 14.1 and Hadamard's multiplication of 

singularities theorem (Corollary 12.1; 1371, P. 157) it suffi 
ces to show that the singularities of 

(C') 	-n 
G(z) = 	 (14.1 

n=0 n.! 2 

lie on the closed interval 10,11. But from 1161 p.78, 100 we 
can actually sum (14.13) to give 

G(z) = 	 (1 - 	eC'( 	
- l/) 	

(14.14 

i.e. the only singularities of G(z) are branch points at z=0 

and z 

We now construct the axially symmetric harmonic function 

v(z,r) such that v(z,O) = g(z): 

a, 	 -n-i JY 
v(z,r) = 	(R,e)= 	C ' a ±n+lH 	(C')() 	P(cosB) n 

n= 0 

('4. 15) 

Note that ]v( 1  ,B) is an axially symmetric harmonic function 

in a neighbourhood of the origin. Applying Theorem 12.2 to 

and using Lemma 14.2 we have that v(z,r) = (R,e) is 
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regular in the exterior of q U t (where G denotes the image 

of G under conjugation). By the law of permanence of function-

al equations v(z,r) is harmonic in G U G. By construction 

we have that v(C',8) = 

2 
Lemma 14.3 (r12]I: Let A = [(z,r)I.Jz + r 	CY. Then for 

(z,r)EA, v(z,r) (= u(z,r)) is an analytic function of 

TI = z + ir and can be continued analytically as a function of 

TI, into the exterior of G U 	U[(r,z)r = O. 

Prooi: Let 4 conformally map the exterior of the circle A 

onto the upper plane in the complex C = x + iy plane such that 

4 maps the line r = 0 onto the line x = 0. Under such a 

mapping the exterior of G U G is taken into a region ci 

containing the upper half plane in its interior. The equation 

for v(z,r) is transformed into an elliptic equation for a 

function w(x,y) with coefficients analytic in 

ci' = ci - (( x,y)x = 0). 	Since v(z,r) is regular in the exter- 

ior of G U G, by Theorem B w(x,y) = w(ç,) is an analytic 

function of C and 	for (ç,)Ecl' x ci' where cl'is the image 

of 0' under conjugation. Hence we can conclude that 

(14.16) 

is regular for ç in 0' fl 0'. Using the inverse conformal 

mapping now shows that v(z,r) (z, r).EA can be continued to an 

analytic function of 1 in the inverse image of 0' 0 ci'. From 

Theorem 11.1 we can now concl ude that u(z,r) is regular in the 

exterior of G U U Ut(r,z) Ir = 0). 

Remark: A similar analysis shows that R•R=C' can be continued 

to an analytic function of 'Ti in the exterior of G U G U[r = 0). 

Hence the continuation of u(z,r) across the circle R = C' can 

be. accomplished by referring to the results of section 4 instead 

of making use of Lewy's reflection principle. 

We now collect our results in the following theorem: 
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Theorem 14.2 (121): Let f(cos8) be the radiation pattern of 

a solution fi(R,8) of the three dimensional axially symmetric 

Helmholtz equation where (R,e) are polar coordinates and let 

+1 
f() 	(' + 4z 2 )d 

4iz 	2 
- 4z ) 

Then F(s), z = Re , is an entire function of order one and 

finite exponential type C. If G is the conjugate indicator 

diagram of F(s), then ti(R,) is regular in the exterior of 

G U u[(R,e) 8 = O,n,R < 03 (see figure 14.2 below). 

figure 1 4.2 

Remark: The results of this section have recently been 

extended by S.D. Sleeman in 

B.D. Sleeman, The three-dimensional inverse scattering 

problem for the Helmholtz equation, Proc. Camb. Phil. Soc. 

73 (1973), 477-488. 
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V Pseudoparabolic equations 

15. Pseudoparabolic Equations in One Space Variable 

Consider the pseudoparabolic equation (c.f. 136]) 

u] 	u 	+ d(x,t)u + ilu 	+ a(x)u + b(x)u = q(x,t) 

	

xtx 	 t 	xx 	 x 

(15.1) 

defined in D(H,T) = [(x,t)IO < x <H,. 0 < t < T). Assume 

d(x,t)€C 1  ((H,T)) 	((H,T) denotes the closure of D(H,T)), 

q(x,t)EC 0  ((H,T)), a(x)EC1[O,H]  and. b(x) € C 0 [O,H]. 	l is a 

constant. 	(References for the appearance of equation (15.1) 

in physics can be found in 15] and 136]). 

Define the adjoint equation by 

	

rn[v] = v xtx 	 t + d(x,t)v - liv xx + (av) x - by = 0. 	(15.2) 

Now let (,T)ED(H,T) and integrate 

figure 15.1 

the identity 

vru] - u t7fljv] = 	u xt
v 	uv 

. 	xt -- auv+ nu xvt + Tlu tv] 

+ --Fau V 	+ buy 	Thi. v  ] at 	.x 	 xx 

over the rectangle R in figure 15.1.. An application of Green's. 
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formula gives 

J 0' 0 I (vtu] - umrv])dxdt = 	
(15.3) 

r. 
= 	(u v -u v -au v+u v +1u v )dt-(au v+buv-Thi v )dx. 

xtt txt 	t 	xt 	tx 	x 	xx bR 

Suppose there exists a function v(x,t;,T) such that 

mr.vl = 0 

v(,t;,T) = 	- e ] 

v(,t;,T) = 0 

v(x,T;,T) = 0. 

(15.4a 

(15.4b 

(15.4c 

(15.4d 

If T = 0, (15.4b)  is interpreted in its limiting form as n -. 0. 

Then if there exists a function u(x,t) such that 

{u] = q 	 (15.5a 

	

u(0,t) = f(t) 	 (15.5b 

	

u(O,t) = g(t) 	 (15.5c 

	

u(x,0) = h(x) 	 (15.5d 

where f(t), g(t)EC 1 r0,T], h(x)EC 2 10,H], then equation (15.3) 

implies that 	 - 

u(,T) = h(E) +I 1a(x)h'(x)v(x,0;,T) - T.h'(x)v (x,0;,T) 
x 

± b(x)h(x)v(x,O; , T) J 

+ 1 rg?(t)v(o,t;,T) - f'(t)v 	(0,t;,T) 
0 	 xt 

-a(0)f'(t)v(0,t;,T) + 1ig(t)v(O,t;,T) 

+1)f?(t)v x (O,t;,T)]dt 

+ J 	J q(x,t)v(x,t;,T)dxdt. 
00 

(15.6) 
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Equation (15.6) gives the solution ofthe Goursat problem 

(15.5) in terms of the Riemann function v(x,t;,T). 

Exercise 15.1: Show v(x,t;,T) exists by using the methods of 

section 3. Let 

= max 	[e
-xF( 1.1). 

(x,t)ER 

Show that as a function of 	and T 	[v] = 0. 

Exercise 15.2: Suppose the coefficients a, b and d are entire 

functions of x and q = 0. Show that v(x,t;,T) is an entire 

function of . Conclude from equation (15.6) that if h(x) = 0 

and u(x,t) is a solution of 1u] = 0 which is analytic in a 

neighbourhood of the origin, then u(x,t) can be analytically 

continued into a strip of the form iti < t o , - 	< x < . 

Compare this result to the behaviour of solutions to parabolic 

and elliptic equations in two independent variables. 

We now want so solve the first initial boundary value prob-

lem for equation (15.1)  i.e. find a solution of Lru] = q in 

D(H,T), continuously differentiable in D(H,T), such that 

u(O,t) = 	f(t) (15.7a) 

u(x,O) = h(x) (15.7b) 

u(H,t) = 	4(t) (15.7c) 

where f(t), 4(t)EC 1 rO,T] h(x)EC 2 [O,H]. 	To find u set 	= H 

in (15.6) and integrate by parts to arrive at 

= g(T)v(O,T;H,T) + 
(15.8) 

T 

+ 	[vt(O,t;H,T) - vtt(O,t;H,T) - v(O,t;H,T)]g(t)dt 
•0 

where 
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(T) 	 - h(H) _$Th'(x)(a(x)v(x,O;H,T)_  TIV (x,O;H,T)) 

+ h(x)b(x)v(x,O;H, T)]dX 

+ ht(0)Fvt(0,O;H,T) + 'flv(O,O;H,i)] 

(15.9) 

+J 0 f'(t)r X
t(0,t;H,T) - a(0)v(0,t;H,T) 

+ riv( 0 ,t;H,T)]dt 

- yrq(x, t)v(x, t;H, 

Exercise 15.3: Use exercise 15.1 and the fact that 

d(x,t)EC 1 (D(H,T)) to show that '(i- ) and the kernel of the inte-

gral equation (15.8) is continuously differentiable with respect 

to T for 0 < T < T, 0 < t < 'r; see also f20] pp. 116-117. 

Conclude that if a solution g (T) exists then g(T)EC 1 Io,T]. 

To show that a solution g(T) of (15.8) exists, it suffices 

to show v t ( 0 , T ;H,T) 4 0 for TEO,TJ. To this end consider 

	

= vt(x,T;H,i- ) 
	

(15. 10) 

for arbitrary (but fixed) T in [O,T]. The differential equa-

tion (15.4a)  and the boundary condition (15.4d)  imply that 

	

xx + d(x,T) = 0 
	

(15.11) 

Suppose d(x,t) < 0 for (x,t)E(H;T). Then if p(0) = 0, 	(x) =0, 

since (15.4c)  implies that (H) = 0. 	But p(x) 	0 implies that 

u(i-i) = vt(H,T;H,T)0 which contradicts (15.4b). ((15.4b) 

implies that vxt(H,T;H,T) = -1). Hence if d(x,t) < 0 we can 

solve (15. 8 ) for g(T) and substitute into (15.6) to give the 

(unique) solution of the first initial boundary value problem 

for 1u] = q. 
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['heorem 15.1 (r131, p361): Let d(x,t) be continuously 

lifferentiable and nonpositive in D(H,T), q(x,t) continuous 

n D(H,T), and assume a(x)EC'IO,H],b(x)ECFO,H]. 	Let f(t), 

(t)EC 1 0,T] and h(x)EC 2 IO,H]. Then there exists a unique 

3olution to [u] = q(x,t) satisfying the initial - boundary 

lata (15.7). 

xample 15.1: In general d(x,t) < 0 in (H,T) is necessary. 

For example u(x,t) = t sin kx is a solution of 

u 
xtx +k

2u
t 
 =0 
	

(15.12) 

Eor (x,t)ED(,T), T arbitrary. uEC 1 [D(,T)]. 	But u(0,t) = 

= u(x,0) = 0, i.e. the solution of the first initial 

oundary value problem is not unique. 

A result similar to that of Theorem 15.1  can be obtained for 

seudoparabolic equations in an arbitrary number of space 

limensions. Rathr than pursuing this investigation we will. 

aow turn our attention to the analytic properties of pseudo-

arabolic equations in two space variables. 

L6. Pseudoparabolic Equations in Two Space Variables. 

onsider 

+ •' 	
= 

.:  

wthere M a 6 + d(x,y), L = A + a(x,y)f + b(x,y)- 	+ c(x,y), 

and q is a constant. Let u = eftu. Then (16.1) becomes 

(16.2) 

where 

M = t + d(x,y) 

L = a(x,y) --  + b(x,y).- 	+ c(x,y).
by  
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Assumption: As a function of z = x + iy and z * = x - iy, 

a,b,c,d are analytic in D x D*  where  D* = (z*Iz*ED) and D is 
bounded simply connected domain in ]I. 

Define the adjoint of ru] = 0 to be 

111Ev] 	M[v] - L* [v] = 0 	 (16.3) 

where L*[v] = -(av) - (by) + cv. 

Definition 16.1: A function S of the form 

S(x,y,t;,,T) = A(x,y,t;,,T)1o+ B(x,y,t;,,T) 

(16.4) 

where r = 1(x - 	+ (y - m) 2 ] will be called a fundamental 
solution if 

771. {S] = 0 for r + 0. 

A and B are analytic functions of their independent 

variables. 

At = 1 at x 	, y = TI, t = T. A = B = 0 at t = T. 

We will now construct S. Let 

z = x + iy 	 C = 	+ ill 
(16.5) 

= x - iy  

Then (16.3) can be written as 

lTjIV] = MFVt] - L*IV] 

(16.6) 

	

=t 	t 	z 
+ 8V + (aV) + ( v) z  - 	= 0 

where. V( z , z *,t) = v(x,y,t), a = 1 —(a + 

= A. Note that r = (z 

Substituting (16.4) into(16.6) gives 

A + A 
fls] = mr-A] log 	- zt 	- 

2( z *_) 

ib), 
1 	

- ib), = 

- c). 

A 	-a'A z*t 	
+ flL[B] = 0 

2(z - C) 



which implies that 

lfl[A] = o 	 (16.7) 

r 	- 
+ 	 A(z,c*,t;c,c*,T) = 0 	 (16.8) 

[2 

	

+ 	(c,z*)iA(C,z*,t;C,c*,T) = 0
• 	 (16.9) 

Once we have found A, B is any solution of 

A 	+A 	A 	+Azt mr 	= 	 * +. 	- ) . 
	 ( 16.10) 2 *_c  

Now let 
co 

(t—i- ) 3  (16.11) A = 	A.(z,z*;C,C*) 	•1 

j=l 

Substituting (16.11) into equations (16.7) - (16.9) gives 

1.  = 0 on z  = 
az 

= 0 on z = 

(16.12) 

+ OA. = 0 on z = *; j  
az 

A. 
+ cA. = 0 on z = 	; j = 0, 1 3 2, 

3 

and 

MrA 1 ] 	= 

(16.13) 
MIA.+1] = L*rA.] 

Condition (3) satisfied by S implies that 

A (,c;c,C*) = 1 
1 	 (16.14) 

0, j = 2, 3,... 
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and hence 

A 1  = 1 	on z * 	ç * 

(16.15 
A 1 =i 	onz 

and 

pZ 

A 1 ( z C*;c,*)  

(16.16 

=  
3 	

-I 	
3 

(ç,p)A.(,p;ç,ç*)dp; j = 1,2,... 

Note that equations (16.13) and (16.15) imply that A 1  is the 

Riemann function for M[u] = 0. 

Lemma 16.1 (114]):  A(z,z*,t;c,C*,T) is an analytic function 

its six independent variables for all (complex) t, i-  and z, 

ED, z*, ç*]* •  

Proof: Integrating the identity (11.4) of section 11 with 

U = A. 19  V = A 1 , over the quadrilateral  

(z,z*), (, z *) gives (after an integration by parts) 

A +1 (z z*;ç, ç*) 	_J' A 1  (, z*; z,z*)(,z*)A (, z*;, c*)dG 

z * 
-I 	A1(z,p,z,z*)a(z,p)A J .(z,p;,c*)dp 

+J 	A 1 (cp;z,z*)(c.,p) -- b  A 1 (a,P;z,z*)o!(o,p) 
c acy 

(16.17 
+ 	A (, p; z, z *)(a, )A (, p; C, ç*)dpd. ap 1 

By induction A is analytic for z, çED, z *, ç*ED* (since the 

Riemann function A 1  is - see [20], p.141, and  [391). Let k be 

an upper bound onIA 1 I, lA 1 l and A 1 y + A 1 	1  + AI for 

z, çEQcD, z *, C*EQ* C D*, where 	and Q*  are arbitrary compact 

subsets of D and D*  respectively. Let t, be an upper bound 

on the legnth of the paths of integration in (16.17) and let 
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< C for z, CEc2CD, z, ç*EQ* c D*.  Then by induction 

L6.17) implies that 

IA I < C k43(2 + 	z, CEC2, z *, C*Ec2* 	 (16.18) 

rid hence the series (16.11) converges in It - 	< T, z, 

EQ, z *, 	EQ*, where T 1  is arbitrarily large. The lemma follows 

rom this last statement. 

Now look at the function B. Set 

CO 

B = ZB.(z,z*;,c*) (t-T)3 

	
(16.19) 

ubstituting (16.19) into (16.10) gives 

+A. 
MB. 1 ] = L*IB.] + 
	

.1 	1+1 	1 	j=1,2,... 

	

2( z * - Ce) 	2(z - 

A/ 	 A 	/ 	 ( 16.20) 
M[B 1 ] = 	/2(z* - cc) S/2(z - 

ince B is an arbitrary solution of (16.10), without loss of 

enerality we impose the boundary conditions 

B(z,C*;ç,c*) = B(C,z*;C,C*) = 0; j=1,2,3,... 	(16.21) 

mitating the proof of lemma 16.1 now gives 

emma 16.2 (114]):  B(z,z*,t;C,C*,T) is an analytic function of 

ts six independent variables for all (complex) t, T and z, 

ED, z, 	* E DC. 

ow let 

T = [tjo < t < T 0 ) 

G(DxT) = 

heorem 16.1 (1141):  Let u(x,y,t)EG(DxT) be a solution of 

16.2) in DxT and assume ( z , z *,0) = u(x,y,0) is analytic in 

xD*. 	Then for each fixed tET, 7( z , z *,t) = u(x,y,t) is 
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an analytic function of z and z*  in DxD*. 

Proof: We first show that without loss of generality we can 

assumetJ( z , z *,O) = 0. Let f( z , z *) = L[t7(z,z*,O)] and define 

CO 

C.(z,z*,,C* 	 (16.22) 
 jj 

j=l 

where 

MC 1 ] 	f(z,z*) 

MC. 1 ] = -LtC.]; j = 1, 2, ... 	 (16.23) 

C. (z, ç*; , c*) = C. 
3 
(, z, C,  C*) = 0; j = 1, 2, 

Using the analysis of lemma 16.1, it is easy to show that C 

exists, is analytic for all complex, t, z,CED,z*,C*ED*, and 

satisfies 

= - 	 (16.24) 

	

= 0. 	 (16.25) 

Hence V(z,z*,t) = TJ( z , z *, t) - tJ(z,z*,0) + 
satisfies [V] = 0, \T(z,z*,O) = 0 1  and to prove the theorem 

it suffices to show that V is analytic in DxD* for each fixed 

t. Without loss of generality assume that u(x,y,t)EG(DxT) and 

that D has a smooth boundary., Integrating the identity' 

- vtl1u] - u,,7fl.[v] = 	U 	 UV 	auV xt
V 
 t 	t xt 	t 

(16.26) 
+ —ru v - u v 	- bu v] + tIcuv  + au v + bu v] y ytt 	tyt 	t 	 x 	y 

over DxT gives 
A1 	 - JJj' ( v t ru] - u.flj.rv])dxdydt = 

DxT 	 (16.27) 
PP 

Jj 	(u v -u v -au v)dydt - (u v -u v -buv)dxdt 

	

xtt txt 	t ytt tyt 
(DxT) 

+ (cuv + au x 	y 
v + bu v)dxdy. 
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Now let T 0  = i, v = S and u = V and replace DxT in (16.27) 

by DxT - QxT where Q is a thin cylinder surrounding the singu-

lar line r = 0. Note that V = 0 on t = 0, S = 0 on t = T. 

Computing the residue as U shrinks onto r = 0 gives 

AT 	 ot, 
0 = 2n 	 xt t j vt(,,t)dt + I I [(V S - V t xt 	

S)dy S 	- aV
bD 

- •(VytSt - VtSyt - bVtS)dx]dt 

1 	- 
- 	I I (V S - V S 	- aVS)dy 

J - - 2TT OJDL xt t 	t xt 

(16.28) 
- (V yt t 	t yt 

S - V S 	- bVS)dx]dt, 

and the theorem now follows from lemmas 16.1 and 16.2 

Example 16.1: In Theorem 16.1 it is not possible to remove 

the assumption that tT(z,z*,O) is analytic. Consider the 

special case of equation (16.1) when M = L and y = 1. Then 
-t u(x,y,t) = e u(x,y,0) is a solution of (16.1) and is not 

analytic unless u(x,y,0) is. 

We now turn our attention to constructing a reflection 

principle for solutions of equation (16.2). 

Integrate the identity 

wrtr3 - umrw] = -(U t  W t - YtJ W) 

b z 	=* .7twt5  + 	+ -k (cTJW + B1JW + tJj) 	
(16.29) 

over a three dimensional cell G C DxD*xT, set W = A, and let 

Trj] = 0. By lemma 16.1 and Theorem 16.1 the derivatives in 
(16.29) are well defined. We arrive at 

n 
0 	H (tTA ) 

	

t t 	dz*dt - J1Ut(At* + A)dz*dt 

(16. 30) 

J 1U (A + A)dzdt + SIUA + t7A + ytTA)dzdz*. 
Gt tz oG Z Z 
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Now (paying attention to the boundary conditions (16.8) and 

(16.9) satisfied by A) first let G be the parallelpiped with 

base (CO 3c 0 *,o), (,o*,O), (,*,O) and (C o ,c*,O) and height 

T and then let G be the wedge with base (ç,,O), (?*,*,o), 

(,C*,O)and height T. This yields two equations analogous 

to equations (11.6) and (11.7) of section 11, and following 

the analysis of section (11) we arrive at the following 

analogue of Lewy's reflection principle for elliptic equation 

Theorem 16.2 (j14]):  Let DxT be a simply connected cylindric 

domain in the half space y < 0 whose boundary contains a 

portion a of the plane y = 0. Let u(x,y,t)EG(DxT)flC 2 ( xT) be 

a solution of 	u] = 0 in DxT, and on a suppose u(x,O,t)= p(x 

where p(z,t)ECt(DUa*JD*xT) and for each fixed tET is an analyt 

function of z •..w. 	in DUaUD* 	 . 	 Then u(x,y,t) can 

be uniquely continued as a solution of 1u] = 0 in class 

G(DUaUD*XT) into all of DUaUD*XT oJic1ec 	T(Z,2.'O) (,= 	'Y1i 
$ cw%cy+Lc " 	 0 a- ki  r> "~ X rj ia-. O. 

Remark: For more recent results on the analytic theory of 

pseudoparabolic equations see the University of Glasgow 

Ph.D. thesis of W. Rundell and the Indiana University Ph.D. 

thesis of S. Bhatnagar. 
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Note that since each 4(x,t) is a solution of (1), the maximum error (in 

absolute value) occurs on the base or vertical sides of the rectangle 

-1 4 x < 1 9  0 . t 	1; in this case at the points (x,t)(±l,l), where the 

relative error is 8.4473 x  10-8  in absolute value. 

The computation time to construction u*(x,t) (i.e. to find the Taylor 

coefficients of 4(x,t), the coefficients an, and to evaluate u*(x,t) at 

selected grid points) using the CDC 6600 computer was approximately six 

seconds. 
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TABLE I 

x Approximate Relative 
solution error 

o 0 1.00000 -6.9580 x 10 
0.2 0 0.98020 -3.3762 x 
0.4 0 0.92312 4.2696 x 10 
0.6 0 0.83527 8.0803 x 10 _ 
0.8 0 0.72615 -4.3613 x 10 10 
1.0 0 0.60653 -2.2466 x 10 8 

0 0.2 0.81873 4.0571 x 1010 
0.2 0.2 0.80252 9.3730 x 
0.4 0.2 0.75578 2.7202 x 
0.6 0.2 0.68386 6.1830 x  

lO_9  
10 

0.8 0.2 0.59452 1.1356 x 10 8  
1.0 0.2 0.49659 1.5536 x 10 8 

0 0.4 0.67032 2.2209 x  10 
0.2 0.4 0.65705 1.7415 x 10-9  
0.4 0.4 0.61878 3.2910 x 
0.6 0.4 0.55990 -3.6697 x 
0.8 0.4 0.48675 -1.0332 x 10 8 
1.0 0.4 0.40657 -2.0325 x 10 8  

0. 0.6 0.54881 -1.1541 x 
0.2 0.6 0.53794 -8.6797 x l0 0  
0.4 0.6 0.50662 3.4421 x lO ..

... 
90  

0.6 0.6 0.45841 3.6095 x  10 
0.8 0.6 0.39852 1.0898 x  10 
1.0 0.6 0.33287 2.4115 x 10 

0 0.8 0.44933 2.7676 x  10 
0.2 0.8 0.44043 2.5721 x 
0.4 0.8 0.41478 1.5339 x 

l0 9  

0.6 0.8 0.37531 -1.8415 x  10-9 
 

0.8 0.8 0.32628 -1.0323 x  10_ 
1.0 0.8 0.27253 -2.7649 x 10 

0 1.0 0.36788 -7.3333 x  10 
0.2 1.0 0.36059 4.9411 x  
0.4 1.0 0.33960 2.3005 x  

l0_9  
lO_ 

0.6 1.0 0.30728 4.1011 x  l0 
0.8 1.0 0.26714 -5.4443 x 

_  
1.0 1.0 0.22313 -8.4473 x  10 

Since u(x,t) and u*(x,t) are even functions of x, values of the approximate 

solution and relative error are only given for 0 . x 	1, 	0 	t . 1. 
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entire rectangle -1 < x . 1, 0 < t < 1. 	Such an advantage is of course 

particularly important in higher dimensional problems. We finally note that 

since the solution of (1), (2) is an even function of x, the odd 

coefficients a 1 , a3 , ..., a 13  in (14), (15) all turn out to be identically 

zero. 

The exact solution of (1), (2) is 

u(x,t) = e _l 2t 
	

(16) 

In Table I below we give the values of u*(x,t) at selected grid points and 

also the relative error defined by 

relative error 
- u*(x,t)_u(x,t) 	 (17) 
- 	u(x,t) 

TABLE I / 
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This is done for n=O,1,2. .... , 14. 	The integration in (11) is exact, i.e. 

the polynomials P 10 (s,x) and h(s,t) are multiplied together, integrated, 

and added to h(x,t). 	The set {u (x,t)} 140is now orthonormalized over the 

base and vertical sides of the rectangle -1 , x . 1, 	0 , t . 1 by means of 

the Grain-Schmidt process to obtain the set{4(x,t)J 140 . 	This is done 

using double precision arithmetic. The inner product used is 

fll 	
f
I 

(,p) = 
	

(-1,t)ip(-1,t)dt + 
	

(x,0)p(x,O)dx 
0 

-1 	
(13) +  f (l,t)p(1,t)dt 

0 

The integrations performed in the Gram-Schmidt process are again exact, i.e. 

polynomials are multiplied together and integrated. 	The solution to the 

initial-boundary value problem (1),(2) is now approximated by the sum 

14 
u*(x,t) = E 	a+(x,t) 	 (14) 

nO 

where 

a = (u,) 
	

(15) 

Note that the coefficients a, n0,1, ... , 14, can be computed solely from 

a knowledge of the functions 4n(xpt) n=0,1, ..., 14, and the initial-

boundary data (2). 	The coefficients an are computed by truncating the 

Taylor series for the functions e 2 and e 2 	to the same order of 

accuracy as (10), and then computing (15) exactly by multiplying the 

appropriate polynomials together and integrating. 	Note that although the 

initial-boundary value problem (1), (2) is two dimensional, due to the fact 

we are approximating by means of a complete family of solutions only one 

dimensional integrals need be computed. 	This is an advantage of the present 

approach over other methods, where integrations must be performed over the 
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P(x,x) =•• : s2ds =
3 

S 	 (6a) 
.2 f 

P(-x,x) = 0 	 (6b) 

and h(x,t) is a solution of 

h 
xx 
 =h 	 (7) 

Note that since the coefficients of (1) are independent of t, so is the 

kernel P(s,x). The initial value problem (5),(6) satisfied by P(s,x) 

follows from the initial value problems satisfied by K(s,x) and M(s,x) 

(c.f. (2.1.30), (2.1.31), (2.1.33), (2.1.34) and the facts that 

K(s,x) = -K(-s,x) 

M(s,x)5 = M(-s,x). 	) 	 (8) 

From (5), (6) we have that 	= P(C-n, +) can be constructed by the 

iterative scheme 

(,ri) = lim P(,) 

— 	 3 

6 

3 	Ti J + 	
J(+n)2(,n)ddn 

for n=1,2.....As an approximation to the kernel P(s,x) we use P 10 (s,x) 

as defined by (9). 	A short calculation using (9) shows that 
_20 

max IP(s,x) - P 10 (s,x)I < 1.6 x  10 . 	 (10) 

-lxl 	 - 
1s 1 

We now construct the (approximate) complete family of solutions 

u(x,t) = h(x,t) + 

	

P10(s,x)h(s,t)ds 	 (11) 

where 

ml 
1•-i 	n-2k k 

x 	t 
h(x,t) = n. E 	(n-2k)k 

k=0 

(12) 
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spirit to the above steps for solving boundary value problems, but of course 

the details vary depending on the type of inverse problem being investigated. 

The method for obtaining an analytic solution to various inverse problems 

has been given in these lectures (c.f. sections 1.5, 23, 3.3 and 4.3) and 

each of these is ameniable to numerical computations. 	In addition to 

approximating kernels of integral operators and the numerical integration 

of certain integrals, one must in some cases (e.g. in inverse problems in 

subsonic fluid flow and the inverse Stephan problem for the heat equation in 

two space variables) construct approximations to certain conformal mappings. 

To illustrate the general approach for using integral operators to 

obtain numerical solutions to boundary or initial-boundary value problems 

we consider the following simple example due to Y.F. Chang of the Department 

of Computer Science, University of Nebraska (see also E13J ). We want to use 

a complete family of solutions to construct an approximate solution to the 

initial-boundary value problem 

u - x2u = u 	; t 	-1 < x < 1, 0 < t < 1 	 (1)xx 

1 
u(-1,t) = e 2 	, 	u(l,t) = e2t 	; 	0 	t 	1 

12 	 (2) 

u(x,0) = e 	-14 x . 1. 

To construct a complete family of solutions we use the operator T 3  of 

section 2.1: 

u(x,t) = T 3 {h} = h(x,t) + J P(s,x )h(s,t)ds 	 (3) 

where 	 -x 

P(s,x) .[K(s,x) + M(s,x)] 	 (4) 

is the (unique) solution of the initial value problem 

P -P -x2P=O xx 	ss (5) 
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Orthonormalization of the complete family by use of the Gram-Schmidt 

process, using numerical integration if necessary. 

Computation of the Fourier coefficients. 	If the boundary of the domain 

is reasonably simple this (as well as step 3) can again be reduced to the 

"problem" of integrating the product of two polynomials (where we have 

assumed that the boundary or initial-boundary data has been approximated 

by polynomials). 

Construction of the approximate solution and error estimates. 	Once one 

has completed step 4) the approximate solution of course follows 

immediately. Error estimates can be found by means of a priori 

estimatesor (more simply) the maximum principle. 

If one uses the integral operator in conjunction with double or single 

layer potentials to solve the desired boundary or initial-boundary value 

value problem then of course steps 2)-5) are replaced by 

Solution of the integral equation. 	Since the resulting integral 

equations are of Volterra or Fredholm type, a numerical solution can be 

obtained by any one of a variety of known methods (c.f. [1],[22]). 

Construction of the approximate solution. 	This is obtained by 

substituting the approximate density obtained from step 6) back into the 

double or single layer representation for the solution to the heat or 

Laplace or Helmholtz equation which the operator is operating on, 

constructing this solution to the heat or Laplace or Helmholtz equation, 

and then using the integral operator (and step 1)) to obtain the desired 

approximate solution to the original equation. 

Error estimate. 	These are obtained from step 6), assuming the kernel of 

the integral operator has been approximated to a known degree of accuracy. 

In the case of inverse problems, the numberical approach is similar in 
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Appendix 

A Numerical Example 

Throughout these lectures we have given reference in the literature where 

numerical examples of the use of integral operator methods to solve boundary 

and initial-boundary value problems can be found (In particular see [1] ,[3] 

[4] , [5] , [13J , [24] , [33],4,[71). 	The numerical procedure consists 

basically in the following steps (in the case of the solution of boundary or 

initial-boundary value problems by means of a complete family of solutions). 

Approximation of the kernel of the integral operator. Since the kernel 

is given by either a recursion or iteration scheme, approximations can 

be obtained by truncating the iteration (or recursion) process after a 

finite number of steps. 	Error estimates can be obtained by either 

using the estimates used to show the series for the kernel converges, or 

by qualitatively observing that the contributions to the kernel become 

negligible after a finite number of iteration (or recursion)steps. 	The 

qualitative approach is reasonably safe since in practice the coefficients 

of the differential equation are polynomials and the kernel of the integral 

operator converges at a steady rate (in general geometrically). 

Construction of a complete family of solutions. 	Since the approximation 

to the kernel of the integral operator is a polynomial (if the coefficients 

of the differential equation are polynomials) and so is the function 

operated on (i.e. z', nm or the heat polynomial h n (x , t)) this is 

merely a question of multiplying one polynomial by another and then 

performing the integration indicated in the definition of the integral 

operator. 
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=  faa f(s):s - s 	j 
2n+2 	2n+4,ds 
	 (4.3.24) 

l/a 

1 	11 	3 
= 
	fa2 

f(s2)[s2- ss 11ds 
i/az  

for n=0,1,2 ..... Since the set {r'1} 0 	 [ia n
is complete in L2_  ,a] , we have 

from (4.3.24) that 

f(r 1/2 )(r  1/2 - r 3/2 = 
	 (4.3.25) 

for re[ —  , a2 , and hence f(r)0 for rE[l,aa 
a 

The theorem is now proved. 

The uniqueness of the function B(r) follows immediately from the above 

theorem. Furthermore the function B(r) can be approximated in L 2 E1,aJ be 

orthonormalizing the set {P(r)} over the interval Q.,a to obtain the 

orthonormal set {q(r)} 	and then approximating B(r) in L2[1,a]  by the 

function 

N 

BN(r) = E bnn 
 (r) 

n0 

where 

(4.3.26) 

b = fa 
	

(s)B(s)ds . 	 (4.3.27) 

The coefficients bn  can be found by using (4.3.19), (4.3.20). 	If it is 

assumed that B(r)cC 1 [1,aJ, then it can be concluded that BN(r)  approximates 

B(r) pointwise almost everywhere on 1,a] (c.f.[43]). 

135 



have that a 1  is purely imaginary, and hence V  is real for each n,n=0,1,2,... 

We will now assume the existence of a continuously differentiable function 

B(r) such that (4.3.19), (4.3.20) is valid, and address ourselves to the 

problems of uniqueness and approximation in L 2 [1,a]. We restrict ourselves 

solely to the problem of uniqueness and approximation, since it is assumed 

a priori that the sequence p (or a 1 ) is a (generalized) moment sequence for 

some function B(r) to be determined and hence the existence of B(r) is not 

in question. The basic problems of uniqueness and approximation can be 

settled by appealing to the following theorem: 

Theorem 4.3.1 (119J): The functions 

2n+2 	-2n P(r) =r 	+r 	-2r 

n0,1,2,... , are complete in L 2 [1,a]. 

Proof: 	Let f(r) be a continuous function on the interva1[.,a]. 	Since the 

space of continuous functions on [l,a] is dense in L 2 [1,a, to prove the 

theorem it suffices to show that if 

fa 
f(s)P (s)ds = 0 

i 

for n0,1,2,..., then f(r)0 for re[1,a] 

f(r) = r 4 f(1) 1  ,iJ r- 
'-a 

Then 
1 

f(s)s s 	ds = f(s) -2n 
	

f 	
2n+2 ds fl 	1/a  

and hence from (4.3.21) we have 

(4.3.21) 

For rc [..,l] define f(r) by 
a 

(4.3.22) 

(4.3.23) 

fa 
0= 	f(s)[P 	- P (s) 	(s)Jds n 	n+1 	- 

= 2n+2 	-2n 	2n+4 	-2n-2 

	

s)[s 	+ 5 	- 5 	- 5 	Jds 
fa 

1 
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1 
ln+2 lnn- 

I1N0 	

(-)s L 

+ 
(log 1, log s) 	 ds 

	

r(n+ 	 r(n+ 

(_l)n(..)h1 	 (-l)' 1 1 -n-1 
-i 

=a 	i 	 +a 	i 	 (4.3.17) 
nO r(-n+ 3) 	ni 	r(-n+ 

(1)n+l 1 -n-i -n- 
s 	2 

+ it 	

() 

i 	N0 (log 1, log s) 	 1 	
ds 

nO fi 
The equation corresponding to (4.3.17) for n0 is exactly the same except 

	

that the term c00/r() is added to the right hand side. 	Note that the 

coefficient ano  is independent of B(r). From (4.2.43) and (4.2.35) we have 

.11 N0  (log 1, log s) s md = -+ I 	f ii 	s 
= _i fa 

f
12 B()smdsd

2 1 1 	 (4.3.18) 

11a 
23

B() d + 2(m+l) J 	B()d, = - 
	2(m-*-l) 

and hence using (4.3.16) and (4.3.18) we can rewrite (4.3.17) as 

2n+2 	-2n 
11 = f l  a B(s)[s 	+ s 	- 2s]ds 

where for n > 0 

(4.3.19) 

1 -2u-1 
-(2n+1) 	

(1)n+l() 	
r(n+_2(4 320) 

1 li
n   

= -(2n+l) 	
(2n+3)(1-2n) 	nl r(-n+ 

For n0, i 
0 	 00 

is the same as defined above eccept that the term c 	is 

subtracted from the right hand side. 	The ji are known from the far field 

pattern, and hence the problem of determining the function 3(r) has now been 

reduced to solving the generalized moment problem (4.3.19), (4.3.20). 	Note 

that if we assume that B(r) is real valued, then from (4.3.16), (4.3.17) we 

133 



Recall once again that although the far field pattern f(O;A) is assumed to 

be known, the functions j+(r)  and  h+(r)  are unknown since B(r) is as of 

yet unknown. 	However if we expand f(O,A) in a Legendre series 

f(O;A) = E 	(A)P(cos6) , 	 (4.3.12) 
n=o n 

then from (4.3.11) and (4.3.13) we have 

a (A)  
h 	 (4.3.13) (1) 	n 
n+ 

nO +a nl 
 A2-4-...) 

4n+2 -4-A 	(c 
nO 	ni 

+c A2-4- ... ) 

where 
A.  (A) 

n 	i(2n+1) 
a (A) = 	

n 	
(4.3.14) 

are known analytic functions of A. The fact that a(A) has a zero of order 

2n+1 at the origin follows from (4.2.44), (4.3.6) and the series represent-

atio'ns (c.f. [25]p.4) 

2m+n 

(ArYJ(Ar) =4 E (_l)m (Ar,2) 

m0 	mr(m+n+ 

2m+n 	n+1 	2m-n-1 

(Ar)H 	(Ar) =,: E (_l)m 	
(Ar12) 	

+ 	
(-1) 	(Ar, 2 ) 

m0 	m.r(m+n+ ) 	m.r(m-n+ 

Equating the coefficients of A21  and A2' 3  respectively in (4.3.13) we 

have for n . 0 (using (4.2.44)) 

n 	1 l2n+1 
(-1) r(-n+ .-)(—) 

a 0 = 	
2 2 	 (4.3.16) 

r(n+ 
and, for n > 0, 
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f(O,;A) = urn re 	u(x) 	 (4.3.5) 

we want to determine the function B(r). 	We will solve this problem by 

using the operator 	constructed in the previous section (c.f.[19]). 

Let J(Ar) and H9(Ar) denote respectively a Bessel function and Hankel 

function of the first kind, and define j +1 (r) and h(r) by 

j(r) 	(I+K)((Xr)J 	(Ar)) 	
(4.3.6) 

h(r) = (I+K)((Ar)H9(Xr)) 
+ 
	 . n+ 

Then from the representation (c.f.[25], p.64) 

e 
iAZ 	

E (2n+l)i'1  J 	(Xr)P (cosO) 	 (4.3.7).. n+j 	fl 	 - n0 

where P (cose) denotes Legendre's polynomial, it is easily verified using 

(4.2.46) that the solution of (4.3.2)-(4.3.4) is given by 

(2n+l)ij(l) 	-. 
u(x) = u(r,O) = 	E 	 2 

i 	h 	 n+ 	n. 
h 	(r)P (cosO) . 	(4.3.8) 

n0 - 	
n+(l) 

Note that from Theorem 4.2.2 we can conclude that h(l) + 0, and the 

convergence of the series (4.3.8) for 1 	r < =, 0 < 0 . ir follows from 

(4.3.6) and standard estimates for Bessel functions and Legendre polynomials 

for large values of n (c.f.[25] p.22-23 and p.205). 	From the fact that 

h 1 (r) = (Ar)H 	(Ar); r 	a 	 (4.3.9) 

and the asymptotic estimate (25] p.85) 

(Ar) H 
(1) 	. n+l 	2 

e 
 ixr[l+O( 	

) 	 (4.3.10) = (- i)  

we can conclude that the far field pattern f(6,4;A) = f(0;A) is given by 

(c.f.[8]) 

i(2n+l)j(l) 	
. f(0;A) = E 	x h 	(1) 	n (cosO) 	 (4.3.11)  n0 	n+ 
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and the references contained in this paper. A discussion of the use of 

integral operators in the investigation of certain inverse problems in 

scattering theory can also be found in [8] and [30]. 

4.3 The Inverse Scattering Problem •  

The inverse problem we will consider in this section has its origins in the 

following problem connected with the scattering of acoustic waves in a 

nonhomogeneous medium (c.f. section 4.2). 	Let an incoming plane acoustic 

wave of frequency w moving in the direction of the z axis be scattered off a 

"soft" sphere Q of radius one which is surrounded by a pocket of rarefied or 

condensed air in which the local speed of sound is given by c(r) where 

r=IxI for x CfR 3 . 	Let u5(3)e1Wt be the velocity potential of the scattered 

wave and let r,O,o be spherical coordinates in 1R 3 . 	Then from a knowledge 

of the far field pattern 

f(O,c;A) = lim re-iAr  u 
5 () r4 

(4.3.1) 

for A = - (where c(r) = C = constant for r a > 1) contained in some 

finite interval [x0' xJ, we would like to determine the unknown function 
c(r). Under the assumption thatVc(r)is small compared with Ac(r), we can 

formulate this problem mathematically as follows (c.f.[19],[20J): 	Let 

B(r) = 	r))21 and set u(x) = v(x) + u(x) where u(x) satisfies 

3u + A 2 (1+B(r))u = 0 inrn 3\2 	 (4.3.2) 

u(x) = _(eZ + v(x)) on 	 (4.3.3) 

urn 	au 

	

r( - - iXu) = 0 	 (4.3.4) r4w 	ar 

	

1AZ 	
i 	3 and v(x) is such that e 	+ v(x) is a solution of (4.3.2) niR \c2 where 

v(x) = 0 for r a. 	 Then given 
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conclude that 9=0 and it follows from the Fredholm alternative that 

(I-(A)) 1  exists. 

From the previously described work of Jones we now have the following 

Corollary: 

Corollary 4.2.1: 	Let M be such that A < A 2  where A. denotes the jth 

eigenvalue for the interior Dirichlet problem for A 3h+A 2h=O in D. Then 

1 exists. 

Remark: A similar approach to that described above can be used to solve 

the Dirichiet, Neumann, and Robin problems for solutions of (4.2.9) defined 

in the exterior of D for all n . 2. 

In the next section we will discuss an inverse problem associated with 

(4.2.9), i.e. the problem of determining the unknown function B(r) when 

the behaviour of u(x) at infinity is known, as well as the shape of the 

scattering body D and the boundary conditions on M. 	It should be noted that 

other inverse problems can also be considered, for example that of 

determining the scattering body D given the function B(r), the behaviour of 

u(x) at infinity, and the boundary conditions on 3D(c.f. [8]). 	Such 

inverse problems are in general improperly posed in the sense that the 

solution does not depend continuously on the behaviour of u(x) at infinity 

and a solution will not exist for arbitrarily prescribed "far field" data. 

We will not discuss the regularization of such problems, but instead consider 

only the case when the "far field" pattern is known exactly and is such that 

a solution is known to exist. For further discussion of inverse scattering 

problems for acoustic waves we refer the reader to 

D. Colton, 	A reflection principle for solutions to the Helmholtz 

equation and an application to the inverse scattering problem, 

to appear in Glasgow Math. J. 
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inverting an integral equation of Volterra type (which implies that h(x) 

has the same smoothness properties that u(x) does), we can conclude that 

h(x)cC 2 1R3\D)rCR3\D) and h(x).O for r > a. 	Hence, since twice 

continuously differentiable solutions of A 3h+A2hO are analytic functions of 

their independent variables (c.f.[21],E29:J),  we can conclude that 

h(x)=O for xcJR3 D, and hence u(x)=(I+K)h=O for xc iR3\D. 

We can now establish the following result on the invertibility of the 

Fredholm operator I-T(A): 

Theorem 4.2.3 (20J): 	Let A > 0 and define the operator T(A) by 

	

T (x) = .!. I 	f- r(,x;x)dw 	; 	xc3D. 

	

2rrJ 	_ 
3D 	- 	 - 

Then (L-,(A))1  exists if and only if (L-0(A))1 exists (where all mappings 

are understood to be in the space C ° , the space of continuous functions over 

3D with the maximum norm). 

Proof: 	Since T(A) and T (A) are integral operators with weakly singular 

kernels, the Fredholm alternative is valid. 	Now let j,  be a solution of 

(I-T(A))p= 0. 	Then the potential defined by (4.2.47) generates by (4.2.51) 

a solution of (4.2.6) in the exterior of D such that u(x) satisfies the 

Sommerfeld radiation condition, and, since (I-T(A))pO, we have u  = 0 for av 

xc3D. 	From Theorem 4.2.2 we can now conclude that u(x)0 in the exterior 

of D. 	By inverting the Volterra equation (4.2.51) we can conclude that 

h(x)=O in the exterior of D and hence (I-T (AJ)tp=O for xc3D. 	If (I-T(A)) 1  

exists then we can conclude that p(x)O, and hence by the Fredholm 

alternative (I-T(X)) 1  exists. 

Conversely, if 4,  is a solution of (I-T(X))4i0, then h(x) as defined by 

(4.2.47) is zero for xc1R3 D and hence from (4.2.51) u()=O for xc1R 3 D. 

Then 	= 0 for xc3D and (I-T(A))4,=O. 	Hence if (I-T(A)) 1  exists we can 
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Theorem 4.2.2 (203): 	Let A >0 and let u(x)cC 2 (1R3\D)(C 1 (R\D) be a 

solution of (4.2.6) in the exterior of D satisfying the Sommerfeld 

radiation condition (4.2.8) at infinity and the boundary condition Du 
 0 

(or u0) on 3D. 	Then u(x)0 for xc 1R 3 D. 

Proof: 	Let 0 be a ball of radius r > a (recalling that B(r)=0 for r . a). 

Then from Green's formula we have 

u-uciv f 	- u  39 f f 3\) 	3V 	
'4254 3D 

f -a 
 (u —  -u --)dw 

where dv denotes an element of volume and du an element of surface area. 

3u 3u 	 - Since A and B(r) are real and -. 	= 0 (or uu0) on 3D, we have from 

(4.2.54) that 

I 	-  
(u — 

3u 
- u)dw = 0. 	 (4.2.55) I 

J 	ar 	3r 
3D 

But, for r > a, u(x) is a solution of A 3h + A 2h 0 satisfying the 

Sommerfeld radiation condition (4.2.3), and hence for r > a 

W  u(x) 	E 	E a h(Alxl)S ( -.-) 	 (4.2.56) 
mo n-m 	 il 

where the series converges absolutely and uniformly for lxi  . a+c, c > 0 

(c.f.[49]). 	By the orthogonality of the functions S 	(--) over the unit 
il 

sphere and the formula 

h(l) (Xr) — h 	(Ar)-h(Ar) a h (l)  (Xr) = 4i 	 (4.2.57) m 	dr m drm 	 22 
irA r 

we have from (4.2.55) and (4.2.56) that 
m 
z 	a urn 12 = 0 , 	 (4.2.58) 

m0 n-m 

which implies that u(x)=0 for r > a. 	Let u()=(I-f)h for xcrR 3 	Then 

from (4.2.12) and the fact that h(x) can be determined from u(x) by 
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of integration gives 

u(x) =  f ip(r(,x;x)d 
_ 	 (4.2.51) 

3D 

	

+ f 	{ TK(jxj,s;x)rq,  s --- ;A)ds } du e . 

3D 	1XI -  
As in section 4.1 one can show that for x, 	on 3D 

{ T K(ixl,s;X)r(,s -- ;X)ds } j <• constant 
	

(4.2.52) 

	

3vx 	 - 	lxi 	 ix-1 
where f denotes differentiation with respect to xi: the direction of 

the outw'rd normal at x. 	Now let xc3D, evaluate (4.2.51) at x 1 c m\5, and 

apply the operator v 
x 
 V to both sides of (4.2.51). 	Letting x' tend to x, 

and using (4.2.52) and the discontinuity properties of the derivatives of 

single layer potentials (c.f. [2l],[29]), we arrive at the following 

integral equation for XXx): 
ev 

f f(x) = 	x)
) 	.. 

	

21T 	' 
3D 	x 

1  f 	{ f' 	 x 
K(ixi,s,x)r(,s ._.... ;x)ds } d 

I 

 x' 
I  

	

3D 	 I 
lxi 	 - 	 - 	(4.2.53) 

= 

A contstructive method for determining the desired function u(x) can now be 

obtained if we can show that the Fredholm integral equation (4.2.53) with 

weakly singular kernel can be uniquely solved for the unknown density p(x), 

i.e. that the operator I-T(A) is invertible. 	We will accomplish this by 

proving two theorems. 	The first theorem below proceeds along classical 

lines (c.f.[49)except for the conclusion, where we make use of the operator 

I+K 
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h(x) = 
	

4,)r(,x;x)dw 	• 	 (4.2.47) 

In (4.2.47) 	 -
aD 

iXR 	M 	in 
= 	+ E 	E 	b 4i (x)ip () , 	 (4.2.48) mnmn- inn,-. 

m0 n=—m 

R=Ix-I, dw is an element of surface area at the point C.eO, the b are
mn 

nonzero real constants (arbitrary, but fixed), and 

= 	 ) 	 (4.2.49) 

where h 1  denotes a spherical Hankel function and S a spherical harmonic. m 	 inn 

Note that if the finite sum in (4.2.48) is not present, then in general it 

is not possible to represent h(x) in the form of the single layer potential 

(4.2.47) (c.f.[49]). Jones has also shown that for a given A a suitable 

value of M can be chosen as follows: Let ..,i.,... be the eigenvalues 

of the interior Dirichiet problem for (4.2.11) (for n3) in the unit sphere 

(which can be computed from a knowledge of the zeros of the spherical Bessel 

functions - for a table of these zeros see [44J) and let r be the radius of 

the smallest sphere contained in D and r1  the radius of the largest sphere 

containing D. Then 

r - :i 	r 
0 

(4.2.50) 

In order to construct a solution u(x) of (4.2.6)—(4.2.8) we will look for 

a solution in the form 

u(x) = (I+K)h 	 (4.2.51) 

where h(x) is a solution of (4.2.11.) (for n=3) having the representation 

(4.2.47) in terms of an unknown continuous density 4,(x) to be determined. 

Note that h(x), and hence u(x),satisfies the Sommerfeld radiation condition 

(4.2.8). 	Substituting (4.2.47) into (4.2.51) and interchanging the orders 
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u(x) of (4.2.9) defined in the exterior of D there exists a solution h(x) 

of (4.2.11) defined in the exterior of D such that u(x)(I+K)h. 	We 

summerize our results in the following theorem: 

Theorem 4.2.1 ([20]): 	Let u(x) be a twice continuously differentiable 

solution of (4.2.9) in the exterior of D where D is strictly starlike with 

respect to the origin. Then u(x) can be represented in the form 

u(x)(I+K)h where h(&  is a twice continuously differentiable solution of 

(4.2.11) in the exterior of D. 	Conversely if h(x) is a solution of (4.2.11) 

in the exterior of D, then u(x)=(I+K)h is a solution of (4.2.9) in the 

exterior of D. 	u(x) satisfies the Sommerfeld radiation condition (4.2.13) 

if and only if h(x) satisfies this condition. 

We now want to use the integral operator I+K (for ri3) to construct the 

functions v(x) and u(x) described in the introduction to this section. 

Since e 
iAz

is a solution of (4.2.11) we have that 

w(x) = 	
ixz 	 (4.2.45) 

is a solution of (4.2.9),and from (4.2.12) it is seen that we can choose 

v(x) to be 

v(x)=Ke iX z  
- 

(4.2.46) 

To construct a solution u(x) of (4.2.6) - (4.2.8) we will use the operator 

I+K in conjunction with the work of D.S.Jones on the exterior Neumann problem 

for the Helmholtz equation (4.2.11) (c.f. [38]). 	To describe the work of 

Jones, let 	 be the eigenvalues of the interior Dirichlet 

problem for (4.2.11) in D (for n=3). 	Then Jones has shown that if A < AM+2 

and h(x) is a solution of (4.2.11) (for n3) satisfying prescribed Neumann 

data on 3D and the Sommerfeld radiation condition (4.2.8) at infinity, there 

exists a continuous density (x) such that h(x) can be represented in the 

form 
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z r, which implies ri < 2T - , and hence ri -c .< 2(t-). 	Therefore. 
from (4.2.38) we have 

2 2C 
f loga 
 (log a-t)(t-)dr . 	 (4.2.39) 

But for j 0 we have 

1 	loga _______ 	 2j+l 	 (log I 	(log a-t) 	(t)dt - - 	 (4.2.40) 
(2j+l) JF 	 (2j+3)! 

and hence 

2C 2  
IM1 (,n;A) I 	- ( log a-) 3 . 

3! 

By induction we have 

(4.2.41) 

IM Q. n A 	
______ 

; )I 

	

	(log a-a) 2j+1 	 (4.2.42) 
(2j+l) 

(log 
(2j+l)! 

for j >, 0, and hence the series (4.2.34) is 4solutely and uniformly 

convergent for n 	. 	. 	This establishes the existence of the function 

M(,n;X) and hence the kernel K(r,s;A). 	It is easily seen that since B(r) 

is continuously differentiable, K(r,s;A) is twice continuously differentiable 

for s . r > 0. 	We note that M(,n;A) is an entire function of A and that 

A 22 M.(,n;A) = 
.3 	 3 

(4.2.43) 

is independent of A. 	In particular s' 3K(r,s;A) has the Taylor expansion 

3 	 (n-4)/2 (2-n)/2 	2j+2 . sK(r,s;A) = 5 	 r 	 N - (log r, log s) 
j =0. 	 (4.2.44) 

which is uniformly convergent for all complex values of A. 	Note also that 

since K is a Volterra operator, (I+K) 1 exists, in particular we can 

conclude (using (4.2.12), (4.2.14) and (4.2.15)) that for every solution 
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We now want to solve (4.2.33) through the method of successive 

approximations. 	We look for a solution of (4.2.33) in the form 

(4.2.34) 
j=O 

where 
çloga 

• (F,n;A) = - I A 2  I 	e2TB(eT)dT 
0 

(+r) rTVT 

M.(,n;A) 	- I x2 J 	 (4.2.35) 
3 

floga n+T- 

	

 2 
	

(+fl)JT 

F(t,ii)M.1(t,ii;A)di.idt 

for j . 1. 	Note that the region of integration in (4.2.35) is only in the 

half-space (+n) < log a since M(,n;A) = 0 for +(+r1) 	log a and this 

implies that for (+ri) >. log a, M.(,n;A) = 0 for each j. 	Assume 

c, where E is a positive constant, and let 

C =max { e2 IB(e)I, IF(,)I }. 	 (4.2.36) 
-F 0 $loga 

-n+loga 

Then for n . 	-, (+ri) < log a, we have 
02  

IM0 (,n;X)k C(log a - 	
(4.2.37) 

.: C(log a -) 

and 

	

fl (+r)
2C 2  
	

(log a-r)(T - ) dT 	
(4.2.38) 

	

+C2 	(log a-r)(r-)dr 

But in the second integral on the right hand side of (4.2.38) we have 
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of the integral equation 

(x,y;A) = - ! 2 I:e2TB(eT)dt 	 (4.2.30) 

- 

2 

fW  f~ 
Note that (4.2.28) implies that the solution of the integral equation (4.2.30) 

satisfies the initial condition (4.2.26), and (4.2.27), (4.2.28), and the 

fact that B(r) has compact support guarnatee the existence of the integrals 

appearing in (4.2.30). 	Now in (4.2.30) make the change of variables 

a 
(4.2.31) 

= 

Then (4.2.30) becomes 

1=  1 2 	2t 	t A 	e B(e )d 	

(4.2.32) 

I A2  
in+T- 

- 	 J 2 

Now note that in (4.2.32) if n+ -t > t, then ji > T, and hence M(t,u;A) is not 

identically zero. 	On the other hand if fl+ -T < T, then ji may be less than 

r, and in such cases M(t,;A) = 0. 	Taking these facts into consideration we 

have that , for n > E , M(,n;A) is the solution of the integral equation 

 f e2TB(et)dr 
= 

	 ), 2 
	

(+) 

2  A- 

	

f Tl+ 
F(t,)i)M(r,u;A)dpdt 	

(4.2.33) 

- 4 A2 
 fw 

(+ ) 
I 	F(r,ji)M(T, )1;A)dudr 

.r 
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i.e. 
(n2 . 

K(r,s;A) = (rs) ' 2 ' M(log r, log s;A) . 	 (4.2.18) 

Then M(,;A) satisfies the differential equation 

M-M + A2 (e2 -e2 +e2 B(e))M = 0 	 (4.2.19)
nn  

for n > and the auxilliary conditions 

	

= - 
	

2 J e 2tB(eT)d r 	 (4.2.20) 

M(,n;X) = 0 	for 4(+n) 	log a. 	 (4.2.21) 

We assume that in addition to (4.2.19)-(4.2.21), 

M(,ri;A) = 0 	for C > n 	 (4.2.22) 

Note that M(F,ri;A), if it exists, is independent of the dimension n, and in 

this sense the operator (4.2.10) can be described as a "method of ascent". 

We now proceed to construct a solution of (4.2.19)-(4.2.22). 	Our 

approach resemble that of section 2.1 for the operator A 1,Let 

x = 

1 	
(4.2.23) 

y =  

and define (x,y;A) by 

T(x,y;A) = M(x+y, x-y;X) 	 '(4.2.24) 

The (x,y;A) satisfies 

2 	 - Mxy - A F(x+y,x-y)M = 0 	; 	y < 0 	 (4.2.25) 

i(x,0;A) = - 4 x2e2TB(eT)dr 	 (4.2.26) 
2 T-X 

M(x,y;A) = 0 	for x 3log a 	 (4.2.27) 

	

(x,y;A) = 0 	for y > 0 , 	 (4.2.28) 

where in (4.2.25) 

F(,) = 	 . 	 (4.2.29) 

For y < 0 9  (4.2.25) - (4.2.27) imply that (x,y;A) is the solution 
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in place of (4.2.6) and later on set n=3. 

We now look for a twice continuously differentiable solution u(x) of 

(4.2.9) defined in the exterior of D in the form 

u(r,O) = (I+)h 
(4.2.10) 

= h(r,O) + 
f~r 

S  n
-3  K(r,s;X)h(s,e)ds 

where (r,O) = (r,0 1 , . .. en_1) are spherical coordinates, h(r,O) is a twice 

continuously differentiable solution of 

(4.2.11) 

in the exterior of D,and K(r,s;X) is a function to be determined. We assume 

K(r,s;X) = 0 	for 	rs 	a 	 (4.2.12) 

and note that if h(r,O) satisfies the Sommerfeld radiation condition 

ar - iAu) = 0 , 	 (4.2.13) 

then by (4.2.12) so will u(r,O). 	We now substitute (4.2.10) into (4.2.9) 

and integrate by parts using (4.2.12). 	The result of this calculation is 

that (4.2.10) will be a solution of (4.2.9) provided K(r,s;A) is a twice 

continuously differentiable solution of 

r2[K + 	Kr + X2(l+B(r))K] = 2( + 	K + A 2K] 	(4.2.14) 

for s > r satisfying (4.2.12) and the initial condition 

K(r,r;A) = 
- 4 A 2r2 	sB(s)ds 	. 	 (4.2.15) 

Now let 

log r 	
(4.2.16) 

rlog 5 

and define M(,n;A) by 

= expL( - 
n-2

-  )(+n)K(e,e;A), 	 (4.2.17) 
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Then, assumingvc(r) us small compared with Xc(r) where ? = 	, we are 

led to the following boundary value problem, where u 5 (x) is the velocity 

potential of the scattered wave and v denotes the outward normal to 3D: 

U(x) = e i Az  + u (x) 	 (4.2.1) 
8- 

+ A(l+B(r))U = 0 in 1R3\D 	 (4.2.2) 

au 
= 0 on 3D 	 (4.2.3) 3v 

lim 	
3u

S 
r (- - iAu ) = 0 	 (4.2.4) r- 	9r 	s 

where the Sommerfeld radiation condition (4.2.4) is assumed to hold 

uniformly in all directions. 	Now let 

u(x) = v() + u(x) 	 (4.2.5) 

where v(x)cC2 ( tR3 D)flC 1 ( 1R3\D) is such that e1 + v(x) is a solution of 

(4.2.2) in 1R3\D and v(&  satisfies (4.2.4). If such a function v(x) can 

be found, then the boundary value problem (4.2.1)-(4.2.4) for U(x) can be 
Ow 

reduced to the following boundary value problem for u(x): 

3u + A2 (l+B(r))u.. 0 in 	 (4.2.6) 

Du  = f(x) on 3D 	 (4.2.7) 

urn (- 3u r 
r 	

- iXu) 	0 (4.2.8) 

where f(x) = - 	ixz  + v(x)). 	We will now-show how the functions v(x) 3v 	 — 	 — 

and u(x) can be constructed by means of a "method of ascent". We make the 

assumption that B(r) is a real valued continucusly differentiable function of 

r for r > 0 with compact support contained in the interval [0,a] where a > 0, 

and that D is bounded and strictly starlike with respect to the origin. In 

order to establish a "method of ascent" we consider the equation 

nu + A 2 (l+B(r))u = 0 	 (4.2.9) 
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maximum principle for elliptic equations that u(x)O in D. This implies 

from our previous discussion that h(x) as defined by (4.1.33) is identically 

zero in D, and hence letting x tend to DD and using the discontinuity 

properties of double layer potentials we have 

0= (x) + .! fq,() f. ( 	) d 	; XED 	 (4.1.49) 

aD 

But from classical results in potential theory (c.f. [29) 

(4.1.49) implies that p()0 for EeDD and hence (I+T) 1 exists. 

4.2 Exterior Domains 

We now want to obtain a "method of ascent" for solutions of equations of the 

form (4.1.1) which are defined in exterior domains. 	In the case when B(r 2 ) 

decays sufficiently rapidly at infinity, a "method of ascent" for equations 

defined in exterior domains can be obtained by simply applying a Kelvin 

transformation (c.f.[29]) and then using the results of section 4.1. However 

if we are interested in problems which arise from scattering theory, then 

B(r2 ) does not tend to zero as r tends to infinity, and the above approach 

can no longer be used. 	It is this type of problem which we will be 

interested in for the remainder of this chapter. 	In particular the 

mathematical problems which we will consider in the present section have 

their origin in the following problem connected with the scattering of 

acoustic waves in a non homogeneous medium. Let an incoming plane acoustic 

wave of frequency w moving in the direction of the z axis be scattered off a 

bounded rigid obstacle D which is surrounded by a pocket of rarefied or 

condensed air in which the local speed of sound is given by c(r) where r=xj 

for x 1K3 . Assume that this pocket of air is contained in a ball of radius 

a and that for ra we have c(r)=c=constant. Let U(x) be the velocity 

potential (factoring out a term of the form eWt)  and set B(r)= ( 
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eI-jII 

uniformly for all x,Fc3D such that x. 	0. 

2 	2 	2 
. (lcz )Ix-I 

(4.1.45) 

Hence from (4.1.41) we have 

(4.1.46) 

uniformly for all x,3D such that x. 	. 0 and from (4.1.41) 

Ixp 0 	+ ( c - 0 ) 2  
I-  	. 

Therefore for x. 	0 and the case (4.1.41) we have 

f 1  IxPI 2dp, 	1 	fl 	dp 
0 	 (1-c& 2) o jx-I 2+(p-p 0 ) 2  

1 	 __ 
arctan ( 

= (l_ct2)I_I 	

° ) p 1  I P= 

(4.1.47) 

(4.1.48) 
(l_e2) lI 

and from a consideration of the remaining (trivial) cases we can now 

conclude from (4.1.37) that (4.1.35) is valid. 

To complete our discussion of the Dirichlet problem for (4.1.1) we now 

show that (I+T) 1 
 exists where T is defined in (4.1.36). 	Since we have 

already shown that T has a weakly singular kernel, if (I+T) 1  exists then 

there are a variety of constructive methods for obtaining the unknown 

density p() and hence the solution of the Dirichlet problem for (4.1.1) 

(c.f. [1],[22]). 

To show that (t+T) 1  exists, by the Fredholm alternative it suffices to 

show that if (I+T)p = 0 then po. 	Suppose (I+T)ip = 0. 	Then the potential 

defined by (4.1.33) generates by (4.1.31)a solution u(x) of (4.1.1) such that 

u(x)=0 for xeaD. 	Since 8(r2) 	0 for xCD, we can conclude from the 
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We now examine the function p-I2 for x and E on 3D. Without loss of 

generality we can restrict our attention to values of x and E such that 

0. 	This follows from the fact that if x.E < 0 then 

2 	2 	2 	2 xp- 	= p x + 	- 2px. - 	
(4.1.38) 

P 1XI 	Il 
and hence for such values of x and & the integral on the right hand side of 

(4.1.37) can be bounded by a constant independent of x and F(since D contains 

the origin). This in turn implies that (4.1.35) is valid. Hence we now 

assume that xj 1  0 and observe that either 

IpI > I-J 	 (4.1.39) 

for0 < p.< 1, or 

II 	 (4.1.40) 

for 0 . p < 1, or there exists a p, 0 < p < 1, such that 

I.pI > Ip0l 	 (4.1.41) 

for 0 < p . 1, where 

(4.1.42) 

In the first two cases we can immediately conclude from (4.1.3) that an 

estimate of the form (4.1.37) is valid. 	Hence we now consider the third 	I 
case. 	From (4.1.42) we have that p 1x12 =.x and hence 

!p o-i = 	2 - - 

(x-).x 	 (4.1.43) 

2 
lxi 

Therefore 	
2 

lxp o 
	- _l2 = lx-l2 	- 	. 	 (4.1.44) 

lxi 
2 

 

Since D is strictly starlike, there exists a positive constant a < 1 which is 

independent of x and g such that 
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(This is similar to the approach used in section 1.3 for elliptic equations 

in two independent variables). 	In (4.1.33) dw denotes an element of 

surface area on 3D, R = Ix- , v is the inward normal to 3D at the point , 

and ip  is a continuous density to be determined. 	Substituting (4.1.33) into 

(4.1. ) and interchanging the orders of integration gives 

	

u(x) = 1- 3 	1 
_ 	2ir f - F7 'i 	E 

3D 	 - 

3 	1 
21T f 	

1 	 _____ 

- 	{ 	a2G(r2,1-02) 	
2 	

)da }d 	. 	(4.1.34) 
- 	

- 3D 

We will show shortly that for C, x on 3D 

Il  02G(r2,1-02) •_ 	1 	)do 	i constant (4.1.35) 
0 I 2_I 

Assuming this fact for the time being, we let x tend to 3D, and, using 

the discontinuity properties of double and single layer potentials (c.f.[21], 

[29J), we arrive at the following integral equation for 

f(x) = 	x) + 4- - 	 I- 
f 	w  f-( 4 )dw 
3D 	 - 

(4.1.36) 

— Jr i,() 	{ f 	,2G(r2,l-o2) 
1  

- ( 

___ 
)da}du 

- 

3D - - 

=(I+T)4 	 xc3D 

Before discussing the invertibility of the operator t+T we prove the 

extimate (4.1.35). Since G(r 2 1 1-0
2 ) is continuous, there exists a positive 

constant C such that for , xon 3D 

I  f
1 
a2G(r2,1-a2) f- ( 	) dci I 

Iy2 j 

1 
1 	

dp. fo  
(4.1.37) 
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Remark 1: The assumption that B(r 2 ) is an entire function can be 

considerably weakened. This follows from the fact that it can be shown 

([31]) that 

G(r,l-ci 2 ) = -2r R(r,r;rci 2 ,0) 
	

(4.1.30) 

where R(x,y;F,n) is the Riemann function for the hyperbolic equation 

+B(xy)u = 0 , 	 (4.1.31) 

and the subscript denotes differentiation with respect to . 	Hence if 

(r) = B(r2 ) is continuously differentiable we can conclude that G(r,l-a 2 ) 

exists and is twice continuously differentiable. 

Remark 2: An alternate approach to constructing the operator I+G has been 

outlined by M. Eichler in [23]. This approach is somewhat similar to 

that which we will use in section 4.2 to obtain a"method of ascent' t  for 

equations of the form (4.1.1) definied in exterior domains. 

We will now show how the integral operator I+G can be used to solve 

(interior) boundary value problems for (4.1.1). 	To be specific we will 

consider the interior Dirichlet problem for (4.1.1) in the case n=3 under the 

assumption that B(r 2 )< 0 in D; the same approach can be used to treat the 

Dirichlet, Neumann,and Robin problems for n > 2. We want to construct a 

solution u() c C2 (D)fl C° (D) of (4.1.1) in D such that u(x) = f(x) on 3D 

where f(x) is a known continuous function defined on 3D. We look for a 

solution in the form 

u(x) = (I+G)h 	 (4.1.32) 

where h() is represented in terms of the double layer potential 

h(x) = 	fi Q) F ( ) dw. 
 .10 

3D 
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'r;6;4) = r 
(n-2) 

 /2u(r;o;) 

p(r;6;4) = r (fl_2)/2h(r;6;) 	 (4.1.27) 

K(r,p) = f- G(r, 1-( 2. 

and (r;6;4) are spherical coordinates. 	From the recursion formula (4.1.22) 

it is seen that each c((r2;n)  is of the form 

(k) 2 	2k.., 2 
= r c(r ;n) (4.1.28) 

where 	r2 ; n) is an entire function of r2 . This follows from the fact 

d 	d2 	 2k-2 that the differential operator (2k-3)( 	) - r( - ) annihilates r 
dr2  

Hence the function K(r,p) defined in (4.1.27) is an entire function of r and 

p . 	Since (4.1.26) is a Volterra integral equation of the second kind it is 

now clear that there exists a unique solution i(r;O;4) of (4.1.26). 	From 

the fact that 

o = A u+B(r2 )u = Ah + fo 
nlG(r2,l_a2)Ah(xa2)d 	 (4.1.29) n 	 - 

- it can easily be seen that r (n-2)/2
p(r;6;)= h(r,O;) is a harmonic function 

in D (rewrite (4.1.29) in the form (4.1.26) where 4P now equals zero, and 

appeal to the uniqueness of solutions to Volterra integral equations of the 

second kind). We can now conclude that the operator 	is invertible. 

We summarize our results in the following theorem: 

Theorem 4.1.1 ([32]): 	Let u(x) be a real valued twice continuously 

differentiable solution of (4.1.1) in D where D is strictly starlike with 

respect to the origin. 	Then u(x) can be represented in the form u(x)=(I+G)h 

where h(*) is a real valued harmonic function in D. 	Conversely, if h(x) is 

harmonic in D, then u(x) = (I+G)h is a solution of (4.1.1) in D. 
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—rB 	 (4.1.22) 

2(k—l)c? =  (2k-3)c 	- rc(1) - rBc 	; 	k >, 2 

and the initial conditions 

c(1(o;n) = 0 	; 	k 	1 . 	 (4.1.23) 

(4.1.22) and (4.1.23) imply that the c (1 (r2;n) are in fact independent of n. 

Since we know the series (4.1.18) is convergent when n2, we can now conclude 

from (4.1.21) and the fact that the c ( (r2 ;n) are independent of n that the 

series (4.1.18) converges absolutely and uniformly for r and t arbitrarily 

large (but bounded). 	This establishes the existence of the operator defined 

by (4.1.16) and (4.1.18). 	If in this operator we now set 

,1 
h(x) = J

tfl2H((1_t2)) 	dt 	 (4.1.24) 

we arrive at the following integral operator which maps real valued harmonic 

functions defined in D into the class of real valued solutions of (4.1.1) 

defined in D: 

1 
u() = (I-i-G)h 	h(x) + 
	

a  lG(r2 ,l_o2 )h(,o2 )dc 	 (4.1.25) 
f0 

where G(r2 ,p) is defined by (4.1.15) and is independent of n. 	This last 

fact is the basis for referring to the approach used in this section as a 

"method of ascent". 

We now want to show that the operator I+G is invertible, i.e. for every 

solution u(x) of (4.1.1) in D there exists a harmonic function h(x) in D such 

that (4.1.25) is valid. 	To this end we rewrite (4.1.25) as the Volterra 

integral equation 

= p(r;6;4) + 	K(r,p)ii(p;O;)dp 	 (4.1.26) 

where 
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by integrating by parts that E(r 2 1 t;n) must satisfy the singular partial 

differential equation 

(1-t2)E 	+E + rs[E 	+ 	E + BE] = 0 	 (4.1.17) rt 	t r 	rr r r 

We now look for a solution of (4.1.17) in the form 

E(r2 ,t;n) = 1 + 	2k (k) t e 	(r2 ;n) 	 (4.1.18) 
k=1 

Substituting (4.1.18) into (4.1.17) yields the following recursion formulas 

for the determination of the e(1(r2;n): 

(n-1)e 1 	-rB 
r 

(4.1.19) 

(2k+n3)e 1  = (2k-3) (k-l) 
	(k-i)  e 	-re 	-rBe r 	 r 	rr 

k > 2. 

From the initial condition E(0,t;n) = 0 we have the initial conditions 

e(1(o;n) = 0 	; 	k = 1,2 	 (4.1.20) 

Hence, each of the e(k)(r2;n)  in (4.1.18) is uniquely determined. 	We must 

now show that the series (4.1.18) converges for t and r arbitrarily large 

(but bounded). 	We first note that for n=2 the e(k)(r2;2) are identical 

with the functions e(k)(r2)  defined by (4.1.12). 	This follows from the facts 

that the form of the series expansion for E(r 2 ,t) and E(r 2 ,t;2) are the same 

and these functions satisfy the same differential equation and initial 

condition. 	Hence, the series (4.1.18) converges when n=2. 	Now define 

functions c(k)(r2;n) by the formula 

(k) 	
2e(r2;n)r(k+ 	- ..) 

c 	(r2;n) = 
	 1 	 ; k .. 1 . 	 (4.1.21) 

- 	)r(k) 

Then from (4.1.19) and (4.1.20) it is seen that the c((r2;n)  satisfy the 

recursion formula 
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bounded). Now define the harmonic function h(x,y) by 

h(x,y) = J H(x(1-t 2 ), y(1-t 2)) 	. 	 (4.1.13) 

Then (4.1.8) can be rewritten as 

fi 
u(x,y) 	h(x,y) + 
	

aG(r2 ,l-o2 )h(xa2 ,ya2 )da 	 (4.1.14) 
0 

where 

G(r2 ,p) = I 2e(r
2 )r(k+) 	k_l 	

(4.1.15) 
k=1 	r()r(k) 

These last two equations follow immediately from expanding h(x,y) and H(x,y) 

in a series of harmonic polynomials, integrating (4.1.8) termwise using 

(4.1.12), and using the elementary properties of the Beta function. 	From 

section 1.3 it is clear that (4.1.14) defines a mapping of the class of real 

valued harmonic functions defined in D onto the class of real valued solutions 

of (4.1.1) (for n=2) defined in D. 

We now want to generalize the representation (4.1.14)from n=2 to general 

n. To this end we first look for real valued twice continuously differentiable 

solutions of (4.1.1) in the form 

1 
u(x) 	fo t"2E(r2,t;n)H(x(l_t2)) 	

dt 	
(4.1.16) 

— 

where x = (x1 ,,,.,x) and H(x) is a real valued harmonic function in D (which 

is now of course a domain inlRt5. 	We require that E(r2 ,t;n) be an entire 

function of t and r 2  and satisfy the initial condition E(O,t;n)1. 	We now 

temporarily replace the path of integration from zero tooneby a loop 

starting from s=+1, passing counterclockwise around the origin and onto the 

second sheet of the Riemann surface of the integrand, and then back up to 

t+l, and substitute the resulting expression into the differential equation 

(4.1.1). 	If u(x) is to be a solution of (4.1.1), it is then easily verified 
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Q(2k)(0) = 0 	 (4.1.6c) 

for k=1,2 ..... (4.1.6a) can be rewritten in the form 

32 
 (2) 

+ 2B(r) = 0, 	 (4.1.7a) 
3(r2 ) 

i 	
(2) and if we require Q (2) (0) = 0 it s seen that Q 	depends only on r 2 and 

satisfies (4.1.6c). 	Now assume that Q 	 depends only on r 2 . 	Then 

(4.1.6b) and (4.1.6c) will be satisfied if Q(2k+2) 
 is a solution of 

(2k) 
2 3Q 

(2k+l) 3Q 
	+ 	

+ 21 	3(r2) + B(r2)Q(2 	- k 	J = 0 (4.1.7b) 3(r2 ) 	 3(r2 ) 	 3(r2 ) 

such that Q(2k+2)(0) = 0. 	From (4.1.7b) we see that Q(2k+2) is a function 

only of r2 , and the lemma now follows by induction. 	The fact that ( r2 ,t) 

is entire follows from the fact that E(z,z*,t)  is entire (section 1.2). 

From lemma 4.1 we can write (4.1.2) in the form 

u(x,y) = f 1 '(r2,t)H(x(l_t2),y(l_t2)) 	
dt 

(4.1.8) 

-1 

where 

H(x,y) = Re f ( 	) 	 (4.1.9) 

is a harmonic function. 	From section 1.3 and lemma 4.1 it can be shown 

that (r2,t)  satisfies the partial differential equation 

- 	l - 	 - (l-t2)E - - E + rt' + - 	BE] = rt 	r 	r 	
1 

r 	r —
E + 	0, 	 (4.1.10) r 

the initial condition 

(O,t) = 1, 	 (4.1.11) 

and has a series expansion of the form 

2k(k) E(r2 ,t) = 1 + E t e 	(r2 ) 
k=l 

(4.1.12) 

which converges absolutely and uniformly for t and r arbitrarily large (but 
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twice continuously differentiable solutions of (4.1.1) in the form 

u(x,y) 	Re f E(z,z,t)f( -(l-t2)) 	
dt 	 (4.1.2) 

2 	,uiTz 

where z = x+iy, z = x-iy, and 

z* 
E(z,z*,t) = 1 + 	t2kk fo 

p( 2k)(Zz*)dz * 	 (4.1.3) 
k=l  

with the P 	 defined recursively by 

(2) = -2B 

(2k+l)P22 	
_2[P(2k) + B 

f
(2k)  P 	dz*1 
	k 	1 

Recall from section 1.3 that f(z) is an analytic function of z in some 

neighbourhood of the origin. At this point we make the assumption that 

u(x,y) is defined in the interior of a bounded domain D containing the 

origin where D is strictly starlike with respect to the origin, i.e. if P is 

a point in D = DUD, then the line segment OP is contained in D except for 

possibly the endpoint P. We will further assume that 3D is twice 

continuously differentiable. Throughout this chapter whenever we refer to 

a domain D we will assume it satisfies the conditions described above. 

Returning now to (4.1.2)-(4.1.4) we have the following lemma. 

Lemma 4.1 ( [2J): 	For (4.1.1) the generating function E(z,z*,t)  is a real 

valued entire function of r2  = zz* and t, i.e. E(z,z*,t) = (r 2 ,t). 

Proof: Let 

fz*(2k)Q' '(z,z*) = z 
	
P 	(z,z*)dz* 	; 	k = 1,2 ... 	 (4.1.5) 

0 
Then from (4.1.4) we have 

+ 2zB(r2 ) = 0 	 (4.1.6a) 

(2k+l)Q2+ 2zEQ2 	+ B(r2 )Q (2l  - 	 0 	(4.1.6b) 
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IV The method of ascent for effiptic equations 

4.1 Interior Domains 

Although it is possible to extend some of the results of the last three 

chapters to partial differential equations in three and four independent 

variables (c.f. [8],[31],[48]) the analysis becomes increasingly more 

complicated, and hence somewhat less practical for purposes of analytic and 

numerical approximation. 	However in certain special cases it is possible to 

make such an extension in a rather simple and straightforward fashion, and 

it is this topic which we will consider in this chapter. 	The special case 

we have in mind is the elliptic equation 

+ B(r)u = 0 
	

(4.1.1) 

where B(r2 ) is a real valued entire function of r2  = x + ... + xj, and we 

will first consider solutions of (4.1.1) which are defined in interior 

domains. 	The theory of (4.1.1)'in interior domains was developed by 

R.P. Gilbert in [32], (who described his theory as a "method of ascent") and 

for exterior domains by Colton and Wendland in [20]. 	Extensions of this 

development to the case of parabolic and pseudoparabolic equations are also 

possible (c.f. [461), although we will not discuss this topic in the present 

work. 

Equations in the form (4.1.1) arise naturally in the theory of steady 

state heat conduction and the scattering of acoustic waves (to name but two 

areas of many possible applications) when the medium is no longer homogeneous 

but varies smoothly as a function of the variable r (c.f. [6], [201). 

We begin our study of (4.1.1) in interior domains by first considering the 

case n=2 and using the Bergman operator (section 1.3) 'to represent real' valued, 
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where I 	.(,c)I 2  = 	ç,r) 	and Il(,t) - 	2=  

The equation (3.3.14) is the solution of the inverse Stefan problem, i.e. for 

every one parameter family of conformal mappings 4(z,t), (3.3.14) defines a 

solution of (3.3.1)-(3.3.3) with the "free" boundary r(t)={(x,y):(x,y,t)=o} 

given by (3.3.4). Note that from the definition of the conformal mappings 

z,t),it is seen that (3.3.14) is valid in a region containing 

R U 3RxO,t]. 	In order to obtain a physically meaningful solution of the 

inverse Stef en problem we assume y(x,y,t)0 for 

(x,y,t)cRx[O,tj (\ {(x,y,t):cI(x,y,t) >. 01 and choose the conformal mappings 

+(z,t) such that u(x,y,t) >, 0 for {(x,y,t):'(x,y,t) < 01. 	We note that 

from the boundary condition (3.3.3) this last condition is always satisfied 

(at least for to  sufficiently small) provided we choose (z,t) such that 

>. 0. Due to the appearance of the factor (n) 2  in the denominator 
at r(t) 

of the n term in the series (3.3.14), accurate approximation of the 

solution to the inverse Stef an problem can be obtained by truncating this 

series after only a few terms. 
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We will now obtain the solution of the inverse Stef an problem (3.3.7)-(3.3.9) 

by first using Stokes theorem to integrate VLJ] - UM[V] over a torus lying 

in the space of three complex variables and then computing the residue of the 

resulting integral representation. 

Let r be real and for t on the circle t-tI.6,  5 > 0, let G(t) be a cell 

whose boundary consists of a curve C(t) lying on the surface 

and line segments lying on the characteristic planes z=& and z*=T respectively 

which join the point (,r) to C(t). Now use Stokes theorem to integrate the 

identity 

	

vL[u] - UM[vJ 	 - .vU) 
(3.3.13) 

+ (VU - 4vU) 
VU) 

4a 	t 

over the torus {(z,z*,t) : (z,z*)CG(t), t-tIS} , making use of the initial 

conditions (3.3.12a), (3.3.12b) satisfied by V, the fact that U=0 on C(t), and 

the fact that dzdz*0 on G(t)xc2 (complex differentials are interpreted in 

the sense of exterior differential forms c.f. [7]). 	After computing the 

residue at the point z=, z*,  this' calculation gives ([18]) 

1 f [vudz -VU*dz*.Jdt = 4Tri I 
Ittics C(t) 

	

- ApI. 

	f 	exp 	 } 	(3.3.14) 

	

4irk 	J 	t—t 	 4a(t-t) 

It—tI=5 	1(,t) 

• 

-1 
____ a" 	(,r) 	

2n 
2k 

	

= A22. 	
t1 

1 	
2 	n 

	

n 0 	
(,r)- 

(4a)(n) at 	(,t) 

} 
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second variables respectively. 	(3.3.9) was arrived at in the following 

manner. 	Let = 	 Then C(t) is the image of 	under the mapping 

z4(1,t). 	We have 	
= 3u 	l 	3u - . But on C(t),v is in the 

l 	
+ 

direction of the level curve l = constant, since =F 1 (x,y,t)+iF 2 (x,y,t) 1 (z,t) 

is a conformal mapping.Hence on C(t) 	0, and by the Cauchy Riemann -5— 	

Ion  C(t). equations and the fact that v = - - , we have - = - Iv 2 I 	 3v az 

3u 	3u 	31(z,t) 	. 	But from 	(z,t),t)z we have Therefore 	
- 	az 

3(z,t) = 1, i.e. 3(z,t) = 	1 

az 

Hence on.C(t), 34(z,t) = 
	1 	, and therefore 

az 	
(s,t) as 

3u - 	3u 	1 	-i(U - 	- U --.) j .(s,t) Ii. 	(3.3.9) now follows Tv- - 	2 
	

1 as 	2 3s 

as 

from (3.3.3),(3.3.5), and the fact that IvI 2 	I 
3(z,t)1 1a 1 (,t)1 

3z 	 az 

which implies that on C(t)IVj = 
	1 

as 

Now let M be the adjoint operator defined by 

	

3 2V 	1 3V 
MVJ 	 = 0 	 (3.3.10) 

and let V be the fundamental solution of M['JJ = 0 defined by 

V(z,z*,t ; ,j,r) = 1 -- exp 	
4a(t-t) 

(z- ) (z*_) 	
(3.3.11) 

	

t-T

where = +iE 2 , 	= 	 Note that V satisfies the Goursat data 

1 
V(z,,t ; 	= 

t—T 	
(3.3.12a) 

	

V(, z*,t ; 	 t 1 T 
= - . 	 (3.3.12b) 
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(x,y,t) = 4—[c 1 (z,t) 4 1 (z*,t)] 	 (3.3.4) 

where zx+iy, z*=xiy. Noting that z*=z  if and only if x and y are real it 

is seen that •(x,y,t)=O corresponds to In ç=O, i.e. the interval (-1,1) in 

the complex C plane. 	Similarly, the region (x,y,t) < 0 corresponds to 

In C < 0, i.e. the part of U which lies in the lower half plane. 	We finally 

note that for zx+iycr(t) we have 4(z,t)= 1(z*,t)  and hence 

= 1 [l(zt) - aq(z*,t)j 	
(3.3.5) 

r(t) 	
2i 	at 	 at 	 (0-1  

= g(z,t) 

i.e. 
ff 

restricted to r(t) can be analytically continued (for each fixed t) 

to an analytic function of z for zcD. 

We will now construct a solution of (3.3.1) which has (x,y,t) (as given 

by (3.3.4)) as a free boundary. 	In (3.3.1) we consider x and y as 

independent complex variables and define the transformation of if 2  into itself 

by 

z = x+iy 
(3.3.6) 

z*x—iy 

Under this transformation (3.3.1)-(3.3.3) become 

LIU]
a2u 	1 au - - -- = 0 	 (3.3.7) - a z a z* 	4a at 

U((s,t),(s,t),t) = 0 ; 	-1 < s •< 1 	 (3.3.8) 

	

a(s,t) 	 - 	a(s,t) U1(4(s,t),(s,t),t) 	
as 	

U2(4(s,t),c(s,t),t) 	
as 

(3.3.9) 

- 	4(s,012 g(4(s,t),t) 	; 	-1 < s < 1 - k 	as 

where U(z,z*,t) = u( z+z* 	z_z* --- , -----, t), g(z,t) is defined by (3.3.5), and 

subscripts denote differentiation of U(z,z*,t)  with respect to the first and 
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be described by r(t) = {(x,y) : $(x,y,t) = 01 with the water lying in the 

region (x,y,t) < 0. The differential equation and boundary conditions 

governing the conduction of heat in the water are given by 

a 2u 	32u 	I au + 	
=—a Wt; 	

•(x,y,t) < 0 	 (3.3.1) 

UR = y(x,y,t) 	 (3.3.2) 

0 u 	 , 
t1(t)

= 	
1 rt 	TT 	r(t) 

where v is the unit normal with respect to the space variables that points 

into the region (x,y,t) < 0, V denotes the gradient with respect to the 

space variables, u(x,y,t) is the temperature, a the diffusivity coefficient, 

A the latent heat of fusion, p the density,and k the conductivity of the 

water. 	The Stef an problem is to find r(t) and u(x,y,t) given the function 

y(x,y,t). The inverse Stefan problem which we are interested in is to find 

u(x,y,t) (an in particular y(x,y,t) = lim u(x,y,t))given r(t). 	In 
(x , 

general we cannot hope to solve the inverse problem for arbitrary r(t); 

however by suitably restricting r(t) to lie in a certain class of analytic 

surfaces we will be able to obtain a relatively simple series representation 

of the solution, and it is to this problem we now address ourselves. 

Let Dt,  0 '< t < to , be a family of simply connected domains which 

depend analytically on a parameter t such that Li D contains 
0<t<t 

0 

R-) Rx[o,t]. 	Let z(r,t) conformally map the unit disc 0 onto D t  (D 

being such that the image of (-1,1) intersects R) and for *e2,  0 	t < to , 

define (*,t)  by 4(*,t) = p(*,t) where bars denote conjugation. 	Now 

set z = 4(*,t) and note that zz if and only if 	We now define 

the function (x,y,t) for (possibly) complex values of x,y and t by 
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In physical terms we are asking the question of how must a given solid 

(.e.g. ice) be heated in order for it to melt in a prescribed manner, and by 

constructing a variety of such examples a qualitative idea can be obtained 

on the shape of the free boundary as a function of the initial-boundary 

conditions. As in the case of the inverse Stefan problem in one space 

dimension, such an inverse approach leads to two main problems. The first 

of these is that the inverse problem has its mathematical formulation as a 

non-characteristic Cauchy problem for the heat equation and is thus 

improperly posed in the real domain. However such a problem is well posed 

in the complex domain, and hence we are led to examine solutions of the heat 

equation in the space of several complex variables. 	The inverse Stefari 

problem can now locally be solved by appealing to the Cauchy-Kowalewski 

theorem (c.f.[21],[29]). 	However in addition to being far too tedious for 

practical computation and error estimation, such an approach does not 

provide us with the required global solution to the Cauchy problem under 

investigation. Hence we are led to the problem of the analytic 

continuation of solutions to non-characteristic Cauchy problems for the heat 

equation. We will accomplish this by using contour integration and the 

calculus of residues in the space of several complex variables to arrive at 

an explicit (global) series representation of the solution to the inverse 

Stef an problem. 

We will motivate the mathematical formulation of the inverse Stef an 

problem in terms of an ice-water system undergoing a change of phase. 

Assume that a bounded simply connected region R with boundary aR is filled 

with ice at 00  Centigrade. 	Beginning at time t0 a non-negative 

temperature yy(x,y,t) (where y(x,y,0)0) is applied to 3R. 	The ice begins 

to melt and we will let the interphase boundary r(t) between ice and water 
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Theorem 3.2.3 can be used to provide a method for approximating solutions 

to initial-boundary value problems for (3.2.15) in the same manner as we 

have already done for elliptic equations in two independent variables and 

parabolic equations in one space variable. 	In particular we orthonormalize 

the set {u(x,y,t)} in the L 2  norm over the base and lateral boundary of 

the cylinder Dx(O,T) to obtain the complete set {c(xy,t)}. 	An 

approximate solution to the initial-boundary value problem on compact 

subsets of Dx(O,T) is then given by 

N 	 N M 
u (x,y,t) =E 	E c(x,y,t) 	 (3.2.28) 

n0 m0 

where 

c mm = f f u(x,y,t)4 mm  (x,y,t)ds + f f u(x,y,O)4 nm (x,y,O)dxdy 

DD 	 (3229) * [oT3 	 D 

and ds denotes an element of surface area on DD. 

Error estimates can again be found by applying the maximum principle. 

This procedure is particularly simple in the case of the heat equation where 

a complete family is given by (3.2.13) or (3.2.14) 

3,3 The Inverse Stefan Problem. 

In this section we will present an inverse method for constructing analytic 

solutions to the single phase Stef an problem for the heat equation in two 

space dimensions (For the case of one space dimension see the Introduction 

and section 2.3). 	Our solution of the inverse Stefan problem will be 

accomplished by assuming a priori that the free boundary is a relatively 

simple analytic surface and then constructing a solution to the heat equation 

which has this prescribed surface as a free boundary ([18]). 	Provided the 

solution is analytic in a sufficiently large domain we can then determine 

the initial-boundary data which is compatible with the given "free" boundary. 
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v(x,y,t) 	E O a4n(x,y)exp(Ant) 	 (3.2.24) 
n= 

a = f f v(x,y,O)(x,y)d(x,y)dxdy 
where the seriesin (3.2.24) converges absolutely and uniformly in Dx[O,TJ. 

By truncating the series in (3.2.24) and appealing to Theorem 1.3.3 and 

Theorem 1.3.5 we can conclude that there exists a real valued solution 

w2 (x,y,t) of (3.2.15) which is an entire function of its independent complex 

variables such that 

max 1w -vi < c2 . 	 S 	 (3.2.25) 
Dx[O,T] 	

2 

The inequalities (3.2.22) and (3.2.25) now imply that there exists a real 

valued solution u 1 (x,y,t) of (3.2.15) which is an entire function of its 

independent complex variables such that 

maxtu—uI< c 
D x[O,T] 	

1 
(3.2.26) 

Representing u1 (x,y,t) in the form u = Re P 2 {f} and truncating the Taylor 

series for f(z,t) to obtain the polynomial f(z,t) such that for (z,t)c 

3Dx[O,T], f—fl is sufficiently small, leads to the following theorem: 

Theorem 3.2.3 (E131): 	Let u(x,y,t) be a real valued classical solution of 

(3.2.15) in Dx(O,T) which 3D is three times continously differentiable, 

d(x,y) > 0 in D, and u(x,y,t) is continuous in Dx,TJ. 	Let u(x,y,t) for 

n,m=0.1.2.... be defined by (3.2.10). 	Then for any c > 0 there exists 

integers N=N(c), MM(c), and constants a, n0,1,. . .,N, m0,1,. . .,M, such 

that 

N M 
max 	Iu—E 	E 	a u I<c.nur 
Dx[0,T] 	n0 m=o 
	 (3.2.27) 
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N 
w(x,y,t) = E w(x,y)t 11 	 (3.2.20) 

n0 

such that w(x,y,t) = u(x,y,t) for (x,y,t)c3Dx[0,T]. 	From (3.2.15) and 

(3.2.19) it is seen that the function w(x,y) must satisfy the recursive 

scheme 

32WN 

	

+ 	+ c(x,y)w = 0 	; 	(x,y)cD 

wN(x,y) = fN(x,y) 	; 	(x,y)c8D 
(3.2.21) 

3 2w 	32w 
axr + 	+ c(x,y)w = (n-fl)d(x,y)w 1  ; (x,y)cD 

w(x,y) = f(x,y) 	; 	(x,y)c3D, 

for n0,1,. ..,N-l. 	The existence of the w(x,y) for n=0,1,. .. ,N follows 

from the smoothness of 3D and the fact that c(x,y) < 0 in D (c.f. [27] ). 

From Corollary 1.1.1 0  Theorem 1.3.3, Theorem 1.3.4 and the fact that w(x,y) 

depends continuously on the nonhomogeneous term (n+l)d(x,y)w 1 (x,y), we can 

conclude that for e > 0 there exists a real valued solution w 1 (x,y,t) of 

(3.2.15) which is an entire function of its independent complex variable such 

that 

max 	1w -wJ < /2 	 (3.2.22) 
x[O,T] 1 

Now let v(x,y,t) = u(x,y,t) - w(x,y,t) and let An  and 4(x,y) be the 

eigenvalues and eigenfunctions respectively that correspond to the 

eigenvalue problem 

	

+ 	+ c(x,y) + Xd(x,y)c = 0 	; 	(x,y)Dyy 	
(3.2.23) 

	

x,y) = 0 	; 	(x,y)c3D. 

From (3.2.19)-(3.2.21) and the expansion theorem for the eigenvalue problem 

(3.2.23) (c.f.[35]) we can conclude that 
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conduction in a nonhomogeneous medium is governed by the equation 

(k(x,y) 
au  +(k(x,y) ?) = c(x,y) 	 ( 3.2.16)

at  ay 

where k(x,y) and c(x,y) are positive, continuous known functions and 

u=u(x,y,t) denotes the temperature in the medium. 	Writing (3.2.16) in the 

form 

k(x,y)(u+u,) + k(x,y)u + ky(xY)uy = c(x,y)u 	 (3.2.17) 

and dividing by /k(x,y) we obtain (after rearrangement) 

v +v - (/k(x,y)) 	= c(x,y) v 	 (3.2.18) 
xx yy 	Ik(x,y) 	4(x,y) 

 92 
where v(x,y,t) 	Ik(x,y) u(x,y,t) and L = f.2 + 

Now let u(x,y,t) be a classical real valued solution of (3.2.15) in a 

cylindrical domain Dx(O,T) where D is a bounded, simply connected domain 

whose boundary 3D is three times continuously differentiable and let 

u(x,y,t) be continuous in Dx[O,T]. 	We assume that c(x,y) and d( x,y) are 

entire functions of their independent complex variables and that for 

(x,y)cD we have d(x,y) > 0. 	By means of the change of variables 

u = eatv where a > 0 is large, it is seen that without loss of generality 

we can assume c(x,y) . 0 for (x,y)cD. 	From the maximum principle for 

parabolic equations and the Weierstrass approximation theorem we can 

assume without loss of generality (for purposes of approximation) that the 

boundary data assumed by u(x,y,t) on 3Dx[O,TJ is a polynomial in t, i.e. 

N 
u(x,y,t) = E 	f(x,y)t11 	 ; 	

(x,y,t)c3Dx[O,T] 	 (3.2.19) 
n0 

where (by a further approximation) the fn(xy)  are H51der continuous 

functions defined on 3D. We now look for a real valued solution of 

(3.2.15) in the form 
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for n,m = 0,1,2 .... . Then for any c > 0 there exists integers N = N(s), 

M = M(c), and constants a, n = 0, 1,. .,N, m = 0,1,... ,M, such that 

N M 
max 	lu - E 	E a 

nm nm 
u 	< c 	 (3.2.11) 

0 

- r 	-i D XLtS 
0 	0 
,T-6 I n=0 m=0 

We note that for the case of the heat equation (3.1.4) we have from 

(3.1.15) and the result 

1 

	

(1 2)n- s 2k 	r(n+ )r(k+) 
- Li 	ds = 	

r(n+k+1) 	 (3.2.12) 

that 

m r r(m+].)r(n+) 	2k+n m-k 
U2nm(XYpt) 	cos n 0 Z k=0 r(kil)r(m_k+l)r(n+k+l)r 	t 	(3.2.12) 

r(mi-l)r(n+ ) 	2k+n m-k 
2n+1 ,m u 	(x,y,t) = 	o 

k=0 r(k+1)r(m-k+l)r(n+k+l)' 	t 

where xr cosO, y=r sinG . 	Noting that in this special case u(x,y,t) 

is a polynomial in x,y and t, it follows from the uniqueness theorem for 

Cauchy's problem for the heat equation (c.f.[35]) that another complete 

family of solutions (on compact subsets) for the heat equation defined in 

Dx(0,T) is given by 

v 	(x,y,t) = h (x,t)h (y,t) n,m 	 U 	m (3.2.14) 

for n,m = 0,1,2,... where h(x,t) is the polynomial defined in (2.3.17). 

We now consider the case when (3.1.1) is of the form 

u + u + c(x,y)u = d(x , y)u 	 (3.2.15)xx  

and show that if DD is three times continuously differentiable, u(x,y,t) 	is 

continuous in Dx[0,T], and d(x,y) > 0 in D, then the family (3.2.10) is in 

fact complete "up to the boundary", i.e. in (3.2.11) Dx[,T-J can be 

replaced by Dx[0,T]. 	Equations of the form (3.2.15) are of particular 

interest since a wide variety of equations appearing in mathematical physics 

can be written in the form (3.2.15). 	For example the equation of heat 
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solution u(x,y,t) of (1.1) such that 

max 	Iu_uI<c 
Dx[6,T-60] 	

0 
(3.2.8) 

Proof: 	Let u 1 (x,y,t) be an analytic solution of (3.1.1) in 
45 	 6

D 1x[ 2. ,T- . 2.]such that (3.2.1) is valid. 	From Theorem 3.2.1 we have that 

U1 (z,z*,t) = u1 (x,y,t) is analytic in D 1xDxE, and from Theorem 3.1.1 we can 

represent U 1  (z,z,t) in this domain in the form U1 (z,z,t) = Re P2 {f) where 

f(z,t) is given by (3.1.18) with U replaced by U 1 . 	(We emphasize again the 

importance of Theorem 3.2.1 which tells us that U(z,O,t) is analytic in 

D 1xE. 	From (3.1.18) this implies f( ,t ) is analytic in D 1xE and hence 

Re P 2 {f} is analytic in DfcDXE and therefore must equal U 1 (z,z,t) not only 

locally but in the entire product domain D 1xDxE.) 	Since product domains 

are Runge domains of the first kind (c.f. [28], p.49). we can approximate 

U1 (z,O,t) (and hence f( .,t)) on compact subsets of D 1xE by a polynomial. 

In particular since Re 	tends to zero as f(z,t) tends to zero in the 

maximum norm, we can conclude that there exists a polynomial f(z,t) and 

entire solution u 2 (x,y,t) = Re P 2 n 
{f } of (3.1.1) such that 

max 	1u2-u11 < c/2 	• 	 (3.2.9) 
5 0  x[ 0 &  

, T-45 1 

The theorem now follows from (3.2.1) and (3.2.9) by the use of the triangle 

inequality and the fact that D1D Dc 

As an immediate consequence of Theorem 3.2.2 we have the following 

corollary, where "Im" denotes "take the imaginary part": 

Corollary 3.2.1: 	Let u(x,y,t) be a real valued classical solution of (3.1.1) 

in Dx(O,T) where d(x,y,t) > 0 in Dx(O,T),D0C D, 6 > 0, and let 

u 	ReP{z 
n 

 t  m} 
2n,m 	-2 	 (3.2.10) 

U2n+l,m = Im P 2{zmtm} 
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f f R[u1 R1ogr] + 2T, f u 	dt 

aD1x2 

• f f f u 
1 
 74[Rlogr]dxdydt 

(3.2.5) 

= f f H[u,R1ogr3 + 4ir2i u1 (,fl,t) 

aD1xc 

• f f f u174[RlogrJdxdydt 

i.e. 	 D 
1 
 xrl  

(3.2.6) 

u1 (,fl,T) = -.- ( f f H[u1,Rlogr] + f f f u1171[Rlogr]dxdydt). 

11.x 
Returning now to the complex coordinates z,z*, we see from the fact that 

M[R] = 0 that 

3R/ -BR 	R/ az*-AR 
?fl[Rlogrj = M[Rlogr] = 2 	 + 2—C-z , 	 (3.2.7) 

and hence from (3.1.27) we have thatfl[R1ogr] is an entire function of its 

independent complex variables except for an essential singularity at tr. 

Hence, replacing Z by *, we see that the second integral in (3.2.6) can be 
continued to an entire function of C and * for t c E. 	The first integral 

in (3.2.6) can be continued to an analytic function of 	and t for 

c D 1XDXE. 	Hence (3.2.6) shows that U1(,*,r) = u 1 (,,t) is 

analytic in D 1xDx.E and the theorem is established. 

With the help of the above theorem on the analytic continuation of 

analytic solutions to (3.1.1) we can now establish the following version of 

Runge's Theorem for parabolic equations in two space variables: 

Theorem 3.2.2 ([17]): 	Let u(x,y,t) be a real valued classical solution of 

(3.1.1) in Dx(0,T) where d(x,y,t) > 0 in Dx(0,T) and let 	xE TScJ be a 

compact subset of Dx(0,T). 	Then for every c > 0 there exists an entire 
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= {z: z c D1 } 	
(3.2.2) 

= {z* 	; c D1 } 

and E is an ellipse in Ct' containing the interval 16 0 ,T 	such that for 

(x,y)c5 1 , u(x,y,t) is an analytic function of t in E. This result is the 

analogue for parabolic equations of the Bergman-Vekua theorem for elliptic 

equations (c.f. section 1.1). 

Theorem 3.2.1 ([17]): U 1 (z,z*,t) is analytic in D 1XDXE. 

Proof: From Stokes theorem we have that for u and v analytic in a 

neighbourhood of 

j..[u] -u?fl[vJ)dxdydt = f f H[u,v] 	 (3.2.3) f f f (v  

D 1x 

where Lis the differential operator defined by (3.1.1),iflis its adjoint, 

= {t:It-tI=} such that QCE, and 

H[U,v] = {(vu uv +auv)dydt - (vu-uv+buv)dxdt 	 (3.2.4) 

- (duv)dxdy}. 

The region of integration D 1xc2 in (3.2.3) can be geometrically visualised as 
a three dimensional torus lying in the six dimensional space c1.3 . Note that 

on 3D 1  we have dxdy=O. 	Now let D 
C 
be a small disc of radius c about the 

point (F,ri), uu 1 (x,y,t), vR(z,z,t;t,r,r)log r (where r2 ( z_)(_), 

=+iri, =-ir) and apply (3.2.3) to u and v with the torus D 1xQ replaced by 

the hollow torus D1\Dx. Letting c tend to zero now gives 

o = lim { J J H[u1,Rlogrj + f f f ufl[RlogrJdxdydt} 

	

3(D
1
\D )xc2 	

D1 c  
\D x 
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3.2 Complete Families of Solutions. 

We will now use the integral operators and Riemana function constructed in 

the last section to construct a complete family of solutions to (3.1.1) in 

the space of real valued classical solutions to (3.1.1) defined in a cylinder 

Dx(O,T) where T is a positive constant. 	We will assume that D is a bounded, 

simply connected domain in TR2  containing the origin and that the 

cofficient d(x,y,t) is greater than zero in Dx(O,T). 

Let u(x,y,t) be a real valued classical solution of (3.1.1) in Dx(O,T), 

D0  and D 1  compact subsets of D such that D D1 Oo D0  and let 3D1  be analytic. 

From the existence theorems for solutions of initial-boundary value problems 

for parabolic equations (c.f. [26],7J) and the maximum principle for 

parabolic equations we can conclude that for c > 0, 6 > 0, there exists a 
6 	6 

solution u1 (x,y,t) of (3.1.1) in D 1x( .i2. , T- .2. ) such that u 1 (x,y,t) is 

- 6 	6 
continuous in D1xE,  T 	assumes analytic Dirichiet data on 

6 	6 
3D1xE.2- , T- 	and satisfies 

max 6 	 u1-u < /2. 	 (3.2.1) 

From a result of Friedman ([273p.212) we can conclude that u 1 (x,y,t) is 
6 	6 	 6 	6 

analytic in D 1x(, T- .2.),  i.e. for every point (x,y,t) C 	x( 2,T- .) 

there exists a ball in 0 with centre at (x,y,t) such that as a function 

of the complex variables x,y,t, u1 (x,y,t) is analytic in this ball. 	By 

standard compactness arguments we can conclude that u 1 (x,y,t) is analytic in 

some "thi&' neighbourhood in 	of the product domain Dix[6,T_6cJ. We now 

want to show that U1 (z,z*,t) = u1 (x,y,t) can be analytically continued as a 

function z,z* and t (where z*=z for x and y real) into the product dOmain 

D1XD1XE where 
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To establish the existence of the Riemann function we let 

f( .,t ) 
= -i—F( Z 

t-t 	
where 

	

fz(l-p2) 	
dp 

F( ..,t ) 
= - - fexpj 	B(o+,*,t)da} 	 (3.1.28) 

7T  

Y 

(with y defined as in (3.1.18)) and define the solution V(z,z*,t;r,c*,r) of 

(3.1.26) by 

	

V(z,z*,t;,*,t) = p* {F(z,t)} 	 (3.1.29) 
.-2 	t-t 

where P 2  is the integral operator associated with (3.1.26). 

Then from the reciprocal relations (c.f. section 1.3) 

f 1 f( 	 ds (_2)) 	= g(z) 	
(3.1.30) 

if 
- •; 	

g(z(l-p) 	= f(..) 
Y 

we have that 

(z-) 
V(z,*,t;c,c*,r) = 
	

exp {J 	B(a+C,*,t)dc1} 
1  = 	{I B(a,1* 1 t)da) 	 (3.1.31) t - exp 
-t 

	

-i-- expCj 	A(z,a,t)da} )  v(, z*,t;,r*,r) t-t 

i.e. V(z,z*,t;,*,t) is in fact the Riemann function R(z,z*,t;,*,r). 

Note that except for an essential singularity at t=t the Riemaun function is 

an entire function of its six independent complex variables. 
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Q(2) = -2(t-t 1) - 25 
(3.1.25) 

(2n+1)Q2'2 = -2[(t-t 1 )Q 2' + (t-t1) Q(2fl) + (t-t1) f (2) 

 * 

+ (n+1) 	Q 2 do - (t-t1)' 
fZ*

* Q2'daJ 

By slightly modifying our previous analysis for the case of the operator P 2  

(c.f. section 1.1) it can be seen that the operatorP exists and maps 

analytic functions of two complex variables defined in some neighbourhood of 

the point (O,t) into the class of analytic solutions of (3.1.1) defined in 

some neighbourhood of the point 	 It is also easy to see that 

E*(z,z*,1,t 1 ,$) = E*(z,z*,t; ,*,t 1 ,$) is an entire function of its seven 

independent complex variables except for an essential singularity at tt1 . 

We make the observation that if, as a function of t, f(z,t) has an 

isolated singularity at t=r for a given t e (TI then U(z,z*,t) ={f} also 

has an isolated singularity at t=r. 

We will now use the integral operator 	associated with the adjoint 

equation to (3.1.13) to construct the Riemann function for (3.1.1). 	The 

Riemann function R(z,z*,t;,*,r) for (3.1.1) is defined to be the (unique) 

solution of the adjoint equation 

M1J = v - (Av) - (Bv) 	cv +(Dv) = 0 	 (3.1.26) zz* 	az 

satisfying the initial data 

(2 1 R(z,*,t;,*,r) = 	exp { I B(a,*,t)do } 
(3.1.27) 

z* 
1 	f = - exp 

(c.f. [17, [37] 
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independent of t., and taking the real part of (3.1.16) and integrating 

termwise yields the representation 

U(z,z) = Re [exp 	A(z,a)da}. 	 (3.1.20) 

	

J E(z , z ,$)f( 	 ds
.(l_s 2 )) 	j 

-1 
where 

2n n f 	(2n)(*)d* 	 (3.1.21) E(z,z*,$) 	1+ E S z 	P 
n1 	J o  

with the P 
(2n) being defined recursively by 

	

= -2C 	 (3.1.22) 

(2n) 
(2n+l)P 2' 2  = -2[ (2n) + 	+ c i p(2n)d c *J 

	

z 	 Jo 

A comparison of (3.1.20)-(3.1.22) with (1.3.21), (1.2.13) and (1.3.14) shows 

that the operator defined by (3.1.20) is identical with the Bergman operator 

ReB2 {f}. 

In addition to the operator P 2 
 we will also need to make use of a 

generalized form of this operator which we will denote by P and is defined 

by 

U(z,z*,t) =P{f} 	- 	exp{ - J 
(3.1.23) 

1 	 dsdt 

Itt1 Io 	
-1 E*(z,z*,t,t 1 ,$)f( (z;))(l_S2),t1) )r...! 

where 6 > 0, (c,c*) c 	2,  f(z,t 1) is an analytic function of two complex 

variables in some neighbourhood of the point (0,t), and 

	

1 	s 
2n 

 (z-) 
fl 

z* (2n) 

	

j  
E 	 Q 	(z,o,t,t 1 )do (3.1.24) E*(z,z*,t,t 1 ,$) 	

+ n1 (t-t1)' 	* 

with 
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- 	 A(O,a,t)dcr) 
= !fl f(..(l_.s2),t) ds _ + iT - 

f(O,t)exp(- 
-1 fo 

where f(z,t) = f(z,t) and A(z,z*t) = A(z,z*,t). 	A solution of the integral 

equation (3.1.17) is given by (c.f. section 1.2) 

f(.,t) = - 	f[21J(z(l_s2),o,t) 

I 

fo

z
-U(O,O,t)exp(- 	A(O,,t)dci)] 	- 

S2  

(3.1.18) 

where y is a rectifiable arc joining the points s-1 and s+l and not passing 

through the origin. 	(3.1.17) and (3.1.18) show that if U(z,z,t) = u(x,y,t) 

is real valued for x,y and t real, then f(z,t) can be chosen such that 

U(z,O,t) assumes prescribed (analytic) values. 	We swnmarize our results in 

the following theorem: 

Theorem 3.1.1 ([16], [173): 	Let u(x,y,t) be a real valued analytic 

solution of (3.1.1) defined in some neighbourhood of the point (O,O,t). 

Then u(x,y,t) = IJ(z,z,t) can be represented in the form u(x,y,t) = Re P {f} 

where f(z,t) is an analytic function of z and t in some neighbourhood of the 

point (O,t). 	Conversely, for every analytic function f(z,t) defined in some 

neighbourhood of the point (O,t), u(x,y,t) = ReP 2 {f} defines a real valued 

analytic solution of (3.1.1) in some neighbourhood of the point (O,O,t) 

The operator £2 is in fact closely related to the Bergman operator 2 for 

elliptic equations in two independent variables constructed in section 1.2. 

To see this we consider the case in which the coefficients and solution of 

(3.1.1) are independent of t and hence u(x,y,t) = u(x,y) satisfies the elliptic 

equation 

u 
xx yy 

+u 	 = 0 . 	 (3.1.19) 

In this situation the associated analytic function f(z,t) = f(z) is 
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of z,z*,  s and t-r, i.e. E(z,z*,t,r,$) = E(z,z*,tr,$). 	In particular for 

the special case of the heat equation 

xx 	yy 

we have 

= 
iT 	

(_1)fl 	
r2s2  n E(z,z*,t,t,$) 	

E r(n+) ( 	) 	 (3.1.15) 
n=o 

where r2 = zz 	x2+y2 . 

We have now shown that the operator P 2  defined by 

z* 
U(z,z*,t)= X2{f) = - 	eip { - fo A(z,a,t)da }. 

.1.1  E(z,z*,t,t,$)f( .(l_s2),t) 
71:---s 
	

(3.1.16) 

It-tI=6 -1  

exists and maps analytic functions of two complex variables into the class of 

(complex valued) solutions of (3.1.3). 	An elementary power series analysis 

shows that solutions of (3.1.3) which are real valued for t real and z*=z 

(i.e. x and y real) are uniquely determined by their values on the 

characteristic plane z*=O. 	Furthermore, since the coefficients of (3.1.1) 

are real valued for x,y and t real, the operator ReX2{f}  (where "Re" denotes 

titake the real part") defines a real valued solution of (3.1.1) provided we 

set z*z  and keep t real. 	Evaulating ReP2 {f} at z*0  and keeping t real 

gives 

U(z,O,t) = Re 
_ 	z*=O 	 (3.1.17) 

1 	 z 

- f [f((1_s2),T) + f(O,t)exp(- J A(O,o,t)dcJ)J 
ffi 

-1 

dsdr 

(t-t)Ii 
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(2) 	
M2ntn(1+c)n 	

Z)(2fl•1)(_ Z* )_(2n-1 )( l  t ) _(3fl_l)_n 

°  
where 	 (3.1.10) 

rB (1+t ) 

M1 = t:c1+ 
 

Br 
M n+l = M 

n 
 (1+c) 1  11+ 	(2n-l+r+  

(2n-1)2 	 to 

Note that for n sufficiently large we have M + i < M, i.e. there exists a 

positive constant M which is independent of n such that M < H for all n. 

Now let 1 and a > 1 be positive constants such that 

IsI 	6 0 	Izi < 

H 	t 	 Iz*I < 	 ( 3.1.12) 

ti < .2. 	6 0 4 It—ri 

where r and t o  arbitrarily large (but fixed) positive numbers and 6 is 

arbitrarily small (but again fixed). 	Then from (3.1.10) it is seen that the 

series (3.1.6) is majorized by the series 

4n-1 2n n 
-i-  n 3n-3 r M 2 	s 	t (1c) a n 	

. 	 (3.1.13) 6 	 n+l 	 4n-2 o 	n1 	6 	(2n-l)(a-l) 

If a is chosen such that 16 s 2 t (1+0a 36(a-1) 	< 1 then the series 

(3.1.13) is convergent. 	Since r,t and s can be arbitrarily large, 6 

arbitrarily small, and c is independent of r,t,s and 6 01 we can now conclude 

that the series (3.1.6) converges absolutely and uniformly on compact subsets 

of {(z,z*,t,-r,$):(z,z*,t,r,$)c 	5,t+T} , i.e. E(z,z*,t,r,$) exists and is 

an entire function of its independent complex variables except for an 

(essential) singularity at t=-r. 	Note that if the coefficients a(x,y,t), 

b(x,y,t),c(x,y,t) and d(x,y,t) are independent of t, then E(z,z*,t,r,$) is 

a function only 

85 



Substituting (3.1.6) into (3.1.5) yields the following recursion formula for 

the Q 2': 

Q(2) = -2(t-t)C - 2D 	 (3.1.7) 

(2n+l)Q2'2' = -2[(t-t)Q 2" + (t-t)' Q(2fl) + (t-t)C I 	d 
J o  

Z 

+ (n+l)' 1(2n) 	- (t-t)' f Q(2n
t o 	 o 

n1,2 ..... 

It is clear from (3.1.7)that each of the Q(211 
	

n1,2,..., is uniquely 

determined. 	In order to show the existence of E(z,z*,t,r,$)  it is now 

necessary to show the convergence of the series (3.1.6) and it is to this 

end that we first majorize the functions Q(21)• 
	

Let r and to  be arbitrarily 

large positive numbers and let B be a positive constant such that for 

z < r, Iz*I < r, Iti < too we have 

B 
- 0 B(z,z*,t) << 

(1- L 	-)(l- 	) 
0 

B 
-, 0 

(3.1.8) C(z,z*,t) << 
(1- ) (1- 	(1- f-) 

0 

B 
0 D(z,z*,t) << 

(1- 	l- 	)(1- 	) 
0 

where "<z" denotes domination. 	We also have tIfact that for ITI .< to , 

ti < to , 

tt << t(l- t)l 
	

(3.1.9) 

In a straightforward manner which is by now familiar, it can be shown by 

induction that for any c > 0 and jzj < r, jz*1 < r, Iti < t, ITI < to  we 

have (with respect to the variables z,z*,t) 
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LruJ 	U 	+ A(z,z*,t)U + B(z,z*,t)U* + C(z,z*,t)U 	 (3.1.3) L 

- D(z,z*,t)Ut = 0 

where A = ..(a+ib), B = (a-ib), C =c and D 	Note that the change of 
4 	 4

variables (3,1.2) is permissible since we are considering analytic solutions 

of (3.1.1). 	Note also, however, that in general classical solutions of 

(3.1) are not analytic, and hence a problem we will eventually have to face 

is how to apply the results we are about to obtain on analytic solutions of 

(3.1.1) to the problem of approximating classical solutions of (3.1.1). 	We 

now look for solutions of (3.1.3) in the form 

fo

z*  
U(z,z*,t) = - 	 exp { 

- 	

A(z,a,t)da}. 2iri 	
(3.1.4) 

f 1 

fE
(z,Z*,t,T, ~;)f1 - (1_s2) T ) ), dt 

16 
where 6 > 0, f(z,T) is an analytic function of two complex variables in a 

neighbourhood of the point (O,t) and E(z,z*,t,r,$) is an (analytic) function 

to be determined. 	The first integral in (3.1.4) is an integration in the 

complex r plane in a counterclockwise direction about a circle of radius 6 

with centre at t, and the second integral is an integration over a 

curvilinear path in the unit disc in the complex s plane joining the points 

s+l and s-l. 	Substituting (3.1.4) into (3.1.3) and integrating by parts 

shows that E(z,z*,t,T,$)  must satisfy the differential equation 

(l-s 2 )E* 5 - 	+ 2sz(E 	+ 	+E -'E) = 0 	(3.1.5)zz* 

where B = B 
- 	

Ado, C = (A+AB-C),D = D. We now look for a solution of 

(3.1.5) in the form 

2n n 
E(z,z*,t,r,$) = -i-- + 	 Z 	

fo  

	

Q(2n)(t)d 	(3.1.6) tt- 	 n+1
nl (t-t)  
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III Parabolic equations in two space variables 

3.1 Integral Operators and the Riemann Function. 

We now want to obtain results for parabolic equations in two space variables 

which are analogous to the theory previously developed for elliptic equation 

in two independent variables and parabolic equations in one space variable. 

In the present case new problems are presented since the domains of the 

integral operators we are about to construct lie in the space of analytic 

functions of several complex variables as opposed to analytic functions of 

one complex variable as in the previous chapters. 	Nevertheless considerabli 

progress can be made in using analytic function theory to develop constructii 

methods for solving initial-boundary value problems for parabolic equations 

in two space variables. 	In this section we begin the development of this 

theory by constructing integral operators which map analytic functions of tw 

complex variables onto analytic solutions of the general linear second order 

parabolic equation written in normal form as 

= d(x.y,t)u 	(3.1.1) 

where the coefficients of (3.1.1) are entire functions of their independent 

complex variables which are real valued for x,y and t real. 	At this point 

no assumptions are made on the positivity of d(x,y,t). 	Since the analysis 

of this section is similar to that of sections 1.1 and 1.2, we will make our 

presentation somewhat briefer than in previous sections. 

The change of variables in 2  

z = X+iy 

z* = x_iy 

transforms (3.1.1) into the form 
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co 	2j+l  
I. 

= 	+ x 	(  
tT 	

j=l (2j+l)!(t-t)j +l 
(2.3.37) 

Note that if s(t) is analytic for 0 < t < t o  then h(x,t) is analytic for 

- < x < , 0 4 t < t, in particular the temperature t(x)=h(0,t) can be 

obtained by simply evaluating (2.3.36) at x=0. 	Computing thee residue in 

(2.3.36) leads to the following solution of (2.3.34),(2.3.35): 

n 
h(x,t) = E 	L_ [_S () 

n l 	
2n 

(2n) 	
at n 

For further discussion of this problem see [36. 

(2.3.38) 
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then 
N 

max 	u(x,t) - E c fl4)u (x,t)I < M C 	 (2.3.32) 
(x,t)cD 	n0 

where M=M(D) is a constant. 	Hence an approximate solution to (2.3.1), 

(2.3.2) on compact subsets of D is given by 

N 
uN(x,t) = E 	c4,(x,t). 	 (2.3.33) 

n0 

Since each 0 (x,t) is a solution of (2.3.1), error estimates can be found by 
N 

finding the maximum of u(x,t) - E c4,(x,t)I on the base and sides of D 
n0 

and applying the maximum principle. A numerical example using this approach 

can be found in the Appendix to these lectures. 

To conclude this section we show how the operator P of section 2.1 can be 

used to solve the inverse Stefan problem discussed in the Introduction. 

The (normalized) inverse Stef an problem is to find a solution of 

h 	= h t ; 0 .,< x < s(t), t > 0 	 (2.3.34) 

such that on the given analytic arc x=s(t) we have 

h(s(t),t) = 0, t > 0 

h(s(t),t) = - (t), t > 0 	
(2.3.35) 

In the representation (2.1.23) (with u(x,t) = h(x,t))we place the cycle 

It-ti =6 on the two dimensional manifold xs(t) in the space of two complex 

variables, and note that since h(s(t),t)=0 the integral in (2.1.23) which 

contains E (1) 
 (x,t,T) vanishes. 	We are thus led to the following 

representation of the solution to the inverse Stefan problem (14J,[36]): 

h(x,t) = - r 	E2(x-s(t),t,t)(t)dt , 	 (2.3.36) 2rt f 
-t 1=6 

where 
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bounded by the characteristics tt, t0, and the analytic curves 

x = 2x1 (t) - x2 (t), x=x2 (t). 	Applying Theorem 2.2.3 a second time, but 

this time continuing w(x,t) across the arc xx 2 (t), shows that w(x,t) can be 

continued into the region bounded by tt, t=O, x2 1 (t) - x2 (t), and 

x3x2 (t) - 2x 1 (t). 	Due to the fact that x 1 (t) < x2 (t) for 0 < t < t o , it 

is seen that by repeating the above procedure we can continue w(x,t) into the 

entire infinite strip - < x < , 0 	t ,< t o , as a solution of (2.2.1). 	In 

particular there exists a rectangle R ZID into which w(x,t) can be continued, 

and we have this established the existence of the desired function w(x,t). 

A special case of Theorem 2.3.3 is the following Corollary: 

Corollary 2.3.1 ([13): Let h(x,t) be a classical solution of (2.3.5) in D 

which is continuous in D, where x 1 (t) and x2 (t) are analytic for itt < t o . 

Then given e > 0 there exist constants a,.. .,a.N  such that 

N 
max - Ih(x,t) - E ah(x,t)j < € 

(x,t)D 	 n0 

The complete family {u (x,t)} can be used to approximate the solution of 

(2.3.1), (2.3.2) on compact subsets of D in the same manner as for elliptic 

equations. 	In particular we orthonormalize the set {u (x,t)} in the L 2  

norm over the base and sides of D to obtain the complete set -{u}. 	Let 

t 

n 	f o 	 f
x2(0) 

c 	p1 (t)c(x 1 (t),t)dt + 	(x)(x,O)dx 
o 	 x1 (0) 

+ J  (2.3.30) 

and let D be a compact subset of D. 	From the representation of the solution 

of (2.3.1), (2.3.2) in terms of the Green's function it is seen that if 

f 	N 
iu 	n 

E 	c 
n

2  < 
n0 

3D\t=t 
0 

(2.3.31) 
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u2(x,t) = 2{h2n} 	
(2.3.28) 

u2 ~ 1 (x,t) 	{h 1 } 

Theorem 2.3.2 shows that the set {u (x,t)} defined by u(x,t) 	 is 

a complete family of solutions for (2.3.1) in a rectangle. We now want to 

use the ref lection principles of section 2.2 to show that the set {u(x,t)} 

is complete in D = {(x,t) : x1 (t) 4  x . x2 (t), 0 < t < t} under the 

assumption that x 1 (t) and x2 (t) are analytic. 

Theorem 2.3.3 ([13]): Let u(x,t) be a classical solution of (2.2.1) in D 

which is continuous in D, where x 1 (t) and x2 (t) are analytic for itt .< t o . 

Then given c > 0 there exist constants a,...,aN  such that 

N 
max - iu(x,t) - E 	a n fl u (x,t)i < € 

(x,t)cD 	 n0 

Proof: 	From Theorem 2.3.2 the theorem will be proved if for a given c > 0 

we can construct a solution w.(x,t) of (2.2.1) defined in a rectangle 

R = {(x,t): -x0  < x < x03  0 < t < ti such that w(x,t) is continuous in 

R, DCR, and 

max - iu(x,t) - w(x,t)i < 	. 	 (2.3.29) 
(x,t)D 

From the existence of a solution to the first initial-boundary value problem 

for (2.2.1) (c.f. the first part of this section), the maximum principle for 

parabolic equations, and the Weierstrass approximation theorem, it is seen 

that there exists a solution w(x,t) of '(2.2.1) in D satisfying analytic 

boundary data on x = x1 (t), x = x2 (t),and t = 0 such that (2.3.29) is valid. 

From Theorem 2.2.3 (after making the change of variables (2.2.3)) and the 

regularity theorems for solutions to initial-boundary value problems for 

parabolic equations (c.f.E26J)  we can conclude that w(x,t) can be uniquely 

continued as a solution of (2.2.1) across the arc xx 1 (t) into the region 
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EW(x,t, T) - t-T 
	

_______ - 	+ E 	 j+1 	
(2.3.25) j=1 (2j)!(t-t) 

2j+l 	j 
E 2 (x,t,T) = 	+ E 	(-1) j! 

j=l (2j+1)(t-r) 

By truncating the Taylor series for w 3 (0,T) and w3 (0,t), (2.3.4), (2.3.25) 

show that there exists an entire solution w 4 (x,t) of (2.3.5) satisfying 

polynomial Cauchy data on x0 such that 

max - w3 (x,t) - w4 (x,t)I < 
(x,t)R 

(2.3.26) 

But from (2.3.17) and Holmgren's uniqueness theorem it is seen that there 

exist positive constants a,.. .,aN  such that 

N 
w4 (x,t) = E 	a 

n n 
h (x,t) 	, 	 (2.3.27) 

n'O 

and the proof of the theorem follows from (2.3.27), (2.3.26), (2.3.23) and 

the triangle inequality. 

From Theorem 2.3.1, Theorem 2.1.2, and the continuity of the kernel of 

the operator 	we can now immediately arrive at the following theorem: 

Theorem 2.3.2 (E12J): 	Let u(x,t) be a classical solution of (2.2.1) in R 

which is continuous in R. 	Then given c > 0 there exists constants a,.. .a. 

such that 
N 

max 	Iu(x,t) - E 	au(x,t)I < e 
(x,t)cR 	 n0 

where u (x,t) = T {h }. 
n 	'3 n 

Remark: 	Observing that h 2 (x,t) is an even function of x and h2 +1 (x,t) is 

an odd function of x, it is seen that we can represent the special solutions 

u(xt) in teris of the operators T and T by 
"1 	—2 
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where v(-x,t) = w 1 (-x,t), v(x0 ,t) = w1 (x,t). 	Substituting (2.3.20) into 

(2.3.5) leads to the following recursion scheme for the v(x) 

d2v 
= 0 

dx2  

v
M
(-x

o
)=bM 	

v
M
(x

o
)c 

	

M' 	 (2.3.21) 

d2v 
rn-1 = my 

dx2 	
m 

v 	(-x ) =b 	, 	v 	(x)= c 

	

rn-i 	o 	rn-i 	rn-i o 	rn-i 

rn=l,2 .... M. 	Equation (2.3.21) shows that each v(x) is a polynomial in x 

and is uniquely determined. 	Now consider w2 (x,t)=w 1 (x,t)-v(x,t). 	By the 

method of separation of variables it is seen that there exist constants 

d0,. ..dL  such that 

L 
£11 	 ____ 

max - 1w2 (x,t) 	E d sin - (x+x)exp(- 2,iit L 	2x 

	

(x,t)cR 	 L=0 	o 	 4x 2 
0 

Hence there exists a solution w 3 (x,t) of (2.3.5) which is an entire function 

of the complex variablesx and t such that 

max - 	h(x,t) - w3 (x,t) < 	. 	 (2.3.23) 
(x,t)tR 

From Theorem 2.1.1 (see also Theorem 2.2.2) we can represent w 3 (x,t) in the 

form 

w(x,t) - -i-- EW(x ,t, T )w3 (0, T )dt  - 	 E2(x,t,t)w3(0,t)dt 3  
2iri f 2iri f 
1tT16 	 jtTI5 	 (2.3.24) 

where 
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weakened. 

We first consider the set {h (x,t)} of polynomial solutions to the heat 

equation (2.3.5) defined by 

rnj 
1 n-2k k 

h (x,t) 	. n E 	
-2k''k' 	

(2.3.17) 

	

k= 	
\fl 	j. 

x 

(-4t) 

where H denotes the Hermite polynomial of degree n(c.f.[45]). 

Let x be a positive constant, R = {(x,t) : x < x < x, 0 < t < t} and 

R denote the closure of R. 

	

Theorem 2.3.1 (12J): 	Let h(x,t) be a classical solution of (2.3.5) in R 

	

which is continuous in R. 	Then given c > 0 there exist constants a 0 ,... 

such that 

N 
max - Ih(x,t) - E anhn(x,t)I < € 

(x,t)R 	 n0 

Proof: By the Weierstrass approximation theQrem and the maximum principle 

for the heat equation there exists a solution w 1 (x,t) of (2.3.5) in R which 

assumes polynomial initial and boundary data such that 

Let 

max - Ih(x,t) - w1 (x,0I < 	. 	 ( 2.3.18) 
(x,t)ER 

M 
w (-x ,t) = E btm  
1 ° 	m 0 m 	 (2.3.19) 

M 
w1 (x,t) = E c t 

m 
m 

m0 

and look for a solution of (2.3.5) in the form 

M 
v(x,t) = E v(x)tm 	 (2.3.20) 

m0 
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I f%(l) 
(SOX00 	2. (s,t,x1(r),t)ds I 

ac 
constant 1 	0 (s,t,x1 (t),T)ds 	 (2.3.16) 

= constant G(x,t,x1 ('r),T) 

constant 

which implies for example that the first integral in (2.3.15) is uniformly 

convergent with respect to X. 

The system (2.3.13) is of Volterra type of the second kind with 

continuous right hand side and hence always has a unique set of continuous 

solutions .i 1 (t) and 
11
2 (t). 	The solution of the reduced initial-boundary 

value problem for (2.3.1) is now given by equations (2.3.10) and (2.3.12). 

We now turn our attention to the problem of constructing an approximate 

solution to the initial-boundary value problem (2.3.1), (2.3.2). 	One method, 

which is immediate from the above analysis, is to construct an approximate 

set of solutions to the system of Volterra equations (2.3.13) and then 

substitute this set of approximate densities p 1 (t), 
1
2 (t) into (2.3.10) and 

(2.3.12). 	We will now present an alternate method for obtaining an 

approximate solution to (2.3.1), (2.3.2) based on the use of a complete 

family of solutions in a manner analogous to the approach used for elliptic 

equations in Chapter One. 	The construction of a complete family of 

solutions for (2.3.1) is accomplished through the use of the operator T 3  

obtained in Section 2.1 and the application of the reflection principles 

obtained in section 2.2. 	In the rest of this section we will assume that 

the arcs x1 (t) and x2 (t) are analytic for 0 < t . t o , although through the 

use of suitable approximation arguements this assumption can be considerably 

74 



+ J G(X1(t),t,x1(T),T)1(T)dt 

+ f t  G 2 (x1 (t),t,x2 (T),T) 2 (T)dt =
o 	 (2.3.13) 

+ f
t 

G ( l ) (x 2  (t),t,x 1 
 (T),T)P  1 (T)dT 

+ f t  G 2 (x2 (t),t,x2 (t),T) 2 (T)dr = 2 (t) 
o  

where 

G(x,tt) - 	0 

	

- 	(x,t,,t) 

3G 
+ 

	

F-X 

K(s,x,t) 	(s,t,,r)ds 
 (2.3.14) 

	

DG  
G2(x,t,,t)

- 	

0 
(x,t,,T) 

-r 

aG 

	

+ f 
- K

2 (s,x,t) 	(s,t,,T)ds. 

In the derivation of (2.3.13) we have made use of the discontinuity 

properties of heat potentials of the second kind (c.f.E39J) and the fact 

that the integrals 

aG f t  F K(sx,t) 	(s,t, x1(t),t)1(T)dsdT 	
(2.3.15) 0  

f t fx K 2 (s,x,t) 	(s,t, x2 (r),T) 2 (T)dsdT 
o  -w 

are continuous as x tends to x 1 (t) or x2 (t) . This last statement follows 

from estimates of the form 
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it is seen that (2.3.4) satisfies the required conditions for v(x,t). Hence 

without loss of generality we now consider the initial-boundary value 

problem (2.3.1),(2.3.2) with (x)O. 	We will call this problem the reduced 

initial-boundary value problem for (2.3.1). 

We look for a solution of the reduced problem in the form 

u(x,t) = 1{h} + A2 {h 2 } 

= h 1 (x,t) + h2(c,t) 
+ 

 f ~x  K(s,x,t)h(s,t)ds (2.3.10) 

+ J K2(s,x,t)h2(s,t)ds 

where h 	(x,O)..h 2 (x,O)O, h(x,t) is a solution of (2.3.5) for 

x > x1 (t), 0 < t < to , and h 2 (x,t) is a solution of (2.3.5) for 

x<x2 (t), 0 < t < t . 	Let 

G(x,t,,T) = 	
1 

_ exp 	
- 

(x-)2 

 ] , 

	 (2.3.11) 
1411 (t-T) 	 4(t-t) 

and represent h(x,t) and h 2 (x,t) as.heat potentials of the second kind 

(c.f. [39]) 

t 3G 
h(x,t) 

= 
 fo 	(x,t,x1(t),t)1(r)dt 	

(2.3.12) 

t aG 
h2(x,t) 

= 
 JO 
3E.2 (x,t,x2(t),t)2(t)dt 

where j 1 (t) and ji 2 (r) are continuous densities to be determined. 

Substituting (2.3.12) into (2.3.10), interchanging orders of integration, 

and letting x tend to x 1 (t) and x tend to x2 (t) respectively, leads to the 

following system of Volterra integral equations for p 1 (t) and 
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We also assume without loss of generality that D C. R where 

R = {(x,t): -a < x. a, O 	t < t}. 

We first reduce the initial-boundary value problem (2.3.1), (2.3.2) to a 

problem of the same form but with x)O. 	To do this it suffices to 

construct a particular solution v(x,t) of (2.3.1) such that v(x,t) is a 

classical solution of (2.3.1) for - < x < , 0 < t < t , continuous for 
0 

- < x < W, 0 . t 4 to , and satisfies 

v(x,0) = 4(x); x1 (0) . x < x2 (0) , 	 (2.3.3) 

since in this case the reduced problem can be obtained by considering 

u(x,t)-v(x,t). 	We look for v(x,t) in the form 

v(x,t) = A1{h} = h(x,t) + fx KW(s,x,t)h(s,t)ds 	 (2.3.4) 

where h(x,t) is a solution of 

h 
xx 	t 

= h 	 (2.3.5) 

To this end we continue 4(x) in an arbitrary but continuous manner such that 

4(a)0 and define 

h(x,0) = 0 ; x 	a . 	 (2.3.6) 

Then for x 1 (0) < x . a let h(x,0) be the unique solution of the Volterra 

integral equation 

fx4(x) = h(x,0) + 	K'l
'(s,x,O)h(s,O)ds. 	 (2.3.7) 

Note that from (2.3.7) we have h(a,O)=O which agrees with (2.3.6). 	Now for 

x .< x1 (0) continue h(x,0) in an arbitrary but continuous manner such that 

h(x,O) = 0 ; x. -a 	 (2.3.8) 

If we now define h(x,t) by means of the Poisson formula for the heat 

equation 

1 	
ça 
 1 	 (-x) 2  

h(x,t) = 	
L 	

exp 	4t Jh(,o)d , 	 (2.3.9) 
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defined by (2.2.16). 	Equations (2.2.15), (2.2.18) and the regulatiry of 

K(s,x,t) and K 2 (s,x,t) for -x < s < x, -x < x < x, iti < t,now 

imply that u(x,t) can be continued into RU R7 U a as a solution of L(u)0. 

The uniqueness of the continuation follows from the uniqueness of the 

continuation of hW(x ,t). 	The proof of Theorem 2.2.3 is now complete. 

2.3 Initial-Boundary Value Problems. 

We will now use the integral operators and reflection principles obtained 

in the last two sections to derive constructive methods for solving initial-

boundary value problems for parabolic equations in one space variable 

defined in domains with time dependent boundaries. 	Without loss of 

generality we again consider equations written in the canonical form 

L(u) S u - q(x,t)u - ut  =0 (2.3.1)
xx  

and make the assumption that q(x,t) is continuously differentiable for 

- < x < , t (where to  is a positive constant),is analytic with 

respect to t for iti < t,and q(x,t)EO for lxi > a. 

Our first aim is to use the operators A and A of section 2.1 to —1 	2 

construct a classical solution u(x,t) of (2.3.1) in the domain 

D = {(xt):x(t) < x < x2 	 ii (t), 0 < t < t) such that u(x,t) is continuous i 

= {(x,t):x 1 (t) . x . x(t), 0 . t .< t} and satisfies the initial-boundary 

data 

u(x 1 (t) ,t) 	1 (t) 	; 	0 . t < t ° 	 (2.3.2) 

u(x2 (t),t) = 4, 2 (t) 	; 	0 4 t < to  

u(x,O) = 	x) 	 ; 	x1 (0) 4  x < x2 (0) 

where ,1(0).(x1(0)) 2(0) 	x2 (0)) (5]). 	We will assume that x 1 (t) 

and x2 (t) are continuously differentiable for 0 . t . t o  and that there 

exist constants n and a such that x 1 (t) .< n < 0 	x2 (t) for 0 .< t < t o . 
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in R. 	Differentiating (2.2.9) with respect to x and integrating by parts 

gives 

u(x,t) = h(x,t) + h 	(x,t) +K(s,x,t)h'(s,t)ds (2.2.15) fx 0 

+ fx K 2 (s,x,t)h 2 (s,t)ds 

where h 
(2) 

 (x,t) is defined by 

h 2 (x,t) = a(t)h(l)(x,t) . 	 (2.2.16) 

The fact that u(x,t) satisfies (2.2.8) implies that 

h 2 (O,t) = -a(t)h(O,t) = 0, i.e. h(O,t) = 0 for 0 < t < t o  since 

a(t)+0 in this interval. 	Applying the differential equation (2.2.1) to both 

sides of (2.2.15) and using equations (2.2.11)-(2.2.14) to integrate by parts 

gives 

o = 	 -a(t)(h(x,t) -h(x,t)) xx xxx 	xt 

-a(t)K 2  (x,x, t)(h 1  (x, t)-h 	(x, t)) 

+ f
o
K (l)(t)(h(l)( t)h(l))d 

(2.2.17) 

+ 	a(t)K2(s,x,t)(h(s,t)-h(s,t))ds. fx o 	 ss 

Integrating both sides of (2.2.17) with respect to x gives 

o = -a(t)(h(x,t)-h(x,t)) 
xx 

fx+ 	F(s,x,t)(h 1 (s,t) - h(s,t))ds 	(2.2.8) 
o  

where r(s,x,t) is defined by (2.2.10). 	Since a(t)+0  and solutions of 

nonsingular Volterra integral equations of the second kind are unique, we 

i can conclude that h (1)  (x,t) must be a classical solution of (2.2.5) n R +  

From theorem 2.2.1 we can conclude that h 1 (x,t) can be uniquely continued 

- 	 (2) into R
+ 
u R Lb a as a solution of (2.2.5) and hence so can h 	(x,t) as 

69 



The proof of the theorem under the hypothesis of condition 3) is a bit 

more involved. 	Let a(t) 	and again assume without loss of generality 

that f(t) E 0. 	Then the boundary condition (2.2.4) becomes 

u(O,t) + a(t)u (O,t) = 0 	 (2.2.8) 

Let hUI(x,t)(for  x . 0)be the unique solution of the Volterra integral 

equation 

f  x u(s,t)ds 	a(t)h(x,t) + fo  r(s,x,t)h(s,t)ds 	(2.2.9) o 	
= - 

 
where 

r(s,x,t) = 1-t)K 2 (s,s,t) 
(2.2.10) 

+ J K 	(s,,t)d + a(t) fx 	2  
K 	(s,,t)d 

and K 	(s,x,t),K 2 (s,x,t) are the solutions of the initial value problems 

- 	+ q(x,t)K 	= K' 	 (2.2.11) 

K(x,x,t) = - 	f q(s,t)ds 	 (2.2.12a) 

KW(O,x,t) = 0 	 (2.2.12b) 

and 

K 2 - K 2  + (q(x,t) - 	t) )K 2  = K 2 	 (2.2.13) xx 	ss 	 a(t) 	 t 

K2(x,x,t) A(t)  )ds 	 (2.2.144) a (t) 

K 2 (0,x,t) = 0 	 (2.2.14b) 

respectively. 	The existence of the kernels KW(s,x,t)  and K
(2) 

 (s,x,t) and 

the fact that they are twice constinuously differentiable for 

-x < x < x , Itl < t ,follows from the analysis of section 2.1. 	The 

existence and uniqueness of hW(x,t)  is assured from the fact that a(t)+0 

for 0 < t < to . 	(2.2.9) also implies that h(l)(0,t)=0 and h (l)  (X,t) is 

twice continuously differentiable in R U o, and three times differentiable 
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(t) E 0, a(t) + 0 for it! < t o  

n(t) 	0, 	(t) + 0 for Itl < t o  

a(t) + 0 and (t) + 0 for it! < to  

Then u(x,t) can be uniquely continued into R+U  RU0 as a solution of 

L (u) =0. 

Remark: 	Note that since q(x,t) is in general not an analytic function of x, 

the continuation stated above is in general not an analytic continuation 

with respect to x. 

Proof: 	We first assume condition 1) holds, i.e. (t) is identically zero 

and a(t) + 0 in the disc Itl < t o  in the complex t plane. 	Let h(x,t) be 

the analytic solution of (2.2.5) given by (2.2.6) where h(O,t)=f(t)/ (t) and 

h(0,t)0, and define the solution v(x,t) of L(u)0 by v(x,t)=12{h}  whereT2  

is the operator constructed in section 2.1 (c.f. Theorem 2.1.2). 	By 

construction the operator 	preserves Cauchy data on a: x0 and hence from 

Theorem 2.2.2 and the regularity of the kernel K(s,x,t) of 22  we can 

conclude that v(x,t) is a solution of L(u)=0 in Ru RU a such that 

I(v).f(t) on a. 	Hence (by considering u-v instead of u) we can assume 

without loss of generality that f(t)0, i.e. u(0,t)0. 	But now from Theorem 

2.1.2 we can represent u(x,t) in the form u(x,t) =21{h} where h(x,t) is a 

solution of (2.2.5) and h(0,t)0, and from Theorem 2.2.1 h(x,t) can be 

- 

uniquely continued into R + Li R U a as a solution of (2.2.5). 	This implies 

that u(x,t) can be continued as a solution of L(u)0 into RU R U a. 	The 

uniqueness of the continuation follows from the invertibility of the operator 

and the uniqueness of the continuation of h(x,t). 

The proof of the theorem under the hypothesis that condition 2) holds 

proceeds in the same manner by appropriate use of the operators T and 
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a solution of (2.2.5) by the rule h(x,t) =h(-x,t). 

Our next result is concerned with the analytic continuation of solutions to 

(2.2.5) satisfying analytic .Cauchy data on x=O: 

Theorem 2.2.2 ([9J,[36]): Let h(x,t) c C 2 (R) flC 1 (R u a) be a solution of 

(2.2.5) in R such that h(O,t) and h(O,t) are analytic for itt < t o . 	Then 

h(x,t) can be uniquely continued into - < x < , -t < t < t o , as a 

solution of (2.2.5) that is an analytic function of x and t for lxi < 

itt < t 
0 

Proof: From the results of section 2.1 and Holmgren t s uniqueness theorem 

(c.f.[29]) we can represent h(x,t) in the form 

h(x,t) - 	E 	(x,t,t)h(O,t)dt - 	E 2 (x,t,T)h(O,T)dt (2.2.6) 
2iTiJ 	 27riJ 

it—ti=cs 	 tT1 

where 

E(x,t,t) = -i-- + E 
t-T 3=1 

E 2 (x,t,c) = 	+ Z 
t-t 3=1 

23 (1)3.: 

(23): (t-T) 

23+1 
x 	(-l)j 

(23+1): 

(2.2.7) 

and 6 > 0. 	The statement of the theorem now follows from (2.2.6) and the 

analyticity of E(1)  (x,t,T) and E
(2) 

 (X,t,T). 

We can now prove the following reflection principle for solutions of 

L(u)O in R satisfying I(u)f(t) on a: 

Theorem 2.2.3 (1101,Ll11): 	Let q(x,t), ct(t), (t) and f(t) satisfy the 
1 

assumptions stated previously and let u(x,t) c C 2 + (R ) r 	+ C (R LI a) be a 

solution of L(u)= 0 in R such that I(u)f(t) on a: x0. 	Suppose one of the 

following three conditions is satisfied: 
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Let R7  be the mirror image of R+  reflected across cl:x=O 

-t 

X. - 	
R - 

X. 

and let x > 0 be such that RL) R U a LB = {(x,t): - x 
0 

< x < x, JtJ < t}. 

We make the following assumptions: 

q(x,t) e C 1 (B) and is an analytic function of t for Itl < t o 	(In 

particular this implies that x1 (t) should have been analytic for 

it! < t). 

c*(t), (t) and f(t) are analytic for !ti < t o 	(This implies that 

a1 (t), a2 (t) and g(t) should have been analytic for it! < t 0 ). 

We first need to obtain two results on the continuation of solutions to 

the heat equation 

h 	= 	 (2.2.5) 

The first theorem is the well known reflection principle for solutions of 

(2.2.5) satisfying homogeneous Dirichiet or Neumann data on.x=O, and can be 

proved ,  in the same manner as the reflection principle for solutions to 

Laplace equation (c.f. [21]) if one uses the Green (or Neumann) function for 

the heat equation in a rectangle instead of the Green (or Neumann) function 

for Laplace's equation in a disc: 

Theorem 2.2.1: 1) Let h(x,t) c C2 (R) 1 C° (R"Uci) be a solution of (2.2.5) 

in R4' such that h(0,t)=0. 	Then h(x,t) can be uniquely continued into 

RU Ru 0 as a solution of (2.2.5) by the rule h(x,t)= -h(-x,t). 

2) Let h(x,t) c C 2 (R'') (' C 1 (RU o) be a solution of (2.2.5) in R 4' such 

that h(O,t)0. 	Then h(x,t) can be uniquely continued into R' 4'Lj R 	o as 
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L(u) 	u xx + q(x,t)u - ut 
 = 0 
	

(2.2.1) 

defined in a domain D+ = ((x,t) : x 1 (t) < x < x2 (t), 0 < t < t} where t o  

is a positive constant and x 1 (t) and x2 (t) are given functions of t. 	We 

are primarily interested in the following problem: Let u(x,t) be a 

solution of L(u) = 0 in Dsuch that u(x,t) c C 2(D) (1 C1 (D) and satisfies 

the boundary condition 

1(u) 	a1 (t)u(x1 (t),t)+ a2 (t)u(x1 (t),t) = g(t) 	 (2.2.2) 

on a:x = x1 (t) where a1 (t),a2 (t) and g(t) are given functions of t. Let D 

be the mirror image of D+  reflected across the arc a. Under what 

conditions can u(x,t) be uniquely continued as a solution of (2.2.1) into 

DU DUo? By making the change of variables 

= x-x1 (t) 	
(2.2.3) 

Tt 

and following this by a change of variables of the form (2.1.2) we can reduce 

this problem to the case when x 1 (t)0, i.e. D is replaced by the domain 

R+= {(x,t) : 0 < x < x(t), 0 < t < t} where x(t) is a given function of t 

and (2.2.2) becomes 

1(u) 	a(t)u(0,t) + 8(t)u (010 = f(t) 	 (2.2.4) 

on ax=0 with ct(t),(t) and f(t) given functions of t. 

Remark: 	Even when (2.2.1) is originally the heat equation, the change of 

variables (2.2.3), (2.1.2) changes this equation into one of the form 

L(u)0 but where q(x,t) now depends on x and t. 	Furthermore, a 1 (t)EO does 

not imply that ct(t)EO. 
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for 4(s+x) 	a, s . x. 	If u(x,t) is a classical solution of (2.1.27) 

defined for x < a, 0 < t < t ,then u(x,t) can be represented in the form 

u(x,t) =A2{h} where h(x,t) is a classical solution of (2.1.29) defined in 

the same domain as u(x,t). 

We summarize our results in the following theorem: 

Theorem 2.1.3 ([15): Let the coefficient q(x,t) of (2.1.27) be 

continuously differentiable for 	< x < , 	ti < to , an analytic function 

of t for Iti < t o , and such that q(x,t) 	0 for jxj > a where a is a positive 

constant. 

If u(x,t) is a classical solution of (2.1.27) for x 	-a, 0 < t < t o , 

then u(x,t) can be represented in the form u(x,t) = A1 {h} where h(x,t) is 

a classical solution of (2.1.39) for x . -a, 0 < t < t o . 	Conversely, 

for any such h(x,t), u(x,t) = k{hl satisfies the above hypothesis on 

u(x, t) 

If u(x,t) is a classical solution of (2.1.27) for x..< a, 0 < t < t o , 

then u(x,t) can be represented in the form u(x,t) =A 2 {h} where h(x,t) is 

a classical solution of (2.1.39) for x < a, 0 < t < t o . 	Conversely, 

for any such h(x,t), u(x,t) 	A2{h} satisfies the above hypothesis on 

u(x,t). 

2.2 Reflection Principles 

In this section we will use the integral operators constructed in the 

previous section to obtain reflection principles for solutions of parabolic 

equations in one space variable. 	Such results will be needed later on in 

this chapter to help construct a complete family of solutions for parabolic 

equations in a manner somewhat similar to the use of the Bergman-Vekua 

theorem in constructing a complete family of solutions for elliptic equations. 

Without loss of generality we consider equations written in the canonical form 
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K 2  - K 2  + q(x,t)K 2  = K 2  
xx 	ss 	

' 	 < X 	 (2.1.82) 

fK 2 (x,x,t) = - q(s,t)ds 	 (2.1.83) 

 

K 2 (s,x,t) E 0 for (s+x) < -a 	 (2.1.84) 

K 2 (s,x,t) E 0 for s > x , 	 (2.1. 85 ) 

and K 2  (s,x,t) is twice continuously differentiable with respect to s,x 

and t for s , x, 	< to . 	The existence of the kernel K 2 (s,x,t) 

(and hence the operator 	follows in the same manner as that of 

where, for !(s+x) .< -a, s < x, K 2 (s,x,t) satisfies the 

integro-differential equation 

1 f I (s+x) 
K 2 (s,x,t) = - 
	

q(a,t)do 

-a 

1  fx 	fs+x [q(a p t)K 2  (ji,a, t)-K 2 (ii,o,t)]diida 
(s+x) s+a-x 

(2.1.86) 

1 	' 
 

fi(s+x) 
s+a-x 

-a 

and 

K 2 (s,x,t) 	E K 
a 
 2(s,x,t) 

n= 1 
(2.1. 87) 

where 

1 14 2 (s,x,t) = - 	
j 	

q(a,t)da 

-a 	 (2.1.88) 

I X 	

fs+a-x

s+x-a 
K 2 (s,x,t) = - 	

fi(s+x) 	

q(c,t)K (2 	 2(p,a,t) 
 - - K(u,a,t)Jd.ida n  	 at  

- - 

 

f
i(s+x)  fa 	[q(cj,t)K(2(jJ,a,t) - f

s+a-x 	n-I 
-a 

for a 	2, with 

2n 

	

(a+x) 	
(2.1.89) IK2(s,x,t) k c11 (l- 	L)'(a+.(s+x))(n_l). (2n)! 

0 

1 
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" 	 (a-x) 2n 
K(s,x,t) << C(l-. —)(a--(s+x))(n-l). (2n)! 

	
(2.1.79) 

0 

and hence for +(s+x) 	a, s x, 

(n-i) 	2n 

	

,z Ct1(l- 41_ )(a_4(s+x)) 
(2n)!  (a-x) 	

(2.1. 80 ) 
0 

which implies that the series (2.1.72) is absolutely and uniformly 

convergent for -(s+x).< a, s .x . - a, ti 	to - E where c > 0 is 

arbitrarily small, thus establishing the existence of the kernel K (l)  (S,X,t). 

It can easily be verified that K(l)(s,x,t) is twice continuously 

differentiable with respect to s,x and t for s > x, Iti < t o . 	We have 

thus established the existence of the operator 1  defined by (2.1.59). 	It 

is an easy matter to show that every classical solution u(x,t) of (2.1.27) 

defined for x > -a, 0 < t < to  (where q(x,t)0 for lxi > a) can be 

represented in the form u(x,t) = A 1 {h} where h(x,t) is a classical solution 

of (2.1.29) defined in the same domain as u(x,t). 	For from (2.1.60) we 

have that the range of integration in the integral in (2.1.59) is in fact 

only over the finite interval x .< s 4 3a and the invertibility of the 

operator Al  follows from the properties of Volterra integral equations of 

the second kind in the same manner which we previously showed the 

invertibility of the operators
l'  T

2  and T 
—3 

In addition to the operator A we will also need the operator .2 defined 

by 

u(x,t) = A2 {h} = h(x,t) + 
	

K 2 (s,x,t)h(s,t)ds 	 (2.1.81) 

which maps classical solutions of (2.1.29) defined for x < a, 0 < t < t o , 

onto classical solutions of (2.1.27) defined in the same domain, where 

K 2 (s,x,t) is the unique solution of 
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where 

1 q(o,t)da K(s,x,t) 	
- 2 fi(s+x) 	 (2.1.73) 

1 	(s+x) s+ci-x 
 f I  KW(s,x,t) 	- 	f 	 (t)K(l)(jJ,o,t)_ 	K(j,c,t)d1ida 

	

n-i 	3t n-i n 	 x x-o 

1 fas+a-xç 

- 	
I 	

q(a,t)K (l (j,a,t)  - 	
K 9t n-i (1i,a,t):Jdido 

(s+x)Jci 

for n . 2. 	Let C be a positive constant such that for Iti < t o  

q(x,t) << C(1 - t -1 
	

(2.1.74) 
0 

with respect to t, uniformly for -a . x 4 a. 	Without loss of generality 

we can assume C . 1, t o  . 1. Then 

K(s,x,t) << 	C(i - ._)l(a - Fs+x)) 	 (2.1.75) 

and, since in both the double integrals defining K (l)  (s,x,t) we have 

a - .( i+0) < a - 

K(s,x,t) << - (1 - f-) 2 (a_(s+x)). 	 (2.1.76) 
0 

ç(s+x) 

	

( I 	2(a-x)do + I (s- )d ) 
(s+x) 

But in the second integral on the right hand side of (2.1.76) we have 

(s+x) 	a and hence s-x 4 2(a-x), which implies 

K(s,x,t) << C2  (1 - .L_)2(a_f(s+x)) (a-x)2 

	

2! 	 (2.1.77) 
0 

Using the identity 

'a 	a 	 - 
2n 	 2n+2 

(a-)  

J 	
(a-x)do 	

(a-x) 
- 	 (2.1.78) (2n) 	 (2n+2)  

we have by induction that 
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For y . 0 we have 

= 
-

q(s,t)ds 	
(2.1.68) 

2 Fr.  - 

In  f C 	—(1) 
- 	 q(c&+,t)K 	 (ct,13,t)Jdc*dB. 

Note that (2.1.68) satisfies (2.1.65) since for fl=O the double integral in 

(2.1.68) is over the region .O where 0. Now in (2.1.68) 

make the change of variables 

CL - 

(2.1.69) 

2 

Then (2.1.68) becomes 

K(l) (s , x,t) = 
- 	

q(a,t)d  -I f'  
(s+x) (2.1.70) 

r r'' 
- ! j  2 	j 	(a,t)K(I1,o,t)-K(11,o,t)Jdpda 

and from the assumptions on q(x,t) and (2.1.60), (2.1.63) we have that for 

.1(s+x) . a, s > x, 

1 fa 
q(a,t)do 

	

K(s,x,t) = - 	

(s+x) 

 

1  f i(s+x) 	~q (cr, t) K 	(y, t) -K 	a, t)] dp da 

	

- 	fs +x-a  

1 

 
fa (S+X) fs+a-x 

  

i(o,t)K(11,o,t)-K(p,a,t)Jd11do. 
 a 

For (s+x) < a, s . x, we now look for a solution of (2.1.71) in the form 

K(s,x,t) = E K 
n 
 W(s,x,t) 

n 1 
(2.1.72) 
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among other conditions, satisfies 

	

K(l) (s,x,t) 	0 for 4 (s+x) >_ a. 	 (2.1.60) 

(2.1.60) guarantees the existence of the integral (2.1.59) for any classical 

solution h(x,t) of (2.1.29) defined in x > -a, 0 < t < t o . 	Substituting 

(2.1.59) into (2.1.27) and integrating by parts using (2.1.60) shows that 

(2.1.59) is a solution of (2.1.27) provided K(1)(s,x,t)  satisfies (2.1.60) 

and 

- K' + q(x,t)K 	= K 1 	 s > x 	 (2.1.61) xx 	ss 	 t 

KW(x,x,t) 	-41 q(s,t)ds 	 (2.1.62) 

The equations (2.1.60) - (2.1.62) are not enough to uniquely determine 

K(s,x,t) and so we impose the additional condition 

K(l) (s,x,t)=- 0 	for 	s < x . 	 . 	 (2.1.63) 

We will now construct a function K (l)  (s,x,t) satisfying (2.1.60)-(2.1.63) 

such that K(s,x,t) is twice continuously differentiable with respect to s, 

x and t for s . x, Itl < to . 	In particular this implies that if h(x,t) is 

a classical solution of (2.1.29) for x > -a, 0 < t < t o , then u(x,t) as 

defined by (2.1.59) is a classical solution of (2.1.27) and the domain of 

regularity of h(x,t) and u(x,t) coincide. 	Let 	and ii be defined by 

(2.1.43) and 	(,t) = 	 t). 	Then (2.1.60)-(2.1.63) become 

-0(1) 	-'(1) 
+ q(+n,t)K 	= Kt 	

n< 0 

F  
K 	( 1 0 1 t) = - 1 q(s,t)ds 

(2.1.64) 

(2.1.65) 

	

E 0 
	

for 
	

(2.1.66) 

	

K '(,,t) E 0 
	

for 	ti>0 
	

(2.1.67) 
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for 0 4 x < x, 0 < t < to , and satisfying h(0,t)0. 	Conversely for 

any such h(x,t), u(x,t) =, 2 {h} satisfies the above hypothesis on u(x,t). 

3) If u(x,t) is a classical solution of (2.1.27) in Rthen u(x,t) can be 

represented in the form u(x,t) =T3 {h} where h(x,t) is a classical 

solution of (2.1.39) in R. 	Conversely, for any such h(x,t), u(x,t)=T 3 {h} 

satisfies the above hypothesis on u(x,t). 

In the following sections of this chapter we will use the operators l 

and T 2  to obtain reflection principles for solutions of (2.1.27) and the 

operator T to construct a complete family of solutions. 	We also want to 

show how integral operators can be used to reformulate the first-initial 

boundary value problem for (2.1.27) as an integral equation in a manner 

similar to their use in the case of the Dirichlet problem for elliptic 

equations (c.f. section 1.3). 	The operators TV  T and T are not suitable 

for this purpose since solutions in the range of the operators T
l 
 and 

must satisfy homogeneous boundary data at x0, and solutions in the range of 

the operator T must be defined in a domain which is symmetric with respect 

to x=0. 	Hence we will now construct integral operators which are suitable 

for reformulating the first-initial boundary value problem for (2.1.27) as a 

Volterra integral equation. 

We assume that q(x,t) has been continued in a continuously differentiable 

manner such that q(x,t) is defined for 	< x < , Iti < to , 1& analytic 

with respect to t for Itl < t o , and q(x,t)EO for jx 	a where a is a 

positive constant. 	We first look for a solution of (2.1.27) for 

x -a, 0 < t < to , in the form 

u(x,t) = A1 {h} 	h(x,t) + f KW(s,x,t)h(s,t)ds 	 (2.1.59) 

where h(x,t) is a classical solution of (2.1.29) defined for 

x > -a, 0 < t < to , and K(l) (s,x,t) is a function to bedetermined which, 
57 



to be shown that h(x,t) is a solution of (2.1.39). 	From (2.1.39) and 

(2.1.42) we have that K(s,x,t) = - K(-s,x,t) and M(s,x,t) = M(-s,x,t) and 

hence we can rewrite (2.-1.56) in the form 

u(x,t) 	(h(x,t)-h(-x,t)) + 1 fo K(s,x,t)h(s,t)-h(-s,t)]ds  (2.1.57) 

+ 	(h(x,t) + h(-x,t)) + 	M(s,x,t)[h(s,t)+h(-s,t)]ds.2 fo 
Substituting (2.1.57) into (2.1.27) , using (2.1.30), (2.1.31a), (2.1.31b), 

(2.1.33), (2.1.34a), (2.1.34b) , and rewriting the resulting expression in 

the form of (2.1.56) gives 

]c:-h  t ) + . J 0 = (h __ 	 [K(s,x,t)+M(s,x,t)(h.5(s,t)-ht(s,t))ds (2.1.58) 

-x 

Since solutions of Volterra integral equations of the second kind are 

unique, we can conclude that h(x,t) is a solution of (2.1.39) in R. 

We summarize our results in the following theorm 

Theorem 2.1.2 ([101,  Q2J): Let the coefficient q(x,t) of (2.1.27) be 

continuously differentiable for -x < x < x, Itl < t o , and an analytic 

function of t for Itl < t o . 	Let 	= {(x,t) 	0 < x < x, 0 < t < t} 

and R = {(x,t) 	-x < x < x , 0 < t < t }. 

If u(x,t) is a classical solution of (2.1.27) in R,continuously 

differentiable for 0 '< X < X 9 0 < t < t o , and satisfying u(0,t)0, then 

u(X,t) can be represented in the form u(x,t) = T {h} where h(x,t) is a 

classical solution of (2.1.39) in R, continuously differentiable for 

0 '< x < x, 0 < t < t, and satisfying h(0,t)=0. 	Conversely for any 

such h(x,t), u(x,t) = T 1 {h} satisfies the above hypothesis on u(x,t). 

If u(x,t) is a classical solution of (2.1.27) in R, continuously 

differentiable for 0 .< x < x, 0 < t < t, and satisfying u(O,t)O, 

then u(x,t) can be represented in the form u(x,t) = T 2 {h} where h(x,t) 

is a classical solution of (2.1.39) in R,continuously differentiable 
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regularity properties as u(x,t) and satisfies h(0,t)=u(0,t)=O. 	This can 

be seen by using the resolvent operator to express h(x,t) in terms of u(x,t). 

To show that this solution of the integral equation (2.1.53) is in fact a 

solution of the heat equation, we substitute (2.1.53) into (2.1.27) and use 

(2.1.30), (2.1.31a), (2.1.31b) to obtain 

0u xx +q(x,t)u-u 

= (h -he) + 
	

(h (s,t) - h(s,t))ds.ss 

	 (2.1.54) 

Since solutions of Volterra integral equations of the second kind are unique, 

we must have 

xx 	t 	
0 
	

(2.1.55) 

i.e. h(x,t) is a solution of (2.1.39) in R. 

In a similar manner we can show that if u(x,t) is a classical solution of 

(2.1.27) in R, is continuously differentiable for 0 	x < x, 0 < t < t o , 

and satisfies u (O,t)=0, then u(x,t) can be represented in the form 

u(x,t)=T2 {h} where h(x,t)is a solution of (2.1.39) in R such that h(x,t) 

is continuously differentiable for 0 . x < x, 0 < t < t o , and satisfies 

h(0, t)=0. 

We now want to combine the results obtained above to construct an 

integral operator whose domain and range are independent of the boundary data 

at x0. 	Let u(x,t) be a classical solution of (2.1.27) in 

R = {(x,t): - x 
0 < 

x < x 
0 	 0 

, 0 < t < t } . 	We will show that there exists a 

classical solution h(x,t) of (2.1.39) in R such that u(x,t) can be 

represented in the form 

u(x,t) = T3 {h} = h(x,t) + 	[K(s,x,t) + M(S,x,t)]h(s,t)ds (2.1.56) 

(2.1.56) is a Volterra equation of the second kind for h(x,t) and hence 

can be uniquely solved for h(x,t) where h(x,t) is defined in R. 	It remains 
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We will now show that the series (2.1.48) converges absolutely and 

uniformly for (F,n,t) on an arbitrary compact subset 12 of 

{(,i,t): -x < C < x, 
- 	

<YJ< x, Itl < t}. 	To this end let C  be a 

positive constant such that for 	c 12 we have with respect to t 

q(,n,t) << C(l- t -1 
	

(2.1.50) 
0 

Without loss of generality assume C . 1, t o 	l x 
0 

< 1. 	Then from (2.1.49) 

and the properties of dominants it follows by induction that 

2n 
 nI1nln 

n-I  

n 	(n-i)! 
I1 	(1- 	

fl 

	

._.) 	 (2.1.51) E << 
0 

and hence 

2n 	1 1 n-l1 1 n-1 
(1 lEI, 	

-n 
n 	(n-i) 	 - 	) 	

(2.1.52) 

	

0 	 - 

for 	c Q. 	Hence the series (2.1.48) converges absolutely and 

uniformly for (,n,t) t Q. 	In a similar manner it is easily seen that 

00 

E(,ri,t) is twice continuously differentiable in 12, and we can now conclude 

the existence of the function E(,n,t) = E(s,x,t) having the desired 

properties. 	Similarly the function G(s,x,t) exists and -is twice 

continuously differentiable in 12, and we have therefore now established the 

existence of the operators T and T 
-'1 	'2 

We now want to show that if u(x,t) is a classical solution of (2.1.27) in 

R+, is continuously differentiable for 0 < x < x, 0 < t < t, and satisfies 

u(0,t)=0, then u(x,t) can be represented in the form 

	

u(x,t) = 11 {h} 	 (2.1.53) 

for some solution h(x,t) of (2.1.39) in R where h(x,t) is continuously 

differentiable for 0 < x < x, 	0 < t < t, and satisfies h(0,t)0. 

(2.1.53) is a Voiterra integral equation of the second kind for h(x,t) and 

hence there exists a solution h(x,t) of (2.1.53) which has the same 
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satisfies (2.1.33) and (2.1.34a), (2.1.34b). 	Hence it suffices to show 

the existence of the functions E(s,x,t) and G(s,x,t). 	We will now do this 

for E(s,x,t); the existence of G(s,x,t) follows in an identical fashion. 

Let 

x = 	 (2.1.43) 

S = c- fl 

and define (,fl,t) and 	 by 

= E(-, 	-i-,t) 
(2.1.44) 

Then (2.1.37), (2.1.38a), (2.1.38b) become 

+ 	 (2.1.45) 

- 	 1 
E(,O,t) =- 	J q(s,t)ds 

0 

1 TI f 
 E(O,,t) = 
	

q(s,t)ds 
0 

(2.l.46a) 

(2.1.46b) 

and hence E(,,t) satisfies the Volterra integro-differential equation 

- 	 1  fl 
q(s,t)ds + 1 
	

q(s,t)ds 
(2.1.47) 

n 	_.. 	 — 

+ fo  10 (E(,n,t) - 
The solution of (2.1.47) can formally be obtained by iteration in the form 

E(,,t) = E E(,n,t) 	 (2.1.48) 
1 

where 

1 	
1 fE1 (,,t) = - - J q(s,t)ds + 	q(s,t)ds 

o 	 o 	 (2.1.49) 

=  f11— 

o J (E(,n,t) -(t)E (,,t))dd 
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(2.1.27) by 

T 1 {h} = h(x,t) + f K(s,x,t)h(s,t)ds 	 (2.1.35) 

T2{h}= h(x,t) + f M(s,x,t)h(s,t)ds 	 (2.1.36) 

where the domain of T 1 
 is the class of solutions to the heat equation in R+ 

— 

satisfying h(O,t)0 and the domain of T is the class of solutions to the 

heat equation in R satisfying h(O,t)0. 

We will now show the existence of the functions K(s,x,t) and M(s,x,t). 

Due to the regularity assumptions on q(x,t) we will in fact show that 

K(s,x,t) and M(s,x,t) are twice continuously differentiable solutions of 

	

(2.1.30) and (2.1.33) for - x < x < x , - x < s < x , 	tI < t 
0 	 0 	0 	 0 	 0 

Suppose E(s,x,t) satisfies 

E 	-E 	+q,(x,t)EE 
xx 	ss 	 t 

for - x 
0 

< x < x 
0 
 , - x 

0. 
 <s<x0, 

1 

f E(x,x,t) = - 
	

q(s,t)ds 
0 

1 fox E(-x,x,t) 	q(s,t)ds 
 

Then 

(2.1.37) 

tj < t0  and assumes the initial data 

(2. 1. 38a) 

(2.l.38b) 

K(s,x,t) = 	(s,x,t) - E(-s,x,t) 

satisfies (2.1.30) and (2.1.31a), (2.1.31b). 

G -G +q(x,t)G=G 
xx 	ss 	 t 

( 2.1.39) 

Similarly, if G(s,x,t) satisfi 

(2.1.40) 

for - x 
0 	 0 	0 
< x < x , - x < S < x 

0 , 
It! < t 0 , and assumes the initial data 

1 

f
G(x,x,t) 	- 

	
q(s,t)ds 	 (2.1.41a) 

0 

1 fx 
G(-x,x,t) = 	q(s,t)ds 	 (2.l.41b) 

o  
then 

M(s,x,t) = 4 [G(s,x,t) + G(-s,x,t)J 
	

(2.1.42) 
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We now look for solutions of (2.1.27) in the form 

u(x,t) = h(x,t) 
+fo 

 K(s,x,t)h(s,t)ds 	 (2.1.28) 

where h(x,t) is a classical solution of the heat equation 

h 	= h 	 (2.1.29) 

in R, is continuously differential for 0 46 x-< x-, 0 < t < to , and satisfies 

the Dirichlet data h(0,t)0 (Note that from (2.1.28) this implies that 

u(0,t)0 also). 	Substituting (2.1.28) into (2.1.27) and integrating by 

parts shows that (2.1.28) is a solution of (2.1.27) provided K(s,x,t) is a 

solution of 

- 	+ q(x,t)K = Kt 	 (2.1.30) 

for 0 < s 4  x < x which satisfies the initial data 

K(x,x,t) = - 
	q(s,t)ds 	 (2.1.31a) 2 fo 

K(0,x,t) = 0 
	

(2. 1.3 lb) 

Now suppose that instead of satisfying h(O,t)0, h(x,t) satisfies 

h(0,t)0. 	We again look for a solution of (2.1. 27) in the form 

fx 
u(x,t) = h(x,t) + 
	

M(s,x,t)h(s,t)ds 	. 	 (2.1.32) 
0 

Then it is seen that (2.1.32) will be a solution of (2.1.27) provided 

M(s,x,t) is a solution of 

M —M +q(x,t)M=M 
xx 	ss 	- 	t (2.1.33) 

for 0 < s .< x < x which satisfies the initial data 
0 

M(x,x,t) = - 
	

q(s,t)ds 	 (2.1.34a) 

M(0,x,t) = 0 	 (2.1.34b) 

If the functions K(s,x,t) and M(s,x,t) exist, we can now define two 

operators T 1  and T mapping solutions of the heat equation onto solutions of 
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The integral operator P suffers from the disadvantage that its range is 

the class of analytic solutions of LEu.,:O. 	However it is known from 	the 

general theory of parabolic equations that solutions of LjjO are in 

general not analytic in the t variable, even though the coefficients of 

L[ij=O are analytic functions of x and t (c.f.L26j). 

Hence we will now construct a class of operators whose range is the class 

of solutions to (2.1.1) which are twice continuously differentiable with 

respect to x and continuously differentiable with respect to t. 	Such 

solutions will be called classical. 	We assume that in (2.1.1) we have 

c(x,t) > 0, and make the change of variables 

f 
 x - 

	

=o /c(s,t)ds 	
(2.1.26) 

This transformation reduces (2.1.1) to an equation of the same form but with 

c(x,t)=l. 	If we now make a change of variables of the form (2.1.2) we 

arrive at an equation of the form 

u 	+ q(x,t)u = u 	 (2.1.27)xx  

and we will henceforth.restrict our attention to parabolic equations which 

are written in this canonical form. 	We will first consider classical 

solutions u(x,t) of (2.1.27) defined in the rectangle 

R+ = {(x,t) : 0 < x < x, 0 <t < t} such that u(x,t) is continuously 

differentiable for 0 .< x < x, 0 < t < t, and make the assumptions that 

q(x,t) is continuously differentiable for - x < x < x, Iti < t, and is an 

analytic function of t for Itl < t. 	Here x and t o  are again positive 

constants. 

Remark 1: The assumptions on q(x,t) can be weakened. 	- 

Remark 2: The operators we are about to consider are related to the 

translation operators of Levitan for ordinary differential equations (c.f.E4 C 
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every solution of Ltu=O which is analytic for iti < t o , lxi < x, where to  

and x0  are positive constants, can be represented in the form (2.1.23). 

For let u(x,t) be an analytic solution of L[u].O for lxi < x, Itl < t o , and 

set u(O,t)f(t), u(O,r)=g(t). 	Then f(t) and g(t) are analytic for 

ti < to . 	Define w(x,t) by 

w(x,t) = P {f,g} . 	 (2.1.24) 

Then w(x,t) is an analytic solution of LEuJ=O and from (2.1.5a), (2.1.5b), 

(2.1.6a), (2.1.6b) we have 

1 	!iEid=f(t) w(O,t) 	- 	r 	t-r 	 (2.1.25) 

I t-t 

=___i._ 	--dtg(t) ; w(O,t) 	
2vi 	tT 

I t-t  I =s 

i.e. the Cauchy data for w(x,t) and u(x,t) argree on the noncharacteristic 

curve x0. 	From the Cauchy-Kowalewski theorem (c.f.E21J) we can 

now conclude that u(x,t) = w(x,t), i.e. u(x,t) can be represented in the 

form (2.1.23). 	We summarize our results in the following theorem: 

Theorem 2.1.1.([9J): Let the coefficients b(x,t) and c(x,t) of (2.1.3) be 

analytic functions of the complex variables x and t for lxi < = 	ti < t o . 

Then if u(x,t) is a solution of (2.1.3) which is analytic for 1XI < 

I ti < t, u(x,t) can be prepresented in the form u(x,t)= 1  {f,g} where 

f(t)=u(O,t) and g(t)=u(O,t) are analytic functions of t for Itl < t o . 

Conversely if f(t) and g(t) are analytic for Itl < t o  then u(x,t) = P 1  {f,g} 

is a solution of (2.1.3) which is an analytic function of x and t for 

lxi < 	ti < to . 
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E 2 (x,t,r) 	--- + Z x n (n) q 	(x,t,r) 	 (2.1.21) t-t 
n=3 

where the q(x,t,t) are analytic functions (except for t=T) to be 

determined. 	We again note that if termwise differentiation is permitted 

the series (2.1.21) satisfies the initial conditions (2.1.6a), (2.1.6b). 

Substituting (2.1.21) into (2.1.3) leads to the following recursion formulas 

for the q(n)(xtt): 

q(2) = o 

q 	 - ____ 
(3) 	c 	b 	 (2.1.22) 

=-  
6(t-r) 2  6(t-r) 

(k+2) 	2 	(k+l) 	1 	r (k) 	(k) 	(k)i q 	= - 	 - (k+2)(k+l) 	+ bq 	- cq j ; k 	2. 

The recursion scheme (2.1.22) is almost identical to the scheme given in 

(2.1. 8), and following our previous analysis we can again verify that the 

series (2.1.21) defines an analytic function of x,t and t for 1XI< 

I ti < t, ITI < t, t.t, which satisfies L[u]0 for t+r  and the initial data 

(2.1.6a), (2.1.6b). 	At the point tr, E
(2) 

 (x 1 t,T) has an essential 

singularity. 	It is of interest to contrast this singular nature of the 

functions EW(x,t,T)  and E 2 (x,t,t) with the analytic nature of the 

generating function of the Bergman operator B for elliptic equations. 

We have now shown that the integral operator defined by 

u(x,t) = P 1 (f,g} = - 	EW(x,t, r )f(r )dT  

It-TI= 6 	 (2.1.23) 

- -L.
J  E

2  (x,t,t)g(t)dr 
2in.  

It-t1t5 

exists and maps ordered pairs of analytic functions into the class of 

analytic solutions of LIzJ.O. 	It is a simple matter to show that in fact 
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Then 

t 	1 
r 

(l!) 	 (l-) 	- 
0 	 (2.1.19) 

61  (14) 	
6) 	t-t < 2t 

0 

Hence for x,t,t restricted as in (2.1.18) we have from (2.1.13) that the 

series (2.1.7) is majorized by 

M 16't n(3 +c)n(n_l)n(l+  )n 
2 	 1 	 (2.1.20) 
2nnn 

o n2 
ol 

Due to the fact that M is a bounded function of n, it is seen that if a  is n 

chosen sufficiently large then the series (2.1.20) converges. 	Since 

and c are arbitrarily small (and independent of r) and r can be chosen 

arbitrarily large, we can now conclude that the series (2.1.20) converges 

uniformly and absolutely for lxi < r, iti < t/(1+c5 1 ), ItI < t o  and 

it-TI .. S for 6 and 51  arbitrarily small and r arbitrarily large. 	Since 

each term of the series (2.1.20) is an analytic function of x, t and i for 

lxi < , ti < t, ti < t, tt, we can conclude that E(1(x,t,T)  exists and 

is an analytic function of its independent variables for lxi < '° Iti < top 

TI < to  and tt . 	At the point tT,E(l)(x,t,T)  has an essential 

singularity. 	It is clear from the above discussion that termwise 

differentiation of the series (2.1.7) is permissible and hence E(1(x,t,T) 

satisfies the differential equation (2.1.3) and the initial conditions 

(2.1.5a) and (2.1.5b). 

We now turn our attention to the construction of the function E2)(xtT) 

Setting f(t)0 in (2.1.4) and substituting this equation into (2.1.3) shows 

that, as a function of x and t, E 2 (x,t,r) must be a solution of L[uJ=0 

for t+t . 	We now assume that E (2) (x,t,T) has the expansion 
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M 	 Mr2  
M 2  = ( + c) 	n+l + .

a 	
2(n+2) + 2(n+2)(n+l) 	(2.1.14) 

nMr2  

	

+ 	 0 

(n+2) (n+1)t 

The proof of (2.1.13) now follows by induction once we have shown that M is 

a bounded function of n. 	For n .n = n(s) we have from (2.1.14) that 

M 2  . ( +c) 	M•1 + 
	

(f + )] ; n > no  . 	 (2.1.15) 
(.. +) 

If M 	.n+1 	n 	 o 
M for n n we are done, for then we have 

M . max { M19  M2 ,..., M 	}. 	Suppose then that there exists n 	 n such 

that M> M . 	Then from (2.1.15) we have n1+1 	a1  

1 	C 

M 	< (3+c)1 r M  - 	 L. n1+2 	 n1+1 +M  n +1 1 	J 
1 

3c 
= 	(2+T) 

	

+ e) ( + 	
(2.1.16) 

< M 

and by induction 

	

M + 	, M +1 	 (2.1.17) 

for m1,2,3 ..... Hence M
n 
 max { M1 , M2 , ... M +1  and we can conclude 

that M is a bounded function of n. 

We now return to the convergence of the series (2.1.7). 	Let 60, l' and 

a > 1 be positive numbers and let 

lxi < tin 	 Ni 	to 

t . t 1(1+6 
1 ) 	 It-ti 

0  

46 



if we now define Q(k)(XtT)  by the equation 

Q(k)(xtt) = Tkp)(x,t,t_r) 	 (2.1.9) 

then (2.1.8) yields the following recursion formula for the Q 
(k)

(x,t,r): 

Q (l) =  

Q(2) = -[c+TbJ 

(k+2) - - 2t 	(k+l) - 	2t 	r 	(k) + b (k) 	2 1 10 k - 	+2 	 (k+2)(k+1) L' Q 	Qxx 

_tcQ+ckQ_TcQ(1J ;kl 

Now let M0  be a positive constant such that 

c(x,t) << M(1 - 2E) 1(1_ t)l 

b(x,t) << M(l - ) l(l_ f-)1  

for jxj < r and Itl < t o . 	Using the fact that 

t << 2 t(1-_)
l 	

(2.1.12) 

we shall now show by induction that there exist positive constants 

M, n1,2,..., and c (where c can be chosen arbitrarily small and is 

independent of n and Mn  is a bounded function of ii) such that for lxi < r, 

ti <t0 , ITI <2t 0 ,wehave 

(n+1) << M 
	4n+l n+l 3 + n+l 
u-Fl 	

to 	
2 	 (2.1.13) 

(] x)(n+l)(l t)(n+l) (1- 	)22)r_(1) 

n0,1,2 ..... (2.1.13) is clearly true for n0 and nl, and from (2.1.10) 

it can be shown that (2.1.13) is true for n=k+l if the Mn  are defined by the 

recursion formula 
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We now look for a solution of (2.1.3) in the form 

u(x,t) = - 	- 	(x,t,r)f(t)dT - 	E 2 (x,t,T)g(t)dr 

lt-Ti=6 	 it-tj=S 	 (2.1.4) 

where t - Iti > ó > 0 and f(T) and g(t) are arbitrary analytic functions of t 

for NI < to . 	We will furthermore ask that E 1' (x,t,t) and E 2 (x,t,t) 

satisfy the initial conditions 

E (1) (O,t, t ) = _i_ 	 (2.1.5a) 

E 1 (O,t,t) = 0 	 (2.1.5b) 

E 2 (O,t,r) = 0 	 (2.1.6a) 

E2(O,t,T) = 	 (2.1.6b) 

and be analytic functions of their independent variables for lxi < 

I ti < t, ITI < t, t -r. 	We shall first construct the function E 1 (x,t,t). 

Setting g(T)0 and substituting (2.1.4) into L[u}0 shows that, as a function 

of x and t, E 1 (x,t,t) must be a solution of L[uO for t+T. 	We now assume 

that E(x,t,t) has the expansion 

EW(x,t,t) =+ 
	

(2.1.7) 

where the p(x,t,T) are analytic functions to be determined. 	Note that 

if termwise differentiation is permitted the series (2.1.7) satisfies the 

initial conditions (2.1.5a) and (2.1.5b). 	Substituting (2.1.7) into (2.1.3) 

we are led to the following recursion formula for the p(x,t,t): 

(l) = 0 

(2) - 	c 	- 	b - - 	 (2.1.8) 
2(t-T) 2  2(t-t) 

(k+2) 	2 	(k+l) 	1 	Lp (k)  + bP 	- cp)] ; k 	1 p k+2 x 	(k+2)(k+l) 	xx 
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II Parabolic equations in one space variable 

2.1 Integral Qperators 

We now want to develop a theory for parabolic equations in one space 

variables that is analegous to the theory just developed for elliptic 

equations in two independent variables. To this end we consider the 

general linear homogeneous parabolic equation of the second order in one 

space variable written in normal form as 

U 	+ a(x,t)u + b(x,t)u - c(x,t)u = 0 . 	 (2.1.1)xx  

In the theory we are about to develop we will need to construct a variety of 

integral operators for (2.1.1), and in each such construction we will 

impose somewhat different assumptions on the coefficients of (2.1.1). 	The 

first operator we will consider will map ordered pairs of analytic functions 

of a single complex variable onto analytic solutions of (2.1.1). 	In order 

to construct this operator we will make the assumption that the coefficients 

a(x,t), b(x,t) and c(x,t) in (2.1.1) are analytic functions of the complex 

variables x and t for lxi < 	and Itl < t 
0 	 0 
where t is a positive constant. 

By making the change of dependent variable 

fu(x,t) 	v(x,t) exp { -1a(,t)d 	 (2.1.2) 
o 

we arrive at an equation for v(x,t) of the same form as (2.1.1) but with 

a(x,t)=0. 	Hence without loss of generality we can restrict our attention 

to equations of the form 

L[u] E u, + b(x,t)u - c(x,t)u = 0 	 (2.1.3) 

where b(x,t) and c(x,t) are analytic functions of x and t for lxi < 

it! < t 
0 
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singularity at the point log(-A) = which corresponds to a dipole of the 

compressible fluid flow; however W(X,e) will not in general be zero on the 

boundary 3D of the non-schlicht domain D. 

Having obtained a solution 'P(X,O) of (1.5.9) with prescribed singularity 

at 	log(-A), we now have to see what type of flow this solution represents 

in the physical (x,y) plane. 	It can be easily seen that the point 

= log(-A) in the (A,O) plane corresponds to the point at infinity in the 

(x,y) plane and that the flow behaves there as if a dipole were situated at 

infinity. 	The curve C*  in the (x,y) plane on which , vanishes will of course 

be different in general from the original curve C for which we wanted to 

solve the boundary value problem; however C*  will not be too different from 

C if the velocities involved are not too near the sonic velocity q = c. By 

choosing complex velocity potentials associated with different curves C and 

constructing Y(A,e) as above we now have an inverse method for obtaining 

subsonic compressible flows past an obstacle originating from a dipole at 

infinity. 

For an example of numerical experiments using the methods of this section 

see 	and [4 

The basic ideas of the approach described above for subsonic fluid flow 

can also be used to study transonic flow problems. 	Particular problems of 

course arise due to the need to continue the solution past the sonic line, 

and the analysis is by no means trivial. 	However these difficulties have 

been overcome and the use of integral operators and inverse methods has 

recetly led to the numerical design of shock-free transonic flow at 

specified cruising speeds. 	The interested reader is referred to 

S. Bergman, Two-dimensional transonic flow patterns, Amer.J.Math.70(1948),856- 

891. 
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From (1.5.31) and (1.5.32) we have 

= log(-A) - 	!. ! 

	

._ 	. + •.. 	 ( 1.5.33) 

and hence for r near 	= log(-A) 

z = 	a 	+ P((-&) 	 (1.5.34) 
(c-8) 

where P(t) is a power series in t about the origin and a = - 	L 

In the pseudo-logarithmic plane we thus obtain a complex potential F*() 

defined by means of 

	

= F(z(ç)) 
= 	

2 + 
p*((_)) 	 (1.5.35) 

(_) 

where P*(t) is a power series in t about the origin and A*  is a constant. 

From (1.5.33) we see that the image of the flow domain in the (X,O) plane 

covers this plane in a non-schlicht manner and has the point 	= log(-A) 

as a second order branch point. 	The stream function A,O) is defined by 

= Re(iF*()) 	 (1.5.36) 

(c.f. (1.5.30) and (1.5.35))and vanishes on the boundary 3D of the image of 

the flow domain D in the c plane. 

Now associate with iF*(t) = 	() a solution 'Y(X,O) of (1.5.9) defined by 

(1.5.19) (we will assume that the image of the flow domain in the pseudo-

logarithmic plane lies entirely in the region where the operator (1.5.19) is 

applicable). 	Note that for small velocities 9.(A) 	constant and hence L(X) 

can be assumed to be small for large negative values of A. 	This in turn 

implies the constant C in (1.5.10) is small and hence from the recursion 

relations (1.5.23), (1.5.24) U(A,O;t) is small for large negative values of 

A, i.e. for such values of A 'P(X,O) does not differ too much from Re(()), 

the corresponding solution in the incompressible case. 	'y(A,O) has a 
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i.e. 	must satisfy 

ki . 2a1A1 < 2A 	 (1.5.28) 

and since r = A+iO we have 

let < 	Ixl 	 (1.5.29) 

i.e. C must lie in an angle of 1200 symmetric to the A axis in the left 

half plane. 	Conversely, if c lies in this angular region it can always be 
connected with the origin by a path along which t fulfills (1.5.27) for an 

appropriate value of a < 1. 	Hence we can construct solutions of (1.5.9) 

in the region (1.5.29) by means of (1.5.19). 	 - 

We will now show how the operator defined by (1.5.19) can serve as the 

basis for the development of an inverse approach to solving boundary value 

problems in the theory of subsonic, compressible fluid flow. 	We restrict 

our attention to the case in which the flow domain in the physical (x,y) 

plane contains the point at infinity and in which the flow originates from 

adipole there (i.e. the velocity at infinite is uniform). 	Let the flow 

domain be bounded by a closed curve C, and let 

F(z) 	+ip = Az+a + 1  + ... 	 (1.5.30) 

be the complex velocity potential in the case of incompressible flow 

(expanded about the dipole at infinity). 	The function F(z) can be 

obtained by classical methods in analytic function theory (c.f. [6]). 	Note 

that on C we have = 0. 	The velocity function of the incompressible flow 

near infinity is now.given by 

w = - F'(z) = uiv = -A + 4 + ..., 	 ( 1.5.31) 

and since in the case of an incompressible fluid flow A = log q we have 

= A+iO = log w . 	 (1.5.32) 
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The system (1.5.21) can be solved explicitly by setting 

Q(A) = n! (c-A) 'ii 	 (1.5.22) 

where the i satisfy the recursion formula 

p0 - 1 

with 

(n+a)(n+) 
11 	= 	

(n+i) (1.5.23) 

(1.5.24) 

= 4 +( .. - C) 

From (1.5.10) and (1.5.13), (1.5.15) it is easily seen that 

G(A) < < 
	

(1.5.25) 

and hence the series (1.5.20) is majorized by the series 

Q(x) k_tin_i z 
nl (n_l)2n 

ic-tI e ' = E nji 	
fl

( nl 	2 cA) 

= 4 
1 
 (c-A) 	 )n-1 	

(1.5.26) 
nl 	2(t-A) 

= 	1 	
4—F(cz,,l; JctI 

2(c-A) 	 2(c-A) 

where F(c,I3,l;x) is the hypergeometric function of Gauss. 	Butit is well 

known.that the hypergeometric series for F(ci,,l;x) coverges uniformly for 

xi . a < 1 provided a and are not zero or a positive integer, which from 

(1.5.24) is certainly not the case here. 	Hence the series (1.5.26) (and 

hence the series (1.5.20)) converges uniformly for 

2(:A) . a < 1 , A < c < 0 	 (1.5.27) 
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rest of the fluid. 

We first solve the recursion relation (1.5.14). 	Let (ç) be an 

analytic function of 	A+iO and let g(A,O) = Re 0 0
. 

Then (1.5.14) will 

hold if 

g(A,O) = Re (1.5.15) 

where 

d 	() 1 = - 
	n-l' 	n = 1,2,... 	. (1.5.16) 

In particular a solution of (1.5.16) is given by 

= 	 J 	(t)(-t)dt (1.5.17) 
(n-l).2 	o 

and hence 

g 	(A,e) 	
= 	(_1)n 	

Re 	( 	(t)(-t) 1dt) f (1.5.18) 
(n l)2tl 	0 

for n = 1,2 .... . A formal solution of 	(1.5.9) 	is thus given by 

(A,O) 	= 	 (ID 	

+ 
J 	(t)U(x,e;t)dt) (1.5.19) 

where 

U(A,o;t) 	= E 	 G 	(X)(-t) 1 . (1.5.20) 
n1 	(n-l):21 	

" 

Our formal analysis will now be valid provided we can show that the series 

(1.5.20) converges uniformly to an analytic function for A and 0 in the 

region of definition of p(A,0) and for t in the region of integration in 

(1.5.19). 	We will do this through the method of dominants. 	Define the 

functions Q(A) by the recursive scheme 

Q 	= 1 

= 	+ C(c-A) 2Q 	; 	n = 1,2, 	... n (1.5.21) 

= 0 	; 	n = 	1,2, 	... 
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We will now construct an integral operator which maps analytic functions 

into the class of solutions of (1.5.9). We will make the assumption (valid 

in particular for the case of an adiabatic gas where the pressure p is given 

by p = constant p 1  for sone constant y) that L(X) is an analytic function of 

A for A < 0 and has a dominant of the form 

L(X) < < C(-A) 2 
	

(1.5.10) 

where C > 0, e < 0 ((1.5.10) is interpreted in the sense that 	- 

1dnL(A)1 	
C a- ( -X) 2  for n = 0, 1,2 .... .) 	

Note that the integral 

operators previously constructed are not applicable in this special case, 

since L(A) is not in general an entire function of A. 	We first look for a 

formal solution of (1.5.9) in the form 

= z G(A)g(A,o)  
n=0 

where g(A,O) is a harmonic function of A and 0. 

Proceeding formally we have 

0 	- Lii, = E (g n 	n 	n 	 n (G" - LG ) + 2 - C' 	 (1.5.12) 
A  

n0 

and hence we require 

G =1 
0 

G' 1  = G" - LC 	; a = 1,2, ... 	 (1.5.13) 

2 	= - g_1 	 (1.5.14) 

with g(A,0) an arbitrary harmonic function. 	We normalize the Gn(A)  by 

imposing the condition 

Gn(_O) = 0, 	n = 1,2, 

which is motivated by the fact that A = - corresponds to q = 0, the state of 
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which are polar coordinates in the hodograph plane (u,v). Under this 

change of variables the nonlinear system (1.5.2) becomes the linear system 

(c.f. [6:1). 
= 

	

p 'q 	 (1.5.4) 

R  ) 

where c2  = c2 (q 2 ) is the square of the local velocity of sound in the medium. 

If we now make the assumption that the flow is subsonic i.e. q 2  < c2 , and 

transform (1.5.4) into the eudo -1o&arithmic plane (A,0) by means of the 

change of variables 

= 

f  q 
	

' 	)dq 	 S 	 (1.5.5) 

0=0 

we arrive at the system 

= 
0 	A 	

(1.5.6) 
4 A = 

where 	 = 1 (1- 2 ) 	 (1.5.7) 

is a known function depending on the physical nature of the fluid under 

consideration. 	Note that in the case of an incompresible fluid flow (c=o°) 

the system (1.5.6) reduces (after the introduction of an appropriate scaling 

factor) to the Cauchy-Riemann equations. 	Eliminating 4(A,0) from (1.5.6) 

gives 

	

+ 	+ , (X  )px = 0 	 (1.5.8)Oel 

where 9.'(X) = d9..  . 	Setting i 	now gives dX 

AA 
+ 00 - L(A)p = 0 	 (1.5.9) 

where 	
- () 	2 + 2 

L(A) - 	 2 	2 2, 2 
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1.5 Inverse Methods in Compressible Fluid Flow. 

In this section we will be considering stationary, irrotational flow of a 

two dimensional compressible fluid, and will derive an inverse-method for 

obtaining flows past an obstacle due to a dipole at infinity. 	The approach 

we are about to derive is due to S.Bergman and our presentation is based on 

the material in [6]. 	Another excellent survey of the present topic can be 

found in E4lJ. 

Let q be the velocity vector of the motion and 4,(x,y) be the velocity 

potential, i.e. 

= - grad = (u,v) 
	

(1.5.1) 

where u = - 	v - 	. 	Let p(x,y) denote the density of the fluid 

	

ax' 	ay 

where p = p(q 2 ), q2  = ( 	+ ( .± )2 . 	Then from the equation of 

	

ax 	ay 

continuity div (pq) = 0 we can assert the existence of a stream function 

p(x,y) such that 

ax ay 
(1.5.2) 

ay 	ax 

and where p(x,y) remains constant along each stream line. 

We now introduce the new variables 

q = (u2+v2 ) 

o = arctan u 

(The inverse mapping is given by (c.f. [6]). 

x = - J ( 	(cos" - .
E!° p)dq + 	(cos0 0- 	)do) 

	

y = - f ( I (SIflOq + 	)q)dq + 	(sin046-s £A 	)dO )) 
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N 
u(x,y) - 	

a non (x,y)II 2D  < E. 

n0 
(1.4.10) 

In particular since the set {} is an orthonormal set, the optimum choice 

of the constants a0, ..., a1  is given by 

a = (u)D 
(1.4.11) 

f 	fl ds  u 
 av 
DD 

From (1.4.9) and (1.4.10) we have 

N 
u(,n) - E aq(,n) 2  < e K(,r ; 	,n) ' 	 (1.4.12) 

n=0 

and hence the series 

u(x,y) = Z a(x,y) 
	

(1.4.13) 
n0 

a = (u,4)D 

converges uniformly to u(x,y) in every closed subdomain D of D. 	In 

particular setting u(x,y) = K(x,y ; ,n) we have from (1.4.8) 

(On 	K(x,y 	 = 	 (1.4.14) 

and hence for (x,y) and ( E.0 on compact subsets of D we have the 

remarkable representation 

K(x,y ; 	, n) = 	4(x,y)(, ). 	 (1.4.15) 
n0 

Note that the representation (1.4.15) is in fact independent of the particular 

orthonormal system (} we started out with. 

	

Numerical methods based on the kernel function can be found in ESJ. 	Other 
numerical methods for solving the Dirichlet problem for elliptic equations 

using the method of integral operators can be found in [] ,4, E33, E341 and  E4 7 
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If we define the inner product 	'D by 

(u,v)D = U [u v + u yvy - quv]dxdy 	 (1.4.6) 

where u,ccC 1 (D) we see that 	satisfies all the conditions of an inner 

product. 	In particular since q(x,y) < 0 for (x,y)tD we have 

	

- 	
i I II '2 D = (u,u)D = 0 if and only if u = 0 n D. 	From Green s formula we 

have the fact that if v(x,y) is a solution of (1.4.1) then 

I  
(u , v)D = - j u 

3v 
 ds , 	 (1.4.7) av 

3D 

in particular if u(x,y) is a solution of (1.4.1) then (1.4.5) can be 

written as the single relation 

u(E,) = (u(x,y),K(x,y 	''D 	
(1.4.8) 

since both u(x,y) and K(x,y ; F,n) are solutions of (1.4.1). 

Equation (1.4.8) is known as the reproducing property of the kernel function. 

In particular from Schwarz's inequality we have 

Iu(,n)I 2  = 

<(u , u)D(K , K)D 
	 (1.4.9) 

= •K(,r ; 	, n) I uj '2 
D 

Now let {u} be the family of solutions to (1.4.1) defined by 

U 2 	Re 2 
 {z}, u21  = Im 2  {z' }, and orthonormalize this set with 

respect to 	to obtain the set 	From Theorem 1.3.6 we have that 

the set {cn}  is complete in the Dirichlet norm 	I D over D with respect to 

the class of solutions to (1.1.1) that are Hlder continuously differentiable. 

In particular if u(x,y) is a solution of (1.4.1) which is Hlder continuously 

differentiable on 3D then for any t > 0 there exists an integer N and 

constants aO, ... ,aN such that 
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1.4 The Bergman Kernel Function. 

We will restrict ourselvesj the seif-adjoint elliptic equation 

u + u + q(x,y)u = 0 	 (1.4.1)xx  

where q(x,y) is an entire function of its independent complex variables. 

We again consider solutions u(x,y) of (1.4.1) defined in a domain which is 

bounded, simply connected, and in class Ah, and make the assumption that 

q(x,y) < 0 in D. Let N(x,y ; and G(x,y ; F,n) be the Neumann's and 

Green's function respectively of (1.4.1) in D. 	Then the kernel function 

K(x,y ; E,r) of (1.4.1) in D is defined by 

K(x,y ; 	,n)= N(x,y ; 	,n) - G(x,y 	 (1.4.2) 

Note that since the singularities of the singular parts of N(x,y ; , i- ) and 

G(x,y ; ,n) cancel we have that K(x,y ; F,n) is regular in D both as a 

function of (x,y) and (,n). Furthermore, due to the symmetry of the 

Neumann's and Green's function, we have 

K(x,y ; 	=KQ,n ; x,y). 	 (1.4.3) 

From the boundary conditions satisfied by the Neumann's and Green'sfunction 

we have 

K(x,y ; 	= N(x,y ; 	,n) 	; 	(x,y)EBD 	 (1.4.4) 

- (x,y 	(x,y 	(x,y)caD av 

where v is the unit inward normal to DD. 	Hence if u(x,y)C 1 (D) is a 

solution of (1.4.1) we have from Green's formulas 

u(€,r) = - 	 u(t) K(t;,n) ds f
D 	 V 

u(,) 

= - f 
K(t;,n) 3u(t) ds 

where u(t) = u(x,y), K(t;E,) = K(x,y ; 	for (x,y) 	(x(t),y(t))3D and 

ds denotes arclength. 
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first derivative in D (and hence u(x,y) has Hlder continuous first 

derivatives in D). 	 .- 

Further generalizations can be found in [47]. 

From Theorems 1.3.3 and 1.3.4 we can now approximate solutions to the 

Dirichiet problem for-L[uJ = 0 mD, where DeAh, c(x,y) .< 0, in the 

following manner Orthonormalize the set {u} in the L 2  norm over 3D to 

obtain the complete set {} and set 

c = f 	cta 	n 
	 (1.3.37) 

3D 

N. 
UN(x,t) = z c. 	 (1.3.38) 

n0 n a 

(Since H1der continuous functions can be approximated by continuous 

functions we can, by the maximum principle, assume that f(t)- is merely 

continuous on 3D and still conclude from Theorem 1.3.4 and Theorem 1.3.3 

that the set 	is complete in the maximum norm over D, and hence complete 

in the L 2  norm over D). 	As we have already discussed in the introduction, 

we can now conclude that the given c > 0, N sufficiently large -and D a 

compact subset of D, 

max ju-u N I < c 
	 (1.3.39) 

D 
0 

Since each c is a solution of L[U] = 0 in D, error estimates can be found 

in -the case when c(x,y) ..< 0 in D by applying the maximum principle. 

In the next section we will discuss an alternate method for approximating-

solutions to L[u] = 0 by means of a complete family of solutions. The - 

method to be discussed is based on the Bergman kernel function (c.f. [6] -). 
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From Walsh's generalization of Runge's theorem (c.f. [0])  we have that 

U(z,0) can be uniformly approximated in D by polynomials and we therefore 

have the following extension of Theorem 1.3.1: 

Theorem 1.3.3 ([49]): 	Let DcAh and let u be defined by (1.3.1). 

Then the set {u} is complete in the maximum norm over D for the class of 

real valued solutions of L[u] = 0 which are Hlder continuous in D. In 

order to apply Theorem 1.3.3 we need criteria for which a solution u(x,y) 

of L[u] = 0 is Hlder continuous in D. 	The following give criteria 

suitable for the purposes of these lectures. 

Theorem 1.3.4 ([49]): 	Suppose c(x,y) .< 0 in D, DcAh, and u (x , y) €C0 (D)r\ C2 (p) 

is a raal valued solution of L[u] = 0 in D such that 

U(t) = f(t) 	on 3D 

where f(t) is Hlder continuous on 3D. 	Then u(x,y) is Hlder continuous in D. 

Proof: 	This follows from the maximum principle, lemma 1.3.3, and (1.3.13), 

(1.3.18), since if p(t) is H1der continuous on 3D then 	z) is Hlder 

continuous in D. 

TheOrem 1.3.5: Suppose 31) has H1der continuous curvature. 	Then if 

u(x,y)cC0(D)r\C2(D) is a real valued solution of L[uJ = 0 in D such that 

u(t) = 0 	on 3D 

then u(x,y) and its first and second derivative are H1der continuous in D. 

Proof; This follows immediately from the Shauder estimates (c.f. [:2fJ). 

We state now the following generalization of Theorems 1.3.2 and 1.3.4, 

the proof of which can be found in [49. 

Theorem 1.3.6 ([49]): Let DEAh and u(x,y)€C0(D)AC2(D) be a real valued 

solution of L[u] = 0 in D where c(x,y) . 0 in D and 

U(t) = f(t) 	on 3D, 

ii where 
df 
 is Holder continuous on 3D. 	Then U(z,0) has a Holder continuous 
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is a solution of 

w +w +(a+2 31ogv - + (b+2 alogv
)  - = 0 	 (1.3.34) 

xx 	yy 	 3xx 	 ay 3y 

in D and w (x,y ) CCO(D)flC2 (D), w = 0 on 3D. 	Hence from the maximum 

principle w(x,y) 	u(x,y) 	0 in D and the lemma is proved. 

Definition 1.3.1: Let v(x,y) = R(z,z0  ; z,z) where z0  = x0+iy0cD. 	Then 

v(x0 ,y0) = I and hence there exists a neighbourhood of (x,y) such that 

v(x,y) > 0 in this neighbourhood; such a neighbourhood will be called a 

Riemann neighbourhood of the point z 

Theorem 1.3.2 (1491): 	Let u(x,y) be a real valued solution of L[u] = 0 

that is Hlder continuous in D. 	Then U(z,0) is r61der continuous in D. 

Proof: 	Let ycD be a closed arc such that y lies entirely inside some 

Riemann neighbourhood. 	Complete this arc to form a closed curve D' such 

that D is of class Ah, D' lies inside D, and D' lies in a Riemann neighbour- 

hood. 	From lemma 1.3.4 and our previous analysis we can represent u(x,y) 

inside D' as 

u(x,y) 	
f

=

(1.3.35) 

D  

where p'(t) is H1der continuous on W. 	But from the representation 

(1.3.13) we see that 

4(z) = f 	
ti'(t)ds 	zti' 	. 	 ( 1.3.36) 

From the properties of Cauchy integrals we have that •(z) is Hlder 

continuous on y and hence so is U(z,0). 	Covering aD by a finite number of 

overlapping closed arcs y1 (each yi  being contained in a Riemann neighbourhood) 

shows that U(z,O) is Hlder continuous on aD and hence, from the properties 

of Cauchy integrals, Hólder continuous in D. 
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A(t0)11(t) + 3D K(t ,t)11(t)ds = 0 	 (1.3.30) 

has only the trivial solution p(t) 	0 on 3D. 

Lemma 1.3.3 ([4]): 	If the homogeneous boundary value problem 

L[uJ= 0 in D 

u = 0 on 3D 	 (1.3.31) 

ucC° (D) r c 2 (D) 

has only the trivial solution u 0 mD then there exists a unique Hlder 

continuous solution p(t) of (1.3.23). 

Proof: We must show that the only solution of (1.3.30) is the trivial 

solution 11(t) = 0 on 3D. 	Let p(t) be a solution of (1.3.30). 	Then 

u(x,y) = Re[H (z) (z) 
+ fo H(z,t)(t)dtJ 	 (1.3.32) 

with 

(z) 	f

tp (t)ds 

° 	, t3D 	 (1.3.33) 

3 
is a solution of (1.3.31) which is continuous in D and satisfies 

u = 0 on 3D. 	Hence from the hypothesis of the theorem u(x,y) 	0 in D 

and hence 4 0 (z) 	0 in D. 	But this is the case if and only if 11(t) = 0 

for t on 3D (c.f.L42) and the lemma is proved. 

From the maximum principle the hypothesis of lemma 1.3.2 are satisfied if 

c(x,y) , 0 in D. 	The following lemma gives an alternative sufficient 

criteria for these hypothesis to be valid. 

Lemma 1.3.4 (E49J): 	If there exists a real valued solution v (x , y)C0 ()nc 2 (D) 

of L[u] = 0 in D such that v(x,y) j 0 for (x,y)cD then the homogeneous 

boundary value problem (1.3.31) has only the trivial solution. 

Proof: Let u(x,y) be a solution of (1.3.31). 	Then 	w(x,y) 
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singular integral equation for the unknown function j(t). 	We now rewrite 

(1.3.23) in the form 

) 

A(t)(t) + B(t o 
I (t)dt + f K (t ,t)p(t)ds = f(t 

0 ) 	( 1.3.25) 
in 	tt 

o  
aD 	 aD 

where 

B(t ) = 
0 	

in Re[t 0t 
0 

'H 
0 
(t O)] 
	 (1.3.26) 

t'B(t) 
K(t,t)=K(t,t)-. 	

- ) 0 0 	 0 	 lit(tt 
0 

and note that K (t 
0

,t) has the form 
0  

K*(t, t) 

K (t ,t) = 	 (1.3.27) 
a 

0 

where 0 E a < 1 and K*(t,t)  is a H51der continuous function on aDxaD. 

From (1.3.24) and (1.3.26) we have 

A(t ) + B(t ) = iirt t'H (t ) 
o 	o 	0 o 0 0 	

(1.3.28) 

A(t ) - B(t ) = - iitt t 'H (t ) 
o 	0 	 00 0 0 

and since H 
0 0 	 0 
'(t ) + 0 for t caD we have that A+B and A-B are nonzero on 3D. 

Hence (1.3.23) is of normal type and the general theory of singular integral 

equations can be applied (c.f. [42]). 

From (1.3.28) we have that the index K of (1.3.23) is 

	

A(t 
0 	0 
)-B(t ) 1 	- 	 ' 

K = 	
Llog A(t )+A(t )aD 2iti 	

= 0 

	

0 	0 

(1.3.29) 

(this follows from the facts that clog t t']aD = clog tt)aD = 0 and 

H(t) = exp(- 	A(t,n)dn), which implies clog H (t)JaD = [log H(t)]aD 

and hence all three Fredholm theorems hold for equation (1.3.23), in particul 

(1.3.23) has a unique Hlder continuous solution for any (H1der continuous) 

f(t) if and only if the homogeneous equation 
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where ds denotes arclength along 3D. 	If such a p(t) exists then we can 

conclude that O(z) as given by (1.3.18) is H6lder continuous in D; c.f.[42]. 

Substituting (1.3.18) into (1.3.13) gives 

u(x,y) = L K(z,t)p(t)ds 	 (1.3.19) 

where 

tH (z) 	z 
K(z,t) 	

t-z 	f Rer 	
+ 	

tH(

t-t 

z,t1) 
dt. 	 (1.3.20) 

1 

and tcD, zcD. 	Note that K(z,t) has the farm 

tH (z) 
K(z,t) = Re 	

tz 	
tH(z,t)log(1 	) + H*(z,t)J  

where 

t[H(z,t 1 )-H(z,t)] 
H*(z,t) 	 dt1 	 (1.3.22) 

is an analytic function of z,t in DxD and log(l- ) is understood to be its 

principal value. 	Note also that for fixed tED, K(z,t) is a solution of 

L[U] = 0 in D. 

Now let z = xiysD tend to a point tc3D. 	From the limit properties of 

Cauchy integrals (c.f.E42)we have 

A(t)p(t) + f K(t ,t)(t)ds = f(t) 	 (1.3.23) 

aD 

where 

A(t) = Re[ilTtt'H(t)] 	
1 3 24 

	

tHt) 	 t 
K(t,t) = Re 	 - tH(t ,t)log(1- .2.) + 

iW 	0 

dt 	iO(t) and t 	 i = 	/ds = e 	where 8(t) s the angle between the positive 

direction of the tangent to 3D at the point t to the x axis. 	Since D is in 

class Ab we have that t'(s) is }1lder continuous on DD. 	(1.3.23) is a 
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H (z) = R(z,O,z,z) 
0 

H(z,ç) = - -- R(,O ; z,z) 	 (1.3.14) ac 

(z) = 2U(z,O) - U(O,O) 

and, as usual, U(z,z*) = u ( 
z+z*  
-f--- , 

z_z* 
---- )• 

Proof: Integrating by parts in (1.2.1) gives, using (1.3.9), 

U(z,z*) = - U(O,O)R(O,O ; z,L*) 

fo
z

+U(z,O)R(z,O;z,z*)_ U(c,O).__(c,O;z,z*)d 
	 (1.3.15) 

	

fo 	C 

and hence from (1.1.7) and (1.3.9) 

U(z,z*) = R(z,O;z,z*)(:) - f o ),o;z,z*)d 	 (1.3.16) 

+R(O,z*;z,z*)(z*) -  fo  

where 

(z) 	U(z,O) - U(O,O) 
(1.3.17) 

U(O,z*) - IU(O,O). 

Since u(x,y) is real valued we have U(z,z) = U(z,z) and 	z) =(z). 

Hence from lemma 1.3.1 we can write (1.3.16) as (1.3.13) with (z) as given 

in (1.3.14). 

Now assume that u(x,y)cC° (D) is a solution of LIUJ = 0 in D such that 

u(t) = f(t) for tcD where f(t) is Hlder continuous on 3D. 	Let p(t) be an 

real valued Hlder continuous function for teD. 	We .111 try and determine 

11(t) such that u(x,y) can be represented in the form (1.3.13) with 

f tp(t)ds (z) = 
	t-z 
DD 

(1.3.18) 
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i.e. 

A'(O,z*) = B'(z,O) = 0 	. 	 (1.3.9) 

Hence we can assume that the coefficients A(z,z*)  and B(z,z*) satisfy 

(1.3.9) to begin with. 

Lemma 1.3.1 ([49]): The Riemann function .R(r,* : z,z*) of L[u] = 0 with 

real-valued coefficients takes real values when z* = Z, C* 

Proof: 	Since the coefficients of L[u] 	0 are real we have 

Im R(C, 	; z,z) = ; z,) - 	: z,z)] 	(1.3.10) 

where 	; z,z) = R(t, ; z,z) is a solution of L[u] = 0. 	Extending 

(1.3.10) into the complex domain and evaluating along the characteristic 

z.=O gives 

Im 	; 0,z*) = - exp(- J A(,t)dr) 
 

- exp(- J 	(o,t)do)] 
=0 

from (1.3.7) and the fact that A(z,z) 	B(z,z) (since the coefficients 

of LuJ = 0 are real). 	Similarly 

Im R(C, 	; z,0) = 0 , 	 (1.3.12) 

and hence from Theorem 1.2.1 Im R(ç,ç ; z,z) E 0 and the theorem isproved. 

For the remainder of this section we assume that the coefficients of 

(1.3.3) satisfy (1.3.9) and that L[u = 0 has real-valued coefficients. 

Lemma 1.3.2. ([49J): 	Let u(x,y) be a real valued solution of L[U = 0 in D. 

Then 

u(x,y) = Re[h 
0 

	fo  (z)4(z) + 	H(z,)4()dj 	 (1.3.13) 

where 
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where ttRel!  denotes "take the real part" and " Im"  denotes "take the 

imaginary part" . 	Let D be a compact subset of D. 	Then for any c > 0 

there exists an integer N = N(c) and constants a 0 , ... , a such that 

N 
max lu- E aul < c . 	 (1.3.2) 
D 	n0 

0 

The problem therefore is to replace D in (1.3.2) by D, i.e. to show the 

set {u} is "complete up to the boundary". We will show this through the 

use of singular integral equations and the method of I.N.Vekua ([49). 

We will first need a few preliminary results concerning the elliptic 

equation in the complex domain 

L*[U] + A(z,z*) 	+ B(z,z*) 	+ C(z,z*)U = 0 . (1.3.3) zaz* 

Let 

fo
z

A( z ,z*) = exp - 
	
B(,0)dç - fo A(0,C*)d*  	 (1.3.4) 

z z + f 

and set 

U = AU' 
	

(1.3.5) 

Then U'(z,z*)  satisfies 

32u' + A' (z,z*) U-'  + B' (z,z*) 3U' = 	 + A'(z,z*)B'(z,z*)U' = 0 L'[U'J - azaz* 

(1.3.6) 

where fz 
A'(z,z*) 
	

h(,z*)d 
0 

f
z 

B'(z,z*) = 
	
k(z,*)d* 

0 

(1.3.7) 

with 

h(z,z*) = aA(z,z*) + A(z,z*)B(z,z*) - C(z,z*) 
az*

(1.3.8) 

3B(z,z*) + A(z,z*)B(z,z*) - C(z,z*) k(z,z*) = 
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Corollary 1.2.2 ([2]): 	Let u(x,y) = Re 2 {f} and suppose u(x,y) is 

regular in D (i.e. u(x,y)EC2 (D)). 	Then f( - ) is analytic for z = x+iycD. 

Proof: From Theorem 1.1.2 we have that 

g(z) = 2U(z,O) - U(O,O)exp(- 	 (1.2.27) 

is analytic for zeD. 	From (1.2.22), (1.2.25) we have 

f( 	= - - f g(z(l-t 2 )) 	 (1.2.28) 

and, by deforming the path of integration in (1.2.28) if necessary, it is 

seen that 	is also analytic for zcD. 

1.3. 	Cornplete Families of Solutions. 

In this section we will make the further assumption on D, that in 

addition to being bounded and simply connected, D is in class Ah, i.e. the 

angle 0(t) between the tangent to DD at the point t and the x axis is Hlder 

continuous along DD. 	Without loss of generality we assume that D contains 

the origin. 	We want to construct a set of solutions {u} to L[u] = 0 such 

that if u(x,y)cC° (D) r' C 2 (D) is a real valued solution of L[u] = 0 in D then 

for any e > 0 there exists an integer N = N(e) and constants a0, 
..., 

a 

such that 

N 
maxlu-  E au nn 
D 	n0 

Then set { U } is then said to be complete in the maximum norm over D. 

From Runge's theorem for analytic functions, Corollary 1.2.2, and the 

regularity  of E(z,z*,t) we immediately have the following theorem: 

Theorem 1.3.1 ([21 [491): Let u(x,y)C 2 (D) be a real valued solution of 

L[u] = 0 in D and let 

u2  = Re 	; n = 0,1, 

= Im A 2{zn};  n = 0,1, 
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is real and f(0) = U(O,O). 	Hence to show the invertibility of ReB 2 it 

follows from (1.2.22) and Corollary 1.2.1 that we must be able to invert the 

integral equation 

g(z) 	f( (l-t2)) 
dt  

t2 . 
	 (1.2.23) 

Setting 

g(z) = E a z n 
	

izi < p 	 (1.2.24) 
n0 

it follows from the definition of the Gamma function that 

1 	 r(n.4-l)a z n  

IT f 
l 

g(z(l-t 2 )) 	= E 
r()r(n+) 	 (1.2.25) 

n0 
- 

(where in (1.2.25) the path of integration does not pass through the origin) 

and, setting f(Z/2)  equal to the right hand side of (1.2.25), that 

f
l 	

f(l-t 2 )) at
(12.26) 

-1 

r(n+l)a z 
n 

n = E 
r()r(n+) f (l_t2)fl2dt 

n=O 
-1 

= E 	az n 
n=O n  

= g(z). 

Summarizing the above results gives the following theorem: 

Theorem 1.2.2 ([2]): Let u(x,y) be a real valued (classical) solution of 

L[u] = 0 in some neighbourhood of the origin. 	Then u(x,y) = U(z,z) can be 

represented in the form U(z,z) = Re B 2 {f} where f(z) is analytic in some 

neighbourhood of the origin in 	Conversely, for every analytic functioni 

f(z) defined in some neighbourhood of the origin in 	,Re{f} defines a 

real valued solution of L[u] = 0 in some neighbourhood of the origin. 
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2a3t (l+c)(cz-l) 	< i 
0 

(1.2.20) 

then the series (1.2.19) is convergent. 	Since r is an arbitrarily large 

positive number and c is arbitrarily small and independent of r, we can now 

conclude that the series (1.2.13) converges absolutely and uniformly on 

compact subsets of a 3 , i.e. E(z.z*,t)  is an entire function of its 

independent complex variables. 

We have now shown that the operator B 2 
 defined by 

U(z,z*) =B{f} 

fZ* 
= exp { - 
	

A(z,C*)d* } 
0 

(1.2.21) 

E(z,z*,t)f( 	(l-t)) 
dt 

exists and maps analytic functions which are regular in some neighbourhood 

of the origin ma 1  into the class of (complex valued) solutions of L*[UJ = 0. 

We now make use of Corollary 1.2.1 to show that the operator Re 2 , where 

"Re"  denotes "take the real part", maps analytic functions onto the class of 

real valued solutions of L[uJ = 0. 	We first note that since the coefficients 

of L[u] = 0 are real valued for x and y real, Re B 2 {f} defines a real valued 

solution of L[u] = 0 provided we set z' = z. 	Evaluating Re B2 {f} at z* = 0 

gives 

U(z,0) = (Re 	 = 0 

= - (l_t2))+f(0)exp(_ 	A(o,)d)J --- 	 (1.2.22) fl [f( 
2 	 I  ,ij7 

-1 

= i f 

-1 	
2 i 	
(l_t2 )) 	+ 2 (0)exp(- fo A(0,)d) 

where f(z) = f(z) and A(z,z*) = A(z,z*). 	From (1.2.22) we have 

U(0,0) = f(f(0) + f(0)) and so without loss of generality we can assume f(0) 
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We will now show by induction that there exist positive constants M and 

(where c is independent of n and Mn  is a bounded function of n) such that 

for Izi < r, 	Iz*I < r, we have 

(2n 
n 

	

M n 2n(1+C) 	
z -(2n-1) 	z* -(2n-l) -n P 	<< 	 - 	 . 	(1.2.16) ) 2n-1 	

(1 r 
	 r 

This is clearly true for n = 1. 	Now suppose for n = k (1.2.16)is valid. 

Then from (1.2.14) and (1.2.15) and the straightforward use of the method o 

dominants we have 

	

(2k+2)2k+l(1)k 	
2 

Mr 	Mr 

	

< < (2k+1) 	[1+ 2k-1 + (2k-1) (2k-l) 

.(l- z)(2k+1)(1 .*)_(2k+1)r_k_l . 	 (1.2.17) r 	 r 

By setting 

M 	= M (l+c) 1  l+c 	
Mr2 

n 	 2n-1 + (2n-1)(2n-1) 	 (1.2.18) 1   

M1  = M 

we have shown that (1.2.16) is true for a = k + 1, thus completing the 

induction step. 	Note that for n sufficiently large we have M+1 ,< M, i.e 

there exists a positive constant M0  which is independent of a such that 

M < M for all a. n 	o 

	

We now return to the convergence of (1.2.13). 	Let to  . 1 and a > 1 be 

positive constants and let Itl < t, izi < 	Izi < I. 	Then

a-1(1- 	) > 	(1- . -- , and from (1.2.16) it is seen that the 

series (1.2.13) is majorised by 

n n en a 3n-3 rM2t (l+) 
1 + E 	n 	

4n-2 	 (1.2.19) 
nl (2n-l) (a-i) 

If a is chosen such that 
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Lifferential equation (1.2.8) and integrate by parts using 

f - - 	(l-t) 
z 	t 	2zt 

:o show that if E(z,z*,t)  satisfies 

(1.2.11) 

(1t )E- 	E 	+ 2tz LE 	+ DE 	+ FE] = 0 	 (1.2.12) 

hen (1.2.10) yields a solution of (1.2.8). 

re will now show the existence and regularity of E(z,z*,t). 	We look for a 

olution of (1.2.12) in the form 

E(z,z*,t) = 1 
+ n 	

2nn 	p(2n)(ZZ*)dZ* . 	 (1.2.13) 

ubstituting (1.2.13) into (1.2.12) gives the following recursion formula 

or the p(2n). 

(2) = - 2F 	 (1.2.14) 

Z 
(2 ) = - 	 n 	

; n 	i. (2n+l)P (2n+2) 
	

2 P (2n) 
	(2n) 
+DP 	+F 	P 	dz 

z 	
fo 

(2n) 
ote that since D and F are entire functions of z and z*,  so are the P 

e will now show that the series (1.2.13) converges absolutely and uniformly 

or (t,z,z*)  on compact subsets of CL3. 	To do this we will again use the 

ethod of dominants. 	Let r be an arbitrarily large positive number and M 

positive constant such that for IzI < r, jz*1 < r, we have 

D(z,z*) < < 

(1- £)(_ Z* 
r 	r) 
	

(1.2.15) 

F(z,z*) < < 	
M  

(1-  )( l- r 
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operators to certain classes of elliptic equations in more than two 

independent variables and to parabolic equations in one and two space 

variables. 	In order to construct this operator we will need the assumption 

that a,b and c are real valued, and we will assume this from now on. 

We consider L[u] = 0 in its complex form 

L*EJJ E U 	 + A(z,z*)U + B(z,z*)U + C(z,z*)U = 0 	(1.2.6) 

and make the change of dependent variables 

rz* 
V(z,z*) = U(z,z*)exp { J A(z,ç*)d* }. 	 (1.2.7) 

0 

Under the change of variables (1.2.7), (1.2.6) becomes 

V 	+ D(z,z*)V * + F(z,z*)V = 0 	 (1.2.8) 

where 

fo
Z*  

D = B - 
	
A(z,*)dl* 
	 (1.2.9) 

F = - (A + AB - C). 

We look for solutions of (1.2.7) in the form 

V(z,z*) = f 
1 
E(z,z*,t)f( 1  (1-t 2 )) 	 (1.2.10) 

where f(z) is an analytic function in some neighbourhood of the origin and 

E(z,z*,t) is to be determined. 

Definition 1.2.1: 	E(z,z*,t) is known as the generating function for equatiol 

(1.2.8). 

Remark: The path of integration in (1.2.10) is assumed to be a curvilinear 

path in the unit disc in the complex t plane joining the points t = +1 and 

t = -1. 

Assuming that E(z,z*,t) is an analatyic function of t for t . 1 and (z,z*) 

in some neighbourhood of the origin in 2  we substitute (1.2.10) into the 
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Theorem 1.2.1 ([2], L49): 	Let u(x,y) be a solution of LfuJ = 0 in D. 

Then u(x,y) is uniquely determined from the complex Goursat data U(z,0) and 

U(0,z*). 

Proof: If IJ(z,O) = U(0,z*) = 0 then ao  = f(z) = g(z) = 0 and hence from 

(1.2.1) U(z,z*) 5 0. 

Corollary 1.2.1 ([2, [49]): Let u(x,y) be a real valued solution of 

L[U = 0 in D. 	Then u(x,y) is uniquely determined by U(z,0). 

Proof: From Theorem 1.1.2 we have that in some ball j2  about the origin 

m U(z,z*) = 	E a z z
UM m,n0 

(1.2.3) 

Since u(x,y) is real valued U(z,z) = U(z,z), i.e. 

m-n =  z --mn 
a z z 	 a 	z z 	 (1.2.4) 
mn 	 mn 

m,n0 	 m,n0 

and hence 

aa 
mn 	nm 

Since 

00 

U(z,0) = E a zm 
m0 mo 

00 

U(0.z*) = E a 
on 

n0 

(1.2.5) 

we have that U(z,0) determines U(0,z*) and the corollary now follows from 

Theorem 1.2.1. 

We will -return later to further discussion of Vekua's integral operator. 

We now want to construct another operator which maps analytic functions 

on to solutions of L[uJ = 0, the so called BeZman integral operator of the 

first kind (c.f. [2 ). 	We want to do this since it is the Bergman operator 

which provides the proper motivation for generalizing the method of integral 
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1.2 Integral Operators. 

Let u(x,y) be a real valued solution of L[u] = 0 in a bounded simply 

connected domain D. 	We make the further assumption that, in addition to 

being entire functions, the coefficients a, b and c are real valued for real 

values of their arguments. 	Our aim is to construct an integral operator 

which maps analytic functions of a single complex variable onto solutions of 

L[u] = 0 (c.f. [2],[49]). 	Without loss of generality we assume that the 

origin is an interior point of D. 

One such operator is already given to us from the results of section 1.1. 

z+z* 	z-z* 
From Theorem 1.1.2 we have that IJ(z,z*) = u( ---  , -y-  ) is analytic for 

(z,z*)DxD* and hence from (1.1.17) we have 

U(z,z*) = aR(O,O; z,z*) 

• f zf(t)R(C,O,zez*)dC 	 (1.2.1) 

0 

• f g(c*)R(O,*,z,z*)d* 
0 

where 

a = U(O,O) 

f(z) 
= aU(z,o) 

+ B(z,O)U(z,O) 	 (1.2.2) az 

g(z*) = 3U(O,z*) + A(O,z*)U(O,z*). 
z* 

From Theorem 1.1.2 we have that f(z) and g(z*) are analytic in D and D* 

respectively. Conversely, it is easily seen that if f(z) and g(z*) are 

any analytic functions in D and D*  respectively, then (1.2.1) defines a 

solution of L[U] = 0. 	Note that there we have not made use of the fact 

that u, a, b and c are real valued. 	The operator defined by (1.2.1) is 

known as Vekua's integral operator. 	For more details see [49]. 
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where H[u,v] = {v - - u - + (a - + b )uv} ds. 

Now let u be a solution of L[u]=  0 in D (without loss of generality 

assume ueC 1 (D)) and set v = R(z,z; c,c) log r (where 

= 	+ in, C = 	- in, r2  = (z-C)(z- )). 	Let 0 be a small circle about 

the point (,n) and apply (1.1.20) to the region D/c2 instead of D. 

Letting e - 0 and interchanging the roles of (x,y) and (,n) now gives in a 

straightforward fashion 

u(x,y) = - f HIu,Rlogr] 	1
2ii 	 - 	f fE0Thdn 	 (1.1.21) 

DD 	 D 

where integration over D and DD is now with respect to the point 

R = R(C,C; z,z), and M is a differential operator with respect to the (,n) 

variables. 	Since M[RJ = 0 we have (with respect to the complex variables 

(c,r*, z,z*) 

M/logr = 2 	 +2 	 (1.1.22) 

and hence from (1.1.7) we have that MR1ogr] is in fact an entire function 

of its independent complex variables. 	Hence the second integral in (1.1.21) 

can be continued to an entire function of z and z*  (replace z by z*). 	The 

first integral in (1.1.21) can be continued to an analytic function of z and 

z for zcD, z*CD* (i.e. for z and z such that r + 0). 	Hence (1.1.21) 

shows that U(z,z*)  is analytic for (z,z*)tDxD*. 

Remark: Note that u(x,y) analytic for (x,y)cD means that for each point 

(x,y) eD there exists a neighbourhood N of (x,y) in 	such that u(x,y) 

is analytic in N. 	Theorem 1.1.2 provides a global analytic continuation as 

opposed to this local result. 
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f zz** R(z,C*,z,z*){ 	 + 
 

0 

(1.1.17) 

fz
Z

f z
Z*  
R(,C*,z,z*)L*[U(,*)]dC*dC 

0 0 

Setting U(z,z*) = R(z ,z*,z,z*) and using (1.1.7) shows that 

f z  f R(C,C*;z.z*)L*[R(z ,z 0 
*,C,C*)JdC*dC = 0  

i.e. with respect to its last two arguments R(z,z*,z,z*) is a solution of 

L*[U] = 0. (1.1.7) now shows that a function of z,z*,  R(,C*, z,z*) is the 

Riemann function for M[v] = 0. 

Corollary 1.1.1 : Let F(z,z*) be analytic for (z,z*)cDxD*. 	Then 

fzU (z,z*) = 	fz* 
 R(?,?* z,z*)F(c,*)d*dc  

0 	
z* 

0 0 

is a particular solution of L*[U] = F(z,z*) analytic for (z,z*) DXD*. 

Proof: This follows from (1.1.17). 

We now want to prove the main result of this section, the Bergman-Vekua 

Theorem (c.f.12], 149]). 

Theorem 1.1.2 (121,  [49]): Let u(x,y) be a classical solution of 

L[u] = 0 in D. 	Then U(z,z) = u(x,y) is analytic for (x,y)cD and 

z+z* 	z_z* 
U(z,z*) = u( -y-- ----- ) can be analytically continued into the domain DxD*. 

Proof: Without loss of generality assume D has a smooth boundary 3D and let \ 

denote the inner normal and s the arclength along 3D. 	Then from Green's 

2 	1- 
theorem we have for u,vcC (D) fl  C (D) 

ff (vL[u] - uM[v]dxdy + f 	= 0 	 (1.1.20) 

D  
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+(l - 
  (z-))-k-1 (1- 

 (z*_*))-k-1] 
 

r 

k+i k+l 2k+2 
< 	3 	M 	r 	(1 (z-t) ) kl (1 (z) ) kl 

k! 

thus showing (1.1.13) is true for n = k + 1 and completing the induction 

proof. 	Now let a > 1 and Iz-I , 	, 

Then (1- 1_____ 	 _______ d )>, 	! 	Iz*C*I) . a-i- , and the seriesCL  

lu n I = Z IR n+l n -R 	is majorised by 
n0 	n0 

3nMn1r21 	a 	2n 1 + E 	 ( - ) <  (n-i)! 	a-i 
n1 

Hence we have shown that R(z,z*;,*)  exists and is an entire function of 

its independent variables. 

We now want to prove the following theorem: 

Theorem 1.1.1 (E4) : As a function of its last two arguements R(,*,z,z*) 

is the Riemann function for MV = 0. 

Proof: Let D be abounded simply connected domain 	and let U(z,z*)  be an 

analytic function of z and z*  for (z,z*)cDxD* where D* = {z* : z*cD}. 	From 

M*[R] = 0 and (1.1.7) we have 

32(uR) -
= 	{IJ ( 	- AR)} + 	{U( - 	- BR)}  zaz 	az 

where R = R(z,z*;1,4*). 	Interchange z,z*  and 	in (1.1.16) and integrate 

with respect to t and * from z to z and z*  to z where (z,z*)CDxD*. 

Making use of (1.1.7) again we have 

U(z,z*) = U(z,z*)R(z,z*;z,z*) 

z 	 U(C,z *) 
+ B(c,z *)U(,z )} dç 
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The generalization of the above definition to series not expanded about 

the origin and to series of several complex variables is immediate. 

From (1.1.9) we have, setting uR -R n 	n+l n 

z* 

U 	(z,z*)1 B(ci,z*)u(o,z*)do + f A(z,t)u(z,t)dt 
n+l  

-  I
z 

f C(O,T)u(a,T)dTdo 

with u = 1. 	Let M be a positive constant such that for Iz- I < r and 

I zj < r 

A(z,z*) < < 	
M 

Z**)  
r 	r 

B(z,z*) < < 	M  
(1-  -l- r 	r 

C(z,z*) < < 	M 

(1- —)(l- 
Z*_T*) 

r 	r 

where M can be chosen independent of t and * for C and r* bounded. 

	

We claim that for I  z- ç I < r, 	 < r, n . 1 

z*) 
3nMnr 2n - (z_C))_n (1- (z*_*))-n 	 (1.1.13) u(z, 	< < 
(n-l) 	

1 	
r 	 r 

From the properties of dominants and (1.1.11) it is seen that this is clearly 

true for n = 1. 	We will now establish (1.1.13) by induction. 	Assume 

(1.1.13) is true for a = k. 

Then 

< 3kMk+lr 2k+2   _________ !(l_ (z-c))-k (1- (z*-*))-k-1 
k  

+ !(l_ ()1l (1 
r 	r 	 r 	/ + 



We will show that there exists a solution of (1.1.8) which is an entire 

function of z,z*,C and *• 	It suffices to show that R(z,z*;r,C*) is an 

analytic function of its independent variables for z-I < r and 

I z** I < r for r > 1 an arbitrary large positive number. 

We define the recursive scheme 

R(z,z*) = 0 

R 1 (z,z*) = l+JB(o,z*)R(o,z*)do 

+f A(z,T)R(z,T)dr  

f z fz* 
- 	J C(c,r)R n (o,T)dtd, n . 1 

where R(z,z*) = R(z,z*;C,r*) and will show that 

00 

RlimR
n 
 E (R -R) n+l n 

n- 	n0 

converges absolutely and uniformly for Iz- 	. 	, 	 £ , n > i. 

arbitrary, and, since each R is analytic for Iz-I < r, Iz**I < r, so is 

the limit R. 	To this end we make use of the method of dominants. If we 

are given two series 

00 	 00 

— 

S=E a z n 
	 n 

n 	
, S=E a 

n  z 
	; 	IzI<r 

n=O 	 n0 

where a . 0 then we say S dominates S if Ia I 	a
-S 

, n = 0,1,2, ..., and n 	 n 	n 
-S 

write S < < S. 	It is easily verified that dominates can be multiplied and 
-S 

if S < < S then 
-S 

 

Z 

fo 
S(z)dz < < 	S(z)dz   foz- 

5 

S 
 



) U(z,z*) = U( z+z* 
	z_z*

-y---' 

V(z,z*) = v( z+z* 
	zz*

' 	T 

A = 	(a+ib) 	 (1.1.6) 

B = - (a-ib) 

1 
C =7;.c 

and we are assuming that u(x,y) and v(x,y) are analytic functions of the 

complex variables x and y. 	We will show later that this is true for every 

classical solution of (1.1.1) or (1.1.2). 

The Riemann function for (1.1.1) is defined to be the (unique) solution 

R(z,*;,*) of (1.1.5) depending on the complex parameters C= 	+ ir, 

= C - in (where 	are complex variables) which satisfies the initial 

conditions 

= exp f 'B(a,O)da  

R(c,z*;,*) = exp[J A(ç,T)dT 

on the complex hyperplanes z* = * and z = . 	Note that by Cauchy's 

theorem the integrals in (1.1.7) are independent of the path of integration. 

We will now construct. R(a,z*;,*). (1.1.5) and (1.1.7) are equivalent 

to the integral equation fz 
- 	

B(o,z*)R(ci,z*;c,c*)do 
C 

I-z* 

- J A(z,T)R(z,r;C,C*)dr 	 (1.1.8) 

fzfz*C(a,T)R(a,T;C,c* )dTda+ 	= 1 
C C 
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I Elliptic equations in two independent variables 

1.1 Analytic Continuation 

We are interested here in classical solutions of the second order elliptic 

equation in two independent variables written in canonical form as 

L[u]u+u+a(x,y)u+b(x,y)u+c(x,y)u=O  

where we assume that a,b and c are entire functions of their 

independent complex variables x and y. 

Remark: 	The assumption that a,b and c are entire functions can be easily 

relaxed to being analytic in a sufficiently large polydisc in CE 2 , the space 

of two complex variables. 

We will also need to look at special solutions of the adjoint equation to 

defined by 

M[v] 	v 	+ r 	
- a(av) - 3(bv) +cv = O. 	 (1.1.2) xx 	yy ax 	ay 

In particular we first want to construct a special entire solution of 

(1.1.2) known as the (complex) Riemann function for L[u]=O (E4J)• 

To this end we define a mapping of 2 + C2 by 

Z = X + iy 
(1.1.3) 

z 	x - iy 

Note that z = z if and only if x and y are real. 	 - 

Under the transformation (1.13) equations (1.1.1) and (1.1.2) become 

L*LUJf4* + A(z,z*) F B(z,z*) 	+ C(z,z*)U = 0 	(1.1.4) 

M*EVJEff - (AV) - (V) + cv = 0 

where 

7 



3) The inverse scattering problem for acoustic waves in a spherically 

stratified medium. 

In order to accomplish the program outlined above we will use the theory 

of integral operators as developed by Bergman and Vekua for elliptic equations 

in two independent variables, by Bergman, Colton and Gilbert for ellitpic 

equations in three independent variables, and by Colton for parabolic 

equations in one and two space variables. 	Suitable references in the case 

of elliptic equations are [2], [6], [s], [30], [31], [493. 

Remark: 	[8] also contains material on parabolic, hyperbolic and 

pseudoparabolic equations. 
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It is easily seen that this problem is non linear in s(t). 	The inverse 

Stefan problem is, given s(t), to determine u(x,t) for O<x<s(t) and 	t)=u(O,t), 

i.e. now must we heat the water in order to melt the ice along a prescribed 

curve? 	The idea is to construct a "catalog" of solutions u(x,t) 

corresponding to a large class of "free" boundaries s(t) and to then be in a 

position to solve the Stefan problem (13)-(16) by looking in the "catalog" 

for a solution whose boundary data at x0 is close to 	t). 	The inverse 

Stefan problem is linear; however it is improperly posed in the real domain in 

the sense that u(x,t) does not depend continuously on the initial data on 

the curve s(t). 	To see this let s(t) = 0 and assume 	1. 	Then 

lrnx. 	2 	-nx. 	2 u(x,t) = —Le sin(2n t+nx +e 	sin(2n t-nx)J 	 (17) n 

is a solution of (13) such that 

u(0,t) 	2. sin2n2t 	 (18) 

u(O,t) = 0 	 (19) nx 

But although u (O,t)0 as n—, for any x>0, U (x,t)-oo as n- . 

However, as a consequence of the Cauchy-Kowalewski theorem, the inverse 

Stefan problem is well posed in the complex domain and this is where we will 

later study it. 

Remark: 	The Cauchy-Kowalewski theorem does not provide a practical method 

for solving the inverse Stefan problem, particularly in higher dimensional 

space, since the calculations are far too tedious and, more important, the 

solution may not converge in a large enough domain. 

The inverse problems we will study in these lectures are 

Inverse methods for solving boundary value problems arising in the theory 

of compressible fluid flow. 

The inverse Stefan problem for the heat equation in. one and two space 

variables. 
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The above extension will often be based on the development of methods for 

the analytic continuation of solutions to elliptic and parabolic equations. 

(We will for the sake of simplicity often restrict our attention to the case 

when the coefficients of the partial differential equation under investigation 

are entire functions of their independent complex variables. 	In practice this 

is not a serious restriction since the coefficients are in general obtained 

from physical measurements and can be approximated on compact sets by 

polynomials). 

In addition to approximating solutions of boundary value problems for 

partial differential equations by means of a complete family of solutions, or 

the method of integral equations, we will also be interested in solving 

various (in general non linear) problems through the use of inverse methods 

and analytic function theory. 	The simplest example of such a problem is the 

inverse Stefan problem for the heat equation in one space variable, which can 

be formulated as follows. Consider a thin block of ice at 0
0
C occupying the 

interval 0x< and suppose at x0 the temperature is given by a prescribed 

function c(t)>O where tO denotes time. 	Then the ice will begin to melt and 

for t>0 the water will occupy an interval 0x<s(t). 	If u(x,t) is the 

temperature of the water we have 

u 	= u 	for 0<x<s(t) 	 (13) 
pc xx 	t 

u(0,t) = 4(t) 	for t>0 	 (14) 

u(s(t),t) = 0 	for t>0 	 (15) 

and, from the law of conservation of energy, 

u (s(t),t) 	
Ap ds(t) 

x 	= - k dt 	
(16) 

where A,k,p, and c are thermal constants. 	s(t) is an unknown free boundary 

and the Stefan problem is to determine u(x,t) and s(t) from (13)-(16). 
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(2) to a simple one of quadrature, a method which in fact is well suited to 

use on a digital computer. 

The representation (3) can also be used to obtain a method for approximating 

the solution to the Dirichlet problem (1), (2) in a different manner than the 

one just described. 	This is accomplished by representing 	z) in the form 

= f jj(t)dt 
nj 	t-z' 	zD 

3D 

where p(t) is a real valued function to be determined, and then using (3) 

and the limit properties of Cauchy integrals to derive the following integral 

equation for the unkown potential ji(t): 

11 (t) + f [Re ni( t_ t  )] t)ds = f(t) 	 (12) 

where s denotes arclength, tt = dt,ds and tc3D. 	Equation (12) is a 

Fredholm integral equation of the second kind for the unknown density 1.(t) 

and this equation always has a unique solution for f(t)cC ° (3D) (Note that 

for any E>O,jto_tEReç(t) ) satisfies a Hlder condition for t3D). If 

one now appeals to various methods for approximating solutions to Fredholm 

integral equations of the second kind, one is lead to a constructive method 

for approximating the solution to the Dirichlet problem (1), (2). 

A major part of these lectures will be to extend the methods just 

described to equations with variable coefficients,in particular to 

Second order elliptic equations in two independent variables. 

Second order parabolic equations in one space variable. 

Second order parabolic equations in two space variables. 

Certain classes of second order elliptic equations in n2 independent 

variables with spherically symmetric coefficients. 

(11) 
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Now orthonormalize the set {u} in the L 2  norm over aD to obtain the complete 

set {}, i.e. 

f n 0 	for n4m 	 (6) 

aD 

II 2  = 

Let 

C 
n f f ~ n 

= DD 
(7) 

Let 'D be a compact subset of D. 	From the representation of the solution of 

(1), (2) in terms of the Green's function it is seen that if 

N 

J 	If - E cj2<e 	 (8) 

n0 
aD 

then 

N 

maxlu - E c 4 nfl 
j<Mc 

D 	n0 
0 

where M = M(D) is a constant. 

compact subsets of D is given by 

N
N 

u = E c nfl 
n-0 

 

Hence an approximate solution to (1), (2) on 

 

Since each d is a solution of (1), error estimates can be found by finding 

the maximum of If_uNI on  DD and applying the maximum principle. 

Remark: The assumption that DD is analytic is made to avoid technical 

approximation arguments. However the above method remains valid under much 

weaker assumptions, e.g. 3D is Hlder continuously differentiable. 	We will 

discuss this in more detail during the course of these lectures. 

We have now reduced the problem of constructing an approximate solution to ( 

2 



Introduction 

The simplest example of the type of problem we will want to consider in these 

lectures is the following approach for approximating solutions of the 

Dirichlet problem for Laplace's equation. 	Let D be a.bounded simply 

connected domain in 7R2  with analytic boundary 3D. We wish to approximate 

(in the maximum norm) the solution of (ucC 2 (D)nC° (5)) 

u 
)Q 	yy 

+ u 	0 	for (x,y)cD 	 (1) 

u(t) = f(t) 	for t3D 	 (2) 

where f(t)cC° (3D). 	From the maximum principle it suffices to approximate 

the solution of (1), (2) for f(t) analytic. 	In this case u(x.,y) is in fact 

a solution of (1) in a domain 15 D D(D = Du 3D). 

We have 

u(x,y) = Re{(z)} 	 (3) 

where c(z) is an analytic function of z = x+iy in D and hence by Runge's 

theorem the set 

u2 
n 
 (x,y) 	n 

Re{z } 

 
u21(x,y) = Im{z'} 

is a complete family of solutions to (1) in D, i.e. for every compact subset 

BC(in particular for B=D) and c>O there exist constants a1,..., aN such that 

for N sufficiently large 

N 
maxlu - E a u nn B 	n0 

 

1 
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Preface 
0 

These lecture notes are intended to be a companion volume to [83. 	In [8] 

a general survey was given of the analytic theory of partial differential 

equations, with particular emphasis on improperly posed initial value problems 

and the analytic continuation of solutions to partial differential equations. 

The use of integral operators to solve boundary value and initial-boundary 

value problems arising in mathematical physics was discussed only briefly. 

In the present set of notes this topic now becomes the main theme, and the 

interplay between analytic continuation and the approximation of solutions to 

partial differential equations is developed in some detail. 	With the idea 

that these two sets of lectures should be read together, we have minimized 

overlapping topics, while at the same time keeping each set of lectures self- 

contained. 	Indeed the only topics common to [8] and the present volume are 

integral operators for elliptic equations in two independent variables (which 

is treated in considerably more detail in the present set of notes) and the 

inverse Stefan problem for the heat equation in one space variable (which 

occupy only a few pages in both [8] and the present volume). 

The present set of lectures was given during the academic year 1974-75 

while the author was a Guest Professor at the University of Konstanz. 	The 

prerequis.ites for the course were a one semester course in partial 

differential equations and a one semester course in analytic function theory. 

I would like to particularly thank Professor Wolfgang Watzlawek and the 

Fachbereich Mathematik of the University of Konstanz for their hospitality 
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PART III: SYNOPSIS 

This part of my submission is supplementary to my main sub-

mission in Part II and consists of 41 papers by myself and with 

collaborators. Reference numbers refer to the references in Part I. 

References [3] - [12] are a study of the analytic behaviour of 

a class of singular partial differential equations related to the 

Bessel operator 

(12) 
ay2 	

y3y 

Particular attention has been paid to values of v such that ' < - 

since it is here that the particular singular nature of the operator 

becomes evident. This can be seen, for example, by noting that in 

domains containing the singular line many of the classical boundary 

value and initial valueproblems become improperly posed, viz 

Dirichlet's problem for 

2 	2 2vu --+ --- ----=o, 	 (13) 
3x 	ay 

Cauchy's problem for 

2 
.L. + 2v u - au 

 
ax 	Tt 

and the scattering problem for 

2 	2 
3u 	au 	2vau 	2 

 

These problems can often be made well posed by prescribing the 

behaviour of solutions in the complex domain and this is roughly the 

subject matter of most of the references [3] - L121. The main tools 

1 . 



2 . 

in this investigation are analytic function theory and the use of 

Jacobi and Appell series. In [13] it is shown that the methods used 

for studying the singular equation (15) also have applications in the 

non-singular case, i.e. when v = o. 

References t14 - [21] are concerned with my study of function 

theoretic methods in the investigation of improperly posed Cauchy 

problems for elliptic and parabolic equations. Such problems arise 

when inverse methods are used to study free boundary problems arising 

in fluid dynamics and heat conduction (c.f. [i], [2], [48]). The main 

emphasis here is to provide a constructive method for obtaining the 

solution, since the Cauchy-Kowalewski theorem is far too tedious for 

practical application, and more important, the series solution 

obtained by means of this theorem may not converge in a large enough 

domain. 

References [22] 	t2 7J are concerned with i n tegral operators 

for elliptic equations in three or more independent variables. This 

work generalizes the work of Bergman and Vekua on elliptic equations 

in two variables to the higher dimensional case. My main contribution 

was to construct an operator that was invertible and thus applicable 

to the solution of boundary value problems by means of a complete 

family of solutions. For a complete discussion of this area the 

reader is referred to Gilbert's monograph [so]. 

References [28] - [37] are concerned with my work on parabolic 

and pseudoparabolic equations which has already been discussed in 

Part I. 

References [38] - [43] represent my contributions to the appli-

cation of the method of integral operators to problems in scattering 



3 . 

theory in a homogeneous or spherically stratified medium. As far as 

the problem of scattering in a spherically stratified medium is con-

cerned, the advantage of my approach over previous methods is that 

it reduces the problem to that of solving a Fredhoim integral equation 

defined over the boundary of a three dimensional region instead of 

over the entire region. Applications have also been made to various 

inverse problems arising in scattering theory through the use of 

reflection principles and the analysis of generalized moment problems. 

Reference [43] represents a survey of some of this work. 
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JACOBI POLYNOMIALS OF NEGATIVE INDEX AND A NONEXIS- 
TENCE THEOREM FOR THE GENERALIZED AXIALLY 

SYMMETRIC POTENTIAL EQUATION* 

DAVID COLTONt 

Introduction. Expansions in series of the classical orthogonal polynomials, 
e.g., Laguerre, Jacobi, and Hermite polynomials, are one of the most 
important tools of the applied mathematician. The theory of such expan-
sions is well known for the range in which the weight function is integrable 
and orthogonality holds [3]. However, for values of the index of these 
polynomials such that this is no longer true little has been done even though 
such expansions arise often in several areas of research, in particular the 
study of certain classes of singular partial differential equations [1]. It is 
the purpose of this paper to determine when an analytic function can be 
expanded in a series of Jacobi polynomials P' (x), where a < —1, 

13 < —1. These results will then be used to derive a nonexistence theorem 
for the equation of generalized axially symmetric potentials [4]. As pointed 
out in [21 one of the main difficulties in studying "improperly posed" 
boundary value problems has been the lack of any suitable technique for 
determining when existence fails. This paper suggests an avenue of ap-
proach to this problem for a particular class of equations. 

Analysis. 
DEFINITION 1. The space of functions analytic on the closed segment 

[-1, +1] will be denoted by a. If a > —1, 13 > —1, it is well known 
[3] that the Jacobi polynomials P" (x) form a complete set in the space 
a, i.e., if f(x) E a, then f(x) can be expanded in a Jacobi series which is 
convergent in the interior of the greatest ellipse with foci at ± 1 in which 
f(x) is regular. The following theorem extends this result to the case 
a — 1,13 —1 a + 13, p6 —2, —3, 

THEOREM 1. Assume a + 13 5-- —2, —3, , a 	—1, 13 	—1. Then, 
if f(x) E a, f(x) can be expanded in a Jacobi series which is convergent in 
the interior of the greatest ellipse with foci at ± 1 in which 1(x) is regular. 

Proof. Let m be an integer greater than —a - 1 and —13  —1. Since 

f(x) is analytic on [-1, +11, so is d"f(x)/dx m . Now expand d mf(x)/dx m  
in a Jacobi series of indices (m + a, m + /3): 

(1) 	
m 

* Received by the editors December 7, 1967, and in revised form February 28, 1968. 
t Department of Mathematics, Indiana University, Bloomington, Indiana 47401. 

This work was supported in part by the Air Force Office of Scientific Research under 
Grant AFOSR-1206-67. 
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772 	 DAVID COLTON 

which is possible by [3, p. 2381. The above series converges uniformly in 
some ellipse containing [-1, +1]; and since I P0 " (x) I

11
n> 1 for n 

large enough, x [-1, +11, and all real a, 0 (see [3, p. 195]), we can use 
the root test to conclude that urn 5UPn. I an-rn  I "i < 1. We now use the 
Jollowing relationship between Jacobi polynomials [3, p.  621: 

dm  
.— P(x) = 2_m(1 + a + i3 + )p(

n—rn
a+rn.-1-rn)(x), 

where 
arn=a(a+1)(a+2)."(a+m-1). 

Define 
D(n+rn—k ,+rn- Ic) 

7k 
= 2km(1 

+ a + + fl)m_k n—rn+k 	(1), 
x 	.x 

Ik(X) = f 	f dx, 	Io(x) =1. 

By (2) we have 

• 	2(1 + a + $ + fl)rn f p(a±rnc)() dx 

f x dm p ( a,$) 	dx 

P,"(x) dx - yi• 

Repeating this m times we have 

f x 	f p(a±rn+rn)(x) dx 	 •. 

= 2'(1 + a + 0 + )rn[Pn '8 () + f(x)] 

where 

f(x) 	7m_iIi(X). 

Since from [3, p. 57] we have 

p (a.)() 	a ± 1) = O( na) 

and (1 + a + 3 + fl)rn_ic 
= 0(m_k), we can conclude from (7) that if 

we express f, (x) as 

f(x) 
= : 
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then Ok = O(nm) for 0 k < m - 1. Therefore, since 

lim sup I an_rn I 11n < , 

it is possible to integrate (1) termwise m times and then rearrange the 

series to obtain 

f(x) = 	 +h(x), 

where h(x) is a polynomial of degree at most m - 1. From [3, p.  61] we 

have, for n 	1, 

( 

 n + a 	 a 	
x 

 
) 

2F, —n, n + a + + 1; ' + 1, —2  

where 2F1  denotes the hypergeometric function. Hence, since a 

—2, —3, and P0' pn ( afl) ( X ) is a polynomial of degree exactly 

n, and therefore we can expand the polynomial h(x) in a finite Jacobi series, 

viz., 

h(x) = 	bnPn"(X). 
nO 

Putting (10) and (12) together we have 

f(x)  

Note that by construction the series (13) is convergent in the interior of 
the greatest ellipse with foci at ±1 in whichf(x) (and hence dmf(x)/dxm) is 

regular. 
We now show that if a,# 0 —1, —2, —3, 	, a ± $ = —2, _3, 

then the P"(x) do not forma complete set in a in the sense described 
above, i.e., there does not exist a region enclosing [-1, + 11 in the complex 
x-plane such that any f(x) E a can be represented by a Jacobi series in 

some such region. 
THEOREM 2. Let a,$ 0 —1, —2, —3, 	, a + 0 = —2, —3, 

and let f( x) be a polynomial of degree - a - $ - 1. Then it is not possible 
to expand f(x)' in a Jacobi series 

f(x) = 

where the series converges in some region containing [- 1, +1]. 
Proof. From (11) it is seen that if a ± $ is a negative integer, P(x) 

is of degree n for 0 	2n + 1 	- a - $ and - a - 0 
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n, whereas P' (x) is of degree strictly less than n for 2n 	—a - 
and n —a - - 1. Since f(x) is a polynomial of degree —a - - 1, 
it is therefore impossible to expand f(x) in a Jacobi series with a finite 
number of terms. Now suppose it were possible to expand f(x) in an in-
finite series of Jacobi polynomials, i.e., 

f(x) = 

where there does not exist an N such that, for n > N, a = 0 and the 
series (15) converges in some region containing [-1, +1]. Let C be a sim-
ple closed curve lying in this region and enclosing [-1, + 1]. From [3, 
p. 245] we have, for a > —1, /3 > 

- f (y - i)a(y + 	 dy = 
7ri c 

('17) 	h (a',fl') - 	 F(n + ' + 1)r(n + 3' +1) 
2n+a'+/3'+l 	F(n+a'+/3'+l) 

where Q'P') (y) denotes a Jacobi function of the second kind. If we ex-
pand f(x) in a Jacobi series for some (fixed) a' > —1, 3' > —1 and apply 
(16), we conclude (since 1(x) is a polynomial of degree —a - /3 - 1) that, 
for n>—a-3-1, 

fa 
f W (Y - l)'(y + 1)'Q' ° (y) dy = 0. 

By analytic continuation with respect to a' and 3' , (16) and (18) hold 
for a',/3' ?! ~ —1, —2, _3, 	, in particular for a' = a, /3 '  = /3. Now note 
that due to the asymptotic expansion of the P'(x) (see [3, p.  195]), 

I Px) 
' 

I+(21)1/21= 
1+o(1) as fl — ', 	x[-1,+1]; 

the series (15) converges uniformly in every compact subset of its ellipse 
of convergence, and hence termwise integration is' permissible. Equations 
(16) and (18) now imply that, in the series (15),a = Oforn > — a - /3 
- 1 which is a contradiction. 

By using Theorem 2 we can establish a nonexistence theorem for the 
generalized axially symmetric potential or GASP equation [4]: 

 
ax 	äy- 	y ay 

A regular solution u(x,y) of (20) in a domain D symmetric with respect 
to the axis y = 0 is a solution u(x,y) of L(u) = 0 which is an analytic 
function of x and y 2  in D. Such solutions always exist, and if 2v 5.!5 — 1, 
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—3, —5, •••, u(x,y) is uniquely determined by its values on the axis y 
= 0 (see [11).For v < —..it is a simple matter to show that uniqueness 
fails to hold for regular solutions u(x ,y) of L(u) = Oif we prescribe only 
the value of u(x,y) on the boundary of a domain D. For exampleu(x ,y) = y2 

- (2v + 1)x2 - 1 vanishes on the ellipse y 2  - ( 2v + 1)x2  = 1 and is a 
regular solution of L,.(u) = 0 on the ellipse and its interior, but u(x,y) 
is not identically zero. The following theorem shows that for p = —1, 
—2, 3, . . .. there exist domains D such that, in general, no solution u(x , y) 
of L,(u) = 0, regular in D and satisfying prescribed analytic boundary 
conditions, exists, i.e., existence as well as uniqueness fails. 

THEOREM 3. Let f() be an analytic function of t = cos U for E [-1, 
+1] and let v be a negative integer. Then, in general, no real-valued solution 
u(x , y) of L( u) = 0, regular in the closed unit disc C1= { x , y I r = 

+ (x2  + y2)112 < 11, exists which assumes the values f( ) on r = 1. 
Proof. Suppose u(x,0) = .=0ax', x E [-1, +11. Let x = r cos 0, 

y 	r sin 0, and consider 
2, v—If 2) 

. 	. u(x, y) = 	anr" P
(cos0) 

for (x,y)in the open disé Q. Note that, although the Jacobi polynomials 
for the values of v considered here represent degenerate cases of the hyper- 
geometric function, these are still well defined [3, p.  61]. Now note that 

p 

	

ut (x, 0) = 	a,x'1 
p(v_-/2v-l/2)(1) 

1xO, 
n=O 

p(v_l/2v_If2)( —1) ut(x, 0) 	a,,( —xY D (v-1 /2 v-1 /2)(1) nO 

P. 

 
=E a( —x)'( - 1)fl 

n=O 	. 	 'I 

	

=ax", 	 —1 

It is easily verified that Lv(Ut) = 0 in 0, and since ut(x,0) = u(x,0) for 
x E [-1, +11, we can conclude that ut(x,y)  u(x,y) in f2. From [1] 
we note that since u(x,y) is regular in 12 and real-valued, u(x + iy, 0) 
isregularfor Ix + iy land hence limsup-  . a < 1. Forx E [-1, 
+1],afi / —1, —2, —3, 	,wehave (see[3,  p. 164]) 

1 P'(x) I = 0(nT"2) 
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Therefore from (19) and (23) we can conclude that the right-hand side of 
(21)  agrees with u(x,y) on , and for fixed •  r 1 the series converges 
uniformly in some region in the complex E = cos 0 plane enclosing [-1, 
+11. But for r = 1, u(x,y) = f(), i.e., we have 

oo 	p  (24) 	 , 	
P(-1I2'—hIs)(l)' 	

E [-1, +11. 

Since both sides of (24) are analytic functions of in some region contain-
ing [-1, + 1] and agree for t E [-1, + 1], (24) holds in some region in the 
complex s-plane enclosing [-1, + 1]. By Theorem 2 there exist analytic 
functions f(s) such that this is impossible, and hence in this case u(x,y) 
cannot equal f(éos 0) on 3&1 and the theorem is proved. 
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1. Introduction. Expansions in series of functions are one of the most important 
tools of the applied mathematician, particularly expansions in series of the classical 
orthogonal polynomials, e.g. Laguerre, Jacobi and Hermite polynomials. In applied 
problems, the uniqueness of the particular expansion is usually intrinsic to the 
analysis, and often implicitly assumed. Indeed, in those cases where the functions in 
the series are orthogonal, uniqueness can often be proved by n argument that runs 
as follows. Let {q(x)} (n = 0, 1, 2, ...) be a sequence of functions orthogonal with 
respect to the weight function p(x) over the interval [0, 1], and suppose that 

OD 

f(x) = 	cçb(x), 	 (1) 

00 

=d(x), 	 (2) 

the series being boundedly convergent for 0 < x 1. 
Then 	

OD 

	

0= Z (c—d)çb(x), 	 (3) 
n=O 

and multiplying this series by q m (X),o(X) and integrating between 0 and 1, which is. 
permissible, see (1), we find 	

= dm , (m = 0, 1, 2, ...). 	 (4) 

Even when the {ç5(x)} are not orthogonal, one can show, as above, that the problem 
of uniqueness involves the question of whether 0 has a non-trivial representation as 
a series of the functions in question. 

It is perhaps too little understood that care must be exercised in assuming that such 
expansions are unique, even in the case of the classical orthogonal polynomials. For 
example, let 	 R'(x) = Pfi)(2x— 1) 	 (5) 

be the shifted Jacobi polynomial, the notation on the right above, as all other notation 
here, being that of (2). We show in this paper that one can determine subsets of [0, 1] 
of measure 1 where 

0 = E 	 (6) 

t The Mathematical Institute, Edinburgh, and Midwest Research Institute, Kansas City. 
Present address: McGill University, Montreal. 
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yet c + 0 for every n. This result, which holds provided only that x < - and 

fi - 1, —2, ..., has important applications in other areas of mathematics. As an 
example we use it to prove that conditions which are shown to guarantee uniqueness 
of the solutions of a class of singular partial differential equations cannot be relaxed. 

The phenomenon (6) is not confined to Jacobi series, for the above statement is a 
corollary of a result which holds for sequences {g(x)} defined by a wide class of genera-
ting functions - 

	

G(x,t) = 	g(x)t. 	 (7) 
n=O 

2. Results. 

THEOREM 1.Let 	 1imng(x) = 0 (xeX), 	 (8) 
n-*, 

where {g(x)} is defined by (7) for I t I < 1, so that G(x, t) in (7) is analytic for It! < 1. 
Assume furthermore that for each x E X, 0 is also analytic at I = 1 and satisfies 

- KG(x,1) (K+0). 	 (9) 
at 

Then 	 0=Z (n—K)g(x) ( xEX). 	 (10) 
n=O 

Proof. By (3), the series (10) converges. We have 

G(x, t) = G(x, 1) [1 + .K(t - 1)] + O[(t - 1)2] (t - 1); 	 (11) 

so 	 tG(x, t) - KG(x, I) = K(t - 1) G(x, 1) + O[(t - 1)2], 

00 	
(12) 

= 	(n—K)g(x)t', 
n=O 

and (10) follows by Abel's theorem (4). 

We now consider the case where g(x)} are the shifted Jacobi polynomials. 
In what follows, let 

	

= (0 1  1), X 2  = 10, 1), X3  = 10, 11, y = +/3+ 1. 	 (13) 

THEOREM2.Leta.< -,fl+ —1,-2,...,and 

if y < 0, then r = 2; 
ifbothy<0,cL< —1,thenr=3; 
r = 1 if neither of the above prevails. 

Then 	00 	 ' (2n+ 
0 = 	 'R( 'fl) (x) (xeX). 	 (14) 

u=O 	J 

Proof. Our starting point is the generating function given in (5). 

(1 + t)7H[4xt/(1 +1)2] = 	
(
y)t R'fi)(x) (It! < 1), 	(15) 

h' y+l 
H(z)= 2F1 (2' 	2 z). 	 (16) 

\fi+i 	/ 
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Since H(z) is analytic for j zj < 1, the results for r = 1, 2 follow immediately from 

Theorem 1 and the asymptotic estimates for B"fi(x) given in (6), 

R'fi)(x) = A(0) n1 cos{(n+y/2) 0- 1i7 (+fl)} [1 + O(n_1)],l 	(17) 
n - co, x = (1 - cos 0)/2, 0 < x < 1. 

A is a bounded function of 0 independent of n. (We leave it to the reader to verify that 
not only (15) but any generating function of the form T(t) 0 [4xt/(1 + t) 2], where Y, 
G are analytic in appropriate regions, satisfies the conditions of Theorem 1.) 

When r = 3, more than Theorem 1 is needed, since 0(1, t) is not analytic for I = 1. 
Note, however, that if)' < 0 and a < - 1 the convergence of(14) for all xeX 3  may be 

inferred from (17) and results in (7). 

Let, then, x = 1 and put 

	

L(t) = (1 + t)-Y H[4t/( 1 + 1) 2], 	 (18) 

(t+)
L(t) - 

y(y+ l)t(1 1)L*(t) y(1 
tL(t) (Iti < 1), 	(19) 

- (1+t)(fl+1) 	2(l+t) 

where L*  is L with a replaced by a+ land fi byfl+ 1. 
Now the behaviour of L(t) near I = 1 is known; see, for example ((8), eq. 2.10). We 

have 	 L(t) = 0[(1-t) 2 ln(1-t)]+0(1) 	 (20) 

L*(t) = O[(l -t)-2-2 ln (1-1)] + 0(1) 	 (21) 

ti -ii, 	arg(1_t)I < 

Thus the hypotheses of the theorem guarantee that 

urn ( 	= 0. 	 (22) 
,1 _dt 2 

Consequently, Abel's theorem applies, and gives the result for X 3 . 

The third case is rather interesting, since the polynomials R' fi() are orthogonal over 
the interval [0, 1] (the weight function being (1 - x)a xfl), the series sums to zero for 
0 <x < 1, and yet its coefficients are not all zero. Of course, the argument of section 
1 does not apply here, since the series does not converge boundedly for all 0 < x < 1. 

For those values of x, a, fi for which the convergence is absolute, (14) follows by 
substitution of the identity given in (9) 

(2n+y)R'fl)(x) = (n+y)R 1'fl(x)_(n+/3)Ri l i8)(x) (n? 1), 	(23) 

and rearranging the terms. 
A result more general than (14) which applies to series of the hypergeometric poly-

nomials 
, 	(-n,n+y,aj,a2, ... ,ap 

P+21 P+1 	j 	 X 
\ 	'-'l''-'2'"' P+1 

can be demonstrated by using Theorem 1 on a generating function given in (10). 

Kogbetliantz (11) has proved that, if the ultraspherical series 

00 

cR'a) (x) 	 (25) 
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converges with the sum zero everywhere in [0, 1] (except, perhaps, at 0 and 1 and on a 
set of interior points of measure zero, where it may diverge, or converge with a sum 
different from 0) then c,,, = 0 for all n. Used in his proof, however (but nowhere 
explicitly stated), is the hypothesis that a ? - , see (11), p. 167. The same author 
has discussed at length the Cesàro summability of the series (14) when a = fi, see 
(12). 

We now turn to an application of the above theorem. 
Although uniqueness theorems for linear elliptic partial differential equations 

defined in a bounded domain D with coefficients continuous in -D have been known for 
some time (13) it is only recently that uniqueness theorems have been derived for 
equations whose coefficients have singularities in the domain in question (14). Here we 
consider the singular partial differential equation 

	

2 	02u 2v au 
yay 

+---A2u=0, 	 (26) 

in a bounded domain D whose intersection with the x-axis is an open interval, and 
where v is a real number, A > 0. We shall now establish a uniqueness theorem for this 
equation and use Theorem 2 to explore its limitations. 

In what follows, let t9D denote the boundary of D. 

THEOREM 3. Let v > - and g(x, y) E C°(eD). Then there is at most one solution u(x, y) 
of L(u) = 0 such that u(x,y)eG 2 (D) n C°(D),u(x,y) = u(x, –y) and u(x,y) = g(x,y) 
on aD. 

This result is the best possible in the following sense: if v < - , 2v 	- 1, –2,. 
there are domains where, if any solution at all of L(u) = 0 exists satisfying the stated 
conditions, then that solution is not unique. 

Proof. Assume u(x, y) satisfies the conditions of the theorem. If u achieves its positive 
maximum in D and not on OD, this point must be on the x-axis, by the Hopf maximum 
principle (13). The fact that u is even in y implies that 

	

- 	-- 	 27 

and so 	 —i 	+(1+2v)---- 	–A2u(x0,0)=O, 	 (28) L., 0) 	 vy (x,,O) 

and if (x0 , 0) is this maximum point, 

92uI 	a2u' 

	

0, 	 0, 	 (29) 
(x 0) 

By hypothesis, (1 + 2v) 0, A 2u(x0 , 0)> 0. But this makes (28) absurd so u(x, y) cannot 
achieve its positive maximum in D. By replacing u(x, y) by - u(x,y), one finds similarly 
that u(x, y) cannot achieve its negative minimum in D. If two solutions of (26) are 
equal to g(x, y) on bD, then their difference satisfies (26) and vanishes on aD. But such 
a solution, not to be identically zero, must possess a positive maximum or a negative 
minimum in D. This is impossible, and the first part of the theorem is established. 
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We now use Theorem 2 to prove the last part of the theorem. The domain whose 
existence is asserted we will take to be the unit disk, Q. 

Consider the Bessel—Gegenbauer series 

(n + v) I(Ar) 
C(cos 0), 	 (30) w(x, y) = r' 

n=O 	I(A) 

where 	is the modified Bessel function of the first kind. Assume v < - 
2v r - 1, —2. .... From the series representation of 'v+fl  we conclude that 

I+(z) 
- (z/2)'+ 

[1+0[(n+v)]] (n-co), 	 (31) 
F(n+v+1) 

and hence the differential operator L can be applied termwise to the series (30) for 
r < 1. Since each term of the series satisfies (26), we infer that L(w) = 0 in Q. Using 
(31) we can write (30) as 

 M 1 v
'  r '  w(x,y) = 	(n 	

(n+v) 

	

+v)r1+ '' 	JC(cos0) 	 (32) 
n=O  

where M(v, r) is a bounded function of n for (x, y) E . 

Also, I C(cos 0) 1 = 0(n 1) uniformly for .040, iT], see (15), and so for v < 0, the series 

ErzM(v, r) C(cos 0) (33) 

converges uniformly in D and hence defines a continuous function there. By using a 
known result ((12), eq. (7)) and Theorem 2, we find that 

00  v(1 —r 2) (1— 2r cos 0+r2)1 = 
n=O + 

v) rn  C(cos 0) 	 (34) 

in D. Hence if v <- the series on the right-hand side of (32) defines a continuous 
function in D so u(x, y) E C0(). From (31) and thö previously mentioned bound on the 
Gegenbauer polynomials we infer that w(x, y) e Q2().  Obviously, w(x, y) = w(x, - y). 
From Theorem 2 with a = ft = v - and x replaced by.1 ( 1  + cos 0) we can conclude that 
w(x, y)= 0 on 00. Hence w(x, y) satisfies the conditions of the theorem but is not 
identically zero. (To show this, let r tend to zero in (30).) The final statement of the 
theorem now follows. 

For A = 0, Theorem 3 was proved by Parter (14). In his work the function correspond-
ing to our w(x, y) was constructed from a generating function for Gegenbauer poly-
nomials. This method fails in the case of the equation (26), since no generating function 
is known which satisfies the equation. 

[Added in proof]: Prof. Richard Askey has kindly pointed out to us that the 
Kogbetliantz theorem referred to above is false, and that the problem of 
characterizing uniqueness sets is still unsolved even for Fourier series (the case 
a=fl=—). 
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APPLICATIONS OF A CLASS OF SINGULAR PARTIAL 
DIFFERENTIAL EQUATIONS TO GEGENBAUER SERIES 

WHICH CONVERGE TO ZERO* 

DAVID COLTONt 

1. Introduction. Expansions in series of hypergeometric polynomials arise 
frequently when the method of separation of variables is applied to a partial 
differential equation and the resulting solutions are superimposed in an attempt to 
solve certain boundary value problems. As was pointed out in [8] care must be 
used in this approach since the solutions obtained by such a procedure will not 
necessarily be unique due to the existence of nontrivial representations of zero. In 
particular this occurs in the study of the singular partial differential equation 

ä2 u 	t3 2 u 	2v ôu 
 

where v < - 1/2. If v 	- 1, —2, 	and interest is focused on solutions of (I) 
which are regular on the singular line y = 0, then separation of variables in polar 
coordinates (r, 0) leads to solutions of the form 

rC(cos 0), 	 n = 0, 1,2, 

where C denotes Gegenbauer's polynomial defined by the generating function 

(1 - 2r + r2) = 

In view of the representation [8] 

lim > (n + v)C(cos 0) = 0, 	uniformly for 0 e [0, 27r], 
N —

' 10  n0 

it is not possible to solve uniquely the Dirichlet problem for the unit disc by a 
superposition of the solutions given in (2). (We are concerned here with the 
interior Dirichlet problem. This can be transformed to the exterior problem by 
means of a generalized Kelvin transformation [3].) The existence of expansions 
such as (4) leads to the conclusion that Dirichlet's problem for the singular equa-
tion (1) defined in domains containing a portion of the singular line y = 0 in its 
interior is in fact an improperly posed problem. Equation (1) (known as the 
generalized axially symmetric potential equation [7]) is far from being simply a 
pathological example. The case when 2v is a negative integer describes axially 
symmetric Stokes flow in n = - 2v + 2 dimensions, whereas from a mathematical 
viewpoint, this equation is the simplest example of an elliptic equation with mero-
morphic coefficients. These remarks serve as motivation for a closer examination of 
representations of zero by series of Gegenbauer polynomials. The purpose of this 
paper is to initiate such an investigation through the utilization of some recent 
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In this paper, we have made strong use of the fact that L is elliptic. It is clear 
from results of Payne and Sather [7], Knops and Payne [4] and Levine [5], that for 
certain special classes of differential equations and geometries, the ellipticity 
requirement can be relaxed. In all of the above cases, however, the problems were 
such that the surfaces f = const. could be chosen as hyperplanes. We propose 
now to see to what extent this requirement may be relaxed or eliminated. 
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developments in the analytic theory of partial differential equations. In particular 
if 2v 	- 1, -3, . - ,conditions will be given to assure that no nontrivial represen- 
tation of zero exists, whereas if 2v = - 1, -3, 	, an upper bound to the number 
of representations of zero will be given. These results enable one to determine 
when a solution of the above mentioned Dirichlet problem is unique. 

2. A basic lemma and its application. In the analysis that follows it is 
assumed that v < - since for v - the Dirichlet problem for (1) is well-posed 
[6] and no representation of zero of the form of equation (4) can exist; it is further 
assumed that the coefficients a of the representation aC(cos 0) = 0 are all 
real. We first require a few preliminary definitions. 

DEFINITION 1. The m nontrivial representations of zero on the interval 
[0, 27r],aC(cos 0), j = 1, 2, ..., m, are said to be independent if there exist 
constants C 1 , ... , C. independent of n such that C 1 a, + ... + Cmanm  = 0 for all 
n. Representations which are not iprdependent areependent. 

DEFINITION 2. If 	aC(cos 0) is a nontrivial representation of zero on the 
interval [0, 2it] then the series 	aC(l)f is called the associated power series of 
the representation. 

Since 	aC(l) is convergent the associated power series will converge 
absolutely and uniformly on compact subsets of the disc Izi < 1 in the complex 
z-plane. In view of the fact that C(1) does not equal zero for 2v 	- 1, -2, 3, 
(this follows from (3),) it is clear that if 2v - 1, -2, 3, . , then m non-
trivial representations of zero are dependent if and only if their associated power 
series converge to functions which are linearly dependent on the real interval 

(- 1, + 1). 
In the use of Gegenbauer series to investigate improperly posed problems for 

singular partial differential equations interest is focused primarily on those 
representations of zero which converge uniformly for 0 c [0, 27r]. This is due to the 
fact that the solutions of the differential equation being considered are usually 
required to be continuous in the closure of their domain of definition (cf. [8]). The 
fact that the Gegenbauer polynomials satisfy 

C(cos 0)1 = O(nv - 1), 	uniformly for 0 e [0, 27t], 

Cv cos  0) = sin 0C I(cos 0), 	 n ~ 1, ao 
leads in a natural manner to the following definition. 

DEFINITION 3. A nontrivial representation of zero on the interval [0, 2ir], 

aC(cos 0), is said to be of class Ctm if 0  anv4m_ 1 is absolutely convergent. 
We observe that a nontrivial representation of zero of class Ctm where m 

> [-v + ] does not exist since in this case it would be possible to differentiate 
the series termwise and make use of (6) to conclude the existence of a non-
trivial representation of zero of class Co  for a value of v greater than -=-. As was 
previously mentioned, this is not possible. We are now in a position to prove our 
basic lemma. 

BASIC LEMMA. Assume 2v 	- 1, -2, -3, ... and let 	t Ø  aC(cos 0) be a 
nontrivial representation of zero on the interval [0, 27r] which is of class C 1 . Then the 
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associated power series 	>_ aC(1)z" is singular at either z = + 1, z = - 1, or both, 
and nowhere else on the circle Izi = 1. 

Proof. Consider the function 

(7) 	 u(r, 0) 
= 	

arC(cos 0). 
n 0 

 

Since 	anv is absolutely convergent it is seen [6] that the series (7) 
converges uniformly on compact subsets of the unit disc to a solution of (1). 
Equations (5) and (6) furthermore show that the first partial derivatives of 
u(r, 0) are uniformly continuous in the closed disc r :!5; 1, 0 :!~ 0 :!~ 27r. Since 
u(1, 8) = 0 it is possible [3] to analytically continue u(r, 0) across the unit circle 
r = 1 provided 0 :A 0, it, i.e., for all points on the unit circle not lying on the singular 
line y = 0. It is known from [1] and [2] that for 2v 	- 1, —2, —3, ... , the associ- 
ated power series 	aC(1)f is singular at z = e'°  if and only if the solution of 
(1) defined by (7) is singular at (1, 0). Since (7) is analytic at all points (1, 0) 0 (1, 0) 
or (1, it), it is possible to conclude that the only possible singular points of the 
associated power series are at z = ± 1. If neither of these points is a singular 
point then the associated power series has no singularities on the unit circle 
in the complex z-plane and hence converges for Izi < 1 + 6 where 6 > 0. This 
implies lim. aIlm < 1, i.e., aC(cos 0) is a nontrivial representation 
of zero of class cm  where m > [- v  + ]. As was observed previously this is 
impossible and hence the associated power series must be singular at either 
z = + 1, z = - 1, or both. 

From the classical results on the relationship between the coefficients of a 
power series and the location of singular points on its circle of convergence, many 
theorems can now be given. Two typical examples of such results are given below. 

THEOREM 1. Assume that 2v 0 —1, —2, _3, ... . Then there exists no non-
trivial representation of zero which is of class c1 and of the form 

00 

aC(cos0) = 0, 	 0c[0,27t], 

where an  = 0 except when n belongs to a sequence n, such that nk+l > (1 + )nk, 
(5>0. 

Proof. Hadamard's gap theorem shows that the circle IzI = 1 is a natural 
boundary for the associated power series and the result follows by the basic lemma. 

THEOREM 2. Assume that 2v 	- 1, —2, - 3, ... ; then there exists no non- 
trivial representation of zero which is of class c' and of the form 

aC(cos0) = 0, 	 0E[0,27r], 

where in is an integer greater than or equal to three. 
Proof. The basic lemma and the fact that if the power series 	ac(1)zm 

has a singularity at z = + 1 or z = - 1, then a singularity will also exist at z = e 2 m 
or z = e1t lm .  

3. The case when 2v = - 1, —2, —3, ... As was pointed out in the introduc-
tion, the case when 2v is a negative integer is of particular interest since (1) then 
describes axially symmetric Stokes flow in n = (-2v + 2)-dimensional space. 
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The existence of nontrivial representations of zero by Gegenbauer polynomials 
leads to the conclusion that the Dirichiet problem for the unit disc is an improperly 
posed problem. If v = - 1, —2, and interest is focused on solutions of (1) 
which are analytic functions of x and y2  in a region containing the singular line 
y = 0, then separation of variables in polar coordinates leads to solutions of the 
form 

n = 0,1, 

where p.P)  denotes Jacobi's polynomial. For a= = v - these are essentially 
renormalized Gegenbauer polynomials (note that from (3), for v = —1, —2, 
- 3, ..., C) 0 for n > - 2v) and by using similar techniques theorems 
analogous to those obtained in § 2 can be derived for these polynomials. If, 
however, instead of requiring solutions to be even analytic functions with respect 
to y, it is asked that they be odd, then it can be shown [7] that any solution u(x, y) 
of (1) which is analytic in a neighborhood of the singular line y = 0 must be of 
the form 

u(x,y)=yl_2vu+(x,y), 

where u(x, y) is a solution of 

a2u ä2u 2-2vau 
(10) —=0. ox 	ay 	y Oy 

Hence if u(x, y) vanishes on the boundary of a domain D containing a portion of the 
singular line in its interior, then u(x, y) vanishes on the boundary of D fl {(x, )I 
> 01 and hence from the maximum principle for elliptic partial differential 
equations [3], u(x, y) is identically zero if u(x, y) e C 2 (D) fl C °(D). Using the 
results of Parter [6] it can be shown that there exists a solution u(x, y) to (1) 
such that u(x, y) = 2 f(x, y) on the boundary of a domain D symmetric with 
respect to the axis y = 0, where f(x, y) = f(x, - y) is a prescribed function con-
tinuous in the closure D of D. Thus Dirichlet's problem for (1) can be made 
well posed in the case v = - 1, —2, —3, , and for domains D containing a 
portion of the singular line in its interior. We therefore turn our attention to the 
case when 2v is a negative odd integer. 

THEOREM 3. Assume 2v is a negative odd integer. Then there exist at most 
- 2v - 1 independent nontrivial representations of zero which are of class C° . 

Proof. Suppose there exist —2v independent nontrivial representations of 
zero 

(11) 	 aC(cosO), 	 j = 1,2,..., —2v, 

and consider the following corresponding solutions of (1) in the unit disc, 

( 12) atC(cosO) , 	j = 1,2,..., —2v. 
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A linear combination of these solutions gives a solution u(r, 0) to (1) of the 
form 

u(r, 0) = 	 brC(cos 0) 

such that u(1, 0) = 0 for 0 E [0, 27t] and u(r, 0) E C°(i) fl C 2 (Q). Since for 2v = —  1, 
—3,... ,C(1)=0 for n ~ —2v + 1, whereas C(1) 0 for n < —2v + 1 (this 
follows from (3)) we have 

u(1,0) = 0 = b_ 2 _ 1 C 2 _ 1 (1) + b_ 2 C 2 (1), 

u(1, it) = 0 = b_ 2 _ 1 C2_ (- 1) + b_ 2 C 2 (— 1), 

—I, 	 V 	 (1_I, 	" - —2v-1 —2v—P. I 	—2v —2v 

Equations (14) and (15) now imply that b_ 2 _ I = b_ 2  = 0, i.e., along the singular 
line y = 0, u(r, 0) = 0. Hence u(r, 0) is a solution of(1) in 	= Q fl {(x, Y)iy > 0}, 
vanishes on the boundary of Q, and u(r, 0) e C°(Q) fl C2(c2). By the maximum 
principle for elliptic partial differential equations it is seen that u(r, 0) 	0 in 
and hence in 2. By noting that, for fixed 0, (13) is a power series in r and that 

C(cos 0) is a polynomial of degree n in cos 0 it is possible to conclude that b = 0 
for n = 0, 1, 2, . .. . Hence the representations given in (11) are dependent and 
there cannot exist more than —  2v - 1 nontrivial representations of zero of 
class Co . 	 - 

The methods used in Theorem 3 can be immediately adapted to show that if 2v 
is a negative odd integer, then for a given domain D containing a portion of the 
singular line in its interior there exist at most —2v - 1 solutions of(1) which are 
linearly independent in D and vanish on the boundary of D. 

By using the methods developed in [1] to examine the analytic theory of 

02u a2  u 2v 8u 2i 8u 
 

it is possible to derive results analogous to those obtained in §§ 2 and 3 for series of 
Jacobi polynomials which converge to zero. 

For v > 0 the relationship between the singularities of (7) and the associated 
power series was given in [4] and [5]. For such values of v however there do not 
exist any nontrivial representations of zero of class C°  (see [6]) and hence such 
results are not applicable to our investigation. 
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THE CONSTRUCTION OF SOLUTIONS FOR BOUNDARY VALUE 
PROBLEMS BY FUNCTION THEORETIC METHODS* 

R. P. GILBERTt 

Introduction. In this paper we develop a method of ascent by which one 
may obtain a general representation formula for solutions of the differential 
equation of n variables 

(1.1) 	 + a(r) 	x'_ + c(r2 )u = 0, 

with r2  = x+ 	+ x, in terms of a representation formula for solutions of the 
differential equation of 2 variables 

(1.2) 	
ä2 u 	32u 	2 	aU 	 2 
ax, 	ax 2 	ax, 	ax 2  

Indeed, we find that all regular solutions of (1.1) (about the origin) may be repre-
sented in the form 

(1.3) 	 u(r) = h(r) + 	aG(r; 1 - 

here h(r) is an arbitrary harmonic function, and 

(1.4) 	 G(r, 1 - a2 ) 	— rR 1 (ra2 , 0; r, r), 

where R(z, z*; , ) is the Riemann function for (1.2), with z = x 1  + ix 2 , z" = x 1  
- ix 2 . 

The formula (1.3) is a natural extension of the integral formulas of S. Bergman 
and I. N. Vekua for n = 2 variables. Indeed, for n = 2 the G-function is an integral 
transform of Bergman's E-function. Also, by certain manipulations with Vekua's 
representations one may obtain our formula (1.3) when n = 2. However, our (1.3) is 
actually new even for the case of two variables. We present numerous examples to 
illustrate its use. In addition, a reduction of the Dirichlet problem to a correspond-
ing Fredholm integral equation is given via (1.3) by equations (4.41), (4.42). It is 
assumed here that c(r2 ) 0 for r in the closure of the particular domain at hand. 

Elliptic equations with analytic coefficients of two variables. As a first step 
in obtaining an approximate method for solving boundary value problems 
associated with the real, analytic, partial differential equation 

(2.1) 	e[u] 	Au + c(x, y)u + /3(x, y)u + y(x, y)u = 0, 

we first seek suitable integral representations of a fairly wide class of solutions. 

* Received by the editors April 25, 1969. 
t Department of Mathematics, Indiana University, Bloomington, Indiana 47401. This work was 

supported in part by the Air Force Office of Scientific Research through AFOSR Grant 1206-67. 
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On the analytic theory of a class 

of singular partial differential equations* 

DAVID COLTON 

Indiana University 
Bloomington, Indiana 

IT IS KNOWN ([16], [181) that for 2v 4 0, —1, —2, ... every solution u(x, y) 

of the generalized axially symmetric potential or GASP equation 

	

3u 	2v Ou (1) L,,(u) —i  + 	+ 
- 

which depends analytically on the two real variables x and y in a domain 

containing a segment of the singular line y = 0 is uniquely determined by 

its values on y = 0. Furthermore if v > 0 it has been shown ([71, [14]) that 

if the function g(z) = u(z, 0) is continued to complex values of z then 

u(x, y) is singular at (x, y) = (r cos 0, r sin 0) if and only if g(z) is singular 

at z = ret°  or z = re ° . It is the purpose of this paper to extend this result 

into the range v < 0 and to indicate how our work can be generalized to 
include other singular partial differential equations, such as those considered 
by Gilbert and Howard ([6]—[12]). This completely answers the problem 

first posed by Henrici in [ 1 6], p. 201. A partial answer to this problem for the 

case of Eq. (1) has been given by Erdélyi ([5]) who proved that if g(z) is regular 

in some y-conveX region R (i.e., a region which contains with the point 

x + iyalsothepOifltSX + iyt, —1 t 1)and2v + 0,-1, —2, ...,then 

the singular points of g(z) and U(x, y) on the boundary of R coincide with 

one another. 

* Supported in part by the Air Force Office of Scientific Research through Grant 

AFOSR 1206-67. 
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Our first result is to extend this theorem of Erdélyi to the more general 
case in which the region R is only required to be simply connected. This is 
first proved using two theorems due to Henrici and Colton, and suffers from 
the disadvantage that the methods used do not readily generalize to the other 
singular equations discussed in [ 9]— [12]. We therefore develop an alternate 
proof which overcomes this difficulty. We finally give a new proof of a 
theorem of Hyman and Mackie concerning the equation L(u) = 0 when 
2v = —1, —3, —5, ..., which has the advantage that the methods used 
lend themselves readily to a similiar investigation of the equations considered 
in the above mentioned work of Gilbert and Howard. 

For the first part of our work we require the following two theorems: 

THEOREM 1 (Henrici) Let g(z) be holomorphic in a simply connected 
domain 72 containing the origin and let 2v + 0, —1, —2, ... Then there exists 
a unique solution u(x, y) of L(u) = 0 satisfying U(z, 0) = g(z) for z a 
u(x, y) is an analytic function of its arguments in the domain D() of all 
complex points (x, y) for which x + zy a n, x - iy a 27 . 

Proof [14] 

THEOREM 2 (Colton) Let x = r cos 0, y = r sin 0, = cos 0 and assume 
v + 0, —1, —2, ... If u(x,y) is a real analytic solution of L(u) = 0 in a 
domain 77 containing the origin then u(x, y) = zl(r, ) is a real analytic function 

of r and , andfor every positive integer k, üt(r, ) = r' is a real analytic 
solution of:L V +k(u) = 0 in . 

Proof [2] 
We are now in a position to prove the following theorem. 

THEOREM 3 Let 2v 4 0, —1, —2, ... and let u(x, y) be a real analytic 
solution of 4(u) = 0 in a simply connected domain containing a portion 
of the x axis. Then the function g(x) = u(x, 0) can be continued analytically 
to a function g(z) which is holomorphic for z a 77. 

Proof Since u(x, y) must be an even function of y ([21, [5]) there is no 
loss of generality in assuming n is symmetric with respect to the x axis, 
and since 4(u) = 0 is invariant under transformations along the x axis 
we can assume that the origin is an interior point of 77. If v > 0 the result 
can be easily proved using Green's Theorem ([5], [13]). Therefore assume 

3ku v < 0. From theorem two we can conclude that üt(r, ) = r_k - is a real 
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analytic solution of L V +k(u) = 0 in 71, and by choosing k large enough we 

can make v + k > 0. In some neighborhood of the origin u(x, y) = (r, ) 

has the representation ([5]) 
00 

=>ar'C'() 	 (2) 

where C) denotes Gegenbauer's polynomial. Since ([3]) 

dk  
- C) = 2"(v)k  c:); n > k 	 (3) 

and C) is a polynomial of degree n for 2v + 0, —1, —2, ... we can con-

clude that 

00  

	

2k(v) k afl+krnCflv4iC(). 	 (4) 

Now from [7], [14] we know that 

ut(x, 0) = 2k(v) k 	 = 2k(v)k 	
afl+kP(n + 2v + 2k) 

n=o 	 n=o 	n!1'(2v + 2k) 
(5) 

can be analytically continued into , since v + k > 0. From formula (2) 

we have 

u(x, 0) = ax"C(l) = 	
aj'(n + 2i') 	 (6) 

n=o 	 n=o n!1'(2v) 
Let 

d" 	 CO 
______________Xn  g(x) = 	[1'(2v) u(x, 0)] = 	
afl+kr(n + k + 2) 	

(7) 
dxk 	 n=o 

and note that 

[x21' 2'g(x)] = 	
afl+kl'(2k + 2v + n) 	= I'(2v + 2k) u(x, 0). 

dx' 	 n=o 	 n! 	 2k(v) k  

(8) 

Applying Leibmz's formula to the left hand side of formula (8) gives 

f(2v + 2k) ut(x,  0) = 	
(k \ I'(2k + 2v) xk_Jgl_I(x). 	(9) 

2"(v)k 	 j=o\j) 1'(2k + 2v -j) 

Formula (9) is a kth order non homogeneous ordinary differential equation 
for g(x) with x = 0 as its only finite singular point, at which point we know 
that g(x) is analytic. From the analytic theory of ordinary differential 

27 Gilbert/Newton (1356) 
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equations ([18]), g(x) (and hence u(x, 0)) can be continued analytically into 
whatever domain, the nonhomogeneous term ut(x,  0) is analytic, i.e., the 
domain n . This concludes the proof. 

Theorems one and three now imply the following "fundamental theorem" 
concerning singularities. 

THEOREM 4 Let 2v 4 0, —1, —2, ... and let u(x, y) be a real analytic 
solution of L(u) = 0 in a simply connected domain 71 containing a portion 
of the x axis. Then necessary and sufficient conditions for u(x, y) to be singular 
at (x, y) = (r cos 0, r sin 0) is g(z), the analytic continuation of u(x, 0), be 
singular at z = re'°  or z = re °. 

The methods used above do not readily lend themselves to a similar 
investigation of more general singular equations such as those considered 
by Gilbert and Howard ([6]—[12]).  We therefore give a different proof of 
theorem four which does not have this defect. The approach used is that of 
integral operators and is a direct extension of Gilbert and Howard's work 
into the range r < 0. The first step is no problem; if g(z) is an analytic 

function regular about the origin, g(z) = 	az", then for 2v 4 - 1, —2, 
—3, ..., the operator defined by 	n=O 

u(x, y) = A 9 [g] 
r(v + +)1'(l - 2v) 

f 22r,if(4-) 	
g(x + iyt)(t2 - 1)2'1 dt 	(10) 

C 

maps g(z) onto the GASP function u(x, y) defined by 

'  
u(x, y) = (r, 	

n! 
 ) = 	 r'C() 	 (II) 

=o P(2v + ii) 

where Cis a figure eight loop inclosing the points - 1 and + 1 in the complex 
t plane ([18]). In order to use Gilbert's "envelope method" it is now neces-
sary to construct an inverse operator A'[u] which maps u(x, y) back onto 
g(z) and here is where the difficulty arises, since in [6]—[12] the construction 
of such an operator depended on the orthogonality properties of the Gegen-
bauer polynomials over the interval [-1, + 1]. For v < - such a relation-
ship is no longer true. However, we can prove the following result: 

THEOREM 5 Assumev < 0, 2v 4 —1, —2, —3, ... Let C) denote Gegen-
bauer's polynomial' and let C be a figure eight ioop inclosing the points ±1 



Analytic theory of a class of partial. d/ferential equations • 
	

1 419 

in the complex plane (which is cut by two lines running from these points to 
infinity). Then 

_LJ 	
1)' 4C) C,(E) d = hn ômn  

2i 
C 

where 5mfl  is the Kronecker delta and 

h - 2 21 cosvr(2v + n) 
[I'(v)]2(n + v) n ! 

Proof Without loss of generality we can assume m is greater than or 
equal to n. Using the Rodrigues formula for Gegenbauer's polynomial [4] 
we have 

I_ 1(E - 	 C.11 
 

2iij 
C 

(2V) m f d 
'E

m = 
	

[(2 - 1)rn+v_+]C() d. 	(12) 
2m m!(v+) m   

C 

Let P be a point on the curve C. Then the value of (1 - 	will be 
the same when the point describing the curve C returns to P as it was ori-
ginally at P. Hence if rn is strictly greater than n we can integrate (12) by 
parts n + 1 times and use the fact that C) is a polynomial of degree 
exactly n to obtain 

1$(2 - l)C) C:() d = 0; m + ii. 	 (13) 
2z, 

C 

Now if m = n, integrating (12) by parts n times gives 

f( - 1)C) c:(E)de 	(-1)(2v)(v) 	(2 	 (14) 
2i 	 n!(v+)2i f 

C 	 . 	c 

since the leading coefficient of C,/) is 	As long as 2v + - 1, —2, —3,... 
n! 

the integral in (14) does not vanish and can be evaluated by refering to 
known representations of the beta function in terms of loop integrals ([ 3 ]) 
27* 
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or alternatively by assuming n + v > -4, shrinking the contour onto the 
real axis, evaluating in terms of gamma functions, and extending the result 
to n + v < - 1 by analytic continuation. The result is that 

- l)"dE = 	 . 	(15) 
2ii 3 	 .['(n + v + 1) P(4 - n - v) 

C 

Using the fact ([3]) that 

(16) 
Cos n1' 

and the Legendre duplication formula 

I'(2v) = 22 1 T(v + 4) 

	

f(v) 	
(17) 

the theorem now follows. 
With the help of theorem five we can now find an inverse operator A 1  [u] 

in the manner done by Gilbert and Howard ([6]—[12]) by considering 
u(x, y) = ü(r, ) as a function of the two complex variables r and . We 
define the kernel 

K('- , 	
= 	[](v)]2 	

(2 - 1)V 	 (n + v) 	C) 	(18) 
\r ) 	2 1 21'cosm' 	 n=O 

where a = x + iyt. From theorem five it may be seen that 

f n! 	 or
(19) 

J'(2v + ii) 
C 

Consequently if g(a) = E a,,(;a and 

00 	 ann! 

	

A[g] 
nO I'(2v + 	

rC,'() 	 (20) 

then we have 

A g(a) = 	1  [u] f ft(r, ) K (i ) d. 	 (21) 
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This procedure can be justified by observing that for - 	< 1 we have 
Cr, 

 

K(-_, 	
= 	[1(v)]2 	

(E2 - 	1t__[t 	tC) 	- 
\r j 	2'2'cos7iv 	 n ). 	ôt[ =o 	It 

a2  
v[r(v)]2 (2 - 	 T) 	

(22) 

21_2vcosnv[1 - 2(-- '\ + 
r) 

This follows from the generating function for Gegenbauer polynomials ([ 4]): 

00 

= (1 - 2t + t2)_v; ti < 1. 	 (23) 

Using the operators A defined by Eq. (10) and A 1  defined by Eqs. (21) 
and (22), theorem four now follows by using the "envelope method" 
developed by Gilbert. It should be observed that the methods used here 
can be easily applied to the other singular partial differential equations 
considered by Gilbert and Howard, thus extending their results into the 

range v <0. (For equations which are bi-axially symmetric such as those 
discussed in [9], [10] and [12], one considers Jacobi polynomials instead 
of Gegenbauer polynomials and the contour C of theorem five must be 

replaced by a Pochhammer contour ([13]). 
If we insist that u(x, y) be a real analytic function of x and y 2  then the 

above results can be extended to include the case when v = 0, —1, —2, ...; 
here the role of the Gegenbauer polynomial is replaced by the Jacobi 

polynomial p_+().  However, for 2v = —1, —3, —5, ... it has been 

shown by Hyman ([17]) and Mackie ([19]) that u(x, 0) is a polynomial of 

degree at most —2v and hence can always be extended to an entire function, 
regardless of the domain of regularity of u(x, y). We give a new proof of 
this below, which has the advantage that the methods used here can be 
easily applied to the equations considered in [6]-[12]. 

THEOREM 6 Let 2v = —1, —3, —5, ... and let u(x,y) be a real analytic 

solution of L(u) = 0 in a domain 77 containing the origin. Then u(x, 0) is a 
polynomial of degree at most - 2v. 

Proof In theorem 4.2 of [1] it was indirectly proved that if f() is an an-

alytic function of on the closed interval[— 1, + 1] and 2v = —1, —3, —5,..., 
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thenf() can be expanded in a.Gegenbauer series convergent in some ellipse 
in the complex plane enclosing [-1, + 1] 

00 

f(s) =aC) 	 (24) 

where for n —2r + 1 

h' 
a 	 f( =J)(2 - 1)vQ()d. 	 (25) 

Co 

Here h 	0 is a normalization constant, Q__() denotes a Jacobi 
function of the second kind and Co  is an ellipse surrounding the interval 
[-1, +1]. Let N(O, e) be a neighborhood about the origin of radius B 

and contained in the domain . From the analytic theory of the GASP 
equation ([2], [5]) it is known that if 2v = —1, —3, —5, ... and u(x,y) is 
analytic in x and y, then it is analytic in x and y 2  and hence regular in the 
sense of [1]. From Theorem 3.1 of [1] we know that u(x, y) = ü(r, ) is an 
analytic function of for r e [0, e], E e T, where T is a region in the complex 

plane enclosing [-1, + 1]. Hence for each fixed r n [0, e] we can expand 
tl(r, ) in a Gegenbauer series 

00 

=>a(r) C,). 	 (26) 

In r, coordinates L(u) = 0 becomes 

+ 2v + 1 	+ (1 - 2) 	
- (2v + 1) 	

= 0. 	(27) 
r 	Or 	r2 	2 

For n ~! —2v + 1 we have 

a(r) = ! Ia(r, ) (2 
- 1) 	Q(v. 	() d 	(28) 

7U J 
Co 

and since for r e [0, s] we can choose Co  independent of r, we can use the 
differential Eq. (27), formula (28) and the analyticity of ü(r, ) in 
N(O, e) to conclude that for n ~! —2v + 1, a(r) = ar where a is a ôon-
stant. For 0 n —2v we can go to the differential equation directly 

as in Theorem 4.2 of [1] (consider zi(r, ) - 	 arC)) to conclude 
a(r) = ar° for these values of n also. Hence 	2v+ 1 

00 

ar "C) 	 . 	 (29) 
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and 

00  u(x, 0) =ax"C(1) 	 (30) 

From Eq. (23) it is seen that C(1) = 0 for n 	-2v + 1. Hence 

-2, 

u(x,0) =anXnC(1 ) 	 (31) 

and the theorem is proved. 
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Uniqueness Theorems for Axially Symmetric 
Partial Dffirential Equations 

DAVID COLTON' 

Communicated by J. B. DLAz 

I. Introduction. Although existence and uniqueness theorems for linear 
effiptic partial differential equations in a domain D with coefficients continuous 
in D have been known for some time [2], similar results for equations whose 
coefficients have singularities in the domain under consideration are practically 
unknown. Recently attention has been given to a class of singular equations 
which appear frequently in both pure and applied mathematics and are known 
as generalized axially symmetric partial differential equations. Typical examples 
of equations from this cinss are the following: 

a2u 	3 2u 	2v i3u 

 

aX 2 ++_k2u=O. 

Here v and k are real numbers, k > 0. Just as a thorough knowledge of Laplace's 
equation guided the attack on linear elliptic equations with continuous coeffi-
cients, it is hoped that a better understanding of equations such as 1), 2) and 
3) will give insight towards developing a theory of elliptic equations with singular 
coefficients. 

The results so far have been sparse and incomplete. In 1965 Parter [18] derived 
existence and uniqueness theorems for equation 1) (known as the generalized 
axially symmetric potential or GASP equation) for the case in which v 

- 21  

and showed that his results were no longer valid for tj < - . In 1968 Colton 
[1] proved a uniqueness theorem for the exterior Dirichiet problem for equation 
2) (the generalized axially symmetric Helmholtz or GASH equation) for v> - 

* This research was supported in part by the Air Force Office of Scientific Research through 
grant AFOSR-1206-67. 
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For v 	- uniqueness conditions for equation 3) were found by Wimp and 
Colton [24] and shown to be no longer strong enough for the situation in which 
p < -. A rather unusual fact appears: there is asharp difference in the criteria 
needed to insure uniqueness for the cases v - and v < - 2. 

It should also be noted that Huber [141 and Schecter [19] have investigated 
the situation in which the coefficients of the differential equation are singular for 
points on the boundary of the domain D but are continuous in the interior of D. 
Since we are interested in the case in which the coefficients are singular in the 
interior of D, this work has no direct bearing on our investigations. 

In this paper we first consider equation 2) and derive a result similar to that 
in [ 1 ] except we now consider the case in which u(x, y) is regular (see Def. 2.1) 
in the whole space. Although the analysis in [1] was rather long and relied heavily 
on the use of special functions, the proof of uniqueness for the situation con-
sidered here is relatively short and straightforward. This is due in a large part 
to the discovery of a new relationship between solutions of axially symmetric 
equations for different values of the parameter v. This result is derived in Lemma 
2.1 and forms the basis of the work presented here. Finally we turn our attention 
to equations 1) and 3) and extend the results of Parter, Wimp and Colton into 
the range v < - . A seemingly pathological situation occurs: in order to insure 
uniqueness it is necessary to impose boundary conditions similar to those em-
ployed in formulating a well posed boundary value problem for an M  th order 
equation [17],  where here m depends on the value of v 

II. The analytic theory of generalized axially symmetric equations. The 
analytic theory of equations such as 1), 2) and 3) has been extensively investi-
gated by Weinstein ([22], [23]), Erdélyi [5],  Henrici ([121, [13]),  Hyman  [ 15], 
Mackie [16],  Gilbert  ([6]-[10]),  Gilbert and Howard [11], and Colton [1]. That 
part of the theory which is needed in this paper will now be briefly summarised. 
For notational convenience let L, . (u) = 0 denote equations 1), 2) 'and 3) 
i.e., L, o (I.L) = 0 is equation 1), L,. +k (u) = 0 is equation 2), and L,_ k (u) = 0 
is equation 3). 

In either of the half planes y > 0 and y < 0, L,, k (u) = 0 is an elliptic partial 
differential equation with analytic coefficients, and hence every twice contin-
uously differentiable solution is an analytic function of x and y in each, such 
half plane and can be extended into the complex x and y planes [2]. The line 
y = 0, which will be called the axis, is a singular curve of the regular type with 
exponents 0 and 1 - 2v [4]. Consequently, there always exist solutions which 
are regular on (some portion of) the axis. It is seen from the differential equation 
that if v 0 0 then äu/äy = 0 on the axis for such regular solutions. For 2 
0 1  —1, —2, —3, ... each regular solution can be continued across the axis as 
an even function of y i.e., for 2v 	0, —1, —2, —3, ... every regular solution is 
an analytic function of x and y 2  in some domain D that is symmetric with respect 
to the axis y = 0. If 2v = 0, —1, —2, ... the assumption that u(x, y) is an 
even function of y will be part of the definition of regularity, viz. 
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Definition 2.1. A solution u(x, y) of L, . (u) = 0 will be called regular if it 
is an analytic function of x and y 2  in some regionwhichis symmetric with respect 
to the axis y = 0. 

Since L,. k .(u) is invariant under translations of the x axis, we can assume 
without loss of generality that the domain of regularity of u(x, y) contains the on-
gem If u(x, y) is a regular solution of L k (u) =0 then u(x, y) is an even function 
of y and hence can be expressed as u(x, y) = ü(r, ) where x = r E, y = r(1 - 

= cos 0. Since an analytic function of an analytic function is analytic, 
ü(r,• ) is an analytic function of r and t. We are now in a position to prove the 
following basic lemma, which will play a central role in the forthcoming analysis. 

Lemma 2.1. Let u(x, y) = fl(r, ) be a regular solution of L,. k .(u) = 0 in a 
domain D. Then for every positive integer j, u (r, ) = r '0 'fl(r, E)/OE' is a regular 
solution of L,,+Ik (u) = OinD. 

Proof. If u(x, y) is a regular solution of L,.(u) = 0 then u(x, y) = ü(r, ) 
and ü(r, ) satisfies the partial differential equation 

0212 	2v + 1 c9ü 	(1 - 2) 32.. 	(2v + 1)E 312 	
k2 Or2 + r 	Or + 	r2 	82 - 	r2 	3 ± 	- 0. 

Let v = Ou/O. From 4) we have that v satisfies 

02v
+ 

 2v + 1 Ov 	(2v + 3) Os 	(1 - E2) O2v 	(k2 	2v + 1 - k5) 	Or2 	r Or - 	r2 	+ 	r2 	+ 	- r2 	- 0. 

Now let fit = v/r (multiply equation 5) through by 1/r) and obtain 

(1ov 2v±1Ov 2v±1 
(6) 	

r 	Or 	r 

(2v + 3)t OÜ 	(1 - E2) O2t 	k2t  - 
- 	r 2 	Or + 	r2 	02 + U —0, 

0212 	
2v + 3 Oü 	(1 - 2) 0212t 	

(2v + 3)E Ou 
	

k2_t 	0 Or2 + r Or + r2  OE2 - 	r2 	Or + U - 

Since u(x, y) is an analytic function of x and y 2  in D we have 

(8 / 	 0 	0(y 2) 0 
012 - Ou 0(y2) + Ou Ox - - 

2 r 2 Ou
2 	

Ou 
Ox O 	3(y) + r  Ox 

and hence W = 1/r(012/O) is regular at r = 0 Since u(r, ) is an analytic func-
tion of r and E in D we can conclude that the lemma is true for j = 1. Since 

1 ou
i a (i ou) 	1 Ou 

r o - r O \r oi - 2  0 2  

the lemma is true for j = 2 and by induction for all positive integer j. 
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M. The equation L, .fk.(u) = 0. In this section u(x, y) is assumed to be 
a regular solution of L, . + k (u) = 0 (i.e. equation 2) which is regular in the whole 
reaJ x, y plane. We first prove a uniqueness theorem for the case in which v —4.. 

Theorem 3.1. Assume v 	- and let u(x, y) = ü(r, ) be a 8olutzon of 
= 0 which is regular in the whole real x, y plane. If 

there exists a positive constant M < co such that y " " 2u(x, y) I 	M for all 
real x and y, 
lim,..,. y'" 2u(x, y) = 0 pointwise for 0 t [0, ar], 

then u(x, y) = 0. 

Proof. First consider the case v > - 4-. Since ü(r, ) is an analytic function 
of t for fixed r, E  e [-1, +1], we can expand fi(r, in a Gegenbauer series [20[: 

fl(r, ) = 	hnC,) f 'ü(r, t)(1 - 2)' 112C(t) dt 

where C) denotes Gegenbauer's polynomial [3] and h is a normalization factor. 
Now let 

v(r) = h f ü(r, t)(1 - t2)' 1/2C(t) dt. 

From equation 4) and the fact that fl(r, ) is regular in the whole plane it can 
be shown that v,(r) is a solution of Bessel's equation and in fact 

v,.(r) = a,,r'J,+ (kr) 

where an  is a constant. Making use of hypothesis one and two of the theorem and 
Lebesgue's dominated convergence theorem we have 

urn Iar"2J,+(kr)I 	lri.rc 

<limf 
,-. J o  

< 0. 

Ir'"2u(r, t)(1 - t2) 112C,(t)I dt 

Iy"2u(r, cos 0)1 Isin'"2 0C(cos 0)1  dO 

In view of the asymptotic behavior of Bessel's function [3] 

(2irr)"2J,(kr) = 2 cos Ir + 4.(v  + n)lr - 
	

+ 0(1); 	r - 

we can conclude that a = 0 for n = 0, 1, 2, • - and hence v(r) = 0 for n = 
0, 1, 2, . By equation 9) and 10) this implies that ü(r, ) = u(x, y) 0 and 
the theorem is proved for v > — 4.. 

Now consider the case in which v = — 4.. Since u(x, y) is an analytic function 
of x and y 2  we have 

u(x, y) = u1 (x) + y2u2 (x, y) 

where ui  (x) is an analytic function of x and u2 (x, y) is an analytic function of 
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x and y2. The fact that u(x, y) is even in y implies that 

	

lau 	.92u 
(15) 	 --- 	 = - ---i 

y ay L o 	ay  Lo 
and from the differential equation we have that u(x, 0) = u1 (x) must satisfy 

(16) 

i.e., u1  (x) = ae + be 1  where a and b are constants. By the second hypothesis 
of the theorem, urn -+ u,(x) = 0 and hence a ,= b = 0. Therefore u(x, y) 
y2u2 (x, y). By Weinstein's recurrence relation [23] we can conclude that u 2(x, y) 
is a solution of L 312 . +. (u) = 0. By the hypothesis of the theorem, Iu(x, y) I = 
1y2u2(x, )I < M and lim,_ u(x, y) = lim, y 2u2 (x, y) = 0 pointwise for 0 e 
[0, an. Hence from previously proved results we can conclude that u2 (x, y) 	0 
and hence u(x, y) = 0. The theorem is now completely proved. 

We would now like to extend the results of Theorem 3.1 to the case in which 
v < - . However, it is not immediately obvious even what the form of such an 
extension should be since if P < — the term y'112  which appears in the theorem 
becomes infinitely large as y approaches zero. The following theorem gives the 
desired result and will be shown by an example to be essentially the sharpest 
conclusion possible. 

Theorem 3.2. Assume v < - and. let u(x, y) = fl(r, ) be a solution of 
L. . +. (u) = 0 which is regular in the whole real x, y plane. Suppose there exists 
an ellipse E in the complex t plane inclosing [- 1, + 1] such that fl(r, ) is analytic 
in the interior T of E for all fixed r, 0 r < co . If 

there exist positive constants 1W < a' and ö < a' such that sup { r'"2  Iu(r, E) I: 
:!!~ r<a',tT 	M, 

lim, r'''2fl(r, ) = 0 pointwise for E E S where S is some interval contained 
in [- 1, +11; 

then u(x, y) = 0. 

Proof. Let m be a positive integer grater than —v -. Since ü(r, 	is an 
analytic function of t in T we can write 

Omü(r , s,,) - m! i: 	fl(r, t) 
(17) 	 - 	 .j , 	, m + i dt at- c — 

where t , e. T and C is a circle surrounding the point Z o  and contained in T. Now 
consider the ellipse E. whichis a distance e away from E and [-1, + 1] and let 
T. denote its interior. For each point Z o  let C have radius E. Then for every *  T. 
we have from equation 17) and hypothesis 1) of the theorem 

r +1/2 	E0) 	! r' 4 "2 max Iu(r, E)I or - (18) 	 fec 

<M 
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i.e., for every t e T, we have 

M. 

Now let fr1 ) be a sequence of r values such that 	r• = . The precise values 
of r1 will be chosen later. By Vitali's convergence theorem [21] and hypothesis 
one and two of the theorem we can conclude that lim 1 .. r1"2ü(r, ) is an 
analytic function of t in T. . Since for t t S we have lim1..,. r"2ü(r1 , ) = 0, 
by the identity theorem lim1r112ü(r1 , ) = 0 for r T. . From equation (17) 
and Vitali's convergence theorem again we can conclude that 

0 
j— 	 az' )

for t c T, . Recall from Lemma 2.1 that rm ô"ü(r, )/8r = ü(r, ) is a regular 
solution of L, + , (u) = 0. Now expand (r, ) in a Gegenbauer series as in 
Theorem 3.1: 

'ü t(r, ) = 	E aJ,+,,+(kr)C"(E). 

If üt(r, ) 	0 there exists an no  such that a 0  0 0. By using equations (19) 
and (20) we can conclude as in Theorem 3.1 that 

lim jan .rY2J,+m+n,(krj)I = 0. 

Now if the sequence r, is chosen such that 

cos [r1 - (' + m + no)lr - 7r/4] = 1 

we can conclude from equations (13) and (22) that a..= 0 which contradicts 
the assumption that üt(r, ) 0 0. Therefore u(r, ) 0 i.e., ü(r, E)  is a poly-
nomial in E of degree at most m - 1 with coefficients depending onr: 

ü(r, ) = E 

From the differential equation we can now conclude that 

'ü(r, ) = 	E b,J,+ (kr)C) 

where the b. are constants. If v = —1, —2, ... then C) is to be replaced by 
Jacobi's polynomial P''2 "2 (E). For details see Theorem 4.2 of [1].. Using 
equation (13) and the second hypothesis of the theorem we can conclude from 
equation (25) that for t E S 

"'-1 

0 = lim E b cos (kr - (v + n)  
r-4w n-O 

VP  (kr 	
((m-1)/21 

= lim {cos 	- - ) E (- 1)b2 C.() 
n-O 
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+ sm (kr - - 
 

r) - H-2)/21 	 ' 	

'  E 	(-1) b2+1C2+1()}. 

Equation (26) implies that for t ie S we have 

I(m-2)/21 

(-1)b2c;(E) = 	E 	2+1 C; ~ 1 (E) = 0. 

If v 76  —1, —2, —3, ••• we are done since C .() is a polynomial of degree n in 

	

and hence b,. = 0, n = 0, 1, 2, 	m - 1. From equation (25) we caiiconclude 
that fl(r, ) 	0. Therefore assume v = —1, —2, —3, 	and recall that in this 
case the C) are replaced by P,7_1'2.._1/2)(0• From [20] p.  61 we have 

p,_'2_l/2)() = 	 0 :!~ n :9 —2p 

(where h,, is a normalization factor) and for 0 	n 	— v and n 	—2v + 1, 
is a polynomial of degree n in . Hence if (27) vanishes we must 

have 

b,, = 0 for n 	—2p + 1, 

b,h,. + (- 1'b_,_2 , = 0 for 0 :!:-~ n :!-< —2v. 

Since J,+ (kr) = (-1)"'J_,_(kr) we have from equation (25) that fl(r, ) 	0 
and the theorem is now completely proved. 

Example 3.1. The region T in the hypothesis of Theorem 3.2 cannot be 
replaced by the closed interval [-1, + 1] since in this case u(x, y) = e satisfies 
all the conditions of the theorem, but u(x, y) 0. 

IV. The Equations L 0 (u) = 0 and L,_(u) = 0. In this section we will 
derive uniqueness theorems for L, , 0 (u) = 0 and L, -k' (u) = 0 for all values of 
the parameter v (except v = —1, —2, in the case of L,,, o (u) = 0), thus 
extending the results of Parter, Wimp and Colton. Our first result is the following: 

	

Theorem 4.1. Assume ii 54 —1, —2, —3, 	and let m be a non negative 
integer such that m - - . Let D be a bounded domain whose intersection with 
the x axis is an open interval and let 9D denote the boundary of D. Let ü(r, )E 
C"(D) be a regular solution of L,., 0 (u) = 0 in D. If a'u(r, )/3' = 0 on aD, j = 
01 1, , m, thenu(x, y) = 0. 

Proof. We can assume that p < - 21  (and hence m 1) since if v - the 
theorem reduces to that of Parter [18].  By Lemma 2.1, üt(r, ) = r"ä"ü(r, )/ 
ar is a regular solution of L +rn, 0 (U) = 0 in D and by hypothesis fl(r, ) C° (D). 
Since amu(r, )/a" = 0 on aD we can conclude from the results of [18] that 
flt(r, ) = 0 in D which implies that 3"fl(r, )/a" = 0 in D i.e., ü(r, ) is a 
polynomial in t of degree at most m - 1 with coefficients depending on r: 

ü(r, ) = E 
-0 
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From the differential equation we can conclude (see [1] for details) that 

(31)  

The polynomial C) is of degree exactly n in Ej ; denote the coefficient of r by 
b,,. Then 3m_Iü(r,  )/3 	= 0 on 3D implies that 

(m - 1)!b m _ ia,,_ ir"' = 0 

on 3D and hence a,,,_ 1  = 0. Proceeding in this manner it is seen that a,, = 0, 
n = 0, 1, • - , m - 1 and hence from equation (31) ü(r, ) = 0. 

Example 4.1. Theorem 5.1 is not true for the case in which v 	—1, —2, 
—3, 	as can be seen by considering the function 

i(r, ) = 	 () - r2'hOP?,1"2'1"2() 

where h0  is as in equation (28) and p;;/2-1/2) are Jacobi 
polynomials. Equation (33) defines a solution of L, o (u) = 0 which is regular in 
the entire x, y plane and such that for any integer j 0, a'u(r, )/3' = 0 on 
the unit circle. 

Example 4.2. The following example shows that the integer m in the theorem 
is the best possible choice. From [24] we have 

y(1 - r2)(1 - 2Er + r2)1 	(n + v)rC) 

where equation (34) is valid for ii 54 —1, —2, —3, 	and (r, ) contained in the 
closed unit disc D. It is easily verified that ü(r, ) = (1 - r2)(1 - 2r + r2)' 
is a regular solution of L, 0 (u) = 0 in the open unit disc R. Let m be a positive 
integer less than -v-i. Then ü(r, E) C"() and 37ü(r, )/3i = 0 on 31Z for 
j = 0, 1, m. But ü(r, E)  is clearly not identically zero on 1 and hence the 
choice of m in the theorem is the best possible. 

Example 4.3. The example 

u(x,y) 	- (2v+ 1)x2 	1; 	p 	- 

shows that even if u(x, y) is regular in 17, u(x, y) = 0 on 3D does not imply that 
u(x, y) 0 in D when ii < -. The function u(x, y) defined by equation (35) 
vanishes on the ellipse y2 - (2v + 1)x 2  = 1, satisfies L,., 0 (u) = 0 in the interior 
T of this ellipse and is regular in T. 

We now prove a result analogous to Theorem 4.1 for the equation 
L. -k' (u) = 0. In the present situation however, we will be able to show that 
the theorem is true for all values of the parameter v, i.e., we do not exclude the 
cases v = —1, —2, —3, as was done in Theorem 4.1. 

Theorem 4.2. Let ü(r, ) * C" (13) be a regular solution of L,, . (u) = 0 
in a bounded domain D (D 0 { (x, y) I  x2  + y2  < r0 } where r0  lies in the finite 
set A = r0  I I, +,,(kr0) = 0 for some integer n, v v + n < —1J, I,,, being a 
modified Bessel function of the first kind) whose intersection with the x axis is an 
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openinterval and where m is a non negative integer such that m 	- w - 2 . 

If ä'u(r, )/a' = 0 on aD, j = 0, 1, 	, m, then fl(r, ) 	0. 

Proof. We can assume that v < - (and hence m 1) since if p - the 
theorem reduces to that of Wimp and Colton [24]. As in Theorem 4.1 we can 
conclude that 

fl(r, o = 

From the differential equation (see [1] for details) we can conclude that 

ü(r, ) = r' 	a,,I,+ (kr)C) 

where the a are constants, I, + (kr) is the modified Bessel function of the first 
kind, and C) is Gegenbauer's polynomial: If v = —1, —2, ... then C(s) is 
to be replaced by Jacobi's polynomial P'"2 '"2 ). Since I, + (kr) has no 
real zeros for r 0 A ([31, p. 59) and C) is a polynomial of degree n in E, for 
v 0 —1, —2, we can conclude from the hypothesis of the theorem that 

0 if v 0 —1, —2, •.. just as was done in Theorem 4.1.. If v = —1, 
—2, —3, 	we make use of equation (28) and the fact that I, + (kr) = 
(-1)''L,(kr) to conclude that 	 - 

ü(r, 0 = 	[a,h,, + 

-1 

+ 

Since P,' 2 .P/2) (E) is a polynomial of degree n in E  for 0 	n 	—v and 
n - 2v + 1, the hypothesis of the theorem imply that fi(r, ) = 0. The theorem 
is now completely proved. 

An example similar to Example 4.2 can be constructed showing that the choice 
of m is best possible [24]. 	 . 

It should be noted that Theorems 5.1 and 5.2 are natural extensions of the 
results of [18] and [24] in the sense that when p . -12 we can choose m = .0 and 
the theorems reduce to those of the above mentioned authors. 

Theorems 4.1, 4.2, and Examples 4.1, 4.2, 4.3 show that in order to 
insure uniqueness for the Dirichlet problem for the equations L, . o (u) = 0 and 

.. (u) = 0 it is necessary to impose. an  m tI order boundary condition.. This. 
resembles the situation of an elliptic equation of order 2m with continuous co-
efficients, where it is necessary to impose the conditions that u(x, y) and its 
first m - 1 normal derivatives vanish on the boundary in order to achieve 
uniqueness [17]. Finally let us point out that since 

aZ 	
au—lau 

sin o ao' 
the conditions .3'u/a = 0 on .9D could have been replaced by requiring that 
0 1u/ao' = 0 on t9D. Phrased in this manner, the uniqueness problems considered 
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here can be thought of as a particular case of the oblique-derivative problem [17] 
associated with these equations. 

In future work we will use the basic Lemma 2.1 to investigate the domain of 
regularity of solutions of L,,k.(u) = 0. 
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I. INTRODUCTION 

In recent years analytic function theory has been shown to play a basic 
role in the investigation of existence and uniqueness theorems for solutions 
to elliptic partial differential equations ([6], [8], [17]). An approach which has 
proved particularly fruitful is that of integral operators ([1], [12], [17]), from 
whose use complete families of solutions can be obtained, thus enabling one 
to construct the Bergman kernel function and solve the Dirichlet and 
Neumann problems ([2]). For singular elliptic equations serious difficulties 
arise due to the nonregularities in the kernels of such operators, as well as the 
failure of Green's representation to hold in a neighborhood of the singular 
curve. In such cases recourse is often made to the use of operators whose 
path of integration is a contour in the complex plane ([7], [15]). In this paper 
we apply integral operator techniques in conjunction with function theoretic 
methods to establish an existence, uniqueness, and representation theorem to 
Cauchy's problem for the singular parabolic equation 

u 2vau au 
(1) 

where v is a real parameter. Equation (1) has previously been studied by 
Bragg and Haimo ([4], [13]) and is sometimes known as the generalized heat 
equation. 

The purpose of our work is twofold: 

1. To the author's knowledge this is the first time the integral operator 
techniques described above have been applied to a parabàlic -  equation. 

5Q 
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2. It shows not only the sufficiency but also the necessity of relying on 
function theoretic methods in the investigation of singular initial value 
problems such as the one considered here. 

Cauchy's problem for equation (1) can be formulated as follows: to find 
a unique function u(x, t) E C2  satisfying equation (1) for 0 < t < t 0 , 

- cc <x < cc, such that u(x,t) continuously  assumesgiven boundary data 
on the initial line t = 0. For v > 0 this problem has been solved by Chole-
winski and Haimo ([5]) provided that for each arbitrarily small, positive €, 

u(x, t) satisfies a bound of the form 

I u(x, t)I <,Me 2 , 	0 < t < t0  - , 	 (2) 

for positive constants M = M(€), 'A = A(E). The example u(x, t) = 
t_P_*e_ 2 /4 1  shows that such a condition is no longer sufficient to insure uni-
queness (to say nothing of existence) if v < - . By use of the fundamental 
solution to equation (1) Haimo has furthermore obtained expansion theorems 
in terms of a complete polynomial set for solutions of (1) which are analytic in a 
neighborhood of the origin, provided again that v > 0 ([14]). This work is 

a generalization of Widder's result for the case v = 0 ([18]) and is based on 
Eather lengthy calculations involving , Laguerre polynomials and Bessel 
functions ([13]). Here by the use of integral operator methods we obtain a 
somewhat weakened form of Haimo's result as a direct consequence of 
Widder's work, with the added advantage 'that the representation theorem is 
now valid for all real values of v except 2v = —1, —2, —3.....From now 

on the case v = 0 will always be excluded since in this case (1) becomes the 
heat equation for which the existence, uniqueness, and representation of 
solutions to Cauchy's problem are well-known results ([11], [16]). 

At this point we make the important observation that if u(x, t) is a solution 
of equation (1) which is analytic in a neighborhood of the origin, then, 
provided 2v =A —1, —2, —3,..., u(x, t) is an even function of x which is 
uniquely determined by its axial values, u(0, t).. This follows from the fact 
that the line x = 0 is a singular curve of the regular type with indices 0 and 

- 2v such that u/x = 0 along the axis x = 0 (cf. [10]). 

II. FRACTIONAL INTEGRATION AND THE GENERALIZED HEAT EQUATION 

From the relationship holding between the Riemann-Liouville operator 
of fractional integration 

!f(x) J j;y J (1 - e2y_1ez+1f(x) d, 	> 0, 	v > -' (3) 
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and Bessel's differential operator 

L defd 2f 2vdf 	
4 

dx + x dx 	 () 

viz. ([ 10]) 

-I'Lf = 	 (5) 

we can relate twice continuously differentiable solutions v(x, t) of the classical 
One dimensional heat equation which are even functions of x to solutions 
u(x, t) Of equation (1) by the relation 

u(x, t) P(v+) 1  
= 	 5 v(x, t)(1 - e2)V_l d 	 (6) 

P(v) P() o 

provided v > 0. If we assume further that v(x, t) is analytic at the origin 
(and hence also u(x, t)) then, following Erdélyi ([9]), for x and t sufficiently 
small, we can rewrite -(6) as the contour integral 

Sc v(x, t)(1 - e2)v_lde 
u(x, t) =  

•f (1 	2)V_ide 	 (7) 

def Av(x, t) 

where for v > 0 C is the interval [0, 1] and for v < 0, 2v =A —1, —3, —5,... 
C is. a loop beginning and ending at e = 0 and encircling 6 = 1 counter-
clockwise. The operator A defined above can furthermore be inverted ([9]) 
to obtain 

- Sc u(xe, .t) e2V(l - -- de . 

	

v(x, ) - 	5 	 (8) 

	

def 	 - 
= A'u(x, t) 

wh'ere C is a loop starting and ending at e = 0 and encircling e = 1 if 
> 0, and a loop starting and ending at e = 1 and encircling e = 0 if 

v <0, 2v =A —1, —3, —5..... In view of the unique dependence of u(x, t) on 
its axial values for 2v /r  —1, —2, —3,..., and the fact that from (7) we have 
u(0, t) = 0(0, t), it can be deduced from corollary 4.1 of [18] (which solves 
the Cauchy-Kowalewski boundary value problem for the heat equation 
"in the large") that if 2v 0 —1, —2, —3,..., every solution of equation (1) 
which is analytic in a neighborhood of the origin can be uniquely expressed 
locally in the form of equatiqn (7). If so desired, equations (7) and (8) can 
now be used for the urpose of analytic coitinuation. 
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In [16] Rosenbloom and Widder obtained a set of polynomial solutions 
to the one dimensional heat equation which are complete in the space of 
solutions analytic in some neighborhood of the origin ([18]). These are 
known as heat polynomials and can be expressed as 

[n/2] 
v(x, t) = 	

(n - 2k)!k! 	
(9) 

k=O 

This result was subsequently generalized by Bragg and Haimo to the case of 
equation (1) for v > 0 ([4], [13]), with the corresponding "generalized" 
heat polynomials given by 

F(v+n+) P(x, t) = 	2k (kn
) P(v + n - k + ) x22ktk 

	(10) 
k=O 

Observing that 

1. P,,(x, t) satisfies equation (I) not only for v > 0 but for all real 
values of v, 

t) = 22n f(v + n  +) 
f(v+) 	' 

- (2n)! 
v2 (0, t) - 

we have the immediate result (due to the unique dependence of solution to 
equation (1) on its axial values): 

LEMMA 1. For2v 	—1, —2, —3,..., 

	

Av 2 (x, t) = 	t) 

where 

h - f(n + D f(v + ) 

In Lemma 1 use was made of Legendre's duplication formula to evaluate 
the constant h:.  We note in passing that from the relationships ([13], [16]) 

' 

v 2 (x, —t) = 	2n  ((4t
x 

 )+. 	 (11) 

x2  
—t) = (-1)22n!tL-+ (--) 

	
(12) 
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where H2  denotes Hermite's polynomial and L 	Laguerre's polynomial, 
the following formula, due originally to Uspensky, is an immediate conse-
quence of Lemma 1: 

F(n + v  + 1) J (1 - 	4H2 (X+e) d = (—l)'(2n)! f'(v + )L:(x); 

v> — z (13) 

III. EXISTENCE, UNIQUENESS, AND REPRESENTATION OF THE SOLUTION TO 
CAUCHY'S PROBLEM 

Our first result in this section is to derive an expansion theorem for solu-
tions of equation (1) which are analytic at the origin in terms of generalized 
heat polynomials. Using different methods, the following theorem has been 
obtained in a somewhat stronger form by Haimo ([13], [14]) for the case v > 0. 

THEOREM 1. Let u(x, t) be a solution of equation (1) which is analytic for 
It I <a,  I x I <a, and assume 2v —1, —2, —3 ..... Then u(x, t) can be 
analytically continued into the strip I t  I <a, - cc <x < cc, and expanded 
in a series of the form 

u(x, t) =aP(x, t), 

the series converging pointwise for 0 <t <a, - cc <x < cc. 

Proof. Let v(x, t) = Au(x, t). Then v(x, t) is a solution of the heat 
equation, even with respect to x, and analytic for I t  I <a, x <a. 
Hence from [16] and [18] v(x, t) is analytic in the strip I t  I < a, 
- cc <x < cc, and we can write. 

	

v(x, t) = 	bv 2 (x, t) 	 (14) 
n=O 

where the series converges uniformly for each fixed t, 0 <t <a, x contained 
in any compact region of the complex x plane. Hence u(x, t) = Av(x, t) is 
analytic in the strip It I <a, —cc <x < cc, and for 0 <t <a we can 
apply the operator termwise in (14) and use Lemma 1 to obtain 

10 

	

u(x, t) = 	"h vD 

	

_ 	t) 	 (15) 
n=O 
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for 0 <t <c, —cc <x< cc. Setting 	equal to the new constant an  

establishes the theorem. (If v > 0 we could now use the results of [13] to 
show (15) in fact converges absolutely in the strip It I <a, —cc <.x < Go, 
and represents u(x, t) there. However for our purposes this is not required.) 

We now proceed to the main result of this paper, i.e. 'the solution of 
Cauchy's problem for the generalized heat equation. We first require a 
preliminary .definition. 

DEFINITION 1. An entire function of a complex variable is of growth 
(p, 'r) if and only if it is of order less than or equal to p, and is of type 'r if of 
order p.  

From [3] we have the result that the function f(z)= EO  az is of 
growth (p, r) if and only if,  

limsup -- an  1PIn <'r. 	 (16) 

Note that if f(z) is an entire function of growth (p, i), then f(z 2) is an even 
entire function of growth (2p, Pr). 	 ' 

THEOREM 2 If 2v 	—1, —2, —3, , then there exists a unique solution 
to Cauchy's problem for equation (1) which is of class C 2  for 0 < t < a, 
—cc <x < cc, provided that 

u(x, t) is analytic for I x I <a, I t I <a, and 

u(x, 0) = g(x) where g(x) is the restriction to the real axis of an even entire 
function of growth (2, ia). 

If g(x) is represented by its Taylor series 

g(x) 
='

An 

then for 0 <t <a, —cc <x < cc, u(x, t) has the representation 

u(x, t) = 	aP(x, t) 	- 

Proof.. Let 

f(x) = /11g(x) = 
	

a't4x2' 	- 	 - 

• -- V a F() F(v ± n + ) 
x2 

— nO ;IXn + ) 1"(v + ) 
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termwise integration being permissible since the Taylor series for g(x) 
converges uniformly in. the complex x plane. As is easily seen from its series 
development, f (x) is an entire function of growth (2, a)and hence from [16] 
and [18] we can construct a unique solution of the heat equation, v(x, t), 
such that v(x, t) is analytic for I t I <a, - <x < cc and v(x, 0) = f(x). 
This function is given explicitly by - 

oD 

	

- 	P(v ± n + ) F() 

	

v(x, ) - 	afl f(n + ) P(v  + ) Vn(X, ) 	 ( 17.. ) 

Let u(x, t) = Av(x, t). Then u(x, t) is a soluti6n of the generalized heat 
equation which is aialytic for 1. t I <a, — cc <x < cc. Furthermore - 

u(x, 0) = Ax(v, 0) = Af(x) 
= 	

aAA'x2' 
= 	

a,x2" = g(x), (18) 
,  

termwise integration being permissible due to the unifOrm convergence of the 
Tâylorseriés forf(x). Applying the operator A termwise in equation (17) for 
0 < t <a as was done in Theorem 1 yields the representation 

- u(x, t) = Y  aP(x, t). 	 (19) 

The solution u(x, t) is uniquely determined since if a second solution u1(x, t) 
existed satisfying conditions (1) and (2) of the theorem, then w(x, t) = 
u(x, t) — u 1(x, t)would also be a solution of equation (1) satisfying the hypoth-
esisof Theorem 2 with g(x) = 0, and hence v(x, t) = A 1w(x, t) would be 
a solution of the heat equation analytic at the Origin which vanishes along the 
characteristic t =0. From [18] v(x, t) can be analytically continued into the 
strip I t I < a, —oo <x < cc, and must be identically zero there, which 
implies Av(x, t) = w(x, t) 0, i.e., u(x, t) = u1(x, t) in a neighborhood of 
the Origin and both can be analytically continued into the strip I t  I - < a, 
— cc <x < cc. This shows that the solution u(x, t) we have constructed is 
unique in the class of solutions analytic in the strip I t < a; —co <x. < Co. 
But from the analytic. theory.of parabolic partial differential. equations ([1 1]) 
we have that any solution which is of class C2  in a domain not containing the 
singular line x = 0 must be an analytic function of x for each fixed t and hence 
if it is analytic for I t  I <a,  I x I <a, agrees with the above constructed 
solution u(x, t). The theorem is now completely proved. 

Recall from part I that the example u(x, t) = t_v_ e_x 2 /4t shows that in 
order to assure uniqueness, condition (1) of Theorem 2 is a necessary as well 
as a sufficient hypothesis for the case v < — , even if an a priori bound of 
the for qfeqtation..() is assumed pndition -2--now. appears as a kind of 
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"compatibility" condition, since the proof of Theorem 2 shows that any solu- 
tion satisfying the first condition automatically has an analytic continuation 
into the strip It I <a, - oo  <x < oo, under which u(x, 0) is continued to 
an even entire function of growth (2, ia). 
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JOHN'S DECOMPOSITION THEOREM FOR GENERALIZED 
METAHARMON1C FUNCTIONS 

DAVID COLTON 

1. Introduction 
A result of basic importance in the theory of metaharmonic functions [14] is 

John's decomposition theorem [12, 11], which states that any metaharmonic function 
regular in an exterior domain can be uniquely decomposed into the sum of a solution 
regular in the entire space and one which satisfies the Sommerfeld radiation condition 

urn r(_1)u12(_!f-. 
-00 	 or 	) 

=0 	 (1) 

uniformly in all directions. Here r is the modulus of the position vector and n is 
the dimension of the space. This theorem for example plays a central role in the 
derivation of asymptotic expansions and uniqueness theorems [4, 11]. In this paper 
we consider reguiar solutions of the singular partial differential equation 

0 2 ti 	O2t 	2v Ou 
—j- + ----- +---+u=0, 	 (2) Ox 	 yoy 

where v. is a fixed real parameter and which for v equal to a positive integer can be 
interpreted as being a metaharmonic function in n = 2v + 2 variables depending only 
on the two variables x = x 1 , y = (x 2 2  + ... +x 2)+. Solutions regular on some portion 
of the axis y = 0 are known as generalized metaharmonic functions [10]. The axis 
y = 0 is a singular curve of the regular type [8, 9] with exponents 0 and 1 - 2v. 
Consequently there always exist solutions of (2) which are regular on some portion 
of the axis, and for 2v 96 0, —1, —2, ... each such regular solution can be continued 
across the axis as an even function of y. Therefore for 2v 0 0, —1, —2, ... every 
solution regular on some portion of the axis is a real analytic function of x and y 2  
in some domain D that is symmetric with respect to the singular line y = 0. Hence a 
generalized metahannonic function can be expressed as u(x, y) = ü(r, ) where 
x = r cos 0, y = r sinO, = cos 0. For v > 0, we have at our disposal Weinacht's 
(renormalized) fundamental solution:  [15] 

Q(x,y; x 0,y 0) 
= 	

1' 
 [F(v)J 2 2' 2 ' f R'H,'(R)sin 2 'tdt, 	(3) 

0 

where R = [(x - x0) 2  +y2  +Yo 2  - 2YY0 cos t]+  and H,," denotes a Hankel function 
of the first kind of order v (Weinacht's original formula was expressed in terms of 
Neumann's function rather than Hankel's function). For future reference we note 
that fl(x, y; x0 , y0) is an analytic function of x, y and v for v > 0, (x, y) (x0 , Yo). 
By using Green's second formula for equation (2) [9] 

( 	Oit' 	\ f y2V u— _w_
3i

) ds = 
ff y 2 [u.L(w)—wL,(u)]dxdy, 	(4) L On 	On 

8DrR 	 Dr,R 
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ö2 	ê2 	2v3 
vhereR 	{(x,y)Iy> 0},LE 	+ W + - —  andnistheoutwardnormal 

to D, the following theorem for equation (2) can be proved in the same manner 
as in John's work, viz an application of formula (4) with u a regular solution of 

equation (2) and w set equal to the fundamental solution fI (cf. [5; p.  315] or [11]): 

THEOREM 1. Assume v > 0. Let u be a regular solution of equation (2) in the 

exterior of a bounded domain D. Then u can be uniquely decomposed as 

u=U+V, (5) 

where U and V are regular solutions of (2), U is regular in the entire plane, and V satisfies 
the radiation condition 

3u  
limr" +*(_ — 

\ 
iu) =0 	 (6) 

	

r- 00 	 Or 	, 

uizfor,nly for - 1 	1. 

For v <0 this standard method of analysis is no longer applicable due to the fact 
that the integrals defined in formulae (3) and (4) do not exist for v <0 and v 
respectively, and it is to this problem we now address ourselves. The approach 
adopted is to analytically continue the function defined by (3) into the range v <0 
and then to apply a relationship motivated by formula (4) where the path of 
integration is chosen to lie on the Riemann surface of the integrand 

	

2 	3w 	au' V ___ __)• 
( on 	an 

The resulting decomposition theorem is of particular interest in that it now turns 
out that the radiation condition (6) must hold uniformly for contained in a region 
lying in the complex plane, and not simply for - 1 1 as in the case of 
Theorem 1. An example will be given showing that this reult is best possible. This 
seems to indicate that analytic function theory not only provides a powerful method 
for studying generalized metaharmonic functions, but, as in the case with singular 
ordinary differential equations, is in fact the correct and natural avenue of approach. 

2. Analytic continuation of the fundamental solution 

Setting x = r cosO, y = r sinO, X0 = / cos (, Yo = p sinq, we can express R as 

R = [r2  +p2  —2rp(cos B cos (p +sinO sin p cos t)]. 	 (7) 

By using Gegenbauer's addition formulae [7; p. 101, 178] 

' Hj 1 (w) = (-4rp) - v F(v) 
n0 

 (v + n) Cv(cos ) J + ,,(r) H'(p) 

v o 0, —1, —2, ...; r < p; w = [p2 +r2 -2rp cos4]4,  (8) 

CV(cos  0 cos (p + sin 0 sin p.  cos t) 

n 
= 	2m(2v+2m_1)(n_,n) 	[(V)m]2 	(sin0)mC±(cos0) 

m0 	 (2V1)n+m _ i  

x (sin )m Ct(cos ) Cm (CS t) 	(9) nM 



JOHN'S DECOMPOSITION THEOREM FOR GENERALIZED METAHARMONIC FUNCTIONS 739 

(where 	denotes Bessel's function of order v+n and C is Gegenbauer's 
polynomial) the orthogonality property of Gegenbauer polynomials [7; p.1  74] 

f 	 Cnv(cos t) CmV (cos t)dt = JT(v)n! (n+v) mn' v > -, v 	(10) 0 
0 

and Legendre's duplication formula [6; p.  5] 

I'(2v) - 22_1 JT(v+) 
JT(v) -  

for v > 0, and r <p we can express formula (3) as 

Q (x, y; X0 Yo) = (r, ; p, n) 

(n+v)n! 
Jv+n(')11?n (p)Cn '(c) C'(i1) 	(12) n=o JT(2v+n) 

(where = cos 0, tj = cos p) since the series (8) converges uniformly for r < p, 
0 < çb < iv. By using the asymptotic formulae [7; p.  4, 8] [13; p.  199] 

	

r(v+n+ 1)(4) -V-fl 

J + (r) = 1 +o(l); n -+ co, 	 (13) 

- iv (p/2)"" 
H(p) = l+o(l); n -+ F r(v+n) 	

(14) 
IC()I 

= 1+o(1); 	[-1, +11, n - 	, 	(15) 

it can be seen that the series (8) in fact converges uniformly for r < p, cos 4) contained 
in some ellipse in the complex cos4) plane inclosing [-1, + 1]. if r is restricted 
such that r < p' <p for some constant p' then this ellipse can be chosen to be 
independent of r. 

If, instead of using the orthogonality property (10), we use the result [3] 

1 	 21_2 	JT(2) f (C21)'4Cm"Q)Cn'(C)dC = 
	[I'(v)]2 ! 	 (16) 

where C is a figure eight 1oop inclosing the points ±1 in the complex plane (which 
is cut by two lines running from these points to infinity), the preceding analysis 
yields the result - 

i 

Sin ivv[F(v)] 2  22_2v f RH1(R)(C2— l)V_1 dC 
C 

(n+v)n! 
= (+rp)_" 	 H11) 	C"(cos0)C"(cos (p), 	(17) n=o JT(2v+n) 

where R is given by formula (7) with t = cos t, v> 0, r <p. (in [3] formula (16) was 
proved for v <0, 2v 0 —1, —2, . .; the general result holds by analytic continuation 
with respect to v). The integral in (17) can be continued to complex values of 
X, 3), X0, Yo and defines an analytic function of x, y and v for (x, y) 0 (x0, Yo) 
(v = 0, ± 1, ±2, ± 3, ... are removable singularities) which agrees with Q(x, y; x0, Yo) 
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for v > 0, r < p. Hence (17) is the desired analytic continuation of (3) into the range 
<0, (x, y) & (x0 , Yo)• 

3. A decomposition theorem for generalised netaharmonIc functions 
From the analytic theory of partial differential equations it can be shown [1] 

that for each fixed r ? R (where R is a sufficiently large positive constant) ü(r, ) 
is an analytic function of for —1 1. Hence ü(r, ) can be expanded in a 
Gegenbauer series, provided 2v 96 0, —1, —2, ... [2], and the coefficients can be 
determined by use of equation (16). This yields the result that 

00  

	

r' 	[a C"(); r > R, 	(18) 

where a, b are constants and the series converges uniformly for R < r < R1  < cc, 
where R 1  is an arbitrarily large number, contained in some ellipse in the complex 

plane inclosing [-1, + 1]. Motivated by the results of parts one and two, we 
consider the function V(r, ) defined by 

a2''  7r[][,(v)] 2 	- 	(a, C; r,  ) 
i22 'cos 7ry f (ua.  Q 	da 

—(a, (; '•, C) 
ü(a, 

da 
C) )(C2_l)v-1/2dC, (19) 

where R < a < r, v <0, 2v —1, —2, —3, ..., C is a figure eight ioop in the 
complex ( plane surrounding the points ± 1, and Q is the continued fundamental 
solution of part two. Using the formulae 

ü(a, = 
	

{a[" Jv+n(a)]+bn [a_vH" 

	

n O 	
)n (a)]} C'(C), 	 (20) 

'(a,C; r,) 
=2' 

(n+v)n! d[a'J,+(a)] [r_'H 
(r)]C'()C'(C),  (21) 

Da 	n=o F(2v+n) 	da 

(n+v)n! 

	

(a, C; r,  ) = 2' E 	[a_v 	 C'() Cvg),  (22) 
n = o T(v+n) 

au(a,C) = 	f 	d[a'J,(a)] 	d[a'H,+(a)] ) C'(), 
	(23) 

.3a 	n=o 	 da 	 da 

= J,+(a) 
dH'(a) 

 —IJ11)(a) 
 dJ,(a) 	

(24) 
7ra da 	 da 

the uniform convergence of the series (17) and (20), and the orthogonality property 
(16), we have 

7ra2'1r' co
{[a'Hv'+(a) d[a''J,

+ (a)] 
V(r,t)= 	

da 2i 

d[a'H(a)] ) H,(r) C'() - [a_v J(a)] 
da 

OD  = r' I bH'(r) C'1(), 	 (25) 
,po 
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where the series (25) is uniformly convergent for a < R0  < r < R1  < co, contained 

in some ellipse T in the complex plane inclosing [-1, +1]. From Theorem 4.3 
of [1] it is seen that (25) is a regular solution of equation (2) for r > a satisfying 

lirnri(-_iV) =0 	 (26) 

uniformly for a T. From equation (18) we therefore can write 

ü(r,) = U(r,c)+V(r,); r > a, 	 (27) 

where 	 co 

U(r, ) = r" E a J + (r) C() 	 (28) 
h=O 

is uniformly convergent for R 1  r > R0  > a. In view of equation (13), this implies 
that U(r, ) is a real analytic function of r and in the entire (x, y) plane and this 
fact along with formula (27) shows that U(r, ) is an everywhere regular solution of 
equation (2). The decomposition (27) is unique since if U(r, ) is a generalised 
metaharmonic function which is regular in the entire plane and also satisfies the 
radiation condition (26), then the orthogonality property (16) and the series repre-
sentation (18) shows that fl(r, must be identically zero. We have thus proved the 
following theorem: 

THEOREM 2. Assume v <0, 2v 	—1, —2, —3..... Let u be a regular solution 

of equation (2) in the exterior of a bounded domain D. Then u can be uniquely 
decomposed as 

u=U+V, 	 (29) 

where U and V are solutions of (2), U is regular in the entire plane, and V satisfies the 
radiation condition 

3V 
urn r 4 (_ —iV) = 0 	 (30) 
r- 	ar 

uniformly for contained in some ellipse T in the complex plane inclosing [- I, + I] 
in its interior. 

Example. For v <-4 the ellipse T cannot be replaced by the line segment 
[-1, + 1}. For in this case U(r, ) = e'4  is a solution of equation (2) regular in the 
entire plane which also satisfies the radiation condition, i.e. the decomposition is no 
longer unique. 

Remark. For v > - 21  the condition that (30) holds uniformly in T is implied 
by the weaker requirement that (30) holds only for E [-1, + 1] [1]. 

References 

D. Colton, "A contribution to the analytic theory of partial differential equations ", J. 

Differential Equations, 5 (1969). 
, "Jacobi polynomials of negative index and a nonexistence theorem for the generalized 

axially symmetric potential equation ", SIAM J. App. Math., 16 (1968). 
, "On the analytic theory of a class of singular partial differential equations ", to appear 

in the Proceedings of the Symposium on Analytic Methods in Mathematical Physics (Gordon 
and Breach, 1969). 



742 JOHN'S DECOMPOSITION THEOREM FOR GENERALIZED METAHARMONIC FUNCTIONS 

D. Colton, "A priori estimates for solutions of the Helmholtz equation in exterior domains 
and their applications ", to appear in J. Math. Anal. App!, 

R. Courant and D. Hilbert, Methods of mathematical physics, Vol. II (Wiley, 1962). 
A. Erdélyi, Higher transcendental functions, Vol. I (McGraw-Hill, 1953). 

, Higher transcendental functions, Vol. II (McGraw-Hill, 1953). 
, "The analytic theory of systems of partial differential equations ", Bull. Amer. Math. 

Soc., 57 (1951). 
, "Singularities of generalized axially symmetric potentials ", Comm. Pure App!. Math., 

9 (1956). 
R. Gilbert, Function theoretic methods in partial differential equations (Academic Press, 1969). 
P. HartmalfandLC.  Wilcox, "On solutions of the Helmholtz equation in exterior domains 

Math. Z., 75 (1961). 
F. John, Recent developments in the theory of wave propagation (N.Y.U. Lecture Notes, 1955). 
G. SzegO, Orthogonal polynomials (Amer. Math. Soc. Colloquium Publications, 1959). 
I. Vekua, New methods for solving elliptic equations (John Wiley, 1968). 
R. Weinacht, "Fundamental solutions for a class of singular equations ", Cont. .Diff.  Eqns., 

3 (1964). 

Indiana University, 
Indiana, 

U.S.A. 

Printed by C. F. Hodgson & Son, Ltd., 23 Pakenham Street, London, W.C.1 



A CONTRIBUTION TO THE VEKUA-RELLICH THEORY OF 

METAHARMONIC FUNCTIONS 

BY 

DAVID COLTON AND ROBERT P. GILBERT 

[Reprinted from American Journal of Mathematics, Vol. XCII, No. 3, July, 1970.1 



A CONThIBUTION TO THE VEKUA.RELLICH THEORY OF 

METAHARMONIC FUNCTIONS.* 

By DAVID COLTON and ROBERT P. GILBERT. 

Introduction. It is the purpose of this' paper to use integral operator 
techniques to investigate the expansion problem for Appell series and to use 
these results, to derive a uniqueness theorem for the generalized axially sym-
metric reduced wave equation in n + 1 variables [15]. The importance of 
our work• is : two-fold: 	. 

'(a) itis a significant contribution to the method of generating kernels 
in the study of polynomial expansions of analytic functios 

(b) It presents.  for the first time a uniqueness theorem for an elliptic 
partial differential equation in more than two variables whose coefficients 
are singular in its domain of definition.  

The expansion problem for Appell series; An' Appell series is a 
series of the form 

(1)- 	 aM V M ( 8)(E); s> —i, 's,LO,. 
/L0 mr/h 	 , 

where M = (m 1, m,, . , m) is multi-index, m = M = m 1  + 	+ m, 
and Vu(8) () = T7(s) (s,. 	, En). The VM(8) () are uniquely defined by the 
generating function  

(1-2 (, E) + Ila  112) (n+81)/2 = E aVç() () 

Here 	 - 

(a, ) 	II a 112 	( 

and 	 . 	.-..- 

aMc. 1mi. . .Mn, - - 

and the summation in equation (1) and () is' meant to be an n-fold sum 
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over all indices from zero to infinity. In our study of Appell series we also 
will need to make use of the related polynomials, 

U,() (E) 	UM()  (s,. 
which are uniquely defined by the generating function 

{ { () —1] 2 .f. 11 CZ  112(1 - II 	12) }-812 _ 	MUM(8) () 
and possess the biorthogonality property 

• 	 (1—I1 II 2 )(8_ 2 VM( 8)UL( 8)()d. 
40 ;i) 

 
2,rn/2r( s 1y( s ) M  

8LM 
(2m+n+s-1)r(n/2+s/2—)M!' 

where M ! -_ ni1  ! ... m s !, and SLM 	 Here 8(0; 1) is the real 
solid m dimensional ball { 	1}. For more information concerning the 
polynomials UM (8) and VM (8 ) the reader is •referred to [1]. 

In this section we will consider the extension of the classical expansion 
problem for analytic functions of one complex variable to functions of n 
complex variables in terms of the polynomials VM(8) (s). In particular, is 
such an expansion possible if the analytic function is known only on a real 
environment, and in this case what can be said about the region of conver-
gence? For the case of one complex variable an established method of 
attacking such problems is the method of generating kernels ([2]) which 
can be briefly described as follows. Suppose we want to represent a given 
functionf() in the form of a series with a prescribed sequence of 
polynomials {q()}. We choose a "suitable" sequence of functions pi (s) 
and define the formed kernel 

 

If f() can be represented as 

f(s)  _~ ZF ~ 

fr 
K (e, t) P (t) dt 

for some path r and analytic function F(), then we have (assuming certain 
convergence conditions), 

f()5
= 

K(.,C)F()d 
r 

(9) 
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=i4) fr p(F(C)d- 

Thus f(s) = 	where the "Fourier coefficients" aj  are defined as 

3 ' p()F()d. The major difficulties in this approach is constructing 

a suitable kernel K (, C), analytic function F (a), and determining the range 
of the operator £. For hany cases, however, K(, C)  may be obtained by 
simple analytic computations from a. known generating function of the poly-
hornials {4() }, and F(C)  is the (generalized) Borel transform of f(), 
defined as  

(10)' 	 : F(C) 	
fk 

with, f 	I f& and the 	determined in a unique manner from K(, C) 
'([2]). 'As our notation indicates in equation (10) we may consider the 
Borel transform as in inverse operator for C. Consequently the problem of 
performing a series expansion in terms of the sequence {4} may be seen to 
reduce to' the determination of an inverse operator 	Furthermore, knowl 
edge of such an inverse operator can be instrumental in examining the analytic 
properties -of such series expansions, as has been emphasized in the monOgraph 
[14]. Following the approach of ['14] we are, àblè to solve the above men- 
tioned expansion problem associated with the polynomials Vu(s) () for the 
first time. See for' instance [11] pp.  280-282, and [1] pp.  296-297,' for- a 
'list of the known 'results concerning these polynomial expansions prior to 
the -present investigation.  

	

The operator 0 is constructed by considering the kernel 	' 

(11) 	K1 (, C) 	MVM(8) () = (1 	2 ( 	) + II - 112) -(n+8-1)/2 - 

and observing that by Cauchy's theorem for several complex variables - - - 

(12) - 	 ()nfKl(E,c)CM=vM(8)() - 

where F = H r, and the ri  are chosen such that F lies outside a sufficiently 

large hypersphere A (0 ; R) =, 	(U C 1J.. v . 	R} where 1 1 C lIa.v. l C 1 2 ). 
If the holomorphic function F(C) is defined as 	 ' 

(13) 	 F()aMCM, CE(0;R'); (R'>R) 

then we may define the function element {f() ;i(0;)},'€>0, by 
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f(s) =F ()n f K 1 ()F(C) dt  

 
=aMVM (8) (), Ei(0;€). 

From (12) the kernel K 1 (.E, ) is seen to be singular only on the analytic set, 

{()I 1-2(p)  + H 

hence one may conclude using the iladamard-Gilbert Theorem' (or Landau-
Bjorken rules) [13], [22] (See in particular Theorem (1.3.3) of [14].), 
that if F(C)  is holomorphic in A (O; 1), then the function element {f; (0,  €)) 
has a holomorphic extension to a full neighborhood N(S) of the real unit 
ball, 8(0, 1) {6 1 116 II :5~ 1). We proceed by taking F(C)  holomorphic in 

(0; 1 + E), e > 0 sufficiently small and note that the singular points of 

K,(C, ) must lie on the analytic set X, defined by 1— II 12  + II - 11 2  = 0. 

For 6 E 8(0; 1) this means 11  8, where 0 ~ :5; 1, which is easily 

violated by taking either a 11 C liar, sufficiently large or small. Consequently, 
ignoring the "kernel pinch" which may occur for 116 11 = 1 (and which does 
not correspond to a singularity of f(s) on its principal sheet), it is seen that 

f() is holomorphic in a full complex neighborhood of S(0;1). Actually 
one may compute the singularities of f(C), using the Hadamard-Gilbert 
Theorem, if the singularity manifolds of F(C)  are known For instance, if 

F(C) should have a singularity on the analytic plane C, = &(l = 1,2, , n.) 
> 1 then a singularity of f() must correspond to a coincidence, 

Cifl{Cz=2} 

= { (C, ) I S (C, ) = 1 - 	+ 2  + 2 (C2_ 2EC-') = 0). 

Eliminating tj (i =A 1) between S (C, ) = 0, 	= 0 (i 1) yields the 

following set of candidates for singularities of f (E) 

 
2, 

When 	0 (i 1), E is a point in the a-plane which lies on the ellipse 

1  The well known (to field-theoretical physicists) Landau-Bjorken rules (1959) 
[22], which occur in the study of the singularities of Feynman amplitudes are actually 
a direct corollary of the Hadamard-Gilbert Theorem (1959) [13]. Actually, Landau 
merely conjectured these rules, and was unable to provide a valid proof. 
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with focii at ± 1 and major axis I a I+ 	'. This restriction of E is 

exactly the singular point Nehari [25] found, when he investigated the 
singularities of Legendre series. This is not at all remarkable, however, since 

for the case m = s = 1, the polynomials VM(8) () reduce to the Legendre 

polynomials P, (s). 

Remark. E 1  fl N{8.(0; 1)) = 0 (1 = 1, 2, 	. , n) for a sufficiently small 

neighborhood of S(0; 1). 
We now turn our attention to the construction of an inverse integral 

operator, O', to the operator defined by (14). We introduce as a kernel for 
this operator the formal sum, 

K 	
- r([n 4-s—i]) (1-I 1 II 2 )(8 _ 1 ) 2  

2(C)— 	2'2r(s/2+1) 
 

(2m+n-l-s-1) M!UM(8)()I. 

In order to show that the formal series (17) converges uniformly for 

E 8(0; 1) and CE i(0; €) we need only to consider the several variables 
analogue of the Weierstrass comparison theorem, and the generating function 

expansion (5). We conclude K2(C,)  converges uniformly in any region 

(0; €) X N{S (0; 1) } which does not meet the set, 

a 	{[Cfl [(C,) _1]2  + II C fl2(i_  II II) 	0) 

From the orthogonality properties (16) between the polynomials TJM(8) () 

and UM (8)(), one has that 

CM=f
s(o; 

K2(C,C)VM(8)()d, 
1) 

and indeed when the series (17) converges uniformly, that 

F(C) =Z-'f() 	(J.)nf

s(o;') 
K2(C,6)f(E)d 

 
(19) 

= 

Actually, the comparison theorem indicates K2  (C, ) will converge on a 
somewhat larger region than mentioned above. The singularities of K2  (C, ) 
may be computed by using a method, introduced in [15], which incorporates 
a several complex variable analogue of a theorem due to Fabry. Another 
approach, is to replace the sum (17) by an integral suggested by the generating 
function (5), and the Beta function representation, namely 
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K2(C,\r(2+s_1 {(2A++s-1)2(AC,4)}1, 1• 	2I2r(s+1) 
where 

E E K2(C ) C 	C     	((Ct1t2 

(20) 
±2C2[1— t1]t2 	n+. •+nCn[itni]tn_1)2. 

+ ( Il II) ([Citr 	t0]2 	[C2(1t1)t2 . . ]2 

j_ 	2 )_8/2. 	dt 1 	dt2 	. 	dtn 
+ [C( 	n-i) nil ) 	- \ 	(1 	 (1 

1\ 	1/ 2 - 2/ 	fl\ - fl) 

Since the terms in the series (17) vanish for all < n, it is quickly seen that 
the integrand for K2(C, ) is regular at t1 = t2  = 	= t = 0, and at 
t i  = = = t 1  = 1; hence, the integral for K 2  (C, ) is valid providing 

s> 0, 6 E S (0; 1) and C E A (0 ; €) with € > 0 sufficiently small. We remark 
that K 2  (C, ) and its analytic continuations are clearly regular where E 2  (Cl ) 
is regular, and hence the singularity structure of K2  (Cl ) may be determined 
by investigating the latter function. By the Hadamard-G-ilbert Theorem (or 
Landau-Bjorken rules) the singularities of K 2  (C, ) musi correspond to either 
envelope-pinches or end-point pinches; see for instance, Theorem (1. 3. 3) of 
[14] and also the remark before Theorem (1.3. 2). The singularity manifold 
of the integrand occurring in (20) may be represented as 

x(C,,t) 	(1C1t1 . •t+ 2C,[1t1]t2 . . 

tn] 2  
+ [2(1_t1)t2 . 	. . + [Cn(1tni)tn]2 ) = 0. 

The possible singularities of K2(C, ) may be then computed by eliminating 
each of the t, t 2, . ., t variables from x(C, , t) = 0 by setting t= 0, 1, or 

adding the condition LX (C, , t) =0, which specifies a coincidence of singular 

points in the complex t i-plane. For instance, if -we consider the following 
end-point pinch {tk = 0; tj  = 1, for 'Vi  ic, le < n} x (C , t) = 0 becomes 
(P - \ / i 

12 L Pk+1  2(1 2 

Remark. Recalling the singularity sets, B 1, given in (1 6) for a function 
f(s), let us'computd a possible singularity of an F(C) = 	corres- 
ponding to 	- 	- 

1 
• 2 

- 	- 	 2 
i2€l 
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considering a coincidence with (' - 1) 2 + t il (1 - Ii 2) = 0. One obtains 

x(,E) 1-21E,+ + 
2e

l) =0. 

Forming the coincidence pinch with respect to z, 1. e. eliminating between 

the above and - 
	

2C + 212ar1  = 0 yields C, =atas the only consis- 

tent singular point. We notice that C, = z was exactly the singularity of 

F(C) which produced E1  as a candidate for a singular set of f(E). 

We summarize our previous discussion as a theorem. 

THEOREM 1. Let F() as defined by (13) be holomorphic in (0, 1) cC, 

and let f() be defined as in (14). Then f(E) is a holomorphic function in 
some complex neighborhood of 8(0; 1), on its principal sheet of definition. 
Furthermore, if F() has a singularity on the analytic plane, C, =; I a I > 1, 
then is singular on E1. On other than the principal sheet, f(E) may also 
be singular on 116 11 = 1. 

THEOREM 2. The only singular points of K 2 () are to be found on 
the union of analytic sets 

2 	U {[C,fl I [_1]2 + Ci2 (1- H 11 2 ) = 0; 

(h,. 	•,&,• 	•,) EC''}. 

The notation 	., ,• 	, ) means that C, is missing from the (n—i)

tuple.) 

Proof. It is of interest to recall that these are just the singular sets 
predicted by the end-point pinches discussed above. In order to prove this 
result we represent K2 (, E) by the integral 

= (f 	f 1UM(8)(M1 

(s) m  
 

'. M 
where (s-) 	

flS  t 	 1fl 

(....) 	, 
'1 

=flo i ( 0;1—) and (-) € A (0;1). From the Weierstrass comparison 
i=1 	 'l. 
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theorem it is clear that the second series converges for all (ti) E  C except 
-'7 

for those points on the coordinate planes. In this case we have 

[2m+n.-i-s.1 	2m±n+s+1 (+
1 ) !] -'-1 asmoo. 

(S)m 	
m!][ 	 —

(5)m+i 

Hence, by Fabry's theorem [12] pg. 377, on each coordinate, analytic-plane, 

'Ci -1, (i 1, 2, . , n), (c,,. . , , , ) E C'', is a singular 
point. Using the extension Of the Hadamard multiplication of singularities 
theorem as given in [16] pg. 35 we. conclude that K, (, ) may be singular 
only for - 

(i_1)2+ 2(1_ II 11 2 ) =0, Zk E C', kl, 

•as is stated. 

THEOREM 3. Let f(E) be an analytic function of n complex variables 

in some neighborhood S of the unit ball 8(0; 1). Then f() can be expanded 
in an Appell series, - 

f() =aArVM (8) (), s>-1, 

which converges uniformly for 

E5N{S(0;1)}flN*{S(0;1)} with N{S(0;1)}C1, 

and where the coefficients are given by the formula 

aM==hM8fS(0; 

(1-11 1I)(82f()UM( 8)()d 
1) 

with 
- 	 h 8 (2m+n+s-1)r([n+s-11)I! 

Al 	2-"r(s/2+1)(s). 

Proof. 1ff () is holomorphic in N{S (0; 1) } then we may choose a 

5 = 5* C N{S(0; 1)} which is a complex neighborhood of 8(0; 1). Further-
more from (24) the only singularities of the kernel may be written as 

Cl 	(1 j2 ) 1 [ j ±i\/1_IIII?], 	(1=1,2,-. 

for either choice of sign in the above I C, 	1, for E 8(0; 1); indeed, 

K, (, ) is seen by majorization to be regular in A (0; 1) x S (0; 1). Hence, 
by a direct computation of possible singularity coincidences between the kernel 
and f (c), auid iiT computing also the "endpoint pinches," we conclude F () 
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is regular in A (O; 1 + €), on the principal sheet of F(). Using this F(C) 
we may now compute the series representation for f(s) as 

f() =( -'f()) =() = E aMVM (8) (C) (s > —1,$) 

where the coefficients are defined by (25). The termwise integration is valid 
since F() is holomorphic in (0; 1), and the kernel K1 (, ) is uniformly 
convergent for t E A (0; 1 + 	E 5, which may be seen by simple estimates. 

.3. A uniqueness theorem for the generalized axially symmetric, re-
duced wave equation n + 1 variables. Although existence and uniqueness 
theorems for linear elliptic partial differential equations in a domain D 
with coefficients continuous in D have been known for some time ([3]), 
similar results for equations whose coefficients have singularities in the domain 
under consideration are practically unknown. Recently attention has been 
given to a class of singular equations which appear frequently in both pure 
and applied mathematics and are known as generalized axially symmetric 
partial differential equations. This class of equations was first studied by 
Weinstein ([30], [31]) and developed further by many other researchers, 
in particular Gilbert ([14]) and Gilbert and Howard [17], [18]. Problems 
of existence and uniqueness of solutions to boundary value problems for the 
elliptic equations in this class have been studied by Huber ([21]), Parter 
([26]), Colton ([4]-[7]), and Colton and Wimp ([9]). Just as a thorough 
knowledge of the Laplace and Helmholtz equation guided the attack on 
linear elliptic equations with continuous coefficients, it is hoped that a better 
understanding of generalized axially symmetric equations will give insight 
towards developing a theory of elliptic equations with singular coefficients. 

In this ,section we will derive a• uniqueness theorem for the exterior 
Dirichiet problem for the generalized axially symmetric reduced wave equation 
in n + 1 variables 

- 	ô'u 	alu 	a2U s (27) 
vX1 	 uX, 	up 	p up 

where s > —1, s 0, and A> 0 is real. This is the first time a uniqueness 
theorem has been obtained for a singular elliptic partial differential equation 
in more than two variables, such work having been delayed until the necessary 
results on several complex variables were available to derive the theorem 
obtained in section two. It should be noted that Huber ([21] has investi-
.gated the equation £ 0. 8 [u] 0 in domains D for the case in which D does 
not contain a--portion of the plane p = 0. - Since we are concerned with the 
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case in which the coefficients of the differential equation are singular in the 
interior of D, his work has no direct bearing on our investigations. The 
analytic theory of equation (27) has been studied by Gilbert ([15], [16]), 
Gilbert and Howard ([17]), and Henrici ([20]). Uniqueness theorems 
for the case s = 0 by Colton and Gilbert ([8]), lTekua ([33], [34]), Sommer-
field ([28]), Rellich ([27]), Maguus ([24]), Levine ([23]), and Wilcox 

In either of the half spaces p> 0 and p < 0 equation (19) is an elliptic 
partial differential equation with analytic coefficients and hence every twice 
continuously differentiable solution is a real-analytic function of (x,p) 
-_ (x1, , x,, p) in each such half space ([3]). The plane p = 0, which 
will be called the axis, is a singular plane of the regular type with exponents 
0 and 1 - s ([10]). Consequently, there always exist solutions of equation 
(19) which are regular (i.e. analytic functions of x and p)  on (some portion 
of) the axis. It is seen from the differential equation that if s=/ 0 then 

ou  = 0 on the axis for such regular solutions and if s > - 1, s 0, each 
ap 
regular solution can be continued across the axis as an even function of p, 
i. e. for such values of S every regular solution is an analytic function of x 

and p2  in some domain D that is symmetric with respect to the axis p = 0. 
The case s = 0 is the classical n dimensional reduced wave equation and has 
been treated in [8], [23], [24], [27], [28], and [32]. If u(x,p) is a regular 
solution of X,s[U] =0 and s > —1, sr0, then u(x,p) is an even function 
of p  and hence can be expressed as u(x,p) =fl(r,E), (s,. where 

are the hyper-zonal coordinates ([1]) defined as 

xi -. 

x 2  

(28) 

p = r (1— 2) 

2 It should be noted here that the fundamental results contained in [27] (which 
are normally attributed in western countries solely to Rellich) were also developed 
simultaneously by the Russian mathematician, I. N. Vekua ([33], [34]). 
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In what follows D C R' will always denote a normal domain sym-
metric with respect to the axis p = 0, OD will be the boundary of D, F the 
region exterior to the closure .t of D. 

THEOREM 4. Assume s > —1, 54  0, and let u (x, p) = 'ü (r, ) be a 
regular solution of 2,8 [u] =0 in F such that u(x,p) € C2 (P) and for each 
fixed r, a r <oo, (where a is such that r = a contains D) ii(r, is an 
analytic function of in a domain 5 in the complex E space containing the 
(real) closed unit ball S(0;1) where 5 is symmetric with respect to con-
jugation. If 

(1) r(8)i2 I fl(r,  ) is uniformly bounded for a r < ob,'6 € 5 

urn f r8(1 - U I2)(8_12 I --ikü 2  d= 0 
S(O;1) 	 Or 

where S(0;1){fl IIII2l}, 

ü(r,.)0 on OD 

then ü(r,.)0. 

Remark. If conditions (1) and (ii) of the theorem are not imposed 
there will exist "eigenfunctions" of equation (16) and we cannot expect a 
unique solution to exist ([4]). 

Proof. In order to establish this result it is necessary to express (27) 
first in the hyper-zonal coordinates (28). This was done in [14] : however, 
the computations involved are not presented there or elsewhere for s not a 
positive integer, and hence we indicate them below. The formal identities, 

O4' 	O 2 I, 
r2 	- (r2 —p 2 )--+ (r[n-1] + 

j=iOx 2 
 

2p2 	024 	
(1 	n 	" 

+J+ - --)i- r  
j=i 	Oj 

2 	fl 	 O2I, 
+--(1+)k 

j=1 Oj 	 r j,k1 	 k 

and 

	

2 	n 	04' 	204' 
24, _ 

r2 ;;- = 	r Or 	r 	1=1 OEj PT 

2o2 ' 	024, 	p2 12 	 024, - 	
i + r 



536 	 DAVID• COLTON AND ROBERT P. GILBERT. 

may be combined, for x+1 = p, to form 

nT 

 
n 	 n 04,  

A separation of Variables is possible by choosing the separation constant 

to be (+ n) (i +8-1), with j: arbitrary, obtaining the following two 

equations for a solution to (27) of the form P(r)E() 

r2P/ +r(&+s)P'+ [A2r2 _t(n+s+,L_1)]PO, 

(p+fl) (,h+8-1)E + E —[----z[ j -  + (s-1)E]} =0. 

	

z=1 	 i=1 Del 

When /.L = m, an integer, (33) is the partial differential equation that VM(8) () 
and UM (8)() satisfy [11] Vol. II, pg. 275, 278; hence, one may obtain 

eparated solutions of the form 

Ls_i) (Ar) TTM(8) (a), ü (r,) =r_(8_1)'7 + (  

where Z(Ar) designates a cylinder function of order v. 

We return now to the proof of our theorem (making use of Theorem 3) 

and expand 'ü (r, ) for each fixed r ~ a in an Appell series, 

ü(r,) =aM(r)T7M(8) (), 

'which converges in a suitable domain 5 satisfying the hypothesis of the 
theorem. Next, we wish to verify that the Fourier coefficients of such an 

expansion are of the form aM(r) (Ar). To, this end we 

obtain, in view of Theorem 3 and equation (33), 

hM (8) 	r2 UM (8)  () (1 
- II II) (8_ 1)/ 2 x s [ 4fl d'' 

,S(O;1) 

1 	d (r 8 M 	) +A'r'aM (r) +n(s-1)a(r) -r dr 	- dr 

+ hu(8) aN(r) ( 	
fS(0;  

(1 	j2) 	() 
0 OVN(8)

N 	j=1') 	
[ 

• - 
	 n 	OVN 	- + (s  --- 1)V N(s))]d), 

=1 	(rn*4aM(r)) ±'r'(r)—(n±+s-1)au(r)=0.am 
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The procedure we shall follow at this point is to prove that the aM (r) 0 

for 'v'M. To this end, we need an identity which we obtain by an application 
of Green's formula, namely 

fs(o;  
r(1 -II  II 2 ) 8_l)(u 	 = 0, 

i) 	 Or 	Or 

for sufficiently large r, and fi 	(ii). Consequently, it is possible to show, 
as was done in [6] for GASHE, that 

lim fs(o;  
r8(1_ II I1 2 )(8 1)1 2  j u I2d 	0. 

1) 

We now define 

 

and observe that g (r, ) is a analytic function of 4 and which agrees with 

I ü(r, s) 1 2  for 6 real valued. Since VM(8) () is a polynomial with real coeffi-
cients and S is symmetric with respect to conjugation, it can easily be shown 
([6]) using equation (35) and condition (i) of the theorem that r'8 I g (r, E) I 
is uniformly bounded for ar <00, EE 5. Now define for fixed r and 
variable 

F() =5 r8(1_ II 
(0) 

Observe that Fr(s)  is analytic in A (0); ) (if t is chosen sufficiently small) 
and for r ~! a, € A ((0) ; ), I F.() I is uniformly bounded. By equation 
(38) we have 

limFr()=O; eE(C(°) ;)flS(O;1). 

Hence by a several complex variable version of Vitali's theorem as given in 
[19] we have 

limF() =0; E i( (°) ;). 

Differentiating in equation (40) and applying Theorem (2) a second time 
we have 

limr 8g(r,) =0; E i( (°) ;). 

Hence 

limr( 48)I2  2 aM(r) VM(8)() = 0; € (0); C) fl S.(0; 1). 
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From equation (35), condition (i) of the theorem and Vitali's Theorem 
again we can conclude that 

limr(' 8) I 2i(r,) =0;ES(0;1). 

By the formula for the coefficients aM(r) given in Theorem (3) and Lebesgue's 
dominated convergence theorem we have for each M, 

limr(8) / 2aM(r) =0. 
r-+ 

But since r( 8 _1)/ 2aM(r) is a cylinder function, this implies aM(r) = 0 for 
each M, and hence by equation (35) and the analyticity of 'ü(r, ) in F we 
can conclude that ü(r, ) 0. The theorem is now proved. 

INDIANA UNIVERSITY. 
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FUNCTION THEORETIC METHODS IN THE 
THEORY OF BOUNDARY VALUE PROBLEMS 

FOR GENERALIZED METAHARMONIC 
FUNCTIONS 

BY DAVID COLTON AND ROBERT P. GILBERT 

Communicated by Wolfgang Wasow, March 17, 1969 

1. Introduction. Although existence and uniqueness theorems for 
linear elliptic partial differential equations in a domain D with coeffi-
cients continuous in D have been known for some time, similar re-
sults for equations whose coefficients have singularities in the domain 
under consideration are practically unknown. Recently attention has 
been given to a class of singular equations which appear frequently in 
both pure and applied mathematics and are known as generalized 
axially symmetric partial differential equations [3], [5], [8]. Just as 
a thorough knowledge of the Laplace and Helmholtz equation guided 
the attack on linear elliptic equations with continuous coefficients, 
it is hoped that a better understanding of generalized axially sym-
metric equations will give insight towards developing a theory of 
elliptic equations with singular coefficients. 

We wish to announce in this note a uniqueness theorem for the 
exterior Dirichlet problem for the generalized axially symmetric 
metaharmonic equation 

	

alu 	 O'u 	3 2u 	s 9u 
(1) 	

1 	 ax 	92 	p op 

where s> —1, s9-~ O, and X>O [5]. This is the first time a uniqueness 
theorem has been obtained for a singular elliptic partial differential 
equation in more than two variables whose coefficients are singular 
in its domain of definition, such work in the present case having been 
delayed due to an insufficient knowledge of certain areas of the theory 
of several complex variables. Our result depends on first using the 
Hadamard-Gilbert Theorem [5] to solve the classical expansion 
problem for Appell series and to then apply this along with Vitali's 
theorem for several complex variables [o] to obtain the desired 
uniqueness theorem. 

This research was supported in part by the Air Force Office of Scientific Research 
through grant AFOSR-1206-67. 
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2. The expansion problem for Appell series. An Appell series is a 
series of the form 

E aMVM() 	 aMVM(); 	s> - 1, s ~ 0 
M 	 pO m=p 

where the polynomials 

V() 	 , ); M = (mi , in2, 	, Mn) 

are uniquely defined by the generating function 

(1 - 2(a, E) + II aII2)+* 12  = 

Here (a, 	 a,, IIaII2=(a, ix), aMai 	a", m= I MI 
=m1+m2+ . . +m and the summation in equation (2), (4), and 
in what follows, is meant to be an n-fold sum over all indices from 
zero to infinity. We also need the related polynomials 

U() = U( 1 , t2, • 

which are defined by the generating function 

{ [(a, ) - 1] 
2 

+ 	
2 

- ii Ii 2)1 -a/2 
	

aM UZ (i). 

These polynomials satisfy the biorthogonality relation 

fs ( 0 1 1)  
(1 -

(7) 
 

27r'/ 2 F(s/2 + 1)(s)m 
ÔLM 

(2m + ii + s - 1)T'(n/2 + s12 - 112)M! 

	

ö,,, M!=m1 ! 	m,,!. Here S(O, 1) is the real solid 
n dimensional ball {I IIEII 1 1. For more information concerning the 
polynomials VS() and  U(E)  see [1]. We are interested in the 
classical expansion problem for analytic functions of n complex vari-
ables in terms of the polynomials V () viz, if f(s) is analytic on 
S(0, 1) can it be expanded in a series of the form (2) and if so what 
can be said about the region of convergence? 

THEOREM 1. Let f(s) be an analytic function of n complex variables 
in some neighborhood 5 of the unit ball S(O, 1). Then f(s) can be ex-
panded in an Appell series, 

f(s) = E aMVM(); 	s> —1, s 7-1  0 
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which converges uniformly for 	a = 71 { S(0, 1) 1 n,7 { S(O, 1) } with 
17 {S(o, 1) } Cñ, 	{ 	} ( denotes complex conjugation), and 
where the coefficients are given by the formula 	 - 

a7f = 4f (1 - III) (8_l ) I2f()U()dtE 
3(0,1) 

with 

a 	(2m+n+s-1)r([n+s—l])M! 

2-/ 2 r(s/2 + 1)(s)m 

OUTLINE OF PROOF. The technique used is to develop an integral 
operator approach to the method of generating kernels [2]. We first 
define a new function F() defined by 

/ 1 \n 
F( -) = Of(s) = (-) j 	K 1 (, )f(E)dE = E aMM 

where 

K 1(, ) 	
r@[n + s - 	IIII2) 

27r'2 F(s/2 + 1) 
 

2m+n+s-1 	() M 
M!UM(. 

(S)m 

From the Weierstrass comparison theorem [5] and the generating 
function expansion (6) it can be shown that equation (8) defines an 
analytic function of for Ei(O, 1). Here (0, 1) denotes the open 
unit ball in the complex space. We next define the inverse operator 
0' by

dnr 
f() =O'F() = (--)fK2(E, -)F( -) 

 
= aMVM() 

where 

M 
 

K 2(j-) - V 	(1 2 

and r = fl 1' where the r i  are chosen such that r lies outside a 
sufficiently large hypersphere (0, R). By using the Hadamard- 
Gilbert theorem [5] and the fact that f(s) is analytic in j, one can 
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conclude from (8) that F(fl must in fact be an analytic function in 
some complex neighborhood of i(0, 1) on its principal sheet of defini-
tion. Using, this fact in conjunction with the series representation (8) 
for F() shows that the series (10) converges unifcfrmly in some com-
plex neighborhood of S(0, 1) and agrees withf() there. The formula 
for the coefficients is arrived at through use of the biorthogonality 
relation (7). 

3. The uniqueness theorem. Since the plane p=O is a singular 
curve of the regular type with indices 0 and 1—s [4] there always 
exist solutions of equation (1) which are real analytic on some portion 
of the axisp=0, and ifs> —1, s;,6 0, such solutions can be continued 
across the axis as an even function of p. Hence each such analytic 
solution is analytic in a domain D that is symmetric with respect to 
the axis p = 0 and can therefore be expressed as u(x, p) = ü(r, ) where 
r, t = (, • , ) are hyper-zonal coordinates. 

THEOREM 2. Assume s>-1, s0, and let u(x, p) =ü(r, ) be a real 
analytic solution of L. [u 1 =0 in where is the exterior of a normal 
domain which is symrnetric with respect to the axis p = 0. Let u(r, ) 
EC2 (t) and for each fixed r, ar< oo (where a is such that r = a con-
tains D) assume that ü(r, ) is an anal ytic function of in a domajn a in 
the complex space containing the (real) closed unit ball S(0, 1), where 

is symmetric with respect to conjugation and independent of r. If 
there exists a positive constant M such that 

	

r()/2 I ü(r, ) I 	M 	for a 	r < oo , t E  a, 
Js(o,l)r'(1 - 	2) (.1)!2 3ü/3r - AuJ 2dS = 0, 

ü(r, ) =0 on the boundary of 
then ü(r, ) m 0. 

REMARK. If conditions (i) and (ii) of the theorem are not imposed 
there will exist eigenfunctions of equation (1) and we cannot expect 
a unique solution to exist. 

OUTLINE OF PROOF. Using Theorem 1 we expand 12(r, ) for each 
fixed r >a in an Appell series 

(r ) = 	a i(r)Vi (); 	tE 

From the biorthogonality property (7) it can be shown that 

au(r) = 

where Z,(Xr) denotes a cyclinder function of order P. Applying Green's 
formula and condition (ii) gives 
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urn fs(0,1) 
r' 8 (l - IjEIl 2)t_1)2  u 2jn  =0. 

 

If the polynomials V () satisfied Parseval's relation we could now 
proceed with the proof by following the approach used by Vekua in 
[7 ]. Since this is not the case we resort to techniques first used by 
Colton in [3].  Define 

g(r, ) 	ü(r, E)il*(r, *), 

and observe that g(r, ) is an analytic function of which agrees with 

I u(r, ) 1 2 for E real valued. From condition (i) of the theorem it can 
be shown that r'j g(r, E)I is uniformly bounded for a r < oo, 

Now define for fixed r and variable 

F) 	fE 	- II2) (( ' ) ' 2) g(r, )dE, 

and note that Fr(s) is analytic in (0, e) (if e is chosen sufficiently 
small) and for r>a, EE(0, )' I Fr ( is uniformly bounded. By 
applying a version of Vitali's theorem for several complex variables 
[o], it can be shown using equations (13) and (15) that 

Jim r(8)I2ü(r, E) = 0; 	E S(01  0. 

Theorem 1, equation (12), and the asymptotic behavior of cylinder 
functions (c.f. [7])  now shows that aM(r) =0 for every M and hence 
u(r, E)O. 
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In this paper solutions of the generalized metaharmonic equation in several 
independent variables 

(1) 	L3[u] = 	+ 
Ox 1  

Ou 02u 	S Ou 	2 + - + + - - +2 u = 0 
p op 

where A > 0 are uniquely decomposed into the sum of a solution regular in the 
entire space and one satisfying a generalized Sommerfeld radiation condition. Due 
to the singular nature of the partial differential equation under investigation it is 
shown that the radiation condition in general must hold uniformly in a domain 
lying in the space of several complex variables. This result indicates that function 
theoretic methods are not only the correct and natural avenue of approach in the 
study of singular ordinary differential equations, but are basic in the investigation 
of singular partial differential equations as well. 

The techniques employed in the analytic theory of partial differential equations 
in n > 2 variables are in general quite different than in the case of two independent 
variables since one now needs to study analytic functions of several complex 
variables instead of a single complex variable (c.f. [91). This point is aptly illustrat-
ed in the present work since although for n = 1 the above mentioned decomposition 
theorem has been previously obtained in [2] the methods used there do not 
immediately generalize to the several variable case considered here. This is due to 
the fact that in [2] rather explicit evaluations of certain contour integrals over the 
Riemann surface of multivalued analytic functions were required, and for functions 
of several complex variables this becomes prohibitively difficult. Hence an entirely 
different approach is employed ,namely the use of differential recursion relations 
similar to those first used in [3] and [4] to investigate the analytic theory and uni-
queness problems for a class of singular equations closely related to 1). Although 
the use of contour integration is avoided the approach remains function theoretic 
in nature. 

* Present address: Department of Mathematics, Indiana University, Bloomington, Indiana 
47401, U.S.A. 
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For the special case n = 2, s = 0, (i.e. the nonsingular case) a particularly 
good discussion of the decomposition problem under consideration (including its 
application to scattering theory) can be found in [7] pp. 312-320. The results 
presented in [7] were first obtained by John in [13]. 

1. Appell series and generalized metaharmonic functions in several variables 

An Appell series (c.f. [101) is a series of the form 

am  V) = E E am  v) 
p=O 

where the polynomials 

v() = vM(1,-.,cfl); M = (m 1 ,,m) 

are uniquely defined by the generating function 

(1-2(x, ) + I lI 2)__ 1) ul2  = 

Here 
n 

i= 1 

I M I = m1 +m2 +" +m, and the summation in equations (2), (4), and in what 
follows is meant to be an n-fold sum over all indices from zero to infinity. A related 
set of polynomials 

u)() = 	. ., 
is defined by the generating function 

{[( 	)_] 2 +IfrII 2(1_Il 2 )}_SI 2  = 	xM U(). 

For s > - 1, s 0, these polynomials satisfy the biorthogonality relation 

f (1 - I II i2Y 1)/2 V() U() d 
S(O; 1) 

27c''2f(s12 + 1)(s)IM 

	

= LM 	

( + - 

where 5LM = 61,.j 	51m1M! = m 1 ! 	m! and S(0; 1) is the real solid n 

dimensional ball {I Jfl :!5; 1 }. A basic result concerning Appell series is the follow-
ing theorem obtained by the author and R. P. Gilbert in [5] and [6]: 

THEOREM I.I. Letf() be an analytic function of n complex variables in some 

neighbourhood q of the unit ball S(0; 1). Then f(c) can be expanded in an Appell 

series 
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—1,sO 

which converges uniformly  for € {[S(0; l)} n *{S(O;  l)} with S(O; 1) 
ii{S(O; 1)} 	, ,] = 	,} ( denotes complex conjugation), and where 
the coefficients are given by the formula 

(s) - h - f a 	
S(O; 1) 

with 
n 	S 

(21M1+n+s-1)F + - - I M! 
( 	2 2/ 

hs 
27 2F (

2  +
1 (s)IMI 

\ 	/ 

There exists a neighbourhood ?I of the unit ball S(O; 1) such that the series (8) 
converges uniformly to a holomorphic function for € if and only if the function 

F() = a 

can be continued to a holomorphic function on 

A(0; 1) = { fII 2  

Theorem 1.1 leads to an expansion theorem for solutions to equation (1) 
which are analytic functions of (x,p) = (x1, , x,p). This can b seen as 
follows. The plane p = 0 is a singular surface of the regular type with indices 0 
and I - s ([11]). Hence there always exist solutions of equation 1) which are analytic 
on some portion of the plane p = 0, and if s 0 0, —2, 4,•• . such solutions can 
be continued across this plane as even functions of p. Each such regular solution 
is analytic in a domain D that is symmetric with respect to the plane p = 0 and 
can therefore be expressed as u(x, p) = ü(r, ) where r, = , ,,) are the 
hyper-zonal coordinates defined as 

= rc 

x2 = r 

 

X 11  

p= 

= x+•• +x,+p2 . 

In these coordinates the differential equation (1) becomes ([9], p. 229) 
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1 	
-- (r' +-' "  + 2 r2ü+n(s-1)u r2(L! = 1n+s-2 3r 	an 

 a CU 	n  ( 	

au 
+(s_ 

j=1 	
- J 	k 	 l)ü + — 	0. )} = 

k=1 

From the above discussion and theorem 1.1 it is seen that for each r (where the 

sphere of radius r is contained in D) it is possible to expand il(r, ) in an Appell 

series 

ü(r, ) = a)(r)VjP() 

and then use equations (9), (12) and the differential equation satisfied by the 

tiP() ([101 p. 278) to conclude that 

a)(r) = r_ n+s_l) [CJIMI+(fl + s _j),2(Ar) 

+ d2Hiki +(n+s- 

where J. is a Bessel function of order ji, H' is a Hankel function of the first kind 

of order ii, and c, d are constants. Hence we have the following theorem 

([51. [6]): 

THEOREM 1.2. Let ü(r, ) be a regular solution of L [u] = ,0 in the exterior 

of a bounded domain D let and s> —1, s 0. Then for r%-:~! a (where a is such that 

r = a contains D) ü(r, ) can be expanded as 

ü(r, c) = 

where the coefficients a (r) are given by equation (14). For each fixed r the series 

(15) converges uniformly for contained in some complex neighbourhood of 5(0; 1). 

The following theorem can be proved directly from the differential equation 

(12) satisfied by ü(r, ). The reader is referred to [3] for details in the case of two 

independent variables. 

THEOREM 1.3. Let ü(r, ) be a regular solution of L[i2] = 0 in a domain D. 

Then for 1 	i n, 

r 

is a regular solution of 	= 0 in D. 
By using the relationships ([10], p. 176, 275) 

dC(x) 
= 2vCt1(x), 	m > 1 

dx 	 F
(17) !bItmC_l )  1 	n 	inj,• In 

IIbIl 	= 	
btm  . .  
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where C,,(x) denotes Gegenbauer's polynomial of index v, one can verify that for 
m 1  ~ 1, i :!!~ l'S n, 

T/(S) 
(lQ\ 	 -'"mi,",m,, 	 - ( 

U) 	 - fl-r-S 	j  

Equation (18) shows that for s 0 0, —1, —2," there exist no nontrivial 
representations of zero of the form 

aV() = 0 

with the series 19) converging uniformly in a complex neighbourhood of S(O; 1). 
This follows by observing that if such a representation existed the series could be 
differentiated termwise with respect ot , 1 :!~ i :!~ n, as often as desired, resulting 
in a series of the form (19) with s > 0. Use of the biorthogonality property shows 
that all the coefficients of this latter series are zero and hence the original series (19) 
consists of only a finite number of terms. Since for v 0, - 1, —2,- the Appell 
polynomials are of degree exactly m, (c.f.[10], p.  274) each of the coefficients in 
this finite series must be identically zero, i.e. a = 0 for every M. 

Theorem 1.3 now enables us to extend the result of theorem 1.2 to include the 
casess< — l,s 	—2,-3,"-. 

THEOREM 1.4. If ü(r, c) is a regular solution of L°[u] = 0 in the exterior of a 
bounded domain D and s 0, —1, —2,"- then for r sufficiently large ü(r, ) can 
be expanded as 

ü(r, ) = E aI(r) Vf() 

where the coefficients a (r) are given by equation (14). For each fixed r the series 
converges uniformly for contained in some complex neighbourhood of 5(0; 1). 

PROOF. For s> —1 this result is given in theorem 1.2. Let —2 <s < —1. 
Then by theorem 1.3 r 1  grad ü(r, ) is a vector whose components ü,(r, ) are 
regular solutions ofL l2[ül = 0 in the exterior of °D. Hence by theorem 1.2 

ü(r, ) = 	 V 2 (c) 

where the subscript i denotes the dependence of the coefficient on ü 1 (r, ), We 
furthermore have 

 
ac 1 	ô 

Since the series (21) converges uniformly for contained in a complex neighbour-
hood of S(0; 1) it is possible to differentiate (21) termwise. Doing this and using 
equations (18), (22) and the observation following equation (18) we have for 
m,m> 1 
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(s+2) 	 ( \ 	(s+2) 
jamt ....,m.. m/) - jamj ,..., m . 	r 

For IMI ~! 1 let 

a)(r) = a?,...mn(r) = (n+s-1) 1 r ja?.,m ,_ j ,... m ,(r) 

where m i  is a non zero index By equation (23) the a(r) are well defined. Now 
let ü(r, ) 

be defined by the formal series 

00 

ü(r, 
) = am 

=1 IM I = 11  

Since each ü 1 (r, ), 1 	i :5; n, is regular for r > a (where the sphere r = a con- 
tainsD)the results of [5] and [6] show that the associated functions F1() F(r, ) 
defined in theorem 1.1 are analytic for r > a, e 4(0; 1). Equations (21) and (24) 
now show that 

F() = 	a?(r)c' 
,=1 IMIu 

defines a holomorphic function of r, for r> a, e 4(0; 1). Hence from Cauchy's 
theorem for several complex variables (c.f. [9], p. 5) there exists a vector /3 = 

01, , /3,,) where fl i  > 0 for 1 i n and llfll < 1 such that for ron compact 
subsets of (a, cc) 

Ia(r)I ~ C$TM  

where C, B, 1 	i < n are positive constants which depend on the size of the 
compact subset of (a, cc). By considering the generating function (4) as a power 
series in c, , ; it is seen that for fixed y < 1 the series in equation (4) con-
verges absolutely and uniformly for a e 4(0, y) and lying in some complex 
neighbourhood of S(0; 1) whose size depends on y. From the several variable 
analogue of the Weierstrass comparison theorem and. equation (4) it is now 
possible to conclude that the series (25) converges uniformly for r on compact 
subsets of (a, cc) and contained in some complex neighbourhood of S(O; 1) 
provided y is chosen close enough to one, i.e. y  and hence the size of the complex 
neighbourhood of S(0; 1) will depend on the particular compact subset of (a, cc) 
that is chosen. A similar analysis shows that termwise differentiation with respect 
to r, , , ,, is permissible for e S(0; 1) and ron compact subsets of (a, cc) 
with the resulting series being uniformly convergent. Hence ü ' (t, ) defines a 
regular solution of L[ü] = 0 for r > a, e S(0; 1). Termwise differentiation 
now gives 

grad[ü(r, )—ü4(r, )] = 0. 

Hence ü(r, ) —ü(r,  ) is a solution of equation 12) which depends only on r 
which implies that 
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ü(r, )—I(r, ) = a(r) 

with a(r) being of the form defined in equation (14). Hence for —2 < s < - 1 

ü(r, ) = 	a(r)V,(). 

This proves the theorem for —2 < s < - 1 and the complete theorem follows by 
induction on s. 

2. Decomposition theorems 

We now proceed to derive decomposition theorems for generalized metahar-
monic functions in several independent variables which are analogous to those 
obtained in [2] for two independent variables. We begin with the case when 
s> —1,s0. 

THEOREM 2.1. Assume s > - 1, s 0. Let u(r, c) be a regular solution of 
equation (12) in the exterior of a bounded domain D. Then ü(r, ) can be uniquely 
decomposed as 

u(r, ) = U(r, )+ V(r,  ) 

where U(r, ) is a regular solution of equation (12) in the entire n + 1 dimensional 
Euclidean space R 1  and V(r, ) is a regular solution of equation 12) in the exterior 
of D which satisfies the radiation condition 

1imr 	(av •)v) = 0 

uniformly for c e S(0; 1). 

PROOF. Let 0 <a < r and consider the function Q(a, ; r, ) defined by the 
formal series 

Q(a, ; r, ) = (ar) 1  Z (h) 1 J 1M1+(fl+S_1)12(2a). 

H1 +(n+s- 

By using theorem 1.1 and the asymptotic formulae ([10]. p.  4,8) 

F(p) () "Ju(2a) = 1+o(1); p - co 

L(35) I41 (1r) = 1+o(1); p.—' co 
I F(p) 

(which hold uniformly for a, r on compact subsets of the positive real axis) it is 
seen from the several variable analogue of the Weierstrass comparison theorem 
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and Hartog's theorem that for 0 < a < r the series (33) converges uniformly to 
a holomorphic function of the 2n variables C, for 

(, 
c) contained in some complex 

neighbourhood of S(0; 1) x S(0; 1). (Cauchy's formula for several complex 
variables is applied to equation 6) in order to obtain bounds for U().) A similar 
analysis shows that for a, r, C , as indicated above, termwise differentiation is 
permissible and Q(a, ; r, c) converges uniformly to a solution of equation 12) 
both as a function of (a, ) and of (r, ). Now let a be chosen such that D is 
contained in the sphere of radius a and consider the solution to equation 12) 
defined for r > a by 

V(r, ) =
iffs(o; 

r"(1 - 	1)2 

2i P(a, ) 
 

1) aa 

—Q(a, ; r, ) 	
)] 

Oa 

Using the relation ([10], p. 80) 

= J (2a) dH1(2a) - H(2a) dJ,La) 
ira 	 da 	 da 

equations (7), (15), (33), and the uniform convergence of the series under consider-
ation, we have 

V(r, ) = r 1_ 	dHj1+1)/2  (2r)Vj (c) 

where the series (38) is uniformly convergent for each fixed r > a, contained in 
some complex neighbourhood of S(0; 1). (Details of this last calculation for the 
case n = 1 are provided in [21). By using the Lommel polynomials to express 

HWI +(n+S— l)/2 (Ar) in terms of H, S _ 1)12 (2r) and H(, S _ 3)/2 (2r), substituting this 
relationship into the series (38), and then rearranging terms, it can be seen that 
the solution V(r, ) satisfies the radiation condition (32) uniformly for contained 
in some complex neighbourhood of S(0; 1). The details of this last operation are 
identical to the case when n = 1 and the reader is referred to [1] and [14] for 
more information. From equation (15) we therefore can write 

ü(r, ) = U(r, )+ V(r, ); r > a 

where 

U(r, ) = 

is uniformly convergent for each fixed r> a, contained in some complex 
neighbourhood of S(0; 1). From the results of [8] and [9] it is seen that U(r, c) 
can be continued analytically into all of 1,  and this fact along with equation (39) 
shows that U(r, ) is an everywhere regular solution of equation 12). (It is now 
clear that V(r, ) is regular in the exterior of D and not: only for r > a.) The 
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decomposition (31) is unique since if U(r, ) is a generalized metaharmonic func-
tion which is regular in the entire plane and also satisfies the radiation condition 
(32), then the biorthogonality property (7) and the series representation (15) 

shows that U(r, ) must be identically zero. 

THEOREM 2.2. Assume s < —1, s —2, —3, —4,". Let u(r, ) be a 

regular solution of equation (12) in the exterior of a bounded domain D. Then 

ü(r, c) can be uniquely decomposed as 

ü(r, ) = U(r, )+ V(r,  ) 

where U(r, ) is a regular solution of equation (12) in the entire n +1 dimensional 

Euclidean space R' and V(r, ) is a regular solution of equation (12) in the 
exterior of D which satisfies the radiation condition 

1imr" 4 '2  (-!i —GtV '  = 0
Or / 

uniformly for contained in some complex domain inclosing S(0; 1) in its interior. 

PROOF. First let —2 <s < —1. Let the sphere of radius a contain D in its 

interior. Using theorem 1.4 il(r, ) can be expressed as 

ü(r, ) = a(r) Vj(); r> a 

where the coefficients are given by equation (14) and for each fixed r> a the series 

(43) can be differentiated with respect to , 1 i n. Using this fact, theorem 

1.3, and equation 18) we have that r —' grade  ü(r, c) is a vector whose components 

ü(r, ) are regular solutions ofL° +z [ü] = 0 for r> a and have the expansion 

a 2 (r) V 2 (); r > a 

where 

1 a 2 (r) = ja,,??., m (r) = 

By theorem 2.1 it is possible to conclude that for each i, 1 	i :!~ n, the series 

—(n+s-1) 	,,(s+2)(l) 	 ()\ 11(s+2) r 	 M 	IMl+(fl+S+1)/2.) M 	C 

where 

A(s+2) — 	 - ( j _i\A() 	- 

. J 	 I M 	— I mj,",m,, — 1flS 	j 

is uniformly convergent for each fixed r > a and contained in some complex 

neighbourhood of S(0;  1). By using this fact and arguments similar to those 
used in theorem 1.4 it can be concluded that 

(48) 	V(r, ) = 	 E 	 v() 
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converges to a solution of L[ü] = 0 for r > a and contained in some complex 
neighbourhood of S(0; I). By arguements analogous to those used in theorem 2.1 
it is seen that if U(r, 

) 
is defined by 

U(r, 
) 

= 	 cJIMl+(fl+S_l)I2(tr)V() 

then V(r, 
) 

and U(r, 
) 

have the properties ascribed to them in the theorem. We 
now come to the question of the uniqueness of the decomposition, and this is 
where it is necessary to require that the radiation condition (42) be valid in a com-
plex domain instead of simply for the closed unit ball S(0; 1). For suppose the 
decomposition (41) is not unique. Then there exists a nontrivial solution U(r, c) 
of L[ü] = 0 which is regular in R 4 ' and also satisfies the complex radiation 
condition (42). From Vitali's theorem for several complex variables ([12]), and 
the radiation condition (42), we have that for 1 i n 

limr2 1 
?U 

—i 
 A aU 

= 0 
( 

	

r 	r 	

) 

 

uniformly for contained in some complex domain inclosing S(0; 1) in its interior. 
But 

 
ar \r Ôj/ 	r ara/ 	r2  5 

or 

urn r' + S + 2) (P [-- 	+ -- [--. 	- i [2 	1 ' = 
\ar L r 	jJ 	r L r &] 	L r i3 J / 

uniformly for contained in the above mentioned complex domain. By theorem 
1.3 we have that Uj  = hr ôU/ô is a regular solution of L 2 [17] = 0 in 
Hence U,(r, 

) 
can be represented as ([8]) 

UL(r, ) 
= r" 	1)1. C 2 JIMI + (fl+S+  1)12 (2r) 

By using the biorthogonality property 7) and equation (52)it is seen that 	= 0 
for all M and hence U(r, 

) 
is identically zero for each i, 1 :!~ i :!~ ii. Hence 

U(r, c) is a function of r alone i.e. 

U(r, 
) 

= const. r__1)J(fl+S_1)12r). 

The radiation condition (42) and the asymptotic expansion (which can be differen-
tiated with respect to r) 

J,(2r) = 11± cos (Ar— +0 - 	G ' 	r -
2 	4/ 	J 

now shows that U(r, 
) 

must be identically zero, which is the desired contradiction 
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For s < —2, s 0 —3, —4, 	the decomposition follows by induction on s. 

The uniqueness of the decomposition follows by repeated application of theorem 
1.3 in the manner just completed and by observing that if a finite series of the form 

n 
r ' 	c,fJ1MI+(fl+S_1)12(Ar) V() 

p=O IMI= 

satisfies the radiation condition (42) and s 0 0, — 1, —2, 	then c = 0 for 

each M. This can be seen from the asymptotic expression (55) and the discussion 

following equation (18). 

EXAMPLE 2.1. For s < — 1 the radiation condition (42) must hold for lying 

in a complex domain containing 5(0; 1) in its interior and cannot be weakened 

to hold only for e S(0; 1). For in this latter case 

U(r, ) = R 2 J( _ 2)/2(2r) 

where R = r(+ 	+) is a solution of L[ü] = 0 which is regular in the 

entire plane. But equation (55) shows that U(r, ) also satisfies the radiation con-

dition if S < — 1, i.e. the decomposition is no longer unique. 

If V(r, ) is a solution of equation 12) for s < —1, s 	—2, _3, 4. 

and satisfies the complex radiation condition (42), then by theorem 2.2 V(r, ) 

has the representation 

V(r, ) = r_+(n 4-s1) E dHW I+(fl+S _ l)/2Qr) v(). 

By using the Lommel polynomials to express Ht+(fl+S_1)2(Ir) in terms of 

H? S _ 1)/2 r) and H. S _ 3)/2 ()r), substituting this relationship into the series 

(58), and then rearranging terms (c.f. [1], [14]) it is seen that V(r, ) can be 

represented asymptotically as 

e+0 
/ 	1 	\ 

V(r, ) 	
r4" 	

; 	r —* co 

where V(r, ) is uniquely determined by its 'scattering amplitude' f(). Example 

2.1. shows that if a complex radiation condition is not insisted upon, thenf() 

no longer uniquely determines V(r, ), i.e. the inverse scattering problem (c.f [8], 

[91) is improperly posed. 
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A Priori Estimates for Solutions of the Helmholtz Equation 
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Submitted by Richard Bellman 

1. INTRODUCTION 

A priori estimates constitute a powerful tool in the study of boundary 
value problems for elliptic partial differential equations in bounded domains, 
and for nonlinear equations such estimates are the essential and usually 
the most difficult step in the analysis. For equations defined in unbounded 
domains, such estimates in general are unknown, and their unavailability 
is one of the main reasons that the theory of exterior boundary value problems 
is relatively undeveloped (see however [12]). It is the purpose of this paper 
to derive certain a priori estimates (in the form of uniform bounds for 
derivatives) for solutions of the two-dimensional Helmholtz equation 

2u 	a2U 
(1) 

defined in an exterior domain, and to demonstrate their use by obtaining 
uniform asymptotic expansions and a uniqueness theozem for such solutions. 

In connection with the first of these applications, Herglotz has shown 
(c.f. [13]) that if u(x, y) is an entire solution of (1) (i.e., u(x, y) e C 2(R 2)), 
subject to a boundness condition as r = + Vx  + y2  —~ a, then certain 
"local means" of u(x, y) satisfy an asymptotic relation as r —+ oO. Hartman 
([9]) has shown that u(x, y) itself satisfies the corresponding asymptotic 
relation in an averaged L 2-sense and obtained an analogue of this result for 
u(x, y) e C 2(F), where F is the exterior of a bounded domain D. It is further 
known ([1 1]) that if u(x, y) c C 2(F) and satisfies the Sommerfeld radiation 
condition 

urn r112 
(--ar 

- 	 = 0 	 (2) 

* Present address: Department of Mathematics, Indiana University, Bloomington, 
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uniformly for 0 = tan 1  y/x c [0, 27T], then it is possible to construct a 
uniform asymptotic expansion for u(x, y) as r --> aj. Conditions on general 

u(x, y) c C2(F) such that this construction is possible are unknown and are 
obtained in this paper for the first time. It should be noted that such expansion 
theorems are easily derived if conditions on the derivatives of u(x, y) are 
resorted to; see for example the proof of Corollary 2 below. 

Dating from the classical results of Helmholtz and Sommerfeld, many 
criteria have been given to assure that the exterior Dirichlet problem for the 
Helmholtz equation is well posed (c.f. [10]). By the use of the a priori 
estimates derived in this paper, new uniqueness conditions will be derived 
and shown to be equivalent to Sommerfeld's radiation condition. 

Although for the sake of computational ease all results in this paper are 
done in two dimensional space, the methods used are easily adaptable to 
the general n dimensional case. - 

2. THE SPACE W 

Let u(x, y) be a regular solution (i.e., u(x, y) is of class C2) of the Helmholtz 

equation in the exterior F of a bounded domain D, in particular for r R 
where R is some positive constant, and let (r, 0) be cylindrical coordinates 

defined. as 

x = r cos 0 
(3) 

y = r sin 0, 

where.0 s 0 < 2. Then it is well known ([9]) that for fixed r, u(x,y) has 
a Fourier expansion of the form 

u(x, y) 
=

aZ(r) e 0 , 	 (4) 

where Z is a cylinder function of order n. From the analytic theory of 
partial differential equations it is known ([1], [5]) that for each fixed r R, 
u(x, y) is a holomorphic function of cos 0 and sin 0 (considered as independent 
variables) in some domain T in the space W2  of two complex variables 
containing [-1, +1] ® [-1, +1] in its interior. In general, of course, the 

size of T will depend on the value of r, i.e., T = T(r). 

DEFINITION 1. Let u(x, y) be a regular solution of the Helmholtz equation 

for r > R and assume that for fixed r a R, u(x, y) is a holomorphic -function 
of (cos 0, sin 0) in some domain T C W2.  containing [-1, -+1] ®[—1,  +11 
in its interior, where T is independent of r. If there exists a positive constant M 
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such that I r"2u(x,  )I ( M for r 	R, (cos 0, sin 8) e T, then u(x, y) is 
said to belong to the space WT. 

Considering solution spaces similar to WT is a common practice in the 
theory of potential scattering (c.f. [7]), where the singularities of u(x, y) on 
the boundary of T correspond to the "bound states" of the nuclear model. 
Recently spaces of this type have been shown to play an important role in 
the study of certain classes of partial differential equations with singular 
coefficients ([1]—[4]). 

3. A Priori ESTIMATES AND Tuaxa APPLICATION 

TtraoaM 1. Every solution u(x, y) of Helmholtz equation regular for 
r R can be uniquely decomposed as 

u=U+V, 

where U is an everywhere regular solution (i.e., entire) and V is a regular 
solution for r > R satisfying the Sommerfeld radiation condition. 

PROOF. [10]. 

THEOREM 2. Let V(x, y) be a regular solution of the Helmholtz equation 
for r > R satisfying the Sommerfeld radiation condition. Then V(x, y) e WT 
for some domain T and for every integer m = nz 1  + m2  and domain T* bounded 
by a contour interior to T, there exists a positive constant M(m, T*) such that 

r1/2 ?x"V I 	M(m, T*) 

for R < r < oo, (cos 0, sin 0) c T*. 

PRoop. V(x, y) can be expressed as 

	

V(x, y) = 	
H,(r) e'0 

(5) H(')(R) 	' 
n-o 	n 

where 

H(r) 	1 	Ii, 

,, 

2fl 
H')(R) = 2 1 V(r cos 0, r sin 0) e 9  dO 	(6) 

and .H" denotes a Hankel function of the first. kinci ([1]). Integrating by 
parts in (6) gives 

atmv 	 H (1)fr) 
aOmi = 	

a(in8)"2  (7) H,1)(R)  
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By using the formula ([14] p. 297): 

H(r) = H 1)(r) R o() + 11 1)(r) R,_11(r), 	 (8) 

where R denotes Lommel's polynomial, and the fact that V(R cos 0, R sin 0) 

is a holomorphic function of (cos 0, sin 0) in some domain T containing 

[-1, +1] 0 [-1, +1] (which implies lim 1 j- I a, < 1; see Theorem 3), 

we can conclude from (7) that 

rn2V 
	

F,(0) 	H(1) 	
G,(0) 

eoln2 - 	
(r) 	

r' 	+ 1 (r) 
, 	

r' 	
' 	(9) 

n=O 	 nO 

where the series in (9) converge absolutely uniformly for r 	R, 

(cos 0, sin 0) e T* (where T* is as defined in the statement of the theorem). 

Here F(0), G(0) are holomorphic functions of (cos 0, sin 0) in T and the 

series may be differentiated with respect to r as often as desired. For details 
the reader is referred to [1] and [11]. From this result the theorem follows 
readily by using the asymptotic relation ([14] p.  196) 

	

H,i)fr) =V—T er_n/2_1nI4)  + 0 (kr); 	r-- 00,  

which holds uniformly for A contained in a compact subset of [0, cc]. 
Attention is now turned towards entire solutions U(x, y) and as a first 

step in the analysis a bound on I r-'2J,(r)I which is independent of r will 

be obtained, where JA denotes a Bessel function of order A. Although from 

the asymptotic relation ([14] p. 199, 225) 

J(r) = 	r A; 
	iT 

v 	(__T) +o 	 cc (); 	r 	(11) 

(which holds uniformly for A contained in a compact subset of [0, cc]) and 

JA(r) = 
(_7)A 	

[1 + 0 (+)I; 	A-+ cc 	(12) 

(which holds uniformly, for r contained in a compact subset of [0, co]), - it is 

clear that I r1/2J,(r)I is uniformly bounded if one of the variables r, A is 

held fixed, this is not the case if both variables are allowed to become large, 
as can be seen by noting ([14], p. 260) that A 1'3  JA (A) is a (bounded) increasing 

function of A. (It is of interest to contrast this obèervation with the result ([9]) 

$
tJ 2(t) dt < constant 	 13) 

-. 

fórallr,A0.) 
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LEMMA 1. I r112JA(r)I < M(1 + A116) for r, A 0 where M is a positive 

constant independent of r and A. 

PROOF. From the uniform asymptotic representations of Bessel functions 
as developed by Cherry and Langer (c.f. [6]), we have 

(Ax) 1/2  J() = A1/6_/ Ai(—A 2/3 )[1 + 0(A-1)] 	(14) 

uniformly in x, 0 <x < oo , as A -~ , Re A 0 (except that the error 

term needs some slight modification near the zeros of Ai(—A 2130)). Here the 

real-valued function (x) is defined by 

x2)'/2  + log 1 + (1 
- x2)1/2 	

0 <x < 1 

(15) 

= (x2 - 1)1/2 - cos-'x'; 	 1< x < 00 , 

and Ai(z) is the Airy function defined by 

Ai(z) = z" 2[J_,,3(z 2) + J113(z3/2)]. 	 (16) 

From Eq. (15) and (16) it is seen that I \/2/aAi(_A 2 130)I is uniformly 

bounded for x x0  > 0, A ) A 0  > 0, and hence Eq. (14) implies there 

exists a constant M, independent of r and A such that 

I(A)1 ' 2  JA(Ax)I < M,A 116 	 (17) 

forx > x0  >O,A > A 0  >0,e.g. 

I r1 /2J(r) 	Ilt,A" 6 	 (18) 

for r > A0x0 , A > A0 . From the discussion preceding lemma one and the 

fact that r"2JA(r) is a continuous function of r and A in the quarter plane 

r > 0, A > 0, it can be concluded that there exists a constant M2  such that 

r"2J(r)I < M2 	 (19) 

for 0 < A < A 0 , r > 0, and a similar inequality exists for 0 < r < x0A0 , 

A 0. The conclusion of the lemma now follows. 

THEOREM 3. Let U(x, y) be an entire solution of the Helmholtz equation 
such that U(x, y) a WTfor some domain T. Then for every integer in = m1  + m2  
and domain T* bounded by a contour interior to T, there exists a positive 
constant M(m, T*) such that 

r112 
m U 	M(m, T*) 

for 0 < r < oo, (cos 0, sin 0) eT*. 
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PROOF. U(x,y) can be expressed ([9]) as 

r'12 U(x, y) = 	a,,r1 /2J(r) e" 0 , 	 (20) 

where 

r 
arh/2J(r) 	I rh/2 U(r cos 0, r sin 0) e2O  dO. 	(21) — -s-  J o 

Now let {r} be a sequence of r values such that cos(r - IT/4) = 1, 
= 1, 2, 3.....Since U(x, y) e WT, by Vitali's theorem for several complex 

variables ([8]) there exists a subsequence {r,}, j = 1, 2, 3,... such that 

Jim r/2 U(r5  cos 0, r1  sin 0) = f(cos 0, sin 0) 	 (22) 
J-W 

wheref(cos 0, sin 0) is a holomorphic function of (cos 0, sin 0) in T. Expanding 
in a Fourier series gives 

0 

	

f(cos 0, sin 0) = 	b °° n.- , 	 (23) 

where hmi ni, I b 1/In! < 1. (This last inequality follows from the fact that 
h(r, 0) = brI'Ie'° is a harmonic function for r < 1 which has no 
singularities on the circle r = 1. Hence the series representation will actually 
converge uniformly and absolutely for r < r0  where r0  in some constant 
such that r0  > 1.) By letting r run through the sequence {r,} in (21) and 
using Lebesgue's dominated convergence theorem, it is seen by use of 
formula (11) (and the relation J-(r) = (- 1)J(r) for n an integer) that 
I a2. 	Ib2m I, b2m+1  = 0,m = 0,1,2,... and hence. 

	

lim I. as?,, I 1 /2 	< 1. 	 (24) 

In a similar fashion by choosing {r1} such that cos(r 2  - ir/4) = 0, i = 1, 2,..., 
it is seen that 

< 1.- 	 (25) 
ImI-= 

Equations (24) and (25) together imply that 

<1. 	 (26) 

Now by use of formula (21) it is seen that 

1/2 
s9m1U(r cos o, r sin 0) = 	anrh/2J,m1) r 	 (r) e' 0, 	 (27) 

Tml 
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where 

3rmi  

Repeated use of the relations ([14] pp.  45, 15). 

J,1(r) = 2J'(r) 
(28) 

J_(r) = (-1)" J(r) 

in conjunction with lemma one yields 

,.1 /2J (rnl)(r)I < M(l + ( I n I + mi)hI6 ) 	 (29) 

for r 	0, n a positive or negative integer, and hence (26) and (29) imply 
that the series (27) is absolutely uniformly convergent and 

r1/2 3m'U(r cos 0, r sin 0) 
M(m 1 , T*) 	 (30) 

for 0 < r < oo, (cos 0, sin 0) e T , where M is a positive constant inde- 
pendent of r and 0, and T is a domain bounded by a contour interior to T. 
From Cauchy's theorem for several complex variables ([8]) it is seen that 

in112+m3 U(r cos 0, r sin 0) 	m2 ! m3 ! 

= 
armia(cos 0)Th a(sin 0)s 	(2 7i)m2+3 

ç 	r1 12  Om'U/?rm' d(cos ) d(sin  ) 
J . (cos 4 - cos 0)m+1(sin - sin 0)8+' 

(31) 

where L = L1  ® L 2  is a product of regular contours L. (1 = 1, 2) in the 
cos 0, sin 0 plane respectively such that L is contained in T. Hence for a 
domain T*  bounded by a contour interior to T, (31) implies that 

eml+mn2+maU 
rh/2  

brmiô(cos 0)m2  (sin 0)m3 I 	
M(m1  , 	, 	T*) 	(32) 

for 0 < r < oo, (cos 0, sin 0) e T*,  where M is a positive constant inde-
pendent of r and 0 (L is chosen to lie in T - T*). By repeatedly using 
the relation 

eu 	au 	
nO, 	 (33) 

____ 
cos0 - 	si 

00 	0(sin 0) 	0(cos 0) 

the statement of the theorem now follows, 
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COROLLARY 1. Let u(x, y) e WT be a regular solution of the Helmholtz 
equation for r > R. Then there exist functions f1(0) (i = 1, 2, 3) analytic on 
[0, 27T] such that as r —* cc 

r1 /2u(r cos 0, r sin 0) = eq1(0) + cos(r — 7r/4)f2(0) 

+ sin(r — 1T/4)f(0) + o(1) 	(34) 

Fiu(r cos 0, r sin 0) = ie'f (0) — sin(r — 7r14)f2(0) or 
+ cos(r — IT14)f 3(0) + o(1) 	(35) 

uniformly for 0 e [0, 27r]. If u(x, y) is entire f1(0) = 0 and if u(x, y) satisfies 
the Sommerfeld radiation condition 12(0) f3(0) 	0. 

PROOF. In view of theorems one and two and the results of [11], it suffices 
to consider only entire solutions U(x, y). By theorem three I r112(t92 U/a02)I 
is uniformly bounded for 0 e [0, 2] and integration by parts in formula (21) 
shows that I ar"2J(r)I (Mm 2) where M is a positive constant independent 
of r and n. Letting r —+ cc and using formula (11) shows that I a I < (Mm 2) 
and hence - .- - 

urn I 
1 1 1 2 U(x, y) — cos(r — 7r/4) 	(-1)' a2 e'2'° 

— sin(r — r/4) (_1)+1  ain+iez(mn + )o  

cO 
fliT 	iT\I 

lim 	ar1 /2J(r) — a cos (r 
—— 	

= 0, 	(36) 

since each term in the series is uniformly bounded. by (2M/n2) and tends 
to zero as r -- cc. Formula (34) now follows with 

f2(0) = 	(-1)' a2 e 2' ..... 

(37) 

f(0) = 	(-1 )fl+1 a21ei( 2fl+l)O 

By formula (26) it is seen- that f2(0), f3(0) are analytic functions of 0 for 

0 e [0, 277]. Formula (35) is derived in the same manner by considering 
(eU/ar) instead of U, .7 ...... . . . 
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COROLLARY 2. Let u(x, y) be a regular solution of the Helmholtz equation 
for r > R. Then the following conditions are equivalent: 

u(x,y) e Wrfor some domain T and 	r112(&u/ar - iu) = 0 point- 

wise for 00 < 0 < O , where 00 , 01 are constants such that 0 < 00  <0 ( 2ir. 

lim1. r 112(?u/?r - iu) = 0 uniformly for 0 < 0 ( 27r. 

PROOF. The fact that (2) implies (1) follows immediately from Theorem 2. 
Conversely Corollary 1 and the identity theorem for analytic functions of 
a single complex variable shows that (1) implies (2). 

From Corollary 2 and the Sommerfeld-Rellich-Vekua uniqueness theorem 

([5]) it can be concluded that if u(x, y) is a solution of the Helmholtz equation 

in the exterior F of a bounded domain D such that u(x, y) e C 2(F), satisfies 
condition (1) of Corollary 2, and vanishes on the boundary of D, then 

u(x,y) an 0 inF. 
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I. INTRODUCTION 

It is well-known (cf. [4] p. 108) that due to its unstable nature the Cauchy 
problem for elliptic partial differential equations is an improperly posed 
problem in the sense of Hadamard. Nevertheless, situations arise in mathe-
matical physics for which it becomes necessary to solve such a problem, in 
particular when it is desired to construct an inverse solution to what is 
essentially a free boundary problem ([3]). In such cases the differential 
equation and prescribed data are often analytic and, hence, permit an 
application of the Cauchy-Kowalewski theorem. This approach is not 
very satisfactory, however, since what is actually required is a method that 
can be adapted for numerical integration. For the case of quasilinear equations 
in two independent variables (x, y), Garabedian has introduced a method 
which overcomes this difficulty by using characteristic coordinates to reduce 
the differential equation to a canonical system and then solving a one 
parameter family of related (stable) hyperbolic Cauchy problems ([3], [4] 
p. 623-633). In this paper we present a new method for solving the Cauchy 
problem for the case of almost-linear elliptic equations in a manner that is 
suitable for numerical computation. This method is based on the use of 
conjugate coordinates and reduces the Cauchy problem to finding a fixed 
point of a contraction mapping. 

II. CONJUGATE COORDINATES AND THE CAUCHY PROBLEM 

We seek a solution of the almost linear elliptic partial differential equation 
(written in normal form) 

u + u = g(x, y, U, U, u) 	 (1) 

ffsel 
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which satisfies the Cauchy data 

u(x,y)= cI(xHiy), 	x+iyEL, 	
(2) 

3u(x, Y) Q(x + if), 	X + i e L, an 

where L is a given analytic arc, n is the unit outward normal to L and g, 0, 
and Q are assumed to have certain regularity properties to be described 
shortly. By the use of a conformal transformation, we can assume 
without loss of generality that the arc L is in fact a segment of the x axis 
containing the origin (i.e., y = 0 in Eq. (2)). By introducing conjugate 
coordinates ([5], [6]) 

z = x + ij', 

* z =x — iy, 	
(3) 

 

Eq. (1) becomes an equation of hyperbolic form: 

Uzz * = f(z, z, U, U2  , U2 *), 	 (4) 

where 

(

Z+Z* Z_Z* 

2 	' 2i ) = U(z, 
z *), 

and the Cauchy data is transformed into 

U(z, z*) = O(z) 	on z = z, 	
(5) 

au(z, z*) - au(z, z*) = 
 az 	az* 	—iQ(z) 	on z = z . 

We assume at this point that as a function of its first two arguments, 
f(z, z, 61 ,  e2, is holomorphic in a bicylinder G x G*,  where 
G* = { z I z e G}, and G is simply connected, and as a function of its last 
three variables it is holomorphic in a sufficiently large ball about the origin. 
We further assume that G contains the origin and is symmetric with respect 
to conjugation, i.e., G = G*, and that (z) and Q(z) are holomorphic for 
all z e G. The domain G described above is known as a fundamental domain 
([51, [6]). 

Now suppose U(z, z*)  is a solution of Eq. (4) which is bounded and 
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holomorphic in .  G x G* and define a new function s(z, z*) = Ut(z, z*). 
It then follows that 

f.Z 

U(z, z*) = j 
z 
 J s(, *) d d + j p() d + j &(*) d + U(0, 0), 
° ° 	 (6) 

	

U(z, z*) = J s(z, 6 *) d* + (z), 	 . 	 (7) 

U*(z, z*) = s(, z *) d  + b(z*), (8) 

where p(z) = U(z, 0) and /j(z*) = U*(0, z *). Note that s(z, z *) must 

satisfy the equation 

s(z, z*) = f[z, z, 	s(e, *) d* d + J 
	) d + J 	

(*) 

z 

+ U(0, 0), J s(z, *) d* + q(z), j s(z, *) d + /i(z *)j 	(9) 
0 	 0 

and, conversely, if s(z, z*)  satisfies (9) then a solution of (4) is given by (6). 
The initial conditions (5) become 

	

: s(e, *) d d + ç p(e) d + 
	

(*) d + U(0, 0) = (z) (10) 
0   

or, differentiating in the z plane, 

Js(z*)d*+ 1s(,z)d+ p(z)+ (z) = '(z) 	(11) 
0 

and 

s(z, *) d* + p(z) - s(e, z) d - O(z) = — iQ(z). 	(12) 

Equations (11) and (12) now yield the following expressions for (z) and O(z) 
in terms of the function s(z, z *): 

= ['I'(z) - iQ(z)] - fS(Z, ) d, 	 (13) 

(z) = ['(z) + iQ(z)] - s(, z) d. 	 (14) 

Hence, we can express the functions p(z) and (z) as operators on the 

function s(z, z*).  In particular, if we define the operators B, i = 1, 2, 3, 
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by the right sides of (6), (7), and (8), respectively, where -p(z) and (z) are 
determined from Eq. (13) and (14) (note that U(O, 0) = (0)), then s(z, z *) 
satisfies the equation 

s(z, z*)  =f(z, z, B1 [s(z, z*)],  B2[s(z,  z*)],  B3[s(z, z *)]). 	( 15) 

Ill. THE SOLUTION OF CAUCHY'S PROBLEM 

The approach to be used in this section is patterned after the ideas of 
[1], and [2] (see also [5] p.  154-164). Consider the class HB(Jp, LJp*)  of 
functions of two complex variables which are holomorphic and bounded 
in dp X ZI p *, where Zip == {zIlzI <p}, Jp* ={zz*eZip}. If a norm 
is defined on HB(Z1 p, Zl p *) by 

II s 11A = sup{e_(I+Iz*I) I s(z, z*)I}, 	 (16) 

where (z, z *) E Zip x zl p * and A > 0 is fixed, HB(/Jp, 4p*)  becomes a Banach 
space which we denote Ap. We shall now show that the operator T defined by 

Ts(z, z*)  =f(z,  z*,  B[s(z, z *)J, B2[s(z,  z*)],  B3[s(z,  z*)])  (17) 

maps a closed ball of the Banach space Ap into itself, and is a contraction 
mapping, thus providing a constructive method for obtaining the unique 
solution to our Cauchy problem. 

By hypothesis, f is holomorphic in a compact subset of the space of five 
complex variables and, hence, from Schwarz's lemma for functions of several 
complex variables ([5] p.  38, 159), a Lipschitz condition holds there with 
respect to the last three arguments, i.e., 

If(z, z *, 61 1 62, ) — f(z, z 0 	0 
, .1 , 

C{ 	- 	+ I e2 - 620 I + I - 	I} 	(18) 

where C0  is a positive constant. Hence, for s1 , s2  e Ap and p sufficiently small, 

II Ts1  - Ts2  11A < C01II B1s1  - B1s2  1 1A + II B2s1  - B2s2  IL + 11 B3s1  - B3s3  IIA}. (19) 

From estimates of the form 

Izi 	 I 
I s(, z*)  d 	I 	II s  l e 	+Aiz*i 	- eAizI+Aiz*I II . i , 	(20) 

J o 	 J o 	 A 

i.e., 

Ill s(,z'')dII 	iLIA 	 (21) 
II 
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(where we have assumed s(z, z*)  is regular in the polydisc Ap  x Ap", so that 
the curvilinear path of integration may be replaced by a straight line-segment) 
it can be seen that 

Bs - Bs 2  11A < --- II s1  - s2  11A , 	i = 1, 2, 3, 	(22) 

where the Ni are positive constants independent of A and A > 0. Hence, 

M 
Il Ts1  - Ts2  hA 	hi s1  - s2  11A , 	 (23) 

where M is a positive constant independent of A. Inequality (23) implies that 

IhTsIIsjJA+ToIiA<IjshiA+Mo, (24) 

where M0  is a positive constant. Therefore, for ii s 1 1 A  < M0  and A sufficiently 
large, ii Ts 1 1 A  <M0 , i.e., T takes a closed ball in Ap into itself. Equation (23) 
also implies that, for A sufficiently large, 

ITs1 - Ts2 II A  < IIS1 - 21IA, 	 (25) 

i.e., T is a contraction mapping. The existence and uniqueness of a solution 
to the equation Ts = sin Ap is now immediate. We have proved the following: 

THEOREM 1. Let G be a fundamental domain for the elliptic equation (1) 
and letf(z, z", 61, 2, be holomorphic in G x G*  x B'3 , where B 3  is a 
sufficiently large ball about the origin. Assume, further, that G = G* and the 
functions cJi(z), Q(z) are holomorphic in G. Then, for p sufficiently small, 
Eq. (17), (13), (14), and (6) provide a constructive methodfor obtaining a unique 
solution of Eq. (1) in I z I < p, satisfying the Cauchy data (2). 

It is important to note here that the unstable dependence of the solution 
of the elliptic equation (1) on the (real) Cauchy data (2) appears exclusively 
in the step where this data is extended to complex values of the independent 
variable x. When this can be done in an elementary way, for example, by 
direct substitution via the transformation (3), no instabilities will occur when 
one uses the contraction mapping operator T to obtain approximations to 
the desired solution. 

For the case where Eq. (1) is linear, Henrici ([5], [6]) has used conjugate 
coordinates and the Riemann function to obtain a solution of Cauchy's 
problem. Hence, Theorem 1 can be considered as an extension of Henrici's 
results to the case of almost linear elliptic equations. 
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1. INTRODUCTION 

Due to the unstable dependence of the solution on the initial data, Cauchy's 
problem for elliptic equations is well known to be improperly posed in the 
sense of Hadamard (cf. [2, p.  108]). Such problems arise, however, in the 
study of free boundary problems (cf. [2, p.  622]), in mathematical physics and 
hence attention has been focused on methods of solution that are suitable 
for analytic approximation and numerical computation. We note that the 
Cauchy—Kowalewski theorem is no more suitable here than it is for hyper-
bolic equations. For second-order equations in two independent variables, 
the approximation problem is in satisfactory condition [1; 2, p.  623-631; 4]. 
However, the situation for higher order equations or equations in more than 
two independent variables is not so well off from a computational viewpoint, 
since the only available method is to convert an elliptic problem in only 
n + 1 variables into a hyperbolic problem in no less than 2n + 1 variables 

[2, p. 614-621]. In this note, we show how previous results obtained by the 
author in [1] for second-order almost linear (or semilinear) equations can be 
adapted to give approximation techniques for a quite general class of higher 
order equations. 

In [1], the equation 

= f(x, y, u, u, u)  

was considered, with Cauchy data prescribed on a given analytic arc L. 

Without loss of generality, we assumed L was the x axis. In conjugate coor-

dinates [3, 51 
z = x + iy, 

and 	 (1.2) 

= x - iy, 

288 
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Eq. (1.1) became 
= F(z, z, U, U , Ui .), 	 (1.3) 

with initial data prescribed on the plane z = z. Under the assumption that 
F(z, z'4', 2' 3) was an analytic function of its five variables, it was shown 
in [1] that S(z, z*) = U is the (unique) fixed point of a contraction mapping 
in an appropriate Banach space of analytic functions, and that U could be 
easily obtained from S by integration and a knowledge of the Cauchy data. 
We now show how the Cauchy problem 

	

al+mJju 	/Jfl1 jj l' 1u 
= f(x, y, U, u , u 	aym 	aX ' a3 )' 	

(1.4) 
l=O,l,...,n; 	m=O,1,...,n; 	1+m+2j2n—  1 

aku(x, 0) 
u(x, 0) = p0(x), 	 = pk(x); 	k = 1, 2,..., 2n - 1, (1.5) 

can be reduced to a Cauchy problem for 

(1.6) 

where A,., i = 1, 2,..., N, are operators satisfying a certain type of Lipschitz 
condition in an appropriate Banach space. This latter problem will then be 
solved using techniques similar to those used in solving Cauchy's problem 
for Eq. (1.1). Note that again there is no loss of generality in assuming that 
the Cauchy data is prescribed along the x axis. 

II. REDUCTION AND SOLUTION OF HIGHER ORDER CAUCHY PROBLEMS 

In complex form, the Cauchy problem (1.4), (1.5) becomes 

_______ 	92''U 	.92"'U a2 U 	 _______ _________  
aZ aZ*n = F (z, 	a 	'S"'  z' az*n ' a 

(2.l) 

	

U(z, z *) = p0(z); 	z = 

\az 
a 	a k 	

(2.2) 
1k 	- - U(z, z*) = cpk(z) ; 	z = z'1', k = 1,..., 2n - 1, az */ 

where U(z, z *) = u((z + z *12, (z - z*)12i), p = 0, 1,..., n; q = 0, 1,..., n; 
p + q 	2n - 1. We assume that, as a function of its first two arguments, 
F(z, z'', 61 	6N) 

is holomorphic in a bicylinder (B x *, where 
= {z I z "  e }, and as a function of its last N variables, it is holomorphic 

in a sufficiently large ball about the origin. We further assume that is 
simply connected, contains the origin, is symmetric with respect to conju-
gation, i.e., G = *, and that pk(z), k = 0, 1,..., 2n - 1, are holomorphic 
ins. 
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We would like to emphasize that it is necessary for us to restrict ourselves 
to equations of the form (1.4)  in order that there do not appear any terms of 
the form U/z'', 9n+1 UJz*n+1, 2n_1 U/t9zn_ 2  az" etc., when Eq. (1.4) 
is written in terms of conjugate coordinates. For example, our analysis is not 
applicable to equations such as 

AnU= f(x, Y'  u, 	ex2' -' ) 

We note that the same type of restriction was also encountered by I. N. Vekua 
[5, p.  174-228] in his study of the analytic theory of higher order linear 
elliptic equations in two independent variables. 

We now proceed with the reduction of the Cauchy problem (1.4), (1.5) to 
the second-order operator Eq. (1.6). Let 

= a2u 
=4u. 	 (2.4) 

Then 

U. = f U"(z, *) d + U(z, z) 
(2.5) 

= f U"(z, ") d + Mp0'(z) - 

Uz.
= fZ 

U(1) (e, z *) d + U,(z, z) 
(2.6) 

= L. U'(e, z *) d + [0'(z)  + i9 1(z)], 

u 
= fZ 

U, z*)  d + U(z, z) 
(2.7) =  55 UU, 	d + [qo'() - ip1(e)] d + po(z). 

z 	e 

By using Eqs. (2.4)-(2.7), eD+U/ez  az', for p = 0, 1,..., n; q = 0, 1,..., n; 
p + q < 2n - 1, can all be computed in terms of a linear combination of 

'+aU(l ) /azP az*q and its integrals, p = 0, 1,..., n - 1; q = 0, 1,..., n - 1; 
p + q < 2n - 3. Furthermore, Eqs. (2.4) and (1.5) allow u'(x, 0)/ey lc, 

k = 1, 2,..., 2n - 3, to be computed in terms of the Cauchy data for u. 
Hence we are led to the following Cauchy problem for U': 

2n-2 
= F(z, z', A ) (U(1)),..., A(U 1 )), 	(2.8) 

U 1 (z, z*) = q - (z); 	z = z", 

k

(2.9) 
\ U"(z, z*) = q'(z); 	z.= z", k = 1, 2,..., 2n - 3, 
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where 	i = 1, 2,..., N, are integral operators on HB into HB, 
HB HB(zip, 4p*)  being the Banach space of functions of two complex 
variables which are holomorphic and bounded in 

zip x Jp*, 	zip = {z I z I <p}, 	Zlp* = { z I z e zJp}, 

with norm 
ISV = sup ISz,z*)I. 	 (2.10) 

4pX4p* 

More precisely, A' is defined by Eq. (2.7), A' by Eq. (2.6), As'> by Eq. (2.5), 
and 	i > 3, is obtained by repeated differentiation of Eq. (2.5) or (2.6). 
It is easily seen that each 	i = 1,..., N, satisfies the condition 

II L4' 	'ii+ 

211-3 (i) 	 2n-3 (1) 	 2n-3 (i) 	 2n-3ry(1) 
1 	- 	 2 	j 	 1 	- 	'-'2 

' aZ"-  az"' 	z"_ 2  z'" 	' 	z' 3z*fl_2 	az' 9z -2  
(2.11) 

for some positive constant M. Repeating this process n - 1 times, we are 
led to a Cauchy problem of the form 

U1) = F(z, z", A_1)(U_1)) ., A (n_1)(U(n_1))), N 	 (2.12) 

U'(z, z*) = p"'(z); 	z = z'1', 

U"-' 	aW"-')' 	 (2.13) 

- 	 - 

	

) - 
	z); 	z = 

where 
_____ 

U"''(z, z*) 
- 

- az & 	 (2.14) 

and A"', i = 1,..., N, are integral operators on HB into HB which satisfy 
the condition 

II A 1)(Un1)) - 

,j(n-i) 	- 	 + 	

u1(n_1  H 
"-' b u 	un_1) 

+0 __ - 	 ll 	 (2.15) az*  ez *  

for some positive constant M') . 
We note that the operators Ak),  i = 1,..., N, k = 1,..., n - 1, all turn out 



292 	 COLTON 

to be integral operators satisfying a condition such as (2.11), due to the fact 
that we restricted ourselves to a rather special class of semilinear equations. 
For equations not of the form (1.4) (e.g., Eq. (2.3)), the operator A would 
fail to satisfy such conditions for k > k0 , where k 0  is some integer less than 
n - 1. 

We now proceed to use the contraction mapping principle to find a solution 
of Eqs. (2.12), (2.13). By hypothesis, F is holomorphic in a compact subset 
of the space of N + 2 complex variables and, hence, from Schwarz's lemma 
for functions of several complex variables [3, p.  38], a Lipschitz condition 
holds there with respect to the last N arguments, i.e., 

0) 1  

C0{I e1 - e10 I + 	+ I eN - CN 0  I} 	(2.16) 

where Co  is a positive constant. Hence, by (2.15) and (2.16), there exists a 
positive constant C1  such that 

F(z, z, A 	1)(Un_1)) ,...,  A_ 1)(U_1))) 

- F(z, z, A_ 1)(U 71)))Il 

c1 	- u' + 	-  
I! az 	C9Z 1 

u"' 	eu' 
+ 	az* - 	 (2.17) 

It should be noted that A' are in fact integral operators on U 	and 
its derivatives with respect to z and z, i.e. A' ) (U1' 1) = 
aU -'>/az, eU'/z). 

Now define the operators B., I = 1, 2, 3, by 

s(z, z*) = U'(z, z *), 	 (2.18) 

B1(s) 	U 1 (z, z*) = f i: s(C, ) d d + f v(C) d 

+  J (C*) dC* + 9fl_1)(0), 	(2.19) 
0 

B2(s) = Ut2_1) (z,  z*) = I s(z, C*) dC* + y(z), 	 (2.20) 

B3(s) -- u_1)(z ,  z*) 
= s(e,  z*) dC + i(z *), 	 (2.21) 
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where [1] 

1dcp_1) (z) 
V(z) = II 	dz 	

- içp(fll)(z)J 
- 	

s(z, ) d*, 	(2.22) 

1 d'(z) + iq1) 

	

dz 	
(z)] 

- 	
s(e, z) d. 	(2.23) 

Finding a solution to the Cauchy problem (2.12), (2.13) is now equivalent 
to finding a fixed point in the Banach space HB of the operator T: HB - HB, 
defined by - 

" Ts = F(z, z'1', A'(B1(s)),..., A$_1)(Bi(S)). 	(2.24) 

For a given a, 0 	a < 1, and p sufficiently small, it is easily seen from 
Eqs. (2.18)—(2.23) that 

	

IiBs1 - Bs211 	
a

---iis1 —s2 11 ; 	i = 1,2,3. 	(2.25) 

Hence, from Eqs. (2.17) and (2.24), we have 

1 Ts1 - Ts211 E;  ails1 - S211 	 (2.26) 

and 

1 Ts  ii < alls1l  + ii To  II < ii s  Ii + (1 - a) M0  , 	(2.27) 

for some positive constant M0 . Hence, if ii s 11 < M0  , then ii Ts  ii < M , i.e., 
T is a contraction mapping of a closed ball of HB into itself. Hence T has a 
(unique) fixed point s(z, z*)  and, therefore, Eqs. (2.19), (2.22), (2.23) give the 
solution U''(z, z*)  to (2.12), (2.13). Now, refering back to Eqs. (2.7) and 
(2.14), we see that 

z 	z 	 1 dp(e) 

	

U(''(z, z*) = f f 	*) dç + [ d 
	

- j4k)()] d 

+p(z). 

Hence, from a knowledge of U" 1 (z, z*),  we immediately obtain the 
solution U(z, z*)  to our original Cauchy problem (2.1), (2.2), by a series of 
quadratures. 

THEOREM. There exists a constructive procedure, suitable for analytic 
approximations, for solving the Cauchy problem (1.4), (1.5). Such a procedure 
is given explicitly by (2. 1)—(2.28). 

(2.28) 

It is important to note that the unstable dependence of the solution of the 
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elliptic Eq. (1.4) on the (real) Cauchy data (1.5) appears exclusively in the 
step where this data is extended to complex values of the independent 
variable x. When this can be done in an elementary way, for example, by 
direct substitution via the transformation (1.2), no instabilities will occur 
when one uses the contraction mapping operator T to obtain approximations 
to the desired solution. 

We finally note that if equation (1.4) is linear and one uses exponential 
majorization (c.f. [1], [3]), then the above techniques yield global solutions 
to Cauchy's problem. In particular if the norm (2.10) is taken over G x 
instead of 4o  x 4p'', we obtain an extension of Henrici's theorem ([4], 
p. 196) to higher order elliptic equations. 
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Integral operator techniques are used to construct the solution to Cauchy's problem for a 
class of fourth order elliptic equations in two independent variables. If the Cauchy data is 
prescribed along an arbitrary analytic arc C, then approximate solutions can be obtained 
on compact subsets of domains which are conformally symmetric with respect to C. This 
improves upon results previously obtained by Henrici, Pucci, and Colton. 

1. INTRODUCTION 

Cauchy's problem for elliptic equations is one of the classic examples of an 
improperly posed problem in partial differential equations due to the lack of 
continuous dependence on the initial data (c.f. [4], p.  108). Until recent 
years such a situation was considered as little more than an interesting 
pathological example, under the assumption that there do not exist any 
physical situations corresponding to improperly posed mathematical 
problems. However, the increasing use of inverse methods to solve free 
boundary problems in mathematical physics (c.f. [5], [6], [8]) has led mathe-
maticians to finally consider the long ignored problem of deriving stable, 
constructive methods for solving the elliptic Cauchy problem ([2], [4], [9], 
[10], [13], [14]). Despite its apparant generality, the Cauchy—Kowalewski 
theorem is unsuitable in this regard, since the actual computation of the 

t This research was supported by a Summer Faculty Fellowship at Indiana University. 
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14 	 DAVID COLTON 

solution is far too tedious for practical application, and even if it is con-
structed the series solution may not converge in the full region where the 
solution is needed in a particular example. 

A fruitful approach to the study of the elliptic Cauchy problem has been 
through the use of function theoretic methods in partial differential equations, 
particularly in the case of second order equations in two independent 
variables ([2], [5], [6], [9]). Probably the most satisfying result is that due to 
Henrici ([7], p.  195-199, [9]) in which an integral representation of the 
solution u(x, y) is obtained. This representation enables one to determine the 
domain of regularity D of u(x, y), and to construct a sequence of solutions 
to the differential equation which tend uniformly to u(x, y) on closed sub-
domains of D. The area of higher order equations in two independent 
variables is not so well developed, although such results are needed in order 
to study various free boundary problems arising in elasticity (c.f. [12]). 
Both Pucci ([14], [15]) and Colton ([3]) have given iterative procedures for 
the construction of solutions to higher order equations, but these methods 
suffer from the facts that the approximations no longer satisfy the differential 
equation, and are valid only in a rectangle and disc respectively. 

In this paper we give new methods for constructing solutions to Cauchy's 
problem for the equation 

i3u 	3u 
e 2(u) A 2u+a1 (x, y)Eu+a2(x, y) -+a3(x, y) -+a4(x, y)u = 0 

2  
(1.1) 

where a(x, y), I = 1, 2, 3, 4, are analytic functions of x and y in some 
domain of the x, y plane, and where u(x, y) is required to satisfy Cauchy 
data along an arbitrary analytic arc C. Equations of the form (1.1) arise in 
many areas of elasticity, for example the bending of thin plates, the theory of 
shallow elastic shells, etc. (c.f. [16], [18]). By using some results of Vekua to 
reduce the Cauchy problem to a system of Volterra integral equations in the 
space of several complex variables, we are able to overcome the objections 
to the iterative procedures of Pucci and Colton, and extend the results of 
Henrici in [9] to the fourth order equation e2(u) = 0. 

2• REFORMULATION OF CAUCHY'S PROBLEM IN THE SPACE 
0F SEVERAL COMPLEX VARIABLES 

Following Vekua ([18]) we canuse conjugate coordinates 

z=x+iy 	 (2.1) 
z* = x_iy 
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to rewrite e2(u) = 0 as the formally hyperbolic equation 

	

34u 	 ____ 
az2  3z*2 +A 1 (z, z *) ä_ä_*+A2(z. z*)_+A 3 (z, z *) 	+A4(z,  z*)U=  0 

(2.2) 

where 
/z+z* zz*\ 

U(z,z*) = u( 
2 ' 2i )• 

Note that z and z are conjugate if and only if x and y are real. If x and 
y are allowed to take on complex values, then z and z*  will be independent 
complex variables. A simply connected domain D in the z = x+iy plane is 
known as a fundamental domain ([18]) for e 2(u) = 0 if all the coefficients 
A(z, z*),  i = 1, 2, 3, 4, of equation (2.2) are analytic functions of z, z in 
(D, b). Finally we can rewrite equation (2.2) as 

3 4U Ô2(B 1 U) a(B 2 0 a(B 3 U) 

	

az2  az*2 + a az* + 	+ 	+BU = 0 	(2.3) 

	

where B 	B.(z, z*),  j = 1, 2, 3, 4, can be expressed in terms of the 
A 1(z, z *). 

It is shown in Vekua ([ 18], pp. 184-196) that every regular solution 
u(x, y) of e2(u) = 0 (i.e. u E C4(D)) can be analytically continued into the 
domain of complex values of x, y and the resulting function U(z, z*)  is 
an analytic solution of e 2(u) = 0 in the domain (D, D). More specifically, 
any regular solution of e2(u) = 0 in a fundamental domain D can be expres-
sed in terms of a set of constants a0 , a1 , and functions xk(z), x(z*),k = 1, 2, 
holomorphic in D and D respectively, by the formula 

1 
U(z, z *) = 	ak Gk(O, 0, z, z *) 

1=0 
1 If+ 	

z 
	

x.
G1(t, 0, z, z *)xk(t) di + 	Gk(O, 1*, z,  z*)x,

fo 	
(t*) dt*}

k=00  
(2.4) 

where 

Gk(t, 1* 1 z,  z*) 
= (z_t) k(z*_t*)k 

k !k! 

+ I d ft* 
(—t)1( 	

I'(z, z, , *) d* 

	

)I  	
k!k! 

r(z, z, , *) => K(z, z*, , *) 	 (2.5) 
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K1 (z, z*, 
, 	

= _(z _)(z *_*)B 4(, *)_(z _)B 3(, *) 

j'z 
	
f~*

K(z, z', 	= dt 	1(z, z', t, t*)K_ 1 (t, t, 	) dt. 
J  

It is shown in [18] that Gk(t, t, z, z*)  is an analytic function in the domain 
t, z C D, t, z C A We will make use of this basic formula of Vekua to 
construct solutions to the Cauchy problem for e2(u) = 0. 

Let the Cauchy data be given by 

U = f,(z) 

;i=1,2,3,z=x+iycC 	 (2.6) 

alu 
- =J(z) 

where v is the positive normal to the analytic arc C, and f1(z), i = 0, 1, 2, 3, 
are analytic functions defined in a domain D which contains C. We require 
D to be conformally symmetric ([19]) with respect to C, i.e. there exists a 
conformal mapping which transforms C into an interval of the real axis and 
D into a domain which is symmetric with respect to the real axis. Without 
loss of generality we can assume that C passes through the origin. The data 
(2.6) allows us to evaluate the derivatives of U(z, z*)  for z = x+ iy a C, 

= 2, as follows: By assumption there exists a conformal mapping 
z = q() which maps an interval I of the real axis of the C plane onto C, and 
a domain D' which is symmetric with respect to the real axis onto D. Since C 
passes through the origin we can assume without loss of generality that 
9(0) = 0. Define the analytic function (*) by ((*) = p(). Then for 
s a I we have after a rather long but straightforward calculation: 

R(s) - iF1 (s) 
U1 (co(s), i(s)) =  

2ço'(s) 

F(s)+iF1 (s) 
U2(p(s), ?(s)) 

= 
 

2 ö'(s) 

U1 2((P(s), (s)) = 	
1 	

(F''(s) +F2(s)) 	 (2.7) 

1 
U11  2((P(S), (s)) = (F ''(s) - iF''(s) 

8 lco'(s)1 2 p'(s) 

q"(s) +F(s) - iF3(s)) -_________ (F'(s) +F2(s)) 
41 p'(s)I 2('())2 
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U122((o(s), ö(s)) = 	
1 	

(F''(s)+iF'(s) 
8frp'(s)I 2 if'(s) 

+ F(s)  + iF3(s)) - 	 '(s) + F2(s)) ______ 
41 (p'(s)j 2((s))2 

(F  
where 

17 

= eU(z, z *) 
U1 (z, z*) - 	az 

aU(z, z *) 
U2(z, z *) 

- ôz * 

= 3 2 U(z , z *) 
U12 (z, z *) 

- ôz 3z * 

- 3 3 U(z , z *) 
U112(z,z*) = az 2 az * 

- ä 3 U(z, z*) 
U122(z,z*) = . z az * 2  

F0(s) =f0((o(s)) 	 (2.8) 

F1 (s) = 
F2(s) = 
F3(s) = frp'(s)1 3  [13 ((P(s)) —0?3(S)(t1(s)f1(p(s)) + 1f2((o(S))) 

- iD 2(s)ça'(s)1f1 (ço(s))1 

I 2(s) E l )]2( i  

- 	 ['(C'*] 

F 3(s) = q'(s)! (I-;) (V1'('(*)1) 3  

lq,'(s)l = 

=. = s 

In Eqs. (2.7) and (2.8) set s = p1(z), ze C. Since q() is conformal in D' 
it is clear that if the square roots are appropriately chosen, then U(z, z*)  and 
its derivatives 'ith respect to z and z can be analytically continued off the 
curve C (as a function of z) into the same domain D that the Cauchy data 
f1(z) are anal,tic. It is from this data that we will obtain a system of Volterra 
integral eqiations to determine the constants a 0 , a1 , and the functions 
x1(z), x(zJ4, k = 1, 2, such that Eq. (2.4) gives the solution of Cauchy's 
problçjnWe note in passing that an alternative approach to the one we are 
'follng here is to use conformal mapping techniques to reduce the Cauchy 
probi (1.1), (2.6) to one in which the data is prescribed along the x axis. 
However, under this operation the form of Eq. (1.1) is changed, the expression 
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for Gk(t, t, z, z*),  k = 1, 2, become more complicated, and attempts to 
express the functions xkz), x (z *), k = 1, 2, as the solution of a system of 
Volterra integral equations run into serious difficulties. 

3. REDUCTION OF CAUCHY'S PROBLEM TO A SYSTEM OF 
VOLTERRA INTEGRAL EQUATIONS IN THE COMPLEX 
DOMAIN 

From Eqs. (2.4), (2.5), and the fact that the curve C passes through the 
origin, we have 

U(O,O) =f(0) = a0  
(3.1) 

U12(O,0) = 	
1 	

(F'(0)+F2(0)) = a1  
8jtp'(0)I 2 p'(0) 

and 
OG 

U1 (z, z *) - 	ak - (0, 0, z, z *) 
k=0 az 

(3.2a) 
1 

= x0(z)+ 

kOlJo 
_;5;f (t, 0, z, z*)x1(t)dt+j 	 , z*)4(t*)dt*}

Oz 

U2(z, z*)_ E ag — ( 0,0, z , z *) 
k0 	az 

(3.2b) 
1 

k =0 

If
0 (t, 0, z,z*)x k(t) dt +J• êGk

(0 t, z, z*)x(t*)  dL*}x:(z*)+ 	- 
0 

8 2  r G 
a1 (0,0, z , z *) Ii 	0 (t,O,z,z*)L

z k=0 .3z 	 JLzoz*  
(3.2c) 

1 (('zfö3G1 	
0,z,z*)_(t,0,z,z*) = x(z)+ 

3z 

3 2 G z* r 
X

. 
° (t, 0, z, z*)])  x1(t)dt+J (az2*  (0, t*,  z, z *) 

Lozaz* 
t=z 

8G1 	

laz
32G

_(0,t*,z,z*) 	0 (t 
 i3z 	3z* 0, z, z*)]) x,(t*) dt*} 

t =2 

- U2(z,z*)_ 	ak—O 0 z z*) [I.G. 
 (0,t*,z,U122(z,z*) 

	

l 	ôI( 	 '
,'' 	azaz* 	Jt*z* 

(3.2d) 
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1 

 if.

zf 33Gk 
(t, 0, z *) _--(t,O, z , z *) 

	

= x(z*) + 	 z, 	az* k=O 

rzv 33Gk 
(0 [ 	(0, t, z, 	Xk(t) dt +J (\az*2 	

, 

t* , z, z)  1) t=z 

aGk [I~G. 	
f - 	 , 

1* , Z, 	 (0, t, z,z*)
]) 

x (t*) dt*}. 

= z. 

Assume now that the domain of regularity D of the Cauchy data f1(z,) 
j = 0, 1, 2, 3, is a conformally symmetric fundamental domain of the 
equation e2(u) = 0. Setting z = q(ç), z = @(*) in Eqs. (3.2a)—(3.2d), 
and restricting /,' to the real interval I, yields a system of integral equations 
of the form 

	

g.(s) = y,(s)+ 	
. 	

R.,,(t, p(s), (s))xk(t) dt 
k0 (J° 

(3.3) 

('c(s) 	 1 

	

+ I 	R(i', co(s), i,ö(s))x(t*) dL*,. ;  i = 1, 2, 3,4 
Jo 	 ) 

sel 

~here g.(s) are known functions expressible in terms of the Cauchy data and 
k(t, l* , z, z *) (Eqs.(2.7),(2.8),(3.1)), R i ,k(t, (P (s), *(s)) and R,(t*, ç,(s), (s)) 

tnd
re expressible in terms of Gk(1, t, z, z *) and its derivatives with respect to z 

 z' (Eqs. (3.2a)—(3.2d)), and y j(s) are defined by 

y 1 (s) = x0(p(s)) 

Y2(S) = x((P(s)) 	 (3.4) 

Y3(S) = 

Y4(S) = x(@(s)). 

Setting s = p '(z)'and making the change of variables 

1* = ((P 1 ()) 	 (3.5) 

thote that 

= q'(q'(t)) & 
0 
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for z n D) transforms the system (3.3) into 

g 	1 (z) = w 1(z) + 	If R(t, z, (p 1 (z)))w k(t) dt (q  
k0 

(3.6) 

+f Rrk(((T)),  z ( 1 (z))) Wk+2(t) dx
o  

i=1,2,3,4, 	z=x+iyn 
where 

w1(z) = x0 (z) 
w 2 (z) = x1(z) 	 (3.7) 

W3(Z) = x((qY 1 (z))) 

W4(Z) = x'((q 1(z))) 

Since the kernels and the terms not involving w 1(z) are regular in D, 
Eq. (3.6) defines a system of Volterra integral equations for w(z), z e D, 
and hence can be explicitly solved for these unknown functions (c:f. [7], 
[17], [18]). By the properties of Volterra integral equations in the complex 
plane ([11], [18]), it is clear that w(z) must be analytic in D, and in particular 
w3(p((z *))) = x (z *), w4(p((z *))) = x (z *) are regular in D. From 
Eq. (2.4) it is seen that U(z, z *) is regular in (D, b) and hence u(x, y) is 
regular in D. Conversely, using Eqs. (2.7) and (2.8) to solve for f1 (z)J 
i = 1, 2, 3, in terms of U(z, 1 (z))) and its derivatives with respect to 
and z', z a C, it is seen that if u(x, y) is a regular solution of. the Cauch 
problem in D, then the Cauchy data are holomorphic on C, and can b4 
continued analytically into the whole of D (see also [9], pp.  199-200, in thi 
regard). 

By using the resolvent to express w(z) in terms of g(9 1 (z)) and using 
complete family of analytic functions to approximate the resolvent kern 
and g((p - 1 (z)) in D, one can approximate w(z) on compact subsets of D, an 
then use Eq. (2.4) to approximate u(x, y) on compact subsets of D. 

We summarize our results in the following two theorems, which parall 
those of Henrici for the case of second order equations ([9]): 

Tf1Eoi.eM 1 Let the fundamental domain D of e 2(u) = 0 be co,fó;rnqll/ 
symmetric with respect to the analytic arc C, and let the Cauchy dda:J 

0, 1, 2, 3, be holomorphic throughout D. Then the solution ofitihe Caueh) 
problem (1.1), (2.6) exists, is regular in D, and there is a constructive procedut 
for analytically approximating this solution on compact subsets of J. 

THEOREM 2 Let the fundamental domain D of e 2(u) = 0 be confOrrnalj 
symmetric with respect to the analytic arc C, let u(x, y) be a solution 
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e 2(u) = 0 which is regular in D, and let v be the positive normal to C. Then the 
functions 

f0(z) = U 

A(z) = 
au 
av 

f2(z) = 
TV 

1(z = x+iy e C) 

3 3u 
f3(z) = 

are holomorphic on C and can be continued analytically into the whole of D. 
We note in conclusion that representations of the solutions of e 2(u) = 0, 

other than that given by Eq. (2.4), have been obtained by Bergman in [1]. 
The methods of this paper could also be used in conjunction with Bergman's 
operators to construct solutions to Cauchy's problem for e2(u) = 0. 
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IMPROPERLY POSED INITIAL VALUE PROBLEMS FOR 
SELF-ADJOINT HYPERBOLIC AND ELLIPTIC EQUATIONS* 

DAVID COLTONt 

Abstract. Integral representations are obtained for the solution to Cauchy's problem for hyperbolic 
equations along a convex time-like surface, the exterior characteristic initial value problem for hyper-
bolic equations, and Cauchy's problem for elliptic equations along an analytic surface. Each of 
these problems is improperly posed in the real domain and hence our representations are constructed by 
integrating over appropriate regions in the space of one and several complex variables. 

1. Introduction. Until about twenty years ago the problem of constructing 
approximate solutions to improperly posed initial value problems in partial dif-
ferential equations was ignored by most mathematicians on the basis that such 
problems did not correspond to meaningful physical phenomena and hence such 
efforts were at best misguided and at worst fruitless. However, during the past two 
decades it came to be realized that such problems do in fact arise in mathematical 
physics. One such appearance is in the form of inverse free boundary problems in 
fluid mechanics (cf. [14]), and another is in boundary value problems where part 
of the boundary is inaccessible to measurement and hence the boundary data is 
incomplete (cf. [24], [26]). The physical origin of these problems has led to two 
different mathematical approaches. 

In the case of inverse free boundary value problems the interest lies in con-
structing a "catalogue" of explicit solutions, and hence analytic data is prescribed 
on some analytic surface and it is desired to construct an approximate solution 
to a well-defined initial value problem. On the other hand, in the situation where 
the boundary data is incomplete, the initial data is not known exactly and ap-
proximations are constructed by assuming an a priori bound on the solution and 
then applying a Rayleigh—Ritz procedure [29]. 

Alternatively one can assume that the initial data itself satisfies an a priori 
bound, approximate it by a polynomial in some appropriate region (cf. [23]), and 
then treat the resulting initial value problem in the manner developed for inverse 
free boundary problems. 

In all approaches the basic problem remains the same: the initial value prob-
lem is improperly posed in the sense that the solution does not dependcontinuously 
on the (real) initial data and hence one cannot approximate the solution by simply 
constructing the solution corresponding to approximate initial data. 

In this paper we consider three classic examples of improperly posed initial 
value problems in partial differential equations: Cauchy's problem for hyperbolic 
equations along a time-like manifold [3], [21], [22], [11, pp.  754-760] ; the exterior 
characteristic initial value problem for hyperbolic equations [12], [18], [25]; and 
Cauchy's problem for elliptic equations [4], [5], [6], [14], [17]. Each of these 
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problems is improperly posed in the sense that the solution (if it exists) does not 
depend continuously on the initial data and possesses coherence properties [12], 
[14], [21], [11, pp. 754-760]. (It should be noted, however, that in the case of 
analytic coefficients uniqueness is no problem since it is assured by Holmgren's 
theorem [12], [21], [13, pp.  185-188].) 

We shall first treat in detail the exterior characteristic initial value problem 
and Cauchy's problem along a time-like manifold for the self-adjoint hyperbolic 
equation 

(1.1) 	u 11  = u,,22  + u 33  + q(x 1  , x 21  x 3)u - f(x 1  , x 21  x 3), 

where q(x 1 , x 21  x 3 ) and f(x 1  , x 21  x 3 ) are analytic functions of their independent 
variables. We shall then briefly show how to modify these results to treat Cauchy's 
problem for the elliptic equation 

(1.2) 	u, 1 , + u 22  + u 3  + q(x 1  , x 21  x 3 )u = f(x 1  , x 25  x 3). 

For the special case of equation (1.1) when q 	0 (i.e., the wave equation) the 
problems we are considering have been studied by Pucci [25] and Cannon [3] 
who showed existence, uniqueness, and continuous dependence on the data (in 
the complex domain) under the assumption that the initial data was analytic in 
one of its variables and differentiable to a sufficiently high order in the remaining 
variable (our results show that in the case of Cauchy's problem the smoothness 
conditions imposed by Cannon on the initial data can be weakened somewhat). 
It should also be noted that in the case of Cauchy's problem similar results had 
previously been given for general hyperbolic equations in two space variables by 
Titt [27] through the use of contraction mapping and majorization arguments. 

However, our aim (and that of Cannon and Pucci) is more ambitious in that 
we want to obtain the solution as a linear functional of the data when the data is 
analytic in one of its variables and is prescribed either along a smooth time-like 
surface or on intersecting characteristic planes. Such an approach is advantageous 
in that it leads in a natural manner to results on existence, continuous dependence 
on the initial data, and approximation procedures. In the special case when the 
manifold on which the initial data is prescribed is noncharacteristic and analytic, 
and when the initial data is analytic in all of its independent variables, our work 
can be compared in some respects to that of Hill [19] and Garabedian [13, 
pp. 211-224]. 

Our results for hyperbolic equations and their analogue for elliptic equations 
in three independent variables are of additional interest in that they provide 
integral operators analogous to those of Riemann and Vekua in two independent 
variables [13], [30]. In the elliptic case these operators have several advantages 
(and some disadvantages) over the author's previous construction of integral 
operators in [7] (which can be viewed as an extension of Bergman's operators in 
two independent variables [1]) and a brief comparison of these two approaches 
will be discussed in § 3. It should be noted that in the elliptic case it is assumed that 
the initial data and the initial surface are analytic, and hence in this case the initial 
value problem under consideration could be solved locally via the Cauchy-
Kowalewski theorem (cf. [20, pp. 116-119]). However, in addition to no longer being 
able to represent the solution by quadrature, this approach is far too tedious for 



44 	 DAVID COLTON 

practical application, and even if a series solution is constructed it may not converge 
in the full region where the solution is needed in a particular example (cf. [29]). 

2. The hyperbolic equation (1.1). We shall now construct integral representa-
tions of the solutions to the Cauchy problem along a time-like manifold and the 
exterior characteristic initial value problem for (1.1). For convenience's sake we 
make the assumption that q(x 1 ,x 2 ,x 3 ) andf(x 1 ,x2 ,x3 ) are entire functions of 
the (complex) variables x 1 , x2  and x 3 . It will be clear from our analysis that this 
assumption can be relaxed to assuming only q(x 1 , x 21  x 3 ) and f(x 1  , x 21  x 3 ) to be 
analytic in some polydisc in C 3 , the space of three complex variables. We also 
need the following definition [27]. 

DEFINITION 2.1. A function 9(x 1  , x) of two real variables x 1  and x 2  is said to 
be partially analytic with respect to x 1  for x 1  = a in the interval a :!~ x 2  :5 fi 
provided it can be represented by a series of the form 

(2.1) 	g(x 1 ,x 2 ) = b0(x 2) + b1 (x 2)(x 1  - a) + b 2 (x 2)(x 1  - a) 2  + . 

whose coefficients are continuous functions of x 2  in the interval a :!~ x2  ~ j3 and 
provided that the series (2.1) converges absolutely and uniformly for 	x2  :!5; fi, 

- aI :!~ y. The region a 5  x2 5  fi, Ix I - aI < y is known as the region of partial 
analyticity. The extension to more variables is evident. 

We now introduce the coordinates 

(2.2) 	 x=x3 —x 1 , 	y=x 1 +x3 , 	z=x2  

and rewrite (1.1) in the form 

(2.3) 	 L[u] 	u + 4u + Q(x, y, z)u = F(x, y, z), 

where F(x, y, z) = f(x 1  , x21  x3) and Q(x, y, z) = q(x 1  , x 21  x3). Let u and v be 
"well-behaved" functions to be prescribed shortly. Integrate the identity 

(2.4) 	vL[u] - uL[v] = (2uv - 2uv) + (2uv - 2uv) + (vu - uv) 

over the torus D x Q, where Q is the circle Iz - = 5 > 0 in the complex plane 
and D is the region in the Euclidean plane R 2  bounded by a contour C consisting 
of a vertical segment C 1  joining a point B on the smooth, monotonically decreasing 
curve y = y(x) to a point P above this curve, plus a horizontal segment C2  joining 
P to a point A on y = y(x), plus the arc C3  defined by y = y(x) joining A and B 
(see Fig. 1). 

x 

FIG. 1 
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Note that the integrals are to be interpreted in the sense of the calculus of 
exterior differential forms (cf. [2], [13, pp.  167, 213]), which attaches a meaning to 
them even when the differential dz is complex. Note also that the cylinder y = y(x) 
in Euclidean three-space D is time-like with respect to the hyperbolic equation 
(2.3). For our purpose it is important that the curve y = y(x) be monotonically 
decreasing and hence that the region D be as in Fig. 1 rather than as in Fig. 2. 
This is because of the fact that the curve AB in Fig. 2 is not time-like but space-like. 
Furthermore, we shall later on allow the curve C3  to degenerate to a segment of 
the vertical characteristic plane through A and a segment of the horizontal charac-
teristic plane through B. In the case of Fig. I this will correspond to an exterior 
characteristic initial value problem, whereas for Fig. 2 this becomes a (well-
posed) interior characteristic value problem. 

x 

FIG. 2 

The result of integrating (2.4) over the torus D x 0 , and then preforming an 
integration by parts on the right-hand side of the resulting identity, is, in the nota-
tion of the calculus of exterior differential forms, 

fff (vL[u] - uL[v]) dx dy dz 

Dx 

(2.5) 	 + f [2v(A, z)u(A, z) + 2v(B, z)u(B, z) - 4v(P, z)u(P, z)] dz 

+ 4 ff uvdydz —4 ff uvdxdz 

C1XLI 	 C 2 XQ 

+ 2 f f [(uv, - vu)dydz - (uv, - vu,jdxdz] = 0, 

C3 x  fl 

where we have made use of the fact that dx dy = 0 on ÔD x Q. Note that an expres-
sion of the form v(A, z) is a function of three independent variables, i.e., v(A, z) 
= v(x, y, z), where (x, y) are the Cartesian coordinates of the point A in I 2 .  

We now choose u and v such that equation (2.5) reduces to an expression for 
the solution u of L[u] = f satisfying prescribed Cauchy data on a smooth convex 
surface, where C 3  is the intersection of this surface with the plane z = 4, i.e., C3  is 
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a function of C. It is further assumed that the normal to the initial surface is never 
parallel to the z-axis and that C3  is an analytic function of C. First let u be a twice 
continuously differentiable solution of Lu = f where u and its partial derivatives 
of order less than or equal to two are partially analytic with respect to z in some 
neighborhood of the curve y = y(x) and such that u satisfies prescribed Cauchy 
data on this curve. For v we construct a fundamental solution of L[v] = 0 which 
satisfies the boundary conditions 

(2.6) 	 v = 0 on C 1  x 

(2.7) 	 = 0 on C2  x 

and such that at the point (P, z) = (, ij, z), 

(2.8) 	v(P, z) = 
87tz(z - 

- 	+ analytic function of(z - 

Note that conditions (2.6) and (2.7) are analogues to the boundary conditions 
satisfied by the Riemann function in two independent variables, and imply that 
in (2.5) the integrals over C 1  x Q and C2  x Q vanish. We shall now show that the 
function v exists and possesses the necessary regularity properties for it to be 
substituted into (2.5). 

Recall [13, pp.  152-168] that a fundamental solution S = S(x, y, z; , q , ) of 
L[u] = 0 is of the form 

(2.9) 	 S=U/R+W, 

where R = J(z - )2 + (x - )(y - ii), U = 	U1 R 21 , and W is a regular 
solution of L[u] = 0. The terms U 1 , 1 = 0, 1, 2, ... , can be computed recursively. 
When the coefficients of the differential equation are entire, so is U, both as a 
function of (x, y, z) and the parameter point (, il,  ) (cf. [13, pp.  161, 167]). The 
term U0  is given by the formula 

(2.10) 	 U 0  = P00  exp ( - f's 
(C - 3/2)) 

where (in the case of (2.3)) s is a parameter measured along the geddesics of the 
metric whose arc length element ds is given by the quadratic form 

(2.11) 	 ds 2  = dx2  + 4dxdy, 

C is defined by 

1[a 2 R 2 	a2 R 
(2.12) 	 C 	

fl 
 =[-3--- + axayl 

and P00  is a constant. Equations (2.10) and (2.12) imply U0  = P00 , a constant. We 
choose P00  = 1/(87ri). Hence we have 

(2.13) 	 S = --- + Y  U1R 21 ' + W. 
in 	1=1 
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Now let us look at the singularities of hR in the complex z-plane for x and y 
in the region D of Fig. 1. In this case (x - 	 - 	

0. If we cut the complex 
z-plane along a line parallel to the imaginary axis between ± i/(x - 	

- 

1/R is an analytic function of z outside this cut. (Note that if the region of integra-
tion were the region D in Fig. 2, we would have (x - )(y - ij) :!~ 0 and the 
complex z-plane would have had to be cut along the real axis.) In particular, hR 
is analytic for Iz - I2 > I(x - c)(y - ij), i.e., for 

(2.14) 	 I(x - 	 - 	 1. 
jz 

- 

Hence if W is, for example, an entire solution of L[u] = 0, S is regular for all points 
(x, y, z) and (, i,  ) satisfying the inequality (2.14). Thus if the point (, i,  ) is 
sufficiently near to the curve y = y(x), Scan be substituted for v in (2.5). The range 
of validity of (2.5) with S substituted for v can now be extended by analytic con-
tinuation, provided S satisfies (2.6) and (2.7) and the domain of regularity (as a 
function of z) of the Cauchy data is known. 

We now turn our attention to choosing Wsuch that (2.6) and (2.7) are satisfied 
by S. From (2.13) and the definition of R it is seen that one way this can be accomp-
lished is to construct a solution W of L[u] = 0 satisfying the boundary conditions 

00 

(2.15) 	 W = 
- 	

U,(z - 	 1 

on the characteristic plane x = , and 

(2.16) 	 W= 
- > U,(z  

on the characteristic plane y =tj . (Note that 1/(8iriR) satisfies the boundary condi-
tions (2.6)—(2.8). Furthermore, due to the form of equations (2.6)—(2.8), there exist 
boundary conditions different from (2.15) and (2.16) that could be chosen to define 
the function W.) This defines a characteristic initial value problem for L[u] = 0 
with analytic (in fact entire) initial data. Hence from Hormander's generalized 
Cauchy—Kowalewski theorem [20, pp.  116-119] we can construct an entire solu-
tion WofL[u] = 0 which satisfies the initial data (2.15) and (2.16). Equation (2.13) 
now gives a suitable function v = S to be substituted into (2.5). Note that from 
(2.13) we have that S satisfies condition (2.8). In the special case when q = const. 
= a possible choice for the function S = 5, is 

(2.17) 	 S 	
cos 

 =  
8iriR 

Now in (2.5) let v = S and let u be a twice continuously differentiable solution 
of L[u] = f whose partial derivatives of order less than or equal to two are 
partially analytic with respect to z. From (2.8) we have 

(2.18) 	 4Jv(Pz)u(P,z)dz = 
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Hence (2.5) becomes 

u(,) = + 25 [S(A,z;,,)u(A,z) + S(B,z;j,)u(B,z)]dz 

—2ff [u(x,y,z)S(x,y,z;,,) 
C3 x  fl 

(2.19) 	 - S(x, y, z; , ,()u(x, y, z)] dx dz 

+ 
2 ff 

[u(x, y, z)S(x, y, z; , , ) 
C3 x n 

- S(x,y, z; 	 z)]dydz 

+ f ff s(x,y,z;,j,()F(x,y,z)dxdydz. 
Dxfl 

Equation (2.19) is the desired integral representation of u in terms of its Cauchy 
data along a smooth time-like convex surface, where C 3  denotes the intersection 
of this surface with the plane z = C. Equation (2.19) also shows that at the point 
(, ,, ), u(, j, ) depends continuously on its Cauchy data in C 3  xG, where G is 
anarbitrarilysmallneighborhoodcontainingthebranchline4T ± i-..J(x - c)(y - 11) 
for all points (x, y) e C 3 . 

The solution of the exterior characteristic initial value problem for L[u] = f 
can now be obtained in a manner analogous to the method used to solve the 
characteristic initial value problem for hyperbolic equations in two variables [13, 
p. 131] by setting v = S(x, y, z; , j, ) in (2.4) and integrating this identity over the 
rectangle ATBP in Fig. 3. In other words, we allow the curve C 3  to degenerate 
onto the characteristics C4  = AT and C 5  = TB (where C4  and C 5  are independent 
of ). 

x 

FIG. 3 

Performing this deformation, and integrating by parts along the charac-
teristics to eliminate the partial derivatives of u there, leads to 

) = + 45 [S(A, z; 	,Ou(A,  z) + S(B, z; 	,u(B,z) 

- S(T, z; , ij, )u(T, z)] dz 	 (cont.) 
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(2.20) 	
+ 4 f f S(x,y,z;,j,)u(x,y,z)dydz 

C4 x  fl 

- 4 ff S(x,y,z;,,)u(x,y,z)dxdz 
C 5 xfl 

+ fff  
Dxfl 

Equation (2.20) gives the integral representation of the solution u of L[u] = f as 
a linear functional of its initial data on two intersecting characteristic planes which 
is valid in the wedge bisected by the plane y = x and bounded by the two charac-
teristic planes, i.e., equation (2.20) gives the solution of the exterior characteristic 
initial value problem. 

3. The elliptic equation (1.2). Similar integral representations to those 
developed in § 2 for hyperbolic equations can also be found for the elliptic equation 
(1.2), provided we make the further assumptions that the initial data is analytic 
in each of its independent variables and that, in the case of Cauchy's problem, 
the surface on which the data is prescribed is also analytic. To see this we make 
use of the fact that twice continuously differentiable solutions of (1.2) are analytic 
functions of their independent variables (cf. [13, p.  164]) and introduce the change 
of variables 

(3.1) 	 x=x 1 , 	z=x2 +ix3 , 	z=x2 ix 3  

defining a nonsingular map of C 3  into itself. The elliptic equation (1.2) can then be 
written as 

(3.2) 	 u, + 4u 2.. + Q(x, z, z*)u = F(x, z, z *), 

which is formally of the same hyperbolic form as equation (2.3). Repeating the 
analysis of § 2 now leads to the integral representations (2.19) and (2.20) (with z 
replaced by x, x replaced by z, and y replaced by z*)  for the solution of the Cauchy 
and complex Goursat problems, respectively. (In the case of Cauchy's problem, 
z = z (z *) is the expression in conjugate coordinates of the intersection of the 
plane x = C with the initial surface.) In this case our analysis is reminiscent of 
Vekua's [15], [30] and Henrici's [15], [17] development of the analytic theory of 
elliptic equations in two independent variables. It is also similar to the integral 
operators constructed by Colton in [7] (see also [8], [9], [10], [16] and [28]). 

The operators constructed in this paper have several advantages over the 
approach used in [7]: 

The form of the integral representations arises in a natural manner. 
The integral representation of the solution to Cauchy's problem can be 

readily obtained. In particular, this considerably improves upon the results in 
[10] where the Cauchy data was required to be prescribed on the plane x 1  = 0 
instead of on an analytic surface as in the present work, and where furthermore 
the coefficient q(x 1 , x 2 , x3) was required to be independent of x1. 
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(iii) The nonhomogeneous equation can be treated. 
On the other hand, several disadvantages must be mentioned. One of these 

is that difficulties arise in treating non-self-adjoint equations since the leading 
(singular) term of the fundamental solution S in general no longer satisfies the 
Goursat data as it does in the seif-adjoint case. Extensions to higher dimensions 
also run into difficulties due to logarithmic terms appearing in the construction 
of S in an even number of independent variables and also due to the fact that the 
geodesic distance R between two points no longer has a pole-like singularity along 
the characteristics. The author is at present looking into these problems, and the 
results will hopefully be reported in a future paper. 

We finally note in passing that different representations than those obtained 
in this paper can be derived for the solutions to improperly posed Cauchy problems 
for elliptic and hyperbolic equations by means of an appropriate change of 
variables in the complex domain and use of a fundamental solution (cf. [3], [13, 
pp. 614-621]). In this case the fundamental solution is not required to satisfy 
prescribed boundary data along the characteristics. On the other hand, new prob-
lems are created since the representation now includes terms involving the deriva-
tive of an improper integral and/or the finite parts of divergent integrals. 

Note added in proof. The fact that the solution W of L[u] = 0 satisfying the 
Goursat data (2.15), (2.16) is entire follows from the results of Jan Persson in his 
paper Linear Goursat problems for entire functions when the coefficients are variable, 
Ann. Scoula Norm. Sup. Pisa, 23 (1969), pp.  87-98. 
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THE NONCHARACTERISTIC CAUCHY PROBLEM FOR 
PARABOLIC EQUATIONS IN ONE SPACE VARIABLE* 

DAVID COLTON1- 

Abstract. An integral operator is constructed which maps ordered pairs of analytic functions 
onto analytic solutions of linear second order parabolic equations in one space variable with analytic 
coefficients. This operator is then used to construct a solution to the noncharacteristic Cauchy problem 
for parabolic equations in one space variable. Applications are made to the inverse Stefan problem and 
the analytic continuation of solutions to parabolic equations. 

1. Introduction. Consider a thin block of ice at 0 ° C occupying the interval 
0 g; x < oo and suppose at x = 0 the temperature is given by a prescribed function 
q(t)> 0 where t ~! 0 denotes time. Then the ice will begin to melt and for t > 0 
the water will occupy an interval 0 x < s(t). If u(x, t) is the temperature of the 
water we have 

k 

	

—u,—u 1 =0 	forO<x<s(t), 
PC 

(1.1) 	 u(0, t) = p(t) for t > 0, 

	

u(s(t),t) = 0 	fort >0, 

where c denotes heat capacity, p the density, and k the conductivity of the water. 
In (1.1) it is assumed that c, p and k are constants. The curve x = s(t) is a free 
boundary and is not given a priori. However, from the law of conservation of 
energy we have 

— 

	

(1.2) 	 u(s(t), t) 	= 	
Ap ds(t) 

 
kdt 

where A is the latent heat of fusion. Equations (1.1) and (1.2) constitute a free 
boundary problem (the Stefan problem) for the heat equation. In the more general 
case when c, p and k are not constants, but are functions of x and t, we arrive at a 
free boundary problem for a parabolic equation in one space variable with variable 
coefficients. 

Free boundary problems for parabolic equations are in general quite difficult 
to solve, and in recent years attention has been given to a study of the inverse 
problem, i.e., given s(t) to find (t) (c.f., [2], [3], [4], [6, pp.  71-80]). In physical 
terms this means we are asking how to heat the water in order to melt the ice along 
a prescribed curve, and in certain situations (e.g., the growing of crystals) it is in 
this inverse problem that we are primarily interested. Such an inverse approach 
leads mathematically to the problem of solving a noncharacteristic Cauchy 
problem for a parabolic equation and difficulties arise due to the fact that this 
problem is improperly posed in the sense of Hadamard (c.f., [4], [5]). However, as a 
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consequence of the Cauchy—Kowalewski theorem, the noncharacteristic Cauchy 
problem is well-posed in the complex domain, and hence we are led to impose the 
requirement that s(t) be an analytic function oft. 

However, even after making the assumption that s(t) is analytic, we are still 
left with serious problems in providing a constructive approach for solving the 
inverse Stefan problem for parabolic equations with (possibly) variable coefficients. 
For example, even though a local solution can always be constructed via the 
Cauchy—Kowalewski theorem, such an approach is far too tedious for practical 
application, and (more seriously) may not converge in the full region in which the 
solution is needed, i.e., in a region containing (a portion of) the positive t-axis. 
On the other hand, in the special case when the coefficients of the parabolic equation 
are independent of time (e.g., the heat equation), a constructive method for solving 
the inverse Stefan problem has been given by C. D. Hill [4]. In theory Hill's 
approach also applies when the coefficients are time-dependent. However, in 
practice, this is not the case, since Hill's work is based on the construction of a 
fundamental solution S(x, t; , r) given by the series expansion 

(1.3) 	 S(x,t;,t) = 	SJ(xt;c) (  

where in the case of time-dependent coefficients each S(x, t; ), j = 0, 1, 2, 
is in turn a solution of a nonhomogeneous, noncharacteristic Cauchy problem for 
a parabolic equation with time-dependent coefficients. To construct S(x, t; c, r) 
via this method (and to determine its domain of regularity) is as tedious and 
impractical as using the Cauchy—Kowalewski theorem, and hence in this general 
case it is desirable to derive new methods for solving the noncharacteristic Cauchy 
problem. 

Our approach to this problem is based on the construction of an integral 
operator which maps noncharacteristic Cauchy data onto solutions of(a canonical 
form of) the parabolic equation being investigated. The kernel of this operator can 
be expanded in an infinite series, each term of which is determined by a simple 
three term recursion relation. To guarantee the global existence of our operator 
we will make the assumption that the coefficients of the differential equation are 
entire functions of x and analytic in t for Iti < t 0  where t o  is some positive constant. 
We will show that as a consequence of this assumption every solution of a linear 
parabolic equation in one space variable (with analytic coefficients) which is 
analytic in some (complex) neighborhood of the origin has an automatic analytic 
continuation into an infinite strip parallel to the x axis containing this neighbor-
hood. This theorem generalizes analogous results obtained by Widder for the heat 
equation [7] and Hill for parabolic equations with time-independent coefficients 
[4]. 

2. Integral operators for parabolic equations. Consider the general linear 
homogeneous parabolic equation of the second order in one space variable 
written in normal form 

(2.1) 	 u, + a(x, t)u + b(x, t)u - c(x, t)u 1  = 0. 

We shall make the assumption that the coefficients a(x,t), b(x,t) and c(x,t) are 
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analytic functions of the (complex) variables x and t for lxi < co and Itl < t0 . 

By making the change of dependent variable 

1 1 rX 

(2.2) 	 u(x, t) = v(x, t) exp -- 	a(c, t)d 
( 2j0 

we arrive at an equation for v(x, t) of the same form as (2.1) but with a(x, t) = 0. 
Hence without loss of generality we can restrict our attention to equations of the 
form 

(2.3) 	 L[u] 	u, + b(x,t)u - c(x,t)u, = 0, 

where b(x, t) and c(x, t) are analytic functions of x and t for lxi < oD, Itl < t0 . 

We now look for a solution of (2.3) in the form 

(2.4) u(x, t) = 	 E"(x, t, x)f(x) dx - 	E 2 (x, 1, r)g(t) dx, 
276 	= 	 27ti fl,  - ti = 

where t0 - ti > 6 > 0 and f(x) and g(r) are arbitrary analytic functions of r for 
ri < t 0 . We shall furthermore ask that E"(x, t, r) and E 2 (x, t, x) satisfy the initial 

conditions 

(2.5a) 	 E'(O,t,t) = t1t' 

(2.5b) 	 E'(0,t,x) = 0, 

(2.6a) 	 E 2 (0,t,x) = 0, 

(2.6b) 	 E(0,t,x) = 
t—r 

and be analytic functions of their independent variables for lxi < co, iti < t0 , 

iii <t0 , t T. We shall first construct the function E'(x,t,x). Setting g(r) = 0 
and substituting (2.4) into the differential equation shows that, as a function of x 
and t, E(')(x , t, x) must be a solution of L[u] = 0 for t r. We now assume that 
E(')(x , t, r) has the expansion 

1 
(2.7) 	 E'(x, t, r) = 	- + 	xP(x, t, x), 

t — r 	n=2 

where the P(x, t, r) are (analytic) functions to be determined. Note that iftermwise 
differentiation is permitted the series (2.7) satisfies the initial conditions (2.5a) and 
(2.5b). Observe that, in contrast to the kernel (1.3) of Hill's integral operator, we are 
expanding the kernel E()(x , t, r) (and later the kernel E 2 (x, t, r)) in powers of x 
(instead of powers of 1/(t - r)). This will allow us to determine the coefficients 
P"(x, t, x) via a simple three term recursion relation instead of being forced to 
determine each coefficient as a solution of a noncharacteristic Cauchy problem for 
a parabolic equation as in Hill's work [4]. Indeed, if we substitute (2.7) into 



266 	 DAVID COLTON 

L[u] = 0, we are immediately led to the following recursion formula for the 
P"(x, t, r): 

P(2) = - 	 c 	 b 
 

2(t - 	 - 2(t - 
(2.8) 

	

p(I+2) 	2 = - 	 p(k+1) - ___ 	1  

k + 2 X 	(k + 2)(k + 
1) [P + bP - cP], k ~ 1. 

We now let 

(2.9) 	 P(k)(x t, i) = p(k)(X t, t - 

Then (2.8) becomes 

(1) = 0, 
(2.10) 

(2)_ 

	

- 2t 2 	2t' 

_ 	 1 
p(k+2

) 	2 = - 	 p(k+l) -  

k + 2 X 	(k + 2)(k + 1)x+ bP - cP - cP], k ~ 1. 

If we now define Q(x, t, t) by the equation 

(2.11) 	 p(k)( 	t, r) = z_kQ(k)(x, t, r), 

then (2.10) yields the following recursion formula for the Q(x, t, r): 

Q(l) = 0, 

Q(2) _ 	1 
- —[c + tb], 

(2.12) 
Q(k+2) 	2t 	 2 = - 	 0(k+1) -  

k + 2 	(k + 2)(k 
+ 1)[TQXX + tbQ - tcQ 

+ ckQ - tcQ"], 	k 	1. 

Now let M 0  be a positive constant such that 

c(x,t) << M(1 - x/r)(1 - 
(2.13) 	

b(x,t) << M(1 - x/r)(1 - t/t 0)' 

for jxj < r and I tl < t0 . In (2.13) the symbol "<<" means "is dominated by" 
(c.f., [1]). The main properties of dominants we will use are the following: If 
f(x) << g(x) for I  x < r, then 

df(x) dg(x) 
(2.14a) 	 - 	 for lxi < r, 

dx 	dx 

(2.14b) 	 f(x) << g(x)(l - x/r)' for lxl < r. 
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Similar properties apply to functions of several complex variables. Using the 
property 

	

(2.15) 	 z << 2t0(1 - 
r 

 —I 
2t 0 / 

for Iii < 2t 0  we shall now show by induction that there exist positive constants M, 
n = 1, 2, ... ,and E (where . can be chosen arbitrarily small and is independent of n, 
and M .  is a bounded function of n) such that for lxi < r, I tl < t0 , ri < 2t0 , we 
have 

Q(n+l) << M + ,4't'(3/2 + )n1 

	

(2.16) 	 —(n+ 1)( 	 —(n+ 1)/ 	 \ —(2n+2) 

	

1 - — i 	1 - —I 	(1 - —I 	r —' ' 

	

r/ 	 i 	2t,J 

n = 0,1,2,... 

Equation (2.16) is clearly true for n = 0 and n = 1. Assume now that it is true for 
n = k - 1 and n = k. Then from (2.12)-(2.15) we have 

Q(k+2) <<  I + 1) 

 + 
2)Mk+ 4k+2(k+2(3/2  + e)k+ 1 

Mk4 l tk+ '(3/2 + E)k 
+ 	 (2t 0k(k + 1) + 2M0t 0r2  + 4Mokr2)} 

(k + 2)(k + 1) 

• (i - - - 	 ( 	—I 
x\ —(k+2)(

1 - 	 1 - 
) 

— (k+2)/ 	 —(2Ic+4) 

r, 	t 0 	2t/ 
(2.17) 

	

<<4k 
+ 2(3/2 + g)k +1 

[Mk +1 + 	
kMk 

2(k + 2)(3/2 + g) 

	

MOr 2 Mk 	 kM O r2 M k  
+ 

2(k + 2)(k + 1)(3/2 + ) (k + 2)(k + 1)t0(3/2 + 

i_ 
x)—(k+2) (

1 - 
	~ —(k+2) / 

• ( 	 1 
- 	

r+2). 
r 

If we now set 

	

Mk I k 	M0r2  
Mk+2 = (3/2 + - '[Mk+l  + 

(3/2 + 2(k + 2) + 2(k + 2)(k + 1) 

	

(2.18) 	 kM 0r2  
+ (k + 2)(k + 1)t0  

we have shown that (2.16) is true for n = k + 1, thus completing the induction step. 
It remains to be shown from (2.18) that Mk  is a bounded function of k. For 
k ~ k 0  = k 0(t) we have from (2.18) that 

(1/2 + /2)Mk  (2.19) 	Mk+2  ~ (3/2 + - 

1 
[Mk+l + 

(3/2+ 	
k k0. 
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IfMk+l  M fork ~ k we are done, for then we have M k  :!~ max {M,M 2 , 
MkO}. Suppose then that there exists k 1 	k 0  such that Mk, + 1 > Mk 1 . Then from 
(2.19) we have 

Mk 1  + 2 <(3/2 + 
- 	 +1 + Mk1  + 1 

(1/2 + E 

(3/2 + /2)1  
(2.20) (2 + 3/2E) 

= (3/2 + )(3/2 + c)Mkl+l <Mk1+j, 

and by induction 

(2.21) 	 Mk+ m 	M, 1+1  

form = 1,2,3,... . Hence M. :!~ max {M 1  , M 2 , ... , MkL+l}andwecanconclude 
that M k  is a bounded function of k. 

We now return to the convergence of the series (2.7). Let 5 0 , 6 ,  and a > 1 be 
positive numbers and let 

lxi 	r/cx, 	 iii 	t 0 , 

(2.22) 	
ti 	t0/(l + 	), 	it - ti 	. 

Then 

x\ 	±\ ~ , 
r 1 	 2t/ — 2' 

(2.23) 
	

(1 + j 
2 + 6 , \  61  

(1 
- _i > 	 it - ti ~ t 0 	<2t. 

to , = 1 + 

From (2.9) and (2.11) we have 

(2.24) 	 p(k)(x t, t) = (t - t)_"Q"(x, t, t - t). 

Hence for x, t and t restricted as in (2.22) we have from (2.16) and (2.24) that the 
series (2.7) is majorized by 

100 M16t(3/2 + c)'1(c - 1)(1 + 5)n  
(2.25) 	 - + 

2 n 60 
 

n2 	
on,5n 

Owing to the fact that M is a bounded function of n it is seen that if a is chosen 
sufficiently large then the series (2.25) converges. Since 6 0 , 5 and E are arbitrarily 
small (and independent of r) and r can be chosen arbitrarily large, we can now 
conclude that the series (2.7) converges uniformly and absolutely for lxi r, 
iti t0/(1 + 6 1 ), Iti :!~ t 0  and I t - ti for 6 0  and 5 1  arbitrarily small and r 
arbitrarily large. Since each term of the series (2.7) is an analytic function of the 
variables x,t and t for lxi < cc, iti <t0 , Iii < t 0 , t =A t, we can conclude that 
E' (x, t, t) exists and is an analytic function of its independent variables for lxi < cc, 
iti < t 0 , ti < t 0  and t r At the point t = t, E" (x,t, t) has an essential singularity. 
It is clear from our majorization argument that termwise differentiation of the 
series (2.7) is permissible and hence E 1 (x, t, t) satisfies the differential equation 
(2.3) and the initial conditions (2.5a), (2.5b). 
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We now turn our attention to the construction of the function E 2 (x, t, r). 
Setting f(r) = 0 in (2.4) and substituting this equation into (2.3) shows that, as a 
function of x and t, E 2 '(x, t, r) must be a solution of L[u] = 0 for t T. We now 
assume that E 2 (x, t, r) has the expansion 

(2.26) 	 E 2 (x, t, r) = 	+ 	xp(x, t, r), 
t  —  t 	p3 

where the 	t, r) are (analytic) functions to be determined. We again note that 
if termwise differentiation is permitted the series (2.26) satisfies the initial conditions 
(2.6a), (2.6b). Substituting (2.26) into (2.3) leads to the following recursion formulas 
for the p"(x, t, r): 

(2) = 

c 	b 
(2.27) 	 P(3) =  

6(t - v) 2  - 6(t - 

(k+2) 	- 	
2 	(k+1) - 	 1 

 

(k+2)(k+ 1)[P 

	

0 	
XX+bP 	CP], 	k2 ~!2. 

The recursion scheme (2.27) is essentially identical to the scheme given in (2.8) 
and following our previous analysis showing the convergence of the series (2.7) we 
can again verify that the series (2.26) defines an analytic function of x, t and t for 

lxi < 00 ,ltI < t o , ITI < t0 ,t t,whichsaiisfiesL[u] = 0andtheinitialdata(2.6a), 
(2.6b). At the point t = r, E(x, t, z) has an essential singularity. 

We have now shown that the integral operator defined by (2.4) exists and maps 
ordered pairs of analytic functions onto analytic solutions of L[u] = 0. It is a 
simple matter to show that in fact every solution of L[u] = 0 which is analytic for 

Iti < t 0 , lxi < x0 , can be represented in the form of (2.4). For let u(x, t) be an 
analytic solution of L[u] = 0 and set u(0, z) = f(t), u(0, z) = g(r). Then f(r) and 
g(r) are analytic for ti < t 0 . Define 

	

w(x, t) = 	 E"(x, t, x)f(t)dt 

(2.28) 

1  
E 2 (x,t,r)g(r)dr. 

276  f,  , -,I =6 

Then w(x, t) is an analytic solution of L[u] = 0 and from (2.5a), (2.5b), (2.6a), 
(2.6b) we have 

1 f 	f(t) 
—dt = 

	

w(0,t) 
= 	 - t 

(2.29) 

	

w(O,t)= 	
1 f 	g(t) 

dr = g(t); 

i.e., the Cauchy data for w(x, t) and u(x, t) agree on the noncharacteristic curve 
x = 0. From the Cauchy—Kowalewski theorem we can now conclude that 
u(x, t) = w(x, t), i.e., u(x, t) can be represented in the form of(2.4). 
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3. The noncharacteristic Cauchy problem. Consider the parabolic equation 
(2.1) where the coefficients a(x, t), b(x, t), c(x, t) are analytic functions of the. 
(complex) variables x and t for lxi < oc and It - t 0 1 < t0 . Suppose we wish to 
construct a solution of this equation which satisfies the Cauchy data 

u(s(t), t) = 
(3.1) 	

u(s(t),t) = g(t), 

where x = s(t) is a noncharacteristic curve and f(t), g(t) and s(t) are analytic for 
It - t 0 1 < t 0 . We note that the inverse Stefan problem is of this form where 
f(t) = 0 and g(t) = —(Ap/k) ds(t)/dt. By making the nonsingular change of 
variables 

(3.2) 	 = x - s(t), 	2 = t - t o , 

we arrive at an equation of the same form as (2.1) with the coefficients analytic for 
< cc and 121 < t 0 . Under the transformation (3.2) the curve x.= s(t) is trans-

formed into the straight line = 0. If we now apply the change of variables (2.2) 
we arrive at an equation of the form (2.3) in the variables and c2  with Cauchy data 
prescribed along = 0. As shown at the end of the last section, this problem can 
be solved by using the operator defined by (2.4). Hence, if the coefficients and 
interphase boundary are analytic in appropriate regions, we have a constructive 
method for solving the noncharacteristic Cauchy problem (2.1), (3.1). Note that 
due to the factor of(k + 2) - i which appears in each term of the recursion formulas 
(2.8) and (2.27), the convergence of the series expansions of E">(x, t, t) and 
E 2 (x, t, r) is in general quite rapid. Hence close approximations can usually be 
made by truncating these series after a few terms and using the resulting approxi-
mate E-functions in (2.4). 

As a simple example of the above method we shall now construct a solution 
to the (normalized) inverse Stefan problem for the heat equation 

(3.3) 	 u, = Ut , 

(3.4a) 	 U(s(t), t) = 0, 

(3.4b) 	 U(S(t), t) = —ds(t)/dt 

in the special case when s(t) = t. The transformation (3.2) (with t 0  = 0) reduces 
this problem to 

(3.5) 	 W 	 + w 1  = w 2 , 

(3.6a) 	 w(0, 2) = 0, 

(3.6b) 	 w 1 (0, 2 ) = — 1, 

where w(1, 2) = u( 1  + 2' 2) = U(x, t). If we now set 

(3.7) 	 w(c 1 ,c2) = v( 1 , 2 )exp(-4 l ), 

equations (3.5), (3.6a), (3.6b) become 

(3.8) 	 v 1  - 	=  11) 
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(3.9a) 	 40,c 2 )=0, 

(3.9b) 	 v1(0, 2) = — 1. 

From the form of the differential equation (3.8) and the initial conditions (3.9a), 
(3.9b) it is seen that we only need to compute the coefficient of (2 - 

1  in the 
series expansion for E12k1, 2'  t). From (2.26) we have 

(Tci) 	I 2 	 1 	2k+11 

- IL2 + k=1 (2k + 1)!] 

+ terms involving higher powers of (2 - 
(3.10)  

= 2sinh(g 1 ) 
- 

+ terms involving higher powers of( 2  - 

and hence, from (2.4) we have 

v(1,2) 	
1 	

dt 
= 	 t I=o

2sinh(41) 
2iri 	- 

(3.11) 
= —2sinh(4 1 ). 

Then w(1, 2) = e 	- 1 and the solution of(3.3), (3.4a), (3.4b) is given by 

(3.12) 	 u(x,t) = el_x - 1 

In particular we see from (3.12) that the temperature distribution p(t) needed at 
x = 0 in order to make the ice melt along the curve x = t is given by 

(3.13) 	 p(t) = u(0, t) = et - 1. 

We now conclude by stating a result on the analytic continuation of solutions 
to parabolic equations with analytic coefficients which generalizes those obtained 
by Widder for the heat equation [7] and Hill for parabolic equations with time-
independent coefficients [4]. The theorem follows immediately from the trans-
formation (2.2), the representation (2.4), and the fact that E'(x, t, r)and E 2 (x, t, t) 
are analytic for lxi < cc, ItI < t0 , lii < t 0 , t T. 

THEOREM. Let u(x,t)be a solution of(2.1) which is an analytic function of the 
complex variables x and t for Itl <t 0 , lxi <x0 . Suppose the coefficients a(x,t), 
b(x, t) and c(x, t) are analytic functions of the complex variables x and t for lxi < cc, 
iti < t0 . Then u(x, t) can be analytically continued into the strip lxi < cc, iti < t 0 . 

An important application of this theorem is the conclusion that the solution 
of the inverse Stefan problem can always be analytically continued into a domain 
containing the line x = 0, provided the coefficients of the parabolic equation are 
analytic for lxi < cc, it - t 0 1 < t0 , and the interphase boundary is an analytic 
function of t for it - t 0 i < t0 . In particular the above theorem implies that 
u(0, t) = p(t) is an analytic function of t for it - t ol < t0 . Thus we can conclude 
that if u(0, t) = q(t) is not analytic then neither is the interphase boundary s(t). 
This partially answers the problem posed by Rubinstein in [6, p.  353]. 
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ABSTRACT. An integral representation is obtained for the 
solution of the noncharacteristic Cauchy problem for second order 
parabolic equations in two space variables with entire, time 
independent coefficients. This is accomplished through the use of 
contour integration techniques and the calculus of residues in the 
space of several complex variables. 

I. Introduction. In this note we will give an integral representation 
of the solution to the noncharacteristic Cauchy problem for second order 
parabolic equations in two space Variables with entire, time independent 
coefficients. Although improperly posed in the real domain, such problems 
nevertheless arise when inverse methods are used to study free boundary 
problems for parabolic equations, for example in the case of the inverse 
Stefan problem for the heat equation (cf. [2]). The noncharacteristic Cauchy 
problem for parabolic equations becomes properly posed if the behavior 
of the solution in the complex domain is taken into consideration, and 
hence we make use of contour integration techniques and the calculus 
of residues in order to obtain our desired integral representation. The 
representation of the solution obtained in this paper is valid in the large 
(in the space of several complex variables) as opposed to the local solution 
obtained via the Cauchy-Kowalewski theorem. This is of crucial impor-
tance as far as the applications are concerned. Such a representation will 
also allow us to obtain results on the analytic continuation of solutions 
to parabolic equations. 

The problem considered here has previously been studied by C. D. Hill 
in [3] through the use of a one-parameter family of conformal mappings 
(thus making the coefficients of the differential equation dependent on 
time) and the construction of a new fundamental solution for parabolic 
equations. In Hill's work this new fundamental.solution is constructed by 
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recursively solving an infinite family of complex Goursat problems for 
nonhomogeneous parabolic equations in two space variables. Our 
approach is much simpler. In particular we avoid the use of conformal 
mappings and construct our fundamental solution in one step through 
the use of a generalized version of the Cauchy-Kowalewski theorem. 

In the analysis which follows C 2  denotes the space of two complex 
variables. 

II. The noncharacteristic Cauchy problem for parabolic equations. We 
consider the general linear, second order parabolic equation in two space 
variables (with time independent coefficients) written in normal form 

(2.1) u + u, + a(x,y)u + b(x,y)u + c(x,y)u - d(x,y)u = 0 

and make the assumption that the coefficients in equation (2.1) are entire 
functions of their independent (complex) variables. Now let u(x, y, t) 
be an analytic solution of equation (2.1) and make the nonsingular 
change of variables in C 2  defined by 

(2.2) 	 z=x+iy, 	z=x—iy. 

Note that z*=2  if and only if x and y are real. Under such a transfor-
mation equation (2.1) assumes the form 

(2.3) 	
L[U] = U + A(z, z*)U + B(z, z*)U *  

+ C(z, z*)U - D(z, z*)U = 0 

where 
/z + z * z _ z * \ 

U(z, z', 
t) = (, 2 	' 	2i 

ir 	z_z* 
+ 

Iz + z * z _ z *\l 
A(z, z*) = — I a 

4L 	2 	' 	21 ) 	
ib 	

2 	' 	21 

	

[

r f z + z * z _.. z *\

) 	

/z + z * z—z\1 (2.4) B(z, z*) = i _ a 	
2 	' 2i 	

- ib 	
2 	' 21 

1 /z+z' z _ z *\ C(z,z*)=_c( 
2 	' 21 

D(z, z *) = d(Z + Z* Z 
- Z*  Y 4 \ 2 	' 	21 

We now introduce the adjoint equation 

- a(AV) - a(Bv) 
(2.5) 	M[V] = V2 . 

az 	
az* +CV+DV=O. 



1 

z 

19731 	 THE NONCHARACTERISTIC CAUCHY PROBLEM 	 553 

Let .V be a solution of M[V]=O (V will be prescribed more precisely in a 
few moments) and use Stokes theorem to integrate the identity 

6 VL[U] - UM[V] = (AVU + 	- V Z SU) Z  
(2.) 	

+(BVU + I VU - V2 U). - (DVU) 

over the torus Gx, where L1 is the circle It—T16>0 in the complex t 
plane and G is a two-dimensional cell in (z, z*)  space bounded by a 
noncharacteristic analytic curve C3  and line segments C, and C, which lie 
in the characteristic planes z= and z*=  and join the point R=(, ) 
to the curve C, at the points Q and P respectively (see Figure 1 below). 

- 

FIGURE 1 

The result of this integration (after performing an integration by parts 
on the right-hand side of the resulting identity) is, in the notation of the 
calculus of exterior differential forms, 

o=ff(Av - V.)Udz*dt _fJ (BV - V)Udzdt 

CiXG 	 Ctxfl 

+f[V(R t)U(R, 1) - V(P, t)U(P, t) - V(Q, t)U(Q, t)] dt 
(2.7) 

+ ff [(AVU + VU,. - V,.U) dz*  dt 

csxn 
- (BVU + fVU - VU) dz di], 

where we have made use of the fact that dzdz*=O  on aCx2. Note that 
an. expression of the form U(R, t) is a function of three independent 
variables, i.e. U(R, t)=UQ, ', t) where (, ') are the Cartesian coordi-
nates of the point R in C'. 
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We now want to choose V and the domain G such that equation (2.7) 
reduces to an expression for the solution of equation (2.1) satisfying 
prescribed Cauchy data on a noncharacteristic analytic surface S. 

We first assume that the intersection of the plane t = 'r with the surface 
S is a one-dimensional curve C=C(-r). Suppose C is described by the 
equation F(x, y; 7-)=0. Since S is analytic we can write 

* z+z* z _ z  
F( 	

2i 2 	' 	
;r)=6 

and this is the equation for C in (z, z*)  space. We will choose C3 =C3(r) 
to be an analytic. curve lying on this complex extension of C(T) and 
intersecting the characteristic planes z= and z = ' at the points Q 
and F, respectively. We now turn our attention to the construction of V. 
In particular we ask that V= V(z, z*; , '; t— i-) be an entire function 
of z, z' and t—T, except for a simple pole with residue one at the point 
(z, z, t)=(, , T). We also ask that V satisfy the initial conditions 

(2.8) 	 V=AV 

onC1 x,and 

(2.9) 	 V=BV 

on C2  x . The function V can be constructed in the following manner. 
In equation (2.5) let t—r= l/. Then equation (2.5) becomes 

(2.10) W - a(AW)/az - a(BW)/az* + CW— 2DW = 0 

where W(z, z*; , ; )=V(z, z*; , ; 1/s). Integrating equations (2.8) 
and (2.9) along the characteristics, and requiring V to have a simple 
pole with residue one at (z, z', t)=(C, , T), gives 

(2.11) 	V(, zt; , ; t - i-)= 	
T 	{f A(, a) da). 

(2.12) 	V(z, ; , ; t - r) = 
1 

t 	
exp{fB(a, ) da). 

T 
i.e. 

(2.13) 	W(, z*; , ; ) = exp{J A(, a) da}, 

(2.14). 	. 	W(z, ; , '; ) = exp(j B(cr, ) da). 

From Hörmander's generalized Cauchy-Kowalewski theorem [4] we 
can locally construct (by iteration) a unique solution Wsatisfying equations 
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(2.10), (2.13), and (2.14). From [5] we can conclude that Wis in fact an 
ntire function of z, z, and . Setting = lf(t—r) in the expression ob-

tained in this manner for Wgives us the function V(z, z*; , ; t—r) with 
the desired properties. 

If in equation (2.7) we now let C3 =C3 (T) lie on the complex extension 
of the intersection of S with the plane t=r and let V= V(z, z * ;. 
be the function just constructed, we have 

U(, , r) = 	f [V(P, t)U(P, t) + V(Q, t)U(Q, I)] di 
4iri 

(2.15) 	- 	[(AVU + 	- W.U) d z * di 
2iri 

C3(r)Xfl 

- (BVU +VU Z  - l',U) dz di]. 

For (, ) sufficiently near the initial surface S, and for 6 sufficiently 
small, equation (2.15) gives the desired integral representation of the 
solution to the noncharacteristic Cauchy problem for equation (2.1), 
provided we first deform the surface C3  x Q until it lies on the complex 
extension of the initial surface S. (Recall from equation (2.4) that 
U(z, 2, t)=u(x,y, t).) Equation (2.15) can now be used to obtain a 
global solution via the straightforward use of analytic continuation of the 
Cauchy data and deformation of the region of integration. In particular 
such a procedure yields results on the analytic continuation of solutions to 
parabolic equations along characteristic hyperplanes in terms of the 
domain of regularity of the Cauchy data of these solutions along non-
characteristic analytic surfaces. For example if for each fixed I in a 
(complex) neighborhood of t=r the Cauchy data for U(z, z, t) is regular 
in a domain D which is conformally symmetric (cf. [11) with respect to 
C(-r), then we can conclude that the restriction of U(z, z, t) to the plane 
t=r is an analytic function ofz and z*  in Dx D*  where D*={z * : 2* E D}. 
It is of interest to contrast this result with the corresponding theorem for 
elliptic equations obtained in [1]. 
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THE INVERSE STEFAN PROBLEM 

by 

David Cotton 

I. Introduction 

The use of inverse methods to solve boundary value problems for partial differential equations dates back to the 

time of Euler and has played an ijnortant role in various areas of themechanics of continua (c.f. [13]). 

In recent years such methods have been used with particular success in the investigation of free boundary 

problems in fluid mechanics ([8]). Crudly speaking, inverse methods can be described by the statement that, 

instead of finding a solution to a given problem, a physically reasonable problem is found for a given solution. 

Such an approach often leads to the formulation of problems which are improperly posed in the real domain, 

and hence it thus becomes necessary to examine the behavior of solutions to partial differential equations in the 

complex domain. Indeed, the use of inverse methods in applied mathematics has motivated many of the more 

important recent developments in the analytic theory of elliptic partial differential equations ([71, chapter 16; 

[9], chapter 5; [2]; pp.  133-141) 

In this talk we will outline some recent progress we have made in the investigation of various topics in the 

analytic theory of parabolic equations arising Out of the study of free boundary problems in heat conduction. 

As a simple example of such a problem consider the following single phase Stefsn problem for one dimensional 

heat equation: Find functions 	t) und u(x,t) such that 

uxX  — ut  = o 	for o < x < s(t) 

u(o,t) 	= p(t) 	for I )' o 
(1.1) 

u(s(t),t) = o 	for to 

u(s(t)t)_ t) 	for to 
dt 

where (t) is a prescribed continuous function for t ) 0. Such a problem arises physically in connection 

with the melting of solids (c.f. [14]) and constitutes a free boundary problem of the one dimensional heat 

equation. In more general situations we are concerned with free boundary problems similar to (1.1), but with 

the one dimensional heat equation replaced by a second order parabolic equation in one, two or three space 

*) This research was partially supported by NSF Grant GP-27232. 
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variables with (possibly) variable coefficients and (in the case of two or three space variables) the functions s(t) 

and (t) replaced by functions of several independent variables. 

Due to the difficulties inherent in solving free boundaiy problems such as the one described above (particularly 

in more than one space variable) we propose to consider the inverse problem. i.e. (in the case of one space dimen-

sion) given s(t) to find u(x,t) and (t). The succes of such an approach lies in being able to obtain the 

(global) solution to a non-characteristic Cauchy problem for a parabolic equation and difficulties arise due to the 

fact that this problem is improperly posed in the sense of Hadamard (c.f. [121). However, as a consequence of 

the Cauchy-Kowalewski theorem, the non-characteristic Cauchy problem is well posed in the complex domain, 

and hence in order to make our inverse problem properly posed we are led to the requirement that the free 

boundary be an analytic function of its independent variables. We note that in this situation a local solution 

can always be constructed via the Cauchy-Kowalewski theorem. However, this approach is unsuitable for our 

purposes since the calculations involved are far too tedious for practical applications and (more seriously) the 

power series solution constructed via such a method may not converge in the full region where the solution 

is needed (i.e. in a region containing a portion of the surface x = o). Hence the approach to be presented in 

this talk will instead be based on the construction of integral operators which map analytic functions of one 

and several complex variables onto solutions of linear parabolic equations. These operators will then be used in 

conjunction with contour integration and the calculus of residues in the space of several complex variables to 

derive explicit integral representations of the solution to the non-characteristic Cauchy problem for parabolic 

equations. In addition to their application in solving inverse free boundary problems these integral representa-

tions will also allow us to obtain a variety of results on the analytic continuation of analytic solutions to 

parabolic equations. 

II. The Non-Characteristic Cauchy Problem for Parabolic Equations in One Space Variable 

Consider the general linear homogeneous parabolic equation of the second order in one space variable written in 

normal form 

(2.1) 	 uxx  + a(x,t)u + b(x,t)u - c(x,t)ut = 

where the coefficients a(x,t), b(x,t) and c(x,t) are analytic functions of the (complex) variables x and 

for lxi < °° and lt—t 0 l < t0  for some positive positive constant t o . Suppose we wish to construct a 

solution of this equation which satisfies the Cauchy data 

u(s(t),t) = f(t) 
(2.2) 

ux(s(t),t) = g(t) 

where x = s(t) is a non-characteristic curve and f(s), g(t) and s(t) are analytic for lt—t 0 i < to  . By making 

the non-singular change of variables 

= x-5(t) 
(2.3) 

½ = t - to 
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we arrive at an equation of the same form as equation (2.1) with the coefficient analytic for Il  I < 	and 

1 2l < to. Under the transformation (2.3) the curve x = 5(t) is transformed into the straight line t j  = - 
Hence without loss of generality we can assume in equations (2.1) and (2.2) that s(t) = o, a(x,t), b(x,t) 

and c (x,t) are analytic for I xl < ° , It I < t o , and f(t) and g (t) are analytic for It I < t o. By making 

the change of dependent variables 

(2.4) 	 u(x,t) = v(x,t) exp 	5 a(,t)d} 

we arrive at an equation for v(x,t) of the same form as equation (2.1) but with a(x,t) = o. Hence we can 

restrict our attention to Cauchy problems of the form 

(2.5) 	 uxx + b(x,t)u - c(x,t)ut = 

u(o,t) = f(t) 

(2.6) 	 u(o,t) = g(t) 

where b(x,t) and c(x,t) are analytic functions of x and t for ixi < 	, Iti <to, and f(t) and g(t) 

are analytic for Iti < t o  

In [31 it is shown that the solution to the Cauchy problem (2.5) and (2.6) can be written in the form 

u(x,t) = ---i-- 	E()(x,t,r)f(r)dr 
2iri t—rH6 

(2.7) 

E 2)(x,t,r)g(r)dr 
- 	It—rl6 

where 8 > 0 and 

(2.8) 	 E0kx,t,r) = -i--- + 
tr E

0=2  X 	p(ln)( X t T) 

(2.9) 	 E(2)(x,t,r) J_ + 	p(2,fl) (,c  
t—r 	n3 

with the functions P0'(x,t,r)  and P 2 '° (x,t,r) defined by the following three term recursion formulas: 

(l,l) = 0 

(2.10) 	 p(12) = - 	- 
2(t—r)2 	2(t—r) 

p(l,k+2) = - 2 p(l,k+l) 	I 	p(l,k) + bP(l,k) - cp,k)j ; k > I 
X 	 (k+2)(k+l) XX 
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= 0 

(2.11) 	 (23).- — 	c b 

6(t—r)2 - 6(t—r) 

p(2,k+2) = — 2 	P  (2,k+1) — 	1 	[p(2k) + bP(2 ,k) - 	 ' p(2,k)j k 2 
k+2 	X 	 (k+2)(k+1) 

The series (2.8) and (2.9) converge absolutely and uniformly on compact subsets of the punctured strip' 

lxi < o  , 1 ti < t o  , I ri < t0 , t 	r , and hence define analytic functions in this region. As a consequence of 

this fact we have the following theorem and corollary: 

Theorem: ([3]): Let u(x,t) be a solution of equation (2.1) which is an analytic function of the complex 

variables x and t for It I < t o, lxi < x0  . Then u (x,t) can be analytically continued into the strip 

lxi<°°, Iti<t0 . 

Corollary ([3]): If u(o,t) = (t) is not analytic then neither is the interphase boundary s(t) 

III. IntegralOperatorsforParabolicEquationsinTwoSpaceVariables 

In order to construct a solution to the non-characteristic Cauchy problem for parabolic equations in more than 

one space variable it is necessary for us to first construct an integral operator which maps analytic functions of 

two complex variables Onto analytic solutions of linear parabolic equations of the second order in two space 

variables. We will restrict our attention to equations with time-independent coefficients, although with minor 

modifications this restriction could be dropped. In particular we consider the parabolic equation (written in 

normal form) 

(3.1) 	Uxx + u + a(x,y) Ux  + b(x,y) u, + c(x,y)u = d(x,y) u
yy 

and make the assumption that the coefficients of equation (3.1) are entire functions of their independent 

(complex) variables. With minor modifications we could have assumed only that these coefficients are analytic 

in some polydisc in the space of two complex variables. If we define the non-singular transformation of the 

space cr 2  of two complex variables into itself by 

Z = x + iy 

(3.2) 

z = x - iy 

equation (3.1) assumes the form 
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(3.3) 	 L[U] = U* + A(z,z 5)U1  + B(z,z5)U1* 1 C(z,?) U - D(z,z 5) U1  = 0 

where 	Uu, A=(a+ib), B=-(a—ib), c=D= 

Note that z = I if and only if x and y are real. 

Now let f(z,t) be an analytic function of two complex variables in a neighborhood of the origin (exept for a 

possible nonessential singularity of the first kind at t = r) and define the operator P by 

(3.4) 	 U(z,z 5 ,t) = 

= - 	exp {- f A(z,a)duj 	f E(z,z 5 ,t—s,$) f( ().(l_s 2),?1) 

r 	It—nI —1 

where 5 > 0, 
* 

(3.5) 	 E(z,z*,t,$) = 	
+ 	?'(Z_)' 	p(2n) (z,u,t) do 

and the functions P(2 )(z,z,t) are defined by the recuision formula 

(3.6) 

(2fl+l) 2n+2) = - 2[P(2+ 	2n) + 	2n) do - D as 
	

n Ifz* 

z* 
with 	 B = B - f A 1dz5 ,C = - (A1  + AB - C), D = D 

In [4] it is shown that E(z,z 5 ,t,$) exists and is an entire function of its independent variables (including the 

variables 	and ) except for an essential singularity at t = o and that the operator P maps the anslytic 

function f(z,t) onto a solution of equation (3.3). If f(z,t) is analytic in some neighborhood of the origin 

in C2 then U(z,z5 ,t) = P(f) is analytic in some neighborhood of the point (z,z 5 ,t) =(ff,o) in the space 

of three complex variables; if f(z,t) has a singularity at t = r then so does U(z,z 5 ,t). It is furthermore 

shown in [4] that if the coefficients of equation (3.1) are real valued for x and y real, then every real 

valued analytic solution u(x,y,t) = U(z,I,t) of equation (3.1) defined in some neighborhood of the origin can 

be represented in the form u = Re P (f) where f(z,t) is an analytic function in some neighborhood of the 

origin in C2 and ,,Re" denotes ,,take the real part". In the case in which u(x,y,t) is independent of t, 

the operator Re P reduces to Berman's integral operator of the first kind for elliptic equations ([I]). 
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In the next part of this talk we will be interested in the special singular solution of the adjoint equation 

(3.7) 	 M[V] = v* - 	(AV) - 	(BV) + CV + DV = 0 

defined by 

V(z ,z*,t) = p'i1_i = 
t—r 

(3.8) 

exp{

z 	1
ds f A(z,a)dojf E(z,z*,t_ r, $) f(2(l_s2))............ 

—1 

where P' and E'(z,z 5 ,t,$) are (respectively) the integral operator and E— function associated with equation 

(3.7) and 

(3.9) 	 f(z) = - i 	
2z(1—p2) 

27r 	
expff 	B(a+., :)da} 

	

.17 	 . 

p 

where y is a rectifiable arc joining the points p = - 1 and p = + I and not passing through the origin. In particular 

equations (3.8) and (3.9) imply (c.f. 11, p.  12) that V(z,z*,t)  is a solution of M[V] = 0 satisfying the Goursat 

data 

(3.10) 	 V(z,,t) = I 	exp{f
Z 
 B(o,

-
)doJ 

t—r 

z * .  
(3.11) 	 V(,z*,t) =- 

t—r 
- exp(f A(,o)dcJ 

Note that in the special case when a = b = c = o, d = 1, we have 

(3.12) 	 V(z,z * ,t) = 	exp{_(1 _)j 

	

t—r 	4(t—r) 

i.e. (modulo a constant factor) the classical fundamental solution to the backward heat equation. 

IV. The Non-Characteristic Cauchy Problem for Parabolic Equations in Two Space Variables 

We again consider equation (3.1) and its complex version (3.3) under the assumptions on the coefficients stated 

in section three. Let S be an analytic surface in R 2  x [0,T] (where m2  denotes two dimensional Euclidean 

space and T is a positive constant) and assume that for r C [0,T] the intersection of S with the plane t = r 
is a one dimensional analytic curve C = C'(r). In this Section we will describe a procedure for constructing 

a global solution of equation (11) satisfying prescribed analytic Cauchy data on this surface S. Let u(x,y,t) = 
= U(z ,z*,t) be the local solution to this problem constructed (for example) via the Cauchy-Kowaiewski theorem. 

Then our approach to this problem will be based on integrating the quantity VL[U] - IJM[V] over a torus 

G X S2, where V(z ,z*,t) is the function defined by equations (3.8) and (3.9), n is the circle It—ri = 5 > 0 
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in the complex t plane, and G is a two dimensional cell in (z,z*)  space. By preforming this integration and 

using the calculus of residues we will obtain a (local) integral representation of the solution to the non-character-

istic Cauchy problem as a linear functional of the data. Such a representation will then provide a method for 

the (global) analytic continuation of this solution into the complex domain. 

We now describe an appropriate choice for the domain C. Suppose C'3(7-) is described by the equation 

F(x,y;r) = 0. Since C(r) is an analytic curve we can write F(—, -Z;  r) = 0 and this is the equation 
21 

for the complex extension of C'3(r) into (z,z*)  space. For points () sufficiently near the complex 

extension of C'3  (r), the characteristic planes z'=+i 2  and z*1_i2  intersect this surface at two 

points Q and P respectively. Let C 3  = C3  (r) be a curve lying on the complex extension of C'3  (r) and joining 

the points Q and P. We now let C be a cell whose boundary consists of the curve C 3  and line segments C l  

and C2  which lie in the characteristic planes z = and z* = r and join the point R = (,f) to the curve C 3  

at the points Q and P respectively (see figure 1 below). 

z* 

fl<IC 
Figure 1 

We now use Stokes theorem to integrate the identity 

VL[U] - UMLV] = (AVU + -VU* - 	I 

(4.1) 

+ (BVU + -VU - VU)* - (DVU) 1  

over the torus C X ci (where 5 is chosen sufficiently small), and make use of equations (3.10) and (3.11) and 

the fact that dzdz* = 0 on aG X ci to arrive at the following (local) integral representation of the solution to 

the non-characteristic Cauchy problem for equation (3.1): 

u(l,2,r) = U(,r) 4iri fi21V(p,t)U(P,t) + V(Q,t)U(Q,t}dt 

(4.2) 	
- 	C3(r)X F(AVU + 

	- Vz*U)dZ*dt 

—(BVU + - VU - -V1U)dzdtJ 
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Equation (4.2) cn now be used to obtain a global solution via the straightforward use of analytic continuation 

of the Cauchy data and deformation of the region of integration. In particular if we invoke the concept of 

conformal symmetry we can obtain the following theorem: 

Definition ([11]): Let be a domain in the plane and C an analytic arc lying in 6. Then 5 is conformally 

symmetric with respect to C if there exists a conformal mapping which transforms C into an interval 

of the real axis and Z into a domain which is symmetric with respect to the real axis. 

Theorem ([5]): Let U(z,z*,t)  be an analytic solution of equation (3.3) and for each fixed t in a (complex) 

neighborhood of t = r let the Cauchy data for U(z,z*,t)  be regular (as a function of z) in a domain 

which is conformally symmetric with respect to C'3(r). Then the restriction of U(z,z*,t)  to the plane 

= r is an analytic function of z and z in 6 X 	where 	{z : ? E 25.1 

V. The Non-Characteristic Cauchy Problem for the Heat Equation in Three Space Variables 

We will now obtain an integral representation for the solution to the non-characteristic Cauchy problem for the 

three (space) dimensional heat equation 

(5.1) 	 Uxx + Ux2x2  + Uxx = Ut 

in a manner analogous to that used in the previous section to solve the non-characteristic Cauchy problem for 

parabolic equations in two space variables. The extension of the results in the present section to the case of 

parabolic equations in three space variables with variable coefficients is presently being investigated by Michael 

Stecher ([15]). 

We first introduce the non-singular change of variables in C 4  (the space of four complex variables) defined by 

z = x1 + ix2 

z 	x1 '2 
(5.2) 

x = 

t=t 

and rewrite equation (5.1) in the form 

(5.3) 	. 	 L[U] = 4U* + 	- Ut = 0 

where U(z,z*,x,t) = u(x 1 ,x2 ,x3 ,t) is assumed to be an analytic function of its independent variables. Let 

M[V] = 0 be the adjoint equation defined by 

(5.4) 	 MEVI = 4Vzz  * + Vxx + V = 0 
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and let U(z ,z*,x ,t) = u(x 1 ,x2 ,x3 ,t) be a solution of equation (5.1) assuming prescribed analytic Cauchy data 

on a noncharacteristic - analytic surface S. Then (following the ideas of the previous section) our approach will 

be to construct a special singular solution of MLVI = 0 and then integrate VL[U] - \IM[VI over a hypertorus 

G X QO X n I  where  no= lx-3I = > 0, nI = It—ri = & 1>0, and G is a two dimensional cell in (z,z*)  space. 

The domain G is the same as described in the previous section. In particular assume that the intersection of S 

with the hyperplanes x = t3 and t = r is a one dimensional analytic curve C' 3  = 9 3 ,r) and let C 3  C3( 3 ,r) 

be a curve lying on the complex extension of C in (z,z*)  space which intersects the characteristic planes 

z = = El + i 2  and z = r = 	- i 2  at the points Q  and P respectively. Now define C to be the cell 

whose boundary consists of the curve C 3  and characteristic line segments C 1  and C 2  joining the point 

R = 	to the points Q  and P respectively (c.f. figure 1). 

We now turn our attention to the construction of the function V(z,z*,x,t)  satisfying M[V] = 0. Motivated by 

the analysis of the previous section we will require V(z,z*,x,t)  to satisfy 

(5.5) 	 Vz =0 	on z*= f 

(5.6) 	 V0 	on z = 

and on the intersection of the planes z = , z = 

(5.7) 	
1 	 (UV)dxdt = U(,3 1 7) 

for every analytic solution U of L[U] = 0. However at this point our analogy with the results of section 

four breaks down since it is not possible to set V(z,z*,x,t)  equal to the standard fundamental solution of the 

backward heat equation as we did in the case of the two (space) dimensional heat equation (cf. equation (3.12)). 

This is due to the fact that in three space dimensions the fundamental solution to the backward heat equation 

has a branch point at t = r and thus does not satisfy equation (5.7). Hence we must construct a new singular 

solution to equation (5.4) satisfying equations (5.5) -(5.7). We note that a similar problem was also encountered 

by C.D. Hill in his investigation of the non-characteristic Cauchy problem for parabolic equations in one space 

variable ([12]). 

We begin our construction of V(z,z*,x,t)  by first considering the equation 

(5.8) 	 4Wzz* + W = 0 

From the results of section three of this talk we can represent any real valued (for z* = 1) analytic solution 

of equation (5.8) (in a neighborhood of the origin) in the form 

1 (5.9) 	 W(z,t) = Re {- L 	f E(r2 ,t - s,$) f(-(l—s2),,7) dsdq 
It—ql& —1 
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where & > 0, f(z,t) is an analytic function of two complex variables in some neighborhood of the origin in C 2  

(except for a possible nonessential singularity of the first kind at t = 0, in which case W(z,I t) is aingular at 

= 0) and E(r2 ,t,$) is defined by 

' 

(5.10) 	 E(r2,t,$) = 1. 	l'(l/2) 	22  
n0 F(n+1/2) rt 

where r2 =zi=x f +x. Ifwenowset 

(5.11) 	 f(z,t) =g(z)It 

where g(z) is an analytic function of z in some neighborhood of the origin, and take the operator ,,Re" 

inside the integral sign in equation (5.9), we arrive at 

(5.12) 	 w(x 1 ,x2 ,t) f E(r2,t,$)H(xp/jT2), x2VTT2)—_1=== 

where w(x1,x2,t) = W(z,i,t) is a singular solution of the backward heat equation in two space variables and 

H(x 1 ,x2) = Re g(-) is a harmonic function of the variables x 1  and x2 . If we define a new harmonic function 

h(x 1 ,x2) by the equation 

	 ds (5.13) 	 h(x 1 ,x2) 'j H(x1/i 2)., x2\/Tii)— 	, 

then equation (5.12) becomes 

(5.14) w(x1,x2,t) = h(x
1 ,x2

) + aG(r2,1—a2,t)h(x1a2,x2u2)da 
t 	0 

where 

(5.15) 	 G(r2, 1-02 ,0 -f--- exp(( 1 _022 ). 
2t2 	4t 

We now use the ,,method of ascent" ([101; see also [I], p. 68 and [16], p.  59) to extend the representation 

(5.14) from two space variables to three space variables. This operation gives a solution w(t) of the backward 

heat equation in three apace variables in the form ([6]) 

(5.16) 	 w(,t) = 	+ 	2 exp 
((I_02)r2 

 h(xo)do 
t 	2t2  0 	 4t 

where x = (x 1 ,x2 ,x3), r = lxi, and h() is a harmonic function of x 1 ,x2 , and x3  defined in some 

neighborhood of the origin. 
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It is easily verified that the representation (5.16) is still valid if we allow h() to have a weak singularity at 

the origin. Hence in equation (5.16) we can set 

	

(5.17) 	 h()= i 
r 

If we now make the change of variables defined by equation (5.2) and translate the origin to the point 

we arrive at the desired singular solution V(z,z*,x,t)  of M[V] = 0 satisfying equations (5.5) - (5.7), 

viz. 

	

(5.18) 	 V(z,z*,x,t) 
= R(t—r) + 	2 

CX ( 	 -  j) . exp (_._T))d0 

where R = V'x- 3)2  + (z—) (z*_ ) 

We now use Stokes theorem to integrate the identity 

VL[U] - UMEVI = (2UsV - 2UV*)1  

(5.19) 

+ (2UV - 2 UV1)* - (UV - U,1V), - (IJV)t 

over the hypertorus G X n o  X 92 1 , making use of equations (5.5) . (5.7) and the fact that dzdz* = 0 on 

G X 00 X n i lNote that V(z,z*  ,x,t) is an analytic function of x outside the branch cut between 

±i vr(z_—~) (z*— ) and hence for the point R = sufficiently near the curve C3( 3 ,r) (and 5 0  and 

1 sufficiently small) the integration over G X n o  X 92 ,  is well defined. The result of this integration is the 

following (local) integral representation of the solution to the non-characteristic Csuchy problem for equation (5.1): 

= 

= 	 [V(P,x,t)U(P,x,t) + V(Q,x,t)lJ(Q,x,t)j dxdt 
8a 

(5.20) 
1 	 [(U5*V - 	 z*)41z*d1,u1t —(UV - UV)dzdxdt]. 

Sn2  C3 ( 3 ,r)X S 20Xl j  

The representation (5.20) can now be extended to a global solution through the use of analytic continuation 

of the Cauchy data and deformation of the region of integration. In particular we have the following theorem: 

Theorem: Let U(z,z*,x,t)  be an analytic solution of equation (5 .3). Let be a domain in the z plane which 

is conformally symmetric with respect to C( 3 ,7-)  and let S be a domain in the complex x plane which 

contains the branch cut joining b ± i 	z_)(z*_*) for all ( z ,z*) and (*) in Z X2 * where 

= {z : 	E 1. Suppose that for each fixed t in a (complex) neighborhood of t = r the Cauchy 
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data for U(z,z*,x,t)  is regular (as a function of z and x) in g X £ Then the restriction of U(z,z*,x,t)  to 

the intersection of the hyperplanes x = Z3 and t = r is an analytic function of z and z in X 0 * 
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THE iNVERSE STEFAN PROBLEM FOR THE HEAT 
EQUATION IN TWO SPACE VARIABLES 

DAVID COLTON 

1. Introduction. The Stefan problem is a particular free boundary problem for 
the heat equation which arises in the investigation of the melting of solids. In the 
case of one space dimension there are numerous results available concerning the 
existence, uniqueness, and stability of the solution [c.f. 6]. However the case of 
several space variables is considerably more difficult. This is due in large part to the 
fact that the geometry of theY problem can become quite complicated, and smooth 
initial and boundary data do not necessarily lead to smooth solutions. In particular, 
under heating, a connected solid can melt into two (or more) disconnected solids, 
thus leading to a problem in which the free boundary varies in a discontinuous 
manner. These difficulties have motivated several researchers to look for "weak" 
solutions to the Stefan problem [c.f 1, 3, 5]. Although this approach is quite general 
and leads to numerical schemes for solving the problem under consideration, there 
are several drawbacks to this method, among them being the fact that no information 
is obtained concerning the structure of the interphase boundary, nor is there much 
information on the regularity of these weak solutions. 

In this note we will outline an inverse method for constructing analytic solutions 
to the (single phase) Stefan problem for the heat equation in two space dimensions. 
This will be accomplished, by assuming a priori that the free boundary is a relatively 
simple analytic surface, and then constructing a solution to the heat equation which 
has this prescribed surface as a free boundary. Provided the solution is analytic in 
a sufficiently large domain, we can then determine those initial-boundary data that 
are compatible with the given "free" boundary. In physical terms we are asking the 
question "How must a given solid (e.g. ice) be heated in order for it to melt in a 
prescribed manner?" By construting a variety of such examples a qualitative idea 
can be obtained on the shape of the free boundary as a function of the initial-
boundary cQnditions. Such an inverse approach leads to two main problems. The 
first of these is that the inverse problem has its mathematical formulation as a non-
characteristic Cauchy problem for the heat equation and is thus improperly posed in 
the real domain. However such a problem is well posed in the complex domain, and 
hence we are led to examine solutions of the heat equation in the space of several 
complex variables. The inverse Stefan problem can now be solved locally by 
appealing to the Cauchy—Kowalewski theorem. However in addition to being far too 
tedious for practical computation and error estimation, such an approach does not 
provide us with the required global solution to the Cauchy problem under investiga-
tion. Hence we are led to the problem of the analytic continuation of solutions to 
non-characteristic Cauchy problems for the heat equation. We will accomplish this, 
by using contour integration, and the calculus of residues in the space of several 
complex variables, to arrive at an explicit (global) series representation of the solution 
to, the inverse Stefan problem. 

This research was supported in part by a U.S. AFOSR Grant. 
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The inverse approach described in this note was previously described (for the 
more general case of parabolic equations with variable coefficients) in the research 
announcement [2]. However this paper did not provide an explicit formula for the 
solution that was suitable for analytic approximations. This defect will now be 
remedied through the introduction of a one parameter family of conformal mappings 
which provides an explicit parametric representation of the "free" boundary in the 
complex domain, and leads to a representation of the solution in terms of an infinite 
series of one dimensional integrals. 

2. Mathematical formulation of the i,werse Steflin problem. We will motivate the 
mathematical formulation of the inverse Stefan problem in terms of an ice—water 
system undergoing a change of phase. Assume that a bounded simply connected 
region R with boundary ÔR is filled with ice at 0°C. Beginning at time t = 0 a non-
negative temperature y = y(x, y, t) (where y(x, y,  0) = 0) is applied to ÔR. The ice 
begins to melt and we \vill let the interphase boundary r(t) between ice and water be 
described by F(t) = {(x, y) : 1(x, y, t) = 0}, with the water lying in the region 
t(x, y, t) <0. The differential equation and boundary conditions governing the 
conduction of heat in the water are given by [c.f. 6] 

ä211 	ö 2 u 	1 äu 
--j-  + ---j-  =  

UIR = y, 	 (2.2) 

	

UIr(,) = 0, 	kP± 	= 	 (2.3) 
ÔV Ir(t) 	IV:iI at f(t) 

where v is the normal, with respect to the space variables, that points into the region 
D(x, y, t) < 0, u(x, y, t) is the temperature, a the diffusivity coefficient, A the latent 
heat of fusion, andk the conductivity of the water. The Stefan problem is to find 
F(I) and u(x, y, t) given the function y(x, y, 1). The inverse Stefan problem (which 
interests us) is to find u(x, v, t) and 

y(x, y, 1) = lim u(x, y, i) 
(x, y) -'ÔR 

given F(t). In general we cannot hope to solve the inverse problem for arbitrary 
F(t); however, by suitably restricting F(t) to lie in a certain class of analytic surfaces, 
we shall be able to obtain a relatively simple series representation of the solution, and 
it is to this problem we now address ourselves. 

Let 	, 0 < t < t0 , be a family of simply connected domains which depend 
analytically on a parameter t such that 

• 	
- 	 U 9, contains R u OR x [0, 's). 

0 t <t o  

Let z = 	t) conformally map the unit disc ) onto gi (we assume that 9 has 
been chosen such that the image of the interval (- I, I) intersects the region R) and 
for * Q, 0 s r < t0 , define 	i) by 

(C*, r) = 4(C*, t), 
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where bars denote conjugation [c.f. 41. Now set z* = 	t) and note that 

= 2, if, and only if, 	= C . We now define the function *1(x, y, t) for (possible) 

complex values of x; y and t by 	- 

- 	 (x,y, t)  

wherez = x ± iy, z" = x - iy. Noting that z * = 2, if,and only if, x andy are real, 

it is seen that I(x, y, t) = 0 corresponds to Im = 0, i.e. the interval (-1, 1) in the 

complex C plane. Similarly, the region t(x, y, t) < 0 corresponds to Im < 0, 

i.e. the part of which lies in the lower half plane. We finally note that, for 

z = x + iy E 1(t), we have 	t) = 	(z *, t), and hence 

ä'(z*, t) 	 (2 5) 
of r(t) - 21 L 	at 	 at 	j z' =- '(z, t), I) 

=g(z,t), 

i.e. 0010t restricted to 1(t) can be analytically continued (for each fixed t) to an 

analytic function ofzforz e 

3. Solution of the inverse Stefan problem. In equation (2. 1) we consider x and y 
as independent complex variables and define a transformation of the space of two 

complex variables into itself by 

	

.z=.X+iy, 	z*r_x_iy.  

Under this transformation equations (2. 1) and (2.3) become 

	

0 	3U 

	

L[U] 	
2 U 	1 

-.--- = 0, 	 (3.2) 

U((s, t), (s, t)) = 0, 	—1 < S < 1, 	 (3.3) 

V 1 ((s, 1), (s, t), t) O(s, t) - U 2((s, t), (s, i), 
 

as 	 as 

	

= 	ocb(s 
t) 2g((s t), t); - 	< 1, 	(3.4) 

where 

	

U(z)z *, t) = U 	
2 	' 	21 	

t ) 

g(z, t) is defined by equation (2.5), and subscripts denote differentiation of U(z, z *, t) 

with respect to the first and second variables respectively. - 

	

Now let M be the adjoint operator, defined by - 	 - - 

	

0 2 v 	.1ov 

	

M[V] azo t-7 
= 0, 	 -, 	(3.5) 
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and let. V be the fundamental solution of M[V] = 0, defined by 

	

V( z , z *, t; , 	
=1 
	

exp 	 (3.6) 

where = 	+ 	= 	- 	Note that V satisfies the Goursat data 

V(z, , 1; , , r) = 
	, 	 (3.7a) 

V(, z *, t; ' ' 	=l 
	

(3.7b) 

We will now obtain the solution to the inverse Stefan problem (3.2)-(3.4) by first 
using Stokes's theorem to integrate VL [U] - UM[V] over a torus lying in the space 
of three complex variables and then computing the residue of the resulting integral 
representation. 

	

Let r be real and.for t on the circle It - 	= 6, 6 > O,let G(t) be a cell whose 
bouiidary' consists of a curve C(t) lying on the surface 

çb_ 1 (z,t) = 

arid line segments lying on the characteristic planes z = and z = respectively 
which' join the point (, ) to C(t): Integrating VL [U] - UM[V] over the torus 
{( z , z *, t):  (z , z *) e G(t), It - I = (5} and making use of the initial conditions (3.7a), 
(3. 7b) satisfied by V gives 

U(, , t) = 	f f [VUdz - VU*dz*]d: 

It - rI=o C(r) 

Ap 
ex 	

t)  
- 47rk f 	J 	t - T 	 4a(t -=o - 

g(ifr(, t), t) dC dt 

'.i2p  
- 	- 	nO (4a)hI(n!)2 

an  

f 	I, ) - I2n. 	 t), t)d 	(3.8) 

where 	 - 

= ô(tt) 	It) 	p2 
= (((, t)—)(,T) - 

Equation (3.8) is the main result of this note. From the definition of the conformal 
mappings cb(C, t) it is seen that equation (3.8) is valid in a region containing 



286 THE INVERSE STEFAN PROBLEM FOR THE HEAT EQUATION IN TWO SPACE VARIABLES 

R u oR x [0, t a). In order to obtain a physically meaningful solution of the inverse 
Stefan problem we assume 	 S 	 - 

y(x,y, t)= 0 for (x,y, 1) eORx [0, t0) r {(x,y, t) : '1(x,y, t) 

and choose the conformal mappings 4, t), such that u(x, y, t) 	0 for 

{(x, y, t): T(x, y, t) < 01. We note that, from the boundary condition (2. 3), this last 

condition is always satisfied (at least for to  sufficiently small) provided we choose 

4>(, t) such that (OJ?/Ot)I r(t)  0. Due to the appearance of the factor (n!) 2  in the 

denominator of each term in the series (3 .8), accurate approximations of the 
solution to the inverse Stefan problem can be obtained by truncating this series after 

only a few terms. 
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An integral operator is obtained which maps analytic functions of two complex variables 
onto real valued solutions of an elliptic partial differential equation in three independent 
variables. An inverse operator is also constructed. These operators are then used for pur-
poses of analytic continuation and to construct a complete family of solutions. 

1. INTRODUCTION 

The theory of integral operators for second order elliptic partial differential 
equations in two independent variables with analytic coefficients has been 
extensively investigated by Bergman [1] and Vekua [21]. These operators 
map analytic functions of one complex variable onto the class of twice 
continuously differentiable (i.e. C2) solutions of the elliptic equation being 
considered. In recent years their results have been extended by Henrici 
[14], [15] and Gilbert [10] to include certain classes of equations with singular 
coefficients. Of the many applications of these integral operators, two are of 
central importance: 

Integral operators can be used to construct complete families of solu-
tions. (Once such a family is obtained, it is possible to construct the kernel 
function [2], [9], and thus solve the classical boundary value problems con-
nected with the partial differential equation being studied.) 

The investigation of the analytic structure of a solution to an elliptic 
equation can be reduced to studying the analytic function associated with it 
via the integral operator. (In particular this has many applications in scat-
tering theory; c.f. [10], chapter five, and [4].) 

The above applications depend on the fact that the integral operetor maps 

77 
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the space of analytic functions onto the class of C2  solutions of the differential 
equation, and that furthermore, given a C2  solution of the differential 
equation, the analytic function associated with it can be determined in a 
reasonably easy manner. 

Due to both its physical and mathematical interest, several attempts have 
been made in recent years to extend the results of Bergman and Vekua to 
equations in three and four independent variables. (The latter case arises in 
studying analytic solutions of hyperbolic equations in three space variables 
and one time variable; c.f. [5].) Up to now, only partial results have been 
obtained. Considering the elliptic equation 

b 3  u+q(x, y, z) U = 0 

L3 
 

- +j+ 
3j 	Oz

2 
 

as a prototype, Bergman [1] has obtained integral operators which map 
certain subspaces of analytic functions of two complex variables onto 
subspaces of the class of C2  solutions of Eq. (1.1). Bergman further assumed 
that q(x, y, z) was independent of x. The analytic function associated with 
u(x, y, z) by Bergman's operator can be easily determined from "Goursat 
data" of u(x, y, z) in the space of several complex variables. More recently, 
Colton and Gilbert [6] have constructed an operator which maps certain 
subspaces of ordered pairs of analytic functions of two complex variables 
onto the space of C 2  solutions of Eq. (1.1), again under the assumption that 
q(x, y, z) is independent of x. The associated analytic functions are given in 
terms of the Cauchy data for u(x, y, z). In the general case when q(x, y, z) is 
no longer independent of x, Tjong [19, 20] gave an integral operator which 
maps analytic functions onto an unspecified subspace of solutions to Eq. (1.1). 
Gilbert and Lo [13] showed that if q(x, y, z) < 0, then Tjong's operator in 
fact maps analytic functions onto the whole space of C 2  solutions of Eq. (1.1). 
However, in the work of Gilbert and Lo the associated analytic function is 
constructed by solving a Neumann problem for Eq. (1.1), and is thus imprac-
tical for use in examining the analytic structure of solutions of Eq. (1.1). 
Finally, the special case when q(x, y, z) = B(r 2) has been examined by 
Bergman [1], Gilbert and Howard [12] and Gilbert [11], and work on the four 
dimensional analogue of Eq. (1.1) has been initiated by Colton and Gilbert [6]. 

In the present paper we overcome the restrictions and difficulties of the 
above mentioned work and construct an integral operator which maps a 
subspace of analytic functions of two complex variables onto the space of 
real C2  solutions of Eq. (1.1). The associated analytic function is given in a 
simple manner in terms of the "Goursat data" for u(x, y, z) in the space of 
several complex variables. The function q(x, y, z) will in general depend on x, 
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and no assumption will be made on whether q(x, y, z) is positive or negative. 
This operator is then used to derive a result on the singularity manifold of C 2  
solutions of Eq. (1.1), and to construct a complete family of solutions for 
Eq. (1.1). For the sake of simplicity we assume that q(x, y, z) is an entire 
function of x, y, and z (considered as complex variables), although with 
slight modifications our results remain valid when q(x, y, z) is only assumed 
to be analytic inside some ball in the space of three complex variables. A 
large part of our work in section two is based on the ideas of Tjong [19, 20], 
with the important difference being that we replace the distinguished plane 
x = 0 in her work by a complex hyperplane in the space of three complex 
variables. This is a fundamental step in showing that our operator is onto, 
since it leads to a well posed (in the space of three complex variables!) 
Goursat problem for a hyperbolic equation instead of the improperly posed 
initial value problem implicit in Tjong's work. In this sense our work is a 
natural generalization of Bergman's and Vekua's results for two independent 
variables, since they also showed that their operators were onto by con-
sidering a complex Goursat problem for a hyperbolic equation. Our methods 
furthermore suggest the possibility of extending our results to other classes 
of elliptic equations in three independent variables, and this investigation will 
be the subject matter of a second paper in this series. 

2. CONSTRUCTION OF THE OPERATOR P3 

We now proceed to construct the integral operator which was discussed in 
the introduction. The various properties of this operator, including the fact 
that it maps analytic functions onto the class of C 2  solutions of Eq. (1.1), 
will be discussed in section three. We first give the following theorem in order 
to motivate the analysis which follows. 

Throughout this paper we will assume that q(x, y, z) is a real valued 
entire function of the variables x, y, z. 

THEOREM 2.1. Let X = x, Z = 4(y+iz), Z = (—y+iz), and let u(x, y, z) 
be a real valued C2  solution of Eq. (1.1) in a neighborhood of the origin. Then 
U(X, Z, Z) u(x, y, z) is an analytic function of X, Z, Zt  in some neighbor-
hood of the origin in C 3 , the space of three complex variables, and is uniquely 
determined by thefunction F(X, Zt) U(X, 0, Z*). 

Proof The fact that U(X, Z, Z*)  is analytic follows from the well known 
result that twice continuously differentiable solutions of linear second order 
elliptic equations with analytic coefficients are analytic functions of their 
independent variables (c.f. [9], p.  164). Hence locally we can write 

00  U(X, Z, Z*) = 
	

aXLZnZ*m 	 (2.1) 
t,m =.  
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U(X, 0, Z') 
= 	1 	amoz X lZ *m  (2.2)  

m 

U(X, Z, 0) = 	a01X'Z. (2.3) 

Since u(x, y, z) is real valued, we have that for x, y, z real 

U(X, Z, Z*) = U(X, Z, Z''), (2.4) 

where the bar denotes complex conjugation. This implies that for x, y, z real 

amniXIZnZ*m 

= 	
Xl(_Z*y7(_Z)m 

I,m= 

0 	
l,m,n= 

0 (2.5)  

or 
- I 	n-fm 

amni 	
1\ - 	Z. 

Equations (2.2) and (2.3) now show that U(X, Z, 0) is uniquely determined 
from U(X, 0, Z'). However in the X, Z, Z*  coordinates, Eq. (1.1) becomes 
an equation of hyperbolic type, viz. 

U 1 — U.+ Q(X, Z, Z) U = 0, (2.7) 

where for x, y, z real, 
Q(X,Z,Z*) = qx,y,z). (2.8) 

Hence from Hormander's generalized Cauchy-Kowalewski theorem ([16], 
pp. 116-119) we have that U(X, Z, Z") is uniquely determined from the 
Goursat data U(X, 0, Z') and U(X, Z, 0), which we have already seen are 
determined from U(X, 0, Z*) alone. This proves the theorem. 

We note in passing that the above Goursat problem is well posed in C 3 , 

but not in real Euclidean space For an interesting discussion of this 
latter case, see [7]. 

Motivated by Theorem 2.1 we now construct an integral operator which 
maps analytic functions onto solutions of Eq. (1.1) such that the associated 
analytic function is determined in a simple manner from the function 
F(X, Z*) = U(X, 0, Z*).  We first introduce the following notation: 

= X+2Z 	 (2.9) 

= X+2Z* 

IL = (+) = 	 (2.10) 

where 1—c < ICI < 1+c, 0 < c < 1. These variables are introduced in 
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order to enable us to construct an integral operator whose kernel can be 
expanded in an infinite series of recursively determinable analytic functions. 

THEOREM 2.2 Let D be a neighborhood of the origin in the U plane, B = 
{C: 1 —e < IC < 1 +e}, G a neighborhood of the origin in the , 2' 3 space 
and T = {t: Itl 11. Let f(u, C) be an analytic function of two complex 
variables in the product domain Dx B, and E*(1, 2' C, t) E(X, Z, Z, 
C, t) be a regular solution of the partial differential equation 

	

Q* E*)+(l_t2)E,_-! E1' = 0 	(2.11) 

inGxBxr,where Q*(1, 2' 30 Q(X,Z,Z*),and 

ö 2E* 	ô 2E* 
E =-n-, E, = 	E, = 

	
j,J = 1, 2, 3. 

Then 

U(X, z, Z') P3 {f) 
1  

27ti 5 cl = i f, E(X,Z,Z*,C,t)f(p(1_t 2),C) 	(2.12) 

x dt dC 
- 

/1—t 2  C 

where y is a path in Tjoining t = —1 and t = +1, is a (complex valued) sol-
ution of Eq. (1.1) which is regular in a neighborhood of the origin in A', Z, Z" 
space. 

Proof Since the Jacobian of the transformation (2.9) is equal to —4, we 
can conclude that U(X, Z, Z") = P3 {f} is regular in a neighborhood of the 
origin in the I, Z, Z space. Straightforward differentiation and integration 
by parts in Eq. (2.12) leads to 

U— U— QU 

=

fjCj=jff(.U(l _
t2)'C) {t(4E + 2E2*3  - E2*2 - E - Q*E*) 

+(1 _t2)E_ E} dt dC 
1 _2 	 (2.13) 

Hence if E*  satisfies Eq. (2.11), then Eq. (2.12) defines a solution of Eq. (1.1). 
We now must show the existence of the integral operator P 31  i.e. we must 

show that a function E(X, Z, Z*, C. t) satisfying the conditions of Theorem 
2.2 exists. Our proof is based on the ideas of Tjong [19. 20]. 
F 
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TJiEon€M 2.3 Let Dr = {(, , l3).111 
< r, i = 1,2, 3} where r is an 

arbitrary positive number, and B2  = {(: jC - CoI < 2}, 0 < c < f, where 
Co is arbitrary with ICol = 1. Then for each n, n = 0, 1, 2, ..., there exists a 
uniquefunctionp(c1, 2' C) which is regular mD, x B 2e and satisfies 

1 ,,(n+ 1) - 
	{p +p - 4n(") - 2p + Q*p  (n)) 

i-i 	2n+1 	33 	k'13 

where 

	

p ° (i, 2' 	C) 	1 

p"1(0, 2' , C) = 0; 	n = 0, 1,2, 

p(- 
3p(U) 	

(n) - ôp 2  
1 

- —;—, 

p 	
- 	

; 	i,j = 1, 2, 3. 

Furthermore the function 

E*(1, 2' 3, C t) = 1 + 	t2pp(1, 2' 	C) 	(2.16) 
n= 1 

is a solution of Eq. (2.11) which is regular in the product domain GR  x B x T, 
where R is an arbitrary postive number, and 

GR = {( 1' 	3):1lg1 < R, 	i = 1,2,31 

	

B={C:1—e<ICI<1+6}, 	0<e<+ 	(2.17) 

T= {t:ItI < 1}. 

The function defined in (2.16) satisfies 

	

E*(0, t 2' 3 ,  C, t) = 1. 	 (2.18) 

Proof For n = 0, Eqs. (2.14) and (2.15) become 

(1) - Pi - Q*(1, 	C) 	 (2.19) 

p(0, , , C) = 0 1  
and hence 

p(l)(, 2' 
t3l C) = f' Q*(, 2' t3, C) d 	(2.20) 

is uniquely determined and regular in D, x B2 e . By induction p(fl)(1, 
2' 

() exists, is uniquely determined, and is regular in D, x B 2 . Now consider 
the formal series defined in Eq. (2.16). Straightforward differentiation and 
collection of terms shows that 

(2.14) 

(2.15) 
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p.t(4E + 2E'3  —E 2  —E3 - Q*E*)+(1 - 12)Er, _! 	E Ef 

Go 

= 	I 	1 jt '(4p]+2p°' ,,(n) 	(n)_ Q*p(n)+(2n + 1)p" 1)  
I 	)' 23 r22 i- 33 

n= 0 
(2.21) 

and hence if the p"(i, 2' C) are defined by Eqs. (2.14) and (2.15), then 
the series in Eq. (2.16) formally satisfies Eq. (2.11). It remains to be shown 
that E*(1, 2' , C, t) is regular in GR  x Bx T, i.e. the series (2.16) converges 
absolutely and uniformly in this region. To this end we note that since fl is a 
compact subset of the C plane, there are finitely many points C, with IC,I = 1 1  
j = 1, 2,. . ., N, such that B is covered by the union of sets 

N = {C:IC - CjI <}; 	j= 1,2,...,N. 	(2.22) 

Hence it is sufficient to show that the series converges absolutely and uni- 
formly in 0, x Rj  x T. To this end we majorize the p"i, 2' 	C) in 

x B 2 . Since Q(X, Z, Z*)  is an entire function, it follows that Q*(1, 2' 

31 C) is regular in D, x -2  and hence we have 

Q*(1, 2' 	() 4 c(i 
_)_1( 	)_1()_1( C_Co)_l 

(2.23) 

for some C> 0 and , C) in D,xB 2 . In Eq. (2.23) the symbol 
46 4" means "is dominated by". The use of dominants, or majorants as they 
are sometimes called, is a standard tool in the theory of several complex 
variables, and the reader unfamiliar with their use is referred to [1] or [10] 
for further details. We will now show by induction that in D, x B2z we have 

4 M(8+5)-(2n_1)_1(1_.i). 

/\—(2n—i) (2n—i) 	C—00\ (1_!) 	
(' 	2  ) r" 
	(2.24) 

rj 	( 	r, 

where M and ö are positive constants independent of n. Equations (2.20) and 
(2.23) show that (2.24) is true for n = 1. Suppose now that (2.24) is true for 
n = k. Then 

(k) 	M(8+5)k(2k_l)_ 1(l_).. 

1 	
" (2k_1)(1 , ) ( 2k—i)

(1_ 

C_Co\_k 

(-- ) 	 ) 

F 
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4 M(8+6)k(2k 1) 1(1 
_) 

(2k+ 1) 	 (2.25) 

\—(2k—i) 

1 
\ r 	

() 	

(i_ 2c 
) 

and using the fact that dominance is preserved under the operation of 
integration we have 

p 4 M(8+(2k) 1 (2k— 1) 1(1 
_)_2k. 	

(2.26) 

—(2k—i) 	 —(2k—i) 	- 	 —k 

x(i — 
 

 (1 _L_c 	r ' . 
\ 	rj 	\ 	rj 	\ 	2eJ 

From Eq. (2.26), and the fact that dominance is preserved under the operation 
of differentiation, we have 

' — (2k+ 1 ) 

W 	M(8+6)k i(l_f (
rj r) 

L 
 

x1'i—' 3' 
(2k+1)( 	_\—(k+i) 

r - (k+ 1) 

p 	M( 8+(l_ 
( 1  \ 	1 	 rj 

c_\—(k+i) 
_ 

X (I_

3\  
_(21+1)( 

(k+ 1 ) 1 
r)  

) 

'—(2k+1) (227) 
P 4 M(8+ô)k (l__i[Y i ( 

(2k+1)f 	_ç\—(k+i) 
~ 3 X ( l  

T) 
r 

p 	4 M(8+(2k_l)(2kY 1(l_) 

—(2k+i)/ 	\—(2k+i) 	CC\"1 
) 	 ( l--  ) (i_ 

r 	 \ 	TI 

From Eqs. (2.23) and (2.26), and the fact that dominance is preserved under 
multiplication, we have 

Q*p(k) 4 CM(8+(2k)_1(2kl)_1(l_) 
(2.28) 
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.< 

(, 	

(2k+ 	 - (2k+ 1)

(1_ -C\ - (k+ 1) 

'-7) 	_.._) 	r' 

Equations (2.28), (2.27), and (2.14) now show that 

(k+l) 	
M(8+ö)k/ 	2k—i 	Cr 2  't 	'—(2k+1) 

2k+l 
(6+ 

 k +2k(2k1))(1  r, 

—(2k+1)f 	\—(2k+1) 
X(,_~2

) 	 ( 

i--- 	 r_ 1)  
r 	 rj 

(2.29) 
Fork sufficiently large we have 

/ 2k—i 	Cr2 ' 

<8+ö, 	 (2.30) 

and hence if Mis chosen sufficiently large to begin with, we have shown (2.24) 
is true for n = k +1, thus completing the proof by induction. Equation (2.26) 
now implies that infl, x Ri  we have 

, 	 01 	M(8+6)(2n) 1 (2n— 1) -1  

x(1 
I I'  2.( l I2I) ; 

x I (-2n-1) 	
(_ 

Y n 

	1. 

 -_-) 	
i___L 

Now consider 	 2' 	()1 m1)ir  x Rj  x Twhere 

r 
2' 3).1iI < - ; a > 1,1 = 1,2, 3}.. 	(2.32) 

a 

Then rnD,,. x Rj  x Twe have 

__; 	i=1,2,3 

1_I-JI > !. 
2 	4 	 - 	 (2.33) 

lI 	l23I 

ltI.1. 
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Thus, from Eqs. (2.31) and (2.33) we have 

it 2n 
JUnP (n VI, 2' 	C)I 	Mr(c— 1)2  a 2 (2n) 1 (2n— 1)_i 

x (4x 5 (8+5)(oc1)_ 61. 	(2.34) 
If we choose a such that 

4x 5(8+6)(cc-1) 6  < 1, 	 (2.35) 

then the series (2.16) converges absolutely and uniformly in D., x Rj  x T. 
By taking r = oeR we can now conclude that E*(c1, c2' c, C t) is regular 
in OR  xRj  x T and hence in GR x B x T. Equation (2.18) follows from Eq. 
(2.15). 

Theorem 2.3 shows that the operator P 3  exists. In the special case when 
Q(X, Z, Z") is a constant, Q(X, Z, Z*)  )., the generating function E(X, Z, 
Z, C, t) can be expressed in closed form. In particular we have from Eq. 
(2.14) that in this case 

p " (i 2' 31 C) = (2)' 	
(2.36) 

and hence 

	

E*(1, 2' 3' C t) = i,=0 
	(2n)! 

= cosh\/2p 1  t 2 	 (2.37) 

= coshV) j ( 2 + 3) t 2  

or 
E(X, Z, Z, C t) = coshv'4).(CXZ+C 2Z 2 +ZZ*) t 2 . 

(2.38) 

It would be interesting to determine other equations and/or different integral 
operators for which E(X, Z, Z", C, t) can be expressed in terms of well 
known special functions. 

3. SPECIAL PROPERTIES OF THE OPERATOR P3 

We now turn our attention towards the analytic structure and special pro-
perties of the operator constructed in. section two. It is in this regard that 
the operator P 3  is superior to the operator of Tjong [19, 20] which was 
discussed in the introduction. We will show in particular that every real 
valued C2  solution u(x, y, z) of Eq. (1.1) which is defined in some neighbor-
hood of the origin can be expressed locally in the form 

u(x,y,z) = ReP 3 {f}, 	 (3.1) 
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where "Re" denotes "take the real part" andf(p, C) is given in terms of the 
Goursat data for U(X, Z, Z*)  u(x, y, z). This leads to results on the 
analytic structure of u(x, y, z) in C 3, the space of three complex variables, 
and to the construction of a complete family of solutions to Eq. (1.1) with 
respect to bounded simply connected domains. The main result of this section 
is the following theorem: 

THEOREM 3.1 Let u(x, y, z) be a real valued C 2  solution of Eq. (1.1) in some 
neighborhood of the origin in R 3 . Then there exists an analytic function of two 
complex variables f(u, C) which is regular for ji in some neighborhood of the 
origin and JCJ < 1+ c, e > 0, such that locally u(x, y, z) = Re P3 (f}. in 
particular denote by U(X, Z, Z*)  u(x i  y, z) the extension of u(x, y, z) to the 
X, Z, Z space, and let 

F(X, Z*) = U(X, 0, Z") 

g(u, C) = 2 - 
	

F(t1z, (1 —t)pC)dt]—Fp, 0). 	(3.2)
a 
 Luf 

Then 

	

f(ji, 0 = - 
	

g(p(1 —t 2), C) 
dt 
T' 	 (3.3) 

 ' f 
where y' is a rectifiable  arc joining the points t = —1 and t = + 1 and not 
passing through the origin. 

Remark It can be shown that g(p, C). can be expressed in terms off(p, C) 
by the formula (c.f. [10], p.  114) 

gi,C)= f f(p(1—t2), C) 
dt 

	

Jy 	 Vlt2 	 (3.4) 

where the path y is defined as in Theorem 2.2. 

Proof of Theorem Since u(x, y, z) is twice continuously differentiable 
we can conclude from the analytic theory of partial differential equations 
that u(x, y, z) is an analytic function of its three independent variables in 
some neighborhood of the origin. Furthermore, since q(x, y, z) is real 
valued, Re P 3 {f} (where x, y, z are real) is a real valued solution of Eq. (1.1) 
for any function f(p, C) which is analytic in the product domain Dx B 
(see Theorem 2.2). Now suppose that locally g(jz, C) f(p, C) and Q(X, Z, 
Z*) q(x, y, z) have the expansions (c.f. [1], p.  12) 

=0 
m 0OjLnCm 
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dt _LJg(p(l_t 2),c) 

['(n+l) 
= 

nO m=O 	T(n +)f() C 	 (3.5) 

Q(X, z, Z) = 	bmniX lZI7Z*m, 
i,m,n 0 

and define the analytic functions (X, Z, Z*)  and J(p, C) by 

(X, Z, Z) 	 (3.6) 
l,m,n=O 

and 
F(n+l) 	urn (3.7) 

respectively. Let E(X, Z, Z*, C, t) be the generating function corresponding 
to the differential equation U+Q(X, Z, Z*)U = 0. Then for 
x, y, z real we can write 

Re P3{f} 
= 	 = 1 J E(X, Z, Z, C t)f(p(l —t2), C)ii 

cit dC 
— 2 

+_- 	 E(X, 	—Z,C,t)f(p(l-12), 	
dt dC 

41 iJICI. 1 

(3.8) 

where fl = X_CZ*_C_ 1Z. Now from Theorem 2.1 we know that U(X, Z, 
Z*) is uniquely determined by the function F(X, Z*) = U(X, 0, Z*),  and 
hence using Eqs. (2.18) and (3.8) we try and determine f(p, C) from the 
equation 

1

.1 = Jf'2)C) dt 

dC  F(X, Z*) = 	

V 	 v'i —t2 C
47 

1  J f, ,E(XI  0 1  C 0J(220-12), 	
dt dC 

+4j 
II=1J 

(3.9) 

where ju, = x+ç'z' and 02 = X_CZ*. To this end we first write 
E*(1, 2' C t) E(X,Z,Z*, C, t) in its series expansion 

E*(1, 2' 	C 0 = 1+ 	t 2  tp(fl(1, 2' 	C) 	(3.10) 
n= 
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where from Theorem 2.3 we have 
p(l) = 1 	 (3.11) 

 t
((n) 	

- 4j3 - 2j5 + 22 	 *(n)} 

	

1-1 	 2n+l  
;(0)( 	 C) = 1 	 (3.12) 

p1(0 2' 3' C) = 0; 	n = 0, 1,2,... 

with 	, t 3, C) 	(X, Z, Z*). From Eqs. (2.9) and (3.12) we have 

	

f

1 	C( 2i - 	 - (3-2+') d1 
o\ 	2C 	2 	 / 

/ 
=2CfoZ 

 Q( 2 -2Cr, r,-C  
(3-2+2Ct))dr 	(3.13) 

 \ 	2 	 j 

f o \
/ y

2C 	( X+2CZ - 2Cr, i,~ (2C_Z*_2CZ+2Cx))dt, 
  2 

i.e. p(l)  is an entire function of X, Z, Z*, and C and vanishes for C = 0. 
A similar calculation using Eq. (3.12) and induction shows that the same 
statement can be made about p5 for n = 1, 2, 3.....(This behavior is a 
special characteristic of our operator P 3  and is not true, for example, of the 
operator developed by Tjong in [19] and [20]). Due now to the uniform 
convergence of the series in Eq. (3.10), we can substitute this series into 
Eq. (3.9) and integrate termwise to conclude that 

F(X,Z*) 
= d'I 	

fVf([j
j(1_t2),

dt dC 
vlt2 T 

= i  

1 +7 1 	If(p2(1_12),C) 
dt d( 

J 	 .i 	 t2 

1 

J

dC 	 (3.14) 
= 

RI = 1 

JIcI=i 

where g(p, C) is defined by Eqs. (3.4) and (3.5), and 

P"C. 	 (3.15) 
n=O ,n.O 

To complete the proof of the theorem it now suffices to show that Eq. (3.2) 
gives the solution of Eq. (3.14). In order to show this we let 
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F(X,Z*) = 	 (3.16) 
n0 nt=O 

and note that since u(x, y, z) is real valued, the coefficients c,, 0, n = 0, 1, 

2,. . ., are all real. Using Eqs. (3.5), (3.14), (3.15), (3.16), and equating 
coefficients of xI*z*m gives 

2n!m! Cnm  = (Fm)! an+m  m 	n ~4 0, m > 0 

	

2c,, 0  = a,,0 +a,,0 ; 	n 	0. 	 (3.17) 

Hence, without loss of generality, we assume the coefficients a,,0 , n = 0, 1, 2, 
are real. Equation (3.17) then becomes 

1 r(n+m+1) 
Cnm 

= 217(n+1)r'(m+1) 
an + mm ; 	n > 0, m >0 	(3.18) 

c,, 0 =a,, 0 ; 	n0, 

and therefore 

1co coF(n+m+1) 
F(X, Z*) 

= 2 n 0 mO r(n+ 1)I'(m+ 1) an+m, m rz 

OD 1 
+- 

2,, 

1 co 00 	F(n+1) 

	

= - 	 a x_mz*m 
2 n,o n . m  I'(n—m+1)JT(m+1) 

00 

+- 
2  

1 Go " 	 F(n+1) 
a 

2 n o m o F( m+1)T(m+1) nm 

1  00 
+- 	c,, 0X. 	 (3.19) 

From the definition of the beta function B(x, y), 

	

f
1

B(x, y) 
	

jX -  1
0  - r)" dt 

= F(x)F&) 
I'(x+y) 

(3.20) 
0 

we have 

	

1
, (1 _t)Z*)dt = - 	 xn-mz*m +1 	C 

- 	 no xn 
fo 

F(tX 	
2,,omofl+l 	

2n=0  
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or 

[,u f ' F(tp, (1— t)JlOdt] 

	

c,,0p!' 	 (3.22) 
n=O mO 	 nO 

= g(p,C)+F(p,0). 

Equation (3.2) follows immediately from Eq. (3.22) and this proves the 
theorem. 

Note When Q(X, Z, Z*)  0 then our operator P 3  reduces to the well 
known Bergman-Whittaker operator B 3  [1, 10]. Theorem 3.1 gives new 
results even in this case, since if H(X, Z, Z") is a real valued harmonic 
function (of the variables x, y, z), then for x, y, z real 

H(X,Z,Z*) = ReB 3 {g} 

= Re (Lf 	g(p, C) 	 (3.23) 
Rl=1 	Cj 

and Eq. (3.2) shows we can write (Re B 3) 1 Has 

= (ReB 3 ) 1 H 

= 21 [JtJ'H(tP 0, (1 —t)pC) dt]—H(u, 0,0). 	(3.24) 

It is of interest to compare Eq. (3.24) with the inversion formula given by 
Bergman for complex valued harmonic functions (c.f. [1], p.  41, [10], p.  58). 

COROLLARY 3.1 Let u(x, y, z) be a real valued C 2  solution of Eq. (1.1) in 
some neighborhood of the origin in and let U(X, Z, Z*)  be its extension 
to the X, Z, Z' space. Then the location of the possible singular points of 
U(X, Z, Z") in C 3  can be determined from the location of the singularities 
of U(X,O,Z*)  in C 2 . 

Proof The location of the possible singularities of U (X, Z, Z*)  can be 
determined from a knowledge of the singularity manifold of f(p, () and 
E(X, Z, Z, C, t) by using the operator P 3  and Gilbert's "envelope method" 
(see in particular Theorem 1.3.4 of [10]). But the location of possible singu-
larities of f(p, C) can in turn be determined from the location of the singu-
iarities of U(X, 0, Z*)  through using Gilbert's "envelope method" again in 
conjunction with Eqs. (3.2) and (3.3) (c.f. Theorem 1.3.1 of [10]). We note that 
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from the proofs of Theorems 2.3 and 3.1 it is seen that E(X, Z, Z', , t) is 
an entire function of its five independent (complex) variables. 

We now turn our attention to the problem of constructing a complete 
family of solutions to Eq. (1.1) in a simply connected domain G. This will 
be accomplished by using some results of Malgrange, Lax, Browder, and 
Garabedian to construct a family of entire solutions of Eq. (1.1) which 
are dense in the space of solutions of Eq. (1.1) which are twice continuously 
differentiable in G. We first require a few preliminary definitions. In what 
follows L denotes a second order linear elliptic operator with twice continu-
ously differentiable coefficients, and L*  is the formal adjoint of L. 

DEFINITION 3.1 Solutions of an equation Lu = 0 are said to have the 
Runge approximation property if, whenever G 1  and G 2  are two simply 
connected domains, G 1  a subset of G 2 , any solution in G 1  can be approxi-
mated uniformly in compact subsets of G 1  by a sequence of solutions in G 2 . 

DEFINITION 3.2. Solutions of an equation Lu = 0 are said to have the 
unique continuation property if whenever a solution vanishes in an open 
set it vanishes identically in its domain of defimtion. 

We can now state the following result due to Malgrange [18], Lax [17], 
and Browder [3]: Solutions of Lu = 0 have the Runge approximation pro-
perty if and only if solutions of L*u = 0 have the unique continuation 
property. Since elliptic equations with analytic coefficients have the unique 
continuation property as a consequence of the analylicity of their solutions, 
we can conclude that Eq. (1.1) has the Runge approximation property. Hence 
to construct a complete family of solutions to Eq. (1.1) with respect to a 
bounded, simply connected domain G, it suffices to construct a complete 
family of solutions with respect to a sphere containing G in its interior. We 
are now in a position to prove the following theorem. In what follows"Im" 
denotes "take the imaginary part". 

THEOREM 3.2 Let G be a bounded, simply connected domain in IV, and define 

u2(x,y,z) = Re P 3 {pm} ;  0 n < oo, m = 0,1,.. 

(3.25) 

U2fl +l m(X, y, z) = Im P 3{m} ;  0 	n < co, m = 0, 1,.. ., n. 

Then the set {Unm } is a complete family of solutions for Eq. (1.1) in the space 
of real valued C2  solutions of Eq. (1.1) defined in G. 

Proof: Let u(x, y, z) be a real valued C2  solution of Eq. (1.1) in G, and 
let G 1  be a compact subset of G. Then by the Runge approximation pro-
perty for any e > 0 there exists a real valued solution u 1 (x, y, z) of Eq. (1.1) 
which is regular in a sphere S containing G in its interior such that 
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a 
max 	lu—uiI < 	 (3.26) 

(x,y,z)GGI 

We now try and approximate u 1 (x, y, z) in S by an entire solution of Eq. (1.1). 
From Garabedian's work on Cauchy's problem for analytic systems ([9], 
pp. 614-619) we can conclude that since u 1 (x, y, z) is regular in S, the Cauchy 
data for u 1 (x, y, z) must be regular in some convex region B in C2, the space 
of two complex variables, and that u 1(x, y, z) depends continuously on this 
data in S. Now since convex domains are Runge domains of the first kind 
([8], p. 229), on compact subsets of B we can approximate the (real valued) 
Cauchy data for u j (x, y, z) by polynomials and construct a (real valued) 
solution u 2(x, y, z) of Eq. (1.1) with polynomial Cauchy data. Since Eq. (1.1) 
is linear with the Laplacian as its principle part, and q(x, y, z) is an entire 
function of the (complex) variables x, y, z, the Cauchy-Kowalewski Theorem 
implies that u2(x, y, z) is also entire. Due to the continuous dependence of 
u 1 (x, y, z) on its Cauchy data in B, we therefore have that there exists a 
domain G 2 , G c 62  5, and a (real valued) entire solution u 2(x, y, z) of 
Eq. (1.1), such that 

a 
max 	Iu1—u2I<. 	 (3.27) 

(x,y,z) e G2 

Now since u 2(x, y, z) is an entire function of x, y, z, U2(X, Z, Z), the 
extension of u2(x, y, z) to the X, Z, Z*  space, is an entire function of 
X, Z, Z. In particular U2 (X, Z, Z*)  is regular in the product domain 
DR  = {IxI R} x {IZI  R} x {IZ*I < R} for arbitrarily large R. Then 
U2 (X, 01  Z") is regular in the product domain {IXI 5 R} x f JZ*I < R}. 
From Hormander's generalized Cauchy-Kowalewski Theorem ([161, pp. 
116-119) and Theorem 2.1, it is seen that U2(X, Z, Z*)  depends continuously 
on U2(X, 0, Z') (for (X, Z*): Ill ~ R, IZ*I R)) in some smaller product 
domain DR , = {IXI Ri)x{IZI Ri}x{IZ*I =<  R 1 }. Now choose R 
large enough such that if (x, y, z) is in 62  then (X, Z, Z*)  is in DR 1 . Since 
product domains are Runge domains of the first kind ([8], p.  49), we can 
approximate U2(X, 0, Z) by a polynomial in {IXI R} x { IZ*J R} and 
use Theorem 2.1 and Hormander's version of the Cauchy-Kowalewski 
Theorem to construct an entire solution U3(X, Z, Z) of Eq. (2.7) which is 
real for x, y, z real and has polynomial Goursat data. The above discussion 
implies that there exists a real valued entire solution u 3(x, y, z) of Eq. (1.1) 
with polynomial Goursat data (in the variables X, Z, Z*)  such that 

C 
max 	1u2—u31 < 	 (3.28) 

(x.y,z) e G2 
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Since U3(X, 0 1  Z'1') is a polynomial, Theorem 3.1 implies that there exists 
a polynomial (with possibly complex coefficients) 

N n 

hN(u, () = 	a,jft tm 	 (3.29) 
- 	 n—O m=O 

such that 

	

u 3(x,y,z) = ReP 3 (hN}. 	 (3.30) 

Equations (3.26)—(3.30) now imply that 

max 	Iu(x,y,z)—ReP3{hN}I < a. 	(3.31) 
(x,y,z) E G. 

Since a can be arbitrarily small, and G 1  was an arbitrary compact subset of G, 
the proof of Theorem 3.2 is now complete. 

In passing we would like to point out that if we were considering linear 
elliptic equations in two independent variables we could construct the function 
analogous to u 3(x 1  y, z) directly from the results of Vekua ([21], p.  36). 
Henrici's work on the two variable elliptic Cauchy problem ([14], pp. 195-
200) implies that a similar statement can also be made about the two variable 
analogue of u 2(x, y, z). Finally, we note that when q(z, y, z) 0, and P 3  
reduces to the Bergman-Whittaker operator B 31  the functions Unm(X, 3', z) 
become ([10], p.  48) 

	

u2 m(x, y, z)= (n±m)! rP'(cos 0) Re (imeim) 	(3.32) 

U2,, 1, m(X, y, z) = 	rP'(cos 0) Im (imeim4) 
(n + m)! 

where r, 0, ço are spherical coordinates and P', denotes the associated 
Legendre polynomial. 

This research was supported in part by AFOSR Grant 74-2592. 
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An integral operator is obtained which maps analytic functions of two complex variables 
onto solutions of a homogeneous linear elliptic partial differential equation in three 
independent variables. An inversion formula is given and used to construct a complete 
family of solutions for the elliptic equation under investigation. 

1. INTRODUCTION 

Bergman [I] and Vekua [5] (see also [3]) have both constructed integral 
operators which map analytic functions of a single complex variable onto 
solutions of linear elliptic equations in two independent variables. In recent 
years many attempts have been made to extend these results to the case of 
three independent variables, attention being given primarily to the elliptic 
equation 

A 3u+q(x,y,z)u = 0 

A3 = (a21t3x 2)+(a21ay 2)+(a213z 2). 	(1.1) 

For a discussion of both old and new results on equations of this form the 
reader is referred to [2], which will henceforth be referred to as I. In this 
paper we will give the complete generalization of the work of Bergman and 
Vekua to the case of three independent variables. In particular we consider 
the (homogeneous) linear elliptic equation in three independent variables 

A 3u+a(x, y, z)u+b(x, y, z)u,+c(x, y, z)u 5 +d(x, y, z)u = 0 	(1.2) 

283 
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where a(x, Y. z), b(x, y, z), c(x, y, z), and d(x, y, z) are real valued analytic 
functions of their independent variables, and construct an integral operator 
which maps analytic functions of two complex variables onto real valued 
twice continuously differentiable (i.e. C2) solutions of Eq. (1.2). As an 
application of this result we will construct a complete family of solutions 
of Eq. (1.2) with respect to a bounded, simply connected domain in Euclidean 
three space 11. Much of our analysis will be based on the ideas of!, and we 
will assume the reader has access to this paper. Several new ideas do make 
their appearance however. For example, in addition to the construction of 
the kernel of our integral operator, it is now also necessary to construct a 
real valued solution u 0(x, y, z) of Eq. (1.2) which is constant along two 
complex characteristic hyperplanes passing through the origin. In the special 
case when d(x, y, z) 0 we can choose u0(x, y, z) 1. In the general case 
u 0 (x, y, z) is constructed by a standard iterative procedure. 
• As in I, we assume for the sake of simplicity that a(x, y, z), b(x, y, z), 
c(x, y, z), and d(x, y, z) are (real valued) entire functions of their independent 
(complex) variables. 

2. THE OPERATOR C3 

We first introduce the new independent (complex) variables 

x 

	

Z = (y+iz) 	 (2.1) 

Z* = (—y+iz) 

In X, Z, Z' coordinates Eq. (1.2) becomes 

Uxx— U.+A(X, Z, Z*)U x +B(X, Z, Z")U 

+ C(X, Z, Z*)Uzs + D(X, Z, Z*)U = 0 	(2.2) 

where 

U(X, Z, Z*)  u(x, y, z) 

A(X,Z,Z*) a(x,y,z) 

B(X, Z, Z*) 	[b(x, y, z) + ic(x, y, z)] 	 (2.3) 

C(X, z, Z*) E .[—b(x, y, z)+ic(x, y, z)} 

D(X,Z,Z*) d(x,y,z). 
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It is convenient for us to rewrite Eq. (2.2) in standard form by making the 
substitution 

	

V(X, Z, Z) = U(X, Z, Z) exp [—$C(X, Z', Z*)  dZ']. 	(2.4) 

Substitution of Eq. (2.4) into Eq. (2.2) yields the following equation satisfied 
by V(X,Z,Z*): 

V.+A(X, Z, Z*) V+.(X, Z, Z*) V+ ö(X, Z, Z*)V = 0 (2.5) 

where 
A(x, Z, Z) = A(X, z, Z) + 2JC(X, Z', Z") dZ' 

.(X, Z, Z*) = B(X, Z, Z*)_jC z .(X, Z', Z*)  dZ' 

15(X, Z, Z*) = D(X, Z, Z*) + A(X, Z, Z*)  JC(X, z', Z) dZ' 

	

• B(X, Z, Z*)C(X,  z,  Z*) 
- C.(X, Z, Z) 	(2.6) 

+JC5 (X, Z', Z*)  dZ'+ [SC(X,  Z', Z*)  dZ'] 2 . 

It is clear that Eq. (2.4) defines a one to one mapping of solutions of Eq. (2.2) 
onto solutions of Eq. (2.5). 

The following theorem motivates the analysis which follows and can be 
proved in the same manner as Theorem 2.1 of I. 

TiiEo1uM 2.1 Let. u(x, y, z) be a real valued C 2  solution of Eq. (1.2) in a 
neighborhood of the origin. Then U(X, Z, Z*)  u(x, y, z) is an analytic 
function of X, Z, Z in some neighborhood of the origin in C , the space of 
three complex variables, and is uniquely determined by the function U(X, 0, Z*). 

By introducing the change of variables 

= 2Z 

= X+2CZ 	 (2.7) 

= X+2'Z 

JU = +(+) = X+CZ+C_ 1Z * 	 (2.8) 

where 1 - < I  C I  < 1 +e, 0 < c < + the following theorem can be proved 
by straightforward substitution and integration by parts. 

ToREM 2.2 Let D be a neighborhood of the origin in the z plane, B = 

{C: 1—c < I  C I  < 1 +e}, G a neighborhood of the origin in the '2 3 space 
and T = (t: I tI ~ 1}. Let f(p, 0 be an analytic function of two complex 

B 
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variables in the product domain Dx B, and E*(1, 2' 	C t) = E(X, Z, Z, 

, t) be a regular solution of the partial differential equation 

1tt(4Er3 + 2E 3  - E2 - E'3 - D*E*) + (1 - t2)Eit 

—(1 /t)E - A* [(E + E)4ut + (1 - t*)E —(1 12t)E*] 	(2.9) 

- *[(2E + 2E)pt + (1 - t2)E - (1/2t)E*] = 0 

in G x B x T, where 

A*( 	2' 3' C) A(X, z, Z") 

	

B(x,z,z*) 	 (2.10) 

2' 3' C) 	D(X, z, Z) 

and 
0 2E* - 	- _____ E* - 	E* - 

' 	•-' 	3ô' 	 1tt. 

Then 
V(X,Z,Z*) = 03 tf} 

= (1 /21ri) Jj1 = Sy  E(X, Z, Z*, C, t)f(p(1 - t 2), C)(dt//1 - t 2)(dC/C), 

where y is a path in T joining t = —1 and t = +1, is a (conplex valued) 
solution of Eq. (2.5) which is regular in a neighborhood of the origin in X, Z, Z 
space. 	 - 

From Eq. (2.4) we have the following corollary to Theorem 2.2. 

COROLLARY 2.1 The function 

U(X,Z,Z*) = c3{f} 

= (1 /27ti) $ = I J, exp [Izo  C(X, Z , , Z") dZ'] 

x E(X, Z, Z, C, t)fQt(l —t 2), 0Xdt/V 1  —t 2)(dC/C) 	(2.12) 

is a (complex valued) solution of Eq. (2.2) which is regular in a neighborhood 
of the origin in X, Z, Z 4  space. 

The next theorem shows that a function E(X, Z, Z", 1, t) satisfying the 

conditions of Theorem 2.2 exists. 
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THEOREM 2.3 Let D, = {( 	, 	< r, i = 1,2, 3} where r is an 
arbitrary positive number, and B 2e  = {C:IC—001 < 2e}, 0 < e < 1, where C o  
is arbitrary with l C o l = 1. Then for each n, n = 1, 2,... there exists a unique 
function p)(1, 2' C) which is regular in D, x B2e  and satisfies 

= 1/(2n+ 1) (p+p-4p13 

- 2p + (A* + 2*C)pf  + A*ph1)  + 2*Cp)  + b*p} 	(2.13) 
p(1)(1, 2' &, C) = exp [fJ' (A* +B*C) d] 	(2.14) 

p''(0, 2' 	, C) = 0; n = 1,2, . . . 	 (2.15) 

where 
(n) 	ap/a 	A l")pi - - 	 i, j-i = 

Furthermore, the function 

	

E*(1, 2' 3, C, t) = 	t2p"(1, 2' 	C) 	(2.16) 

is a solution of Eq. (2.9) which is regular in the product domain GR  x B x T, 
where R is an arbitrary positive number, and 

GR = 	 < R, i= I,2,3} 

B = {C:1—s < ICI < 1-i-c), 0< e < f 	 (2.17) 

T= {t:ItI 	1). 

The function defined in (2.16) satisfies 

	

E*(0, 2' 	(I 	 jz1 2 . 	 (2.18) 

Remark It is not possible to have E*(0, t2 l t3, C, t) = 1 as in I, since in 
this case Eq. (2.9) cannot be satisfied due to the appearance of the term 
(112t)E*(A* +*C). 

Proof of Theorem It is clear from Eqs. (2.13)—(2.15) that each P(l. . 
C) exists, is uniquely determined, and is regular in 15r  x A 2 . Now consider 

the formal series defined in Eq. (2.16). Straightforward differentiation and 
collection of terms shows that if the p"i, 2' C) are defined by Eqs. 
(2.13)—(2.15) then the series in Eq. (2.16) formally satisfies Eq. (2.9). It 
remains to be shown that the series converges absolutely and uniformly 
in GR xBxT. To this end we first introduce new functions q(fl)(1, 

2' t 3, C) 
defined by 

= p exp [_J1 (A*+*C) d'1 ]; n = 1,2 	(2.19) 
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Equations (2.13)—(2.15) now imply that the functions q)(1, 2' 	) 
satisfy the recurrence scheme 

(n+1) = 1f(2n+ 1){q +q —2q-4q +R*q q 1  

	

- +S*q+T*q ) + w* q (')} 	 (2.20) 

q(1)(1, 2' 3• 0 = 1 

2' 	= 0; n = 1, 2, 3 . . . 	 (2.21) 

where 

R* = A*_2(A*+ 2) .1I (A"+) d'+(3/ 3) 

x J' (A* + *C) d 

S* = A" + 2*C - (3/(3(3) $' (A" + * O d + (3/2) 
x

I 
I I (A* + * C) d 

T* = 2*_2(o/3) $i (A+O d'1 	 (2.22) 

w* = 	 J1 (A"'+) d'1  

+1A*(3/ 3) $ 	 d'1  _2(a/a 3)(A*+*) 

_(A*+*)(o/3) $' (A"+) d—( 2/ô 2 ô 3) 

x $' (A* + *) d'1 

—4-[(0/Th2) f,' (A*+*) d}[0/33) J;  

+Me2/3)11 (A*+*) dc', 

+*[(a/o2) Jt (A*+*C) d] 2  

++(2/2) Jt (A*+*C) d' 

d'1 ] 2 . 

To prove the theorem it now suffices to show that the series 

Go 

	

t2q"(j, 2' '3' 0 	 (2.23) 
n=1 

converges absolutely and uniformly in GR x B x T. But the recursion scheme 
(2.20), (2.21) is of the same basic form as that considered in Theorem 2.3 off, 
and the convergence of the series in Eq. (2.23) can hence be demonstrated 
by following the proof of this theorem. The reader is referred to I for further 
details. 
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3. INVERSION OF THE OPERATOR Re ç3 AND A 
COMPLETE FAMILY OF SOLUTIONS 

An examination of Corollary 2.1 and Eq. (2.18) shows that the operator C 3  
maps analytic functions of two complex variables into the space of (complex 
valued) solutions of Eq. (2.2) which vanish at the origin. However for pur -
poses of application it is of central importance that the integral operator 
constructed map analytic functions onto the space of real valued C2  solutions 
of Eq. (1.2), i.e. onto the space of real valued analytic solutions of Eq. (2.2). 
In this section we will show that the operator defined by 

	

U(X, Z, Z*) = U(O, 0, 0)U0(X, Z, 	Z)+ Re c3tf} 	(3.1) 

(where "Re" denotes "take the real part") satisfies this requirement if 
U0(X, Z, Z") is the unique ([4], pp.  116-119) solution of Eq. (2.2) which 
satisfies the Goursat data 

UO(X, 0, Z*) = 1 

	

UO(X, Z, 0) = 1. 	 (3.2) 

We will also give a specific formula for computing the Taylor coefficients of 
f(p, ). 

We first note that for x, y, z real we have u0(x, y, z) U 0(X, Z, Z*)  is a 
solution of Eq. (1.2), and since a(x, y, z), b(x, y, z), c(x, y, z), and d(x, y, z) 
are real valued we can conclude that 

	

Re U0(X, Z, Z*) = +(Uo(X, Z, Z*)+ 	UO(X, —Z, —Z)) 	(3.3) 
where 

U0(X, Z, Z*) = 	 (3.4) 
Im,nO 

00  t70(x, z, Z) = xlz1z*m 
Otmn l 

lmnO 

is also a solution of Eq. (1.2). Equation (3.3) allows us to extend Re U0(X, Z, 
Z*) to complex values of x, y, z and shows that Re U0(X, Z, Z*)  is a solution 
of Eq. (2.2) which satisfies the Goursat data 

Re U0(X, 0, Z*) = 1 

	

Re UO(X,Z, 0) = 1. 	 (3.5) 

Hence by the uniqueness part of Hormander's generalized Cauchy-Kowalew-
ski theorem ([4], pp.  116-119) we can conclude that 

Re U0(X, Z, Z*) = U0(X, Z, Z*), 	 (3.6) 

i.e. U0(X, Z, Z*)  is real valued for x, y, z real. 
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In the special case when D(X, Z, Z) 0, it is clear that 

U0(X,Z,Z*) = 1. 	 (37) 

In the general case when D(X, Z, Z*)  0 0, U0(X, Z, Z*)  can be constructed 
via the recursive scheme ([4], p.  116) 

U0(X 1  Z, Z*) = 1+ urn W,(X, Z, Z) 
n-0 

W Q 0 

W. =  J J [(32 w/3X 2) + A(0 Wf3X) + B(ô Wf3Z) 	 (3.8) 

+ CQJ W/aZ*) + D W,, - D] dZ'dZ*' ;  

n = 0, 1..... 

Since a(x, y, z), b(x, y, z), c(x, y, z), and d(x, y, z) are entire functions of 
their independent (complex) variables, the sequence W(X, Z, Z) converges 
uniformly to U0(X, Z, Z*)  in any compact polydisc of the X, Z, Z space 
([6], [4], pp.  116-118). This says in particular that U0(X, Z, Z*)  is an entire 
function of X, Z, andZ*. 

The main result of this section is the following theorem: 

THEOREM 3.1 Let u(x, y, z) be a real valued C 2  solution of Eq. (1.2) in some 
neighborhood of the origin in R 3  and denote by U(X, Z, Z*)  u(x, y, z) the 
extension of u(x, y, z) to the X, Z, Z space. Then there exists an analytic 
function of two complex variables f(u, ) which is regular for z in some neigh-
borhood of the origin and j C I < 1 + s, s > 0, such that locally 

U(X, Z, Z*) = U(0, 0, 0)U0(X, Z, Z*) + Re C3{f}. 	(3.9) 

In particular, LI 

U(X, 01  Z*) - U(01  01  0) = 
n cm = 0 
n+m*0 

C(X, z, Z) = 	CjmnX !ZmZ* 1 	 (3.10) 
n = 0 

C(x, z, Z*) = 	x lzmz* h1 ,  
. m, n = 0 

then 

f(p,C) =3/2ir$g(p(l—t 2),C) 	dt, 	(3.11) 
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where 	 00 ,,+i 	 - 

	

g(p, C) = 	a,jz"Cm 	 (3.12) 
n0 mO 

with 
= Y,,o; n > 1 

	

2F(n + 1) F(m + 1) 	n—i 	['(n+l) = 
T(n+m+1) Ynrn 	o n+m_1)r(k+1)m)'_k.0 

	

nO,m>O 	 (3.13) 
+ m 

km = (ö'*m exp 
[Jz* C(X, Z', 0) dZhJ)X = 	= 0. 

In Eq. (3.11) y'  is a rectifiable arc joining the points t = —1 and t = + 1 and 
not passing through the origin. 

Remark In Eq. (3.13) the finite series is omitted when n = 0. 

Proof of Theorem Note that since a(x, y, z), b(x, y, z), c(x, y, z), d(x, y, z) 
are real, the function U(X, Z, Z*)  defined by Eq. (3.9) is a real valued solution 
of Eq. (2.2). Now suppose that locally A(X, Z, Z*),  (X, Z, Z*),  and ö(X, 

Z, Z*)  have the expansions 

	

A(X, Z, Z*) = 	a,mn X zZmZhI 
- 	 l,n1n=o 

00 

(X, Z, Z) = E b,mn X IZmZ* 1 	 (3.14) 
l,m, n0 

	

(X, Z, Z*) = 	d,mn X IZmZ *hl , 
Im, n0 

and define the analytic functions (p, C), f(jz,  C),-  A(X, Z, Z*),  fl(x, Z, Z), 

and D(X, Z, Z*)  by 	
00 n+i 

n0 m0 

J(iz, C) = 3/2ir J. (p(l - t2), 
(1 —t2) dt 

00 
- 	

n+1 	r(n+2) 	nrrn 
- n=O m=O nmr(+)r(3I2)J 

Co  A(X, Z, Z) = E W1zX 1zMz* n 	 (3.15) 
I. in, n = 0 

00  (X,Z,Z*) = mm 
I,m,nO 

00  D(X, Z, Z) = E 
I, m, n = 0 
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Let E(X, Z, Z, ( t) be the generating function corresponding to the partial 
differential equation 

Vxx V zz +A(X, Z, Z*)  V+B(X, Z, Z*)  V+ D(X, Z, Z*)V = 0. 
(3.16) 

Then for x, y, z real we can write 

Re 3{f} = 1 /(47ri)Jii=j 5 exp  [S C(X,Z',Z*)dZ'] 

x E(X, Z, Z, , t)f(U(1 - t 2), C)(dt//1 - t 2)(dC/) 

+1/(4iti) 	1  1, exp [J& z* C(X, Z',—Z) dZ' 	- 	 (3.17) 

x E(X, Z", —Z, , t)J(fi(1 _12), C)(dt111 - 

where ji = X_Z*_lZ. Now from Theorem 2.1 we know that U(X, Z, 
Z*) is uniquely determined by U(X, 0, Z*),  and hence using Eqs. (2.17) 
and (3.2), and extending Eq. (3.17) to complex values of x, y, z, we try and 
determinef(ji, ) from the integral equation 

U(X, 0, Z*)_  U(0, 0,0) = 1/(47ti) JI C I = I fy  iz i f(p i(1 —t2), ) 
x [(t 2dt)f\/(l - 

+1/(4iti)$11=i b exp EJz*c(x,z, 0) dZ' 	 (3.18) 

x E(X, __Z*;Q, , t)J(i(1 - t 2), ()(dt/\/1 - 

where jul = X+Z* and J2 = X_CZ*. We first note that if we write 
E*(i, 2' 	C, t) 	(X, Z, Z, C , t) in its series expansion 

00 

2' 3' C, t) = 	t2p(1, 2' 3, C). 	(3.19) 
n= 1 

then each 	n = 2, 3,..., is an entire function of I, Z, Z*,  and C, and 
vanishes for C = 0. This can be easily seen by using Eqs. (2.19)-(2.21) and 
then following the analysis in Theorem 3.1 of I. Indeed, it was to insure this 
behavior of the P() that we transformed Eq. (2.2) into the standard form 
of Eq. (2.5), eliminating thereby any term involving Ui..  Due now to the 
uniform convergence of the series in Eq. (3.19), we can substitute this series 
into Eq. (3.18) and integrate termwise to conclude that 

U(X, 0, Z*)_ U(0, 0,0) = 1f(47ri) 	I j., ,tf(ji(1 _t2), C) 
[(t2d:)/(/1 - 12)](dC/C) 

+ 1/(47ri) JRI= 1  b exp [1.Z*  C(X, Z', 0)dZ'] 
xpW(X, 	0, ()112J(U2(1 - t 2), C) 

(t 2 fVl—t 2)(dC/() 

= 1/(47ri)f 1çj1  J11g(J11 C) dC/C 
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+ 1 1(470 Sill = I i2 exp [JZ*  C(X, Z', 0) dZ] 

xp (' )(X, _z*, 0, 09i21 C) dC/C 
where 

p(')(x,z,z*, () 	21 	C) = exp [+5 (A*+B*C) d'1  

= exp [CJ A(X+ 2CZ; t,  (C/2)(2C - 	 - 2CZ+ 2Cr)) dv] 

x exp[C 2Jfl(X+ 2CZr, t,  (C/2)(2C - 	 - 2CZ+ 2(r)) dv] 

(3.21) 
and we have used the easily verifiable results 

g(p,C) = Jt2f(ji(1—t 2),Odt/.s/l—t 2 . 	 (3.22) 

To complete the proof of the theorem it now suffices to show that Eqs. (3.12), 
(3.13) gives the solution of the integral Eq (3.20). To this end we use Leib-
nitz's formula to repeatedly differentiate both sides of Eq. (3.20) and evalu-
ate the result at X = = 0. (This calculation is simplified by the observa-
tion that terms involving derivatives with respect to X and Z' of p" (x, 
_Z*, 0) and of terms involving derivatives with respect to Z*  of p2(jt2, C) 
vanish due to the fact that in such cases the integrand becomes an analytic 
functions of C). The result of this calculation is that 

n—i 
2n!m!y nm  = (n+m)!an+m _ j , m +E (lT(fl+l)1F(k+l))3kmn _ k ... 1.0 , (3.23) 

k=O 

where 
+ m 

ökm 	 exp [5* C(X, Z', 0) dZ').=0 	(3.24) 

and the finite series in Eq. (3.23) is omitted when n = 0. Noting that 6 ko = 0 
fork ~: 1,wehave 

2)'0 = an _l,o+ãn _l,o, 	 (3.25) 

and since U(X, 0, 0) is real we can assume without loss of generality that the 
coefficients a 0 , n = 0, 1, 2,.. . are real, i.e. 

YnO = 	= an _I,o. 	 (3.26) 

Equation (3.13) now follows from Eqs. (3.23)—(3.26). Since U(X, 0, Z*) is 
regular in some neighborhood of the origin, Eq. (3.13) implies that g(p, () 
(and hence f(jt, C)) is regular for /2 in some neighborhood of the origin and 

I CI < 1+s,v >0. The theorem is nowproved. 
Equation (3.13) shows that if U(X, Z, Z) has polynomial Goursat data 

then the associated analytic functionf(p, C) is an entire function of p and C. 
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Using this fact in conjunction with the results proved in Theorem 3.2 of I 
now enables us to prove the following theorem. In the statement of the 
theorem "Im" denotes "take the imaginary part". 

THEOREM 3.2 Let G be a bounded, simply connected domain in IV, and define 

u0(x, y, z) U 0(X, Z, Z*) 	 (3.27) 

U2n,m(X,Y,Z) = ReC3{,zT"}; 0 n < cc,m = 0,1,.. 

U2n+i , m(X,Y,Z)ImC 3 {P 7 Cm}; 0n<co,m=0,1,...,n+1. 

Then the set {u 0 } u {Unm} is a complete family of solutions for Eq. (1.2) in the 
space of real valued C2  solutions of Eq. (1.2) defined in G. 

Proof From the analysis of Theorem 3.2 of I it suffices to show that if 
U(X, Z, Z*)  is a real valued solution of Eq. (2.2) with polynomial Goursat 
data, then given R > 0 there exists a polynomialf1 (jz, () such that 

max .IU(X,z,Z*)_U i (X,Z,Z*)I <6 	 (3.28) 
X R 
Z R 
ZIR 

where 

U1 (X, Z, Z*) = U1 (0, 0, 0)U0(X, Z, Z*)+Re c3{f1 } 

U(01  01  0) = U1 (0, 01  0). 	 (3.29) 

From Eqs. (3.1l)—(3.13) we can construct an entire functionf(p, C) such that 

U(X, Z, Z*). = U(0, 0, 0)U0(X, Z, Z*)+Re C3 {f}. (3.30) 

From the proof of Theorem 2.3 we can conclude that there exists a positive 
constant M = M(R) such that 

max I Re C3(f} I 	Max ç3{f} I 
XR 	 XIR 
Z R 	 ZIR Z*IR 	 Z*IR 

:< M max If(i,C)I. 	 (3.31) 
I3R V=i 

Now letf1 (p, C) be a polynomial such that 

max If('' O —f(p, C)! <elM. 	 (3.32) 
pI 3R 
ci = 1 
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This polynomial can be constructed, for example, by truncating the Taylor 
series forf(jt, ). We now have 

max I um Z, Z*)_  U1 (X, Z, Z 
XISR 
ZFSR 

< max IRe C3(f-f1}I 	 (3.33) 
X :5R 
Z5R 
ZIS.R 

M max 
Ii' 53R 
jC1=1 

and the theorem is proved. 
This research Was supported in part by AFOSR Grant 74-2592. 
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Introduction. S. Bergman [1] and I. N. Vekua [7] have both 
constructed integral operators which map analytic functions of one 
complex variable onto solutions of the elliptic equation 

(1) 	u + u + a(x, y)u2  + b(x, y)Uy  + c(x, y)u = 0. 

We wish to announce in this note the extension of these results to the 
three-variable case, i.e. the equation 

+ u + u + a(x, y, z)u + b(x, y, z)u 
(2 	 + c(x, y, z)u + d(x, y, z)u = 0 

where a, b, c, d are real valued entire functions of the (complex) vari-
ables x, y, z. (With minor modifications we could have assumed only 
that a, b, c, d are analytic in some ball containing the origin.) Partial 
results on integral operators for equation (2) (in the special case when 
a=b=c=O) have been obtained by Bergman [i], Tjong [6], Colton 
and Gilbert [4], and Gilbert and Lo [5]. 

Main results. Let X=x, Z=(y+iz), Z*=(_y+iz). Then equa-
tion (2) becomes 

Uxx - Uzz. + A(X, Z, Z*)Ux + B(X, Z,Z*)Uz 

+ C(X, Z, Z*)Uz. + D(X, Z, Z*)U =0 

where 

U(X, Z, Z") = u(x, y, 

A(X, Z, Z*) = a(x, y, z), 

(4) 	B(X, Z, Z') = (b(x, y, z) + ic(x, y, z)) 

C(X, Z, Z) = (—b(x, y, z) + ic(x, y, z)) 

D(X, Z, Z*) = d(x, y, z). 

The substitution 

AMS 1970 subject classifications. Primary 35A20, 35C15; Secondary 35J15. 
- Key words and phrases. Integral operators, elliptic equations, analytic functions, 
complete families. 
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(5) V(X, Z, Z) = U(X, Z, Z*) e xP[_f C(X,',Z*) dZ'] 

yields the following equation for V(X, Z, z*),; 

VXX 
(6) 	

- .Vzz. + A(X,-Z; Z*)V1 + (X, Z, Z*)V z  

+ .b(X, Z, )V = 0, 

where A, , . are expressible in terms of the coeffi'cients A, B, C, D. 
Let U0 (X, Z, Z*)  be the real valued, entire solution of equation (3) 
which satisfies the Goursat dataU o (X,'O, Z*) = U0 (X, Z, 0) = 1. Note 
that in the special case, when D=O we can choose U0 1. In the 
general case when D0, Uo  can be constructed via the recursive 
scheme 

- 	 Uo  =1 + limW,, 
1,-. ,. 

	

____ 	oW,. 	OW,-, 
w+1=j 

fo (\ 	+ A--+B
o 	r OX 2 	OX. . OZ 

 
,. • .....- 	. :+C OW .±DW,.D)dZ'dZ*, 

• - 9Z* 	. 

• 	 - 	 - 	

. 

By introducing the variables 

1 =2Z, 

X± 2Z, 

= X + 2 - 'Z, 

	

= (E2 + 	X + Z + r lZ* , 

where is a complex variable such that 1-€<ftI <1+€, O<e<, 
we can now state the following theorem. In the theorems which 
follow "Re" denotes "take the real part" and "Irn" denotes "take 
the imaginary part." 

	

THEOREM 1. Let 	. 	. 

E*(, E2, 	 t2,p()(1, E21 E, r) 

where 	 . • - . 
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(n+1) 
Pi - (A* + 

() 
1 	 (n) 	 (n) 	(n) 

2n + 1 
1 P22 + Paa - 4ia - 2P23 + (A* + 2*)p" 

I;) + A*p (3  + 2*p"+ 
(10) 

fa, =exp_ (A* + 

p(n+l)(O, E2, , -) = 0, n = 1, 2, 

	

(n) 	2 (n) (I, ) 	 (n) = op /.9, 	pij 	p 

with A*(1, E2, t3, ) = A(X, Z, Z*), 	2, 3, ) = F3  (X, Z, Z*), 
D*( i , t2, 3, ) = (X, Z, Z"). Then the following is true: 

E*(1, t2, 3, , t) = E(X, Z, Z", , 1) is regular in GR XB X T 
whereGk= { ( si, t2, ): IEI <R, i=1, 2, 3}, B= {:i—€< ftI <i+€}, 
r = { t: I t 	11, and R is an arbitrarily large positive number. 

If U(X, Z, Z*)  is a real valued (for (x, y, z) real) solution of equa-
tion (3) which is regular in some neighborhood of the origin, then there 
exists an analytic function f(js, ) which is regular for U in some neigh-
borhood of the origin and 	< 1 +, such that locally 

(11) 	U(X, Z, Z*) = U(0, 0, 0)U 0(X, Z, Z*) + Re c3{j}, 

where 
+1 1 

c31j} 27riir1...if_i 
exp[f

o 
  C(X, Z', Z*)  dZ'] 

(12) 	
dl 	d 

.E(X, Z, Z, -, 1)f(z(1 — 12), b 
(1 — 1 2) 1 1 2  . 

(3)If 

	

00 	 00 

(13) 	U(X, 0, Z*) — U(0, 0, 0) = E E ,i00Xb0Z*m, 

nO mO;n+m00 

(14) 	C(X, Z, Z*) = C(X, —Z, —Z), 	x, y, z real, 

then 
00 n-I-i 	r(n+2) 

(15) 	f(t, b = E E a 00  
T(n + )F() 
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where 

= 7n0, 	fl 	1, 

2n!m! 	"' 

an+ml.m = 	 7om - 	 ökm'fn_k.O, fl 0, Vi >0, 

"16' 	
(n + in)! 	o (n + m)!k! 

" " 	 / ak+m 	

r f,—
Z*_

ôkm = I 	exp I 	 CX, Z', 0) dZ' 
\oXkaZ*m 	L  

(The finite series in equation (16) is omitted when n = 0.) 

The fact that every real valued twice continuously differentiable 
sólutión of equation (2) (i.e., a regular solution of equation (3)) can 
be represented in the form of equation (11) now leads to the following 
theorem: 

THEOREM 2. Let G be a bounded, simply connected domain in 
Euclidean three space, and, for x, y, z real, define 

u0(x, y, z) = U0(X, Z, Z*) 

(17) U2n;m(X,Y,Z) = Re C3 {,em}, 0n< 00,m=0,1,. . . ,n+1, 

u2n+i, m(x,y,z)ImC 8 { itjm, 0n<00,m=0,1,...,n+1. 

Then the set { uo } U { Unm } is a complete family of solutions for equation 
(2) in the space of real valued solutions of equation (2) defined in G. 

Special cases. (a) A =B—C--0. 

THEOREM 3. Assume A =B = C= 0, and let 

(18) 	E*(1, 	, 1) = 1 + E 	El, El, ) 

where the p()  are defined by equation (10) with A = = 0. Then 
E*(Ei, E2, , , t) = E(X, Z, Zn', , t) is regular in GR XB X T. 
Every real valued solution U(X, Z, Z*)  of equation (3) which is 

regular in some neighborhood of the origin can be represented locally 
in the form 

(19) 	 U(X, Z, Z*) = Re P,jfj 

where 

(20) 	= 	i  f 2iri 

+1 

1.  E(X, Z, Z", -, 1)f(JL(1 - 12), 

=1 	—1 

di d 
. (1 - g2)1/2 
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and 

	

I f -. - 

(21) 	 fCu, 	= - 	g(i(I - j2), ) 

f
(22) g(u, ) 	2— 

	
U(li, 0, (1 - l)j) dl I.- U(, 0,0). 

CIA o 	 J 

In equation (21) y' is a rectifiable arc joining the points t = —1 and 
t = + 1 and not passing through the origin. 

(b),A=B=C=D=0. 
In.the special case when A =B=C=D=0, the operator P3  reduces 

to the well-known Bergman-Whittaker operator B3  [1] and equation 
(22) gives a new inversion formula for the operator Re B3 . 

Complete proofs of the results stated in this announcement will 
appear in [2] and [3]. 
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BERGMAN OPERATORS FOR ELLIPTIC EQUATIONS IN FOUR 
INDEPENDENT VARIABLES* 

DAVID COLTONt 

Abstract. Integral operators are obtained which map analytic functions of three complex variables 
Onto solutions of linear elliptic partial differential equations in four independent variables. An inversion 
formula is given and used to construct a complete family of solutions for the elliptic equation under 
investigation. 

1. Introduction. The theory of integral operators for elliptic partial differential 
equations was initiated by S. Bergman [1] and I. N. Vekua [20], both of whom 
constructed operators which map analytic functions of a single complex variable 
onto twice continuously differentiable (class C 2 ) solutions of the elliptic equation 

(1.1) 	 E,. 2 u + a(x,y)u  + b(x,y)u + c(x,y)u = 0. 

These operators were then used to construct complete families of solutions and 
to investigate the analytic properties of solutions to (1.1). Recently, Colton [3], 
[4], [5] was able to extend the results of Bergman and Vekua to the case of three 
independent variables, that is, the equation 

(1.2) 	A 3 u + a(x,y,z)u + b(x,y,z)u + c(x,y,z)u  + d(x,y,z)u = 0. 

More specifically, integral operators were obtained in [3], [4] and [5] which map 
analytic functions of two complex variables onto C 2 -solutions of (1.2), and were 
then used for purposes of analytic continuation and to construct a complete 
family of solutions to (1.2). This work was the culmination of the efforts of several 
mathematicians, among them Bergman [1], Tjong [18], [19], Colton and Gilbert 
[6] and Gilbert and Lo [14]. In this paper we indicate how the approach used to 
treat equation (1.2) can be extended to treat elliptic equations in four independent 
variables, that is, the equation 

(1 	
+ a(x 1  , x21  x 3 , x4)u 1  + b(x 1 , x 21  x 31  x 4 )u 2  + c(x 1  , x 21  x 31  x 4)u 3  

+d(x 1  , x21  x 3 1 x 4)u 4  + f(x 1 ;x2 , x 31  x4)u = 0. 

Our methods unfortunately do not appear applicable to elliptic equations in 
more than four variables, and so at present it seems that the use of integral operators 
in investigating the analytic theory of elliptic equations is restricted to equations 
in two, three and four variables. 

Until a few years ago integral operators for elliptic equations in four in-
dependent variables were available only for the harmonic equation and certain 
classes of equations with spherically symmetric coefficients [11], [12], [13], [16]. 
Recently, however, Colton and Gilbert obtained an integral operator which 
mapped analytic functions of three complex variables onto an unspecified sub-
space of solutions to (1.3) in the special case when a = b = c = d = 0 (see [6]). 
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If in addition the coefficient f(x 1 , x21  x3 , x4) was independent of x 1 , then Colton 
and Gilbert were able to construct an operator which mapped ordered pairs of 
analytic functions of three complex variables onto the space of C 2 -solutions of 
(1.3). This last result was then used to investigate Cauchy's problem for certain 
classes of elliptic equations in four independent variables and hyperbolic equa-
tions in three space variables and one time variable [6], [7]. In the present paper 
we overcome the problem of showing that our operator maps analytic functions 
onto the whole space of real-valued C 2 -solutions of (1.3) by carefully choosing 
new independent variables, reducing the question of invertibility to the problem 
of showing that a Goursat problem for an ultrahyperbolic equation in the space 
of four complex variables is well-posed, and then solving an integral equation 
associated with this Goursat problem. We shall furthermore give an explicit 
formula for constructing the analytic function associated with a given real-valued 
C 2 -solution of(1.3) by our integral operator. A special case of this last result is a 
new inversion formula for the operator Re G 4 , where G4  is Gilbert's generalization 
of the Bergman—Whittaker operator [11, pp.  75-82] and "Re" denotes "take the 
real part." As an application of our main theorem we shall construct a complete 
family of solutions for (1.3) in a bounded, simply connected domain in Euclidean 
four-space R4 . 

For the sake of brevity we only consider the special case of (1.3) when a = b 
= c = d = 0. The extension to the more geieral case can easily be made by 
combining the results of this paper with the approach used in [4] for the case of 
three independent variables. We furthermore assume that the coefficient 
f(x 1 ,x 21 x 31 x 4)is an entire function of x 1 , x21  x 3  and x4  (considered as complex 
variables), although with slight modification our results remain valid when 
f(x 1  , x 21  x31  x4 ) is only assumed to be analytic inside some polydisc in the space of 
four complex variables. It will also always be assumed that f(x 1  , x 21  x 3 , x4 ) is 
real-valued for x 1 , x2 1  x 3  and x4  real. Since much of our analysis is based on the 
ideas of [3], it might be helpful if the reader had access to this paper. 

2. The operator P4 . In this section we consider the partial differential equa-
tion - 

(2.1) 	 t\4u + f(x 1 ,x 2 ,x 3 ,x 4)u = 0, 

where f(x 1  , x21  x31  x4 ) is a real-valued (for x 1 , x21  x31  x4  real) entire function of 
its independent (complex) variables. Our first result is the following theorem 
which is central to the analysis which follows. 

THEOREM 2.1. Let Y = (x 1  + ix 2), Y" = 4(x 1  - ix 2 ), Z 	(x 3  + ix 4 ), 
Z = --(x 3  - ix 4), and let u(x 1 , x 21  x 31  x 4) be a real-valued C2 -solution of (2.1) 
in a neighborhood of the origin. Then U(Y, Y', Z, Z*) = u(x 1 , x 21  x 31  x 4 ) is an 
analytic function of Y, Y'', Z, Z in some neighborhood of the origin in C 4 , in the 
space of four complex variables, and is uniquely determined by the function 
U(Y,0,Z,Z*).  

Remark. Note that Y = Y, Z = - Z* if and only if x 1 , x 21  x 31  x 4  are real. 
Proof of Theorem 2.1. The fact that U(Y, Y, Z, Z*)  is analytic follows from 

the fact that 0-solutions of second order linear elliptic equations with analytic 
coefficients are analytic functions of their independent variables (cf. [10, p. 164]). 
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Hence, locally we can write 

(2.2) 	 U(Y, y*,Z,Z*) = 	 C,mnp Y l Y *mZ flZ *P , 

I,m.n.p = 0 

(2.3) 	 U(Y, 0, Z, Z*) = 	c10 YIZnZ*P, 

I^p =0 

(2.4) 	 U(0, Y*, Z, Z*) = 	 C Omnp Y*mZflZ*P. 

m,n,p= 0 

Since u(x 1  , x21  x 31  x4 ) is real-valued, we have that for x 1 , x21  x 31  x4  real, 

(2.5) 	 U(Y, y*, z, Z*) = U(Y, y*, z, Z*), 

where the bar denotes complex conjugation. This implies that for x 1 , x21 x 31  x4  

real, 

(2.6) 	 Clmnp Y I Y*mZnZ*P = 	 Clmnp 
 

Im,n,p0 	 I,m,n,p=O 

or 

(2.7) 	 Cimnp  = ( 	1)c,,il fl . 

Equations (2.3), (2.4) and (2.7) now show that U(0, Y', Z, Z*)  is uniquely deter-

mined from U(Y, 0, Z, Z*). However in the Y, Y", Z, Z" variables, (2.1) becomes 
an equation of ultrahyperbolic type, viz. 

(2.8) 	 - U, + F(Y, y*,Z,Z*)U = 0, 

where 

(2.9) 	 F(Y, Y*,  Z, Z*) 	f(x 1  , x 21  x 31  x 4). 

From Hormander's generalized Cauchy—Kowalewski theorem [15, pp.  116-119], 
[2], we have that U(Y, Y*,Z,Z*) is uniquely determined from the Goursat data 
U(0, Y", Z, Z*) and U(Y, 0, Z, Z*), which we have already seen are determined 
from U(Y, 0, Z, Z*) alone. The theorem is now proved. 

We now begin to construct an integral operator which maps U(Y, 0, Z, Z*) 

onto U(Y, Y'', Z, Z*). We first introduce the following notation: 

= 

= 1 11 }I*  + 	Z, 
(2.10) 

= ?1Z + Y, 

Y , 

(2.11) 	P = 2 + 4 = }+ çZ + J lZ* + 	lIY*, 

where , j are complex variables such that 1 - < II < 1 + , 1 - < I?JI < 1 
+, 0 < c <. Noting that the Jacobian of the transformation (2.10) is equal 
to —(ij() 2  r 0, one can prove the following theorem by straightforward differ- 
entiation and integration by parts (cf. [6, Theorem 4.1]). - 
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THEOREM 2.2. Let D be a neighborhood of the origin in the /L-plane, B = {(, j): 
1 - e < ] < I + r, 1 - < 1 ?11 < 1 + i}, G a neighborhood of the origin in 
( 1 , 2 , 3 , 4)-space and T= {t:ItI :!~ 11. Let f(i,j) be an analytic function of 
three complex variables in the product do,nain D x B and E*(t1, 2' , ?J, t) 

E(Y, Y'', Z, Z, , j, t) be a regular solution of the partial differential equation 

(2.12) 2it(E 3  + E 4  + E 3  - E 4  + F*E*)  + (1 - t2)Er, - 	 = 0 

in G x B x T, where F*(1, 2' 31 41 , ) 	F(Y, }T*,  Z, Z*),  and 

- 

3 2 E* 	5 2E* 
E, 

= 	
E, 

= 	
i,j = 1,2,3,4. 

Then, 

U(Y y*,Z,Z*) = P4 {f} 

- 	 1 
(2.13) 	- - 4 	= 	= f E( y y*,  Z, Z, , , t)f(p(1 - t2), , i) 

	

dt 	djd 

where y is a path in Tjoining t = - 1 and t = + I, is a (complex-valued) solution 
of (2.1) which is regular in a neighborhood of the origin in (Y, Y, Z, Z*) space. 

We must now show that the integral operator P 4  exists; that is, we must 
show the existence of a function E(Y, Y", Z, Z, 4, t, t) satisfying the conditions of 
Theorem 2.2. 

THEOREM 2.3. Let Dr  = {( 	 I < r, i = 1, 2, 3, 41, where r is an 
arbitrary positive number, and let B2  = {(, j):  K - 	 < 2, I tj 

- 	 < 2}, 0 < r 
<4, where 

, 
are arbitrary with I Cj = I tj o l = 1. Then, for each n, n = 0, 1, 2, 

there exists a unique function p(c1, 2' 	 , 
i) which is regular in Dr  x 

(the bar denoting closure) and which satisfies 

(n+1) - -  (2.14) Pt 	
- 	 2n + 1 	

+ 2p + 2p - 2p + j4F*p},34  

(2.15) 	
1, 

	

= 0 1 	n = 0,1,2,..., 

where 

3p(fl) 	 _______ 
p fl) = 	

= a'jaj' 	
i,j = 1, 2, 3, 4. 

The function 

(2.16) 	E*(1, 
2' 	 , , 0 = 1 + 	t2p(1, 2' 3' 4' 

is a solution of (2.12) which is regular in the product domain GR  x B x T, where R 
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is an arbitrary positive nu,nber, and 

G R  = 	 <R,i = 1,2,3,41, 

(2.17) 	B = {( j): 1 - c <IJ < 1 + , 1 - < I < I + E JI 0< 

T= {t:ItI<l}. 

The function defined in (2.16) satisfies 

(2.18) 	 E*(0, 2 , c3 , 4 ,,1J,t)= 1. 

Proof. It is easily verified from (2.14) and (2.15) that p(i' 2' 

exists, is uniquely determined and is regular in Dr  x B2  for n = 0, 1, 2, 
Straightforward differentiation and collection of terms shows that the series (2.16) 
formally satisfies (2.12). It remains to be shown that this series converges absolutely 
and uniformly in G R  x B x T. To this end, note that since B is a compact subset 
of the (, ij)-space, there are finitely many points (, ) with IQ =ItIjI = 1, 

j = 1, 2, ... , N, such that B is covered by the union of sets 

(2.19) 	 N = {(, ij):J - ) <, In - 'i) <} 	j = 1,2, ..., N. 

Hence it is sufficient to show that the series converges absolutely and uniformly 
in GR x N i  x T. To this end we majorize the p(1, 2' 3 1  4 ,  , j) in DR  x B2 . 

Since F(Y, Y, Z, Z*)  is an entire function, it follows that F*(1, 
2' 

is regular in Dr  x  B2r 1 
and hence we have 

—1 	 —1 	 —1 

I --- 	1 — 	1 -- 
r 	r 	r 

(2.20) 

	

–1 
1 	

—1 
1 	

—1 

r 	2E 	 2c 

for some C > 0 and ( 	, , L4, . ) in Dr  x  B2.  In (2.20) the symbol "<<" 
means "is dominated by." The use of dominants is a standard tool in the analytic 
theory of partial differential equations, and the reader unfamiliar with their use 
is referred to [1] or [11] for further details. From (2.14), (2.15) and (2.10) it is a 
somewhat lengthy but straightforward procedure to show by induction that in 
Dr  x B2  we have 

	

; 	–(2n– 1) ; 	–(2n– 1) 	; 	–(2n– 1) 

	

p << M(8 + 5)(2n — 1) 1 — 	 1 — 	 1 — 

	

r 	 r 	 r 
(2.21) 

(1 — 
	

–( 2n– 	— 

	' 

where M and 6 are positive constants independent of n. (For details of the proof 
of closely related results the reader is referred to [3], [6] and [18].) Equation (2.21) 
now implies (after some slight manipulation) that in Dr  x  B2  we have 

	

—2n 	; —(2n-1) 

	

<< M(8 + 5)(2n) '(2n — 1) 1  1 — -- 	1 — 

	

r 	r 
(2.22) 

—(2n— I) ; –(2n– 1) 	p 	r -n 	 -n 

1 —- 	1 —- 	1 —° 	1 	 r" 
r 	 r 	 2c 	 2 
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which implies that in Dr  x N1  we have 
-2n 

, 	, , ij)I 	M(8 + 	(2n) '(2n - 1 ) 1 (1 - 
rj 

I2Il -(2n- 1)( 	I3f1 —(2n— 1) 

• (i - 	 1 - 
rJ 	 r/ 

(2.23) 	 on -  i) - 

.( 

 

1c4 	 (1 	
_I\_n 

r, 	 2 	) 

• (1 - i - 

1)) 	

.fl 

Now consider I t2"p p(l)(1, 2' 
	4 ,  41 i in D r  x 	x T, where 

D r  = 	 < r/c;> 1,i = 1,2,3,41. 

In D,r  x Ni x Twe have 

- 	1 	
= 1,2,3,4, 

1 	>!: 	i_I 11 iI 
(2.24) 	 2e 	4 	2E 	= 4' 

2r 
II2II2+4I, 	ItI1. 

Thus, from (2.23) and (2.24) we have that in Dr  x N x T, 

(2.25) 	
2' 3 1 	(1 i)I 	Mr(c - 1)3(2n - 1) '(2n) 

•(32(8 + 5)( - 1) 8)l .  

If we choose a such that 

(2.26) 	 32(8 + ö)(x - 1)8 < I 

then the series (2.16) converges absolutely and uniformly in Dr  x N i  x T. 
By taking r = cR we can now conclude that E*(1, 2' c 31 , , j, t) is regular 
inGxNJ xTforeachj=1,2,...,N,andhenceinGxBxT.Equation 
(2.18) follows from (2.15). 

We now want to show that every real-valued C 2 -solution u(x 1 , x21  x 31  x 4 ) 

of(2.1) which is defined in some neighborhood of the origin in R 4  can be represented 
locally in the form 

(2.27) 	 u(x 1 , x 21  x 31  x4 ) = Re P4{f}. 

We shall furthermore show that the associated analytic function f(p, , j) has 
a simple representation in terms of the Goursat data U(Y, 0, Z, Z*)  for 

y, y*, z, Z*) 	u(x 1 , x 21  x31  x4). These results will then enable us to construct 
a complete family of solutions (in the Lw-norm) for (2.1). 
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THEOREM 2.4. Let u(x 1 , x 21  x 3 , x 4 ) be a real-valued C2 -solution of(2.1) in some 

neighborhood of the origin in R4. Then there exists an analytic function of three 

complex variables f(p, , ij) which is regular for It in some neighborhood of the 

origin and I < 1 + e, < 1 + , > 0, such that locally u(x 1 , x 2 , x 3 , x 4 ) 

= Re P4 {f}. In particular, denote by U(Y, Y, Z, Z*) 	u(x 11  x 21  x 31  x 4) the 

extension of u(x 1  , x 21  x 31  x 4) to the (Y, Y, Z, Z*) space, and let 

g(p,cj) 
= i;{J0'  f.'  

(2.28) 

p 2 (1 - t) [2U(pt, t, (1 - t)pC, (1 - t)(1 - 

- U(0, 0, ( 1 - t)p, (1 - t) (I - )p)] dt d}. 

Then, 

	

(2.29) 	 f(p,, ii) = -J., g(p(1 - t 2), 

where y' is a rectifiable arc joining the points t = - 1 and t = + 1 and not passing 

through the origin. 
Remark. Equation (2.29) can be inverted by the formula (cf. [11, p. 114]) 

dt 

	

(2.30) 	 g(p,) = If(p(1 - t 2),) , 

where the path y  is defined in Theorem 2.2. 
Proof of Theorem 2.4. The fact that u(x 1 , x 21  x 31  x 4 ) is a strong solution of 

(2.1) implies that u(x 1 ,x 2 ,x 3 ,x4 ) is an analytic function of its independent 
variables in some neighborhood of the origin. Furthermore, since F(Y, Y, Z, Z*) 

is real-valued (for Y = Y, Z = _Z*), Re P4{f} is a real-valued solution of(2.l) 

for any function f(p,( , j) which is analytic in the product domain D x B (see 

Theorem 2.2). Now suppose that locally g(p,j), f(p,1,ij) and F(Y, Y*,Z,Z*) 

have the expansions 

g(u, , i) = 	 a,p17, 
n0 k0 1=0 

k+I:5n 

= __J g(p(l - 	
dt

27r
(2.31) 	 oo 	n 	n 	F'(n+l) 

n=0 k=0 1=0 aflkl F(n + 
k+I:5n 

F(Y, Y*, Z, Z*) = 	bimnp Y l Y*mZnZ*P, 
I.ni.n.pO 

and let the analytic functions(p, C , j),f(p,  C. ,), F(Y, Y, Z, Z*)  be defined by 

replacing aflkl and bimnp  by aflk, and b,mnp l respectively, in (2.31). Let E(Y, Y, 

Z. Z', , ;, t) be the generating function corresponding to the differential equation 
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- U. + F(Y, Y", Z, Z*)U = 0. Then for x 1 , x21  x 31  x4  real we can write 

ReP4 {f} = 	fK 1 = f 	f E(Y, Y*,Z,Z*,,t) 
 1 	= 1 y  

	

dt 	ddt 
- t2 ),4,ij) ,,,,._--- 

(2.32) 
1 

f1 cl = fl 	f E(Y Y, —Z, —Z,,t) 
?1I=1 Jy 

	

dt 	dijd( 
- t 2),,7)_---, 

where ji = 	- 	 - j 1 Z + 	Now from Theorem 2.1 we know 
that U(Y Y", Z, Z*)  is uniquely determined by the function U(Y, 0, Z, Z*),  2nd 
hence, using (2.18) and (2.32) we try to determinef(11, 

, 
i) from the equation 

U(Y,0,Z, Z*) = 	f 	J 	f f(j 1 (1 - 	
dt 	dij d 

_Jj5(0,_Z*,_Z,) 
(2.33) 

- 	

dt 	djd 

where it ,  = Y+ 	'Z + jZ*  and 112 = j''Y— 	1Z1 - 7'Z. Tothis 
end we first write E*(1, 

2' 3 1 	 , , 
t) 	(Y, Y'', Z, Z, , , t) in its series 

expansion 

(2.34) ~ 31 	 = 1 + 
ti=1 

where, from Theorem 2.3, we have 

(2.35) 	 (1) 

= 
-iiJ 

0 

—(n+1) 

- 2n 	
12 fi (n) + 2 	+ 2 	- 2 	+ p1 	-  _____ 34 

(2.36) 
(n+1)(0 	

2' 31 4 ,  C  , j) = 0, 

with F*(1, 
2' 31 c41 , 

j) 	F(Y, y*,  Z, Z*).  From (2.10) and (2.35) we have 

fY- = 

=  -J F( + 
- 2'11'4 - + - 	 - 

0 

. 

o 
F(Y+ 	''t - 

(2.37) 
- 

?1 -1— I y* - 	
't), 

(lly* + 	'Z - 
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The fact that F( Y, Y, Z, Z*)  is an analytic function of Y, Y, Z and Z*  now implies 
that 

fjcj=j fj?j j=j f t 2 p 2 '(0, Y, - Z*, _Z, c, i) 

dt 	did 
(2.38) 	 .J(p2(1 - t2),,j) 	 = 0, 

since the Laurent series of the integrand has no terms involving 	for both 
I > —2 and m > —2. A similar calculation using (2.36) and induction shows that 

fj ~ j 

 
U2 (O, Y, _Z,Z*j 

i 
 

8t2 	
fI rIl

5 
2n

= 1  7 

dt 	did? 
- t2 ), 	= 0, 

(2.39) 

fj(n)(y,  y*, 	, 	*, 
(, j) 	jj(n)( 	

' 2' '3' 	 i) 

for n = 1,2, 3, ... . Because of the uniform convergence of the series in (2.34), 
we can substitute this series into (2.33) and integrate termwise to conclude that 

	

1 	
fI?I I 	

g(i1 	
djd 

U(Y,0,Z,Z*) = 
- — j 

(2.40) 

I  f141
dj d 

— 	
= 1 foll =1 

 

where we have made use of (2.30). To complete the proof of the theorem it now 
suffices to show that (2.28) gives the solution of the integral equation (2.40). 
In order to show this we let 

(2.41) 	 U(Y, 0, Z, Z*) 
= 	I ynkiYnZ*kZI 

nk,I = 0 

and equate coefficients of YlZ*'Zl  on both sides of (2.40). This gives 

= (n + k + l)!a fl +k+,k, , 	 n > 0. 
(2.42)  

2k!!!y ok , = (k + l)!ak+,.k,, + (k + l)!(— l)'' ak+,,k. 

Since U(0, 0, Z, Z*)  is real-valued for x 3  and x4  real, we have from (2.41) that 

YOU = (- 1)yOIk, and hence, we can assume without loss of generality that 
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(— 	 = ak+,kI. Equations (2.41) and (2.42) now give 

r(n + k + / + 1) 	afl +k+IkIYZZ U(Y,0,Z,Z*)=4 
n0 k0 io F(n + 1)V(k + l)JT(1 + 1) 

+ +U(0,O,Z,Z*) 

F(n + 1) 
2  

(2.43) 	
k=0 1=0 n k+I F(n—k—/+1)F(k+1)F(/+1) 

aflkIYZZ + -1-U(0,  0, Z, Z*) 

F(n+1) 
= 2  

n 0 k = 0 	F(n — k — I + 1)F(k + 1)l + 1) 
k+I ~ n 

aflkIYZZ + 4U(0, 0, Z, Z*). 

From the definition of the beta function (cf. [8, P.  9]) we can now write 

f (1 — t) [U(tY, 0, (1 — t)Z, (1 — t)Z*) — +U(0, 0, (1 — t)Z, (1 — t)Z*)] dt 
o 

(2.44) 	 ' 	 F'(k + / + 2) 
=4 

n = 0 k = 0 1 = 0 (n + 2)(n + 1)F(I + 1)F(k + 
k+l:~ n 

and hence, 

f 
I 
 fo

1 
0 — )[U(tY,0, (1 — t)Z,(1 — t)(1 — 

  

(2.45) 	 — U(0, 0, (1 — t)Z, (1 — t)(1 — )Z*)] dtd 

00 	n 

= 	 aflJ, 	
yn_k_IZ*kZI, 

n=0 k=0 1=0 (n + 2)(n + 1) 
k+I:~ n 

which implies that 

a2 f p2 ( — t) [U(t, 0, (1 — t)p, (1  f t)(1
O  

— +U(0, 0, (1 — t)p, (1 — t)(1 — )pij)] dtd} 
(2.46) 

= 	 afl ,J1 	= g(p, , ). 

n0 k=0 1=0 
k+1<n 

Equation (2.28) follows immediately from (2.46), and this proves the theorem. 
Note. When F(Y, Y, Z, Z*)  0, our operator P4  reduces to Gilbert's 

operator G 4  (see [11, pp.  75-82]), and (2.28) gives a new inversion formula for the 
operator ReG 4 . It is of interest to compare (2.28) with the inversion formula 
given by Kreyszig for complex-valued harmonic functions in four independent 
variables [16], [11, p.78]. 
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Theorems 2.2, 2.3 and 2.4 can now be used to construct a complete family of 
solutions in the Lw-norm for (2.1). The proof of the following theorem exactly 
parallels that for the case of three independent variables, and the reader is referred 
to Theorem 3.2 of [3] for further details. Briefly, the proof proceeds as follows: 
Since (2.1) is elliptic and has analytic coefficients, it possesses the unique con-
tinuation property and hence the Runge approximation property (cf. [17]). 
Hence it suffices to find a complete family of (real-valued) solutions defined in an 
arbitrarily large sphere S in R4 . From Garabedian's work on Cauchy's problem 
for analytic systems [10, pp. 614-619] it is possible to conclude that the Cauchy 
data for solutions of (2.1) defined in S must be regular in some convex region 
B in C 3, the space of three complex variables. Since convex domains are Runge 
domains of the first kind [9, p.  229] and solutions of (2.1) defined in S depend 
continuously on their Cauchy data in B, we can approximate solutions in S by 
solutions having polynomial Cauchy data, that is, entire solutions of(2.1). Such 
(real-valued) entire solutions can then be approximated by (real-valued) solutions 
having polynomial Goursat data in the (Y, Ye', Z, Z*)space.  But by Theorem 2.4, 
real-valued solutions u(x 1 , x21  x31  x4) of (2.1) with polynomial Goursat data can 
be represented in the form 

	

(2.47) 	 u(x 1 , x21  x31  x4) = Re P4 {hN}, 

where 
N 	n 	n 

	

(2.48) 	 hN(p, , 
t) = 	 afl jfC' , 

n0 k0 1=0 
k+l<n 

from which follows the theorem below. In the statement of the theorem "Im" 
denotes "take the imaginary part." 

THEOREM 2.5. Let G be a bounded, si,n ply connected domain in R 4, and define 

	

(249) 	
2flkl(i I x2 1  x 31  x4 ) = Re p{n,kI} 

u 2 	lkI(x1 , x2 1  x31  x4 ) = Im p4{yfl;jkI} 

where 0 :!~ n < cx), I = 0, 1, ... , n, k = 0, 1, ... , n, k + 1 :!~ n. Then the set {u flk ,} is 
a complete family of solutions in the L° -norm for (2.1) in the space of real-valued 

C2 -solutions of (2.1)defined in G. 
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INTEGRAL REPRESENTATIONS OF SOLUTIONS TO A 
CLASS OF FOURTH ORDER ELLIPTIC EQUATIONS 114 

THREE INDEPENDENT VARIABLES 

DAVID COLTON 

I. Introduction. Both S. Bergman [1] and I. N. Vekua [13] have constructed 
integral operators which map ordered pairs of analytic functions of one complex 
variable onto solutions of fourth order elliptic equations in two independent variables. 
Such operators play an important role in the investigation of the analytic properties 
of solutions to higher order elliptic equations and in the approximation of solutions 
to boundary value problems associated with these equations. Unfortunately, little 
progress has been made in developing an analogous theory for elliptic equations in 
more than two independent variables. Recently, however, Colton and Gilbert [71 
constructed integral operators for a class of fourth order elliptic equations with 
spherically symmetric coefficients in p + 2 (p 0) independent variables, and at 
present Dean Kukral [11], a student of R. P. Gilbert, is in the process of trying to 
extend some recent results of Colton [3, 4, 51 for second order equations in three 
independent variables to the fourth order case. 

In the present paper we extend the results of [3] in a different direction from that 
of Kukral, and construct an integral operator which maps ordered pairs of analytic 
functions of two complex variables onto real valued solutions of the equation 

(L3+c(2)(x,y,z))(A3 + c(x,y,z))u = 01 	 (1.1) 

where c'(x, y, z) and c 2 (x, y, z) are real valued entire functions of their independent 
(complex) variables. (With minor modifications we could have assumed these 
functions to be analytic only in some neighbourhood of the origin in C 3 , the space 
of three complex variables.) The advantages of our approach is that our integral 
operators are easy to construct, the inverse operator is readily obtainable, and the 
class of equations of the form (1 .1) include many of the better known fourth order 
equations in mathematical physics (for example in the special case when 

= c = 0 equation (1. 1) becomes the biharmonic equation, whereas the case 
c 0 appears in the propagation of time harmonic elastic waves [cf. 12]. 

As an application of our integral representations we will construct a complete family 
of solutions in the maximum norm to equation (1 .1). 

2. Preliminaries. From [3] and [5] we have that every real valued solution 
y, z), j = 1, 2, of 

L3 U0  + 	y, z) u' = 0, 	 (2.1) 

which is regular in some neighbourhood of the origin can be represented locally 
in the form 

	

y, z) = Re p3(i){f(i)}, 	 (2.2) 

This research was supported in part by a NSF Grant and in part by the Science Research 
Council while the author was a visiting research fellow at the University of Glasgow. 

[MAT1rIIck 18 (1971), 283-290] 
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where 

p3(i){f(1)} = _.-- f f Ew(X, Z, Z, C, l)f(JL(1 	12), )_dt 
 j2) 	(2.3) 

X = x,Z = j-(y + iz),Z* = ( — y + iz), p = X + CZ + C 1 Z andf(p, () is an 
analytic function of two complex variables in some neighbourhood of the origin in 
C2 , the space of two complex variables. The generating function 

Z, Z*, C t) = E°( 1 , 	C, 0 is given by 

co  3, C, t) = 1 + 	 2' 	C), 	(2.4) 

where 
1=2CZ, 	1 

= X + 2CZ, 	 (2.5) - 

3 =X+2CZ*, J 
and the series converges uniformly and absolutely for 	< R, i = 1, 2, 3, 
- c < < 1 + e, jt 1, where 0 < e < I and R is an arbitrarily large positive 

number. In equation (2.2) "Re" denotes "take the real part ". In equation (2.4) 
the functions p'(i, t2, C) are defined recursively by 

= 	1 	
{P22 + P33 - 4P13' - 2p 23  + 

2n + 1 	
(2.6) 

= 1, 
p(fl+l)(O, 

2' 	C) = 0, n = 0, 1,2, 

where 	 C) = 	Z, Z*) = c(x, y, z), and the subscripts denote 
differentiation with respect to the , i = 1, 2, 3, variables. The analytic function 
f(i)(p, C) is given by the formula 

f(i)(p, () = - - i--- f   gW(p(1 - 12), C) 	 (2.7) 
 dt 

where y is a rectifiable arc joining the points t = - I and t = + 1 and not passing 
through the origin, and 

g(p, C) = 2 	[p f U(tp, 0, (1 - 1) pC) dl] - 	0, 0) 	(2.8) 

with 	Z, Z*) = 	y, z). 
The results outlined above will now be used to obtain integral operators for 

equation (1 .1). In the analysis which follows, D is a neighbourhood of the origin 
in the p plane, B = {C: 1 - c < CI < I + } where 0 < s < -, 

GR = {('1, '2 3) II < R, i = 1,2, 3}, 

and T = {t: Ill < I). 

3. General representations of solutions to equation (1 . 1). We first note the obvious 
fact that any solution of 

A 3  u" + cU)(x , y, z) u 1  = 0, 	 (3.1) 
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is also a solution of equation (1. 1), in particular for any function f()(p, C) analytic 
in some neighbourhood of the origin in C 2, 

u(1 (x, Z, Z) = ReP3 '{f'}, 	 (3.2) 

is a real valued solution of equation (1. 1). This solution cannot, however, represent 
all real valued solutions, since from equations (2.7) and (2.8) we have that if 
U"(X, 0, Z") = 0 then f(l)(p  C) = 0 which implies U 1 (X, Z, Z) 0. But there 
clearly exist non-trivial real valued solutions u(x, y, z) = U(X, Z, Z) of 
equation (1. 1) such that U(X, 0, Z) = 0 (c.f. [10; p. 116-119]). Hence we now 
turn our attention to constructing a class of solutions to equation (1. 1) which vanish 
along the hyperplane Z = 0, but are not identically zero. 

THEOREM 3. 1. Let f(p, C) be an analytic function of two complex variables in the 
product domain D x Be  and let E2)(1, 2' C, 1) be the generating function 
corresponding to the equation 

A 3 u 2  + c 2 (x,y,z)u 2  = 0. 	 (3.3) 

Suppose E(, t2, 3' C, t) = E(X, Z, Z*, C t) is a regular solution of the partial 
differential equation 

pt0E13  + 2E23  - E22 - 	- C 1  E) + 0 - t2) E1  - Ei  + jit 2  = 0, (3.4) 

in GR x B. x Tfor some R > 0, 0 < s < 1, where the subscripts denote differentiation 
in the t i, I = 1, 2, 3, variables. Then 

U(X,Z,Z*)=T 3 (f} 

= - 	f f E(X, Z, Z, C, t)f(jz(1 - 2), C) 	t2) 	
(3.5)V(l

JI=i - 
is a (complex valued) solution of equation (1. 1) which is regular in a neighbourhood of 
the origin in X, Z, Z space. 

Proof. Since the Jacobian of the transformation (2.5) is equal to —4, we can 
conclude that U(X, Z, Z*) = T3 {f} is regular in a neighbourhood of the origin in 
the X, Z, Z space. Straightforward differentiation and integration by parts in 
equation (3.5) leads to 

A3  u + c"(x, y, z) u 

= UxX - 	+ C 1 ' U 
+1 

1 f  f 	t2), C) 
{t413 + 223 - 22 - 33 - =--- 	 lit 

I=1 -1 

	

dt 	d( 
+ (1 - t) 	- 	' } ,J(1 - t 2) C 

+1 

- -_.-_ 5 5 E 2 (X, Z, Z r  t)f(ji(1 - 12), C) 	
dt 	dC 	

(3.6) 
- t) 	' 

IC=1 -1 

which is a solution of equation (3.3), i.e. T3{f} is a solution of equation (1. 1). 
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We now want to show that the integral operator T3  exists, i.e. we must construct 

a function E(X, z, z C, t) satisfying the conditions of Theorem 3. 1. From previous 
considerations we will furthermore require that 

E(X, 0, Z*, C, t) = 0. 	 (3.7) 

To this end we write E(, t2, 	C, t) = E(X, Z, Z*, C, t) in the form 

E(1, 2' 	C, t) 
= 	

t"  JLq'( 1 , 	C), 	 (3.8) 

and impose the initial condition on the q 

q'(0, i2, 	C) = 0, 	n = 1, 2, 3..... (3.9) 

Recalling from §2 that E2(1, 	3' C, t) can be expanded in the series defined by 
equations (2. 4)—(2 .6), we substitute the series (3.8) into equation (3.4) and arrive 
at the following recursion formula for the q: 

1 
q1(fl+l) 

- 

- ________ çq22(
n)  + q33(fl) - 4q13(fl) 

- 2q 23 " +  EM q(fl) - p(fl)} 

2n + 1  
n=O,l,2,..., (3.10) 

= 01 	 (3.11) 

where the subscripts again denote differentiation with respect to the ,, 
i = 1, 2, 3, 

variables, and the p(fl) are given recursively by equation (2.6) with j = 2. Hence the 

functions q()(1, C) can be determined recursively. We now must show the 
series (3.8) converges in GR X B.  x T for R arbitrarily large. To show this first 

suppose B. is covered by the union of sets 

Nk = (C: IC - CkI < s} 	k = 1,2,...,N, 

where ICkI = 1. Then from [3] we have that in GR x Nk (where the bar denotes 

closure) 

p 4 M(k)(8 + ")'(2n1(2n - 1)_1(1 
- 	

—2n 
(i - ..a) —(2,i-1) 

x (i 
- 	 —(2n-1)/ 	C - Ck ~3 

 ) 

\ —n 

r 	 2e ) 

Y(2n+ 1)( 	2' —(2n+ 1) 

4 M(8 + (k))n(2fl)l(2fl - 1)_1(1 
- 	

1 	
r / 

n+ 1 

(1 	

3 —(2n+ 1)/ 	C - Ck ) —(n+1) ) 	r 	, 	 (3.12) 

where 	and M are positive constants and " 4 " means "is dominated by" 

(c.f [1]). It is now a matter of straightforward induction to show from equation 

(3.10) that 

	

q1 4 M(8 + 6)(2n)(2n - 1)1(1 
- 	 )(2n — 1) 	

1 
1)' 	C - Ck )_n —n 

	
(3.13) 

r ) 	 r 	 2x 

)_(2n1_ 
(1 - 	 r 

, 
j 

_L 	
( 

I  _j3 
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and from this to conclude that the series (3.8) converges absolutely and uniformly 
in OR x N k  x T, and hence in GR x B6  x T. For details of the proof of this last 
step the reader is referred to an almost identical majorization argument in Theorem 
2.3 of [3]. We now have the following theorem: 

THEOREM 3.2. The series defined in equations (3. 8)—(3. 10) converges absolutely 
and uniformly in GR x B6  x T (where R is an arbitrary positive number) and is a 
regular solution of equation (3.4) satisfying the initial condition (3.7). 

We will now show that every real valued solution u(x, y, z) of equation (1. 1) 
which is four times continuously differentiable (i.e. in class C4) in some neighbourhood 
of the origin can be represented locally in the form 

	

u(x, y, z) = Re {P3I{f)}  + T3{f 2 }), 	 (3.14) 

where f((p,  13, j = 1, 2, are analytic functions of two complex variables in some 
neighbourhood of the origin in C 2 . We will furthermore give an explicit formula for 
calculating f(J)(p,  13, j = 1, 2, in terms of the values of u(x, y, z) = U(X, Z, Z) 
and its derivatives along the characteristic hyperplane Z = 0. We first need the 
following lemma: 

Lir&r& 3. 1. Let u(x, y, z) be a real valued C 4  solution of equation (1. 1) in a 
neighbourhood of the origin and let U(X, Z, Z*) = u(x, y, z) be the extension of 
u(x, y, z) to the X, Z, Z space. Then U(X, Z, Z) is an analytic function of X, Z, Z 
in some neighbourhood of the origin in C 3  and is uniquely determined by the functions 
F 1 (X, Z*) = U(X, 0, Z*)  and F 2 (X, Z*) = (U - U. + C U)0. 

Proof. Since u(x, y, z) is a strong solution of an elliptic equation with analytic 
coefficients, U(X, Z, Z) is an analytic function of X, Z and Z*.  Now let 

V = UXx -  U. + C'U. 	 (3.15) 

Then V (X, Z, Z*)  is a real valued (for x, y, z real) solution of 

=0, 	 (3.16) 

and hence is uniquely determined by the function V(X, 0, Z*) = F 2 (X, Z*) 
[3; Theorem 2. 1]. But U(X, Z, Z') satisfies equation (3.15) and since u(x, y, z) 
is real valued it follows from a simple power series argument that U(X, Z, 0) is 
uniquely determined from U(X, 0, Zt) = F 1 (X, Z*).  Since V(X, Z, Z) is known, 
we now have from equation (3.15) and Hormander's generalized Cauchy—Kowalewski 
theorem [10; p. 1 16—i 19] that U(X, Z, Z*)  is completely determined. 

THEOREM 3.3. Let u(x, y, z) be a real valued C 4  solution of equation (1. 1) in 
some neighbourhood of the origin. Then there exists an ordered pair of analytic functions 
of two complex variables (f,f(2)), where f(p, C) J = 1, 2, are regular for p in 
some neighbourhood of the origin and J CJ < 1 + r, c > 0, such that locally the 
representation (3.14) is valid. In particular, we have 

	

f g(j)( ,U(I _ t2), C)  dt 	
(3.17) 

where 

g"kp, 0 = 2 -- 	 f  F(tp, (1 - t) C)dt] - F0 (p, 0), 	 (3.18) 
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and F(jt, C) j = 1, 2, are defined in Lemma 3.1. In equation (3.17) y is a rectifiable 
arc joining the points t = —1 and t = +1 and not passing through the origin. 

Remark. It can be shown that g(ji, C) J = 1, 2, can be expressed in terms of 
f(i)(p, C) by the formula [1; p. 15]: 

+1 

g(i)(jj, C) = f f (J)(( l - 	
dt 2), C) 	- t2 	

(3.19) 
) 

—1 

Proof of theorem. From our previous analysis we know that equation (3.14) 
is a solution of equation (1. 1) for arbitrary analytic functionsf' andf' 2 . Evaluating 
(3.14) atZ = 0 gives 

F 1 (X, Z*) = (Re P3 '{f'})50 , 	 (3.20) 

and from §2 we havef 1  given by equations (3.17) and (3.18) withj = 1. Applying 
the operator 

a 
- azaz" + C 1  = L3 + c' 

to the right-hand side of equation (3.14) gives (from Theorem 3. 1) 

F 2 (X, Z*) = (Re 	 (3.21) 

and again equations (3.17) and (3. 18), j = 2, follow from §2. This completes the 
proof of the theorem. 

Example 3. 1. In the special case when c" =c = 0, Theorems 3. 1-3.3 
imply that every real valued C4  solution of the biharmonic equation A u = 0 
can be represented as 

u(x, y,z) = Ref f f f(1)((l - t2),
C)(l— t2) C 

Il1  

+ f f 2ZCf(1 - t2), C) 	t2)
dt 

1C11 —1 

= Re f g)Qj, C)
dC 

 + 2Z f g(2)(, OdC , 	 (3.22) 
IcI=1 	

- 	

Ict=1 

wheref(ji, C) and g()(p, C); j = 1, 2, are analytic functions of two complex variables 
(see §2 and equation (3.19)). But from [1; p.  43], it is seen that the integrals in the 
second line of equation (3.22) are harmonic functions of x, y, and z. Hence the 
representation (3.22) becomes 

u(x,y,z) = Re{h'(x,y,z) + (y +iz)h 2 (x,y,z)}, 	(3.23) 

where h(x, y, z), j = 1, 2, are (possibly complex valued) harmonic functions. 
It is of interest to compare the representations (3.22) and (3.23) with that for 
biharmonic functions in two independent variables (c.f. [8; p.  269], [12; p.  175-179]). 

We now use Theorem 3.3 to construct a complete family of solutions in the 
maximum norm for equation (1. 1). The proof of this result is almost identical to 
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that for the case of second order equations, and the reader is referred to Theorem 3.2 
of [3] for further details. Briefly, the proof is based on the fact that since equation 
(1. 1) is elliptic and has analytic coefficients, it possesses the unique continuation 
property and hence the Runge approximation property [2]. Hence it suffices to 
find a complete family of (real valued) solutions defined in an arbitrarily large 
sphere S in Euclidean three space R 3 . By using the results of Garabedian on Cauchy's 
problem for analytic systems [8; p.  614-621] we can construct entire solutions of 
equation (1. 1) with polynomial Cauchy data which approximate solutions in S. 
Such solutions can in turn be approximated in S by entire solutions where the 
functions Z*), j = 1, 2, are polynomials, and hence the following theorem 
(In the theorem below "Tm" denotes "take the imaginary"): 

THEOREM 3.4. Let G be a bounded, simply connected domain in R 3, and define 

u',, m (x) y,z) = 
Uflm(X,Y,Z) = 

u(x,y) z) = 
Ui. m (X,Y,Z) = 

Re p3(1){,nm} 

Tm P3(1){jjhI
(

?fl) 

Re T3{i" Cm} 

Tm T3{? Cm} 

(3.24) 

where 0 < n < co, m = 0, 1, ..., n. Then the set {unm '} L)  {Unmt2 } is a complete 
family of solutions in the maximum norm for equation (1. 1) in the space of real valued 
C4  solutions of equation (1 .1) defined on G. 

4. Generalizations. The techniques used in this paper can also be applied to 
other classes of decomposable equations, for example to fourth order equations in 
four independent variables using the results of [6], to fourth order equations with 
spherically symmetric coefficients in p + 2 variables using the "method of ascent" 
[9], to more general fourth order equations in three variables using the results of [4], 
and finally, by repeated applications of the methods described in this paper, to 
equations of order greater than four. 
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PARTIAL DIFFERENTIAL EQUATIONS BY 
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1. Introduction 

In the second section of this paper we shall show how 

constructive analytic methods may be used to solve boundary 

value problems for linear elliptic equations. We discuss 

in particular partial differential equations with analytic 

coefficients in two and three dimensions. The case in 

which the coefficients are only required to be smooth can 

also be handled if we first approximate these coefficients 

by polynomials. 

In the third section we indicate how a direct 

numerical procedure is generated by an analytic procedure. 

This is done in detail for an n-dimensional equation with 

smooth, radially symetric coefficients. Bounds are given 

on the discretization, and iterative errors. This approach 
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is quite competative with the finite difference method, as 

was shown by the numerical example contained in the appendix 

of a previous paper [ 2 4]. 

In the fourth and fifth sections we investigate iterative 

methods for solving boundary value problems associated with 

semilinear equations in two dimensions. Our procedure 

depends on known methods for approximating the kernel 

function [8] and on the theory of generalized analytic 

functions [35] 	Also in this regard see [24] page 347. 

It appears that these results can be extended to n-

dimensions; however, we shall report on this at a later 

date. 

2. Boundary Value Problems: Analytic Methods 

In order to present our numerical schemes for 

solving boundary value problems we must first develop some 

analytic procedures for formulating these problems. In 

this section we do this for the following elliptic equa- 

ti ons: 

(2.1) 

L 2 u + a(xy)u + b(x,y)uy  - c(x,y)u = 0 

(2.2) 	 E3[u] 	i 3u - F(x,y,z)u = 0 

(2.3) 	 1 u - B(r2 )u = 0 

with 	r = 	, 	x H (x 1 , ..., x) 
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Here 	 + 	+ 	, and the functions c(x,y), 

1 	 n 

F(x,y,z), B(r2 ) are to be non-negative in their respec-

tive (real) domains of definition, D. For the purposes of 

simplicity of exposition we shall further assume, initially 

that these functions have entire extensions to C 2 , C3 , 

and C respectively. Later we can relax these conditions 

to merely requiring that the coefficients be smooth. 

The domains for which we shall pose the boundary 

value problems are to be bounded, star-like with respect 

to the origin, and have a Lyapunov boundary. We shall refer 

to such domains as being appropriate. 

The approach we use is to derive a general integral 

representation for the solutions of each equation, and to 

then use this representation to formulate the respective 

boundary value problem as either a Fredholm integral equa-

tion, or to develop a complete family of functions for the 

purposes of approximating the solution. For Equation (2.1) 

the Fredholm integral equation method was developed by 

Vekua [34] via the theory of singular integral equations 

[29 ]. 	Our contribution is to develop an efficient. 

iterative procedure for solving this equation by using 

Bergman's method for constructing [6] the integral repre-

sentation. The approach to equations (2.2) and (2.3) is. 

due to one of us [ 26 ], [ 22 ], [23] and is new. 

Once the boundary value problems of Equations (2.1), 

(2.2), (2.3) have been reduced formally to a Fredholm 

equation, we are in the domain of numerical analysis. For 

instance, we are now faced with the various problems of 
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numerically solving the integral equations which arise 

from the general integral representations. We shall discuss 

this in detail later for the case of equation (2.3). 

A. The Equation 62[u] = 0 

As mentioned above we assume that the coefficinets 

of 	2[u] = 0 have analytic continuation to C 2  (or at 

least to ED + D] x [D* + D*]), which permits us to 

transform (2.1) to a complex-valued hyperbolic equation, 

(2.4) 	 + AUz + BUz* + CU = 0 , B = Azz 

1U(Z,
Z*)  

	

u 1 	2i J 

	

Z=x+iy, 	Z*=x_iy 

(Z,Z*) C [D + D] x [D* + D*]; see [6], [ 20], and 

[ 2 1]. 	Bergman [6] has given the following integral 

representation for the solutions of (2.4), 

(2.5) 
z* 

U(Z,Z*) = exp [ - f A(Z,$)ds] • [ g(Z) + 

zz 	z 
Q(n)(Z,Z*) 	f fl 

••• 

f g(Z)dZ 	... dZ 1  
+ n1 22nB(n,n+l) 0 0 
	0 

where g(Z) is taken to be analytic in D + D. The 

functions Q(n)(Z,Z*)  are defined by 
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z* 
(2.6) 	Q(Z,Z*) = f p(2n)(zs)ds 

and the 
P(2n) 

 (Z,Z
* 
 ) are defined recursively by the system, 

(2.7) 	
P (2) 

E -2F 	2(AzAB+C) 

and 

(2.8) z* 
(2n+2) 	I 

(2n + l)P 	= -2 L (2n) • {
i - f AZ dZ*  + B} 	(2n) 

0 

+ F f P(2n)dz*] , 	n 	1 

0 

Here 1 = (Z) is an arbitrary analytic function of one 

complex variable in D + 3D. Another representation of 

solutions to (2.4) is given by 

z * 
(2.9) 	u(Z,Z*) = exp [ - f A(Z)d] 	[(z) + 

(n) 
+ 	Q 	

(Z,Z*) 	I 
nl 22iB(n,n+l) 

When g(0) = 0, this solution is identical to (2.5). It 

is straightforward to show that the representation (2.9) 

is identical with Veku&s representation, in terms of the 

complex Riemann function R(t, t*;  Z,  Z*),  namely 
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(2.10) z 
U(Z, Z*) = R(Z, 0; Z, Z*)g(Z) + f {-(t 0; Z, Z*) 

0 

+ B(t, O)R(t, 0; Z, 	g(t)dt 

It is well known [29],  [34] that if g(Z) is holomorphic 

in D and also in the Holder class, 1 - (D + 3D), 0 < a 1, 

then it has a representation as 

(2.11) 	G(Z) = f tp(t)ds 
ZED, 

3D 

where p(t) is real valued and Holder continuous. It is 

this device which Vekua exploits to rearrange (2.10) into 

a Fredholm equation for a density p(t) such that 

u(Z, ) = u(x, y) satisfies the Dirichlet data u(x, y) = 

f(Z), Z € 3D. Since the Bergman solution (2.9) is 

identical to (2.10), we may exploit the already proved 

result of Vekua [34] that the resulting integral equation 

of the second kind is invertible. Furthermore, the Bergman 

formulation suggests an iterative procedure for solving 

this equation. Substituting (2.11) into (2.9) and inverting 

orders of integration, which is permissible, leads to 

[26] 

(2.12) 

u(x,y) = Re 
f  A 0 	f (Z) 	 t(t) [ 

3D 	L 

+ 	
Q(n)(Z) 	

Z 

f 

	

(Z-) 	
d 	ds

nl 22nB(fl,fl+1)  
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where p 0 (Z) H exp [ - f A(Z, G)do ] . (Note, that in what 

follows, 11 0 (Z) etc. does not mean H 0  is an analytic 

function of Z, rather it is a function of the point z.) 

By computing the residue as Z 	t€ D, one obtains the 

singular integral equation for the density p(t), namely 

[26] 

(2.13) 

f(t 0 ) = Re { 0 (t0 ) [ irito i(t o ) 	+ f tj1(t) 

Q(n)(t,t ) 	to (t -) 

+ 	22B(n,n+1) 	° - 	
d 
 j 	

ds} 

dt 
where t'(x) 	T  . An alternate form of this equation is 

(2.14) 

B(t0) 	
(t)dt 

f(t 0 ) = A(t0)(t0) 
+ i Tr 	f 0 

+ f F1(t0,t)(t)ds + f F2(t0,t)(t)ds 

3D 

(2.15) 	where 	A(t0 ) 	Re I Tri t o 	i10(t0) I 
iirRe I to  I I0(t) ] 

ItcI0 (t0 )) 	t'B(t0 ) 
(2.16) 	F 1 (t0 , t) = Re 	

-- iTr(t-t 0 ) 
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and 

(2.17) 

F2 (t0 ,t) = Re 	t 	
0 (t0 )Q(n)(t0,  ) t 0o (t0-ç) 	

d}. 
n=1 	22  B(n,n+1) 	f 	t - 0 

By using the Poincare-Bertrand formula [29] one may reduce 

(2.14) to the form of a Fredhoim equation [ 26 ]. 

(2.18) 	(t0) + f K(t0 ,t)(t)ds = F(t 0 ) 

with 

(2.19) 	F(t0) 	
21t121fl(t)12 [A(t0f(tO) Tr 

- B(t0) jdt 1 Tn 
0 

and 

(2.20) 

I tH (t ) 1 	 _________________ K(t0,t) 	
Tn 2 t0 I 2 	t J0(0)I2 [ A(t) [ Re f 

t'B(t ) 	 B(t0) I Re {tcIO(t)} dT - iTn(t-t0) 	+ A(t0)F2(t0,t) - 

	

t-T 	T 

B(t0 ) f  F2(T,t)dr 1 
in 	t-t0 	

j 
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An iterative procedure may be obtained for solving (2.18) 

by replacing F 2 (T, t) in (2.20) by truncating its series 

representation (2.17). The series (2.17) converges rapidly 

in general, and this leads to a useful method. For equa-

tion (2.3) when n = 2, we have a special case of (2.1). 

We postpone to that case the numerical treatment of the 

corresponding integral equations. Numerical results have 

been published for this problem in [ 2 4]. 

B. The Equation E3[u] = 0 

In her thesis Bwee Lan hong [33] obtained a 

generalization of the Bergman-Whittaker operator to the 

case of the equation E 3[u] = 0. 	It is the following 

integral representation: 

(2.21) 

u(x,y,z) 	i(X,Z,Z*) = if 

fJ E(X,Z,Z*,,t)f(w,) 	dt 

li1= 1 	I 

where y  is a rectifiable curve from t = -1 to +1. 

Here the variables X, Z, Z, and w are defined as 

X = x, Z = [y + iz] , Z = - [-y + iz] 

was subsequently shown by colton and Gilbert [13] 
that it was possible to find an analogous operator for the 
four-dimensional equation, 

4 ) - F(x) = 0 , 	x = (x 19 x25 x 3x4 ) 

In this case this operator generalizes the integral operator 
see [221 for further details concerning 
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(2.22) 	w = (1-t2 )u , with u = X + CZ + 

Furthermore, the kernel E(X,Z,Z*,r,t)  satisfies the 

partial differential equation, 

I 2-' 	2- 	2" 
(2.23) 	Ut 	

+ 	E + 	
+ 2 

l2 

2- 
+ 2 	

l3 - 2 
	23 + FE 

+ (1 	t 2 
	 1 
) a 1 t - E 	= 

where E is obtained from E under the change of X, Z, 

Z - variables to C, = X, 	2 = X + 2Z, E
3

=  X + 2 C Z* .  

She also gives a series representation for 	of the form 

2n n (n) (2.24) 	E(11 	2' 	t) = 1 + 	u p 	(; 	) 
nl 

where the p(t(; ç) satisfy the differential equations 

(2.25) 	p (n+l)- - 	1( (n) 

	

1 	2n+l 	
+ 	+ 

+ 2p 	+ 2 (n) 
	(n) + 

p13 - 

with p (n-1-l)(Q 	
2' 3' 	

= 0, which gives rise to an 

alternate representation for solutions, 
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(2.26) 

j 	g(u,)+ 
II=l U 

+1 	
f 	{() f (u-s) n-1  g(s, _________ 	

)ds} 
dC  

n1 2TriB(n,-) 

dt where g(u,) = f f(w,) 	, and y isan arc from 

-1 to+l. 
It was shown by Gilbert and Lo [26] that the 

solution having the representations (2.21, 2.26) was a 

general solution, i.e. any solution of (2.2) which is in 

Cl(D-4-3D), where D is appropriate, has such a represen-

tation. This was done by making use of an inversion of 

the Bergman-Whittaker operator, 

(2.27) 	 H(X , Z , Z*) = (8
39

)(X , Z , Z*) 

=T 
- 	

II 
1 g(u,) 4 

2Tr 

namely [ 26 ], 	g(u, 	= (BH)(u,) 

11 
f (2.28) 	(BH)(u,) 
	

c() 	N•(-) dwy 
BD 

here N() is the isotropic vector introduced earlier by 

the definition u = N 	X, and p(Y) is the single- 

layer desnity which generates the potential H(s) for 

XE D0 CC D. Using (2.28) in (2.26) yields 
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(2.29) 	 ) = H(X) + f 	P()K()dW 

f - (2.30) 	where 	K(X,Y) = 
	 P(X,Y;) - 

(2.31) 	P(XY) 	
1 	

p(; n (u; N . Y) 
nl B(n,-) 

and 

(2.32) 

(u; N•Y) = [(N.Y-u) 1  - (N.Y) 1 ] log(u-N•Y) 

n-i 	n-i 	(N.Y) 

-x  

The functions 	n(u;  N.Y) are universal functions, and the 

kernel K(X,Y) is fixed for each particular differential 

equation (2.2). 

It is easy to show that the integral in (2.29) is a 

compact operator on the class of functions 	[D0].  Further- 

more, if we formulate the Neumann problem for (2.2) with 

11  = f(X), X €D0 , we are led to the Fredholm integral 

equation 

(2.33) 	f(X) = -p(X) + 	J 	p(Y) 	- [ 
	J dw 

+  f p(Y) -p-- K(XY)du 

DD 	
vx 
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which we can show, following the discussion in Garabedian 

[20] for Laplace's equation, is uniquely soluble. 

We now turn to the Dirichlet problem associated 

with (2.2), and we assume that the data is sufficiently 

smooth [20] page 347. Let us consider the class of all 

harmonic functions that are in 	[D + GD], and let us 

designate this class by i-([D].  It has recently been shown 

by du Plessis [30] that the harmonic polynomials are 

complete for simply connected domains in R 	 with respect 

to the uniform norm. With this in mind we wish to obtain 

a complete system of solutions for E[u] = 0, [14], 

[26]. 	One method of doing this is by means of the 

representationT  [26] 	ip(X) = 

(2.34) 	 2Tr 	71 

	

a 	 1 	f d4' 
 j 

do' sin 0' (?H)(X) 	H(X) - 	L 

o 4n i nl B(n,— 

• { 
H('a/R) 	I 	P(n) (C;ç)D(u,0;n) 	

} 
1=1 

where 3 E X' + (l - -1-)Z' + 	l(l - 1) Z' , and the 

coefficients D(u, ; n) are defined as 

(2.35) 	D(u, 	; n) 	f (u-s)A(s,)Bs 

This representation comes about by making use of an inver -

sion of B 	which is developed in [26]; see also [22] 

for another representation of B 31  when the harmonic func-

tions are regular at infinity. 
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with 

1 	1 

(2.36) 	A(s,) 	f da  f Or 	l2sa(l-a)u+a ] 

(Here a is chosen so that D is contained in a sphere 

of radius a.) Indeed, we have the 

Thoerem 2.1: Let hnm(fl 	(m = 0, +1, +2, ..., +n; 

n = 0, 1, 2, ...) represent the spherical harmonics. Then 

the functions given via (2.35) by 

(2.37) 

(m = 0, +1, . .., 	n; n = 0, 1, .. 

are a complete system of solutions for E[u] = 0, with 

respect to uniform convergence in D. 

Proof: To see that this is true, let 	(X)E E(D)t  be a 

solution in D which does not lie in the space spanned by 

the lPnm(fl•  In D, ip(X)E C, and hence there exists 

a harmonic function H(X)E 3-tED 0 ], where D0 c C D is an 

arbitrary compact appropriate domain, such that i(X) = 

(IH)()€ E[D0 ]. Furthermore, A(X) may be uniformly 

approximated in D 0  by the harmonic polynomials. Hence, 

since D0  is arbitrary, p(X) may be uniformly approxi-

mated in D by the in m' a contradiction. 

Given a complete system of solutions {p(X)} there 

are various procedures we can use for approximating boundar, 

tThe class of solutions of E[u] = 0 that are in C[D+D]. 
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value problems. One such method is to approximate the 

boundary data by means of a linear combination, 

N 
(2.38) 	f 	Y c IP 	XE DO 

j=l 	' 

N 
such that 	max If - 	c. ' 

ip.I < E, for c > 0 suitably 
x€D 	j=l  

small. The maximum principle for E[u] = 0, then says the 

solution is within an E of the approximate solution in 

D + DO. 

Another approach is to introduce the Dirichlet inner-

product [7], [8], [ 2 0], for 	[u] = 0, namely 

(2.39) 	 () 	
j 

[v 	v + F41dx 

and to obtain an orthonormal system {(X)} 	by means of 

the Gram-Schmidt process. One then expands the data as a 

Fourier series, 

N 
f(X) 	Y a4.(X) , 	E D 

j=l 

(2.40) 	a. = 	

= 

and this yields a solution,
= . 
	a(X) 	to 
3=1 jDj 

E[u] = 0, which approximates p with respect to the 

Dirichlet norm. Furthermore, for complete systems, the 

theory of the kernel function tells us that the Fourier 

Series (2.40) converge uniformly in D as N + 
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Yet another approach is to compute a truncated kernel 

function 

N 
(2.41) 	 KN(X , Y) = j=l 

then 1pN()  may be written as 

= (f(), KN(X,Y)) 

and one has the estimate, for an arbitrary c > 0 and a 

sufficiently large N, 

(2.42) 	
) - 0)I 2 ' II 	- NII2 K(X,X) <cK(X,X) 

X E D 

A similar procedure holds for the Neumann problem; 

however, here the Fourier coefficients are given as 

a = 	
= f 	

dw 

where 	(X) = g(X), X E DD, is the Neumann data. 

Integral operator techniques related to those above 

can also be used to construct global approximations to 

solutions of Cauchy's problem for elliptic and hyperbolic 

equations in three and four independent variables [ 1 3], 

[1 4 ]. 
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C. The Equation e [u] = 0 

It may be shown by direct substitution that if 

E(r, t; n) is a solution of 

	

(2.43) 	( 1 t2 )E rt + ( fl 3 )(t 1 t)E r  

+ rt(Err + 1 
	Er + BE) 	0 

which satisfies 

	

(2.44) 	lim (t3Er)r 	= 0 , Urn ((lt2 ) ½E r )r l  = 0 
t--o+ 	 t+1 - 

lim E = 1 

then if H(x) is harmonic, 

	

(2.45) 	u() = 
 f t 2  E(r,t;n) H(x[l-t2]) 	

dt 

0 	
(lt2y 

is a solution of e(n) = 0. The representation (2.45) 

may be reformulated in terms of a new harmonic function 

h(x) as 

(2.46) 

u(x) = (I+G)h(x) 	h(x) + f aG(r,l-(j2)h(xø2)do 

where 

(2.47) 

and G(r, t) 

1 

h(X) 	f t2H(x[l-t2 	
dt 

]) 

0 

is a solution of the Goursat problem 
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(2.48) 	2(1_t)Grr - G + r(Grr - BG) = 0 

G(0,t) = 0 , G(r,0) = f rB(r2)dr 

It is an interesting fact that G(r,t) is independent of 

the dimension n of D. It is a more interesting fact 

that G(r,t) is related to the Riemann function of 

_ - 	B(ZZ*)U = 0 

when B(t) is analytic, namely by [22], [23 ] 

(2.49) 	G(r,l-G2 ) 	-2r R 1 (ro 2 ,0;r,r) 

If B() is entire, then (2.45) is invertible for all 

appropriate domains in R n 	This follows since (2.45) 

can be put in the form of a Volterra integral equation 

by a simple change of integration parameter. Actually, 

it is only necessary for B(r2 ) E [0,a], where a is 

the radius of D, for (2.45) to be invertible. The fol-

lowing results were shown to be true in [24]: 

Theorem 2.2. Let H[D]  be the class of harmonic functions 

in C[D+aD],  where B(r2 ) 	0 and B(r2 )E C[0 ,a] (i.e. 

B(r2 )E +[O,a]).  Let 	[D] be the class of solutions 

of (2.3) in 	[D+D]. If D is appropriate, and if 

u() 	(+)h(), then u ( e [D] if and only if h E C[D]. 

Theorem 2.3. If D is appropriate, and B(r 2 ) K 

then the Dirichiet problem, u E j[D],  u 	= f(x) €j- [D],
DD  
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has a unique solution, which has a representation of the 

form u(x) = (I+G)h(x), where h(x) E3C[D]  and 

(2.50) 	h(x) = 
	F(n/2) f 	1 	1 

y n/2 	 n_2J dw 
(n-2)ff 	

D 

The density 11(x) is a solution of the Fredhoim integral 

eq uati on 

(2.51) 	f(x) = 11(x) + f K(x,X)11(y)dw , 	x E D 

with 

(2.52) 	K(x,y) 	
r(n/2) 	a 1 

	

)TT 
	f a y 	,_, I n-2 

1 

+ f a1G(r,1-cY  2 	
r 	1 

	

) 2 	n-2 
0 	 y 

Theorem 2.4. Let D be appropriate, and B(r2 )E 	[0,a]. 

Then the operator G is monotone in the sense of Collatz 

on C[D]. 

Theorem 2.5. Let B(r 2 ) ( C[0,a],  and let 

be defined by the integrals, 

(2.53) 
1 

lp(n;mk;+;x) = f t'2E(r,t;n)H(n;mk;+,[l_t2]) 	
dt 

0 

where the H(n;mk;+;) are the homogeneous harmonic 
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polynomials of degree n, 	(n = 0, 1, 2, ... ; 0 

m 3 	... 	m. 	n), 	and 

(2.54) 	E(r,t;n) 	1 + t2 f a 2  G(r,[l - a 2 ]t2 )do 

o 
Then the 1p(n;mk;+,x)  form a complete family of solutions 

of en[u] = 0, with respect to appropriate domains. 

Proof: As mentioned before, the du Plessis theorem tells 

us the harmonic polynomials are complete in the uniform 

norm, for simply-connected domains. The remainder of the 

theorem comes about by realizing that the above represen-

tation is invertible. This follows from a formal identity 

involving E(r,t;n), and G(r,t). First, however, let us 

note that if H(x) is harmonic in an appropriate domain 

D, then so is h(x) = (JH)(x) 	f t2H(x[l-t2]) 	
cit 

From before, the function u(x) = (I+G)h(x) is then seen 

to be harmonic in D also. Furthermore, if u(x) E 

then h(x) € C[D], which follows from Theorem 2.2. 

Actually, in [23] the inverse operator (I+G) - 	is given 

as a Volterra integral operator. That H(x) is also in 

C[D] follows from the claim: a representation for 

is given by 

(2.55) 

(Jh)( 	
- n (n-l) 

+1 	
n/2-1 

x) = i 	
f 	

t-n h(x[l - t2 ])(l - t 2 ) 	dt 
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where £ is a rectifiable arc from -1 to +1 which does not 

pass through the origin. 

It follows if u(x) E [D], then the harmonic 

function H(x), which is the preimage of u() under 

the mapping (I+G)J, is uniquely determined by the integral 

representation H(x) = [J l (I+G)u](x). Furthermore, 

H(x) (C[D+BD]. From this it follows directly that the 

functions 

(2.56) 	(n;mk;+;x) 	(J+G)J  H(n;mk;+;x) 

form a complete family of solutions for en[u] = 0 for 

appropriate domains. It remains for us to identify these 

functions with the lp(n;mk;+;x). To this end we first show 

that E(r,t) is given by the above integral identity 

(2.54). Substitution into equation (2.43) for the E-

functions reveals, after a few manipulations plus integra-

tion by parts, that it is indeed a solution of this partial 

differential equation. We leave this for the reader to 

verify. We must next show that the function defined by 

(2.54) satisfies the boundary data (2.44). Since 

Etn3rl = t1r1 f on 2G( r [l 0 2 ]t2 )dG 	we have that 

lim (E 
r 
 t 3r

1
)= lim tn-1 B n-1  

(r 	= 0 for n 	2. Likewise, 

one has 

(2.57) 

lim [(lt2 ) ½E rr] = lini (lt?)½ r  

t-1 

1 
1 n-2 	2 

j
a 	G (r,l-o ) da = 

0 
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1 

= 2 urn (1t2)½n-2 	2 l-a2 )da = 0 f 	g1(r 
0 

21 	 2 where g(r ,t) =- 	i G(r,t) 	s clearly a t 	function of r 

(See [24] for a proof that G(r,t) is an even, 	-function 

of r.) Finally, using the initial condition G(O,t) = 0, 

it is immediate that lim+  E = 1 from the representation r -O 
(2.54). Consequently, the conditions (2.43-2.44) for the 

E-function are satisfied, and since (2.43-2.44) represents 

an over determined system, the E-function is then seen to 

be uniquely defined either by (2.54) and (2.48), or by 

(2.43-2.44). 

3. Boundary Value Problems: Numerical Treatment 

We next turn to the numerical evaluation of the 

G-function. There are several approaches to doing this. 

One such approach was mentioned earlier in a paper by one 

of us [24] for the special case when B(r2 ) was an 
analytic function of r2 . In this case it is known [23] 

that G(r,t) may be found in the form 

(3.1) 	 G(r,t) = Z c(r2 )t 
£= 1 

where the expansion coefficients c (r 2 ) satisfy the 

following recursion formulae 

(3.2) 

cj(r2)rB( 2 	I..cL = 	r), 	dr 	] 
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2c(r2 ) = -rc(r2 ) + (2-l)c(r2 ) + rP(r2 )c(r2 ) 

£ 	1 

An approximate G-function may then be found by the truncated 

series 

N 
(3.3) 	 GN(r,t) 

£= 1 

It is easy to show that GN(r,t) - G(r,t) uniformly on 

[O,a] x [0,1]. 

In order to compute G(r,t) it is sometimes advan-

tageous to introduce a change of variables, w(p,t) = 

(l-t)G(r,t), p = rITTE, T = t, and to extend the defini-

tion of B(r 2 ) to [0,=) by the scheme [24] 

(3.4) 

B(r2 ), 0 	r < a 

	

(r2 	
2 

) 	
B(a ) exp [- _____________ 

2 	

2 
 2 ] , a < r 	a + c 

0, r>a+c 

where c > 0 is taken arbitrarily small. The differential 

equation for w(p,T) is then 

2 
(35)

1  
w 

- 2 (1-t)2 

and it satisfies the data w(0,T) = 0, w(p,0) = f pB(p 
2 
 )dp. 
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In the case where 8(r 2 ) is not analytic, but 

merely C l [O,a] 	various procedures are useful. One 

possibility is to approximate B(r2 ) by a polynomial and 

use the series procedure. Another such method is to use 

the finite difference Riemann function approach as developed 

in an interesting paper by Aziz and Hubbard [5].  We 

outline this latter method below. Let R E [O,a] x [0,1] 

be a closed rectangle in the x, y plane, and let Rk 

be the set of grid points (mk, nk), m, n being positive 

integers. The real number k is the mesh constant. The 

"Goursat data" is to be given on the characteristic, 

mesh-point-surfaces, (mk,O) and (O,nk). 	Following 

Aziz and Hubbard we introduce a mesh Riemann function for 

the finite difference equation, 

(3.6) 	 Uy + AUx + BU + Cu = f(x,y) 

where x = mk - 	k, y = nk - 	k, 

(3.7) 	U = k 	{ U(x + 	k,y) - U(x - 	k,y) ] 

(3.8) 	U = k 	[ U(x,y +) - U(x,y -k) ] 

(3.9) 

k2 [ U(x + 	, y +k) - U(x +k, y - 	k) 

	

- U(x - 	k, y + 	k) + U(x - 	k , y - 	k ) ] 
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Here, the functions have been extended to the "half-mesh-

points" by an averaging procedure, [5]. The mesh 

Riemann function is the solution of the adjoint finite 

difference problem 

(3.10) 

LV(x,y) 	Vxy - (AV)x - (BV) + cv = 0 

O<x=mk--k<<a , and 0<y=nk---k<n<1 

=0 , 0 < x = mk - - k < 	< a 

(3.11) 

=0 , 0< y = nk - 	k < 

One may thereby solve the finite difference problem, 

=2 (lT)2 	
W(p,T) 

(3.12) 

W(O,T) = 0 , W(p,0) = k 	(mk - 	k)([mk - 	k]2) 

p = Mk, M a positive integer, by means of the finite 

difference Riemann formula [5]. One obtains the 

following representation 

(3.13) 
M 

W(p,T) = V(0,0;p,T)W(0,0) + 	{ (mk - 	k)([mk - 	k]2) 
m= 1 
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V(mk - -k,O;p,T) } , p = Mk 

The dependence of this solution on the mesh constant k 

shall be indicated functionally by W(p,T;k) 

Recalling the definition G(r,t) z (l-t)w(r/TT,t), 

we introduce the discrete function G(r,t;k) by replacing 

w(p,T) by W(p,T;k). The function G(r,t;k) is no longer 

defined on a rectangular grid; however, ignoring this point 

as being merely of technical interest, we represent the 

approximate operator G
k  by (for n 	3) 

1 

(3.14) 	(kh)() 	f a 	W(rci, 
n-3 	

l-o2;k)h(xo2)do 

0 

where it is understood that the discrete function 

W(ro,l-a2 ;k) has been extended to the continuum by a 

smooth interpolation. This leads to a sequence of integral 

transformations 

(3.15) 	u(x;k) = (J+Gk)h(x) , h(x)EJ([D] 

The functions u(ç;k) may be considered as belonging to a 

family of approximate solutions of (2.3). In order to 

obtain an approximate solution of the boundary value 

problem, we replace h(x) in (3.15) by a double layer 

potential, as above, and compute the residue. We obtain a 

sequence of integral equations 

(3.16) 	 f() = (I +Kk)L1 (x;k) 
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which may easily be shown to be of Fredhoim type. The 

kernel K(x,;k) of K 
k  is given by (2.52) with G(r,t) 

replaced by the interpolated discrete function G(r,t;k). 

If we introduce the usual operator norm, 

(3.17) 	IIK1I 	max 	j 	IK()IdWy 
x E 3D 

3D 

then it is clear from the following 

(3.18) 

1 1 	, xE D°  

F(n/2) f 
	1 	I 

n/2 	T I 	n-2' dWy 3D 	I. 	
= 	1 1 2 • 	E F 

(n-2)Tr 	lIx-Yll 	J 
{O 	, xE D' 

that 	IIKII < , and 	
1141' < w for k > 0 sufficiently 

small. Further more, we may show that 	11411 - 0 as 

k - 0. This will follow from the discretization error 

estimate on w(p,T) - W(p,T;k) as given in [5].  This 

estimate applied to our case is, 

(3.19) 

Iw(p,T) - W(p,T;k)I 	£(p,T) J d I d [eK{(p- ~)+ (T-~) }] 

where 

(3.20) 	 £(p,-r) = 	maxlLk w(J)I 

0T 
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2 'H 
(3.21) 	2K2  = 	max 	2 B _p 

(l-T)J 
Opa (l-T) 
OTl 

and ek f(x) is a finite difference analogue of the exponen-

tial function ef(x). 	In [5] 	 is given as 

(3.22) 

	

f(x) 	f(o) M 1 +k f(mk - 1 x1 
ek 	=ek 	

m-
11  
	- —k l 1 	

1 	
x=mk. 

f(mk - --k) 

[ 

2 X .  

We remark that the constant K given above is bounded 
f 	2) 

because of the construction of B l----1 as a function which 
1-T) 

vanishes smoothly between 	= a and a + c, c > U 

arbitrarily small. 

	

In 	[5] 	a bound on 	(p,T) is given as Mk 2 , 

with estimates on the constant M. In order to show that 

-- 0 as k - 0, it suffices to know that 

w(p, -r) - W(p, -r;k)I 	Mk2 , which follows by an elementary 

computation. That 	IK_KkfI - 0 can be seen directly from 

(3.23) 
1 

K(x,)-K(x,y;k) 	
F(fl/2) 	f n-3 [w(rG,lG2)w(rG,lG2;k)] 
(n-2)Tr n/2 

d21 
	dG 

y 	Jx -yll 
n- 

 
which implies 

(3.24) 

= 	max f IK(x,y) - K(;k)Idwy 
xE 3D 

3D 
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max 

	

r(n/2) 	" 	
m,1-a2)-W(m,1-o2;k) , 	f

n/2J 	 Iw( 
xcaD (n-jir 	ao 0 

	

I 	

[ 	

1 	
Uaciw av 	2 	n-2J 1 	y 

lixo -yll 

k 2M 	max 	
r(n/2) f n-3 I 	a 	 d x(aD (n2)n/2 	j 	iIxo2lInH°y 

0 	

I 

 

ic kM , for n 	3 

From this we conclude 	'k" 	0(k 2 ) as k , 0. Using 

similar estimates we can show that 

(3.25) 

Urn 

	

II1-2IH0{ 	
K(x 1 ,y;k) - K(x 2 ,y;k)Idwy } = 0 

uniformly in x 1 , x 2 . This plus the fact that 	IIK1I < 
implies via the Arzela-Ascoli Theorem that the K 

k  are 

compact. We already know that K is compact, and further-

more, that (I+K) - 	exists. Two norm inequalities from 

Taylor [32] pg. 164, namely that when 	
"k" < 

then 
(I+K1 II 

II 
I (J+Kk) 	

1 - 	(I+K) 	II • 

and 
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(3.27) 

II(kY' - (I+KY 1 II  
11 (J+K) 1 

 11 
 2 

1- II() - 'I 

tell us that 	 exists and that the unique solu- 

tions (for k > 0 sufficiently small) of 

(3.28) 
	

f() = (J+Kk).1(x;k) 

tend to the unique solution 

(3.29) 
	

f() = (I+K).i(x) 

We next turn our attention to the numerical solution 

of the sequence of equations (3.28) above. The approach 

we use is an extension of the Nyström method to kernels 

with weak singularities and is due primarily to Anselone 

[1], [2]; see also in this regard Atkinson [ 3], [ 4]. 

We replace the integration in (3.28) by numerical 

quadrature. To this end, we first reparametrize (3.28) by 

introducing the following representation for DD, y = y(t), 

J11E {I0 	max  t 	1; 	i = 1, 2, ..., (n-l)}, 

R(s,t;k) 	K(x(s), y(t);k). Then (3.28) becomes with 

f(x(s)) = F(s), p(x(s);k) = 

(3.30) 

F() = p(s) + f dt 1  f dt2 	f dt1(s,t;k)p(t) 

which may be then replaced by the numerical quadrature 
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(3.31) 

c4: () 
m 	m 	m + 2 	2 	2 	4. 	. 	K(s,t.;k) 

j 1 =l 32_I 	j_=l 	
J 	3n-1 	 ' 	3 

= F() 

The Nyström method is to now set the points s = 

(i 	= 1, 2, ..., m) 	( 	= 1, 2, ..., n-i) 	and solve the 

linear system 

(3.32) 

z 	+ 	 K(t,t;k) 	(k) = F(t) 
31=1 	Jn_l=i 

(i 	= 1 ,2,' ,m) , 	(.e = 1,2,•.• ,n-l) , 	i = (i1 ,... i n i) 

The solution of (3.31) above is then given in terms 
k) 

of the solutions z ( 
	

of (3.32) by 

(3.33) 

	

m 	m 
(k)(5) = 
	F(s) - 	••• 	I 	R(s,t;k) 

	

j1=l 	
n-l1 

Let us put the above equations into a formal setting. Let 

C[A] denote the Banach space of continuous functions on 

Jt, with the uniform norm. Let X (k)  be the integral 

operator on C[X] with the kernel i(s,t;k): 

(3.34) 	
((k))(5) 
	f (s,t;k)p(t)dt , S E A . 
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Let 	be the numerical quadrature operator on 

given by 

(3.35) 	(p)() 	k(st;k)(t) , 	s 

We have shown earlier that X 	 is compact on ej. 

Furthermore, since 	is a finite rank operator it is 

also compact. 

The equations (3.30) and (3.31) may now be written 

in the operator notation as 

(3.36) 	(J+ (k) 
	(k) 
)p 	() = F(s) , s E A, 

and 

(3.37) 	 = F(s) , 	E 	. 

As it was mentioned above, the work of Anselone 

[1], [2] 	concerning the solutions of (3.36) and (3.37) 

is influential to our approach. In particular, he has 

given estimates on the difference between the solutions of 

these equations. For instance, if 
(J+)_l 

 exists 

(which we showed was true), and if 

1 
(3.38) 	

1((k) - 	kii 	II('Y'II 
then (I+)l exists, and is bounded in norm by 

(3.39) 	lI(+V'II 
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+ 	(k) 11• 1 (J+ (k) y l 11  
(m) 

(K(k 	(k))K(k)II . 

In addition, if (I+Y1  exists, say for m suffi-

ciently large, then one has [1], [ 3 ], 

(3.40) 

(k) 	(k) 
P(m) 	- 

p 	(s) II 	II ('+) 

l(K(k)_K(k) 	(k) 
( m ))F11 + IIP( m ) II 	(m) 

- II(Kkk) )K(k)II 	ii 	+ 	
)1 

These estimates imply the following theorem: 

Theorem 3.1. Let DC Øn 	n 	3, be an appropriate 

domain, B(r2 ) E C[0,a],  and f(x) E C°[D].  Then the 

solution of the Dirichlet problem, A n  u - B(r2 )u = 0, 

U(x) = f(x) for x E aD, has the following approximate 

solution: 

(3.41) 	uk(x) =(J+G  )hk(x) , x ( D+BD m 	 m - 

where 

(3.42) 

hk(x) = 	F(n/2)j 
	

k( 
) 	

I  Ii x-
_________ m 	 n/2 	m y 
	_1 n-2] dw y 1 (n-2)ir 

and p(y) = p(t(y)), y E ID. Furthermore, the error 

u(x) - u(x)l is bounded by 

305 



ROBERT P. GILBERT AND DAVID L. COLTON 

(3.43) 	Iu() - u()l 	c 1  lip - 
	(k) 11 	+ 

() I 
	C2 k2  

x E D+D 

where C 1  and C2  are constants and 

(3.44) 

___________ - 	(k)1 	ll(' 	II 	 k 

lipm) II 
1 - ((I+k) Y1 II 

I! K(k))fii 
+ 	P 

(k) 	((k)K(k))((k) II + 	() 	()ll •lI 	(m) 
(k) -1 - 1(  (k) 	(k) )(k)11 	

ll(!) (m) 11  

Proof: The bound on 	lip - 	is found by the tn- 

angle inequality, equation (3.40), and an estimate on 

lip - (k)1 . One has the identity (for k sufficiently 

small so that (j+jç(k)) 
	

exists) 

(3.45) 

- (1+ (k) ) _1 = (14.4(k))_i (x(k)) 

[I(I+X(k)) - l (K(k)]l (I +K(k))l 

The estimate for 	
lip - (k)11 	

follows immediately from 

this. The estimate for 	u(x) - u(x)I follows from the 

maximum principal for solutions of Lnu - B(r 2 )u = 0, 

with B(r2 ) 	0 for x E 0, the obvious inequality 

u _ u kl < lh_hkl + i(h_hkfl + 
	hI m 	m 	 m 
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and the fact that the operator G is monotone in the sense 

of Collatz [10], [24]. 	The constants C 1  and C2  may 

be estimated without difficulty. 

An alternate procedure for computing an approximate 

G-function is to use the Cauchy-Euler Polygon Method. In 

this regard see the work of Diaz [D.1,2]. 

One chooses a sequence of subdivisions of the rec-

tangle R 	[0,a] x  [0,1], i.e. for each (m,n), we 
form a subdivision. 

(3.46) 	0 = 0,m < 	
< ... < p 

l,m 	m,m = a , 

<T 	=a, 0 = T r. < T 	< " 0l,n 	n,n 

and on each of the sub-rectangles 	 k+lm 
x 	r+1n3 we consider the "miniature problem" 

3paT =Ak 	w ; Ak 	A(Pkm T) 

where 

2 
(.47) 	 A(p,T) 	p 

	(al-__T)E 
 2 (l_T)2  

w(p,T) = Dk + Bk(p_pk) ' 	k 	' P  k+l 

W(pk,T) = 0k + Ck(T_Te) , Te 	T 	T 1  

Hence, in 	we have, 
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(3.48) 	w(p,T) = Ak,(P_Pk)(T_Tk) + Bk(P_Pk) 

+ Ckk(TT) + Dk 

On the rectangles having sides on T = 0 the initial data 
p 	2 

w(p,O) = I p B(p )dp is linearly approximated; on rec-
0 

tangles having sides on p = 0, the data is chosen to be 

zero. The general form of the solution in JZk.e  has been 

given by Diaz in [18,19] and is for our case, 

(3.49) 

W(P,T) = WkO + wO.e - WOO + Wk+l
, O_Wk , O 

k+lk 

+ il jl AIljl(P-Pl)(TJTJl) 

+ I A 
k,j- lk)(Tj_hJ_l) 

j=l 

k 

	

+ 	
All(P-p.l)(T-T) 

+ Ak(p -pk)(T_T) 

Here we are using the notation w ij = W(PimT•n) and 

Wmn(PT) is the approximating solution computed by sub-

dividing Rd into m x n smaller rectangles. 

Such a construction is useful to use in order to 

obtain an s-approximating solution as is done in the case 

of ordinary differential equations; i.e., given an c > 0 

we choose a subdivision such that in each R 	 the
kt 
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differential equation is almost satisfied by wmn(pT)• 

More precisely, we choose m and n such that 

Bw 
mn - Aw < E. If this

0 
 is the case we can obtain bounds 

on the difference between an actual solution and an c-

approximating solution. 	- 

Lemma 3.1. Let K2  = 	max 	A(p,T) , and w.(p, -r), 
(p,T)R 

(1=1,2) be capproximating solutions of (3.5), which 

satisfy the required data. Then for all (p,T) E R one 

has the estimate 

(3.50) 	1w l ( p,T) -w2(p,T)I < cpT[l+pTK2eKT)] 

where c = e + £2. 

Proof: Our proof is modeled after the ordinary differential 

equation case in Coddington and Levinson [17],  Chapter I. 

First we notice that the w(PT) satisfy 

(3.51) 
P 

w(p,T) - f p ( p2 )dp 

0 
2 f 	

p 
B [-] w(p,T)dTdp 1< 6 i PT. 

00 

We notice that because of the extension of 	(r2 ) to 

2 	 -. 
P 2 B 	is continuous on g,  and hence 

2(l-T)  
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its maximum dres exist on CR,; we set it equal to K 2 . If 

c(p,T) 	1w 1 (p,T) -w 2 (p,T)I, then by adding (3.51) for 

i = 1,2, we obtain 

(3.52) 
PT 

c(p,T) 	f f c() 	2 	
2) dd + EPT 

0 0 
PT 

Defining C(p,T) 	j f 	(3.52) becomes 

00 

(3.53) 	
C 
 < K2C(p,T) + EPT 

Since the Riemann function for C 	- K 
2 
 C = 0 is 

PT 
1 0 (2K v'(p-) ( -r-)) we obtain the following estimate, 

C(p,T) < c f f Erl 1 0 (2K /(p-) (T -fl))ddfl 

Since 1 0 (x) is given by the series expansion 

fx 2m1 
' 

m0 	(m!)
2  

we have 

C(p,T) 	
2 

T 
 2 

Ep 	I 
0 
 (2K /) 

which upon substitution into (3.52) yields 

(3.54) 	c(p,T) ig EPT[l + PTK2  1 0 (2K 	)] 

EPT[1 
+ PTK eK(P+T)] 
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This is the stated result. 

Remark: Since A(p,T) is uniformly continuous on R, it 

is possible to put a "uniform mesh" on R in order to 

obtain an c-approximating solution. 

We now introduce an approximate G-function G(r,t) 

by G(r,t) 	w(r 111, t)(1-t) -1 . Then we have 

(3.55) 

= f 	[w(ro,l-a) 
- w ( , l a 2 )] 

h(xc 2 )do 

j
n -2 f1 2 )[l + K2 	2 K(m+l_a2crc 	'. 

0 

Ih(xa 2 )Ida 

I 

	

 
cr lihi 	

j a n-2 (l2)dJl+k2K(rF1) 

0 

2r 
n 	j 	

(l+K2reKf1)) 	
lihil BD 

I1h1I 3D E maxhI 

We next introduce the approximate kernel K(x,y) 

by replacing G(r,t) in (2.52) by G(r,t),  and then 

estimate 	lK_KlI 	using the 	defined by (3.17). 

We obtain 
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1 

= 	r(n/2) 

(n-2)2 Jo 
	j (GGC) 

0 	3D 

3 	1 
2 

y 	jjo 	
dw do 

1 	 2 

	

< r(n/2) f 0n-1 max G - G I 	
cos(v,xo -y)I 

Tr 
n/2 
	

D 	C 	Io2-iI ni dw do 
3D 

max IG-G 
C 

lo
n-i  do 

0 

	

2r [n_2 n- 2 
	

re 
(1+k2 K(r+l)) 

nnj  

Hence, 	I! K-K  II 	0(C) 	as C 	0. 

Arguing as we did previously we may show that 

exists, and furthermore, that 	II(C)  
- (J+K) 	11 - 0 as C - 0; hence, it is sufficient for 

us to consider the sequence of integral equations 

(I+K ) p C () = f(x) 

to obtain the approximate solutions p(x) 	as 

C 	0. 

4. Nonlinear Equations in Two Independent Variables: 

The Dirichlet Problem 

In this section we will obtain rapidly convergent 

analytic approximations to solutions of Dirichlet's problem 

for the equation 

(3.56) 

f K(x,y)-K 
 E: 
 (x,y)  dwy  
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(4.1) 	 Au = f(x,y,u, 
BU -, 

BU)  

defined in a simply connected domain D with Liapunov 

boundary C ([1 6 ]). Without loss of generality we 

assume u = 0 on C. We require f(x,y, 1 , 2 , 3 ) to 

satisfy the conditions 

f(x,y,0,0,0) E L(D+C) , p > 2 

-  

f0(x,y)I-+ 	+ I-I} 

where f 0 (x,y) E L(D+C) and H 2  holds for I E 1 1+  I2I 
+ I3l < R, R being a sufficiently large, but fixed, 

positive constant. In order to obtain the geometric con-

vergence of our approximation sequence we rewrite equation 

(4.1) as 

(4.2) 	Au - au = f(x,y,u, -- 
Bu
-, -)Bu - au 

= g(x,y,u, - Bu-, Bu 

where a is an arbitrary but fixed positive constant. It 

is easily seen that g satis fies the conditions H 1  and 

H 2  with f replaced by g. Now let G(x,y;,) be the 

Green's function for Au - au in D and define the opera-

tors 	 2' and I as follows: 
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(4.3) 	u(x,y) = (110p)(x,y) 	if G(x,y;,n)p(,n)ddn 

D 

if(44) 
au(x,y) 	(fl 1 p)(x,y) 
	

G(x,y;,n)p(,n)ddn 

D 

if a
(45) 

au(x,y) = (
112p)(x,y) 
	

G(x,y;,n)p(,n)ddn ay 
0 

(4.6) Au - ctu = p(x,y) = (I)(xY) = g(x,y,11 0 p,T1 1 p,1I 2p) 

where p E L(D+C) and the derivatives in equation (4.3)-

(4.6) are to be interpreted in a generalized or Sobolev 

sense. In [16] 	it was shown that for 0 sufficiently 

small I is a contraction mapping of a closed ball in 

L(0+C) into itself and hence has a unique fixed point 

p in L(D-l-C). The (generalized) solution of the Dirichlet 

problem is now given by 

(4.1) 	 u(x,y) = (fl0p)(x,y) 

From the theory of integral operators whose kernel 

has a weak singularity and Sobolev's lemma we can conclude 

that u(x,y) is continuously differentiable in D + C. 

We will now construct a sequence of functions which 

converge geometrically to u(x,y). Let K(x,y;,n) E K(P,Q) 

be the kernel function ([8]) 	for 	Au - cu in D. Then 

the Green's function G(x,y;,ri) 	G(P,Q) can be repre- 

sented as 

(4.8) G(P,Q) = - [log 	- flog PT--- (T,Q) dsT] a 
C 
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where PQ denotes the distance from the point P to the 

point Q. Now let D be a square containing D in its 

interior and let S(P,Q) be Neumann's function for 

Au - ctu in D 1 . Note that S(P,Q) can be constructed in 

a variety of ways, including the method of images [1 6 ]. 

Following Bergman and Schiffer [8] we define 

	

= 1, 2, 3, ..., 	recursively by 

(4.9) 	j(l)(pQ) = 4 f S(Q,T) S(T,P) 
 ds1 

nT 
C 

(4.10) (v)(pQ) = - J i(P,T) 	
(1) 

 (T,Q) dsT 

C 

v2 

We can then express the kernel function K(P,Q) in terms 

of i(p,Q) by ([8], p. 315) 

co[m 
1) 	Ii (4.11) 	K(P,Q) = 

	

m=0 Lvo' 	.Yi 

and approximate Green's function by G(Xy;,ri) 	GN(P,Q) 

where 

(4.12) GN(P , Q) = - [log Pi 	log M 	
an 	

ds1] 

C 
N m 

(4.13) 	KN (P , Q) = 	
(1)vIml(1)(p,Q) 

m0 v0 

Now define the operators 
11(N) 

 11
(N)  11(N) 1(N) by 
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(4.14) 

u(x,y) 	(ll(N)P)(Xy) 	if GN(x,y;,n)p(,n)ddn 
(4.15) 

BuxdJ = (n(N)P)(xY) 	if 	N  p(,n)ddn 
ax 

D 

(4.16) 

Bu(x,y) = (N))(Xy) 	if 	By N p(,n)ddn 
By 

D 

(4.17) 

 au Au (N) - 	(N) = p(x,y) = (T(N))(Xy ) 

g(x,y,flp,p,p) 

where p E L(D+C) and the derivatives in equation (4.14)-

(4.17) are to be interpreted in a generalized or Solobev 

sense. Again it can be shown ([23])  that if D is 

sufficiently small then T 	 is a contraction mapping 

of a closed ball in L(D+C) into itself, and hence has a 

unique fixed point p(x,y) in L(D+C). Our candidate 

for an approximation to our original Dirichlet problem is 

now given by 

(N)(xy) 	( N) (N) 
(4.18) 	 u 	= 	p 	)(x,y) 

We can again show that u(x,y) is continuousiy 

differentiable in D + C 	([1 6 ]). 	Due to the particular 

316 



NUMERICAL SOLUTION OF PDE - II 

choice of S(P,Q) and the fact that a > 0 it can in fact 

be shown ([ 16]) that the sequence U(N)(X,Y)  converges 

geometrically in D + C to the solution of the Dirichlet 

problem for equation (4.1). More precisely we have the 

following theorem ([1 6]): 

Theorem: Let u(x,y) be the unique solution of the 

Dirichlet problem for equation (4.1), which exists for D 

sufficiently small. If the sequence 	u(x,y), N = 1, 

2, 3, . . . 	is defined by equations (4.9)-(4.18) then for 

0 sufficiently small 

max 	u(x,y) - u(x,y)I = 	1 

(x,y)E D+C X 2N J 
where A 1  > 1 is the first eigenvalue of the Fredholm 

integral equation 

(P) = 2A as(P, Q ) q 	Q(Q)ds 	, 	PE C \) f 	n 
c 

An analogous theorem can be proved showing how to 

approximate solutions of Riquiers problem for higher order 

elliptic equations ([1 5 ]). 

5. Nonlinear Equations in Two Independent Variables: 

The Cauchy Problem 

In trying to solve free boundary problems by inverse 

methods it frequently becomes necessary to construct solu-

tions to elliptic Cauchy problems (c.f. [20],  Chapter 16). 

Garabedian and Lieberstein have used such an approach in a 
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particularly elegant manner to study detached shock wave 

problems in fluid mechanics ([26]).  Many problems in 

elasticity [31] also lend themselves to the use of inverse 

methods. Such problems in elasticity involve fourth order 

equations as opposed to the second order equations arising 

in fluid mechanics. With applications to elasticity in 

mind we outline below a constructive approach for solving 

the Cauchy problem 

(5.1) 	A 
2 
 u = 	

BAu 
- 
Au

--  --.-- 

(5.2) 	
u(x,y) = 
	(x+iy) ; 	x + iy E L 

= 0, 1, 2, 3 

where L is a given analytic arc, n is the outward normal 

to L, and 6 , 	. = 0 9  1 9  2, 3, are assumed to have 

certain regularity properties to be described shortly.' We 

first use a conformal mapping z = f() to map L onto a 

segment of the x-axis containing the origin. Since in the 

use of inverse methods the arc L is often assumed to be a 

portion of an algebraic curve, for example an ellipse, the 

mapping z = f(c) can be either calculated explicitly or 

approximated accurately by numerical methods [25].  Under 

this conformal transformation the Cauchy problem (5.1), 

(5.2) assumes the form 

A1u 	' 	 3t 1 u 	u 
(5.3) A1 IfI(c)I2J = g(,n,u,u,u,A1u, 	,Dq 

= = 0, 1, 2, 3 
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2 
where 	= 	+ i, L = a2 + 	. In conjugate coordi- 

nates 

= 	+ in 

* = 	
- in 

equation (5.3), (5.4) become 

	

a 2 	1 	a 2 u 
aa* 

[If1)I2 
aa*} 

* 	au au 	a 2u 	a 3u 	a3u '1 
*' = 	

' aa 	3 2 a 

(5.5) 

i t 	= q() ; 	
= 	

; 	= i, 2, 3 

a 3 u (± 	Li  where U(ç, ) = 	
( 2 ' 2i j' +, ~ * , U ,_, 	

— 

	

* 	* _ 	 a 	a2u 	
a2a*j 

T6_ 9 
( 

2 	' 2i ' . .. 

,4i ( 	- 	 aa*j . We now assume 

that as a function of its first two arguments G(,*,Z1 

,Z 6 ) is holomorphic in a bicyclinder U x Ø 	where 

0* = {I c* E 0}, and as a function of its last six 

variables it is holomorphic in a sufficiently large ball 

about the origin. We further assume that e is simply 

connected, contains the origin, is symetric with respect 
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to conjugation, i.e. 0 = 0*, and that 	 1 = 0, 1, 

2, 3, are holomorphic for all CE 0. 

Now let 

(5.6) 	 U' 	= 	1  

Then ([1 2 ]) we can define the operators A. i = 1,2,3,4, 

5,6, by 

(5.7) 

A 	I - 

- 

= J 	2
If'()I 	u(l)(*)d* + I 	+ 2 	 i1()] 

L dr 

(5.8) 

A3(U') _* 

= f If 1 ()I 2 U (1) ( * )d + 	() + i 1 ()] 

(5.9) 

	

U 	fc 

1 

	

+. 	a () - iq 1 () 	d 
+ 
d0() 

(5.10) 	84(U) '()I 2  - 
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= 	- 
(5.11) 	A5(uW) - 	2 3u - a [If)I2 u'] ac 

(5.12)8601)) - 
 

	

= 	[If'()I 	U'] 

The Cauchy problem (5.4), (5.5) now becomes 

(5 13) 	
a2u(l) 	 W - ),...,86 (U)) 
__ - 

= 	(l)() 	= 

(5.14) 	
i auW 	(l) = 	(1) () 	= 

where 4), 	can be computed from equation (5.6) and 

the original Cauchy data 4, Z = 0 9  1, 2, 3 (L 12 ]). We 

next define the operator B by (also see [ 2 1], Chapter 

III) 

	

* 	(l) a 2 u 
(5.15) 	 ) = 

B(s) 	u(l)( c , *) = ! 
r 	

** 	
+ J y()d + 

	

00 	 0 

+ J 	
*)* + 

0 
where [11] 

(5.17) 	

- Y(d1 
	_____________________ = 	

dC 	
- 	0 
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- 	
d 	+ 4(1)(H - f s()d 

0 

Let HB 	HB(Lp,p*)  be the Banach space of functions of 

two complex variables which are holomorphic and bounded in 

x Ap 	Ap = 	ki < p}, 	
= 	 E Ap}, with 

norm 

(5.19) 	 OsJI 	= 	sup 
ipxAp 

Finding a solution of the Cauchy problem (4.13), (4.14) is 

now equivalent to finding a fixed point in the Banach space 

HB of the operator T:HB 	HB defined by 

(5.20) 	is = G(*,A1(B(s)),... ,6(B(s))) 

It was shown in [12] that due to the hypothesis imposed 

upon G that T is a contraction mapping of a closed 

ball of HB into itself and hence has a unique fixed 

point s(,r*). 	Equations (5.16) and (5.9) now allow us 

to construct U(,r*),  and use of the inverse mapping to 

z = f() yields the solution of our original Cauchy 

problem (5.1), (5.2). If equation (5.1) is linear, and one 

uses exponential majorization ([ 11 ], [ 2 1]), the above pro-

cedure yields global solutions. 

Theorem: There exists a constructive procedure, suitable 

for analytic and numerical approximations, for solving the 

Cauchy problem (2.1), (2.2). Such a procedure is given 

explicitly by equations (5.3) - (5.20). 
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The Cauchy-Kowalewski Theorem also provides a method 

for constructing solutions to elliptic Cauchy problems. 

However, this method is not satisfactory for purposes of 

approximation theory of numerical computation. The diffi-

culties which arise in devising efficient procedures for 

solving initial value problems for elliptic equations is 

due to the fact that such problems are improperly posed 

due to the lack of continuous dependence on the initial data 

([ 20 ]). In our analysis this unstable dependence appears 

exclusively in the step where this data is extended to com-

plex values of the independent variables C , r. When this 

can be done in an elementary way, for example by direct 

substitution via the conjugate-coordinate transformation, 

no instabilities will occur when one uses the contraction 

mapping operator I to obtain approximations to the 

desired solution. 
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I. INTRODUCTION 

In this paper we will study the first initial-boundary value problem for the 
pseudoparabolic equation 

2[u] = u + d(x, t) Ut + -qu  + a(x) u + b(x)u = q(x, t) (1.1) 

defined in the rectangle D(H, T) = {x, t) 10 <x <H, 0 < t <T}. We 
make the assumption that the coefficient d(x, t) is continuously differentiable 
in D(H, T) = {(x,t)IO < x <H,0 ( t < T}, q(x,t) is continuous in 
D(H, T), a(x) is continuously differentiable in 0 < x < H, and b(x) is 
continuous in 0 < x < H. In equation (1.1) 77 is a constant. Equations of 
the form (1.1) have been called pseudoparabolic by Showalter and Ting ([6]) 
not only because well posed initial-boundary value problems for parabolic 
equations are well posed for equation (1.1), but also because of the fact that 
in certain cases the solution of a parabolic initial-boundary value problem 
can be obtained as the limit of solutions to the corresponding problem for 
a related class of pseudoparabolic equations. Equations of the form of equation 
(1.1) arise in the study of nonsteady simple shearing flow of second order 
fluids (c.f. [2], [3], [8]) and also in the theory of the consolidation of clay ([7]) 
and the theory of seepage of homogeneous fluids through fissured rocks ([I]). 

Our main contribution in this paper is the introduction of a special solution 
of equation (1.1) analogous to the Riemann function for hyperbolic equations. 
This function can be constructed by iteration and we will refer to it as the 
Riemann function for equation (1.1). We will then use this Riemann function 
to reduce the solution of the first initial-boundary value problem for equation 
(1.1) to that of solving a one dimensional Volterra integral equation. This is 
made possible by the fact that both the lines t = constant and x = constant 

* This research was supported in part by NSF Grant GP-27232 and in part by the 
Science Research Council while the author was a Visiting Research Fellow at the 
University of Glasgow. 
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are characteristics of equation (1.1). Our approach leads in a direct and natural 
manner to sufficient conditions for the existence, uniqueness and continuous 
dependence on the boundary data of the solution to the first initial-boundary 
value problem for equation (1.1). In this regard our work is connected with 
that of Showalter and Ting ([6]) who used a Hubert space approach to study 
initial-boundary value problems for pseudoparabolic equations in n space 
variables, n 1. However in contrast to the work of Showalter and Ting 
our work allows some of the coefficients to be time dependent and also gives 
a constructive method for obtaining the solution to the initial-boundary value 
problem under investigation. In another direction our work is related to that 
of [4] in which a Riemann function was constructed for a class of pseudopara-
bolic equations in two space dimensions and used to investigate the analytic 
behaviour of solutions to such equations. 

II. THE RIEMANN FUNCTION 

We define the adjoint equation to 2[u] = 0 to be 

	

.Jt[v] = v + d(x, t) Vt - 	+ (a(x)v) - b(x)v = 0. 	(2.1) 

Now let 7) e D(H, T) and integrate the identity 

v18[u] - udI'[v] = - [uv 	UtVt - autV + ?)UxVt + 7tV] 

+ - [auv + bUy - uv] (2.2) 

over the rectangle R which is bounded by the lines x = 0, x = e, t = 0 and 
t = T. An application of Green's formula gives 

J J (f[u] - udf[v]) dx dt 
0   

= f OR (UV - UtVt autv + flUVt + 71UtV) dt 

	

- (auv + buy - 	dx. 	 (2.3) 

Suppose there exists a function v(x, t; e, r) satisfying .4[v] = 0 in R and 
the boundary conditions 

t; 6, 7) = 1 [1 - efl"] 	 (2.4a) 
77 

v(e, t; e, r) = 0 	 - 	(2.4b) 

v(x, T; e, T) = 0, 	 (2.4c) 
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where if n = 0 the boundary condition (2.4a) is to be interpreted in its 
limiting form as 77 -* 0. Then if there exists a solution u of 2'[u] = q in 
D(H, T) satisfying 

	

u(0, t) = f(t) 	 (2.5a) 

	

u(0, t) = g(t) 	 (2.5b) 

	

u(x, 0) = h(x) 	 (2.5c) 

where f(t), g(t) E C1[0, T], h(x) e C2[0,  B], we have from equation (2.3) that 

u(e, r) = NO + J a x) h'(x) v(x, 0; , r) - /z'(x) v(x, 0; , r) 
0 

• b(x) h(x) v(x, 0; e, r)] dx 

• f7 [g'(t) v40, t; e, r) —f'(t) v0, t; e, T) 

- a(0)f'(t) v(0, t; e, T) + g(t) v(0, t; e, T) 

1• 

+ if'(t) v(O, t; e, r)] dt + jj q(x, t) Vt(X, t; e, 2-) dx dt. 

	

0 0 	 (2.6) 

Equation (2.6) gives the solution of the Goursat problem (1.1), (2.5) in terms 
of the Riemann function v(x, t; e, r). In particular if we can show that 
v(x, t; e, T) exists and is sufficiently smooth, then we can use equation (2.6) 
to verify directly the existence of a function u(x, t) satisfying 3'[u] = q and 
the initial data (2.5). We now turn our attention to this construction. Rewrite 
equation (2.1) in the form 

VXtX = F(x, t, V, Vt , V, V) 	 (2.7) 

where F(x, t, Vt , V )  V) = -qv - d(x, t) v - (a(x)V) + b(x)v. Let 

s(x, t) = 	t) 	 (2.8) 

and define the operators B1  , B2 , B3 , B4  by 

B 1(s) = v(x, t) = Jj' (x - x1) s(x 1 , t 1) dx1  dt1  + (x - )(1 - e12(t)) 

B 2(s) = v(x, t) = f (x - x 1) s(x1  , t) dx1  - (x - ) en(t_) 

	

1 	
(2.9) 

	

B 3(s) = V(X, t) 	
f 5 s(x

1  , t1) dx1  dt1  + - 	(1 - e (t_)) 

B4(s) = v(x, t) = 5 s(x, t1) dt1 
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Let C(R) be the Banach space of continuous functions defined and continuous 
in the closed rectangle R with norm 

( —A[(e—x)+&—t)] 	/ 
S A = max 	 sx, t 

(x,t)eR 	 (2.10) 

where A > 0 is fixed, s(x, t) E C(R). The existence of a Riemann function 
v(x, t; 6, r) is now reduced to finding a fixed point of the operator T in C(R) 
where 

	

Ts = F(x, t, B1(s), B2(s), B3(s), B4(s)). 	 (2.11) 

Due to the linearity and continuity of the coefficients of i*'[v] = 0 we have 
for (x, t) e R there exists a constant C such that 

11 Ts 1  - Ts2  IIA < C{II B1s1  - B1s2  hA + II B2s1  - B2s2 IIA 

+ II B3s1  - B3s2  I + II B4s1  - B4s2  IIA}. 	(2.12) 

From estimates of the form 

f 
I I s(xj  , t) dx1  < f 11  S I IA e 	1)-t)] dx1 

(2.13) 
1 	A[(f—x)±(r—t)] - 

Hshe 

i.e. 

I s(xi , t) dx1 II 	II S  hIA[1 - e] 
e 	 A 	 (2.14) 

XIIsHA, 

we have 

II Bs1  - B2s2  IIA < T 11 S1 - S2 IA , 	i = 1, 2, 3, 4 	(2.15) 

where the C2  are positive constants independent of A. 
From equation (2.12) this implies that 

M 

	

hITsi —T52 II A  < - - hls — S2IIA 	 (2.16) 

where M is a positive constant independent of A. We also have from equation 
(2.16) that 

M ITsII A 1< - - IIsIIA+]Wo 	 (2.17) 

where M0  is a positive constant. 
Equations (2.16) and (2.17) imply that for A sufficiently large T takes a 

closed ball of C(R) into itself and is a contraction mapping. Thus by the 
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Banach contraction mapping principle there exists an s e C(R) such that 

s = Ts and we have established the existence of a Riemann function 

v(x, t; 6, r). Note that by construction we have shown that with respect to 

its first two variables v(x, t; e, r) is a strong solution of .JI[v] = 0 and is 
furthermore continuous with respect to its four independent variables for 

(x,t)eR, x<eH, tr < T. 
We now wish to establish some further regularity properties of v(x, t; e, r). 

Let (ce, ) e R and let Ra5  be the rectangle bounded by the lines x = 

x = e, t = fi and t = T. By the same method we used to construct v(x, t; e, T) 

we can construct a solution w(x, t; a, ) of 2[u] = 0 in R which satisfies 

the boundary conditions 

w(cç t; a, 	= [e' 	- 1] 	 (2.18a) 
'1 

w(c,t;o,fl) =0 	 (2.18b) 

w(x,fl;c,fl) =0. 	 (2.18c) 

Integrating the identity (2.2) over R 5  (setting u = w) and applying Green's, 

formula gives 

w(e, r; , 	= v(c, ; e, T), 	 (2.19) 

i.e. as a function of its last two variables v(x, t; 6, r) is a solution of 2'[u] = 0. 
We can furthermore easily show that ifs = w ie, then s, , s0  , s,,s  are continuous 

for ot < e ( H, fi < r < T (c.f. [5], pp.  116-117). It is now possible to 
show directly that equation (2.6) is the unique (strong) solution of £°[u] = q 

satisfying the Goursat data (2.5) and that u(x, t) depends continuously on the 

Goursat data f(t), g(t) and h(x) and their derivatives. (In the case when the 
coefficients of equation (1.1) are entire functions of their independent 
(complex) variables it is not difficult to show that v(x, 1; , T) is also an entire 
function of its independent variables. In this case equation (2.6) shows that 
if u(x, t) is a solution of equation (1.1) which is analytic in some neighborhood 

of the origin I x I <x0 , I t I < t0 , and h(x) = q(x, t) = 0, then u(x, t) can 
be analytically continued into the strip —co < x < co, I t I < t0 , a result 
analogous to the analytic behavior of solutions to parabolic equations.) 

III. THE FIRsT INITIAL-BOUNDARY VALUE PROBLEM FOR 2'[u] = q 

The first initial-boundary value problem for '[u] = q is to find a solution 

of 2'[u] = q in D(H, T), continuously differentiable in D(H, T), which satisfies 

u(0, t) =f(t) 	 (3.1a) 

u(x, 0) = h(x) 	 (3.1b) 

u(H, 0 = 9(0. 	 (3.1c) 
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We will require f(t), q(t) E C'[O, T] and h(x) e C2[0,  H]. To find a solution 
of this problem we return to equation (2.6) and set e = H. After an integra-
tion by parts in the second integral on the right hand side we arrive at 

y(r) = g(r) v(O, r; H, r) +f [v(O, t; H, r) - v(O, t; H, r)] g(t) dt 	(3.2) 

where 
H 

Y(T) = ( r) - h(H) - j[h'(x)(a(x) v(x, 0; H, T) - ',jv(x, 0; H, i)) 
0 

+ h(x) b(x) v(x, 0; H, r)] dx 

+ h'(0)[v(O, 0; H, T) + v(0, 0; H, r)] 

+ Jf'(t)[vt(0, t; H, r) - a(0) v(0, t; H, r) + v(O, t; H, r)] dt 

fi 
 J 

,.H  
q(x —,t)v(x,t;H,7-)dxdt. 	 (3.3) 

00 

Note that due to the assumption that f(t), p(t) e C1[0,  T] and the coefficient 
d(x, t) is continuously differentiable in D(H, T), we can conclude that y(T) 

and the kernel of the integral equation (3.2) is continuously differentiable with 
respect to r for 0< r T (this follows from the construction of v(x, t; e, r)) 
and hence if a solution g(r) of the integral equation exists, then g(r) e C1[0,  T]. 
To show the existence of a unique solution to the integral equation (3.2) on 
the interval 0 ( r < T it is sufficient to show that v(0, r; H, r) is never 
equal to zero on this interval (c.f. [9]). To this end consider the function 

	

= Vt(X, r; H, r) 	 (3.4) 

for an arbitrary (but fixed) r in the interval 0 	T < T. Then from the 
differential equation (2.1) and the boundary condition (2.4c) we have 

	

i + d(x, )p = 0. 	 (3.5) 

Hence if we require d(x, t) < 0 for (x, t) e D(H, T) we can conclude from the 
theory of ordinary differential equations that if j40) = 0 then (x) 0, 
since by equation (2.4b) (H) = 0. This then implies that i(H) = 
v(H, r; H, r) = 0. But by equation (2.4a) we have v(H, r; H, r) = —1. 
Hence the assumption (0) = 0 leads to a contradiction if we also assume 
d(x, t) ( 0 in D(H, T). Making this assumption, solving equation (3.2) for 
g(i-), and then substituting into equation (2.6) gives the unique solution of the 
first initial-boundary value problem for 2'[u] = q. We summarize our result 
in the following theorem: 
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THEOREM. Let d(x, t) be continuously differentiable and nonpositive in 
i)(H, T), q(x, t) continuous in D(H, T), and assume a(x) E C1[O, if], 

b(x) E C[O, H]. Let f(t), tp(t) E C[O, T] and h(x) e C2[0, H]. Then there exists 
a unique solution to °[u] = q(x, t) satisfying the initial-boundary data (3.1). 

The following example shows that in general the assumption that d(x, t) < 0 
in D(H, T) is necessary (In reference [2] Coleman, Duffin, and Mizel give 
several theorems and examples which show that the assumption d(x, t) < 0 
is essential to the theorem stated above. They show that for the equation 
Vt = VXX - Vt . uniqueness can fail, and, if H is sufficiently small, there may 
exist no solutions in D(H, T)). 

EXAMPLE. u(x, t) = t sin kx is a solution of 

+ klut  = 0 	 (3.6) 

for (x, t) E D(ir/k, T), T arbitrary, and is continuously differentiable in 
D(ir/k, T). But u(x, t) satisfies the initial-boundary data u(0, t) = u(r/k, t) = 
u(x, 0) = 0, i.e. the solution of the first initial-boundary value problem for 
equation (3.6) in D(i-/k, T) is not unique. 
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1. Introduction 

THE analytic theory of linear effiptic partial differential equations in two 
independent variables has been extensively investigated during the past 
thirty years by such mathematicians as Bergman, Vekua, and Lewy 
[see (1), (10), (7)]. This area of research has by now developed into an 
important and elegant field in its own right which bridges the gap 
between analytic function theory and partial differential ôquations. In 
this paper we show that under the assumption of analytic initial condi-
t;ions, a corresponding theory can be developed for pseudoparabolic 
equations. Such equations have the form of (1.1) below and acquire 
their name not only from the fact that well-posed initial-boundary value 
problems for parabolic equations are also well posed for this class of 
equations, but also from the fact that the solution of the parabolic 
initial-boundary value problem can in certain cases be obtained as the 
limit of a sequence of solutions to the corresponding pseudoparabolic 
problem [cf. (8)]. Equations of pseudoparabolic type make their appear-
ance in physics in connection with certain problems associated with the 
flow of a viscous fluid. For example the velocity of a nonsteady simple 
shearing flow of a second-order fluid satisfies a pseudoparabolic equation 
with constant coefficients in one space dimension. Similarly, the hydro-
static excess pressure within a portion of clay during consolidation 
satisfies an equation of the form (1.1) below. Yet another example occurs 
in the theory of seepage of homogeneous liquids in fissured rocks. In 
this case the average pressure of the liquid in the fissures satisfies an 
equation of pseudoparabolic type. Considerable research has been done 
on these problems in recent years, and the reader is referred to the 
bibliography at the end of (2) and (8) for specific references. In this 
paper we will obtain integral operators, reflection laws, and regularity 
theorems for a general class of pseudoparabolic equations with time 
independent coefficients. This is accomplished through the discovery 

t This research was supported in part by NSF Grant GP-27232 and in part 
by the Science Research Coimcil while the author was a visiting research fellow 
at the University of Glasgow. 

Quart. J. Math. Oxford (2), 23 (1972), 179-92 
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and use of a fundamental solution and an analogue of Vekua's complex 
Riemann function [see (5), (10)]. More specifically we will consider the 

pseudoparabolic equation 

M[] +yL[u] = o,  

where M and L are linear second order elliptic operators in two inde-
pendent variables with analytic coefficients and Laplacian as their 
principal part, M is self adjoint, and y is a constant. (A similar class of 
equations was considered in (8) by Showalter and Ting who used a 
Hubert space approach to study initial-boundary value problems asso-
ciated with (1.1).) By making the preliminary substitution 

u(x,y,t) = e1"w(x,y,t), 
it is seen that without loss of generality we can consider the equation 

= M 1  +L[u] = 0, 	 (1.2) 
[at] 

where 	 M = 

L = a(x,y)--+b(x,y) --+c(x,y). 	 (1.3) 
ax 	ay 

2. The fundamental solution and Riemann function 

We will first construct a fundamental solution and Riemann function 

for (1.2) and use these functions to obtain results on the regularity of 
solutions to (1.2). We define the adjoint of 2[u] = 0 to be the equation 

= M[vi]—L'[v] = 0, (2.1) 

where L*[v] = - (av) —  (bv)+cv and the subscripts denote differentia-

tion. A function S of the form 

= A(x,y,t;,T)1og+B(x,y,t;,7),T), 	(2.2) 

where r = [(x—) 2 --(y—q) 2]1 , will be called a fundamental solution of 
equation (1.2) if it satisfies the following conditions: 

as a function of (x,y,t), S satisfies .%'[S] = 0 and is an analytic 
function of its arguments except at r = 0, where S has a logarithmic 

singularity, 

at the parameter point x = , y 	, t = i-we have A 1  = 1, 

the functions A and B are analytic functions of (x, y, t) at r = 0 

and vanish at t = 
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We now proceed to the construction of S. Considering x, y, e as 
independent complex variables, we first make the nonsingular trans-
formation 

	

= 	 = 
(2.3) 

	

= 	 * = 

Then (2.1) can be written in the form 

.JI[V] M[J]_L*[V] 

= 	 (oV)+ (flV). — vV 

	

= 0, 	 (2.4) 

where V(z, z', t) = v(x, y, t), a = (a+ib), fi = (a—ib), y = c, 8 = d. 
Noting that, in the new variables, r 2 = (z_C)(z*_*), and substituting 
(2.2) into (2.4), gives 

= .A[A]log 
1_ A+PA _Az.t+xA+[B] = 0. (2.5) 

	

r 2(z*_1*) 	2(z—C) 

(Where no confusion can arise we will often use the same symbols 5, A, 
B, etc. to denote the new functions of z, z, t, ) ', r obtained from the 
original ones by means of the transformation (2.3).) Since A and B are 
regular at z = and z'' = ', and a multi-valued logarithmic singularity 
cannot be cancelled solely by poles, we have 

= 0. 	 (2.6) 

In order to cancel the poles at z' = and z = we have 

[~,Z'2 t 	
-T; 	-r)+P(Z' V)] 	

= 0, 

(2.7) 

lc9z*at 	I = 0. 

Once we have determined A satisfying (2.6) and (2.7), then B can be 
any solution of 

	

= A+PA 	 (2.8) 

	

2(z *_*) 	2(z—) 

Now expand A in powers of t — r, taking note of condition (3) satisfied by 8: 

	

A(z,z*
, , . 

r C*,r) = 	A 5 (z , z * ; ,*) (t 7 )2 . 	(2.9) 5, 

:1=1 
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The boundary conditions (2.7) imply that on the characteristics. z = 
', the A 3  satisfy the first order partial differentialequations 

aA 	
0, 

(2.10 a) 

(;) = 0, 

(z, *; C, *)+fl(z, *)A(z, *; 	= 0;  
az 

(2.lOb) 
(,Z*; , *)+,z*)A(,z*; , 	) = 0; j = 1, 2..... 

Condition (2) satisfied by S implies that 

A1(1, *; , *) = 1, 	 . 	(2.1Ia) 

	

0; j = 2,3 	 (2.i1 b) 

Equations (2.10) and (2.11) now yield 

A 1 	
' 

(z 	*) = 1 

	

 (2.12
A ir*. 	

a) 
rr*\_1 I -  ' 

and 

A +1(z, ; 

, 
) = - f 

(o, )A(a, *; , ) do; j 

A1(,z*;*) = _f,p)A(C,p;C,*) dp; j = 1,2..... 

(2.12b) 
Substituting the series (2.9) into equation (2.6) gives 

d[A] = M[A1]_L*[A] 

00 

= M[A 1]-- I (M[A 1]_L*[A]) 
3=1 

= 0. 	 . 	(2.13) 

Equating powers of (t- T) to zero gives 

M[A 1] = 0, 	 (2.14a) 

M[A+1] = L*[A,]. 	 (2.14b) 

Equations (2.12) and (2.14) now determine a recursive sequence of 
characteristic initial value problems for the coefficients A 3 . Note that 
in particular A 1 (z, z*; , *) is the complex Riemann function [see (5), 
(10)] for M[u] = 0. This motivates our calling the function 

A(z,z * #. r 
, I), (, 
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the Riemann function for equation (1.2). We must now show the 

existence of A(z, z, 1; , ', r). To this end we have the following lemma: 

LM%niA 2.1. Assume that x, y, and 6 are anal ytic functions of the two 
complex variables z, z'' in the cylindrical domain D x D*, where D is 

simply connected and D* = {z * 	E D}. Then the series (2.9) converges 

absolutely. and uniformly for ItTI < R, z, E 0, z'', 	E Q*, where 1? 
is an arbitrarily large positive number, 0 is a compact subset of D, and 

is a compact subset of D*.  In particular A(z, z, t; C, , T) isan analytic 
function of its six independent variables for all (complex) t, r and z, e D, 

'' E D*. 

Proof. From (10) 17, it is clear that A 1 (z, z*; , *) is an analytic 

function of z, z, , * for z, ED, Z', ED*. From (2.12b) and (10) 
19, 24, we can write, forj = 1, 2, 3,..., 

A 11 (z, z*; , *) = - J A1(a, *; z, z *)(a, *)A(a, *; , *) da-

- f A 1(, p;  z, z*)a(,  p)A 5 (C, p; , *) dp+ 

+ f JA i a, p; z, z*)L*[A  (a, p; , *)] dpdu  

= - J A 1(a, z*;  z, z *)fl( a, z *)A( a, z * ;  4 , *) da- 

- JA 1 (z, p;z, z*)(z, p)A 5 (z, p; , *) dp+ 

+ f .f [A,(,,p;z,z*)y((T,p)+ 

+—A i(a, p;  z, z *)a(a, p) +-Ai(a, p;  z, z*)fl(a, )] x 

xA(a,p;,*)dpda, 	(2.16) 

where we have integrated by parts in (2.16). By induction it is clear 
that A 1(z, z*; C *) is analytic for z, E D, z *, 	E D*. Now let K be 
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an upper bound on IA i (z,z*;,*)fl(z,z*)I, A j(z,z*;,C*)o(z,z*)J, and 

z *) 	A 1 (z, z * ;  , *)(z , z*)+ 

+ 	A i(z,z; , 

for z, E I, z *, * e 	let 1 be an upper bound on the length of the 
paths of integration in (2.16), and let A 1 (z, z' 1', C *)J < C for z, E 
z", E *• Then from (2.16) we have by induction that 

	

1A 3 (z, z * ;  , *) J < CKili(2+1)i (z, C E ; z , 	E *). 	(2.17) 

Equation (2.17) implies that the series (2.9) is absolutely and uniformly 
convergent for It-ri B, z, e Q , z, . Since Q and are 
arbitrary compact subsets, and the uniform limit of analytic functions 
is analytic, the lemma is now completely proved. 

We now turn our attention to the construction of B(z, z, t; 
Setting 

co 

B( z , z *,t ;  , 	
= 	

B1(z,z*; 	(t—r)i 
(2.18) 

substituting the series (2.18) into (2.8), and equating the powers of 
(t—r) 5  to zero gives 

M[B +1] = L*[B] + /A51 +PA5 + 
2(z*_*) 	2(z—) 

j = 1, 2,..., (2.19) 

M[B1] = •A 1/aZ  
2(z*_1*) 2(z- 

Since B is an arbitrary solution of (2.8) we can impose, in particular, 
the initial conditions 

B5(z,*;,C*) = B,(,z*;C,*) = 0; j = 1,2,3 	(2.20) 

Noting that by construction the right-hand side of (2.19) is regular for 
z, . E D, z', E D*, we can follow the proof of Lemma 2.1 and show 
the uniform convergence of the series (2.18) for It-ri < B, z, 

e . In particular we have the following lemma: 

LE1ntA 2.2. Assume that ot, fi, y, and 8 are analytic functions of the two 
complex variables z, z in the cylindrical domain D x D*  where D is simply 
connected and D* = {z* I e D}. Then B(z, z'', t; , , - r) is an analytic 
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function of its six independent variables for all (complex) t, r, and z, 	D, 
e D*. 

Now let D be a simply connected domam in two-dimensional Euclidean 
space, let T = {t 10 < t < 1} where To  is a fixed constant, and let 

(D x T) = {u(x, y, t) I 'u, u, u, e 0 1(D x T); u, u, v E C°(D x T)}. 
Let u(x, y, 1) E (D x T) be a solution of (1.2) in Dx T. We wish to show 
that if c, fi, y, 6 and U(z, z, 0) = u(x, y, 0) are analytic in D x D*, then 
so is U(z, z, 1) = u(x, y, t) for each fixed t E T. We first show that 
without loss of generality we can assume U(z, z'', 0) = 0. Let 

f( z , z *) = L[U(z,z*,O)] 

and define 	C(z, z, , ', 0= 	C1(z, z", , 	 ( 2.21) 

where 	 M[C1] = f( z , z*), 	 (2.22a) 

M[C +1] = — L[05]; j = 1, 2,..., 	 (2.22b) 

and 	C,(z,C*,1,C*) = C(,z*,,C*) = 0; j = 1,2,..., 	(2.23) 

(C,*)EDxD*. 

Then by using the same techniques as in our previous analysis it is 
easily verified that C(z, z", C, ', t) is analytic for all complex t, z, E D, 

E D*, and satisfies 
.2'[C] =f(z,z*), 	 (2.24) 

= 0. 	 (2.25) 

Hence 	V(z, z, t) = U(z, z", t)— U(z, z", 0)+  C(z, z", 

satisfies '[V] = 0, V(z, z'', 0) = 0, and for each fixed t the domain of 
regularity of V(z, z, t) and U(z, z", t) coincide. We are now in a position 
to prove the following theorem: 

THEOREM 2.1. Let u(x,y,t) E (Dx T) be a solution of (1.2) in Dx T 
and assume that U(z, z", 0) (= u(x, y, 0)) and the coefficients a , , y, and 6 
are analytic in the cylindrical domain Dx D*.  Then for e'ach fixed t e T, 
U(z, z", t) = u(x, y, t) is an analytic function of the two complex variables 
z, z in DxD*. 

Proof. Without loss of generality we can assume that U(z, z'', 0) = 0. 
By slightly shrinking D we can furthermore assume without loss of 
generality that u(x, y, t) e tS(D x T) and that D has a smooth boundary. 
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Now note that for 'a, v e i(D x T) the expression 

V 1  2'[u]—u J'I[v] = - [u 1 v j —u i v g —au g v]+ 

+ [u v1 —u 1 v j—bu 1 v]+.- [cuv+au v+bu v] (2.26) 

is a divergence, and hence by the divergence theorem 

JJJ (v 1 11'[u]u1 d1[v]) dxdydt = ff (u 1 v 1 —u 1 v 1 —augv) dydt- 
DXT 	 3(DxT) 

_(u 1 v1 —u 1 v 1 —bu 1  v) dxdt +(cuv+auv+bu v) dxdy. (2.27) 

Now let To  = 'r, let v be the fundamental solution 8, let 'a satisfy 

2"[u] = 0, and integrate (2.26) over the region Dx T—x T (instead 

of D x T) where Q is a thin cylinder surrounding the singular line r = 0. 

Note that u vanishes on the plane I = 0, 8 vanishes on the plane t = 
and the left-hand side of (2.26) is identically zero. Computing the residue 
as Q shrinks down onto the singular line r = 0 gives 

1• 

0=27rfug(,fl,t)dt+ 
0 

+ 5$ [(u 1 S1 —u 1 S 1 —aus 8) dy—(u 1 8—u8 1 —bu 1 8) clx] dt, (2.28) 
0 OD 

or 
T f f   [(u 1 S1 —u 1 S--au1 8)dy- 

27T  
0 OD 

—(u 1 8—u 1 S 1 —bu 1 8) dx] dt. 	(2.29) 

But from Lemmas 2.1, 2.2, and the definition of S it is seen from 
(2.29) that for each fixed T, U(C, ', T) u(e, , i- ) is an analytic function 
of , in Dx D*. This completes  the proof of the theorem. 

Example. In Theorem 2.1 it is not possible to relax the assumption 
of analyticity of the initial data U(z, z, 0) = u(x, y, 0). For example, 
consider the special case of equation (1.1) when M = L andy = 1. Then 
u(x, y, I) = e'u(x, y, 0) is a solution of (1.1) and is not analytic for each 
fixed t unless the initial data u(x, y, 0) is analytic. 
• We also note in passing that if in addition to satisfying the hypothesis 
of Theorem 2.1, u(x,y,t) = 0 on .9Dx T, then U(z , z *,t) = u(x,l,,t) is 
also an analytic function of t for each fixed (z, z *) E Dx D*  [see (8)]. 
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Hence by Hartog's theorem [see (5)] we can conclude that. U(z, z, t) is 
an analytic function of the three complex variables z, z *, tin the product 
domain DxD*xT. 

3. Integral operators and the reflection principle 

We now turn our attention to the construction of integral operators 
which map analytic functions onto solutions of (1.2), and to the deriva-
tion of an analogue of Lewy's reflection principle [(7); see also (4), 
641-50]. We will consider only the case of reflection across plane 
boundaries; the more general case can be reduced to this special case 
through the use of a conformal mapping. 

We first note the formal identity 

V1 2'[U]—UdiiV] == (U.J'—oU1 V)— 

—/(U+PU1V)+L/V+PL.V±yUV). (3.1)
at 

Now let V be the Riemann function A constructed in § 2 and let 2[ U] = 0. 
Note that by Lemma 2.1 and Theorem 2.1 both U and A are analytic 
functions of (z , z *) in DxD* and so the derivatives in (3.1) are well 
defined. Integrating (3.1) over a three-dimensionalcell 0 g D x D*  x T 
in the complex domain with piecewise smooth boundary aG and applying 
Stokes's theorem [cf. (4) 167, 213], we arrive at 

0 
= f (Ut .A g —cxUg A) dz*dt+ 

OG 

+ ft (UA 1 +flU1 A) dzdt + ft (oUA+flU.A+yUA) d zdz * 

(3.2) 
= ft 	dz*dt_ ft Uj(A l2.+czA) dz*dt+ 

IG OG 

+51 UA 1 +pA) dzdt+ 55 (UA+flU.A+yUA) 

(3.3) 

Now let a G be homologous to the boundary of a cube with corners 

(, 	, 0), (, ', 0), (, c", 0), (, ', 0) and (, , T), 
(, ', 

T),  

(' ',r). Then integrating (3.3), paying attention to the boundary 
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conditions satisfied by A, gives 

r) = U(C, , O)+ f U1(C, , t)A 1 (C, , 1; , , T) dl- 

- f (U1(, C, t)A 1(CO3  , I; , 	, r)— U, 	, t)A0, 	, t; , 	, T)) dl- 

T 

- If U1(, z, t)(A.(C O3  z , I;  
0 

+c(Co ,z*)A(C o,z*,t; C,C*,T)) dz *dt 

- ff L(z,,t)x 
0 40 

x (A 1 (z, 	, t; C CK, i-)+fl(z,  )A(z, C' t; , ', i-)) dzdt+ 

+ J fA(z,z*,O;C,C*,T)x 

x (cx(z, z*)U(z, z, O)+P(z, z*)U.(z, z*, O)+y(z, z*)U(z, z*,  0))  dzdz *. 

(3.4) 

It is easily seen that (3.4), where U(C, , 0), Ug (C, ' , 1),  L(CO3 , t) are 
arbitrary analytic functions of C and C* for C e D, C* e D*, continuous 

in DxD*x T, give all solutions of [U] = 0 in (Dx T) which are 

analytic in Dx D* for each fixed t. Using Theorem 2.1 and interchanging 
the roles of C, ', r and z, z', I respectively in (3.4) now gives us the 
following theorem: 

THEOREM 3.1. Let U(z, z K, 0) (= u(x, y, 0)) and the coefficients x, P
, y, and 

6 be analytic in the cylindrical domain Dx D*, and let u(x, y, I) e (D x T) 
be a solution of Y[u] = 0 in Dx T. Then there exist continuous functions 
011)(z,t), 0(2)(z *, t), 0(3)(z , z *), anal ytic for z ED, z' E D*, such that u(x,y,t) 

has the representation 

u(x, y, t) = (3)(z, z*) + f 0 1 (z, T)AT(Z, 4, r; z, z', t) dT- 

- f (ç (2)(4, r)A(z 0 , 4, i- ; z, z, t)_ ç (2)(z *, T)A T (Z O , 	r; z, z, t)) di-- 
0 

I z 

- ff q2(C,i-)x 
0 4 

x (A.(z 0 , C*, T; z, 	t)+a(zo, C*)A(z o , C*, -r; z, z,  t)) dC*d,_ 
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- 	

(1)(, T) x 

x (A(, z', r; z, z, t)+P(, 4)A(1, z', i - ; z, z, t)) ddr+ 
z z• 

+ J f A(Z, *, 0; z, z, 1) x 
Z. z; 

x 	C*)3)(, *)+p(, *))(, *)+y(, *(3)( ,  *)) dd* 

= x-iy, z = x—iy, (x, y) e D), 	 (3.5) 

where çM' )(z,t), 0(2)(z *, t), 0(3)( z , z *) are defined by 

= lJ1(z,z,0, 

0(2)(z *, t) = U(z0 , z'', 1), 	 (3.6) 

0(3)(z, z *) = U(z, z *, 0), 

and z 0  = x0+iy0, 4 = x0 —iy 0  where (x 0 ,y 0 ) is afixed point in D. 

The integral operator defined in Theorem 3.1 has many applications 
analogous to integral operators for elliptic equations in two independent 
variables [cf. (1), (5), (10)]. For example, by using the theorems of 
Faber and Chebyshev to approximate (1) ,  4(2), and q(3)  by polynomials, 
we can construct a complete family of solutions in the maximum norm 
to 2'[u] = 0, and thus be in a position to approximate the solutions to 
the standard initial-boundary value problems associated with (1.2). We 
will not pursue this matter any further at this time, but instead now 
turn our attention to deriving a principle of reflection for pseudoparabolic 
equations analogous to that of Lewy [see (7)] for elliptic equations. 

To be more precise, let D x T be a simply connected cylindrical domain 
in the half space y < 0 whose boundary contains a portion a of the 
plane y = 0. Without loss of generality we assume that the origin is 
contained in a. Let u(x, y, t) e I(D x T) fl 02(D x T) be a solution of 

= 0 in D x T, and suppose that on a we have 

u(x,O,t) = U(x,x,t) = p(x,t), 	 (3.7) 

where p(z, t) is a continuously differentiable function of z and t in 

D U a U D* x T and for each fixed t E T is an analytic function of z in 

D U a U D*. Assume further that U(z, 0) = u(x, y, 0) and that the 
coefficients , P, y, and 6 are analytic functions of z and z" in 

D U a U D*XD U a U D*. 

Returning now to (3.3), let 30 be homologous to the boundary of the 
triangular wedge with corners (, C, 0), (*, , 0), (, , 0) and (, C, T), 
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(*, ', T), (, ', i-). Then integrating (3.3), paying attention again to the 
boundary conditions satisfied by A, gives 

U(*,0)_ J U( 	,t)A(,t;*,T) dt- 

7 	
0 

— V,- f f 

	

x (A(s, ., t; , ', 1-)+cx(s, )A(s, 9, t; , 	, r))] dad- 

-JJUt(sat)x 

	

x (A(s, a, t; , *, -r)+,S(s, ä)A(s, a, t; , 	T)) dsdt+ 
S 

+ Jf A(z, s,0; , *, r) X 

x (c(z, s) U(z,s, 0) +P(z, s) U5(z,8, 0)+y(z, s) U(z, 8,0)) dzds. 

(3.8) 

Now for in D U a, U(, 0, T) can be determined from (3.8). In (3.4) set 

	

= = 0, differentiate with respect to r, and set 	= . Since 
U(,T) and U(*,0) are known for EDU aU D* and 

(*) ED U aU D*XDU aU  D* 

respectively, this differentiated version of (3.4) now becomes a Volterra 
integral equation for U(0, *,T) ,  * ED U a, T E T. Since 

A 7(, 0, 'r; , ', T) = A7(0, ', i-; , 	r) = 1, 

this equation can be solved for U7 (0, ', T), '' E D U a, T E T. Further-
more, since for each fixed i-  the kernel and terms not involving U(0, ', r) 
are analytic for ' = E D and continuous in D U a, so must the solution 
U(0, , 7). But for '' E D* U a, U(0, , T) (and hence Ur (0, T)) is 
known from (3.8). Due to the continuity properties imposed upon 

T) in Dx T, it is seen that for each fixed r E T, U,(0, , T) is 
analytic for E D* and continuous in D* U a. Hence the above con-
struction of U,.(0, ', T), ' e D U a, furnishes for each fixedT the analytic 
continuationofUT(0,t*,T)intoD U a U D* [(9)157]. In a similar fashion 
U,, 0, 'r) can be analytically continued into D U a U D* for each fixed 
From the representation of these functions in terms of their resolvents, 
and the continuity properties of U(, ', i- ) in Dx T, it is also seen that 
UT (0, c", T) and 0,7) are continuous in D U a U D* x T. Equation 
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(3.4) now defines a solution of °[u] = 0 in class 'Y.(D U a U D* x T). 
The continuation is unique since for each fixed the continuation is 
analytic. We summarize the above analysis in the following theorem: 

THEOREM 3.2. Let Dx T be a simply connected cylindrical domain in 
the half space y < 0 whose boundary contains aportion a of the plane y = 0. 
Let u(x, y, t) e (D x T) n C2(D x T) be a solution of Y[u] = 0 in Dx T 
and on a suppose that we have u(x, 0, t) = p(x, t) where 

p(z, I) E C1 (D U a U D* x T) 

and for each fixed t e T is an analytic function of z in D U a U D*. Let 
U(z,z*,0) (= u(x,y,0)) and the coefficients a, P, y, and 8 be analytic 
functions of z and z'' in D U a U D*XD U a U D*. Then u(x,y,t) can be 
uniquely continued as a solution of Y[u] = 0 in class Y(D U a U D* x T) 
into all 0fDUaUD*xT. 

It is of interest to note that Theorem 3.2 is a reflection law for a partial 
differential equation in three independent variables whose domain of 
dependence is of the same dimension (one) as in Lewy's theory for 
elliptic equations in two independent variables. This is in sharp contrast 
to the analytic continuation properties of elliptic equations in three 
independent variables [see (3)], although it does possess analogies with 
the reflection laws discovered by Hill [see (6)] for parabolic equations 
in three independent, variables. In general, it appears that the analytic 
behaviour of pseudoparabolic equations is not completely analogous to 
that of either elliptic or parabolic equations, but occupies a position 
somewhere in between these two cases. 
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I. INTRODUCTION 

This paper was motivated by the ,desire to derive constructive methods for 
solving the first initial boundary value problem for the equation 

Pt — ri IjnPt = KLi,p 	n = 2,3, 	 (1.1) 

where Pt = ep/t and K and q are positive constants. (Equation (1.1) has 
previously been studied for the case n = 1 in [4] and will not be treated here.) 
This equation arises, for example, in the theory of seepage of liquids in 
fissured rocks [1], in whlch case p denotes the pressure in the fissures and 
and K are constants determined by the physical properties of the rock. The 
specific problem which arises is to construct a solution of Eq. (1.1) which 
assumes given initial conditions at t = 0 and prescribed boundary values 
on the cylinder t9D x T (where D is a simply connected domain in Rn with 
Lyapunov boundary aD and T = {t: 0 < t si t0} where t0  is a fixed, but 
arbitrarily large, positive constant). As in the theory of seepage in a porous 
medium, the steady-state initial conditions are of greatest interest (i.e., the 
harmonic initial distributions p(l )  which satisfy Eq. (1.1)). Setting 

P = 	+ p(l), 	 (1.2) 

it is, therefore, seen that without loss of generality we can consider the 
equation, 

Artu, -  (1/n) Ut + (Kh72) u = 0, 	 (1.3) 

and assume that u = 0 at t = 0. 

* This research was supported in part by NSF Grant GP-27232 and in part by the 
Science Research Council while the author was a visiting research fellow at the 
University of Glasgow. 
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In this paper we will consider the more general problem of solving the first 
initial boundary value problem (with homogeneous initial conditions) for the 
equations 

2u+c(x,y)u+d(x,y)u =0, 	 (1.4) 

Ju + A(r 2) u + B(r 2)u = 0; 	n 	2, 	(1.5) 

where c(x, y) and d(x, y) are real valued (for x and y real) entire functions of 
their independent (complex) variables and A(r 2) and B(r 2) are real valued 
entire functions of r 2  = x12  + + x 2 . Our basic goal is to reduce the 
problem of finding a solution of the first initial boundary value problem for 
Eqs. (1.4) and (1.5) to that of solving an integral equation. For Eq. (1.4) 
this is accomplished by using the fundamental solution which was previously 
constructed by the author in [5]. However, for Eq. (1.5) a fundamental 
solution has not yet been constructed and we adopt an approach based on the 
use of integral operators. This involves first constructing integral operators 
for Eq. (1.4) which are analogous to Bergman's operators for elliptic equations 
[2, 9] and then using this as a basis for a "method of ascent" [6, 10, 11] to 
construct integral operators for Eq. (1.5). The result is an integral operator 
which maps solutions of the equation, 

Ii,u = 0, 	 (1.6) 

onto solutions of Eq. (1.5), and through the use of such an operator it is 
possible to reduce the first initial boundary value problem for Eq. (1.5) to 
the problem of solving an integral equation. An interesting aspect of our 
analysis is that the integral equations which arise are of neither Fredholm nor 
Volterra type, but of the form f = (I + T  + L)jL where T is a Fredholm 
operator and L is a Volterra operator. We will show that under the assumption 
that c(x, y) < 0 and A(r 2) < 0, respectively, such equations are always 
solvable. 

Equations of the form of Eqs. (1.4) and (1.5) were first systematically 
studied by Sobolev [18] and Galpern [7], and more recently by Showalter 
[13-16], Ting [20] and Showalter and Ting [17], who refer to such equations 
as being of pseudoparabolic or Sobolev—Galpern type. The approach of these 
authors is based on Hilbert space methods and yield quite general existence 
and uniqueness theorems in R 11  x T for n an arbitrary integer. In the case 
of one space dimension (n = 1) these equations have also been studied 
through the use of integral operators [4], Laplace transforms [19], and 
separation of variables [3]. In addition, the analytic theory of pseudoparabolic 
equations in two space dimensions has been studied by Colton [5]. 
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II. BERGMAN OPERATORS 

We will now construct an integral operator which maps analytic functions 
of a single complex variable depending on a parameter t onto the class of real 
valued strong solutions of Eq. (1.4) which vanish at t = 0. Let D be a simply 
connected domain of t12  and 7' = {t: 0 < t < t} where t 0  is a positive 
constant. Then from [5] we have that strong solutions of Eq. (1.4) defined in 
D x T and vanishing at t = 0 are, for each fixed t, analytic functions of 
z = x + iy and z = x - iy in D x D* where  D* = {z * :  e D}. Hence, 
we can rewrite Eq. (1.4) in the form 

U2  + C(z, z*)  U + D(z, z*)U = 0, 	 (2.1) 

where 

	

U(z, z'', t) = U 
z+z* 	z _ z * 

( 	2 	' 	2i 

1  	Z f+Z* z_Z* C(z,z*) 	
2 	' 	21 	) 	

(2.2) 

D(z , z *) 

	

2 	' 	21 	) 

We now look for a solution of Eq. (2.1) in the form 

U(z ,' z *, t) = f I 
t +1 	 ds dr 

-1 
 E(z, z' 1', t - s)f, 

( (

1 - s2), T) 
(1 - s2)"2 	

(2.3) 
0  

wheref(z, t) is an analytic function of zand continuously differentiable with 
respect to t. Without loss of generality we can assume that f(z, 0) = 0. 
Substituting (2.3) into (2.1) and integrating by parts (c.L [2, 9]) shows that 
E(z, z', t, s) must satisfy the singular partial differential equation 

(1 - s2) 	- ( ifs) 	+ 2sz(E. + CE  + DE) = 0, 	(2.4) 

provided we impose the boundary conditions 

E(z, z'', 0, s) = 0, 

E2.(0, z *, t, s) = 0, 	 (2.5) 

E.t(z, z *, t, 0) = 0, 

and require E(z, z' 1', t, s) to be analytic for t E 7', S El = {s: I s I < 1}, and 
(z, z*)  e D x D*.  Following Bergman [2] we now look for a solution of 
Eq. (2.4) in the form 

E(z, z'', t, s) = t + : 
521zk 5 p(2k)(z, c", t) d*, 	(2.6) 

0 
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where we require P(21)(z,  z'', 0) = 0 for k = 1, 2......Substituting (2.6) into 
(2.4) and integrating with respect to t yields the following recursion formulas 
for the p(2k)(z,  z'1', t): 

= —2tC - t2D, 

(2k + 1) p(2k+2) = —2 [P2k + c 	p(2k)(z, *, t) dC* 

t 	z* 	 -I 

	

+ D I I p(2k)(z, ', r) d* dr I; k 	0. (2.7) 
JOJO 	 J 

Hence, each of the p(2k),  k = 1, 2,..., is uniquely determined. We now must 
show that the series (2.6) converges uniformly in D x D*  x T x I. We will 
do a bit more than this and show that due to the fact that C(z, z*)  and 
D(z, z*)  are entire functions of z and z the series (2.6) converges for 
arbitrary values of z and z' (uniformly on compact subsets in the space of two 
complex variables). Let r be an arbitrarily large positive number and let CO 
be a positive constant chosen such that (as functions of z) 

C(z, z *) < 
Co  

1— (z/r)' 
(2.8) 

D(z, z *) < 
CO  

l—(z/r)' 

for I z I < r, I z'' I < r, where "" denotes domination (c.f. [2]). We will 
now show by induction that there exist positive constants M and 8 which are 
independent ofk such that for I z I < r, < r, I t 

	

(2k) < lW2k(1 + 8)k(2k - l)_1[l - (z/r)]_(2k_1)r_k. 	(2.9) 

From Eqs. (2.7) and (2.8) this is obviously true for k = 1. Now suppose for 
k = j we have 

	

(2J) < JV.1525(1 + 6)5(2j - l)_i[l - (z1r)](2' 1)r 5, 	(2.10) 

where for the time being we allow 1W5  to depend onj. Then from Eqs. (2.7) and 
(2.8) and the standard use of the theory of dominants we have 

p(25-f-2) < 1W,2' 1(1 ± 8)j i + C0r2  + C0r2t0 
[1 - (z/r)](21+1 )  r' 1  

2j-1 
(2.11) 

(the main property of dominants we have used in deriving Eq. (2.11) is that 
iffg thenfg[1 - (z/r)]'). By setting 

C0r2  + C0r2t0  1 M, 1  = M,(1 + 6)i 1 + 
2j— 1 	

(2.12) 
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we have shown that Eq. (2.10) is true for j replaced by j + 1. But for j 
sufficiently large we have M, +1  < M, , i.e., there exists a positive constant M 
which is independent of j such that M, ( M for allj. Equation (2.9) is now 
established for all k. 

We now return to the convergence of the series (2.6). First, let Dar  = 
{z: I z I <r/c2} and D = {z * :  I z' I <rJo} where o> 1 is fixed. We will 
show that for a sufficiently large the series (2.6) converges in Da  X D X Tx I. 
Using the estimate [1 - ( I z /r)] (o - 1/at) and the fact that if 

f . M[1 - (z/r)] then If I < M[l - ( I z I/r)] we have from Eq. (2.9) that 
the series (2.6) is majorized in D., X D'r  x T x I by 

rM2"(1 + 6)k ak-i 

k=i (2k - 1)(c - 1) 2k_ 1  
(2.13) 

If a is chosen such that 2(1 + 8) oc(oc - 1)_2 < 1 then the series (2.13) 
converges. Since r is an arbitrarily large positive number and 8 is arbitrarily 
small and independent of r, we now have that the series (2.6) converges 
absolutely and uniformly for I z < r, < r, j t I < t0  and I s I < 1. 

We have now proved that the operator defined by Eq. (2.3) exists and maps 
analytic functions f(z, t) into the class of (complex valued) strong solutions 
of Eq. (1.4) with homogeneous initial data. It is important for our purposes 
that this mapping, in fact, be onto the class of real valued solutions of Eq. (1.4). 
However, this is obviously not the case (even if we take the real part of the 
right side of Eq. (2.3)) since if U(z, z*t)  can be represented in the form of 
Eq. (2.3), it must be true that U(z, z, 0) = 0 There are obviously solutions 
of Eq. (1.4) which do not satisfy this property (c.f. [5]). However, if we note 
that if u(x, y, t) is a solution of Eq. (1.4) then so is ug(x, y, t), we can 
differentiate Eq. (2.3) with respect to t, take the real part of both sides, and 
arrive at a new operator which maps analytic functions onto solutions of 
Eq. (1.4) with homogeneous initial data. The step of taking the real part of 
both sides of Eq. (2.3) is justified since c(x, y) and d(x, y) are real valued for x 
andy real. We are, thus, led to consider the operator defined (for x, y real) by 

u(x, y, t) = Re J f1 E(z, 	
ds dT 

, t - r, s)f 
( (

1 - s2), 
	s2)i/2' 

(2.14) 

where "Re" denotes "take the real part." We will now show that every real 
valued strong solution u(x, y, t) of Eq. (1.4) with homogeneous initial data 
can be represented in the form of Eq. (2.14). An elementary power series 
analysis (c.f. [21, pp.  55-56]) coupled with the results of [5] shows that such 
solutions are uniquely determined by their values on the characteristic z' = 0. 
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Extending Eq. (2.14) to complex values of x and y and evaluating at z'' = 

leads to the equation 

ds 1  
U(z, 0, t) = J+1

f ( (1 - s2), 
t) (1 - s2)1/2 

+ J(0, t), 	(2.15) 

wheref(z, t) = f(, t) and we have used the fact thatf(z, 0) = 0. Equation 
(2.15) shows thatf(z, t) can be chosen such that U(z, 0, t) assumes prescribed 

values (c.f. [2, pp. 12-13]), and, thus, u(x, y, t) = U(z, 2, t) can be represented 
in the form of Eq. (2.14). Finally, we note that by comparing the recursion 
formulas (2.7) with those of Bergman [2, p.  13] we have 

E(z, z'', 0, s) = E(z, z'', s), 	 (2.16) 

where E(z, z', s) is Bergman's generating function for the elliptic equation 

iJ2u + c(x, y)u = 0 (c.f. [2, 9]). We summarize the results of this section in 
the following theorem. 

THEOREM 2.1. Let u(x, y, t) be a real valued strong solution of Eq. (1.4) 
defined in a cylindrical domain D x T where D is simply connected and suppose 
u(x, y, 0) = 0. Then u(x, y, t) can be represented in the form of Eq. (2.14) where 

f (z, t) is an analytic function of z and continuously differentiable with respect 
to t such thatf(z, 0) = 0 and E(z, z'', t, s) is defined by Eqs. (2.6) and (2.7). 

E(z, z'', t, s) is an entire function of z and z' and is analytic in t and s for 

t I < t 0  and Is I < 1. E1(z, z' 1', 0,$) = E(z , z *, s) where E(z, z", s) is 
Bergman's generating function for the elliptic equation 4 2u + c(x, y)u = 0. 

The operator defined by Eq. (2.14) can be used to construct a complete 
family of solutions for Eq. (1.4). This is accomplished by settingf(z, t) = zltk 

and letting 1 and k be arbitrary nonnegative integers. Such a complete family 
can be used to approximate solutions of the first initial boundary value 
problem for Eq. (1.4) satisfying homogeneous initial conditions. We note 
that the operator presented in [5] can also be used to construct a complete 
family of solutions. However, the operator derived here is considerably 
easier to construct and is, therefore, more suitable for computational purposes. 

M. THE METHOD OF ASCENT 

We will now use the ideas of [6, 10] to extend the results of Section 2 to 
include Eq. (1.5). We first consider the case when n = 2. In this situation it is 
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easily verified (c.f. [2, PP. 27-28]) that  E(z, , t, s) depends only on r2  = 

t and s, and, hence, we can rewrite Eq. (2.14) in the form 

u(x, y, t) = f J +1 
E(r, t - r, s) H,.[x(1 - s2)112 , y(l - s2)1/2, 	

dsdr 
r] 

0 —1 	 (1 - s2)1 /2 ' 

(3.1) 
where 

H(x, y, t) = Ref[(z/2), t] 	 (3.2) 

is a harmonic function of x and y for each fixed t, i.e. H(x, y, t) is a solution 
of the pseudoparabolic equation (1.6) for n = 2. From the previously 
imposed condition that f(z, 0) = 0 we have that H(x, y, 0) = 0. From 
Eqs. (2.4)—(2.6) it can be shown that E(r2 , t, s) satisfies the partial differential 
equation - 

(1 - s2) E8 - ( us) E t  + TS[Errt + (11r)  Ert  + AE  + BE] = 0; 	(3.3) 

the initial conditions 

E(r2 , 0, s) = 0, 
(3.4) 

E(0, t, s) = 1; 

and has a series expansion of the form 

E(r2 , t, s) = t + 	e (k) W, t) 52k, 	 (3.5) 

which converges absolutely and uniformly for I s < 1 and r and t arbitrarily 
large (but bounded). 

Now define Ii (x, y, t) by 

+ 	 ds 	
(3.6) /2 h(x, y, t) = f

1 
H[x(1 - s2)u/2, y(1 - s2)1 ' ] (

1 - s2)1 !2  

Then Eq. (3.1) can be rewritten (c.f. [6, 10]) as 

t 	1 
u(x, y, t) = h(x, y, t) + f 5 aG(r2, 1 - a2 , t - r) h(xa2 , ya2 , r) da dr, 

00 
 -(37) 

where h(x, y, t) is again a solution of iJ2u = 0 satisfying the initial condition 
h(x, y, 0) = 0 and G(r2 , p, t) is defined by 

G(r2 , p, t) 	
2e(r2 , t) P(k + ) k_1 	 (3.8)  = 

k=1 	P(.) r(k) 
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From the analysis of section two it is clear that Eq. (3.7) defines a mapping of 
the class of real valued solutions of the equation Ii2u = 0 which vanish at 

t = 0 and are defined in a domain D x T (where D is starlike with respect to 
the origin) onto the class of real valued solutions of Eq. (1.5) (for n = 2) 

which vanish at t = 0 and are defined in D x T. 
We now want to generalize the representation (3.7) from n = 2 to general n. 

To this end we first look for solutions of Eq. (1.5) in the form 

u(x, t) = f J
1 	 dsd i- 

(3.9) s' 2E(r2, t - r, s; n) HT(x(1 - s2), T) 
(1 - s2)"2 

'  

where x = (x1  ,..., x) and H(x, t) is a real valued solution of Eq. (1.6) which 

vanishes at t = 0. We require that E(r2, t, s; n).be an entire function of r2  and 

t, analytic in s for I s I < 1, and satisfy the initial conditions E(r2 , 0, s; n) = 0, 

E(0, t, s; n) = 1. We now temporarily replace the path of integration from 
zero to one by a loop starting from s = +1, passing counterclockwise around 
the origin and onto the second sheet of the Riemann surface of the integrand, 
and then back up to s = +1, and substitute the resulting expression into the 

differential equation (1.5). If u(x, t) is to be a solution of Eq. (1.5) it is then 
easily verified by integrating by parts that E(r2, t, s; n) must satisfy the 

singular partial differential equation 

(1 - s2) Erat + (n - 31s) Ert  + rs[Errt + (l/r) Ert  + AE  + BE] = 0. 

(3.10) 

We now look for a solutionof Eq. (3.10) in the form 

	

E(r2 , t, s; n) =t + E e (k) W, t; n) 52k• 	 (3.11) 
lc.=1 

Substituting (3.11) into Eq. (3.9) and making use of the initial condition 

E(r2, 0, s; n) = 0 yields the following recursion formulas for the determina-

tion of the e(')(r 2 , 1; n): 

(n - 1) eM = —trA - (t 2/2) rB 

(2k + n - 3) e(k) = (2k - 3) 	- re' - rAet 1 " 	(3.12) rr 

_rBJe(k_1)dr; k 	2. 

From the initial condition E(0, t, s; n) = 1 we have the initial conditions 

e(k)(0, t; n) = 0; 	k = 1 1  2,..., 	 (3.13) 
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for each of the e ( ' ) (r2, t; n). Hence, each of the e"(r 2, t; n) in Eq. (3.11) is 
uniquely determined. We must now show the series (3.11) converges uniformly 
for r and t arbitrarily large (but bounded) and I $ I ( 1. We first note that for 
n = 2 the e(k)(r2,  t; 2) are identical with the function e(k)(r2, t) defined by 
Eq. (3.5). This follows from the facts that the form of the series expansion for 
E(r2, t, s) and E(r2, t, s; 2) are the same and these functions satisfy the same 
differential equation and initial conditions. Hence, the series (3.11) converges 
when n = 2. Now define new functions c(k)(r2, t; n) by the formula 

2e(k)(r2, t; n) P(k + n12 - c (k)(r2, t; n) = 	 k ;; 1. 	(3.14) I'(n12 - ) f(k) 

Then from Eq. (3.12) and (3.13) it is seen that the c ) (r2, t; n) satisfy the 
recursion formula 

= —trA - (0/2) rB 
(3.15) 

2(k - 1) CM = (2k - 3) C(,!c_l) - - rAe'1 - rB f dr; k 2. 

and the initial conditions 

c (k)(0, t; n) = 0; 	k 	1. 	 (3.16) 

Equations (3.15) and (3.16) imply that the c)(r2, t; n) are in fact independent 
of n. Since we know the series (3.11) is convergent when n = 2, we can now 
conclude from Eq. (3.14) and the fact that the c(')(r2, t; n) are independent of n 
that the series (3.11) converges absolutely and uniformly for r and t arbitrarily 
large (but bounded) and I s I ( 1. This establishes the existence of the 
operator defined by Eqs. (3.9) and (3.11). 

Motivated again by the results of section 2, we differentiate the representa-
tion (3.9) with respect to t and define a new operator mapping solutions of 
equation (1.6) onto solutions of Eq. (1.5). If in this operator we now set 

/i(x, t) = js2H(x(1 - s2), t) (1 ds 	 (3.17) 
0 

we arrive (c.f. [6, 10]) at the following integral operator which maps real 
valued solutions of Eq. (1.6) which vanish at t = 0 into the class of real 
valued solutions of equation (1.5) which vanish at t = 0 (we again assume 
h(x, t) and u(x, t) are defined in a domain of the form D x T where D is 
starlike with respect to the origin): 

rt .1 
u(x, t) = h(x, t) + I 	a''G(r2, 1 - a2, t - T) hr(xa 2 , 7-) da d-r. (3.18) Jo 0 
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In Eq. (3.18) G(T 2 , p, t) is defined by Eq. (3.8) and is independent of n. This 
is the basis for refering to the approach used in this section as a "method of 
ascent." Such techniques were first used by R. P. Gilbert [10, 11] (see also 
[2, p.  68]) in his investigation of the elliptic equation 

4u + A(r2)u = 0. 	 (3.19) 

Subsequently this approach was extended by Colton and Gilbert [6] to treat 
the fourth order elliptic equation 

iJ,,2u + A(r 2) Ju + B(r 2)u = 0. 	 (3.20) 

We now want to show that the operator defined by Eq. (3.18) is invertible, 
i.e. Eq. (3.18) defines an operator which maps solutions of Eq. (1.6) which 
vanish at t = 0 onto the class of solutions of Eq. (1.5) which vanish at t = 0. 
To this end we differentiate Eq. (3.18) with respect to t and rewrite the 
resulting expression as the Volterra integral equation 

(r; 0; , t) = 	r;0; q, t) + 	K( 1 )(r, p, 0) &(p; 0; 0 , t) dp 

+ JJ K( 2)(r, p, t - r) cb(p; 0; q, T) dp dr, 	(3.21) 
00 

where 

i'(r; 0; , t) = r (2)12u(r; 0; 

/i(r; 0; , t) = r(" 2)'2h(r; 0; , t), 
(3.22) 

K (')(r, p, 0) = (1/2r) G1(r2 , 1 - (p/r), 0), 

K( 2)(r, p, t) = ( 1/2r) G(r2 , 1 - (p/r), t), 

and (r; 0; q) are spherical coordinates. From the recursion formula (3.15) 
it is seen that each c ( " ) (r2 , t; n) is of the form 

c ( ' ) (r2 , t; n) = r 27 .)(r2 , t; n), 	 (3.23) 

where 0(')(r2 , t; n) is an entire function of r2  and t. This follows from the 
fact that the differential operator (2k - 3)(d1dr) - r(d 2/dr2 ) annihilates 
r212. Hence, the functions K(')(r, p, 0) and K (2) (r, p, t) defined in Eq. (3.22) 
are entire functions of r and I and analytic in p for I p I < I r 1 . Equations of 
the form of Eq. (3.21) have previously been studied by Vekua (c.f. [21, 
pp. 11-16]), and using his techniques we can easily show that for each 
continuous function (r; 0; , t) there exists a unique continuous solution 

(r; 0; q, t) of the integral equation (3.21). Furthermore, it can be verified 
without excessive hardship that if r 2 "/2  (r; 0; 0 , t) is a (strong) solution 
of Eq. (1.5) which vanishes at t = 0 then the function r( 2 ")I20(r; 0; q, t), 
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where ib(r; 0; /, t) is a solution of the integral equation (3.21), is a (strong) 
solution of Eq. (1.6) which vanishes at t = 0. We can now conclude that the 
operator defined by Eq. (3.18) is invertible, since if (r; 0; qi, 0) = 0 then 

(r; 0; 4, t) is uniquely determined by (r; 0; qi, t). (In the case when 
A(r 2) ( 0 an alternate proof of the invertibility of the operator defined in 
Eq. (3.18) can be deduced from the results of Section 4 of this paper.) 

In passing we note that by comparing Eqs. (3.8), (3.12), and (3.14) with 
the corresponding equations for Gilbert's G.-function for Eq. (3.19) [10] we 
have that 

G(r2, p, 0) = 	(r, p), 	 (3.24) 

where U(r, p) denotes Gilbert's G-function for Eq. (3.19). In particular, 
Gilbert's method of ascent for elliptic equations appears as the limiting case 
of Eq. (3.18) obtained by differentiating both sides of this equation with 
respect to t and then letting t tend to zero. 

We summarize our results in the following theorem. 

THEOREM 3.1. Let u(x, t) be a real valued strong solution of Eq. (1.5) defined 
in a domain D x T where D is starlike with respect to the origin and suppose 
u(x, 0) = 0. Then u(x, t) can be represented in the form of Eq. (3.18) where 
h(x, t) is a solution of Eq. (1.6) such that h(x, 0) = 0 and G(r 2, p, t) is defined by 
Eq.(3.8). G(r2,p, t) is an entirefunction of r 2  andt and is analyticfor I p1 < 1. 
G(r2, p, 0) = G(r, p) where t(r, p) is Gilbert's G-function for the elliptic 
equation (3.19). 

COROLLARY. Let u(x, t) be a real valued strong solution of Eq. (1.5) defined 
in a domain D x T where D is starlike with respect to the origin and suppose 
u(x, 0) = 0. Then,for each fixed t, u(x, t) is an analytic function of the variables 
x1 ,...,xforxeD. 

Proof of Corollary. This follows from the representation (3.18), the 
analyticity of G(r2, p, t), and the fact that if h(x, t) is a solution of Eq. (1.6) 
in D x T and vanishes at t = 0, then h(x, t) is a harmonic function of 
x1  ,..., x in D (for each fixed t), and, hence, is analytic in these variables. 

IV. THE FIRST INITIAL-BOUNDARY VALUE PROBLEM 

The (first) initial-boundary value problem for Eqs. (1.4) and (1.5) is to 
find a strong solution of the differential equation in D x T (where D is 
bounded, simply connected and has Lyapunov boundary D) which is 
continuously differentiable with respect to t in the closure of D x T, vanishes 
at t = 0, and assumes prescribed boundary values on bD x T. From the 
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results of [17] such a solution exists and is unique provided c(x, y) < 0 and 
A(r 2) < 0 respectively in the closure of D. Our purpose is to reformulate this 
initial-boundary value problem into the problem of solving an integral 
equation whose form is suitable for solution by iteration or numerical methods, 
thus giving a constructive method of exhibiting the solution. 

We first consider Eq. (1.4). In [5] we have defined a fundamental solution 
of Eq. (1.4) to be a function of the form 

S(x,y, t; 6, , r) = A(x,y, t; 6, j, r) log(1/r) + B(x,y, t; e, 71 , r), 	(4.1) 

where A(x, y, t; 6, , r) = A(z, z'', t; C, , r) and B(x, y, t; 6, , i) = 

(z, z, t; C, , r) have the series expansions 

(t-r)' 
A(z, z', t; , 	, -) = 	A(')(z, a*; , *) 

(4.2) 
(t—r) 

E(z, z', t; , *, T) = 	()(z, z*; , *) 

which converge absolutely and uniformly for arbitrary values of t and i- 
and z, E Q, z', E Q* where = e + 	= - i, z = + y, 

= x - iy, Q is an arbitrary compact subset of the complex plane, and 
= { z * : 	n Q}. The coefficients A ( "(z, z*; , ') and E(z, z*; C, *) 

can be determined recursively and satisfy (among other initial conditions) 

A'(, *; , *) = 1, 

A(i)(, *; C*) = 0 	for j > 2, 	 (4.3) 

E()(, *; C*) = 0 	for j 	1. 

Motivated by the use of double layer potentials to solve the Dirichiet problem 
for elliptic equations, we look for a solution of the first initial-boundary 
value problem in the form 

u(x, y, t) = ! j j 	, , T) 	 S(e, j, T; x, y, t) ds dr, 	(4.4) 
0 D 

where j4, , r) is a potential to be determined, v is the inner normal to aD, 
and ds dr is an element of surface area of 8D x T. Since as a function of its 
last three variables S(, 71, r; x, y, t) is a solution of Eq. (1.4) and S 7(, 71, t; 
x, y, t) is a fundamental solution of zl 2u + c(x, y)u = 0, which is independent 
oft, it is easily verified that if , r) is continuous in the closure of D x T 
then Eq. (4.4) defines a strong solution of Eq. (1.4) which is continuously 
differentiable with respect to t in the closure of D x T. Now suppose we 
want to determine p(, 77, 7-) such that for (x, y, t) on aD x T we have 
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u(x, y, t) = f(x, y, t), where f(x, y, t) is a prescribed function on 3D x T 
which is continuously differentiable with respect to t. Differentiating 
Eq. (4.4) with respect to t, letting (x, y, t) approach 3D x T, and using the 
well known properties of logarithmic potentials (c.f. [8, pp. 334-339]), leads 
to the following integral equation for , 

f1(x,y, t) = (x,y, t) +
32 

	

t) 	S(, , t; x, y, t) ds 

1 t 	 33 +-J 5 	S(e,,r;x,y,t)dsdr. 	(4.5) 
0 D 	 3V3T3t 

Note that no residue arises from the second integral in Eq. (4.5) as (x, y, t) 
approaches 3D x T due to the conditions imposed by Eq. (4.3). 

We will now show that the integral Eq. (4.5) can always be solved for 
(x, y, t) provided that f(x, y, t) is continuous and c(x, y) < 0 for (x, y) in 

the closure of D. Equation (4.5) can be written in the form 

ft  = (I + T)  + L/L, 	 (4.6) 

where 

TjL= I 	(e,mt) 3v3r S(e,,t;x,y,t)ds 
' OD (4.7) 

L=f 5 	(em 	
33 

r) 	S(e,,r;x,y,t)dsdr. 1TJ0 at 

Note that T is a Fredhoim operator and L is a Volterra operator with a 
continuous kernel (due to Eqs. (4.1)-(4.3)). Since , t; x,y, t) is a 
(normalized) fundamental solution for the equation J2u + c(x, y)u = 0 
and c(x, y) < 0, the operator (I + T)' exists (c.f. [8, pp.  364-365]). Further-
more, by Fubini's theorem, L and T commute (and, hence, so do L and 
(I + T)'), and due to L being a Volterra operator, 11(1 + T)_mLm 11 < 1 
for m sufficiently large (II II denotes the L 2  operator norm). Thus, the operator 
(I + (I  + T) 1L) 1  exists. Hence, from Eq. (4.6) we have 

(I + T)-1f = + (I  + T)-lL 	 (4.8) 
and 

= (I + (I  + T)1L)1(I  + T) -1f 
=(I+T+L) -1f. 	 (4.9) 

The continuity offt  implies that 1L is continuous in the closure of D x T, and, 
hence, Eqs. (4.4) and (4.9) give the desired solution of the first initial-
boundary value problem. 

Equation (4.5) lends itself to various procedures for approximating 
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solutions of the first initial-boundary value problem for Eq. (1.4). For 
example possible approaches would be to replace the integral equation (4.5) 

by a system of algebraic equations (c.f. [12, pp.  98-103]) or to use the method 
of moments (c.f. [12, pp. 150-154]). However, the systematic study of 
integral equations of mixed Fredhoim and Volterra type such as the ones 
arising here has (to the author's knowledge) not yet been undertaken by 
mathematicians working in the area of integral equations or numerical 
analysis. It would be desirable to complete such an investigation and hopefully 
this paper will give some motivation for mathematicians to begin working on 
integral equations of this type. 

We summarize the results obtained up to this point in the following 
theorem. 

THEOREM 4.1. Let D be a bounded simply connected domain in D2  with 

Lyapunov boundary aD and T = {t: 0 < t < t0} where t0  is a positive constant. 
Assume that c(x, y) < 0 in the closure of D. Then Eqs. (4.4) and (4.9) define the 

(unique) strong solution to Eq. (1.4) in D x T which is continuously differentiable 
with respect to t in the closure of D x T, vanishes at t = 0, and assumes 
prescribed boundary values f(x, y, t) on c9D x T. 

We now turn our attention to developing a constructive method for solving 
the first initial-boundary value problem for Eq. (1.5) in the case when n > 2. 
A straightforward generalization of the analysis just completed for the case 
of Eq. (1.4) is no longer possible since a fundamental solution for pseudo-

- parabolic equations in more than two space dimensions has not yet been 
constructed. Motivated by the work of Gilbert [10, 11] we will overcome this 
problem through the use of Theorem 3.1 and the well known fundamental 
solution for Laplace's equation. In the following discussion we will assume 
that the domain D, in addition to the hypothesis given at the beginning of this 
section, is also starlike with respect to the origin. 

We begin by differentiating both sides of Eq. (3.18) with respect to t 
to arrive at the general representation 

1. 

	

u(x, t) = h(x, t) + 	ci'G(r2 , 1 - a2 , 0) h(xa2 , t) dcr 
•0 

+ 	L a"G(r2 , 1 - 2, - r) h(xa2 , -) da di-. (4.10) 

Since h(x, t) is a solution of Eq. (1.6), it is clear that, for each fixed t, h(x, t) is 
harmonic. Hence, for n > 2 we can represent h(x, t) as a double layer 

potential 

h(x, t) 
= 	

5 

	

nI2 	 t)L (_I x —'y n_2  ) 
ds, 	(4.11) 
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where v is the inner normal on aD, (y, t) is a potential to be determined, 
and x e D (for n = 2 we would represent ht(x, t) as a double layer logarithmic 
potential). Substituting (4.11) into Eq. (4.10), interchanging orders of integra-
tion, and letting x approach the boundary of D, leads to the following integral 
equation for the determination of a(x, t) (where u(x, t) = f(x, t) on 

f(x, t) = (x, t) + I'(n/2) $(y, t) K(')(x, y, t) ds 

+ I'(n/2) 
j f 	(y, i-) K 2)(x, y, t - T) ds dr, 	(4.12) 
0 D 

where 

K")(x, y, t) = 	
( 	 ) 

+ 5 a 1G(r2, 1 - 2, 0) L X02 y 	
) do 

1  
.K' 2) (x, y, t) 	

1 
= I a' -'G(r2 , 1 - 2,  t) 	

•2 - y n-2 ) 
do. 

0 

We note that the kernels K 1 (x, y, t) and K 2 (x, y, t) have weak singularities 
at x = y. Hence, Eq. (4.12) is again of the form 

ft = (I + T)  + L, 	 (4.14) 

where T is a Fredholm operator and L is a Volterra operator. From 
Theorem 3.1 it is seen that the operator I + T is identical with the operator 
defined in Eq. (4.42) of [10], and, hence, if A(r 2) < 0 in the closure of D, 
(I + T)-1  exists. Repeating the analysis which led to Eq. (4.9) we have that 
(I + T  + Li1  exists and 

IL = (I + T  + L)-1f. 	 (4.15) 

Equations (4.15), (4.10), and (4.11) now give the solution of the first initial-
boundary value problem for Eq. (1.5). We summarize this result in the 
following theorem. 

THEOREM 4.2. Let D be a bounded domain in U, n > 2, which is starlike with 
respect to the origin and has Lyapunov boundary c9D and let T = {t: 0 < t < t0} 
where t0  is a positive constant. Assume that A(r 2) < 0 in the closure of D. Then 
Eqs. (4.10), (4.11), and (4.15) define the (unique) strong solution to Eq. (1.5) in 
• x T which is continuously differentiable with respect to t in the closure of 
• x T, vanishes at t = 0, and assumes prescribed boundary values f(x, t) on 
aD x T. 



PSEUDOPARABOLIC EQUATIONS 	 521 

In closing we would like to point out that the assumption made throughout 
this paper that the coefficients of Eqs. (1.4) and (1.5) are entire functions can 
obviously be weakened to the requirement that these coefficients only be 
analytic in a sufficiently large ball about the origin. 
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1. INTRODUCTION 

In this paper we will construct integral operators which map solutions 
of the heat equation in one space variable onto solutions of linear parabolic 
equations in one space variable with analytic coefficients. These operators 
will then be used to obtain reflection principles for solutions to. parabolic 
equations which are partially analytic with respect to the space variable. 
The distinguishing feature of our approach is that we are able to construct 
operators whose domain is the space of solutions to the heat equation and 
not the space of analytic functions as in previous work in this area [1, 4]. 
This allows us to consider solutions of parabolic equations with analytic 
coefficients which are partially analytic with respect to the space variable 
instead of the smaller class of solutions which are analytic in both the space 
and time variables. (In this connection we note that if the coefficients of a 
parabolic equation are analytic, then any strong solution is in fact partially 
analytic with respect to the space variable [2].) In the context of the general 
analytic theory of partial differential equations the approach given in this 
paper seems to be the natural one in the sense that integral operators for 
elliptic equations reduce in the case of the harmonic equation to taking 
the real part of an analytic function (cf. [3]), whereas in the case of the heat 
equation our operators reduce to the identity operator. 

An important application of our integral operators is the derivation of a 
reflection principle for parabolic equations in one space variable. This is 
of particular interest in the sense that it is the first time a reflection principle 
has been given for partially analytic solutions of parabolic equations (except 
in the trivial case of the heat equation). For analytic solutions of parabolic 
equations in one space variable such a continuation is immediate since any 
analytic solution of a parabolic equation in one space variable can be 
analytically continued into a strip bounded by the characteristics, regardless 

* This research was supported in part by AFOSR Grant 71-2205A. 
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of what the (analytic) data is on a noncharacteristic curve [1, 4]. Our approach 
to the reflection problem is of further interet in that it also suggests the 
possibility of obtaining continuation theorems for nonanalytic solutions of 
parabolic equations. This is due to the fact that the reflection principle 
obtained in this paper ultimately rests on constructing a solution E(s, x, t) 
of a Goursat problem for the equation 

- E38  + q(x, t)E = 	 (1.1) 

where q(x, t) is a function depending only on the coefficients of the parabolic 
equation under investigation. In the case when the coefficients of the parabolic 
equation are independent of t, so are q(x, t) and E(s, x, t), and hence E(s, x, t) 
is the solution of a Goursat problem for a hyperbolic equation. In this case 
the assumption of analyticity of the coefficients can be relaxed and results 
on the continuation of nonanalytic solutions to parabolic equations can be 
obtained. 

2. INTEGRAL OPERATORS 

Consider the general linear parabolic equation of second order in two 
independent variables written in normal form as 

uxx  + a(x, t)Ua, + b(x, t)u = c(x, t)u t 	 (2.1) 

where the coefficients a(x, t), b(x, t), and c(x, t) are analytic in the rectangle 
D = {(x, t): —x0  < x < x0 , 0 < t < t}, x0  and t0  are positive constants, 
and c(x, t) > 0 for (x, t) e D. The one-to-one analytic transformation 

= j 
(c(s, t)) 1 /2  ds 

r=t 
	 (2.2) 

reduces (2.1) into an equation of the same form but with c(x, t) = 1. Hence 
we may assume c(x, t) = 1 in (2.1) to begin with. If we now set 

u(x, t) = v(x, t) exp - 5 a(s, t) ds 	 (2.3) 

we arrive at an equation for v(x, t) of the same form as (2.1) but with 
a(x, t) = 0. Hence, without loss of generality, we can restrict ourselves to 
equations of the canonical form 

u + q(x, t)u = Ut 	 (2.4) 
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where q(x, t) is analytic for (x, t) e D. We now look for solutions of (2.4) 
in the form 

u(x, t) = h(x, t) + j K(s, x, t) h(s, t) ds 	 (2.5) 

where h(x, t) is a solution of the heat equation 

= li t 	 (2.6) 

and satisfies the Dirichlet data h(O, t) = 0. Substituting (2.5) into (2.4) gives 

o = u + q(x, t)u - Ut = q(x, t) h(x, t) + K(x, x, t) h(x, t) 

+ (K (x, x, t) + 2K(x, x, t)) h(x, t) 

+ f (K + q(x, t) K - K) h(s, t) ds 

- f K(s, x, t) h t(s, t) ds. 	 (2.7) 

But 

jK(s, x, t) h(s, t) ds 

= f 
x

K(s, x, t) h 8 (s, t) ds 

= h3(s, t) K(s, x, t) 	
-f  K

8(s, x, t) h 3(s, t) ds 

= h(x, t) K(x, x, t) - h(O, 1) K(0, x, t) - K 3(s, x, t) h(s, t) 
s=o 

+ 5 K(s, x, t) h(s, t) ds 

= h(x, t) K(x, x, t) - h(0, t) K(0, x, t) - h(x, t) K 3(x, x, t) 

+ 5 K33(s, x, t) h(s, t) ds. 	 (2.8) 

Substituting (2.8) into (2.7) gives 

o = K(0, x, t) h(0, t) + 2(K 3(x, x, t) + K(x, x, t) + q(x, t)) h(x, t) 

+ 5 (K - K 88  + q(x, t) K - K) h(s, t) ds. 	 (2.9) 
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Now suppose E(s, x, t) satisfies 

- E33  + q(x, t)E = 	 (2.10) 

for (x, t) e D, —x 0  < s < x0 , and assumes the Goursat data 

	

E(x,x,t) = 	 (2.11) 

	

E(—x, x, t) = f q(s, t) ds 	 (2.12) 

on the characteristic planes s = x and s = —x respectively. Define 

	

K(s, x, t) = [E(s, x, t) - E(—s, x, t)]. 	 (2.13) 

Then K(s, x, t) satisfies (2.10) and the initial data 

	

K(x, x, t) = - 	q(s, t) ds 	 (2.14) 

	

K(0, x, t) = 0, 	 (2.15) 

i.e., (2.9) is satisfied identically and hence (2.5) is a solution of (2.4). 
Now suppose that instead of satisfying h(O, t) = 0, h(x, t) satisfies 

h(0, t) = 0. We again look for a solution of (2.4) in the form 

	

u(x, t) = h(x, t) + j ]VI(s, x, t) h(s, t) ds. 	(2.16) 

Then the equation for M(s, x, t) corresponding to (2.9) is 

0 = —M 8(0, x, t) h(0, t) + 2(M 8(x, x, t) + M(x, x, t) +q(x, t)) h(x, t) 

+ f (M - M 33  + q(x, t)M - M) h(s, t) ds. (2.17) 

If G(s, x, t) satisfies (2.10) for (x, t) ED, —x 0  < s < x0 , and assumes the 
Goursat data 

X  G(x,x,t) = _Jq(s,t)ds 	 (2.18) 0 
  

	

G(—x, x, t) = - 	q(s, t) ds 	 (2.19) 
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on the characteristic planes s = x and s = —x, respectively, then 

M(s, x, t) = [G(s, x, t) ± G(—s, x, t)] 	 (2.20) 

satisfies (2.10) and the initial data 

x 

M(x, x, t) = - f q(s, t) ds 	 (2.21) 
0 

MS(0, x, t) = 0, 	 (2.22) 

i.e., (2.17) is satisfied identically and hence (2.16) is a solution of (2.4). 
If the functions E(s, x, t) and G(s, x, t) exist, we can now define two 

operators T1  and T2  mapping solutions of the heat equation onto solutions 

of (2.4) by 

T1h = h(x, t) + j K(s, x, t) h(s, t) ds 	 (2.23) 

T2h = h(x, t) + j M(s, x, t) h(s, t) ds, 	 (2.24) 

where the domain of T1  is the class of solutions to the heat equation satisfying 

h(0, t) = 0, and the domain ofT 2  is the class of solutions to the heat equation 

satisfying h(0, t) = 0. 
To show the existence of the operators T 1  and T2  we must show the 

existence of the functions E(s, x, t) and G(s, x, t). We will now do this for 

E(s, x, t); the existence of G(s, x, t) follows in an identical fashion. Let 

x=e+n 
(2.25) 

= 

and define E(e, 77 , t) and 	, t) by 

, t) = E( - m 6 + m t) 
(2.26) 

, t) = q( + 9, t). 

Then (2.10)—(2.12) become 

Be., + 	m t)E = E, 	 (2.27) 

e 
E(e, 0, 1) = - I q(s, t) ds, 	 (2.28) 

0 

E(0, 77 , t) = 
j 

q(s, t) ds, 	 (2.29) 
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and hence E(e, 77 , 1) satisfies the Volterra integral-differential equation 

, t) = - + f q(s, t) ds + 5 q(s, t) ds 
o 

n e 
+ I 5 (E, , t) 	, , t) E(e, , t)) d d. (2.30) o 0 

The function (Tht) is analytic for —x0  < 	< x0 , 0< t <t0 . 
Let x1 , 11, be such that 0 <x1  <x0 , 0 <t1  <to . Then by standard 
compactness arguments there exists a positive number 5= c(x 1) and a 
domain B in the complex (, ) space containing the square I 	+ 	x 1  
in the real domain such that , t) is analytic in the (six-dimensional) 
product domain Q = B x {t: I t - t1  < } and is continuous in its closure. 
We will now show that the solution E(e, , t) of the integral-differential 
equation (2.30) exists and is analytic in Q. Since x1  and t1  are arbitrary 
points in the interval (0, x 0) and (0, t0), respectively, this will show that 
E(s, x, t) exists and is analytic for (x, t) E D and —x0  <s <x0 . By making 
a preliminary linear change of variables we can assume without loss of 
generality that t1  = 0 and , t) is an analytic function of t in some 
neighborhood of the origin. We can also assume that 	+ 	< 2x, for 
(6, 7))EB. 	- 

The solution of the integral-differential equation (2.30) can formally be 
obtained by iteration in the form 

, t) = E1(, , t) + E2(e, , t) + 	+ 	, t) + 	(2.31) 

m t) = - 5 q(s, t) ds + 5 q(s, t) ds 	 (2.32) 

1 
, t) = 5 J (E(e, 17, t) - 	, t) E(e, , t)) de d-q. (2.33) 

00 

We will be done if we show that the series converges uniformly in Q. To 
this end let C be a positive constant such that for (, ,, t) e Q we have 

q(, , 1) 	(C/x1)(1 L.  t/) 	 (2.34) 

where "" denotes domination with respect to t (cf. [3]). Without loss of 
generality assume C 	1 and 8 	1. We will show by induction that for 

t)eQ 

(2'C" 16 	i' _fl+l)/( - 1)! (1 - t/8)-n. 	(2.35) 

where 

and 
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This is clearly true for n = 1. Assume now that (2.35) is valid for n = k. 
Then using the standard properties of dominants we have 

i•I')I 	1iei 
Ek+j  . 	I 	I 	(2kCk 16 l'  177 I 1_18_k)1(k_1)!(k18 + C) 

J o 	o  

x (1 —t/8)-'1I d6 I I d77  I 

<< (2kCk 16 1k I i I -k+i)/(k)(k)?(kf + C)(1 - t18)-k_1 

2C k 1 9  1k8_k/(k)!(1 - t/) -', (2.36) 

and hence, (2.35) is true for n = k + 1 and the induction proof is completed. 

Equation (2.35) implies that for (C , t) E Q we have 

I 	I 

 

2nCn 16 	 fl+iJ(n - 1)! (1 - It I/8); 	(2.37) 

hence, the series (2.31) converges uniformly on compact subsets of Q and 
defines an analytic function of its independent variables in this region. 
We have now established the existence of the operators T 1  and T2  

3. REFLECTION PRINCIPLES 

We will now show how the operators constructed in the previous section 
can be used to obtain reflection principles for solutions to (2.1). Let u(x, t) 
be a strong solution of (2.1) in the region 0 < x < s(t), 0 < t < t0 , which 
vanishes along the noncharacteristic analytic arc x = s(t) and is continuously 

differentiable for 0 < x < s(t), 0 < t < t0 . By making the change of 

variables 

C = s(t) - 
(3.1) 

i - =t 

we arrive at an equation of the same form as (2.1) but with the arc x = s(t) 

replaced by C = 0. The transformations (2.2) and (2.3) leave the boundary 

condition u(0, t) = 0 invariant. Hence, without loss of generality, we can 

assume that u(x, t) is a strong solution of (2.4) defined in the region 

0 <x <x0 , 0 <t <to , is continuously differentiable for 0 ( x <x0 , 

0 <t <to , and satisfies the boundary condition u(0, t) = 0. We now 
want to represent u(x, t) in the form 

u(x, t) = T 1h = h(x, t) + j K(s, x, t) h(s, t) ds 	(3.2) 

where Jz(x, t) is a solution of the heat equation satisfying h(0, t) = 0. 
Equation (3.2) is a Volterra integral equation of the second kind for h(x, t); 
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hence, there exists a unique solution h(x, t) of Eq. (3.2) which has the same 
regularity properties as u(x, t) and satisfies h(O, t) = u(O, t) = 0. This can 
be seen by using the resolvent operator to express h(x, t) in terms of u(x, t). 
To show that this solution of the integral equation (3.2) is in fact a solution 
of the heat equation we substitute (3.2) into (2.4) and use the properties 
of the kernel K(s, x, t) (cf. Eqs. (2.7)–(2. 15)) to obtain 

o = 	+ q(x, t)u - Ut 

(3.3) 
= (h5,, - h) + J K(s, x, t)(h 38(s, t) - h(s, t)) ds. 

0 

Since solutions of Volterra integral equations of the second kind are unique, 
we must have 

	

- lit = 0, 	 (3.4) 

i.e., h(x, t) is a solution of the heat equation. Since h(x, t) is a strong solution 
of the heat equation in 0 <x <x0  , 0 <t < t0  , is continuously differentiable 
in 0 < x <x0 , 0 < t < t0 , and vanishes at x = 0, h(x, t) can be reflected 
across the x = 0 axis by the formula 

h(x, t) = —h(—x, t). 	 (3.5) 

Hence, h(x, t) is in fact a strong solution of the heat equation in D = 
{(x, t): —x 0  <x <x0 , 0 <t < t0} and is partially analytic in D with 
respect to x. Since the kernel K(s, x, t) is also analytic with respect to s 
and x for —x 0  <s <x0 , —x0  <x <x0 , Eq. (3.2) now provides for 
each fixed t the (unique) analytic continuation of u(x, t) into the domain 
D n {(x, t): x < O}. 

Reflection principles associated with (2.4) and the boundary condition 
u(0, t) = 0 can be obtained in a similar manner by using the operator T2 . 

For reflection principles for analytic solutions of elliptic and parabolic 
equations in two space variables the reader is referred to [6 and 5], respec-
tively. 
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GENERALIZED REFLECTION PRINCIPLES FOR 
PARABOLIC EQUATIONS IN ONE SPACE VARIABLE 

DAVID COLTON 

I. Introduction. In [1] the author has obtained reflection principles for 
solutions to the parabolic equation 

(1.1) 	 u + a(x, t)u + b(x, t)u = U, 

satisfying the boundary condition u(O, t) = 0, and for solutions of 

(1.2) 	 u, + q(x, t)u = 

satisfying u(0, t) = 0, under the assumption that the coefficients in (1.1) and 
(1.2) are analytic. It is the purpose of this paper to extend these results to 
include the case when u(x, t) is a solution of (1.1) satisfying the boundary data 

(1.3) 	 a(t)u(0, t) + 0(t)u(0, t) = f(t) 

where a(t), 3(t), and f(t) are analytic functions and fl(t) 5x ~ 0 for 0 < t < t 0  

to  being a positive constant. This result provides an analogue for parabolic 
equations of Lewy's reflection principle for elliptic equations ([5]). Our approach 
to the reflection problem (1.1), (1.3), is based on the construction of an integral 
operator which maps solutions of the heat equation onto solutions of parabolic 
equations with variable coefficients. However it is of interest to note that 
our results are new even for the heat equation. We also want to emphasize 
that the reflection principle obtained here is valid, for strong (in particular 
not necessarily analytic) solutions of (1.1). In this context we observe that 
for analytic solutions of parabolic equations in one space variable with analytic 
coefficients reflection principles are trivial in the sense that any analytic solution 
of a parabolic equation in one space variable can be analytically continued 
into a strip bounded by the characteristics, regardless of what the (analytic) 
data is on the t axis ([2], [4]). 

II.- Reduction to Canonical Form. We consider (1.1) under the assumption 
that the coefficients a(x, t) and b(x, t) are analytic in the rectangle D = {.(x, t):' 
—x0  < x < x0  , 0 < t < t0 } where x0  and t0  are positive constants. Setting. 

(2.1) 	 ' u(x, t) = v(x, t) exp {-' f a(s, t) ds} 
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we arrive at an equation for v(x, t) of the form (1.2) with q(x, t) analytic for 
(x, t) E D. The boundary condition (1.3) assumes the form 

(2.2) 	(a(t) - 0(t)a(O, t))v(O, t) + j3(t)v(0, t) = f(t). 

We will now show that without lpss of generality we can assume f(t) = 0. 
Let g(t) be defined by 

(2.3) 	 g(t) = 

Then w(x, t) = v(x, t) - g(t) is a solution of an equation of the form 

(2.4) 	 w + q(x, t)w - 	= p(x, t) 

where q(x, 1) and p(x, t) are analytic for (x, t) E D and on the axis x = 0 w(x, t) 
satisfies 

(2.5) 	(a(t) -  3(t)a(0, t))w(0, t) + 9(t)w(0, t) = 0. 

Now let K(s, x, t) be a solution of 

(2.6) 	 K - K. + q(x, t)K = K, 

for —x 0  < x < xo , — xo  < s < xo  , 0 < t < t0  , which satisfies the initial data 

(2.7a) 	 K(x, x, t) = - f q(s, t) ds 

(2.7b) 	 K(0, x, t) = 0. 

The existen.ce of such a function was established in [1] where it was further 
shown that if q(x, 1) is analytic in D then K(s, x, t) is analytic for —x 0  < x < x0  
—x0  < s < x0  , 0 < t < t0 . Let p(x, t) be the (unique) solution of the Volterra 
integral equation 

(2.8) 	
p(x, t) = p(x, t) + f K(s, x, t)p(s, t) ds. 

Due to the analyticity of p(x, t) and K(s, x, t) it can be easily verified that 
p(x, t) is also analytic in D. Let h(x, t) be the unique analytic solution of 

(2.9a) 	 h.. - 	= p(x, t) 

(2.9b) 	 h(0, tj = h(0, t) = 0 

for (x, t) E D. The existence of h(x, t) follows from the results of [4]. Now 
define z(x, t) by 

(2.10) 	 z(x, t) = h(x, t) + f K(s, x, t)h(s, t) ds. 

From the results of [1] it can be seen that z(x, t) is an analytic solution of (2.4) 
for (x, t) E D which satisfies the Cauchy data z(0, t) = z(0, t) = 0, i.e., z(x, t) 
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satisfies the boundary condition (2.5). Hence w(x, t) - z(x, t) is a solution 
of (1.2), (2.2) for 0 < x < x 0  , 0 < t < t0  , with f(t) 	0, i.e., without loss of 
generality we can assume that f(t) 	0 in (2.2) to begin with. 

Now suppose that u(x, t) is a solution of (1.1) for 0 < x < x 0  , 0 < t < t0  
continuously differentiable for 0 x < x 0  , 0 < t < t0 , and satisfies the bound-
ary condition (1.3). Then from the above discussio,n it is seen that the problem 
of continuing u(x, t) as a solution of (1.1) into all of D (i.e., "reflecting" u(x, t) 
across the axis x = 0) can be reduced to the problem of reflecting solutions of 

(2.11) 	 u, + q(x, t)u = u, 

which are defined in 0 < x < x 0  , 0 < t < t0  , continuously differentiable in 
o < x < x0  , 0 < t < t0  , and satisfy the boundary condition 

(2.12) 	(a(t) - 0(t)a(0, t))u(0, t) + (t)u(0, t) = 0. 

(2.11) and (2.12) will be referred to as the canonical form of the reflection 
problem (1.1), (1.3). 

III. A Reflection Principle. In this section we will prove the following 
theorem (where by a strong, or classical, solution of (1.1) we mean a solutiOn 
of (1.1) which is twice continuously differentiable with respect to x, continuously 
differentiable with respect to t, and satisfies (1.1) pointwise):. 

THEOREM: Let u(x, t) be a strong solution of (1.1) in 0 < x < x0  , 0 < t < t0  
continuously differentiable in 0 < x < x0  , 0 < t < t0  , and satisfying (1.3) on 
the axis x = 0, where a(x, t) and b(x, t) are analytic in D, a(t), fl(t) and f(t) are 
analytic for 0 < t < t0  , and 3(t) 5~4- 0 for 0 < t < t0  . If either 

2a(t) - f3(t)a(O, t) ;-! 5  0 for 0 < t < t0  , or 
2a(t) - 3(t)a(0, t) 	0 for 0 < t < t0  

then u(x, t) can be uniquely continued as a strong solution of (1.1) into all of D. 

Proof. Without loss of generality we can assume the reflection problem 
(1.1), (1.3) has been reduced to the canonical form (2.11), (2.12), where q(x, t) 
is analytic for (x, t) E D. If condition 2) of the theorem is true, the theorem 
follows from the results of [1]. Hence we now assume condition 1) is true. 
We first divide both sides of (2.12) by (t) - (t)a(0, 1) and rewrite this equa- 
tion in the form 	

2)3 

(3.1) 	 u(0, t) + a(t)u(O, t) = 0 

where a(t) = (t)[a(t) - 	 (t)a(0, t)J' 5- 4- 0 is analytic for 0 < t < t0  . Let 
h"(x, t) be a solution of the heat equation 

(3.2) 	 = h 1 ' 	 - 

which is twice continuously differentiable for 0 < x < x 0  , 0 < t < to  , and 
satisfies the boundary condition 

(3.3) 	 h'"(0, t) = 0. 
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Define h 2 (x, t) by 

(3.4) 	 ,h 2 (x, t) = —a(t)h"(x, t). 

Then it can easily be verified that h 2  (x, t) is a strong solution of 

h (2) _L 
a (t) h

2 	h (2)  
(3.5) 	 ' a(t) 	- 

in 0 < x < x0  , 0 < t < t0 , is continuously differentiable in 0 < x < x0  , 0 < 
t < t0  and satisfies the boundary condition 

(3.6) 	 h 2 (0, t) = 0. 

We now look for a solution of (2.11), (2.12) in the form 

(3.7) 	u(x, t) = h' > (x, t) + h 2 (x, t) + f KW(s, x, t)h'(s, t) ds 

+ f K 2> (s )  x, t)h 2 (s, t) ds 

where K"(s, x, t) and K 2  (s, x, t) are functions to be determined. Substituting 
(3.7) into (2.11) and using (3.2)-(3.6) to integrate by parts gives 

(3.8) 	0 = u + q(x, t)u— u 

= .K 1) (0, x, t)h,,'(0, t) - Jç(2)(9 x, t)h 2> (0, t) 

-4-  2(.K'(x, x, t) -4-  K'(x, x, t) -4-q(x,  t))h 1 (x, t) 

• 2(K2)(x, x, t) + K 2 (x, x, t) + 12  q(x, t) - a'(t)\ t) 

-f-  f - 	-4-  q(x, t)K' - .K 1 )h" > (s, 1) ds 

[ (K- 	- jç(2) ..f. (q(x, t) - 	O") . r< (2)  - y,(2))h(z)(s t) ds. 
a(t)/ 

(3.8) will be satisfied if K ° (s, x, t) satisfies 

(3.9) 	 K.. - 	-I-  q(x, t)IC'> = jç(1) 

for (x, t) E D, —x 0  < s < xo ; and the initial data 

K'(x, x, t) = - f q(s, t) ds 
(3.lOa) 

(3.10b) 	 Km(0, x, t) = 0, 

and K 2 (s, x, t) satisfies 
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(3.11) 	jç(2) - jç(2) -1- (qx, t) 	
a(t))J(2) 	 jç(2) 

-- 

for (x, t) E D, —x 0  < s < x0 , and the initial data 

(3.12a) 	 K 2 (x, x, t) = - f (q(s, t) 	
a'(t)\ 

 d. 

(3.12b) 	 K. 2 (O, x, t) = 0. 

The existence of the functions K"(s, x, t) and K 2> (s, x, t) and their analyticity 
for (x, t) E D, —x o  < s < xo  , follows from the results of [1]. We note that 
from the initial conditions (3.10) and (3.12) it is seen that if u(x, t) is a solution 
of (2.11) defined by (3.7) then 

(3.13) 	u(0, t) + a(t)u(0, t) = h 2 (0, 1) + a(t)h'(0, t) = 0, 

i.e., u(x, t) satisfies the boundary condition (3.1). 
We will now show that if u(x, 1) is any (strong) solution of (2.11) defined in 

0 <x <x0  , 0 < t < t,, continuously differentiable in 0 < x < x0 , 0 < t <t0 , 

and satisfying the boundary condition (3.1), then it can be represented in the 
form (3.7) where h'(x,t) and h 2 (x, t) are defined by (3.2)-(3.4). Let hm(x,  t) 
be the unique solution of the Volterra integral equation 

(3.14) 	f u(s, t) ds = —a(t)h'(x, t) + f r(s, x, t)h"(s, t) ds, 

where 

(3.15) 	f'(s, x, t) = 1 - a(t)K 2 (s, s, t) 

+ fK'(s,, t)d + a(t) fK2)(s,,  t)d. 

The existence and, uniqueness of h'(x, t) is assured from the fact that a(t) 96 0 
for 0 < t < t0  . Equation (3.14) also implies that 0 > (0, 1) = 0 and h'(x, t) 
is twice continuously differentiable for 0 <— x < x0  , 0 < t < t0  , and three times 
differentiable for 0 < x < x 0  , 0 < t < £0. Differentiating (3.14) with respect 
to x and integrating by parts gives 

(3.16) 	u(x, t) = h'> (x, 1) + h 2 (x, 1) 

+ f K'(s, x, t)hm(s,  t) ds + f K 2 (s, x, t)h 2 (s, t) ds 

where h 2 (x, t) is defined by (3.4). The fact that u(x, t) satisfies (3.1) implies 
that h 2> (0, t) = —a(t)h'(0, t) = 0, i.e. h'(0, t) = 0 for 0 < t < £0 since 
a(t) F6  0 in this interval. Applying the differential equation (2.11) to both 
sides of (3.16), using equations (3.5) and (3.9)-(3.12), and integrating by parts 
gives 
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(3.17) 	0 = (h ° (x, 1) - h, ° (e, t)) - a(t)(h'(x, t) - it. 	t)) 

- a(t)iC 2 (x, x, t)(h'(x, t) - h'(x, t)) 

+ f K"(s, x, t)(h'(s, t) - h °> (s, t)) ds 

+ f a(t)K, 2 (s, x, t)(h'(s, t) - h'(s, t)) ds: 

Integrating both sides of (3.17) with respect to x gives 

(3.18) 	0 = —a(t)(h'(x, t) - h'(x, t)) 

-f- f r(s, x, t)(h,,'(s, t) - h'(s, t)) ds 

where F(s, x, t) is defined by (3.15). Since a(t) 5x ~ 0 and solutions of nonsingular 
Volterra integral equations of the second kind are unique, we can conclude that 
h'(x, t) must be a (strong) solution of (3.2) and h 2> (x, t) a (strong) solution 

of (3.5). 
The conclusion of the theorem now follows immediately from the well known 

reflection principle for solutions h(x, t) of the heat equation satisfying the 
boundary condition h(0, t) = 0. This is due to the fact that u(x, t) can be 
represented in the form (3.7) where h'(x, t) and h 2 (x, t)satisfy (3.2)—(3.4). 
By the reflection principle for solutions of the heat equation which satisfy 
homogeneous Dirichiet data on x = 0 we can conclude that h° (x, t) is in fact 
a strong solution of (3.2) in all of D, and hence h 2>  (x, t) is also a strong solution 
of (3.5) throughout D. Since K'(s, x, t) and K 2 (s, x, t) are analytic for 

—x0  < x < x0 , —x0 < s < x0 , 0 < t < to , (3.7) implies thatu(x, t) can be 
continued as a strong solution of (2.11) into all of D. The uniqueness of the 
continuation follows from the fact that strong solutions of parabolic equations 
with analytic coefficients are analytic in the space variable ([3]). 

IV. Concluding Remarks. It would be desirable to remove the conditions 
1), 2) of the above theorem. In the special case when the coefficients of the 
differential equation (1.1) and the boundary condition (1.3) are independent 
of t one of the two conditions in the theorem is always satisfied and hence 
these conditions no longer need be incorporated in the theorem. 

The more general parabolic equation 

(4.1) 	 u + a(x, t)u ± b(x, t)u = c(x, t)u, 

where c(x, t) > 0 for (x, t) E D can be reduced to (1.1) by a simple change of 
independent variables (c.f. [1]). Under this change of variables the form of 
the boundary condition (1.3) remains the same, i.e., 3(t) remains analytic and 
non-vanishing for 0 < t < t0. 
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1. Introduction. In a recent paper [3] the author has constructed integral operators 
which map solutions of the heat equation 

	

= 
	 (1.1) 

onto solutions of the parabolic equation 

u + q(x, t)u = u 	 (1.2) 

and used these operators to obtain reflection principles for Eq. (1.2) which are analogous 
to the Schwarz reflection principle for analytic functions of a complex variable. (We 
note that the more general equation 

v + a(x, t)v, + b(x, t)u = v, 	 (1.3) 

can be reduced to an equation of the form (1.2) by the change of variables 

1 i r 
v(x, t) = u(x, t) exp' - j a(s, t) ds 

	

I. 	0 

In this paper we will show how these operators can be used to obtain approximate solu-
tions to the first initial boundary value problem for Eq. (1.2) (or (1.3)) in a rectangle 
and quarter plane. More specifically, our approach provides an analogue for Eqs. (1.2) 
and (1.3) of the method of separation of variables and the "method of images" for the 
heat equation, and is an extension of the use of integral operator methods for approxi-
mating solutions of boundary value problems for elliptic equations (cf. [1, 2, 6, 10]) to 
the case of initial boundary value problems for parabolic equations. Numerical examples 
using the methods described in this paper will be published elsewhere. 

2. The first initial boundary value problem in a rectangle. Let u(x, t) be a (strong) 

solution of Eq. (1.2) in the rectangle R = {(x, 1): —1 < x < 1, 0 < t < T} such that 

u(x, t) continuously assumes the initial-boundary data 

u(-1, t) = f(t), u(l, t) = g(t); 0 < t < T, u(x, 0) = h(x); 	x 	1. (2.1) 

(A strong, or classical, solution of Eq. (1.2) is a solution of Eq. (1.2) which is twice 

* Received March 13, 1974; revised version received September 17, 1974. This researh was supported 
in part by AFOSR Grant 74-2592. 
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continuously differentiable with respect to x, continuously differentiable with respect 
to t, and satisfies Eq. (1.2) pointwise.) Let 1? denote the closure of R and assume that 
q(x, t) C'(R), and that for each fixed x, —1 < x < 1, q(x, t) is an analytic function 
of t for It - TI < 1 T. (This domain of regularity is chosen in order to guarantee the 
global existence of the integral operators used in this paper—cf. [3].) Our aim is to 
construct a function w(x, t) which is a solution of Eq. (1.2) in R and approximates u(x, t) 
arbitrarily closely in the maximum norm on compact subsets of R. This will be accom-
plished by constructing a complete family of solutions to Eq. (1.2) in the maximum norm 
and then minimizing the L 2  norm of a finite linear combination of these solutions over 
the base and vertical sides of R. 

We first consider Eq. (1.1). In [9] Rosenbloom and Widder have constructed a set 
of polynomial solutions to Eq. (1.1) which are defined by 

tn/21 

h(x, t) = n! 	
(n - 2k)! k! 

( rH(___
x = 

- t 	(_4t)h/2) , 	 (2.2) 

where H(z) denotes the Hermite polynomials. In [12] Widder showed that the set 
{h a(X, t)} was complete in the space of solutions to Eq. (1.1) which are analytic in a 
neighborhood of the origin, i.e. if h(x, t) is a solution of Eq. (1.1) which is analytic for 
IxI 	x0 , I tI :!~ t0  (where x and t are complex variables) then on the rectangle — x0  < x 
x0 , —t0  < t < t0  , h(x, t) can be approximated in the maximum norm by a finite linear 
combination of members of the set I h(x, t) }. The lemma below shows that the set 
{h(x, t)} is in fact complete for the space of strong solutions of Eq. (1.1) which are 
defined in R and continuous in R. 

LEMMA 2.1. Let h(x, t) be a (strong) solution of Eq. (1.1) in R which is continouus 
in R. Then, given > 0, there exist constants a 1  , 	 , a such that 

max lh(x, t) 
- : 

ah(x, t) < 4E . 

Proof: By the Weierstrass approximation theorem and the maximum principle 
for the heat equation [7], there exists a solution w 1 (x, t) of Eq. (1.1) in 1? which assumes 
polynomial initial and boundary data such that 

max Ih(x, t) - w 1 (x, t)I < E/3. 	 (2.3) 
(, t)ER 

Let 

w 1 (-1, t) 
=

bm t", 	w1 (1, t) = 

and look for a solution of Eq. (1.1) in the form 

v(x, t) = EVm(X)t" 	 (2.4) 

where v(— 1, t) = w 1 (— 1, t), v(1, t) = w1 (1, t). Substituting Eq. (2.4) into Eq. (1.1) 
leads to the following recursion scheme for the vm(x): 
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, 	 , VM ,  = 0; 	VM(1) = bM , 	VM(1) = CM 

= MvM , 	vM_1( - 1) = bM_l , 	V1f_1(1) = CM_i , 	(2.5) 

,, - — v1 ; 	v 0(-1) = b0  , 	v o (1) = c0  

Eq. (2.5) shows that each vm(x) is a polynomial in x and is uniquely determined. Now 
consider w 2 (x, t) = w1(x, 1) - v(x, t). By the method of separation of variables it is seen 
that there exist constants d 1  , . , dL such that 

max lw,(x, t) - 	d1  sin (x + 1) exp 
(__t) <• 
	(2.6) 

(,t)ER 	 1-0 	 3 

Hence there exists a solution w 3 (x, t) of Eq. (1.1) which is an entire function of the complex 
variables x and I such that 

max Ih(x, I) - w 3 (x, 1)1 < 	 (2.7) 
(. t)E 

From the previously mentioned results of [12] there exist positive constants a 1  , 	, a 
such that 

I 

max w 3 (x, I) - N ah(x, t)I <, 	 (2.8) 
(,g)E 	I 	 n-0 	 I 

and the proof of the lemma now follows immediately from the triangle inequality. 
We now want to construct a complete family of solutions to Eq. (1.2) which is 

analogous to the family { h(x, I) I for the heat equation. To accomplish this we make use 
of the integral operators constructed in [3].  Let u(x, I) E  C° (1) be a (strong) solution 
of Eq. (1.2) in R such that u(O, I) = 0. Then from [3] we have that u(x, I) can be repre-
sented in the form 

u(x, I) = h(x, I) + T K(s, x, t)h(s, 1) ds 	 (2.9) 

where h(x, I) is a solution of Eq. (1.1) in R satisfying h(0, I) = 0 and K(s, x, I) is defined 
by 

K(s, x, I) = [E(s, x, I) - E(—s, x, 1)] 	 (2.10) 

where 2Q, 71, I) = E( - 	+ 7, I) can be constructed by the recursion scheme 

, I) = ii 	, 

,, I) = - 
1E 

q(s, 1) ds + 	q(s, I) cis, 

, I) = - f q(s, 1) ds + f q(s, t) ds, 

+ f
'7 

f 	, t) - q( + , t)E,, , 1)) dd; 	n 	1. 	(2.11) 
Jo o 
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The sequence {j converges uniformly for (x, 1) E  1?, —1 < s < 1. The convergence 
of the sequence j Rnj is quite rapid and good approximations can be found by terminating 
the recursion process after several iterations. Error estimates for such an approximating 
procedure can be found in [3].  If instead of the condition u(O, t) = 0 we have that u(x, t) 
satisfies u(0, t) = 0, then we can represent u(x, 1) in the form 

u(x, t) = h(x, t) + f M(s, x, t)h(s, 1) ds 	 (2.12) 

where h(x, t) is a solution of Eq. (1.1) in R satisfying h(0, t) = 0 and M(s, x, 1) is defined 
by 

M(s, x, t) = [G(s, x, t) + G(—s, x, t)] 	 (2.13) 

where 0Q, 77, 1) = 	- n, + 17, t) can be constructed viathe recursion scheme 

, t) = lim &(, 17, 01 

, t) = - f q(s, t) ds - f q(s, t) ds 	 (2.14) 

• 	 'lea 
+ f f ( &(, n, t) - q(, , t)&(E, , t)) d d; 	n 	1. 

The sequence {&} again converges rapidly and uniformly for (x, t) E 1?, —1 < s < 1. 
Observing that for n > 0, h2,,(x, t) is an even function of x and that for n > 0, h2+1 (x, t) 
is an odd function of x, we now define the particular solutions u(x, t) of Eq. (1.2) by 

u2 (x, t) = h2 (x, t) + T M(s, x, t)h 2 (s, t) ds; 	n 	0, 
 

u2+1(x, 1) = h2 , +1(x, t) + T K(s, x, t)h 2 ,, +1(s, t) ds; 	n > 0. 

LEMMA 2.2: Let u(x, t) be a (strong) solution of Eq. (1.2) in R which is continuous 
in 1. Then, given e > 0, there exist constants a 1  , 	, a such that 

max u(x, t) - 	au,(x, t) < €. 

Proof: We first show that u(x, 1) can be represented in the form 

u(x, t) = h(x, 1) + f [K(s, x, t) + M(s, x, t)]h(s, t) ds 	(2.16) 

where h(x, t) is a solution of Eq. (1.1) in R. Eq. (2.16) is a Volterra integral equation 
of the second kind for h(x, t) and can be uniquely solved for h(x, t) where h(x, t) is defined 
in Rand continuous in R [11]. It remains to be shown that h(x, t) is a solution of Eq. (1.1). 
From Eqs. (2.10) and (2.13) we have that K(s, x, t) = —K(—s, x, t) and M(s, x, t) = 
M(—s, x, t) and hence we can rewrite Eq. (2.16) in the form 

u(x, t) =(h(x, t) — h(—x, 1)) + f K(s, x, t)[h(s, t) — h(—s, t)] ds 

+(h(x, t) + h(—x, t)) + f M(s, x, t)[h(s,  t)  + h(—s, 1)] ds. 	(2.17) 
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Applying the differential operator (1.2) to both sides of Eq. (2.17), using the fact that 
K(s, x, t) and M(s, x, t) are solutions of the following initial boundary value problems [3] 

K,. - K,, + q(x, t)K = K, , 	 (2.18a) 

K(x, x, t) = - f q(s, t) ds, 	K(0, x, t) = 0, 	 (2.18b) 

M. - M,. + q(x, t)M = M, 	 (2.19a) 

M(x, x, t) = - f q(s, t) ds, 	M,0, x, t) 	0, 	(2.19b) 

and rewriting the resulting expression in the form of Eq. (2.16), gives 

	

0 = (h,, - h,) + f [K(s, x, t) + M(s, x, t)](h,.(s, t) - h,(s, t)) ds. 	(2.20) 

Since solutions of Volterra integral equations of the second kind are unique we can 

conclude that h(x, t) is a solution of Eq. (1.1) in R. 
Using Lemma 2.1, we now approximate h(x, t) by a linear combination of the poly-

nomials defined in Eq. (2.2) such that 
N 

max lh(x, 1) - E ah(x, t) < 1 	C 	
(2.21) 

(r,t)E 	I 	n-O 

where 
C = max K(s, x, 1) + M(s, x, t)I. 

(..t)E 

Eqs. (2.16), (2.17) and the fact that h2 (x, t) is an even function of x and h2+ ,(x, t) is 

an odd function of x for n > 0 now show that 

max u 	t) - 	au(x, t) < E. 	 (2.22) 
t)E 

THEOREM 2.1: Let u(x, t) be a (strong) solution of Eq. (1.2) in R which is continuous 

in E and satisfies the initial-boundary data (2.1). Let R. be a compact subset of R. Let 

N be a positive integer and define aln and bk  , k = 0, 1, ... , N, n = 0, 1, ... , N, by 

the formulas 

	

1.1 	 1.T 

ak 
= J u(-1, t)uk(-1, t) dt+ j u(x, 0)uk(x, 0) dx + J u(1, t)uk(1, t) dt, 

bk 	

o 	 -1 	 0 

g.1 

	

= J f(t)u k (— 1, t) dt + / h(x)uk (x, 0) dx + J 9(t)uk(1, t) dt. 	 (2.23) 
0 	 0 

Then there exists a unique solution c 1  , 	, 	of the linear algebraic system 

E afr c = bk  ; 	k = 0, 1, ... , N, 	 (2.24) 

and given € > 0 we have 

	

1) - 	 t) < € 	 (2.25) 

for N sufficiently large. 
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Proof: Let G(x, t, t , r) be the Green's function for Eq. (1.2) in R. Then u(x, t) can 
be represented in the form 

u(x, 0
= f 	G(x, t, —1, r)f(r) dr 

- f £ G(x, t, 1, r)q(r) dr 

	

+ f I G(x, t, E,  0)h() d 	(2.26) 

where G(x, t, , r) is continuous for (x, t, t , r) E  R 0  X aR. Hence for (x, t) E  R 0  we have 
by Schwarz's inequality 

max 

	

(ER, 
 Iu(x, t)1 2  ~ c[JT  If(r)1 2  dr + f Ig(r)I 2  dr + L h(t) d] 	(2.27) 

where 

IT 
C = max 	f 1~- G(x,  t, —1, r) dr + f 	G(x, t 1 r) dr 

(,t)ER. 1.7 0 

	

+ f G(x, t, t , O)j 2 dE. 	(2.28) 

From Lemma 2.2 we can conclude that for N sufficiently large there exist constants 
C 1  , 	, C such that 

	

N 2 	 2 

max u(x, t) - 	 cu(x, t)f 
< 2C(T + 1) 	 (2.29) 

(, t)ER 	 ,0 	 I 

and Eq. (2.27) (applied to u(x, t) - EoN cu,,(x, t) instead of u(x, t)) shows that a 
suitable choice of the constants c1, • ,CN can be determined by minimizing the quadratic 
functional 

Q(c1 , ... , Cl) 
= 

j7. 
f(r) — 	cu,(-1, 	dr 

+  j'
T N 2 1 N 2 

g(r) — cu(1, i-)j dr + f  - 0) d. (2.30) 

We note that Q(c 1  , ... , C•) is always positive or zero and hence its only stationary point 
represents a minimum. This minimum can be found by solving the set of equations 
t3Q/t9c,, = 0 and this leads to the system (2.23), (2.24). Since the set {u,.(x, t)}_0N  is 
linearly independent (this follows from the fact that the set {v(x, t) }N  is linearly 
independent) the coefficient matrix (ak) is nonsingular and hence the system (2.23), 
(2.24) has a unique solution. (Here use has been made of the fact that if a solution of 
Eq. (1.2) vanishes on the base and vertical sides of R it must be identically zero through-
out R [7]). If c 1 , , c is the solution of the system (2.24) then Eqs. (2.27) and (2.29) 
imply the validity of Eq. (2.25). 

We note in passing that error estimates for the above approximation procedure can be 
found if one can estimate the maximum of u(x, t) — E,_oN cu(x, t) I on the base and 
vertical sides of R. The maximum principle for parabolic equations [7] then immediately 
gives estimates for Iu(x, t) — E._0 cu(x, t)l in the interior of R. 
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3. The first initial boundary value problem in a quarter plane. In this section we 
will derive constructive methods for approximating solutions of Eq. (1.2) which satisfy 
the initial-boundary data 

u(O, t) = 0; 
	

0 < t < T, 	 (3.1) 

u(x,O) = 
	 0 < X < a), 

where we assume f(x) is continuous, f(0) = 0, and there exist positive constants 'I'[ and A 

such that 

II(x)I :!5 M exp Ax 2 ; 	0 < x < 	. 
	 (3.2) 

We will look for a solution u(x, t) of Eq. (1.2) in 0 < x < , 0 < t < T < 1/4A which 

is continuous for 0 x < co , 0 < t < T, satisfies the initial-boundary data (3.1), and 

satisfies a bound of the form 

Iu(x, t)I ~ M 1  exp A,x 2 ; 	0 < X < 02, 	0 < t < T 	(3.3) 

for some positive constants M 1  and A 1  (cf. [7], Ch. 4). For the sake of simplicity we will 

only consider the case when q(x, t) = q(x) is independent of t, and make the assumption 

that q(x) is continuously differentiable for 0 < x < a) and is bounded in absolute 

value by a positive constant C for 0 < x < . In order to exploit the construction of the 

kernel K(s, x, t) already given in Eqs. (2.10), (2.11) we will assume without loss of 

generality that q(x) has been extended to a continuously differentiable function defined 

for - < x < . The method we will use to solve the initial-boundary value problem 
(1.2), (3.1), is basically an application of the reflection principle (or "method of images") 
for parabolic equations derived in [3]. 

We look for a solution of Eqs. (1.2) and (3.1) in the form 

	

u(x, t) = h(x, t) + f K(s, x)h(s, t) ds 	 (3.9) 

where K(s, x) is defined by Eqs. (2.10) and (2.11) (noting that q(x, t) = q(x) is indepen-

dent of t and hence so is K(s, x, t) = K(s, x)) and h(x, t) is a (strong) solution of Eq. (1.1) 

for 0 < x < , 0 < t < T, satisfying h(0, t) = 0. Note that by the reflection principle 

for the heat equation we can conclude that h(x, 1) is in fact a solution of the heat equation 

for - < x < a, 0 < t < T and hence u(x, t) is a strong solution of Eq. (1.2) in this 

region. Evaluating Eq. (3.9) at t = 0 leads to a Volterra integral equation of the second 

kind for the unknown function h(x, 0) and from this data along with h(0, t) = 0 it is 

possible to construct h(x, t) in the region 0 < x < a), 0 < t < T, provided we know that 

h(x, 0) satisfies a bound of the form (3.2). However, the construction of h(x, 0) and the 
estimation of its rate of growth is based on the construction and rate of growth of the 
resolvent kernel for Eq. (3.9). But the resolvent kernel is obtained by an iteration pro-
cedure involving the kernel K(s, x) which in tutn is constructed by the iteration procedure 
(2.11). Hence, in order to solve the initial boundary value problem (1.2), (3.1) by the 
use of the integral operator (3.9), it is important to provide a better method of construct-
ing the resolvent kernel for Eq. (3.9). We will now show how this can be done by reducing 
the construction of the resolvent kernel to the problem of solving a Goursat problem for 
a hyperbolic equation. 

We look for a solution h(x, t) of Eq. (1.1) in the form 



384 	 DAVID COLTON 

	

h(x, 1) = u(x, t) + T F(s, x)u(s, t) ds 	 (3.10) 

where u(x, t) is a solution of Eq. (1.2) in 0 < x < co
, 0 < t < T, is Continuously dif-

ferentiableforO < x < cz,0 < t < T, continuousforO < x < 0,0 <t < T,and 
satisfies the boundary condition u(0, 1) = 0 for 0 < t < T. Substituting Eq. (3.10) 
into Eq. (1.1) and integrating by parts shows that h(x, t) will be a solution of Eq. (1.1) 
provided r(s, x) satisfies the Goursat problem 

- 	 - q(s)r = 0 	 (3.11a) 

F(x, x) = 	q(s) ds, 	F(0, x) = 0. 	 (3.11b) 

From [5, p.  1191, it is seen that the unique solution r(E, ) = 	
- 'i, E + ) of Eqs. 

(3.11a), (3.11b) is given by the iterative scheme 

,) = lim r, 

r,(E, 77) = 	f  q(s) ds, 	 (3.12) 

= j q(s) ds 
- f f q( + 'i)f, 77)d d77; 	n > 1. 

Hence the existence of the operator (3.10) is established. From the initial conditions 
(3.11b) and (2.18b) satisfied by the kernels F(s, x) and K(s, x) respectively, it is seen that 
the operators (3.9) and (3.10) leave the Cauchy data assumed by h(x, t) and u(x, t) 
invariant. Hence from the uniqueness of the solution to Cauchy's problem for parabolic 
equations [8] we can conclude that the operators defined by Eqs. (3.9) and (3.10) are 
inverses of one another, i.e. T(s, x) is the resolvent kernel of the operator (3.9). 

We now want to obtain an estimate on the rate of growth of r(s, x) for 0 < s 
0 <x < . Sincex = E + 'i,s = - 'i,itisseenthatunder these restrictions on sand x 
we have 

. 	 n, n -~ 0. Since Iq(x)j < C for 0 < x < 	, it is seen from Eq. (3.12) that 
for 	n, n ~! 0,  IN ,  7)1 < P(, ) wthere P(E, ) is defined by the recursion scheme 

P(, 77) = limP,, 77), 

P,(, ,) = C, 	 (3.13) 

P +1(, 77) = c + C f L P(E, ,i)dE d77. 

Hence 

= 	
(k + 1)! k! 	

(3.14) 
k! k! 

= CI0 (2(CEn)") 
where Io (z) denotes the modified Bessel function of the first kind. From the asymptotic 
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expansion of 10 (z) (cf. [41) we can now conclude that there exists a positive constant C 1  

such that 

0 < P(, ,i) < Ct exp (2(C77)" 2); 	 (3.15) 

i.e.forO<s<x,0<x< w, 

Ir(s, x)I :5 C1x exp ('C x). 	 (3.16) 

From the above analysis and the fact that K(s, x) satisfies a Goursat problem of the 
sameformas F(s, x) (cf. Eqs. (2.18a), (2.18b)), itisseenthatforO < s < x, 0 < x < , 

K(s, x) also satisfies the inequality 

K(s, x)I :!~ C1x exp (v'C x). 	 (3.17) 

We now return to the initial boundary value problem (1.2), (3.1). From Eqs. (3.2), 
(3.10) and (3.16) we have 

q(x) = h(x, 0) = f(x) + f r(s, x)f(s) ds 	 (3.18) 

andfor0<x< - 

Ig(x)I :!~ M exp (Ax 2)[1 + C1x 2  exp /C x] 

:!~ C2  exp [(A + €)x2] 
	

(3.19) 

for > 0 fixed but arbitrarily small and C 2  a positive constant. Using the "method of 

images" , we now define the solution h(x, t) of Eq. (1.1) by 

h(x, t) 
= f fs(x - y, t) - s(x + y, t)g(y) dy 	 (3.20) 

where 

1/ x\ 
s(x, 0

- (4irt)"2 
exp 	 (3.21) 

From [7] it is seen that h(x, t) is a strong solution of Eq. (1.1) for - <x , 0 < t < T, 

is continuous for - <x < co , 0 < t < T, assumes the initial-boundary data h(0, 1) = 

h(0,t) = 0,0 < t < T,h(x,0) = g(x),0 :!~ x < a,andsatisfieslh(x, t)I :5 M2 expA 2x 2  

for suitable constants M 2  and A 2  and 0 f~, x < , 0 :!5 t < T. Since from our previous 

discussion we have 

1(x) = g(x) + T K(s, x)g(s) ds, 	 (3.22) 

it is seen that Eqs. (3.18), (3.20) and (3.9) now define the solution of the initial boundary 
value problem (1.2), (3.1) for 0 < x < co , 0 < I < T. From Eq. (3.17) and the bound on 

h(x, I) we can conclude that the inequality (3.3) is valid. 
For (x, I) restricted to compact subsets of 0 < x < , 0 < I < T, approximations 

of the solution to the initial boundary value problem (1.2), (3.1) can be obtained by 
using the recursion schemes (2.10)—(2.11) and (3.12) to approximate the kernels K(s, x) 

and F (s, x) respectively. Error estimates for such an approximation procedure can be 
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found from estimates of the form (3.13), (3.14). For (x, t) again restricted to compact 
subsets of 0 < x < m, 0 < I < T, the improper integral (3.20) can be accurately approx-
imated by a proper integral by setting s(x, t) = 0 for IxI sufficiently large. This is partic-
ularly useful if 1(x) satisfies a bound of the form If(x) I M exp Ax instead of the bound 
in Eq. (3.2), since in this case an estimate of the form (3.19) leads to a similar bound for 
g(x), thus speeding up the convergence of the integral (3.20). The problem of dealing 
with the improper integral (3.20) is avoided completely if we make the assumption that 
q(x) and 1(x) both vanish for x > x 0  . In this case we have from Eq. (3.18) that 

g(x) 
=  T F(s, x)f(s) ds 	 (3.23) 

for x > x0  . But for x > 3x 0  we have E 	= 12 (x - s) ~! x0 , and hence from Eq. (3.12) 
it is seen that F(s, x) 	0 for 0 < s < x0  , x > 3x0 . Therefore from Eq. (3.23) it is seen 
that ü(x) 	0 for x > 3x 0  and the integral (3.20) reduces to a proper integral. 
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COMPLETE FAMILIES OF SOLUTIONS FOR 
PARABOLIC EQUATIONS WITH ANALYFIC COEFFICIENTS* 

DAVID COLTONt 

Absiract. A complete family of solutions is constructed for the general linear second order parabolic - 
equation in one space variable with entire coefficients defined in a domain with moving boundary and 
for a class of second order parabolic equations in two space variables with entire coefficients defined 
in a cylindrical domain. The construction is based on the use of integral operators and results on the 
analytic continuation of solutions to partial differential equations with analytic coefficients. A numerical 
example is given which uses a complete family of solutions to approximate the solution to the first 
initial-boundary value problem for a parabolic equation in one space variable defined in a cylindrical 
domain. 

1. Introduction. One of the more important applications of integral operators 
for elliptic equations is their use in constructing a complete family of solutions for 
the equation under investigation and thus providing a method for approximating 
the solutions to a wide variety of boundary value problems associated with 
equatien of elliptic type (cf. [1], [7], [9], [11], [13], [15]). In recent papers ([3], [5]) 
the author has constructed an integral operator for the parabolic equation 

(1.1) 	 u + a(x, t)u + b(x, t)u = U, 

and showed how this operator could be used to construct a complete family of 
solutions to (1.1) in a rectangle. These last  two papers lay the foundation for using 
integral operator methods to solve initial-boundary value problems for parabolic 
equations in a manner analogous to their use in the solution of elliptic boundary 
value problems. It is the purpose of this paper to extend the results of [5] in three 
different directions: 

Instead of(1.1) we will consider the general linear second order parabolic 
equation 

(1.2) 	 u + à(x, t)u + b(x,'t)u = c(x, t)u,. 

We will construct a set of solutions to (1.2) which are complete with 
respect to the maximum norm over the closure of domains with moving boundaries 
instead 'of only in a rectangle. 

We will show how these results áan be extended to the case of parabolic 
equations in two space variables defined in cylindrical domains. 

Numerical experiments on using the methods described in this paper to 
solve initial-boundary value problems for parabolic equations are presently being 
carried out by Y. F. Chang of the Data Systems and Services Department at 
Indiana University, and we hope to report on this in detail in the near future. 
A preliminary numerical example taken from this work is given in § 4 of this paper. 

2. Complete families of solutions for parabolic equations in one space variable. 
We consider (1.2) and for the sake of simplicity assume that the coefficients 
a(x, t), b(x, t) and c(x, t) are entire functions of their independent (complex) variables. 
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t Department of Mathematics, Indiana University, Bloomington, Indiana 47401. Now at Uni-

versity of Strathclyde, Glasgow, Scotland. This research was supported in part under AFOSR Grant 
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We will further assume that c(x, t) > 0 for - < x < 00 , 0 :!~ t t0  and, again 
for the sake of simplicity, that 

(2.1) 	f ..14s, t) ds 	f lc(s, t) ds =. oo. 

We note at .this point that due to the analyticity of the coefficients, every classical 
solution of (1.2) (i.e., a solution of (1.2) that is twice continuously differentiable 
with respect to x and continuously differentiable with respect to t) in a domain D 
is in fact analytic with respect to x and infinitely differentiable (but not necessarily 
analytic) with respect to t. Our aim is to construct a complete family of solutions 
with respect to the maximum norm for (1.2) defined in a region D bounded by the 
characteristics t = 0 and t = t0  as well as the analytic curves x = s 1 (t) and x = s2(t) 
where s 1 (t) < s2(t) for 0 . t t0 . The one-to-one analytic transformation 

(2.2) 	 = 

f

X
v/T)d s,  

o 
•reduces (1.2) to an equation of the same form but with c(x, t) = 1. The domain D 
is transformed into a domain in the 

(, r)-plane of the same form as that described 
above. Hence we can assume c(x, t) = 1 in (1.2) to begin with. If we now set 

) 
(2.3) 	 u(x, t) = v(x, t) exp 	fx 

	

 a(s, 0 ds
20 	 ) 

We arrive at an equation for v(x, t) Of the same form as(1.2) but with a(x, t) = 0. 
Hence, without loss of generality, we can restrict ourselves to equations of the 
canonical form 

(2.4) 	 u + q(x, t)u = u, 

where (due to the assumption (2.1)) q(x, t) is analytic for - <x < oc , 0 t 
and consider classical solutions of (2.4) which continuously assume the initial-
boundary data 

(25) 	
u(s 1(0 1  0 = f(t), u(s 2(t), 0 = g(t), 	0 :!5; t '~C t0 , 

	

u(x, 0) = h(x), 	s(0) ::5  x <s2(0), 

where x = s 1 (t) and x = s2 (t) are ana!ytic arcssatisfying 

s 1 (t) < s2(t) forO 	t 	t0 , f(0) = h(s 1 (0)), g(0) = 

and f(t), g(t) and h(x) are continuous functions of their independent variables. 
Now suppose that for a given c> 0 we are able to construct a solution 

w(x, t) of(2.4) defined in a rectangle R = {(x, t): —x0  :!5 x :!9 x0 , 0 	t.:5 t0} such 
thatDcRand 	 • 	 . 

(2.6) 	 max I u(x, t) - w(x, t)I <r/2, 
(x.t)cn 

where 15 denotes the closure of D. Let h(x, t) be defined by 
(n/21 	x.2kth1 

(2.7) 	 h(x, t) 
= k0 (' - 2k)!k! 
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and let u(x, t) be the solution of (2.4) defined by 

(2.8) 	 u(x, t) = h(x, t) + J 	P(s, x, t)h(s, t) ds, 
-x 

where P(s, x, t) is the (unique) solution of the initial value problem 

(2.9a) 	 P.. - P + q(x, t)P = P,, 

1 rx 
(2.9b) 	 P(x,x, t) = -- I q(s, t)ds, 

2 Jo 

(2.9c) 	 P(—x, x, t) = 0. 

The existence of the function P(s, x, t) and the fact that u(x, t) is a solution of (2.4) 
follows from the results of [3] and [5]. In particular, P(c, 17 , t) = N - ,, + ,, t) 
can be constructed by the iterative scheme 

,, t) = lim 	,, t), 
I, -. 00 

1 P1 (,11, t) = —j q(s, t)ds, 

(2.10) 1 f 
-- 	q(s,t)ds 

Jo 

+ J f 	q, t) - q( 	 dcdt, 
at 

n>1. 

The convergence of the sequence {,} is quite rapid and good approximations 
can be found by terminating the recursion process after several iterations. From 
the results of [5] we can now conclude that there exists an integer N and constants 
a1 , aN such that 

N 
max w(x, t) - 	aujx, t) <s/2 

(x,t)eR 	 n0 

and hence from (2.6), 
N 

(2.12) 	 max u(x, t) - 	t) <; 
(x.t)€D 	 n0 

i.e., the set {u(x, t)} is a complete family of solutions for (2.4) defined in D. If we 
first orthonormalize the set {u(, t)} over the base and sides of D, it is seen that 
on compact subsets of D we can approximate the solution to the first initial-
boundary value problem for (2.4) in D by the sum ap(x, t), where 

	

f
to

an = 
	

f(t)q(s 1 (t), t) dt 
+ J 	h(x)q(x, 0) dx 

(2.13) 	
0 	 si(0) 

+  f g(t)q,(s 2(t), t) dt 
0 
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and the set (q(x, t)} is obtained by applying the Gram-Schmidt process to the 
set {u(x, t)}. Since each (p,,(x, t) is a solution of(2.4), error estimates can be obtained 
by either applying the maximum principle for parabolic equations or the pointwise 
bounds for solutions established by Sigillito in [14]. Thus the problem we are 
considering will be solved if we can construct a function w(x, t) defined in R and 
satisfying (2.6), and we now turn our attention to this problem. 

From the existence theorem for the first initial-boundary value problem for 
parabolic equations, the maximum principle for parabolic equations and the 
Weierstrass approximation theorem, it is seen that there exists a solution w(x, t) 

of (2.4) in D satisfying analytic boundary data on x = s 1 (t), x = s 2(t) and t = 0 
such that (2.6) is valid. From the reflection principle for parabolic equations 
([3], [4]) (and the regularity theorems for solutions to initial-boundary value 
problems for parabolic equations—c.f. [8]) we can conclude that w(x, t) can be 
uniquely continued as a solution of(2.4) across the arc s 1 (t) into the region bounded 

by the characteristics t = t0 , t = 0, and the analytic curves x = 2s 1 (t) - s 2(t), 

x = s2(t). Applying the reflection principle a second time, but this time continuing 
w(x, t) across the arc s 2(t), shows that w(x, t) can be continued into the region 

bounded by t = t0 , t = 0, x = 2s 1 (t) - s 2(t) and x = 3s2(t) - 2s 1 (t). Due to the 

fact that s j (t) < s2(t) for 0 t t0 , it is seen that by repeating the above procedure 
we can continue w(x,t) into the entire infinite strip - <x < oo , 0 ~ t ~ t0 . 

In particular, there exists a rectangle R = D into which w(x, t) can be continued 
and we have thus established the existence of the desired function w(x, t). 

We now make use of the above results to construct a complete family of 
solutions to (1.2) without first reducing it to the canonical form (2.4). This is 
desirable from a computational point of view in order to eliminate the problem 
of inverting the transformation (2.2). From the above analysis and the fact that 
P(s, x, t) is analytic for - < s < oo , - < x < oo , 0 t t0  (cf. [3]) it is 
seen from equations (2.2)-(2.3) and (2.7)-(2.8) that every classical solution of (1.2) 
in D can be approximated arbitrarily closely in the maximum norm over D by 
a solution of(1.2) which is an analytic function of x and tin the strip - <x < 00 , 

o t t0 . Hence from the results of [2] we have that a complete family of 
solutions to (1.2) with respect to the maximum norm over D is given by 

1 	 - 

	

1 -2 
i'

u 2 (x, t) = —exp 	-J a(s, t)ds} 	E(1)(X, t, r)rdr, 
2iti 	fil-r1=6 

(2.14) 
1 H fa(s, E 2 (x, t, t)" dt,t)ds u21(x,t)=—ex 

2iri 

n=0,1,2, 

where 

00 

	

E'(x, t, r) = 	+ 	xp"'°(x, t, r), 
n=2 

(2.15) 
x 	 OD 

	

E 2 (x, t, r) = 	+ 	xp"(x, t, r) 
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with 
(l.l) = 

	

(1.2) - 	 c(x, t) 	q(x, t) 

- 2(t—r)2 2(t—t)' 

(2.16a) p(l.Ic+2) = - (1.k+1) 

k + 2 PX 

	

1 	- [ p (l.k) 

	

(k + 2)(k + 1) 	
+ q(x, t)p1 - c(x, t)p' " ], 	k > 1, 

= 0, 

	

- 	 c(x, t) 	q(x, t) 

- 6(t - r) 2  - 6(t - 

(2.16b) 
p(2.k+2) = - 2 	(2,k+1) 

k + 

	

- 	 [ p (2.k) 

	

(k + 2)(k + 1) 	
+ q(x, t)p 2"  - c(x, t)p 2 " 1], 	k 	2, 

and 

(2.17) 	q(x, t) = b(x, t) -  [a_(x, t) + a2(x, t) - c(x,  t) fx 
a(s, t)ds]. 

The convergence of the series (2.15) for t r and estimates on the rate of this 
convergence can be found in [2]. An approximation of the solution u(x, t) can be 
obtained by truncating the series (2.15) and computing the residue in (2.14). 

3. Complete families of solutions for parabolic equations in two space variables. 
In this section we will show how the methods developed in [5] and the previous 
section of this paper can be extended to include the case of the parabolic equation 
in two space variables 

(3.1) 	 u, + u + c(x, y)u = d(x, y)u 

defined in a cylindrical domain Q x T, where T = [0, to] and Q is a bounded 
simply connected domain whose boundary 3Q is three times continuously 
differentiable. We will assume for the sake of simplicity that c(x, y) and d(x, y) 
are entire functions of their independent (complex) variables and that furthermore 
c(x, y) ::~ 0, d(x, y)> 0, for (x, y) EQ =Q  U o9fl. 

Let u(x, y, t) be a (classical) solution of (3.1) which continuously assumes 
prescribed initial-boundary data on x T and !no  = {(x, y, t) : (x, y) e fl , t = 0}. 
From the maximum principle for parabolic equations and the Weierstrass approx-
imation theorem, we can assume, without loss of generality, that the boundary 
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data assumed by u(x, y, t) on öQ x T is a polynomial in t, i.e., 

	

(3.2) 	 u(x, y, t) = 	f(x, y), 	(x, y, t)eäQ x T, 

where the f(x, y) are Holder continuous functions defined on M. We now look 
for a solution of(3.1) in the form 

N 

	

(3.3) 	 w(x, y, t) = 	w(x, y)t" 
ii=0 

such that w(x, y, t) = u(x, y, t) for (x, y, t) e 	x T. From (3.1) and (3.2) it is seen 
that the functions w(x, y) must satisfy the recursive scheme 

a 2 WN I3WN 

y)EfL, ax 	 (x,  

WN(X,y)rfN(Xy) 	 (x,y)ei32, 
(34) 

32 w,, 	t3 2w, 
—i-  + —i- + c(x,y)w,, = (n + 1)d(x,y)w,, 1 , 	(x,y)eQ, ax 	ay 

w(x, y) = f(x, y), 	 (x, y)eaQ, 

for n = 0, 1, ... , N - 1. The existence of the w1(x, y) for n = 0, 1, ... , N follows 
from the smoothness of ac and the fact that c(x, y) 0 in fl. From the results of 
Vekua ([15, p. 156, p. 19]) and the fact that w(x, y) depends continuously on the 
nonhomogeneous term (n + 1) d(x, y)w. 1 (x, y), we can conclude that for e > 0 
there exists a solution w 1 (x, y, t) of(3. 1) which is an entire function of its independent 
(complex) variables such that 

	

(3.5) 	 max Iw i (x, y, t) - w(x, y, t)I < s/2. 
()XT 

Now let v(x, y, t) = u(x, y, t) - w(x, y, t) and let A. and (p,,(x, y) be the eigenvalues 
and eigenfunctions, respectively, that correspond to the eigenvalue problem 

	

(36) 	
+ uyy  +c(x,y)u + Ad(x,y)u = 0, 	(x,y)efl, 

u(x, y) = 0, 	 (x, y) E ac. 

From (3.2)-(3.4) and the expansion theorem for the eigenvalue problem (3.6) 
(c.f. [10, p.  229]) we can conclude that 

v(x, y, t) = > aq,(x, y)exp(-2t), 
(3.7) 

a = if v(x, y, 0)p(x, y) d(x, y)dx dy, 

where the series in (3.7) converges absolutely and uniformly in x T. By truncating 
the series in (3.7) and again appealing to the results of Vekua, we can conclude 
that there exists a solution w 2 (x, y, t) of (3.1) which is an entire function of its 
independent (complex) variables such that 

(3.8) 	 max 1w2(x, y, t) - v(x, y, t)J < /2. 
x T 
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The inequalities (3.5) and (3.8) now imply that there exists a solution Q(x, y, t) of 
(3.1) which is an entire function of its independent complex variables such that 

	

(3.9) 	 max JÜ(x, y, t) - u(x, y, t)I <&. 
jx T 

The above analysis shows that in order to approximate classical solutions 
of (3.1) with respect to the maximum norm over ) x T, it suffices to construct 
a family of solutions which are complete in the maximum norm over 0 x T with 
respect to the class of solutions to (3.1) which are entire functions of their inde-
pendent complex variables. From the results of [6] it is seen that such a complete 
family of solutions is given by 

U2n m(X, y, t) = Re f E(z, 2, t - t, s)t(1 - s2r112dsdt L 2ir:  

(3.10) 

U2 17 +1 m(X, y, t) = Im 
[f fi 

E(z, 2, t - t,$)zm(1 - s 2). _ (1 / 2) dsdt1 

n,m=0,1,2,..., 

where "Re" denotes "take the real part", "Im" denotes "take the imaginary 
part", z = x + iy, 2 = x - iy, and 

.z. - 	 1 

	

(3.11) 	E(z, z*, t, s) = - + 	s2z" j 
	

, t) d 
n=1 	0 

with 

p(2) = 2C(z, z *) 	2D(z, z *) 

t  
(3.12) 

fo
(2n + 1)P22  =_2[P217) +C(z, z*) 	P<2"d( - D(z, z*)  

 Jo 	j 

n>1, 
and 

1 Iz+ z.* Z_z* 
C(z,z*)=ck 2 '21 

(3.13) 
/ 

D(z, z*) = 1 d(
z+ z* z I. 
 2i 

Estimates on the rate of convergence of the series (3.11) can be found in [6], and 
approximations of the solution Un ,m(X, y, t) can be obtained by truncating the 
series (3.11) and computing the residue in (3.10). In particular, for the special case 
of the heat equation (c = 0, d = 1), we have 

	

I )I r2s2  (3.14) 	E(z, 2, t —. t, s)
k0 F(k+ 	(T)

k, 
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where r2  = zz = x 2  + y2, and using the result 

(3.15) 	 f i

(1 - )fl_ 

 

we have 

r(n ± )F(k + ) 
F'(n + k + 1) 

m 	r()r(m + 1 )r(n + rlk+hItsI_lc ,  Uinm(X, y, t) = cos nO 

(3.16) 	
k0 (k + 1)T(m - k + 1)F(n + k + 1) 

U21,+im(X,y,t)= sinnO 	r(+)r(m + 1)F'(n + ) 
k0 f(k + 1)f(m - k + 1)r(n + k + 

where x = r cos 6, y = r sin 0. Noting that since in this special case u(x, y, t) is 
a polynomial in x, y and t, it follows from the results of § 2 and the uniqueness 
theorem for Cauchy's problem for the heat equation that another complete 
family of solutions for the heat equation defined in 0 x T is given by 

(3.17) 	 Vnm(X, y, t) = h(x, t)hm(Y, t) 

for n, m = 0, 1, 2, ... , where h(x, t) is defined in (27). 

4. A numerical example. In this section we given an example of the use of the 
methods discussed in [5] and this paper to approximate the solution of the initial. 
boundary value problem 

(4.1) 	 UXX 	—1<x<1, 0<t<1, 

(42) 	
u( - 1, t) = exp(-4 - t), 	u(1, t) = exp(-4 - t), 	0 ~ t ~ 1, 

u(x, 0) = exp(—x 2), 	—1 :5 x < 1. 

Initial-boundary value problems for (4.1) defined in a domain with moving 
boundary can of course be treated in an identical manner. A complete family of 
solutions for (4.1) was constructed by using the operator (2.8). Since the coefficients 
of (4.1) are independent of t, so is P(s, x, t), i.e., P(s, x, t) = P(s, x). As an approx-
imation to the kernel P(s, x) we used P10(s, x) as defined by (2.10). A short calculation 
using (2.10) shows that 

(4.3) 	 max IP(s, x) - P10(s, x)I :5 1.6 x 10- 20  

The set {u(x, t)} obtained from (2.8) was then orthonormalized over the base and 
vertical sides of the rectangle - 1 :!~ x :!~ 1, 0 :!~ t :!9 1, to obtain the set {tp(x, t)} 
and the solution to the initial-boundary value problem (4.1), (4.2) was approximated 
by the sum 

14 

(4.4) 	 u*(x , t) 
=

a q,(x, t) 

with the coefficients a, n = 0, 1, ... , 14, given by (2.13). Note that since the 
solution of the initial-boundary value problem (4.1), (4.2) is an even function of x, 
the odd coefficients a 1 , a 3 , , a 13  in (4.4) all turn out to be identically zero. 
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The exact solution of the initial-boundary value problem (4.1), (4.2) is 

(4.5) 	 u(x, t) = exp(-4x2 - t). 

In Table 1 we give the values of u*(x , t) at selected grid points and also the relative 
error defined by 

(4.6) 	 relative error = 
u*(x, t) - u(x t) 

 
u(x,t) 

TABLE 1 

Approximate Relative - 	x I solution error 

o o 1.00000 -6.9580 x iO 
0.2 0 G98020 -3.3762 x iO 
0.4 0 0.92312 4.2696 x 10 
0.6 0 0.83527 8.0803 x 10 
0.8 0 0.72615 -4.3613 x 10 0  
1.0 0. 0.60653 -2.2466 x 10 

0 0.2 0.81873 4.0571 x 10_ 1  
0.2 0.2 0.80252 9.3730 x 10_b 
0.4 0.2 0.75578 2.7202 x 10 
0.6 0.2 0.68386 6.1830 x io 
0.8 0.2 0.59452 1.1356 x 10_s 
1.0 0.2 0.49659 1.5536 x 10 

0 0.4 0.67032 2.2209 x iO 
0.2 0.4 0.65705 1.7415 x iO 
0.4 0.4 0.61878 3.2910 x 10 1 ' 

0.6 0.4 0.55990 -3.6697 x 10 
0.8 0.4 0.48675 -1.0332 x 10_ 8  
1.0 0.4 0.40657 -2.0325 x 10_ 8  

0 0.6 0.54881 -1.1541 x iO 
0.2 0.6 0.53794 -8.6797 x 10 
0.4 0.6 0.50662 3.4421 x 10_ t0  
0.6 0.6 0.45841 3.6095 x 10 
0.8 0.6 0.39852 1.0898 x 10_ 8  
1.0 0.6 0.33287 2.4115 x 10 8  

0 0.8 0.44933 2.7676 x 10 
0.2 0.8 0.44043 2.5721 x iO 
0.4 0.8 0.41478 1.5339 x iO 
0.6 0.8 0.37531 -1.8415 x 10 
0.8 0.8 0.32628 -1.0323 x 10_ 8  
1.0 0.8 0.27253 -2.7649 x 10- 8  

0 1.0 0.36788 -7.3333 x 10'' 
0.2 1.0 0.36059 4.9411 x 10 0  
0.4 1.0 0.33960 2.3005 x iO 
0.6 1.0 0.30728 4.1011 x iO 
0.8 1.0 0.26714 -5.4443 x iO 
1.0 1.0 0.22313 -8.4473 x iO 
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Since u(x, t) and u*(x,  t) are even functions of x, values of the approximate solution 
and relative error are only given for 0 x 1, 0 t 1. Note that since each 
p(x, t) is a solution of(4.1), the maximum error (in absolute value) occurs on the 
base or vertical sides of the rectangle - 1 x 1, 0 t < 1; in this case at the 

points(x, t) = (± 1, 1), where the relative error is 8.4473 x 108  in absolute value. 

The computation time to construct u(x, t) (i.e., to find the coefficients a, 

the Taylor coefficients of (p(x, t), and to evaluate u*(x, t) at selected grid points) 

using the CDC 6600 computer was approximately six seconds. 

5. Concluding remarks. The main problem in constructing a complete family 
of solutions through the use of integral operators as discussed in this paper, is to 
show that every classical solution in a given domain can be approximated with 
respect to the maximum norm over the closure of the domain by a solution of the 
parabolic equation that is an entire, function of its independent complex variables. 
In the case of both one and two space variables, this was established through the 
use of results on the (global) analytic continuation of solutions to partial differen-
tial equations, in particular, the reflection principle for parabolic equations in 
one space variable ([3], [4]) and the results of Vekua which are based on knowledge 

- of the domain of regularity in the complex domain of solutions to elliptic equations 
in two independent variables (cf. [15, p. 32]). What has been established is the 
analogue of Runge's theorem in analytic function theory for classical solutions to 
parabolic equations in one and two space variables. In order to extend our results 
to parabolic equations in two space variables defined in domains with moving 
boundaries and to parabolic equations in more than two space variables, it is 
necessary to obtain sharper results on the analytic continuation (with respect to 
the space variables) of classical solutions to parabolic equations with analytic 
coefficients in several independent variables. This is a difficult problem and only 
partial results have been obtained so far. One notable result in this direction is 
the reflection principle obtained by C. D. Hill for analytic solutions of parabolic 
equations in two space variables ([12]). It is to be hoped that more refined results 
in this direction will be forthcoming in the not too distant future. 
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BERGMAN OPERATORS FOR PARABOLIC EQUATIONS 
IN TWO SPACE VARIABLES' 
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ABSTRACT. An integral operator is constructed which maps 
analytic functions of two complex variables onto the class of real 
valued analytic solutions of linear second order parabolic equations 
in two space variables with real valued, analytic, time independent 
coefficients. When the solution of the parabolic equation is inde-
pendent of the time variable the operator reduces to Bergman's 
integral operator for elliptic equations in two independent variables. 

I. Introduction. Although the analytic theory of elliptic equations has 
been extensively investigated by many mathematicians (cf. the monographs 
[1], [4], [81), little has been done in developing an analogous theory for 
parabolic equations (however see [2], [5], [61). An important method in 
the investigation of the analytic behaviour of solutions to elliptic equa-
tions has been the use of a variety of integral operators which map analytic 
functions onto solutions of the elliptic equation. In order-to undertake a 
similar study of parabolic equations it would be desirable to have similar 
tools at our disposal. An initial step in this direction was taken by Bergman 
in [2] (see also [1, pp.  74-78]) who constructed an integral operator for 
certain classes of parabolic equations in two space variables. However in 
addition to having a very complicated structure and being applicable to 
only a limited class of equations, the operator constructed by Bergman 
is not an onto mapping. In particular Bergman's operator maps analytic 
functions into a subclass of solutions of the differential equation which 
have a Taylor expansion of a certain form. In this note we will overcome 
the difficulties inherent in Bergman's approach and construct an integral 
operator which maps analytic functions of two complex variables onto 
real valued analytic solutions of the general linear second order parabolic 
equation in two independent variables with real valued, analytic, time 
independent coefficients. (Our analysis can easily be modified to include 
the case in which the coefficients also depend on time.) In particular we 
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will consider the parabolic equation (written in normal form) 

(1.1) 	u + u + a(x,y)u + b(x,y)u + c(x,y)u = d(x,y)u 

and make the assumption that the coefficients of equation (1.1) are entire 
functions of their independent (complex) variables (with minor modifica-
tions we could have assumed only that these coefficients are analytic in 
some polydisc in the space of two complex variables) and are real valued 
for x andy real. When the solution of equation (1.1) is independent oft 
we will show that our operator reduces to that of Bergman for elliptic 
equations in two independent variables. 

An alternate method to that of Bergman for constructing integral 
operators for elliptic equations in two independent variables has been 
given by Vekua [8]. In [6] Hill has constructed an integral operator for 
parabolic equations which is analogous to that of Vekua for elliptic 
equations. The advantages (and disadvantages) of our operator in com-
parison with that of Hill are comparable to a similar comparison between 
the operators of Bergman and Vekua for elliptic equations (cf. [1, p.  2]). 
We will not enter into such a discussion at this time, except to point out 
that the kernel of our operator is considerably easier to construct than 
that of Hill since the kernel of Hill's operator is expressed as an infinite 
series, each of whose terms is computed by solving a complex Goursat 
problem for an elliptic equation in two independent variables. 

II. An integral operator for equation (1.1). We first define the non-
singular transformation of the space C2  of two complex variables into 
itself by 

(2.1) 	 z=x+iy, 	z *= x _iy . 

Under such a transformation equation (1.1) assumes the form 

(2.2) 	+ A(z, z*)U, + B(z, z*)U2. + C(z, z*)U = D(z, z*)U 

where 
z 

	

U(z, z', t) = U 	 , - 

ir Iz+z* 
A(z, z*) = —I a 

4L \ 2 

r 
(2.3) 	B 	

j 
(z , z *)= -lal 

4L ' 2 

_ z *  

2i 	/ 

\ 
, 

/ 
+ 

\ 2i 	 2 	2i 

ib ( 

z_z*) 	/z+z z_z*\1 
— 	

. 21 	\ 	2 	
, 	

2t 

C 	1 /z + z zz  
(z , z *)=_ c ( 

4 \ 2 	/ 

D(z,z*)=d( 	
z_z*) 

4 	'., 	2 	' 	2i 
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Setting 

(2.4) 	V(z, z, t) = U(z, z, t)exP{J A(z, *) d*} 

reduces equation (2.2) to the canonical form 

(2.5) 	V. + (z, z*)V. + C(z, z*)V = D(z, z *)F 

where 

(z, z *) = B(z, z *) 	 *) d*, 

(2.6) 	
(z, z*) = —(A s  + AD - C), 

D(z, z *) = D(z, z *) .  

We now proceed to construct an integral operator which maps analytic 
functions of two complex variables onto analytic solutions of equation 
(2.5). In particular we look for solutions of equation (2.5) in the form 

V(z, zF, t) 

= 	f E(z, z, t - T, s)f(
2 
 (1 - s2), T) 	

s

ds dT 

27r, I–rI=b 	 (1 - ) —1  

where ô>O,f(z, t) is an analytic function of two ôomplex variables in a 
neighborhood of the origin in C2 , and E(z, z, 1, s) is a function to be 
determined. The first integral in equation (2.7) is an integration in the 
complex i-  plane in a counterclockwise direction about a circle of radius 5 
with centre at t, and the second integral is an integration over a curvilinear 
path in the unit disc in the complex s plane joining the points s= + 1 and 
s= —1. Substituting equation (2.7) into equation (2.5) and integrating by 
parts (cf. [1, p.  11]) show that E(z, z", t, s) must satisfy the differential 
equation 

(2.8) (1 - s2)E23  - ( l/s)E2  + 2sz(E. + BE2.  + (E - bEe) = 0, 

provided we also assume that E(z, z, t, s) is an analytic function of s for 
sIl, t for I'I (where ZI), and (z, z*)  in some neighbour-
hood of the origin in C2 . Motivated by Bergman's analysis for elliptic equa-
tions in two independent variables we now look for a solution of equation 
(2.8) in the form 

(2.9) 	E(z, z, t, s) = 	+ 	s2nznJ P(2n)(z 	, t) d. 

Substituting equation (2.9) into equation (2.8) yields the following 
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recursion formula for the coefficients P(2n): 

p(2) = - 	- A 

(2n + 1)P 2' 2  

(2.10) 	= _2[P2 + p(2 + 	p(2n) d* - Jp(2n) d*], 

n = l,2, 

Setting P 2) (z, z", t)=t' 1 Q (2) (z, z K, t) in equation (2.10) yields the 

following recursion formula for the Q(21): 

Q(2) = —2u - 2D, 

(2n + 1)Q 2 ' 2>  

r 	 Cz* 

	

= _2[tQ?' +  tiQ 2  + 	
Q(2n) d* 

0 

+ (n + 1)Dj Q(2n) d* - tbf Q2fl) d*], 

n = 1,2, 

It is clear from equation (2.10) that each of the p(2n), ,=l, 2, 	, is 

uniquely determined. In order to show the existence of the function 

E(z, z', t, s) it is now necessary to show the convergence of the series (2.9). 

To this end we first majorize the functions Q( 2 (z, z *, t). Let r be an 

arbitrarily large positive number and let B0  be a positive constant chosen 

such that for zI<r, z*I<r, we have 

	

(z z *) << 	B0 

(1 - z1r)(1 - z*/r)' 

(2.12) 	 C(z, z*) << 	
B0 	

* (1 - z1r)(1 - z /r) 

	

(z, z*) << 	
B0 

(1 - z1r)(1 - z */r) 

where "<<" denotes domination (cf. [1], [4]). We will now show by 

induction that there exist positive constants M and s (where s is inde-

pendent of n and M is a bounded function of n) such that for Izl<r, 
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Z*I< r , ItI<5, we have 

(2n) M2 2 â(1 + er 
2n — 1 

(2.13) 	 Y(2n-1)  / 	z\2-'1 I 	\—(2n-1)
X I1 1 ) 	(i—I rz. 

\ r 	\ 	ri 	\ 	2ô1/ 

This is clearly true for n = 1. Now suppose for n =k equation (2.13) is valid. 
Then from equations (2.11) and (2.12) and the straightforward use of the 
theory of dominants we have 

-2k+2 k+1fi 	\k 
Q(21C+2) 

<< 	
kL 	1 

2k + I 

(2.14) 	 + 	I 
B 0  / 

r + 	
r2 	

+ 	 + 
r2(k+1) 	r2  

x 11 	 — 

I. 	2k — 1 \ 	(2k — 1) 	(2k — 1)2 	261  

	

* —(2k-fl) 	—(2k+1) 	 y (2k+l )
x(1 —' (1 	-'\ 	 r

\ r/ 	\ 	rJ 	\ 	25 

In the derivation of equation (2.14) we have made use of the fact that 
t<<261 (1 —t12 1)-1  and that iff<<g then 

f<< g(l — z/r)i(1 — z*/r)_c(I 
— t/23 1)' 

for arbitrary positive integersj, k, and I. 
By setting 

B 0r 	 3nr 
(2.15) M 1  = M(1 + e){1 +

(2n 
— 1)2 (2n — I + r + 

261 )) 

we have shown that equation (2.13) is true for n=k+1, thus completing 
the induction step. Note that for n sufficiently large we have M 1 :!~ M, 
i.e. there exists a positive constant M which is independent of n such that 
M~ M for all n. 

We now turn to the convergence of the series (2.9). Let s0  1 and o> 1 
be positive constants and let IsIs 0 , IzI<r/o, Jz*I<r/c, and 5tJ:s:â 1 . 
rhen (1 —Izjfr) -~- (c- 1 )IcL, (I _Iz*I/r)(c_l)/oc, (1 —ItI/ 2o1)+, and 
From equation (2.14) it is seen that the series (2.9) is majorized by the 
;eries 

1 	' M 24n-1 2 nonfl 	\n 3n-2
ot  

2.16) 	 +> 6.  
n=i 5'(2n — 1)(x — 1)4 n_2  

is chosen such that 	 then the series 
:2.16) is convergent. Since r is an arbitrarily large positive number and 
s arbitrarily small and independent of r, we can now conclude that the 
eries (2.9) converges absolutely and uniformly for IzI<r, Iz*l<r, IsI:5so, 
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0ItIo1 for r, 6 1 , and s0  arbitrarily large and 6 0 >0 arbitrarily small, 

i.e. E(z, z, t, s) is an entire function of its independent variables except 
for an (essential) singularity at t=0. 

We have now shown that the operator P2  defined by 

U(z, z', t) = P2 {f} 

	

(2.17) 	
= 	exp(_J A(z,*)d*} 

1' 	* 	 fz 	2 \ 	dsd-r 
X 
 j 

E(z, z , t - r, s)f (1 - s )T) 
(1 - s2)112  

exists and maps analytic functions which are regular in some neighbour-
hood of the origin in C 2  into the class of (complex valued) solutions ot 
equation (2.2). An elementary power series analysis (cf. [8, pp. 55-56] 

coupled with Hormander's generalized Cauchy-Kowalewski theorem 
[71  

shows that solutions of equation (2.2) which are real valued for t real and 
z *=2 (i.e. x and y real) are uniquely determined by their values on th 
characteristic plane z *=0. Furthermore, since the coefficients of equatior 
(1.1) are real valued for x andy real, the operator Re P2{f} (where "Re' 
denotes "take the real part") defines a real valued solution of equatior 
(1.1) provided we set z *=2 and keep t real. Evaluating Re P2{f} at z *=( 

and keeping t real gives 

U(z,0,t) 
= --J 	f [f(1 - s2),T

4iri lt—rl=o —i 	2 

+ 1(0, r) exp(_JA(0 *) d*)] 

ds d'r 

	

(2.18) 	 x 
(1 	s2)112  - 	 (t — T) 

1 

 

f+lf(Z  
= 	 (1 - s2), t 	

ds 

/ (1 - s2)"2 
+ f(0, t) 

x exp - J 1(0, *) d*) 
( 	

Cz 

0 
where 

J(z, t) =f(2, t) and A(z, z *) = A(2, 2*) 

A solution of the integral equation (2.18) is given by [1, p.  12] 

f (~, t 
 ) 	1  fl2u(z(l - 2), 0, t) =-- 

	

(2.19) 	
2 

U(0 0, exp ( —f,2 A(0, *) d)I S2 
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where y  is a rectifiable arc joining the points s= —1 and s= +1 and not 
passing through the origin. Equations (2.18) and (2.19) show that if 
U(z, 2, t) is real valued for I real, then f(z, t) can be chosen such that 
U(z, 0, t) assumes prescribed values. We thus have the following theorem: 

THEOREM. Let u(x, y, t) be a real valued analytic solution of equation 
(1.1) defined in some neighborhood of the origin. Then u(x, y, t)= U(z, 2, t) 
can be represented in the form 

U(z, 2, t) = Re P2 {f} 

— 

= Re 1 - expc -f A(z, *) d* 

	

(2.20) 	[2i 	 } 

f+i dsdrl 
 E(z, 2, t - T s)f ( (1 - s2),T) 	

-S21/2jt–rl=o 1 

where E(z, z", I, s) is defined by equations (2.9) and (2.10) and is an entire 
function of its independent variables except for an essential singularity at 
t=0, and f(z, t) is defined by equation (2.19) and is analytic in some 
neighborhood of the origin in C 2. Conversely, for every analytic function 
f(z, I) defined in some neighbourhood of the origin in C 2 , equation (2.20) 
defines a real valued analytic solution of equation (1.1) in some neighbourhood 
of the origin. 

The representation (2.20) can now be used to analytically continue 
solutions of parabolic equations. For the type of theorems which can be 
obtained the reader is referred to the results for elliptic equations in two 
independent variables obtained in [1]. The operator defined by equation 
(2.20) is in fact closely related to Bergman's operator for elliptic equations 
in two independent variables. To see this we consider the case in which 
u(x, y, t)=u(x, y) is independent of I and hence satisfies the elliptic 
equation 

	

(2.21) 	u + u,,., + a(x, y)u + b(x, y)u1, + c(x, y)u = 0. 

In this situation the associated analytic function f(z, t)=f(z) is inde-
pendent of 1, and termwise integration in equation (2.20) yields the 
representation 

U(z, 2) = Re[exp{_JA(z *) d*} 

	

(2.22) 	 +1 	 d 
x 5 E(z, 2, s)f ( (1 - s2)) 

(1 - 2)1I2 
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where 

(2.23) 	E(z, z, s) = 1 + 	s 2 fj P(2n)(z *) d* 

with the p(2n)  being defined recursively by 

p(E) = — 2C, 

(2.24) (2n + 1)P 22>  = _2[P? + p(En)  + cf p(2n) 

n = 

A comparison of equations (2.22)-(2.24) with the corresponding formuk 
in [1] shows that the operator defined by equation (2.22) is identical witi 
Bergman's operator for elliptic equations in two independent variables 

In closing we note that it is also of interest to compare our integra: 
representation (2.20) for parabolic equations in two space variables witF 
the corresponding representation for elliptic equations in three inde. 
pendent variables obtained in [3]. 
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SYNOPSIS 

Let u be a real valued strong solution defined in a cylindrical domain of a linear second-order para-
bolic equation in two space variables with entire coefficients. Then it is shown that on compact 
subsets of its domain of definition u can be approximated arbitrarily closely in the maximum norm 
by an entire solution of the parabolic equation. 

1. INTRODUCTION 

In this paper we are concerned with the problem of approximating solutions of the 
general linear second-order parabolic equation 

UXX 	y, t)u+b(x, y, t)u 5 +c(x, y, t)u = d(x, y, t)u 	(1.1) 

defined in a cylindrical domain D x (0, T) where Z is a bounded simply connected 
domain in two-dimensional Euclidean space ti?2  (without loss of generality we will 
assume that Z contains the origin). It is assumed that the coefficients of (1.1) are 
entire functions of their independent (complex) variables, are real valued for x, y and 
t real, and that d(x, y, t) >0 in Z x (0, T). We will focus our attention on the problem 
of approximating real valued strong solutions of (1.1) in Z x (0, T), i.e. real valued 
solutions of (1.1) in D x (0, T) that are twice continuously differentiable with respect 
to x and y and continuously differentiable with respect to t (we note that from the 
regularity properties of solutions to parabolic equations [cf. 7] a strong solution of 
(1.1) is analytic in x and y and infinitely differentiable, but not necessarily analytic, 
with respect to t). In particular we will obtain the following generalisation of Runge's 
theorem in analytic function theory: If u(x, y, t) is a real valued strong solution of 
(1.1) in Z x (0, T) and Zo  x [6, T-5 0] is a compact subset of Z x (0, T), then for 
every e > 0 there exists an entire solution u0(x, y, t) of(1.1) (i.e. u0(x,y, t) is an entire 
function of its three independent complex variables and satisfies (1.1) for (x, y, t) e C 3 , 

the space of three complex variables) such that 

max 	Iu—u o l<c. 	 (1.2) 

In the case when the coefficients of (1.1) are independent of t and a = b = 0 a 
stronger version of this result has been proved in [6] and used there, in conjunction 
with the method of integral operators, to obtain constructive methods for solving 
initial-boundary value problems for parabolic equations. However, the methods 

* This paper was assisted in publication by a grant from the Carnegie Trust for the Universities 
of Scotland. 

t This research was supported in part by AFOSR Grant 74-2592. 
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used in [6] were based on separation of variables and the use of known results for 
elliptic equations in two independent variables, and are no longer applicable to the 
general case now under consideration. Our approach in this paper will instead be 
based on the construction of integral operators for (1.1) and the derivation of a result 
on the analytic continuation of analytic solutions to parabolic equations in two space 
variables. Fundamental to our investigation is the construction and use of a special 
solution to (1.1) known as the Riemann function for parabolic equations. In the 
special case of time-independent coefficients' this function was constructed in [4] and 
[10]. However, the methods used in these papers are not immediately applicable to 
the case of time dependent coefficients, and we will therefore construct the Riemann 
function for (1.1) through the use of integral operators. These integral operators are 
of interest in their own right since it is not only the first time that integral operators 
have been obtained for the general linear second-order parabolic equation in two 
space variables with time-dependent coefficients, but these operators are also of a 
form that are suitable for the development of constructive methods for solving the 
standard initial-boundary value problems associated with (1.1) [cf. 6]. 

The results obtained in this paper can be considered as the analogue for parabolic 
equations in two space variables of the fundamental results obtained by Bergman [1] 
and Vekua [11] on the analytic continuation and approximation of solutions to 
elliptic equations in two independent variables. In particular it is hoped that the 
present results on parabolic equations will lead to constructive methods for solving 
initial-boundary value problems for parabolic equations in a manner similar to that 
used by Bergman and Vekua to solve boundary value problems for elliptic equations. 
The missing step is to derive an analogue of Walsh's generalisation of Runge's 
theorem in analytic function theory [12] to the case of parabolic partial differential 
equations, i.e. to show that (L2) is valid over the closure of x (0, T) and not merely 
on compact subsets of this cylinder (in the case of elliptic equations the appropriate 
results can be found in [2 and 11]). The author is presently investigating this problem 
and will hopefully be' able to report some progress in this direction in the not too 
'distant future. 

2. INTEGRAL OPERATORS AND THE RIEMANN FUNCTION 

In this part of the paper we will construct integral operators which map analytic 
functions of two complex variables into analytic solutions of (1.1) and use one of 
these operators to construct the Riemann function for (1.1). Since these constructions 
closely follow our previous analysis for the case of time-independent coefficients 
[cf. 3, 5], we will try to make the presentation as brief as possible, referring the reader 
to earlier work for more details. 

The change of variables in C 2  
z=,x+iy 	

(21) 
z * =x_iy ,  

transforms (1.1) into the form 

L[U] = U.+A(z, z, t)U+B(z, z, t)Us+C(z, z', t)U—D(z, z', t)U = 0, (2.2) 
where A = *(a+ib), B = (a—ib); C = Ic and D ='*d.  We now loOk for solutions 
of (2.2) in the form ' ' 
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Z* 

U(z, z'', t)= - _1-_exp{_- JA(z a, t)da} 

\ dsdr f E(z, z, t, r, s)f((1_s2), )(1_S2)1/2' (2.3) 
JIt - I =oJ-i 

where 6> 0,f(z, t) is an analytic function of two complex variables in a neighbourhood 
of the origin in C2 , and E(z, z, t, t, s) is an (analytic) function to be determined. The 
first integral in (2.3) is an integration in the complex t plane in a counterclockwise 
direction about a circle of radius 6 with centre at t, and the second integral is an 
integration over a curvilinear path in the unit disc in the complex s plane joining the 
points s = + 1 and s = —I. Substituting (2.3) into (2.2) and integrating by parts 
shows that E(z, z', t, r, s) must satisfy the differential equation 

(1— s2)E. - 	+ 2sz(E. + BEE . + CE - 15E) = 0, 	(2.4) 

where fz* 
= B— 	A..da, ( = —(A+AB—C), 15= D. 

o 
We now look for a solution of (2.4) in the form 

E(z, z, 	
1 	s2"z n 

foz 
Q 2"(z, a, t, r)da. 	(2.5) t, t, s) = 	+ 

= i (t— t)  

Substituting (2.5) into (2.4) yields the following recursion formula for the Q 2": 

	

Q(2) = —2(t—r)c-215 	 (2.6) 

I fo

z
(2n+ 1)Q 2 " 2 	 2(t—)Q 2"±(t—r)BQ 2"+(t—t)C 	Q"da 

:±(n ± i)D f  Q (2 n
)da — (t — T)b 

f 
 Q(2fl)/] 

It is clear from (2.6) that each of the Q(2t0,  n = 1, 2, ..., is uniquely determined. In 
order to show the existence of.E(z, z'', t, t, s)it is now necessary to show the conver-
gence of the series (2.5) and it is to this end that we first majorise the functions Q(21). 

Let r and t0  be arbitrarily large positive numbers and let B0  be a positive constant 
such that for I z I <r, I z j <r, I t  I <t0  we have 

- 

B(z, z', t) < 	
B 
 

0 

.)(i-- 
\ 	rJ\ 	rJ\. 	t0  

D 	 (2.7) 
* #)  

o  

	

\/ 	*' 
(1— )(i— - ( 1-

9 

	

\. rJ\ 	.rJ\ 	t

Bo 
D(z, z', 

t)4 (i_ )(i_)(i_ 
to 
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where '<<'denotes 'domination' [cf. 1, 9]. We also have the fact that for I r  I 	to' 
It I<t0 , 

t_4to(1_ -s-). 	
(2.8) 

to  
It is now a straightforward matter [cf. 3] to show by induction that for any e>0 
and I z I<r, I z I<r, I t I<t, I T  I :!~- t0  we have (with respect to the variables z, z, 1) 

Q(2n) < M2t(1+e) 	1) 
 (i 

- z* )_(2n_ 1) 

(i - !)3" r 	(2.9) 

where 

M1 
= rB0(1+t0) 

t0(1 +e) 

M 1  = M0 +)_1  {i + 
(2n-1)2 

(2n — 1 + r + -_r)}. 
	

(2.10) 

 to 

Note that for n sufficiently large we have M +1 	M, i.e. there exists a positive con- 
stant M which is independent of n such that M.  < M for all n. Now let s0  I and 
c> 1 be positive constants such that 

r 
IsIso 	IzI<- 

IrI:!9to 	Iz*I< r 	 (2.11) 
Ot 

ItI<+t0 	50 :gIt—xI, 

where r and t0  are arbitrarily large (but fixed) positive numbers and 6 0  is arbitrarily 
small (but again fixed). Then from (2.9) it is seen that the series (2.5) is majorised by 
the series 

I 	 Al 
h. 

4n—i 2n n(I 	) fl 3n-3 

	

+ 	
r1VI 	 S0 'O 	 (2 12) 

60 	ni  6 1 (2n-1)(-1)4" 2  

If cc is chosen such that 16st 0(1+c)cc 3  '(c—ly 4 <l then the series (2i2) is con-
vergent. Since r, t0  and s0  can be arbitrarily large, 6 0  arbitrarily small, and s is inde-
pendent of r, t0 , s0  and 6, we can now conclude that the series (2.5) converges 
absolutely and uniformly on compact subsets of 

{(z, z, t, r, s):(z, z, t, z, S)EC 5 , t 

i.e. E(z, z'1', t, ; s) exists and is an entire function of its independent complex variables 
except for an (essential) singularity at t =  r. 

We have now shown that the operator F, (the subscript is to denote the fact that 
the integral operator P, is associated with the differential operator L defined in (2.2)) 
defined by 

1 	( 
U(z, f, 0 = P,{f(z, t)} = - - exp 

- I A(z, o,  t)dor  
2xz 	i 

\ dsdr 
x £ 	

= J E(z, z, t,; s)f((1_s2), t)(1 2)1 12 
(2.13) 

	

JIt_11 	a 
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exists and maps analytic functions of two complex variables into the class of (complex 
valued) solutions of (2.2). Since the coefficients of (1.1) are real valued for x, y and 
t real, the operator Re P,{f(z, t)} (where 'Re' denotes 'take the real part') defines a 
real valued solution of (1.1) provided we set z' = 2 and keep t real. Since real valued 
analytic solutions of (1.1) in a neighbourhood of the origin are uniquely determined 
by their values on the characteristic plane z' = 0 [cf. 3] we can now follow the 
analysis contained in [3] to conclude that if (u(x, y, t) = U(z, 2, t) is a real valued 
analytic solution of (1.1) in a neighbourhood of the origin then we can represent 
U(z, 2, t) in the form 

U(z, 2, t) = Re P,{f(z, t)}, 	 (2.14) 
where 

fa
z

i(. ) = - -_ f [uzi _2),  0, t)—U(0, 0, t) exp 
(—

A(0, a, t)da)]
ds  

A(z, z, t) = A(2, 2*,  1) 	 (2.15) 

and y is a rectifiable arc joining the points s = — 1 and s = + 1 and not passing 
through the origin. 

In addition to the operator Re F, defined alone we will also need to make use of a 
generalised form of the operator P, which will be denoted by P' and is defined by 

U(z, z', t) = P'{f(z, t)} = - __- 
27ri 

exp I — fc.* 
A(z, a, t)da} 

x  f 	= f E(z, z, 1, t 1 , s)f0  (1 —s2), 1) 
(1_s)1/2' 

 (2.16) 

where 5 >0, (, ) e C 2 , f(z, t) is an analytic function of two complex variables in 
some neighbourhood of the origin, and 

E(z, z', t, t 1 , s) = 	+ 	s2(z—CY 	Q 2"(z, a, t, t 1)da 	(2.17) 

with 
t—t 1 	= i (t—t 1 ) 	 . 

Q(2) = —2(t—t 1)-2 	 (2.18) 

(2n + 1)Q2 2) = —2 [(t — t 1)Q 2'0  + (t — t 1)BQ 2  +(t —t1) fcz.* Q2"da 

+ (n + 1) J Q 2'da — (t — t)D fz* Q 2!da].  

By slightly modifying our previous analysis for the case of the operator F, it can be 
seen that the operator P exists and maps analytic functions of two complex variables 
defined in some neighbourhood of the origin into the class of analytic solutions of 
(2.2) defined in some neighbourhood of the point (z, z, t) = (, ', 0). It is also easy 
to see that E(z, z, t, t, s) = E(z, z, t; C, *; t 1 , s) is an entire function of its seven 
independent complex variables except for an (essential) singularity at t = t 1 . 

We make the observation that if, as a function of t,f(z, t) has an isolated singularity 
at t = r for a given T e C', then U(z, z, t) = P'{f(z, t)} also has an isolated singu-
larity at t = T. 



312 	 David Colon 

We will now use the integral operator P associated with the. adjoint equation to 
(2.2) to construct the Riemann function for.(l.l). The Riemannfunction 

R(z, z", t; , *, t) 

for (1.1) is defined to be the (unique) solution of the adjoint equation 

M[V] 	a(AV) - 
8(BV) cv --(DV)=0 	(2i9) az 	az 	at 

satisfying the initial data 

	

R(z, , t; (, , 	
1 

) = 	exp 	B(, , t)da} 
t—t  - 	ff~ 

1 	Cz 	 (2.20) 
R(, z,  t; , 	r)= —exp I A(, a., t)da 

(J. 
One approach towards constructing the Riemann function has been suggested by 
C. D. Hill in [10]. This method is based on expanding R in a series 

R(z, z, t; , 	
, t) 

=
R(z, z, t; C , (*)n!(t_t)_ n _ l 	(2.21) 

and then determining the coefficients R in a recursive fashion. This procedure leads 
to an infinite recursive sequence of analytic characteristic initial value problems for 
(2.19) which one must then solve and establish the convergence of the series (2.21) 
We will present an alternate approach based on using the integral operator P 
associated with the differential equation (2.19). Indeed, if we have the operator P 
at our disposal, the existence of the Riemann function for (1.1) is immediate. To see 

this letf(, t"  = ---- F (, \ where 
\2 	

_2jexp{J(1 2B(a.+, , t)da} 	 (2.22) 

with y  defined as in (2.15)) and define the solution V(z, z'', t; C , ', r) of (2.19) by 

V(z, z, t; 	) 
= p* {F(zt)} 	

(2.23) 

Then from the reciprocal relations [cf. 1, 9] 

	

L i/(1_52 )ds 
	=g(z) 
	 (2.24) 

- _ 

 

f g(z(1_p)) 	=f() 	 (2.25) 

we have that 

	

Ifo(z-C)
V(z, 	t; , r) = 	exp 	 B(a+, , t)da. 

	

 

= 	exp ffz B(a., , t)da} 	 (2.26) 
t—t 

1 	Irz* 
vg, z, 1; ', , i) - exp j A(z, a, t)da., 

t—r 	 J 
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.e. V(z, z, t; , 	, 'r) is in fact the Riemann function R(z, .z, t; , 	, 'r). Note 
that except for an essential singularity at t = t the Riemann function is an entire 
function of its six independent complex variables. 

3. ANALYTIC CONTINUATION AND RUNGE'S THEOREM 

We will now use the results obtained in section 2 to derive the generalisation of 
Runge's theorem stated in the Introduction. Let Z be a bounded simply connected 
domain in 11?2  containing the origin and let u(x, y, t) be a real valued strong solution 
of(1.l) in Z x(O, T. Let Zo  and D 1  be compact subsets of T such that 
and let ai be analytic. From the well-known existence theorems for solutions of 
initial-boundary value problems for parabolic equations [7] and the maximum 
principle for parabolic equations we can conclude that for c, 6 0 >0 there exists a 
solution u 1 (x, y, t) of(1.1) in T x [45, T--150]  assuming analytic Dirichlet data on 

x 	T—ö 0] such that 

max 	1u1—uI<e12. 	 (3.1) 
x [o0 , T—foo] 

From a result of Friedman [7, 212] we can conclude that u 1 (x, .y, t) is analytic in 
x (1 50, T-6 0), i.e. for every point (x0 , Yo' t0) e Z, x (+60, T- 1 50) there exists a 

ball in C3  with centre at (x0 , y, t0) such that as a function of the complex variables 
x, y, t, u 1 (x, y, t) is analytic in this bali. By standard compactness arguments we can 
conclude that u 1 (x, y, t) is analytic in some thin neighbourhood in C3  ofthe product 
domain Z 1  x[50, T-5 0]. We now want to show that U1 (z, z, t) = u1 (x, y, t) can 
be analytically continued as a function of z, z and t (where z = 2 for x and y real) 
into the interior of the product domain Z 1  x D' x' where 

={z: ze1} 	
(3.2) 

= { z * :z* e D 1 } 

and f is an ellipse in C 1  containing the interval [5, T—ö 0] such that for (x, y) e 
u 1 (x, y, t) is an analytic function of t in g. 

THEOREM. U1 (z, z, t) is analytic in the interior of 1  x 	x 9. 

Proof. From Stokes theorem we have that for u and v analytic in a neighbourhood 
of D 1 x[50 , T-5 0] 

(v2'[u]—udi[v])dxdydt = R 	H[u, v], 	(3.3)JJJ  
where 2' is the differential operator defined by (1.1), .Ii is its adjoint, 

0=-{t:It—zI =} 
such that Q 	and 

H[u, v] = (vu — uv,, + auv)dydt — (vu — uv + buv)dxdt —(duv)dxdy}. 	(3.4) 

The region of integration Z, x l in (3.3) can be geometrically visüaiised as a three-
dimensional torus lying in the six-dimensional space C3 . Nte that on aZ, we have 
dxdy = 0. Now let Z. be a small disc of radius e about the point (, ), u = u 1 (x, y, t), 
v = R(z, 2, t; C , C, r)logr (where r2  = (z — O(2— C), C = = +ii) and 
apply (3.3) to u and v with the torus D 1  x Q replaced by the hollow 'torus /t e  -x a 



H[uj , R log r]+21c$ 
u1(, ,, 

RZ,xfl 	 , 	tt 

fl, X n 

= 

+ u 1J1[R log r]dxdydt (3.5) 
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Letting e-+0 now gives 

o = lim {ff 	H[uj , R log r]+ 
ffLIMOXCI

u1Ji[R log r]dxdydt}
£'O   

ff H[u1 , R log r]+4ir2 iu 1(, , )+ N 	u 1 Jt[R log r]dxdydt, 
azi XG

u 1(, q, )= 	
(if 	H[ui , R log r]+ fff 	u 1 A1[R log r]dxdydt). (3.6) 

5 1 xfl 

Returning now to the complex coordinates z, z we see from the fact that M[R] = 0 
that 

1#[Rlog r] = M[R log r] = 2i3R/az—BR 
+2 

3RIaz*_AR 
(3.7) 

and hence from (2.20) we have that J([R log r] is an entire function of its independent 
complex variables except for an essential singularity at t = T. Hence, replacing C by 

we see that the second integral in (3.6) can be continued to an entire function of 
and C* for r e 8'. The first integral in (3.6) can be continued to an analytic function 
of C, C* and r for (, , r) in the interior of D 1  x 	x 8'. Hence (3.6) shows that 
U1(, ', t) = u 1 (, 11 , r) is analytic in the interior of Z, x 	x 8' and the theorem is 
established. 

By using the operator Re F, (the generalised) Runge's theorem now follows as a 
corollary of the above theorem: 

COROLLARY (Runge's Theorem). Let u(x, y, t) be a real valued strong solution of 
(1.1) in Z x (0, T) and let Z o  x [6, T— 5] be a compact subset of Z x (0, T). Then for 
every c> 0 there exists an entire solution u0(x, y, t) of (1.1) such that 

max 	Ju—u 0  <c. 	 (3.8) 
oX[Jo,T —boJ 

Proof. Let u 1 (x, y, t) be an analytic solution of(l.1) in Z, x[45 0, T-50] such that 
(3.1) is valid. From the theorem U1 (z, z'', t) = u1 (x, y, t) is analytic in the interior of 

x 14' x 8', and from the results of section two we can represent U1 (z, Y , t) in this 
domain in the form U1 (z, 2, t) = Re P,{f(z, t)}(wheref(z, t) is given by (2.15) with U 
replaced by U1). Since product domains are Runge domains of the first kind [8, 49] 

we can approximate U1 (z, 0, t) (and hence i( )) on compact subsets of Z, x 8' 

by a polynomial. In particular since Re P,{f(z, t)}-+O as f(z, t)-0 in the maximum 
norm we can conclude that there exists a polynomial f(z, t) and entire solution 
u2 (x, y, t) = Re P,{f(z, t)} of (1.1) such that 

max 	I u2—u1  I<e12. 	 (3.9) 
XoX[öo,T—oo] 

The corollary now follows from (3.1) and (3.9) by use of the triangle inequality. 
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2 . 

II. The Heat Equation. 

Let D be a bounded, simply connected domain in Euclidean n-space 

Mn 2i+2 	 r n 1,  with 3D in class C 	where i=1+ L ' +! J T a positive constant, 

x(x1 ,...,x)crR1 , and u(x,t)cC2(Dx(O,T)rC0(4O,TJ)  a solution of 

the heat equation 

u=u 
'a t 

3 2 
+,... +— 

a ax 3x 
1 a 

(2.1) 

in Dx(O,T). 	We are interested in the problem of approximating u(x,t) 
OV 

in the maximum norm over Dx[O,TJ .by a linear combination of the' particular 

solutions of (2.1) defined by 

• h(x,t) = h (x 1 ,t)h (x2 ,t) ... h (x,t) 	 , 	(2.2) 
1 	2 	 a 

m = (m1,...,m)c Nn 

where  

12.1 
L2..I p-2k k 

h (x,t) = E 
X 	t 	

(2.3) 
ko (p-2k)k 

are the so called heat polynomials introduced by Rosenbloom and Widder 

in [15]. This problem has already been solved in the case when n=l and 

n2 in [6] and [7]. However in these papers the proofs depended strongly 

on the dimension a, and do not generalize immediately to the general case 

now under consideration. 	In this section we will solve the above 

mentioned approximation problem for general n by the use of known 

regularity results for solutions to parabolic equations together with a 

new class of integral operators for parabolic equations constructed by 

W. Rundell 'and H. Stechér in [16]. We note that without loss of 

generality we can assume that u(,O)O. 	This follows from' the fact 

that by the maximum pri.nciple for (2.1) and the Weierstrass approximation 

theorem we can approximate u(,t) in the maximum norm over Dx[O,TJ by a 

Ii 



3D1 . 	For x'c3D 1  define f(x',t) •by f(, ',t)=u1 ( ,,t) where 	is the 

point on 3D associated with x'c3D under the above deformation, and 

let u2 ,t)cC 2 (D lx(_l,T))flC0 (D lXE_l,TJ) be the solution of equation 

(2.1) in D1x(-1,T) satisfying the initial-boundary data 

u2 (',t) = f(,t) 	; 	x'c3D  Pi 	 ,d 
- 	(2.8) 

u2 (x,-l)0 	. 	 (2.9) 

From the Weierstrass approximation theorem, the maximum principle for 

the heat equation, and the existence theorem for the heat equation 

(c.f. [14J) we can construct a solution u(x,t)cC 2 (D 1x(-1,T))(\C° ( 1x[-1,T]) 

of equation (2.1) such that u(x,t) has analytic boundary data on 

D1xf-1,Tjand 

max 	u(,t) - u2(x,t) I 
	

(2.10) 

D1x[-1,TJ 

for e i  > 0 arbitrarily small. From 183, p.140-141, we can conclude 

that there exists a positive constant C which is independent of d 

for d d such that 

IVu0(,t)I 	C 	 (2.11) 

for (x,t)cD 1xE_l+S,T, 	S>O arbirarily small. 	In particular the 

constant C depends only on 5, d, the boundary data of u(,t), and D. 

Hence from the mean value theorem, for tcEl+6,T 

-
U (x,t) 	Cd, 	 (2.12) --  

and from equation (2.10) and the triangle inequality 

Iu2(',t) - u(,t) 	 (2.13) 

for tc[-l+S,TJ. 	But u2 (x 1 ,t)u1 (x,t) and hence 

u1(x,t) - u(,,t)t • C • • Cd 	 (2.14) 

for E9D,tc[-l+ó,T]. We now note that from the maximum principle 

u2 (x,t)=0 for (x,t)cD1x[-i 3 OJ, and hence equations (2.10) and (2.14) imply 



6. 

t w = (k+l)wk+ l 	; 	xcD 1  

(2.18b) 
wk(x = ljk ( ? 	; 	xcaD 

• d 

for k=0,1,...k-1. 	The existence of functions wkcC2 (D l)flCO (Dl) satisfying 

equation (2.18) follows from the analyticity of Pk(X),  the reu1arity of 

3D 1 , and the existence of solutions to the Dirichiet problem for the 

Poisson àquation (c.f.[14]). 	Hence w(x,t) as defined by equation (2.17) 

exists. Now Wk(x)  is a solution of 

k -k+l 

n 
w 
k 
 =o 	 (2.19) 

for k=O,1 .... k, xcD 1 , and hence from an easy generalization of a result 

in [z], p.229-230,we have 

k-k+1 
Wk 	E° 	r2 h.() 	 (2.20) 

where r=Ixland the h.(x) are harmonic functions in D . 	From the Runge 
1 

approximation property for elliptic equations ([13j) and the analyticity 

of harmonic functions, we have that each function h.(x), j=1,...,k-k+1, 

can be approximated in the maximum norm on compact subsets of D 1  by a 

finite linear combination of harmonic polynomials. 	From equations 

(2.17) and (2.20) we can now conclude that there exists a solution 

-v(x,t) of equation (2.1) that is an entire function of its independent 

complex variables such that 

max Iw(,t). — v0 (x,t)I < c 

Dx 1, Tj 

for c > 0 arbitrarily small. 

(2.21) 

Now let v 1 (,t) = u(t) — w(x,t) and let X. and c.(.a) be the 

eigenvalues and eigenfunctions respectively of the eigenvalue problem 

A 
n 
 u+ Au 0 	 xcD 	 (2.22) 

U(X) 	 0 	; 	xcaD1 	. 



8 . 

inequality we. have completed the proof of lemma 2.2. 

We are now in a position to prove the following theorem: 

Theorem 2.1: Let u(,t)cC 2 (Dx(O,T))rC0 (DxEO,T]) be a solution of 

equation (2.1) in Dx(O,T). 	Then for every c > 0 there exists an 

integer M and constants a, Imi 	M, such that 

maxIu(x,t) 	E 	a h (x,t)I < 
Dx L —r O,TJ 

i 	 M m 	mm- 

where the h(x,t) are defined in equations (2.2) and (2.3). 	- 

Proof: Without loss of generality we can assume u(x,O)=O (See the 

discussion before lemma 2.1). 	From lemma 2.2. it suffices to 

approximate u1 (,t) in the maximum norm over Dx[O,T] where u 1 (x,t) is 

a solution of equation (2.1) that is an entire function of its 

independent complex variables. But from the results of [16] we can 

write u1 (,t) in the form 

u1 (x,t) = h(xt) + 	f aiG(r,1_a2,t_t)h(xa2,t)dadt 

It—tI=a. 	 (2.27) 

where 6 > 0 is arbitrary, h(,t) is an entire function of its 

independent complex variables such that A h=O for each fixed t, and 

2 	2 
G(r,F,t) = -s. exp( 	) . 	 (2.28) 

2t 	4t 

Let P. be a sphere in fR such that Q 	and let {h.(x)} denote the 

set of harmonic polynomials. Then from the Runge approximation 

property for elliptic equations we can approximate h(x,t) on 

x{t : !tIT+61 by a finite sum of the form 

j 
0 

k
0 

E a h . (x) tk 
jk . 	

(2.29) 
j=Ok=O  

where the a.k ,  j=O1,...j ,. k=0,l,...,k, are constants, and hence from 

equation (2.27) we have that for every c > 0 there exist integers j0 
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and k anI constants a. such that 
o 

j 	k 

max 	u1(x,t) - E 	E 	a.ku.k(x , t) I < c 	 (2.30) 
Dx,TJ 	 j=0 k=0 - 

where the u.k(x,t)  are polynomial solutions of equation (2.1) defined by 

ujk(x,t) = h.(x)t1 + J. 	11  afllG(r ,1_02,t_t)h . (x02) tkdodr.  7 
Fi f  
IttI 	 (2.31) 

Since the u.k(x,t)  are polynomials in x1 ,..4x and t, there exist an 

integer M and constants .b = b(j,k), Imi . M, such that 

u.k(x,O) = Z 	bh(x,O) . 	 (2.32) 
ImkM 

From the uniqueness theorem for Cauchy's problem for the heat equation 

and the utiqueness of analytic continuation we have that 

u.k(x,t) = z 	bh(x,t) 	 (2.33) 
ImkM 

for all x and t, and the conclusion of the theorem now follows from 

equations (2.30) and (2.33). 



11. 

• obviously fulfills (3.2) if we take U={x:JxI<c}x{x:Ix—xI<o}. 

But it also is a solution of Lklw=O since 

Lklw = 	+ (2k1)u + x u + 

and 

(2k_l)u(x0,, t)+xu(xx,t)+ 	 = (2k-l)u(O,x,t) 

• 	which implies Lk lw=O if 	is a solution of (3.2). 

Lemma 3.2: 	For k=1,2,3,... all functions ucSk  are infinitely differentiable 

in Dx(O,T). 

• 	Proof: 	It is clear that 
U CSk is infinitely differentiable at all points 

• 	(X0j,t)Dx(O,T) with x+O. 	Now first let k=l and (O,x,t)EDX(O,T). 

Then according to lemma 3.1 we have a neighbourhood UCD of (O,x) and a solution 

•w of Lw0 inUx(O,T) such that (3.2) holds. 	On the other hand it 

can be verified directly that 
rl 

u(x,x,t) = Jo 
	

,, v(xx,t)d 	 (3.5) 

• 	with v(x ,x,t)=u(x ,x,t) + x u (x ,x,t). 
O i.' 	 0- 	 ox 	0 

• 	 0 

Therefore w 	= v in iJx(O,T) and since L w=O in Ux(O,T), w, and hence v, 
00 	 0 

is infinitely differentiable in Ux(O,T). 	From (3.5) it follows that u 

is .  infinitely differentiable in Ux(O,T). 

For k=2,3,.... the assertion of lemma 3.2 now follows by induction: 

If every wcSk is infinitely differentiable then also all ucSk +l are 

infinitely differentiable because the representation (3.2) implies that 

u(x,x,t)= x w (xx,t) = 4. (w(x,x,t) -? w(x,x,t)) 
in a neighbourhood of a point of the singular plane. 

Lemma 3.3: 	For every UESk even with respect to x(k=1,23,...) there 

is a vcS such that 
0 

 1 ' 

u(x,t) 	J 	v(x,x,t)(l-2)1d 	 (3.6) 

for (x ,x,t)cDx(O,T).. 



13. 

If rn 	 is a multi-index and A>O, we use the notation 

h .(x , t)h (Xit)•••hm (x,t) 
0 	 .1 	 1k 

where the heat polynomials h(x.,t) (jl,...,n) are defined as in (2.3) 

and h 	isa generalized heat polynomial (see L3j,L101) defined by 

hr A(Xo t) = 	
. 2j (r) 	1 	2r-2jj 

,  
3=0 	r(r-j+x4) ° 

It is easy to see (c.f.L53,l7J,l8J)that 

f h2r(xo,t) 
(1_2)k 

 1d = Yr ,khr ,k(Xo t) 

for certain constants y 	• r,1 

(3.8) 

Theorem 3.1: 	Let D C D have the following properties: (1) D is 

simply &innected, (ii) D C D., (iii) D is of class C22  where 

1 1 + 
i=l + 	+ .1j. 	Let S>O. 	Tnen for every c>0 and for every UCSk 

even with respect to x(k=l,2,3,...) there exist Mc'4 and ac,(ImI.M), 

such that 

max u(x,x,t) - E a hmkoEt<C 	 (3.9) 
D x[6,T-S] 	 jmIM 

Proof: 	According to lemma 3.3 there is a vcS0  such that (3.6) holds. 

By Theorem 2.1 for every c)0 there exist Mc4 and bmCRSUCh  that 

max 	Iv(x.,x,t) - I 	b h (x ,x,t) <c. 	 (3.10) 
Dx [s, T- 	. ° 	 m m 0 - 

 of 

Since v is even with respect to xall heat polynomials h appearing in 

(3.10) have even index and applying (3.6) and (3.8) it easily follows 

that (3.9) holds with a =b 	y  
m 	k . , 

0 
m 0  m 0 

Remark: 	It can be expected that a result analogous to theorem 2.1 holds 

for all. k>0 since the methods used in the proofs above require k, to be 

an integer only at the point where the integral operator connecting 
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solutions of the heat equation and of the generalized heat equation 

has to be inverted.In the case of arbitrary k>O one would have to use 

regularity results for fractional integration operators. 
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ON THE INVERSE SCATTERING PROBLEM 
FOR AXIALLY SYMMETRIC SOLUTIONS OF 

THE HELMHOLTZ EQUATION 

By DAVID COLTON 

[Rceived 15 October 1969] 

1. Introduction 
IN this paper we consider axially symmetric solutions of the three-
dimensional Helmholtz equation which are of class C2  (i.e. regular) in 
the exterior of a bounded domain D. In cylindrical coordinates (r, z,(?) 
such solutions satisfy the equation 

Uzz+Urr+_Ur+U = 0, 	 (1) 

where we have assumed the axis of symmetry to be r = 0. If we further 
assume that u satisfies the Sommerfeld radiation condition 

Jim R(±_iu' = 0; 	B = +\/(r2 +z2 ), 	 (2) 
R- 	\aR 	/ 

then u may be regarded as being generated by volume sources, surface 
sources, or point singularities, all of which are inside D. 

A solution u of equation (1) satisfying (2) behaves asymptotically like 

u ,-_f(cosO); R ->ct, (3) 

where (R,O) are polar coordinates defined by z = RcosO, r = RsinO. 
The function f(cos 0) is known as the radiation pattern [see (9)]. We are 
concerned here with the inverse scattering problem associated with 
equation (1), i.e. given a radiation pattern f(cos 0) to determine u and 
the location of the sources which generate u. The class of radiation 
patterns has been previously determined by Muller in (9) and is neither 
the class of continuous functions nor the class of analytic functions; 
it can best be characterized by constructing an associated set of harmonic 
functions (we incorporate here the slight correction to Muller's result 
as given by Hartman and Wilcox in (5)): 

THEOREM 1 (Muller). A necessary and sufficient condition for a function 
f(cos 0), defined on [0, 2ir], to be a radiation pattern is that there exist an 
(axially symmetric) harmonic function h(z, r) = ( R, 0) which is reg'ular 
Quart. J. Math. Oxford (2). 22 (1971), 125-30. 
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in the entire space and is such that Ii(1,0) =f(cos0), and further has the 
property that 

JJ(R,0)I 2 d0 

is an entire function of R of order one and finite type C. When this condition 
holds, there exists a unique function u(z, r) = 'u(l?, 0) which satisfies the 
Sommerfeld radiation condition and is a regular solution of the (axially 
symmetric) Helmholtz equation for R > C such that 

'ü(R, 0) 	f(CO 8)+
0
(); 1? -~ cjj. 

Muller's theorem shows that for a given radiation pattern f(cos 0) the 
sources which generate u must lie within a closed disc of radius C, where 
C is uniquely determined by f(cos 0). It is the purpose of this paper t& 
give more precise information on the location of these sources. More 
specifically let Q be a circle orthogonal to the circle R = C and let S be 
the conjugate indicator diagram [(1) 73-77] of h(2iz, 0) considering 
z = Re 0  as a complex variable. Then we will show that 'u(R, 0) is 
regular in U provided U does not intersect S U 9 U {(R, 0) 10 = 0, r} 

where the bar denotes complex conjugation. A statement of the result 
may be found in Theorem 2 at the end of this paper. 

2. Analytic continuation of solutions to the inverse scattering 
problem 

From Muller's theorem it is seen that every radiation pattern f(cos 0) 
can be expressed as a uniformly convergent Legendre series 

f(cos0) = 	a1 P,(cos0), 	 (4) 
fl = 0 

where P,(cos 0) denotes Legendre's polynomial. Corresponding to this 
radiation pattern is the solution of equation (1) having (4) as its pattern 
[see (9)] 

u(z, r) = 'u(R, 0) 	a, i?l+1H(l)  (R)P(cos 0), 	(5) 

where H ) 
 ( 

R) denotes Harikel 'S function of the first kind and the 
series (5) converges absolutely and uniformly for R C'> C. The 
axially symmetric harmonic function associated with the far field pattern 
(4) is given by 

h(z, r) = i(R, 0) = 	a,1  R"P,1 (cos 0), 	 (6) 
n=O 
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and satisfies the partial differential equation 

Uz ,+Urr+Ur  = 0. 	 (7) 
r 

From Muller's theorem it is seen that 	lan  I 2R 2n is an entire function 
fl = 0 

of order one and exponential type C, i.e. [see (1) 11] 

	

lirnsupnlaI11' = eC. 	 (8) 

We now wish to use some recent function-theoretic developments in the 
theory of partial differential equations to show how u(z, r) can be 
analytically continued across the circle R = C. 

By the identity theorem for axially symmetric harmonic functions 
in (13), h(z, r) is uniquely determined by the values it takes on the axis 
r = 0, i.e. the function 

co 
h(z,0) = 	 (9) 

Equation (8) shows that by allowing z to assume complex values h(z, 0) 
defines an entire function of order one and type C12. Now let f(z) be 
the Borel transform of h(2iz, 0) defined by 

oo 

	

f(z) = 	a, 211 in! z 11 . 	 ( 10) 
n=0 

A classical result of POlya [cf. (1) 75] states that f(z) is regular in the 
exterior of the conjugate indicator diagram of h(2iz, 0). We denote the 
conjugate indicator diagram of h(2iz, 0) by (3 and recall that since 
h(2iz, 0) is of order one and type C then (3 is a closed convex set con-
tained in the disc 121 < C. For further properties of (3 the reader is 
referred to (1) 73. 

We now define an analytic function g(z) by 

	

CD 	 I 

g(z) = ,/( r) 	aiH 	(ci' ' 2 

	

ii+ '-J  )( 	 (11) 

	

.;) 	'  

n=0 

from which we will construct a solution of equation (7) which agrees 
with u(z, r) on R = C'. From (8) and the asymptotic relation [see 

( F(n+
C"9.1 	 j 

	

urn ' ' 	
)
R(C') = --, 	 (12) 

it is clear that g(z) is regular for Izi > C'. The following lemma gives 
a more refined result which is needed for our purposes. 

LEMMA 1. g(z) is regular in the exterior of G. 
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• Proof. Since f(z) is regular in the exterior of (3, by Hadamard's 
multiplication of singularities theorem [(11) 157] it suffices to show that 
the singularities of 

0(z) = nO H4(C') 
(7)_fl 	

(13) 

lie on the closed interval [0, 1]. To this end we note the following 
formulae [(2) 78, 1001: 

s 4nI1() 
Iwt2 )n  

(s2 _t2 ) -kH l)[w(s2 _t2 ) 4] = 	
'¼ 2 	

-(14) 
n =0 

= _i(rr)-4eie. 	 (15) 

Setting s = 1, w = C', t 2  = 11z in (14) and then using (15) gives 

0(z) = i)(i 	 (16) 

Equation (16) shows that 0(z) is regular in the extended z plane except 
for branch points at z = 0 and z = +1. This result establishes the 
lemma. 

From the identity theorem for axially symmetric harmonic functions 
previously cited it is now possible to construct a unique axially symmetric 
harmonic function v(z, r) such that v(z, 0) = 

v(z,r) = iY(R,O) = 
	()? O 	

(C) 	
(17) 

where the series (17) converges uniformly for R > C', 0 e [0, 27r]. From 
(4) in conjunction with Kelvin's transformation [(3) 84] it is seen that 
vY(R, 0) is singular at the point (1?, 0) if and only if g(z) is singular at either 
z = Re 0  or z = Re -iB. Hence v(z, r) = 15(R, 0) can be analytically con-
tinued as a real analytic function of z and r into the exterior of (3 u G. 
By the law of permanence of functional equations [(7) 3 1 ] v(z, r) satisfies 
(7) in this region. On the circle R = C' we have i5(C', 0) = ii(C', 0). 

Now let Q be a circle which is orthogonal to the circle R = C' and 
which intersects neither (3U G nor the axis r = 0. Then Q is a funda-
mental domain [see (12)] for equation (7) and since a conformal trans-
formation maps orthogonal circles on to orthogonal circles, ) is con-
formally symmetric in the sense of Henrici (6) with respect to the circle 
B = U. By Theorem 5.2 of (6) and the above discussion it is seen that 
v(z, r) is an analytic function of 71 = z+ir on the arc 

A = {(z, r) I \/(z 2+r) = C'} fl 
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and can be continued analytically as a function of into the whole of. 
We denote this function by V(q). Note that V() agrees with v(z, r) only 
on the arc A since v(z, r) was continued past the circle B = C' as a real 
analytic function of the two independent variables r and z, whereas V() 
has been continued as an analytic function of the single complex variable 

= Z-)-ir. 

LEMMA 2. u(z, r) is regular in Q. 

Proof. In conjugate coordinates 

= z--ir, 

= z—ir, 	 (18) 

equation (1) becomes [see (12)] the formal hyperbolic equation 

2(_*) +2(_*) U.+U = 0, 	(19) 

where 

u(*1_*) 	 (20) 

Now let = ( C) be a conformal mapping of the upper half of the 

C plane on to the exterior of the circle R = C and let n" = 	= 
where the bar denotes complex conjugation. Under the traisformation 

71* = (*) 	 (21) 

(19) is transformed into a linear, formally hyperbolic equation with 
analytic coefficients for the function W(C,  C*) = U((C), (C*)). W(C,  C*) 
is regular for (C C*) contained in (_1()  fl R > C'), -'( fl B 	C')), 
and on = C* 	

W(C, C*) = V((C)). 	 (22) 

By construction V(i(C)) is regular in the circle q -'(I). Note also that 
_1() is symmetric with respect to the real axis in the complex plane. 

Hence by Lewy's reflection principle (8) we can analytically continue 
W(C, C*) into all of (_1(I), _1()). By transforming back we find that 
U(j, *) is analytic for (j, *) contained in i.e. u(z, r) is regular inQ. 

Note that since C' can be arbitrarily close to C, the circle Q can be 
taken orthogonal to C without affecting the validity of Lemma 2. 
Putting our results together we can now state the following theorem: 

THEOREM 2. Let f(cos 0) be the radiation pattern of a solution ü(R, 0) 
of the three-dimensional axially symmetric Helmholtz equation, where (R, 0) 
are polar coordinates, and let {a,,} 0  be the Legendre coefficients of f(cos 0). 

3695.2.22 	 K 
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Then F(z) =a(2iz), z = Red, is an entire function of order one and 

finite exponential type C. If S is the conjugate indicator diagram of F(z) 
then uZ(R, 0) is regular in R > C and also in any circle Q orthogonal to the 
circle B = C such that ü does not intersect S U G U {(R, 0) 10 = 0, -}. 

In passing we note the existence of an integral operator T by which 
F(z) can be represented directly as F(z) = Tf [see (10)]. 

Weston, Bowman, and Ar in (14) have considered the analytic con-
tinuation of solutions to the inverse scattering problem for the vector 
Helmholtz equation. In their work the scattering body D is given a priori 
and assumed to have an analytic boundary. 

REFERENCES 

R. P. Boas, Entire functions (Academic Press, New York, 1954). 
A. Erdélyi, Higher transcendental functions, vol. ii (McGraw-Hill, New York, 

1953). 
P. R. Garabedian, Partial differential equations (Wiley, New York, 1964). 
R. P. Gilbert, 'On the singularities of generalized axially symmetric poten-

tials', Arch. Rat. Mech. Anal. 6 (1960) 171-6. 
P. Hartman and C. Wilcox, 'On solutions of the Helmholtz equation in 

exterior domains', Math. Z. 75 (1961) 228-55. 
P. Henrici, 'A survey of I. N. Vekua 's theory of elliptic partial differential 

equations with analytic coefficients', Z. angew. Math. Phys. 8 (1957) 
169-203. 

E. hue, Analytic function theory, vol. ii (Ginn and Co., Boston, 1962). 
H. Lewy, 'On the reflection laws of second order differential equations in 

two independent variables, Bull. Amer. Math. Soc. 65 (1959) 37-58. 
C. Muller, 'Radiation patterns and radiation fields', J. Rat. Mech. Anal. 4 

(1955) 235-46. 
Z. Nehari, 'On the singularities of Legendre expansions', ibid. 5 (1956) 

987-92. 
E. C. Titchmarsh, Theory of functions (Oxford University Press, London, 

1939). 
I. N. Vekua, New methods for solving elliptic equations (Wiley, New York, 

1967). 
A. Weinstein, 'Generalized axially symmetric potential theory', Bull. Amer. 

Math. Soc. 59 (1953) 20-38. 
V. H. Weston, J. J. Bowman, and Ergun Ar, 'On the inverse electro-

magnetic scattering problem', Arch. Rat. Mech. Anal. 31 (1968) 199-213. 

Department of Mathematics 
Indiana University 
Bloomington, Indiana 



Proceedings of the Royal Society of Edinburgh, 75A, 8, 1975176 

8.—Constructive Methods for Solving the Exterior Neumann Problem 
for the Reduced Wave Equation in a Spherically Symmetric Medi um.* 
By David Colton,t Department of Mathematics, University of 
Strathclyde, and Wolfgang Wendland, Fachbereich Mathematik, 
Technische Hochschule, Darmstadt. Communicated by Professor 
W. N. Everitt 

(MS received 7 July 1975. Read 1 December 1975) 

SYNOPSIS 

An integral operator is constructed which maps solutions of the reduced wave equation defined in 
exterior domains onto solutions of A. u+ A2(l +B(r))u = 0 (*) defined in exterior domains, where 
B(r) is a continuously differentiable function of compact support. This operator is then used to 
construct a solution to the exterior Neumann problem for (*) satisfying the Sommerfeld radiation 
condition at infinity. Such problems arise in connection with the scattering of acoustic waves in a 
non-homogeneous medium, and this paper gives a method for solving these problems which is suit-
able for analytic and numerical approximations. 

1. INTRODUCTION 

The mathematical problem we are about to consider has its origin in the following 
problem connected with the scattering of acoustic waves in a non-homogeneous 
medium. Let an incoming plane acoustic wave of frequency co moving in the direction 
of the z-axis be scattered off a bounded obstacle D which is surrounded by a pocket 
of rarefied or condensed air in which the local speed of sound is given by c(r), where 
r = I q  j for q a R3 . Assume that this pocket of air is contained in a ball of radius a 
and that for r a we have c(r) = co = constant. Let U(q) be the velocity potential 

(_Cc(or))

2  
(factoring out a term of the form exp (icot)) and set B(r) = 

	
— 1. Then assuming 

lVc(r)l < <2c(r)where 2 = - we are led to the following boundary value problem, 
Co 

where u(q) is the velocity potential of the scattered wave, and v denotes the outward 
normal to 3D: 

U(q) = exp (1),z)+u5(q) 	 (1.1) 

i 3 U+22(1+B(r))U = 0 in R3 
D 	 (1.2) 

au 
onaD 	 (1.3) 

lirn r(9 _s _i),u) = 0, 	 (1.4) 

* This paper was assisted in publication by a grant from the Carnegie Trust for the Universities 
of Scotland. 

t The research of this author, was supported in part by AFOSR Grant 74-2592. 

•3c1 



98 	 David Co/ton and Wolfgang Wend/and 

where (1.4) is assumed to hold uniformly in all directions. Now let u(q) = v(q)+u(q) 
where v(q) e C 2(R 3\)nC'(R 3\D) is such that exp (i2z)+v(q) is a solution of (1.2) 
in R 3\D and v(q) satisfies (1.4). If such a function v(q) can be found, then the boundary 
value problem (1.1-1.4) for U(q) can be reduced to the following boundary value 
problem for u(q): 

i 3u+22(1+B(r))u = 0 in R 3\D 	 (1.5) 

ôu 
- =f(q) on 3D 	 (1.6) 
Ov 

imr(_iu)=ø 	 (1.7) 

where f(q) = - - (exp (itz)+ v(q)). 
ôv 

The existence of the functions u(q) and v(q) described above (and the uniqueness 
of the function u5(q)) follows from the results of Werner [9], Leis [6] and Jaeger [4] 
The purpose of this paper is to give a constructive method for finding u(q) and v(q) 
in a manner which is suitable for obtaining analytic and numerical approximations. 
The approach which we are about to develop is based on the use of integral operators 
for partial differential equations, and is motivated by the work of Vekua [8] and 
Gilbert [3] on the use of integral operators to solve interior boundary value problems 
for partial differential equations with variable coefficients. However the integral 
operators constructed by Vekua and Gilbert are not suitable for our purposes since 
they are defined only for solutions which are regular in interior domains, and we 
are now concerned with solutions of (1.5) which are defined in exterior domains and 
satisfy the Sommerfeld radiation condition (1.7) at infinity. This difficulty will be 
overcome through the construction of an integral operator which maps solutions of 
(1.5) with B(r) = 0 onto solutions of (1.1) with B(r) 0 such that (1.7) is satisfied. 
The discovery of such an operator initiates the theory of integral operators in exterior 
domains, and we hope to develop this theory more completely in future work. 

2. AN INTEGRAL OPERATOR 

In this section we will construct the integral operator mentioned in the introductiàn, 
and in the next section we will use this operator to obtain a constructive method for 
finding the functions v(q) and u(q). We make the assumption that B(r) is a real valued 
continuously differentiable function of r with compact support contained in the 
interval [0, a], where a>0, and that u(q)is defined in the exterior of a bounded domain 
D containing the origin where D is strictly starlike with respect to the origin, i.e. 
if P is a point in D then the line segment OP is contained in D except for possibly 
the endpoint P. It turns out that the analysis of this section is essentially independent 
of the dimension of the space, and hence we consider the equation 

Eu+12 (1+B(r))u=0 	 (2.1) 
in place of(1.5) and latter on set n = 3. 

We now look for a solution u of (2.1) defined in the exterior of D in the form 

u(r, 0) = h(r, 0)+ 
foo 

s 3K(r, s; A)h(s, 0)ds, 	 (2.2) 
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where (r, 0) = (r, 0 , ..., On—i) are spherical coordinates, h(r, 0) is a solution of 

Ah+12 h = 0 	 (2.3) 

in the exterior of D, and K(r, s; 1) is a function to be determined. We assume 

	

K(r, s; 2) = 0 for rs ~! a2 	 (2.4) 

and note that if h(r, 0) satisfies the Sommerfeld radiation condition 

urn r''2 (Or 
 

—i2u = 0 	 (2.5) 
 J 

then by (2.4) so will u(r, 0). We now substitute (2.2) into (2.1) and integrate by parts 
using (2.4). The result of this calculation is that (2.2) will be a solution of (2.1) 
provided K(r, s; 1) is a twice continuously differentiable solution of 

r2  [K,, + 	Ki. +12(1+B(r))K] = s2 [K 5 + 	K+22K] 	(2.6) 

for s > r satisfying (2.4) and the initial condition 

K(r, r; 2) = 	 f"o  sB(s)ds. 	 (2.7) 

Now let = log r, i = logs, and define M(, i; 2) by 

M(c, ; 2) = exp K 
 n 

2  2 
 )(~ + q)] K (exp , exp ; 1), 	(2.8) 

i.e. 
_1n-2 

K(r, s; 2) = (rs) 	2  M(log r, log s; 2). 	 (2.9) 

Then M(, i; 2) satisfies the differential equation 

M—M,+2 2(exp 2—exp 2t+exp 2B(exp ))M = 0 	(2.10) 

for i> and the auxilliary conditions 

M(, ; 2) = _22 f exp (2t)B(exp t)dr 	 (2.11) 

M(, i; 2) = 0 for +(+ij) ~!: log a. 	 (2.12) 

We assume that in addition to (2.10)-(2.12), 

	

M(,;1)=0 for>. 	 (2.13) 

Note that M(i, ,; 2), if it exists, is independent of the dimension n, and in this sense 
the operator (2.2) resembles the 'method of ascent' of Gilbert [3] and Eichler [2] 
for elliptic equations defined in interior domains. 

We now proceed to construct a solution of (2. 10)-(2. 13). Our approach is based 
on the ideas of Levitan [7]. Let 

x=+) 

- 	 .) 
 

and define M(x, y; 2) by 

M(x, y; 2) = M(x+y, x—y; 2). 	 (2.15) 
PROC. R.S.E. (A) Vol. 75, 2. 1975/76. 	 7 
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Then M(x, y; 2) satisfies 

R XY 	x—y)M = 0; y<O 	 (2.16) 

M(x, 0; 2) = _2 J exp (2r)B(exp x)dt 	 (2.17) 

M(x, y; 1) = 0 for x ~! log a 	 (2.18) 

M(x,y;2)=0 fory>0, 	 (2.19) 
where in (2.16) 

F(, 'i) = —[exp 2—exp 2+exp 2B(exp 
)]. 	

(2.20) 

For y :!~ 0, (2.16-2.18) imply that M(x, y; 2) is the solution of the integral equation 

y; 2) = _2 f exp (2t)B(exp t)dT 

	

_12 fY00  fX F(+fl, —fl)M(c, fi; 2)dd/J. 	(2.21) 

Note that (2.19) implies that the solution of the integral equation (2.21) satisfies the 
initial condition (2.17, 2.18 and 2.19), and the fact that B(r) has compact support 
guarantee the existence of the integrals appearing in (2.21). Now in (2.21) make the 
change of variables 

ot =  
(2.22) 

Then (2.21) becomes 

M(, ; 1) = _+22 J 	exp (2)B(exp z)dt 

f4"o fil+ -

±-
(2.23)  

+22 F(; p)M(; j;  2)d4udt. 

Now note that in (2.23) if, + - x > r, then z > t, and hence M(r, p; 2) is not identically 
zero. On the other hand, if , + - r < r, then ji may be less than r, and in such cases 
M(r, p; 2) = 0. Taking these facts into consideration we have that, for 11 > , M(, 'i;  2) 
is the solution of the integral equation 

M(, ; A) = - +12 00J exp (2t)B(exp t)dt + fl)  
('4+t - 

	

_+12 	 F(r, p)M(t, u; 2)d1tdt 	(2.24) 

+ t - 

	

+12 
	f~q 	J

F(r, p)M(r, z; 2)d4udr. 
+q)  

We now want to solve (2.24) through the method of successive approximations. 
We look for a solution of (2.24) in the form 

00  
jO 
	 (2.25) 
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where 
flog a 

	

M0(, ; 2) = - .22 I 	exp (2r)B(exp v)dz 

-22J 
 f+(+)

frl+4-T

'i---
F(x, 4u)M_ 1 (r, ji; 1)djidt 	(2.26) 

f*( .

loga fn+'- 
+22 F(t,jt)M_ 1 (t, ji; 1)djidt. 

+,)  

Note that the region of integration in (2.26) is only in the half-space 3( + ) < log a 

since M0(, ,; 2) = 0 for (+) ~!! log a and this implies that for 3(i+) 
log a, 	,; 2) = 0 for each j. Assume , 	- 

is a positive constant, and let 

	

C = 	2 1 2 	max 	{exp (2)j B(exp )l I F(, 	}. 	(2.27) 
— o 	:5 loga 

— o ~ rl 	+loga 

Then for 

	

I M0(,  'j; 2)1 C(log a—+)) C(log a — c) 	(2.28) 

and 

	

I 	; 2)1 2C2 I 	(log a—r)(t—)dt 

fW

log a 
+C2 	(log 

+q) 

But in the second integral on the right-hand side of (2.29) we have 4( + i) < 

	

which implies ii :5; 2r—, and hence q 	:5 2(t—). Therefore from (2.29) we have 

flog a 

I 	,j; 2)1 ~ 2C2 J 	(log a—r(r—)dr. 	 (2.30) 

But for] ~: 0 we have 

1 	floga 	 1 	2j+3 

I 	(log a—t)2'(r—)dt 
= og a _ 	

, 	 (2.31) 
(2j+1)!J 	 (2j+3)! 

and hence 

,i; 2)1 :!9 	_(loga—). 	 (2.32) 

By induction we have 
2C 1  

(log a—) 2 ' 
(2j+1)! 	 (2.33) 
2C' 

(log a+ 0)21  
- (2j+1)! 

for j 0, and hence the series (2.25) is absolutely and uniformly convergent for 

- . 
This establishes the existence of the function M(, 'i;  1) and hence 

the kernel K(r, s; 2). It is easily seen that since B(r) is continuously differentiable, 
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K(r, s; 2) is twice continuously differentiable for s ~: r>O. We note that M(, ,; 1) 
is an entire function of 2 and that 

; 2) = 	'i) 	 (2.34) 
is independent of A. In particular s" - 2K(r, s; 1) has the Taylor expansion 

00 

s" 3K(r, s; 2) = 	 )"N(log r, log s), 

which is uniformly convergent for all complex values of 2. 

3. THE CONSTRUCTION OF v(Q) AND u(Q) 
We now want to use the integral operator (2.2) (for n = 3) to construct the func-

tions v(q) and u(q) described in the introduction. Since exp (i2z) is a solution of (2.3) 
we have that in spherical coordinates (r, 0, 4)) 

	

u(r, 6; 4))= exp (i2r cos 6)± J K(r, s; 2) exp (i2s cos 0)ds 	(3.1) 

is a solution of (1.5), and from (2.4) it is clear that we can chose v(q) = v(r, 0, 4)) 
to be 

v(r, 6, 	
= 

Jr K(r, s; 2) exp (i2s cos 6)ds. 	 (3.2) 

We now turn our attention to constructing a solution u(q) of (1.5-1.7). To do this 
we will use the integral operator (2.2) in conjunction with the work of Jones [5] 
on the exterior Neumann problem for the Helmholtz equation (2.3). To describe the 
work of Jones, let 2, 22 1 ..., 

2, ... be the eigenvalues of the interior Dirichlet problem 
for (2.3) in D (for n = 3). Then in [5] Jones has shown that if 2<2M+2 and h(q) 
is a solution of (2.3) (for n = 3) satisfying prescribed Neumann data on O D and the 
Sommerfeld radiation condition (1.7) at infinity, there exists a continuous density 
'/'(p) such that h(q) can be represented in the form 

where 	

h(q) 
L 	

= Ii(p)F(p, q; 2)dw, 	 (3.3) 

M 	in 
T(p, q; 2) = 

exp (i2R) + 
	 bmn iJimn(p)çli(q), 	(3.4) 

R 	,nOn=—m 

R = Ip — q I, dw 4,, is the element of surface area at the point peD, the bmn  are non-
zero real constants (arbitrary, but fixed), and 

	

rnn(P) = h'(1 I p I)Smn 	 (3.5) 
\IPI/ 

where h denotes a spherical Hankel function and 	a spherical harmonic. Jones 
has further shownthat for a given 2 a suitable value of M can be chosen as follows: 
Let p, 

..., 
p, ... be the eigenvalues of the interior Dirchlet problem for (2.3) (for 

n = 3) in the unit sphere (which can be computed from a knowledge of the zeros 
of the spherical Bessel functions) and let r0  be the radius of the smallest sphere 
contained in D and r1  the radius of the largest sphere containing D. Then 

(3.6) 
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In order to construct a solution u(q) of (1.3-1.7) we will look for a solution in the 
form 

u(q) = h(q)+ J Iq K( q , s; 1)h ( 
—s—) 

ds, 	 (3.7) 

	

i 	 Il 
where h(q) is a solution of (2.3) (for n = 3) having the representation (3.3) in terms 
of an unknown continuous density i(p) to be determined. Note that h(q), and hence 
u(q), satisfies the Sommerfeld radiation condition (1.7). Substituting (3.3) into (3.7) 
and interchanging the orders of integration gives 

u(q) 
= L O 	q; 2)d(o 

+ f 	){f K(I q 1 , s; 2) (p,  s 	; A) ds} dw. 	(3.8) 

We will show shortly that for p, q on  aD 

	

Ifl oo K(I q , s; 2)r'(P s ---; 2) ds 
<1constant 	

(39) 
ôvq 	I 	 II 	Ip-qi 

wheredenotes differentiation with respect to q in the direction of the outward 77-  OV q  
normal at q. Assuming this fact for the time being, we let q e ÔD, evaluate (3.8) at 
q' e R3\, and apply the operator Vq  .V to both sides of (3.8). Letting q' tend to q 
and using (3.9) and the discontinuity properties of the derivatures of single layer 
potentials, we arrive at the following integral equation for i(q): 

1 	 i1 
---f(q)=1i(q)-- 	/i(p)—F(p,q;2)dw 

21r 	 21rJD 	t9Vq 

I

(3.10) 

--
1'(p) K(IqI,s;2)r(p,s-9-;A)dsdco 

2itD 	ôVq (J1 1 1 	 I q 	j 	j 

'T i -  
We now show that, under the assumption that D is strictly starlike, the estimate 

(3.9) is valid, and hence the derivation of (3.10) is correct. We first observe that from 
(2.4) and the facts that K(I q j, s; 2) and I'mn(p)'frmn(q)  are twice continuously differ-
entiable for p, q e O D, there exists a positive constant C such that for p, q e aD 

--
K( q , s; 2)IT 	s -f-; 2) ds ~ c "> p-s

2 
 ds. (3.11) 

ôVq
Jfj_ 

qi 	 II 	 qi 	I q I 

Hence we now examine the function p-s--9-- forp and q on ÔD and s 	q j.  
II 

In case p q <0, the expression 

(3.12) 
II I 	 Iqi 

has its minimum at s = I q I hence we observe that either 

p-q I 	 (3.13) 
1I 
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for s 	q 1, or there exists an s0 >I ci I such that 

lI 
> 

IqI 
(3.14) 

where 

(p—s 0 ----q=o 	and 	pq0. (3.15) 
1q11 

In the second case we have from (3.15) that s0  I q I = pq and hence 

p — s0 ---9-- =p— q 	 — 

  
-- 

II 	II (3.16) 

=p_ q _ q (P)• •  
Iqi

2 

 
Therefore 

P — So q 
2 

= 	
p—q 12_ ((p—q)q)2 I (3.17) 

II lI 

Since D is strictly starlike, there exists a positive constant oc < 1 which is independent 
of p and q such that 

(p — q)qIccIp — qIIqI (3.18) 

uniformly for alip, q e 3D with pq ~! 0. 
Hence from (3.17) we have 

Po9 
2 	

(1_ 2 )1 p — q 1 2  (3.19) 
Iq 	I 

uniformly for all p, q e 8D. We now return to (3.13 and 3.14). If (3.13) is valid, then 

I  lI IqI (3.20) 
Ip—qI 2 +(s--lql)2 , 

whereas in the case of (3.14), (3.15) we have 

p—s-9-2 = p_so_H +(s—s0)2 
II II (3.21) 

> (1) p—q 1 2 +(s—so) 2 . 

We can now conclude from the above discussion that for p, q e O D 

N f p—s — 
a 

I '11 

2 	1 	N 	ds 
ds ~ 	 I 

 (1c 2 J1 q 1 I p—q I 2 +(s—si)2   lql 

1 	
(

S

p—qj

—s1 \ 
arctan 

sco 

cc2)Ip — qI !s=IqI 

(3.22) 
2  (1—cc )Ip — q I 

where s1 = I q I in the case of (3.13) and s 	= s0  in the case of (3.14): The estimate 
(3.9) now follows from (3.11 and 3.22). 
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A constructive method for determining the desired function u(q) can now be 
obtained if we can show that the Fredholm integral equation (3.10) can be uniquely 
solved for the unknown density fr(p), i.e. that the operator I - T(A) is invertible. 
We will accomplish this by proving two theorems. The first theorem below proceeds 
along classical lines [cf. 8, 9] except for the conclusion, where we make use of the 
integral operator (3.7). 

THEOREM 1. Let 2>0 and let u(q) a C 2(R 3\D)rC'(R3\D) be a solution of (1.5) 
in the exterior of D satisfying the Sommerfeld radiation condition (1.7) at infinity 

and the boundary condition 	= 0 on 3D. Then u(q) 0 for q a R3\D. 
3v 

Remark. The same Theorem holds for the Dirichiet problem and can be proved in 
the same way. 

Proof. Let fI be a ball of radius r>a, where B(r) = 0 for r ~: a. Then from Green's 
formula we have 

fLD(uAu_uAu)dV=J (u _u)dw_J (u 	u ±" dw,  (3.23) 
OD 	ôv 	3v 	 or 	orj 

where dV denotes an element of volume and dw an element of surface area. Since 2 
0u 3ü 

and B(r) are real and - = - = 0 on 3D, we have from (3.23) that 
ôv 	t3v 

f /'_3u 	3g\
tu—uldw=0. 	 (3.24) 
\ 

 

	

Or 	3r) 

But, for r> a, u(q) is a solution of A 3h + 22h = 0 satisfying the Sommerfeld radiation 
condition (1.7), and hence for r>a 

u(q) = 	 I q I)Smn (_q), 	 (3.25) 

	

m0n—m 	 II 
where the series converges absolutely and uniformly. By the orthogonality of the 

functions Smn 	and the formula 
(~q I! 

hP(2r)fL h(2r)—h(2r)-4- 14(2r) = ----- 	 (3.26) 
dr m 	 dr 	7r22 r2  

we have from (3.24) and (3.25) that 

(3.27) 
mO n 	m — 

  

which implies that u(q) = 0 for r>a. Let h(q) be the solution of A 3h+22h = 0 
associated with u(q) by the integral operator (3.7). Then from (2.4) and the fact that 
h(q) can be determined from u(q) by inverting an integral equation of Volterra type 
(which implies that h(q) has the same smoothness properties that u(q) does), we can 
conclude that h(q) a C 2(R 3\)r'C'(R3\D) and h(q) = 0 for r>a. Hence, since twice 
continuously differentiable solutions of the Helmholtz equation are analytic functions 
of their independent variables, we can conclude that h(q) = 0 for q a R 3\D, and hence 
from (3.7) u(q) = 0 for q a R3\D. 
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We can now establish the following result on the invertibility of the Fredholm 
operator I - 

THEOREM 2. Let 2>0 and define the operator T0(2) by 

TO(AV =  -k--- L 0(p) T(p, q; 2)dw; q E 3D. 
21t 	0Vq  

Then (I - T(2))' exists if and only if (I - T0(2))' exists, where all mappings are 
understood to be in the space Co. 

Proof. Since T(2) and T0(2) are integral operators with weakly singular kernels 
the Fredholm alternative is valid. Now let tfr be a solution of (I—T(1))41 = 0. Then 
the potential defined by (3.3) generates by (3.7) a solution u(q) of (1.5) in the exterior 
of D such that u(q) satisfies the Sommerfeld radiation condition, and, since 

(I—T(2))ifr = 0 1  
Ou we have 	= 0 for q c 3D. From Theorem I we can now conclude that u(q) = 0 
3v 

in the exterior of D. By inverting the Volterra equation (3.7) we can conclude that 
h(q) = 0 in the exterior of D and hence (I - T0(1))i = 0 for q e 3D. If (I - 
exists, then we can conclude that /i(p) = 0, and hence by the Fredholm alternative 
(I— T(2)) 1  exists. 

Conversely, if /i  is a solution of (I - T0(2)) = 0, then h(q) as defined by (3.3) 

is zero for qeR 3\D and hence from (3.7) u(q) = 0 for qER 3\D. Then 	= 0 for 
0v 

q e 3D and (I - T(2))ç!i = 0. Hence if (I - T(2)) 1  exists we can conclude that i(p) = 0 
and it follows from the Fredhoim alternative that (I—T 0(2))' exists 

From the previously described work of Jones we now have the following Corollary: 

COROLLARY. Let M be such that 2< 1M+ 2' where A, denotes the jth eigenvalue for 
the interior Dirichlet problem for A 3h + 22h = 0 in D. Then (I - T(1)) 1  exists. 

Given the fact that (I - T(1)) 1  exists, we can now use any one of a variety of 
methods for obtaining numerical approximations to the density 'i(P) [cf. 1]. We 
also note that all our conclusions remain valid in any function space on 3D where 
the weakly singular integral operators define completely continuous mappings such 
that the spectrum does not change. For example, under the hypothesis that 3D is 
twice continuously differentiable, this is true in all the spaces C° cLc:Lc:L 1 , 
l<p < Co. 
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Abstract 

Integral operators are used to solve the direct and inverse 

problems of the scattering of acoustic waves by a spherically 

stratified inhomogeneous medium of compact support. 	The results 

are valid for all values of the wave number and an arbitrarily 

large index of refraction. 	In the limiting case of small wave 

number or small inhomogeneitieS the results are in agreement with 

those of Rorres and Born. 



I, Introduction. 

In previous work (Li] , [2] ,  [a]) the author has used the theory 

of integral operators to study the problems of the scattering of 

acoustic waves by a bounded obstacle situated in a spherically 

- 	stratified medium. 	In this paper we shall continue our development 

of the use of integral operators in scattering theory, and consider 

the problem of the scattering of acoustic waves by a spherically 

stratified inhomogeneous medium in the absence of an obstacle. 	The 

integral operator used in L2J  and L31 is no longer applicable to this 

new problem and instead we shall make use of R.P. Gilbert's "method 

of ascent" ([1], t6J)  in order to construct the desired solution. 

Our results are valid for arbitrarily large wave numbers as well as 

for arbitrarily large inhomogeneities, provided the inhomogeneities 

are confined to a bounded regipn of space. 	For small wave numbers 

our results are in agreement with Rorres (8J),  whereas for small 

inhomogeneities they are in agreement with the Born approximation 

(c.f.L7J). 	Thus our results show that in the special case of 

scattering by a spherically stratified inhomogeneity of compact 

support the methods of Rorres and Born are in fact uniformly valid. 

The scattering of a plane wave (moving in the direction of z 

axis) by a spherically stratified inhomogeneity of compact support 

is described by the following system of equations for the unknown 

velocity potential u2 (where we have factored out a term of the 

lwt 
forme 	): 

L 3u + k2B(r)u = 0 	in 1R3 	 (l.i) 

ikz 
u(x) = e 	+ u (x) 	 (1.2)

au  
urn r ( -a - iku ) = 0 	 (1.3) s 
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where k is the wave number, r 	xl, B(r) is the index of 

refraction, and u(x) is the velocity potential of the scattered 

2 	3 
wave. 	We make the assumption that B(r) e C ( R ) and B(r) = 1 

for r 	1 (i.e. the problem has been normalized such that the 

inhomogeneities lie inside the unit ball). 	Condition (1.3) is 

the Sommerfeld radiation condition for outward scattering. 	We 

shall consider two problems associated with the system (1.1)-(1.3): 

DirectProbiem: Given B(r), find u(x). 

Inverse Problem: Given the far fiel4pattern 

f(O;k) = urn re- 
ikr

u (x) 
S .•S 

(1.4) 

for 0 < k 
0 	 1 	o 

< k < k where k and k are fixed constants, find 

B(r) for 0 < r . 1. 

We shall show in the next two sections how both of these problems 

can be solved through the use of the theory of integral operators 

for partial differential equations (c.f. El] ,  L6J). 

II. The Direct Problem. 

We begin our analysis by observing that every solutin of (1.1) 

regular in a neighbourhood of the origin can be represented in the 

form ([6]) 

1 
u(x) = h(x) - 2r fo o 2R (r,r;r 2 1 O)h(x 2 )do 	 (2.1) 

where h(x) is a harmonic function regular in a neighbourhood of the 

origin, R(x,y;,n) is the Rieniann function for 

U 	+ 	B()u = 0, 	 (2.2) 

and the subscript denotes differentiation with respect to . 	Hence 

for r < 1 we can represent u(x) in the form 



3. 

00 

'u(x) = 	b u (r)P (cos 0); r < 1 	 (2.3) 
n0 	

n 

where 

u(r) = rn1-2r 	
2n+2 

3 (r,r;ra 2 ,O)doi 	 (2.4) 

	

fa 	Ro  

and P 
n 
 (cos 0) denotes Legendre's polynomial. 	Since B(r) 	1 for 

r >. 1 we have, using Sonine's formula to expand ikz 

co 

u(x) = 	E a 11(1)  (kr)P(cos 0) + e ikz 
n0 n n+i 

(2.5) 

=  J-L- E [a FI 	(kr) + (2n+l)i'1J 1 (kr) 	P (cos 0) ; r 	1 
2kr 	n+ 	 n+ 	n 

n0 

for r . 1, where H (]) (kr) denotes a Bankel function of the first 
n 2  

kind and J 1 ((kr) a Bessel function. 	In (2.3) and (2.5) the 

constants a and b, n0,1,2,..., are to be determined. 	We now 

require that the representations (2.3) and (2.5) agree, along with 

their first derivatives, at r = 1. 	This implies that u(x) will be 

a weak solution of (1.1) in 1R 3  and hence, since B(r) c C 2 (rR3 ), u(x) 

is infact a classical solution of (1.1) in 1R 3  (c.f. [5], p.56). 

These considerations lead to the following system of algebraic 

equations for the determination of a and b n 	n 

b [1-2 1 2n+2 
	. 2 ,O)da] - a /H(k) 

n 	
a 	R 	, 3 (ll,o  

= 

	

A27, (2n+1)IJ'J 
 n+ 1 (k) 	 (2.6) 



LAIP 

d n n+l 	2r+2 	2 
b 	rr -2r 	a 	R3 (r,r;ra 0)doJ 	-a 

n2 dr 1 kr n+ 	J 
f
O 	 r=l 	 r1 11 dr'- 

fd 	iI 
= (2n+l)it' I.:: 

r1 

We note that it follows from the uniqueness of the solution to (1.1)-

(1.3) that the system (2.6) always has a unique solution, i.e. the 

determinant of the coefficients of a and b is non-zero (c.f. [4], 

chapter 5. Although the results in r4i are derived for the case of 

potential scattering, they are also valid for the case of acoustic 

scattering since the asymptotic estimates are for r tending to 

	

infinity with k fixed). 	Using Cramer's rule to solve (2.6) for a 

and bn  and the asymptotic estimates 

/L HW k 	.r(+i)2n [1+0 (!) J 2k n+ 	— n+1 	 n 
r k 

r 'I H 1 (kr)J 	= 
- ir(n+3/2)2n r 	(!) 3 dr L/2kr n+ 1  

r1 	Vkh1+l 	
L 	n 

(21)1 fl )// 	 = / ki' 
	1+0 	3 

2'r(n+) 

n1.n n f d  
(2n+1)i 

,- Al, 1 1(kr)] 	
k 	[1+0 (!) 3 

	

r1 	2' r(n-) 

(2.7) 

I - 2 
J1 

a22R3 (1,1;0 2 ,O)da = 1 + 0 (1) 
n 

d 	n n+l 	2n+2 	2 
- 

r -2r 	f a 	R3 (r,r;ra ,0)da 	= n[i~o (1)3 
dr 	 o 	 r1 

shows that 



5. 

a = 0 ( 
22I(n+)r(n+3/2) 	

(2.8) 

b 	0 I.  

2 r(n+) 

We can now conclude that the series (2.3) and (2.5) are absolutely 

and uniformly convergent, and hence (2.3), (2.5) and (2.6) determine 

the (unique) solution of the direct scattering problem. 	It is of 

interest to compare the relatively short analysis above using the 

theory of integral operators with the more involved derivation of 

the same result (for small wave numbers) by Rorres using the theory 

of integral, equations ([81). For yet another approach see 

section 8.4. 

III. The Inverse Problem. 

- 	 We now consider the inverse scattering problem, i.e. from a 

knowledge of the far field pattern f(e;k.) to determine the index of 

refraction B(r). 	From (1.4), (2.5) and the asymptotic estimate 

n+l 14—k ~ ikr 	 j 	(3.1) (kr) 	( - i) r 

it can be easily shown that 

0 

f(e,k) = I E (-i) n-flaP (cos 0 ). 	 (3.2) 
n 

n0 	
n 

 

Hence it can be assumed that a n 	n 	 0 
= a (k) is known for 0 < k < k < k 

(2.6) now implies that 

f2-k-  (2n-i-1)i'J+(k) + / 	a(k)H(k) J 

d 	n 	n+l l 2n+2 
(rr;r0 20)doJ 	 (3.3) .—rr-2r 	fo 

a 	It
dr L 
	 r=l 
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=(2n+1)in / d( fild  (kr)) 	+a (k) 	(dr 	r n+ 	 n 	7 dr f kr n+ 	r=1 r = 1 	- 

.Cl-2 f 1 2n+2 a 	R3 (1,1,a 2 ,0)daj
o  

From (3.3)the expansions 

2m+n 

/-i7
rj (kr) =/5 	2m+n 

E (._l)m(kr) 	 (3.4) 

	

 n+2 	 m0 	2 	m.rm+n+3/2) 

/-71r 
(1) 	

2in+n 	 n+1 	2m-n-1 

	

m(kr) 	 (-1) 	(kr 
 

1 (kr) 	 (-1) 	
-- + 

1 2m-n-1 , 
m0 	2 	m.r(m+n+3/2) 	2 	m.r(m-n+) 

and the fact that the Riemann function depends analytically on the 

parameter Ic2  we have that an(k)  must be analytic in a neighbourhood 

of the origin and have a Taylor expansion of the form 

a 	
2n+3 

n 	no 	
nl 2n+5 

	

(k)=a 	k 	+a 	k 	+... 	. 	 (3.5) 
-  

We now recall that R(x,y;,n) is the (unique) solution of the 

integral equation 

k 
2xy 

- 

R(x,y;,) = 1 	f f B()R(aT;,fl)dadT, 	(3.6)
TI  

which implies that 

	

2 	
k2 1 

R3(1,1;a0) - 	f B)d + 0(k4) _ •_ o  
(3.7) 

JOs B(s)ds + 0(k4
22  

and 

fER3(r,r;ra2O)J 	B(a) 	
ak2  f 1  L B(a)d + 0(k4 ) 

r1 	
dr 

=B(o) - 	fo B(o)d + 0(k4 ) 
(3.8) 

o) 	
k2 fa = 	B( 	- 	 S B(s)ds + 0(k4) 



7. 

Substituting (3.5), (3.7) and (3.8) into (3.3) and equating the 

coefficients of k 
n+2

gives 

1 ____ - a i n+1 (2n+l) 	
(2n) ) 2   

____ 	
= 	B(o)do 	(3.9) 

2n+3 	no 	 2nn 
	flu2n+2 

O 

where we have used the identity 

= (n+)(-1)" 	
(2n) 	) 2 • 	 (3.10) 

r(-n+ ) 	 2n 
2 n. 

(3.9) is in agreement with the Born approximation ([7]) for B(r) - 1 

small and with that of Rorres (181) for k small. 	Note however 

that our derivation makes no assumption on the magnitude of 

either B(r) or k. 	We also observe that when B(r) = 1 ( i.e. a 

homogeneous medium), a no = 0 as to be expected. 

Under the assumption that a no is known (from the far field 

pattern) for n = 0,1,2,... , (3.9) defines a moment problem for the 

determination of B(r). 	B(r) can now be determined in a variety of 

ways, for example by using (3.9) to compute the Fourier ëosine 

transform of r 2B(r) (c.f. 18]) or by expanding B(r) in the (complete) 

set obtained by orthonormalizing the functions {r 2ri+2} with respect 

to the inner product in L2EO,11(c.f.E2J). 	We fina].ly note that the 

determination of B(r) from the far field pattern is an improperly 

posed problem in the sense that B(r) does not depend continuously 

on the far field data f(O;k). 	This can be seen from (3.9) where 

small variations in a no can cause large variations in the integral 

on the right hand side if n is large. 
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I. Introduction. 

The inverse problem we will consider in this paper has its 

origins in the following problem connected with the scattering 

of acoustic waves in a nonhomogeneous medium. Let an incoming 

plane acoustic wave of frequency w moving in the direction 

of the z axis be scattered off a "soft" sphere Q of radius 

one which is surrounded by a pocket of rarefied or condensed 

air in which the local speed of sound is given by .c(r) where 

r =i>I for x C R3  . Let u5()e1Wt  be the velocity potential 

of the scattered wave and let r,O,Ø be spherical coordinates 

in R3  . Then from a knowledge of the far field pattern. 

f(O,Ø;A) for A = 	contained in some finite interval 

o < 	< X 1 , we would like to determine the unknown function 

c(r). Under the assumptions that Vc(r) <<Ac(r) and c(r) 	c0= 

constant for r > a > 1 , we can formulate this problem mathe- 

matically as follows 
co  

(c.f.[I]): Let B(r) = (-)2 - 1 and set u(x) = v(x) + u(x) 

—where u(x) satisfies 

L 3  U + A (1+B(r))u = 0 in R3 /c  

U(x) = _( e1 	+ v(x)) on 	 (1.2) 

urn r 	- iXu) = 0 	 (1.3) 

and v(x) is such that e1 	+ v(x) is a solution of (1.1) 

in 	where v(x) = 0. for r > a . Then given 

	

f(O,Ø;X) = urn r 	iXr 	 (1.4) 

we want to determine the function 13(r). The approach we will 

use in this paper is to use the theory of integral operators 
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for partialdiffrential equations in unbounded domaine as 

recently initiated by Colton and Wendland in [11 to reduce the 

inverse Ocattering problem described above to a generalized 

moment problem for the unknown function B(r). In this sense 

our work has .some relation to the work of Rorres, who solved 

the inverse scattering problem for small frequencies in the 

absence of an obstacle by reducing the inverse problem to a 

•moment problem over a finite interval ([5]) 

II. Inteciral Ooerators and the Inverse Scatterinci Problem. 

Assume that B(r) is continuously differentiable and vanishes 

for r > a , and let h(r,G,Ø) be a solution of 

L 3 h + X h = 0 	 (2.1) 

in R3/2 . Then in [ii it was shown that every solution of (1.1) 

in R 3  /Q can be represented in the form 

K[h]  
"I 	

_ 
— 	 (2.2) 

=h(r,0,0) +JK(ris;), )h(ste;Ø)ds 

- 	 r 

•where h(r,0,0) is a solution of (2.1) in R 3 /Q , and, for 

1 < r < S < , K(r,s;X) can be represented in the form 

K (r,s;),) = (rs) 	1/2 	A2i+2N. (log r, log s) 	(2.3) 

with 	 log a 

N0 (log r, log s) = - . 	J 	e2TB(eT)dT 	(2.4) 

1/2 log rs 

and the functions N(log r, log s), j = 0,1,..., being determined 



recursively. Each Ni (log r, log s) is independent of A , vanishes 

identically for rs > a2  , and satisfies a bound of the form 

max 	INi (log r, log s)l 
. (2-+1) 	 (2.5) 

1<r<s<c 

where c is a constant which is independent of j and depends 

only on the maximum of ,  B (r) j in the interval 1 < r < a 	In 

particular (2.5) implies that the series (2.3) is uniformly 

convergent for 1 < r < s < 	and is an entire function of A 

Since 	is a solution of (2.1), the above considerations 

imply that a suitable choice for v() is given by 00 

V() 	v(r,®)
= 

 
I 
K(r,s;X)e 	

C0S 
0ds 	 (2.6) 

Now let 

a Bessel function 

define j +112 (r) 

h 112  (r) 

and H112 (Xr) denote respectively 

and Hankel function of the first kind, and 

and h 112 (r) by 

(Xr)' 2  J ~ 112(Xr)] 	
(2.7) ru 

= 	
(Xr) 1"  H 12 (),r)] 

Then from the representation ([2],p.64) 

ixz 	Jr hL (2n+1)i J 112 (Ar)P (cos 0) 	(2.8) 

where P(cos 0)  denotes Legendre's polynomial, it is easily 

verified that the solution of (1.1) - (1.3) is given by 

CO 	(2fl+ 1)nl ~112 (1) 

u() = u(r,0) = -J 	 h 112 (r)P(cos 0). 
n=o 	h 112 (1) 

(2.9) 
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Note that from the uniqueness of the solution to (1.1) - (1.3) 

(111) we can conclude that h n+i/2(l) # 0 , and the convergence 

of the series (2.9) for 1 < r < co , 0 < 0 < u follows from 

(2.7) 4nd well known estimates for Bessel functions and Legendre 

tolynomials for large values of n (c.f.[21,p.22-23 and p.205). 

From the fact that 

h ~112 (r) = (Ar) 	2H12(Xr) ; r >' a 	 (2.10) 

and the asymptotic estimate ([2),p.85) 

n+1 t' iXr Ar) = ( - 1) 	 e 	Ii + Q(.L.)1 	(2.11) Ar j 

we can conclude (c.f13]) that the far field pattern 

f(O,Ø;X) = f(O;A) is given by 

CO 	i(2n4-l)j +112 (1) 
f(0;A) = 	 P n  (cos 0) . 	 (2.12) 

- n=o A h 112 (1) 

Recall once again that although •the far field pattern 

f(0;A) is assumed to be known, the functions j n+112(r) and 

are unknown since B(r) isaOf yet unknown. 

However if we expand f(0;A) in a a Legendre series 

co  f 	 a (A) P(cos 0) 
n=o 

then from (2.12) and (2.13) we have 

(2.13) 

= a (A) n h+112(1) 	

2n+3 
A 	+... n i  

(2.14) 

where 
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Xa(X) 
a (A) =  fl_ 	1 T2n+1) 

 

are known (analytic) functions of A . The fact that a(A) 

has a zero of order 2n+1 at the origin follows from (2.3), 

(2.7), and the series representations (c.f.[ 2] ,p.4) 

2+n 
('2: 	)

00 

-1/2 	 in 	
rn 

n+1/2 	= 	2 	 m!r(m+n+3/2) (Ar) 	J 
rn=o 	 (2.16) 

2 	
) 2rn-Fn 	(1) n+1 (/2) 2mn1 

	

-1/2 (1) 	 ___ 	__________________ 
(Ar) 	H112(Xr)= 	(l)m[M!F(m+n+3/2)

> 	 + 1- 
m!r(m-n+1/2 	- I rn=o 

 

Equating like powers of A in (2.14) we have 

1 
(-1)F(-n+1/2) (1/2)2n+1 

	

= 	 (2 17) 
n (n+3/2) 	

. 
r 0 

and 

(1/2) n+2 	
(1/2) fl n-1/2 

 _____________ 
r(n+5/2) 	J N0 (log i,log s) r(n+3/2) 	

ds 

1 

a 	i 	
1 	

a 
( _ 1) fl (1/2) fl+ 	 ( _ 1) fl (1/2)  -n-i 	(2.18) 

+ 	I =  
no 	F(-n+3/2) 	 n 	j'(-n+1/2) 

CO L.. 
S 
-n-3/2 

 
+ a i J N0 (log 1, log s) - 	r(-n+1/2) 	

ds 
no  

1 

Note that the coefficient a 	is independent of B(r) 

From (2.4) we have 

2 
CO 	 a 	a 

- - 1 J N(log i,log s ) smds 	 B() Smdds  - 	j 	j  
1 	 1 

a 
1 
2 

-1 J 
1 1 

B() smd sd 	(2.19) 

a 	 a 
-- 	1 
	I 	____

2(m+1) 	S 2m+3 B(s)ds ± 2(m+1) I s13(s)ds 
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and hence using (2.17) and (2.19) we can rewrite. (2.18) in 

the form 
a 

2n+2 	-2n = J  B(s) s 
	+ s 	- Vs] ds 	 (2.20) 

1 

	

_______ 	 n+1 	2n 1 where 	 ________ 

	

cri -1- _U- 	 (-1) 	(1/2) - - r (n+3/2)] 
p = - (2n+1) 1X(2n+3)(1-2TT) + ai 	F (-n+1/2) 

The p 	 are known from the far field pattern, and hence the 

problem of determining the function B(r) has been reduced to 

• solving the generalized moment problem (2.20), (2.21) (note 

that if we assume that B(r) is real valued, then from (2.17) 

and (2.18) we have that a 	is purely imaginary, and hence 
1 

p 	is real for n = 0,1,... 	.) 

III. The Generalized Moment Problem. 

We will assame the existence of a continuously differentiable 

function B(r) such that (2.20), (2.21) is valid, and address 

ourselves to the problem of the uniqueness of B(r) and the 

approximation of B(r) in the L norm over the interval (1,a]. 

As will be clear from the analysis which follows, necessary and 

sufficient conditions on the sequence p fl ,n = 0,1,... , for 

(2.20), (2.21) to determine a function B(r) E L 2 [1,a] can be 

obtained from known results on the classical Hausdorff moment 

problem over the interval [2 ,a2] (c.f.[4]). We however 

restrict ourselves solely to the problem of uniqueness and 

approximation since in the context of the present paper it is 

these problems which are of paramount interest. This is due to 
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the fact that the sequence P 	(or equivalently the sequence 

a ) is obtained from physical measurement and it is assumed 
1 

a priori that the sequence ji 	is a (generalized) moment sequence 

for some function B(r) to he determined. 

The basic problems of uniqueness and approximation can be 

settled by appealing to the following theorem: 

Theorem: The functions 

2n+2 	-2n 
p(r) = r 	+ r 	- lr 

n = 0,1,2,..., are complete in L[1,a] 

Proof: Let f (r) be a continuous function on the interval 

[1,a] .Since the space of continuous functions on [1,a] is 

dense--in L 2 [1,a], to prove the theorem it suffices to show 

fh -  if 

J f(s)p(s)ds = 0 
	

(3.1) 

for n = 0,1,2,..., then. f(r) = 0 for r € [1,a] . For 

r € [1 , 1] define f(r) by 

f(r) = 4f(.) 	; r € [i ' l]  

Then 
a 	 1 

J f(s) S 
-2n ds 	 5 J f(s) 2n+2 ds 	 (3.3) 

1 	 1/a 

and hence from (3.1) 



a 

0 = J f(s)[pn  (s) - p,,,, (s) ] ds

1  

a 

J f(s)[ 2n+2 + s 
-2.n  s 2n+4 	s -2n--21 s 	 - 	- 	jas 	(3.4) 

1 

S 
a 

2n+22n+41 

= La 

	-s 	j ds 

-. 	 a 

= f [f(s) - s 2 f(s)) s 2n+2  ds 

1/a 

2 

= 4 J 	f(s1/2)[sh/2 - s3/2]srãs 
1/a 

for n = 0,1,2... . Since the set {rT)}0  is complete in 

L2 [! 	a2] , we have from (3.4) that 

f(r h hl'2) ( r 1 " 2  -. r3'2) 	= 0 	 (3.5) 

for r €[ --  2 
	, and hence f(r) = 0 for r € [1,a] and 

the theorem is proved. 

The uniqueness of the function B(r) fo1lows immediately 

from the above theorem. Furthermore the function B(r) can 

be approximated in L 2 [1,a] by orthonormalizing the set 

over the interval Li,a) to obtain the orthonormal 

set {q(r)} 0  and then approximating B(r) in L2 [1,a] 

by the function 
N 

B(r)  = 	b.(p(r) 	 (3.6) 
n=o 

wh ër e a 	 - 

\:= 	f(s)B(s)ds. 	 (3.7) 
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I.. Introduction. 	 1. 

A classical result in potential theory is the Schwarz reflection 

principle for solutions of Laplace's equation which vanish on a portion 

of a spherical boundary. The question naturally arises whether or 

not such a property is also true for solutions of the Helmholtz equation. 

This has been answered in the affirmative by Diaz and Ludford (L41; see 

also [10]) in the limiting case of the plane, and itis the purpose of 

this paper to show that a reflection principle is also valid for spheres 

of finite radius. 	As an application of this result we will study the 

problem of the analytic continuation of solutions to the Uelmholtz 

equation defined in the exterior of a bounded domain in three 

dimensional Euclidean space JR 3 . 	We shall show that through the use 

of the reflection principle derived in this paper, this problem can be 

reduced to the problem of the analytic continuation of an analytic 

function of two complex variables, which in turn can be performed 

through a variety of known methods (c.f.[7]). 

II. Integral Operators and the Reflection Principle. 

We consider solutions of the Helmholtz equation 

t U + Xu = 0 n 
(2.1) 

defined in DS where D is a bounded starlike domain containing the 

open ball 

r2 	2 
S = {x : r = 1x 1  +..+ x < a}, x = 

n 
M 

On the surface r=a we assume that u(r,O) = u(x)continuoulsly assumes 

the boundary data 

u(a,O) = 0 	 (2.2) 

where (r,O) = (r, Ol, ... Ofl_l) are spherical coordinates. 



2. 

We shall obtain a reflection principle for solutions of (2.1)(2.2) 

through the use of an integral operator which maps harmonic functions 

defined in DNS and vanishing on.r = a onto solutions of (2.1),(2.2). 

In this connection our approach resembles in some ways the "method of 

ascent" as developed by Gilbert ([8]), Eichler ([5]) and Colton and 

Wend land (31), except that we are now concerned with solutions 

defined in a multiply connected domain instead of a simply connected 

domain. 

We look for a solution of (2.1) in the form 

i 
u(r,O) = h(r,O) + 

r  n-3 
s 	K(r,s;X)h(s,O)ds 	 (2.3) 

where h(r,O) c C2(D\S)nC0(D\S) is a solution of 

= o 	 (2.4) 

such that 

h(a,8) = 0. 	 (2.5) 

Substituting (2.3) into (2.1) and integrating by, parts using (2.5) we can 

show that (2.3) will be a solution of (2.1) provided K(r,s;X) satisfies 

r2rK + (n-l) K + XK1 = 2[ 	n-i K 	.i ------ Kj 	 (2.6) Lrr 	r 	r 	J 	ss 	s 	s 

and the initial data 

K(r,r;X) = 	r2n(r2_a2) 	 (2.7) 

•K(r,a;X) = 0. 	 (2.8) 

Setting 

= log r 
(2.9) 

=1ogs 

we transform (2.6)-(2.8) into the initial value problem 



- 	 M -M +Xe2 M=0 
fin 

M(E, log a;A) = 0 

A 	2 	2 = - 	(e 	- a ) 

3. 

(2.10) 

(2.11) 

(2.12) 

for the function 

M(,n;X) = exp { (n-2) 
	K(e,e;A) 	 (2.13) 

2 

defined in the cone {(,ii) : 	.< r, r < log a, or 	r, r 	log a}. 

(2.10)-(2.12) is a Goursat problem for a hyperbolic equation and has 

a unique (analytic) solution in this cone (c.f.[6] pp.118-119). 

Hence we can conclude that the operator (2.3) exists. 	It is easy to 

show (c.f.[2]) that if u(rO) c C 2 (D\S) C° (D\S) is any solution of 

(2.1), (2.2), then u(r,O) can be represented in the form (2.3) for 

some harmonic function satisfying (2.5). 

Before turning to the proof of the reflection principle for 

solutions u(r,O) satisfying (2.1),(2.2), we take this opportunity to 

construct another integral operator which in a sense is complimentary 

to (2.3) and which we shall use in the next section of this paper. This 

operator is of the form 	 - 

fa
r  

u(r,O) = h(r,O) + 	s 	K(r,s;X)h(s,O)ds 	 (2.14) 

where h(r,8) c c 2 (D\ )rc 1 (D\S) is a solution 'of (2.4) such that 

h(a,O) + 
	h(a,O) = 0. 	 ' 	 (2.15) 

In order for u(r,O) as defined by (2.14) to be a solution of (2.1) we 

must have i(r,s;A) be a solution of (2.6) satisfying (2.7) and the 

initial data 

(n- 2) + 
K (r,a,A) 	2a 	

(r,a;X) = 0. 	 (2.16) 



4. 

This can be verified directly by substituting (2.14) into (2.1) and 

integrating by parts using (2.15). 	Using the change of variables 

(2.9) and setting 

(11-2) 	
K(e,e';x) 	 (2.17) = exp 	

2 

we obtain the initial value problem 

2-'-' 
M 	- M 	i- Xe 	M = 0 	 (2.18)nn  

1-4 

	

M(, log a;X) = 0 	 (2.19) 

A 	2 	2 - 	(e 	- a ). 	 (2.20) 

To solve (2.18)-(2.20) we introduce the function E(,n;X) defined as 

the(unique) solution of the characteristic initial value problem 

E -E 
nfl 
	 (2.21) 

	

(e 	- a2 ) 	 (2.22) 

	

- +2 log a; A) = - 	(e 	- a2 ). 	 (2.23) 

The existence of a unique (analytic) solution to (2.21)-(2.23) in the 

cone {(,n) : 	. n, n+C 	2log a, or E >.n,r1 -1- 	2log a} follows 

from standard results on hyperbolic equations (c.f.[6], pp.118-119). 

A solution of (2.18)-(2.20) is now given by 

= 4[E(,n;A) + E(, — n + 2 log a;A)] 	(2.24) 

and we have established the existence of the operator (2.14). 	It is 

again easy to show that if u(r,O) e C 2 (D\)nC 1 (D\S) is any solution 

of (2.1) satisfying 

u(a,O) + 
	

u(a,O) = 0, 	 (2.25) 
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then u(r,O) can he represented in the form (2.14) for some harmonic 

function satisfying (2.15). 

We are now in a position to prove the following reflection 

principle for solutions of (2.1),(2.2): 

Theorem 1 (Reflection Princple): 	Let u(r,O) c C2(D\S)r\C0(DS) 

be a sàlution of (2.1), (2.2) and let D denote the set obtained by 
2. 

inverting DNS across 9S, i.e. (r,O) c D* if and only if ( p— ,o ) c D\S. 

Then u(r,O) is a twice continuously differentiable (and hence 

analytic) solution of (2.1) in DSUD*. 

Remark: 	The fact that twice continuously differentiable solutions 

of (2.1) are in fact analytic follows from classical regularity 

theorems for solutions of (2.1) (c.f. [6]). 

Proof of Theorem: 	From our previous discussion we can represent 

u(r,O) in the form (2.3) where h(r,O) satisfies (2.4) and (2.5). 

Furthermore u(r,O) c C 2 (D\S)CC
0 (D\S) implies that 

h(r,O) c C 2 (DNS)flC0 (D\S). 	Hence from the reflection principle 	for 

harmonic functions h(r,O) is harmonic in DN SUD* and hence by (2.3) 

u(r,O) is twice continuously differentiable in D\SUD*. 

III. An Application to the Inverse ScatterinS Problem. 

Suppose an incoming plane acoustic wave of frequency w moving in 

the direction of the z axis is scattered off a "soft" bounded obstacle 

Q in 1R3  and that u(r,O,)e1Wt is the velocity potential of the 

scattered wave, where (r,O,) denote spherical coordinates. 	Then 

will be a solution of (2.1) in the exterior of 0 for n=3, 

2 	 . 
A = 	= k2,where c is the speed of sound. 	At infinity u(r,O,4) has 

the asymptotic behaviour 

ikr 
u(r,O,) ^U 

e r 
(3.1) 



6, 

here f(0,4)) is the far field pattern (c.f. [13]). 	The inverse 

scattering problem is to determine Q, given the fact that f(0,4)) is 

known exactly. 	From the results of Miller ([13]) we can determine 

ui(r,0,4)) outside the smallest ball S containing 2 in its interior, 

where S can be determined from a knowledge of f(0,4)). 	In particular 

if the radius of S is a, one can write ([9],[l3]). 

00 	 n 
E 	E a

nm n 	nm 
(kr)S (0,0; 	r 	a (3.2) 

n0 mn 

-where the coefficients a 	are determined from the far field pattern nm 

f(0,4)), 	denotes a spherical Hankel function, Snm  a spherical 

harmonic, and the series (3.2) is uniformly convergent for r 	a, 

0 c 0 < 'i, 0 	4) . 27r. 	Hence to find 0 we must analytically 

continue u(r,0,4)) as given by (3.2) across the boundary of S and 

tok for the locus of points where u(r,0,4)) t- exp (ikrcosO) = 0. 

This problem of analytic continuation has been studied by many 

research workers, in particular, Weston, Bowman and Ar (15J), 

Colton ([1]),  Sleeman  (Ll41),  Millar (l2) and Hartman and Wilcox ([9]) 
In this section we shall contribute to this study by using the 

integral operators and reflection principle of section II to relate 

the domain of-regularity of u(r,0,4)) to that of an analytic function 

of two complex variables. 	The advantage of such a relationship is 

that once this has been done there is a number of known methods for 

determining the domain of regularity of analytic functions of several 

complex variables; in particular see [8], section 1.3. 	We first 

prove the following theorem (Compare this result to that of Millar in 

the simpler case of two dimensions ([11])): 
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Theorem 2: 	Let h(r,O,4) be the (unique) harmonic function defined 

in the exteior of the ball S such that h(a,O,4) = u(a,8,4) on 3S. 

if h(r,8,) can be continued to a harmonic function defined in the 

exterior of a starlike domain DCS, then u(r,O,4) can be continued as 

a; solution of (2.1) (with n3, X= k 
2 
 ) into the exterior of D. 

Poof:- Let h(r,O,4) be the harmonic function defined by 

2 
= [h(r,O,) + () h( 	,O)] 	 (3.3) 

where we have made use of Kelvin's inversion formula. 	Then h(r,O,) 

is regular in D*US\D where D*  denotes the set obtained by 

inverting S\D across 3S. 	Furthermore we have 

'V 

h(a,O,) + - h(a,O,q) = 0. 

u(r,O,) 	h(r,O,4) + 

 

Hence from (2.14) we have that 

(3.4) 

2"' f
r 
 K(r,s;k )h(s,O,q)ds 	(3.5) 
a 

is a solution of 

3u + k 2  u = 0 	 (3.6) 

om D*USND and 

u(a,O,) = u(a,O,). 	 (3.7) 

Therefore w(r,O,) = u(r,O,c) -(r,O,c) is a solution of (3.6) in 

D* such that w(a,O,) = 0, and 'hence by Theorem I w(r,O,4) is an 

analytic solution of (3.6) in D*US\D. 	We can now conclude that 

u(r,O,4) is analytic in D*US\D and since u(r,O,4) is already known 

to be analytic in the exterior of S, the Theorem follows. 

In order to apply Theorem 2 it is necessary to have a method for 

determining the location of the singularities of the harmonic function 

h(r,O,4). But this theory has been extensively developed by Gilbert 
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([7], [8]).. 	In particular since 

n 

	

h(r,e,4) = E 	E a hW  (ka)(
r 
 ) 

iii 
- 	S (e,) 	(3.8) 

n0 m-n 	 a 	rim  

for r >- a, 	0 < 0 < ri, 0 	2ir, we have (c.f. [1 chapter 3, 

or [8], chapter 7) that the singular points of h(r,0,) can be 

determined from aknowledge of the singular points of the analytic 

function of two complex variables 

	

CO 	 n 

	

g(z 1 ,z 2 ) = E 	E a h 	
n m 

nm n 	(ka)z 1 z 2  . 	 (3.9) 
n=0 mn 

As previously pointed out, methods for determining the singular 

points of (3.9) can be found in 	It should be observed that..in 

the case when u(r,0,4) = u(r,0) is axially symmetric (i.e. independent 

of ) then g(z 1 ,z2) = g(z 1 ) is an analytic function of a single 

complex variable, and all calculations are considerably simplified 

(c.f. [11). 
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1 . 

Introduction s  

The use of integral operators to solve problems in applied 

mathematics dates back to the time of B. RIEMANN and his investigation 

of certain problems in gas dynamics (iJ). More recently I.N. VEKUA 

and S. BERGMAN have used the method of integral operators to develop 

a systematic theory of elliptic equations in two independent variables 

with the aim of studying various problems in the theory of elasticity 

and fluid dynamics (22j, r2j,  14l). 	D. COLTON has recently extended 

this approach to the case of parabolic equations and mathematical 

problems arising in the theory of heat conduction (LJ)• 	Further 

applications of integral operators to problems in mathematical physics 

have been made by A.V. BITSADZE (L13J), R.P.  GILBERT (Lii]), F. BAUER, 

P. GARABEDIAN and D. KORN ([ii), and B. LEVITAN ([16]), to mention but 

a few of many researchers. 	The basic theme in all of the above.- 

mentioned work in the theory of integral operators has been the interplay 

between problems in pure and applied mathematics, with particular 

attention being paid to (well posed) boundary value problems, (improperly 

posed) inverse problems, and the unique continuation of solutions to 

partial differential equations. 	In this paper we shall survey some of 

the recent results we have obtained on the use of integral operators in 

the study of wave propagation in a nonhomogeneous medium. 	In view of 

the fundamental contributions that I.N. VEKUA has made to both the theory 

of integral operators and mathematical problems in wave propagation, it 

gives us particular pleasure to dedicate this paper to him on the occasion 

of his seventieth birthday. 

Integral Operators , 

The partial differential equation which appears in the course of our 

investigations is of the form 



2. 

	

L 3u + k2(1+B(r))u 	0 31 	 (2.1) 

where A 3 denotes the Laplacian in WV, k is a parameter (the wave 

nuither), and B(r) is a continuously differentiable function of r 

having compact support, i.e 0 B(r) = 0 for r - a where a is a constant. 

In our study we shall need two integral operators associated with (2.1) 

which are in a sense complimentary. 	The first of these is due to 

R.P. GILBERT ([121) and is a generalization of an operator constructed 

by I.N. VEKUA for the case when B(r) = 0 (L221, pp. 57-61). 	This 

operator is of the form 

u(x) 	(I-G 1)h 

r 
= h(x) - J ()

2  R3 (r,r;s,0) h(s,O,)ds 	 (2.2) 

= h(x) - 2r J 0 2  R 3 (r, r;ro 2 ,0) h(xa2 )da 
o 

where (r,9,) denote spherical coordinates, h(x) = h(r,e,) is a 

harmonic function regular in a neighbourhood of the origin,. R(x,y;,n) 

is the Riemann function for 

R 	+ 	(1 + B())R = 0, 	 (2.3) 

and the subscript denotes differentiation with respect to . 	It can 

be verifie.d that every solution of (2.1) regular in a neighbourhood of 

the origin can be represented in the form (2.2) for some harmonic func-

tion h(x), and conversely if h(x) is harmonic then u(x) as defined by 

(2.2) is a solution of (2.1) in some neighbourhood of the origin. 	The 

second operator we shall need is due to D. COLTON and W. WENDLAND ([91) 
and maps solutions of the llelntholtz equation 

	

, 3h + k2h = 0 	 (2.4) 

defined in the exterior of a bounded, starlike (with respect to the 

origin) domain D onto solutions of (2.1) defined in the exterior of D 

by the relation 



3. 

u(x) = (I - C 2 )h 

00 

= h(x) - r G(r,s;k) h(s,8,)ds 	 (2.5) 

where G(r,s;k) is the twice continuously differentiable solution of 

r2 LG 	+ 	G + k2 (1+B(r))G] = s 2 [G 	+ 	Cs  + k2 G] 	 (2.6) 

for s > r satisfying the rather unusual boundary conditions (see 

figure 1 below) 

G(r,s;k) = 0 	for rs 	a2 	 (2.7) 

C(r,r;k) - 12 F sB(s)ds 	 - 	(2.8) 

G(r,s;k) = 0 	for s < r. 	 (2.9) 

r 

Boundary data 
for C prescribe 
here 

in unshaded 
region 

S 

Figure 1 

The solution of (2.6) - (2.9) can be obtained in the form 

22  G(r,s;k) = (rs) 	E kN. (log r, log s) 	 (2.10) 
j=O 

with 
fa 

1 	B()d 	 (2.11) N(log r, log s) 	
.. 

(rs) 2  

and the functionN.(log r, log s), j = 1, 2, . . . , being determined 

recursively. 	Due to the fact that B(r) = 0 for r 	a it can be shown 

(9J) that the series (2.10) is uniformly convergent for 0 < ór < s < 
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(where 6 is an arbitrarily small constant) and is an entire function of 

k. 	It can easily be shown that every solution of (2.1) regular in the 

exterior of D can be represented in the form (2.5) for some solution h(& 

of (2.4) regular in the exterior of D. 	Note also that if h(x) satisfies 

the Sommerfeld radiation condition 

lim r(a!i 
r-) 	

- ikh) = 0 	 (2.12) 

then by (2.7) so will u(x) = (I - C 2)h. 

- 	III. The Scattering of Acoustic Waves. 

We shall now show how the integral operators constructed in the 

previous section can be used to solve boundary value problems arising 

in the theory of the scattering of acoustic waves in a stratified (or 

layered) medium. 	(For a general discussion of wave propagation in a 

stratified medium we refer the reader to the book by L. BREKHOVSKIKH 

([43)). 	We shall consider the case when a plane wave of frequency 

moving in the direction of the z-axis is scattered by a quasi-

homogeneous, spherically stratified medium of compact support which may 

contain a "hard' t  scattering body D. 	After factoring out a term of the 

form e 
iwt we are led to the following two problems for determining the 

velocity potential u(&. 	(In the problems below we denote the local speed 

of sound by c(r), assume that c(r) = c = constant for r > a, and set 

B(r) = ( C() ) 2  

Problem 1 (No Obstacle Present): Determine u(x) from the equations 

u(x) =e 
ikz

+u(x) 
S.- 

(3.1) 

3u + k2 (1+B(r))u = 0 	in e 3 (3.2) 

urn
( aus- iku ) = 0 	 (3.3) 

r->oo 	ar 	S 

where u(x) is the velocity potential of the scattered wave. 
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Problem 2 (Obstacle Present): 	Let D be a bounded domain, starlike with 

respect to the origin, with smooth boundary 3D and outward normal v. 

Determine u(x) from the equations 

u(x) = ikz + u(x) 	 (3.4) 

L 3u + k2 (l-fB(r))u = 0 in 1f 3\D 	 (3.5) 

Du = 0 	on 3D 	 (3.6) 
3v 

3u 
urn , S - iku ) = 0 	 (3.7) 
r-° 	S 

where u(x) again denotes the velocity potential of the scattered wave 

and D denotes the closure of D. 

We first consider Problem 1. 	This is of course a classical 

problem and has been considered by a wide variety of research workers; 

we refer in particular to C. RORRES ([191)  and (for the closely related 

case of potential scattering) to A. MESSIAH ([j7). 	We shall show how 

a constructive method for solving Problem 1. can be obtained in a few 

lines through the use of the operator I - C 1 . 	In particular, from (2.2) 

we can represent u(x) for r < a in the form 

CO 

	

u(x) = 	b u(r) P(cos 0); r < a 	 (3.8) 
n =0 

where 

u(r) = r[l - 2rJ a2n+2  R3 (r,r; r 2 ,O)d, 	 (3.9) 
o 

P(cos 0) denotes Legendre's polynomial, and the constants b, 

n = 0, 1, 2, ..., are to be determined. 	Since B(r) = 0 for r ? a we 

have, using Sonine's formula to expand e1', 

Go 

u(x) = E [an 
 h (l)  (kr) + (2n+l)i' j (kr)]P(cos e); r 	a 	(3.10) 

n =0 	
n 

for r 	a, where h 1 (kr) denotes a spherical Hankel function of the 

first kind, j(kr) a spherical Bessel function, and the constants 
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a, n = 0, 1, 2, ... are to be determined. 	We now require that the 

representations (3.8) and (3.10) agree, along with their first 

derivatives, at r = a. 	This leads to a two by two system of algebraic 

equations for the determination of a n 	n 
and b and it can be easily shown 

that this system always has a unique solution (for any value of the wave 

number Q. 	Using Cramer's rule to solve this system for the a and b, 

and applying standard asymptotic estimates for the Bessel and Hankel 

functions in conjunction with 

n 	
2n+2 R (a a 	 + 0(! )] 	 (3.11) a [l-2a I 	3 ,; aci 2 , 0)dJJ = a Ll 	n J o  

d 	n 	
2 
 n+l 1 2n-s-2 

- rr - r 	 R(r,r;ra 2 ,0)dJ 	= na' [l+0(!)], 	(3.12) 
dr L 

Jo 	
3 	

r =a  

show that 
2n_ku' )  

a 
a 

r(n+) r(n+3/2) 
(3.13) 

nfl 
b = 0( ak  

n 	2n r(n+) 

We can now conclude that the series (3.8) and (3.10) are absolutely and 

uniformly convergent,, and hence we have a constructive method for 

solving Problem 1. 	More precise estimates for the coefficients a (and 

hence bn)  shall be obtained in the next section when we consider the 

inverse problem to Problem 1. 

We now turn our attention to Problem 2. 	This problem has also been 

studied by several mathematicians, in particular R. LEIS ([15) and 

P. WERNER (L241). 	Our aim, as with the case of Problem 1, is to use the 

theory of integral operators to provide a constructive method for solving 

the problem, in particular one that is suitable for numerical computation. 

We shall accomplish this by using the operator I - 	to reformulate 

Problem 2 as a Frèdholm integral equation over 3D. 	As in the case of a 

homogeneous medium (cf. L221), particular problems arise due to the 
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presence of eigenvalues for the interior Dirichlet problem for (3.5). 

We shall overcome this difficulty by using some recent results of 

D.S. JONES for the He1mho1z equation (rl3l) which were in turn 

motivated by the work of F. URSELL (L2fj). 	In particular we look for 

a solution of Problem 2 in the form u(x) = (I - 02) h(x) and represent 

h(x) in the form 

h(x) = ikz  + f 	) r(,x;k)dw 	 (3.14) 
DD 

where 
ikR 	N n 

r(,x;k) = e R  + z 	E b 	()ip(x), 	 (3.15)
mm  

n=O m=—n 

R = k- xl, dw is an element of surface area at the point E c aD, 

the b 	are nonzero real constants (arbitrary, but fixed), and mn 

() = hW(kr) S 	( O,), 	 (3.16) 
n 	nm 

where h 	denotes a spherical Hankel function of the firt kind and 

S 	a spherical harmonic. 	In (3.14), (3.15), 3 1 (e) is a contiouous
nm  

density to be determined and N is an integer such that k <, kN+2 where 

k. denotes the jth eigenvalue for the interior Dirichiet problem for the 

Helinholtz equation (2.4) defined in D. 	Methods for computing N can be 

found in L131. 	Substituting (3.14) into the representation 
u(x) = (I - 92)h(x), interchanging orders of integration, and applying 

the boundary condition (3.6) now leads to the following Fredholm integral 

equation with a weakly singular kernel for the determination of p(x): 

p() f 	= 	— (x) 	I u(s) 2 	- 	 2ii ir  aD 	x 
r(,x;k)dw 

(3.17) 

+. L 
 M --L 

{J0 
G(r,s;k) r(,s 	;k)ds}dw 

de f. 
( - 



where x c aD and 

-  
f( 	

ikz 
) =- 	

- 

G(r,s;k)e iks cos 0dsl. 	 (3.18) 

(Note that the quantity in brackets in (3.18) represents the unique 

continuation of the function elkZ  as a solution of (3.5)). 	We now 

have to show that the operator I T(k) is invertible. To this end 

(motivated by the work of I.N. VEKUA in [22])  the following Theorem 

was established in L] 
Theorem: Let k > 0 and define the operator T(k) by 

= 	 r(,x;k)dw; x C D. 

Then (I - T(Q)' exists if and only if (I - T(k)) 	exists, where all 

mappings are understood to be in the space C° . 

From the previously mentioned work of D.S. JONES on the Helioltz 

equation, we now have the following Corollary: 

Corollary: Let N be such that k < kN+2 where k. denotes the jth eigen- 

value for the interior Dirichlet problem for A 3h + k2h = 0 in D. 	Then 

(I - T(k)) 	exists. 

Given the fact that (I - T(k)) 1  exists, we can now use any one of a 

variety of methods for obtaining numerical approximations to the density 

P(X) (cf [iO]) and hence the solution to Problem 2. 

IV. Inverse Problems 

We now consider the inverse problems to Problems 1 and 2, ie given 

the far field pattern 

f(0,4;k) = lim r ekr u(x) 	 (4.1) 

for 0 < k < k < k 
1 	0 	 1 
where k and k are fixed constants, to determine 

0  

B(r) (and hence the speed of sound c(r)). 	We first consider the 

inverse of Problem 1. 	From (3.10) it is easily established that 
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I 	-. n+l 
f(O,4;k) = f(U;k) 	. Z ( i) 	a P (cos 0) 	 (4.2) 

nfl 

We note, however, that if f(0;k) is obtained from experimental data we 

can only assume that the coefficients of the first N harmonics are 

known, ie. an 	n 
a (k) is known for 0 < n 	

o 
N and 0 < k < k < k 1  . 	Our 

problem then is to obtain an optimal evaluation of 3(r), 0 r < a, 

given a knowledge of the first N coefficients a 1 (k), a2(k), ..., a(k). 

From the representations (3.8) - (3.10) and the continuity of u and -LU 
 ar 

across r = a we have 

irj (ka) + a(k) 
du(a) 

L(2n+1) 	 h 	(ka)] 	
dr 	= 

(4.3) 

= u(a) .- [(2n+l)itlj (kr) + a(k) hW(kr)] 

From the power series expansions of the Bessel and Hankel functions and 

the fact that the Riemann function depends analytically on the parameter 

k2  we can conclude from (4.3) that a(k) must be analytic in a neighbour-

hood of the origin and have a Taylor expansion of the form 

a 
U 
(k) = a no k 2n+3 + a ni 2n±5 k 	+ •.. 	 (4.4) 

We now recall that the Riemann function R(x,y;,) is the (unique) 

solution of the integral equation 

k2 fX f

y
, 	,  (1 ~ B(V))R(GT;n)dcdT 	(4.5) R(x,y;,) = 1 - --  

which implies that 

	

12 	aa 
R3(a,a;aa2,O) = 22 fo 

 

s(l + B(s))ds + O(k) 	 (4.6) 

and 

k2  fo

ac 
[R3 	

r =a 
(r,r;ra 2 ,O)J 	= - (1 + B(aa)) 	 s(l + B(s))ds + O(k')._ - 2a2o2  

(4.7) 

Substituting (4.4), (4.6) and (4.7) into (4.3) and equating the coefficient 

of k'2  now leads to the moment problem 
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B(a)do 	 (4.8) a i_1(2r+l)((2')2 	fa 2n+2 
no 

-. 	 0 

for the determination of B(r) ([71). 	Hence, under the assumption 

that a is known for 0 < n . N, an optimal choice for B(r) (in the
no 

space L2 [o,) can be found by orthonormalizing the set 
{02n+2} 

 over 

the interval [o,j and using the relation (4.8) to determine the 

first N Fourier coefficients of the orthonormal expansion of B(r). 	We 

note that (4.8) is in agreement with the moment problem obtained by 

assuming B(r) is small and using the Born approximation (rl]) and also 

with the results of C. RORBES for the case when k is small ([19]). 

However our derivation makes no assumption on the magnitude of either 

B(r) or k. 	This verifies a conjecture (viz, that the moment problem 

associated with the inverse scattering problem is independent of the 

magnitude of B(r) or k) of B. SLEEMAN ([201) in the special case of a 

spherically stratified medium of compact support. 	We also note that 

the determination of B(r) from the far field pattern is an improperly 

posed problem in the sense that B(r) does not depend continuously on the 

far field data f(O;k). 	This can be seen from (4.8) where small varia- 

tions in ano  can cause large variations in the integral on the right hand 

side if n is large. 	Finally we observe that the completeness of the 

2n+2 	r set {a 	} in L tO,aI implies the following Theorem: 

Theorem: For problem 1 the far field pattern uniquely determines the 

speed of sound in the nonhomogeneous medium. 

We now turn our attention to the inverse of Problem 2, i.e. given the 

far field pattern f(O,;k), to determine B(r) in S(0;a)ND, where S(0;a) 

denotes the ball of radius a in We again assume that f(O,c;k) is 

only known to within a certain amount of error, i.e, for a given integer N 

N n 
n+l 

fN(o,;k) =E 	E 	(- i) 	a nm nm 
S 	(O,) 	 (4.9) 

m-n 
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is known, and from this information we want to determine an optimal 

evaluation of B(r) in S(0;a)\D. 	From the results of Section III of 

this paper and a Theorem of I.N. VEKUA (L23j) we can conclude that 

the solution of Problem 2 can be approximated in an L2  sense by a finite 

linear coithination of functions of the form 

unm(Xk) = 	- 92 [ h )1 S(8,)] 	 (4.10) 

where, as in Section III, h(kr) denotes a spherical Hankel function 

of the first kind and S(O,) a spherical harmonic. 	If we now ortho- 
nm 

normalize the set {u (x;k)} with respect to the inner product (defined
nm  

over the space of solutions to (3.5) satisfying (3.7)) given by 

(f,g) 	I! d 	 (4,11) 

to obtain the set {'i' nm (x;k)}, we have that the solution of Problem 2 can 
- 

be approximated by a function of the form 

N 	m - 
u(x) = 	Z 	a (k)''nm 

 (x;k) 	 (4.12) 
N- n0 n-m nm  

where 

= J f(x) 	nmc)dw 	 (4.13) 

and f(x) is given by (3.18). 	From (4.12) we have that the far field 

pattern of u1, (x) is given by 

Nn 

fN(8,;k) = E 	E 	(k) nm( 0, ;k )nm  
n0 m-n 

where each 1D (O,;k) is a finite linear combination of the
nm 

0 < j < n, -j 	k . j, with coefficients depending on B(r). 	In the 

case of the inverse problem these coefficients (as well as the a(k)) 

are of course unknown. 	However (4.9) is known for the inverse problem, 

and equating (4.9) to (4.14) and identifying like powers of k leads to 

a moment problem of the form 
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y (N) = 	ff 	B(r) p (r,O,)dV; 0 	n 	N, -n 	m n 	 (4.15)
nm  nm 	S(0)\D 

where the y(N) are known constants and the p(r,O,) are known 

functions. 	An optimal choice for B(r) can now be obtained by ortho- 

normalizing the set {p} over the annulus S(0;a)\D and using the 

relation (4.15) to determine the first N Fourier coefficients of the 

orthonormal expansion of B(r). 	For an example of the calculations 

involved in the above procedure for the case of scattering by a 'soft' 

sphere of radius one the reader is referred to [81. 

Integral operators can also be used to investigate other inverse 

problems arising in acoustic scattering theory, for exaule the problem 

of determining the shape of the scattering obstacle from a knowledge of 

the far field pattern. 	For •a discussion of this and other inverse 

problems in acoustic scattering theory the reader is referred to the 

author's survey article 61. 
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