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i. 

SYNOPSIS 

The thesis describes an experimental and theoretical study 

of the early stage of nucleate pool boiling of saturated and 

slightly subcoo led water from a flat beating surface. 

In the first chapters is described the experimental pressure 

vessel and test procedure used in carrying out experiments. in the 

pressure range from atmospheric to 749 lbs./inch2  abs. Also is 

described the methods by which cavities with mouth radii from 100 

to 550 x 	inches are produced on the heating surface, and 

these sizes measured! A micro-thermocouple (0.002 inch dia, 

wires) welded to the lower, insulated surface of the electrically 

heated test strip measures the stripl temperature, and by 

calculating the temperature drop across the strip, the heating 

surface temperature is determined. A procedure involving a 

reversal of the heating strip current is used to calibrate the 

heating strip thermocouple for the small unavoidable voltage 

pick up "'  from the strip. The heat flux is computed from the 

electrical, power input to the strip. 

An intermediate chapter deals with the derivations of 

theoretical equations to predict (1) the initiation of boiling, 

(ii) the rate of increase in bubble sites with increase in super-

heat temperature and (iii) the bubble frequency at each site. 

The first equation is derived by applying the Gibbs and Clausius-

Olapeyron equations to a model of an ideal vapour-filled conical 

cavity; the second follows from the first equation and the 

measured cavity distribution; and the third is derived from 
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assumptions regarding conditions in the liquid layer adjacent t. 

the heating surface (thermal layer), and the assumption that this 

layer is heated by transient conduction only. The theroetical 

predictions of initiation and the rate of increase in the number 

of bubble sites with superheat temperature, are in good agreement 
'ii. 	

with the experimentally recorded values. 	The theoretical values 

for the increase In the number of bubble sites with increase in 

superheat temperature, and the bubble frequency at the first eight 

bubble sites, are combined to give the increase in the number of  

bubbles per unit area of heating surface per unit time for 

pressures of 14.3 1  30 and 122 lbs./inch2  abs. An equation has 

been derived, which takes account of both the free convection 

heat flux and the heat flux associated with bubble growth; this 

equation is shown to correlate experimental weak boiling curves 

at 14,3 and 30 lbs./inch 2  abs. 

Two methods for measuring the thickness of the thermal layer 

at pressures of atmospheric and 30 lbs./inoh 2  abso are described 

in later chapters. Th e  first or shadowgraph method, which is 

based on the refraction of light rays by density change corres-

ponding to temperature change in the water, is also used to study 

the growth and behaviour of the thermal layer before and after 

the initiation of boiling. The second method employs a 

traversing thermocouple to measure the temperature distribution 

in the liquid, and to determine the layer thickness. Thicknesses 

of 0.036 and 0.034 inches have been measured by this method for 

pressures of 14.4 and 30 lbs./inch 2  abs. and subcoolings of 4.5 

and 5.00? respectively. The thicknesses of the layer measured 
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at atmospheric pressure by the two methods are in lair agreement. 

An equation by. Chang [33] from an analysis of free conveetion heat 

transfer, predicts with some •success the thickness of the thermal 

layer at atmospheric pressure. A discussion of the experimental 

boiling curves for a pressure. range from 14.3 to 749 1, s./inch 2  abs. 

is also included. 

It is claimed that much of this thesis is concerned with  new 

information on the region of weak nucleate boiling. . 
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CHAPTER 1 

Introduction 

The advent of highly-rated nuoler reactor systems has 

brought a renewed interest in boiling beat transfer and a 

subsequent demand for more exact knowledge on the mechanisms Of 

boiling. Design engineers, who have to be able to predict beat 

transfer coefficients for a new system, derive their information 

in many cases from either previous experience, ad hoc experiments, 

or from costly pilot plant, rather than fundamental knowledge of 

the processes involved. Information on boiling heat transfer is 

not only required for the present-day Nuclear Power Station with 

its associated steam raising units and for design studies on 

boiling water reactors 9  but for every kind of evaporator in 

practical use. 

This work is concerned with the initiation of nucleate pool 

boiling of saturated and slightly .subcooled, i.ea temperature 

below saturation, water on a metal surface. I 

Nucleate boiling is characterised by the formation of bubbles at 

discrete centres or sites on the surface9 	Itt.is true that pool 

boiling is a special case of heat transfer and that forced 

convection boiling, in which liquid has an externally applied 

velocity, has a wider application in industry. On the other band, 

pool boiling is better suited to the study of the growth and 

departure/collapse (depending on whether liquid is saturated or 

subcooled) of vapour bubbles on a heating surface! 

The existence of several regimes of boiling was first 
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discussed by Nukiyama in 1934 (see McAdams [i]), and a typical 

pool boiling curve showing these regimes appears in Figure 1; 

the heat flux 	is plotted against the temperature difference 

between the heating surfaoe and liquid saturation temperature 

(Tour -Teat), to  logarithmic scale. 	In the range A - B. heat 

is transferred by free convection, and evaporation occurs only at 

the surface of the pool. At B. boiling is initiated, causing an 

increase in the heat transfer rate so 'that the curve bends upwards 

forming a "knee". Beyond the "knee", the curve becomes straight, 

corresponding to vigorous nucleate boiling. At 0, the heat flux 

goes through a maximum, which is termed the "critical heat flux" 

and in some way is connected with the overcrowding of bubbles on 

the heating surface. In the range C - D. part of the surface is 

insulated by a vapour !film  and 	decreases as (Tour - That) 

increases. At point D. the heat flux goes through a minimum, the 

heating surface being completely covered with a film of vapour. 

In the film boiling region D - E, heat is transferred by conduction 

across the vapour film and by radiation from the heating surface, 

Beyond B, the curve continues until the temperature difference 

(Tour - Teat) corresponds to the melting point of the metal; a 

further increase in temperature causes "burn-out". 

weetwater 2j, reviewed several equations published after 

1952, fér the correlationof nucleate pool boiling of a saturated 

liqutd, I and it would seem that a oaf oty factor  of at least two 

should be included in the ca,loulations. In W41nN the factor 

should be much greater. 	Most of the equations contain a constant, 

whose value is either given, or has to be evaluated from experimental 
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results for a particular liquid-surface combination. The 

inclusion of this constant is to account for beating surfaces 

having different nucleation characteristics. 

It Is pertinent to ask, "what are the nucleation 

characteristics of a heating surface?" The answer is (1) the 

incidence of nucleation, (ii) the distribution of active sites 

and (iii) the bubble frequency at each site. A knowledge of 

these three factors would give the bubble flux distributIon., i.e. 

the number of bubbles on the heating surface per unit area and 

unit time, which may then be multiplied by the energy associated 

with the growth of a bubble, to build up the shape of the nucleate 

boiling curve. 

The nucleate boiling studies to be discussed here were there-

fore confined to evaluating both the nucleation charactertatics of 

the experimental heating surface, and the energy associated with 

the growth of a bubble, and to using these values to predict the 

boiling curve. As •a result, only the very, beginning of the 

nucleate boiling regime B - C, inPigure 1., was investigated. 

The extent of the study is that region outlined in the left hand 

bottom corner of Figure 1. 

The initiation of boiling In a superheated liquid resembles 

the onset of oavitation.in a hydraulic system, where the reduction 

of liquid pressure is brought about by the rapid relative movement 

of the liquid and solid boundary surface, and may be related to 

the start of dropwise condensation on a colder surface. Each of 

these examples is a nucleation process, and information gained on 

this phenomena in the field of boiling may prove valuable in 
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understanding other nucleation processes. 

It is widely accepted that a vapour bubble growing iris 

superheated liquid, must have originated from a vapour bubble so. 

small that It was in equilibrium with the surrounding liquid. 

The mechanical, equilibrium of a vapour bubble in a liquid is given 

by GibbS [] equation 	- 	= 	, where fr, is the vapour' 

pressure within the bubble, K the liquid •pressu outside the 
bubble, .c the surface tension of the vapour-liquid boundary and 

12 the critical value of -r for equilibrium. The kinetic theory 

of liquids has glso been used to predict the size of the critical 

nucleus, by adopting a. model which assumes the existence of holes 

in a liquid. 'Blake 4], in a review of the so called. "hole" theory 

by several authors, has shown that the kinetic theory fails to 

predict the existence in pure liquids of a bubble nucleus of the 

size required to explaIn, experimental results. An acceptable 

alternative explanation is the presence of bubble nuclei by the 

adsorption of 'gas in minute dracks or cavities on the metal 

boundary surface. This explanation is consistent with expOimental 

evidence, which shows bubble formation to be favoured at solid 

surfaces. 

The first step in the preparation of the experimental heating 

surface was to remove the etisting grooves and cavities and intro-

duce -cavities with well defined boundaries (see Section 3, 6,) 

The cavity sizes were then measured by optical means and the 

distribution approximated by the normal Law (see Figure 6). 

Surface cavities of this kind would seem to be very different 

from that of a surface found in iüdust.ry 0  where, after a long 
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period of boiling, the surface is probably covered with a film 

of deposits or oxide. 	On the other band, at a recent ,  conterenee 

on Boiling Heat Transfer 5j )  it was pointed out that during 

nucleate boiling, deposits (silica) were laid down in rings 

around the bubble sites, thus preserving the cavity distribution. 

This means that the nucleation characteristics for a clean 

surface of known cavity distribution may still be the same., even 

when the surface is covered with a filth or scale; although it is 

possible, however, that some modification may result from 

oxidation of the cavities themselves, thus reducing their size 

for criticality. 

A model based on an ideal vapour filled surface cavity is 

postulated in Chapter 5, and an equation (Equation (5; 1, 14.)) 

derived to determine the superheat which is required to: initiate 
I 	 I 

a cavity of characteristic radius -iZ , were ia is the cavity 

mouth radius. This equation was derived using a combination . f 

Gibbs [3] equilibrium equation, and the Claueius-Clapeyron 

relation, which converts the pressure difference term ( fr 
In the equilibrium equation to the corresponding degree of super-

heat. 	Equation (5.  1. 14.) is based on the assumption that - just 

prior to initiation the cavity vapour nucleus is in contact with 

a uniformly superhéated liquid. 	If this is so, then the thick- 

ness of the heated liquid layer adjacent to the surface (thermal 

layer) must be very much greater than the radius of the vapour 

nucleus; a fact which was borne out in measurements of the 

thermal layer thickness. In Chapter 6 is described the method 

of measurement of the thermal layer by a shadowgraph technique, 
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which is based on the refraction of light rays passing through 

the liquid. Refraction is caused by the density change cones-

pending to the temperature change (for an incompressible. fluid) 

in the thermal layer. The thickness of the layer was also 

measured, by measuring the temperature distribution In the liquid 

above the heating surface, using a traversing thermocouple, and 

this Is described in Chapter 7. 

In this study much effort has been directed towards obtaining 

reproducible experiments, and a correspondingly large part of the 

thesis is devoted to describing the experimental, apparatus and 

procedure in detail. Of particular importance is the method by 

which the beating surface temperature was measured (see Section 

3.. 7.), 	Here, a micro-thermocouple (0.002 inch diameter wires) 

was discharge welded to the lower, insulated surface of the 

heating strip, in such a way that the thermocouple voltage "pick 

up" and heat losses from the vicivity of the, junction were 

reduced to a minimum. A calibration procedure, which corrects 

for the thermocoiple voltage "pick up", is described in Chapter 4 

The temperature at the heating surface (upper surface of strip) .  

was obtained by subtracting the temperature drop across the strip 

from the measured lower surface temperature. Chapter .4 also 

includes a description of the method for preventing corrosion of 

the boiler walls and the procedure for degassing the beatIng, 

surface at a low pressure. 

The experimental curves of heat flux versus beating surface 

temperature, for a pressure range from 14.3 to 749 1bs./inch abs., 

are described in chapter 8, and the effect of pressure and sub- 
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cooling on on the different regions of these curves is discussed, 

The experimental curves,at 14.3, 124 and 2031b8"/ta012  abs...,. 

were extrapolated to zero subcoo].ing and correlated for the. 

effect of pressure by an equation of Forster and Greif [6], 

(Equation 8. 1. 1.). A discrepancy between free convection 

results and theory is also dièoussed in Chapter 8. 

The thesis concludes with Chapter 9, which lists the main 

conclusions of this work and shows that some degree of success 

has been achieved in the correlation of nucleate boiling paracters, I 
This success was achieved by the derivation of equations to predict 

the initiation of boiling, the bubble flux, and the energy associated 

with the growth of a bubble. 



CHAPTER 2 

Historical 

2.1. :Initiation of boiling 

Keurick., Gilbert and Wismer 7] used two methods to, investi-

gate the extent to which a liquid can be superheated without 

boiling taking p.-lace 

Sudden boating of the liquid in open capillary tubes at 

atmospheric pressure. 

Reducing the pressure on the liquid. in closed tubes at a 

fixed. temperature. 

The results of many teats carried out in an exactly similar 

manner showed that the maximum value of superheat temperature 

varied in a random way from test to test. These variations 

were attributed to the initiation of boiling from nuclei attached. 

to the wails of the tubes. The radius 12, of the stable equili-

brium vapour nucleus, given by Gibbs .3] equation 0= 	. , 
C

.  

where 	is the pressure difference across the nucleus boundary 

and C the surface tension of the vapour-liquid boundary, was 

calculated for several different liquids and found to be of the 

same order of magnitude. Further importance was attached to the 

equilibrium radius, and it was shown that for the same liquid 

(ether), the change in maximum superheat temperature with external 

pressure was satisfied by a constant value of the radius. 
Fisher 	was probably the first to discuss in detail the 

incomplete penetration of liquid into a surface cavity and the 

possibility of these cavities being nuclei for bubble initiation. 
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Dean 91 carried out experiments which showed that surface 

geometry alone would not produce bubble nuclei, but that the 

surface should also be contaminated by adsorbed gases or be 

hydrophobia *  or both. 

Clark1 Strenge and Westwater io photographedactDebubble 

sites through  microscope, during and after nucleate boiling of 

ether and pentane on zinc and aluminium surfaces at atmospheric 

pressure. 	The active sites were found to be circular pits on 

the metal surfaces, with diameters ranging from 300 to 3300 x icr' 

inches. 

Claude and Foust iiJ boiled ether, normal pentane and 

Freon 113 on a nickel surface at atmospheric pressure,, and derived 

an equation for the equilibrium radius by applying Gibbs [3] 

equation to an Idealised conical surface cavity. Thó experimentsl 

data at initiation, together with a cavity cone angle and meal-

liquid contact angle, were substituted in the equation to give a 

value for the equilibrium radius. Representative values of cone 

angle and contact angle were obtained by measuring the cone angles 

of grooves on the heating surface, which were caused by treatment 

with emery papers and the contact angles of bubbles1 whIch were 

about to leave the surface. The equilibrium radius was found to 

be of the sane order of magnitude as the width of the auz'fáóe H 

grooves. 

westwater [12] classifies surface cavities into four groups 

depending on their geometry, and then determines for each group 

whether they will fill with liquid or trap gas. The first group, 

which are wide shallow pits., are said to.fill with liquid; the 



- 10 - 

second, which are pits with rounded bottoms, can either fill with 

liquid or trap gas depending on their cone angle and metal-liquid 

contact angle; the third are narrow pointed pits and cannot be 

filled by a liquid having a metal-liquid contact angle signifi-

cantly greater than zero; the fourth group, are re-entrant,. 

cavities with narrow mouths and are described as, excel:. eat gas 

traps 

Hsu 13 proposes a .modelin whSchja vapour nucleus of radius 

is at rest at the mouth of a heating surface cavity and is 

surrounded by the relatively cool liquid at bulk temperature. 

As the heating surface temperature is .raised, a liquid layer of 

limited thickness is heated by transient conduction, until the 

superheat temperature in the layer at a distance 2 C from the 

surface equals the vapour nucleus temperature, and the nucleus 

starts to grow, The Clausius-Clapeyron and Gibbs [J equation 

were combined to give the nucleus, temperature. .The,period of 

heating is termed the "waiting tirne" and this ends when the 

nucleus starts to grow. This criterion for the end of the 

"waiting time" Is one of the major features of the model, since 

a nucleus can only be effective If the "waiting time'" Is .fnitea 

This fact is therefore used to give the limiting sizes of 

effective cavities, i.e. maximum and minimum sizes of 'VZ , , The 

equation for rc pan also be used to give the superheat temperature 

at initiation of boi.ing, provided there are beating surfabe, 

cavities of a wide spectrum In sizes. Each equation, however, 

requires that the thickness of the heated liquid layer be 

substituted before it can be used. 
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Han and Griffith 141 use a model and analysis which is 

similar to that of Hsu [131  to derive an equation for the 

maximum and minimum effective cavity radius at a particular 

superheat temperature. The criterion for bubble initiation in 

this case is that the superheat temperature in the liquid layer 

at a distance 4 r& from the heating surface must be equal to the 

temperature of the nucleus. The thickness oftthe liquid layer 

to be substituted in the equation was evaluated on the assumption 

that, in free convection heat transfer, the heat is first trans-

ferred byunstead&tate conduction across this layer. The free 

convection heat transfer rate may be obtained from either theory 

or experiment and substituted in the Fourier conduction equation 

to give the thickness of the layer. 

The equations of Hsu [13] and Ban and Griffith 14] 
L 
for the 

maximum and minimum radius 'ci , can therefore be used to give the 

range at effective cavity sizes, provided there is a wide range 

of cavity sizes on the heating surface (see Section 8, 3.). 

This previous work suggests that a theoretical prediction 

for the incidence of nucleation may be derived, if a characteristic 

dimension of a heating surface cavity can be related to the, 

critical radius ta in Gibbs [3] equation and to the thickness of 

the thermal layer. 

An analysis along these lines is described in Chapter 5 of 

this study. 

2.2. Correlation of nucleate boiling data 

A large number of equations have been derived to relate 
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liquid and surface variables in _ord.etto 	correlate 

experimental data of nucleate pool boiling. These equations 

which are intended to apply to saturated liquid, correlate the 

steep part or "established boiling" region of the boiling 'curve 

only. 	In general, dimensionless analysts is used to relate the 

variables, and the derivation of two such equations is described 

here. 

Forster and Greif [6] set out to relate the fundamental 

properties of the boiling liquid, without considering the 

influence of the boiling surface conditions. A model is 

proposed, in which the growing bubbles transfer beat by.pusbing 

a bubble volume of hot liquid away from the heating surface Into 

the, colder bulk liquid. . The voids left by the departing bubbles 

are filled by the bulk liquid, which Is then heated and the 

process repeated.. This model was derived alter the observation, 

that Only 2% of the heat transferred during boiling was required 

as latent heat for bubble growth. 

The 	variables are related by the Prandtl number 

two othe47r_groups j  which play the part of the Reynolds number 'NRc 

and the Nusselt number NNu in the correlation of forced convection 

heat transfer data from a solid boundary to a liquid. A co-,. 

efficient for the growth of a vapour bubble in a highly super-

heated liquid is inserted in the dimensionless group which 

represents the Reynolds number, and the critical radius of a 

nucleus from Gibbs 431, equation in the group representing the 
Nuss,elt number. The groups are related in the usual form 

NNU a N RZ N 	,,. where 0 is a constant and has to be evaluated 
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from one set of experimental results for a particular liquid-

surface combination.. A value of 4 was chosen for the exponent 
n, since in many heat transfer problems the Prandtl number to 

the power 4.correlates the data. The exponent rn equal to 5
1  was 

dartEd from an equation of Bonilla and co-workers [15].,  relating 

superheat, to system pressure at constant heat flux, and for low 

pressures. 

The correlation can, however, be ±eduoed to the form 

VA = .l AT54 At, where 	is the heat flux at the superheat 

temperature difference AT sup . and A the pressure difference 

corresponding to AT5; C is a constant which: depends on the 
properties of the liquid and vapour, and on the 1,iquidsuflaq• 

combination. 

Roheenow 16 claims that most of the transferred heat goes 

directly from the heating surface to the liquid and that the 

increased heat transfer rate during boiling is due to the 

agitation of the liquid by the bubble motion. On this bafle, 

the heat transfer data is correlated by the formulation of a 

bubble Reynolds number NRC, a bubble Nusselt number NN and a. 

Prandt]. number.NPp, 	The bubble diameter.at  depavtu3e, and  
mass velocity term; consisting of the product of t1Smass per 

bubble, the bubble frequency and the number of bubble sites per 

square foot of heating surface,, define, the bubble Reynolds, ,.number.' 

The bubble diameter at departure is inserted in the bubble •Nusselt 

number for the characteristic length. These groups are related 

in the form NN= c. N. N 	., where the constant C has to be 
evaluated from experimental results for a particular liquid-surface 
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àombinjtion. The variation in the value of C for different 

liquid-surface combinations is attr±büted to the omission of 

the  bubble contact angle P from the bubble Reynolds and tusselt 

numbers. Constant C is therefore a function of P: , and wiilbe 

determined by the condition of the heating surface and the 

properties of the fluid. Values of 0.33 and 1.7 for exponents 

m and ii respectively were chosen to fit the final eçuation to 

experimental results of Addoms [ii].  The equation can be 

reduced to 	= 	 whereis the heat flüxat the 
UP 	 A 

superheat temperature difference LT up and 0.a constant which 

depends on the liquid properties and on the liquid-surface 

combination. 

The equations of Forster and Greif [) and Rohsenow 1161 
along with others, are compared with the experimental nucleate 

boiling results of this work, in Section 8. 1. 



CHAPTER 3 

Experimental Apparatus 

3.1. General description 

An apparatus was constructed to enable the experimental 

study of nucleate pool boiling of water, on a metal heating 

surface, in the pressure range from atmospheric to 

1000 lbs./iuch2  abs., and for a maximum water temperature of 

550°?. 

The boiler finally decided on takes the form of a stainless 

steel flanged cruciform (Figure 2), the cruciform shape resulting 

from the requirements of a vapour condensing surface above the 

liquid and space for the bulk liquid heaters.. The flank flanges 

allow easy access to the inside of the boiler, and by mounting 

the test heater on the inside of the bottom flange and the bulk 

liquid heaters on the inside of the side flanges, their removal 

for inspection and maintenance is a simple operation. The bulk'.' 

liquid heaters, together with a heater on the outside wall of 

the boiler, maintain the liquid temperature at any 4esreda1ue, 

A nitrogen source and pressure control valves supply 

nitrogen to the boiler and maintain a steady isystem 1 pressure up 

to a maximum, of 1000 lbs./inoh 2  abs. Water jet pumps and 

vacuum control valves reduce the pressure within the boiler to 

a minimum of 1 lb./inoh 2  abs. (see degassing procedure, Section. 

4. 3. 2.). Windows designed to withstand pressures of over 

1000 lbs. /inch 2  are fitted into the opposing side flanges and 

allow visual study of the bubbles formed on the test heating 
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surface during nucleate boiling. The boiler and other parts 

of the apparatus are shown in .  Figure 3. 

Boiler shell design and fabrication 

The boiler shell (Figure 2) was designed for a maximum 

pressure and temperature of 1000 lbaa/inch 2  abs. and 5560P, in 

accordance with B.S. 1560 for pressure vessels. 

Austenitic stainless steel was specified for the materiai,anj} 

Rhe aa fabricated by argon-are welding four short lengths 

of pipe together to make a cruciform shape. Blank flanges of 

84 inches outside diameter by It inches thick were bolted to the 

pipe flanges by S - 1 inch diameter higb tensile bolts and nuts, 

at a pitch circle diameter of 6* inches.. 

The complete assembly was stress relieved at 1100 0P and 

then taken apart and the inside walls polished with a rotary 

wire brush. 

3.3. Boiler window design and fitiiflL 	 ... 

Windows were designed to fit into the two opposing blank 

side flanges and to withstand a maximum boiler pressure of 

1000 lbs./inoh2  absolute (see Figure 4). 	
. 

A. window sight size of I inch diameter was fixed by the 

strength of the stainless steel hank flanges. One half of 

the window frame was machined from the blank flange and the 

other from a mild steel flange that could be secured to the 

blank flange by . 	ft inch diameter studs and nuts.. Two 11 inch 

diameter by * inch thick "Armourplate" glasses, in complete 
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contact with each other and each capable of carrying the maximum 

pressure, were glazed into the metal frame. Pressure seals 

between the glass and metal, were cut from "Walkerite" jointing 

and asbestos fibre used to insulate the edges of the glass from 

the frame. 	The two halves of the frame were bolted together, 

taking care that the pressure on the glass was evenly distributed. 

3.44 Test heater design and choice of heat supply 

A heater having a flat surface in contact with the test 

liquid was designed to the following requirements: 

A maximum heat flux output that would give established 

nucleate boiling on the surface. 

Uniform heat flux over the surface area. 

(a) Simple control of the heat flux. 

(d) Accurate assessment of the heat flux and temperature of the 

surface in contact with the liquid. 

Experimental work of Addoms [17] in the pressure range from 

14.7 to 2000 lbs./inch 2  abs. indicates that a heat flux of 

2 x IO B4t.u./ft. 2  hr. should be sufficient to give "established 

nucleate boiling" of saturated water in the pressure range from 

atmospheric to 1000 lbs./inch 2  abs. 

Three different methods of supplying heat to the test 

surface were considered. 

(1) Steam is supplied at constant pressure and allowöd to 

condense on the surface of the heater, which is away from the 

test liquid. This has the advantage of constant temperature 

at the condensing surface. A heat transfer coefficient between 

/ 
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the condensing steam and metal surface has to be estimai . e4, 

however, before the temperature drop through the wall can be 

calculated, to give the temperature of the heating surface. 

The heat input to the test surface is measured by metering 

the steam condensate; and the heat output, by measuring the 

heat taken up by the cooling water, in condensing the vapour 

generated in the test liquid. ,We'stwater and Santangelo [18] 

have reported disagreement between these values of the order of 

50% for low rates of boiling (6 x 10 B.t.u./tt.' hr.). 	The 

accuracy of the temperature measurement is not given, but is 

probably better than 1$. 

Another method which has been used is that of a copper 

conductor, iivth±eheat is supplied by electrical heaters to a 

finned end and then conducted through a short length of uniform 

area to the heating surface. Thermocouples are embedded in the 

uniform section and the readings extrapolated, to give the 

temperature of the surface in contact with the liquid. The heat 

flux can either be calculated from the temperature gradient in 

the copper conductor, or from the electrical power input to the 

finned end. One advantage of this system is that the boiling 

surface can be treated with emery paper to change the nucleation 

properties. 

Claude and Ptuat Jnj $ using a similar system, estimated 
that the heat flux measured was accurate to within 22%., and the 

surface temperature to within 09  for low rates of boiling. 

A third method, which best satisfied the design requirements 

and was adopted in the present study, consists of generating heat 
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within the test beater by the passage of electrical current. 

The heat flux may be calculated directly from the electrical 

power input to the beater, provided there are no beat losses 

from the surfaôes of the beater that are not in, contact with 

the test liquid ( see : Section 3. 5.). 	Difficulty may be 

experienced in trying to measure the surface temperature, but 

this is discussed later in Section 3. 7. 	Control of the heat 

flax is simple:, and since the cross-sectional area of the heater 

will be small to reduce the power consumption, steady conditions 

of heat flux and temperature will be reached quickly. Methods 

(1) and (2) require periods from one to two hours to reach 

steady conditions after a change In heat Input. 

The dimensions of the heater were chosen so that the width 

would be greater than the diameters of the largest bubbles at 

atmospheric pressure, and that the electrical resistance would 

be sufficiently large to allow d.c. accumulators to be used as 

a power supply. Direct current power was selected, because 

EllIon [19] and Batten 120 noticed that a.c. power caused a : 

120 bycle/sec. growth and collapse of bubbles. Staniszweski 

211, measured bubble diameters of approximately 0.1 inches for 

saturated liquid at 14.7 lbs./inch 2  abs. (Pigure z), and these 

will be the largest bubbles in a pressure range from atmospheric 

to 1000 lbs./inch2  as. 

To satisfy these conditions and bearing in mind the space 

available within the boiler,LasmcLjheater, 0.5 inches-wide 

by 2.0 Inches long by 0.003 inches thick in a nIckel&ome 

material (80% nickel, 20% chrome), was selected. Nickel-chrome 



was chosen for its high resistivity, low temperature resistance 

coefficient and. good corrosion resistance. 

3,5. Design of heating strip d.c. electrodes insulation and 

method of support 

Theheati .ng.si .flp had to be clamped to d.c.. electrodes, 

fixed horizontally in the plane of the boiler windows, and 

insulated, on the edges and lower surface, so that the heat 

generated in the, strip • would be removed at the top surface on1.y. 

The edges and lower surface were insulated by bending an 

insulating material to the strip with adhesive. An insulating 

material with the following properties was required: 

'Good thermal insulation. 

.. Good. electrical insulation. 

Low permeability, to liquids. 

Mechanical and thermal stability in water, up to a maximum  

pressure and temperature of WOO lbs./inch 2  abs.. and 550°F. 

Good machining properties. 

Several plastic materials were considered. and tested, and 

the only material which remained unchanged: at a temperature of 

5500?.. was sintered "Fluon" p.t.f.e., which is manufactured by 

Imperial Chemical Industries Ltd. The only drawback to using 

p.t,f.e. is Its high rate of expansion with temperature, i.e. 

a cubic coefficient of thermal expansion of 3.1 x 10-4 02-1 

between 68 and .5500p, 	Because of this, a flexible system was 

designed for keeping. the p..t.f.e. In contact with the lower 

surface of the strip, so that the p,t.f.e. could expand without 
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deformation of the strip (see Figure 5). 

The beating strip was clamped to the. ends of the two nickel 

plated brass electrodes, which had channel cross sections, to 

locate the block of p.t,f0e0 beneath the lower surface of the 

strip. 	The p.t,f.e. block measured 2 inches wide by 20 inches 

high by 1 inch thick and was pushed into close contact with. the 

,heating strip by nickel plated leaf springs attached to the 

electrodes. 	The top of the p.t.f.e0 block was machined to a 

radius of 4 inches, and a channel cut for the strip, so as to 

locate and thermally insulate the edges of the strip. A silicon 

adhesive (E.P... 276.) manufactured by i.C.i.., that remains tacky 

up to 5500P,completed the bond between the p.t.f.e. insulation 

and heating strip. 

The ends of the d.c. electrodes were clamped by nuts to the 

ends of another pair of circular, cross sectioned electrodes, 

which carry the current through the lower blank flange of the 

boiler. 	The circular electrodes were nickel plated and had a 

flanged section, which, together with mica washers and a screwed 

follower, electrically insulated the electrodes from the boiler 

shell and at the same time formed a water seal., The seal could 

withstand a maximum pressure and temperature of 1000 lhs./inch 2  abs. 

and 5500P. 	Bushes machined from p.t.f.ea completed the electrical 

insulation between the electrodes and boiler flange. 

3.6. Manufacture of artificial cavities on the heating strip and 

their measurement. 

A. microscopic examination of the nickel-chrome heating strip  
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ata.magnification of x 100 showed that the roflingproceashã 

produceacavities and grooves, with widths ranging from 200 to 

1000 x 10 inches. The minimum width which was measured was 

determined by the resolving powers of the Tickers projection 

microscope, and It was very likely that cavities and grooves 

with sizes less than 200 x10 inches. were present. 	These 

cavities and grooves were note considered satisfactory, for the 

present study, since their boundaries were  not clearly defined; 

and therefore some method of creating artificial cavities was. 

decided upon. .. . 	 . 	 . 	
. 

Treatment with emery. papers was rejected because this would 

leave a predominance of grooves on the surface. 	The groove. 

width could be taken as a representative dimension, but Bankoff 

22] believes that groovQs are not likely to be good gas or 

vapour traps, .because.the gas or, vapour can be displaced by the 

liquid advancing along the groove. 

Grit blasting of the strip with a commercial machine was 

attempted, and although excellent cavities were made, the lack 

of control of the number and force of the grit particles hitting 

the strip resulted in distortion of the strip in many oases. 

To overcome this, a simple paint sprayer was converted into a 

device for grit blasting. Control of the grit feed was 

achieved by using different sized nozzles, while the dçj.tb of 

grit penetration was regulated by the air pressure, and by the 

distance between the, grit blastng.device and the strip. 	Tests 

were carried out to detetmine the operating conditions,  which 

would produce cavities with diameters of the same size as, the 
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cavities already on the strip, and with a distance between the 

cavities of approximately 1000 x 10 inches. 

Several 3 inch lengths of the nickel-chrome strip were 

polished on one side by No. 3/0 emery paper, followed by No, 4/0 
paper, to remove the original cavities; then fixed to a rigid 

backing plate and grit blasted with a No. 100 carburundum grit, 

to give the repaired size and number of cavities. The surface 

was again polished, but this time on chamois leather with alumina 

powder suspended in water, to give a bright finish to the metal 

between the cavities and a clearly defined cavity boundary. 

The diameters of the cavities on one strip were measured on 

the Vickers microscope at a calibrated magnifióatton of x 1000. 

In many cases the cavities were elliptical in shape, and for 

these the minor axis dimension was recorded. The microscope 

was made to ianj paths across the strip at random positions 

along the length, and all cavities which appeared within the 

screen boundary were measured, until a total of 500 readings 

had been obtained. The cavity diameters or minor axes were 

converted to radii in inches and then counted under class sizes 

With class intervals of 100 x 10 inches. The fraction of 

cavities was plotted against each class mid-ark in the form of 

a histogram (Figure 6) and approximated by the normal law. 

The widt of the stripe were measured to an accuracy of 

0.001 inches, using a travelling microscope and were found to 

vary by less than 0.2$ along the 3 inch lengths. The thick-

tosses of the strips were measured to an accuracy of 0.0001 

inches, between two * inch diameter. spherical anvils attached 
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to a Magna gauge comparator, and were found to vary by less 

than 3% along the lengths. 

fllysurf records of the cavity depths were obtained from 

the ends of the strips, since the recording stylus produces a 

slight scratch on a metal surface (see Figure 7). 

3.7. Welding - technique for fixing a thermocouple to the 

heatingstr4p 

it was considered inadvisable to weld a tliGrIUO;OUp1C junction 

40 the boiling surface of the test strip, jbecause the thermo-

couple wires would act in the manner of fins (Figure Ba) and 

remove heat from the 	Ipart of the surface where the 

temperature was being measured. This region would therefore 

be at a lower temperature than the rest of the surface. The 

thermocouple junction would also change the nucleation 

characteristics of the surface. 

The alternative was to attach a thermocouple to the lower 

side of the strip and calculate the temperature drop across the 

strip. Heat losses from the vicinity of the thermocouple 

junction by conduction along the wires may be reduced by welding 

the junction to the centre of the strip area, and leading the 

wires away from the junction in an isothermal plane, i.e. 

parallel to the strip surface. See Figure Bb and Jakob  
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This results in the thermocouple wires conducting some heat 

from the edges of the strip, while leaving the temperature at 

the junction unchanged. 

The main problem in this form Of temperature measurement 

is the knowledge that a thermocouple in electrical contact with 

a current carrying heating strip will pick up a voltage from 

the ,d 	voltage gradient in the strip. This voltage, which 

is termed the "pick up 0 , will either add to, or subtract from 

the voltage generated by the thermocouple. the "pick up" can, 

however, be reduced to minimum, by making the area of contact 

between the thermocouple junction and the strip small, at the 

expense of strength. This can be achieved by using small 

diameter thermocouple wires and arranging that the wires lie 

in a constant voltage plane, i.e. at right angles to the 

current flow (see "Studies in Boiling Heat Transfer" [24] ). 

To make this possible and to reduce heat losses by conduction, 

chromel and alumel wires of 0.002 inches diameter were selected. 

Since a small junction was needed, the wires had to be 

joined by a discharge welding technique.. The ends of the.wtre.s 

to be joined were cut, squared, and placed in clamps, which we,. 

part of a jig that allowed the wires to be brought into line and 

butt-welded. The clamps were manipulated while observing the 

wires through a microscope, The power for welding the wires 

was obtained from a capacitor bank, which made available a 

range of capacitances and discharge voltages (see Figure 10). 

The best values of capacitance, voltage and gap size were 

obtained by trial and error, (45 V.d.c. - 16 Mn.). A weld 
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made in this manner was considered satisfactory, if no change 

in diameter was noticed when comparing the junction with the 

Many welds were made and inspected, before several 

thermocouples were available for welding to the heating strips. 

These thermocouples had to be welded to the opposite side 

of the strips from the boiling side, with the junctions at the 

centre of the area, and the wires arranged in a plane normal to 

the current flow. This was done by first marking out the weld 

positions on the surfaces of the strips with a pencil, and then 

using the jig to position the thermocouples, prior to making 

the welds. 	To make the area of contact as small as possible, 

the thermocouple was bent sharply at the junction,, before fixing 

in the jig. 	figure .11 shows the various stages in making the 

heating strip thermocouple. The welds were passed as satis-

factory if the width of the fillet was equal to the diameter 

of the wire. 

Three strips with thermocouples attached were selected and 

given a rough check for voltage "pick up". The strips were 

clamped to electrodes, submerged in water, and a current made 

to flow in the strips, first in a +ve. direction and then in a 

—ye. direction, for a d.c.. voltage across the stripe of 1 volt. 

The thermocouple e.m.t. was recorded for both current directions, 

and by the assumption that the heating strip temperature remained 

constant, the difference between these readings corresponds to 

twice the "pick up" voltage. 	For the three stripe, the "pick 	up" 

was lees than 0.04 millivolts for a potential of J. volt across 

the strip, and was considered satisfactory. A more detailed 
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description of the 
	 t of the "pick up", is given in 

Section 4. 4. 

3.8. Heating surface, bulk liquid and boiler wall temperature 

measurement 

Six thermocouples were made from 0.0076 inch diameter, 

.enamelled chromel and alumel wires, the junctions being formed 

by twisting the ends of the wires together and silver soldering. 

The thermocouples were calibrated at the ice point, steam point 

and freezing point of lead, to check the homogeneity of the 

thermocouple material. 	The e.m.f. readings from the six 

thermocouples agreed at each fixed point to within ± 0.005 

millivolts and were considered satisfactory. Pour of the 

thermoccupies were to be fixed to the outside wall of the boiler, 

one used In measuring the bulk liquid temperature, and the other 

In carrying out a further and more accurate calibration of the 

ohromel-alumei material (see Section 4. 1.). 

The thermocouple circuits used in measuring the boiler wall, 

heating surface and bulk liquid temperatures are now described. 

1. Boiler wall thermocouple circuits 

These thermocouples were intended for measuring the boiler 

outside wall temperature and for assisting in positioning the 

wall heater, to give a uniform temperature over the four limbs 

of the boiler. 

Four 0.0076 inch diameter chrornel-alumel thermocouples were 

bonded now to mid positions on the boiler limbs and the wires 
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led to the ice point reference, which was removed  from the 

vicinity of the boiler. The ice point reference was constructed 

by soldering the ends of the thermocouple wires to copper 

conductors, inserting in glass tubes filled with paraffin, and 

placing in a vacuum flask filled with finely crushed melting ice, 

The ends of the copper conductors were soldered to double pole, 

single throw toggle switches, which were connected in parallel, 

so that a single pair of conductors could be taken to a portable 

Cambridge potentiometer. The thermocouple wires and copper 

conductors were covered With p.v.c. insulating sleeving. A 

schematic arrangement of the thermocouple circuits is shown in 

Figure 12. 

2.. Heating strip thermocounle circuit 

A beating strip with thermocouple attached was clamped to 

the d.c. electrodes and the thermocouple wires arranged so that 

the heat losses from the junction were minimised (see Section 

3, 7.). 	The arrangement consisted of covering the surface of 

the strip in the vicinity of the junction with a thin layer of 

high temperature silicon adhesive, allowing the adhesive to dry, 

laying the wires on top of the adhesive and applying another 

layer to fix the wires in position.. A small groove was out in 

the top of the p•.t.f.e. insulating block, a thin film of 

adhesive applied to the lower surface of the heating strip and 

the strip pushed Into contact with the p.t.f.e. block, making 

sure that the thermocouple wires fitted Into the groove. 	The•, 

remaining lengths of the wires ran down the sides of the p.t.f•.e0 
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block in grooves out for the purpose and connected with 

04076 Snob diameter chromel and alumel wires, which passed 

through pressure seals in the boiler lower flange and hence to 

the cold junction (see Figure 13). 

The pressure seals were designed to withstand a maximum 

pressure and temperature Of 1000 lbs./inch 2  aba. and 550]?, and 

were constructed by passing each wire through .ainch diameter 

hole., drilled in a * inch diameter cylinder of p,t.f.e, and 

compressing the cylinder by a screwed follower to form the seal 

(see Figure 14). 	The cold junction was made in the same manner 

as described in 1., and the copper conductors connected to 

terminals on a Croydon precision potentiometer, which had 

provision for four external circuits. 	The thermocouple circuit 

isehown in Figure 12. 

3. Bulk liquid thermocouple circuit 

Consideration was given to the best position for locating 

the thermocouple junction, so as to give a representative value 

of the bulk liquid temperature. Elliori 1191 measured a 10 0P 

difference in bulk liquid temperature between a thermometer 

located j-  inch above the heating surface, and one below and to 

the side of the hating surface, for a heat flux of 

5.2 x iO B.t.u./ft 2  hr.; the thermometer above the strip 

reading the higher temperature. For this study it was assumed 

that a position level with the strip and just to one side will 

record the representative bulk liquid temperature. 

To achieve this, a 0.0076 inch diameter chrornel-alurnel 



- 30 - 

thermocouple was bonded into grooves cut on the side of the 

p.t.f.e. block, and a inch length of the thermocouple, 

terminating in the junction., was bent over at right angles to 

lie in a plane parallel and slightly lower than the heating 

surface. The remaining lengths of the thermocouple wires were 

dealt wsh9nasimilar manner to the heating strip thermocouple 

(see figure 12). 

3.9. Heating stripd.c. supply and power measurement circuits 

Two 2-volt Chloride Plante accumulators, with a maximum 

current rating of 51 amperes for It hours, were arranged in 

series and connected by heavy copper braid to a 50 ampere double 

pole, double throw knife switch. A battery charger with a 

maximum trickle current of 4 amperes, was connected across the 

accumulators to give an overnight trickle charge. Heavy copper 

braid carried the current from the knife switch through a 

circuit, comprising a Zenith carbon plate  resistor with an ohmic  

range from 0.07 to 1.411 , a 0.00111 Croydon standard resistance, 

and the experimental heating strip. The knife switch allowed 

the current to flow either in a.+ve, or -vs. direction through 

this circuit. The voltage drop across the heating strip was 

measured by taking leads from the strip electrodes to a double 

pole, double throw toggle switch, then to a Croydon volt ratio 

box, which reduced the voltage by a factor of 150, and hence to 

the precision potentiometer. 	The current flow in the heating 

strip was calculated from the voltage drop across the 0.0010 

standard resistance, leads being taken from voltage terminals 
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on the standard resistance, to a double pole, double throw 

toggle switch and then to the potentiometer. 

The toggle switches in the voltage and current measuring 

circuits were operated in conjunction with the knife switch, 

BO that the polarity at potentiometer was the same for both 

•ve. and -ye, current flow through the heating strip.. A 

schematic arrangement of the d.co supply and poweieasurement 

circuits are shown in Figure 15. 

3.10. Bulk liquid and boiler wall a,c. heater circuits 

Two 500-watt heating elements were inserted in tTfl1.0 

glass tubes, which were then bent to a 1: shape and clamped to 

the inside surface of the boiler side flanges (see Figure 16). 

These U-shaped heaters fitted into the horizontal limbs of the 

boiler when the blank flanges were in position. Electrical 

leads were taken from the heaters through p.t.f.e. pressure 

seals In the blank flanges, the heaters connected in series 

and the leads connected to output no. I, on a dna]. otnput, 

Zenith "Variac "  regulating transformer. 

A flat 500-watt Electrothermal" heating tape. 9  which was 

later replaced by a 2000-watt "Hot-foil" flat element heating 

tape, was closely coiled round the boiler limbs, for the complete 

length of the three shorter limbs and halfway up the longer lImb. 

The heating tape was connected via a Sunvic resistance thermo-

meter temperature controller, to output no !  2 on the "Variac" 

transformer. The resistance thermometer was held in close 

contact with the outside wall of the boiler, at the junction 
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of the limbs. Heat losses from the boiler were reduced by 

covering the limbs and bottom and side flanges with 1 inch 

thick glass fibre Insulation. 

The dual .'Variac" provides smooth control of the heate; 

power frOm zero to the maximum, white the outside wall of the 

boiler can be maintained at any temperature by •adjusting a 

temperature setting on the controller. A schematic arrange-

ment of the heater circuits are shown in Figure 17. 

3.11. Boiler pressure systems 

Two pressure systems were required to cover the experi-

mental pressure range from atmospheric to 1000 lbs./inch2  abs., 

and otto for low pressure degassing of the beating surface,. 

The systems are described in the foilowing sections. 

1, Pressure range from atmospheric to 1 lb./inch2  abs0 

Two "Speedivac" metal water jet pumps, which reduced the 

pressure within the boiler, were connected through a atop valve 

and vacuum gauge to the top flange of the boiler. A fine 

control needle valve was included in this branch of the system 

to control the vacuum level in the boiler by allowing air to 

leak into the system. The vacuum gauge was only used to give 

a quick indication of the vacuum level. Glass tubing 

connected the top flange to the vacuum gauge and needle valve, 

since there was a risk that steam condensing in this part of 

the circuit might flow back into the boiler when the vacuum was 

reduced. Copper tube connected the vacuum gauge and stop valve 
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to the water,pzmpse A.30-inch mercury manometer was connected 

to the boiler top flange by glass tubing to complete the system. 

A schematic arrangement of the system is shown in Pigiire ISa. 

Atmospheric pressure 

In this casethe boiler was open to atmosphere, A water 

manometer was, however, connected by glass tubing to the boiler 

top flange,, in case of an increase in pressure during vigorous 

boiling of the test liquid. 

Pressure ranRe from atmospheric to 1000 lbs./inch2 abs. 

The pressures in this range were maintained by  nitrogen 

supply. A pressure regulating valve was attached to a nitrogen 

bottle and connected by copper tubing to ,a high presure stainless 

steel needle valve, which was in turn connected by stainless steel 

tfllrgto the boiler top flange. 	Three boiler pressure gauges 

were used to cover the pressure range,. 

Bourdon gauge with :a  range from 0 to 110 lbs./inth 2 1  

graduated in increments of 2 jbs,/inoh2 , 

Dewrance gauge with •a range from 0 t 500.lbs./inch 2 , in 

increments óf.2 lbs./inch2 ,. 

Budenberg gauge with a. range from 0 to 1500 lbs./tncb2 , .in 

increments of 10 lbs./  inch 2 . 

A stainless steel tube, bent to form a syphon, connected  the 

pressure gauge to the boiler top flange. 	"Ermeto" high pressure 

stainless steel couplings connected the nitrogen bottle to the 

needle valve s  and the needle valve and pressure gauge to the top 



- 34 -  

flange. These couplings can be broken and re-made almost 

indefinitely, without affecting their efficiency. A safety 
r 

valve screwed directly into the boiler top flange completed 

this system0 Figure 18b shows a schematic arrangement of 

the system. 

3.12. Auxiliary eQuipment 

A stainless steel condensate shield was designed to fit 

Into the upper limb of the boiler and be located immediately 

above the liquid level. Steam generated from the test liquid 

would pass through holes in the shield, but on condensing on 

the colder top section of the boiler would tail, and be diverted 

by the shield to the sides of the veèsel0 The condensate could 

then be returned to the bulk liquid, without disturbing the 

temperature of the water in the immediate vicinity of the test 

surface. 

A copper cooling coil was wound on the upper limb of the 

boiler, immediately below the fixed flange, to cool the top 

section of the boiler and cause condensation of the steam 

generated from the test liquid. The cooling coil was only 

needed when the top section, which was not covered by insulation, 

was unable to cope with the steam generation. This fact was 

indicated by a slight increase in the boiler pressure from the 

test value maintained by the nitrogen supply, 

A system at mirrors was erected on one of the side flanges, 

so that the heating surface could be observed without looking 

directly into the window. This arrangement was used for 
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pressures greater than 200 lk./inch2. absolute 

As a further safety measure, a sheet metal panel: was 

erected betWeen the boiler and the:rrecordng instrumental which 

required the attention of the operator. The panel was also 

used as an' instrument panel. Figure 19 shows the recording 

equipment used in this study.. 



CHAPTER 4 

Experimental Procedure 

4.1, ..Calibration 2L.O.o0076 inch diameter chromel-alumel  

thermocouple at fixed ppints on the International 

Temperature Scale 

• - An accurate calibration of the 0.0076 inch diameter 

chromel-alumel material was essential, since the beating strip 

thermocouple described in Section 3.1 was itself calibrated, 

by comparing it with the 0.0016 inch diameter cbromel-alurnel 

bulk liquid thermocouple described In Section 3. 8. 3.; the 

water in the pressure vessel being utilised as a constant 

temperature bath. 

A. 0.0076 inch diameter thermocouple, whose manufacture has 

been described in Section 3 8., was therefore calibrated at 

the steam point, and at the freezing points of tin and lead, 

the reference junctions being maintained at the ice poi4t in 

each case. 

The e.m.f. readings at the fixed points were plotted 

against the corresponding temperatures and the points joined by 

straight lines to give a calibration curve, which was used for 

the bulk liquid thermocouple only. 

The construction of the fixed points and the methOd of 

calibration are described in the following sections. 

1. Ice point 

The reference junction (commonly called cold junction), is 
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most easily controlled at a known temperature by placing it in 

a well designed ice. point. 	The ice 'point used in the calibra- 

tion consisted eta vacuum flask filled with finely crushed ice, 

which was 'saturated with dejonised water. 	The thermocouple 

reference junction was constructed by so1deringthees of the 

wires to copper conductors, inserting them In I Inch diameter 

glass tubes filled with paraffin, and pushing the tubes into the 

crushed ice to a depth of 6 inches. During the calibration, 

the excess water in the flask was drained off and the flask 

replenished with ice. The change in the melting joint of ice 

with atmospheric pressure may be neglected.. 

2. Steam point 

The steam point is realised by constructing a bpapaetrr 

and, if properly designed, the thermocouple reading should be 

independent of the rate of heat supply to the boiling water, 

the length of time the:hypsometer has been In operation and the 

depth of immersion of the thermocouple in the steam. 

These conditions were satisfied by using a boiling flask, 

half filled with delonised water, heated from below, and . 

insulated on the outside wall from above the water line. A 

water manometer measured the pressure within the flask, which 

was held constant by allowing steam to escape through a small 

vent in the flask stopper. The thermocouple entered the flask 

through a glass capillary inserted in the rubber stopper. 

The thermocouple leads from, the reference junction were 

connected to the precision potentiometer and several e.m.f ¶ 
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readings: obtgine4. over a. period of time. 	The steam temperatures 

corresponding to these readings were calculated from the formula 

specified in the International Temperature Scale, for, relating the 

temperature. Vp in, 0C, to the pressure p 9 .th:m.m, of Rg,.viz 

Tp'= .100.000 +0.0367 (p - 760).- 0,000023 (p -760)2. 

3. Freezing poirxt of tinS. 	. 

The e.m.f...dveloped by a. thermocouple at the freezing point 

of a metal is constant and reproducible, provided that the 

following conditions ,are fulfilled; 

The couple, is protected from contamination. 

The couple is immersed in the freezing point sample 

sufficiently far to eliminate heating or cooling of the 

junction by heat flow along the wires or protection tube, 

The freezing point sample is pure. 

The principal apparatus required for carrying out a freezing-

point calibration is therefore a suitable furnace, a crucible 

containing the metal sample and a protection tube £ or the thermo- 

couple. 

In this ease s  the furnace consisted of a 1* inch 10d. by 

11 inches long refractory tube, wound with a heating element 

and insulated to a diaeter,. of .7 inches with a suitable heat 

resisting materiel. A "pyrex" glass tube of 11 inches dieter 

by 8 inches long was Inserted into the refractory tube and filled 

to a depth of 6 Inches, with molten tin having a minimum ,purity 

of, 99.999% 	A. sufficient length of the thermocouple wires 

were insulated from each other with asbestos string, inserted 
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in a: * Inch diameter "Pyrex" 'glass tube and immersed to , a depth 

of 5 inches in the molten tin. 

The calibration was commenced by maintaining the temperature 

of the molten tin constant for about 5 minutes, and then allowing 

the furnace, to cool slowly, taking readings of the thermocouple 

e,m.f, at 1 minute intervals. When the freezing point was 

reached, the e.m.f. remained constant for approximately 10 

minutes, Prior to.each reading, the tin was stirred by the 

thermocouple protection tube, to ensure uniform temperature 

within the metal.. The freezing point of pure tin .(449.4 0F) 

was obtained from the International Temperature-Scale. 

4, Freezing point of lead 

The thermocouple was calibrated at the freezing point of 

pure lead using the apparatus and procedure which has been 

described in Section 4, 1. 3. A freezing point temperature of 

621.230F for pure lead was obtained from the international 

Temperature Scale (a fIgure for the percentage purity was not 

known, and therefore precautions were taken to purify the lead 

sample). 

4.2. Specification for cleaning the heating surface, test 

liquid, and boiling vessel 

The importance of maintaining a clean system led to the 

specification of a cleansing procedure, which was earned out 

before each .experiment. The methods of cleaning the heating 

surface, test liquid and boiling vessel are. described in the 

following sections. 
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Heating surface 

The beating surface was rubbed thoroughly with a paper 

tissue, soaked in acetone; acetone being preferred to carbon 

tetrachloride, as the latter deposited a film on the surface. 

This was followed by rubbing with a tissue, soaked in "detonised 

boiling water, and finally dried. 

To prevent re-contamination of the cleaned surface, the 

boiler bottom flange containing the heating strip and its support 

was bolted to the boiler without delay, the strip support and 

inside surface of the flange having already been cleaned with 

acetone. 

Teat liquid 

The test liquid was collected by passing water through a 

Griffin-Raleigh water deioniser until the specific resistance 

was greater than 5 megobm-cms. A 1400 c.c. charge of water 

was required to give a water level, which was j  inch above the 

heating surface, Both the collecting bottle and measuring jar 

were carefully cleaned before filling with the deiontsed water. 

Boiling vessel 

The inside walls of the vessel could only be cleaned with 

acetone after the blank flanges had been removed, As a result 

the vertical limbs were cleaned before each test, and the hori-

zontal limbs between every three tests, or when removal of the 

side flanges was made necessary, for repairs to the bulk liquid 

beaters or renewal of flange gaskets. 
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Before fining the boiler with the test liquid, the walls 

were further cleaned by washing them several times with 

deionised water. 

4.3. Degassing of the heating surface ! 
	 .! 

In any experiment, the aim must be to get reproducible 

results, for until these are obtained the true effect of a 

change in operating conditions cannot be determined.. 

In nucleate boiling, the ability to reproduce results will 

be greatly influenced by the size and number of beating surface 

cavities, which are filled with gas. This number will determine 

the number of active bubble sites at a particular liquid super-

heat temperature, which in turn will determine the corresponding 

heat flux. Degassing is therefore carried out, to reduce the 

quantity of gas trapped In the heating surface cavities to some 

equilibrium value which would otherwise beattáined after a very 

long period of balling. . 

This reSultis achieved by vigorous boiling of the test 

liquid when it is in contact with the heating surface, so that 

some gas is driven oft and gas, which is trapped in the cavities, 

is then encouraged to diffuse into the degassed liquid. Many 

cavities will become gas-free, leaving only the cavities which 

resist degassing because of their favourable geometry and liquid-

metal contact angle. These cavities are therefore the sources 

of bubble nuclei on the heating surfaced 

The test liquid can be boiled for this purpose, using 

either auxiliary heaters or the test heating surface. The 
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latter should accelerate the process, since the departing 

bubbles will ,carry away some of the gas. from the cavities. 

Two differnt sets. of conditions for degassing the heating 

surface were investigated, by carrying out comparative sets of 

experiments. A set of experiments consisted of degassing the 

heating surface, and then. taking readngs of heat flux and 

heating surfgce temperature at atmospheric pressure. The 

experiments were compared by drawing curyes of heat. flux versus 

superheat temperature difference. Before each experiment the 

heating surface was cleaned, and the boiler charged With fresh 

deionised water. The two conditions for degassing are 

described below.. 	 . 

1. Degassing at atmospheric pressure . 	 . 

The beating surface. was. degassed by!  boiling, the liquid, at,. 

atmospheric pressure from the bulk liquid heaters and from the 

test surface 4 =.?.x 104  B.t.u/ft. 2  hr. for test, surface).. 

A degassing period of 4.hour was allowed in the first instance, 

and resulted. in, poor agreement between the boiling 'curves for. 

successive tests. 	It was hoped that better agreement would 

result from an increase in the .degassing period from the test 

surface, the degassing period from the bulk liquid heaters being 

maintained at 4 hour, which was thought sufficient to degas the 

liquid. The degassing period from the test surface, was there-

fore increased in stages of * hour up to 2 hours, without showing 

any real improvement in the agreement between the boiling curves. 

At this stage method one was abandoned. 	 - 
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2. Deaesing at 1 lb./inch 2  abs. 

Method two  was carried out by evacuating the boiler (see 

Section 3. 11.), and maintaining a pressure of  lb./inch 2  abs. 

above the liquid for j. hour 1  the liquid being at room temperature. 

During this period, a large number of air babies formed. on both 

the heating surface and boiler walls, and rose to the liquid 

surface. At the end, of the * hour period 9  the air bubbles 

having, stopped . forming, the t.fller. wall and bulk liquid heaters 

were switched on to raise the liquid to saturation temperature, 

corresponding to 1. lb./iuoh 2  abs.:. When saturation temperature 

was reached , 	'liquid was boiled both from the bulk liquid 

heaters and from the teat surface 	2 x lO B.t0u./ft. 2  hr.) 

for 1 hour, to complete the degasstng. The vacuum pumps were 

then stopped, and the boiler pressure raised to atmospheri.c 

pressure by introducing .nitrogen into the vessel. The boiling 

tests at atmospheric pressure which foIlowe4 this .procedure., 

showed good agreement. Method two was therefore adopted ,s 

standard' degassing procedure. . 	 . 	. 

Later in the experimental study this method, had to be 

slightly change4., because, on one occasion, a heat flux of 

2,x lO B..t.u./ft. 2  hr. from the beating surface was sufficient 

to cause overheating of the test strip. Overheating.was subse- 

quently avoided, by raising the boiler pressure to.3 lbs./inch 2  abs. 

at the end of the first hour period of degasstrg... The boiler 

wan and bulk liquid heaters were used to raise. . the liquid to 

saturation temperature corresponding to 3 lbs,/iuch2  fls ,,.' 

After both heaters were switched off 0  the boiler pressure was 
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reduced to 1 lh./inch? abs., causing;vigorous boiling from the 

test surface and the boiler wails. Reducing the boiler, pressure 

fØffi 3. to 1 lb s/inch2  abs. produces a uniformly superheated 

liquid !f approximately 40 0?. When boiling ceaBed f  the pressure 

was again raised to 3 Ibis ./inch 2  abs, and the procedure repeated 

to give a tetal.dagassing time of 4 hour. . 

44. Qalibratiàn of the voltage "pick i" by 	 heating, strip 

• 	thermocouple 	 . 	. . 

At the beginning of'this study, the experimeUtal: boiling 

curves were obtained by recording two values of heating surface 

temperature, at each beat flux level; one, with the  current 

flowing in a• +vè. direction and the other with the current 

flowing in a--ye. direction, The experimental points of heat 

flux versus beating surface temperature were then plotted, and 

curves drawn, one through the points for rn. current and One 

for -vs.' current. ! The separation of these curves at any one 

value of heat flux gives thetemperature difference, which 

corresponds to twice the voltage "pick up" of the heating strip 

thermocouple (as Sedtiout3.  7.), A curve was therefore drawn 

midway between the first two curves, to give a boiling curve, 

which corrected the heating surface temperature for thermobouple 

"pick up", .. 	. 	 : 

These preliminary boiling experiments proved that the thermo-

couple "pick up" was, as expected, proportional to the voltage 

drop across the heating strip, and that the magnitude of the 

"pick up" had remained constant throughout several experiments. 
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The thermocouple "pIck up" was therefore calibrated, and the 

heating surface temperatures in the remaining experiments 

corrected accordingly. 

The. calibration was carried Out at atmospheric pressure in 

the foflowing manner. 	The heating surface, ljquid and boiler., 

walls having beenfileanet, the hating surface was degassed to 

give stable. boiling. With the liquid held constant at 

saturation temperature by the blk liquid heaters, the heating 

strip thermocouple e.m.fe was recorded, with the current 

flowing first in a tn. direction.,, then in a -ye. direction, 

and. again •ve.., for heating strip voltages increasing from 

0.2 to. i.6...volts in increments of 0.2 volts. 	If the second 

reading with +ve. current flow.did not agree with the first, 

the calibration at that .particular voltage was repeated until 

agreSment was obtained. 

The ,difference between the thermocouple e.m.f, values for 

+ve. and -ye. flow potential were. then plotted to abase of 

heating, strip voltage. 	The .stra%ght line determined by the 

method of least squares was drawn tb rough the points. . The 

thermocouple e.m.f. difference is, however., equal to, .twice .the 

thermocouple. voltage "pick up",, and a second line was drawn with 

a gradient, which was half the gradient of the first line, .The 

thermocouple e.m.f. difference versus healing strip voltage is 

shown in Figure 20 9  for the two heating strips used in this study q . 

It was decided to carry out subsequent tests with .a +ve. 

current flow,, the voltage "pick up", being added to, or subtracted 

from, the thermocouple e.m.f0, depending on whether +ve,. current 
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flow gave the lowercr higher e,rn,f. values for the heating 

strip used. 

4.5. Corrosion of the ,boiler walls,, 	•.• : 

•During a preliminary  	/nch80 	 abs.1  

the test later appeared brownish 'In colour after a boiling time 

of 4 hours, the discolouration increasing as the Htest proceeded. 

On completing the experiment,: the-boiler was dismantled.. 

Examination revealedcorDosionpflce8.On those areas of the 

boiler waits, which had been in contact with the water. The 

boiler water bad dissolvédsomeof the corrosion proãtueta, hence 

the discolouration of the water. 	 - 

A check was carried out on the hydrogen-ion concentration 

of the d.eionised water 9  as received from the Griffin-Raleigh 

water deinniser, and compared with the pH value of the water 

taken from the boiler after the experiment at 80lbs/inoh2  abs. 

A fle pH meter, gave a value of 6.6 for water collected from the 

deioüiser, and  value of 4 for the water from the experiment at 

80 lbs./inch2  abs. This means that the boiler water is slightly 

acidic initially(pR = 71cr purewater) , and that dissociation 

of the water towards greater acidity had taken place, as the 

temperature increased to the value corresponding to the pressure 

of 80 lbs./±nch2.-àbs. 	. . . 

Corrosion of the stainless steel boiling tube was reported 

in studies on forced boiling heat transfer at the University-of 

California . A separate study was devoted to this problem 

and the main conclusions were:that the corrosion of the .stainless 
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steel was due to surface reaction with water..at elevated. 

tempeiatures, and that the corrosion could be reduced 

considerably by maintaining the pH of the Water between 

9.5 and 10.0. 

Evans. [25] in his chapter on toilers and condensers 

recommends a practice of making the water alkaline, flit is 

not already so. He refers to various authors who believe that 

the boiler water should have an initial pH value of 10,5 at 

ordinary temperatures, He draws attention to the fact that 

alkalinity maintained by means of sodium (or potassium) 

hydroxide is only effective on those parts of.the surface 

directly contacted by the boiler water. To prevent corrosion 

on other parts of thecircuit a volatile alkali is required, and 

ammonia is suggested. 

On the basis of these recommendations, it was decided to 

raise the pH of the boiler water to 10.0 by the, addition of 

ammonia. The ammonia must be added after the degassing at 

1 lb./inch2  abs., otherwise it will be removed during this 

process. An experiment was therefore carried, out to determine 

the volume of water remaining in the boiler after degassing, 

since it was this volume for which a pH value of 10.0 was 

specified. 	Of the original charge of 1400 c.c. about, 1350 c.c. 

remained after degassing; 4 c.c. of 0.5% ammonia solution were 

required tor aise the pH of the 1350 C.C. volume. from 6.0 to 10,0. 

The experiment at 80 lbs./inch2  abs. was then repeated with 

the boiler water treated with ammonia, and showed no signs of 

corrosion. A test at atmospheric pressure was carried out to 
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deteçmine whether the addition of ammonia had an effect on the 

nucleation properties, and hence the heat transfer rate from 

the test surface. Comparison of the test with previous tests 

at atmospheric pressure showed excellent agreement, thus proving 

that the ammonia did not affect the nucleation properties of the 

heating surface. 

Thereafter ammonia was added to the boiler water for each 

experiment., with the result that the system remained tree of 

corrosion throughout the complete pressure range. 

4.6. Effect of ressure and bulk .liquid subcooling on nucleate 

boiling 

The experimental procedure is described for tests designed 

to study the effect of pressure and bulk liquid subcooling on 

nucleate boiling in the pressure range from atmospheric to 

1000 ibs./inch2  abs. 	- 

The heating surface and inside walls of the boiler were 

first cleaned (see Section 4. 29) and the bottom flange bolted 

to the boiler. Lagging was replaced on the boiler flanges,, the 

d.co power supply connected to the heating strip electrodes and 

the thermocquple leads connected to the potentiometer. A fresh 

supply of deionised" water was collected (see Section 4. 2.), 

the Inside watts of the boiler washed several times with 

"dejonised" water and the boiler charged with 1400 c.c. of 

"delonised" water. The condensate shield was fixed in position 

above the heating surface and the top flange bolted to the boiler. 

The top flange was now connected to the Low pressure system 
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(see Section 3.. 11. 1.), and the heating surface degassed at 

1 lb./i4ch2  abs. by the method. described in Section 4. 3. 2o of 

this chapter. 	After degassing., 4c.c. of 0.5% ammonia ,solution 

were added to the boiler water, to prevent corrosion of the 

boiler walls when the water temperature was raised during the 

experiment (see Section 4. 5.). The boiler top flange was next 

connected to the high pressure system. .(see Section 3. fl.. 3.) 

and the boiler pressurised with nitrogen to the desired teat 

pressure (except for those tests at atmospheric pressure). The 

boiler wail and bulk liquid heaters were switched on to raise 

the water to the saturation :  temperature corresponding to the 

test pressure. When saturation temperature was attained, the 

liquid was boiled from the heating surface for 4 hour at .a heat. 

flux of 2 :X 104 B.t..u./ft. 2  hr.,., to ensure stable batting 

conditions before taking readings of heat flux and heating 

surface temperature,. During this time, the water was maintained 

at saturation temperature by boiling from the bulk liquid heaters, 

the boiler wall beater being controlled by the temperature 

controller to give an outside wall temperature a few degrees, 

above saturation. 

At the end of this 4 hour period the heating strip power 
was reduced to zero, ' After a delay of 5 minutes, the heating 

strip thermocouple. was calibrated against the bulk liquid 

thermocouple, the boiling water itself acting as a constant 

temperature bath. A calibration for the bulk liquid thermo-

couple was already available, since a thermocouple made from 

the same reel of material had been calibrated at fixed points 
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on the international Temperature Scaie..(see Section 4.. 1.). 

The bulk liquid heaters were now reduced in power until boiling 

from them ceased, in order to avoid obscuring boiling from the 

test surface. 	For the eubcooling experiments, the heater . 

ppwer ; was reduced furthe to give the required degree of sub-

cooling. 

When the ,bulk liquid temperature was steady, the beating 

strip. current was increased to 4.amps corresponding to a teat 

flux of 5 x io. 3..t,u./ft. 2 .hr. 	The current was, increased by 

stages at 1 amp to 26 amps (heat flux of 2 x IO B.t.tt./ft c 2  hr.). 

At each current value the heating strip voltage,, current and 

temperature s  together with the bulk liquid temperature, were 

determined, using the precision., potentiometer. Any reading 

which fluctuated was recorded as a mean value, plus the limits, 

of the fluctuation (fluctuation. was apparent in the case of the 

heating strip, temperature readings). . Whenever possible, the 

beating strip, temperature was recorded when the first bubble 

site appeared on the surface, and when increase occurred in the 

number of sites. 	The number of sites was counted visually, ,a 

method which restricted the maximum to about five. 

During these boiling experiments, the output fro,the.'bu]k 

liquid heaters was reduced. in steps, to counteract., the increase 

in heat flux from the test. surface and maintain the 'bulk liquid 

tempe3ture constant to within ± fr°F. The boiler praszfl. was 
maintained constant throughout by controlling the pressure of 

the nitrogen blanket. . 	. 	. 	 . 

On completing the test., the heating strip 'voltage and 
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Current .were converted from millivolts to volts and saps 3  and 

the beating surface flux calculated from the •.equatipn, 
QIVI 

/A 

where 	 = heat flux (B,t.u.jft. 2  hr.), 

V = heating .trip voltage (volts), 

I 	= 	. it 	current (amps), 

A = heating surface area (ft 2i)
9 

 

04 	conversion factor (3.41)a 

The readings of heting strip temperature., i.es the temperature 

at the lower surface of the strip, were corrected 'for the thermo-

couple voltage pick up" (see Section 4. 40 and converted to OF. 

The temperature at the boiling surface as computed, by subtracting 

the temperature drop across the strip from the temperature at the 

lower surface. By making the asewaptions that beat is generated 

uniformly throughout the strip by the steady flow of electrical 

current, and that the strip is Ideally insulated except for the 

boiling surface, the teiperaturé drop across the strip was 

calculated by the equation, 

	

AT =. 	2k 	• 	. S 	
S • (4.6,2) 

where A T = temperature drop across strip .(!P),.. 

heat flux (B,t,u./ft. 2..hr.)., 

z = thickness of strip (it.), 

k = . mean coefficient of thermal conductivity :  of strip  

(B.t.u./ft. 2 hr. °p/tt,,). 	. . 	.,.. 	. 

At the completion of each alternate boiling experiment, the 

heating strip thermocouple voltage "pick up" was measured for 

4  0eol  ,0 
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one value• of beating strip voltage, to guard against al change 

in the Ppickup!Iwth time. 

The accuracies of the heating surface temperature; bulk'.'  

liquid temperature and beat flux ,values are given.in the 

appendices. 	. . 	 . 	. 	.. 	. 	. . . 



CHAPTER 5 . . 

Nucleate Boiling Theory 

5,1.. Bubble initiation  . 	.. 	.. . . 	I. 

Itisaseuthed that two conditions.have to he satisfied 

before a vapour bubble will form and grow in a pure liquid.. 

The liquid must be superheated with respect. to the satura-

tion temperature, corresponding to the external pressure 

acting upon the liquid.. 

A nucleus of vapour must be present within the liquid s  and 

in stable equilibrium with the .:superheated liquid. 

The relationship between the size of this nucleus and the degree 

Of superheat is given by an equation derived by Gibbs, [3] for 

the mechanical equilibrium of a.sphercal vapour bubble in a 

liquid, and takes the form, 	. 	. 

= 2a- 	.. •,, 	. . . . . ( 5.1.1,) 
V 	 1 

where k is the vapour pressure wtthiu.the nucleus, k the liquid 

pressure in the plane of the. nucleus, C the surface tension of 

the vapour-liquid boundary and t the radius of the boundary. 

It is seen from this equation that for 6 particular vAuie 

of 	k ]only one value of radius 1 will give stable equili- 

brium s  and we denote this value by the critical radius 12. • For 

variations in t , it is a case 'f unstable equilibrium, i.e if 

j- < 'C , the nucleus will collapse, audit t>4t , it will 

expand indefinitely while surrounded by superheated liquid. 

It is known from measurements of the temperature in a liquid 

above a heated surface (see Jakob [26])  that only a thin layer of 
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liquid adjacent to the surface is sufficiently superheated to 

initiate •boilng, while the rest of the liquid is at some 

temperature near saturation or less, depending on the history 

of the liquid. it is then in this region that a nucleus will 

be found, and since Weotwater [12] observed that bubbles grow 

from imperfeattons in the metal surface, it seems reasonable to 

apply Equation (5.1.1.) to the cavities in the experimental 

beating surface, with radius T above replaced by the critical 

radius C 

After the manner 0:lclaude and Foust [1]] an ideal vapour 

filled surface cavity is postulated, with the vapour-liquid 

interface concave to the liquid (Figure 21), where 'C is the 

radius of the interface, 'C the radius of the cavity where the 

vapour-liquid boundary contacts the cavity wall, 9 the cavity 

cone angle and P the contact angle between the liquid and metal, 

being measured between metal wall and vapour-liquid interface. 

I] 
FM 

FIGURE 21 

From Equation (5.1.1.), 

- 	= 	 . . . 9 . . . ( 5.1.2.) 
V 	It- 

 where t has been replaced by 12 
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If 0 is the angle included by 1. and It this beóomes, 

2LE Cos 

BUt4-rP 

Zr 	(4- 	p.) .  . • ( 5.1.4.)Cos 

where the magnitude of (f 	is such that, oCcos  

It is assumed that 4= ,because for the measured cavities on 

test surface, 4 was approximately equal to the average contact 
angle of 40, which was measured by Griffith and Wallis [27] for 

water on a clean metal surface at atmospheric pressure and 

saturation témperaturé. Records of the cavity profiles are 

shown in Figure 7 

Equation '(5.l.4,) is rewritten with cos f -p)= 1 and 
becomes, 

. . 
V 	L 	 . 

The pressure difference 	- k across the nucleus vapour-liquid 
boundary may be converted to the superheat temperature differehee 

in the liquid, by the Olausius-Clapeyron equation, 

(5.l6.) 
dT 

where La is the latent heat of vaporisation, lh the specific 

volume of the vapour, V the specific volume of the, liquid o  ? the 

saturation temperature of the two phases and 3 Joule's. eflivaleut. 

For pressures up to 1000 lbs./inch2  abs.. JL<< 	and may 

be neglected; therefore, Equation (5.1.6,) becomes, 

= L, J- 	 5. 
J 	T vl 

If it is assumed that the vapour behaves as a perfect gas 
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according to the law 	RT, where B is the perfect gas 

constant, then substituting for Tv  in Equation (5.1.7.)gives, 

AL = kU 	H. 	
18 ctT 	R T2- • 0)  

Rearranging,and integrating from the vapour pressure corres-

ponding to the liquid pressure k to the vapour pressure 

within the nucleus,, at their saturation témperatureewetaiJ 

H liE 	= Li. çd.T 	. . (5.1.90 
R ) Tt  

k 	 rT  
k 	.  9fl d 	 K 	

R 	To -  

Substituting Equation (5.1.5.) in Equation (5.1.10.) becomes, 

• 	. [-4- 	4] = L3 ioie{i-i— 	'aç  

RTT 
and 	. 	It 	T = 	

e 
[ 	 LI 

where P2  is the temperature of the saturated vapour within the 

nucleus, and for equilibrium across the nucleus boundary it must 

be equal to the temperature of the superheated liquid surrounding 

the nucleus; Ti  is the temperature of the saturated liquid at 

pressure ' 9. 

If T2  is denoted by the superheat temperature Tsupand 
 T1  by 

the saturation temperature sat' substitution in Equation (5.1.12.) 

provides, 

- Teat = . 
	. 	

[ i + TC.frL J(5.1.13.) 
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Equation (5.1.13.) gives the liquid superheat temperature 

difference(Tsup 
 T.sat).which is required to initiate bubble. 

growth from a vapour filled conical cavity of characteristic 

radius t. , in contact with a uniformly superheated liquid. 

It is shown.in.SectiOn 7.4* that for the heating surface 

arrangement used in the present study, the thickness of the 

superheated layer-at pressures of 144 and 30 lbe./inch 2  abs. 

for saturated liquid is very much 	than the radii of the 

largest surface cavities. It can be assumed, therefore, that 

for initiation purposes the liquid is uniformly superheated and 

sup may be replaced by the beating surface temperature Tour in 

Equation (51.13.) to give, 

Tsur  cat = . 
	 iog 	+ 	J (5.1.14.) 

In order to apply Equation (5.1140, it is necessary to assume 

that the largest radius of a cavity, i.e. the cavity mouth radius, 

will determine the Initiation superheat temperature, since it 

would be impossible to predict how far the liquid will penetrate 

into a cavity, without a more exact knowledge of the cavity 

geometry and metal—liquid contact angle. 

Equation (5.1.14.) is compared in Figure 22 with experimental 

measurements of the superheat temperature difference required to 

initiate bubble growth at the first bubble site. The value of if 

inserted in Equation (5.1.14.) is 360 x 	inches. 	This value 

corresponds to the mouth radius of the largest heating surface 

cavity, and compares favourably with the value of 550 x 10 6  inches, 

recorded for the radii of the largest cavities on the experimental 

heating surface (see Section 8.3.). 
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5.2. Bubble.sitedensity 

Qonsider4 metal heating surface, the sizes 'of cavities In 

which are distributed normally. As the superheat temperature 

is increased, the large-sized cavities will initiate first and 

further superheating will initiate the lesser sized cavities in 

tuni, the total number of active cavities being the summation of 

the number of cavities  for each particular size range, 

Sufficient experimental evidence has been obtained by Claude 

and Fst [ill to Indicate that this is in fact what ha pens, 

since they have been able to vary the rate of increase in bubble 

sites with increase in superheat, by changing the surface roughness,  

Equation-(5.l.14.) is now applied to the range of cavity 

sizes on the test heating surface, with Ore. becoming the mouth 

radius of any cavity* 	Equation (.1.14.) is 

2a- Tour - ;at = R TsurTsat loge [i + 
IQ 

and may be written in an approximate form, provided that 

(Tour - Teat) ssmafl and that loge [i + 

to give, 	 a 
2RT sat C. 

Tsur - Tsat = 	LT'ca' 
 

Let the superheat temperature difference (0 - Teat) be  ATSUPI 

so that Equation (5,2.]. q ),becomes, 

AT4= 	, 	: 	( 5.2.2.) 
1 

B 	sat 
is were 	.,-  



Rearranging and differentiating gives, 

I 	 - - 	
( 512.3-0 

The distribution of .cavity sizes on the .experimental beating 

surface (Figure. 6) was approximated by the normal law, 

.. 	

i 

.1 	11, E 	/ 4,ç': 	(5.2.4.). 

wberethfl. is. the fraction of the cavity population N,with radii 

between if and ( if + dd' )., '?j the arithmetic mean value of 4Z 

in the whole population and £ the standard deviation at the 

population from the mean. 

	

Rewriting Equation (5.2.4.) provides, 	 . 

dNC5e. Zk 	E 	I ci'r'  

where 05 	N 	 .. 

Substituting Equations (5.2.2.) and (5.2.3.) in (5.2.50 gives, 

BC.5 	e 	2. 	 (5a2.6,) 
Ts1. 

Integrating Equation (5.2.6.) from AT 	, to 	provides,,
S p, 	 sup2  

/B
2. 	 ATS4L 	. J_

N= —Bc4 	 (5.2.7,) 
AT 

ATs4 	_...L(Tt4—M 

and N. N1= - 	 ____ e 	E 	" a(&r4 	(5.2.8.) 
AT 

ATs4u 
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The integration of the right hand side has to be carried out by 

a graphical method and if this is done. from Atsup1 =0, then 
N1  = 0 and Squation. (5.2.8.) can be reç$ritten, viz., 

N=_BC5 	 e Z 
	 (5.2.9.) 

Equation (5,2.9.) therefore predicts the number of cavities N20 :: 

which are active bubble sites at any superheat temperature H 

difference AT sup2  

The number of bubble;•ites was calculated from Equation (5.2.9.) 

(see Section 8.3.) for increasing values ofTsup2 , and compared 

with the number of bubble sites on the test heating surface, which 

were counted visually. The comparison showed that the number of 

sites predicted by Equation (5.2.9.) was greater than the experi-
4 

mentalnnumber by a factor of 10 	If the theory is assumed 

correct, this means that only a very small fraction of the 

available cavity population are bubble sites (this applies to the 

early stage of boiling only). 

To correct for this a multiplying  constant D is introduced,  

Constant D is defined as the ratio of the active cavity population 

Ni to the available cavity population X. such that 

N1  = DR 	 (5 412010,) 

where D = 10 

Replacing N by Ni  in constant O 5 gives 9  

F2- IT 
Equation (5.2,9)  now becomes, 



Nt=—BC c 0 	
AT st+ 
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/ B 
	I

z 

-( bsTsul''fl 
a' 	€ 	/ 

e (5.2,12 1 ) 

Equation (5.2.12.) is plotted in Figure 23 against the superheat 

temperature difference AT sup2 9 
 for liquid pressures of 14.3, 30 

and 122 lbs./incb 2  abs., and compared with the experimental count 

of the number of bubble sites at pressures of 14.3 and 29 lbs./inch 2  

abs. 	Equation •  (5-2.12i) shows some agreement with experimento 

despite the diffidulties experienced when counting the number of 

bubble sites on the experimental heating surface (see Section 83.), 

Figure 23 also .shóws  that Equation (5,2,12.) predIcts, that the 

effect of an increase in pressure is to increase the rate at 

which bubble sites appear. This would seem to agree with 

expeflmentai results in that!, the effect of an increase In 

pressure on the boiling curve is to decrease the region of weak 

boiling and bring about "established nucleate boiling" at a lower 

value of superheat temperature difference (see Section &.l.) 

5,3. Bubble frequency 

A study of the bubble frequency at  one bubble site revealed 

large time Intervals between successive bubbles at initiation, 

and a decrease in these intervals as the superheat temperature 

was increased. 

Hsu and Graham [28 define the frequency of bubble formation 

at a given site by two time periods; namely, the bubble growth 

period tg and the bubble waiting pértod tw. The waiting-period 

is the time between the departure of one bubble from the heating 
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surface and the appearance of the next bubble; and the growth 

period, the time that the bubble grows while remaining Attached 

to the surface. Hsu and Graham [28] measured the.waiting And 

growth periods for twenty bubbles, from high-speed pictures of 

boiling at atmospheric pressure, for a superheat temperature. 

difference (Teur ' T5t) of 2 01P at•d a bulk liquid suboocling 

(Toat -  bu1k of 16°.?.. These times show an average ratio 

tw  = 9, the waiting time being quite large with. respect to the.
11 1

growth time a The subcooling of 16 °F will have some effect on 

these times, although in this case their graphs of bubble radius 

venue time is typical of saturated boiling , i.e. the bubble 

radius remains constant after growing to a maximum size. A. 

possible explanation is that some mistake has been made in 

estimating the superheat and subcoOling• temperature differences 

which make up the measured temperature difference(Tour - . 

of 180F, since, the superheat temperature difference of 20? seems 

rather low for nucleate boiling at atmospheric pressure.. 
tw ratio of ug l= 9 	indicates that the bubble frequency may be 

estimated by considering the waiting period only, for low rates 

of boiling (small values of superheat temperature difference), 

4 simplified model similar to the models used by Hsu jiJ 

and Ban and Griffith [4I.. is proposed to enable a prediction of 

the waiting .time and hence the bubble frequency. In this 

model, the waiting time is associated with the time required to 

raise, the temperature of the liquid layer adjacent to the heating 

surface from bulk liquid temperature to a temperature which -will 

initiate bubble growth at a site, The growth of the bubble 
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removes a section of the heated layer and allows liquid at bulk 

temperature to move in and take its place, so that the cycle is 

repeated. 

To enable asolution to be arrived at for the waiting time, 

It is assumed. that the liquid layer is heated by conduction only ., 

that the layer is of constant thickness and that heat is supplied 

at one side at a constant rate, while, the other side is held 

constant at bulk liquid temperature. The prpblem is one of 

transient conduction .of: heat in a Blab, in one dimension x, with 

a prescribed beat flux Q/x.at one side and a constant temperature 

Tbulkv at the other (see Figure-24). 	. 

INERTIAL LAYER _- 

a 0 

I; 
	 FIGURETh* 

Let ' be the thickness of the liquid layer and T be the temperature 

at z >0, so that !t - 	= T. 

The one dimensional transient conduction equation is, 

= ___ 

where I is the thermal diffusivity and t the time. 
The boundary conditions are, 	- 

AT=o, att=0, for o<x<S 

At = 0, at x = 0., for t >0 
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ILA 'AT\ 
C 

= Q = constant, for t 0 

The solution of Equation (5.3.1.) from Carslaw and Jaeger [29], is 

Co 

AT  = T -Twk 
(

ñ " Ler4c (2 ~ flSx _Lev-$c.  
•1 2(cLtt 

(5.3.2.) 

IS it is assumed, as in Section 5. 1., that the superheat temperature 

can be replaced by the heating surface temperature for initiation 

purposes, then Equation (5.3.2.) has to be solved  for P at x equal 

to 	only. 	Therefore time t is equal to the waiting time tw, 

when the temperature T at x equal to S is equal to the heating 

surface temperature required for initiation, 

Substituting for T. t and x in Equation (5.3.2) gives, 

00 

Tsur —, Tnak = 2*(LtY I(__1rI{1t 
	__j.,er.çc 

no 
(5.3.3.) 

Consider the first bubble site at some pressure k . the heating 

surface temperature for initiation from the first site Is .obtained 

from Equation (5,1.14.), which is plotted in Figure 22, and gives 

the initiation superheat temperature difference (T sur  - Teat) 

versus liquid pressure 	. If the heating surface temperature 

Tsur and heat flux /A corresponding to initiation are substituted 

in Equation (5.3.3,), it can be solved for tw. 	The waiting times 

tw, at increasing values of cur'  can be attained by substituting 
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the corresponding values of beat flux QA in Equation (5.313,). 

The waiting periods were therefore obtained by this method 

for the first eight bubble sites at pressures of 14.3, 30 and 

122 lbs./incb 2  abs.. The heating surface temperature for 

initiation at each site was obtained from Equation (54.120 0  

as shown in Figure 23. Figure 23, which gives the number of 

bubble sites at a superheat temperature difference A T u  , can sp2  
be interpreted as the superheat temperature difference that is 

required to  initiate the first bubble site and each site in turn. 

Experimental, measurements of the layer thickness £ (see Chapter 7), 

at pressures of 14.4 and 30 lbs./inch2  abs.! for saturated liquid, 

were substituted in Equation (5.3,3.) in the solution of the 

waiting periods at the pressures of ,14.3 and 30 lbs./incb 2  abs. 

A layer thickness of 0.030 inches. was assumed for saturated liquid 

at a pressure of 122 lbs,/incb 2 .ábs. Experienta1 values of the 

free convection heat flux corresponding to the heting surface 

temperatures Tsur were also substituted in Equation (5.3.3.). 

The bubble frequencies 'given by iw  were calculated for the 

liquid pressures of 14.3,30 and 122 lbs,/inch2  abs. 	The bUI'ble 

frequencies 1 9  for eight bubble sites at the pressure of 

14.3 lbs./inoh2  abs. are plotted in Figure 25 against the super-

heat temperature difference sur - Tsat)o Similar graphs were 

drawn for the bubble frequencies at the pressures of 30 and 

122 ibs./inch2  abs. so  that the bubble flux , i.e. the number 

of bubbles, per unit area of heating surface, per unitti*e,could 

be computed by summing the bubble frequencies at the bubble sites, 

for increasing values of (Tsur -. Tsat)* 
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Figure .26 shows curves of bubble flux . against the super. 

beat temperature difference(Tsur - sat' at the pressures of 

14.3, 30 and .122 1bs../inch2 .:abs 	This is a theorètiOal prediction 

only, because it was not. found possible to measure:  the bubble 

frequencies at each site with the. present experimental apparatus* 

5,4. Weak nucleate boiling beat flux 

In the region of weak nucleate boiling, the heat flux may 

be. determined by the summation of the free convection heat flux, 

and the heat flux associated with bubble growth at the heating 

surface. The heat flux in this region is therefore given by, 

WA weak 	VA free 	+ VA bubble  (51401.)  boiling 	. convection 	growth 

Consider first the heat flux associated with bubble growth. 

This will equal the heat removed from the heating, surface by. the 

growth of one bubble, multiplied by the number of bubbles per tit 

area and unit time, corresponding to the specified heating surface 

temperature 

The heat removed by a bubble may be estimated with the aid 

of the model described in Section 5. 3. In this 9  it was assumed 

that the growth of a bubble removes a section of the heated liquid 

layer (thermal layer) from the vicinity of the heating surface. 

If TsurIs  the heating surface temperature and T.bulk 
 the bulk 

liquid temperature, then the heat q, removed by the growthot ' 

bubble may be written as.,. 

'a x .  ip x 	
(Tsur 	bulk 	(5.4.2.) 
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where a = area of thermal layer removed by the bubble (ft. 

8 = thickness of thermal layer, at the temperature 

difference (Tour _TbUik) (ft.), 	. 	H 
• . 
	p= liquid density (lbs./ft. 3 h 

specific heat at constant pressure (B.t,u./ib. 9p), 

BUD 2 Tbulk mean temperature of thermal layer (°). 

It is asstmed, that the area of the thermal layer removed by the 

bubble.. is obaracterised by a diameter D, which is poportional,. 

to the maximum bubble diameter such that 

(5b4.3.) 

where B i.sr.a constant. 

The area of the displaced thermal layer then becomes., 

	

a =. 	-(E D 	
2

) 	 . 	.(504.4,) 

Substituting Equation (5.4.4.) in (5.4.2 ,-) gives, 

Jr2 2 	c 	c (Tour _Tbulk) 
¶6- r.E .D maz' , ' 	2 	 5445' 

Equation (5#4.5o) can now be multiplied by the bubble flux.* 

corresponding . to the heating surface temperature Tour to give the 

beat flux associated with bubble growth. . Multiplying by 

units of ft. -2  hr, 	gives,. 	... 

	

bubble = **E22max 	
bulk (5.406,) 

growth . 

The free convection heat flux has been correlated success-

fully in many cases by the Newton Equation, 

VA free 	= hsur - 'bulk) 
convection 
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where his the heat transfer coefficient. 

The coefficient h is derived from dimensional analysis of 

the free convection problem (see Equation (8.2020)j 

In this case, however, the Newton equation predicted heat 

flux values, which were less than the experimental ones by as 

much as 50%. For this reason, experimental values of free 

convection beat flux were used in Equation (5.4,1.) (see Section 

8, 24. 

Equation (5.4.10) is compared in Figures 27 and 28 with the 

experimental results in the region of weak boiling .1 or pressures 

of 14.3 and 30 lbs./inch 2  abs,spectively. 	The theoretical 

curve (Equation (5.4.1.)) was drawn by first drawing an experi-

mental curve of free convection heat flux, calculating the heat 

flux associated with bubble growth from Equation (5.4.6.) at 

increments of heating surface temperature Tsur.0and then adding 

these values to the tree convection curve at the corresponding 

values of Tsurtto give the final curve. The value of constant 

B required for Equation (5.4,6.) is referred to below.0 

Experimental values of maximum bubble diameter Dmax  by 

Staniszweski 1211 at pressures of 14.7 and 28 lbs./iuch 2  abs. 

for aflurated liquid were substituted in Equation (5,4.6.) to 

calculate the heat flux at the pressures of 14.3. and 30 lba./inch2  

abs. These valueajplottéd in Figure 29, show that 

remains constant for increasing values of heat flux. A xean 

value of maximum bubble diameter was therefore used in Equation 

(5.4.60)9 	and 1assumed constant over the weak boiling region, 

Because of the scatter in the experimental values in Figure 29, 
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a negligible error will . occur in using a max±mum. bubble diameter 

obtained at 28 ibs./iuch 2  absi and at saturation, temperature (or 

a pressure of 30 .lbs./iuch 2  abs. and 2.5 0 ] .  subcooling ( see  Figure 

28). 	The diameters used in Equation (5.4 1 6..) were 0.11 and 0.08 ins. 

for 14.3 and 30 :'lbs./incb2  abs. respectively. 

Thermal layer thicknesses,8 , of 0,036 and .0034 inches were 

substituted in Equation (5.4.6.) for pressures of 14.3 and 

30 lbs./inch2  abs, respectively and assumed constant over the 

weak 'boiling region. 	These were measured at pressures of 14.4 

and 30 1bs/inch2 'abs0 by a thermocouple method, which is described 

in Chapter 7 of this work, A. theoretical value of S might have 

been used here, since good agreement has been shown between the 

"boundary film" thickness from an equation by Chang [33] and the 

thermal layer thickness measured in Chapter 7 (see Section 7. 40 2..). 

The bubble flux ir was obtained from Figure 26. 

The value of .constant  was chosen to give the best fit 

between experiment and theory, and was equal to 1.5 in each case, 

If the model is correct s  this .mplies that the growth of a bubble 

disturbs. an  area whose diameter is 1.5 times the maximum diameter 

of the bubble.. This is to be compared with the work of .Rau and 

Graham f283 , who observed that the growth of a bubble disturbed 

an area whose diameter was twice the maximum diameter of the 

bubble. 



CHAPTER 6 

Shadowcaph Measurement of the Thermal Laser Thickness 

6.1. Introduction 

The Shadowgraph technique, based on the refraction of light 

rays as a result of density changes in a medium, is a relatively 

simple way of observing the density change and, by deduction, 

the corresponding temperature change in a heated liquid. 

In this work the ebadowgraph technique was used to measure 

the thickness of the thermal layer adjacent to the heating surface. 

The growth of the layer thickness with increase in heating 

surface temperature was recorded on film at various stages of 

free convection and boiling heat transfer. The thickness of 

the layer was measured from these photographs and compared, at 

one value of heating surface temperature, with the thickness 

obtained by traversing the liquid with a thermocouple (see 

Chapter 7). 

The thickness of the thermal layer was measured at liquid 

pressures of 14.2 and O lbs./inch2  abs.. 

With the shadowgraph. metbod,1ight is projected from a 

point source so that uniformly divergent or parallel light 

(using an auxiliary lens) is passed through the thermal layer 

and is refracted to form a shadow on a translucent screen placed 

behind the heating surface. The screen allows both visual 

study of the shadow and photographic recording. 
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6.2. Application of the shadowgraph method 

The application of the shadowgraph method to the study of 

the temperature distribution in the layer adjacent to a heating 

surface has been described by Jakob 	Figure 30, which is 

reproduced from his work, shows in a schematic manner what 

happens when a cylindrical heating surface, in contact with air, 

receives light at grazing incidence. 

A 
AT 

to 
bscr 

k 	 -- 

PIGURE 30 

The arrows between so and bo represent the velocities of 

parallel rays which arrive at the leading edge of the heating 

tube and havea plain wave front a0 , ba. At the left of 

Figure 30, the temperature -  distribution in the heated layer is 

indicated by the curve tsTa, LITb, where AT is the temperature 

excess over the bulk air temperature. 

According to Jakob [30], the temperature drop and corres- 



72 - 

ponding deñsity'ipc.re.ase iii the y direction will cause the 

velocity of the rays to change in such a manner that th wave 

front takes the curved shape bi.,, 4 on leaving the heated layer. 

The light now travels in straight lines to meet the screen, 

since light propagation' is alwayS perpendicular to the wave 

front.. Because of the small curvature of the ends of line 

ATa, ATb, the ends of 	b are also nearly straight, and 

therefore light is concentrated in bundles close to 4,' a'.' 

and bj., bc (termed caustic bundles). 	Since no light falls 

below b 	, a deep shadow is formed inside the caustic line 	at 

b Sc.' 

Although air has been the fluid considered in the previous 

discussion, the principle also applies for water. 

The most important feature of this technique, however, as 

far as this work is concerned., is that no lint  falls below 

b r. 	For this reason, the vertical distance between b sr 

and the projection of the heating surface on the screen corres-

ponds to the thickness of the heated layer. 

It was this fact that suggested the method, which is about 

to be described, for measuring the thickness of the thermal layer. 

6.3. ExDerimentaL apparatus 

The need for a point source of sufficient brightness to give 

satisfactory shadowgraphs was satisfied by the illuminating unit 

from a Vickers projection microscope. The unit consisted of a 

mercury vapour lamp, condenser lens and iris, positioned to 

produce uniformly divergent light from a secondary light source. 



Because eta stop on the iris this source could not by itself 

be made sufficiently small. This was corrected by placing an 

adjustable slit in the light path and using both the slit and 

Iris .to. regulate .the source size. 

Refraction irreularIties in the boiler windows were 

prevented from appearing on the ahadowgraph screen by making the 

plane of the secondary light source. coincide with the plane of 

the first window, aridly placing  the translucent careen, close 

to the second window, .. The magnification of irregularities in 

the first window is so great that they are blurred and not 

readily visible, while irregularities in the second window have 

no distance in which to build up a separation of the light, rays 

(see "Techniques of flow Visualisations' by W.P, ijilton 	). 

An additional advantage of this arrangement Is a rnagniflcaflon 

of z2. 

Several translucent screens were tried, and best contrast 

with sufficienti].luminatiOn was obtained using a plain glass 

covered with a uniform layer of magnesium oxide. 

The shad.owgraphs were photographed with a 35 mm. single 

reflex camera using Kodak Tri-X fast film, the pictures . being. 

taken at an angle of 150  to the optical axis, to avoid fogging 

of the film by the light source, which was otherwise slightly 

visible through the screen. 	.. 	 . 	 . . 

In the layout of the shadowgraph optical bench shown in 

Figure 31, the distances between the .various optical components 

are indicated. 
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6.4. Experimental procedure  

Preliminary experiments were carried, out to determine the 

beat settings for the illuminating unit iris and the adjustable 

slit, to give  shadowgraphs of 'good contrast and definition 	A 

camera shutter speed at 	second and an aperture setting of 2.6 

were required to give a bright shadowgraph and to. freeze the 

movement at the thermal layer during boiling. 

before commencing a shadOwgraph experiment the heating 

surface, inside walls of the boiler and test liquid were cleaned 

(Section  4.2.), and the beating surface degassed. at .l lb./Inch 2 ' 

abs. (Section 4. 3.2). When degassing was completed the bulk 

liquid temperature was maintained constant by the boiler wan 

heater only. since the internal heaters would have caused 

unwanted density gradients in the light path. This resulted in 

a greater degree of bulk liquid subcooliug than for those tests 

in which the Internal heaters operated (e.g.. series designed to 

study the effect of pressure and subcoollng)9 

The first picture of the screen was taken at zero heat flux 

to fix the datum position for the heating: surface, since in 

shadowgrapbs the dark areas corresponding to the. heating strip 

and thermal layer are indistinguishable. Further pictures were 

then taken at various stages of free convection and boiling, heat 

transfer, the heating strip voltage, current and temperature 0  

and the bulk liquid temperature being recorded for each picture.. 

The shadowgraph pictures were printed with a'.magnification 

f x5, giving a total magnification of x 10, since the actual 

shadowgraph represents a magnification of x,2 (Section 
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The thickness of the thermal layer was obtained, after trans-

ferring .the :position of the beatingsurfacefrom the datum 

photograph to the remaining photographs, and measuring the 

thickness :of.  the dark layer abOVe; this position. H 

Five such records an presented inFigures 32 (b -f), in 

which the broken white liuOs represent the position of the 

beating surface. 

6,5. Results and,discussion 

Sbadowgraph photographs of part of the beating surface and 

liquid are shown in Figures 32(e- f); the outside diameters 

of the pictures correspond to the boiler window diameter. 

Figure 32a., taken ,  at. zero heat flux, gives the datum positton 

for the beating surface; the dark columns indicate two pins 

which were located in the plane of the heating surface, at a 

fixed distance: apart, to check the, : photograph enlsrnent. 

Figures 32 (b - a), taken at increasing values of beat flux 

show the growth of the thermal layer t1cknesa for free 

convection heat: transfer; the broken white lines represent 

the position of the heating surface (see Section 6, 4.). 

Caustic lines (bright lines) can beseen along the top edge 

of the thermal layer in Figures 32b and c, and correspond to the 

causticline at position b scri ,  in Figure 30 	According to 

Figure 30,, a second set of caustic lines corresponding to a5CII, . 

should be visible in Figures 32b and c, but since these do not 

appear it is . concludfl that the temperature distribution 

adjacent to the heating surface Is different from that in 



Figure, 30. 	This is confined in Figure.37. 9  which represents 

the temperature measured in the: thermal .layer, using a traversing 

thermocouple (see Chapter 7), and shows, that the temperature 

distribution adjacent:  to. the heating surface: Is a: straight line, 

The thickness of the thermal layer: from Figures 32 (b -: 1), 

is: plotted against the heating surface temperature in Figure 33, 

and it is seen that the layer thickness reaches a maximum at a 

temperature of 213-5 0P (corresponding to Figure 32d), . At a 

heating surface: temperature of 216.80F boiling is initiated, and 

at 218,70F (corresponding to Figure 32e) the average layer 

thickness is still .a. mximum. . The fluctuations of the layer 

thickness in Figure 32e maybe due. to bubble growth at other 

parts of the beating surface. At 227.2F (corresponding to, 

Figure .321): the average, layer thickness is2ess:tban the. 

maximum, and may be attributed. to the increase. in the number of 

nucleation sites and the resulting displacement of the :]4flt by 

the growing bubbl.as,  

The thickness of the layer, measured:at a heating surface 

temperature of 216 07 using a traversing thermocouple. (see: 

Figure 37),, is plotted in Figure 33 and shows aomejagreement 

with the thickness measured from the photographs. 

An interesting feature of Figure 32d is the waveform which 

can he seen at. the upper boundary of the. thermal layer. Since 

this motion appeared just prior, to bubble Initiation, a further 

experiment was earned out to study this phenomena in. the 

absence of boiling. 	In tbis.experlment,.employing a greater 

subcooling of the bulk .liquid, the layer thickness varied as 
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follows: 

As the temperature difference between the heating surface 

and bulk liquid cur - !bulk 	increased from 0 to 15 °?, 

the layer thickness increased uniformly (similar to Figures 

32b ande). 

At a temperature difference (Teur  - Thulk) of 150?, the 

layer thickness reached a maximum and a wave motion developed 

at the upper boundary (similar, to Figure 32d). 

With 'a further increase in temperature difference the wave 

frequency and amplitude increased, until the upper half of 

the layer  became completely turbulent at a temperature 

difference (TBur Tbulk) of 200?. 

This means that for free convection heat transfer to water from 

a flat, horizontal surface (the experimental strip had a radius 

of 4 Inches In the longitudinal direction)p the thermal layer. 

develops in three distinct stages as the temperature difference 

between the heating surface and bulk liquid is increased. 

In stage one, the layer is laminar and increases In thick-

ness with temperature difference, reaching a maximum thickness 

at a temperature difference :(Tsur - Tbk of 15 0?. Stage two 

represents a transition stage from laminar to turbulent flow 9  

in which a wave motion develops at the upper boundary of the 

layer and increases in amplitude and frequency with temperature 

difference. , 	is reached stage three, in which the upper 

halt of the layer becomes, fully turbulent at a temperature 

difference sur -, bul1) of 20°F; the lower half of the layer, 

however, probablij remains laminar. 	 . 
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Figure 34 shows the thickness of the thermal layer obtained 

by the shad•owgrapb method for a pressure of 30 lbs 9 /inch2  abs. 

The increase in layer thickness with heating surfaci temperature 

closely resembles that of Figure 33. 

Figures .33 and 34 also show that a temperature difference 

- Thulk) of 15 and 10°? respectively is required before Bur
the layer reaches a maxims thickness. It tnows,therefore, 

that for saturated water at pressures of 142 and 30 lbs./ln•1h2  

abs. (corresponding to Figures 33 and 34) the layer thickness 

will only be 75% and 65% of the maximum respectively when boiling 

is initiated, provided the layer growth rate remains the same. 

This may be an important point when determining the thickness of 

the thermal layer (or superheated layer) at the initiation of 

boiling for pressures' greater than 100 lbs,/inch 2  abs.., i.e, when 

initiation temperature differences (Tour - Tbuik) are less than 

10.?. 	On the other hand, the rate, of growth of the layer thick- 

ness may well Increase with liquid pressure. 

The shadowgraph method has given some information on the 

development and thickness of the thermal layer in free convection 

heat transfer, and would seem particularly suited to determining 

the regions of laminar and turbulent flow. It is of interest 

to note that in Jakob [32] the experimental results of free 

convection heat transfer from a horizontal surface were 

correlated by the equation in dimensionless variables 

IM
"I 	 1 

Nu C( Nor. N) , where the exponent is characteristic of 

turbulent flow. 

The experimental boiler of this study was not designed 
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primarily for the application of the shadowgrapb teàhniquó, 

and several design factors, such as the large extent of water,  

in the light path which reduced the transmitted light to a low 

value initially,, prevented greater use of this method., However., 

if these limitations were avoided in an experimental áppárflüs 9  

the combination of the shadowgraph technique and high-speed 

photography should yield even more Information on the behaviour 

of the thermal layer, especially in the nucleate boiling' region. 



CHAPTER 7 

Thermocouple Measurem?nt of the Thermal LMer Thickness 

7.1. Introduction 
• 	

A thermocouple probe was also used to measure the thickness 

of the thermal layer 9  by measuring the temperature distribution 

in the liquid above the heating surface, The thickness of the 

layer was required specifically for the following reasons: 

To justify the assumption, in Sections 5. 1, and 5. 3., 

that the thickness of the superheated layer at the initiation 

of boiling is very much greater than the radii of the largest 

surface cavities. 

to solve for the waiting time tw, in Equation (5.3,3.) (by 

substituting the measured thermal layer thickness for S), 
(.c) to determine whether the ehadowgraph technique described in 

Chapter 6 can be used to predict the thickness of the thermal 

layer. 

The thickness of the thermal layer was measured first at a 

pressure of 14.7 lbs./inch 2  abs., and compared in Figure 33 with 

the thickness measured by the shadowgraph method. The thickness 

of the layer was next measured at pressures of 14.4 and 30 lbs./ 

inch  abs. 9  and the values obtained, assumed to be the thickness 

at the initiation of boiling for liquid at saturation temperature, 

Two methods of predicting the thickness of the thermal layer 

were tried: the first, where it is assumed that heat is trans-

ferred across the layer by conduction only, and the second by 

Chang £333 , which assumes a wave motion inside the layer, stable 



in the lower part and unstable in the upper, the lower part 

is termed the "boundary film"., where heat is transferred by 

•oonduàtibzi only, and the upper is termed the "wave layer", where 

heat is transferred by laminar and turbulent flew. The theory 

Of Chang L333 is in best agreement with the experimental results 

presented •here 	. 	. 	.. 

7.2. Experimental apparatus 

The apparatus consisted of a thermocouple probe and a-

device, both for moving the probe perpendicular to the heating 

surface and for indicating the distance of the thermocouple 

junction from the surface, 

1. Thermocouple probe 

A .0.002 inch diameter chromel-alumel thermocouple was held 

in tension by a spring across the ends of a •"Pluon" p.t.f.e* 

insert, which protruded from a stainless steel bridge (see 

Figure 35a). 

The thermocouple junction was formed by butt-welding the 

ends of the wires, using the discharge welding technique 

described in Section 3, 7.. The bridge position was fixed so 

that the thermocouple. wires lay in the plane of the heating 

strip longitudinal axis, and the junction was above the centre 

of the strip area (Figure 36) , 	 ., 	. 	. 	. 



-82- 

/ 

FIGURE 36 

Starting from this position, the probe was lowered until,  

the thermocouple junction contacted the heating surface to give 

a datum height of 0,001 inches (it is assumed that the thermo-

àouple measures the mean temperature of a layer of 0,002 inches 

thickness). 	The heat losses from the thermocouple junction by 

conduction along the wires are minimised by this arrangement, 

since the thermocouple wires close to the junction are in a 

near-Isothermal plane.. 

The tensile force on the thermocouple was applied by a 

metal con spring and a p.t.t.eo leaf spring arranged, in series. 

This method was preferred to bonding the thermocouple wires to 

the bridge, since the bonds had proved unreliable at temperatures 

exceeding 2120P. 	Tension was applied initially by pulling the, 

wires through several 64  inch diameter holes in the p.t.f.e. 
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leaf spring , the wires being prevented from slipping by the 

friction force between the wires and p..t,f.e. 

The ends  of the 0,002 inch diameter chromel and alumel wires 

were silver soldered to 0.0076 inch diameter chromel and alumel 

wires respectively. The 0.0076 inch diameter wires were passed 

through several holes in a p.t.f.e. ring attached to the * Inch 

diameter rod of the prGb.. This prevented an external force 

from being applied to the spring system by the 0.0076 inch 

diameter Wires when the probe was raised or lowered.. The wires 

were then passed through a p.t.f..e+ pressure seal in the bojler 

top flange to the cold .Junction; the pressure seal (Figure 35b) 

was similar to the pressure seal described in Section 3. 8. 2. 

Connections between the cold junction and potentiometer were of 

copper. 
uFIuon ft p .t.f. eo  was used in 	cases to insulate the 

thermocouple wires from the metal parts. 

2. Probe mechanism 

The mechanism (Figure 35°) included a brass body, a micro-

meter head and a coupling to connect the micrometer anvil to the 

* inch diameter nickel plated rod of the probe. A pin, lqcated 

in slots in the brass body, prevented the transmission of rotary 

movement from the micrometer anvil to the * inch diameter rod. 

The clearance in the coupling resulted in a backlash of 

0.001 inches. A mild steel adaptor connected the b rass  body to 

the b.oilerttop flange, and at the same time compressed a p.t.f;e. 

ring to form a pressure seal on the vertical rod. With this, 
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arrangement the vertica],movement of the thermocouple probe 

was limited to * inch0 

7.3. Experimental procedure 

When a d.cvoltage1sappltedto the heating strip 

electrodes, a d.c, field will be established in the water 

between the electrodes, being strongefl near the 'beating 

surface. *•tbénocouple measuring the liquid temperature in 

this region will therefore be expected to "pick up" a voltage 

from this d.c. field.. 	This "pick' up" will either add to, or 

subtract from, the thermocouple e.m..f. corresponding to the 

liquid temperature. 

For this reason apreliminary test was carried out to 

determine whether the probe thermocouple would "pick up" a 

voltage from the d.c. field. This was done by simply replacing 

the probe thermocouple with a chromel wire of similar dimensions, 

to eliminate the e.m.f. corresponding to the liquid temperature. 

A d.c. voltage was then applied to the heating strip electrodes 

and it was noted whether or not a voltage appeared across the 

ends of the chromel wire. The test was repéatedfór various 

heights of the probe and in each case the voltage "pick 'up" was 

zero. 

Before commencing an experiment to measure the thickneSs 

oflthe thermal layer, the heating surface,inaide walls of the 

boiler and test liquid were ,  cleaned ,  (Section 4. 2.), and the 

heating Surface degassed at 1 lb./inch 2  abs. (Section 4. 3; 2J. 

.After degassing, the probe and heating strip thermocouples were 
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calibrated under conditions 'of boiling of, the test liquid from 

the bulk liquid heaters, the boiler wall heater maintaining the 

outside boiler wall temperature a few degrees above the satura-

tion temperature corresponding to the test pressure. 

The output-from the bulk liquid heaters .was reduced until 

they opeiated in the free convection region, andapeflod 

allowed for the bulk liquid temperature to become steady. The 

probe was lowerid towards the heating surface, and the reading 

on the micrometer noted when the thermocouple junction touched 

the surface.. Contact between the junction and surface was 

indicated on an avometer, by the sudden drop in resistance 

between one of tbe beating strip electrodes and one of the probe 

thermocouple wres. Several readings of the contact position 

were obtained, the probe being raised and then lowered each time 

eq as to elimnate backlash. The readings agreed to within 

± 0.00025 inches, 

When the bulk liquid temperature was steady, the probe was 

raised to a starting position of about 0,1 inches• above the 

heating surface. At this position a voltage was applied to the 

heating strip and regulated to give the desired heating surface 

temperature. The heating strip, probe and bulk liquid, tempera-

ture, together with the heating strip voltage and current, and 

probe position, were recorded.. All these readings 9  with the 

exception of the heating strip voltage and current, were 

repeated while the probe was lowered in varying increments 

towards the heating surface until contact was made. The 

beating strip and bulk liquid temperatures were maintained 
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constant throughout. At the completion of the test, the 

beating strip voltage and current and probe contact position 

were again, recorded 9  and the contact position found to agree 

with the initial readings to within the tolerance limits of 

± 0.00025 inches.' 

Since it was assumed in 'Section.?. 2. that the probe 

thermocouple measures the mean temperature ofna layer of 

0.002 inches thickness., the micrometer readings at probe height 

were therefore corrected by adding the datum height of 

0,001 .±nches to them.: With this apparatus., it was thus 

possible.. to measure the temperature in the liquid to within 

approximately, 0.001.5 inches of the heating surface. with an 

accuracy of ± 0.00025. inches (the backlash was eliminated by 

rotating the micrometer thimble in one direction only when 

lowering. the probe)..  

74 Results and discussion 

Figure 37 shows the temperature distribution j  the liquid 

above the heating surface at a pressure of 14.7 lba./iucb2  abs., 

the bulk liquid and heating surface temperatures being 202 and 

2160F, respectively. 	The experimental 'points were fitted by 

two straight lines-drawn in-by eye. 	The first line, drawn 

through the points in the proximity of the heating surface, 

shows the large decreasein temperature across the thermal layer. 

The second line, drawn through the points above this region, 

shows that the bulk liquid temperature is maintained; almost, 

constant by the mixing effect of convective currents. A thermal 
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layer thickness of 0.020 Inches was obtained from the temperature 

distribution by extrapolating both lines until they intersected. 

The height at which the intersection takes plaóe is assumed to be 

the thickness of the layer. 

Between the regions of thermal layer and bulk liquid, 

however, there must be a transition zone to correlate the two 

regions, without an abrupt change in temperature. A broken 

flue is therefore drawn in Figure 37 to represent the temperature 

distribution across the transition zone, giving a smooth change 

in temperature from the thermal layer.tö the bulk liquid, The 

thickness of the thermal layer is still determined, however, by 

the intersection of the full lines, since a transition zone does 

not give a clear indication of the thickness of the layer. 

The thermal layer thickness of 0.020 inches from Figure 37 

is compared in Figure 33 with the thickness measured by the 

sbadowgraph method.. The heating surface temperflure of 216 °? 

in Figure 37 was selected to correspond with the maximum layer 

thickness in Figure 33 (without boiling). The bulk liquid 

temperature of 2020
? in Figure 37 is 3,5°? higher than the bulk 

temperature in Figure 33, but this is considered unlikely to 

affect the comparison. Figure 33 shows good agreement between 

the two methods of measuring the thickness of the ].ayer., when 

it is realised that the presence of a transition zone makes it 

difficult to define the thickness of the thermal layer. It is 

more than likely that the shadowgraph method (Chapter 6) measures 

the thickness of the layer at the boundary between the transition 

zone and the bulk liquid region. If this is the case, then the 
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thickness of the thermal layer in figure 37 is nearer 0.030 Inches 

and is in better agreement with the thickness obtained by the 

shadowgraph method in Figure 33. 

Figure 37 also shows that the temperature of the bulk liquid 

above the thermal layer is greater than the temperature of the 

bulk liquid, which is measured by the bulk liquid thermocouple, 

i.e. 202°F. 	The bulk liquid thermocouple was located level with 

the heating surface and just to one side (see Section 3. 8. 3.). 

This position was chosen to measure the.bulk liquid temperature, 

on the basis of an assumed overall liquid flow pattern for free 

convection and the early stage of nucleate boiling. The assumed 

flow pattern of Figure 38 shows the colder bulk liquid moving in 

from the side to the heating surface, where it is heated.-rising 

and returning to complete the cycles - 

FL-OW 

P 

FIGURE 38 
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The bulk liquid thermocouple,. . therefore, measures the temperature 

of the assumed colder bulk liquid, to the side of; the heating. 

surface. This temperature is considered representative of the 

bulk liquid temperature to which heat is being transferred. 

Figures. 39 and 40 show the temperature distribution above 

the heated surface at pressures of 14.4 and 30.lbs../inch?.abs,., 

for bulk liquid temperatures of 206.5 and 245,50F, and heating 

surface temperatures of 215.5 and 253.50P respectively. . 

were drawn through the experimental points as for Figure 37 and 

the thickness of the thermal layer again obtained by extrapolating 

the straight lines. . Figures 39 and 40 indicate a Q thickness for 

the thermal layer of 0.036 and 0.034 inches x'espectively.. These 

values were assumed to be the thickness at the initiation of 

boiling for saturated liquid, in order to satisfy the requirements 

of (a) and (b) in Section 7. 1. 	In actual fact, the heating 

surface temperatures in Figures 39 and 40 are less than the 

initiation values by 2.2 and 0,3 °F respectively, slice bubble 

growth at the first site would have caused unwanted temperature 

fluctuations in the thermal layer. The bulk liquid temperatures 

ini'igures 39 and 40 areless than the saturation temperatures by 

4.5 and 5.0°? respectively, as a result of operating the bulk 

liquid heaters in the free convection region only (the heating 

surface and probe would have been obscured by boiling from the 

bulk liquid heaters). These factors are considered unlikely to 

produce a significant change between the measured thermal layer 

thickness and the thickness at the initiation of boiling for 

saturated liquid. 
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The superheated layer thickness isthepart of the. thermal 

layer ,thickness between the heating surface . temperature 	andBur 
the saturation .temperature.Tat. corresponding to the .liquid 

pressure. The thickness of the superheated layer in flgures 39 

and 40., corresponding. to the pressures. of 14o4 and 30.0.lbs./inch2  

abe.,.is therefore 0.024 and 0.018 inches repectively, :. These 

values prove that the thickness of the superheated layer, at 

pressures of 14a4 and. 301be./incb2  abs. for, saturated liquid, 

Is very much greater than the radii 550 x. 1076 .'inches of the 

largest cavities on the experimental beating surface (see 

Figure 6). 

Two methods of predicting theoretically the thickness of 

the thermal layer were tried and are described below. 

10 Conduction equation 

It is assumed that the heating surface beat flux is trans-

terred:first by conduction only across the thermal layer. The 

thickness of the layer is accordingly given by the Fourier 

equationfor steady state conduction written in the ion, 

where 

	

s - 	 Tb 1k 

	

- 	VA 
S 	thermal. .layer thickness (it.), 

k 	= mean coefficient of thermal conductivity of the 

iayer/B6t.u./ft. 2 .hr. °P/rt9), 

Taur =:heating surface, temperature. ( ofl,. 

tbulk = bulk liquid temperature .( °P), 

V4 ='heating surface heat flux (B.t.u./tt,. 2  bra). 



The experimentaivalues Of Tsury Tbtjljc and VA are substituted 

in Equat±ón(7.4.l.), which yields a thermal layer thickness of 

0.019 inches aScompared with the measured thickness of 

0.020 inches in flró 37, and a layer thickness of 0.022 inches 

as compared with 0O36 inches in Figure 39. Figures 37 And 399 

corresponding to prSstires of 14.7 and 144 lbs./inch 2 abs., are 

reproduced in figure 41 with the temperature gradients according 

to Equation (7.4.10 shown as broken lines. Figure 41 shows .  

that Equation (7.4.1.) predicts the thickness of the thermal 

layer quite accurately for a bulk liquid sub000lixE of iO°P 

(Figure 37), butmuch)àss 50 for a subcooling of 4.5°  (figure 

39). 	It Would seem  that  a  process Other than conduction 

determines - the thicknesbLafthethérmal layer at atmospheric 

pressure when the bulk liquid temperature approaches saturation 

temperature. . .. . ... .. 

2. 	Chañg'eeflatiorx 	. 	. 	.. 	. 	
. 	I,.. 

Chang 33j proposes a mechanism for non-boiling convection 

from a horizontal heating surface. 	It is assumed that,'near 

the heating surface, beat is transferred by conduction only 

resulting in a steep temperature gradient; further from the 

surface, in the bulk of the liquid, convection alone is 

operative and the fluid is so well stirred up to be at a 

constant temperature. These two regions are termed the 

"boundary film" and the "convective core" respectively, and 

be't#een them there is  transition zone, part of which is termed 

the "wave layer". A stable wave is assumed to' exist in' the 



"boundary film" *  and, the wave motion in the Vwave layer'! changes 

from stable wave to full turbulence. 	This means that as-a. -. 

result-of wave motion, considerable periodic motion of fluid 

parallel to the boundary 	may exist1. and therefore the 

fluid in the "boundary film" of a- borizontal - surfaceis not in 

stagnation. .. Because of the wave motion -the layer wifl.not.be  - 

of uniform thickness, and. therefore the average thickness. of the 

boundary,  film" Is -  designated by'.Sw 0 -The thickness of the 

"wave layer' is denoted by a, and a and Sw are related by - 

a = % 
- , The heat transfer problem is solved by. 	 the - 

amplitude, of the wave in the upper stratum of the wave layer", - 

which in turn . determines the thickness oftbe "boundary film" SW .. 

The thickness of the "wave layer" is given -by,

hQ  ~Zx- 	I ____________ 1~ 
- [I + Xi L 	C,  Pa 

 

where /4 - dynamic 'viscosity (lbs./ft. -hr.) (evaluated at mean 

temperature of gross 'layer a + Sw.) 9  

kQ - 	 coefficient of thermal conductivity (S.t.,u./ft. 2  hr. 

oP/ft..) (evaluated at mean temperature of wave layer), 

- 

= acceleration of gravity (ft.-,4ir. 2 ),,. 

= density (ibs./ft. 3 ) (evaluated at mean temperature of 

wave layer),  

= density (lbs./ft, 3 ) (evaluated at convective core 

temperature-), 
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C p& = specific heat at constant pressure (B.t.u./1bo Op) 

• (evaluated at mean: temperature of wave ).ayer), 

	

X = oonstant.t ] 	H • 	 H 

With the relationship a =% &w, the thickness of the boundary 

film" .&w is therefore, 

SW is 	1 	I • 	it 	.  

( 	
(704.3.) 

L%nxy j •. L 	R—)cj. 

If L T is the E temperature difference across the "boundary film" 

and A Tao  the temperature difference across the "wave layer", 

then a relationship between AT89  and L Tacis  obtained by the 

consideration that the temperature gradient of the "boundary film" 

must be the same as that of the "wave layer" at their common 

boundary. 	This relationship together: with AT90 	àTsa  + Tac  

gives, 
AT __ 	 4 	A1 

	

4 r,jff% 	LUsc 	
••. •(7.4.4,) 

Chang J33 assumed a value of Xl. The assumption of 	1 

is justified by the observation that the "boundary film" and the 

transition zone here can be compared with the laminar sublayer 

and buffer zone in fluid dynamics. Nikuradse's -experiments 

(see Bakhmetoff [3 4] show that the thickness of the buffer zone 

is about four tines that of the sublayer, -and since the "wave 

layer" occupies one quarter of the transition zone in this case, 

then the "wave layer" will have the same thickness as the , 

"boundary film" 

The thickness of the "boundary film" Sw I  and "wave layer" a, 
were calculated from Equations (1.4.2.), (7.43.) and  (7.4,4,)  for 
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the experimental conditions in Figures 37 and .39. 	The, corres- 

ponding temperature gradients are plotted in Figure .41 as broken 

lines for comparison with the temperature gradients measured by 

the :probe thermocouple. 	The cqmparison. shows .good agreement 

between the thickness of the "boundary film'". Sw from Equation 

(7.4.3.), and the.thickness of thethermal layer S from the 

measured temperature .gradients at pressures of 14.7 and 

14.4 lbs./inch2' . 	 abs. for bulk, liquid .subcooling of 10 and 4.,5 0P 

respectively (corresponding. to Figures 37 and 39). An assumed. 

shape for the temperature, distribution corresponding to the "wave 

layer" thickness, a is shown in Figure 41. 'There would seem to 

be some disagreement between the thickness of the "wave layer" a, 

from Equation (7.4.20), and the corresponding thickness of the 

transition zone, which was,.assumed and drawn in Figure 37 as a 

broken, line. Since Chang [33 assumed conduction only in the 

"boundary film", the value of Sw from Equation (7.4.3.) may be 

inserted in the Fourier Equation (7..4.1) to determine the flux 

Vs corresponding to.Piguree.37 and 39.. Equation (7.4.1.) 
gives heat flux values of 2.03 •x 10 and'l,04 zIG 23  

hr., •compared;with the experimental values of 3.55 x.103  and, 

2104 x 103 B.t.u./ft. 2  hr. in Figures 37. and 39  respectively. 

Apart from this disagreement., the mechanism proposed. by 

Chang [331 is very important because of the agreement between 

the "boundary film'! thickness from Equation (7.4.30  and the 

thickness of the, thermal layer measured by the probe thermo-

couple. It has been shown, therefore, that this method may 

be used , to predict the thickness of the thermal layer at the 
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Initiation of boiiing for saturated and slightly. subôooled 

liquid., at atmoafleric:preasure 	 •.• 	,.. 



CHAPTER 8 

Results and Discussion 

8.1. Effect of liquid pressure and subcooling on heat flux 

Figures 42 to 48 show the experimental curves of heat flux 

versus heating surface temperature at liquid pressures of 14.3, 

122 0  201 9  279, 401, 549 and 749 lbs./inch2  abs., the curves 

having been drawn in by eye to fit the points. (During the 

experiment at 1000 lbs./thch 2  abs. the boiler wall beater "burned 

out" and it was not possible to repeat the experiment.) The 

degree of suhcooling (Test - 	 bulk' increases with pressure from 

00? at 14.3 lbs0/inch2  abs. to 130
? at 749 lb•s./inch2  abs. This 

results from restricting the bulk liquid heaters to the region of 

free convection heat transfer only during the experiments. Some 

of these experiments have been repeated and in each case reproduce 

the results. (see Tables 1 to 12 in the Appendices). 

Figure 42 0  which refers to a pressure of 14.3 lbs,/inch2  abs., 

shows that heat is transferred firstly by free convection as the 

heating surface temperature is raised above the bulk liquid 

temperature. The free convection curve was assumed to be linear 

for this and other experimental curves, The equation 

NNu = 0.16 ( NQr .N pr )*, suggested by Jakob [32] for a horizontal 
heating surface, did not satisfactorily correlate the experimental 

points (Section 8. 2.). At a heating surface temperature of 

217,30F boiling is initiated at the first site, With a further 

increase in temperature, the number of sites and bubble frequency 

at each site increase., so that the heat flux associated with 
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nucleate boiling increases, and the curve bends upwards4 The 

curve becomes linear again after a temperature of 228.5 0P, this 

linear portion corresponding to "established nucleate boiling". 

In the region, oftransition from free convection to "established 

nucleate boiling" (weak boiling), the quantities of heat trans-

ferred by both free convection and nucleate boiling are of the 

same order, and both must be considered when computing the heat 

flux theoretically (see Section 5. 4.). 	The "established 

nucleate boiling" region is characterised by a very steep slopo, 

and here the heat transfer due to boiling increases so rapidly 

that the heat transfer due to tree convection may be neglected.. 

Only the beginning of the "established nucleate boiling" regions 

were examined experimentally in this study, 

The effect of pressure and subcooltn.g on the free convection, 

weak boiling and"established boiling' regions can be seen in 

Figures 42 to 48. The extent of weak boiling or the knee of 

the curve diminishes with increase in pressure and subcooUng 

until in Figure 48, corresponding to 749 lbs./inch 2  abe,:, it 

appears that only the tree convection and "established nucleate 

boiling" regions remain, This decrease in the weak boiling 

region has the effect of moving the steep part of the curve to 

the lefts which is more easily seen if the effect of eubcooling 

is neglected and Figures 42 and 43, corresponding to 14.3 and 

122 'lbs./tüóh 2 'abs.., are compared 	 QU a basis of 

the superheat temperature difference (Taur 

In Figure 42, the free convection region extends Until 

boiling is initiated at the first site for a temperature 
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difference.(Tour - 	ot6.7°? 9  while in Figure 43 the 

convection region extends for (T sur . Teat) equal to o,g°. 
The temperature difference sur - Teat) for the first bubble 

site or the initiation temperature difference is given in IPigure 

22 9  which, shows the large.Geórease in 	 at from 6,7 to Sur 	s- 
0.90F, for a pressure increase from 14,3 to 122lbs./incb 2  abs. 

The temperature range corresponding to the region of weak boiling 

will range from the , initiation temperature for the first bubble 

site to a temperature at which the total beat flux is attributed 

to boiling. The beat flux in this region has been correlated 

successfully for pressures, of 14,3 and 30 ibs0/i4ct. 2  abs. by 

Equation (5.4.1..) (see Figures 27 and 28). 	Equation (5,4.1.) 

is a summation of the heat flux associated with free convection 

and with nucleate batting. The nucleate, boiling heat flux has 

been shown in Equation (5.4.6.) to be proportional to such terms 

as the temperatuze difference between the bulk liquid and heating 

surface(Tour -. Tbulk)t the square of the maximum bubble diameter 

i 2max., the thickness of the thermal, layer 	and the bubble flux 

which is derived from the number of nucleation sites and the 

bubble frequency at each site.., 	. The weak boiling region in  

Figures 4. and 43 requires a temperature range of 11 and 7 0F 

respectively, and this value, when added to the temperature 

difference (T Sur-  Test ) corresponding to free convection, ±,e, 

6.7 and 9.9°F respeptively, gives the temperature difference 

(Tour - 	at the start of the ''established boiling" region. 

The resulting temperature difference: (T 	- teat) of 174 and 

7,90? respectively shows that the effect of an increase in 
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pressure., i.e. 14.3 to 122 ibs./inch 2 . abs., is to reduce the 

temperature. difference (T Sur 'Tsat), at the start of the 

"established boiling" region, 	In other words, an increase in 

.pressure . will wove., the steep part of the curve, to the left if 

a vertical 'line through the saturation temperature is taken as  

the . datum axis. . This movement to the left with increase in 

pressure, can be inferred. from flgures 42 to 48 if the saturation 

line is taken as a datum axis in each case. This agrees with 

the experimental results of Addoms . 173 . 

It has been shown that the extent of the temperature 

difference (T5  - T9 t), corresponding to free convection, is 

determined by fletemperature difference at initiation of the 

first bubble site, and that the temperature range for the 

transition-or, weak boiling region is ,a function of the number 

of nucleation sites (the number of sites is included in t In 
Equation 5.4.6.) 	Sires both the initiation temperature 

difference (Teur  - Tsat and the number of nucleation sites 

have.been correlated by the size and distribution of heating 

surface cavities. (figures 22 and, .23), it may ...concluded that 

the distance of the steep part of the boiling. curve ("established 

boiling" region). from the saturation line is a function of the 

heating surface cavities.. Therefore an equation intended to 

predict the "established. boiling" region must include a term 

which takes account of the beating surface cavities., 

The equations from other sources which have been, derived to 

correlate "established boiling" all involve /A  the beat flux as 

a function of the superheat temperature difference AT,up  . or in 
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some cases of 	the pressure difference (corresponding to 

Tsup 	In general., the function is 	cC T m  or sup 
where m. is the index of superheat temperature 

difference or pressure difference 	To enable a:compaflsouto 

bérna4e between the slopes of the"established boiling" regions 

in rFigures 42 to 48 with the slopes predicted by some of the 

better, known equations,, the indices m of superheat temperature 

difference ATsup.  were obtained from the "established .bolliigP 

regions of Figures 42 to 48 (see Table 81,).,. 

TABLE 8.1. 

Indices of A 3  for "established boiling" 

FIGURES 42 to 48 CICHELLI and BONILLA 	[37] 

• 	 PRESSURE. 
lbs./inct$ abs. 

.. 	 . 	 . 

INDLX (rn) 
. 	 PRESS1JEE 
lbs./ineh 4  abs. INDEX (in) 

.14.3 3 . 	. 22. 	., 

122 	. 2.4 60 

. 291 	 . .1.5 	,. 115 	., 3 

279 	.. . 	 1.3 	. 21,5 .3 

401 0.7 	. 315 	. , 	 2..7 

549 . 	. 0.7 	, 415 	, 
. 1.7 

749 0.6 

For 	cC ATsupTh v  Robsenow [t4 gives m.equal to 3.03, and 

Xutateiadze .[35] rn equal to 2.5. 	if A: cc  AT 	 is assumed,.'sup  
then Forster and Zuber 36J give  equal to 2.0., and Ranter and 
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Greif [6] rn  equal to 2.4. 	The  derivations of the Rohsenow [iG] 

and Forster and Greif 61 equations are described in Section 2. 2, 

of this:  work. 

Table 8,1. shows that the indices  of LT 	 for the,sup 
"established boiling" regions in Figures 42 to 48 do not, however, 

remain constant but decrease from 3  to016 for apressuri incr ease  

from 14,3 to  749:lbs./inch2  abs. 	This means that the equations 

of Boheenow [16].,. etcA, which are for all pressures, predict the 

index m satisfactorily for the pressure range from 14.3 to 

201 lbs./inch2  abs. in this case, but are in error for pressures 

exceeding this.. .. it should be remembered that only part of- the 

"established boiling" region was recorded in this study, and that 

the index m of the superheat temperature difference A Tsupmay 
change at higher beat flux values. A similar effect of an 

increase in pressure, causing a decrease in the index m of the 

"established boiling" curves, can be seen to some extent in 

experimental curves of 0obefli and Bonilla (see McAdams [371 ) 

for the boiling of n-pentane (90% pure) on a clean, chromium  

plated horizontal surface (Table 8,1.). The indices m were 

calculated over a heat fit range similar to that in Figures 42 

to 48. 

Before the change in position of the "established boiling" 

curve with change in pressure can be shown exactly., the effect 

of liquid subcooling must be ascertained, McAdams et al. 38 

were able to correlate experimental results of forced convection 

boiling, by an equation of the form /A 	AT sup
3.86 
 , where 

is the superheat temperature difference. With this 
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corr elation the experimental results were 'independent - c.t the 

degree - of subcooling (20 -. 150 °F)., the water velocity 

(].' 36 ft./sec,), the liquid pressure (30 	90 lbs./inoh2  abs.) 

and the heating tube diameter (0.17 - 0.48 inches). Pérster. 

and Greif [61 used amodel of nucleate boiling to show why the 

data of McAdams et ai [381  should be insensitive to liquid 

subcoo1ing. 	Briifly, the model is that when a bubble grows to 

a maximum 'radius Rj and then collapses, it causes the exchange 

of a volume of liquid proportional to'between the heated 

layer adjacent to the beating surface and the colder bulk liquid; 

the amount of beat withdrawn from the heating surface by each 

bubble growth-collapse cycle is therefore proportional to 

- blk' where(Tsur 	bulk is the temperature difference 

between the heating surface and bulk liquid. If the period of 

the 'bubble growth-collapse cycle is tg, then the amount of best 

transferred by each bubble: per second is proportional to 

(Taur - Tu1k) 	, The insensitivity of heat flux to s'ubcoourig 

may therefore be attributed to the reduction of Rka, with sub- 

cooling, which compensates for theinorease in 	- Tbul) and 

tgo 
	It is noted that the number of bubble sites Is a function 

of the superheat temperature difference sur - 	.ly, 

table was compiled by Forster arid' Greif .61 from the data of 

Bilion igj, showing that the product Rax 'sur _Tat) è5 
Independent of subcooling0 	' 	. 	. 	.. 

The main difference between the model of Pôrster and Greif [6] 

and themodel used in this study, on which Equation'(5.4.6.) is 

based, is in the derivation of the bubble frequeney. The bubble 
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frequency incorporated in the bubble  flux i/r  in Equation (5.4.6.) 

was calculated from the bubble waiting time tw, the bubble growth 

time tg being neglected for the early stage of nucleate boiling. 

Forster and Greif.{6}, who are concerned with "established 

boiling", ,  are probably  correct in deriving the bubble frequency 

from the bubble growth.-collapse period tg, since the bubble 

waiting period will decreae with increasing heat flux and may 

reach a 'value which is several times smaller than the growth 

period. . Figure- 25 $  in which the bubble ,  .frequency was calculated 

from the waiting time for individual bubble sites, shows a rapid 

increase in frequency or decrease in waiting time, with .increase 

in superheat temperature, difference and corresponding beat flux, 

an±nation of, the experimental results from this study suggests 

that, although Forster and Greif 6] may have explained why Sub-

cooling does not seem to affect boiling data, nevertheless some 

effect does exist, and unless the experiments are carefully 

controlled, the scatter Of points will obscure this effect. 

.Figures 49 and 50 show the effect of liquid subecoling . on 

the experimental curves of heat flux yarns superheat temperature 

difference (T5  -: Tsat) 	. Figure 49 shows curves at liquid 

pressures of 122 and 126 lbs./inch 2  abs4 for subcoolin 

(Teat -. 	of 5 and 10°F respectively,  and Figure 50, 

pressures of 201 and 204 lbs./inch 2  abs. for subecolings of 6 and 

12°Prespectively. 	It is evident that the complete curves are 

not independent of sub000ling when plotted to a base of super-

heat temperature difference, and, cannot, therefore be correlated 

by an equation of the form 	°< A sup' . The effect of an 
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increase in eubeouling in both Figures 49 and 50 Is to move the 

steep part of the curve to the left in a manner similar to an 

increase in pressure. 

Some method is therefore needed to find a relation between 

the position of these curves with respect to a datum axis and the 

degree of subcooflng. 	With the help' of such a relatioàs.hip the 

experimental values can then be extrapolated to give the position 

of the boilng.curve for zero sUbcooling. 
• 	it is assumed here that if the boiling curves are plotted to 

EL base of superheati temperature difference, the effect of an 

increase in sübcooling IS to move the "established boiling" part 

of 'the curve to the left, the distance mated being directly 

proportional to the degree at •subcooliñg. A vertical line at 

saturation temperature was therefore 'taken as a datum,:  and the 

steep part* of the experisental curves in Figures 49 and 50 extra-

polated until they intersected the (T 3  _T5 t) axis. ' The 

values of (Teur 	sat at the intersections were then plotted 

in flgure 551 against the subcooliñgs of the corresponding 'curves, 

and the joints for the same pressure joined by straight lines. 

The straight tines were next extrapolated to zero subcooling. 

The values of (Tsur  - sat at zero suboOoling were now used to 

draw curves' parallel to the existing "'established boiling" curves 

in figures 49 and 50. 	The positions of the "established boiling" 

curves at pressures of 124 and 203 lbs./inob 2  abs. (mean pressures 

of experimental curves in Figures 49 and 50 respectively) for zero 

subcoOiing are assumed to be known, and are reproduced in Figure 

52, together with the experimental "established boiling" curve at 
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14.3 .lba./inch2  abs. (also for zero subsooling (Figure 42)).. 

The equations of Roheenhow [16] 9  etc., which were mentioned 

earlier, were compared with the experimental curves in Figure 52 

and it was found that the equation of Forster and ,Greif [6] was 

in best agreement. This equation was derived from a  model of 

nucleate boiling and the variables related by three dimensionless 

groups, which replace the Nusselt, Reynolds and Prandtl numbers, 

in the correlation of forced convection heat transfer; the 

derivation is discussed in greater .detail in Section 2. 2. 

The Forster and Greif {6 equation is., 

o - Gk AtsTs*f/ A'V ( MCp  

Cp itEs 	H where - 	
( L?T 

and 	a constant which has to be determined from an experimental 

value of heat flux, at one pressure, for a particular heating 

surface-liquid combination. 

Curves of heat flux 	versus (ç.- Tsat) from Equation 

are compared in Figure 52 with the experimental curve 

at 14.3 lbs,/±nch2  abs. and the curves at 124 and 203 ]bs,./iucb 2  

abs., which were obtained by extrapolating the experimental curves 

to zero subcooltng. 	Constant O. was chosen, to fit Equation 

(8.1.1.) to the experimental curve at 14.3 lbs./jnch2  abs., and 

in this case w4s, 3.35 x 10 1 whih. is quite different from the 

value of 7 x 10 used by Forster and Greif [6] to correlate 

experimental results of others. This discrepancy may result 
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from a difference in cavity sizes and distribution.. 

8.2..Lree convection heat transfer 	. 

Equation (5.4.1.), which has been derived to correlate the 

weak nucleate boiling region or "knee l" of the boiling curve, 

requires the free convection beat flux to be known, This may 

be given by the Newton • equation, 

• . 	 Vt = h(tsur   

where Q4 	= tree convection beat.flux, 

temperature difference between heating surface 

and bulk liquid,. 

h 	. heat transfer coefficient. 

The results of free convection experiments by Jakob .1323 and co-

workers have been correlated by the following equation in 

dimensionless variables: 

	

NM9 C.(NQr1 Mr 	 (8.2.2.) 

where NNU= 	kD. . = Nusselt .number; h the beat transfer cc- 

efficient, b, a characteristic length and 

It the coefficient of theSal conductivity. 

NCAr = 3 P' AT = Grashof number; •g the gravitational 

acceleration, ft the cubic coefficient of 

thermal expansion, A T = (TBur - Tbuik) 
and J/ the kinematic viscosity. 

= Prandti number; and L the thermal 

diffusivity. 

C = constant = 0.16 for a horizontal heating surface. 
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he exponent  in Equation (802.29) eliminates the effect of any 

characteristic length which might be chosen for Nt4w and NQr. 

The heat transfer coefficient h .  woo calculated from Equation 

(8 4 2.20 for.a liquid pressure of 14.3 lbs./inch2  abs.., the 

liquid properties being, evaluated at saturation temperature. 

Then it was substituted in..  Equation .(8,2,l,), which is compared 

In Figure, 53 with the free convection results taken from the free 

convection region of the boiling curve in Figure, 42 (143 lbs/incft2  

abs.), and from another free convection experiment at 14.3 lbs0/inch 2  

abs. with a subco.oling of 25 0F. 	This latter experiment was 

carried out for two purposes; 

To obtain a free convection curve with a temperature difference 

range (Teur  - TThflk' which.would extend beyond the free 

convection legion in Figure 4. 

To estimate the percentage heat loss from the heating strip 

by conduction along thed.o. electrodes. 

The beat losses were estimated on the assumption that the d.c, 

electrodes transfer heat in a siailqr manner to flue. A thermo-

couple was inserted into one  of the electrodes to measwt 

representative tin root temperature.. The heat transfer co- 

efficient in the approximate fin equation was calculated from 

Equation (8,2.2.), with 0 equal to 0.61 for a vertical surface. 

The heat losses were estimated to be 3.5% of the free convection 

heat, flux, which is not sufficient to account for the difference 

between Equation (8.2.1.) and the experimental results in Figure 53. 

Because of this discrepancy, the experimental curve in 

Figure 53 was used to evaluate, the tree convection part of 
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Equation (5.4.1,), which correlates the weak boiling region in 

Eigure27. 

The, free convection regions from the experimental boiling 

curves at 30. (Figure 28) and 122 lbs./inch 2 abs. (Figure 43), 

are compared with the theoretical curves from .Equation (8.2.1.) 

in Figures 54 and 55 respectively.. These also show a discrepancy 

between. theory, and experiment, with the result that the experS 

mental curve in'Figure 54 was extrapolated and used in Equation 

(5.4.14 to correlate, the weak boiling region of Figure 28. 

The experimental free convection points in Figures 53 to 55 

were fitted by straight lines drawn in by eye. 

8.3. Nucleation properties of the heating surface 

Figure 22 shows good agreemOrt between the experimental 

measurements of the superheat temperature difference for Initiation 

from the first site, and the theoretical prediction of Equation 

(5.1,14.). . The initiation temperature was not recorded for 

pressures greater than 122 1./thch 2  ab34 for the following 

reasons; 

(a). The bubbIçs were not clearly distinguishable by the naked eye. 

The rate of increase of bubble sites with temperature was so 

great,, that It was found impossible to control the heating 

surface temperature to give only one bubble site. 

The initiation superheat temperature difference was less than 

10 P and approached the accuracy with which the heating surface 

temperature could be measured (± 0.5 0?).. 

A value of 360 x jr6 inches was substituted for 'YE', the 
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mouth radius of the largest cavity, in Equation (5il.140tó 

correlate the experimental results in Figure 22. . This compares 

with a value of 550 a 10 6  inches, which was measured teen 

accuracy of 25 x104 ircbes, for the mouth radii at the largest.. 

cavities on the experimental heating surface (see Figure 6), A. 

discrepancy of this order is not consideted to be excessive in 

the light of the assumptions made in the derivation of Equation 

(5.1.140 (see Section 5. 1.). 	This discrepancy may possibly 

be reduced it accurate values of 9 ,. the cavity cone angle and ft 
the solid-liquid contact angle, were included in Equation (51.14.). 

Reliable information on solid-liquid contact :angles has not been 

made available to date, because of difficulties in the measurements 

of tontact angles (see Addoms frrj and .Griffith and Wallis [27]). 

The measurement of cavity radius and cone angle would be 

facilitated it some method of producing uniformly shaped cavities 

had been used, e.g* a microscopic forming tool made of some 

hardened material.. 

Hsu E1:31 derived an equation for the limiting sizes of 

effective cavities (Section 2. 10 as a function of subcooling, 

liquid pressure, physical properties and the thickness of the 

thermal layer. The equation for the limiting sizes of cavity 

mouth radius in these p arameters l e t  

(T4t—T 	-- 	 - ~$qt_T)\t 

 1. 2C 	(Tsr—TSialk) 	 ur _TLik)) - (Tsur—ntai) j 
(a.3.i,) 
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where 0 = I constant = 2, 

03  = constant = 146, 

i 	2CTeat 
A- LnJ' 

S = thermal layer thickness, 

(Teat -Tbulk)= temperature difference, between saturation 

and bulk liquid temperatures, 

- = 	temperature difference between heating 

surface and bulk liquid temperature. 

Equation (80.10 can be used to draw a curve of maximum cavity 

radius 41' max, and a curve of minimum cavity radius 'C 'am., 
versus superheat temperature difference(Tsur - Tsat) 	These 

two curves form the boundary of a region of effective 'cavity 

radii., A cavity with a mouth radius which is outside this region 

will not be an active bubble site. 

The measured thermal layer thickness of 0.036 inches (Figure 

39), for a pressure of 14.4 lbs./incb 2  abs. and a euhcooiing of 

40F, was therefore substituted in Equation (e.3.10 to obtain 

the curves of maximum and minimum 'C for a pressure of 14,4 lbs./ 

inch2  abs. and a eubcool±ng of 4.5 0P. The curve for maximum 4E! 

was, however, outside the size range of cavities on the. experi-

mental heating surface of this study. Therefore, only the curve 

of minimum 'tc' is shown in Figure 56 for cavity mouth radii ranging 

from 100 to 1200 x I0-6  inches, This curve can be used to predict 

the initiation of boiling for the size range of cavities of this 

study ( 4' from 0 to 550 x 10 6  inches), since boiling will not 

occur until a heating surface temperature is reached, such that 
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the maximum cavity radius ef550  x 10-6  inches is on the '12 '  flu 

curve. 	The curve of 	mm: from Equation (8.3,1.) is therefore 

compared, in Figure 56, with the curve of cavity mouth radius 

versus initiation superheat temperature (Tour  _H!sat ) from 
Equation (5.1.14.) of this study. 	Fore 56 shows these two 

tunes: to be almost identical. This means that when a thermal 

layer thickness of the order of 0.036 inches is substituted, 

Equation (80.1.) becomes similar to Equation (5.1,14.), which 

was derived for the case of a uniformly superheated liquid (this 

only applies to the curve of 42.'  min by Equation (8.3.1.)). 	Thç 

thermal layer thickness substituted in Equation (8.3410 would 

therefore have to be very much lees than 0.036 inches, before the 

curve of '/t' min diverges from the curve of 'Sa' versus initiation 

superheat temperature difference predicted by Equation (5.1.14.). 

The previous argument would also apply to the equation of Han 

and Griffith i4, .since their equation is very similar to that of 
Hsu 13 (see Section 2. I.). 

The theoretical prediction of the number of bubble sites 

(Equation (5.2.12.)) versus superheat temperature dtfferencê at 

pressures of 14.3, 30 and 122 ib./muoh 2  abs. is shown in Figure 

23, along with the number recorded in experiments at pressures of 

14.3 and 29 lbs./inch 2  abs. In Equation (5.2120 were substi-

tuted values of 200 and 114 x 	inches for the population 

parameters I and 6 respectively of the normalised cavity distri-

bution (see Figure 6). The properties appearing in constant B 

were evaluated  at the saturation temperature corresponding to the 

pressure k • Constant 0was evaluated, with N the cavity 



population equal to 1.2 a lO .caviti6s/inbh 2  and C equal to 

114 X-10-6  inches. the cavity population was counted, by moving 

the tickers projection mioroscopeacross the heating surface at 

random positions along the heating strip length, and then taking 

an.avérageotthe readings. 

•Figure 23 shows some agreement between Equation (5.2.12.) 

and eeriment, No check could be carried out for pressures 

greater,  than 30 .1bs,/inch2  abs., because of the rapid increase in 

the number of sites with increase in superheat temperature. 

Figure 23 also shows that Equation (5.2.12,) predicts a decrease 

in the rate of increase with temperature difference of the number 

of bubble sites, when the superheat temperature difference reaches 

12F at a pressure of 14.3 lbs./inch2  lbs., and 6 0P for 30 lbs./ 

inch2  abs. It is unlikely that this happens experimentally, ant 

is probably due to inaccuracy in the cavity distribution for the 

smaller cavity sizes. 	This is quite possible, since it was 

mentioned earlier (Section 3.  6.) that the Vickers projection 

microscope could only record a minimum cavity size of 

200 x 10_6  inches, whereas it was most likely that cavities with 

sizes of less than this were present. It will be necessary, 

therefore., in extending this work, to be able to resolve and to 

measure aceurately much smaller surface cavities, i.e0 less than 

200 x 10 6  inches. 

Figure 25 shows the theoretical curves of bubble frequency 

versus superheat temperature difference for the tint eight 

bubble sites at a pressure of 14.3 lbs./knch2  abs. The initiation 

superheat temp.etature difference for these sites is obtained from 
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Equation (5.1.14.). 	Equation (5.3.30, which predicts the 

bubble frequency, is based on the assumption. that the thermal 

layer is heated :by transient conduction only (see Section 5. 3.), 

although it is realised that conduction alone,. i not .a complete 

description of the heat transfer process in the thermal layer. 

It is shown in Section.?. 4.1. of this work .tbt it conduction 

only is assumed, then the thickness of thermal layer predicted 

by the Fourier equation is in better agreement with the :measured 

thickness for a subeocflng of Iop than for a subcooling of 4.5 0F 

(see Figure 41). 	It may be expected, therefore, that when 

comparing Equation (53.3.) with experiment, the largest 

discrepancy will occur at saturation temperature and tend to 

disappear as the subcooliug increases. This fact could not be 

substantiated in the present study, since the experimental pressure 

vessel was unsuited to the high-speed photographic technique 

necessary to determine high frequencies. A search of existing 

literature for experimental records of bubble frequency which 

could be applied to this work revealed very little experimental 

work on bubble frequency. In no case had the frequency been 

measured at one bubble site for increases in as heating surface 

temperature, 	 . . 	 . 

Figures 27 and 28 show the correlation of the' weak boiling 

region at pressures of 14,3 and 30 lbs./noh 2  abso respectively 

by Equation (.4.1.). 	Equation (5.4.1.) is the summation of the 

tree convection heat flux (experimental values were used here) 

and the theoretical heat flux asociated with bubble growth, 

which is given by Equation. (5.4.2,). (see Section 5. 4.)o 	These 
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figures show that Equation (5.4.2.) does predict the heat flux 

associated with bubble growth in the weak boiling region. . .me 

correlation is not: so good near the "established boiling" region, 

and this may be due to the decrease in the. rate, of increase  of 

,bubble sites with increase in superheat temperature. at the higher 

'alües• of superheat temperature, according: to Equation (5D20120).. 

Some success has therefore been achieved in the correlation 

of the weak nucleate boiling region in terms of the nucleation 

characteristics of the heating surface, viz. the initiation of 

boiling, the bubble site density, the bubble frequency, and of 

the energy associfled with the growth of a bubble in a super-

heated liquid. 	It now seems possible to predict the start of 

the "established boiling", region from a knowledge of the heating: 

surface cavity distribution.. 	. 	. 



CHAPTERS 

Conclusions and Remarks 

By applying the Gibbs and Clausius-Clapeyron equations to 

conditions in an ideal vapour-filled surface cavity, an equation 

has been derived which predicts the superheat temperature at the 

initiation of boiling. Calculations based on this equation 

agree with experimental measurements of the initiation superheat 

temperature for a pressure range from atmospheric to 122 tbs./incb 2  

abs., provided that the value of the cavity mouth radius which is 

substituted in this equation is 360 x 106  inches. 

The heating surface cavity distribution is measured with the 

aid of a projection microscope, approximated to a normal curve and 

used with the previous equation to predict the increase in the 

number of bubble sites with Increase in superheat temperature at 

pressures of 14.3, 30 and 122 lbs0/inch 2  abs. The increase in 

the number of bubble sites with increase in superheat temperature 

has been measured by experiment at pressures of 14.3 and 

29 lbs./inch2  abs., and is in fair agreement with the theoretical 

prediction, However., this agreement is only obtained when a 

multiplying constant of 1O 4  is introduced into this equation to 

account for the fact that only a very small fraction of the 

heating surface cavity population are effective bubble sites for 

the early stage of nucleate boiling. 

An equation is derived for the bubble frequency, and the 

frequency calculated for the first eight bubble sites at 

pressures of 14.3 9  30 and 122 lbs./inch2  abs (the initiation 
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superheat temperature for these sites was obtained from the rate 

of increase in bubble sites with superheat temperature, predicted 

by the previous equation). The derivation of the frequency 

equation uses a simplified model of the thermal layer, and the 

assumption that the layer is heated by unsteady state conduction 

only. The bubble frequency is not determined experimentally* 

Curves of bubble frequency for a pressure of 14.3 lbs,/inch2  abs. 

are presented, and from these have been determined the increase 

in the number of bubbles per unit area of heating surface per unit 

times with increase in superheat temperature, i.e. the bubble 

flux. The bubble flux is shown for pressures of'14.3 9  30 and 

122 ibs./inch 2  abs. 

• The experimental weak boiling curves at pressures of 1403 

and 30 lbs./iuch2  abs. are correlated successfully by an 

equation, which takes account of both the free convection heat 

flux and the heat flux associated with bubble growth. Experi-

mental values of free convection beat flux are substituted in 

this equation, and the heat flux associated with bubble growth 

derived, from a model, which assumes that the growth of abubb]e 

removes a section of the thermal layer from the vicinity of the 

he.attng. surface, An empirical constant of 105 introduced in 

the equation, which predicts the heat flux associated with 

bubble growth, to improve the correlation, is interpreted as 

showing that when a bubble grows it removes a section of the 

thermal layer whose diameter is 1.5 times the maximumdiameter 

of the bubble.o 

The thermal,layer thickness is measured by a shadowgraph 



- 117 - 

technique at pressures of 14e2 and 30 lbs./irxch 2  abs. with bulk. 

liquid subcoolingot 1105 andt0°trespectively. The 
,

maximum .  

layer thicknesses are 0.030 and 0,032 inches respectively. 

These experiments • reveal that . the thermal layer develops jfl.. 

three distinct .stages: (i.) a laminar stage, (ii) a. transition. 

stage from laminar to turbulent flow and . (iii) a stage where the 

upper halt of the layer is fully turbulent. The thickness  of 

the layer is also obtained by direct measurement of the tempera-

ture distribution in the liquid above the heating surface. 

These measurements are carried out at pressures of 14,7, 14.4 and 

30 lbs/inch 2  abs. with subcoolings of 10, 4.5 and 51 0 F 

respectively.. The thicknesses obtained in this manner are 

0.020, 0.036 and 0.034 inches respectively.o 	The corresponding 

layer thicknesses are 0.020 inches by direct measurement of 

temperature s  and 0430 inches by the sbadowgraph method, for 

similar experimental conditions. These values ±ndi,cate the 

extent of agreement between the two methods of measuring the 

thermal layer thickness. 

An equation by Chang [33] ,. which predicts the thickness of 

a "boundary film", shows good agreement with the thickness of the 

theEmal layer measured from the temperature distribution in the 

liquid at atmospheric pressure for subcoolinge of 10 and 4.5 °?. 

Experimental boiling curves at pressures of 14.3 9  122, 201, 

279, 401 9  549 and 745 lbs./inch2  abs., showing the regions of 

free convection, weak nucleate boiling and the startof 

"estab1tshednuc1eate boiling", are presented# lfhese curves 

give new, information on the beginnIng of nucleate pool boiling 
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of. watera 	... 

The "established boiling" regions of expeflmental,ct*ves 

at pressures of 122 and 126 tbs./inob 2  abs. with subcooltngs of 

5 and 10°? respectively, and at 201 and 204 lbs,/inch 2  abs* with 

subcooling of :6. and 12P respectively, are extrapolated to give. 

establiebedboilingP curves at pressures of 124 and 203 lbo./in& 

as.. (mean pressures. of 122:  and 126 9  and of 201. and 204ihs/iieh2  

abs. respectively) with ero.subcoclin.: 

The "established boiling" curves at 124 and 203 ibsojinoh 2  

abs. with zero subcooling, 'together with the experimental ... 

"established boiling". curve at :14,3  lbs,/inch2  abs. (experiment 

conducted at .zerosubcOoling) 9  are correlated with some success 

by. an equation of Forster and Greif [61, 

The experimental free convection results of this study are 

notcorreiatedby the equation 44. 0.16 (NGr.NPr,)S,,,whicb 

Jakob :j321 and co-workers used to correlate their experimental 

results from a horizontal beating surfaces 
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ACCURACY OP REBUT/PS 

Heating surface temperature 

The final accuracy of the heatIng surface temperature 

measurement depends on the following items, ,for which the accuracy 

is given systematically in brackets. 

(i) 	The calibration of the beating strip thermocouple against 

the bulk liquid thermocouple (± 0.15°F). 

The calibration of the. heating strip thermocouple voltage 

"pick up" (± 001 0
?).. 

The fluctuation of the heating strip thermocouple reading 

(± 0.2°F). 

The calculated temperature drop across the heating strip 

(± 0.010?). 

The precision potentiometer (±0.04 °?). 

The final accuracy of the heating. surface temperature 

measurement is therefore ± 0.5 °F.. 

Bulk liquid temperature 

The bulk liquid temperature measurement depends on the 

following; 

(1) 	the calibration of the bulk liquid thermocouple against 

fixed points on the International Temperature Scale (± 0.1°F)., 
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the fluctuation of the bulk liquid •thermocouple reading 

(S o.i°p) and 

the change in. bulk liquid temperature during an experiment 

(5 0.5°?). 

The final accuracy of the bulk liquid temperature measurement 

is therefore ± 0,7 0P, 

Heat flux 

The fin&1 percentage accuracy of the heating surface heat flux 

depends on the fàiiowing. items and their respective accuracies, 

(1) the heatingstrip voltage (5 0.04%), 
(2): the beating strip current •(± 0.0301, )9 

 the heating strip surface area (± 0.6%) and 

 the estimated heat losses of 3.5% which were not subtracted 

from "the heat flux values. 

The final accuracy of the hat flux is therefore + 0%. - 5%. 



NOMENCLATURE 

Symbol Definition Units 

A Heating surface area 	 . ft, 2  

P 	(lTd.1 	sat 
A 1 (Lfi)2J 

fto/hr,1 

1 Al  0 1  P  H 

a Area of thermal layer removed by bubble ft. 2  

a Thickness of "wave layer" 	. 	. 	. ft.. 

2RT2 
B Bat  0-  

TYL 	 . -tw 	ri... 	 . 	. 
ft. 1P . 

C., 	.0k , 	0 Constants 	 . 

Constant = 2 

03 	. 	.. 	.. Constant = 1.6 

04 	. 	. . Conversion factor S  3.41 B4t.uo/watts hr. 

Cs ____ 	. 
4216:  

1 
i/ft... 3  

42 If C 

Op Specific ,heat at constant pressure B.at.u./lb. 0  
on  

(evaluated at mean temperature 
of "wave layer") 	 . B.t.u,/fl, 0p 

D Constant = lO 

D max Maximum bubble diameter ft. 

Characteristic length 	. ft 

Dz  Diameter of thermal layer section 
removed by bubble ft. 

E Constant = 1.5 

f Bubble frequency I/hr. 
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g Gravitational acceleration ft./hr. 2  

Heat transfer coefficient B.t0u,/ft. 2  hr. OF 

I Current amps 

J Joule's equivalent, ft. lbs./B.t.u, 

Mean coefficient of thermal condttctivityB,ta./ft.. 2br.y/ft, 

Coefficient of thermal conductivity 
(evaluated at mean temperature 

B.t.eua/ft. 2hr. °F/ft. "wave of 	layer") 

IA Latent heat of vaporisation B0tu.4b, 

m Exponent of Reynolds. number 

N Cavity population 1/ft. 2  

Active cavity population. i/n. 2  

NE Number of bubble sites 1/ft, 2  

U Exponent of Prandt]. number 

Any whole number 

Vapour pressure 	,. ib8./ft.2 

Liquid pressure lbs./ft.2  

Pressure difference •( k 
- 	 k 2 corresponding to ibs./ft, 

Q Heat flow rate B.t.u/hr, 

AA Neat flux 	 '. Lt.u./ft. 2  hr. 

Beat content assoo2atedwwitb bubble 
growth B.t.u. 

Rmn  Maximum bubble radius 	 . ft. 

B i:erfeot gas constant 	H 	. ft. lbs./lb, 0p 

Radius of nucleus. boundary 	. ft. 

Ire Critical radius of nucleus boundary ft. 

Cavity mouth radius ft. 

T Temperature 	. 

OF or 
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T 	Temperature difference or temperature 
drop 

t 	. 	Time  hi- 

tg 	Bubble growth period 	 hr. 

tw 	Btibble waiting period 	 hr 

V 	 Voltage 	 . 	 vélta 

lTv 	 Specific volume of vapour 	 rt. 34b ,  

Ut 	Specific volume of liquid 	 ft. 3/lb. 

x 	 Thickness of heating strip 	. 	. 

Greek letters 

cC. Thermal diffusivity 	/ Cp ft./hr. 

•Solid-liquid contact angle 

Cubic coefficient of thermal expansion 10? 

Thermal layer thickness ft. 

Thickness of "boundary film" it* 

C Standard deviation of cavity population ft. 

47 Arithmetic mean of 'IZ.' ft. 

9 Cavity cone angle 

M Dynamic viscosity 	 . bs. ,/ft. hr . 

11 3:142 

Vapour density 	. 	. lbs./ft. 3  

Liquid density lbs,/ft. 3  

Density (.eva]uated.at mean temperature 
. 	 3 of tiwavelayern) 	 . 1b59/ft. 

Density (evaluated at mean temperature 3 of convective core) lba./ft. 
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a— 	Vapour—liquid surface tension 	H 	lbs,/ft, 

V 	Kinematic viscosity. 	 rt4 2/hr4 

Angle included by 4Z and 1t' 

3<. 	Constant 

Bubble flux 

Dimensionless Grouøs 

Nus8elt number 

Grashof number = SD
3 	NT 

-vi 

Prandtl number = 

Subscripts 

sat 	Saturation 

stir 	Heating surface 

SUP 	 Superheat 	 . 	H 

bulk 	Bulk liquid 

ac 	 "Wave layer" 

sa 	"Boundary film" 

Be 	 ("Boundary film" + "wave layer") 

min 	Minimum 

max 	Maximum 



TABlE 1 (Data for Fiint 42). 

System pressures- 143 lbqfSxtch 2  at,e. 
Saturation tenperature;- 210.6°  

Bulk liquid tenperatuns- 230.4°? 

Heating Strip Temp. drop 
across 

Heating Strip Heating Strip Heating Strip Heat Pita 
current Temp. (bottom Temp. (top Voltage 

surface) Heating surface) 
Strip. qjA 

(°p) AT (°y) Thur (°) V (volts) 	I (amp.) 	(Btw'ft%) 

233.7 0.01 213.7 0.275 46181 546 
214.4 0.01 214.4 0433 51084 804 
216.4 0.02 216.4 0.402 6.083 1160 
235.3 0.02 215.3 046% 7.095 ]%O 
238.9 0.03 23.8.9 0.530 8.100 2070 
219.7 0.04 219.7 0.588 9.036 2522 
222.6 0.05 222.5 0.664 30.146 3zoo 
222.1 0.05 222.0 0.721 31.035 3790 
224.8 0.06 224.7 0.789 12.074 4520 
226.1 0.08 226.0 0.852 33.060 5290 
227.4 0.09 227.3 0.927 14.171 6240 
228.1 040 228.0 0.987 35084 706() 
228.7 04]. 228.6 1.050 36.077 8010 
230.1 043 230.0 1422 17496 9240 
230.7 0.14 230.6 1a.82 18.337 10200 
230.6 0.16 230.4 1.246 19.309 13300 
231.3 0.38 231.1 1.308 20.060 32430 
231.2 0.20 231.0 1.374 21.085 13770 
231.7 0.21 231.5 1.438 22.059 25050 
233,9 0.23 233.7 1.503 23.059 16470 
233.5 0.25 233.2 1.568 24.063 17920 
238.8 0.28 238.5 1.639 25.094 19550 
238.7 0.30 238.4 1.698 24.049 23000 
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ZQBJE (data for Figures 183 and 49). 

System pressures- 122 lbWinch2  as. 

Saturation temperatures- 342.9? 
Bulk liquid temperatures- 337.8°? 

-Heating Tempairop Heating Heating Heating Heat Flim 	Superheat 
Strip acrosø Strip Strip Strip Temperature 
Temp. Beating Teenp.(top Voltage Current Difference 
(bottom Strip surface) 
surface) 

(°F) AT (°r) Taut (a?) v (volts) I (amps) (Bt-0/ft -hr) (Tsur-Teat)°F 

339.3 0.0]. 339.3 0.263 4.087 51O 
340.3 0101 340.3 0.325 5.339 790 
41.3 0.02 341.3 0.383 6.095 33.08 
341.9 0.02 341.9 0.439 7.027 1460 
344.2 0.03 344.2 0.506 6.O?6 1940 
346.6 0.03 3444 0.571 9.094 2460 
346.9 0.04 346.9 0.633 10.072 3020 
367.6 0.05 347.5 0,696 31.079 3660 
348.8 0.06 3484 0.759 32.071 4340 
349.2 0.07 349.1 0.819 13.052 5060 
349.6 0.08 349.7 0.880 14.043. 5860 
350.6 0.20 350.5 0.947 15.103. 6770 
351.1 041 351.0 1.008 16.080 7660 
351.4 0.12 351.3 1.073 17.319 8700 
352.2 0.14 352.1 1.139 180097 9760 

• 	 352.1 0.35 35gt9 1.198 19.092 10820 
352.6 0.17 352.4 1.257 20.041 11920 
352.8 0.19 352.6 1.329 21.162 13300 
353.2 0.21 353.0 1.387 22.135 14520 
353.6 0.22 353.4 1.446 23.108 2.5800 
353.9 0.24 353.7 1.506 24.063 17170 
354.4 0.26 356.1 1.570 25.076 18650 
354.8 0.29 354.5 1.625 26.036 20089 

-3 2 

- 2-2 
Li 

- v  
• 1.7 
2.1 
4.6 
5.0 
6.2 
6.6 
7.2 
8.0 
8.5 
8.4 
9..6 

]fl;4 e.  
9.9 
10.1 
10.5 
10.9 
31.2 
31.2 
3.3.6 



Beating 
Strip 
Tmp. 
(bottcTa 
surface) 

(°F) 
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pARTE3(dat,afor ELM 49). 

System pressure;- 	3.26 lbey'inch2  abs. 

Saturation temperature;- 345.0°? 

Bulk liquid tëmerstthe:-. 335.4°? 

Tern .drp Heating 	Heating 
aCross Strip 	Strip 
Heating Temp-(top 	Voltage 
Strip surface) 

AT (°F) Taw (OF) V (volta) I (amps) (Btt%tbr)' (Tour-Tea4) °? 

Beating Heat flux Superheat 
Strip 	 Temperature, 
Current 	 Difference 

340.0 0.02 340.0 0.468 7.890 1745 
344.0 0.04 344.0 0.575 9.735 2640 1.4 
346.5 0.06 346.4 0.673 11.370 40..--- . 306 
348.7 0.07 34846 0.783 23.220 4880 .517 
350.8 0.09 350.7 0.894 35.135 6400 . .7.3 
352.4 0.32 352.3 1.030 17.101 8150 7.8 
352.8 0.14. 352.8 1.131 19403 3.0200 	- - - 8.5 
353.7 048 353.5 1.246. 4.031 22360 940 
354.2 0.21 354.0 3.363 23.017 24800 8.0 
353.3 0.25 353 10 1.478 25.018 17440 8.4 
353.7 0.34 353.4 1.721 29.083 23650 7.6 
352.8 0.24 352.6 1.441 24.596 24960 - 6.9 
352-1 0.20 351.9 1.336 22.175 13760 7.4 
352.6 046 3524 1.193 20.153 33350 .5.7 
350.8 0611 350.7 0.967 16.290 7440 44 
349.7 0.08 34966 0.7 14 944 .5703_. -  .24 
347.6 0.06 347.5 0.733 427) -- 3.3 
344.4 0.05 346.3 0.636 10.747 3225 
342,7 0.03 342.7 0.524 8.644 2200 
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TABlES (data for Figures 44 and 50). 

System pressure:- 	201 3(jj 2  abs. 

Saturation. tanperstuns- 302.2°F 

Bulk liquid temperatures- 376.2°F 

Heating Tamp-drop Heating Heating Heating Heat fluz Superheat 
Strip acron Strip Strip Strip TtlPSYStUZ'S 
Temp. Heating Tevv.  (top Voltage Current Difference 
(bottan Strip surface) 
surface) WA 

(°F) A7 ( °F) Teur (P) V (volts) I (amps) (BtWft2.h1) (Tsur-Teat)°F 

378.9 0.01 3784 0.265 41364 54 
379.4 0.03. 379.4 0.319 50081 769 
380.6 0.02 380.6 0.383 6.096 3208 
380.9 0.02 380.9 06445 7.214 1502 
382.2 0.03 382.2 0.522 8449 1980 
383.5 0.04 383.5 0.571 9.143 2490 1.3 
384.0 0.04 384.0 0.631 20.34 3060 1.6 
304.9 0105 384.8 0.692 11.088 3630 2.6 
385.5 0.07 385.4 0.758 12.093 4650 3.2 
385.9 0.07 385.6 0.825 33.357 5340 366 
386.4 0.08 386.3 0.885 24.143 5930 43 
387.0 040 386.9 0.949 35.336 6810 4.7 
387.4 0.21 387.3 1.014 26.159 7760 5.1 
387.7 042 387.6 1.072 17.333 8'X)0 5.4 
387.7 044 387.6 1.334 18.147 9750 5.4 
388.0 035 387.8 1.191 19.051 10750 5.6 
388.2 048 388.0 1.256 20.077 12340 5.8 
388.8 0.19 388.6 1.320 21.135 33200 6.4 
389.3 0.20 389.1 1.377 22.063 2W0 6.9 
389.7 0.22 389.5 1.443 23.320 15800 7.3 
390.1 0.24 389.9 1.504 24408 17200 7.7 
390.5 0.26 390.2 1.565 25.086 18630 860 
390.8 0.29 390.5 1.627 26.078 20120 8.3 



TABIZ  5 (451a.fcrFSaireSO). 

systempS$:- 	204 1bW1Z 2  abs. 

Saturation •taiiparatun; 	383.5°F 

Bulk liquid tenqoratur:- 372.00F 

Heating ?wnp.drop Heatiag 
Strip asrosa Strip 
Tempo Heating Temp.(top 
(bottom 	. Strip surface) 
surface) 

AT (*F) Tour (°P) 

Héat4.ng Heating 	Heat Flwt Sup. rheat 
Strip Strip Temperature 
Voltage Current Difference 

0/4 

V . (volts) I (amps) 

37.4 0.01 372.4 0.222 3.752 393 
377.0 0.02 377.0. 0.406. 6.806 1S 
379.8 0.03 .379.8 0.552 9.324 2433 
38%o 

0 . *06 382.9 0.700 lLa9 . 3910 
386.,5 0.7 384.4 0.771 3.2.974 4730 0.9 
386.2 0.08 3864 M20 13.803 5340 2.6 
35.8 0.09 385.7 0.877 14.778 6130 202 
386.2 032. 386.1 1.002 3.6.904 800. 2.6 
388.2 0.34 388.1 1.121 18.855 9980 4.6 
%7-  .9 0.18 38747 3..243 21.003 3Z350 4.2 
388.4 0.21 388.2 1.364 23.002 3.4830 4.7 
389.4 0.25 388.8 1.487 25.224 3.7730 54 
390.2 0.33 . 389.9 --  3.31 28.878 23350 6.4 
388.5 0.24 388.3 1.446 24.408 36650 4.8 
388.1 0.20 387e9 14 .. 22.227 33800 	. 4.4 
388.0 046 387.8 

. 

1473 19.82. 330.. .44 
387.5 033 . 387.4 .. 1.078 18471 9240 3.9 
385.5 0.08 385 , 4 0 .850 14.313 593Q 109 
384.5 0.06 384.4 0.750 12.624 4465 0.9 
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LAM 6(data for Fjgr 45. 

System jweesuze:- 	279 .3.bWind,2  abs. 
Saturation temperature:- .420.6 
13ük lSqui4 temperature.- 399.7°? 

Heating Strip Temp. drop Heating Strip Heating Strip Heating Strip Heat Tha 
Volt.. 	Current Temp. (bottom across Temp. (top 

surface) Heating surface) 
Strip 4/A 
:AT(!y) Tour (°?) 	. V(volts) 	Z.(si.) 	(ste4/t6r) 

4044 0.02 404.1 0.345 . 6.173 1063 
407.8 . 0.04 407.8 0561 9.474 2510 
409.3 0.05 409.2. 0.662 21.096 3470 
409.3 . 0.05 40902 0.640 ,fl.239 3510 

.  

410.0 . 	 0.06 409.9 H. 	0.730 12.600 4(20 
142.2 . 006 132.1 	. 0.753 126719 4520 
43215 0.07 412.4 0.789 13.300 4960 
4323 008 412.2 0.841 3.4447 5610 
413.5 . 040 433.4 0.901 15.163. . 	 7160 
434.0 	. 0.13. 4339 0.972 36.375 7520 
43.5.1 032 425.0 1.010 17.000 03.00 
423.3. 043 435.0 1.073 18.027 9130 
43.6.0 046 415.8 1.192 20.012 21250 
436.1 048 436.9 1.258 21.120 32540 
436.6 0.21 436.4 1.369 23.000 14860 
.43.73 0.23 427.1 1.431 23.987 36200 
43.74 0.28 417.1 1.582 26.533 19800 
437.9 0.31 417.5 3.650 27452 21550 
4164 037 43.8.0 1.808 30.1% 25800 
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System pressure- a 
Saturation temperature'.- 444.9OF 
Bu31 flqtid temperature:- a.s°F 

Heating Strip Temp. drop 
across 

Heating Strip Heating Strip Heating Strip 
Voltage 	Current 

Heat flwc 
Temp. (bottom Temp. (top 
surface) Beating surface) 

Strip. WA 
AT (OF) Ts~r. (OF) V (volts) I (a) 

437.5 0.02 437.3 •0.3 6444 
439.6 0.03 . 	 439.6 0.480 1816 
442.3 0.04 442.3 0.619 10266  3005 
444,2 0-07 444.1 0.799 33.178 4960 
445.7 0.08 4454 0.048 14.330 5660 
4653 0.09 44500 0.694 .14.928 . 6330 
465.8 0,1.0 . 445•7 . 0.964 26.068 	. 

446.7 0.32 446.6 	. .1.027 7fl6 8330 
447.7 0,13 .447.6 .1.072 17.051 .9330 
448.6 0.15 440.4 1.249 19402, 20370 
448.6 046 448.6 2.196 19.919 23240 
4490 0.19 .448.0 1.295 23..552  xuw 
48.6 0.20 448.6 2.338 22.226 3,4050 
449.7 0.21 449.5 1.387 23.307 15120 
4501 0.24 .  449.9 1475 24.525 17070 
450.2 0.25 . 449.9 1.503 25.02]. 17730 
4534 0.20 451.2 1.573 26.268 19420 
451.8 0.30 451.5 1430 27.090 20860 
452..2 0.34 451.9 .1.765 29.000 24350 



LLi 

Mo 

467.3 
470,0 
472.2 
474.3 
476.1 
476.6 
.478.0 
477,7 
478.2 
479.2 
479,15 
480.6 
4813 
481.7 
481.2 
402.6 
483.1 
482..3 
482.7 

0.01 
0.02 
0.04 
'0.05 
0.07 
0.08 
0.09 
040 
042 
0)3 
045 
0.17 
0.16 
0.20 
0.22 
0.24 
0.26. 
0.29 
0.31 
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1g 

System yressure;. 	549 UWUW abs. 

Saturation téq:stims- 476.t°F 
Bu2k 3 44idd tesp...tms- 464.86? 

Heating Strip %'e... drop Heating Strip Beating Strip Heating Strip Heat flioc 
Temp. (bottom across H Tcxç. (top 	Volta 	Current 
eurtace) 	Heating 	mutes). 

strip* 	 WA 

• .! 	t!°' 	tow (°?) 	V (volts) 	
: 
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System pxeumwo:- 	749 1%WInCh2  aW. 
Saturation tesnprcsture:- 	530.50!' 
Bulk liquid temperature;- 497.t°? 

Heating Strip Temp. drop Hcatin Strip Heating Strip Heating Strip Heat flw 
Temp. (bottSt acroso Temp. (top Voltage 	Current 
nurface) Heating surface) 

Strip 
A it Thur (°F) 

4/A 
V (volts) 	I (aqc) 	(Btw'f&) 

498.5 0.01. 49815 0.273 4 .339 561 
501.6 0.02 501.6 0469 74539 1677 
504.7 0.04 504.7 06580 9.388 2587 

• 	 508.8 0.06 508.7 0.714 33429 3905 
• 	 .510.5 0.07 51004 0.025 13.360 5220 

53.0.7 0.08 51066 00064 26.011 5730 
510.5 040 510.4 0.940 15.23 6790 
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