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Abstract

This work is concerned with sampling and computation of rare events in molecular

systems. In particular, we present new methods for sampling the canonical ensemble

corresponding to the Boltzmann-Gibbs probability measure. We combine an equation

for controlling the kinetic energy of the system with a random noise to derive a highly

degenerate diffusion (i.e. a diffusion equation where diffusion happens only along one

or few degrees of freedom of the system). Next the concept of hypoellipticity is used to

show that the corresponding Fokker-Planck equation of the highly degenerate diffusion

is well-posed, hence we prove that the solution of the highly degenerate diffusion is

ergodic with respect to the Boltzmann-Gibbs measure. We find that the new method is

more efficient for computation of dynamical averages such as autocorrelation functions

than the commonly used Langevin dynamics, especially in systems with many degrees

of freedom. Finally we study the computation of free energy using an adaptive method

which is based on the adaptive biasing force technique.
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Chapter 1

Introduction

Molecular simulation is an effective tool for finding a more accurate description of mate-

rial and chemical systems or biological systems. Indeed, understanding the microscopic

behaviour of matter using experiment in a laboratory is a daunting task (because of

the need for small scales both in time and space). Hence molecular simulation is used

to complement the experiment when the latter is difficult or impossible to perform.

With increasing computer power the molecular simulations are becoming more accu-

rate and reliable, as a result many industries such as drug design and material design

use molecular simulation as one of their main tools in combination with experiment.

Moreover the decrease of cost in high performance computing and the development of

better algorithms indicate that the role of molecular simulation will increase rapidly.

Molecular modeling begins with the eigenvalue problem of the autonomous Schrödinger

equation

HΨ = EΨ,

where E is the smallest eigenvalue of the Hamiltonian operator H, which is defined

by wellknown fundamental constants of nature and Coulomb interactions of all nuclei

and electrons. The state of the system is described by the unknown corresponding

eigenvector Ψ which is a complex value wave function, depending on the coordinates of

all nuclei and electrons and on the spins of all electrons in the system. The existence

of Ψ is guaranteed by results of spectral theory.

The main issue with this modelling is its computational complexity, which is due

to the high dimensionality of the space where Ψ is defined, see [1]. For instance sim-

ulation of a single water molecule requires solving a partial differential equation in
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39-dimensional space [1]. Therefore it becomes necessary to use some coarse-grained ap-

proximation. An old approximation is Ehrenfest dynamics which approximates the nu-

clear dynamics by classical paths, and hence introduces a nonautonomous Schrödinger

equation for electrons. Another coarse-grained method is Born-Oppenheimer which ap-

proximates the electronic wave function by the electronic ground state for the current

nuclei positions, see [2] and references there. A widely used coarse-grained approxima-

tion is molecular dynamics (MD) which simulates a system of n particles with fixed

volume and temperature

Here we are concerned with classical molecular dynamics where the nucleus and

its electronic cloud are considered as one particle. Hence we consider a system of n

particles interacting through an empirically defined potential energy. Mathematically

the system of n particles is described by a Hamiltonian function H(q, p) : M×Rn → R

which is defined as

H(q, p) =
pTM−1p

2
+ V (q), (1.1)

where q = (q1, · · · , qn)T ∈ M ⊆ Rn is the position vector, p = (p1, · · · , pn)T ∈ Rn is

the momentum vector, and V : M → R is the potential energy function which governs

interaction between particles.

We denote the phase space by X = M×Rn, and the state of the system at a given

time t is defined by (t; q, p) which represents a point in phase space. The phase space

X has a natural symplectic structure which is given by the following nondegenerate

differential 2-form

ω2 = dp ∧ dq = dp1 ∧ dq1 + · · · + dpn ∧ dqn.

The equations of motion are given by

⎛
⎝ dq/dt

dp/dt

⎞
⎠ = J∇H =

⎛
⎝ ∇pH

−∇qH

⎞
⎠ , (1.2)

where

J =

⎛
⎝ 0n In

−In 0n

⎞
⎠

is the matrix of a map that takes differential of H to the phase space, In and 0n denote

identity and zero matrix of size n × n. J∇H is called Hamiltonian vector field. The
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Figure 1.1: Bonds, bend angle and dihedral angel for a simple chain molecule.

flow of the Hamiltonian vector field is the collection of maps ϕt : X → X satisfying

d
dt
ϕt(z) = J∇H(ϕt(z)) (1.3)

for each z = (qT , pT )T ∈ X and t ∈ [0,∞) (i.e., z(t; z0) = ϕt(z0)). The flow map ϕt

preserves the symplectic structure of the phase space:

ϕ∗
tω

2 = ω2.

An immediate consequence of this is Liouville’s theorem which says that the Hamil-

tonian flow preserves volume. An important feature of Hamiltonian dynamics is the

conservation of the energy:

H(ϕt(z)) = H(z).

Indeed, using the chain rule and symplectic structure we have

d
dt
H(ϕt(z)) =∇H(ϕt(z)) · dϕt(z)

dt
= ω2(J∇H(ϕt(z)),

dϕt(z)
dt

)

=ω2(J∇H(ϕt(z)), J∇H(ϕt(z))) = 0.

For more detail on Hamiltonian dynamics see [3, 4, 5, 6].

1.1 Molecular Interactions

In molecular dynamics the potential function V (q) consists of two main types of inter-

actions, namely non-bonded and bonded interactions:

V (q) = Vnb(q) + Vb(q).
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1.1.1 Non-Bonded Interactions

This part of the potential describes the effect of atoms on each other and usually is

decomposed as follows:

Vnb(q) =
∑
i

U(qi) +
∑
i

∑
j>i

U(qi, qj) +
∑
i

∑
j>i

UC(q1, qj),

where U(qi) represents an external potential field, for instance the effect of a con-

tainer wall on the atoms, this term is usually neglected in simulation with periodic

boundary conditions which is explained bellow. The term U(qi, qj) represents Van der

Waals interaction between a pair of atoms and is usually modelled by a Lennard-Jones

potential:

ULJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, rij = ‖qj − qi‖ =

√
(qj − qi) · (qj − qi).

The parameters are σ, the diameter and ε, the well depth. This potential is very short-

ranged and is typically used with a smooth cutoff around 3σ. The long-ranged Coulomb

potential UC(qi, qj) ∝ 1/rij represents electrostatic interaction between pairs of atoms.

1.1.2 Bonded Interactions

For a simple molecular chain the bonding potential is of the form

Vb(q) =
∑

bonds

Ur(qi, qj) +
∑

bend angles

Uθ(qi, qj , qk) +
∑

dihedral angles

Uψ(qi, qj, qk, ql).

The bond stretch interaction is described by Ur(qi, qj) ∝ (rij − req)2 where req is the

equilibrium separation between the atoms i and j. The bond angle interaction is

described by Uθ(qi, qj, qk) ∝ (θijk − θeq)2, where θeq is the equilibrium angle and θijk is

the angel between successive atoms indexed by i, j and k:

cos θijk =
(qj − qi)
‖qj − qi‖ · (qk − qj)

‖qk − qj‖ .

Uψ(qi, qj, qk, ql) = Uψ(ψijkl) describes dihedral or torsion angle interaction between four

atoms, indexed by i, j, k and l, which are linked by neighbouring bonds:

cosψijkl = − (qj − qi) × (qk − qj)
‖(qj − qi) × (qk − qj)‖ · (qk − qj) × (ql − qk)

‖(qk − qj) × (ql − qk)‖ .
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See Figure 1.1 for illustration of bend and dihedral angles. For more detailed informa-

tion on potentials see [7, 8, 9].

1.1.3 Periodic Boundary Conditions

We are constrained by the number of particles that can be simulated by computer. For

such a small system the choice of the boundary conditions will affect its thermodynamics

properties. In fact for a system of n particles the fraction of particles that are at the

surface is proportional to n−1/3 [8]. Hence we use periodic boundary conditions to avoid

the surface effect. In periodic boundary conditions our n particles system is surrounded

by its images. In this way a particle interacts with other particles in the system and their

periodic images. The position space for a system with periodic boundary conditions is

M = Tn (a n dimensional torus).

1.2 Numerical Integration

In molecular dynamics we are concerned with numerical approximation of the flow map

ϕt of the differential equation (1.3):

d
dt
ϕt(z) = J∇H(ϕt(z)),

where H is a smooth function and the potential function has a short repulsive term

which stops particles getting too close.

A one-step numerical integrator of order d ≥ 1 is a discrete map ΦΔt, such that

zk+1 = ΦΔt(zk) and ΦΔt(z) − ϕΔt(z) = O(Δtd+1),

where zk = z(kΔt). One way to derive a one-step method is to integrate (1.3)

ϕt+Δt(z) − ϕt(z) =
∫ Δt

0
J∇H(ϕt+s(z)) ds,

and replace the integral on the right hand side with a suitable quadrature approxima-

tion. For example using

∫ Δt

0
J∇H(ϕt+s(z)) ds = ΔtJ∇H(ϕt(z)) + O(Δt2),
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gives Euler’s method.

In Molecular dynamics long time stability of the numerical method is much more

important than having very accurate trajectories. It is known that preserving the

symplectic structure, such as conservation of energy in numerical integration, implies

long time stability [10, 11]. A class of integrators that preserve symplectic structure are

called symplectic or geometric integrators. A map Φ is called symplectic if its Jacobian

DΦ satisfies

DΦTJ
−1DΦ = J

−1.

The Hamiltonian dynamics is time reversible, hence in many molecular simulations

for statistical and sampling reasons it is important to preserve the time reversibility of

the dynamics. A map Φ is called time reversible with respect to involution ẑ = Sz,

where ẑ = (qT ,−pT )T , if it satisfies

SΦ(Sz) = Φ−1(z).

The fundamental result of [12, 13, 14, 15] is that for any symplectic method Φ of

order d ≥ 1 there exist a modified Hamiltonian H̃ of the form

H̃ = H + O(Δtd),

and a modified differential equation

d
dt
ϕ̃t(z) = J∇H̃(ϕ̃t(z)).

The symplectic map Φ follows the solution of the the modified differential equation

very closely, moreover it is possible to find constants c1 and c2 such that

‖ΦΔt(z) − ϕ̃t(z)‖ ≤ c1e
−c2/Δt.

Since

H̃ −H = O(Δtd),

the energy is conserved up to the order of the method over exponentially long time

interval. For a detailed discussion of symplectic methods see [10, 5, 16, 17].
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1.2.1 The Störmer-Verlet Method

Consider a systems of second order differential equations

M
d2q

dt2
= −∇qH(q, p) = F (q), (1.4)

where M is a positive definite mass matrix, and F (q) is the force vector. A simple

discretization of (1.4) is

M
(
qk+1 − 2qk + qk−1

)
= Δt2F (qk), (1.5)

which is known as the leapfrog method. The leapfrog method determines an inter-

polating parabola between qk−1, qk and qk+1 such that the middle point qk satisfies

(1.4).

For the systems of first order differential equations

dq
dt

=M−1p,

dp
dt

= −∇qV (q),

the leapfrog method (1.5) can be interpreted as a one-step method ΦΔt : (qk, pk) →
(qk+1, pk+1), given by

pk+1/2 =pk − Δt
2
∇qV (qk), (1.6)

qk+1 =qk + ΔtM−1pk+1/2, (1.7)

pk+1 =pk+1/2 − Δt
2
∇qV (qk+1). (1.8)

The discretization (1.6)-(1.8) is known as Störmer-Verlet method, it was used first by

C. Störmer in 1907 and was proposed for molecular dynamics integration by L. Verlet

in 1967 [18]. The Störmer-Verlet method is symplectic and time reversible.

1.2.2 A Simple Example: Double Well Potential

Here to illustrate the concept of numerical integration we consider a simple one di-

mensional model with double well potential which was used in [10]. The Hamiltonian

is

H(q, p) =
p2

2
+ V (q), where V (q) = 1

2(q2 − 1)2.
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Let z = (q, p)T and F (z) = (p,−V ′(q))T , then we can write the Hamiltonian equations

as

ż = F (z). (1.9)

Let ϕt(z) be the exact solution of (1.9), the numerical solution ΦΔt using Störmer-Verlet

(1.6)-(1.8) takes the form of

ΦΔt(q, p) =

⎛
⎝ q + Δtp− Δt2

2 V ′(q)

p− Δt
2 V

′(q) − Δt
2 V

′(q + Δtp− Δt2

2 V ′(q))

⎞
⎠ .

The Taylor expansion of ΦΔt assumes the form of

ΦΔt(z) = z + ΔtF (z) + Δt2D2(z) + Δt3D3(z) + · · · , (1.10)

where

D2(q, p) =
1
2

⎛
⎝ −V ′(q)

−V ′′(q)p

⎞
⎠ , D3(q, p) =

1
4

⎛
⎝ 0

−V ′′(q)V ′(q) − V ′′′(q)p2

⎞
⎠ .

Now assume that there is a modified differential equation

ż = F (z) + ΔtF2(z) + Δt2F3(z) + · · ·

with exact flow ϕ̃t(z). The Taylor expansion of ϕ̃t(z) gives

ϕ̃t(z) =z + Δt
d
dt
ϕ̃t(z) +

Δt2

2
d2

dt2
ϕ̃t(z) +

Δt3

3!
d2

dt2
ϕ̃t(z) + · · ·

=z + Δt
(
F (z) + ΔtF2(z) + Δt2F3(z) + · · · ) (1.11)

+
Δt2

2
(
F ′(z) + ΔtF ′

2(z) + Δt2F ′
3(z) + · · · ) (F (z) + ΔtF2(z) + Δt2F3(z) + · · · )

+
Δt3

3!
(
F ′(z) + ΔtF ′

2(z) + Δt2F ′
3(z) + · · · ) (F ′(z) + ΔtF ′

2(z) + Δt2F ′
3(z) + · · · )

(
F (z) + ΔtF2(z) + Δt2F3(z) + · · · )+

Δt3

3!
(
F ′′(z) + ΔtF ′′

2 (z) + Δt2F ′′
3 (z) + · · · )

(
F (z) + ΔtF2(z) + Δt2F3(z) + · · · ) (F (z) + ΔtF2(z) + Δt2F3(z) + · · · )+ · · ·
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We obtain F2 and F3 by comparing like powers of Δt in (1.11) and (1.10)

F2(z) =D2(z) − 1
2
F ′(z)F (z),

F3(z) =D3(z) − 1
3!
[
F ′′(z)F (z)F (z) + F ′(z)F ′(z)F (z)

] − 1
2
[
F ′(z)F2(z) + F ′

2(z)F (z)
]
,

which gives

F2(q, p) = 0, F3(q, p) =
1
12

⎛
⎝ 2V ′′(q)p

V ′′(q)V ′(q) − V ′′′(q)p2

⎞
⎠ .

Thus the truncated modified equation is

ż = F (z) + Δt2F3(z),

which comes from the following modified Hamiltonian

H̃(q, p) = H(q, p) + Δt2
[

1
12
V ′′(q)p2 +

1
24
V ′(q)2

]
.

Thus the Störmer-Verlet method preserves the energy with an error term of order

O(Δt2). In Figure 1.2 we compare conservation of energy for the symplectic Störmer-

Verlet method and Euler method. We see that for Euler method energy grows even

with very small step size.

0 1 2 3 4 5 6 7 8 9 10
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Störmer-Verlet Δt = 0.01

Euler Δt = 0.0001

Figure 1.2: Conservation of energy for the numerical solutions of (1.9) using Störmer-
Verlet and Euler methods.
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1.3 Statistical Ensembles

A subset U ⊆ X is invariant if z0 = (q(0), p(0)) ∈ U implies ϕt(z0) ∈ U for all

t > 0. The invariant sets of phase space play essential role in statistical physics and

molecular dynamics. The main aim of molecular dynamics is to compute the averages

of macroscopic observables (functions of phase space variables) in the right statistical

ensemble for the experiment. For an observable O = O(q, p), its average is given by

ρ∞(O) = 〈O, f∞〉 =
∫
M×Rn

O(q, p) dρ∞(q, p), (1.12)

where ρ∞ is a probability measure associated to a statistical ensemble and f∞ is the

density of ρ∞.

Two important statistical ensembles that we are mainly concerned with are the

microcanonical ensemble and the canonical ensemble. The microcanonical ensemble

describes an isolated system, whereas the canonical ensemble describes a system in

contact with heat bath.

1.3.1 The Microcanonical Ensemble

This is the fundamental statistical ensemble which describes an isolated system. This

ensemble is generated by Hamiltonian dynamics:

dq
dt

= ∇pH(q, p) = M−1p, (1.13)

dp
dt

= −∇qH(q, p) = −∇qV (q). (1.14)

Liouville’s theorem states that the measure of measurable (in the sense of Lebesgue)

set of points is invariant along the motion of (1.13)-(1.14). In addition, for an isolated

system total energy which is given by the Hamiltonian function (1.1) is constant along

(1.13)-(1.14). Therefore for any E ≥ 0 the energy surface defined by H(q, p) = E and

denoted by ΣE is an invariant subset of phase space X. Thus, every subset S of ΣE

remains in ΣE during any interval of time, but the measure of S would not necessarily

remain invariant.

In order to obtain statistics from the dynamics on the surface ΣE, we need to define a

probability measure ρE such that ρE(S) remains invariant. Let O(q, p) ∈ D(X) (D(X)

denotes space of test functions on X), then, the microcanonical probability measure
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(microcanonical distribution) ρE : D(X) → R is given by

ρE(O) =
1

Z(ΣE)

∫
X

O(q, p) δ(H(q, p) − E) dq dp =
1

Z(ΣE)

∫
ΣE

O(q, p)
dΣE

||∇H|| , (1.15)

where δ is Dirac’s delta function, dΣE is the volume element of the surface ΣE , Z(ΣE)

defined by

Z(ΣE) =
∫

X

δ(H(q, p) − E) dq dp =
∫

ΣE

dΣE

||∇H||
is a normalization constant and

||∇H|| = (∇H · ∇H)
1
2 =

(
N∑
i=1

[(
∂H

∂qi

)2

+
(
∂H

∂pi

)2
])1

2

.

1.3.2 Canonical Ensemble

This is one of the most important and widely used ensembles. It describes a system

in contact with a heat bath (a thermostat), that is, a system with fixed number of

particles, with fixed volume and temperature. Its corresponding probability measure

ρβ : D(X) → R is called Boltzmann-Gibbs measure ( Boltzmann-Gibbs distribution)

and is defined by

ρβ(O) =
∫

X

O(q, p) fβ(q, p) dq dp, (1.16)

where

fβ(q, p) =
1
Z

exp(−βH(q, p)) (1.17)

is its probability density, β = 1
kBT

(KB denotes Boltzmann constant and T denotes

the temperature), and Z =
∫

X
fβ(q, p) dq dp is a normalization constant which is also

called Gibbs partition function in statistical physics.

To generate the canonical ensemble, we need to modify or to perturb Hamiltonian

dynamics (1.3), so that the new process which is defined in U ⊆ X would have a

probability measure ρ(q, p, t) such that ρ(χU ) = 1 and ρ(χUc) = 0 (where

⎧⎪⎨
⎪⎩
χU (z) = 1, z = (qT , pT )T ∈ U,

= 0, x /∈ U,

is the characteristic function), and ρ(q, p, t) would converges in time to ρβ. Thus, after

some time which is known as the equilibration time, the measure ρ(q, p, t) tends to be
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very close to ρβ(q, p).

One way to generate the canonical ensemble is to replace the Hamiltonian dynamics

by an appropriate stochastic differential equation (SDE). We demonstrate this in the

spirit of [19, 20, 21], similar to the exposition of [22]. Consider a heavy particle with

position q and momentum p interacting with a heat bath which is a system of infinitely

many light particles. The state φ = (ϕ, π) of the system of light particles takes values

in some appropriate Hilbert space H with an inner product defined by

〈φ, φ〉H =
∫ [

π(x)2 + ‖∇ϕ(x)‖2
]

dx,

ϕ is the configuration variable and can be interpreted as a measure of the displacement

from equilibrium of a homogeneous elastic medium, and π is its conjugate momentum.

Hence the Hamiltonian function of the heat bath takes the form of

HB(φ) =
1
2
‖φ‖2

H ,

and its equation of motion is given by

d
dt
φ =

⎛
⎝ ∂ϕ/∂t

∂π/∂t

⎞
⎠ =

⎛
⎝ δHB/δπ

−δHB/δϕ

⎞
⎠ = L

⎛
⎝ ϕ

π

⎞
⎠ = Lφ,

where δF/δg denotes the functional derivative of the functional F , and L : H → H is

a linear operator defined by

L =

⎛
⎝ 0 1

Δ 0

⎞
⎠ ,

where Δ = ∇ · ∇ is the Laplace operator.

Let us assume that q(0) = 0 and introduce α = (α(x), 0)T ∈ H. We also assume

that the heavy particle and the heat bath are linked through a quadratic potential of

the form 1
2‖φ− αq‖2

H, so that the total Hamiltonian of the combined system is

H(q, p, φ) =
p2

2m
+ V (q) +

1
2
‖φ− αq‖2

H.
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The equations of motion are

dq
dt

=m−1p, (1.18)

dp
dt

= −∇V (q) + 〈φ− αq, α〉H, (1.19)

dφ
dt

=L(φ− αq). (1.20)

Solving equation (1.20) yields

φ(t) = eLtφ(0) −
∫ t

0
LeL(t−s)αq(s) ds.

Integrating by part and using the fact that q(0) = 0, we have

φ(t) = eLtφ(0) + αq(t) − 1
m

∫ t

0
eL(t−s)αp(s) ds.

Substituting φ in (1.19) gives

dp
dt

= −∇V (q) + 〈eLtφ(0), α〉H − 1
m

∫ t

0
〈eL(t−s)α,α〉H p(s) ds.

We assume that the energy of isolated heat bath is conserved, that is,

d
dt
HB(φ) = 〈Lφ, φ〉H + 〈φ,Lφ〉H = 〈φ, (L + L∗)φ〉H = 0,

thus L∗ = −L and we have

dp
dt

= −∇V (q) + 〈φ(0), e−Ltα〉H −
∫ t

0
〈eL(t−s)α,α〉H p(s) ds. (1.21)

Now we assume that the heat bath is in thermal equilibrium at inverse temperature

β, this means that the probability distribution of the initial condition φ(0) is Gaussian

with density given by

ρ(φ) =
1
Z

exp
(
−β

2
‖φ‖2

H

)
,

where Z is the normalization constant.

Next we introduce a Gaussian process X(t) = 〈φ(0), e−Ltα〉H with covariance given
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by

E[X(s)X(t)] =E
[〈φ(0), e−Lsα〉H · 〈φ(0), e−Ltα〉H

]
=
∫ (∫

∇ϕ · ∇(e−Lsα) dx
)
·
(∫

∇ϕ · ∇(e−Ltα) dx
)
ρ(x) dx

=
1
β
〈e−Lsα, e−Ltα〉H =

1
β
〈eL(t−s)α,α〉H.

Thus, we have

〈eL(t−s)α,α〉H = βE[X(s)X(t)].

Here the fact that the covariance of X also appears in the memory kernel of the friction

term can be seen as a consequence of the fluctuation-dissipation theorem.

If we further assume that the field generated by heat bath is strongly localised in

spacial direction, then it is reasonable to approximate

〈eL(t−s)α,α〉H ∼ 2mγδ(t− s),

where δ(·) is the Dirac delta function and γ is a constant. Finally we model the

deterministic equation (1.18)-(1.20) by the following stochastic differential equations:

dq
dt

=m−1p,

dp
dt

= −∇V (q) − γp(t) +X(t),

where X(t) is a Gaussian process with mean zero and covariance

E[X(t)X(s)] =
2mγ
β

δ(t− s).

If we introduce a rescaled process

X(t) =
√

2mγ
β

X̄(t),

then the above system can be written as

dq
dt

=m−1p,

dp
dt

= −∇V (q) − γp(t) +
√

2mγ
β

X̄(t),
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where X̄(t) is a Gaussian process with mean zero and covariance E[X̄(t)X̄(s)] = δ(t−s),
which is known as white noise. The Itô interpretation of the above is

dq
dt

=m−1p,

p =p(0) −
∫ t

0
∇V (q(s)) ds−

∫ t

0
γp(s) ds+

∫ t

0

√
2mγ
β

dW (s),

or in differential form

dq
dt

=m−1p, (1.22)

dp = −∇V (q) dt− γp(t) dt+
√

2mγ
β

dW, (1.23)

where W (t) is the Wiener process. Therefore, we have replaced the white noise X̄(t)

by Ẇ (t) to obtain (1.22)-(1.23). The above system is a degenerate diffusion known as

Langevin dynamics.

In the next chapter we describe methods that are used in molecular simulation to

sample the canonical ensemble.
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Chapter 2

Sampling Techniques

In this chapter we briefly review sampling methods in molecular simulation. The tech-

niques can be categorised into three categories, stochastic methods such as Markov

chain, stochastic dynamics which rely on stochastic perturbation of Hamiltonian dy-

namics, and dynamical methods which employ dynamical perturbation of Hamiltonian

dynamics by using auxiliary control variables.

2.1 Preliminaries

Let x(t, ω;x0), t ∈ [0,∞) be a homogeneous Markov process starting at x0, defined on

a probability space (X,B(X), P ) and assuming values in phase space X. We denote the

transition probability of this process by

P (t, x0, A) := Pr(x(t, ω;x0) ∈ A), t ∈ [0,∞), x0 ∈ X, A ∈ B(X),

where Pr denotes the probability associated with the Wiener process and B(X) denotes

the Borel σ-algebra on X. The process x(t, ω;x0) induces a probability measure ρ on

X, defined by

ρ(A) = P (t, x0, x
−1(A)),

where x−1(A) := {ω ∈ X | x(t, ω;x0) ∈ A}, ρ is called the distribution of x.

For any measurable function g : X → R, the value

E[g(x(t))] :=
∫

X

g(x(t)) dP (t, x0, ω) =
∫

X

g(x) dρ(x)

is called the expectation of g with respect to P .
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Definition 1 (Ergodicity). The process x(t, ω;x0) is ergodic on X, if there exist a

unique invariant probability measure ρ∞ such that for any measurable function g with

finite integral
∫

X
g(x) dρ∞(x) <∞

lim
t→∞ |E[g(x(t))] − ρ∞(g)| = 0.

We use the concept of geometric ergodicity [23, 24, 25, 26, 27] to strength the ergodic

property of x(t, ω;x0) and obtain information on the rate at which it converges to its

limiting measure ρ∞.

Definition 2 (Geometric Ergodicity). The process x(t, ω;x0) is geometrically ergodic

on X, if there exist a unique invariant probability measure ρ∞, positive constants C, λ

and positive function V : X → [1,∞) such that for any measurable function g : X → R

with finite integral
∫

X
g(x) dρ∞(x) <∞ and with |g(x)| ≤ V(x)

|Ex0 [g(x(t))] − ρ∞(g)| ≤ CV(x0)e−λt.

2.2 Stochastic Methods

2.2.1 Monte Carlo Method

Monte Carlo method is a statistical method of approximating expectations. It was

first used by Ulam, Von Neumann and Metropolis to study the diffusion of neutrons

in fissionable material. Let x(t) ∈ M ⊆ Rn be a stochastic process and f(x) > 0 its

transition probability density. Then the expectation (the average) of g : M → R is

E[g(x)] =
∫
M
g(x)f(x) dx.

The Monte Carlo method is based on the following approximation

E[g(x)] � 1
n

n∑
i=1

g(x̄i),

where x̄ is a discrete process which approximates x (e.g., numerical solution of x). Let

Sn(g) =
1
n

n∑
i=1

g(x̄i),
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denote the Monte Carlo estimator of E[g(x)], then by the strong law of large numbers

lim
n→∞P (|Sn(g) − E[g(x)]| ≥ ε) = 0,

that is, Sn(g) converges to E[g(x)] with probability 1. We also note that Sn(g) is

unbiased:

E[Sn(g)] = E

[
1
n

n∑
i=1

g(x̄i)

]
=

1
n

n∑
i=1

E[g(x̄i)] = E[g(x)].

Moreover, if the variance

Var(g(x)) = E
[
(g(x) − E[g(x)])2

]

exists, then by central limit theorem (CLT),

√
n(Sn(g) − E[g]) → N (0, σ2) as n→ ∞,

where σ =
√

Var(g(x)) and N (0, σ2) denotes Gaussian random variables with mean 0

and variance σ2.

A simple application of the Monte Carlo method is the calculation of an integral. Let

g(x) be a continuous function and consider its integral
∫ b
a g(x) dx. Let X be a random

variable uniformly distributed between a and b with probability density f(X) = 1
(b−a) .

Then we have

∫ b

a
g(x) dx = (b− a)

∫ b

a
g(x)

1
(b − a)

dx = (b− a)
∫ b

a
g(x)f(x) dx = (b− a)E[g(X)].

Thus using the Monte Carlo we obtain the following approximation

∫ b

a
g(x) dx � (b− a)

n

n∑
i=1

g(Xi).

Note that numerical quadrature techniques such as Simpson’s Rule are efficient for

low dimensional integral such as the above example, but such methods become useless

for large dimensional integral such as computing averages for molecular systems. For a

system of n atoms in three dimensional space, if we take m quadrature points in each

direction, then the number of evaluations of the integrand is of order of m3n. Moreover,

in most systems the potential function that governs the interaction between atoms is a

rapidly varying function and therefore quadrature techniques would require a fine mesh.
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Therefore probabilistic interpretations of integral are the only sensible approaches for

calculating large dimensional integral.

2.2.2 Importance Sampling

Importance Sampling is a type of Mote Carlo method which allows function evaluations

to be concentrated in the regions that make the major contribution to the value of the

expectation. Consider

E[g(x)] =
∫
M
g(x)f(x) dx.

The idea is to choose random variables with probability density f̄(x), having the same

support as f(x). Next reformulate the above expectation as a weighted average:

E[g(x)] =
∫
M
g(x)f(x) dx =

∫
M

(
g(x)

f(x)
f̄ (x)

)
f̄(x) dx.

Then

SN (g) =
1
n

n∑
i=1

g(xi)
f(xi)
f̄(xi)

is an unbiased estimator of E[g(x)]. We call ρ the target density and f̄ the proposal or

the sampling density. For importance sampling to work the variation of the important

weights:

ω(xi) =
f(xi)
f̄(xi)

, i = 1, . . . n,

should not be too large. For more detail on importance Sampling see the book by

Robert and Casella [28], also see [7, 8].

2.2.3 Markov Chain Monte Carlo

The Metropolis-Hastings algorithm [29, 30] is a Markov chain Monte Carlo (MCMC)

technique which provides an efficient way to sample from complicated probability dis-

tributions by using a Markov chain. Suppose we are given a density, for instance the

Boltzmann-Gibbs density fβ which was defined in (1.17). We want to estimate the

expectation of g : X = M ⊆ Rn × Rn → R with respect to fβ:

E[g(x)] =
∫

X

g(x)fβ(x) dx,
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where x = (q, p) ∈ X and dx = dq dp. We would like to use the Monte Carlo method

to get the following estimate

E[g(x)] � 1
n

n∑
i=1

g(xi).

However it is assumed to be very difficult to sample from fβ. The MCMC overcomes the

sampling issue by constructing a Markov chain Xt on X which has transition probability

P (x, y) = Pr(Xt+1 = y|Xt = x)

and invariant measure with density fβ:

∫
X

fβ(x)P (x, y) dq = fβ(y).

We also define the t-step transition probability by

Pt(x, y) =

⎧⎪⎨
⎪⎩
P (x, y) t = 1∑

z∈X
P (x, z)Pt−1(z, y) t > 1

Therefore, for large t we expect that the distribution of Xt converges to ρβ, so we

can choose x1 = Xt, and repeat the process n times to obtain a set of n independent

samples and then use the Monte Carlo method to estimate the expectations. However,

in practice, often rather than repeating the process n times an entire tail of Markov

chain {Xt, . . . ,Xt+n} is used to estimate the expectation. In that way the samples

are not independent, but can be much cheaper computationally. We next describe an

example of such a method.

The Metropolis-Hastings algorithm. The aim is to construct a Markov chain on

X with transition density P that it is reversible, irreducible and aperiodic with ρβ as

its invariant probability measure.

• Reversible: fβ(x)P (x, x̃) = fβ(x̃)P (x̃, x) for all x, x̃ ∈ X;

• Irreducible: for all x, x̃ ∈ X there exist a time t (possibly depends on x and x̃)

such that Pt(x, x̃) > 0;

• Aperiodic: for all x̃ ∈ X, gcd{t : Pt(x̃, x̃) > 0} = 1, (gcd means greatest common
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divisor).

Let P (x, y) be the proposal probability density for y, and assume that we know how to

draw y from P (x, y). In general

fβ(x)P (x, y) �= fβ(y)P (y, x),

for example, if fβ(x)P (x, y) > fβ(y)P (y, x), then the process moves from x to y fre-

quently and from y to x rarely. To correct for this bias we introduce the acceptance

rate function

α(x, y) = min
{

1,
fβ(y)P (y, x)
fβ(x)P (x, y)

}
,

such that

fβ(x)α(x, y)P (x, y) = fβ(y)α(y, x)P (y, x),

then we will have a reversible process with invariant fβ.

The Algorithm. In summary, the Metropolis-Hastings algorithm proceeds as follow:

start from some initial configuration x0, then, for j ≥ 1 move from xj to xj+1 by

1. Generate yj+1 from P (xj , yj+1).

2. Draw a random variable u from U [0, 1] (uniformly distributed in [0, 1]).

3. Compute

α(xj , yj+1) = min
{

1,
fβ(yj+1)P (yj+1, xj)
fβ(xj)P (xj , yj+1)

}
.

4. If u < α(xj , yj+1) , then xj+1 = yj+1. Otherwise xj+1 = xj .

The Metropolis-Hastings algorithm depends on the choice of the proposal density,

and a different choice of P (x, .) leads to a different algorithm. Some of the popular

choices of P (x, .) are:

• Symmetric. Here P (x, y) = P (y, x), hence the acceptance rate simplifies to

α(x, y) = min
{

1,
fβ(y)
fβ(x)

}
.

• Random walk. Here P (x, y) = P (y−x), for instance y = x+ε, where ε is chosen

from a normal distribution N(0, σ2) or a uniform distribution U [x−1, x+1]. Note
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that the acceptance rate depends on the choice of σ2 = E[ε2]. A small σ2 will lead

us to accept most draws, but not move very much, hence we will have difficulty

covering the whole support of fβ. On the other hand, a large σ2 increases the

chance that a draw comes from the area where fβ is small, hence we will reject

many draws. In either case the samples become highly correlated and we would

need more draws to get a good estimate.

• Independence sampler. Here P (x, y) = P (y), that is P (·) does not depend on

x.

• Metropolis-Adjusted Langevin. Consider the Langevin diffusion process

dXt =
1
2
∇ ln (fβ(Xt)) dt+ dWt, (2.1)

where Wt is a standard Brownian motion. It can be shown that the density of

the stationary distribution of Xt is fβ. Furthermore

‖Pt(x, .) − fβ(.)‖L1 → 0 as t→ ∞ ∀x ∈ X,

(see Chapter 3, for similar convergence result). The Metropolis Adjusted Langevin

method [25] generates the proposal by a suitable discretization of (2.1). For ex-

ample, starting at x we generate y according to

y = x+
Δt
2
∇ ln (fβ(x)) dt+

√
ΔtWn,

where Δt is the step size and Wn ∼ N(0, 1).

For mathematical analysis of MCMC methods see the book by Meyn and Tweedie

[23] and [31, 32, 33, 34].

2.3 Stochastic Molecular Dynamics

We have encountered several stochastic methods for sampling the canonical distribu-

tion. In this section, we will show how these methods may sometimes be combined to

improve the efficiency of the sampling.
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2.3.1 Hybrid Monte Carlo Method

When simulating a large system using the Monte Carlo technique, moves are made

locally, that is, only some of the positions are allowed to change at each step. On the

other hand in molecular dynamics (MD) all positions move according to the dynamics

that have Boltzmann-Gibbs as its invariant measure. However, MD’s estimation of the

averages of functions of phase space is dependent on the step size in the integration

method and if the dynamics are Hamiltonian or isokinetic, then the sampling is not

ergodic with respect to the Boltzmann-Gibbs distribution.

The hybrid Monte Carlo (HMC) method [35] combines the advantages of MD and

Monte Carlo methods. Let ΦΔt : X → X, be a numerical flow map of some discretization

of the equations of motion. For some initial position q and initial momenta p drawn

from Maxwellian distribution, HMC integrates the equations of motion on the time

interval [0,mΔt = τ ] with initial data x = (q, p) to obtain a new proposal

x̃ = (q̃, p̃) := ΦmΔt(x) := ΦΔt ◦ · · · ◦ ΦΔt(x)

for the Metropolis algorithm. The rate of the acceptance of x̃ is

α(x̃) = min
{
1, e−βδH

}
,

where δH = H(ΦmΔt(x))−H(x), i.e., the numerical error in energy conservation. The

Boltzmann-Gibbs measure is invariant, if the Markov process generated by HMC is

reversible (or satisfies detailed balance)

fβ(x)P (x̃|x) = fβ(x̃)P (x|x̃),

where P (., .) is the transition probability of HMC. In this way the computation of

averages is independent of the step size and it does not suffer from numerical instabilities

due to large step size. Thus, generally we can use a larger step size in HMC integration

in comparison to standard molecular dynamics.

The Algorithm. The HMC algorithm proceeds as follow: start from some initial

configuration q0 and sampling time τ = mΔt, then for j ≥ 0 move from qj to qj+1 by

1. Generate momenta pj from Maxwellian distribution, and set x = (qj, pj).
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2. Compute the initial energy H(x).

3. Integrate Hamilton equations of motion on the time interval [0, τ ], i.e., use initial

data x to obtain x̃ = (q̃, p̃) := ΦmΔt(x).

4. Compute the energy H(x̃), and generate a random number u uniformly dis-

tributed in [0, 1].

5. Compute the acceptance rate

α = min
{

1, e−βδH
}
,

where δH = H(x̃) −H(x). Then qj+1 = q̃, if u < α. Otherwise qj+1 = qj.

The ergodicity and convergence of HMC was proved in [36]. The HMC described

here is known as the standard HMC, there are several enhanced versions. The accep-

tance can be improved by using a symplectic integrator and a modified Hamiltonian

instead of the original Hamiltonian, the bias introduced is corrected by re-weighting,

see [37, 38, 39, 40, 41].

2.3.2 Anderson Thermostat

One of the earliest and commonly used method to sample the canonical ensemble in

molecular dynamics is the Anderson thermostat [42]. The idea is to represent the

collision between the heat bath and the system by selecting all or some particles at

each step Δt and replacing their momentum with probability γΔt by a momentum

drawn from a Maxwellian distribution with density:

fM =
1
ZM

exp
(
−β

2
‖p‖2

)
.

The strength of the coupling to the heat bath is determined by the frequency of stochas-

tic collisions, γ . If successive collisions are uncorrelated, then the distribution of time

intervals between two successive stochastic collisions, P (t; γ), is of the Poisson form

P (t; γ) = γe−γt,

where P (t; γ)dt is the probability that the next collision will take place in the interval

[t, t+ dt].
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Here we describe a variant of the Anderson thermostat. Consider the flow map

ϕt(x) defined by
d
dt
ϕt(x) = J∇H(ϕt(x)),

where x = (q, p) ∈ X and J∇H is Hamiltonian vector field which was defined in (1.2).

We let ΦΔt(x) to be a numerical approximation of ϕt, for example the Störmer-Verlet

approximation of the Hamiltonian flow map. For an integer i ∈ [0, · · · , n] we define the

Anderson substitution map S(i) : X → X as:

S(i;x) := (q, p1, · · · , pi−1, z, pi+1, · · · , pn),

where z is the solution of

dz =
1
2
∇ ln(fM(z)) dt+ dW.

Let {Yn} be random variables such that

Pr(Yn = i) =
1
n

for any i ∈ [0, · · · , n],

and {Un} random variables uniformly distributed in [0, 1]. Starting form initial state

x0, the Anderson thermostat proceeds as follow:

x(Δt) =

⎧⎪⎨
⎪⎩
S(Yn) ◦ ΦΔt(x0) if Un < γΔt

ΦΔt(x0) otherwise.

It was proved in [43] that the Anderson thermostat is uniformly ergodic, also an

improved rate of convergence for one-dimensional case and n-dimensional free-steaming

particles (constant potential) was proved in [44].

A similar method which is a combination of the Anderson thermostat and the dis-

sipative particle dynamics (DPD) [45] is called Lowe-Anderson thermostat [46]. The

Lowe-Anderson thermostat is Galilean invariant thermostat that conserves momentum,

it also satisfies detailed balance. It was shown in [47] that the Lowe-Anderson ther-

mostat perturbs the system to a less extent than the Anderson thermostat, hence it is

better for computation of the dynamical averages such as diffusion constant. A gen-

eralised form for the Lowe-Anderson thermostat with momentum conservation which

allowed for larger step size was proposed by Peters in [48] and by Pastewka et al in
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[49].

2.3.3 Langevin Dynamics

A popular way to model a system in contact with a heat bath is to introduce a stochastic

perturbation of dynamics which ignores the details of motion in heat bath itself [20,

19, 21, 50, 51]. This is the basis of the Langevin dynamics which we derived in the

previous chapter. The Langevin dynamics replaces the Hamiltonian dynamics by the

following stochastic differential equations.

dq =M−1p dt, (2.2)

dp = −∇qV (q) dt− γ(q)p dt+ σ(q) dW, (2.3)

where γ : Rn → Rn×n is the dissipation matrix, σ : Rn → Rn×n is the diffusion matrix

and we assume the fluctuation-dissipation relation σσT = 2
βγM , which implies that the

density of Boltzmann-Gibbs measure (1.17) is invariant under the evolution of (2.2)-

(2.3). The above equations are also known as Klein-Kramers-Chandrasekhar equation,

it was first studied by Krameres [52] for diffusion of chemical reactions.

The Langevin dynamics is a degenerate diffusion equation, since ellipticity only

appears in the momenta direction, nonetheless it can be shown using hypoellipticity

results [53, 54, 55] that the regularity in momenta effectively implies regularity in all

directions, and ergodicity can be seen as a consequence of regularity. We will study the

ergodicity and convergence rate of Langevin dynamics in Chapter 3.

2.4 Deterministic Methods

Another intriguing approach to generate the canonical ensemble is to augment the orig-

inal system using one or several auxiliary variables ξ (or ξ1, ξ2, · · · ). These auxiliary

variables are coupled to the original system and their dynamics is governed by some

control equations on the kinetic energy, in such a way that the evolution of the ex-

tended system has an invariant measure which is proportional to the Boltzmann-Gibbs

measure. We term these methods deterministic thermostats.

Here we briefly describe some of the most commonly used deterministic ther-

mostats. In Chapter 6 we introduce a new dynamics for controlling temperature in

non-equilibrium molecular dynamics simulations.
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Nose-Hoover heat bath

Figure 2.1: One variable ξ represents the heat bath and interacts with all degrees of
freedom of the system.

2.4.1 Nosé-Hoover

One commonly used scheme which generates a canonical ensemble is Nosé-Hoover dy-

namics (NHD) [56, 57, 58]. NHD augments the physical system with one additional

variable ξ which represents the interaction with an artificial heat bath and is coupled

to all the degrees of freedom of the physical system. The dynamics of ξ is governed by

a control function which regulates the kinetic energy of the system, (See Figure 2.1).

NHD replaces Hamiltonian dynamics with the following extended dynamical system:

dq
dt

=M−1p, (2.4)

dp
dt

= −∇qV (q) − ξp, (2.5)

dξ
dt

= 1
μ

(
pTM−1p− n

β

)
, (2.6)

where μ is a constant which influences the coupling of the artificial heat bath to the

system. It can be checked that the augmented Boltzmann-Gibbs density:

fNH (q, p, ξ) =
1

Z
NH

exp
(−β (H(q, p) + μ

2 ξ
2
))
, (2.7)

where

Z
NH

=
∫

X×R

exp
(−β (H(q, p) + μ

2 ξ
2
))

dq dp dξ

is invariant under the evolution of (2.4)-(2.6), i.e.,

∂f
NH

∂t
= L

NH
f

NH
= LHfNH

−∇p · (ξpfNH
) +

∂

∂ξ

[
1
μ

(
pTM−1p− 1

β

)
f

NH

]
= 0,

where

LHfNH
= ∇q · (∇pHfNH

) −∇p · (∇qHfNH
) = {f

NH
,H}

is the Liouville operator applied to f
NH

. Nosé-Hoover thermostat has been used suc-
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Figure 2.2: Nonergodicity of Nosé-Hoover for harmonic oscillator; the error in distri-
bution remains unchanged in time.

cessfully in many MD simulations, its success is due to its control of kinetic energy

and the fact that its perturbation to the dynamics is often seen to be less invasive

than stochastic thermostats such as Langevin [59]. On the other hand, the evolution

of Nosé-Hoover thermostat is not ergodic, see [60, 61, 58, 62, 63]. For example for

harmonic oscillator with Hamiltonian:

H(q, p) =
p2

2
+
q2

2

there are invariant islands in phase space (i.e., there exist c, C > 0 such that c ≤ q2(t)+

p2(t) ≤ C for all t) and no matter what initial condition we choose the distribution

does not converge to Boltzmann-Gibbs distribution on a computationally accessible

time scale, see Figure 2.2. For more details and generalisation of Nosé-Hoover for

constant pressure simulation see [64, 65, 66, 67, 68].

2.4.2 Nosé-Hoover Chains

An alternative approach to NHD which can improve the the sampling is the Nosé-

Hoover chain method (NHC) [62]. NHC is an extension of NHD which connects the

system to a chain of artificial heat baths described by variables ξi, i = 1, . . . ,m (not

one ξ as in the case for NHD). ξ1 interacts directly with the physical variables, ξ2 is
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connected to ξ1, ξ3 is connected to ξ2 and so on, see Figure 2.3. In this way NHC adds

more mixing and the evolution becomes close to ergodic. The equations of motion for

NHC are:

dq
dt

=M−1p, (2.8)

dp
dt

= −∇qV (q) − ξ1p, (2.9)

dξ1
dt

= 1
μ1

(
pTM−1p− n

β

)
− ξ2ξ1, (2.10)

dξk
dt

= 1
μk

(
μk−1ξ

2
k−1 − 1

β

)
− ξk+1ξk, k = 2, 3, . . . ,m− 1 (2.11)

dξm
dt

= 1
μm

(
μm−1ξ

2
m−1 − 1

β

)
, (2.12)

where m is the length of the chain and μi, i = 1, · · · ,m are coupling parameters asso-

ciated to ξi. NHC preserves again an augmented version of Boltzmann-Gibbs measure

with density:

f
NHC

(q, p, ξ1, · · · , ξm) =
1

ZNHC

exp

(
−β

[
H(q, p) +

m∑
k=1

μk
2
ξ2k

])
, (2.13)

where

Z
NHC

=
∫

X×Rm

exp

(
−β

[
H(q, p) +

m∑
k=1

μk
2
ξ2k

])
dq dp dξ1 · · · dξm

is invariant under evolution of (2.8)-(2.12), more precisely

∂f
NHC

∂t
= LNHCfNHC = 0,

where

L
NHC

f
NHC

= LHfNHC
−∇p · (ξ1pfNHC

) +
∂

∂ξ1

[(
1
μ1

(
pTM−1p− n

β

)
− ξ2ξ1

)
f

NHC

]

+
m−1∑
k=2

∂

∂ξk

[(
1
μk

(
μk−1ξ

2
k−1 − 1

β

)
− ξk+1ξk

)
f

NHC

]
+

∂

∂ξm

[
1
μm

(
μm−1ξ

2
m−1 − 1

β

)
f

NHC

]
.

It is worth noting that the values of μi, i = 1, · · · ,m influence the sampling and

they should be chosen such that the sampling is optimal. It was proposed in [62]

that for a system with dominant frequency of ω one should choose μ1 = n/βω2 and
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First Nose-Hoover heat bath ξ1

Second Nose-Hoover heat bath ξ2

Figure 2.3: Each thermostat is connected to the previous one to form a chains of
thermostats.

μk = 1/βω2, hence, the extended system maintains an average frequency of ω.

A nice review of numerical methods for equations of motion of NHC is given in [69],

and explicit methods based on splitting technique are given in [70]. Our results have

been obtained with method proposed in [69].

2.4.3 Nosé-Poincaré

Nosé-Hoover and Nosé-Hoover Chains are not Hamiltonian (their equations of motion

cannot be derived from a Hamiltonian). The advantage of Hamiltonian system is that

we can use symplectic integrator for which the energy is approximately preserved by

the numerical flow [13, 5]. An alternative Hamiltonian-based formulation to NHD is

the Nosé-Poincaré method (NP) [71].

NP is based on the following Hamiltonian:

H
NP

(q, p, ξ, η) = ξ

[
pTM−1p

2ξ2
+ V (q) +

η2

2μ
+
n

β
ln ξ −H0

]
, (2.14)

where ξ is the additional variable that represents the interaction with the heat bath

and η is its conjugate momentum. For initial conditions q(0) = q0, p(0) = p0, ξ(0) =

ξ0, η(0) = η0, H0 is given by

H0 =
pT0M

−1p0

2ξ20
+ V (q0) +

η2
0

2μ
+
n

β
ln ξ0,
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hence H
NP

= 0 for any given initial conditions. The equations of motion are:

dq
dt

=∇pHNP =
M−1p

ξ
, (2.15)

dp
dt

= −∇qHNP
= −ξ∇qV (q), (2.16)

dξ
dt

=
∂H

NP

∂η
= ξ

η

μ
, (2.17)

dη
dt

= − ∂H
NP

dξ
=
pTM−1p

2ξ2
− n

β
− ΔH, (2.18)

where

ΔH =
pTM−1p

2ξ2
+ V (q) +

η2

2μ
+
n

β
ln ξ −H0.

Note that by construction ΔH is zero for initial conditions and remains zero or close

to zero, hence in (2.18), ΔH is considered as a small random force with mean zero.

As in the original Nosé dynamics [56, 57] the idea of NP is to compute canonical

averages of functions of phase space by averaging along constant energy trajectories of

the extended system. Let us introduce a change of variables

(q, p, ξ, η) → (q, p̃, ξ, η), with p̃ =
p

ξ

which is well defined since ξ > 0. Consider an observable O(q, p̃), its Nosé-Poincaré

average is the microcanonical average of the extended system:

ρ
NP

(O(q, p̃)) =

∫
X

∫
R

∫
R
O(q, p̃)δ (H

NP
(q, p̃, ξ, η)) ξn dq dp̃dξ dη∫

X

∫
R

∫
R
δ (H

NP
(q, p̃, ξ, η)) ξn dq dp̃dξ dη

,

where ξn is the Jacobian for the above change of variables. For f(x) and a smooth

function g(x), with g(x0) = 0 we have the following relation for Dirac delta function

∫
f(x)δ(g(x)) dx =

f(x0)
|g′(x0)| .

Since H
NP

(q, p̃, ξ0, η) = 0 for

ξ0 = exp
(
−β
n

[
p̃TM−1p̃

2
+ V (q) +

η2

2μ
−H0

])
,
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applying the above relation we get

ρNP (O(q, p̃)) =
eβH0

∫
X
O(q, p̃)

∫
R

exp
(
−β

[
p̃TM−1p̃

2 + V (q)
])
e−

β
2μ
η2 dq dp̃ dη

eβH0
∫

X

∫
R

exp
(
−β

[
p̃TM−1p̃

2 + V (q)
])
e
− β

2μ
η2 dq dp̃dη

.

Integration with respect to η:

∫
R

e−
β
2μ
η2 dη =

√
2μπ
β
,

yields

ρNP (O(q, p̃)) =
eβH0

√
2μπ
β

∫
X
O(q, p̃) exp

(
−β

[
p̃TM−1p̃

2 + V (q)
])

dq dp̃

eβH0

√
2μπ
β

∫
X

exp
(
−β

[
p̃TM−1p̃

2 + V (q)
])

dq dp̃

=

∫
X
O(q, p̃) exp (−βH(q, p̃)) dq dp̃∫

X
exp (−βH(q, p̃)) dq dp̃

=ρβ(O(q, p̃))

where H(q, p̃) = p̃TM−1p̃
2 + V (q). This concludes that, given the assumption that the

dynamics of HNP is ergodic, then the canonical average in (q, p̃) can be obtained by

time average along trajectories of H
NP

.

Symplectic and time-reversible integrator for NP can be derived using generalised

leapfrog method [10, 11, 72] or splitting techniques [10, 13]. We use an integrator based

on generalised leapfrog which was proposed in [71].

2.4.4 Recursive Multiple Thermostats

A Hamiltonian-based formulation that can add more thermostats variables to the sys-

tem is Recursive Multiple Thermostats (RMT) which was proposed in [73]. RMT with

m thermostats variables is based on the following Hamiltonian

H
RMT

(q, p, ξ1, · · · , ξm, η1, · · · , ηm) = ξ1 · · · ξm(
pTM−1p

2ξ21 · · · ξ2m
+ V (q) +

m−1∑
i=1

η2
i

2μiξ2i+1 · · · ξ2m

+
η2
m

2μm
+
n+ 1
β

ln ξ1 +
m∑
i=2

(
n+ i− 1

β
ln ξi + fi(ξi)

)
−H0), (2.19)

where, again as was the case for NP, H0 is chosen such that H
RMT

= 0, μi, i = 1, · · · ,m
are coupling parameters associated to ξi and fi(ξi) is an auxiliary function that is
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included to make the integral with respect to ξi finite:

∫ ∞

0
e−βfi(x) dx <∞.

For an observable O(q, p̃), where p̃ = p
ξ1···ξm , similarly to NP one can show that micro-

canonical average yields canonical average for (q, p̃):

ρβ(O(q, p̃)) =

∫
X

∫
Rm

∫
Rm O(q, p̃)δ (H

RMT
(q, p̃, ξ, η)) ξn dq dp̃ dξ dη∫

X

∫
Rm

∫
Rm δ (H

RMT
(q, p̃, ξ, η)) ξn dq dp̃ dξ dη

.

It was observed in [73, 74] that at least for some potentials the results of sampling can

be less dependent on the choice of parameters μi than the Nosé-Hoover chains method.

The generalised leapfrog method [10, 11, 72] or splitting techniques [10, 13] can be

used to derive symplectic and time-reversible integrator for RMT. A such numerical

integrator is proposed in [74, 75].

2.5 Numerical Integrators for Langevin Dynamics

The sampling performance of Langevin dynamics is dependent on the integration

method that we use to solve equations (2.2)-(2.3). We want the numerical integration

to preserve the Boltzmann-Gibbs measure (1.17). A general technique for designing

integrator is based on extending the Hamiltonian schemes to Langevin dynamics. Ex-

amples are quasi-symplectic integrators [76, 77, 78]. Another approach is to extend the

idea of splitting of operator that is used in deterministic flows to Langevin dynamics

[10, 79, 80, 81]. The general result of error analysis holds for integrator of Langevin

dynamics when the forces are globally Lipschitz.

Consider a simplified version of Langevin dynamics:

dq =M−1p dt, (2.20)

dp = −∇qV (q) dt− γp dt+ σ dW, (2.21)

where γ > 0 is constant, M = mIn and σ2 = 2
βγm. Integrating Langevin’s equations
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we obtain

q(t+ Δt) =q(t) +
∫ t+Δt

t
M−1p(s) ds,

p(t+ Δt) =p(t) −
∫ t+Δt

t
∇qV (q(s)) ds− γ

∫ t+Δt

t
p(s) ds+ σ

∫ t+Δt

t
dW (s),

where
∫ t+Δt
t dW (s) are Gaussian with mean zero and variance

E

[(∫ t+Δt

t
dW (s)

)2
]

= Δt.

Hence
∫ t+Δt
t dW (s) in distribution is equal to

√
Δtη, where η is n-dimensional normal

random variable (i.e., ηi ∼ N (0, 1)). Using the approximations:

∫ t+Δt

t
p(s) ds = Δtp(t) + O(Δt2) and

∫ t+Δt

t
∇qV (q(s)) ds = Δt∇qV (q(t)) + O(Δt2)

in (2.20)-(2.21) and neglecting terms of order Δt3/2 or higher yields

qk+1 =qk + ΔtM−1pk, (2.22)

pk+1 =pk − Δt∇qV (qk) − Δtγpk + σ
√

Δtηk, (2.23)

where {ηk} are n-dimensional normal random variables. The above method is known

as Euler-Maruyama [82, 83]. We denote numerical approximation of (q(kΔt), p(kΔt))

by (qk, pk). For globally Lipschitz force, the resulting Markov chain (2.22)-(2.23) is

ergodic and for small Δt its invariant measure is close to ρβ [84].

Integrators Based on Splitting

One way to design an integrator for Langevin dynamics (2.2)-(2.3) is to split it into a

Hamiltonian:

dq =M−1p dt, (2.24)

dp = −∇qV (q) dt, (2.25)
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and a stochastic part:

dq =0, (2.26)

dp = − γp dt+ σ dW. (2.27)

The stochastic equation (Ornstein-Uhlenbeck process)

dp = −γp dt+ σ dW

can be solve exactly:

p(t) =e−γtp(0) + σ

∫ t

0
eγ(s−t) dW (s)

=e−γtp(0) +B(t).

The B(t) = σ
∫ t
0 e

γ(s−t) dW (s) are Gaussian with mean zero and variance

E[B(t)B(t)] = σ2E

[(
σ

∫ t

0
eγ(s−t) dW (s)

)2
]
.

Using Itô isometry we obtain

E[B(t)B(t)] = σ2E
[∫ t

0
e2γ(s−t) ds

]
=σ2

(
1 − e−2γt

2γ

)
=
m(1 − e−2γt)

β
.

Hence, for x = (q, p) ∈ X we can introduce ΘΔt : X → X as a discrete solution of the

stochastic part by

ΘΔt(x) := (q, e−γΔtp+

√
m(1 − e−2γΔt)

β
η),

where η is n-dimensional normal random variable with mean zero and variance 1. Let

ΦΔt be the Störmer-Verlet solution of the Hamiltonian part, the composite method is

(qk+1, pk+1) := ΦΔt ◦ΘΔt(qk, pk)
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defined by

pk+1/2 :=e−γΔtpk − Δt
2
∇qV (qk) +

√
m(1 − e−2γΔt)

β
ηk,

qk+1 =qk + ΔtM−1pk+1/2,

pk+1 =pk+1/2 − Δt
2
∇qV (qk+1),

where {ηk} are n-dimensional normal random variables with mean zero and variance

1. A method same as above was studied in [85] and was shown to be quasi-symplectic

and geometrically ergodic. It is also first-order strongly convergent [85].

Another method is obtained by splitting Hamiltonian part into kinetic and potential

H(q, p) = H1 +H2, H1(q, p) =
pTM−1p

2
and H2(q, p) = V (q).

Let

ΦΔt,H1(q, p) := (q + ΔtM−1p, p) and ΦΔt,H2(q, p) := (q, p − Δt∇qV (q))

be the discrete maps for solutions of H1 and H2. The composition

(qk+1, pk+1) := ΦΔt/2,H1
◦ΘΔt/2 ◦ ΦΔt,H2 ◦ ΦΔt/2,H1

◦ΘΔt/2(q
k, pk)

gives an integrator for Langevin dynamics, given by

pk+1/2 :=e−γΔt/2pk − Δt
2
∇qV (qk) +

√
m(1 − e−γΔt)

β
ηk,

qk+1 =qk + ΔtM−1pk+1/2,

pk+1 =e−γΔt/2pk+1/2 − Δt
2
∇qV (qk+1) +

√
m(1 − e−γΔt)

β
ζk,

where {ηk} and {ζk} are independent sets of n-dimensional normal random variables.

A method for rigid body dynamics that would simplifies to the above was studied in

[86] and was shown to be quasi-symplectic and second-order (in the weak sense).

The BBK Method

The BBK method proposed by Brünger, Brooks and Karplus [87], is a generalisation
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of Störmer-Verlet method to Langevin equations (2.20)-(2.21). BBK have been used

in many molecular simulations and it was shown to preform well for small values of

γ [88, 89], for large values of γ impulse integrator [90, 91] or second order method

proposed in [92] is recommended [93]. BBK is given by

pk+1/2 =pk − Δt
2
∇qV (qk) − Δt

2
γpk + σ

√
Δt
2

ηk, (2.28)

qk+1 =qk + ΔtM−1pk+1/2, (2.29)

pk+1 =
pk+1/2 − Δt

2 ∇qV (qk+1) + σ
√

Δt
2 ηk

1 + Δtγ/2
, (2.30)

where {ηk} are n-dimensional normal random variables. The original BBK uses a differ-

ent random variable in (2.30), our version above is similar to method proposed in [94],

different random variables introduces bias in average kinetic energy [93]. In the absence

of noise (i.e., γ = 0) BBK simply becomes Störmer-Verlet, and the implementation is

very simple, perhaps this is the reason for its popularity.

40



Chapter 3

The Approach to Equilibrium

In many applications modelling requires understanding the kinetic and long-time be-

haviour of systems composed of large number of interacting particles. It is known that

such systems have a tendency to go to their equilibrium as time increases. In thermody-

namics the approach to equilibrium is explained by the second law of thermodynamics.

Let f(q, p, t) be the density of position q ∈ M ⊆ Rn and momenta p ∈ Rn of particles

in phase space X = M × Rn. It was discovered by Boltzmann in the 1870’s that the

functional (entropy)

S(f) = −
∫

X

f(q, p, t) log f(q, p, t) dq dp, (3.1)

is increasing in time. Later Gibbs showed that the equilibrium distribution is the one

which achieves the maximum entropy under the constraints imposed by conservation

laws (i.e., conservation of mass and kinetic energy). Since the maximiser of (3.1) is a

Gaussian distribution we expect f to become nearly Gaussian as t→ ∞.

The object of this chapter is to study the rate of convergence to equilibrium for

solutions of Fokker-Planck equations arising from molecular dynamics applications. The

Fokker-Planck operators that we study are elliptic or hypoelliptic, hence the solution

f is always continuous with respect to the Lebesgue measure.

Let dρ = f dx, and let dρ∞ = f∞ dx be the equilibrium measure. Since the entropy

attains its maximum at ρ∞ we can measure the distance of ρ from ρ∞ using the relative

entropy [95] H(ρ|ρ∞) defined by

H(ρ|ρ∞) =
∫

X

log
dρ

dρ∞
dρ =

∫
X

dρ
dρ∞

log
dρ

dρ∞
dρ∞,
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or equivalently by

H(f |f∞) =
∫

X

f log
f

f∞
dx. (3.2)

We also define the relative Fisher information [95] by

I(ρ|ρ∞) =
∫

X

∣∣∣∣∇ log
dρ

dρ∞

∣∣∣∣
2

dρ = 4
∫

X

∣∣∣∣∣∇
√

dρ
dρ∞

∣∣∣∣∣
2

dρ∞

or equivalently by

I(f |f∞) =
∫

X

f

∣∣∣∣∇ log
f

f∞

∣∣∣∣
2

dx, (3.3)

where |x| =
√
x · x denotes the square norm on X, and ∇ is the gradient on X.

Thus, we we avoid proving directly that ρ converges to ρ∞ and instead we show that

H(ρ|ρ∞) converges to zero which is dubbed “convergence in relative entropy“. Using

the Csiszár-Kullback-Pinsker inequality [96, 97, 98]

‖ρ− ρ∞‖L1 =
∫

X

|ρ− ρ∞|dρ∞ ≤
√

2
∫

X

log
dρ

dρ∞
dρ∞ =

√
2H(ρ|ρ∞), (3.4)

convergence in relative entropy implies convergence of ρ to ρ∞ in the L1 norm, this

is why relative entropy is a good way of controlling the distance between probability

measures.

In order to prove that H(ρ|ρ∞) converges to zero we study the entropy dissipation

which is the negative time derivative of the entropy − dH(f |f∞)/dt. The idea is to

find a functional inequality of type

− d
dt
H(f |f∞) ≥ Θ(H(f |f∞)), (3.5)

if Θ is known, then it is possible to find an explicit bound for the rate of convergence

to equilibrium. In particular if Θ(H(f |f∞)) = λH(f |f∞), then Equation (3.5) implies

exponential convergence to equilibrium with the speed given by λ.

Another way to measure the distance between two probability measures is the

Wasserstein distance [95], or transportation distance with quadratic cost

W (ρ, ρ∞) =

√
inf

π∈Π(ρ,ρ∞)

∫
Ω×Ω

dΩ(x, y)2 dπ(x, y), (3.6)

where Ω is a smooth complete Riemannian manifold of dimension n with geodesic
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distance

dΩ(x, y) = inf

⎧⎨
⎩
√∫ 1

0
|ẇ(t)|2 dt ; w ∈ C1((0, 1);Ω), w(0) = x, w(1) = y

⎫⎬
⎭ ,

Π(ρ, ρ∞) denotes the set of probability measure on Ω×Ω such that their marginals are

ρ and ρ∞, that is for all bounded continuous functions h and g on Ω

∫
Ω

[h(x) + g(y)] dπ(x, y) =
∫

Ω
h dρ+

∫
Ω
g dρ∞.

The Wasserstein distance is well established in probability theory and statistics, and

its application to entropy dissipation and convergence to equilibrium was shown in

works by Marton [99] and Talagrand [100]. Let the reference measure be the standard

Gaussian measure

dρ∞ =
e−

1
2 |x|2

(2π)n/2
,

Talagrand [100] proved that

W (ρ, ρ∞) ≤
√

2H(ρ|ρ∞).

3.1 Some Functional Inequalities

Definition 3 (Poincaré Inequality [95]). We say that a probability measure ρ, on Rn

satisfies a Poincaré inequality with constant λ, if for all smooth functions u

∫
Rn

u2 dρ−
(∫

Rn

udρ
)2

≤ 1
λ

∫
Rn

|∇u|2 dρ (3.7)

We say that ρ admits a spectral gap with constant λ if for all smooth functions u on

Rn with
∫

Rn udρ = 0, the following Poincaré inequality holds:

∫
Rn

u2 dρ ≤ 1
λ

∫
Rn

|∇u|2 dρ. (3.8)

Definition 4 (Weak Poincaré Inequality [95]). We say that a probability measure ρ

on Rn satisfies a weak Poincaré inequality, if for all smooth functions u, s > 0 and a
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non-deceasing function b(s)

∫
Rn

u2 dρ−
(∫

Rn

udρ
)2

≤ b(s)
∫

Rn

|∇u|2 dρ+ s osc(u)2, (3.9)

where osc(u) = sup(u) − inf(u).

Let us define the Sobolev space

W 1,p(Rn) = {u ∈ Lp(Rn) ; ∇u ∈ Lp(Rn)} , (3.10)

where n ≥ 1 is an integer and p ≥ 1 is a real number. When p ∈ [1, n) define p∗ = np
n−p ,

the classical Sobolev inequality states that whenever u is in W 1,p(Rn) then it is also in

Lp
∗
(Rn).

Definition 5 (Sobolev Inequality [95]). Let u ∈W 1,p(Rn) then u ∈ Lp
∗
(Rn) and there

exists a constant Cn(p) > 0 which depends on n and p such that

‖u‖Lp∗ ≤ Cn(p)‖∇u‖Lp . (3.11)

This result is known as the Sobolev embedding theorem [101] since it asserts that

W 1,p(Rn) ⊂ Lp
∗
(Rn).

Definition 6 (Logarithmic Sobolev Inequality [102, 103, 104]). Let ρ∞ be a reference

probability measure on Rn, absolutely continuous with respect to Lebesgue measure. ρ∞

satisfies a logarithmic Sobolev inequality with constant λ > 0 (in short: LSI(λ)) if for

all probability measures ρ absolutely continuous with respect to ρ∞

H(ρ|ρ∞) ≤ 1
2λ
I(ρ|ρ∞). (3.12)

It is called logarithmic Sobolev inequality because (3.12) can be rewritten as

∫
|u|2 log |u|2 dρ∞ ≤ 2λ

∫
|∇u|2 dρ∞ +

(∫
|u|2 dρ∞

)
log
(∫

|u|2 dρ∞
)

(3.13)

which asserts the embedding of the weighted Sobolev space

W 1,2( dρ∞) =
{
u ∈ L2( dρ∞) ; ∇u ∈ L2( dρ∞)

}
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into the Orlicz space

L2 logL( dρ∞) =
{
u ∈ L2( dρ∞) ;

∫
|u|2 log |u|dρ∞ <∞

}
.

Logarithmic Sobolev inequality shares the characteristic of all above inequalities. Com-

paring the logarithmic Sobolev embedding

W 1,2( dρ∞) ⊂ L2 logL( dρ∞) (3.14)

with the Sobolev embedding

W 1,2(Rn) ⊂ L
2n

n−2 (Rn), n ≥ 3. (3.15)

We first note that (3.14) is taken with respect of a probability measure (e.g. Gaus-

sian) whereas (3.15) does not hold in this case. Secondly, both the embedding space

and the constant of embedding are independent of the dimension. On the other hand,

the exponent 2n/(n − 2) tends to 2 as n → ∞ but at the same limit the constant

of embedding blows up in the classical Sobolev inequality (3.11). In this sense log-

arithmic Sobolev inequality is stronger than the classical Sobolev inequality. It has

been shown by Beckner [105] that (3.14) can be approximated by a version of (3.15)

on n-dimensional sphere, with sharp constants, as n → ∞. Hence in some sense the

logarithmic Sobolev inequality can be seen as an infinite dimensional version of the

classical Sobolev inequality.

Theorem 1 (Rothaus [106]). Let the probability measure ρ satisfies the logarithmic

Sobolev inequality (3.12) with constant λ. Then ρ also satisfies the Poincaré inequality

(3.8) with constant λ.

This is an important result, since it signifies that we lose nothing working in more

general framework of the logarithmic Sobolev inequality.

The Poincaré inequality (3.8) can be seen as a linearised version of the logarithmic

Sobolev inequality. Let g be smooth function such that
∫
g dρ∞ = 0, and set ρ =

(1 + εg)ρ∞, then as ε→ 0,

H(ρ|ρ∞) � ε2

2

∫
g2 dρ∞, I(ρ|ρ∞) � ε2

∫
|∇g|2 dρ∞.
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Theorem 2 (Bakry and Emery [107]). Let dρ∞ = e−V dx be a probability measure on

Rn (resp. a Riemannian manifold M), such that D2V ≥ λIn (resp. D2V +Ric ≥ λIn).

Then ρ∞ satisfies the logarithmic Sobolev inequality (3.12) with constant λ.

In the above V is the potential function, D2V stands for Hessian of V , In denotes the

identity matrix of dimension n and Ric stands for Ricci curvature tensor on M.

Theorem 3 (Holley and Stroock [108]). Let V = V0 + g, where g ∈ L∞, if e−V0

satisfies the logarithmic Sobolev inequality with constant λ, then e−V also satisfies the

logarithmic Sobolev inequality, with constant λe−osc(g).

The combination of Theorems 2 and 3 enables us to apply logarithmic Sobolev inequal-

ity to a wider class of potentials in statistical physics, such a double-well potential

V (x) = ax4 − bx2.

Definition 7 (Talagrand Inequality [95]). The probability measure ρ∞ satisfies the

Talagrand inequality with constant λ > 0 (in short T (λ)) if for all probability measures

ρ absolutely continuous with respect to ρ∞ and with finite moments of order 2

W (ρ∞, ρ) ≤
√

2H(ρ∞|ρ)
λ

. (3.16)

Definition 8. The probability measure ρ∞ satisfies LSI + T (λ) if for all probability

measures ρ absolutely continuous with respect to ρ∞, with finite moments of order 2

W (ρ∞, ρ) ≤ 1
λ

√
I(ρ∞|ρ). (3.17)

The following theorem due to Villani and Otto [109] shows that the logarithmic

Sobolev inequality (3.12) is stronger than the Talagrand inequality (3.16).

Theorem 4 (Villani and Otto [109]). Let dρ∞ = e−V dx be a probability measure with

finite moment of order 2, such that V ∈ C2(Rn) and D2V ≥ CIn, C ∈ R. If ρ∞

satisfies LSI(λ) for some λ > 0, then it also satisfies T (λ), and thus LSI + T (λ).

Using results of Theorem 2 and Theorem 4 we obtain the following corollary.

Corollary 1. Let dρ∞ = e−V dx be a probability measure with finite moment of order

2, such that V ∈ C2(Rn) and D2V ≥ λIn, λ > 0. Then T (λ) holds.

Since LSI+T (λ) is a weaker inequality, it is natural to ask, what can we gain from

LSI + T (λ). This question was answered in [109] by finding a general interpolation

between the functionals H, W and I.
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Theorem 5 (Villani and Otto [109]). Let dρ∞ = e−V dx be a probability measure with

finite moment of order 2, such that V ∈ C2(Rn) and D2V ≥ CIn, K ∈ R. Then, for

all probability measures ρ on Rn, absolutely continuous with respect to ρ∞, hold the

following ”HWI inequality“:

H(ρ|ρ∞) ≤W (ρ, ρ∞)
√
I(ρ|ρ∞) − K

2
W (ρ|ρ∞)2. (3.18)

This is a nice general result that can be used to find a relation between different

inequalities. Note that

• In the case where V is convex, we have D2V ≥ 0 which implies

H(ρ|ρ∞) ≤W (ρ, ρ∞)
√
I(ρ|ρ∞).

• In the case K > 0, using Young’s inequality (e.g. ab ≤ 1
2a

2 + 1
2b

2, see [3]) (3.18)

implies LSI(K), thus Theorem 5 contains the result of Theorem 2.

• In any case, we have, for any λ > 0

H(ρ|ρ∞) ≤ 1
2λ
I(ρ|ρ∞) +

λ−K

2
W (ρ, ρ∞)2.

Thus LSI(λ) is always satisfied (for any λ), up to an error term of second order

in the weak topology.

For more details on entropy techniques for proving convergence see [95, 110, 111, 112].

3.2 Ergodicity and Hypoellipticity

We briefly review sufficient conditions that imply geometric ergodicity (see Definition

2 in Chapter 2) for the Markov process x(t, ω;x0) satisfying a stochastic differential

equation (SDE) of the form

dx = b(x) dt+ σ(x) dW, x(0) = x0, (3.19)

where x ∈ Rn, b : Rn → Rn, σ : Rn → Rn×m andW ism-dimensional Brownian motion.

We also require b and σ to be Lipschitz continuous, hence there exists a constant K

such that

||b(x) − b(y)|| + ||σ(x) − σ(y)|| ≤ K||x− y|| x, y ∈ R
n.
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Establishing the uniqueness of invariant probability measure for the solution of (3.19)

and its rate of convergence can be done by studying its generator. The generator L of

(3.19) is known as the Kolmogorov backward operator and is defined by

Lf =
n∑
i

bi
∂f

∂xi
+ 1

2

n∑
i,j

{σσT }ij ∂2f

∂xi∂xj
, f ∈ C2(Rn). (3.20)

Let g ∈ C2
0 (Rn) and define u to be the expectation of g with respect to the transition

probability of the solution x:

u(t, x) = E[g(x(t))] =
∫
g(x) dρ(x) =

∫
g(x)f(x, t) dx,

where dρ = f(x, t) dx is the distribution induced by x on Rn and f is the density of ρ.

The Kolmogorov backward operator describes how u changes along the solution x:

∂u

∂t
= E[Lg(x)].

Thus, we have

∫
Rn

g(x)f(x, t) dx = g(x0) +
∫ t

0

∫
Rn

Lg f(x, s) dxds,

differentiating with respect to t and using the identity

〈Lf, g〉 = 〈f,L∗g〉, for f ∈ C2
0 , g ∈ C2,

we obtain

∂f

∂t
= L∗f = −

n∑
i

∂

∂xi
(bif) + 1

2

n∑
i,j

∂2

∂xi∂xj
({σσT }ijf), f ∈ C2(Rn). (3.21)

Proving uniqueness of the probability measure amount to show that all distributional

solution of L∗f = 0 are continuous, where f is a density of a probability measure and L∗

is the adjoint of L known as Kolmogorov forward operator (Fokker-Planck operator).

Now we state two main conditions that imply geometric ergodicity [23, 84].

Condition 1. Let U ⊂ Rn be open, connected and invariant under (3.19) i.e.,

x(t) ∈ U for all t whenever x(0) ∈ U.
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The transition probabilities P (t, x0, A), t > 0, x0 ∈ U,A ∈ B(U) of Markov process

solving (3.19) are positive and have smooth densities, more precisely the following:

(i) for some y∗ ∈ int(U) and for any δ > 0, there exist a time t1 = t1(δ) such

that

P (t1, x0, Bδ(y∗)) > 0 ∀x0 ∈ U,

(ii) P (t, x0, y) is jointly continuous in ((0,∞), U × U).

Condition 1 implies that the process generated by (3.19) is ergodic on U .

Theorem 6. Suppose there exist a set U ⊂ Rn such that the Condition 1 hold, then

solution of (3.19) has a unique invariant measure dρ∞ = f∞ dx on U .

Proof. Suppose there exist more than one invariant measure, then by Birkhoff’s ergodic

theorem [113] for each pair of densities f, g, either int(supp(f)) ∩ int(supp(g)) = ∅
or f = g. Let f �= g, by decomposition theorem for invariant measures we have

f∞ = af + bg, for weights a, b ∈ [0, 1].

Now suppose a > 0 and there exists z ∈ ∂supp(f). Then, by continuity of f for

every ε > 0 there exists δ > 0 such that f(z′) < ε for all |z − z′| < δ. But this is

impossible since inf |z−z′|<1 f∞(z′) > 0 and f∞(z′) = af(z′) for all z′ ∈ int(supp(f)).

Therefore, ∂supp(f) = ∅ and ∂supp(g) = ∅. The connectedness of U implies that

either supp(f) = U or supp(f) = ∅. This implies that there exists precisely one density

with nonzero weight.

Let Fn be the σ-algebra of the events up to and including the time tn, to control the

return time to U we use the following

Condition 2 (Drift Condition). There exist a measurable function V : U → [1,∞)

with V(x) → ∞ as x→ ∞ and positive real numbers α ∈ (0, 1), c <∞ such that

E[V(x(tn+1))|Fn] ≤ αV(x(tn)) + c.

For continuous Markov process, the drift condition is verified by finding a similar bound

for LV.
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Lemma 1. Suppose there exist a measurable fucntion V : U → [1,∞) with V(x) →
∞ as x→ ∞ and a ∈ (0,∞), d ∈ (0,∞) such that

LV(x) ≤ −aV(x) + d, ∀x ∈ U,

then the Drift condition holds.

This is a known result and a proof can be found in [84].

Theorem 7 (Theorem 16.0.1 [23] or Theorem 2.5 [84]). Assume that Condition 1 and

Condition 2 hold for some set U . Then the process solving (3.19) is geometrically

ergodic. More precisely, it possesses a unique invariant probability measure ρ∞ and

furthermore there exist constants λ,C > 0 such that for all measurable functions g :

Rn → R with |g(x)| ≤ V(x):

|E [g(x(t))] − ρ∞(g)| ≤ CV(x0)e−λt ∀x0 ∈ R
n.

Next we introduce an appropriate notion for regularity [53, 54, 55].

Definition 9 (Hypoelliptic Operator). Let L∗ be a linear operator. We say that L∗ is

hypoelliptic if all distributional solutions f of L∗f = g are C∞ whenever g is C∞.

Let X and Y be two C∞ real vector fields, the bracket of X and Y , denoted by [X,Y ]:

[X,Y ]f = X(Y f) − Y (Xf),

is a new vector field. We are interested in the case when Hörmander’s condition is

satisfied.

Definition 10 (Hörmander’s Condition). Let U ⊂ Rn be open, the vector fields X0, . . . ,Xr :

U → Rn satisfy Hörmander’s condition at z ∈ U if the vector space generated by the

iterated brackets

X0(z), . . . ,Xr(z), [Xi,Xj ](z), [Xi, [Xj ,Xk]](z) . . .

is Rn.

The main application of the Hörmander’s condition is Hörmander’s theorem. [54, 53].
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Theorem 8. Let U ⊂ Rn be an open set. If X0,X1,X2, · · · ,Xd : U → Rn are vector

fields that satisfy Hörmander’s condition at every z ∈ U , then the operator L∗ which is

defined by

L∗f(z) := −
n∑
i=1

∂

∂zi
(f(z)X0,i(z)) +

1
2

d∑
k=1

n∑
i,j=1

∂2

∂zi∂zj
(f(z)Xk,i(z)Xk,j(z))

is hypoelliptic.

Note that to satisfy Condition 1(ii) is sufficient to show that L∗ is hypoelliptic, since,

hypoellipticity effectively implies that the transition probabilities of the process solving

(3.19) have smooth densities:

P (t, x, y) ∈ C∞([0,∞) × U × U).

Since the existence of a Lyapunov function satisfying Condition 2 and a Poincaré

inequality both imply exponential rate of convergence, it is natural to look for a relation

between them. Indeed, this was studied in recent papers by Bakry et. al. [114, 115],

where they found that if a probability measure ρ satisfies Condition 2, then ρ also

satisfies Poincaré inequality.

In the following sections we use techniques discussed here to study ergodicity and

convergence rate of three different dynamics: the gradient flow system, whose generator

is self-adjoint in a suitable separable Hilbert space, hence its convergence rate is equiv-

alent to the spectral gap of its generator and can be studied by spectral techniques;

a homogeneous heat bath which has an elliptic generator; Langevin dynamics whose

generator is not elliptic but is hypoelliptic.

3.3 Gradient Flows

Consider the following stochastic differential equation

dq = −∇V (q) dt+
√

2β−1 dw, (3.22)

where the potential V (q) here and throughout this thesis is a smooth function such

that

lim
q→∞V (q) = +∞.
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The differential equation (3.22) describes a set of particles experiencing both diffusion

and drift. The interplay between these two processes is fundamental to the long-time

behaviour of its solution. The corresponding Fokker-Planck equation is

∂f

∂t
= ∇ · (β−1∇f + f∇V ) . (3.23)

The equation (3.23) is elliptic, hence the existence and uniqueness of the classical solu-

tion is guaranteed [116]. The challenge is that for most potentials it is not possible to

calculate the time dependent solution. On the other hand we know that the stationary

solution is fV (q) = 1
ZV
e−βV (q), in fact substituting fV in (3.23) we have

∂fV
∂t

= ∇ · (−∇V fV + fV∇V ) = 0.

Thus our aim is to study how fast f converges to fV in time.

Let assume that the time dependent solution of (3.23) is of the form

f(q, t) = h(q, t)fV (q).

From (3.23) we have

fV
∂h

∂t
=∇ · (β−1fV∇h− hfV∇V + hfV∇V

)
=∇ · (β−1fV∇h

)
=fV β−1Δh− fV∇V · ∇h.

Hence h(q, t) satisfies an equation of the form

∂h

∂t
= Ah = β−1Δh−∇V · ∇h. (3.24)

Next we define the weighted L2 space L2
fV

:

L2
fV

= {u :
∫

Rn

|u|2 fV (q) dq <∞}.

This is a Hilbert space with inner product

〈u, g〉fV
=
∫

Rn

ugfV (q) dq.
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Note that

∫
Rn

Ah gfV dq =
∫

Rn

(
β−1Δh−∇V · ∇h) gfV dq

=
∫

Rn

∇ · (β−1fV∇h
)
g dq

= −
∫

Rn

β−1∇h · ∇gfV dq =
∫

Rn

(
β−1Δg −∇V · ∇g)hfV dq.

Thus we have

〈Ah, g〉fV
= −β−1〈∇h,∇g〉fV

= 〈h,Ag〉fV
.

This signifies that, the operator

A = β−1Δ −∇V · ∇,

is self-adjoint in L2
fV

. Moreover, if we set g = h in the above we get

〈Ah, h〉fV
= −β−1 ‖∇h‖2

L2
fV

,

which implies that A is a non-positive operator, whose kernel consist of constants.

Thus the only acceptable equilibria for (3.23) are constant multiple of fV and constant

are determined by the norm of h in L2
fV

. It is worth noting that the Fokker-Planck

of a diffusion process is self-adjoint if and only if the drift term is the gradient of

the potential. A Markov process whose generator is self-adjoint is reversible. As we

mentioned in Chapter 2, reversibility implies that fV is invariant, but the existence of

an invariant measure does not imply reversibility, in this sense reversibility is a stronger

condition than having invariant measure with density fV , see [117] on reversibility of

diffusion processes.

We want to study the rate of convergence to equilibirum for (3.23) with initial

condition

f(q, 0) = f0; f0 ≥ 0,
∫

Rn

f0 dq = 1.

Let assume that f0 ∈ L2
f−1

V

, and consider the Equation (3.24) with initial condition

h0 = f0f
−1
V . Since A is self-adjoint and non-positive, it can be shown using spectral

analysis that h(q, t) converges exponentially fast to 1. The existence of spectral gap

(i.e. the smallest non-zero eigenvalue) of size λ is equivalent to fV satisfying Poincaré

inequality (3.7) with constant λ. Let
∫

Rn(h − 1)fV dq = 0, then using (3.24) and
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Poincaré inequality (3.7) we have

d
dt

∫
Rn

(h− 1)2fV dq =2
∫

Rn

(h− 1)AhfV dq

=2
∫

Rn

∇ · (β−1fV∇h)(h − 1) dq

= − 2β−1

∫
Rn

|∇h|2 fV dq

≤− 2λβ−1

∫
Rn

(h− 1)2fV dq.

Solving the above inequality yields

∫
Rn

(h− 1)2fV dq ≤ e−2λβ−1t

∫
Rn

(h0 − 1)2fV dq.

Thus, if h solves (3.24) with initial condition h0 ∈ L2
fV

, then

‖h(q, t) − 1‖L2
fV

≤ e−λβ
−1t ‖h(q, 0) − 1‖L2

fV

.

Equivalently, if f solves (3.23) with initial condition f0 ∈ L2
f−1

V

, then

‖f(q, t) − fV ‖L2

f−1
V

≤ e−λβ
−1t ‖f(q, 0) − 1‖L2

f−1
V

.

Note that the assumption f0 ∈ L2
f−1

V

is very restrictive. For physical purposes we

should only assume that f is integrable, ideally we would like to prove convergence

in L1. Using relative entropy and logarithmic Sobolev inequality (3.12) we can prove

convergence in L1. Let

H(f |fV ) =
∫

Rn

f log
(
f

fV

)
dq, (3.25)

and assume that D2V ≥ λIn, then by Theorem 2, fV satisfies LSI(λ). Thus we have

d
dt
H(f |fV ) =

∫
Rn

∂f

∂t
log
(
f

fV

)
dq +

∫
Rn

∂f

∂t
dq

=
∫

Rn

∇ · (β−1∇f + f∇V ) log
(
f

fV

)
dq

= − β−1

∫
Rn

(∇f + βf∇V )∇ log
(
f

fV

)
dq

= − β−1

∫
Rn

f

∣∣∣∣∇ log
(
f

fV

)∣∣∣∣
2

dq

≤− 2β−1λH(f |fV ),
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which implies

H(f |fV ) ≤ e−2β−1λtH(f0|fV ).

Using Csiszár-Kullback-Pinsker inequality (3.4), we obtain

‖f − fV ‖L1 ≤
√

2H(f0|fV )e−β
−1λt.

3.4 Homogeneous Heat Bath

Consider a system of n interacting particles given by Hamiltonian function

H(q, p) =
pTM−1p

2
+ V (q). (3.26)

We are interested in the case when the system is in contact with an infinite heat bath

system at temperature 1
β , the effective equations are

dq =M−1p dt− γq(p)∇qV dt+ σq(p) dWq, (3.27)

dp = −∇qV dt− γp(q)M−1p dt+ σp(q) dWp, (3.28)

where γl : Rn → Rn×n, σl : Rn → Rn×n, and Wl is n dimensional Brownian motion,

with l = q, p.

Let x = (q, p),

Γ =

⎛
⎝ γq(p) 0

0 γp(q)

⎞
⎠ , Σ =

⎛
⎝ σq(p) 0

0 σp(q)

⎞
⎠ ,

then, (3.27)-(3.28) can be written as

dx = J∇H(x) − Γ (x)∇H(x) dt+Σ(x) dW, (3.29)

where W is 2n family of independent Brownian motion and

J =

⎛
⎝ 0 In

−In 0

⎞
⎠ .

It can be seen from (3.29) that the homogeneous heat bath (3.27)-(3.28) is a particular

case of the gradient flow. We assume that the dissipation and diffusion matrices satisfy

55



the fluctuation dissipation relation:

σqσ
T
q =

2
β
γq and σpσ

T
p =

2
β
γp.

Hence the Boltzmann-Gibbs measure with density

fβ(q, p) =
1
Z
e−βH(q,p)

is the invariant measure of the Markov process x solving (3.29). The Fokker-Planck

equation is

∂f

∂t
= L∗f = −M−1p · ∇qf + ∇qV · ∇pf+

∇q ·
(

1
β
γq∇qf + γq∇qV f

)
+ ∇p ·

(
1
β
γp∇pf + γpM

−1pf

)
. (3.30)

Indeed fβ is the stationary solution of (3.30), substituting fβ in (3.30) the nonzero

terms are

−M−1p · ∇qfβ =fβ
[
βM−1p · ∇qV

]
,

∇qV · ∇pfβ = − fβ
[
βM−1p · ∇qV

]
,

∇q ·
(

1
β
γq∇qfβ + γq∇qV fβ

)
=∇q · (γq∇qV fβ − γq∇qV fβ) ,

∇p ·
(

1
β
γpfβ + γpM

−1pfβ

)
=∇p ·

(
γpM

−1pfβ − γpM
−1pfβ

)
,

which add to zero.

Note that the principal part of L∗ is

∇q ·
(

1
β
γq∇qf

)
+ ∇p ·

(
1
β
γp∇pf

)
,

and its characteristic polynomial is

Q(q, p) =
1
β

(
qTγqq + pTγpp

)
.

Thus L∗ is elliptic as long as γq and γp are positive definite:

xTγqx > 0 and xTγpx > 0 ∀x ∈ R
n x �= 0.
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Ellipticity of L∗ implies existence and uniqueness of solution for the Fokker-Planck

equation (3.30), and consequently ergodicity of the Markov process x solving (3.29).

We have already mentioned that for most potentials V , it is not possible to explicitly

calculate the time dependent solution of (3.30), therefore, to overcome this problem,

we need to find information on the rate of convergence of the time dependent solution

denoted by f(q, p, t) to the stationary Boltzmann-Gibbs density fβ(q, p).

Without loss of generality we assume that M = In, γq = c1In, γp = c2In, where c1

and c2 are positive constant. The Fokker-Planck equation becomes

∂f

∂t
= L∗f = −p ·∇qf +∇qV ·∇pf + c1∇q ·

(
1
β
∇qf + ∇qV f

)
+ c2∇p ·

(
1
β
∇pf + pf

)
.

(3.31)

Note that

fβ(q, p) =
1
ZV

exp(−βV (q))
1
ZM

exp
(
−β ‖p‖

2

2

)
,

where ZV and ZM are normalization constant given by

ZV =
∫

exp(−βV (q)) dq and ZM =
∫

exp
(
−β ‖p‖

2

2

)
dp.

This signifies the fact that the probability of events in positions are independent of

events in momenta. Hence, we let

ρq(q, t) =
∫
f(q, p, t) dp, ρp(p, t) =

∫
f(q, p, t) dq. (3.32)

Next, we define local equilibria as ρqfM and ρpfV where

fM =
1
ZM

exp
(
−β ‖p‖

2

2

)
, fV =

1
ZV

exp (−βV (q)) . (3.33)

The relative entropy is

H(f |fβ) =
∫
f log

f

fβ
dq dp =

∫
f(log f +H) dq dp. (3.34)

We have

d
dt
H(f |fβ) =

∫
∂f

∂t
(log

f

fβ
) dq dp+

∫
∂f

∂t
dq dp,
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where

∫
∂f

∂t
(log

f

fβ
) dq dp =

∫
(−p · ∇qf + ∇qV · ∇pf)(log f + βH) dq dp

+ c1

∫
∇q · ( 1

β
∇qf + ∇qV f) log

f

fβ
dq dp+ c2

∫
∇p · ( 1

β
∇pf + pf) log

f

fβ
dq dp.

After some integration by parts and using the fact that f is zero on boundary, we have

for each term

∫
(−p · ∇qf + ∇qV · ∇pf)(log f + βH) dq dp = −

∫
(∇qV · ∇pf − p · ∇qf) dq dp

+ β

∫
(∇qV · p−∇qV · p)f dq dp

= −
∫

(∇qV · ∇pf − p · ∇qf) dq dp,

c1

∫
∇q · ( 1

β
∇qf + ∇qV f) log

(
f

fβ

)
dq dp

= − c1

∫
(
1
β
∇qf + ∇qV f) ·

(∇qf

f
+ β∇qV

)
dq dp

= − c1
β

∫
f∇q (log f − log fV − log ρp) · ∇q(log f − log fV − log ρp) dq dp

= − c1
β

∫
f

∣∣∣∣∇q log
(

f

ρpfV

)∣∣∣∣
2

dq dp,

c2

∫
∇p · ( 1

β
∇pf + pf) log

(
f

fβ

)
dq dp

= − c2

∫
(
1
β
∇pf + pf) ·

(∇pf

f
+ βp

)
dq dp

= − c2
β

∫
f∇p (log f − log fM − log ρq) · ∇p(log f − log fM − log ρq) dq dp

= − c2
β

∫
f

∣∣∣∣∇p log
(

f

ρqfM

)∣∣∣∣
2

dq dp,

where we used the fact that ∇qρp = 0 and ∇pρq = 0, the last term is

∫
∂f

∂t
dq dp =

∫
(−p · ∇qf + ∇qV · ∇pf) dq dp.
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Putting all together we get

d
dt
H(f |fβ) = −c2

β

∫
f

∣∣∣∣∇p log
(

f

ρqfM

)∣∣∣∣
2

dq dp− c1
β

∫
f

∣∣∣∣∇q log
(

f

ρpfV

)∣∣∣∣
2

dq dp.

Now, if we assume that the potential V satisfies D2V ≥ λIn, for some λ > 0, then by

Theorem 2, ρpfV satisfies the logarithmic Sobolev inequality

2λH(f |ρpfV ) ≤
∫
f

∣∣∣∣∇q log
(

f

ρpfV

)∣∣∣∣
2

dq dp.

Thus we obtain

d
dt
H(f |fβ) ≤ −2c2

β
H(f |ρqfM ) − 2λc1

β
H(f |ρpfV )

Let r := min{c2, λc1}, then we have

d
dt
H(f |fβ) ≤− 2r

β
(H(f |ρqfM ) +H(f |ρpfV ))

= − 2r
β

(∫
f log

(
ff

ρqfMρpfV

)
dq dp

)

= − 2r
β

(∫
f

(
log
(

f

fV fM

)
+ log

(
f

ρqρp

))
dq dp

)

= − 2r
β

(H(f |fβ) +H(f |ρqρp)) .

Note that H(f |ρqρp) ≥ 0 for all time, indeed using Gibbs inequality we have

−
∫
f log f dq dp ≤ −

∫
f log(ρqρp) dq dp,

which implies H(f |ρqρp) ≥ 0. Thus we obtain a close differential inequality

d
dt
H(f |fβ) ≤ −2r

β
H(f |fβ)

which yeilds

H(f |fβ) ≤ e−2rβ−1tH(f0|fβ).

Using Csiszár-Kullback-Pinsker inequality (3.4), we obtain

‖f − fβ‖L1 ≤
√

2H(f0|fβ)e−rβ−1t.
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3.5 Langevin Dynamics

Consider the following stochastic differential equations

dq =M−1p dt, (3.35)

dp = −∇qV (q) dt− γ(q)p dt+ σ(q) dW, (3.36)

where γ : Rn → Rn×n is the dissipation matrix, σ : Rn → Rn×n is the diffusion matrix

and we assume the fluctuation-dissipation relation σσT = 2
βγM , which implies that the

Boltzmann-Gibbs measure is the invariant measure. We also assume that V (q) and σ

are smooth, and γ is positive definite, i.e., for some γ− > 0

γ−‖z‖2 ≤ 〈z, γ(q)z〉 ∀q ∈ R
n, z ∈ R

n. (3.37)

Under the above assumptions, it is possible to obtain an implicit exponential rate of

convergence to the Boltzmann-Gibbs measure, see the work on geometric ergodicity

of Langevin [84]. For earlier results on ergodicity and convergence to equilibrium of

Langevin dynamics see [25, 118].

The corresponding Fokker-Planck equation is

∂f

∂t
= L∗f = −M−1p · ∇qf + ∇qV · ∇pf + ∇p ·

(
1
2
σσT∇pf + γpf

)
, (3.38)

where L∗ is the adjoint of the generator

L = M−1p · ∇q −∇qV · ∇p − γp∇p + ∇p ·
(

1
2
σσTΔp

)
.

Let L∗f = LT f + LCf, where

LC = ∇p ·
(

1
2
σσT∇pf + γpf

)
and LT = −M−1p · ∇qf + ∇qV · ∇pf,

are the collision and transport operators. The tansport operator LT is antisymmetric

and the collision operator LC becomes self-adjoint in the weighted L2 space L2
ρβ

:

L2
ρβ

= {u ;
∫

R2n

|u|2 fβ dq dp <∞}, (3.39)
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with inner product

〈u, g〉ρβ
=
∫

R2n

ug fβ dq dp.

In particular if f(q, p, t) = h(q, p, t)fβ then we have

LC(hfβ) =∇p · (12σσ
T∇p(hfβ) + γphfβ)

=∇p · (12σσ
T∇pHfβ − β

2
σσTM−1hfβ + γphfβ)

=(∇p · ( 1
β
γM∇ph) − γp · ∇ph)fβ,

which is self-adjoint in L2
ρβ

. Thus in L2
ρβ

space we might use spectral techniques to

study long time behaviour of (3.35)-(3.36). However L2
ρβ

implies that f should satisfy:

∫
f2

fβ
dq dp <∞ (3.40)

which is a much more strong assumption than just assuming that f is integrable.

Indeed it is possible that for some potential V convergence to equilibrium is exponential

under Assumption (3.40) but not for general L1 − type assumption (that is assuming

integrability). In this regrad, L1 results are stronger than L2 results.

Let x = (q, p) and

Y =

⎛
⎝ M−1p

−∇qV − γp

⎞
⎠ , Xi =

⎛
⎝ 0

σi

⎞
⎠ , (3.41)

where σi is the ith column of σ, then (3.38) can be written as

L∗f = −
2n∑
i=1

∂

∂xi
(fY i) +

1
2

n∑
k=1

2n∑
i,j=1

(fXi
kX

j
k). (3.42)

The Condition (3.37) implies that σi’s are linearly independent, thus the vectors

Xi =

⎛
⎝ 0

σi

⎞
⎠ and [Xi, Y ] =

⎛
⎝ σi(q)

−∇qσi(q)p − γ(q)σi(q)

⎞
⎠ ,

are linearly independent and we have

span{X1, . . . ,Xn, [X1, Y ], . . . , [Xn, Y ]} = R
2n, for every q and p.
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This concludes that the operator L∗ is hypoelliptic which implies that (3.38) is well-

posed and has a unique solution, consequently by Theorem 6 the Langevin dynamics

is ergodic.

Without loss of generality we assume that M = In, γ(q) = cIn, so LC and LT are

LC = c∇p · ( 1
β
∇pf + pf) and LT = −p · ∇qf + ∇qV · ∇pf.

The collision operator LC only acts on momenta, hence (3.35)-(3.36) can be viewed

as a system in contact with a heat bath where the collisions are not homogeneous in

space. Similar to the concept of hypoellipticity where regularity in some directions

leads regularity in all direction, we would like to show that collisions on momenta is

sufficient to converge to the global equilibrium.

The relative entropy is

H(f |fβ) =
∫
f log

f

fβ
dq dp.

Its time derivative is

d
dt
H(f |fβ) =

∫
∂f

∂t
log

f

fβ
dq dp+

∫
∂f

∂t
dq dp

=
∫

LT f log
f

fβ
dq dp+

∫
LCf log

f

fβ
dq dp

= − c

β

∫
(∇pf + βpf) · (∇pf

f
+ βpf) dq dp

= − c

β

∫
f

∣∣∣∣∇p log
(

f

ρqfM

)∣∣∣∣
2

dq dp.

Using logarithmic Sobolev inequality yields

d
dt
H(f |fβ) ≤ −2c

β
H(f |ρqfM). (3.43)

This only gives us information about the equilibration in momenta, but not much about

positions. In fact, our conjecture is that LC forces the distribution of momenta to

become close to its equilibrium (i.e., Maxwellian) faster than distribution of positions.

Note that

H(f |fβ) = H(f |ρqfM) +H(ρq|fV ),

hence, if we assume that the system is close to equilibrium such that H(ρq|fV ) is a
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linear function of H(f |fβ) , then we have

dH(f |fβ)
dH(f |ρqfM )

= k,

where k is some constant. Thus, using (3.43) we have

d
dt
H(f |ρqfM) ≤ − 2c

βk
H(f |ρqfM)

which signifies that momenta converges to its Maxwellian distribution if we are not far

from equilibrium.

Calculating the general convergence rate to global equilibrium is very difficult,

Villani and Desvillettes in [119] obtained a decay rate to equilibrium faster than

t−1/ε, ε > 0. Another result (with quite complicated analysis) on convergence rate

is [120], where under assumption of local regularity and V (x) → ∞ as x→ ∞ explicit

rate of convergence in terms of M, γ, β and V was obtained in some weighted Sobolev

space.

3.5.1 Harmonic Potential

In general it is very difficult or not possible to calculate the eigenvalues and eigenfunc-

tion of the operator (3.38). One example where the calculation can be done explicitly

is the harmonic oscillator:

H(q, p) =
p2

2
+ ω2

0

q2

2
,

where q ∈ R, p ∈ R and k > 0 is a constant. This was done in the book by Risken

[121], but our exposition here is close to [122]. Langevin dynamics for the harmonic

oscillator is

dq =p dt,

dp = − ω2
0q dt− γp dt+ σ dW.

This can be written as

d

⎛
⎝ q

p

⎞
⎠ =

⎛
⎝ 0 1

−ω2
0 −γ

⎞
⎠
⎛
⎝ q

p

⎞
⎠ dt+

⎛
⎝ 0 0

0 σ

⎞
⎠ dW

which is a particular case of an Ornstein-Uhlenbeck process.
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Let f(q, p, t) = h(q, p, t)fβ(q, p), hence h solves

∂h

∂t
= Ah,

where

A = −p ∂
∂q

+ kq
∂

∂p
+ γ

[
1
β

∂2

∂p2
− p

∂

∂p

]
.

let us define the operators

a− =β−1/2 ∂

∂p
, a+ = −β−1/2 ∂

∂p
+ β1/2p,

b− =ω−1
0 β−1/2 ∂

∂q
, b+ = −ω−1

0 β−1/2 ∂

∂q
+ ω0β

1/2q.

The operators a±, b± satisfy the commutation relations

[a+, a−] = −1, [b+, b−] = −1, [a±, b±] = 0

and we may write A as

A = −γa+a− − ω0(b+a− − a+b−). (3.44)

We want to find operators c±, d± that are linear combinations of a±, b±, such that,

for some constants C and D,

A = −Cc+c− −Dd+d−, (3.45)

and

[c+, c−] = −1, [d+, d−] = −1, [c±, d±] = 0. (3.46)

Using (3.44), (3.45) and the relations (3.46), we find

c+ =δ−1/2
(√

λ1a
+ +

√
λ2b

+
)
,

c− =δ−1/2
(√

λ1a
− −

√
λ2b

−
)
,

d+ =δ−1/2
(√

λ2a
+ +

√
λ1b

+
)
,

d− =δ−1/2
(√

λ1b
− −

√
λ2a

−
)
,

where λ1 and λ2, with λ1 �= λ2 (we do not consider the case when λ1 = λ2) are the

64



eigenvalues of the deterministic problem:

d2q

dt2
= −γ dq

dt
− ω2

0q,

with solution

q(t) = C1e
−λ1t + c2e

−λ2t,

where

λ1,2 =
γ ± δ

2
, δ =

√
γ2 − 4ω2

0 > 0.

Now the operator A can be written as

A = −λ1c
+c− − λ2d

+d−.

We also have

[A, c+] =(−λ1c
+c−c+ + λ1c

+c+c−) + λ2(c+d+d− − d+d−c+)

= − λ1c
+([c−, c+] + c+c−) + λ1c

+c+c−) + λ2(c+d+d− − d+([d−, c+] + c+d−))

= − λ1c
+ + λ2(c+d+d− − ([d+, c+] + c+d+)d−)

= − λ1c
+.

In fact it can be checked that

[A, c±] = −λ1c
±, [A, d±] = −λ2d

±.

Using the above relations we have

[A, (c+)2] =A(c+)2 − (c+)2A
=([A, c+] + c+A) − c+([c+,A] + Ac+)

= − 2λ1(c+)2.

Indeed, by induction we have

[A, (c±)n] = −nλ1(c±)n, [A, (d±)m] = −mλ2(d±)m. (3.47)
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Now we can use (3.47) to calculate

A(c+)n(d+)m1 =([A, (c+)n] + (c+)nA)(d+)m1

=(−nλ1(c+)n + (c+)nA)(d+)m1

= − nλ1(c+)n(d+)m1 + (c+)n([A, (d+)m] + (d+)mA)1

= − nλ1(c+)n(d+)m1 −mλ2(c+)n(d+)m1 + (c+)n(d+)mA1

= − nλ1(c+)n(d+)m1 −mλ2(c+)n(d+)m1.

Hence the eigenvalues and normalised eigenfunctions of A are

λnm = nλ1 +mλ2 =
1
2
γ(n+m) +

1
2
δ(n −m), n,m = 0, 1, · · · (3.48)

and

φnm(q, p) =
1√
n!m!

(c+)n(d+)m1, n,m = 0, 1, · · · (3.49)

Since A is not self-adjoint the eigenvalues are not real, for the underdamped regime,

γ < 2ω0 the dynamic is dominated by the deterministic part and the eigenvalues are

complex:

λnm =
1
2
γ(n+m) +

1
2
i
√

−γ2 + 4ω2
0(n−m).

The overdamped regime γ > 2ω0 is dominated by collision operator γ
[

1
β
∂2

∂p2
− p ∂

∂p

]
and

the eigenvalues are real:

λnm =
1
2
γ(n+m) +

1
2

√
γ2 − 4ω2

0(n−m).

Indeed in the limit γ → ∞ the Langevin dynamics is equivalent to the gradient flow.

In this chapter, we have studied two different dynamics for sampling the canonical

ensemble, namely the homogeneous heat bath and Langevin dynamics. The homoge-

neous heat bath is uniformly elliptic and we did find an explicit rate of convergence to

equilibrium. Langevin dynamics is degenerate and we could only find the exact rate of

convergence for the harmonic potential. The interesting point is that for the harmonic

potential both methods have the same rate of convergence. Naturally we asked if this

is true for other potential. It is desirable to do a numerical experiment for a system

with complex potential, such as a single butane molecule, and examine the rate of

equilibration for each method. However for now, we leave this for future work.
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Chapter 4

Highly Degenerate Thermostat

To calculate averages with respect to the Boltzmann-Gibbs measure , we introduce

a thermostat, a perturbation of Hamiltonian dynamics which generates trajectories

(q(t), p(t)), t ≥ 0, such that, for an observable O = O(q, p)

lim
t→∞ t−1

∫ t

0
O(q(s), p(s)) ds =

∫
X

O(q, p) dρβ(q, p).

Many such thermostats have been proposed [123, 124, 125, 126, 58, 56]. In practice,

it has been observed that these thermostats vary considerably in the extent to which

they alter the dynamics of the system. The standard stochastic thermostats such as

Langevin dynamics perturb every momentum, hence they decorrelate the dynamics

much faster than deterministic thermostats such as Nosé-Hoover. The advantage of

stochastic method is that it is possible to prove ergodicity. In particular, Langevin

dynamics is ergodic and we have shown in Chapter 3 that it converges exponentially

fast to its unique measure. However Nosé-Hoover has been used successfully in many

MD simulations, its success is due to its control of kinetic energy and the fact that its

perturbation to the dynamics is milder than stochastic thermostats such as Langevin

[59], but it has a flaw that its evolution is not ergodic, see [61, 58, 62].

In this chapter we propose a method that is a combination of Nosé-Hoover and

Langevin, similar formulation has also been given in [127]. We add a stochastic per-

turbation to the auxiliary variable of the Nosé-Hoover to improve its ergodicity. The

aim is to achieve the virtue of Langevin while keeping the virtue of Nosé-hoover that

is the disturbance to the dynamics is small.

Some recent articles have used a similar combination of stochastic and deterministic

dynamics. Bussi et al [128] developed a sampling method introducing a stochastic
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perturbation of velocities, while reducing the extent of random perturbation of the

system compare to the Langevin dynamics. On the other hand their method relies on an

auxiliary dynamics for kinetic energy and there is no clear case that it can improve the

ergodicity. A method related to ours was also suggested by Quigley and Probert [129]

for integration in the isothermal-isobaric ensemble. The primary distinction between

our approach and others in the literature is that we provide not only a new method

(which generalizes all the ones of which we are aware) but also an analysis of ergodicity,

making use of the concept of hypoellipticity with respect to the operator defining the

right hand side of the Fokker-Planck equations.

4.1 The Effective Equations

With intuition from Nosé-Hoover thermostat [56, 58, 65] we introduce empirical tem-

perature as

θ =
∇pH ·G(q, p)
∇p ·G(q, p)

,

where, in general G : X → Rn is a function of q and p which we choose to control

the ensemble. Next we replace Nosé-Hoover equations with the following family of

stochastic differential equation

dq
dt

=M−1p, (4.1)

dp
dt

= −∇V (q) − ξG(q, p), (4.2)

dξ =
1
μ

(
∇pH ·G(q, p) − 1

β
∇p ·G(q, p)

)
dt− γ(q, p)ξ dt+ σ(q, p) dW, (4.3)

where W is a one dimensional Brownian motion (not a family of n Brownian motion

as in the case of Langevin), γ(q, p) > 0 and σ(q, p) > 0 are dissipation and diffusion

coefficients. We also assume fluctuation-dissipation relation σ2 = 2
βμγ. Here the system

is augmented by an auxiliary variable ξ which governs the dissipation, assuming that

the empirical temperature θ converges to 1
β then, the mean value of ξ converges to zero

with the rate γ:

E[ξ] = ξ0e
−γt.

Therefore, we expect ξ to be small and fluctuating around zero, consequently the per-

turbation to the system is small. We refer to the method defined by (4.1)-(4.3) as

Nosé-Hoover-Langevin (NHL).
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The augmented Boltzmann-Gibbs measure ρ
NHL

with density

fNHL(q, p, ξ) =
1

Z
NHL

exp
(−β (H(q, p) + μ

2 ξ
2
))
, (4.4)

where

Z
NHL

=
∫

exp
(−β (H(q, p) + 1

2ξ
2
))

dq dp dξ, (4.5)

is invaraint for process x = (q, p, ξ) solving (4.1)-(4.3), that is fNHL satisfies the sta-

tionary Fokker-Planck equation L∗f
NHL

= 0 where

L∗f
NHL

= −LHfNHL
+ ∇p · [ξG(q, p)f

NHL
]−

∂

∂ξ

[
1
μ

(
∇pH ·G(q, p) − 1

β
∇p ·G(q, p)

)
fNHL

]
+ γ

∂

∂ξ
(ξfNHL) +

1
2
σ2∂

2f
NHL

∂ξ2

The LHfNHL
on the right hand side is zero since LH is Liouville’s operator

LHfNHL
= ∇pH · ∇qfNHL

−∇qH · ∇pfNHL
,

for the other terms we have

∇p · [ξGfNHL
] =f

NHL
[ξ∇p ·G− βξ∇pH ·G] ,

− ∂

∂ξ

[
1
μ

(
∇pH ·G− 1

β
∇p ·G

)
f

NHL

]
=f

NHL
[βξ∇pH ·G− ξ∇pG] ,

γ
∂

∂ξ
(ξf

NHL
) =f

NHL

[
γ − γβμξ2

]
,

1
2
σ2 ∂

2f
NHL

∂ξ2
=fNHL

[−γ + γβμξ2
]
,

which sum up to zero.

A simplified version of (4.1)-(4.3) with G(q, p) = p and constant γ is of the form:

dq
dt

=M−1p, (4.6)

dp
dt

= −∇V (q) − ξp, (4.7)

dξ =
1
μ

(
pTM−1p− n

β

)
dt− γξ dt+ σ dW. (4.8)

In what follows we study (4.6)-(4.8).
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4.2 Ergodicity and Convergence

In this section we study the ergodicity and convergence of NHL dynamics (4.6)-(4.8).

We start by writing (4.6)-(4.8) in an abstract form:

dx = X0(x) dt+X1(x) dW, x(0) = x0, (4.9)

where

x =

⎛
⎜⎜⎜⎝

q

p

ξ

⎞
⎟⎟⎟⎠ ∈ R

N , N = 2n+ 1,

W is one dimensional standard Brownian motion, and

X0(x) =

⎛
⎜⎜⎜⎝

M−1p

−∇qV (q) − ξp

1
μ

(
pTM−1p− n

β

)
− γξ

⎞
⎟⎟⎟⎠ , X1(x) =

⎛
⎜⎜⎜⎝

0

0

σ

⎞
⎟⎟⎟⎠ .

Since V : M ⊆ Rn → [0,∞) is smooth, for some constant K we have

||X0(x) −X0(y)|| + ||X1(x) −X1(y)|| ≤ K||x− y|| x, y ∈ R
N ,

i.e., X0 andX1 are Lipschitz continuous which also implies that (4.9) is time-homogeneous.

The generator L of (4.9) is defined by

Lf =
N∑
i

X0,i
∂f

∂xi
+ 1

2

N∑
i,j

{X1X
T
1 }ij

∂2f

∂xi∂xj
, f ∈ C2(RN ). (4.10)

Its corrsponding Fokker-Planck operator L∗ is

L∗f = −
N∑
i=1

∂

∂xi
(fX0,i) +

1
2

N∑
i,j=1

∂2

∂xi∂xj
(f{X1X

T
1 }ij), f ∈ C2(RN ). (4.11)

Hypoellipticity clearly provides smoothness of densities required by Condition 1

(see Chapter 3 Section 3.2), hence the first step is to find an open, connected set U

such that the vector fields X0 and X1 satisfy Hörmander’s condition (see Chapter 3

Section 3.2) at every x ∈ U .
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A simple case where this can be done is given by quadratic Hamiltonians, where

H(q, p) =
1
2
pTM−1p+

1
2
qTBq.

Only a mild assumption on the spectrum of B is needed. For general forces we con-

jecture that L∗ remains hypoelliptic, but it is difficult to verify this analytically due

to the long calculation of iterated Lie brackets and the requirement to show that they

are linearly independent. However, in the case of Langevin dynamics it is possible to

verify hypoellipticity for bounded Lipschitz forces since there are n family of Brownian

motion and therefore we don’t need to iterate brackets [130, 84, 131].

Theorem 9 (Geometric Ergodicity of NHL). Let M,B ∈ Rn×n be two symmetric and

positive definite matrices such that

ωk �= ωl for all k �= l, (4.12)

where ωk = ϕTkM
−1Bϕk are the eigenvalues and ϕ1, . . . , ϕn ∈ Rn are the normalized

eigenvectors of M−1B. If H(q, p) = 1
2p
TM−1p+ 1

2q
TBq and

U =

{
(q, p)

∣∣∣∣∣ q ∈ M ⊆ R
n, p ∈ R

n,

n∏
k=1

(
(q · ϕk)2 + (p · ϕk)2

) �= 0

}
× R, (4.13)

then the process solving (4.9) is ergodic on U with augmented Boltzmann-Gibbs measure

ρ
NHL

. Furthermore there exist a function V : RN → [1,∞) and constants C > 0, r > 0

such that for any measurable function g : U → R with |g(x)| ≤ V(x) the following hold

|Ex0 [g(x(t))] − ρ
NHL

(g)| ≤ CV(x0)e−rt ∀x(0) = x0 ∈ R
n.

The theorem is sharp in the sense that if one of the Assumption (4.12), (4.13) is

violated, then the dynamics generated by (4.9) is not ergodic. Indeed, assume that B

is a diagonal matrix and qi(t = 0) = pi(t = 0) = 0 for some i. Clearly qi(t), pi(t) = 0

for all t and thus the evolution is not ergodic.

Assume next that n = 3 and M = B = Id (the identity matrix). Define the

subspace

S = span{(q0, 0), (p0, 0), (0, q0), (0, p0)} ⊂ R
6,

where q0 and p0 are the initial values of q and p. Again, it can be seen easily that S is
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invariant. Since S is 4-dimensional the evolution is not ergodic.

A nontrivial quadratic Hamiltonian that satisfies (4.12) is a harmonic chain with

clamped end-particles where V (q) = 1
2

∑n
i=0(qi+1 − qi)2 and q0 = qn+1 = 0. Then

∂V (q)/∂qi = −qi−1 +2qi−qi+1 if i ∈ {1, . . . , n}. Without the clamping assumption the

Hamiltonian H is translation invariant and Z =
∫

R2(n+2) dq dp exp(−βH) does not ex-

ist. Define the discrete sine-transform as follows: (Fq)k = q̂k = 2
n+1

∑n
i=1 sin(πik/(n+

1))qi, such that qi =
∑n

k=1 q̂k sin(πik/(n + 1)). One obtains that |q̂| = |q| and

F(−qi−1 + 2qi − qi+1)(k) = 2(1 − cos(πk/(n + 1)))q̂ = ωk q̂(k).

Since the dispersion relation ω is strictly increasing with k, inequality (4.12) is satisfied.

We conjecture that if Equation (4.8) of NHL dynamics is replaced by

dp
dt

= −∇V (q) −A(ξ)p, (4.14)

where A : R → Rn×n is random, then Theorem 9 holds almost surely without the

non-resonance Assumption (4.12).

Conjecture 1. Let M be diagonal matrix and B be symmetric, positive definite matrix.

If

H(q, p) =
1
2
(pTM−1p+ qTBq),

A = ξIn+SM where S = G−GT and G ∈ Rn×n is a random matrix with iid Gaussian

entries, then for almost every realization of S the flow generated by Equations (4.9) is

ergodic on U (defined by (4.13)).

Note that A leaves ρNHL invariant, indeed, since S is skew-symmetric we have

pTSp = 0 and ∇p · (SMp) = 0. Thus, we have

∇p · (A(ξ)pf
NHL

) =f
NHL

[
nξ + ∇p · (SMp) − βpT (ξIn + SM)M−1p

]
=fNHL

[
nξ − βξpTM−1p− βpTSp

]
=f

NHL

[
nξ − βξpTM−1p

]
.

Proof of Theorem 9. The proof follows from application of Theorem 7 (see Section

3.2 of Chapter 3) and consists of three steps. First we show that L∗ is hypoelliptic,

hence Condition 1(ii) is satisfied. Second we verfiy Condition 1(i) and third we verify
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Condition 2. Finally we apply Theorem 7 to get the desired result.

We can assume without loss of generality that γ = μ = β = 1 and M = Id.

Furthermore, we assume that B is diagonal, hence

H(q, p) =
1
2

n∑
k=1

(ωkq2k + p2
k).

This assumption does not involve any loss of generality since it amounts to choosing

the coordinate system which is created by the eigenvectors ϕ1 . . . ϕn.

Step 1: hypoellipticity of L∗. After the above simplifications the vector fields X0

and X1 assume the form

X0 =
(
p,−Bq − ξp, (‖p‖2 − n) − ξ

)
, X1 =

(
0, 0,

√
2
)
.

Next, we define recursively the following sequence of vector fields:

Zk = 1
2 [Yk,X3], Yk+1 = −1

2 [Zk,X3],

where

X̃1 = 1√
2
X1 = (0, 0, 1) ,

X̃0 = X0 −
(
(‖p‖2 − n) − ξ

)
X̃1 = (p,−Bq − ξp, 0),

X2 = [X̃0, X̃1] = (0, p, 0),

X3 = X̃0 + ξX2 = (p,−Bq, 0),
Y1 = [X2,X3] = (p,Bq, 0).

Induction yields that

Yk = (Bk−1p,Bkq, 0), Zk = (Bkq,−Bkp, 0), k = 1, 2, . . . , n

After these preparations we can show that the vectors X1, Y1, Z1, . . . Yn−1, Zn−1, Yn, Zn

span R2n+1. Clearly, it suffices to demonstrate that for each η, μ ∈ Rn there exist

coefficients a1, b1 . . . , an, bn ∈ R such that

n∑
k=1

(akYk + bkZk) =
n∑
k=1

(akBk−1p+ bkB
kq, akB

kq − bkB
kp) = (η, μ). (4.15)
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Since the matrix B is diagonal, Equation (4.15) is equivalent to

⎛
⎝ diag(B−1p) diag(q)

diag(q) −diag(p)

⎞
⎠
⎛
⎝ Va

Vb

⎞
⎠ =

⎛
⎝ η

μ

⎞
⎠ ,

where Vkl = ωlk, k, l = 1 . . . n is a Vandermonde matrix with determinant

det(V) =
∏
k

ωk
∏
k>l

(ωk − ωl).

Set now

ã = Va, b̃ = Vb, (4.16)

then the k-th components of ã, b̃ solve of the linear system

⎛
⎝ ω−1

k pk qk

qk −pk

⎞
⎠( ãk

b̃k

)
=
(
ηk
μk

)
,

i.e.
(
ãk

b̃k

)
= 1

ω−1
k p2k+q2k

(
pk
qk

qk
−ω−1

k pk

)(
ηk
μk

)
.

The coefficient vectors a and b are obtained by inverting the relation (4.16) which

is possible since we have assumed that the eigenvalues ωi are pairwise different from

each other and bigger than zero, thus the determinant of V is nonzero. Thus L∗ is

hypoelliptic.

Step 2: verification of Condition 1(i). In principle Condition 1(i) is satisfied when-

ever the coefficient of the SDE are Lipschitz continuous and the diffusion matrix is

invertible. We use a technique from [84] to verify Condition 1(i). It suffices to show

that for any x0, y ∈ RN , the solution of (4.9) starting at x0 will reach an arbitrary

small neighbourhood of y.

Consider W ∈ C1([0, t],R) such that

dz
dt

= X0(z) +X1(z)
dW
dt

satisfies z(0) = x0 and z(t) = y. Note that it is possible to find such W, since we can

construct smooth curve z(t) using polynomial interpolation between the end points.
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Hence we have,

x(t) = x0 +
∫ t

0
X0(x(s)) ds+

∫ t

0
X1(x(s)) dWs,

z(t) = x0 +
∫ t

0
X0(z(s)) ds+

∫ t

0
X1(z(s)) dWs.

This gives

||x(t) − z(t)|| ≤
∫ t

0
||X0(x(s)) −X0(z(s))||ds +

∫ t

0
||X1(x(s)) −X1(z(s))||dWs

+
∥∥∥∥
∫ t

0
X1(x(s)) d (Ws −Ws)

∥∥∥∥ .
Integrating by parts and using the fact that X0 and X1 are Lipschitz, we get

||x(t) − z(t)|| ≤ K

∫ t

0
‖x(s) − z(s)‖ds+∥∥∥∥X1(x(t))(Wt −Wt) −

∫ t

0
(Ws −Ws) dX1(x(s))

∥∥∥∥ ,
≤ K

∫ t

0
‖x(s) − z(s)‖ds +K sup

0≤s≤t
‖Ws −Ws‖.

Using the Gronwall’s lemma we obtain

||x(t) − z(t)|| ≤ KeKt sup
0≤s≤t

‖Ws −Ws‖.

Now suppose that

sup
0≤s≤t

‖Ws −Ws‖ ≤ ε =
δ

KeKt
, (4.17)

since

0 <
∫ +ε

−ε
e−(u−W)2 du,

the probability that the event (4.17) occurs is also positive. Thus

||x(t) − y|| ≤ δ,

as required.

Step 3: verification of Condition 2. Let V : U → [1,∞):

V(x) = 1
2p
TM−1p+ V (q) + 1

2 (ξ − a)2 , (4.18)
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by Lemma 1 (see Section 3.2 of Chapter 3) it is sufficient to find constant λ ∈ (0,∞)

and Λ ∈ (0,∞) such that

LV(x) ≤ −λV(x) + Λ.

We start by calculating

LV =
n∑
i=1

pi
mi

∂V
∂qi

−
n∑
i=1

∂V

∂qi

∂V
∂pi

− ξ
n∑
i=1

pi
∂V
∂pi

+
1
μ

(
n∑
i=1

p2
i

mi
− n

β

)
∂V
∂ξ

− γξ
∂V
∂ξ

+
1
2
σ2 ∂

2V
∂ξ2

,

where L is the generator of (3.19), we have

LV =〈M−1p,Bq〉 − 〈M−1p,Bq〉 − ξ〈p,M−1p〉 + ξ〈p,M−1p〉

− n

β
ξ − a〈p,M−1p〉 +

na

β
− γμξ2 + γμaξ +

1
2
σ2

= − a〈p,M−1p〉 − γμξ2 +
(
γμa− n

β

)
ξ +

na

β
+

1
2
σ2

Let define a by

γμa− n

β
= 0,

which gives a = n
γμβ , hence we get,

LV = −apTM−1p− γμξ2 − γμa2 + γμa2 +
(
na

β
+

1
2
σ2

)
,

using the fact that (x− y)2 ≤ 2x2 + 2y2, we get

LV ≤ −2a
[
pTM−1p

2

]
− γμ

[
(ξ − a)2

2

]
+
(
γμa2 +

na

β
+

1
2
σ2

)
.

Let,

λ = min {2a, γμ} = min
{

n

γμβ
, γμ

}
, (4.19)

then we obtain

LV ≤− λV + λV (q) +
(
γμa2 +

na

β
+

1
2
σ2

)

≤− λV + Λ,
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where

Λ = sup
{
λV (q) + γμa2 +

na

β
+

1
2
σ2

}
.

Thus, for a finite system n <∞, if we choose μ to be of order n so that a2 <∞, and

if we let M = Tn ⊂ Rn, where Tn is n-dimensional torus, which is the case in most of

MD simulations since we often use periodic boundary conditions, or M = {q : V (q) <

∞}, then since V (q) is smooth and bounded below by zero, we have Λ <∞.

4.3 Numerical Integrators for NHL

In this section we proposed some numerical methods to obtain a discrete solution of

NHL. In general the sampling result is dependent on the integrator we use to solve

(4.6)-(4.8). More precisely we want the discrete Markov chain which is the numerical

solution of NHL to have the same distribution and convergence rate as the continuous

solution.

One way to design numerical integrator for NHL is to split equations (4.6)-(4.8)

into

dq
dt

=M−1p, (4.20)

dp
dt

=0, (4.21)

dξ
dt

=0, (4.22)

dq
dt

=0, (4.23)

dp
dt

= −∇qV (q), (4.24)

dξ
dt

=0, (4.25)

dq
dt

=0, (4.26)

dp
dt

= − ξp, (4.27)

dξ
dt

=
1
μ

(
pTM−1p− n

β

)
, (4.28)
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dq
dt

=0, (4.29)

dp
dt

=0, (4.30)

dξ = − γξ dt+ σ dW. (4.31)

Let

ΦΔt,H1(q, p, ξ) := (q + ΔtM−1p, p, ξ) and ΦΔt,H2(q, p, ξ) := (q, p − Δt∇qV (q), ξ)

be the discrete maps for solutions of (4.20)-(4.22) and (4.23)-(4.25). Similarly, we define

numerical solution of (4.26)-(4.28) by the composition

ΦΔt,NH(qk+1, pk+1, ξk+1) := ΦΔt/2,NH2
◦ ΦΔt,NH1 ◦ ΦΔt/2,NH2

(qk, pk, ξk)

given by

pk+1/2 =pk − Δt
2

(ξkpk+1/2),

ξk+1 =ξk +
Δt
μ

(
(pk+1/2)TM−1pk+1/2 − n

β

)
,

pk+1 =pk+1/2 − Δt
2

(ξk+1pk+1/2).

The discrete solution of Ornstein-Uhlenbeck process (4.31) is given by

ΦΔt,OU(q, p, ξ) := (q, p, e−γΔtξ +

√
(1 − e−2γΔt)

μβ
η),

where η is a normal random variable with mean zero and variance 1.

A numerical solution of NHL is obtained by the composition

ΦΔt/2,H2
◦ ΦΔt/2,NH2

◦ ΦΔt,NH1 ◦ ΦΔt,OU ◦ ΦΔt,H1 ◦ ΦΔt/2,NH2
◦ ΦΔt/2,H2

(qk, pk, ξk)
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which is given by

pk+1/2 =pk − Δt
2
∇qV (qk) − Δt

2
(ξkpk+1/2),

qk+1 =qk + Δtpk+1/2,

ξk+1 =e−γΔtξk +
Δt
μ

(
(pk+1/2)TM−1pk+1/2 − n

β

)
+

√
(1 − e−2γΔt)

μβ
ηk,

pk+1 =pk+1/2 − Δt
2
∇qV (qk+1) − Δt

2
(ξk+1pk+1/2),

where {ηk} are normal random variables N (0, 1). One can follow the procedure for

proving Theorem 9 and the technique used in [85, 84] to show that the Markov process

generated by the above method is geometrically ergodic with the same assumptions

that we used to prove the ergodicity for continuous solution. It can also be shown

that the above method is second-order (in weak sense) by comparing it to the standard

second-order weak method for SDEs with additive noise from [132](p. 113).

Next, integrating the Nosé-Hoover part, that is (4.26)-(4.28) we obtain

p(t+ Δt) =p(t) exp
(
−
∫ t+Δt

t
ξ(s) ds

)
,

ξ(t+ Δt) =ξ(t) +
1
μ

∫ t+Δt

t
p(s)TM−1p(s) ds− n

μβ
Δt.

Using the approximations

∫ t+Δt

t
ξ(s) ds = Δtξ(t)+O(Δt2) and

∫ t+Δt

t
p(s)TM−1p(s) ds = Δt(p(t)TM−1p(t))+O(Δt2),

gives

p(t+ Δt) =p(t)e−Δtξ(t) + O(Δt2), (4.32)

ξ(t+ Δt) =ξ(t) +
Δt
μ

((
p(t)TM−1p(t)

)− n

β

)
+ O(Δt2). (4.33)

Equation (4.31) can be written as the integral equation

ξ(t+ Δt) = ξ(t) − γ

∫ t+Δt

t
ξ(s) ds+ σ

∫ t+Δt

t
dW (s),
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where
∫ t+Δt
t dW (s) is Gaussian with mean zero and variance

E

[(∫ t+Δt

t
dW (s)

)2
]

= Δt.

Hence, using the approximation

∫ t+Δt

t
ξ(s) ds =

Δt
2

(ξ(t) + ξ(t+ Δt)) + O(Δt2)

we can approximate the Ornstein-Uhlenbeck process (4.31) by

ξ(t+ Δt) = ξ(t) − γΔt
2

(ξ(t) + ξ(t+ Δt)) + σ
√

Δtη, (4.34)

where η is a normal random variable (i.e. η ∼ N (0, 1)). Using ΦΔt,H1, ΦΔt,H2, (4.32)-

(4.33) and (4.34), we obtain the following discretization:

P :=pk − Δt
2
∇qV (qk),

Q :=qk +
Δt
2
P,

P := exp
(
−Δt

2
ξk
)
P,

ξk+1 :=ξk +
Δt
μ

((
P TM−1P

)− n

β

)
− γΔt

2
(ξn + ξk+1) +

√
2γΔt
μβ

ηk,

P := exp
(
−Δt

2
ξk+1

)
P,

qk+1 =Q+
Δt
2
P,

pk+1 =P − Δt
2
∇qV (qk+1).

A discretization of NHL which we used in this chapter for our numerical experiment
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is

qk+1/2 =qk +
Δt
2
pk,

p̄ =pk − Δt
2
∇V (qk+1/2) − Δt

2
ξ̄p̄,

ξ̄ =ξk +
Δt
2
μ−1

(
p̄TM−1p̄− n

β

)
− Δt

2
γξ̄ +

1
2

√
2γΔt
μβ

ηk,

pk+1 =2p̄− pk,

ξk+1 =2ξ̄ − ξk,

qk+1 =qk+1/2 +
Δt
2
pk+1.

This method is semi-implicit (requiring an iteration to solve at each step), but it is

important to note that only one force evaluation is required at each time step. Hence,

in practice the method has the cost of an explicit integrator such as comparable methods

[87, 77, 76, 92] for Langevin dynamics. We expect both above methods to be second-

order (in weak sense). This can be checked by following the procedures in [86], that

is by comparing the above methods with the standard second-order weak method for

SDEs with additive noise from [132] (p. 113) and assuming that the forces are globally

Lipschitz.

Alternative discretization may be obtained by following the procedures described

in [90, 132, 76, 77, 92, 81, 78].

4.4 Numerical Results

In this section we run a series of tests on the system (4.6)-(4.8) to investigate the

validity of the invariant measure ρ
NHL

and its applications.

4.4.1 Harmonic Oscillator

First we investigate the dynamics of (4.6)-(4.8) for the case where the energy of the

system is given by a Hamiltonian of the form

H(q, p) =
p2

2m
+ ω2 q

2

2
.

In our experiment we chose ω = m = 1, β = 1.0, μ = 0.5, σ = 5.0 and Δt = 0.01.

The parameter μ influences the control on temperature and σ influences the coupling be-
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Figure 4.1: Convergence of momentum distribution is verified for the harmonic oscil-
lator. The solid line is the exact density and the approximated density is in bar style.
The (left) column 105 steps, the (middle) column 106 of steps and the (right) column
107 steps, each step of size Δt = 0.01.

tween system and the heat bath. To verify that our dynamics generates the Boltzmann-

Gibbs distribution, the distribution of momentum is compared to
√

β
2πme

−β p2

2m . This

is demonstrated in Figure 4.1.

In order to quantify the error in the distribution generated by (4.6)-(4.8), we define

the following norm. For a given interval (a, b), define

Dn(x) =

(
1
M

M∑
i=1

(
φKi(x) −

∫
Ki

dρβ

)2
)1

2

, (4.35)

where x is a set of size n samples generated by the dynamics, (K1, . . . ,KM ) are M

partitions of (a, b) and φKi(x) is the observed density of samples in x which belong to

the partition Ki.

In Figure 4.2, we compare the error norm Dn(x) for the new dynamics (Hoover-

Langevin) with other widely used sampling methods namely Nosé-Hoover chains (NHC)

[62] (an extension of Nosé-Hoover where a chain of thermostats ξi with thermostat

coefficient Qi are attached to the system) and Langevin dynamics to investigate the
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Figure 4.2: The graph shows the errorDn(x) in the approximated density of momentum
against the number of samples n. The rate of convergence of the distribution of Hoover-
Langevin is similar to Nosé-Hoover chain (NHC) and Langevin dynamics for the case
of harmonic oscillator.

Table 4.1: Error (4.35) in distribution for p, p2 and p4 using Hoover-Langevin.
Error for 105 evolutions Error for 106 evolutions Error for 107 evolutions

p 0.201035 × 10−2 0.454371 × 10−3 0.167924 × 10−3

p2 0.912343 × 10−3 0.207135 × 10−3 0.444854 × 10−6

p4 0.130941 × 10−2 0.251866 × 10−3 0.487444 × 10−6

rate of convergence. We chose γ = 1 for Langevin and Q1 = Q2 = 0.1 for NHC which

we observed to be optimal parameters for these methods. The time step Δt = 0.01

was used for all simulations. In order to reduce the inconsistency in the results due

to the random noise, for each method, 100 different simulations with different initial

conditions have been performed and the result illustrated in Figure 4.2 is the mean of

the 100 different results.

We also computed the errors (4.35) in distribution for p2 and p4, which are presented

in Table 4.1.

4.4.2 Discrepancy In The Dynamics

One important aspect of molecular dynamics (MD) is to capture macroscopic infor-

mation from the dynamics of atoms or small constituent parts that form a material.

Therefore it is essential to take care that the algorithm used in MD is not changing the
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dynamics of the physical system significantly. The new dynamics is designed to gener-

ate the canonical distribution by introducing a minimal perturbation to the system so

that the dynamics of the thermostated system is close to the unperturbed system.

Figure 4.3: Three particles of mass m are connected by springs to the origin and
interacting with each other through Lennard-Jones (LJ) potential.

Consider a two dimensional system consisting of three particles which are connected

by springs with rest length to a fixed point at the origin (Figure 4.3). The interaction

between particles is modelled by Lennard-Jones potential,

ULJ(r) = 4ε
[(α

r

)12 −
(α
r

)6
]
.

The Hamiltonian of the system is

H(q, p) =
3∑
i=1

1
2mi

p2
i +

3∑
i=1

1
2k (L− ‖ qi ‖)2 +

2∑
i=1

3∑
j=i+1

ULJ(rij), (4.36)

where L is the spring rest length, k is the spring constant, rij =‖ qj − qi ‖ and ULJ

is the Lennard-Jones potential. This is a challenging problem in terms of equilibration

due to the locking of energy in springs. x

In our simulation we took α = ε = 1, k = 10, L = 1, mi = 1 for i = 1, 2, 3 and

set the target temperature T = 1, kB = 1. In order to measure the changes in the

dynamics we look at the velocity autocorrelation function of the radial component of

velocity,

vri(t) =
q̇i · qi
‖ qi ‖ , (4.37)

To calculate the canonically weighted VAF function we first construct a set of 1000

random initial conditions {zi} from a canonical distribution at the target temperature.

From each zi we run a microcanonical simulation and calculate its VAF, the correct
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Figure 4.4: Autocorrelation function c1(τ), computed using Hoover-Langevin,
Langevin, Nose-Hoover and NHC, and compared to the velocity autocorrelation of
canonically averaged microcanonical (c̄1(τ)) dynamics.

VAF is then obtained as a weighted average of VAFs from different initial conditions:

c̄(τ) =
∑

i c(τ ; zi)ρβ(zi)∑
i ρβ(zi)

, (4.38)

where

c(τ ; z) = lim
T→+∞

1
T

∫ T

0

vr1(t; z)vr1(t+ τ ; z)
vr1(t; z)vr1(t; z)

dt, (4.39)

with vr1 representing, in this case, the radial velocity of the first particle of the system.

Figure 4.4 compares the radial VAF for Hoover-Langevin with those obtained by other

methods. The parameters are chosen with the criteria to achieve a correct distribu-

tion: μ = 0.1, σ = 1 for Hoover-Langevin, γ = 1 and γ = 0.5 for Langevin, Q = 0.3

for Nosé-Hoover and Q1 = Q2 = 0.1 for NHC. We used these values of the Langevin

parameter so that the error in its distribution is of the same size of the error in the

distribution for Hoover-Langevin. Moreover, we observed that for γ < 0.5 the temper-

ature fails to reach its target value within the simulation time, we elaborate more on

temperature in the next subsection. As can be seen from Figure 4.4, Hoover-Langevin

follows the VAF of microcanonical (unperturbed dynamics) very closely, whereas the

Langevin dynamics for γ = 1.0 and γ = 0.5 profoundly changes the VAF, since it

perturbs every degree of freedom by adding random noise. Using smaller values of γ
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Table 4.2: Comparison of root mean square of error on [0, 4] of VAF and the error in
distribution using (4.35) for 106 of Δt = 0.01 evaluations.

Method Parameters Error in distribution Error on [0, 4] of VAF
Hoover-Langevin μ = 0.1, σ = 1 0.270198 × 10−3 0.0675
Hoover-Langevin μ = 0.1, σ = 10 0.232064 × 10−3 0.0578

Langevin γ = 0.5 0.252864 × 10−3 0.1018
Langevin γ = 1 0.228635 × 10−3 0.1383

NHC Q1 = Q2 = 0.1 0.275997 × 10−3 0.0603
Nos e-Hoover Q = 0.3 0.165209 × 10−2 0.0807

would improve the result for the VAF for Langevin dynamics, albeit at the expense

of further perturbing the distribution obtained on a fixed time interval. Hence we

compare the VAF of Langevin and Hoover-Langevin for the same level of perturbation

needed for each method to approximate the Gibbs measure with the same accuracy,

with a given amount of computational effort, Table 4.2 shows that Langevin dynamics

and Hoover-Langevin approximate the Gibbs measure with very close accuracy for the

chosen values of parameters. This illustrates that the dynamics of Hoover-Langevin has

the characteristic of deterministic thermostats of being close to the original dynamics

despite the fact that it is a stochastic method.

The error in VAF and the error in distribution for Hoover-Langevin, Nose-Hoover,

NHC and Langevin method are shown in Table. 4.2. It worth noting that Langevin

fails to produce the correct qualitative approximation of VAF as is visible in Figure

4.4.

4.4.3 Temperature Control

One important feature of the new dynamics is the control feedback loop in the dynamics

which stabilizes the cumulative average kinetic energy of the system near the target

temperature. Cumulative average kinetic energy is defined by

K(t) =
1
t

∫ t

0
n−1pT (s)M−1p(s) ds.

In Figure 4.5 we compare the K(t) of the Hoover-Langevin with the Langevin dynamics

for the system (4.36). We used μ = 0.1, σ = 1 for Hoover-Langevin and γ = 1 and

γ = 0.5 for Langevin, both methods produce correct Gibbs measure in the long term,

but the convergence of K(t) is much slower for Langevin dynamics. Note that this
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Figure 4.5: The (top) panel shows cumulative kinetic energy during 105 of time steps
(Δt = 0.01) simulation. K(t) computed by Hoover-Langevin dynamics reaches 1 (the
target temperature) and stays close to 1, whereas it takes longer for Langevin dynamics
to reaches the target temperature and the deviation is greater. The (lower) panel shows
the slow convergence of temperature over twenty million time steps.

experiment does not demonstrate convergence to equilibrium; for general convergence

to equilibrium one needs to compare the spectral gaps of the generator of the process

(see [95]), which is difficult to do for Hoover-Langevin because it highly degenerate.

4.5 Adaptive Langevin Dynamics

In many applications it is desirable to reduce the disturbance to the dynamics. Intu-

itively one may argue that using small values for γ is the way forward. However, for

Langevin dynamics the rate of relaxation to equilibrium and the rate at which the dis-

turbance to the dynamics is growing, are both proportional to γ. Thus, small γ slows

down the convergence. This suggest that we should search for a thermostat whose rate
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of convergence to equilibrium is faster than the rate at which it perturbs the dynam-

ics. Another solution would be to adaptively control the dissipation parameter in the

Langevin dynamics. Indeed this is what we try here.

We propose the following stochastic differential equations

dq =M−1p dt, (4.40)

dp = −∇qV (q) dt− ξp dt+ σ dW, (4.41)

dξ =
1
μ

(
pTM−1p− n

β

)
dt, (4.42)

where W is n-dimensional Brownian motion, σ ∈ Rn×n is a positive definite matrix,

and we assume the fluctuation-dissipation relation σσT = 2
βγM , where γ ∈ R+. The

corresponding Fokker-Planck equation is

∂f

∂t
= L∗f = −∇q · (M−1pf) + ∇p · (∇qV (q)f) + ∇p · (ξpf)

+
1
2
∇p · (σσT∇pf) − ∂

∂ξ

(
1
μ

(
pTM−1p− n

β

)
f

)
. (4.43)

The augmented Boltzmann-Gibbs measure with density is

f
LNH

(q, p, ξ) =
1

ZLNH

exp
(
−β

(
H(q, p) +

μ

2
(ξ − γ)2

))
, (4.44)

where ZLNH =
∫
fLNH dq dp dξ is the stationary solution of the Fokker-Planck equation

L∗f
LNH

= 0. Indeed, substituting f
LNH

in (4.43) we have

−∇q · (M−1pf
LNH

) =f
LNH

(
βM−1p · ∇qV

)
,

∇p · (∇qV fLNH ) = − fLNH

(
β∇qV ·M−1p

)
,

∇p · (ξpfLNH
) =f

LNH

(
nξ − βξpTM−1p

)
,

1
2
∇p · (σσT∇pfLNH

) =f
LNH

(−nγ + βγP TM−1p
)
,

− ∂

∂ξ

(
1
μ

(
pTM−1p

)
f

LNH

)
=f

LNH

(
βξpTM−1p− nξ

)
+

f
LNH

(−βγpTM−1p+ nγ
)
,

which sum up to zero.

The dynamics of (4.40)-(4.42) is adaptive in the sense that we only fix the average

value of dissipation coefficient, that is E[ξ] = γ. In this way we can effectively choose
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small γ and still converge rapidly to the right Maxwellian distribution for momenta.

Remark

The following can be used as an alternative to the above method:

dq
dt

=M−1p dt,

dp
dt

= −∇qV (q) − ξp+ η,

dξ
dt

=
1
μ

(
pTM−1p− n

β

)
,

dη = −M−1p dt− γ(q, p)η dt+ σ(q, p) dW,

where W is n-dimensional Brownian motion, γ : Rn × Rn → Rn×n is the dissipation

matrix, σ : Rn × Rn → Rn×n is the diffusion matrix and we assume the fluctuation-

dissipation relation σσT = 2
βγ, which implies that the augmented Boltzmann-Gibbs

measure, with density proportional to

exp
(
−β

(
H(q, p) +

μ

2
ξ2 +

1
2
η2

))
,

is invariant under the evolution of the above SDE.

4.6 Discussion and Conclusion

We have presented a new thermostat for generating the canonical distribution in molec-

ular dynamics simulations. This thermostat is derived by combining Nosé-Hoover and

Langevin dynamics together with the aim to achieve a provable correct distribution and

at the same time minimizing the effect on the dynamics. The new method should be

of interest in cases where one is concerned with computing the average of local observ-

ables which depend on small number of degrees of freedom. For instance for calculating

free energy of activated processes where the process occurs along a reaction coordinate

which can be described as a function of the degrees of freedom of the system. This

new thermostat is likely to be preferable for some non-equilibrium molecular dynamics

simulations than the Langevin method, since it is close to the dynamics of the unper-

turbed system, and therefore interacts weakly with a non-equilibrium force acting on

the system.

The new dynamics has an invariant probability measure ρ
NHL

which is proportional
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to the Boltzmann-Gibbs distribution and we have proved analytically that under a non-

resonance assumption, an open, connected set U with full measure can be constructed

such that ρ
NHL

is ergodic on U . Thus, when the new thermostat is applied to Hamil-

tonians without resonances the dynamics is ergodic. This has been checked in several

simple examples.
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Chapter 5

A Measure of Efficiency for Heat

Bath in Molecular Dynamics

This chapter is concerned with the question of how efficiently molecular dynamics can

calculate time dependent properties such as autocorrelation functions in the canonical

ensemble. A heat bath (a thermostat) is a modified Hamiltonian dynamics

d
dt
ϕ̃t(x) = J∇H(ϕ̃t(x)) + ε(ϕ̃t(x)), (5.1)

such that for a function of phase space O : X → R

lim
t→∞ t−1

∫ t

0
O(ϕ̃s(x)) ds =

∫
X

O(x) dρβ(x). (5.2)

In principle ε should be small perturbations to the dynamics and yet large enough to

achieve the equality in (5.2). Indeed, a given method will typically have parameters that

allow adjustment of the degree of perturbations introduced, usually balanced against

the need for a rapid thermalisation of the system. Here we provide a first attempt

to quantify this relationship, by calculating a quantity we call the efficiency of a heat

bath: the ratio of the rate of convergence to equilibrium to the rate of growth of the

dynamical perturbations.

To clarify this, let η be the efficiency of a heat bath, and let r be the rate of

convergence to equilibrium, so that the rate at which the error in dynamics grows is

r/η. Now, suppose we want to measure an equilibrium correlation function that decays

in time τ . To do this with only a small error, we need τ(r/η) � 1 which implies

1/r � τ/η. Thus the time to reach equilibrium, which is of order 1/r, is � τ/η. Any
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simulation to measure equilibrium properties will last at least as long as the time to

reach equilibrium (i.e., it will last a time that is � τ/η). So the larger η, the more

efficient the method, in the sense that we can compute accurately correlation functions

for longer time (i.e., for larger τ).

We calculate the efficiency for Langevin dynamics (2.20)-(2.21) and Nosé-Hoover-

Langevin (NHL) (4.6)-(4.8). We see that, for a system with many degrees of freedom,

NHL is more efficient than Langevin.

5.1 The Rate of Growth of Perturbations

We define the rate of growth of perturbation as the rate at which the relative error

(
E
[
‖ϕt(x) − ϕ̃t(x)‖2

])1/2

(
E
[
‖ϕt(x)‖2

])1/2
(5.3)

grows in time, where ϕ̃t is the solution of the perturbed equation (5.1) and ϕt is the

unperturbed Hamiltonian flow map. The expectation E in (5.3) means average over

equilibrium set of initial conditions.

5.1.1 Growth of Perturbations for NHL

Let us repeat the equations (4.6)-(4.8) for NHL dynamics:

dq
dt

=M−1p, (5.4)

dp
dt

= −∇V (q) − ξp, (5.5)

dξ =
1
μ

(
pTM−1p− n

β

)
dt− γξ dt+ σ dW. (5.6)

Note that here and in Section 5.1.2, we are only interested in the growth of perturbations

during a short time t � 1
λ , where λ is the largest Lyapunov exponent of the system.

Therefore we can assume that the changes in forces are negligible. Thus the main

perturbation in momenta is:

δp(t) = −
∫ t

0
ξ(s)p(s) ds.
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The variance of this quantity (average over equilibrium set of initial conditions 1) is

E
[
‖δp(t)‖2

]
=

n∑
i=1

E
[
(δpi(t))

2
]
.

Its rate of change is

d
dt

E
[
‖δp(t)‖2

]
=

n∑
i=1

d
dt

E
[
(δpi(t))

2
]
,

for each term in the sum, we have

d
dt

E
[
(δpi(t))2

]
=2E

[
ξpi

(∫ t

0
ξ(s)pi(s) ds

)]

≤2
√

E[ξ2p2
i ]
√

E
[
(δpi(t))

2
]
,

thus

d
dt

√
E
[
(δpi(t))

2
]
≤
√

E
[
ξ2p2

i

]
≤ 1
β

√
m

μ
,

which gives √
E
[
‖δp(t)‖2

]
≤ 1
β

√
nm

μ
t.

Hence the rate of growth in the standard deviation of the perturbations in p is at most
1
β

√
nm
μ , and the rate of growth in the relative error, i.e.,

√
E
[
‖δp(t)‖2

]
√

E
[
‖p‖2

] ,

is at most
√

1
βμ .

1Here E is the expectation with respect to the stationary density fNHL
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5.1.2 Growth of Perturbations for Langevin

We repeat the equations (2.20)-(2.21) for Langevin dynamics:

dq =M−1p dt, (5.7)

dp = −∇qV (q) dt− γp dt+ σ dW, (5.8)

where the mass matrix M = mIn, γ ∈ R is a positive constant and σ2 = 2m
β γ. In the

Langevin dynamics the perturbations appear only in momenta. Over any short time

(t � 1
λ , where λ is the largest Lyapunov exponent of the system) the second term in

equation (5.8) introduces an error −γp and the third term intriduces a random error

whose mean is zero. Thus the growth of perturbations can be find by looking at

δp(t) = −
∫ t

0
γp(s) ds.

The variance of this quantity (average over equilibrium set of initial conditions 1) is

E
[
‖δp(t)‖2

]
=

n∑
i=1

E
[
(δpi(t))

2
]

=
n∑
i=1

E

[(∫ t

0
γpi(s) ds

)2
]
.

Its rate of change is

d
dt

E
[
‖δp(t)‖2

]
=

n∑
i=1

d
dt

E

[(∫ t

0
γpi(s) ds

)2
]
,

for each term in the sum, we have

d
dt

E

[(∫ t

0
γpi(s) ds

)2
]

=2E
[
γpi

(∫ t

0
γpi(s) ds

)]

≤2
√

E
[
γ2p2

i

]√√√√E

[(∫ t

0
γpi(s) ds

)2
]
.

1Here E is the expectation with respect to the stationary density fβ
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Thus

d
dt

√√√√E

[(∫ t

0
γpi(s) ds

)2
]
≤
√

E
[
γ2p2

i

]

≤ γ

√
m

β
,

which implies

√
E
[
‖δp(t)‖2

]
≤
√
nm

β
γt.

Hence the rate of growth in the standard deviation of the perturbations in p is at most√
nm
β γ, and the rate of growth in the relative error is at most γ.

5.2 The Rate of Convergence to Equilibrium

In this section we estimate the time it takes for each method to reach Maxwellian dis-

tribution for momenta. Our estimates are valid for systems not far from equilibrium,

for systems far from equilibrium one should study the spectral gap of the generator

for each method which is not always possible. The motivation for looking at the con-

vergence in momenta comes from simulations, where usually the system is said to be

equilibrated when the temperature converges to its limit.

5.2.1 Equilibration Rate for NHL

The rate of convergence to equilibrium can be seen as a rate at which the system

converges to the absolute temperature T . Let M = mIn, the generator L of NHL

dynamics is

L = M−1p · ∇q −∇qV (q) · ∇p − ξp · ∇p +
1
μ

(
pTM−1p

n

β

)
∂

∂ξ
− γξ

∂

∂ξ
+

1
2
σ2 ∂

2

∂ξ2
.

The rate of change of the expectation of the energy H(q, p) is

d
dt

E [H(q, p)] =E [LH(q, p)]

=E
[
M−1p · ∇qV (q) −∇qV (q) ·M−1p− ξpTM−1p

]
= − E

[
ξ
(
pTM−1p

)]
.
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The rate of change of the expectation of ξ can be calculated by taking expectation of

equation (5.6):

d
dt

E[ξ(t)] = −γE[ξ(t)] +
n

μ

(
θ − 1

β

)
,

where we defined the empirical temperature θ as

nθ = E
[
pTM−1p

]
.

We use the following assumption to find a closed system in terms of θ and E[ξ].

Assumption 1 (Quasi-Equilibrium).

• We assume that starting from equilibrium initial conditions, the empirical tem-

perature and the expectation of energy are linked by the same relation as in equi-

librium:

CV =
∂ρNHL(H)

∂T
≈ ∂E[H]

∂θ
,

where CV is the heat capacity at constant volume.

• The random variables ξ and
(
pTM−1p

)
that are uncorrelated initially at time

t = 0, remain uncorrelated for all t > 0:

E
[
ξ
(
pTM−1p

)] ≈ E [ξ]E
[
pTM−1p

]
.

Using Assumption 1 we obtain

CV
dθ
dt

= − nθE[ξ],

d
dt

E[ξ] = − γE[ξ] +
n

μ

(
θ − 1

β

)
,

The equilibrium of the above system is when θ = 1
β and ξ = 0, hence we can study

the decay to equilibrium by looking at the corresponding linearised system around this

equilibrium:

CV
dδ
dt

= − n

β
E[ξ],

d
dt

E[ξ] = − γE[ξ] +
n

μ
δ,
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where we used θ = 1
β + δ. The linearised system can be written as

⎡
⎣ dδ/dt

dE[ξ]/dt

⎤
⎦ =

⎡
⎣ 0 −n/(CV β)

n/μ −γ

⎤
⎦
⎡
⎣ δ

E[ξ]

⎤
⎦ . (5.9)

Its eigenvalues are

λ1,2 = −γ
2
± 1

2

√
γ2 − 4

n2

μCV β
. (5.10)

It is worth noting that the constant volume specific heat is of order n, indeed for a

system with quadratic potential CV = nk, where k is the Boltzmann constant. Hence

if we choose μ to be of order n, then n2

μCV β
≈ 1

β . The underdamped regime is when

γ2 < 4 n2

μCV β
and all eigenvalues are complex, the damped regime is when γ2 ≥ 4 n2

μCV β

and the critical damping is when γ2 = 4 n2

μCV β
, which gives the most rapid convergence

to equilibrium. It is worth noting that Nosé-Hoover dynamics corresponds to γ = 0,

which implies that the eigenvalues are complex with no real part so that the system

oscillates indefinitely, this may be an indication that Nosé-Hoover is not ergodic.

The equilibration rate for Langevin dynamics in the case of quadratic potential is

γ (see Chapter 3, Section 3.5.1).

5.2.2 Summary of Results

The main results can be summarized in a table:

Convergence Rate Growth Rate Efficiency

Langevin γ γ 1

NHL ≤
√

n
μβ

√
1
μβ ≤ √

n

Thus, for the NHL process, the estimated rate of growth of the perturbations, as

they affect the molecular motions, is smaller then the temperature relaxation rate by

a factor n1/2, whereas for standard Langevin the two rates are approximately equal.

This suggests that for large systems, with (say) 100 or more degrees of freedom, the

NHL process will be significantly better than standard Langevin for estimating things

like autocorrelation functions.

Numerical experiments to validate our results is desirable but is left for future works.

97



Chapter 6

An Adaptive Method for Kinetic

Energy Control

Under standard assumptions, microcanonical and canonical ensembles agree in the ther-

modynamic limit. In many applications, the correction of sampling by Nosé dynamics

and other schemes is less important than obtaining the correct temperature, i.e. that

lim
t→∞

1
t

∫ t

0
pT (s)M−1p(s) ds→ n

β
.

We have seen already that thermostat introduces persistent artificial perturbations to

the Newtonian dynamics, which is sometimes severe [133, 134, 135, 136]. For example,

the thermostat may inhibit large local fluctuations of temperature which are important

in stimulating a transition. In many applications it would be more appropriate to use

Newtonian dynamics, at an energy consistent with the desired target temperature.

Consider Nosé-Hoover dynamics (NHD):

dq
dt

=M−1p, (6.1)

dp
dt

= −∇qV (q) − ξp, (6.2)

dξ
dt

= 1
μ

(
pTM−1p− n

β

)
. (6.3)

The idea considered here is to replace the control equation (6.3) by an alternative

differential equation:

d
dt
ξ = α(t)

(
pTM−1p− n

β

)
− γ(t)ξ, (6.4)
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where the coefficient functions α and γ > 0 are (for the moment) arbitrary bounded

functions. The purpose of this equation is to (i) control the temperature of the system,

while (ii) reducing the influence of the artificial device on the system dynamics once

equilibrium is achieved.

Traditionally the concept of temperature–and the idea of a thermostat–is meaning-

ful for systems in or near thermal equilibrium. In the nonequilibrium setting, we share

the perspective of D. Ruelle [137] “ To keep a finite system outside of equilibrium we

subject it to non-Hamiltonian forces...This means that the system will heat up. In-

deed, this is what is observed experimentally: dissipative systems produce heat. An

experimentalist will eliminate excess heat by use of a thermostat, and if we want to

study nonequilibrium steady states we have to introduce the mathematical equivalent

of a thermostat. ” Thus we interpret a thermostat in the nonequilibrium context as a

practical device: a (mild as possible) perturbation of dynamics which removes excess

heat induced by non-equilibrium forces.

In the following sections, we describe the motivation for (6.4), propose specific

choices for the functions α(t) and γ(t) that appear in this equation, and discuss numer-

ical experiments which include comparison with standard (equilibrium) thermostats

such as Nosé dynamics and Langevin dynamics.

6.1 Temperature Regulated Molecular Dynamics

Instead of a differential temperature control law as in (6.3), consider the following

algebraic formula to define ξ:

μξ =
1
t

∫ t

0

1
n
K(s) ds− 1

β
, (6.5)

where K =
∑n

i=1m
−1
i p2

i . If we assume the cumulative average kinetic energy per

degree of freedom were to converge to 1
β with time, then ξ would tend to zero so that

the perturbation of constant energy dynamics would be expected to diminish with

time. Effective numerical methods for (6.1), (6.2), (6.5) are cumbersome to design and

analyse, since the equations are in the form of a delay-differential system. We therefore
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differentiate (6.5) with respect to time to obtain:

μ
d

dt
ξ =

1
t

(
K

n

)
− 1
t2

∫ t

0

1
n
K(s) ds

=
1
t

(
K

n
− 1
β

)
− 1
t
μξ, (6.6)

which we recognise to be in the form (6.4) with α(t) = (μt)−1, γ(t) = t−1. If the term

proportional to ξ were absent from (6.6), the equation would look similar to the usual

Nosé-Hoover formula, but with a t−1 scaling. The t−1 term thus acts as a coefficient

of damping which becomes weaker with time, even as the effect of the thermostat is

similarly reduced. We implemented a numerical method for the system (6.1), (6.2),

(6.6) with positive results. However, as described the method has an obvious flaw:

since the control is effectively scaled by 1/t, the control will be less responsive to a

change in state occurring later in the simulation. In nonequilibrium modelling, it is

necessary to consider the potential need for re-equilibration during simulation.

The idea this suggests is to introduce a time-localised weight function in the com-

putation of the average temperature:

μξ =
1
φ̂(t)

∫ t

0
φ(t− s)

K(s)
n

ds− 1
β
, (6.7)

where φ(t) is the prescribed weight function, and φ̂(t) its integral on [0, t]. Note that

(6.5) can be recovered as a special case of (6.7), with the choice φ(t) ≡ 1. This

approach has again the drawback of requiring the design of a numerical method for

delay differential equations. Introduce a new variable Φ =
∫ t
0 φ(t − s)K(s)

n ds, and set

μξ = Φ
φ̂(t)

− 1
β . Then, if φ(t) = exp(−t/τ), we have

d
dt

Φ = φ(0)
K(t)
n

+
∫ t

0
φ′(t− s)

K(s)
n

ds =
K(t)
n

− Φ
τ
.

We thus arrive at an elegant closed differential equation for the controlled system
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(temperature regulated molecular dynamics, or TRMD for short):

dq
dt

=M−1p, (6.8)

dp
dt

= −∇qV (q) − ξp, (6.9)

d
dt

Φ = 1
nK(t) − 1

τΦ, (6.10)

μξ =φ̂−1Φ − β−1, (6.11)

where φ̂(t) = τ(1 − exp(−t/τ)). In the limit τ → +∞, we see that φ(t) becomes

constant and equal to 1, and the exponential relaxation system formally becomes the

average temperature control system (6.1), (6.2), (6.6) that we considered previously.

In our experiments we obtained good results by use of the following discretization

scheme:

qk+1
i = qki + Δtm−1

i p
k+ 1

2
i ,

p
k+ 1

2
i = pki −

Δt
2
∂V (qk)
∂qi

− Δt
2
ξkp

k+ 1
2

i ,

Φk+1 = Φk + Δt
1
n
Kk+ 1

2 − Δt
2τ

(Φk + Φk+1),

μξk+1 =
Φk+1

φ̂(tk+1)
− 1
β
,

pk+1
i = p

k+ 1
2

i − Δt
2
∂V (qk+1)

∂qi
− Δt

2
ξk+1p

k+ 1
2

i .

The TRMD dynamics are not Hamiltonian or time-reversible and have no apparent

conserved quantities, thus it does not make sense to talk about the preservation of

these properties under discretization. Nonetheless, we expect that in simulation ξ will

become small in the long term (cf. following sections), and it is useful to observe that

the above discretization reduces in the limit ξ → 0 to the symplectic-reversible Verlet

method for the constant energy model. Our experience is that the method is highly

stable. As a simple illustration of the method, we performed a simulation of a dense

liquid MD model consisting of 108 atoms initialised on a simple cubic lattice moving

in a Lennard-Jones potential with periodic boundary conditions. Parameters were, in

reduced units (i.e., σLJ = 1.0, εLJ = 1.0), 1
β = 1.31 and initial density ρ = 0.9184. We

took τ = 1, μ = 1, in our simulations (regarding these as arbitrary parameters that

would need to be selected experimentation for realistic systems). One million timesteps

of size Δt = 0.01 were taken. As we see in Figure 6.1, ξ remains small and, judging
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Figure 6.1: Comparison of energy conservation (upper panel) and long term stability
of ξ (lower panel) for the TRMD method (dark) and Nosé-Hoover (light).

from the lack of drift in the energy, the method appears to be quite stable.

6.2 Long Time Behaviour

It is possible to perform a partial analysis of the behaviour of TRD dynamics in the

long time limit. In order to study the long time behaviour we compute the divergence

of the TRD vector field: κ = −nξ− 1/τ . From its definition, it is apparent that Φ is a

positive function, and thus ξ(t) � − 1
βμ , hence it follows that

κ � n

βμ
− 1
τ
.

Thus one can choose μ such that κ � −κc < 0, in which case the phase space volume is

contracting: for any set of initial conditions occupying a positive volume, the volume

vt occupied by the corresponding set after some time t goes to 0 as t goes to infinity.

In our simulation (see Figure 6.1), we verify that ξ remains small (|ξ(t)| ≤ 0.05) and

that the trajectory stays on (or close to) a constant energy surface. In Figure 6.2 we

illustrate a trajectory of the TRMD extension for a harmonic oscillator compared with a

corresponding Nosé-Hoover trajectory. The Nosé-Hoover trajectory (light) apparently

covers the surface of a torus in the (3-dimensional) phase space, and its projection

onto the qp-plane fills an annulus. The TRMD trajectory (dark) converges to the
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q p

ξ q

p

Figure 6.2: Collapse of TRMD dynamics trajectory (dark) to a lower-dimensional sub-
manifold for a harmonic oscillator (q,p,ξ) space (left), with projection onto qp-plane
(right). The corresponding NHD trajectory is shown in light grey.

neighbourhood of a constant energy trajectory, in this case a circle, having the desired

average kinetic energy.

6.3 Equilibration of a Nonadiabatic Perturbation

As a test of TRMD for this type of thermostatting, we use again a Lennard-Jones

model simulated with the following nonadiabatic perturbation: a rapid increase in the

Lennard-Jones radius. In our simulation, we start with the previously described 108

atom model, with the system initially relaxed at temperature β−1 = 1.31; between

time t = 20 and t = 21, the parameter σ is increased from σ = 1.0 to σ = 1.05

by successive rescaling at each timestep. When microcanonical dynamics is used, the

result is as shown in Figure 6.3. When the perturbation is applied, there is a rapid

drift in temperature, demonstrating that thermostatting is needed here to restore the

system during and after the onset of the kick.

We expect the thermostatted scheme to maintain the system at the desired target

temperature during the kick. As we see in the upper panel of Figure 6.4, Nosé-Hoover

(here used with a target temperature of β−1 = 1.31 and thermostat parameter μ = 1)

is able to achieve this. In fact there is no evidence in the temperature profile that any

disturbance was introduced. This also means that in those situations where kinetic

fluctuation is the driver for a nonequilibrium process, Nosé-Hoover may unfavourably
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Figure 6.3: Recorded temperature through nonadiabatic perturbation for a microcanon-
ical simulation. Cumulative temperature is shown in bold.

restrict the extent of those fluctuations.

The TRMD scheme also performs the thermalisation task, although in a different

way (Figure 6.4, lower panel). At the onset of the kick, the system is allowed to exhibit

a momentary initial rise in temperature. After this initial rise, the system relaxes back

to thermal equilibrium at the target temperature. Figure 6.5 compares the energetic

evolution with the three methods. TRMD and NHD get the correct energy following

the change, while the microcanonical system, due to the lack of temperature control,

gives incorrect results. We also observe on Figure 6.5 that the energy fluctuations are

smaller with TRMD than with NHD. This signifies that the TRMD method keeps the

energy closer to the microcanonical energy while properly controlling the temperature.

Finally Figure 6.6 shows the comparative evolution of ξ for each of TRMD and NHD,

demonstrating that the temperature control is always strongly active in NHD whereas

TRMD represents a much smaller perturbation and only shows a slight rise to cope with

the nonadiabatic change between t = 20 and t = 21. These qualitative observations

were similar for many choices of the TRMD parameter (0.001 < τ < 10), although the

choice of τ does lead to differences in the sensitivity to change in the solution and/or

the observed energetic fluctuations.
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Figure 6.4: Recorded temperature through nonadiabatic perturbation for Nosé-Hoover
simulation (upper panel) and TRMD (lower panel). Cumulative temperatures are
shown in bold.

6.3.1 Vibrational Diffusion

We next study the vibrational diffusion observed in a model consisting of a bonded

atom pair in a liquid bath. In the previously described system of atoms of unit mass

interacting pairwise with a Lennard-Jones potential, we incorporate a stiff harmonic

spring with rest length equal to the LJ equilibrium separation. Stiffness was chosen

so that the frequency of the resulting vibration was about 5× the fastest mode of the

equilibrium LJ lattice. The entire system was equilibrated at kT = 1 and then the

velocity autocorrelation function associated to the stretch was computed using different

thermostatting methods. The purpose of the model is to provide a simple illustration

of the thermal exchange process between solute and solvent in models with bonded

atoms.

The appearance of the autocorrelation functions in Figure 6.8 reflects the strong

harmonic component in the model which exhibits a weakly damped periodic profile.

When a thermostat is applied to a system like this, it introduces artificial perturba-

tions to the dynamics of the model. We compared Langevin dynamics using the well

established Brunger-Brooks-Karplus algorithm [87], TRMD, and constant energy sim-

ulation. Atoms in the solvent naturally relax rapidly, so their autocorrelation functions

tend rapidly to zero. In our experiments the solvent equilibrated rapidly in all sim-
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Figure 6.5: Comparison of energy fluctuation for NHD, TRMD and microcanonical
simulations simulations.

ulations, see Figure 6.7. However, looking just at the bound pair, we observed very

different behavior between, on the one hand, the two dynamics schemes, and, on the

other hand, the Langevin method, depending on the choice of Langevin damping pa-

rameter. Obviously a damping coefficient γ = 0 would give a perfect autocorrelation

function (since Langevin dynamics would reduce to Newtonian dynamics in that case).

The choice of γ is model dependent and effects stability and strength of temperature

control. Typical choices of the time constant γ used in practice range from 0.05 to

0.5, normalised with respect to the fastest period of the motion. Langevin dynamics is

typically used in simulations involving water, with γ = 5 − 50/ps [138], where the fast

period is associated to the OH stretch, about 10fs. In our vibrational diffusion model a

period of the vibrational motion is about 0.1 units of time, so the corresponding range

of γ is 0.5 − 5.0. In Figure 6.8, we show the autocorrelation function for the vibra-

tional degree of freedom, using constant energy (the target), TRMD (μ = τ = 1), and

Langevin dynamics with γ = 1. As we can see both thermostats introduce a defect, but

it is more severe in the case of Langevin. The situation is improved for smaller γ. We

also tried several values of τ in TRMD and found similar results in each case. The table

below shows the root mean square of error in calculation of velocity autocorrelation

function for vibrational degrees of freedom.
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TRMD, τ = 0.5 τ = 1.0 τ = 5.0 Langevin, γ = 0.5 γ = 1.0 γ = 2.0 Nose-Hoover

0.0079 0.0072 0.0082 0.0169 0.0227 0.0319 0.0105

6.4 Discussion and Conclusion

The new dynamics should be of interest for general MD simulation software, i.e., as a

scheme for generating temperature-regulated trajectories for various situations which

involve delicate thermalisation, such as for dislocation studies [134], in determination

of nucleation rates [135], for glassy systems (where momenta relax rapidly but configu-

rations much more slowly), and for evaluation of nonequilibrium statistical mechanics

[139].

The extension of a history-based technique like that described here in combination

with different types of alternative thermostats such as configurational thermostats [140]

and DPD-style thermostats [141] is being explored.
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Figure 6.7: Velocity autocorrelation function for solvent degrees of freedom only, com-
puted using TRMD and Langevin dynamics and compared to the Verlet (NVE) simu-
lation.
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Figure 6.8: Velocity autocorrelation function for vibrational degrees of freedom only,
computed using TRMD and Langevin and compared to the Verlet (NVE) simulation.
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Chapter 7

Free Energy Calculations

So far we have learned how to sample from the Boltzmann-Gibbs measure, and studied

different methods and their properties for computations of averages and autocorrelation

functions. We mentioned that the convergence rate is dependent on the temperature,

the potential function and its associated metastabilities. In this chapter we study the

techniques that enable sampling of infrequent events by overcoming the metastabilities

of the potential function.

In complex systems arising in physics, chemistry, biology, etc., there are regions of

phase space where trajectories spend most of their time. We call these regions meta-

stable sets. They are associated with the minima of the potential of the system. For

example, different configurations of a protein correspond to different meta-stable sets.

The meta-stable sets are separated by high barriers, hence the transition between them

is very rare. In such systems, we need to be able to identify the meta-stable sets,

calculate the transition rates, and also understand the transition mechanism, that is,

the most likely path for the transition (see Figure 7.1).

To clarify this, let x = (q, p) be the process solving the Langevin equation

dx = J∇H(x) dt− Γxdt+ Σ dW, (7.1)

where

Γ =

⎛
⎝ 0n 0n

0n In

⎞
⎠ , ΣΣT =

⎛
⎝ 0n 0n

0n 2
βM

⎞
⎠ .

Next, consider the Hamiltonian with a potential function V : M ⊆ Rn → R that has

two local minima at q = a, q = b, and a local maximum between them at q = d. Now

consider the problem of the escape of the particles from the left local minimum a. The
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Figure 7.1: Schematic representation of the possible meta-stable sets of a bio-molecular
system. The dominant sets are Ωa and Ωb with the highest barrier ΔEab between them;
the intermediate sets are Ω1, Ω2 and Ω3. As it is shown in the picture there is a short
path that goes directly from Ωa to Ωb and a longer path which visits other sets before
reaching Ωb. Indeed, the preferred path is dependent on temperature and the method
we use for sampling. Thus finding the intermediate sets is a delicate task. We conjecture
that the sampling methods that are small perturbations of the dynamics are more likely
to find the intermediate sets.

height of the barrier that particles have to overcome is

ΔE = V (d) − V (a).

If the temperature is low
1
β

� ΔE, (7.2)

then particles are most likely to be found either in Ωa (the neighbourhood of a) or

in Ωb (the neighbourhood of b). This is an example of a rare event. Starting from

x ∈ Ωa × Rn we define the first exit time of x(t) from Ωa × Rn, τa(x), as

τa(x) = inf {t > 0;x(t) /∈ Ωa × R
n} .

The average of the random variable τa(x) with respect to the density of x is called

mean first passage time or exit time:

τ := Eτa(x).
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It can be shown that τ solves an appropriate boundary value problem:

⎧⎪⎨
⎪⎩
−Lτ = 1, x ∈ Ωa × Rn,

τ = 0, x ∈ ∂Ωa × Rn,

(7.3)

where L is the generator of the Langevin equation (7.1) (see [83, 142, 21] for details

and derivation). The solution τ is of the form

τ =
1
ν
eβΔE ,

where ν is the unknown rate coefficient. The rate at which particles escape Ωa (reaction

rate) is of order 1
τ :

κ = νe−βΔE. (7.4)

Equation (7.4) is known as Arrhenius formula, it describes the rate of chemical reaction

and has been observed experimentally. Except for some special cases, like the one

dimensional double well, it is not possible to solve the Dirichlet problem (7.3) exactly

nor numerically using discretization, such as finite difference or finite element methods,

due to the high dimensionality of Ωa×Rn. Thus the first step is to reduce the dimension

of the problem.

Finding the meta-stable sets is like looking for a needle in a haystack: it is hopeless

unless we find a systematic way to sort through all the hay. One way to deal with the

high dimensionality of the problem is to find a minimal set of functions of positions

ξ = (ξ1, · · · , ξm), wherem� n, termed collective variables or reaction coordinates, that

can capture all the metastabilities. The collective variables must also be rich enough

to describe the transition mechanism adequately. The challenge is to find a projected

dynamics onto the collective variables, more precisely to find an effective potential of

ξ. The effective potential is called the free energy and is a function of ξ.

Definition 11. A reaction coordinate (commitor function) is a smooth map ξ : M ⊆
Rn → Rm, of constant rank m (i.e. rank(∇qξ) = m, ∀q ∈ Rn). Then for every point

z ∈ Rm,

Σz := ξ−1(z) = {q ∈ M| ξ(q) = z}
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is a (n −m)-dimensional smooth submanifold of M. Furthermore we have

M =
⋃
z∈Rm

Σz, for disjoint Σz.

Note that in practice ξ is not an arbitrary map, since it is chosen to control different

macroscopic states of the physical system, for instance different conformations of a

protein. In the simplest case ξ is just a parameter. Then, if Ha and Hb are energies for

macroscopic states Ωa and Ωb, using

H(q, p; ξ) =
pTM−1p

2
+ V (q, ξ), ξ ∈ [0, 1],

where H(q, p; 0) = Ha and H(q, p; 1) = Hb, enables us to shift the system from one

state to another.

Now we are ready to define the free energy along ξ.

Definition 12. The free energy as a function of the reaction coordinates is given by

A(ξ) = −β−1 logZ(ξ), (7.5)

where Z(ξ) is given by

Z(ξ) =
∫
M×Rn

e−βH(q,p)δ(ξ(q) − ξ) dq dp, (7.6)

where ξ(q) is the reaction coordinates and ξ ∈ Rm is the value of ξ(q).

Note that it is possible to write Z(ξ) as an integral over Σξ:

Z(ξ) =
∫

Σξ×Rn

e−βH(q,p) dΣξ dp√
det(∇qξ(q))T (∇qξ(q))

.

The calculation of the free energy surface (free energy landscape) of a complex

system such as a protein cannot be achieved by using conventional dynamical methods,

due to the long time scale which is apparent in the dynamics. Given ξ1, ξ2 ∈ Rm, the

equation (7.5) concludes that for ΔA = A(ξ2) − A(ξ1) > 1
β , the probability Z(ξ2) is

reduced considerably. This agrees with (7.2) and the results in [143], which says that

the reaction events are rare if the free energy barrier separating reactants from products

is higher that the average thermal energy. In other words, the conformations with large

free energy have low probabilities and therefore are sampled poorly in the simulation.
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The problems that we want to solve are:

• Calculation of the free energy surface;

• Identifying the meta-stable sets: that is enhancing the sampling so that the dif-

ferent basin of the energy surface can be visited in a computationally accessible

time scale;

• Given two meta-stable sets what is the transition rate at which a trajectory

switches from one state to another?

• Understanding the mechanism of transition: what is the most likely path for the

transition?

In this chapter we are mainly concerned with the first two of the above.

7.1 Review of Some Methods

Many algorithms have been developed to overcome the sampling issue. They can be

categorised as follows:

Thermodynamic Integration

This was first proposed by Kirkwood in [144]. Intuitively we could argue that if the

dynamics were constrained on the submanifold Σξ, then the sampling issue could be

overcome, since the delta function in (7.6) is always one on Σξ. One method that

implements this idea by using reaction coordinates as constraints is the blue-moon

ensemble method, [145, 146, 147, 148]. This method achieves a very good sampling

even in transition states. We will study this method and constrained simulation in

detail in Section 7.1.2.

Umbrella Sampling and Biasing The Potential

In the umbrella sampling [149, 150] we split the computational interval along the re-

action coordinates ξ into subintervals. Hence the free energy barrier is reduced within

each interval and a better sampling is achieved. In addition, in each interval a biasing

potential can be used to further improve the sampling. In general the biasing potential
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needs to be guessed beforehand or can be gradually improved using an iterative refine-

ment process. Figure 7.2 illustrates the idea of sampling intervals and biasing potential

for free energy along one reaction coordinate.

One drawback of a biasing potential is that it is usually difficult in complex systems

to make a good initial guess for it. Moreover, there might be intermediate states from

Ω1 to Ω2, and a biasing potential can lead to an incorrect calculation of the free energy.

Reaction coordinate ξ

free energy A(ξ)
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meta-stable Ω1

meta-stable Ω2

Figure 7.2: The free energy profile as a function of ξ. The umbrella sampling method
bins the computational interval of interst in ξ and uses a biasing potential to overcome
the barrier.

Accelerated Dynamics

The Idea is to accelerate the dynamics by some means (usually higher temperature for

the ξ direction or biasing the potential) so that the trajectories could sample regions

with low probabilities in a computationally accessible time scale. Such methods are the

Hyper dynamics method [151] and the temperature accelerated methods introduced by

Sorensen and Voter in [152] and by Maragliano and Vanden-Eijnden in [153]

Another approach is the adiabatic free energy dynamics (AFED) method [154,

155]. AFED works by associating a large mass and a high temperature to the reaction

coordinate. It was shown that in the adiabatic limit (i.e. t dξ
dt � ξ, t is the time period

of the computation) the free energy can be recovered from the probability density

function. The large mass ensures that the reaction coordinate moves slowly and the
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high temperature ensures a good uniform sampling for the interval of interest in ξ.

However, AFED requires an explicit definition of the generalised coordinates as well as

careful analysis to determine the appropriate mass and the temperature to be used for

the reaction coordinate. There is also a computational limit on the adiabatic condition,

since a too large mass will slow the process and can severely reduce the computational

efficiency of the method.

Nonequilibrium Dynamics

The representatives of this category are methods proposed by Jarzynski [156, 157, 158]

and Crooks [159, 160, 161, 162]. In these methods the switching steps between Ω1 and

Ω2 do not need to be infinitely slow and can be finite. The Jarzynski method is based

on a new equality that links the work W done on the system during the switching

process to the free energy difference on the system:

〈e−βW 〉 = e−βΔA. (7.7)

This result is independent of the path from Ω1 to Ω2 and the rate at which the sys-

tem moves along the path. It signifies that ΔA is proportional to the average of the

exponential work done on the system during each switching. Since the switching is

finite, the Jarzynski method is referred to as a nonequilibrium free energy method.

However if dξ
dt is large, significant nonequilibrium effects are going to be present, which

in general lead to a heating of the system and an increase in its energy. It has been

observed in [163] and several others that even though the equality (7.7) is correct, a

fast switching process leads to large statistical errors that require very long simulation

time to diminish.

Adaptive Dynamics

The idea of adaptive dynamics is to include a biasing term in the dynamics that forces

the system to leave regions where enough samples are collected. Examples are the

adaptive biasing force (ABF) method of Darve and Pohorille [164, 165], and the meta-

dynamics method of Laio and Parrinello [166]. We describe the ABF method in more

detail in Section 7.1.4.
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7.1.1 A Direct Calculation: Free Energy Perturbation

In situations where there is a small change in the energy of the system which can be

neglected to a first order approximation, one can directly calculate free energy using

perturbation theory.

Let us write the energy as

H(q, p) = H0(q, p) + ν(q, p), (7.8)

where ν is a small term. To calculate the free energy we substitute (7.8) in the definition

of free energy (A.7) (see the appendix):

A = − 1
β

log
(∫

exp (−βH0(q, p) − βν(q, p)) dq dp
)
.

After expansion in powers of ν and omitting terms above second order, we obtain

A = − 1
β

log
(∫

exp(−βH0)
(

1 − βν +
β2ν2

2

)
dq dp

)

= − 1
β

log

(∫
exp(−βH0) dq dp

(
1 +

∫
(−βν + β2ν2

2 ) exp(−βH0) dq dp∫
exp(−βH0) dq dp

))

= − 1
β

log
(∫

exp(−βH0) dq dp
)
− 1
β

log

(
1 +

∫
(−βν + β2ν2

2 ) exp(−βH0) dq dp∫
exp(−βH0) dq dp

)
.

Expansion of the second logarithm in series and again omitting terms higher than

second order of ν, yields

A =A0 +

(∫
(ν − βν2

2 ) exp(−βH0) dq dp∫
exp(−βH0) dq dp

)
+
β

2

(∫
ν exp(−βH0) dq dp∫
exp(−βH0) dq dp

)2

=A0 + 〈ν〉 − β

2
〈ν2〉 +

β

2
〈ν〉2,

where 〈·〉 represents averaging with respect to Boltzmann-Gibbs distribution. Since

〈
(ν − 〈ν〉)2〉 = 〈ν2〉 − 〈ν〉2,

we have

A = A0 + 〈ν〉 − β

2
〈
(ν − 〈ν〉)2〉 . (7.9)

Thus the first order correction to the free energy is just the mean value of the energy
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perturbation ν. The second order correction is always negative and is the fluctuation

of ν. If 〈ν〉 is zero then the perturbation reduces the free energy. Both 〈ν〉 and〈
(ν − 〈ν〉)2〉 are roughly proportional to the number of particles of the system. Hence

we can conclude that perturbation method is applicable if the perturbation energy per

particle is small in comparison with 1
β , so this method would not work well in situations

where there is a high free energy barrier.

7.1.2 Thermodynamic Integration and Constrained Dynamics

The free energy difference between two thermodynamics states Ω1 and Ω2 is the re-

versible work required to move the system between these two states along a reaction

coordinate ξ (it is independent of the choice of ξ). The free energy difference is written

as

ΔA(ξ) := A(ξ2) −A(ξ1) = − 1
β

log
(
Z(ξ2)
Z(ξ1)

)
.

The above formula cannot be computed in the molecular dynamics simulation, since

it is not a time average of some function of phase space variables. Hence, special

techniques are needed to determine free energy. A nice review of numerical methods

and their applicability is given in [167, 8, 168, 169]. One approach to calculate free

energy in molecular dynamics is the thermodynamic integration method.

Thermodynamic integration method utilises the fact that the derivative of the free

energy is the mean force which is needed to move the system from Ω1 to Ω2 along the

reaction coordinate. Thus, integration of the mean force gives the desired free energy

difference:

A(ξ2) −A(ξ1) =
∫ ξ2

ξ1

∇ξA(ξ) dξ =
∫ ξ2

ξ1

〈fξ〉ξ dξ. (7.10)

The aim is to calculate the mean force 〈fξ〉ξ, where the subscript means that the

average is taken with respect to a fixed value of ξ, hence, 〈fξ〉ξ is a function of ξ. Taking

the derivative of (7.5) with respect to ξ, we obtain

∇ξA(ξ) = −β−1∇ξZ(ξ)
Z

. (7.11)

Now consider a coordinate transformation:

u = (ξ, q̂1, ..., q̂n−m), such that u = u(q) and q = q(u).
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Let

v = (pξ, p̂1, . . . , p̂n−m)

be the conjugate momenta of u. The Hamiltonian of the system in (u, v) coordinates is

Ĥ(u, v) =
1
2
vTΛ−1v + V (u), (7.12)

where Λ = JTMJ is the mass-metric matrix which is obtained by transforming the

kinetic energy of the old coordinates to the kinetic energy of the new coordinates. J is

the Jacobian of the transformation, defined as Jij = ∂qi
∂uj

. The matrix Λ is given by

Λcd =
n∑
i=1

mi
∂qi
∂uc

∂qi
∂ud

, 1 � c, d � n.

In general, for m reaction coordinates ξ = (ξ1, ..., ξm), we can write Λ in a block form

Λ =

⎛
⎝ Λξ Λξq

Λqξ Λq

⎞
⎠ ,

where Λξ is an (m×m) matrix, Λξq is an (m×n−m) matrix and Λq is an (n−m×n−m)

matrix. Moreover, Λqξ = ΛTξq, Λ = ΛT and Λ−1 =
(
ΛT
)−1 =

(
Λ−1

)T . The Λ−1 is

given by

Λ−1
cd =

n∑
i=1

1
mi

∂uc
∂qi

∂ud
∂qi

and can also be written in a block form

Λ−1 =

⎛
⎝ Zξ Zξq

Zqξ Zq

⎞
⎠ .

Expansion of the identity Λ−1Λ = In yields useful relations between the submatrices

in Λ−1 and Λ. An instance of these relations is |Λq| = |Λ||Zξ|.
Using the new Hamiltonian (7.12), we can write Z(ξ) as

Z(ξ) =
∫
e−βĤ(u,v) dq̂1 · · · dq̂n−m dv. (7.13)
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Substituting (7.13) in (7.11) we obtain the following expression

∇ξA(ξ) =
∫ ∇ξĤe

−βĤ dq̂1 · · · dq̂n−m dv∫
e−βĤ dq̂1 · · · dq̂n−m dv

=
〈
∇ξĤ

〉
ξ
. (7.14)

The subscript represents an average over the equilibrium ensemble which corresponds

to a fixed value of ξ. Now that we have defined the mean force 〈fξ〉ξ :=
〈
∇ξĤ

〉
ξ

we

can rewrite (7.10) as

A(ξ2) −A(ξ1) =
∫ ξ2

ξ1

∇ξA(ξ) dξ =
∫ ξ2

ξ1

〈
∇ξĤ

〉
ξ

dξ. (7.15)

The expression for the mean force in (7.15) depends on both positions and momenta.

Next we derive an expression which is independent of the momenta. Integration over

momenta in (7.6) yields

Z(ξ) = ZM

∫
M
e−βH(q,p)δ(ξ(q) − ξ) dq,

where

ZM =
∫

Rn

e−β
pT M−1p

2 dp.

Using the change of variable q → u, we get

Z(ξ) = ZM

∫
M
e−βV |J |dq̂1 · · · dq̂n−m.

Thus we have

∇ξA(ξ) =

∫
M
(∇ξV |J | − β−1∇ξ|J |

)
e−βV dq̂1 · · · dq̂n−m∫

M e−βV |J |dq̂1 · · · dq̂n−m
.

Now changing the variables back to q, we get

∇ξA(ξ) =

∫ (∇ξV − β−1 ∇ξ|J |
|J |

)
e−βV δ(ξ(q) − ξ) dq∫

e−βV δ(ξ(q) − ξ) dq

=

∫ (∇ξV − β−1∇ξ log |J |) e−βV δ(ξ(q) − ξ) dq∫
e−βV δ(ξ(q) − ξ) dq

=
〈∇ξV − β−1∇ξ log |J |〉

ξ
. (7.16)

This is the fundamental result of [145, 164, 170, 171, 172, 146]: it shows that the

derivative of the free energy consists of two terms, a mean mechanical force acting
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along ξ and the mean changes of the volume element of phase space. The average is

with respect to the equilibrium measure that corresponds to fixed ξ.

The derivative with respect to ξ requires the definition of generalised coordinate

which is not convenient for the numerical computation, especially when the system has

many degrees of freedom. An alternative that does not require the calculation of |J | is

∇ξA =
〈
∇qV.

ω

ω.∇qξ
+ β−1∇q.

ω

ω.∇qξ

〉
ξ

, (7.17)

where ω is an arbitrary vector field such that ω.∇ξ �= 0. Equation (7.17) was derived

by Darve [164], Otter [172] and also in [147]. One choice for ω is ω = ∇qξ, which gives

∇ξA =
〈

1
‖∇qξ‖2

(
∇qV · ∇qξ − 1

β

(
Δqξ − 2

(∇qξ)T (∇q∇qξ)∇qξ

‖∇qξ‖2

))〉
ξ

. (7.18)

Constrained Dynamics

So far we have found expressions to compute the free energy, but we still need to sample

the equilibrium measure that corresponds to the fixed value of ξ. One way to do this is

to use constrained dynamics, an example is the blue-moon ensemble method [145, 146,

147]. The idea behind the blue-moon ensemble method is to control the microscopic

state of the system by using the reaction coordinates as holonomic constraints. Let us

assume for simplicity that there is one reaction coordinate, but our result is also true

for multiple reaction coordinates. In a constrained simulation, at each step a force λ

in the direction of the normal to the constraint surface is applied, which ensures that

ξ remains constant throughout the simulation. Since ∂A
∂ξ is seen as a mean force acting

on ξ, we expect that in the constrained simulation ∂A
∂ξ ≈ 〈λ〉. However, in a constrained

simulation the distribution of momenta is not independent of positions, hence we need

to find the correction term that relates the averages in constrained simulation to the

averages with respect to a fixed value of ξ.

Consider the unconstrained Hamiltonian in (u, v) coordinates:

Ĥ(u, v) =
1
2
vTΛ−1v + V (u)

=
1
2
(
pTξ Zξpξ + 2pξZξqp̂+ p̂TZqp̂

)
+ V (ξ, q̂). (7.19)
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Using (7.19) the free energy is

A(ξ) = − 1
β

log
(∫

e−βĤ dq̂ dpξ dp̂
)
.

The integration with respect to pξ can be done exactly

∫
exp

(
−β

2
(
pTξ Zξpξ + 2pξZξqp̂

))
dpξ =

√
π

2β
(Zξ)−1/2 exp

(
1
2
p̂TZqξZ

−1
ξ Zξqp̂

)
.

(7.20)

Now we may write

A(ξ) = − 1
β

log
∫
e−βH

F
ξ (q̂,p̂) dq̂ dp̂− 1

β
log
√

π

2β
, (7.21)

where

HF
ξ (q̂, p̂) = Hξ(q̂, p̂) +

1
2β

logZξ(q̂).

The first term is the constrained Hamiltonian (obtained from (7.19) by fixing ξ and

using the fact that dξ/dt = 0):

Hξ =
1
2
p̂TZqp̂+ V (q̂),

and the second term is called the Fixman potential. From (7.20) we see that the

contribution of pξ to the averages is proportional to Z−1/2
ξ , thus, calculations of averages

in the constrained simulation need to be weighted by the factor Z−1/2
ξ . The weighted

averages can be written in term of the modified Hamiltonian HF
ξ :

Z
−1/2
ξ e−βHξ = e

−β
“
Hξ+ 1

2β
logZξ

”
.

Thus for an arbitrary function of position O(q) we have

〈O〉ξ = 〈O〉F
ξξ̇
,

where 〈·〉ξ means average with respect to the equilibrium measure which corresponds

to fixed value of ξ, and 〈·〉F
ξξ̇

means average with respect to the equilibrium measure of

the constrained dynamics (i.e. ξ is fixed and ξ̇ = 0) such that its density is proportional

to e−βH
F
ξ .
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Now using (7.21) we have

∂A

∂ξ
=

〈
∂HF

ξ

∂ξ

〉F
ξ,ξ̇

.

The derivative
∂HF

ξ

∂ξ can be interpreted as a force acting on ξ: infact for constrained

dynamics of the form

HF (q, p) = H(q, p) +
1
2β

logZξ + λF (ξ − ξ(q)), (7.22)

it was shown in [167] that
∂A

∂ξ
=
〈
λF
〉F
ξ,ξ̇
,

where λF is a Lagrange multiplier. If we don’t add the Fixman potential in (7.22) and

use the constrained Hamiltonian

H̃(q, p) = H(q, p) + λ(ξ − ξ(q)), (7.23)

then we need to add the contribution of the Fixman potential to the mean force and

reweight the average by Z−1/2
ξ :

∂A

∂ξ
=

〈
Z

−1/2
ξ

(
λ+ 1

2βZξ

∑
i

1
mi

∂ξ
∂qi

∂ logZξ

∂qi

)〉
ξ,ξ̇〈

Z
−1/2
ξ

〉
ξ,ξ̇

.

7.1.3 The Temperature Accelerated Method

Another way of enhancing sampling and crossing the free energy barrier is to use hotter

temperature for collective variables. The idea of the temperature accelerated method

[153] is to augment the original system by m new variables, then constrain them to the

collective variables using harmonic springs. Finally we contact the extended variables

to a different heat bath at higher temperature. The following is a new formulation of

the temperature accelerated method [153].

The extended Hamiltonian is given by

H̃(q, p, z, pz) =
pTM−1p

2
+
pTz pz
2μ

+ V (q) +
1
2
k ‖ξ(q) − z‖2 ,

where pz are the conjugate momenta of z. Let ξ = (ξ1(q), · · · , ξm(q)) be the reac-
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tion coordinates or collective variables, and define the orthogonal projection onto the

tangent space TqΣξ(q) to Σξ(q) by

R(q) :=
(
In −

(∇qξ1 ⊗∇qξ1
‖∇qξ1‖2

)
· · ·
(∇qξm ⊗∇qξm

‖∇qξm‖2

))
q,

and the orthogonal projection onto the normal space NqΣξ(q) to Σξ(q) by

R̂(q) :=
((∇qξ1 ⊗∇qξ1

‖∇qξ1‖2

)
· · ·
(∇qξm ⊗∇qξm

‖∇qξm‖2

))
q,

where for x, y ∈ Rn their tensor product x⊗y is a n×n matrix with entries {x⊗y}i,j =

xiyj.

Now consider the following set of stochastic differential equations:

dq
dt

=M−1p, (7.24)

dp = −∇qV (q) dt+ k(z − ξ(q))∇qξ(q) dt− γR(q)M−1p dt+
√

2γ
β
R(q) dW q, (7.25)

dz
dt

=pz, (7.26)

dpz = − μk(z − ξ(q)) dt− ϑ

μ
pz dt+

√
2ϑ
θ

dW z, (7.27)

whereW q andW z are n andm dimensional standard Brownian motions, and γ, ϑ ∈ R+.

To improve the sampling we use θ−1 > β−1. In the case θ = β we can show (using a

similar calculation to that of Chapter 3 and 4) that the process solving (7.25)-(7.27)

is ergodic with respect to the stationary density which is proportional to e−βH̃ . In

the general case θ �= β it is not clear if the corresponding Fokker-Planck equation of

(7.25)-(7.27) is well-posed. However based on the work by Eckmann et. al. [22, 173], it

may be possible to find conditions on k, ϑ and θ such that there exists a unique density

for process solving (7.25-7.27).

Suppose we have μ � 1, then the variables z evolve at a much longer time-scale

than q. Hence, in the limit of large μ, the dynamics of q can be assumed to evolve

according to a fixed value of z, and the distribution of q converges approximately to

the conditional distribution which corresponds to the fixed z:

fk(q|z) =
1

Zk(z)
exp

(
−β

(
V (q) +

1
2
k ‖ξ(q) − z‖2

))
, (7.28)
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Figure 7.3: By updating the biasing force λ, ABF gradually fills the basin to overcome
the barrier.

where

Zk(z) =
∫

exp
(
−β

(
V (q) +

1
2
k ‖ξ(q) − z‖2

))
dq.

If (7.28) holds, then it can be shown (see [153]) that in the limits μ � 1 and βk � 1,

we have

−
∫
k(z − ξ(q))fk(q|z) dq = ∇ξA(z) + ε(σ, k),

where A(z) is the free energy along ξ and ε(μ, k) is an error term that depends on μ

and k. Thus, in these limits, z will evolve according to an effective potential which is

the free energy of the system.

7.1.4 The Adaptive Biasing Force Method

A more recent approach to improve the sampling in free energy calculation is the

Adaptive Biasing Force (ABF) method [164, 165]. The idea behind ABF is similar

to umbrella sampling (US) which adds a biasing potential to the system to smooth

the free energy barriers, and hence improve the sampling. ABF also adds a potential

to the system but rather than guessing or predicting the biasing potential, it does

this in a more systematic way. This method computes the mean force ∂A(ξ)
∂ξ on the

reaction coordinate ξ and adds it as the biasing force to the dynamics. Therefore ABF

effectively adds “−A(ξ)” to the potential which leads to a uniform sampling in the

reaction coordinates ξ. In the following we present a new formulation of the ABF

method which is easy to implement.
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Assuming that the dynamics is ergodic, ABF can be expressed as:

dq
dt

=M−1p, (7.29)

dp
dt

= −∇qV (q) − λ(ξ(q), t)∇qξ, (7.30)

λ(ξ, t) =

∫ t
0 fξδ(ξ(q) − ξ) dt∫ t
0 δ(ξ(q) − ξ) dt

. (7.31)

Here, as usual, ξ is the reaction coordinate and fξ is an instantaneous force on ξ (see

equation (7.16)). The biasing force λ is refined as more samples are collected and in

the limit, t → ∞ we have λ→ ∇ξA(ξ). In this sense it is an adaptive method. Figure

7.3 shows how ABF gradually fills the basins to overcome the barrier.

The above equations are delay differential equations and they are not convenient to

use from a numerical point of view. However, it is possible to derive a closed system

of differential equations. Taking the derivative of λ(ξ, t) with respect to time yields:

dλ
dt

=

(
δ(ξ(q) − ξ)∫ t

0 δ(ξ(q) − ξ) dt

)
(fξ − λ) .

Let ν =
∫ t
0 δ(ξ(q)− ξ) dt and approximate the δ function by a Gaussian function of the

form

G(x, ε) =
1

ε
√
π
e−( x

ε )
2

.

Then we obtain a set of smooth differential equations:

dq
dt

=M−1p, (7.32)

dp
dt

= −∇qV (q) − λ(ξ(q), t)∇qξ(q), (7.33)

dλ
dt

=
(G(ξ(q) − ξ)

ν

)
(fξ − λ) , (7.34)

dν
dt

=G(ξ(q) − ξ). (7.35)

In the limit we have:

lim
t→∞λ(ξ, t) = ∇ξA(ξ).

Considering the constrained Hamiltonian

H̃ =
pTM−1p

2
+ V (q) + λ(ξ(q) − ξ)
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the relation between the constrained simulation technique and ABF becomes clear.

Both methods try to sample the submanifold Σξ of the phase space. The constrained

simulation method achieves this by exerting a force λ on the reaction coordinate to

make sure that the dynamics stays on Σξ, hence sampling ξ. However, rather than

constraining the system, ABF shifts the system to the region of phase space where

q ∈ Σξ.

7.2 An Adaptive Method for Exploring the Free Energy

Surface

The main challenge in approximating A(ξ) is the sampling of ξ = (ξ1, . . . , ξm) which

becomes exponentially hard as the dimension of ξ increases (i.e., m > 2). The sampling

issue is the manifestation of high barriers between meta-stable sets along ξ. However,

if there are no patterns on the energy surface along ξ, then the sampling is effectively

reduced to a random walk that can take a long time when the dimension of ξ is large,

for example when m > 2.

This suggests that we should develop a sampling method that smooths the barriers

but retains the important features of the dynamics. In this way the crossing of the

barriers is overcome, and moreover the sampling is guided by the dynamics. Thus, the

sampling is concentrated in the regions of phase space that are more relevent to the

desired macroscopic states, such as conformations of a protein.

We approach this problem in the spirit of the Adaptive Biasing Force (ABF) [164,

165, 174, 175, 176]. The philosophy of ABF is to construct a biasing force that is the

derivative of free energy on the fly and add it to the force acting on the system, so

that the system would evolve in a potential surface that is locally flat. However ABF is

not efficient when m > 2 because it effectively reduces the sampling to a random walk

which can be slow in high dimension. Our primary aim is to improve the computation

of averages of observables that are functions of ξ. In particular we are interested in the

case where m > 2. We will enhance the sampling by lowering the free energy barrier:

this is done by extending the idea of ABF so that the biasing force is localised both in

time and space. In this way, we do not fill the basins completely, and hence we avoid

sampling of regions that have already been sampled and the dynamics will guide us to

explore other meta-stable sets.
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The method is given by the following set of stochastic differential equations:

dq
dt

=M−1p, (7.36)

dp = −∇qV (q) dt+ λ(ξ(q), t)∇qξ dt− γp dt+ σ dW, (7.37)

dγ
dt

=
1
μ

(
pTM−1p− n

β

)
, (7.38)

Fk =

∫ t
0 ψ(t− s)fξ(ξ)χIk(ξ) ds∫ t

0 ψ(t− s)χIk(ξ) ds
, Ik = {z ∈ R

m : ‖z − ξk‖ ≤ h}, k = 1, · · · , N,

(7.39)

⎧⎪⎨
⎪⎩

Find λ(t, ξ) =
∑N̂

i=1 ciϕi(ξ) such that for every ϕj , j = 1, · · · , N̂∫
ϕj(ξ)

∑N̂
i=1 ciϕi(ξ) =

∫
ϕj(ξ)

∑N
k=1 FkχIk(ξ).

(7.40)

In the above system, ξk, k = 1, . . . , N are N values of ξ(q), h is the mesh-size, μ

is the control parameter for kinetic energy, σ ∈ R is the diffusion coefficient , W

is n-dimensional Brownian motion, β = 1
kBT

is the inverse temperature, ψ(t) is the

prescribed weight function, χIk is the normalised characteristic function of Ik defined

by ⎧⎪⎨
⎪⎩
χIk(ξ) = 1, if ξ ∈ Ik,

= 0, if ξ /∈ Ik,

, and ‖χIk(ξ)‖2
L2 = 1,

fξ is the instantaneous force on ξ (see equation (7.16)) and

{ϕi : ‖ϕi(ξ)‖2
L2 = 1, i = 1, · · · ,M}

is an appropriate set of radial basis (test) functions which will be defined later.

The equations (7.36)-(7.39) are delay-differential equations, however it is possible to

formulate them as ordinary differential equations for the purpose of efficient numerical

treatment. Let us define

ψ(t) = e−t/τ
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and introduce new variables

Nk =
∫ t

0
ψ(t− s) fξ(ξ)χIk(ξ) ds,

Mk =
∫ t

0
ψ(t− s)χIk(ξ) ds.

Now we have

dNk

dt
=ψ(0)fξ(ξ)χIk(ξ) +

∫ t

0

dψ
dt

(t− s) fξ(ξ)χIk(ξ) ds = fξ(ξ)χIk(ξ) − 1
τ
Nk,

dMk

dt
=ψ(0)χIk(ξ) +

∫ t

0

dψ
dt

(t− s)χIk(ξ) ds = χIk(ξ) − 1
τ
Mk,

and Fk = Nk
Mk

. Hence (7.39) can be replaced by

dNk

dt
=fξ(ξ)χIk(ξ) − 1

τ
Nk, k = 1, · · · , N, (7.41)

dMk

dt
=χIk(ξ) −

1
τ
Mk, k = 1, · · · , N, (7.42)

Fk =
Nk

Mk
, k = 1, · · · , N. (7.43)

Remark

In some applications it is desirable to have a more gentle and smoother stochastic

dynamics. Hence, as an alternative to equations (7.36)-(7.38) we introduce a highly

degenerate diffusion version, where only one Brownian motion interacts with the second

derivative of the momenta.

dq
dt

=M−1p, (7.44)

dp
dt

= −∇qV (q) + λ(ξ(q), t)∇qξ − γp, (7.45)

dγ =
1
μ

(
pTM−1p− n

β

)
dt− γ dt+ σ dWγ , (7.46)

where γ > 0 and σ2 = 2
βμγ, and Wγ is one-dimensional Brownian motion.

Remark

The equations (7.36)-(7.38) are effectively nonequilibrium dynamics, since we use the

weight function ψ (i.e. λ does not converge to a limit). It is possible to correct

this dynamics by a Metropolis algorithm, so that the hybrid method would have the

Boltzmann-Gibbs measure as its invariant measure and enhanced convergence rate. We

leave this extension for future work.
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7.2.1 Gaussian Radial Basis Functions

One choice for functions in

{ϕi : ‖ϕi(ξ)‖2
L2 = 1, i = 1, · · · ,M}

is a Gaussian function of the form

ϕi(ξ) =
1
Z exp

(
−a
(
ξ − ξi
δ

)2
)
, (7.47)

where Z is the normalization constant and is given by

Z = ‖ϕi‖2
L2 =

∫
Rm

ϕ2
i (ξ) dξ,

a is a shape parameter and ξi, i = 1, · · · ,M are discrete values along ξ. With this

choice of basis functions equation (7.40) amounts to solving the following linear system

Λc = b,

where Λ ∈ RN̂×N̂ , its entries given by

Λi,j =
∫

Rm

ϕi(ξ)ϕj(ξ) dξ,

c ∈ RN̂ is a vector of unknown coefficients (c1, · · · , cM )T and b ∈ RN̂ such that

bj =
N∑
k=1

Fk

∫
Rm

ϕj(ξ)χIk(ξ) dξ.

It worth noting that there is an optimal choice of Gaussian basis function that should

be found for best approximation of λ.
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Figure 7.4: The top graph shows the evolution of x for a Langevin simulation during
10 million time steps of size Δt = 0.01. It rarely switches from the meta-stable set at
−1 to the other set at 1. The lower graph shows evolution of x for the adaptive method
(7.36)-(7.38), (7.41) and (7.42) during one million time steps of size Δt = 0.01. It
clearly overcomes the barrier and achieves good sampling even in the transition region

7.2.2 Numerical Results

We used the following numerical discretization for equations (7.36)-(7.38), (7.41) and

(7.42):

pl+
1
2 =pl − Δt

2
∇V (ql) +

Δt
2
λ(ξ(ql), lΔt)∇ξ(ql) − Δt

2
pl+

1
2 +

√
Δt
2

σηl,

ql+1 =ql + Δt(M−1pl+
1
2 ),

γl+1 =γl +
Δt
μ

(
n∑
i=1

1
mi

(
p
l+ 1

2
i

)2

− n

β

)
,

N l+1
k =N l

k + Δtfξ(ξ(ql+1)χIk(ξ(ql+1)) − Δt
τ
N l+1
k χIk(ξ(ql+1)), k = 1, · · · , N,

Ml+1
k =Ml

k + ΔtχIk(ξ(q
l+1)) − Δt

τ
Ml+1

k χIk(ξ(q
l+1)), k = 1, · · · , N,

F l+1
k =

N l+1
k

Ml+1
k

, k = 1, · · · , N,

pl+1 =pl+
1
2 − Δt

2
∇V (ql+1) +

Δt
2
λ(ξ(ql+1), lΔt+ Δt)∇ξ(ql+1) − Δt

2
pl+1 +

√
Δt
2

σηl,

where, as usual {ηl} are independent normal random variables with mean zero and

variance 1.
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A Simple Example: One Dimensional Reaction Coordinate

Here we consider a one dimensional reaction coordinate example which was studied in

[177]. The Hamiltonian is given by

H(q, p) =
1
2
pTM−1p+ V (q), (7.48)

where q = (x, y) is the position vector and p = (px, py) is its conjugate momentum.

The potential V (q) is defined by

V (q) = c1(x2 − a2)2 +
1
2
c2y

2 + c3xy.

The potential V (q) has a quartic function of x, hence there are two minimums in the

direction of x. Therefore it is natural to consider x as our reaction coordinate (i.e.,

ξ(q) := x). For this example it is possible to calculate A(x) analytically:

A(x) = −β−1 logZ(x),

where

Z(x) =
∫

R2

exp
(
−β

2p ·M−1p
)

dp
∫

R2

exp (−βV (q)) δ(ξ(q) − x) dq

=
√

det(M−1)
(

2π
β

)
exp

(−βc1(x2 − a2)2
) ∫

R

exp
(
−β

(
1
2
c2y

2 + c3xy

))
dy

=

√
det(M−1)

c2

(
2π
β

)
exp

(
−βc1(x2 − a2)2 + β

c23
2c2

x2

)
∫

R

exp

(
−β

2

(√
c2y +

c3√
c2
x

)2
)
√
c2 dy.

Using a change of variable of u =
√
c2y + c3√

c2
x, we obtain

Z(x) =

√
det(M−1)

c2

(
2π
β

) 3
2

exp
(
−βc1(x2 − a2)2 + β

c23
2c2

x2

)
,

which implies that

A(x) = c1(x2 − a2)2 − c23
2c2

x2 + C, (7.49)

where C is constant.

It is worth noting that this numerical test is merely to show that the method works.
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Figure 7.5: The approximation of the free energy profile (7.49) for different τ . The
thick solid line is the exact solution. In the limit τ → ∞ the method converges to ABF
method.

It is only a toy model and it is not compatible with our main goal, that is the case

of multiple reaction coordinates. The case m > 2 for a complex system, such as the

computation of the free energy function of a Tripeptide (a peptide consisting of three

amino acids joined by peptide bonds) in water, is left for future work.
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Chapter 8

Summary

In this thesis, we began by presenting background materials and introducing the prob-

lem of sampling the canonical ensemble corresponding to the Boltzmann-Gibbs proba-

bility measure. Next, we briefly surveyed sampling methods for molecular simulations.

In particular, we described stochastic methods, hybrid methods and dynamical meth-

ods. We also suggested some numerical integrators for Langevin dynamics.

In Chapter 3, we studied the approach to equilibrium. We described the logarithmic

Sobolev inequality and introduced the concept of hypoellipticity. We followed with the

proof of Theorem 6 which effectively says that if the corresponding Fokker-Planck

operator of a stochastic process is hypoelliptic, then the process is ergodic. Next we

illustrated techniques for obtaining the rate of convergence to equilibrium by obtaining

an explicit rate of convergence for gradient flow dynamics. Finally we investigated

the rate of convergence to equilibrium for the homogeneous heat bath and Langevin

dynamics.

In Chapter 4, we presented a new thermostat (a highly degenerate diffusion) for gen-

erating the canonical distribution in molecular dynamics simulations. This thermostat

is derived by combining Nosé-Hoover and Langevin dynamics together with the aim to

achieve a provable correct distribution, while at the same time minimising the effect

on the dynamics. Using the concept of hypoellipticity we proved that the solution of

the new thermostat is geometrically ergodic for systems with quadratic potentials. We

validated our theoretical results using numerical experiments. In particular we found

that the new thermostat is more efficient than Langevin dynamics for calculation of

dynamical averages such as autocorrelation functions.

In Chapter 5, we introduced a measure of efficiency for stochastic molecular dynam-

ics by finding a quantity which is the ratio of the rate of convergence to equilibrium to a
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measure of the growth of perturbations that are added to the dynamics. We found that

the highly degenerate thermostat introduced in Chapter 4 is more efficient, especially

for systems with many degrees of freedom.

In Chapter 6, we presented an adaptive method for controlling the kinetic energy

in molecular dynamics. We illustrated, using numerical experiments, that the new

method is useful for nonequilibirum simulations.

In Chapter 7, we studied the problem of sampling of rare events in molecular sys-

tems. We briefly reviewed the techniques for overcoming metastabilities and rare events.

In particular we described the blue moon ensemble method, the temperature acceler-

ated method and the adaptive biasing force method for calculating the free energy

difference. We finished the chapter by presenting an adaptive method for calculating

averages of observables that are functions of reaction coordinates. The new method

is based on the adaptive biasing force method, with the difference that the biasing

force is localised both in time and space. We tested the method using a simple toy

model, further investigations using more complex example are left for future works.

The biasing force is localised in time and does not converges to a fixed value, hence the

method has a nonequilibirum dynamics. The nonequilibrium effects can be corrected

by using the Metropolis algorithm. This extension of combining our adaptive method

with Metropolis scheme is left for future works.

8.1 Primary Contributions of This Thesis

• We presented the homogeneous heat bath for molecular dynamics as

dx = J∇H(x) − Γ (x)∇H(x) dt+Σ(x) dW, (8.1)

where H is the Hamiltonian of the system, W is 2n family of independent Brow-

nian motion, Γ (x) ∈ R2n×2n, Σ(x) ∈ R2n×2n and

J =

⎛
⎝ 0 In

−In 0

⎞
⎠ .

134



Using the logarithmic Sobolev inequality we were able to obtain the following

convergence result:

‖f − fβ‖L1 ≤
√

2H(f0|fβ)e−rβ−1t,

where f is the time dependent solution of the corresponding Fokker-Planck equa-

tion and fβ is the density of the Boltzmann-Gibbs probability measure.

• We presented the highly degenerate thermostat which is a combination of the

Nosé-Hoover thermostat and Langevin dynamics. We were able to prove that

the corresponding Fokker-Planck operator of the highly degenerate thermostat

is hypoelliptic for systems with quadratic potential. Next, using the techniques

developed in [84], we were able to prove that the highly degenerate thermostat is

geometrically ergodic.

• Assuming the the system is not far from equilibrium (see Assumption 1 in Chap-

ter 5) we were able to obtain the rate of equilibration for the highly degenerate

thermostat introduced in Chapter 4. We also calculated the rate for the growth

of the perturbations. Finally we calculated the efficiency of the highly degen-

erate thermostat as the ratio of the equilibration rate to the rate of growth of

perturbations.

• We developed an adaptive method for controlling temperature in molecular dy-

namics simulations. We ran a simulation of 108 Lennard-Jones atoms in a periodic

box. The system was initially relaxed at temperature β−1 = 1.31; we then per-

turbed it during a fixed interval of time. We found that the new method captures

the effect of the perturbations correctly, i.e. similarly to the microcanonical dy-

namics, with the advantage of correcting the kinetic energy and thermalising the

system.

• We developed an adaptive method for calculating averages of observables that

are functions of reaction coordinates. The new method is based on the adaptive

biasing force method, with the difference that the biasing force is localised both

in time and space.

Published Papers
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Appendix A

Free Energy

The first law of thermodynamics is concerned with the conservation of energy:

dE
dt

=
dQ
dt

+
dW
dt

,

where W is the work done on the system and Q is the heat flow into the system.

This equation demonstrates that W and Q are just ways of transferring energy. Using

the first law, the work done on the body during an infinitesimal isothermal reversible

change of state (i.e. at constant temperature T ) can be written as a differential

dW = dE − dQ = dE − T dS = dA, (A.1)

where S is the entropy and A = E − TS is another function of the state of the system,

called the Helmholtz free energy. In other words, the work done on the body in a

reversible isothermal process is equal to the change in its free energy. The work W can

be divided into two parts:

W = Wr +Wd,

that is, a reversible and a dissipative part. Hence we have

dW � dA, (A.2)

where the equality is realised only for a reversible isothermal process. This inequality

was used in [156] to derive a relation between the exponential of average work and the

free energy.
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The differential of the free energy can be written as

dA = −S dT − P dV, (A.3)

where P is pressure and V is volume. Another equation of state with respect to the

variables P, T can be derived by using P dV = d(PV ) − V dP in (A.3):

dG = −S dT + V dP,

with a new quantity

G =E − TS + PV (A.4)

=A+ PV

=R− TS,

where R = E +PV is a heat function. The quantity G is called the Gibbs free energy.

A.1 Free Energy in The Gibbs Distribution

The entropy of a body can be calculated as the mean logarithm of the density f of its

distribution function ρ:

S = −kB 〈log f〉 . (A.5)

Here 〈·〉 means averaging with respect to f , kB is the Boltzmann’s constant which

enables us to convert temperature measured in degrees into energy units in numerical

calculations.

Using the Boltzmann-Gibbs density

fβ(q, p) =
1
Z
e−βH(q,p), (A.6)

where

Z =
∫
fβ(q, p) dq dp

is the normalisation constant, β = 1
kBT

and H is the Hamiltonian of the system, in
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(A.5) gives

S = − kB log
(

1
Z

)
+

〈H〉
T

,

log
(

1
Z

)
=
〈H〉 − TS

kBT
.

The mean Hamiltonian 〈H〉 is just what is meant by the term energy E in thermody-

namics, hence we obtain

A = −β logZ. (A.7)

This signifies the fact that the normalization constant of the distribution is directly

related to the free energy of the body. Thus, fβ may be written in the form

fβ(q, p) = e−β(H(q,p)−A). (A.8)
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