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Abstract 
The promoters of immediate early genes (IEGs) are rapidly activated in 

response to an external stimulus. These genes, also known as primary 

response genes, have been identified in a range of cell types, under diverse 

extracellular signals and using varying experimental protocols. Genomic 

dissection on a case-by-case basis has not resulted in a comprehensive 

catalogue of IEGs. I completed a rigorous meta-analysis of eight genome-wide 

FANTOM5 CAGE (cap analysis of gene expression) time-course datasets, and 

it revealed successive waves of promoter activation in IEGs, recapitulating 

known relationships between cell types and stimuli. I found a set of 57 (42 

protein-coding) candidate IEGs possessing promoters that consistently drive 

a rapid but transient increase in expression following external stimulation. 

These genes show significant enrichment for known IEGs reported previously, 

pathways associated with the immediate early response, and include a number 

of non-coding RNAs with roles in proliferation and differentiation. There was 

strong conservation of the ordering of activation for these genes, such that 77 

pairwise promoter activation orderings were conserved. Leveraging 

comprehensive CAGE time series data across cell types, I also observed 

extensive alternative promoter usage by such genes, which is likely to hinder 

their discovery from previous, smaller-scale studies. The common activation 

ordering of the core set of early-responding genes I identified may indicate 

conserved underlying regulatory mechanisms. By contrast, the considerably 

larger number of transiently activated genes that are specific to each cell type 

and stimulus illustrates the breadth of the primary response. 
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Lay summary 
Human cells respond to external events through the transient and rapid 

activation of a class of genes, the basic units of heredity, called immediate-

early genes (IEGs). The same set of IEGs is often activated by the majority of 

the stimuli in different cell types. However, the IEGs can be started from 

different points of their sequence in the DNA, called promoters, producing 

appropriate stimulus-specific responses. In normal and healthy cells, the 

activation of IEGs peaks and returns to a normal level after a few hours of 

stimulation. This mechanism is responsible for the execution of important 

cellular processes, such as becoming specialized to perform specific functions, 

growing and dividing, and responding to infectious things, such as bacteria and 

virus. However, the IEGs are often continuously activated in altered conditions, 

such as cancer, and their characterization constitutes a resource for the design 

of new therapies. A group of scientists recently started a project, the 

FANTOM5 project, which has provided a rich amount of data that has captured 

the activation over time of the IEGs and is well suited to study the preference 

of different cells for using specific alternative initiation points. 

 

My thesis involved improving a recently developed computational tool, and to 

identify a set of genes which are rapidly and transiently activated in eight 

FANTOM5 human time course datasets. Many of them are published IEGs 

while the others are candidate IEGs. Furthermore, I implemented a method to 

analyse the common temporal order of gene activation and the different 

initiation locations of the IEGs across different cell types and stimuli. In this 

thesis, I discussed a list of 57 known and candidate IEGs, the most interesting 

being the gene XBP1, which is an important gene because it is involved in 

protecting cells from different sources of damage. I also looked their functional 

interactions as well as their promoter changes during time. 
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Abbreviation list  
Abbreviation Description 
bp Base pair 

CAGE Cap Analysis of Gene Expression 

CI Confidence Interval 

CTSS CAGE tag starting site  

DPI Decomposition based Peak Identification  

ECDF Empirical Cumulative Distribution Functions. An 
estimate of the cumulative distribution function that 
generated the points in the sample  

ER Endoplasmic Reticulum 

EST Expressed sequence tag 

FDR False Discovery Rate. i.e. the corrected p-values for 
multiple comparisons 

GO  Gene Ontology 

HPC Haematopoietic Progenitor Cells  

HSP1 Mitochondrial heavy strand promoter 1 

HSP2 Mitochondrial heavy strand promoter 2 

ICA Independent Component Analysis 

IEG Immediate Early Gene 

IER Immediate Early Response 

IEP Immediate Early Protein 

JS 
divergence 

Jensen-Shannon measure to quantify how dissimilar 
are two distributions 

KL  Kullback-Leibler measure of divergence between two 
distributions 

KS test Kolmogorov-Smirnov test 

log2FC Log2 fold change. log-ratio of TSS's expression 
values at time of peaking and time zero 

LSP Mitochondrial light strand promoter  

MAPK Mitogen-activated protein kinase 

MCF7_EGF1 MCF7 breast cancer cells treated with epidermal 
growth factor serum 

MCF7_HRG MCF7 breast cancer cells treated with Heregulin 
hormone 

mtRNAP Mitochondrial single-subunit RNA polymerase 
NUMT Nuclear Mitochondrial DNA 

OR  Odd ratio 

PAC_FGF2 Aortic Smooth Muscle Cells treated with fibroblast 
growth factor 

PAC_IL1B Aortic Smooth Muscle Cells treated with Interleukin-
1beta 
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PEC_VEGF Primary lymphatic endothelial cells treated with 
vascular endothelial growth factor 

PMDM_LPS Macrophage response to LPS dataset 

PMSC_MIX Mesenchymal stem cells differentiation dataset 

pv P-value 

SAOS2_OST Osteosarcoma Stem Cell calcification dataset 

SC Stem Cell 

TC CAGE tag clusters 

TF Transcription Factor 

TFbs Transcription Factor binding site 

tp Time of peaking. Peak model estimated parameter 

TPM Tag Per Million 

TSS Transcription Start Site 

tssQTL TSS-associated Quantitative Trait Loci. Genetic 
variations associated to changes in promoter shape 

UPR Unfolded Protein Response 
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1.  Introduction 

 The Immediate Early Response (IER) 

To function correctly, cells require that the appropriate genes are expressed 

and translated into proteins at the right time and in the right concentration. 

Regulation of gene expression is one of the key mechanisms to guarantee that 

the right level of gene products is produced and depend on the activation of 

signal-transduction pathways which are mostly stimulus specific (Bahrami and 

Drabløs 2016). Most cell types, including innate immune system cells, cancer 

cells and embryonic stem cells react to a variety of stimuli, including mitogens, 

differentiation agents, cytokines or infection signalling (Fowler, Sen et al. 2011) 

that induce long term changes in cellular phenotypes in a stimulus and cell 

specific way. The first cellular processes started by extracellular stimuli happen 

very quickly and their prompt timing is fundamental for the correct initiation of 

following cellular process and the survival of the organism. These processes 

are known as immediate early response (IER) processes. The first genes to 

be activated and transcribed are now known as immediate early genes (IEGs) 

(Bahrami and Drabløs 2016).  

 Immediate early genes (IEGs) 

IEGs, first described in 1983, were believed to be activated during the 

acquisition of competence by quiescent cells to progression through the cell 

cycle on treatment with platelet-derived growth factor (PDGF). They were 

referred to as ‘competence genes’ (Cochran, Reffel et al. 1983, Curran and 

Morgan 1995). Their name was later changed to immediate early genes, when 

it became clear that they were activated not only by growth factors but also by 

a plethora of different external stimuli. The name was inspired by the 

previously studied ‘viral immediate early genes’, a class of rapidly activated 

viral genes which do not require de novo protein synthesis (Curran and Morgan 

1995).  
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1.1.1. Common features of IEGs 

IEGs are characterized by rapid and transient activation of their transcription 

in the first few hours after stimulation as they do not require de novo protein 

synthesis, indeed they are transcribed even in the presence of protein 

synthesis inhibitors (Herschman 1991). However, the activation of many IEGs 

is known to require the binding of specific TFs to particular binding motifs, such 

as TATA-boxes, serum-response factor (SRF), cyclic AMP response element-

binding protein (CREB) and nuclear factor κB (NFκB) motifs, that are 

frequently found in the upstream promoter regions of IEGs (Tullai, Schaffer et 

al. 2007, Fowler, Sen et al. 2011, Bahrami and Drabløs 2016). IEGs are short 

in length in comparison with other genes (19 kb versus 58 kb, on average) and 

often encode TFs involved in secondary waves of cell activation, secreted 

proteins and enzymes. Many IEGs are known to have important roles in the 

regulation of important biological processes such as cell proliferation, 

differentiation and stress responses, are often found to be deregulated in 

developmental disease and cancer (Healy, Khan et al. 2013, Lee and Young 

2013) and are therefore often well-studied genes. Arner et al. (2015) put 

together a list of 231 potential human and mouse immediate early genes from 

the literature (complete list of genes and related literature in supplementary 

table S5 in (Arner, Daub et al. 2015)). All these genes were characterized by 

early transient upregulation but only a few experiments included confirmation 

of IEG status by protein synthesis blockage (Arner, Daub et al. 2015). 

1.1.2. Kinetics of IEGs and delayed IEGs induction 

Previous literature defined two groups of genes which are induced after cell 

stimulation: IEGs, also termed primary response genes, and secondary 

response genes.  The primary response genes are thought to be activated 

immediately after stimulation, peaking at about 30 minutes, as they do not 

require protein synthesis, and their products, mostly TFs, are thought to 

activate secondary response genes. However, as reported by Tullai et al. 

(2007), a large fraction of previously considered secondary response genes, 

such as DKK1 and ESDN, are expressed in presence of protein synthesis 
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inhibitors, such as cycloheximide, and are therefore delayed IEGs. The 

delayed IEGs differ from traditional IEGs in both their gene architecture and 

functions: they do not prevalently encode for transcriptional regulators and 

their promoters are not enriched for TATA boxes and other TFbs common 

among known IEGs.  However, they share the same expression profile: a 

transient and rapid upregulation followed by a return to basal expression. 

Delayed IEGs usually peak later than IEGs, within 6 hours after cell stimulation 

(Wick, Burger et al. 1994, Dixon, Sharma et al. 1996, Freter, Alberta et al. 

1996, Tullai, Schaffer et al. 2007). Their existence has been recognised in 

several studies involving stimulation with growth factors in different biological 

systems, such as human lung fibroblasts (Wick, Burger et al. 1994), rat arterial 

smooth muscle cells (Dixon, Sharma et al. 1996), and mouse 3T3 cells (Freter, 

Alberta et al. 1996). Tullai et al. performed microarray gene expression 

analysis of T98G human glioblastoma cells at 0.5, 1, 2, 3, 4, 5, and 6 h of 

PDGF treatment. They found 133 genes induced within 4 h of growth factor 

stimulation, among them 49 known IEGs and 58 delayed IEGs were not 

inhibited by cycloheximide, and 26 secondary response genes were not 

expressed when the protein synthesis inhibitor was present. After analysis, 

their results suggest that the lag in induction of delayed IEGs compared with 

IEG was caused by delays in both transcription initiation and following 

elongation and processing (Tullai, Schaffer et al. 2007).  

1.1.3. Best studied IEGs  

The best characterized group of IEGs includes FOS, JUN and MYC, which 

were originally found to be homologous to retroviral oncogenes (Boldogh, 

AbuBakar et al. 1990). FOS and JUN proto-oncogenes encode the subunits of 

the TF activator protein-1 (AP-1) heterodimer (Rauscher, Voulalas et al. 1988, 

Curran and Morgan 1995), which binds a common DNA motif, the AP-1 binding 

site, and is involved in many important biological processes, such as cell 

proliferation and the regulation of cell-cycle regulator target gene expression 

(Karin, Liu et al. 1997). JUN family members encode proteins that can form 

heterodimers with FOS or homodimers, while FOS members can only bind to 
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JUN. FOS and JUN also have activation domains that receive cellular signals 

that increase or attenuate their activity. FOS regulates the secretion of 

cytokines during inflammatory diseases and in the determination of osteoblast 

and osteoclasts functions and its gene was first described by Curran et al. 

(Curran, Peters et al. 1982) to be involved in bone tumours induced by murine 

sarcoma virus. The oncogenic potential of FOS and JUN is the consequence 

of dysregulated expression patterns, including aberrant activation and 

repression, timing and cellular location (Curran and Morgan 1995).   

The transcription factor encoded by the MYC gene regulates the expression 

of up to 15% of all cellular genes (Knoepfler 2007), including many which 

participate in cell adhesion, the cell cycle, growth control, apoptosis and 

differentiation. MYC also appears to regulate chromatin structure, maintaining 

widespread active euchromatin (Knoepfler, Zhang et al. 2006), and the MYC 

locus is also known to be altered in many human tumours (Henriksson and 

Lüscher 1996, Hoffman and Liebermann 2008). 

1.1.4. IEGs in cancer and other diseases 

IEGs level of expression is transient in physiological cellular processes, but in 

cancer and other diseases is reported to be aberrantly high and persistent. 

Abnormally expressed IEGs support cancer progression increasing cell 

survival, growth, invasion and metastasis (Healy, Khan et al. 2013).  

FOS, one of the most studied IEGs, has long been linked to the onset of bone 

cancer, following the discovery that the viral homologue, v-fos, lacks FOS 

regulatory regions and is constitutively active in infected laboratory mice, 

inducing osteosarcoma (Curran, Peters et al. 1982, Curran, Miller et al. 1984). 

Since its discovery, FOS has been associated with cell transformation in many 

tumour types and other IEGs have been recognised as potential oncogenes.  

IEGs expression in pathological conditions can be altered in many ways, 

through the misregulation of their transcription and transduction and through 

the inappropriate destruction of their transcript and protein products (Healy, 

Khan et al. 2013).   
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Fittall et al. (2018) report recurrent structural rearrangements of FOS and 

FOSB in different human bone tumours. The rearrangements are associated 

with a disruption of the mechanisms regulating FOS and FOSB transcript and 

protein degradation, indicating that the dysregulation of these oncogenes is 

associated with the pathogenesis of human bone cancer (Fittall, Mifsud et al. 

2018). Levin et al. in 1994 compared FOS, JUN, and EGR expression in a 

cohort of non-small lung cancer (NSCLCs) samples and their surrounding 

normal tissue and show that their expression was significantly lower in 73% of 

the tumours samples. This results indicate that the downregulation of these 

IEGs is involved in lung carcinogenesis (Levin, Casey et al. 1994). Young et 

al.  studied transgenic mice and found that the transactivation of a group of 

AP-1-dependent genes promote tumour growth and may be targeted for 

cancer therapy (Young, Li et al. 1999). Furthermore, dysregulation of IEGs is 

also associated with autoimmune and neurological diseases. Mehic et al. 

(2005) describe the relationship between the erroneous higher expression of 

c-Jun, whose protein product controls cytokine expression, in basal 

keratinocytes to the outset of psoriasis in humans (Mehic, Bakiri et al. 2005, 

Wagner 2010), while the over expression of c-fos in mouse central nervous 

system was correlated with irritable bowel syndrome (Zhang, Zou et al. 2011). 

 Molecular mechanisms of the IER 

Extracellular signalling activated proteins, such as mitogen-activated protein 

kinases (MAPKs) (Bebien, Salinas et al. 2003), Rho GTPases and 

extracellular-signal regulated kinases (ERKs), as well as phosphatidylinositol 

3-kinase (PI3-kinase) signalling, trigger the transduction of a signal through 

the phosphorylation of interacting proteins and the relocation and activation of 

transcription factors (TFs) already present in the cell (Bahrami and Drabløs 

2016). Together with the interactions between promoters and enhancers, the 

transduction of the signal induces the activation of sequential waves of gene 

expression, known as the IER (Volinsky, McCarthy et al.).  
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1.3.1. The MAPK Pathway underlies the activation of 

the IER 

The mitogen-activated protein (MAP) kinases are key evolutionary conserved 

enzymes responsible for orchestrating a variety of fundamental cellular 

processes, including differentiation, proliferation and apoptosis. The mitogen-

activated protein kinase (MAPK) pathway has a central role in activating IEGs 

and is highly conserved across organisms of very different complexity such as 

mammals and yeast (Theodosiou and Ashworth 2002). It is probably the most 

intensely studied signal transduction pathway and is considered a model for 

the study of other signalling pathways. The MAPK pathway is based on a 

complicated network of signal transduction and gene activation composed of 

many kinases, including RAF, MEK and the extracellular-signal-regulated 

kinases ERK1 and ERK2 (Hindley and Kolch 2002, O'Neill and Kolch 2004), 

which are activated by consecutively phosphorylating each other (Orton, 

Sturm et al. 2005, Thalhauser and Komarova 2009). ERKs and other 

downstream activated kinases, such as the ribosomal S6 kinases (RSKs), can 

translocate into the nucleus and phosphorylate several important 

transcriptional regulators, including CREB and histone H3, resulting in the 

rapid transcription of IEGs (Murphy and Blenis 2006). Of the 811 genes 

involved in the MAPK cascade (GO:0000165) listed in the Mouse Genome 

(Roy, Schmeier et al.) Database (Blake, Richardson et al. 2003) 45 are well 

studied IEGs, such as ATF3, JUN and TNF. After the binding of a specific 

signalling molecule such as a specific growth factor to the cellular receptors 

tyrosine kinases (RTKs), the protein kinases in the cascade are activated 

sequentially, triggering the phosphorylation of transcription factors such as 

AP1, which is composed by the products of the known IEGs FOS and JUN 

(Kitabayashi, Chiu et al. 1991), and the IEG EGR1 (Svaren, Sevetson et al. 

1996), downstream regulators of the specific cellular outcome (Katz, Amit et 

al. 2007).  

One of the most interesting characteristics of this and many other signalling 

pathways involving the activation of IEG is their flexibility: different signals can 
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elicit very different outcomes. Santos et al. (Santos, Verveer et al. 2007) 

describe the different response of rat-derived neural progenitor cells to 

epidermal growth factor, EGF, and neural growth factor, NGF. The two growth 

factors act through the MAPK pathway engaging different sets of positive and 

negative feedback control mechanisms, resulting in two opposite fates: 

inducing cell differentiation and cell proliferation, respectively (Santos, Verveer 

et al. 2007, Thalhauser and Komarova 2009).   

1.3.2. IEGs molecular interpretation of signal duration 

in cell fate determination  

The duration of the signal is critical in dictating the different physiological 

outcomes in stimulated cells. Marshall et al. (1995) observed that the different 

duration of ERK activation elicited by nerve growth factor (Lerner et al. 2009) 

and epidermal growth factor (EGF) in rat PC12 pheochromocytoma cells led 

to different fates: differentiation to sympathetic-like neurons or proliferation, 

respectively. They detected persistent ERK activation after NGF stimulation 

while it was short lived after EGF stimulation (Marshall 1995).  

ERK-activation duration was found to affect cell fate in other biological systems 

(Ebisuya, Kondoh et al. 2005). Murphy et al. studied how sustained, but not 

transient, activation of ERKs causes murine fibroblasts to proliferate (Murphy, 

Smith et al. 2002) (Murphy, MacKeigan et al. 2004). This specific cellular 

outcome is driven by the activation of specific IEGs, which expression level is 

affected from the duration of the signal but also contribute to its extension in a 

positive feedback loop. To explain how IEGs contribute to propagate ERK 

signal amplitude and duration, it has been proposed that IEGs play a role in 

locally concentrate the active kinase by exposing FXTP (DEF) motifs, 

functional docking sites for ERK (Murphy and Blenis 2006). In many IEGs, 

such as FOS JUN, and MYC the carbozy-terminal phosphorylation triggered 

by sustained ERK signalling not only stabilize the IEG-encoded protein but 

also exposes the FXTP (DEF) docking site for ERK (Murphy, Smith et al. 2002, 

Theodosiou and Ashworth 2002). Is widely agreed that the IEGs have a 
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fundamental role in the molecular interpretation of ERK signal duration and are 

therefore considered ERK sensors. 

 Contribution of non-coding RNA species to the IER 

Regulating the expression of IEGs is very important and involves multiple 

levels of control of both transcriptional and post-transcriptional processes such 

as the phosphorylation of the transcription factors regulating transcription 

initiation, alternative promoter usage, alternative splicing and turnover of 

messenger RNAs and proteins. Furthermore, a number of microRNAs are 

known to target and suppress the IEGs to maintain a low activation in absence 

of the appropriate stimulation. Those small non-coding RNA molecules (~22 

nucleotides) contain a short sequence which can bind to the target mRNA 

molecules influencing their translation and contributing to their degradation 

(Zamore and Haley 2005, Sas-Chen, Avraham et al. 2012). Non-coding RNAs 

are known to be activated by the same signalling inputs of IEGs in response 

to external stimuli and are found to share common epigenomic features with 

mRNAs, such as H3K4me3 and H3K27me3 in lncRNAs (Sati, Ghosh et al. 

2012). The action of micro-RNAs is very fast because they do not require 

translation.  Studying epidermal differentiation in mice, Jackson et al. reported 

that miR-203 abolishes long term cell proliferation and its immediate 

upregulation promotes the cell cycle exit, implicating an important role in the 

early stage of stem cell differentiation (Jackson, Zhang et al. 2013). Aitken 

observed other non-coding species, including MIR99AHG linc-RNA, with 

similar early overexpression following cell stimulation across different human 

datasets (MCF7 treated with EGF1 and HRG and vascular smooth muscle 

primary cells (SMC) treated with FGF2 and IL1b) (Aitken, Magi et al. 2015).  

In many reported cases, the expression of non-coding RNA in cancer is 

aberrant analogously to many IEGs (Calin and Croce 2006, Avraham, Sas-

Chen et al. 2010). For example, Epidermal Growth Factor (EGF) is known to 

activate a set of micro-RNAs, comprising miR-15b, which targets MTSS1, a 

suppressor of migration in breast cancer and triggers tumour progression 

(Kedmi, Ben-Chetrit et al. 2015). On the other hand, in MCF10 breast cancer 
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cell line, EGF promotes tumour progression by downregulating a set of micro-

RNAs, including miR-155, which targets and suppress a set of oncogenic TFs, 

including FOS and EGR1. However, Aitken et al. observed an increase in 

expression for miR-155 in breast cancer cell line MCF7 treated with heregulin 

(HRG), possibly indicating a different, stimulus-specific, regulation.  

 Alternative TSSs and shifting promoters 

Gene promoters are regulatory regions located immediately upstream the 

coding region and are enriched for the binding sites of transcription factors and 

other molecules responsible for the recruitment of the transcriptional 

machinery and the initiation of transcription. Transcription tends to start from 

local distributions of transcription start sites (TSSs) in the promoter and 

sometimes these transcription initiation regions are located in multiple 

promoters associated to the same gene (Hoskins, Landolin et al. 2011), which 

are called alternative TSSs or alternative promoters in literature. The different 

mRNAs originating from alternative TSSs of the same gene are characterized 

by differences in stability and translational efficiency and the resulting protein 

isoforms can have different life time, functions or localisation (Zhang, Dimont 

et al. 2017).  Alternative TSSs were initially identified by primer extension (Qu, 

Michot et al. 1983), then later studied with rapid amplification of cDNA ends 

(Freter, Alberta et al. 1996)  (Frohman, Dush et al. 1988) and cap-trapped 5’ 

expressed sequence tag (EST) (Carninci, Kvam et al. 1996) sequencing and 

finally characterized with cap analysis of gene expression (CAGE) high 

throughput sequencing (Shiraki, Kondo et al. 2003, Carninci, Sandelin et al. 

2006). Using the CAGE technique, the Functional ANnoTation Of the 

Mammalian genome (FANTOM) consortium (Consortium 2014), created a 

comprehensive catalogue of TSSs in mouse and human cell lines, primary 

cells and tissues.  

FANTOM also described the different shapes of promoters classifying them 

into broad promoters characterized by a spread distribution of TSSs, or as 

sharp promoters with CAGE tags concentrated on nearby start positions 

(Carninci, Sandelin et al. 2006). Haberle et al. report that not only the different 
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promoters are characterized by preferential usage across cells, developmental 

stages, tissues and stimuli, but also the distribution of CAGE tags inside each 

promoter, which is the individual TSS usage, can vary depending on the 

context, a phenomena that they called ‘promoter shifting’ (Haberle, Li et al. 

2014).  

 Alternative TSSs in the IER 

The presence of multiple TSSs for the same gene ensure appropriate levels 

of transcription of important genes, such as the IEGs, and therefore confer 

robustness to the genome’s transcription program by ‘backing up’ the 

transcription initiation function of the promoters (Carbajo, Magi et al. 2015). 

Furthermore, the alternative TSS usage is an important regulatory mechanism 

in the IER because it increases the specificity of cell response to external 

stimulation. Different TSSs associated to the same genes can be 

characterized by tissue and cell-specific expression but also developmental 

stage-specific expression (Carninci, Sandelin et al. 2006). For example, the 

FANTOM5 CAGE data show that the gene SERPINA1, which encodes for the 

anti-protease AAT, involved in immunoregulatory processes, has at least four 

promoters; one is specifically utilized by liver cells, while the other three 

promoters are used by macrophages and other myeloid cells (Baillie, Arner et 

al. 2017).  

 Conclusions from FANTOM5 time series data  

The FANTOM5 project (Lizio, Harshbarger et al. 2015) recently analysed the 

TSS expression of 33 human and mouse densely sampled CAGE time course 

datasets. The FANTOM5 CAGE data offer a number of advantages for 

expression profiling because they are based upon single-molecule sequencing 

to avoid PCR, digestion and cloning biases. They provide up to single base-

pair resolution of TSS and promoter regions, and provide a sensitive, 

quantitative readout of transcriptional output accounting for the alternative 

promoters of each gene. The output of individual promoters is not confounded 

by splicing variation, and many novel lowly expressed transcripts including 
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non-coding RNAs (ncRNAs) can be readily detected 

(see http://fantom.gsc.riken.jp/5/). CAGE data are thus ideally suited to 

studying the strong burst of transcription at promoters seen in IERs.   

FANTOM5 data include eight CAGE time course datasets employing unusually 

dense sampling at time points within 300 min of stimulation, for a variety of 

stimuli treating a variety of human cell types. These heterogeneous datasets, 

produced using a common experimental platform, should be fertile ground for 

novel insights into the IER, but a comprehensive meta-analysis has not been 

performed until now. 

Six of these datasets have been the subject of recent publications, while two 

datasets, the adipogenesis time-series and the calcification in an 

osteosarcoma cell line time-series, have not. All data is now available on the 

FANTOM portal and the key points, with regards to their findings on IEGs, are 

summarized in Table 1.  

The general conclusions about these publications are: 

1. These studies are not directly related and investigate very different 

aspects of biology. However, they all study processes where the IER 

was known or suspected to play an important role. 

2. The analysed datasets provide a variety of details about the several 

genes activated in different biological context which is a great resource 

to develop algorithms that are relevant to studying the IER. 

3. The findings of the thesis are consistent with the observations described 

in the FANTOM5 publications and emphasise that there are strong 

commonalities in the IER, even across the very different biological 

processes profiled. 
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Table 1 FANTOM5 publications relevant to the study of the IER. This table lists the articles published 
by FANTOM5 related to the datasets used in this thesis. From left to right: references, a brief description 
of the cell types and treatments, the dataset names used in this thesis and a description of the key 
findings of the publication.    

Reference 
Cell type and 
treatment Dataset Key findings 

(Alhendi, 
Patrikakis 
et al. 
2018) 

Vascular smooth 
muscle cells treated 
with FGF2 and IL1B 

PAC_FGF2 
PAC_IL1B 

• Three times bigger proportion of promoters 
differentially expressed in PAC_FGF2 in 
respect to PAC_IL1B. 
• A number of promoters, including those of 
JUN, FOS, and EGR1, differentially expressed 
in both experiments. 
• The activation of many TF binding motifs, 
including IEGs, in target genes is associated  
to a rapid and transient increment in 
expression of the TF in the first hour after 
FGF2-stimulation and a later biphasic response 
in PAC_IL1B. 

(Mina, 
Magi et al. 
2015) 
(Carbajo, 
Magi et al. 
2015) 

MCF7 human 
breast cancer cells 
treated with HRG 
and EGF1 

MCF7_HRG 
MCF7_EGF1 

• EGF1 and HRG elicit alternative outcomes 
relevant to cancer progression: cell proliferation 
and differentiation, respectively. 
• Stronger and persistent activation of ErbB 
receptors in MCF7_HRG with respect to 
MCF7_EGF1. 
• Common MAPK regulated response in the 
early stage associated to the activation of SRF 
regulated IEGs. 
• Divergent downstream regulatory events, 
driven by the activation of stimulus specific 
IEGs. 
• Groups of TFs, including many IEGs, are 
characterized by similar early TSS activation in 
both datasets. 
• Lately expressed TFs are characterized by 
stimulus specific TSS expression profiles. 

(Aitken, 
Magi et al. 
2015) 

MCF7 human 
breast cancer cells 
treated with HRG 
and EGF1, and 
Vascular smooth 
muscle cells treated 
with FGF2 and IL1B 

MCF7_HRG 
MCF7_EGF1 
PAC_FGF2 
PAC_IL1B 

• Set of 11 IEGs peaking in the first few hours 
after stimulation, and two peaking lncRNAs, 
NEAT1 and MALAT1, across the four datasets.  
• Upregulation of JUN in PAC_IL1B, 
MCF7_EGF1 and MCF7_HRG and 
downregulation in PAC_FGF2. 

(Baillie, 
Arner et al. 
2017) 

Response of 
monocyte derived 
macrophages to 
LPS PMDM_LPS 

• Ligation of LPS with its target receptor, TLR4, 
triggers the transient and rapid expression of 
ubiquitous IEGs. 

(Dieterich, 
Klein et al. 
2015) 

Response of human 
lymphatic 
endothelial cells 
(LEC) to VEGF-C PEC_VEGF 

• Of the 241 genes upregulated after 
stimulation, a large proportion coded for TFs. 
• These genes include common IEGs such as 
FOS, JUN and EGRs, and three LECs/VEGF-C 
specific TFs: MAFB, KLF4 and SOX18. 
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 Computational analysis of gene expression time series 

data 

Time series experiments are often the best approach to study dynamic 

processes in complex systems. In recent years, gene expression has been 

studied genome wide and such data are well suited to understand the function 

of specific genes and the relationships between them. The earliest time series 

analysis of gene expression made use of micro-array data (Schena, Shalon et 

al. 1995, Winkles 1997). Later, high throughput RNA-sequencing technology 

improved the measurement of gene expression making time series 

experiments more feasible and relevant (Trapnell, Williams et al. 2010, Pauli, 

Valen et al. 2012). Nowadays there are huge numbers of deposited time series 

gene expression data covering many biological systems and organisms, such 

as the FANTOM5 collection (Kawaji, Kasukawa et al. 2017) and the ENCODE 

project (Consortium 2012).  

1.8.1. Differential expression analysis and clustering 

techniques.  

The computational methods commonly used to analyse time series expression 

data are differential expression analysis (Nau, Richmond et al. 2002, Bendjilali, 

MacLeon et al. 2017, Spies, Renz et al. 2017) and clustering (Walker, 

Volkmuth et al. 1999, McDowell, Manandhar et al. 2018). Differential 

expression analysis tries to identify the genes which expression significantly 

changes across time points, while clustering methods try to group together 

genes with similar expression profiles. Results from both methods have led to 

important discoveries and increased our understanding of biological dynamic 

processes. For example Blishack et al. (2015), studying the specific response 

of macrophages to Mycobacterium Tuberculosis infection, identified a group 

of genes differentially expressed over time and specifically affected by this 

pathogen (Blischak, Tailleux et al. 2015), while Mina et al. (2015) applied the 

CIDER pipeline, which integrates hierarchical clustering of time series with 

motif enrichment analysis, to infer the transcriptional cascades initiated by 
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ErbB receptors in MCF7 cell line (Mina, Magi et al. 2015). It’s noteworthy to 

mention that differential expression analysis contributed to the discovery of 

many IEGs (Selvaraj and Prywes 2004, Tullai, Schaffer et al. 2007). However, 

both differential expression and clustering analysis present challenges and are 

not appropriate to compare gene expression time-series data from different 

experiments (Bar-Joseph, Gitter et al. 2012). For example, differential 

expression methods rely on large amounts of data to detect significant 

changes in successive time points and lowly expressed genes are discarded 

as they cannot pass this threshold. Clustering methods do not perform well 

when encountering genes with unusual expression profiles and tend to group 

together genes with low correlation and different local behaviours with other 

members of the cluster, missing global similarities with genes in other clusters. 

Furthermore, both methods are not appropriate when comparing datasets of 

different length and different time points and both methods implicates a data 

mining process where the expression profile of interest is not known.  

 Transcriptional dynamics of the IEGs 

Using a novel analysis approach for time course datasets, Aitken et al. (2015) 

identified protein coding and non-coding transcripts with expression profiles 

that approximate the dynamics of known IEGs.  Generally, the method uses a 

Bayesian model selection approach with nested sampling algorithm to fit the 

expression patterns to mathematical models of interest, then it select the 

model that fit better the data (Figure 1).  
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Figure 1 Time-course model-fitting analysis. After defining 4 models of interest (peak, linear, decay, 
dip), the algorithm calculates the evidence, log Z, for each model and finally selects the model which 
better explains the expression profile. In this example, the immediate early gene FOS has been assigned 
to the peak model.  
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In the paper, Aitken et al. analysed the expression profile of four CAGE time 

course datasets from FANTOM5 project, the vascular smooth muscle 

quiescent cells (SMC) treated with FGF2 or IL1b datasets, and the MCF7 

human breast cancer cell line samples treated with the epidermal growth factor 

EGF1 or heregulin (HRG), and classified the genes to four models, a peak 

model, closing resembling the expression pattern of IEGs, a dip model, a 

decay model and a linear model.  

In the paper, the peak model is characterized by a basal expression level p1  

and an increase up to 90% of the change in expression p2 at time ts. The rate 

δ is defined in terms of ts.  

! =
log	(0.1)

,-
 

. = 	/0 + /2 ∗ 41 − 6789; , ≤ ,- 

 

. = /0 + 0.9 ∗ /2 − 0.9 ∗ /2 ∗ 41 − 67(8=8>9; , > ,-	 

 

 

The dip model is parameterized by p1, which represents the minimal 

expression and p2, which represents the change in expression at ts. The 

expressions starts at p1 + p2  and drops by 90% of p2: 

 

! =
log	(0.1)

,-
 

. = 	/0 + /2 ∗ 678; , ≤ ,- 

 

. = /0 + 0.1 ∗ /2 − 0.9 ∗ /2 ∗ 41 − 67(8=8>9; , > ,-	 

 

 

In the linear model p1 is the expression at time 0, while p2 is the expression at 

the last time point tmax: 
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In the decay model p1 represents the basal expression, p2 the maximal change 

in expression, and th the time in which the expression is  
CD
2

(Aitken, Magi et al. 

2015): 
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log	 2
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Fitting the expression profiles of the entire set of CAGE TSSs detected in the 

four datasets, Aitken et al. found that most CAGE TSSs associated to known 

IEGs were classified to the peak model and identified a set of protein coding-

genes, microRNAs and other non-coding RNA species activated similarly to 

known IEGs.  

 

Although chromatin data are not available for the datasets analysed, Aitken et 

al. used DNaseI hypersensitivity data for MCF7 cells from ENCODE 

(Consortium 2011) to investigate the chromatin context were the peak CAGE 

TSSs were located. They found that protein-coding CAGE TSSs assigned to 

the peak model are located in accessible chromatin and an association 

between DNAseI reads between 100 and 1000 and CAGE expression at time 

0 higher than 10 TPM suggesting that the rapid activation of IEGs requires 

minimal levels of chromatin accessibility. In this thesis I am extending the work 

done by Aitken et al. by adding four FANTOM5 time course datasets, 

introducing a delay in the peak model to improve the fitting, and focusing on 

the temporal order of activation of candidate IEGs. 
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 Meta-analysis: opportunities and limitations 

Transcriptomic analysis studies are subject to many challenges, such as the 

sequencing error rate, reads mappability and data standardization and 

interpretation. All these factors affect the quality of downstream analysis and 

introduce variable levels of noise in the results.  When the expression of 

thousands of genes is compared, the error rate increases and the p-values 

obtained have to be corrected with different techniques, such as the Bonferroni 

correction (McDonald 2009), decreasing the list of significant genes and 

therefore the power of the analysis. In a study from 2001, it was estimated that 

even applying strict multiple–test correction, in 26 over 36 genetic association 

studies (72%), the significant genomic association were no longer significant 

after testing them in additional datasets (Ioannidis, Ntzani et al. 2001). 

Applying meta-analysis, which is the integration of as many pertinent datasets 

as possible from multiple sources, partially minimizes bias, because it 

increases the amount of information content. Meta-analysis is a useful 

approach to estimating and explaining the heterogeneity across datasets. 

However, comparing different datasets with biological and technical variance 

is not straightforward. Many different approaches have been proposed to 

address this issue and guarantee robust and reproducible results, such as 

combining p-values, z-scores, ranks and or effect sizes (Sweeney, Haynes et 

al. 2017). 

 

 Aims of the thesis 

Although the IER, and a small number of IEGs are well studied, the majority of 

studies have been performed on single genes or pathways and often 

considering a specific cell type or stimulus. This means that the results from 

different studies are difficult to compare computationally because of 

experimental and technical variations. A number of studies have attempted to 

compare different time series data using differential expression analysis of 

time points or clustering of gene expression profiles. However, both techniques 

present problems, including poor sensitivity for low expressed genes and 
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difficulties in comparing datasets with different sampling times. A 

comprehensive analysis of the IER and a catalogue of IEGs is still missing. 

Furthermore, the relationships between IEGs are still unclear.  

In this thesis I perform an extensive meta-analyses of promoter activity in the 

context of the IER, encompassing unusually diverse cell types and stimuli.  

The aims of this work are: 

• To improve a recently published method for time series analysis by 

attempting to find better estimates for model parameters and allowing a 

delay in the peak model accounting for a delay in the induction of 

transcription. 

• To rigorously classify IEGs and estimate the core IEG repertoire active 

across cellular responses. 

• To identify possible novel protein coding and non-coding genes 

participating to the IER. 

• To analyse the temporal activity patterns of promoters and the 

relationships between IEGs. 

• To discover the extent to which the IER regulatory mechanism is shared 

among cell types and common to diverse stimuli. 

• To document alternative promoter usage patterns for the genes active 

in the IER and determine whether this contributes to the regulation of 

the IER across different cell types and stimuli. 

• To verify the existence of promoter shifting events in the datasets 

analysed as a possible additional regulatory mechanism of the IER. 
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2. Methods 

 Data Resources 

The data used in this project was produced by the FANTOM collaboration, 

release 5, phase 2. The eight datasets considered here can be broadly 

subdivided in 3 groups: Three cell activation datasets, three cell proliferation 

datasets and finally two cell differentiation datasets. Figure 2 shows the 

sample collection scheme for the eight datasets. Notably, all the datasets are 

densely sampled in the first three hours after stimulation. Specifically, they all 

share the first six time points (0, 15, 30, 45, and 60 minutes). However, the 

datasets are characterized by overall difference in length and sampling points, 

with Mesenchymal SC differentiation as the shortest and Macrophage 

response to LPS as the longest series. In all datasets, time 0 corresponds to 

inactivated or quiescent cells. 

 
Figure 2 Time course datasets encompassing the immediate early response.  A schematic view of 
the eight time-course datasets, with horizontal lines indicating the span and points representing the times 
of sampling. For all datasets the time zero corresponds to inactivated or quiescent cells. 
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 Cell activation series 

2.2.1. Macrophage response to LPS - PMDM_LPS 

Human macrophages were obtained from CD14-positive monocytes extracted 

by 3 anonymised donors with approval of the human Ethics Committee of the 

University of Edinburgh (8/9/09). The CD14-positive monocytes extracted from 

320mls of blood from each donor, were cultured in recombinant human CSF1 

at 100ng/ml for 7 days. Afterwards, the monocyte-derived macrophages were 

treated with 100ng/ml of salmonella R595 LPS. The entire dataset is 

composed of 3 biological replicates sampled at 23 time points along a span of 

48 hours but was sparsely sampled after 12 hours. For the meta-analysis I 

decided to shorten the longer time course, the PMDM_LPS, from the original 

48 hours to 12 hours. Samples used in my meta-analysis were taken at 0 time 

(non-stimulated), 15, 30, 45, 60, 80, 100, 120, 150, 180, 210, 240, 300, 360, 

420, 480, 600 and 720 minutes. The dataset was provided to the FANTOM 

consortium for sequencing by David Hume (Roslin Institute and Royal (Dick) 

School of Veterinary Studies, University of Edinburgh, United Kingdom). 

2.2.2. Osteosarcoma SC calcification - SAOS_OST 

The human osteosarcoma cell line used, Saos-2, was first created extracting 

osteosarcoma epithelial cells from a 11 years old female patient in 1973.  

Mineralization was induced by 50 μg/ml ascorbic acid and 2.5 mM 

Bisphosphoglycerate (BPG) in medium with 10% serum. The dataset consists 

of 3 biological replicates sampled at 18 time points spanning 28 days, from 

which we selected samples taken at 0 (untreated), 15, 30, 45, 60, 80, 100, 

120, 150, 180, 240, and 480 minutes. The Saos-2 cell line was provided to 

FANTOM consortium for sequencing by Kim Summers (The Roslin Institute 

and R(D)SVS,  

University of Edinburgh, United Kingdom). 
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2.2.3. AoSMC response to IL1b - PAC_IL1B 

Growth arrested human aortic smooth muscle cells were obtained from 3 

donors by Cell Applications (CA, USA). The cells were incubated in serum free 

medium for 24 hours, and therefore rendered cell growth-quiescent, and then 

treated with IL-1beta (10ng/ml) and sampled at 0 (quiescent and unstimulated 

cells), 15, 30, 45, 60, 120, 180, 240, 300 or 360 min.  The samples were 

provided to the FANTOM consortium for sequencing by Levon Khachigian 

(UNSW Centre for Vascular Research, University of New South Wales, 

Sydney, Australia). 

 Cell proliferation series 

2.3.1. AoSMC response to FGF2 - PAC_FGF2 

Human AoSMC has been collected, treated and finally sampled and submitted 

to FANTOM for CAGE-sequencing as described above, treating with FGF-2 

(50ng/ml) instead of IL1b. 

2.3.2. Lymphatic EC response to VEGFC - PEC_VEGF 

The primary lymphatic endothelial cells, previously isolated from human 

foreskin from 3 individual donors, were starved overnight before treating with 

1.5 μg/ml recombinant human VEGF-C156S for 0 (unstimulated), 15, 30, 45, 

60, 80, 100, 120, 150, 180, 210, 240, 300, 360, 420, 480 minutes. Michael 

Detmar (Swiss Federal Institute of Technology, ETH Zurich) provided the 

samples to FANTOM consortium for sequencing. 

2.3.3. MCF7 response to EGF1 - MCF7_EGF1 

MCF7 breast cancer cells, originally isolated from the pleural effusion of 69-

years old woman with breast cancer, were collected from American Type 

Culture Collection (ATCC) and maintained DMEM supplemented with 10% 

fetal bovine serum and analysed in 3 biological replicates. EGF1 was added 

only after 16-24 hours of serum starving. 16 time-points were taken up to 8 

hours from stimulation at 0 time (non-treated), 15, 30, 45, 60, 80, 100, 120, 
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150, 180, 210, 240, 300, 360, 420, 480 minutes and provided for sequencing 

to the FANTOM consortium by Mariko Okada-Hatakeyama (Laboratory for 

Integrated Cellular Systems, RIKEN Center for Integrated Medical Sciences, 

IMS, Yokohama, Japan). 

 Cell differentiation series 

2.4.1. MCF7 response to HRG - MCF7_HRG 

MCF7 cell line was collected, treated and sampled as described above, 

treating with HRG hormone instead of EGF1. 

2.4.2. Mesenchymal SC differentiation - PMSC_MIX 

Human adipose-derived mesenchymal stem cells were provided to FANTOM 

consortium for sequencing by Peter Arner (Karolinska Institutet, Stockholm, 

Sweden) and were derived from the stromal-vascular fraction of human 

subcutaneous adipose tissue of 4 donors. After propagation in vitro, a stem 

cell/progenitor population was selected and expanded in multiple passages. 

The differentiation has been stimulated with a differentiation cocktail 

containing IBMX, dexamethasone and Rosiglitazone, and sampled in 3 

replicates with homogeneous genetic background at 0 (unstimulated), 15, 30, 

45, 60, 80, 100, 120, 150 and 180 minutes. 

 CAGE technology: opportunities and challenges. 

The datasets analysed are all part of FANTOM consortium (Consortium 2014), 

5th release, Phase 2. Whole transcriptome abundance analysis and 

Transcription Start Site identification at single base definition were carried out 

using Cap Analysis of Gene Expression (CAGE), which is a specialized 

sequencing technology developed in RIKEN (Shiraki, Kondo et al. 2003, 

Kodzius, Kojima et al. 2006). CAGE technology (Figure 3) involves the 

sequencing of DNA tags obtained from the initial nucleotides of the 5’ end of 

cDNAs and allows to measure transcript abundances and to identify the 

starting point of transcription at single base resolution. HeliScope single 

molecule sequencer is used instead of employing polymerase chain reaction 
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(PCR), with the advantage of avoiding bias introduced by the amplification of 

the DNA strand. Longer reads (average 33 bases) from HeliScope CAGE 

minimize the proportion of tags that maps to multiple loci compared to the 

protocols used in previous versions of FANTOM (Kanamori-Katayama, Itoh et 

al. 2011). However, highly similar sequences such as transposons and 

pseudogenes still generate mapping ambiguity and their annotation is often 

challenging. Furthermore, HeliScope CAGE data have an elevated 

sequencing error rate (~5%), variable length and lack an assessment of base 

quality (Consortium 2014).  

CAGE ribosomal reads were eliminated using rRNAdust (author: T. Lassmann, 

software available at fantom.gsc.riken.jp/5/suppl/rRNAdust/), a parallel 

dynamic non-heuristic programming algorithm that directly aligns the reads to 

the whole ribosomal DNA, and the remaining reads were mapped to the 

genome (hg19) using Delve, a probabilistic mapper which makes use of hidden 

Markov model to iteratively map reads to the genome and assess the 

probability of a wrong mapping. Individual reads are finally assigned to the 

genomic location with the highest probability to be true. It is noteworthy that 

neither rRNAdust nor Delve algorithms have been published so far, although 

they are both extensively used in all the recent FANTOM CAGE data 

processing. 
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Figure 3 CAGE technology and reads data processing. Schematic view of the protocol for CAGE 
sequencing. After mRNA reverse transcription, 5’ caps are biotinylated to allow selection and the DNA 
filament is then cut.  

 

 CAGE TSSs clustering and quantification    

To assemble nearby TSS into co-regulated units, CAGE peaks were clustered 

in hierarchical structures of genomic intervals containing more CAGE reads 

than the surrounding regions (Figure 4).  

TSSs were constructed from aligned CAGE tags and the number of tags 

supporting each TSS counted. Data was filtered and normalized and CAGE 

tags which map to the same distinct TSS sequences on the same strand of a 
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chromosome and overlap by at least 1 base pair (bp) were clustered into tag 

clusters (TC), which were finally aggregated across multiple datasets to build 

a set of consensus promoters, common to all FANTOM datasets. Clusters 

longer than 49 bp were decomposed into non-overlapping sub signals using 

independent component analysis (ICA) (Hyvärinen, Karhunen et al. 2001), and 

CAGE TSSs were finally validated using supporting evidence from co-

localization with expressed sequence tags (ESTs), H3K4Me3 sites and DNase 

Hypersensitivity regions (Consortium 2014). 

Tables with CAGE counts, expressed as tag per million, are available for 

FANTOM collaborators to download from  

https://fantom5-collaboration.gsc.riken.jp/wiki/index.php/Timecourses. The 

method described, defined decomposition based peak identification (DPI), is 

available to download from github at https://github.com/hkawaji/dpi1.  

Furthermore, the FANTOM consortium recently released CAGEr R package 

(Haberle, Forrest et al. 2015), the first comprehensive CAGE toolbox which 

contains all the functions necessary to obtain consensus clusters of TSS 

starting from aligned CAGE tags or files with genomic locations of TSS and 

number of supporting CAGE tags. It also provides many functions for 

visualization of statistic over the data and analysis of TSS dynamics and 

different usage across datasets.  

 The CAGEr package is freely available from Bioconductor 

at http://www.bioconductor.org/packages/release/bioc/html/CAGEr.html 
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Figure 4 CAGE TSS clustering. (A) Overlapping CAGE tags have been clustered into tag clusters (TC), 
which have been finally aggregated across multiple datasets to build a set of consensus promoters (1), 
common to all FANTOM datasets (B). Clusters longer than 49 bp were decomposed (2) into non-
overlapping sub signals using independent component analysis (ICA) (Hyvärinen, Karhunen et al. 2001) 
(C), and CAGE TSSs were finally validated (3) using supporting evidence from co-localization with 
expressed sequence tags (ESTs), histone marks and DNase Hypersensitivity regions (Consortium 2014) 
. 

 

 Annotation of CAGE clusters to Gencode V10  

As described in (Lizio, Harshbarger et al. 2015) CAGE TSSs have been 

annotated by the FANTOM consortium, using a hierarchical approach, with 

respect to Gencode (Harrow, Frankish et al. 2012) V10.  The FANTOM5 
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BioMart (Kasprzyk 2011) web interface (http://biomart.gsc.riken.jp/) can be 

queried for FANTOM5 CAGE peaks and samples, and contains Ensembl 

(Hubbard et al. 2002) and other sources id annotations such as NCBI (Maglott, 

Ostell et al. 2010) and UniProtKB (Boutet, Lieberherr et al. 2007) IDs. 

However, because of not fully transparent documentation and inconsistency 

across multiple id references, I decided to re-annotate the FANTOM5 CAGE 

TSSs using only Gencode V10 Ensembl nomenclature with a simplified 

annotation procedure (Figure 5). Considering the 5’ end of each Ensembl 

transcript, I computed the distance with each CAGE cluster extremities. For 

the plus strand I assigned a positive sign where the 5’ end of the CAGE cluster 

lies downstream of the transcript 5’ end. Here, the distance value is calculated 

between the 5’ end of CAGE cluster and Ensembl transcript and a negative 

sign when both the CAGE cluster’s 5’ and 3’ end lies upstream to the transcript 

5’ end and its values is computed between the CAGE cluster 3’ and the 

transcript 5’ ends. The distance value is equal to 0 where the CAGE cluster 

lies upstream the transcript 5’ but the CAGE cluster 3’ end is contained in the 

transcript coordinates or lies downstream to the transcript 3’ end.  

For the minus strand a positive sign is assigned when the 5’ of the CAGE 

cluster lies upstream the transcript 5’ and the distance is computed between 

the 5’ extremities, a negative sign is assigned when the CAGE cluster lies 

entirely downstream to the transcript and the distance is computed between 

the 3’ of the CAGE cluster and the 5’ of the transcript and the value is 0 when 

CAGE cluster coordinates overlap (completely or partially) the transcript 

coordinates and the CAGE cluster 5’ lies downstream to the transcript 5’.  

Finally, for each CAGE cluster I assigned the Ensembl transcript (or group of 

transcripts when the distance was the same) with absolute distance value <= 

500 bp.  

Distance was computed using closestBed utility from the bedtools toolset 

(Quinlan and Hall 2010). 
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Figure 5 CAGE TSS annotation. Graphic representation of CAGE TSS annotation for plus (A) and 
minus (B) strands. For the plus strand (A) the distance value, D, is equal to 0 where the CAGE TSS lies 
upstream of the transcript 5’ and the 3’ is contained in the transcript coordinates or lies downstream to 
the transcript 3’. D>0 where the 5’ of the CAGE TSS lies downstream of the transcript 5’ and D<0 when 
both the CAGE cluster 5’ and 3’ lie upstream of the transcript 5’. For the minus strand (B) D=0 when the 
CAGE TSS overlap the transcript and the 5’ lies downstream the transcript 5’. D>0 where the 5’ of the 
CAGE TSS lies upstream the transcript 5’ and D<0 when both the CAGE cluster 5’ and 3’ lies 
downstream to the transcript 5’. 

 

 Mitochondrial and multigene families’ genes are 

ambiguously mapped by FANTOM CAGE short reads 

In humans, mitochondrial DNA exists as a circular molecule about 16kb long, 

which is transcribed by Mitochondrial single-subunit RNA polymerase 

(mtRNAP), a specialized RNA polymerase. The transcription of mitochondrial 

genes only starts from three promoters: one in position 407 on the light strand 

(light strand promoter, LSP), and two in position 561 and 646 on the heavy 

strand (heavy strand promoter 1 and 2, HSP1 and HSP2). The resulting 

polycistronic transcripts are then processed and the mRNAs are extracted. 
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However, all mitochondrial transcription units are considered uncapped 

(Grohmann, Amalric et al. 1978, Temperley, Wydro et al. 2010).  

In the datasets analysed in this project, I observed 93 CAGE TSSs assigned 

to 13 protein coding genes and 105 CAGE TSSs assigned to 21 non-coding 

genes, mapping to the mitochondrial genome (over 37 total genes contained 

in the mitochondrial DNA). Among these, only two CAGE TSSs were located 

close to the conventional HSP1 and HSP2 positions, while the others were in 

the proximity of mitochondrial transcription units. Hoskins et al. (Hoskins, 

Landolin et al. 2011) observed similar peculiar mapping of CAGE tags in 

Drosophila melanogaster and in the unpublished data on human cell lines 

K562 and GM12878 (https://www.genome.gov/26524238/encode-project-

common-cell-types/) produced in the ENCODE project (Birney, 

Stamatoyannopoulos et al. 2007). These results are incompatible with the 

assumption that CAGE reads involve the TSSs of transcribed genes.  

It is likely that the mapping of CAGE reads to mitochondrial genes could be 

confounded by the presence of NUclear MiTochondrial (NUMT), often 

represented hundreds of times in the nuclear genome and therefore possibly 

erroneous targets of short read assignments.  

Another class of genes difficult to map reliably with CAGE reads is the set of 

genes belonging to multigene families, including the small nuclear 

ribonucleoproteins (snRNPs) involved in gene regulation and alternative 

splicing, such as U2, U6 and U3 (Will and Lührmann 2011). snRNPs genes 

are found in the genome in tandem arrays of multiple copies of the same gene 

flanked by spacer DNA. Furthermore, the majority of the members of this class 

are pseudogenes, for example U1 snRNA in human cells is represented by 30 

functional genes in chromosome 1 and non-functional pseudogenes 

composed by complete but aberrant U1 gene characterized by extensive 

flanking homology to the true U1 genes (Lindgren, Bernstein et al. 1985). The 

mapping of pseudogenes and transposons with short reads technology, such 

as CAGE, which cannot distinguish identical or highly similar, is error prone. 
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 Data filtering   

From 22,846 tested CAGE TSSs associated with 12,145 Ensemble protein-

coding genes and 2,730 tested CAGE TSSs associated with 1,387 Ensembl 

non-coding genes, we filtered out all the CAGE TSSs with possible ambiguous 

mapping, that is genes belonging to multigene families, such as the snRNA U1 

and 7SK, another component of the snRNP complex, and all the genes 

annotated to the mitochondrial chromosome. This left 22,753 protein coding 

CAGE TSSs (12,132 Ensembl genes) and 2,476 non-coding CAGE TSSs 

(1,226 Ensembl genes). 

 Time-course gene expression profile classification 

Time-series gene expression data are well suited to study the IER because it 

involves dynamic processes which cannot be properly characterized with static 

experiments. The existing methods for time-series gene expression analysis 

fall in two main groups: differential expression methods and expression profile 

clustering. Both methods perform well in single experiments but are not well 

suited to perform comparison across different experiments and neither method 

is designed to systematically identify expression profiles following a specific 

trend of interest. To classify time-series data for each CAGE defined TSS, I 

refine a previously successful Bayesian model selection algorithm (Aitken, 

Magi et al. 2015) to classify promoter responses to pre-defined mathematical 

models. I focused on the peak mathematical model which is designed to 

approximate the rapid and transient expression profile of IEGs, to classify 

known IEGs and identify possible novel IEGs. This method is designed to 

handle lowly expressed genes, such as the non-coding RNAs, and to classify 

gene expression profiles independently from the length and the sampling time 

of the time-series experiment, and is therefore well suited to compare different 

experiments, such as the eight FANTOM5 densely sampled time-course 

datasets previously described which are studied in this project. 
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 Meta-analysis approach 

The IER has been extensively studied in the past years and a number of 

studies compared the expression of IEGs across multiple and usually related 

datasets (Mina et al. 2015; Alhendi et al. 2018). Recently Aitken et al. (2015) 

developed a new method to identify IEGs which is well suited for meta-analysis 

as it does not require the same number of time points across datasets nor a 

minimum differential expression level (Aitken et al. 2015). Therefore, in this 

thesis, Aitken’s method was chosen to identify coding and lowly expressed 

non-coding candidate IEGs in multiple FANTOM time-series of different length. 

Combining the results from multiple datasets can be achieved using different 

approaches. In this study I utilized a simplified version of the ‘vote-counting’ 

approach described in (Bushman and Wang 1994). I ranked the genes 

depending on the number of datasets sharing the peak kinetic. I defined a 

‘robust set’ of genes peaking in at least seven out of eight datasets and a 

‘permissive set’ of genes peaking in at least four datasets. Then I computed 

IEGs and GO terms enrichment analysis for each subset of genes peaking in 

any different number of datasets. Genes that are higher ranking are expected 

to be true IEGs. Furthermore, I compared promoter dynamics across datasets 

and I used the conserved order of time of peaking to build a model of the IER.  

 Testing for statistical enrichment  

IEG and TF enrichment in the group of genes classified as a peak in each 

dataset and in the permissive and robust set is performed to validate the peak 

classification method, as they are expected to contain more known IEGs than 

the non-peaking genes. 

The list of 234 known IEGs (Arner, Daub et al. 2015) was assembled from 20 

published human and mouse datasets from the literature. The list of IEGs 

includes genes identified in cells and/or responses which are not assessed in 

this project. From this list, 212 known IEGs were detected across the eight 

datasets during the classification step. I found 204 known IEGs to peak in at 

least one datasets (Appendix Table 1). 
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The example in Figure 6 shows how the enrichment of known IEGs CAGE 

TSSs is calculated for one of the eight datasets (i.e. MCF7_EGF1). I compared 

the proportion of peaking CAGE TSS assigned to known IEGs with the 

proportion of peaking CAGE TSSs assigned to candidate IEGs. Fisher’s exact 

test is applied to the contingency matrix of peaking known IEG CAGE TSSs 

versus peaking candidate IEG CAGE TSSs. 

 
Figure 6 IEGs enrichment in each dataset. Schematic view of the approach used to compute the 
enrichment for peaking known IEGs CAGE TSSs (in green) in respect to peaking candidate IEGs (in 
red). The odds ratio and the p-value are calculated with Fisher’s exact test using the numbers in  the 
contingency table. 

To compute the enrichment of peaking CAGE TSSs assigned to known IEGs 

in the permissive and robust sets I used a similar approach, which can be 

visualized in Figure 7. I compared the proportion of peaking CAGE TSSs 

assigned to the known IEGs in each set of shared peaking genes (in the 

example 3 out of 4 datasets) with the proportion of peaking CAGE TSSs 

assigned to IEGs in the remaining set (in the example 1 to 2 datasets). The 

odds ratio and the p-value was assigned using Fisher ‘s exact test. 
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Figure 7 IEGs enrichment in sets of shared peaking genes. Schematic view of the approach used to 
compute the enrichment for peaking known IEGs CAGE TSSs in the set of genes globally peaking in at 
least 3 out of 4 datasets in respect to the genes globally peaking in less than 3 datasets. The odds ratio 
and the p-value are calculated with Fisher’s exact test using the numbers in the contingency table. 

 

To assess the extent of the bias possibly caused by the higher number of TSSs 

associated to genes assigned to the peak model across multiple datasets I 

also performed a more stringent enrichment analysis. To test the IEGs 

enrichment, only the FANTOM defined canonical TSS, the p1, of each gene 

was used and the results, as described in Chapter 4.4, support the enrichment 

analysis described in this paragraph. 
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I also looked for enrichment in TF coding genes.  To this purpose I used a list 

of 453 manually curated sequence-specific DNA-binding transcription factors 

extracted from the list created by Vasquerizas et al. (Vaquerizas, Kummerfeld 

et al. 2009) and applied the method described for IEGs enrichment. 

 Transcription factor binding sites enrichment 

To assess the enrichment of TF binding profiles for the CAGE TSS regions, I 

used the entire collection of motifs contained in the JASPAR CORE 

subcollection of non-redundant profiles (Mathelier, Zhao et al. 2013) (updated 

on January, 2017). I used bedtools to extract the FASTA files for each region 

and I used the FIMO function (Grant, Bailey et al. 2011) (MEME version 4.11.2 

patch 2) to detect the occurrence of the given motifs. FIMO converts the 

frequency matrix obtained matching the motif to the sequences in log odds 

scores and then estimates the p-values from the probability distribution of all 

possible match scores to the motifs (Grant, Bailey et al. 2011). 

The significant TF binding motifs (FDR ≤ 0.05) were selected and Fisher’s 

exact test was applied to calculate the significance (q value <=0.05, Benjamini 

& Hochberg correction) for the recurrence of each motif in the known IEGs and 

in the robust set in respect of the total tested genes.  

 Functional peaking genes set enrichment analysis 

I used GOrilla (Eden, Navon et al. 2009) and InnateDB (Breuer, Foroushani et 

al. 2012) platforms to infer functional enrichment (FDR <= 0.05) for the set of 

genes peaking across the eight datasets and in the robust set, respectively. 

The background gene set for GO terms enrichment analysis consists in the 

total 12,132 genes analysed across the eight datasets. 

  



 37 

3. Comparative analysis of time-course gene 

expression datasets 

 Introduction 

RNA-sequencing has been proven to be an excellent procedure to compare 

cellular whole transcriptome expression and regulation between different 

conditions, such as disease and health or treatment and control, however, the 

study of dynamic biological processes such as response to drugs or 

development, involves the analysis of time-course datasets. In order to classify 

genes based on the change in the signal across time points, differential 

expression and clustering analysis, along with appropriate statistical methods 

to accurately handle count-based data, have been proposed (Bar-Joseph, 

Gitter et al. 2012). 

For example, Nueda et al. (2014) introduced general linear regression in their 

algorithm, maSigPro, to model RNA-seq time course gene expression profiles. 

The  algorithm measures differences in expression between time points in one 

or across different time-series and apply clustering analysis to group together 

similar expression profiles (Nueda, Tarazona et al. 2014). A more appropriate 

assumption to describe count-based data, the negative binomial distribution, 

was used by Anders et al. (2010) in the DESeq algorithm for differential 

expression analysis (Anders and Huber 2010). Despites the advantages of 

using time courses in gene expression analysis and the described 

improvements in the methods used, the comparisons across time-course 

datasets using differential expression analysis and clustering techniques is still 

challenging due to the impact of lowly expressed genes and differences in 

procedural variables such as time course length and distribution of sampling 

time points.  Their limitations when used to compare datasets obtained using 

different protocols makes alternative approaches attractive. Aitken et al. 

(2015) developed a novel classification method making use of Bayesian model 

selection to classify longitudinal gene expression profiles to predefined 
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mathematical functions representing a range of possible trajectories over time 

(Aitken, Magi et al. 2015). Aitken et al. (2015) successfully classified known 

IEGs to a peaking model in four FANTOM5 CAGE time-series datasets, 

characterized by different sampling times. Tullai et al. (2007) found that a large 

number of genes induced with delayed kinetics was protein synthesis-

independent and they are part of the IER (Tullai, Schaffer et al. 2007). 

However, in Aitken et al. (2015) the peak model doesn’t consider the possibility 

of a delay in the first stage of response. In this chapter, I describe and justify 

modifications introduced in this method, allowing applications to longer CAGE 

time course datasets to be characterized by a delay in the activation of 

transcription. Furthermore, to show that the method of Aitken et al. (2015) can 

be adapted to the study of different mathematical functions of interest, I 

present an example of the application of the algorithm using a simulated 

dataset generated according to a simple piece-wise linear model.  

 A refined time-course classification technique 

To classify time-series data for each CAGE defined TSS, we refined a 

previously published method (Aitken, Magi et al. 2015) which fits different 

mathematical models (or ‘kinetic signatures’) to individual expression profiles, 

assessing the fit using nested sampling (Aitken and Akman 2013) to compute 

the marginal likelihood, log Z. The time series were normalized such that the 

minimum and maximum median expression across the time series was set to 

0 and 10, respectively.  

 

The kinetic signatures considered were: linear, decay, dip and peak (Figure 

1). The peak kinetic signature considered in the original method (Figure 8.A) 

was modified to allow a delay (td) before expression increases in exponential 

fashion. For the early Peak (Figure 8.B), parameter ts is the time duration of 

the initial increase in expression, p1 is the expression at time 0, and p2 is the 

increase in expression such that expression y= p1 + 0.7* p2 at the time of 

peaking, tp = td + ts.  

! =
log	(0.3)

,-
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. = /0 + /2 ∗ (1 − 67(8=8I) − /2 ∗ 41 − 67(8=8I=8>9; , > ,H + ,-	 

 

Here, td is constrained between 1 minutes and 60 minutes and ts is constrained 

between 15 and 75 minutes. However, an alternative rate=
JKL	(M.0)

8I
 was also 

used, constraining the upper and lower limits of ts to be later in time (75 minutes 

and 135 minutes, respectively), to model the dynamics of transcripts peaking 

later in time (Figure 8.C), and the best fitting model was selected during the 

decision step.  
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Figure 8 Delayed peak model. Plot A shows the peak model as defined in Aitken et al., while plot B and 
C show the dynamic of the delayed peaking transcripts with faster and lower dynamics.  

 

The values used to calculate the rates d for the two alternative delayed peak 

models (0.1 and 0.3), were chosen empirically observing the results and 
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show below with an example (Figure 9 and Table 2), changing the rate does 

not change drastically log Z. Here, I compare the results obtained fitting JUN 

expression profile from PMDM_LPS dataset with the models used in the 

analysis (0.1 and 0.3) and three additional peak models which make use of 

three different rates: 0.4, 0.2 and 0.01. In this example the evidence is 

generally much higher for the peak models than the other models, with a better 

score for the peaking rate = 0.3. 



 42 

 

Figure 9 Model comparison. JUN expression profile for the three replicates (empty circles) and the 
average expression (filled black circles) for JUN three replicates. All the peaking models in this example 
are constrained to have 15<=ts<=75 minutes. 

 

Table 2 Model’s evidence comparison for JUN expression profile. Log Z* assumes parameters in 
the range of 0 and 1, therefore to obtain the evidence log Z for the data I summed it with the log volume. 

Model Log Z* Log SD Log Volume Log Z 
Linear -31.58 0.30 4.61 -26.98 
Decay -30.72 0.18 6.85 -23.87 
Dip -39.78 0.30 8.72 -31.06 
Peak: 0.01 -25.56 0.23 11.98 -13.58 
peak: 0.1 -25.34 0.23 11.98 -13.36 
peak: 0.2 -25.31 0.24 11.98 -13.33 
peak: 0.3 -25.25 0.23 11.98 -13.27 
peak: 0.4 -25.77 0.23 11.98 -13.79 
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Normalising the data such that expression lies in the range 0-10 allowed the 

prior probability distribution of parameters to be restricted to plausible values 

that applied to all time series. The fit of models to data was improved as a 

result. To account for any impact on the log Z calculation, I generated synthetic 

time series datasets using parameter values selected uniformly at random 

between the prior ranges (upper and lower limits) to generate one replicate 

(r1), and generated two other replicates by adding and subtracting a given 

amount of noise to the first replicate.  

 

The noise was generated by randomly drawing a value from a negative 

binomial distribution BNM(size,µ), with size =1/(bcv^2) and µ= r1, using the 

biological coefficient of variation (BCV) = 0.2 (McCarthy, Chen et al. 2012) to 

calculate the dispersion parameter. Negative binomial distribution is the 

preferred method to statistically analyse sequencing data because read counts 

distribution is not normal and is generally characterized by greater variance 

than the mean (Di 2015). 

 

Model fitting was applied to 1000 such synthetic datasets per model (using the 

same noise values for each model on each of the 1000 iterations) and log Z 

was calculated for each dataset and each model.  

 

Comparing the obtained log Z distribution for each model, I observed an 

advantage for each of the complex models (peak, dip and decay) that was 

consistent over the range of log Z values obtained for the linear model across 

the 1000 iterations:  

• Mean	(log RCSAT	@UHSV	) − Mean	(log RVWXSAY	@UHSV	) = 6.8  

 

• Mean	(log RHS\A]	@UHSV	) − Mean	(log RVWXSAY	@UHSV	) = 3.1  

 

• Mean	(log RHWC	@UHSV	) − Mean	(log RVWXSAY	@UHSV	) = 3.2  
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To offset the advantage of the complex models, an advantage value was 

subtracted from the log Z values calculated for CAGE TSS data when making 

the categorisation decision. The advantage value for each complex model in 

respect to the linear model was calculated as the mean difference of the log Z 

distribution, plus two standard deviations (0.9 for the peak model, 0.6 for the 

dip model and 0.7 for the decay model) to compensate in at least the 95% of 

the cases. After the adjustment, the time series was assigned to the model 

with higher log Z.  

 

We also defined a margin between the linear model and the more complex 

models such that if the difference in log Z between the linear model and the 

more complex model was greater than an empirically chosen value (margin=4 

in our analysis) the classification of the time series was considered linear, else 

it was assigned to the ‘No decision’ category. High variability between 

replicates, which is particularly evident for lowly expressed genes make it 

difficult to confidently assign them to any particular signature, therefore they 

are also assigned to the ‘No decision’ category.  

 

3.2.1. Example of a simple model applied to synthetic 

data 

The marginal likelihood Z corresponds to the probability of observing the data 

D given that the data corresponds to the considered model Hi, P(D|Hi), and 

can be obtained multiplying the likelihood function and the prior, integrating 

over the space of parameter values. LogZ can be computed by a brute force 

approach, which is very slow and computationally expensive, or using the 

more efficient nested sampling algorithm which exploits statistical properties 

of the prior volume reduction. As explained in (Skilling 2006), on each iteration 

of the nested algorithm, the prior mass shrinks by removing the sample with 

the lowest likelihood Li and replacing it with another sample with likelihood 

higher than Li, until the termination criterion is reached (when the change in 

log Z become negligible). 
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Here, I designed a simple piecewise linear model to illustrate the log Z 

calculation across different models with synthetic exemplificative data, and to 

compare the brute force approach and the nested sampling approach. 

The piecewise linear model below is parameterized by ts, the time of switching, 

p1, the minimal expression and p2, which represents the change in expression 

at ts. 

. = 	/0 + , ∗
/2
,-
; , ≤ ,- 

. = 	/0 + /2 − (, − ,-) ∗ ^
/2

_`a8 − ,-
b ; , > ,- 

 

 

I created the synthetic data at 15 time points by using this function with 

parameters: p1=3, p2=10 and ts=150 and adding noise to simulate 2 additional 

replicates of the data.  

After running the nested sampling algorithm for all the models as defined in 

(Aitken and Akman 2013, Aitken, Magi et al. 2015) on the synthetic data, I 

obtained a set of values which are listed in Table 3.  

 

Table 3 Model parameters for synthetic data. The values in the table are inferred running nested 
sampling algorithm on synthetic data from a piece wise linear function. Log Z* assumes parameters in 
the range of 0 and 1, therefore to obtain the log Z for the data I summed it with the log volume. 

Model Log Z* Log 
volume 

Log Z P1 P2 Ts P1 
SD 

P2 
SD 

Ts SD 

Piecewise 
linear 

-14.77 9.00 -5.77 2.77 10.51 144.87 0.18 0.39 9.10 

Dip -35.97 8.72 -27.25 3.16 7.73 50.12 0.56 0.93 0.92 

Decay -43.97 6.85 -37.12 2.50 4.13 Th 0.36 0.85 Th SD 
88.60 23.44 

Delayed 
peak 

-38.74 11.98 -26.76 2.84 8.78 Td Ts 0.20 1.87 Td SD Ts SD 
65.76 17.53 9.13 10.01 

Linear -39.44 4.61 -34.83 P1 P2 P1 SD P2 SD 
7.35 5.89 1.52 3.10 

 

Higher log Z assigned to the piecewise linear model indicates an expected 

better fitting in comparison with the other models (Figure 10). 
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Figure 10 Fitted models for synthetic data. The plots show the expression of synthetic data for the 15 
time points selected (circles, median value is filled).  The kinetic signature function (in blue) is computed 
using the parameter means. 

 

For the piecewise linear model the results obtained with a brute force 

approach, computing log Z for each cell of a 3-dimensional grid (one dimension 

for each parameter), is comparable to the nested sampling approach. I fixed 

the minimum and maximum values for the three dimensions as: min p1=0, min 

p2=0, min ts=15, max p1=3, max p2=15, max ts=195; I separated the grid in 

150*150*150 cells, and then I computed the log Z as the sum of 

log cde6cdℎggh ∗ log igcj_6 over the grid, where the summation properly 

accounts for the addition of log values:  

cgkR =llllog	(m(a|/0, /2, ,-))
CpCDCq

 

 

 

The results show that both approaches converge on very similar values of 

parameter estimates, but with the brute force approach the computing time is 

two orders of magnitude higher (Table 4). 
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Table 4 Comparison between nested sampling and brute force approaches. For each approach the 
log Z and the computed parameters are reported. p1 , p2 and ts are the estimates of the parameters 
corresponding to the highest local log Z value (i.e. lighter colour in the grid in Figure 11).   

Method Log Z p1 p2 ts Time 
Nested 
sampling 

-5.77 2.77 10.51 144.87 18.82 

Brute force -5.26 2.96 10.07 149.09 2043.20 

 

 

Figure 11 A slice through the likelihood function. The figure shows a 2-dimensional likelihood 
distribution. The colour of each cell in the grid represent the likelihood for 100 different values of p2 and 
ts and p1 fixed to 2.77. Lighter colours correspond to higher likelihood.  

 

15
16
.8

18
.6

20
.4

22
.2 24

25
.8

27
.6

29
.4

31
.2 33

34
.8

36
.6

38
.4

40
.2 42

43
.8

45
.6

47
.4

49
.2 51

52
.8

54
.6

56
.4

58
.2 60

61
.8

63
.6

65
.4

67
.2 69

70
.8

72
.6

74
.4

76
.2 78

79
.8

81
.6

83
.4

85
.2 87

88
.8

90
.6

92
.4

94
.2 96

97
.8

99
.6

10
1.
4

10
3.
2

10
5

10
6.
8

10
8.
6

11
0.
4

11
2.
2

11
4

11
5.
8

11
7.
6

11
9.
4

12
1.
2

12
3

12
4.
8

12
6.
6

12
8.
4

13
0.
2

13
2

13
3.
8

13
5.
6

13
7.
4

13
9.
2

14
1

14
2.
8

14
4.
6

14
6.
4

14
8.
2

15
0

15
1.
8

15
3.
6

15
5.
4

15
7.
2

15
9

16
0.
8

16
2.
6

16
4.
4

16
6.
2

16
8

16
9.
8

17
1.
6

17
3.
4

17
5.
2

17
7

17
8.
8

18
0.
6

18
2.
4

18
4.
2

18
6

18
7.
8

18
9.
6

19
1.
4

19
3.
2

14.8514.714.5514.414.2514.113.9513.813.6513.513.3513.213.0512.912.7512.612.4512.312.151211.85
11.711.5511.411.2511.110.9510.810.6510.510.3510.210.059.99.75
9.69.45
9.39.15
98.85
8.78.55
8.48.25
8.17.95
7.87.65
7.57.35
7.27.05
6.96.75
6.66.45
6.36.15
65.85
5.75.55
5.45.25
5.14.95
4.84.65
4.54.35
4.24.05
3.93.75
3.63.45
3.33.15
32.85
2.72.55
2.42.25
2.11.95
1.81.65
1.51.35
1.21.05
0.90.75
0.60.45
0.30.15
0

−40 −20 0 20 40
Value

0
20

40
60

80
10
0

Color Key
and Histogram

C
ou
nt

ts	

p2	



 48 

3.2.2. Long macrophage time series 

In contrast to the peak model defined in (Aitken, Magi et al. 2015), real time 

series datasets, can show an initial period of time in which expression is 

constant, followed by a rapid and transient increase in expression after this 

delay. Adding a delay to the peak model can significantly increase the number 

of classified genes in such datasets. This was particularly evident when I 

analysed the long PMDM_LPS time course (0 to 1,440 minutes) (Table 5) 

using both the standard peak and delayed peak models. The minimum and 

maximum values for the three parameters of the standard peak model in the 

long time course were set to: min p1=0, min p2=0, min ts=15, max p1=3, max 

p2=15, max ts=960 while the minimum and maximum values for the four 

parameters of the delayed peak model were p1=0, min p2=0, min td=75, min 

ts=1, max p1=3, max p2=15, max td=480, min ts=480. 

 

Table 5 shows that adding the delay to the parameters allowed an additional 

3,881 CAGE TSSs to be assigned to the delayed peak model, of which 271 

were originally assigned to another model and 3,610 could not be assigned to 

any model and therefore were classified as ‘No decision’. Figure 12 shows 

representative examples where the delayed peak model describes the 

behaviour of the data better than the peak model. At the same time the 

enrichment of known IEGs classified to the peak model remains similar when 

applying the delayed peak model instead of the peak model (OR = 4.3, p-value 

= 2.2e-16 and OR = 4.7, p-value = 2.2e-16, respectively). This suggests that the 

additional 3,881 CAGE TSSs assigned to the peak model do not markedly 

increase the proportion of false positives classified with this model.  
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Table 5 Comparison between delayed peak and peak model. Contingency matrix showing the 
frequency of classification with the different models when delayed peak or peak functions are considered. 

PMDM_LPS 
0 to 1,440 

min 

Peak Dip Decay Linear NO 
DECISION 

Tot 

Delayed 
peak 

3,239 205 40 26 3,610 7,120 

Dip 15 1,271 0 0 45 1,331 
Decay 203 0 1,774 0 337 2,314 
Linear 25 0 0 21 30 76 

NO 
DECISION 

339 129 37 62 3,051 3,618 

Total 3,821 1,605 1,851 109 7,073 14,459 
 
 

 

Figure 12 Delayed peak and peak model fitted data. Expression data and kinetic signatures for the 
OASL and C1orf21 genes for delayed peak (left) and standard peak (right) models. The expression data 
are plotted as empty circles, median values as filled circles, while the model function is indicated with a 
blue line. Green lines indicate the mean tp (for the delayed peak model) and ts and 1 standard deviation 
below and above. 

 

 Discussion 
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dynamics and the specificity of different cell and stimulus specific gene 

activation patterns are not well understood. Aitken et al. (Aitken, Magi et al. 

2015) developed a method to identify candidate and known IEGs in four 

FANTOM5 CAGE datasets, PAC_FGF2, PAC_IL1B, MCF7_EGF1 and 

MCF7_HRG, exploiting the classical IEG expression dynamic which involves 

a brief and transient peak in expression during the first few hours after cell 

stimulation (Greenberg and Ziff 1984, Bahrami and Drabløs 2016).  

 

Here we describe modifications to the method, so it can be used to classify 

temporal expression profiles in eight densely sampled CAGE time course 

datasets, including four additional datasets: PMDM_LPS, PEC_VEGF, 

PMSC_MIX and SAOS2_OST. The peak model was adapted to allow a delay 

in expression before an exponential increase is observed. Data were also 

normalized such that expression ranges between 0 to 10 units, allowing a 

better comparison of the parameters across all time-series. As a result, I see 

evidence of an improvement in the fit of the peak model to real datasets, 

especially for long time courses such as PMDM_LPS, in the terms of a higher 

number of CAGE TSSs assigned to the delayed peak model including many 

associated to known IEGs such as IL6 and CSF2. We also show that the 

approach can be applied to other cases, as customised mathematical 

functions of interest can be included.  
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4. Meta-analysis of the time course expression of 

protein-coding and non-coding genes 

 Introduction 

The recent improvements on high-throughput gene sequencing techniques 

and longitudinal gene expression analysis made available a big number of time 

course gene expression datasets from experiments, such as the FANTOM 

project. A comparison across datasets is useful because it can shed light on 

core events common across biological systems as well as specific to a cell 

type and/or stimulus. However, until now, comparison across datasets has 

been mainly limited to datasets from similar systems obtained by a single 

laboratory.  The reason of this is that the comparison of gene expression time 

course datasets with traditional tools requires the datasets to have similar 

sampling times and length. Furthermore, given the complexity and cost of time 

course sequencing experiments, the majority of the studies include few time 

points very distant between each other, which is a limitation when studying the 

immediate early response.  

 

In this chapter I will describe an expansion of the IER meta-analysis undertook 

by Aitken et al. (2015) on four FANTOM5 time course datasets. The objective 

here is to provide a unique comprehensive comparison across different cell 

types and stimuli for both protein coding and non-coding genes and to gain 

insights on the core events of the immediate early response common to 

different biological systems. 

 

I considered eight densely sampled, and well replicated, FANTOM5 CAGE 

time course datasets (Figure 2). These datasets consist of a variety of primary 

human cell samples and cell lines responding to a range of stimuli: growth 

factors, hormones, drugs, pro-inflammatory cytokines and bacterial endotoxin. 

Many of these time course datasets relate to widely used biomedical model 
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systems where the IER is known to occur, but had not previously been studied 

by deep sequencing of CAGE libraries. The datasets include the four datasets 

compared by Aitken et al. (2015): MCF7_EGF1, MCF7_HRG, PAC_IL1B and 

PAC_FGF2, with the addition of other four datasets: SAOS2_OST, 

PMSC_MIX, PEC_VEGF and PMDM_LPS (2.1 Data Resources, for more 

details about these time courses). These diverse data provided a potent 

resource to discover core features of the IER conserved across human cell 

types and stimuli. As exemplified by FOS and JUN (Figure 13), the responses 

of known immediate early genes often show characteristic expression peaks 

early in the time series datasets, though even for these well-studied genes I 

observed substantial variation in the magnitude, timing and duration of peaks 

across cell types and stimuli. This emphasises the challenges presented in 

IEG detection, even when studying known IEGs using a uniform experimental 

platform. These challenges increase when examining data for lowly expressed 

genes, such as the non-coding RNA species that appear to be part of the 

immediate early response (Aitken, Magi et al. 2015). 
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Figure 13 The expression profiles of FOS and JUN gene promoters in the eight datasets. Cage 
cluster expression (mean TPM in three replicates) is plotted over time for FOS (left) and JUN (right). Line 
colour defines the datasets 
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1,202 (692 genes) and 1,640 (858 genes) non-coding RNA (ncRNA) CAGE 

TSSs (Table 6 and Table 7).  

Between 15% and 42% of protein-coding CAGE TSSs, and between 15% and 

33% of non-coding TSSs were confidently classified to one of the four models, 

depending on the dataset (Figure 14 A and B, Table 6 and Table 7). The 

remainder (‘No decision’) could not be rigorously classified to a single model 

and were omitted from further analysis.  

The differences between the number of genes classified in each class and the 

total number of tested genes is caused by the fact that a gene is represented 

by multiple CAGE TSS that are classified independently. Therefore, alternative 

CAGE TSSs assigned to the same gene can be classified to different models.   

 

Table 6 Classification of promoter dynamics for protein coding genes. The table summarizes the 
number of CAGE clusters (representing TSSs) and Ensembl genes in each dataset and the number of 
protein coding CAGE clusters and Ensembl genes classified to each model (or to no models: ‘No 
decision’) in each dataset. 

Protein 
coding 
genes 

PMDM_LPS PAC_FGF2 PAC_IL1B MCF7_HRG 

 #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#gene
s 

Total 
tested 

14,376 8,951 11,235 8,112 10,513 7,706 11,513 8,511 

No 
decision 

8382 5890 7601 5894 6666 5356 7559 6045 

Peak 3689 2731 3225 2852 3483 3053 2527 2200 

Decay 1114 998 34 34 41 41 415 400 

Dip 608 585 368 360 313 306 779 740 

Linear 583 541 7 7 10 10 233 231 

 MCF7_EGF1 PEC_VEGF PMSC_MIX SAOS2_OST 

 #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#gene
s 

Total 
tested 

11,352 8,458 10,686 8,040 13,881 9,197 11,521 8,639 

No 
decision 

7370 5906 8072 6469 11793 8228 8421 6731 

Peak 2771 2424 2182 1941 1836 1672 2330 2105 

Decay 119 115 46 45 71 67 235 226 

Dip 967 904 354 353 101 100 486 470 

Linear 125 123 32 32 80 79 49 49 
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Table 7 Classification of promoter dynamics for noncoding RNA genes. The table summarizes the 
number of CAGE clusters (representing TSSs) and Ensembl genes in each dataset and the number of 
non-protein coding CAGE clusters and Ensembl genes classified to each model (or to no models: ‘No 
decision’) in each dataset. 

Non 
coding 
genes 

PMDM_LPS PAC_FGF2 PAC_IL1B MCF7_HRG 

 #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAG
E 

TSSs 

#genes 

Total 
tested 

1,209 673 1,202 692 1,210 681 1,342 763 

No 
decision 

949 589 856 551 861 550 893 594 

Peak 183 140 324 254 322 251 381 288 

Decay 63 57 3 2 2 2 29 26 

Dip 6 6 19 18 25 25 33 33 

Linear 8 8 0 0 0 0 6 6 

 MCF7_EGF1 PEC_VEGF PMSC_MIX SAOS2_OST 

 #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAGE 
TSSs 

#genes #CAG
E 

TSSs 

#genes 

Total 
tested 

1,345 769 1,377 772 1,252 692 1,640 858 

No 
decision 

965 624 1,086 665 1,068 612 1,255 725 

Peak 306 235 254 205 178 146 338 256 

Decay 6 6 5 5 2 2 8 8 

Dip 59 56 28 24 2 2 38 37 

Linear 9 8 4 3 2 2 1 1 
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A 

 

 

B

 

Figure 14 Model based classifications of CAGE TSSs. Histogram presentation of the CAGE derived 
TSS classification, with columns representing datasets and colours representing the four models of 
interest (peak, decay, dip, linear), for protein coding (A) and non-coding (B) CAGE TSSs.  

 

The peak model had the highest number of assignments in all the datasets for 

both protein-coding and non-coding RNA genes. Of 12,132 total Ensembl 

protein-coding genes tested and 1,226 non-coding RNAs, I found 8,785 (72%) 

of protein coding and 779 (64%) of non-coding Ensembl genes to peak in at 
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least one of the datasets (with at least one CAGE TSS). In contrast, relatively 

few genes were classified to the peak model in multiple datasets. Only 42 

protein coding and 15 non-coding RNA genes shared peaking model across 

at least seven out of eight datasets (Figure 15), underlining the high variability 

of transcriptional responses seen for the same promoters across time series. 

These 42 protein coding and 15 non-coding genes RNA constituted the ‘robust 

set’ of candidate IEGs. I also defined a less stringent ‘permissive’ set of 1,304 

protein coding IEG candidates shared across four (797 genes), five (325 

genes), six (140 genes), seven (37 genes) or eight (5 genes) out of eight 

datasets. 

 

 

Figure 15  Distribution of peak classified TSSs shared across multiple datasets. Each slice 
represents the proportion of genes associated to peaking CAGE TSSs shared by 1 to 8 datasets. The 
robust set includes 42 genes peaking in at least 7 out of eight datasets (37 genes in 7 datasets and 5 
genes in 8 datasets). 

 

 Known IEGs are particularly enriched in the group of 

peaking genes of the robust set 

I assessed promoter classifications by testing the enrichment of known IEGs 

and TFs CAGE TSSs (Chapter 2.12) within each class, for each dataset. The 

peak class was enriched for known IEGs in all datasets (Figure 17, Table 8), 

but failed to reach statistical significance in PMSC_MIX (OR = 1.3, p = 0.2). 

The decay class was strongly enriched for both PMSC_MIX (OR = 19.7, p = 

1.1e-14) and PAC_FGF2 (OR = 6.4, p = 5.1e-3). This is likely caused by a 

Pie Chart of peaking genes

3515 in 1 datasets: 40%
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failing of the sampling for the time series analysed. If there are not enough 

time-points sufficiently early, the initial induction of IEG expression could be 

missed and instead the first thing detected might be the IEG’s peak expression 

followed by its decline in expression. In that case an exponential decline in 

expression (i.e. the decay signature) will provide the best fit. Figure 16 show 

the data and the fitted model for the 4 known IEGs classified as decay in 

PAC_FGF2. In IL6 and SOCS3 time-courses, the first time point (time 0) is 

characterized by a lower expression than the model starting point. In CLIC4 

time-course the expression peak at about one hour; however, the sampling 

around this time is not dense enough to catch the peaking trajectory and the 

data are instead classified as ‘decays’. Additional sampling could improve the 

performance of the model fitting in detecting all the peaking expression 

profiles. 

 

Figure 16 Decay IEGs. The plots show the expression profile for the 4 IEGs classified as decay in 
PC_FGF2 dataset (circles, median value is filled), the fitted decay model (blue line) ts and 1 standard 
deviation above and below (green lines).  

In contrast, the ‘no decision’ class, which contains all the CAGE TSSs that 
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TSSs across all the datasets. We might expect that genes with a non-defined 

expression trajectory to be disproportionately non-IEG as the algorithm assign 

the majority of the known IEGs to the IEG archetype, the peak model.  

 

Table 8 Known IEG enrichment across models and datasets. The significance of enrichments (Odds 
Ratios > 1) and depletions (Odds Ratios < 1) were computed using Fisher’s exact test. 

Dataset 

Peak	 Dip	 Decay	
# IEG CAGE 

TSSs / 
total CAGE 

TSSs 

OR	 p	

# IEG CAGE 
TSSs / 

total CAGE 
TSSs 

OR	 p	

# IEG CAGE 
TSSs / 

total CAGE 
TSSs 

OR	 p	

PMDM_LPS 264/ 3,689 5.8 2.2e-16 2/ 608 0.1 7.3e-6 8/ 1,114 0.2 6.2e-7 
PAC_FGF2 87/ 3,225 1.5 4.2e-3 8/ 368 1.1 0.9 4/ 34 6.4 5.1e-3 
PAC_IL1B 116/ 3,483 2.1 9.1e-8 3/ 313 0.4 0.2 2/ 41 2.3 0.2 

MCF7_HRG 140/ 2,527 6.4 2.2e-16 10/ 779 0.6 0.2 7/ 415 0.9 0.9 
MCF7_EGF1 71/ 2,771 1.9 3.3e-5 21/ 967 1.4 0.2 2/ 119 1 0.7 
PEC_VEGF 127/ 2,182 4.3 2.2e-16 6/ 354 0.7 0.6 1/ 46 0.9 1 
PMSC_MIX 36/ 1,836 1.3 0.2 2/ 101 1.3 0.7 16/ 71 19.7 1.1e-14 

SAOS2_OST 72/ 2,330 3.6 4.0e-14 5/ 486 0.8 0.8 2/ 235 0.6 0.8 

Dataset 

Linear	 No decision	 Total  tested	
# IEG CAGE 

TSSs / 
total CAGE 

TSSs 

OR	 p	

# IEG CAGE 
TSSs / 

total CAGE 
TSSs 

OR	 p	 # IEG CAGE TSSs / 
total CAGE TSSs 

PMDM_LPS 1/ 582	 0.1	 1.3e-6	 130/ 8,382	 0.3	 2.2e-16	 405/14,376	
PAC_FGF2 1/ 7	 7.9	 0.1	 133/ 7,601	 0.6	 6.6e-4	 233/11,235	
PAC_IL1B 1/ 10	 4.9	 0.2	 110/ 6,666 0.5	 5.7e-7	 232/10,513	

MCF7_HRG 1/ 233	 0.2	 0.1	 63/ 7,559	 0.2	 2.2e-16	 221/11,513	
MCF7_EGF1 2/ 125	 1	 1	 91/ 7,370	 0.5	 4.4e-6	 187/11,352	

PEC_VEGF 0/ 32	 0	 1	 114/ 
8,072	 0.3	 2.2e-16	 248/10,686	

PMSC_MIX 3/ 80	 2.5	 0.1	 160/ 
11,793	 0.5	 1.4e-5	 217/13,881	

SAOS2_OST 0/ 49	 0	 1	 73/ 8,421	 0.3	 6.0e-11	 152/11,521	
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Figure 17 Known IEGs are enriched in genes classified to the peak model.  Barcharts show the 
number of known IEGs (light blue) and TFs (yellow) recovered for the four models of interest (linear, dip, 
decay and peak) in each time series dataset (x-axis). Asterisks indicate the datasets which are 
characterized by known IEG enrichment (Fisher’s exact test p-value<0.01).  

 

Likewise, I analysed the enrichment for TF genes (Table 9), which includes 

many known IEGs, and I found significant enrichment (Fisher’s exact test p-

value<=0.01; Odds Ratio >1) in the peak subset of PMDM_LPS, MCF7_HRG, 

PEC_VEGF and SAOS2_OST. These results indicate that, similarly to the 

known IEGs, many TFs are rapidly and transiently activated across different 

datasets. Furthermore, a number of TFs show dip or decay expression in 

PMDM_LPS which indicates a PMDM_LPS-specific downregulation of these 

genes which could have a role in the IER. 
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Table 9 Known TF enrichment across models and datasets. The significance of enrichments (Odds 
Ratios > 1) and depletions (Odds Ratios < 1) were computed using Fisher’s exact test. TF genes in this 
table include known IEGs. 

Dataset 

Peak	 Dip	 Decay	

# TF CAGE 
TSSs/ 

total CAGE 
TSSs 

OR	 p	

# TF CAGE 
TSSs/ 

total CAGE 
TSSs 

OR	 p	

# TF 
CAGE 
TSSs/ 
total 
CAGE 
TSSs 

OR	 p	

PMDM_LPS 223/ 3,689 1.2 0.2e-2 49/ 608 1.6 4.0e-3 97/ 
1,114 1.8 9.5e-7 

PAC_FGF2 152/ 3,225 1.1 0.3 26/368 1.7 0.2e-1 3/ 34 2.1 0.2 
PAC_IL1B 157/ 3,483 1 0.8 17/ 313 1.2 0.4 3/ 41 1.7 0.4 

MCF7_HRG 238/ 2,527 1.7 6.3e-11 55/ 779 1.1 0.5 29/ 415 1.1 0.6 
MCF7_EGF1 142/ 2,771 0.8 0.5e-1 76/ 967 1.4 0.1e-1 10/ 119 1.5 0.2 
PEC_VEGF 160/ 2,182 1.9 4.9-10 10/ 354 0.6 0.1 2/46 0.9 1 
PMSC_MIX 91/ 1,836 0.9 0.6 7/ 101 1.3 0.4 6/ 71 1.7 0.3 

SAOS2_OST 214/ 2,330 1.8 1.5e-11 38/ 486 1.3 0.1 17/ 235 1.2 0.4 

Dataset 

Linear	 No decision	 Total  tested	

# TF CAGE 
TSSs/ 

total CAGE 
TSSs 

OR	 p	

# TF CAGE 
TSSs/ 

total CAGE 
TSSs 

OR	 p	 # TF CAGE TSSs/ tot CAGE TSSs 

PMDM_LPS 9/ 582	 0.3	 2.9e-6	 368/ 8,382	 0.6	 7.2e-9	 764/14,376	

PAC_FGF2 0/ 7	 2.4	 0.4	 311/ 7,601	 0.8	 0.03	 492/11,235	

PAC_IL1B 1/ 10	 4.9	 0.2	 290/ 6,666 0.9	 0.5	 468/10,513	

MCF7_HRG 8/ 233	 0.5	 0.06	 415/ 7,559	 0.6	 6.5e-9	 745/11,513	

MCF7_EGF1 13/ 125	 1.9	 0.05	 438/ 7,370	 1	 0.8	 679/11,352	

PEC_VEGF 0/ 32	 0	 1	 337/8,072 0.7	 3.9e-5	 509/10,686	

PMSC_MIX 5/ 80	 1.2	 0.6	
622/ 

11,793	
1	 1	 731/13,881	

SAOS2_OST 3/49	 1	 1	 426/ 8,421	 0.6	 9.6e-13	 698/11,521	

 

Next I analysed the enrichment of known IEG’s CAGE TSSs in sets of genes 

that peak in one or more datasets, in two or more datasets, etc. Genes 

classified to the peak model in multiple datasets generally show significant 

enrichment for known IEGs (Table 10), with the robust set characterized by 

the strongest enrichment (Odds Ratio= 12.6; p-value < 2.2e-16) and therefore 

expected to contain fewer false positives.  

 

 

 

 

 

 



 62 

Table 10 Enrichment of known IEGs for genes classified to the peak model in multiple datasets. 
Enrichment (expressed as odds ratios) and p values for genes classified across different numbers of 
time series datasets, computed using Fisher’s exact test. The enrichment in the different subsets (genes 
shared by 2 to 8 datasets up to genes shared by all 8 datasets) is computed using the whole set of 8,785 
genes as background. Furthermore, the table lists the median number of CAGE clusters belonging to 
known IEGs peaking in each subset. 

Shared 
datasets 

IEGs enrichment # Known 
IEG 

CAGE 
clusters 
(median) 

# 
gene

s 

# 
IEGs 

# 
clusters 
(across 8 
datasets) 

# IEG 
clusters 
(across 8 
datasets) 

Odds 
Ratio p-value 

1 to 8 (all 
peaking 
genes) 

8,785 204 102,496 913 - - 1 

2 to 8 5,270 171 71, 384 853 6.3 2.2e-16 1 
3 to 8 2,882 128 45,360 751 5.9 2.2e-16 2 
4 to 8 1,304 86 24,616 590 5.9 2.2e-16 2 
5 to 8 507 56 11,528 433 7.4 2.2e-16 3 
6 to 8 182 35 4,896 299 10.3 2.2e-16 3 
7 to 8 42 13 1,376 124 12.6 2.2e-16 4 

8 5 2 264 18 8.3 4.6e-11 5 

 

The robust set includes 13 known IEGs (FOS, FOSB, FOSL1, JUN, KLF6, 

SGK1, PPP1R15A, BHLHE40, DUSP1, PHLDA1, NAB2, SDC4 and EHD1) 

and 29 candidate IEGs (CUL3, ITM2B, PTGES3, SCL3A2, TMBIM6, SEC11A, 

SEC22B, SMARCA5, UBE2D3, OCIAD1, DKC1, MATR3, SRSF11, B4GALT1, 

FLNA, PLK1S1, NME2, RPSA, GNB2L1, PFKFB3, THBS1, PTP4A1, GNAS, 

PLEC, ARF4, ATG12, TMEM185B, HNRNPL, XBP1). 

 Assessing bias in the robust set selection approach 

I defined the robust set to be a shortlist of 13 known IEGs and 29 protein coding 

genes that are most promising candidate IEGs on the basis of the IEGs 

enrichment analysis described in Chapter 2.12. A limitation of the approach 

used to define the robust set is that I assumed independence for the CAGE 

TSSs associated with each gene.  In reality, different genes are characterized 

by a different number of CAGE TSSs. Genes with higher number of TSSs are 

more likely to be classified as possessing a TSS with some characteristic, such 

as peaking expression pattern. Known IEGs and the robust set do indeed have 

a higher median number of TSSs per gene than all genes covered by the time 

series data, as documented in Chapter 6.2. 
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To assess the potential of TSS number to inflating the detection of IEGs by our 

protocol, I repeated the analysis strictly using only the canonical p1 TSS, the  

CAGE TSS with the highest number of observations annotated by FANTOM5 

(Lizio, Harshbarger et al. 2017, Noguchi, Arakawa et al. 2017), for each gene 

(Table 11).  

 
Table 11 Enrichment of known IEGs for single canonical p1 CAGE TSS classified to the peak 
model in multiple datasets. Enrichment (expressed as odds ratios) and p values for canonical p1 CAGE 
TSSs classified to the peak model across different numbers of time series datasets, computed using 
Fisher’s exact test. The enrichment in the different subsets (genes shared by 1 to 8 datasets) is computed 
using the whole set of 11,744 p1 CAGE TSSs as background.  

Peaking in at least  Total  Known IEGs Candidate 
IEGs 

p-value Odds 
Ratio 

8 datasets 2 2 0 3.20E-04 Inf 
7 datasets 10 10 0 2.80E-18 Inf 
6 datasets 46 27 19 4.20E-36 88.60 
5 datasets 177 46 131 3.30E-41 24.20 
4 datasets 654 76 578 3.20E-42 10.70 
3 datasets 1904 115 1789 6.50E-38 6.50 
2 datasets 4277 158 4119 1.90E-30 5.40 
1 dataset 7936 198 7738 9.90E-21 7.50 

0 datasets 3808 13 3795 1.00E+00 0.10 
 
 
Comparing the 654 p1 TSSs peaking in at least 4 datasets with the 42 genes 

in the robust set (all TSSs for each gene peaking in at least 7 out of 8 datasets) 

I observe that 29 genes (13 known and 16 candidate IEGs) have the same p1 

TSS peaking in at least 4 datasets.  

Table 12 shows that all the 13 known IEGs in the robust set are characterized 

by the p1 TSS peaking in at least 4 datasets. Thus, I believe that the success 

of my protocol is not simply a result of the number of TSSs possessed by the 

input genes. Instead, the enrichment of known IEGs in the robust set appears 

to be a result of the accurate classification of expression profiles over time. 

However, the FANTOM5 p1 collection of canonical TSSs highlights another 

problem: since one single p1 TSS was defined across all FANTOM5 libraries, 

inevitably some genes in our smaller collection of time series datasets (which 

constitute a minority of FANTOM5 libraries) do not express their p1 promoters 
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at a detectable level in these time series. By choosing a restricted set of TSSs 

(such as the p1 set) I therefore exclude many (non-p1) TSSs from my analysis, 

and restrict the number of new candidate IEGs I can discover. Similarly, if I 

randomly select a TSS for each gene I do not interrogate the complete dataset, 

and I limit my ability to discover new candidate IEGs. 

 

Table 12 Robust set p1 CAGE TSS. The table lists the 29 p1 CAGE TSSs peaking in at least four 
datasets and associated to genes in the robust set. 

 
 

P1 CAGE TSS Gene Ensid Gene 
name 

IEG Shared 
datasets 

chr1:59249707..59249727,- ENSG00000177606 JUN Known 6 
chr10:3827389..3827408,- ENSG00000067082 KLF6 Known 7 
chr10:6244887..6244904,+ ENSG00000170525 PFKFB3 Candidate 4 
chr11:64646086..64646101,- ENSG00000110047 EHD1 Known 7 
chr11:65667846..65667868,- ENSG00000175592 FOSL1 Known 7 
chr12:57082060..57082083,- ENSG00000110958 PTGES3 Candidate 4 
chr12:57482882..57482907,+ ENSG00000166886 NAB2 Known 6 
chr12:76425368..76425384,- ENSG00000139289 PHLDA1 Known  7 
chr13:48807334..48807354,+ ENSG00000136156 ITM2B Candidate 4 
chr14:75745523..75745537,+ ENSG00000170345 FOS Known 8 
chr19:39340563..39340634,- ENSG00000104824 HNRNPL Candidate 4 
chr19:45971246..45971265,+ ENSG00000125740 FOSB Known 8 
chr19:49375669..49375684,+ ENSG00000087074 PPP1R15A Known 7 
chr2:120980939..120980983,- ENSG00000226479 TMEM185B Candidate 6 
chr2:225450013..225450068,- ENSG00000036257 CUL3 Candidate 4 
chr20:43977055..43977073,- ENSG00000124145 SDC4 Known 7 
chr22:29196511..29196541,- ENSG00000100219 XBP1 Candidate 4 
chr3:39448201..39448222,+ ENSG00000168028 RPSA Candidate 6 
chr3:5021113..5021180,+ ENSG00000134107 BHLHE40 Known 6 
chr3:57583064..57583079,- ENSG00000168374 ARF4 Candidate 4 
chr4:103748696..103748723,- ENSG00000109332 UBE2D3 Candidate 4 
chr4:48833070..48833118,+ ENSG00000109180 OCIAD1 Candidate 4 
chr5:115177247..115177279,- ENSG00000145782 ATG12 Candidate 5 
chr5:138629417..138629446,+ ENSG00000015479 MATR3 Candidate 4 
chr5:172198190..172198206,- ENSG00000120129 DUSP1 Known 7 
chr6:134495992..134496010,- ENSG00000118515 SGK1 Known 7 
chr8:145013711..145013786,- ENSG00000178209 PLEC Candidate 4 
chr9:33167149..33167170,- ENSG00000086062 B4GALT1 Candidate  4 
chrX:153991088..153991168,+ ENSG00000130826 DKC1 Candidate 4 
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 GO term enrichment for peaking genes in each dataset 

is consistent with the function of known IEGs  

Genes possessing TSSs assigned to the peak class showed enrichments for 

gene ontology (GO) processes associated with transcription, cell activation, 

cell proliferation, cell differentiation and cancer-related terms such as cell 

death and apoptosis (FDR = 0.05). These terms were also consistent with 

previous studies of IEGs (Bahrami and Drabløs 2016). Genes peaking across 

the eight dataset showed enrichment for 285 GO terms, over 30% (88, 

Appendix Table 2) of which were shared with the list of 773 GO terms of all 

known IEGs (Figure 18 and Figure 19, Appendix Table 3). In contrast, the 

genes classified to other models were not enriched for any GO terms.  

 
 

 

Figure 18 GO terms shared between peaking genes and known IEGs. GO terms significantly 
enriched (FDR corrected hypergeometric test q-value <0.05) in all the 8785 genes classified as peak 
across the eight datasets and in the 212 known IEGs. 
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Figure 19 GO term enrichment analysis. GO terms significantly enriched (FDR corrected 
hypergeometric test q-value <0.05) in all the genes classified as peak and in known IEGs. Each rectangle 
represents a cluster of terms with similar and related description, and clusters of related terms are 
grouped together in ‘superclusters’ to reduce redundancy. The size of the rectangles reflects the 
frequency of the terms in the resulting output (the enrichment. 
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 Peak expression times are often similar between 

datasets 

This model fitting approach provided parameter estimates for all promoters 

assigned to any given model, providing a straightforward and intuitive basis for 

meta-analysis. For example, comparison of the peak times (tp) for all protein 

coding promoters classified as peaks in at least four datasets (the permissive 

set) readily demonstrated common patterns across datasets (Figure 20). 

Waves of promoter activation were evident, with certain promoters, particularly 

in known IEGs, activated in the same early time window in multiple datasets. 

For this analysis I decided to use only CAGE TSSs peaking in at least 4 

datasets in the first 3 hours, which is the length of the shortest time series, 

PMSC_MIX, thus removing tissue specific CAGE TSSs and CAGE TSSs with 

late dynamics which could be detected only in the longest time courses. 

Hierarchical clustering of the datasets based on the tp of permissive set’s 

promoters also recapitulated known relationships between cell types and 

stimuli (Figure 20). The two datasets derived from the MCF7 breast cancer cell 

line, stimulated with different ligands of the same ErbB receptor family (EGF1 

and HRG) clustered together. Similarly, the two primary aortic cell samples 

exposed to a growth factor or activated by a pro-inflammatory cytokine 

(PAC_FGF2 and PAC_IL1B, respectively) also clustered together. Thus, 

similarities in promoter activation dynamics (reflected in tp parameter 

estimates) between datasets may reflect commonalities in their underlying 

biology. 
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Figure 20 Broad trends in peak expression times across datasets. The time of peak TSS expression 
(tp) for CAGE TSS from the permissive set of peak classified genes for all datasets. Heatmap colours 
reflect the tp for each CAGE TSS, from dark green within 90 min, to red for peak expression up to 180 
min after stimuli. In the left column black cells indicate TSSs of known IEGs. The dendrogram reflects 
the similarity among datasets based upon peak expression times for all TSSs in the permissive set. 
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 Known IEGs and candidate IEGs participate in common 

signalling pathways 

Having shown that the peak model described the behaviour of known IEGs, I 

speculated that the other genes assigned to this model might include novel 

candidate IEGs. Of the 42 genes in the robust set, more than two thirds (29 

genes) are not known to be IEGs and can, therefore, be considered to be 

candidate novel IEGs (henceforth candidate IEGs). Pathway analysis (Breuer, 

Foroushani et al. 2012) recovers many known relationships among known 

IEGs, as expected, centred on heavily studied IEGs such as FOS and JUN. 

However, the same analysis suggests that more than half (ATG12; UBE2D3; 

THBS1; FLNA; GNB2L1; ITM2B; B4GALT1; GNAS; ARF4; PLEC; PTGES3; 

SLC3A2; XBP1; RPSA; PFKFB3; CUL3 and DKC1) of candidate IEGs also 

participate in common pathways with known IEGs, involving a densely inter-

connected network of 83 significantly over-represented pathways (Table 13), 

including signalling cascades known to mediate the IER, such as the Ca2+-

dependent pathways and the mitogen-activated protein (MAP) kinase network 

(Treisman 1996, Schratt, Weinhold et al. 2001).  

For example, the candidate IEG UBE2D3 participates with the known IEGs 

PPP1R15A, FOS and JUN in the Transforming growth factor-β (TGFβ) 

signalling pathway, which is known to drive many biological processes, such 

as cell proliferation, differentiation and morphogenesis in animal cells 

(Massagué 2012). A chromatin immunoprecipitation assay also reported 

physical association between JUN and PPP1R15A, suggesting that induction 

of PPP1R15A is mediated by JNK/JUN pathway as documented by Xu et al. 

(Xu, Xiao et al. 2015). UBE2D3 also participates with JUN and FOS in the 

TRIF-mediated TLR signalling pathway, which has a fundamental role in the 

induction of the innate immune response (Ahmed, Maratha et al. 2013), and 

with ATG12, a candidate IEG involved in autophagy, to negatively regulate the 

RIG-I and MDA5 innate immune receptors. Similarly, the known IEG SDC4, 

which encodes a member of the Syndecans transmembrane receptors family, 

is linked to the candidate THBS1 gene, which encodes an adhesive 
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glycoprotein, both participating in signalling events in cell proliferation and cell–

matrix and cell–cell adhesion (Carey 1997, Cheng, Montmasson et al. 2016).  

 

Table 13 Biological pathways overrepresentation. Pathway analysis of the 42 protein coding genes 
in the robust set, obtained using InnateDB database. Known IEGs are indicated in bold. 

Genes Overrepresented pathways (P-value corrected <0.05) 
FOS; JUN Tsp-1 induced apoptosis in microvascular endothelial cell 

Pertussis toxin-insensitive ccr5 signaling in macrophage                       
Activation of the AP-1 family of transcription factors   
S1P2 pathway                                                                   
Calcium signaling by hbx of hepatitis b virus                                  
Repression of pain sensation by the transcriptional regulator 
dream            
Cadmium induces dna synthesis and proliferation in 
macrophages                 
Nerve growth factor pathway (Lerner, Harada et al.)                                              
Mets affect on macrophage differentiation                                      
Oxidative stress induced gene expression via nrf2                              
Igf-1 signaling pathway                                                        
PDGFR-alpha signaling pathway                                                  
Inhibition of cellular proliferation by gleevec   
Tpo signaling pathway                                                          
IL12 signaling mediated by STAT4                                               
Pdgf signaling pathway                                                         
Endothelins                                                                    
ErbB2/ErbB3 signaling events                                                   
Osteopontin-mediated events                                                    
Fc epsilon receptor i signaling in mast cells                                  
Bcr signaling pathway                                                          
RhoA signaling pathway                                                         
Role of egf receptor transactivation by gpcrs in cardiac 
hypertrophy           
MAPK targets/ Nuclear events mediated by MAP kinases                           
Signal transduction through il1r                                               
Toll-like receptor pathway                                                     
Angiotensin ii mediated activation of jnk pathway via pyk2 
dependent signaling 
 IL2-mediated signaling events                                                  
IL6-mediated signaling events                                                  
LPA receptor mediated events 
Presenilin action in Notch and Wnt signaling                                   
 FCERI mediated MAPK activation                                                 
 Keratinocyte differentiation                                                   
T cell receptor signaling pathway                                              
Mapkinase signaling pathway                                                    
 MAP kinase activation in TLR cascade                                           
 BCR signaling pathway                                                          
Colorectal cancer                                                              
Regulation of nuclear SMAD2/3 signaling                                        
Leishmaniasis                                                                  
B cell receptor signaling pathway 

FOS; JUN; DUSP1 Fc-epsilon receptor I signaling in mast cells 
FOS; JUN; FOSL1 Calcium signaling in the CD4+ TCR pathway   

Downstream signaling in naive CD8+ T cells 
FOS; JUN; FOSB; FOSL1 CD4 T cell receptor signaling Osteoclast differentiation 
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FOS; JUN; FOSB BCR 
FOS; JUN; SGK1 Glucocorticoid receptor regulatory network IL6 
DUSP1; JUN Mechanism of gene regulation by peroxisome proliferators via 

ppara 
FOSL1; JUN Validated transcriptional targets of AP1 family members Fra1 

and Fra2 
FOS; FOSL1 Bone remodeling 
FOS; JUN; PTGES3; 
DKC1 

Regulation of telomerase 

FOS; JUN; DUSP1; CUL3 ATF-2 transcription factor network 
FOS; JUN; DUSP1; ARF4 ErbB1 downstream signalling 
FOS; JUN; DUSP1; FLNA MAPK signaling pathway 
FOS; JUN; BHLHE40; 
PFKFB3 

HIF-1-alpha transcription factor network 

FOS; JUN; PLEC; RPSA Alpha6Beta4Integrin 
FOS; JUN; XBP1 FOXA1 transcription factor network 
FOS; JUN; FOSL1; 
SLC3A2 

Calcineurin-regulated NFAT-dependent transcription in 
lymphocytes 

FOS; JUN; SDC4; FGF signaling pathway 
JUN; FOS; FLNA Prolactin 
FOS; JUN; UBE2D3 MyD88-independent cascade            

TRIF-mediated TLR3/TLR4 signaling   
Toll Like Receptor 3 (TLR3) Cascade  
Activated TLR4 signaling           
Toll Like Receptor 4 (TLR4) Cascade 
Toll-Like Receptors Cascades 

FOS; JUN; FOSB; 
PPP1R15A; UBE2D3 

TGF_beta_Receptor 

FOS; JUN; PTGES3; 
UBE2D3 

Cellular responses to stress 

FOS; JUN; SDC4; 
DUSP1; ARF4; PLEC 

EGFR1 

FOS; JUN; GNAS Chagas disease (American trypanosomiasis) 
JUN; B4GALT1 Pre-NOTCH Expression and Processing 
JUN; GNB2L1 Regulation of Androgen receptor activity IL5 
JUN; SGK1; ITM2B IL2 
JUN; FLNA; GNB2L1; 
UBE2D3 

TNFalpha 

SDC4; THBS1 Syndecan interactions                     
Syndecan-4-mediated signaling events     
Beta3 integrin cell surface interactions  
Non-integrin membrane-ECM interactions  

ATG12; UBE2D3 Negative regulators of RIG-I/MDA5 signaling 

 

 Novel non-coding RNA candidates in the immediate 

early response 

I next classified the promoters of non-coding transcripts and found peak 

classified promoters driving the expression of 20 non-coding RNA genes 

across at least seven datasets, constituting the robust set of non-coding RNA 
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candidate IEGs. These included genes associated with the cellular splicing 

machinery, such as small nuclear RNA multi-gene families, which are part of 

the spliceosome, SCARNA17, a small nuclear RNA which contributes to the 

post transcriptional modification of many snRNPs, and SNORD65 and 

SNORD82, snRNAs involved in rRNA modification and alternative splicing. 

Kalam et al. (2017) have shown that macrophage infection with 

Mycobacterium tuberculosis results in the systematic perturbation in splicing 

patterns (Kalam, Fontana et al. 2017), and these results appear to suggest 

more general roles for alternative splicing in the IER. However, repetitive 

multigene families, such as these small nuclear RNAs (U1, U2, U3, U4 and 

7SK) present particular challenges for reliable sequence read mapping 

(Chapter 2.8). Although probabilistic approaches to mapping ambiguously 

mapped reads were developed and applied in FANTOM5 (Arner, Daub et al. 

2015), I chose to conservatively remove these genes from the robust set 

(Chapter 2.9), leaving a group of 15 noncoding genes (Table 14). 
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Table 14 Noncoding RNA genes peaking in at least 7 out of 8 datasets. The number of datasets in 
which the genes are classified to the peak model is provided with a short description of the molecular 
function attributed by the literature (via GeneCards database). 

Gene ID Nº 
Datasets 

Description (PubMed ref.) 

LINC00478 
(MIR99AHG) 

7 Has a role in cell proliferation and differentiation and 
considered a regulator of oncogenes in leukaemia (PMID: 
25027842) 

LINC00263 7 Regulation of oligodendrocyte maturation (PMID: 25575711)  
LINC-PINT 8 Putative tumour suppressor (PMID: 24070194) 
LINC00963 7 Involved in the prostate cancer transition from androgen-

dependent to androgen-independent and metastasis via the 
EGFR signalling pathway (PMID: 24691949) 

LINC00476 8 Non characterized lincRNA 
LINC00674 7 Non characterized lincRNA  
STX18-AS1 7 Non characterized lincRNA 
DLEU2 7 Critical host gene of the cell cycle inhibitory microRNAs miR-

15a and miR-16-1 (PMID:19591824) 
MiR-29A 7 The expression of the MiR-29 family has antifibrotic effects in 

heart, kidney, and other organs. The family have also been 
shown to induce apoptosis and regulate cell differentiation 
(PMID: 22214600) 

MiR-3654 7 Involved in Prostate Cancer progression (PMID: 27297584) 
MiR-21 7 Oncogenic potential (PMID: 18548003) 
AL928646 7 Non characterized ncRNA 
SCARNA17 7 scaRNA Involved in the maturation of other RNA molecules 

(PMID: 12032087) 
SNORD65 7 Belongs to the Small nucleolar RNAs, C/D bof family. 

Involved in rRNA modification and alternative splicing (PMID: 
26957605) 

SNORD82 7 Belongs to the Small nucleolar RNAs, C/D bof family. 
Involved in rRNA modification and alternative splicing (PMID: 
26957605) 

 

Three miRNAs are present in the robust set (Table 14). MiR-21 has been 

demonstrated to have oncogenic potential by inhibiting the expression of 

phosphatases, limiting the activity of signalling pathways such as AKT and 

MAPK, which are involved in regulating cellular proliferation, differentiation and 

survival. This miRNA was previously reported to show IEG-like behaviour in 

the PAC_FGF2, PAC_FGF2 and MCF7_HRG time series (Aitken, Magi et al. 

2015). Here, I found similar behaviour for the same gene in the MCF7_EGF1, 

PEC_VEGF, PMSC_MIX and SAOS2_OST datasets. This extends previous 

studies reporting that the MiR-21 mature transcript is upregulated on EGF 

treatment in MCF10A (Avraham, Sas-Chen et al. 2010) and HeLa (Llorens, 

Hummel et al. 2013) cells. MiR-29A has been associated with the viability and 

proliferation of mesenchymal stem cell and gastric cancer cells (Liu, Cai et al. 
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2015, Zhang and Zhou 2015). MiR-3654, is reported to be involved in prostate 

cancer progression (Saravanan, IH Islam et al. 2016) and in the immune 

response in Myasthenia gravis patients (Barzago, Lum et al. 2016). DLEU2 is 

a putative tumour suppressor gene that hosts two miRNAs, MiR-15A and MiR-

16-1 which are known to inhibit cell proliferation and the colony-forming ability 

of tumour cell lines, and to induce apoptosis (Cimmino, Calin et al. 2005, 

Lerner, Harada et al. 2009, Gao, Xing et al. 2011). Seven long non-coding 

RNAs (lncRNAs) also appear in the robust set (Table 14) and among them 

LINC00478 is particularly interesting, as it has already been reported to show 

IEG-like behaviour (Aitken, Magi et al. 2015). It is implicated in breast cancer 

and hosts an intronic cluster of miRNAs comprising let-7c, MiR-99A, and MiR-

125B (Gökmen-Polar, Zavodszky et al. 2016). Although poorly characterised, 

LINC00263, LINC-PINT and LINC00963 are thought to be involved in 

biological processes often associated with IEGs induction, such as cell 

maturation, cell proliferation and the expression of growth factor receptors 

(Marín-Béjar, Marchese et al. 2013, Wang, Han et al. 2014, Mills, Kavanagh 

et al. 2015, Müller, Raulefs et al. 2015). In addition, I found four functionally 

uncharacterized non-coding RNAs (LINC00476, LINC00674, STX18-AS1 and 

AL928646) showing peaking behaviour in at least seven out of eight datasets. 

 Exploration of the set of genes modelled by dip, decay 

and linear functions 

The classification of transcriptional responses across datasets shows that the 

IER is often associated with promoter dynamics that are clearly different from 

the behaviours of IEGs, such as those classified to the dip, decay and linear 

models (Table 15). However, these classifications are less consistent across 

datasets than the peak model: 15% of the peaking genes show the same 

kinetics in more than four out of eight datasets, while only 0.5% 0.01% and no 

genes at all share dip, decay and linear model, respectively, in more than four 

datasets. Nevertheless, when I analysed the GO terms enrichment, I found 

that a big proportion of the terms associated to dip and decay sets (which 

includes genes which are also classified as peaks using different CAGE TSSs) 
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is shared with the group of 212 known IEGs. A possible explanation could be 

that the IER results not only in the quick and transient activation of the IEGs 

but also in the down regulation of other classes of genes which could be 

involved in the same processes. 

 

Table 15 Functional comparisons of different models. Classification and GO term enrichment (FDR 
corrected hypergeometric test q-value <0.05) for the genes assigned to different mathematical models. 

Model # genes # genes shared 
by at least 4 

datasets 

# IEGs # GO 
terms 

Proportion 
GO terms 

shared with 
known 
IEGs 

Peak 8,785 1,304 (15%) 204 285 30% 
Dip 3,093 16 (0.05%) 36 81 53% 
Decay 1,769 1 (0.01%) 36 47 66% 
Linear 1,025 0 (0%) 9 52 3% 

 

 Assessing limitations of gene set enrichment analysis 

Annotation enrichment procedures are subjected to a number of potentially 

limiting factors and artefacts which should be considered. For example, the 

choice of the wrong background could result in false positives, wrongly 

considering significant genes which are not significant (Khatri and Drăghici 

2005). This bias is caused by the fact that all the genes which are in the 

background but are not present in the pool of genes available for comparison 

won’t have the opportunity of being in the list of genes tested for enrichment. 

For this reason, I used only the genes detected across the eight time-course 

datasets instead of the whole human genes list. 

Another limitation is caused by the heterogeneity in the quality of annotation 

for the genes in the list respect to the genes in the background. Some genes 

are very poorly annotated and can never be detected as significantly enriched 

for anything, while others are more thoroughly annotated and better described 

(Khatri and Drăghici 2005). Unfortunately, this is a limitation common to all the 

studies involving gene set enrichment analysis and associated bias can’t be 

easily avoided. 
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 Discussion 

Here I collate and describe an unusual collection of FANTOM5 CAGE times 

series datasets capturing the IER genome-wide to various stimuli at the level 

of individual promoters. A statistically rigorous classification of individual 

promoters across these datasets has not been performed until now. Refining 

an existing method (Aitken, Magi et al. 2015), I classify time course gene 

expression profiles to one of several predefined, mathematical models of time 

course dynamics: peak, dip, decay and linear. The peak model definition 

reflects current knowledge of the immediate early response, which is 

characterized by the transient and rapid (i.e. protein synthesis-independent) 

activation of the IEGs, which are known to be involved in many fundamental 

cellular processes such as cell proliferation, differentiation, apoptosis and 

survival. Many IEGs encode secreted proteins and TFs and exert their cellular 

activities triggering the activation of secondary response genes, involved 

themselves in complex and tightly regulated signalling pathways (Tullai, 

Schaffer et al. 2007, Bahrami and Drabløs 2016). 

I found that the peak model had the highest number of assignments in all the 

datasets for both protein-coding and non-coding RNA genes (72% and 64%, 

respectively), of the total genes detected by CAGE sequencing in the eight 

datasets. A plausible explanation for this higher proportion could be that the 

algorithm has been optimized to most effectively discover peaking genes, 

since I focus on IEGs, and therefore many genes with other kinetics of interest 

could be undiscovered in the unclassified set. 

I describe a permissive set of 1,304 genes peaking in at least four out of eight 

datasets. The majority of the promoters assigned to the 84 known IEGs in this 

set, peak early in most datasets. However, comparing the time of peaking for 

the permissive set across the eight datasets I observe a higher similarity 

between the promoter dynamics of analogous biological systems, such as 

PAC_IL1B and PAC_FGF2, which may suggest system specific regulatory 

mechanisms of the IER, as previously suggested by Aitken et al (Aitken, Magi 

et al. 2015).  In addition, I define a robust set of 42 protein-coding genes 
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peaking in at least seven out of eight datasets. This set contains 13 previously 

known IEGs, and 29 candidate IEGs, which participate in common signalling 

pathways and are likely to be core components of the IER. I also performed a 

more stringent analysis using only the single p1 CAGE TSSs and I still 

detected significant enrichments of known IEGs present in the robust set, 

obtained using the original protocol. This result addresses the problem of 

multiple CAGE TSSs associated to the set of genes compared in the 

enrichment analysis and supports the robust set. 

 

Applying my approach to the CAGE TSSs of non-coding RNAs, I also 

discovered a set of 15 non-coding RNAs peaking across at least seven 

datasets, comprising miRNAs and lncRNAs, suggesting regulatory roles for 

particular non-coding RNA species in the IER (Aitken, Magi et al. 2015).  

Many known IEGs are not present in robust set of shared peaking genes, 

peaking exclusively in one or few datasets. This variability may reflect the 

ability of different biological system to react in a stimulus-specific manner, 

integrating unique mechanisms. It follows that a number of undiscovered IEGs 

could be present in the set of genes peaking in less than four datasets. Future 

experimental analysis could exploit the protein synthesis-independent 

activation nature of the IEGs to support the candidate IEGs in the robust and 

permissive set. 
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5. Temporal patterns of gene activation are 

conserved across datasets 

 Introduction 

The interaction of biological molecules in complex networks is the basis of all 

biological processes, including cellular responses to stimuli, and modeling 

these interactions can reveal the mechanisms underlying fundamental 

biological processes (Price and Shmulevich 2007).  

Signalling molecules promote specific temporal patterns of signalling-

transduction and gene expression, triggering the execution of generalized and 

specific biological responses (Perrimon, Pitsouli et al. 2012). Many biological 

responses, such as immune-system response or cellular stress, need a prompt 

and specific activation of the regulatory systems to successfully accomplish 

the appropriate function (Bahrami and Drabløs 2016). 

 

Fully understanding the normal behaviour of a living cell or the responses of 

cells to changes in external conditions requires not only the characterization 

of the genes involved in the transduction between the input and the specific 

output or the identification of the transcription factors and the effectors of the 

response, but also the knowledge of the magnitude and timing of the activation 

of each gene involved (Murphy and Blenis 2006). 

The majority of studies of regulatory networks have been focused on static 

data, mostly due to the shortage of appropriate high resolution time-series 

expression data and the challenges in the analysis of such data. Time-series 

datasets can be massive and high-dimensional, so that incorporating them into 

a coherent network can be computationally intensive (Price and Shmulevich 

2007, Sima, Hua et al. 2009, Streit, Tambalo et al. 2013, Thorne 2018). 

IEGs are thought to represent the core of the complex and finely orchestrated 

systems responding to external stimuli, and often use common activation 

systems across signalling pathways and transcription factors (Saito, Uda et al. 
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2013). However, the temporal regulatory network of the IER is still poorly 

characterized and will be analysed in this chapter. The expression of the genes 

encoding FOS and JUN proteins are surely the most studied among the IEGs 

and also the first to be temporally characterized. Their time course expression 

has been described in many systems in different studies, aiming to disentangle 

the basis of different biological processes, such as the activation of FOS by 

the growth factors in quiescent 3T3 cell (Greenberg and Ziff 1984), the 

inhibition of androgen-induced PSA promoter activity (Sato, Sadar et al. 1997) 

by FOS and JUN induction. All these studies reported the fast and transient 

kinetics of FOS and JUN activation. 

The activation dynamics of the IEGs are difficult to generalize because many 

regulatory patterns are cell, system or biological process specific (O'Donnell, 

Odrowaz et al. 2012). Aitken et al. (2015) compared the time of peaking of 

several IEGs in four cell systems: aortic smooth muscle cells treated with IL1B 

and FGF2 and the MCF7 cell line treated with EFG1 and HRG (Aitken, Magi 

et al. 2015), but did not examine the conservation of the order of activation of 

IEGs. Here, I provide a systematic statistical analysis of the temporal order of 

gene expression, and in particular IEG expression, to identify conserved 

patterns across cell types and stimuli. 

  

 Distribution of peaking time and change in expression 

parameters 

The dynamics of the expression of peak-classified genes can be visualized by 

a scatterplot of expression fold change against peak expression time (,C). 

Figure 21 plots the fold change expression (in tag per millions (TPM)) versus 

,C for the PMDM_LPS (Figure 21A) and MCF7_EGF1 datasets (Figure 21B) 

in an interval up to 300 minutes, for a subset of known IEGs as well as 

candidate protein coding and non-coding IEGs from the robust set. The 

directional arrows illustrate the temporal ordering of gene activation. FOS 

stands out with its early and high expression, preceding the majority of the 

other genes in both datasets. This is consistent with its role as principal 
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regulator in the IER. Together with JUN, which follows FOS in timing in our 

analysis (Figure 21 and Figure 24), they are subunits of the AP1 transcription 

factor, which regulates the expression of many other genes involved in 

physiological and pathological cellular processes, in response to a variety of 

different stimuli, such as cytokines and growth factors (Hess, Angel et al. 

2004). Among the candidate IEGs in the robust set, XBP1 is especially 

noteworthy. This gene encodes a transcription factor and is relatively short in 

length (6Kb compared with the mean of 58Kb for all Ensembl protein coding 

genes) consistent with the IEG archetype (Fowler, Sen et al. 2011). It is 

activated by cellular stress processes affecting the normal functions of the 

Endoplasmic Reticulum (Xu, Bailly-Maitre et al. 2005). The TF XBP1 gene, 

together with  miR-3654 and LINC00476 non-coding RNAs, appear to be 

consistently upregulated after FOS and before the activation of another known 

IEG: EHD1, which is known to have a role in the endocytosis and recycling of 

various receptors (Naslavsky, Rahajeng et al. 2006). XBP1 is known to form a 

heterodimer with FOS which regulate the human class II major 

histocompatibility complex genes (Ono, Liou et al. 1991), and Martinez et al. 

found a correlation between XBP1 and FOS upregulation in the human 

hippocampus related to memory formation (Martínez, Vidal et al. 2016); 

however, their interaction in other biological systems is less studied. The 

functions of miR-3654 and LINC00476 non-coding RNAs in the IER are 

unstudied and their association with FOS or EHD1 expression has not been 

mentioned before. However, other miRNAs and lincRNAs are known to be 

involved in the regulation of protein coding genes. Thus the conserved timing 

of these non-coding RNAs could reflect possible roles in the regulation of the 

IER. The temporal ordering of known and candidate IEGs will be analysed in 

more detail below using a formal definition of conserved temporal ordering. 
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Figure 21 Transcriptional dynamics of genes classified to the peak model. Scatterplots of log fold 
change against the time of peaking for selected genes of interest, with conserved temporal ordering 
indicated by arrows for (a) PMDM_LPS and (b) MCF7_EGF1. FOS peaks earliest and has many 
conserved temporal relations to later peaking genes, while EHD1 peaks late and has many conserved 
temporal orderings with earlier peaking genes. 

When examining the magnitude of expression changes across time course 

datasets (Table 16), known IEGs CAGE TSSs tend to show the greatest fold 

changes (Figure 22A, all datasets merged, Wilcoxon p-value < 2.2e-16, 

difference in sample medians = 1.85, confidence interval calculated with 

Wilcoxon test = (1.72 , 1.99)). However, candidate protein coding IEGs 

promoters do not show a notable difference in timing (Figure 22C, all datasets 

merged, Wilcoxon p-value = 0.89, difference in sample medians= -0.26, 

confidence interval calculated with Wilcoxon test = (-4.41 , 3.9)). There is no 

evidence of a statistical difference between population medians, which is 

reflected by the confidence interval spanning zero. Comparing candidate and 

known IEGs in single datasets (Table 16), the time of peaking is significantly 

earlier for known IEGs relative to the other candidate IEGs in four time-series: 

MCF7_EGF1, PEC_VEGF SAOS2_OST and PAC_FGF2, while is slightly 

earlier for PMDM_LPS and PAC_IL1B candidate IEGs respect to known IEGs. 

These results suggest that known IEGs show a higher magnitude of change in 

expression and may be easier to detect, explaining their widespread presence 

in literature.  

Fold changes in peaking non-coding RNA promoters tend to be lower than for 

known IEGs (Figure 22B, Table 16) (all datasets merged Wilcoxon p-value < 
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2.2e-16, difference in sample medians= 4.55, confidence interval calculated 

with Wilcoxon test = (4.39 , 4.72)) but they occur earlier than known IEGs 

(Figure 22D, Table 16) in 3 datasets, PMDM_LPS, MCF7_HRG and 

PAC_IL1B and later in MCF7_EGF1 and PEC_VEGF (all datasets merged 

Wilcoxon p-value < 2.2e-16, difference in sample medians= 21.5, confidence 

interval calculated with Wilcoxon test = (16.8 , 26.3)). I speculate that many 

non-coding RNAs could be expressed in the earliest stages of the IER to 

regulate the specific IEGs in a stimulus-specific manner.  

 

Figure 22 Distributions of known IEG expression change and tp across datasets. (A) and (B) box 
plots show a higher log fold change between maximal and basal expression for known IEGs than for 
other protein coding and non-coding candidate IEGs, respectively. (C) and (D) boxplots indicate that the 
tie of peaking is comparable between known IEGs and protein-coding candidate IEGs but is significantly 
different between known IEGs and non-coding RNAs (significant difference after performing the 
independent variable t-test evaluation is indicated with an asterisk). 
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Table 16 Unpaired two-samples Wilcoxon test values of the comparisons between known and 
candidate IEGs for time of peaking and log fold change. For each dataset the log fold change in 
expression (in the left) and time of peaking (in the right) medians are compared, between known and 
candidate IEGs, with Wilcoxon Signed Rank Test. For both protein coding (top table) and non-coding 
RNAs (bottom table) genes, a confidence interval for the difference between two measures of location 
(sample medians) is provided. The null hypothesis can’t be rejected when the confidence interval for the 
difference in sample medians spans zero. 

  Protein coding genes 

 expression change (log fold change) time of peaking 

  

difference 
in sample 
medians 

95% 
Confidence 
Interval 

p-value difference 
in sample 
medians 

95% 
Confidence 
Interval 

p-value 

MCF7_EGF1 1.29 (0.92 , 1.68) 4.2E-11 -37.90 (-50 , -25) 1.4E-08 

MCF7_HRG 2.16 (1.80 , 2.54) 4.2E-32 -5.66 (-16.48 , 4.98) 0.29 

MPSC_MIX 1.89 (1.20  , 2.61) 8.8E-07 -1.63 (-13.19 , 8.81) 0.75 

PAC_FGF2 1.26 (0.91 , 1.63) 2.1E-11 -28.00 (-37.8 , -18) 1.1E-07 

PAC_IL1B 1.79 (1.44 , 2.16) 5.6E-24 13.40 (1.5 , 25.3) 2.8E-02 

PEC_VEGF 2.03 (1.69 , 2.38) 1.3E-27 -33.60 (-41.6 , -25.4) 3.2E-14 

PMDM_LPS 1.80 (1.47 , 2.09) 1.1E-29 23.00 (14.6 , 31.6) 3.5E-08 

SAOS2_OST 1.07 (0.7 , 1.47) 4.3E-07 -12.90 (-23.97 , -1.93) 2.2E-02 

 

  non-coding RNA 

 expression change (log fold change) time of peaking 

  

difference 
in sample 
medians 

95% 
Confidence 
Interval 

p-value difference 
in sample 
medians 

95% Confidence 
Interval 

p-value 

MCF7_EGF1 3.93 (3.54 , 4.34) 3.5E-32 -21.90 (-36.68 , -7.42) 3.3E-03 

MCF7_HRG 4.29 (3.86 , 4.73) 2.6E-53 19.80 (7.76 , 31.75) 1.5E-03 

MPSC_MIX 4.01 (3.38 , 4.72) 1.5E-15 9.06 (-2.59 , 21.84) 0.13 

PAC_FGF2 3.94 (3.54 , 4.34) 2.8E-41 -5.68 (-16.95 , 5.63) 0.32 

PAC_IL1B 4.13 (3.72 , 4.55) 2.0E-47 35.70 (22.1 , 49.1) 2.3E-07 

PEC_VEGF 4.80 (4.42 , 5.21) 1.9E-55 -16.80 (-27.28 , -6.31) 2.1E-03 

PMDM_LPS 4.27 (3.84 , 4.71) 2.7E-55 73.40 (61.6 , 84.4) 1.4E-26 

SAOS2_OST 4.55 (4.1 , 4.97) 2.6E-35 9.94 (-2.69 , 22.82) 0.01 
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 Discovery of a conserved IER activation network 

Having established comparable patterns of peak gene induction at similar 

times across datasets for certain known IEGs (chapter 5.2), I hypothesised 

that many IEGs may be induced in a conserved order over time. To our 

knowledge, the extent of conserved ordering in gene induction is unstudied in 

general, and in the IER it is of particular interest for two main reasons. Firstly, 

the presence of conserved gene orderings, in addition to common gene 

classifications, may provide an additional indication of functional similarity 

between different cell types and ERI stimuli. Secondly, strongly conserved 

ordering may suggest the existence of conserved regulatory mechanisms 

governing the induction of these genes, motivating further studies of these 

underlying mechanisms. To analyse the relative order of activation across the 

eight datasets I compared the peak time of each gene to that of all others in 

the peak class, adopting a permutation strategy to assess significance.  

A total of 57 protein coding and non-coding candidate IEGs (all corresponding 

to known Ensembl genes) from the robust candidate set were considered for 

construction of the conserved activation network. For genes with multiple 

peaking CAGE TSSs I chose the earliest peaking CAGE TSS (lowest tp) in 

each dataset, thus removing any possible statistical artefact due to multiple 

TSSs associated to genes of the robust set,  then the relative pairwise order 

of activation for each gene was computed with respect to all the other genes 

in the robust set. I define the relative activation ordering between Gene1 and 

Gene2 to be conserved if tp, Gene1 < tp, Gene2 in at least 7 of the 8 datasets (Figure 

23).  
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Figure 23 Defining conserved activation order. The eight plots show the time course expression of 
Gene1 (in red) and Gene2 (in blue) in the eight datasets. The arrows over the plots connect the smaller 
tp with the greater tp. Gene1 tp is smaller than Gene2 tp in seven out of eight datasets (all datasets except 
dataset 3), therefore I conclude that Gene1 had a conserved activation order respect to Gene2 and I 
connect them with an arrow directed from the earliest gene, Gene1, to the latest gene, Gene2.  

 

Applying this procedure to all 57 coding and non-coding genes of the robust 

set I discovered 40 genes temporally connected by 77 conserved relative 

orderings (Figure 24). FOS was the first gene to be activated, in the sense that 

it lacks a predecessor in these data, and SDC4, EHD1 and TMEM185B were 

the last. Many genes in this network are known to participate in well-studied 

pathways active in the IER such as FOS, JUN, DUSP1 and FLNA which are 

part of the MAPK signalling pathway, one of the most studied signaling 

pathways with vital roles in many cellular processes in normal and cancerous 

cells (Orton, Sturm et al. 2005). In addition, FOS, JUN, SDC4, DUSP1, ARF4 

and PLEC are part of the EGFR1 regulated signaling pathway, which plays 

roles in cellular proliferation and survival and is often deregulated in cancer 

(Fromm, Johnson et al. 2008). The significance of the number of temporal 

connections observed was measured relative to a null distribution constructed 

by permuting tp for all the CAGE TSSs 1,000,000 times and repeating the 

pairwise ordering at each iteration (Figure 25); with the proportion of permuted 
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datasets with at least as many conserved orderings as the observed taken as 

an empirically derived p-value. The observed value (77 conserved orderings) 

was detected or exceeded in 4,516 out of 1,000,000 permutations indicating 

that the number of temporal connections was significantly higher than 

expected by chance (p-vale < 5e-3). The average number of connections for 

the permutations is 36.56 with a confidence interval of ‘36.53 ; 36.58’, and the 

experimental value, 77, is 3.2 standard deviations from the permutation 

average value. Thus, there is evidence in these diverse time course datasets 

for a conserved coordination of promoter activation during the IER, that 

includes known IEGs and further supports the candidacy of the novel IEGs 

detected, such as the strong candidate XBP1 TF coding gene. 
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Figure 24 Conserved activation network. The network describes the conserved order of activation for 
known IEGs (in light blue), TF XBP1 (in yellow), ncRNA genes (in black) and other protein coding genes 
(in green). The directional arrows connect the earlier peaking genes with the genes peaking later. The 
17 genes in the right top of the plot are part of the protein coding and non-coding robust set but do not 
show conserved temporal ordering with any other gene in the network and are therefore not connected 
with any arrow. 
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Figure 25 Pair wise connections permutation test. Distribution for 1,000,000 permutations of the 
conserved pairwise connections between couple of genes across at least 7 out of 8 datasets. Permuting 
the data, I found an average of 36.56 conserved connections (blue dashed line). The experimental result, 
77 conserved pair-wise connections, corresponds to 3.2 standard deviations from the mean of the 
permutation distribution.  Only 4,516 permutations exceeded the experimental result, which corresponds 
to p-value < 5e-3. 

 

 Canonical IEG TF binding sites 

IEG promoters are known to be enriched for specific TF binding sites such as 

those bound by serum-response factor (SRF), nuclear factor-kB (NFKB) and 

cyclic AMP response element-binding protein (CREB), suggesting that IER 

transcriptional regulation mechanisms are shared and possibly redundant 

(Tullai, Schaffer et al. 2007, Healy, Khan et al. 2013). To test for similarities 

between the known IEGs and the candidate IEGs I firstly verified the 

enrichment of the IEG specific TF motifs in the FANTOM CAGE TSS regions 

of the 212 known IEGs and then I compared with their enrichment in the robust 

set. The sequences corresponding to 200 bases upstream and downstream of 
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the centre (400 base window) of the CAGE TSSs associated to the tested 

genes were matched to the collection of JASPAR CORE TFBS matrices 

(Sandelin, Alkema et al. 2004), comprising a curated collection of 

experimentally defined TF binding sites for multi-cellular eukaryotes. 

Using a stringent threshold (adjusted motif occurrence p-values lower than 

0.05), I found significant matches for a total of 352 motifs in the set of all CAGE 

TSSs tested (corresponding to 12,132 tested genes) and to 157 motifs within 

the CAGE TSSs associated with the 212 known IEGs. As expected, in this IEG 

set I found motifs belonging to the known IEGs regulators: SRF, CREB5, 

NFKB1, NFKB2 (complete list in Appendix Table 4). Furthermore, using 

Fisher’s exact test to compute the enrichment of each motif in the IEG set 

relative to the total gene set, I found 145 enriched motifs (FDR adjusted p-

value < 0.05) including the known IEGs regulators already mentioned. The 

protein-coding robust set was enriched for 266 motifs, and I found all the 

known regulators and another 51 binding sites enriched in both the known 

IEGs and the robust set (Table 17, Figure 26). Remarkably, the promoter 

region of the XBP1 candidate IEG is also enriched for NFKB1 and NFKB2, two 

known IEG regulators.  
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Table 17 Enriched transcription factor binding sites in IEG promoters. TF binding sites significantly 
enriched in the known IEGs as well as in the robust set. The p-values, odd ratios and q-values are 
referred to the robust set. 

Motif gene name pv Odd ratios q-value 
RELA 9.2e-05 3.5 0.0061 
TBP 2.7e-04 4.3 0.0098 
Nfe2l2 9.7e-04 3.1 0.0132 
MAF::NFE2 2.4e-03 3.1 0.0227 
NFKB2 9.5e-04 2.9 0.0131 
blmp-1 2.2e-03 2.6 0.0216 
RREB1 3.9e-04 3.7 0.0120 
Trl 1.0e-02 2.2 0.0477 
AGL15 7.4e-03 2.5 0.0402 
AP3 3.1e-03 2.9 0.0255 
FLC 9.4e-03 2.5 0.0461 
AGL27 2.9e-03 2.9 0.0247 
HSF1 6.4e-03 2.6 0.0366 
AGL1 5.3e-05 4.9 0.0053 
CEBPA 2.5e-04 4.3 0.0093 
JUN 1.6e-03 3.0 0.0181 
JUND(var.2) 1.3e-04 3.9 0.0066 
su(Hw) 5.7e-03 3.1 0.0343 
dl(var.2) 2.4e-04 3.2 0.0093 
HMG-I/Y 1.6e-03 2.8 0.0182 
SCRT2 1.3e-04 3.8 0.0066 
REL 4.6e-03 2.4 0.0291 
IRF2 3.6e-03 2.8 0.0267 
AZF1 8.6e-03 2.3 0.0431 
TBR1 1.7e-03 3.3 0.0185 
GIS1 1.5e-04 4.1 0.0074 
CDF3 4.2e-03 3.0 0.0285 
DOF2.4 2.8e-03 3.1 0.0241 
TGA7 2.6e-03 2.8 0.0233 
Stat4 2.5e-03 2.7 0.0233 
FOSL1 5.2e-04 3.6 0.0122 
FOSL2 3.3e-03 2.8 0.0260 
JUNB 4.5e-04 3.6 0.0120 
JUND 1.0e-02 2.7 0.0474 
SCRT1 7.2e-04 3.4 0.0127 
Stat92E 2.8e-03 2.9 0.0242 
bZIP910 2.1e-03 3.7 0.0214 
TGA1 8.5e-03 2.5 0.0431 
AP1 3.4e-03 3.0 0.0260 
JDP2(var.2) 3.4e-04 3.7 0.0114 
BATF3 7.3e-04 3.4 0.0127 
Creb5 4.7e-03 3.0 0.0297 
BZIP60 3.8e-03 3.1 0.0275 
OAF1 1.5e-03 3.0 0.0177 
YNR063W 3.4e-03 2.8 0.0261 
SEP1 1.4e-03 3.9 0.0172 
MEF2A 3.8e-03 3.3 0.0275 
MEF2C 5.3e-04 3.6 0.0122 
MGA 1.0e-03 3.3 0.0134 
squamosa 1.2e-04 4.4 0.0066 
T 9.1e-03 3.7 0.0452 
HLF 2.6e-03 4.9 0.0233 
DBP 5.3e-03 4.9 0.0328 
SRF 5.5e-04 5.0 0.0122 
SPT15 7.9e-05 6.7 0.0057 
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Figure 26  IEG known regulators in the robust set. Each symbol and colour represents one of the 4 
known regulators of IEGs (Creb5, NFKB1, NFKB2, SRF). Known IEGs are indicated in blue while the 
candidate IEGs are green. 

I found occurrences of the 1,007 tested motifs in 382 promoter regions 

associated to non-coding RNA genes detected in the eight datasets. However, 

the non-coding robust set was not enriched for any motif in respect to the other 

non-coding genes tested across all the datasets. This could indicate that the 

activation of non-coding genes in the IER relies on regulatory mechanisms that 

are not shared by the protein coding known and candidate IEGs. 

 XBP1 binding site enrichments 

Among the candidate IEGs in the robust set, XBP1 is particularly interesting. 

It encodes for a TF which is a key component of the Unfolded Protein 

Response (UPR) signalling pathways involved in the response of cells to ER 

stress (Yoshida, Matsui et al. 2001). The ER plays many important roles in 

functions such as calcium storage and gated release, folding and processing 

of membrane and secretory protein, biosynthesis of lipids and metabolism. 

Furthermore, the ER is highly sensitive to intracellular and extracellular stimuli. 
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When misfolded proteins accumulate in the ER, the ER homeostasis is altered 

(ER stress), and many important cellular signalling processes are affected, 

such as apoptosis, differentiation and energy production (Cao and Kaufman 

2014). The main regulatory mechanism for XBP1 is alternative splicing 

mediated by the ER transmembrane kinase IRE1, however, although much 

less studied, its transcription is regulated by many tissue-specific and 

developmentally regulated TFs, such as ATF6 (Tsuru, Imai et al. 2016), in a 

highly dynamic manner, suggesting it as a compelling therapeutic target for 

ER-related disorders, including the majority of metabolic diseases (He, Sun et 

al. 2010). As discussed previously, XBP1 is transiently activated after FOS and 

before EDH1 across the eight datasets, and is therefore a strong candidate 

IEG. Interestingly, I found a significant enrichment (p-value < 0.05) for the 

XBP1 binding site in the promoter regions (see Methods) of 51 known IEGs 

(Table 18) and in the robust set of genes (Figure 27, Table 18).  

 

Table 18 XBP1 binding site enrichment. List of known IEGs and genes in the robust set associated to 
promoter regions (400 bases window) enriched for XBP1 binding sites. 

Known IEGs’ promoter region  

NFKB2; DUSP5; CREM; SPTY2D1; EHD1; FOSL1; UBC; TNFAIP2; NFKBIA; ZFP36L1; 

FOS; ARL4D; SOCS3; TGIF1; ICAM1; JUNB; NFKBIB; BCL3; PPP1R15A; SLC16A1; 

RGS4; IER5; RGS1; RGS2; CLIC4; KLHL21; CYR61; ADAMTS1; ETS2; ATF4; SLC20A1; 

IL1B; NFE2L2; KLF7; REL; PELI1; NFKBIZ; SIAH2; CCNL1; CSRNP1; NFKB1; DUSP1; 

SQSTM1; ELL2; SGK1; VEGFA; IL6; MYC; NR4A3; KLF4; ZFAND5 

Robust set genes’ promoter region 

PFKFB3; EHD1; FOSL1; TMBIM6; PTGES3 ; FOS; PPP1R15A; SRSF11; GNAS; 

TMEM185B 
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Figure 27 The conserved activation network of the candidate IEG XBP1.  Conserved time of peaking 
across at least 7 datasets, showing genes sharing the enriched GO term GO:003497 response to 
endoplasmic reticulum stress (red rectangles) in the network. Red points indicate genes with promoters 
enriched for XBP1 transcription factor binding sites. Light blue, yellow and green ovals highlight known 
IEGs, the TF XBP1 and other protein coding genes, respectively.   

Furthermore, genes in the robust set are significantly enriched for the GO term 

GO:003497 ‘response to endoplasmic reticulum stress’ (q-value <0.05, all 

tested genes as the background), and four of the five genes in the robust set 

sharing this term peak in conserved order across the datasets (Figure 27). 

These results support the candidacy of XBP1 novel IEG and suggest a role for 

the IER in the UPR pathway. 

 

 Discussion 

In this chapter I discussed the extent of conserved ordering in gene induction 

and in the IER. FOS expression has long been considered to lead the IER after 

cell stimulation (Hu, Mueller et al. 1994, Fei, Viedt et al. 2000), and the IER 

conserved activation network support this, but the network also includes 

similarly conserved relationships extending to an additional 39 coding and 

noncoding RNA genes. Furthermore, I observed many known and candidate 

IEGs in this network known to be involved in a range of signalling pathways 

active in the IER, such as the MAPK and the EGF/EGFR signalling pathways. 
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any particular stimulus may be underpinned by a deeper level of conservation 

in the regulation of the IER across stimuli. 

 

One of the most interesting candidate IEGs, XBP1, can be rapidly activated by 

alternative splicing minutes after cell stimulation with mitogenic hormones, 

activating peptides such as LPS and cytokines (Skalet, Isler et al. 2005, 

Andruska, Zheng et al. 2015, Shapiro, Livezey et al. 2016). This key event of 

the induced unfolded protein response (UPR) pathway is a conserved 

eukaryotic response to cellular stress, and is thought to cooperate in the 

regulation of immediate early gene expression (Shapiro, Livezey et al. 2016). 

However, the dynamics of XBP1 promoter induction in the context of the IER 

have not been studied previously. Interestingly I found a significant enrichment 

for XBP1 TF binding sites in the promoter regions of 14 genes in the IER 

conserved activated network. The presence of XBP1 and XBP1-responding 

genes in the temporally conserved network supports this candidate IEG 

suggesting that it may act as an important novel link between the IER and the 

UPR pathway.  

The observed strongly conserved ordering of activation and the presence of 

characteristic IEG-regulators in the robust set, may suggest the existence of 

core ubiquitous IEGs and conserved regulatory mechanisms controlling the 

induction of these genes, motivating further studies of the dynamics e 

underlying mechanisms of the IER. 
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6. Changes in the choice of promoter and in read 

patterns across promoters over time  

 Introduction 

Promoters are defined as modulatory structures that contain the necessary 

regulatory elements required for cells to initiate transcription and to control 

gene expression (Molina and Grotewold 2005). It is becoming increasingly 

evident that promoters contribute heavily to the diversity and flexibility of gene 

expression through the regulated choice of alternative promoters and 

transcription initiation sites (Ayoubi and Van De Ven 1996, Trinklein, Aldred et 

al. 2003). Promoter choice can result in tissue-specific or stimulus-specific 

levels of transcription, translational efficiency and the generation of alternative 

protein isoforms (Ayoubi and Van De Ven 1996, Consortium 2014). Despite 

being the most extensively studied category of regulatory sequence in 

eukaryotes and prokaryotes (Myers, Tilly et al. 1986, Landolin, Johnson et al. 

2010), a systematic and comprehensive annotation of the cell-type and 

condition specific promoter expression profile has not been performed until 

recently due to a lack of adequate sequencing data and the low sensitivity of 

transcript quantification and identification tools. In 2014, the FANTOM 

consortium, making use of single molecule CAGE-seq technology, mapped 

the TSSs of human and mouse primary cells, cell lines and tissues, providing 

the most complete annotation of mammalian promoters to date (Consortium 

2014). Schoer et al. (2017) recently demonstrated the existence of thousands 

of genetic variations associated with changes in the shape of TSSs in 81 

drosophila lines (Schor, Degner et al. 2017). Those variations, which they 

called tssQTLs, are thought to increase expression noise; however, in many 

cases their effect is buffered by other heteroallelic variations, indicating that 

the reduction of expression noise is a key factor in promoter evolution. 

Haberle et al. (Haberle, Li et al. 2014) identified dynamic changes in promoter 

shape and choice during maternal to zygotic development in zebrafish, 
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indicating a switch between two distinctive modes of transcription initiation in 

maternal and  zygotic transcriptomes. 

However, a comparative analysis of alternative promoter choice and shape in 

a range of stimulated cell types has not yet been performed and many 

questions are still open, including the extent to which promoter choice and 

shape is conserved across human cell type/stimuli. In this chapter, I will 

analyse the extent of alternative promoter choice for genes belonging to the 

robust set and other subsets previously identified. Furthermore, I will attempt 

to reproduce the Haberle et al. (2014) approach to investigate the extent of 

promoter shape changes across time in some of the best characterized 

datasets of the FANTOM5 human time course collection, including the 

PMDM_LPS, MCF7_HRG, MCF7_EGF1 datasets described in previous 

chapters, and an additional time course dataset for human H1 embryonic stem 

cells differentiated into CD34-positive hematopoietic cells (H1_CD34). Overall 

this chapter aims to use these deeply sequenced samples to explore human 

promoter dynamics, and study the extent of alternative promoter choice, as 

well as change in promoter shape (Figure 28).  

 

Figure 28 Schematic view of alternative promoters and choice and change in promoter shape. 
Different datasets can choose different promoters to start transcription of the same gene. Gene1 can be 
initiated by three alternative promoters: promoter1, promoter2 or promoter3. In this graph we can 
appreciate the shape of promoter1 ‘shifting’ to the right in time point2. 

 Promoter choice in the IER 

The existence of alternative promoters and alternative TSSs, is believed to be 

important for the control of gene expression under different conditions and 

promoter2	promoter1	 promoter3	

Gene1	alternative	
promoters	

promoter2	promoter1	 promoter3	

Time	point	1	

Time	point	2	
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ensures that important genes are expressed at optimal levels by having 

multiple promoters available which can substitute for one another (Carbajo, 

Magi et al. 2015). The IER consists of only a few hundred participant genes 

and only a few are active across multiple cell types and stimuli. However, this 

relatively small group of genes participates in a wide range of fundamental 

biological processes. Carbajo et al. (2015) observed that FOS and EGR1 IEGs 

are characterized by the presence of alternative TSSs and some of these 

alternative TSS are expressed in MCF7 cells treated with both HRG or EGF1 

while other alternative TSSs were activated only in one of the two experiments 

(Carbajo, Magi et al. 2015).  

 

Comparing the number of alternative TSSs associated with the 212 known 

IEGs extracted from the literature with the number of alternative TSSs 

associated with the total set of genes detected across the eight datasets, I 

observed a higher (t-test p-value = 1.1e-3) number of TSSs for the known IEGs 

(mean = 2.5) with respect to the whole set (mean = 1.9). The higher number 

of TSSs of the known IEGs could constitute an additional regulatory 

mechanism which generates diversity in the IER and ensure the occurrence of 

the proper initiation of these critical genes.  

 

To support the idea that the genes in the robust set participate in the core 

regulatory mechanisms of the IER, I would expect that the genes in the robust 

set would have more TSSs than the other peaking genes which are transiently 

activated in only few datasets. I found that the genes in the robust set are 

characterized by a significantly higher number of TSSs than the whole peaking 

dataset (t-test p-value = 1.6e-4). However, candidate IEGs in the robust set 

show only slightly greater number of alternative TSSs they activate across 

datasets compared with known IEGs (Table 19) and a test of significance could 

not be performed due to the small size of the dataset (42 genes in the robust 

set). Comparing the distribution of the number of alternative TSSs for known 

and candidate IEGs in the permissive set, I didn’t observe a significant 

difference (t-test p-value>0.1), although the permissive set genes have 
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significantly higher number of TSSs (t-test p-value < 2.2e-16) than the whole 

peaking set. These results could indicate a relationship between a high 

number of alternative TSSs and a central role in the IER, or could be simply 

related to the higher chance of genes associated with many TSSs to be 

classified to the peak model in more datasets (as discussed in Chapter 4.4). 

 

Table 19 Alternative TSSs. Summary of the distribution of alternative TSSs in different subsets of the 
data: the whole set of peaking genes and the candidate and known IEGs in the robust and permissive 
set. All the detected alternative TSSs, regardless their signature, are considered here. 

Subset Min  Median Mean max Number of 
genes 

All peaking genes 1.0    2.0   2.1 48.0 8,785 
Robust set 1.0    4.0    5.6 29.0 42 
Robust set known 
IEGs 

1.0 3.0 2.5 6 13 

Robust set candidate 
IEGs 

1.0 5.0 7 29 29 

Permissive set 1.0 2.0 3.1 48.0 1,304 
Permissive set 
known IEGs 

1.0 2.0 2.7 20.0 86 

Permissive set 
candidate IEGs 

1.0 2.0 3.1 48.0 1,218 

 

To analyse the extent to which the different TSSs show a peaking behaviour 

across multiple experiment datasets (PMDM_LPS, MCF7_HRG etc.), I tested 

the TSS associated with the genes in the whole peaking set, the robust set 

and the permissive set which exhibit peaking behaviour (which is a portion of 

the total number of TSS associated to each of this gene). The extent of 

promoter choice across the robust set of IEGs, candidate IEGs and non-coding 

RNA is shown in Figure 29, Appendix Figure 1, Appendix Figure 2 and 

Appendix Figure 3.  

For both the permissive and the robust sets, known IEGs tend to possess 

CAGE TSSs that are successfully classified to the peak model across a larger 

number of datasets (median number of datasets classified as peak per TSS 

for known IEGs in the robust set = 4, in the permissive set = 3; candidate IEG 

median proportion = 2 for both robust and permissive set, Table 20). Again, 

given the smaller number of TSSs tested in the robust set I could calculate 

significance only for the permissive set and I found significant difference 

between the means of the two groups (t-test p-value < 0.001). 
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Figure 29 Promoter choice across time series datasets. For representative genes, bar charts show 
the number of datasets where each TSS peaks to illustrate the diversity of TSS choice and commonality 
of the peaking response. Known IEGS are shown in blue, TFs in yellow, non-coding RNA in grey and 
other genes in green. FOSB has a single TSS that peaks in eight datasets, MIR3654 has a single TSS 
that peaks in 7 datasets, JUN has three TSS each peaking in four or more datasets and XBP1 has six 
TSS that peak in between one and six datasets. 
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Table 20 Known IEGs promoter initiation sites are conserved across datasets. The table shows a 
summary of the number of datasets sharing the same peaking alternative TSS in the whole peaking 
dataset, the robust set and the permissive set for candidate and known IEGs. 

Subset Min  Median Mean max Number of 
peaking TSSs 

All peaking genes 1.0    1.0   1.7 8.0 12,812 
Robust set 1.0    2.0 2.8 8.0 172 
Robust set known 
IEGs 

1.0 4.0 4.0 8.0 31 

Robust set 
candidate IEGs 

1.0 2.0 2.5 6.0 141 

Permissive set 1.0 2.0 2.5 8.0 3,077 
Permissive set 
known IEGs 

1.0 3.0 3.1 8.0 191 

Permissive set 
candidate IEGs 

1.0 2.0 2.4 6.0 2,886 

 

Thus, in the robust and permissive sets, known IEGs tend to possess 

comparable numbers of alternative TSSs to candidate IEGs, but tend to show 

discernible peaks in the majority of the time series datasets, while candidate 

IEGs appear to peak in different biological systems using specific alternative 

TSSs. For example, in the robust set, both SGK1, a known IEG involved in the 

regulation of many fundamental processes, such as apoptosis, inflammation 

and cell growth (Lang and Shumilina 2013), and XBP1, a transcription factor 

and candidate IEG, which contributes to regulate cell stress responses 

(Yoshida, Nadanaka et al. 2006), are associated with 6 alternative TSSs 

peaking across the datasets; I observed a primary TSS peaking in 7 out of 8 

datasets for SGK1 and a more dispersed distribution of peaking  alternative 

TSSs used by XBP1 across different datasets (Figure 29). 

 

It is possible that these relatively stereotypical transcriptional characteristics of 

known IEGs may, in some cases, have led to their status as well-established 

IEGs. Similarly, the stimulus-specific signature seen for the TSSs of candidate 

IEGs could have led them to a failure to be detected previously. Another 

possible implication of these results is that some genes in the robust set may 

be statistical artefacts. However, this issue has been discussed previously in 

this thesis (Chapter 4.4) and the results of additional analysis support the 
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candidate IEGs in the robust set; all the p1 TSSs associated to the 13 known 

IEGs in the robust set are found to peak in at least four datasets as well as the 

p1 TSSs of 16 of the 29 candidate IEGs of the robust set. 

 Shape changes at TSSs 

The distribution of CAGE tags inside TSS regions defines the promoter shape. 

Using CAGE single base TSS mapping, promoters were classified into two 

major classes:  ‘sharp’ (or ‘narrow’) promoters, where the majority of the tags 

are concentrated in a narrow region with a single dominant TSS, and ‘broad’, 

with a wide-spread distribution of TSSs (Carninci, Sandelin et al. 2006). Genes 

activated in different samples (cell types, time points after external stimulation, 

developmental stages) can be characterized by alternative promoter choice 

and also by variances in the promoter shape. However, traditional analysis of 

expression profiling cannot characterize changes in the distribution of TSSs 

whereas the overall transcript abundance does not change and therefore other 

approaches have been proposed. Haberle et al. (Haberle, Li et al. 2014) used 

CAGE TSS mapping to analyse the change in TSSs shape across 12 early 

embryonic developmental stages in zebrafish, from the unfertilized egg to 

organogenesis. between the maternal transcriptome stage and the mid-

blastula transition, they observed a change in promoter shape for about 900 

promoters (Haberle, Li et al. 2014). 

 

In this work, I analysed the changes in the shape of promoter across different 

time points in three short and densely sampled time series and one long and 

sparsely sampled embryonic developmental time series from FANTOM5. The 

goal of the study was to test whether I could recapitulate in human cells the 

differences in promoter shape previously observed during embryonic transition 

in zebrafish (Haberle, Li et al. 2014). To measure the change in CAGE tag 

distribution inside TSS regions, I applied the CAGEr pipeline developed by 

Haberle et al (2014). It consists of two major steps: the definition of ‘shifting 

score’ representing the proportion of reads in shifted locations, and a statistical 
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significance assessed by corrected p-values (FDRs) generated applying a two-

sample Kolmogorov-Smirnov (KS) test.  

 Shifting score and KS analysis 

After tag count normalization over the bam file of each dataset, the cumulative 

distribution of CAGE signal along all TSS clusters at all the time points was 

calculated. The shifting score and the P-value of Kolmogorov-Smirnov tests 

for all CAGE tag starting sites (CTSS) clusters was computed between time 0 

and all the other time points.  The shifting score is defined as:  

tugv6 =
max	(y0 − y2)
max	(y0)

 

	

Where F1 represents the cumulative sum of the CAGE signal of the TSS cluster 

in the sample with lower total signal for the considered TSS cluster (Figure 30, 

blue line), and F2 represents the cumulative sum for the opposite group (Figure 

30, red line).  
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Figure 30 Shifting CAGE TSSs.  The shifting (in purple) of the CAGE TSSs is computed as the 
difference between the cumulative distributions (lines) of the CAGE tags (columns) for the dataset with 
smaller total counts (F1, in blue) and the bigger total counts (F2, in red). 

 

Shifting score is computed for both forward (5’ à 3’) and reverse (3’ à 5’) 

direction and the bigger value is selected. The shifting score spans the values 

between -¥ and 1. The value of 1 is assigned when there is complete physical 

separation between the TSS cluster in the two samples. 

The positive values represent the proportion of counts in the lower expressed 

sample which not covered by the reads in the other sample. 

The Kolmogorov-Smirnov test is a non-parametric statistic for comparing two 

empirical distributions which measures the divergence between two 

cumulative distribution curves computing their maximum absolute difference 

Dm,n (Lopes, Reid et al. 2007, Filion 2015) : 

z@,X = _`aB|y(a) − {(a)| 

 

Where m is the size of the cumulative distribution of the function F(x) and n is 

the size of the cumulative distribution of the function G(x). 

The shifting score and the p-value for the KS test along with the values 

adjusted for multiple testing (FDR) are computed using an empirical 
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cumulative distribution functions (ECDF) which represent sampling of the 

distribution of reads for all the TSS consensus cluster in the two samples 

(Haberle, Haberle et al. 2013, Haberle, Forrest et al. 2015). 

 Shifting promoters: variation in spatial promoter 

activity 

Even when the transcription of a gene originates from the same promoter over 

a time course, there may be substantial changes in the patterns of transcription 

initiation within that promoter region (Figure 31). I applied the approach 

described by Haberle et al. (2014) to investigate the extent to which promoters 

change shape in three time-course datasets previously analysed in this work, 

PMDM_LPS, MCF7_HRG and MCF7_EGF1, and an additional FANTOM 

time-course dataset consisting of the differentiation of embryonic stem cells to 

hematopoietic cells, H1_CD34. The H1_CD34 dataset was also generated by 

the FANTOM5 project and consists of 3 time points: Day 0, Day 3 and Day 9 

during haematopoietic differentiation of H1 embryonic stem cells and has not 

been considered before in this thesis because it is not densely sampled in the 

first few hours after stimulation. 

The goal is to examine the evidence for shifting promoters and to compare the 

extent of promoter shifting in datasets with different magnitude of change in 

the transcriptome repertoire. H1_CD34 is expected to show the most drastic 

changes as it involves the switch between embryonic pluripotent cells to 

differentiated haematopoietic progenitor cells (HPC). Whereas Haberle et al. 

(2014) found about 900 significant “shifting promoters” (KS FDR <= 0.01 and 

shifting score > 0.6) in Zebrafish embryogenesis, I observed few shifting 

promoters in MCF7_HRG and H1_CD34 (Table 21). Even relaxing the 

thresholds (FDR <= 0.05 and shifting scores >= 0.4 and 0.2) the number of 

shifting promoters in all four datasets is still very small (Table 21).  
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Figure 31 Shifting promoters. Promoters characterized by differences in read distribution between the 
beginning of the time series (time 0) and each sampling time points are defined as “shifting promoters”.  

 

Table 21 Shifting promoters for different thresholds of KS FDR and shifting scores. Each cell 
contains the number of shifting promoters across time points for increasingly stringent shifting scores 
and KS FDRs. 

No. shifting 

promoters 

KS FDR 0.05 KS FDR 0.01 

 Score> 

0.2 

Score>0.4 Score>0.6 Score>0.2 Score>0.4 Score>0.6 

PMDM_LPS 21 3 0 15 3 0 

MCF7_EGF1 15 4 0 9 2 0 

MCF7_HRG 23 8 5 10 5 4 

H1_CD34 211 59 23 105 23 8 

 

Table 22 shows the difference in the resulting output for one exemplificative 

shifting promoter and a non-shifting promoter arbitrarily chosen in MCF7_HRG 

(complete list of shifting promoters in Appendix Table 6 ).  The dominant TSSs 

location changes between compared data points in the shifting promoter 

(shifting score = 0.8 and KS FDR <= 2.6e-3), while it is stable in the non-shifting 

promoter. A table with the 8 shifting promoters of H1_CD34 and 4 of 

MCF7_HRG can be found in the appendix (Appendix Table 5). A genome 

browser can be then utilized to visualize the change in read distributions 

(Figure 32). 

  

0 3days 9days

shifting	promoters
shifting	promoters
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Table 22 Comparison of shifting and non-shifting promoters in MCF7_HRG. Shifting scores, KS 
FDRs, as well as coordinates and CAGE signal  (in TPM) of dominant TSSs in the shifting promoter 
chrX:141155504..141155563,- and non-shifting promoter chr1:1334898..1335002,+ detected in 
MCF7_HRG. 

CAGE cluster  Dominant 

TSS 

 (00 min) 

Dominant 

TSS 

 (45 min) 

Dominant 

TSS 

TPM 

(00 min) 

Dominant 

TSS 

TPM 

(45 min) 

Shifting 

score 

KS 

FDR 

chr1:1334898..1335002,+ 1334932 1334932 44.65 46.24 0.05 1 

chrX:141155504..141155563,- 141155551 141155524 8.65 17.55 0.80 2.6e-3 

 

 

Figure 32 CAGE reads visualization in the genome browser. Read distribution at two time points (0 
and 45 minutes) for the non-shifting promoter chr1:1,334,795-1,335,106,+ (A) and the shifting promoter 
chrX:141,155,467-141,155,601,- (B). Black horizontal lines indicate the interquartile width of the 
promoter region and the location of the dominant TSSs. 

 

For these two promoters, I also performed wavelet analysis. The method, 

discussed in the appendix together with the preliminary results, supported the 

shifting of chrX:141,155,467-141,155,601,- and the non-shifting of  

chr1:1,334,795-1,335,106,+ promoters in MCF7_HRG between 0 and 45 

minutes from stimulation.  

A	

B	
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 Discussion 

In this chapter I investigated extent of alternative TSS choice in IEGs over time, 

and the dynamics of transcription initiation within human promoters.  

I observed that the IEGs, and specifically the participants in the core repertoire 

of the IER, are associated with a higher number of TSSs than other genes. 

This could reflect their varied functional requirements, as different regulatory 

molecules involved in different signalling pathways can activate, repress or 

have no effects on alternative TSSs of the same gene (Kimura, Wakamatsu et 

al. 2006). The stringent analysis of the p1 single TSSs discussed in Chapter 

4.4 support the hypothesis that the genes in the robust set are genuine 

candidate IEGs and are not statistical artefacts, suggesting that the existence 

of multiple TSSs could be a functional feature of the IER. Comparing the 

alternative TSS choice for known and candidate IEGs in the robust set I found 

that known IEGs are characterized by a conserved group of CAGE TSSs 

peaking, on stimulation, across the majority of the datasets while the candidate 

IEGs make use of diverse cell or treatment-specific alternative TSSs to be 

rapidly and transiently activated. This could have led to the status of the well-

established IEGs, while the increased variability seen for the TSSs of 

candidate IEGs could have led to a failure to detect their IEG-like behaviour in 

former studies.  

To gain deeper understanding on promoter dynamics during the IER, I also 

compared the change in promoter shape across time points in a group of 

datasets densely sampled in the first few hours after stimulation, PMDM_LPS, 

MCF7_EGF1, MCF7_HRG, and a sparse differentiation time-series, 

H1_CD34, which describes long term changes in the promoter activation of 

differentiating embryonic stem cells. In general, I detected a much smaller 

number of shifting promoters than previously reported in a Zebrafish 

unfertilized egg to embryo time-series Haberle et al (2014), with a few shifting 

promoters in the differentiation series MCF7_HRG and H1_CD34 in respect to 

the other datasets. Therefore, I speculate that promoter change in shape could 

be a phenomenon distinctive of more drastic cellular events such as egg to 

embryo transition and stem cell differentiation while it doesn’t seem to strongly 
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affect the IER. A preliminary analysis was conducted to investigate the 

changes in the shape of selected TSS at different resolution level using 

wavelet decomposition (Chapter 8.1.1). Preliminary results show that wavelet 

analysis of TSSs helps to understand local changes in promoter shape. It is 

important for future work to involve the systematic wavelet analysis of all the 

TSSs detected in the different datasets because it could identify shifting 

promoters which are not detected by other methods as well as confirming 

previous findings. 
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7. Conclusions 

The immediate early response mediates essential biological processes 

involved in the wide range of cellular responses to external stimulation and to 

internal signalling. However, commonalities in the responses of known IEGs 

across different stimuli, the role of non-coding RNA and the general 

mechanisms and temporal patterns of promoter activation in the IER were not 

fully appreciated prior to the investigations reported here. I used eight time-

series datasets from the FANTOM5 project to explore the core IEG 

transcriptomic repertoire and to examine the breadth of the primary response 

in different cell types and stimuli. 

 Computational modelling 

Existing methods for gene expression analysis are not well suited for 

comparison across different time-course experiments, or to handle lowly 

expressed genes. They are better suited to unsupervised data mining than to 

model specific dynamics such as the early peak in expression of IEGs. I 

improved an existing method for time-series analysis that classifies expression 

profiles to one of a set of mathematical models of interest including the peak 

model describing the typical transient and rapid activation of known IEGs 

(Aitken, Magi et al. 2015).  The updated version of the algorithm performs 

better when comparing time-course datasets with very different lengths and is 

able to handle delay in IEG activation and is therefore suitable for analysing 

the IER in CAGE time-series expression data. I propose that future studies of 

the IER and more generally of any biological process involving genes 

characterized by a specific expression profile could benefit by adopting this 

optimized method, especially when involving lowly expressed genes and the 

comparison of different time-course experiments.   
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 Meta-analysis of the transcriptome identifies candidate 

immediate early genes and non-coding RNAs 

I performed a comprehensive meta-analysis of eight densely sampled 

FANTOM5 time-series expression datasets, covering differentiation, growth 

and activation in a range of primary cells and cell lines. I discovered a 

permissive set of 1,301 protein coding genes whose promoters are classified 

as peaking in half of the datasets and a robust set of 42 protein coding genes, 

containing 13 known IEGs and 29 candidate IEGs, and 15 non-coding RNAs 

peaking in at least seven out of eight datasets. The common classification 

across multiple datasets is useful to identify the core participants to the IER.  

These results not only confirm the core role of known IEGs in the biological 

systems investigated by the FANTOM project but also suggest the existence 

of additional coding and non-coding genes involved in the IER. Known IEGs 

are often employed to identify cell activation, for example the up-regulation of 

FOS is used in functional anatomical mapping in the neuroendocrine system 

(Hoffman, Smith et al. 1993), or regarded as prognostic markers for different 

diseases and as targets for cancer therapy, such as the IEGs involved in the 

ERK signalling pathway (Kohno and Pouyssegur 2006). The list of candidate 

IEGs, once verified, could provide additional molecular indicators to identify 

cell activation, cancer progression, and the activation of specific cellular 

processes and could help the development of new therapeutic strategies. 

 Conserved temporal patterns of transcriptomic 

activation 

Most studies of the IER dynamics are focused on the activation of a few known 

IEGs in different stimulated cells, and their temporal patterns of activation are 

well characterized. For example, the expression of FOS is known to occur in 

the first hour after stimulation, preceding the transcription of other IEGs and 

delayed response genes (Hu, Mueller et al. 1994, Fei, Viedt et al. 2000, Tullai, 

Schaffer et al. 2007). My work confirmed the leading role of FOS gene 

activation, and I observed a similar early timing for known and candidate IEGs 
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in the robust set, indicating shared dynamics of activation. Comparing the 

order of activation of known and candidate IEGs across the eight datasets I 

built a conserved activation network which recapitulates the regulatory 

landscape of the IER and supports the candidate IEGs and their relationship 

with other IEGs. The IER network includes 39 coding and non-coding 

candidate IEGs with conserved temporal relationship. Interestingly, I found 

that many genes in this network are activated by a range of signalling 

pathways associated with the IER, such as the MAPK and the EGF/EGFR 

signalling pathways. These results reveal commonalities in the regulatory 

mechanisms governing the IER across cells and stimuli and support the 

hypothesis that the protein coding genes in the robust set are likely to be real 

IEGs.  Furthermore, the IER network supports previous studies on the role of 

the non-coding RNA species in the regulation of the IER and suggest novel 

insights into the interaction with other members of the IER. For example, I 

observed that the non-coding RNAs are not activated by the common TFs 

activating the known IEG, implying a different regulatory mechanism. 

 XBP1 links the IER to the UPR pathway 

Among the candidate IEGs in the robust set, XBP1 is the only gene that 

encodes for a transcription factor and shares a number of properties common 

to known IEGs such as the short length and the enrichment of NFKB1 and 

NFKB2 TF binding sites in its promoter region (Bahrami and Drabløs 2016). It 

is also a highly conserved component of the Unfolded Protein Response 

(UPR) signalling pathways which is activated by unconventional splicing upon 

Endoplasmic Reticulum (ER) or nonclassical anticipatory activation (Skalet, 

Isler et al. 2005, Andruska, Zheng et al. 2015, Shapiro, Livezey et al. 2016), 

and regulates a diverse array of genes involved in ER homeostasis, 

adipogenesis, lipogenesis and cell survival (He, Sun et al. 2010, Piperi, 

Adamopoulos et al. 2016).  UPR activation is known to be a protective 

response to the accumulation of unfolded or misfolded proteins in the ER by 

reducing protein synthesis and increasing the protein folding, transport and 

degradation (Wang and Kaufman 2014). Together with the described mode of 
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UPR activation, the ‘anticipatory’ UPR, an alternative mechanism which does 

not involve ER stress, has been proposed. It has been described in many 

different human cell types subjected to different stimuli, such as B-lymphocytes 

treated with interleukin 4 and lipopolysaccharide, (Skalet, Isler et al. 2005), 

endothelial cells (EC) treated with VEGF (Karali, Bellou et al. 2014) and breast 

cancer cells stimulated with EGF (Yu, Andruska et al. 2016), where it is 

proposed to trigger the activation of IRE1, ATF6 and PERK and the 

consequent transcription and splicing of XBP1. However, the role of XBP1 in 

the early stage of the general response of cells to external stimulation and the 

dynamics of promoter activation are not fully investigated yet.  

Remarkably, I observed evidence of conservation of XBP1 activation after 

FOS and before EHD1 known IEGs across the eight datasets. Furthermore, I 

detected a significant enrichment for XBP1 TF binding sites in the promoter 

regions of 14 genes in the temporally conserved network. These results 

suggest novel roles for XBP1 connecting the IER and the ER stress signalling 

pathways making this gene worthy of further experimental investigation at the 

RNA and protein level. 

 Promoter dynamics in the IER 

FANTOM5 CAGE data have expanded our knowledge about the promoter 

dynamics of diverse cells in different conditions such as developmental stage 

or treatment (Kawaji, Kasukawa et al. 2017). However, a broad comparison of 

the alternative promoter usage across multiple time series data sets in the 

context of the IER has not been performed previously to this work. I 

investigated the promoter usage of the 212 known IEGs and I observed a 

significantly higher number of alternative TSSs in comparison to the whole set 

of genes detected across the eight datasets. IEGs are known to regulate many 

different biological processes in a specific manner and the existence of 

alternative promoters increases diversity of the response of cells to different 

stimuli (Carbajo, Magi et al. 2015). Similarly, I observed a higher number of 

alternative TSSs for known and candidate IEGs in the robust set, which are 

thought to regulate the IER in multiple datasets, than for the genes peaking in 
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fewer datasets and therefore active in stimulus or cell-specific IER processes. 

This result supports the hypothesis that genes in the robust set are 

characterized by many TSSs which can be activated in a specific way in 

different datasets. However, known IEGs in the robust set tend to show distinct 

peaks in the majority of the time series datasets, while candidate IEGs seems 

to peak in different biological system using specific alternative TSSs. These 

results suggest a possible explanation for the status of well-established IEGs 

in contrast with candidate IEGs which could be harder to detect due to the 

increased variability in TSS’s usage.  

Additionally, I investigated the variability in the exact CAGE tag composition 

inside each TSS region. The distribution of tags in each TSS region is called 

promoter shape, and  Haberle et al. in (Haberle, Li et al. 2014) demonstrated 

that it can change over time depending on the embryos developmental stage 

in zebrafish. I compared the promoter shape between time points in four 

different systems, three densely sampled datasets (MCF7_HRG, 

MCF7_EGF1 and PMDM_LPS) and an additional dataset describing the 

differentiation of embryonic stem cells to haematopoietic cells (H1_CD34). At 

the same FDR and shifting score thresholds used by Haberle et al., I found 

only a small number of shifting promoters in H1_CD34 and MCF7_HRG 

differentiation series, which suggests a much smaller effect on the IER in 

comparison to zebrafish embryogenesis. These results provide new insights 

into the diversity of the regulatory processes underlying promoter activation 

between species, suggesting that changes in promoter shape previously 

observed in zebrafish embryogenesis are not observed in the human datasets 

analysed. However, further research is needed in order to verify these findings 

across multiple species and multiple biological systems.      

 Summary and final remarks 

In this work, I performed a comprehensive meta-analysis of eight densely 

sampled time course datasets to identify a subset of known IEGs and sets of 

putative novel IEGs and non-coding RNAs which are activated across multiple 

cells right after a range of stimuli. Furthermore, I discovered a conserved 
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temporal ordering among these genes which could indicate an underlying 

conserved regulatory mechanism in the IER. Additionally, I explored the 

modalities in which alternative TSSs are used across different datasets, and I 

observed that, whereas both known and candidate IEGs are associated with a 

higher number of TSSs which are likely to increase diversity in the regulation 

in different biological systems, known IEGs TSS usage is conserved across 

datasets, with few dominant TSSs overexpressed across datasets, candidate 

IEGs use a broader set of cell or stimulus specific TSSs. Finally, I repeated a 

previously published analysis on the change in promoter shape in three of the 

IER datasets, plus an additional differentiation time-series, and I found a much 

smaller effect than the original study by Haerle et al. (Haberle, Li et al. 2014), 

suggesting that the promoter shifting events characterizing the transition 

between maternal and zygotic expression in zebrafish, is not present in the 

transcriptional changes of the FANTOM5 IER datasets.  

7.6.1. Opportunities 

Overall, the computational analyses described in this thesis provide a better 

understanding of the IER by reporting a set of new candidate IEGs and non-

coding genes likely to be involved in the IER and investigating the temporal 

relationships among candidate and known IEGs and the regulation of 

alternative promoters associated to IEGs. Furthermore, because of the 

oncogenic potential of IEGs and their involvement in fundamental cellular 

processes in normal and unhealthy cells, the additional insights on the IER 

discussed in this thesis may help advance relevant biological and medical 

studies of cancer. As the IER plays such important roles in biology and 

medicine it is perhaps surprising that there have not been more detailed 

comparative studies of IER induction, dynamics and downstream impact of 

other systems. Understanding how the IER differs between tissues/cell types 

could lead to new tissue or disease specific interventions, for example via the 

design of drugs that perturb IER components active only in the cells of interest. 

There is currently great interest in the roles of non-coding RNAs in cellular 

systems, including the potential for lncRNAs to mediate IER induction and 
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carcinogenesis (Gao, Xing et al. 2011, Pei, Hu et al. 2018). My results show 

that there is still much to be learned about the IER, and even previously 

published data can be mined to extract new insights, including novel candidate 

IEGs and their interactions. 

7.6.2. Limitations  

One of the main limitations of studying mRNA transcription as a proxy for the 

abundance and activities of the corresponding proteins, is the role of regulatory 

events occurring after mRNA transcription, such as post-translational 

modifications, mRNA stability and protein degradation (Vogel and Marcotte 

2012). Recent studies suggest that as little as ~40% of the change in protein 

abundance can be explained by changes in the levels of gene expression 

depending on the system (de Sousa Abreu, Penalva et al. 2009, Maier, Güell 

et al. 2009). Nevertheless, gene expression analysis has already provided 

important insights and is undoubtedly a significant source of information. 

Protein synthesis blockage is known as the most direct method to identify IEGs 

(Tullai, Schaffer et al. 2007). However, as discussed in the supplementary 

material of Arner et al. (2015), only a few of the available published 

experiments have actually inhibited protein synthesis and the majority of the 

potential IEGs have been identified indirectly, by detecting an early up-

regulation signature, and are strictly speaking not verified IEGs. Arner et al. 

propose that, in the absence of more extensive access to protein synthesis 

blockage data, most of the potential IEGs that are up-regulated in multiple 

experiments are likely to be true IEGs (Arner, Daub et al. 2015). In Aitken et 

al. (2015) and in this thesis we used a peaking signature to identify genes 

strongly up-regulated across multiple datasets. An additional limitation of our 

method is that we focus on core ubiquitously expressed IEGs, while potentially 

losing IEGs specific to single biological systems.  

The most important caveat of the work presented in this thesis is the possible 

bias in the statistical analysis used to identify the set of candidate IEGs, 

induced by the existence of multiple TSSs associated to a single gene. Using 
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CAGE TSS expression data to identify the upregulation of IEGs across multiple 

datasets, it is likely that genes possessing a larger number of CAGE TSSs are 

more likely to be detected in multiple experiments, and therefore have a 

greater chance to be annotated as an IEG. On the other hand, those 

possessing a small number of TSSs should be less likely to be identified here 

as an IEG, generating false negatives and potentially other statistical artefacts 

among the candidate IEGs identified in this thesis. However, using more 

stringent analysis, relying on the selection of only one CAGE TSS for each 

gene, the FANTOM primary promoter p1 (Kawaji, Kasukawa et al. 2017), I 

demonstrated that the robust set of candidate IEGs peaking across at least 7 

out of 8 datasets is likely to include many true IEGs. 

7.6.3. Future work 

In common with all computational analysis of high throughput sequencing data, 

the results presented in this thesis will require supporting experimental studies 

in order to validate the candidate IEGs and the IER conserved temporal 

network.  

These experiments could primarily include the blockage of protein synthesis, 

using inhibitors such as cycloheximide, to confirm that the candidate IEGs are 

induced by the activation of pre-existing transcription factors and do not require 

de novo protein synthesis (Tullai, Schaffer et al. 2007).   

Among the additional experiments required to verify the mechanisms 

underlying the activation of candidate IEGs, I propose the execution of 

longitudinal (time-course) ChIP-seq or ATAC-seq data analysis to investigate 

the context and binding events required for the transcriptional regulation that 

characterises cell and stimulus specific transcription of the candidate IEGs.  

Importantly, the expected increase in the concentrations of Immediate Early 

Proteins (IEPs) encoded by candidate IEGs should also be verified by time-

course protein assay experiments. The temporal interactions between different 

IEPs could then also be studied by looking at the conserved temporal ordering 
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of protein regulation using the same approach described in this thesis for IEG 

activation.  

Future work could also involve the addition of supplementary human and non-

human developmental time-course datasets and the analysis of the shifting 

score together with the wavelet decomposition analysis to achieve a more 

complete and systematic description of the changes in promoter expression 

shape at different time points across different biological systems. Future 

studies of IER dynamics could discover new mechanistic layers underpinning 

cellular responses to stimuli by directly profiling the transcriptome and 

proteome in parallel. 
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8. Appendix 

 Appendix analysis 

8.1.1. Wavelet representation  

Wavelet analysis decomposes signals into component waves called wavelets, 

subsignals of different resolution levels. Wavelet decomposition has been 

used in many different fields, predominantly to compress complex signals. 

Wavelet decomposition can be used to analyse the trend of a complex 

biological signal at different resolution levels (Shim and Stephens 2015), for 

example Schor et al. (2017) applied wavelet-based analysis to raw CAGE data 

signals to assess the effect of tssQTLs on promoter shape changes at 

individual bases across three embryogenesis stages in 81 Drosophila lines 

(Schor, Degner et al. 2017).   

 

In this project, I proposed that decomposing the signal resulting from the 

difference between the cumulative distributions of the CAGE reads at the two 

time points (d1,2) might provide insights on the size of the change, and the 

spatial scale where any change is most apparent. I was able to analyse the 

entire window, half of the window and so on to single base resolution and this 

can help to identify which scale is most affected by the change. 

As a simple example (Appendix Figure 4), consider a window of 16 bases 

centred on a CAGE TSS where a signal of 16 values is obtained by the 

difference in cumulative reads count at two different time points.  In this case 

the wavelet transform makes use of a ‘mean and difference’ function which is 

applied to the values vector to decompose the signal (Appendix Table 7). No 

information is lost when the bottom row is transformed into the top row (Jensen 

and la Cour-Harbo 2001). It can generally be assumed that there is some 

correlation between successive values, and so the difference between them 

will be smaller than their magnitudes and so the signal will be compressed. 

The next row of the table is computed as the mean from a pair of values in the 
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current row (left hand side), and by subtracting the mean to the first value of 

the pair (differences, in bold in the right side of the table). This procedure goes 

on until there is only one cell containing the mean value left (in the example = 

23.13 in level 0). 

The calculation can be reversed from the first row to the last row simply 

summing the first difference to the first value (23.13 + 9.62 = 32.75) and 

subtracting the first difference to the first value (23.13-9.62= 13.51) and so on 

until the original vector of signal values is reconstructed. Other transforms use 

different approaches to decompose the signal, for example the Haar transform 

(Appendix Table 8) divides the sum (to compute the trend a) and the difference 

(to compute the fluctuation f ) of each couple of value by √2 (i.e. for two values 

4 and 6, ` =
}~�

√2
= 5√2 and Å =

}=�

√2
= −√2 ), as in the simpler example with 

means and differences, the Haar calculation is loss-free and can be reversed 

by summing and subtracting the trend and the fluctuation values for each 

couple of signal values and dividing by √2 (Walker 2008) (i.e. 
Ç√2=√2

√2
= 4 and 

Ç√2~√2

√2
= 6). The method is described in Walker et al. (2008) and in Appendix 

Table 8 I applied it to an exemplificative series of 8 values (4, 6, 28, 24, 48, 48, 

52). 

 

In addition, the Haar transform and many other transforms have the important 

property that the energy εs of the signal s, the sum of the squares of the data 

points, is conserved (Walker 2008): 

 Ñ- = 	 Ö0
2 +	Ö2

2 + ⋯+ Öá
2  = ÑAq + Ñàq = 	`0

2 +	`2
2 + ⋯+ `á

2 + Å0
2 +	Å2

2 + ⋯+ Åá
2         

In the example in Appendix Table 8: 

εs= 42 + 62 + 282 + 242 + 482 + 482 + 562 +522 = 11860  

and ÑAq + Ñàq	= 52*2 + 262*2 + 482*2 + 542*2 + 2 + 22*2 + 0*2 + 22 *2 = 11860 

This means that I can compute the contribution of the trend 
âäq

â>
 and the 

fluctuation 
âãq

â>
 values to the total energy for each level of decomposition. 

âäq

â>
   

will be bigger than 
âãq

â>
  every time that the magnitudes of the fluctuation values 
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is smaller than the magnitude of the trend values (Walker 2008). In our 

example 
âäq

â>
 = 

00,å}2

00,å�M
 = 0.998 , which means that the energy of the trend at the 

first level of decomposition accounts for almost total energy of the transformed 

energy. 

 

In this work, shifting and non-shifting promoters were compared testing for 

discrete wavelet transform (DWT) of d1,2, the difference between the 

cumulative distributions of CAGE tags in pairs of time points, d1 and d2:  

h0,2 =
h0

max	(h0)
−	

h2
max	(h2)

 

çé6 = zçé(h0,2) 

I used the wd R function (from the package ‘wavethresh’, version 3.5.3), which 

makes use of the Mallat Pyramidal Algorithm to compute the DWT coefficients 

(Nason 1993, Li, Li et al. 1997),  with standard parameters. 

Next, I considered the wavelet energy to constitute a distribution and computed 

the Jensen-Shannon (JS) divergence in distributions between time points (i.e. 

0 to 45 minutes). 

The Jensen-Shannon divergence quantifies how dissimilar are two 

distributions.  It is a symmetrized and smoothed version of the Kullback-Leibler 

(KL) divergence (Lin 1991). 

After computing the KL divergence for each couple of comparison as: 

èê0 = 	l/ ∗ cgk
/
ë

 

èê2 = 	lë ∗ cgk
ë
/

 

	

The JS divergence is computed as: 

ít = 	ì
èê0
2

+
èê2
2
	 

Where p is the normalized WTe for the first compared time points (i.e. 0 and 

15) and q is the normalized WTe for the second compared time points (i.e. 00 

and 30). 
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To evaluate the effect size of the change in CAGE tag distribution across time 

points by an alternative method, wavelet signal decomposition and Jensen 

Shannon distance (JS) between energy distributions were calculated. In the 

first analysis (Appendix Figure 5 and Appendix Figure 6), the wavelet 

transform is applied to the cumulative counts at two time points and the 

transforms are examined. Whereas wavelet energy and signal, obtained by 

decomposing the CAGE counts cumulative distribution of the non-shifting 

promoter are substantially unchanged between 0 minutes and 45 minutes 

(Appendix Figure 5, JS = 0.04), they are significantly different for the shifting 

promoter (Appendix Figure 6, JS = 0.69).  

 

In a second analysis, the counts that result from subtracting the cumulative 

counts at 0 minutes from the cumulative counts at 45 minutes are used as the 

input to wavelet analysis (Appendix Figure 7). This is comparable to the 

calculation of the shifting score. 

The derived wavelet energies are higher for the shifting promoter (average 

cumulative counts= 0.32, average wavelet energy= 0.95, Appendix Figure 7C 

and D) than for the non-shifting promoter (average cumulative counts = 

2.24*10-3, average wavelet energy= 8.31*10-3, Appendix Figure 7A and B). 

These results are consistent with those obtained from the shifting score 

Haberle et al. (2014) and show the extent of the change in tag distribution at 

different resolution levels with small ‘high frequency’ changes observed in non-

shifting promoters at resolution levels 2 and 3 and large ‘low frequency’ 

changes in shifting promoters at resolution levels 0 and 1.  

I conclude that these preliminary analyses demonstrate the potential of 

wavelet analysis as a way to understand the local changes in promoter shape.  
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 Appendix Figures 

 

 

Appendix Figure 1 Promoter choice across time series datasets. For known IEGs, bar charts show 
the number of datasets where each TSS peaks to illustrate the diversity of TSS choice and commonality 
of the peaking response.  

 

0

2

4

6

8

ch
r19
:45
97
12
46
..4
59
71
26
5,+

FOSB

0

2

4

6

8

ch
r14
:75
74
55
23
..7
57
45
53
7,+

ch
r14
:75
74
67
22
..7
57
46
77
7,+

ch
r14
:75
74
72
96
..7
57
47
32
9,+

FOS

0

2

4

6

8

ch
r1:
59
24
96
88
..5
92
49
70
3,−

ch
r1:
59
24
97
07
..5
92
49
72
7,−

ch
r1:
59
24
97
32
..5
92
49
74
9,−

JUN

0

2

4

6

8

ch
r10
:38
27
37
1..
38
27
38
6,−

ch
r10
:38
27
38
9..
38
27
40
8,−

KLF6

0

2

4

6

8

ch
r6:
13
44
95
99
2..
13
44
96
01
0,−

ch
r6:
13
44
96
82
3..
13
44
96
84
0,−

ch
r6:
13
44
96
84
2..
13
44
96
88
4,−

ch
r6:
13
44
98
96
9..
13
44
99
00
6,−

ch
r6:
13
44
99
03
7..
13
44
99
04
8,−

ch
r6:
13
45
51
47
5..
13
45
51
48
9,−

SGK1

0

2

4

6

8

ch
r19
:49
37
56
69
..4
93
75
68
4,+

PPP1R15A

0

2

4

6

8

ch
r5:
17
21
98
19
0..
17
21
98
20
6,−

DUSP1

0

2

4

6

8

ch
r3:
50
21
11
3..
50
21
18
0,+

ch
r3:
50
21
19
1..
50
21
20
2,+

ch
r3:
50
21
26
8..
50
21
28
2,+

BHLHE40

0

2

4

6

8

ch
r12
:76
42
53
68
..7
64
25
38
4,−

PHLDA1

0

2

4

6

8

ch
r12
:57
48
26
65
..5
74
82
69
9,+

ch
r12
:57
48
28
82
..5
74
82
90
7,+

ch
r12
:57
48
29
18
..5
74
82
93
5,+

ch
r12
:57
48
29
36
..5
74
82
96
5,+

NAB2

0

2

4

6

8

ch
r11
:65
66
78
46
..6
56
67
86
8,−

ch
r11
:65
66
78
84
..6
56
67
89
5,−

ch
r11
:65
66
80
11
..6
56
68
02
0,−

FOSL1

0

2

4

6

8

ch
r11
:64
64
59
91
..6
46
46
00
5,−

ch
r11
:64
64
60
86
..6
46
46
10
1,−

EHD1

0

2

4

6

8

ch
r20
:43
97
70
55
..4
39
77
07
3,−

SDC4



 126 

 
Appendix Figure 2 Promoter choice across time series datasets. For candidate  IEGs, bar charts 
show the number of datasets where each TSS peaks to illustrate the diversity of TSS choice and 
commonality of the peaking response.  
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Appendix Figure 3 Promoter choice across time series datasets. For non-coding IEGs, bar charts 
show the number of datasets where each TSS peaks to illustrate the diversity of TSS choice and 
commonality of the peaking response. 

 

 
Appendix Figure 4 Change in promoter shape. Distribution of reads for the same promoter at two time 
points (time point 1 in blue and time point 2 in red), and the raw signal (bottom numerical vector) obtained 
by subtracting the number of reads at time 2 from the number of reads at time 1. 
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Appendix Figure 5 Wavelet decomposition of non-shifting promoter. Cumulative counts distribution 
and wavelet energy at time= 0 (red) and 45 minutes (blue), for MCF7_HRG non-shifting promoter 
chr1:1334898..1335002,+. Wavelet signals at different resolution levels are represented by coloured 
cells (dark blue to red for increasing values). 
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Appendix Figure 6 Wavelet decomposition of shifting promoter. Cumulative counts distribution and 
wavelet energy at time= 0 (red) and 45 minutes (blue), for MCF7_HRG non shifting promoter 
chrX:141155504..141155563,-. Wavelet signals at different resolution levels are represented by coloured 
cells (dark blue to red for increasing values). 
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Appendix Figure 7 Wavelet analysis of the difference in cumulative counts between time points. 
Cumulative count differences and energy distributions at increasing wavelet resolution levels for non-
shifting and shifting promoters, chr1:1334898..1335002,+ (A and B) and chrX:141155504..141155563,- 
(C and D). 
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 Appendix Tables 

 

Appendix Table 1 Known IEGs. List of known IEGs detected in the eight dataset, grouped depending 
on the classification to the peak model (in at least one out of eight datasets) or other model. 

Known IEGs peaking in at least one dataset 
VCAM1; CSF1; SLC16A1; MCL1; S100A9; IER5; PTGS2; RGS1; RGS2; BTG2; NUAK2; 

IL10; ATF3; ID3; CLIC4; ZC3H12A; JUN; KLHL21; PDE4B; GADD45A ; ERRFI1; BCL10; 

GBP1; ISG15; F3; NFKB2; DUSP5; MAP3K8; CREM; KLF6; ARID5B; EGR2; PLAU; 

CH25H; IFIT1; BIRC3; ADM; AMPD3; CASP4; ZC3H12C; SPTY2D1; EHD1; CDC42EP2; 

FOSL1; OLR1; OASL; UBC; NR4A1; GPR84; ITGA5; IL23A; NAB2; MDM2; PHLDA1; 

SLC2A3; CLEC4E; DUSP6; CD69; IRS2; TSC22D1; TRIM13; SPRY2; TNFAIP2; NFKBIA; 

FBXO33; ZFP36L1; FOS; BCL2A1; CCL2; CCL7; CCL5; CCL3; CCL4; DUSP14; CSF3; 

ARL4D ; EIF5A; SOCS3; CBX4; PER1; TGIF1; PMAIP1; ICAM1; JUNB; DNAJB1; KLF2; 

GDF15; GADD45B; NFKBID; NFKBIB; ZFP36; SERTAD1; PVR; BCL3; RELB; FOSB; 

PPP1R15A TNFSF9; SLC20A1; IL1A; IL1B; RND3; NR4A2; IFIH1; NFE2L2; CFLAR; 

RHOB; KLF7; CCL20; FOSL2; ZFP36L2; REL; PELI1; SERTAD2; ID2; DUSP2; SDC4; 

CEBPB; RCAN1; ETS2; ICOSLG; LIF; MAFF; ATF4; NFKBIZ; SIAH2; TIPARP; CCNL1; 

SKIL; B3GNT5; HES1; CSRNP; CCRL2; TREX1; BHLHE40; NFKB1; CCRN4L; IL8; 

CXCL1; CXCL3; CXCL2; CXCL10; RASGEF1B; SRFBP1; CSF2; IRF1; EGR1; HBEGF; 

CD14; TNIP1; DUSP1; SQSTM1; PTGER4; ELL2; PRDM1; NEDD9; EDN1; SGK1; 

CITED2; CD83; IER3; TNF; HMGA1; PIM1; SRF; VEGFA; NFKBIE; PNRC1; SERPINE1; 

IFRD1; MAFK; IL6; KLF10; TRIB1; MYC; EGR3; CEBPD; ZBTB10; OSGIN2; GEM; NR4A3; 

KLF4; IFNB1; ZFAND5; GADD45G; EPHA2; CYR61; TBX3; FRMD6; IER2; CXCR7; ID1; 

ADAMTS1; PLK2; CTGF; SELE; FOXC2    ANKRD57; DUSP4; EGR4; FLRT3; SIK1; 

LMCD1; ARC 

Known IEGs assigned to other models 

IKBKE; SLC2A1; TOB1; IL12B; IRF4; GS4; C1orf51; BMP2 
 

 

Appendix Table 2 GO term enrichment analysis.  GO terms significantly enriched (FDR corrected 
hypergeometric test q-value <0.05) in all the genes classified as peak and in known IEGs. 

GO term id Description FDR q-value 
(peaking 
genes) 

Enrichent 
(peaking 
genes) 

GO:0044237 cellular metabolic process 0.0000000226 1.03 
GO:0008152 metabolic process 0.000000121 1.03 
GO:0051704 multi-organism process 0.00000344 1.11 
GO:0009892 negative regulation of metabolic process 0.0000135 1.07 
GO:0043620 regulation of DNA-templated transcription in 

response to stress 
0.000021 1.29 

GO:0033554 cellular response to stress 0.0000255 1.09 
GO:0071704 organic substance metabolic process 0.0000302 1.03 
GO:0010605 negative regulation of macromolecule metabolic 

process 
0.0000381 1.07 

GO:0043170 macromolecule metabolic process 0.0000451 1.03 
GO:0006807 nitrogen compound metabolic process 0.0000459 1.03 
GO:0044260 cellular macromolecule metabolic process 0.0000497 1.03 
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GO:0043618 regulation of transcription from RNA polymerase II 

promoter in response to stress 
0.0000517 1.29 

GO:0009987 cellular process 0.0000883 1.01 
GO:0051716 cellular response to stimulus 0.000227 1.06 
GO:0010629 negative regulation of gene expression 0.000278 1.08 
GO:0032268 regulation of cellular protein metabolic process 0.00045 1.06 
GO:0042221 response to chemical 0.000533 1.06 
GO:0044238 primary metabolic process 0.000538 1.02 
GO:0010604 positive regulation of macromolecule metabolic 

process 
0.000961 1.05 

GO:0051246 regulation of protein metabolic process 0.0011 1.06 
GO:0007568 aging 0.0012 1.19 
GO:0051726 regulation of cell cycle 0.00151 1.08 
GO:0010628 positive regulation of gene expression 0.00164 1.07 
GO:0009893 positive regulation of metabolic process 0.0029 1.05 
GO:0045862 positive regulation of proteolysis 0.00296 1.14 
GO:0008150 Biological process 0.003 1.01 
GO:0006357 regulation of transcription from RNA polymerase II 

promoter 
0.0031 1.06 

GO:0031324 negative regulation of cellular metabolic process 0.00374 1.05 
GO:0006950 response to stress 0.00374 1.05 
GO:0048585 negative regulation of response to stimulus 0.00386 1.07 
GO:1901698 response to nitrogen compound 0.00482 1.10 
GO:0030162 regulation of proteolysis 0.00481 1.10 
GO:0010033 response to organic substance 0.00577 1.06 
GO:0006979 response to oxidative stress 0.00584 1.14 
GO:0045321 leukocyte activation 0.00806 1.09 
GO:0048522 positive regulation of cellular process 0.00814 1.03 
GO:0042542 response to hydrogen peroxide 0.00822 1.23 
GO:1901360 organic cyclic compound metabolic process 0.00834 1.03 
GO:0023057 negative regulation of signaling 0.00871 1.07 
GO:0009968 negative regulation of signal transduction 0.00943 1.08 
GO:0045787 positive regulation of cell cycle 0.00983 1.13 
GO:0010648 negative regulation of cell communication 0.00978 1.07 
GO:0043900 regulation of multi-organism process 0.0104 1.13 
GO:0051172 negative regulation of nitrogen compound 

metabolic process 
0.0109 1.05 

GO:0010035 response to inorganic substance 0.0115 1.12 
GO:0050896 response to stimulus 0.0117 1.03 
GO:0031325 positive regulation of cellular metabolic process 0.012 1.04 
GO:1904951 positive regulation of establishment of protein 

localization 
0.0121 1.11 

GO:0080134 regulation of response to stress 0.0124 1.07 
GO:2001234 negative regulation of apoptotic signaling pathway 0.0124 1.17 
GO:0010557 positive regulation of macromolecule biosynthetic 

process 
0.0126 1.06 

GO:0043069 negative regulation of programmed cell death 0.0145 1.09 
GO:2001233 regulation of apoptotic signaling pathway 0.0156 1.12 
GO:0051592 response to calcium ion 0.0159 1.24 
GO:1901700 response to oxygen-containing compound 0.0163 1.07 
GO:0043066 negative regulation of apoptotic process 0.0165 1.09 
GO:0016070 RNA metabolic process 0.0165 1.04 
GO:0019222 regulation of metabolic process 0.0164 1.03 
GO:0010243 response to organonitrogen compound 0.0164 1.09 
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GO:0010468 regulation of gene expression 0.0168 1.03 
GO:0051173 positive regulation of nitrogen compound 

metabolic process 
0.0173 1.04 

GO:0000302 response to reactive oxygen species 0.0176 1.18 
GO:0006915 apoptotic process 0.0176 1.10 
GO:0043067 regulation of programmed cell death 0.0181 1.06 
GO:0042981 regulation of apoptotic process 0.0191 1.06 
GO:0034599 cellular response to oxidative stress 0.0197 1.16 
GO:0051222 positive regulation of protein transport 0.0234 1.11 
GO:0001775 cell activation 0.0235 1.08 
GO:0006725 cellular aromatic compound metabolic process 0.025 1.03 
GO:0032269 negative regulation of cellular protein metabolic 

process 
0.0249 1.07 

GO:0038061 NIK/NF-kappaB signaling 0.0252 1.26 
GO:0060548 negative regulation of cell death 0.0263 1.08 
GO:0048519 negative regulation of biological process 0.0272 1.03 
GO:0046483 heterocycle metabolic process 0.0297 1.03 
GO:0033138 positive regulation of peptidyl-serine 

phosphorylation 
0.0339 1.24 

GO:0010941 regulation of cell death 0.0339 1.06 
GO:0060255 regulation of macromolecule metabolic process 0.0353 1.02 
GO:0051248 negative regulation of protein metabolic process 0.0363 1.07 
GO:0048518 positive regulation of biological process 0.0371 1.03 
GO:0006139 nucleobase-containing compound metabolic 

process 
0.0392 1.03 

GO:0051247 positive regulation of protein metabolic process 0.0394 1.05 
GO:0043903 regulation of symbiosis, encompassing mutualism 

through parasitism 
0.04 1.15 

GO:2001236 regulation of extrinsic apoptotic signaling pathway 0.0401 1.17 
GO:0007623 circadian rhythm 0.0425 1.20 
GO:0009891 positive regulation of biosynthetic process 0.045 1.05 
GO:0044092 negative regulation of molecular function 0.0451 1.07 
GO:1901576 organic substance biosynthetic process 0.047 1.03 
GO:0032270 positive regulation of cellular protein metabolic 

process 
0.0471 1.06 
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Appendix Table 3 GO terms enrichment for known IEGs. GO terms significantly enriched (FDR 
corrected hypergeometric test q-value <0.05) in the known IEGs. 

GO Term 

GO:0048518 GO:0050793 GO:0051094 GO:0001934 GO:0044763 GO:0050727 GO:0045639 GO:0032946 GO:0001704 GO:0042990 

GO:0050896 GO:0009889 GO:0030334 GO:0010648 GO:0006366 GO:0045936 GO:0048525 GO:0043407 GO:0050870 GO:1901655 

GO:0048522 GO:0010557 GO:0009890 GO:0023057 GO:0006928 GO:0010563 GO:0043085 GO:0031668 GO:0090022 GO:0051591 

GO:0010033 GO:0045893 GO:0019220 GO:0071219 GO:0032103 GO:1903708 GO:0043434 GO:0000302 GO:0003006 GO:0071548 

GO:0050794 GO:1903508 GO:0010558 GO:0042327 GO:1901342 GO:0012501 GO:0001666 GO:0036499 GO:0007267 GO:0043331 

GO:0007165 GO:1902680 GO:0031399 GO:0040011 GO:0006351 GO:0008219 GO:0007623 GO:0008283 GO:0006807 GO:0002526 

GO:0048519 GO:0031326 GO:0019221 GO:0010562 GO:0097659 GO:0043901 GO:0070482 GO:1904407 GO:0071214 GO:0042345 

GO:0050789 GO:0002376 GO:0060326 GO:0045937 GO:0050790 GO:0001775 GO:0042129 GO:0045429 GO:1901623 GO:0030217 

GO:0010604 GO:0045935 GO:0009719 GO:0016477 GO:0022407 GO:0071417 GO:0045321 GO:0051049 GO:0051385 GO:0033138 

GO:0042221 GO:0014070 GO:0051174 GO:0010942 GO:0001933 GO:0043410 GO:0044260 GO:0009058 GO:0071674 GO:0050792 

GO:0006950 GO:0031328 GO:0071407 GO:0009725 GO:0044699 GO:1990266 GO:0051726 GO:0001525 GO:0044702 GO:0044238 

GO:0009605 GO:0048584 GO:0031327 GO:0048870 GO:0043409 GO:0032944 GO:0045859 GO:0051348 GO:0042542 GO:0045580 

GO:0051173 GO:1903506 GO:0030335 GO:0002685 GO:0042326 GO:0071621 GO:1900745 GO:0048729 GO:0010038 GO:0034405 

GO:0031325 GO:0051252 GO:2000145 GO:0009968 GO:0007154 GO:1901653 GO:0008285 GO:0071456 GO:0032680 GO:0043534 

GO:0009893 GO:0009966 GO:0051270 GO:0002687 GO:1901699 GO:0071774 GO:0045596 GO:0070665 GO:2001234 GO:2000403 

GO:0010941 GO:0051240 GO:0051090 GO:1903706 GO:0032774 GO:1902107 GO:0009653 GO:0043281 GO:0032102 GO:0006979 

GO:0065007 GO:0060548 GO:0051241 GO:0045597 GO:0048511 GO:0070663 GO:1901654 GO:0000165 GO:0023014 GO:0007611 

GO:0043207 GO:0006355 GO:2000147 GO:0030155 GO:0044092 GO:0001763 GO:1903039 GO:0070374 GO:0050671 GO:0071704 

GO:0042981 GO:0042127 GO:0009628 GO:0045934 GO:0002694 GO:0097530 GO:2000501 GO:0050729 GO:0050776 GO:0045087 

GO:0043067 GO:0044767 GO:0051247 GO:0070098 GO:1901652 GO:0043170 GO:1900744 GO:2001236 GO:0071375 GO:0090304 

GO:0051171 GO:0065009 GO:0040012 GO:0071216 GO:0006915 GO:0097529 GO:0043618 GO:0042110 GO:0032649 GO:0048754 

GO:0009607 GO:0001817 GO:0051272 GO:0071356 GO:0030595 GO:0045637 GO:0007249 GO:0071622 GO:0007186 GO:0042531 

GO:0051716 GO:0032502 GO:0044707 GO:0033554 GO:0050865 GO:0009991 GO:0048513 GO:0022414 GO:0050731 GO:0001706 

GO:0006952 GO:0001932 GO:0048585 GO:0001819 GO:0051707 GO:0070373 GO:1902624 GO:0031667 GO:0050707 GO:0045598 

GO:0051239 GO:0010646 GO:0035556 GO:0048856 GO:0050921 GO:0045766 GO:0033673 GO:0090023 GO:0090257 GO:1904035 

GO:0080090 GO:0043066 GO:0071495 GO:0071347 GO:0071496 GO:0044057 GO:0071383 GO:0000188 GO:2000503 GO:0060426 

GO:0002682 GO:2000112 GO:0008284 GO:0031960 GO:0007568 GO:0050867 GO:2000377 GO:0045619 GO:0043435 GO:0052548 

GO:0071310 GO:0009892 GO:0040017 GO:0042035 GO:0002521 GO:0022409 GO:0009615 GO:0046683 GO:0071376 GO:0030856 

GO:0060255 GO:0010605 GO:2000113 GO:0043065 GO:0051249 GO:0071385 GO:0008150 GO:2001233 GO:0042536 GO:0030278 

GO:0002237 GO:0023051 GO:0070372 GO:0031401 GO:0034654 GO:0036293 GO:0051093 GO:0043903 GO:1903555 GO:0002573 

GO:0048523 GO:0031324 GO:0009967 GO:0070848 GO:0050900 GO:0051091 GO:0043900 GO:0044249 GO:0071453 GO:0032675 

GO:0031323 GO:0043069 GO:0032501 GO:0043068 GO:0009059 GO:2000379 GO:0043620 GO:0042752 GO:1904892 GO:0071364 

GO:0048583 GO:0019219 GO:1901698 GO:0032870 GO:0050863 GO:0044271 GO:0043086 GO:0032479 GO:0046425 GO:1903524 

GO:0032496 GO:0051246 GO:0071345 GO:0022603 GO:0031347 GO:0051704 GO:0009314 GO:1903707 GO:0002286 GO:0032642 

GO:0045944 GO:0042325 GO:0071222 GO:0002688 GO:0050920 GO:1903426 GO:0048660 GO:0009888 GO:0071346 GO:0042102 

GO:0070887 GO:0051172 GO:0010629 GO:1903037 GO:0045765 GO:0031400 GO:1902622 GO:0043433 GO:0050679 GO:0032897 

GO:0051254 GO:0030154 GO:0034612 GO:0010243 GO:0002683 GO:0009617 GO:0051251 GO:0051607 GO:0032677 GO:0071900 

GO:1901700 GO:0048869 GO:0080134 GO:0051248 GO:0019438 GO:0050670 GO:0051338 GO:0071624 GO:0050678 GO:0002042 

GO:0006357 GO:1901701 GO:0000122 GO:0051384 GO:0009612 GO:0042742 GO:0006469 GO:0002548 GO:0080135 GO:0061158 

GO:0006954 GO:0010468 GO:0032270 GO:0044093 GO:1904018 GO:0042036 GO:0007159 GO:0036003 GO:0043123 GO:0035994 

GO:1902531 GO:0045595 GO:0009987 GO:1902532 GO:0043122 GO:0061138 GO:0048661 GO:0002252 GO:0045787 GO:0031669 

GO:0002684 GO:0043408 GO:0071396 GO:0048646 GO:0034645 GO:0002761 GO:0065008 GO:0043405 GO:0051336 GO:0034614 

GO:0034097 GO:0006955 GO:1902679 GO:1902105 GO:0018130 GO:0071384 GO:1901576 GO:0042108 GO:0044700 GO:0032663 

GO:0010628 GO:0006935 GO:1903507 GO:0032879 GO:0071363 GO:0045428 GO:0002009 GO:1903428 GO:0051147 GO:0050730 

GO:0033993 GO:0042330 GO:0010647 GO:0002690 GO:0098542 GO:0002763 GO:0014074 GO:0016070 GO:0051092 GO:0048534 

GO:0010556 GO:1902533 GO:0051253 GO:0032269 GO:0030593 GO:0031349 GO:0042493 GO:0036294 GO:0023052 GO:0061014 

GO:0019222 GO:0007166 GO:0032101 GO:0070555 GO:0010035 GO:0043549 GO:0051128 GO:0046649 GO:0048771 GO:0035914 

GO:0009891 GO:0032268 GO:0023056 GO:0001818 GO:1901362 GO:0044344 GO:0051050 GO:0035239 GO:1901214 GO:0001570 

GO:2001141 GO:2000026 GO:0045892 GO:0048545 GO:0045785 GO:0002696 GO:0030098 GO:2000116 GO:2000401 GO:0007610 

GO:2000117 GO:0045862 GO:0046632 GO:0048844 GO:0048514 GO:0051924 GO:0042832 GO:0031663 GO:0048245 GO:0032729 

GO:0030855 GO:0006937 GO:0038061 GO:0030949 GO:0002819 GO:0003013 GO:0048745 GO:0071409 GO:0060708 GO:0022408 

GO:0071470 GO:1905952 GO:0043523 GO:1990440 GO:0001959 GO:0009267 GO:0097305 GO:0034242 GO:0031622 GO:0070304 

GO:0032743 GO:1903532 GO:0002218 GO:0033598 GO:0051347 GO:0010656 GO:0030336 GO:0030223 GO:0051046 GO:0009266 

GO:0045682 GO:1903313 GO:0002221 GO:0045621 GO:0002697 GO:0051897 GO:0048468 GO:0045415 GO:0009408 GO:0050714 

GO:0001101 GO:0016337 GO:1900180 GO:1903531 GO:0031175 GO:0006959 GO:0044089 GO:0032765 GO:0010332 GO:0001938 

GO:0009416 GO:0045667 GO:0002793 GO:0045786 GO:0046822 GO:1901216 GO:0051153 GO:0031077 GO:1901722 GO:1904589 

GO:0010660 GO:0002711 GO:0002718 GO:0001569 GO:0050708 GO:0050728 GO:0031334 GO:0033141 GO:0072216 GO:0000288 

GO:1903900 GO:0008015 GO:0043124 GO:2001240 GO:0040013 GO:0010744 GO:1904036 GO:2000097 GO:0060707 GO:0045076 

GO:0009743 GO:0050691 GO:0045604 GO:1901099 GO:0043542 GO:0043922 GO:0048247 GO:0072677 GO:0031098 GO:0042534 

GO:0001660 GO:0040007 GO:0002268 GO:0007507 GO:0007569 GO:0050710 GO:0060670 GO:0051412 GO:0009648 GO:0007179 

GO:1904582 GO:0030099 GO:0010611 GO:0040008 GO:0090049 GO:0090183 GO:0035767 GO:0090050 GO:0050878 GO:1901360 

GO:1904580 GO:0097193 GO:0003151 GO:0001709 GO:0060142 GO:1904951 GO:0010959 GO:0050868 GO:0043535 GO:0033674 

GO:0061394 GO:2000027 GO:0072676 GO:0003281 GO:0002285 GO:0007613 GO:0061469 GO:0051051 GO:0051896 GO:0006984 

GO:0045362 GO:1901740 GO:0051222 GO:0061157 GO:0008016 GO:0007612 GO:0045657 GO:0006953 GO:0008152 GO:0042149 

GO:0050848 GO:0045360 GO:0002266 GO:0070301 GO:0002709 GO:0045651 GO:0045414 GO:0043153 GO:0090287 GO:0044237 

GO:0051345 GO:0032682 GO:0045860 GO:0045600 GO:0002831 GO:0051250 GO:0042594 GO:0007178 GO:0090303 GO:0097084 
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GO:0001944 GO:0032868 GO:0009611 GO:0060337 GO:0045655 GO:0034341 GO:0003008 GO:0035690 GO:0048731 GO:0097012 

GO:0045933 GO:1902041 GO:0061013 GO:0034599 GO:1903034 GO:0032652 GO:0002292 GO:0046483 GO:0006725 GO:0097011 

GO:0007167 GO:0045071 GO:1903670 GO:0006468 GO:0007157 GO:0010595 GO:0071359 GO:0050866 GO:0050778 GO:0045073 

GO:0045672 GO:0044708 GO:0050715 GO:0033135 GO:0001568 GO:0043279 GO:0045823 GO:0045069 GO:0071499 GO:0010830 

GO:0070302 GO:0010575 GO:0050779 GO:0032874 GO:0007275 GO:0050864 GO:0071498 GO:0031086 GO:0014743 GO:0032922 

GO:0097190 GO:0002764 GO:0002758 GO:0042306 GO:0043154 GO:0010212 GO:0070371 GO:0032872 GO:1903036  
GO:1903038 GO:0045670 GO:1900151 GO:0070849 GO:0060759 GO:1903522 GO:0030162 GO:1904627 GO:0022610  
GO:0071277 GO:0051592 GO:1900153 GO:0071549 GO:0007155 GO:0010634 GO:0052547 GO:1901724 GO:2001237  
GO:0046427 GO:0043269 GO:0097201 GO:0010574 GO:0051403 GO:0002695 GO:1904628 GO:0006139 GO:0090184  
GO:1901739 GO:0072678 GO:1903672 GO:0051130 GO:1903901 GO:0045089 GO:0043491 GO:0042509 GO:0045088  
GO:0070542 GO:1902106 GO:0035924 GO:0009649 GO:0019722 GO:0045444 GO:0060674 GO:0071901 GO:0010632  
GO:0042592 GO:0045165 GO:0050890 GO:0071260 GO:1904894 GO:0010594 GO:1901215 GO:0032480 GO:0043502  

 
Appendix Table 4 TF binding sites significantly occurring in IEG promoters. 

TFAP2A; Klf4; MZF1(var.2); SP1; EWSR1-FLI1; EGR1; MIG2; MIG3; 
NHP10; RSC30; STP1; SUT1; E2F4; Myod1; SP2; ZNF263; Mad; ERF1B; 
KLF5; TFAP2B(var.3) ; TFAP2C(var.3) TFAP2A(var.3); CRF2; CRF4; 
ERF008; RAP2-10; ERF4; ERF7; ERF8; ERF069; ERF096; ERF098; 
ERF11; ERF112; ERF13; ERF3; Os05g0497200; ERF094; RAP2-3; RAP2-
6; ERF109; daf-12; Zfx; PLAG1; MIG1; RDS1; UGA3; YGR067C; btd; E2F6; 
SP4; EGR3; EGR4; KLF16; SP3; TFAP2A(var.2); KLF14; SP8; NRF1; 
ERF105; ERF6; REST; RREB1; abi4; brk; RSC3; STP2; SOC1; CDC5; SRF; 
CTCF; Klf12; Tcfl5; PAX5; eor-1; IRF1; PIF1;  Trl; IRF2; STAT1::STAT2; 
TFAP2C; TFAP2B; Gabpa; ELK4; SPI1; ZNF740; h;  FUS3; opa; INSM1; 

          

Appendix Table 5 Shifting promoters for H1_CD34. List of promoters with shifting score >=0.6 and 
FDR K-S <0.01. The dominant TSS is the TSS with higher number of tags (expressed in TPM) and its 
location with TPM counts are reported for the compared time points. 

CAGE cluster Shifting 
score 

Dominant TSS  
(Day 0)  

Dominant TSS 
(Day 3)  

Dominant 
TSS TPM 
(day 0) 

Dominant 
TSS TPM 
(day 3) 

FDR KS 

chr11:64536521..64536541,- 0.66 64536531 64536527 14.4 5.4 0.0014 

chr14:43088147..43088201,- 0.64 43088153 43088166 12.8 15.5 0.0097 

chr19:19050980..19051133,+ 0.60 19051124 19051037 9.2 20.9 0.0007 

chr3:14530430..14530508,+ 0.83 14530433 14530508 5.4 24.7 0.002 

chr6:27806485..27806592,+ 0.95 27806486 27806587 8.7 8.6 0.0004 

chr6:133136125..133136157,+ 0.62 133136156 133136156 22.6 23.9 9.5E-05 

chr6:15663151..15663311,- 0.63 15663310 15663211 16.1 17.2 0.002 

CAGE cluster Shifting 
score 

Dominant TSS  
(Day 0)  

Dominant TSS  
(Day 9) 

Dominant 
TSS TPM 
(Day 0) 

Dominant 
TSS TPM 
(day 3) 

FDR KS 

chr4:111120306..111120363,- 0.68 111120307 111120353 17.3 14.6 0.003 
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Appendix Table 6 Shifting promoters for MCF7_HRG. List of promoters with shifting score >=0.6 and 
FDR K-S <0.01. The dominant TSS is the TSS with higher number of tags (expressed in TPM) and its 
location with TPM counts are reported for the compared time points. 

CAGE cluster Shifting 
score 

Dominant TSS  
(0 min) 

Dominant TSS  
(15 min) 

Dominant TSS 
TPM (0 min) 

Dominant TSS 
TPM (15 min) 

FDR 
KS 

chr4:176770514..176770525,+ 0.86 176770523 176770524 13.4 6.1 1.2E-4 

CAGE cluster Shifting 
score 

Dominant TSS  
(0 min) 

Dominant TSS  
(30 min) 

Dominant TSS 
TPM  

(0 min) 

Dominant TSS 
TPM 

(30 min) 

FDR 
KS 

chrX:141155504..141155563,- 0.91 141155551 141155534 8.6 14.8 0.007 

CAGE cluster Shifting 
score 

Dominant TSS  
(0 min) 

Dominant TSS  
(45 min) 

Dominant TSS 
TPM 

(0 min) 

Dominant TSS 
TPM 

(45 min) 

FDR 
KS 

chrX:141155504..141155563,- 0.80 141155551 141155524 8.6 17.6 0.003 

chr17:61911871..61911940,- 0.92 61911887 61911835 10.4 6.7 0.0096 

CAGE cluster Shifting 
score 

Dominant TSS  
(0 min) 

Dominant TSS  
(60 min) 

Dominant TSS 
TPM 

(0 min) 

Dominant TSS 
TPM 

(60 min) 

FDR 
KS 

chrX:141155504..141155563,- 0.80 141155551 141155529 8.6 16.9 0.002 

CAGE cluster Shifting 
score 

Dominant TSS  
(0 min) 

Dominant TSS  
(240 min) 

Dominant TSS 
TPM 

(0 min) 

Dominant TSS 
TPM 

(360 min) 

FDR 
KS 

chr2:74776000..74776263,+ 0.61 74776243 74776243 25.4 26.9 0.001 

CAGE cluster Shifting 
score 

Dominant TSS  
(0 min) 

Dominant TSS  
(360 min) 

Dominant TSS 
TPM 

(0 min) 

Dominant TSS 
TPM 

(360 min) 

FDR 
KS 

chr2:74776000..74776263,+ 0.73 74776243 74776232 25.4 21.2 0.005 

 

Appendix Table 7 Wavelet decomposition. Mean and difference (in boldface type) computation, 
beginning with the data in the top row, and transformations from levels 1 to 4. 

Level 
0 

23.1 9.6 -18.3 9 -11.5 -3 9.5 4.5 1 2 0 2 8 3 -1 0 

Level 
1 

32.8 13.5 -18.3 9 -11.5 -3 9.5 4.5 1 2 0 2 8 3 -1 0 

Level 
2 

14.5 51 22.5 4.

5 
-11.5 -3 9.5 4.5 1 2 0 2 8 3 -1 0 

Level 
3 

3 26 48 54 32 13 9 0 1 2 0 2 8 3 -1 0 

Data 4 2 28 24 48 48 56 52 40 24 16 10 8 10 0 0 

 

Appendix Table 8 Haar transform decomposition. Trend and fluctuation (in boldface type) 
computation. 

Level 0 20√2 -5√î -10.5√î -1.5√î -√î 2√2 0 2√î 
Level 1 15.5√2 25.5√2 -10.5√î -1.5√î -√î 2√î 0 2√î 
Level 2 5√2 26√2 48√2 54√2 -√2 2√î 0 2√î 
Data 4 6 28 24 48 48 56 52 
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The promoters of immediate early genes (IEGs) are rapidly activated in
response to an external stimulus. These genes, also known as primary response
genes, have been identified in a range of cell types, under diverse extracellular
signals and using varying experimental protocols. Whereas genomic dissec-
tion on a case-by-case basis has not resulted in a comprehensive catalogue
of IEGs, a rigorous meta-analysis of eight genome-wide FANTOM5 CAGE
(cap analysis of gene expression) time course datasets reveals successive
waves of promoter activation in IEGs, recapitulating known relationships
between cell types and stimuli: we obtain a set of 57 (42 protein-coding)
candidate IEGs possessing promoters that consistently drive a rapid but tran-
sient increase in expression over time. These genes show significant
enrichment for known IEGs reported previously, pathways associated with
the immediate early response, and include a number of non-coding RNAs
with roles in proliferation and differentiation. Surprisingly, we also find
strong conservation of the ordering of activation for these genes, such that
77 pairwise promoter activation orderings are conserved. Using the leverage
of comprehensive CAGE time series data across cell types, we also document
the extensive alternative promoter usage by such genes, which is likely to have
been a barrier to their discovery until now. The common activation ordering of
the core set of early-responding genes we identify may indicate conserved
underlying regulatory mechanisms. By contrast, the considerably larger
number of transiently activated genes that are specific to each cell type and
stimulus illustrates the breadth of the primary response.

1. Introduction
Human cells respond to a broad range of extracellular stimuli with a characteristic
burst of transcription within minutes at many sites across the genome, known as

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.



the immediate early response (IER). The IER has been observed
as an initiating event in many cellular processes, notably during
differentiation, in responses to cellular stress and in inflam-
mation. The earliest events in the IER involve the activation of
the promoters of a particular set of genes, known as immediate
early genes (IEGs). The promoters of IEGs are activated rapidly,
and their activation is transient in normal cells [1]. However,
IEGs are often dysregulated in cancers where they can
become continuously activated; accordingly, some of the best-
studied IEGs are known oncogenes [2]. For example, the
expression of the FOS proto-oncogene normally peaks within
60 min of a stimulus and subsides after 90 min [3], in contrast
with its continuous overexpression in many cancers.

IEGs possess unusually accessible promoters that allow
rapid transcriptional activation in response to a stimulus with-
out the requirement of de novo protein synthesis. Various
features are thought to discriminate IEGs such as the shorter
transcripts they generate and enrichments of certain transcrip-
tion factor (TF) binding sites at their promoters [4]. However,
current knowledge about IEGs is derived mainly from studies
of individual genes or pathways, and often considers a specific
cell type and stimulus. This means that comparison across
studies can be confounded by experimental and technical vari-
ation, and a comprehensive catalogue of IEGs remains elusive.
There is also controversy about the regulatory mechanisms
governing the response of even relatively well-studied IEGs
[5]. Beyond the induction of protein-coding IEG promoters,
the features and underlying mechanisms of the IER are even
less well understood. Some studies have implicated altered pat-
terns of IEG splicing as playing important roles in the IER [6],
while others have suggested a prominent role for lncRNA acti-
vation [7] and transcribed enhancers [8]. Approximately 20% of
known IEGs are TFs, including some of the best characterized:
EGR1–EGR4, FOS, FOSB, FOSL1, JUN, JUNB and MYC.

The FANTOM5 cap analysis of gene expression (CAGE)
data offer a number of advantages for expression profiling
because they are based upon single-molecule sequencing to
avoid PCR, digestion and cloning biases. They provide up to
single base-pair resolution of transcription start sites (TSSs)
and promoter regions, and provide a sensitive, quantitative
readout of transcriptional output accounting for the alternative
promoters of each gene. The output of individual promoters is
not confounded by splicing variation, and many novel lowly
expressed transcripts including non-coding RNAs (ncRNAs)
can be readily detected (see http://fantom.gsc.riken.jp/5/).
CAGE data are thus ideally suited to studying the strong burst
of transcription at promoters seen in IERs. FANTOM5 data
include eight CAGE time course datasets employing unusually
dense sampling at time points within 300 min of stimulation, for
a variety of stimuli treating a variety of cell types. These hetero-
geneous datasets, produced using a common experimental
platform, should be fertile ground for novel insights into the
IER, but a comprehensive meta-analysis has not been performed
until now.

Many previous approaches to time series analysis of
expression data have been based upon differential expression
between successive time points, or have clustered genes accord-
ing to the similarity of their expression profiles over time [9].
Both of these approaches present problems for the analysis of
CAGE data. Differential expression between time points pro-
vides poor sensitivity for lowly expressed transcripts
(possessing too few reads to generate significant differences in
expression), and presents serious difficulties when comparing

expression profiles from datasets with somewhat different
sampling points over time. Clustering approaches often rely
upon arbitrary thresholds (e.g. based upon cluster size or signi-
ficant enrichment of functional annotation terms) and, by
definition, will miss transcripts that cannot be assigned to a
cluster but may nevertheless show dynamics of interest.
Hence, we refine a previously successful Bayesian model selec-
tion algorithm to classify promoter responses to pre-defined
mathematical models [7].

Here, we perform extensive meta-analyses of promoter
activity in the human IER, encompassing unusually diverse
cell types and stimuli, to rigorously classify IEGs and estimate
the core IEG repertoire active across cellular responses. We
show that computational classification of the temporal activity
patterns of promoters provides a potent basis for meta-analyses
across time courses, exposing the combined activity of known
IEGs and compelling new IEG candidates in the IEG core reper-
toire. We also show that the timing of the peak expression of a
core set of transiently activated genes has a conserved order.
This surprising outcome indicates a previously unidentified
regulatory mechanism that is shared among cell types and
common to diverse stimuli.

2. Results
We considered eight densely sampled, and well-replicated,
FANTOM5 CAGE time course datasets obtained following
diverse stimuli: calcification in an osteosarcoma cell line in
response to osteocalcin (SAOS2_OST), differentiation of adi-
pose-derived primary mesenchymal stem cells in response to
a drug mixture (3-isobutyl-1-methylxanthine, dexamethasone
and rosiglitazone) (PMSC_MIX), differentiation of primary
lymphatic endothelial cells in response to VEGF (PEC_VEGF),
MCF7 breast cancer cell line responses to EGF1 (MCF7_EGF1)
and to HRG (MCF7_HRG), primary aortic smooth muscle
cells response to IL1b (PAC_IL1B) and FGF2 (PAC_FGF2),
and primary monocyte-derived macrophage cells activation
in response to LPS (PMDM_LPS). Thus, we included a variety
of primary and cell line samples, tracking responses to a range
of stimuli: growth factors, hormones, drugs, pro-inflammatory
cytokines and bacterial endotoxin (figure 1a). These diverse
data provided a potent resource to discover core features
of the IER conserved across cell types and stimuli. All TSSs
for protein-coding transcripts were represented by conser-
vatively selected CAGE read clusters (at least 10 TPM)
following Arner et al. [10]. As expected, the responses of
known IEGs often showed characteristic expression peaks
early in the time series datasets—as exemplified by FOS and
JUN—though even for these well-established IEGs, we
observed substantial variation in the magnitude, timing and
duration of peaks across cell types and stimuli (figure 1b).
These observations illustrate the challenges presented in IEG
detection, even when studying known IEGs using a uniform
experimental platform.

Optimizing and refining the approach developed by Aitken
et al. [7] (see Material and methods), we defined four mathemat-
ical models representing archetypical expression profiles of
interest over time—peak, linear, dip and decay (electronic sup-
plementary material, figure S1)—and assessed the fit of each
model to the expression profile of each gene using nested
sampling to compute the marginal likelihood, log Z [7].
Where sufficient evidence exists (given the variation between
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replicates), the algorithm returns a classification of an input
transcript to a model, and also computes relevant parameters of
the fitted models (e.g. time and magnitude of peak expression).
These parameter estimates provide a reliable basis for compari-
sons across time series datasets, even with different sampling
densities [7], as they are not restricted to sampling times or
expression values at those times.

2.1. Cap analysis of gene expression time series meta-
analysis reveals a core complement of transiently
activated promoters

Across the eight time series datasets, we considered all CAGE
clusters corresponding to the TSSs of known Ensembl [11]

transcripts, encompassing between 10 513 (corresponding to
7706 Ensembl genes) and 14 376 (8951 genes) protein-coding
CAGE TSSs, depending on the dataset, and between 1202
(692 genes) and 1640 (858 genes) ncRNACAGE TSSs (electronic
supplementary material, table S1). Between 15 and 42% of
protein-coding CAGE TSSs, and between 15 and 33% of non-
coding TSSs were confidently classified to one of the four
models, depending on the dataset (electronic supplementary
material, figure S2 and table S2). The remainder could not be
rigorously classified to a single model and were omitted from
further analysis. The peak model had the highest number of
assignments in all the datasets for both protein-coding and
ncRNA genes; for example, of 12 132 total Ensembl protein-
coding genes tested, we found 8785 Ensembl genes (72%) to
peak in at least one of the datasets. By contrast, few genes
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Figure 1. Time course datasets demonstrating the immediate early response. (a) Schematic of the eight time course datasets considered. Horizontal lines indicate
the time span and symbols show the sampling times. Time zero corresponds to inactivated or quiescent cells in all cases. (b) The time course expression profile of
FOS (i) and JUN (ii) in all eight datasets. Cage cluster expression (mean TPM of three replicates) is plotted against time. (c) The extent to which the classification of a
TSS as a peak is unique to one dataset (3515 TSS) or shared between two or more datasets.
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were classified to the peak model in multiple datasets, with
only 42 such genes shared across at least seven datasets
(figure 1c), underlining the high variability of transcriptional
responses seen for the same promoters across time series.
These 42 genes constituted our ‘robust’ set of candidate
IEGs (genes, TSSs and peak times listed in electronic sup-
plementary material, File S1). We also defined a less stringent
‘permissive’ set of 1304 candidates shared across at least four
out of eight datasets.

We then explored the overlap in peaking genes outside of
the robust set (electronic supplementary material, table S3)
and found that, for each dataset, at least 8% of peaking
genes are shared with another dataset (range 8–16%) and
up to 52% of peaking genes are shared (range 19–52%).
The intersections between sets of three datasets became smal-
ler consequently. Notably, approximately 50% of peaking
genes are shared between datasets where the cell type is the
same (MCF7 and PAC).

Our model fitting approach provided parameter estimates
for all promoters assigned to the same model, providing a
straightforward and intuitive basis for meta-analysis. For
example, comparison of the peak times (tp) (figure 2a) for all
promoters classified as peaks in at least four datasets (the per-
missive set) readily demonstrated common patterns across
datasets (figure 2b). Waves of promoter activation were evident,
with certain promoters, particularly known IEGs, activated in
the same early time window in multiple datasets. Hierarchical
clustering of the datasets based on these peak class promoters
(9% of all promoters assayed) also recapitulated known
relationships between cell types and stimuli (figure 2b). The
two datasets derived from the same breast cancer cell line
(MCF7_EGF1 and MCF7_HRG) and stimulated with different
ligands of the same ErbB receptor family clustered together as
might be expected. We observed similar behaviour for the
two primary aortic cell samples exposed to a growth factor or
activated by a pro-inflammatory cytokine (PAC_FGF2 and
PAC_IL1B, respectively). Thus, similarities in promoter acti-
vation dynamics (reflected in tp parameter estimates) between
datasets may reflect underlying commonalities in their
underlying biology.

The extent of alternative promoter usage across the robust
set of IEGs and candidate IEGs is shown in figure 3 (see also
electronic supplementary material, figure S3). Candidate
IEGs show slightly greater variability in the TSSs they acti-
vate across datasets compared with known IEGs, with a
greater median number TSS found to peak (3.5 compared
with 2 for known IEGs). In addition, known IEGs tend to pos-
sess TSSs that are successfully classified to the peak model
across a larger number of datasets (mean proportion of data-
sets classified as peak per TSS for known IEGs in the robust
set ¼ 4; candidate IEG mean proportion ¼ 2.5). Thus, known
IEGs tend to possess smaller numbers of alternative TSSs that
also tend to show discernible peaks in the majority of the
time series datasets. It is possible that these relatively stereo-
typical transcriptional characteristics of known IEGs may, in
some cases, have led to their status as well-established IEGs.
Similarly, the increased variability seen for the TSSs of candi-
date IEGs could have led to a failure to detect their IEG-like
behaviour in former studies.

We investigated the nature of our promoter classifications
by testing the enrichment of known IEGs (see Material and
methods) within each class, for each dataset. The peak class
was enriched for known IEGs in all datasets (electronic

supplementary material, figure S4 and table S4), but failed
to reach statistical significance in PMSC_MIX (OR¼ 1.3, p ¼
0.2). Peaking genes shared across datasets were generally
associated with significant enrichments of known IEGs
(table 1), with the permissive set (shared across four or more
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Figure 2. Broad trends in peak expression times across datasets. (a) Identi-
fication of the peak time parameter (tp) of FOS estimated from the
PMDM_LPS time series ( filled symbols indicate the median TPM; unfilled
symbols are individual replicates; green lines represent tp and one standard
deviation above and below). (b) Heatmap of the times of peak TSS expression
(tp) for TSSs in the permissive set for all datasets. Heatmap colours reflect the
tp for each CAGE TSS (within 100 min: dark green; 100 – 150 min: light green;
150 – 200 min: yellow; beyond 200 min: red). Known IEGs are indicated on
the left by black cells.
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datasets) expected to contain higher numbers of false positives
than the robust set (seven or more datasets). Genes possessing
TSSs assigned to the peak class showed enrichments for gene
ontology (GO) processes associated with transcription, cell acti-
vation, cell proliferation, cell differentiation and cancer-related
terms such as cell death and apoptosis (FDR , 0.05; Material
and methods) [12,13]. These terms were also consistent with
previous studies of IEGs [4] as genes in the robust set showed
enrichment for 285 GO terms, over 30% (88) of which were

shared with the list of 773 GO terms of all known IEGs
(electronic supplementary material, table S5).

2.2. Novel non-coding RNA candidates in the
immediate early response

We next applied our classification to promoters driving
the expression of non-coding transcripts and found peak
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Figure 3. Promoter usage across time series datasets. For representative genes, bar charts show the number of datasets where each TSS peaks to illustrate the
diversity of TSS usage and commonality of the peaking response. Known IEGS are shown in blue, TFs in yellow and other genes in green. FOSB has a single TSS that
peaks in eight datasets, JUN has three TSS each peaking in four or more datasets and XBP1 has six TSS that peak in between one and six datasets.

Table 1. Enrichment of known IEGs for genes classified to the peak model in multiple datasets. Enrichment (expressed as odds ratios) and p-values for genes
classified across different numbers of time series datasets.

shared datasets

IEGs enrichment

no. CAGE TSSs
(median)no. genes no. IEGs

no. CAGE TSSs (across
eight datasets)

no. IEG CAGE TSSs
(across eight datasets) OR p-value

1 – 8 (all peaking genes) 8785 204 102 496 913

— — 1

2 – 8 5270 171 71 384 853 6.3 2.2 ! 10216 1

3 – 8 2882 128 45 360 751 5.9 2.2 ! 10216 2

4 – 8 1304 86 24 616 590 5.9 2.2 ! 10216 2

5 – 8 507 56 11 528 433 7.4 2.2 ! 10216 3

6 – 8 182 35 4896 299 10.3 2.2 ! 10216 3

7 – 8 42 13 1376 124 12.6 2.2 ! 10216 4

8 5 2 264 18 8.3 4.6 ! 10211 5
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promoters driving the expression of 20 ncRNA genes (across at
least seven datasets), constituting the robust set of ncRNA
candidate IEGs. These included promoters associated with
the cellular splicing machinery, such as small nuclear RNA
multi-gene families (U1, U2 and U4), which are part of the
spliceosome, and SCARNA17, a small nuclear RNAwhich con-
tributes to he post transcriptional modification of many
snRNPs. Kalam et al. [14] have shown that macrophage infec-
tion with Mycobacterium tuberculosis results in the systematic
perturbation in splicing patterns, and our results suggest
more general roles for alternative splicing in the IER. However,
multigene families, such as these small nuclear RNAs, present
particular challenges for reliable sequence read mapping.
Although probabilistic approaches to mapping ambiguously
mapped reads were developed in FANTOM5 [10], we have
chosen to conservatively remove these genes from the robust
set, leaving a group of 15 non-coding genes with a median of
five peaking TSS (table 2; electronic supplementary material,
figures S5 and S6).

Three miRNAs are present in the robust set (table 2) includ-
ing the oncogene miR-21 which was previously reported to
show IEG-like behaviour in the PAC_FGF2, PAC_IL1B and
MCF7_HRG time series [7]. Here, we find similar behaviour in
the MCF7_EGF1, PEC_VEGF, PMSC_MIX and SAOS2_OST
datasets. This extends previous studies reporting that the
miR-21 mature transcript is upregulated on EGF treatment in
MCF10A [16] and HeLa [17] cells. miR-29A has been associated
with the viability and proliferation of mesenchymal stem cell and
gastric cancer cells [18,19] and DLEU2 is a putative tumour sup-
pressor gene that hosts two miRNAs, miR-15A and miR-16-1

which are known to inhibit cell proliferation and the colony-
forming ability of tumour cell lines, and to induce apoptosis
[20–22]. Seven lncRNAs also appear in the robust set (table 2),
and among them, LINC00478 is particularly interesting, as it
has already been reported to show IEG-like behaviour [7], is
implicated in breast cancer and hosts an intronic cluster of
miRNAs comprising let-7c, miR-99a and miR-125b [23].
Although poorly characterized, LINC00263, LINC-PINT and
LINC00963 are thought to be involved in biological processes
often triggered by IEGs, such as cell maturation, cell proliferation
and the expression of growth factor receptors [24–27].

2.3. Known immediate early gene promoters
show conserved temporal order of activation
across datasets

Having established common patterns of peak gene induction at
similar times across datasets (figure 2b), we hypothesized that
IEGs may also be induced in a conserved order over time. To
our knowledge, the extent of conserved ordering in gene induc-
tion is unstudied in general, and in the IER, it is of particular
interest for two main reasons. First, the presence of conserved
gene orderings, in addition to common gene classifications,
provides an additional test for functional similarity between
datasets. Second, strongly conserved ordering may suggest
the existence of conserved regulatory mechanisms governing
the induction of these genes. To analyse the relative order of
activation across the eight datasets, we compared the peak
time of each gene to that of all others in the peak class. If the

Table 2. Non-coding genes peaking in at least seven out of eight datasets. The short descriptions of the molecular function are from the genecard database
[15].

gene ID
no. of shared
datasets description (PubMed ref.)

LINC00478

(MIR99AHG)

7 it has a role in cell proliferation and differentiation and it is considered a regulator of oncogenes in

leukaemia (PMID: 25027842)

LINC00263 7 regulation of oligodendrocyte maturation (PMID: 25575711)

LINC-PINT 8 putative tumour suppressor (PMID: 24070194)

LINC00963 7 involved in the prostate cancer transition from androgen-dependent to androgen-independent and

metastasis via the EGFR signalling pathway (PMID: 24691949)

LINC00476 8 uncharacterized lincRNA

LINC00674 7 uncharacterized lincRNA

STX18-AS1 7 uncharacterized lincRNA

DLEU2 7 critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1 (PMID:19591824)

MiR-29A 7 the expression of the miR-29 family has antifibrotic effects in heart, kidney and other organs; miR-29s

have also been shown to induce apoptosis and regulate cell differentiation (PMID: 22214600)

MiR-3654 7 involved in prostate cancer progression (PMID: 27297584)

MiR-21 7 oncogenic potential (PMID: 18548003)

AL928646 7 uncharacterized ncRNA

SCARNA17 7 scaRNA involved in the maturation of other RNA molecules (PMID: 12032087)

SNORD65 7 belongs to the small nucleolar RNAs, C/D family; involved in rRNA modification and alternative splicing

(PMID: 26957605)

SNORD82 7 belongs to the small nucleolar RNAs, C/D family; involved in rRNA modification and alternative splicing

(PMID: 26957605)
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relative temporal order of two genes was conserved in at
least seven of the eight datasets, the ordering for this pair was
considered conserved and represented by an edge in the
conserved activation network (figure 4).

We found 77 pairs of genes showing conserved ordering in
their activation, involving 40 of the 57 genes in the robust set.
FOS was the first gene to be activated (lacking a predecessor
in the ordering) and SDC4, EHD1 and TMEM185B were the
last. The number of conserved temporal connections observed
overall is statistically significant (p , 5 ! 1023) by comparison
with the distribution of expected connections, given 1 000 000
permuted datasets (Material and methods). This appears to
reflect a conserved coordination in promoter activation
during the IER and further supports the candidacy of the
novel IEGs detected. Many genes in this network are known
to participate in well-studied pathways active in the IER such
as the MAPK signalling pathway as we now discuss.

2.4. Known immediate early genes and candidate
immediate early genes participate in common
signalling pathways

Having shown that the peak model described the behaviour of
known IEGs, we speculated that the other genes assigned to
this model might include novel candidate IEGs. Of the 42
genes in the robust set, more than two-thirds (29 genes) are
not known to be IEGs and can therefore be considered to be

candidate novel IEGs (henceforth candidate IEGs). Pathway
analysis [28] recovers many known relationships among
known IEGs as expected, centred on heavily studied IEGs
such as FOS and JUN. However, the same analysis suggests
that more than half (17) of candidate IEGs also participate in
common pathways with known IEGs, involving a densely
inter-connected network of 83 significantly over-represented
pathways (electronic supplementary material, table S6), includ-
ing signalling cascades known to mediate the IER, such as the
Ca2þ-dependent pathways and the mitogen-activated protein
(MAP) kinase network [29,30].

The dynamics of the expression of peak-classified genes can
be visualized by a scatterplot of fold change against peak time
(electronic supplementary material, figure S7). These quantitat-
ive features along with the conserved temporal orderings
described above show FOS as the earliest peaking IEG, EHD1
as the last, with an array of conserved orderings subsequent
to, and prior to the peaking of these genes, respectively
(selected genes plotted in figure 5). The TSSs of known IEGs
CAGE tend to show the greatest fold changes (electronic sup-
plementary material, figure S8a; Wilcoxon p , 2.2 ! 10216);
however, some candidate IEGs promoters show notably similar
timing (electronic supplementary material, figure S8c; Wil-
coxon p ¼ 0.89). The time of peaking is significantly earlier
for known IEGs relative to the other protein-coding promoters
in only three time series: PMDM_LPS, MCF7_EGF1 and
PEC_VEGF. Fold changes in peak ncRNA promoters tend to
be lower than for known IEGs (electronic supplementary
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material, figure S8b; Wilcoxon p , 0.05), but they occur
earlier than known IEGs (electronic supplementary material,
figure S8d, Wilcoxon p , 0.05 for all datasets).

Among the candidate IEGs in the robust set, XBP1 is
especially noteworthy. This gene encodes a TF and is relatively
short in length (6 kb compared with the mean of 58 kb for
all Ensembl protein-coding genes), consistent with the IEG arche-
type [1]. XBP1 is a highly conserved component of the unfolded
protein response (UPR) signalling pathways, activated by uncon-
ventional splicing upon endoplasmic reticulum (ER) stress or
non-classical anticipatory activation [31–33], and regulates a
diverse array of genes involved in ER homeostasis, adipogenesis,
lipogenesis and cell survival [34,35]. Interestingly, genes in the
robust set are significantly enriched for the GO term
GO:003497 response to ER stress (FDR , 0.05, all tested genes as
the background), and four of the five genes in the robust set
sharing this term peak in conserved order across the datasets.
Furthermore, we found a significant enrichment (FDR , 0.05)
of the XBP1 binding motif in the promoter regions (see
Material and methods) of the robust set of genes (electronic
supplementary material, figure S9).

3. Discussion
Exploiting the precision of FANTOM5 CAGE times series data,
we discover a robust set of 42 protein-coding genes driven by
promoters showing rapid and transient activation in response
to multiple stimuli. This set contains 13 previously known
IEGs and 29 candidate IEGs, which are likely to be core com-
ponents of the IER. Applying our approach to the CAGE
TSSs of ncRNAs, we also discovered a set of 15 ncRNAs peak-
ing across at least seven datasets, comprising miRNAs and
lncRNAs, suggesting regulatory roles for particular miRNAs
and lncRNAs species in the IER [7].

FOS expression has long been considered to lead the IER
after cell stimulation [36,37]. Our results on the IER conserved

activation network support this, but also similarly conserved
relationships extending to an additional 39 coding and non-
coding genes. Furthermore, we observed many known and
novel IEGs in this network known to be involved in a range
of signalling pathways active in the IER, such as the MAPK
and the EGF/EGFR signalling pathways. This suggests the
variable constellations of genes involved in the IER to any
particular stimulus may be underpinned by a deeper level of
conservation in the regulation of the IER across stimuli.

One of the most interesting candidate IEGs, XBP1, can be
rapidly activated by alternative splicing minutes after cell
stimulation with mitogenic hormones, activating peptides
such as LPS and cytokines [31–33]. This key event of the
induced UPR pathway is a conserved eukaryotic response to
cellular stress, and is thought to cooperate in the regulation of
IEG expression [32]. However, the dynamics of XBP1 promoter
induction in the context of the IER have not been studied pre-
viously. Interestingly, we found a significant enrichment for
XBP1 TF binding sites in the promoter regions of 11 genes in
the IER conserved activated network. The presence of XBP1
and XBP1-responding genes in this network suggests this
gene may act as an important link between the IER and the
UPR pathway.

4. Material and methods
4.1. Datasets
The eight datasets used (figure 1) are the most densely sampled
human time series produced by the FANTOM5 Project, with all
time points represented by three replicates [38]. Detailed infor-
mation on the generation of these datasets is available from
Arner et al. [10], including CAGE library preparation, quality
control, sequencing and qRT–PCR validation, as well as proto-
cols for CAGE read clustering and TSS detection. All CAGE
clusters representing TSSs of protein-coding genes were
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peaking genes, while EHD1 peaks late and has many conserved temporal orderings with earlier peaking genes.
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conservatively thresholded to more than 10 TPM (tags per
million), while CAGE clusters corresponding to ncRNA were
thresholded to greater than 2 TPM, allowing for their generally
lower expression levels. FANTOM5 data downloads, browsers
and genomic tools are available from the project website
(http://fantom.gsc.riken.jp/5/).

4.2. Model-based classification of transcription start site
expression profiles

To classify time series data for each CAGE-defined TSS,
we refined a previously published method [7] which fits differ-
ent mathematical models (kinetic signatures) to individual
expression profiles, assessing the best fit using nested sampling
[39] to compute the marginal likelihood, log Z. All time series
were normalized such that the medium minimum and
maximum across the time series was set to 0 and 10, respectively.

The kinetic signatures considered are: linear, decay, dip
and delayed peak (electronic supplementary material, figure
S1). The peak kinetic signature considered in the previous
method was modified to allow a delay before expression
starts to increase in exponential fashion (td). Parameter ts is
the time duration of the initial increase in expression, p1 is
the expression at time 0, and p2 is the increase in expression
at the time of peaking, tp ¼ td þ ts.

d ¼ log(0:3Þ
ts

, ð4:1Þ

y ¼ p1; t % td, ð4:2Þ
y ¼ p1 þ p2ð1& ed(t&td)Þ; td , t % td þ ts ð4:3Þ
and y ¼ p1 þ p2ð1& ed(t&td)Þ & p2ð1& ed(t&td&ts)Þ; t . td þ ts:

ð4:4Þ

However, an alternative rate d ¼ logð0:1Þ=td was also used to
model the slower dynamics of transcripts peaking later in
time, and the best fitting model selected during the decision
step. Normalizing the data such that expression lies in the
range 0–10 allowed the prior ranges of parameters to be
restricted to plausible values that applied to all time series.
The fit of models to data was improved as a result. To account
for any impact on the log Z calculation, we generated syn-
thetic time series datasets using parameter values drawn at
random from the prior ranges to generate one replicate, and
generated two other replicates by adding and subtracting
(respectively) a given amount of noise to the first. Model fit-
ting was applied to 1000 such datasets per model (using the
same noise values for each model on each of the 1000 iter-
ations) and we observed an advantage for each of the more
complex models in comparison with the linear model that
was consistent over the range of log Z values obtained for
the linear model. To offset this effect for each complex
model, the advantage (mean difference plus two standard
deviations observed in synthetic data) was subtracted from
the log Z values calculated for CAGE TSS data when
making the categorization decision.

4.3. Transcription factor binding site identification
We assessed the enrichment of transcription factor binding site
(TFBS) motifs in the JASPAR database [40] (January 2017
release) for all CAGE TSS assigned to genes in the robust set
relative to those assigned to the 12 132 genes tested across all

the datasets. Motif matches (FDR % 0.05) were sought in flank-
ing 400 bp windows centred on the middle of each CAGE TSS
analysed), using FIMO [41] from the MEME package (v. 4.11.2
patch 2). Enrichment of each motif in the robust set relative to
the total set was assessed with Fisher’s exact tests, correcting
for multiple testing (FDR % 0.05).

4.4. Pathway and gene ontology enrichment
Functional and pathway enrichments were assessed using
GORILLA [13] and INNATEDB [28], respectively (FDR % 0.05),
using the total 12 132 genes analysed across the eight datasets
as the background set.

The list of 234 known IEGs [10] was assembled from 20
published human and mouse datasets from the literature; it
is expected to contain few false positives but does include a
number of IEGs only reported in cells and/or responses not
examined in this study. To compute the enrichment of
known IEGs in each dataset, we compared the proportion
of peaking CAGE TSSs assigned to IEGs with the proportion
of peaking CAGE TSSs assigned to candidate IEGs. For the
enrichment of known IEGs in each set of shared peaking
genes, we compared the proportion of peaking CAGE TSSs
assigned to the IEGs shared in each group of shared genes
with the proportion of peaking CAGE TSSs assigned to
IEGs in the remaining tested genes. The odds ratio and the
p-value were assigned using Fisher’s exact test.

4.5. Network conservation
A total of 57 protein-coding and non-coding candidate IEGs
(corresponding to known Ensembl genes) were considered
for construction of the conserved activation network. For
genes with multiple peaking CAGE TSS, we chose the earliest
peaking CAGE TSS (smallest tp) in each dataset, then the rela-
tive pairwise order of each gene was computed with respect
to all the other genes in the robust set. For example, if in data-
set-1, gene-A peaks before gene-B (tp gene-A , tp gene-B), and
this order is observed in six or more of the other seven data-
set, the temporal precedence is defined to be conserved.
Applying this procedure to all 57 coding and non-coding
genes of the robust set, we discovered 40 genes temporally
connected by 77 conserved relative orderings (figure 4). The
significance of the number of temporal connections observed
was measured relative to null distribution, constructed by
permuting tp for all the CAGE TSSs 1 000 000 times; with
the proportion of permuted datasets with at least as many
conserved orderings as the observed taken as an empirically
derived p-value. The observed value (77) was observed or
exceeded in 4516 out of 1 000 000 permutations, indicating
that the number of temporal connections was statistically
significant (p , 5 ' 1023).
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