
Characterization of the ftsK gene 
of Escherichia coli 

G. C. Draper 

A Thesis presented for the Degree of Ph.D. 

Institute of Cell and Molecular Biology 
University of Edinburgh, Scotland 

February 1998 

C) 



To my parents and Harriet 



Table of Contents 

Declaration 	 vii 
Acknowledgements 	 viii 
Abstract 	 ix 
Abbreviations 	 x 

Introduction 1 

1.1 	Cell division 2 

1.1.1 Cell division genes 3 

1.1.2 ftsZ 4 

1.1.3 ftsA 12 

1.1.4 ftsQ 14 

1.1.5 ftsW 15 

1.1.6 ftsl 16 

1.1.7 ftsL 18 

1.1.8 ftsN 18 

1.1.9 ftsK 19 

1.1.10 zipA 23 

1.1.11 ftsY,ftsE and ftsX 23 

1.1.12 envA (lpxC) 24 

1.2 The mra region. 26 

1.2.1 Transcriptional organisation of the mra region 28 

1.2.2.1 Transcription within the ddlB-envA region 29 

1.2.3 Translational regulation of ftsQ,ftsA and ftsZ 31 

1.2.4 Regulation of ftsZ expression by antisense RNAs 31 

1.3 Peptidoglycan structure and synthesis 32 

1.3.1 Synthesis of disaccharide pentapeptide 34 

1.3.2 The penicillin binding proteins 37 

1.3.3 PBP1a, lb and ic 38 

1.3.4 PBP2 38 

1.3.5 PBP3 39 

1.3.6 PBP4 40 

1.3.7 PBP5 40 

1.3.8 PBP6 and 6b 41 

1.3.9 PBP7/8 42 



1.3.10 Penicillin insensitive peptidoglycan hydrolases 42 

1.4 Chromosome replication 43 

1.4.1 Initiation of chromosome replication 43 

1.4.2 Termination of chromosome replication 44 

1.4.3 Chromosome partition 45 

2 	Materials and Methods 48 

2.1 Bacterial and Phage Strains, Plasmids and General Materials 49 

2.1.1 Bacterial Strains 49 

2.1.2 Bacteriophage strains 51 

2.1.3 Plasmids 51 

2.1.4 Growth media and buffers 55 

2.1.5 Growth media 55 

2.1.6 Commonly used buffers 56 

2.1.7 Minimal medium supplements 57 

2.1.8 Selection for antibiotic resistance 57 

2.2 DNA Techniques 58 

2.2.1 Large scale preparation of plasmid DNA 58 

2.2.2 Plasmid minipreparation by alkaline lysis 60 

2.2.3 Large scale preparation of bacteriophage X DNA 61 

2.2.4 Large-scale preparation of chromosomal DNA 63 

2.2.5 Small-scale preparation of chromosomal DNA 64 

2.2.6 Precipitation of DNA 65 

2.2.7 Determination of DNA concentration. 65 

2.2.8 Restriction of DNA 66 

2.2.9 'Filling in' of recessed 3' termini 67 

2.2.10 Agarose gel electrophoresis of DNA 67 

2.2.11 Extraction of DNA from agarose gel slices 68 

2.2.12 Ligation of DNA fragments 69 

2.2.13 Preparation and transformation of competent cells (Chung Method) 69 

2.2.14 Preparation and transformation of competent cells (CaC12 method) 70 

2.2.15 Preparation of cells for high efficiency electro-transformation 71 

2.2.16 Preparation of DNA for electroporation 71 

2.2.17 Electro-transformation of ligation mixtures 72 

2.2.18 DNA sequencing 72 



2.2.19 Southern blotting of DNA onto nylon filters 	 76 

2.2.20 Preparation of labelled DNA probe 	 77 

2.2.21 Stripping probes from nylon filters 	 78 

2.2.22 The Polymerase Chain Reaction (PCR) 	 78 

2.3 Protein Techniques 79 

2.3.1 In vivo protein labelling using T7 RNA polymerase 79 

2.3.2 Visualisation of plasmid encoded proteins (Maxicell method) 80 

2.3.3 In vitro translation using a linear DNA template 81 

2.3.4 Preparation of SDS-PAGE gels 82 

2.3.5 Running SDS-PAGE gels 83 

2.4 Bacteriophage techniques 85 

2.4.1 Production of bacteriophage P1 lysates 85 

2.4.2 Phage P1 mediated-transduction 86 

2.4.3 Preparation and selection of X lysogens 87 

2.5 Bacterial Techniques 87 

2.5.1 3-Galactosidase assays 87 

2.5.2 Photography of bacterial cells 88 

2.5.3 Frozen storage of bacterial strains 89 

2.5.4 Testing UV sensitivity of recA strains 89 

2.5.5 Gene replacement procedure 89 

2.5.6 Immunofluorescence microscopy 90 

2.5.7 DAPI staining of chromosomes 92 

3 	Manipulation of ftsK 93 

3.1 The 20 minute region 95 

3.2 Cloning ftsK 96 
3.2.1 Construction of pBADK and complementation of ftsK44 99 

3.2.2 Construction of pCD99 103 

3.3 	Overproduction of FtsK 	 104 

3.3.1 Overproduction of FtsK does not induce the SOS response 	 110 

3.3.2 FtsK overproduction induced filamentation does not require 

components of the SOS response 	 114 

14 



3.3.3 Filaments caused by FtsK overproduction do not contain 

FtsZ rings 	 116 

3.4 	Characterization of a partial ftsK clone 	 121 
3.4.1 Overproduction of FtsK'583 	 123 

3.8 	Discussion 	 126 

4 	Visualization of FtsK 	 128 
4.1 	Construction of pT7 clones of ftsK 	 129 
4.2 	Use of the Maxicell method to visualize FtsK 	 134 

5 	Insertional inactivation and deletion of ftsK 139 
5.1 Gene replacement 140 

5.2 Construction of CDK1 142 

5.2.1 The N-terminal 225 aa of FtsK can complementftsK44 143 

5.2.2 Replacement of ftsK with ftsK 667::cat 146 

5.2.3 PCR and Southern blot analysis of CDK1 149 

5.2.4 Expression of the C-terminus of FtsK in CDK1 153 

5.3 Construction of CDK2 155 

5.3.1 Gene replacement using pCDCAT 156 

5.3.2 Complementation of CDK2 with pBADK 157 

5.3.3 Suppression of the lethality of ftsK44 and ftsK 542201 ::cat 158 

5.3.4 PCR and Southern Blot analysis of CDK2 163 

5.3.5 Depletion of FtsK from CDK2 167 

5.3.6 Localization of FtsZ in FtsK depleted filaments 170 

5.3.7 The N-terminus of FtsK exhibits a cell division function 172 

5.4 Construction of CDK5 176 
5.4.1 Replacement of ftsK with ftsK 543369 ::cat 177 

5.4.2 Southern Blot analysis of NACK6 178 

5.4.3 Depletion of FtsK from CDK5 180 

5.4.4 Chromosome segregation in FtsK depleted filaments 185 

5.5 Conclusion and discussion 193 



Summary and future perspectives 	 195 

References 	 198 

VI 



Declaration 

I declare that the composition of this Thesis was all my own work except 

where stated 

G. C. Draper 

February 1998 

vii 



Acknowledgements 

Many thanks to my parents for making sure I finished the work 

that they started and for their constant belief and encouragement. Thank 

you Harriet for becoming my wife and enabling me to put things into 

perspective. I would also like to express my gratitude to Stephen, my son, 

for so many stress relieving trips to the park. 

Thanks go to Willie for taking on a uncouth Englishman and 

sending forth a slightly older even more-Englishman. Thanks go to the 

members of the lab., past and present. Dave Boyle for tab break 

philosophy and too many drinks to remember, Medhat Khattar for the 

good advice and sound friendship and Neil McLennan for all things red, 

white, weird and unpronounceable. Also, thanks to Uta, Kenny, Sean, 

Guowen, Richard, Dawn and the Tiga for making my time in 820 more 

enjoyable. 

To Jo, Anthony, Darren and Simone I wish luck in their futures 

and my thanks for the good times we had in the past. May our friendship 

continue beyond the confines of grants and deadlines. 

Many thanks to the folks in Photography, who I've bothered and 

badgered and who have helped with suggestions and curses. 

Viii 



Abstract 

Cell division in Escherichia coli requires the concerted action of at 
least nine division-specific gene products. These proteins are responsible 

for formation of the septum and have been predicted to form a 

macromolecular complex. The biochemical functions of three of the 

division proteins, FtsZ, FtsA and PBP3 are known at least in part. The 

biochemical function of the six remaining gene products is not known. 

Their involvement in the division process has been inferred from 

mutational and overexpression studies. 

The division process can be described as having three distinct 

phases. The early stage involves the formation of a ring of FtsZ 

molecules at the mid-point of the cell. This process might involve a 

second protein, FtsW. During the late stage other division proteins are 

recruited to the mid-cell, and the cytoplasmic membrane, peptidoglycan 

sacculus and outer membrane invaginate at right angles to the long axis 

of the cell forming a septum. During the very late stage of cell division 

the septum is completed and daughter cells separate. One cell division 
gene, fisK, has been implicated in this late stage of division. 

The ftsK44 mutant shows a temperature-sensitive block to cell 

division and forms filamentous cells at elevated temperatures. The 

nucleoid distribution within these filaments was unaffected. This work 
describes the cloning of ftsK and the characterisation of both 
overexpression and deletion of ftsK. 

Overproduction of FtsK blocks cell division by either directly or 

indirectly blocking FtsZ ring formation. Deletion of the N-terminal 

membrane spanning region of FtsK resulted in a lethal block to cell 

division. This effect can be reversed by expressing the N-terminal 225 aa 

of FtsK. Examination of the nucleoids in the filaments that result when 

FtsK is depleted showed that chromosomal segregation was impaired. 

The N-terminus of FtsK is dispensable when FtsN, an essential cell 

division protein, is overproduced. Disruption of ftsK at bp 677 did not 
effect cell division per se but did result in a proportion of cells forming 

chains. Examination of chromosomal DNA within these chains revealed 

nucleoids trapped by the invaginations. FtsK was identified and was 

shown to migrate anomalously during SDS—PAGE. 
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Chapter 1. Introduction 

Chapter 1. The cell cycle of Escherichia coli 

In order for Escherichia coli to proliferate it has to elongate, 

replicate and partition its chromosomes and finally divide across the long 

axis of the cell (see Figure 1.1). The E. coli cell cycle can be defined as a 
number of integrated processes that are linked together by a host of 

controls and cues. This introduction aims to present a review of cell 

division, peptidoglycan biosynthesis, chromosome replication and 

partition. 

G
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Figure 1.1. A representation of the E. co/i cell cycle. A newborn cell 
elongates and replicates its chromosome. The newly replicated 
chromosomes (open circles) are then partitioned to opposite poles and 
then the cell divides. 

The third chapter of this thesis will describe the cloning and 

overexpression of ftsK, a cell division gene first identified by Begg et al., 
(1995). The fourth chapter gives an account of efforts to express and 

visualize FtsK by SDS-PAGE. The fifth chapter deals with the 

construction and phenotypes of a number of ftsK deletion alleles. The 
role of ftsK in cell division and possible future directions are also 
discussed. 

1.1 Cell division 

Cell division in E. co/i takes place after the newly replicated 

chromosomes have segregated. Ingrowth of the cytoplasmic membrane, 
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Chapter 1. Introduction 

peptidoglycan and outer membrane leads to the formation of a septum at 

the midpoint of the dividing cell (Donachie, 1993). The newly 

synthesized peptidoglycan layer is a covalently linked double layer the 

hydrolysis of which results in cell separation (Wolf-Watz and Normark, 

1976). Little is known about the involvement of the outer membrane in 

cell division although it is thought to be anchored to the peptidoglycan 

layer via crosslinks with lipoproteins (de Boer et al., 1990; Braun et al., 
1976). Division requires the concerted action of at least nine cell division 

specific gene products. The finding that L-forms of E. coli which lack the 
peptidoglycan layer divide normally, led to the conclusion that 

invagination of the peptidoglycan and outer membrane is probably a 

separate process from cytoplasmic membrane constriction (Onada et al., 
1987). 

Most of the genes that are involved in cell division were 

discovered as mutations that gave rise to a filamentous temperature 

sensitive phenotype (Its). fts mutant cells continue to elongate and 

segregate their chromosomes at the non-permissive temperature but cell 

division is blocked, resulting in the formation of long, filamentous cells. 

The fts phenotype is distinct from that of the par class of mutants which 

form filaments that have large masses of DNA at the filament centre or 

unevenly distributed throughout the elongated cell. The par phenotype 

has been attributed to mutations in genes involved in chromosome 

replication and resolution. 

1.1.1 Cell division genes 

Six of the nine cell division genes described so far are clustered in 

the murein region a or mra region at 2.2 minutes on the E. coli 
chromosome (Matsuhashi et al., 1990; Miyakawa et al., 1972). The 

structure of the mra region and the transcriptional and translational 

regulation of the expression of the genes within it will be discussed in 

section 1.2.2. The location of cell division genes and other genes involved 

in the cell cycle or peptidoglycan production is shown in Figure 1.1.2. 

91 
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Figure 1.1.2. The location of the genes involved in the cell cycle and 
peptidoglycan metabolism of E. coli. The E. coli chromosome is 
approximately 4700 kb. 

1.1.2 ftsZ 

ftsZ is the penultimate gene in the mra region and encodes the 40 

kDa cytoplasmic protein FtsZ (Lutkenhaus et al., 1980; Plá et al., 1991). 

FtsZ is the most abundant of the cell division proteins, numbering 

between 5000-20,000 molecules per cell (Bi and Lutkenhaus, 1991). 

Genetic and molecular evidence suggests that FtsZ is required at an 

early stage of cell division and that its presence is essential for the 

completion of the division process. (Addinall et al., 1996; Begg and 

Donachie, 1985). Temperature sensitive mutants of FtsZ form smooth 

sided filaments at the non-permissive temperature. Depletion of FtsZ 

from the cell leads to a block to cell division at all temperatures, 

indicating that FtsZ is an essential cell division protein (Dai and 
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Chapter 1. Introduction 

Lutkenhaus, 1991). Mutations in other cell division genes such as ftsA 
and ftsl produce filaments with slight constrictions. The products of these 

genes are thought to act at a later stage in cell division than FtsZ (Begg and 

Donachie, 1985). Combining the ftsZ (Ts) mutation with a rodA (Ts) (or 
pbpA (Ts)) allele that leads to a loss of shape results in the formation of 

lemon shaped cells devoid of any constrictions, indicating that cell 

division is blocked at an early stage and the cell shape is lost. A 

combination of the rodA (Is) allele with temperature sensitive mutants 
of ftsA, ftsQ, ftsl or ftsK, all later acting cell division genes, leads to 

swollen chains of cells with partial constrictions. This suggests that 

division has initiated but cannot be completed (Begg and Donachie, 1985; 

Begg et al., 1995). 

FtsZ has been localised to the cytoplasmic edge of the mid-point of 

the cell prior to septation and at the leading edge of the invaginating 

septum during division in a circumferential ring structure (Bi and 

Lutkenhaus., 1991., Addinall et al., 1996). In the early ground-breaking 

work of Bi and Lutkenhaus (1991) thin sections of E. co/i were probed with 

anti-FtsZ antibody and then gold-labeled secondary antibody. The 

electron dense regions of FtsZ accumulation were visualized by electron 

microscopy. Later work employed immunofluorescence microscopy 

(IFM) and FtsZ fused to the green fluorescent protein (GFP) of Aequoria 
victoria to localize FtsZ in fixed and living cells respectively (Addinall et 
al., 1996; Ma et al., 1996). 

FtsZ rings are present at the mid-cell in 90% of cells in a wild-type 

population (Addinall et al., 1996). It is inferred, therefore, that the FtsZ 

ring forms at the potential division site soon after the last round of 

division has been completed (Bi and Lutkenhaus, 1991; Addinall et al., 
1996). The location of the FtsZ ring is dictated by an as yet uncharacterized 

hypothetical factor and the min system. The min system functions to 

restrict division to the mid-cell (see below; reviewed in Lutkenhaus and 

Addinall, 1997). The hypothetical FtsZ nucleation factor, if it indeed 

exists, is present at least at all unused division sites (Addinall et al., 1997b). 

This was demonstrated by shifting a strain bearing the FtsZ84 (Is) mutant 

protein to the non-permissive temperature. High temperature renders 

FtsZ84 non-functional and cell division is blocked, resulting in the 

formation of smooth sided filaments. Shifting the ftsZ84 mutant cells 

back to the permissive temperature results in the rapid formation of FtsZ 
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rings at the unused division sites, indicating that the positional 

information locating all unused division sites was already in place 
(Addinall et al., 1997). The identity of the FtsZ nucleation factor is 

currently being sought by a number of laboratories. 

Properties of FtsZ 

Purified FtsZ can bind and hydrolyse GTP (de Boer et al., 1992; 
Mukherjee et al., 1993; RayChaudhuri and Park, 1992). FtsZ shows limited 

sequence homology with eukaryotic tubulins and contains the sequence 

GGGTGTG that is similar to the conserved tubulin GTP binding signature 

motif GGGTGS/TG (de Boer et al., 1992; Mukherjee et al., 1993, Mukheiiee 
and Lutkenhaus, 1994). The mutants FtsZ3 (GGGAGTG) and FtsZ84 

(AGGTGTG) have mutations in this motif and show reduced GTP 

binding and GTPase activities (de Boer et al., 1992; Mukherjee et al., 1993; 
RayChaudhuri and Park., 1992). The FtsZ84 mutant protein has an altered 

substrate preference and binds and hydrolyses ATP in vitro 
(RayChaudhuri and Park, 1994). The method of purification of the FtsZ 

dictates the kinetics of the GTPase activity. The study of RayChaudhuri 

and Park (1992) showed that FtsZ purified with GDP bound showed no lag 

in GTP hydrolysis. Two other groups isolated FtsZ without a bound 

nucleotide and this form of FtsZ showed a lag in GTPase activity that was 

inversely proportional to the FtsZ concentration. The lag could be 

prevented by preincubation of FtsZ with GDP, increasing the temperature 

or increasing the K concentration. It is proposed that the GTPase activity 

of FtsZ is dependent upon interactions between FtsZ molecules which 

then leads to ring formation. GTP binds to the amino-terminal 320 

amino acids of Bacillus subtilis FtsZ and can be cross linked to a region 
containing amino acids 67 to 250 (Wang et al., 1997). 

The visualization of the FtsZ ring and the similarity of FtsZ to 

tubulin led to the proposal that FtsZ could aggregate into a cytoskeletal 

structure in vivo. It was found that FtsZ could polymerise in vitro in the 
presence of guanine nucleotides. Mukherjee and Lutkenhaus (1994) 

found that FtsZ could form a linear polymer when supplied with GTP in 
vitro. In the presence of DEAE dextran, a substance found to enhance 

tubulin polymerization, FtsZ formed microtubule like structures, 

possibly bundles of linear polymers, in the presence of either GTP or GDP 

but did not hydrolyse GTP. In another study purified FtsZ formed 
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microtubules in the absence of DEAE dextran (Bramhill and Thompson, 

1994). The polymerization was dependent on high GTP concentrations. 

The mutant FtsZ84 protein which has reduced GTPase activity was shown 

to have a reduced tendency to polymerise. This work has now been 

shown to have been carried out at a pH dramatically lower than intended, 

where FtsZ has an increased likelihood of polymerization (Lutkenhaus 

and Mukherjee, 1996). FtsZ microtubules assemble into two dimensional 

sheets which are structurally similar to tubulin polymers. (Erickson et al., 
1996). A Rhizobium meliloti FtsZ-GFP fusion protein was incorporated 

into the FtsZ ring at the septum in E. coli (Ma et al., 1996). Interestingly, 

cytoskeleton like fibrils could also be seen in the cytoplasm of a 

proportion of these cells, probably the result of non-productive 

polymerization. 

The crystal structure of a recombinant Methanococcus jannaschii 
FtsZ (Ft5ZMJ) has recently been reported (Lowe and Amos, 1998). The N-

terminal GTP binding domain of FtSZMJ has a fold similar to that found 

in p2lra$ (Tong et al., 1991). The GTP binding by FtSZMJ  is different to that 

displayed by other members of the GTPase superfamily. The C-terminus 

of Ft5ZMJ shows limited sequence similarity to any other protein presently 

in the databases but does have structural similarity to chorismate mutase 

of B. subtilis (Lowe and Amos, 1998). Ft5ZMJ  has an overall structure 

similar to a- and 0- tubulin. 

Interactions with FtsZ 

Further evidence that FtsZ interacts with itself has come from yeast 

two-hybrid system studies using Bacillus subtilis FtsZ (Wang et at., 1997). 

Amino acids 100-326 of FtsZ were found to be the minimum required for 

FtsZ:FtsZ interaction to take place, perhaps defining an FtsZ 

polymerization domain. It was also shown that B. subtilis FtsZ interacted 

with B. subtilis FtsA. An interaction between B. subtilis FtsZ and E. coli 
FtsA was also observed, the interaction requiring the non-conserved 

region of the carboxy-terminus of FtsZ. The FtsZ—FtsA interaction is 

possibly a mechanism by which FtsA is located to the septum (Addinall 

and Lutkenhaus, 1996; Ma et al., 1996; Wang et at., 1997). 

FtsZ also interacts with the essential cell division protein ZipA 

(Hale and de Boer, 1997; see section 1.1.10). ZipA was identified by virtue 

of its binding to radiolabelled FtsZ in vitro. The endogenous cell division 

7 
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inhibitors Su1A and MinC (in the presence of MinD) also show 

interaction with FtsZ in a two-hybrid screen (Huang et al., 1996). FtsZ also 
interacts with the cytoplasmic region of PBP3 (Bramhill et al., 1995). PBP3 
is the product of the ftsl gene that is responsible for the production of 

septal peptidoglycan (Ishino and Matsuhashi, 1981; Spratt, 1975). This 

possible interaction might link cytoplasmic membrane invagination and 

the ingrowth of the peptidoglycan layer during cell division (Bramhill et 
al., 1995). 

With the exception of ftsK, the effect of depletion of the products of 

each of the cell division genes has been characterised via the construction 

of conditional null alleles. In this way it has been shown that each cell 

division protein is essential for cell division and viability. The 

importance of FtsZ in the division system is, however, critical. The 

amount of FtsZ limits cell division (Bi and Lutkenhaus, 1990a). A slight 

increase in the level of FtsZ leads to the formation of minicells by 

suppression of the division inhibition by MinCD at the cell poles (Ward 

and Lutkenhaus, 1985; see 'The min system' below). Increasing FtsZ to 
three times the normal levels induces filamentation, presumably because 

of unproductive aggregation of FtsZ (Dai and Lutkenhaus, 1992; Ward 

and Lutkenhaus, 1995). The ratio of FtsZ:FtsA is also important for correct 

cell division (Dai and Lutkenhaus, 1992; Dewar et al., 1992). 

Overproduction of FtsA leads also to filamentation but simultaneous 

overproduction of FtsZ and FtsA results in normal cell division. 

FtsZ has been identified in a range of eubacteria and in 

archaebacteria (Bauman and Jackson, 1996; Beall et al., 1988; Brun and 

Shapiro, 1993; Doherty and Adams, 1995; Holden et al., 1993; Kobayashi et 
al., 1997; Margolin et al., 1991; Margolin and Long, 1994; Margolin et al., 
1996; Osteryoung and Vierling, 1995; Wang and Lutkenhaus, 1996; Yi and 

Lutkenhaus, 1985). One of these organisms, Mycoplasma pulmonis, lacks 

a cell wall, indicating that FtsZ does not require the peptidoglycan layer 

for function (Wang and Lutkerihaus, 1996). 

Regulation of FtsZ activity 

FtsZ activity is subject to control by several endogenous division 

inhibitors (see below). That FtsZ is the target for regulation highlights its 

critical role in the division process. 
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The min system. 

The min system of E. coli dictates the position of the septum. The 

minB operon consists of three genes, minC, minD and minE (de Boer et 

al., 1988, 1989; Rothfield and Zhao, 1996). In the classical min mutant, 

division can take place at any of the three potential division sites in the 

cell, that is, the midpoint (new division site) and either of the two poles 

(old division sites). Polar division leads to the production of small 

anucleate cells known as minicells. The use of division potential in polar 

division results in an increase in the average nucleate cell length as in 

Figure 1.1.3. (Adler et al., 1976; leather et al., 1972; Donachie and Begg, 

1996). 

V 	V 	V 
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Figure 1.1.3. The min phenotype. Any of the potential division sites 
(indicated by arrows) can be used. The result is an increase in average 
nucleate cell length. From Donachie, 1993. 

The minC gene product inhibits division and requires MinD for 

activity. MinD is a cytoplasmic membrane-associated ATPase (de Boer et 

al., 1991). Although it is thought that the MinCD complex is required for 

inhibition of division, overproduction of MinC alone blocks division (de 

Boer et al., 1992). The target for MinCD is FtsZ; MinCD blocks the 

formation of the FtsZ ring 
( 

Bi and Lutkenhaus, 1990c; Bi and Lutkenhaus, 

1993). MinC can also be activated by the DicB protein, which is encoded by 

a defective prophage, to function as a division inhibitor (de Boer et al., 

1990; Labie et al., 1990; Mulder et al., 1992). The MinC/DicB system is not 

subject to control by MinE (de Boer et al., 1990; see below). 
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MinE is apparently able to differentiate between the mid-cell and 

the cell pole. The presence of MinE allows division at the mid-cell but 

not at the poles. There are two potential mechanisms by which MinE 

might function. The first suggests that MinE suppresses the inhibitory 

effect of MinCD at the mid-cell but not at the cell poles (de Boer et al., 
1989; Zhao et at., 1995; Huang et at., 1996; Rothfield and Zhao, 1996), the 

second proposes that MinE is a factor that targets MinCD to the poles (de 

Boer et at., 1989; Pichoff et at., 1995). MinE can neither confer topological 

specificity on the MinC/DicB division inhibitor nor can it prevent the 

filamentation caused by the overexpression of MinC leading to the 

suggestion that MinE acts through MinD (de Boer et at., 1992). Interaction 
between MinC and MinD was detected using the yeast two hybrid system 

(Huang et at., 1996). There was no interaction observed between MinC 

and MinE but a weak interaction was recorded between MinD and MinE. 

MinC interacted with FtsZ only when MinD was present, indicating that 

MinCD is the active division inhibitor. It was proposed that by interacting 

with FtsZ, MinCD prevented FtsZ ring formation (Huang et al., 1996). 

Overproduction of MinE suppresses the division inhibition caused 

by MinCD not only at the mid-cell but also at the cell poles resulting in 

the formation of minicells. Deletion of minC and/or minD leads to a loss 

of division inhibition at all potential division sites which also leads to 

minicell formation (de Boer et al., 1989). In the absence of MinE long 

aseptate filaments form because MinCD blocks division at all potential 

division sites (de Boer et at., 1989). 

MinE forms a ring structure at the mid-cell (Raskin and de Boer, 

1997). The MinE ring requires MinD but not MinC or the FtsZ ring for 

formation. The study proposes that the MinE ring inhibits the action of 

MinCD at the mid-cell and contradicts the hypothesis that MinE localises 

MinCD to the cell pole (de Boer et al., 1989; Pichoff et al., 1995). The model 

put forward by Zhao et at., (1995) and Huang et al., (1996) and developed 

by Raskin and de Boer (1997) is shown in Figure 1.1.4. Factors X and Y are 

the hypothetical elements that respectively influence the sites for FtsZ 

and MinE ring location. The FtsZ ring is prevented from assembling at 

the cell poles by MinCD. MinCD is prevented from acting at the mid-cell 

by the MinE ring (see figure legend). 
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Figure 1.1.4. The proposed model for MinCDE action (from Raskin and de 
Boer, 1997). MinE recognizes the mid-cell via a hypothetical topological 
factor Y which results in a zone where MinCD activity is suppressed 
(unshaded section). Factor X is a hypothetical element present at both the 
mid-cell and poles that defines potential division sites (see FtsZ section). 
At the cell poles Factor X is proposed to inhibited by the presence of active 
MinCD. 

The SOS Response 

sulA (sfiA) is a component of the SOS regulon (Huisman and 

D'Ari, 1981). Damage to DNA results in a block to chromosome 

replication and the formation of regions of single stranded DNA (Rupp 

and Howard-Flanders, 1968). The binding of RecA to these lesions causes 

RecA to become activated (Salles and Defais, 1984; Sassanfar and Roberts, 

1990). Activated RecA associates with LexA, the repressor of the SOS 

system, resulting in the autocatalytic breakdown of LexA. Two LexA 

monomers bind to the consensus sequence 

TACTGTATATATATACAGTA (known as SOS boxes) and form a dimer 

(Friedberg et al., 1995; Kim and Little, 1992; Schnarr et al., 1985; Thliveris 

et al., 1991). Binding of LexA to the SOS box results in the repression of 

transcription of the downstream genes (Brent, 1982; Brent and Ptashne, 

1981; Friedberg et al., 1995; Little and Mount, 1982; Sancar et al., 1982a; 

Sancar et al., 1982b; Schnarr et al., 1991), transcription of these genes is 

derepressed under SOS-inducing conditions. Gene products induced 

during SOS include enzymes active in the repair of damaged DNA. Once 

the SOS gene products have repaired the single stranded regions of DNA, 

RecA returns to its non-activated state, LexA no longer breaks down by 

autocatalysis and the system is repressed once again by LexA binding at 

SOS boxes. In this manner the set of genes described as the SOS regulon 

can be induced and repressed as and when required by the cell (Walker, 

1996). 
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Induction of sulA results in the inhibition of cell division 

(Gottesman, 1989; Huisman et at., 1984; Schoemaker et al., 1984). FtsZ is 

the target for Su1A activity (Bi and Lutkenhaus, 1990; Jones and Holland, 

1985; Lutkenhaus, 1983). FtsZ mutants resistant to the inhibitory effects of 

Su1A have been shown to have reduced GTP binding capabilities (Bi and 

Lutkenhaus, 1990b; Dai and Lutkenhaus, 1994). Su1A prevents the 

formation of the FtsZ ring and two-hybrid analysis showed an interaction 

between FtsZ and Su1A (Bi and Lutkenhaus, 1993; Huang et al., 1996). The 
interaction between FtsZ and SuJA involves the hydrolysis of GTP 

(Higashitani et al., 1995). Upon repair of DNA damage, sulA induction is 
repressed and the cytoplasmic pool of Su1A is rapidly degraded by the Lon 

protease (Gottesman, 1989; Maguin et at., 1986). Khattar (1997) showed 

that the lethal effects of sulA induction in a ion mutant strain can be 

suppressed by overproducing the heat shock protease complex Hs1VTJ. It 

is not known whether Hs1VU is involved in the degradation of Su1A in 

wild-type cells. 

It is possible, therefore, that during SOS induction FtsZ ring 

formation is blocked to stall division whilst DNA damage is repaired. 

This block is mediated by the reversible inhibition of FtsZ polymerization 

by Su1A. 

The bacteriophage relic e14, present in some strains of E. coti, 
contains the SOS inducible sfiC gene (D'Ari and Huisman, 1983; Greener 

and Hill, 1980; Maguin et al., 1986). SfiC also inhibits division during SOS 
induction. 

There is a third SOS inducible system that blocks cell division upon 

interference with chromosome replication (Hill et al., 1997). Even in cells 

devoid of SulA and SfiC activity filamentation is induced upon 

interference with DNA replication. This sfi-independent pathway is LexA 

dependent but the remaining components remain obscure. It is not 

known whether the sfi-independent filamentation functions by 

interfering with FtsZ function. 

1.1.3 ftsA 

ftsA is located in the mra region immediately upstream of ftsZ and 

encodes the 45 kDa protein FtsA (Lutkenhaus and Donachie, 1979; van de 

Putte et al., 1964; Robinson et al., 1984). There are approximately 150 
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molecules of FtsA per cell (Wang and Gayda, 1992). FtsA is found in the 

cytoplasm, associated with the cytoplasmic membrane and at inner-outer 

membrane junctions (Chon and Gayda, 1988; PM et al., 1990). FtsA is an 

essential cell division protein (Lutkenhaus and Donachie, 1979). 
Temperature-sensitive ftsA mutants form filaments with evenly spaced 

constrictions at the non-permissive temperature (Donachie et al., 1979). 
The ftsAl2 (Ts) mutation can be suppressed by overproduction of FtsN 
(Dai et al., 1993), as can temperature sensitive mutations in ftsl and ftsQ. 
As mentioned previously, FtsA is described as a late acting cell division 

protein (Begg and Donachie 1985). A combination of an ftsA (Ts) and 
rodA (Ts) alleles leads to the formation of chains of bloated cells with 

invaginations at the non-permissive temperature (Begg and Donachie, 

1985). The morphology of the cells suggest that the FtsZ ring has formed 

but cell division has been blocked after the initiation of septation due to 

the inability of the FtsZ ring to fully constrict. Overproduction of FtsA 

blocks cell division due to the resultant imbalance in the ratio of 

FtsA:FtsZ (Dai and Lutkenhaus, 1992; Dewar et al., 1992; Wang and Gayda, 

1990). This relationship has led to speculation that FtsA might be 

involved in preventing unproductive aggregation of FtsZ (Lutkenhaus 

and Mukherjee, 1996). 

It is proposed that FtsA interacts with another component of the 

septum, PBP3, the ftsl gene product (Tormo et al., 1986). PBP3 is a septum 

specific transpeptidase that synthesizes the ingrowing layer of 

peptidogilycan during cell division (Botta and Park, 1981; Ishino and 

Matsuhashi, 1981; Spratt, 1975; Spratt, 1977). FtsA could act as a line of 

communication involved in co-ordinating invagination of the cell 

membrane and septal peptidoglycan biosynthesis. 

FtsA is a component of the septum (Addinall and Lutkenhaus, 

1996b; Ma et al., 1996). The presence of FtsA in the septum is dependent 

on the formation of the FtsZ ring. In strains where FtsZ ring formation is 

prevented there is no evidence of FtsA localization. Cells carrying the 

mutant ftsZ26 form spiral FtsZ structures as well as rings at the midcell at 

the permissive temperature (Addinall and Lutkenhaus, 1996a; Bi and 

Lutkenhaus, 1992). FtsA colocalises with FtsZ in these spiral shaped septa. 

These data led Addinall and Lutkenhaus (1996b) to suggest that FtsZ 

recruits FtsA to the septum. As mentioned in section 1.1.2, FtsA from E. 
coli interacts with FtsZ from B. subtilis (Wang et al., 1997). The 
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sequestration of FtsA to the septum could be a directly attributed to the 

FtsZ ring. 

FtsA has an ATP binding domain and limited similarity with sugar 

kinases, actin and DnaK (Bork et al., 1994; Sanchez et at., 1994). FtsA binds 

to an ATP affinity column suggesting that FtsA may have ATPase activity 

(Sanchez et at., 1994). FtsA has both a phosphorylated and non-

phosphorylated form (Sanchez et al., 1994). The phosphorylation of FtsA 

takes place at a threonine residue corresponding to the phosphorylated 

residue in DnaK. Phosphorylated FtsA is located in the cytoplasm 

whereas the non-phosphorylated form is associated with the cytoplasmic 

membrane. Purified phosphorylated FtsA can bind ATP in vitro whereas 
the non-phosphorylated form cannot (Sanchez et al., 1994). The role of 

the phosphorylation of FtsA is unclear as a mutant FtsA that cannot be 

phosphorylated still supports division (Sanchez et at., 1995) 

1.1.4 ftsQ 

ftsQ lies in the mra region upstream of ftsA and encodes the 31 

kDa FtsQ protein (Begg et at., 1980; Carson et at., 1991; Robinson et at., 
1984; Storts et at., 1989). FtsQ is membrane bound, consisting of a small 

cytoplasmic N-teminus, a single membrane spanning cc-helix and a larger 

periplasmic domain and is present at approximately 50 molecules per cell 

(Carson et at., 1991). Proteins with such a structure are said to have a 

bitopic topology. FtsQ is essential for cell division (Carson et at., 1991). 

The ftsQTI (Ts) mutant forms smooth filaments at 42°C but also forms 

filaments with evidence of septation at 37°C suggesting that FtsQ is 

required throughout the division process (Carson et at., 1991). 

Overexpression of ftsQ has no effect in rich media but blocks 

division in minimal medium (Carson et at., 1991, Storts et at., 1989). The 

overproduction of FtsQ is also detrimental to ftsA (Is) and ftsZ (Ts) 

mutants and lethal to the ftsI23 (Ts) strain at the permissive temperature 

(Dai and Lutkenhaus, 1992). FtsQ is thought to act at a later stage in cell 

division than FtsZ because of the constricted morphology of the 

ftsQTI /rodA (Ts) double mutant at the non-permissive temperature (Begg 

and Donachie, 1985) and also because functional FtsQ is not required for 

FtsZ ring formation (Addinall et al., 1996). FtsQ is also thought to act at a 

later stage in cell division than FtsA as the immunolocalization of FtsA to 
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the potential division site does not require functional FtsQ (Addinall and 

Lutkenhaus, 1996b). 

Guzman et al. (1997) reported that the specific sequences of the 

membrane spanning domain (MSD) of FtsQ was not essential for FtsQ 

function. FtsQ with the MSDs of FtsI, FtsL or Ma1F retained the ability to 

complement a ftsQ-null mutant. Swapping the cytoplasmic or 

periplasmic domains relative to the MSD of FtsQ rendered the protein 

unable to complement the ftsQ-null allele. These results agree with 

Dopazo et al., (1992) who state that the amino terminus of FtsQ is required 

for FtsQ function. 

1.1.5 ftsW 

ftsW is located in the mra region and possibly encodes two 

proteins; a 43 kDa protein and a longer, in frame 46 kDa protein which 

would be initiated at a translation initiation codon 90 bases upstream of 

the first (Ikeda et al., 1989; Ishino et al., 1989; Khattar et al., 1994; Khattar et 
al., 1997). Both the 46 kDa protein (FtsWL) and the smaller peptide of 43 

kDa (FtsWS) have been identified by SDS—PAGE but the two gene 

products have never been detected in the same extract (Khattar et al., 1994; 

Khattar et al., 1997; D.S. Boyle and M.M. Khattar, pers. comm.). 

ftsW is an essential cell division gene (Boyle et al., 1997). Depletion 

of FtsW from the cell results in the formation of aseptate filaments (Boyle 

et al., 1997). Genetic and molecular evidence suggests that FtsW is 

required throughout division and that FtsW functions to stabilize the 

FtsZ ring (Boyle et al., 1997; Khattar et al., 1994; Khattar et al., 1997). A 

reduced number of FtsZ rings are seen in filaments produced by the 

depletion of FtsW (Boyle et al., 1997). The fts W null strain required the 

upstream mraY—murD gene junction for complementation, confirming 

the findings of Ikeda et al. (1989) that this region contained a promoter for 

ftsW and downstream genes. 

Certain fts W (Ts) alleles can be suppressed by altering physiological 

levels of ppGpp (Khattar et al., 1997). This finding can be compared to the 

suppression of the pbpA deletion by increased levels of ppGpp (Vinella et 

al., 1992). These results suggest that the proposed PBP2/RodA and 

PBP3/FtsW murein synthesising elements are both sensitive to 

regulation by ppGpp levels. 
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1.1.6 ftsl 

The ftsl (pbpB) gene is located in the proximal end of the mra 
region. The gene encodes the 60 kDa protein PBP3 (FtsI) (Nakamura et al., 
1983). PBP1a, PBP1b, PBP2 and PBP3 make up the four high molecular 

weight penicillin binding proteins with transpeptidase activity so far 

discovered in E. coil (Engelbert et at., 1993). It is estimated that there are 

100 molecules of PBP3 per cell (Dougherty et at., 1996; Spratt, 1977; Weiss 
et at., 1997). 

PBP3 is the septum specific peptidoglycan synthesising enzyme and 

is not required for the elongation mode of peptidoglycan synthesis (Botta 

and Park, 1981; van Heijenoort, 1996; Schmidt et at., 1981; Spratt, 1977). 

Inactivation of PBP3 with antibiotics such as cephalexin or furaziocillin 

results in filaments with slight indentations (Botta and Park, 1981; Spratt 

and Pardee, 1975). The same phenotype results when ftsl (Ts) mutants are 
shifted to the non-permissive temperature (Begg and Donachie, 1985; 

Fletcher et at., 1979; Spratt, 1977). A conditional null allele of ftsl proved 
the essential nature of the gene (Hara et at., 1997). PBP3 is not required for 

initiation of septation or the very early stage of septal peptidoglycan 

synthesis as there is a period of penicillin-insensitive peptidoglycan 

synthesis (PIPS) during which PBP3 is not required (Nanninga, 1991). 

PBP3 has a bitopic structure similar to FtsQ, FtsN and FtsL with a 

small cytoplasmic region, an MSD and a catalytically active periplasmic 

carboxy-terminus (Bowler and Spratt, 1989; Nagasawa et at., 1989). The 

periplasmic domain of PBP3 exhibits transpeptidase and disputed 

transglycosylase activities (Ishino and Matsuhashi, 1981; Ghuysen, 1994). 

PBP3 has a lipoprotein modification sequence but since PBP3 is known 

not to be a lipoprotein the importance of this is not yet fully understood 

(Hayashi et at., 1988). An 11 amino acid polypeptide is cleaved from the 

carboxy-terminus of the mature PBP3 protein (Nagasawa et al., 1989). This 

modification was proposed to be a potential method of regulation of PBP3 

activity. It was later determined that a PBP3 protein translated without 

these 11 amino acids functioned well and that a mutant resistant to the 

cleavage was also fully functional (Hara et at., 1989; Hara et at., 1991). The 

importance of this post-translational modification has still to be 

determined. 
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The level of tripeptide acceptor in the peptidoglycan layer appears 

to exert a controlling effect on PBP3 activity (Begg et at., 1990). The fts123 
(Ts) gene product can be suppressed at the non permissive temperature by 

increasing the proportion of tn- to pentapeptide side chains in the 

peptidoglycan layer. This can be achieved by overproducing the D-ala:D-

ala carboxypeptidase PBP5 (Begg et at., 1990). Similarly, overproducing the 

MurF, a D-ala:D-ala adding enzyme in a wild-type strain results in a block 

to division, possibly due to the reduced levels of tripeptide acceptor 

(Mengin-Lecreulx et al., 1989). Thus the amount of tripeptide acceptor 

present in the peptidoglycan layer may dictate whether the cell will divide 

or elongate. 

Inhibition of PBP3 with cephalexin causes FtsZ rings to 

disassemble. (Pogliano et at., 1997). This is followed by the reconstitution 

of a few FtsZ rings at unused potential division sites. This suggests a role 

for PBP3 in the localization of future division sites (Pogliano et al., 1997). 

Interactions with PBP3 

PBP3 may interact with several of the cell division proteins 

(Donachie, 1993). FtsZ was found to bind to the cytoplasmic domain of 

PBP3 in vitro (Bramhill et al., 1995). Overproduction of FtsQ is tolerated 

in rich media but is lethal in strains bearing the ftsI23 (Ts) allele at the 
permissive temperature (Dai and Lutkenhaus, 1992). An interaction 

between PBP3 and FtsA was suggested by Tormo et at., (1986) because a 

mutant FtsA protein can alter the ampicillin-binding characteristics of 

PBP3. 

Subcellular localization of PBP3. 

PBP3 localises to the septum during division (Weiss et al., 1997). 

This localization was seen in 50% of the cells in the population. 

Interestingly it was also found that in 10-20% of the cells PBP3 could be 

located at one cell pole. The localization of PBP3 to the mid-cell is 

expected from the accumulated genetic and biochemical evidence that 

PBP3 a septal peptidoglycan synthesising enzyme. The importance of the 

polar localization is less clear. Weiss et at., (1997) suggest that polar PBP3 

could be a relic from a previous division, a result of polar insertion of 

PBP3 into the membrane or an artifact. A model for the dynamic 

localization of PBP3 was offered: PBP3 locates to the septum early in the 
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division process and remains at the division site during invagination. 

Upon completion of division it is postulated that PBP3 redistributes from 

the pole to the mid cell prior to the next round of division. 

1.1.7 ftsL 

ftsL (mraR) is located immediately upstream of ftsl in the mra 
region at 2.2 minutes of the E. co/i chromosome (Guzman et al., 1992; 
Ueki et al., 1992). ftsL encodes the 13 kDa protein FtsL of which there are 

approximately 50 molecules per cell (Guzman et at., 1992). The ftsL locus 
was first located by Ishino et al., (1989) who described two temperature 

sensitive mutations in the region that gave different phenotypes at the 

non-permissive temperature. fts36 had a filamentous phenotype at 42°C 

and 1ts33 lysed at 42°C. Guzman et at. (1992) showed that ftsL is an 

essential cell division gene by constructing a conditional null allele of the 

gene. Depletion of FtsL from the cell causes lethal filamentation. 

Overproduction of FtsL causes filamentation only in minimal medium 

(Guzman et al., 1992). FtsL is proposed to have a bitopic membrane 

topology similar to FtsQ, FtsN and PBP3, consisting of a 37 aa amino-

terminal cytoplasmic region, a 20 aa hydrophobic MSD and a 64 aa 

periplasmic carboxy-terminus region (Guzman et al., 1992). FtsL has a 

proposed leucine zipper domain which may result in FtsL forming a 

dimer (Guzman et al., 1992). Guzman et al. (1992) suggested that FtsL may 

act in a complex with the other bitopic proteins as a signal transducing 

network during cell division. 

1.1.8 ftsN 

ftsN was initially identified as a multicopy suppressor of the 

temperature-sensitive ftsAl2 cell division mutation and subsequently the 

ftsI23 and ftsQl temperature sensitive alleles (Dai et al., 1993). ftsN maps 

to 88.5 minutes of the E. co/i chromosome and encodes the 36 kDa protein 

FtsN. FtsN is essential for cell division, depletion of which leads to the 

formation of smooth sided filaments suggesting that FtsN is an early 

acting cell division protein (Dai et al., 1993). FtsN has a bitopic topology 

similar to FtsQ, PBP3 and FtsL, consisting of a short cytoplasmic region, a 

single membrane spanning hydrophobic region and a large periplasmic 
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domain (Dai et al., 1996). It appears that the functional domain of FtsN is 
located in the periplasm (Dai et al., 1996). Substitution of the cytoplasmic 

and the MSDs with the first MSD of the MalE protein allows for normal 

division. Similarly, fusing the periplasmic domain of FtsN to the 

cleavable signal sequence of MalE has no effect on cell division, indicating 

that FtsN does not have to be membrane bound to function. It is 

proposed that the periplasmic domain of FtsN interacts with a 

periplasmic or cytoplasmic membrane bound component of the cell 

division apparatus (Dai et al., 1996). 

Subcellular location of FtsN 

FtsN locates to the potential division site and to the septum during 
division (Addinall et al., 1997a). The localization of FtsN is dependent on 

the formation of the FtsZ ring and the subsequent recruitment of FtsA to 

the mid-cell (Addinall et al., 1997a). Functional PBP3 and FtsQ was also 

found to be required for the localization of FtsN as filaments caused by 

temperature sensitive mutations in these genes had no FtsN rings 

(Addinall et al., 1997a). These findings point towards FtsN acting at a later 

stage in cell division than FtsZ, FtsA, FtsQ and PBP3, which contradicts 

both the earlier proposal that FtsN could be an early cell division gene 

and that the smooth morphology of some division mutants indicates an 

early function for the protein (Addinall et al., 1997a; Dai et al., 1993). The 

localization of FtsN to the septum is mediated through the periplasmic 

domain (Addinall et al., 1997a). The Ma1G-FtsN fusion protein also 

localised to the septum, proving that the cytoplasmic and membrane 

spanning regions do not influence the positioning of FtsN (Addinall et 
al., 1997a). 

1.1.9 ftsK 

ftsK is located at 20 minutes on the E. coil genetic map and encodes 

the FtsK protein with a predicted size of 147 kDa (Begg et al., 1995). T0E44 

was one of a number of strains produced by a mutagenesis and 

enrichment procedure designed to select mutants temperature sensitive 

for only a short period of the cell cycle (Begg et al., 1980). At high 

temperature T0E44 formed filaments with no obvious evidence of 

invagination and with normally segregated chromosomes. Mapping the 
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temperature sensitive mutation in T0E44 led to the discovery of a 

previously unidentified gene, ftsK, situated downstream of lrp (Begg et al, 

1995). Combining the ftsK44 (Ts) mutation with the rodA (Ts) allele 

indicated that ftsK might act at a very late stage in division. Interestingly, 

the temperature sensitive phenotype of the ftsK44 mutation was found to 

be suppressed by deletion of dacA, which encodes the D-ala:D-ala 

carboxypeptidase PBP5 (Spratt, 1975; Spratt, 1980; see section 1.3.7). It was 

suggested that this suppression might indicate a role for FtsK in 

peptidoglycan synthesis or modification. 

Complementation of ftsK44 at elevated temperatures by cloned 

chromosomal DNA fragments yielded some surprising observations. In 

all cases it was found that a region 5' to the upstream lrp gene was 

required for complementation by cloned ftsK fragments. This region does 

not include the assigned promoter for lrp (Begg et al., 1995; Wang et al., 

1994). The 134 bp gap between lrp and ftsK contains a previously 

characterised SOS inducible promoter named dinH (Lewis et al., 1992). It 

was also shown that the entire ftsK ORE was not required for 

complementation of ftsK44. A 2 kb cloned fragment containing DNA 

upstream of lrp and 1170 bp of the 5' end of ftsK complemented ftsK44 
(theftsK ORE is 3998 bp). The ftsK44 mutation was sequenced and found 

to be a GC to CG transversion at bp 239 of the ftsK ORE. This mutation 

resulted in the substitution of glycine-80 by an alanine residue, located in 

the predicted membrane spanning amino terminus of FtsK (Begg et al., 

1995). 

The carboxy-terminus of FtsK shows sequence similarity to the 

SpoIllE family of DNA translocases (Flannagan et al., 1994; Hagege et al., 

1993; Kataoka et al., (unpub.); Kendall and Cohen, 1988; Oswald et al., 1993; 

Tomura et al., 1993; Wu and Errington, 1994; Wu et al., 1995; Wu and 

Errington, 1997). The SpolilE of Bacillus subtilis translocates DNA not 

already situated at the pole into the prespore and is located at the septum 

during asymmetrical division (Wu and Errington, 1997). The carboxy-

terminus of FtsK contains the ATP/GTP binding motifs (Walker et al., 

1982) found in common with other members of the SpoIIIE family. 

Figure 1.1.9 overleaf shows a line up of the C-terminus of FtsK with other 

representatives from the FtsK/SpoIIIE family of proteins. 
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ssus 1327:* 	 ***** 	 * 	 :1404 

Ei1iFtsK 1137: 1iaRLaQ1R ThtwlatQPrsv&itGl. . iicAniptRiMtVss]dd........................... :1185 
cbirnFtsK 579: 1ivRLaQ3RAPThLifatQRpsvdvitG1. . iicAniptRvMqVsskid........................... :627 
BsuhxIIIE 596: sitRLsmRAPGThLiiatvdvitGc.r. . iicAnipaRiAfsVssqtd ........................... :644 
ThaS71-306 137 :214 

	

seisus 1405: 	 :1482 

E1iFtsK 	1185- ................... 	 1244 
cbixriFtsK 	627- ................... 	 686 
BsubIIIE 644 ...................  sRtilcITggaekllcjrcjckdflpvgankpvrvcjgaflsddevekvvd ~rAtcl--Joa_tqe: 703 
TraS771-306 

	

nssus 1483: 	 * 	 :1560 

E1iFtsK 1245 :gitsdsese........g aggfdaee11fd 	fvtekrkasisgvqfrigynraarii 	vse: 1314 
cbirnFtsK 687 :gildaiaq1sgfveaa1gggseeges13eaveavirsrrvsvssiqrrfkigynraarivearreaagvvspn:764 
BSUbxDIIIE 704 :nipeettetbs..............evt1y ve1igtasvn1qrrfrigytraarlidanEergvy: 767 
TraS7'71-306 
consisus 1561: 	 :1638 

E1iFtsK 1315 :rrev1fd-:1329 
cburnFtSK 765 : arevlapske-: 778 
sutoIIIE 768:s]çrev11skek1ss: 787 

ThaSA71-306 
rn 1639: 	 :1658 

Figure 1.1.9. An alignment of C-terminal region of E. coli FtsK (EcoliFtsK, 
aa 781-1329), C. burnetii FtsK (cburnFtsK, aa 275-778), SpolilE from 
Bacillus subtilis (BsubSpoIIIE, aa 315-787) and aa 71-306 of S. ambofaciens 
TraSA (TraSA71-306). Identical residues are in uppercase and are 
indicated by asterisks (*) in the consensus line. The alignment was 
created by the PileUp program from the Wisconsin GCG Package. 

21 



Chapter 1. Introduction 

The amino-terminus of FtsK shows a satisfactory degree of 
similarity only with the SpolliE from Coxiella burnetii (Oswald et al., 
1993). A number of initiation codons exist within the ftsK ORE but a TTG 
initiation codon upstream of the first ATG was proposed because this 

extended region shows similarity with the N-terminus of the C. burnetii 
SpoIllE and possesses a potentially strong ribosome binding site. Begg et 
al. (1995) predicted that the amino-terminus of FtsK consists of 4-5 

transmembrane bound domains and that the carboxy-terminus of the 

protein is located in the cytoplasm. 

The central region of FtsK has no clear similarity to any other 

proteins of the family. This region does, however, contain three 

proline/glutamine rich repeat regions similar to those found in y-gliadins 

and C-hordeins from cereal seeds (Okita et al., 1985). The y—gliadins act as 

storage proteins. The y—gliadin proline/glutamine rich regions are 

thought to adopt extended or compact helical structures depending on 

temperature and solvent (Tatham et al., 1985; 1989; Tatham et al., 1984). 
The importance of this region is unknown, although it was proposed by 
Begg et al. (1995) that it might be functionally similarly to the contractile 

elastin proteins, conferring mechanical elasticity to the cytoplasmic C-

terminus on FtsK (Urry, 1995; Urry et al., 1983). 

The involvement of the membrane spanning amino terminus in 

cell division and peptidoglycan synthesis is implied by the filamentous 

phenotype of the ftsK44 mutant and by the fact that it can be suppressed by 

a deletion of dacA (see section 1.3.7). No direct evidence exists for the 

involvement of FtsK in chromosome transfer other than its similarity to 

the SpoillE family of proteins. 

The insertion of a TnTIOd-cat sequence at bp 2000 of ftsK was found 
to induce uspA expression, encoding the universal stress protein A 

(UspA), during stationary phase (Diez et al., 1997; T. Nystrom, pers. 

comm.). This insertion also caused a proportion of the cells to form 

chains with no obvious evidence of chromosomal abnormalities. The 

ftsKl::cat strain survived stationary phase poorly and did not tolerate 

media with elevated salt levels. A protein of between 41 and 67 kDa was 

also detected by in vitro transcription/ translation of a cloned region of 

the 3' end of the ftsK ORE. The full involvement of FtsK in stress 

adaptation has yet to be elucidated. 
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1.1.10 zipA 

The 36 kDa FtsZ interacting protein A or ZipA was identified as a 

protein that bound radiolabelled FtsZ in vitro (Hale and de Boer, 1997). 
The zipA gene was identified from an expression library and found to 
map to 52 minutes of the E. co/i genetic map. zipA is an essential gene, 
depletion of ZipA in a zipA conditional null strain resulted in lethal 

filamentation (Hale and de Boer, 1997). It is estimated that there are 

between 100-1000 molecules of ZipA per cell. Overproduction of ZipA is 

toxic to the cells resulting in the formation of filaments. Interestingly, the 

lethal filamentation induced by overexpression of zipA can be alleviated 
by simultaneously increasing the levels of FtsZ (Hale and de Boer, 1997). 

This indicates that there is possibly a required ratio of ZipA:FtsZ as with 
FtsA:FtsZ. 

ZipA was found to be an integral cytoplasmic membrane protein. 

The predicted amino acid sequence of ZipA led Hale and de Boer (1997) to 

suggest the ZipA has a bitopic topology of type lb. Type lb bitopic proteins 

have a hydrophobic amino-terminus that acts as a membrane anchor, 

with the remainder of the protein located in the periplasm (Pugsley, 1993). 

A ZipA::GFP chimera localised to the mid-cell prior to division and 

also to the septum during division (Hale and de Boer, 1997). This finding, 

along with the evidence of direct ZipA:FtsZ interaction, the location of 

ZipA and that cells depleted of ZipA form smooth sided filaments led to 

the suggestion that ZipA could be the hypothetical Factor X that dictates 

the position of the potential division site. However it has since been 

found that there are no ZipA rings in filaments formed by the 

inactivation of FtsZ (P.A.J. de Boer, pers. comm.). It is likely, therefore, 

that ZipA requires the prior formation of the FtsZ ring for localization in 

a manner similar to FtsA localization (Addinall and Lutkenhaus, 1996). 

1.1.11 ftsY,ftsE andftsX 

fisY, ftsE and ftsX form an operon at 76 minutes on the E. coli 
genetic map (Gill et al., 1986). Temperature-sensitive mutations in ftsE 
lead to filamentation (Gill et al., 1986; Gibbs et al., 1992). Taschner et al. 
(1988) questioned whether ftsE is a true cell division gene as the 

filamentation elicited by the mutant is medium dependent. The function 
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of ftsX is not known. All three proteins are associated with the 

cytoplasmic membrane (Gill and Salmond, 1987). FtsY is a prokaryotic 

homologue of the eukaryotic signal recognition particle (SRP) receptor 

protein, SRa. The SRP is involved in the binding and export of 

periplasmic and other non-cytoplasmic proteins (Luirink et al., 1994; 
Miller et al., 1994). 

1.1.12 envA (lpxC) 

envA (lpxC) is the last gene in the mra region and it encodes the 34 
kDa protein EnvA (LpxC) (Beall and Lutkenhaus, 1987; Sullivan and 
Donachie, 1984; Young et al., 1995). envA is an essential gene and the 
envA22 temperature sensitive mutant forms chains of cells at the 

restrictive temperature, implicating EnvA in cell separation (Beall and 

Lutkenhaus, 1987; Wolf-Watz and Nomark, 1976). The envA22 mutation 
also renders the cell hyperpermeable to antibiotics (Grunstrom et al., 1980; 
Normark, 1970). It has since been shown that en vA encodes a UDP-3-0-
acyl-N-acetylglucosamine deacetylase and is involved in LipidA 

biosynthesis, thus the inhibition of cell separation in the mutant strain 

could be indirect (Young et al., 1993; Young et al., 1995). envA has also 
been shown to be a multicopy suppressor of a mutant defective in OmpF 
assembly (Kloser et al., 1996). It is proposed that multicopy en vA 
suppresses the OmpF mutant by reducing lipopolysaccahride levels in the 

outer membrane thereby increasing its fluidity (Kloser et al., 1996). 

Table 1.1 overleaf summarises the information in the above sections. 
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Gene Protein 	MW of 	Phenotype of 	Cellular Location 	Function(s) 	Interaction(s) 
Protein(kDa) Mutation (s) 

01 

ftsZ 	FtsZ 

ftsA 	FtsA 
	

45 

ftsQ 	FtsQ 
	

31 
ftsW 	FtsW 
	

46/43 

ftsl 	P13P3 
	

60 

ftsL 	FtsL 
	

13 
ftsN 	FtsN 
	

36 

ftsK 	FtsK 
	

147 

36 
	

filamentation 
54.5 
	

filamentation 

ftsE FtsE 24.4 	filamentation 
ftsX FtsX 38.5 	filamentation 
envA EnvA 34 	chain 
(lpxC) (LpxC) formation 

FtsZ, FtsA, 
ZipA, SulA 

FtsZ 

Unknown 
FtsZ? 
PBP3? 
FtsZ? 
FtsA 
Unknown 
FtsA?,FtsQ,P 
BP3? 
Unknown 

FtsZ 
Unknown 

Unknown 
Unknown 
Unknown 

filamentation, 
altered septal 
morphology 
filamentation, 
increased 
resistance to 
penicillins 
filamentation 
filamentation 

zipA 	ZipA 
ftsY 	FtsY 

component 

Cytoplasm, associated with ATP-binding 
cytoplasmic membrane/ 
DS 

ICMP / DS 
ICMP /DS 

ICMP /DS 
Cytoplasm, associated with 
cytoplasmic membrane 
ICMP 
ICMP (?) 
Cytoplasm, associated with 
cytoplasmic membrane 

Unknown 
PBP3 activator? 
FtsZ ring stability? 
Division specific 
transpeptidase 
Unknown 
Unknown 

Chromosome 
segregation? 
Unknown 
SRcx homologue 

Unknown 
Unknown 
UDP-3-0-acyl-N-
acetylglucosamine 
deacetylase 

(-) 
I 

filamentation ICMIP /DS 

filamentation ICMP /DS 
filamentation ICMP /DS 

filamentation ICMP /DS 

Table 1.1. Summary of the properties of the cell division genes noted in this chapter. ICMP - Integral cytoplasmic 
membrane protein, DS - Localised to the division site during septum formation. 
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1.2 The mra region. 

As mentioned in section 1.1.2 the mra region is situated at 2.2 
minutes on the E. coil genetic map and contains 16 genes. Figure 1.2.1 

shows a diagram of the mra region. The mra region was first identified by 
Miyakawa et al. (1972) as one of two regions that contained genes 

involved in peptidoglycan biosynthesis. Subsequent work by many 

groups has led to the construction of the map of the entire m ra region 
(Begg et al., 1980; Fletcher et al., 1978; Ikeda et al., 1990a; 1990b; Ishino et al., 
1989; Lugtenberg and van Schijndel-van Dam, 1972a; 1972b; 1973; 

Lutkenhaus et al., 1980; Maruyama et al., 1988; Mengin-Lecreulx et al., 
1989; Robinson et al., 1984; Robinson et al., 1986; Salmond et al., 1980; Tao 
and Ishiguro, 1989; Yi and Lutkenhaus, 1985; Yi et al., 1985). 

0 	 5 	 10 	 15 	 20 kb 

mraZ mraWftsL ftsl murE murF mraYmurD ftsW murG murC ddIB ftsQ ftsA 	ftsZ envA 

lI 	I II 	I 	I 	I 	IL 	I 	I 711 	I 	I 	I 	IL 	IF71  

Figure 1.2.1. The mra region of the E. coli chromosome (adapted from 
Lutkenhaus and Mukherjee, 1996). Transcription is from left to right. A 
summary of the gene products, their molecular weights and proposed 
functions is presented in Table 1.2.1. 

The first two genes in the region mraZ and m ra W are as yet 

uncharacterized. Six of the ORFs have been identified as essential cell 

division genes, seven are involved in peptidoglycan precursor 

biosynthesis or transport and one, envA is involved in lipopolysaccharide 

synthesis (Boyle et al., 1997; Lutkenhaus and Mukherjee, 1996; Young et 
al., 1995). The function and molecular weight of each protein encoded by 

the mra region is summarized in Table 1.2.1 below. These genes are 

transcribed in the same direction and could be co-transcribed as the only 

terminator in the region is downstream of the last gene of the cluster, 

envA (Beall and Lutkenhaus, 1987). 



mra ivira 

mraW MraW 

ftsL FtsL 
(mraR) (MraR) 

ftsl PBP3 
(pbpB) (FtsI) 
murE MurE 

murF MurF 

mraY MraY 

murD MurD 

ftsW FtsW 

murG MurG 

murC MurC 

ddlB 	Dd1B 
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MW of 	 Phenotype of 

	

Gene Protein Protein 	Function 	 Mutation(s) 
- 	 (kDa) 

17 	 unknown 

35 	 unknown 

13 	 unknown 

60 transpeptidase 
(transglycosylase?) 

53 meso-DAP adding 
enzyme 

47 D-alanyl-D-alanine 
adding enzyme 

40 linking UDP-MurNAC- 
pentapeptide to 

undecaprenol phosphate 
47 D-glutamate adding 

enzyme 
46/43 unknown 

38 N-acetylglucosaminyl 
transf erase 

54 	L-alanine adding 
enzyme 

33 	D-alanine:D-alanine 
ligase  

unKnown 

unknown 

filamentation / 
lysis 

filamentation 

lysis 

unknown 

unknown 

unknown 

filamentation 

aberrant 
morphology / 
filamentation 

lysis 

25% reduction in 
D-ala:D-ala ligase 

activity 
filamentation 

filamentation / 
increased 

resistance to 
penicillin 

filamentation / 
aberrant septal 

morphology / UV 
resistance in a ion 

strain 
chain formation 

ftsQ 	FtsQ 	31 	 unknown 

ftsA 	FtsA 	45 	suspected ATPase 

ftsZ 	FtsZ 	40 	GTPase, possible 
polymerization into 

septal ring 

e n vA EnvA 	34 	UDP-3-0-acyl-N- 
acetylgiucosamine 

deacetylase 

Table 1.2.1. The genes and gene products of the mra region. The data was 
collated from van Heijenoort, (1996) and Lutkenhaus and Mukherjee, 
(1996). 
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Many promoters have been identified in the region, although their 

individual contributions to total transcription is the source of much 

debate. It is possible to consider the region as one large operon, as 

transcripts initiated from any one of the promoters could contribute to 

expression of the downstream genes, with transcription terminating only 
downstream of envA (Beall and Lutkenhaus, 1987). Several of the genes 

within the mra region overlap, that is, the translation initiation codon for 

one gene is located within the coding sequence for the upstream gene 

(Boyle, 1996; Ikeda et al., 1990a; 1990b; Mengin-Lecreulx et al., 1989; 
Robinson et al., 1984; Robinson et al., 1986). 

1.2.2 Transcriptional organization of the mra region 

A recent report by Hara et al. (1997) has shown the presence of a 70 

promoter upstream of mraZ, named PmTa,  which contributes to the 
transcription of the first nine genes of the mra region from mraZ through 
to fts W. By replacing Pmra  with Plac  it was shown that it was necessary to 

supply the genes from mraZ to ftsW on a plasmid when Pmra:: Pla, was 
uninduced for the cells to remain viable. It was not required to provide 

extra copies of genes downstream of ftsW when the Pmra:: Pla, was 
uninduced indicating that the Pmra  probably does not significantly 

contribute to the expression of genes downstream of fts W. Hara et al. 
(1997) also describe a promoter in the 5' end of fts W that could be 
responsible for contributing to the expression of ftsZ. 

A potential promoter with similarity to the 70 consensus was 

discovered just upstream of ftsL (Ishino et al., 1989). This promoter also 

has an overlapping sequence with homology to the SOS box consensus, 

perhaps indicating that this promoter functions during SOS induction 

although this has not been shown experimentally. ftsl expression is 

negatively controlled by mreB (Wachi and Matsuhashi, 1989). A 

mutation in mreB results in the overproduction of PBP3 and the cells 

have a spherical morphology. It is not known which promoter or 

controlling sequences are negatively controlled by mreB (Wachi and 

Matsuhashi, 1989). Several potential promoters in the ftsl—murD region 

have been described (Mengin-Lecreulx et al., 1989). Complementation of 

both an ftsW (Ts) and a null-allele requires the murD promoter in the 
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mraY-murD junction (Boyle et at., 1997; Ikeda et al., 1989; Mengin-
Lecreulx et at., 1989). 

1.2.2.1 Transcription within the ddlB-envA region 

Of various promoters so far described within the ddlB—envA 
region (shown in Figure 1.2.2) some are subject to regulation. It is 

proposed that the regulation of some promoters is responsible for 

maintaining the ratio of FtsA:FtsZ which is critical for correct division to 

take place during different growth conditions (Dai and Lutkenhaus, 1992; 
Dewar et at., 1992). 

ddIB 	ftsQ 	ftsA 	cc 	ftsZ 	envA 

INNfl 
P1 P2 	P 	P4 P3 P2IIA 	P 
ftsQ ftsQ 	ftsA 	ftsZ ftsZ ftsZ ON 	envA 

P 
stfZ 

Figure 1.2.2. The ddlB-envA genes of the mra region and the identified 
promoters. The two RNaseE cleavage sites identified by Cam et al. (1996) 

are indicated(-). Promoters, F, and terminators, are indicated. 
Adapted from Lutkenhaus and Mukherjee (1996) and Flärdh et al. (1997). 

ddlB contains two promoters, PlflsQ  and P2ftSQ (Robinson et al., 1984; 
Aldea et al., 1990; Figure 1.2.2.1) Transcription from these promoters 

produces 46% of the expression in the ddlB—ftsZ region (Flärdh et al., 
1997). PlftsQ  is a so-called gearbox promoter. Transcription from gearbox 

promoters increase as growth rate slows. Slow growing cells are smaller 

than fast growing cells; the increase in the level of FtsZ as growth rate 

decreases could be responsible for the cells dividing when smaller than 

fast growing cells. Plp Q  transcription is dependent on the stationary phase 

sigma factor as which could result in the extra expression from P lft ,Q  as 
growth rate slows. P2ftSQ  transcription is regulated by the transcription 

factor SdiA (Sitnikov et al., 1996; Wang et al., 1991). Cloning sdiA on a 
multicopy plasmid results in increased expression form P2ft SQ and 
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minicells form due to the overproduction of FtsZ (Wang et at., 1991). The 
actual role of sdiA in the cell cycle is unclear as deletion of the gene has 

no apparent effect on the cell (Wang et al., 1991). 

A promoter within the ftsQ gene, named PftsA  has been identified 
(Dewar and Donachie, 1990; Robinson et at., 1984; Yi et al., 1985). This 

promoter is estimated to be responsible for 12% of the total transcription 

from the ddlB—ftsZ region (Flärdh et al., 1997). 

There are three promoters located in ftsA, P2ftszi P 3ftsZ and P4ft9z. 
(Aldea et al., 1990; Dewar et al., 1989; Lutkenhaus and Wu, 1980; Robinson 

et al., 1984; Sullivan and Donachie, 1984). A promoter named Plftsz  was 
described by Aldea et al. (1990) but this was later discovered to be a site 

where ftsZ mRNAs were cleaved by RNaseE (Cam et al., 1996). P3ftsz  and 
P4ftsz  produce 46% of the transcription from the ddlB—ftsZ region (Flärdh 

et al., 1997). P3ftsZ  and P4ftSZ  are gearbox promoters and their activity is 

inversely proportional to growth rate (Dewar et al., 1989; Flärdh et al., 
1997; Smith et at., 1993). P2ftsz  is a weak promoter responsible for 5% of the 

transcription from the ddlB—ftsZ region (Flärdh et al., 1997). At least one 

of the promoters located in ftsA is positively regulated by RcsB, an 

activator of colonic acid biosynthesis (Gervais et al., 1992). In a screen for 

suppressors of the ftsZ84 (Ts) allele, multicopy rcsB was discovered to 

increase the levels of colanic acid produced by the cell which could be 

correlated to increased ftsZ expression (Gervais et at., 1992) The method 

by which increased colanic acid levels might influence ftsZ transcription 

is not known. The three DnaA boxes located in ftsQ and ftsA do not 

influence transcription from the ftsQ—ftsA region (Masters et at., 1989; 

Schaper and Messer, 1995; Smith et al., 1996). mRNAs which have their 5' 

ends from the P2ftsz  region show periodic fluctuations (Garrido et at., 1993; 

Zhou and Helmstetter, 1994). Garrido et at., (1993) attribute this 

periodicity to promoter activity but Zhou and Helmstetter (1994) suggest 

that replication forks passing through the mra region could inhibit 

transcription resulting in periodic promoter activity. There is an e n vA 
specific promoter situated in the junction between the ftsZ and en vA 
genes (Beall and Lutkenhaus, 1987). 

Transcription from the ddlB—ftsZ region is not solely responsible 

for the expression of ftsZ. Due to the operon like structure of the m ra 
region it is possible that even the distal mra promoter might contribute 

towards ftsZ expression (Hara et al., 1997). In support of this theory, a 
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fragment of DNA extending more than 6 kb upstream of ftsZ was required 
for complementation of an ftsZ null allele (Dai and Lutkenhaus; 1991). 

1.2.3 Translational regulation of ftsQ,ftsA and ftsZ 

Mukherjee and Donachie (1990) showed that ftsQ, ftsA and ftsZ 
have different translational efficiencies. The synthesis of each protein is 

not only regulated by the relative abundance of the mRNA for the gene 

but also by the effectiveness of its ribosome binding site. 

1.2.4 Regulation of ftsZ expression by antisense RNAs 

There are two antisense RNAs that affect the translation of FtsZ 

mRNA. The first, DicF is encoded by a defective prophage present in 
some strains of E. coli (Béjar and Bouché, 1985; Bouché and Bouché, 1989). 

The active DicF RNA is produced by RNaseE and RNaseIII cleavage of 

untranslated RNA from the prophage region (Faubladier et al., 1990). The 
effect of DicF during normal conditions is unknown but at high copy 

number and at high temperature DicF inhibits cell division by binding to 

and sequestering the ribosome binding site of ftsZ mRNA (Tétart and 
Bouché, 1992). 

There is one report of an antisense RNA produced from the 

opposite strand at the ftsA—ftsZ gene junction named stfZ (Dewar and 

Donachie, 1993). This antisense RNA could bind to ftsZ mRNA thus 

preventing the translation of the mRNA and might be a mechanism for 

regulating ftsZ expression. Like DicF, the division inhibitory effect of stfZ 
has only been seen when the stJZ region is cloned in high copy number 

and the cells are grown at high temperature (Dewar and Donachie, 1993). 

It appears that the filamentation caused by overproduction of stfZ is strain 

specific (G.C. Draper, unpublished observations). 

The requirement of the cell for the correct ratio of FtsA:FtsZ is 

therefore maintained by a combination of promoter strength, promoter 

activation/ repression, mRNA processing, translation efficiencies and 

regulation by antisense RNAs. 
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1.3 Peptidoglycan structure and synthesis 

Peptidoglycan (murein) is the polymer responsible for maintaining 

the shape and bearing the stresses exerted on the E. coli cell. Pressures of 

up to five atmospheres are exerted by the components of the cytoplasm 

and without a functional peptidoglycan layer cell shape would be lost and 

the cell would be prone to lysis (Mitchell and Moyle, 1954). The Gram-

negative envelope consists of an inner cytoplasmic membrane 

surrounded by the peptidoglycan layer which is in turn encompassed by 

an outer membrane. The peptidoglycan sacculus is a flexible non-

crystalline polymer that is linked to the inner membrane at regions of 

peptidoglycan synthesis and to the outer membrane by cross links to 

lipoproteins (Braun et al., 1976; Holtje and Glauner, 1990). The 

peptidoglycan layer has been shown to be a maximum of 7 nm ± 0.5 n m 

thick (Glauner et al., 1988; Hobot et al., 1984). 75-80% of the sacculus is a 

single layer of peptidoglycan. The remaining 20-25% of the peptidoglycan 

is present as a triple layer which can be identified in both septal and 

cylindrical cell wall peptidoglycan (Labischinski et al., 1991; 1993). 

Peptidoglycan is a homopolymer of glycan chains which are linked 

together via peptide bridges. The repeating unit of the peptidoglycan 

polymer is a disaccharide pentapeptide. The disaccharide pentapeptide 

consists of two amino sugars, N-acetylglucosamine (G1cNAc) and N-

acetyl-muramic acid (MurNAc) (Figure 1.3.1). The two amino sugars are 

covalently linked by a 0 1-4 glycosidic bond. The pentapeptide that is 

linked to the carboxyl group of each MurNAc residue via an amide bond 

is L-alanyl-D-glutamyll-D-meso-diaminopimelyl-D-alanyl-D-alanine (Höltje 

and Glauner, 1990). 
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penta-
peptide 

Figure 1.3.1. The structure of the unprocessed repeating unit of 
peptidoglycan. From van Heijenoort, 1996. 

The disaccharide pentapeptide is synthesized in the cytoplasm and 

is presented ready for incorporation into the existing peptidoglycan in a 

bactoprenol phosphate (Lipidil) bound form (Bupp and van Heijenoort, 

1993; Umbreit and Strominger, 1972) The disaccharide pentapeptide is 

attached to the pre-existing peptidoglycan by a transglycosylation reaction. 

The pentapeptide side chains of the newly formed glycan strand are then 

modified to create substrates for cross linking of peptide side chains. Cross 

linking of modified side chains creates a peptidoglycan sheet that 

surrounds the cytoplasm and its membrane (van Heijenoort, 1996). 

Glauner et al. (1988) demonstrated that the average length of a 

glycan strand is 30 disaccharide subunits. The glycan chains are thought 

to traverse the circumference of the cell in an orientation perpendicular 

to the long axis of the cell. It has been estimated that 100 average glycan 

chains are needed to equal the circumference of the cell (Schwartz, 1993). 

X-ray analysis showed that the glycan chains have a helical structure with 

4.5 disaccharide subunits per revolution (Labischinski et al., 1985). Thus, 

two out of the four side chains per revolution extend in parallel to the 

long axis of the cell and can be used as substrates for cross linking with the 

remaining two protruding towards the cytoplasmic and outer 

membranes. The degree of cross linking varies according to the age of the 

culture (Glauner et al., 1988). Mature peptidoglycan from stationary phase 

cultures has a higher degree of cross linking than newly synthesized 

peptidoglycan found in exponentially growing cells. de Jonge et al. (1989) 

discovered that after 4 minutes 96% of newly inserted glycan chains had 

their peptide side chains modified by the removal of the terminal D-

alanine group, forming tetrapeptide side chains. 
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1.3.1 Synthesis of disaccharide pentapeptide 

The disaccharide pentapeptide subunit is assembled in the 

cytoplasm whilst bound to the inner side of the cytoplasmic membrane 

and then presented to the periplasm as part of a molecule named Lipidli. 

The initial stage of peptidoglycan precursor production takes place 

in the cytoplasm and involves the synthesis of UDP-N-acetylglucosamine 

(UDP-G1cNAc) from fructose-6-phosphate in a four step process. The 

biosynthesis of the second UDP-linked amino sugar, UDP-N -

acetylmuramic acid (UDP-N-MurNAc) requires UDP-GlcNAc and 

phosphoenol pyruvate (PEP). The MurA protein catalyses the linking of 

UDP-G1cNAc with PEP to form UDP-GlucNAc-enolpyruvate 

(Venkateswaran and Wu, 1972). The MurZ protein can also function as a 

UDP-G1cNAc PEP transferase (Marquardt et al., 1992). UDP-GlcNAc 

enolpyruvate is then reduced to UDP-MurNAc by the UDP-G1cNAc 

enolpyruvate reductase MurB (Anwar and Vlaovic, 1979; Pucci et al., 
1992). 

MurC adds an L-alanine group to UDP-MurNAc, followed by the 

sequential addition of D-glutamate and meso-diaminopimelic acid, 

catalysed by MurD and MurE respectively (Maruyama et al., 1988; Mengin-

Lecreulx et al., 1989; Tao and Ishiguro, 1989). D-glutamate is synthesised 

from L-glutamate by the L-glutamate isomerase MurI (Doublet et al., 1993; 
Doublet et al., 1992). The terminal D-alanyl:D-alanine group is added to 

the existing tripeptide side chain as a dipeptide (Lugtenberg and van 

Schinjdel von Dam, 1972; Marayuma et al., 1988). There are two alanine 

racemases, encoded by a!rR and dadX, which convert L-alanine to the D-

alanine required (de Roubin et al., 1992; Wisjman, 1972; Wild et al., 1985). 

Two D-alanine residues are linked together by one of two D-alanine:D-

alanine ligases, DdlA and Dd1B (Lugtenberg and van Schinjdel von Dam, 

1973; Zawadzke et al., 1991). The D-alanyl:D-alanine peptide is linked to 

the UDP-MurNAc-L-alanyl-D-glutamyl-meso-DAP molecule by the action 

of the MurF protein to yield UDP-MurNAc-pentapeptide (Lugtenberg and 

van Schinjdel von Dam, 1972; Marayuma et al., 1988). 

The MurNAc-pentapeptide moiety of UDP-MurNAc-pentapeptide 

is transferred to undecaprenol (bactoprenol) phosphate, a C 55  isoprenoid 

lipid situated in the cytoplasmic membrane and UMP is released (van 

Heijenoort et al., 1992; Ikeda et al., 1991; Wright et al., 1967). The 
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production of bactoprenol pyrophosphate-MurNAc-pentapeptide, named 
Lipidl, is catalysed by MraY (Ikeda et al., 1991). The transfer of the 

GlucNAc moiety of UDP-GlucNAc to Lipidl produces bactoprenol 

pyrophosphate-MurNAc(-pentapeptide)-GlucNAc (Lipidli) and UMP. 

This step is catalysed by MurG (Mengin-Lecreulx et al., 1991). Lipidll 

carries the completed disaccharide pentapeptide which is situated on the 

inner face of the cytoplasmic membrane. In order for Lipidli to present the 

completed subunit into the periplasm for donation to peptidoglycan 

biosynthesis, Lipidil is thought to flip in the membrane, possibly 

facilitated by the MurH protein (Dai and Ishiguro, 1988). A summary of 

the biosynthesis of the disaccharide pentapeptide precursor of 

peptidoglycan is presented in Figure 1.3.2. 
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Fructose 6-phosphate 

UDP-G1cNAc 

MurA 	 =PEP 

UDP-G1cNAc-enolpyruvate 

MurB 

UDP-MurNAc 

MurC 	 L-ala 

UDP-MurNAc-L-ala 

MurD 	 D-glu 

UDP-MurNAc-L-ala-D-glu 

MurE 	 4 	<= DAP 

UDP-MurNAc-tripeptide 

Dd1A/B 	 II 	= D-ala:D-ala 
Muff 

UDP-MurNAc-pentapeptide 

MraY 	 4= C55-P 

C55-PP- UDP-MurNAc-pentapeptide (Lipidl) 

MurG 	 JJ 	4= UDP-G1cNAc 

C55-PP-Disaccharide pentapeptide (Lipidil) 

Figure 1.3.2. Assembly of disaccharide pentapeptide. 	From van 
Heijenoort, 1998. 
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The extension of the glycan chain occurs by transglycosylation (see 

The penicillin binding proteins, below) whilst in the Lipidil state. It is not 

known whether new disaccharide pentapeptide monomers are added at 

the MurNAc reducing end or the non-reducing G1cNAc end, although 

the latter occurs in Bacillus lichen iformis and Micrococcus luteus (van 
Heijenoort, 1996; Ward and Perkins, 1973; Weston et al., 1977). The 
mechanism of release of the completed glycan strand from the Lipidli 

state is not known. 

1.3.2 The penicillin binding proteins 

The bacterial cell wall is the target for the action of penicillin (Park 

and Strominger, 1957). Penicillin is an analogue of the D-alanyl:D-alanine 

component of the peptidoglycan precursor, disaccharide pentapeptide 

(Tipper and Strominger, 1965). Penicillin competes with disaccharide 

pentapeptide for binding to penicillin binding proteins (PBPs). Penicillin 

inhibits PBP function by covalently binding to a serine residue located in 

the active site of all PBPs (Ghuysen, 1991). A number of PBPs were 

identified by Spratt and Pardee (1975) as proteins that bound 14C labelled 
penicillin. Now ten distinct PBPs have been identified, named, in 

descending molecular weight, PBP1a, ib, ic, 2, 3, 4, 5, 6, 6b and 7/8 (Spratt, 

1977). 

PBPs la, ib, 2, and 3, collectively known as the high molecular 

weight PBPs, are bifunctional peptidoglycan synthesising enzymes. These 

enzymes exhibit transpeptidase activity that catalyses the formation of 

cross links between the peptide side chains of glycan strands. The high 

molecular weight PBPs also possess transglycosylase activity. 

Transglycosylation involves the addition of disaccharide pentapeptide 

monomers to pre-existing glycan strands (Tamaki et al., 1977; Ishino et al., 
1980; Ishino and Matsuhashi, 1981; Ishino et al., 1986). One report, 

however, disagrees with the observation that PBP3 has transglycosylase 

activity (Ghuysen, 1994). These enzymes have an N-terminal cytoplasmic 

membrane anchor and an active site in the periplasmic C-terminus 

(Adachi et al., 1987; Broome-Smith et al., 1985; Edelman et al., 1987; Spratt 

and Bowler, 1987). 

PBPs 4, 5, and 6 are D-alanyl:D-alanine carboxypeptidases. These 

enzymes catalyse the removal of the terminal D-alanine group from the 
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pentapeptide side chains of peptidoglycan (Spratt et at., 1977; Matsuhashi 

et al., 1979). 

1.3.3 PBP1a, lb and ic 

PBP1a and PBP1b are 94 and 89 kDa proteins encoded by the po on A 

(mrcA) and ponB (mrcB) genes respectively (Broome-Smith et al., 1985; 

Tamaki et al., 1980). There is an estimated 100 and 120 molecules of PBP1a 

and PBP1b per cell respectively (Spratt, 1975). Inactivation of either PBP1a 

or PBP1b individually is not lethal, but the double mutant is inviable 

(Kato et al., 1985; Tamaki et al., 1977). The two genes are therefore 

thought to be functionally redundant (Suzuki et al., 1978; Kato et al., 1987). 

Despite the compensatory nature of PBP1a and PBP1b it is thought that 

they do have subtly different roles (del Portillo and dePedro, 1991; 

Schmidt et al., 1981). PBP1b prevents the cell from lysing when PBP2 or 

PBP3 are inhibited whereas PBP1a activity alone does not. PBP1b is the 

major transpeptidase whereas PBP1a and PBP1b exhibit similar 

transglycosylase activities (van Heijenoort et al., 1993; Spratt, 1977). 

PBP1b has been shown to bind the soluble lytic glycosylase Slt in vitro. Slt 

also binds PBP3 and PBP7 in vitro possibly defining a septal peptidoglycan 

synthesising complex (Holtje, 1993; Holtje et al., 1995; Holtje, 1996). 

Little is known about PBP1c. PBP1c was only detected when PBPs were 

incubated in the presence of an 1251-derivative of ampicillin (Rojo et at., 

1984). 

1.3.4 PBP2 

PBP2 has a molecular weight of 66 kDa and is encoded by the pbpA 

gene located in the mrd region at 15 minutes of the E. coli genetic map 

(Asoh et al., 1986; Matsuhashi et al., 1990). In vitro PBP2 is a 

transpeptidase but requires the RodA protein for transglycosylase activity 

(Ishino et at., 1986). RodA is encoded by the rodA gene located 

immediately downstream of pbpA and the genes are probably 

cotranscribed (Asoh et al., 1986; Matsuzawa et al., 1989). An estimated 50-

70% of peptidoglycan made by growing cells can be attributed to the 

activity of PBP2 (Park and Burman, 1973). Mecillinam, a -lactam 

antibiotic of the penicillin family, binds and inhibits the transpeptidation 
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but not the transglycosylation activity of PBP2 (Lund and Tybring, 1972; 
Matsuhashi et al., 1979). Inactivation of PBP2 with mecillinam causes the 
cells to grow as spheres (James et al., 1975). The shape loss as a result of 
PBP2 inhibition led to the conclusion that PBP2 is essential for E. coli to 
maintain its rod shape. Inactivation of either PBP2 or RodA results in 

loss of shape (Matsuzawa et al., 1973; Spratt, 1975). Ishino et al. (1989) 
proposed that the PBP2 and RodA proteins dictate the elongation mode of 

peptidoglycan synthesis and the PBP3/FtsW system proteins function 

together to co-ordinate the growth of septal peptidoglycan. 

Conditional mutants and null mutations of pbpA are lethal at 
optimal growth conditions but can be suppressed by reducing the growth 

rate, increasing FtsZ production or overproducing ppGpp (Addinall et al., 
1995; Begg and Donachie, 1985; Vinella et al., 1992; Vinella et al., 1993). 

1.3.5 PBP3 

PBP3 (FtsI) is dealt with in detail in section 1.1.6. PBP3 is essential 

for the production of septal peptidoglycan (Botta and Park ,1981; Schmidt 
et al., 1981; Spratt, 1977). As mentioned previously PBP3 has been shown 

to have transpeptidase and transglycosylase activities in vitro, but the 
transglycosylase activity is disputed (Ishino and Matsuhashi, 1981; 

Ghuysen, 1994). The proportion of tripeptide side chains in the 

peptidoglycan layer modulates PBP3 activity (Begg et al., 1990). The 
activity of the proteins responsible for the production of tripeptide side 

chains could be a regulator of PBP3 activity. 

It is proposed that PBP3 and the essential cell division protein FtsW 

might function in concert during septation (Ikeda et al., 1989; see section 
1.3.4). Khattar et al. (1994) disagreed with this proposal because the 
available ftsW mutants appeared to exhibit an early block to division and 

thus FtsW was unlikely to be required at the same time at the late acting 

PBP3. The isolation of additional ftsW mutants (Boyle et al., 1997; Khattar 
et al., 1997) indicated that FtsW is probably required throughout the 

division process, reaffirming the proposal of Ikeda et al. (1989). 

WO 



Chapter 1. Introduction 

1.3.6 PBP4 

PBP4 is a 49 kDa protein encoded by dacB which is located at 69 
minutes of the E. coli chromosome (Iwaya and Strominger, 1977; Korat et 
al., 1991). It is estimated that there are 100 PBP4 molecules per cell (Spratt, 

1975). PBP4 has both DD-endopeptidase and DD-carboxypeptidase in v i v o 
(Korat et al., 1990). The DD-carboxypeptidase activity is responsible for 

cleaving the terminal D-alanine from newly synthesised glycan chain. 

The DD-endopeptidase activity hydrolyses peptidoglycan cross links in a 

manner similar to the penicillin-insensitive autolysin MepA (Keck et al., 
1990). This hydrolysis of existing cross links has been proposed to enable 

the insertion of new glycan strands enabling the peptidoglycan sacculus to 

grow (Holtje, 1993). PBP4 has been implicated in division as DD-

endopeptidase activity increases immediately before division initiates 

(Hackenback and Messer, 1977). Endopeptidase activity prior to division 

could result in an increased proportion of tripeptide side chains in the 

peptidoglycan layer. Tripeptide side chains have been suggested to be the 

preferred substrate for the transpeptidation reaction carried out by the 

septal peptidoglycan synthesising enzyme PBP3 (Begg et al., 1990). 

PBP4 is a soluble periplasmic protein loosely associated with the 

cytoplasmic membrane (Mottl, 1992). Boronic acid has been shown to 

compete with penicillin for binding to PBP4, a phenomenon particular to 

this PBP (Mottl, 1992). PBP4 is dispensible and strains deficient in DD-

endopeptidase activity are penicillin tolerant (Iwaya and Strominger, 1977; 

Kitano et al., 1980). Cells with reduced growth rates show increased 

penicillin tolerance and have reduced DD-endopeptidase activity 

suggesting that PBP4 is involved in penicillin induced lysis (Cozens et al., 
1989). 

1.3.7 PBP5 

PBP5 is a 42 kDa protein encoded by the dacA gene of the m r d 
cluster located at 15 minutes on the E. coil genetic map (Broome-Smith et 
al., 1988; Matsuhashi et al., 1990; Spratt 1975). It is estimated that there are 

1800 PBP5 molecules per cell (Spratt, 1975). PBP5 is produced as a 

preprotein that is processed before being inserted into the cytoplasmic 

membrane (Pratt et al., 1986). PBP5 is anchored to the cytoplasmic 
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membrane by atypical amphipathic helices located at the carboxy-

terminus (Jackson and Pratt, 1987). PBP5 has DD-carboxypeptidase activity 

in vitro and shows approximately 10 times more activity than the DD-

carboxypeptidase, PBP6 (Amanuma and Strominger, 1984). For this 

reason PBP5 is considered to be the major DD-carboxypeptidase in vivo. 
Inactivation of PBP5 results an increase in the amount of pentapeptide 

side chains, the substrate for PBP5 (Glauner, 1986). Overproduction of 

PBP5 results in the formation of spherical cells that lyse (Markiewitz et al., 
1985). The overproduction of PBP5 suppresses the ftsI23 (Is) allele (Begg 
et al., 1990). Deletion of dacA suppresses the ftsK44 (Ts) allele at the non-

permissive temperature which led to speculation that FtsK has a function 

in peptidoglycan metabolism (Begg et al., 1990). 

1.3.8 PBP6 and 6b 

PBP6 is a 40 kDa protein encoded by the dacC gene (Ananmura and 

Strominger, 1984; van der Linden et al., 1992). PBP6b has an apparent 

molecular mass of between 41-43 kDa and is encoded by the dacD gene 
(Baquero et al., 1996). PBP6 and 6b are DD-carboxypeptidases, although 

this property has been questioned for PBP6 (Ananmura and Strominger, 

1984; van der Linden et at., 1992). There are 600 PBP6 molecules per cell 

(Spratt, 1975). PBP6 shows one tenth the DD-carboxypeptidase activity of 

the major DD-carboxypeptidase, PBP5 (Ananmura and Strominger, 1984). 

PBP6 is inserted into the cytoplasmic membrane by the carboxy-terminus 

of the protein, in a manner similar to PBP5 (Jackson and Pratt, 1987). 

PBP6 activity increases during stationary phase (Buchanan and Sowell, 

1982; van der Linden et at., 1992). The PBP6 structural gene, dacC, is 
regulated by the Bo1A DNA-binding protein, which in turn is regulated by 

the stationary phase (Y-factor, cyS (Aldea et al., 1989; Lange and Hengge-

Aronis, 1991). Neither PBP6 nor PBP6b are essential for cell growth ( 

Baquero et al., 1996; Broome-Smith and Spratt, 1982) 

Edwards and Donachie (1995) describe a triple deletion mutant of 

PBPs 4, 5 and 6. The mutant strain was viable and analysis of purified 

peptidoglycan showed the presence of tripeptide side chains indicating the 

possibility that there may be further DD-carboxypeptidases. 
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1.3.9 PBP7/8 

pbpG encodes the 34 kDa PBP7 protein (Henderson et al., 1995; 

Spratt, 1977). PBP8 is a DD-endopeptidase formed by the cleavage of PBP7 

by the OmpT protease (Henderson et al., 1994; Romeis and Holtje, 1994). 

PBP7 and 8 have only been detected in exponentially growing cells and are 

both dispensible (Henderson et al., 1995; Spratt, 1977). PBP7 and 8 are 

soluble periplasmic proteins (Henderson et al., 1995; Romeis and Höltje, 

1994). PBP7 binds to Slt in vitro, indicating that PBP7 and/or PBP8 might 

be components of a septal peptidoglycan synthesising complex (Romeis 

and Holtje, 1994a; Holtje et al., 1995). 

1.3.10 Penicillin insensitive peptidoglycan hydrolases 

There are a number of proteins involved in the metabolism of 

peptidoglycan that do not bind penicillin (Holtje, 1993). MepA, like the 

other DD-endopeptidases PBP4 and PBP7/8, exhibits DD-endopeptidase 

activity but differs from these two in its penicillin insensitivity (Tamioka 

and Matsuhashi, 1978; Keck and Schwartz, 1979). 

Three LD-carboxypeptidases which cleave the terminal D-alanine 

moiety from tetrapeptide side chains have also been characterised (Beck 

and Park, 1976; Metz et al., 1986; Ursinus et al., 1992). It is these proteins 

that produce the tripeptide peptidoglycan side chains proposed to regulate 

septation (Begg et al., 1990). 

There are four lytic transglycosylases, two of which are soluble, 

(S1t35 and 5lt70) (Betzner and Keck, 1989; Holtje et al., 1995) Slt35 is a 

enzymatically active soluble form of the outer membrane lipoprotein 

M1tB, which also shows transglycosylase activity (Dijkstra et al., 1995; 

Ehlert et a!, 1995). MltA and M1tC are also membrane bound (Dijkstra 

and Keck, 1996; Lommatzch et al., 1997; Ursinus and Holtje, 1994). Triple 

deletion mutants lacking MltA, MltB (and thus Slt35) and S1t70 have no 

obvious phenotype other than altered sensitivity to mecillinam and 

aztreonam as was earlier reported for a Slt70 defective strain (Templin et 

al., 1992). These results do not support the hypothesis that lytic 

transglycosylases are essential for growth (Shockman and Holtje, 1994) 

although it is possible that remaining transglycosylase(s) in the triple 

deletion mutant could be acting as a suppressor. In addition, the existence 

42 



Chapter 1. Introduction 

of other, as yet unidentified, peptidoglycan hydrolases cannot be ruled 

out. 

1.4 Chromosome replication 

Meselson and Stahl (1958) discovered that replication of E. coli 
chromosomes occurs in a semi-conservative manner. It was slso 

observed that one generation after the removal of the pulse isotope (15N) 

all the DNA had a hybrid density (equal proportions of 14N and '5N). This 

implied that chromosome replication is a regular process. It was later 

shown that the replication forks proceed bi-directionally from a fixed 

point (Bird et al., 1972; Masters and Broda, 1971; Masters et al., 1970; von 

Meyenburg et al., 1977; Prescott and Kuempel, 1972) at a constant 960 bp 

min-'(Cooper and Helmstetter, 1968). The amount of DNA per cell is 

proportional to the growth rate (Schaechter et al., 1958). Since the 

progression of the replication fork is constant, the modulation of the 

amount of DNA in the cell at different growth rates must be dictated by 

another mechanism. It was subsequently found that the rate of initiation 

of chromosome replication changes with growth rate (Cooper and 

Helmstetter, 1968). Donachie (1968) refined this idea, stating that 

replication initiates with every doubling of a fixed cell mass. 

1.4.1 Initiation of chromosome replication 

Replication of chromosomal DNA requires an initiation step that 

melts the origin of replication to allow entry of the DNA polymerase ifi 

holoenzyme. The origin of replication, oriC, is located at 84.3 minutes of 

the E.coli genetic map (von Meyenburg et al., 1977; Hiraga, 1976). 

Initiation requires DnaA and a number of other proteins. Binding of 

DnaA to oriC results in the unwinding of an AT rich region, providing a 

point of entry for DNA polymerase (Messer and Weigel, 1996). 

oriC contains a number of DnaA binding regions, known as DnaA 

boxes, as well as binding sites for accessory proteins. There are five DnaA 

boxes located within oriC as well as binding sites for the FIS and IHF DNA 

bending proteins (Filutowitz and Roll, 1990; Gille et al., 1991; Kano et al., 

1991; Roth et al., 1994). The binding of these proteins to oriC is thought to 

assist DnaA with the unwinding of the region (Messer and Weigel, 1996). 
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The IciA protein binds to the AT rich region in vitro and prevents its 

unwinding if supplied before DnaA (Hwang and Kornberg, 1990; Thony et 
al., 1991). The significance of IciA is unknown since neither 

overexpression nor insertional inactivation of the gene has much 

phenotypic effect (Thöny et al., 1991). The Rob and H-NS proteins also 

bind oriC at specific sites (Skarstad et al., 1993; Messer and Weigel, 1996). 

DnaA binds ATP and ADP (Sekimitzu et al., 1987). DnaA—ATP and 

DnaA—ADP both bind DNA but only DnaA—ATP is active for initiation. 

In the absence of oriC, phospholipids cause DnaA to release bound ATP in 
vitro, whereas when oriC is provided the phospholipids promote ATP 

binding by DnaA (Crooke et al., 1992). 

There are 11 GATC dam methylation sites within oriC (Oka et al., 

1980). The methylation status of these sites is critical for the initiation of 

replication (Messer et al., 1985). Newly replicated origins are 

hemimethylated and only fully methylated copies of oriC can initiate 

replication (Russel and Zinder, 1987). Methylation of newly replicated 

hemimethylated DNA is rapid at all sites with the exception of oriC, 

which takes approximately 1/3 of the generation time to be methylated by 

Dam (Campbell and Kleckner, 1990; Ogden et al., 1988). Hemimethylated 

oriC interacts with the cytoplasmic membrane, possibly delaying the 

methylation of the GATC sequences (Ogden et al., 1988). The recently 

identified SeqA protein is thought to sequester oriC DNA, delaying its 

methylation (Garwood and Kohiyama, 1996; von Freiesleben et al., 1994; 

Lu et al., 1994). 

1.4.2 Termination of chromosome replication 

The finding that the E. coli chromosome replication initiates at 

oriC, proceeds a bi-directional manner and terminates at a region 

diametrically opposed from oriC led to the proposal that the region 

between trp and his could contain a replication terminus (Bird et al., 1972; 

Masters and Broda, 1972). The teminus region contains a locus for the 

resolution of dimeric chromosomes formed by an odd number of cross-

overs, known as dif ( Blakely et al., 1991; Clerget, 1991; Kuempel et al., 

1991). The XerC and XerD recombinases are required for dif to function 

(Colloms et al., 1990; Blakely et al., 1993) XerC and XerD exhibit site-

specific topoisomearse activity (Cornet et al., 1997). Cell division has to 
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take place for the resolution of chromosome dimers at dif (Steiner and 

Kuempel, 1998). The terminus region has a number of regions prone to 

hyperrecombination (Nishitani et al., 1993). These regions are known as 

Hot DNA. It is proposed that replication arrest at a Ter site (see below) can 

cause the formation of double strand breaks which are repaired by the 

RecBCD enzyme, resulting in recombination (Horiuchi et al., 1994). 

Hyperrecombination also takes place at the terminus recognition zone 

(TRZ) (Louarn et at., 1994). 

Polar traps in the terminus prevent the replication forks from 

proceeding through the region. There are seven Ter sites to which the 

Tus protein binds. TerA, D and E prevent the passage anticlockwise forks 

wheras TerC, B, F and G prevent clockwise replication forks from passing 

through the terminus (Francois et al., 1989; Hidaka et al., 1988; Hidaka et 
at., 1991; Hill, 1996; Sharma and Hill, 1992). Tus binds to the Ter site as a 

monomer and the lack of dyad symmetry within Tus is thought to be 

responsible for the polar effect of Ter/Tus mediated replication arrest 

(Coskun-Ari et at., 1994; Sista et at., 1991). Strains which have 360 kb of 

the 450 kb terminus region deleted retain viability but filament, display 

evidence of abnormal DNA segregation, produce anucleate cells and show 

induction of the SOS response (Henson and Kuempel, 1986). 

1.4.3 Chromosome partition 

Jacob et at. (1963) proposed that newly replicated plasmids and 

chromosomes could be partitioned through attachment to the cell 

membrane. Growth at the midcell could then result in the passive 

partition of the DNA molecules. The finding that extension of 

peptidoglycan is achieved by the apparently random insertion of glycan 

chains into the sacculus (except during division) and the lack of any 

attachment machinery appears to have disproved the hypothesis 

(Woldringh et at., 1987). Despite this, the theory encouraged the search 

for partition apparatus. 

Many mutations result in the abnormal partition of chromosomes 

(Donachie, 1993). These par mutants which have incorrectly placed 

chromosomes have now been mapped to genes involved in DNA 

synthesis and to DNA topoisomerases (Hussain et al., 1987; Kato et at., 
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1990; Kato et al., 1989; Norris et al., 1986; Stewart and D'Ari, 1992). A par 
phenotype is also seen in mutants defective in the di f locus or the XerC 
protein (Blakely et al., 1991; Clerget, 1991; Kuempel et al., 1991). Hiraga 
and co-workers described a new gene, mu kB whose product appeared to 

be involved in chromosome segregation. A temperature-sensitive m u k B 
mutant showed evidence of isolated nucleoids and clumps of DNA as 

well as anulceate cells (Hiraga, 1993; Hiraga et al., 1989; Niki et al., 1991; 
Niki et al., 1992). A strain in which mukB is deleted is viable, but not at 

elevated temperatures. MukB has no influence on plasmid partition as F 

plasmids were shown to segregate equally well into both nucleate and 

anucleate cells (Ezaki et al., 1991). MukB encodes a protein with a similar 

secondary structure to eukaryotic myosin and kinesin heavy chains (Niki 

et al., 1992; Hiraga, 1992). MukB also binds ATP and GTP and interacts in 

a non-specific manner with DNA (Niki et al., 1992). It is suggested that 

MukB acts as a potential cytoskeletal structure that could act either as a 

scaffold for DNA translocation or a motor that actively partitions DNA 

(Niki et al., 1991; Niki et al., 1992). 

Important advances in the study of chromosome segregation where 

made during 1997 by a number of groups. A mitotic like apparatus was 

discovered in Bacillus subtilis (Lin et al., 1997; Sharpe and Errington, 

1996). The SpoOJ protein binds to the soj—s pool locus (Mysliwiec et al., 
1997) on the chromosome and is located toward the cell poles (Lin et al., 
1997). This finding was in agreement with the observations of Webb et al. 
(1997) who localised the origin region of the B. subtilis chromosome to 

the cell poles. The origin and the soj—s poOl region are both located in the 

same third of the chromosome of B. subtilis. The terminus region is not 

sequestered at the cell poles. 

The soj—s poOl locus of B. subtilis is a homologue of the parA parB 
parS region of the E. coli bacteriophage P1 and the sopA sopB genes of the 

F plasmid (Austin and Abeles. 1983a; 1983b; Mori et al., 1989). parA and 

parB are required for partition of P1 during the prophage stage of the 

bacteriophage life cycle (Gerdes and Molin, 1986). ParA is an ATPase 

which interacts with the DNA binding protein ParB (Davis et al., 1992; 

Watanabe et al., 1992). The ParB protein binds to the parS region (Martin 

et al., 1987; Davis and Austin, 1988). 
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The developmental bacterium Caulobacter crescentus has a region 
homologous to the parA parB parS region of P1 (Mohl and Gober, 1997). 

Both ParA and ParB localise to the cell poles after chromosome 

replication and prior to cell division. ParB binds to a region functionally 

homologous to the P1 parS region. Overexpression of either parA or parB 
resulted in aberrant chromosome segregation and loss of ParA and ParB 

localization (Mohi and Gober, 1997). The authors suggest that ParA and 

ParB might be components of a bacterial mitotic apparatus. 

The origin of the E. co/i chromosome was shown to be located 

more towards the cell poles. The F plasmid and P1 prophage genomes 

migrate to the cell quarters, indicating different mechanisms for 

chromosome and episome segregation (Gordon et a/., 1997). E. coli does 
not have a region homologous to the parA parB parS region of other 
organisms and plasmids. 
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Chapter 2. Materials and Methods. 

2.1 Bacterial and Phage Strains, Plasmids and General Materials 

2.1.1 Bacterial Strains 

Strain 	 Genotype 	 Source/Reference 

BL21 (DE3) E. coil B strain. F-  ompT hsdSB (r5 Studier and Moffat 

MB—) XDE3 	 (1986) 
C600 

	

	F-  e14 (McrA-) thr-1 leuB6 thi-1 iacYl Laboratory stock 
supE44 rfbDl JliuA21 

C6SA5 	C600 sulA::Tn5 [from GC2481] KanR 	This work 
CDK1 	MG1655 aroA::TnlO ftsK677::cat Cmp' 	This work 

TetR 

CDK2 	MG1655 aroA::TnlO ftsK54_2201::cat 	This work 
Cmp' TetR 

CDK3 CDK2 dacA::kan Cmp' TetR KanR This work 
CDK5 MG1655 	aroA::TnlO 	ftsK54_3669::cat This work 

Cmp' TetR 

CDK44 T0E44 aroA::TnlO [from ME8436] This work 
CSR603 thr-1 ara-14 ieuB6 i\gpt-proA)62 iacYl Sancar and Rupert 

tsx-33 	ginV44 phrBl 	gaiK2 ?c 	rac-O (1978) 
gyrA98 recAl rpsL31 kdgK51 xylA5 mti- 

I argE3 thi-1 uvrA6 Na1R StrR 

DH5a 480dlacM15 	iX(1acZYA-argF)U 169 Laboratory stock 
recAl 	endAl 	hsdR17 	(rK 	mK) 
supE44, 2 	thi-1 gyrA96 re/Al 

GC2481 sulA::Tn5 KanR R. D'Ari 
JC1O-240 Hfr:P045; 	iysA>serA 	iiv-318 	thr-300 A. J. Clark 

sriC300::TnlO thi-1 recA56 reiA rpsE300 
TetR 

K146 MG1655 aroA::TnlO ftsK667::cat CmpR This work 
TetR 

K2:1 MG1655 	aroA::TnlO 	ftsK54_2201::cat This work 

Cmp' TetR 
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Strain 	 Genotype 	 Source/Reference 

ME8436 F 106—poxB—aroA :Tni 0—pu tPA galK35 National Institute 
? pyrD34 his-68 recAl rpsL118 malAl of Genetics, Japan 
XR xyl-7 mtl-2 thi-i Tet 

MG1655 	prototroph 	 Laboratory stock 
MG1655 	MG1655 pcnB::kan KanR 	 This work 
pcnB::kan 

MGAT 	MG1655 aroA::TnlO [from ME84361 	This work 
TetR 

MGdak 	MG1655 dacA::kan [from SF1070) 	 This work 
MGrecA 	MG1655 recA56 srlC300::TniO [from 	This work 

JC10-240] TetR 

MGSA5 	MG1655 suiA::Tn5 KanR 	 This work 
MM38K24 argG6 asnA31 or asnB32 his-1 ieuB6 Masters et al., 1993 

metBi pyrE gal-6 lacYl pcnB::kan xyl-7 
supE44 bgl fhuA2 	gyrA rpsLTI04 tsx-i 
uhp KanR 

NACK6 W3110 	aroA::TnlO 	ftsK54_3669::cat This work 
Cmp' TetR 

5P1070 dacA::kan KanR B. Spratt 
T0E44 thr-i ara-14 leuB6 iX(gpt-proA)62 lacYl Begg et al. (1995) 

tsx-33 	qsr'-O glnV44 	galK2 	? 	rac-0 

hisG4 	rfbDi 	mgl-51 	thyAl2 	rpsL31 
kdgK51 xylA5 mtl-i argE3 thi-i deoB16 

ftsK44 

TP8503 thi-1 	leu 	supE42 	zt(lac—proB) 	fhuA Masters et al. 
Tmp' (1989) 

TP?. TP8503 ? p(sfiA::lac) This work 

W3110 Inv: rrnD—rrnE Laboratory stock 

Table 2.1.1. E. coil strains used in this study. 
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2.1.2 Bacteriophage strains 

Bacteriophage P1 and ?. lysates used in this study are listed in Table 

2.1.2. Phage lysates were stored at 4°C as LB-broth suspensions containing 

a few drops of chloroform to prevent microbial growth. 

Bacterio- 	 Description 	 Source/Reference 

phage 

P1 	 Wild—type bacteriophage 	Laboratory stock 

?vir 	 Virulent 	 Laboratory stock 

? p(sfiA::lac) ? phage containing the sulA promoter 	Huisman and 

(PsfiA) transcriptionally fused to lacZ. 	D'Ari, 1983 

?.214 (X1F1O) ?.215 containing stuffer fragment from Kohara et al., 1987 

20.07-20.87 minutes 

Table 2.1.2. Bacteriophages used in this study. 

2.1.3 Plasmids 

The plasmids used in this study are shown in Table 2.1.3. Plasmids 

were stored as dried pellets at —70°C until required. 

Plasmid Description Source/Reference 

pBADK EcoRI-XbaI insert from pUCK cloned This work 

into EcoRI/XbaI digested pBAD18. 	9.0 

kb. Amp'. 

pBADK' pBADK 	with 	2.6 	kb 	Bsu361—XbaI This work 

fragment 	removed, 	end-filled 	and 

religated. 6.4 kb. AmpR. 

pBADK'3 pBADK 	with 	3.7 	kb 	BsaBI—XbaI This work 

fragment 	removed, 	end 	filled 	and 

religated. 5.3 kb. AmpR. 

pBR322 General purpose cloning vector. TetR  Bolivar et al. 1977 
AmpR 

pBR325 General purpose cloning vector. 	TetR  Bolivar, 1978 

Amp' Cmp'. 
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Plasmid Description Source/Reference 

pBS58 ftsQ, ftsA and ftsZ cloned into pGB2. Bi and 
SpecR. Lutkenhaus, 

(1990a) 

pCD99 EcoRI-XbaI insert from pUCK cloned This work 
into EcoPJ/XbaI digested pUC18. 7.1 kb. 

Amp'. 

pCD101 EcoRI-KpnI 	fragment 	from 	?214 This work 
cloned 	into 	EcoRI/KpnI 	digested 

pUC19. 9.9 kb. Amp'. 

pCD101 EcoRV 	fragment 	from 	pCD101 This work 

-ARV removed and the plasmid religated. 7.8 
kb. AmpR. 

pCD109 Sail-S phI fragment from pGEMT-K This work 

cloned into SaiI/SphI digested pUC18. 
4kb. AmpR. 

pCDCAT cat gene PCR product (with promoter) This work 

from pBR325 using NotI and MfeI 
mutagenic primers digested with NotI 
and MfeI and ligated into NotI-MfeI 
digested pCD101. 9.2 kb. AmpRCmpR. 

pCDCAT2 pCDCAT with Bsu361-NruI fragment This work 

removed, end-filled and religated. 	7.7 

kb. AmpR  Cmp'. 

pGB2 pSC101-based cloning vector. 	4.9 kb. Churchward et al., 
SpecR. 1984. 

pGB101 EcoRI-Sall 	fragment 	from 	pCD101 This work 

cloned into EcoRI/Sa/I digested pGB2. 

11.2 kb. SpecR. 

pGEM-T T-overhang 	PCR 	product 	cloning Promega 

vector. 3 kb. Amp'. 

pGEM-TK 1.3 bp PCR product of the 5' end of ftsK This work 

with an introduced NdeI site and an 

ATG codon replacing the ftsK TTG 

initiation codon cloned into pGEM-T. 

4.3 kb. AmpR. 
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Plasmid 	 Description 	 Source/Reference 

pHL1 	Hindlil chromosomal fragment from 	M. Khattar 

the 88.5 minute region cloned into 

HindIII digested pBR322. AmpR. 

pKATG 	NotI-Sall fragment from pCD99 cloned 	This work 

into NotI/SalI digested pCD109. 7.1 kb. 

Amp'. 

PKBCAT 	Ec113611-HindII 	fragment 	from 	This work 

pUCAT18 containing the cat gene 

cloned into the BsaBI of pCD101. cat 

gene is in the same orientation asftsK. 
11.4 kb. AmpR CmpR. 

pKC1 EcoRI-MfeI 	fragment 	from 	pCD99 

removed, the linear plasmid religated. 

4.8 kb. AmpR. 

pKD140 3' region of cytR and ftsN cloned into 

the tet gene of pBR322. AmpR. 

pKHS3 pJF118HE 	clone 	containing 	ftsWS 

transcribed 	by 	Ptac 	and 	T7 	010 

promoters. Amp'. 

pKT1 XbaI-NheI fragment removed 	from 

pCD99, the linear plasmid end-filled 

and religated. 3.5 kb. AmpR. 

pKT2 XbaI-Bsu361 fragment removed from 

pCD99, the linear plasmid end-filled 

and religated. 4.5 kb. AmpR. 

pKT3 XbaI-ClaI 	fragment 	removed 	from 

pCD99, the linear plasmid end-filled 

and religated. 4.7 kb. Amp'. 

pKT4 XbaI-NcoI fragment removed 	from 

pCD99, the linear plasmid end-filled 

and religated. 6.4 kb. Amp'. 

pLysS Phage T7 genel cloned in pACYC184 tet 

gene. 5.5 kb. Cmp'. 

This work 

Dai et al. 1993 

Khattar et al. 1997 

This work 

This work 

This work 

This work 

Laboratory stocks 
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Plasmid Description Source/Reference 

pSU44 trxB, lrp and ftsK' fragment from X215 Begg et al., 1995 

cloned into pUC19. 

pT7-3 Co1EI origin. 	Polylinker downstream labor and 

of the the 'phage T7 010 promoter. 	bia Richardson, 1988 

gene transcribed in the same direction 

as 010 promoter. 2.4 kb. AmpR. 

pT7-3K EcoRI-XbaI 	fragment 	from 	pUCK This work 

cloned into EcoRI/XbaI p17-3. 	6.8 kb. 
AmpR. 

pT7-5 Similar to pT7-3 but orientation of bia Tabor and 

gene reversed. 2.4 kb. Amp'. Richardson, 1988 

pT7-5K EcoRI-XbaI 	fragment 	from 	pUCK This work 

cloned into EcoRI/XbaI pT7-3. 	6.8 kb. 
AmpR. 

pT7-7 Similar 	to 	p17-3 	but 	allows labor and 

construction of translational fusions to Richardson, 1988 

N-terminus of 010. 	Also carries an 

NdeI site for fusion of in frame genes 

to 010 rbs and translation initiation 

codon. 2.5 kb. AmpR. 

pT7-7KAIG NdeI-Sall 	fragment 	from 	pKATG This work 

cloned into NdeI / Sail digested pT7-7. 

6.9 kb. Amp'. 

pTLK' BsaBI-SmaI fragment removed from This work 

pCD101, the plasmid religated. 	5.5 kb. 

Amp'. 

pUCK 4.4 kb ScaINdel fragment from X214 This work 

containing the promoterless ftsK ORF 

end-filled 	and 	cloned 	into 	Smal 

digested pUC19. 6.1 kb. AmpR 

pUC18 General purpose cloning vector. 2.7 kb. Yannisch-Perron 

Amp'. et al. (1985) 

pUC19 	General purpose cloning vector. 2.7 kb. Yannisch-Perron 

Amp' 	 et al. (1985) 

Table 2.1.3. Plasmids used in this study. 
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2.1.4 Growth media and buffers 

Growth media are listed in section 2.1.2. Phage, bacterial and other 

commonly used buffers are listed in section 2.1.3. LB-broth and LB-agar 

were the media of choice in most manipulations except where otherwise 

stated. Where bacteriophage ? was used the media was supplemented 

with 10 mM MgSO4  and 0.2% maltose; for bacteriophage P1, the media 
was adjusted to 2.5 mM CaC12. For selection/ testing of auxotrophies V B 

minimal medium containing appropriate supplements was used. 

Arabinose and glucose were added to media at a concentration of 0.2% 

(w/v) unless stated otherwise in the text. 

2.1.5 Growth media 

Luria Broth (LB-broth) Difco Bacto tryptone 10 g 

Difco Bacto yeast extract 5 g 
NaCl 5g 
Distilled water to 1 litre 

pH to 7.2 using NaOH 

LB-agar LB-broth + 15 g  Difco agar per litre 

LBANaC1 as above but without NaCl 

LB top agar LB-broth + 6.5 g Difco agar per litre 

Nutrient broth Oxoid No. 2 nutient broth 

Distilled water to 1 litre 

Nutrient agar Nutrient broth + 12.5 g Davis NZ agar 

MacConkey agar Peptone 20 g 

Bile salts No.3 1.5 g 

NaCl 5g 

Neutral red 0.03 g 

Crystal violet 0.001 g 

Difco agar 15g 

Distilled water to 1 litre 
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VB minimal medium 20x VB salts 	 50 ml 

20% carbon source 	 10 ml 

Thiamine HC1 (1 mg ml-) 	2 ml 

Supplements as required. 

Distilled water to 1 litre 

VB minimal agar 	As VB minimal broth + 15 g  Difco agar per litre 

20x VB salts 	 MgSO4 	 4 g 
Citric acid 	 40 g 

KH2PO4 	 400 g 

NaNH4 .HPO4 .H20 	 70 g 

Distilled water to 1 litre 

Store over 1 ml of chloroform 

Spizizen's minimal 

medium 

(NH4)2SO4  

K2HPO4  

KH4PO4  

Sodium citrate.2H 20 

MgSO4 .7H20 

Distilled water to 1 litre 

10 g 

70 g 

30 g 

5g 

1  

4g 

1  
0.4 ml 

2 ml 

0.5 ml 

2 ml 

0.72 g 

SOC broth 	 Bactotryptone 

Bacto yeast extract 

5MNaC1 

1 M MgCl2  

1MKC1 

1 M MgSO4  

glucose 

Distilled water to 200 ml 

2.1.6 Commonly used buffers 

Bacterial buffer 
	

MgSO4 .7H20 
	

S 

Na2HPO4 	 S 

KH2PO4  

NaCl 
	

45 
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Distilled water to 1 litre 
Phage Buffer 	 Na2HPO4  

KFI2PO4  

NaCl 

1 M MgSO4  

0.1 M CaC12  

1% gelatin solution 

Distilled water to 1 litre 

TE buffer 	 10 mM Tris-HC1 (pH 8.0) 

1 mM EDTA (pH 8.0) 

TAE buffer 	 40 mM Tris-acetate 

(working solution) 	2 mM EDTA 

50x stock TAE buffer 	Tris base 

Glacial acetic acid 

Distilled water to 1 litre 

7g 

3g 

5g 

1 m 
10 ml 

1 m 

242 g 

57.1 ml 

2.1.7 Minimal medium supplements 

Amino acid supplements were stored in stock solutions of pure 

amino acids at a concentration of between 2-10 mg ml -1  depending on the 

solubility of the particular amino acid. Sparingly soluble amino acids 

such as tyrosine were dissolved in 0.01 M NaOH. The final concentration 

of the amino acids in the media was normally in the order of 20-100 mg 
ml-1 . If a rich minimal media was required, vitamin free casamino acids 

(CAA) was used. The stock concentration of CAA was 100 mg ml -1  and 
the final concentration in the medium was 2 mg ml -1 . CAA lacks 
tryptophan and this was added to CAA media if the bacterial strain to 

being used had an auxotrophy for this amino acid. 

2.1.8 Selection for antibiotic resistance 

The routine concentration of antibiotics used in this study are 

shown in Table 2.1.1. Those antibiotics dissolved in water were filter 

sterilised using a 0.45 gm filter (Gelman). 
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conc. of 	final 
stock 	conc. in 

Antibiotic 	Abbreviation 	Solvent 	solution 	media 
(mg mV1) ( pjg ml-1 ) 

Ampicillin 	Amp 	1-120 	100 	50-100 

Chloramphenicol Chi ethanol 20 25 

D—cycloserine Cyc H20 

Kanamycin Kan 1-120 25 25 

Naladixic acid Na! 150 150 

Nitrofurantoin Nit dimethyl- 2 0.1-5 

formamide 

Spectinomycin Spec H20 50 50 

dihydrochloride 

Tetracycline Tet 50% 10 10 

hydrochloride ethanol 

Table 2.1.1 Antibiotic solutions used in this study. 

2.2 DNA Techniques 

2.2.1 Large scale preparation of plasmid DNA 

For preparation of large amounts of plasmid DNA an endA strain 

such as DH5a was used as the host. A single colony was used to inoculate 

5 ml of LB-broth (with appropriate antibiotics and supplements) which 

was incubated at a suitable temperature with shaking overnight. 0.5 ml of 

the overnight was used to inoculate 500 ml of LB-broth containing 

appropriate antibiotics and supplements and the culture was incubated at 

a suitable temperature overnight with vigorous shaking. The culture was 

chilled on ice for 15 minutes and transferred to two 250 ml centrifuge 

bottles. The cells were pelleted by centrifugation at 5000 rpm in a pre—

cooled GSA rotor for 15 minutes at 4°C. The supernatant was discarded 

and the pellets resuspended in a total of 200 ml of chilled TE buffer. The 
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concentrated cells were centrifuged as above and the supernatant 

removed and discarded. Care was be taken to remove all the supernatant 

and any excess was removed with a Pasteur pipette. The pellet was 

resuspended in 5 ml of Tris-sucrose buffer and transferred to a 50 m 1 

centrifuge tube. 1 ml of lysozyme (20 mg ml -) was added and mixed in 

gently by swirling. The tube was placed on ice for five minutes with 

frequent swirling. 1 ml 0.5 M EDTA (pH 8.0) was added and mixed in by 

gentle swirling followed by 0.8 ml RNAseA (10 mg ml -1 ) which was also 
mixed in by gentle swirling. The tube was placed on ice for five minutes 

with frequent swirling. 6 ml of Triton lysis solution was added, the 

mouth of the tube covered with Parafilm and mixed by gentle inversion. 

The tube was placed on ice for 10 minutes until the cells lysed and the 

mixture became viscous and partially cleared. If clearing was not apparent 

then up to 1.5 ml of a 10% Triton X-100 solution was added to aid lysis of 

the cells. 

The cellular debris and bulk chromosomal DNA were pelleted by 

centrifuging the lysate in a pre-cooled SS-34 rotor at 15,000 rpm for 30 

minutes at 4°C. To avoid sedimentation of larger plasmids (>15 kb) a 

shorter run was used, typically 15 minutes. The supernatant was decanted 

into a sterile glass measuring cylinder and 17.1 g CsCl added and mixed by 

inversion until dissolved. 342 j.tl of ethidium bromide (10 mg ml -1) was 
added and the volume made up to 23 ml with TE and mixed thoroughly. 

The solution was transferred to two Beckman Ti50 Sorval crimp seal 

tubes and the tubes, stoppers and caps balanced to within 0.05 g. 

The tubes were placed in a Ti50 fixed angle rotor and centrifuged at 

38,000 rpm for 60 hours at 18°C or 45,000 rpm for at 24 hours at 18°C. The 

tubes were removed from the rotor avoiding unnecessary handling. 

Under UV illumination two ethidium bromide stained bands could be 

seen, the lower band contained the supercoiled plasmid DNA. This band 

was extracted by the insertion a 0.9 x 40 mm needle into the top of the tube 

which acted as a vent and another needle, attached to a 5 ml syringe, 

inserted just below the band ensuring that the bevel of the needle pointed 

up. 1-2 ml was withdrawn to ensure that the entire plasmid band was 

drawn into the syringe. The plasmid/CsC1 solution was transferred to a 

10 ml syringe. To extract the ethidium bromide an equal volume of 

isopropanol saturated with CsC1 and H 20 was drawn into the syringe. 

This was shaken gently to mix the two phases and allowed to settle. The 
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isopropanol/ethidium layer (uppermost) was expelled and care was taken 

not to lose any of the plasmid containing (bottom) layer. This extraction 

procedure was repeated four times and then the plasmid/CsC1 solution 

transferred to 8/32 inch dialysis tubing. The ends of the tubing was sealed 

with clips and the plasmid/CsC1 solution was dialysed against 5 litres of 

TE at 4°C for 1 hour. The TE was replaced with fresh, chilled TE buffer 

and the dialysis repeated for a further 4 hours. The TE was changed once 

more and the dialysis allowed to continue overnight at 4°C. 0.5 ml 

aliquots of plasmid solution were transferred to microcentrifuge tubes 

and 50 .tl 3 M sodium acetate (pH 5.0) and 1 ml ice cold ethanol added, 

mixed gently and placed on ice for 30 minutes. The plasmid DNA was 

precipitated by centrifugation at 14,000 rpm for 30 minutes at 4°C. The 

ethanol was removed and the pellets washed with 1 ml of ice cold 70% 

ethanol. The tubes were vortexed briefly and centrifuged for a further 10 

minutes at 14,000 rpm at 4°C. The 70% ethanol was removed and the 

pellet dried in a Savant Speed-Vac. The DNA was stored as these dried 

pellets at -70°C until required whereupon 110 j.tl TE was added and 1 

hour allowed for the pellet to dissolve. The DNA concentration was 

determined as described in section 2.2.7. 

solutions used 

Tris-sucrose buffer 50 mM Tris-HC1 (pH 8.0) 

25% w/v sucrose 

Triton lysis solution 	50 mM Tris-I-IC1 (pH 8.0) 

62.5 mM EDTA 

0.1% v/v Triton X-100 

2.2.2 Plasmid minipreparation by alkaline lysis 

This routine plasmid 'miniprep' procedure is a slight variation on 

that first described by Birnboim and Doly (1979). 5 ml LB-broth containing 

the appropriate selective antibiotics was inoculated with a single colony. 

The culture was incubated at a suitable temperature overnight with 

shaking. The cells were pelleted by centrifuging the culture in a bench top 
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centrifuge at 4500 rpm for 5 minutes. The supernatant was removed and 

discarded and the pellet resuspended in 100 j.il TGE buffer. The 

concentrated cell suspension was transferred to a microcentrifuge tube 

and 200 il lysis solution was added. This was mixed by inverting  the tube 

5 times and allowed to stand at room temperature for 3 minutes 

whereupon 150 .tl of ice cold 3 M sodium acetate (pH 5.0) was added. The 

tubes were vortexed briefly and placed on ice for 5 minutes. The cell 

debris was pelleted by centrifugation at 14,000 rpm for 10 minutes. The 

supernatant was decanted into a fresh microcentrifuge tube and an equal 

volume of phenol/ chloroform /isoamyl alcohol (25:24:1) added. The 

tubes were vortexed for 1 minute and then centrifuged for 5 minutes at 

14,000 rpm. The aqueous layer was transferred to a fresh microcentrifuge 

tube, 2 volumes of ice cold ethanol added and placed on ice for 5 minutes. 

The DNA was precipitated by centrifugation at 14,000 rpm for 5 minutes. 

The ethanol was removed and the pellet washed in 700 il 70% ethanol. 

The tubes were centrifuged for 2 minutes at 14,000 rpm, the 70% ethanol 

removed and the pellet was dried in a Savant Speed-Vac. The pellet was 

dissolved in 50 xl TE containing 0.2 mg ml -1  RNAse Cocktail (HT 
Biotechnology, Cambridge UK). 

solutions used 

TGE 	 10 mM EDTA 

25 mM Tris-HC1 (pH 8.0) 

1% w/v glucose 

Lysis solution 	 0.2 M NaOH 

1% w/v SDS 

2.2.3 Large scale preparation of bacteriophage X DNA 

5 ml of LB-broth was inoculated with a single colony of DL307 and 

incubated at 37°C overnight with shaking. 200 ml of LB-broth 

supplemented with 0.2 M MgSO4  was inoculated with 0.5 ml of the DL307 

overnight culture and incubated at 37°C with vigorous shaking. When 

the OD 0  = 0.5 the required ?. phage in lysate form was added to give a 

multiplicity of infection (m.o.i.) of 0.1 for a cF phage and an m.o.i. of 1 for 
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a cI phage. The 0D 600  was followed. The 0D600  increased as the cells 
continued to grow and divide and then fell as the cells lysed and released 

the phage. This took up to 8 hours. When lysis was well established 0.2 

ml chloroform was added and the culture incubated for a further 10 

minutes at 37°C with shaking. 8 g of solid NaC1 was added to the lysed 

culture dissolved by swirling and placed on ice for 1 hour. RNAse A and 

DNAse were added to a concentration of 1 mg ml -1  each and mixed by 
swirling. The mixture was incubated at room temperature for 1 hour. 

The lysed culture was transferred to a 250 ml centrifuge bottle and 

centrifuged in a GSA rotor at 10,000 rpm for 10 minutes at 4°C. The 

supernatant was transferred to a sterile 1 1 flask and 20 g  of PEG 8000 
added, dissolved by swirling and placed on ice for at least 1 hour but 

preferably overnight. The lysate/PEG 8000 solution was transferred to a 

250 ml centrifuge bottle and centrifuged in a GSA rotor at 10,000 rpm for 

10 minutes at 4°C. The supernatant was removed and discarded and the 

PEG/phage pellet was resuspended in 5 ml of phage buffer and transferred 

to a Universal bottle. An equal volume of chloroform was added and 

vortexed gently for 30 seconds to wash the PEG 8000 from the phage. The 

chloroform /phage /PEG 8000 mixture was centrifuged at 4500 rpm for 10 

minutes to layer the PEG 8000 at the chloroform (lower) : phage buffer 

(upper) interface. The phage buffer layer, which contained the phage was 

carefully removed. CsC1 in phage buffer solutions were prepared to 

densities of 1.3, 1.5 and 1.7 g/cc. A step gradient was set up by placing 2 ml 

if the 1.3 g/cc solution in a 35 ml polypropylene ultracentrifuge tube and 

then successively underlaying the 1.5 g/cc solution then the 1.7 g/cc 

solution. The bacteriophage solution was carefully layered on top of the 

step gradient and balanced to within 0.05 g with another tube. The step 

gradients were centrifuged at 35,000 rpm in a MSE 16x4 swinging bucket 

rotor for 2 hours at 18°C. The tubes were carefully removed from the 

rotor and clamped firmly. A piece of black card was placed behind the 

tube to aid the visualization of the opaque grey/blue phage band at the top 

of the 1.5 g/cc step. The band was extracted using a syringe with a 0.9 x 40 

mm needle. The phage in phage buffer/CsCl was transferred to 8/32 inch 

dialysis tubing and dialysed against 5 1 TE buffer overnight at 4°C. 0.5 m 1 

aliquots were transferred to microcentrifuge tubes and 0.5 ml phenol (Tris 

equilibrated, pH 8.0) added. The tubes were placed on a blood mixer for 5 

minutes then centrifuged for 5 minutes at 14,000 rpm. The aqueous layer 
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was transferred to a fresh microcentrifuge tube and an equal volume of 

phenol /chioroform/isoamyl alcohol (25:24:1) added. The tubes were 

placed on a blood mixer for 5 minutes and then centrifuged for 5 minutes 

at 14,000 rpm. The aqueous layer was removed and an equal volume of 

chloroform added. The tubes were placed on a blood mixer for 5 minutes 

then centrifuged for 5 minutes at 14,000 rpm. The aqueous layer was 

transferred to a fresh microcentrifuge tube and 1/10 volume of 3 M 

sodium acetate (pH 5.0) added. 2 volumes of ice cold ethanol were added 

and mixed by inversion and the tubes placed on ice for 15 minutes. The 

phage DNA was precipitated by centrifuging at 14,000 rpm at 4°C for 15 

minutes. The ethanol was removed and the pellets washed with 1 ml of 

ice-cold 70% ethanol and then centrifuged at 14,000 rpm for 5 minutes at 

4°C. The pellets were dried in a Savant Speed-Vac. The DNA was stored 

as these dried pellets at -70°C until required whereupon 110 41 TE was 

added and 1 hour allowed for the pellet to dissolve. The DNA 

concentration was determined as described in section 2.2.7. 

2.2.4 Large scale preparation of chromosomal DNA 

5 ml LB-broth with appropriate supplements was inculated with a 

single colony of the strain of interest and incubated at a suitable 

temperature with shaking overnight. 250 jil of this overnight culture was 

used to inoculate 25 ml LB-broth supplemented with appropriate 

antibiotics. The culture was incubated with shaking overnight at a 

suitable temperature. The culture was transferred to a sterile Universal 

bottle and chilled on ice for five minutes. The culture was centrifuged at 

4500 rpm for 10 minutes at room temperature to pellet the cells. The 

supernatant was discarded and the pellet was resupended in 5 ml STE. 

250 jfl 10% SDS and 250 j.tl proteinase K solution (4 mg ml -1 ) where added, 

the mixture gently swirled and then incubated at 50°C for 6 hours without 

shaking. The mixture was transferred to a 25 ml glass beaker and an equal 

volume of phenol/ chloroform/ isoamyl alcohol (25:24:1 v/v) added. This 

was mixed gently by swirling and allowed to stand either at room 

temperature for 1 hour or at 4°C overnight. The mixture was transferred 

to a Universal bottle and centrifuged at 4500 rpm at room temperature for 

15 minutes. The upper aqueous layer (approximately 5 ml) was 

transferred to a 25 ml glass beaker and 500 p.1 of 3 M sodium acetate (pH 
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5.5) added and mixed by swirling. 11 ml of ice cold ethanol was added and 

a glass rod was used to spool the precipitated DNA out of the mixture. 

The DNA was transferred to a microcentrifuge tube and washed with 1 ml 

of 70% ethanol. The DNA was allowed to air dry for five minutes and 

then redissolved in 5 ml TE buffer overnight. 25 p.! of a 10 mg ml -1  

RNAseA solution was added, mixed by swirling and incubated at 37°C for 

1 hour. 125 p.110% SDS and 63 p.1 proteinase K (4 mg ml -1 ) were added 
and the mixture incubated without shaking at 50°C for 1 hour. The 

mixture was transferred to a 25 ml glass beaker and an equal volume of 

phenol/ chloroform/ isoamyl alcohol (25:24:1 v/v) added. This was mixed 

gently by swirling and allowed to stand either at room temperature for 1 

hour or at 4°C overnight. The mixture was transferred to a Universal 

bottle and centrifuged at 4500 rpm at room temperature for 15 minutes. 

The upper aqueous layer (approximately 5 ml) was transferred to a 25 ml 

glass beaker and adjusted to 500 p.1 3 M sodium acetate (pH 5.5) added and 

mixed by swirling. 11 ml ice cold ethanol was added and a glass rod used 

to spool the precipitated DNA from the mixture. The DNA was 

transferred to a microcentrifuge tube and washed with 1 ml 70% ethanol. 

The DNA was allowed to air dry for ten minutes before being redissolved 

in 500 p.1 TE buffer. This method yields approximately 500 mg of 

chromosomal DNA. 

solutions used 

STE TE buffer, 10 mM NaCl. 

2.2.5 Small-scale preparation of chromosomal DNA 

5 ml of LB-broth containing appropriate selective antibiotics was 

inoculated with a single bacterial colony and incubated overnight at the 

permissive temperature. 1.5 ml of the culture was transferred to a 

microcentrifuge tube and centrifuged for 2 minutes at 14,000 rpm. The 

supernatant was discarded. The pellet was resupended in 567 p.1 of TE 

buffer, 3 p.1 of proteinase K (20 mg ml -1 ) and 30 p.1 10% SDS. The mixture 

was vortexed thoroughly and incubated at 37°C for 1 hour. 100 p.1 of 5M 

NaC1 was added and mixed thoroughly. 80 p.1 of hexadecyltrimethyl 

ammonium bromide (CTAB)/NaC1 solution was added, mixed 

MI 



Chapter 2. Materials and Methods 

thoroughly and incubated for 10 minutes at 60°C. An equal volume of 

chioroform/isoamyl alcohol (1:1 v/v) was added, mixed thoroughly and 

the tubes were centrifuged at 14,000 rpm for 5 minutes. The aqueous 

upper layer was transferred to a fresh microcentrifuge tube and an equal 

volume of phenol/ chloroform/ isoamyl alcohol (25:24:1 v/v) added, 

mixed thoroughly and centrifuged for 5 minutes at 14,000 rpm. The 

supernatant was transferred to a fresh microcentrifuge tube and 2 

volumes of ice-cold ethanol was added. The contents were mixed and 

centrifuged for 5 minutes at 14,000 rpm. The ethanol was removed and 

the pellet washed in 1 ml of ice-cold 70% ethanol then centrifuged for 5 

minutes at 14,000 rpm. The 70% ethanol was removed and the pellet 

dried in a Savant Speed-Vac. The DNA was dissolved in 100 p.1 of TE 

buffer and 15 p.1 used per restriction digest. 

solutions used 

CTAB/NaC1 solution 4.1 g NaCl was dissolved in 80 ml H 20 and 10 g 

CTAB (hexadecyltrimethyl ammonium bromide) was added slowly while 

heating and stirring. 

2.2.6 Precipitation of DNA 

1/10 volume 3 M sodium acetate (pH 5.0) was added to the DNA 

solution and mixed by vortexing. 2 volumes of ice cold ethanol were 

added and the tubes placed on ice for 10 minutes. The mixture was 

centrifuged at 14,000 rpm in a microcentrifuge for 10 minutes. The 

ethanol was removed and 1 ml of ice cold 70% ethanol added. The tubes 

were vortexed for 10 seconds and centrifuged at 14,000 rpm for five 

minutes. The 70% ethanol was removed and the pellet dried in a Savant 

Speed-Vac. The pellet was dissolved in a suitable volume of TE or dH 20. 

2.2.7 Determination of DNA concentration 

10 p.1 of the DNA solution was added to 990 ml of TE buffer in a 

quartz cuvette. The 0D260  and the OD 0  were taken. An 0D260  of 1.0 

corresponds to 50 mg mV 1 . An 0D260/013280 ratio of 1.8 indicates relatively 
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pure DNA. contaminants such as proteins and carbohydrates increase or 
decrease this ratio. 

2.2.8 Restriction of DNA 

The digestion of DNA using restriction endonucleases was 

performed in 20-50 p1 volumes containing 0.1-1 jig DNA, lx appropriate 

restriction enzyme buffer and restriction enzyme in 2-5 fold excess. The 

final volume was made up using distilled water. Some restriction 

endonucleases require the presence of BSA in the reaction mixture so, 

when required, BSA was added according to manufacturers instructions. 

Partial digestion of DNA. 

For the partial digestion of DNA six two-fold serial dilutions of 

restriction enzyme were added to DNA of a fixed concentration. The 

greatest concentration of enzyme used in such reactions was 0.5 Units of 

enzyme per jig of DNA. The digestion reactions were incubated for 1 

hour. The reactions were terminated using TAE loading buffer and the 

samples analysed by agarose gel electrophoresis. 

Digestion of DNA using two restriction enzymes. 

For digestion of DNA using two restriction enzymes one of two 

approaches was taken. If the enzymes had a compatible buffer then both 

enzymes were added in equal concentration to the reaction mixture. If 

the enzymes had different buffer requirements the digestion conditions 

would be made to suit the restriction enzyme which had a requirement 

for a low salt buffer. The digest would be incubated for 1-2 hours and 

then the digest volume would be doubled using the appropriate amount 

of the second buffer (high salt), distilled water and the second restriction 

enzyme. The reaction would be incubated at the optimum temperature 

for a further 1-2 hours. 

Alternatively, after the DNA had been digested by one enzyme, the 

DNA was purified from the reaction using Promega Wizard DNA Clean-

Up Columns according to the manufacturers instructions. The eluted 

DNA in solution was then subjected to restriction by the second 

restriction enzyme. 
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2.2.9 'Filling in' of recessed 3' termini 

The Kienow fragment of DNA polymerase I was employed to 'end 

fill' recessed 3' termini created by certain restriction endonucleases, to 

create blunt ended DNA molecules. The Kienow reactions were 

performed two ways: 

The Klenow enzyme is at least partially functional in a wide variety of 

restriction enzyme buffers. Restriction digests, typically 20 RI, were 

allowed to proceed to completion (1-2 hours). The volume of the reaction 

was made up to 30 jil with dNTPs (such that each dNTP was present at a 

final concentration of 20 mM), 2 units of Klenow enzyme, the appropriate 

amount of lOx restriction enzyme buffer and distilled water. The samples 

were incubated at 37°C for 20 minutes then the salts, protein and 

unincorporated dNTP's were removed by using the Promega DNA Clean-

Up Columns according to the manufacturers instructions. 

0.5 jig DNA, lx Nick Translation Buffer (Boehringer Mannheim), each 

dNTP at a concentration of 20 mM and 2 units of Klenow enzyme were 

mixed and made up to 20 p.1 with dH 20. The samples were incubated at 

37°C for 20 minutes then the salts, protein and unincorporated dNTP's 

were removed by using the Promega DNA Clean-Up Columns according 

to the manufacturers instructions. 

2.2.10 Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis was used to separate DNA fragments 

after digestion with restriction endonucleases and identify PCR products. 

The concentration of agarose used depended upon the sizes of DNA 

fragments being separated. For fragments of 300 bp to 1.5 kb 1.5% agarose 

was used, between 1.5 kb to 4 kb 1% agarose and above 4 kb 0.8% agarose. 

The agarose was dissolved in TAE buffer by brief boiling, cooled to 60°C 

and then poured into the gel tray, the comb(s) inserted and left to solidify 

for 30 minutes. Two types of electrophoresis equipment were used both 

made by BRL. The minigel (5 x 7.5 cm) used for rapid (1-2 hours) 

separation of DNA fragments usually for ligation reactions or preparing 

probes for hybridization. The midigel (11 x 15 cm) was used to analyse 
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When larger DNA fragments of 1 kb or greater were extracted the 

Qiagen Gel Extraction Kit was used according to the manufacturer's 

instructions. The reason for employing the two different systems is that 

the Geneclean system has a tendency to shear larger DNA molecules 

when two or more silica particles bind to the DNA fragment. Repeated 

pelleting and resuspension of the Glassmilk with bound DNA can exert 

forces on the DNA that can lead to degradation. The Qiagen system 

employs a fixed bed of silica so these forces are not encountered. 

2.2.12 Ligation of DNA fragments 

Ligation reactions were performed in 20 jfl volumes. The total 

amount of DNA used per reaction was 0.5-1.0 .tg with lx ligation buffer 

(Boehringer Mannheim), T4 DNA ligase and TE buffer to make up to 20 

p.1 when necessary. For sticky ended ligations a threefold molar excess of 

fragment to vector was used whilst for blunt ended ligations, a six to one 

molar ratio was used. Ligase concentration was 1 Unit per reaction for 

blunt ended DNA ligations and 0.2 Units per reaction for sticky-ended 

DNA ligations. Sticky-ended ligations were incubated at 16°C for 3 hours 

and blunt-ended ligations incubated overnight also at 16°C. 

2.2.13 Preparation and transformation of competent cells (Chung 

Method) 

The method developed by Chung et al. (1989) was used for routine 

transformations of plasmid DNA (not ligations). 5 ml of medium 

containing the appropriate selective antibiotics was inoculated with a 

single colony and incubated with shaking at the appropriate temperature 

overnight. 100 p.1 of the overnight culture was used to inoculate 20 ml of 

LB-broth, with appropriate selection, and incubated at a suitable 

temperature until the 0D 600  reached 0.4. The culture was transferred to a 

sterile Universal bottle and placed on ice for 10 minutes. The chilled 

culture was centrifuged in a bench centrifuge at 4500 rpm for 5 minutes. 

The supernatant was discarded and the Universal bottle was inverted to 

drain off excess media. The cells were resuspended in 1 ml of TSS and 

placed on ice. The cells and could be used immediately or stored at —70°C 

for up to 3 months. Plasmid DNA (typically 10-200 ng) was added to 100 
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potential clones and run chromosomal digests prior to Southern blotting 

onto nylon filters. The wells of the gels were always loaded dry and then 

the TAE buffer was carefully added to each reservoir until it overflowed 

across the surface of the gel joining both together. The minigel was run at 

60-70 mA and midigels were typically run overnight at 25 mA. Once the 

gel had run sufficiently (this could be approximately gauged by observing 

the marker dye migration) the power supply was sitched off and the DNA 

in the gel stained with ethidium bromide/TAE solution (0.5 pg ml -1 ) for 

30 minutes and then destained in TAE for a further 30 minutes. After 

staining the DNA fragments could be visualised by exposing the gel to UV 

illumination. 

2.2.11 Extraction of DNA from agarose gel slices 

Two approaches were employed to extract DNA fragments from 

agarose gels after electrophoresis. The Geneclean kit manufactured by BlO 

101 was used to isolate small fragments of 1 kb or less. The principle 

behind the system is a silica matrix to which DNA binds in high salt 

solution but not in low salt solution. Agarose gels were stained with 

ethidium bromide so that the DNA bands could be visualised in the gel 

when placed on a UV transilluminator. The desired bands were excised 

using a flamed scalpel blade and each gel fragment placed in a sterile 

microcentrifuge tube, weighed and three volumes of 6 M sodium iodide 

added to each. These were incubated at 50°C for 5 minutes or until the gel 

slice dissolved. 5 p.1 of Glassmilk silica suspension was added to each of 

the samples, these were vortexed and placed on ice for five minutes with 

frequent vortexing. The tubes were centrifuged at 14,000 rpm for 30 

seconds to pellet the Glassmilk and the supernatant discarded. The pellet 

was resuspended in 0.5 ml of New Wash (an ethanol based buffer to 

remove the sodium iodide) and centrifuged as above. This process was 

repeated a further two times and then the pellet resuspended in 10 p.1 of 

TE buffer. This was incubated at 50°C for 10 minutes and then centrifuged 

as above to pellet the Glassmilk. The aqueous solution contained the 

DNA previously bound to the Glassmilk. This is transferred to a fresh 

microcentrifuge tube and centrifuged once more to remove residual 

Glassmilk. The DNA fragment in solution was then available for further 

manipulation. 
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p.1 of competent cells, gently mixed and left on ice for 30 minutes. After 

this time 0.9 ml of LBG (LB-broth supplemented with 0.2 mM glucose) 

was added to the transformation mixture. This was then incubated at the 

permissive temperature for 1-2 hours whilst being mixed on a rotating 

blood mixer. This is to allow the expression of plasmid encoded antibiotic 

resistance markers. 100 p.1 aliquots were plated onto selective agar and 

incubated overnight at an appropriate temperature. As a control, an 

aliquot of cells only were plated on the selective medium. 

TSS 	 Difco bactotryptone 

Difco yeast extract 

NaCl 

PEG 3350 

MgSO4  

PIPES (pH 6.5) 

Distilled water to 1 litre. 

10 g 

5g 

10 g 

100 g 

20 mM 

20 mM 

2.2.14 Preparation and transformation of competent cells (CaC1 2  method) 

For transformation of ligation mixtures the following procedure 

was followed. 5 ml of medium containing the appropriate selective 

antibiotics was inoculated with a single colony and incubated with 

shaking at the appropriate temperature overnight. 100 p.1 of the 

overnight culture was used to inoculate 20 ml of LB-broth, with 

appropriate selection, and incubated at a suitable temperature until the 

0D600  reached 0.6. The culture was transferred to a sterile Universal bottle 

and placed on ice for 10 minutes. The chilled culture was centrifuged in a 

bench centrifuge at 4500 rpm for 5 minutes. The supernatant was 

discarded and the universal was inverted to drain off excess media. The 

cells were resuspended in 10 ml ice-cold 0.1 M MgC12 /0.1 M RbC12  (9:1 

v/v). The cell suspension was centrifuged in a bench centrifuge at 4500 

rpm for 5 minutes. The supernatant was removed and the pellet of 

bacterial cells resuspended in 1 ml ice-cold 0.1 M CaC1 2 /0.1 M RbC12  (9:1 

v/v). The cells were stored on ice for at least 30 minutes (the competence 

of the cells has been shown to increase after overnight storage on ice). 

Immediately before use 1.5 p.1 dimethylsuiphoxide (DMSO) was added per 

100 p.1 of the competent cells. 5 p.1 of the ligation mix was added to 100 p.1 
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of competent cells, mixed gently and placed on ice for 30 minutes. The 

mixture was transferred to a 42°C waterbath for 90 seconds and then 

placed on ice for 5 minutes after which 0.9 ml LB-broth 0.2 mM glucose 

was added. The culture was then incubated at a suitable temperature for 1 

hour to allow to expression of the antibiotic selection marker after which 

200 jil aliquots plated on selective media. 

note: If the selection is for tetracycline resistance alone the 1 hour 

expression step can be omitted. 

2.2.15 Preparation of cells for high efficiency electro-transformation 

1 litre of LB-broth (2 x 500 ml in 2 litre conical flasks), containing 

selective agents if required was inoculated with 1 ml of a fresh overnight 

culture and incubated with vigorous shaking at a suitable temperature 

until the 0D600  reached 0.7-1.0. The culture was transferred to 4 250 ml 

GSA centrifuge pots and placed on ice for 20 minutes. The culture was 

centrifuged in a chilled GSA rotor at 8000 rpm for 5 minutes at 4°C. The 

supernatant was discarded without disturbing the pellet. The pellets were 

resuspended in 250 ml of chilled sterile dH 20 and pelleted as above. This 

procedure was repeated using decreasing volumes of chilled sterile dH 20 

(i.e. 125 and 50 ml). The pellets were pooled by resuspending in a total of 

20 ml of chilled 50% glycerol in dH 20, (v/v) 1  transferred to a 36 ml Corex 

tube and centrifuged at 10,000 rpm for 5 minutes at 4°C in a pre-chilled 

Sorval SS-34 rotor. The supernatant was discarded and the pellet 

resuspended in 2 ml of sterile chilled 50% glycerol to give a cell 

concentration of -2-3 x 1010  ml-1 . Aliquots of 130 jtl were placed in sterile 

microcentrifuge tubes and placed on ice. The cells were snap frozen in a 

dry ice/ethanol bath and stored at -70°C until needed. Cells could be 

stored in this manner for up to 6 months. 

2.2.16 Preparation of DNA for electroporation 

DNA ligation mixtures used for transforming cells by 

electroporation have to be in salt free solution to prevent arcing as the 

DNA solution/cell suspension is exposed to a large electrical charge. The 

presence of salts result in a premature release of the charge and a greatly 

reduced transformation efficiency. 
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The ligation mixture was briefly centrifuged in a microcentrifuge 

and dH2O added to increase the total volume to 50 j.tl. 0.5 ml of N-

isobutanol was added and the mixture vortexed and centrifuged for 30 

minutes at 14,000 rpm at 4°C. The supernatant was removed, the pellet 

dried in a Savant Speed-Vac and resuspended in 10 p.1 dH 20. For each 

transformation 1-2 p.1 of the ligation mixture was used. 

2.2.17 Electro-transformation of ligation mixtures 

The electro-transformation competent cells were thawed slowly at 

room temperature and placed on ice. The equipment used was a Biorad 

Genepulser and Pulse Controller. The Genepulser was set at 25 mF and 

2.5 kV and the Pulse Controller at 200 Ohms. The pulse at these settings 

has a time constant of 4.5-5.0 milliseconds giving a field strength of 12.5 

kV/cm. 40 p.1 of the competent cells was mixed with 2 p.1 of the ligated 

DNA. The mixture of cells and DNA was transferred to a chilled 

electroporation cuvette (1 mm electrode width, Biorad) and the side of the 

cuvette gently tapped to ensure that the mixture was distributed evenly 

on the bottom. The cuvette was placed in the safety chamber slide and 

inserted into the chamber. The cells were pulsed and immediately 

resuspended the cells in 1 ml of SOC broth (see Table 2.1.2) and transferred 

to a microcentrifuge tube. The tubes containing the transformed cells 

were placed on a blood mixer for 1-2 hours to allow the transformants to 

express for antibiotic selection at a suitable incubation temperature. 100 p.1 

aliquots of the cell suspension were spread on appropriate selective plates 

and incubated overnight at a suitable temperature. 

2.2.18 DNA sequencing 

Introduction. 
DNA sequencing was performed using the Pharmacia 17 

Sequencing Kit. The kit is based upon the chain-terminating 

dideoxynucleotide sequencing method developed by Sanger et al., (1977). 

In the original procedure, primer extension was catalysed by the Kienow 

fragment of DNA polymerase I. The kit replaces the Kienow enzyme 

with the T7 DNA polymerase, which has the advantage of creating longer 

chain terminated fragments with a more even distribution of label 
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between fragments. 	The major practical difference in using T7 

polymerase over Kienow is that primer extension reactions are performed 

in two stages, a labelling reaction and a termination reaction. The two 

stages are necessary because the enzyme uses dideoxynucleotides very 

readily, and therefore in order to allow the synthesis of long chain—

terminated fragments, dideoxynucleotides are excluded from the first 

stage of the reaction, being added for the second. Even so, the time 

required for the reactions using the T7 enzyme is considerably less than 

those using the Kienow enzyme. 

Annealing of primer to single stranded template. 

The DNA templates used in the sequencing reactions were double 

stranded plasmid DNAs purified either by CsC1 density centrifugation of 

by the Promega SV Miniprep Kit. The concentration of the template was 

adjusted to 1 mg ml -1  with distilled water. The oligonucleotide primers 

used where obtained from Genosys or Perkin Elmer and tended to be 

between 17-24 bases in length 

The template was denatured by adding 2 pg DNA to 8 .t1 1 M NaOH. 

This mixture was left at room temperature for five minutes whereupon 1 

il of 3 M sodium acetate (pH 5.0) was added followed by 20 t1 of ethanol. 

The tube was placed on ice for 10 minutes then centrifuged at 14,000 rpm 

at 4°C for 10 minutes. The ethanol was replaced with 20 i1 of 70% 

ethanol, vortexed briefly and centrifuged at 14,000 rpm at 4°C for 5 

minutes. The 70% ethanol was removed and the almost invisible pellet 

allowed to air dry briefly before being dissolved in 10 p.! dH 20 
The following was added to an microcentrifuge tube on ice: 

Template DNA (2 p.g) 	10 p.1 

Primer (0.80 mM) 	 2 p.1 

Annealing buffer 	 2 p.1 

Total 	 14 p.1 

The contents of the tube were mixed thoroughly and incubated at 

60°C for 10 minutes. The tube was then left at room temperature for at 

least 10 minutes; if the rest of the sequencing reaction was to be performed 

at a later time then the tube could be stored at —20°C until required. 
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Sequencing reaction. 
For each template to be sequenced, four wells of a microtitre plate 

were labelled 'A', 'C', 'C' and 'T' respectively and 2.5 t1 of the 

corresponding dideoxynucleotide mix added to each well. To the tube 

containing the annealed template and primer the labelling mix, (dCTP, 

dGTP, dTFP and dGTP in solution), T7 DNA polymerase and a—[ 35S] 

dATP were added as follows: 

Annealed template and primer 	14 p.1 

Labelling mix 	 3 p1 
(X_[35S] dATP 	 1 p.1(10 p.Ci) 

T7 DNA polymerase (1.5 U p.V') 	2 p.1 

Total 	 20 p.1 

This labelling reaction was incubated at room temperature for 5 

minutes. While this was proceeding the previously dispensed sequencing 

mixes were incubated at 37°C for 1 minute in a water bath. After the 5 

minute incubation of the labelling reaction, 4.5 p.1 was added to each of the 

prewarmed sequencing mixes and returned to the water bath for a further 

5 minutes to allow chain termination to occur. Finally, 5 p.1 of Stop 

solution was added to each reaction, these could then be stored at —20°C 

until required for electrophoresis. When the samples were needed for 

loading onto the sequencing gel they were heated to 80°C for 2 minutes to 

denature the DNA. Immediately after this incubation 3 p.1 of each sample 

was loaded onto the gel. 

DNA sequencing gel electrophoresis. 
DNA sequencing was performed using a 30 x 40 cm BRL sequencing 

apparatus. The glass sequencing plates were thoroughly cleaned with 

ethanol and chloroform. The shorter of the two plates was desiliconized 

using dimethylsilane to ease separating the plate from the sequencing gel 

after running the samples. The plates were assembled using 0.2 m m 

spacers and taped together to prevent leakage. 
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The gel was prepared by adding together the following: 

Acrylamide (filtered, 40% w/v) 15 ml 

Urea 43g 

d.H20 35 ml 

lOx TBE 10 ml 

The urea was allowed to dissolve with the aid of magnetic stirring. 

Once dissolved, 1 ml of freshly prepared 10% ammonium persulphate 

solution was added followed by 35 .tl of TEMED. This was then stirred 

slowly for a few seconds and was then slowly poured between the 

sequencing plates. The flat edge of a 60 well shark—tooth comb was 

pushed between the plates to layer the top of the gel. Saran wrap was 

wrapped around the exposed areas of the plate and the top and each side 

of the gel was clamped with bulldog clips. The gel was then set aside for at 

least 30 minutes for the acrylamide to polymerise. Once set, the bulldog 

clips, Saran wrap, tape and comb were removed and distilled water was 

squirted along the top of the gel. The shark—toothed comb was then 

replaced with the teeth pointing downwards until just touching the top of 

the gel. The gel was then clamped into the sequencing apparatus and TBE 

buffer poured into the top and bottom reservoirs. The gel was then pre—

run at —66 W (-1500 V) for 1 hour. After this the gel was ready to be 

loaded with the sequencing reactions. The samples were loaded in the 

order A, C, G and T immediately after denaturing the DNA (see above). 

The gel was then electrophoresed at 66 W until the blue dye ran off the 

end of the gel. Once electrophoresis was complete the glass plates were 

removed from the apparatus and the shorter glass plate was carefully 

removed. The plate with the gel attached was placed in a fixing bath 

containing 10% methanol and 10% acetic acid in water for 20 minutes. 

The plate and gel were then removed and a sheet of water dampened 

blotting paper laid over the gel. A dry sheet of blotting paper was then 

laid over this and gently pressed down. The sheets of blotting paper were 

then carefully peeled from the glass plate with the gel adhered to the 

paper. The paper and gel sandwich was then dried in a vacuum gel—drier 

for 1 hour at 80°C. When dry the gel was placed in an autoradiography 

cassette and allowed to develop at room temperature. In most instances a 

good signal was achieved after 24 hours. 
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2.2.19 Southern blotting of DNA onto nylon filters 

Genomic DNAs (7 pjg) were digested with appropriate restriction 

enzymes to produce fragments of calculated size. The digests were run on a 

midigel at 20 mA for at least 12 hours and then stained with ethidium 

bromide and photographed under UV illumination. The gel was then 

washed in 200 ml of 0.25M HC1 for 15 minutes to depurinate the DNA. The 

gel was washed in 200 ml of 0.5M NaOH/1.5M NaCl solution for 15 

minutes to denature the DNA. This step was repeated and the gel rinsed in 

dH20. The gel was then washed in 1 M Tris HC1 (pH 8.0)/1.5 M NaCl 

solution for 45 minutes and again rinsed in dH 20. Finally the gel was 

soaked in 20x SSC buffer (pH 7.2) for 5 minutes. 

Ten sheets of blotting paper, cut to the same size as the gel, were 

soaked in 6x SSC buffer and laid upon a glass plate in a tray. The gel was 

then laid upon this with the upper surface laid face down. A sheet of 

positively charged nylon membrane (Boehringer Mannheim), cut to the 

size of the gel, was soaked in 6x SSC buffer and laid upon the upper surface 

of the gel. A further six sheets of blotting paper soaked in 6x SSC buffer 

were laid on top of this followed by 15 sheets of paper towelling. Finally, a 

glass plate was placed on top and a 1 kilogram weight placed upon this. 6x 

SSC buffer was then poured into the tray until half the lower blotting paper 

was submerged. After 2 hours the weight and glass plate were removed 

and any damp paper towels were removed and replaced with fresh ones 

and the glass plate and weight placed back. The blot was then left 

overnight. The nylon filter was removed and a corner cut out as a marker 

for both sides of the blot. The DNA was then fixed on the filter by exposing 

to UV using a UV crosslinker on 'autocrosslink' setting (1800 UV 

Stratalinker, Stratagene). The blot was now ready to be used for 

hybridization with the prepared labelled DNA probe. 

solutions used 

20x SSC buffer 	NaC1 	 525.9 g 

Sodium citrate 	264.6 g 

Adjust to pH 7.2 

Add distilled water to 3 litres 
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2.2.20 Preparation of labelled DNA probe 

This method is adapted from that described by Feinberg and 

Vogelstein (1984). The required probe DNAs were always cloned in 

plasmids. 1 jig of the plasmid DNA was cut with appropriate restriction 

enzymes and the subjected to agarose gel electrophoresis. The gel was 

stained in ethidium bromide (0.5 mg ml -')and after destining the gel was 

observed on a long wave UV transilluminator and the desired band excised 

cleanly. The DNA was then purified from the agarose gel slice using the 

Geneclean method. The DNA can now be labelled by adding approximately 

50 ng of the fragment DNA to the following mixture: 

DNA 	 -50 ng 

OLB 	 10 g 
BSA (10 mg ml-1 ) 	 2 pJ 

a-{ 35P] dCTP (10 mCi mV') 	5 pA 

Klenow enzyme 	 2 Units 

dH20 to 50 jil 

The reaction was incubate overnight at room temperature in a lead 

containment vessel. 

solutions used 

OLB buffer (Solutions A:B:C in the ratios 2:5:3 [v/v]) 

Solution A: 1.25 M Tris-HC1 pH 8.0 

0.125 M MgC12 

0.5 mM of each dATP dGTP and dTTP 

0.025 mM 3-mercaptoethanol 

Solution B: 2 M Hepes-NaOH pH 6.6 

Solution C: 4.5 mg ml-1  pd(N)6 (in TE buffer) 
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2.2.21 Stripping probes from nylon filters 

Once the Southern blot had been probed, it was sometimes necessary 

to analyse the a blot with a second, different probe. In these cases the initial 

labelled probe was removed. The blot was incubated at 45 °C for 30 minutes 

in 30 millilitres 0.4 M NaOH and then washed in 40 millilitres 0.1 X SSC, 

0.1% SDS, 0.2 M Tris-HC1 (pH 7.5) solution for 30 minutes at 45 °C. The 

signal from the blot should was then negligible and the blot ready to be 

hybridized with the next labelled probe. 

2.2.22 The Polymerase Chain Reaction (PCR) 

PCR was performed to confirm clonings, confirm gene 

replacements and to create engineered molecules for cloning. Primers 

were usually between 17-24 bases in length and were obtained from the 

Oswel DNA Service, Genosys or Perkin-Elmer. For general purpose PCR 

reactions such as confirmation of replacements and clonings Taq DNA 

polymerase (Promega) was used. For reactions were the PCR product 

would be cloned Vent DNA polymerase (NEB) was used because this 

enzyme has a 3'-5' proof-reading activity. A typical reaction mixture is 

presented below. 

Taq (or Vent) DNA polymerase 1 Unit 

lOx Taq (or Vent) buffer 	10 p.1 

Primer 1 	 60 pmol 

Primer 2 	 60 pmol 

dNTP's 	 0.2 mM each 

MgC12 	 1.5 mM 

template 	 10 ng plasmid or 

0.1 p.g chromosomal DNA 

distilled water to 100 p.1 
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The melting temperature used was always 94°C for 1 minute. 

Annealing temperature varied depending on which primers were being 

used. The annealing temperature (T m) was gauged by the following 

formula. 

4(nA+nT) + 2(nG+nC) = Tm  

were nA, nT, nG and nC are the number of adenine, thymine, guanine 

and cytosine residues in the primer. The extension temperature used was 

always 72°C. As a rule of thumb, 1 minute per Kb of extension was 

allowed. 

In some instances, the template for the PCR reaction was a crude 

cell extract. 15 il of an exponentially growing culture was centrifuged at 

14,000 rpm for 1 minute. The supernatant was discarded and the cells 

washed three times in distilled water. The cells were finally resuspended 

in 100 pi of dH20. The cells were then placed in a 95°C heating block for 5 

minutes, after which 20 p1 was used as a template for PCR. 

2.3 Protein Techniques 

2.3.1 In vivo protein labelling using T7 RNA polymerase 

5 ml of LB Amp/Cmp was inoculated with a single colony of the 

BL21(DE3) (pLysS) host containing the plasmid clone of interest. The 

culture was incubated overnight at 37°C and then centrifuged at 5000 rpm 

for 5 minutes to pellet the cells. 4 ml of the supernatant was removed and 

the pellet resuspended in the remaining 1 ml. 0.5 ml of this concentrated 

overnight culture was used to inoculate 25 ml of Spizizen's broth with 

minimal supplements and Amp/Cmp. The culture was incubated at 37°C 

with shaking until the 0D600  reached 0.8 and then four 0.5 ml aliquots 

placed into sterile microcentrifuge tubes which were labelled as follows: 

-IPTG /-Rif 

+IPTG /-Rif 

-IPTG / +Rif 

+IPTG / +Rif 
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The tubes labelled +IPTG had 3 p1 of IPTG (20 mg ml -) added and all 

tubes were then incubated at 37°C on a blood mixer for 30 minutes. To 

the tubes marked +Rif 3 p1 of freshly prepared rifampicin (100 mg ml -) 

was added and the incubation continued as before for 45 minutes. 1 p1 of 

L-[35S] methionine (ICN) at an activity of 5 mCi ml -1  was then added to 

each tube. The tubes were immediately vortexed and incubated for 1 

minute at room temperature to allow incorporation of the label. The 

tubes were centrifuged for 30 seconds at 14,000 rpm to pellet the cells and 

the supernatant discarded. 200 xl of 1X SDS loading buffer was added to 

each tube and the tubes vortexed for 2 minutes or until the pellet was 

resuspended. Samples were then either boiled for 2 minutes or incubated 

at 37°C for 1 hour. These could be stored at —70°C until required for 

analysis by SDS-PAGE. 

solutions used 

SDS-PAGE loading buffer: 

2X solution 

100 mM Tris-HC1 (pH 6.8) 

200 mM 3-mercaptoethanol 

4% SDS 

0.2% bromophenol blue 

20% glycerol 

2.3.2 Visualization of plasmid encoded proteins (Maxicell method) 

Plasmid encoded proteins were identified using the method of 

Sancar et al., (1979). 5 ml LB-broth containing appropriate selective agents 

was inoculated with a single colony of plasmid containing CSR603. The 

cultures were incubated overnight with shaking at a suitable temperature. 

5 ml of M9 CAA medium with appropriate selection and supplements 

was inoculated with 50 pl of the overnight culture and incubated with 

shaking at a suitable temperature until the 0D 600  reached 0.5. 3 ml of this 

culture was transferred to a glass Petri dish and irradiated for 20 seconds 

with 254 nm ultraviolet light at an intensity of 10 ergs/mm 2 /s. 2.5 ml of 

the culture was transferred to a test tube, D-cycloserine added to a final 

concentration of 150 mg m1 1  and incubated overnight with shaking at 

37°C. 2 ml of the culture was centrifuged at 14,000 rpm for 3 minutes to 

pellet the cells. The supernatant was removed and the pellet resuspended 
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in 1 ml of sulphate-free Hershey salts. the cells were pelleted by 

centrifuging at 14,000 rpm for 3 minutes. The supernatant was removed 

and the pellet resuspended in 0.8 ml sulphate-free Hershey medium. The 

culture was incubated with shaking at 37°C for 1 hour. 0.2 ml sulphate-

free Hershey medium containing 5 j.tCi [35S]-methionine  (ICN) was added 

to the culture which was then incubated for 1 hour at 37°C. The cells were 

pelleted by centrifugation at 14,000 rpm for 5 minutes. The pellet was 

washed twice with 0.5 ml 100 mM NaCl before being resuspended in 50 

ml dH20. 50 p1 of 2 x SDS-PAGE loading buffer was added, the tube briefly 

vortexed and the samples placed in a boiling water bath for 5 minutes. 

The samples were then analysed by SDS-PAGE or were stored at —70°C 

until required. 

2.3.3 In vitro translation using a linear DNA template 

This protocol is based on the bacterial cell-free coupled transcription—

translation system first described by De Vries and Zubay (1967) and allows 

the in vitro expression of genes contained on a bacterial plasmid or a 

bacteriophage genome. The kit was supplied by Promega. In vitro 

transcription is from a linear DNA template from endogenous promoters. 

The mRNA transcripts produced are then translated in vitro where the 

introduction of a label aids visualization of any proteins produced. The 

S30 cell extract used by the kit is prepared from E. coli B strain SL119 

which is deficient in OmpT endoprotease, Lon protease and Exonuclease 

V (the RecBCD enzyme). Supplied with the kit is a S30 premix without 

amino acids which is optimised for a given aliquot of S30 with all other 

requirements. These include the NTPs, tRNAs, appropriate salts and an 

ATP regenerating system. Also supplied is an amino acid mixture lacking 

methionine for facilitating the radiolabelling of the translation products. 

The reaction for labelling was prepared as follows; 

DNA template 	 4 p.g 
Amino acid mixture minus methionine 	5 p1  
S30 premix 	 20 p1 
[ 5S] methionine (10 mCi mV) 	 1.5 p1 

S30 extract 	 15 p1 

Sterile distilled water to a final volume of 50 p1. 
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The mixture was vortexed gently and then centrifuged in a 

microcentrifuge for 5 seconds to bring the reaction mixture to the bottom 

of the tube. The reactions were incubate at 37°C for 2 hours. The reaction 

was stopped by placing the reactions on ice for 5 minutes. To each 50 p.1 

reaction 200 p.1 acetone was added, the tube vortexed and placed on ice for 

5 minutes. This precipitated the protein so as to separate it from the PEG 

used in the S30 extract. The mixture was centrifuged for 5 minutes at 

14,000 rpm and the supernatant removed. The pellet was resupended in 

200 p.1 of lx SDS-PAGE loading buffer and 20-30 p.1 used per well for 

analysis by SDS-PAGE. 

2.3.4 Preparation of SDS-PAGE gels 

The Hoefer SE600 dual cooled vertical slab unit which is able to run 

one or two 16 x 18 cm gels was used for most SDS-PAGE experiments. 

The gel plates were washed in distilled water and then wiped with 

ethanol. The gel plates were laid together separated by 0.75 mm spacers 

and then clamped together. The plates were then clamped into the base-

plate of the gel pouring apparatus. The resolving gel was poured first. All 

the ingredients bar the were mixed together in a 50 ml glass beaker, the 

TEMED and the 10% ammonium persuiphate solution were added last. 

The 10% ammonium persuiphate solution was always freshly prepared. 

The solution was quickly mixed and then drawn up in a 25 ml pipette and 

poured between the gel plates. The resolving mix was poured into the 

gap until 4 cm from the top of the plates. This was then layered with 

isobutanol saturated with lx stacking gel buffer and allowed to polymerise 

at room temperature for 15 minutes. The isobutanol was poured off and 

the air-gel interface was thoroughly rinsed with distilled water. Excess 

water was removed from the gel space using a strip of blotting paper. The 

4% stacking gel was then poured into the remaining area of the gel and 

the 0.75 mm 10 well comb inserted. The gel apparatus was then left at 

room temperature for 30 minutes for the stacking gel to polymerise. The 

comb was then removed and each well rinsed three times with Tris-

glycine running buffer to remove any unpolymerized acrylamide. The 

gel was then ready to be used to run protein samples. 
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solutions used 

Stock acrylamide: The 40% v/v bis-acrylamide was supplied premade by 

Sigma Chemical Co. 

10% resolving gel (40 ml) 

bis-acrylamide (40% v/v) 	 10 ml 

4x resolving gel buffer 	 10 ml 

dH20 	 19.2 ml 

10% SDS 	 400 j.tl 

10% ammonium persulphate 	400 jfl 

TEMED 	 25 p.1 

4x resolving gel buffer. 

45.5 g Tris base dissolved in 200 ml of distilled water adjusted to pH 8.8 

with concentrated HC1. Made up to 250 ml with distilled water, filtered 

and sterilised. 

4% stacking gel (10 ml) 

bis-acrylamide (40% v/v) 	 1.3 ml 

4x stacking gel buffer 	 2.5 ml 

dH20 	 6.0 ml 

10% SDS 	 100 p.1 

10% ammonium persulphate 	 100 p.1 

TEMED 	 10 p.1 

4x stacking gel buffer. 

15.25 g of Tris base dissolved in 200 ml of distilled water adjusted to pH 6.8 

with concentrated HC1 and made up to 250 ml with distilled water, 

filtered and sterilised. 

2.3.5 Running SDS-PAGE gels 

The samples were first thawed, if frozen, and then boiled for 2 

minutes or incubated at 37°C for 60 minutes as a non-boiled sample. The 

samples were centrifuged at 14,000 rpm in a microcentrifuge for 5 

minutes. Each well was filled half full with running buffer. 30 p.1 of each 

83 



Chapter 2. Materials and Methods 

sample and 8 i.tl of the marker proteins were loaded into separate wells. 

The remaining space in the wells was topped up with running buffer and 

the upper reservoir clamped on top of the gel plates. The lower reservoir 

was filled two thirds full with running buffer. The gel plates/upper 

reservoir were removed from the pouring stand and placed in the tank. 

The upper reservoir was filled with running buffer and the lid attached. 

The gel was run at 30 mA until the marker dyes had migrated from the 

stacking gel into the resolving gel then amperage was increased to 40-45 

mA. The gel was run until the marker dye reached the bottom of the gel. 

The clamps were unscrewed and a plastic wedge used to prise open 

the plates. Each gel was placed in a polythene sandwich box (25 x 25 x 8 

cm) and 70 ml of Coomassie stain added to each and incubated at 37°C 

with gentle shaking for 20 minutes. The stain was poured off and the gel 

rinsed in 50 ml of destain to remove traces of the stain from the gel and 

the box. 100 ml of destaining solution was added and foam bungs placed 

in the box to absorb the Coomassie stain that would leach from the gel. 

The destaining gel was incubated at 37°C with gentle shaking until the 

marker bands were clearly visible and the background of the gel was 

destained thoroughly. The destain was removed and 60 ml of fixing 

solution added. Fixing the gel prevented the gel from cracking and 

shrinking during drying. The gel in fixing solution was incubated at 37°C 

with gentle shaking for 20 minutes. The fixative was removed and a sheet 

of blotting paper just larger than the gel was soaked with distilled water 

and laid over the gel. A dry sheet of similarly sized blotting paper was 

laid on top of the first sheet and the gel/paper sandwich removed 

carefully from the box. The sandwich was laid on the bed of a vacuum gel 

dryer gel side up and a sheet of Saran wrap placed over the gel. The gel 

was dried for 1 hour under vacuum at 80°C. The dried gels were then 

either taped into an autoradiogram cassette and an X-ray film added or 

placed in a Phosphorimager cassette. The gels in the autoradiography 

cassette were usually left overnight to expose the film before developing. 

The position of the non-labelled marker proteins were marked on the 

exposed X-ray film by over laying it on the dried gel. The gels in the 

Phosphorimager cassette were usually left for three hours before 

scanning. 

84 



Chapter 2. Materials and Methods 

solutions used 

5x Running buffer 	 Iris base 	 15.1 g 

stock solution: 	 Glycine 	 94 g 

10% (w/v) SDS 	50 ml 

Tris glycine 	 Working solution: 

electrophoresis buffer; 	25 mM TrisHCl 

250 mM glycine (pH 8.0) 

0.1% SDS 

Coomassie blue solution. Coomassie brilliant 

blue (type R250) 	0.25 g 

Methanol: H20 (1:1 v/v) 90 ml 

Glacial acetic acid 10 ml 

Distilled water to 1 litre. 

Once prepared, filter through a Whatman No. 1 filter to remove 

particulates. 

Destain solution: 	 methanol 	 500 ml 

Glacial acetic acid 	750 ml 

Distilled water to 5 litres 

Fixing solution: Destain solution containing 5% glycerol (v/v) 

2.4 Bacteriophage techniques 

2.4.1 Production of bacteriophage P1 lysates 

5 ml of LB-broth containing 2.5 mM CaC1 2  was inoculated with a 

single colony of the desired strain and incubated overnight at the 

permissive temperature without shaking. 1 ml of the overnight culture 

was mixed with 5 x i05  P1 in a large sterile test tube and incubated for 30 

minutes at 37°C to allow the phage to adsorb into the cells. A cells only 

control was also prepared. 3 ml of LB-broth and 4 ml of molten LC top 

agar, cooled to 45°C, containing 2.5 mM CaC1 2  were added to the 

cells/phage mixture and mixed. The mixture was immediately poured 

onto an LC bottom agar plate and gently swirled until the surface had an 
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even covering of the top agar. The plates were left at room temperature 

for 15 minutes to allow the agar to set and then incubated overnight at 

37°C in an upside down position. The cells only control had an even 

lawn of cells whilst the infected culture would be partly or completely 

lysed, resulting in cleared top agar. The top agar layer was scraped off with 

• sterile scalpel blade into a 250 ml beaker containing 4 ml of LB-broth and 

• few drops of chloroform. The mixture was incubated at 30°C with 

vigorous agitation for 30 minutes. The mixture was transferred to a 

Universal bottle and centrifuged at 4500 rpm for 15 minutes to pellet the 

top agar. The supernatant was decanted into a 1/2 ounce Bijou bottle. A 

few drops of chloroform was added and the lysate stored at 4°C. 

2.4.2 Phage P1-mediated transduction 

5 ml of LB-broth containing 2.5 mM CaC1 2  was inoculated with 0.2 

ml of a fresh overnight culture of the recipient strain. The culture was 

incubated at a permissive temperature with shaking until the OD 600  

reached -0.8. The culture was centrifuged at 4500 rpm for 5 minutes, the 

supernatant removed and the cells resuspended in 0.5 ml of LB-broth 

containing 2.5 mM CaC1 2. 130 il of P1 lysate was placed in a 

microcentrifuge tube, a drop of chloroform added and the tube vortexed 

for 10 seconds and then centrifuged at 14,000 rpm for 1 minute to pellet 

any debris. 50, 10 and 1 jfl aliquots were added to 100 jil of cell suspension. 

A cells only and phage only control was also included. The tubes were 

incubated at 37°C for 15 minutes. When selecting for relief of auxotrophy, 

1 ml of phage buffer was added to the cells which were then plated on 

minimal selective media without having an incubation period. When 

antibiotic resistance was being selected 1 ml of phage buffer was added, the 

mixture vortexed briefly and then centrifuged at 14,000 rpm for 1 minute 

to pellet the cells. The supernatant was removed and the pellet was 

resuspended in 1 ml of LB-broth 0.2% glucose. The cells were allowed to 

express the antibiotic marker for 1 hour before 200 jfl aliquots were plated 

onto selective media. The plates were then incubated overnight and any 

colonies growing on the selective agar are transductants provided the cells 

only and lysate only control plates are clear of growth. When selecting on 

minimal media at 30°C a 2 day incubation period was sometimes required 
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for the colonies to reach an appreciable size (colonies of 1 millimetre in 

diameter). 

2.4.3 Preparation and selection of X lysogens 

A culture of the desired strain to be lysogenized was grown up in 

LB-broth supplemented with 0.2 mM MgSO 4  and 0.2% maltose to mid—log 

phase. The X lysate was diluted so that approximately 200 ? phage particles 

could be added to the 0.3 ml of the culture. 3 ml of molten LC—top agar 

cooled to 45°C supplemented with 0.2 mM MgSO 4  was added to the 

cells/phage mixture and the mixture poured onto a fresh LB-agar plate 

and left to set. This was incubated overnight at 37°C. The aim was to 

promote the formation of isolated X phage plaques. A sterile toothpick 

was used to touch the centre of a plaque and this was then used to streak 

onto a fresh LB-agar plate which was incubated overnight at 37°C. The 

resulting single colonies from the plate could now be tested for the 

presence of ? phage. Lysogenized bacteria are immune to lysis by ? phages 

with the same immunity as the one used to lysogenize the strain but 

sensitive to X phages that are virulent, or carrying a different immunity. 

An LB-agar plate was streaked with the X lysate used for the lysogeny and 

a virulent ? phage (?vir). Sterile toothpicks were used to cross—streak the 

single colonies over the A. phage and the A.vir and incubated overnight at 

37°C. The streaks which were immune to the A. phage used for lysogeny 

and sensitive to A.vir were presumed to be A. lysogens. 

2.5 Bacterial Techniques 

2.5.1 -galactosidase assays 

The method used to determine the 3-galactosidase activity was as 

described by Miller (1972). 0.5 ml of the desired culture was added to 0.5 

ml of Z buffer. 1 ml of the same culture was taken and the OD 

measured. If the promoter activity was known to be high then 0.1 ml of 

culture was added to 0.9 ml Z buffer. 50 .tl of chloroform was added to the 

culture/Z buffer mixture which was vortexed for 30 seconds. The samples 

were stored at 4°C until all sampling had been performed. 200 .tl of 

freshly prepared o—nitrophenyl-f3-D-galactopyranoside (ONPG)(4 mg m1 1 ) 
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was added to each sample which were then vortexed. A control of 0.5 m 1 

of the culture medium used and 0.5 ml of Z buffer was also prepared. 

After the addition of ONPG the samples were placed on ice until all 

samples had been treated. The samples were placed in a 30°C waterbath 

and the exact time of the start of incubation was noted. The tubes were 

checked every three minutes and when a yellow colour began to develop 

0.5 ml of 1 M Na2CO3  was added. The tubes were vortexed and a note 

made of the time taken for the colour change to occur. The samples were 

placed on ice until all samples until a yellow colour developed the other 

samples. When all the tubes had shown a colour change measure the 

0D420  and 0D550  of the samples was measured using the control as a blank. 

The 13-galactosidase activity of the samples were calculated and expressed 

as Miller Units using the equation: 

OD 0  - 1.75 x 0D550  
x 1000 

OD600 x 0.5 ml x T 

Where T = time in minutes for colour change. 

0.5 ml is the sample volume taken from the original culture. 

Z buffer 	Na2HPO4 	 4.26 g 

NaH2PO4.H20 	 3.11 g 

KC1 	 0.375g 

MgSO4.7H20 	 0.123 g 

3—mercaptoethanol 	 1.35 ml 

SDS (10%) 	 0.25 ml 

Add distilled water to 500 ml 

2.5.2 Photography of bacterial cells 

A Zeiss photo-camera was used to phototgraph bacterial cells. Molten 

agarose was pipetted onto an ethanol cleaned glass slide using a glass 

micropipette so that a thin, level layer of agarose covered the surface of 

the slide. A 10 j.il of culture was pipetted onto the agar surface and 

covered with an ethanol washed coverslip. Cells were photographed 

through a lOOx, phase contrast, oil immersion lens. Ilford HP5 400 film 

was used. 
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For photographing immunofluorescence samples a Leitz Metallux 

photo—camera loaded Kodak Ektapress 1600 colour film was used. 

Exposure setting was on automatic. For photographing DAPI stained 

cells, the Leitz Metallux photo—camera loaded with Ilford HP5 400 film 

was used. 

2.5.3 Frozen storage of bacterial strains 

Conveniently, Escherichia coli can be stored at —70°C without too 

great a loss of viability. 5 ml of a fresh overnight culture of the strain to 

be frozen was centrifuged at 4500 rpm for 5 minutes. The supernatant was 

discarded and the pelleted cells resuspended in 1 ml of Frozen Storage 

Buffer. The culture was then transferred to a cryogenic vial and placed on 

ice for three hours before being stored at —70°C. 

Frozen storage buffer 	50% Bacterial buffer 

50% glycerol (v/v) 

2.5.4 Testing UV sensitivity of recA strains 

Single colonies of the strain being tested were streaked across the 

surface of an LB agar plate using a sterile toothpick. As a controls samples 

of recA+ and recA strains were also streaked on the plate. Areas of the 

streaks were then exposed to UV light calibrated to 600 ergs/mm. A piece 

of cardboard was used to protect certain areas from UV light. The areas 

were exposed for different times. Typically these were 0, 10, 20 and 30 

seconds. The plates were then incubated overnight and streaks examined 

for growth on the UV irradiated regions. Typically the recA mutants 

could not grow after 10 seconds of exposure to UV light. 

2.5.5 Gene replacement procedure 

To replace chromosomal genes with engineered copies a novel 

method was employed (N. McLennan and M. Masters, pers. comm.). The 

gene replacement procedure employs high copy number plasmids and the 

generalised transducing capabilities of bacteriophage P1. 
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The desired replacement construct was engineered on a high copy 

number plasmid, such as the pUC series (Yanisch-Perron et at., 1985). To 

be able to select for the replacement, an antibiotic resistance marker was be 

cloned into the chromosomal insert on the plasmid. This replacement 

vector was introduced into a strain with a different antibiotic resistance 

marker within P1 transducing range (< 2 minutes) of the gene to be 

replaced. A P1 lysate was grown on the strain and the lysate used to 

transduce a wild—type strain. Selection was made for the resistance to the 

antibiotic encoded by the antibiotic resistance gene present in the cloned 

chromosomal region on the plasmid and the chromosomally linked 

antibiotic resistance marker. The transductants were screened for the 

sensitivity to ampicillin (loss of the bla on the plasmid backbone). 

Ampicillin sensitive clones were examined for the replacement of the 

wild—type gene with the replacement construct by P1 transduction, PCR 

and Southern blotting. 

If the gene to be replaced was thought or known to be essential a 

complementing copy of the wild type gene was supplied on a compatible 

plasmid in both the donor and recipient strains. 

It is still unclear by what mechanism P1 can transduce a plasmid 

borne construct from the donor strain to the chromosome of the 

recipient. Discussion on a possible mechanism can be found in section 

5.1. 

2.5.6 Immunofluorescence microscopy 

The strain of interest was cultured to the desired stage. The cell 

fixative consisted of 2 p1 of 25% glutaraldehyde mixed with 200 p1 16% 

glutaraldehyde. To this was added 40 p1 1 M NaPO 4  (pH 7.0). 1 ml of the 

culture was added to the fixative and then incubated at room temperature 

for 10 minutes. The cells in fixative were then placed on ice for 50 

minutes. The cells were centrifuged at 14,000 rpm for 2 minutes and the 

supernatant discarded. The cells were washed in PBS three times and 

finally resuspended in 500 p1 of GTE. 

10 p1 of 0.1% poly-L-lysine (Sigma) was added to a well of a multi—

well slide (ICN). The poly-L-lysine was removed after three minutes and 

the well was washed twice with 10 p.1 dH 20. 25 p.1 of lysozyme solution 

(100 p.g ml-')was added to 100 p.1 of cells. 10 p.1 of the cells/lysozyme 



Chapter 2. Materials and Methods 

mixture was immediately added to the well. After two minutes the excess 

cells/lysozyme mixture was removed and the well rinsed three times 

with PBS. The well was then allowed to dry in a Petri dish. 10 p.1 of PBS 

was added to the well to rehydrate the partially lysed cells. After 3 

minutes the PBS was removed. 10 p.1 of PBS/2% bovine serum albumin 

(BSA) was added to the well. The slide was incubated at room 

temperature for 15 minutes. The PBS/2% BSA was removed and replaced 

with 10 p.1 of a 1:500 dilution of primary antibody in PBS/2% BSA. The 

slide was placed in a Petri dish and the lid sealed with a strip of Parafilm. 

The slide was incubated at 4°C overnight. The primary antibody in 

PBS/2% BSA was removed from the well and the well washed by 

dunking the slide into a beaker of PBS six times. All extraneous PBS was 

removed from the slide with a piece of tissue. 10 p.1 of a 1:250 dilution of 

secondary antibody in PBS/2% BSA was added to the well. The slide was 

incubated at room temperature in the dark for 1 hour. The secodary 

antibody in PBS/2% BSA was removed and the well washed by dunking 

the slide in a beaker of PBS six times. Excess PBS was removed from the 

slide with a tissue. 10 p.1 of Equilibration buffer (PBS/10% glycerol v/v) 

from the Slowfade kit (Molecular Probes) was added to the well. After 3 

minutes the Equilibration buffer was removed and the well rinsed with 

another 10 p.1 of Equilibration buffer. 7 p.l of the Slowfade reagent 

(Molecular Probes) was added to the well and a coverslip placed on top of 

the well. The coverslip was secured in place by spreading a small amount 

of super glue along one edge of the coverslip. The slide could be stored at 

—20°C for up to one week before use. 

solutions used 

GTE 	 50 mM glucose 

20 mM Tris-HC1 (pH 7.5) 

10 mM EDTA 

PBS/2% BSA 	2 g  bovine serum albumin (Sigma) / 100 ml PBS (q.v.) 
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2.5.7 DAPI staining of chromosomes 

0.5 ml of the required cells was centrifuged at 14,000 rpm for 1 

minute. The cells were resupended in lml of PBS, vortexed briefly and 

pelleted as above. The cells were resuspended in 0.5 ml of PBS. 10 p.1 of 

the cells was placed on an ethanol washed microscope shed and allowed 

to dry at room—temperature. Once dried, the slide was immersed in 

methanol for five minutes. The slide was washed by dunking into a 

beaker ot tap water six times. The slide was allowed to dry at room 

temperature. The fixed cells can be stored in a dust-free environment 

almost indefinitely. Prior to use, 6 ml of a 2.5 p.g m1 1  solution of 4,6-

diamidino-2-phenylindole (DAPI) was pippetted onto the fixed cells and a 

covership placed on top. 
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Chapter 3 Manipulation of ftsK 

A number of plasmids were constructed during this study. A 

cmoprehensive list of these plasmids is in tabular form in section 2.1.3. 

Below, in figure 3.0, is a graphic representation of some of the more 

commonly used plasmids employed in this study. 
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Figure 3.0. A graphic representation of some of the plasmids used in this 
study. Only the cloned regions are shown. The corresponding region of 
the E. coli chromosome is shown at the top of the diagram 
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3.1 The 20 minute region 

The ftsK gene was mapped to the 20 minute region of the E. coli 

chromosome by Begg et al. (1995). The region contains the trxB, lrp, ftsK 

and lolA (previously designated iplA) genes and is illustrated in Figure 

3.1.1 (Begg et al., 1995; Russet and Model, 1985b; Wang et al., 1994, 

Matsuyama et al., 1995). 

Kb 

0 	 1 	 2 	3 	4 	5 	 6 	7 
I 	 I 	 I 	 I 

trxB 	Irp SOS-Box 	 ftsK 	 Jo/A 

'trxBlrp 	dinH 

Figure 3.1.1. The 20 minute region of the E. coli chromosome. trxB is 
transcribed in the opposite orientation to lrp, ftsK and lolA. dinH, the 
SOS-inducible promoter located by Lewis et al. (1992) is indicated. 

trxB encodes the thioredoxin reductase protein TrxB (Russel and 

Model, 1985b; Russel and Model, 1988). Thioredoxin, the product of the E. 

coli chromosomal gene trxA (fip), is a subunit of bacteriophage T7 DNA 

polymerase and is essential for filamentous phage assembly (Mark and 

Richardson, 1976; Lim et al., 1985; Russel and Model, 1983; Russel and 

Model 1985a). Thioredoxin and thioredoxin reductase are not, however, 

essential for the viability of E. coli (Holmgren et al., 1978; Russel and 

Model, 1984). lrp encodes the leucine responsive regulatory protein Lrp 

(reviewed in Newman et al., 1996; Tuan et al., 1990). Lrp is a global 

regulator, a transcriptional activator and/or repressor of a wide range of 

genes known as the Leucine/Lrp regulon. Despite there being an 

estimated 35-75 genes regulated by lrp, the gene is not essential (Wang et 

al., 1994). Deletion mutants have a normal morphology but exhibit a 

variety of metabolic differences to wild type cells (Newman et al., 1996). 

The lrp promoter is autogenously regulated by Lrp and shows growth rate 

dependent expression (Landgraf et al., 1996; Lin et al., 1992; Wang et al., 

1994). lolA encodes the 20 kDa (p20) LolA protein involved in the 
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transport of lipoproteins from the cytoplasmic membrane to the outer 

membrane via an intermediate step which also involves Lo1B 

(Matsuyama et al., 1995; 1997). 

3.2 Cloning fisK 

pSU44, the partial clone of ftsK described by Begg et al. (1995), 

contains a 6.3 kb BamHI fragment of DNA isolated from Kohara X215 

cloned into pUC19 (Kohara et al., 1987; Yanisch-Perron et al., 1985; Figure 

3.2.1). This cloned fragment contains a non-coding sequence of 337 bp 

followed by the 965 bp trxB ORF, a non coding sequence of 554 bp, the 455 

bp lrp ORF, a 134 bp non-coding region containing the SOS-inducible 

dinH promoter (Lewis et al., 1992) and 3794 bp of the 3987 bp ftsK ORF. 

The orientation of PIaCUV5  promoter on the plasmid backbone is such that it 

transcribes in the same orientation as ftsK. 

BamHI Hind III 

Bsu361 

Figure 3.2.1. pSU44, a pUC19 based plasmid that contains trxB, lrp and 
3794 bp of fisK. 

pSU44 complements the ftsK44 mutation at the non-permissive 

temperature despite encoding only a partial FtsK polypeptide. Begg et al. 
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(1995) describe how this plasmid is not tolerated well in a pcnB strain 

(Masters et al., 1993). PcnB is a poly-A polymerase involved in the 

maintenance of Co1E1 plasmid copy number. The replacement of most of 

pcnB with a kanamycin cassette (pcnB::kan) reduces the copy number of 

Co1E1 plasmids to about 10% of wild type levels (Masters et al., 1993). The 

copy number of pUC plasmids have not been determined (M. Masters, 

pers. comm.). The copy number of pUC19, and hence pSU44, is 

approximately 500 molecules cell', so in a pcnB::kan strain the copy 

number should be reduced to approximately 50 molecules cell -'. 

The first step in this study of ftsK, continuing from the work 

described by Begg et al. (1995), was to obtain a complete clone of the ftsK 

ORF. DNA was purified from X.214 (see section 2.2.3). The A214 DNA was 

digested with NcoI and NdeI and a 707 bp fragment containing the 3' end 

of ftsK and the 5' end of lolA was isolated. pSU44 was also digested with 

NcoI and NdeI and dephosphorylated. The 707 bp fragment was then 

ligated into the digested pSU44 and transformed into strain DH5a. After 

overnight incubation at 37°C no colonies were visible. Several attempts 

were made to clone the complete ftsK ORF in this manner, none of which 

were successful. 
The reason for not isolating any clones of the complete ftsK ORF 

was not known. It was possible that multiple copies of the complete ftsK 

gene was toxic and led to cell death. To test this theory an attempt was 

made to clone a blunt-ended DNA fragment containing ftsK into the high 

copy number vector pUC19. pUC19 contains the strong lacUV5 promoter 

(P,0uv5). If the ftsK gene was toxic in high copy, then it should only be 

possible to clone the gene in the opposite orientation to PlacWI5.  There is 

transcription from P la,uv5  even in the absence of the gratuitous inducer, 

IPTG as there is no lacI gene, which encodes the lac repressor, in the strain 

used, DH5a. 

The ftsK gene was isolated from the purified X214 DNA by 

digestion with ScaI and NdeI. The purified 4.4 kb fragment contained the 

entire ftsK gene, without the dinH region upstream of fisK (Figure 3.2.2), 

and 217 bp of lolA. 
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lrp 	lrp stop 
AT'PAAGACGCGCIMCACGGAACAGGTGCAAAATCGGCGTATTTTGATTACAC 

SOS-Box (LexA Binding) 	Scal 
TCCTGTTAATCCATACAGCAACAGTAC3GGGTAACCTGGTACTGTTGTCCGT 

ftsK RBS ftsK start 
TTTAGCATCGGGCAGGAAAAGCCTGTAACCCCTGGAGAGCCTTTCAGCCAG 

Figure 3.2.2. The lrp-ftsK intergenic region. The SOS-box is indicated as is 
the ScaT site used in the construction of pUCK. The proposed TTG 
initiation codon for ftsK is underlined, as is a possible ribosome binding 
site (RBS) for ftsK. 

The NdeI sticky end was end-filled with Klenow (see section 2.2.9) 

and the now blunt-ended fragment was ligated into the SmaT site of 

pUC19. The positive clones all had ftsK inserted in the opposite 

orientation to Pv5.  One of the recombinant plasmids was taken for 

further study and named pUCK (Figure 3.2.3). 

Hindlil 

X1 

-I 

Bsu361 

BamHI 

Figure 3.2.3. A 4.4 kb fragment containing ftsK-lolA' was cloned into 
pl.JC19 to create pUCK. PIacUV5  from the vector backbone transcribes in the 
opposite direction to the fisK ORF. 
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The lack of any clones with ftsK transcribed from P1acUV5  agreed with 

the hypothesis that overproduction of FtsK was lethal to the cell. pUCK 

was introduced into MGK44. MGK44 was constructed by introducing 

aroA::TnlO from MGAT into T0E44 by P1 transduction. Tetracycline 

resistant transductants were screened for the retention of the ftsK44 (Ts) 

allele by testing for temperature sensitivity. A P1 lysate was grown on a 

tetracycline resistant clone (T0E44 aroA::TnlO) and this lysate was used to 

transduce MG1655 to tetracycline resistance. The tetracycline resistant 

colonies were screened for the co-transduction of the ftsK44 allele by 

plating at 30°C and 42°C to test for temperature-sensitivity. The co-

transduction frequency of aroA::TnlO and ftsK44 was 70%. A tetracycline 

resistant, temperature-sensitive colony was chosen and named MGK44. 

The temperature-sensitive mutation in MGK44 was complemented by 

pSU44, proving that the temperature-sensitive allele introduced into 

MG1655 was ftsK44. pUCK did not complement the ftsK44 mutation 

carried by MGK44 at the non-permissive temperature when cultured in 

liquid or solid media containing no salt, indicating that there was no 

promoter transcribing ftsK or that the promoter(s) present on the cloned 

region was silenced by the antagonistic transcription of PIacUV5  in the 

opposite orientation. 

3.2.1 Construction of pBADK and complementation of ftsK44 

The next step was to construct a plasmid from which the expression 

of ftsK could be controlled by an inducible promoter. For this, the 

arabinose-inducible promoter in plasmid pBAD18 was used (Guzman et 

al., 1995; Figure 3.2.1). 
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Figure 3.2.1. The arabinose-inducible expression vector pBAD18. 

pBAD18 contains the araC gene and promoter for the araBAD 

operon, FBAD•  araC encodes a positive and negative regulator of PBAD.  In 

the presence of arabinose, transcription from PBAD  is induced. In the 

absence of arabinose, transcription from PBAD  occurs at low levels. 

Transcription from PBAD  can be further reduced by the addition of glucose 

(Guzman et al., 1995). It was thought that the tight repression of PBAD  by 

glucose would enable ftsK to be cloned without encountering the toxicity 

problems encountered by having multiple copies of ftsK in the cell. The 

4.4 kb EcoRI-XbaI fragment from pUCK containing ftsK-lolA' was ligated 

into [EcoRT/XbaI]-digested pBAD18. The ligation was transformed into 

strain DH5a and the transformants plated at 37°C on LB-agar containing 

100 .'g m1 1  ampicillin and 0.2% glucose. Several positive clones were 

obtained and the plasmid was named pBADK (Figure 3.2.2). 
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su361 

Figure 3.2.2. The arabinose-inducible ftsK clone, pBADK. 

pBADK was transformed into MGK44 to examine whether the 

plasmid could complement the ftsK44 mutation. MGK44 (pBADK) was 

plated on LBNaCl agar in the presence of either 0.2% glucose or 0.2% 

arabinose at 30°C and 42°C. MGK44 (pBADK) grew at 42°C in the presence 

of either 0.2% arabinose or 0.2% glucose. A control strain, MGK44 

(pBAD18) grew at 30°C but did not form colonies at 42°C on either 

medium. This indicated either that the very low levels of FtsK produced 

from pBADK in the presence of glucose was enough to complement 

ftsK44 at the non-permissive temperature or that MGK44 (pBADK) had 

developed a mutation that suppressed ftsK44. To resolve this the 

pcnB::kan allele from MM38K24 (Masters et al., 1993) was introduced into 

MGK44 (pBADK) by P1 transduction. The copy number of pBAD18 is 

estimated to be 40 molecules celf 1 , therefore the pcnB::kan mutation 

would reduce this to approximately 4 molecules cell'. 

Kanamycin/ampicillin resistant colonies were isolated and the presence 

of the pcnB::kan allele was confirmed by plating several potential MGK44 

pcnB::kan (pBADK) isolates on media containing 1000 pg m1 1  ampicillin. 

In a pcnB background there is enough 13-lactamase produced from the bla 

gene from pBAD18 to confer resistance to this high concentration of 
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ampicillin. In a pcnB::kan background, however, the reduced plasmid 

copy number means that 1000 jig m1 1  ampicillin is lethal because of the 

significantly lower levels of 13-lactamase produced from the plasmids. An 

isolate that was sensitive to 1000 jig m1 1  ampicillin but resistant to 100 jig 

m1 1  ampicillin was selected. MGK44 pcnB::kan (pBADK) was plated on 

LBiNaCl plates containing 100 jtg m1 1  ampicillin supplemented with 

either glucose or arabinose at 30°C and 42°C. Colonies formed on the 

arabinose plates but not on the plates containing glucose. That pBADK 

complemented MGK44 pcnB at the non-permissive temperature even in 

the presence of glucose was probably due to the leakiness of PBAD  and 

hence low level of expression of multiple copies of ftsK is enough to 

complement ftsK44. This suggests that few molecules of FtsK are required 

for cell division. When the copy number of pBADK is reduced to 

approximately 10% of wild-type levels there is not enough ftsK expression 

from the repressed clones for complementation, but when induced with 

arabinose there is sufficient FtsK to complement ftsK44 at the non-

permissive temperature. The wild-type ftsK orf contained on pBADK has 

the potential to recombine with the mutant ftsK44 allele. This allelic 

exchange would only occur in a small proportion of the cells, although 

this would be selected for because the ftsK44 allele is lethal at the non-

pemissive temperature. Arabinose and hence induction of PBAD  and 

expression of FtsK was required for the growth of MGK44 pcnB::kan 

(pBADK) at 42°C, and so it appears that recombination, if any, had little 

effect on the experiment. This experiment, however, needs to be repeated 

in a ftsK44 recA strain to circumvent any problems that may occur with 

recombination of the suppressing plasmid. 

pBADK was introduced into the wild-type strain MG1655 to 

examine whether overexpression of ftsK was toxic to the cells. MG1655 

(pBADK) was plated at 30°C, 37°C and 42°C in the presence of 0.2% glucose 

or 0.02%, 0.2% or 2% arabinose. Growth was observed on all plates. The 

glucose-containing plates showed the best growth; the arabinose 

containing plates all showed a slight reduction in colony size but no loss 

in viability. E. coli therefore is sensitive to a slight increase in the level of 

FtsK. 
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3.2.2. Construction of pCD99 

An attempt was made to subclone the 4.4 kb EcoRI-XbaI fragment 

(ftsK-lolA') from pUCK into pUC18. This would place ftsK under the 

control of PIaCUV5. No positive clones were obtained when the 

transformation plates were incubated at 37°C. When, however, the 

transformation plates were incubated at 30°C for 2 days, tiny colonies 

appeared that contained the desired clone, pCD99 (Figure 3.2.3). 

Hind ill 

EcoRl 

Hind 

Bsu361 

Figure 3.2.3. pCD99, a high copy number vector containing ftsK under the 
control of the lacUV5 promoter. 

pCD99 was transformed into the wild-type strain MG1655. The 

transformation plates were incubated, as before, at 30°C. MG1655 (pCD99) 

was plated at 30°C, 37°C and 42°C. No colonies formed at 37°C or 42°C. 

The level of expression from P lacuv5  was enough to overproduce FtsK at 

toxic levels although growth was seen on the plates incubated at 30°C. In 

retrospect, this experiment needs to repeated in a strain that overproduces 

Lacl such as a strain carrying the lacT1  allele which has a mutation in the 

lacI promoter which results in increased expression of Lad. The high 

levels of Lacl would be enough to repress transcription from each copy of 
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P 15  present in the cell, enabling the effects of induction of ftsK to be 

observed. 

pCD99 was introduced into MGK44 to see if the construct would 

complement the ftsK44 mutation. No growth was observed at 42°C. To 

test whether this was due to the overproduction of FtsK rather than to the 

lethal effects of the ftsK44 mutation, pCD99 was transformed into MGK44 

pcnB ::kan. pCD99 complemented ftsK44 at 42°C to allow growth in this 

pcnB::kan strain. Further attempts were made to characterise the toxic 

effect of overproduction of FtsK. 

3.3 Overproduction of FtsK 

The growth rates of MG1655 (pBADK) and MG1655 (pBAD18) in 

liquid media were then examined. MG1655 (pBADK) and MG1655 

(pBAD18) were grown in LB-broth in the presence of 100 jig m1 1  

ampicillin and glucose at 37°C. After 210 minutes MG1655 (pBADK) and 

MG1655 (pBAD18) were washed three times with LB-broth and diluted 1:4 

into fresh LB-broth containing ampicillin and either glucose or arabinose 

The growth curve is shown in Figure 3.3.1. Strains containing pBAD18 

derivatives were diluted when the 0D 600  reached approximately 0.25 since 

PBAD is not readily repressed in cultures with an optical density of >03 (S. 

McAteer, pers. comm.). 
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Figure 3.3.1. Growth curves of MG1655 and MG1655 (pBADK)/(pBAD18) 
grown in the presence of either 0.2% glucose or 0.2% arabinose. Cultures 
were grown in glucose until t=210, when they were split (after washing) 
into arabinose or glucose containing media . Three hours after 
inoculation into LB-broth supplemented with 0.2% arabinose the growth 
rate of MG1655 (pBADK) was slightly reduced (see below). 

Approximately three hours after shifting MG1655 (pBADK) from 

glucose containing LB-broth into arabinose containing LB-broth the 

growth rate of the culture was slightly reduced. MG1655 (pBADK) grown 

in glucose containing LB-broth and MG1655 (pBAD18) glucose/arabinose 

exhibited similar growth characteristics to the wild-type parent strain, 

CD 

0 

0.1 
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Table 3.3.1 below contains the data represented in Figure 3.3.2. The 

indicated strains were grown in glucose containing LB-broth until T=210 

then washed three times with LB-broth and subsequently diluted into 

either LB-broth containing arabinose or glucose as shown. 

0D600  
time MG1655 MG1655 MG1655 MG1655 MG1655 MG1655 
(minutes) +glu + ara (pBAD18) (pBAD18) (pBADK) (pBADK) 

+ glu + ara + glu + ara 
70 0.053 0.055 0.054 
85 0.083 0.081 0.08 
100 0.137 0.138 0.13 
110 0.184 0.184 0.172 
115 0.244 0.252 0.248 
135 0.51 0.432 0.416 
150 0.732 0.76 0.704 
160 0.96 1.024 0.96 
170 1.424 1.456 1.392 
185 2.496 2.496 2.32 
200 3.328 3.008 3.008 
210 4.224 4.22 4.544 3.84 4.608 4.16 
225 6.016 6 6.784 5.76 6.784 5.05 
240 9.92 9.92 10.7 9.5 10.176 9.15 
255 17.15 17.1 17.40 17.40 19.2 17.40 
270 28.16 28.16 29.44 25.85 30.20 26.62 
285 45.31 45.31 45.82 41.72 43.26 39.42 
300 60.4 60.41 66.56 59.39 66.56 56.32 
315 104.4 101.37 110.59 96.25 104.44 89.088 
335 205.8 200.7 208.89 189.4 195.58 167.936 
355 335.8 286.72 311.29 258.04 294.91 237.6 
370 499.7 425.98 544.76 385.02 454.65 339.9 
410 1921 1544.19 1556.48 1507.32 1679.36 946.2 
430 2650 2813 2547.71 2387.96 2936.83 1388,5 

Table 3.3.1. The data from Figure 3.3.1 multiplied by the dilution factor, 4. 

The data shown in Table 3.3.1 enables the doubling time (g) of the 

indicated strains to be calculated using the equation 

R-- 	ln2t 

mM - mM, 

where t is time, , M. is the initial concentration of cells in this case 

represented by 0D 600  and M is final concentration of cells. 

For MG1655 grown in the presence of glucose the calculated growth rate 

was 23 minutes, taking the data from t=70 and i=430. For MG1655 
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(pBADK) grown in the presence of glucose the doubling time was 

calculated to be 22.8 minutes, again using the data from t=70 and t=430. 

Between time points t=210 and t=430 the growth rate for MG1655 

(pBADK) grown in the presence of arabinose the doubling time was 26.2 

minutes, however, if the data is separated into two phases, from t=210 to 

t=335 and t=335 to t=430 an indication of the toxic effects of the 

overproduction can be discerned. The doubling time of MG1655 (pBADK) 

grown in the presence of arabinose between t=210 to t=335 was 21.7 

minutes and between t=335 to t=430 was 31.2 minutes. The corresponding 

growth rates for MG1655 (pBADK) grown in the presence of glucose were 

21.4 and 23.2 minutes respectively. Thus, overproduction of FtsK results 

in a increase in doubling time. 

Phase contrast microscopy of MG1655 (pBADK) grown in the 

presence of arabinose showed that overexpression of ftsK resulted in 

filamentation, although a small number of normally sized cells were 

apparent (Figure 3.3.3). These small cells could result from rare division 

events during the filamentation process or might have lost pBADK. 

These filaments showed no evidence of septation. There were a number 

of normally sized cells present after three hours incubation in arabinose 

containing media. Lysis of these filaments could result in the increase in 

the doubling time of MG1655 (pBADK) noted above after 250 minutes of 

growth in arabinose containing LB-broth. After >5 hours of such 

incubation the culture consisted entirely of filaments. MG1655 (pBADK) 

grown in glucose containing media displayed a normal morphology 

(Figure 3.3.3). It was decided to examine whether the filamentation was a 

direct or indirect consequence of overexpression of ftsK. 
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Figure 3.3.3. Phase contrast micrographs of MG1655 (pBADK) cultured in 
LB 0.2% glucose (top) and LB 0.2% arabinose (bottom) for three hours. 
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More data could be gleaned from the overproduction studies. A 

viability count should be performed after increasing times of induction. 

This would provide information as to whether the filaments observed 

could recover by dividing. This data could be coupled with Coulter-

Counter data that would provide cell count and length data that could 

provide information as to whether there is a maximum length after 

which filaments could not recover. 

It was decided to test whether the filamentation caused by the 

overproduction of FtsK could be suppressed by the simultaneous 

overproduction of FtsQ, FtsA and FtsZ. MG1655 (pBADK) was 

transformed with pBS58 (which is compatible with pBADK). pBS58 

contains the ftsQ,ftsA and ftsZ region cloned into the pSC101-based, low-

copy-number vector pGB2 (Bi and Lutkenhaus, 1990a; Churchward et al., 

1984). MG1655 (pBADK) (pBS58) was grown in LB-broth containing 

ampicillin and spectinomycin supplemented with either glucose or 

arabinose. MG1655 (pBADK) (pBS58) grown in the presence of glucose did 

not show any sign of filamentation whereas the same strain grown in the 

presence of arabinose filamented to the same extent as MG1655 (pBADK) 

cultured in arabinose-containing media. Wild-type strains bearing pBS58 

produce three-four times the amount of FtsZ normally present in the cell. 

This level of overproduction of FtsZ causes the formation of minicells in 

wild-type strains (Bi and Lutkenhaus, 1990). It is interesting to note that 

MG1655 (pBADK) (pBS58) cultured in glucose containing media did not 

form minicells, wheras a control strain, MG1655 (pBAD18) (pBS58) did. 

The lack of minicell production could be due to the slightly elevated 

amounts of FtsK produced from pBADK, which even though insufficient 

to cause filamentation, has an effect on division and prevent the extra 

divisions caused by the overproduction of FtsZ (Ward and Lutkenhaus, 

1985). The control strain, MG1655 (pBAD18) (pBS58) formed minicells 

and concomitant elongated and normally sized cells. It would be 

worthwhile to repeat this experiment in a system that overproduces FtsZ 

to a higher levels than is provided by pBS58. 

3.3.1 FtsK overproduction does not induce the SOS-response 

Interference with DNA replication induces the SOS-response, a 

component of which, SulA (SfiA), blocks cell division by preventing the 
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formation of the FtsZ ring (Bi and Lutkenhaus, 1993; Huisman and D'Ari, 

1981). To investigate whether the SOS-response was being induced by the 

overproduction of FtsK, the activity of the sulA (sfiA) promoter (P8 )was 

followed during ftsK overexpression. P sujA  is normally repressed by the 

binding of the LexA repressor at a site overlapping the sulA promoter 

(Schnarr et al., 1991). During the induction of the SOS regulon, however, 

PsulA is derepressed due to the (activated) RecA induced autocatalytic 

cleavage of LexA. ? p(sfiA::lac) contains the sulA promoter cloned 

upstream of lacZ (Huisman and D'Ari, 1983). Upon induction of the SOS-

response the increase in transcription from P,, 4  can be followed by 

assaying f3-galactosidase activity in a strain that carries A. p(sfiA::lac) as a 

lysogen (Miller, 1972). 

The activation of the SOS-regulon normally results in the cleavage 

of the A. ci repressor (Roberts and Roberts, 1975; Roberts et al., 1978)). ci 

represses transcription of 'phage genes during lysogeny. When ci is 

cleaved, the phage genes are transcribed, the A. lysogen excises from the 

chromosome and enters the lytic cycle resulting in cell lysis (Sauer et al., 

1982). To prevent lysis of the experimental strain, A. p(sfiA::lac) encodes a 

ci repressor that is resistant to SOS-mediated cleavage (ci id). 

A. p(sfiA::lac) was introduced and lysogenised into TP8503 as 

described in section 2.4.3. Lysogens were detected by screening for colonies 

that had a pale blue colour on LB X-Gal plates. TP8503 has the 

chromosomal region from lac-p roB deleted and so forms white colonies 

on LB X-gal plates. The low level of PSM  expression from A. p(sfiA::lac) 

lysogens produces a small amount of LacZ that can function as an aid in 

screening for lysogens. Some colonies had a stronger blue colour than 

others; these were assumed to be multiple lysogens and discarded. A pale 

blue colony was chosen and shown to be immune to superinfection by A. 

p(sfiA::lac) but not by A.vir indicating that the strain, TPA., carried A. 

p(sfiA::lac) as a lysogen. pBADK, pBAD18, pCD99 and pUC19 were 

transformed into TPA.. The strains were grown in LB-broth 

(supplemented with ampicillin where appropriate) at 30°C until mid-log 

phase was reached (0D 600=0.2). TPA. (pBADK)/(pBAD18) were grown in 

the presence of 0.2% glucose to prevent expression of ftsK and create 

identical conditions for the contol plasmid (pBAD18). The cells were 

cultured at 30°C to allow growth of TPA. (pCD99) which shows severely 

impaired growth at 37°C due to the overproduction of FtsK. 
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TP?. was then subcultured into LB-broth and LB-broth containing 

nalidixic acid (150 tg ml -1 ) . Nalidixic acid inhibits DNA gyrase which in 

turn induces the SOS-response (Gellert et al., 1977; Sugino et al., 1977). 

The IPX ± nalidixic acid cultures would act as positive and negative 

controls respectively. TPX (pBADK)/(pBAD18) were subcultured into LB-

broth containing ampicillin supplemented with either 0.2% arabinose or 

0.2% glucose. TPX (pCD99)/(pUC19) were subcultured into LB-broth 

containing ampicillin. All cultures were incubated at 37°C. The 3-

galactosidase activity was measured at 10 minute intervals. The - 

galactosidase activity of the cultures is represented in Figure 3.3.4. 
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Figure 3.3.4. -galactosidase activity of TPX during overproduction of 
FtsK. Strains were cultured in LB (TPA), LB +Amp (TPA, (pUC19)/ 
(pCD99)), LB +Amp +0.2% glucose (TPA (pBAD18)/(pBADK)) at 30°C until 
0D600=0.2, after which the cultures were split and incubated at 37°C. 
Nalidixic acid (nal) was added to one of the TPX cultures to a final conc. of 

150 pg ml-1 . This control resulted in a high level of SOS induction 
(represented as 3-galactosidase activity). The addition of nal/arabinose/ 
glucose is indicated as time 0. The 3-ga1actosidase activity of TPX —nal 
remained at the basal level. Arabinose was added to a washed portion of 
the TPX (pBAD18)/(pBADK) cultures, the remaining cultures were grown, 
as before, in glucose containing media Strains IPX (pBAD18) arabinose/ 
glucose and TPX (pUC19) showed no induction of SOS. Overproduction 
of FtsK from pCD99 or from pBADK in arabinose containing media did 
not induce SOS. 
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The data represented in Figure 3.3.4 demonstrates that 

overproduction of FtsK above the normal cellular levels does not cause 

the induction of the SOS-response. The level of induction of SOS 

remains constant irrespective of whether ftsK is slightly overexpressed 

(from pBADK-containing cells grown in the presence of glucose) or 

greatly overexpressed (pBADK in the presence of arabinose or pCD99). 

These levels are similar to the levels seen from TP2 when SOS is not 

induced. The induction of SOS by nalidixic acid occurs rapidly. - 

galactosidase activity increases almost immediately after the addition of 

nalidixic acid to the TPX culture at time 0. To ensure that cell division 

had been inhibited during the experiment the cultures were examined 

microscopically. 

TPX —nalidixic acid, (pBAD18) +arabinose/glucose, (pUC19) and 

(pBADK) +glucose cells all had a normal morphology. TPA grown in the 

presence of nalidixic acid had formed filaments averaging four cell 

lengths. TPX (pBADK) grown in arabinose containing LB-broth were 

filamentous, also averaging four cell lengths. TPA (pCD99) was extremely 

filamentous, with some lysis apparent. The filamentation observed by 

overexpression of ftsK was therefore deemed to be due to overproduction 

of FtsK and not due to SOS-induction. 

3.3.2 FtsK overproduction-induced filamentation does not require 
components of the SOS-response 

To confirm this observation ftsK was overexpressed in sulA, sfiC 

and recA mutant backgrounds. The sulA::Tn5 allele was introduced from 

GC2481 to MG1655 by P1 transduction to form MGS5. pBADK was 

introduced into MGS5 by transformation. MGS5 (pBADK) was grown in 

LB-broth containing 100 p.g ml -1  ampicillin supplemented with glucose. 2 

ml of the culture was washed three times in LB-broth then inoculated 

into LB-broth containing ampicillin supplemented with arabinose. After 

three hours MGS5 (pBADK) grown in arabinose containing media formed 

long filaments with no evidence of septation. MGS5 (pBADK) cells grown 

in L-broth glucose had a normal morphology. 

It was possible that MGS5 contained the prophage relic e14 that 

encodes another SOS-inducible cell division inhibitor, SfiC (D'Ari and 

Huisman, 1983; Greener and Hill, 1980; Maguin et al., 1986; Maguin et al., 
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1986). To show that the filamentation caused by overexpression of ftsK 
was independent of both sfiA and sfiC a sulA sfiC strain was constructed. 

The P1 lysate grown on GC2481 was used to transduce C600 (which is e14) 

to kanamycin resistance, creating C6SA5. C6SA5 is both suiA and sfiC. 

pBADK was transformed into C6SA5. The transfer of C6SA5 (pBADK) 

from glucose containing LB-broth into LB-broth supplemented with 

arabinose resulted in the formation of smooth-sided filaments after three 

hours of incubation at 37°C. 

The filamentation caused by overexpression of ftsK was therefore 

independent of both sulA and sfiC. It could not be stated at this stage that 

the filamentation was independent of any component of the SOS-

response. This is because the SOS-response is not yet fully characterised. 

A sfi-independent mechanism of division inhibition that is both lexA 

and DNA damage-dependent also exists (Burton and Holland, 1983; Hill 

et al., 1997). The factors which prevent cell division during sfi-

independent filamentation are yet to be discovered an could, in theory, be 

involved in FtsK-induced filamentation. 

Experiments with transcriptional fusions have led to the discovery 

of a number of promoters on the E. coil chromosome which are induced 

in response to interference with DNA replication (Brotcorne-Lannoye and 

Maenhaut-Michel, 1986; Kenyon and Walker, 1980; Lewis et al., 1994, 

Lewis et at., 1992; Lundegaard and Jensen, 1994). Not all of these 

promoters were found to be repressed by LexA (Lewis et at., 1992; Petit et 

at., 1993). Some of the genes regulated by these promoters have been 

sequenced, although their actual function, if any, during SOS is unknown 

(Blattner et at., 1993; Lundegaard and Jensen, 1994). It is possible that there 

are other uncharacterised SOS-inducible promoters still to be located and 

the products of the genes controlled by these promoters might have a 

bearing on the filamentation observed when FtsK is overproduced. 

Interestingly, the dinH promoter identified by Lewis et at. (1992) is 

located in the 134 bp non-coding region between irp and ftsK. 

Transcription from dinH is such that it could cause the expression of ftsK 

(Begg et at., 1995). The possible involvement of dinH in ftsK expression 

will be discussed at the end of this chapter. 

It was decided to test whether ftsK overexpression could cause 

filamentation in a recA background. RecA is the protein that stimulates 
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the induction of the SOS-response and a strain lacking functional RecA 

should not be able to elicit the SOS-response (Defais et al., 1971) and so the 

involvement of any genes, as yet not identified as components of the 

SOS-response, could also be ruled out as factors involved in FtsK 

overproduction-induced filamentation. A P1 lysate was grown on JC10-

240, which contains the recA56 mutant allele closely linked to 

srlC300::TnlO. This lysate was used to transduce MG1655. Transductants 

were selected for by plating on tetracycline-containing LB agar plates. A 

number of tetracycline resistant colonies were examined for sensitivity to 

ultraviolet light to test for the co-transduction of recA56 as described in 

section 2.5.4. A tetracycline resistant, UV sensitive isolate was chosen and 

named MGrecA. pBADK was transformed into MGrecA. MGrecA 

(pBADK) was cultured in LB-broth containing glucose. 2 ml of the culture 

was then washed three times in LB-broth and then used to inoculate 9 m 1 

LB-broth containing arabinose. After 3 hours MGrecA (pBADK) grown in 

arabinose formed long filaments whereas the cells cultured in glucose had 

a normal morphology. The filamentation caused by the overexpression 

of ftsK is independent of RecA and hence other components of the SOS-

response. Supplementary experiments using lexA mutants would also 

prove informative. The lexA(Ind) mutation results in the expression of a 

noncleaveable LexA protein that still functions to repress the SOS 

regulon. Thus, the SOS regulon is not induced even when RecA becomes 

activated. If FtsK could be overexpressed in a strain bearing the lexA(Ind) 

mutation, it could be said with even greater certainty that FtsK 

overproduction can cause a block to cell division in the absence of SOS 

induction. 

3.3.3 Filaments caused by FtsK overproduction do not contain FtsZ rings 

The filamentation observed when FtsK was overproduced was 

independent of any characterised factors involved in SOS-induced 

filamentation. The cause of the filamentation was unknown, other than 

it being a consequence of FtsK overproduction. The application of 

immunofluorescence microscopy (IFM) has shown the presence of many 

structures associated with cell division in E. coli cells (Addinall et al., 1996; 

Addinall et at., 1997a; Addinall and Lutkenhaus, 1996b; Hale and de Boer, 

1997; Pogliano et al., 1997). Su1A inhibits the formation of the FtsZ ring, 
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as does MinCD (Bi and Lutkenhaus, 1993). It was decided to test whether 

FtsZ rings were present in the filaments formed during the 

overexpression of ftsK and in the filaments formed by growing MGK44 at 

the non-permissive temperature. MG1655 (pBADK) was cultured at 37°C 

in L-broth containing 100 jig m1 1  ampicillin supplemented with either 

glucose or arabinose. MGK44 was grown in LBNaC1 at 30°C and after 

one doubling of the 0D600, the culture was split, with one half incubated at 

30°C and the other half at 42°C. The cultures were incubated for a further 

three hours. After this time, the morphology of the cells were examined. 

MGK44 grown at 30°C had a normal morphology whereas the cells from 

the culture incubated at 42°C were filamentous. The cultures were mixed 

and this mixture of rods and filaments was processed for IFM as described 

in section 2.5.6. This would allow direct comparison of both cell types on 

one image. MG1655 was grown in LB-broth as a control. The cultures 

were incubated for three hours and diluted 1:5 with the appropriate fresh 

media whenever the 0D 600  reached 0.25. Cells were sampled and fixed 

and processed for IFM. The primary antibody used was F168-12, a 

monoclonal anti-FtsZ antibody (described in Voskuil et al., 1994; a kind 

gift from J. Voskuil and N. Nanninga). The secondary antibody was Cy3-

conjugated anti-mouse IgG (Jackson Research). Exponentially growing 

MG1655 showed a typical pattern of FtsZ ring localization, with most cells 

possessing one FtsZ ring (Addinall et al., 1996; Figure 3.11). As shown in 

Figure 3.3.5, MGK44 grown at 30°C also showed normal FtsZ ring 

formation. MGK44 grown at 42°C formed filaments that had a high level 

of background fluorescence. FtsZ rings formed in these filaments but 

there did not appear to be one FtsZ ring per cell length as would be 

expected if FtsZ ring formation and placement was unaffected (Figure 

3.3.5). This phenomenon has been noted by a number of groups and has 

been proposed to be a result of the fixing procedure or of a reduced pool of 

FtsZ molecules within filaments or due to reduced FtsZ ring stability in fts 

mutants (Boyle et al., 1997; Pogliano et al., 1997). 
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Chapter 3. Manipulation of ftsK 

The filamentation observed at the non-permissive temperature by 

strains bearing the ftsK44 (Ts) allele was not due to lack of FtsZ ring 

formation and was most likely due to the inactivation of the mutant 

protein. MG1655 (pBADK) cultured in LB-broth glucose had a normal 

morphology and showed the typical pattern of FtsZ ring formation, 

similar to that observed in wild-type strains, with FtsZ rings present at 

both the mid-cell (Figure 3.3.5). MG1655 (pBADK) grown in the presence 

of arabinose had a filamentous morphology. Interestingly, none of the 

filaments formed by FtsK overproduction showed evidence of FtsZ ring 

formation (Figure 3.3.6). The small cells that are present in the culture 

(see Section 3.3 and Figure 3.3.3) contain FtsZ rings and could have lost 
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This experiment was repeated on a number of separate occasions to 

verify the result. In all cases, the filaments formed by FtsK 

overproduction did not have FtsZ rings. There are a number of cells in 

Figure 3.3.6 that are of apparent normal size. This could be because these 

cells have formed due to a rare division event or that the level of FtsK in 

the cell is not enough for filamentation to occur. It is worthy of note that 

these cells show evidence of FtsZ ring formation. In Figure 3.3.3 the 

bottom panel show the effect of FtsK overproduction. This culture also 

had a small proportion of small, normally sized cells. Prolonged 

incubation (> 5 hours) of MG1655 (pBADK) in 0.2% arabinose containing 

media resulted in a culture consisting entirely of filamentous cells. 

It is of some concern that the full complement of FtsZ rings is not 

visible even in filaments where genetic evidence suggests that FtsZ ring 

formation should not be affected (Begg et al., 1985). This could be a result 

of the lysozyme treatment used during the processing of the cells for IFM. 

The lysozyme step is necessary to partially digest the peptidoglycan layer 

to enable the antibodies to pass into the cytoplasm. Without lysozyme 

treatment the antibodies cannot pass through the peptidoglycan layer and 

into the cytoplasm (SG. Addinall, pers. comm.). Overdigestion with 

lysozyme leads to cell lysis which may result in the disassembly of the 

FtsZ rings. Thus, with this relatively new technique, care should be taken 

not to overemphasise the number of structures seen. Rather, the 

technique should be seen as qualitative rather than quantitative until the 

method is further refined. 

3.4 Characterization of a partial ftsK clone 

The work by Begg et al. (1995) showed that a partial clone 

containing the 5' 1165 bp of ftsK was sufficient for complementation of the 

ftsK44 (Ts) mutation. It was decided to create a new partial clone of ftsK 

under the control of an inducible promoter. This would allow the study 

of the effects of overexpression of a truncated FtsK polypeptide and enable 

the re-examination of the complementation of the ftsK44 (Ts) mutant by 

the truncated peptide. A new plasmid, pBADK' (Figure 3.4.1), was created 

by digesting pBADK with Bsu361 and XbaI. The 6142 bp fragment 
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containing the 5' 1746 bp of ftsK under the transcriptional control of the 

PBAD promoter was end-filled with Kienow and religated. 

:bal 

Figure 3.4.1. pBADK' which encodes 582 aa of the N-terminus of FtsK. 

pBADK' was transformed into MGK44. MGK44 (pBADK') was 

plated onto LBANaC1 plates containing 100 jig m1 1  ampicillin 

supplemented with either arabinose or glucose at 30°C and 42°C. Colonies 

formed at all temperatures on all media types. The growth seen on 

glucose containing plates was presumed to be due to the low levels of 

expression from PBAD  allowing the production of small, though sufficient 

amounts, of the truncated FtsK polypeptide (FtsK'583) for 

complementation. pBADK' was introduced into MGK44 pcnB : :kan. 

MGK44 pcnB::kan (pBADK') was plated onto LBNaCl plates containing 

100 jig ml -1  ampicillin supplemented with either arabinose or glucose at 

30°C and 42°C. Growth was observed on the glucose and arabinose 

containing plates incubated at 30°C and on the arabinose containing plate 

incubated at 42°C. No colonies formed on the glucose-containing plate 

that was incubated at 42°C. It was concluded that FtsK'583 complemented 

ftsK44. The effects of overproduction of this truncated FtsK protein was 

investigated. 
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3.4.1 Overproduction of FtsK'58 3  

pBADK' was transformed into MG1655. MG1655 (pBADK') was 

plated onto LB agar plates containing 100 jig m1 1  ampicillin in the 

presence of arabinose or glucose. The plates were incubated at 37°C 

overnight. Colonies formed on both plates. The morphology of the cells 

was examined by phase contrast microscopy. The cells grown on glucose 

containing plates has a normal morphology. The cells from the arabinose 

containing plate elicited a mixed phenotype. 75% of the cells (543 from 

612 examined) had a normal morphology, the remainder formed chains 

of cells, typically consisting of four cells. MG1655 (pBADK') was cultured 

in LB-broth containing 100 jig m1 1  ampicillin and either glucose or 

arabinose. After three hours chains of cells were apparent in the 

arabinose-containing culture (Figure 3.4.2). This phenotype differs greatly 

from the overproduction of the wild-type protein, which results in 

filamentation. 
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Figure 3.4.2. Phase contrast micrographs of MG1655 (pBADK') cultured in 
LB-broth 0.2% glucose (top) and 0.2% arabmose (bottom) for three hours. 
The glucose grown cells had a normal morphology whereas the a 
proportion of the cells grown in the presence of arabinose formed chains. 

124 



Chapter 3. Manipulation of ftsK 

The significance of these chains was not immediately apparent. An 

FtsK-GFP fusion protein locates to the division site during septation but 

an FtsK44-GFP hybrid localises neither at the permissive nor the non-

permissive temperatures (W. Margolin, pers. comm.). 

Immunofluorescence microscopy with FtsK specific antibodies also shows 

FtsK located at the septum (J. Lutkenhaus, pers. comm.). The N-terminus 

of Spo[IIE is thought to localise SpofflE to the prespore septum during 

sporulation (Wu and Errington, 1997). It could be possible, therefore, that 

the FtsK'583 protein also localises to the septum and competes for this 

position with the full length, chromosomally encoded protein. This 

presented the possibility that the wild-type protein was present at lower 

levels than is required at the division site and could not fully carry out a 

second function, possibly encoded by the C-terminus which resulted in 

the formation of chains of cells. The C-terminus of FtsK, which shows a 

high degree of similarity with the SpolliE family of DNA translocases, was 

absent from the peptide encoded by pBADK' (Flannagan et al., 1994; 

Hagege et al., 1993; Kataoka et al., (unpub.); Kendall and Cohen, 1988; 

Oswald et al., 1993; Tomura et al., 1993; Wu and Errington, 1994; Wu et al., 

1995; Wu and Errington, 1997). There was also the possibility that 

overproduction of FtsK'583 was exerting another, unknown effect on the 

cell that either directly or indirectly resulted in the formation of chains of 

cells. It was decided that the function of the N- and C-termini could only 

be satisfactorily examined with the aid of a null-mutant of ftsK. 

Microscopic examination of MGK44 (pBADK') cultured in 

arabinose containing LBNaCl broth at 42°C also showed chains of cells, 

although at a slightly lower frequency than that seen with the 

overproduction of FtsK' from pBADK' in MG1655 (17% of cells present in 

the form of chains compared with 25% seen from the overproduction of 

FtsK'583 in MG1655). This finding agreed with the hypothesis that the 

FtsK'583 polypeptide encoded by pBADK' did not possess the full activity 

of the complete protein and the second proposal that the chain formation 

was an artefact of FtsK'583 overproduction was probably incorrect. 
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3.8 Discussion 

This chapter describes the cloning of ftsK and the use of the clones 

to complement the ftsK44 (Ts) mutation. E. coil requires low levels of 

FtsK as pBADK complements the ftsK44 (Ts) mutant at the non-

permissive temperature even when repressed. It is evident that 

overproduction of FtsK causes filamentation. ftsK was placed under the 

transcriptional control of the strong PIaCUV5  promoter in the high copy 

number vector pUC18 (pCD99). MG1655 (pCD99) did not form colonies 

on LB plates at 37°C or 42°C, but did form colonies at 30°C. The 

experiments should be repeated in a strain bearing a the lacr allele, which 

would result in the repression of Placuv5,  and could be induced with IPTG. 

Filamentation caused by the overproduction of FtsK results in (or 

from) either the inhibition of the formation of FtsZ rings or the 

destabilization of existing FtsZ rings. This filamentation is not the result 

of the induction of the SOS-response and is independent of the 

components of the SOS-response known to block cell division. 

ftsK is preceded by the dinH promoter which is derepressed upon 

interference with DNA replication (Lewis et al., 1992). Increasing the 

amount of FtsK leads to a block to cell division. These observations 

suggest that FtsK could be a component of the of sfi-independent pathway 

of division inhibition. Filamentation is observed in a sulA sfiC double 

mutant strain when SOS is induced (Burton and Holland, 1983; Hill et al., 

1997) and dinH appears to be derepressed during SOS (Lewis et al., 1992). 

The de-repression of dinH could lead to an increase in the transcription of 

ftsK. Slight increases in the amount of FtsK in the cell have been shown 

in this chapter to induce filamentation by preventing the formation of or 

by destabilising existing FtsZ rings. It cannot be stated that FtsK directly 

interacts with FtsZ thus preventing FtsZ polymerization, as is the case 

with Su1A (Huang et al., 1996; Higashitani et al., 1995). The filamentation 

caused by the overproduction of FtsK from pBADK cannot be suppressed 

by 3-4 fold overproduction of FtsZ from pBS58. As stated in section 3.3, it 

would be worthwhile to repeat the experiment in a system that 

overproduced FtsZ to a greater extent. The filamentation caused by Su1A 

during the SOS-response can be suppressed by increasing the levels of 

FtsZ (Lutkerthaus et al., 1986) and so it could be predicted that there might 

be a level of FtsZ overexpression that could suppress FtsK-overproduction 
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induced-filamentation. Alternatively, the de-repression of dinH during 

SOS-induction could lead to the production of a pool of FtsK that might 

be required for cell division following the repression of the SOS-response 

once DNA damage has been repaired. 

The exact level of overproduction of FtsK in these experiments is 

not known. The amount of transcription from each of the promoters 

used in these experiments could be measured (by transcriptional fusions 

to -galactosidase, for example) but these levels would be meaningless 

unless compared to the amount of FtsK per cell. The study of ftsK and the 

protein encoded by it would be greatly enhanced by the availability of 

specific antibodies to FtsK. 
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Chapter 4. Visualization of FtsK 

The fisK gene was sequenced and found to be 3987 bp in length and 

was predicted to encode a protein of 147 kDa (Begg et al., 1995). There are 

a number of in frame ATG codons within the fisK ORF which could act as 

translation initiation codons. This suggested that FtsK could encode for 

more than one protein. Attempts were made to visualise the protein(s) 

encoded byfisK. 

4.1.1. Construction of pT7 clones of ftsK. 

The pT7 range of vectors contain the promoter for bacteriophage T7 

upstream of a polylinker. E. coli RNA polymerase does not recognise the 

T7 010 promoter. Inhibition of E. co/i RNA polymerase with rifampicin 

and induction of the T7 RNA polymerase from ?DE3, a lysogenized ? 

with an IPTG-inducible T7 RNA polymerase gene results in the 

expression solely of protein(s) under the control of the T7 010 promoter. 

The plasmid encoded proteins can be visualised by the incubation of the 

cells with 35S-methionine which is incorporated into the protein(s) and 

subsequent SDS-PAGE of the protein extracts and autoradiography. 

The 4.4 kb EcoRI—XbaI fragment containing ftsK and 227 bp of the 5' 

end of lolA from pUCK was ligated into EcoRI/XbaI digested pT7-3 and 

pT7-5 to form pT7-3K and pT7-5K, respectively. pT7-3 and pT7-5 are 

identical except for the orientation of the b/a gene. In pT7-3, the b/a gene 

is in the same orientation as the T7 010 promoter so b/a is transcribed and 

3-1actamase can be expressed when 17 RNA polymerase is present. The 

b/a gene in pT7-5 is reversed and 3-1actamase is not expressed when T7 

RNA polymerase is present. p17-3K and pT7-5K were transformed into 

BL21 (ADE3) (pLysS). pLysS is a pSC101 based plasmid that carries the lysS 

gene encoding lysozyme. Lysozyme degrades any T7 RNA polymerase 

that might be produced due to the leakiness of the IPTG inducible 

promoter, P1acUV5, which transcribes the T7 RNA polymerase gene 

contained on XDE3. This prevents the expression of cloned genes before 

IPTG is added. There is sufficient 17 RNA polymerase expressed when 

PIacUV5 is induced with IPTG to overcome the effects of the lysozyme and 

transcription from the 17 010 promoter is initiated. The methods for 
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expression and labelling are described in section 2.3.1. Expression was 

induced in BL21 (XDE3) (pLysS) (pT7-3K)/(pT7-5K) and protein samples 

analysed on 7% SDS-PAGE gels as described in sections 2.3.4 and 2.3.5. 

Figure 4.1.1 shows the results of the BL21 (XDE3) (pLysS) (pT7-5K) 

experiment. 

kDa 
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—66 

—42 
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Figure 4.1.1. SDS-PAGE analysis of pT7-5K. The samples not treated with 
rifampicin are labelled (lanes 1 and 2). The induced (+IPTG) samples do 
not contain any labelled plasmid encoded proteins (lanes 2 and 4). Lane 1-
rif/-IPTG, Lane 2 -rif +IPTG, Lane 3 +rif/-IPTG, Lane 4 +rif/+IPTG. 
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pT7-5K did not produce a radiolabelled protien that could be 

detected by autoradiography. -1actamase was not observed in lanes 3 and 

4 of Figure 4.1.1. becuse the bla gene is in the opposite orientation to the 

T7 010 promoter (and cloned ftsK) and hence would not be expressed 

when rifampicin is added. In a separate experiment pT7-3K was shown to 

express a single peptide with the same apparent molecular weight as 

lactamase. The experiment was repeated several times and neither clone 

produced a visible radio-labelled protein from the cloned insert. The 4.4 

kb insert cloned into pT7-3K and pT7-5K contained ftsK and 227 bp of the 

5' end of lolA which had previously been shown to inhibit cell division 

when cloned into pBAD18 and pUC18 (sections 3.3 and 3.2.2, respectively). 

This finding, coupled with the discovery that no peptide(s) was expressed 

from the cloned insert from pT7 clones of the same region, suggested that 

ftsK was a very poorly translated gene, that FtsK could be subject to 

proteolysis,had a very short half life or that the secondary structure of the 

ftsK mRNA inhibited translation. 

The TTG translation initiation codon predicted to be the start of 

ftsK could lead to reduced levels of translation compared with an ATG 

translation initiation codon. Although ATG is by far the predominant 

translation initiation codon (91% of genes compared with 1% TTG) and 

many mutations wich replace the ATG initiation codon with an 

alternative initiation codon reduce translation rates, some abundant 

proteins utilise initiation codons other that ATG (reviewed by Gold and 

Stormo, 1987). The potential ftsK TTG translation initiation codon was 

mutated to an ATG (ftSKATG)  and the gene was cloned downstream of the 

010 ribosome binding site in pT7-7 in an attempt to optimise the 

translation of fisK by the following method. A 1.3 kb PCR product was 

synthesized, using pUCK as the template. The following primer were 

used 

T7090 5'-GGAGAGAATCATATGAGCCAGGAATC-3' 

G6689 5'-GGTGGCCAACAAGAC-3' 

The melting temperature was 94°C, the annealing temperature 

48°C and extension time at 72°C was 90 seconds. Taq DNA polymerase was 

employed. The introduced NdeI site in T7090 is underlined The PCR 

fragment was ligated into pGEM-T a 3 kb plasmid designed for cloning 

PCR products (Promega). Taq polymerase exhibits template independent 
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3' adenylation. pGEM-T is supplied pre-digested and has a single T-

overhang at each terminus. This enables the cloning of A-tailed PCR 

fragments. The resultant plasmid, pGEM-TK was digested with Sail and 

SphI to release the cloned PCR fragment. This fragment was cloned into 

Sail/S phI digested pUC19 to form pCD109. pCD109 was digested with 

NotI and Sail, this removed a 1.25 kb fragment, the 5' 54 bases of ftsK 

remained on the plasmid fragment. A 4.35 kb NotI-Sail containing 

fragment bp 54-3987 bp of ftsK and 227 bp of the 3' end of lolA from pUCK 

was ligated into the NotIl Sail digested pCD109 plasmid fragment. The 

clone was named pKATG. pKATG had ItSKATG cloned in the opposite 

orientation to PIacUV5  to avoid the toxic effects of multiple copies of ftsK. 

pKATG was sequenced using the universal primer: 

5'-CAGCACTGACCCTTTTG-3' using the T7 Sequencing kit (Pharmacia) 

as described in section 2.2.18. The region from the —5 to +70 relative to the 

introduced ATG and site was shown to be error free, save for the 

intentionally replaced bases. Since the region from bp 54-3987 (the end) 

of the ftsK gene in pKATG was derived from pUCK, the remainder of the 

insert was known to be functional. The 4.4 kb NdeI—SalI fragment from 

pKATG was cloned into pT7-7 to produce pT7-7KATG. pT7-7 contains the 

010 promoter cloned upstream of the rbs and the ATG translation 

initiation codon of T7 010. An NdeI site (CATATG) is located 

overlapping the translation initiation codon to allow transcriptional 

fusions to the 010 rbs, which has been shown to aid the efficient 

translation of proteins (Studier and Moffat, 1986; Tabor and Richardson, 

1988). pT7-7KATG was transformed into BL21 (ADE3) (pLysS) and the 

expression of FtSKATG analysed by SDS-PAGE. 

pT7-7KATG did not express any polypeptide from the cloned insert. 

This was unusual since the rbs and start codons for ftsK had been 

optimised. The reason for this could be that FtsK was rapidly degraded, 

but even if this was the case, the degradation products of FtSKATG should 

have been visible after SDS-PAGE and autoradiography. 

In vitro transcription/ translation of purified ?214 DNA (section 

3.2) also did not produce a peptide of the predicted size, although many 

other proteins, mostly of X origin, were expressed (Figure 4.2.2). 
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Figure 4.1.2. SDS-PAGE analysis of proteins expressed from the in vitro 
transcription/ translation of purified ?214 DNA. The 2 lanes containing 

radio-labeled protein are from the same sample but twice as much protein 

was loaded in lane I than lane 2. The 147 kDa FtsK protein was not 

detected, although the smaller proteins, mainly the products of X genes, 

could obscure any smaller peptides produced. A number of larger 

proteins were expressed, probably from the other cloned genes but could 

also be derived from the fisK ORF. 

Neither in vitro transcription nor 17-based expression of ftsK 
produced a peptide of the predicted size. Although the 17 system has 
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been found to be a satisfactory method for the production of some 

proteins, it is not suitable for the expression and visualisation of others. 

Indeed, pT7-4 and pT7-6 clones of mraY failed to produce a visible MraY 

peptide (Boyle, 1995). The reasons for the failure to visualise any peptides 

encoded by pT7-3K and pT7-5K are not immediately apparent, although 

the fragment cloned into these vectors has been shown to complement 

the ftsK44 (Ts) allele and cause filamentation when overexpressed in 

other expression systems (sections 3.2.1 and 3.3, respectively). The 

problem may lie in the systems employed, which might not be suitable for 

the production of ftsK encoded proteins or that there is a rapid turnover 

of these peptides once they are produced. 

4.2 Use of the Maxicell method to visualise FtsK 

Another approach was tried in the attempt to visualise FtsK. The 

Maxicell method described in section 2.3.2 can be used to visualise 

proteins expressed from genes under the transcriptional control of 

promoters that function in E. coli. Strain CSR603 was transformed with 

pUC19, pCD99 and five new plasmids, pKT1, pKT2, pKT3, pKT4 (Figure 

4.2.1) and pCD101 (Figure 4.2.2). pKT1-4 are deletion derivatives of pCD99 

(section 3.2.2), which have consecutively larger regions of ftsK cloned 

downstream of the strong P1acUV5  promoter. With respect to pCD99, pKT1 

has the 3.6 kb NheI-XbaI fragment deleted, leaving 719 bp of the 3' end of 

ftsK under the control of P1acUV5.  pKT2 is pCD99 with the 2.6 kb Bsu361-

XbaI fragment removed, leaving 1748 bp of the 3' end of ftsK under the 

control of PlacUV5.  pKT3 is pCD99 with the 2.4 kb ClaI-XbaI fragment 

removed, leaving 1932 bp of the 3' end of ftsK under the control of P1acUV5. 

pKT4 is pCD99 with the 0.7 kb NcoI-XbaI fragment deleted, leaving 3652 

bp of the 3' end of fisK under the control of P1acUV5• 
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Figure 4.2.1. The regions of ftsK present on pCD99 and the pCD99 derived 
truncation plasmids, pKT1, pKT2, pKT3 and pKT4. 

It was hoped that truncated FtsK polypeptides could be visualised 

from these clones. The predicted molecular weight of the truncated FtsK 

peptide encoded by pKT1 was 27.1 kDa, by pKT2 was 63.5 kDa, by pKT3 was 

70.6 kDa and by pKT4 was 134.3 kDa. pCD101 was constructed by cloning 

the 7.2 kb EcoRI—KpnI fragment from purified A.214 DNA into EcoRI/KpnI 

digested pUC19. The fragment contains the complete trxB, lrp, ftsK and 

lolA genes (Figure 4.2.2). 

14  

XbaI 

Bai 
Hindill 

Bsu361 

Figure 4.2.2. pCD101 which contains the trxB. lrp, ftsK and lolA genes 
cloned into pUC19. 
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pCD101 severely impaired growth of the wild-type strain MG1655 at 

temperatures above 35°C in LB-broth and on LB-agar plates. Phase 

contrast microscopy revealed that MG1655 (pCD101) formed filaments at 

all temperatures, but the effect was more striking at higher temperatures. 

The toxicity of pCD101 was probably due to the presence of ftsK on the 

clone. To show this, a 2 kb EcoRV internal ftsK fragment was excised and 

the plasmid religated to form pCD101-RV. MG1655 (pCD101-ARV) did 

not form filaments and formed colonies at all temperatures tested (13°C to 

43°C). The toxic effects of pCD101 were due, therefore, to the presence of 

the cloned ftsK. 
CSR603 and CSR603 (pUC19) / (pKT1) / (pKT2) / (pKT3) / (pKT4) / 

(pCD99) and (pCD101) and were processed as described in section 2.3.2 and 

protein samples from CSR603, CSR603 (pUC19)/(pKT2)/(pCD99) and 

(pCD101) were analysed by SDS-PAGE and radio-labelled proteins were 

visualized by phosphoimagery (Figure 4.2.2.) 
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Figure 4.4.2. 	SDS-PAGE analysis of CSR603, CSR603 (pUC19)/ 
(pKT2)/(pCD99) and (pCD101). CSR603 (lane 1) contains no plasmid and 
only shows a background level of protein labelling. CSR603 (pUC19) (lane 
2) and (pKT2) (lane 3) contains radio-labelled 13-lactamase. The truncated 
FtsK encoded by pKT2 was not visualized. CSR603 (pCD99) (lane 4) 
produced three radio-labelled proteins from the cloned ftsK gene of a 
similar size which migrated to a position of between 158 and 212 kDa, as 
well as 13-lactamase. CSR603 (pCD101) (lane 5) also produced the three 
high molecular weight proteins, a 34 kDa protein and 13-lactamase. The 
position of the marker bands is shown. 

137 



Chapter 4. Visualization of FtsK 

The three, closely spaced, high molecular weight proteins encoded 

by pCD99 and pCD101 were probably different forms of FtsK. The 

experiment was repeated several times and the triplet of bands was always 

present. These different forms could be formed by proteolysis, instability, 

phosphorylation or as a result of the expression and visualization 

procedures. FtsK exhibits abnormal migration, the predicted MW of the 

protein is 146.7 kDa. The 34 kDa protein expressed from pCD101 was 

proposed to be TrxB, which has a MW of 34 kDa (Russel and Model, 

1995b). The truncated FtsK protein expressed by pKT2 could not be 

detected. The truncated protein could be unstable or subject to 

degradation by proteases. SDS-PAGE analysis of the proteins encoded by 

the CSR603 (pKT1)/(pKT3) and (pKT4) also did not result in the 

visualisation of the truncated FtsK polypeptides encoded by these 

plasmids. 
It is curious that only the Maxicell method allowed visulalisation 

of FtsK. Not all expression systems are suitable for the production of all 

proteins. Even so, all of the above experiments the expressed proteins 

would be radiolabelled, which should allow detection of even small 

amounts of expressed protein. As mentioned in section 4.1.1, there are 

many potential reasons for the lack of expression of FtsK from the pT7 

clones of ftsK and the in vitro transcription/ translation of the X214 DNA. 

That the ftsK regions cloned into the pT7 vectors might not be transcribed 

by the T7 DNA polymerase is unlikely as the system is well established. 

Secondary structures in the transcribed mRNA might prevent satisfactory 

transcription by T7 RNA polymerase but not F. coli RNA polymerase, 

hence the failure of the T7 system and success of the Maxicell method 

Pulse chase experiments of strains expressing FtsK could help discern 

whether there is a rapid turnover of FtsK in the cell. Obviously, the 

generation of antibodies to FtsK would greatly enhance the study of the 

expression of FtsK. 

138 



CHAPTER 5 
INACTIVATION OF ftsK 



Chapter 5. Inactivation offtsK 

Chapter 5. Insertional inactivation and deletion of ftsK. 

5.1 Gene replacement 

To determine whether ftsK is an essential gene and to observe the 

effects of a null-allele of the gene, a strategy to insertionally inactivate and 

delete the gene was devised. A number of gene replacement strategies 

exist but in this case a novel method being developed by N. McLennan 

and M. Masters was employed. This gene replacement method relies on 

the phenomenon that high copy-number Co1E1 based plasmids, such as 

the pUC range of vectors appear to recombine with the host chromosome 

via a single cross-over and excise by the same mechanism. It is known 

that the cross-over requires regions of homology between the plasmid and 

the chromosome. The excision of the plasmid occurs via homologous 

recombination at duplicated regions of DNA and could to be promoted by 

instability caused by the presence of a plasmid origin of replication on the 

E. coli chromosome. It seems that there is a constant exchange of plasmid 

DNA between the cytoplasm and chromosome (N. McLennan and M. 

Masters, pers. comm.). 

It is possible to direct the location of insertion of the plasmid onto 

the chromosome and interrupt the gene of interest by cloning the gene, 

which has been inactivated by the insertion of a selectable marker such as 

an antibiotic resistance cassette, into the high copy-number plasmid. It is 

proposed that the plasmid can insert into the locus of interest via a single 

cross-over between homologous DNA. The amount of flanking DNA 

required for efficient integration has not yet been determined, although 1 

kb of homologous DNA upstream and downstream of the resistance 

marker has been shown to suffice (N. McLennan, pers. comm.). Upon 

excision, one of two plasmids can be formed: a molecule identical to the 

plasmid that was initially introduced into the cells or a plasmid 

containing the wild-type locus, with the chromosomal ORF now 

interrupted by the resistance marker (Figure 5.1). 
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Figure Figure 5.1. The single cross-over of plasmid DNA at a homologous region 
of chromosomal DNA. Excision of the plasmid can result either in the 
reformation of the original plasmid or the antibiotic marker can remain 
on the chromosome and the wild-type locus is transferred onto the 
plasmid. 
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A P1 lysate is grown on the strain carrying the plasmid to be used 

for the replacement. The strain should have an additional selectable 

marker within transducing range (<2 minutes) of the chromosomal gene 

being replaced. The transducing particles containing the region of interest 

will carry three possible arrangements of the chromosome: 

• the wild type locus 

• the locus with the entire plasmid inserted 

• the locus with the ORF of choice interrupted by the antibiotic marker. 

The P1 lysate is then used to transduce a wild-type strain, selecting 

for the insertion marker and the linked chromosomal marker. If 

necessary, the host can carry a complementing copy of the gene that is 

being inactivated on a plasmid or at another location on the 

chromosome. The resultant colonies must then be screened to ensure 

loss of the original plasmid. This is achieved by screening for loss of the 

plasmid resistance marker, in the case of the pUC vectors, the loss of 

ampicillin resistance. 

For the replacement of some genes McLennan and Masters have 

found it necessary to introduce a complementing copy of the gene being 

replaced in the donor strain prior to growing the P1 lysate. The reason for 

this is not clear at the moment, although when replacing an essential 

gene the desired construct would, of course, be lethal unless a 

complementing copy of the replaced gene were present. 

5.2 Construction of CDK1 

In the first instance pKBCAT was introduced into MGAT. pKBCAT 

is derived from pCD101. pCD101 was digested with BstBI, a blunt-ended 

restriction enzyme which cuts pCD101 once, 677 bp into the ftsK ORF. 

The cat gene along with its promoter was excised from pUCAT18 (a gift 

from N. McLennan) by digestion with Hindll and Ec113611 and ligated into 

the linearised pCD101. The resultant plasmid, pKBCAT has the ftsK ORF 

interrupted with the cat gene (ftsK 677::cat) and carries both the 

chloramphenicol and ampicillin resistance markers. The orientation of 

the cat gene is such that it transcribes in the same direction as ftsK (Figure 

5.2.1). 
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Figure 5.2.1. pKBCAT, the pCD101 based plasmid used for the insertional 
inactivation of ftsK. The cat gene is transcribed in the same direction as 
ftsK and is expressed from its own promoter. 

5.2.1 The N-terminal 225 aa of FtsK can suppress ftsK44 

It was thought that the ftsK 677::cat construct would abolish FtsK 

function. To examine whether this was the case, pKBCAT was introduced 

into MGK44. Interestingly, pKBCAT complemented ftsK44 at 42°C. The 

677 bp of ftsK present upstream of the cat insertion encodes only 225 aa 

(17%) of the N-terminus of FtsK. It was also thought possible that the 

region downstream of the cat insertion could encode a polypeptide that 

could be translated from an mRNA initiated from the cat gene or an 

internal promoter. In vitro transcription/ translation of a clone 

containing the 3' end of the ftsK gene produced a protein of between 41.5 

and 67 kDa (Diez et al., 1997). To examine whether the 3' end of ftsK was 

involved in the complementation of ftsK44 by pKBCAT a 4248 bp BsaBI-

SmaI fragment was excised from pCD101 and the plasmid religated to 

form pTLK' (Figure 5.2.2). 
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XbaI 

Figure 5.2.2. pTLK', a pUC19 based plasmid, which contains trxB, lrp and 
the 5' 677 bp of fisK. 

• pTLK' was transformed into MGK44. MGK44 (pTLK') was plated 

on LBNaCl at 30°C and 42°C. MGK44 (pTLK') formed colonies at both 

temperatures indicating that the 5' 677 bp of ftsK could complement 

ftsK44. The presence of trxB and lrp on the clone, however, meant that 

this 677 bp of ftsK might not alone be responsible for the 

complementation. It could also be possible that the pTLK' could 

recombine with the chromosome at the ftsK locus. Excision of the 

integrated plasmid could result in the replacement of ftsK44 with the 

wild-type gene and the fisK44 mutation being placed onto the plasmid. 

This was addressed by the construction of pBADK'3, which contained the 

5' 677 bp of fisK cloned into pBAD18 (Guzman et al., 1995). pBADK'3 was 

created by partial digestion pBADK with BsaBI. BsaBI cuts pBADK twice, 

once 677 bp into the ftsK ORF and again within the araC gene. The 

restriction digest was subjected to 0.8% agarose gel electrophoresis and the 

linear molecules isolated. These linear fragments were digested with XbaI 

and end-filled with Klenow enzyme. The 5338 bp fragment which 

contained the 5' 677 bp of ftsK and the plasmid backbone was purified after 

0.8% agarose gel electrophoresis and religated to form pBADK'3 (Figure 

5.2.3). 
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Figure 5.2.3. pBADK'3 which contains the 5' 677 bp of the ftsK gene under 
the control of the arabinose inducible promoter PBAD. 

pBADK'3 was transformed into MGK44. MGK44 (pBADK'3) was 

plated on LBNaCl-agar containing 100 p.g ml -1  ampicillin supplemented 

with either glucose or arabinose at 30°C and 42°C. Colonies formed on 

both the arabinose and glucose containing plates at 30°C but only on the 

arabinose containing plates at 42°C. Again, integration of pBADK'3 into 

the ftsK locus could result in transfer of the ftsK44 allele to the plasmid 

and the wild-type gene onto the chromosome by homologous 

recombination. This was deemed unlikely because MGK44 (pBADK'3) 

required arabinose for growth at the non-permissive temperature. 

Replacement of the temperature sensitive ftsK44 allele with the wild-type 

gene would not render the cells arabinose dependent. It was concluded 

that only the amino-terminal 225 aa of FtsK was required for suppression 

of ftsK44. These experiments utilizing fragments of the 5' end of the ftsK 

gene to suppress the lethality of the ftsK44 (Ts) allele should be repeated 

in a recA background due to the possibility that the plasmids might 

recombine via a single crossover event with the chromosomal copy of 

ftsK44. The excision of the plasmid could result in the exchange of the 

ftsK44 allele onto the plasmid and the restoration of a wild-type 

chromosomal copy of ftsK. This would give the impression of 
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suppression of the lethal Is allele. The recA allele does not allow 

recombination to take place and so any suppression of ftsK44 (Ts) seen 

would be due to the plasmid-borne fragment of ftsK. 

The finding that the 225 aa of the N-terminus of FtsK encoded by 

pKBCAT could complement ftsK44 raised the question of whether 

pKBCAT would be a suitable construct for the creation of an ftsK null-

allele. It was reasoned that because pKBCAT complemented the ftsK44 

temperature-sensitive allele, ftsK 677::cat might also support growth when 

substituted for the chromosomal ftsK gene. This would not allow the 

question of what happens when FtsK is depleted from the cell to be 

addressed. Alternatively, ftsK 677::cat might not support growth and that 

the reason truncated polypeptides from pKBCAT, pTLK' and pBADK'3 

could complement ftsK44 was due to residual action of the temperature-

sensitive protein. It was decided to introduce ftsK 677::cat onto the 

chromosome in place of ftsK because even if this construct did not result 

in the absolute abolition of FtsK activity it would give an invaluable 

insight into FtsK function. 

5.2.2 Replacement of fisK with ftsK 6 ::cat 

Since it was possible that ftsK would be an essential gene and that 

the replacement of the chromosomal copy of ftsK with ftsK 677::cat could be 

lethal, a complementing copy of ftsK was introduced into the donor strain 

by transforming MGAT (pKBCAT) with pGB101, which is compatible 

with pKBCAT. pGB101 was constructed by digesting pCD101 with EcoRI 

and Sail. A 7.2 kb fragment containing the trxB, irp, ftsK and lolA genes 

was ligated into EcoRI/SaiI digested pGB2 (Churchward et al., 1984). 

pGB101 was transformed into MGK44 and complemented ftsK44 (Ts) at 

the non-permissive temperature. A P1 lysate was grown on MGAT 

(pKBCAT) (pGB101) at 30°C. The reason for growing the P1 lysate at 30°C 

instead of 37°C was because the desired insertion of the cat gene into ftsK 

would result in the chromosomal gene transferring onto the excised 

plasmid, a plasmid identical to pCD101, the effects of which, as stated in 

section 4.2, are deleterious to the cell at temperatures greater than 35°C. 
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The recipient for the transduction was MG1655 (pGB101). pGB101 was 

present to provide a complementing copy of the ftsK gene in case the ftsK 

gene proved to be essential. pGB101 encodes for spectinomycin resistance 

and would allow the screening for the loss of the ampicillin resistance in 

the transductants. MG1655 (pGB101) was transduced with the lysate 

grown on MGAT (pKBCAT) (pGB101). As a control, 1/10 of the 

transduction mixture was plated onto tetracycline and spectinomycin 

containing LB-agar to verify the efficiency of transduction. The 

transductants were incubated at 30°C overnight, selection was for 

Cmp/Tet/Spec resistance. 176 Cmp/Tet/Spec resistant colonies and 

approximately 3100 Tet/Spec resistant colonies formed after overnight 

incubation from 1/10 of the cells from the transduction. The 

Cmp/Tet/Spec resistant colonies were screened for ampicillin sensitivity 

and three proved to be Cmp/Tet/Spec resistant and ampicillin sensitive. 

Phase contrast microscopy of these cells revealed them to have a normal 

morphology. One of these colonies was taken for further analysis to 

examine whether the insertion was in the desired locus and whether this 

insertion of the cat gene into ftsK resulted in inactivation of the gene. 

The strain was named K146. A P1 lysate was grown on K146 and this 

lysate was used to transduce MG1655 (pBADK), selecting for tetracycline 

and ampicillin resistance in the presence of arabinose or glucose 

overnight at 30°C. Colonies appeared on both the plates containing 

arabinose and glucose with the colonies on the arabinose plate appearing 

smaller after overnight incubation, probably a result of overproduction of 

FtsK. 200 colonies from both the arabinose and glucose plates where 

screened for tetracycline and chloramphenicol resistance. 65% of the 

colonies were both tetracycline and chloramphenicol resistant, in 

agreement with the co-transduction frequency of two markers 0.4 minutes 

apart. Cmp/Tet resistant isolates from the arabinose and glucose 

containing plates were examined microscopically. The cells from the 

arabinose plate were filamentous whereas cells from the glucose plate had 

a normal morphology. 

It was possible that pBADK was complementing the ftsK 677::cat 

allele even in the presence of glucose. This had been observed previously 

with the finding that pBADK could complement ftsK44 in the presence of 

glucose in a pcnB strain but not in a pcnB::kan derivative (section 3.2.1). 

In order to examine this possibility, K146 (pBADK) was transduced with a 
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lysate grown on the pcnB::kan strain, MM38K24 (Masters et al., 1993). The 
insertional inactivation of pcnB reduces the copy number of pBADK to 

approximately 20% of wild-type levels. K146 pcnB::kan (pBADK) did not 
show a requirement for arabinose, although this time the glucose and 

arabinose grown colonies had a similar appearance after overnight 

incubation at 37°C. 

It appeared from these results that either ftsK was not an essential 

gene or, as was originally thought, that the insertion of the cat gene at bp 
677 of the ftsK ORF did not fully inactivate the gene. To demonstrate this, 

the lysate grown on K146 was used to transduce MG1655 to tetracycline 

resistance. 200 of the resultant colonies were checked for the presence of 

ftsK 677::cat by screening for chloramphenicol resistance. 142 of the 

colonies (71%) were both chloramphenicol and tetracycline resistant. The 

morphology of the Cmp/Tet resistant colonies was normal, except for the 

presence of a few chains of cells and a small number of short filaments 

(Figure 5.2.4) A representative Cmp/Tet resistant isolate was chosen and 

the strain named CDK1. 
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Figure 5.2.4. Phase contrast micrographs of CDKI cultured in LB-broth 
containing chloramphenicol and tetracycline. 
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5.2.3 PCR and Southern blot analysis of CDK1 

Two approaches were used to examine whether the replacement of 

ftsK with ftsK 677 ::cat was had taken place correctly. CDK1 and MGAT 

chromosomal DNA was prepared as described in section 2.2.4. The 

chromosomal DNAs and pKBCAT was then subjected to PCR analysis. 

The following primers were used: 

• K-up 	5'-TTGAGCCAGGAATACATTGAAGAC-3' 

• K-rev 5'-GCATCAACAGCGGATGAAGCAGGG-3' 

The melting temperature used was 94°C, the annealing 

temperature 54°C and the extension temperature and time were 72°C and 

4 minutes 30 seconds respectively. K-up and K-rev annealed to bp 1-24 

and bp 2476-2453 of the ftsK ORF respectively. The PCR products were 

analysed by 0.8% agarose gel electrophoresis, the results of which are 

shown in Figure 5.2.5. 
1 	2 	3 	4 

—1.5 kb 

- 2 kb 

—2.5 kb 

- 3 kb 

- 4 kb 

- 6 kb 

Figure 5.2.5. 0.8% agarose gel electrophoresis of the products derived from 
PCR analysis of CDK1 (lane 1), pKBCAT (lane 2) and MGAT (lane 3). The 
markers (lane 4) are MBI 1 kb ladder, sizes are marked. 

The predicted products of 3.9 kb from pKBCAT and CDK1 were 

detected, as was the 2.5 kb fragment from the MGAT chromosomal DNA 

(Figure 5.6). This result only suggests that CDK1 contains the desired 
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construct and does not fully show the organization of the ftsK locus in 

CDK1. 

To ensure that CDK1 contained ftsK 677::cat, the isolated 

chromosomal DNA was subjected to Southern analysis. CDK1 and 

MGAT chromosomal DNA was digested with EcoRI/BamHI, ScaT and 

Pvull. The digested DNA was subjected to 0.8% agarose gel 

electrophoresis as described in section 2.2.10 and blotted onto a positively 

charged nylon membrane (section 2.2.19). pCD101 was digested with 

BamHI and a 1165 bp band purified after agarose gel electrophoresis of the 

digestion products. The fragment contains the 3' 102 bases of ftsK and the 

entire lolA gene. A 32P-labeled probe was produced from the fragment by 

the random priming method outlined in section 2.2.20. These randomly 

labeled fragments were used to probe the chromosomal digest filter. It 

was predicted that the probe would hybridise to the following fragments: 

CDK1 EcoRI/BamHI 	3446 bp 

Scal 	5315 bp 

PvuH 	5397 bp 

MGAT EcoRI/BamHI 3446 bp 

Scal 	5359 bp 

PvuII 	5427 bp 

Figure 5.2.6 shows a photograph of the autoradiograph that resulted from 

the hybridization of the 1165 bp random labeled probe to the blotted 

chromosomal DNA. 
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Figure 5.2.6. The autoradiograph resulting from the exposure of the filter 
probed with randomly 32P-labeled ftsK—lolA fragments to X-ray film for 2 
hours. The lane order is CDK1 EcoRI/BamHI (lane 1) CDK1 ScaT (lane 2) 
CDK1 PvuII (lane 3), MGAT EcoRI/BamHI (Lane 4) MGAT ScaT (lane 5) 
MGAT PvuII (lane 6) lambda HindIII digest (lane 7). The fragment sizes 
of the lambda HindIH markers are shown. The smaller, faint band seen in 
lane 1 is due to star activity of the restriction endonucleases used. 

The probed Southern blot shows the correct pattern of 

hybridization with the exception of a star-activity generated fragment in 

lanes 1 and 4. To ensure that the cat gene was present in CDK1 and not in 

MGAT, and as a double check that CDK1 contained the correct construct, 

the filter was stripped of hybridised probe as described in section 2.2.21 and 

re-probed with a randomly labeled probe produced from a 657 bp EcoRI-

Bsu361 fragment from pUCAT18. This fragment contained the cat ORF 

from bp 214 to the translation termination codon (442 bp) plus 215 bp of 

pBR325 DNA. The results of a BlastN search (Altschul et al., 1990) 

revealed that there was no significant regions of homology between the 

pBR325 DNA contained on the probe fragment and E. coli chromosomal 

DNA and so hybridization with immobilised digested chromosomal 

DNA was predicted be limited to the cat gene region of the probe. The 

lane order is the same as in Figure 5.2.6. It was predicted that the probe 

would hybridise to the following fragments: 
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CDK1 EcoRI/BamHI 	3822 bp 

Scal 	1942 bp and 4948 bp 

Pvull 	1097 bp 

The probe was not expected to hybridise to MGAT DNA. The 

autoradiograph resulting from the exposure of the filter probed with the 

cat fragment is shown in Figure 5.2.7. 

a 

a 
—2 kb 
—2.3 kb 

S 
a 
	—4.6 kb 

—6.5 kb 

1 	2 	3 

Figure 5.2.7. Image of he autoradiograph resulting from the exposure of 
the cat probed filter to X-ray film for 3 hours The lane order is CDK1 
EcoRI/BamHI (lane 1) CDK1 ScaI (lane 2) CDK1 PvuII (lane 3). The cat 
probe did not hybridise to the MGAT DNA and so has been omitted. The 
fragment sizes of the ? Hindlil markers is shown. 

The 32P-labeled probe generated from the cat gene hybridised to the 

predicted fragments. The replacement of the chromosomal ftsK gene 

with ftsK 677::cat construct was confirmed. The organization of the 20 

minute region in CDK1 is shown in Figure 5.2.8. 

I, 
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Figure 5.2.8. The organization of the 20 minute region in wild-type E. coli 
and CDK1. The presence of ftsK 677::cat was confirmed by both PCR and 
Southern analysis. 

5.2.4 Expression of the C-terminus of FtsK in CDK1 

Diez et al. (1997) showed that the insertion of a TnlOd-cat sequence 

at bp 2000 of ftsK caused a proportion of the cells to form chains. These 

chains were linked together via a surface structure of unknown 

composition. The chain formation could be suppressed by supplying bp 

1223-3987 of ftsK on a plasmid. pGB101, which contains the entire ftsK 
gene and the upstream and downstream genes reversed the chain 

formation that would otherwise be seen in K146 (see above). To examine 

whether a clone bearing the 3' end of ftsK could suppress the chain 

formation seen in CDK1 a new plasmid, pKC1 was constructed. pKC1 was 

a deletion derivative of pCD99. pCD99 was digested with EcoFJ and MfeI. 

A 4.8 kb fragment containing bp 2201-3987 of the ftsK gene, 227 bp of lolA 

and the plasmid backbone was purified after agarose gel electrophoresis. 

This fragment was religated (EcoRI and MfeI are compatible sites) to form 

pKC1 (Figure 5.2.9). There was no external RBS provided in the clone, as 

was the case in the work of Diez et al. (1997), who suggested that there 

could be an internal initiation codon and RBS within the 3' end of the 

ftsK ORF. 
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Figure 5.2.9. pKC1, a pUC18 based vector containing bp 2201-3987 of ftsK 
under the transcriptional control of P jacuv5. 

pKC1 was transformed into MG1655 and CDK1. MG1655 (pKC1) 

had a normal morphology whereas CDK1 (pKC1) formed chains. There is 

disagreement between these results and those described by Diez et al. 

(1997). The chain formation seen by Diez et al., (1997) was suppressed by 

supplying bp 1223-3987 of ftsK whereas in these experiments a smaller 

fragment from bp 2201-3987 of the ftsK gene was provided. It may be 

important to include the extra region of ftsK to achieve the suppression of 

the chain phenotype. The region of ftsK supplied by pKC1 (bp 2201-3987) 

might not facilitate the expression of a peptide, possible due to the 

presence of regulatory regions of DNA present in the portion of DNA 

supplied by Diez et al., (1997) but not in pKC1. It still remains unclear as 

to whether a peptide is encoded by the 3' end of the ftsK ORF. Specific 

antibodies to FtsK would help to detect if any smaller peptides are 

produced from the ftsK orf. 

The TnlOd-cat sequence was found to be inserted at bp 2000 of the 

ftsK ORF in the chain forming strain described by Diez et al., (1997) (T. 

Nyström, pers. comm.). The cat gene in CDK1 is inserted at bp 677 of ftsK 

and so the phenotypes of the two insertion mutants, although similar, 

could be subtly different. Chains of cells are not observed in stationary 

phase cultures of strains bearing ftsK::TnlOd-cat, whereas chains are 
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present in stationary phase CDK1 cultures. The two strains were 

constructed with different goals in mind and it would be extremely useful 

if these strains were fully examined with the results from both 

laboratories taken into account. 

At this stage it could be concluded that ftsK was either an 

inessential gene or that the insertion of the cat gene at bp 677 of the ftsK 

ORF did not fully inactivate the gene and that ftsK 677::cat could support 

growth. This experiment was so far inconclusive. It was decided to 

engineer a construct which would better address the question of whether 

ftsK was an essential gene. 

5.3 Construction of CDK2 

This second construct would have part of ftsK substituted with the 

cat gene. The cat gene from pBR325 (Bolivar, 1978) was amplified by PCR 

using the following primers: 

• Cat-up 5'-TCAAGGATGCGGCCGCTGTTGAG-3' 
• Cat-rev 5'-TCGTCAATTGTTACCTCCACGGG-3' 

The introduced NotI site in Cat-up is underlined, as is the 

introduced MfeI site in Cat-rev. Vent DNA polymerase was used for this 

PCR reaction since Vent has 5'-3' proof-reading activity that would ensure 

a functional PCR product. The melting temperature used was 94°C, the 

annealing temperature 50°C and the extension temperature and time 

were 72°C and 1 minutes 30 seconds, respectively. All salts, residual 

nucleotides and protein were removed from the PCR reaction by using 

the Promega DNA Clean-up columns according to the manufacturers 

instructions. Approximately 0.5 pg of the purified 1492 bp PCR product 

was subjected to digestion by NotI and MfeI. The digested PCR product 

was electrophoresed through a 0.8% agarose and the fragment purified 

from the gel using the Qiagen Gel Extraction kit. The cat gene, flanked 

with NotI and MfeI ends, was ligated into NotI/MfeI digested pCD101, 

resulting in pCDCAT (see Figure 5.3.1). 
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Figure 5.3.1. Map of pCDCAT. The cat gene is in the same orientation as 
ftsK. 

pCDCAT has bp 54-2201 of the ftsK ORF substituted with the cat 

gene from pBR325 (ftsK542201::cat).  pCDCAT was introduced into MGK44. 

MGK44 (pCDCAT) did not form colonies at the non-permissive 

temperature. This indicated that pCDCAT would be a more appropriate 

construct for the inactivation of fisK than pKBCAT. pCDCAT was used to 

replace the chromosomal copy of ftsK with ftsK 542201 ::cat in a similar 

manner to that used for the construction of CDK1. 

5.3.1 Replacement of fisK with ftsK Mf101 ::cat 

pCDCAT was transformed into MGAT (pGB101) by transformation. 

A P1 lysate was grown on MGAT (pGB101) (pCDCAT) at 30°C. The lysate 

was used to transduce MG1655 (pGB101). Selection was for 
Tet/Cmp/SpecR colonies. 1/10 of the transduction was plated onto 

let/Spec containing LB-agar plates to test for efficient transduction. 

Approximately 2500 Tet/Spec resistant colonies formed on the control 

transduction plates. 146 Tet/Cmp/Spec resistant colonies also formed on 

the replacement transduction plates. These colonies were screened for 

ampicillin sensitivity. Three of the isolated proved to ampicillin 

sensitive and Tet/Cmp/Spec resistant. One of these isolates was chosen 
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and the strain named K2:1. A P1 lysate was grown on K2:1 and this lysate 

was used to transduce MG1655 (pBADK). Selection was for tetracycline 

and ampicillin resistance in the presence of arabinose. 200 of the 

Tet/Amp resistant colonies were plated onto LB Tet/Cmp/Amp plates 

containing arabinose. 128 colonies were Tet/Cmp/Amp resistant, a co-

transduction frequency between the tetracycline and chioramphenicol 

resistance markers of 64%, consistent of two markers approximately 0.4 

minutes apart. A Tet/Cmp/Amp resistant colony was chosen and the 

strain named CDK2. 

As a control, the lysate grown on K2:1 was also used to transduce 

MG1655 to tetracycline resistance. 100 of the tetracycline resistant colonies 

were plated onto Tet/Cmp containing LB-agar. No Tet/Cmp resistant 

progeny were detected. This was the first indication that the ftsK 92201 ::cat 

construct abolished FtsK function and that ftsK was an essential gene. 

5.3.2 Complementation of CDK2 with pBADK 

CDK2 (pBADK) was plated on Tet/Cmp/Amp LB-agar containing 

either 0.2% glucose or 0.2% arabinose at 37°C. Colonies appeared on both 

the arabinose and the glucose containing plates. As was observed in the 

case of CDK1 (pBADK), the colonies formed on the arabinose containing 

plates appeared smaller than those on the glucose containing plates. This 

was previously attributed to the toxic effect of FtsK overproduction. Cells 

from both the arabinose and glucose containing plates were examined 

microscopically. Cells from the arabinose containing plates appeared 

filamentous whereas those from the glucose containing plates had a 

normal morphology. This is consistent with the effects of overproduction 

of FtsK (see section 3.3). 

It was necessary to examine whether the low levels of expression 

from PBAD  was responsible for the viability of CDK2 (pBADK) on plates 

containing glucose. This phenomenon had been observed previously in 

the case of MGK44 (pBADK) forming colonies on glucose containing 

media at the non-permissive temperature(section 3.2.1). An MGK44 

pcnB::kan (pBADK) derivative only formed colonies when grown in 

arabinose containing media, and not when glucose was substituted. In a 

similar vein, the pcnB::kan allele was introduced into CDK2 (pBADK) by 

transduction with a lysate grown on MM38K24 (Masters et al., 1993). 
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CDK2 pcnB::kan (pBADK) was grown on Tet/Cmp/Amp/Kan LB-

agar plates containing either arabinose or glucose. Growth was only 

observed on the arabinose containing plates and not on the glucose 

containing plates. It appeared, therefore, that ftsK was an essential gene 
and that very little FtsK was required for viability. It was also concluded 

that the reason that CDK1 was viable was because the ftsK 677::cat allele did 
not completely abolish FtsK function. 

5.3.3 Suppression of the lethality of ftsK44 andftsK, o1::cat 

It was decided to examine whether overproduction of FtsN would 

suppress the lethal phenotype of ftsK44 and ftsK 542201 ::cat. FtsN was 
isolated as a multi-copy suppressor of the ftsAl2 temperature-sensitive 
mutation (Dai et al., 1993). FtsN overproduction was also found to 

suppress temperature-sensitive alleles of ftsl, ftsQ and some alleles of 
ftsW (Dai et al., 1993; M. Khattar, pers. comm.). FtsN overproduction 

could not suppress the lethal phenotype of a conditional ftsA (amber) 
mutant, suggesting that residual protein (albeit non-functional) was 

required for the suppression by FtsN. Overproduction of FtsN did not 

suppress the temperature-sensitive ftsZ84 allele, so it appears that 

suppression by FtsN is limited to late acting division genes (Dai et al., 
1993) 

The FtsN overproducing plasmid pKD140 (Dai et at., 1993) and a 
control plasmid pBR322 (Bolivar et al., 1977) were transformed separately 

into MGK44. A second plasmid, pHL1 (a gift from M. Khattar), containing 

several genes from the 88.5 minute region, including ftsN, cloned into 

pBR322 (Figure 5.3.2) was also transformed into MGK44. 
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Figure 5.3.2. The chromosomal regions cloned into pBR322 to form pHLl 
(top) and pKD140 (bottom). 

100 il of a 1:400 dilution of the exponentially growing cultures 

(0D600=0.3) were plated on a variety of media. MGK44 was plated onto LB, 

nutrient broth (NB) and LBiNaCl at 30°C and 42°C. MGK44 (pBR322), 

(pKD140) or (pHL1) was plated in a similar manner onto NB and 

LBNaCl plates containing 100 jig m1 1  ampicillin (NBA and LBANaC1A 

respectively). The number of colonies that formed on each set of plates is 

indicated in Table 5.1. 
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Strain 	Media 	Colonies at 	Colonies at 	Plating 

30°C 	42°C 	efficiency at 

42°C (%) 

MGK44 	LB 	 231 	 237 	 102 

MGK44 	NB 	 644 	 3 	 0.4 

MGK44 	LBANaC1 	594 	 8 	 1.3 

MGK44 	NBA 	662 	 3 	 0.4 

(pBR322) 

MGK44 	LBANaC1A 	641 	 0 	 0 

(pBR322) 

MGK44 	NBA 	450 	437 	97.1 

(pHL1) 

MGK44 	LBANaC1A 	407 	132 	 25 

(pHL1) 

MGK44 	NBA 	1152 	1170 	101 

(pKD14O) 

MGK44 	LBANaC1A 	1209 	927 	 76 

(pKD14O) 

Table 5.1. Colony counts on LB-agar (LB), nutrient broth agar (NB) and 
LBzNaC1-agar at 30°C and 42°C. Plates with ampicillin added to 100 p.g 

m1 1  are indicated by NBA (nutrient broth agar +ampicillin) and 
LBNaC1A (LB without salt +ampicillin). Plating efficiency is defined as 
(no. of colonies on the 42°C plates / no. of colonies on the corresponding 
30°C plates) x 100. 

MGK44 was suppressed by multicopy plasmids containing ftsN. 

The salt-reversible nature of ftsK44 (Begg et al., 1995) was confirmed by the 

100% plating efficiency observed on LB-agar at 42°C, which contains 1% 

NaCl (w:v). MGK44 is temperature-sensitive on media with reduced 

amounts of salt, NB (0.5% NaCl w:v) and LBANaC1 (no salt), as was 

described by Begg et al. (1995). MGK44 (pBR322) shows similar 

temperature-sensitive characteristics to MGK44. MGK44 (pHLl) has 100% 
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plating efficiency on NBA plates but only 25% plating efficiency on 

LBiNaClA. This could be due to the extra stringency imparted by the 

complete absence of salt from the LBENaCl plates. MGK44 (pKD140) also 

showed 100% plating efficiency on NBA plates. MGK44 (pKD140) had a 

plating efficiency of 76% on LBANaC1A. The difference between the 

plating efficiencies of MGK44 (pHL1) and MGK44 (pKD140) on LBANaC1A 

differs by 51%. This could be due to the presence of extra genes from the 

88.5 minute region in p1-IL1, some of which are uncharacterized, which 

might have a slightly deleterious effect on the cell. In pKD140, ftsN is 

cloned into the tetracycline resistance gene of pBR322. It is possible that 

transcription from the tetracycline resistance gene promoter could lead to 

extra production of FtsN that might result in the better suppression seen 

in MGK44 (pKD140) plated on LBANaC1A media. 

It was next decided to examine whether overproduction of FtsN 

would suppress the lethal effect of ftsK 54 .2201 ::cat. The P1 lysate grown on 

K2:1 was used to transduce MG1655 (pKD140). Selection was made for 

Tet/Amp resistant colonies on LB-agar at 37°C. 150 of the Tet/Amp 

resistant colonies were screened for the co-transduction of the ftsK A54  

2201 ::cat construct. 98 of the 150 (65%) colonies proved to be 

Tet/Amp/Cmp resistant. It was therefore possible to transduce the ftsK A54  

2201 ::cat allele, which normally required complementation by extra 

chromosomal copies of fisK, into a strain overproducing FtsN. This is the 

first report of multicopy ftsN suppressing a null-allele. The mechanism 

of suppression is not known but will be discussed at the end of this 

chapter. 
The insertional inactivation of the dacA gene, which encodes PBP5 

(see section 1.3.7), was found by Begg et al. (1995) to suppress the 

temperature-sensitivity of ftsK44. To examine whether the inactivation 

of dacA would also suppress the lethality of ftsK 2201 ::cat, a P1 lysate was 

grown on SF1070 (which carries the dacA::kan allele) and used to 

transduce MG1655. Selection was for kanamycin resistant transductants. 

The resultant strain was named MGdak. The lysate grown on K2:1 was 

used to transduce MGdak. Selection was for Tet/Kan resistant 

transductants. 100 of the Tet/Kan resistant colonies were screened for the 

co-transduction of chloramphenicol resistance (from ftsK, 542201 ::cat). 46 of 

the 100 colonies tested were Cmp/Tet/Kan resistant. This co-transduction 

frequency (46%) was lower than that observed for previous tests for the 
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co-transduction of the cat gene inserted in ftsK and aroA::TnlO. This 

could be because the insertional inactivation of dacA does not suppress 

the inactivation of ftsK as well as does ftsN in multi-copy. It was 

concluded that the insertional inactivation of dacA also suppressed the 

lethal effect of ftsK 2201 ::cat. A Tet/Cmp/Kan resistant isolate was 

selected and the strain named CDK3. 

The possibility that the Tet/Cmp/Kan resistant transductants had 

developed another suppressor mutation and that the insertional 

inactivation of dacA did not have a suppressing effect was discounted. 

This was because the number of transductants was deemed too high for 

all the transductants to have developed other extra- or intragenic 

suppressors. To check for intragenic suppression in CDK3, MG1655 

pcnB::kan (pBADK) was transduced with a lysate grown on CDK3. 

Selection was for Tet/Cmp/Kan resistant colonies in the presence of 

arabinose. 20 of the transductants were plated on Tet/Cmp/Kan plates 

containing either arabinose or glucose. No growth was observed on the 

glucose containing plates, indicating that ftsK was inactivated in CDK3. 

It was also decided to check for suppessors of ftsK A542201 ::cat that 

might arise when a wild-type strain was transduced with the K2:1 lysate. 

MG1655 was transduced with the lysate grown on K2:1 and subsequent 

selection for both tetracycline and chloramphenicol resistance resulted in 

the formation of only one or two colonies per transduction, not the 

numbers of transductants seen with the transduction of ftsK542201::cat 

into MGdak. These isolates were found to be spectinomycin resistant, 

indicating the co-transduction of pGB101 or that pGB101 was integrated 

into the chromosome within P1 transducing distance from ftsK and 

aroA::TnlO. It was concluded that either the presence of dacA::kan made 

it more likely for other types of suppressors to develop or, as was thought 

to be more likely, that the insertional inactivation of dacA did suppress 

ftsKA542201::cat. An insight on the mechanism of dacA deletion mediated 

suppression of ftsK44 was supplied by J. -v Holtje (pers. comm). In the 

terminal stages of septal closure Dr. Holtje proposes is that the final step 

requires pentapeptide side chains. These pentapeptide side chains are 

thought to be required as tripeptide side chains hypothetically cannot span 

the nearly completed septum. Thus, a role for FtsK in the silencing of 

PBP5 activity during this septum closing stage could be envisioned. In 

order for there to be enough pentapeptide side chains to close the gap, the 
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D-ala:D-ala carboxypeptidase activity of PBP5 needs to be suppressed. As 

FtsK has already been implicated in the late stage of cell division (Begg et 

al., 1995) it is possible to see how the inactivation of dacA would result in 

the presence of extra pentapeptide side chains, thus the Ts nature of ftsK44 

could be ameliorated as FtsK activity would not be required for the 

completion of cell division under these conditions. 

Overproduction of FtsQ, FtsA and FtsZ from pBS58 (Bi and 

Lutkenhaus, 1990) and the overproduction of FtsW from pKHS3 (a gift 

from M. Khattar) did not suppress ftsK 2201 ::cat, indicating that the 

suppression of ftsK542201::cat by overproduction of FtsN or the 

inactivation of dacA was specific. 

Studies into the suppressors of ftsK-null strains need to be 

expanded and studied in more detail. Perhaps the identification of other 

suppressors of the inactivation of ftsK would lead to greater insight into 

FtsK function. 

5.3.4 PCR and Southern blot analysis of CDK2 

Before any further analysis of CDK2 was attempted it was decided to 

ensure that the chromosomal copy of ftsK had been replaced with ftsK 54  

2201 ::cat. Chromosomal DNA was isolated from CDK2 pcnB::kan (pBADK) 

and CDK3 as described in section 2.2.4 and these DNAs were subjected to 

PCR analysis. As with the PCR analysis of CDK1, primers K-up and K-rev 

(5'-TTGAGCCAGGAATACATTGAAGAC-3') and (5'-GCATCAACAGCGGATGAAGCAGGG-3') 

respectively, were used. MGAT chromosomal DNA and pCDCAT was 

subjected to the same analysis. The PCR products were subjected to 

analysis by 0.8% agarose gel electrophoresis. A photograph of the gel is 

shown in Figure 5.3.3. 
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Figure 5.3.3. The results of PCR from CDK2 pcnB::kan (pBADK) (lane 2), 
CDK3 (lane 3), pCDCAT (lane 4) and MGAT (lane 5) DNA. The markers 
are MBI 1 kb ladder, fragment sizes are indicated. 

The predicted fragments of 1.8 kb and 2.5 kb resulted from the PCR 

of CDK2 pcnB::kan (pBADK) (lane 2). Two fragments are produced 

because pBADK plasmid DNA is a contaminant of the chromosomal 

DNA isolated from CDK2 pcnB::kan (pBADK). The 1.8 kb fragment is 

derived from the chromosomal construct (ftsK A542201 ::cat) and the 2.5 kb 

fragment is produced from pBADK. It has been shown previously that 

the ftsK A220I ::cat construct is present on the chromosome and not on a 

plasmid because aroA::TnlO and ftsK 52201 ::cat can be co-transduced with 

the expected frequency. CDK3 (MG1655 ftsKA542201::cat dacA::kan) also 

produced the desired band of 1.8 kb. As controls, PCR of pCDCAT gave a 

single band of 1.8 kb (lane 3) and PCR of MGAT chromosomal DNA 

produced a fragment of 2.5 kb. The fragment sizes proved to be as 

predicted but the organization of the 20 minute region in CDK2 pcnB::kan 

(pBADK) could not be deduced from this experiment. 

Chromosomal DNA from CDK3 was subjected to Southern blot 

analysis. CDK3 had previously been shown to carry the ftsK Mol ::cat 

allele by P1 transduction and PCR analysis of purified CDK3 chromosomal 

DNA gave the correct sized band (see above). CDK3 chromosomal DNA 

was chosen for Southern blot analysis because it lacks the contaminating 

plasmid DNA present in purified CDK2 pcnB::kan (pBADK) DNA and 

would result in clearer autoradiographs. CDK3 and MGAT chromosomal 
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DNA was digested with EcoRI/BamHI, ScaT and Pvull. After overnight 

electrophoresis through a 0.8% agarose gel the DNA was blotted and 

immobilised onto positively-charged nylon membrane as described in 

section 2.2.19. In a similar manner to the Southern blot analysis of CDK1 

chromosomal DNA, the filter was probed with random 32P-labeled 

fragments derived from a 1165 bp fragment containing the 3' end of ftsK 

and the entire lolA gene (see section 5.2.3). The probe was predicted to 

hybridise to the following fragments: 

CDK3 EcoRI/BamHI 	3446 bp 

ScaT 	3362 bp 

PvuII 	5232 bp 

MGAT EcoRI/BamHI 3446 bp 

ScaT 	5359 bp 

PvuIT 	5427 bp 

After exposure of the probed membrane to X-ray film the membrane was 

stripped of hybridised probe as described in section 2.2.21. The filter was 

re-probed with a random 32P-labeled fragments produced from a 657 bp 

fragment from pUCAT18 (see section 5.2.3). This probe was predicted to 

hybridise the following fragments: 

CDK3 EcoRI/BamHI 	2286 bp 

ScaT 	3362 bp and 1323 bp 

PvuII 	5232 bp 

The probe was not expected to hybridise to digested MGAT chromosomal 

DNA. The cat-probed membrane was exposed to X-ray film. Photographs 

of the autoradiographs that resulted from the two different probings are 

shown in Figure 5.3.4. 
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Figure 5.3.4. Photographs of the autoradiographs resulting from probing 
immobilised digested CDK3 and MGAT chromosomal DNA with (A): a 
randomly labeled 32P-labeled probe derived from the 1165 bp BamHI 
restriction product from pCD101 which contains the 3' 102 bases of ftsK 
and the entire lolA gene and (B) a random 32P-labeled probe produced 
from a 657 bp EcoRI-Bsu361 fragment from pUCAT18. The lane order in 
both (A) and (B) is CDK3 EcoRI/BamHI (lane 1) CDK3 ScaT (lane 2) CDK3 
PvuII (lane 3), MGAT EcoRI/BamHI (Lane 4) MGAT ScaT (lane 5) MGAT 
PvuII (lane 6). The cat probe did not hybridise to MGAT DNA and so 
have been omitted from (B). The fragment sizes of the ? Hindlil markers 
are shown. 

The pattern of hybridization was as anticipated. The chromosomal 

ftsK gene had been replaced with ftsK 4 ..2201 ::cat. Figure 5.3.5 shows the 

organization of the 20 minute region in CDK2. 
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Figure 5.3.5. The organization of the 20 minute region in wild-type E. coli 
and CDK2. The presence of ftsK 677::cat was confirmed by both PCR and 
Southern analysis. 

5.3.5 Depletion of FtsK from CDK2 

The effect of depleting FtsK from CDK2 was determined by 

culturing CDK2 pcnB::kan (pBADK) at 37°C in LB-broth containing 

chloramphenicol, ampicillin and kanamycin and arabinose. After 120 

minutes the culture was diluted 1:5 into pre-warmed LB-broth with 

antibiotic supplements containing either arabinose or glucose. The 

growth curve of CDK2 pcnB::kan (pBADK) is shown in Figure 5.3.6. 
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Figure 5.3.6. Growth curve of CDK2 pcnB::kan (pBADK) in 0.2% arabinose 
and 0.2% glucose containing LB-broth. 180 minutes after the switch from 
0.2% arabinose containing media to 0.2% glucose containing media 
filaments were apparent. After 270 minutes of growth in arabinose 
containing medium the filaments began to lyse. 

Microscopic examination of the cultures revealed that CDK2 

pcnB::kan (pBADK) grown in the presence of arabinose formed a mixture 

of normal cells and short and long filaments. The filaments could be a 

result of the loss of pBADK from the cell, which would result in the 

depletion of FtsK. CDK2 pcnB::kan (pBADK) grown in glucose containing 

media formed filaments with evidence of lysis. This lysis was probably 

the cause of the drop in the growth rate of CDK2 pcnB::kan (pBADK) 

grown in the presence of glucose seen in Figure 5.3.6. Phase contrast 

micrographs of CDK2 pcnB::kan (pBADK) grown in arabinose and glucose 

are shown in Figure 5.3.7. 
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Figure 5.3.7. Phase contrast micrographs of CDK2 pcnB::kan (pBADK) 
grown in LB-broth 0.2% arabinose (top) and 3 hours after the switch into 
0.2% glucose containing LB-broth (bottom). 
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FtsK was shown to be essential for cell division as replacement of 

bp 54-2201 with the cat gene from pBR325 resulted in the formation of 

aseptate filaments that eventually lyse. Whether or not ftsK should called 

an essential gene is a open for debate. In wild-type cells, ftsK is an 

essential gene, as inactivation lethally blocks cell division. The finding 

that ftsK A542201 ::cat can be suppressed by the insertional inactivation of 

dacA or the overproduction of FtsN leads to the suggestion that 

mutations in these genes or their regulatory regions could render ftsK 

inessential. 

5.3.6 Localization of FtsZ in FtsK depleted filaments 

Samples of CDK2 pcnB::kan (pBADK) cultured in the presence of 

arabinose and glucose were fixed and processed for IFM and probed with 

F168-12, an anti-FtsZ monoclonal antibody (Voskuil et al., 1994) and Cy3-

conjugated anti-mouse secondary antibody (Jackson Research) as described 

in section 2.4.6. This would show whether the filaments formed by CDK2 

pcnB::kan (pBADK) cultured in the presence of glucose contained FtsZ 

rings and hence give an insight as to the mechanism of filamentation. 

The immunofluorescence micrographs of the cells grown in both 

arabinose and glucose containing LB-broth are shown in Figure 5.3.8. 
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FtsZ rings form in cells from both cultures. This was expected from 

CDK2 pcnB::kan (pBADK) grown in the presence of arabinose as most of 

the cells are actively dividing. Filamentous CDK2 pcnB::kan (pBADK) 

grown in glucose containing LB-broth also possesses FtsZ rings, although 

fewer than would be expected than if FtsZ ring formation was unaffected. 

This could be due to the fixing procedure or an actual consequence of FtsK 

depletion. The formation of the smooth sided filaments by the depletion 

of FtsK from CDK2 pcnB::kan (pBADK) is not, therefore, due to the 

inhibition of FtsZ ring formation. It appears that the FtsZ rings cannot 

invaginate due to the lack of FtsK. Deep invaginations do not appear, as 

would be expected if ftsK behaved as a classical late acting division gene 

(Begg et al., 1985; Begg et al., 1995). This phenotype is similar to that seen 

with a null-allele of ftsN, another late acting cell division gene (Addinall 

et al., 1997; Dai et al., 1993). AnftsN::kan allele is lethal unless extra copies 

of ftsN are supplied on a plasmid and depletion of FtsN from a strain 

bearing this allele causes the cells to form smooth-sided filaments, much 

the same as with the depletion of FtsK from CDK2 pcnB::kan (pBADK). 

This apparent contradiction warrants further investigation. 

5.3.7 The N-terminus of FtsK exhibits a cell division function 

The construction of CDK2 presented the opportunity to investigate 

the function of the N-terminal membrane spanning domain and the C-

terminal SpollIE-like regions of FtsK. pBADK' and pBADK'3 and a new 

plasmid pKC1 were transformed into MG1655 pcnB::kan. 

MG1655 pcnB::kan (pBADK'), (pBADK'3) and (pKC1) were 

transduced with the lysate grown on K2:1. Selection was for 

Cmp/Amp/Kan resistant transductants. In the cases of the transduction 

of MG1655 pcnB::kan (pBADK') and (pBADK'3) with the K2:1 lysate the 

selective plates also contained arabinose. Colonies formed on the MG1655 

pcnB::kan (pBADK') x K2:1 transduction plates but no colonies formed on 

the plates from the transductions involving MG1655 pcnB::kan 

(pBADK'3) and (pKC1). Several of the colonies from the MG1655 

pcnB::kan (pBADK') x K2:1 transduction were plated onto LB-agar plates 

containing ampicillin and chioramphenicol supplemented with either 

arabinose or glucose. Colonies formed on the arabinose containing plates 

but not on the glucose containing plates. pBADK' could complement the 
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ftsKA54.2201::cat allele in a pcnB::kan background, whereas it appeared that 

pBADK'3 and pKC1 could not. To examine whether the reduced copy 

number of pBADK'3 and pKC1 in the pcnB::kan background had an effect 

on the transduction pBADK', pBADK'3 and pKC1 were transformed into 

the wild-type strain MG1655. MG1655 (pBADK'), (pBADK'3) and (pKC1) 

were transduced with the lysate grown on K2:1 to introduce the ftsK 54  

2201 ::cat allele. Selection was for Cmp/Amp resistant transductants. As in 

the earlier transduction the selective media on which the MG1655 

(pBADK') and (pBADK'3) transductants were plated was supplemented 

with arabinose. This time, transductants appeared on the MG1655 

(pBADK') and (pBADK'3) plates [forming CDK2 (pBADK') and 

(pBADK'3)]. Again, no colonies appeared on the MG1655 (pKC1) x K2:1 

transduction plates. The ftsK 5422oi ::cat allele could not be complemented 

by a plasmid bearing the 3' 1786 bp of ftsK. 

CDK2 (pBADK') and (pBADK'3) were plated on LB-agar containing 

100 jig m1 1  ampicillin and either arabinose or glucose. CDK2 (pBADK') 

formed colonies on both the glucose and the arabinose containing plates. 

CDK2 (pBADK'3) formed colonies on the arabinose containing plates but 

not on the glucose containing plates. CDK2 (pBADK') behaved in a 

similar manner to CDK2 (pBADK), in that it appeared that transcription 

from repressed PBAD  to complement or suppress the lethality of ftsK 54  

2201 ::cat. This had been shown previously, as pBADK' complemented 

ftsK 542201 ::cat in the presence of arabinose but not glucose in a pcnB::kan 

derivative of CDK2. pBADK'3 could not support growth in a CDK2 

pcnB::kan strain, as no colonies formed after the transduction of MG1655 

pcnB::kan (pBADK'3) with the lysate grown on K2:1, whether the 

transductants were plated on media containing arabinose or glucose. 

The reason for this copy-number dependent difference in the 

complementation of ftsK 542201 ::cat by the 225 aa truncated FtsK' 

polypeptide encoded by pBADK'3 (FtsK'225) compared to pBADK and 

pBADK' (FtsK'583) could be because FtsK'225 is not as stable as wild-type 

FtsK or FtsK'583. Another possibility is that FtsK'225 has reduced activity 

and does not complement the lethality of ftsK A54 .2201 ::cat as well as wild-

type FtsK or FtsK'583 and either more of the truncated peptide or more 

transcript is required for growth. 

Phase contrast microscope analysis of CDK2 (pBADK'3) revealed 

that when grown in arabinose most of the cells have a normal 
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morphology, with some (12%) forming chains and filaments (8%) (Figure 

5.18). As with depletion of wild-type FtsK from CDK2, depletion of 

FtsK'225 from CDK2 (pBADK'3) resulted in the formation of aseptate 

filaments, many of which were lysed (Figure 5.3.9). The formation of the 

filaments in the arabinose culture could be due to loss of the pBADK'3, 

which would result in the depletion of FtsK'225 and hence filamentation 
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Figure 5.3.9. CDK2 (pBADK3) grown in the presence of 0.2% arabinose 
(top) and 0.2% glucose (bottom) after three hours. 
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These findings suggest that in E. co/i, only the N-terminal 225 aa of 

FtsK are required for cell division and viability. It appeared from these 

results that the C-terminus of FtsK was dispensable. CDK1 and CDK2 both 

carry large regions of the 3' end of the ftsK gene after the insertion point 

of the cat gene (see Figures 5.2.8 and 5.3.5 respectively) and it was not 

possible to rule out the involvement of any potential peptides produced 

from this region. The promoters for ftsK and cat could transcribe this 

region and there are many potential ATG translation initiation codons in-

frame with ftsK. In vitro transcription/ translation of a clone of this 

region has been shown to produce an polypeptide (Diez et al., 1997). A 

possible role for this polypeptide (if it is produced in vivo) in the 

phenotypes exhibited by CDK1 and CDK2 could not be ruled out, although 

with CDK2, the transcription of this region alone could not support cell 

growth. In order to verify that the chain formation observed in CDK1 and 

CDK2 pcnB::kan (pBADK'3) grown in arabinose containing media was 

solely due to the production of the N-terminal 225 aa of FtsK, a new 

deletion mutant was constructed. 

5.4 Construction of CDK5 

The same approach used in the construction of CDK1 and CDK2 

was taken to produce a new insertion/ deletion derivative of ftsK. 

pCDCAT was digested with Bsu361 and NruI. This produced fragments of 

1502 and 7741 bp. The 7741 bp fragment was purified and end-filled with 

Kienow (section 2.2.9). Residual salts, protein and nucleotides were 

removed using the Promega DNA Clean-up kit and the fragment 

religated to form pCDCAT2 (Figure 5.4.1) 
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Figure 5.4.1. pCDCAT2, a deletion derivative of pCDCAT. The cat gene is 
transcribed in the same direction as ftsK from its own promoter. 

pCDCAT2 has bp 54-3369 of the fisK gene replaced with the cat gene 

of pBR325 (ftsK 543369::cat). The cat gene transcribes in the same 

orientation as ftsK. The 3' end of the ftsK is out of frame with cat and the 

region coding for the nucleotide binding motifs in the C-terminal region 

of FtsK had been deleted. It was predicted that pCDCAT2 encoded no 

functional FtsK derived truncated peptides, unlike pKBCAT and 

pCDCAT. 

5.4.1 Replacement of fisK with ftsK 3369::cat 

Like pCDCAT, pCDCAT2 did not complement ftsK44 (Ts) at the 

non-permissive temperature. The following transductions and screening 

was performed with the aid of N. McLennan. pCDCAT2 was transformed 

into MGAT (pGB101). A P1 lysate was grown on MGAT (pGB101) 

(pCDCAT2) at 30°C. This lysate was used to transduce W3110 (pGB101). 

Selection was for Tet/Cmp/Spec resistant transductants. 1/10 of the 

transduction mixture was plated onto Tet/Spec containing media, this 

would act as a control and indicate whether efficient transduction had 

taken place. 16 Tet/Cmp/Spec resistant transductants were isolated along 
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with approximately 1500 Tet/Spec resistant transductants from the 

control. The Tet/Cmp/Spec were screened for loss of ampicillin 

resistance. Two of the isolates proved to be Tet/Cmp/Spec resistant and 

ampicillin-sensitive. One of these isolates was chosen for further study 

and named NACK6 (pGB101). 

5.4.2 Southern blot analysis of NACK6 

Chromosomal DNA was isolated from NACK6 (pGB101) as 

described in section 2.2.4. The isolated NACK6 chromosomal DNA had 

pGB101 DNA co-purified as a contaminant. NACK6 and MGAT 

chromosomal DNAs were digested with EcoRI/BamHI, ScaT and PvuII. 

The digested DNA was subjected to agarose gel electrophoresis then 

blotted and immobilised onto nylon membrane. The immobilised DNA 

was then probed with the same randomly 32P-labeled fisK-lolA fragment 

described in section 5.2.3. The probe was predicted to hybridise to the 

following fragments: 

NACK6 	EcoRI/BamHI 	3446 bp (1165 bp) 

ScaT 	 1900 bp (11.3 kb) 

Pvull 	 3879 bp (8.1 kb) 

The fragment sizes in parentheses are fragments derived from pGB101. 

MGAT 	EcoRI/BamHI 	3446 bp 

ScaT 	 5359 bp 

Pvull 	 5427 bp 

A photograph of the resultant autoradiograph is shown in Figure 5.4.2. 

The filter was stripped as described in section 2.2.21 and reprobed 

with the random 32P-labeled probe produced from the cat gene of 

pUCAT18 (described in section 5.2.3). The probe was predicted to anneal 

to the following fragments. 

NACK6 	EcoRI/BamHI 	823 bp 

ScaT 	 1323 bp and 1889 bp 

Pvull 	 3879 bp 
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The probe was not expected to hybridise to the MGAT DNA. The 

photograph of the resultant autoradiograph is shown in Figure 5.4.2. 

A 	 B 

Figure 5.4.2. The photographs of the autoradiographs resulting from 
probing immobilised digested CDK5 and MGAT chromosomal DNA with 
(A): a randomly labeled 32  P-labeled probe derived from the 1165 bp BamHI 
restriction product from pCD101 which contains the 3' 102 bases of ftsK 
and the entire lolA gene and (B) a random 32P-labeled probe produced 
from a 657 bp EcoRI-Bsu361 fragment from pUCAT18. The lane order in 
both (A) and (B) is CDK3 EcoRI/BamHT (lane 1) CDK3 ScaT (lane 2) CDK3 
PvuII (lane 3), MGAT EcoRI/BamHI (Lane 4) MGAT ScaT (lane 5) MGAT 
PvuII (lane 6). The cat probe did not hybridise to MGAT DNA and so 
these lanes have been omitted. The fragment sizes of the X HindIII 
markers are shown. 

The pattern of hybridization was as predicted, therefore, NACK6 

had the wild-type ftsK gene replaced with the interrupted ftsK gene from 

pCDCAT2 (ftsK 3369::cat). A diagram of the organization of the 20 

minutes in NACK6 is shown in Figure 5.4.3. 
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Figure 5.4.3. The organization of the 20 minute region in wild-type E. coli 
NACK6. This was confirmed by Southern blot analysis. 

5.4.3 Depletion of FtsK from CDK5 

A P1 lysate was grown on NACK6 (pGB101) and used to transduce 

MG1655 pcnB::kan (pBADK). Selection was for Tet/Spec/Amp resistant 

transductants in the presence of arabinose. 100 of the Tet/Spec/Amp 

resistant transductants were screened for the co-transduction of ftsK 54  

3369::cat in the presence of arabinose. 58 (58%) of the isolates proved to be 

Tet/Cmp /Spec /Amp resistant. One isolate was chosen and the strain 

named CDK5 pcnB::kan (pBADK). CDK5 pcnB::kan (pBADK) was plated 

onto LB-agar containing Tet/Cmp /Spec /Amp and either arabinose or 

glucose. Growth was observed on the arabinose- but not the glucose-

containing plates. 

The effect of depleting FtsK from CDK5 pcn B: :kan (pBADK) was 

determined by culturing CDK5 pcnB::kan (pBADK) at 37°C in LB-broth 

containing chloramphenicol, ampicillin and kanamycin and arabinose. 

At 100 minutes the culture was washed twice with LB broth and diluted 

1:5 into pre-warmed LB-broth with antibiotic supplements containing 

either arabinose or glucose. The growth curve of CDK2 pcnB::kan 

(pBADK) is shown in Figure 5.4.4. 
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Figure 5.4.4. Growth curve of CDK5 pcnB::kan (pBADK) in 0.2% arabinose 
and 0.2% glucose containing LB-broth. 120 minutes after the switch from 
0.2% arabinose containing media to 0.2% glucose containing media 
filaments began to form. After 320 minutes lysis of the filaments was 
apparent. 

The effects of depletion of FtsK from CDK5 pcnB::kan (pBADK) 

were similar to the depletion of FtsK from CDK2 pcnB::kan (pBADK) 

(Figure 5.3.6; section 5.3.5), which also resulted in filamentation and lysis. 

Filaments were apparent after 120 minutes and lysis was apparent 230 

minutes after the switch into glucose containing media. The lysis was 

accompanied by a fall on the optical density of the culture. Phase contrast 

micrographs of CDK5 pcnB::kan (pBADK) grown in arabinose for six 

hours and glucose for four hours are shown in Figure 5.4.5. 
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Figure 5.4.5. CDK5 pcnB::kan (pBADK) cultured in arabinose-containing 
LB-broth for six hours (top) and glucose-containing LB-broth for four 
hours (bottom). 
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CDK5 pcnB::kan (pBADK) behaved in a similar manner to CDK2 

pcnB::kan (pBADK). ftsK 543369::cat could also be suppressed by the 

overproduction of FtsN from pKD140 (Dai et al., 1993). Interestingly, 

unlike ftsK 542201 ::cat). ftsK 54..3369 ::cat could not be transduced into a strain 

in which dacA had been insertionally inactivated (SP1070) (N. McLennan, 

pers. comm.). ftsK 54.3369 ::cat and ftsK 542201 ::cat therefore, do have 

different properties. It could be possible that the extra 3' region of ftsK 

present in ftsK542201::cat could be responsible for the suppression of 

ftsK 542201 ::cat by the insertional inactivation of dacA. The final steps in 

the closure of the septum is thought to involve a novel situation where 

pentapeptide, rather than tripeptide acceptors within the peptidoglycan 

are required (J.-V. Holtje, pers. comm.). Thus, the D-ala:D-ala 

carboyxpeptidase activity of PBP5 (encoded by the dacA gene) would be 

detrimental to septum closure. It could be postulated that one of the 

functions of the N-terminus of FtsK in cell division is to 'silence' the 

function of PBP5 at the terminal stages of septum formation, resulting in 

an increase of the amount of pentapeptide acceptor suitable for septum 

closure. Thus, the dacA::kan allele could suppress ftsK44 and ftsK 54  

2201 ::cat as there would be reduced degradation of pentapeptide acceptors 

even in the absence of the proposed PBP5 silencing function of the N-

terminus of FtsK. If this is true, then it is surprising that dacA::kan did 

not suppress ftsK 543369::cat. The only difference between ftsK, 2201 ::cat 

and ftsK54.3369::cat is the presence in ftsK 542201 ::cat of an extra 1168 bp of 

the 3' of the end of the cat gene insertion. This region of DNA could 

produce a peptide (Diez et al., 1997), that could be important for the 

proposed dacA::kan suppression. 

To examine whether FtsZ ring formation was affected in CDK5 

pcnB::kan (pBADK), the strain was cultured in both arabinose and glucose 

containing LB-broth were processed for IFM as described in section 2.5.6. 

The anti-FtsZ monoclonal antibody F168-12 was used as primary label, 

followed by Cy3-conjugated anti-mouse secondary antibody. Photographs 

of the stained cells are shown in Figure 5.4.6. 
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CDK5 pcnB ::kan (pBADK) grown in the presence of arabinose had 

FtsZ ring structures. There were a number of filamentous cells in the 

population, possibly due to the loss of pBADK or because the amount of 

FtsK expressed from pBADK was insufficient. It is unlikely that the 

filaments could form due to overproduction of FtsK because FtsZ rings 

where present, which is not the case when FtsK is overproduced in wild-

type cells (section 3.3.3). Filamentous CDK5 pcnB::kan (pBADK) cultured 

in glucose containing media also had FtsZ rings, although, as has been 

observed previously, there were less FtsZ rings seen per cell as would be 

expected if FtsZ ring formation of stability was unaffected (Pogliano et al., 
1997; section 3.6; section 5.3.6). The reason for the filamentous 

morphology of CDK5 pcnB ::kan (pBADK) grown in glucose was not due 

to the lack of FtsZ rings. It cannot be stated, however, that FtsZ ring 

function is unaffected, as it appears that depletion of FtsK prevents FtsZ 

ring constriction at an early stage. 

5.4.4 Chromosome segregation on FtsK depleted filaments 

The chromosomes of CDK5 pc ii B:: ka n (pBADK) and CDK2 

pcnB::kan (pBADK) cultured in either arabinose- or glucose-containing 

LB-broth for four hours were stained with 4,6-diamidino-2-phenylindole 

(DAPI). Both CDK5 pCnB::kan (pBADK) and CDK2 pCnB::kan (pBADK) 

were previously shown to produce a mixture of filaments and normal-

sized cells in arabinose-contairting media (sections 53.2 and 543, 

respectively). The normal sized cells of both strains (from the arabinose-

containing media) showed a standard pattern of chromosome segregation, 

with one or two chromosomes present per cell (Figure 5.4.7). The 

filaments present either had normally segregated or obviously mis-

segregated chromosomes (Figure 5.5.7). It was proposed in section 5.3.5 

that the formation of filaments by CDK2 pcnB::kan (pBADK) in arabinose-

containing media could be due to loss of pBADK and the resultant 

depletion of FtsK. CDK2 pcnB::kan (pBADK) and CDK5 pcnB::kan 

(pBADK) from the glucose-containing media formed filaments with 

either a normal or mis-segregated chromosome distribution (Figure 5.4.8). 

The nucleoids in the cells displaying abnormal chromosome segregation 

had a condensed, rounded appearance. 
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Figure 5.4.7. CDK2 pcnB::kan (pBADK) (top) and CDK5 pcnB::kan 
(pBADK) (bottom) cultured in arabinose containing LB-broth for four 
hours stained with DAPI. The populations consist of normal sized cells 
and filaments. The normal sized cells have properly partitioned 
chromosomes. The filaments display either normal or aberrant nuclear 
segregation. The nucleoids in the cells displaying abnormal chromosome 
segregation had a condensed, rounded appearance. 
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Figure 5.4.8. CDK2 pcnB::kan (pBADK) (top) and CDK5 pcnB::kan 
(pBADK) (bottom) cultured in glucose containing LB-broth for four hours 
stained with DAPI. 70% of the filaments have normally segregated 
chromosomes. The remaining 30% display a variety of chromosome 
abnormalities. These abnormalities typically take the form of large, 
unevenly distributed masses of DNA, small masses of DNA and long 
strands of DNA. There are also large regions of the filaments that do not 
contain any DNA. The nucleoids in the cells displaying abnormal 
chromosome segregation had a Condensed, rounded appearance. 
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Approximately 30% of the filaments displayed some evidence of 

abnormal chromosome segregation. This took the form of misplaced 

chromosomes, large masses of DNA and long regions of the filament 

without any chromosomal DNA. Inactivation of other fts genes results in 

filamentation but not aberrant chromosome segregation (Lutkenhaus 

and Mukherjee, 1996). One possible explanation for the mixed phenotype 

of the culture is that FtsK assists chromosome segregation. If FtsK does 

influence DNA segregation, the function is not required when 

chromosomes partition without error, as 70% of cells depleted of FtsK 

show normal patterns of chromosome partition. If there is a partition 

problem encountered during segregation, FtsK could assist in the 

partitioning of the mis-segregated chromosomes. For this reason, only a 

proportion of the cells depleted of FtsK have abnormally segregated 

chromosomes. A role for FtsK in DNA segregation could be implied by 

virtue of its sequence similarity to the SpolliE family of DNA translocases. 

Alternatively, FtsK could be part of a system linking chromosome 

partition and cell division, as the protein has a function in both these 

processes. Another explanation for the mixed phenotype is that the 

complementing plasmid carrying ftsK could recombine with the ftsK 

locus, thus providing a functional chromosomal copy of ftsK,. Excision of 

the plasmid could result in the mutant allele switching places from the 

chromosome to the plasmid. This, however, would not result in 

filamentation because the genotype of the strain would be wild-type with 

respect to ftsK. The plasmids used for the insertional inactivation of ftsK 

(pKBCAT, pCDCAT and pCDCAT2) did not result in filamentation when 

present in wild-type strains. 

The availability of specific antibodies to FtsK would help address 

the question of the level of FtsK in the depletion strains. Also, repeating 

the experiment in a recA strain would prevent any recombination 

between pBADK and the chromosome. 

A third and potentially more troubling reason why only 30% of the 

cells exhibit a mutant chromosome segregation phenotype was brought to 

light by Siegele and Hu (1997). The work focused on the application of the 

PBAD containing expression vectors for tight repression and graduated 

induction of cloned genes. The green fluorescent protein from Aequorea 

victoria was cloned downstream of PBAD  in pBAD18. At low levels of 

arabinose (0.0016%) it was discovered that a small proportion of the cells 
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in the population fluoresced brightly. At a higher concentration of 

arabinose (0.04%) the majority of the cells fluoresced. The authors 

speculate that the low levels of induction of PBAD  by low concentrations of 

arabinose that was seen by Guzman et al., (1995) was not due to a 

graduated induction of the promoter, but was rather due to come of the 

cells in the population being competent for the uptake of arabinose and 

scavenging the arabinose from the culture medium. This would result in 

of very few cells being maximally induced, thus giving the impression of 

low levels of induction by the whole population. This effect is analogous 

to the induction of the lac promoter at subsaturating levels of inducer that 

was first reported by Novick and Weiner (1957). It appears possible, 

therefore, that the 70% of the CDK2 pcnB::kan (pBADK) cells that do not 

exhibit a chromosomal DNA segregation defect could be scavenging the 

small amounts of residual arabinose from the culture medium and there 

is therefore enough FtsK in these cells to support segregation. However, 

the abnormal cell division phenotype (i.e. filamentation) observed 

indicates that FtsK is either depleted from these cells or that there is 

insufficient FtsK present for cell division but enough for proper 

chromosome partitioning. Guzman et al. (1995) noted that PBAD  should be 

repressed by glucose even in the presence of arabinose and as the FtsK 

depletion was carried out in the presence of glucose we can assume that 

PBAD is repressed to its fullest extent. Other promoter systems, such as the 

lac promoter or the T7 promoter system could be employed in future 

studies and the results compared to those found here. 

The finding by Steiner and Kuempel (1998) that resolution of 

chromosome dimers by recombination at dif requires cell division raised 

the possibility that the chromosomal abnormalities observed when FtsK 

was depleted from the cell could be the result of the lack of resolution of 

multimerised chromosomes. The chromosome dimers that could 

potentially form would not be able to resolve at dif because cell division 

had been blocked. This was addressed by comparing the chromosomes in 

the filaments caused by the depletion of FtsK from CDK5 pcnB::kan 

(pBADK) to filaments induced by the inhibition of PBP3 with 10 .tg m1 1  

benzyl penicillin. Some of the filaments formed by the inhibition of PBP3 

have slight invaginations, as a result of penicillin insensitive 

peptidoglycan biosynthesis (PIPS) (Nanninga, 1991; section 1.1.6). 

Visualization of the nucleoids within these filaments by staining with 
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DAPI revealed what would commonly be called a normal pattern of 

chromosome segregation (Figure 5.4.9). 

Figure 5.4.9. Nucleoid staining of filaments caused by the inhibition of 
PBP3. The segregation of chromosomes appears to be unaffected but some 
of the touching nucleoids could be dimers. 

It is reasonable to assume that some of the chromosomes which 

appear to be touching in the PBP inhibited filaments, which would have 

previously been attributed to chromosome segregation not yet being 

completed, could be dimers that could not resolve at dif because division 

had been blocked. However, comparing this pattern of nucleoid 

segregation to that seen in CDK5 pcnB::kan (pBADK) filaments depleted 

of FtsK reveals that there is a considerable difference in the segregation 

phenotypes of the two strains. As mentioned above, the nucleoid 

segregation pattern of 30%  of the CDK5 pcnB::kan (pBADK) filaments 

depleted of FtsK is highly disturbed and is a much more severe phenotype 

than the PBP3-inhibited filaments. It cannot be stated, however, that the 

lack of dif mediated resolution in CDK5 pcnB::kan (pBADK) filaments 

depleted of FtsK does not contribute to partition abnormalities. 
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The chromosomes of the chain forming strains CDK1 and CDK2 

(pBADK3) and CDK5 (pBADK'3) grown in the presence of arabinose were 

visualized after staining with DAPI. The chromosomal ftsK locus from 

these strains does not produce functional FtsK. CDK5 (pBADK'3) carries 

the 228 bp of the 3' end of ftsK on the chromosome which is unlikely to 

produce a peptide. The chromosomes within the chains from all three 

cultures were found straddling the invaginations or adopted polar 

locations. A proportion of the normal cells also had nucleoids positioned 

towards the cell pole. In the cells exhibiting aberrant chromosome 

segregation the nucleoids had a rounded, condensed appearance (Figure 

5.4.10) 
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Figure 5.4.10. CDK1 (top) and CDK2 (pBADK3) (middle) and CDK5 
(pBADK3) (bottom) grown in the presence of arabinose. Between 10-15% 
of the cells were in the form of chains. The majority of these chains had 
DNA trapped by the invaginated septum, or had DNA at the poles of the 
component cells of the chain. Approximately 12% of the normally shaped 
cells had their chromosomes positioned at the cell poles. The remainder 
of the cells had normally partitioned chromosomes. 
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The N-terminal 225 aa of FtsK, which complements the inhibition of cell 

division imparted by the ftsK-null alleles in CDK2 and CDK5 could not 

complement the chromosome segregation defect. The formation of 

chains could be due to the presence of chromosomes preventing the 

completion of the septum. A full-length clone of ftsK can suppress this 

defect (see above). Thus, the N-terminus of FtsK could encode a cell 

division function and the C-terminus a chromosome partition function. 

The three cultures display a remarkably similar phenotype. The 

proportion of chains in each of the cultures was found to be between 10-

15%. It appears that the presence of the 3' end of ftsK in both CDK1 and 

CDK2 does not have a noticeable effect, as these strains behave the same 

as CDK5, which has the most of the 3' end of ftsK deleted. 

When FtsK'583 was overproduced in a wild-type strain from 

pBADK', chain formation was observed in a proportion of the population 

(section 3.4.1). Examination of the nucleoid distribution within these 

chains showed that these chains also has trapped and polar nuclei. Thus, 

the earlier proposal that FtsK'583 could displace wild-type FtsK from the 

division site (section 3.4.1), leading to the loss of a function due to the 

absence of the C-terminus of FtsK could be correct. This second, C-

terminus encoded function is proposed to be involved in DNA 

segregation. 

5.5 Conclusion and discussion 

Only 225 aa of the N-terminus of FtsK is required for cell division. 

Depletion of this peptide from the ftsK-null strains null CDK2 and CDK5 

resulted in filamentation and eventual lysis. The N-terminus of FtsK 

could, therefore, be the region of the protein specifically involved in cell 

division. The mutation in FtsK44 is located at aa 80 (a glycine to alanine 

substitution), within the region found to support cell division. When 

this FtsK'215 is supplied from a plasmid in CDK2 and CDK5 a 10-15% of 

the cells form chains. The chromosomal DNA within these chains was 

found to be trapped by the septa and at the poles of the cells. Depletion of 

FtsK or FtsK'225 from CDK2 and CDK5 resulted in the formation of 

aseptate filaments which eventually lyse. the ftsK-null alleles in CDK2 

and CDK5 could be suppressed by overproduction of FtsN. This is the first 
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report of FtsN suppressing a null-allele of a cell division gene. Insertional 

inactivation of dacA, which encodes PBP5 has previously been shown to 

suppress the temperature-sensitive nature of ftsK44 (Begg et al., 1995). It 

was shown that insertional inactivation of dacA could suppress the 

lethality of the ftsK 54. 2201 ::cat allele but not ftsK 543369 ::cat. A role was 

proposed for the N-terminus of FtsK in silencing the action of PBP5 

during the final stages of septum formation, or septum closure. In 

preventing the D-ala:D-ala carboxypeptidase function of PBP5 during 

septum closure, the pentapeptide thought to be required for this process 

could be presented. There is no data to suggest that FtsK completes the 

septum closure itself. 

The nucleoid distribution within these filaments is abnormal in 

30% of the population. FtsK, therefore, has at least two functions, cell 

division and chromosome segregation. The finding that only a 

proportion of the cells in the population exhibit partition defects is 

possibly due to FtsK being required when chromosome partition is not 

carried out correctly. In the ftsK-null mutants depleted of FtsK or 

complemented by FtsK'225, there is no C-terminal domain of FtsK present 

to carry out this 'rescue' function and so the partition defects become 

apparent. It has recently been shown that cell division is required for dif-

mediated resolution of dimeric chromosomes (Steiner and Kuempel, 

1998). It is unlikely that inhibition of dif-mediated dimer resolution that 

could occur due to the filamentation caused by the depletion of FtsK is the 

only reason for the partition defect, although it could contribute to the 

effect. Since FtsK is localised to the septum during division a role for FtsK 

in both cell division and ensuring correct partition can be envisioned. A 

role for FtsK in chromosome partition was suggested by Begg et al. (1995) 

because of its sequence similarity to the SpoIIIE family of DNA 

translocases. The study of the involvement of FtsK in partition could be 

greatly enhanced by the availability of the ftsK-null alleles described in 

this chapter. 
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Chapter 5. Summary and future perspectives 

The conclusion of this work is that ftsK is both a cell division and 

chromosome partition gene. The division function of FtsK is essential in 

wild-type cells but is not in some mutant backgrounds. FtsK is, therefore, 

an unsuitable target for anti-microbial agents. Depletion of FtsK from , the 

cell results in filamentation and defective chromosome partition. 

Complementation of null-alleles of ftsK can be achieved with a 225 aa N-

terminal peptide, which has the cell division function. Cell division is 

incomplete in a proportion of these cells, resulting in the formation of 

chains. It is proposed that this chain formation is due to trapping, of 

nuclei at the incomplete septa which would prevent closure of the 

septum. The C-terminus of FtsK is dispensable, but its omission from the 

ftsK-null strains also results in chain formation with trapped nuclei at the 

uncompleted division site. The identification of more suppressors of 

both the ftsK (Ts) and null strains would lead to a greater insight into FtsK 

function. 
Overproduction of FtsK results in lethal filamentation. This 

filamentation is independent of the SOS response. It is possible that FtsK 

could be involved in the sfi-independent pathway of division inhibition, 

which is lexA dependent and requires DNA damage for induction. ftsK is 

preceded by an SOS-inducible promoter that could result in an increase in 

FtsK levels during the SOS-response. 

There is much work still to be done on ftsK. The transcriptional 

organization of the region is an important area of study that needs to be 

investigated. The findings by Begg et al. (1995) that a region upstream of 

lrp was required for complementation of the ftsK44 (Ts) mutant and the 

presence of dinH upstream of ftsK (Lewis et al., 1992) hints at the complex 

transcriptional controls that could be involved in the regulation of ftsK 

expression. The topology of the protein and subcellular localization of 

FtsK are also targets for further research. 
Investigation of the interactions of FtsK with other cell division 

proteins would give an important insight into the co-ordination of 

division proteins at the division site. Purification of FtsK and the 

characterization of its biochemical properties would be informative and 

give a more detailed picture of the overall function of FtsK. 
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The influence of FtsK on partition also needs to be more fully 

characterized. Whether FtsK has a direct or indirect role in chromosome 

segregation is still not fully known. The mechanism by which the C-

terminus of FtsK affects cell division might be elucidated further by 

mutagenesis of this region. 
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