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Abstract 

This thesis is concerned with the measurement of the positions of points and 

bodies moving in trajectories in three dimensions, and the use of a new technique 

of optical interference which allows such measurements to be made dynamically. 

A variety of existing techniques for both static and dynamic three-dimensional 

position measurement are discussed, and the design of the new interferometer is 

introduced. 

The geometry of points, curves and surfaces in three dimensions is examined, 

with emphasis on the intersection of the point loci represented by the coordinate 

output of measuring instruments. The coordinates output by the interferometer 

represent surface loci which are quadric surfaces. A method of calculating the 

position and orientation of a body using three quadric surface intersection curves 

is presented. 

Diffraction of monochromatic light at an aperture is considered and it is 

shown that an interferometer working by division of wavefront can be used to 
obtain continuous information about the movement of the source of radiation, 

with that source free to move in up to three dimensions. A lens may be used to 
produce a compact instrument based on these principles. The diffraction integral 
equations are modified to incorporate the effect of a lens in the diffraction field. 

It is shown that even complex lenses can be represented by a few parameters in 
the diffraction equations. 

From the evaluation of these diffraction integrals, it is shown how the move- 

ment of interference fringes provides a coordinate output and how this is related 

to the locus of the radiation source. A method of obtaining very high resolu- 

tion measurements of interference fringe pattern movement is presented. The 
interferometer was built and tested and the above theory verified in practice in 
a series of optical bench tests. 

The implementation of a system which uses this interferometer to measure 

the dynamic performance of industrial robots is considered. The optimum po- 

sitions for the instruments are derived, and the method of designing the inter- 
ferometer to give the required resolution is presented. 
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Chapter 1 

Introduction 

1.1 Summary 

This thesis is concerned with the measurement of the positions of points moving 

in three dimensions and the employment of a technique of optical interference 

to obtain these measurements. This optical approach admits the possibility 

of a non-contact, three dimensional measurement system capable of dynamic 

operation in monitoring the position and orientation of a moving object. The 

instrument itself is an interferometer and has no moving mechanical parts. 

The subject matter covered includes: a review of the requirements of robot 

performance testing and the instruments which may be used in such tests, the 

geometrical aspects of the location of points and bodies, the theoretical aspects 

of diffraction and interference in the interferometer, and methods of sensing 

interference fringe movement. An instrument has been built to test the theory, 

and the experimental results are reported. An application in which the position 

and orientation of a body are to be measured is considered and the solution 

for optimal location of several instruments with respect to the swept volume of 

the body is obtained. Finally the potential development of the instrument is 

described and applications are discussed. 
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1.2 Overview of Contents 

Chapter 1 

Many physical principles have been applied to problems of position measure- 

ment, and some of these are apparent from the examples of existing position 

measurement devices described in this chapter. Techniques, for both static and 

dynamic measurement are discussed here, the background to the discussion be- 

ing the requirement to be able to make measurements of the performance of 

industrial robots. The need for a system which can make accurate dynamic 

measurements of a robot's position in three dimensions was the original moti- 

vation for the design of the interferometer described in this thesis. Chapter 1 

concludes with a brief description of the operation of this instrument. 

Chapter 2 

One perspective which establishes a basis for comparison between different ap- 

proaches is geometry. The classification of instruments used in measurement 

by their underlying physics is less important than an understanding of the ge- 

ometry of the space in which they operate. A classification may constitute a 

more or less exhaustive list. The geometry, as considered in Chapter 2, draws 

together the similarities between some apparently quite diverse techniques. It is 

shown that the rather unusual geometry of point location, by the interferometric 

method introduced in Chapter 1, may be used in essentially the same way as 

the geometry of some familiar devices. 
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Chapter 3 

The ability to sense the position of a point in space of up to three dimensions, 

by whatever inea,ns, is a first step. A frequent requirement is that information 

be obtained about the location of a body, an assemblage of points, with respect 

to a reference frame. Chapter 3 addresses the relationship between information 

about a point and information about a body. It is shown that knowledge about 

a number of space curves and surfaces which pass through points on a body can 

be used to determine the position and orientation of the body. The conclusions 

of Chapter 3 anticipate the later application of the interferometer in practical 

situations. The approach is more general than this however and may be applied 

in other circumstances with other instruments and other geometries. 

Chapter 4 

With the basic requirements for point and object location laid down in Chap- 

ters 2 and 3, Chapter 4 introduces the physical background to the interferome- 

ter. Using the Rayleigh-Sommerfeld formulation for diffraction, expressions for 

electric field and irradiance at a distant observation point are given, employ- 

ing paraxial, Fresnel and Fraunhofer approximations. This is for the case of 

plane waves incident on rectangular slit apertures in a non-axial direction. The 

stringent conditions required for these approximations to be valid apply to the 

situation in which diffraction of incident radiation at an aperture is observed in 

free space beyond the aperture. 

The introduction of a set of refracting elements to form a lens behind the 

aperture could conceivably complicate the situation: the paths of diffracted rays 

are composed of many straight line segments at different refracted angles at each 
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surface of the lens, each "ray" with a different route to its image point. Ignoring 

the surfaces of the lens and the positions of these surfaces and treating the lens 

as a device which carries out a particular, idealised operation on incident rays 

allows the electric field and irradiance at the image surface to be obtained with 

no more difficulty than in the lensless case. This lens model is also given in 

Chapter 4. 

Chapter 5 

In Chapter 5 the idealised lens is employed in the determination of electric field 

and irradiance due to diffraction of incident radiation at two parallel slits placed 

in front of the lens. With incident of axis plane waves this gives results similar to 

those obtained with the approximations of the previous chapter. With incident 

spherical wavefronts from a point source the interference fringes of the irradiance 

pattern are again shown to be present and to be functions of the source position 

(in terms of their period and amplitude). The amplitude of these fringes can be 

seen to be at variance with the incident plane wave case due to the variation of 

diffraction pattern overlap with source position. 

Detection of the fringe pattern position on the lens image surface is con- 

sidered. Knowledge of the position of this pattern gives information about the 

position of a point source (or the orientation of incident plane radiation). For 

a high resolution arrangement with fine interference fringes, a means of sensing 

fringe movement using a diffraction grating is described and the sensed power 

transmitted by that grating is related to a locus of the source. For a point source 

this locus is a hyperboloid of revolution with foci at the centres of the two slit 

apertures. 
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Chapter 6 

To test the foregoing theory some experiments were carried out. These are 

described in Chapter 6. Suitable slits were obtained and set up with a lens 

and means to observe the generated interference patterns. Using a low power 

gas laser, both plane and spherical incident wavefronts were produced and the 

effect of source movement on the position of interference patterns was observed. 

Within the limitations of the equipment this was found to be in good agreement 

with prediction. The movement of coarse interference patterns was monitored 

with a video camera. For fine fringe patterns, movement was detected using a 

diffraction grating, the power transmitted through the grating being detected 

with a photomultiplier. 

To obtain the direction as well as the magnitude of pattern movements a 

beam splitter was used to produce two similar interference patterns at two focal 

surfaces of the same lens. With gratings positioned in quadrature the output 

signals as the pattern moved were two sine waves, superimposed on DC levels, 

and 90 degrees out of phase. Other tests were carried out to establish the 

robustness of the optical arrangement. 

Chapter 7 

Having ascertained that the principles involved can be embodied in a working, 

single-coordinate laboratory system, attention is given in Chapter 7 to the im- 

plementation of the instrument and its geometry in practice. The most general 

case, monitoring the position of a body moving with six degrees of freedom, is 

considered as an example. This case can be identified with problems of indus- 

trial inspection and with the dynamic testing of machinery such as industrial 
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robots. 

The method of obtaining the optimum positions of the "receivers" for the 

given circumstances is derived. (This method of solution can also be applied 

to other devices for three dimensional position measurement). In this example 

of an implementation, due consideration is given to the necessary engineering 

design of a supporting space frame for the receivers. 

In the example, the known information is the working volume to be cov- 

ered by the instrument and the resolution of measurement required within this 

volume. It is shown how the various parameters of the optical system are deter- 

mined, in order to meet this requirement. This is, in effect, tailoring the design 

of the interferometer for the task. 

Chapter 8 

In the final chapter the design of the interferometer is reviewed and improve- 

ments and changes to its components are discussed. For the experimental part 

of this work, components were chosen for their availability, and flexibility of 

application in a laboratory environment. Development for applications requir- 

ing reduced size and weight of the instrument is quite possible. A compact, 

solid-state design is presented. Several applications are discussed and calculated 

values for the resolution of point position measurements over various ranges are 

given. 

1.3 Performance Measurement in Robotics 

Accurate performance measurements of industrial robots are required: 

1. for the calibration of machines during manufacture and in the field, 
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2. for use as part of the design cycle in improving both the static and dynamic 

characteristics of new designs of robot, 

3. for purposes of comparison between the products of different manufactur- 

ers. 

These requirements for both static and dynamic performance measurements 

are particularly demanding, and before proceeding to describe the capabilities 

of various existing measuring instruments and the interferometer which is the 

main subject of this thesis, some aspects of metrology in robotics are discussed. 

1.3.1 Static Tests 

Much useful information can be gained about a robot's performance by a series 

of static tests which measure the repeatability and accuracy of the machine over 

its work envelope. With suitable algorithms, the measured position data (on 

the accuracy of the robot) obtained from these procedures can then be used to 

calibrate the machine, eliminating a large part of its kinematic error. 

In the off-line programming of an industrial robot, a series of commands 

defining the required sequence of positions of the machine is given, usually with 

position and orientation of the end-effector defined in cartesian coordinates and 

Euler angles (or roll, pitch and yaw) respectively. From this input data in 

x, y, z, 0, 9, 0 the robot control computer calculates the joint angles or joint 

displacements in the machine, corresponding to the desired input coordinates. 

This is the inverse kinematics calculation, and to carry it out the controller 

uses stored values of various kinematic parameters of the machine. This kine- 

matic model is illustrated in Figure 1.1, which shows a three axis machine. The 

model comprises parameters of four types: S is joint length, 0 is the joint angle, 
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Figure 1.1: Kinematic Parameters of a Three Degree of Freedom Robot 

a is the link length, the length of the common perpendicular between adjacent 

joint axes and a is the angle between adjacent joint axes. For a rotary joint, 6 

is variable and for a prismatic joint the length S is variable. For an n degree of 

freedom robot, and including the parameters required for the transformation to 

the base and end-effector coordinate systems, there are 4n + 6 kinematic param- 

eters in the model. For details of this see [Featherstone] and also [Paul] (who 

uses a different nomenclature). 

If these parameters are taken as the nominal values for the machine, i.e. 

calculated from the nominal design dimensions, then the accuracy of the ma- 

chine's performance will almost inevitably be poor. There are several reasons 

for this. Firstly, the build-up of tolerances is hard to avoid in the manufacture 

and assembly of machined components. This can result in considerable cumu- 

lative errors in the constant parameters of the robot. Secondly and potentially 
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more seriously, the joint position transducers can be assembled to the machine 

with an error in their zero position, putting a constant bias on the variable joint 

parameter. Thirdly, the kinematic model assumes that the links are rigid bodies 

and no account is taken of the deflection of the arm under load. Other factors 

affecting accuracy are backlash, compliance and kinematic inaccuracy in the.- 

drive trains, and the expansion and contraction of material with temperature. 

The first two of these problems can be overcome using a calibration proce- 

dure which derives the correct kinematic model for each individual robot. The 

procedure involves moving the robot to a number of different known positions 

in its working volume and recording the joint variables of the robot at each 

position. The set of simultaneous kinematic equations obtained in this way can 

then be solved for the true values of the kinematic parameters of the robot. 

The model is then stored in EPROM in that particular robot's controller. This 

approach is now used by some robot manufacturers to improve the accuracy 

of their products. One published account of a calibration procedure is that of 

[Whitney et al.]. 

Having established the computational method of calibration, the remaining 

problem is how to obtain accurate data on the robot's true positions during 

calibration. The accuracy with which these true positions must be measured 

is determined by the error which is ultimately acceptable in the machine after 

calibration. The measuring instrument itself must have an accuracy which is 

an order of magnitude better than the acceptable tolerance on the parameters 

being measured. In other words, the tolerances of the measurement system must 

be negligible compared to the measured value tolerances. If the position of a 

machine is intended to be correct to ±1mm say, then an instrument with an 

error of its own of that order is quite inadequate. The measured error from the 
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theoretical position could be due to either the machine or the instrument. See 

Figure 1.2. 

In robotics the current generation of robots have a positional repeatability 

which is typically ±100µm but an inaccuracy which can be ±5mm or worse. This 

poor accuracy is due mainly to errors in the kinematic model of each machine 

as discussed above. 

Since it is required to be able to verify repeatability as well as accuracy 

of robots, the tolerance of ±100µm (representative of robots of the size of the 

Puma 560 and ASEA IRb6), on the repeated return to the same programmed 

position, is the quantity which the system must be able to measure. (As Whitney 

points out, the effects of thermal expansion are of this order, and so the figure of 

±100µm repeatability will be difficult to improve upon). The instrument used 

for making the measurements must therefore have a ±10µm error at most, i.e. be 

accurate to ±10µm over its working volume. This ensures that the contribution 

of instrument error to the measurement reading is acceptable (i.e. one tenth of 

the tolerance on the quantity being measured). With the addition of suitable, 

precisely located fixtures, a measurement system with sufficient accuracy to 
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check the repeatability of a robot could also give the precise information on 

inaccuracy necessary for deriving the true kinematic model for calibration. 

1.3.2 Dynamic Tests 

The dynamic performance of robots is also of interest. In particular, the be- 

haviour of machines attempting to follow particular three-dimensional trajecto- 

ries can yield useful information on the performance of various control schemes 

in the robot controller. Obtaining measurements of the robot's position and 

orientation while it is in motion is however a more difficult problem than the 

acquisition of measurements in a static situation. 

To obtain position and orientation of the end-effector, at least three points 

on the end-effector must be monitored, (see Chapter 3). To obtain a good 

record of the machine's trajectory, points on that trajectory (for each of the 

three target points) must be measured at a frequency which is high enough to 

give a good approximation to the continuous path of the end-effector. From the 

trajectory position data, velocity and acceleration profiles can be derived. This 

information can be used to evaluate the performance of the control system, and 

can be compared with the programmed trajectory or the output of a computer 

simulation of the machine's dynamic behaviour. 

Initially, useful information on a robot's dynamic performance can be ob- 

tained with measuring equipment which is less accurate than that used for the 

static measurements described above. (This is born out by some of the work be- 

ing done at Unimation, using a system described later in this chapter). To obtain 

more detailed information on dynamic behaviour, for instance on vibrations and 

small perturbations from the programmed trajectory at the end-effector, more 

precise dynamic instruments are required. 
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1.3.3 Performance Standards 

To overcome the vagueness and ambiguity in the specifications) given by robot 

manufacturers for the performance of their products, attempts are being made to 

establish standards of terminology, common test criteria and universally recog- 

nised test procedures. The adoption of one standard would allow industrial 

users to make meaningful comparisons between the performance claims of dif- 

ferent robot manufacturers. 

The Ford Motor Company have produced a set of standards against which 

robots can be measured prior to acceptance by that company. The Ford Robot 

and Automation Applications Consulting Centre (RAACC) standard [Ford] in- 

cludes tests for reliability, repeatability, accuracy, overshoot and settling time, 

cycle time, power consumption, start-up software, and input/output response. 

For the tests which require independent measurements of end-effector position, 

the standard also specifies the types of non-contact measurement instrumenta- 

tion to be used. The test equipment specified for static tests has much higher 

accuracy than that to be used in dynamic tests. 

Another standard in preparation is that of the International Standards Or- 

ganisation (ISO). At present the working document [ISO] is in two parts cover- 

ing performance criteria and testing methods. The particular instruments to be 

used for the tests are not specified, but the total uncertainty of measurement due 

to factors such as instrument error, external influences (e.g. temperature), and 

computation errors is required to be less than 25% of the robot's repeatability. 

In Japan the Ministry of International Trade and Industry (MITI), Agency 

of Industrial Science and Technology has sponsored a "Study of Standardiza- 

'See for instance the criticism in the preface of [Ford]. 
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tion of Industrial Robots" [Ozaki, Ito and Inagaki]. The scope of this study 

ranges from standardized ways of describing the configuration of robot arms 

and their controllers, through specifying performance criteria, to reliability and, 

maintenance considerations. Osaki et al. recognise from the start the difficulties 

inherent in obtaining dynamic performance data. 

In Europe a Tripartite Group for Robot Performance Testing was set up 

under the auspices of the UK Department of Trade and Industry (DTI), the 

French Ministry of Industry and Research (MTR) and the German Ministry 

for Research and Technology (BMFT). In addition to their work on standards,. 

one result of these tripartite studies was the establishment of a requirement 

for an instrument system capable of carrying out three-dimensional dynamic 

performance measurements of moving robots. The accuracy specified for such a 

device was given as ±10µm over 17n3, [Davey]. The specification also requires the 

system to have the ability to measure position and orientation, to be portable, 

to have automated collection and processing of data, and to apply no disturbing 

load to the end effector. 

Some general comments can be made on the above investigations into stan- 

dards. The purpose of such standards is in three main areas. The first of these 

is to standardize terminology. Clearly this is important if meaningful compar- 

isons are to be made between the features and capabilities of different robots. 

The second function is to produce a set of standard tests. These are a means of 

putting some figures on a machine's ability to perform particular tasks, for ex- 

ample, the positional repeatability which a robot can achieve when approaching 

a point from different directions. The third function defines (as part of the test 

procedure) the accuracy of the instrumentation or even the type of instrument 

to be used in the tests. 
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The following two sections survey static and dynamic instruments for ob- 

taining the necessary independent measurements of the robot's position. Some 

of the methods were designed with robots as their application area and some 

are adaptations or proposed adaptations of existing instruments and techniques 

to this particular problcin. Some of the techniques described in the section on 

dynamic systems can also be used to obtain the static measurements. Both the 

following sections concentrate on the capabilities of the instruments themselves, 

rather than test results for specific robots. 

1.4 Review of Static Systems 

1.4.1 Electrical Contacts 

A system tried and ultimately rejected by the robot manufacturer Unimation 

Europe Ltd makes use of an accurate fixture on which the robot to be calibrated 

is located. The fixture has a number of electrical contact points or surfaces 

at precisely known locations and the robot is equipped with a probe which it 

moves to make electrical contact with each of these in turn. As each contact 

is made, the joint angles of the robot are recorded. With a sufficient number 

of measurements at contact points distributed throughout the robot's working 

volume, the kinematic model of the machine can be derived, although in this 

case the objective was restricted to nulling the angle transducers. No figures are 

available for the accuracy of this procedure. 

Some observations can be made. The accuracy of a robot calibration would 

depend on the accuracy of the fixtures and the electrical probe. There can be 

a short time delay between contact being made and the machine coming to a 

stop (or the readings being taken), introducing an error into the readings. Also, 
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the robot may in fact apply a force to the contact on the fixture and cause a 

small deformation in the fixture, in the probe or in the robot arm itself. Thus 

to operate at all, a system requiring contact to be made can in fact distort the 

measurements it is designed to obtain. 

1.4.2 Proximity Sensors 

Another technique which requires fixtures to be positioned in the robot's working 

volume has been used by Citroen, Peugeot, and Unimation. The system operates 

as follows. Machined cubes are positioned in the workspace, and a trihedron 

carrying eddy current proximity sensors is fitted to the robot's end-effector. 

See Figure 1.3. The robot is programmed to move from one cube to the next, 

positioning the trihedron close to the corners of the cubes. The system used 

by Unimation was built by McMaster at Cranfield Institute of Technology, and 

uses Karmen Sciences eddy current sensors which have an accuracy of ±10µm. 

With six proximity sensors in position, this type of system can measure re- 

peatability both in position and orientation. No contact occurs between ' the 

moving and stationary parts of the system. Thus no force is imparted to the 

robot by the fixture, and readings of position are not distorted by the com- 

pliance of the machine. Furthermore, with suitable data capture equipment, 

measurements of overshoot and damping time can be made; see for instance 

[Fohanno]. 

1.4.3 Coordinate Measurement Machine 

Perhaps the most obvious way to obtain three dimensional static position mea- 

surements at the required accuracy of ±10µm is to use an industrial coordinate 

measurement machine of the type commonly used for the inspection of the di- 
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Figure 1.3: Trihedron and Proximity Sensors 

mensions of manufactured parts. The nearest approach to this in large scale 

testing has been at the Institut fur Produktionstechnik and Automatisierung 

(IPA), Stuttgart, where over 20 industrial robots have been tested using a pris- 

matic three axis coordinate measuring instrument with an accuracy of +100µm. 

See [Brodbeck and Schiele] and also [Warnecke and Brodbeck]. The arrange- 

ment of the test stand built at IPA is shown in Figure 1.4. 

To avoid the effects of contact with the robot the three axis machine is fitted 

with a head incorporating three inductive sensors, mutually at right angles. To 

obtain a measurement of the robot's position, the three axis device is moved 

until the head sensors are positioned around a metal sphere fitted to the robot's 

end effector. The three axes are then adjusted until the inductive transducer 

readings indicate that the sphere is centred in the head. The coordinates of the 

three axis device then give the position of the centre of the sphere. 
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Figure 1.4: IPA Coordinate Measurement Test Stand 

1.4.4 Structured Light 

Robot 

A variety of instruments which use structured light are discussed in the section 

on dynamic systems. One instrument which has been used for essentially static, 

non-contact measurement is the "Optocator", [Machinery] manufactured by Sel- 

com AB of Sweden. This device, which has been used mounted on a robot to 

perform inspection tasks on car body components, [Brunk], has sufficient accu- 

racy to be part of a measurement system for establishing the performance of the 

robot itself. 

The instrument works as illustrated in Figure 1.5. A spot of laser light 

(modulated at 16kHz) is projected onto the surface of interest. Scattered light 

from the surface is imaged onto a photosensitive surface and the position of 

the image spot determines the angular position of the surface spot. Since the 

original light beam emerged from the device at a known position and angle, 
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the range to the surface can be calculated by triangulation. The system can 

be obtained with various measurement ranges, from 8mm to 512mm and has 

a resolution of 0.025% of range. The accuracy claimed by the manufacturers is 

±0.1% of measurement range which, for the case of 8mm range, means ±8µm, 

[Selcom]. 

The accuracy of the system is comparable to that of eddy current proximity 

sensors, and is sufficient for use in repeatability tests. The size, weight (0.7kg) 

and cost of the device suggest that a multiple sensor, 6 degree of freedom, 

trihedron-type system based on this technique would not be practical with the 

device in its present form. 

1.4.5 Theodolites 

A non-contact static system, which has been used in practice at Renault, employs 

two theodolites to take bearings of azimuth and elevation to a target point on 

the robot. See Figure 1.6. In principle, with the relative position and orientation 

of the theodolites known, the cartesian coordinates of the target point can be 

calculated by triangulation. Renault do in fact use this technique to calibrate 
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Figure 1.6: Theodolites 

their own robots. 

An evaluation of the two theodolite method has been carried out by J.P. Des- 

maret of Renault [Desmaret]. The target used was a set of five polystyrene 

spheres, 0.5mtn in diameter arranged as shown in Figure 1.7. This arrangement 

keeps at least three of the spheres in view from the theodolites for most positions 

of the end-ef£ector. The spheres appear as small spots of light, the light being 

transmitted to the spheres by optical fibres inside the mounting pins. Consid- 

erable effort is expended in the calibration of the theodolites themselves and in 

the calculation of their relative positions using rods of known size positioned in 

the field of view. 

The azimuth and elevation reading from a theodolite defines a line in space 

which passes through the sighting point. The lines obtained from two theodolites 

will not in general intersect, however. The coordinates of the sighting point are 
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Figure 1.7: Theodolite 5 Point Target 

therefore taken to be those calculated for the mid-point of the common normal 

to these two lines. Sets of precise grid lines were used to test the system and 

establish its accuracy when used at the range and with the field of view required 

for robot position measurement. The estimated accuracy of the system is given 

by Desmaret as 10.15mm. 

Several factors contribute to the inaccuracy in the system. It is completely 

dependent on the quality of the calibration procedure which is carried out each 

time the theodolites are set up. The stability of the instrument mountings and 

the number a.nd precision of the standard rods used for set-up also affect sub- 

sequent readings, as does the quality and visibility of the target points. Finally 

the system is dependent on manual operation, the eyesight of the operator, and 

the inevitable subjective component in his alignment of the theodolite with its 

target. 

1.4.6 Photogrammetry 

At the UK National Engineering Laboratory the use of photogrammetry for 

making position measurements of robots has been explored, [Welsh]. A robot 
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Figure 1.8: Photogrammetry 

carrying markers or targets is photographed in various positions by two or more 

cameras. The film is developed and is then the subject of manual measurements 

to locate the coordinates of the targets as seen from each camera. As with 

the two theodolite system, the observed measurements define two lines in space 

which do not, in reality, intersect at the target point. The geometry is illustrated 

in Figure 1.8. With the NEL system these lines have generally been found to 

be between 10µm and 100µm apart at their common normal. The accuracy 

achievable using two cameras can be from 1 part in 10 000 up to 1 part in 

25 000. With multiple cameras 1 part in 105 can be obtained. 

The photogrammetric method shares a number of problems with the theodo- 

lite technique. These include the setting-up and calibration problems of the 

instruments, the sharpness of the target and the subjectivity of the manual 

measurements which are made. In addition, factors such as the film grain size 

and the accuracy of the equipment used to make measurements on the photo- 
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graphic negative affect the overall accuracy. Other sources of inaccuracy specific 

to photogrammetry are focus error and the geometric aberrations present in the 

camera lenses. 

These latter problems have been tackled at the UK National Physical Lab- 

oratory, where a new design of lens, the Centrax lens shown in Figure 1.9, 

has been developed specifically for photogrammetry [Burch and Forno (1)]. A 

point source of light in the object field is imaged by this lens as a circular 

spot surrounded by concentric rings. The lens has an large depth of field, from 

300mnm to infinity, and in theory is distortion-free. With a three camera system 

and a suitably accurate measuring microscope, it is anticipated that this lens 

will allow an accuracy of 1 part in 106, i.e. 1 micron across a 1 meter field, 

[Burch and Forno (2)]. To date, 2 in 106 has been achieved. 

1.4.7 Fresnel Zone Plates 

The most precise non-contact static system yet developed was conceived at the 

National Physical Laboratory, [Gates et al.], and has been used as a means of 

calibrating industrial three axis coordinate measurement machines. It consists 
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Figure 1.10: Fresnel Zone Plates 

of a two dimensional array of Fresnel zone plates (Figure 1.10), which can be 

considered as the holographic equivalent of concave mirrors, and also an inter- 

ferometer which is used to locate the unique point in space defined by each of 

these zone plates (Figure 1.11). 

The interferometer is mounted on the moving part of the machine in place 

of its probe. For each zone plate there is a unique position at which the fringe 

pattern of the interferometer is a uniform field. Lateral errors from this position 

introduce parallel fringes and axial errors introduce curved fringes. The system 

is more sensitive to lateral displacement than to axial displacement, one fringe 

being introduced for 3µm laterally and 60µm axially. Using photoelectric sen- 

sors, a sensitivity of one tenth of a fringe, i.e. 0.3µm laterally and 6µm axially 

has been obtained with the system. Later developments have attained an axial 

sensitivity of 1.5µm, and so the technique has approached its original design 

aim of 1µm in all three directions. 

The development of this system and another optical system employing mir- 
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Figure 1.11: Fresnel Zone Plate Interferometer 

rors to define the points in space have been described in detail by R.F. Stevens 

in his thesis [Stevens (1)]. See also the NPL publications [Stevens (2)] and 

[Stevens (3)]. Apart from their remarkably high precision, these system have 

the advantage that they place no material in the working volume being used, 

and the calibration points can be approached from any direction by the sensing 

head. 

1.4.8 Discussion of Static Systems 

In general it can be seen that the requirements for static tests can be met 

with existing instrumentation, some examples of which are described above. 

Leaving aside considerations of the cost of the instruments and their associated 

electronics and computing equipment, different systems have different technical 

features with their own particular advantages and disadvantages. 

A system which requires contact to be made with the robot is inappropriate, 

as has been shown, but there is no need to make physical contact. Non-contact 

systems based on a variety of principles and giving the required accuracy are 

available. 
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One attribute of these various techniques which can be compared is their 

adaptability for different circumstances. Some of the systems described require 

that only measurements at predetermined fixed points in the work envelope can 

be made. The presence of fixtures of one kind or another is common to the 

trihedron, Optocator and Fresnel zone plate methods. To make measurements 

at a different selection of points, these fixtures must be carefully repositioned. 

This constraint does not apply to the theodolite or photogrammetric methods. 

The problem of positioning fixtures gets worse when tests for accuracy (not 

just repeatability) are being carried out. For instance, the positioning of the 

reference cubes for the trihedron method is not important for repeatability tests 

but must be done with great precision prior to tests of robot accuracy. Similarly 

for the Fresnel Zone Plates, in which the defined points in space are fixed only 

with respect to the system's base plate. The advantages of this latter system over 

the triliedron method are that the end effector can approach a single point from 

any direction, since there is no actual material (corresponding to the reference 

cubes) present, and that the accuracy of length measurements between well 

separated pairs of known points can be obtained. 

In contrast, movable fixtures are not required in photogrammetry, which 

needs only a few fixed, known reference points to be in the field of view. With 

this condition met, the robot can be moved anywhere in the working volume (as 

long as the targets are visible to the cameras), and the required measurements 

made. 

Another factor which enters into a comparison of different systems is porta- 

bility. The IPA coordinate measurement system is massive and is clearly not 

intended as a portable instrument. Some of the other systems could be used in 

the field, with more or less difficulty, for robot recalibration purposes. 
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The automatic capture and processing of data is another feature which must 

be considered. This has received considerable attention with the trihedron, eddy 

current sensor based system. Theodolite based systems also lend themselves to 

the automatic collection and processing of measurement data. Photogrammetry, 

however, is at a disadvantage due to the necessary time lapse for film processing. 

It is of some interest to consider the potential of static measurement meth- 

ods for modification or extension in some way, to meet the more demanding 

requirements of dynamic measurement. As will be seen in the next section, on 

dynamic systems, attempts have been made to do this with a number of different' 

instruments. 

The natural extension of the eddy current proximity sensor method is to 

monitor the proximity of the robot end effector to a rail fixed at a known po- 

sition in the work space. In this way the robot's errors from true straight line 

motion (for instance) can be observed. Photogrammetry has also been used 

dynamically, using multiple exposures of the film as the robot moves. To use 

theodolites dynamically would require a servo mechanism to track the moving 

target point. Some servoed dynamic systems operating on a similar principle 

have in fact been built. Developments such as these tend to carry their original 

disadvantages with them, for example, the film development time in photogram- 

metry or the inflexibility of the fixtures required for a proximity sensing system. 

New problems also emerge, usually in connection with moving parts and servo 

mechanisms in the instrument itself. 

Conversely, if a suitable instrument could be developed for dynamic appli- 

cations, then in meeting the demanding requirements for accuracy, non- 

contact operation, data acquisition frequency and automatic processing 
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of the captured data, the instrument would also have met and surpassed 

the static measurement requirements. Some procedures could be speeded 

up considerably. The large number of point position measurements re- 

quired for robot calibration could be obtained by dynamic monitoring of 

the robot over trajectories through its work envelope. Thus only one type 

of instrument would be required for position measurement in robot testing. 

1.5 Review of Dynamic Systems 

In this section an assessment is made of the characteristics of various systems 

which have been used for dynamic three dimensional position measurement. 

Some of these techniques have been developed specifically for dynamic mea- 

surement in robotics. Others have their origin in quite different fields, such as 

navigation, inspection, remote sensing and computer graphics. Some were orig- 

inally static techniques which are being developed or which offer promise for 

development for dynamic use. 

1.5.1 Accelerometers and Inertial Systems 

The cost, size, weight and inaccuracy of inertial systems has mitigated against 

them in industrial applications. A simplified "strapdown" system of accelerome- 

ters in which orientation is calculated rather than maintained constant by gyro- 

scopes is half the cost and a quarter the size of a stabilised platform, but weighs 

approximately 6kg. The principal use of inertial systems has been for position 

measurement in aircraft and submarines, over long distances, but in situations 

where external references of position such as land marks can be used to reset 

the system. Inertial navigation systems, as used in aircraft, perform a useful 

function even with an accuracy which locates the aircraft to within 1 kilometer 
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of its true position. 

In mechanical inertial systems the basic measured quantity is force. Inertial 

platforms consist of three accelerometers aligned normal to each other and sup- 

ported in a gyroscope stabilised gimbal system. The accelerometers typically 

have a measurement error of force (and so of acceleration) of 1 part in 105. The 

position data is obtained by integrating first acceleration and then velocity with 

respect to time. Thus the error in inertial systems increases with time from the 

last occasion on which it was corrected to some external reference. In circum- 

stances which allow the instrument to be zeroed at shorter time intervals, the 

cumulative error is reduced. 

A Ferranti system used in three dimensional land surveying now offers arn_ 

error of less than f25cm from the correct location. Another Ferranti inertial 

platform has been developed for plotting the three dimensional path of the 

boreholes of oil wells. In this case the inaccuracy is less than f5cm. This is 

achieved by stopping the platform in the borehole at 10 minute intervals to 

correct the calculated velocity to zero. 

The precision which can be maintained even over short time intervals does 

not meet the criteria for robot performance testing, although it would appear to 

be accurate enough to be used to monitor the performance of an Autonomous 

Guided Vehicle or to form part of the vehicle's own sensing system. The require- 

ments of metrology in robotics put more stringent demands on inertial systems 

than those imposed by military applications. This is true not only for the accu- 

racy of position measurement. The linear accelerations and angular velocities of 

a robot end-effector can exceed those of a fighter aircraft. Finally, it is doubtful 

whether the frequency response of accelerometers is good enough to monitor the 

dynamic behaviour of the robots. 
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1.5.2 Proximity Sensors 

As mentioned in the section on static systems, eddy current proximity sensors 

can be used to measure local dynamic effects such as corner rounding, overshoot 

and settling times after arriving at the target position. These sensors can also 

be used to obtain measurements (to +10µm) of the departure of an end-effector 

from longer programmed trajectories, [Warnecke and Brodbeck]. In this type 

of test the sensors are mounted on a fixture on the robot end-effector, which is 

then programmed (for instance) to move in a straight line path along a metal 

bar. The eddy current sensors then give data on the varying distances from, and 

orientation to the straight bar. The necessity for fixtures to define every tested 

trajectory is a severe disadvantage. 

1.5.3 Tensioned Wires 

At Peugeot [Folianno] and at Unimation, attempts have been made to obtain 

dynamic performance measurements of robots using a system of tensioned wires. 

See Figure 1.12. In this system a number of wires from separate dispensers in 

known positions are attached to "a point" on the robot arm. The lengths of 

wire paid out are measured at each dispenser and by trigonometry the position 

(x, y, z) of the point can be calculated. This assumes that the wires are on 

straight lines and that these lines all pass through one common point at the 

robot. It is also assumed that each of these lines consistently passes through the 

same point where the wire emerges from its dispenser. 

The resolution of the wire length measurement depends mainly on the reso- 

lution of the transducer (e.g. optical shaft encoder) and the length of wire paid 

out per revolution of the transducer. For example, wire wound on 40mm di- 

ameter drum with a 4000 pulse per revolution shaft encoder has a tolerance of 
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Figure 1.12: Tensioned Wires 

±16pm on nominal length, ignoring slipping on the drum. 

The wire length resolution is not the same as the coordinate resolution how- 

ever, the latter varying as a function of the coordinates. The transformation 

from wire lengths to cartesian coordinates can be ill-conditioned. This may be 

appreciated if one considers a point near the xy plane in which the dispensers 

are located. A change in z here causes negligible change in wire lengths, so 

resolution is poor. To guard against this circumstance, either the plane of the 

measuring points must be well outside the robot working volume, or redundant 

wires must be added. 

Another source of varying resolution of coordinate measurement, and of inac- 

curacy if this is not taken into account, is the sagging of the wires under gravity. 

This also varies with (x, y, z). Matters could be improved by varying the wire 

tension to reduce sagging appropriately in different locations but this introduces 
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other errors. As tension increases, so the wire stretches, invalidating the length 

measurement. Tension in the wire also causes some deflection in the robot arm, 

altering the position it was desired to measure. These errors are likely to be 

significant with respect to the design aim of f0.01mm accuracy. The system 

used at Unimation has a constant tension of approximately 15N in each wire, 

and so the force applied to the end-effector by this measurement system can be 

greater than the maximum load capacity of a machine such as the Puma 560. 

In addition, there are other problems. Wire and drum dimensions will vary, 

not necessarily uniformly, with temperature. Moving parts in the wire dispensers 

and the wires themselves will be susceptible to vibration, and the wire length 

readings are subject to random disturbances due to air movement. Finally, the 

wires restrict the volume in which measurements can be made (without fouling 

the robot). 

It is unlikely that this approach could achieve the desired accuracy of ±10µm. 

1.5.4 Multiple Exposure Photogrammetry 

At the National Engineering Laboratory the trajectories of a moving robot have 

been plotted using multiple exposure photogrammetry, [Welsh]. This technique 

involves illuminating the robot with a number of flashes of light as it moves. 

Each target appears on the photographs in a series of positions evenly spaced 

in time. From the two photographs, the three dimensional trajectory can be 

obtained. 

In the dynamic situation a number of practical problems have been over- 

come. To obtain the requisite close spacing of recorded points on the trajectory, 

between 150 and 200 flashes are used for each photograph. To see the target 

steel balls against the overexposed background, they are coated with a highly 
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reflective paint. To obtain the correct correspondence between targets in each 

photograph, every tenth flash is made more powerful than the rest. 

The accuracy of this approach is similar to the accuracy of photogrammetry 

used statically. A working volume of 4m x 4m x 3m deep was viewed, and a 

precision of location of the targets of less than 0.5mm was obtained (i.e. 1 part 

in more than 8000). 

1.5.5 Stereo Vision 

Stereo vision in this context is the dynamic analogy to photogrammetry, and it 

uses two video cameras to survey a scene. The principal driving force behind 

stereo vision research has been to obtain a machine vision system for robots. 

Such a system would, ideally, use sensors to acquire a depth map of the scene, 

construct models of the objects in the scene, and match these models to those 

of which it already has some knowledge. This information can then be used 

to plan trajectories for grasping or for navigating past objects. Image analysis, 

geometric modelling and task planning are, of course, extensive areas of research 

in their own right. The sensor which provides the information on which all the 

subsequent modelling is based is however doing the same job as other three 

dimensional dynamic position measurement systems, in that it is acquiring the 

spatial coordinates of points in a scene. It is therefore of interest to establish the 

advantages and limitations of stereo vision, with a view to using the technique 

for metrological purposes. 

The geometry of a stereo vision system is similar to that of photogrammetry 

as shown in Figure 1.8. In monitoring a robot's trajectory, only particular 

marked points on the robot need be matched in the two images. Thus the stereo 

correspondence problem is much alleviated. With a cluster of illuminated targets 
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Figure 1.13: Depth Error 

(as used in the theodolite method) the corresponding points in each image would 

be clearly visible and well defined, and so the difficulties of occlusion of matching 

points could also be minimised. 

One difficulty which arises is the poor resolution of video cameras. Each 

camera image is focused on a two dimensional array of sensing elements. A. 

Charge Coupled Device (CCD) camera might have 512 x 512 such picture ele- 

ments or "pixels". Thus in such a camera viewing a scene 2m across, it would 

appear that one pixel represents approximately 4mm across the field of view. 

The consequent error in the calculated depth does of course depend the angle 

of convergence of the "rays" to each camera. This in turn depends on camera 

separation and the range to the point, see Figure 1.13. 

In experiments to obtain depth maps using two video cameras with 188 x 

244 light sensitive elements, [Yakimovsky et al.] obtained a three dimensional 

resolution of ±5mm at a range of 27n. A factor of ten improvement on this 

resolution would still leave it a long way from giving the performance required. 

Even if resolution (and accuracy) could be sufficiently improved, a video rate of 

30Hz is too slow for dynamic performance measurement of robots. 
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1.5.6 Selspot 

Selspot is a two dimensional imaging system [Selcom] in which the position of 

images of LEDs (or infrared or laser sources) is detected on a photosensitive 

solid state device which lies on the image plane of the lens. The position of each 

point in the image defines a line in space, on which the LED must lie. Two 

or more of these camera-like instruments are used together and the intersection 

of two or more lines is used to calculate the cartesian coordinates of the LED. 

The system is similar in principle to stereo vision, the difference being that the 

photosensitive detector has a resolution of 1 in 4000. Unfortunately the accuracy 

of the system is poor, errors being as high as ±0.5% of the measuring range, 

i.e. 1 part in 200. Such a system, viewing a 3m diameter robot working volume 

would give an error of ±15mm on end effector position. The maximum sampling 

rate for one LED is 10kHz which is high, although this decreases as more LEDs 

are monitored. 

1.5.7 Twinkle Box 

The Twinkle Box is an optical three dimensional position measurement system 

[Burton and Sutherland] which was intended as a computer graphics input de- 

vice. The instrument monitors the position of light emitting diodes (LEDs) 

which are fixed to the moving object. As with other techniques, an image of 

the scene is produced with lenses on each instrument. The notable feature in 

this system is that the image, which is 35mm across, is scanned mechanically by 

narrow slits (0.3mm across), a pulse being detected by a photomultiplier as each 

slit crosses the image of an LED. The components of a detector are shown in 

Figure 1.14. The time of each received pulse corresponds to a particular angular 

position of that slit on the rotating disk, and so locates the LED as lying on 

47 



Condensing Lens 

Fresnel Lens 

Rotating Disk 

inn;vn T.nnc 

Figure 1.14: The Twinkle Box 

a particular plane in space. Other similar detectors determine different planes 

for the same LED, and the intersection of three such planes gives the cartesian 

coordinates of the diode. 

The position of many diodes can be monitored in this way, by switching the 

diodes on one at a time. Doing this, there is no ambiguity as to which LED has 

been sensed during the scan of one slit over the image. With 32 radial slits in the 

disk and an angular velocity of 3500rpm, a scan frequency of 1900Hz is obtained. 

This must of course be divided by the number of LEDs being monitored. 

The problems incurred with this system include vibration due to the rotation 

of the disk, errors in the positions of slits on the disk, geometric aberrations in 

the optics, and errors in the pulse times registered by the photomultipliers. In 

tests to establish the accuracy of the system, LEDs were moved known distances 

in the working volume. The standard deviation of the error from zero was found 

to be 7.3mm. 
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Figure 1.15: Planar Structured Light 

1.5.8 Structured Light 

In a structured light system, a known pattern of light is projected onto a scene 

and the consequent illumination of the scene is used to obtain information about 

the position and orientation of points in the scene. The calculation of the Carte- 

sian coordinates of the points of interest in the scene is similar to the calculation 

carried out for stereo, i.e. by obtaining the intersection of lines and planes in 

space. One use of structured light has been to obtain geometric data on objects 

in a scene so that this data can be matched to geometric models of the objects. 

Many structured light systems have been built. At the University of Edin- 

burgh [Popplestone et al.] the device projected a plane of light and the resulting 

stripe in the scene was viewed with a video camera. See Figure 1.15. A system 

which used a point of light [Faugeras] and imaged the scattered light from the 

object surface using several cameras is shown in Figure 1.16. No performance 

data is available for either of these systems. 
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Figure 1.16: Single Point Structured Light System with Imaging Detector 

Another system which uses a single laser beam, [Pipitone and Marshall], does 

not use an imaging system to determine the angular position of the illuminated 

spot. Instead, a scanning directional detector is used (see Figure 1.17.). In this 

detector a mirror scans the scene and, in the correct orientation, reflects light 

from the illuminated spot through a slit to a photomultiplier. The coordinates 

of the spot can then be found by triangulation. The average data acquisition 

rate over many scan lines was 62Hz and the root mean square (RMS) error of 

the system in depth measurement is given as 6.4mm at 2.438m 

A more complex system [Altschuler et al.] uses a rectangular array of laser 

beams to produce a pattern of dots on the scene. The pattern can be varied 

using a programmable electro-optic shutter which allows particular columns of 

beams to be transmitted. By controlling the optics of the projector, the scale 

of the beam pattern can be varied, giving coverage of small or large objects as 

required. With this system a large number of points can be determined in each 

frame scan of the video camera which views the scene. The calculation of point 
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Figure 1.17: Single Point Structured Light System with Scanning Detector 

coordinates in this case requires the intersection of two lines for each point. 

For an instrument using the above principles to be used for monitoring the 

position of a specific moving point, the spot of light would have to be held 

continuously on the moving target, steered by a servo system. Potentially, a 

sheet or point of light can be scanned over a scene with good accuracy. However, 

if the illuminated scene is viewed with a video camera then, as in the case of 

stereo vision, the resolution of the camera is a major restriction on accuracy, 

and the frame rate is a restriction on use in dynamic situations. 

Structured light can be used in a different way, which does not involve a 

video camera or any imaging system. In the CODA-3 system manufactured 

by [Movement Techniques], planar sheets of light are repeatedly scanned over a 

scene, using octagonal mirrors rotating at constant velocity. The time at which 

a returning reflected signal (from a retroreflector fitted to the moving object) is 

received is used to give the angular position of the retroreflector at that moment. 

It is actually rather more complicated than this however, and is illustrated in 
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Figure 1.18: "CODA-3" 

Figure 1.18. The beam of light returning from a retroreflector does so at an angle 

(on the plane of light) which is dependent on the position of the retroreflector 

(on that plane). After being reflected again from a half-silvered mirror inside the 

instrument the beam strikes a linear array of 128 photodetectors at a position 

dependent on that returning angle. Thus a vertical sheet of light, scanning 

about a vertical axis, can return several signals from different retroreflectors 

simultaneously, and register them on different elements of the array. In addition 

to this, the output light is "chopped" by a rotating disk made up of different 

coloured filters. The retroreflectors are also coloured and so the amplitude of a 

return beam indicates which target it came from. 

By intersecting three such planes of light, the position of the target can be 

calculated. There is, of course, a skew on the times at which each scanner "sees" 

a particular retroreflector. The makers of this system claim to have overcome 

this problem in software, and give the performance of the system at 3m range 
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to be 0.3min resolution in the x and y directions and 0.8mm resolution in the 

z (depth) direction. This is at a sampling frequency of 300Hz. 

1.5.9 Moire Photography 

This method is considered here more for its future potential than for an immedi- 

ate practical application. The projection moire method is effectively a structured 

light system. In the conventional method, light from a projector passes through 

a diffraction grating and a lens, producing a fan of planar sheets of light which 

illuminate an object, as in Figure 1.19. The object is then viewed by a camera 

through a similar grating. The difference term of the beating spatial frequencies 

thus produced is recorded by the camera as fringes, which correspond to contour 

lines on the object. In special circumstances the contour surfaces which cut the 

object are equispaced parallel planes normal to the line which bisects the angle 

(at the object) between the projector and the camera. This is not true in general 

however, and the contour surfaces are usually second degree surfaces and not 

equispaced. See [Doty] for an analysis of the geometry of contour fringes. 

A non-planar contour geometry requires rather more calculation in the pro- 

cess of analysing the fringe pattern. There are two more serious problems with 

this method however. Counting fringes in the image allows the relative depth of 

points on the image to be calculated, but only if peaks can be distinguished from 

troughs on the object. There is not sufficient information on a single stationary 

image to do this, using the above method, and various techniques have been 

developed to overcome the problem. These include imposing known movements 

on the object or the instrument, or moving one of the gratings to shift its phase. 

In a dynamic situation where the movement of the object (viewed with a video 

camera) is one of the things it is desired to find, these modifications are not 
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practical. Another approach, by [Idesawa et al.], is the scanning moire method, 

in which the scan lines of an imaging device are used as a virtual grating in 

place of the real grating in the viewing system. 

The second problem is one of relating the fringe pattern to a coordinate 

system. Without some means of labelling the contour lines or placing some 

reference point of known position in the scene, the depth of points in the scene 

cannot be found. Similarly, breaks in the pattern can occur, making it impossible 

to tell even the relative depth of one object in the scene with respect to another. 

If the above problems can be overcome, and other restrictions such as the 

depth of focus of the optics are acceptable, then a system can be conceived in 

which the coordinates of identified points in the scene may be obtained. Each 

fringe picks out a particular contour in the scene (i.e. a surface intersecting the 

object), and the coordinates of the point of interest (on that contour) in the 

camera image define a line in space which cuts the surface. Potentially, with a 

54 



sufficiently high resolution camera, the depth of points of interest can be found to 

the same resolution as the fringes. However, the adaptation of moire techniques 

to a dynamic situation can incur similar problems to those of other techniques 

employing 2-D imaging systems. Once again the resolution and frame rate of the 

imaging device (e.g. a video camera) are factors limiting the overall resolution 

and bandwidth of the system. 

1.5.10 Ultrasonics 

Two main types of system employing ultrasound have been developed for three 

dimensional position measurement. In one of these, the time of flight of a pulse, 

travelling between transmitter and receiver is measured. Knowing the velocity of 

sound in the medium, the distance travelled can be calculated. The second type 

of system uses a continuous wave over the distance in question and measures 

phase shift as the distance changes. 

Ultrasonics, Time of Flight 

An example of ultrasonic position sensing by time of flight is the Lincoln Wand, 

developed at MIT as a computer graphics input device, [Roberts]. The system 

had four transmitters in fixed positions at the corners of a rectangle and a 

receiver (the "wand") whose position was determined as it moved in a working 

volume 1.8m x 1.2m x 1.2m, see Figure 1.20. The transmitters output in turn 

at 10ms intervals a 20ps burst of energy with frequencies in the range 20kHz 

to 100kHz. A complete set of readings from all four transmitters thus required 

40ms, limiting the operating frequency of the system to 25Hz. The system used a 

1 MHz clock which, with a sound velocity of approximately 300m/s, would allow 

a maximum resolution of approximately 0.3mm on the distance measurements. 
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Figure 1.20: The Lincoln Wand 

A 13 bit counter allowed distances of up to approximately 2.5m to be logged. 

Only three distance measurements are needed to calculate the cartesian co- 

ordinates of the receiver, but the use of four transmitters allows a confidence 

check to be made on the readings. The problems experienced with this system 

included reflections at the end of one cycle of transmissions being taken as the 

first pulse of the next cycle, room noise (particularly from typewriters) being 

picked up by the receiver, the receiver itself being obscured from transmitters 

by some other object in the working volume, and air movement or changes in 

air temperature changing the sound velocity. Taking errors into account, the 

resolution claimed for this system was 0.51mnm. Accuracy was not verified but 

was estimated to be +5mmn for the experimental set-up being used. 

Presumably the resolution and accuracy of each distance measurement could 

have been improved by using a faster clock and by calibrating the system. How- 

ever, for dynamic position measurement of robots, this type of instrument (with 
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four ultrasonic pulse transmitters and one receiver) has serious problems which 

are rooted in the low velocity of sound. The operating frequency (25Hz) is a 

direct result of this, and is far too low for the monitoring of the trajectory of a 

robot end effector, even one travelling as slowly as lm/s, for which a complete 

set of coordinates would be obtained at 40mm intervals along the trajectory. 

Worse than this, is the time skew on the signals received from each transmitter, 

the transmitters operating in turn at 10ms intervals within the 40ms cycle time. 

The four distances obtained each refer to different points along the trajectory 

and cannot be used simply to calculate the cartesian coordinates of one point. 

Ultrasonics, Continuous Wave 

A device which used continuous wave ultrasound to obtain position and orienta- 

tion is the Head Mounted Three Dimensional Display developed by I.E. Suther- 

land. The purpose of the display was to present stereo images separately to 

each eye of a subject, using two miniature cathode ray tubes fitted to a "hel- 

met" on the subject's head. The subject then experienced the illusion that he 

was moving around in a graphics world of three dimensional models which had 

been constructed previously in a computer. To maintain the correct projections 

of the models in the displays, i.e. consistent with the motion of his head, the 

position and orientation of the moving subject had to be monitored. After early 

attempts to obtain this information using a mechanical linkage between the hel- 

met and the laboratory ceiling, a non-contact system employing continuous wave 

ultrasound was designed, [Sutherland (1)]. 

The ultrasonic system is shown schematically in Figure 1.21. Mounted on the 

helmet are three transmitters, operating at 37kHz, 38.6kHz and 40.2kHz. Four 

stationary receivers are used, fixed to the ceiling. At each receiver the incoming 
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signals at each of the three frequencies is monitored separately, and compared 

with the reference signal from its crystal oscillator to measure the relative phase 

shift in that signal. This is recorded with a precision of 5 bits per cycle, i.e. 

one thirtysecond of a wavelength. The total number of complete wavelengths is 

also counted. Sound at a frequency of 40kHz has a wavelength of approximately 

7.5mm and so in theory the resolution of each distance measurement is better 

than 0.25mm. Each receiver detects all three signals, and so four distances 

are obtained to each moving point. Calculation of the intersection of three of 

the spherical surfaces defined by these radii gives the position of one point. 

Doing this for three points allows the position and orientation of the head to be 

calculated. 

The description of this system in [Sutherland (1)] does not report experimen- 

tal results, and no mention is made of how continuous wave noise, i.e. reflections 

from walls etc. might be dealt with. In a later publication [Sutherland (2)], ref- 
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erence is made only to the mechanical system of head position monitoring, and 

in [Burton and Sutherland] this ultrasonic method is reported as being unsatis- 

factory. 

1.5.11 Laser Rangefinders 

There are two different types of laser rangefinder.2 One type measures the time 

of flight of a pulse of light to a target and back. The other type is a continuous. 

wave system in which change in distance is measured by monitoring phase shift. 

Laser Rangefinders, Time of Flight 

This type of laser rangefinder sends pulses of light to a target. The reflected 

signal is received back at the instrument and the time lapse between transmission 

and reception is measured. This is the time required for the double journey to 

the target and back, and from this the distance is calculated. A rangefinder of 

this type was built at the Jet Propulsion Laboratory of the California Institute 

of Technology [Lewis and Johnston] and is shown schematically in Figure 1.22. 

The primary purpose of the instrument was to scan a scene and obtain an 

array of range measurements which were processed to produce a two dimensional 

"rangepic". Conceivably the instrument could be modified for use in dynamic 

position measurement of one moving point, however, and so it is worth exploring 

the limitations of the technique. 

From Figure 1.22 it can be seen that the pulse driver for the laser also 

triggers the "start" of a Time to Pulse Height Converter. The laser pulse is 

directed to the target by scanning mirrors and the reflected pulse returns via 

those mirrors to a photomultiplier. The photomultiplier output pulse is received 

2 Excluding structured light systems which sometimes go by this name. 
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Figure 1.22: Time of Flight Laser Rangefinder 

Computer 

by a Constant Fraction Discriminator which is intended to compensate for the 

varying strength of returning pulses and which sends a "stop" signal to the Time 

to Pulse Height Converter. This sequence is repeated at a rate of 10kHz and a 

number of readings are taken for each target point. The output of the Time to 

Pulse Height Converter is averaged and the result stored in the computer for 

later analysis. Under computer control, the scanning device then directs the 

rangefinder at the next target point. 

The range measurement problems incurred with this instrument were mainly 

in connection with the large dynamic range of the return pulse amplitude, which 

depends on the reflectance of the object, the incident angle and the range. In 

these circumstances the correct determination of the return pulse time by the 

Constant Fraction Discriminator was not robust. In favourable conditions, how- 

ever, an error of less than ±20mm on the single distance could be achieved. 

This corresponds to a time error (over the double path) of ±133ps. 
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A similar time of flight system has been built at the Australian National 

University [Jarvis (1)] for use in conjunction with a structured light and video 

camera system. The inaccuracy given for this instrument is +2.5mm, averaging 

100 measurements for each point in a scene and with an acquisition frequency 

of 100Hz. 

To use a rangefinder system such as these for dynamic position measurement 

of a robot requires that the rangefinder track a point rather than scan a scene. 

Conceivably the laser beam steering could be controlled by a similar feedback 

loop to that used in the University of Surrey and NBS servoed systems described 

in later sections below. Following the same target material would get over 

the varying reflectivity problem. Another approach would be to separate the 

transmitting and receiving parts of the system so that the transmitted pulses 

come from the robot itself and are "observed" by a stationary receiver. 

The resolution attainable with this type of range finder is poor, however. 

Even if the problems of noise and dynamic range are overcome, the inability 

to measure time with sufficient accuracy is the fundamental constraint on the 

resolution of laser time of flight systems. One suggested improvement [Jarvis (2)] 

is the incorporation of a streak camera into the system. This affords a time 

resolution of 10ps, which with no other errors present, would represent a total 

path error of +3mm or a distance error of +1.5mm to the target point. Sub- 

millimetric accuracy (let alone +10µm) is beyond the capabilities of time of 

flight measurement. 

Laser Rangefinders, Continuous Wave 

The second type of laser rangefinder is not pulsed, but uses a continuous wave 

laser beam modulated by a continuous periodic signal, usually in the tens of 
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Figure 1.23: Continuous Wave Laser Rangefinder 

megahertz region. The reflected signal from the target point is received at 

the rangefinder and its phase of modulation is compared with the modula- 

tion phase of a reference (taken from the outgoing transmitted signal). The 

rangefinder built at Stanford Research Institute (SRI) was based on this princi- 

ple, [Nitzan, Brain and Duda], and is shown schematically in Figure 1.23. 

In the SRI rangefinder the beam of a He Ne laser passes through a crystal 

of ammonium dihydrogen phosphate, where it is modulated at 9MHz, and a 

sample of the output beam is passed to an amplitude and phase meter. The 

outgoing laser beam is directed to a target and the reflected signal is received 

through a narrow band filter by a photomultiplier. The photomultiplier's output 

is passed through a 9MHz filter to the amplitude and phase meter, which has 

two functions. The first is to compare the phase of the transmitted and received 

signals and give an output of relative phase shift. The second function is to 

present the amplitude of the return signal as an output. The two outputs pass 

Target 
Object 

Analyser 
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through a multiplexer and A/D converter to a computer, which records both 

the range and intensity data for measured points. 

The rangefinder was designed to operate over a range of between 1m and 

5m, and with the 9MHz modulation frequency and the ability to sense down to 

a 0.2 degree phase shift, had a resolution of 10mm. The low power (15mW) of 

the laser used, and the effects of range and reflectivity, could give rise to weak 

return signals. Photon noise in the photomultiplier added to the problem, and 

with the resulting low signal to noise ratio, long integration times (500ms) were 

required for each measurement, to allow the phase shift to be found with the 

required accuracy. Thus the measurement acquisition rate for this instrument 

is extremely low, i.e. 2Hz. 

A rangefinder which is similar in principle, [Page and Hassan], has been de- 

signed for the inspection of manufactured parts. In this application it was hoped 

that the high reflectivity of the surfaces involved would allow the signal to noise 

problems described above to be avoided. The main differences from the SRI de- 

sign are the use of an infra red laser diode as the transmitter and an avalanche 

photodiode as the photosensitive receiver, and the modulation of the beam at 

50MHz. This higher frequency would give a theoretical resolution of 1.5mm on 

the measured distances. 

As with the time of flight rangefinder, the adaptation to dynamic position 

measurement of one moving point would require one of two things. Firstly the 

laser beam might be tracked to follow the point of interest, using some servo 

system. Alternatively, the instrument could be split into two parts, with a point 

source transmitter (a laser diode say) mounted on the moving object and the 

receiver stationary. 
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1.5.12 Servo Directed Lasers and Interferometers 

Retroreflector System 

An optical system designed at the University of Surrey [Gilby and Parker] is 

shown in Figure 1.24. In this system a tracker with a laser, a collimator and two 

galvanometer driven mirrors directs the laser beam to a retroreflector mounted 

on the moving robot. The return beam from the retroreflector is also reflected 

from the two mirrors. It then passes through a beam splitter to a quadrant 

detector. The two mirror angles (obtained from capacitive transducers on the- 

mirror drivers) and the error registered by the quadrant detector are then used 

to calculate the equation of a line passing through the centre point of the retrore- 

flector. Two such tracking systems give sufficient information to calculate the 

cartesian coordinates of the retroreflector centre point. In each tracker the quad- 

rant detector error is also used to drive the mirror galvanometers in such a way 

as to reduce the error. Using this closed loop servo system, each laser beam 

follows the retroreflector as it moves with the robot. 

In [Gilby and Parker] the inaccuracy of this system is given as less than 

f10pm over a 1m3 volume. 

2-Axis Gimbal System and Interferometer 

Another system which employs tracking laser beams is the Automatic Laser 

Tracking Interferometer (ALTI) developed at the US National Bureau of Stan- 

dards, [Industrial Robot]. This device also uses a servoed mirror system to steer 

a laser beam in azimuth and elevation. For ALTI Version 1 (see Figure 1.25), 

the target of this beam is another servoed mirror system mounted on the robot 

being tracked. At the second mirror, a beam splitter and quadrant detector 
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Figure 1.24: Servo Directed Laser with Retroreflector 

provide position feedback for the mirror servos. The second mirror reflects the 

beam back down the same path, onto the centre of the first mirror system. The 

beam is reflected from there to another beam splitter and on to a quadrant 

detector which again provides the error signals for the mirror servo systems. 

The mirror angles of the "fixed" part of the system give the azimuth and 

elevation to the centre of the moving mirror. The changes in distance between 

the mirrors is measured using an interferometer as shown in Figure 1.25. Part 

of the amplitude of the returning beam is interfered with a component of the 

output beam, and a count of the fringes obtained is used to calculate changes in 

distance. This is a relative measurement, and to obtain the actual distance the 

interferometer must be calibrated using some known distance. Altogether the 

four angles and one distance which are obtained give five independent measure- 

ments, and this can be seen as a five degree of freedom system. In effect this 

means that if only one such system is used, the three cartesian coordinates of 

65 



Tracking Mirror System 

Target Mirror System 

m 
Laser 

Figure 1.25: ALTI Version 1 

the moving mirror centre can be found and, in addition, some identified point on 

the end effector can be said to lie on a particular circle in space; see Figure 1.26. 

Two systems like this give sufficient information for the position and orientation 

of the end effector to be determined. 

ALTI Version 2 uses a retroreflector in place of the moving mirror. This 

gives a system similar to the University of Surrey instrument, except that the 

interferometer is also present. Thus ALTI Version 2 gives azimuth, elevation and 

range to the optical centre of the retro reflector, and the cartesian coordinates 

of that point can be calculated if required. See Figure 1.27. 

In calculating the position of the centre of either the moving mirror or the 

retroreflector, the position errors due angular measurements are dependent on 

the resolution of the angle transducers used and the accuracy with which they 

are calibrated (together with errors in the optical components). These errors 

increase with range. The position errors due to the interferometric measurement 
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Figure 1.26: Circular Locus of a Point on a Robot 
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Figure 1.27: ALTI Version 2 
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of range depend mainly on the calibration accuracy, i.e. the known range from 

which fringe counting starts. The resolution of the interferometer is, of course, 

very good, (being less than a wavelength of light) and the error does not increase 

with range. 

Four Linear Interferometers 

The previous two systems rely to some extent on angular measurements and so 

give errors in position which increase with range. The "CMS-1000" system man- 

ufactured by Chesapeake Laser Systems Incorporated avoids direct dependence 

on the accuracy of angle transducers by using only distance measurements in the 

calculation of point position, and by making these measurements with interfer- 

ometers [Chesapeake]. As with the two devices described above, a laser beam is 

directed towards the moving target by a servoed mirror system. The target is a 

cluster of retroreflectors which returns any beam coming from a direction within 

a large solid angle. Either three or four beams are aimed at this target simul- 

taneously, and the interferometers in each instrument give, respectively three 

or four distances to the target from different points outside the robot working 

volume. As with the tensioned wire method, three instruments are sufficient in 

ideal circumstances but the use of four allows problems of ill-conditioning to be 

overcome and so gives more accurate results. This instrument is illustrated in 

Figure 1.28. 

The manufacturers give the performance figures as; resolution 1µm, accuracy 

2-10µm over a 37n x 37n x 3m working volume, and a data capture rate of over 

200Hz. As with any interferometer, the accuracy of each instrument depends 

on the setting up or calibration procedure, and as with any system using mea- 

surements from several instruments, the overall accuracy depends on accurate 
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Figure 1.28: Four Linear Interferometers 

knowledge of the positions of the trackers themselves. 

1.5.13 Discussion of Dynamic Systems 

The dynamic systems described above can be categorised in various ways. For 

instance they might be considered in relation to their original application, e.g. 

systems used primarily for remote sensing of the environment as against systems 

designed from the start to be instruments of metrology. They can be considered 

in terms of the type of measurement they make, e.g. angle, distance, or time, 

or the type of physical principle they employ, e.g. time of flight of a pulse of 

radiation, phase shift of continuous wave radiation, inertial systems which use 

the laws of mechanics, or simply taking the bearings of points. Some devices 

make contact with the moving object and some rely on radiation from the object 

to a remote sensor. Some instruments use images of a whole scene and some 

concentrate on tracking a particular moving point. 

Some general remarks can be made about the characteristics of instruments 
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in particular categories and the problems commonly associated with them. 

1. Methods involving contact with the moving object or requiring a lot of 

instrumentation to be carried on the moving object distort the measure- 

ments they are designed to make. 

2. Triangulation devices suffer from decreasing accuracy with increasing range. 

3. Imaging systems suffer from the problem that they present too much data, 

from which the important information has to be extracted. 

4. Devices which steer beams to track a moving point introduce the complex- 

ity and expense of servo systems built into the instrument itself. 

5. Ultrasound, at the wavelengths commonly used, suffers from specular re- 

flections from most surfaces. At shorter wavelengths the strength of the 

signal attenuates rapidly. The low speed of sound restricts the data acqui- 

sition frequency. 

6. Electro-magnetic radiation, e.g. visible or infrared light, avoids the spec- 

ular reflection problem in most circumstances but, in the case of time 

of flight systems, comes up against the problem that given the speed of 

light, the shortest possible time intervals which can be distinguished still 

represent distances greater than 1 mm. 

Systems which operate, at least in part, remotely from the moving object 

do all have one thing in common. To obtain all three cartesian coordinates of 

a point, several instruments (of whatever type) are needed, and the calculation 

of cartesian coordinates almost invariably requires that the intersection of some 

combination of lines, planes or spherical surfaces be found in three dimensional 

space. 
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1.6 Introduction to the 3-D Interferometer 

The purpose of this section is to give a brief outline of the principles of operation 

of the interferometer which is the main subject of this thesis. The instrument was 

designed with the dynamic three dimensional position measurement of robots 

in mind as its application, and it overcomes most of the common problems 

indicated in the last section. 

This interferometer is an optical instrument and, like other interferometers, 

obtains its measurements by bringing together coherent light from two different 

optical paths and monitoring the changes in the resulting interference pattern. 

It is unlike the interferometers used in the existing measurement systems de- 

scribed in subsection 1.5.12, however. The instruments used there are linear 

interferometers which give measurements of length along the direction of their 

beam. If the target moves out of the beam, the interference pattern is lost, and 

so both the instruments described previously require servoed tracking mirrors 

to keep the beams on target. 

The new instrument, on the other hand, does not involve any servo systems 

or other moving mechanical parts. It works by monitoring the position of a 

point source of laser light attached, say, to the moving robot's end effector. 

The point source emits spherical wavefronts within the conical volume of the 

solid angle of transmission. Some of this light is incident on the interferometer 

itself, positioned outside the robot's working envelope as shown in Figure 1.29. 

Within the limits imposed by the solid angle of transmission, the interferometer 

continues to receive the signal as the point source translates and rotates in any 

direction. 

The interferometer itself works by division of wavefront in contrast to the 

71 



Figure 1.29: Laser Point Source and Receivers 

division of amplitude employed by most existing instruments. At the front of the 

receiver are two parallel slits, and at each of these, incident light is diffracted as 

it enters the instrument. The two "fans" of diffracted rays continue to diverge 

and pass into a lens, which is focused at infinity. The diffracted light from 

each slit produces its own diffraction pattern on the focal plane of the lens, 

and where the two patterns overlap, a large number of fine, parallel interference 

fringes are produced. Figure 1.30 is a simplified diagram showing some of the 

main components of the interferometer. 

In the interference pattern, the phase at some particular point on the focal 

plane is determined by the optical path lengths from the source, through the 

two slits, to that point. These in turn depend on the distances from the moving 

source to the two slits. In consequence, as the point source moves, then, in 

general, the interference pattern moves as a whole on the focal plane. The 

movement of the interference pattern in a direction normal to its parallel lines 
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Figure 1.30: Interferometer, Basic Components 

can be used to determine one coordinate3 of the point source in three dimensional 

space. 

Movement of the interference pattern on the focal plane of the lens can be 

detected using an amplitude transmission linear diffraction grating positioned in 

this plane. The grating has the same spatial frequency as the fringe pattern, and 

is oriented with its lines parallel to the fringe lines. As the fringe pattern moves 

in a direction normal to the grating lines, the amplitude of the light transmitted 

through the grating varies as a sine wave superimposed on a DC level, with one 

complete cycle per "line pair" traversed on the grating. The power transmitted 

through the grating is received by a photosensitive detector which outputs an 

electronic signal. 

By placing a beam splitter behind the lens, two such detectors can be used 

to give two output signals in quadrature, thus the magnitude and direction of 

"See Chapter 2. 
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Figure 1.31: Interferometer, Quadrature Detection of Fringe Movement 

the fringe movement can be obtained. See Figure 1.31. 

The geometric relationship between the source position and the interference 

pattern position is as follows. For a fixed position of the interference pattern (in 

the direction normal to its fringe lines), the point source must lie on a particular 

member of the family of hyperboloids of revolution, of two sheets, with foci at 

the centres of the two slits. Using three of these instruments, illuminated by the 

same source, the three cartesian coordinates of the point source can be calculated 

from one of the intersections of the three hyperboloids. This is illustrated in two 

dimensions in Figure 1.32. 

The optics of the interferometer are described in detail in Chapters 4, 5 and 6. 

The next two chapters investigate the geometry which allows the position and 

orientation of an object to be calculated from the interferometer's output. 
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Figure 1.32: Intersection of Hyperbolic Point Loci 
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Chapter 2 

Location of Points 

2.1 Position Measurement Systems 

The position measurement instruments described in the last chapter can be used 

in systems which find the location of point in three dimensional space to within 

some tolerance. They employ a whole range of physical effects, and occasionally 

some quite ingenious designs to obtain their output. What they do, almost 

all, have in common is that the coordinate output from each instrument in a 

system represents a geometrical entity in the three dimensional space. With 

most instruments this is a line, a plane, or a sphere, and the location of the 

required point is found by calculating the intersection of some combination of 

lines, planes and spheres. 

In the calculation to identify a particular point, the set of scalar coefficients 

of components of the position vector must be found. The coordinates output 

from an instrument might be exactly the scalar coefficients of the position vector, 

as would be the case in a perfect prismatic coordinate measurement machine. 

In most systems, a considerable amount of manipulation is required to obtain 

the position of the point. That is true of the interferometer, (Section 1.6), 

which outputs coordinates which represent hyperboloids. The calculation to 
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obtain the intersection of three of these hyperboloids is complex in comparison 

to calculating, say, the intersection of three planes. 

Ultimately all position measuring instruments reach the same result however, 

and conceptually, most of them go through a similar process to achieve it. To 

illustrate this, the next section shows that any instrument or combination of 

instruments as a system can be represented algebraicly as a map. 

2.2 Coordinates and Surfaces 

2.2.1 Coordinates 

Firstly, the idea of a coordinate must be separated from the familiar x1i x2f x3 

scalar coefficients of a vector in a cartesian reference frame. The term has a 

more general meaning and it should not be associated with vector spaces. A 

coordinate is an index to a set. [Do Carmo, pp52,53], [Blyth, Ch 1]. More 

specifically and restricting the definition to real coordinates, a coordinate is a 

real number which is a member of a subset of R. This subset is an index set 

which, through a map, specifies a subset of R', (m being a positive integer). 

In a geometrical case, this subset of R' is a point set, i.e. a point, a curve or a 

surface. A number output from an instrument is a coordinate and so an index. 

The range of such numbers produced by the instrument between its limits of 

operation is the domain of the map. 

2.2.2 Set of Coordinates 

With n a positive integer, a set of coordinates is a set of ordered n-tuples of 

real numbers, each number being a member of a subset of R and mapping to a 

subset of R7n as with a coordinate singly. The intersection of the image subsets 

specified through maps by particular coordinates in a member of this n-tuple set 
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picks out another subset of 2', for example, in the geometrical analogy, a point, 

a curve or a surface. With this formality applied to examples of instruments 

its simplicity is clear, and it can be seen that a mapping is a compact way of 

describing the geometric attributes of a system. Initially one linear and one 

non-linear system are given as examples. 

Example: Coordinate Measurement Machine 

In a three axis inspection machine the coordinate measured by each axis inde- 

pendently maps to a plane lying normal to that axis direction. This plane is 

the particular subset of R' picked out by that coordinate, and the remaining 

information necessary to fix the point is now a member of X22. The other two 

coordinates define intersecting planes which successively remove the remaining 

degrees of freedom of the point. 

In the general case, the axes of the machine are not mutually perpendicular. 

The plane defined by the coordinate of an axis is given by x n = d where x is 

the position vector of a point on the plane, n is a unit normal to the plane and d 

is the perpendicular distance from the reference frame origin to the plane, as in 

Figure 2.1. With no knowledge of any of the coordinates, the point to be found 

can be anywhere in a volume. Considering only the ith axis of the machine, 

fixing that single output coordinate constrains the point to lie on a plane. If the 

characteristics of the machine are known then the direction of the normal to the 

plane is known, and as the coordinate of that axis varies, the plane sweeps out a 

volume. In other words, for the ith axis of the machine, the output coordinate 

u: E Ut selects a polynomial pi from {pt} (the set of all parallel planes in this 

case) such that an unknown coefficient of the polynomial, d; is determined by 

ui'--> di. 
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Figure 2.1: Axes of Coordinate Measurement Machine. 
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The set V(pi) is the set of triples of coefficients of a point vector to any point 

on the surface which is defined by putting pi(x) = 0. So each ui E U1 defines a 

plane point set, 

V (Pi) _ {(x1, x2, x3) E R3 ui H di 

pi = x1ni1 + x2ni2 + x3ni3 + di = 0} (2.1) 

The volume swept out by all such parallel planes (as ui varies) is the volume 

point set, 

Vi({pi}) = {(XI,x2,x3) E 
R3 

ui H di 

pi = xlnil -I- x2ni2 + x3ni3 + di = 0} (2.2) 

in which di is now a variable. 

If three coordinates ul, u2, u3 are specified then three planes V(pi) are picked 

out and their intersection is the point which satisfies all three equations. The 

complete map a for the three-axis instrument is, 

a : U -- V = {V(p1) n V(p2) n V(p3)} (2.3) 

or explicitly, 

a : U -- V = {(x1, X2, x3) E R3 
I Vi, ui H di 

Vi, pi = x1ni1 + x2ni2 + x3913 + di = 0} 

(2.4) 
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This describes the means by which the coordinates obtained by the techniques 

of this instrument yield a set of simultaneous (in this case linear) .polynomials 

which may be solved for the desired position vector. 

Other position measuring instruments can be described in a similar way, the 

polynomials being different in general, their variety determined by the physics 

and geometry of that instrument. 

Example: Spherical Coordinates 

An example rather different from the one above is the ALTI measurement sys- 

tem designed at the US National Bureau of Standards and described in Chapter 

1, 1.5.12. The position of the centre point of the moving target can be deter- 

mined from the system's (spherical) coordinates. The two angles of the tracking 

mirror allow azimuth and elevation to be determined. The linear interferome- 

ter measures changes in range from some calibrated distance and so determines 

radius. 

So in this case with ul = q, u2 = 0, and u3 = r, the map is, 

a : U = {u1, u2, u3} -4 V = {(x1, x2, x3) E R3 ul H n11 = cos u1, n12 = sinus 

p1(x) = x1n11 + x2n12 = 0 

u2 H a21 = a22 = tan 2 u2 

p2(x) = a21xi + a22x2 - x3 = 0 

U3E r=u3 

p3(x)=xi+x2+x3-r2 =0} 

(2.5) 

The surfaces picked out by these coordinates are a plane, a cone and a sphere, 
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Figure 2.2: Intersecting Plane, Cone and Sphere. 

the discriminant matrices of the quadrics both having their canonical form in 

the same reference frame. See Figure 2.2. 

2.3 Reduction of Dimension 

In general each of n coordinates maps to an algebraic variety, which is a family 

of polynomials, each of which is equal to zero, in < n indeterminants. In many 

cases the number of dimensions over which the point is free to "move" in an n- 

space is reduced by one by each coordinateland thus by each of these equations 
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applied. 

A member of an algebraic variety is a hypersurface in the n-space. In the 3- 

space which is primarily of interest the hypersurface is usually a surface. Three 

such surfaces indexed by three coordinates can be used to fix a point in space by 

taking the intersection of the surfaces, as with the two examples given. Multiple 

solutions occur with surfaces defined by non-linear polynomial equations. In 

real situations, other evidence can be brought to bear in determining the correct 

choice of roots. Examples are the velocity, acceleration and previous sampled 

position of a moving point. 

The method of finding the intersections of the specified surfaces depends on 

the degree of the polynomials and has to be considered for individual cases. 

An approach for some three dimensional interferometric measurements is given 

in the next section, the instrument providing coordinates which index quadric 

surfaces. 

2.4 Geometry of the Interferometer 

The geometrical relationship between the position of a point source free to move 

in three dimensions, and the fringe pattern movement which gives rise to the 

output signal of the interferometer was introduced in Chapter 1, 1.6. In this 

section the geometry of the intersection of the hyperboloids determined by the 

coordinates of three interferometers is considered and an algorithm for finding 

the position vectors of the intersection points is presented. 

In a plane which includes two fixed points, representing the slits of the inter- 

'Some inconsistencies appear when the varieties are restricted to being real varieties. An 
equation such as x1 -1-x2 = 0 picks out the x3 axis alone in X23, thus reducing the dimension by 
two with only one equation. Also, two surfaces may not intersect in X23 (e.g. if they are parallel 
planes). See [Kendig, Ch 1]. In a real measurement system these circumstances can be avoided 
or accommodated in the design of the instrument and associated algorithms. 
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ferometer, the movement of the source point which produces no change in the 

relative phase between the two slits must be movement on the locus of a point 

with constant difference of distances from these two fixed points. This locus is 

a hyperbola. 

Allowing the point to move in three dimensions, the locus giving constant 

phase difference between the two fixed points is a hyperboloid (of two sheets) of 

revolution, rotated about the axis between the two fixed points. See Figure 2.3. 

Instrument Map 

The coordinate output by the interferometer represents the phase difference 

between its two fixed measurement points and so, in three dimensions, maps to 

a member of a family of hyperboloids of revolution with foci the two fixed points. 

With the x1 axis passing through the fixed points and the x3 axis the "optical 

axis" of the instrument, then in its canonical reference frame the equation of 

this hyperboloid is, 

z xl z x2 z x3 
(2.6) 

a2 b2 b2 

(see [Sommerville]) where 2a is the difference in distances calculated from the 

phase difference and wavelength, b2 = c2 - a2, and 2c is the distance between 

the foci. In a general position and orientation, the equation of a quadric is, 

xTAx=0 (2.7) 

where xT = [x1 X2 x3 1] is a point vector in homogeneous coordinates. A is the 

symmetric discriminant matrix of the quadric and is determined by the position 

and orientation of the reference frame and the coordinate u; measured by the 
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instrument. With the position and orientation of the instrument fixed, V({p;}) 

is the set of surface point sets which may be selected with various values of the 

coordinate u;. A particular u; E U; selects the set of vectors x to points on one 

such surface V (p; ). 

Another two interferometers in different positions and orientations give rise 

to two more surfaces, with discriminant matrices A' and A" with respect to the 

same reference frame as A. The position vector of the point source is at one of 

the intersections of the three surfaces specified by the coordinates, so the map 

for this instrument is, 

a : U - V = {(x1, x2, x3) E R3 
I p1 = xTAx = 0, ul H A(ul); 

P2 = XTA'x = 0, U2 H A'(U2); 

P3 = XTA"X = 0, u3 H A"(U3)} (2.8) 

With the positions of the instruments known, the elements of A, A', and A" are 

easily calculated from given ul, U2, U3. The equations, 

xTAx=0 

XTA'x=0 

XTA"x = 0 (2.9) 

(i.e. the intersection of three quadrics) must now be solved for x. 

Intersection of Two Quadrics 

If two quadric surfaces, say with discriminant matrices A and A', intersect then 

in general they do so in a space curve. This curve is the base curve of a pencil 
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Figure 2.4: Pencil of Quadrics. 

of quadrics, (see Figure 2.4), 

xT(A+\A')x=0 (2.10) 

where )A is a scalar which may range from -oo to oo. The members of this 

pencil may be classified according to the ranks of their discriminant matrix and 

a subdiscriminant matrix, the top left hand 3 x 3 matrix. [Dresden]. 

It has been pointed out that the intersection curve of any two quadric surfaces 

lies on a plane, two planes, a hyperbolic or parabolic cylinder or a hyperbolic 

paraboloid, all of which are ruled surfaces with singular subdiscriminant matrices 

(Au + AA), [Levin]. The equations of these ruled surfaces of the pencil are 

obtained by putting, 

87 



det(Au + AA') = 0 (2.11) 

and solving for A. 

In the present case, both Au and A' are the subdiscriminant matrices of 

hyperboloids of two sheets and are of rank 3 i.e. non-singular, so the equation, 

IA' 
IA3 

+ K1A2 + K2A + IAuI = 0 (2.12) 

is a cubic with at least one real root. 

Placing each root value of A in (A + AA'), the equations of ruled quadrics 

passing through the intersection curve are obtained. Selecting one of these, 

the discriminant matrix is then transformed to its canonical form in another 

reference frame and expressed in parametric form so that one parameter picks 

out one ruled line on the surface. With this line equation in parametric form, 

x1, x2, and x3 can be substituted in the quadric xT Ax = 0, for instance, to give 

a quadratic in one indeterminant, the line parameter. Substituting a value of 

this parameter back into the line equations gives the coefficients x1, x2i x3 at 

that point on the intersection curve. In [Levin] this approach was taken as part 

of a process to produce graphical representations of quadric intersections. 

Intersection of Three Quadrics 

Taking this a stage further, at some point the intersection curve of xTAx 

and xT A'x = 0 cuts the third hyperboloid xT A"x = 0. At that point the coef- 

ficients x1i x2, x3 found by the above method will also satisfy xTA"x = 0. The 

method of finding one point therefore requires an iterative procedure which sets 

the value of a parameter to pick a line on a parameterisation surface, intersects 
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this line with another surface on the same pencil and checks to see if this point 

is on the third (non pencil) surface. Well conditioned solutions can be obtained 

only if the three interferometers are positioned to give good intersections be- 

tween their hyperboloids, i.e. if acute angles of intersection are avoided in the 

working volume of the instrument. This is dealt with in the discussion on the 

implementation of systems in Chapter 7. 
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Chapter 3 

Location of Objects 

3.1 Points and Objects 

In applications for metrological instruments it is frequently required that the 

location of a complete object be described. Information on the location of more 

than one point on the object is necessary. An example of this type of task is in 

describing the position and orientation of an industrial robot end effector which 

can have three translational and three rotational degrees of freedom. 

In this chapter the minimum information necessary to locate an object is 

determined. This is applied in a simple case and an algorithm to give the 

location of the object is presented. Then the means of employing the hyperbolic 

geometry of the interferometer to locate an object in three dimensional space is 

described. 

3.2 Determination of Position and Orientation 

In locating an object or recording its trajectory through space a complete de- 

scription requires that the position and orientation of a reference frame fixed in 

the object can be specified at each sampled point on the trajectory. The posi- 

tion and orientation may be described, with respect to a fixed world reference 
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frame, by (for instance) three cartesian coordinates and three Euler angles, six 

independent variables. 

Euler angles cannot be measured directly however, and in a dynamic situa- 

tion measuring cartesian coordinates directly is also a problem. The information 

obtainable from an instrument in which a measured coordinate constrains a point 

to lie on some surface can be used on more than one point of the object however. 

In considering the position of points of a body it can be seen that if the positions 

of only two points are known (i.e. six coordinates) then the body is still free to 

rotate about the line through these two points. On the other hand, although 

knowing the position of three points fixes the body unambiguously nine numbers 

are required to specify these points. 

The number of points and the effect of constraints on a body are now con- 

sidered. In Figure 3.1, 0 is the reference frame. The cartesian coordinates and 

Euler angles of, say, the 01 frame are known with respect to Oo or alternatively 

all three cartesian coordinates of three points are known. In either case the body 

is fixed. 

Now, as an illustration of the effect of linear constraints, fix only the three 

cartesian coordinates of 01 and progressively constrain a second point. In Fig- 

ure 3.2 the two points 01 and O2 are used. The position of 02 is known with 

respect to 01 in any body frame but since the orientation of this system in 

the world frame is unknown, only IwJ, the radius to 01 from O2 can be used. 

The locus of possible positions of 02 is the surface of a sphere, radius Jwl and 

centred on O1. 02 is now constrained further by insisting that it must lie on a 

plane. This intersects the spherical locus in, say, a circle; 02 still has an infinity 

of possible positions with respect to 01 and the body also has an infinity of 

orientations, rotating about a line through 01 and O2. 
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Figure 3.1: Body Constrained in Position and Orientation. 
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Figure 3.2: Constraints on Two Points: 01 Fixed, 02 on a Plane. 
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Figure 3.3: Constraints on Two Points: 01 Fixed, 02 on a Line. 

In Figure 3.3 02 must lie on a line fixed in world coordinates. This cuts 

the spherical locus of 02 in at most two points. At each of these the body's 

orientation about 0102 is still undefined. 

Even if the positions of 01, 02 are given, the body's orientation about 0102 

is undefined. The two sets of three cartesian coordinates do not contain as much 

information as three cartesian coordinates and three Euler angles of a coordinate 

system at one point. Consideration of cartesian coordinates and relationships 

between these (e.g. lines and planes) does not specify the position and orientation 

of the body if only two points are used. 
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Figure 3.4: Constraints on Three Points. 

In Figure 3.4 three points fixed in the body are considered. The three Carte- 

sian coordinates of 01 are known as before. 02 and 03 have loci on the spheres 

of radius Iwi I and Iw31 respectively, centred on 01 . In addition 03 is on a 

sphere of radius Iw21 centred on 02 

If 02 is specified to lie on some plane, its locus is reduced to a circle, but it 

still has an infinite number of positions. For each one of these the locus of 03 

with respect to 02 is a sphere and with respect to 01 another sphere. These 

intersect in a second circle, again an infinite number of possible positions. 

Restricting 03 as well to lie on some (other) plane does not improve matters 
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very much. An aid to the imagination here is to think of a set-square in the 

corner of a box. One vertex, 01, always touches the same point on the base. 02 

and 03 must each touch the remaining two sides. This does not fix the position 

of the set-square. 

The starting point of having the three cartesian coordinates of 01 known is 

now abandoned. One motive for doing this is that in a real system in which 

three points are being considered it is likely that similar measured information 

is available about each point. 

If for each point one cartesian coordinate is known or if the three coordinates 

of the point are related by the equation of a plane in each case then the body 

may take up an infinity of positions. This may be illustrated by the set-square 

in the box example. The vertices are now required to touch one surface of the 

corner each. Obviously it is even less constrained than in the previous example. 

If, however, for each point, two cartesian coordinates are known or if the 

three coordinates of the point are related by the equation of a line in each 

case then, in general, there is a solution for the position and orientation 

of the body. 

3.3 Codimension and Constraint on a Body 

In Section 2.3, reduction in dimension was considered in respect of a point. 

Constraint of a point is achieved by the imposition of algebraic varieties. The 

nature of the variety determines whether, in real space, the dimension is reduced 

by one, two or three from the original three degrees of freedom of the point. 

This feature is the codimension of the variety [Kendig]. In the case of a point, 

summing the codimensions of the distinct varieties applied and subtracting this 
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from three is equivalent to assessing the degrees of freedom left to the point. 

This can be extended from points to bodies and used to establish whether or 

not, for instance, the body is completely constrained. This is done as follows. 

Initially, with n points under consideration in the body, each point has three 

degrees of freedom. The total dimension is 3n. For a rigid body, there are 

quadratic relationships between the points which are independent of the position 

and orientation of the body in any particular reference frame. With respect to 

any point on the body, the other points lie on spherical surfaces at known radii. 

With n > 3, (3n - 6) such equations ensure that the points are fixed relative to 

each other. 

For a rigid body, six degrees of freedom remain and varieties of total codi- 

mension six and different from those within the body are required to fix 

the body in space. Examples of this are six surfaces, four surfaces and 

a curve, two surfaces and two curves or three curves, applied to at least 

three distinct points of the body. 

With the knowledge that certain curves or surfaces pass through particular 

points in a body, the position and orientation of the body may then be calculated. 

The facility of this calculation depends on the number of indeterminants and the 

degree of each polynomial equation. Employing all the necessary equations leads 

quickly to a polynomial of degree greater than four and so in general analytic 

solutions are not possible. This is true even in the simplest case, in which the 

measurements from an instrument determine that three points of the body lie 

on lines. The measured varieties are linear, but the relationships between the 

points in a rigid body are always quadratic. An algorithm for this case is given 

in the next section. 
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3.4 Location of an Object using Three Lines 

Three lines, defined in the world reference frame, pass through three points on 

a body. The relative positions of the three points within the body are known. 

The problem is to find the position and orientation of the body with respect 

to the world coordinate system. This is the geometry of a system based on 

three theodolite measurements, each giving bearings of azimuth and elevation 

of a different point on an object. Azimuth and elevation give planar and conical 

surfaces respectively and these intersect in lines, one through each point. This 

is also the geometry which would be obtained using three of the laser tracking 

systems developed at the University of Surrey, (described in Chapter 1, section 

1.5.12). 

One approach, which is similar to that used for solving the kinematic equa- 

tions of mechanisms, would lead directly to the homogeneous coordinate trans- 

formation matrix from the world reference frame to some frame set in the body 

[Allan]. The transcendental equations obtained in this way are not readily sol- 

uble. The method given in the next section does not attempt to find the final 

transformation directly. Rather it solves for the third coordinate of each of the 

three points in the body. The transformation from the world frame to the frame 

fixed in the body may then be found without too much difficulty. 

3.4.1 To Find the Third Coordinate 
of Each Moving Point 

In Figure 3.5 On lies on a line in the On coordinate system, the azimuth a 

and elevation 0 of the line being known. The transformation from spherical to 

Cartesian coordinates is, 
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Figure 3.5: Radius Coordinate of each of Three Points. 
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xn, = rn, COS an, sin On 

yn 

.zn 

FWMF 

= 

rn Sin an sin On 

rn COS On (3.1) 

Putting, 

COS On = kn3 (3.2) 

the coordinates of On in the On system are rnkni, rnkn2, rnkn3 or in homogeneous 
T 

coordinates On may be represented by the point vector, [kni kn2 kn3 n ] = un, 

a column vector in this convention. 

The transformation between On and 0 frames is, 

nxn Oxn axn Pxn 

Hn nyn ayn ayn Pyn = 
nzn azn azn Pzn 
0 0 0 1 

and a point vector u in On coordinates is expressed in Oo coordinates by, 

Vn = Hnun 

Vn = 

COs an Sin I3n = kni 

sin an sin On = kn2 

nxn oxn axn 

nyn Oyn ayn 

nzn Ozn azn 
0 0 0 

Pxn kni 
Pyn kn2 

Pzn kn3 
1 rn 

3.3) 
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knlnxn + kn20xn + kn3axn an + rn 

knlnyn + kn20yn + kn3ayn + Pin vn (3.6) 
knlnzn + kn20zn + kn3azn + rn 

I 
n 

L rn J 

The only unknown in this matrix is the radius rn, so adding the first three 

terms in each element to give Kn1 etc, 

Kn1 rn + Pxn 

vn 
Kn2rn + Pyn = 
Kn3rn + Pzn 

1 

The three vectors vn with n = 1, 2,3 are the position vectors in the Oo coordinate 

system of the three points in the moving body, in terms of the unknown radius 

rn to each point from its On origin. 

The relationships between points of a rigid body are now used. wn are the 

(free) vectors between pairs of the three moving points. 

W1 = v2 - v1 

w2 = v3 - v2 

w3 = v1 - v3 

Subtracting the component parts of vn and putting Px2 - Px1 = Px21 and so on, 

gives the vectors wn in the 0 world coordinate system in terms of the unknown 

radii r1i r2, r3. 

w1 = (K21 r2 - I111 r1 + Px21)i + (K22r2 - K12r1 + Py21)J + (K23r2 - K13r1 + Pz21)k 

(3.9) 

w2 = (K31r3 - K21r2 + Px32)i + (K32r3 - K22r2 + Py32)J + (K33r3 - K23r2 + Pz32)k 

(3.10) 
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W3 = (If11 rl - K31r3 + px13)i + (K12r1 - K32r3 + py13)j + (K13r1 - K33r3 + pz13)k 

(3.11) 

The lengths Iwnl between the points On on the body are known, and so 

using, 

2 -w2 -w2 I2 wnwn=wnx ny nz = I wn (3.12) 

three quadratic equations are obtained in r1, r2, r3. These are of the form, 

C11r2 + C12r2r1 + C13ri + C14r2 + C15r1 + C16 = 0 

C21r3 + C22r3r2 + C23r2 + C24r3 + C25r2 + C26 = 0 

C31r1 +C32r1r3+C33r3+C34r1 + C35r3 + C36 = 0 

all the C;; being known. Two of these equations, e.g. the first and third equation, 

are used to obtain expressions for r2, r2, r3 and r3. These are substituted in the 

second equation and yield a polynomial of degree 8 in r1. There is no analytic 

solution to this and iterative procedures may be employed more efficiently on 

the three quadratics, as will be shown. 

The method which follows is an iterative procedure to find r1i r2 and. r3 

from the three quadratic equations. The geometrical analogy can be fol- 

lowed through the solution. 

In the Equations 3.13, 3.14, and 3.15 the C;; are known and the rn are the 

radii which are the third (spherical) coordinates of the three points in the moving 

body, measured from the On origins respectively, (see Figure 3.5). A value is 

estimated for r1 and substituted in Equation 3.13. The resulting quadratic in 

7'2 has, in general, two roots given by, 
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Figure 3.6: Calculation of r2. 

= 
-b (b2 - 4ac) 

r2 
2a 2a 

(3.16) 

Referring to Figure 3.6, with r1 given and the knowledge that the distance 

between O' and 02 is w1 (known) then 02 lies on one of the two points where 

a sphere of radius w1 centred on Oi is cut by the line on which r2 lies. Thus 

there are either one or two real roots r2 which meet this condition, giving at 

most two possible solutions for 02, i.e. 021 and 022. Each value of r2 in turn is 

substituted in Equation 3.14 to give two quadratics in r3. Both quadratics are 

then solved for r3, deriving two roots from each at most, i.e. four possible values 

of r3. 

Referring to Figure 3.7, for each calculated r2 there are two possible lines of 

length w2 between 02 and 03, giving four possible positions of 03 which satisfy 

the equations so far, 031, 032, 033 and 034. 
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Figure 3.7: Calculation of r3. 
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Figure 3.8: Calculation of rl. 

Each value of r3 in turn is then substituted in Equation 3.15. This gives four 

quadratic equations in rl and therefore eight possible values of rl. The geometry 

is shown in Figure 3.8. With the four 03 as starting points, there are a total of 

eight lines of the required length w3 which meet the line on which rl lies. If, as 

is illustrated in Figure 3.8 none of the eight calculated values of rl match the 

original estimate, then rl is adjusted and the procedure repeated until a match 

to within acceptable tolerance is obtained. 
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If the correct path were known, that is if the choice between roots of quadrat- 

ics at each of the three stages had been established, then to improve the estimate 

of r1, the mean between the previous value and the resulting calculated value 

could be taken, converging on the correct r1 and giving the correct r2 and r3 in 

the process. The first task is therefore to establish the correct series of choices of 

+ or - sign in selecting roots of the quadratics. Since the body moves continu- 

ously, a different path may only come about after passing through the situation 

in which two identical roots are derived from a quadratic. Geometrically, this 

corresponds to the line through one of the points touching the sphere, centred 

on one of the other points tangentially. Alternatively it can be seen as the line 

between two points, On, and 0n,+1 say, being perpendicular to rn+l. 

However, since in reality the values of the coefficients Ct; in Equations 3.13, 

3.14, and 3.15 are based on measurements of azimuth and elevation at the On 

frames, sampled at some frequency, the data available will not be continuous. 

Some judgement must then be applied to decide how near equal a pair of roots 

may become without rechecking that the correct choice of roots is being em- 

ployed. This judgement will be based on the velocity of the body, the sampling 

frequency and the rounding errors which occur in computation. Finally, as the 

computations described above are carried out for each successive set of sampled 

data, estimates may be obtained by employing previous position and time values 

to calculate r and r. 

3.5 Location of an Object using Three 
Quadric Surface Intersection Curves 

The coordinate of the interferometer picks out a hyperboloid from a family of 

hyperboloids of revolution (of two sheets) with the same foci. As was described 
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in Chapter 2, Section 2.4, two such surfaces intersect in a space curve. With 

two coordinates available for a point, the point lies on this quadric surface 

intersection curve. With two coordinates of each of three points in a body 

the position and orientation of the body can be found with respect to a fixed 

reference frame by using three quadric surface intersection curves. 

The method (although not the geometry) is similar to the case in the last 

section in which the three curves were lines each passing through one of the 

points and the third coordinate was found for each point. This method (which 

has not been implemented) is given below. 

For one of the curves, a line on a parameterisation surface of the pencil is 

selected and intersected with one of the hyperboloids to obtain the coordinates 

of one point on that curve. If one point of the body is situated at this point on 

the curve, then the second body point lies on the second curve such that it is a 

known distance from the first point. Using the quadratic equation which gives 

the radius from the first to second point would, in combination with the fourth 

degree equation of the second curve (if that were known) give a polynomial of 

degree eight. 

The intersection of this sphere with the second curve must therefore be found 

by scanning through the ruled lines of a parameterisation surface of the second 

curve to obtain candidate points whose radius from Point 1 can easily be checked. 

The number of points on the second curve which give the correct distance from 

Point 1 depends on the nature of the curve and the relative positions of Curves 

1 and 2 at that instant. 

For each successful candidate for Point 2 the procedure is carried out again, 

this time for possible positions of Point 3 on Curve 3 with respect to Point 2. 

Then for the third side of the triangle of points the radii from successful Points 
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3 are taken to possible Points 1 on Curve 1. 

As with the case of the three straight lines, if the correct starting point has 

been chosen on Curve 1, then one of the finishing points is this same point and 

all three cartesian coordinate for all three points have been found. 

Also, as in the case with three lines, multiple solutions are possible, but 

in a dynamic situation since each sampled set of coordinates is likely to be 

numerically close to the previous sampled set, once the first multiple choice has 

been resolved good estimates can be made for subsequent iterations. This speeds 

up the choice of parametric lines for each curve. 

Two possible positions on a curve which satisfy the radius criterion (from 

the previous point) only approach each other closely on the curve as a tangent 

plane to the intersecting sphere approaches the point where it includes a tangent 

to the curve. At this, the two solutions merge into one. When they separate 

again (as the body keeps moving) the correct choice of solution has been lost. 

In practice this problem may be overcome by careful positioning of instruments 

with respect to allowable motions of the object and/or a redundancy of points 

or instrumentation. 
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Chapter 4 

Diffraction and Interference 

4.1 Introduction 

In this chapter, the physical background to the interferometer described in Chap- 

ter 1, 1.6 is presented. Sections 4.2 to 4.6 describe diffraction and interfer- 

ence due to single and multiple rectangular slits with off-axis incident radiation. 

These effects form the basis of the interferometer. The consequences of introduc- 

ing a lens behind the diffracting aperture are considered and, in Sections 4.8 to 

4.10, the characteristics of a lens are related to the parameters of the diffraction 

equations. 

4.2 Diffraction at an Aperture 

Rigorous solutions of diffraction problems only exist for a few special cases 

such as the diffraction of monochromatic plane waves by a half plane, (see 

[Born and Wolf]). There is no exact solution for the diffraction of plane or 

spherical waves by a rectangular aperture, and so to obtain expressions for 

the electric field strength due to diffracted radiation beyond such an aperture, 

various approaches have been tried. Historically' these have ranged from the 

Huygens' construction and Kirchhoff's mathematical formulation of Huygens' 
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theorem, through the approximate far-field solution of Fraunhofer, the Fresnel 

integral approximation for near-field diffraction, and Sommerfeld's modification 

to Kirchhoff's approach, to the more recent return to a geometrical descrip- 

tion of diffraction as given by [Keller] or the asymptotic expansion of diffraction 

integrals (see [Born and Wolf] and [Kline and Kay]). 

The Rayleigh-Sommerfeld formula is used in the discussion which follows, in 

preference to the Kirchhoffformula, which assumes certain mutually incompat- 

ible boundary conditions at the aperture (see [Goodman, Ch 3]). In practice 

the predictions of both formulae are frequently quite similar and Kirchhoff's 

theory has been much used, (see for instance [Papoulis]). The diffraction prob- 

lems considered here involve diffraction at an aperture in a plane screen only, 

and so the Green's function used for Sommerfeld's formula is appropriate, (see 

[Bouwkamp] for a discussion of modifications to Kirchhoff's scalar diffraction 

theory). In addition to its self-consistency, the Rayleigh-Sommerfeld formula 

has the advantage of being slightly simpler. 

The Rayleigh-Sommerfeld formula for diffraction of monochromatic radiation 

at an aperture gives the electric field E at a point P beyond the aperture as, 

1 r r 
i(kri -wt) 

E iA J 1 E(x, y) e cos 0 dx dy (4.1) 
i 

where E(x, y) is the field over the aperture E due to incident radiation, 'b is 

the angle to the z axis and r1 is the distance to the observation point. See 

Figure 4.1. Conventionally, three sets of approximations (as described in, for 

instance, [Goodman]) may then be carried out. 

'For an introduction to the historical development of diffraction theory see [Goodman] or 
[Born and Wolf]. 

2See [Wolf and Marchand] for a comparison of the predictions of the two theories. 
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Figure 4.1: Diffraction at an Aperture in the x, y Plane. 

4.2.1 The Paraxial Approximation 

In Equation 4.1 the amplitude of each diffracted ray from the aperture to the 

observation point is modified by an obliquity factor cos o for that ray. In the 

paraxial region cos 0 ti 1 and so can be taken out of the equation. Further , in 

this region r1 ti zl assuming an observation plane parallel to the aperture plane, 

and so the rl in the denominator can be taken outside the integral. This leaves, 

with r10 the distance from (0,0) in the aperture to P on the observation plane 

and ignoring the time dependency, 

E 
iAr1 

10 
14 E(x, y)eikri dx dy 

4.2.2 The Fresnel Approximation 

In the exponent of Equation 4.2 rl cannot be put equal to zl since the phase 

at P varies rapidly with rl. A better approximation to rl utilises the binomial 
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expansion and with 11 = o and m1 = the direction cosines of the point P, 
10 

gives, 

iA i k [ y2 i° (xtl+m1)J 
dx dy (4.3) e r10 

JjE(x,y)e 
Ar 

See Appendix A.1.1- 

4.2.3 The Fraunhofer Approximation 

At long distances from the aperture the Fraunhofer approximation can be used. 

i 

E(x, 
y)e-ik(xtl mj) dx dy (4.4) 

kr 

Jf E e rlo 

4.3 Diffraction at a Rectangular Aperture: 
Incident Plane Waves 

The diffraction integral, Equation 4.4 is now evaluated for a rectangular aperture 

with sides at x = +a, y = +b, on the plane z = 0. The incident radiation is 

plane wavefronts whose normals have direction cosines 1, m, n, to the x, y, z axes. 

E(x, y) = E0eikr E0e-ik(xt+ym) 

and Equation 4.4 becomes, 

eikrlo a 6 

E J_aJ_b0e11 (4.6) iArlo 

E eikr,° 
E = ar 4ab sinc [ka(l + l1)] sinc [kb(m + ml)] (4.7) 

to 
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Irradiance I is found from, 

I = EE* 

2 

I = Eo2 _. 16a2b2 sinc 2[ka(l + l1)] sinc 2[kb(m + ml) (4.9) 
to 

See Appendix A.2. 

4.4 Diffraction at 2 Rectangular Apertures: 
Plane Waves at Normal Incidence 

The superimposition of diffraction fields from two rectangular apertures E1 and 

E2 gives rise to a higher frequency interference term in the irradiance func- 

tion. Initially with normally incident plane waves and apertures with edges at 

(A ± a) and (-A ± a) in x and ±b in y, then proceeding from the Fraunhofer 

approximation as expressed in Equation 4.4, 

E = El + E2 (4.10) 

and with Elo(x, y) and E20(x, y) the fields at the two apertures, 

eikrlo 
e-ik(x1l+ym1) dx dy (4.11) Elo(x y) El = 

11E, i,Xrio 

Here E10 = E20 = Eoe-ivt and with a-iwt understood, 

ikrlo _A+a 6 

El - e Eoe-ik(xll+ym1) dx dy (4.12) 
Zr10 -A-a f 6 

giving the field at P due to E1, 

Epeikrl0 eikt1 A 

El i.r 4absinc [klla] sinc [kmlb] 
to 

(4.13) 
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Similarly for the second aperture E2, 

Eoeikrlp a-ikt1 A 

E2 = 4absinc [klla] sinc [kmlb] (4.14) 
iAr1o 

See Appendix A.3 for details. 

In this case, the electric fields El and E2 add to give, 

E eikrlp 
E _ r 8absinc [klla] sinc [kmlb] cos[kliA] (4.15) 

to 

This does not happen quite so neatly with non-planar incident radiation and so 

for later comparison the irradiance is found from, 

I = EE* = E1El + E2E2 + E2El + ElE2 (4.16) 

Taking each of the four terms in turn, 

EIEi E216a2b2 sinc 2[klla] sinc 2[kmlb] 
2 2 

A r1o 

E0216a2b2 sinc 2[klla] sinc 2[kmlb] E E 2 2=- 
A 2r1o 

E2E* 
Eo16a2b2 sinc 2[klia] sinc 2[kmlb]e-2,kt1A 

1 = 22 Arto 

E216a2b2 sinc 2[klla] sinc 2[kmlb]e2ikt1A 
E1E2 = 

A2rlo 

Adding Equations 4.17 to 4.20 gives, 

E216a2b2 sinc 2[klla] sinc 2[kmlb] [2 
+ 

e_2ikt1A + e2ikl1A] 
A2r10 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 
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E'32a2b2 sinc 2[klla] sinc 2[kmlb] e2ikl,A + e-2ikl1A 

A2r10 1.1 2 
(4.22) 

E26a2b2 644a 
sinc 2[klla] sinc 2[kmlb] cos 2[k11A] (4.23) 

A2r1O 

In Equation 4.22 the high frequency cosine modulation is added to the left 

hand term i.e. irradiance is always positive. Equation 4.23 gives this in the 

familiar form of cos 2 of half the argument. This represents the interference 

fringes within a sinc 2 envelope. The arguments of both cosine and sinc functions 

depend on the direction cosines of the image point, 11 and ml. 

4.5 Diffraction at 2 Rectangular Apertures: 
Incident Plane Waves 

In this case, incident plane waves have normals with direction cosines 1, m, n. 

From Equation 4.4 again, and with, 

E = El + E2 (4.24) 

eikr 
El = 10 ff E lo(x, y)e-(xl+yml) dx dy (4.25) 

Ar1o , 

remembering that r10 is a function of angle to the optical centre line and the 

position of points on the observation surface. 

With non-axial plane waves, the field at the screen is Eoe-ik(xl+ym), neglecting 

time dependency. 

eikrlo -A+a 

Lb 
b E = / Eoe-ikl+ym)e-ikll+ymi) dx dy (4.26) 

iAr10 f A-a 
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giving the field at P due to E1, 

Eoetkr,°etkA(t+h) 
El = 4absinc [ka(1 + 11)] sinc [k6(m + ml)] (4.27) i) rio 

Similarly, for the second aperture E2, 

Ez = 
Eoeikr,° e-ikA(1+1, ) 

4ab sinc [ka(l + l1)] sinc [kb(m + ml)] (4.28) i) rlo 

See Appendix A.4 for details. The El and E2 contributions add to give, 

E etkr,° 
E = ° 

i 
8ab sinc [ka(1 + 11)] sinc [kb(m + ml)] cos [kA(1 + ll)] (4.29) .rlo 

The irradiance is now found, 

I = EIEi + E2E2 + E2Ei + E1E (4.30) 

Taking each of the four terms in turn, 

* E216a2b2 sinc z[ka(l + ll)] sinc z[kb(m + ml)] 
E1El = 

Azrio 

* 
E216a2b2 sinc z[ka(l + ll)] sinc z[kb(m+ ml)] 

EzEz = 
Azrio 

E216a2b2 sinc z[ka(l + l1)] sinc 2[kb(m +M1 A e-2ikA(1+11) 
E2EI 

Azrio 

* E216a2b2 sinc z[ka(l + ll)] sinc z[kb(m + ml)]ezskA(t+b) 
EIE2 = 22 A rto 

(4.31) 

(4.32) 

(4.33) 

(4.34) 
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Adding Equations 4.31 to 4.34 gives, 

E016a2b2 sinc 2[ka(l + l1)] sinc 2[kb(m + m1)] [2 + e2{kA(1+li) + e-2{kA(1+11)1 

,\2rio 1 

(4.35) 

E032a2b2 sinc 2[ka(l+ l2)] sinc 2[kb(m + mi)] [1 + cos 2kA(l + ll)] (4.36) 
to 

or 

E064a2b2 2( 
( )1 

2f 
( )1 

2( 
( 1)] (4.37) 

2r2 sinc ka l + 11)] sin [kb m + ml cos [kA l + l 
to 

In Equation 4.37 the envelope of amplitude I is the product of sinc 2 functions 

of 11 and ml for diffraction patterns due to the long and short sides of the 

slits respectively. Within this envelope, interference fringes are described by the 

cost kA(1+11) term, shifted in the same way as the envelope. Thus for a given set 

of incidence direction cosines, 1, m, the phase of the cost term on the observation 

surface is determined by a constant kAl plus kAll, 11 being a particular direction 

cosine in the image field. 

4.6 Diffraction at 2 Rectangular Apertures: 
Incident Spherical Waves 

A point source S at coordinates xo, yo, zo emits spherical wavefronts which are 

incident on the aperture screen. The electric field at the plane of the screen due 

to this source with strength 4 and at radius r from the source is, neglecting 

time, 
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E(x, y) = 
£eikr 

r 
The diffracted field at P(xl, yi, zi) beyond the aperture is, 

(4.38) 

eikr'o 
E JJE(x,y)e_(xh1+m1)dxdy (4.39) i\rio 

employing paraxial, Fresnel and Fraunhofer approximations as per Equation 4.4. 

eikr,o £eikr 
E = e-ik(xl,+Ym') dx dy (4.40) i\rlo J E r 

Assuming that the distance r from S to the points of the aperture does not vary 

much and is ti ro, the distance from S to the origin, 

£eskr'o E cikre-ik(xl,+Ym') dx dy (4.41) 
i\rorlo JE 

A better approximation for r in the the exponent is, 

(x2 + y2) (xxo + yyo) (4 42) ro + - - r 
2ro ro 

. 

At this point, to make the approximation that the second term on the right 

is negligible is to restrict the source position to be a very long distance from the 

aperture. This would be in addition to the assumptions already made in which 

the observation point is far distant from the aperture. If this is done then the 

spherical waves approximate to plane waves from the lo, mo, no direction and, 

Eeik(ro+r'o) ik(xlo+Ymo) ik(x1,+Ym') y (4.43) E 
iArorio Jf C- e- dx d 

The diffracted E-field is thus similar to that due to off axis plane waves and two 

rectangular slit apertures as in Equation 4.29. The irradiance pattern will also 

be similar, i.e. two sine 2 functions and a cost function as per Equation 4.37. 
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It may not be desirable to make such approximations however. In Chapter 5 

some of the approximations behind the aperture are seen to be unnecessary 

when a lens is used. The source position is then allowed to be quite close to the 

aperture and the diffraction and interference patterns are investigated. 

4.7 Optical Path Length of Diffracted Rays 

The previous two sections have shown that, in the Fraunhofer approximation, 

the irradiance pattern due to interference includes a cos' term within the sine 2 

envelope. When plane wave illumination is used, the approximation requires 

that the observation point be distant from the aperture. With illumination by 

spherical wavefronts, both the source and the observation points are required to 

be distant from the aperture. 

The observation distance can be reduced by placing a convex lens behind the 

aperture. This forms the basis of an instrument in which sensed movement of 

the cos' fringes provides information about changes in the incident field. 

Returning to the Rayleigh-Sommerfeld diffraction formula of Equation 4.1 

but with the time dependency ignored, 

ikrl 

E= 1 f f E(x, y) a cos 0 dx dy (4.44) 
iA rl 

in free space (or air) the contribution to the field at a point downstream of the 

aperture from a point (x, y) in the aperture is simply the field at the point (x, y) 

attenuated as ri 1 cos 0 and with phase determined by eikr, 

The optical path length [OPL] from an aperture point to the point P is rl. 
Optical path lengths are indicated by square brackets. In free space [rl] = rl and 

can be expressed simply in terms of the (x, y) coordinates (x1, yi) of P. With 

119 



a multiple element lens in place, however, the [OPL] from (x, y) to P(xl, yi) is 

composed of several, perhaps many straight line segments, some in air, some in 

glass. To find an expression for [ri] in terms of x, y, xi, yi would be a complicated 

task and a solution would be specific to the particular lens geometry used. 

The lens can, however, be considered as a system from which each optical 

path [ri] can be determined without reference to the geometry of individual 

lens elements. 

4.8 Lens Model 

The two subsections below describe the idealised model of a lens which is used, 

in geometrical and wave terms respectively. 

4.8.1 Geometrical Model 

An ideal lens operates on an incident collimated beam of light to focus all rays 

of that beam to a single point in its image space. As the angles of incidence 

are varied, the focused point sweeps out a surface in image space, the.focal 

surface. This works from left to right or from right to left, but the surfaces are 

not assumed to be the same. The left and right focal surfaces are identified as 

gi and g2 respectively. See Figure 4.2. 

Two nodal points Ni and N2 lie on the Optical Centre Line (OCL) such 

that with an incident ray on a line passing through Ni at 0 to the OCL, there 

exists a corresponding line through N2 at 0 to the OCL, which picks out the 

ultimate destination of the incident ray (and thus of all incident rays parallel to 

that ray) on the focal surface. The surfaces gi and g2 cut the OCL at Fi and 

F2 respectively. 
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Figure 4.2: Lens and Focal Surfaces. 

4.8.2 Phase Model 

Phase is taken into account. Incident parallel rays with plane wavefronts are 

refracted through the lens to produce spherical wavefronts converging to the 

image point. The OPLs of all rays from one wavefront to a second wavefront are 

equal. Thus the OPL from any point on a plane, along a ray initially normal to 

that plane, to their common image point is constant. Even without this order 

imposed on the incident rays, it is a matter of geometry that the OPL from a 

plane in object space to its corresponding image point is constant for all points 

on that plane, whether it is a physical wavefront or not. 

4.9 Non-paraxial Diffracted Rays with a Lens 

In the paraxial approximations in Section 4.2, the obliquity factor cos V was 

taken as 1, making the integrand of Equation 4.1 more manageable. Without 

a lens, Figure 4.1, each diffracted ray contributing to the field at P (on some 
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Figure 4.3: Parallel Diffracted Rays through a Lens to Image Point. 

meridional plane) has a different value of 0. With a lens behind the aperture 

as in Figure 4.3, only incident parallel rays are focused at P and so for some 

P(xl, yl), cos 0 on the object side of the lens is constant and can be taken 

out of the integral. Thus the obliquity factor is retained and with a lens the 

Rayleigh-Sommerfeld formula becomes, 

cos I 
esk[rl] 

E iA EE(x,y) dxdy 
1 

(4.45) 

This can be represented in terms of the free space OPL r1 as in Figure 4.4. 

The distance rl from any point (x, y) in the aperture to P is a function of the 

direction of the rays and the focal surface function for the lens. The focal surface 

need not be a plane. 

Each contribution to the summation at the plane E1 representing P is not 

a segment of the same plane wave but a component of one of many spherical 
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Figure 4.4: Free Space OPL of Parallel Diffracted Rays through a Lens to Image 
Point P. 

waves, and so is attenuated with ri'. Also, in general, phase is not constant 

across any plane normal to the wave direction and the double integral of the 

electric field contributions over the aperture projection onto that plane will vary 

as the plane is moved in the "ray" direction. Figure 4.5 shows a low frequency 

of E across E1, in two dimensions for illustration. As the section x' is moved, 

the integral of E with respect to x' from xi to x2 varies. 

In three dimensions, referring to Figure 4.6, the distance rl from each aper- 

ture point to the summation plane for a particular direction is obtained as 

follows. Withrl a unit vector in the rl direction, i, j, k, unit vectors in the 

coordinate axis directions and 11, ml, nl the direction cosines of rl, 

rl=lii+mij+nik 

and with q the position vector of points in the aperture, 

(4.46) 
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Figure 4.5: Summation of E-field Contributions at a Cross-section x' Normal to 
Direction -0. 

ri = rio - qri 

q=xi+yj 

q.rl = xl + ymi 

ri = rio - (xli + ymi) 

The summation at P is, 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

= cos 

1 
e'k''1 

dy (4.51) E 
iA Jf E(x, y) r I i 

124 



Figure 4.6: Optical Path from Aperture to Image Point. 
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and since r1 = r1o - (xli + ymi), where r10 is the distance from the aperture 

origin to the image point, 

cos Oeikr10 

E JJ iAr E(x, 
y)e-=k(xt,+,m') dx dy (4.52) 

to 

taking the r1 r10 attenuation in the denominator outside the integral and bear- 

ing in mind that r10 is a function of angles to the image point. This expression 

for E, obtained with the lens model, is similar to the Fraunhofer approximation 

for diffraction observed at a great distance, the difference being that it now in- 

cludes the obliquity factor, cos b, which would have been put equal to unity in 

a paraxial approximation. 

In the calculation of electric field, the determination of r10 as a function of 

the lens characteristics will allow the value of E to be found for all image points 

(see next section). 

4.10 Lens Model, Optical Path Length and 
Focal Surface Function 

The purpose of this section is to show that [rlo], the OPL from the aperture 

origin to a lens image point, can be found from a few simple characteristics of 

the lens. 

With the assumptions of Section 4.8, some properties of a lens can be seen 

by consideration of optical path lengths alone. Referring to Figure 4.7, a lens 

has focal points F1, F2 and nodal points N1, N2 on the OCL. g1 and 92 are the 

focal surfaces. Eo is a plane normal to the OCL and passing through F1. The 

Optical Path Length of all rays in a collimated beam parallel to the OCL from 

the plane Eo to their focal point at F2 is the same and is equal to [F1N1N2F2] 
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Figure 4.7: Optical Path Lengths between Focal Surfaces. 

which in principle is easy to measure. 

Rays in a collimated beam at 0 to the OCL from a plane E1 through Fi 

all have the same OPL to their image point at L, and this equals [F1L]. A 

collimated beam from right to left, parallel to the OCL and starting from E2 

through L and F2 is focused at F1 and [LF1] _ [F2F1] or [F1L] = [F1F2]. 

So in tilting the plane through F1 from E0 to E1 the OPL from that plane 

to the image point increases from [F1F2] to [F1F2 + F2F2], i.e. it increases 

simply by the z-coordinate of L with respect to F2. 

When the point L on g2 is at F2, the distance along a ray through F1 to F2 

is [F1F2], see Figure 4.8. As L moves away from F2 the distance from Fl to L is 

changed by an amount F2F2, the z coordinate of L. If F2F2' at L decreases the 

length [F1 L] then to maintain constant distance from L, F2F2' must be added 
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Lens 

Eo 2 

F1 

F2F2 N1 N2 F2 F2 

F2F2 

Figure 4.8: Planes of Constant Distance from Focal Surface Points. 

F 

to the ray, i.e. the wavefront from which there is constant distance to L on 92 

is perpendicular to a ray at 0 to the OCL through F1 and F2F2 away from it. 

Thus the positions of plane wavefronts of some constant distance to points P 

on the focal surface g2 can be found for any function 92, and so for any positive 

lens. 

With the optical path length [F1F2] along the optical centre line of a lens 

known, the distances travelled by diffracted ray beams are now also known and 

the introduction of a lens into the diffraction calculations makes these no more 

difficult (nor any easier) than in the earlier cases. 

To obtain [rio] through a lens from the aperture origin to the image point 

is a matter of geometry as illustrated in Figure 4.9 in two dimensions. For an 

axial incident beam, and with [F1F2] = 
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Figure 4.9: Distance from Aperture Origin to Image Point. 

[rio] = [re] - d 

where [re] = [F1F2]. 

For a non-axial beam, 

(4.53) 

[rlo] = [re] - (d cos 0 + F2F2) (4.54) 

Thus in principle, for any focal surface 92 and incidence angles known, the 

value of [rlo] can be found and used in the diffraction integral equation. The 

size of [r10] affects both the amplitude and phase of the electric field but only 

the amplitude of the irradiance pattern. 

With small apertures, [rlo] can vary with 0 more than [rl] varies with (x,y) 

in the aperture for a particular 0. So it is not unreasonable to use the calculated 

[rlo] in establishing the strength of I at some point on the focal surface. This 
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is irrespective of the previous approximation that [rl] does not vary much from 

[rlo] for some incident angle, and its consequent extraction from the integral 

denominator. 

4.11 Conclusions 

Without a lens, the irradiance pattern due to diffraction of plane waves by two 

slits contains a cost term, at least in the Fraunhofer approximation in which 

the observation screen is far from the aperture. This cosinusoidal pattern is 

positioned on the observation surface as a function of 1, the direction cosine of 

incident rays with respect to the x axis, perpendicular to the long slit direction. 

Thus, in this approximation, information about the irradiance pattern position 

would yield the value of l for the incident plane radiation. Neglecting quadratic 

terms, incident spherical wavefronts can be treated as in the planar case and 

once again the direction cosine l is obtained. This latter would require a long 

distance to the point source as well as to the observation screen. 

Introducing a lens behind the diffracting aperture allows the observation 

surface to be close to the lens, in fact the focal surface of the lens. The Fraunhofer 

approximation is no longer required behind the aperture. The introduction of 

this series of refracting elements is not an impediment to the evaluation of the 

diffraction integrals, even for a lens with a specified, non-planar focal surface. 

Plane waves and spherical waves approximated by plane waves have been 

considered in this chapter. With a moving point source, relatively close to the 

aperture, supplying the incident monochromatic spherical wavefronts and free to 

move in three dimensions, once again a fringed irradiance pattern is produced. 

The measured movement of the fringe pattern gives one "coordinate" of the 

source position but this coordinate is not the x direction cosine as might have 
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been suggested by the approximate solution. For a point source at close range 

the wavefronts cannot be approximated by plane waves. This is dealt with (for 

a system with a lens) in the next chapter. 
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Chapter 5 

Interferometer 

5.1 Introduction 

In this chapter some of the results of Chapter 4 are used to obtain expressions 

for electric field and irradiance at the focal surface of an interferometer. This 

instrument, which has been built (see Chapter 6), works by division of wave- 

front and uses a lens to superimpose two diffraction patterns. The relationship 

between irradiance pattern position and a point source position is determined. 

A means of detecting fringe pattern movement is presented. 

5.2 Diffraction with 2 Slits and a Lens: 
Incident Plane Waves 

When a lens is used the Rayleigh-Sommerfeld formula (Equation 4.44), 

ikrl 
E= 1 f f E(x, y) e cos 0 dx dy 

iA rl (5.1) 
E 

becomes (Equation 4.52), 

cos Oeikrlp 
ik(xll+yml) 

E = iario A E(x, y)e- dx dy (5.2) 
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For incident plane waves with rays with direction cosines 1, m, n, the electric 

field at the aperture is, 

E(x, y) = Eoe-ik(xt+ym) 

and so, 

Eo cos t/,e`k'''o If E irio 
e-:k(xt+ym)e-ik(xtj+ymj) dx dy (5.4) 

which evaluates in a similar way to the Fraunhofer approximation of Section 4.5 

to give, 

E0 c etkrio 
E = 

os t 
8ab sinc [ka(l + li)] sinc [kb(m + ml)] cos [kA(l + li)] (5.5) 

iArlo 

and, 

Eo cos2 t/64a2b2 I= 2(ka(l i)] sincl2(kb(m 1)] cos 2[kA(l )] (5.6) 
A2r2 

sincl + l + m + 11 .6 
io 

which differs from Equation 4.37 only by the cos2 b term. 

5.3 Diffraction with 2 Slits and a Lens: 
Incident Spherical Waves 

Starting from the Rayleigh-Sommerfeld formula, modified for a lens (Equa- 

tion 4.52), 

E cos Oetkrlo 

Jf 
(x, y)e-it,+yml ) dx dy 

iArio 

with a point source of strength E at (x0, Yo, zo) and r the distance from the 

source to points in the aperture, 
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£eikr 

giving, 

r 
E(x, y) = 

cos eikrlo £eikr E_ O e-ik(xrl+yml) dx dy (5.9) 
iArlo Jf r 

With the assumption that r does not vary significantly from ro over the aperture, 

the r in the denominator can be taken out of the integral, and, 

cos,etkr 

E 
to r r 

e 
ikr e-ik(xll+yml ) dx dy (5.10) 

iArorlo J E 

Now using the first two terms of the binomial expansion to give an approxi- 

mation to r, 

r--r0+ (x2 + y2) (xxo + yyo) 
2ro ro 

(5.11) 

Substituting for r in the integrand of Equation 5.7, 

E E cos ,keik(ro+r10) 

J J 

eik I x 2ro 2 _ ss oyy e_ik(xll+yml) 
dx dy (5.12 L ) iArorlo E 

E 
cos e=k(ro+rlo) 

J J 

eik [2 o _(t+tl)x] eik [2 _(m+ml)vJ 
dx dy (5.13) 

iArorlo 

The quadratic terms in x and y can cause problems for integration. With 

x or y =5mm and ro =1m, say, the contribution to phase from the quadratic 

term (with a wavelength of 632.8nm) is approximately 124 radians and there is 

no justification here for ignoring this term (if the slits are as long as 10mm). 

The value of x varies little over each slit by itself, however, in which case that 
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Figure 5.1: Summation of E-field Contributions from Two Slits. 

quadratic term can be dropped. The value of E at P is now taken as the sum of 

El due to one slit and E2 due to the other, each slit having its own coordinate 

system (61, 771, (1) and (62, 772, (2) respectively. See Figure 5.1. 

For the first slit the transformation to x, y, z coordinates is, 

x = 61-+- A 

y 771 

z = (1 (5.14) 

E cos 
E 

e+kpl eikrl r r d d 5 15 = 1 

iA 
771 1 J JEl P1 r1 

( . ) 

where pl is the distance from the point source to points in the aperture E1. 
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With plo the distance from the point source to the origin of the coordinate 

system in that aperture, 

1 t t 
Pi = [(S1 - Slo)2 + 

(77, 
-X10)2 + 10] 1 

(5.16) 

With only the first two terms of the binomial expansion being used (which can 

be justified for small e and 77 i.e. relatively narrow, short slits), 

Pi -- Din + (i + 772) (e1e10 + 77,7710) (5.17) 
2Pio Pio 

Substituting this in the expression for El, 

ikIPio+({i+711 (EiE1o++117110)1 

r r e I zplo Pio J eikrl E cos 
E1 

J JEi rl dei d771 (5.18) 
iA P1 

In x, y, z coordinates, r1 = r10 - (xI, + yml). So in S11 771, (1 coordinates, 

rl = r10 - [(S1 + A)11 + 17lml] (5.19) 

where ll, ml are unchanged by a system translation and r10 is a constant in 

both coordinate systems. Assuming p1r1 does not change much from p10r10, the 

denominator can come outside giving, 

C. cos q/ etk(P10''T10) ikP1+ i)_(ilo+ginio)I 
El = e 2Pio Pio J e-ik(ti(l + All 

+171 ml) Clt Cl S1 1 
Z)P1or1o Ei 

The direction cosines of the source point in S1, 771, (1 coordinates are, 

l10 = e10 

Plo 

7710 

M10 = - 
P1o 

GO 
No = - 

P1o 

(5.20) 

(5.21) 
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b cos Z/Ie'k(Pio++1o)e-ikA11 

a 
ik[ 

TPli -0 
'7 _("1110+"111)] 

dSl J e ik I, -('rimlo+mm1), 
Clr1l E1 = L ` 

iAPlorio 
(5.22) 

Considering the contribution of the quadratic terms, with a slit 100µm wide 

and 10mm long and with a 632.8nm source at 1m range, 

z 

k1 = 1.24 x 10_2 radians 
2P1o 

which can be ignored, but, 

2P1o 
= 124 radians 

which cannot. 

The evaluation of the integral in 77, with a term in e1''1 requires graphical or 

numerical techniques. For present purposes, its solution is not of great interest 

and can be accepted as being a modification of the diffraction envelope which 

would be obtained with linear powers of e in the integrand. Of more interest is 

the summation of terms from the two slit diffraction integrals which are functions 

of 6, e2. 

With the 1 quadratic term, 

E1 

2Pio 
(5.23) 

ik(P1o+r1o) -ikA11 ja b li J 
E cos ZIe e e-ik(11o+11)"1 

dS1 I eik 2p1o-(I1+r+10+Ilml) d771 

iAplorlo a b 

(5.24) 

El E cos Oeik(P1o+r1o)e-ikA11 e-ik(110+11)"1 
a 

1 5.25 
r 

iAPiorlo [-ik(11o + 11) 
n1 ( ) 

a 

137 



The transformation to the ( 2, 772,(2) coordinate system in the second slit is, 

X _ 6- A 

y 

z = 

772 

(2 

E cos eikP2 eikrl 
E2 

iA liE2 P2 rl d2 di72 

(f2+n2) 

where P2 is the distance from the point source to points in the aperture E2. 

With P20 the distance from the point source to the origin of the coordinate 

system in the aperture, 

P2 ti P20 + ( 2 + i2) - (220 + 7727720) (5.28) 
2P2o P20 

Substituting this in the expression for E2, 

c ik II[P20+ (42420+v2n2o) 

G 120 P20 eikrl 
E2 

cos e ` 
= 

b f f d2 d772 (5.29) 
iA E2 P2 rl 

In x, y, z coordinates, rl = r10 - (xll + yml ). So in 2, 772, (2 coordinates, 

rl = r1o - [(6- A)11 + 772m1} (5.30) 

Assuming p2r1 does not change much from p2orlo, the denominator can come 

outside giving, 

E cos ikeik(P2o+rlo) ik [ 2+' 2)- (42420+1221220)I 
E2 _ i e l 2P20 P20 J e-ik(K211-Ali+772m1) d2 dn '/2 

p20r10 E 2 

(5.26) 

(5.27) 

(5.31) 
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The direction cosines of the source point in 6072,(2 coordinates are, 

120 

m20 

n20 

giving, 

60 
P20 
7720 

P20 

(20 

P20 
(5.32) 

fr cos .etk(P20+r10) eikAll 2 2 
/ a ik f 2p20 -(t2120+t211)] J 

b ik [ 2'-(??2m2o+?i2m1)] 
E2= e d2 672 

iAp2orio a 

( 5.33) 

As with the first aperture, the quadratic term in the first integral is taken as, 

k2 
2 

2P2o 
'zz 0 (5.34) 

cos 4Ie`k(P20+r1o)eikAll fa 

f-b 
b i k f -(,12m2o++l2m1)] E2 = ek2012 e L P2o d 2 

iAp2orio a 

(5.35) 

E cos e`k(P2o+r1o)e-ikAl1 e-ik(120+11)r2 a 

E2 
iAp2orlo [_ik(120+ 11) 

12 (5.36) 
-a 

Adding Equations 5.25 and 5.36 gives the sum of the contributions to the 

electric field at P(xi, y1, z1), E = E1 + E2, 

Cos 'Ie`k(P10+rlo)e-ikAl1 ik(11o+11)a - e-ik(lbo+11)a 

. 2a 
a i E 

p1or1o 2ik(l10 + 11) 

£ COs 'he ik(P2o+rlo)eikAll ik(12o+11)a -ik(12o+11)a 

In1 

+ iAp2orlo 2a 2ik(120 + 11)a j 
I112 (5.37) 

The irradiance I at P(x1, y1, z1) is, 

I = E1Ei + E2E2 + E2Ei + E1E2 (5.38) 
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The first two terms on the right hand side of Equation 5.38 are, 

EIEI = 
£2 cos 2.04a2I2 

sinc 2[ka(110 + ll)] A2Piori0 m 

and, 

(5.39) 

E2E2 = £2 cos 2VJ4a2I2 
sinc 2[ka(120 + 11)] (5.40) 

A2P2OrIO M 

So, 

EIE1" -}- E2E2* 
-£2 cos 24&4a2 1,27, sinc 2[ka(110 + ll)] 

+ 
I,2n sinc 2[ka(120 + 11)] 

A2r10 Pio P2o 

The second two terms on the right of Equation 5.38 are, 

(5.41) 

E2E1 - £2cos 2 i4a2 ik(P20-P1o)e2ikA,11 
1 sinc [ka(lio + 11)] sinc [ka(120 + 11)] 

A2 2 
PIOP2orlo 

and, 

(5.42) 

EIE2 
£2cos 2 &4a2 eik(P1o-P2o)e-2ikA11Im 

1,72 sinc [ka(lio + 11)] sinc [ka(120 + 11)] 
PIOP2orlo 

giving, 

£2 cos 24&8a2 
EIE* + E2E1 = 

2 2 
In1In2 sinc [ka(lio + l1)] sinc [ka(120 + 11)] 

PIOP2orlo 

x 
eik(P2o-P1o+2A11) + -ik(P20-Pio+2Ah) 

2 

(5.43) 

(5.44) 
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E1E2 + E2Ei = 
.62 cos 208a2',,,',,2 

sinc [ka(lio + ll)] sine [ka(120 + ll)] 
2P1oP2orio 

x cos [k(P20 - plo) + 2kAl1] 

Adding Equations 5.41 and 5.45 the irradiance I at P is, 

I E2 cos 2i54a2 I,,, sine [ka(llo + l1)] 1.2 sine [ka(l20 + l1)]2 
A2ri L Plo P20 J 

+ 

+ 

A 2r10 P1oP2o 

t;2 cos 24/J4a2 2I,,, I,12 sinc [ka(lio + l1)] sinc [ka(12o + l1)] 

A 2rio P1oP2o 

E2 cos 2i4a2 2I,7, I,12 sinc [ka(lio + l1)] sinc [ka(l20 + l1)] 

x cos [k(P2o - plo) + 2kAl1] 

I= 
E2 cos 2i/'4a2 I,,, sinc [ka(lio + l1)] 1,,2 sinc [ka(12o + ll)]. 2 

A2rio Plo P20 

+ 

I= 

A 2rio P1oP2o 

E2 cos 24/J4a2 2I,,, I,12 sinc [ka(l1o + l1)] sinc [ka(l20 + l1)] 

(5.45) 

(5.46) 

x [1 + cos [k(P20 - Plo) + 2kAl1]] (5.47) 

E2 cos 2i4a2 
1171 

sinc [ka(lio + ll)] I,n sinc [ka(l20 + l1)] 

A2r1o Plo P20 

+E2 cos 2i54a2 4I,,, 1.2 sinc [ka(lio + l1)] sinc [ka(l20 + l1)] 

A2rio P1oP2o 

x cos 2 
k 

2 
(P20 - plo) + kAll (5.48) 
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5.4 Irradiance Function on a Focal Surface 

In Sections 5.2 and 5.3 the irradiance functions due to diffraction of incident 

plane and spherical waves by two slits contained a cosine (or cosine2) interference 

term. 

In the case of plane waves, the phase of the cosine2 term depends on both 

the incident direction cosine, 1, and the diffracted ray direction cosine, 11. The 

amplitude is determined by the more slowly varying sinc 2 functions. Equation 

5.6 can be written, 

I = I' cos 2 [kA(1 + 11)] 

or, 

I = 
2 

+ 
2 

cos [2kA(1 + 11)] 

(5.49) 

(5.50) 

which has a maximum = I' when cos [2kA(l + 11)] = 1. The value of l determines 

the position of the fringe pattern, and 11 selects a particular part of that pattern. 

When l is constant, as 11 is varied the irradiance is modulated cosinusoidally 

with 11. Conversely if only one, fixed 11 is being observed, then as l is varied, 

the irradiance in that one, 11 direction is modulated cosinusoidally as the whole 

pattern moves. 

In the case of incident spherical wavefronts from a point source at distances 

Plo, P20 from the two slit origins, the irradiance function (Equation 5.48) has the 

form, 

I = I" + I' cos 2 
k2 

[(P2o - Plo) + kAll 

or as in Equation 5.47, 

(5.51) 
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it it I = I" + 
2 

+ 
2 

cos [k(p2o - plo) + 2kA11] (5.52) 

Here, (P20 - Plo) may be seen as determining the position of the fringe pattern. 

When 11 is fixed, the irradiance at that constant value of direction cosine is 

modulated cosinusoidally with (p20 - P1o) as the whole pattern moves. If the 

point source remains on the same hyperboloid with foci at the centres of the two 

apertures, then (p20 - P1o) remains constant. 

In both cases above, the interference fringes are given as functions of the x 

direction cosine, 11, of the diffracted rays in lens object space. With specified 

lens characteristics the pattern on the lens focal surface may be obtained. 

With a planar focal surface normal to the OCL, curves of constant I on the 

focal surface are hyperbolae, i.e. planar conic sections of the conical surfaces 

swept out by constant values of 11. Moving in an increasing x direction from 

the OCL on the y = 0 plane, the irradiance varies periodically and with slowly 

increasing period. 

5.5 Detection of Interference 
Pattern Movement 

5.5.1 Sensing Techniques 

Observation of the interference pattern movement on the focal surface can give 

information on a change in ll and for incident plane radiation the new value of 

l can be found. Similarly for a point source, the new value of (p20 - P1o) can be 

found. 

The most appropriate means of monitoring interference pattern position in 

an instrument must depend on the size of object field and the resolution required. 
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For small object field angles the lens focal length can be long, the slit separation 

small and the scale of the fringes correspondingly large. In these circumstances 

the fringes may be detected using the image plane of a video camera, with 

subsequent analysis of the digitised image. 

For larger object field angles and/or higher resolution, a shorter focal length 

and more widely spaced slits are necessary. In this case the period of the interfer- 

ence fringes can be beyond the resolution of current video sensors. Interference 

patterns with hundreds of cycles per millimeter can easily be produced. Since 

only changes of fringe position on the focal surface in the direction of maximum 

gradient of 11 are of interest, the movement of high spatial frequency patterns 

can be detected using a diffraction grating. The grating has the same or almost 

the same line spacing as the interference pattern produced by the slits and is ori- 

ented with its lines essentially parallel to the interference pattern lines. Using an 

amplitude transmission grating, for instance, the light transmitted through the 

grating is modulated as a function of the position of the fringes on the grating. 

This approach has some similarity to the generation of moire fringes by the 

relative motion of two diffraction gratings in close proximity, in which one grating 

produces a large number of closely spaced diffraction patterns and the second 

grating modulates this output. The differences here are that an interference 

fringe pattern is generated "at a distance" by the slit screen and lens combination 

and that pattern movement is caused not by physical movement of a grating but 

by change in the relative phases at the slits. The similarity is that the grating 

in the interferometer, like the second grating of a moire pair, has the function 

of modulating a moving pattern. 
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5.5.2 Amplitude Diffraction Grating 

The principle on which this sensor is based is that a periodic irradiance pattern 

incident on an amplitude diffraction grating with matching period will transmit 

(or reflect as the case may be) the convolution of the irradiance function with the 

grating transmittance (or reflectance) function. Monitoring the grating output 

power is in effect measuring the convolution variable, in this case the phase shift 

of the irradiance pattern with respect to the grating pattern. 

To illustrate this, examples in which the spatial period of both the irradiance 

pattern and the grating lines are constant and equal are given. One example 

is with a square grating comprising alternating, evenly spaced transparent and 

opaque lines. The other example is with a grating whose transmittance has a 

sinusoidal variation. Because the period of the fringes and the grating is the 

same, only one cycle need be considered to obtain a comparison. The power 

of particular fringes within the sinc 2 envelope is unimportant, only coming 

into consideration if it is desired to integrate across all fringes to calculate the 

transmitted power for some particular position. 

Referring to Figure 5.2, the irradiance function is, 

1(0) = -(cos 0 + 1) (5.53) 

T(B) is the transmittance of the grating, the ratio of transmitted flux to incident 

flux and F(e) is the power transmitted through the grating, e being the position 

of the irradiance pattern on the grating. 

F = I * T (5.54) 
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Square Grating: Irradiance and Transmittance Functions. 
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Figure 5.2: Convolution of Irradiance and Transmittance Functions. 
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F(e) = 
J 

I(e - 9)T(9) d9 (5.55) 

Only the interval -ir to ir need be considered. 

F(e) = f I(e - 9)T(9) d9 

For the square grating, 

(5.56) 

-ir<0<-2,2<0<ir T=0 

-2 <0< 
2 

T=1 (5.57) 

F(e) = f 
7r 

2 
[cos (e - 0) + 1] 1 d9 

z 

(5.58) 

7r 
F(E) = cos e + 2 

For the sinusoidal grating, 

(5.59) 

T= 1[cos0+1] (5.60) 

F(e) = f 2 [cos (e - 0) + 1] 2 [cos 9 + 1] d9 (5.61) 

7r F(E)= 4cose+2 (5.62) 

The output in both cases is a cosine function plus a constant, the double am- 

plitude being greater with the square grating. Gratings of both types were used 

experimentally for interference pattern movement detection. The results are 

reported in the next chapter. 
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Chapter 6 

Experimental Results 

6.1 Summary 

A series of experiments were carried out to verify the theory given in Chapters 4 

and 5 and establish the most important parameters for the design of a developed 

instrument based on these principles. After the necessary calibration of equip- 

ment the stages of the experimental work were as follows. Firstly it was verified 

that good quality interference patterns could be produced with the equipment 

and that these patterns moved in the predicted directions with source move- 

ment. Next, the amount of fringe movement in response to precise adjustments 

of the source position or orientation was measured and compared with the theo- 

retical value. Then some of the limits of operation of the components used were 

explored to determine how the optical design could be improved. The effects of 

air currents and temperature gradients in the optical paths were investigated. A 

method of sensing fringe movements using a diffraction grating was tested and 

the output signal evaluated. Then with the output field split in amplitude, two 

signals were monitored in quadrature. Finally some observations are made on 

optical noise and methods of removing it. 
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Figure 6.1: Transmitter Assembly. 

6.2 Equipment 

6.2.1 Transmitter 

To produce the plane and spherical wavefronts necessary to test the interferom- 

eter a HeNe laser, objective lens, pinhole and (removable) collimating lens were 

assembled on a four degree of freedom mount. This was built as per the design 

in Figure 6.1. The assembly was calibrated by adjustment of the positions of 

the lens and pinhole components of the spatial filter. The correct focus of the 

collimating lens was obtained by adjusting until the minimum number of fringes 

were produced on a screen by an etalon positioned in the output beam. 
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Without the collimating lens in place, spherical wavefronts are produced 

within a cone. With the output lens in place, a 50mm diameter collimated 

beam is produced. This beam produced less than half a fringe line pair over the 

width of the etalon indicating a wavefront flatness of less than 1/4 A. Only the 

central 50mm of the 78mm diameter output lens was used. The optics of this 

arrangement is conventional. 

6.2.2 Receiver 

The basic arrangement described in Chapter 5 was used and incorporated a 

single lens reflex camera lens. The receiver components and their development 

are discussed below. 

6.2.3 Slits 

Two choices are available for the type of slit screen. The first is to use air slits, 

made by photo-etching right through very thin sheet copper. The disadvan- 

tages of air slits are that they are easily damaged and sensitive to temperature 

changes. Contamination of the slits with dust particles would adversely affect 

the interference pattern generated and cleaning is more difficult than with the 

second type. 

The second type consists of a very thin layer of metal (silver or chromium) 

evaporated onto a glass plate. The metal surface is then photo-etched as before. 

With this type, much finer slits can be made if required, and with the plane 

glass surface to the outside, the metal film is protected. 

Especially fine slits were not required for these experiments, and so the more 

readily available air slits were used. See Figure 6.2. The slits produced were 

0.100mm wide with 2.5mm separation between the slits. Examination of the 
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slits with a microscope cathetometer showed the edges to be ragged but the 

average dimensions were close to these nominal values. The slit screen was herd 

in a standard 52mm camera lens filter holder. 

6.2.4 Lens 

The first aspect to consider in the choice of lens is the focal length. The size 

of the interference pattern on the focal plane is a function of focal length and 

this pattern must match the period of a diffraction grating positioned in this 

plane. See Section 6.7. The tolerance on the nominal focal length of high quality 

camera lenses is no better than ±1% however and can be worse. So if the grating 

line spacing is fixed by the nominal lens focal length, a mismatch can occur. 

Since it is quite undesirable to make each grating (in a developed system) 

especially for its lens, then, should the system prove sensitive to focal length, 

the most attractive course is to use a lens with adjustable focal length, a zoom 

lens. Only a small zoom range is required in this application to accommodate 

tolerances in the slit screen and grating dimensions, but camera zoom lenses are 

being produced with ever greater ranges of focal length. The lens used initially 

in these experiments is a Fujica 54 to 270mm, f4.5. 

6.2.5 Cameras 

Although not part of the instrument, both video and 35mm still cameras have 

been used to view the interference patterns. The pattern produced by two slits 

can of course be viewed on a screen some distance away without using a lens. 

With a lens in place, the pattern on a screen in the lens focal plane is so fine 

that resolution cannot be achieved by eye. 

Two ways round this observation problem have been found. To observe any 
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Figure 6.2: Air Slits. 
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movement of fringes and to assess their visibility, in the first instance a video 

camera (with its own lens removed) was used, with its image plane in the focal 

plane of the lens. To obtain permanent records of the patterns a Pentax 35mm 

SLR camera body was fitted to the lens and a number of still photographs taken 

on high resolution film (Kodak Technical Pan). Later a Nikon F2 was used, 

with 55mm Micro-Nikkor and 35-70mm Nikkor zoom lenses. The results are 

described in Section 6.5.3. 

6.2.6 Diffraction Gratings 

In general diffraction gratings may be classified as reflection or transmission 

gratings and within these categories as either phase or amplitude gratings. Am- 

plitude transmission gratings are used in these experiments, since it is required 

to measure changes in the intensity of light modulated as it passes through the 

grating. In principal an analogous arrangement may be conceived with reflecting 

components . 

Traditionally gratings are made by cutting a series of parallel grooves in a 

glass surface with the diamond tipped tool of a ruling engine. Plastic moulded 

copies are then made using this master grating. The manufacture of the master 

with the requisite line spacing is however an expensive process. 

Another method is to photoetch the grating on an evaporated metal film on 

which the photoresist has been exposed by a step and repeat process with a 

single slit. This is a similar process to that described for manufacture of the slit 

screen and it produces a grating whose transmittance varies as a square wave, 

that is, alternate, even, translucent and opaque lines. 

Two cheaper methods are available. Gratings may be produced photograph- 

ically using large scale artwork and a series of reductions to give a grating 
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in photographic negative. This may be on film or glass plate. Again this is 

a square (or rectangular) wave grating. The second method is to make the 

grating holographically by interfering two large diameter collimated beams of 

monochromatic light on a photographic plate. The resulting fringes modulate 

the transmittance sinusoidally. 

Gratings made by the last three techniques were used in the course of the 

experiments, one of these, a "sinusoidal" grating with 150 cycles per mm, having 

been made holographically. 

6.2.7 Radiometers 

The power of light transmitted through the gratings was sensed using first a 

photodiode radiometer and later an S20 type photomultiplier tube and narrow 

band interference filter. 

In the final stages of the experiments a cube beam splitter was used at 

the lens output to duplicate the interference pattern and allow two signals in 

quadrature to be monitored by photomultipliers. 

6.3 Interference Patterns 
6.3.1 To Verify Geometry of Fringes in Far Field 

With the laser and beam expander set up and correctly focused the interference 

pattern due to two air slits was imposed on a screen one meter from the slits. 

See Figure 6.3. Using the image plane of a video camera in place of the screen, 

the interference pattern was displayed on a monitor. See Plate 1. The number 

of fringes in the central band were calculated to be 50. 45 could.be counted on 

the screen. 
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6.3.2 Movement of Fringes with Incident Angle of Plane 
Waves 

Using the collimated beam as before, the angle of incidence to the slit screen was 

varied both in azimuth and elevation. See Figure 6.4. As expected changes in 

azimuth caused fringe movement perpendicular to the vertical fringe lines and 

changes in elevation caused movement parallel to the lines. 

The corresponding situation for cylindrical or spherical waves could not be 

demonstrated in this lensless arrangement as the two central diffraction bands 

might overlap only at a large distance beyond the slits. To make these bands 

overlap closer to the slits a lens must be used. 

6.3.3 Split Wave Interference using a Lens and Incident 
Plane Waves 

The use of a lens in the system was tried first with the collimated, expanded 

beam. The reason for this was simply to separate any effects which may have 

been due to the lens from effects due to spherical wavefronts. 

Equipment was arranged as in Figure 6.5 and Plate 2, using the Fujica 54- 

270mm lens. In the focal plane of this lens was placed the image surface of a 

vidicon television camera tube. The output of the TV camera could be viewed 

on a monitor screen. An impression of the path of rays through the instrument 

is given in Figure 6.6. 

The diffraction patterns are spread out mainly in a plane normal to the (long) 

direction of the slits, horizontally on the focal plane in this case. Vertically the 

lens focuses incoming parallel rays to a point as usual. The result is a broken 

horizontal line in the focal plane. Interference should occur within the dashes of 

light in this line, in effect a row of dots. At the longest focal length of the lens, 
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Figure 6.4: Movement of Interference Pattern with Collimated Beam and 
Changes in (a) Azimuth and (b) Elevation. 
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Figure 6.5: Interference with Collimated Beam and Lens. 
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Figure 6.6: Collimated Beam Diffracted and Focused with Lens. 
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these fringes were just visible on the monitor. See Plate 3. 

6.3.4 Split Wave Interference using a 
Lens and Incident Spherical Waves 

With the collimating lens removed from the laser assembly the arrangement of 

equipment was as shown in Figure 6.7 and Plate 4. The image received by the 

vidicon was the set of parallel fringes shown in Plate 5. The height of these lines 

is due to the fact that the rays entering the slits are already diverging and are 

focused by the lens to vertical lines rather than the points which were obtained 

with parallel rays. See the ray diagram in Figure 6.8. 

The closer the source point is to the slit screen, the greater is the angle of 

divergence (in vertical planes). At long distances the curvature of the spherical 

wavefronts at the slit screen becomes small and the interference pattern shrinks 

in height to approach that caused by plane waves. 

It should also be noted that with the point source close enough to the slit 

screen the diffraction patterns from two slits diverge from each other in a plane 

normal to the slits to the extent that they will not overlap on the lens focal 

plane. This effect is less pronounced with fine slits than with wide slits, the 

diffraction angles being greater with narrow slits. 

6.3.5 Movement of the Interference Pattern with 
Changes in Position of a Point Source 

With the origin of the coordinate system centred at the point source, i.e. the 

pinhole, as shown in Figure 6.7, the complete laser and spatial filter assembly 

was moved by micrometers successively in the degrees of freedom provided by 

the laser mount. 

As anticipated, rotation about the x axis and rotation about the y axis 
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Figure 6.7: Interference with Diverging Beam and Lens. 
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Figure 6.8: Diverging Beam Diffracted and Focussed with Lens. 
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produced no movement of fringes in the receiver, the pattern (Figure 6.8 and 

Plate 5) remaining stationary on the monitor. These motions may be thought 

of as simply rotating the same spherical shells through the receiver slits. No 

change in phase difference between the slits may be expected. 

Also as expected, translation in the z direction caused no fringe movement, 

the distance from each slit to the source remaining equal in this case since the 

z axis is on the plane of symmetry of the slit screen and consequently on the 

central member of the family of hyperbolae with the slits as foci. 

Translation in the x direction however may be expected to cause fringe move- 

ment because it moves the point source across the hyperbolae. See Figure 6.9. 

This in fact was the experimental evidence, translations in x causing the fringe 

lines shown in Plate 5 to move left or right across the monitor screen. See the 

ray diagram in Figure 6.10. 

6.3.6 Comparison of Calculated and Measured Source 
Displacement 

The objective here was to carry out an initial quantitative verification of the 

model of the optics described in Chapter 5 and demonstrated qualitatively 

above. Prior to carrying out the tests the slits were measured on a micro- 

scope cathetometer to give accurate figures for slit separation (2c = 2.5166mm) 

and slit width (w = 0.1000mm). 

6.3.7 Verification of Changes in Azimuth of Plane Waves 

With the collimating lens fitted to the laser, the incident angle of the collimated 

beam to the slit screen was adjusted about a vertical axis to cause a 2ir shift 

in fringe position. See Figure 6.11. With the wavefronts initially parallel to the 
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Figure 6.9: Interference with Diverging Beam and Lens with Point Source Dis- 
placed in X-Direction. 
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Figure 6.10: Diverging Beam from Point Source Displaced in X-Direction, 
Diffracted and Focused with Lens. 
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screen, a change in azimuth a causes fringe movement. 2n7r movement of fringes 

is caused by n. change in optical path length difference d. In this case, with 

n = 1, a = 632.8nm, 

sin a = 
a 

A 
= 2.5145 x 10-4 (6.1) 

a = 51.865arcseconds (6.2) 

Because n is almost linear with a at near normal incidence, the reading of 

azimuth change from the vernier scale of the azimuth rotation stage was made 

over n = 10 fringe cycles and the average taken for n = 1. This gave, 

a ti 54areseconds (6.3) 

i.e. a 4% error on the theoretical value. Although the rotation stage used has 

a sensitivity of 2 arcseconds, its accuracy is only 1 arcminute so some error is 

to be expected here. In addition there is some subjectivity in judging fringe 

movements on the monitor screen. 

6.3.8 Verification of Changes in X-Coordinate of Point 
Source 

With the collimating lens removed, the laser point source was moved in the 

x-direction to produce movement of the fringe pattern. See Figure 6.12. With 

z = 1m, a = 632.8nm and a 27r shift in fringe position from that resulting from 

the positioning of the source on the central hyperbola (as near as could be de- 

termined), the intersection of the new hyperbola with the x axis was calculated. 

For a hyperbola, 
x2 z2 

a2 
+ a2 

c2 
1 
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Figure 6.11: Movement of Interference Pattern with Collimated Beam, Lens and 
Change in Azimuth. 
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Figure 6.12: Movement of Interference Pattern with Diverging Beam, Lens and 
Source Displacement in X-Direction. 
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where 2c is the distance between foci (slit separation in this case) and 2a is the 

difference in distances from a point on the hyperbola to each focus (n\ in-this 

case). See Figure 6.13. With 2c = 2.5166 x 10-3m, and 2a = A = 632.8nm,. 

x = 251.45microns (6.5) 

So, near the centre, this gives approximately 4 fringe cycles per millimeter moved 

by the source in the x direction. This was in fact what was observed on the 

monitor when the laser mount was moved with the x micrometer. 

6.4 Lens Performance 
6.4.1 Focal Length 

In general, the size of the image and the field of view of a lens are related by its 

focal length. Usually the image size is fixed and the focal length is chosen to give 

the object field required. This is illustrated in Figure 6.14. A 35mm film has a 

frame size of 36 by 24mm. The diagonal of this rectangle is 43.27mm, suggesting 

that a 35mm camera lens might be appropriate for producing an image on the 

central region of a 50mm diameter grating. To obtain a fringe frequency of 150 

lines/mm on the focal plane from slits 5mm apart requires a focal length of 

52.68mm. 

6.4.2 Off-Axis Performance 

A bundle of parallel rays filling the input aperture of a lens system may be 

interrupted in part in its passage through the lens by various stops. Rays parallel 

to the optical axis are transmitted only in a central diameter. Rays incident at 

some angle to the axis are, in the main, transmitted only if they pass through 
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Geometry: 
P is any point on the hy- 
perbola, 

A hyperbola is the locus 
of points at which PFl - 
PF2 = constant = 2a. The 
distance between the foci 
is 2c. 

X2 z2 

a2 
+ 

a2 - c2 
1 

Apparatus: 
Fi and F2 represent two 
slits in the z = 0 plane. 
The difference in optical 
path length from P to each 
of these slits is 2a. 

x 4 
F1 

z 

2a 

2c 
i 

x2 z2 

a2 
+ 

a2 - C2 
1 

Figure 6.13: Hyperbola Geometry. 
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the input lens on the side nearest the source. See Figure 6.15. 

This effect occurs to a greater or lesser degree in most camera objectives and 

is a result of various compromises and optimisations in the design of lenses for 

that purpose. The consequence of this is a reduced choice of lenses suitable for 

use as the objective of the interferometer. A lens optimised for a small camera 

causes vignetting of diffracted rays from the slits as shown in Figure 6.16. The 

effect can be seen at the output of the lens by placing a screen nearer to the 

lens than the focal plane i.e. before the diffraction patterns meet. As the source 

is moved further of axis, the diffraction pattern from slit S2 is progressively 

reduced in height as more of its constituent rays are blocked by stops within 

the lens. On the image plane, therefore, the height of the interference fringes 

reduces steadily as the source moves away from the optical axis, reducing in 

turn the amplitude of the signal at the detector. 

This difficulty can be alleviated by using a lens such as the Schneider Kreuz- 

nach 240mm. The lens used was similar in construction to the Schneider "Xenar" 

range for large format cameras, being based on the Cooke triplet design. With 

this lens considerable angles between source, lens and optical axis were achieved. 

What is required, therefore, is a lens with this characteristic of the Schneider 

large format lens but with a focal length of about 50mm to give a fine interference 

pattern and high resolution. To this end, some market surveying, borrowing and 

testing of lenses was undertaken. Obviously it is preferable to use a lens "off the 

shelf" for this purpose if possible. 

6.4.3 Lens Tests 

Some tests were carried out on lenses to investigate their suitability for use in the 

interferometer. The requirements for a useful object field and high resolution 

172 



Axial Parallel Rays 

Lens System 

Off -Axis Parallel Rays 

Focal Plane 

Figure 6.15: Vignetting of Parallel Rays in Lens System. 
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mean that a lens of comparatively short focal length is required. In these cir- 

cumstances the interference pattern of parallel fringes is small, to the naked eye 

not much bigger than a pinhead on the image plane. The question arose there- 

fore, as to whether the fringe patterns remain undistorted at this microscopic 

scale. 

Records of the interference patterns obtained with various lenses were made 

on photographic film in a camera body fitted to the back of the lens under test 

as in Plate 6. High resolution Kodak Technical Pan 35mm film was used. The 

developed negatives were then re-photographed through a microscope, scaling to 

normalise approximately the fringe pattern size on the prints for different tests. 

The lenses and focal lengths used were as follows. Firstly, the Fujica 54 to 

270mm lens was tested at nominal focal lengths of 270mm, 200mm, 150mm, 

100mm, 75mm and 54mm. Another zoom, the Nikkor 35 to 70mm lens was 

tried, exposures being made nominally at 70mm, 65mm, 50mm, 42.5mm and 

35mm focal length. Finally the fixed focus 55mm Micronikkor was tested. 

Some examples of the fringe patterns, much magnified, can be seen in Plates 7 

and 8. The evidence is that, notwithstanding the problem of vignetting, straight, 

parallel interference fringes can be produced even with fairly inexpensive optics. 

6.5 Effects of Air Movement and Temperature 

One potential problem with the use of any interferometer is that the velocity of 

light and therefore the refractive index in a medium varies with the density of the 

medium. This relationship is derived from a consideration of the electric dipole 

moment of the molecules of the medium, which leads to the Lorentz-Lorenz 

formula, 
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3 e-1 3 n`-1 
« 4irNe+2 4irNn2+2 

where a is mean polarisability, e is permittivity, N is number of molecules per 

unit volume and n is refractive index. Proceeding from this formula it can be 

shown (see [Born and Wolf]) that for a gas, 

RTn2-1 
p 3 

= constant (6.7) 

where R is the gas constant, T is absolute temperature and p is pressure. Using 

this and the relationship between n and A for some frequency, it can also be 

seen that quite small temperature changes and thus small changes in n give rise 

to large changes in the number of wavelengths of light in the optical path. So 

with different temperatures, even locally, in the two paths between transmitter 

and receiver the wavefronts become distorted. Interestingly, in the steady state 

case this does not matter, since the wavelength and frequency at the receiver 

remain the same and movement of the source in space causes relative phase 

change between the slits as before. 

In a non steady state situation, that is, while the refractive index of a portion 

of one of the optical paths is changing, distortion of the interference pattern may 

be caused. The reasons for this are as follows. 

With the source emitting a frequency fo and considering a section of length 

x of the optical path in which n is changing with time, the number of cycles 

contained within length x changes. For instance if the air inside length x is 

cooling, the value of n there rises with time and the velocity through x decreases. 

In that circumstance the number of cycles within x is increasing at some rate f 
cycles per second. 
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The frequency emerging from the section x is therefore, 

f = fo - f' (6.8) 

f = fo - dt (Al(t) 
(6.9) 

where al(t) is the instantaneous wavelength within x and depends on n, the 

instantaneous refractive index there. 

So the frequency f can be greater or less than fo as n is changing, and if this 

change is different in each optical path, phase shifts between the paths will be 

registered at the receiver causing spurious pattern movements. With the same 

change of f at each slit, in theory the pattern would shrink or expand. However, 

high rates of change of n would be necessary to have an appreciable effect and 

fast changes of temperature or pressure are required to affect density in this way. 

No attempt was made to measure changes in frequency or to evaluate the 

rates of refractive index change likely to occur in practical situations. A "worst 

case" type of test was carried out however. This was simply to blow hot air across 

the optical paths of the interferometer and observe the fringes on a television 

monitor. 

With the hot air stream crossing the optical path near the source, no effect 

was observed in the parallel fringes. The hot air stream was moved progres- 

sively nearer the receiver, surprisingly still with no effect, until at only about 

350mm from the receiver the pattern on the monitor began to waver. This was 

an encouraging result as far as the robustness of this optical arrangement is 

concerned, particularly when use of the instrument in the open or in industrial 

environments is considered. 
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6.6 Detection of Interference Pattern Movement 

So far, experimental evidence of the production of fine, straight interference 

fringes and of the relationship between their position and the position of a point 

source has been presented. The next stage is concerned with the detection 

of movement of this pattern in such a way that a signal representing the dis- 

placement of the source may be obtained. This was done using an amplitude 

transmission linear diffraction grating placed in the focal plane of the lens as 

described in Chapter 5. 

6.6.1 Verification of Grating Output Signal Modulation 

To check experimentally the behaviour of the interferometer as a system required 

that a combination of slit separation, lens focal length and grating period be 

used such that the interference pattern line spacing matched that of the grating. 

In the first instance equipment was set up as in Plate 9 and Figure 6.17. 

An expanded, collimated beam is incident on a photographic grating (5 line 

pairs/mm) in front of the Fujica lens. The fringes produced by this square 

grating (or multiple-slit screen) are a series of dots with sharp peaks of intensity 

separated by several subsidiary maxima and minima, as shown in Figure 6.18. 

The focal length of the lens was adjusted until the scale of this pattern in 

the focal plane matched the period of a second photographic grating (also 5 line 

pairs/mm). A radiometer based on a photodiode was placed behind this and 

the output from the radiometer taken to a cathode ray oscilloscope. 

By rotating the laser mount about a vertical axis, the angle of incidence to 

the first grating was varied. This caused movement of the interference pattern 

as in Figure 6.11. 
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Figure 6.17: Sensing Collimated Beam Angle with Multiple Slits and Diffraction 
Grating. 
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Figure 6.18: Multiple Slit Diffraction. 

180 



The signal received by the radiometer was monitored on the oscilloscope and 

could be seen to vary with incident angle. Rotating the mount as smoothly as 

possible by hand, the oscilloscope could trigger on the radiometer output and 

momentarily, the waveforms could be seen. These were not of sinusoidal form, 

because of the more complex irradiance function due to the first grating, but 

were regular and periodic. The sensitivity to angle was such that 10 cycles 

were observed with a rotation of the incident beam of 85 minutes of arc i.e. 8.5 

arcminutes per cycle. 

Using multiple slits in this way allows much more light into the system, 

increasing the amplitude of the modulated output signal and therefore the res- 

olution which may be obtained. This only works for incident plane waves, prac- 

tically, but is useful in that role. 

The second experiment uses a two slit screen with 100 micron slits 10 mil- 

limeters apart. The lens, set to a focal length of 104mm, scales the interference 

pattern correctly for a 150 cycle per millimeter diffraction grating. As before, a 

collimated beam was used and the angle of incidence varied with the micrometer 

adjustment of a rotation stage on the laser mount assembly. See Figure 6.19. 

A photomultiplier was used to receive the grating output and the signal from 

the anode was viewed on a cathode ray oscilloscope. The waveforms obtained 

had cosinusoidal form as predicted in Chapter 5. These signals were held in a 

storage oscilloscope and printed out on an XY plotter. See Figure 6.20. With 

the optics as described and starting from normal incidence, a 21r phase change 

between the two slits corresponds in theory to an angular movement of 13.05 

arcseconds. Carrying out the measurement with the equipment and averaging 

over 100 cycles gave 13.8 arcseconds per cycle as well as could be read from the 

vernier scale of the rotation stage. 
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Figure 6.19: Sensing Collimated Beam Angle with Two Slits and Diffraction 
Grating. 
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6.7 Quadrature 

Having obtained the grating output signal, the next step was to use a beamsplit- 

ter immediately behind the lens to divide the diffraction patterns and in effect 

give the lens two focal planes. The equipment was arranged as in Figure 6.21 

and the beam splitter cube adjusted in x and y until its two output faces lay 

in the focal planes of the lens and beamsplitter combination. The presence of 

this cube of glass in the image field increases the back focal distance of the lens 

.and must have an affect on the shape of the focal surface as well as its position. 

These changes were not explored in detail. 

As the beam angle was changed, two "sinusoidal" signals could be seen on 

the oscilloscope. The position of one of the gratings was adjusted until these 

signals were in quadrature. Figure 6.22 is the plot taken from the oscilloscope. 

6.8 Optical Noise 

In the above experiments, even with interference filters on the photomultipliers 

the 100 Hz frequency of the room fluorescent lighting was picked up easily on 

the oscilloscope. Obviously the power of normal artificial lighting in this band 

of the spectrum (632.8nm) is significant in comparison to the 1mw power of the 

laser used. This problem may be circumvented in several ways, the more obvious 

being to switch the room lights off or to use a more powerful laser. To avoid 

these inconveniences a different type of area lighting might be used, the main 

criterion in the choice of suitable lighting being that it should have low power 

in the band of the spectrum used by the instrument. 

A better solution is as follows. The signal from the transmitter is ampli- 

tude modulated at high frequency. The received signal is then filtered for this 
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frequency and the changes in amplitude due to phase differences are used to 

reconstruct the output periodic wave caused by source movement. 

The effects of noise from ambient natural light have not been explored in 

these experiments. 
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Chapter 7 

Implementation of Systems 

7.1 Introduction 

In this chapter the means of implementing a dynamic three dimensional mea- 

surement system is considered for the most general case in which it is required 

that the position and orientation of an object with six degrees of freedom be 

monitored. The principles of operation of the interferometer have been given 

in Chapters 4 and 5 and the method whereby the coordinates output from the 

instrument may be used to locate points and bodies is described in Chapters 2 

and 3. The questions which remain as regards implementation concern: 

1. The optimum positioning of instruments to cover the required working 

envelope. 

2. The design of the interferometer to give the resolution required for the. 

task. 

The example used here to illustrate the process is a requirement to be able 

to measure the position and orientation of the end effector of a robot arm, 

moving in a 2m diameter spherical working volume. The resolution required 

of the measuring instrument is 20µm. It is assumed that the moving robot 
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carries several point sources on its end effector. The positions of these sources 

are determined using interferometers located at appropriate positions outside 

the working volume. The instruments should be arranged around the working 

volume in such a way as to allow the position of points on the robot end effector 

to be measured anywhere in this volume. The orientation of the end effector 

can then be calculated from the position data on the several points. 

Meeting the requirements of the example is a design process and, as with 

other engineering design procedures, there is not a single analytical route which 

leads to a single solution. The procedure used in the next two sections is the 

nearest approach to such a process which can be achieved. 

7.2 Location of Instruments 

This section deals with the requirement in Item 1 of the last section, and is 

largely concerned with geometry. 

7.2.1 Implementation Tasks 

Discussion 

The situation described in the given example consists of several point sources, 

fixed in position relative to each other, but free to move as a group within the 

working volume. Each of these point sources transmits light within a conical 

solid angle. The directions of the cone axes are fixed relative to each other, but 

as a group they change direction as the end effector changes its orientation. 

The interferometers can be considered as receivers, positioned around the 

working volume and outside it. Each of these instruments has an. object field 

angle, a conical solid angle within which it can receive radiation from a moving 

point. The receivers must be sufficiently far away from the working volume, to 
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be able to "see" the whole volume within their object field angle. On the other 

hand they must not be so far away from the moving points that the resolution 

of their measurements becomes too low. 

In this case the working volume is a sphere, and the symmetry of the situation 

suggests that there is no particular reason why any one of the receivers should 

be further away from the sphere centre than any other. The receivers can there- 

fore be considered to be distributed over the surface of another, larger sphere, 

concentric with the working volume. In implementing a system, the radius of 

this sphere must be determined, and the optimum number and distribution of 

receivers on its surface must be found. 

As the end effector rotates, the solid angle illuminated by each point source 

must always include at least one receiver, if a continuous record of the trajectory 

of that point is to be maintained. Also, as the object point gets closer to the re- 

ceiver sphere, the cross-section through its cone of illumination at the sphere be- 

comes smaller, suggesting that receivers be closer together on the sphere surface 

in this situation. This implies a larger number of receivers and a corresponding 

increase in the cost of the system. Conversely, a larger number of transmitting 

components on the robot end effector can reduce the number of receivers re- 

quired. If one point source moves to a position where it no longer illuminates 

a receiver, information about several other point sources may still be available. 

It is important to find the number and distribution of both transmitters and 

receivers which minimises the number of instruments required. 

All the above factors must be taken into consideration when designing a test 

station such as the one required in the example of this chapter. The solid geome- 

try of the situation is not unique to the interferometer however. Similar problems 

occur with other three dimensional systems with both active and passive mov- 
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ing components. For instance the system with a moving two axis servoed mirror 

and the system employing moving retroreflectors (Chapter 1, 1.5.12) both have 

their implementation constrained by this geometry. In all such cases, the geo- 

metrical description begins with a moving cone of some known solid angle, and 

receivers with a known object field or acceptance angle. Similar problems arise 

in establishing how these parameters affect the optimum positioning of multiple 

receivers (or trackers) around their working volume. 

Tasks 

In the remainder of this section, the following problems are addressed: 

1. How are the optimum number and distribution of receivers determined 

from a knowledge of the transmission angle at a single moving point? 

2. In a realistic case in which several point sources must be used, how is this 

distribution affected, and how does the receiver object field angle affect 

the particular design for the robot arm given in the example? 

3. What are the maximum and minimum possible ranges from point to re- 

ceiver when this solution is adopted? 

7.2.2 Distribution of Receivers: Single point Source 

Restricted Problem 

A restricted version of the problem is tackled first. In this case, no account 

is taken of the number of system components (e.g. point source transmitters) 

required to be mounted on the robot for calculation of position and orientation. 

The geometry with only one such component is considered. Furthermore, this 

component is constrained to make only rotations about one point. 
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Circle Zone 
Shown Hatched 

Figure 7.1: Intersection of Cone with Sphere. 

Geometrically this system consists of a cone whose vertex is fixed at a point, 

but which can rotate about any axis through this point. The surface of the cone 

intersects a sphere, centred on this point, in a circle, see Figure 7.1. The receiving 

component of the system can only provide information about the moving element 

if it is within this circle zone on the sphere. The problem in this restricted case 

is therefore to establish, for a cone with given solid angle at its vertex, the 

minimum number and distribution of receivers required to ensure that at least 

one of them is "illuminated" by this cone in any orientation. The radius of the 

sphere is quite immaterial in this case. 
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Interpretation 

As in the above, one might think of the situation as a number of fixed points 

on the surface of the sphere, representing the positions of the receivers, and a 

circle moving on the surface enclosing at least one point at all times. Equally 

one might consider the moving cone's own axis of symmetry as defining a point 

(moving) on the sphere surface, and each receiver as serving a stationary circular 

area, see Figure 7.2. This second description allows some headway to be made 

in determining the number and position of receivers. 

The circle zones centred on each receiver must intersect with neighbouring 

zones to ensure the entire surface is covered. In general, for any particular 

circle diameter there are an infinite number of ways of covering the sphere. 

(The amount of overlap can be considered as a measure of the inefficiency of a 

particular arrangement). 

To take as a starting point the solid angle subtended by the circle and to 

derive the necessary number and position of the circles on the sphere surface 

is, in general, a difficult problem. Again, in general, the solution would give 

an irregular spacing of circles and therefore a variation in resolution or utilised 

range from one tracker to another, see Figure 7.3. Another practical aspect of 

such a solution may be taken into account. An irregular spacing of receivers 

requires an irregular (and therefore more complex and expensive) structure to 

support them. 

Regular Solutions 

There are a number of regular solutions to the problem, corresponding to par- 

ticular values of solid angles. The reasoning behind these solutions is as follows. 
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(A) ® = Fixed Tracker Points 
on Sphere Surface 

Circle of intersection moves but always 
encloses at least one tracker. 

(B) 

Ray from sphere centre moves but it 
always passes through at least one of 

the circles served by each tracker. 

Figure 7.2: Equivalent Descriptions of the Geometry. 
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Figure 7.3: Irregular Spacing of Trackers. 
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A circle in a plane is surrounded by intersecting circles of the same size with 

no double overlapping. Joining in turn the points at which the first circle is 

cut with straight lines produces a regular polygon inscribed in the circle, see 

Figure 7.4. The analogous operation on the surface of a sphere produces regular 

spherical polygons. With the correct choice of ratio of polygon side to sphere 

radius the entire sphere surface can be covered with identical figures inscribed 

in identical circles. This is, of course, the projection of the edges of a regular 

polyhedron from the centre to the surface of a sphere. 

There are five solutions of this type, corresponding to the five Platonic solids. 

It can easily be shown that there are no more than five solutions. (See for 

instance [Coxeter]). If p is the number of sides of a polygon then it is known as 

{p}. If a polyhedron has faces of type {p}, q of which meet at each vertex, it 

is a {p, q}. Now the internal angle of a polygon vertex is [1 - (2/p)]-7r and q of 

these are at a polyhedron vertex so, 

C1-2) irq<2ir 
P 

leading to the formula 

(p - 2)(q - 2) < 4 (7.2) 

Since p and q are integers, Equation 7.2 can only be satisfied by {3,3}, {3,4}, 

{4,3}, {3,5} or {5,3} which are the tetrahedron, octahedron, cube, icosahedron 

and dodecahedron respectively, see Figure 7.5. (A test rig based on one of these 

solutions would have receivers sited at positions equivalent to the face centres 

of one of the above solids). 

The next step in this process is to determine the solid angles subtended by 
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Figure 7.4: Intersecting Circles without Double Overlap. 
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Tetrahedron 

{3,5} 

Octahedron 

{5,3} 

{4,3} 

Cube 

Icosahedron, Dodecahedron, 
Vertex First Vertex First 

1 0 
Icosahedron, 
Edge First 

0 
Dodecahedron, 

Edge First 

Icosahedron, Dodecahedron, 
Face First Face First 

Figure 7.5: The Regular Polyhedra. 
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Figure 7.6: Tetrahedron Example. 

the circumcircles of the polygonal faces of the regular polyhedra. A sample 

calculation is summarised below for the regular tetrahedron {3,3}. The results 

for the rest are given in Table 7.1. 

Example 7.2.1 (Tetrahedron) With an edge length of 21, sphere circumra- 

dius Ro = 1.22471 and sphere inradius R2=0.40821.1 The area of the circle zone 

is S = 27rRod = 6.283012 and the solid angle = = 4.189 steradians. Isk 

Non-Regular Solutions 

Table 7.1 includes the data for three non-regular solids. Two of these are the 

quasi-regular polyhedra which have two types of polygonal face each, and are 

described as, 

{q} 
'See [Coxeter]. 

199 



Polyhedron 
Projection 

No. of 
Receivers 

No. of 
Zone 
Sizes 

Smallest 
Zone 

(sterad.) 

Small 
Cone 
Angle 
(deg.) 

Largest 
Zone 

(sterad.) 

Large 
Cone 
Angle 
(deg.) 

Cover 
> 47r 

(sterad.) 
Tetrahedron 4 1 4.1890 141.06 4.1890 141.06 4.1890 
Cube 6 1 2.6553 109.47 2.6553 109.47 3.3656 
Octahedron 8 1 2.6553 109.47 2.6553 109.47 8.6776 
Dodecahedron 12 1 1.2902 74.75 1.2902 74.75 2.9140 
Icosahedron 20 1 1.2902 74.75 1.2902 74.75 13.2340 
Cuboctaliedron 14 2 1.1530 70.53 1.8403 90.00 7.6990 
Icosidodecahedron 32 2 0.4138 41.81 0.9384 63.43 6.9695 
Truncated 
icosahedron 

32 2 0.3923 40.71 0.5268 47.26 2.6765 

Table 7.1: Polyhedron Data 

A polygon {p} is surrounded by p polygons {q} and vice versa. The distinct 

quasi-regular solids are, 

14 }andt 5 } 

(the cuboctahedron and icosidodecahedron respectively), see Figure 7.7. Some 

approximate figures are given in the table for the semi-regular truncated icosa- 

hedron (12 pentagons and 20 hexagons). 

Configurations for the Restricted Case 

If in reality the situation was as described at the beginning of this section, with 

one moving component which is allowed only rotation then, with the moving 

solid angle known, the configuration with the minimum number of receivers or 

trackers of sufficiently close and regular spacing may be selected from Table 7.1. 

For example, a component with a cone vertex angle of 74.75° or more may be 

accommodated by 12 trackers positioned on a sphere at the spherical projections 

of points at the centres of the faces of a dodecahedron. The circumdiameter of 

each face of this polyhedron subtends 74.75° at the sphere centre. A component 

with, say, a 70° vertex angle would require, on a complete sphere, 32 trackers 

200 



Cuboctahedron Icosidodecahedron 

tFn 
Truncated 

Icosahedron 
with 12{5} and 20{6} faces 

Figure 7.7: Quasi Regular and Semiregular Polyhedra. 
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spaced on the face centres of an icosidodecahedron or a truncated icosahedron, 

which have subtended angles of 63.43° and 47.26° respectively from their largest 

face types. 

Relaxation of Constraints 

The one moving component is now allowed rotations as before, plus translations 

within some radius of the centre point. The effect of this is shown in the section 

in Figure 7.8. With, for instance, a point source at the centre point, the radius 

of the sphere with receivers on its surface is unimportant, because the same solid 

angle is subtended at the sphere centre by the illuminated area. As the source 

approaches the spherical surface, however, the illuminated circle on the surface 

decreases in size, as does the solid angle subtended by this area at the sphere 

centre. 

These two conical surfaces do intersect at a radius which increases with, in 

effect, the arm radius. For example, with a 90° transmitter at 0.5m from the 

sphere centre and receivers serving 74.75°, the receiver sphere radius has to be 

2.665m minimum. A 1m radius of translation requires a 5.329m sphere radius 

and a 1.5m radius of translation requires a 7.994m sphere radius. The effect of 

allowing translation of the single moving point is either to make the test station 

very large or to increase the number of receivers required. 

This problem disappears when multiple point sources are used, provided they 

are correctly positioned on the moving object. 
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Figure 7.8: Tracker Position for 0.5 and 1.0m Arms. 
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7.2.3 Distribution of Receivers: Multiple Point Sources 

Minimising System Size 

Up to this point, a cone of illumination from a single point source has been 

considered. Initially this cone had its vertex at the sphere centre, and then it was 

allowed translation towards the sphere surface so that the circle of intersection 

at that surface reduced in size. This corresponds to the robot arm extended to 

the edge of its working volume and pointing the source out towards the sphere 

surface. The circle of intersection then has minimum radius. 

In this situation, a second cone on the same axis and in the opposite direction 

intersects a maximum area on the sphere, also a circle. Between these extremes 

the intersected area increases from minimum to maximum, as the cone is rotated 

about its vertex. In intermediate positions, the boundary of this area is a skew, 

closed figure. This can be seen in the example in Figure 7.9. The important 

point to note is that at no time in this transition from minimum to maximum 

does any dimension across the area become smaller than the diameter of the 

minimum circle. In practice this means that if receivers are sufficiently closely 

spaced to cope with the size of the minimum circle, then (geometrically) they 

can track the cone vertex in all positions and orientations inside the defined 

working volume. 

Furthermore, if for every necessary "cone" there is another, facing the 

opposite direction, then the receivers may be spaced as though the cones 

were all centred on the sphere centre. 

For every cone whose intersection area becomes too small for the receiver 

distribution, there is another which has an intersection area larger than necessary 
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Figure 7.9: Cone-Sphere Intersection, Orthographic Projections. 
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as the body moves inside the sphere. Positioning the components in this way 

avoids the need for the very large test station suggested by the results in Figure 

7.8. So by using a configuration of components on the moving body made up of 

pairs of opposite cones, a more compact system can be designed. 

In the case of the robot in the example, the calculation of position and 

orientation requires that at least three separate points be used. If only three 

points are to be used, then at least two coordinates for each of these points must 

be found. To be sure that information is available for three points, three pairs 

of points must be used. 

Space Frame Geometry 

It has been shown that the number of receivers required in a system, to cover all 

possible positions and orientations of an object in a working volume, is depen- 

dent on the solid angle "illuminated" by each of the moving components. If this 

is 74.75°, then on a regular structure, 12 receivers are sufficient. But even if the 

moving component turns out to have a useful angle of rather less than 74.75°, 

12 trackers may be acceptable if a small sphere at the centre is acknowledged as 

being a no-go volume. For some applications, e.g. the performance measurement 

of industrial robots, this seems reasonable compromise to make to reduce the 

number of receivers, particularly since this volume is likely to be occupied by the 

first, stationary link of the robot anyway. It is assumed that this compromise 

can be made in the given example, and that the working volume is in fact a 

sphere, but with a smaller sphere at the centre unused. 

A design which has been pursued is for a space frame capable of supporting 

receivers in 12 positions. These positions have the coordinates of the face centres 

of a dodecahedron. The dodecahedron is not used as a geometrical basis for the 
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structure however. Its reciprocal figure the icosahedron is used instead. The 

dodecahedron has 20 vertices, 30 edges and 12 faces. The icosahedron has 12 

vertices, 30 edges and 20 faces. The 12 vertices of the icosahedron are distributed 

in the same way as the face centres of the dodecahedron and in the space frame 

make material available in the appropriate positions for attaching support for 

the receivers. 

Hyperboloid Coordinates 

It was shown in Chapter 3 that the position and orientation of a body can be 

calculated from knowledge that three or more distinct points of that body lie on 

particular curves or surfaces in space. In this example, if each receiver supplies 

only one coordinate of one point, then it would be necessary to have six different 

receivers illuminated by six different point sources at all times. The information 

provided by the system in that case, would be that each of the six points lay on a 

particular hyperboloid. No method of finding the position and orientation of the 

object from this data is given in this thesis. Alternatively, the interferometers 

could be placed in pairs at each location on the space frame. In each pair, one 

interferometer would have its slits oriented at right angles to the slits on the 

other, and would be positioned immediately beside it. While they are both 

illuminated from the same point source, they give two coordinates of that point, 

which can then be shown to lie on the intersection of two hyperboloids, i.e. on a 

curve in space. The information provided by the system in this case is that each 

of three points lies on a particular quadric surface intersection curve. A method 

of calculating the position and orientation of the body from this information is 

given in Chapter 3. 

If only three points on the moving object are to be considered, then, to ensure 
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continuous monitoring of the object, three opposing pairs of point sources are 

required. In the application in this example these sources would then be attached 

to the robot end effector flange. 

In practice, a problem can occur when one point source is masked from a 

receiver by some object in the working volume, for instance, part of the robot 

itself. This practical point suggests that more than the minimum three pairs of 

sources should be used, to try to ensure that the necessary information on three 

points is always available. 

7.2.4 Receiver Space Frame 

The shape of the supporting frame has been determined by the number of re- 

ceivers required. This in turn was dependent on the working solid angle of the 

moving components. The effect of radial displacement of the body is countered 

if the components mounted on it are placed in opposing pairs. 

The size of the frame must be such that it is outside the swept volume of the 

object, but another influence on size is the receiver object field. This has now 

become the limiting factor in minimising the size of the frame. 

The receivers should not be positioned too close to the object (see Fig- 

ure 7.10). In Figure 7.10a the receiver is at the surface of a spherical working 

volume. Due to the limited object field of the receiver, much of the working vol- 

ume cannot be seen from this position. In Figure 7.10b the receiver is situated so 

that the entire volume is within the receiver object field. The minimum radius 

to the receiver is dependent on this object field angle. An object field of 50° and 

the 2772 diameter robot working volume are used to establish the dimensions of 

the space frame in Figure 7.11. In this case the distance from the centre of the 

working volume to each vertex of the icosahedron is found to be R, = 2.3662m 
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Figure 7.10: Working Volume and Tracker Position. 

and since the working volume has a inn radius, the maximum and minimum 

distances from points inside the working volume to a vertex are R,,, = 3.3662m 

and R,, = 1.3662m respectively. The layout in Figure 7.11 gives the reference 

dimensions (in meters) for the icosahedral space frame. Installations for other 

sizes of arm would have dimensions scaled appropriately. 

7.3 Interferometer: Design Parameters 

This section deals with Item 2 of the requirement in the introduction to this 

chapter. It is concerned with the resolution of measurement within the work- 
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Figure 7.11: Spaceframe Installation. 
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ing volume and the design of the interferometer itself to meet the performance 

requirements. 

7.3.1 Irradiance in Transmission Solid Angle 

The point sources must be small and lightweight so as to provide a negligible 

addition to the robot end effector inertia. They could be provided by using laser 

diodes at the end effector or by transmitting the power from a gas laser to the 

end effector using monomode optical fibres. In either case some ancillary optics 

may be required, and the nature of these optical components affects the way the 

available power is spread through the cone of illumination. 

The first thing to determine is the irradiance as a function of position within 

the transmission angle of the laser or laser-lens-spatial filter combination used. 

As has been seen in Section 7.2, wider transmission angles from each point source 

allow fewer interferometers to be used in covering all the possible motions of the 

robot. Alternatively, an increase in transmission angle can be seen as reducing 

the size of the "no-go" area at the centre of the working volume. It is important, 

therefore, to ensure a suitable spread of irradiance from the source. 

To illustrate the design factors involved, in the following example a collimated 

beam is focussed to a point using a lens, and the irradiance in the conical beam 

diverging from this point is found as a function of range R, and angle 6 from 

the cone axis. 

In a collimated gaussian beam, the maximum irradiance Io is at the centre 

of the beam, and at a radius r from the centre line of the beam the irradiance 

is, 

2r2 
1(r) = =W 

where w is the radius at which 1(r) = 1(w) The power of the beam within 
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a radius r is, 

2 

2 

P(r) = lrw2lc(1 - e-ate) 

The beam is focussed to a point by an ideal lens, of negligible thickness,2 

and with focal length f. The next step is to find expressions for irradiance and 

power as functions of range R and angle 9, downstream of the focal point. 

An very narrow annular section of the collimated beam, with area SA receives 

approximately constant irradiance I(r). So the power passing through this ring 

is, 

SP = 21(r)7rrbr (7.5) 

As illustrated in Figure 7.12, this power SP is the contribution at 9 to the 

optical axis, to the power passing through the point source. It comes from the 

projection of SA onto the sphere, radius R', which is centred on the focal point. 

This is the area S.A, the difference between the spherical caps at 9 and 92. 

Now using the relationships, 

R'Se = S (7 6) r 
cos 0' 

. 

R' f 7 7) = 
cos 0' 

and 

( . 

r = f tan 9, 

this contribution to the power of the source can be seen to be, 

(7.8) 

f 2 
tan 9 

Se ) SP = 2I( 7 9 7r r 
cos 29 

Since the function I(r) is known (Equation 7.3), this gives, 

( . ) 

2f2 
2B r f 2 SP = 21 e Se (7 10) 0 

cos 2 9 
. 

2For the purpose of these calculations. 
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Figure 7.12: Irradiance in Diverging Beam. 
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Irradiance on a spherical surface at some range R and angle 6 is, 

I(R, 6) = 5p 
5A 

(7.11) 

The area of the spherical caps at 61 and 62 are 27rRh1 and 27rRh2 respectively, 

where h = R - R cos 6. So the difference in area is, 

5A = 27rR2(cos 61 - cos 62) (7.12) 

5A = 27rR2(cos (6 - 2e) - cos (6 + 
Ze 

)) (7.13) 

5A = 2rR2 sin 656 (7.14) 

Using Equations 7.10, 7.11 and 7.14 gives the equation for irradiance, 

( ) IOf 2 2f2 tan 20 Ire = 
R2 cos 36 e 

(7.15) 

which can then be used to find the irradiance on the slits of the interfer- 

ometer, with the source at any point in the working volume. 

7.3.2 Variation of Irradiance 

As the point source moves inside the sphere, the irradiance at the receiver varies. 

It can be seen from Equation 7.15 that irradiance depends on both the range 

and the angular position of the receiver, within the cone of illumination. If it is 

required to limit this variation of irradiance at the receiver so that the minimum 

is no less than one tenth of the maximum, say, then this restriction can be used 

to establish some of the characteristics of the optical components of the point 

source. In Equation 7.15, irradiance at some position (R, 6) depends on R and 

0, but also on f, the lens focal length and w, the collimated beam radius at 

which I(r) = -. By fixing the ratio of irradiance at two points in the diverging 

beam, the relationship between f and w can be found. 
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In this case the maximum range Rti = 3.3662m and the maximum angle 

from the cone axis is approximately 6 = 37.5° (assuming a cone vertex angle of 

75° which is sufficient for this distribution of receivers). The minimum range is 

R,ti = 1.36621n and the minimum angle is 6 = 0°. So for a ratio of 1:10, 

I(3.3662in, 37.5°) 1 (7.16) 
I(1.3662m, 0°) 10 

and using Equation 7.15, 

2'2 tan 237.5° 
Rn cos 30e- 2 1 

2f2 tae 2°° - R0 ,z, cos 337.5°e 

0.3299e-1.1776L, 1 

10 

(7.17) 

(7.18) 

- 1.1776f 
z 

z = log eO.3031 = -1.1936 (7.19) 

(7.20) 

This determines the relationship between the collimated beam radius and the 

focal length of the lens. Thus for a lens with f - 4mm say, the collimated beam 

radius r = w at 1(w) = is 4mm i.e. beam diameter is 8mm. 

A 4mm focal length lens which would accept all of the collimated beam up to 

this diameter would have to have an f /# of f /0.5. It may be more convenient 

to start with a lens with a particular f l#, such as the Ealing Beck 24-8724 

microscope objective, which is an f /0.6 with f = 4mm, and work through the 

calculation in the opposite direction to obtain the resulting ratio of minimum to 

maximum irradiance. This lens has a diameter of 6.67mm and so w = 3.33mm, 

and the irradiance ratio works out as approximately 1:16 in this case. 

7.3.3 Irradiance and Laser Power 

In the last section it was shown how the variation of irradiance incident on the 

receivers can be determined in the design process. In this section, the relation- 
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ship between the irradiance I(R, 0) at some point, and the power of the laser 

used to generate the point source is found. 

In Equation 7.15 the only remaining unknown quantity is 10, the maximum 

irradiance in the collimated beam. This can be determined from Equation 7.4. 

If the power of the collimated beam within the radius r = w is 10mW say, then 

with w = 3.33mmn, 

(7.21) 

lo = 663.9W/m2 (7.22) 

Using this value for 10 in Equation 7.15, together with the figures for f, w, R, 

and 0, allows the maximum and minimum irradiance at the interferometer slits 

to be calculated. 

Ima , = 5.69 x 10-3W/m2 (7.23) 

I,n{,y = 

7.3.4 Range and Power 

3.43 x 10-4W/m2 (7.24) 

The minimum irradiance from the point source, as determined in the last section 

is 3.43 x 10-4W/m2. 

On the interferometer, using two slits 150µm wide by 10mm long gives an 

aperture area of 1.5 x 10-6m2 per slit, and so a minimum power of approximately 

10-9W entering the instrument from the two slits together. The maximum 

power, with the point source closest to the slits is 1.6 x 10-8W. 

Before going on to consider photodetection and other factors in the design 

of the instrument optics for this application, the relationship between slit sepa- 

ration and the instrument's sensitivity at various points in the working volume 

is explored. 
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7.3.5 Variation of Sensitivity and Resolution 

The sensitivity of the instrument is not constant throughout the working volume. 

As discussed earlier, the coordinate output from the instrument identifies a 

member of the family of hyperboloids which have the two slit centres as their 

foci. As the point source moves, changing the difference in optical path lengths 

to the slits, the change in interferometer output indicates that it has moved 

to another hyperboloid. The instrument has its maximum sensitivity when the 

source movement is normal to the surface of each hyperboloid the point passes 

through. This movement is on the surface of an ellipsoid passing through the 

original point and cutting each member of the family of hyperboloids at right 

angles. Thus sensitivity must be considered using an orthogonal curvilinear 

coordinate system consisting of confocal hyperboloids and ellipsoids with foci at 

the two slit centres. The sensitivity is in fact the derivative of arc length along 

an ellipse, with respect to changing optical path length difference. The following 

calculation shows how sensitivity and resolution vary in the application example 

being considered in this chapter. 

In the example, the working volume of the interferometer is a 1m radius 

sphere with centre at 2.3662m from the receiver, and lying on its optical axis. 

Taking the planar cross-section of this volume at the y = 0 plane, we wish to 

find the sensitivity of the instrument at various points on this cross-section. On 

this plane, the coordinate system consists of confocal hyperbolae and ellipses, 

as shown in Figure 7.13. 

A suitable parameterisation for this system gives, 

x = c cosh u cos v (7.25) 

z = c sinh u sin v (7.26) 
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Figure 7.13: Confocal Hyperbolae and Ellipses. 
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(see [Spiegel]), where u and v are the parameters in the new coordinate system 

and c is half the distance between the foci. 

A differential element of arc length dS of a curve on the plane can be obtained 

in this coordinate system from, 

dS2 = hudu2 + hvdv2, (7.27) 

where hu and h are scaling factors (see [Spiegel]) and 

hu = h = c sinh2u + sin2v (7.28) 

Since we are interested here only in movement along an ellipse, du = 0 and so, 

dS = h dv (7.29) 

and, 
dS = c sinh2u + sin2v (7.30) 
dv 

The rate of change of arc length along the ellipse with respect to optical path 

length difference in is, 

dS dS dv 

dm dv dm 
(7.31) 

The second derivative on the right is obtained by expressing the path length 

difference in cartesian coordinates, 

m= (x+c)2+z2- (x-c)2+z2 (7.32) 

and using Equations 7.25 and 7.26 to convert this to the curvilinear coordinate 

system, 

m = c{ (cosh u cos v + 1)2 + sinh2 u sin 2 v- (c(;h u cos v - 1)2 + sinh2 u sin2v } 

(7.33) 
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which gives m = 2c cos v. This is differentiated to give, 

dm 
dv 

_ -2c sin v 

and so Equation 7.31 becomes, 

dS sinh2 u + sin2 v 

dm 2 sin v 

(7.34) 

(7.35) 

This is the expression for sensitivity in terms of the coordinates u, v. 

From Equations 7.25 and 7.26, sinh u and sin v can be found for any point 

(x, z). In fact, 

(x2 + z2 - c2) + (x2 + z2 - c2)2 + 4c2z2 
sinh2 u = (7.36) 

2c2 

and 
2 

c2 sinh2 u 
(7.37) 

The sensitivity can be converted to resolution by multiplying by the smallest 

change in optical path length which can be measured at the instrument. The 

assumption in this example is that one tenth of a fringe cycle is easily discernible 

in the instrument's output. So the resolution can be found at any point (x, z) by 

calculating the sensitivity using Equations 7.36, 7.37 and 7.35, and multiplying 

by 63.28 x 10-9, i.e. one tenth of the helium neon wavelength in this case. 

The results for several points in the 1m radius working volume are shown in 

Figure 7.14 in which a 10mm slit separation is assumed. 

Resolution varies from 8.65µm to 21.3µm for the calculated points, and 

so only exceeds the 20pm design aim very slightly, at the farthest end of the 

volume. To improve resolution, either an increased slit separation or the ability 

to sense movement of a smaller fraction of a fringe cycle is required. For present 

purposes, it is assumed that the resolution calculated above is sufficient, i.e. that 

220 



x 

17.65 

z 

4 

12.66 

11.81 

12.66 

8.65 

1.Om 

0.51n 

-0.5m 

-1.0 

3.3662m 2.8662m 2.3662m 1.8662m 1.3662m 

Figure 7.14: Resolution (in microns) in a Cross-Section of Working Volume. 
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Figure 7.15: Resolution on the Optical Axis. 

a slit separation of 107mm-n and the detection of one tenth of a fringe cycle are 

adequate. 

Sensitivity and resolution can be found for any point in the working volume, 

using the above technique, since the hyperboloids and ellipsoids of the three 

dimensional coordinate system are solids of revolution about the x-axis. It is 

only necessary to rotate the plane of cross-section about the x-axis and establish 

the transformation to cartesian coordinates on the new plane. 

For many applications it is useful to be able to check the worst case resolution 

without going through all the above analysis. This can be done easily for, say, 

the most distant point of interest on the optical axis (z-axis), as in the following 

example. In Figure 7.15 the point source at z = 3.3662m moves a distance 

Ax = 20pm in the x direction. The slit separation 2c = 10mm. 

From Equation 7.32, the optical path length difference is, 

PF1 - PF2 = (Ax + c)2 + z2 - (c - Ax)2 + z2 (7.38) 
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which gives 59.4 x 10-9m. Using light at 632.8nm, this implies that a resolution 

of 10.65 parts per fringe cycle is required in the instrument to allow detection 

of that Ox. 

7.3.6 Direction of Maximum Sensitivity 

The direction of maximum sensitivity at a point can be obtained in,several ways. 

Setting up the 2-D coordinate system described above, in a plane through the 

point and the x-axis, it can be found using the gradient (with respect to x) of 

the ellipse passing through the point. Alternatively, and with no reference to the 

2-D coordinate system, the direction cosines of the normal to the hyperboloid 

surface at the point can be found as follows. 

In homogeneous coordinates the equation of the hyperboloid is, 

xTAx = 0 (7.39) 

where x is any point on that surface. 

The equation of the tangent plane at the point pT = [p1 P2 p31 ] is, 

pTAx=0 (7.40) 

where p is a point on the hyperboloid surface and x is any point on the tangent 

plane at that point. (See [Cohn] for the corresponding equation in 3-vectors). 

From this equation, 

p'TAx + [0 0 01]Ax = 0 (7.41) 

where p'T = [p1 P2 p3 0], and since A is the discriminant matrix in its diagonal 

form, 

p'TAx + 1 = 0 (7.42) 
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Now putting the normal vector p'TA = qT, and dividing throughout by E(q, ), 

the unit normal to the hyperboloid surface at this point is, 

T 
qT n 

E(q?) 
(7.43) 

The coefficients of ii are the direction cosines of the normal vector and indicate 

the direction of maximum sensitivity at that point. 

Information about the sensitivity of the instrument and the direction of max- 

imum sensitivity is useful in verifying that the calculation of cartesian coordi- 

nates and Euler angles, (using the data from several interferometers in different 

locations), is well-conditioned. 

7.3.7 Focal Length and Diffraction Grating Frequency 

In the last section it was shown how the required resolution and the sensitivity 

of fringe movement detection determine the slit separation in the receiver. This 

information is now used in the next stage of the design process, which is to 

determine the focal length of the lens and the spatial frequency of the linear 

diffraction grating used in the detection of fringe movement. 

The irradiance function which describes the interference fringe pattern on 

the focal plane is given by Equation 5.52, which is, 

it it 

I = I" + 
2 

+ 
2 

cos[k(P2o - plo) + 2kAl1] (7.44) 

In the argument of the modulating cosine function, k = a is the propagation 

number, (P20-Plo) is the difference in optical path lengths, A is half the slit sep- 

aration (A = 57n7n in this example), and ll is the direction cosine of diffracted 

rays in the instrument. Referring to Figure 7.16, for a fixed path length differ- 

ence, and considering the centre of the pattern, with 01 = 90°, and 11 = 0 the 
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Figure 7.16: Focal Length and Diffraction Grating Frequency 

irradiance has a value which depends only on say (P20 - Pio) It regains this 

same value when the second term in the argument is increased to 27r. So, 

or, 

2kAl1 = 27r (7.45) 

cos01=11= 
A 

2A 
(7.46) 

which gives el = 89.9964° and one complete fringe subtends an angle 01 = 

90° - 61 at the rear nodal point of the lens. Thus with the fringe width Ox and 

lens effective focal length f, 
tan 

Ox 
4 1 = f (7.47) 

In this example, tan cb1 = 633.0 x 10-7. Either the lens focal length or 

the frequency of the diffraction grating can be specified at this stage and the 

other quantity calculated. The focal length of the lens will affect the overall 

size of the instrument, and so long focal length lenses are undesirable. A focal 
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length of 507nm is used in this example and, from Equation 7.47, results in 

Ox = 3.164 x 10-37nm, i.e. a grating frequency of approximately 316cycles/mm. 

Alternatively, taking Ox = 250 mm as the starting point, the required lens focal 

length is 63.21m7n. 

7.3.8 Slit Width and Minimum Range 

To complete the geometric aspects of the design, it must be ascertained that 

the overlap of the diffraction patterns from each slit is sufficient to produce 

an adequate number of interference fringes. With incident light from a point 

source, the diffraction patterns from the two slits do not entirely overlap. As the 

source approaches close to the slits, the overlap reduces and ultimately leaves 

just the two separate diffraction patterns on the focal plane. The minimum 

range depends on the width of the diffraction patterns and on the minimum 

acceptable pattern overlap, i.e. the minimum number of fringes whose motion 

can be detected at this close range. 

Greater overlap can be obtained with diffraction patterns which are spread 

over a larger angle, i.e. which have a larger central band. Diffraction pattern 

central band width increases as the slits become narrower. The diffraction pat- 

tern overlap varies with source position, as can be seen in Equation 5.48, but a 

more simple check on the overlap can be made using Equation 4.9, i.e. assuming 

plane waves at different angles are incident separately on each aperture. 

With mn = 7nl = 0, (rays parallel to the y = 0 plane) then from Equation 4.9, 

I = Iosinc2[ka(l + l1)] (7.48) 

where a = half slit width, k = propagation number, d is the x direction cosine 

of the incident rays, and 11 is the x direction cosine of the observation point on 

the focal plane. See graph in Figure 7.17. 
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Figure 7.17: Diffraction Pattern Central Band Width 

With normal incidence, 1 = cos 90° = 0 and Equation 7.48 becomes, 

I = Iosinc2[ka(11)] (7.49) 

which is zero when ka(le) = fir, f2ir... The central band of the diffraction 

pattern lies between ka(le) = fir, and so the outside edge of the central band 

is at an angle 91 to the x-axis, where, 

2ira 
cos 91 = 7r (7 50) 

A 

So with A = 632.8 x 10-9m and 2a = 150µm, 

. 

91 = 89.7583° (7.51) 

and half the central band subtends an angle bb at the rear nodal point, where, 

Ob = 90° - 91 = 0.2417° in this case. 

The width of the diffraction patterns can be increased by using narrower 

slits, but pursuing the above calculation and referring to Figure 7.18 it can be 

seen that the range for any particular amount of overlap can be found. 
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Slit 2 

For O b = 0.2417°, zero overlap 
as shown at R = 1.1852m 

A 

Figure 7.18: Zero Diffraction Pattern Overlap 

With the central bands of the two patterns immediately side by side, i.e. 

zero overlap and with a slit separation of 10mmn the range R = 1.18527n. In the 

example the minimum working range required is R,,, = 1.3662m and clearly at 

this range there will only be a small diffraction pattern overlap. To remedy this, 

the implementor may reduce the slit width (with correspondingly less power 

reaching the photodetector) or he may enforce his required overlap at this range 

by using some ancillary optical components, for example a wedge prism at each 

slit, to change the angle of the incident or diffracted rays. It is preferable simply 

to reduce the slit width, since this avoids the introduction of more components 

in the system, but in a design process compromises are often required and in 

this case the choice must be balanced against another factor, the sensitivity of 

the photodetector. 
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7.3.9 Photodetector 

Photon Flux at Photodetector 

In section 7.3.4 it was calculated that in this example, with slits 10mm long 

by 150µm wide, the power P entering the interferometer ranges from 10-9W 

minimum to 1.6 x 10-8W maximum depending on source position in the working 

volume. We wish to determine whether a particular type of photodetector is 

suitable for monitoring this signal. As part of the example, this is now done for 

a photomultiplier. 

From the incident power P in Watts, the photon flux at the diffraction 

grating can be calculated. The energy (in Joules) per photon is EP = hv, 

where h = 6.625 x 10-34Joule seconds, is Planck's constant and v is frequency 

in Herz. With a wavelength of A = 6.328 x 10-7m and the speed of light 

c = 2.998 x 108m/s, then the frequency v = a = 4.7 x 1014Hz, and, 

EP = 3.1 x 10-19Joules (7.52) 

So in the case of minimum power entering the instrument, the photon flux Fp 

incident on the diffraction grating is, 

FP = 

E 

= 3.2 x 109photons/s (7.53) 
P 

The flux transmitted through the grating depends on the transmissivity of 

the grating and the relative position of the fringe pattern on the grating lines. 

In this calculation the assumption is made that when the fringe pattern is in 

a position which gives maximum transmission through the grating, no light is 

reflected from or absorbed by the grating, and 100% of the flux is transmitted. 

Further it assumed that when the fringe pattern and grating pattern are 180° 

out of phase, there is zero flux transmitted. These would not be reasonable 
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assumptions if we wished to be very precise in predicting the power reaching 

the photomultiplier, but for the design purpose of establishing that this kind 

of sensor is broadly suitable, the assumptions can be justified.' Thus in this 

example the photon flux reaching the photomultiplier varies between zero and 

3.2 x 109photons/s, periodically with fringe position on the grating. 

Quantum Efficiency 

The quantum efficiency of the photomultiplier is now found for the wavelength of 

light used in this example. The output can then be calculated and compared with 

the dark current of the device. The particular photomultiplier considered here is 

the Mullard XP2233B which was used in the experiments described in Chapter 6. 

This photomultiplier has a Cathode Radiant Sensitivity Nkr -- 26mA/Watt at 

632.8nm.4 

Now quantum efficiency QE is given by, 

QE = 
Photoelectron Flux 

Photon Flux .54 

in which, 

Photoelectron Flux = Photoelectron Current = NkrP 
Electron Charge Ce (7.55) 

where the Electron Charge Ce = 1.6 x 10-`Coulombs. We have already that, 

Photon Flux = E 

and so, 

P 

)E NkrEp 

(7.56) 

Ce 
(7.57) 

3Losses in lenses and other optical components are also ignored. 
4From Mullard Technical Handbook, Book 2, Part 3, 1982. 
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Now since, 

where h =Planck's constant and c = speed of light, 

QE - Nk:ch 
- 

1.24 Nkr X 10-6 

Cea A 

With Nkr in mA/W and )V in nm, 

QE 1.24 Nkr 

which in this case gives, 

(7.58) 

(7.59) 

(7.60) 

QE = 5.1% (7.61) 

Photoinultiplier Output 

At the photomultiplier cathode, 

Photoelectron Flux = QE x Photon Flux (7.62) 

which in this case, with QE= 5.1% and Photon Flux = 3.2 x 109photons/s, gives, 

Photoelectron Flux = 1.63 x 108 photo electrons/s (7.63) 

Now the cathode current is the product of the photoelectron flux with the charge 

per electron, and so, 

Cathode Current = 2.6 x 10-8mA (7.64) 

This photomultiplier has a gain of 3 x 107, and since anode current is cathode 

current multiplied by the gain, we have, 

Anode Current = 0.78mA maximum (7.65) 
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This is the anode current at the peak of each cycle, as sensed at the photodetector 

of the interferometer when the source position in the working volume produces 

minimum irradiance on the slits. It compares well with the dark current for this 

photomultiplier, which is 6 x 10-5mA.5 Thus noise from the dark current should 

not hinder the pulse count. 

Velocity of Source and Fringe Pattern 

The final aspect of this implementation is to consider the effects of source ve- 

locity on the signal at the photodetector. The worst case is when the power 

from the source is at its lowest and the source is moving at maximum speed in 

the direction of maximum sensitivity, i.e. normal to the hyperboloid surfaces. 

With the source crossing the optical axis at right angles and at maximum range 

from the interferometer, one complete cycle of output at the detector represents 

approximately 210µm displacement of the source. If the source velocity is lm/s 

say, then one cycle of output occurs in 210µs, i.e. an output signal frequency 

of 4762Hz. In this worst condition, the photon flux incident on the grating is 

3.2 x 109photons/s peak, and so, integrating over one cycle, at lm/s there are 

over 105 photons/cycle. Even with a source velocity as high as l0m/s the pho- 

ton flux per cycle is over 104photons/cycle, which suggests that there should be 

little difficulty in partitioning the output signal into tenths (or perhaps smaller 

fractions) of a cycle, thus obtaining the required resolution of 20µm even at the 

longest range. 

5Frorn Mullard Technical Handbook, Book 2, Part 3, 1982. 
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7.4 Summary 

This chapter has shown how the interferometer can be used in practice, to obtain 

dynamic position measurements. The starting point was the description of the 

task. The example used was an industrial robot with an end effector which can 

change position and orientation within a spherical working volume. Important 

aspects of the requirement were, 

1. The need for position and orientation data. 

2. The dimensions of the work envelope. 

3. The resolution of position measurement. 

Given this information, it is shown how a three dimensional dynamic measure- 

ment system, based on the interferometer, is designed to meet the requirement. 

The design process breaks down into two main sections. The first section deter- 

mines the number and location of interferometers required to give the necessary 

coverage of the working volume. The second section is concerned with the design 

of the instrument itself. 

In the first section, the solid angle of transmission of the moving point source 

is used to determine number and angular location of instruments necessary to 

give the required all-round view of the working volume. The dimensions of 

the working volume (a sphere in the example), and the object field angle of 

the interferometers are used to determine the range at which the instruments 

should operate. Altogether, this information is used to outline the design of a 

spaceframe suitable for supporting the interferometers at the required positions. 

In the second section the amount of power reaching the instrument is estab- 

lished for various ranges within the working volume. The variation of sensitivity 
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of the instrument at different points in the working volume is examined for 

this example, and the slit separation required to give the necessary sensitiv- 

ity (and so resolution) is determined. The method of finding the direction of 

maximum resolution at each point is also investigated. Characteristics of the 

optical components of the interferometer, for instance the lens focal length and 

the diffraction grating spatial frequency are found. Finally it is shown how to 

establish that the photodetector (in the example a photomultiplier) is suitable 

for the task. 

One important aspect of any implementation of a system using lasers is 

safety. The diverging beams of laser light used with this interferometer are 

inherently safer than the collimated beams required by other systems such as 

the Surrey University, NBS, or Chesapeake instruments, or the various types of 

laser rangefinder discussed in Chapter 1. With a diverging beam, the proportion 

of the laser output power which can be incident on the eye decreases rapidly 

with increasing distance of the eye from the laser. This reduces the possibility 

of catastrophic damage to the retina. The safety of any implementation of the 

system does depend on the power of the lasers used and the restriction of access 

to the test area. 
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Chapter 8 

Development and Applications 

8.1 Development 

The optical bench tests described in Chapter 6 have verified the theory given 

in Chapters 4 and 5 as a basis for an instrument. Useful information has been 

obtained concerning the design of particular components, for example the lens, 

and on how various parameters of the system may be modified to suit particular 

applications. 

The object of further research is to establish the bounds of operation of the 

device, to optimise the performance of parts of the system and to investigate 

ways in which other improvements such as the use of solid state components 

might be incorporated. Another important aspect of a developed system is the 

signal processing of the output from the optics and the digitising of sampled 

data. The requirements for storage or further processing of this data do, of 

course, depend on the application in which the instrument is being used. 

8.2 Optics 

Starting from the transmitting part of the system and working through the re- 

ceiver optics to the detection of light output, the following sub-sections describe 
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the further developments which seem appropriate. 

8.2.1 Primary Source 

In the experiments a 1 milliwatt helium-neon continuous wave gas laser was used 

as the coherent light source. Although fairly small gas lasers can be obtained, it 

would be desirable to use a laser diode instead if a suitable device was available. 

This is for two reasons. The primary source forms part of a source mounted 

on some object whose movements are being measured and in some applications 

the small size of a semiconductor laser may prove particularly convenient. Sec- 

ondly, to overcome the problems of optical noise the source power might be 

amplitude modulated and the signal at the detector filtered electronically for 

the modulation frequency. A solid state laser is suitable for this purpose. 

Although continuous wave laser diodes can be obtained, until recently they 

have not been suitable for interferometry because of their short coherence length 

and wide spread of wavelength. Two new developments could overcome this 

deficiency however, being essentially monochromatic and with long coherence 

length. These are the cleaved coupled cavity diode and, perhaps more promis- 

ing, the distributed feedback diode. The stability of the wavelength of these 

diodes should be investigated. With the appropriate diode the complete source 

assembly could be made very small as shown in Figure 8.1. 

8.2.2 Slit Screen 

The air slits used for experiment were well made but required a through etching 

process which is quite critical. New large scale (and expensive) artwork is re- 

quired for every design. In the development phase of this instrument, it would 

be economical to make a mask (as used in chip manufacture) containing a whole 
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Figure 8.1: Design of Point Source Assembly. 

range of slit designs for different applications. The photographic process then 

becomes simpler, there being no need for multiple reductions. The etching of a 

thin metal film on a substrate is also a more consistent process. Furthermore, at 

the time of writing, masks can be made to an accuracy of less than one micron. 

Before taking this step however, it would be wise to test one example of "glass 

slits" to ensure that any problems of reflection from the other side of the thin 

glass sheet can be overcome. With the slits protected by a glass substrate, the 

front end of the receiver is far less susceptible to damage and is easily cleaned. 

8.2.3 Lens Design 

Large scale testing of lenses was not possible in the time available, but some 

representative camera objectives were used and their shortcomings noted. In 

any further tests of off-the-shelf lenses, one type which may be of interest in 

overcoming the vignetting problem is the retrofocus or inverted telephoto lens. 
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Examples of this type of lens can be seen in [Cox]. 

Another, and perhaps ultimately the most satisfactory approach is to have 

a lens designed and manufactured specifically for this job. Such a lens would 

incorporate a f5% adjustment on its focal length to accommodate tolerances. 

8.2.4 Diffraction Gratings and the Focal Surface 

Once an appropriate lens is obtained, the limits of off axis angle may be explored 

in more detail, as may the form of fringes on the focal surface as the pattern 

approaches the edges of this surface. Should geometric distortion adversely affect 

the integrity of the fringe pattern at the extremes of the focal surface, full use 

could not be made of the available object field of the lens. In that case, wider 

object field angles may be obtained by introducing some curvature to the image 

surface. 

8.2.5 Photodetectors 

Photomultipliers and a fairly cheap photodiode were used in the experiments 

and both were adequate for that purpose. The progression to a system with 

an amplitude modulated signal puts a further requirement on the frequency 

response of the photodetector, of whatever type. The choice of photodetector is 

therefore one of the first development tasks. The use of small components such 

as photodiodes allows the receiver to become quite compact. See the design 

given in Figure 8.2. 

8.3 Electronics 

The output of each photodetector in the optical system used in the experiments 

described in Chapter 6 is an analogue electrical signal. The signal is a sinusoidal 
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Figure 8.2: Design of Solid State Receiver. 

modulation which varies in frequency quickly and in amplitude slowly and is 

superimposed on a slowly varying level. 

The frequency of this basic signal depends on the rate of change of phase 

difference between the slits, which in turn depends on the position and velocity 

of the point source, and the distance between the slits. The rate of change of this 

frequency depends on the position and acceleration of the point source. These 

factors are different with different applications of the instrument. 

For a given application there is a maximum frequency around which the 

electronics of the instrument are designed. The amplitude modulation frequency 

is at least an order of magnitude higher than this phase change frequency. 

The signal conditioning electronics to be developed filters the signal, removes 

the varying DC level and produces a normalised, reconstructed sine wave which 

is then subdivided to give the highest resolution possible at any given frequency. 
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For examples of the resolution which may be obtained in this way, see Section 8.4. 

8.4 Applications 

The original motivation for the design of this interferometer came from a require- 

ment to be able to make accurate dynamic measurements of the trajectories of 

industrial robots. Test results from such an instrument could be used to make 

comparisons between the performance of different machines or as part of the 

design loop in improving robot dynamics and control. Errors in particular tra- 

jectories could be measured and used to draw conclusions about vibration in the 

structure, for instance, or inadequacies in the machine's kinematics. 

As part of a calibration procedure, accurate static measurements of the coor- 

dinates of points on the robot could be obtained and together with information 

from the joint position transducers on the machine be used to solve for the true 

kinematic parameters of the robot. This new model could then be placed in the 

controller and used to improve the machine's accuracy. 

A second application is in inspection of manufactured parts. Coordinate 

measuring inspection machines are massive, very expensive and sensitive to 

distortion due to temperature variation and their own weight. At least two 

approaches to the replacement of this type of machine with the interferometer 

described are possible. In both cases, a striking benefit is that cost does not 

increase dramatically with working volume as it does with steel and granite 

coordinate inspection machines. 

The first approach is simply to have a mobile point source which can be 

presented to the workpiece and touched against it at the points of interest. The 

source and its accompanying probe may be supported from a relatively cheap 

and compliant mobile structure whose function is merely to support the source 
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against gravity. The receivers would be mounted in a cluster of three at some 

convenient position outside the working volume. 

Calibration by placing the probe in known positions would be sufficient to 

establish the true positions of the receivers (if they were not already fixed) and 

the starting position and zero position of the source. A continuous record of the 

coordinates of the point moving in the working volume is then available. At the 

required positions the transformation to cartesian coordinates may be carried 

out automatically. With appropriate allowance for the probe, measurements 

may be processed to give the dimensions of the object or checked against the 

geometrical tolerances of the object's surfaces, for instance. 

The second approach to parts inspection introduces a further degree of au- 

tomation. In this case the means of supporting the point source is servo con- 

trolled. This might be a simple servoed cartesian gantry or an industrial robot 

arm. The inaccuracy inherent in such inexpensive devices is of no consequence 

here because the point source would be mounted on a compliant fixture at, for 

instance, the robot's end effector. Thus even if the robot can only move in steps 

as big as 0.1mm, the error is taken up in the compliant mount and the point 

source accurately gives the position of the probe on the workpiece, to a few 

microns if necessary. 

One basic motive for requiring a dynamic measurement system to be a non- 

contact one is to avoid contamination of the results by deflections caused by 

the forces applied to the workpiece. Another motive is the existence of long 

distances to the measuring point. 

An example of the latter is in the measurement of the dynamic behaviour of 

large structures such as civil engineering structures under wind loading. This 

could be done simply by mounting a coherent source at the point of interest 
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and monitoring its movement with respect to receivers sited on the ground some 

distance away. 

All the above are applications in which a record is being made of the co- 

ordinates of points either in a trajectory or in a few particular positions. As 

a position measuring device, however, the interferometer itself may be used as 

part of the feedback loop in a computer controlled servo system. One example of 

this type of application is in the fine control of angle between two components, 

perhaps in a machine or structure such as a telescope or an antenna. Another 

example of interest is in the control of dynamic machinery such as industrial 

robots, in which the accuracy of positioning of the end effector under load is 

increased by using the 3-D interferometer as an external position transducer. 

This overcomes position errors caused by the elastic deformation of the loaded 

arm. It also allows the tolerances on the machined parts of the robot to be 

relaxed and admits the possibility of using cheap materials such as plastics in 

the construction. Errors in the robot's own kinematics and in the model of the 

kinematics held in its controller would no longer have such importance and the 

wear of parts such as bearings would not affect accuracy. 

For a particular application, the most appropriate values may be chosen 

for various parameters in the design of the instrument. The aspects of the 

application to be considered are the range of operation, the working volume, the 

accuracy required and the environment. 

In the design of the instrument these requirements form the basis for decisions 

on wavelength, power, type of slit screen, slit separation and width, lens focal 

length and grating frequency. Examples of some design values are now given, 

with figures for the maximum resolution obtained by various subdivisions of the 

output sine wave. It can be seen that in the paraxial region in which these values 
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were calculated, the resolution is practically linear with both slit separation and 

range to the source. Off- axis, of course, this is not the case. 

With 2.5mm slit separation and 1 meter range, 1 fringe cycle corresponds to 

251.45 microns movement in the x direction, i.e. across the field of view. This 

was in fact the first example tested. 

With 10mm slit separation and 2 meters range, 1 fringe cycle corresponds 

to 126.56 microns movement in the x direction. Subdivision of the output sine 

wave signal by 10 or 100 gives resolutions of 12.6 and 1.26 microns respectively. 

The partitioning of sine waves is a technique used in the processing of the 

moire fringe output of the gratings of coordinate measurement machines. Sub- 

division to 1000 parts of a cycle has been used. That is preferable in that type 

of instrument to the alternative of using higher frequency gratings and counting 

only zero crossings, say. In any case, breaking up the fringe cycles into 10, 100 

or even 1000 parts is a conventional way of obtaining good resolution in the 

sampling of a periodic analogue signal. 

The examples of resolution given above are with laboratory work in mind. 

The theoretical maximum resolution with 20mm slit separation and a range 

of 1 kilometer is 31.64 millimeters per sine wave. Partitioning the sine waves 

by 100 gives a resolution of 0.3164mm and by 1000 gives a resolution of 31.64 

microns. This begs questions about the effects of atmospheric disturbances over 

long ranges and would require a high power laser. However, any problems with 

air currents etc. which may be found would not affect the instrument's use at 

long ranges outside the Earth's atmosphere. 

For this reason, space may well be a good environment for interferometry. 

The instrument can be used there in several applications which require kine- 

matic data. One example is the provision of information about the deflection of 
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flexible structures under load, as in, for instance, the control of the orientation 

of satellites which carry large banks of photocells. This information is required 

for use in the control of motors if potentially destructive oscillations are not to 

be set up in the structure. In this case the laser sources would be mounted on 

the flexing parts of the structure and the receivers in the body of the satellite 

provide feedback to the attitude control system. The provision of this type of 

control allows the satellite to operate with a greater degree of autonomy. Similar 

considerations would apply to space stations, in which large masses are joined 

together by long, compliant links (should it be desired to manoeuvre such a 

structure). 

A second example of an application in space is in precision navigation or 

positioning, again potentially with a high degree of automation. In this case 

the transmitting and receiving parts if the instrument are mounted on different 

vehicles whose relative position and/or orientation it is desired to control. It 

appears likely that there is a considerable degree of overlap in the design of 

control algorithms for satellites and for industrial robots employing externally 

obtained position data. 
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Appendix A 

Diffraction 

A.1 Diffraction at an Aperture 
A.1.1 The Fresnel Approximation 

For a general point (x, y) in the aperture the distance to the point P is ri and, 

r1 = [(x - x1)1 + (y - y1)2 + ziI IT (A.1) 

and with rio the distance from the origin in the aperture to the point P, i.e., 

z z z z r10 = x1 + y1 -+- zl (A.2) 

r1 = [(x2 -+2) - 2( xxl + yyl) + r101 
z (A.3) 

[(x 
= 

2 + y2 ) 2(x x l + yyl ) 
+ 1 A r1 r10 - z 2 

- ( .4) 

The binomial expansion gives, 

r to rlo 

1 -+- p = 1 + P - 
8 

+... (A.5) 

and using only the first two terms of the series, 
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ri - rio + (x2 + y2) (xx1 + yyi) 
(A.6) 

2rio r1o 

Substituting this expression for ri in Equation A.1 and omitting the e-=Wt term 

since the time variation of the field is understood gives, 

1 ik 1 r10+ __ 2-_ r+HH I 

E = f f E(x, y) e I 
1° 10 J dx dy (A.7) iAr10 E 

eikrlo ik x2+y2 '+'yy 

E = iAf f E(x, y)e 
x= 

2x10 r10 I dx dy (A.8) rlo E 

and with li = o and mi = r o the direction cosines of the point P, 

eikrlo 
rr 

ik( x2+ 2 
_(x11+yn+1)J 

JE E(x, y)e ` 2r'° dx dy E 
r1o iA 

A.1.2 The Fraunhofer Approximation 

(A.9) 

With the further assumption that rio >> k x22 y2 the Fraunhofer approximation 

is obtained. 

ik x2,+2 
e 2r10 e° 

and, 

(A.10) 

e ikrlo 

E i rio ff E(x, y)e-ik(xtl+ym1) dx dy (A.11) 

A.2 Diffraction at a Rectangular Aperture: 
Incident Plane Waves 

In this section the Fraunhofer diffraction integral, Equation A.11, is evaluated 

for a rectangular aperture with sides at x = ±a, y = ±b, on the plane z = 0. The 
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incident plane wavefronts are from a non-axial direction, the wavefront normals 

having direction cosines 1, in, n, to the x, y, z axes. The field at the aperture is, 

E(x, y) = E0eikr E0e-ik(xl+ym) 

and Equation A.11 becomes, 

(A.12) 

eikrlo 

f-al-b 
a b 

Eoe-(m)e-ik(x11+yml) dx dy (A.13) E 
i 

Eoeikrlo a b E _ 
f_a 

e-ik(xl+xl,) dx / e-(ymmi ) y (A.14) 
irlo f b 

E eikrlo Eo ja e-ikl, )x dx e-(m+mi )y dy (A.15) i)rlo a f b 

E 
Eoeikrlo e-ik(1+11)x a e-ik(m+ml )y b 

iirio -ik(l + 1,)] -ik(m + ml) l J_ a b 

E= 
Eoeikrlo e-ik(1+11)a - eik(1+11)a e-ik(m+ml)b - eik(m+m1)b 

zArlo 
2a -2ik(l + ll)a 2b 

-22*k(m + ml)b 

= Eoeikrlo 
4ab 

sin k(l + ll)a sin k(m + ml)b 
iArlo k(l + ll)a k(m + ml)b 

ikrlo 
E = Eoe 4ab sinc [ka(l + ll)] sinc [kb(m + ml)] i)rio 

The irradiance I is the product of E and its complex conjugate E* 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

I = EE* (A.20) 

ikrlo 

I = E)rio 4ab sinc [ka(l + ll)] sinc [kb(m + mi)] 
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Eoe-ikrio 
x 

oe 
4absinc [ka(l + 11)] sinc [kb(m + ml)] (A.21) 

l0 

2 

16a2b2 sinc 2[ka(l + l1)] sinc 2[kb(m + ml) (A.22) I = Eo2 

10 

A.3 Diffraction at 2 Rectangular Apertures: 
Plane Waves at Normal Incidence 

This section gives in detail the derivation of the contributions El and E2 to the 

electric field E at a point in the far field. El and E2 are due to diffraction at 

apertures E1 and E2 respectively. 

E=E1+E2 (A.23) 

eikr 
El = 

l off Elo(x, y)e-ik(xll+yml) dx dy (A;24) 
iArlo I 

E l0 = E20 = Eoe-i "t, and ignoring time dependency, 

eakrl0 -A+a b E_k(xl' 
+vmi) E1 

iAr10 f-A-a 1 b oe- dx dy (A.25) 

ikr10 -A+a 6 

El 
E r f A-a 

e-ikxll dx f b 

e-ikyml dy (A.26) 
to 

E1 = 
B0eikrio a-ik1j x -A+a a-ikml y b 

iAr10 [-ikli ] -ikml ib 
(A.27) 

0 
[e-ikll(-A+a) 

1 E 
E eikr10 e-ikll(-A-a) 

2b 
a :kmlb eikmlb 

1 iA rlo 
2a -2iklla -2ikmlb (A.28) 
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E eikrlp eik11 A [eikllaa a-ik11 a1 [eikmlb- a-ikml b 

E1 = (A.29) iarlo 
2a 

2iklla 
I2b 

2ikmlb 

Eoeikrlp eik11 A 

El = 
iAr1 

4ab sinc [klla] sinc [kmlb] (A.30) 
0 

Also, 

E2 = J r iAto A a 6 

(A.31) 

E+ eikrlp A+a b 

E2 o 

fA-a 
-ikxll dx r -ikyml dy (A.32) 

iAr10 J b 

E+oeikrlp a-ikllx A+a -ikmly b 

E2 
iAr10 [ -ikl1 l ((-ikmlJ_ J A_aL 6 

(A.33) 

L,+ eikrlp [e_ikll(A+a) e-ik11(A-a) l [ekm1b- eik mi b 

E2 
Ar10 

2a -2iklla J 
2b -2ikmlb l (A.34) 

J 

Eoeikrlp a-ik11 A -a-ikll a eikml b- a-ikml b 

E2 - 
iAr10 

2a 
1eiklla 

2iklla ] 
2b 

( 2ikmlb 
(A.35) 

L,+oeikrlpe-ik11A 

E2 i1r10 
4ab sinc [klla] sinc [kmlb] (A.36) 

Adding the electric fields E1 and E2, the eik11 A and a-ik11 A terms form a 

cosine function, and the total disturbance is, 

Eoe 
E = 

oei 
8ab sine [klla] sine [kmlb] cos[kl1A] (A.37) 

iArjO 

eikrlp IA +a !6 
Eoe-ik(x11+ym1) dx dy 
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A.4 Diffraction at 2 Rectangular Apertures: 
Incident Plane Waves 

This section derives the electric field due to diffraction of off-axis incident plane 

waves at two parallel rectangular slits. The wavefronts have normals with direc- 

tion cosines 1, 7n, n. 

E = E1 + E2 (A.38) 

eikr1o 

o(x, y)e(xli +ym') dx dy (A.39) El = lIE, Ei iArlo 

r1o being the distance from the aperture screen origin to the observation point. 

At the aperture screen, the electric field is Eoe-ik(xl+ym) neglecting time de- 

pendency, and so, 

eikrlo -A+a 6 

E1 
5Arlo I-A-a I-b 

Eoe-tk(xl+ym)e-ik(xll+ym1) dx dy (A.40) 

Eoeikr10 -A+a b 

El ir IA -a 
e-ik(1+11)x dx f 

n 

e-ik(m+m1)y dy (A.41) 
to 

Eoeikrlo e-ik(1+11)x -A+a e-ik(m+m1)y b 

El 
iAr1o {-ik(l + l1) - {-ik(m + ml) A-a -6 

(A.42) 

Eoeikrlo [e_(t+hi)(_Ai) e-ik(1+11)(-A-a) e-ik(m+m1)b eik(m+m1)b 
El 

iArlo 
2a -2ik(l + l1)a j 

2b 
-2ik(m + ml)b 

(A.43) 

E1 
Eoeikrloeik(1+11)A 

2a 

eik(1+11)a e-ik(1+11)a 

2b 
Leik(m+m1)l e-ik(m+ml)b 

iArlo [ 2ik(l + 11)a 
l 

2ik(m + m1b 1 

(A.44) 
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E eikraoeikA(1+1a) 
Ei = ® iar 4ab sinc [ka(l + 11)] sinc [kb(m + mi)] (A.45) 

la 

For the second aperture, 

eikrao A+a- e; (+ )eik(la+ a) dx d y 
b 

(A.46) 

E2 
®e ra® 

JA- 

A+U 
(Q+aa)= dx f e-(m+ma)! dy (A.47) 

iAr10 a J b 

Eoeikr,o a ik(b+la)r A+a e-ik(m+ma)sr b 

E2 = iar10 [-ik(l + li)1 _ [_ik(m + ml)]_, A 

E FDeikrno 2a 
e-ik(1+I1)(A+a) - e-ik(l+la)(A-ai) 

2b 
a ik(m+ma )b - eik(m+ma )b 

E2 
iarl0 -2ik(l + ii)a [ -2ik(m + mi)b 

(A.49) 

EOeikraoeik(l+ln)A eik(l+la)l e-ilc(l+la)a eik(m+ma)b e ek(m+ma)b 
E2 

iarlo 2a 2ik(l + li)a ] 
2b 

2ik(m + ml )b 
(A.50) 

Oeikrao e-ikA(l+la ) 
Ez 

iar10 
4ab sinc [ka(l + 11)] sinc [kb(m + ml)] (A.51) 

As with the case of normal incidence the E1 and E2 contributions add to give 

E which has a cosine modulation. 

Eoekno 

E iArto 
8ab sinc [ka(l + l1)] sinc [kb(m + mi)] cos [kA(l + l1)] (A.52) 
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Plate 1. Interference Fringes due to Diffraction 
of Plane Waves by Two Slits. 

Plate 2. Apparatus to show on a Video Monitor the 
Interference Fringes focused by a Lens. 
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Plate 3. Interference Pattern obtained with Collimated Beam, 
Slits, and Lens as in Plate 2. 

Plate 4. Apparatus with Collimating Lens removed to give Point 
Source. 
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Plate 5. Interference Pattern obtained with Point Source, 
Slits, and Lens as in Plate 4. 

Plate 6. Camera fitted to obtain records of Interference 
Patterns. 
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Plate 7. Print of Interference Pattern obtained with 270mm focal 
length Lens (after rephotographing negative). 

i 

Plate 8. Print of Interference Pattern obtained with 100mm focal 
length Lens (after rephotographing negative). 
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Plate 9. Apparatus to measure Diffraction Grating output 
with a Grating in front of the Lens. 

} 

Plate 10. Apparatus to measure Diffraction Grating output 
with Two Slits in front of the Lens. 
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