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Abstract

GnRH analogues are extremely useful pharmacological agents, both in the
investigation of the hypothalamic-pituitary axis and in the manipulation of
gonadotropins for the treatment of reproductive cancers, polycystic ovarian
syndrome, endometriosis and precocious puberty, to name but a few. Most
GnRH analogues are based on the substitution of the decapeptide sequence
of GnRH with unnatural amino acids to modify receptor binding affinity,
receptor activation and to decrease proteolysis. Nevertheless these peptides
tend to be rapidly cleared from the circulation and in most cases have to be
administered by injection. The aim of this study was to modify GnRH
agonists and antagonists to enhance half-life by conjugation to a steroid,
thereby conferring plasma protein binding affinity and also to enhance oral
absorption by further conjugation a carrier molecule to achieve oral

absorption.

[DLys’]|GnRH analogue-progesterone conjugates were designed and
synthesized and the products were analysed by HPLC and mass
spectrometry. The most successful method of conjugation was with N,N’-
dicyclohexylcarbodiimide (DCC) in the presence of hydroxybenzotriazole
(HOBt).

The pharmacological properties of five GnRH antagonist-21-
hydroxyprogesterone 21-hemisuccinate conjugates were analysed
(conjugates A, B, C, D, and E). The five conjugates were shown to bind to
mammalian GnRH receptors in whole cell binding assays. The IC, values
of conjugates A, B, C and E were not significantly different (108 + 22nM, 105
+ 27nM, 134 + 26nM and 104 + 7nM respectively), but the IC;, of conjugate
D was significantly lower at 8390 + 936nM (p < 0.001, STT). The conjugates
were analysed for the ability to inhibit mammalian GnRH-stimulated
inositol phosphate production as a measure of GnRH receptor antagonism.
Conjugates A and B had the lowest IC;, values at 97 + 40nM and 76 + 17nM
(p > 0.05, STT), conjugates C and E were significantly less able to inhibit IP
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production (p < 0.01, STT), with IC;, values of 5580 + 127nM and 16,000 +
5190nM, whereas conjugate D did not show inhibition of IP production.
None of the conjugates showed any evidence of partial agonism. Plasma
protein binding was measured in pregnant guinea pig plasma containing
high levels of the progesterone-specific plasma protein PBG. All five
conjugates were able to inhibit [PH]progesterone binding to plasma
proteins, but with higher ED;, values than progesterone itself (p < 0.05,
STT). All antagonist-progesterone conjugates were found to activate the
progesterone receptor, as measured by synthesis of chloramphenicol
acetyltransferase (CAT) by a CAT reporter gene linked to the progesterone
receptor in stably transfected T47D cells. The conjugates induced a similar

level of activation to progesterone.

Conjugate A inhibited gonadal steroid production in the marmoset. In the
female marmoset, 1.0mg and 0.5mg conjugate A prematurely terminated
the luteal phase when administered subcutaneously on day 8 post-
ovulation. In the male marmoset, 0.5mg conjugate A inhibited testosterone
concentrations for at least 72h after subcutaneous injection, whereas with
the same dose of the unmodified peptide, testosterone concentrations were
not significantly different from baseline levels within 24h of injection (p >
0.05, STT). The duration of action of conjugate A was also compared to the

unmodified peptide in an ovarectomized adult macaque.

There are a number of ways to improve the oral absorption of peptides.
Vitamin B,, is absorbed through the GIT by complexing with intrinsic
factor, a large molecular weight protein and the entire vitamin B,,-IF
complex is internalised by the intrinsic factor-cobalamin receptor. Therefore
the design and synthesis of GnRH antagonist-steroid-vitamin B,, molecules

was attempted and discussed.

In conclusion, novel GnRH analogue-progesterone conjugates have been
designed, synthesized and shown to be fully bifunctional in vitro with
respect to the GnRH receptor, plasma protein binding and progesterone

receptor activation. A GnRH antagonist-progesterone conjugate was active
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in vivo in a marmoset model, inhibiting gonadal steroid production for
significantly longer than the unconjugated peptide. These novel molecules
demonstrate that the pharmacokinetics of a peptide drug can be
significantly enhanced by conjugation to steroid molecules to improve half-
life and in addition, the concept that further modification may be used to

increase oral absorption.
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enzyme linked immunosorbent assay
foetal calf serum

follicle stimulating hormone

gastrointestinal tract

glycine
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gonadotropin releasing hormone receptor
G-protein coupled receptor

human serum albumin
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IF
IFCR
IP
IP,

Leu
LH

mGnRH
M.W.
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PBG
PBS
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PKC
Pro

RIA
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Ser
SHBG
SHBG-R
SPDP
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TCI
TCII
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™
Trp
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Uuv
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intrinsic factor

intrinsic factor-cobalamin receptor
inositol phosphates

inositol 1,4,5-triphosphate
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luteinizing hormone

mammalian GnRH
molecular weight

non-specific binding
progesterone binding globulin
phosphate buffered saline
polycystic ovarian syndrome
polyethyleneimine
pyro-glutamic acid

protein kinase C

proline

radioimmunoassay
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serine

sex-hormone binding globulin

sex-hormone binding globulin receptor
N-succinimidyl 3-(2-pyridyldithio)propionate
student’s T-test

transcobalamin I
transcobalamin II
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All peptide sequences are shown in the amino-terminal to carboxy-terminal

orientation.
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1 Literature review

1.1 GENERAL INTRODUCTION

Current estimates are forecasting a world population of 9 billion by the year
2050. The need to find new, easy to use and reliable methods of
contraception for the entire world is of utmost importance. At present the
most practiced methods of contraception are the combined oral contraceptive
pill, the male condom and sterilization. Although the condom and barrier
methods will remain important in the prevention of sexually transmitted
diseases, particularly in those countries where HIV/AIDS is endemic, there
remains a market for a new improved method without undesirable side

effects.

Comparably few methods of contraception are currently in use, with most
drug-based methods based on supraphysiological sex steroids for both men
and women. Gonadotropin releasing hormone (GnRH) analogues work at
the level of the pituitary to affect the release of gonadotropins, thereby
controlling reproductive processes. When combined with steroid hormone
replacement, GnRH analogues may provide an alternative to current

therapies.

GnRH analogues have many potential clinical applications that are only
beginning to be realized. GnRH can be used in a pulsatile manner to replace
the endogenous pulses in polycystic ovarian syndrome (PCOS) and other
causes of amenhorrea, in cryptorchidism and delayed puberty as well as in
the treatment of infertility [1]. GnRH agonists (through desensitisation) and
antagonists (through competition with endogenous GnRH) can be used as
therapeutics in the treatment of many reproductive cancers (prostate,

mammary, endometrial or ovarian) [2], in addition to treating endometriosis,



Chapter 1 Literature review
precocious puberty, PCOS, hirsutism, acne, porphyria and in the treatment of
infertility [3-8]}.

The pharmaceutical drug discovery process is based on the identification of
molecules possessing high target specificity, combined with desirable
pharmacokinetic properties such as good water solubility, high oral
bioavailability and long circulatory half-life. In this thesis an entirely
different approach is explored, in which peptide analogues with high target
selectivity at the GnRH receptor were modified, first to enhance half-life and
to protect from rapid renal clearance and second to increase oral absorption.
In this way some of the obstacles to protein and peptide pharmaceuticals

such as GnRH analogues, have been overcome in a novel way.

Biologically functional molecules can be coupled to GnRH analogues without
loss of GnRH receptor binding. GnRH agonists and antagonists
incorporating chlorambucil and melphalan (nitrogen mustard derivatives of
4-phenylbutyric acid and L-phenylalanine) via an N-acyl moiety in position 6
of the decapeptide were designed with mixed success [9]. Only two of the
modified peptides possessed high agonistic or antagonistic properties at the
GnRH receptor in addition to cytotoxic effects on mammary cancer cells in

vitro (rat and human) [9].

Modified GnRH analogues have been coupled to a range of different
chemotherapeutic antineoplastic radicals through amino acid six of the
decapeptides. Although GnRH agonists conjugated to a hydrophobic
cytotoxic group had up to 50 times higher GnRH receptor binding affinity
than GnRH, those incorporating a second cytotoxic group had reduced
binding affinities [10]. Similar modification of GnRH antagonists resulted in
decreased binding affinities, with the exception of the 2-(hydroxymethyl)
anthraquinone-GnRH antagonist. Nevertheless all conjugates inhibited
[PH]thymidine incorporation in vitro in some reproductive cancer cell lines
[10].
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A highly cytotoxic derivative of the antineoplastic doxorubicin was coupled
to GnRH agonists and antagonists, preserving both cytotoxicity and GnRH
receptor binding affinity of the GnRH conjugates [11]. The design of the
molecules was similar to that explored in this thesis, with a D-lysine in
position 6 linked from the e-amino group, via a five-atom glutaric acid

spacer, to the doxorubicin derivative 14-hydroxyl group.

Rahimipour and colleagues designed a molecule incorporating an inactive
molecule known to bind to albumin to extend the short half-life of GnRH
agonists [12]. An inactive form of emodic acid, (a naturally occurring
polyhydroxylated anthraquinone used in the preparation of laxatives) was
conjugated to [DLys°]JGnRH. These conjugates retained GnRH receptor
binding and had significantly extended duration of action in vivo, despite the
large reduction in total binding to human serum albumin in comparison to
emodic acid. Therefore GnRH analogues can tolerate the conjugation of

bulky moieties through a D-Lys® without abolishing GnRH receptor binding.

This review concentrates on the aspects of the GnRH system that are directly
relevant to this work as a comprehensive review of all aspects of GnRH

biology are beyond the scope of this project.

1.2 GONADOTROPIN RELEASING HORMONE

1.2.1 General aspects of GnRH

GnRH is a decapeptide hormone important in the control of reproductive
processes. It is released from the neurosecretory cells of the medial basal
hypothalamus in a pulsatile manner [13] and is transported through the
hypophyseal-portal system to the anterior pituitary. Here it acts on specific
membrane-bound receptors on gonadotrope cells to stimulate the

biosynthesis and release of luteinizing hormone (LH) and follicle stimulating
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hormone (FSH). LH and FSH interact directly with the gonads to induce

ovulation in the female and spermatogenesis in the male.

GnRH is produced by cleavage of the precursor molecule prepro-GnRH
(molecular weight 10kDa) [14] to result in a 10 amino acid peptide. Multiple
forms of GnRH may be present in any one species, with the majority of
vertebrates possessing at least two or three different forms [15]. In humans
mammalian GnRH (mGnRH), with the sequence pGlu-His-Trp-Ser-Tyr-Gly-
Leu-Arg-Pro-Gly-NH, is the main form of GnRH present. However the most
universal form within vertebrates is chicken GnRH II (or cGnRH II) in which
histidine replaces tyrosine, tryptophan replaces leucine and tyrosine replaces
arginine. Chicken GnRH II was first isolated from chicken brain and has been
conserved for over 400 million years [16]. Multiple forms of GnRH are
proposed to have arisen from gene duplication [17]. The relationship
between these structural variants has recently been confirmed by gene

analysis [18] and is illustrated in figure 1.1.

GnRH

Type | Type ll Type Il

Figure 1.1: Evolution of GnRH subtypes.

In vertebrates GnRH performs a diverse range of functions in a number of
different tissues. Although the primary role of GnRH is the control of
gonadotropin release, GnRH also affects the central and peripheral nervous
systems in a neuromodulatory role [19] and has putative roles in peripheral

tissues such as the gonads, placenta, breast and prostate [20].



Chapter ] Literature review

1.2.2 GnRH structure

The structure of GnRH is relatively well conserved throughout evolution.
The maintenance of peptide length, amino-terminal and carboxy-terminal
sequences indicates that these features are essential for receptor binding and
activation. Structure-activity analysis of large numbers of ligands has shown
that the ligand conformation requirements of the mammalian pituitary
GnRH receptor are highly stringent [13]. Furthermore, these studies have
identified that the amino and carboxy-terminals of the ligand must be in
close apposition during receptor binding [13, 21]. Figure 1.2 illustrates the
proposed folded arrangement of the GnRH peptide backbone achieved by a
B-II type turn involving residues 5-8 [22, 23].

D-amino acid substitution
enhances activity

Receptor
binding and
activation

Receptor
binding

D-amino acid
substitution in
antagonists

Figure 1.2: Schematic representation of the primary amino acid sequence of GnRH in the
folded conformation in which it is bound to the GnRH pituitary receptor (reproduced from
[19]).

GnRH has a relatively short circulatory half life, due to its small size (renal

clearance) susceptibility to proteolytic cleavage and a lack of plasma protein
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binding [24, 25]. Rapid dilution in the general circulation is the major
contributor to the short duration of action of GnRH.

1.2.3 GnRH physiology

Pulsatile GnRH release is important in stimulating the required patterns of
gonadotropin secretion [26]. Generation of GnRH pulses is a result of
integration of both neural and endocrine inputs. Photic input is important in
connecting GnRH pulses to light and dark cycles, in addition to input from
the autonomic and limbic areas of the brain [14]. In the female the sex
steroids oestradiol and progesterone are also involved in the control of
GnRH pulsatility, with the feedback being primarily negative. However
immediately prior to ovulation, oestradiol exerts a positive feedback effect on
the release of GnRH to initiate the LH surge, when combined with an
increase in progesterone secretion 12 hours later [27]. The result is GnRH
pulses every 60min during the follicular phase of the menstrual cycle,

slowing to every 90min during the luteal phase.

In the pituitary gonadotrope cells, the liberation of GnRH stimulates an
initial release of LH and FSH, with circulatory half-lives of 30-60 minutes.
This also stimulates the movement of gonadotropin-containing secretory
granules to the vicinity of the release site, resulting in an increased response
to further stimulation of GnRH receptors [14]. In the male, GnRH-stimulated
FSH release controls spermatogenesis and LH indirectly affects androgen

production in the testis [28].
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1.3 GnRH RECEPTORS

1.3.1 General aspects of GnRH receptors

The GnRH receptor is a member of the rhodopsin-like G-protein coupled
receptor (GPCR) family. It is located on gonadotropes, comprising
approximately 5-10% of pituitary cells [29]. It is a serpentine receptor of 328
amino acids in the human, organised into seven o-helical transmembrane
domains (TMs) and a series of connecting intra-cellular (IC) and extra-
cellular (EC) loops [30]. The ligand (GnRH) binds to the external portion of
the receptor, which includes both the extracellullar loops and the outermost
regions of the TM domains. Binding of GnRH alters the receptor
conformation, transmitting the signal to the internal domains of the receptor
(IC domain), activating signal transduction pathways in the gonadotrope
[19].

More than one type of the GnRH receptor is present in most investigated
species, although there appears to be only one fully functional GnRH
receptor in humans (type I) (Prof R. Millar, personal communication). These
can be categorized into two separate families. Type I GnRH receptors have a
highest affinity for mammalian GnRH in mammals and type II GnRH
receptors have greatest affinity for cGnRH II [13, 31]. The mammalian type I
GnRH receptors lack the carboxy terminal tail present in all other GPCRs,

whereas the type II receptor subfamily retains this region.

A number of key features are conserved between the type I and type II
GnRH receptors. These include amino acids important in both ligand
binding and activation of downstream signaling molecules, in addition to the
disulphide bridges between EC loop 1 and EC loop 2 [31, 32].
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The mammalian GnRH receptor is predominantly coupled to G,/G,,, a
heterotrimeric G-protein that activates phospholipase C 1 (PLC 1),
generating a number of second messenger molecules, primarily
diacylglycerol (DAG) and inositol triphosphate (IP;) [31]. The ultimate result
of these signalling cascades is an increase in IP,, elevation of intracellular
calcium from both internal and external stores and activation of protein
kinase C (PKC). These signalling events result in the biosynthesis and

secretion of stored vesicular LH or FSH [33] into the systemic circulation.

Most GPCRs desensitise and internalise as a result of sustained exposure to
agonist. Agonist binding stimulates specific G-protein receptor kinases
(GRKs), second messenger-regulated kinases (e.g. PKC) or casein kinases to
phosphorylate the receptor [31, 34, 35]. This phosphorylation stabilises or
facilitates the association of the receptor with B-arrestin, preventing receptor
activation by inhibition of G-protein binding within minutes [36, 37]. B-
arrestin contains recognition sites for clathrin and AP-2, which when bound
to the B-arrestin-receptor complex, targets the receptor for internalisation via

clathrin-coated vesicles [31].

1.4 GnRH ANALOGUES

1.4.1 Synthesis of GnRH analogues

Peptide analogues of GnRH are based on substitution of the native GnRH
decapeptide structure. GnRH agonists are generally produced by modifying
the amino acids in positions 6 and 10 (Figure 1.3), whereas alteration of
positions 1, 2, 3, 6, 8 and 10 results in antagonists [38]. Combination of the
substituents conferring greatest potency has resulted in significantly more

effective and useful GnRH analogues [39].
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1.4.1.1 Incorporation of D amino acids

Incorporation of dextro (D) isoforms of amino acids, particularly in position
six, increases agonistic potency of GnRH analogues [40], with a 40-fold
maximum increase with hydrophobic amino acid substitutions [39]. The
most effective natural amino acid substitution is observed with a D-Trp in
this position [41, 42].

Agonist X Ethyl
amide

T 1 2 3 4 5 6 7 8 9 10

mGnRH ZS;L: His | Trp | Ser | Tyr | Gly | Leu | Arg | Pro ng
Antagonist | x X X X X D-Ala-

NH:

Figure 1.3: Amino acid sequence of GnRH (adapted from [38]). Alterations to the

endogenous GnRH peptide sequence that create agonists and antagonists are denoted “X’.

1.4.1.2 Modification of C-terminal
Replacing the glycine in position 10 of mammalian GnRH with ethylamide

[43] results in a significantly more potent agonist of GnRH when combined
with other changes to the peptide sequence. The asparagine 102 residue of
the GnRH receptor is believed to be involved in the docking of the
glycinamide C-terminus, probably through hydrogen bonding. GnRH
analogues with a C-terminal ethylamide appear to be less dependent on this
asparagine residue [44] and ethylamide features in many GnRH analogues.
An aza-Gly substitution at position 10 also increases potency of GnRH
agonists [45]. Total chain length appears to be important in receptor binding
affinity and the ethylamide and aza-Gly substitutions are proposed to

maintain this aspect [21].
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In contrast, an ethylamide substitution reduces the potency of GnRH
antagonists [46]. It appears that the enhanced potency of GnRH agonists is
due to secondary structure stabilization in the active conformer, through

dipole-dipole interaction of the ethylamide with the histidine imidazole ring
[21].

1.4.1.3 Modification of N-terminal
Substitutions at positions 1, 2, 3, 4 and 5 reduce the potency of GnRH

agonists [21], with the exception of a two-fold increase with 1-L-Nal

incorporated in position 3 [47].

The first reported GnRH antagonist was des-His*-GnRH [48]. Comparisons
with [Gly’]GnRH, [Phe’]GnRH and [Trp’]GnRH revealed that des-His*
GnRH acts as a weak antagonist because functionality at position 2 is
removed, without disrupting the features important for recognition at the
GnRH receptor [21]. The first GnRH antagonist with significant anovulatory
potential in vivo was formed by combining a weakly active antagonist ([D-
Phe?]GnRH [49]) with [D-Ala®]GnRH to create [D-Phe’ D-Ala’]|GnRH [46, 50].
Incorporation of halogenated phenylalanine residues (first investigated in [4-
F-D-Phe?, D-Ala®)GnRH [51]) was a major breakthrough in the quest to
further increase the potency of GnRH antagonists [21].

1.4.2 Functioning of GnRH agonists

Sustained agonist stimulation induces slow desensitisation of the GnRH
receptor (described in section 1.3.2), resulting in decreased gonadotropin and
gonadal sex steroid secretion [6]. However the slow desensitisation rate
results in an initial stimulation of gonadotropin release before the receptors
are internalised [52]. This can be detrimental in clinical situations, causing an
initial flare of symptoms before long-term desensitisation occurs.

Nevertheless GnRH agonists are administered in gonadal replacement

10
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therapy or as long-term continuous treatment to reduce FSH and LH

secretion.

Potent, long acting GnRH agonists are active in the microgram range,
compared with the milligrams of GnRH antagonist required for clinical
effects [8]. Agonist-stimulated desensitization is enhanced by the positive
feedback effect of endogenous GnRH, but endogenous GnRH competes with
GnRH antagonists for receptor binding, resulting in the need for higher

doses with GnRH antagonists.

1.4.3 Functioning of GnRH antagonists

GnRH antagonists compete with endogenous GnRH for GnRH receptors
present on pituitary gonadotrope cells. An instant block of LH and slower
block of FSH secretion occurs, dependent on continued, near-complete
receptor occupation [53, 54]. The equally rapid reversal of inhibition is also of
benefit in comparison to GnRH agonists and may be advantageous to
contraceptive use of antagonists, where gonadotropin inhibition is only

required for a short period.

The absence of the initial stimulatory phase is a notable benefit of GnRH
antagonists over agonists. Avoidance of this supraphysiological secretion of
LH and FSH before desensitization to GnRH has major advantages in clinical
practice. The immediate and persistent block of gonadotrope and extra-
pituitary GnRH receptors provides the basis for a theoretical use for GnRH

antagonists as anti-fertility agents [55].
1.4.4 Clinical aspects of GnRH agonists and antagonists

In clinical practice, GnRH agonists are used to suppress gonadotropin

secretion through GnRH desensitization [53]. However the more rapid

11
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inhibition of gonadotropin secretion induced by GnRH antagonists is often
preferable. Current indications include follicular stimulation in vitro
fertilisation (IVF) treatment cycles and in the treatment of endometriosis,
uterine fibroids, PCOS, precocious puberty and cancer of the prostate, breast

and ovary [53].

An alternative approach to developing GnRH antagonists with improved
pharmacokinetic parameters is to design nonpeptide antagonists, thereby
avoiding some of the problems associated with the peptide nature of many
current analogues. The first nonpeptide GnRH antagonist was disclosed in a
patent in 1987 [56]. This fused tetracyclic benzodiazepine blocked ovulation
in rats at a dose of 0.5mg/kg [57]. Tryptamine-derived GnRH antagonists
have been described recently by Ashton et al [58] with inhibitory binding
affinities at the human GnRH receptor of around InM. The same group has
also published studies on 2-arylindoles [59] and quinolones that act as GnRH
antagonists [60-62]. However it is important to note that unlike peptide
GnRH analogues, nonpeptide GnRH antagonists are extremely species-
specific and drug development may be hindered because inexpensive rat or
mouse in vivo studies are not possible [57]. Abbott, Merck and Alanex Corp.
are the major companies currently involved in the development of
nonpeptide GnRH antagonists [57] and it is likely that the successful

molecules will revolutionise the role of GnRH analogues in the clinic.

A range of peptide GnRH agonists is currently available for clinical use, for
example Leuprolide (Abbott), Zoladex (AstraZeneca) and Buserelin
(Hoechst). These agonists vary in mode of administration (depots,

subcutaneous injection or nasal spray) and dose frequency.

Clinical use of peptide GnRH antagonists was initially thwarted by adverse
reactions at injection sites, however there are now several potent antagonists
available with minimal histamine-releasing properties [53, 55, 63]. A number
of antagonists have recently been licensed, such as Cetrorelix (Asta Medica)

and Ganirelix (Organon) [64].

12
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1.4.5 Side effects of GnRH analogues

Long term oestrogen deprivation resulting from prolonged GnRH analogue
administration can result in significant side effects in females. Initial clinical
side effects include hot flushes, vaginal dryness, decreased libido and
headache [65]. Long-term clinical side effects are considerable. Hypo-
oestrogenic bone loss can occur, although recovery is likely after cessation of

treatment [66].

Prolonged uterotrophic effects of oestrogen in the absence of systemic
progesterone can induce reversible endometrial hyperplasia during
prolonged periods of treatment with GnRH agonists [67]. The same study
failed to find a similar adverse effect with GnRH antagonists over 90 days
treatment, although both agonist and antagonist were equally effective in

suppressing ovulation in rhesus monkeys [67].

1.4.6 Difficulties with GnRH analogues

The hydrophobicity of some GnRH analogues, particularly GnRH
antagonists, can be problematic in drug delivery. Gel formation at injection
sites [55] during subcutaneous or intramuscular injection is a particular
problem with such analogues. This can be advantageous in long-term
administration by prolonging diffusion into the general circulation. However
this is not a major problem with other routes of administration such as oral

delivery.

Short-term GnRH antagonist administration can induce luteolysis,
terminating the luteal phase. The effect is dependent on the stage of the cycle,
in the human [68-71] rhesus macaque [72, 73] and stumptailed macaque [74]
and may culminate in premature menses [68]. This would be undesirable in a

medium to long-term contraceptive. However combination of GnRH

13
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antagonists with low concentration sex-steroid replacement therapy may

result in a more patient-acceptable contraceptive for repeated cycles.

One of the major drawbacks of long-term GnRH agonist or antagonist
administration is the suppression of gonadotropin-dependent oestrogen
production. The extent of this hypo-oestrogenic state is dependent on both
the dose and duration of treatment [65], but co-administration of appropriate
amounts of oestrogen with GnRH analogues may avoid this effect. It is for
this reason that GnRH antagonists have been proposed for short term use (3
to 4 months duration) as post-partum contraceptives [75]. In this situation
the peptide nature of the antagonist has the advantage of being inactive

when orally consumed by nursing infants in breast milk [76].

The dose-dependence of GnRH antagonists [55] could be of clinical benefit
with some routes of administration, allowing dose and duration of treatment
optimisation for each condition [53] and perhaps also on an individual
patient basis. This would be of particular benefit in the female, permitting a
balance of pituitary gonadotropic function suppression with gonadal
oestrogen production, minimising the risk of hypo-oestrogenic side effects
[53].

Newer, more potent GnRH antagonists are widely employed in assisted
reproduction, avoiding the initial increase in gonadotropin release and with
more rapid effects than occur with GnRH agonists [54, 55]. The use of GnRH
antagonists has led to a decrease in the number of treatment cycles
terminated because of ovarian hyperstimulation syndrome and loss of
oocytes due to spontaneous LH surges. An increase in patient satisfaction
without compromising oocyte retrieval, fertilisation rates and embryo
quality [77] has also been observed with GnRH antagonists. However
decreases in pregnancy and implantation rates have recently been identified
[78]. GnRH receptors are also present in the periphery. They have been
identified in the reproductive tract, oocyte and embryo [20, 33, 79-81]. It 1s

entirely possible that pharmacological doses of GnRH antagonists may

14
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significantly affect the synthesis of growth factors [82-85] necessary for
successful pregnancy through interaction with extrapituitary GnRH
receptors. This effect may be of benefit in using GnRH antagonists as
contraceptive agents, through decreasing the likelihood of implantation of a

viable embryo.

1.4.7 Effect of short-term GnRH antagonist treatment

GnRH antagonists have also been used to investigate many aspects of
reproductive function. Most studies to date have used a relatively short
duration of treatment, either as single doses or repeated administration over
several days to examine physiological effects and potential contraceptive use.
Only a few studies have examined longer-term effects for applications where
a continued dose of antagonist is required, such as in the treatment of

reproductive cancers and as potential contraceptives.

Administration of GnRH antagonists at any stage of the menstrual cycle or to
postmenopausal women has similar effects at the level of the pituitary. The
inhibitory effect on LH release is more pronounced than on FSH, reflecting
the longer half-life of FSH and its dependence on synthesis, rather than
secretion. In contrast, the ovarian response to GnRH antagonists is more
variable, depending on the phase of the cycle and the maturation of the

developing follicle or corpus luteum [70].

1.4.7.1 Follicular phase GnRH antagonist treatment

Early evidence in macaques suggested that intermittent administration of
low-potency antagonists during the late follicular stage could prevent the
midcycle LH surge and thus ovulation [65]. In contrast, more recent work
has suggested that the dominant follicle is relatively independent of LH
support at later stages of development [54, 68].

i
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GnRH antagonist treatment for 3 days during the early follicular phase did
not significantly prolong the duration of the follicular phase, cautiously
suggesting that early ovarian follicles may be relatively independent of LH
and FSH support [69]. However few studies have attempted to confirm this
finding. Administration of Detirelix (a GnRH antagonist) during the
midfollicular phase also prevented the LH surge, inducing menses. This was
followed by a lengthened time to the luteofollicular transition of the
subsequent cycle [70]. A second study employing the GnRH antagonist Nal-
Glu also found an increase in follicular phase length after a treatment period
of 3 days. This was attributed to the demise of the dominant follicle and
reinitiation of follicular growth and selection in the contralateral ovary [68].
In normal women, antagonist treatment during the periovulatory period
(defined as a circulating oestradiol level exceeding 550pmoll™) delays the LH
surge, the duration of which depends on the dose and frequency of the
antagonist [86]. Similar results were observed with the injection of Detirelix
for 3 consecutive days to a small group of normal cycling women during this

period of the follicular phase [70].

1.4.7.2 Luteal phase GnRH antagonist treatment

The tolerance of the corpus luteum to GnRH antagonist treatment varies
during the luteal phase. Suppression of gonadotropin levels in primates
during the early luteal phase for up to 72 hours can decrease the level of
circulating progesterone, but does not impair the functioning of the corpus

luteum sufficiently to induce luteolysis [73, 74].

There is a variable response to GnRH antagonist treatment during the
midluteal phase in both humans and primates [54, 70, 72-74]. This could be
partially due to differences in the relative potencies of the antagonists used in
the studies. In women, midluteal phase GnRH antagonist administration
decreases both oestradiol and progesterone produced by the corpus luteum.
If the dose is sufficient, luteolysis occurs, resulting in premature menses,

usually within 48h of the last dose of a 3-day treatment schedule [68, 69, 71].
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The corpus luteum can recover from short (single dose) and lower doses of

antagonist and continues to function normally after drug treatment.

The effect of GnRH antagonists on the corpus luteum may be overcome by
human chorionic gonadotropin (hCG) at physiological levels characteristic of
early pregnancy [69, 72]. McLachlan et al[87] demonstrated that hCG, but not
human menopausal gonadotropin could prevent GnRH antagonist-induced
luteolysis of the human corpus luteum. This may prevent the potential use of

GnRH antagonists as post-coital contraceptives.

1.4.8 GnRH antagonists as potential contraceptives

It is possible that GnRH antagonists could be used for female contraception,
if the problems with long-term oestrogen and progesterone deprivation can
be overcome. There are two main ways in which this could be achieved,
either by using GnRH antagonists for short periods (days), or by using
prolonged treatment over several months with concurrent oestrogen or
progesterone replacement therapy. In the case of short-term GnRH
antagonist treatment, the variable LH dependence of both the follicle and

corpus luteum may be problematic.

The ability of both GnRH agonists and antagonists to reliably inhibit
ovulation is widely accepted, however maintenance of this effect is
dependent on continued occupation of pituitary GnRH receptors. Once the
production of LH and FSH is no longer inhibited, folliculogenesis is
reinitiated, resulting in ovulation within days after the cessation of
antagonist treatment [69, 88-90].

Prolonged exposure to GnRH antagonists could also be used as a possible
method of preventing pregnancy, in combination with oestrogen and
progesterone replacement. The effects of long-term GnRH agonist treatment

have been investigated in primates [67, 91] and humans [92, 93]. Most
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subjects remained anovulatory throughout the treatment period, although
endometrial abnormalities arising from oestrogen deprivation were
observed. It is likely that GnRH antagonists could also be used in this way as
contraceptives if suitable long acting formulations can be produced with

little side effects.

The GnRH agonist Nafarelin successfully inhibited ovulation in 48 normal
women over a period of six months, causing oligomenorrhea in the majority
of participants [93]. The side effects of intranasal administration of the
peptide were notable in several women (primarily hot flushes) leading to
discontinuation of the trial for these women. Despite this issue, the GnRH

agonist provided a rapidly reversible and reliable method of contraception.

GnRH antagonists also have potential as male hormonal contraceptives.
Suppression of FSH and LH secretion in the male inhibits the steroidogenic
and spermatogenic activity of the testis [28]. Administration of
supraphysiological doses of androgens or progestagens could be used to
capitalise on the negative feedback effect of testosterone on the
hypothalamic-pituitary axis (figure 1.4). Alternatively, blocking the GnRH
receptor directly with a GnRH antagonist would have the same effect on the
pituitary. The most successful regimes are based on the ‘block and replace’
theory in which a GnRH antagonist is administered in conjunction with

physiological doses of testosterone.
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Figure 1.4: Relationship of hypothalamic-pituitary axis with gonads in a normal male and in

the presence of hormonal contraception (adapted from [28]).

1.5 PLASMA BINDING PROTEINS

Binding of both drugs and endogenous molecules to plasma transport

proteins is important to the half-life of these molecules in the circulation.

Drugs and other molecules that bind to plasma proteins have a longer half-

life than similar molecules that lack this characteristic. Therefore conjugating

a plasma protein binding molecule to a non-plasma protein binding-

molecule is a potential method of enhancing half-life and resistance to

metabolic degradation, in this case, increasing the half-life of peptide GnRH

analogues.
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1.5.1 General aspects

Plasma protein binding affects the pharmacokinetics of many molecules
through a combination of specific and non-specific interactions. Non-specific
plasma proteins consist of serum albumin, alpha-1-acid glycoprotein and
lipoprotein. Sex steroid-specific plasma proteins include cortisol binding
globulin (CBG), sex-hormone binding globulin (SHBG) and progesterone
binding globulin (PBG). This review will concentrate on the plasma proteins

important in sex steroid physiology, CBG, SHBG and PBG.

1.5.2 Serum albumin

Most steroids, many other endogenous compounds and xenobiotics bind to
albumin, the most abundant plasma protein. Current theories suggest there
are at least six distinct binding sites on human serum albumin (HSA),
binding small organic compounds (sites I and II), long-chain fatty acids (sites
III and IV) and metals (sites V and VI) separately with normal

ligand /albumin concentrations [94].

HSA has a molecular weight of 69kDa and is present in a high concentration
of 550uM, almost a thousand times more than the specific steroid binding
proteins [95], resulting in a high capacity. Although albumin binds to many

steroids, the association constants for these interactions are generally low.

Progesterone binds to HSA with an association constant of 0.36uM™ at 4°C
[96], compared with an association constant for CBG of 1300uM™ [97]. The
affinity constant of cortisol for albumin is considerably lower at 5000uM™ [98]
but oestradiol binds with a similar affinity to progesterone (0.1uM™) [99].
Despite the low affinity of the interaction, HSA is a major steroid transport
protein, contributing to the high proportion of steroids that are protein
bound and the importance of albumin to the transport of the sex steroid

hormones is illustrated in table 1.1.
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% Globulin- % albumin % free

Hommone bound bound dialyzable
Cortisol 75 15 10
Progesterone 10 (CBG) 90 2
Aldosterone 10 50 40
Dihydrotestosterone 80 20 2
Testosterone 60 (SHBG) 40 2
Oestradiol 40 60 2

Table 1.1: Hormone distribution to plasma proteins in the human (from[100]).

1.5.3 Alpha-1-acid glycoprotein

Alpha-1-acid glycoprotein (AGP), also known as orosomucoid, is a protein
with some unusual features including a very high carbohydrate content
(45%) and a very low pI (2.8-3.8). It was discovered simultaneously in 1950
by Schmid [101] and Winzler and colleagues [102] and despite the
subsequent publication of many articles, the exact function of this protein
remains unclear. Physiologically the concentration of AGP is relatively stable
(around 1g/1 in humans), however during acute-phase reactions the

concentration rises by several times [103].

AGP mostly binds basic and neutral endogenous molecules, for example
vanilloids [104], IgG3, heparin, serotonin [101], platelet activating factor
[105], melatonin [106] and histamine [107]. AGP also binds some endogenous

steroids such as cortisol and synthetic steroids for example RU486 [108].

Some xenobiotics such as tamoxifen [101] and propanolol [109] also bind to
AGP. Although it is generally assumed that acidic drugs are bound to serum
albumin, in pathophysiological states binding to AGP may increase with a
rise in the concentration of the protein. The binding capacity of AGP is
related to the conformational change, ligand polarity and temperature [103].

Binding to AGP can affect the effective (free) concentration of many drugs.
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1.5.4 Specific steroid-binding plasma proteins

Specific plasma proteins bind to steroids through numerous non-covalent
interactions [110] to affect the transport of steroid hormones. There are two
plasma proteins present in low concentrations that bind steroids with high
affinity in humans, CBG and SHBG. A steroid may bind to more than one
plasma protein [110], for example progesterone is bound to both CBG and

albumin under physiological conditions (table 1.1).

An additional binding protein known as PBG exists in guinea pigs and other
hystricomorph rodents [110, 111]. In these species, the evolution of PBG to
specifically bind progesterone is coincident with a loss of CBG affinity for
progesterone [112], whereas human CBG has affinities in the same range for
both progesterone and cortisol [113]. It is interesting to note that most species
of New World monkey have very low plasma levels of CBG [114]. The
glucocorticoid system in these species is dramatically different to other
primates, with greatly elevated plasma cortisol concentrations of up to 1-
4pM compared to 10-300nM in Old World primates and humans. In addition,
the CBG of New World monkeys appears to have a reduced affinity for

cortisol, resulting in an apparent resistance to glucocorticoids [114].

The role of these macromolecules in steroid physiology is still controversial
despite several decades of work. Reduction of steroidal hepatic metabolism
is a proposed function of plasma proteins since androstenedione does not
bind to plasma proteins and is cleared more rapidly from plasma than
testosterone or dihydrotestosterone [110, 115]. Steroid binding proteins may
also ‘buffer’ changes in hormone concentration [110] and provide an
immediate source of steroid [110]. The free hormone hypothesis is the basis
on which steroids are currently presumed to operate. This states that the
biological activity of a given hormone is affected by its unbound (free) rather
than protein-bound concentration in the plasma [116]. This is difficult to
prove, but it is generally accepted to hold true for the majority of steroid

hormones, at least on a tissue-specific basis [116].
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In addition to steroid transport roles, recent work suggests that the bi;aing
proteins themselves have plasma membrane receptors, however the role of
these receptors is yet to be elucidated. SHBG has been shown to interact with
a membrane-bound receptor (SHBG-R) with high affinity when bound to
certain steroids [117]. The SHBG-R appears to be a G-protein linked receptor
that activates adenylyl cyclase via cAMP, but not all steroids that bind to
SHBG activate the SHBG-R [117].

CBG receptors have been identified on hepatic cell membranes [118]. The
receptor for the pregnancy-associated variant of CBG (pCBG) is present in
the plasma membranes of decidual endometrium and placental
syncytiotrophoblast [119]. Steroids that bind to CBG, such as cortisol and
corticosterone affected the binding of CBG to its receptor, whereas steroids
that do not interact with CBG, for example dexamethasone, had no effect on
CBG-receptor binding [97].

CBG, SHBG and PBG are glycoproteins with molecular weights of the same
order of magnitude. Each one has a single binding site for a steroid molecule
[95]. Two main types of non-covalent forces govern the interaction between
steroid and plasma protein. The first is hydrophobic (nonpolar) bonds, for
instance van der Waals forces or other low-energy interactions between the
lipophilic groups of both molecules. Hydrogen bonding also plays a part in
the binding process. The overall affinity of binding between the steroid and
plasma protein is the sum of many weak bonds, enabling rapid association

and dissociation under physiological conditions [110].

The interactions between steroids and plasma proteins are temperature
dependent (table 1.2), due to the contribution of hydrophilic and
hydrophobic bonds in the binding process. If the majority of bonds are of
hydrophilic nature, then the K, at 4°C is greater than at 37°C. The converse is
true for predominantly hydrophobic bonds between the binding site and the
steroid [95]. The number and nature of these interactions determines the
optimum steroid substituents for high affinity binding. Analysis of the

association and dissociation rate constants shows that the temperature
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dependency of CBG and PBG binding is due to an altered dissociation rate

constant [95].

Protein | Species Mol. Serum Steroid Ka Ka Ref.
Wt.  conc. (M) (M)
(mM) 4°C  37°C
CBG | Human 52,000 0.7 Cortisol 1400 40 [97]
Progesterone 1300 30
SHBG [ Human 36,000 0.3 DHT 3100 990 [120,121]
Oestradiol ~ 300 220
PBG | Guinea 88,000 13 Progesterone 2200 350 [122]
P8

Table 1.2: Comparison of steroid-binding serum proteins. Adapted from [95] DHT denotes
dihydrotestosterone.

1.5.4.1 Sex Hormone Binding Globulin

SHBG, (also known as testosterone-oestradiol binding globulin, TeBG) is a
homodimer with a molecular mass of around 100kDa [110, 123], consisting of
two essentially identical subunits of between 45-52kDa [123, 124]. It

primarily binds the most active androgen dihydrotestosterone (DHT) and

testosterone (T) with affinity constants of less than 1 x 10°M™ [115]. However
it also binds to oestradiol (the affinity constant for oestradiol is
approximately 5 x 10°M ') [123] and weaker androgens such as

androstenedione. The other endogenous oestrogens oestrone and oestriol do
not bind to SHBG [115].

The concentration of SHBG in human plasma is sex-dependent, at 2mgl-! in
men and 4mgl-1 in non-pregnant women [124]. Sex differences in circulating
androgens also affects the steroids bound to this particular plasma protein. In
men, SHBG primarily binds to testosterone, however the lower levels of
testosterone in females allows the other 17B-hydroxyandrogens to play a
more significant role in this sex [115]. The balance between bound and free

levels of androgens and oestrogens contributes to the production of SHBG
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concentration occurring in childhood and decreasing during puberty [115].

Circulating concentrations of SHBG are affected by administration of
exogenous steroids, such as during oral contraception. SHBG levels rapidly
increase by around 200% after several days of treatment with the combined
oral contraceptive pill [125], declining to 100% during the pill-free interval.
Maximum concentrations of SHBG (200-250nmol /1) are observed after three
treatment cycles [125-130]. Oestrogen-stimulated increases in SHBG
concentrations can be suppressed by androgens. Combined oral
contraceptives containing testosterone-derived progestagens in combination
with oestrogens (e.g. levonorgestrel and ethinylestradiol) do not increase
SHBG levels, whereas combinations with less androgenic progestogens (e.g.

desogestrel) increase SHBG capacity [131].

Structural investigations using substituted steroids have demonstrated that
in order to interact with SHBG, a steroid must contain a 17B-hydroxyl group.
Several other features, such as the addition of a hydroxyl or keto group at
C11 also have major negative affects on binding affinity [110, 132].
Modification of carbon 2, 6, 9 and 11 in the steroid nucleus also reduces
binding affinity [132].

1.5.4.2 Cortisol Binding Globulin

CBG (also known as transcortin) is a ubiquitous plasma protein synthesized
in the liver [95], present in all vertebrates investigated [95, 110, 115, 133]. It
has a molecular weight of around 52kDa, a relatively high proportion of
which is due to carbohydrate, with low sequence homology to other steroid-
binding proteins [134]. CBG has an essential role in modulating
corticosteroid activity by binding to steroids, ensuring only a small
proportion is ‘free’. It also has the characteristic strong temperature

dependence, contrasting with non-specific steroid binding by albumin [110].
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In addition to corticosteroid binding, CBG also interacts with progesterone, a
more significant function during pregnancy [134]. However this feature
varies according to the presence or absence of a specific plasma protein with
the primary role of binding to progesterone (PBG). For instance in humans,
cortisol and progesterone are bound by CBG with similar affinity, whereas in
the guinea pig, CBG has a far greater affinity for cortisol than for
progesterone, reflecting the significant role of PBG in this species [97]. The
plasma concentration of CBG also varies considerably during pregnancy,
with the increase of CBG activity to some extent compensating for the
elevated cortisol [135]. In the case of human CBG, the affinity of binding to
cortisol is 79nM and to progesterone is 70nM (at 4°C) [113]. In contrast to the
marked sex differences in SHBG levels, there is no distinction between the
concentration of CBG in the male or female, nor is there a variation
throughout the menstrual cycle [134]. Plasma concentrations of CBG are
affected by physiological levels of oestrogens, accounting for the 2 to 3-fold

increase in CBG during the last trimester of pregnancy [134].

Like SHBG, CBG levels are influenced by oral contraceptives, but the effect is
due only to oestrogens [125-130]. CBG concentrations are increased from
40mg/1 to 90mg/1 [128, 129], but low dose ethinylestradiol treatment
(20pg/day compared with a minimum of 30ug/day in most combined oral

contraceptives) reduces this increase [126, 136].

The requirements for optimal binding to CBG have also been deduced by
assessing the effect of single substitutions in steroids. These studies have
shown that in human CBG, the 20-oxo and 10B-methyl groups are essential
for binding, the 3-oxo and 4-ene are also important. Although the 11, 170,
and 21-hydroxy groups are relatively unimportant, hydroxyl groups impair
binding at positions 11a, 60, 68, 120, 140, 160 and 19 [97]. Guinea pig CBG
selectivity is similar, but an 11B-hydroxy is required and the necessity for a
10B-methyl is replaced by a need for the same substituent in position 19

[112]. The essential features of steroids for binding to the specific plasma
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GnRH analogues, in order to retain binding to the globulins.

1.5.4.3 Progesterone Binding Globulin

PBG is a steroid binding protein found in unusually high concentration in
the serum of pregnant hystricomorph rodents, such as the guinea pig. The
existence of this specific plasma binding protein for progesterone appears to
affect the ability of the CBG to interact with progesterone. PBG is a more
stable protein than CBG, being more resistant to heat and acidic pH [137]. It
has a molecular mass of 88kDa and contains a single steroid binding site
[138]. The affinity of binding to progesterone is temperature dependent, in
common with CBG and SHBG. The K, for progesterone at 37°C is 35nM and
at 4°C is 2nM [138].

PBG binding is proposed to predominantly consist of hydrophobic
interactions with the steroid. An exception is the C-3 keto group of the A ring
[95]. The high affinity of binding to progesterone suggests that at least in the
case of guinea pig PBG, the binding site is adapted to bind progesterone
most strongly, since almost any substitution results in reduction of binding
affinity [139].

1.6 ENHANCING ORAL ABSORPTION OF PEPTIDES

Peptides are increasingly important in the pharmaceutical industry. Growing
numbers of potential therapeutics are small peptides, but problems of poor
oral availability have hampered the development of specific drugs for
clinical use. The physicochemical constraints of size and solubility in the
aqueous phase of the gut lumen affect the absorption of pharmaceuticals by
this route. Several strategies have been employed to overcome this problem

with a range of success.
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There are also metabolic barriers to be overcome to achieve intestinal peptide
absorption. The first major metabolic barrier is the stomach, containing
proteolytic pepsins and acidic secretions that can hydrolyse the orally
administered peptide. The second barrier is in the small intestine, where the
presence of pancreatic enzymes such as trypsin, chymotrypsin, elastase and
carboxypeptidases A and B [140] and the epithelial mucosa itself contribute

to breakdown and lower absorption.

This review concentrates on the reported methods of enhancing oral
absorption and although other methods such as buccal delivery are
acknowledged, these are not discussed here except where relevant to GnRH

analogues.

1.6.1 The bile acid transporter as an uptake system

Absorption of fat and fat-soluble vitamins is vital to the diet. Bile acids are
secreted by the liver into bile, excreted into the ileum by the gall bladder,
reabsorbed in the terminal portion of the ileum, before being taken up by

hepatocytes and re-entering the cycle [141]. The process is known as the

enterohepatic circulation (EHC) of bile acids (figure 1.5).

> Liver secretion into bile

Taken up by hepatocytes Secretion into ileum

Reabsorption in terminal ileum

Figure 1.5: Enterohepatic circulation of bile acids.
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EHC of bile acids is a highly efficient mechanism and combined with the
high capacity, gives rise to the possibility of using bile acids as carrier
molecules for small peptides and other poorly absorbed molecules. There is a
total bile acid pool of 3-5g in humans, only 2-5% of which is not reabsorbed
in the terminal ileum and is excreted in faeces [141]. In 1987 Ho addressed
the possibility of using bile acids as carrier molecules “Many potential
therapeutic applications are foreseen: improvement of the oral absorption of
an intrinsically, biologically active, but poorly absorbed hydrophilic drug”
[142].

Passive and active mechanisms are involved in the uptake of bile salts from
the intestine. Ionic and non-ionic passive diffusion occurs throughout the
small intestine, whereas the Na'-gradient and basolateral Na*/K*-ATPase
mediated uptake is localised to the ileum [140]. Physiologically, bile acids are
found in conjugated states, conjugated to glycine or taurine, aided by
coenzyme A to form N-acyl conjugates [141]. Conjugation in this way has
several benefits, namely prevention of precipitation under acid conditions,
minimization of passive transport in the jejunum and increased active

transport in the terminal ileum [141].

Where R corresponds to
OH in cholic acid,
NHCH,CH;SO3H in
taurocholic acid or
NHCH,COOH in
glycocholic acid.

Figure 1.6: General structure of the trihydroxy bile acids
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Swaan and co-workers [141] attempted to use coupling to cholic acid via the
24 position (C=0) as a method of enhancing the transepithelial transport of
model peptides ranging from 2-6 amino acids in length. The ability of
conjugates to inhibit transepithelial transport across polycarbonate
membranes coated with a human intestinal cell line (CaCo-2) was
investigated by competition with [*H]taurocholic acid. The affinity of
modified cholic acid for the bile acid carrier was significantly reduced by
conjugation to peptides rather than to a single amino acid. However after the
initial decrease in affinity, additional increases in chain length did not induce
further reduction. Metabolism of these conjugates was limited to 3% over 2

hours of in vitro studies.

The nature of the bile acid uptake system is that secreted bile acids are
reabsorbed in the terminal ileum, transported to hepatocytes and re-secreted
into bile. However this means that a bile acid-coupled molecule such as a
peptide would also follow this route, ideal for liver-specific drug targeting
[143], but not for absorption into the general circulation. Indeed this effect
was observed when a fluorescent oxaprolylpeptide was coupled to a

synthetic bile acid and perfused into the ileum of anesthetized rats [144].

1.6.2 Vitamin B,, as an uptake system

Vitamin B,, absorption across the GIT is significantly different from most

other nutrients, although it shares some similarities with iron uptake.

Vitamin B,,, also known as cobalamin (VB,, or Cbl) is a water-soluble
corrinoid molecule with a tetrapyrrolic ring-like structure. In the center of
the tetrapyrrolic nucleus is a cobalt ion that can be attached to either methyl,
deoxyadenosyl, hydroxy or cyano groups (figure 1.7). VB,, is found in all
animal tissues, but not in plants, therefore all VB,, must originate from

bacterial, fungal and algal sources [145].
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Pepsin present in the stomach releases VB,, from consumed food. The free
VB,, complexes with a salivary transport protein known as haptocorrin (Hc).
Under the acidic conditions of the stomach it has the highest affinity for
vitamin B;, in comparison to other transport proteins [146]. Once the [Hc-
VB,,] complex reaches the higher pH of the duodenum it is separated by the
action of trypsin and chymotrypsin, inactivating Hc by proteolysis [147, 148].
Intrinsic factor (IF) the second specific transport protein for VB,,, is released
from parietal and enteroendocrine cells of the stomach [149]. IF interacts with
vitamin By, in the duodenum where it forms the second protein-VB,, complex
[IF-VB,,]. Once the [IF- VB,,] complex reaches the ileum the entire complex
binds to the intrinsic factor-cobalamin receptor (IFCR) present on the
epithelium of the villus cells [150]. The binding of [IF-VB;,] to the IFCR
requires both calcium ions and a neutral pH and results in an irreversible
conformation change in the receptor. The receptor-[IF-VB,,] complex is then

internalized by receptor mediated endocytosis [151].

CH,OH

Figure 1.7: The structure of vitamin B,,, the A, B, C and D rings are indicated.
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The mechanism by which VB,, dissociates from the IFCR receptor and IF
itself is not yet fully understood. Cellular VB,,is known to bind to a third
binding protein transcobalamin II (TCII) that transports the vitamin to cell
surfaces. In the general circulation most VB,,;is found associated with
transcobalamin I, but interaction with TCII is thought to be necessary for
tissue uptake of the vitamin. Cellular uptake of VB,, is mediated through
surface TCII receptors and receptor-mediated endocytosis. Lysosomal
degradation releases VB, for metabolism to methyl-cobalamin in the cytosol

or deoxyadenosyl-cobalamin in the mitochondria [151].

Hc

Mouth

Stomach

Trypsin
Chymotrypsin

IFCRB —
He VBi-lF @ : :""\_.I Villus

Duodenum

Figure 1.8: Summary of Vitamin B,, absorption. VB, is consumed in the diet and mixes with
haptocorrin (Hc) produced from the salivary glands. Hc complexes with VB, in the stomach,
but dissociates in the duodenum where Hc is degraded by trypsin and chymotrypsin. VB,,
then complexes with intrinsic factor (IF) and binds to the intrinsic factor cobalamin receptor
(IFCR) on the basolateral surface of the villus cells. The entire VB,,-IF-IFCR complex is
internalized, the IF is degraded and the VB,, is transported out of the apical surface

complexed with transcobalamin IT (TCII).

The unusual uptake mechanism of VB, complexed with IF and the IFCR

makes this a promising candidate for a carrier molecule to use in peptide oral
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absorption. Intrinsic factor is reported to have molecular weight of 45-47kDa
with a carbohydrate content of 15% [152], although a conflicting report
suggests that the native protein may have a molecular weight of up to 59kDa
[153]. An additional factor is that VB,, itself, (molecular weight of 1357), is
relatively inexpensive and poorly immunogenic, further adding to the

suitability of VB, as a carrier molecule [154, 155].

1.6.2.1 Direct conjugation to vitamin B,,

VB,, conjugates of granulocyte colony stimulating factor and erythropoetin
had increased intestinal transport in comparison with the unconjugated
molecules over a 24h period of continuous intraduodenal administration to
rats [156]. The uptake of consensus interferon was also increased when

conjugated to VB,, over the peptide alone [156].

Modified VB,, conjugates of a number of drugs and peptide/protein
pharmaceuticals retained a high affinity for IF and the bioactivity of the
pharmaceutical agent was not significantly reduced [154, 155, 157-159].

The GnRH antagonist Antide and derivatives have been investigated for the
possibility of enhanced oral uptake by conjugation to vitamin B,, (VB,,) [158].
Antide-VB,, conjugates were tested by in vitro pituitary cell assay for
inhibition of mammalian GnRH-stimulated LH release, in addition to
competitive binding assay for binding to IF. In vivo bioactivity was assayed
in a castrate male rat model, measuring serum LH after subcutaneous
administration of conjugates. Therefore although the potential for oral
uptake and maintenance of bioactivity was investigated, the actual in vivo
oral bioavailability was not addressed in this paper. The group did
investigate the structural requirements for bioactive conjugates. It was
shown that in order to maintain both in vitro and in vivo activity, a thiol-

cleavable spacer was necessary between the VB,, derivative and Antide [158].

Direct conjugation of metabolically stable short, but pharmacologically

inactive peptides to VB, via a hexyl spacer was attempted in order to prove
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conclusively that absorption of radiolabelled conjugate was not in fact
measuring absorption of fragments resulting from proteolytic degradation of
the peptide [157]. The absorption of the model peptide-VB,, conjugate was
investigated at all stages of the uptake process and up to 45% of the stable

peptide-VB,, complex was taken up in vivo.

1.6.2.2 Other methods using vitamin B,,

Russell-Jones and co-workers have also published data on other ways in
which VB,,-IF can be used as a carrier system for the oral absorption of
model peptides [160]. In one method the peptide was not covalently attached
to the VB,, molecule, but was incorporated into biodegradable nanospheres
coated with VB,,. The peptide was thus protected from degradation and did
not require chemical modification, which may hamper the bioactivity of the

peptide once absorbed from the GIT.

In common with the active absorption of many other nutrients, the capacity
of the uptake system is a limiting factor in the maximum possible dose. This
is especially important when attempting to enhance the oral absorption of
GnRH antagonists where the proportion of receptors occupied by the
antagonist is vital to the desired effect. Nanoparticle incorporation of
peptides could potentially increase absorption by up to 10°fold. Studies on
optimum particle size revealed that 50nm, 100nm and 200nm particles were
all transported with similar efficiency [154]. Analysis of the ideal surface VB,
density demonstrated that a reduction in surface VB,, decreased the

percentage of particles transported.
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1.6.3 Other methods of enhancing uptake

1.6.3.1 The peptide transporter

A specific transport mechanism exists in the duodenum for the uptake of
short di- and tri-peptides [161] termed the intestinal peptide transporter or
Dipeptide Transporter and is known to be involved in the intestinal uptake
of some antibiotics in addition to nutrient uptake [162], however this method
is obviously not suitable for large conjugated decapeptides such as GnRH

analogues.

1.6.3.2 Absorption enhancers

Agents affecting the barrier function of the GI layer have been used to
enhance the uptake of small peptides with a limited degree of success. In the
hostile environment of the GIT, most peptides are rapidly degraded by
hydrolysis and therefore any absorption enhancer must allow rapid uptake
of the peptide before the peptide is inactivated [163]. Any such molecule
must be non-toxic and have rapidly reversible effects in order that the
integrity of the GIT is not disrupted, allowing the absorption of toxic

molecules excluded under normal circumstances.

Chitosan (a non-toxic natural polysaccharide) was used to increase the
absorption of hydrophilic macromolecular drugs. The paracellular
permeability of peptide drugs across the mucosal epithelia was enhanced in
the presence of protonated chitosan (at less than pH 6.5). Trimethyl chitosan
chloride has been used in this way to reversibly widen the paracellular route
for neutral and cationic peptide analogs and the permeation and absorption
of heparin has been increased by mono-carboxymethylated chitosan [164-
168]. However this method is not suitable for all peptides and there are
concerns about using these molecules to increase GIT permeability for

prolonged periods.
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1.6.4 Enhancing absorption of GnRH analogues

The high binding affinity, wide range of uses, small size and variety of
GnRH analogues available makes them ideal candidates for testing potential
new routes of administration. The GnRH agonist Nafarelin has been tested in
a controlled release injectable preparation based on microencapsulation in
poly(lacticcoglycolic) acid and was found to have more profound effects in
primates in comparison with the simple peptide in an injectable solution
[169]. A similar technique has been used on Leuprolide (GnRH agonist) and

resulted in a prostatic carcinoma treatment licensed for use [170-172].

Stable, bioavailable, readily manufacturable and patient acceptable methods
of administering peptides have also been explored with GnRH analogues.
Nasal delivery has the advantage of being non-invasive, with a highly
vascular surface area of approximately 200cm?, however in many cases it is
necessary to co-administer absorption enhancers to achieve sufficient uptake
by this route. The method by which the bile acid sodium glycocholate
enhances nafarelin uptake is poorly understood, nevertheless it increased
nasal uptake of the GnRH agonist from 3% to around 15% [173]. However
this route has some unique problems during common upper respiratory
infections, significantly hampering absorption by this route. In addition
transdermal delivery of Leuprolide has been experimentally demonstrated in

human cadaver skin [174].

GnRH analogues have also been tested for potential transdermal absorption
by conjugation of [DLys°]GnRH to aliphatic fatty acids of varying chain
length. Analogues with twelve or less carbons had similar in vivo potencies to
the unmodified analogue as measured by induction of LH release in
proestrous rats [175]. Nicoli and colleagues attempted to achieve transdermal
absorption of Triptorelin, a GnRH analogue currently used as implantable
microparticles for the treatment of sex hormone-dependent tumors and

benign gynecological disorders [176]. Transdermal transport through rabbit

36



Chapter 1 Literature review

ear skin was only identified in combination with lauric acid [177], known to

modify the structure of the stratum corneum barrier [178].
1.7 CONCLUSIONS

Increasing half-life and oral absorption of peptides is subject to ongoing
research. The aim of this study was to address these problems in a novel way
through the conjugation of other biologically functional molecules to GnRH
analogues to modify the properties of these analogues without altering
sequence (except where necessary for conjugation purposes). This draws on
knowledge of the three main areas outlined in this chapter, namely GnRH
structure-activity relationships, sex-steroid plasma proteins and methods to
enhance oral absorption of peptides, resulting in a single molecule

combining all these properties.

1.8 AIMS

This thesis aims to address whether GnRH analogues can be modified to
increase half-life and enhance oral absorption through conjugation to form
novel bifunctional molecules. These bioconjugates will be designed,
synthesised and analysed in vitro and in vivo to determine the effect of this

process on the functioning of these novel molecules.
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2 General Methods

This chapter details the general methods used throughout this thesis. Where
methods were adapted for specific experiments, the alterations are included
in the relevant chapter. All chemicals were obtained from Sigma-Aldrich
Company Limited, with the exception of radiochemicals, which were
purchased from Amersham Pharmacia Biotech UK Limited and unless
otherwise stated. The addresses of suppliers are included in appendix I and

solutions are described in appendix II.

2.1 CELL CULTURE

2.1.1 General aspects of cell culture

COS-7 cells were maintained in complete media until use (Dulbecco’s
Modified Eagle’s Medium supplemented with 10% fetal calf serum,
glutamine, penicillin and streptomycin). Research assistants Mr. R Sellar and
Miss N Miller carried out routine maintenance of cell lines, including regular

passage and plating of cells.

A HEK293 stable cell line expressing the rat type I GnRHR developed by Dr.
L Anderson [179] and designated SCL60, was used for the inositol phosphate
production assays. This cell line was maintained in complete media with
G418 at 500ug/ml throughout culture. Where required, plates were coated

with Poly-L-Lysine to enhance adherence to plastic ware during assay.
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2.1.2 Preparation of human type I GnRH receptor cDNA for

transient transfection

Plasmid DNA stocks of human GnRHR held by the laboratory were used to
produce DNA for transfections. Bacteria were grown up overnight in LB
Broth with 100pg/ml ampicilin for 20-24h at 37°C. The DNA was purified
using Wizard® Plus Maxipreps (Promega). Bacterial cells were spun down at
5,000rpm for 10 min at room temperature and the cell pellet was
resuspended in 15ml Cell Resuspension Solution. Cell Lysis Solution was
added to this and thoroughly mixed for 15 min, 15ml Neutralization solution
was added followed by further mixing by inversion. The cell suspension was
spun once more at 4°C for 20mins at 6000rpm and filtered into a clean
centrifuge bottle. 25ml isopropanol was added to this and mixed before
further centrifugation at 4°C for 15 min at 6000rpm. DNA was resuspended
in 2ml TE buffer and 10ml DNA Purification Resin was added. This solution
was purified through a Maxicolumn and thoroughly washed with Column
Wash Solution and 80% ethanol. 1.5ml TE buffer pre-warmed to 70°C was
added after centrifugation of the Maxiprep column and the resulting DNA
solution was assayed for purity and concentration by measuring the
absorbance at 260 and 280nm.

2.1.3 Transient transfection of COS-7 cells

COS-7 cells were transfected with the human GnRH receptor (hGnRH-R) for
receptor binding assay using Superfect transfection agent (Qiagen) in
Optimem media (Invitrogen Life Techologies) for 4h. Briefly, 300ul optimem
media was mixed with 10ug DNA per 100mm dish along with 30ul Superfect
transfection reagent. The lipid was allowed to complex with the DNA for
10min at room temperature before 3.5ml complete media (see cell culture)
was added. Culture media was removed and replaced with transfection

media for 6h and after washing with PBS the transfection media was

39



i e APy | f PRpp— oo ¥
napter - Lseneral metnodas

exchanged for complete media. Transfected cells were assayed after a further

48h in complete media.

2.2 ANALYSIS OF GnRH RECEPTOR BINDING AND
ACTIVATION

The GnRH-steroid conjugates were tested for receptor binding and effects on
inositol phosphate production in the SCL60 cell line stably expressing the rat
GnRHR and transiently transfected COS-7 cells expressing the human
GnRHR.

2.2.1 Iodination of GnRH analogues for receptor binding

assays

The GnRH analogue [His’DTyr ]|GnRH was iodinated with I for use in
competition receptor binding assays (both whole cell and membrane) by Dr
P Taylor or by Mr. R Sellar assisted by myself [180]. 5ul of 1mM peptide was
reacted with 1000uCi I sodium iodide in the presence of Iodogen (Pierce)
for 90 seconds and washed through a G25 Sephadex column with 0.01M
glacial acetic acid, 0.1% BSA. Fractions from the peak were collected and
tested for specific binding in a competition whole cell binding assay before
being pooled and used. A representative elution profile is illustrated in

figure 2.1.
2.2.2 Competition whole cell binding assays

COS-7 or SCL60 cells were plated in 12 well plates and maintained in a 37°C

incubator for 24h before assay. Cells were washed twice with PBS before
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competing ligand under test and a constant amount of radiolabelled ligand
(*’I[His’DTyr*]|GnRH). The plates were equilibrated on ice for 4h and the
incubation solution was removed. The plates were washed twice in PBS and
solubilized by addition of 500ul 0.1IM NaOH and shaking for 20min.

Samples were counted on a 1261 Multigamma (LKB Wallac) gamma-counter.

40000

30000 -

20000

Counts per 10 sec

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
fraction

Figure 2.1: Elution profile after iodination of [His’DTyr*]GnRH on a Sephadex G25 column
using 0.01M acetic acid/0.1%BSA as elution buffer. Fractions from the shaded area were

checked for specific binding and pooled.

2.2.3 Competition membrane binding assays

Transfected COS-7 cells were washed in PBS, removed from plates and
centrifuged at 1500rpm for 5 min to pellet the cells. The PBS was aspirated
and the cells were resuspended in homogenization buffer, vortexed and left
on ice for 10 min. The cell suspension was transferred to a 7ml homogeniser
(Jencons (Scientific) Ltd.) and plunged 15 times with a loose plunger and 15

times with a tight plunger. The homogenized cells were centrifuged at 4°C
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for 10 min at 10,000 x g and the supernatant was removed with a vacuum
pump. The remaining membrane pellet was resuspended in assay buffer by
repeatedly passing the membrane pellet though a 23-gauge needle. Pre-
cooled 12mm glass tubes were filled with 200ul assay buffer, 50ul 1% BSA,
100pl cell membranes, 100pM '*I[His’ D-Tyr’|GnRH in assay buffer
(approximately 100,000 CPM per tube) and 50ul cold ligand (or assay buffer
in Bo tubes) in increasing concentrations. The tubes were incubated for 4h at
4°C and filtered under vacuum through Whatman GF/C glass fiber filters
(Whatman International Ltd.) presoaked in 1% PEI. Filters were then counted

immediately on a gamma counter.

2.2.4 Measurement of total inositol phosphate production by
the GnRH receptor

SCL60 cells were plated into 12 well plates and incubated at 37°C, 5% CO, for
24h, then incubated in special DMEM containing 1% dialysed FCS (with
glutamine and penicillin/streptomycin) and 1pl/well of myo-[2-’"H]inositol
for a further 48h. After aspiration of media and washing with incubation
buffer, a further 500ul buffer containing 10mM LiCl and the antagonist or
conjugate under test was added to the plates and incubated at 37°C for
30mins. Mammalian GnRH (for assay of antagonism only) was added to each
well to a final concentration of 0.1pM and the plates were incubated under
the same conditions for a further 1h. The reaction was terminated with 500ul
10mM formic acid, incubated at 4°C for 30min. Formic acid solutions were
transferred to 12mm plastic tubes containing 500ul 50% AG-1x resin slurry
(Bio-Rad Laboratories Ltd.). Inositol phosphates were eluted by addition,
vortexing and removal of distilled water (1ml) and sodium tetraborate,
sodium formate (Iml, 5mM, 60mM) solution. After addition of formic acid,
ammonium formate (1ml, 0.1M, 1M) and vortexing, 800pul of the supernatant

was counted with scintillation fluid.
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2.3 ANALYSIS OF SPECIFIC PLASMA PROTEIN
INTERACTION

GnRH-steroid conjugates were tested for competition with progesterone for

binding to high molecular weight plasma proteins.

2.3.1 Competition plasma protein binding assay

Plasma protein binding was determined by the competitive binding of
steroid conjugates, in the presence of [1,2,6,7-’H]progesterone, to pregnant
guinea pig plasma according to the method of Hammond and Lahteenmaki
[181]. 20ul plasma was diluted with 2ml dextran-coated charcoal solution
and incubated at room temperature to remove the endogenous steroids.
After 30min the suspension was centrifuged at 3000 x g for 10min, the
supernatant was removed and the pellet was discarded. 100ul of diluted
plasma was aliquoted into centrifuge tubes, followed by 1pmol[1,2,6,7-
*H]progesterone/100ul PBS. 100ul PBS (total binding) or 200pmol/100pul
unlabelled progesterone (specific binding) was added to diluted plasma in
duplicate. The conjugates were dissolved in 100pl PBS and added to
centrifuge tubes containing 100pl diluted plasma and 1pmol[1,2,6,7-
*H]progesterone. The tubes were vortexed and incubated at room
temperature for 1h, then for an additional 15min on ice. 750ul dextran-coated
charcoal suspension was added to the plasma solution and incubated for
10min on ice, followed by centrifugation (3000 x g) at 4°C for 5min. 700l of
the supernatant fluid was counted with scintillation fluid on a 1450

Microbeta Wallac-Trilux liquid scintillation counter.
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pregnant guinea pig plasma

PBG present in the pregnant guinea pig plasma was semi-purified for further
analysis of plasma protein binding. This was achieved by ion-exchange
chromatography, utilizing the unusually low pI of 2.3 of PBG and a strong
cation exchange column according to the method of Westphal et al [138, 182].

Pregnant guinea pig plasma anticoagulated with lithium-heparin was
supplied by Charles River Laboratories and stored at —20°C until use. The
plasma was dialyzed in 20ml aliquots for 16h in 2L 20mM sodium acetate,
0.02% azide at pH 7.2 at 4°C. Dialyzed plasma was titrated to pH 4.5 + 0.02
with 50% acetic acid and the precipitate removed by centrifugation at
2000rpm for 10min. The plasma supernatant was then applied to a
sulfopropyl-Sephadex (SP-Sephadex) column equilibriated with 20mM
sodium acetate, 0.02% azide at pH 4.5. Fractions were collected every 2min
for 2h and tested for specific [*H]progesterone binding and total protein
content. Most serum proteins are adsorbed by the SP-sephadex or inactivated
by the low pH except PBG, which elutes in the void volume.
[PH]progesterone binding was measured in 20ul aliquots of fractions
collected from the column, which were incubated with 50ul [*H]progesterone
for 1h and stripped with 750ul dextran-coated charcoal suspension. Protein
measurement at 580nm revealed more than one protein was eluted from the
column as at least 3 protein peaks were observed, however a large
proportion of the proteins present in the plasma were removed. Fractions 22

to 36 were pooled for use in assays.
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Figure 2.2: [’H]progesterone binding and total protein content in fractions collected from a
SP-Sephadex column with a running buffer of 20mM sodium acetate, 0.02% azide at pH 4.5.

2.4 ANALYSIS OF PROGESTAGENIC ACTIVITY

The conjugation of GnRH antagonists to progesterone to enhance half-life
and confer plasma protein binding affinity also introduced the possibility
that the conjugated progesterone may retain progesterone receptor binding
affinity.

2.4.1 T47D cell line

Progestagenic activity was tested on the epithelial breast cancer cell line
T47D, stably expressing the progesterone receptor linked to a
chloramphenicol acetyltransferase (CAT) reporter gene. This cell line was
kindly supplied by Prof. Rodney Kelly (HRSU), but was originally produced
by Dr. M Beato (Institut fur Molekularbiologie und Tumorforschung IMT,
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Philipps-Universitat Marburg, Germany). CAT is a bacterial drug-resistance
gene absent from eukaryotic cells and functions to inactivate
chloramphenicol by acetylation at the two hydroxyl groups (Promega
Technical Bulletin 084). An enzyme assay system was available (Promega) in
which the n-butyryl moiety from Coenzyme A is transferred to
[3H]chloramphenicol and this was used to test the activation of the

progesterone receptor by the synthesized conjugates.

2.4.2 Treatment of T47D cells

T47D cells were maintained in RPMI 1640 medium supplemented with 2mM
glutamine, 10% FCS, penicillin, streptomycin and insulin transferrin sodium
selenite supplement. Cells were plated in 100mm dishes at a density of 2
million cells per dish, 24h in advance of treatment with progesterone or
progesterone-GnRH antagonist conjugates. 100ul of steroid or conjugate
solution was added to 10ml of media and cells were left for a further 24h

before CAT enzyme assay.

2.4.3 CAT enzyme assay of treated T47D cells

A cell extract was prepared, washing the cells first in PBS (magnesium and
calcium free) and applying 900ul Reporter Lysis Buffer to the cells. After 15
min incubation at room temperature, the cells were scraped from the plate
and transferred to a microcentrifuge tube on ice. Each tube was vortexed for
10-15 seconds, then heated at 60°C for 10 min to inactivate endogenous
deacetylase activity. The cell lysates were then spun at top speed in a
microcentrifuge for 2 min and the supernatant was transferred to a fresh
tube.

Reaction mixtures were prepared in microcentrifuge tubes containing cell

extract, ["H]chloramphenicol and n-butyryl CoA, made up to a total volume
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of 125ul with water. Positive and negative controls were prepared containing
a known amount of chloramphenicol acetyltransferase or no cell extract
respectively. The reaction mixtures were incubated at 37°C for 3h and then
spun briefly in a microcentrifuge. The reaction was terminated by addition of
300pu] mixed xylenes and the partition of [’H]chloramphenicol was measured

by liquid scintillation assay.

2.4.4 T47D cell lysate liquid scintillation analysis

In order to measure the presence of n-butyryl-[’H]chloramphenicol in the
xylene layer, the xylene/reaction mixture was vortexed thoroughly and spun
at top speed for 3 min. 200ul of the xylene phase was removed and 100ul
0.25M Tris-HCl (pH 8.0) was added, before repeating the vortex and spin
procedure. 150ul of the xylene layer was transferred to a scintillation vial,
scintillation cocktail was added and the cpm was measured over 1 minute.
The counts measured in the negative control were subtracted from all other

values.

2.5 ANIMALS

All primates used in this study were housed at the MRC Human
Reproductive Sciences Unit Primate Centre under the care of primate centre
staff. All procedures were in agreement with the Animals (Scientific
Procedures) Act 1986 under the license of Dr H. Fraser.

2.5.1 Marmosets

Adult marmoset monkeys (Callithrix jacchus) were housed in cages

measuring 0.6 x 1.1 x 1.15m (W, D, H) in rooms artificially lit between 07.00
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and 19.00hrs. Female marmosets were housed together with a younger sister
or prepubertal female and had regular ovulatory cycles. Male marmosets

were housed in family groups.

Marmosets were held in a restraining device [183] to allow for blood samples
(300ul) to be collected by femoral venepuncture without anaesthesia. The
sealed 1ml heparinized syringes were centrifuged for 20 min at 1000 x g to
extract plasma, which were then stored at —20°C until use. In the case of the
female marmosets, blood samples were collected three times per week
during test and control cycles. More frequent sampling was carried out
immediately following the injection. Blood samples were collected from the
male marmosets in the same way on three occasions during the week prior to

treatment.

Female marmosets have an approximately 28 + 2 day ovarian cycle. This is
split into a 8 day follicular phase and 20 day luteal phase. Ovulation was

identified by a progesterone concentration greater than 30nmol /L.

2.5.1.1 Steroid assays
Progesterone enzyme-linked immunosorbent assay (ELISA) and testosterone
radioimmunoassays on marmoset blood samples were carried out by the in-

house assay service.

2.5.1.2 Marmoset progesterone ELISA plate assay

Briefly, plates were coated with coating antibody for a minimum of 4h and
then washed three times with ELISA washing solution. 2.5pl of marmoset
plasma in phosphate/citric assay buffer was added to the plate alongside
standards, Bo and NSB for quantification (for standards, stripped marmoset
plasma was used). 50ul of primary antibody was then added to each well
(except NSB) and incubated at room temperature for a minimum of 3h. The

incubation solution was removed and the plates were washed five times with
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ELISA washing solution. 100ul streptavidin-horseradish peroxidase was
added to each well for 1h, followed by 200ul substrate solution, then the
colour was allowed to develop over a period of 15 to 30 minutes. Once
developed, the reaction was stopped with 50ul stopping solution and the

plate was read at 490nm on a Victor Plate Reader.

2.5.1.3 Marmoset testosterone radioimmunoassay

50ul plasma under test was added to glass test tubes and vortexed for 10
minutes with 1ml hexane:diethyl ether (4:1). The aqueous layer of each
sample was snap frozen and the supernatant transferred to a fresh glass tube
where the sample was dried down under nitrogen. Each extract was
reconstituted in 250pl RIA buffer. 100ul sample was combined with an equal
volume of tracer and antibody and made up to 800ul with RIA assay buffer.
This mixture was incubated overnight at 4°C. To this 100ul second antibody
(anti-testosterone-3-CMO-BSA) and 100ul normal sheep serum was added
and incubated again overnight at 4°C. 1ml 0.9% saline, 0.2% Triton X was
added to all tubes except total counts and the tubes were centrifuged at

3000rpm for 30min. The supernatant was counted on a gamma counter.

2.5.2 Macaque

An adult female stumptailed macaque (Macaca arctoides) was ovarectomized
by a veterinary surgeon and allowed to recover from the operation for three
weeks before treatment. Baseline LH and FSH levels were determined by
collecting blood samples three times per week for two weeks prior to

injection.

2.5.2.1 Macaque LH radioimmunoassay

Macaque LH RIA assays based on the Recombinant Cynomolgus Monkey
LH Immunoreactants for RIA supplied by NIH (National Institute of Health)

were carried out by the in-house assay service. Briefly, total counts (TC),
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non-specific binding (NSB), total binding (Bo), standards, quality controls
and samples were set up in plastic tubes in duplicate. Primary antibody
(100pl) was added to all tubes except TC and NSB. The tubes were vortexed
and incubated overnight at 4°C. '"”I-LH tracer was added to each tube before
a second overnight incubation at 4°C. Normal rabbit serum (100ul of 1:400
dilution in assay buffer), followed by donkey anti-rabbit serum (100ul of 1:32
dilution in assay buffer) was added to each tube (except TC) and the tubes
were incubated overnight at 4°C. Wash solution (1ml) was added to each
tube except TC. The tubes were centrifuged at 3000rpm for 30min at 4°C. The
supernatant was decanted and the tubes were inverted on absorbent
towelling to drain. All tubes were counted on a 1261 Multigamma (LKB

Wallac) gamma-counter.
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3 Design and synthesis of GnRH-steroid conjugates

3.1 INTRODUCTION

GnRH analogues are extremely useful pharmacological agents, with high
receptor binding affinity at the GnRH receptor. However most analogues are
peptides and this has limited the use of these agents in the clinic. Peptide
GnRH agonists and antagonists are most commonly given by injection to
avoid degradation by gastrointestinal protease enzymes, renal clearance and
first-pass metabolism. Efforts are underway to address this problem by novel
methods of administration such as transdermal delivery [177, 184, 185] or
slow-release depot preparations [170-172], but oral absorption of peptide

GnRH analogues remains an elusive goal.

It is possible that the pharmacokinetics of peptide GnRH analogues could be
improved by conferring plasma protein binding properties onto peptides
lacking this feature. The GnRH antagonist Antide can inhibit gonadotropin
production for up to four weeks in the macaque, probably due to association
with large molecular weight plasma proteins and formation of a depot gel
[186]. This duration of action is considerably longer than analogues that do
not bind to plasma proteins [187-189]. Therefore a method by which a GnRH
antagonist could acquire this feature without requiring sequence
modification (affecting GnRH receptor interaction) would be a distinct

advantage.

Coupling any molecule that binds to plasma proteins onto a GnRH analogue
is possible, however a molecule such as a steroid would also have some
additional benefits, including reduced toxicity concerns and possible low-
level steroid replacement, an advantage during long-term gonadotropin
suppression. Rahimipour et al [12] used a similar concept, although a toxic

molecule with albumin binding affinity was modified to remove the toxic
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molecule was coupled to a GnRH agonist, but the toxicological implications

of such a molecule could be significant.

Increasing the circulatory half-life of a GnRH analogue through plasma
protein binding would reduce administration frequency and the overall cost
of therapy, an obvious advantage with peptides. It would also make
achieving a steady concentration far simpler than with rapidly cleared

peptides.

3.2 DESIGN OF GnRH ANALOGUE-STEROID
CONJUGATES

To investigate the properties of novel GnRH analogue bioconjugates, entirely
new molecules were synthesized. Although other bioconjugates have been
produced in the past, the approach and design of the current GnRH analogue

conjugates is novel.

The design of the GnRH analogue-steroid conjugates was based on
consideration of a number of factors, including GnRHR binding affinity, the
requirements for steroid binding to plasma proteins and the overall
molecular structure. These factors were combined to produce molecules that

would be expected to retain biological activity.

3.2.1 Selection of GnRH analogue: GnRH receptor binding

affinity

Native GnRH is proposed to interact with the GnRH receptor in a folded
conformation. Both the N- and C-terminals are required for binding, but the

N terminus is crucial for receptor activation [13, 22, 23]. Previous studies on
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the conjugation of GnRH analogues to cytotoxics [9-11] and to other
molecules such as tetramethylrhodamine [52] and emodic acid [12] have

used position six of the decapeptide and retained GnRH receptor binding.

In order to incorporate a suitable reactive group and sufficient space between
the steroid and peptide, a D-lysine was used in position 6 of the initial
peptide sequences. The free e-amine group of lysine is a convenient
functional group for conjugation chemistry, resulting in a relatively stable
amide group when coupled to carboxylic acids. Other amino acids could
potentially be used in this position, but the four-carbon side chain assisted in
minimizing steric hindrance on both the steroid and the peptide. The D
isoform of lysine was selected because D amino acids enhance the
biologically active conformation of GnRH and the side chain is orientated
away from the receptor. Incorporating a D amino acid also enhances
metabolic stability by preventing the action of endopeptidases that cleave
GnRH between the fifth and sixth amino acids [53, 188].

3.2.2 Selection of steroid: Steroid-plasma protein interaction

The binding affinities of a large number of steroids for specific binding
proteins have been extensively studied and reported in the literature. The
steroid derivative for peptide conjugation was chosen on the basis of this
published data. The choice of progesterone derivative was limited by
commercial availability of steroids with a free hydroxyl group for reaction
with a linker. The derivative selected for the initial conjugations was 11a

hydroxyprogesterone.

In the later studies 21-hydroxyprogesterone 21-hemisuccinate (also known as
deoxycorticosterone 21-hemisuccinate or 21-hydroxy-4-pregnene-3, 20-dione
21-hemisuccinate) was used. The important aspects of steroids for binding to
human CBG are the 20-oxo, 10B-methyl and the C4 double bond, with

cortisol having the highest affinity constant (at pH 7.4, 4°C) for this specific
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binding protein. Deoxycorticosterone has a similar affinity constant to
cortisol (6.8uM versus 7.1uM respectively) [97] and possesses all three
important features, but lacks the 11B and 17-hydroxy groups of cortisol.
Although the affinity constant of deoxycorticosterone 21-hemisuccinate for
human CBG could not be determined from the literature, the affinity
constant of deoxycorticosterone for guinea pig PBG was only 2-fold less in
comparison to progesterone [139] and the hemisuccinate group only
decreased the affinity of deoxycorticosterone for PBG by a further 4-fold
[139].

3.2.3 Overall structure of molecule

The overall molecular structure was designed to incorporate sufficient space
between the steroid molecule and the GnRH antagonist, minimizing steric
hindrance. This was achieved with a combination of the four-carbon chain of
D-lysine and the hemisuccinate ‘linker’ between the peptide and steroid.
The following molecules were designed and produced in this thesis (the
design of the antagonist conjugates is featured in section 3.4):
1. [DLys’(11a hydroxyprogesterone 11-hemisuccinate)|GnRH
2. [DLys’(21-hydroxyprogesterone 21-hemisuccinate)|GnRH
3. [DLys‘(B-oestradiol 17-hemisuccinate)|GnRH
4. [AcDNal', DCpa?, DPal’, Arg’, DLys®(21-hydroxyprogesterone 21-
hemisuccinate), DAla-NH,""]GnRH (antagonist conjugate A)
5. [AcAPro', DFpa’, DTrp’, DLys"(21-hydroxyprogesterone 21-
hemisuccinate), Gly-NH,’]|GnRH (antagonist conjugate B)
6. [AcDNal', DCpa®, DPal’, Arg®, DLys®, Lys’(21-hydroxyprogesterone 21-
hemisuccinate), Leu®, Arg’, D-Ala-NH,""]|GnRH (antagonist conjugate
O
7. (21-hydroxyprogesterone 21-hemisuccinate)DPal, Ser, Arg, DLys, Leu,
Arg, Pro, DAla-NH, (antagonist conjugate D)
8. [AcDNal', DCpa? DPal’, Arg’, DLys®, Lys’(21-hydroxyprogesterone 21-
hemisuccinate), DAla-NH,"’]|GnRH (antagonist conjugate E)
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CONJUGATES

Conjugates were successfully prepared by two out of three methods
attempted with different coupling reagents. The coupling reagents used were
a mixed anhydride (isobutyl chloroformate, IBCF), a water-soluble
carbodiimide (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDAC) and
an organic carbodiimide (N,N’dicyclohexylcarbodiimide, DCC). No
conjugation was observed using EDAC, probably due to difficulties arising
from the hydrophobicity of the steroid. The two successful methods, mixed

anhydride and organic carbodiimide, are detailed in this section.

3.3.1 Mixed anhydride conjugation to progesterone

The progesterone derivative 11o-hydroxyprogesterone was first converted to
11-succinylprogesterone to introduce a carboxyl group as described in figure
3.1. 11a-hydroxyprogesterone and succinic anhydride were each dissolved in
equal volumes of N-dimethylformamide (DMF) to 1.5M and 5M respectively.
The progesterone solution was added into the succinic anhydride solution to
ensure a constant excess of the anhydride and the pH was maintained
alkaline by addition of 200ul tributylamine. After 2h on ice and 12h at room
temperature, an equal volume of water was added to precipitate the 11o-
hemisuccinate-progesterone product, with the excess succinic anhydride
remaining in solution. After 48h the crystalline product was removed and
tested by thin-layer chromatography on a 10 x 20cm glass TLC plate coated
with silica containing fluorescent indicator. The solvent system was 30%
ethanol, 70% ethyl acetate. A product more polar (migrating less) than the
starting material was identified absorbing in the UV range and analysis of
the UV absorption spectra between 200 and 400nm on a Kontron Uvikon 860

UV photometer revealed the same absorption spectra as the starting material.
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The derivative retained the characteristic progesterone absorption at 240nm
(figure 3.2A and 3.2B).

CHs;
| H
HO H—C—C—0 -
+ | 0
H—c—c_—o0"
H
O
11o-hydroxyprogesterone succinic anhydride
2h onice
12h at room temperature
alkaline pH
CH;
@)
C

11-succinylprogesterone

Figure 3.1: Conversion of 11a-hydroxyprogesterone to 11-succinyl-progesterone by succinic
anhydride.
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Fig 3.2A: UV absorption of 11o-hydroxyprogesterone before modification, measured at Inm
intervals between 200 and 400nm. The maximum absorption occurred at 240nm as expected
for progesterone due to the C3 keto/C4 double bond.
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Fig 3.2B: UV absorption of crystalline product from reaction of succinic anhydride and 11o-
hydroxyprogesterone, measured at Inm intervals between 200 and 400nm. The absorption
pattern remained the same after modification to add a hemisuccinate group to the 1lo-

hydroxyl group of the progesterone derivative.

The carboxyl group of 11-succinylprogesterone was activated with isobutyl
chloroformate and reacted with [DLys’]JGnRH. The steroid and peptide were
both dissolved in 50% phosphate buffer (pH 7.0) 50% DME. The reaction
mixture was left on ice for 30min and transferred to room temperature for a
further 2h.
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11oa-succinylprogesterone
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Figure 3.3: Reaction of 11-succinylprogesterone and [DLys*JGnRH. The other amino acids are

represented by the universally accepted single-letter amino acid code as follows: pE; pyro-

glutamic acid, H; histidine, W; tryptophan, S; serine, Y; tyrosine, L; leucine, R; arginine, P;

proline and G-NH,; glycine-amide.
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Initial purification was carried out on a Sep-Pak C18 syringe column
(Millipore UK Ltd.) primed with 2ml ethanol. The reaction mixture was first
washed through the column in 20ml water, then the excess steroid was
eluted with 2ml ethyl acetate and the peptide-steroid conjugate was
recovered from the column with 2ml 1,1,1,3,3,3-hexafluro-2-propanol (HFP).
The HFP-eluted products were dried down under nitrogen and re-dissolved
in acetonitrile/water (30:70). This was then analyzed on a LKB HPLC with a
twin-pump gradient system and a fixed-wavelength UV absorption detector.
The column was a Novapak C18 column (Millipore UK Ltd.) containing 4pm
beads, measuring 3.9 x 150mm. A two buffer system was used, buffer A
being water (with 0.1% trifluroacetic acid, TFA) and buffer B being
acetonitrile (with 0.1% TFA). The column was developed with a linear
gradient of 30-100% buffer B over 40min at a flow rate of 1ml/min. Fractions
were collected every 30s for the duration of the run. Two peaks were
observed close together between fractions 30 and 39, equivalent to retention
times of 15 to 19.5 min (data not shown). These fractions were lyophilized

and dissolved in acetonitrile/water (50:50) for mass spectroscopy analysis.

Mass spectrometry was carried out on a Tofspec 2E matrix assisted laser
desorption ionization time-of-flight (MALDI-TOF) mass spectrometer
(Micromass UK Ltd.) with a matrix of o-cyano-4-hydroxycinnamic acid
mixed in equal volumes with the sample (dissolved in acetonitrile/water
50:50) and co-crystallized on a stainless steel plate. Data from several
different areas of the spot were combined to produce a single scan with
enhanced signal-to-noise and improved mass accuracy. The background was
subtracted to lessen the effect of chemical noise and finally the spectrum was

smoothed by the Savitzky Golay method to reduce high frequency noise.

Products with the same molecular mass as that calculated for the
[DLys’]GnRH-11a-succinylprogesterone conjugate (1665 AMU) were
identified in 7 of the 10 HPLC fractions (fractions 33 to 39 corresponding to
retention times of 16 to 19 minutes at 30 second intervals). The results from
mass spectrometry analysis of fraction 35 are shown in figure 3.4. In addition

to the expected products present mass, there were several other products
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present, lowering the yield of the desired peptide-steroid. In particular, the
molecular masses of 1352 and 1452 were equivalent to that of [DLys*|GnRH
and an additional 100 or 200 AMU. This could possibly be due to formation
of additional hemisuccinate groups on the peptide, not connected to a
steroid, increasing the mass by 100 AMU. Likewise, the 1766 peak is
equivalent to the [DLys’]|GnRH-11a-succinylprogesterone conjugate with an
additional hemisuccinate group, increasing the mass from 1666 to 1766
AMU. The presence of these and other minor products reduced the yield of

[DLys’]|GnRH-110-succinylprogesterone.
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Figure 3.4: Mass spectroscopy analysis of fraction 35 of purified [DLys’]JGnRH-11
succinylprogesterone conjugate. The expected molecular weight was 1666 A.M.U. and the
observed molecular weight was 1665.6 and 1666.6.

The methods used to identify the conjugates in this chapter could only
identify on the basis of molecular mass (mass spectrometry) and absorption
spectra (HPLC). This cannot be taken as conclusive proof of conjugate
structure as this would require further nuclear magnetic resonance analysis
(NMR), but the data suggest that the desired D-Lysine e-amine conjugate

would most likely be a component of this mixture.
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3.3.2 Mixed anhydride conjugation to estradiol

The same method was attempted to conjugate 11o-estradiol hemisuccinate to
[DLys’]GnRH. The expected product with a molecular weight of 1622 AMU
was observed in the HFP fraction from the Sep-Pak column, but other peaks
were also present at 1353, 1454 and 1553 AMU, a similar pattern to that
observed with conjugation to 1la-hydroxyprogesterone 11-hemisuccinate
(data not shown). The peaks at 1725 and 1824 AMU present in the reaction
mixture correspond to the desired product with an additional 100 or 200

AMU as observed previously.

3.3.3 Additional work converting 11a-hydroxyprogesterone to

11-hydroxyprogesterone 11-hemisuccinate

There was some difficulty in producing the hemisuccinate derivative of
11o hydroxyprogesterone in subsequent attempts. At the second attempt the
hemisuccinate derivative failed to crystallize when water was added to the
reaction mixture of succinic anhydride and 11a-hydroxyprogesterone. It was
hypothesized that this may have been due to insufficient purity of the 11-
hydroxyprogesterone 11-hemisuccinate for the crystallization process. This
was despite scratching the glass and adding crystals from the previous

successful reaction to facilitate crystallization.

The succinic anhydride-progesterone mixture from the second attempt was
purified on an ion exchange column of Sephadex LH-20 (Amersham
Pharmacia) with a mobile phase of 50:50 ethanol: ethyl acetate. This column
separates molecules on the basis of hydrophobicity. Eleven-o
hydroxyprogesterone is less hydrophobic than the 11-hemisuccinate
progesterone derivative, therefore 11a-hydroxyprogesterone elutes first. The
column eluent was connected to a UV detector set to 260nm. This
wavelength was selected because although the maximum absorption of
progesterone is at 240nm, at this wavelength there would also be significant

absorption of the solvent system. A single composite peak resulted from this
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separation, indicating that the solvent system used was too pola;r. An
alternative solvent system was then employed, comprising 50% ethyl acetate
and 50% chloroform. This resulted in two peaks, the initial peak
corresponding to 1la-hydroxyprogesterone and the second provisionally
identified as 11-hemisuccinate progesterone. The fractions collected from the
second peak were tested by mass spectrometry. However a molecular weight

corresponding to 11-hemisuccinate progesterone could not be identified by
this method.

It was possible that the succinic anhydride was reacting with the C3 keto
group, interfering with the UV absorption. The peaks observed could be
minor peaks whilst the major progesterone products were not detected. An
attempt was made to protect the carbonyl group prior to reaction with
succinic anhydride by converted the ketone to a ketal (figure 3.5). The 11o-
hydroxyprogesterone was dissolved in 4 molar equivalents of
triethylorthroformate. Two molar equivalents of ethylene glycol were added
to this mixture, followed by 0.1 molar equivalents of p-toluenesulfonic acid.
The mixture was left overnight to crystallize. The ketal product was
identified by mass spectrometry with a molecular weight of 374.5 AMU (data

not shown).

CHs

=0

HO

0
QO
Figure 3.5: Predicted ketal progesterone product.

Time constraints prevented further analysis of the reaction between the ketal
progesterone product with [DLys’]|GnRH. A hemisuccinate derivative of

progesterone at C21 (deoxycorticosterone 21-hemisuccinate) was readily
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available from commercial suppliers at low cost and therefore further
attempts to produce a [DLys’|GnRH-progesterone conjugate used this

derivative, in place of an in house-synthesized C11 derivative.

The [DLys’]GnRH-deoxycorticosterone 21-hemisuccinate conjugate was
produced by the mixed anhydride method used with 11-hemisuccinate
progesterone. After syringe column separation with 2ml ethyl acetate and
2ml HFP the conjugate was detected in the reaction mixture by mass
spectrometry (data not shown). However HPLC analysis revealed a large
proportion of unreacted [DLys’]|GnRH remained in the mixture. The yield
(not calculated) was therefore low and could not be improved despite
modifying the reaction time, incubation temperature and duration of

activation stage. Thus this method was not pursued further.

3.3.4 Attempts to conjugate with EDAC

Online literature (PE Biosystems) suggested the use of 1.5 molar equivalents
of steroid, in the minimum volume of 10% DMF: 90% phosphate buffer at pH
8 to 8.5 to conjugate the steroid (21-hydroxyprogesterone 21-hemisuccinate)
to a peptide ([DLys*]|GnRH) using EDAC. [DLys*]GnRH was first dissolved in
phosphate buffer and the pH was raised to between 8 and 8.5. The steroid
solution was added into the [DLys’]|GnRH solution and the EDAC solution
was added into the peptide-steroid mixture and left for up to 24h. No

evidence of conjugation was observed with this method.

The reaction was repeated in the same proportions but the steroid carboxyl
group was activated with EDAC at pH 5 for 10min before addition to the
peptide. This did not result in a [DLys’]|GnRH-steroid conjugate and this

method was not pursued further.
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3.3.5 Organic carbodiimide conjugation

The DCC coupling method was the most successful for the conjugation of
[DLys’]GnRH to a steroid. There were fewer side-products with this reaction
in comparison to conjugating with the mixed anhydride. The method was
devised by adaptation of two protocols previously published by Mattox et
al[190] and Rajkowski and Cittanova[191] and basic chemical techniques.

Twenty-fold molar excess (17mM) of 21-hydroxyprogesterone 21-
hemisuccinate or B oestradiol 17-hemisuccinate was dissolved in anhydrous
DMF with equimolar 1-hydroxybenzotriazole (HOBt) and DCC. The mixture
was mixed and left at room temperature for 1h. [DLys’]|GnRH was dissolved
in 0.1M phosphate buffer (pH 7.0) to 0.8mM and to this an equal volume of
N,N-dimethylformamide (DMF) was added. 50ul aliquots of the steroid
solution were transferred into the [DLys’]|GnRH solution, mixing between
each one. After all the steroid solution had been added, the pH was increased
to at least pH 8 with tributylamine and the mixture was left at 4°C for 20h.
The overall reactions are summarized in figure 3.6 (progesterone) and figure
3.6 (oestradiol). The expected [DLys’|GnRH-progesterone (1665 AMU) and
[DLys*]|GnRH-oestradiol conjugates (1607 AMU) were positively identified

by mass spectrometry.

Reacted [DLys°]GnRH was initially tested for the presence of peptide-steroid
conjugate by mass spectrometry. Reactions positive for the conjugate(s) were
purified by HPLC and the components of each fraction were analyzed by

mass spectrometry for identification purposes.

Initial purification was carried out with a Sep-Pak C18 cartridge. The excess
steroid was removed with 2ml ethyl acetate, followed by 2ml 70% HFP /30%
DMF to elute the peptide-steroid conjugate. The HFP/DMF fraction was
dried down under nitrogen and redissolved in 1ml 90% water/10%
acetonitrile for HPLC analysis. Analytical RP-HPLC was carried out on a

Novapak C18 column (4pm beads, 3.9 x 150mm) connected to a Beckman
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Coulter System Gold® LC125 pump and LC168 diode array detector. The
column was eluted using a two-buffer system of water with 0.1% TFA (buffer
A) and acetonitrile with 0.1% TFA (buffer B). The column was developed
with a linear gradient of 10% to 100% acetonitrile over 30min at a flow rate of
Iml/min. [DLys’]JGnRH-21-hydroxyprogesterone 21-hemisuccinate
conjugates were analyzed at 220nm and 240nm to measure the peak
absorption of the peptide and progesterone molecules respectively. Similarly,
[DLys*]GnRH-B-oestradiol 17-hemisuccinate conjugates were analyzed at

220nm and 225nm respectively reflecting the different absorption spectra of
the two steroids.
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Figure 3.6: Reaction of [DLys®]JGnRH and 21-hydroxyprogesterone 21 hemisuccinate by the
DCC conjugation method. The amino acids of the peptide are represented by single letter

abbreviations as before.
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Three molecules were identified by molecular mass (figure 3.7). The peak at
1253 AMU corresponded to unmodified [DLys°]|GnRH. The exact identity of
a peak at 1275 was not clear, however this additional peak at 1275 also
appeared in analysis of unreacted [DLys’]|GnRH and therefore must have
been a component of this compound. A hydrated form of the peptide would
not account for this peak, the mass difference was 22 AMU and a water
molecule would only add 18 AMU to the molecular mass, therefore the

identity remained unknown.

The peak at 1665 AMU was identified as the desired conjugate of
[DLys*]JGnRH-21 hydroxyprogesterone 21-hemisuccinate. The 2075 AMU
peak was consistent with a conjugate of one [DLys’]|GnRH molecule coupled
to two steroid molecules, most probably due to conjugation through a less
reactive amino acid side group. In some experiments a fourth minor peak
was observed at 2485, possibly due to conjugation of a third steroid molecule
onto the peptide. The free hydroxyl groups present in the side chains of
serine and tyrosine (amino acids four and five of the decapeptide) could
potentially react with the steroid hemisuccinate, although these hydroxyl
groups would be less reactive than the lysine amine group. This could
account for the additional peaks corresponding to two and three steroid
molecules coupled to [DLys’]JGnRH. The presence of peptide-steroid
conjugates with more than one steroid implies that the serine and tyrosine of
the decapeptide are reactive under these conditions. Therefore the peak at
1665 could consist of [DLys’]|GnRH-21-hydroxyprogesterone 21-
hemisuccinate connected through the D-lysine amine, serine hydroxyl or
tyrosine hydroxyl, all resulting in conjugates with the same molecular mass,

appearing as a single composite peak.
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Figure 3.7: Mass spectrometry analysis of the mixture of [DLys’]|GnRH reacted with 21
hydroxyprogesterone 21 hemisuccinate coupled by DCC, before purification by HPLC.

HPLC analysis was carried out on the reaction mixture to assess the relative

proportions of these molecules (figure 3.8).

HPLC analysis confirmed the presence of more than one molecule in the
mixture, verifying the mass spectrometry results. Six peaks were identified
by HPLC, three eluting earlier and three eluting later the unmodified steroid.
It is likely that these peaks represented the major components of the mixture
identified by mass spectrometry. The [DLys’]|GnRH-progesterone conjugates
eluted in fractions 30 and 31 (15.3 and 15.9 minutes), with intermediate
polarity between the peptide and the steroid. Both these fractions had a
molecular weight corresponding to a single steroid molecule coupled to the
peptide. However as indicated earlier, isomers could not be distinguished
since all would result in conjugates of the same molecular weight. In order to
conclusively identify the conjugate produced by this method, NMR analysis
would have to be undertaken to produce a purified sample of the D-lysine e-

amine-21-hydroxyprogesterone 21-hemisuccinate conjugate. The compound
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eluting later than 21-hydroxyprogesterone 21-hemisuccinate at 19.1min was
identified as being [DLys’JGnRH coupled to two steroid molecules with a
molecular weight of 2075 AMU.

The area of each peak was calculated by System Gold® HPLC software and
expressed as a percentage of the total area. This allowed estimation of the
yield of the products (table 3.1). However the large injection artifact
artificially reduced the total percentage area. Omitting this from the
calculation resulted in the total areas listed in table 3.1. The greatest
proportion of product eluted at 15.9min, with 46% of the total area. This
product had the same molecular weight as that calculated for [DLys*]GnRH-
21 hydroxyprogesterone 21-hemisuccinate. The peaks at 15.3min and
19.1min (30 and 17% of the total area) were found to have masses equivalent
to [DLys’]/GnRH-21 hydroxyprogesterone 21-hemisuccinate and
[DLys’]GnRH coupled to two 21 hydroxyprogesterone 21-hemisuccinate

molecules respectively.

Retention time | Corrected % total = Molecular mass Identity
(min) area (AMU)

15.3 30 1666 [DLys’]GnRH-
progesterone

15.9 46 1666 [DLys*]GnRH-
progesterone

19.1 17 2075 [DLys’]JGnRH-2x
progesterone

211 7 - =

Table 3.1: Retention times and corresponding area expressed as a percentage of the total area
of the major peaks, calculated from detection at 240nm by System Gold® HPLC software
and the molecular weight of each peak. Removing the injection artifact and recalculating the
percentage total area was carried out to calculate the corrected total area. Where no
molecular mass is given, the mass could not be determined by mass spectrometry, but for

those peaks that could be identified, the identity is given.
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Figure 3.8: HPLC analysis of [DLys’]|GnRH reacted with 21 hydroxyprogesterone 21-
hemisuccinate (black) as measured by absorption at 220nm over a 30 minute gradient of 10
to 100% acetonitrile in water at 1ml/min. The retention times of the peptide and steroid

before reaction at 220nm are represented in red. Retention times are marked by each peak.

The same process was carried out to conjugate [DLys’]|GnRH to B-oestradiol
17-hemisuccinate (figure 3.9). This steroid was successfully coupled to
[DLys’]GnRH agonist analogue, with the products identified by both HPLC
and mass spectrometry. The final product had a molecular weight of 1607
AMU, but a similar pattern emerged to that found with 21
hydroxyprogesterone 21 hemisuccinate, with a second conjugate with two

oestradiol molecules per [DLys’]|GnRH molecule being observed (MW 1960).
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Figure 3.9: Reaction of P oestradiol 17-hemisuccinate and [DLys’]|GnRH by the DCC

conjugation method. The amino acids of the peptide are represented by single letter

abbreviations as before.
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Figure 3.10: HPLC analysis of [DLys’]|GnRH reacted with 21 hydroxyprogesterone 21-
hemisuccinate (black) as measured by absorption at 240nm over a 30 minute gradient of 10
to 100% acetonitrile in water at 1ml/min. The retention times of the peptide (9.3min) and

steroid (17.1min) before conjugation at 240nm are represented in red.
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Figure 3.11: Mass spectrometry analysis of products from [DLys’]|GnRH reacted with B-

oestradiol 17 hemisuccinate on an o-cyano matrix.
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The total percentage area calculated by the System Gold® HPLC software
was corrected to remove the injection artifact, but in addition, the
considerable quantity of unreacted B-oestradiol 17-hemisuccinate that was
not removed by the Sep-pak column (identified by both retention time and
molecular mass) was also omitted from the calculation to obtain the

percentage total area of peptide-containing components.

The excess B-oestradiol 17-hemisuccinate eluted at 16.3min, with a retention
time identical to the steroid alone (red trace in figure 3.12). The major
product from the reaction between [DLys’]|GnRH and B-oestradiol 17-
hemisuccinate eluted at 18.7min and represented 47% of the total area. This
product eluted later than the unreacted B-oestradiol 17-hemisuccinate and
was found to correspond to a single [DLys*]GnRH molecule coupled to two
oestradiol molecules (mass 1960 AMU). Two peaks were observed with
shorter retention times than the B-oestradiol 17-hemisuccinate, at 15.0 and
15.7min, accounting for 5 and 43% of the total area respectively. Mass
spectrometry revealed that both of these peaks had identical molecular
masses at 1607 AMU and therefore could be isomers resulting from

conjugation to D-lysine or other reactive amino acids.

Retention time Corrected % Molecular mass Identity
(min) total area (AMU)
15.0 5 1607 [DLys"JGnRH-
oestradiol
15.7 43 1607 [DLys*JGnRH-
oestradiol
16.3 - 372 f oestradiol 17
hemisuccinate
18.7 47 1960 [DLys*JGnRH-
2x oestradiol
22.5 5 - -

Table 3.2: Retention times and corresponding area of reaction between [DLys’|GnRH and
178 oestradiol 17-hemisuccinate expressed as a percentage of the total area of the major
peaks, calculated from the absorption at 225nm by System Gold® HPLC software and the
molecular weight of each peak. The corrected percentage total area was calculated by
omitting the injection artifact and unreacted B-oestradiol 17-hemisuccinate from the
calculation. Where no molecular mass is given, the mass could not be determined by mass

spectrometry, but for the remaining peaks the identity is stated.
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Figure 3.12: HPLC analysis of [DLys*]GnRH reacted with 17B oestradiol 17-hemisuccinate as
measured by absorption at 225nm over a 30 minute gradient of 10 to 100% acetonitrile in
water. The rising baseline can be attributed to the increasing proportion of acetonitrile,
which also absorbs at this wavelength. The elution profile of the unreacted steroid at 225nm

is shown in red.

3.4 DESIGN OF GnRH ANTAGONIST-STEROID
CONJUGATES

GnRH agonist-progesterone conjugates are interesting molecules, but GnRH
antagonist conjugates are potentially more useful for rapid gonadotropin
inhibition. These conjugates were also designed and produced in this thesis.
As mentioned earlier (section 3.2.1), a D-lysine in position six was preferable,
therefore antagonists with a single DLys® were sought. Dr ] Rivier (Salk
Institute, California) kindly donated two antagonists fulfilling these
requirements. These were [AcDNal', DCpa® D Pal’, Arg’, DLys®, DAla-
NH,""]GnRH (peptide A) and [AcAPro', D Fpa’, DTrp’, D Lys®, Gly-
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NH,"]GnRH (peptide B). These sequences had a single D-lysine for
conjugation, initially used for conjugation to 21-hydroxyprogesterone 21-
hemisuccinate, forming antagonist conjugates A and B. However for later
studies it was necessary to include a second amino acid with a reactive side

chain.

One of the aims of this study was to modify peptide GnRH analogues to
enhance oral absorption. Different methods have been used to achieve this,
ranging from co-administration with absorption enhancers[164-168] to
coupling to carrier molecules such as bile acids[141] or vitamin B,, [158].
GnRH antagonists are too large to be transported coupled to bile acids and
the most suitable alternative method currently available is conjugation to
vitamin B,, derivatives through a thiol- cleavable spacer [158]. Vitamin B, is
significantly larger than the steroid and therefore it was conjugated to the D-
lysine in position six and a second lysine (L-lysine) was substituted for the
leucine in position seven of antagonist conjugate A. This resulted in
antagonist conjugates C and E, differing only in amino acids eight and nine
of the decapeptide. Antagonist C was [AcDNal', DCpa?, DPal’, Arg’, DLys",
Lys’, Leu®, Arg’, DAla-NH,'"’]-GnRH. This sequence was produced in error,
with the wrong amino acids in positions eight and nine of the peptide
(leucine and arginine instead of arginine and proline). Antagonist E was the
correct sequence, with arginine and proline in positions eight and nine,
[AcDNal!, DCpa® DPal’, Arg®’, DLys’, Lys’, DAla-NH,"“]JGnRH. Both
antagonists C and E were linked to 21-hydroxyprogesterone 21-

hemisuccinate though the e-amine of the Lys to form conjugates C and E.

Conjugate D was constructed from the same peptide sequence as conjugate
A, with the D-lysine maintained for vitamin B,, conjugation, but the first two
N-terminal amino acids were omitted and replaced with the 21-
hydroxyprogesterone 21-hemisuccinate, conjugated via the terminal amine
group of the pyridylalanine. The sequence of conjugate D was therefore 21-
hydroxyprogesterone 21-hemisuccinate-D-Pal, Ser, Arg, D-Lys, Leu, Arg,
Pro, D-Ala-NH,.
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cysteine in position six in place of the D-lysine, which would easily react
directly with a vitamin B,, derivative containing a sulphydryl group.
However the side group of D-cysteine is significantly shorter than D-lysine
(figure 3.13) and this would bring the peptide and steroid in close proximity
to each other, increasing the likelihood of steric hindrance to both GnRH
receptor and plasma protein binding. A homocysteine was another
possibility, having an additional carbon in the side chain in comparison to
cysteine, however this is not commercially available in the D isoform and
therefore could not be used in this instance. Thus a D-lysine was used in
antagonists C, D and E, with the amine group reacted with a crosslinking

reagent to couple the peptide to the sulphydryl group of the vitamin By,

derivative.

NH;"
o
Cle SH
Cle SH éHz
(-l'Hz (!,Hz Cl)l-i2

"HaN _(!' —H "HaN —C|> —H *HaN _(l —H
(!,OO' (|)OO‘ Cl,oo'

Lysine Cysteine Homocysteine

Figure 3.13: Structure of lysine, cysteine and homocysteine.

The five antagonist-progesterone conjugates are summarized in table 3.3,

with the conjugates shown aligned to mGnRH for comparison.

The [DLys°]JGnRH agonist was used to test the principle of conjugation
methods, but custom synthesis companies were used to synthesize GnRH
antagonists for later studies. This had the advantage of conjugating the

steroid during peptide synthesis whilst the peptide was still attached to the
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solid resin support. The protection of other functional group side chains
during this process ensured the desired conjugate could be produced at high
yield and purity. The organic carbodiimide (DCC) method was used for the
conjugation of all five antagonists to 21-hydroxyprogesterone 21-
hemisuccinate by Bachem (UK) Ltd (conjugates A and B) and Albachem Ltd
(conjugates C, D and E).

Amino 1 2 3 4 5 6 7 8 9 10
Acid
mGnRH Glu His Trp  Ser Tyr  Gly Leu Arg Pro Gly-
NH,
Conjugate | AcD- D-Cpa D-Pal Ser Arg D-Lys* Leu Arg Pro D-Ala-
A Nal NH,
Conjugate Ac- D-Fpa D-Trp Ser Tyr D-Lys* Leu Arg Pro Gly-
B APro NH,
Conjugate | AcD- D-Cpa D-Pal Ser Arg D-Lys Lys* Leu Arg D-Ala-
5 Nal NH,
Conjugate *D-Pal Ser Arg D-Lys Leu Arg Pro D-Ala-
D NH,
Conjugate | AcD- D-Cpa D-Pal Ser Arg D-Lys Lys* Arg Pro D-Ala-
E Nal NH,

Table 3.3: The amino acid sequences of the GnRH antagonists. The following abbreviations
are used: Glu; glutamic acid, His; histidine, Trp; tryptophan, Ser; serine, Tyr; tyrosine, Gly;
glycine, Leu; leucine, Arg; arginine, Pro; proline, AcD-Nal; acyl D-napthylalanine, D-Cpa; D-
chlorophenylalanine, D-Pal; D-pyridylalanine, D-Lys; D-lysine, D-Ala; D-alanine, Ac-APro;
acyl delta-proline, D-Fpa; D-fluorophenylalanine, D-Trp; D-tryptophan. The site of

conjugation to 21-hydroxyprogesterone 21-hemisuccinate is indicated by the asterisk.

3.5 CONCLUSIONS

Conjugates of [DLys’JGnRH linked to progesterone were successfully
prepared by two different methods, both utilizing zero length cross-linking
reagents, IBCF (mixed anhydride) and DCC (organic carbodiimide). The
mixed anhydride and organic carbodiimide methods were modified to adjust
for the conjugation of a hydrophobic steroid to a hydrophilic peptide, on the

basis of established chemistry techniques and similar methods published in
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the literature. The DCC method proved to be the most successful for this
application, resulting in fewer unwanted products and thus a higher yield of
the peptide-steroid conjugate. Conjugates of [DLys’]JGnRH coupled to B-
oestradiol 17-hemisuccinate were also produced by the DCC method. The
conjugates were identified by a combination of HPLC and mass
spectrometry, but additional NMR analysis would ideally have been

performed to conclusively identify the structure of the conjugates.

These reactions were carried out with [DLys’]|GnRH to identify the most
successful method and reaction conditions for conjugating [DLys’]|GnRH to
progesterone and oestradiol derivatives. This provided a proof of concept,
but for further studies two commercial companies (Bachem UK Limited and
Albachem Limited) were employed to use the same methods to conjugate 21-
hydroxyprogesterone 21-hemisuccinate to five GnRH antagonists. Although
this thesis concentrated on the study of GnRH antagonist-progesterone
conjugates, the [DLys’]|GnRH agonist-progesterone conjugates would also be
interesting molecules to study and may also transform the properties of the

peptide alone.

It may have been of benefit to design the conjugates to incorporate a
radioisotope into the conjugate at the outset, enabling the molecule to be
traced throughout analysis. This would have been advantageous to
measuring both GnRH receptor binding (where competition with
[His’DTyr’]GnRH was measured) and plasma protein binding. Iodination of
conjugate B was attempted but was unsuccessful despite the presence of a
tyrosine residue in position 5 of the decapeptide. The cause of the iodination
failure was unknown. However the iodine radioisotope is of sufficient size to
affect the conformation of the antagonist and could affect GnRH receptor
binding. This type of radiolabelling was therefore not ideal in these
circumstances. The selected isotope should be small in size and have a useful
half-life beyond a few months. A possible isotope is *H, a beta emitter with a
half-life of 12.4 years. Progesterone derivatives containing this radiolabel

could have been used for conjugation to the peptide.
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4 Properties of GnRH antagonist-21

hydroxyprogesterone 21-hemisuccinate conjugates in

vitro

4.1 INTRODUCTION

The GnRH antagonist and steroid moieties comprising the conjugates were

investigated for GnRH receptor binding, GnRH receptor antagonism, plasma

protein binding and progesterone receptor activation. This enabled the effect

of the conjugation process on the two constituent parts to be assessed.

Five GnRH antagonist-21-hydroxyprogesterone 21-hemisuccinate conjugates

were analyzed (table 4.1).

Aﬁiig" 1 2 3 4 5 6 7 8 9 10
Conj:\lgate %5 D-Cpa D-Pal Ser Arg D-Lys* Leu Arg Pro Dﬁﬁ?-
Conjugate lﬁjcr‘o D-Fpa D-Trp Ser Tyr D-Lys* Leu Arg Pro ;31113’[2
Conjugate .?\(IZS- D-Cpa D-Pal Ser Arg D-Lys Lys* Leu Arg Dﬁﬁf
Conjugate *D-Pal Ser Arg D-Lys Leu Arg Pro DI;TJLI\—E-
Conjugate ‘?\?5 D-Cpa D-Pal Ser Arg D-Lys Lys* Arg Pro DI;I?{I?_

Table 4.1: The amino acid sequences of the antagonists tested for pharmacological

properties. The site of conjugation to 21-hydroxyprogesterone 21-hemisuccinate is indicated

by the asterisk. Abbreviations as before.
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4.2 MEASUREMENT OF GnRH RECEPTOR BINDING
AFFINITY AND RECEPTOR ACTIVATION

4.2.1 Competition whole cell binding assay

Conjugates A and B and the corresponding parent peptide sequences A and
B were tested for GnRH receptor binding in COS-7 cells transiently
transfected to express the human GnRH receptor. Whole cell binding was
determined 48h after transfection as described in chapter 2. Total binding
(Bo) was calculated as the binding of '"*I[His’DTyr’JGnRH in the absence of
competing ligand. The binding of '*I[His’DTyr*]GnRH in the presence of
excess unlabelled ligand (non-specific binding, or NSB) was subtracted from

the total binding to calculate the IC;, values.

The IC;, value of conjugate A was 7-fold lower than the parent peptide A at
the human GnRH receptor (p < 0.01, student’s t-test) at 108 + 22nM (Standard
error, n = 4) and 16 + 4nM (n = 4) respectively (figure 4.1). In contrast, the IC;,
of conjugate B, 105 + 27nM (n = 5), did not differ significantly (p > 0.05, STT)
from the parent peptide B at 47+ 11nM (n = 4) (figure 4.2).
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Figure 4.1: Representative result of the effect of parent peptide A (O) and conjugate A (@) on
the displacement of '*’I[His’DTyr’]GnRH agonist bound to intact COS-7 cells transiently
transfected with the human GnRH receptor. The dotted lines identify the ICs, values.
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Figure 4.2: Representative results of the effect of parent peptide B (CJ) and conjugate B (H)
on the displacement of '*I[His’DTyr*JGnRH agonist bound to intact COS-7 cells transiently
transfected with the human GnRH receptor. The dotted lines identify the ICs, values.
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Conjugates C, D and E were tested for whole cell binding in SCL60 cells
(HEK293 cells stably expressing the rat type I GnRH receptor, described in
chapter 2). This stable cell line was used instead of transiently transfected
COS-7 cells to minimize variation resulting from the transfection procedure.
The IC;, values of conjugate C (134 + 26nM, n = 3) and conjugate E (104 +
7nM, n = 3) did not differ significantly (p > 0.05, STT), despite the sequence
differences at positions eight and nine of the peptide (figure 4.3).
Conjugation of progesterone in place of the first two amino acids
(napthylalanine and chlorophenylalanine, see table 4.1) resulted in a
significant increase (p < 0.001, STT) in the IC;, value of conjugate D (8390 +
936nM, n = 3), compared with conjugates C and E (figure 4.3).

The GnRH receptor binding affinities of all five conjugates are shown in table

4.2.
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Figure 4.3: Representative result of the effect of conjugate C (¢), conjugate D (¥) and
conjugate E () on the displacement of *I[His’DTyr’]|GnRH bound to intact SCL60 cells
transiently transfected with the human GnRH receptor. The dotted lines identify the ICs,

values.
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Conjugate Whole cell binding IC;,
A 108 + 22nM?
B 105 + 27nM?
C 134 + 26nM°
D 8390 + 936nM"
E 104 + 7nM°

Table 4.2: Whole cell binding of conjugates A, B, C, D and E competing with
[His’DTyr’|GnRH. * at the human GnRH receptor in COS-7 cells, ® at the rat type I GnRH
receptor in HEK293 cells.

4.2.2 Inhibition of GnRH-stimulated inositol phosphate

production

The ability of the conjugates to inhibit mammalian GnRH-stimulated inositol
phosphate (IP) production was measured in SCL60 cells. This confirmed that
conjugates A, B, C and E remained antagonists at the GnRH receptor for this
intracellular signaling pathway (figure 4.4). The IC;, values of conjugate A
and conjugate B were 97 + 40nM (n = 6) and 76 + 17nM (n = 7) respectively.
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Figure 4.4: Representative result of the effect of conjugate A (®) and conjugate B (ll) on
0.1uM mammalian GnRH-stimulated IP production in SCL60 cells.

Conjugates C, D and E were also tested for inhibition of mammalian GnRH-
stimulated IP production and stimulation of IP alone (i.e. agonism).
Conjugates C and E, differing only in amino acids eight and nine of the
decapeptide sequence, had no significant difference in inhibition of IP
production (p > 0.05, STT) with IC;, values of 5580 + 127nM (n = 4) and
16,000 + 5190nM (n = 4) respectively (figure 4.5). Conjugate D showed no
evidence of inhibiting IP production, despite a limited ability to compete
with "PI[His’DTyr’]|GnRH for binding to the GnRH receptor (figures 4.3 and

4.5). The IC;, values of all conjugates are summarized in table 4.3.
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Figure 4.5: Representative result of the effect of conjugate C (¢), conjugate D (v ), and

conjugate E (4) on 0.1uM mammalian GnRH-stimulated IP production in SCL60 cells.

Inhibition of 0.1uM mammalian GnRH-stimulated IP production by the five

conjugates is summarized in table 4.3.

. IC;, of inositol phosphate
Conjugate .
production

97 + 40nM
76 £ 17nM
5580 + 127nM
No inhibition
16,000 + 5190nM

m g N = >

Table 4.3: IC;, values of inhibition of 0.1puM mammalian GnRH-stimulated IP production.

None of the antagonist-progesterone conjugates were found to stimulate IP

production alone (figure 4.6) in SCL60 cells.
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Figure 4.6: Representative result of the effect of conjugate A (@), conjugate B (M), conjugate
C (#), conjugate D ('¥), and conjugate E (A) on IP production in SCL60 cells.

The IP assay demonstrated that the conjugates acted as antagonists at the
GnRH receptor on this particular intracellular signaling pathway. However it
is known that many receptors can activate different pathways leading to
different downstream signaling events. Human and murine GnRH receptors
are known to activate a single class of G proteins (Gq/11) [192]. However
there are a number of second messengers involved downstream of G-
proteins, including IP,, diacylglycerol, Ca**, protein kinase C, arachidonic
acid and leukotriene C4 [193, 194]. The cross-talk of these molecules
culminates in gonadotropin release and gene expression through complex

signaling networks [193].

Although the information gained from this assay glves some &dence of

GnRH receptor antagonism, it would have been/ etter| to assay of-another
second messenger molecule to confirm the IP assay result. Alternatively, a

simpler method to conclusively demonstrate antagonism would have been to
measure the final effect of GnRH receptor activation, i.e. production of LH by
a gonadotrope cell line or a primary culture of dispersed pituitary cells,

measuring LH production by RIA.
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4.3 PLASMA PROTEIN BINDING

To investigate whether GnRH antagonist-progesterone conjugates bind to
plasma proteins, whole serum and plasma were tested for competitive
binding of [’H]progesterone. The most concentrated source of human CBG is
found during the second trimester of pregnancy or during treatment with
estrogens, however there is limited availability of these types of serum for
experimentation. First trimester serum samples were readily available from
the NHS laboratories, collected for pregnancy tests with known hCG levels
and these were tested as a substitute. The most concentrated source of a
progesterone-binding plasma protein (PBG) is found in hystricomorph

rodents such as the pregnant guinea pig.

Total specific plasma protein binding of [*H]progesterone was compared in
pregnant guinea pig plasma and human serum with low (5,000-20,0001U/m])
or high (20,000-90,0001u/ml) hCG levels. This revealed pregnant human
serum had a low specific binding of [*H]progesterone, whereas a high

specific binding was observed with pregnant guinea pig plasma (figure 4.7).

High molecular weight plasma proteins were shown to bind
[PH]progesterone by removal of unbound [’H]progesterone with dextran-
coated charcoal suspension. Unlabelled progesterone competed for this
binding with an ICy, value of 96 + 18nM (n = 4), by conjugate A with an IC;,
value of 1020 + 284nM (n = 6) and by conjugate B with an IC;, value of 534 +
103nM (n = 4) as illustrated in figure 4.8. The ICs, values of both conjugates A
and B were significantly greater than progesterone (p < 0.05 and p < 0.01
respectively, STT). Parent peptides A and B were also tested for interaction
with specific plasma proteins. No inhibition of [’H]progesterone binding to

plasma proteins was seen with either peptide A or peptide B (figure 4.9).
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Figure 4.7: Total binding of [1,2,6,7-’H]progesterone to human pregnant serum with hCG
5,000-20,000IU/ml (low hCG) and 20,000-90,000IU/ml (high hGC) and pregnant guinea pig
plasma (GP plasma), as measured by separation of bound and free [*H]progesterone with
dextran-coated charcoal suspension. The white bars represent the total binding in the
absence of a competing ligand (Bo) and the gray bars denote the binding in the presence of
excess (10uM) progesterone (NSB).
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Figure 4.8: Representative result of the effect of progesterone (¢), conjugate A (®) and
conjugate B (M) on the binding of [1,2,6,7-’H]progesterone to pregnant guinea pig plasma, as

measured by separation with dextran-coated charcoal suspension.
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Inhibition of specific [’H]progesterone plasma protein binding was also
determined for conjugates C, D and E. All three conjugates bound well to the
plasma proteins, but had higher IC;, values in comparison to progesterone (p
< 0.01 for conjugate C, p < 0.001 for conjugate D and p < 0.001 for conjugate
E, STT). Conjugate D inhibited [*H]progesterone binding with an IC;, value
of 264 + 25nM (n = 3) in comparison to significantly higher IC;, values of
1020 + 230nM (n = 4) and 779 + 11InM (n = 3) for conjugates C and E
respectively (figure 4.10).
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Figure 4.9: Representative result of the effect of progesterone (), parent peptide A (O) and
parent peptide B (CJ) on the binding of [1,2,6,7-’H]progesterone to pregnant guinea pig

plasma, as measured by separation with dextran-coated charcoal suspension.
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Figure 4.10: Representative result of the effect of progesterone (), conjugate C (@),

conjugate D (¥) and conjugate E (A) on the binding of [1,2,6,7-’H]progesterone to pregnant

guinea pig plasma, as measured by separation with dextran-coated charcoal suspension.

IC;, of competition for plasma

Conjugate o .
protein binding sites
A 1020 %= 284nM
B 534 + 103nM
C 1020 = 230nM
D 264 + 25nM
E 779 £ 11nM

Table 4.4: IC5, of competition with [*H]progesterone for plasma protein binding sites in

pregnant guinea pig plasma of conjugates A, B, C, D and E.

The dextran-coated charcoal method is suitable for separating bound and

free steroids when the binding is of high affinity, such as the interaction
between steroids and the specific binding proteins CBG and PBG [181]. It is

however less suitable for separating molecules bound with low affinity to

plasma proteins, such as albumin. Since both specific plasma proteins and
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albumin interact w1th sex ster01ds under physmloglcal condmons, a method

that can detect both types of binding would be more relevant to this

investigation.

This may have been the reason why the measured specific binding in
pregnant human serum was much lower than expected. A better method
would have been to use equilibrium dialysis to determine the proportions of
bound and free steroids in both human and guinea pig plasma. In this
technique free (unbound) ligand is dialyzed through a membrane until its
concentration across the membrane is at equilibrium. The free ligand
concentration, concentration of binding component (i.e. plasma protein), the
starting concentration of ligand and final concentration of free ligand can
then be measured to determine the extent of plasma protein binding as a

proportion of ligand present.

4.3.1 Specificity of progesterone plasma protein binding

The inability of cortisol to inhibit specific [’H]progesterone binding clearly
demonstrated the specificity of the progesterone-PBG interaction (figure
4.11). The small decrease in [*H]progesterone binding to the plasma proteins
at concentrations of cortisol above 1uM can most probably be attributed to
interactions with non-specific plasma proteins such as albumin. This effect
was not observed when [’H]progesterone binding was tested in purified

pregnant guinea pig plasma (data not shown).
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Figure 4.11: Effect of increasing concentrations of cortisol on the binding of [1,2,6,7-

*H]progesterone to pregnant guinea pig plasma, as measured by separation with dextran-
coated charcoal suspension.

Although these results confirmed that specific plasma protein binding was
retained, the relevance of this information is limited by the use of PBG as the
binding protein. These results do not measure the interactions of the
conjugates with human (or primate) binding proteins. As stated earlier, the
use of equilibrium dialysis to measure plasma protein binding would
perhaps have allowed the investigation of human or primate interactions,

yielding more important information.

44 PROGESTERONE RECEPTOR ACTIVATION

It was important to determine whether the 21-hydroxyprogesterone 21-
hemisuccinate was still able to bind to and activate the progesterone receptor

when conjugated to a GnRH antagonist. Activation of the progesterone
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receptor was tested in the breast cancer epithelial cell line T47D, stably

expressing a CAT enzyme reporter gene linked to the progesterone receptor.

Assay of CAT enzyme activity revealed that all five GnRH antagonist-21-
hydroxyprogesterone 21-hemisuccinate conjugates were able to bind to and
activate the progesterone receptor in T47D cells, as measured by an increase
in CAT enzyme activity (figure 4.12). The potencies of all conjugates were
similar in this respect, with virtually no CAT activity at InM ligand and
increasing CAT activity up to 1uM. The GnRH antagonist progesterone
conjugates were able to activate CAT synthesis with similar potencies to that

observed for progesterone itself (figure 4.12).
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Figure 4.12: Activation of the progesterone receptor by conjugates A, B, C, D and E as
measured by assay of CAT reporter gene enzyme activity in T47D cells.

A dose-response curve of progesterone receptor activation was constructed
to calculate the ED;, values of the five conjugates in comparison to

progesterone (figure 4.13). The EDs, value of progesterone was the lowest at
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7 + 2nM (n = 3). The five antagonists had higher EDj, values, identified in
table 4.5.
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Figure 4.13: Activation of the progesterone receptor by conjugates A, B, C, D and E as

measured by assay of CAT reporter gene enzyme activity in T47D cells.

. ED,, of activation of
Conjugate
progesterone receptor

109 + 28nM
142 + 35nM
66 + 38nM
35+ 17nM
96 + 2nM

H O N ® >

Table 4.5: EDs, of activation of the progesterone receptor by conjugates A, B, C, D and E.

The EDs, values of whole cell binding affinity, inhibition of mammalian
GnRH-stimulated inositol phosphate production, competition with
[*H]progesterone for binding to plasma proteins and activation of the

progesterone receptor for all five conjugates are summarized in table 4.6.
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Inositol Plasma Progesterone
. Whole cell _
Conjugate L phosphate protein receptor
binding . L L
production binding activation
A 108 + 22nM 97 + 40nM 1020 + 284nM 109 + 28nM
B 105 + 27nM 76 = 17nM 534 + 103nM 142 + 35nM
C 134 + 26nM 5580 = 127nM 1020 = 230nM 66 + 38nM
D 8390 + 936nM No inhibition 264 + 25nM 35 + 17nM
E 104 + 7nM 16,000 + 5190nM 779 + 11InM 96 + 37nM

Table 4.6: Summary of the in vitro data obtained for the five GnRH antagonist-steroid

conjugates.

4.5 DISCUSSION

Four out of the five GnRH antagonist-21-hydroxyprogesterone 21-
hemisuccinate conjugates investigated bound to the GnRH receptor and
inhibited IP production. In addition, all five conjugates bound to specific

plasma proteins and activated the progesterone receptor.

All conjugates bound to the GnRH receptor

All five GnRH antagonist-21 hydroxyprogesterone 21-hemisuccinate
conjugates bound to the GnRH receptor in whole cell binding assay.
Conjugation of a large hydrophobic moiety to the side chain of a central
lysine amino acid (DLys®) in conjugates A and B and L-Lys’ in conjugates C
and E) did not significantly affect binding to the GnRH receptor. Conjugate
D also bound the GnRH receptor, albeit with reduced affinity, when the
steroid was conjugated to the N-terminal of the peptide (figure 4.14).

GnRH is believed to interact with the GnRH receptor in a folded

conformation, with the side group of amino acid six orientated away from
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the receptor [22, 23] (figure 4.14). Conjugation of other molecules onto this
position is possible since the molecule would be also be orientated away
from the receptor and thus unlikely to interfere with the receptor binding
process. Position six has also been used as a conjugation site for coupling
GnRH analogues to other molecules of different sizes by other groups [9, 12,

158, 175, 195] for the same reasons.

Conjugates A and B

Conjugate D

Figure 4.14: Diagramatic representation of the structure of conjugates A, B, C, D and E

showing the position of steroid conjugation.

Conjugate D bound poorly to the GnRH receptor

Peptide antagonists of the GnRH receptor have been designed by replacing
the N-terminal amino acids with bulky, hydrophobic amino acids [21]. The
hydrophobic steroid hemisuccinate has a molecular weight of 413.5 (when
coupled to the DLys’), approximately the same size as the first two amino

acids (total M.W. 416.5). To create conjugate D, the first two amino acids of
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peptide A were replaced w1th 21- hydroxyprogesterone 21 hemxsuccmate
conjugated to the N-terminal amine of pyridylalanine (equivalent to amino
acid three of the decapeptide). Although conjugate D was able to compete
with [His’DTyr*]GnRH for binding to the GnRH receptor, significantly lower
binding affinity was observed in comparison to the other four conjugates and

therefore the usefulness of conjugate D is severely limited.

Entirely novel sequence of conjugate C lacking ‘essential” position nine
proline retained GnRH receptor binding

Although conjugate C was synthesized in error, comparison with conjugate E
leads to an important finding. The conserved C-terminal proline in position
nine of the decapeptide was believed to be essential for GnRH receptor
binding. In conjugate C the C-terminal proline was replaced with arginine.
Proline is cyclic and neutral whereas arginine is a linear basic amino acid
(figure 4.15). The contrasting structures make a substitution of this kind seem
incompatible with GnRH receptor binding affinity. However this study has
proven that replacing the proline with an arginine had no effect on the
receptor binding of this antagonist sequence. It may be that arginine can only
be substituted for proline when a leucine is also present in the adjacent
position eight of the decapeptide an additional change to the sequence under

analysis, but this was not tested.

Conjugates A, B, C and E inhibited IP production, but conjugates C and E
may be partial agonists

With the exception of conjugate D, the GnRH antagonist-21
hydroxyprogesterone 21-hemisuccinate conjugates were able to inhibit

mammalian GnRH-stimulated IP production.

The IC;, values of conjugates A and B were close to the GnRH receptor
binding affinity, with an approximate ratio of 1:1 for whole cell binding
affinity compared to inhibition of IP production. However the ICy, values for
conjugates C and E were dramatically reduced, resulting in ratios of 1:41 and
1:154 respectively. Therefore it appears that conjugates C and E are more able
to compete with [His’DTyr’]GnRH for binding to the GnRH receptor than
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with mammalian GnRH for inhibiting inositol phosphate production.
However it is more probable that conjugates C and E act as partial agonists at
low concentrations (not measured), but this effect is overcome at higher

concentrations were the antagonistic effect is dominant.
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Figure 4.15: Structures of arginine, proline and leucine.

In addition, the 3.75-fold reduction in inhibition of IP production in
conjugate E compared to conjugate C implies that a C-terminal sequence of
Arg-Pro-DAla-NH, (conjugate E) is a significantly poorer antagonist of
mammalian GnRH-stimulated IP production than Leu-Arg-DAla-NH,
(conjugate C). This is in contrast to similar competition with
»[[His’DTyr’]|GnRH for binding to the GnRH receptor.

Conjugate D did not inhibit inositol phosphate production

Conjugate D showed no evidence of GnRH antagonism, despite a limited
ability to compete with "I[His’DTyr’|GnRH for binding to the GnRH
receptor. Conjugation of 21-hydroxyprogesterone 21-hemisuccinate to the N-
terminal in place of amino acids one and two of the decapeptide significantly
hampered GnRH receptor interaction, most probably by altering the

conformation of the peptide.
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All con]ugates compete w1th [3H]progesterone for pIasma protems W1th
lower affinity than progesterone

All five conjugates investigated bound to large molecular weight plasma
proteins present in pregnant guinea pig plasma. Progesterone competed with
[’H]progesterone for plasma protein binding with an ICs, value significantly

lower than the five conjugates.

Steroid plasma protein binding affinity is controlled by a number of
overlapping factors; hydrophobicity /hydrophilicity, spatial requirements,
optimal contact and steric hindrance [139]. These factors will also affect the

binding of GnRH-antagonist progesterone conjugates to plasma proteins.

The important features for steroid binding to human CBG are the 20-oxo, 103
methyl, 3-oxo and 4-ene groups [97]. Therefore a steroid suitable for
conjugation had to maintain these features. In addition, hydroxyl groups at
the 11a, 60, 6B, 120, 140, 160 and 19 positions are not tolerated [97] and
result in dramatic decreases in affinity constants. A hydroxyl group is
required for reaction with succinic anhydride to form the hemisuccinate
derivative of progesterone. A 21-hydroxy group on progesterone does not
reduce the affinity constant for human CBG in comparison to progesterone
[97] and provides a site for further conjugation unlikely to alter the steroid

conformation.

Plasma protein binding affinity was assessed in pregnant guinea pig plasma
in which progesterone is predominantly bound to PBG instead of CBG. The
requirements for binding to PBG differ from CBG. The C3 keto group is still
essential, but the 20-oxo group is less important [139]. The binding groove of
PBG suggested by Blanford et al [139] indicates that the A ring is tightly
bound via a hydrogen bond at the C3-keto and that the C13-C17-C16 edge is
subject to tight hydrophobic bonding. Consideration of these factors lead to
the selection of 21-hydroxyprogesterone 21-hemisuccinate as the steroid for
conjugation, maintaining the features required for binding to both CBG (for

in vivo studies) and PBG (for in vitro studies).
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There is an elght fold reductlon in the affm1ty constant of 21-
hydroxyprogesterone 21-hemisuccinate in comparison to progesterone for
binding to PBG [139]. This is partly due to the strong polarity of the
carboxylate anion of the hemisuccinate group [139]. In this study the EDs,
values for the conjugates binding to PBG was reduced by between 3 and 10-
fold in comparison to progesterone. This demonstrates that conjugation of
21-hydroxyprogesterone 21-hemisuccinate to the peptide did not have a
major detrimental effect on plasma protein binding affinity compared to 21
hydroxyprogesterone 21-hemisuccinate alone. In some cases (conjugates B
and D) it appeared binding was enhanced in comparison to the eight-fold
reduction observed with 21 hydroxyprogesterone 21-hemisuccinate.
Therefore the conjugation process must not have significantly altered the

conformation of the steroid and did not impair plasma protein interaction.

This study demonstrates that a large molecule conjugated at C21 of
progesterone reduces plasma protein binding affinity, but this process does
not completely eliminate binding. This is an important discovery for the
design of other progesterone bioconjugates and progesterone molecules with

large substitutions.

Conjugate D had the lowest ICy, value for competition with [’H]progesterone
for plasma protein binding. The position of conjugation in conjugate D was
considerably different to the other four conjugates. In conjugates A, B, C and
E, 21-hydroxyprogesterone 21-hemisuccinate was conjugated to the side
chain of a lysine in position six or seven of the decapeptide, whereas in
conjugate D the amino acid was conjugated to the N-terminal amine. The
four-carbon side group of lysine increased the distance between the GnRH
antagonist and the steroid, but this was not sufficient to overcome the
detrimental effect of the peptide on plasma protein binding. In conjugate D,
conjugation of the steroid to the N-terminal situated the steroid close to the
peptide, but this exerted less steric hindrance than conjugation to the apex of

the peptide (figure 4.14).
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All conjugates activate the progesterone receptor, but with higher ED;,
values than progesterone

All five conjugates activated the progesterone receptor. Conjugation of a
GnRH antagonist to 21-hydroxyprogesterone 21-hemisuccinate introduced a
large, relatively hydrophilic (in comparison to the steroid) moiety at C21. The
ligand-binding domain of the progesterone receptor has been crystallized

[196], allowing the analysis of some aspects of ligand-receptor interaction.

The most important feature for binding to the progesterone receptor is the C3
keto group. A hydrogen bond is formed between the conserved receptor
glutamine 725 (figure 4.16) and the C3 keto group in all steroid hormones
except oestradiol, which has a C3-hydroxyl [196]. Arginine 766 and
phenylalanine 778 also make van der Waals contacts with the A ring
(through intervening fixed water sites) to tightly couple the ligand to the
receptor (figure 4.16). The interactions at the methyl-ketone substituent
(projecting from C17) are far less well understood [196, 197]. It appears from
this study that vital contacts are not made around C21 since coupling at this

site did not eliminate progesterone receptor binding and activation.
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Figure 4.16: Interactions between the progesterone receptor ligand binding domain and
bound progesterone. Hydrogen bonds are indicated in blue and van der Waals contacts (4 A
cutoff) in red (taken from [196]).

It is interesting to note that the IC5, and EDj, values of conjugate D were

lowest for both plasma protein binding and progesterone receptor activation,
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1mplymg that the structure of this con]ugate was superior to the other
conjugates tested for these two interactions. However the GnRH receptor
binding affinity of conjugate D was considerably reduced compared to the
other four conjugates. The optimum conjugate structure may therefore be a
GnRH antagonist conjugated to 21-hydroxyprogesterone 21-hemisuccinate at

the N-terminal, but not the particular structure investigated in this study.

The progesterone receptor must tolerate large side groups at the D ring of 21-
hydroxyprogesterone via C17. A hemisuccinate linker was used to connect
the steroid to the GnRH receptor antagonist, increasing the distance between
the two functional parts of the molecule. It is not possible to determine
whether this was essential to retaining GnRH and progesterone receptor
functionality, but these particular conjugates remained functional in in vitro

assays.

This study has demonstrated that GnRH antagonist-steroid conjugates can be
designed to retain the functionality of both parts. Some aspects of GnRH
receptor-ligand interaction have been elucidated in this process. Specific
plasma protein and progesterone receptor binding of these conjugates have
also been confirmed. These conjugates are useful in proof of concept studies,
but it is possible that other GnRH antagonist sequences based on the
knowledge gained from this study would have improved properties and

may be potentially more valuable.
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5 Properties of a GnRH antagonist-21
hydroxyprogesterone 21-hemisuccinate conjugate in

the marmoset and macaque

5.1 INTRODUCTION

The GnRH antagonist-21 hydroxyprogesterone 21-hemisuccinate conjugates
remained active at the GnRH and progesterone receptors in vitro (chapter 4).
The activity of one of the conjugates was also tested in vivo. Female common
marmosets were used in the initial bioactivity studies. Subsequent
experiments were carried out on male marmosets and an ovariectomised
adult macaque to identify differences in activity between the conjugated and
non-conjugated antagonists. The duration of action of conjugate A was
compared in a species without functional CBG (common marmoset) with an
Old World primate (macaque) with a sex-steroid physiology more similar to

humans.

One of the GnRH antagonist-21-hydroxyprogesterone 21-hemisuccinate
conjugates was selected for in vivo analysis. At the time of selection only
conjugates A and B were available for analysis. Both conjugates had similar
affinities for the GnRH receptor and for plasma protein binding. Conjugate A
was selected on the basis that it was lower cost to produce commercially.
This conjugate was [AcDNal', CIDPhe’, D Pal’, Arg®’, D Lys®(21-
hydroxyprogesterone 21-hemisuccinate), DAla"-NH,]GnRH.
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5.2 BIOACTIVITY STUDIES IN THE FEMALE COMMON
MARMOSET

To identify whether conjugate A was active in an in vivo model, 1.0, 0.5 or
0.25mg of the GnRH antagonist-steroid conjugate was administered to adult
female marmosets as a subcutaneous bolus at two sites, on day 8 or 9 of the
luteal phase. A 1ml saline:ethanol vehicle was used, with the proportion of
ethanol ranging from 16% in the 1.0mg injection, 8% in the 0.5mg injection, to
4% in the 0.25mg injection. One 300ul blood sample was withdrawn on the
day prior to GnRH antagonist injection. Further blood samples of equal size
were withdrawn at 0, 4 and 8h on day of injection, daily for the following 3
days and three times per week until the next ovulation was identified by a
progesterone concentration greater than 30nM. Ovulatory cycles were
monitored in female marmosets by progesterone assay as described

previously (section 2.5.1.2).

Conjugate A was tested in the progesterone RIA to test for cross-reactivity
with the primary antibody (data not shown). The conjugate was not read as
progesterone in this assay, therefore the conjugate did not interfere with the

measurement of plasma progesterone in the marmoset.

5.2.1 1mg conjugate A

Administration of 1mg conjugate A to a female marmoset caused an
immediate decrease in plasma progesterone concentrations and reduced the
duration of the luteal phase from 24.8 + 2.2 (n = 6) to 9 days. Progesterone
concentrations did not increase until 10 days post-injection, implying
complete luteal regression, followed by a 7-day follicular phase occurred.

The next ovulation proceeded after a short delay.
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Figure 5.1: Progesterone concentrations in a female marmoset receiving 1.0mg conjugate A
on day 8 of the luteal phase, normalized to the day of ovulation (day 0). The progesterone
concentrations during the cycle prior to treatment are represented in black. The progesterone
concentrations during the treatment cycle are shown in red and the arrow indicates the time

of injection.

5.2.2 0.5mg conjugate A

0.5mg conjugate A induced a rapid decrease in plasma progesterone
concentration to follicular phase levels, shortening the luteal phase from 21.0
+ 1.2 (n = 7) to 11 days. This was maintained for 10 days before progesterone
concentrations indicated the next ovulation. This effect was not

distinguishable from the 1mg dose of antagonist.
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Figure 5.2: Progesterone concentrations in a female marmoset receiving 0.5mg conjugate A
on day 8 of the luteal phase, normalized to the day of ovulation (day 0). The progesterone
concentrations during the cycle prior to treatment are represented in black. The progesterone
concentrations during the treatment cycle are shown in red and the arrow indicates the time

of injection.

5.2.3 0.25mg conjugate A

The lowest dose of conjugate A also caused a rapid reduction in plasma
progesterone levels, however unlike the Img and 0.5mg doses, the effect was
transient. Within 24h of injection the progesterone concentration returned to
132nM and this was followed by the normal slow reduction in progesterone

concentration as the corpus luteum regressed.
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Figure 5.3: Progesterone concentrations in a female marmoset receiving 0.25mg conjugate A

on day 9 of the luteal phase, normalized to the day of ovulation (day 0). The arrow indicates
the time of injection.

A normal cycle has not been superimposed onto the treatment cycle in this
case because this animal was not cycling in a regular pattern. However prior
to treatment luteal regression (indicated by progesterone concentrations
lower than 30nM) followed by ovulation was identified.

5.3 BIOACTIVITY STUDIES IN THE MALE COMMON
MARMOSET

The duration of action of conjugate A was compared to parent peptide A in

the common marmoset (without functional CBG). 0.5mg conjugate A was
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administered as subcutaneous bolus at two sites in six adult male marmosets.
The vehicle was 8% ethanol in saline in a total volume of 1ml. Testosterone
concentrations were monitored as described in general methods (section
2.5.1.3). One 300ul blood sample was withdrawn on the day prior to GnRH
antagonist injection, at Oh, 4h and 8h on the day of injection and on the
following 3 days. Three further samples were taken during the subsequent
week. The same protocol was used to analyze the effect of 0.5mg peptide A
in three male marmosets (chosen from the previous group of six) after a one

month rest period.

60

testosterone (ng/ml)
w
o

—o—peptide A (n=3)
—e—conjugate A (n=6)

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11
Day relative to injection

Figure 5.4: Testosterone concentrations of male marmosets injected subcutaneously with
either 0.5mg peptide A (O) or 0.5mg conjugate A (@®). The arrow indicates the time of
injection. The testosterone concentrations at each time point after injection of peptide A and
conjugate A were compared with Students t-test. A single asterisk represents a significant
difference of p < 0.05 and a triple asterisk represents a significant difference of p < 0.001
(both STT).

0.5mg conjugate A (n = 6) rapidly decreased testosterone concentrations in
the male marmoset. This was maintained until at least 72h post-injection (p <

0.05 versus 24h post-injection, STT) and recovered to normal levels by day 6.
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The constraints of ex1st1ng Home Office llcensmg prevented add1t10nal blood
samples on days 4 and 5. Injection of 0.5mg peptide A (n = 3) also resulted in
a rapid decline in plasma testosterone concentrations (figure 4.5). However
the reduction in testosterone concentration with peptide A was only

maintained until 8h post-injection and increased by 24h.

54 DURATION OF ACTION STUDIES IN THE FEMALE
MACAQUE

The duration of action of conjugate A and parent peptide A were compared
in an ovariectomized adult macaque to analyze the difference in duration of
action in a species with functional specific binding proteins. Oophorectomy
was carried out 3 weeks before commencing treatment. Conjugate A and
peptide A were compared over a one-month period with a one-month rest
between treatment cycles. The LH concentration was monitored for the week

prior to injection and for four weeks following injection.

Conjugate A was given at a dose of 417pg/kg and the unmodified antagonist
peptide A at 322ng/kg (weight of animal 17kg), equivalent to 230nmoles
peptide/kg for both conjugate A and peptide A. Both conjugate A and
peptide A were dissolved in a 1ml 50:50 propylene glycol:water vehicle and

were administered subcutaneously at a single site.

The overall trend observed after injection of conjugate A was a rapid decline
in LH immediately following the injection (within 4h), followed by a slow
return to normal LH concentrations. The duration of gonadotropin inhibition
appeared to be between five and ten days, although the day three LH
concentration was greater than the same day measurement after peptide A.
Peptide A also rapidly reduced the LH concentration within four hours of
injection, but the LH concentration was highly variable in the week following

the injection. In particular, the LH concentration on day six after injection of
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peptide A seemed to be lower than baseline LH levels. The pulsatile nature
of LH secretion may be a cause of the observed variation in plasma LH

concentration.
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Figure 5.5: LH concentrations in an ovariectomised adult macaque receiving 417pug/kg
conjugate A (@), followed by 322ng/kg peptide A (O) separated by a one-month rest period.

The arrow indicates the time of injection.

The LH concentrations over short periods within the treatment cycles were
pooled and compared (figure 5.6). The LH concentrations in the week
preceding each injection were not significantly different (p > 0.05, STT), as
were the LH concentrations on day 0 (0, 4 and 8h on day of injection) for both
injections. On days 1 to 3 there was no difference between the LH
concentrations after conjugate A or peptide A. On days 4 to 6 the LH
concentration after conjugate A was significantly lower than for the same
days after peptide A (p < 0.01, STT). The difference between days 7 to 9
(conjugate A) compared with days 7 to 11 (peptide A) was also significant (p
<0.001, STT).
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Figure 5.6: Pooled LH concentrations in an ovariectomised adult macaque receiving
417pg/kg conjugate A (solid bars), followed by 322ng/kg peptide A (hatched bars) in
separate treatment cycles. The LH concentrations are pooled to compare the duration of LH
inhibition after each injection. The double asterisk represents a significant difference of p <
0.01 (STT) and the triple asterisk marks a significant difference of p < 0.001 (STT).

The LH concentrations were considerably lower (approximately 2ng/ml)
than would be expected in an ovariectomised animal (normally around
6éng/ml). It is therefore possible that the oophorectomy was incomplete and
some ovarian tissue remained. Observation of the animal by Primate Centre

staff also suggested incomplete oophorectomy.

It is difficult to draw conclusions from a single animal. Three to six
ovariectomised animals should be tested to obtain a more accurate
determination of any difference in the duration of action between conjugate

A and peptide A.
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5.5 DISCUSSION

Conjugate A terminated the luteal phase in the female common marmoset

Conjugate A retained biological activity in vivo in the female marmoset,
reducing progesterone concentrations after a single injection. The effects
were dose-dependent, with complete regression of the corpus luteum with
1mg and 0.5mg conjugate A and a transient inhibition of progesterone
secretion with the lowest dose (0.25mg). The corpus luteum of the marmoset
is capable of recovering from a transient withdrawal of gonadotropin
support [68, 73]. This effect was observed with the lowest dose of conjugate
A. Interruption of LH and FSH support for longer periods (around 3 days) in
the midluteal phase can result in premature luteolysis, termination of the
luteal phase and resumption of folliculogenesis after elimination of the
GnRH antagonist [54]. This occurred with the 1.0 and 0.5mg doses of
conjugate A, suggesting that gonadotropins were suppressed for at least

three days.

These findings demonstrate that a GnRH antagonist conjugated to 21-
hydroxyprogesterone 21-hemisuccinate was functional in vivo. Conjugation
of the steroid to the peptide via DLys® was tolerated at the GnRH receptor in
an in vivo model, as had been shown by binding and inhibition of IP at the
GnRH receptor. Thus the four-carbon side chain of the DLys® and the four-
carbon hemisuccinate linker was sufficient to minimize any steric hindrance
the steroid may have otherwise exerted on the peptide. Previous conjugates
of [DLys°]JGnRH have also used this position for conjugation [11, 195, 198],
but it is important to identify that conjugation at this position is also

tolerated in GnRH antagonists.

Investigation of Antide-vitamin B,, conjugates revealed that a thiol-cleavable
spacer was necessary between the GnRH antagonist and the vitamin B,,
derivative to retain in vivo activity [158]. In contrast the GnRH antagonist-21

hydroxyprogesterone 21-hemisuccinate conjugate examined here did not
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require a cleavable spacer to retain in vivo activity. It is likely that the GnRH
antagonist-21 hydroxyprogesterone 21-hemisuccinate conjugate was not
cleaved or metabolized prior to GnRH receptor binding because the
conjugate was shown to bind to mammalian GnRH receptors in vitro.

However metabolic studies would be required to confirm this.

Conjugate A decreased testosterone concentrations in the male common
marmoset for significantly longer than peptide A

There was a substantial increase in the duration of action of conjugate A
(over three days) in the male marmoset in comparison to the unmodified
peptide (less than 24h). This increase is significantly greater than that
recently shown by Rahimipour and colleagues [12]. The duration of action of
intraperitoneal [DLys’]GnRH was enhanced by conjugation to emodic acid,
resulting in significantly greater LH release after six hours in the rat.
However no further measurements were taken after this time point, so

duration of action could not be accurately determined.

Glucocorticoid physiology in the marmoset and other New World primates
is significantly different from Old World primates and humans. In humans
the major proportion of progesterone is found bound to albumin, with CBG
accounting for around 10% and the remaining 2% unbound [100]. In most
New World primates 40-50% of cortisol is bound to albumin, less than 5%
binds to CBG and the remainder is unbound [114]. The marmoset lacks
functional CBG [114, 199] and therefore the observed increase in duration of

action was likely to be due to non-specific interactions with albumin.

Conjugation of progesterone to the GnRH antagonists significantly increased
the hydrophobicity of the GnRH antagonists. This was evident from the poor
water solubility of conjugates A and B in comparison to unmodified peptides
A and B. Moreover the HPLC retention time of [DLys’]GnRH increased from
9.3 minutes to over 15 minutes when conjugated to 21-hydroxyprogesterone
21-hemisuccinate. Increased hydrophobicity could have contributed to the
increase in duration of action seen in the male marmoset. It is believed that a

depot effect can occur with hydrophobic GnRH analogues, where binding of
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such analogues to tissue membranes and hydrophoblc carrier protems
throughout the body reduces the rate of clearance from the circulation,

thereby prolonging biological half-life [39].

Effect of conjugate A in ovariectomised macaque

The limited data on the effect of conjugate A in comparison to peptide A in
an ovariectomised adult macaque suggests that the conjugate may have a
longer duration of action than the unmodified peptide. However the LH
concentration on day three after injection of conjugate A must first be
confirmed as an anomaly by further studies. The difference in duration of
action between conjugate A and peptide A could be as long as 9 days. This is
probably due to interactions with both specific (CBG) and non-specific
(albumin) plasma proteins, protecting the conjugate from rapid clearance
from the general circulation. It is expected that a similar increase would be
observed in the human since Old World primate CBG physiology is more

comparable to humans than New World primates [114].

Progesterone can also inhibit LH production through a negative feedback
mechanism at the pituitary, mimicking the effect of a GnRH antagonist.
Therefore it is possible that the inhibition of progesterone (female marmoset),
testosterone (male marmoset) or LH (female macaque) is due to the effect of
progesterone and not the GnRH antagonist to which it was conjugated. In
order to assess the effects of progesterone and the GnRH antagonist the
equivalent doses of the two molecules in unconjugated states should be
investigated in the in vivo models. Ideally there would be four treatment
cycles: GnRH antagonist; GnRH antagonist-progesterone conjugate;

progesterone and vehicle.

The increase in duration of action of conjugate C, probably resulting from
association with plasma proteins, has supported the concept that the
conjugation of a peptide with a short circulatory half-life to a molecule that
binds to plasma proteins can protect the peptide from rapid elimination. This
discovery could be of great importance to both the design of other GnRH

analogues where a prolonged inhibition of gonadotropin secretion is
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required. More importantly, this concept could be applied to other peptides
with short half-lives to extend their duration of action, reducing both cost
and administration frequency. This would have notable advantages over

unmodified peptides.
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6 Enhancing oral absorption of GnRH antagonist-21
hydroxyprogesterone 21-hemisuccinate conjugates

through conjugation to vitamin B,

6.1 INTRODUCTION

Low peptide oral bioavailability currently limits clinical use of peptides to
injectable administration. Development of a method to enhance oral
absorption of peptides would be of great importance to the pharmaceutical
industry. It is likely that the method used would be determined by peptide

size, hydrophobicity and absolute amount to be transported.

The GnRH antagonist-steroid conjugates described in chapter 3 are relatively
large molecules, consisting of a peptide linked to a steroid molecule via a
hemisuccinate spacer, resulting in molecular weights of around 1800 AMU,
depending on the amino acid sequence. Conjugation of a hydrophobic
steroid onto a GnRH antagonist increased the hydrophobicity of the
molecule, as shown by the increase in HPLC retention time of [DLys*]|GnRH
from 9.3 to over 15 minutes when conjugated to 21-hydroxyprogesterone 21-
hemisuccinate. Consequently the method selected would have to be suitable
for increasing the oral absorption of a relatively large, hydrophobic peptide

molecule.

Several possible methods of increasing oral absorption of peptides are
detailed in chapter 1, including conjugation to bile acids [142, 144, 200, 201],
co-administration with absorption enhancers [166, 202] and coupling to
vitamin B,, [154, 155, 157-159]. The GnRH antagonist-progesterone
conjugates are too large for the bile acid transporter, since only peptides
consisting of four amino acids or less are transported coupled to bile acids

[141]. There are concerns about the long-term use of absorption enhancers, as
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the increase in permeability may allow absorption of toxic agents otherwise
excluded by the GIT barrier [163].

Vitamin B, is not absorbed directly, but is transported across the epithelial
cell layer lining the duodenum coupled to a large molecular weight protein
(intrinsic factor) [203]. The GnRH antagonist-progesterone conjugates are
small in comparison to intrinsic factor (approximately 50kDa, [152, 153]) and
thus could possibly be co-transported in this way [151, 204] utilizing the

intrinsic factor-cobalamin receptor (IFCR).

6.2 DESIGN OF GnRH-STEROID-VITAMIN B,,
CONJUGATES

Previous studies on coupling GnRH analogues to vitamin B,, derivatives
[157, 158] have used a D-lysine in position six as the conjugation site.
Therefore new analogues incorporating an additional conjugation site were
required in order to conjugate the GnRH antagonists to both a steroid and a

vitamin B,, derivative.

Conjugation of GnRH analogues via a D-Lys® to a variety of molecules and
functional groups is well documented [9, 11, 12, 158, 195]. GnRH is proposed
to interact with the GnRH receptor in a folded conformation, with the side
chain of D-Lys® orientated away from the receptor [13, 22, 23], allowing
conjugation at this site without compromising GnRH receptor binding
affinity. Vitamin B,, (M.W. 1357) was assigned to the D-Lys in conjugates C,
D and E because it is significantly larger than the steroid (M.W. 430.5).

Alternative conjugation sites for the steroid were investigated on the basis of
current understanding of GnRH analogue structure-activity relationships.
Modification of the amino and carboxy-terminal amino acids was likely to

reduce binding affinity at the GnRH receptor [13, 21-23]. An L-lysine was
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substituted in position seven (replacing leucine) and conjugated to the

steroid in conjugates C and E. The sequences of conjugates C and E were as

follows:

Conjugate C: [AcDNal', DCpa? DPal’, Arg’, DLys’, Lys’(21-
hydroxyprogesterone 21-hemisuccinate), Leu®, Arg’, DAla-
NH,"]GnRH

Conjugate E: [AcDNal', DCpa?, DPal’, Arg®, DLys’, Lys’(21-
hydroxyprogesterone 21-hemisuccinate), DAla-NH,""]GnRH

The second option investigated was to replace the first two amino acids at

the N-terminal with the steroid since hydrophobic substitutions in positions

one and two are a feature of GnRH antagonists [21]. This left the D-Lys°

available for conjugation to the vitamin B,, derivative. The structure of

conjugate D was therefore:

Conjugate D: 21-hydroxyprogesterone 21-hemisuccinate-DPal, Ser, Arg,
DLys, Leu, Arg, Pro, DAla-NH,

Low binding affinity at the GnRH receptor and an absence of antagonism of
mammalian GnRH-stimulated IP production (figure 4.4) was observed with

conjugate D and therefore this conjugate was not investigated further.

6.3 CHEMISTRY OF CONJUGATION OF GnRH-STEROID
MOLECULES TO VITAMIN B,, DERIVATIVES

Conjugates C and E, only differing at amino acids eight and nine of the
decapeptide, were similarly effective at GnRH receptor binding and
antagonism. The IC, values of plasma protein binding of conjugates C and E
were not significantly different and activation of the progesterone receptor in
T47D cells was identical. Therefore both conjugates were suitable for
conjugation to vitamin B,,. Only a single conjugate was required to prove the

concept of oral absorption though the vitamin B,, uptake system. Conjugate
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C (AcDNal', DCpa? DPal’, Arg’, DLys®, Lys’(21-hydroxyprogesterone 21-
hemisuccinate), Leu?®, Arg'}, DAla-NH,") was selected because the sequence

was more unique and this would be beneficial should any commercial

interest develop.

Australia Biotech holds patents on the use of the vitamin B,, uptake system
to enhance the oral absorption of peptides. Australia Biotech created direct
peptide-vitamin B,, conjugates with in vitro and in some cases in vivo activity
[158, 159]. More recently they have published promising results with
encapsulating peptides in vitamin B,,-coated nanospheres to achieve oral
uptake [160]. Dr G. Russell-Jones (Australia Biotech) kindly supplied a DTP-
aminohexyl vitamin B,, derivative for conjugation to GnRH antagonist-
progesterone conjugates (figure 6.1). According to recent data, this spacer
gives better results in direct conjugations than those used in earlier studies
([158], Russell-Jones, personal communication). In 1995 Russell-Jones and
colleagues [158] demonstrated that a thiol-cleavable spacer between the
vitamin B,, derivative and the GnRH antagonist was necessary to retain in
vivo activity. The DTP-aminohexyl vitamin B,, derivative includes a
disulphide bond, which could be conjugated to a D-lysine g-amino group

modified to incorporate a sulphydryl group, thus creating the spacer.
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Figure 6.1: Structure of DTP aminohexyl-vitamin B,,. The DTP-aminohexyl group was

connected via the 5" hydroxyl of the ribose in vitamin B,,.

Proof of concept conjugation was attempted by reaction of [DLys’|GnRH
with a cleavable heterobifunctional cross-linking reagent (N-succinimidyl 3-
(2-pyridyldithio)propionate, SPDP) and reduction with dithiotreitol (DTT).
This would be expected to react with the e-amine of a lysine as shown in
figure 6.2, introducing a disulphide linked to a pyridyl group. The pyridyl
group should then react with a sulphydryl-containing vitamin B,, derivative
under mild acidic conditions, resulting in the final [DLys*JGnRH-DTP

aminohexyl-vitamin B,, derivative (figure 6.3).
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Figure 6.2: Synthesis scheme of creating a mixed anhydride intermediate by reaction of

[DLys’]GnRH with the heterobifunctional cross-linking reagent SPDP.

The initial stage of reacting SPDP with [DLys’|GnRH was unsuccessful
despite repeated attempts under different reaction conditions and mass
spectrometry analysis. This was possibly due to the instability of the three-

carbon spacer under these conditions.
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Figure 6.3: Synthesis scheme of [DLys’|GnRH linked to DTP aminohexyl-vitamin B,, after
reduction of the mixed anhydride with DTT.

A commercial company (Albachem Ltd.) also attempted the synthesis of the
GnRH antagonist-progesterone-vitamin B,, conjugate. Twenty-one

hydroxyprogesterone 21-hemisuccinate was conjugated to the Lys’ by the
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organic carbodiimide (DCC) method during the peptide synthesis process
(section 3.2.2). The vitamin B,, derivative DTP aminohexyl vitamin B,, was
coupled to the DLys" (after position 7 since peptides are synthesized from the

C to N-terminus) via a three-carbon spacer.

The conjugate-C DTP aminohexyl-vitamin B,,compound could not be
produced by this method. The vitamin B,, molecule did conjugate with the
side chain of the D-Lys®, but a second vitamin B,, molecule conjugated to the
C3 keto of progesterone. The progesterone C3 keto group is essential to both
plasma protein interaction [97, 205] and progesterone receptor

activation[196] and therefore this molecule was not suitable for investigation.

6.4 PROPOSED IN VITRO EXPERIMENTS WITH GnRH-
STEROID-VITAMIN B,, CONJUGATES

After successful conjugation of conjugate C to vitamin B,,, a series of
proposed experiments would determine whether the molecule could be

transported by the vitamin B,, uptake system.

In order to bind to the IFCR, the conjugate-VB,, molecule must first bind to
intrinsic factor. This can be tested in a similar way to plasma protein binding
(section 2.3.1). Ideally the conjugate would first be radiolabelled, but a
competition binding curve with [*’Co]cyanocobalamin could also be
constructed, measuring the proportion of intrinsic factor-bound and free

label after treatment with dextran-coated charcoal suspension[158].

Transport from the basolateral to apical surfaces of villus cells can be
assessed with either polarized monolayers of the CaCo-2 cell line or everted
gut sacs. In the case of the CaCo-2 cell line, these colorectal carcinoma cells
express the IFCR after approximately 20 days in culture on permeable cell

inserts[206]. After this time, transport of IF-bound radiolabelled conjugate-
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vitamin B,, could be measured in competition with unlabeled IF-bound
cyanocobalamin (or vice versa) to assess whether transport of the conjugate
occurred in a saturable manner. The movement of radiolabelled conjugate
from the outside (now basolateral) to inside (apical) of an everted gut sac

could be calculated to measure transport of conjugate C-vitamin B,.

Once the conjugate-vitamin B,, molecule was prepared it would have been
important to assess the stability of the conjugate in the gastrointestinal
environment. Published evidence suggested that a thiol cleavable bond was
required between the vitamin B,, molecule and the GnRH analogue[158]. It is
possible that this bond may not be sufficiently stable to survive the extremes
of pH and variety of enzymes present in the GIT. The amine bond between
the peptide and the steroid is relatively stable, however the ester bond
between the steroid and the hemisuccinate group is of more concern.
Esterase enzymes could possibly act on this bond and degrade the conjugate
into peptide-hemisuccinate and steroid and it is unlikely that the peptide-

hemisuccinate would retain plasma protein binding activity.

These in vitro assays would determine whether the conjugate could be
transported by the vitamin B,, uptake system, but in vivo experiments would
be required to confirm these results. These would include feeding studies in
a small animal model such as the rat, measuring circulating conjugate C-
vitamin B,, metabolite levels, plasma LH and gonadal steroids after oral

consumption of conjugate C-vitamin B,,.

6.5 DISCUSSION

Methods to enhance the oral absorption of peptides were researched in the
literature, taking into account the unique structure and properties of the

GnRH antagonist-21 hydroxyprogesterone 21-hemisuccinate molecules.
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Synthesis of GnRH antagonist-progesterone-vitamin B;, derivative

conjugates was identified as the most promising method.

In order to synthesize these conjugates, new antagonist sequences were
designed, based on GnRH structure-activity relationships and previous work
with GnRH analogue conjugates. This involved conjugating a vitamin B,
derivative to a DLys® and 21-hydroxyprogesterone 21-hemisuccinate to a

7

Lys’.

A number of technical difficulties arose during attempts to synthesize GnRH
antagonist-21 hydroxyprogesterone 21-hemisuccinate-DTP aminohexyl
vitamin B,, molecules. These occurred with both conjugation of the vitamin
B,, derivative in solution after solid phase peptide synthesis of the GnRH
antagonist-21 hydroxyprogesterone 21-hemisuccinate molecule and with

attachment of the vitamin B, molecule during the peptide synthesis process.

There are a number of ways in which the problems encountered with
producing the conjugate C-DTP aminohexyl vitamin B;, compound could be
addressed. Prior to conjugation to the Lys’, the C3 keto group of 21-
hydroxyprogesterone 21-hemisuccinate could possibly be converted to a C3
ketal to render it inactive during the vitamin B,, conjugation process,
preventing conjugation of the DTP aminohexyl vitamin B, compound at this
site. This would have to be reversed after the conjugation to retain

progestagenic activity.

A D-cysteine residue could be used in place of the D-lysine in position six.
This would greatly simplify the conjugation process, as the sulphydryl group
would already be present on the side group. However the short single-
carbon side chain, compared with the four-carbon side chain of lysine would
bring the vitamin B,, molecule close to the attached steroid. This might
increase the steric hindrance exerted on the peptide. A D-homocysteine in
position six would add an additional carbon to the side chain, which would
potentially reduce this steric hindrance. These peptides would require full in

vitro investigation of GnRH receptor binding, plasma protein binding and
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Chapter 6 GnRH antagonist-steroid-vitamin By, conjugates

progesterone receptor activation to ensure these peptides were fully
functional. Alternatively, a vitamin B,, derivative could be sought that was

less reactive with the progesterone C3 keto group.

Although a GnRH antagonist-progesterone-vitamin B,, conjugate was not
successfully produced because of technical difficulties arising from
conjugating to the steroid, the theory and proposed experiments suggest the

approach is feasible and that the synthesis difficulties could be overcome.
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7.1 GnRH RECEPTOR INTERACTION OF GnRH
ANTAGONIST-21 HYDROXYPROGESTERONE 21-
HEMISUCCINATE CONJUGATES

GnRH agonist conjugates have been synthesized by other groups [12, 175,
195, 198, 207], however few have investigated the properties of GnRH
antagonist bioconjugates. This could be partly due to the inherent difficulties
with working with GnRH antagonists, primarily hydrophobicity and cost,
and is compounded by the significantly higher doses of antagonist required

to induce biological effects.

GnRH analogue conjugates have been synthesized for various uses.
Coupling to carrier molecules has been used to enhance oral uptake, for
example vitamin B,, [158] or to fatty acids for transdermal absorption [175].
Conjugation to emodic acid allowed interaction with plasma proteins and
thus extended the half-life of [DLys’]/GnRH [12] and targeted
chemotherapeutic agents were created by conjugation of GnRH to cytotoxics
[9, 11, 198, 207].

The GnRH antagonist-21 hydroxyprogesterone 21-hemisuccinate conjugates
remained capable of binding to the GnRH receptor when directly conjugated
to a steroid. The use of a spacer between the GnRH antagonist and steroid
was avoided by careful design of the molecule, ensuring the steroid was
conjugated in a central position, hypothesized to be orientated away from the
GnRH receptor during receptor interaction. This appeared to be successful
when position six of the decapeptide was conjugated to the steroid, but was
less so when the seventh amino acid was used. Position six was also used
with GnRH conjugates produced by other groups [9-12, 158, 195, 198]. No

other positions were reported in the literature, but it is unclear whether other
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positions have been attempted and deemed inactive or if position six has

been used as the first choice.

7.2 STEROID ACTIVITY OF GnRH ANTAGONIST-21
HYDROXYPROGESTERONE 21-HEMISUCCINATE
CONJUGATES

The functioning of the steroid moiety of GnRH antagonist-progesterone
conjugates was examined with respect to plasma protein association and
activation of the progesterone receptor. All conjugates examined retained
both of these properties and in the case of four of the five conjugates, this
was combined with GnRH receptor binding and antagonism. Therefore these

conjugates were fully bifunctional.

The binding of the progestagen to both specific plasma proteins and the
progesterone receptor indicates that large substitutions at C21 are tolerated
in both interactions. The requirements for binding to the specific plasma
proteins CBG and PBG are well documented with regard to small
substitutions such as additional hydroxyl or methyl groups. Larger
substitutions are less well understood, although the steroid used for
conjugations (21-hydroxyprogesterone 21-hemisuccinate) has been tested for
guinea pig PBG binding affinity [139]. This study has demonstrated that even
larger substitutions are tolerated well by PBG.

Elements of progesterone receptor binding have also been clarified. The
requirements for binding to the receptor around C21 were not well
characterized by crystallization of the ligand binding domain of the
progesterone receptor [196]. This study has demonstrated that significant
binding to the progesterone receptor was maintained by conjugates of 21-
hydroxyprogesterone 21-hemisuccinate. There was a slight reduction in the

EDq, of receptor activation, but the effect was relatively minor. Therefore
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large substitutions at this position do not significantly reduce receptor

binding.

7.3 PROPERTIES OF A GnRH ANTAGONIST-21
HYDROXYPROGESTERONE CONJUGATE IN THE
MARMOSET AND MACAQUE

The conjugation of a steroid molecule to the GnRH antagonists conferred the
longer half-life of the steroid onto the antagonist, without the need for
extensive modification to enhance resistance to metabolic degradation and
rate of clearance from the circulation. It is therefore possible that this method
could be used to enhance the half-life of other GnRH analogues, or possibly

even completely unrelated molecules.

It is unlikely that the biological activity was due to cleavage of the amide
bond between the hemisuccinate and the peptide, although the possibility
that the ester bond between the steroid and the hemisuccinate could be
hydrolyzed is acknowledged. It is most probable that cleavage in vivo did not
occur since a large increase in the duration of action was seen in the
marmoset studies. This result would not be expected to occur without a large

change in the properties of the GnRH antagonist molecule.

The increased hydrophobicity of the GnRH antagonists when conjugated to
the steroid may at least partially account for the increased duration of action
since hydrophobic molecules are known to exhibit a depot effect, resulting in

slower release [39], particularly after subcutaneous injection.

GnRH-BSA conjugates can be used to elicit an immune response for the
purposes of medical castration [208-210]. In order to achieve this, the GnRH-
BSA conjugate must be structurally similar to native GnRH, although

conjugation directly to BSA can reduce the immunoreactivity towards
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monoclonal and polyclonal antibodies[211]. It is possible that GnRH
analogue-steroid conjugates may induce a similar response when bound to
plasma proteins (either CBG or albumin). But even if GnRH antagonist
conjugates provoke the formation of antibodies, the considerable structural
differences between the GnRH antagonist and hypothalamic ‘self’
decapeptide GnRH means that cross-reactivity is unlikely with the

conjugates investigated here.

It is more likely that antibodies formed to the GnRH antagonist-steroid
conjugate would cause problems with repeated administration of the
conjugate. GnRH immunization is designed to provoke a rapid response
with a minimum number of doses. It is envisaged that GnRH antagonist-
conjugates would be used repeatedly over long periods to inhibit
gonadotropin production. This could result in immunoreactivity to the
conjugate itself, leading to histamine responses and possibly anaphylaxis.
This was not a major concern at this stage of developing GnRH antagonist-
progesterone conjugates since each primate was only injected with a
conjugate on a single occasion. However the immunological effects of the

conjugate should be addressed in later studies.

7.4 ENHANCING ORAL ABSORPTION OF GnRH
ANTAGONIST-21 HYDROXYPROGESTERONE 21-
HEMISUCCINATE CONJUGATES THROUGH
CONJUGATION TO VITAMIN B,,

Methods to enhance the oral absorption of peptides were examined in the
literature with the aim of identifying the most suitable way to increase oral
absorption of the GnRH antagonist-progesterone conjugates. The selected
method was to use the intrinsic factor-mediated uptake of vitamin B,, by
synthesizing GnRH antagonist-progesterone-vitamin B,, conjugates, but
these conjugates could not be produced because of chemical synthesis

difficulties.
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The vitamin B,, uptake system remains one of the most viable methods of
enhancing oral absorption of peptides, including the GnRH antagonist-
steroid conjugates. Recent advances in technology have enabled peptides to
be temporarily enclosed in vitamin B,,-coated nanospheres, which protect the
peptides from the low pH of the stomach and hydrolytic enzymes of the GIT
[160, 212]. Nanospheres of up to 200nM diameter are transported across
CaCo-2 cells via the IFCR, with significantly greater amounts of peptide
transported than with direct peptide-vitamin B,, conjugates [160]. The
advantages of this method are that chemical modification of the peptide is
not required and the greater amount of peptide transported is in the range
required for GnRH antagonists [160]. Thus this method may be more suitable

for the oral absorption of GnRH antagonist-steroid conjugates.

7.5 IN VITRO BIOTRIGGERED RELEASE OF GnRH
ANTAGONIST-STEROID CONJUGATES

Conjugation of a GnRH antagonist to a steroid hormone was shown to
introduce plasma protein binding affinity onto the GnRH antagonist
peptides. The majority of progesterone is found bound to both specific and
non-specific plasma proteins, with only around 2% free in the circulation
[100]. One of the objectives of my studies was to determine if this feature
could be utilized to accomplish a biologically timed inhibition of

gonadotropins, a biotriggered release.

If a fixed plasma protein capacity is assumed, then an increase in
progesterone concentration would saturate the plasma protein binding sites.
Increases in progesterone concentration occur at midcycle immediately prior

to ovulation (0.5ng/ml) and a larger increase occurs during the luteal phase
(10ng/ml).

If a GnRH antagonist-progesterone conjugate was present throughout the

menstrual cycle, during the follicular phase it would be predominantly
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bound to plasma proteins. But during periods of high progesterone
concentration, these binding sites would be predominantly occupied by
progesterone, since progesterone was found to have a higher affinity for
plasma proteins than the conjugates (figures 4.8 and 4.10). The presence of
progesterone would therefore ‘trigger’ the release of the GnRH antagonist-
progesterone conjugate from the plasma protein (figure 7.1A). Providing
plasma protein bound conjugate is not able to interact with the GnRH
receptor, the GnRH antagonist would only inhibit LH release during periods

of high progesterone concentrations.

If sufficient GnRH antagonist-progesterone conjugate is released from the
plasma protein during the midcycle progesterone rise, the luteal phase
would be prematurely terminated, thereby preventing ovulation.
Alternatively, if a larger increase in progesterone was required to release
sufficient GnRH antagonist-progesterone conjugate from the plasma protein,
the luteal phase increase in progesterone concentration would interrupt
gonadotropin support of the corpus luteum, halting the luteal phase and

inducing menses.

This principle would enable a GnRH antagonist-progesterone conjugate to be
‘released” from plasma only at these times, allowing transient inhibition of
gonadotropin suppression, either terminating the LH surge or interrupting
gonadotropin support of the corpus luteum. This biologically timed release
would have significant advantages over the current use of GnRH
antagonists, allowing release of the GnRH antagonist-progesterone conjugate
only during periods of high progesterone concentration. This would enable
highly specific timing of gonadotropin inhibition to either inhibit ovulation

or the functioning of the corpus luteum.

The effects of late-luteal GnRH antagonist treatment can be overcome by the
presence of hCG [72] in the rhesus macaque, but it is unclear whether this
can also occur in humans. This could have major implications to the
biotriggered release of the GnRH-antagonist conjugate if an early embryo has

already implanted into the endometrium, stimulating the release of hCG.
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This may prevent the GnRH antagonist from inhibiting corpus luteum
function, limiting the effectiveness of the GnRH antagonist-steroid

conjugates as contraceptives.

This theory does not take into account the large proportion of progesterone
bound to albumin [100]. This plasma protein has an immense capacity for
binding and despite the low affinity of interaction, has major effects on the
distribution of progesterone and a GnRH antagonist-progesterone conjugate.
There may be sufficient plasma protein binding sites to bind both the
progesterone and the GnRH antagonist-progesterone conjugate
simultaneously and therefore biotriggered release may not occur. However
the conjugate would still be of value because of the enhanced half-life in

comparison to the parent GnRH antagonist peptide.

One of the fundamental assumptions of this theory was that the proportions
of bound and free progesterone (or oestradiol) vary during the menstrual
phase. Although the absolute concentration varies, the proportion of bound
and free hormone remains unchanged [213]. Therefore the capacity for
binding progesterone through both specific and non-specific plasma protein
interactions exceeds maximum physiological steroid concentrations.
Comparing bound and free hormone levels across the menstrual cycle with
equilibrium dialysis could have provided the evidence to refute the

biotriggered release theory without further analysis.
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Figure 7.1A: Summary of proposed biotriggered release mechanism of GnRH antagonist-
progesterone conjugates.

B - Effect on LH if the midcycle progesterone rise releases sufficient GnRH antagonist-
progesterone conjugate from plasma proteins to prevent ovulation.

C -Effect on progesterone if the luteal progesterone increase releases enough GnRH
antagonist-progesterone conjugate from plasma proteins to interrupt gonadotropin support

of the corpus luteum, resulting in luteolysis.
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This theory was tested in three types of in vitro assays in the presence of a
combination of human serum or pregnant guinea pig plasma, conjugate,

control peptide and progesterone, in incubation media.

Whole cell binding assay

Whole cell binding assays are more physiological than some other types of
receptor binding assay since binding is assessed in intact cells expressing the
GnRH receptor. The assay was modified to include human serum and
conjugate in the incubation media, with or without progesterone. The
conjugate/progesterone mixtures were incubated in this media for periods of

up to 12 hours at 37°C before application to the cells and assay.

Initially changes to the IC;, curve were analysed. The presence of plasma or
serum containing the binding proteins should have reduced the ability of the
conjugate to compete with [His°DTyr’]GnRH, resulting in a right hand shift
of the dose-response curve. Saturating the binding sites with progesterone
before adding the conjugate should have reversed this effect (figure 7.2).
However no consistent result could be identified despite altering duration
and temperature of incubation and the concentration of progesterone. It was
concluded that possible reasons for this failure were variation in CBG
capacity in the human serum, small variations in plating density or the effect

was too small to observe as a shift in the IC;, curve.

T
o
&
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b No serum
i Serum
_Ew‘::' Serum + progesterone
m .2
L.
&

low high
Concentration of conjugate

Figure 7.2: Theoretical effects of serum and serum with progesterone on competition whole

cell binding assay of a GnRH antagonist-steroid conjugate.
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The same assay was carried out using a single concentration of conjugate
(approximating the ICs, value in normal whole cell binding assay) with a
high number of replicates to measure small changes more accurately.
However this also did not result in a significant change in [His’DTyr’]|GnRH

competition in the presence of serum, plasma or progesterone.

Membrane binding assays

Membrane binding assays are more suitable for modification since the
binding assay is carried out in solution with homogenized membranes. The
concentration of purified PBG solution included could be varied without the
risk of cell detachment from a solid support as occurred in whole cell

binding assays.

The effect of adding purified PBG solution, alone and in combination with
progesterone to the incubation medium was measured with a single
concentration of conjugate. The conjugate was present at approximately the
ICs, value calculated under normal membrane binding assay condition. A
high number of replicates were carried out to reduce error values. In the
presence of PBG solution, most of the conjugate would be expected to bind to
plasma proteins, reducing the ability of the conjugate to compete with
[His’DTyr’]|GnRH for binding to the GnRH receptor. Excess progesterone
would occupy the plasma protein binding sites, with the unbound conjugate
able to compete with [His’DTyr’]GnRH for GnRH receptor binding.

The expected reduction in competition of the conjugate with
[His’DTyr’]GnRH in the presence of purified PBG solution was observed on
two separate occasions (an example is shown in figure 7.3). The presence of
progesterone was seen to reverse this effect as expected. There was no effect
of PBG solution or progesterone on the competition of mammalian GnRH
(control peptide) with [His’DTyr’]GnRH. This effect was not repeatable
despite numerous attempts and therefore it must be concluded that the effect

was not sufficiently robust.
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Figure 7.3: Example of biotriggered release measured with membrane binding assay. Total
specific binding of '*I-[His’DTyr’]GnRH in the presence of constant concentrations of
competing ligand (mGnRH 31nM, conjugate A 3nM and conjugate B 100nM). ‘Buffer’
corresponds to PBG purification buffer (20mM sodium acetate, 0.02% sodium azide), ‘PBG’
represents PBG purification buffer containing PBG and ‘PBG + P’ denotes PBG purification
buffer containing both PBG and progesterone.

Inositol phosphate assay

IP assays are used to measure the activation or inhibition of downstream
signalling events at the GnRH receptor due to the activation of PLC. The
signalling cascade amplifies receptor binding events and therefore this assay
is more sensitive to detecting an effect of serum or plasma on the competition

of the conjugate with mammalian GnRH for receptor binding.

There were several problems with attempting to use the IP assay to assess the
effects of plasma or serum. Cell detachment from plastic ware was observed
even at low concentrations of pregnant human serum. Replacing the serum
with pregnant guinea pig plasma produced an interesting result. Incubation
media comprising 10% pregnant guinea pig plasma produced a 100-fold

right hand shift in the dose-response curve of mammalian GnRH in
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comparison to the curve in normal incubation media. Pregnant guinea pig
plasma must therefore contain an agent capable of blocking the effects of
mammalian GnRH. An inactivating enzyme may be responsible for this

effect. Thus this assay could not be used to measure biotriggered release.

Mammalian cells are routinely cultured in foetal calf serum (FCS) because it
contains the additional factors that are required for cell growth and
metabolism that cannot be found in any other source or produced
synthetically. There are however a large number of other constituents in
serum that can affect cell culture. It is not surprising that cell detachment was
observed when addition of human serum into the IP assay was attempted. It
would perhaps have been better to use another source of plasma binding

proteins to test the biotriggered release assay, such as FCS or BSA.

These attempts to prove biotrigger release were unsuccessful, primarily
because of the technical difficulties arising from the number of effects
involved. Nevertheless the biotriggered release principle remains a

possibility, but further investigations are required to confirm this.

7.6 FUTURE WORK

GnRH agonist-21 hydroxyprogesterone 21-hemisuccinate conjugates

[DLys’]GnRH-21 hydroxyprogesterone 21-hemisuccinate conjugates were
synthesized as detailed in chapter 3, however these molecules were designed
to prove the method of conjugation and were not analysed in vitro or in vivo.
It would be interesting to investigate how the properties of GnRH agonists
could potentially be modified by conjugation to a steroid molecule since the
requirements for agonist binding to the GnRH receptor are fairly well

understood.
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GnRH antagonist-21 hydroxyprogesterone 21-hemisuccinate conjugates

The GnRH antagonist-21 hydroxyprogesterone 21-hemisuccinate conjugates
designed and synthesised were investigated for GnRH receptor binding,
affects on IP production, plasma protein binding and activation of the
progesterone receptor via a reporter gene construct. It was demonstrated that
conjugating the steroid to amino acid six of the peptide retained bioactivity,
however conjugation through amino acid seven markedly reduced the GnRH
receptor binding and inhibition of inositol phosphate production. Therefore
these conjugates would not be suitable for further investigation, but there are
other sites that could be used and incorporation of linker regions may reduce
the effect of the steroid conjugation on GnRH receptor activity. It is unlikely
that this would be necessary to maintain steroid activity since activation of
the progesterone receptor remained similar to progesterone for all five

conjugates.

GnRH analogue-testosterone or oestradiol conjugates

Although the current work has concentrated on the synthesis and analysis of
GnRH antagonist-21 hydroxyprogesterone 21-hemisuccinate conjugates, the
ability of other endogenous steroids such as testosterone and oestradiol to
increase the half-life of GnRH analogues is acknowledged. Steroids binding
to SHBG would potentially have the same effect on duration of action as
steroids binding to CBG (and PBG).

Conjugates of GnRH analogues linked to other molecules

The method of enhancing GnRH analogue duration of action is not limited to
endogenous steroids and any other plasma protein-binding molecule would
potentially have the same effect. A good candidate molecule would be
mifepristone (also known as RU 486). Mifepristone is known to have a long
duration of action, derived primarily from binding to alpha 1-acid
glycoprotein [108]. The conjugation of this progesterone antagonist to a
GnRH antagonist would result in a very interesting molecule, combining
these two effects to result in a highly effective contraceptive with an

unusually long duration of action.
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GnRH analogues are important tools for reproductive medicine. Design of
GnRH antagonists with reduced side effects has overcome many of the
earlier problems with these peptides. In this thesis two of the remaining
problems were addressed in a novel way to overcome the short half-life and
low bioavailability after oral administration. The information gained from
this study is of importance to future work with GnRH analogues, by proving
the concept of enhancing the properties of a GnRH antagonist without
sequence modification or compromising binding to the GnRH receptor. This

method could also be used with other peptides to improve their properties.

The results obtained in this study provide preliminary information on the
functioning of GnRH antagonist-progesterone conjugates. However some
assays would be of benefit to further analyze the properties of the conjugates
and the effect of the conjugation process on the constituent parts. For
example antagonism at the GnRH receptor could be conclusively
demonstrated by analysis of LH production (rather than just inhibition of IP
production) and non-specific plasma protein binding could be measured by
equilibrium dialysis. It is also important to investigate plasma protein
binding of the conjugates in human serum. The information contained herein
is the first step in developing GnRH antagonist-steroid conjugates and

proves that the concept is possible.

This concept has advantages over similar attempts to increase the half-life of
GnRH analogues by Rahimipour et al [12]. Conjugation of [DLys’]GnRH to
emodic acid was shown to prolong the activity of the GnRH analogue in the
rat. However conjugation to emodic acid raises several issues. Emodin is an
anthraquinone derivative used in some laxatives with known toxic effects.
Although the conjugate was shown to be devoid of toxic effects in this study,
the possibility of toxicity would be of some concern. The use of a modified
endogenous molecule (a progestagen) has distinct advantages, particularly

when the biological effect of the molecule is advantageous. Toxicity is
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unlikely with a modified steroid and thus the conjugates described herein are

superior to those described elsewhere.

Combining a GnRH antagonist with progesterone has several advantages
over currently available peptide GnRH antagonists. The pharmacodynamic
properties of the peptides were improved by conferring plasma protein
binding onto the peptide, reducing the need for frequent doses. Combining
low dose sex-steroid replacement (dependent on the dose of conjugate
required) with a GnRH antagonist would provide two methods of inhibiting
gonadotropin release, through negative feedback (progesterone) at the
pituitary and competition with endogenous GnRH (GnRH antagonist). This
will result in a highly effective contraceptive. Low-concentration
progesterone replacement may also counteract some of the problems
associated with long-term GnRH antagonist treatment. These conjugates

could therefore have a major impact in reproductive medicine in the future.
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Supplier addresses.

Name of supplier Town/city Country
Albachem Ltd. Gladsmuir UK
Amersham Pharmacia Biotech Little Chalfont UK
Bachem UK Ltd. St. Helens UK
Beckman Coulter UK Ltd. High Wycombe UK
Bio-Rad Laboratories Hemel Hempstead UK
Charles River Laboratories Margate UK
ICN Biomedicals Ltd. Thame UK
Invitrogen Life Technologies Paisley UK
Jencons (Scientific) Leighton Buzzard UK
Merck Ltd. Lutterworth UK
Micromass Ltd. Manchester UK
Millipore UK Ltd. Harrow UK
NEN Life Science Products Hounslow UK
National Institute of Health Washington USA
Perbio Scicence UK Ltd (Pierce) Chester UK
Promega Ltd. Southampton UK
Qiagen Ltd. Crawley UK
Sigma-Aldrich Company Poole UK
Whatman International Maidstone UK
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Appendix II

Solutions used throughout thesis.

COMPETITION MEMBRANE BINDING ASSAY

Homogenization buffer

Tris

Magnesium chloride hexahydrate
Deionised water to 500ml

pH adjusted to 7.2

Assay buffer (10x)

Tris

Magnesium chloride hexahydrate
Deionised water to 1L

pH adjusted to 7.4

INOSITOL PHOSPHATE ASSAY

Incubation buffer

Sodium chloride

HEPES

Potassium chloride

D-Glucose

Magnesium chloride hexahydrate
Calcium chloride

BSA

Deionised water to 1L

pH adjusted to 7.2

PLASMA PROTEIN BINDING ASSAY

Dextran-coated charcoal solution

Dextran T-70
Charcoal decolorizing powder
PBS to 500ml

1.21g
0.204g

48.46g
4.07g

8.18g
4.76g
0.298g
1.44¢g
0.203g
0.147g
1.0g

0.25g
2.5g
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MARMOSET PROGESTERONE ELISA

Coating buffer
Sodium carbonate 4.24¢
Sodium bicarbonate 4.04g

Deionised water to 1L
pH adjusted to 9.6

Washing buffer (25x)
Tris 302¢g
Sodium chloride  450g
Tween 20 25ml

Deionised water to 2L
pH adjusted to 7.5
Phosphate/citric assay buffer
Disodium hydrogen phosphate 17.85g

Citric acid 7.75g
Gelatin 1.0g
Thiomersalate 0.1g
Deionised water to 1L
pH adjusted to 6.0

Substrate buffer
Citric acid 10.3g

Disodium hydrogen phosphate 14.19g
Deionised water to 1L

Coating antibody
Rivanol purified DARS

Primary antibody
SAPU anti-P4 serum (from rabbits immunised with 11a-
progesterone-BSA conjugate)

Label constituents
Progesterone 11o-glucuronide-biotin complex

Diluted to 1: 20,000 with assay buffer

2mg/ml 8-anilino-1 naphthalene sulphonic acid

Amdex; streptavidin-horse radish peroxidase (HRP)
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Diluted to 1: 2000 with phosphate buffer pH 7.4
containing 1% casein
Substrate
O-phenylenediamine dihydrochloride 30mg tablet
Hydrogen peroxide solution 30pl
Substrate buffer 75ml
Stopping solution
Concentrated sulphuric acid 50ml

Deionised water 450ml

MARMOSET TESTOSTERONE RIA
Assay buffer
Disodium hydrogen phosphate anhydrous 8.66g
Disodium hydrogen phosphate dihydrate 6.08g

Sodium chloride 9.0g
Thiomersalate 0.1g
Gelatin 1.0g

Deionised water to 1L

Second antibody
Donkey anti goat/sheep (SAPU) 1:25 diluted
Normal sheep serum (SAPU) 1:800 diluted

MACAQUE LH RIA
Assay buffer
50ml 0.5M phosphate buffer stock solution
Sodium chloride 4.5g
BSA 5.0g
Thiomersal 0.1g

Distilled water to 500ml
Wash solution
4% PEG, 0.2% TritonX in 0.9% saline
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