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ABSTRACT 

The enzymatic deconstruction of lignocellulosic plant biomass is performed by specialist 

microbial species. It is a ubiquitous process within nature and central to the global recycling 

of carbon and energy. Lignocellulose is a complex heteropolymer, highly recalcitrant and 

resistant to hydrolysis due to the major polysaccharide cellulose existing as a crystalline 

lattice, intimately associated with a disordered sheath of hemicellulosic polysaccharides and 

lignin. In this thesis I aim to transfer the highly efficient cellulolytic mechanism of the 

bacterium Cellulomonas fimi, to that of a suitably amenable and genetically tractable 

expression host, in the hopes of better understanding the enzymatic hydrolysis of 

lignocellulose. Using tools and concepts from molecular biology and synthetic biology, I 

constructed a library of standardised genetic parts derived from C. fimi, each encoding a 

known enzymatic activity involved in the hydrolysis of cellulose, mannan or xylan; three of 

the major polysaccharides present in lignocellulose. 

 
Characterization assays were performed on individual parts to confirm enzymatic activity and 

compare efficiencies against a range of substrates. Results then informed the rational design 

and construction of parts into modular devices. The resultant genetic devices were introduced 

into the expression hosts Escherichia coli and Citrobacter freundii, and transformed strains 

were assayed for the ability to utilize various forms of xylan, mannan and cellulose as a sole 

carbon source. Results identified devices which when expressed by either host showed 

growth on the respective carbon sources. Notably, devices with improved activity against 

amorphous cellulose, crystalline cellulose, mannan and xylan were determined. Recombinant 

cellulase expressing strains of E. coli and C. freundii were shown capable of both 

deconstruction and utilization of pure cellulose paper as a sole carbon source. Moreover, this 

capacity was shown to be entirely unhindered when C. freundii strains were cultured in saline 

media. These findings show promise in developing C. freundii for bioprocessing of biomass 

in sea water, so as to reduce the use of fresh water resources and improve sustainability as 

well as process economics. Work presented in this thesis contributes towards understanding 

the complementarities and synergies of the enzymes responsible for lignocellulose 

hydrolysis. Moreover, the research emphasizes the merits of standardizing genetic parts used 

within metabolic engineering projects and how adopting such design principles can expedite 

the research process. 
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Chapter 1 

  

Introduction 
 

Summary 
 
In an effort to reduce carbon dioxide emissions, diversify energy resources and improve future 

energy security, many of the global industrialised economies have shown a resurgence of interest 

in the development of renewable fuels and chemicals. Drafting of international and national 

legislations which encourage the shift towards renewable forms of energy are intended to foster 

the growth of a biorenewables industry; an industry focused on the development of renewable 

fuels and chemicals from biomass via a engineered microbial hosts. For commercial scale 

production of biorenewables, significant volumes of product are required to facilitate market 

penetration and subsequent displacement of fossil fuels. As such, plant biomass is touted as being 

the most attractive feedstock for the process as it is widely available and abundant. However, due 

to its complex structure and recalcitrant nature, utilization of plant biomass is far from being 

economically viable and considerable development of microbial strains capable of utilizing the 

feedstock is necessary. Within this chapter the fundamentals of the enzymatic hydrolysis of 

lignocellulosic biomass by cellulolytic bacteria and fungi is reviewed. In particular, the concepts 

of cellulose hydrolysis are described with reference to the relatively well characterized 

cellulolytic bacterium Cellulomonas fimi. The various classifications of cellulases involved in the 

hydrolysis of cellulose are discussed with consideration for how the enzymes act in a 

complementary and synergistic manner to promote efficient deconstruction of plant biomass. 

Moreover, the mechanisms by which certain cellulases disrupt the substrate in a non-hydrolytic 

manner are described, and how this disruption facilitates efficient solubilisation and utilization of 

crystalline cellulose. Literature describing the study of optimized cellulase mixtures is also 

discussed, highlighting the similarities in expression profiles between cellulolytic species and 

shared strategies for cellulose hydrolysis. The relevance of these findings to the present study is 

that the design of a recombinant host capable of cellulose hydrolysis requires the expression of 

multiple cellulases with defined activities on the substrate. As such, a promising route for solving 

this problem is framed within the concepts and principles of synthetic biology. The emerging 

discipline is introduced with an emphasis on the tools and methodologies that can contribute 

towards the study of ligonocellulose hydrolysis and the development of recombinant hosts for its 

utilization.  



 

1.1 Renewable chemicals and fuels
 
An increasing global population, diminishing natural resources, increasing fuel prices and a 

global economic downturn are key factors adding immense pressure upon industry to adopt 

leaner practices. These would need

competitive as well as socially responsible. One step towards solving these issues and 

contributing towards a sustainable society is the development of chemicals and fuels from 

renewable feedstocks. Recent 

technologies are driving the development of microbial hosts for the generation of renewable 

products. The following section discusses the motivations and implications of this exciting 

field of study.  

 
1.1.1 The need for renewable chemicals and fuels

Global energy consumption across all sectors is predicted to rise over the coming decades. A 

report by the US Energy Information administration predicts an increase by 53% over less 

than 25 years from 5.5x1017 kJ 

energy sources accounting for 78% of energy consumed

are illustrated in Figure 1.1 below.

 

 

Figure 1.1: World Energy consumption by fuel, 1990

International Energy Outlook 2011 

Crude oil currently supplies about 40% of the world’s energy and 96% of it

energy (Dudley 2011). Being a key commodity, central to the activities of n

industries, global oil consumption is projected to rise by about 60% by the year 2020. The 
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fastest growing oil-consuming sector will be that of transportation. The problem of increasing 

demand for mineral oil is compounded by the fact that 66% of global oil reserves are owned 

and operated by a select few countries within the Middle East, namely: Saudi Arabia (25%), 

Iraq (11%), UAE (9%), Kuwait (9%), Iran (8%) and Libya (2%). It is estimated that by 2020 

this figure will increase to around 83% of global oil reserves (Dudley 2011). Consequently 

there is additional incentive for non-Middle Eastern countries to diversify fuel resources and 

reduce their dependency on foreign imports as a means of guarding energy security.  

 
Diversifying energy security and moving towards renewables is also crucial in reducing 

human influenced climate change. A report released by the independent International Energy 

Agency in 2011 announced that global carbon dioxide emissions from energy use reached a 

new record of 30.6 billion metric tons in 2010, an increase of 5% from 2008 (Van der 

Hoeven 2011). In 2009 coal accounted for 43% of CO2 emissions from fuel combustion, that 

of oil and gas were 37% and 20% respectively (Figure 1.2a). A larger contribution by coal is 

thought to be due to the high demand of the rapidly industrializing economies of China and 

India, whose combined populations account for a third of humanity.   

 

 

(A)             (B)   

Figure 1.2: World carbon dioxide emissions by fuel, 1971-2009 (Metric tons) (A). World carbon 

dioxide emissions according to sector for the year 2009 (B). Data from the IEA carbon dioxide 

emissions from fuel report, 2011 (Van der Hoeven 2011). 
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The same report describes the composition of World CO2 emissions according to sector in 

2009 (Figure 1.2b). The two largest contributors to carbon dioxide emissions are those of 

electricity and heat, and transport; accounting for 41% and 23% of global carbon dioxide 

emissions, respectively.  

 
Several international efforts to curb and control societal carbon dioxide emissions have met 

with limited success, presumably due to the monumental task of coordinating and managing 

the international politics involved. However prospective legislation and policies at the 

national level show promise as individual countries and economic zones seek to reduce 

emissions through adoption of renewable fuels.  

 
1.1.2 Governmental policies and encouragement 

The first and most notable effort towards the adoption of renewable fuels is that of Brazil in 

the mid-1970s. In order to prevent soaring oil prices from impeding economic growth, the 

Programa Nacional do Álcool or the National Alcohol Program was implemented (Marris 

2006). Today, Brazil is the world’s second largest producer of ethanol at 16.5 billion litres 

per annum, deriving almost all of the feedstock required for ethanol fermentation from 

sugarcane. To encourage end-user adoption and market penetration, government subsidised 

‘flexi-fuel’ cars were introduced in 2003. Brazilian motorists were able to choose between 

traditional petroleum, neat bioethanol or various combinations of blended bioethanol such as 

E85, E15 or E10 containing 85%, 15% or 10% ethanol, respectively (Marris 2006). More 

recently the Brazilian government announced a program for the issue of $38 billion in 

subsidized credit to the ethanol sector. The program is expected to encourage growth of the 

ethanol industry and increase exports within the international market (Lane 2012). 

 
Seeking to emulate the success of the Brazilian National Alcohol program and achieve 

energy independence, The United States introduced the Energy Independence and Security 

Act of 2007 (Sissine 2007). The act is intended to improve vehicle fuel economy and help 

reduce the dependence on oil through increased production of biofuels. Accordingly, the total 

amount of biofuels to be used in transport fuels was required to increase from 18 billion litres 

in 2007 to 136 billion litres by 2022. Further specifications included that non-cornstarch (e.g. 

sugar or cellulose) derived biofuels should contribute 79.5 billion litres of the 2022 total 

(Sissine 2007).  More recently and in addition to the Energy Independence Act, the Obama 

administration announced plans to develop a National Bioeconomy blueprint with the 
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intention of harnessing biological research to address several national challenges including 

energy. The results of this development and the implications for biorenewables are still to be 

seen. 

 

Within the European Union, the Renewables Directive of 2009 was designed with similar 

intentions (Turmes 2009). The directive mandates levels of renewable energy within the EU, 

requiring member countries to produce pre-agreed proportions of energy consumption from 

renewable sources. The end goal of the directive is that at least 20% of total energy produced 

within the EU is from renewable sources by 2020 (Turmes 2009). With specific regards to 

biofuels, fuels generated from waste streams are counted twice, greatly encouraging the 

adoption and development of a biorenewables industry.  

 
With regards to China, ambitious targets have been set to cut carbon emissions (Qiu 2009). 

China’s State Council announced that it will reduce its carbon intensity (carbon emissions per 

unit of gross domestic product) by 40-45% from 2005 levels by 2020. This target is 

considered achievable as previously the country reduced carbon intensity by 47% between 

1990 and 2005. By comparison the US has pledged to cut emissions by 17% from 2005 levels 

by 2020, Korea by 36% and Brazil by 30%, with the most ambitious pledge being that of the 

EU cutting 20% of 1990 levels by 2020 (Qiu 2009). 

 
Evidently many economically influential countries have shown consideration and support in 

fostering the shift towards renewable forms of energy. Yet, in order to achieve many of the 

goals and aspirations set by governmental bodies, consistent and measured support of the 

renewables industry is required. Moreover in order for renewable fuels to make an 

appreciable impact upon displacing traditional petroleum products, time is required for the 

industry to grow and the technology to mature before a premature rush to market. 

Nevertheless there are many key start-up entities utilizing innovative biological research to 

quickly bring renewable fuels and chemicals to market.   

 

1.1.3 A burgeoning biorenewables industry 

In order to facilitate the market penetration of renewable fuels into the transport industry and 

realise a subsequent reduction in environmental impact, alternative candidates would need to 

possess several characteristics: (i) compatibility with existing distribution and processing 

infrastructures; (ii) compatibility with current vehicle engine technology; (iii) comparable 

energy content and performance to that of petroleum to encourage adoption by the end-user.  
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Advanced biorenewable companies are focused on the generation of fuels better suited to 

displacing current petroleum fossil fuels and which possess the above characteristics. In 2011 

alone advanced fermentation technologies developed by companies around the world raised 

$687 million in private funding and equity financing (Lane 2012). Key players within the 

burgeoning biorenewables industry seek to develop modern genetic engineering and synthetic 

biology as a route for the generation of these novel substitutes. Industry leaders such as 

Amyris, LS9 and Solazyme are successfully engineering microbial strains to convert simple 

sugars to long chain alcohols, fatty-acid ethyl esters or isoprenoid hydrocarbons. 

 
As an example, Amyris’s farnesene is fermented via the mevalonate pathway for producing 

isoprenoids. Developed initially for the production of the antimalarial precursor artimisinic 

acid, the platform technology has been repurposed and modified for hydrocarbon synthesis 

(Martin et al. 2003). Engineered yeast producing farnesene from a sugar cane feedstock has 

been reported in the 100,000 and 200,000 litre scale capacity fermentors.   

 
By comparison, Solazyme uses directed evolution of selected microalgae strains to ferment 

sugars into triglycerides and then employs a hydrotreatment technology reduces the 

triglycerides to fully saturated alkanes (Westfall and Gardner 2011).  

 
LS9 has focused on direct fermentation of alkenes and alkanes via a modified fatty acid 

synthesis pathway in E. coli, thereby bypassing triglyceride formation. The technology 

developed is based upon multiple approaches including; the formation of alkenes via 

reduction or decarbonylation of fatty acyl-ACP (Schirmer et al. 2010), and the production of 

fatty alcohols via a thioesterase/fatty acid reductase pathway (Steen et al. 2010).  

 
It can be noted that presently very few of these companies are developing both product 

formation as well as feedstock utilisation pathways within their prospective production hosts. 

It would seem the consensus between these start-ups is that presently a sugar based feedstock 

such as sugar cane is the most attractive feedstock for developing the technologies and 

scaling up production. Yet, in the long-term, lignocellulosic biomass is the most economical 

and widely available feedstock for bioprocessing and mature cellulolytic technologies 

available for licensing will need to be developed in the near future.     
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1.1.3 Generation of biorenewables from non-food crop sources 

The Billion-Ton study conducted by the Oak Ridge National Laboratory and sponsored by 

the US Department of Energy addresses several concerns regarding the feasibility of 

developing renewable fuels and chemicals from plant biomass (Perlack and Stokes 2011). 

Crucially the study omits the inclusion of algal sources of renewable fuels, relying solely on 

those sourced from a lignocellulosic feedstock, yet offers positive predictions for the future of 

biorenewables suggesting that the 2022 target of 80 billion litres of cellulosic ethanol set by 

the Energy Independence Act of 2007 is attainable. 

 
It is of paramount concern in the biorenewables industry to move away from food-crops as 

feedstock for the production of chemicals and fuels. The current wide-scale adoption of 

starch-based food crops as feedstock for the fermentation of fuel ethanol has yielded 

unfavourable results in many respects.  According to the Food and Agriculture Organization 

of the United Nations Food Price Index, global food prices have reached an all time high 

(Diouf and Sheeran 2010). Several key factors were highlighted, namely the increase in 

global population, more frequent extremes of weather, and most importantly the practise of 

diverting food crops towards fuel production.  

 
Examples of food-crop biofuels include those derived from corn and cassava. Traditionally 

used as a source of modified starch and animal feed, the root vegetable cassava is seeing new 

demand for biofuel production, with its price doubling between 2008 and 2011. In 2010, 98% 

of cassava exported by Thailand, the world’s largest exporter of cassava, went to China for 

use in biofuel production (Diouf and Sheeran 2010). In a similar fashion, the US is the 

world’s largest producer of fuel ethanol and for the first time in 2011, corn saw greater 

demand for fuel production than for use in animal feed and human consumption (Norton et 

al. 2012).  

 
Advances in the use of non-food crops and agricultural waste have recently yielded very 

promising results. Work by Higashide et al. (2011) developed the cellulolytic bacterium 

Clostridium cellulolyticum to produce isobutanol directly from cellulose. The approach was 

based upon diverting 2-keto acid intermediates from amino acid biosynthesis towards alcohol 

biosynthesis with yields of up to 660 mg/L from untreated crystalline cellulose. Following an 

alternative strategy Bokinsky et al. (2011) engineered the genetically tractable host 

Escherichia coli to break down both xylan and cellulose, as well as synthesise one of three 
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advanced biofuels within the same fermentation reaction. Notably the feedstock required pre-

treatment with ionic liquids and subsequent washing before use, presumably due to the host 

only being able to utilize pre-treated amorphous cellulose and not raw crystalline cellulose. 

The use of marine seaweed as a feedstock for renewable fuels has also recently met with 

some success. Wargacki et al. (2012) identified a 36 kilo-base pair fragment of DNA from 

Vibrio splendidus encoding the necessary enzymes for alginate transport and metabolism. 

Coupling these pathways with the ethanologenic components of Zymomonas mobilis, the two 

systems were recombined on the genome of E. coli to yield a strain capable of simultaneous 

alginate catabolism and ethanol synthesis of up to 20 g/L.  

 

1.2 Biochemistry and structure of lignocellulosic biomass 
 
Considering the dire need for a renewable petrochemicals industry and the early efforts 

underway to achieve this, the major challenge of efficiently utilising a sustainable and 

renewable feedstock such as plant biomass is still yet to be overcome. To ensure 

displacement of traditional petroleum products with renewable alternatives, plant biomass is 

touted as being the most cost-competitive and abundant feedstock. Whether derived from 

agricultural waste streams or purpose grown energy crops on marginal arable land, plant 

biomass offers itself as a sustainable and economically viable feedstock. However there exist 

several biological barriers to its breakdown and utilisation in an industrial process. Here we 

consider the major research hurdles and challenges to lignocellulose degradation.  

1.2.1 Cellulose 

Lignocellulose is the structural component of plant cell walls, offering remarkable tensile 

strength and rigidity. Plant cell walls are composed of a layered mesh of microfibrils, 

consisting of long cellulose fibres embedded in an amorphous matrix of hemicellulose and 

lignin (Fig. 1.3). These cellulose fibres are long chains of the order of thousands of residues 

with the repeating unit being cellobiose (glucose-β-1,4-glucopyranoside). Chains of cellulose 

are tightly packed together as insoluble hydrogen-bonded crystalline regions alternating with 

amorphous regions. Lignocellulose in this form typically consists of cellulose (35–50 wt. %), 

hemicellulose (20–35 wt. %), and lignin (5–30 wt. %) (Zhang and Lynd 2004). 
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Figure 1.3: The structure of lignocellulosic plant biomass detailing microfibril structure and 

cellulose microstructure. Cellulose chains composed of a repeating cellobiose subunit are associated 

in a three dimensional crystalline-like lattice, a structure which endows significant tensile strength 

and rigidity to the plant cell wall. The lattice is intimately associated with hemicellulose polymers 

composed of a mix of five and six carbon sugars, in addition phenolic lignin acts as a supporting 

skeleton. The resultant macro-structure is that of a layered mesh of microfibrils forming the plant 

cell wall. Source: (Patrinos and Staffin 2005). Reproduced with permission of the Office of Biological 

and Environmental Research of the United States Department of Energy Office of Science. 

 

 

In more detail, cellulose is a linear condensation polymer consisting solely of glucose (D-

anhydroglucopyranose) monomers bonded by a β-1,4-glycosidic linkage (Fig. 1.4a). The 

length of these chains is unknown, but single glucan chains containing up to 14,000 glucose 

units have been observed, corresponding to a length of about 7 µm (Somerville et al. 2004). 

As a result of the β-1,4-linkage, adjacent anhydroglucose molecules are rotated 180o with 

respect to their neighbours, resulting in anhydrocellobiose being the repeating unit of 

cellulose (Fig. 1.4b). Such a rotation also causes cellulose to be highly symmetrical as each 

side of the polymer has an equal number of hydroxyl groups (Fig. 1.4c).  
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Figure 1.4: Cellulose microstructure formed by cellulose sheets composed of cellulose polymers. 

Crystalline and amorphous cellulose is made exclusively of a D-glucose monomer (A); two glucose 

monomers undergo a condensation reaction between the β1 and 4 carbons forming the cellulose 

disaccharide subunit anhydrous cellobiose (B); repeating cellobiose subunits polymerise and form a 

the highly regular cellulose polymer (C); multiple polymers arrange in parallel and associate via 

strong intermolecular forces to form a regular crystalline cellulose sheet (D); multiple cellulose 

sheets associate via hydrophobic interactions to form a crystalline like lattice (E). 

 
 
Adjacent cellulose polymers are coupled together by intermolecular hydrogen bonds and Van 

der Waal’s forces resulting in a regular parallel alignment and crystalline sheet structure (Fig. 

1.4d). Multiple cellulose sheets associate by hydrophobic interactions along the planar face 

and arrange together to form a three-dimensional lattice like structure. This lattice is 

illustrated in Figure 1.4e as nine sheets stacked upon one another in sets of three. 

Consequently, the single repeating β-1,4-glycosidic bond throughout cellulose creates a 

deceptively simple polymer, yet the resultant crystalline form resists hydrolysis and free 

diffusion of water, making it intrinsically resistant to dissolution. It is this recalcitrant nature 

which is one of the major hurdles to the deconstruction and utilization of plant biomass. 
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1.2.2 Hemicellulose 

Hemicelluloses are polysaccharides found in plant cell walls, intimately associated with 

cellulose and lignin. As these are not chemically well defined polymers, the hemicelluloses 

are considered a family of polysaccharides consisting of a mixture of 5- and 6-carbon sugar 

monomers predominantly comprising D-xylose, L-arabinose, D-mannose and D-galactose. 

The hemicellulose family includes xyloglucans, xylans, mannans and glucomannans, as well 

as mixed linkage β-glucans, all of which have β-1,4-linked backbones of glucose, mannose or 

xylose (Scheller and Ulvskov 2010). The composition and detailed structure of these 

components will vary widely according to plant species and cell type. Figure 1.5 summarises 

the major monosaccharides and polysaccharides of the hemicelluloses, and gives 

representative examples of exhibiting plant species.   

 
Being the second most abundant component of dicotyledonous plant cell walls after cellulose, 

xyloglucans are a crucial target for the deconstruction and utilization of plant biomass. 

Xyloglucans can exist with varying degrees of branching and substitution along the 

backbone, with solubility decreasing with degree of branching, an aspect which correlates to 

function and cell type (Fig. 1.5a). For example, highly branched xyloglucans predominate in 

elongating cell walls, and those cells within the internodes connecting stems and branches of 

dicots. This distribution is widely believed to impart plasticity to the cell wall as the cross-

linking of cellulose with xyloglucans helps reduce rigidity (Gilbert et al. 2008).  

 

By comparison, grasses and conifers generally exhibit a relatively lower proportion of 

xyloglucans and instead display either glucuronoarabinoxylan or galactoglucomannan as the 

dominant hemicelluloses, respectively (Scheller and Ulvskov 2010).  Soft-woods and hard-

woods exhibit up to 25% or 3-5% of dry weight as acetylated-galactoglucomannan, 

respctively. 

 
In many respects it is of importance to note these differences in hemicellulose content 

between the various plant taxonomic groups, especially when considering what feedstock will 

be used for the synthesis of renewable chemicals and fuels. As a raw material, the predefined 

plant biomass will exhibit predictable hemicellulose content and consequently a tailor made 

microbial host may be designed which specifically targets those polysaccharides present.   
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Figure 1.5: The major hemicellulose oligosaccharides found within plant cell walls are composed of 

distinct sugar units (shown on the left above). A xyloglucan backbone substituted with fucose and 

galactose is common within the model plant Arabidopsis thaliana and related woody shrubs (A). The 

mixed linkage β-glucan oligosaccharide is restricted to specific grasses and a few other groups (B). 

Palm and banana trees typically present glucuronoarabinoxylan which consists of a D-xylose 

backbone substituted with L-arabinose and D-glucuronic acid (C). Coniferous woods typically present 

galactomannan and galactoglucomannan as major hemicelluloses polymers (D, E). 

 

 

1.2.3 Lignin 

Lignin is a complex phenolic heteropolymer resulting from the polymerization of various 

cinnamyl alcohols termed monolignols. These all share a phenylpropane structure that is a 

benzene ring exhibiting a tail of three carbons (Boudeti, Lapierre, and Pettenati 1995). Figure 

1.6a illustrates the three major lignin monolignol monomers; paracoumaryl, coniferyl and 

sinapyl alcohols. These are incorporated into lignin in the form of the phenylpropanoids p-

hydroxyphenyl (H), guaiacyl (G), and syringal (S), respectively. Though extraordinarily 

complex and irregular, polymerization patterns do occur within the lignin macromolecule and 

have been characterized to an extent, revealing the lignin GS and lignin G subunits, 

illustrated respectively in Figure 1.6b and c.  
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Figure 1.6: Lignin monomers and subunits. Lignin within terrestrial plant biomass is predominantly 

made up of three phenolic alcohol monomers; paracoumaryl (top), coniferyl (middle) and sinapyl 

(bottom) (A). The two major subunits of lignin are the lignin GS subunit composed of both coniferyl 

and sinapyl monomers (B), and the lignin G subunit which in turn is made up of exclusively the 

coniferyl monomer (C). 

 

 

The process of lignification occurs late in the development of plant cell walls, being 

synthesized after cellulose and hemicellulose. Consequently lignin is primarily located on the 

exterior of the microfibrils where it covalently bonds to the hemicelluloses (Somerville et al. 

2004). Serving a role to impermeabilise the cell wall, lignins are concentrated around the 

xylem elements of vascular plants and also function as a latent defence mechanism against 

pathogens. With respect to cellulolysis, lignin is thought to be a competitive cellulase 

adsorbent reducing the effective enzyme load in contact with cellulose and lowering 

hydrolytic efficiency. In addition it has been suggested that lignin cross-linking has a role in 

physically hindering the progress of cellulases along the cellulose glucan chain and impeding 

enzyme accessibility to the cellulose chain (Zhang and Lynd 2004).  

 

1.3 Characteristics of microbial cellulases  
 
Due to the insoluble nature of the crystalline regions as well as the presence of a cross-linking 

hemicellulose and lignin matrix surrounding the fibre, both enzymatic and non-enzymatic 

hydrolysis of cellulose are made difficult. The ability to completely degrade crystalline 

cellulose is uncommon and restricted to specialized cellulose-degrading microorganisms 

displaying a battery of cellulolytic and hemicellulolutic enzymes. Classified as O-glycosyl 

hydrolases (Enzyme Commission number 3.2.1.-) these enzymes target the glycosidic bond 

between carbohydrates or between carbohydrates and non-carbohydrate moieties (Henrissat, 
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Teeri, and Warren 1998).  The classifications of this group are summarised within the 

Carbohydrate-Active Enzymes Database or the CAZy database  (Cantarel et al. 2009).  

Considerable research effort over the past 60 years has yielded a comprehensive albeit 

incomplete understanding of lignocellulose deconstruction by the glycosyl hydrolases. Gaps 

in knowledge still persist with regards to their regulation and complementary actions on the 

complex substrate. In this section I consider the underlying mechanisms of the enzymatic 

hydrolysis of lignocellulose and the promising approach of studying synergism between and 

within the various cellulases. 

 
1.3.1 Microbial communities utilizing cellulose 

Terrestrial plants produce approximately 1.3x1010 metric tonnes (dry weight) of biomass per 

year. This represents the energetic equivalent of 7x109 metric tonnes of coal or about two-

thirds of humanity’s annual energy requirement (Perlack and Stokes 2011). It is exciting to 

consider that the recycling of this material at such a scale is performed by communities of 

cellulolytic microbes; whether present within the digestive tract of ruminants and insects, or 

within the soils of various forest and savannah habitats (Kumar et al. 2008). Unsurprisingly, 

numerous efforts have focused upon reproducing this scale and efficiency of lignocellulose 

utilization within a laboratory setting with the aim of developing an industrialized process.  

 
Most notably, a stable microbial community capable of efficient raw-biomass utilization was 

constructed and maintained (Haruta et al. 2002). This work presented a mixed community of 

both aerobic and anaerobic species capable of degrading more than 60% of untreated rice 

straw within 4 days at 50oC.  The community was shown to consist of at least six individual 

species of bacteria and archaea, comprising Clostridium sp., Pseudoxanthomonas sp., 

Brevibacillus sp. and Bordetella sp. From these observations a second community of five 

individual bacterial strains was constructed and shown to retain the same cellulolytic ability 

and population stability (Kato et al. 2005). Through systemically constructing ‘knockout 

communities’ where individual strains were removed from the original community, specific 

roles and dynamics could be deduced. It was noted that the most efficient and stable 

communities were those which balanced cellulose hydrolysis and the removal of end-

products such as excess acetic acid.  

 
The above research highlights the potential in designing microbial communities for targeted 

biomass deconstruction as well as emphasizing the need to understand cellulose hydrolysis at 
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a multispecies level, which is currently lacking. To this effect, the remainder of this section 

will introduce the enzymatic components of cellulose hydrolysis with an emphasis on 

introducing these to a non-cellulolytic host. 

 
1.3.2 Non-complexed cellulase systems 

Celluloytic microorganisms typically employ one of two systems for crystalline cellulose 

hydrolysis; complexed or non-complexed. Microbes presenting complexed cellulase systems 

are commonly found in anaerobic environments, exhibiting a stable enzyme complex known 

as a cellulosome, protruding from the outer cell membrane. The cellulosome consists of a 

scaffold like architecture on to which the various cellulase components are tethered and kept 

in close proximity. This strategy is thought to offer a concentrated cellulolytic action close to 

the cell, reducing the distance by which hydrolysed products must diffuse and allowing for 

efficient uptake by the host (Lynd et al. 2002).  

 
In contrast to this, non-complexed systems are those in which the cellulases are not cell 

associated, but are secreted into the medium and free to diffuse away from the host. Such a 

strategy is common amongst aerobic microbes where relatively higher ATP levels are 

available for cellulase synthesis compared to anaerobic microbes. Figure 1.7 illustrates the 

three constituent enzymatic activities involved in a typical non-complexed system, namely; 

(i) endoglucanases (EC 3.2.1.4); (ii) exoglucanases, including cellodextrinases (EC 3.2.1.74) 

and cellobiohydrolases (EC 3.2.1.91); and (iii) β-glucosidases (EC 3.2.1.21). 

 
Enzymatic attack on crystalline cellulose is initiated by the action of endoglucanases 

predominantly targeting amorphous regions, where inconsistencies in intermolecular forces 

disrupt the cellulose macrostructure and expose vulnerable glycosidic bonds (Fig. 1.7a). Once 

an initial nick is made at these sites within the glucan chain, subsequent hydration and partial 

solubilisation of that chain accommodates the binding of exoglucanases (Fig. 1.7b). These 

processively move along the cellulose polymer from either the reducing or non-reducing end 

cleaving off cellobiose subunits. In turn underlying cellulose chains are exposed to further 

hydrolysis due to this ‘shearing action’ of the exoglucanases (Fig 1.7c). As cellobiose 

subunits are liberated from cellulose, β-glucosidases relieve end-product inhibition by 

hydrolysing the disaccharide into two glucose monomers (Fig. 1.7d). The concerted and 

synergistic action of the cellulases leads to extensive hydrolysis of the cellulose substrate. 
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Figure 1.7: Schematic representation of the hydrolysis of crystalline cellulose by a non-complexed 

cellulase system. Endoglucanases initiate the enzymatic attack on cellulose, commonly targeting 

amorphous cellulose regions where irregularities in the structure offer access to exposed glycosidic 

bonds (A); free glucan chains are hydrated and made accessible to the exoglucanases which 

processively move along the polymer cleaving off cellobiose subunits (B); in turn, underlying glucan 

chains are exposed and made accessible to the attack of both endo- and exoglucanases  (C); 

liberated cellobiose subunits are cleaved to glucose monomers by β-glucosidases (D).  

 
 
It should be noted that the cellulases in non-complexed systems tend to be modular proteins 

in that one or more discreet carbohydrate binding modules (CBMs) are connected to a 

catalytic domain (CD) via a flexible linker. The roles of these individual modules are 

discussed further below, with a consideration for how this arrangement of protein structure 

affects function. 

 
1.3.3 Role of the flexible linker region 

The flexible linker region is thought to provide spatial separation between the catalytic 

domain and cellulose binding domain (CBD) so as to reduce steric hindrance, and allow for 

the independent action of each. Moreover it has been suggested that the linker acts as a buffer 

between the two domains, preventing a conformational change in the CBD upon adsorbing to 

cellulose from being translated throughout the entire enzyme (Henrissat 1994). It would seem 

that the role of the linker varies across the cellulases, as deletion of the linker has been shown 

to reduce both catalytic and CBD activities in some cases, where as in other cases no effect 

has been observed (Poon, Withers, and McIntosh 2007).  
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At the nucleotide  level,  sequences encoding the linker may also serve a function in domain 

shuffling, facilitating the rearrangement of CBDs and catalytic domains (J. Gilbert and 

Hazlewood 1993). In particular, metagenomic analysis of the rumen of herbivores has yielded 

insight into the horizontal gene transfer between anaerobic fungi and bacteria, and how  a 

close proximity encourages genome plasticity within this niche cellulolytic environment 

(Sommer, Church, and Dantas 2010).   

 
1.3.4 Cellulose binding domains 

A CBM is defined as a contiguous amino acid sequence within a carbohydrate-active enzyme 

with a discreet fold having carbohydrate-binding activity (Cantarel et al. 2009).  CBMs were 

previously classified as cellulose-binding domains (CBDs) based on those modules that 

bound cellulose; however the classification was extended to include those that bound other 

carbohydrate substrates. CBDs of cellulases within non-complexed systems have been shown 

to play several key roles in the deconstruction of cellulose; (i) enzyme loading onto the 

substrate, (ii) targeted recruitment of cellulases to sites of hydrolysis, (iii) anchoring of host 

cells to the substrate surface, and (iv) non-hydrolytic disruption of cellulose. These roles are 

discussed further. 

 
1.3.4.1 Enzyme loading 

 
To increase the effective concentration of the enzyme on the cellulose substrate, CBDs bind 

to cellulose via hydrophobic interactions between aromatic amino acid residues and the 

cellulose surface. Through this association the catalytic domain is brought into close contact 

with the substrate over a prolonged period, increasing the activity of the catalytic domain. 

Once bound, the adsorption and desorption of the CBD is highly dependent upon the 

presence of water, as the CBD will only migrate between neighbouring substrate surfaces 

when hydrated (Cavaco–Paulo et al. 1999). This mechanism is thought to prioritize and 

reinforce the adsorption of the CBD to non-hydrated crystalline regions whilst also enabling 

the CBD to dissociate from those surfaces already hydrated or compromised, allowing for the 

arrival of other cellulases.  

 
The CBD is also shown to initiate mobility of the cellulase along the substrate (Jervis, 

Haynes, and Kilburn 1997). Using flurorescence after photobleaching analysis, Jervis et al. 

found that the CBDs of the Cellulomonas fimi cellulases CenA and Cex were mobile on the 

cellulose surface. Notably of those CBDs bound to cellulose, more than 70% were mobile, 
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demonstrating that packing of cellulases and their isolated CBD’s is a dynamic process. This 

surface diffusion of the CBD and attached catalytic domain is proposed to allow the enzyme 

to search for accessible glycosidic linkages, improving both productivity and processivity.  

 
1.3.4.2 Recruitment of cellulases to sites of hydrolysis 

 
Examples of both bacterial and fungal cellulases have provided evidence for CBDs mediating 

the recruitment of cellulases to targeted sites of hydrolysis (Koivula et al. 2000). Although 

the crystalline structure of cellulose presents a uniform substrate seemingly devoid of 

distinguishing molecular landmarks, its progressive hydrolysis unmasks a varied landscape, 

presenting the repeated β-1,4-glycosidic bond in various contexts and providing 

distinguishable sites for binding. Consequently, hydrolysis of the cellulose substrate may be 

limited according to the availability of those sites for binding by the CBDs. Therefore a range 

of cellulases, specifically CBDs are required for complete hydrolysis. Such a concept has 

been suggested to be the reason why cellulolytic bacteria and fungi exhibit multiple 

endoglucanases, and why multiple CBDs are present in some examples of these cellulases 

(Tomme et al. 1996). 

 
Moreover, different CBDs are shown to have varied affinities for either amorphous or 

crystalline cellulose based on structural properties (Tomme et al. 1998). Notably CBDs with 

a high affinity for crystalline cellulose are all β-proteins containing a ridge of linearly 

arranged and regularly spaced, solvent exposed aromatics which are involved in the binding 

of the CBD to cellulose. Conversely, CBDs with an affinity for soluble or amorphous 

cellulose exhibit a small binding cleft rather than a linear array of binding residues. Such a 

cleft is rich in polar residues and small hydrophobics, but has relatively few aromatic 

residues. Based on these described structural features, CBDs can recruit the catalytic modules 

to specific regions on the cellulose fibre, either crystalline or amorphous. 

 
An additional aspect to CBDs playing a role in recruitment is that of xylanases displaying 

cellulose binding capabilities, even though the catalytic domain solely targets xylan for 

hydrolysis (Gilbert and Hazlewood 1993). The fact that some xylanases display binding 

affinities for both cellulose and xylan, suggests that CBDs play a role in concentrating 

enzymatic action towards sites where xylan and cellulose are intimately associated. Since the 

only constant feature of plant cell walls is cellulose, it makes an ideal scaffold on which to 
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append or rally hemicellulases active against the associated hemicellulose polymers (Gilbert 

2010). 

 
1.3.4.3 Cell anchoring to the cellulose surface 

 
Evidence that CBDs can display a cell-to-substrate anchoring function is quite prominent 

amongst non-motile cellulolytic bacteria, notably amongst the Cellulomonas sp. (Kenyon, 

Esch, and Buller 2005). A recent review of the CBD’s roles in cellulose deconstruction 

highlights two examples whereby cellulases are tethered to the bacterial host cell wall, 

anchoring the cognate enzyme to the cell surface which in turn associates with the cellulose 

surface via the CBD (Gilbert 2010). It is thought that this functionality keeps the cellulases 

and their respective end-products within close proximity of the bacterium, much the same 

way that cellulosomes function in complexed cellulase systems. A second suggestion is that 

the anchoring facilitates the shuttling of appended enzymes from the bacterial surface to the 

substrate, improving the economics of the non-complexed system.   

 
1.3.4.4 Non-hydrolytic disruption of cellulose fibres 

 
A rate determining step in the biodegradation of cellulose is that of the initial adsorption of 

cellulases onto the cellulose microfibril, after which follows the rapid digestion of individual 

glucan chains. Considering this, it was hypothesized early on in the study of microbial 

cellulases that the enzymatic degradation of crystalline cellulose requires the initial action of 

a non-hydrolytic component to disrupt the hydrogen-bonding network that maintains the 

ordered lattices (Reese, Siu, and Levinson 1950). The first direct evidence to support this 

hypothesis was that of the C. fimi CenA cellulose binding domain. The CBD was shown to 

‘slough off’ cellulose fragments from the substrate surface as the CBDs penetrated the fibres 

at surface discontinuities and released non-covalently attached fragments to uncover new 

cellulose chain ends. Moreover, the CBD disrupted the structure of cotton fibres as it 

travelled within the lattice, presumably between individual cellulose sheets (Din et al. 1991). 

It was later observed that small oligosaccharide particles were also released without any 

detectable hydrolytic activity being present (Din et al. 1994). This phenomenon was 

consequently confirmed within multiple CBD families (Levy, Shani, and Shoseyov 2002) 

(Shoseyov, Shani, and Levy 2006), and likened to the process in plant cell walls whereby 

expansin proteins disrupt hydrogen bonding between cellulose polymers in a non-hydrolytic 
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manner, facilitating elongation of the plant cell during growth and expansion (Cosgrove 

2000). This concept of amorphogenesis is discussed further below. 

 
1.3.5 Amorphogenesis: Non-hydrolytic agents increase substrate susceptibility  

Cellulose microfibrils present a highly ordered and tightly packed architecture which 

occludes access of cellulases to the internal cellulose chains and by extension occlude access 

to the majority of the substrate. It has been suggested that the sequential ‘shaving’ and 

‘planing’ of exterior cellulose fibrils by endo- and exoglucanases does not account for the 

entire deconstruction of the cellulose substrate, and that inaccessible regions are disrupted or 

loosened via non-hydrolytic proteins.  Such a mechanism was termed amorphogenesis, a term 

coined by Coughlan to suggest a possible means by which the dispersion, swelling or 

delamination of cellulose resulted in a reduction in crystallinity and an increased internal 

surface area of cellulose exposed to hydrolysis (Coughlan 1985).   

 
Several amorphogenesis-inducing agents, including modules and domains of cellulases have 

been observed to display this disrupting capacity. The model cellulolytic fungus Trichoderma 

reesei has been shown to secrete a non-catalytic protein termed swollenin, comprising a CBD 

connected via a linker region to an expansin-like domain (Saloheimo et al. 2002). Swollenin 

recombinantly expressed in yeast disrupted the structure of cotton fibres as well as cellulose 

filter paper with no detectable liberation of reducing sugars.  

 
Similarly, a novel protein termed loosenin with the same disruptive tendencies as swollenin 

was observed in the cellulolytic fungus Bjerkandera adusta (Quiroz-Castañeda et al. 2011). 

Loosenin was shown to disrupt cotton fibres as well as fibres from the Agave tequilana plant. 

It was experimentally shown that incubation of the Agave fibres with commercial cellulases 

following pre-treatment with purified loosenin, led to a 7.5 fold greater liberation of reducing 

sugars compared to the untreated control.  

 
Research by Kerff et al. (2008) has also shown a similar strategy employed by the soil 

bacterium Bacillus subtilis in promoting root colonization. The EXLX1 protein was shown to 

have structural similarity to plant expansins as well as similar binding and non-hydrolytic 

activities against the major plant cell wall polysaccharides. When recombinantly expressed in 

E. coli, EXLX1 bound to cellulose and weakened the structure of cellulose paper. In 

accordance with the aforementioned work on fungal swollenin and loosenin, EXLX1 also 



21 

 

showed a synergistic effect when combined with commercial cellulases, increasing 

celluloytic activity by up to 5.9 fold (Arantes and Saddler 2010).  

 
The above results highlight a significant route utilized by cellulolytic fungi to the economical 

deconstruction and utilisation of lignocellulose biomass. Moreover, the apparent synergism 

between cellulases and non-hydrolytic agents is shown to be valuable in improving the 

economics of a non-complexed cellulase system.  

 

1.4 The glycanases of Cellulomonas fimi 
 
One of the better studied of the cellulolytic bacterial species is Cellulomonas fimi. Having a 

relatively well characterized and understood cellulolytic system, C. fimi offers itself as an 

attractive source for prospecting a library of cellulases for introduction in a recombinant host 

to study cellulose hydrolysis.  Here we review the literature surrounding C. fimi, to highlight 

current gaps in knowledge and exciting avenues for future research. 

 
1.4.1 Introducing Cellulomonas fimi  
 
Cellulomonas fimi is a mesophilic facultative anaerobe. With optimum growth at 30oC it is 

widely distributed amongst soil environments rich in decaying plant matter (Coughlan and 

Mayer 1992). C. fimi produces extracellular enzymes that hydrolyze starch, cellulose, chitin, 

xylan and mannan (Stoll, Stålbrand, and Warren 2001). Cells stain Gram positive and are 

motile, exhibiting one or more flagella. Being one of a few truely cellulolytic species of 

bacteria capable of efficient crystalline cellulose digestion as well as culturing under 

laboratory conditions, C. fimi has received much attention with regards to the hydrolysis of 

cellulose. As such, its genome has recently been sequenced and work is underway with 

regards to gene annotation and characterisation of encoded products (Lucas et al. 2012). Prior 

to the sequencing of C. fimi, extensive work in describing and characterizing its cellulase 

system has yielded considerable insight into the strategies and mechanisms of lignocellulose 

deconstruction. The known glycanase encoding genes of C. fimi are listed in Table 1.1 

overleaf. 
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Table 1.1: The known glycanase encoding genes of Cellulomonas fimi. Table identifies the gene 

name(s), the NCBI locus tag (gene symbol), the experimentally determined encoded protein 

function, the Enzyme Commission code denoting the enzymatic activity, and the founding study.  
 
 
The known glycanases of C. fimi according to published literature to date comprise the 

following; four endoglucanases, three exoglucanases including one dual specificity 

xylanase/cellodextrinase, two mannosidases, three xylanases, and two β-glucosidases. The 

majority of the glycanases of C. fimi have had their secondary structures determined and are 

shown in Figure 1.8 below. It can be noted that of these, only Man2A consists as a singular 

Gene name Locus tag Encoded protein function E.C. code Reference 

cex (xyn10A) Celf_1271 exo-1,4-β-glucanase  3.2.1.91 (O’Neill et al. 1986) 

endo-1,4-β-xylanase 3.2.1.8 

cenA (cel6A) Celf_3184 endo-1,4-β-glucanase 3.2.1.4 (Wong et al. 1986) 

cenB (cel9A) Celf_0019 endo-1,4-β-glucanase 3.2.1.4 (Greenberg, Warren, et al. 

1987) 

cenC (cel9B) Celf_1537 endo-1,4-β-glucanase 3.2.1.4 (Coutinho et al. 1991) 

cenD (cel5A) Celf_1924 endo-1,4-β-glucanase 3.2.1.4 (Meinke et al. 1993) 

cbhA (cel6B) Celf_1925 β-1,4-cellobiohydrolase 3.2.1.91 (Meinke et al. 1994) 

cbhB (cel48A) Celf_3400 β-1,4-cellobiohydrolase 3.2.1.91 (Shen et al. 1995) 

man26A Celf_0862 endo-1,4-β-mannosidase 3.2.1.78 (Stoll, Stålbrand, and 

Warren 1999) 

man2A Celf_2770 exo-1,4-β-mannosidase 3.2.1.25 (Stoll, Stålbrand, and 

Warren 1999) 

xynC (xyn10B) Celf_0574 endo-1,4-β-xylanase 3.2.1.8 (Clarke et al. 1996) 

xynD (xyn11A) Celf_0374 endo-1,4-β-xylanase 3.2.1.8 (Millward-Sadler et al. 

1994) 

xylan deacetylase 3.5.1.- (Laurie et al. 1997) 

cfx Celf_3156 endo-1,4-β-xylanase 3.2.1.8 (Hekmat et al. 2005) 

cfbglu Celf_2783 β-glucosidase 3.2.1.21 (Kim and Pack 1989) 

nag3A Celf_2983 β-glucosidase 3.2.1.21 (Mayer et al. 2006) 

3-β-N-Acetylglucosaminidase 3.2.1.52 (Mayer et al. 2006) 
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catalytic domain, whilst the rest consist of multiple modules. These modules include a 

flexible linker region, a carbohydrate binding domain, and in some instances fibronectin type-

III like repeats and other domains of unknown function or relatedness to known domains.  

 

 
 
Figure 1.8: The known secondary structures of the C. fimi glycanases. Glycanases within non-

complexed cellulases systems are typically modular, consisting of multiple domains and repeated 

sequences. Separate modules are linked via a flexible linker with no discernible secondary structure. 

Within the cellulases of C. fimi, the catalytic domain is typically present at the N-terminus, whilst the 

carbohydrate binding domain tends to be near the C-terminus. Fibronectin type-III like repeats of 

unknown function are seen in four cellulases; CenB, CenD, CbhA and CbhB. Data taken from: Tomme 

et al. (1998), Rabinovich, Melnick and Bolobova (2002), Le Nours et al. (2005), Sandercock et al. 

(1996), and Andreas Meinke et al. (1992). 

 
 
1.4.2 The endoglucanases 

 

The non-complexed cellulase system of C. fimi comprises four endoglucanases: CenA, CenB, 

CenC and CenD. The expression of multiple endoglucanases within a single cellulolytic 

system is a common feature within both bacteria and fungi capable of utilizing cellulose. By 

comparison, Trichoderma reesei as one of the most well studied cellulolytic fungi, exhibits a 

cellulase system comprising seven endoglucanases (Wilson 2008). It is generally agreed that 

multiple endoglucanases facilitate efficient cellulose deconstruction by performing subtly 

different yet complementary roles in both the disruption and hydrolysis of the substrate. 

These differences include: (i) hydrolysis of cellulose at non-overlapping sites on the 

substrate; (ii) varying degrees of processivity and frequency of cutting; (iii) and binding 

affinities for either amorphous or crystalline regions. Consequently, the endoglucanases 
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display varied activities against a range of substrates. These are summarised in Table 1.2 and 

this significance is discussed further below. 

 

 Specific activity
a
 on: 

Enzyme Avicel
b
 BMCC

b
 CMC

b
 PASC

b
 ββββ-glucan

b
 Glucomannan

b
 

CenA 2.18 0.21 760 244 2,180 ND
c
 

CenB 2.22 10.87 928 66 5,700 912.5 

CenC 0.99 1.55 1,016 114 3,900 722.0 

CenD 2.42 9.66 47 81 940 ND
c
 

Cex 0.16 ND
c
 10 46 ND

c
 ND

c
 

 

Table 1.2: Activities of C. fimi enzymes on soluble and insoluble glucans. 
a 

Specific activities are 

expressed as micromoles of reducing glucose per micromole of enzyme per minute. 
 b

Activity was 

determined with the dinitrosalicylic acid reagent after incubation of the enzyme with substrate at 

30
o
C. 

c 
ND, not detected. Data taken from Tomme et al. (1996). 

 
1.4.2.1 Endoglucanase CenA 
 

CenA preferentially attacks amorphous zones within the cellulose substrate, though the CBD 

has been shown to bind both amorphous and crystalline cellulose (Warren 1996; Kleman-

Leyer et al. 1994). This is experimentally shown in Table 1.2 as CenA shows the greatest 

activity against phosphoric acid swollen cellulose (PASC), an amorphous form of cellulose. 

Upon hydrolysis of cellulose chains, cellobiose is the major product liberated (Irwin et al. 

1993). CenA has also been shown to hydrolyse the soluble oligosaccharide cellotetraose, and 

to a lesser extent cellotriose, to cellobiose and glucose (Kleman-Leyer et al. 1994; Damude et 

al. 1996). The expression of CenA is induced by glycerol, cellobiose and cellulose. No 

detectable expression is observed in the presence of glucose (Greenberg et al. 1987). Figure 

1.9 illustrates the expression of the C. fimi cellulases in the presence of various carbon 

sources. 
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Figure 1.9: Venn-Diagram of cellulases present when C. fimi is grown on various carbon sources. 

The expression of cellulases in C. fimi is regulated by a combination of induction and catabolite 

repression. Nag3A and CenB are expressed regardless of the carbon source present, whilst Cex, CenC 

and CenD are only expressed in the presence of cellulose. CenA and Cfbglu are detectable when 

either cellulose or cellobiose is present. References include; Greenberg et al. (1987), Greenberg et 

al. (1987), Moser et al. (1989), Wakarchuk et al. (1984), and Hekmat et al. (2007).  

 
 
A unique phenomenon of CenA, not observed amongst the other endoglucanases of C. fimi, is 

an intramolecular synergism between the catalytic and cellulose binding domains (Din et al. 

1994). It was observed that the isolated CBD of CenA disrupts the structure of cellulose 

fibres, releasing fine cellulose particles without any detectable hydrolytic activity. Ramie 

fibres, a form of cellulose with a crystallinity of 70-74%, were treated with the fluorescently 

labelled purified CBD of CenA. Fluorescence was observed within the fibre as the CBD 

penetrated the crystalline lattice. Moreover, fibres stained with a fluorescent dye following 

pretreatment with CenA showed full penetration of the dye within the fibre, suggesting a high 

level of disruption compared to the untreated control. An extended incubation of up to six 

months of the CBD with the substrate did not lead to increased levels of reducing sugars, 

further suggesting a non-hydrolytic mechanism of substrate disruption (Cavaco–Paulo et al. 

1999). Fibres pretreated with the isolated catalytic domain did not show any fluorescence, 

indicating that disruption of the cellulose structure was due to the presence of the CBD (Din 

et al. 1991). However the isolated catalytic domain ‘polished’ the surface of the fibres, 

hydrolysing exposed glucan chains as evidenced by the liberation of reducing sugars, and 

yielding fibres with a smooth exterior under scanning electron microscopy (Din et al. 1991). 

 
The proposed mechanism of this synergy is that the CBD binds and penetrates at surface 

discontinuities to ‘slough’ off cellulose fragments not covalently associated with the fibre. 

Further penetration exfoliates the fibre releasing the cellulose chain ends and roughening the 
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cellulose surface, allowing for the action of the catalytic domain which hydrolyses β-1,4 

bonds cleaving off vulnerable chains and smoothening the cellulose surface (Din et al. 1991). 

 
An equally exciting role of the CBD of CenA that is not observed amongst the other 

endoglucanases is the dispersion of soluble oligosaccharides in solution. The isolated CBD as 

well as purified CenA were shown to prevent flocculation of BMCC and consequently 

disperse the substrate, presumably as a means to increase the effective surface area of the 

substrate and promote hydrolysis (Henrissat 1994). 

 
1.4.2.2 Endoglucanase CenB 
 
Unlike CenA, CenB shows high affinity for binding and hydrolysis of crystalline cellulose, 

releasing 50 times more reducing sugar from BMCC than CenA (Table 1.2). Purified CenB 

has been shown to hydrolyse up to 87% of BMCC which exists as ~76% crystalline cellulose 

(Meinke et al. 1993; Kleman-Leyer et al. 1994).  In addition, CenB shows a low activity 

against glucomannan (Table 1.2), presumably hydrolysing β-1,4-glucosidic linkages as no 

appreciable activity is seen against either mannan or galactomannan (Tomme et al. 1996). 

Surprisingly the catalytic domain also binds cellulose, this being initiated by the 130aa 

sequence at the C-terminal side of the domain (Meinke et al. 1991).  

 
The most striking feature of CenB however, is probably the existence of two CBDs which 

flank a series of three fibronectin type-III like sequences (Fig. 1.8). Fibronectin is a 

multifunctional, extracellular matrix and plasma protein of higher eukaryotes which is 

typically involved in protein-protein interactions in neural and muscle tissues. With this in 

mind, it has been suggested that CenB either interacts with other cellulase components 

exhibiting fibronectin like repeats (see Figure 1.8), or is associated to the cell surface by the 

Arg-Gly-Asp-Ser sequence which is known to mediate cell adhesion (Meinke et al. 1991).  

 
To date, CenB is the only endoglucanase of the C. fimi cellulase system found to be 

constitutively expressed, regardless of carbon source (Fig. 1.9). Expression is under the 

control of two promoters: one weak constitutive promoter which is proximal to the 

transcription start site, and one strong inducible promoter which is distal to the transcription 

site. The inducible promoter was shown to be unaffected by the addition of glycerol, 

cellobiose or glucose, and only initiated transcription in the presence of cellulose (Greenberg 

et al. 1987). 
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1.4.2.3 Endoglucanase CenC 
 

CenC is the only endoglucanase to have two CBDs at the N-terminus. These are arranged in 

tandem and show a binding affinity to amorphous, but not crystalline cellulose. This 

preference for the disordered form of cellulose rather than the regular crystalline form is 

attributed to the binding site within both CBDs being a groove like cleft (Brun et al. 2000). 

Binding is orchestrated through the formation of hydrogen bonds between hydroxyl groups 

along the substrate surface and polar amino acid side chains lining the CBD cleft. Both CBDs 

have a strong affinity for cellotetraose and cellopentaose (Johnson et al. 1996; Brun et al. 

2000). 

 

CenC is said to be a semi-processive endoglucanase, adsorbing to cellulose and hydrolysing 

sequential β-1,4,-glycosidic bonds from the reducing end of the chain, before desorbing from 

the substrate and initiating adsorption and attack elsewhere (Irwin et al. 1993; Tomme et al. 

1996). The major product of hydrolysis of cellulose is cellobiose. Like CenB, CenC also 

shows low activity on glucomannan, presumably acting on glucan chains decorating the 

mannan backbone (Table 1.2).   

 
CenC is known to have two C-terminal immunoglobulin-like domains of unknown function 

(Figure 1.8). These do not bind to avicel or any cellulosic substrates, and thought to possibly 

be involved in protein-protein interactions serving a function similar to the fibronectin-like 

repeats seen in other cellulase components (Coutinho et al. 1992). In relation to the other C. 

fimi cellulases, the expression of CenC is induced by cellulose, but not glucose or glycerol 

(Moser et al. 1989).  

 

1.4.2.4 Endoglucanase CenD 

 
CenD is the least well studied of the C. fimi endoglucanases. Expression of CenD is induced 

in the presence of cellulose, and is undetectable when C. fimi is grown in media containing 

cellobiose or glucose as the sole carbon source (Fig. 1.9).  The CBD binds both amorphous 

and crystalline cellulose (Warren 1996). However the hydrolytic activity against crystalline 

substrates is far greater than that of amorphous substrates (Kleman-Leyer et al. 1994) (Table 

1.2). By comparison, CenD is able to hydrolyse up to 85% of BMCC, a figure comparable to 

that of CenB which hydrolyses up to 87% of the substrate (Meinke et al. 1993). Like CenB, 

the presence of fibronectin-like repeats is also apparent in CenD (Sandercock et al. 1996) 

(Fig. 1.8).  
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1.4.3 The exoglucanases: cellobiohydrolases and cellodextrinases 

 

1.4.3.1 Cellodextrinase Cex 
 

Cex is the only known cellodextrinase of C. fimi. It shows activity against both cellulose and 

xylan, though notably it is 40 times more active on xylan (Notenboom et al. 1998). These two 

activities are discussed individually within this section.  

 
As an exoglucanase, Cex hydrolyses cellulose and cellotetraose oligosaccharides to liberate 

cellobiose from the non-reducing chain ends  (White et al. 1994). The CBD of Cex binds 

both amorphous and crystalline regions of cellulose (Mclean et al. 2000; Warren 1996; Jervis 

et al. 1996). Though its adsorption to crystalline BMCC is irreversible (Tomme et al. 1998; 

Esteghlalian et al. 2001), the CBD has been shown to migrate along the surface of crystalline 

cellulose, presumably facilitating the diffusion of the attached catalytic domain and 

increasing the likelihood of encountering available glycosidic linkages for attack (Jervis, 

Haynes, and Kilburn 1997). Moreover, evidence suggests that the binding of the CBD can be 

either perpendicular or parallel to the cellulose chain, further increasing the range and 

directionality over which the enzyme may act (Mclean et al. 2000). 

 
Overexpression of Cex in E. coli has a toxic effect upon the host, leading to cell death (Fu et 

al. 2005). Expression under a weaker promoter however improves cell viability and mature 

protein expression levels, relieving toxic effects (Fu et al. 2006). In other work, recombinant 

expression of Cex in E. coli was performed by constructing fusion proteins of either the 

catalytic domain or CBD to an outer membrane protein (Francisco et al. 1993). Exoglucanase 

activity was retained by the fusion protein, with 90% of activity occurring at the cell surface. 

In addition to this, binding of cells to crystalline cellulose was also observed. 

 

1.4.3.2 Cellobiohydrolases CbhA and CbhB 
 
One of the most extensively studied cellulolytic microorganisms is Trichoderma reesei, a 

soft-rot fungus. The mechanism by which crystalline cellulose is hydrolysed by T. reesei is 

not completely understood, though it is generally agreed to involve the concerted action of 

two cellobiohydrolases; cellobiohydrolase I and II, representing approximately 60% and 20% 

of extracellular protein, respectively, attacking from opposite ends of the cellulose chain. It 

has been shown that a similar mechanism is also employed by some cellulolytic bacteria, 

including C. fimi (Gilkes et al. 1997).  
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The cellobiohydrolases of C. fimi include CbhA  and CbhB. CbhA shows structural and 

catalytic properties similar to those of T. reesei CBH II, whereas CbhB is not related to either 

CBH I or II, and instead is classed as a family L-glucanase (Hua et al. 1996). Both enzymes 

are modular with a similar arrangement of CBD and catalytic domain; a C-terminal CBD is 

joined to the N-terminal catalytic domain by three fibronectin type-III like modules, each 

containing 95 to 98 amino acid residues (Sandercock et al. 1996). This arrangement is 

illustrated in Figure 1.8.  

 
The CBDs of both cellobiohydrolases have been shown to bind both bacterial 

microcrystalline cellulose (BMCC) and carboxymethyl-cellulose (CMC), representative 

examples of crystalline and amorphous cellulose, respectively (Warren 1996). A preference is 

evident for the attack of unsubstituted residues from  the terminal-ends of CMC, though the 

hydrolysis of both crystalline and amorphous substrates liberates cellobiose as the major 

product (Irwin et al. 1993). CbhB is able to hydrolyse cellohexaose, cellopentaose and 

cellotetraose, however not cellotriose. A distinct difference between CbhA and CbhB is the 

directionality of attack along the cellulose chain; CbhA attacks from the non-reducing end 

and CbhB from the reducing end (Gilkes et al. 1997). These complementarities are consistent 

with other microbial cellulase systems such as that of T. reesei, and are suggested to be a 

commonality between the cellulose hydrolysing strategies of bacteria and fungi.  

 

1.4.4 The ββββ-glucosidases 
 

C. fimi is known to express two strictly cytoplasmic β-glucosidases; Nag3A and Cfbglu 

(Wakarchuk et al. 1984). Expression of Cfbglu is induced four-fold in the presence of avicel 

and seven-fold in the presence of cellobiose. The enzyme hydrolyses the β-1,4-glycosidic 

linkages in 4'-nitrophenyl β-D-glucopyranoside, 4-methylumbelliferyl-β-D-glucoside and 

cellobiose. Unlike Nag3A it is a true cellobiase, capable of hydrolysing cellobiose to two 

glucose monomers (Kim and Pack 1989). 

 

Nag3A has dual activities as both a 3-β-N-glucosaminidase and a β-glucosidase (Mayer et al. 

2006). The enzyme hydrolyses terminal non-reducing acetylglucosamine residues from 

glycoproteins as well as β-1,4-glycosidic linkages in 4'-nitrophenyl β-D-glucopyranoside and 

4-methylumbelliferyl-β-D-glucoside, though not cellobiose. Nag3A is constitutively 

expressed, regardless of carbon source (Wakarchuk et al. 1984). 
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1.4.5 The Xylanases  

 

Cex catalyses the hydrolysis of β-1,4-xylosidic linkages at internal sites along the xylan 

polymer, showing 1,500 times more activity against xylan than any of the C. fimi 

endoglucanases (Kleman-Leyer et al. 1994). Expression of Cex is induced in the presence of 

xylan or cellulose, with the highest levels of induction in the presence of both substrates 

(Hekmat et al. 2008). This expression profile highlights the enzyme’s roles as a broad 

specificity endoxylanase and exoglucanase, active on both cellulose and xylan. Similarly, the 

endoxylanase Cfx is also induced by both cellulose and xylan (Hekmat et al. 2008). It would 

appear that this is an economical strategy for the deconstruction of lignocellulose, as plant 

biomass encountered in situ would contain both cellulose and xylan polymers and not those 

individually.  

 
This close intimacy of cellulose to xylan means that cellulose offers itself as a consistent 

target to which xylanases can bind, and so suggests why xylanases commonly show cellulose 

binding capabilities. For example, the endoxylanase XynC has two family IX CBDs which 

bind cellulose, but not xylan (Clarke et al. 1996). XynC shows no hydrolytic activity against 

cellulose or mixed linkage β-glucans, but hydrolyses soluble xylan to produce predominantly 

xylobiose. Interestingly, maximal activity is shown to occur at 60oC, with 40% of that 

activity retained at 70oC. In addition, XynC contains a domain homologous to the nodulation 

protein, NodB, from the nitrogen fixing Rhizobium spp (Fig. 1.8).   

 
The NodB domain, also present in XynD, has been shown to deacetylate acetylxylan (Laurie 

et al. 1997). Acetylxylan is resistant to hydrolysis by xylanases and as much as 70% of 

xylose residues found within hardwoods can be acetylated. Like XynC, XynD is an 

endoxylanase showing stability at higher temperatures, being stable up to 52oC (Millward-

Sadler et al. 1994). However XynD also shows a binding affinity for both cellulose and 

xylan, coordinated by two family IIb CBDs (Fig. 1.8). Binding to crystalline cellulose is co-

ordinated by the C-terminal CBD (Bolam et al. 2001), and binding to xylan by the internal 

CBD (Black et al. 1995). The two CBDs show 70% sequence similarity and exhibit 

intramolecular synergy whereby the binding affinity for xylan is 20-times greater when both 

CBDs are  incorporated into a single protein species than when expressed as distinct species  

(Bolam et al. 2001).   
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1.4.6 The Mannosidases  

 

C. fimi is known to express two mannosidases: Man2A and Man26A. In combination, both 

enzymes are sufficient for the complete hydrolysis of ivory nut mannan, an insoluble and 

unsubstituted mannan polymer, to its constituent monomer of mannose (Stoll, Stålbrand, and 

Warren 2001). 

  

1.4.6.1 Man2A 

 

Man2A is an exo-1,4-β-mannosidase (E.C. code 3.2.1.25) catalysing the removal of β-D-

mannose residues from the non-reducing ends of mannan oligosaccharides (Stoll, Stålbrand, 

and Warren 1999). It is an intracellular enzyme comprising a single catalytic domain (Figure 

1.8). Man2A readily hydrolyses p-nitrophenyl-β-mannoside, and does not show hydrolytic 

activity against any other saccharide derivatives of p-nitrophenyl such as β-glucose, β-xylose 

or β-cellobiose (Stoll, Stålbrand, and Warren 1999). The complete hydrolysis of manno-

oligosaccharides to mannose is observed in the presence of Man2A (Stoll, Stålbrand, and 

Warren 2001), with end-product inhibition also being observed (Zechel et al. 2003). 

 
1.4.6.2 Man26A 

 

Man26A is an endo-β-1,4-mannosidase (E.C. code 3.2.1.78) and catalyses the random 

hydrolysis of β-1,4 mannosidic linkages within the backbones of mannans, galactomannans, 

and glucomannans  (Stoll, Stålbrand, and Warren 1999). Complete hydrolysis of 

mannotetraose, mannopentaose and mannohexaose to mannose and mannobiose as major 

products is observed. Hydrolysis of  mannotriose is comparatively slow and that of 

mannobiose is undetectable (Stoll, Stålbrand, and Warren 2001). Unlinke Man2A, Man26A 

is a secreted mannanase, with a modular structure (Figure 1.8). Proteolysis by a C. fimi serine 

protease gives active fragments displaying both independent binding and hydrolytic activities 

(Stoll, Stålbrand, and Warren 1999). 

 
A unique feature of the modular Man26A is the presence of a putative SLH like domain (Fig. 

1.8). These are present in cellulosome proteins from complexed cellulase systems and are 

implicated in the attachment and anchoring of cellulase components to the cellulosome 

scaffold (Le Nours et al. 2005). It is unclear what the role of the SLH like domain is in 

Man26A, though the enzyme has been shown to be transiently associated to the outer 
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membrane, with a large proportion of mannanase activity associated with the cell when 

recombinantly expressed in E. coli (Stoll et al. 1999). Further work identified that Man26A 

does not bind to a peptidoglycan fraction prepared from C. fimi and perhaps the SLH domain 

functions otherwise (Stoll, Stålbrand, and Warren 2001). 

 
The mannan binding module of Man26A binds soluble mannans in the form of azo-carob 

galactomannan and locust bean gum, but does not bind insoluble mannan in the form of ivory 

nut mannan (Stoll et al. 2000). This is striking since the binding domain enhances the activity 

of the catalytic domain on insoluble substrates, but not on the soluble substrates to which it 

binds. Binding is shown to be reversible (Stoll, Stålbrand, and Warren 2001). 

 

1.4.7 Modular cellulases and the role of a conserved linker region 

 
Extensive study over the past two decades has yielded exciting insights into the role and 

importance of the flexible linker region present amongst the cellulases of C. fimi. Work by 

Warren et al. (1986) first indentified the conserved linker region between the catalytic and 

cellulose binding domains of the cellulases CenA and Cex. This short linker region was 

shown to be of about 20 amino acids in length and to contain only proline and threonine (the 

Pro-Thr box). The region is conserved almost perfectly in the two enzymes and suggested to 

have arisen due to the shuffling of three or four conserved nucleotide sequences. 

Langsford et al. (1987) proved that glycosylation of cellulases from C. fimi did not 

significantly affect their kinetic properties, or their stabilities towards heat and pH. However, 

glycosylation of enzymes was necessary for protection from the attack of a secreted C. fimi 

protease when bound to cellulose. Non-glycosylated counterparts synthesized in E. coli were 

vulnerable to attack and yielded active, truncated products with reduced affinity towards 

crystalline cellulose.  

Furthering this study, Gilkes et al. (1988) showed that the extracellular serine protease is 

secreted by C. fimi when grown on glycerol, xylan or cellulose. In accordance with Langsford 

et al. (1987), native glycosylated CenA and Cex were resistant to proteolysis when bound to 

cellulose, but susceptible when in solution (Fig. 1.10). The protease cleaved both CenA and 

Cex in a highly specific manner, cleaving at the conserved Pro-Thr box, making independent 

the catalytic and CBD modules in each protein. The independent modules retained their 

respective hydrolysing and cellulose binding functions. However the catalytic domains 
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showed reduced activity against insoluble substrates and increased activity against soluble 

substrates, implying a critical role of the CBD in the hydrolysis of crystalline cellulose.  

 
 

Figure 1.10: Schematic representation of the proteolytic cleavage of a hypothetical modular 

exoglucanase. The glycosylated linker region is protected from proteolysis when the CBD is bound to 

crystalline cellulose (A); when in solution and hydrated, the linker region is susceptible to attack by 

the secreted extracellular serine protease (B); once cleaved, the catalytic and cellulose binding 

modules are made independent and perform their respective roles of cellulose hydrolysis and 

binding (C).  
 

Work by Shen et al. (1991) showed that deletion of the linker region does not affect the 

enzymatic activity of CenA or its adsorption to cellulose. However deletion does affect 

desorption from the substrate as the modified CenA, unlike native CenA, cannot be eluted 

from cellulose with water. Since removal of the linker did not significantly impair enzymatic 

activity, Miller et al. (1992) substituted the linker region of CenA with the human antibody 

IgA1 linker region. Results showed that recombinant CenA was unaffected by the wild-type 

C. fimi serine protease, however showed susceptibility to the IgA protease from Neisseria 

gonorrhoeae. Fragments generated from this cleavage were identical to those generated from 

wild-type C. fimi protease, resulting in a fully functional catalytic domain and CBD.  

Considering that glycosylation is not essential for activity, but is necessary for the protection 

of cellulases from proteolysis when bound to cellulose,  Coughlan and Mayer (1992) 

suggested that the modular cellulases are slowly cleaved to yield active fragments with 

enhanced activity against soluble substrates which accumulate as crystalline cellulose is 

degraded. Evidence to support this hypothesis was later found when the same modularity 

present in CenA was also shown to exist in CenB, CenD, Cex, CbhA and CbhB (Sandercock 

et al. 1996). The enzymes were degraded proteolytically in supernatants of C. fimi cultures, 

with the discrete fragments generated maintaining catalytic function, displaying reduced 
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activity against intact or insoluble cellulose fibres and increased activity against free-fibres in 

solution. Sanercock et. al (1996) found this difference to be due to the CBD no longer 

anchoring the catalytic domain to the cellulose fibre.  

Finally, Poon et al. (2007) using Nuclear Magnetic Resonance (NMR) spectroscopic analysis 

showed that the proline-threonine (PT) linker of Cex did not exhibit any predominant 

structure in either glycosylated or non-glycosylated forms. The PT linker was shown to be 

flexible and glycosylation slightly dampened this flexibility. Interestingly, it was also shown 

that there are no non-covalent interactions between the two domains of Cex or between both 

domains and the linker. Poon et al. demonstrated that the PT linker is a flexible tether, joining 

the structurally independent catalytic and cellulose binding domains of Cex in an ensemble of 

conformations. These findings support the idea that the CBD anchors Cex to the surface of 

cellulose, whilst the linker provides flexibility for the catalytic domain to hydrolyse nearby 

cellulose or xylan chains. 

1.4.8 Modification of the linker for controlled cleavage within a heterologous host 

Considering the above review, one can appreciate the importance of the linker region within 

the modular cellulases. In the presence of crystalline cellulose, the cellulases will bind 

cellulose via the CBD and be protected from proteolysis as the linker is occluded, however as 

hydrolysis of the substrate reaches completion, the enzymes will desorb and spend more time 

in solution where the linker is susceptible to cleavage (Cavaco–Paulo et al. 1999). Upon 

cleavage of the linker, the now independent CBD shows a tendency to disrupt the structure of 

the remaining insoluble substrate, whilst the catalytic domain shows greater activity against 

soluble oligosaccharides. This two-stage strategy would appear to improve the efficiency of a 

non-complexed cellulase system, since the modules perform multiple roles over the course of 

substrate hydrolysis and are repurposed as the substrate is hydrolysed. 

 
The relevance of this within the present study is the potential design of a similar two step 

process for cellulose degradation within a recombinant host, replicating that of C. fimi. Using 

the technique by Miller et al. (1992) discussed earlier,  substitution of the CenA linker region 

with an alternative sequence could afford the controlled proteolysis of the cellulase and 

consequently controlled activity of the independent modules. In theory, the disassociation of 

catalytic and cellulose binding domains could be controlled by inducing expression of an 

appropriate protease capable of cleaving the substituted recombinant linker region. Moreover, 
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to leverage the independent catalytic domain’s increased activity against soluble 

oligosaccharides, protease expression could coincide with the depleting cellulose carbon 

source. To achieve this, one could use the method devised by Bokinsky et al. (2011) whereby 

transcription of recombinant genes in E. coli is under the control of the wrbA, cstA or cspD 

promoters which initiate transcription prior to stationary phase or a limited carbon supply. 

Ultimately, the controlled proteolysis of the modular cellulases in wildtype C. fimi is thought 

to promote the extensive hydrolysis of crystalline cellulose (Meinke et al. 1991; Ong et al. 

1994), and perhaps is a necessary mechanism to duplicate if the full cellulolytic efficiency of 

C. fimi is to be realised in a heterologous host.  

 

1.4.9 Speculated roles of the fibronectin type-III repeats within the cellulases of C. fimi 
 
The fibronectin type-III (Fn3) like repeats observed within the C. fimi cellulases CenB, 

CenD, CbhA and CbhB (shown in Fig.1.8) are also exhibited within the cellulase components 

of other cellulolytic bacteria and fungi. The conserved Fn3 unit is shown to have a distinctive 

motif of seven anti-parallel β-strands arranged in two sheets, enclosing a core of highly 

conserved hydrophobic residues (Kataeva et al. 2002). This domain is reported in a number 

of bacterial species which degrade cellulose and/or chitin, including Bacillus circulans, 

Cellulomonas flavigena, Clostridium thermocellum and Clostridium cellulovorans (Hansen 

1992). The acquisition of Fn3 sequences was originally suggested to have been from an 

animal species and propagated down the lineage through natural selection, and across 

different genera through horizontal gene transfer (Little, Bork, and Doolittle 1994), although 

a more recent finding of its presence in fungal systems gives reason to dispute this claim. 

 
The Fn3 repeats are also present in swollenin, the expansin like protein from T. reesei. 

Interestingly, this is the first and only example of these repeats occurring within a fungal 

species (Saloheimo et al. 2002). Swollenin shows no hydrolytic activity against cellulose, but 

is involved in the non-hydrolytic disruption of the crystalline lattice, introduced earlier within 

this thesis as amorphogenesis. Considering that swollenin is not implicated in cellulose 

hydrolysis but associated with the disruption of the structure instead, one could assume the 

Fn3 repeat is also involved in this role.   

 
One example within the cellobiohydrolase CbhA of Clostridium thermocellum suggests this 

assumption to be true as the Fn3 repeats are observed to promote cellulose hydrolysis by 

modifying the substrate surface (Kataeva et al. 2002). Using PCR cloning to prepare 
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truncated forms of the cellulase, Kataeva et al. measured the efficiency of cellulose 

hydrolysis and observed structural changes by scanning electron microscopy (SEM). Results 

demonstrated that the efficiency of cellulose hydrolysis by the truncated forms of CbhA 

increase in the following order; CD (lowest efficiency), CD-Fn3-Fn3 (more efficient), and 

CD-Fn3-Fn3-CBD (greatest efficiency). Moreover, SEM studies of filter paper treated with 

Fn3 domains showed that the surface of the cellulose fibres had been loosened and 

crenellated, displaying roughening and erosion, however no changes in the crystallinity of the 

fibres were observed. It was concluded that the Fn3 domain loosened neighbouring cellulose 

chains by exfoliation and separation, directing single chains towards the catalytic centre of 

the enzyme. A tighter interaction with the cellulose substrate was mediated through the CBD, 

as Fn3 was found to bind cellulose only weakly.  

 
Regarding C. fimi, it has been demonstrated that the Fn3 repeats may play a role in the 

aggregation of the modular cellulase components, which arise from proteolytic cleavage of 

the enzyme. Meinke et al. (1992) identified a truncated module of the endoglucanase CenB 

that strongly aggregated and bound to the surface of crystalline cellulose. The module was 

shown to contain the C-terminal family IIa CBD and the three Fn3 repeats (Figure 1.8). 

Considering that the disruption and dispersion of cellulose fibres has previously been shown 

to be performed by the Fn3 domains (Kataeva et al. 2002),  as well as the CBD domains (Din 

et al. 1994), one may speculate that the Fn3-CBD module arising from proteolysed CenB 

could also fulfil a similar role in cellulose disruption.  

 
The role of the Fn3 domains is still however unclear. Given the absence of the Fn3 domains 

amongst numerous homologues of the cellulases across multiple cellulolytic species, it has 

been suggested that the role of the Fn3 domains is an accessory one and not essential to the 

function of the hydrolases (Little, Bork, and Doolittle 1994). 

 

1.4.10 Cell anchoring and association to cellulose via extracellular C. fimi cellulases 

 
As previously discussed, the CBMs within the cellulases of C. fimi fulfil numerous roles; (i) 

recruitment of enzymes to target regions, such as CenB and CenD to areas of crystalline 

cellulose (Tomme et al. 1998); (ii) mobility of the cellulases along the cellulose surface, in 

the case of CenA and Cex (Jervis, Haynes, and Kilburn 1997); and (iii) non-hydrolytic 

disruption and dispersion of cellulose fibres, exhibited by CenA (Din et al. 1991). In addition 

to these observations, there is evidence within the literature which suggests an alternative role 



37 

 

in that cellulases are anchored to the cell surface via the CBD, forming a rudimentary 

cellulosome complex. 

 
Coughlan and Mayer (1992) suggested that C. fimi initiates hydrolysis of cellulose via a two 

step mechanism; (i) the first step is the presentation of the cellulase components on the cell 

surface whereby hydrolysis is mediated in a similar fashion to that of a cellulosome; (ii) the 

second is the dissociation of the putative cellulase complexes from the cell surface and free 

diffusion of the now independent agents to act on the substrate in accordance with a non-

complexed cellulase system. This suggestion was based on the observation that the related 

Cellulomonas uda, which also displays a non-complexed cellulase system, presents multiple 

protuberant structures on the cell surface when grown in cellulose or cellobiose (Lamed et al. 

1987). These structures were likened to the cellulosome of complexed systems, as they are 

absent in the presence of glucose, and are thought to facilitate binding of cells to the cellulose 

substrate prior to hydrolysis.  

 
Currently no evidence within the literature describes similar protuberant structures on the 

surface of C. fimi in the presence of cellulose. However it is tempting to hypothesize that the 

endoglucanase CenB has a role here; the weak constitutitve expression of CenB as well as the 

presence of Fn3-like repeats thought to govern protein-protein interactions could suggest that 

the cellulase is presented on the cell surface as part of the basal cellulase system of C. fimi. 

Upon contact with cellulose, CenB could inititate the preliminary hydrolysis of cellulose and 

liberation of small-oligosaccharides which in turn induce the expression of the remaining 

cellulases. The fact that CenB expression is also under the control of a second strong 

inducible promoter as well as the enzyme’s strong affinity for crystalline cellulose could 

support its role as the initiating cellulase component in cellulose deconstruction. 

 

1.5 Synergistic combinations of cellulases for cellulose hydrolysis 
   

Synergism within cellulase systems was first proposed by Eveleigh (1987), and has since 

been widely observed both within and between cellulolytic bacteria and fungi. Several types 

of synergism have been reported within the literature and including; (i) endo-exo synergy 

between endoglucanases and exoglucanases (ii) exo-exo synergy between exoglucanases 

processing from reducing and non-reducing ends of cellulose chains, (iii) endo-endo synergy 

between endoglucanases targeting different sites within the cellulose substrate, (iv) synergy 

between exoglucanases and β-glucosidases which relieve end-product inhibition by 
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cellobiose, and (v) intramolecular synergism between catalytic and cellulose binding domains 

(Zhang and Lynd 2004).  

 
The study of synergism within cellulase systems has met with some difficulty, notably due to 

some synergistic effects only being operative in specific conditions. For example, 

intramolecular synergism between the catalytic and cellulose binding domains within CenA 

was reported on cotton fibres but not on BMCC (Din et al. 1994). Moreover, the 

quantification of synergistic effects is troublesome as the overall deconstruction of the 

substrate by complementary cellulases will show no overall modification in architecture. This 

was discussed by Mansfield & Meder (2003). The authors noted that synergistic effects of 

cellulase mixes showed no overall deconstruction of the substrate as the actions of individual 

cellulases are offset by the concurrent modification by complementing enzymes.  

 
In addition to substrate properties, experimental conditions also affect the extent of synergy 

observed. It has been reported that endo- and exo-glucanase synergies increase with an 

increase in enzyme loading below saturation, but decrease with oversaturated enzyme loading 

(Irwin et al. 1993). This is thought to be due to competitive binding for sites on the substrate 

when it is oversaturated with enzyme. Furthermore, synergistic effects are noted to be 

greatest under conditions chosen to minimize end-product inhibition. An example of this is 

illustrated by Irwin et al. (1993), whereby the addition of β-glucosidase to a cellulase mix of 

endo- and exo-glucanases improved total substrate deconstruction by up to two-fold, 

presumably due to relief of end-product inhibition ocaused by cellobiose. 

 

1.5.1 Combinations of C.fimi cellulases for efficient hydrolysis of cellulose 

 

Utilizing knowledge gained in the study of synergy between cellulases, the deconstruction of 

cellulose by a recombinant host can be improved by the design of complementary 

combinations of cellulases. This was investigated by Mansfield and Meder (2003), using four 

recombinant cellulases from C. fimi,  interrogated the respective roles and activities of the 

enzymes in cellulose hydrolysis. Table 1.3 below summarizes the extent of Sigmacell 

cellulose hydrolysis by the individual cellulases and pair-wise combinations thereof.  
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 Glucose  

(mg) 

Cellobiose  

(mg) 

Cellotriose 

(mg) 

Total sugars 

(mg) 

% Hydrolysis 

CenA 11.35 40.68 0.00 52.03 30.61 

CenD 2.64 77.51 5.42 85.57 50.34 

CbhA 0.53 73.78 3.30 77.61 45.65 

CbhB 0.00 22.10 8.45 30.55 17.97 

CenA + CbhA 10.86 88.07 1.10 100.03 58.84 

CenA + CbhB 13.97 38.22 0.68 52.87 31.10 

CenD + CbhA 0.55 108.33 5.75 114.63 67.43 

CenD + CbhB 0.00 84.10 9.98 94.08 55.34 

 

Table 1.3:  Soluble oligosaccharides liberated and the degree of saccharification of Sigmacell 

cellulose hydrolysed by recombinant C. fimi cellulases over 48 hours. Data taken from Mansfield and 

Meder (2003). 

 

 
The most productive cellulase combination in terms of total hydrolysis of cellulose was that 

of CenD and CbhA with 67.43%. Notably this combination was also shown to increase the 

relative crystallinity of the substrate as illustrated in Table 1.4 below. This observation is 

most likely due to CbhA preferentially hydrolysing the less recalcitrant amorphous regions of 

the Sigmacell cellulose, explaining why a larger proportion of the substrate was hydrolysed. 

The least productive enzyme combination was that of CenA and CbhB which showed only 

31.1% hydrolysis of Sigmacell, half that of CenD and CbhA, though it is of importance to 

note that the combined action of CenA and CbhB reduced the relative crystallinity of the 

substrate, suggesting that this pair of enzymes targeted the crystalline regions of the substrate.  

These results are consistent with previous studies which show CbhB to have a higher activity 

against crystalline BMCC and PASC compared to Sigmacell cellulose, suggesting the 

cellobiohydrolase is effective in decrystallizing cellulose (Stålbrand et al. 1998), whereas 

CbhA is more effective in the solubilisation of cellulose, hydrolysing 45.65% of the substrate, 

compared to CbhB at 17.97%.  
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Cellulases CenA CenD CbhA CbhB 

CenA     

CenD     

CbhA     

CbhB     

 
Table 1.4: The crystallinity index of Sigmacell cellulose is altered according to the combinations of 

cellulases present.  Pair-wise combinations of the C. fimi cellulases CenA, CenD, CbhA and CbhB are 

shown to have varying effects on the crystallinity of cellulose. Combinations which increase the 

relative crystallinity are shown as dark green, those having no effect are shown as light green, and 

finally combinations decreasing the crystallinity of cellulose are shown as pale green. Data taken 

from (Mansfield and Meder 2003). 

 

 
This study highlights the significance of synergism within the cellulase system of C. fimi, 

whereby specific combinations of cellulases act in concert to fulfil defined roles, including: 

the decrystallization of cellulose by CenA and CbhB, and subsequent solubilisation by CenD 

and CbhA. Furthermore, evidence within the literature suggests that the relative proportions 

of the individual enzymes within these combinations are a key determinant in their combined 

enzymatic efficiency. This is discussed further in the following section. 

1.5.2 Optimized proportions of endo- and exo-glucanases 

Evidence within the literature indicates that the optimal cellulase mix required for cellulose 

hydrolysis will vary greatly according to the substrate used within the study, as well as the 

organism from which the enzymes are derived. Using purified cellulases from T. reesei Baker 

et al. (1998) showed that as much as 16.5% of Sigmacell cellulose could be hydrolysed over 

120 h when an optimal ternary mix was employed, consisting of cellobiohydrolase Cel7A and 

Cel6A and endoglucanase Cel7B in a molar ratio of 60:20:20. By comparison, Boisset et al. 

(2001) using the homologous cellobiohydrolases Cel7A, Cel6A and the endoglucanase 

Cel45A of Humicola insolens in a molar ratio of 69:30:1 showed a far greater extent of 

hydrolysis as 90% of BMCC could be hydrolysed over a much shorter incubation of 24 h.  

A reoccurring observation within the literature is that an optimal enzyme mix will comprise a 

type I and type II cellobiohydrolase and a single endoglucanase in a molar ratio of 

approximately 70:30:1, respectively (Meyer, Rosgaard, and Sørensen 2009). It has been 

suggested that this ideal ratio is a direct result of how the endo- and exoglucanases bind to 

and subsequently hydrolyse cellulose chains; a larger proportion of the cellulase mix will 

Change in crystallinity: 

 

  Increase 

 

  No change 

 

  Decrease 
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consist of the exoglucanases as these exhibit a longer residence time bound to the cellulose 

chain, compared to the endoglucanases which are only transiently associated long enough to 

hydrolyse at a single internal site before migrating to neighbouring chains (Linder and Teeri 

1997).  

 
Presently no study within the literature describes an optimal ratio of endoglucanase to 

exoglucanase within the cellulase system of C. fimi, though one can expect it to match those 

previously described given the extensive similarities and overlap between microbial cellulase 

systems. 

 

1.6 Synthetic Biology for lignocellulose deconstruction 
 
The study of optimized cellulase cocktails alludes to the potential of employing a refined and 

more precise approach to studying the deconstruction of lignocellulosic biomass. Through 

exploiting synergy between glycanases, and reducing reliance upon a brute-force approach of 

high level cellulase expression, competitive inhibition between cellulases can be reduced and 

overall enzymatic efficiency improved. As such, the desired result would be the design of an 

enzyme cocktail targeted to a pre-defined cellulosic substrate. This could potentially alleviate 

metabolic stress upon an already overburdened production host, which is of paramount 

importance when considering the design of a single chassis organism for both biomass 

utilisation and secondary product formation (Lynd et al. 2005).  

 
The study of synergism between cellulases and therefore the understanding of cellulose 

degradation would benefit greatly from an extensive library of well characterized cellulases 

whose properties are clearly defined (French 2009). This would allow for the selection of 

individual enzymes for the introduction within a chassis organism to degrade a pre-defined 

cellulosic substrate. Here, we discuss the potential of leveraging tools and concepts from 

sythetic biology for developing a combinatorial method of studying the enzymatic hydrolysis 

of cellulose. 

 
1.6.1 Research goals of Synthetic Biology 

 
The emerging field seeks to utilise the design principles of electronic engineering and 

incorporate those within the framework of biological systems and traditional genetic 

engineering (Endy 2005). Namely this entails the detailed characterization and quantification 

of the behaviour of biological agents such as proteins, DNA, RNA and the relationships 
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between them. The end goal of which is the design of novel biological systems from defined 

parts and devices or the redesign of existing biological systems. Areas of development in this 

respect include the scaled construction of DNA from parts to devices, universal 

characterization standards, engineering of host chassis’ and computer aided design (CAD) 

software for the design of novel biological systems (Cheng and Lu 2012). The motivation for 

the development of synthetic biology as an engineering discipline  is most notably driven by 

technological innovations in nucleotide acid chemistry leading to falling costs in the synthesis 

and sequencing of DNA, allowing for greater control in manipulating and studying systems in 

molecular biology (Carlson 2009). 

Moreover to realise the above goals and the reliable engineering of biology for predictable 

functionality, methods in bypassing emergent behaviour are needed. Unseen complexities of 

gene products and host interactions are undesirable for the engineering of biology in a 

reliable fashion. As such the design of genetic systems and components from the bottom up 

can contribute towards better understanding the interactions within and behaviours of the 

target biological system.   

 

1.6.2 Applying engineering concepts to biological systems: a parts based approach 

 
The principles of a parts based approach to synthetic biology research and the design of 

biological systems is illustrated in Figure 1.11. The hierarchy described is that of (i) DNA, 

(ii) parts, (iii) devices and (iv) systems. Manipulation of DNA sequences for the design of 

standardized genetic components or parts is achieved using methodologies and techniques of 

modern day molecular biology, described within Chapter 2 of this thesis. Resultant genetic 

parts are further characterized and studied so as to reliably predict their behaviour when 

composed into composite devices. Finally, systems made up of multiple devices may be 

designed with the intention of studying a biological phenomenon, such as the hydrolysis of 

lignocellulosic biomass, within a reliable and reproducible context. 
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Figure 1.11: The principle design concepts within synthetic biology as illustrated according to a 

hierarchy of parts, devices and systems. The foundations to engineering biology via a parts based 

approach are centred upon the concepts of parts, devices and systems; (i) manipulation of DNA 

sequences facilitates the construction of standardized parts, (ii) comprehensive study and 

characterization of parts helps to inform the design of devices composed of multiple parts, (iii) 

systems or networks of devices with reliable functionality are built for a defined purpose.  

 

 

The successful and productive development of a parts based approach to biological study is 

heavily reliant upon extensive characterization and understanding of components at the 

‘parts’ level, on which the rest of the hierarchy is supported. As such, the need to develop 

standard assay protocols as well as reporting and sharing of parts is of paramount importance. 

Within the synthetic biology community, protocols and methodologies are largely shared 

through an online forum known as Openwetware (http://openwetware.org). The storage, 

distribution and sharing of physical DNA parts is co-ordinated by a central repository known 

as the Parts Registry (http://partsregistry.org). Here standardized parts all conforming to the 

‘BioBrick’ format are deposited, to allow access to characterization data and distribution to 

the larger research community. 

 
1.6.3 BioBricks: idempotent biological parts for standardized assembly of genetic 

devices  
 

BioBricks are modular genetic parts developed by the research community for submission to 

an open source ‘Registry of Standard Biological Parts’ which are then freely distributed for 

the design and construction of purpose built genetic circuits within microbial hosts. The 
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power of this approach lies within the ability to combine parts in any order and in any 

number to rapidly generate novel and complex genetic circuits with relative ease (Knight 

2003). Figure 1.12 illustrates the BioBrick 1.0 assembly standard. 

 

 

Figure 1.12: Illustration of the BioBrick 1.0 assembly standard and the protocol for combining 

modular parts. BioBrick parts are preceded upstream by EcoRI and XbaI restriction sites, termed the 

‘prefix’. The part is also succeeded downstream by SpeI and PstI restriction sites, termed the ‘suffix’. 

BioBrick parts A or B may be assembled either upstream or downstream from one another 

depending on which combinations of prefix and suffix sites are cut. The example illustrated shows 

BioBrick part A being assembled upstream of part B on a single plasmid vector. Part A is cut with 

EcoRI and SpeI and part B with EcoRI and XbaI. The compatible sticky ends generated may be ligated 

upon mixing of the two parts. The final construct generated is also a BioBrick part and may undergo 

successive rounds of assembly. Antibiotic resistance encoded within the plasmid backbone offers a 

method for selection of the desired construct. Source: Registry of Standard Biological Parts (2012).  

 

 

Once constructed, these components can be assembled in parallel so as to generate a range of 

configurations which may vary according to protein coding sequences, promoters, enhancers 

and secretion signals, amongst others (French 2009). With consideration to the present study, 

the BioBrick format lends itself well to the characterization and design of individual 

composite parts each encoding a single enzymatic activity for hydrolysis of a defined 

cellulosic substrate. The construction of modular devices is reliably achieved from individual 
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parts, and as such the assembly of a device encoding multiple enzymatic activities and the 

complete hydrolysis of a defined cellulosic substrate.  

 

1.7 Overview of the remainder of the thesis 
 
The remainder of this thesis is focused on the construction and characterization of a library of 

BioBrick parts, each encoding the expression of a single cellulase or hemicellulase cloned 

from Cellulomonas fimi. Parts are assayed for activity using a suite of colorimetric and 

fluorogenic substrates so as to confirm functional expression as well as quantify relative 

activities. In addition, characterization assays are performed for two promising expression 

hosts, namely Escherichia coli and Citrobacter freundii. These are carried out with an 

emphasis on the design of suitable media compositions for assaying growth on cellulosic 

substrates as well as suitable experimental conditions. The characterization of BioBrick parts 

and host chassis, allows for the informed and rational design of modular composite devices 

composed of multiple BioBrick parts. Devices are assembled with the purpose of encoding 

defined activities against one of three of the major polysaccharides present in plant biomass, 

namely cellulose, xylan or mannan. Following this, recombinant expression hosts 

transformed with the assembled constructs are assayed for growth in minimal media 

containing one of four well defined substrates as a sole source of carbon, including 

carboxymethyl cellulose, avicel, mannan from Saccharomyces cerivisiae, or beechwood 

xylan. Based on results from these growth assays inferences are made as to the suitability of 

each host chassis for the expression of recombinant cellulases, as well as the relative 

efficiencies of the enzymatic cocktail encoded by each genetic device against the respective 

carbon source. Further assays for those strains transformed with cellulase encoding constructs 

are conducted on cellulose paper. The ability of each strain to utilize the substrate is assayed 

for. Moreover, the extent of deconstruction of cellulose paper over the incubation period is 

documented so as to qualitatively compare the disruptive potential of each cellulase cocktail 

on the substrate. The main results from each chapter are summarized within the final 

discussion. Contributions to knowledge made by this work are also highlighted. Future 

amendments for improving experimental protocols and assays are suggested, with a particular 

consideration for those approaches which can potentially yield valuable insights into the 

mechanics of lignocellulose hydrolysis.  
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Chapter 2 

  

Materials and Methods 
 

2.1 Chemicals and reagents 

 

Table 2.1 below summarizes the chemicals and reagents used within the present study.  
 

Supplier Reagent (product number) 

New England Biolabs Inc. Restriction enzymes; EcoRI, XbaI, SpeI, PstI 

 

Melford Laboratories Ltd. 

Ampicillin (A0104) 

Chloramphenicol (C0113) 

Kanamycin (K0126) 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) (MB1008) 

5-bromo-4-chloro-3-indoyl-β-D-galactoside (X-gal) (MB1001) 

Agarose (MB1200) 

 

Sigma-Aldrich Co. 

Avicel (11365) 

Xylan (X4252) 

Mannan (M7504) 

Carboxymethyl cellulose (CMC) (419273) 

4-methylumbelliferyl β-D-cellobioside (MUC) (M6018) 

4-methylumbelliferyl β-D-glucopyranoside (MUG) (M3633) 

Magenta glycoside (B4527) 

Dimethyl sulphoxide (DMSO) (D5879) 

Congo Red (C6277) 

Yeast Extract (Y1625) 

Blotting paper, pure cellulose (P8046) 

Thermo Scientific Coomassie (Bradford) protein assay kit (1856209) 

Invitrogen Corporation SYBR-Safe DNA stain (S33012)  

 

Table 2.1: Chemicals and reagents used within the present study, including names of suppliers. 

 

2.2 Bacterial strains and expression vectors 

 

Genomic DNA from Cellulomonas fimi ATCC484 was used as a source for all cellulase and 

hemicellulase encoding genes within this study. Subsequent DNA manipulation and cloning 

was carried out using Escherichia coli JM109. Expression hosts for growth assays include E. 

coli MG1655, Citrobacter freundii NCIMB11490 and Citrobacter freundii SBS197. C. 

freundii SBS197 is taken from the University of Edinburgh School of Biological Sciences 

teaching laboratory culture collection. Over expression of recombinant cellulases under the 
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T7 promoter system was performed in E. coli BL21(DE3). Construction and expression of 

BioBrick parts were carried out in pSB1A3, pSB1C3 and pSB1K3. In addition, low copy 

vectors including pSB4C5 and pSB4K5 were used for expression where stated. These are 

summarized below. 

 

Plasmid vector BioBrick Parts registry ID Copy number per host cell Encoded resistance 

pSB1A3 pSB1A3-BBa_J04450 100-300 100 µg/ml Amp. 

pSB1C3 pSB1C3-BBa_J04450 100-300 35 µg/ml CML. 

pSB1K3 pSB1K3-BBa_J04450 100-300 50 µg/ml Kan. 

pSB4C5 pSB4C5-BBa_J04450 ~5 35 µg/ml CML. 

pSB4K5 pSB4K5-BBa_J04450 ~5 50 µg/ml Kan. 

 

Table 2.2: List of plasmid vectors used for the construction and expression of BioBrick parts. 

 

 

2.3 Cellulase and hemicellulase encoding genes from Cellulomonas fimi 
 
Table 2.3 overleaf summarizes the lignocellulase encoding genes of Cellulomonas fimi which 

were cloned and characterized within the present study.  

 

2.4 Media and culture conditions 

 

Luria Broth was the chosen medium for routine culturing. M9 minimal medium 

supplemented with a carbon source and yeast extract (where stated) was used for growth 

assays. The compositions of each are shown below. All cultures were made up to a final 

volume of 5 ml in 1 oz glass vials and incubated at 37oC on a rotary shaker at 200 rpm, unless 

otherwise stated.  

Media Composition 

 

Luria Broth 

10 g/l tryptone 

5 g/l yeast extract 

10 g/l NaCl 

 

M9 minimal media 

6 g/l Na2HPO4 

3 g/l KH2PO4  

0.5 g/l NaCl 

1 g/l NH4Cl 

0.34 g/l thiamine 

493 mg/l MgSO4 

14.7 mg/l CaCl2 

 

Table 2.4: Compositions of Luria Broth and M9 minimal media used for 

culturing of expression hosts. 
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In the preparation of growth assays, cultures were inoculated with a cell pellet spun down 

from overnight cultures in LB and resuspended in M9 so that the final OD600 is 0.1. All media 

used for growth assay experiments were inoculated in this way so as to reduce the amount of 

carbon carried over from the initial inoculums and maintain consistent levels of starter carbon 

present in M9 minimal media. Antibiotics were added according to the expression plasmid 

used to transform host strains (see Table 2.2), and cultures induced with 90 µg/ml of IPTG. 

 

Table 2.3: Cellulase and hemicellulase encoding genes from Cellulomonas fimi cloned within the 

present study. *Denotes those genes cloned by Natasha Cain. **Denotes those genes cloned by 

Steven Kane, used herein with permission. 

Gene name Locus tag Encoded protein function E.C. code Gene length 

(base pairs) 

Protein 

weight (kDa) 

*cex (xyn10A) Celf_1271 exo-1,4-β-glucanase  3.2.1.91 1,533 54.14 

endo-1,4-β-xylanase 3.2.1.8 

*cenA (cel6A) Celf_3184 endo-1,4-β-glucanase 3.2.1.4 1,350 46.71 

cenB (cel9A) Celf_0019 endo-1,4-β-glucanase 3.2.1.4 3,138 109.01 

cenC (cel9B) Celf_1537 endo-1,4-β-glucanase 3.2.1.4 3,306 115.23 

cenD (cel5A) Celf_1924 endo-1,4-β-glucanase 3.2.1.4 2,244 78.95 

cbhA (cel6B) Celf_1925 β-1,4-cellobiohydrolase 3.2.1.91 2,619 89.31 

cbhB (cel48A) Celf_3400 β-1,4-cellobiohydrolase 3.2.1.91 3,273 114.85 

man26A Celf_0862 endo-1,4-β-mannosidase 3.2.1.78 3,033 107.03 

man2A Celf_2770 exo-1,4-β-mannosidase 3.2.1.25 2,529 93.71 

xynC (xyn10B) Celf_0574 endo-1,4-β-xylanase 3.2.1.8 4,053 141.69 

xynD (xyn11A) Celf_0374 endo-1,4-β-xylanase 3.2.1.8 1,938 66.57 

xylan deacetylase 3.5.1.- 

cfx Celf_3156 endo-1,4-β-xylanase 3.2.1.8 1,482 53.27 

**bxyF Celf_1744 exo-1,4-β-xylanase 3.2.1.37 2,691 98.38 

**xynF Celf_3155 exo-1,4-β-xylanase 3.2.1.37 1,503 53.01 

cfbglu Celf_2783 β-glucosidase 3.2.1.21 1,455 53.52 

nag3A Celf_2983 β-glucosidase 3.2.1.21 1,695 60.00 

3-β-N-Acetylglucosaminidase 3.2.1.52 
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2.5 Congo Red endoglucanase activity assay 

 

To assay for endoglucanase activity, the method described by Teather and Wood (1982) was 

employed, with some modifications. CMC was incorporated into molten LB agar to a final 

concentration of 0.2% w/v. CMC-agar was poured into plates and appropriate antibiotics and 

inducers added. Plates were inoculated with selected strains and incubated at 37oC over 48 

hours. CMC-plates were then stained with Congo Red dye by flooding with 5 ml of 0.5 

mg/ml Congo Red solution for 45mins, at the end of which excess solution was removed. 

Excess unbound dye was washed from the plate by flooding with 5 ml 1 M NaCl solution for 

45mins. Zones of clearing appeared around colonies positive for endoglucanase activity as 

neighbouring CMC is hydrolysed, liberating the Congo Red dye. 

  

2.6 MUC exoglucanase activity assay 

 

The β-1,4-glycosidic bond exhibited by 4-methylumbelliferyl β-D-cellobioside (MUC) is 

cleaved by exoglucanases to yield fluorescent 4-methylumbelliferyl under long-wave UV 

light (366nm). The assay used within the present study involves 100 µl of 5 mg/ml MUC 

solution spread on suitable LB agar plates and allowed to dry for 2 hours. Plates were 

inoculated and incubated at 37oC overnight before being exposed to long-wave UV light to 

visualise fluorescence. 

 

2.7 MUG ββββ-glucosidase activity assay 

 

Like MUC above, the β-1,4-glycosidic bond exhibited by 4-methylumbelliferyl β-D-

glucopyranoside (MUG) is cleaved by β-glucosidases to yield a fluorescent product when 

illuminated under light at 366 nm. The MUG assay is identical to that above with the 

exception that plates are spread with 100 µl of 5 mg/ml MUG before inoculation and 

incubation at 37oC.  

 

2.8 O-Nitrophenyl assays  

 

O-Nitrophenyl substrates including ONP-xylopyranoside, ONP-cellobioside and ONP-

mannopyranoside were used to confirm the activity of exo-xylanases, exoglucanases and exo-

mannanases, respectively. If active, the enzyme will catalyse the hydrolysis of the β-1,4 bond 

liberating the ONP product which yields a strong yellow colour, quantifiable at 420 nm. The 

following reaction mixture was set up in a microcentrifuge tube for each substrate to be 

tested. 
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Component Volume (µl) 

Cell lysate 100 

25 mM ONP substrate 100 

Phosphate buffered saline (pH7.4) 300 

Total  500 

 

Table 2.5: Composition of reaction mixtures used in confirming the activity of recombinant cellulases 

active on ONP-xyloside, ONP-cellobioside and ONP-mannoside. 

 

 

After mixing, the reaction mixture is incubated at 37oC for 3-24 h. The reaction was 

effectively stopped by placing the microcentrifuge tube on ice and a colour change is initiated 

by the addition of 500 µl 1 M sodium carbonate solution. The total volume was transferred to 

a cuvette and absorbance is then read at 420 nm and recorded. Absorbance was measured on 

a Pharmacia LKB Ultraspec III spectrophotometer. Any sample reading an absorbance 

greater than 1 unit was diluted 10-fold and re-measured for accuracy.  

 

2.9 Coomassie protein assay  

 

Total protein concentration of cultures was determined by a Coomassie protein assay kit. 

100 µl of culture is added to 900 µl of reagent. The mixture is vortexed and incubated at 65oC 

for 60mins. The mixture is vortexed again and left at room temperature overnight for the blue 

colour to develop. Absorbance is measured at 595 nm and recorded. In instances were 

cultures include a carbon source high in particulate matter (i.e. avicel and xylan), optical 

density at 530 nm is also measured and subtracted from that at 595 nm to exclude absorbance 

generated by turbidity. Absorbance is measured on a Pharmacia LKB Ultraspec III 

spectrophotometer.  

 

2.10 DNA manipulation techniques 

 

2.10.1 PCR conditions 

 

In each instance KOD Hot Start DNA polymerase was used for both cloning of target genes 

and mutagenic PCR for the generation of silent mutations. PCR reaction mixtures were 

prepared according to the manufacturer’s specifications and are shown in Table 2.6. All 

subsequent PCR cloning steps were run using a PTC-200 DNA Engine Thermal Cycler from 

Bio-Rad and followed manufacturer’s specifications. Reaction conditions and cycles are 

detailed in Table 2.7 overleaf. 
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Reagents Volume (µl) 

Sterile water 32.0* 

10x reaction buffer 5.0 

25 mM MgS04 3.0 

Forward primer (10 pmol/µl) 1.5 

Reverse primer (10 pmol/µl) 1.5 

2 mM dNTP mix 5.0 

Template (cell suspension or 

supercoiled plasmid DNA) 

1.0 

KOD Hot start DNA Polymerase 1.0 

Total 50.0 

 

Table 2.6: Reaction mixture for PCR using KOD Hot Start DNA polymerase. *Indicates that when GC-

rich DNA was used as a template, 10 µl of water was substituted with 10 µl 50% v/v glycerol as a 

means to reduce the formation of secondary structures and unwanted annealing events. 

 

 

 Reaction conditions 

Reaction Step Temperature (
o
C) Time (s) Cycles 

1. Initial denaturation 95 120 1 

2a. Denaturation 95 20*  

 

30 

2b. Annealing Dependent on primer Tm 10 

 

2c. Extension 

 

70 

10 s/kb for <500 bp,  
15 s/kb for 500-1000 bp, 
20 s/kb for 1000-3000 bp, 
25 s/kb for >3000 bp  

3. Final extension (chase) 70 600 1 

4. Hold 4 ~ 1 

 

Table 2.7: Programme used for PCR cloning and mutagenesis. *Indicates that when GC-rich DNA was 

used as a template, the denaturation time was extended to 60 seconds so as to ensure complete 

denaturation of complementary strands. 

 

 

2.10.2 MABEL: Mutagenesis with Blunt End Ligation 

 
Unwanted endonuclease restriction sites within protein coding genes cloned from genomic C. 

fimi DNA were removed by single-point base pair mutation via mutagenic PCR. In each 

instance, cloned genes were digested with EcoRI and SpeI endonucleases and ligated into 

pSB1A3, C3 or K3 plasmid vectors. Mutagenic PCR was carried out to generate silent 

mutations by altering the sequence [ctgcag] recognised by PstI to that of [ctccag] or [ctgctg]. 

Primers used are listed in Table 2.16. PCR products generated were then blunt-end ligated 

according to the protocol described in section 2.10.6 below with the alteration of adding 1 µl 

T4 DNA polynucleotide Kinase. 
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2.10.3 DNA purification 

 
Purification of DNA from restriction digests or agarose gel was performed using glass silica 

beads. To 1 unit of DNA solution, 3 units of 6M NaI are added followed by 5 µl of glass bead 

suspension. The suspension was mixed and incubated on ice for 10 mins before spinning 

down of the glass beads. The supernatant is removed and discarded. The glass bead pellet is 

resuspended and washed in 250 µl ice-cold wash buffer (Table 2.9) three times. After a final 

spin, the supernatant is removed and discarded and the pellet resuspended in 15 µl elution 

buffer (Table 2.8) and incubated at 55oC for 10mins. A final spin to pellet the glass beads is 

performed and the DNA containing supernatant is transferred to a clean microcentrifuge tube.  

 

Component Volume or mass 

Tris Base 53 mg 

Tris HCl 88 mg 

Deionised H20 100 ml 

Total volume 100 ml 

 

Table 2.8: Composition of Elution Buffer (EB) used for DNA purification and storage. Total solution is 

autoclaved before use and stored at room temperature. 

 

 

Component Volume or mass 

Tris base 24 mg 

Tris HCl 127 mg 

NaCl 293 mg 

Na2EDTA 93 mg 

Ethanol 50 ml 

Deionised water 50 ml 

Total volume 100 ml 

 

Table 2.9: Composition of wash buffer used in DNA purification. Final solution is stored at -20
o
C. 

 

 

2.10.4 Agarose gel electrophoresis 

 
All agarose gel electrophoresis steps were carried out using a Bio-Rad minisub cell using 

0.8% agarose gels in 0.5x TAE buffer (Table 2.10) at 100 V and 50 mA for the duration of 

40-50 mins. Gels were stained using one of three solutions in distilled water; ethidium 

bromide, SYBR Safe or Gel Green. Visualization of gels was under UV light. A 1 kb DNA 

ladder was used as a marker. 
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Component Volume or mass 

Tris base 48.40 g 

Sodium EDTA 3.73 g 

Deionised water 450 ml 

Glacial acetic acid 11.40 ml 

Total 500 ml 

 

Table 2.10: Composition of 20x TAE buffer used for the preparation of agarose gels and running of 

agarose gel electrophoresis. 20x TAE is diluted to 0.5x TAE using distilled water. 

 

 

2.10.5 Restriction digests 
 
Digestion of BioBrick parts using endonucleases from New England Biolabs and Promega 

were carried out according to the manufacturer’s instructions. The composition of the digest 

reaction mixtures are shown in Table 2.11. Reaction mixtures were mixed and incubated at 

37oC for 30-60 mins. Prior to ligation, restriction digests were either purified by glass beads 

DNA purification or denatured at 80oC for 20mins, according to manufacturer’s instructions.  

 

Component Volume (µl) 

Supercoiled plasmid DNA 

or PCR product 

2.0 

Sterile dH20 23.5 

Buffer 3.0 

Endonuclease(s) 1.0 

BSA 0.5 

Total 30.0 

  

Table 2.11: Composition of restriction digest reactions used for the construction of BioBrick parts.  

 

 

2.10.6 Ligations 
 
Sticky-ended and blunt-ended ligations were carried out using T4 DNA ligase from Promega. 

According to manufacturer’s instructions, the reaction mix was set up according to Table 

2.12 below. Ligation reaction mixtures were mixed and incubated at 25oC for 30 mins, 

followed by incubation at 16oC for 15 h. Ligation mixtures were denaturated at 65oC for 20 

mins prior to transformation of competent cells. 
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Component Volume (ul) 

Total DNA solution to ligate 2.0 

Sterile dH20 20.0 

T4 DNA ligase 0.5 

T4 DNA ligase buffer 2.5 

Total volume 25.0 

 

Table 2.12: Composition of ligation reactions used for the ligation of BioBrick parts and blunt-end 

ligation of PCR mutagenesis products. 

 

 

2.10.7 Preparation and transformation of chemically competent cells 
 
For the preparation and transformation of chemically competent cells, the protocol presented 

by Chung et al. (1989) was followed. Competent cells were prepared by growing a cell 

culture in 50 ml LB to an OD600 of between 0.4 and 0.5. Cells were then incubated on ice for 

5 mins before spinning down at 13,000 rpm for 15 mins. The supernatant was removed and 

the pellet resuspended in 6 ml ice-cold Transformation and storage solution (TSS). Table 

2.13 below details the composition of TSS. Aliquots of 200 µl of cells are transferred to 1.5 

ml microcentrifuge tubes to rest on ice for 30 mins before storage at -80oC. 

 
Component Volume (ml) 

Luria Broth 17 

40% w/v PEG 3350 5 

1M MgCl2 1 

DMSO 1 

Total 24 

 

Table 2.13: Composition of Transformation and Storage Solution (TSS) used for the preparation of 

competent E. coli or Citrobacter freundii for transformation. 

 

 

Competent cells were transformed by the addition of 1 µl supercoiled plasmid DNA or 10 µl 

ligation mix to 100 µl aliquots of previously prepared cells. The mixture was incubated on ice 

for 30-45 mins before heat shock at 42oC for 90 seconds, followed by incubation on ice for 

90 seconds. Following this, 900 µl of LB (warmed to 37oC) is added to the cells and 

incubated at 37oC for 60 mins to recover. Cells transformed with either kanamycin or 

chloramphenicol resistance encoding plasmids are allowed to recover for 2 h. After recovery, 

cells centrifuged and the pellet resuspended in 200 µl LB for plating on LB agar selection 

plates containing appropriate antibiotics.  
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2.10.8 Plasmid DNA extraction: Minipreps 
 
For the extraction of plasmid DNA from E. coli JM109, the alkaline lysis protocol described 

by Sambrook et al. (1989) was employed. DNA is stored in 40 µl Elution buffer at -20oC. 

 

2.10.9 DNA sequencing  
 
DNA sequencing reactions were performed on an ABI 3730 capillary Sanger sequencer 

maintained and operated by the Gene Pool sequencing service within the University of 

Edinburgh School of Biological Sciences.  Reactions were set up as shown in Table 2.14. 

 

Component Volume (µl) 

DNA template for sequencing 1 

5 pmol ssDNA primer 1 

Sterile dH20 4 

Total volume 6 

 

Table 2.14: Composition of sequencing reaction and total volume used for Sanger sequencing. 

  

 

 

2.11 List of Primers 

 

2.11.1 Primers for cloning of protein encoding genes from C. fimi genomic DNA 
 
Table 2.15 details the primers used for cloning of C. fimi genomic DNA. Biobrick tail 

sequences non-complementary to the coding sequence are capitalized. Biobrick restriction 

sites are underlined; EcoRI and XbaI in the forward primer, SpeI and PstI in the reverse 

primer. 

 
2.11.2 Primers for silent point mutations to remove PstI sites within coding sequences  
 
Exhibiting a high GC content of 74%, genes cloned from C. fimi DNA frequently contain 

multiple PstI restriction sites. These are removed by mutagenic PCR through the generation 

of silent single base pair mutations. Table 2.16 details the primers used in mutagenic PCR. 

Single bases changed by point mutation are capitalized. In each instance the sequence 

[ctgcag] recognised by PstI is changed to [ctccag] or [ctgctg] in the case of nag3A mut2. 
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Primer name Primer sequence (5’ to 3’) 

cenB clonf TCTGAATTCCTTCTAGatgctccgccaagtcccacgc 

cenB clonr TCTCTGCAGCTACTAGTATTATTAgccgcagacctcaccgtg 

cenC clonf TCTGAATTCCTTCTAGatggtttctcgcaggtcatca 

cenC clonr TCTCTGCAGCTACTAGTATTATTAgctgcgcggacgctgcac 

cenD clonf TCTGAATTCCTTCTAGatgcactccgcatcgcgcacc 

cenD clonr TCTCTGCAGCTACTAGTATTATTAgcgcgtcgtgcaggtcgc 

cbhA clonf TCTGAATTCCTTCTAGatgtccacactcggcaagcga 

cbhA clonr TCTCTGCAGCTACTAGTATTATTAgccgagcgtgcaggcgac 

cbhB clonf TCTGAATTCCTTCTAGatgtcgtcaacgacccgccgg 

cbhB clonr TCTCTGCAGCTACTAGTATTATTAcgtgcaggacgcgccgtt 

man2A clonf TCTGAATTCCTTCTAGatgatcacccaggacctc 

man2A clonr TCTCTGCAGCTACTAGTATTATTAgcgggactgctggagatc 

man26A clonf TCTGAATTCCTTCTAGatgacgaaccgcagccgt 

man26A clonr TCTCTGCAGCTACTAGTATTATTAgcgcagctcgacgtcgtc 

cfx clonf TCTGAATTCCTTCTAGatgcacacgaaactccac 

cfx clonr TCTCTGCAGCTACTAGTATTATTAggatgccgcgcacgtgac 

xynC clonf TCTGAATTCCTTCTAGatgtacctcgacggcggc 

xynC clonr TCTCTGCAGCTACTAGTATTATTAcgagaagacgggccgcac 

xynD clonf TCTGAATTCCTTCTAGatgtccgacagtttcgaa 

xynD clonr TCTCTGCAGCTACTAGTATTATTAgcccgtggcgcacgtagc 

nag3A clonf TCTGAATTCCTTCTAGatgatcgacctgaccgca 

nag3A clonr TCTCTGCAGCTACTAGTATTATTAtcacaggtgggtgtccca 

cfbglu clonf TCTGAATTCCTTCTAGatgggcgaccggttccag 

cfbglu clonr TCTCTGCAGCTACTAGTATTATTAtcagggctggtaggtcgc 

 

Table 2.15: List of ssDNA primer sequences including BioBrick tails used for the cloning of cellulase 

and hemicellulase encoding genes from genomic C. fimi DNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

Primer name Primer sequence (5’ to 3’) 

cenB mut1f Ccagaagtcgatgttct 

cenB mut1r agggcctcggcgtagtt 

cenB mut2f Ccagccgggccagagca 

cenB mut2r agggtggcgttccacga 

cenC mut1f Ccagacgtacgagcggg 

cenC mut1r aggagctgcccgaccgc 

cenD mut1f Ccagatcttcgagtact 

cenD mut1r aggctgttcttgccctc 

cbhB mut1f Ccagggtccaacggcg 

cbhB mut1r agccacgtgtagaactc 

cbhB mut2f Ccaggcgggcgtcgtca 

cbhB mut2r aggcccgtcgggaccgt 

man2A mut1f Ccagaccgcgggcctgtg 

man2A mut1r aggtcggggccccagtc 

man2A mut2f Ccaggacggctaccgcgtc 

man2A mut2r agcggcgacacggtcgc 

man26A mut1f Ccagctcaacgccggtggt 

man26A mut1r aggaccatcctgttgtt 

man26A mut2f Ccaggtcggctcgacctgg 

man26A mut2r agggccgccttggtgtc 

cfx mut1f Ccagcgcaccggcaacgac 

cfx mut1r aggttcgagtcgcgccg 

cfx mut2f Ccagaacttcgccgacctc 

cfx mut2r agggtcgtgtggtagttc 

xynC mut1f Ccagcccgtctcgcagatg 

xynC mut1r agcaggttgacgtggaa 

xynC mut2f Ccaggccgtcaccgagctc 

xynC mut2r agcaggccggtcgtcgc 

xynC mut3f Ccaggccaagccggccttc 

xynC mut3r aggtcgtcgtcgaacgg 

xynD mut1f Ccaggacctgcgctcgcgc 

xynD mut1r aggatgccgggcagcgc 

nag3A mut1f Ccagagcaccgccacagtc 

nag3A mut1r agcgtggtcaccgtggcg 

nag3A mut2f Tggcgtgaagaccgtca 

nag3A mut2r gcagcgatggcggcgcg 

nag3A mut3f Ccagaacggcggcagcccc 

nag3A mut3r aggtcgtagacgagcacc 

cfbglu mut1f Ccaggcctaccggttctcg 

cfbglu mut1r aggccgaggctcttcatg 

 

Table 2.16: List of ssDNA primer sequences used for the generation of silent point mutations to 

remove internal PstI restriction sites within cloned C. fimi DNA. Multiple mutations within a single 

gene are listed as mut1, 2 or 3. Single bases modified by PCR are capitalized. 
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Chapter 3 

  

Characterization of host chassis and BioBrick 

parts 
 

Summary 
 
Using the large body of literature surrounding the cellulases of Cellulomonas fimi, we 

constructed a library of standardized BioBrick parts, each encoding the expression of a single 

cellulase or hemicellulase with defined activities against cellulose, mannan or xylan. Further 

characterization studies of these parts were performed so as to confirm enzymatic activity as 

well as contribute towards scientific knowledge. Moreover, characterization of suitable 

expressions hosts namely Escherichia coli and Citrobacter freundii, aided in the design and 

planning of future growth assays as well as the design of a suitable M9 medium composition 

for growth on cellulosic substrates. Both expression hosts are enterobacteria, chosen for ease 

of genetic manipulation and cultivation in a laboratory environment in the case of E. coli, or 

chosen for the ability to utilize cellobiose and effectively secrete extracellular proteins in the 

case of C. freundii. It was shown within our assays that C. freundii is capable of growth in 

saline media consisting of 0.6 M sodium chloride, and as such is a promising host for the 

development of bioprocessing projects utilizing sea water as a readily available medium. 

Knowledge gained from previous published results as well as the additional characterization 

assays performed here, informed the design and construction of composite devices made up 

of multiple cellulase encoding parts. Nineteen devices in total were assembled with defined 

activities against mannan, xylan or cellulose. Each device is described here according to the 

Synthetic Biology Open Language, a graphical annotation format for representing synthetic 

gene constructs. 
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3.1 Introduction 

To better understand the complementarities and synergies of the cellulases exhibited by C. 

fimi and attempt to recapitulate the cellulolytic system in a recombinant host, I built a library 

of standardised genetic parts. Using the BioBrick 1.0 assembly method devised by Knight 

(2003), fourteen parts encoding a defined activity against cellulose, mannan or xylan were 

constructed. These are summarized in Table 2.3 (see Chapter 2). Each part was cloned in 

standard BioBrick expression vectors; pSB1A3, pSB1C3 or pSB1K3. Expression of each 

protein encoding part was put under the control of one of two IPTG inducible promoters from 

the Parts Registry; Pspac-lacI (BBa_K174004) or Plac-lacZ (BBa_J33207). Translation was 

initiated by a strong E. coli ribosome binding site (BBa_J15001). 

Constructing each part in this manner allowed for the parallel testing and combining of 

multiple part arrangements into devices. This strategy lends itself well to the study of 

lignocellulose hydrolysis where multiple enzymatic functions are required for complete 

deconstruction and subsequent utilization of the substrate. This chapter discusses the 

considerations made in choosing a suitable expression host and the characterization of the 

cellulases and hemicellulases cloned from C. fimi. 

3.2 Considerations for expression hosts 

3.2.1 Growth of Escherichia coli and Citrobacter freundii on cellobiose 

For the efficient deconstruction of cellulose and the utilization of liberated glucose and 

cellobiose, a suitable expression host would need to exhibit efficient extracellular protein 

secretion as well as the ability to assimilate glucose and cellobiose as a carbon source. For the 

purposes of this thesis we considered the use of two enterobacteriaceae; Citrobacter freundii 

and Escherichia coli. 

Since both bacteria are closely related and use the same processing sites for transcription and 

translation, we were able to leverage a single library of BioBrick parts for testing across both 

species. Although E. coli is known to exhibit non-specific leakage of C. fimi cellulases (Guo 

et al. 1988), we inferred that this level of extracellular protein production would not be 

sufficient to support growth on a crystalline cellulose substrate, a hypothesis which is later 

tested in Chapters 4 and 5 of this thesis. As such, Citrobacter freundii was chosen for its type 

II secretion system which could afford a greater level of cellulase secretion and subsequent 

deconstruction of the substrate. Moreover, Citrobacter freundii being a common commensal 
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in the intestinal tracts of ruminants, the bacterium exhibits a native β-glucosidase capable of 

cleaving cellobiose into two glucose monomers. Figure 3.1 below shows the growth of E. coli 

strains MG1655 and JM109 as well as Citrobacter freundii NCIMB11490 and SBS197 in M9 

media containing 1% w/v cellobiose. Growth in M9 medium containing 1% w/v glucose was 

used as a control in each instance. Cultures were performed in duplicate. 

 

Figure 3.1: Growth of E. coli and Citrobacter freundii strains in 1% w/v cellobiose M9 medium.  

Growth curves of E. coli MG1655, E. coli JM109, C. freundii NCIMB11490 and C. freundii SBS197 

cultured in M9 media containing 0.34 g/l thiamine and either 1% w/v cellobiose or 1% w/v glucose. 

E. coli MG1655 and JM109 are shown to be unable to grow on cellobiose. Positive controls in glucose 

reach an OD600 of ~1.75 after 6 days of culturing (A). Citrobacter freundii strains NCIMB11490 and 

SBS197 are able to utilize cellobiose though notably not as efficiently as glucose. C. freundii 

NCIMB11490 shows the shortest lag phase compared to that of SBS197 which only reaches 

stationary phase at day 6 (B). Note: OD600 results above 1 are considered unreliable as samples were 

not diluted before readings were recorded.  
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Figure 3.1 identifies wildtype Citrobacter freundii, notably NCIMB11490, as a promising 

host for the expression of recombinant cellulases as it is able to utilize cellobiose at a 

comparable rate to that of glucose, whereas both E. coli MG1655 and JM109 are entirely 

unable to utilize cellobiose and would require the expression of a recombinant β-glucosidase 

in addition to endo- and exo-glucanases for complete cellulose hydrolysis and utilization.  

 
3.2.2 Growth of expression hosts in saline media    

Another interesting and relevant aspect to modifying Citrobacter freundii for the 

deconstruction of plant biomass is that the bacterium is able to grow in media with a salinity 

equivalent to that of sea water.  

 

Figure 3.2: Growth of Escherichia coli and Citrobacter freundii strains in 0.6 M NaCl M9 media with 

1% w/v glucose. E. coli strains MG1655 and JM109 grown in M9 0.6 M NaCl media show a marked 

reduction in cell density compared to positive controls grown in M9 media (A). By comparison 

Citrobacter freundii NCIMB11490 and SBS197 are able to grow in 0.6 M NaCl M9 medium at a 

comparable rate to that of the positive controls grown in M9 medium without NaCl (B). All media 

contained 0.34 g/l thiamine and 1% w/v glucose. Note: OD600 results above 1 are considered 

unreliable as samples were not diluted before readings were recorded.  
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To replicate the saline condition of sea water, which has a salt content of 3.5%, and test each 

strain for the ability to grow in saline media, strains were inoculated into M9 medium 

supplemented with 1% w/v glucose and 0.6 M sodium chloride. E. coli MG1655, JM109, and 

Citrobacter freundii NCIMB11490 and SBS197 were grown in 0.6 M NaCl M9 media over 

the course of 6 days. Cultures were performed in duplicate. Results in Figure 3.2A identify 

that both E. coli MG1655 and JM109 are not well suited to growth in the saline media as a 

marked difference in cell density is observed compared to the control. By comparison, Figure 

3.2B shows that both C. freundii NCIMB11490 and SBS197 are able to tolerate 0.6 M NaCl 

as growth is comparable to that of the controls lacking sodium chloride. These results suggest 

that C. freundii is a suitable host for performing cultures in saline conditions. 

3.2.3 Addition of a starter carbon source and loss of ββββ-glucosidase activity    

Before attempting any growth assays of recombinant hosts on cellulosic substrates, 

preliminary growth curves of E. coli and C. freundii strains in M9 media containing varying 

amounts of glucose as a starter carbon were performed. These results were intended to inform 

the design of a medium composition suitable for assaying growth where carbon is the limiting 

factor. As such, M9 medium containing 2% w/v cellobiose with either no added glucose or 

0.1% w/v glucose or 0.2% w/v glucose was prepared. Each medium was inoculated with one 

of three strains; wildtype C. freundii NCIMB11490 or SBS197, or E. coli MG1655 

expressing the recombinant β-glucosidase Cfbglu. Cultures were performed in triplicate. 

Results are shown in Figure 3.3. 

Figure 3.3A shows that E. coli MG1655 Plac-cfbglu reached the highest cell density with an 

OD of ~1.6 in M9 medium containing only cellobiose with no added glucose, compared to an 

OD of ~1.0 on those media supplemented with glucose. A possible explanation is that in 

media supplemented with glucose, there is a reduced selection pressure for the growth of 

those cells expressing the β-glucosidase since carbon is readily available in the form of 

glucose. As such cells harbouring a plasmid where cfbglu is excised by a recombination event 

outcompete those where Cfbglu is actively expressed; however the limited carbon pool (in 

the form of glucose) limits the maximal cell density achieved within the culture. This 

hypothesis could be tested by streaking out colonies and performing colony PCR to confirm 

the presence of the cfbglu gene, or plating colonies to check for CML resistance and 

cellobiase activity. 
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Figure 3.3: Growth of E. coli and Citrobacter freundii in M9 media containing varying amounts of 

glucose as a starter carbon source. Growth curves of E. coli MG1655 expressing a recombinant β-

glucosidase (Cfbglu) grown in 2% w/v cellobiose M9 medium with no glucose or 0.1% w/v glucose or 

0.2% w/v glucose (A). Growth curves of C. freundii NCIMB11490 and SBS197 grown in 2% w/v 

cellobiose M9 medium with no glucose or 0.1% or 0.2% w/v glucose (B,C). All media contained 0.34 

g/l thiamine. Note: OD600 results above 1 are considered unreliable as samples were not diluted 

before readings were recorded.  

0.2

0.4

0.6

0.8

2.0

0.1

1.0

0 2 4 6

O
D

 (
6

0
0

n
m

)

Time (Days)

(A) E. coli MG1655 Plac-cfbglu starter carbon source growth

0.1% glucose 

2% cellobiose

0.2% glucose 

2% cellobiose

2% cellobiose

0.2

0.4

0.6

0.8

2.0

0.1

1.0

0 2 4 6

O
D

 (
6

0
0

n
m

)

Time (Days)

(B) C. freundii NCIMB growth on various starter carbon sources

0.1% glucose 

2% cellobiose

0.2% glucose 

2% cellobiose

2% cellobiose

0.2

0.4

0.6

0.8

2.0

0.1

1.0

0 2 4 6

O
D

 (
6

0
0

n
m

)

Time (Days)

(C) C. freundii SBS197 growth on various starter carbon sources

0.1% glucose 

2% cellobiose

0.2% glucose 

2% cellobiose

2% cellobiose



65 

 

Figure 3.3B illustrates a similar scenario. In the case of C. freundii NCIMB11490, which is 

shown to assimilate cellobiose, growth is observed to be best in media containing only 

cellobiose where a maximal absorbance of ~1.6 is measured compared to ~1.2 in media 

supplemented with glucose. There is no evidence within the literature suggesting how C. 

freundii regulates expression of β-glucosidase activity, though it would seem logical for 

expression to be repressed in the presence of glucose. These results are consistent with this 

hypothesis. Similarly, C. freundii SBS197 also reaches a maximal cell density in media 

containing only cellobiose (Figure 3.3C). Notably though, a longer lag phase is evident, 

suggesting that β-glucosidase expression is more tightly regulated or perhaps an additional 

starter carbon source is required for sufficient growth. Another point to make is that cell 

density drops from 1.4 at Day 3 to 1.2 at Day 6 in media containing 0.2% glucose. This 

observation has been noted amongst other members within the lab working with C. freundii 

SBS197 (data not shown).  

Results presented here show that media best suited for measuring growth where carbon is 

limited should contain a minimal amount of starter carbon, in the cases of E. coli MG1655 

and C. freundii NCIMB11490. Conversely, the C. freundii SBS197 strain requires additional 

starter carbon to support initial growth before utilization of cellobiose is possible. As such, a 

starter carbon source such as yeast extract would be suitable for these purposes since it 

contains a mix of small peptides, amino acids and trace elements offering itself as a good 

carbon source without significant repression of β-glucosidase expression within C. freundii.  

3.3 Assaying for activity of ββββ-glucosidases  

3.3.1 Qualitative assays for ββββ-glucosidase activity 

According to the literature, C. fimi expresses two β-glucosidases; Cfbglu which is induced by 

cellobiose and cellulose, and Nag3A which is constitutively expressed regardless of carbon 

source (Wakarchuk et al. 1984; Kim and Pack 1989). Though both enzymes are able to 

hydrolyse the β-1,4-glycosidic bond, only Cfbglu is a true cellobiase capable of hydrolysing 

cellobiose into glucose. To confirm these activities, 4-methylumbelliferyl β-D-

glucopyranoside (MUG) was used as a substrate; in the presence of β-glucosidases, the β-1,4 

bond present in MUG is cleaved liberating methylumberliferone which is fluorescent when 

excited at 366 nm. Figure 3.4A shows an LB agar plate containing 1.5 mM MUG, with 30 µl 

of cell lysate from an E. coli pSB1C3 vector control strain, E. coli Plac-cfbglu or E. coli Plac-
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nag3A added to wells within the plate. Figure 3.4B shows an identical plate spotted with 

10 µl of overnight culture of the previous strains. 

 

These results identify both enzymes as being able to hydrolyse the β-1,4 bond present in 

MUG, as fluorescence is observed for both Nag3A and Cfbglu. Notably, a larger zone of 

fluorescence is observed in Figure 3.4A where 30 µl of cell lysate is added due to free 

diffusion of the β-glucosidases which are both cytoplasmic proteins when expressed by C. 

fimi.  

 

Figure 3.4: Assaying for the activity of C. fimi ββββ-glucosidases expressed by recombinant E. coli. LB 

agar plates containing 1.5 mM 4-methylumbelliferyl β-D-glucopyranoside (MUG) are inoculated with 

E. coli MG1655 pSB1C3 vector control (i), Plac-cfbglu (ii) and Plac-nag3A (iii) strains. 30 µl cell lysate is 

added to wells within the plate (A), or 10 µl of overnight culture is spotted directly onto the agar 

surface (B). Fluorescence is observed when plates are illuminated at 366 nm. 

 

To compare β-glucosidase activity of Citrobacter freundii NCIMB11490 to that of the above 

strains, 10 µl of overnight culture was spotted onto a LB agar plate containing MUG. 

Fluorescence is observed for each strain except the negative vector control, as expected 

(Figure 3.5). As a purely qualitative assay, the results confirm β-glucosidase activity for E. 

coli MG1655 Plac-cfbglu and Plac-nag3A strains as well as Citrobacter freundii.  

 

Figure 3.5: Comparing relative ββββ-glucosidase activity of 

recombinant Cfbglu and Nag3A to that of Citrobacter 

freundii NCIMB11490.  An LB agar plate containing 1.5 mM 

4-methylumbelliferyl β-D-glucopyranoside (MUG) is 

inoculated with 10 µl of overnight culture of E. coli 

MG1655 pSB1C3 vector control, Plac-cfbglu, Plac-nag3A, and 

Citrobacter freundii NCIMB11490. Fluorescence is observed 

when the plate is illuminated at 366 nm. 
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3.3.2 Comparing growth of recombinant E. coli JM109 and MG1655 on cellobiose  

To effectively determine and confirm the activity of Cfbglu as a true cellobiase and Nag3A as 

a non-cellobiose active β-glucosidase, E. coli MG1655 and JM109 strains expressing either 

Cfbglu or Nag3A were grown in M9 medium containing 1% w/v cellobiose as a sole carbon 

source. In each instance the positive control included a strain harbouring the pSB1C3 vector 

grown in 1% w/v glucose medium, and the negative control included the same pSB1C3 

vector strain grown in 1% w/v cellobiose medium. Results are shown in Figure 3.6 below.  

 

Figure 3.6: Growth of recombinant E. coli MG1655 and JM109 strains on cellobiose. E. coli JM109 

(A) and MG1655 (B) strains expressing either Cfbglu or Nag3A β-glucosidases are used to inoculate 

M9 media containing 0.34 g/l thiamine and 1% w/v cellobiose as the sole carbon source to assay for 

growth. In each instance a negative vector control in 1% w/v cellobiose is used as well as a positive 

vector control in 1% w/v glucose. Note: OD600 results above 1 are considered unreliable as samples 

were not diluted before readings were recorded.  
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Figure 3.6A shows that E. coli JM109 expressing Cfbglu was able to utilize cellobiose as a 

source of carbon to achieve a comparable cell density to that of the positive control grown on 

1% w/v glucose, although evidently a longer lag phase exists when cellobiose is the sole 

carbon source.  Similar results can be seen for E. coli MG1655 expressing Cfbglu when 

grown on cellobiose, with the exception of a shorter lag phase. Results for the negative 

control and Plac-nag3A in both MG1655 and JM109 strains show no growth on cellobiose 

media, indicating that Nag3A is not a true cellobiase. These observations are interesting as 

although Nag3A gives positive β-glucosidase activity in the MUG assay, it is unable to 

support growth of a recombinant host on cellobiose. 

3.4 Assaying for activity of endoglucanases   

3.4.1 Confirming the activity of endoglucanases on amorphous cellulose 

A qualitative assay for confirming endoglucanase activity was performed for E. coli JM109 

strains expressing CenA, CenB, CenC or CenD (Figure 3.7). 10 µl spots of overnight culture 

of E. coli Plac-cenA, Plac-cenB, Plac-cenC and Plac-cenD were pipetted onto LB agar plates 

containing 0.2% carboxymethyl cellulose (CMC). These were induced with IPTG and 

incubated at 37oC overnight, following which plates were flooded with 5 ml of 500 µg/ml 

Congo Red solution and left to rest at 25oC for 45 mins. Excess dye was then removed and 

plates flooded with 5 ml of 1 M NaCl solution and left to rest for a further 45 mins to remove 

any unbound dye. Zones of clearing are evident around colonies positive for endoglucanase 

activity as the Congo Red dye does not bind to hydrolysed CMC around those colonies. See 

Chapter 2 of this thesis for full methods. 

 

Figure 3.7: Assaying for the activity of endoglucanases 

active on carboxymethyl cellulose using Congo Red dye. 

An LB agar plate containing 0.2% carboxymethyl cellulose 

(CMC) shows zones of clearing around colonies positive 

for endoglucanase activity when dyed with Congo Red 

dye. The figure shows 10 ml of overnight culture of five E. 

coli JM109 strains spotted onto LB CMC agar plates.  
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Figure 3.7 shows that the assay is a purely qualitative one, though does give some indication 

of which endoglucanases are more active on the amorphous form of cellulose, CMC. The 

largest zone of clearing generated is that of Plac-cenA, followed by that of Plac-cenB, Plac-cenC 

and Plac-cenD, each of which shows comparable zones of clearing. Notably a slight clearing 

is also seen for the negative vector control, though this is commonly observed as the presence 

of the bacterial lawn on the surface of the agar impedes the binding of Congo Red dye to 

CMC immediately beneath it.  

3.4.2 Endoglucanase activity on dyed carboxymethyl cellulose 

As a means of generating more quantitative data for the assay of endoglucanase activity on 

amorphous cellulose, the following colormetric assay measures the absorbance generated by 

dye liberated from a hydrolysed CMC substrate. CMC dyed with Remazol Brilliant Blue R 

dye is treated with cell lysates from one of the E. coli JM109 endoglucanase expressing 

strains; Plac-cenA, Plac-cenB, Plac-cenC or Plac-cenD. Over the course of 16 hours, samples 

were taken at regular intervals and a precipitating solution added to terminate the reaction. 

High-molecular weight material is removed by centrifugation and the absorbance of the 

supernatant was measured at 590 nm. Results are shown in Figure 3.8 below. 

 

Figure 3.8: Measuring endoglucanase activity on carboxymethyl cellulose dyed with Remazol 

Brilliant Blue R dye. Cell lysates from E. coli JM109 endoglucanase expressing strains are used to 

treat dyed carboxymethyl cellulose and measure endoglucanase activity as a function of absorbance 

generated by dye liberated from the cellulose substrate. Results show absorbance measured at 590 

nm of dye liberated from CMC treated with the vector control, CenA, CenB, CenC or CenD over the 

course of 16 h. Reactions are incubated at 37
o
C and performed in PBS solution at pH 7.4. 
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Results from Figure 3.8 show the relative activities of the endoglucanases on dyed CMC. In 

accordance with the published literature (Tomme et al. 1996), both CenA and CenC show the 

greatest activity against amorphous cellulose over the course of 80mins, with CenC liberating 

19 times more dye than CenB and 9 times more dye than CenD. However, over the course of 

16 h the extent of substrate hydrolysis is more or less comparable between the four 

endoglucanases as CenC shows only 1.4 times greater activity than CenB and 1.7 times 

greater activity than CenD. This observation is most likely due to the limited availability of 

dyed cellulose substrate present within the test samples, leading to a maximal absorbance 

observed as the substrate is hydrolysed and the dye liberated. In addition, although CenB and 

CenD show a preference for binding to crystalline cellulose, the cellulases are still able to 

hydrolyse amorphous regions given a long enough incubation period, although less 

effectively compared to CenA and CenC (Tomme et al. 1996). 

3.4.3 Amorphogenesis of cellulose paper by CenA 

An interesting feature of endoglucanase CenA not observed amongst the other 

endoglucanases of C. fimi, is the non-hydrolytic disruption of Ramie cellulose fibres by the 

CBD (Din et al. 1994). It is thought that this disruption of the fibre allows for enhanced 

activity of the cellulases by increasing substrate surface area and liberating low molecular 

weight cellulose chains weakly associated to the fibre. Currently, no evidence exists within 

the literature for this phenomenon occurring on other cellulosic substrates other than that of 

Ramie fibres. As such, I chose to assay CenA for non-hydrolytic disruption of pure cellulose 

paper. This particular substrate was chosen as its deconstruction can be easily observed 

during future growth assays of recombinant cellulase expressing hosts (see Chapter 5). 

 To observe non-hydrolytic disruption of cellulose paper by CenA, a single 10 mg cellulose 

paper square measuring 1 mm x 10 mm x 5 mm was added to 100 µl PBS solution with 

100 µl cell lysate from either E. coli JM109 Plac-cenA, Plac-cenB or pSB1C3 vector control 

strains. Samples were mixed by vortexing before incubation at 37oC for 48 h. Following this, 

cellulose paper squares were then washed three times in distilled water and dried at 65oC over 

16 h. Samples were coated with 4-6 nm gold by an EmScope sputter coater before subsequent 

visualization using a Hitachi 4700 II Cold Field-Emission Scanning Electron Microscope. 
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Figure 3.9: Scanning electron micrographs of observed amorphogenesis of cellulose paper by 

CenA. Scanning electron microscopy images of cellulose paper treated with cell lysates of E. coli 

JM109 vector control, Plac-cenB, or Plac-cenA strains taken at 1000x and 3000x magnification. 

 

SEM images of cellulose paper fibres treated with cell lysate from the vector control and Plac-

cenB strains show a smooth and relatively uniform surface at 1,000 times magnification, with 

little structural disruption (Fig. 3.9). That of fibres treated with cell lysate from Plac-cenA 

exhibit a crenulated surface which is rough and scaled. At 3,000 times magnification those 

differences are more pronounced with fibres treated with CenA showing pits and grooves as 

dark areas. This ‘shadowing effect’ is noted to occur when differences exist in the depth of 

field between two points on the surface coated with the gold conductive film, a consequence 

of the disrupted cellulose fibre surface generated by CenA activity. 
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3.5 Assaying for activity of exoglucanases  

3.5.1 Qualitative assays for exoglucanase activity 

The ability of exoglucanases to cleave terminal β-1,4-glycosidic bonds and liberate cellobiose 

can be assayed using the substrate 4-methylumbelliferyl β-D-cellobioside (MUC).  Like the 

MUG assay previously described (see 3.3.1 above), the β-1,4 bond between 4-

methylumbelliferyl and cellobioside can be hydrolysed to release methylumberlliferone, 

which will generate fluorescence under 366 nm light. Figure 3.10A below shows an LB agar 

plate containing 1.5 mM MUC, with 30 µl of cell lysate from an E. coli negative control, E. 

coli Plac-cex, E. coli Plac-cbhA or E. coli Plac-cbhB added to wells within the plate. Figure 

3.10B shows an identical plate spotted with 10 µl of overnight culture of the same strains. 

 

Figure 3.10: Activity of recombinant C. fimi exoglucanases on methylumbelliferyl cellobioside. LB 

agar plates containing 1.5 mM 4-methylumbelliferyl β-D-cellobioside (MUC) were inoculated with E. 

coli MG1655 pSB1C3 vector control (i), Plac-cex (ii), Plac-cbhA (iii), and Plac-cbhB(iv) strains. 30 µl cell 

lysate was added to wells within the plate (A) or 10 µl of overnight culture was spotted directly onto 

the agar surface (B). Fluorescence was observed when plates were illuminated at 366 nm. 

 

Results from the MUC assay clearly show that both cell lysate and cultures of Plac-cex show 

positive exoglucanase activity, due to fluorescence observed in each instance. Surprisingly, 

neither CbhA nor CbhB showed any fluorescence under the same conditions. There is no 

evidence within the published literature which describes either CbhA or CbhB having activity 

against MUC, as the activity of these cellulases has in the past been routinely measured as a 

function of reducing sugar liberated from cellulose (Gilkes et al. 1997). Attempts were made 

to replicate methods for measuring reducing sugars described by Gilkes et al. though results 

were not significant and showed no activity for even the positive control Cex (data not 

shown). The reason for this failure is not known, though a possibility is that a higher purity of 

cellulase enzyme is needed to generate significant levels of reducing sugar for detection. 
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3.5.2 Exoglucanase activity against O-Nitrophenyl cellobioside 

In order to confirm the activities of both CbhA and CbhB, O-Nitrophenyl cellobioside was 

chosen as a substrate. The β-1,4-glycosidic bond when cleaved will release O-nitrophenol 

which produces a vibrant yellow colour quantifiable at 420 nm. Cell lysates of E. coli JM109 

strains Plac-cex, Plac-cbhA, Plac-cbhB or pSB1C3 vector control were added to 25 mM ONP-

cellobioside solution in PBS buffer with a pH of 7.4. Reaction mixes were vortexed and 

incubated at 37oC. Samples were taken after 3 h and 24 h, with 1 M sodium carbonate 

solution added to terminate the reaction before absorbance was immediately measured at 420 

nm. Measurements showing an initial absorbance of greater than 1unit were diluted 10-fold 

and measured again, then multiplied by 10 to improve technical accuracy. Results are shown 

in Figure 3.11 below. 

 

Figure 3.11: Activity of recombinant C. fimi exoglucanases on O-Nitrophenyl cellobioside. 100 µl of 

cell lysate from E. coli JM109 strains Plac-cex, Plac-cbhA, Plac-cbhB or pSB1C3 vector control are added 

to 100 µl 25 mM O-Nitrophenyl cellobioside in PBS solution in a final volume of 500 µl. Reaction 

mixtures are incubated at 37
o
C over 24 h. The reaction was terminated by addition of 500 µl 1 M 

sodium carbonate. Absorbance measured at 420 nm is proportional to the extent of O-Nitrophenyl 

cellobioside cleaved by exoglucanase active enzymes.  

 

Consistent with results observed from the previous MUC assay, neither CbhA nor CbhB 

show any appreciable exoglucanase activity compared to the vector control. However that of 

Cex shows an absorbance greater than ~6-fold that of CbhA and CbhB after 24 h. Although 

these results show that both CbhA and CbhB lack exoglucanase activity, growth assays of 

recombinant hosts expressing both CbhA and CbhB suggest that the presence of these genes 

contribute towards the utilization of cellulose paper (see Chapter 5). The significance of these 
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observed negative results for measuring exoglucanase activity of CbhA and CbhB on MUC 

and ONP-cellobioside highlight the difficulties in characterization of the cellulases, and how 

the choice of substrate and reaction conditions can greatly affect experimental outcomes. 

3.6 Assaying for activity of mannanases and xylanases 

3.6.1 Exo-mannosidase activity against ONP-mannopyranoside 

Using the same protocol as that of the ONP-cellobioside assay, exo-mannosidase activity can 

be determined using O-Nitrophenyl mannopyranoside. Reaction mixes containing 100 µl cell 

lysate of E. coli JM109 Plac-man2A, Plac-man26A or pSB1C3 vector control strains were 

added to 25 mM ONP-mannopyranoside solution in PBS buffer. Absorbance was measured 

at 420 nm after 3 h and 24 h incubation at 37oC.  Results are shown in Figure 3.12 below.  

 

Figure 3.12: Activity of recombinant C. fimi mannanases on O-Nitrophenyl mannopyranoside. 

100 µl of cell lysate from E. coli JM109 strains Plac-man2A, Plac-man26A or pSB1C3 vector control are 

added to 100 µl 25 mM O-Nitrophenyl mannopyranoside in PBS in a final volume of 500 µl. Reaction 

mixtures are incubated at 37
o
C for 24 h. The reaction is terminated upon addition of 500 µl 1 M 

sodium carbonate. Absorbance measured at 420 nm is proportional to the extent of O-Nitrophenyl 

mannopyranoside cleaved by exo-mannosidase active enzymes.  

 

Figure 3.12 shows recombinant Man2A to be an active exo-mannosidase, results which are 

consistent with the literature (Stoll, Stålbrand, and Warren 1999). Man26A though classed as 

an endo-mannanase also shows some exo-mannosidase activity as absorbance after 24 h is 

~1.5 times that of the vector control.  

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Man2A Man26A vector control

A
b

so
rb

a
n

ce
 (

4
2

0
n

m
)

Exo-mannosidase activity on ONP-mannopyranoside

3hrs

24hrs



75 

 

3.6.2 Exo-xylosidase activity against ONP-xylopyranoside 

To assay for exo-xylosidase activity, O-Nitrophenyl xylopyranoside was used as a substrate. 

Following the O-Nitrophenyl protocol, lysates of the E. coli JM109 strains Plac-cex, Plac-xynD, 

Plac-bxyF, Plac-xynF and pSB1C3 vector control were added to ONP-xylopyranoside. 

Absorbance was measured at 420 nm after 3 h and 24 h incubation at 37oC. Measurements 

showing an initial absorbance of greater than 1 were diluted 10-fold and measured again, then 

multiplied by 10 to improve technical accuracy.  Results are shown in Figure 3.13 below.  

 

Figure 3.13: Activity of recombinant C. fimi xylanases on O-Nitrophenyl xylopyranoside. 100 µl of 

cell lysate from E. coli JM109 strains Plac-cex, Plac-xynD, Plac-bxyF, Plac-xynF or pSB1C3 vector control 

were added to 100 µl 25 mM O-Nitrophenyl xylopyranoside in PBS solution in a final volume of 500 

µl. Reaction mixes were incubated at 37
o
C for 24 h. The reaction was terminated by addition of 500 

µl 1 M sodium carbonate. Absorbance measured at 420 nm is proportional to the extent of O-

Nitrophenyl xylopyranoside cleaved by exo-xylosidase active enzymes.  

 

Of the four xylanases assayed here, only Cex and XynD have been documented within the 

literature and both are described as endo-xylanases. BxyF and XynF xylanases are previously 

uncharacterized C. fimi glycanases (cloned by Steven Kane, a fellow lab member, and 

included here with permission). Results in Figure 3.13 show all four xylanases to have exo-

xylosidase activity after 24 h, the greatest activity being that of BxyF with an absorbance of 

greater than 4 units. It is noteworthy that xynD shows an absorbance comparable to that of 

the vector control after 3 hours incubation, though this increases 3 fold over the course of 24 

hours. Compared to that of BxyF which reaches a near maximal absorbance of ~3.75 units 

after 3 hours, it may be likely that BxyF is a true exo-xylosidase whilst XynD only shows 

slight exo- activity. These results highlight the somewhat promiscuous nature of the xylanase 
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enzymes which are known to display an indiscriminate activity against a range of β-1,4-

substrates given a sufficient incubation period (Biely and Puchart 2006). 

3.7 Overexpression of recombinant C. fimi cellulases  

According to Fu et al. (2005) overexpression of Cex in E. coli has a toxic effect upon the 

host, leading to cell death. Expression of Cex under a weaker promoter was later shown to 

improve cell viability and relieve this toxicity (Fu et al. 2006). Observations such as these are 

of great value when considering the rational design of a non-native cellulolytic host, though 

unfortunately such data is currently lacking within the literature surrounding the C. fimi 

cellulases. As such, those cellulase encoding genes of interest to the current study were 

cloned in the expression vector pT7-7 and placed under the control of a bacteriophage T7 

promoter which is recognized by a highly active T7 RNA polymerase encoded on a second 

plasmid with expression induced in the presence of IPTG (Tabor 2001). Transformed E. coli 

BL21(DE3) strains were cultured in LB with selective antibiotics and cellulase expression 

induced after 1 hour by addition of IPTG. Optical density was measured over the course of 6 

hours, the results of which are shown in Figure 3.14 below. 

Our results confirm the work published by Fu et al., showing that overexpression of Cex 

reduces cell viability. Moreover a similar trend is seen in that of the strain expressing 

endoglucanase CenB, though a sharper decline in cell density is seen between 2 and 4 hours, 

with recovery after 4 hours. Strains expressing the remaining C. fimi cellulases show growth 

broadly similar to that of the vector control strain, with the exception of CenC and CenD 

which reach stationary phase at 4 hours with an OD of ~1.2. These results suggest that a toxic 

effect is not observed from overexpression of these cellulases. A possible reason for this is 

that the genomes of C. fimi and E. coli BL21(DE3) have a very dissimilar GC content; 74.7% 

compared to 50.8%. Consequently, these bacteria have drastically different codon usage 

profiles and the expression of recombinant C. fimi cellulases by E. coli will be limited by the 

presence of rare tRNAs such as CGG and CCC of which E. coli only exhibits a small pool of 

compared to C. fimi. Ultimately it may be that overexpression of recombinant cellulases in E. 

coli is limited at a transcriptional level, reducing the levels of mature protein present and 

reducing any potential toxic effects observed by those cellulases. 
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Figure 3.14: Growth curves of E. coli BL21(DE3) strains overexpressing recombinant C. fimi 

cellulases under the T7 promoter. E. coli BL21(DE3) strains expressing C. fimi cellulases under 

transcriptional control of the highly active bacteriophage T7 RNA polymerase. Cultures were grown 

in LB media containing 100 µg/ml ampicillin and 40 µg/ml chloramphenicol. Expression is induced by 

the addition of 90 µg/ml IPTG at 1 hour, and absorbance measured at 600 nm over 6 hours. Note: 

OD600 results above 1 are considered unreliable as samples were not diluted before readings were 

recorded.  

 

3.8 Design and construction of composite parts 

Previous work in characterization of expression hosts and cellulase encoding BioBrick parts 

was used to inform the design and assembly of parts into composite devices. These constructs 

were designed with the intention of encoding defined activities against a target substrate such 

as cellulose, mannan or xylan. Here we discuss the rationale in their design and construction 

with specific emphasis on the intended expression host. 

Constructs described here are illustrated according to the Synthetic Biology Open Language 

(SBOL) visual standard version 1.0 (www.sbolstandard.org). The purpose of this graphical 

annotation is to standardise the format in which parts and devices are described, and to 

facilitate their design in silico. Figure 3.15 below illustrates the legend used for representing 

the various parts used within this study according the SBOL standard. Parts described include 

protein coding sequences, ribosome binding sites, promoter sequences and BioBrick prefixes 

and suffixes.   
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Figure 3.15: Synthetic Biology Open Language (SBOL) version 1.0 graphical annotations used in 

describing the components of BioBrick constructs assembled. The legend illustrates the BioBrick 

prefix and suffix, as well as the mixed scar site generated from the ligation of cut XbaI and SpeI 

restriction sites. Transcriptional and translational control elements depicted here include promoters 

and ribosome binding sites. Protein coding sequences relevant to this study are colour coded 

according to the encoded enzymatic activity. Each part used is represented according to the 

Synthetic Biology Open Language visual standard version 1.0 (www.sbolstandard.org).  

 

3.8.1 Assembly of cellulase encoding constructs for Citrobacter freundii 

As noted within the literature, the endoglucanases of C. fimi show variable preferences in the 

binding of and activity against different forms of cellulose (Tomme et al. 1996; Koivula et al. 

2000). Consequently, constructs were designed to encode a single endoglucanase which is 

expressed in concert with one or more exoglucanases. This was intended to confirm whether 

or not recombinant hosts transformed with a single construct and expressing a single 

endoglucanase will show enhanced growth on a particular cellulose substrate. Moreover, co-

cultures of multiple strains each expressing a single endoglucanase can easily be performed 

so as to study any synergistic effects between these various strains due to complementarities 

between the endoglucanases present. 

Figure 3.16 below illustrates the design of two construct formats encoding cellulase activity 

intended for expression by Citrobacter freundii. The first format encodes a single 

endoglucanase (CenA, CenB or CenD) and the exoglucanase Cex, with expression under the 

control of a single inducible Plac promoter. Unfortunately the assembly of a construct 

encoding both CenC and Cex was not achieved for reasons unknown, perhaps a toxic 

phenotype when the two cellulases are expressed in tandem. The second format illustrated in 

Figure 3.16 is the same as the first, with the addition of CbhA and CbhB expression under the 

control of the IPTG inducible Pspac promoter. This format was designed so as to determine 

whether or not the two cellobiohydrolases contributed towards deconstruction of cellulose as 
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activity assays discussed previously were uninformative.  In total, six constructs encoding 

cellulase activity for expression in C. freundii were assembled.  

A notable advantage of assembling all parts according to a standardized assembly method 

such as that of BioBricks, is that any devices composed of multiple parts can be easily 

transferred to a range of expression vectors without the need to modify the original construct. 

As such, constructs were placed in both high-copy and low-copy plasmid vectors (pSB1K3 

and pSB4K5 respectively), as a means to vary enzymatic expression and metabolic load upon 

the expression host. Results are discussed further in Chapters 4 and 5. 

 

 

Figure 3.16: Cellulase encoding constructs assembled for expression in Citrobacter freundii 

described according to the Synthetic Biology Open Language v.1.0. Constructs described as 

[endoglucanase]-cex are those which endcode the expression of a single endoglucanase (CenA, CenB 

or CenD) as well as the exoglucanase Cex under the control of the IPTG inducible Plac promoter 

within a single mRNA transcript. Constructs described as [endoglucanase]-cex-cbhA-cbhB are those 

which encode the expression of a single endoglucanase (CenA, CenB or CenD) and the exoglucanase 

Cex under the control of Plac, as well as the expression of the cellobiohydrolases CbhA and CbhB 

under the control of the IPTG inducible Pspac promoter. Parts are listed according to their BioBrick 

Foundation Parts Registry part number where applicable (www.partsregistry.org).  
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Successful assembly of composite devices and host cell transformation was determined by: 

(i) PCR cloning, (ii) restriction digest analysis of plasmid DNA (see Appendix) (iii) as well 

as activity assays for the encoded enzymes. Figure 3.17 below shows results for Congo Red 

endoglucanase assays for the [endoglucanase]-cex constructs (Fig. 3.17A) and the 

[endoglucanase]-cex-cbhA-cbhB constructs (Fig. 3.17B). Results confirm the activities of 

each endoglucanase encoded by the respective construct. Interestingly, varying expression of 

cenA-cex-cbhA-cbhB in either low or high copy vectors does not appear to have an 

appreciable effect on endoglucanase activity measured in this assay (Fig. 3.17B). Further 

study of low and high-copy expression of this construct is presented in Chapters 4 and 5. 

 

(A)  (B)  

Figure 3.17: Congo Red endoglucanase activity assays confirming the activity of cellulase 

constructs assembled for expression in Citrobacter freundii. [endoglucanase]-cex constructs 

encoding CenA, CenB or CenD show endoglucanase activity on CMC agar plates (A). 

[endoglucanase]-cex-cbhA-cbhB constructs encoding CenA, CenB or CenD show endoglucanase 

activity on CMC agar plates (B). Results for cenA-cex-cbhA-cbhB expression in both low copy and 

high copy vectors are shown (B). 

 

3.8.2 Assembly of cellulase encoding constructs for Escherichia coli 

Following the same design principles as that of the constructs assembled for expression in C. 

freundii, cellulase encoding constructs assembled for E. coli expression also included a single 

endoglucanase encoding gene part. Figure 3.18 illustrates three formats of construct design 

for cellulase expression in E. coli.  
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Figure 3.18: Cellulase encoding constructs assembled for expression in Escherichia coli described 

according to the Synthetic Biology Open Language v.1.0. Constructs described as cfbglu-

[endoglucanase] are those which encode the expression of the β-glucosidase Cfbglu and a single 

endoglucanase (CenA, CenB, CenC or CenD) under the control of the IPTG inducible Plac promoter 

within a single mRNA transcript. Constructs described as cfbglu-[endoglucanase]-cbhA-cbhB are 

those which encode the expression of the β-glucosidase Cfbglu and a single endoglucanase (CenA, 

CenB, CenC or CenD) under the control of Plac, as well as the expression of the cellobiohydrolases 

CbhA and CbhB under the control of the IPTG inducible Pspac promoter. Parts are listed according to 

their BioBrick Foundation Parts Registry part number where applicable (www.partsregistry.org).  
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The first format is cfbglu-[endoglucanase] where the β-glucosidase Cfbglu is expressed in 

addition to one of the endoglucanases; CenA, CenB, CenC or CenD. This format was 

designed to investigate whether or not the expression of a single β-glucosidase and 

endoglucanase was sufficient to support growth on cellulose, since literature surrounding the 

C. fimi endoglucanases describes the liberation of glucose and cellobiose from cellulosic 

substrates treated with CenA, CenB, CenC or CenD (Tomme et al. 1996). The second format 

is that of cfbglu-[endoglucanase]-cbhA-cbhB which includes in addition to the above, the 

expression of the two cellobiohydrolases CbhA and CbhB. The third format is that of cfbglu-

cenA-cex, designed for the purpose of determining whether multiple exoglucanases are 

required to support growth of recombinant E.coli on cellulose.   

In total, nine constructs encoding cellulase activity were assembled for expression in E. coli. 

Successful assembly of composite devices and host cell transformation was determined by: 

(i) PCR cloning, (ii) restriction digest analysis of plasmid DNA (see Appendix) (iii) as well 

as activity assays for the encoded enzymes. Figure 3.19 below shows results for Congo Red 

endoglucanase assays of strains transformed with the cfbglu-[endoglucanase]-cbhA-cbhB 

constructs (Fig. 3.19A). Results confirm the activities of each endoglucanase encoded by the 

respective construct. Figure 3.19B shows strains that are transformed with cfbglu-

[endoglucanase]-cbhA-cbhB are positive for β-glucosidase activity. C. freundii is used as a 

positive control for β-glucosidase activity. 

(A)  (B)  

Figure 3.19: Congo Red endoglucanase activity assays and MUG ββββ-glucosidase activity assays 

confirming the activity of cellulase constructs assembled for expression in Escherichia coli. cfbglu- 

[endoglucanase]-cbhA-cbhB constructs encoding CenA, CenB, CenC or CenD show endoglucanase 

activity on CMC agar plates, as well as cfbglu-cenA-cex showing endoglucanase activity (A). Strains 

transformed with cfbglu-[endoglucanase]-cbhA-cbhB constructs spotted onto MUC plates show 

positive β-glucosidase activity compared to a C. freundii positive control (B).  
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3.8.3 Assembly of xylanase and mannanase encoding constructs 

For the utilization and deconstruction of xylan, three constructs were assembled; cex-xynD, 

bxyF-cex, and xynF-xynD. These are illustrated in Figure 3.20. Each construct encodes two 

xylanases from C. fimi, with expression under the control of the IPTG inducible Plac 

promoter. Each construct is suitable for expression in either E. coli or C. freundii. In addition 

co-cultures of strains each expressing one of the xylanase constructs can be performed as 

each construct is placed in the pSB1C3 vector encoding chloramphenicol resistance. 

Successful assembly of composite devices and host cell transformation was determined by 

PCR cloning and restriction digest analysis of plasmid DNA (see Appendix). 

 

 

Figure 3.20: Xylanase encoding constructs assembled for expression in Escherichia coli and 

Citrobacter freundii described according to the Synthetic Biology Open Language v.1.0. Constructs 

described here include; cex-xynD encoding the endo-xylanases Cex and XynD, bxyF-cex encoding the 

exoxylanase BxyF and endoxylanase Cex, xynF-xynD encoding the xylanase XynF and endoxylanase 

XynD. Expression of each construct is under the control of Plac. Parts are listed according to their 

BioBrick Foundation Parts Registry part number where applicable (www.partsregistry.org).  
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BioBrick parts encoding mannanases for the deconstruction and utilization of mannan were 

assembled onto a single construct; man2A-man26A. This is illustrated in Figure 3.21. 

Expression of Man2A and Man26A was put under the control of the Plac promoter. According 

to the literature, complete hydrolysis of mannan is achievable in the presence of both Man2A 

and Man26A (Stoll, Stålbrand, and Warren 2001). The construct described is suitable for 

expression in either E. coli or C. freundii as both species are able to utilize mannose sugars 

liberated from mannan (Holt and Bergey 2000). Successful assembly of composite devices 

and host cell transformation was determined by PCR cloning and restriction digest analysis of 

plasmid DNA (see Appendix). 

 

 

Figure 3.21: Mannanase encoding construct assembled for expression in Escherichia coli and 

Citrobacter freundii described according to the Synthetic Biology Open Language v.1.0. The 

construct described encodes the exo-mannosidase Man2A and the endo-mannanase Man26A under 

the control of the IPTG inducible Plac promoter. Parts are listed according to their BioBrick 

Foundation Parts Registry part number where applicable (www.partsregistry.org).  

 

3.9 Discussion 

The intention of the characterization assays and results described within this chapter was to 

inform the design and assembly of multiple constructs with defined activities against the 

major polysaccharides present in plant biomass; cellulose, mannan and xylan. The resultant 

composite devices were purposely designed for expression within suitable expression hosts; 

in this case those hosts being E. coli and Citrobacter freundii. Hosts were chosen on the basis 

of the following criteria; (i) ability to utilize glucose, mannose and xylose liberated from 

plant biomass, (ii) sufficient secretion of extra-cellular proteins, (iii) ease of genetic 

manipulation and cultivation within a laboratory environment.  
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Though E. coli is not well suited to the expression of extracellular proteins, there is evidence 

within the literature for the non-specific leakage of C. fimi cellulases from the periplasm and 

into the culture medium (Guo et al. 1988). Having confirmed such observations, we decided 

to perform all cloning and assembly of BioBrick parts encoding C. fimi cellulases in E. coli 

with the intention of transferring expression to a more suitable host. As demonstrated within 

this chapter, the constructs developed in E. coli were repurposed for expression in C. freundii, 

since both bacteria share transcriptional and translational elements. C. freundii exhibiting a 

type II secretion system offers itself as a suitable host for expression of extracellular endo- 

and exoglucanases. Moreover, cellobiose liberated by the concerted action of endo- and 

exoglucanases can be internalised by C. freundii and hydrolysed to glucose by a native β-

glucosidase. In addition, results presented within this chapter highlight an interesting aspect 

to the use of C. freundii in that the bacterium is able to tolerate saline media. Growth is 

almost entirely unaffected in the presence of 0.6 M sodium chloride, opening up avenues in 

the use of sea water in large scale bioprocessing projects.  

One of the major goals in the field of Synthetic Biology is the development of standardized 

genetic parts and the assembly of these into devices with predictable properties. With this in 

mind, work presented here on the characterization and testing of parts active on cellulosic 

substrates highlights several of the challenges inherent to standardizing methodologies in 

measuring glycanase activity. Most notably, the β-glucosidase Nag3A is shown to give 

positive results when activity is measured on the substrate 4-methylumbelliferyl-β-1,4-D-

glucopyranoside, though expression by a recombinant host is insufficient for growth on 

cellobiose. In addition, reaction conditions are shown to affect the observed activity of 

glycanases being assayed. This is exemplified in the case of the endo-xylanases Cex and 

XynD which show strong exo-xylosidase activity after an extended incubation with the 

substrate of 24 h. These results illustrate the need to standardize methods and experimental 

conditions when measuring glycanase activities within such metabolic engineering projects, 

and emphasize the importance of detailed parts characterization in order for the design of 

predictable genetic devices. 
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Chapter 4 

  

Utilization of defined cellulosic and 

hemicellulosic substrates 
 

Summary 
 

To assay for the cellulolytic capacity encoded by the assembled constructs described in 

Chapter 3, expression host strains E. coli MG1655, C. freundii NCIMB11490 and SBS197 

were transformed and assayed for growth on defined cellulosic and hemicellulosic substrates, 

including; mannan from Saccharomyces cerevisiae, beechwood xylan, carboxymethyl 

cellulose and avicel. To accommodate parallel screening and the reliable assay of cell growth 

on these substrates, cell density was measured as a function of protein content using the 

Coomassie protein assay reagent. This method was chosen as it is more suitable for high 

throughput studies compared to performing colony counts. Preliminary trial experiments 

using the reagent are performed on C. fimi, E. coli and C. freundii strains so as to 

troubleshoot potential problems, and in addition establish benchmark results for C. fimi 

grown on various carbon sources with which to compare results of our recombinant strains. 

E. coli transformed with the mannanase encoding construct was shown to utilize mannan as a 

carbon source in M9 minimal medium; however C. freundii NCIMB11490 exhibiting the 

same construct was not able to utilize mannan. Xylan utilization assays identified E. coli 

transformed with either xylanase construct was able to utilize the substrate, this was echoed 

for C. freundii NCIMB11490 strains except in the case of xynF-xynD which did not show 

appreciable growth. Of the recombinant cellulase expressing E. coli strains grown on CMC, 

those expressing CenA best utilized the substrate. Moreover expression of the 

cellobiohydrolases CbhA and CbhB contributed significantly towards utilization of the 

substrate. A synergistic cooperation between strains expressing endoglucanases CenB and 

CenD was observed on CMC. Assays performed for C. freundii cellulase strains showed that 

NCIMB11490 strains were not able to utilize CMC, whilst SBS197 strains were able. C. 

freundii SBS197 cellulase strains were shown to utilize crystalline avicel as a carbon source. 

It was noted from these results that the expression of the cellobiohydrolases CbhA and CbhB 

did not significantly contribute towards utilization of the substrate when expressed by C. 

freundii. 
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4.1 Introduction 
 

The constructs described in Chapter 3 encoding enzymes for the hydrolysis of mannan, 

cellulose and xylan were introduced into the expression hosts E. coli MG1655, Citrobacter 

freundii NCIMB11490 and SBS197. Minpreps to isolate plasmid DNA encoding the 

recombinant cellulases from the relevant strains were performed. Subsequent restriction 

digest analysis to confirm the presence and size of those assemblies were conducted (see 

Appendix Figures A-C). Presented within this chapter are the results for growth assays of the 

various recombinant strains on defined substrates; namely mannan from Saccharomyces 

cerevisiae, beechwood xylan, carboxymethyl cellulose (CMC) and avicel.  

4.2 Coomassie protein assay  
 

To systematically and accurately assay for growth of multiple recombinant hosts and strains 

across a range of cellulosic substrates, a reproducible high throughput assay method was 

required. Notably, the measurement of cell density as a function of culture absorbance would 

not be a practical solution in this instance, as the insoluble nature of some of the cellulosic 

substrates results in cultures having a high particulate content, thus skewing absorbance 

measurements. With these considerations in mind, we chose to measure cell growth as a 

function of protein content within the culture by means of a Coomassie protein reagent assay.  

The protein reagent assay is based on the binding of proteins to the coomassie dye which 

results in a spectral shift from a reddish/brown colour (maximum absorbance at 465 nm) to 

the blue form of the dye (maximum absorbance at 610 nm). The difference between the two 

forms of the dye is greatest at 595 nm, and is thus the optimal wavelength for measurement of 

the blue colour generated by the coomassie dye/protein complex. The coomassie dye is 

known to be unaffected by the presence of free amino acids, peptides and low molecular 

weight proteins. Importantly, the assay measures for total protein content and so the results of 

samples taken from cultures will include the presence of metabolically active cells as well as 

inactive dead cells (Bradford 1976). 

4.2.1 Preliminary assays and benchmarks for C. fimi growth on various carbon sources 

As a preliminary test to determine the efficacy of the Coomassie protein assay, M9 minimal 

media containing various cellulosic carbon sources were set up and inoculated with 

Cellulomonas fimi to measure cell growth. Carbon sources present in those cultures included 
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one of the following; avicel, CMC, cellulose paper, cellulose paper in 0.6 M NaCl media, or 

xylan. Cultures were incubated at 30oC on a rotary shaker at 200 rpm. 100ul samples were 

taken every 24 hours and assayed for protein content (see Chapter 2 for full methods). 

Absorbance at 595 nm was measured and the results are shown in Figure 4.1.  

 
Figure 4.1: Growth of Cellulomonas fimi on various carbon sources measured as a function of 

Coomassie dye absorbance at 595 nm. To test for the efficacy of the Coomassie protein assay, 

cultures of C. fimi were grown in 5 ml M9 medium containg 0.34 g/l thiamine and a single carbon 

source; 50 mg avicel, 50 mg carboxymethyl cellulose, 125 mg cellulose paper, 125 mg cellulose paper 

in saline medium, or 50 mg beechwood xylan. 100 µl samples were taken every 24hrs over the 

course of 8 days and absorbance of the Coomassie dye measured at 595 nm to assay protein 

content. Note: Ab595 results above 1 are considered unreliable as samples were not diluted before 

readings were recorded. 

 

Figure 4.1 shows that C. fimi is able to utilize cellulose paper, xylan, avicel and CMC. 

Notably, C. fimi is unable to tolerate 0.6 M NaCl medium as no appreciable growth is 

observed on cellulose paper in saline conditions. Highest growth is achieved on cellulose 

paper which is a mix of both amorphous and crystalline cellulose. Growth on xylan is also 

considerable since this substrate does not exhibit a crystalline form like that of avicel and as 

such is easier to degrade. Strikingly though growth on avicel is higher than that of CMC. This 

observation may be explained as CMC is a methylated form of cellulose, with every 1 in 10 

glucopyranoside residues being methylated and so unusable by C. fimi.  

The purpose of this preliminary assay was not only to establish a benchmark for the activities 

of C. fimi against these substrates for comparison to our recombinant hosts, but also as a 

means of troubleshooting potential problems within the assay protocol. One such challenge 
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was measuring data for cultures grown on avicel and xylan. As these substrates contain a high 

particulate content, absorbance readings were inconsistent and highly variable in some cases. 

In an attempt to address this issue, absorbance was measured at 530 nm and deducted from 

that measured at 595 nm so as to eliminate absorbance generated from turbidity.  

4.2.2 Comparing Coomassie assay results across bacterial species 

 

To determine how suitable the Coomassie assay is for measuring and comparing protein 

content across different bacterial species, cultures of C. freundii NCIMB11490, E. coli 

MG1655 and C. fimi were conducted in M9 medium with 1% w/v glucose and grown to 

stationary phase. Samples were taken and serial dilutions made in fresh media. The culture 

optical density at 600 nm was measured versus the absorbance of those same samples treated 

with the Coomassie reagent at 595 nm. Results are shown in Figure 4.2 below. 

 

 
Figure 4.2: Coomassie dye absorbance at 595 nm measured versus cell culture optical density at 

600 nm across the three species C. freundii, E. coli and C. fimi. Cultures of C. freundii, E. coli and C. 

fimi were grown to stationary phase in LB. Serial dilutions were made and their OD measured at 600 

nm. Protein content was measured using the Coomassie protein assay and results recorded as 

absorbance at 595 nm. Plotted against one another results show the differential relationships of 

protein content versus cell density across the three species. Note: OD600 results above 1 are 

considered unreliable as samples were not diluted before readings were recorded. 

 

Figure 4.2 shows that although two bacterial cultures exhibit the same OD600, each may give 

significantly different results for the protein content measured by the Coomassie assay. E. 

coli MG1655 and C. fimi show a very similar trend when culture absorbance is measured 

versus Coomassie dye absorbance, indicating those cultures of both species share a similar 
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protein content at any given cell density. Conversely, Citrobacter freundii will show 

significantly higher protein content at any given cell density. Results described here could be 

interpreted in a number of ways. One such interpretation is that protein content of each 

species can vary greatly and so sensitivity of the Coomassie dye to any given protein mix can 

vary too, giving higher or lower values for protein assayed.  

The relevance and importance of these findings to the present chapter is that it would be 

unfair to compare results for Coomassie dye absorbance across the different bacterial species, 

as the values generated do not necessarily correlate to cell density in a linear fashion. As 

such, throughout this chapter we will discuss results for Coomassie dye absorbance according 

to one bacterial species at a time and not compare across species. 

4.3 Utilization of mannan 
 

Expression hosts E. coli MG1655 and C. freundii NCIMB11490 transformed with man2A-

man26A in pSB1K3 were assayed for their ability to utilize 0.5% w/v mannan from 

Saccharomyces cerevisiae. M9 medium containing 0.5% w/v mannan and 0.1% w/v yeast 

extact was inoculated with cell pellets from overnight cultures of the two strains resuspended 

in M9 minimal media so that the initial OD600 of the culture was 0.1 at time 0. Cultures were 

incubated at 37oC on a rotary shaker at 200 rpm. Over the course of 11 days 100ul samples 

were taken at 24 hr intervals and protein content measured by the Coomassie protein assay. 

All cultures were performed in duplicate. Results are shown in Figure 4.3 below. 

It can be seen that the difference in observed protein content between the E. coli MG1655 

vector control and man2A-man26A strains is very similar over the first 4 days (Fig. 4.3A), 

after which, man2A-man26A shows a higher protein content that is steadily maintained over 

the remainder of the assay. Results for C. freundii NCIMB11490 man2A-man26A are 

however less encouraging as protein content is almost identical to that as the vector control 

strain, indicating that mannan is not being utilized as an additional carbon source (Fig. 4.3B). 

To confirm that C. freundii is able to utilize mannose, future growth assays should be 

conducted using this as the sole carbon source. 
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Figure 4.3: Coomassie dye absorbance measured for E. coli MG1655 and C. freundii NCIMB man2A-

man26A strains grown in M9 media containing 0.5% mannan.  Results show cell growth measured 

as a function of protein content of E. coli MG1655 man2A-man26A (A) and C. freundii NCIMB 

man2A-man26A (B) strains in M9 minimal media containing 0.5% manan, 0.34 g/l thiamine and 0.1% 

w/v yeast extract. Controls in each instance are the respective expression hosts transformed with 

the pSB1K3 vector. 

 

 

4.4 Utilization of beechwood xylan 
 

To assay for the ability to utilize xylan of expression hosts transformed with constructs 

encoding xylanase activity, cultures were set up in M9 medium containing 1% w/v xylan, 

supplemented with 0.1% w/v yeast extract. Following the same methodologies as previously 

described, media was inoculated with a cell pellet from overnight strains spun down and 

resuspended in minimal media to achieve a final OD600 of 0.1 at time 0 of the growth assay. 

Cultures were incubated at 37oC on a rotary shaker at 200 rpm. Over the course of 8 days 

100 µl samples were taken at 24 hour intervals and protein content measured by the 
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Coomassie protein assay. All cultures were performed in duplicate. Results are shown in 

Figure 4.4. 

  
Figure 4.4: Coomassie dye absorbance measured for E. coli MG1655 and C. freundii NCIMB strains 

transformed with the xylanase constructs cex-xynD, xynF-xynD or bxyF-cex grown in M9 media 

containing 1% xylan. Results show cell growth measured as a function of protein content of E. coli 

MG1655 xylanase strains (A) and C. freundii NCIMB xylanase strains (B) grown in M9 minimal media 

containing 1% w/v xylan, 0.34 g/l thiamine and 0.1% w/v yeast extract. Controls in each instance are 

the respective expression hosts transformed with the pSB1C3 vector. Note: Ab595 results above 1 are 

considered unreliable as samples were not diluted before readings were recorded. 

 

E. coli MG1655 xynF-xynD shows the highest rate in the increase of protein content over the 

course of the assay, though the highest total protein content is observed in cultures of bxyF-

cex and cex-xynD strains (Fig. 4.4A). A co-culture of all three recombinant E. coli xylanase 

strains however did not show any appreciable difference in protein content compared to the 

0.2

0.4

0.6

0.8

1.2

0.1

1.0

0 2 4 6 8

A
b

so
rb

a
n

ce
 (

5
9

5
n

m
)

Time (Days)

(A) E. coli MG1655 xylan utilization

cex-xynD

xynF-xynD

bxyF-cex

co-culture 

(all three)

pSB1C3 

vector

1.2

0.8

0.5

0.6

0.7

0.9

1.0
1.1

0.4

0 2 4 6 8

A
b

so
rb

a
n

ce
 (

5
9

5
n

m
)

Time (Days)

(B) C. freundii NCIMB11490 xylan utilization

cex-xynD

xynF-xynD

bxyF-cex

co-culture 

(all three)

pSB1C3 

vector



94 

 

individual strains, suggesting that synergistic interaction or complementarities between all 

four xylanases is minimal if at all existent when assayed on beechwood xylan. Protein 

content of the vector control measured by the Coomassie dye reaches an absorbance of ~0.8 

at the end of 8 days, which is comparable to that of the xylanase positive strains. It can 

argued that the addition of 0.1% w/v yeast extract as a starter carbon source is perhaps too 

much for the proper assay of xylan utilization and that the addition of less would yield more 

encouraging results compared to a negative control. 

The change in protein content measured for C. freundii xylanase strains grown on xylan is by 

comparison more striking than that of E. coli, as a clear exponential phase is observed 

between days 3 and 4 (Fig. 4.4B). Consistent with that of E. coli, cultures of cex-xynD and 

bxyF-cex strains as well as the co-culture of all three strains show fairly similar rates of 

change in protein content. Cultures of xynF-xynD and the vector control show an almost 

identical change in protein content over the course of 8 days. Such results are unexpected as 

the same construct when expressed in E. coli shows clear xylanase activity as growth on 

xylan is observed.  

4.5 Utilization of amorphous cellulose: Carboxymethyl cellulose 
 

4.5.1 Growth assays of C. freundii SBS197 in 1% CMC M9 media with 0.01% yeast 

extract 

 

Initial growth assays measuring OD600 of cultures grown in 1% w/v CMC M9 media were 

conducted with the addition of 0.01% w/v yeast extract. These assays performed measured 

growth of C. freundii SBS197 cellulase strains over the course of 8 days. All cultures were 

performed in duplicate. Results are shown in Figure 4.5. It can be noted that of the strains 

cultured, only cenA-cex reached an appreciably high cell density when grown on CMC; 0.865 

at 8 days. cenA-cex-cbhA-cbhB constructs in high and low copy vectors also showed 

significant growth compared to the vector control, though not as significant as cenA-cex as a 

maximum OD600 of only 0.438 was met. It was inferred that the expression of the larger 

CbhA and CbhB exoglucanases with respective atomic masses of 89 and 115kDa compared 

to Cex with a mass of 54kDa, places a larger metabolic load upon the host and as such 

additional starter carbon is required for sufficient growth on CMC. This hypothesis is later 

confirmed within this chapter. Strains expressing CenB or CenD showed comparable growth 

to that of the control, a potential reason being that both endoglucanases are noted to have a 
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lower activity against CMC as evidenced within the literature (Tomme et al. 1996), and 

during characterization assays described within Chapter 3. 

 
Figure 4.5: Growth of C. freundii SBS197 cellulase strains in 1% CMC M9 media containing 0.01% 

yeast extract. Growth of C. freundii SBS197 cellulase strains was measured as OD600 in M9 minimal 

media containing 1% w/v CMC, 0.34 g/l thiamine and 0.01% w/v yeast extract as carbon sources. 

Control strains were those transformed with the pSB1C3 vector.  

 

 

4.5.2 Growth assays of E. coli MG1655 cellulase strains 

Based on the above results, further assays of growth of E. coli and C. freundii cellulases 

strains on CMC were conducted in M9 media supplemented with 0.1% w/v yeast extract and 

1% w/v CMC so as to encourage initial growth of strains expressing CbhA and CbhB. As 

described before, cultures were inoculated with cell pellets resuspended in minimal medium 

for a final OD600 of 0.1 at time 0. Growth on CMC was measured as a function of Coomassie 

dye absorbance over the course of 9 days. Cultures were performed in duplicate. Results are 

shown in Figure 4.6.  

The most efficient strain to utilize CMC was that of cfbglu-cenA-cex, with Coomassie dye 

absorbance measuring 0.478 at day 8 (Fig. 4.6A). Those cultures with strains not expressing 

an exoglucanase did not show comparable protein content, though in the case of cfbglu-cenA 

and cfbglu-cenB Coomassie dye absorbance measured was ~1.7 and ~1.4 times greater than 

that of the vector control. Figure 4.6B shows results for various co-cultures of the cfbglu-

[endoglucanase] strains. Strains cfbglu-cenA and cfbglu-cenC were used to prepare a single 
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co-culture with the intention of determining whether these two endoglucanases, which are 

known to be highly active on CMC (Tomme et al. 1996), could allow for enhanced utilization 

of CMC by the host strains. Likewise, co-cultures of cfbglu-cenB and cfbgl-cenD strains were 

intended to confirm if the lower activity of CenB and CenD against CMC would impair 

growth on the substrate. Results suggest that CenA and CenC in concert allow for enhanced 

growth on CMC as Coomassie dye absorbance measured was ~1.30 and ~1.26 times greater 

than that of the cfbglu-cenB/cfbglu-cenD co-culture and pSB1C3 vector control culture, 

respectively. However, the expression of an exoglucanase such as Cex seems to give much 

better utilization of CMC as a carbon source (Fig. 4.6A). 

 
Figure 4.6: Coomassie dye absorbance measured for E. coli MG1655 transformed with the cfbglu-

[endoglucanase] constructs grown in M9 media containing 1% w/v CMC. Results show cell growth 

measured as a function of protein content of E. coli MG1655 cfbglu-[endoglucanase] strains (A) and 

cfbglu-[endoglucanase] co-cultures (B) grown in M9 minimal medium containing 1% w/v CMC, 0.34 

g/l thiamine and 0.1% yeast extract. Controls in each instance are E. coli MG1655 transformed with 

the pSB1C3 vector. 
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E. coli MG1655 cfbglu-[endoglucanase]-cbhA-cbhB strains were assayed for growth on 

CMC using the same methodologies as those previously described for the assay of cfbglu-

[endoglucanase] strains. These cultures were performed in duplicate. Figure 4.7 shows 

results for the measurement of Coomassie dye absorbance of cfbglu-[endoglucanase]-cbhA-

cbhB strains (Fig. 4.7A) and also co-cultures of those strains (Fig. 4.7B).  

 

  
Figure 4.7: Coomassie dye absorbance measured for E. coli MG1655 transformed with the cfbglu-

[endoglucanase]-cbhA-cbhB constructs grown in M9 media containing 1% CMC. Results show cell 

growth measured as a function of protein content of E. coli MG1655 cfbglu-[endoglucanase]-cbhA-

cbhB strains (A) and cfbglu-[endoglucanase]-cbhA-cbhB co-cultures (B) grown in M9 minimal media 

containing 1% w/v CMC, 0.34 g/l thiamine and 0.1% yeast extract. Controls in each instance are E. 

coli MG1655 transformed with the pSB1C3 vector. 
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Results presented in Figure 4.7 suggest that the expression of CbhA and CbhB contributes 

significantly towards the utilization of CMC by the expression host. Strain cfbglu-cenA-cbhA-

cbhB showed the highest Coomassie dye absorbance of 0.544 after 9 days, which was 

followed by that of cfbglu-cenC-cbhA-cbhB with 0.401 (Fig. 4.7A). These figures indicate 

approximately 2.9 and 2.1 times greater protein content than that of the vector control after 9 

days incubation. Results for cfbglu-cenB-cbhA-cbhB and cfbglu-cenD-cbhA-cbhB strains 

show a higher Coomassie dye absorbance than the vector control, though noticeably less than 

the cfbglu-cenA-cbhA-cbhB or cfbglu-cenC-cbhA-cbhB strains. Again, this difference in 

utilization of CMC may be attributed to the difference between the endoglucanases in their 

binding preference and catalytic activity against the amorphous substrate (Tomme et al. 

1996; Warren 1996; Brun et al. 2000).  

 
Co-cultures of cfbglu-cenA-cbhA-cbhB and cfbglu-cenC-cbhA-cbhB strains indicate that 

CMC is being utilized; however a lower Coomassie dye absorbance measurement than that of 

a single culture of cfbglu-cenA-cbhA-cbhB is evident; 0.402 compared to 0.544 (Fig.4.7B). 

Perhaps competitive binding for sites on the substrate between CenA and CenC hinders 

enzymatic productivity, reducing host strain fitness. Interestingly, co-cultures of cfbglu-cenB-

cbhA-cbhB and cfbglu-cenD-cbhA-cbhB show greater protein content than cultures of those 

individual strains, suggesting a synergistic or at least cooperative activity between CenB and 

CenD improves utilization of CMC by the host strain (Fig. 4.7B). A co-culture of all four 

strains shows the least protein content measured. 

 
4.5.3 Growth assays of C. freundii cellulase strains 

The C. freundii NCIMB11490 cellulase strains [endoglucanase]-cex-cbhA-cbhB were 

assayed for their ability to utilize 1% w/v CMC in M9 media containing 0.1% w/v yeast 

extract. As before, cell pellets of overnight cultures were resuspended in minimal media to 

give a final OD600 of 0.1 at time 0. Samples taken at 24 hour intervals were measured for total 

protein content using the Coomassie protein reagent dye and the absorbance of which 

measured at 595 nm. Results are presented in Figure 4.8 below. 
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Figure 4.8: Coomassie dye absorbance measured for C. freundii NCIMB11490 transformed with the 

[endoglucanase]-cex-cbhA-cbhB constructs grown in M9 media containing 1% CMC. Results show 

cell growth measured as a function of protein content of C. freundii NCIMB [endoglucanase]-cex-

cbhA-cbhB strains grown in M9 minimal media containing 1% w/v CMC, 0.34 g/l thiamine and 0.1% 

w/v yeast extract. Control cultures are those of C. freundii NCIMB transformed with the pSB1K3 

vector. 

 

 

Assays for measuring growth on CMC of the C. freundii NCIMB11490 cellulase strains 

yielded unexpected results, in that protein content was almost identical if not less than the 

vector control indicating that the host was unable to utilize CMC (Fig. 4.8). These results are 

surprising as E. coli transformed with the full endoglucanase and exoglucanase complement 

cfbglu-[endoglucanase]-cbhA-cbhB was able to utilize CMC (Fig. 4.7A). Moreover, Chapter 

5 of this thesis shows C. freundii NCIMB11490 cenA-cex-cbhA-cbhB to effectively degrade 

and utilize cellulose paper. Perhaps differences in the substrate characteristics of CMC are 

responsible for these observations in C. freundii NCIMB11490. Perhaps methylated-glucose 

inhbits glucose uptake by C. freundii, or the low-viscosity of 1% w/v CMC media prevents 

proper aeration of the culture. 

Results for that of C. freundii SBS197 are however more encouraging (Figure 4.9). C. 

freundii SBS197 transformed with the constructs [endoglucanase]-cex and cenA-cex-cbhA-

cbhB were assayed for their ability to utilize 1% w/v CMC in M9 media containing 0.1% w/v 

yeast extract. Figure 4.9A shows that Coomassie dye absorbance measured for cenA-cex 

reached a maximum of 0.75 compared to 0.34 for the vector control, a 2.2 fold increase.  This 

was the highest reading measured, followed by that of the co-culture of all three 

[endoglucanase]-cex strains with an absorbance of 0.665. C. freundii SBS197 transformed 

with cenA-cex-cbhA-cbhB in both high and low copy vectors showed broadly similar trends 
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in protein content measured over the 9 day incubation period, with a protein content of 

approximately 1.85 times that of the vector control on the 9th day (Fig. 4.9B).  

 
Figure 4.9: Coomassie dye absorbance measured for C. freundii SBS197 transformed with the 

[endoglucanase]-cex and cenA-cex-cbhA-cbhB constructs grown in M9 media containing 1% CMC. 

Results show cell growth measured as a function of protein content of C. freundii SBS197 

[endoglucanase]-cex strains (A) and cenA-cex-cbhA-cbhB strains (B) grown in M9 minimal media 

containing 1% w/v CMC, 0.34 g/l thiamine and 0.1% yeast extract. Controls are those of C. freundii 

SBS197 transformed with the pSB1C3 vector. 

 

 

4.6 Utilization of crystalline cellulose: Avicel 
 

The use of the Coomassie protein reagent for measuring protein content of cultures with 

avicel as the carbon source was unsuccessful. Although preliminary trials using C. fimi on 

avicel gave good positive results, the assay method did not translate well to those 

recombinant hosts of E. coli and Citrobacter freundii. Most likely due to C. fimi being able to 
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efficiently utilize crystalline cellulose, the signal-to-noise ratio was high enough to 

effectively cancel any false positive absorbance generated by turbidity from avicel 

particulates. However in the case of recombinant E. coli and C. freundii, the level of false 

positive absorbance generated from avicel particulates prevented effective measurement of 

protein content. As such, no conclusions could be drawn from the inconsistent data generated 

and was excluded from the thesis. Instead, the measurement of cell growth on avicel was 

determined by calculating colony forming units per millilitre of culture. It was the intention 

to avoid such assay methods as these are not suitable for scaling up to a high-throughput 

approach, but as it seems, they are necessary in the case of assaying growth on substrates 

such as avicel.  

4.6.1 Colony forming units of C. freundii SBS197 in 2% avicel M9 media with 0.01% 

yeast extract 

M9 medium containing 2% w/v avicel and 0.01% w/v yeast extract was inoculated with C. 

freundii SBS197 transformed with one of the following cellulase encoding constructs; 

[endoglucanase]-cex or [endoglucanase]-cex-cbhA-cbhB. Cultures of 5 ml volume in 1 oz 

glass vials were incubated at 37oC on a rotary shaker at 200 rpm over the course of 4 days. 

100 µl samples were taken at 24hr intervals and serial dilutions made in distilled water. 

Dilutions were spread on LB agar plates and incubated at 37oC overnight. Colonies were 

counted and colony forming units per ml calculated. Cultures were performed in duplicate. 

Results are shown in Figure 4.10 below. 

C. freundii SBS197 cellulase expressing strains showed appreciable growth in avicel media 

(Fig. 4.10). Notably colony forming units per ml of strain cenB-cex reached a maximum of 

4.25x108 at day 2. Strain cenD-cex showed 3.6x108 CFU per ml at day 2, whereas cenA-cex 

did not give results higher than that of the vector control. An important point to note is the 

amount of starter carbon added to the media to support initial growth, as this was only 0.01% 

w/v yeast extract. As shown before in the case of assaying growth on CMC (Fig. 4.5), the 

addition of 0.01% w/v yeast extract did not support growth of strains expressing both CbhA 

and CbhB cellobiohydrolases, and as such it can be argued that a higher content of starter 

carbon is needed to support inital growth. Results presented in Figure 4.10 seem to support 

this hypothesis, which is further tested in the next section. 
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Figure 4.10: Growth of C. freundii SBS197 cellulase strains in 2% avicel M9 media with 0.01% yeast 

extract measured as colony forming units per millilitre. Results show cell growth measured as 

colony forming units per ml of C. freundii SBS197 [endoglucanase]-cex strains and [endoglucanase]-

cex-cbhA-cbhB strains grown in M9 minimal media containing 2% w/v avicel, 0.34 g/l thiamine  and 

0.01% w/v yeast extract. Control cultures are those of C. freundii SBS197 transformed with the 

pSB1C3 vector. 

 

 

4.6.2 Colony forming units of C. freundii SBS197 in 1% avicel M9 media with 0.1% 

yeast extract 

C. freundii SBS197 cellulase strains grown in M9 media with 1% w/v avicel and 0.1% w/v 

yeast extract looked to have utilized the substrate more effectively than those grown in 2% 

w/v avicel media with 0.01% w/v yeast extract. Figure 4.11A shows colony forming units per 

ml for [endoglucanase]-cex strains. Consistent with previous results cenB-cex showed the 

highest CFU per ml with 1x109. This was followed by that of cenA-cex and cenD-cex with 

7.9x108 and 8x108 CFU per ml, respectively. Data for cenA-cex-cbhA-cbhB expression in low 

and high copy vectors as well as a co-culture of the [endoglucanase]-cex-cbhA-cbhB strains 

is shown in Figure 4.11B. Comparing data for cenA-cex and cenA-cex-cbhA-cbhB strains 

shows that both achieve approximately 8x108 CFU per ml at days 5 and 4, respectively. 

Similarly, co-cultures of the [endoglucanase]-cex strains compared to co-cultures of the 

[endoglucanase]-cex-cbhA-cbhB strains also show comparable results as these reach 

approximately 8x108 CFU per ml at days 5 and 4, respectively. Such findings suggest that in 

these conditions, the expression of the cellobiohydrolases do not significantly affect the 
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ability of the host to utilize avicel compared to that of a host expressing solely Cex as an 

exoglucanase.  

 
Figure 4.11: Growth of C. freundii SBS197 cellulase strains in 1% avicel M9 media with 0.1% w/v 

yeast extract measured as colony forming units per millilitre. Results show cell growth measured as 

colony forming units per ml of C. freundii SBS197 [endoglucanase]-cex strains (A) and 

[endoglucanase]-cex-cbhA-cbhB strains (B) grown in M9 minimal media containing 1% w/v avicel, 

0.34 g/l thiamine and 0.1% w/v yeast extract. Controls are those of C. freundii SBS197 transformed 

with the pSB1C3 vector. 

 

 

Data presented here shows the C. freundii SBS197 cellulase strains to be more effective at 

utilizing avicel in M9 media containing 1% w/v avicel and 0.1% w/v yeast extract compared 

to 2% w/v avicel and 0.01% w/v yeast extract. It is possible that the reduction in avicel 

content from 2% to 1% avicel may improve initial loading of cellulases onto the substrate and 
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enhance the concerted action of endo- and exo-glucanases, improving the rate of hydrolysis 

of avicel and subsequent viability of the host cell. Moreover increasing the concentration of 

yeast extract from 0.01% to 0.1% may be necessary for the expression of the larger 

constructs, so as to support the initial growth until sufficient substrate is degraded to support 

further growth. A final point to consider regarding media composition within these assays is 

the fact that a population decline is evident within each strain assayed. This decline is most 

evident after days 4 and 5 where the colony forming units per ml drop in some cases by a 

factor of 2. It has been discussed within our lab that this may be the result of C. freundii 

producing excess acid, a characteristic which is observed when the bacterium utilizes glucose 

but interestingly not cellobiose (data not shown). As such, the addition of suitable buffering 

agents may be required to remedy this.  

 

4.7 Discussion 
 

Introduced within this chapter is the Coomassie protein assay which is used to determine cell 

growth as a function of protein content for recombinant strains utilizing cellulose, mannan 

and xylan substrates. Preliminary assays using the reagent on Cellulomonas fimi cultures 

grown on those cellulosic substrates highlighted several considerations within the protocol; 

(i) the assay is indiscriminate of metabolically active cells and dead cells, (ii) substrates with 

high particulate content can skew absorbance readings, (iii) and the protein content measured 

across different bacterial species can vary at a given cell optical suggesting results cannot be 

fairly compared across different expression hosts.  

Further to this, assays of recombinant E. coli and Citrobacter freundii cellulase strains were 

conducted so as to optimize media compositions for growth on cellulosic substrates. Results 

showed that in some instances growth of the negative vector control is too great, or that 

conversely more yeast extract is beneficial for expression of the larger cellulase encoding 

constructs. As such, the amount of yeast extract supplemented in the growth media would 

ideally need to be defined according to the needs of the expression host. These observations 

suggest the use of a more defined carbon source such as glycerol is required so that the initial 

carbon present within the media can be calculated and from there determine the optimum 

starter carbon necessary to support initial growth. Although the vitamins and amino acids 

provided for by the addition of yeast extract are likely to aid in supporting the inital growth of 

the culture and as such should not be disregarded. 
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Such considerations are important for the proper assay of our recombinant E. coli and C. 

freundii strains for the utilization of lignocellulosic substrates. In the case of recombinant E. 

coli and C. freundii strains transformed with man2A-man26A, it was shown that although 

both expression hosts are able to utilize mannose (Holt and Bergey 2000), only E. coli 

expressing man2A-man26A is able to utilize mannan. A possible reason for this is that 

perhaps a reduced level of yeast extract is needed to properly differentiate growth between 

the C. freundii vector control and test strains, thus a defined starter carbon source such as 

glycerol is optimal. 

Within this chapter, recombinant strains of E. coli MG1655 and C. freundii NCIMB11490 

transformed with the xylanase encoding constructs were shown to grow in M9 media 

supplemented with 1% w/v beechwood xylan. The highest levels of protein content measured 

by the Coomassie protein reagent in both expression hosts were that of the strains cex-xynD 

and bxyF-cex. Interestingly, although E. coli strains expressing xynF-xynD were able to 

utilize xylan, C. freundii xynF-xynD was not. A possible reason for this is that the XynF and 

XynD xylanases are not expressed in an active form by C. freundii, and further parts 

characterization in C. freundii as an expression host is required.   

In assaying for growth of E. coli and C. freundii cellulase strains on CMC it was noted that in 

order for the initial growth of strains expressing CbhA and CbhB, 0.01% w/v yeast extract as 

a carbon source was insufficient. As such, assays were instead conducted in M9 media 

supplemented with 0.1% w/v yeast extract. Assays for E. coli MG1655 cellulases strains 

showed that for appreciable growth on CMC the expression of at least one exoglucanase is 

required. In accordance with the literature which describes CenA and CenC to be the most 

active on CMC (Tomme et al. 1996), cultures of our strains expressing either CenA or CenC 

grown on CMC showed the highest protein content. Interestingly though, co-cultures of 

strains expressing CenB and CenD showed comparable growth to co-cultures of CenA and 

CenC expressing strains, suggesting a synergistic or cooperative activity between CenB and 

CenD on CMC. 

Results for assays conducted for the growth of C. freundii NCIMB11490 cellulase strains on 

CMC were shown to be comparable to that of the vector control, indicating that CMC was 

not effectively utilized as a carbon source. Results for C. freundii SBS197 cellulase strains 

were however more encouraging with cenA-cex showing 2.2 times greater absorbance 

generated by the Coomassie dye compared to the vector control. Strains transformed with the 
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cenA-cex-cbhA-cbhB construct in either a high or low copy vector showed similar growth on 

CMC suggesting that the copy number is not a limiting factor in cellulase expression and 

utilization of CMC.  

Attempting to measure utilization of avicel by our recombinant cellulase strains proved to be 

unsuccessful when using the Coomassie protein reagent. Although successful when 

measuring that of C. fimi avicel utilization, data for E. coli and C. freundii strains was highly 

variable and inconclusive. It was deduced that the comparably less efficient cellulase systems 

designed for expression in our expression hosts did not support the generation of high protein 

content in those cultures. Therefore the absorbance of Coomassie dye measured at 595 nm 

was comparatively lower and so more likely affected by turbidity generated by avicel 

particulates, leading to highly variable absorbance measurements. As such, cell growth in 

cultures with avicel as a carbon source was measured by calculating colony forming units per 

millilitre, rather that the Coomassie protein reagent.  

In assaying C. freundii SBS197 cellulase strains for their ability to utilize avicel, it was noted 

that 0.01% yeast extract was insufficient to support initial growth and so medium containing 

0.1% yeast extract was used instead. Of those strains assayed, cenB-cex showed the highest 

growth with a maximum of 1.01x109 CFU per ml met at day 4. By comparison cenA-cex 

strains showed slightly less growth with 7.9x108 CFU per ml at day 3, results which are 

consistent with the literature describing CenB as an endoglucanase with preferential activity 

against crystalline cellulose and that of CenA with a preference against amorphous cellulose. 

Moreover it was noted that the expression of the cellobiohydrolases in concert with CenA did 

not significantly improve growth on avicel compared to that of CenA expressed in concert 

with the single exoglucanase Cex, as CFU per ml measured was comparable. These 

observations in combination with those assays conducted in CMC media suggest that the 

cellobiohydrolases are best suited to processing amorphous cellulose, and perhaps in order to 

process crystalline cellulose require the action of an additional agent capable of inducing 

amorphogenesis. 

Regarding the media composition of cultures assayed within those experiments containing 

avicel, several amendments could be made to improve experimental accuracy. Firstly, it was 

observed that growth in M9 containing 1% w/v avicel was higher than that in M9 containing 

2% w/v avicel. A phenomenon that could be attributed to an enhanced loading of cellulases 

onto the substrate, as the substrate surface area within the media is effectively reduced, 
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resulting in improved complementary activity between those cellulases acting in concert. 

Therefore reducing the avicel content within the media could improve productivity of the 

recombinant hosts. A second amendment would be the addition of suitable buffering agents 

to the media to improve buffering capacity. It has been observed within the lab that C. 

freundii SBS197 produces high levels of acid during metabolism of glucose, which could be 

the reason for the apparent population decline observed around days 4 and 5.  Making such 

changes to carbon content and buffering capactiy in the culturing medium could improve the 

viability of our recombinant hosts and so facilitate the further study of those cellulase 

encoding constructs already assembled.  
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Chapter 5 

  
Deconstruction and utilization of cellulose paper 

 

Summary 
 

To complement those growth assays on defined substrates in Chapter 4, further assays for growth 

were conducted using cellulose paper as a carbon source. This substrate was chosen as the 

deconstruction of the material can easily be observed, so as to highlight any differences in the 

disruptive capacity of the various expression hosts on the substrate. Of the recombinant E. coli 

cellulase strains assayed, a co-culture of two strains expressing either endoglucanase CenA or 

CenC, in addition to the two cellobiohydrolases CbhA and CbhB showed the highest protein 

content as measured by the Coomassie assay. A co-culture of two strains expressing either 

endoglucanase CenB or CenD in addition to the cellobiohydrolases showed appreciable 

synergistic cooperation compared to cultures of the individual strains. This observation is 

consistent with results presented in Chapter 4 where a co-culture of CenB and CenD expressing 

strains were shown to utilize CMC in a synergistic manner. Growth assay results for C. freundii 

NCIMB11490 cellulase strains showed that each strain was capable of utilizing cellulose paper 

with the highest efficiency being those expressing the endoglucanase CenA. Similar results were 

obtained for C. freundii SBS197 cellulase strains; though a higher effective utilization of the 

substrate was observed for NCIMB11490 suggesting it is a more suitable expression host of the 

two. Images taken of cultures of recombinant expression hosts utilizing cellulose paper illustrate 

the deformation of the substrate over the course of a nine day culturing period. Those strains 

expressing the endoglucanase CenA had shown the most efficient utilization of cellulose paper 

and in accordance also showed the highest destruction of the substrate. Though notably some 

exceptions to this were observed where substrate utilization and deconstruction were not 

synonymous. Within this chapter, cellulose paper utilization and deconstruction by the C. freundii 

cellulase strains is shown to be unaffected when conducted in saline media. Both NCIMB11490 

and SBS197 cellulase strains showed identical growth on the substrate in media containing 0.6 M 

sodium chloride as compared to the respective cultures performed in media lacking sodium 

chloride. Wildtype Cellulomonas fimi growth on cellulose paper is shown to be completely 

inhibited in saline media. These results highlight the novelty in developing C. freundii as a 

bioprocessing host capable of culturing in sea water, as a means of reducing the demand on fresh 

water resources and improving utilization of marine biomass. 
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5.1 Introduction 

Recombinant E. coli and C. freundii cellulase strains assayed for utilization of amorphous 

and crystalline substrates within Chapter 4 were assayed for the ability to utilize pure 

cellulose paper as a carbon source. This substrate was chosen for further assay experiments as 

its deconstruction can be verified without the need for additional experimental techniques and 

also allows for conclusions to be drawn regarding the destructive potential of the different 

cellulase strains on cellulosic biomass. Results for the utilization and deconstruction of 

cellulose paper are discussed within this chapter. 

5.2 Utilization of cellulose paper as a carbon source 

The composition and preparation of M9 media for culturing of cellulase strains utilizing 

cellulose paper was as described in Chapter 4. M9 medium supplemented with 0.1% w/v 

yeast extract was inoculated with cell pellets of overnight cultures of those cellulose strains to 

be tested. Cell pellets were resuspended in M9 medium to give a final OD600 of 0.1 within 5 

ml 1 oz glass vials. As a source of carbon, four individual cellulose paper squares measuring 

0.5 cm2 with a combined mass of 125 mg were added to each culture. Cultures were 

incubated at 37oC on a rotary shaker at 200 rpm over a 9 day period. All cultures were 

performed in duplicate. 

5.2.1 Coomassie protein assays for E. coli MG1655 cellulase strains utilizing cellulose 

paper 

E. coli MG1655 cellulase strains cfbglu-[endoglucanase]-cbhA-cbhB and cfbglu-cenA-cex 

were used to inoculate M9 medium containing 125 mg cellulose paper. Co-cultures of cfbglu-

[endoglucanase]-cbhA-cbhB strains were also prepared and assayed for growth on cellulose 

paper. Results are presented in Figure 5.1. 

Of those individual strains assayed, cfbglu-cenA-cbhA-cbhB showed the highest protein 

content as measured by the absorbance of Coomassie dye (Fig. 5.1A). An absorbance of 

0.395 was recorded at day 9 for that strain, compared to 0.295 for that of the vector control. 

Notably, the remaining cellulase strains showed a final protein content that was very similar 

to that of the vector control at day 9. However each strain also showed considerably higher 

protein content between days 5 and 8 compared to the vector control. This is best exemplified 

by strains cfbglu-cenA-cex and cfbglu-cenC-cbhA-cbhB which show respectively a 1.97 and 

1.99 fold greater absorbance in Coomassie dye measured at day 6 compared to the vector 
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control. The fact that a greater rate of protein generation is measured in the cellulase strains 

compared to the vector indicates that cellulose paper is being utilized, though the culture may 

not be stable as the rate of protein generation levels off until the final content at day 9 is 

comparable to that of the control.  

 

Figure 5.1: Coomassie dye absorbance measured for cultures of E. coli MG1655 cellulase strains in 

5 ml M9 medium containing 125 mg cellulose paper. Cellulase strains cfbglu-[endoglucanase]-cbhA-

cbhB and cfbglu-cenA-cex were assayed for the ability to utilize 125 mg cellulose paper in 5 ml M9 

minimal medium containing 0.34 g/l thiamine and 0.1% yeast extract, by measurement of protein 

content using the Coomassie protein reagent (A). Co-cultures of those strains were then assayed for 

the utilization of cellulose paper so as to study the existence of any synergistic or cooperative effects 

between endoglucanases for the enhanced utilization of the substrate (B).   
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Co-cultures of the E. coli cellulase strains yielded interesting results in that protein content 

measured was markedly greater than that of the individual strains (Fig. 5.1B). Notably, a co-

culture of strains expressing CenB and CenD showed a maximal absorbance measured for 

Coomassie dye reagent of 0.368, compared to 0.288 and 0.290 for the individual strains 

expressing CenB or CenD, respectively. The co-culture of CenB and CenD expressing strains 

showed a maximal absorbance 2.95 times greater than the vector control at day 6, whereas 

the individual strains did not show an absorbance more than 1.46 times that of the vector. 

Similarly, a co-culture of strains expressing CenA and CenC reached a maximal absorbance 

for Coomassie dye of 0.423, compared to 0.395 and 0.297 for individual strains expressing 

CenA or CenC, respectively. These results indicate that there may be cooperative or 

synergistic actions at play between the endoglucanases during the utilization of cellulose 

paper. Interestingly, a co-culture of all four endoglucanase strains does not measure as high a 

protein content compared to the previous co-cultures. This may due to competitive binding 

between the endoglucanases for sites on the substrate, limiting overall enzymatic 

productivity. 

5.2.2 Coomassie protein assays for C. freundii cellulase strains utilizing cellulose paper 

C. freundii NCIMB11490 cellulase strains [endoglucanase]-cex-cbhA-cbhB were assayed for 

the ability to utilize cellulose paper. A co-culture of all three strains was also assayed. Results 

are shown in Figure 5.2. Cellulase strain cenA-cex-cbhA-cbhB showed the highest maximal 

protein content measured with an absorbance of 0.456 at day 9. This was followed by the co-

culture of all three strains with an absorbance of 0.321, compared to 0.151 for the pSB1K3 

vector control. These results are encouraging as each strain showed at least 1.9 times greater 

absorbance measured at the end of the 9 day incubation compared to the vector control. 

Moreover each strain was shown to be capable of utilizing cellulose paper, whereas in 

Chapter 4 the same strains were unable to utilize CMC. No synergistic effects were noted 

within the co-culture as total protein content measured was not appreciably greater than that 

of the individual strains. 
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Figure 5.2: Coomassie dye absorbance measured for cultures of C. freundii NCIMB11490 cellulase 

strains in 5 ml M9 media containing 125 mg cellulose paper. Cellulase strains [endoglucanase]-cex-

cbhA-cbhB are assayed for the ability to utilize 125 mg cellulose paper in 5 ml M9 minimal medium 

containing 0.34 g/l thiamine and 0.1% yeast extract, by measurement of protein content using the 

Coomassie protein reagent. A co-culture of those strains was also assayed so as to study the 

existence of any synergistic or cooperative effects between endoglucanases for the enhanced 

utilization of the substrate. 

 

C. freundii SBS197 cellulase strains were assayed for utilization of cellulose paper. SBS197 

transformed with [endoglucanase]-cex or cenA-cex-cbhA-cbhB constructs were used to 

inoculate M9 minimal medium supplemented with 0.1% w/v yeast extract and 125 mg 

cellulose paper. In accordance with previous methods, cultures were assayed for protein 

content using the Coomassie protein assay at regular 24 h intervals over the course of 9 days. 

Cultures were conducted in duplicate and results are presented in Figure 5.3. 

Highest protein content observed was that of cenA-cex strains with an absorbance measured 

for Coomassie dye of 0.611 at day 9, compared to 0.364 for the vector control (Fig. 5.3A). 

Strains cenB-cex and cenD-cex also showed greater protein content compared to the vector 

control on cellulose paper, as did the co-culture of all three strains. Strains transformed with 

cenA-cex-cbhA-cbhB constructs in either low or high copy vectors showed similar rates of 

change in protein content over the 9 day incubation period, with respective maximal 

absorbances of 0.493 and 0.550 recorded at day 9 (Fig. 5.3B). Results show that C. freundii 

SBS197 cellulase strains are able to utilize cellulose; however the cenA-cex-cbhA-cbhB strain 

shows only 1.51 times greater protein content compared to the control whereas C. freundii 

NCIMB11490 transformed with the same construct shows 3.02 times greater protein content 
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than that of the respective vector control. Ultimately, it may be interpreted from this data that 

C. freundii NCIMB11490 is a more effective host chassis for cellulase expression and 

cellulose paper utilization when comparing recombinant strains against the respective vector 

controls. 

 

Figure 5.3: Coomassie dye absorbance measured for cultures of C. freundii SBS197 cellulase strains 

in 5 ml M9 medium containing 125 mg cellulose paper. Cellulase strains [endoglucanase]-cex were 

assayed for the ability to utilize 125 mg cellulose paper in 5 ml M9 minimal medium containing 0.34 

g/l thiamine and 0.1% yeast extract, by measurement of protein content using the Coomassie 

protein reagent. A co-culture of those strains was also included (A). Cellulase strain cenA-cex-cbhA-

cbhB in both high and low copy vectors was assayed for the ability to utilize cellulose paper 

compared to the pSB1C3 vector control (B). 
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(CFU per ml). Medium preparation and composition was the same as that of the cultures 

assayed using the Coomassie protein reagent. Cultures were performed in duplicate, and 

results are presented in Figure 5.4 below.  

C. freundii SBS197 cellulase strain cenA-cex showed the highest CFU per ml with 1x109 

measured at day 3, which was followed by a co-culture of all three strains cen(A,B,D)-cex 

with 7x108 CFU per ml measured at day 4 (Fig. 5.4A). As noted with previous colony counts 

measured for C. freundii SBS197 strains utilizing avicel in Chapter 4, a population decline is 

observed. Results for strains transformed with the cenA-cex-cbhA-cbhB constructs in high 

and low copy vectors show a comparable colony forming count with maxima of 9.1x108 and 

9.9x108 CFU per ml, respectively. 

 

Figure 5.4: Growth of C. freundii SBS197 cellulase strains on cellulose paper measured as colony 

forming units per millilitre. Cultures of C. freundii SBS197 cellulase strains were assayed for growth 

in 5 ml volumes of M9 minimal medium supplemented with 0.1% w/v yeast extract, 0.34 g/l 

thiamine and 125 mg cellulose paper over 8 days. Cell growth was measured as a function of colony 

forming units per millilitre. 
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5.3 Deconstruction of cellulose paper  

As noted previously, the choice of cellulose paper as an additional cellulosic substrate for 

growth assays was intended to facilitate observations made in the deconstruction of the 

substrate over the course of the assay. Within this section, images of cultures of recombinant 

expression hosts grown on cellulose paper are presented and discussed. In addition, results 

for our recombinant cellulase strains are compared against a wildtype C. fimi benchmark. All 

cultures were conducted in M9 medium supplemented with 0.1% w/v yeast extract and 125 

mg cellulose paper. E .coli and C. freundii strains were cultured at 37oC to achieve optimum 

cell growth, whilst wildtype C. fimi cultures are conducted at the species’ optimum growth 

temperature of 30oC. 

5.3.1 Extent of cellulose paper deconstruction after a 9 day culturing period 

Pictures of recombinant E. coli MG1655, C. freundii NCIMB11490 and SBS197 cellulase 

strains at the end of a 9 day culturing period are presented in Figures 5.6, 5.7 and 5.8 

respectively. Cultures were conducted in 1 oz glass vials containing 5 ml of M9 medium 

supplemented with 0.1% w/v yeast extract and four 0.5 cm2 cellulose paper squares. Flasks 

were laid horizontally on a light-box and images taken with a digital camera.  

Figure 5.5 illustrates the extent of cellulose paper deconstruction by E. coli MG1655 

cellulase strains cfbglu-[endoglucanase]-cbhA-cbhB and cfbglu-cenA-cex.  It can be observed 

that the strain cfbglu-cenA-cbhA-cbhB shows the greatest extent of deconstruction at the end 

of 9 days as evidenced by the presence of small fibrous particles of cellulose paper (Fig. 

5.5ii). By comparison the vector control shows no rounding of the cellulose paper squares or 

the presence of any particulate matter (Fig. 5.5i). These results are consistent with results 

observed for the Coomassie protein assay which shows cfbglu-cenA-cbhA-cbhB to have the 

highest protein content at the end of the 9 days (Fig. 5.1A), indicating that the strain 

effectively deconstructs and subsequently utilizes cellulose paper as a source of carbon. 

Strains expressing CenB, CenC or CenD show comparatively less deconstruction of the 

substrate (Fig. 5.5iii-v), which again is consistent with results from the Coomassie assay 

showing these strains to have a lower total protein content compared to that of cfbglu-cenA-

cbhA-cbhB (Fig. 5.1A). The strain cfbglu-cenA-cex shows comparatively less deconstruction 

of the substrate, and significantly less than cfbglu-cenA-cbhA-cbhB, which again is consistent 

with Coomassie results showing less protein generated by cfbglu-cenA-cex (Fig. 5.1A). 

Although both strains exhibit a full cellulase complement, differences are seen in the 
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utilization and deconstruction of cellulose paper. This may be due to the fact that 

overexpression of Cex in E. coli has been known to cause a toxic effect upon the host, 

reducing cell viability (Fu et al. 2005). 

 

 

Figure 5.5: Extent of cellulose paper deconstruction by E. coli MG1655 cellulase strains after 9 days 

culturing in M9 media. Cellulase strains cfbglu-[endoglucanase]-cbhA-cbhB were used to inoculate 5 

ml M9 media supplemented with 0.1% w/v yeast extract, 0.34 g/l thiamine and 125 mg cellulose 

paper.  A culture of the strain cfbglu-cenA-cex was also included. Cultures were incubated at 37
o
C on 

a rotary shaker at 200 rpm over 9 days. A negative control strain is that transformed with the 

pSB1C3 vector. 

 

Figure 5.6 illustrating deconstruction of cellulose paper by C. freundii NCIMB11490 

cellulase strains shows similar results to those presented for E. coli MG1655 cellulase strains. 

Specifically, the strain cenA-cex-cbhA-cbhB shows the greatest extent of substrate 

deconstruction (Fig. 5.6ii). This is followed by that of a co-culture of the three strains 

expressing CenA, CenB and CenD endoglucanases (Fig. 5.6v).  Again, results presented here 

are consistent with those of the Coomassie protein assay where the highest protein content 

observed was that of cfbglu-cenA-cbhA-cbhB followed by the co-culture of all three strains 

(Fig 5.2). It is noteworthy that although the co-culture of the three strains showed almost 

identical protein content to that of CenB and CenD expressing strains at the end of 9 days 

(Fig. 5.2), the level of substrate deconstruction observed here is greatest for the co-culture 

(Fig 5.6v). This observation suggests that effective substrate deconstruction and efficient 

substrate utilization are not synonymous in every instance. 
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Figure 5.6: Extent of cellulose paper deconstruction by C. freundii NCIMB cellulase strains after 9 

days culturing in M9 media. Cellulase strains [endoglucanase]-cex-cbhA-cbhB were used to inoculate 

5 ml M9 media supplemented with 0.1% w/v yeast extract, 0.34 g/l thiamine and 125 mg cellulose 

paper. A co-culture of all three strains is also included. Cultures were incubated at 37
o
C on a rotary 

shaker at 200 rpm over 9 days. A negative control strain is that transformed with the pSB1K3 vector. 

 

 

 

 

Figure 5.7: Extent of cellulose paper deconstruction by C. freundii SBS197 cellulase strains after 9 

days culturing in M9 media. Cellulase strains [endoglucanase]-cex were used to inoculate 5 ml M9 

medium supplemented with 0.1% w/v yeast extract, 0.34 g/l thiamine and 125 mg cellulose paper. A 

co-culture of all three strains is included, as well as strains expressing cenA-cex-cbhA-cbhB in both 

high and low copy vectors. Cultures were incubated at 37
o
C on a rotary shaker at 200 rpm over 9 

days. A negative control strain is that transformed with the pSB1C3 vector. 
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The destructive potential of C. freundii SBS197 cellulase strains on cellulose paper is 

presented in Figure 5.7. Of those strains assayed, cenA-cex showed the greatest level of 

substrate deconstruction as observed by the amount of small fibrous particles (Fig. 5.7ii). A 

co-culture of all three [endoglucanase]-cex strains also showed a high extent of cellulose 

paper deconstruction (Fig. 5.7v). Once again, these results are consistent with those observed 

within the Coomassie protein assay, as cenA-cex showed the highest maximal protein content, 

followed by a [endoglucanase]-cex co-culture (Fig. 5.3). Deconstruction of cellulose paper 

by cenA-cex-cbhA-cbhB strains does not appear to be comparable to that of cenA-cex (Fig. 

5.7vii, viii); even though those strains were shown to reach a similar maximum cell growth as 

measured by calculating CFU per ml of those cultures (Fig. 5.4). These results seem to 

indicate again that deconstruction of cellulose paper is not synonymous with utilization of the 

substrate. 

5.3.2 Time course of cellulose paper deconstruction by C. freundii SBS197 cen(A,B,D)-

cex co-cultures  

Figure 5.8 below shows a time course of the observed deconstruction of cellulose paper by a 

co-culture of C. freundii SBS197 cen(A,B,D)-cex cellulase strains. Respective positive and 

negative control cultures shown include wildtype C. fimi and the C. freundii SBS197 pSB1C3 

vector control strain. Observed deconstruction of the substrate was recorded over a 9 day 

incubation period. Cultures of C. freundii SBS197 were conducted at 37oC and that of C. fimi 

at 30oC. 

Results identify the stark differences between recombinant C. freundii and wildtype C. fimi in 

the ability to degrade cellulose paper. Whilst C. fimi shows considerable deformation of the 

cellulose paper squares at day 2, a similar extent of deformation is only noted for C. freundii 

at day 8. C. fimi shows almost complete solubilisation of the paper at day 7, after which no 

further deconstruction is observed. As noted from previous assays such as the Coomassie 

protein assay, there is an observably longer lag phase for the generation of protein within 

recombinant C. freundii cultures grown on cellulosic substrates. This is echoed in Figure 5.8 

as a significant lag in substrate deformation is noted until days 5 or 6, after which the paper 

squares lose structure and the media becomes cloudy with particulate matter. This extended 

lag phase may potentially be due to the inefficient expression of recombinant C. fimi genes 

which exhibit a high GC content. As such, effective cellulolytic activity for the 

deconstruction and utilization of the substrate is hindered by low expression levels of the 

cellulases.  
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Figure 5.8: Time course of cellulose paper deconstruction by a co-culture of Citrobacter freundii 

cellulase strains compared to wildtype Cellulomonas fimi. Deconstructioon of cellulose paper by a 

co-culture of C. freundii SBS197 strains cenA-cex, cenB-cex and cenD-cex in M9 media containing 

0.1% w/v yeast extract, 0.34 g/l thiamine and 125 mg cellulose paper was observed over the course 

of 9 days.  Results are compared to a C. freundii SBS197 pSB1C3 vector control culture and a 

wildtype C. fimi culture. C. freundii cultures were conducted at 37
o
C and C. fimi at 30

o
C. 

 

5.4 Utilization and deconstruction of cellulose paper in saline 

media 

Characterization assays of C. freundii strains conducted in Chapter 2 identified the ability of 

the expression host to grow in M9 minimal medium containing 1% w/v glucose and 0.6 M 

sodium chloride. To further study these observations, C. freundii cellulase strains were 
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assayed for the ability to deconstruct and utilize cellulose paper in saline media. The results 

of this are presented within this section. 

5.4.1 Coomassie protein assay of cultures grown on cellulose paper in saline media 

C. freundii cellulase strains were used to inoculate 5 ml M9 minimal medium supplemented 

with 0.1% w/v yeast extract, 0.6 M NaCl and 125 mg cellulose paper. Cultures were 

conducted in 1 oz glass vials and incubated at 37oC on a rotary shaker at 200 rpm over a 9 

day period. Assays were conducted in duplicate. Results for protein content measured using 

the Coomassie protein assay reagent are shown in Figure 5.9.  

The C. freundii SBS197 co-culture of cen(A,B,D)-cex strains showed a protein content 2.15 

times greater than that of the respective vector control at day 9 (Fig. 5.9A). As for C. freundii 

NCIMB11490, a co-culture of cen(A,B,D)-cex-cbhA-cbhB strains showed a 2.05 fold greater 

absorbance measured at day 9 compared to the vector control.  

It should be noted that results measured for each strain are not compared directly, as indicated 

within Chapter 4 the Coomassie assay will generate variable data across different bacterial 

species. In comparing each respective co-culture to the appropriate vector control strain, it 

can be seen that the relative utilization of cellulose paper in saline media by each expression 

host is comparable. Moreover, the expression of the two cellobiohydrolases CbhA and CbhB 

do not significantly contribute towards substrate utilization compared to that of Cex.  

An interesting observation made in comparing results for growth in saline media against 

growth in media lacking 0.6 M NaCl, is that almost an identical measurement of protein 

content is observed in both conditions, for both strains (Fig. 5.9B). Specifically, the C. 

freundii NCIMB11490 co-culture of cellulase strains in M9 media showed an absorbance for 

Coomassie dye of 0.321, and that of the same co-culture in M9 saline media was 0.350. The 

C. freundii SBS197 co-culture of cellulase strains in M9 media showed an absorbance for 

Coomassie dye of 0.495, and that of the same co-culture in M9 saline media was 0.521. 

Results suggest that utilization of the cellulose paper substrate is unaffected in the presence of 

0.6 M NaCl. 
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Figure 5.9: Growth of C. freundii cellulase strains in co-cultures on cellulose paper in saline media 

measured as a function of Coomassie dye absorbance at 595 nm. A C. freundii NCIMB co-culture of 

cellulase strains [endoglucanase]-cex-cbhA-cbhB and a co-culture of C. freundii SBS197 cellulase 

strains [endoglucanase]-cex are assayed for the ability to utilize 125 mg cellulose paper in 5 ml M9  

media containing 0.6 M NaCl, 0.34 g/l thiamine and 0.1% yeast extact (A). Co-cultures of C. freundii 

cellulase strains grown in saline conditions are compared to identical co-cultures grown in non-saline 

media (B). Total protein content is measured using the Coomassie protein reagent with absorbance 

recorded at 595 nm. 

 

As a comparison to assays conducted for recombinant C. freundii strains, cultures for the 

assay of C. fimi growth in M9 media supplemented with 0.1% w/v yeast extract, 125 mg 

cellulose paper and 0.6 M NaCl were conducted in parallel. Figure 5.10 shows protein 

content measured by absorbance of the Coomassie protein reagent for C. fimi cultures in the 

presence or absence of 0.6 M NaCl. It can be noted that C. fimi cultured in saline media 

generates a 2.6 fold increase in protein content from day 0 to 9, whilst C. fimi cultured in the 

absence of 0.6 M NaCl shows a 24 fold increase in protein generated.  
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Figure 5.10: Growth of Cellulomonas fimi on cellulose paper in saline media measured as a 

function of Coomassie dye absorbance at 595 nm. Wildtype Cellulomonas fimi is assayed for the 

ability to utilize cellulose paper in M9 media containing 0.6 M NaCl, 0.34 g/l thiamine and 0.1% yeast 

extract. A second culture set up in M9 media without 0.6 M NaCl is used as a positive control. Note: 

Ab595 results above 1 are considered unreliable as samples were not diluted before readings were 

recorded. 

 

5.4.2 Deconstruction of cellulose paper by C. freundii SBS197 co-cultures in saline 

media 

 

Presented in Figure 5.11 is the time course of a C. freundii SBS197 co-culture of strains 

cen(A,B,D)-cex in M9 saline media containing 125 mg cellulose paper. An identical co-

culture in M9 media lacking 0.6 M NaCl is presented for comparison as a control. The figure 

also presents wildtype Cellulomonas fimi cultures in M9 media with or without 0.6 M NaCl. 

 
The rate of protein generation measured using the Coomassie protein assay reagent is almost 

identical for co-cultures grown in media with or without 0.6 M NaCl. These findings are 

echoed within the time course shown above in Figure 5.11, as both co-cultures show similar 

degrees of substrate deconstruction over the course of 9 days. By comparison, wildtype 

Cellulomonas fimi shows considerable degradation of the cellulose paper squares to the point 

of almost complete solubilisation within 7 days in non-saline media. However in saline 

conditions there is no observable deformation of the substrate and only a slight clouding of 

the media by fibrous particulate material is observed at days 6 and 7. These results highlight 

the ability of C. freundii to tolerate saline conditions and utilize cellulose paper unhindered in 

media with a high salt content. 
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Figure 5.11: Time course of cellulose paper deconstruction by a co-culture of C. freundii SBS197 

[endoglucanase]-cex strains in saline media, compared to wildtype Cellulomonas fimi. 

Deconstruction of cellulose paper by a co-culture of three C. freundii SBS197 strains cen(A,B,D)-cex in 

M9 media containing 0.1% w/v yeast extract, 0.34 g/l thiamine and 125 mg cellulose paper was 

observed over the course of 9 days.  Results are compared to an identical control co-culture of C. 

freundii SBS197 cen(A,B,D)-cex strains in M9 lacking 0.6 M NaCl. Wildtype C. fimi cultures in M9 

media in the absence or presence of 0.6 M NaCl are also shown. C. freundii cultures were conducted 

at 37
o
C and C. fimi at 30

o
C. 

 

5.5 Discussion 

Within this chapter, the utilization and deconstruction of cellulose paper by our recombinant 

strains compared to wildtype C. fimi was documented. Of the individual E. coli MG1655 

cellulase strains, cultures of cfbglu-cenA-cbhA-cbhB showed the greatest total protein content 

as measured by the Coomassie protein assay. Of the co-cultures assayed, those expressing 

CenA and CenC grew best on the substrate. Interestingly, individual strains expressing CenB 

and CenD did not show Coomassie dye absorbance more than 1.46 times that of the vector 

control, whereas when combined in a co-culture showed a maximal Coomassie dye 

absorbance 2.95 fold greater than the vector control. These results strongly suggest a 
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synergistic action between CenB and CenD endoglucanases on cellulose paper, allowing for 

greater utilization of the substrate for growth. However co-cultures of all four endoglucanase 

expressing strains did not show an appreciable synergistic activity on cellulase paper, perhaps 

due to competitive binding between the enzymes limiting enzymatic efficiency, or perhaps 

lower overall production of those productive enzymes. E. coli MG1655strains cfbglu-cenA-

cex and cfbglu-cenA-cbhA-cbhB both exhibit a full cellulase complement, though notably 

cfbglu-cenA-cbhA-cbhB is shown to generate higher protein content. This may be due to the 

overexpression of Cex in cfbglu-cenA-cex reducing cell viability as previous studies identify 

a toxicity effect to be associated with Cex expression in E. coli (Fu et al. 2005; Fu et al. 

2006). 

Results for C. freundii NCIMB11490 cellulase strains showed that the cenA-cex-cbhA-cbhB 

strain generated the highest protein content as measured by the Coomassie assay. A co-

culture of all three strains did not show any appreciable synergistic activities. Comparing C. 

freundii NCIMB11490 and SBS197 strains transformed with the construct cenA-cex-cbhA-

cbhB it can be noted that SBS197 showed only a 1.51 fold greater absorbance than the vector 

control, whereas NCIMB11490 expressing the same construct showed a 3.01 fold increase in 

absorbance compared to the respective vector control. These results suggest NCIMB11490 is 

more suited than SBS197 for the expression of the larger cellulase constructs. In the case of 

SBS197, the cellulase strain generating the highest protein content measured by the 

Coomassie assay was that of cenA-cex in cultures with cellulose paper. Colony counts for C. 

freundii SBS197 cellulase strains on cellulose paper confirmed these results in that cenA-cex 

showed the highest CFU per ml compared to the other cellulase strains. Colony counts also 

identified the population decline observed amongst recombinant SBS197 strains grown in M9 

media. As discussed within Chapter 4, this decline may be due to an accumulation of acid 

produced by the host and a lack of sufficient buffering resulting in a drop in pH.  

The fact that all three expression hosts when expressing CenA showed the greatest generation 

of protein content compared to the other endoglucanase strains suggests that CenA expression 

contributes the most towards utilization of cellulose paper. This finding may be supported 

with the observation that CenA plays a role in the non-hydrolytic disruption of cellulose 

paper as described in Chapter 3, and so contributes to overall deconstruction and utilization 

of the substrate. 
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With regard to deconstruction of cellulose paper, the substrate offers itself as a good 

candidate for observing the physical deformation process within cultures of our recombinant 

hosts. Images taken of cellulase strains cultured in M9 medium containing cellulose paper 

showed the extent of substrate deconstruction over the course of 9 days. For the most part, it 

was observed across each expression host that cultures showing the greatest extent of 

substrate deconstruction were also those showing the highest generation of protein content, 

namely those expressing CenA. However, there are examples of C. freundii SBS197 cellulase 

strains where deconstruction of the substrate and subsequent utilization are not synonymous. 

This is exemplified by the strains cenA-cex and cenA-cex-cbhA-cbhB; both strains exhibited 

comparable results for the Coomassie assay and colony counts, indicating similar cell 

densities and utilization of the substrate is achieved. Yet, deconstruction of cellulose paper 

was markedly greater in the strain expressing Cex than that expressing the two 

cellobiohydrolases.  

At first these observations may come across as a paradox, as deconstruction of the substrate 

to liberate fermentable sugars is required for growth and protein synthesis, therefore 

deconstruction and utilization should be proportional. However, the differences in cellulase 

expression profiles of each strain may lead to differences in the manner in which the substrate 

is deconstructed. This has been previously reviewed in the literature as Cex is known to bind 

irreversibly to crystalline cellulose and processively move along the substrate in a unilateral 

fashion (Jervis, Haynes, and Kilburn 1997; Mclean et al. 2000), whereas both CbhA and 

CbhB reversibly bind and process from opposing ends of the glucan chain (Gilkes et al. 

1997). Differences such as these may contribute towards variations seen in the extent of 

substrate deconstruction and utilization. Alternatively, cenA-cex strains could exhibit higher 

CenA activity compared to cenA-cex-cbhA-cbhB strains, leading to greater substrate 

deconstruction by the non-hydrolytic disruption of CenA. 

A time course showing the extent of cellulose paper deconstruction by a co-culture of C. 

freundii SBS197 cellulase strains highlights the inefficiencies of our recombinant host 

compared to that of wildtype C. fimi. Extensive deformation of the substrate by C. fimi is 

observed at day 2 of culturing, whereas a similar result for that of recombinant C. freundii is 

only met at day 8. Moreover, this illustrated lag in cellulolytic activity is suggested to be 

partly due to low level expression of a very limited set of recombinant cellulases by C. 

freundii. Moreover, the fact that genes cloned from C. fimi exhibit a high GC content of 74% 
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also impedes sufficient expression of those cellulases by the host chassis for effective 

cellulolytic activity.  

In accordance with characterization assays conducted in Chapter 3 for growth of C. freundii 

in saline media, results presented here showed that the utilization and deconstruction of 

cellulose paper by recombinant C. freundii is unhindered in high salt conditions. That of C. 

fimi however showed complete inhibition of cellulolytic activity in saline media. As such, we 

introduce here the use of C. freundii as a suitable expression host for possible future 

bioprocessing projects conducted in sea water, which may be a more environmentally 

sustainable strategy as the use of fresh water is limited. Moreover, C. freundii offers itself as 

a feasible expression host for the bioprocessing of alginate derived from brown macroalgae 

or seaweed, which has previously been shown in E. coli (Wargacki et al. 2012).  
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Chapter 6 

  

Conclusions and future prospects 

 
6.1 Premise of the present research 
 
In an effort to reduce carbon dioxide emissions, diversify energy resources and improve 

future energy security, many industrialised economies have shown a resurgence of interest in 

the development of renewable fuels and chemicals. The development and commercialisation 

of these biorenewable products is subject to the engineering of microbial hosts capable of 

utilizing a sustainable and abundant feedstock such as lignocellulosic plant biomass. 

However, due to its complex structure and recalcitrant nature, utilization of plant biomass is 

far from being economically viable and considerable development of microbial strains 

capable of utilizing the feedstock is necessary. In consideration of this, research presented 

here is focused on overcoming the biological barriers to lignocellulose hydrolysis through the 

development and characterization of modular genetic devices encoding defined activities 

against the major polysaccharides of lignocellulose. 

6.2 Summary of contributions 
 

Utilizing the well characterized celluloytic system of Cellulomonas fimi, we constructed a 

library of fourteen standardized gene parts, each encoding a defined activity against three of 

the major polysaccharides present in lignocellulose, namely; cellulose, mannan or xylan. 

Parts were designed and assembled according to the original BioBrick assembly method 

described by Knight (2003). The power of employing this approach and methodology is that 

multiple parts can be combined in any number or order for the design of tailor made genetic 

constructs. Moreover, the development of such a library conforming to the BioBrick standard 

allows for parts to be submitted to a centralized Parts Registry (http://partsregistry.org/), 

facilitating the distribution to and contribution by peers within the field of study. The co-

ordinated development of a centralized standard library of active parts is of great value in the 

study of lignocellulose hydrolysis, as multiple enzymatic activities are required for the 

complete hydrolysis of the polysaccharides which make up lignocellulose.  

Based on previous characterization studies reported within the literature, as well as 

characterization assays performed within this thesis, results informed the rational design and 
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assembly of composite devices made up of multiple lignocellulase encoding BioBrick parts. 

Nineteen devices in total were assembled with defined activities against mannan, xylan or 

cellulose. These constructs were designed with the intention of transformation within the two 

expression hosts Escherichia coli and Citrobacter freundii, for the purpose of assaying for 

growth of the various recombinant strains on defined lignocellulosic substrates, namely; 

mannan from Saccharomyces cerivisiae, beechwood xylan, carboxymethyl cellulose, avicel 

and cellulose paper. Since the constructs are assembled as BioBricks, these may be 

repurposed and studied further for activities against other cellulosic substrates not included 

within the present work. 

Of the expression hosts transformed with the construct man2A-man26A which encodes 

hydrolysis of mannan, only E. coli showed utilization of the substrate in growth assays, 

whilst C. freundii did not. As both hosts are able to assimilate and utilize mannose (Holt and 

Bergey 2000), the reason for a difference in utilization of mannan may be attributed to 

differences in expression of the recombinant mannanases. As for E. coli and C. freundii 

expressing constructs for xylanase hydrolysis, both hosts were shown to utilize 1% w/v 

beechwood xylan as a sole carbon source, except in the case of the C. freundii strain xynF-

xynD. This was surprising as the E. coli strain xynF-xynD was able to utilize xylan; such a 

difference again may be due to differences in the expression capacity of each host. Further 

study is required to resolve the discrepancies observed between the two expression hosts. 

Assays for the growth of E. coli and C. freundii cellulase strains on amorphous 

carboxymethyl cellulose showed that those strains expressing the endoglucanase CenA were 

best suited to utilization of the substrate. This is consistent with the literature describing 

CenA as preferentially acting against amorphous forms of cellulose (Tomme et al. 1996). In 

addition it was shown that expression of the cellobiohydrolases CbhA and CbhB contributed 

significantly towards utilization of CMC, which is consistent with published studies (Warren 

1996). Co-cultures of strains expressing the endoglucanase CenB and CenD indicated a 

synergistic cooperation between the cellulases on CMC as a marked increase in growth was 

observed as compared to individual cultures of the strains. This relationship was also shown 

to be present on cellulose paper as a substrate. These findings are as yet unreported within the 

literature and contribute towards the study of synergism within the endoglucanases of C. fimi, 

which is currently lacking within the published literature. C. freundii strains assayed for 

growth on crystalline avicel cellulose by measurement of colony forming units showed that 

strains expressing the endoglucanase CenB achieved the highest colony forming units per ml 
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as compared to CenA or CenD expressing strains. These results complement those presented 

within the literature describing CenB as an endoglucanase with preferential activity against 

crystalline cellulose (Tomme et al. 1996). 

To further assess the enzymatic activities of those cellulase encoding constructs, transformed 

expression hosts were assayed for growth on cellulose paper as a sole source of carbon. Of 

the E. coli cellulase strains assayed, a co-culture of CenA and CenC expressing strains 

showed the highest growth and utilization of the substrate. Similarly, C. freundii strains 

expressing CenA exhibited the highest growth on cellulose paper. Enhanced utilization of 

cellulose paper by CenA expressing strains may be a result of the endoglucanase’s role in the 

non-hydrolytic disruption and deformation of the substrate. Evidence within the literature 

shows CenA to disrupt the structure of cotton and Ramie fibres as observed by scanning 

electron microscopy (Din et al. 1994). Presented within this thesis, it was shown that the 

same disruptive action initiated by CenA also occurs on cellulose paper, previously 

undocumented within the literature. These results support the suggestion that non-hydrolytic 

disruption increases substrate surface area and accessibility of the cellulases, enhancing 

utilization of the substrate (Din et al. 1994). Moreover, results within this thesis documenting 

observable deconstruction of cellulose paper over the culturing period confirmed an enhanced 

deformation of the substrate by CenA, as E. coli and C. freundii strains expressing CenA 

showed the highest degree of deconstruction compared to other endoglucanase expressing 

strains. 

 A novelty presented within the characterization assays of C. freundii, which to our 

knowledge has not been reported within the literature, is the ability for C. freundii to grow in 

media with an equivalent salinity to that of sea water. Deconstruction and utilization of 

cellulose paper by C. freundii cellulase strains was shown to be unhindered in the presence of 

0.6 M sodium chloride, whereas by comparison that of C. fimi was entirely inhibited in saline 

media. These results highlight the potential in developing C. freundii as a bioprocessing host 

capable of culturing in sea water, as a means of reducing the demand on fresh water 

resources. 

6.3 Development of Citrobacter freundii as an expression host 
 

We have shown that the assembly of composite devices with defined activities against a 

cellulosic substrate is achievable from individually characterized parts, though admittedly, 

more sophisticated and quantifiable characterization assays can facilitate the design process 
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and improve predictability of functioning devices. These characterization assays would need 

to be performed with specific considerations for the desired expression host. Consequently, 

the development of C. freundii as an expression host would require the comprehensive assay 

of our library of lignocellulase encoding parts within the host chassis. 

Other considerations for C. freundii as a host chassis for recombinant cellulase expression 

include determining the optimal starter carbon source for cellulose growth assays. Yeast 

extract may offer itself as a good source of carbon for industrial processes as it can be derived 

from by-products from the brewing industry. However for the purposes of scientific study it 

is not an optimal choice as within this thesis a better defined starter carbon source was needed 

to better quantify the required carbon for supporting initial growth of our various 

recombinant strains. C. freundii is able to utilize glycerol as a sole carbon source, therefore 

the use of this starter carbon source may aid in the characterization of our strains during 

growth assays. Moreover glycerol will not affect regulation of the native C. freundii β-

glucosidase. It should be noted that the use of yeast extract provides additional vitamins and 

amino acids to support protein synthesis, and so future characterization assays of the host 

chassis utilizing either glycerol or yeast extract should be compared. 

Noted within this work was the population decline of C. freundii SBS197 cellulase strains. 

Amongst members of the lab using this expression host, it was suggested that excess acid 

formed during metabolism of glucose resulted in a drop in pH, consequently reducing cell 

viability. The pH of future growth assays should be measured to investigate this, and 

determine whether additional buffering agents such as MOPS are needed for optimal growth. 

To improve the stability of our assembled genetic constructs, which in some instances exceed 

12 kilo-bases and also improve transformation efficiencies of the expression host, 

recombination of our constructs onto the genome of the host could be attempted. Methods for 

the scarless addition or deletion of recombinant DNA could afford more sustainable 

expression of cellulases and consequently improved host cell viability (Sun et al. 2008; Wang 

et al. 2006). Protocols for achieving this have been reported with the use of linear PCR 

products exhibiting complementary sequences to recombination sites on the host genome 

(Datsenko and Wanner 2000). Such a method is ideal for our standardized constructs which 

can be easily modified to exhibit a range of flanking complementary sequences using 

standard BioBrick assembly methods. However to perform this method in C. freundii, the 
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sequencing of its genome would be necessary, in order to prospect for suitable recombination 

sites. 

An interesting characteristic of C. freundii, previously unmentioned within this work is the 

ability of the host to process propanediol (Pang, Warren, and Pickersgill 2011). Within a 

subcellular microcompartment, metabolic processes for the utilization of propanediol are kept 

in isolation from other host cell activities. With regards to developing the host for biomass 

bioprocessing projects, the presence of such microcompartments can facilitate the 

metabolism of secondary products such as long chain alcohols or hydrocarbons which are 

toxic to the host. Isolating the synthesis of these products could improve host cell viability 

and improve the economics of a consolidated bioprocessing organism.  

As C. freundii exhibits a type-II secretion system and offers itself as a suitable host for the 

recombinant expression of extracellular cellulase proteins, additional modifications at the 

sequence level can be made to parts within our library to leverage the secretion system. 

Signal sequences with enhanced activity in coordinating protein secretion can be added to 

cellulase encoding constructs. Such examples of highly effective signal sequences within the 

literature have been shown to exhibit cross-host operability and offer exciting routes to 

improving productivity of the bioprocessing host (Tan, Ho, and Ding 2002). 

6.4 Defined expression of enzyme cocktails for cellulose hydrolysis 
 

As presented within this thesis, the attempt to introduce a full cellulase complement from C. 

fimi into that of the expression host C. freundii yielded positive results. Notably, though, the 

efficiency of the recombinant hosts in utilizing cellulose paled in comparison to that of 

wildtype C. fimi from which all cellulases were cloned, and this was exemplified in results 

documenting the time course of cellulose paper deconstruction. In addition, protein content 

measured for the most productive E. coli strains was a co-culture of strains cfbglu-cen(A,C)-

cbhA-cbhB giving an absorbance of 0.419, compared to C. freundii SBS197 cenA-cex of 

0.611 and wildtype C. fimi of 1.312, all utilizing cellulose paper. Attempting to redesign 

natural biological systems in an efficient manner is a common challenge reported within the 

literature surrounding metabolic engineering projects.  

Chan et al. (2005) in an attempt to modify the genome of bacteriophage T7 for more 

predictable manipulation and study, observed that a refactored surrogate was active in 

generating cell lysis on bacterial lawns; however the efficiency of which was only 22% as 
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compared to the wildtype. More recently, work by Temme et al. (2012) showed success in 

rebuilding the gene cluster of Klebsiella oxytoca encoding fixation of atmospheric nitrogen, 

from well characterized parts in a bottom up approach. Though successful, the refactored 

gene cluster was shown to perform at only about 7% efficiency as compared to the wildtype.  

These examples along with the present study highlight the need in synthetic biology projects 

for the proper characterization and measurement of biological components, as well a more 

comprehensive understanding of transcriptional control within natural systems. As such, the 

development of recombinant hosts for cellulase expression requires the comprehensive 

characterization and assay of those encoding parts.  

An opportunity for improving the functionality of our assembled constructs is that of 

precisely controlling expression of the exoglucanase Cex and the endoglucanase CenB, both 

of which were shown to have a toxic effect upon the host cell. As described within the 

literature, expression of Cex under a weaker promoter improved host cell viability, a strategy 

that could be extended to that of CenB expression (Fu et al. 2006).  

Moreover, controlling the relative expression levels of the multiple cellulases encoded within 

our devices can improve hydrolysis of cellulose. As discussed within Chapter 1, cellulolytic 

species tend to exhibit an optimized expression profile of cellobiohydrolases type I and II and 

a single exoglucanase in a molar ratio of 70:30:1 (Meyer, Rosgaard, and Sørensen 2009). To 

achieve such a defined expression profile, the need for well documented and characterized 

transcriptional and translational control elements is required. The development of a library of 

such parts is currently in underway and is being over seen by members of the International 

Open Facility Advancing Biotechnology (BIOFAB) (unpublished, 2012). Initial reports have 

announced as a high as >90% predictability in gene expression, results which are within a 

suitable window for achieving the defined molar ratio of 70:30:1 for optimized cellulase 

expression and cellulose hydrolysis. 

6.5 Protein engineering for modifying glycanase activities 
 

Methods in protein engineering offer potential for the design of glycanases with activities and 

functionalities unobserved in nature. For example, the substitution of the CenA linker 

connecting both catalytic and cellulose binding domains with that of the the human antibody 

IgA1 linker region, was shown to be unaffected by the native C. fimi serine protease and was 

instead cleaved by an IgA protease from Neisseria gonorrhoea (Miller et al. 1992). The 
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controlled disassociation the catalytic and cellulose binding domains within the modular 

cellulases allows for the control of each domain’s respective roles in cellulose hydrolysis of 

soluble oligosaccharides, or disruption of crystalline cellulose by binding to the substrate.  

The modularity of the cellulases can also be exploited for the engineering of recombinant 

hosts with improved binding capacities to the cellulose surface. Francisco et al. ( 1993) 

showed that expression of a the Cex cellulose binding domain as a fusion protein to an E. coli 

outer membrane protein allowed for the host to bind cellulose. Such a technique offers 

significant promise in replicating the efficiencies observed in complexed cellulase systems 

which tether the celluloytic host to the substrate surface, improving hydrolysis of the 

substrate and metabolic fitness of the host. 

The shuffling of catalytic and substrate binding modules within and between the glycanases 

offers a route to manipulating their activities. Gilkes et al. (1991) demonstrated that catalytic 

domains from different families can be associated with the same type of CBD. Moreover it 

was shown that a given organism could possess cellulases from several families but only one 

type of CBD. Furthermore, it was demonstrated that the linker domain shows some sequence 

identity between enzymes from the same organism but that there is little, if any, identity 

between linkers from different organisms. These observations show that a degree of shuffling 

of modules between both species and protein encoding genes is a common occurrence. As 

such, the high variability between the cellulases arose due to duplication events occurring 

whereby sequences encoding distinct modules are shuffled in and amongst other repeating 

gene sequences, and propagated through horizontal gene transfer. The same process could be 

practised in the lab for the generation of an extensive library of novel cellulase encoding 

parts. The high-throughput generation and expression of this library could be achieved 

through the use of a synthetic integron which leverages the ability of transposases to initiate 

recombination events and shuffling of gene sequences (Bikard et al. 2010). Screening of 

strains expressing variations of the library can be performed on a defined substrate of interest, 

with the strains exhibiting enhanced activity being selected for by assaying for growth on that 

substrate.  

6.6 Tailor made cellulolytic communities for a defined feedstock 
 

As mentioned before, problems exist in characterizing individual lignocellulases on defined 

substrates as experimental conditions can greatly affect observed results. Consequently, 

building composite devices from these parts does not necessarily yield assemblies with truely 
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defined activities against a substrate as complexities in synergistic activities or competitive 

inhibition of individual enzyme components is not entirely predictable. Therefore rather than 

attempt to build large gene assemblies encoding all the enzymatic functions of a wildtype 

cellulolytic species for transformation in a single recombinant host, the construction of 

smaller assemblies for distribution across a number of recombinant hosts may be performed.  

The advantage of such a distributed approach to the design of an engineered cellulase system 

is that the labour intensive steps in constructing large gene assemblies can be significantly 

reduced. Moreover, the assemblies constructed can be repurposed across multiple assays, 

each composed of a different co-culture or a different cellulosic substrate. This approach may 

reduce emergent behaviour and improve robustness of the system. Ultimately, the approach 

allows for the study of an engineered cellulolytic community and can offer insight into 

hidden synergies and complementarities between the various strains, as evidenced within this 

thesis. Four different assemblies were transformed into E. coli, each encoding a full cellulase 

complement but with each exhibiting a different endoglucanase. Co-cultures of the resultant 

strains yielded insights into synergistic activities between CenB and CenD expressing strains 

when grown on CMC and cellulose paper.   

The concept of distributed synthetic gene networks within the field of synthetic biology has 

been shown to be applicable to the study of many biological phenomena, such as distributed 

logic operations carried out across multiple individual cells (Li and You 2011). The 

applications of this are widespread and notably valuable in the design of predictable 

engineered biological systems. 

With specific regards for the development of bioprocessing projects, this concept of a 

distributed network was shown by Bayer et al. (2009) who effectively developed a stable 

culture of the wildtype cellulolytic bacterium Actinotalea fermentans and an engineered 

Saccharomyces cerevisiae yeast strain to synthesise methyl halides from biomass. A. 

fermentans was shown to utilize a number of unprocessed lignocellulose substrates as a sole 

source of carbon, including; switchgrass, corn stover, sugar bagasse and poplar. Fermentation 

of biomass by A. fermentans yielded acetate and ethanol which could be respired by S. 

cerevisiae and utilized as a carbon source for synthesis of methyl halides, commodity 

chemicals which can be polymerized by synthetic chemistry processes to produce long chain 

hydrocarbons.  
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6.7 Foundation of a bioeconomy 

 

Published studies presented here, as well as results from this thesis, highlight the advances 

made in predictably engineering biology for societal benefit. Specifically we have shown the 

potential for developing a bioprocessing host capable of utilizing cellulose as a sole carbon 

source. In the case of C. freundii, we also showed that the utilization of cellulose was 

uninhibited in saline media, allowing for the potential use of sea water for culturing and so 

reducing the use of fresh water resources. Further work in developing the host for utilizing 

raw biomass such as agriculture waste streams is still needed, though the use of parts based 

biology in designing strains for the utilization of defined lignocellulose polysaccharides 

including mannan and xylan shows promise towards this goal.  

A scenario in which waste materials are utilized for the generation of high value chemicals 

and fuels could be the foundation of a biologically driven economy, or bioeconomy (Carlson 

2007). Given the rapidly increasing global human population and by consequence the 

dwindling of traditional energy resources, innovative and more sustainable technologies are 

needed for development. The studies and concepts presented here can contribute toward that 

effect, though should be considered with regards to a larger picture; whereby waste streams 

within society are extensively repurposed and recycled across all aspects of industry, whilst 

in addition natural resources are carefully managed and invested in for future generations.  
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Appendix 

 

 
 

Fig. A: Restriction digest analysis of plasmid DNA from recombinant cellulase expressing 

strains. Miniprep plasmid DNA isolated from Citrobacter freundii NCIMB11490, Citrobacter 
freundii SBS197 and Escherichia coli MG1655 recombinant cellulase expressing strains was digested 
with the endonucleases EcoRI and PstI to confirm the presence of plasmids housing the cellulase 
encoding constructs. Constructs [endoglucanase]-cex and [endoglucanase]-cex-cbhA-cbhB are 
housed in the plasmid pSB1C3. Constructs cfbglu-[endoglucanase] are housed in the plasmid 
pSB1K3. Constructs cfbglu-[endoglucanase]-cbhA-cbhB are housed in the plasmid pSB1C3. 
 
 

 
 

Fig. B: Restriction digest analysis of plasmid DNA from recombinant xylanase and mannanase 

expressing Citrobacter freundii NCIMB11490 strains. Miniprep plasmid DNA isolated from 
Citrobacter freundii NCIMB11490 recombinant xylanase and mannanase expressing strains was 
digested with the endonucleases EcoRI and PstI to confirm the presence of plasmids housing the 
cellulase encoding constructs. Xylanase constructs cex-xynD, bxyF-cex and xynF-xynD were housed 
in the plasmid pSB1C3. The mannanase construct man2A-man26A was housed in the plasmid 
pSB1K3. 
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Fig. C: Restriction digest analysis of plasmid DNA from recombinant xylanase and mannanase 

expressing Escherichia coli MG1655 strains. Miniprep plasmid DNA isolated from Escherichia coli 
MG1655 recombinant xylanase and mannanase expressing strains was digested with the 
endonucleases EcoRI and PstI to confirm the presence of plasmids housing the cellulase encoding 
constructs. Xylanase constructs cex-xynD, bxyF-cex and xynF-xynD were housed in the plasmid 
pSB1C3. The mannanase construct man2A-man26A was housed in the plasmid pSB1K3. 
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